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1  INTRODUCTION 

 

  Epilepsy surgery is any neurosurgical intervention, whose primary objective is to 

relieve medically intractable epilepsy [32]. Its aim is to reduce the number and 

intensity of seizures, minimize neurological morbidity and antiepileptic drug toxicity, 

and improve the patient’s quality of life [46]. The main challenge of neurosurgery has 

always been to preserve maximal physiological, neuronal functions during the   

     operation. This is even of more concern in epilepsy surgery, which is normally an 

elective surgery without any vital indications for resection of the epileptogenic zone.  

 

  The epileptogenic zone is a region of the cortex that can generate epileptic seizures. 

By definition, it is the “minimal area of cortex that must be resected to produce 

seizure freedom” [62].  

 

The concept of the epileptogenic zone is a purely theoretical one. Some are of the 

opinion that its extent and location cannot be fully determined until the patient is 

actually made seizure free by resective surgery [14]. As the epileptogenic zone is 

often located near functionally significant cortical regions, a major concern is to 

preserve the higher cortical functions located there. Often it is their preservation that 

conflicts with the resection of the entire epileptogenic cortex in order to also achieve 

seizure freedom or reduce the seizure frequency after the operation. Those patients 

with a potential overlap of pathological alterations and neurophysiological function  

pose the frequently observed dilemma of a necessary tradeoff between seizure relief 

and permanent neuropsychological deficits [49], [51], [105].  

  One of the most significant higher cortical functions, of great importance for 

neurosurgeons and their patients, has always been and remains speech.  According to 

Ojemann and colleagues, the location of language zones varies from one individual to 

the next. They are found in a wide area of the left lateral cortex, extending beyond the 

traditional anatomical limits of the Broca and Wernicke areas [84], [86], [88], [89], 

[120]. Thus, the location of the epileptogenic zone should more frequently be 

suspected to lie around the speech cortex. Extensive investigations must often be 

performed to clarify this. 

  Therefore epilepsy surgery close to the speech cortex has become a special, 

independent, and even more problematic subgroup of epilepsy surgery as regards the 
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successful surgical treatment of medically refractory seizure activity. To better 

explain the actual investigation and treatment options for this epilepsy surgery 

subgroup, we compiled an overview of our 10 years of experience with such patients 

in Munich University Hospital, Grosshadern. This overview comprises descriptions of 

current examinations used in our work, especially focusing on the invasive language 

mapping method, the current gold standard for language localization. It also includes  

    our data on 22 left hemisphere epilepsy surgery patients whose epileptogenic zone 

was located around the speech cortex and who underwent operations in our clinic 

between 1997 and 2007. We also assess two different tactics of language mapping in 

those patients and appraise our indications for their use.  

 

1.1 Statistical data on epilepsy and epilepsy surgery  

 

  Almost one percent of the world’s populace suffer from epilepsy. There are 

approximately 50 million epilepsy patients in the whole world [54]. In Germany there 

are 6 to 7 epilepsy patients per 1 000 inhabitants, thus about 500 000 in the entire 

country. Every year 30 to 50 persons out of 100000 in Germany are diagnosed to have 

epilepsy, making all together about 30 000 new epilepsy cases each year [54].  

  According to data of the National Society for Epilepsy (United Kingdom), up to 70% 

of persons with epilepsy achieve full seizure freedom through medication [73].   

   Sixty percent of all epilepsies are of focal onset. In about 30% of focal epilepsy 

cases the seizures continue in spite of adequate antiepileptic (AED) medication or 

patient develops intolerable side effects [21]. If half of these patients were evaluated 

for epilepsy surgery and half of those evaluated would eventually benefit from 

epilepsy surgery, this means that about 4.5% of all patients with epilepsy (0.03% of 

the total population) could profit from epilepsy surgery [31]. There is currently a 

considerable backlog of 5,000 people waiting for surgery and between 300 to 500 new 

cases each year in the United Kingdom [73].     

 

  1.2 Criteria for including an epilepsy patient in pre-surgical investigation 

 

    On the basis of the above-mentioned definition of epilepsy surgery, a potential 

epilepsy surgery patient must have medically intractable epilepsy.  
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  Although the definition of medical intractability differs among the various epilepsy 

centers, it mainly refers to patients whose seizures have continued despite adequate 

monotherapy in trials of at least two antiepileptic drugs (AEDs) with or without one 

trial of combination of two drugs [25], [121]. Medical intractability can also indicate 

that control of seizures is achieved, but the necessary medication is accompanied by 

intolerable side effects. Another criterion of medical intractability is that seizures     

 are of sufficient severity and/or frequency to interfere with the patient’s quality of life 

[33]. The impact of epileptic seizures on a patient’s quality of life is assessed during 

several visits to an epileptologist.   

 

2  Examination of surgery candidates 

 

  2.1  Introduction 

 

  If the above-mentioned criteria for medical intractability are met, the patient is 

included in our epilepsy surgery program and specific investigations are initiated to 

find the epileptogenic zone.  

 

  Per definition epilepsy surgery does not include normal surgical treatment of 

intracranial lesions, where the primary goal is to diagnose and possibly remove the 

pathological target, often a progressing tumor. In these patients, epileptic seizures are 

only one symptom of the lesion and are treated as part of the procedure [46]. 

However, a few tumor patients in whom the primary goal of operation was still to 

decrease an intolerable seizure frequency were also included in our epilepsy surgery 

program. 

 

  2.2  The goal and structure of pre-surgical investigations 

 

  The goal of pre-surgical evaluation is to precisely define the location and extent of 

the epileptogenic zone together with nearby functional zones using both non-invasive 

and invasive investigation methods. 

 

  Pre-operative investigations are of great significance in surgery of the dominant 

hemisphere. Their ability to precisely localize the functionally significant (dominant) 
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cortex and to specify its relation to the epileptogenic cortex (epileptogenic zone) 

determines the objectives and results of surgery as regards seizure control and post-

surgical neuropsychological/ neurological morbidity. 

  

  Like many other epilepsy surgery centers, we begin with relatively less expensive 

and simple, non-invasive methods and progress to invasive investigations only if non-

invasive investigations do not provide enough information to define an epileptogenic   

zone and determine its relation to functionally significant cortex. We then  

proceed with resective surgery.  

 

  2.3  Non-invasive investigations 

 

  Non-invasive or extra-cranial investigations are relatively safe methods that provide 

sufficient information in the majority of medically intractable epilepsy cases 

regarding the localization of the epileptogenic zone. They often allow us to proceed 

with resective surgery, without requiring more invasive (intracranial) examinations. 

 

  The following list gives short descriptions of non-invasive investigational methods 

used in the pre-surgical evaluation. 

 

    2.3.1  History and neurological examination  

 

    A detailed history of epileptic attacks and a neurological examination are essential 

to differentiate between epileptic and non-epileptic attacks. Both are also important 

for understanding the seizure semiology, which can indicate the possible seizure 

origin [65]. 

 

    2.3.2  Ictal and interictal electroencephalographic recordings 

 

  The electroencephalogram (EEG) is a graphic recording of the brain’s electrical 

activity. By registering epileptogenic potentials in some of the head-surface 

electrodes, we can narrow down the possible localization of an epileptogenic zone. 

Hans Berger (1873 – 1941)   first described an EEG in 1929. The following ten years 

witnessed revolutionary changes in the diagnosis of epilepsy, mainly due to the 
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implementation of EEG in clinical practice [11]. The first purely EEG-directed 

temporal lobe resection was performed in 1942 (Boston, USA) by Percival Bailey 

(1892 – 1973) and Frederick Gibbs (1903 – 1992) [111].  

 

  Although surface EEG recordings are less sensitive than invasive studies, their role 

has continued to evolve with the advent of high resolution volumetric magnetic 

resonance imaging (MRI) and other imaging techniques. They provide the best 

overview and therefore the most efficient way of defining the approximate 

localization of the epileptogenic zone [75], [107]. 

  As already mentioned, the main limitation of extra-cranial EEG is its decreased 

sensitivity to cortical generators [40], [108]. Surface recordings also have significant 

difficulty “seeing” seizure onsets occurring in cortical regions located relatively deep 

with respect to the scalp (interhemispheric, mesial temporal, etc.). This lack of 

sensitivity implies that surface recordings only detect EEG seizures after they have 

spread to involve extensive areas of cortex. EEG also has a spatial limitation - it can 

only record electrical activity of the brain in an area of approximately 6 cm2 [62].    

 

For proper investigation both ictal and interictal EEG have to be recorded.  

Interictal EEG gives evidence of the region of cortex that generates epileptiform 

discharges in the EEG (some authors also call this zone the epileptogenic focus [70]). 

Many patients have, however, multiple, bilateral, fronto-temporal, or poorly localizing 

interictal irritative abnormalities. The definition of interictal epileptiform discharge, 

which is highly subjective and varies among electroencephalographers, poses a major 

limitation of the method. Thus, ictal electroclinical documentation of seizures is 

considered the gold standard in non-invasive electroencephalography [46].  

  In about 80% of adult patients with temporal lobe epilepsy, extracranial ictal EEG 

video- monitoring, in combination with MRI, sufficiently localizes the seizure origin 

to permit a decision about surgery [34]. If the patient has a mesial temporal lobe 

epilepsy, then the percentage rises to 90% [46], [107].   

 

    2.3.3  Magnetic resonance imaging (MRI) 

 

         MRI is a sensitive and specific method for detecting various abnormalities of the 

brain structures. As mentioned earlier, if a structural lesion is found and its location is 
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consistent with clinical and EEG data on the epileptogenic zone, the removal of the 

lesion may be sufficient to control seizures [16]. Most epilepsy surgery centers use 

high-resolution MRI images on 1,5-Tesla systems with standardized protocols that 

consider seizure semiology and EEG findings to detect lesions [115]. The potential 

usefulness of 3-Tesla high-field MRI is currently being investigated [19]. When 

augmented by special techniques, image algorithms, and increasing experience,  

the sensitivity of MRI is now close to 98% [20], [80], [115].  

  In those patients in whom scalp EEG recordings provide insufficient information to 

proceed with resective surgery, an MRI may be helpful to make a hypothesis about 

the optimal site for intracranial electrode implantation [79]. 

 

    2.3.4  Functional magnetic resonance imaging (fMRI) 

 

Functional MRI (fMRI) can detect regional hemodynamic increases in response to 

simple, complex, or imagined finger movements, visual stimuli, and a variety of 

auditory stimuli, as well as language tasks. It can also provide preoperative 

localization information on the essential functional cortex [22]. Thus, fMRI is also 

one of the methods available for cortical or functional mapping (attributing a location 

to some particular functionally significant site in the cortex). It also continues to be 

studied as a non-invasive alternative to the Wada test for language lateralization [98].    

  The most important difference between the Wada test and fMRI is that fMRI is an 

activating test while the Wada test is a deactivating test; fMRI allows examination of 

patients without any time limitations and repeatedly, if necessary [46]. One drawback 

of fMRI for epilepsy surgery is the fact that it detects involved language cortex 

instead of essential language cortex [106]. Consequently, the cortical language areas 

visualized in fMRI are broader than those defined with direct cortical stimulation. 

This makes the resection of nearby epileptogenic cortex problematical, if intra-

operative orientation is based only on this investigation.      

 

    2.3.5  Positron Emission Tomography (PET) 

   

 PET provides images of local blood flow, metabolism, and brain transmitter systems 

in vivo, using short-lived radioisotopes as markers. An epileptic focus appears 

interictally as low glucose metabolism.  It is mainly used to diagnose extra-temporal 
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focal epilepsy, especially in children with equivocal findings [46]. [18F] FDG-PET can 

visualize hypometabolic area that correlates with the focus in 80% of patients with 

focal temporal lobe epilepsy (TLE) [52]. Here surgery can achieve good results also 

in patients without MR-documented lesions. Indeed a distinct, surgically remediable 

syndrome of “MRI-negative, PET-positive TLE” has been proposed [15]. The 

underlying pathophysiological mechanisms are still unclear [19]. 

 

    2.3.6  Single Photon Emission Computed Tomography (SPECT) 

 

  SPECT is based on radioactive isotopes that emit gamma radiation with a much 

longer half-time than isotopes used in PET scanning. SPECT can be used to measure 

ictal cerebral blood flow in the focal epileptogenic zone and identify regions of acute 

ictal hyperperfusion within the temporal lobe. These regions are a surrogate of  

    the epileptic zone, whose excision correlates with satisfactory seizure control. 

However, the spatial resolution of SPECT alone is considered insufficient, especially 

when considering limited resections [45], [108]. 

 

    2.3.7  Neuropsychological testing  

 

  Neuropsychological testing can provide information about the patient’s preoperative 

cognitive functions (it tests intelligence, attention, visual and verbal memory, 

language, higher verbal and visual reasoning). This is helpful for counselling on the  

      possible risks of cognitive deficits after surgery and for planning post-surgical 

rehabilitation. Epilepsy surgery must always be weighed against the attendant risks of 

cognitive deficits.  

An IQ below 70 in adults is considered a poor prognostic factor for resective epilepsy 

surgery, since it usually indicates diffuse brain damage often associated with a wide-

spread epileptogenic zone [75].  

 

  One part of a neuropsychological evaluation is the Wada test, used for lateralization 

of speech and memory. This test is actually an invasive investigation: a barbiturate 

(125 – 175 mg sodium amobarbital) is injected by means of a catheter placed in the 

carotid arteries. The purpose of the investigation is to suppress the ipsilateral 

functional capacity for a few minutes, enabling the testing of speech and memory in 
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one hemisphere at a time [117]. Assessment of memory function in the Wada test is 

based on the hypothesis that pharmacologic inactivation of a single temporal lobe will 

not create global amnesia if the awake temporal lobe is healthy [71]. Assessment of 

language function is based on the hypothesis that pharmacologic inactivation of a 

dominant temporal lobe will create global aphasia. The indications for the Wada test 

differ from one center to the next; at some centers it is used systematically, however, 

at others very rarely [116].     

  This test may not be needed if only mesial temporal lobe resection (amygdalo-

hippocampectomy) is done, since these operations require no language mapping and 

the test may not reliably lateralize the hemisphere that supports memory. However, 

further investigations are needed to determine the role of the Wada test in pre-surgical  

       investigations for epilepsy patients [91]. Today the test has been replaced in many 

cases by non-invasive fMRI. It is applied mainly in selected patients to determine 

language dominance, particularly in hemispherectomy and callosotomy candidates 

and in patients with epileptic foci close to or overlapping with putative language areas 

[29], [35], [56]. 

 

  2.4  Invasive investigations 

 

  If non-invasive investigational techniques cannot provide a sufficient amount of 

information to proceed with surgery, the collected information is too heterogeneous, 

or the suspected epileptogenic zone is located very close to functionally significant 

cortex, invasive investigation methods must be considered [40].  

  Today invasive investigations are required in temporal lobe epilepsy, i.e., in about 

20% of all cases. This value differs among the different epilepsy surgery centers. 

Immonen and colleagues reported that about 45% of all their temporal epilepsy 

patients underwent invasive investigations [46]. The need for invasive investigations 

is more frequent in extra-temporal epilepsy than in temporal lobe epilepsy. 

 

  In contrast to non-invasive methods, invasive methods carry an increased risk of 

patient morbidity. They are limited by the size of the investigational region and the 

time required. One must first propose a strong hypothesis about the seizure origin 

zone before turning to invasive investigations. The strength of the hypothesis is based 

on the results of the non-invasive evaluation, which is a key to successful use of 
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invasive techniques. The clearer the question is for testing, the greater is the chance of 

success with the invasive evaluation [9]. 

  The questions to be answered by invasive methods include determination of the 

epileptogenic zone, the functionally significant cortex, the brain lesions, and their 

interactions.   

