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Thèse pour obtenir le grade de docteur d’université.
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Introduction

This thesis is concerned with the decidability of the theory of typed λ-calculi. Typed
λ-calculi are formal systems to explore the notion of computation, and as such, are
fundamental tools in computer science. However, the study of the theory of the λ-
calculus does not reduce solely to computer science. Its deep connections with logic
and its mathematical clarity, have settled the basis of a fertile interaction between
computer science, logic and mathematics. Understanding the motivations of the
theory of λ-calculi leads one naturally to a detour by the study of its connections
with logic and mathematics. We begin with a brief history of the genesis of the λ-
calculus, aimed at underlining its strong interaction with the development of logic.

Origins

The λ-calculus comes from the attempt in the 1930s by Alonzo Church first in [25],
and in a corrected version in [25] to build an alternative formalisation of mathe-
matics whose fundamental building blocks are functions. Soon, however his two
students, Kleene and Rosser, prove his system in [59] to be inconsistent, suffering
from the same paradox, discovered in 1902 by Russell, which affects the foundations
of mathematics in terms of set theory.

Church, Kleene and Rosser then give up this fundamental attempt and turn to
the study of computability with a tool at the basis of Church’s system of logic;
this tool is nowadays known as the untyped λ-calculus. This minimalist language
with three symbols (two parentheses and a Greek letter) and a denumerable stock
of variables will prove to have a high expressive power, it will even be proven to be
Turing complete, which is to say, according to the Church-Turing thesis, that the
untyped λ-calculus is the most expressive programming language, it can implement
any computable functions.

Among the numerous results obtained by Church for the λ-calculus, probably the
most famous is the undecidability of convertibility of terms [26] in the untyped λ-
calculus, i.e.,, whether two programs compute the same function. The subject of this
thesis tackles the opposite consideration, to find effectively computable procedures
to decide equality between terms. We will have therefore to restrain this equality
for certain classes of programs. The restriction used is a partial labelling of the
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λ-terms following certain rules, the terms which can not be labelled are ruled out of
the system, this technique is known as typing.

The theory of (ramified) types appears originally in the work of Russell and
Whitehead [93] to cure the set-theoretical foundations crisis of mathematics of the
beginning of the century. This theory is roughly a way to classify propositional
sentences into a hierarchy to avoid self-references which are at the heart of many
paradoxes (among them the paradox of Russell) undermining the näıve set theory
of Cantor, considered then to be the only possible foundation of mathematics. This
theory has inspired Church and Curry to develop typed versions of λ-calculi and
combinatory logic (an analog to the λ-calculus where the explicit handling of ab-
straction and variable is abandoned and replaced by the use of primitive functional
combinators).

The work of Church and Curry, one working on the λ-calculus, the other on
combinatory logic, are tightly interleaved. They give in the same period their first
formulations of a functional theory of types, Curry in [36], Church in [27]. For a
nice exposition, the reader is invited to consult [83].

Logical Motivation

In 1934 in [44], Gentzen invented two formal systems to write deductions, natural
deduction and sequent calculus, and proves his Hauptsatz for the sequent calculus.
The Hauptsatz shows how it is possible to bring deductions into a normal form,
which are deductions of a simpler structure. Although sequent calculus is important
in its own right (in particular in proof theory), we will focus on natural deduction,
which has a much clearer relationship with programming.

Prawitz, in 1965 in [77], rehabilitated natural deduction by proving an equivalent
of the Hauptsatz for this system, the normalization of detour elimination (which
corresponds to the β-reduction of the lambda-calculus).

After Curry had noted a correspondence between his combinatory logic and
the logic as formulated by Hilbert, Howard, in 1969, extended this correspondence
between natural deduction and λ-calculus. After having circulated informally for
ten years and deeply influenced the community the manuscript of Howard [53] is
eventually published. The correspondence pointed out by Howard which relates
formulas and types, and proofs and terms is even an isomorphism, because the
detour elimination of proof in natural deduction corresponds to reductions in the
λ-calculus.

This isomorphism, known as the Curry-Howard isomorphism, provides a formal-
isation of the Brower-Heyting-Kolmogorov interpretation of proofs as constructions
and marks the beginning of a fertile period of interplay between (mainly intuition-
istic) logic and computer science.

It has given rise in turn to a bundle of logical systems based on the λ-calculus,
interpreting the logical connectives as types, and proofs as terms; for example, the
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type theory of Martin-Löf [67], Girard/Reynolds System F [47; 79], the Calculus
of Constructions of Coquand and Huet [33; 32], or the extension of the latter with
inductive types, the Calculus of Inductive Constructions [34].

All these systems, formulated using natural deduction, were proved strongly
normalizing following a variation of the method of reducibility predicate originally
introduced by Tait in [85] to prove a weak normalization for a calculus with combi-
nators and recursion operators.

This change of perspective suggests to consider new conversions. Already in the
seminal works of Prawitz, other conversions than the traditional η or β-reduction
are present, the so called permutative reduction or π-conversion for sum type and
existential type. They are needed in natural deduction in the presence of disjunction
or existential quantifiers in order to obtain normal forms of deductions which satisfy
the subformula property.

Categorical Motivation

The real shift from a set-theoretical foundation to a functional foundation of math-
ematics has been successfully achieved by category theory. In this light it is not sur-
prising that category theory had an important impact on both logic and λ-calculus.
The works of Lambek and Scott [60; 61; 62; 63] are particularly illuminating, where
it is shown that there is an isomorphism between Cartesian Closed Categories and
the theory of λ-calculi, and that categories are deductive systems with an equiva-
lence relation on proofs. The categorical analysis of proofs and their equality has
since then been pursued (in particular in the works [66] of Mann, and [72] of Mints).

The π-conversions of Prawitz, mentioned above, have a very natural meaning in
category theory, they hold in fact automatically, if type formers are interpreted using
universal properties, e.g., × is interpreted as categorical product, =⇒ as exponential
object, etc. But other non-standard conversions hold as well. The categorical inter-
pretation gives us in fact extensional models of λ-calculi, and hence all the possible
conversions we might want to add.

We may not want to have such a powerful conversion relation (which corresponds
to an extensional equality). For example in the case of inductive types, extensional
equality is known to be undecidable. Still, the categorical perspective can be a
guideline, if we want to strengthen the conversion relation, as it implies categor-
ical properties to hold directly in our calculus. The question could now be what
properties do we want to have in our calculus?

Programming Motivation and Applications

As already mentioned, the λ-calculus turns out to be a powerful tool to study com-
putability. Its high level of abstraction as opposed to other model of computation
such as Von Neumann models make it a convenient paradigmatic programming lan-
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guage to concentrate on the program independently of the machine the program is
to be implemented on. Its influence had spread over the whole computer science
community (see [12]). In particular, functional languages are implementations of
the λ-calculus with some primitives added.

Although far from the fundamental considerations of Russell, the advent of type
systems in programming languages has analogously structured values and programs
in order to forbid incoherences.

Experience shows that a great number of bugs can be detected automatically by
a pass of type inference before actually running the program. However the gain of
typing is not limited to bug elimination. It allows for example for optimization: if
we know by typing that a program can be transformed in another one respecting the
same specification and that this later is more efficient (although maybe less natural
for human eyes), why not take the later? Two examples are partial typed directed
evaluation and deforestation. In fact these two are examples of extended conversions
as we will consider throughout this thesis.

Another nice application of strengthened conversion relation is the ability to
decide provable isomorphisms between types. Two types are isomorphic if they
carry the same information organized differently, i.e.,, if there exists function forth
and back between this two types such that their composition is the identity. A
characterisation of provable isomorphisms in a Cartesian closed category is first given
by Soloviev in [84] and independently by Bruce, Di Cosmo and Longo in [22]. Rittri
in [82] uses isomorphisms for retrieval methods in a library of programs (see [35] for
a detailed exposition). Another application is the design of algorithms to be applied
generically to a class of isomorphic datatypes, an example of an implementation is
described in the paper of Atanassow and Jeuring [6].

Maybe the greatest outcome of the advent of types in programming and logic
is the possibility to express in a same uniform framework, thanks to the Curry-
Howard isomorphism, programs, properties thereof and checkable proofs. In such
environment, on the one hand, proofs of properties of programs can be checked
automatically and correctness of programs reaches a higher level of confidence, and
on the other hand parts of proofs can be seen as programs which allow for more
automation of formal proofs. For such a proof assistant to be convenient, it should
obviously do as much as possible of these automations to assist the user in the
obvious part and let him concentrate on the tedious part. A possible solution to
achieve this goal is once again to strengthen the decidable conversion relation of
such proof assistants.

State of the Art

The minimal theory of every λ-calculus is a computational equality for functions, the
β-equality, two terms are equal if they reduce through β-reductions to a same third,
where β-reduction is an evaluation step for a program applied to an argument, which
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substitute this argument to the first formal parameter of the program. In particular,
this equality identifies programs at different states of their evaluation.

Another conversion, traditionally not considered as a computational one, is η-
conversion, this equality identifies terms with ”dummy” abstractions: for each func-
tional program p1 of one argument, one can construct another program p2 taking
one argument and applying the program p1 to this argument. In λ-calculus nota-
tions, one writes that p2 is defined by λx.p1x. So p1 and p2 are essentially the same
program, and η-equality identifies them.

The β- together with η-equality lead to an extensional equality for the simply
typed λ-calculus. Two terms of the simply typed λ-calculus are equal with respect
to βη-equality if and only if their interpretations are the same in an extensional
model. Roughly, programs which for the same argument return the same result are
identified. Moreover, this equality is decidable for the simply typed λ-calculus.

This extensional equality is much harder to decide as soon as one wants to
extend or generalise the system. There is no problem in adding a product type,
or unit type (see for example the book Proof and Types of Girard, Lafont, Taylor
[48]). Adding sum types is already much more problematic, and designing a deciding
algorithm is a non trivial task, if obtained by reduction based normalization as by
Ghani (see [45]), or reduction free normalization ; an algorithm is implicitly present
in a constructive proof of Altenkirch et al. [4], and a type directed Normalization
algorithm is obtained in [9] by Balat, using a call-by-value interpretation and control
operators (where although some strong hints are given to justify the algorithm, the
correctness is not rigorously proven). For inductive types, it is even known that
extensional equality is undecidable ([76], or [51]). This problem of undecidability
leads one to consider a conversion relation stronger than merely β, but still weaker
than the extensional one.

Permutative reductions coming directly from logic in the tradition of Prawitz
are such an example. A proof for strong normalization has been given initially by
Prawitz in [78] for second-order natural deduction, but needed some supplementary
details to be complete. This completion of the proof has be given only recently by
Tatsuta and Mints in [87] and [86]. Other proofs of strong normalization for systems
with permutative conversion have been studied by Joachimski and Matthes in [55]
for a generalisation of the simply typed λ-calculus called ΛJ and the sum type and
by David and Nour for classical natural deduction with disjunction in [75] and by
Matthes for second-order natural deduction [70].

These permutative conversions, although being a real improvement on the mere
β-(or βη-)conversions seem to be in some cases too weak (why taking permutative
conversion for sum type when one can have extensional equality?) or maybe too
strong (in case of inductive types).

Another possibility, inspired by category theory, is to design the conversion re-
lation in order to obtain certain properties to be decidable, for example classes of
isomorphisms, see Barthes and Pons [15], or Chemouil [23].
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The λ-calculi with the reductions we propose to add are an instance of higher-
order rewrite systems whose general theory is therefore relevant for us. Significant
results for extending typed λ-calculus by higher order rewrite systems have been
obtained by Blanqui using the General Schema [21], and Walukiewicz-Chrz ↪aszcz
[92] using a higher order version of the recursive path ordering. Nonetheless, the
conversions (oriented as rewrite rules) we will discuss for inductive type are not
captured by these two frameworks.

The work of Matthes [68] extends system F to allow primitive recursion on
monotone inductive types, by replacing the syntactical strict positivity condition by
a monotonicity witness obligation packed into the inductive definition. Abel, Uustalu
and Matthes then extend iteration to nested inductive types in [1]. Although not
considered, adding conversions to such systems would be the natural continuation
of these works.

Related Work

Disregarding the question of decidability, there is a too large field of study devoted
to equality of functional programs to be able to give an exhaustive account. Maybe
an influential paper is the one of Backus [8], where some equational laws are stated
for an algebra of programs. It was further developed by Bird [20] and Meertens
[71], who developed a computational approach, for program transformation, now
known as the Bird-Meertens formalism. Malcolm developing the work of Hagino [49]
generalises the result of Bird and Meertens for arbitrary datatypes by categorical
considerations [64]. The recent developments and applications of transformational
method abound ; Wadler, for example, presents certain proofs of equality as a result
of the abstraction theorem of Reynolds [91].

Overview

An equality is decidable when one has an algorithm to decide it. This statement
of the obvious leads us not only to study proofs of decidability but to study the
deciding algorithms as well. We focus essentially on normalization algorithms. The
principle is to first select a set of normal forms for which we have a decidable equality
(syntactical equality for example) and to design an algorithm which map every terms
to a convertible normal form.

The traditional way of normalizing a term system is to consider a conversion
relation as generated by a rewrite system and to take as normal forms the irreducible
terms: normalization then boils down to reduction.

Algorithms following these reduction strategy for normalization, also called reduction-
based algorithms, are however not the only possibility, we will see in particular ex-
amples of a class of reduction-free algorithm, called normalization by evaluation.
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The principle is to evaluate the interpretation of the term we want to normalize in
a suitable model or language, and to define a function which gives back a normal
form from a value.

After some preliminaries in the first chapter, the second chapter describes the
normalization by evaluation algorithm for the simplest typed system, the simply
typed calculus. While normalization by evaluation for the simply typed λ-calculus
is well known, special care is taken here to handle variables properly but still in an
intuitive way.

The third chapter is concerned with the study of the simplest system, admit-
ting additional conversions, the ΛJ -calculus, which generalises the λ-calculus with a
notion of double substitution.

Even for simple type systems where extensional equality is decidable such as
the simply typed λ-calculus enriched by sum type, the algorithms to decide the
equality are quite intricate. The fourth chapter presents a simple algorithm to decide
conversion of a calculus with strong sums. The algorithm in these three chapters
have all been implemented in the functional programming language Haskell.

The fifth chapter studies some possible conversion relations for inductive types.
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Chapter 1

Preliminaries

1.1 Notations

We introduce here notations used throughout this thesis.

Notation 1 (binder). The use a dot to separate a binder of a variable from its scope
means that the scope has to be extended as much as it is syntactically possible to the
left. For example in λx.rs, x is bound in r and s.

Notation 2 (set-theoretic notations). We will write A + B for the disjoint union
of the sets A and B, the injection of an element a ∈ A (resp. b ∈ B) into A + B
will be written ιA a (resp. ιB b).

The function space between the sets A and B will be written A → B. To dis-
tinguish with the λ-abstraction of syntactic term which is just written with a single
lambda λ, the abstraction at the semantic level (in the pseudo-programming language
used to describe the algorithms) is written with a bold lambda �. The function ap-
plication of a function f to an element a will sometimes be written as a syntactic
application, i.e., we will use the notation fa, instead of the more traditional notation
f(a).