     

    2.4.1 Determination of the epileptogenic zone by invasive 

electroencephalography and video-EEG monitoring 

   

To perform an invasive electroencephalography, subdural electrodes are placed during 

a neurosurgical operation (craniotomy) on the brain surface, under the dura mater. 

 

  Subdural electrodes are made of biologically inert, flexible (Silastic, Teflon, etc.) 

material and contain platinum or stainless steel electrode contacts (See Photo No. 

1a,b). Electrode contacts are produced with diameters of 2 to 5 mm with center-to-

center distances of 1 to 2 cm between electrodes [57].  

 

   
 a 

  
b 

 

 

 

Photo No. 1 

a – Different subdural electrodes;  

                     

b – Large grid electrode placed 

over cerebral cortex 
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  There are two types of subdural electrodes – strip and grid electrodes. They differ in 

the number of encompassed electrode lines. Strip electrodes contain only one line of 

electrodes, from 5 to maximally 16 cm long. Grid electrodes contain up to 10 lines of 

electrodes of different lengths, thus allowing coverage of broader cortical areas. The 

decision to use one or the other is based on the pre-operative hypothesis (for example, 

the width of the cortical area to be explored).    

  Accordingly, there are also differences in terms of the extent of surgery needed for 

electrode placement. Strip electrodes can be placed through a simple burr hole, 

whereas grid electrodes require a vaster craniotomy.  

  Depending on the extent of surgery, there are also limitations inherent in the  

unilateral or bilateral placement of subdural electrodes. Strip electrodes can be 

placed intracranially within a smaller area of surgery, thus carrying less risk for the 

patient. Therefore these electrodes can be placed bilaterally, if needed. Subdural grid 

electrode placement, in contrast, requires a broader craniotomy, carries more risks 

for the patient, and can be performed only unilaterally. Therefore, grid electrode 

placement necessitates an even stronger hypothesis of the epileptic zone location.      

 

      The main indications for invasive video-EEG monitoring can be divided into three 

overlapping groups: to define (1) the extent and distribution of the epileptogenic zone, 

(2) the epileptogenic zone versus structural lesion, if present, and (3) epileptogenic 

zone versus eloquent cortex [40]. 

  The main limitation for precisely defining the epileptic zone with invasive electrodes 

is the fact that they can only cover a very limited portion of the brain [62]. 

 

The following are more detailed examples of instances that may require invasive intracranial 

EEG monitoring:  

• Seizures are lateralized but not localized (e.g., a left-sided, widespread frontal-

temporal onset); 

• Seizures are localized but not lateralized (e.g., ictal EEG patterns that appear 

maximally over both temporal lobes); 

• Seizures are neither localized nor lateralized (e.g., stereotyped complex partial 

seizures with diffuse ictal changes or initial changes obscured by artifacts); 
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• Seizure localization disagrees with other data (e.g., EEG ictal scalp data different 

with neuroimaging [MRI, PET, SPECT] or neuropsychological data); 

• The relation of seizure onset to functional tissue must be determined (e.g., seizures 

with early involvement of language or motor function); 

• The relation of seizure onset to lesion must be determined (e.g., dual pathology or 

multiple intracranial lesions); 

• Seizures are clinically suspected, but video-EEG is inadequate to define them (e.g., 

simple partial seizures with no detectable scalp EEG ictal discharge or suspected 

epileptic seizures with unusual semiology that suggests psychogenic seizures 

[pseudo-pseudo seizures]) [19], [40], [104], [122]. 

 

    2.4.2  Determination of functionally significant cortex by cortical stimulation 

 

  If after completion of EEG registration, the results indicate a possibly resectable 

epilepsy focus in the cortical region covered and we suppose functionally significant 

zones to be located in close proximity, we can proceed to direct electrical stimulation 

of the cortex in order to state the correct localization of the latter areas [66].  

  Direct intraoperative electrical stimulation is a safe, precise, and reliable method for 

detecting functional cortical areas and white matter pathways [83], [85], [102]. It has 

been the gold standard for mapping brain function in preparation for surgical resection 

since the 1930s [83], [92]. This is mainly due to fact that false negative results     

are intrinsically impossible. Indeed, each eloquent structure, whatever its actual role 

in brain function, will be in essence electrically disturbed by direct electrical 

stimulation, which thus induces an obligatory functional consequence [28], [68]. 

However, it is of utmost importance to use certain physical parameters (see below) in 

cortical stimulation, since the slightest technical approximation can result in false 

negatives [59], [111]. 

 

  In cortical stimulation a small electrical current is passed through individual 

electrodes, and any symptoms of interference with the cortical function are closely 

observed [66], [82]. Stimulation is either by electrodes placed in subdural or 

intracerebral space (extra-operative stimulation), or during the operation (intra-

operative stimulation). The cortical stimulation process is supposed to define 
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functionally significant cortical regions that should be preserved in epilepsy surgery. 

On the basis of the results of cortical stimulation we can draw a map of cortical 

representations of different functionally more and less significant areas. This is called 

“cortical mapping”. According to such a cortical map of representations of 

functionally significant cortex and earlier estimated epileptogenic zone, we can plan 

the actual epilepsy surgery – if it is possible at all (to what extent), without damaging 

significant cortical areas.  

 

  Since cortical stimulation mapping (either extra-operative or intra-operative) plays 

an essential role in epilepsy surgery around language areas, we give here a short 

history of cortical stimulation mapping, and also describe the physics on which it is 

based.    

 

      2.4.2.1  History of general nerve cell stimulation  

 

There is little agreement between the data and opinions appearing in the literature, as 

to who first discovered nerve cell excitability and who first actually performed brain 

stimulation. However, according to reliable data, the first scientists to discover nerve 

cell excitability were Luigi Galvani (See photo No. 2) and Alessandro Volta (See 

photo No. 3) in the 18th century [44].  

 

                
Photo No. 2  Luigi Galvani                 Photo No. 3   Alessandro Volta 

 

  Galvani showed that the muscle could be made to contract if a zinc electrode 

attached to the muscle and a copper electrode attached to the nerve were brought in 
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contact with each other. Galvani incorrectly concluded that the contractions were the 

result of "animal electricity" released from storage in the muscle, only to return via 

the closed zinc and copper path through the nerve. In 1793, one year after Galvani's 

initial publication on "animal electricity", the Italian physicist Alessandro Volta 

proposed that the electrical stimulus responsible for the contraction was due to 

dissimilar electrical properties at the metal-tissue saline interfaces. It was not until 

1800 that Volta conclusively proved that the stimulus was of electrical origin: the 

voltage difference due to the unbalanced half-cell potentials of the zinc-saline and 

copper-saline interfaces excited the neuromuscular preparation. The early work of 

Galvani and Volta provided physiologists with a basic understanding of the 

mechanisms of neural and muscular excitation. While the mechanistic details would 

be filled in nearly 150 years later, it was clear that neural and muscular signals could 

be generated and transported by electrical means [44].     

 

Data on the first brain stimulation mention an Italian scientist Felice Fontana (See 

photo No. 4), who worked in the beginning of the 19th century and was influenced by 

Galvani and Volta.  

 

 

 

  

 

  

 

 

 

 

 

 

Photo No. 4 

 

Soon thereafter several groups of scientists started experiments on animal brain 

stimulation. One of the first scientists to describe electrical stimulation of an animal’s 

Using a series of voltaic cells, Fontana carried 

out the first known human brain stimulation 

experiments on cadavers, invoking facial spasms 

in the recently deceased by applying the voltaic 

cell to specific brain regions. When public 

concern over his experiments led to a law 

forbidding such work, Fontana responded by 

continuing his work on living volunteers [44]. 
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brain were Gustav T. Fritsch and Eduard Hitzig (See photo No. 5) in the year 1870. 

Their work was entitled “Über die elektrische Erregbarkeit des Grosshirns”.  

 

 
Photo No. 5 Fritsch and Hitzig 

 

 

  One of the clearest and most detailed early account of human brain stimulation was 

published in 1874 by the American physician Roberts Bartholow (See photo No. 6), 

who stimulated the cortex of the 30-year-old patient Mary Rafferty.  

 

 
Photo No. 6 Roberts Bartholow 

 

The predecessors of Fritsch and Hitzig 

did not resolve the critical question of 

whether the cerebral cortex could be

electrically excited. Their demonstration

that it was electrically excitable is 

considered one of their major 

contributions. Perhaps the greatest 

importance of their research, however,

was its contribution to the theory that 

functions are localized in the brain [113]. 

She was said to be of good health until 

an ulcer appeared on her scalp a little 

more than a year before she was 

admitted to the hospital. Mary's ulcer 

was attributed to the "friction of a piece 

of whalebone in her wig and the skull is 

eroded and has disappeared over a 

space of two inches in diameter, where 

the pulsations of the brain are plainly 

seen". Bartholow reported on a series of 

six observations, during which needle 

electrodes caused a mechanical 

stimulation. Stimulation was performed 

in varying depths and current strengths. 

The results varied from no response to 
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distinct muscular contractions, very evident pain, great distress, and finally – to loss 

of  consciousness and violent convulsions. Later the publication of his observations 

resulted in Bartholow's being forced to leave Cincinnati [113].      

 

     2.4.2.2  History of intraoperative cortical stimulation  

 

  One of the first to perform an intraoperative cortical stimulation is the founder of 

epilepsy surgery, Sir Victor Horsley (See photo No. 7).  

 

 
Photo No. 7 Sir Victor Horsley 

 

As it was afterwards noted by J.H. Jackson, they hoped that surgery could “cut out the 

discharging lesion”, which, to their mind, was “the very local cause of the fits” [62]. 

 

  It was Feodor Krause (See photo No. 8) from Berlin together with his co-worker 

Schum, who in 1932 published a 900-page volume on epilepsy. Here they stated for 

the first time that the only worthwhile epilepsy surgery is the excision of the epileptic 

focus.  

He published a report of successful cortical 

resections already in 1886. Working together with 

H.J. Jackson (epileptologist) and D. Ferrier 

(neurophysiologist), they identified the region to 

be resected by locating either a structural lesion 

and/or the area of cortex which when stimulated, 

reproduced the initial symptoms of the clinical 

seizure.   
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Photo No. 8  Feodor Krause 

 

    Thus, together with Sir Horsley, Krause seems to have been the first one to 

systematically stimulate the human motor cortex during epilepsy surgery.  In his work 

Krause included a detailed functional map of the motor strip, which was based on 

stimulation results from 142 operations. He also advocated monopolar faradic 

stimulation and described the method in detail, because he felt it induced less severe 

seizures than galvanic stimulation, which was more favored by O. Foerster (See photo 

No. 9), another very prominent personality in the history of epilepsy surgery.  

 

 

                  
Photo No. 9 Otfrid Foerster             Photo No. 10 Wilder Penfield 

 

The earliest stimulation Krause performed took 

place on 16 November 1893. The patient was a

15-year-old girl, who suffered from Jacksonian 

seizures and Jacksonian status starting at age 3. It 

was due to a postencephalitic cyst following 

meningitis at the age of 2. After removal of the 

cyst, the patient remained seizure free for the rest 

of her life and also markedly improved in her 

mental performance.    
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It was Otfrid Foerster, together with Wilder Penfield (See photo No. 10), who in 1930 

produced a less detailed, but much more extensive cortical map than that of Krause 

[125]. He also had a much keener and more detailed interest in the semiology of 

seizures and its localizing significance. This provided important information for 

epilepsy surgery in the time before the development of EEG and the 

electrocorticogram [126]. While Foerster initially used cortical mapping to identify 

motor and sensory cortex, Penfield and colleagues subsequently applied the technique 

to identify language cortex, with the goal of sparing these functional areas from 

resection. 

 

      2.4.2.3  History of extraoperative cortical stimulation  

 

   The first brain electrode implantation took place in the early 1940s, followed in 

1946 by the introduction of the first stereotactic instrument for use in humans by 

Spiegel and Wycis [41]. Large subdural grids were introduced and systematically 

produced beginning in the 1980s. They have had a major impact on identifying 

patients who are eligible for surgery [1], [66]. 

 

      2.4.2.4  First steps of epilepsy surgery close to speech areas 

 

  In the early years of focal epilepsy surgery, patients with seizures that arose from the 

left hemisphere were refused surgical treatment, unless it was certain that the lesion 

was located in the anterior of the frontal lobe or in the posterior of the occipital lobe. 

Any other area in the left hemisphere was considered “forbidden territory” for fear of 

producing postoperative aphasia [93]. The clinical use of cortical stimulation mapping 

for language began with Wilder Penfield and colleagues in the 1940s. Due to 

Penfield’s innovative technique of cortical language mapping, surgical treatment 

became a viable treatment option for numerous patients who had not been helped by 

pharmacological treatment of epilepsy. Thus, the implementation of cortical 

stimulation was the starting point for epilepsy surgery close to speech areas.   
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      2.4.2.5  The physics of cortical stimulation 

 

    As mentioned before, the use of certain physical parameters in direct cortical 

stimulation is of utmost importance, because the slightest technical approximation can 

result in false negatives. As noted by Taylor and co-workers, if the intensity of 

stimulation is too low, if the duration is too short, or if a stimulation is performed    

during a transient post-epileptic refractory phase, an erroneous “negative mapping” 

may result [111].  

 

        2.4.2.5.1  Current spread and tissue excitability 

 

  There are two very important physical properties that play an important role in 

electrical stimulation of brain tissue. These are current spread and tissue excitability. 

Both of these issues have been investigated by several methods (single-cell recording, 

behavioral methods, and neuroimaging) [112]. 

  

        2.4.2.5.2  Current spread  

 

It is commonly accepted that the initial segment and the nodes of Ranvier are the sites 

at which a neuron can be directly activated by electrical microstimulation [36], [76], 

[77], [99]. These zones contain the highest concentrations of sodium chanels, thus 

making them the most excitable segments of a neuron [18], [76], [77].  

   The amount of current injected through a microelectrode to directly activate a 

neuron (cell body or axon) is proportional to the square of the distance between the 

neuron and the electrode tip.  

 

This is expressed as:                                           

                                                                             I – the current level (µA) 

                                       I = Kr2                          r – distance (mm) 

                                                                             K – excitability constant (µA/mm2)  

 

  This relationship is derived from studies of cortical and corticospinal neurons of rats, 

cats, and primates [4], [69], [78].  
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         The effective current spread from an electrode tip can be expressed as the square 

root of the current divided by the square root of the excitability constant (I/K) 1/2. This 

relationship is illustrated in Fig. 1. 

 

Current spread and excitability properties of pyramidal tract 
neurons determined using single-cell recordings within motor 

cortex of the cat [122].
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    Fig. 1: Radial distance (in millimeters) of a direct activation of pyramidal tract neurons 

using the equation radial distance = (K/I)1/2. The curve represents the amount of current 

required for the antidromic elicitation of an action potential 50% of the time using a single 

cathodal pulse of 0.2 ms duration. The average K value was 1,292 µA/mm2 for12-cell studies. 

 

Fig.1 shows that the higher the current used, the larger is the current spread. 

  Another important factor influencing current spread is the conduction velocity of 

axonal elements. The conduction velocities of myelinated pyramidal tract neurons 

range from 3 to 80 m/s, with the largest of these neurons exhibiting the highest 

velocities [13], [23], [67]. The conduction velocities of small unmyelinated cortical 

fibers are <1 m/s [78]. Thus, the excitability constant (the constant reflecting the 

excitability of a neural element 1 mm away from the electrode tip) derived with a 0.2 

ms pulse can be as low as 300 µA/mm2 for the largest myelinated cortical neurons and 

as high as 27,000 µA/mm2 for the smallest unmyelinated cortical neurons [78], [109]. 
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This explains why large myelinated cortical neurons are easier to excite than small 

unmyelinated cortical neurons. 

    

  The current spread characteristics have always been a subject of debate – to what 

extent current spreads through directly activated neurons subcortically and to what 

extent through transynaptic or lateral connections. The most precise responses are 

achieved through direct cortical – subcortical activation, but at the moment of 

stimulation there is also an indirect current spread laterally, which can involve more 

distant cortical areas and give some false-positive responses. To assess the functional 

localizing value of cortical stimulation, we have to know the extent of the direct and 

indirect neuronal activations.  

  Several factors let us assume that current spreads mainly in a direct (cortical  -  

    subcortical) way. First, there is the scientifically based fact that lateral connections 

within the cortex are often unmyelinated and therefore much less excitable [78], 

[110]. Second, microstimulation activates the most excitable elements in the cortex, 

that is, by and large the fibers of the pyramidal cells, which project subcortically 

rather than laterally [112], [78], [13], [23]. Third, microstimulation of the neocortex 

evokes precise responses because directly activated neurons make more significant 

contribution to the evoked response. This is due to fact that these neurons are more 

synchronously activated in contrast to neurons further away from the electrode tip 

which are activated transynaptically in the cortex [114].             

 Using a modern diagnostic tool, like functional MRI, scientists recently recorded 

higher current lateral spread, which is contradictory to data published earlier. An 

obvious reason for these differences is the appreciably larger currents and longer train 

durations used in the fMRI study [114].   

 

        2.4.2.5.3  Estimates of excitability and strength – duration functions 

 

  To deduce the excitability of stimulated neurons, current can be traded-off against  

pulse duration to elicit some response [3], [4], [5]. Normalized strength –  

duration functions for pyramidal tract neurons are illustrated in Fig.2.  
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  Fig. 2:  Normalized strength – duration functions of pyramidal tract neurons [4], [109]. 

 

  As the pulse duration is increased, the amount of current needed to evoke an action 

potential 50% of the time diminishes to an asymptotic level; this level is called the 

rheobase current.  

  The excitability or chronaxie of a stimulated element is expressed as the pulse 

duration at twice the rheobase current.   The shorter the chronaxie, the more excitable 

is a directly stimulated neural element (shorter pulse duration is necessary for their 

activation). Chronaxie depends on the characteristics of the tissue being stimulated, 

specifically on its impedance. The few studies in this area have produced resistance 

values of 250 Ohms for gray matter, 500 Ohms for white matter, and 65 Ohms for 

cerebrospinal fluid [72]. Axons have shorter chronaxies than their cell bodies (axons: 

0.03 – 7 ms; cell bodies: 7 – 31 ms [76]), and large, myelinated axons have shorter 

chronaxies than small, nonmyelinated axons (large: 0.03 – 7 ms; small: >1.0 ms 

[60],[97], [119]). Moreover, impedances can be modified in patients in an awake or 

anesthetized state. Also any pathological process, whether lesional (tumor) or non-

lesional (epilepsy, post-ictal status), can interfere directly with the tissue’s excitability 

[48]. Research on current spread and excitability investigations is still continuing.   

   

       2.4.2.6  Stimulation parameters 

 

Cortical stimulation produces clinical effects only when very special stimulation 

parameters are used. The four following essential factors must be considered [63]: 

• stimulus intensity; 

• duration of each individual stimulus;           

• stimulation frequency;  

• duration of the stimulus train. 
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        2.4.2.6.1  Stimulus intensity (voltage or amperage)  

 

  Ideally the stimulation intensity should be strong enough to produce significant 

depolarization (or hyperpolarization) of all the neurons underlying the stimulating 

electrode but without affecting surrounding brain tissue or producing brain damage. A 

stimulation of 15 mA seems to accomplish this. There are various reasons why the 

“ideal” stimulation intensity of 15 mA can frequently not be used. The main reason is 

that afterdischarges and painful or unpleasant sensations are produced by  

electrical stimulation [66].  

 

  Afterdischarge per definition is “the portion of the response to stimulation in a nerve 

which persists after the stimulus has ceased and consists of rhythmic, high-voltage, 

high-frequency spikes, sharp waves, or spike-wave complexes which occur at the 

region stimulated and are distantly different from background activity” [17]. 

  Afterdischarges can be triggered only in certain circumstances, for example, if 

electrical stimulation is at sufficient intensity, has a repetitive rate, and is of certain 

duration. Initially they tend to be limited to the stimulating electrode, but they often 

spread to adjacent electrodes, activating extensive cortical areas. The symptomatology 

elicited when afterdischarges are triggered is not only an expression of the area 

directly stimulated electrically but also of the whole region activated by the 

afterdischarges. Therefore, in such cases we cannot be sure if the response at the 

electrode site, where the afterdischarges are elicited, is due to the stimulation or if it is 

produced by the afterdischarge. Consequently only those symptoms and signs elicited 

by stimuli that do not produce afterdischarges are counted. 

 

  In some cortical sites even quite low intensities (for example, 2 mA) produce 

striking positive effects, such as muscle twitches. Clinical trials warn that too high a 

stimulus intensity could cause tissue damage due to excessive heat, produced 

especially by hydrolysis; or “leaking” of the intracellular current, which goes from the 

anode to the cathode through the cytoplasm, posing a risk of lesion to the 

mitochondriae and the endoplasmic reticulum; or even alter the homeostasis if 

neurons are activated in a manner that is too repetitive and synchronous [127].  

Usually the initial stimulus intensity is very low. It is gradually increased until a 

positive response, afterdischarges, or the maximum intensity is reached.   
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        2.4.2.6.2  Duration of each individual stimulus 

 

The duration of each individual stimulus in cortical stimulation varies from 0.1 to 0.3 

ms [106]. Usually it is 0.2 ms. 

 

        2.4.2.6.3  Stimulation frequency 

  

  Single stimuli produce functional effects only at very high intensity. Repetitive 

stimulation, most probably due to temporal facilitation, produces functional 

alterations at a much lower intensity [100]. The ideal stimulus frequency (stimulus 

frequency producing clinical effects at the lowest effective stimulus intensity) is 

approximately 15 to 50 Hz. 

  

        2.4.2.6.4  Duration of the stimulus train 

 

 Repetitive electrical stimulation and relatively low stimulus intensities frequently 

trigger clinical symptoms after a variable delay of 1 to 3 seconds. The temporal 

summation of stimuli of the human cortex is an essential factor in the generation of 

clinical symptoms. It is necessary to note that with longer stimulation durations, the 

effect of the stimulation on both positive or negative symptoms not infrequently tends 

to diminish after 5 to 10 sec of stimulation (due to alternative pathways [58] or 

cortical adaptation) [66]. Usually the cortex is stimulated either until there is a 

positive effect or the maximal timing (15 seconds) is reached [63].    

 

      2.4.2.7  Characteristics of a stimulus 

 

  Normally a biphasic stimulus is used for cortical stimulation. It is not as effective as 

a monophasic (sinusoidal) stimulus, but it is safer for the brain, since the second 

stimulus phase inverses the effects of the first. 

  If sinusoidal impulses were used for stimulation, they would increase the threshold 

needed to be reached in order to generate the impulse (because the neural structures 

are kept in a state of infraliminar depolarization). This phenomenon is known as 

“accommodation”. “Accomodation” carries the risk of inducing a cerebral lesion due 
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to the accumulation of negative charge at the level of the cathode or the production of 

metal ions at the level of the anode. Therefore, rectangular (biphasic) impulses  

are recommended [2], [66], [68].       

 

      2.4.2.8  Physiological concerns of cortical stimulation 

 

  Electrical stimulation of the human cortex is the best experimental model of the 

effect of activation of the cortex by an epileptiform discharge [64]. 

Contrary to mapping of the rolandic cortex, language cortex mapping depends on the 

electrical blockade of cortical function rather than on eliciting function [83].   

 Electrical stimulation generates membrane excitability (membrane potential (MP) of 

the neuron at rest varies between -60 mV and -100 mV) via an initial phase of passive 

modification of local MP at the level of the cathode (the negative electrode). Before 

this happens, the inner side of the membrane becomes progressively less negative than 

the outer side (the membrane becomes inversely hyperpolarized with regard to the 

anode). The intensity of this phenomenon depends on the parameters of the 

stimulations and of the characteristics of the membrane (as mentioned before, the 

membrane can be more easily stimulated at the level of the initial segment of the 

axon, at the level of fibers that are myelinized and of larger diameter) [50], [55], [61], 

[96]. If the MP reaches the laminar depolarization threshold, a second phase occurs 

that begins with the opening of voltage-dependent ionic channels, which allow entry 

of Na+ ions, and which therefore invert the MP between +20 mV and +30 mV. A 

secondary output of K+ ions, associated with an inhibition of the entering flux of Na+ 

ions, brings the MP back to its resting state. Once generated, this rapid sequence of 

MP fluctuation – the action potential – is still the same, no matter what the stimulation 

parameters are (law of “all or nothing”) [68].  

  The effect of stimulation is more or less strictly limited to the area of brain beneath 

the two electrodes being stimulated. The current flow only reaches sufficiently high 

current density to stimulate the brain at the two poles (electrodes) and their immediate 

vicinity. (These considerations apply, however, only when no afterdischarges are 

triggered by the stimulus.) [95] 

  It is important to point out that cortical stimulation, even in the primary 

afferent/efferent cortical areas, has a highly non-physiological effect. This explains 

why most effects of stimulation in cortical areas are non-physiological (paresthesias, 
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unusual motor movements, etc.). Also in associative cortical areas, the massive 

synchronized activation or deactivation of neurons by the electrical stimulus is 

extremely un-physiological [95]. The full details of the physiological basis of nerve-

cell activation by electrical stimulation, however, remain unclear. 

 

      2.4.2.9  Procedure of extra-operative EEG recording and cortical mapping   

 

  Grid electrodes in our clinic are mainly used for both - extra-operative EEG 

recording and cortical stimulation, whereas strip electrodes are mainly used for EEG 

recording alone - often in situations, when seizure lateralization is necessary and 

electrodes must be implanted bilaterally. 

  Consecutive, extra-operative cortical mapping is indicated in cases when localization 

of the detected epileptogenic zone is close to or overlaps with eloquent areas [19], 

[40], [104]. 

 

 The type, number, and position of the electrodes are determined by the location of the 

suspected epileptogenic zone in each patient, according to data gathered from all non-

invasive investigations (pre-investigational hypothesis). After implantation of 

subdural electrodes by means of surgery and possibly after monitoring in the intensive 

care unit (depending on the extent of surgery), the patient is brought for further 

observation, recording of EEG, and cortical stimulation to the epilepsy intensive 

station. Meanwhile a CT scan has also been made to locate the subdural electrodes. 

This scan is merged with pre-operative MRI images to yield a three-dimensional 

picture of the precise electrode locations over the cerebral sulci [124] (See Picture No. 

1). 
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Picture No.1: This 53-year-old epilepsy patient had seizures due to cerebral trauma at the age 

of 17. Magnetic resonance revealed a broad contusion in the left temporo-parietal region 

(Left). The merged pre-operative MRI and post-operative CT picture (Right) indicates the 

precise localization of the subdural electrodes.   

 

 After antiepileptic medication is gradually reduced, the patient is monitored 24 hours 

a day for epileptic seizures in the epilepsy intensive ward. The monitoring is videoed 

and checked by an epileptologist and/or a specialized nurse. When the epileptologist 

feels that a sufficient number of seizures have been recorded to judge the localization 

of the epileptogenic zone, a summary of the epileptogenic activity is made (See 

Picture No. 2). At this point the volume of the epileptogenic zone, its relation to the 

cerebral cortex, and initial impressions of the possibility of resection of a pathological 

cortical region can be considered. 
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  The next stage is the localization of functionally significant cortex - cortical 

stimulation/ mapping. The physical parameters of stimulation are shown in Tab.1.   

 

 Physical parameters Unit 

Stimulus intensity  1 – 15   mA 

Duration of each individual stimulus  0.2  ms 

Stimulation frequency  50  Hz 

Duration of the stimulus train  5 – 15   sec 

 

Tab. 1: Physical parameters used in extra-operative cortical mapping. 
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Picture No. 2: Summary of seizure origins (overall 17 seizures were recorded in this 
case) in the same 53-year-old epilepsy patient after invasive EEG registration by 
subdural electrode.  
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  At the beginning, each pair of electrodes on the grid are stimulated and the reaction 

is observed. In this way the “reference electrode”, where no function has been 

triggered, is found. Later all the other electrodes are stimulated with reference to this 

one electrode.    

     Initially the cortical stimulation begins at a minimal current strength and duration 

(for example 1 mA for 5 sec.) and continues until some response, afterdischarges, or 

maximal current strength – 15 mA is reached.  During the stimulation the patient has 

to perform certain tasks, depending on the stimulated zone (expected) and the 

observed response. The main tasks include motor activities (moving arms and 

fingers); also neuropsychological tests (naming several objects presented, counting 

numbers or months of the year; reading aloud from a book or journal, sorting different 

objects by their colour, shape, etc.). If any changes in these actions are observed or the 

patient reports any uncustomary feelings, more detailed tasks to clarify this response  

     are required. Symptoms during stimulation may include positive motor phenomena 

(tonic or clonic contraction of muscle groups), negative motor phenomena (inhibition 

of voluntary movements of the tongue, fingers, or toes), somatosensory phenomena 

(tingling, tightness, or numbness of a part of the body), or language impairment 

(speech hesitation or arrest, anomia, or repetitive difficulties) [9]. Sites where 

stimulation produces consistent speech arrest or anomia (anomia - impaired recall of 

words with no impairment of comprehension or the capacity to repeat the words) are 

considered essential to language function [106]. 

  

  A significant response is considered to be any response during stimulation which is 

observed or which is noted by the patient during at least three consecutive 

stimulations at the same cortical site.  

 

  The duration of invasive monitoring greatly depends on the seizure frequency, the 

success of any planned stimulation, and patient compliance [41].  

   

  By combining acquired stimulation results with the previous localization of the 

epileptogenic zone on the 3-dimensional cortical picture, we obtain a reflection of the 

relation between the epileptogenic zone and functionally significant cortex in the 

investigated cortical region. On the basis of these data, we make the final decision 

about resective surgery and estimate the resection borders (See Picture No. 3). 
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Summary of extra-operative language mapping and suggested resection  
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Picture No. 3: Summary of extra-operative investigation by subdural electrodes in the same 53-
year-old epilepsy patient. Extra-operative language mapping revealed 3 language points located on 
the border of epileptogenic zone. An intra-operative language mapping was performed to validate 
the border of maximal cortical resection.  
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      2.4.2.10  Procedure of intra-operative cortical mapping  

 

  As indicated by the name, this cortical stimulation method is performed during the 

neurosurgical operation, directly before the resection.  

  This method can successfully be used in cases when there is no need for additional 

recording of electroencephalography (cases with well known/ defineable borderline   

      of the epileptogene zone). It can, however, be joined with the use of corticography 

– direct intra-operative recording of electric activity of cortex. It is also used for better 

intra-operative orientation and direct anatomical specification of resection borders in 

situations, in which previous extra-operative stimulation has shown a very close 

relation (or direct overlapping) to both cortical areas. We have often used this tactic in 

epilepsy surgery near speech areas and will treat it in more detail later in this work.   

  

 Physical parameters Unit 

Stimulus intensity  4 – 12     mA 

Duration of each individual stimulus  0.2  ms 

Stimulation frequency  50  Hz 

Duration of the stimulus train  4  sec 

 

Tab. 2 Physical parameters used in intra-operative cortical mapping 

 

  There are differences in the intra-operative mapping of sensory, motor, or language 

cortex. In the following we focus on intra-operative stimulation mapping of the 

language cortex.  