The cartesian product of the sets A and B is written A×B.

Moreover we allow pattern matching in semantic abstraction. For example if
we are abstracting over a cartesian product, we will write: �(v1, v2).p instead of
writing �v.p and using projections in the body p of the algorithm. Similarly, if we
are abstracting over the element of a one element set {⊥}, we will write �⊥.p.

Notation 3 (list of syntactic expressions). We will use the appropriate vector no-
tation −→e = e1, . . . , en for finite lists of syntactic expressions. The empty list will be
written ε. Within more complex type and term expressions it is to be unfolded as
follows:
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types

(ρ,−→ρ )→ σ ::= ρ→ −→ρ → σ

ε→ σ ::= σ

abstractions

λ(x,−→x ).r ::= λx.λ−→x .r
λε.r ::= r

applications

r(s,−→s ) ::= (rs)−→s
rε ::= r

composition

rσ→τ ◦ s
−→ρ→σ ::= λ

−→
xρ.r(s−→x )

1.2 Monads

We will describe algorithms which depend in an essential way on the order of eval-
uation. The use of monads allows to both fix the order of evaluation and provide
atomic operations to structure these algorithms in a pure functional setting. An-
other advantage is that they have a direct mathematical meaning, and avoid to rely
on a particular programming language. We present here the monads we will use in
a set-theoretic version.

There exists several equivalent definition of monads (see [65]), we give here a
definition convenient to describe computations.

Definition 1.1 (Monad). A monad M is a triple 〈M, ν, ?〉 where M maps every
set A to a set MA, ν is a family of functions νA : A → MA, and ? is a family
of functions ?A,B : MA × (A → MB) → MB (application of ? is written in infix
notation), such that:

νA(a) ?A,B f = fa (beta)

m ?A,A νA = m (eta)

(m ?A,B f) ?B,C g = m ?A,C (�a.f(a) ?B,C g) (assoc)

The family of functions ν is called the unit of the monad, and the family of functions
? is called the multiplication of the monad.
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Notation 4. We will in the following omit to write the indices of the family ? and
ν .

Example 1 (Identity Monad). The triple 〈I, id, ; 〉 where I maps every set A to itself
IA = A, id is the identity function, and ; is defined by a; f = f(a) is a monad and
is called the identity monad.

To express our algorithms we will need two kind of monads ; a state reader
monad, and an exception monad. The state reader monad will be used to express
computations sharing a same environment.

Definition 1.2 (State reader Monad). Given a set E, a state reader monad is a
set operator StE(−) defined by:

StE(A) ::= E → A

together with the family of functions ν : A → StE(A) and ? : StE(A) × (A →
St(B))→ StE(B) defined by:

ν(a)(e) ::= a

(m ? f)(e) ::= f(m(e))e

One checks easily (one needs functional extensionality) that for a given set E, M is
a monad in the sense of definition 1.1.

Remark 1. The state monad STE = E → A×E is a more general monad. We do
not need here the full generality of the state monad because our computations will
not need to modify the environment (so that the computation does not need to return
the environment e ∈ E in addition to a value a ∈ A, but merely a value in A).

The exception monad is used to express computations which may fail. In this
case, special values are returned which detail the cause of the failure.

Definition 1.3 (Exception Monad). Given a set E, an exception monad is a set
operator −⊥(E) defined by:

A⊥(E) ::= E + A

where E +A is the disjoint union of E and A. together with the family of functions
ν : A→ A⊥(E) and ? : A⊥(E) × (A→ B⊥(E))→ B⊥(E) defined by:

ν(a) ::= ιA a

ιA a ? f ::= f(a)

ιE e ? f ::= ιE e

where ιA (resp. ιE) is the canonical injection from A (resp. E) in E + A.
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In the definition above the value e ∈ E stands for the exceptional value and the
value a ∈ A as the normal value (as a mnemonic, the right value is on the right
side).

When the set E involved in the definition of the exception monad above is a one
element set {∗}, there is no information associated with the exception, we will just
write A⊥ for A⊥({∗}). This monad is called the partiality monad.

The two basic operations associated to handle exception are throwing an ex-
ception and catching/handling an exception. For commodity we give the definition
here:

Definition 1.4 (throw and catch). The functions throw : E → A⊥(E) and catch :
A⊥(E) → (E → A⊥(E)) → A⊥(E) associated with an exception monad −⊥(E) are
defined as follows:

throw e ::= ιE e

catch mh ::=

{
m if m = ιA a

he if m = ιE e

for m ∈ A⊥(E), and h ∈ E → A⊥(E).

Apart of the following chapter (2) where we use only one state reader monad, we
will use mostly a combinations of the monads above. Although combining monads
does not present any difficulty in simple cases, there is no canonical way to combine
two monads into a new one (Some authors propose abstract methods [57; 56; 46], but
these are ineluctably partial solutions). We will refrain to describe here the (simple)
combinations we use, and postpone the definitions to the concerned chapters.



Chapter 2

Simply Typed λ-Calculus

In this chapter we handle the simply typed calculus and devise a normalization by
evaluation algorithm for it.

This system is certainly the simplest, the most studied and the best-known of
the typed λ-calculi. This will give us the opportunity to explain informally the
algorithm. Then, the notion of freshness for variables is formalised via monads
and from these considerations, a rigorous and original treatment follows in the last
section.

2.1 System

Definition 2.1 (types). Given a ground type o, the set of types Ty of the simply
typed λ-calculus is defined inductively by:

Ty 3 ρ, σ ::= o | ρ→ σ

We will work throughout this thesis with typed λ-calculi à la Church, i.e., we
require a binder to assign a type to the variable it binds. While our algorithms
extend without difficulty to λ-calculi à la Curry (i.e., binders do not assign type
to variable), proofs are generally simpler in typed λ-calculi à la Church ; another
advantage to work with λ-calculi à la Church is their direct relationship to natural
deduction by the so-called Curry-Howard isomorphism (see the logical motivation
section of the introduction, p.4).

Definition 2.2 (terms). Given a countable infinite set of term variables Var, the
set of terms Tm of the simply typed λ-calculus is defined inductively by:

Tm 3 r, s ::= x | λxρ.r | rs

where x is a variable (x ∈ Var), and ρ is a type (ρ ∈ Ty).
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A term r, can contain a same subterm s at different places, in this cases we will
speak about the different occurrences of the subterm s in r. An occurrence of a
variable x is free in a term r if it does not appear in a subterm of r of the form
λxρ.t, otherwise the occurrence of x is said to be bound (it is bound by the binder
λ of the smallest subterm λxρ.t containing x). A variable x is said to be free in a
term r, if there is free occurrence of x in r.

Notation 5. For readability, we will sometimes omit to write the type of the bound
variable (i.e., we will write λx.t instead of λxρ.t) if it is clear from the context or
irrelevant.

A term is closed if the set of its free variables is empty. The set of free variables
of a term can be simply computed:

Definition 2.3 (Set of free variables of a term). We define the set of free variables
FV(r) of a term r inductively as follows:

FV(x) ::= x

FV(λx.r) ::= FV(r) \ {x}
FV(rs) ::= FV(r) ∪ FV(s)

Typing contexts associate types to variables, they will be used in the definition
of typing below to associate a type to each free variable of a term,

Definition 2.4 (typing context). We define a typing context as a finite set of
pairs (x : ρ) of a variable and a type such that for two pairs (x : ρ) and (y : σ) in a
same typing context, x 6= y.

The typing relation associates types to terms, under the precondition that free
variables in the term have already been assigned some types.

Definition 2.5 (typing). The typing relation is a ternary relation between contexts,
terms and types and is defined inductively by

(x : ρ) ∈ Γ

Γ`x : ρ
(Var)

Γ, x : ρ` r : σ

Γ`λxρ.r : ρ→ σ
(→I)

Γ` r : ρ→ σ Γ` s : ρ

Γ` rs : σ
(→E)

Notation 6. We will write Tmρ
Γ for the set of terms r typable with type ρ in context

Gamma (i.e., Γ` r : ρ) and Tmρ for the set of terms r of type ρ such that there
exists a context Γ with r ∈ Tmρ

Γ.

Before giving the theory, i.e., the conversions of the simply typed λ-calculus, we
need to define substitution. To avoid a phenomena known as capture of variable (a
free variable in a term become bound when the term is substituted), this substitution
has to be done modulo renaming of bound variables. In a first step we define a
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contextual substitution which does not avoid capture of variables, this will allow us
to define in a second step both renaming of bound variables (or α-conversion) and
a correct notion of substitution.

Definition 2.6 (contextual substitution). Given a list of distinct variables −→x =
x1, . . . , xn and of terms −→r = r1, . . . , rn of same length, the effect of the contextual
substitution [

−→x /−→r ] is defined by induction on Tm as follows:

x[
−→x /−→r ] =

{
ri if x = xi ∧ xi ∈ −→x ,
x otherwise

(λx.r)[
−→x /−→r ] =

{
λx.r[x1,...,xi−1,xi+1,...,xn/r1,...,ri−1,ri+1,...,rn] if x = xi ∧ xi ∈ −→x
λx.r[

−→x /−→r ] otherwise

(rs)[
−→x /−→r ] =(r[

−→x /−→r ])(s[
−→x /−→r ])

In the above definition, a capture of variable can happen in the second clause, if
the bound variable x of the term λx.r occurs free in one of the term rj ∈ −→r being
actually substituted in λx.r, (if x ∈ FV(rj) and xj ∈ FV(λx.r) for rj ∈ −→r ).

In the following we will define conversions on λ-terms expressed as axioms. These
conversions are the smallest congruence relations containing these axioms. A congru-
ence relation is an equivalence relation which is contextually closed (terms differing
by convertible subterms will be convertible). We make this notion precise with the
following definition.

Definition 2.7 (Contextual closure and equivalence). A relation =R is contextually
closed if the following rules hold

Structural rules:

r =R s

rt =R st
(R-AppL)

r =R s

tr =R ts
(R-AppR)

r =R s

λx.r =R λx.s
(R-ξ)

The α-conversion expresses that the choice of the precise names of formal pa-
rameters of a function has no influence on the actual meaning or behaviour of this
function.

Definition 2.8 (α-conversion). The axiom of α-conversion is given by

λx.r =α λy.r[x/y] y 6∈ FV(r) (α)

We can now define a capture avoiding substitution.
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Definition 2.9 (correct substitution). Given a list of distinct variables −→x =
x1, . . . , xn and of terms −→s = s1, . . . , sn of same length, the effect of the correct
substitution {−→x /−→s } is defined as follows:

r{−→x /−→s } = r′[
−→x /−→s ]

where r =α r
′ and if a variable y occurs free in si, then no occurrence of xi appears

within a subterm of r′ of the form λy.t.

The correct substitution is thus a well-defined function only if λ-terms are considered
up to α-conversion.

Remark 2. A well established practice in the literature is to just ignore the difference
between terms and terms modulo α-conversion and not introduce new notations to
distinguish these two classes. It is safe in general, because most notions, properties or
definitions are equivalently defined on a particular term or on a class of terms modulo
α-conversion (as typing), or make only sense modulo α-conversion (as substitution).
We will follow this practice here because it improves readability and the main concern
of this work is the decidability of conversion and not the renaming of bound variables.
However, we will study algorithms which produce genuine syntactic terms, not class
of terms, and will underline abuses of notations where the difference is sensitive.

The theory =βη of the simply typed λ-calculus Λ is defined as the union of the
conversion =β and =η below. These conversions are understood between terms,
typable with the same type in a same context.

Notation 7. We will write Γ` r =R s : ρ, if the terms r and s are R-convertible
and typable in the context Γ with type ρ and just r =R s if the context Γ and the
type ρ are already clear from the context or if their mentions is irrelevant.

The computational part of the conversion is given by the β-conversion.

Definition 2.10 (β-conversion). The axiom of β-conversion is given by

(λx.r)s =β r{x/s} (β)

The axiom of η-conversion is the axiom of extensionality for the simply typed
λ-calculus.

Definition 2.11 (η-conversion). The axiom of η-conversion is given by

r =η λx.rx (x 6∈ FV(r)) (η)

Because the definition of β-conversion uses substitution, the β and βη conversion
are only defined on classes of terms convertible by α-conversion. These conversions
are extended to terms by stating that terms in convertible classes are convertible.
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2.2 Normalization by Evaluation

2.2.1 Informal Description

Given a term language Tm, i.e., a term algebra generated from variables and (pos-
sibly binding) symbols, with an equality or conversion relation =E between terms,
generated by contextual closure from a set of equations E, normal forms are con-
sidered in an abstract way as representatives of each equivalence class modulo =E

with certain desirable property.
Because here we are interested in the decidability of the conversion relation, this

property will be the decidability of conversion between terms considered as normal
forms.

Focusing on a normalization function rather than on normal forms, an abstract
definition of normalization function could be formulated as follows

Definition 2.12 (Normalization Function). Given a decidable equality ≡⊆=E a
normalization function is a function nf : Tm→ Tm with the following property:

r =E nf(r),
r =E s⇔ nf(r) ≡ nf(s).

If the function nf terminates then it provides a decision algorithm of the conver-
sion relation =E, because ≡ is decidable.

Remark that ≡⊆=E trivially implies nf(r) ≡ nf(s) ⇒ r =E s. This allows us
to use a modified formulation of this definition, provided by the following (easy)
lemma:

Lemma 1. Given a decidable equality ≡⊆=E, a function nf : Tm → Tm is a
normalization function if and only if:

r =E nf(r), (i)

r =E s⇒ nf(r) ≡ nf(s). (ii)

The essential idea of Normalization by Evaluation is to define a semantics of our
language Tm containing enough information to be able to extract a term nf(r) from
the interpretation of a term r, such that nf is a normalization function.

For this, one needs a function ↓, called reify, from the semantics to the term
language.

For the ↓ function to be able to produce terms, the semantics should already
contain some piece of syntax; this is called a residualizing semantics.

In this introductory section, we expose informally the Normalization by Evalu-
ation algorithm for the simply typed λ-calculus with βη-equality. It has been first
designed by Ulrich Berger and Helmut Schwichtenberg [19].

The semantics is given by the standard set-theoretic interpretation with the
ground type interpreted as the set of terms of ground type.



20 2. Simply Typed λ-Calculus

Definition 2.13 (Type Interpretation). We define the interpretation JρK of a type
ρ, by induction on ρ ∈ Ty:

JoK ::= Tmo

Jρ→ σK ::= JρK → JσK

where Tmo is the set of all (closed and open) terms of ground type o, and JρK → JσK
is the full function space between the set JρK and JσK.

The interpretation of types JTyK of the simply typed lambda calculus Λ is then:

JTyK =
⋃
ρ∈Ty

JρK

To define the interpretation of terms we need first to define the auxiliary notion
of valuation.

Definition 2.14 (Valuation). Given a context Γ, we define a valuation on Γ
(η � Γ) to be a partial function η : Var → JTyK⊥ such that for x : ρ ∈ Γ, we have
η(x) is defined and η(x) ∈ JρK. Given a context Γ, a valuation η on Γ, a variable
y 6∈ Γ and an element a ∈ JσK, we define a valuation (η, y 7→ a) on Γ ∪ {(y : σ)},
called the extension of η by y 7→ a by,

(η, y 7→ a)(x) ::=

{
a if x = y,

η(x) otherwise.