 

  The most significant feature of intra-operative language mapping is that craniotomy 

is performed while the patient is awake (local intracutaneous anaesthesia) – the 

patient must stay awake during surgery in order to be able to undergo 

neuropsychological testing of language function localization just before cortical 

resection. To achieve this and ensure the patient’s cooperation, which is essential for a 

successful cortical mapping procedure, the patient must be prepared before the 

operation, must understand the need and goals of this procedure, as well as go through 

the neuropsychological language tests used intra-operatively.  
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  The procedure is as follows: after craniotomy and the opening of the dura, the 

investigational cortex is marked with numbers (sterile paper numbers are placed on 

the cortex). Each number is placed approximately 0.7 to 10 mm from the previous one 

(See photo No. 11).  

 
Photo No. 11: Cerebral cortex marked with numbers for intra-operative cortical stimulation. 

The black thread indicates already stated resection border.  

 

If an extra-operative cortical stimulation was performed previously and there is need 

for additional intra-operative cortical language mapping, the numbers of the 

stimulation sites are placed in the exact order and location as they appeared on the 

extra-operative electrode (See photo No. 12.)  

 

 
 

Photo No. 12 shows the cortical sites where intra-operative 
stimulation must be repeated. Note that each number on the 
cortex corresponds to the same number on the sub-dural 
electrode plate (white arrows), ensuring that intra-operative 
stimulation is performed exactly in the same locations as 
pre-operative stimulation.  
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    Then a direct cortical stimulation is performed with bipolar stimulation tweezers at 

each of these points. Simultaneously, the patient is asked to name different objects 

(visual naming test, indicating visual naming sites) presented on the computer screen 

in front of him. The patient has to say a full sentence, for example “This is a dog”; 

“This is a house”.  In order to maximize the validity of the stimulation results, the 

patient has undergone identical visual naming tests pre-operatively. Later intra-

operatively only those visual stimuli are used, for which there was no pre-operative 

failure in naming.     

Parallel to the stimulation, the patient’s verbal response is observed by the 

neurophysiologist. Similarily as in extra-operative language mapping, sites where 

stimulation produces consistent speech arrest or anomia are considered essential to 

language function [106].    

  

  Stimulation is at first done sequentially at all points and then is repeated twice, 

increasing the current strength each time, since some points give positive response at 

only higher current strengths. The upper limit of current strength is 15 mA. For 

patients in whom speech has already been extra-operatively mapped and additional 

intra-operative language mapping is now indicated, the latter is normally performed 

only in the region where there is a close relation between the epileptogenic zone and 

language sites or where overlapping of both areas has been seen. Thus, the exact 

borders of the language cortex can also be directly determined intra-operatively. In  

  cases where no speech was found extra-operatively and repeated intra-operative 

stimulation is indicated to approve this, stimulation normally includes a broader area 

of the cortex (all the cortex accessible in craniotomy) as in extra-operative language 

mapping. This way of mapping language is also used in cases, in which only intra-

operative language mapping is performed. Only those cortical sites, where language 

disturbances are found in all three consecutive stimulations, are considered essential 

for language and are preserved during resection. 

  All essential language sites are registered, and the final summary of results provides 

a direct anatomical image of the cortical representation of language sites, as well as 

the resection border. The resection is then performed, while keeping a distance of 10 

mm from the essential cortical locations.  
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Phase I (non-invasive)

Purpose: 

• diagnosis non-epileptic vs. 
epileptic spells

• localisation of the epileptogenic
zone

Phase II (invasive)

Purpose: 

• localisation and extent

of the epileptogenic zone

• History

• Neurological examination

• EEG-video monitoring

• Neuropsychological examination

• MRI, SPECT, PET

epileptic ? non- epileptic ?

• convergence of results ?

• resectable focus ?

yesno

• subdural electrodes

Phase III (surgery)

• Vagal stimulation

• Corpus Callosotomy

Resection of the
epileptogenic
zone

epileptogenic
zone overlapping
with or adjacent to 
eloquent cortex

resectable
epileptogenic
zone

• epileptogenic
zone not localized

• multifocal

cortical stimulation

• new hipothesis
about seizure origin

• no resective surgery

Pre-surgical evaluation of epilepsies

results still unclear

 

 

 

Drawing Nr 1: Algorithm of epilepsy surgery 
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3  The Operation – Cortical Resection  

 

After detailed and in-depth pre-surgical investigation, a decision is made as to 

whether it is possible to resect an epileptogenic zone and to what extent. Once a 

cortical resection operation is considered justified, the operation is performed.  

  Operations around the language cortex typically include a resection of neocortex  

   in which the epileptogenic zone is found. A resection margin of 1 cm away from the 

essential language site is currently considered satisfactory for functionally safe 

(regarding language) surgery [12]. 

 

To better illustrate the implementation of the above-mentioned measures in epilepsy 

surgery around speech areas and to present its complexity and results, as well as to 

analyze the best tactic of language mapping in this surgery group, we have 

summarized our 10 years of experience with this subgroup of epilepsy patients.  

 

4  Hypothesis of the study: 

 

  Since the surgical tactics in this epilepsy surgery subgroup are mostly shaped by the 

data gathered in language mapping, the accuracy of invasive language mapping is of 

utmost importance. We have used two different tactics for language mapping, our 

decision based on the significance of conflict between epileptogenic and language 

areas. Habitually the language was mapped by extra-operative method alone. In those 

cases, where very close relationships (less than 10 mm) between epileptogenic zone 

and speech cortex or overlapping of both areas was seen in extra-operative mapping, 

additional intra-operative language mapping was used.    

 

  We hypothesize that additional intra-operative language mapping is beneficial for a 

better postoperative language and seizure frequency outcome in cases in which a close 

relation between epileptogenic and language areas had been detected in previous 

extra-operative language mapping.      
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5  Apart from confirming our hypothesis, we also sought answers to several other 

questions: 

 

1. What is the common investigational characteristic of epilepsy surgery patients 

whose epileptogenic zone is close to neocortical language areas? 

2. How are cortical mapping techniques typically used in this group of epilepsy 

surgery patients? 

3. What results as regards post-operative language outcome are seen in the whole 

group of patients with epileptogenic zone around speech cortex and what 

results are seen in both language mapping subgroups (extra-operative and 

combined extra- plus intra-operative cortical mapping)? 

4. What results as regards seizure outcome are seen in the whole group and two 

different language mapping subgroups? Does the combined language mapping 

technique influence post-operative results as regards seizure control? 

 

6  Therefore the following goals of the study were stated: 

 

1. To summarize 10 years of experience in epilepsy surgery around speech areas 

in the Neurosurgery Clinic of Munich University Hospital, Grosshadern;  

2. To analyze the use of pre-surgical investigation methods in this group of 

patients; 

3. To compare the use of two invasive language mapping techniques in two 

different groups of patients (extra-operative versus combined extra-intra 

operative);  

4. To compare the results of both language mapping methods per se; 

5. To analyze the post-operative results as regards language function in the whole 

group of patients and compare them in both invasive mapping groups;  

6. To appraise our indications for using extra-operative or combined extra- and 

intra-operative language mapping tactics (these indications are stated in the 

following section “Investigation of language function and cortical language 

mapping”);  

7. To analyze the post-operative results as regards seizure control in this group of 

patients and both subgroups of cortical stimulation; 
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8. To estimate the percentage of situations in which the epileptogenic zone could 

not be fully resected due to overlapping or close relationships with language 

cortex; 

9. To discuss our results and possible measures for their improvement. 

 

7  METHODS 

 

  7.1  Patients 

 

  Between September 1997 and June 2007, a total of 22 medically refractory epilepsy 

patients whose epileptogenic zone was close to the speech areas underwent 

operations.  In all cases the primary reason for neurosurgical treatment was medically 

refractory epilepsy that significantly influenced the patient’s quality of life. However, 

in one case a low-grade astrocytoma had been diagnosed pre-operatively, in  another 

case a low-grade astrocytoma had been diagnosed post-operatively, and in one other 

case operation for a dysembryoplastic neuroepithelial tumor (DNET) had been 

repeated. Four patients underwent repeated operations for epilepsy.  

  All patients, except one, were examined with both non-invasive and invasive 

methods described earlier. In one case only non-invasive investigations were used. In 

this case speech mapping had been done by functional magnetic resonance imaging 

(f-MRI) for an insular cavernoma, diagnosed as the cause of the epileptic seizures. It 

was well confined and safely (with regard to language function) accessible by 

neuronavigation, when combined with f-MRI data. There was thus no need for 

additional invasive investigations. 

 

  We included in our study only those cases in which 

• positive speech points were found during direct language mapping; 

• these speech points were located close to the epileptogenic zone (in the 

majority of cases detected by direct subdural EEG recording). 

 

  Five patients had an epileptogenic zone located close to frequently described 

language sites (posterior portion of Gy Frontalis superior, Gy angularis), but we did 
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not manage to find any positive speech point by direct cortical stimulation here. In 

two of these cases only extra-operative cortical stimulation was used, and in three    

    cases a combination of extra- and intra-operative stimulation was used. Due to the 

negative language mapping results (apparently no speech sites were located close to 

the epileptogenic zone), these patients were not included in our study. None of these 

patients had a post-operative language deficit.   

  Three patients who had needed invasive investigations, which proved unsuccessful, 

were also excluded from the study. In one case the reason was a personal wish of the 

patient to have the invasive electrodes removed after 12 days of invasive monitoring 

when no seizures were registered. In another case subdural electrodes could not be 

placed due to severe adhesions between the dura mater and the cerebral cortex. In the 

third case the patient had a subdural hematoma following placement of the subdural 

electrodes as a result of sudden drug-induced coagulation disorders. For reasons  

of patient safety it was decided to remove the electrodes and not perform resective 

surgery.   

 Three patients who underwent left hemisphere neocortical epilepsy surgery and in  

   whom language was localized on the right hemisphere (detected by the Wada test) 

were also excluded from our study.    

 

  7.2  Investigation of language function and cortical language mapping 

 

  Language testing before and after the operation was performed by a 

neuropsychologist, a neurosurgeon, and a neurologist. The neuropsychologist used the 

Token test (part of Aachen Aphasia Test) to evaluate language. The neurologist and 

neurosurgeon assessed language through everyday observations. This pre-operative 

language assessment was done several days to weeks before the surgery.  

  Post-operative assessment of language was done during the hospitalization period 

after surgery and in the following visits to the neurosurgeon (the same surgeon who 

examined patient before and performed the operation) or the neurologist (first visit 

normally 4 to 6 months after surgery or earlier if needed, next visit after every 4 to 6 

months on average or earlier if needed). The patient was sent for repeated 

neuropsychological evaluation (Token test) post-operatively if any kind of language 

disturbance was detected by the neurologist or neurosurgeon or was reported by the 
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patient. If a patient still had disturbed language function 6 months after the last 

resective surgery, it was classified as a permanent deficit. 

 

  The following language deficits were classified: anomia – patient cannot name 

objects, but is able to repeat sentences and speaks fluently; expressive  

aphasia – patient’s expression in speech or writing is impaired; receptive aphasia – 

patient’s speech is fluent, but meaningless, the ability to understand spoken or written 

words is also impaired.   

  All cases patients had left-sided language dominance.  

 

  The localization of cortical language areas was done invasively, except in one patient 

(well-demarcated insular cavernoma, mapped by f-MRI).    

  In one case (pre-operatively known low-grade astrocytoma) only intra-operative 

language mapping was used. Here non-invasive EEG investigations credibly indicated 

tumor as an epileptogenic zone, and no further invasive EEG investigation was 

necessary.  The remaining 20 patients with an epileptogenic zone close to the cortical 

speech areas can be divided into two groups. In one group only extra-operative 

language mapping was used, in the other group a combination of extra- and intra-

operative cortical mapping was used.        

  Our indications for the use of either only the extra-operative or the combined extra- 

and intra-operative cortical language mapping method are as follows: 

 

1. Only extra-operative language mapping (Ex-M) was used in situations in 

which language mapping (measured in 3-dimensional cortical maps) indicated 

a distance of at least 10 mm between cortical language points and the 

epileptogenic zone.  In such situations this distance was assumed to be safe to 

perform a resection with a diminished possibility of resection-caused damage 

to language areas and subsequent permanent post-operative language 

deterioration. 

(It was also used for one patient, in whom part of the speech cortex overlapped 

with the epileptogenic zone. Since the overlapping part of the language cortex 

was identified as the basal temporal language cortex, it was considered as safe 

for resection and no intra-operative mapping was performed. The case is more 

profoundly presented later in the discussion chapter.) 
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2. Combined extra- and intra-operative language mapping (Co-M) was used in 

situations, when language cortex found extra-operatively overlapped with the 

epileptogenic zone, or the distance between these cortical regions was less 

than 10 mm. Here there was an increased risk for resection-caused damage to 

the language areas. Additional intra-operative language mapping was applied 

in order to achieve the most precise resections, while at the same time 

preserving a safe amount of language cortex. The next step was the precise, 

maximal resection of the epileptogenic zone, keeping a distance of 10 mm 

from the language cortex. Additional intra-operative cortical stimulation was 

also used in a few cases, in which the results of extra-operative language 

mapping appeared to contradict the data in the literature or our previous 

experience. Thus, the repeated intra-operative stimulation was used here partly 

to confirm the extra-operative language mapping data and partly as an 

additional investigation to obtain more in-depth information.       

   

  In one case in which additional intra-operative language mapping was indicated, this 

could not be done due to the youth (10 years) and psychological problems of the 

patient.  

  The procedures of intra- or extra-operative stimulation, physical parameters, and 

materials used are described in the corresponding above sections. 

 

  7.3  Neurological examinations and post-operative seizure outcome 

 

  Pre-operative neurological examination was done by both the neurosurgeon and the  

     neurologist; the pre-surgical seizure frequency was documented by the neurologist. 

Post-operative follow-up was done by the neurosurgeon, neurologist, or both on a 

regular basis (every 4 to 6 months or more frequently if needed). The post-operative 

seizure frequency data were summarized, starting from 2 years after last resective 

surgery, and were assessed using the Engel post-surgical seizure outcome scale [30] in 

four classes: Class Ia – seizure free, Ib – only auras; Class II – rare seizures (not more 

than 2 per year); Class III – worthwhile improvement (reduction of seizures by 85% 

or more); Class IVa – significant reduction, IVb – unchanged seizure frequency.   
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  In most cases (19; 86.3%) data were gathered retrospectively from in-patient 

documents and out-patient letters. Some (3) prospective patients were assessed post-

operatively only as regards language function, since the post-operative control period 

occurred after at least 6 months, but less than 2 years at the endpoint of this study 

(12/2007).    

 

  7.4  Statistical analysis 

 

  The statistical analysis was done using Windows Excel program and Fischer’s Exact 

Test. The “p” value was considered significant, if p < 0.05. 

 

8  RESULTS 

 

  8.1  Characteristics of patients 

 

  The study included 11 men (50%) and 11 women (50%) with a mean age of 31.9 

years (range 10 to 53 years). The mean duration of epilepsy was 16.3 years (range 6 

months to 38 years). All 22 patients had medically refractory epilepsy and underwent 

neurosurgical operation for resection of an epileptogenic cortex. In all of these 

patients the language cortex was located near the epileptogenic cortex or directly 

overlapped with it. 

    Four epilepsy patients (18.1%) underwent repeated operations for epilepsy. One of 

them had undergone an operation for frontal arterio-venous malformation (AVM) and 

needed additional frontal resection. Another had first undergone a neurosurgical 

operation for left frontal cerebral abscess, and another operation later on for epilepsy 

but had needed an additional frontal resection for seizure freedom. Two others had 

had a previous resection of the temporo-mesial structures and in one case additional 

temporal neocortical resection was necessary; the other required an additional frontal 

neocortical resection. 

 

  8.2  Non-invasive pre-operative investigations 

 

  All the patients were examined neurologically by both the neurosurgeon and the 

neurologist. Testing for speech function showed that one patient (4.5%) had an 
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insignificant, preoperative light dysphasia and one patient (4.5 %) light expressive 

aphasia. Eight patients (36.3%) had short post-ictal aphasia, seen as a lateralizing sign 

for language function. 

  All patients were examined by magnetic resonance imaging with the following 

results: unspecified lesion (including changes after previous resective operation) – 8 

(36.4 %), post-contusional cortical changes – 3 (13.7%), no visible pathology – 3 

(13.7%), cortical dysplasia – 4 (18.2%), low-grade tumor 2 (9.0%), cavernoma – 1 

(4.5%).   

  Non-invasive EEG-video recording was also used for all 22 patients.  

  Positron emission tomography (PET) was needed in 19 cases (86%). It was not used 

in situations, when we had a strong pre-operative hypothesis of the epileptogenic 

cortex location after non-invasive EEG-video investigation. In one case the patient 

had insular cavernoma, another patient had had previous AVM resection, and one 

patient was suspected to have an astrocytoma. 

  Single proton emission computer tomography (SPECT) was used for 10 patients 

(45.4 %) when the previous search results for the epileptogenic zone were still not 

persuasive. 

  As described before, a functional magnetic resonance imaging (fMRI) was used for 

language mapping in one case, when insular cavernoma was the reason for the 

epileptogenic seizures. 

 

  The Wada test for language lateralization and memory assessment was used for 8   

patients (36.3%). The use of this invasive test has greatly declined in the last 7 years 

due to its invasive nature and relatively high complication risk, as well as the 

possibility of now using fMRI for language lateralization. We used the Wada test for 

patients, in whom there was a strong possibility of speech dislocation due to long 

persisting lesion and brain plasticity.   

  

  8.3  Invasive language mapping 

 

     Invasive investigations to locate language cortex were performed in 21 out of 22 

patients (95.4%) (in one case language was mapped non-invasively by functional 

magnetic resonance). (See drawing No. 2) 
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   In one patient (4.5%) only intra-operative stimulation was done (a case of pre-

operatively known low-grade astrocytoma). In eight cases (36.4%) only extra-

operative language mapping was used.   Both stimulation methods were combined for 

12 patients (54.5%).  

 
 

  If we consider the applicability of both language mapping methods separately, the 

following results are seen: extra-operative stimulation was used in 20 cases; intra-

operative stimulation in 13 cases. In all 20 extra-operatively examined patients, 

positive speech points were found in 18 cases (90%). In all intra-operatively examined 

patients positive speech points were found in 12 cases (92.3%). The statistical value 

of differences in language finding by both methods was p=1.0 (insignificant).   

 

8.4 Correspondence of extra- and intra-operative stimulation results                 

                                                                                                    (in the Co-M group):  

 

  The results of both mapping methods corresponded in 9 cases (75%) out of 12. (If 

we also add to this number those 3 patients, who had both language mappings and no 

speech was found in either mapping (not included in our study), the results 

corresponded in 12 cases (80%) out of 15.) 

  Three cases out of 12 had discordant results: in 2 cases (16.7%), no language cortex 

was found extra-operatively. However, intra-operative language mapping showed 

positive language points. In one case (8.3 %) (See Picture No. 3), some positive 

18 12 1

  Group in which language was mapped extra-operatively (Ex-M) 

  Group in which language was mapped extra- and intra-operatively  
                                                                                             (Co-M)  

  Language mapped intra-operatively  

  Language mapped non-invasively by f-MRI 
Drawing No. 2 
The frequency of different language mapping methods used in our work. 
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language points found extra-operatively were stimulated also intra-operatively, but no 

language function could be confirmed in these locations.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY OF RESULTS: 
 
Variable                                                 Value 
 
Men                                                         11 (50 %) 
 
Women                                                    11 (500 %) 
 
Mean age                                                 30.3 y 
  
  -      Age range                                       10 – 53   
 
Duration of Epilepsy                                16.3 y 
 
  -     Range                                               0.5 – 40 y 
 
Significant language deficite deficits pre-
operatively          
 
  -     Light expressive aphasie                 aphasia                 
1 (4.5 %) 
 
Magnetic resonance      22 (100%) 
 
- Unspecified lesion                          8 (36.4  %) 
(including changes after previous  
resective operation) 

 
   -     Post-contusional changes               3 (13.7 %) 
 
   -     No visible pathology                      3 (13.7  %) 
 
   -     Cortical Dysplasie                          Dysplasia                          
4 (18,2 %) 
 
   -     Low grade tumor                            2 (9.0 %) 
 
   -     Cavernoma                                       1 (4.5 %)  
 
   -     Hippocampus sclerosis                   1 (4.5 %)  
 
Non-invasive 24 h video – EEG             22 (100 %) 
 
PET                                                         19 (86 %) 
 
SPECT                                                    10 (45.4 %) 
 
f MRI                                                       1 (4.5 %) 
 
WADA Wada test                                              8 
(36.3 %) 
 
Invasive EEG rec./ language mapping   21 (95.4 %)  
 
-     Only i/op mapping                             1 (4.5 %) 
 

SUMMARY OF RESULTS: 
 
Variable                                                 Value 
 
Resective operation                                 22 (100 %) 
 
-     Frontal                                               8 (36.4 %) 
 
-     Fronto-Parietal                                  2 (9.2  %)                   
 
-     Fronto-Temporal                                1 (4.,5 %)         
 
-     Temporal                                            8 (36.4 %) 
 
-     Temporo-Occipital                             1 (4.5 %)                   
  
-     Temporo-Occipito-Parietal                1 (4.5 %) 
 
-     Parietal                                               1 (4.5 %) 
 
Pathology (n=20)  
 
-     Sclerosis/ Gliosis                               10 (50 %) 
 
-     Dysplasie Dysplasia (Cortical, Glioneural)          
7 (35 %) 
 
-     TumourTumor (Astroc WHO II; DNET)       2 
(10 %) 
 
-     Cavernous angioma                              1 (5 %) 
 
Post-operative complications                  3 (13.5 %) 
 
-     Meningitis                                         1 (4.5 %) 
 
-     Subdural hematoma                          1 (4.5 %) 
 
-     Epidural hematoma                           1 (4.5 %) 
 
Post Post-operative language deficite             
deficits             10 (45.4 %) 
 
          -    new permanent deficite           deficits          
1 (4.5 %) 
 
Post-surgical outcome regarding seizure control *  
                                                               (n-18) 
 
-     Engel I                                              9 (50 %) 
 
-     Engel II                                            0  
 
-     Engel III                                           2 (11.1 %) 
 
-     Engel IV                                           7  (38.9 %) 
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    8.5  Resective operations  

 

  All 22 patients underwent a resective operation. It included the following cerebral 

lobes: frontal 8 (36.4%), fronto-parietal 2 (9.2%), fronto-temporal 1 (4.5%), temporal 

8 (36.4%); temporo-occipital 1 (4.7%); temporo-occipito-parietal 1 (4.5%), parietal 1 

(4.5%). 

  In 6 (54.5%) out of 11 temporal lobe resections, mesial temporal structures were also 

removed. This was done in cases, in which invasive EEG investigations showed some 

mesial epileptogenic activity.  

  Four patients (18.2%) underwent repeated operations for epilepsy. 

 

  In four cases (18.2%) of the total group, after repeated intra-operative stimulation of 

language sites (all cases in Co-M group) there was clear overlapping of language  

cortex with the epileptogenic zone. In these cases our inability to resect the  

whole epileptogenic cortex had been clear before the actual resection.  

  In one young epilepsy patient, an additional intra-operative language mapping was 

also indicated (language sites were very close to the epileptogenic zone). An operation 

could not be performed due to the patient’s youth and psychological instability. 

Therefore we had also assumed pre-operatively that we would not be able to resect a 

full epileptogenic zone while preserving the language cortex intact.  In another case, 

no full resection of the epileptogenic zone (low-grade astrocytoma) was possible due 

to the patient’s complaints of short eyesight disturbances and our observation of 

horizontal nystagmus, while removing the rest of posterio-mesial temporal tumor in 

awake brain surgery. Thus, in six cases (27.2 %) out of all, we knew that we had not 

resected the complete epileptogenic zone at the endpoint of resective surgery. In all 

the other cases we assumed that we had resected the compete epileptogenic zone. 

  Pathologically following diagnosis were made: Sclerosis/ Gliosis (50 %); Cortical / 

Glioneural Dysplasia (35 %), Tumor (Astrocytoma WHO grade II, DNET) (10 %), 

Cavernous angioma (5 %). 
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  8.6  Post-operative results as regards language function 

 

  Overall, postoperative speech deterioration was noted in 10 cases (45.4 %) out of 22 

(anomia – 5, expressive aphasia – 3, receptive aphasia – 1, combination of expressive 

aphasia and anomia – 1 case). In all of these cases speech disturbances regressed soon 

after surgery; however, only in 8 out of 10 patients did speech return to its pre-

operative performance either already during the hospitalization period or by the time 

of the first check-up (4 to 6 months after surgery). In the remaining two cases a 

complete regression of speech disturbances was not seen even after 6 months of 

observation; these speech deficits were considered permanent. In one of these two 

cases, language disturbance (light expressive aphasia) was noted already before the 

resective operation; therefore, new permanent language deficit occurred in one case 

(4.5%) of the whole group.  

 

  If we compare the post-operative language deterioration between the two groups 

(Ex-M and Co-M), the results are as follows. Post-operative speech deterioration was 

seen in 6 (75%) out of 8 patients in the Ex-M group (See Fig. No. 3) and in 4 (33.3%) 

out of 12 patients in the Co-M group (See Fig No. 4). The statistical significance of 

difference in post-operative language deterioration in both groups was p = 0.169 

(insignificant). 

 

A comparison of new, permanent language deterioration in both groups revealed one 

case (12.5%) in the Ex-M group. One patient of the Co-M group had had permanent 

language deterioration already pre-operatively. The statistical significance of 

difference between the two groups as regards new, permanent post-operative language 

deficit was p=0.4 (insignificant).   
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Postoperative outcome regarding speech function in 
the Ex-M group  (n-8)
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  Fig. No. 3 

Postoperative outcome regarding speech function in 
the Co-M group  (n-12)
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Fig. No. 4 

 

  8.7  Post-surgical outcome as regards seizure control  

 

  Post-surgical seizure outcome of 2 or more years after last resective epilepsy surgery 

(mean follow-up period 46.6 months, range 24 to 96 months) was determined for 18 

(81.8%) out of 22 patients. These were all only retrospectively analysed cases. Four 

patients were not included in this summary of post-operative results. In one case the 

seizure frequency had not declined since resective surgery, and a vagal nerve 
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stimulator had been implanted 1 year later. The remaining three patients hade not had 

a sufficient follow-up period post-operatively by the endpoint of this study (12/2007).     

 

  The Engel classification data for 18 patients who underwent operations for epilepsy 

close to speech areas are as follows (See Fig No. 5): 

Engel I – 9 patients (50%) (Ia – 8 cases, Ib – 1 case); Engel III – 2 patients (11.1 %), 

Engel IV – 7 patients (38.9 %) (IVa – 3 cases, IV b – 4 cases).  

  In six cases (27.2 %) we were not able to resect the complete epileptogenic zone and 

stated it already during the resective surgery. Half of these cases were in the IVb 

group, two cases in the IVa group (all together 5 cases). In one case the follow-up 

period was too short (8 months) by the endpoint of our study (12/2007), this patient 

was not included in the evaluation of seizure outcome.  
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  Fig. No. 5 

 

  If we compare the post-operative outcome for seizure control in both groups of 

different language mapping methods (extra-operative and combined language 

mapping group), the results are as follows. In the Co-M group, data were compiled for 

nine patients. Engel class I outcome was seen in three cases (33.3 %), Engel class II – 
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none, Engel class III – one case (11.1 %), Engel class IV – five cases (55.6 %). (See 

Figure No. 6) 

  In the Ex-M group, data were compiled on seven patients. Engel class I outcome was 

seen in four cases (57.1%), Engel class II – none, Engel class III – 1 (14.2%); Engel 

class IV – two (28.7%). (See Figure No. 7) 

 

The statistical significance of differences between Ex-M and Co-M groups, as regards 

Engel class I outcome, was p=0.63 (insignificant).  
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Fig. No. 6: Post-operative outcome for seizure control (Engel Score) in combined language 

mapping group. 
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Fig. No. 7: Post-operative outcome regarding seizure control (Engel Score) for extra-

operative language mapping group. 
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  8.8  Post-operative complications 

 

The following post-operative complications were diagnosed: meningitis (4.5%), 

subdural hematoma (4.5%), epidural hematoma (4.5%). All complications occurred in 

cases in which large craniotomies with insertion of subdural electrodes had been 

performed. All patients recovered well after the operations, and no permanent 

neurological deficits were apparent.    

 

  8.9  The summary of statistical analysis data 

 

The significance of differences between extra-operative (Ex-M) and combined (Co-

M) language mapping groups as regards postoperative language and seizure outcome: 

 

Comparing difference as regards p value  Difference estimated as 

Immediate post-operative language 

deterioration  

0.169 insignificant 

New, persistent language deterioration 0.4 insignificant 

Engel class I outcome 0.63 insignificant 

 

The significance of differences between extra-operative and intra-operative language 

mapping technique as regards the identification of language sites:  

 

Comparing difference as regards p value  Difference estimated as 

Identification of language sites  1.0 insignificant 
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9   DISCUSSION 

 

  9.1 Patients and non-invasive investigations 

 

  Our study demonstrates that epilepsy surgery around speech areas is a very complex 

subgroup of epilepsy surgery. This complexity is reflected in the diversity of patient 

characteristics and investigation results (significant age range, varying duration of 

epileptic seizures, localization of epileptogenic zone, localization of speech cortex, 

various pathological data, etc.). A significant variability in patient characteristics, in 

their turn, makes difficult any decisions on the site and amount of resection as well as 

prediction of post-surgical seizure control outcome. 

  The preservation of intact language areas and postoperative language function has 

always been of primary importance in our work, even superior to the full resection of 

the epileptogenic zone.  

  

  The suspicion that language cortex is located close to the epileptogenic zone must be 

considered a serious, difficult condition for surgery, in which both good post-

operative seizure control and the simultaneous preservation of language function are 

expected. Such proximity almost always necessitates vast pre-surgical investigations, 

often including the most recent and expensive investigational methods available in 

neurosurgery. This, of course, restricts the investigational process of epilepsy surgery 

to only a few neurosurgical clinics.  

 

  One of the first serious factors that necessitates more detailed investigations is the 

difficulty of determining the precise borders of lesions in magnetic resonance 

imaging. Although it was possible to identify a certain lesion in 86% of our cases, in 

most of these situations the lesion was rather diffuse, and we had to resort to 

additional investigation methods to specify the exact borders of the epileptogenic 

zone.  