Remark 3. Valuation functions are partial functions represented as total functions
from the set of variables Var into the set JTyK⊥ = JTyK +{?}, i.e., the interpretation
of types extended with an element ? playing the rôle of an undefined value. In the
following, whenever we will use a valuation applied to some variable, this variable
will belong to the domain of definition of the valuation and the result will therefore
be defined. And although, strictly speaking we should do a case distinction on the
result to know wheither it is defined (an alternative would be to use an exception
monad as presented in definition 1.3), we will consider it to be an element of JTyK.

After having defined the interpretation of a type as a set, we now define the
interpretation of a term simply as an element of the interpretation of its type:

Definition 2.15 (Term Interpretation). We define the interpretation JrKη of a
term r, whenever there is a context Γ, such that Γ` r : ρ and η is a valuation on Γ,
to be an element of JρK, by the following inductive definition:

JxKη ::= η(x)

Jλxρ.rKη(v) ::= JrKη,x7→v
JrsKη ::= JrKη(JsKη)
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The reify function ↓ from the interpretation of the types JTyK to the term lan-
guage Tm will be defined by simultaneous induction on the types as a function ↓ρ
from the interpretation JρK of a type ρ to the set of terms Tmρ of type ρ together
with a function ↑ρ called reflect1 from Tmρ to JρK.

Definition 2.16 (Reify ↓ and Reflect ↑). The functions ↓ρ: JρK → Tmρ and
↑ρ: Tmρ → JρK are defined by simultaneous induction on ρ ∈ Ty by:

↑o e ::= e
(↑ρ→σ e)(a) ::= ↑σ e(↓ρ a)
↓o e ::= e
↓ρ→σ f ::= λxρ. ↓σ (f(↑ρ x)) (x new)

The function ↓ at arrow type creates a variable x and returns an abstraction
with respect to this variable. Informally, the condition ”x new” ensures that this
abstraction binds only occurrences corresponding to this created variable x. The
mathematical formalisation is somewhat technical and we will deal with it later on.

Remark and notation 1. The interpretations of the types are disjoint, hence the
function ↓: JTyK → Tm defined by ↓=

⋃
ρ∈Ty ↓ρ is well defined.

On the contrary, sets of terms typable by different types are not disjoint (a vari-
able, for example, can be typed with all types). Hence erasing the type ρ in ↑ρ does
not formally make sense.

However, to improve readability, we will in both cases, sometimes write ↓ and ↑
instead of ↓ρ and ↑ρ when the type ρ is clear from the context .

Notation 8. For a given type ρ, we have ↑ρ x ∈ JρK, hence ↑ can be considered as
a valuation function on any context Γ. We will not introduce a new notation in this
case.

For example for a typed term Γ` r : σ, in JrK↑, ↑ shall denote the valuation
defined on all variables x such that x : ρ ∈ Γ by ↑σ x.

We are now in position to define the normalization function nf.

Definition 2.17 (The nf function). The function nf : Tm→ Tm is defined by:

nf(r) ::=↓ JrK↑

For now, we want to give a justification that nf is indeed a normalization function,
we want to verify (i) r =βη nf(r) and (ii) r =βη s ⇒ nf(r) ≡ nf(s) where ≡⊆ βη is
syntactical equality.

1One find also the names quote and unquote for ↓ and ↑ in the literature.
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Justification of r =βη nf(r)

To justify r =βη nf(r) we will present informally a proof due to Martin Hofmann
[52], which uses a logical relation. The idea is to relate a term r of type τ and a
value a of the interpretation of τ by a logical relation Rτ ⊆ Tmτ × JτK, such that

x Rτ ↑ x
r Rτ a⇒ r =βη↓ a

Because R is a logical relation (logical relations are presented in more detail in
the next section), the so-called basic lemma holds:

Lemma 2 (Basic Lemma). Given a term r typed by Γ` r : ρ with free variables
−→x : −→σ ∈ Γ, we have:

∀−→s R
−→σ −→b ⇒ r−→x [−→s ] R JrK−→x 7→−→b

In particular for
−→
b =

−→
↑ x, we get the desired result: r =↓ JrK↑.

In more detail, the logical relation R can be defined by

Definition 2.18 (Logical Relation R). We define a logical relation R =
⋃
Rρ

with Rρ ⊆ Tmρ × JρK defined by induction on the type ρ by:

r Ro a ::= r =βη a
r Rρ→σ a ::= ∀ s Rρ b, rs Rσ ab

Lemma 3. The following implications hold:

r Rτ a⇒ r =βη↓ a (1)

r =βη s⇒ r Rτ ↑ s (2)

Proof. By induction on the type τ

• Case ι, obvious

• Case ρ→ σ (1),
We want to show r =βη↓ρ→σ a
By definition:

↓ρ→σ a = λxρ. ↓ a ↑ x (x new)

By induction hypothesis of (2) on ρ, x Rρ ↑ x, so by definition of r Rρ→σ a,
we have rx Rσ a ↑ x and by induction hypothesis of (1) on σ, rx =βη↓ a ↑ x.
Finally r =βη λx

ρ.rx = λx. ↓ a ↑ x =↓ a.
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• case ρ→ σ (2),
Given t Rρ a we want to show rt Rσ (↑ρ→σ s)(a)
By definition:

(↑ρ→σ s)(a) =↑σ (s ↓ρ a)

Now by induction hypothesis of (1) on ρ, t =βη↓ρ a, so rt =βη s ↓ a, and by
induction hypothesis of (2) on σ, rt Rσ ↑σ s ↓ a.

Justification of r =βη s⇒ nf(r) ≡ nf(s)

To justify r =βη s ⇒ nf(r) ≡ nf(s) with ≡⊆ βη, the traditional argument uses the
soundness of the interpretation with respect to the equality =βη, i.e., that for a given
valuation function η (on a context typing r and s):

r =βη s⇒ JrKη = JsKη

As ↓ is a function from the interpretation to the term language, it follows that ↓
(JrKη) ≡↓ (JsKη) where ≡ is the syntactical equality, which is decidable and contained
in the conversion relation =βη. By taking the valuation η to be ↑, we obtain the
result:

r =βη s⇒↓ (JrK↑) ≡↓ (JsK↑)

However, if the interpretation is not a model of our term language in the sense
that two βη-equal terms are not interpreted by the same element, this argument
does not apply directly and needs to be adapted.

It will be in particular the case of our interpretation when dealing with the new
variable problem.

Remark 4. The normalization by evaluation algorithm is often referred to be reduc-
tion free because, as in the argument above one can avoid any reference to rewriting
theory.

However, for the function nf to be terminating one need the evaluation of the
interpretation itself to terminate.

More generally, one can see normalization by evaluation as a way to focus on
the study of the rewriting theory of the interpretation of a language instead of the
rewriting theory of the language itself. The work of Klaus Aehlig and Felix Joachim-
ski (see [2]) use a two-level lambda calculus, where the interpretation itself is a
syntactic lambda calculus, and this allows them to carry out a fine-grained rewriting
analysis of the rewriting involved in the NbE algorithm.
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2.2.2 Normal Forms

As we are only interested in the correctness of our algorithm this introduction could
end here but there is another interesting question, namely:

How does the terms produced by the NbE algorithm look like?
Let us call NF (for set of normal form) the subset of terms which are results of

the function nf. Hence nf is a function from Tm to NF. Because nf(r) is defined as
↓ (JrK↑), the function ↓ applied to a value JrK↑ should only produce terms in NF.

Then by analysing the algorithm we can as well restrict the domain of ↑. We
note that in the first step of the evaluation of nf, we apply ↑ only to variables, then
if the variable is of arrow type, we apply ↑ to an application of a variable to a term
resulting from ↓, i.e., a normal form N ∈ NF. It is easy to see that in fact the
domain of ↑ is a set of neutral term Ne given by

Ne 3 n ::= x | nN

where N ∈ NF is a normal form.
Let us write NFρ (resp. Neρ) the set of normal terms (resp. neutral terms)

typable with type ρ. The function ↓ at base type is the identity, and at arrow type
involves the term abstraction over a recursively obtained result of ↓, i.e., a term in
NF, and it is easy to see that NFτ , the set of normal forms of type τ , verifies:

r ∈ NFτ ⇔

{
r ∈JoK , if τ = o

r = λx.s ∧ s ∈ NFσ, if τ = ρ→ σ

Now we want to restrict the interpretation. As the function ↑ is the identity at
base type, the interpretation at base type JoK should at least contain the domain of
↑, i.e., neutral terms of base type Neo. It is in fact sufficient to take:

JoK = Neo

To summarise we have informally shown that the set NF of normal forms given
by the NbE algorithm is inductively defined by:

Definition 2.19 (Λ-normal form).

(x : ρ) ∈ Γ

Γ`Ne x : ρ

Γ`Ne n : ρ→ σ Γ`NFN : ρ

Γ`Ne nN : σ

Γ`Ne n : o

Γ`NF n : o

Γ, x : ρ`NFN : σ

Γ`NF λx.N : σ

A more precise specification for the function ↑, ↓ and nf can now be given with
the following domain and codomain:

↑ρ: Neρ → JoK
↓ρ: JoK → NFρ

nf : Tm→ NF



2.2 Normalization by Evaluation 25

The normal forms in NF are known under the name of long normal forms. These
normal forms are obtained as the irreducible terms if one orients the conversions as
reductions as follows,

(λx.r)s −→β r{x/s}
r −→η λx.rx (x 6∈ FV(r))

with the further requirement that in the η-reduction the term r is not an abstraction
and is not in applicative position.

This definition of long normal forms first appeared in the works of Gerard Huet
[54].

This agreement of normal forms obtained by reductions and by the NbE algo-
rithm is indeed no accidental cöıncidence. In [17], Ulrich Berger extracts a nor-
malization algorithm from a reduction based normalization proof; the extracted
algorithm is the NbE algorithm presented above. This extraction has been recently
formalized in different proof assistant (Coq, Isabelle, minlog), the interested reader
can consult [18]. In [30] and [31], Thierry Coquand and Peter Dybjer show that
the proof of correctness of their NbE normalization function is in fact an optimized
version of a standard proof of normalization of intuitionistic type theory.

2.2.3 Name Generation Environment

Let us return to the problem of the ”new” variable.
It appears in the evaluation of nf(r) =↓ JrK↑, in each recursive call of ↓ at arrow

type:

↓ρ→σ f = λx. ↓σ f(↑ρ x) x new

The term ↓σ f(↑ρ x) can contain free variables which are either free variables of r
or which have been created by other recursive calls of ↓. The side condition ”x new”
means that x should be different from these variables.

These two situations are exposed in the example below:

Example 2. A newly created variable should be different from one occurring free in
r. Let r be the term y with the typing y : o→ o` y : o→ o

nf(r) =↓ JyK↑
=↓ (↑o→o y)

= λx. ↓o (↑o→o y)(↑o x) x new

= λx. ↓o (↑o→o y)(x) x new

= λx.(↑o→o y)(x)

= λx. ↑o y ↓o x
= λx. ↑o yx
= λx.yx
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A newly created variable should be different from already created variables. Let r be
the term λy.y with the typing `λy.y : (o→ o)→ o→ o

nf(r) =↓ Jλy.yK↑
= λx. ↓o→o (Jλy.yK↑(↑o→o x)) x new

= λx. ↓o→o (↑o→o x)

= λx.λy. ↓o ((↑o→o x) ↑o y) y new

= λx.λy.(↑o→o x)y

= λx.λy. ↑o x(↓o y)

= λx.λy.xy

Said informally, in the expression

λx. ↓σ f(↑ρ x) x new

the function f already ”contains” the necessary information (i.e., the variables al-
ready used) to compute the new variable x. However f is a function, and to extract
this information, one has to apply f to an argument, but we are precisely looking
for an appropriate argument of f .

To solve this dilemma, a possible solution is to record along the evaluation of
↓ JrK↑ which variables have been used (those free in r and those already created by
a call of ↓ at arrow type).

In fact, all we need to create new variables, is to have at hand a set of variables,
which does not contain the already used variables. Hence, we do not even need to
record all the used variables, but merely a set of unused ones. This weaker solution
can read informally as follows:

• We begin the evaluation of ↓ JrK↑ with a denumerable set e = er of variables
not containing those free in r,

• when evaluating ↓ at arrow type, we first pick a new variable x from e, and
continue the computation with the set e \ {x}.

We can see in this informal exposition that the set e acts exactly like an envi-
ronment. The computation for the function ↓ at arrow type needs to read a value, a
fresh variable x, from e and run some subcomputations in an updated environment
ex (without this fresh variable).

After this informal description it is now time to give a formal specification:
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Definition 2.20 (Name Generation Environment). We define a set of name gen-
eration environment or set of environment for short, as a set E together with an
update function (−)− : E → Var→ E and an access function new : E → Var.

The extension of the update function e− : V → E to a function from a list of
variables e : L(V )→ E is defined in a canonical way by

ex,
−→x ::= (ex)

−→x

eε ::= e.

The function (−)− and new have moreover to satisfy the following property for
all e ∈ E:

∀−→x , x 6= new(ex,
−→x ) (†)

An environment e ∈ E is meant to be a denumerable set of variables, the update
function −x applied to an environment e is meant to remove a variable x from e,
and new(e) to pick a variable from e.

An explanation for the condition (†) is given after having introduced the following
notation.

Notation 9. The condition that the new function applied to an environment e ∈ E
should never return a given variable x can be expressed by:

∀−→x , x 6= new(e
−→x )

We will abbreviate this condition by x 6∈ e. In the same way we will abbreviate for
a given set of variable X, ∀x ∈ X, x 6∈ e by X 6∈ e.

With this notation, the condition (†) reads:

x 6∈ ex

This means that once a variable x has been removed from an environment e with
the function (−)−, x can not be picked out anymore.

Returning to the NbE algorithm, the initialisation step for a term r consists in
finding an environment er such that the new function will never give back a variable
among those free in r.

∀x ∈ FV(r), x 6∈ er

In fact for an arbitrary given e, eFV(r) does the job.

Example 3. This name generation environment has been implemented by Ulrich
Berger in [17] with indexed variables, i.e., of the form xk where k ∈ N, and is
essentially as follows.
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The set of environment E is taken to be N, and a natural number k is a code
for the sequence xk, xk+1, . . .. The initialisation part consists to look for the higher
index k of the variables of the form xk occurring in r. Because for all k′ > k + 1,
xk′ is not free in r, kr = k + 1 is a code for a sequence of fresh variables for r and
we only need to propagate a natural number instead of a set of variables.

The implementation is

kxj ::= max(k, j + 1)

new(k) ::= xk

kr ::= 0(FV(r))

In particular, the use of indexed variables by Berger corresponds to de Bruijn levels
where an index of a variable corresponds to the number of lambda abstraction in the
syntax tree of the term, from the occurrence of this variable to the root of the tree.