  Non-invasive EEG also provided insufficient information about the topography of  

the seizure focus. This investigation is considered too insensitive to be used for 

determining exact borders of the epileptogenic zone [40], [108]. It also has a spatial 

limitation - it can only record brain electrical activity in an area of about 6 cm2 [62].    
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  In 80% of adult temporal lobe epilepsy cases (in mesial temporal lobe epilepsy, the 

frequency rises to 90%), magnetic resonance and ictal non-invasive EEG recording 

alone provide sufficient information for localizing the seizure origin and making a 

decision about surgery. In contrast, epilepsy surgery around speech areas normally 

requires the implementation of several additional investigational techniques to achieve 

the same goal [33], [46]. Only in one case (4.5%) were we able to proceed with 

surgery on the basis of MRI and EEG alone: the patient had a well-confined insular 

cavernoma. In this case we were certain that the pathology corresponded to the 

epileptogenic zone and the danger of damaging functionally significant language 

areas was stated here as low. In the remaining 21 patients (95.5%) several additional 

non-invasive (PET) and (SPECT) as well as invasive investigations were necessary to 

more precisely delimit the epileptogenic zone. The danger of damage to the 

functionally significant language cortex during the resective surgery was variable in 

these cases.    

 

  An invasive Wada test was used in situations, in which non-typical speech 

lateralization was suspected. Due to its invasive nature, we have increasingly 

restricted the use of this investigation in our work over the last 7 years only to cases in 

which the presence of epileptogenic lesion and epileptic seizures had been seen or had 

been expected for a considerable time (especially since childhood). This strategy is 

based on findings that early onset of left hemisphere seizure foci is associated with 

altered language lateralization and increased incidence of right hemisphere dominance 

[10], [47]. However, in our epilepsy surgery practice only three (2,9%) out of all 103 

left hemisphere epilepsy surgery patients had a right-sided language representation. In 

only one of these (epidermoid tumor, epileptic seizures since the age of 16, lasting for 

15 years) could a reorganization of language cortex be validly suspected due to the 

early pathology and long duration of the seizures. The second case involved a young 

patient with left-sided hippocampal sclerosis. Seizures had first occurred at the age of 

15 and lasted for 3 years. In this case it was hard to say if 3 years of epileptic seizure 

history were sufficient for language function dislocation. We also do not have 

information about the duration of the “silent period” – time interval between first 

pathological changes in the hippocampus and their clinical manifestation. Therefore it 

is not clear if the patient had had these pathological changes already for a longer time 

and if this factor played a significant role in the displacement of language.  The third 
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patient was 56 years old, had a left temporal lesion, histologically diagnosed as 

dysplasia, and a 10-year history of epilepsy. These three patients, of course, were not 

included in our study; their cases simply illustrate the complexity of deciding whether 

to give the Wada test for language lateralization. With such few data we cannot 

conclude that early development of an epileptic lesion and/or seizures is directly 

connected with language dislocation to the opposite hemisphere. Duchowny and 

colleagues also confirmed this, reporting that the language cortex tended to remain in 

the left hemisphere, in proximity to, or even overlapping developmental lesions (e.g., 

dysplasia) and the epileptogenic cortex in patients with early seizure onset (age <5 

years). Only very large early lesions acquired before age five and which  

destroyed language cortex were associated with right hemisphere language [27].   

 

  In summary, we cannot infallibly prove that a long history of seizures and 

epileptogenic lesion is a definite indication for the use of the Wada test in this group 

of patients. The use of this test largely depends on the experience made with it in each 

individual neurosurgery clinic.  

 

   A good alternative to the Wada test for language lateralization is functional 

magnetic resonance imaging (f-MRI) [24]. In our study, however, it was not used for 

language lateralization, but instead for non-invasive language mapping in one patient 

with insular cavernoma as an epileptogenic lesion. Although Roux and co-workers 

found that f-MRI cannot be used for making surgical decisions in the absence of 

direct (invasive) brain mapping [102], we performed a resective operation without 

direct cortical language mapping in this one case due to the fact that good intra-

operative orientation and preservation of the speech cortex were possible by 

combining of neuronavigation and f-MRI data.  No post-operative speech deficits 

were seen in this case.                        

 

  9.2 Invasive language mapping and post-operative language function 

 

  For the remaining 21 patients (95.5%) in our group, language was mapped 

invasively by direct cortical stimulation. In one case epileptic seizures were caused by 

a low-grade tumor. On the basis of previous non-invasive investigations, we were 

quite sure that the epileptogenic zone corresponded with the tumor, and we saw no 
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indications for inserting subdural electrodes to record additional invasive EEG data. 

Nevertheless, language mapping was needed and it was done intra-operatively during 

awake brain surgery.  

 

  For the remaining 20 patients (91%), no well-confined cortical lesions (in 13.7% no 

lesions at all) were seen, nor did other successive non-invasive investigations assure 

us of precise epileptogenic zone boundaries. We did not consider it safe to proceed 

directly with resective surgery with only intra-operative language mapping; therefore, 

subdural electrodes were used to better specify the epileptogenic zone as well as for 

successive language mapping.  

         Poor EEG localization of interictal spikes, seizure onset, the presence of a broad, 

often ill-defined epileptogenic area, as well as the extension of the proposed area of 

resection into brain areas of high functionality have also been mentioned as 

significant problems in several other studies [90], [94], [123]. However, these studies 

involved only extra-temporal epilepsy cases. In contrast, our study included also 

temporal neocortical epilepsy cases that required additional invasive pre-surgical 

investigations.   

 

  Thus, the majority of epilepsy surgery patients with an epileptogenic zone located 

close to speech areas required apart from the usual resective operation, a complex 

invasive investigation, including craniotomy, insertion of subdural electrodes, and 8 to 

12 days of continued monitoring in the epilepsy intensive care unit.  

 

  The use of extra-operative or combined extra-intra-operative language mapping 

techniques was in almost all cases based on the measure of overlap between 

epileptogenic and language zones. The few exceptions will be discussed later.  

  Our assumption that epileptogenic areas, located at least 10-mm away from language 

areas, are at a rather safe distance from each other and thus the maximal amount of 

epileptogenic zone can be resected without significant fear of post-operative language 

disturbances was based on data published by Haglund and colleagues. They reported 

that a resection margin of >1 cm from the language area results in significantly less 

permanent language deficits [37]. According to Silbergeld, any injury to essential 

language areas will lead to permanent difficulties [106].  Thus, the strategy of leaving 
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a 10-mm resection margin from the language areas is also followed in centers with 

considerable experience in neurosurgery around speech areas [12].  

 

  In the first group of patients (only extra-operative language mapping group (Ex-M)) 

we also included one patient in whom the basal temporal language area directly 

overlapped with the epileptogenic zone (Picture No. 4). There was no need for 

additional intra-operative specification of language cortex borders in this case. We 

based our decision on data firstly published by Krauss GL et al,, who reported that 

resection of basal temporal language areas does not cause permanent decrease in 

naming in most cases and therefore might be an acceptable risk, when the goal is 

treatment of severe partial epilepsy [53]. This particular patient directly developed 

post-operative deterioration of the language function, but these changes were of a 

regressive nature and at the time of first post-operative visit to the neurosurgeon (4 

months after surgery) no more speech disturbances were observed. 
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Picture No 4 A 37-year-old patient with epileptic seizures due to cerebral contusion 
defect (trauma 10 years previously). Speech was detected at three temporo-occipito-basal
points, two of which were located in the area of the planned resection. Due to the basal 
localization of these points and insignificant functional value, it was decided to perform 
resection without repeated intra-operative language mapping. Initially language 
disturbances were observed post-operatively, but speech returned to its pre-operative state 
4 months after surgery. 

Suggested resection

Three speech points, two posterior of them
considered as basal speech points

 
 It was necessary in the second group of patients (combined cortical mapping group 

(Co-M)) to repeat intra-operative language mapping. We assumed that there was a 

significant trade-off between maximal resection of the epileptogenic zone and 

preservation of the language cortex (preservation of a margin of at least 10 mm from 

the language cortex) due to the close relation between the two cortical areas. In our 

opinion, intra-operative orientation and resection of the epileptogenic cortex could not 

be performed here only on the basis of extra-operative invasive investigation data        

(summarized in report with 3-dimensional image as seen in Picture No.3).  
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  Interestingly, the initial post-operative data showed more frequent decreases of 

immediate post-operative language performance (in 75% of the cases) in the Ex-M 

group, although pre-operatively a rather in-significant trade-off between epileptogenic 

and language cortex had been supposed. In contrast, the immediate post-operative    

  language performance in the Co-M group showed a decrease in only 33.3% of the 

cases. In the majority of these cases, however, language deterioration was of a 

regressive nature. Permanent language deterioration was seen in only one patient 

(12.5%) in the Ex-M group and in one patient (8.3%) in the Co-M group (in this one 

case deterioration was seen before the resective operation).  

 

  Even if these differences are considered statistically insignificant (due to the often 

similar performance of both language mapping techniques and the small number of 

study patients), they illustrate quite well the impact of larger resections on post-

operative language function in cases in which the epileptogenic zone is located close 

to speech areas. In the Ex-M group, where a less significant trade-off between both 

cortical areas was supposed, resection could be performed in a somewhat freer 

manner and include broader cortical areas. This slightly freer manner and larger 

resection could account for more frequent temporary post-operative language 

deterioration. 

  An explanation for more frequent temporary speech deterioration and for one case of 

new, permanent language deterioration in the Ex-M group could be that the resection 

caused damage to the language association (supplementary) cortex (in one case 

permanent deficit – damage to the essential language cortex). If at least some of the 

supplementary language cortex had been missed in extra-operative language mapping, 

we could have also included some part of it or part of the subcortical language tracts 

in the resection. This may indicate the need for better detection of different speech 

zones (essential and supplementary).      

  An additional factor is the difficult intra-operative anatomical orientation, based on 

3-dimensional extra-operative language mapping images, not on actual anatomical 

representation of language sites that were more precisely detected by intra-operative 

mapping. Thus, it may be that a safe distance of at least 10 mm from language sites 

was not maintained at all sites. 

  Among some in the literature expressed views, Hamberger and colleagues suggest 

that  a resection of auditory naming (AN) sites, undetected during mapping based on 
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the sole use of visual naming tests (in our work also only visual naming tests were 

used for intra-operative language mapping), possibly contributes to such decline of 

post-operative language function [38]. They also mention the possibility that 

stimulation produces more limited localized response, whereas resection results in  

     more extensive damage to neuronal/ cognitive processes underlying word retrieval. 

Another reason for transitory speech disturbances could be a post-surgical edema at 

the resection site. 

 

  The reasons for transient speech deterioration in the Co-M group could include the 

presence of post-operative edema or damage to the language association cortex, 

auditory naming sites (also here exclusive use of visual naming tests during 

neuropsychological investigation) or subcortical language tracts. The reason for the 

fewer temporary post-operative language deficits in this group is most probably 

somewhat more cautious surgery in combination with better intra-operative 

orientation by intra-operative language mapping.  However, we were not able to 

ascertain the location of associative language cortex in these patients, and we did not 

perform a subcortical language mapping or auditory naming tests. Thus, this remains 

only a presumption of the cause of post-operative transitory language deterioration.  

  Bello and colleagues report that even if cortical structures are preserved, permanent  

morbidity may depend on surgical damage to the subcortical pathways. They  

have advocated an additional use of subcortical intra-operative language mapping [7].  

 Regarding resection caused damage to the supplementary language cortex (also 

called “sites of partial naming errors” by Ojemann [89]) was reported in one small 

study of 10 patients. The authors noted that removal of these sites is not associated 

with persistent language decline, whereas encroachment on essential sites (where 

function disturbance was found in 100% by cortical mapping) is related to 

postoperative (at 3 months) decline of language function [89]. In their study two 

patients out of ten had their supplementary language sites removed but 

postoperatively did not have any permanent language disturbance. However, further 

and larger scale studies are needed to clarify this question. 

  Another observation has been made on the post-operative consequences after 

resection of the supplementary motor area. Although its stimulation can induce motor 

and even language problems, it is described as possible to remove this area with only 

a transient “supplementary motor area syndrome” followed by a complete recovery  
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   [28]. These experiences of only transient disturbances, combined with observations 

after resection of basal speech sites, recommends considering the resection of 

suspected associative language cortex in situations when it hinders full resection of 

the epileptogenic zone. The only problem is the precise localization of the associative 

language cortex. 

Our current knowledge and investigative methods are insufficient for clearly 

distinguishing between essential and associative language areas as well as for defining 

the actual neurophysiological defect after resection of the latter. The complex 

organization and significant individual variability of the language cortex still remain a 

topic for many further studies [83], [103]. 

 

On the basis of our current knowledge and these study data, both extra- and combined  

extra-intra operative language mapping techniques are good and reliable for use 

   in epilepsy surgery close to speech areas. There are no statistically significant 

differences between post-operative language outcomes in either group; however, a 

combination of both methods is associated with less frequent temporary postopertive 

language deterioration and should be considered at least in cases in which there is a 

very close relation between the epileptogenic and the language cortex. Large-scale 

studies are needed to better evaluate each language mapping tactic used as well as to 

determine the organization of the language cortex, the role of associative language 

cortex in language function, and the best diagnostic measures for defining associative 

and essential language cortex. 

   

  A comparison of the results of both stimulation methods in the Co-M group reveals 

the congruence of language mapping data in 9 (75%) out of 12 cases (if we also add 

the 3 excluded cases in which both cortical mapping methods consistently showed no 

presence of speech cortex close to the epileptogenic zone, both mapping methods 

correspond in 12 (80%) out of 15 cases). This proves that they are highly reliable 

methods for language mapping. 

 

  In three cases the two language mapping methods yielded incongruent results. In two 

of these cases no speech could be found extra-operatively, but only intra-operatively. 

The subdural electrodes were placed over the classic Wernicke (Gy Angularis) and 

Broca areas (posterior portion of Gy Frontalis Inferior). By additional intra-operative 
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language mapping we wanted to verify here the negative extra-operative language 

mapping results. In one case, stimulation indicated language sites in the same 

location, where subdural electrodes had previously been located. It is not clear why 

the two mapping techniques yielded different results in this case. There might have 

been poor contact between the subdural electrodes and the cerebral cortex, although 

no problems were noted during direct EEG recording at these sites. It might have been 

due to the very small size of the speech site, localized close to (in between) the 

subdural electrodes, but not overlapping them. Earlier observations indicated that 

unique and reliable responses occur at sites within only a few millimeters of each 

other [87], [88]. However, this is an extraordinary case and should not be seen as a 

typical difficulty of subdural mapping.     

  In the other discrepant case, a broader cortical area was stimulated intra-operatively, 

and language sites were found close to the area covered by subdural electrodes. 

Perhaps the choice of subdural electrode size was inappropriate, and the distribution 

of the language areas was atypical due to the early onset of epilepsy [26]. (This 

patient had had seizures for 38 years, ever since the age of 14.) However, we cannot 

clearly attribute the dislocation of speech areas in this patient to the long duration of 

epileptic seizures. Also Ojemann G. and co-workers could not prove that dislocation 

of language areas was due to abnormal early development in their study of 117 left 

language-dominant frontal or frontotemporoparietal craniotomies [83].  However,  

a study published by Bell and colleagues reported reorganization of the language 

function within the left hemisphere as a result of an early precipitating injury and/or 

early onset left temporal lobe epilepsy [6]. In their study, the mean onset age for 

early-onset temporal lobe epilepsy group was 4.2 years, which is significantly earlier 

than in our patients. 

  

  These results prove the importance of the investigational hypothesis for placement of 

subdural electrodes and its complexity, as well as the need for a critical weighing of 

the investigational data. 

 

  In the third case of incongruent language mapping results, three extra-operatively 

found language sites overlapped with the epileptogenic zone (See Picture. No. 3).  

  Repeated intra-operative stimulation at these three points (See Photo No. 13) found  

no language function, apparently indicating their associative nature. In view of  
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the intra-operatively assumed associative function of these points and severe epileptic 

seizures of this patient, we chose to resect the complete epileptogenic zone, including 

all three extra-operatively found language sites. This particular patient had light 

expressive aphasia preoperatively. Immediately after the resective operation the 

aphasic disturbances increased, but they returned to their pre-operative level at the end 

of the first month after surgery. This experience seems to support the earlier presumed 

non-significant role of particular (in this case, presumably associative) speech areas in 

language function. This also exemplifies a possible strategy in situations in which the 

suspected associative language cortex overlaps with the epileptogenic zone, arguing in 

favor of the resection of associative language areas without fear of permanent 

language deterioration postoperatively.  

 

 
Photo No. 13  Intra-operative stimulation of 3 overlapping language points 

                                                             

  The use of two different language mapping techniques in this study allowed us to 

additionally evaluate the general performance of both methods individually. The two 

methods yielded quite similar results: extra-operative language mapping identified 

positive language points in 90% of cases, intra-operative language mapping, in 92.3%. 

Also statistically the difference between the two language mapping methods was 

insignificant. However, these data do not agree with other published data comparing 

the stimulation methods. This might be due to the fact that we did not measure the 

number of positive responses in each language mapping method, but only whether 

  However, as mentioned earlier, the best 

method for defining an associative cortex 

remains unclear. We cannot prove here that 

intra-operative language mapping is the best 

means for differentiating between essential and 

associative language cortex. This, as well as 

the consequences of associative language area 

resection, must be investigated in a specific 

large-scale study. 
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speech was found or not. Noachtar reported that more positive responses were 

detected by extra-operative stimulation in a case in which both stimulation methods 

were used to localize the motor cortex [74].  

 

  Analysis of the post-operative results regarding language function in the whole 

group of patients with epileptogenic cortex close to speech areas revealed that 

permanent language deficits were found in only two cases (9.0%), whereas the deficit 

was new in only one case (4.5%). Comparison of these data with that of the  

post-operative language function in a recently published study of 250 glioma patients 

who underwent resective operations close to the speech cortex showed there was a 

permanent language deterioration 6 months after surgery in four cases (1.6%) [103]. 

The increased percentage of permanent speech deteriorations in our study might be 

due to the small number of cases.  

 

  9.3 Post-operative seizure control 

 

  Analysis of the seizure outcome at least 2 years post-operatively (18 patients) 

revealed almost only diametrically opposite results – the best possible outcome (Engel 

I) in nine cases (50%) versus the worse possible outcome (Engel class IV) in seven 

cases (38.9%). For easier further evaluation the results of Engel class III and IV (9 

patients) were combined in one group. This group can be called the unfavorable 

seizure frequency outcome group. 

 

  In the majority of cases in this unfavorable outcome group (five cases, all Engel IV), 

no full resection of the epileptogenic zone was possible. This was known already 

during the surgery. In four of these patients, full resection of the epileptogenic zone 

was not possible due to its close relation to the language cortex. In the fifth case a full 

resection of the epileptogenic zone (low-grade astrocytoma) was not possible due to  

    intraoperative complications - patient’s complaints (during awake brain surgery) of 

eyesight disturbances and intra-operatively observed transient horizontal nystagmus.  

 

  In the remaining 13 cases (out of 18 cases with 2 years postoperative follow-up 

period), we initially supposed that the complete epileptogenic zone had been resected.  

During the follow-up period, four more cases had repeated seizures; apparently  
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no complete resection of the epileptogenic zone had been achieved by the resective 

surgery. In two of these cases the seizure frequency was reduced by about 85%, 

compared with the pre-operative results (Engel class III); two other cases 

corresponded to Engel class IV outcome. 

  Analyzing retrospectively the reasons for poor seizure control in these four patients, 

we reached the following conclusions:  

• In two cases a significant trade-off between complete resection of the 

epileptogenic cortex and preservation of the language cortex was seen pre-

operatively. In both cases an additional intra-operative language mapping 

was used with subsequent careful resection around language areas. This more 

restricted mode of surgery could be the cause for unsatisfactory seizure 

outcome.  

• In all 4 cases there were difficulties with determination of the epileptogene 

zone. In two cases rather diffuse lesions (cortical dysplasia and cortical 

contusion in combination with hippocampus sclerosis) were identified in the 

MRI. In two other cases no lesions at all could be found in the MRI (non-

lesional cases). Also despite vast invasive investigations, no complete 

detection and/or resection of the epileptogene zone was achieved. 

 

  Here we can state the main reasons for unfavorable seizure frequency outcome in the 

whole group: 

• conflict between full resection of the epileptogenic zone and simultaneous 

preservation of safe distance to language cortex together with 

• difficult localization of the epileptogenic zone.  

  The latter reason is specific for general neocortical epilepsy surgery, and has been 

described in several studies of extra-temporal epilepsy surgery [90], [94], [123].   

 

  Analysis of the post-operative seizure freedom in both language mapping groups, 

assuming equal results in the definition of the epileptogenic zone, revealed better 

results in the Ex-M group, where the trade-off between the epileptogenic zone and the 

language cortex was suspected to be less significant preoperatively. Thus, more of the 

epileptogenic cortex could be resected in a freer manner and more completely. And 
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exactly this increased extent of surgery might account for the more complete resection 

of the epileptogenic zone and better post-operative seizure outcome. 

  Although the difference in seizure outcome in both groups was found to be 

statistically insignificant, the less positive seizure control in the Co-M group seems 

indicative of the complexity of epilepsy surgery close to speech areas. It once more 

highlights the significance of the trade-off between full resection of the epileptogenic 

zone and preservation of the language cortex in this epilepsy surgery group. It was not 

that the combined mapping technique was the reason for worse post-operative seizure 

outcome, but rather the above-mentioned trade-off and our inclination to less 

aggressive surgery around speech cortex, fearing to cause significant post-operative 

neuropsychological deficits.             

  

  However, despite the complex pathology of these patients - often unequivocal 

noninvasive findings, including wide-spread neocortical lesions or non-lesional cases, 

the complicated definition of the epileptogenic zone and language cortex, their close 

interactions or even overlapping as well as cases in which complete resection of the 

epileptogenic focus was not possible, 50% of the cases had complete seizure freedom 

and satisfactory results. 

 

  Described post-operative complications indicate the high risks of invasive 

investigation. All of these complications occurred in patients in whom an extensive 

investigation with subdural electrodes was performed. This once more stresses the 

importance of strong indications for invasive extra-operative language mapping.    
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10  Drawbacks of the study 

 

  One of the main drawbacks of this study is the small number of cases. This is 

directly connected with the relatively small number of epilepsy surgery patients in 

neurosurgery and the even smaller number of patients with the epileptogenic zone 

close to the language cortex. The second drawback of this study is the mainly 

retrospective mode of analysis.        

 

11  Final remarks 

  

  This work illustrates the complicated nature of epilepsy surgery close to speech 

areas. Apart from the complicated localization of the epileptogenic zone, which is not 

unusual for neocortical epilepsy cases, its close location to or overlapping with the 

language cortex makes a complete resection of the epileptogenic zone and subsequent 

full post-operative seizure control difficult or sometimes even impossible. The success 

of surgical treatment can be promoted by accurate and extensive pre-surgical 

investigation. Its quality greatly depends on the experience of the individual epilepsy 

surgery team. 

 

  These few study data do not permit us to statistically, prima facie, prove that 

additional intra-operative language mapping is beneficial for better postoperative 

language and seizure frequency outcome in cases in which previous extra-operative 

language mapping detected the close relation of epileptogenic and language areas. 

Thus, we also cannot statistically confirm our initial hypothesis. Nonetheless, better 

postoperative language function is associated with the additional use of such methods. 

The combined method is especially advisable in cases in which a full resection of the 

epileptogenic zone would significantly endanger the preservation of language areas. 

Better postoperative seizure outcome is seen in cases in which there is a less 

significant tradeoff between the two cortical areas and thus larger resections are 

possible.  

 

  The use of invasive methods for language mapping is well-founded due to still many 

uncertainties towards the performance of different non-invasive language mapping 

techniques and despite the many unknowns about the organization and function of 
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language. In some individual cases of severe epilepsy, resection of the basal temporal 

or associative language areas may be considered for better seizure control without fear 

of permanent post-operative language deterioration. Nevertheless, which methods are 

best for distinguishing between essential and associative language cortex remain 

unclear.  

 

  Large-scale studies are needed to study the organization of the language cortex, to 

define the supplementary and essential language areas, to determine their role in 

language function, as well as to recommend the best methods/ tactics for language 

mapping and resective surgery close to speech areas.  
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 12  CONCLUSIONS  

 

1. Epileptogenic cortex located close to or overlapping with speech areas is a 

very complex pathology. The complexity is based on the diversity of patient 

characteristics, localization of the epileptogenic zone and language sites.  

2. Parallel to the common burdensome factor for full resection of the 

epileptogenic zone in neocortical epilepsy surgery – its adequate localization, 

a significant additional, specific factor in this sub-group is seen. This is a close 

localization or overlapping of language cortex with the epileptogenic zone. 

3. Therefore in the majority of cases in our clinic, pre-surgical investigations in 

this subgroup of epilepsy surgery patients include a wide range of specific and 

high-cost procedures. 

4. The use of the Wada test for language lateralization in this group of patients 

depends largely on the experience of each epilepsy surgery center. Successful 

language lateralization can also be done with non-invasive functional magnetic 

resonance. 

5. In the majority of cases a vast neocortical extension of the epileptogenic zone 

necessitates insertion of subdural electrodes; the close and individually 

different location of language areas requires successive language mapping. 

6. The main factor that influences the extensiveness of resective surgery is the 

need to avoid any new permanent neuropsychological morbidity, especially in 

connection with language function.  

7. The overall post-operative language outcome is satisfactory and thus justifies 

the use of invasive language mapping as currently the best language 

localization method.  

8. The patient groups that underwent extra-operative and extra-intra operative 

language mapping showed no statistically significant difference post-

operatively as regards language function. This can be attributed to the small 

number of study cases and the quite similar performance of both language 

mapping techniques.  

9. Both invasive language mapping tactics can be successfully used in epilepsy 

surgery close to speech areas. However, the use of combined extra-intra 

operative language mapping is associated with better post-operative language 

outcome. Thus, combined language mapping is strongly indicated at least in 
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cases in which the tradeoff between epileptogenic and language areas is 

significant. It can be seen as significant, if the distance between both cortical 

areas is less than 10 mm.      

10. Post-operative seizure control in the whole group of epilepsy surgery close to 

speech areas can be considered satisfactory, in view of the complex pathology 

of these patients. Complete seizure freedom is seen in 50% of these cases. 

11. Better post-operative seizure outcome is seen in those cases, in which there is 

less significant tradeoff between the two cortical areas and thus more 

aggressive resections of the epileptogenic zone are possible. 

12. The choice of language mapping technique did not statistically influence the 

level of postoperative seizure control.  

13. The main reasons for unfavourable seizure outcome in this epilepsy surgery 

subgroup are inability to perform complete resection of the epileptogenic zone 

due to its direct overlapping or close relationships with the language cortex 

and/or difficult location of the epileptogenic zone.  

14. Better post-operative seizure freedom might be possible in situations in which 

the epileptogenic cortex overlaps with the supplementary language cortex. In 

individual cases of severe epilepsy a resection of the supplementary areas 

might be reasonably considered. However, the best methods for precisely 

distinguishing between essential and supplementary/associative language 

cortex are unclear and remain a subject for further study. The precise impact 

of the resection of associative language sites must also be investigated in 

large-scale studies. 

15. The impact of the disperse location of the epileptogenic zone in neocortical 

epilepsy can be minimized by patient examination in experienced epilepsy 

surgery centers and the use of the most advanced investigational techniques. 

16.  Larger scale studies are needed for more profound evaluation of both 

language mapping tactics in epilepsy surgery.   
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13  Possibilities for further improvement in epilepsy surgery around speech 

areas 

 

Subcortical intra-operative language tract mapping should be seen as a useful 

addition to the usual cortical stimulation for epilepsy surgery close to speech areas, 

when the epileptogenic lesion involves both cortical and subcortical tissues. Bello and 

colleagues advocate its use in their study of patients with gliomas that involved 

language pathways [7]. Even when preserving cortical structures, permanent 

morbidity may depend on the surgical damage to the subcortical pathways. Bello and 

co-workers describe the use of the same current threshold for subcortical stimulation, 

as used in stimulation of the cortex. Subcortical stimulation was alternated with 

surgical removal and used when the resection came close to the subcortical structures 

located near the cortical language sites, all around the surgical cavity, and at its 

boundaries. They recommend subcortical stimulation as a reliable tool for guiding 

surgical resection and, at the same time, for predicting the likelihood of postoperative 

language deficits in cases of tumors involving speech areas.        

  Henry and colleagues advocate the combination of diffusion tensor MRI fiber 

tracking with intraoperative mapping for better detection of the subcortical 

pathways in surgery close to eloquent regions [43].  

 

  In another study, Bello and co-workers recommend the use of cortical and 

subcortical language mapping for all the languages in which a patient is fluent [8]. 

Bilingual patients are known to have the same, but also different, cortical areas for the 

various languages they speak; these are located in both the temporo-parietal and the 

frontal areas [83], [101],[102], [118], but moreso in the  temporo-parietal area. Due to 

the various representations of different languages in the cerebral cortex, Roux and 

colleagues also recommend the use of different language tasks for better language 

mapping in their study of language organization in bilingual patients [103]. We do 

not have any data on different languages spoken by our epilepsy surgery patients. All 

were evaluated only in one language (German), however, all did not have German as 

their first language. Therefore, we should consider the use of different language 

mapping tasks for mapping different languages in the future. The importance of the 

language tasks chosen for language mapping accuracy has also been noted by 

Ojemann and co-workers [81].  
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  Hermann and colleagues reported that the exclusive use of only visual naming tasks 

in language mapping and the consecutive sparing of only visual naming (VN) sites 

from resection does not appear to consistently protect left temporal lobe epilepsy 

patients from post-operative naming decline [42]. They suggest the additional use of 

auditory-based naming tasks (test includes questions like “What a king wears on his 

head”) instead of using only VN tests that detect VN sites [38], [39]. They found that 

patients who had auditory naming (AN) sites removed tended to exhibit worse 

objective naming postoperatively, whereas patients who did not have AN sites 

included in their resection tended to perform as before the operation or in some cases, 

even improved in naming tasks. Despite the sparing of VN sites in all patients of this 

study, those who had AN sites removed were worse not only in AN tasks, but in VN 

tasks as well. 

  Therefore we consider the implementation of an auditory naming test in 

language mapping as a reasonable addition to achieve better post-operative language 

function; however, it has not yet been definitely determined whether sparing AN sites 

influences seizure outcome. 

 

For better intra-operative localization of language cortex borders, Silbergeld 

recommends having the patient continue naming objects during that part of the 

resection that is close to the identified language site (within 2 cm of the identified 

language area) [106]. The resection can then be halted if naming errors occur. 
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14  Summary in English 
 
Background. Both epilepsy surgery and surgery close to functionally significant 

cortical areas have challenged neurosurgeons in the last two decades. 

  With this work we wanted to illustrate the current status of epilepsy surgery close to 

language cortex in our clinic (Neurosurgery Clinic, University of Munich) and to 

evaluate our tactic of repeated intra-operative language mapping after initial extra-

operative language mapping in cases, where language areas lie very close to or 

overlaps with the epileptogenic zone. 

  First part of this work describes the process of decision making in epilepsy surgery – 

patient admission criteria, gradual investigational process from non-invasive to 

invasive.  

  The main emphasis is put to the analysis of invasive language mapping (extra- and 

intra-operative) as this is the current gold standard of language localization in 

neurosurgery. Here the historical development of language mapping, together with its 

physical and physiological concerns is discussed.       

  The next part of this work is devoted to the analysis of two different invasive 

language mapping tactics – extra-operative versus combined extra- and intra-operative 

mapping.  