Remark 5. In an impure functional programming language, the concept of environ-
ment, sequence of instructions and assignment are primitive. The implementation
is then easy, it suffices to define such an e in the global environment and update it
with an assignment instruction e := ex, which will update the environment before
further computations.

However this would take us a step further away from a mathematical formalisa-
tion. It is why we prefer to stick to a pure functional programming language setting,
where the primitive notion of function has a direct counterpart in a mathematical
setting. We will then implement impure functional concept such as environments (in
the formalization section of chapter 2, 3 and 4) or exceptions (in the formalization
section of chapter 3 and 4) within our functional settings with the help of monads.

Rest now to redesign the NbE algorithm to propagate in an adequate way this
environment e through the computation.

2.3 Formalization

2.3.1 Name Generation Interpretation

We will be guided by the fact that this notion of computation in environment is
naturally captured by a state reader monad.

The basic idea is that if a computation which produces a value in some set A
needs to access an environment then we will have to pass this environment as a
supplementary argument to the function corresponding to this computation, hence
one can replace these set A in the specification of the function by a function space
StE(A) = E → A from the set of environments E to A. The set A has been replaced
by the state reader monad StE over A.
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In particular, in the computation of the function ↓τ , an environment e should be
available in order to be able to pick a fresh variable x from it. The specification of
↓τ hence becomes

JτK → StE(NFτ ) = JτK → E → NFτ .

Notice also that the specification of the operation new : E → Var now reads:

new : StE(Var)

The update operation (−)− : E → Var→ E for a name generation environment
E extends to an update function on elements of the monad StE(A).

Definition 2.21 (update for the Name Generation Monad). We define an up-
date function (−)− : StE(A) → Var → StE(A) operation by extending the update
operation for the name generation monad by:

mv(e) ::= m(ev)

A First Try

To define correctly the function ↓ρ→σ we have to first take a fresh variable from the
environment and then pass an updated environment to the subcomputation in the
body of the function.

Maybe the first solution coming to mind is to define the function ↓ρ→σ as follows:

↓ρ→σ f = �e.(�v.λv(↓ f ↑ v)ev)(new(e))

or in monadic notation

↓ρ→σ f = new ? �v.(↓ f ↑ v)v ? �r.ν(λv.r)

There is still a problem with this definition: the function ↑τ has here the same
specification as before, i.e., Tm → JτK, and at arrow type a computation of ↑ρ→σ
contains a subcomputation of ↓ρ, which require an argument e ∈ E, but we do
not have this argument at this point. What would be the second argument of the
function ↓ρ in this case?

↑ρ→σ r(a) =↑σ r(↓ρ (a)??)

An arbitrary environment e ∈ E does not fit because we do still need to know which
are the variables used in a. One could then think of simply adding an environment
as argument to the function ↑. Alas, this simple solution alone does not work; this
notion of environment for names has to be incorporated into the interpretation.
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Modifying the Interpretation

By analogy with programming we can think of the application of a monad to a set as
the interpretation of a type together with computational content. We will develop
two different ways to integrate such a computational type into the interpretation of
the simply typed λ-calculus, differing in the intended strategy of evaluation of the
interpreted terms.

Following the work of Nick Benton, John Hughes and Eugenio Moggi in [16], we
will call our first modified interpretation the Algol interpretation and the second the
call-by-value interpretation.

The idea to use a monadic interpretation in conjunction with NbE is due to
the works of Andrzej Filinski and Peter Dybjer, [40] and [43]. There, they show
that, in calculi possibly extended with constants, NbE actually provides normaliza-
tion functions for different evaluation strategies, the normalization is proved correct
and complete with respect to an equivalence defined via the interpretation (what
is called Algol interpretation here is called call-by-name interpretation there). Here
we are concerned with βη-conversions, and these evaluation strategies does not in
general correspond exactly with βη-conversions. As we will see, in the case of the
Algol interpretation the NbE algorithm provides already a normalization function
with respect to βη-conversions. But it is even true in the case of the call-by-value
interpretation, it is a somewhat surprising result because, in this case, the interpre-
tation is unsound for βη-conversions (two βη-convertible terms may have a different
interpretation) and the last sections of this chapter are devoted to prove this.

In the following definitions of interpretations, a valuation on a context Γ is defined
as before as a partial function from the set of variables to the interpretation of types,
such that a typed variable x : ρ in Γ is mapped to an element of the interpretation
JρK of the type ρ. As remarked in section (2.2.2), one only needs neutral terms of
ground type in the interpretations of ground type.

One can allow computational effects only at base type as in the programming
language idealised Algol (see [80] or [81]). For us it will mean that the monad only
appear in the interpretation of ground type:
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Definition 2.22 (Algol interpretation). The Algol interpretation JKalg is given on
the type by

JoKalg ::= StE(Neo)

Jρ→ σKalg ::= JρKalg → JσKalg

Given a valuation η on Γ, a typed term Γ ` r : ρ is interpreted as an element of
JρKalg by

JxKalgη ::= η(x)

JrsKalgη ::= JrKalgη JsKalgη
Jλx.rKalgη ::= �a.JrKalgη,x7→a

One can think of the interpretation of a λ-term as a program in a call-by-value
setting. In this case, a program takes a value as argument and produces a computa-
tion (the monad appears in the codomain of the interpretation of function spaces).
Hence the interpretation is:

Definition 2.23 (call-by-value interpretation). The call-by-value interpretation
JKval is defined on the types by

JoKval ::= Neo

Jρ→ σKval ::= JρKval → StE(JσKval)

Given a valuation η on Γ, a typed term Γ ` r : ρ is interpreted as an element of
StE(JρKval) by

JxKvalη ::= ν(η(x))

Jλx.rKvalη ::= ν(�a.JrKvalη,x7→a)

JrsKvalη ::= JrKvalη ? �f.JsKvalη ? �a.fa

We present the call-by-name interpretation although we will not further analyse
it. In a call by name setting a program is expected to take as argument a computa-
tion and to produce another computation (the monad appears both in the domain
and codomain of the interpretation of function spaces), hence this last interpretation
is:
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Definition 2.24 (call-by-name interpretation). The call-by-name interpretation
JKname is defined on type by

JoKname ::= Neo

Jρ→ σKname ::= StE(JρKname)→ StE(JσKname)

Given a valuation η on Γ, a typed term Γ ` r : ρ is interpreted as an element of
StE(JρKname) by

JxKnameη ::= η(x)

Jλx.rKnameη (m) ::= m ? �a.JrKnameη,x7→a

JrsKnameη ::= JrKnameη ? �f.fJsKnameη

Several Solutions

In the work using NbE, for the most part, the usual solution is to chose what we have
called the Algol interpretation. The immediate advantage is that this interpretation
provides a Henkin Model. By well known results (see for example [73]), we know
that this interpretation is sound for the βη-conversion, which means that for an
arbitrary valuation η on Γ, terms r and s βη-convertible, their interpretations are
equal JrKalgη = JsKalgη . Hence the argument exposed in the informal presentation to
prove r =βη s⇒ nf(r) ≡ nf(s) is directly applicable.

Choosing this interpretation, the NbE algorithm reads in a monadic style as
follows:

Code 1 (Algol NbE). The function ↓τ : JτK → StE(NFτ ) and ↑τ : StE(Neτ )→ JτK
are defined simultaneously.

↓o r = r
↓ρ→σ f = new ? �v.(↓ f ↑ ν(v))v ? �t.ν(λv.t)
↑o F = F
↑ρ→σ F (a) = ↑σ (F ? �r. ↓ρ a ? �s.ν(rs))

Code 2. Given an environment er such that FV(r) 6∈ er the normalization function
nf : Tm→ NF is defined by

nf(r) =↓ JrK↑◦νer

However when dealing with sum type, we will need to define the function ↑ at sum
type. But to define the result of ↑ρ0+ρ1 m for m of type M(Tmρ0+ρ1), we need first to
know if the term ”contained” in m corresponds to a left injection, a right injection,
or if we don’t know yet. In this setting, the only possibility to extract a term from
an element m ∈ M(Tmρ0+ρ1) is to apply the function ↑ and this should be done at
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a structurally smaller type, i.e., either at ρ0 or ρ1. But to know whether it is ρ0

or ρ1, we are once again faced to the problem of analysing the term contained in
m ∈M(Tmρ0+ρ1). We didn’t find any natural solution to this problem, which leads
us to the second solution proposal, the call-by-value interpretation.

Remark 6. A refined analysis that monadic values F ∈MTm occurring in the Algol
NbE algorithm are term families which when applied to environments only differ by
their bound variables.

Hence we can extract the fresh variables from such a monadic value F ∈ Tm
by applying it to an arbitrary environment FV(Fe). Now that we know the fresh
variables, we can extract a term from F , by applying it to an environment e′ updated
with these fresh variables: Fe′FV(Fe).

Disregarding that this solution does not seem very natural, we will have to thread
exceptions for the treatment of sum types into the NbE algorithm and this is not
evident with the Algol interpretation.

As already mentioned, the call-by-value interpretation already appeared in the
paper [43] of Andrzej Filinski and [40] with Peter Dybjer. In these papers, they based
the name generation interpretation on a state monad. They are then able to define
an extension of NbE for sum type in the setting of the call-by-value interpretation.
In this sense the works of Andrzej Filinski and Peter Dybjer can be seen as the closest
to ours. The first difference is that they used a state passing monad STEA = E →
E × A whereas we use simply a state reader monad StEA = E → A. At first, this
seems to be a minor difference, but it will simplify the proof of correctness as we
will not have to deal with administrative product types in the interpretation. The
second and more important difference is that they proved correctness of NbE for
terms which have the same call-by-value interpretation. We will prove correctness
for terms which are βη equal.

The main advantage of this interpretation is to simplify the type of the argument
of the reflect function ↑. In the Algol interpretation an argument of ↑τ has type
M(Neτ ), and in the call-by-value interpretation it has the type Neτ . This direct
access to the term argument of the reflect function ↑ will allow us to extend quite
naturally the NbE algorithm to sum type in chapter 4.

The algorithm for the call-by-value interpretation reads:

Code 3 (call-by-value NbE). The function ↓τ : JτKval → StE(Neτ ) and ↑τ : Neτ →
JτKval are defined simultaneously by:

↓o r = ν(r)

↓ρ→σ f = new ? �v.(f ↑ v? ↓)v ? �t.ν(λv.t)

↑o r = r

↑ρ→σ r(a) = (↓ρ a) ? �s.ν(↑σ rs)
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Code 4. Given an environment er such that FV(r) 6∈ er the normalization function
nf is defined by

nf(r) = (JrKval↑ ? ↓)er

A problem of the call-by-value interpretation is that it does not generally provide
a sound interpretation, i.e., we can have r =βη s but JrKvalη 6= JsKvalη for a given
valuation η. It is in particular the case of our set theoretical interpretation with the
state reader monad as shown in the following example:

Example 4 (unsoundness of call-by-value interpretation). Let η be a valuation with
η(z) = f ∈ Jo→ oKval, η(z′) = a ∈ JoKval,

z : o→ o, z′ : o ` (λxy.x)(zz′) =β λy.zz
′ : o→ o

the interpretation of these terms are

J(λxy.x)(zz′)Kvalη = Jλxy.xKvalη ? �g.Jzz′Kvalη ? �a.ga by definition 2.23

= ν(�b.Jλy.xKvalη,x7→b) ? �g.Jzz
′Kvalη ? �a.ga by definition 2.23

= (�g.Jzz′Kvalη ? �a.ga)(�b.Jλy.xKvalη,x7→b) by definition 1.1

= Jzz′Kvalη ? �a.(�b.Jλy.xKvalη,x7→b)a)

= Jzz′Kvalη ? �a.Jλy.xKvalη,x7→a

= (JzKvalval ? (�g.Jz′Kvalη ? �b.gb)) ? �a.Jλy.xKvalη,x7→a by definition 2.23

= (JzKvalval ? (�g.Jz′Kvalη ? �b.gb)) ? �a.�c.JxKvalη,x7→a,y 7→c by definition 2.23

= (ν(f) ? (�g.ν(a) ? �b.gb)) ? �a.ν(�c.ν(a)) by definition 2.23

= (�g.ν(a) ? �b.gb)f) ? �a.ν(�c.ν(a)) by definition 1.1

= (�g.(�b.gb)a)f) ? �a.ν(�c.ν(a)) by definition 1.1

= fa ? �a.ν(�c.ν(a))

Jλy.zz′Kvalη = ν(�c.Jzz′Kvalη )ece′

= ν(�c.fa) see computations above

And for two environments e, e′ ∈ E, such that e 6= e′ and an element c ∈ JoKval, we
have

J(λxy.x)(zz′)Kvalη ece′ = (fa ? �a.ν(�c.ν(a)))ece′

= (�c.ν(fae))ce′ by definition 1.2

= fae by definition 1.2

Jλy.zz′Kvalη ece′ = ν(�c.fa)ece′

= (�c.fa)ce′ by definition 1.2

= fae′
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As soon as E as more than one element, it is obviously possible to find a function
f in Jo→ oKval = Tm→ (E → Tm) such that

fae 6= fae′

For the completeness property, which relied on the soundness of the interpreta-
tion in the informal presentation, we have seen in the example above that the set
theoretical equality is unsuitable. We will have to provide a coarser equality relation
in section 2.3.4 which we will prove to be sound with respect to βη.

In contrast the soundness property does not need much adaptation. We will have
to take into account the name generation monad and adapt the correctness lemma
to this setting in section 2.3.3.

In these two proofs we will make use of the concept of logical relation, a class of
relations which relate the meanings of terms in a structured way. We have already
mentioned this concept in the introduction, the next section is devoted to it and its
extension to our monadic settings.

2.3.2 Monadic logical relation

The work of Andrzej Filinski was again a great source of inspiration. In [42], Kripke
relations are used to show the completeness and correctness of a normalization by
evaluation algorithm in a call-by-name setting. In [41], Filinski defines a monadic
logical relation in a call-by-value setting, notably extended for sum types, to im-
plement rigorously and efficiently effects layered in a functional programming lan-
guage. This monadic logical relation is similar to our definition 2.29 (ours without
sum types). One difference is that we use general typed applicative structures as
we want to handle syntactical applications and not only set-theoretical applications.
Another difference is that in these syntactical application structures we need to con-
sider open terms, and therefore use Kripke applicative structures. An example of
a formalized proof of correctness of an NbE algorithm using a Kripke applicative
structure can be found in the work of Catarina Coquand [28; 29]. The book of
Mitchell [73] is a nice introduction of the concept of Kripke relations that we have
reworked in the context of monadic interpretation.

As already mentioned, a logical relation relates the ”meanings” of terms in a
structured way. Here meaning has to be understood in an extended sense. Logical
relations do not only allow to relate two different values of an interpretation, but as
well to relate a term and a value in the interpretation (so that a term can be seen
as the ”meaning” of itself).