 

  Methods. Group of retrospective (19) and prospective (3) patients, operated in our 

clinic in time period from 1997 to 2007, was gathered. Among these 22 patients were 

11 male and 11 women with a mean age of 31,9 years and mean epilepsy duration of 

16,3 years. Only those patients, by whom either by extra-, intra-operative or both 

stimulation methods a language cortex close to or overlapping with epileptogenic 

zone was found, were included in our study.    

  The patients were divided in 2 groups, basing on the language mapping tactic, used 

during the investigation. Only extra-operative language mapping was used in cases, 

where rather safe distance (more than 10 mm) between language sites and 

epileptogenic zone was seen (Ex-M group). The necessity for additional intra-

operative language mapping was seen in cases, where rather small (less than 10 mm) 

distance between language sites and epileptogene cortex or overlapping of both zones 

was seen (Co-M group).  
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  Results. Only extra-operative language mapping was used for 8 patients and the 

combination of both language mapping techniques was used in 12 cases. In 1 case 

language was mapped by functional magnetic resonance and in 1 case – only intra-

operatively. 

  All patients underwent resective operations.  

 Immediate post-operative language deterioration was seen only in 10 (45,4 %) cases        

(6 (75%) cases in Ex-M sub-group and 4 (33,3%) in Co-M sub-group) out of the 

whole group. In 2 cases (1 in each group) the language deterioration was permanent 

(detectable also 6 months after surgery). The patient in the Co-M sub-group had 

permanent language deterioration already pre-operatively. Thus the only new 

permanent post-operative language deterioration was seen in 1 case of Ex-M sub-

group, where rather safe distance between language and epileptogenic zone was 

thought pre-operatively. 

  Regarding seizure outcome, patients were evaluated for at least 2 years (mean follow 

up 46,6 months). The results were gathered from 18 patients (only retrospective 

patients) and were as follows: Engel I – 9 cases (50%), Engel II – none, Engel III – 2 

(11,1%) cases, Engel IV – 7 (38,9%) cases. 

  In 9 unfavourable seizure outcome cases (combination of Engel class III and IV 

cases) apparently no full resection of the epileptogene zone was achieved. In 5 cases 

this was known already intra-operatively, in the remaining 4 cases it was noted during 

the follow up period. In 8 of these cases the reason for incomplete resection of the 

epileptogene zone was its close relationship or overlapping with speech cortex and/or 

difficult localization of the epileptogenic zone. In 1 case complete resection could not 

be done due to intra-operative complications.     

  In the Co-M sub-group (n=9) the results were following: Engel I – 3 (33,3%) cases, 

Engel II – none, Engel III – 1 (11,1,%) case and Engel IV – 5 (55,6%) cases. In the 

Ex-M sub-group (n=7), the results were following: Engel I – 4 (57,1%), Engel II-

none, Engel III – 1 (14,2%), Engel IV – 2 (28,7%) cases. 

 

 No statistically significant differences were observed between both groups regarding 

immediate post-operative language deterioration, new persistent language 

deterioration and Engel class I outcome.  
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  Conclusions. Apart from casual neocortical epilepsy surgery, neocortical surgery 

close to speech areas identifies the need for language mapping in order to state safe 

resection borders. The long term post-operative results regarding language outcome in 

our study are satisfying and justify the use of invasive language mapping as the best 

language localization method.  

 As no statistically significant differences regarding language outcome are seen in 

comparison of both groups, we can conclude that both invasive language mapping 

tactics can be successfully used in epilepsy surgery. However, the use of combined 

extra-intra operative language mapping is associated with better post-operative 

language outcome. Here we can appraise our indications for combined language 

mapping to be considerable at least for cases where significant tradeoff (distance of 

less than 10 mm) between epileptogenic and language areas is seen.  

  Also seizure outcome is found not to be significantly influenced by use of one or 

another language mapping technique. Better post-operative results are seen in cases, 

where less significant conflict between both cortical areas is seen and thus somewhat 

more aggressive resections of the epileptogenic zone are possible. The post-operative 

results regarding seizure control in the whole group of epilepsy surgery close to 

speech areas can be seen as satisfactory, taking into account the complex pathology of 

these patients. A complete seizure freedom is seen in 50% of cases. The main reasons 

for unfavourable seizure outcome were significant conflict between full resection of 

the epileptogene zone and preservation of safe distance from speech cortex together 

with difficult localization of the epileptogene zone.  

 

  Finally, we can conclude that epilepsy surgery close to speech cortex is a very 

complex treatment method. The complexity is based on the diversity of patient 

characteristics, localization of the epileptogenic zone and language sites. However, 

with the use of vast investigational techniques and gathered experience, it is possible 

to achieve good post-surgical results. 

  

  We would also like to advocate a need for similar study with larger number of 

patients. This could provide more significant analysis of both language mapping 

tactics in epilepsy surgery close to speech areas. 
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15  Summary in German / Zusammenfassung  

 

  Einleitung: Neurochirurgie in der Nähe von funktionell bedeutsamen Cortexarealen 

im Allgemeinen und Epilepsiechirurgie im besonderem stellen in den letzten zwei 

Jahrzehnten eine grosse Harausforderung dar. Epileptogene Foci und zu entfernendes 

Hiranareal bei der Focusresektion befinden sich manchmal in enger Nähe von oder 

überlappen mit sprachtragenden Cortexarealen. 

  

 Mit der vorliegenden Arbeit sollte der aktuelle Stand der Epilepsiechirurgie in der 

Nähe von Spracharealen an der Neurochirurgischen Klinik der Ludwig Maximilians- 

Universität München dargestellt und der Einsatz eines zusätzlichen intraoperativen 

Sprachmonitorings nach initialem extraoperativen Sprachmapping in besonders 

gelagerten Fällen überprüft werden. Es geht dabei primär um Patienten, bei denen sich 

eine enge Nachbarschaft zwischen Sprachareal und epileptogener Zone bzw. eine 

Überlappung beider Regionen zeigt.  

  Die Arbeit beschreibt im ersten Teil den Prozess der Entscheidungsfindung in der 

Epilepsiechirurgie, die Kriterien der Aufnahme der Patienten in des 

Epilepsiechirurgie-Protokoll und das stufenweise Vorgehen und Anwendung der nicht 

invasiven und invasiven diagnostischen und therapeutischen Techniken. 

  Es folgt dann eine Beschreibung der verschiedenen invasiven Methoden der 

Sprachlokalisation. Bei der extraoperativen Sprachlokalisation oder Sprachmapping 

erfolgt die Zuordnung der sprachrelaventen Areale über die Stimulation von in den 

Subduralraum implantierten Gitterelektroden, bei der intraoperativen 

Cortexstimulation wird am ebenfalls wachen Patienten beim sogenannten 

Sprachmonitoring eine Benennungsschleife durch Stimulation unterbrochen und  

  daraus eine individuelle Landkarte für die Sprachfunktion erstellt. Beide Methoden 

sind derzeit als der Goldstandard in der Lokalisierung von Spracharealen anzusehen.   

Die extraoperative Stimulation nach subduraler Gitterelektrodenimplanatation fand 

für die prächirurgische Diagnostik der Patienten auf der Video-EEG-Monitoring-

Station der Neurologischen Klinik statt, während die intraoperative Stimulation  

bei der anschliessenden epilepsiechirurgischen Fokusresektion im Operationssaal 

durchgeführt wurde.    
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Methoden: 22 Patienten mit epileptogenen Foci in unmittelbarer Nähe zu 

sprachrelevanten Regionen wurden in der Zeit von 1997 bis 2007 operiert und in diese 

Studie aufgenommen. Dabei wurden die Daten von 19 Patienten retrospektiv und von 

3 Patienten prospektiv ausgewertet. Die Gruppe bestand aus 11 männlichen und 11 

weiblichen Patienten. Beide Gruppen hatten ein mittleres Alter von 31,9 Jahre  

und eine mittlere Epilepsiedauer von 16,3 Jahren. 

  Bei diesen Patienten wurde entweder mit der extra- oder intraoperativen bzw. einer 

Kombination beider Stimulationsmethoden die Entfernung des Sprachkortex von der 

epileptogenen Zone oder die Überlappung des Sprachkortex mit derselben bestimmt.  

 

 Auf Grund der im Einzelfall angewandten Methode des Sprachmappings wurden die 

Patienten in 2 Gruppen unterteilt: 

 In der Gruppe, in der sich eine sichere Distanz (mehr als 10 mm) zwischen den 

Spracharealen und der epileptogene Zone ergab, wurde ausschließlich das 

extraoperative Mapping verwendet (Ex-M Gruppe).  

In den Fällen, in denen das extraoperative Sprachmapping eine geringe Distanz 

zwischen den Spracharealen und dem epileptogenem Kortex zeigte (weniger als 10 

mm), wurde zusätzlich ein intraoperatives Mapping für notwendig erachtet (Co-M 

Gruppe). 

 

  Ergebnisse: Alle 22 in die Studie eingeschlossenen Patienten haben die 

Resektionsoperation gut toleriert. Die Mortalität war 0%. 

8 Patienten wurden einem alleinigem extraoperativen Mapping unterzogen, während 

die Kombination aus extra- und intra-operativem Sprachmonitoring bei 12 Patienten 

eingesetzt wurde. In einem Fall haben wir die Sprache mittels funktioneller 

Kernspintomographie untersucht, bei einem weiteren Patienten kam ausschließlich 

das intraoperative Sprachmonitoring zur Anwendung. 

  Eine sofort nach der Operation aufgetretene Sprachstörung wurde bei 10 (45,4 %) 

von 22 Patienten beobachtet (6 (75%) der Ex-M Gruppe, 4 (33,3 %) der Co-M 

Gruppe). Diese Störung war in den meisten Fällen vorübergehend. Nur in 2 Fällen 

(jeweils ein Patient aus jeder Gruppe) war die Sprachstörung permanent, d.h. auch 6 

Monate nach der operativen Resektion noch vorhanden. Dabei war die Sprachstörung 

bei einem der Patienten aus der Co-M Gruppe bereits vor der Operation nachweisbar. 

Somit wurde nur in einem Fall, bei dem präoperativ eher eine gefahrlose Distanz 
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zwischen Sprachregion und epileptogener Zone vermutet worden war, eine 

neuaufgetretene permanente Sprachstörung beobachtet. 

  Bezüglich des postoperativen epileptischen Anfallsleidens haben wir die Patienten 

über mindestens 2 Jahre verfolgt. Die mittlere Beobachtungszeit betrug 46,6 Monate. 

Bei 18 Patienten - die Auswertung betraf nur die retrospektive Gruppe - ergab sich 

folgendes: Engel I – 9 (50%), Engel II – keine, Engel III – 2 (11,1%), Engel IV – 7 

Fälle (38,9%). Bei 9 Patienten mit einem ungünstigen postoperativen Verlauf des 

Anfallsleidens (Klasse Engel III und IV) wurde demnach keine vollständige 

Resektion der epileptogenen Zone erreicht. Bei 5 der Patienten wurde dieses bereits 

intraoperativ erkannt, bei den übrigen 4 Fällen wurde dieses erst während der 

postoperativen Periode offensichtlich. Bei 8 Fällen lag die Ursache für eine 

inkomplette Resektion der epileptogenen Zone in ihrer engen Beziehung zum 

Sprachkortex und/oder in der ungünstigen Lokalisation der neokortikalen 

epileptogenen Zone. In einem Fall einer zusätzlichen temporomesialen  Resektion 

musste diese aufgrund des Auftretens von störendem Nystagmus und Doppelbildern 

in Hirnstammnähe vorzeitig beendet werden. In keinem Fall tragen intraoperative 

Komplikationen auf. 

  In der Co-M Gruppe (n=9) wurden folgende Resultate erzielt: Engel I – 3 (33,3%), 

Engel II – keine, Engel III – 1 (11,1%) und Engel IV – 5 Fälle (55,6%).  

  In der Ex-M Gruppe (n=7) erzielten wir folgende Ergebnisse: Engel I – 4 (57,1%), 

Engel II – keine, Engel III – 1 (14,3%) und Engel IV – 2 Fälle (28,6%). 

  Wir haben keinen statistisch relevanten Unterschied zwischen den Gruppen  

  Ex-M und Co-M in Bezug auf die Häufigkeit einer transienten bzw. permanenten 

postoperativen Sprachstörung und in Bezug auf das Operationsergebnis, repräsentiert 

durch die Zuordnung zu Engel Klasse I  gesehen. Dieses Fehlen deutet daraufhin, das 

unsere beiden Methoden des Sprachmappings eine ähnliche Wertigkeit haben, es aber 

einer größeren Patientenzahl bedarf, um eine statistische Signifikanz zu zeigen.                                    

 

Diskussion: Zusammenfassend stellten wir fest, daß Epilepsiechirurgie in der Nähe 

von Spracharealen eine sehr komplexe Behandlungsmethode darstellt. Die 

Komplexität beruht auf der Inhomogenität der Patientencharakteristika, der 

Lokalisation der epileptogenen Zone und ihrer Beziehung zu den Spracharealen.  

  Für die Mehrzahl der Patienten mit einem epileptogenen Fokus in der Nähe des 

Sprachkortex ist die Einlage einer subduralen Gitterelektrode und ein anschließendes 
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Sprachmapping erforderlich. Deshalb ist diese Behandlung nur in speziell dafür 

eingerichteten neurochirurgischen Zentren möglich.        

  Alle postoperativen Resultate bezüglich der Sprachstörung sind sehr befriedigend 

und bestätigen den Einsatz eines invasiven Sprachmapping als beste Methode zur 

Lokalisation der sprachrelevanten Areale. Beide invasiven Methoden des 

Sprachmappings können in der Epilepsiechirurgie für Focusresektionen in der Nähe 

von Spracharealen erfolgreich angewandt werden. Allerdings ist die kombinierte 

Anwendung des extra- und intraoperativen Sprachmappings mit einem 

befriedigenderen Ergebnis in Bezug auf das postoperative Sprachvermögen 

verbunden. Hier konnten wir zeigen, daß unsere Indikation für ein kombiniertes 

Sprachmapping vor allem für jene Patienten entscheidend sein kann, bei denen durch 

die Nähe der prospektiven Resektionszone zum Sprachkortex Komplikationen zu 

erwarten sind.  

  Auch die Ergebnisse im Hinblick auf das postoperative Ergebnis bezogen auf  

die Anfallsfrequenz sind erfreulich, vor allem wenn man die komplexe Pathologie 

dieser Patienten in Betracht zieht. Eine komplette Anfallsfreiheit wurde bei 50% der 

Fälle erreicht. 

  Neben den allgemeinen Risiken, die bereits die komplette Resektion der 

epileptogenen Zone einer neokortikalen Epilepsie mit sich bringt liegt bei der in der 

vorliegenden Studie beschriebenen Patientengruppe in der Lokalisation der Foci in 

unmittelbarer Nähe zur Sprachregion ein zusätzlicher bedeutsamer Risikofaktor. Er 

beruht auf der engen lokalisatorischen Nachbarschaft zwischen Sprachareal und dem 

geplanten Resektionsareal bzw. in extremis auf der Überlappung von beiden. Bessere 

postoperative Ergebnisse in Bezug auf das Anfallsgeschehen sind dort zu erwarten, 

wo ein grösserer Abstand zwischen beiden Kortexarealen vorliegt und somit eine 

ausgedehnte Resektion möglich ist.  

  Die enge Nachbarschaft und in extremis Überlappung von sprachrelevanten 

Corterxarealen einerseits und epileptogener Zone sowie prospektivem 

Resektionesareal andererseits bleibt ein kritischer und erschwerender Faktor in Bezug 

auf eine positive Beeinflussung des Anfallsleidens für diese Subpopulation von 

Patienten in der Epilepsiechirurgie. 
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