Accordingly, in a first step, we have to capture the similarity shared by the term
and semantical structures. This is the rôle of (typed) applicative structures.
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Definition 2.25 (Typed applicative structure). A typed applicative structure A is
a pair 〈{Aρ}, {Appρ,σ }〉, where {Aρ} is a family of sets Aρ indexed by types ρ ∈ Ty
and {Appρ,σ } is a family of application functions Appρ,σ : Aρ→σ → Aρ → Aσ

indexed by pair of types ρ, σ ∈ Ty. We will write A for
⋃
ρ∈Ty A

ρ

The two following examples show how the term and semantical structures can
be both captured by typed applicative structures.

Example 5 (Set of terms typable in a given context). Given a context Γ, the pair
〈{Aρ}, {Appρ,σ }〉 where Aσ = {r | Γ` r : σ}, and Appρ,σ rs = rs is a typed applica-
tive structure.

Example 6 (Type interpretation). The pair 〈{Aρ}, {Appρ,σ }〉 where {Aρ} = JρK
is the type interpretation as given in definition (2.22) and Appρ,σ fa = f(a) is the
set-theoretic function application, is an applicative structure.

An applicative structure can be seen as a special case of typed applicative struc-
tures where the indexed family of sets {Aρ} has been shrunk down to one unique
set.

Example 7 (Untyped λ-calculus). The pair 〈{Aρ}, {Appρ,σ }〉 where Aσ = Tm, and
Appρ,σ rs = rs is a typed applicative structure.

One can define a generalisation of applicative structure to monads by requiring
that the application operator has a monadic result.

Definition 2.26 (Monadic applicative structure). A monadic applicative struc-
ture over a monad M is a tuple 〈{Aρ}, {MAppρ,σ }〉 where {Aρ} is a family of sets
Aρ indexed by types ρ ∈ Ty and {MAppρ,σ } is a family of application functions
MAppρ,σ : Aρ→σ → Aρ →MAσ indexed by pair of types ρ, σ ∈ Ty.

Remark 7. Monadic applicative structures are a generalisation of typed applicative
structures, as a typed applicative structure is just a monadic applicative relation over
the identity monad.

Notation 10. We will write a·ρ,σb (or a·b when the types are clear from the context)
for MAppρ,σ a b.

Example 8 (call-by-value type interpretation). The pair 〈{Aρ}, {·ρ,σ}〉 where {Aρ} =
JρKval is the call-by-value interpretation of types as given in definition (2.23) and
·ρ,σfa = f(a) is the set-theoretic function application, is a monadic applicative struc-
ture.

Just like for interpretation we need to define the auxiliary notion of valuation to
define the meaning of terms in an applicative structures.
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Definition 2.27 (Valuation). A valuation η in an applicative structure
〈{Aρ}, {·ρ,σ}〉 is a partial function from Var to A =

⋃
ρ∈Ty A

ρ.
Given a context Γ, a valuation η on Γ, written η � Γ, is a valuation such that

for x : ρ ∈ Γ, η(x) is defined and η(x) ∈ Aρ.
Given a context Γ, a valuation η on Γ, a variable y 6∈ Γ and an element a ∈ Aσ,

we define a valuation (η, y 7→ a) on Γ∪{(y : σ)}, called the extension of η by y 7→ a
by,

(η, y 7→ a)(x) ::=

{
a if x = y, and
η(x) otherwise.

A meaning function is a compatible function from the term structure to the
monadic applicative structure in the following sense.

Definition 2.28 (call-by-value acceptable meaning functions). Given a monad
M and an applicative structure A = 〈{Aρ}, {·ρ,σ}〉, a partial function JKval : Tm ×
(Var ⇁ A) ⇁ MA from terms and valuation to A is an acceptable call-by-value
meaning function in A if

∀Γ, Γ` r : ρ ∧ η � Γ⇒ JrKvalη ∈MAρ

and

JxKvalη = ν(η(x))

JrsKvalη = JrKvalη ? �f.JsKvalη ? �a.f ·a

Terms can be seen as the meaning of themselves because substitution is an ac-
ceptable meaning function in syntactical applicative structure. Substitution is a well
defined function only for classes of terms modulo α-conversions, but this is not a
problem because quotients of syntactic applicative structures by the α-conversion
are again applicative structures.

Example 9 (substitution). In the applicative structure of terms modulo α-conversion
〈Tm/=α

, ·〉, the function JK : Tm × (Var → Tm⊥) → Tm/=α
defined by JrKη =

r{FV(r)/η(FV(r))} is an acceptable meaning function.

We define now a generalisation of logical relation for monadic applicative struc-
tures, as a pair of family relations; one for the normal meaning and one for the
monadic meaning.
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Definition 2.29 (monadic logical relation). Given monadic applicative structures
A = 〈{Aρ}, {·ρ,σ}〉 and B = 〈{Bρ}, {·ρ,σ}〉 over monads MA and MB, a monadic
logical relation is a pair 〈R,S〉, where R and S are family of relations Rτ ⊆ Aτ×Bτ

and Sτ ⊆MAτ ×MBτ indexed by a type τ such that the following property holds:

f Rρ→σ g ⇔ ∀ a Rρ b, f ·a Sσ g·b (2.1)

a R b⇒ ν(a) S ν(b) (unit)

m Sρ m′ ∧ f Rρ→σ f ′ ⇒ m ? �a.f ·a Sσ m′ ? �a.f ′·a (mult)

Notation 11. For two valuations η and δ on a context Γ, η � Γ and δ � Γ, we
will write η R δ if their values are related for all variables in Γ, i.e., ∀ (x, ρ) ∈
Γ, η(x) Rρ δ(x).

Admissibility is a technical requirement to be able to relate meaning of abstrac-
tion terms.

Definition 2.30 (admissibility). Let AJKval in A and BJKval in B be call-by-value
acceptable meaning functions, a monadic logical relation R is admissible for AJKval

and BJKval if given elements −→a and
−→
b of A and B with −→a R

−→
b , the following

property holds:

∀ a Rρ b, AJrKval−→x ,x 7→−→a ,a S
σ BJrKval−→x ,x 7→−→b ,b ⇒ AJλx.rKval−→x 7→−→a S

ρ→σ BJλx.rKval−→x 7→−→b
(adm)

The basic lemma is the fundamental tool provided by the approach with logical
relations. It allows one to relate meaning of terms as soon as the meaning of their
free variables are related. The following lemma is its extension to our monadic
settings.

Lemma 4 (basic lemma). Given monadic applicative structure A and B over mon-
ads MA and MB, call-by-value acceptable meaning function AJKval in A and BJKval
in B, an admissible monadic logical relation 〈R,S〉, and a typed term Γ` r : ρ, with
valuation η and δ on Γ (η � Γ and δ � Γ), the following holds:

η R δ ⇒ AJrKvalη Sρ BJrKvalδ

Proof. By induction on Γ` r : ρ,

case x, by definition of meaning functions AJxKvalη = νA(η(x)) and BJxKvalδ =
νB(δ(x)), by hypothesis, η(x) R δ(x), and by (unit), νA(η(x)) S νB(δ(x)),

case λx.r, by induction hypothesis, we have:

∀ η, x 7→ a R δ, x 7→ b,AJrKvalη,x7→a S BJrKvalδ,x7→b,

and by admissibility (adm) of R, we obtain:

AJλx.rKvalη S BJλx.rKvalδ
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case rs, given η R δ, by induction hypothesis on s, we have:

AJsKvalη Sρ BJsKvalδ ,

by (mult), given f Rρ→σ f ′, we have:

AJsKvalη ?A �a.f ·a Sσ BJsKvalδ ?B �a.f ′·a

hence by definition,

�f.AJsKvalη ?A �a.f ·a R(ρ→σ)→σ
�f ′.BJsKvalδ ?B �a.f ′·a,

the xinduction hypothesis on r gives:

AJrKvalη Sρ→σ BJrKvalδ

and by (mult) again,

AJrKvalη ?A �f.AJsKvalη ?A �a.f ·a Sσ BJrKvalδ ?B �f ′.BJsKvalδ ?B �a.f ′·a

which is equivalent by the definition of JrsKval to:

AJrsKvalη Sσ BJrsKvalδ

In the next sections, in the proofs of the main lemmata, i.e., correctness (10) and
completeness (19), we will need to extend a context with a new variable whose type
will only be known in the induction step.

In particular we would like to be able to see the whole set of terms typable in
arbitrary contexts as an applicative structure. In an ordinary applicative structures
this is not possible: there is no way to forbid the application between two terms typed
in incompatible contexts (i.e., containing a same variable with different types), which
could lead to an untypable term.

Therefore we define a weak2 variant of Kripke applicative structures.

Definition 2.31 (Kripke applicative structure). A Kripke applicative structure is
a tuple 〈W ,6, 〈{Aρw}, {·ρ,σw }〉〉 where:

• W is a set of ”possible worlds” partially ordered by 6.

• 〈{Aρw}, {·ρ,σw }〉 is a family of typed applicative structure indexed by worlds w ∈
W

such that for two worlds w 6 w′ the following properties hold:

Aρw ⊆ Aρw′

∀ f ∈ Aρ→σw a ∈ Aρw, ·ρ,σw fa = ·ρ,σw′ fa

2In a general definition the relation between sets Aρw and Aρw′ with w 6 w′ does not need to be
an inclusion, but merely the existence of an injective transition functions.
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We are now able to encompass typable terms in arbitrary contexts in an applica-
tive structure.

Example 10 (Set of typable terms). The tuple 〈W ,6, 〈{Aρw}, {·ρ,σw }〉〉 where W
is the set Con of typing contexts Γ, 6 is the inclusion relation between contexts,
AρΓ is the set Tmρ

Γ of well typed terms of type ρ in context Γ, and ·ρ,σΓ is syntactic
application, is a Kripke applicative structure.

In the same way that Kripke applicative structures are families of applicative
structures indexed by a partial order, we define a Kripke monadic applicative struc-
ture to be a family of monadic applicative structures.

Definition 2.32 (Kripke monadic applicative structure). A Kripke monadic ap-
plicative structure over a monad M is a tuple 〈W ,6, 〈{Aρw}, {·ρ,σw }〉〉 where:

• W is a set of ”possible worlds” partially ordered by 6.

• 〈{Aρw}, {·ρ,σw }〉 is a family of monadic typed applicative structures indexed by
worlds w ∈ W such that for two worlds w 6 w′ the following properties hold:

Aρw ⊆ Aρw′

∀ f ∈ Aρ→σw , a ∈ Aρw, ·ρ,σw fa = ·ρ,σw′ fa

One can define a notion of Kripke relation enriched over a monad.

Definition 2.33 (Kripke monadic logical relation). Given Kripke monadic ap-
plicative structures

A = 〈W ,6, 〈{Aρw}, {·ρ,σw }〉〉

and

B = 〈W ,6, 〈{Bρ
w}, {·ρ,σw }〉〉

over monads MA and MB, a Kripke monadic logical relation is a pair 〈I ,J 〉, where
I and J are families of relations Iτw ⊆ Aτw × Bτ

w and J τ
w ⊆ MAτw ×MBτ

w indexed
by type τ ∈ Ty and world w ∈ W , such that the following property holds:

f Iρ→σw g ⇔ ∀w′ > w, ∀ a Iρw′ b, fa J
σ
w′ gb (comp)

a Iρw b⇒ ∀w′ > w, a Iρw′ b (mono)

a Iw b⇒ ν(a) Jw ν(b) (unit)

m J ρ
w m′ ∧ fIρ→σw f ′ ⇒ m ? �a.f ·a J σ

w m′ ? �a.f ′·a (mult)

We extend the definition of admissibility for call-by-value acceptable meaning
functions.
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Definition 2.34 (admissibility). Let AJKval in A and BJKval in B be call-by-value
acceptable meaning functions, a monadic logical relation 〈I ,J 〉 is admissible for

AJKval and BJKval, if given elements −→a and
−→
b of A and B with −→a Iw

−→
b , the

following property holds:

∀w′ > w,∀ a Iρw′ b, AJrKval−→x ,x 7→−→a ,a J
σ
w′ BJrKval−→x ,x 7→−→b ,b

⇒ AJλx.rKval−→x 7→−→a J
ρ→σ
w BJλx.rKval−→x 7→−→b (adm)

The basic lemma valid for Kripke logical monadic relation reads as follows.

Lemma 5 (basic lemma for Kripke monadic logical relation). Given Kripke monadic
applicative structures A and B over MA and MB, call-by-value acceptable meaning
function AJKval in A and BJKval in B, a Kripke admissible monadic logical relation
〈I ,J 〉, and a typed term Γ` r : ρ, with valuation η and δ on Γ (η � Γ and δ � Γ),
the following property holds, for an arbitrary w ∈ W:

η Iw δ ⇒ ∀w′ > w, AJrKvalη Jw′ BJrKvalδ

Proof. By induction on r ∈ Tmρ,

case x, by hypothesis, η(x) Iw δ(x), by monotonicity this holds for w′ > w, η(x) Iw′ δ(x),
and by (unit) we have:

∀w′ > w,AJxKvalη Jw′ BJxKvalδ ,

case rs, by induction hypothesis on s, ∀w′ > w, AJsKvalη J
ρ
w′ BJsKvalδ ,

by (mult), given w′ > w and f Iρ→σw′ f ′ we have

AJsKvalη ? �a.f ·a J σ
w′ BJsKvalδ ? �a.f ′·a, (2.2)

and hence by the comprehension property (comp):

�f.AJsKvalη ? �a.f ·a I(ρ→σ)→σ
w �f ′.BJsKvalδ ? �a.f ′·a,

hence by monotonicity (mono), this holds for w′ > w,

�f.AJsKvalη ? �a.f ·a I(ρ→σ)→σ
w′ �f ′.BJsKvalδ ? �a.f ′·a, (∗)

by IH on r, ∀w′ > w, AJrKvalη J
ρ→σ
w′ BJrKvalδ ,

by the multiplication property (mult), given w′ > w and g I(ρ→σ)→σ
w g′, we

have

AJrKvalη ? �f.g·f J σ
w′ BJrKvalδ ? �f.g′·f, (∗∗)
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taking g and g′ as given in (∗) we obtain:

AJrKvalη ? �f.AJsKvalη ? �a.f ·a J σ
w′ BJrKvalδ ? �f.BJsKvalδ ? �af ·a,

which by definition of acceptable meaning functions is equivalent to:

AJrsKvalη J σ
w′ BJrsKvalδ ,

case λx.r, let us assume w′′ > w′ > w and a Iw′′ b, by hypothesis η Iw δ, and by
monotonicity (mono) we have also, η Iw′′ δ, by induction hypothesis on r, we
have:

AJrKvalη,x7→a Jw′′ BJrKvalδ,x7→b,

by admissibility (adm),

AJλx.rKvalη Jw′ BJλx.rKvalδ .

As in the non-monadic case, the basic lemma holds automatically between inter-
pretations (as opposed to acceptable meaning functions) related by a logical relation,
because the admissibility property is immediately verified.

Lemma 6 (admissibility of interpretation). Let AJKval in A and BJKval in B be call-
by-value interpretations, a monadic logical relation 〈I ,J 〉 between AJKval and BJKval
is admissible.

Proof. Assume AJrKval−→x ,x 7→−→a ,a J
σ
w′ BJrKval−→x ,x 7→−→b ,b for all a Iρw′ b and w′ > w, we have to

show:

AJλx.rKval−→x 7→−→a J
ρ→σ
w BJλx.rKval−→x 7→−→b .

The hypothesis AJrKval−→x ,x 7→−→a ,a J
σ
w BJrKval−→x ,x 7→−→b ,b valid for all a Iρw b and w′ > w, implies

that by comprehension (comp),

�a.AJrKval−→x ,x 7→−→a ,a I
ρ→σ
w �b.BJrKval−→x ,x 7→−→b ,b,

by the unit property (unit), we have then:

ν(�a.AJrKval−→x ,x 7→−→a ,a) J
σ
w ν(�b.BJrKval−→x ,x 7→−→b ,b),

which by definition of Jλx.rKval is equivalent to:

AJλx.rKval−→x 7→−→a J
ρ→σ
w BJλx.rKval−→x 7→−→b .
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2.3.3 Correctness

In order to prove the correctness we need to modify the logical relation presented in
the informal exposition to take into account the reader monad StE used to generate
fresh names for variables. The following relation between the term and the call-by-
value type interpretation applicative structures, will turn out to be a Kripke monadic
logical relation between substitution and term interpretation.

Definition 2.35 (Correctness relation R). We define a family of relation Rρ
Γ ⊆

Tmρ
Γ/=α

× JρKval indexed by type ρ and context Γ by induction on ρ ∈ Ty as follows:

r Ro
Γ a ::= Γ ` r =βη a : o

r Rρ→σ
Γ a ::= ∀Γ′ > Γ,∀ s Rρ

Γ′ b, rs S
σ
Γ′ ab

where SσΓ is defined by

r SσΓ m ::= ∀ e,FV(r) 6∈ e, r Rσ
Γ me

Remark 8. Notice that in the clause Γ ` r =βη a : o, the βη-conversion has
been implicitly extended between classes of terms modulo α-conversion and genuine
syntactical terms. This can be made explicit as follows: in case r is a class of terms
modulo α-conversion and a is a term, r =βη a holds if and only if the class r is
βη-convertible to a class r′ for which a is a representative.

Lemma 7. 〈R,S〉 is a Kripke monadic logical relation between the Kripke applica-
tive structure 〈Con,6, 〈{Tmρ

Γ/=α
}, {·ρ,σΓ }〉〉 whose set of worlds are contexts and ap-

plication is just syntactic application and the typed applicative structure 〈JρKval, ·ρ,σ〉
whose application is set-theoretic functional application.

Proof. The comprehension property (comp) is verified by definition. The mono-
tonicity property (mono) can be shown to hold by an easy induction on the type
ρ of Rρ. The unit property (unit) obviously holds. We show the multiplication
property (mult), i.e.,:

r Rρ→σ
Γ f ∧ s SρΓ m⇒ rs SσΓ m ? f.

On the one hand by unfolding the definition of rRρ→σ
Γ f , we obtain, given s, a and e

such that FV(rs) 6∈ e:

∀Γ′ > Γ, s Rρ
Γ′ a⇒ rs Rσ

Γ′ fae, (?)

on the other hand, by unfolding the definition of s SρΓ m, we obtain, given an
environment e′ such that FV(s) 6∈ e′, that

s Rρ
Γ me

′,
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in particular for an e such that FV(rs) 6∈ e, FV(s) 6∈ e holds, and hence we have

s Rρ
Γ me,

by using (?), with Γ′ := Γ and a := me, we obtain:

∀ e,FV(rs) 6∈ e, rs Rσ
Γ f(me)e.

which is the definition of:

rs SσΓ m ? f.

By its definition, the call-by-value interpretation verifies the property to be an
acceptable meaning function, moreover from example (9), we have seen that substi-
tution is an acceptable meaning function.

However substitution is not an interpretation, so that lemma (6), only valid when
the logical relation relates two interpretations, does not apply here and we have to
show that the relation R is an admissible logical relation.

We need first the following technical lemma:

Lemma 8. Given a typed term Γ` s : σ the following propositions hold:

r{s/x}−→s SτΓ m⇒ (λxσ.r)s−→s SτΓ m (2.3)

r{s/x}−→s Rτ
Γ a⇒ (λxσ.r)s−→s Rτ

Γ a (2.4)

Proof. We prove proposition (2.3) and (2.4) simultaneously by induction on SΓ and
RΓ,

proposition (2.3), by hypothesis, given e such that FV(r{s/x}−→s ) 6∈ e, we have:

r{s/x}−→s Rτ
Γ me,

hence by I.H. on R for (2.4), (λxr)s−→s Rτ
Γ me, and we have proved

∀ e,FV(r{s/x}−→s ) 6∈ e⇒ (λxr)s−→s Rτ
Γ me,

but FV(r{s/x}−→s ) ⊆ FV((λx.rx)s
−→s ), hence

FV((λx.r)s−→s ) 6∈ e⇒ FV(r{s/x}−→s ) 6∈ e

and finally

∀ e,FV((λx.r)s−→s ) 6∈ e⇒ (λxr)s−→s Rτ
Γ me

which is equivalent to

(λxr)s−→s SτΓ m
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proposition (2.4),

case o, clearly r{s/x}−→s =βη (λx.r)s−→s , and we have to check that Γ is a valid
typing context for (λxr)s−→s but this follows easily because as s is typable
in Γ′, the free variables of s (possibly not occurring in r{s/x}−→s ) are in Γ,

case ρ→ σ, by hypothesis for Γ′ > Γ and t Rρ
Γ′ b we have:

r{s/x}−→s t SσΓ′ ab,

and by induction hypothesis on σ, we have

(λxr)s−→s t SσΓ′ ab.

Corollary 1 (admissibility). Given a typed term r of type σ with free variables
−→x : −→ρ , x : ρ, and terms s of type −→ρ and values −→a ∈

−→
JρK such that −→s RΓ

−→a , then:

∀ s Rρ
Γ a, r{

−→s ,s/−→x ,x} SσΓ JrK−→x ,x 7→−→a ,a ⇒ λx.r{−→s /−→x } Sρ→σΓ Jλx.rK−→x 7→−→a

Proof. Given a term s of type ρ and a value a ∈ JρK, such that s Rρ
Γ a and

r{−→s ,s/−→x ,x} SσΓ JrK−→x ,x 7→−→a ,a, and an environment e with FV(λx.r{−→s /−→x }) 6∈ e, we have
to show that:

λx.r{−→s /−→x } Rρ→σ
Γ Jλx.rK−→x 7→−→a e,

i.e.,, by unfolding the definition of Rρ→σ
Γ and Jλx.rK we have to show:

∀Γ′ > Γ,∀ s Rρ
Γ′ a, (λx.r{

−→s /−→x })s SσΓ′ JrK−→x ,x 7→−→a ,a.

But this last proposition is obtained by induction on −→s using the previous lemma
(8) from the hypothesis r{−→s ,s/−→x ,x} SσΓ′ JrK−→x ,x 7→−→a ,a as s is typable in Γ follows from

s Rρ
Γ′ a.

Lemma 9 (Basic lemma). Given a typed term {x1 : ρ1, . . . , xn : ρn} ` r : ρ, typed
terms −→s = s1, . . . , sn with Γ` si : ρi, and values −→a = a1, . . . , an with ai ∈ JρiK, the
following proposition hold:

−→s RΓ
−→a ⇒ r{−→s /−→x } SΓ JrKval−→x 7→−→a

Proof. As R is an admissible monadic logical relation, we can apply lemma (13)

After this preliminary work, we arrive at the core of the proof with the following
lemma:
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Lemma 10 (correctness). For terms r, s, value a, and an environment e such that
FV(r) 6∈ e, the following properties hold:

Γ` r =βη s : ρ⇒ r Rρ
Γ ↑

ρ s (1)

r Rρ
Γ a⇒ Γ` r =βη (↓ρ a)e : ρ (2)

Proof. We show (1) and (2) by simultaneous induction on the type ρ ∈ Ty of r.

case o, by definition,

case ρ→ σ,

(1), given Γ` r = s : ρ→ σ, we have to show:

∀Γ′ > Γ, ∀ t Rρ
Γ′ a, rt S

σ
Γ′ (↑ρ→σ s)(a),

that is, given t Rρ
Γ′ a and e such that FV(rt) 6∈ e,

rt Rσ
Γ′ (↑ρ→σ s)(a)e.

By induction hypothesis (2) on ρ, given an e such that FV(t) 6∈ e, we have
t =βη (↓ a)e, and hence rt =βη s((↓ a)e).

By induction hypothesis (1) on σ, given an e such that FV(rt) 6∈ e we
have, rt Rσ

Γ ↑ s((↓ a)e).

But ↑ s((↓ a)e) is equal to

((↓ρ a) ? �t.η(↑σ st))e,

and by definition of ↑ at arrow type, this last term is equal to:

(↑ρ→σ s)(a)e,

and FV(rt) 6∈ e implies FV(t) 6∈ e.
(2) We have to show for e with FV(r) 6∈ e:

r Rρ
Γ f ⇒ r =βη↓ (f)e.

By definition of R at arrow type:

r Rρ→σ f ≡ ∀Γ′ > Γ, ∀ s Rρ
Γ′ a, rs S

σ
Γ′ fa.

Let us take x = new(e), by induction hypothesis (1) on ρ, x Rρ
Γ,x:ρ ↑ x,

and hence

rx SσΓ,x:ρ f ↑ x.
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By definition, ∀ e′,FV(rx) 6∈ e′ ⇒ rx Rσ
Γ,x:ρ f(↑ x)e′, and this holds in

particular for e′ = ex.

By induction hypothesis (2) on σ, we have rx =βη (↓ f(↑ x)ex)ex. So we
have:

λx.rx =βη λx.(↓ f(↑ x)ex)ex = λx.(f ↑ x? ↓)ex.

This last term typable in Γ is equal to

new ? �v.(f ↑ v? ↓)v ? �t.ν(λv.t)e =↓ (f)e.

Lemma 11. For a term r, and an environment e such that FV(r) 6∈ e

r =βη (JrK↑? ↓)e

Proof. By part (1) of lemma (10) we have

x R ↑ x.

Because R is a logical relation, we have by the fundamental lemma:

r S JrK↑.

By definition, ∀ e,FV(r) 6∈ e, r R JrK↑e. Now by the second part of the previous
lemma given a e′ such that FV(r) 6∈ e′ we have:

r = (↓ JrK↑e)e
′,

and so it holds in particular for e = e′, i.e.,:

r =βη (↓ (JrK↑e))e = (JrK↑? ↓)e.

2.3.4 Completeness

In this section we prove the completeness of the NbE algorithm, that normal forms
of terms βη-convertible are themselves α-convertible, that is:

Γ` r =βη s : ρ⇒ ∀ e 63 Γ, Γ` (JrK↑? ↓)e =α (JsK↑? ↓)e : ρ.

The idea is to define a relation JΓ such that the two following conditions are
provable

a J ρ
Γ b⇒ ∀ e 63 Γ, Γ` (a? ↓)e =α (b? ↓)e : ρ (1)

Γ` r =βη s : ρ⇒ JrK↑ J
ρ
Γ JsK↑ (2)
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In fact, to prove the first condition above involving α-conversion, we will use
induction on the structure of terms. A problem here is that α-conversion is about
bound variables only, if it says that the terms λx.x and λy.y are equivalent, it says
nothing about their immediate subterms x and y (see footnote 3, in the proof of
theorem (19), p. 56). As a consequence the needed induction principle will have
necessarily to be a generalisation of α-conversion, it should enable us to compare
terms up to renaming of their free variables. Although, we would never argue that ”α-
conversion is easy”, the approach here is related to the paper of Thorsten Altenkirch
[3].

Definition 2.36 (Variables renaming, context renaming). A renaming of variables
is a substitution where the terms substituted for are variables. Given lists of variables
−→x = x1, . . . , xn, and −→y = y1, . . . , yn, the effect of a renaming {−→y /−→x } on a context
Γ is defined componentwise:

∅{−→y /−→x } ::= ∅

({x : ρ} ∪ Γ){−→y /−→x } ::=

{
{yi : ρ} ∪ Γ{−→y /−→x } if x = xi for xi ∈ −→x
{x : ρ} ∪ Γ{−→y /−→x } otherwise

We introduce now a notation to compare term up to renaming of their free
variables, this is a generalisation of α-conversion to renaming.

Notation 12. The renaming {−→y /−→x } from a context Γ = {x1 : ρ1, . . . , xn : ρn} into
the context Γ′ = {y1 : ρ1, . . . , yn : ρn}, will be simply written Γ; Γ′ although formally
Γ and Γ′ are unordered sets of pairs.

We will write Γ; Γ′ ` r =α r
′ : ρ where Γ; Γ′ is the renaming given above if Γ` r : ρ

and Γ′ ` r : ρ if Γ′{−→y /−→x } = Γ and r = r′{−→y /−→x }

With this notation the α-conversion between well typed terms r and r′ of type
ρ in a context Γ can be expressed as Γ; Γ ` r =α r

′ : ρ (i.e., the renaming is the
identity).

The generalisation of condition (1) for which we can use induction on the struc-
ture of terms reads:

a J ρ
Γ,Γ′ b⇒ ∀ (e, e′) 63 (Γ,Γ′), Γ; Γ′ ` (a? ↓)e =α ((b? ↓)e′) : ρ (1’)

.
The inclusion relation on contexts induces a relation on context renaming:

Definition 2.37 (order on contexts renamings). The partial order 6 on context
renaming is the least symmetric transitive relation such that:

Γ; Γ′ 6 Γ, (x : ρ); Γ′, (y : ρ)
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We define below a pair of relations I and J , relating values of the interpretations,
I for normal values and J for monadic values. We will show that these relations
form a logical relation and are partial equivalence relations (i.e., symmetric and
transitive).

Definition 2.38 (completeness relation). We define a family of logical relations
IρΓ,Γ′ ⊆ JρK × JρK and J ρ

Γ,Γ′ ⊆ StEJρK × StEJρK indexed by a type ρ and a context
Γ ∈ Con inductively by:

r IoΓ,Γ′ s ::= Γ; Γ′ ` r =α r
′ : o

f Iρ→σΓ,Γ′ g ::= ∀∆; ∆′ > Γ; Γ′, ∀ a Iρ∆,∆′ b, fa J
σ
∆,∆′ fb

m J ρ
Γ,Γ′ m

′ ::= ∀ e, e′, (Γ,Γ′) 6∈ (e, e′), me IρΓ,Γ′ m
′e′

Lemma 12. The pair of relations 〈I ,J 〉 forms a Kripke monadic logical relation on
(two copies of) the typed applicative structure 〈JρK, ·〉 where · is syntactic application.

Proof. The comprehension property (comp) is verified by definition. The mono-
tonicity properties (mono) and the unit property (unit) obviously hold.

We show the multiplication property (mult), i.e.,:

f Iρ→σΓ,Γ′ f
′ ∧m J ρ

Γ,Γ′ m
′ ⇒ m ? f J σ

Γ,Γ′ m
′ ? f ′

On the one hand by definition of f Iρ→σΓ,Γ′ f
′, we obtain in particular for a IρΓ,Γ′ a′:

fa J σ
Γ,Γ′ f

′a′.

which implies by the definition of J for e, e′ such that Γ,Γ′ 6∈ e, e′:

fae IσΓ,Γ′ f ′a′e′.

On the other hand, by unfolding the definition of m J ρ
Γ,Γ′ m

′, for e, e′ and Γ; Γ′ as
above, we obtain:

me IρΓ,Γ′ m
′e′.

And hence we have

f(me)e IρΓ,Γ′ f
′(m′e′)e′.

which is the definition of:

(m ? f) J ρ
Γ,Γ′ (m′ ? f ′).
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Lemma 13 (basic lemma).

µ IΓ,Γ′ ν ⇒ JrKµ JΓ,Γ′ JrKν

Proof. (I ,J ) forms a logical relation as shown in lemma (12), and the admissibility
property holds immediately for interpretation as shown in lemma (6).

Lemma 14 (symmetry). I is a symmetric relation:

∀ ab, a IΓ,Γ′ b⇒ b IΓ,Γ′ a

Proof. Remark first that symmetry of IρΓ,Γ′ implies symmetry of J ρ
Γ,Γ′ :

∀mm′, m JΓ,Γ′ m
′ ⇒ m′ JΓ,Γ′ m

The proof is by induction on the type ρ ∈ Ty:

case ρ = o, follows from symmetry of =α,

case ρ→ σ, we want to show:

f Iρ→σΓ,Γ′ g ⇒ g Iρ→σΓ,Γ′ f

By definition,

f Iρ→σΓ,Γ′ g ⇔ ∀∆,∆′ > Γ,Γ′, ∀ a Iρ∆,∆′ b, faJ
σ
∆,∆′ gb

g Iρ→σΓ,Γ′ f ⇔ ∀∆,∆′ > Γ,Γ′, ∀ b Iρ∆,∆′ a, gbJ
σ
∆,∆′ fa.

By induction hypothesis on ρ we have:

b Iρ∆,∆′ a⇒ a Iρ∆,∆′ b

by hypothesis this implies fa J σ
∆,∆′ gb and by induction hypothesis on σ, we

have

fa J σ
∆,∆′ gb⇒ gb J σ

∆,∆′ fa.

Lemma 15 (transitivity). I is a transitive relation:

∀ a b c, a IΓ,Γ′ b ∧ b IΓ,Γ′ c⇒ a IΓ,Γ′ c

Proof. Remark first that transitivity of IρΓ,Γ′ implies transitivity of J ρ
Γ,Γ′ :

∀mm′m′′, m JΓ,Γ′ m
′ ∧m′ JΓ,Γ′ m

′′ ⇒ m JΓ,Γ′ m
′′

The proof is by induction on the type ρ ∈ Ty:
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case ρ = o, follows from transitivity of =α,

case ρ→ σ, we want to show

f Iρ→σΓ,Γ′ g ∧ g I
ρ→σ
Γ,Γ′ h⇒ f Iρ→σΓ,Γ′ h

By definition,

f Iρ→σΓ,Γ′ g ⇔ ∀∆,∆′ > Γ,Γ′, ∀ a Iρ∆,∆′ b, fa J
σ
∆,∆′ gb, and

g Iρ→σΓ,Γ′ h⇔ ∀∆,∆′ > Γ,Γ′, ∀ a Iρ∆,∆′ b, ga J
σ
∆,∆′ hb

By symmetry, a Iρ∆,∆′ b, implies b Iρ∆,∆′ a, by induction hypothesis on ρ,
a Iρ∆,∆′ a, and hence fa J σ

∆,∆′ ga and ga J σ
∆,∆′ hb, and by induction hypothesis

on σ, fa J σ
∆,∆′ hb. This concludes the proof.

Conversions βη

On the one hand the fact that 〈I ,J 〉 forms a logical relation ensures that the
interpretation of a term is related with itself, i.e., the restriction of the relation J
to the interpretation of terms is reflexive. On the other hand, the restriction of a
partial equivalence relation R on those elements where R is reflexive ({x | xRx})
is an equivalence relation. In particular, the restriction of the interpretation to the
subset where J is reflexive, is already enough to interpret terms. On this restriction
the relation J is an equivalence relation and can be seen as coarser equality than
the set-theoretic equality.

We will now prove that, if we consider this latter equality as the actual equality
on the interpretation, the interpretation of terms is sound with respect to the βη-
conversion, (i.e., r =βη s⇒ JrKJ JsK).

The following technical lemma relates semantical valuation and syntactical sub-
stitution and will be needed to relate the interpretation of β-convertible terms.

Lemma 16 (substitution). Given a typed term Γs ` s : σ, two valuations η and δ on
Γs, (i.e., η � Γs, and δ � Γs), a typed term Γs, x : ρ,Γr ` r : σ, and two valuations η′

and δ′ on Γr (i.e., η′ � Γr, and δ′ � Γr). Moreover, given contexts Γ,Γ′,∆,∆′ with
η IΓ,Γ′ δ, an environment e such that Γ 6∈ e, ∆; ∆′ > Γ; Γ′ and η′ I∆,∆′ δ

′ we have:

JrKη,x7→JsKηe,η′ J∆,∆′ Jr{s/x}Kδ,δ′

Remark that an environment e is present in the left hand side of the relation above
but not in the right hand side. This will allow to relate the terms of the algorithm
which are not syntactically equal but only α-convertible.
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Proof. By induction on the typing derivation of r, we have to show for ∆,∆′ 6∈ d, d′

JrKη,x7→JsKηe,η′d I∆,∆′ Jr{s/x}Kδ,δ′d′

case r = x, As the variables of the domain of the valuation δ′ do not occur in s, we
have immediately that JsKδ = JsKδ,δ′ and we have to prove:

JsKηe I∆,∆′ JsKδd
′

By the basic lemma, we already have JsKη JΓ,Γ′ JsKδ, which means by definition
that for e and e′ with Γ,Γ′ 6∈ e, e′ we have:

JsKηe IΓ,Γ′ JsKδe
′,

In particular for ∆′ > Γ′, and d′ such that ∆′ 6∈ d′ we have Γ′ 6∈ d′, so that we
have JsKηe IΓ,Γ′ JsKδd′. And by monotonicity, we obtain finally:

JsKηe I∆,∆′ JsKδd
′,

case r = r′s′, We have to show:

Jr′Kη,x7→JsKηe,η′d(Js′Kη,x7→JsKηe,η′d)d I∆,∆′ Jr′{s/x}Kδ,δ′d′(Js′{s/x}Kδ,δ′d′)d′

By induction hypothesis on s′, for d, d′ such that ∆,∆′ 6∈ d, d′ we have

Js′Kη,x7→JsKηe,η′d I∆,∆′ Js′{s/x}Kδ,δ′d′

By induction hypothesis on r′, we have

Jr′Kη,x7→JsKηe,η′ I∆,∆′ Jr′{s/x}Kδ,δ′

But because r is in applicative position it is of arrow type and by unfolding the
definition we have for E,E > ∆,∆′, a IE,E′ b and f, f ′ such that E,E ′ 6∈ f, f ′:

Jr′Kη,x7→JsKηe,η′af IE,E′ Jr′{s/x}Kδ,δ′bf ′

Taking ∆,∆′ for E,E ′, and Js′Kη,x7→JsKηe,η′
d and Js′{s/x}Kδ,δ′d′ for a and b, and

d, d′ for f, f ′ yields the result.

case r = λy.r′, First remark that λy.r is of arrow type, say ρ→ σ, so that we have
to prove for E,E ′ > ∆,∆′ and a IρE,E′ b:

Jλy.r′Kη,x7→JsKηe,η′da J
ρ→σ
E,E′ Jλy.r′{s/x}Kδ,δ′d′b

which simplifies into

Jr′Kη,x7→JsKηe,η′,y 7→a J
ρ→σ
E,E′ Jλy.r′{s/x}Kδ,δ′,y 7→b

By monotonicity (mono), η′ I∆,∆′ δ
′ ⇒ η′ IE,E′ δ′ and hence η′, y 7→ a IE,E′ δ′, y 7→

b. One can then apply the induction hypothesis on r′, which yields the result.
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Corollary 2 (β-conversion). Given a typed term Γs ` s : σ, two valuations η and
δ on Γs, (i.e., η � Γs, and δ � Γs), a typed term Γs, x : ρ` r : σ. Moreover, given
contexts Γ,Γ′ with η IΓ,Γ′ δ, we have:

J(λx.r)sKη JΓ,Γ′ Jr{s/x}Kδ

Proof. Given e, e′ such that Γ,Γ′ 6∈ e, e′, we have to prove:

J(λx.r)sKηe IΓ,Γ′ Jr{s/x}Kδe′

which is equivalent to

JrKη,x7→JsKηee IΓ,Γ′ Jr{s/x}Kδe′

By instantiating the previous lemma (16) with ∆,∆′ = Γ,Γ′, η = η and δ = δ, we
have:

JrKη,x7→JsKηe JΓ,Γ′ Jr{s/x}Kδ

and in particular, we get the result:

JrKη,x7→JsKηee IΓ,Γ′ Jr{s/x}Kδe′

Lemma 17 (η-conversion). Given a typed term Γr ` r : σ, two valuations η and δ
on Γr, (i.e., η � Γr and δ � Γr). Moreover, given contexts Γ,Γ′ with η IΓ,Γ′ δ, we
have:

JrKη J
ρ→σ
Γ,Γ′ Jλx.rxKδ

Proof. We have to show, given e, e′ such that Γ,Γ′ 6∈ e, e′, and ∆,∆′ > Γ,Γ′ and
aI∆,∆′b, d, d

′ such that ∆,∆′ 6∈ d, d′, that:

JrKηead J∆,∆′ Jλx.rxKδe
′bd′

which simplifies intoJrKηead J∆,∆′ JrKδd
′bd′

By the basic lemma (13),

JrKη J
ρ→σ
Γ,Γ′ JrKδ
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By definition, for e, e′ such that Γ,Γ′ 6∈ e, e′, we have

JrKηe I
ρ→σ
Γ,Γ′ JrKδe

′

But for ∆ > Γ, ∆ 6∈ d′ implies Γ 6∈ d′, so that we have JrKηe I
ρ→σ
Γ,Γ′ JrKδd′. And in

turn we have, for ∆,∆′ > Γ,Γ′, and a I∆,∆′ b:

JrKηea J σ
∆,∆′ JrKδd

′b

And finally,

JrKηead Iσ∆,∆′ JrKδd
′bd′

Lemma 18. Given two typed terms Γ` r : τ and Γ` s : τ , two valuation η and δ
on Γ (i.e., η � Γ and δ � Γ), and two contexts ∆,∆′, we have:

Γ` r =βη s : τ ⇒ ∀ η I∆,∆′ δ, JrKη J τ
∆,∆′ JsKδ

Proof. By induction on the relation Γ` r =βη s : τ ,
The case of reflexivity is the basic lemma. (13) The cases of β-conversion, η-
conversion, reflexivity, symmetry and transitivity have already been handled in
lemma (14)(15)(17) and corollary (2).
Rest the structural rules:

Γ` tr =βη ts : ρ⇒ ∀ η I∆,∆′ δ, JtrKη J
ρ
∆,∆′ JtsKδ

Γ` rt =βη st : ρ⇒ ∀ η I∆,∆′ δ, JrtKη J
ρ
∆,∆′ JstKδ

Γ`λxρ.r =βη λx
ρ.s : σ ⇒ ∀ η I∆,∆′ δ, Jλxρ.rKη J

ρ→σ
∆,∆′ Jλxρ.sKδ

They all follow from the induction hypothesis on r and s and use of the basic lemma
for t in the two first cases.

Completeness Lemma

In the informal presentation the reify function ↓ is a function from the interpretation
to the set of terms and the function reflect is a function from the set of terms
to the interpretation. The following lemma states a similar result for the call-by-
value interpretation when the set of terms is quotiented by α-conversion, and the
(restriction of the) interpretation by the partial equivalence relation I or J .

Lemma 19 (Completeness). Given a, b ∈ JρK, r ∈ Tmρ, and e, e′ ∈ E the following
propositions hold:

m J ρ
Γ,Γ′ m

′ ⇒ ∀ e, e′, (Γ,Γ′) 6∈ (e, e′), Γ; Γ′ ` (m? ↓)e =α (m′? ↓)e′ : ρ (1’)

Γ; Γ′ ` r =α r
′ : ρ⇒ ↑ρ r IΓ,Γ′ ↑ρ r′ (2’)
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Proof. By simultaneous induction on the type ρ ∈ Ty,

case ρ = o (1’), by definition of ↓o, we have:

(m? ↓o) = (m ? ν) = m.

By definition of J o
Γ,Γ′ , for e, e′ such that Γ,Γ′ 6∈ e, e′ we have me IoΓ,Γ′ me′, and

by definition again:

Γ,Γ′ ` r =α r
′ : o

case ρ = o (2’), follows from the definition as ↑o is the identity.

case ρ→ σ (1’), given m J ρ→σ
Γ,Γ′ m′, and e, e′ such that Γ,Γ′ 6∈ e, e′ we want to

show that:

Γ; Γ′ ` (m? ↓)e =α (m′? ↓)e′ : ρ

By induction hypothesis (2’) on ρ, for xρ, yρ 6∈ Γ,Γ′ we have:

↑ρ x IΓ,xρ;Γ′,yρ ↑ρ y

In particular, for e, e′ such that Γ,Γ′ 6∈ e, e′ one can take new(e) and new(e′)
for x and y.

By hypothesis, this implies

me ↑ρ x J σ
Γ,xρ;Γ′,yρ m

′e′ ↑ρ y

As Γ,Γ′ 6∈ e, e′ implies (Γ, x : ρ; Γ′, y : ρ) 6∈ ex, e′y, we obtain by induction
hypothesis (1’) on σ,

Γ, x : ρ; Γ′, y : ρ` (me ↑ρ x? ↓)ex =α (m′e′ ↑ρ y? ↓)e′y : ρ

We can abstract on both sides to obtain:

Γ; Γ′ `λxρ.(me ↑ρ x? ↓)ex =α λy
ρ((m′e′ ↑ρ y? ↓)e′y) : ρ

With a bit of computation, one can see that the left hand side is equal to:

λx.(me(↑ x)? ↓σ)ex = λx.(me(↑ x)? ↓σ)xe

= ((me(↑ x)? ↓σ)x ? �t.ν(λx.t))e

= (m ? �f.(f(↑ x)? ↓σ)x ? �t.ν(λx.t))e

and by choosing new(e) for x,

λx.(me(↑ x)? ↓σ)ex =α (m? ↓)e



56 2. Simply Typed λ-Calculus

By an analogous computation (and choosing new(e′) for y) the right hand side
is α-equal to (m′? ↓)e′ 3.

case ρ→ σ, (2’) Under the hypothesis

Γ; Γ′ ` r =α r
′ : ρ→ σ

we want to show, given ∆,∆′ > Γ,Γ′ and a Iρ∆,∆′ b that:

(↑ρ→σ r)a J σ
∆,∆′ (↑ρ→σ s)b.

By (unit), we have ν(a) J ρ
∆,∆′ ν(b), and by induction hypothesis (1’) on ρ we

obtain, for d, d′ such that ∆,∆′ 6∈ d, d′:

∆; ∆′ ` ν(a)? ↓ρ d =α (ν(b)? ↓ρ d′) : ρ

which can be simplified into

∆; ∆′ ` (↓ρ a)d =α (↓ρ b)d′ : ρ

and hence

∆; ∆′ ` r(↓ρ a)d =α r(↓ρ b)d′ : σ

By induction hypothesis (2’) on σ,

↑ r(↓ρ a)d I∆,∆′ ↑ r(↓ρ b)d′

but ↑σ r(↓ρ a)d =↓ρ a ? �s.ν(↑σ rs)d = (↑ρ→σ r)ad, and analogously ↑σ r(↓ρ
b)d′ = (↑ρ→σ r)bd′, and the last relation is equivalent to:

(↑ρ→σ r)ad I∆,∆′ (↑ρ→σ r)bd′

And we have proved

(↑ρ→σ r)a J σ
∆,∆′ (↑ρ→σ s)b.

Corollary 3. Given two typed terms Γ` r : τ and Γ` s : τ , we have:

Γ` r =βη s : τ ⇒ JrK↑ J τ
Γ,Γ JsK↑

Proof. Follows from the lemma (18) with η ::= δ ::=↑, as the previous lemma (3)
states that ↑ IΓ,Γ ↑.

Theorem 1. Given two typed terms Γ` r : τ and Γ` s : τ , we have:

Γ` r =βη s : τ ⇒ ∀ e, Γ 6∈ e⇒ Γ` (JrK↑ ? ↓)e = (JsK↑? ↓)e : τ

Proof. Follows from the previous corollary (3) and the completeness lemma (19)

3Notice that we needed a more general induction principle than the first proposal (1), because
we had to prove a conclusion of the form λx.r =α λy.s where x and y may be different, and needed
to apply the induction hypothesis on r and s.



Chapter 3

Generalized Applications

By the Curry-Howard isomorphism, the system of natural deduction NJ for minimal
logic is in one-to-one correspondence with the simply typed λ-calculus Λ. The
extensional conversion βη of the λ-calculus corresponds to equivalence of proofs in
natural deduction (in particular β-reduction corresponds to detour elimination).

It is well known however that the correspondence between sequent calculus and
natural deduction is not one-to-one: for one proof in natural deduction there is in
general several proofs in the sequent calculus.

Although informally cut elimination corresponds to detour elimination, and hence
to β-reduction, even the correspondence between cut-free derivation and β-normal
terms is not one-to-one, just as above: for one detour-free proof in natural deduction
there is in general several cut-free proofs in the sequent calculus.

Because η-conversion equates more derivations in natural deduction, the situa-
tion is even more complicated with this conversion.

Nevertheless, Jan Von Plato designed in [90] a system of natural deduction where
derivations are in one-to-one correspondence with cut-free sequent proofs.

In [55], Felix Joachimski and Ralph Matthes designed a λ-calculus ΛJ whose
normal forms with respect to β-reduction and certain permutative reductions (or
π-reductions) are exactly the derivations of the system of Von Plato, and they show
its strong normalization.

Beside detour elimination and permutative reduction, one can consider other
conversions in this calculus. The class of terms modulo these extra conversions is
in one-to-one correspondence with the normal forms of the simply typed λ-calculus.
Ralph Matthes used these generalised conversion relation in [69] to prove an inter-
polation result and show some of its applications.

Here we will discuss a definition of normal forms for the calculus ΛJ with these
extended conversions. These normal forms are not unique representatives of the
classes of terms modulo the extended conversions. But normal terms belonging to
the same class are mutually convertible thanks to a decidable conversion (which we
have called here circular conversion). We will then describe a normalization function
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using normalization by evaluation. This provides a decision procedure for the whole
theory of the ΛJ -calculus, which is, to the best of our knowledge, a new result.

This provides in turn a notion of normal proofs for the sequent calculus which
correspond modulo circular conversions to normal proofs in natural derivation.

3.1 From Sequent Calculus to ΛJ

The formula we consider are the types of the simply typed calculus as defined in
chapter 2. We restate the definition of the set Ty of type here for completeness:

Ty 3 ρ, σ ::= o | ρ→ σ.

A sequent is a pair Γ` ρ of the context Γ, which is a multiset of formulae, and the
formula ρ. Just as in natural deduction, contexts could have been presented as lists,
but in this case we would have needed the structural rule of exchange to identify
sequents differing in the order of their contexts.

For convenience we will use Kleene’s version of the sequent calculus LJ [58].

Definition 3.1 (LJ). The axioms and inference rules of LJ are:

(Var)
Γ, ρ` ρ

Γ, ρ→ σ ` ρ Γ, ρ→ σ, σ ` τ
(→`)

Γ, ρ→ σ ` τ
Γ, ρ`σ

(`→)
Γ` ρ→ σ

Γ` ρ Γ, ρ`σ
(Cut)

Γ`σ

Kleene’s version has the advantage, thanks to the formulation of the rule (→`)
above, to be strictly cumulative, which means that if the sequent Γ` ρ appears in
the conclusion of a rule, then Γ is already a sub-multiset of the antecedents of the
premises of the rule (for details, the reader may wish to consult the comprehensive
textbook of Helmut Schwichtenberg and Anne S. Troelstra, Basic Proof Theory [88]).

To a statement Γ` ρ we can assign a λ-term t so that t is well-typed in context
Γ with type ρ, i.e., Γ` t : ρ (and hence t is a proof in natural deduction), in the
following way:

(Var)
Γ, x : ρ`x : ρ

Γ, y : ρ→ σ ` r : ρ Γ, y : ρ→ σ, x : σ ` s : τ
(→`)

Γ, y : ρ→ σ ` s{yr/x} : τ

Γ, x : ρ` r : σ
(`→)

Γ`λxρ.r : ρ→ σ

Γ` r : ρ Γ, x : ρ` s : σ
(Cut)

Γ` s{r/x} : σ

The notations s{r/x} and s{yr/x} in the rule (→`) and (Cut) are not term
formation rules but notations on the meta-level for substitution. It is a reason why
the simply typed λ-calculus cannot be used to faithfully model proofs of the sequent
calculus.
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Example 11. Obviously, after having decorated a sequent proof with λ-terms, taking
the last decorated statement in the proof provides a derivation in natural deduction.
But this translation from sequent calculus to natural deduction is not one-to-one.
The two following decorated sequent calculus derivations provide the same derivation
(where z : ρ→ σ ∈ Γ):

Γ, x : ρ` r : σ Γ, x : ρ, y : τ ` s : υ

Γ, x : ρ` s{zr/y} : υ
(→`)

Γ`λxρ.s{zr/y} : ρ→ υ
(`→)

Γ` r : σ

Γ, x : ρ, y : τ ` s : υ

Γ, y : τ `λxρ.s : υ
(`→)

Γ`λxρ.s{zr/y} : ρ→ υ
(→`)

To have a faithful notation system for the sequent calculus, it is possible to work
with explicit substitution. The notation −{−/x} would then be a term constructor.
This approach has been studied by Herbelin in [50].

The idea in [55] is that if one excludes the cut-rule, one does not need to consider
general substitution but only the one occurring in the rule (→`): −{−−/x}. The
term constructor corresponding to an explicit substitution of this form is called a
generalised application and is noted r(s, xσ.t) instead of t{rs/x}.

Now, in the assignment of λ-terms to sequent derivations, one can replace the
standard application of the λ-calculus by this generalised application in the rule
(→`):

Γ, y : ρ→ σ ` s : ρ Γ, y : ρ→ σ, x : σ ` t : τ
(→`)

Γ, y : ρ→ σ ` y(s, xσ.t) : τ

The cut-rule allows us to substitute the variable y in the above rule by an arbitrary
term, giving rise to the ΛJ calculus:

ΛJ 3 r, s, t ::= x | λxρ.r | r(s, xσ.t)

Hence one can annotate sequents of derivations in the sequent calculus with terms
of the ΛJ -calculus, just in the same way as with terms of Λ. The cut-free deriva-
tions correspond to terms whose subterms in applicative position are assumptions
(a variable y):

NFΛJ 3 r, s, t ::= x | λxρ.r | y(s, xσ.t)

This latter terms are normal forms for the β and permutative reductions1:

(λxρ.r)(s, yσ.t) −→β t{r{s/x}/y}
r(s, xσ.t)(s′, x′τ .t′) −→π r(s, x

σ.t(s′, x′τ .t′))

1The permutative reductions allows to recover the subformula property, i.e., the type of any
subterm of a term r of type ρ is either the type of a free variable or a syntactic subtype of ρ.
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Replacing inductively the explicit substitutions r(s, xσ.t) by actual substitutions
t{rs/x}, provides a translation −Λ from ΛJ to Λ. This translation justifies the above
rules as a standard β-conversion and a substitution lemma:

t{(λxρ.r)s/y} =β t{r{s/x}/y}
t′{(t{rs/x})s′/x′} =π t

′{(ts′){rs/x}/x′}

The terms of ΛJ can as well be used to annotate propositions of a natural de-
duction system which provides a syntax-directed typing system as follows:

Definition 3.2 (Typing). The typing relation is a ternary relation between con-
texts, terms and types and is defined inductively by the following rules:

x : ρ ∈ Γ

Γ`x : ρ
(Var)

Γ` r : ρ→ σ Γ` s : ρ Γ, x : σ ` t : τ

Γ` r(s, xσ.t) : τ
(→E)

Γ, x : ρ` r : σ

Γ`λxρ.r : ρ→ σ
(→I)

In the terminology used for natural deduction, the rule (→E) is called an elimination
rule, and the rule (→I) an introduction rule. The premiss carrying the symbol→ in
the elimination rule is called the major premiss, the other premises are called minor
premises. By analogy, we will say that in the term r(s, x.t), r is a major premiss
and s and t are minor premises.

Typed terms of ΛJ are not in a one-to-one correspondence with derivations of
sequent calculus, for one derivation in ΛJ there exists several sequent derivations
with cut. In the decoration of the sequent calculus proofs, each rule of the sequent
calculus (except (Cut)) is associated to a different term formation rule of the ΛJ -
calculus. Hence for a normal ΛJ derivation with respect to −→β and −→π reductions
there exists one and only one cut-free sequent derivation.

As in the previous chapter we will often omit the type of the bound variables to
improve readability.

3.2 Extended Conversions and Normal Forms

There are more conversions to be considered than only =β and =π. We have at hand
a translation −Λ from ΛJ to the simply typed λ-calculus Λ. Because βπ-normal
forms of ΛJ correspond to only one cut-free sequent derivation whereas β-normal
forms of Λ may correspond to several cut-free sequents derivations, one can define
the missing conversions between terms r and s of ΛJ such that the translations of r
and s in Λ are the same (modulo β-equality).



3.2 Extended Conversions and Normal Forms 61

We will give the conversions in form of axioms; the corresponding conversions are
then obtained as the smallest congruence, a contextually closed equivalence relation,
containing the given axiom(s).

Definition 3.3 (Contextual closure). A relation =R is contextually closed if the
following rules hold

r =R r
′

r(s, x.t) =R r
′(s, x.t)

(R-AppL1)
s =R s

′

r(s, x.t) =R r(s
′, x.t)

(R-AppL2)

t =R t
′

r(s, x.t) =R r(s, x.t
′)

(R-AppR)
r =R s

λx.r =R λx.s
(R-ξ)

We first give the axiom for the β-conversion; read from left to right this conversion
corresponds to a computation step of the calculus.

Definition 3.4 (β-conversion). The axiom of β-conversion is defined by:

(λx.r)(s, y.t) =β t{r{s/x}/y} (β)

Remark 9. We gloss over the notions of free, bound variables, set of free variable
FV(r) of a term r, α-conversion and substitution which are similarly defined as they
were in the simply typed λ-calculus in chapter 2 (the only difference being that in
the term r(s, x.t) the variable x is bound in t) and just remark that the substitution
used here is a variable capture avoiding one where α-conversion may be needed.

The π-conversion permutes general applications if they form a particular pattern
(the major premiss of a general application is itself a general application). But
if the π-conversion is read as a substitution lemma for the corresponding explicit
substitution, then in the general case one has to pull out a general application in an
arbitrary context. Hence we define our general notion of permutative conversion as
follows:

Definition 3.5 (πe-conversion). The axiom of extensional permutative conversion
is defined by:

r{s(t,y.u)/x} =πe s(t, y.r{u/x}) y 6∈ FV(r)

Moreover one can define a conversion between terms of ΛJ such that their trans-
lations in the simply typed λ-calculus Λ are not only β- but η-equal as well, this
leads to the following conversion2.

2we remind the reader that the dot bind as far as syntactically possible to the left, so that the
axiom η has to be read as r =η λz

ρ.(r(z, y.y))
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Definition 3.6. The axiom of η-conversion is defined by

r =η λz
ρ.r(z, y.y) z /∈ FV(r) (η)

Remark 10. A characteristic of the ΛJ-calculus is that we only need to define η-
conversion on variables. An η-conversion of a λ-abstraction can already be achieved
with a β-conversion just as for the simply typed λ-calculus. And an η-conversion of
a generalised application r(s, x.t) boils down modulo permutative conversion (3.5) to
an (η)-conversion of its minor premiss s.

We can give a local version of the πe-conversion. This will help us to justify the
structure of the term outputted by the NbE-algorithm, the normal forms.

Lemma 20 (πe-conversion (local version)). The πe-conversion can be defined by the
following axioms:

r(s, x.r′)(s′, x′.t′) =πe1
r(s, x.r′(s′, x′.t′)) (x 6∈ FV(s′), x 6∈ FV(t′)) (πe1)

r(r′(s′, x′.t′), x.t) =πe2
r′(s′, x′.r(t′, x.t)) (x′ 6∈ FV(r), x′ 6∈ FV(t)) (πe2)

λx.r(s, y.t) =πe3
r(s, y.λx.t) (x 6∈ FV(r), x 6∈ FV(s)) (πe3)

r(s, x.t) =is t (x 6∈ FV(t)) (is)

r(s, x.r′(s′, x′.t′)) =πe4
r′(s′, x′.r(s, x.t′)) (x 6∈ FV(r′), x 6∈ FV(s′),

x′ 6∈ FV(r), x′ 6∈ FV(s)) (πe4)

r(s, x.r(s, x′.t′)) =πe5
r(s, x′.t′{x′/x}) (x 6∈ FV(r), x 6∈ FV(s)) (πe5)

The first four conversions (πe1 to πe4) are just instantiations of the general πe-
conversion. Their contextual closure is a special case of the general πe-conversion
where the substitution involved only concerns one unique variable. The axiom (πe5)
allows to take into account the case when in the πe-conversion the substitution
concerns multiple occurrences of the same variable. The last conversion (is) handles
the case where the variable to be substituted for in the general πe-conversion does
not actually occur in the term.

We will describe the normal forms of this system by giving some sensible criteria.
First we want our normal forms to correspond to cut-free sequent derivations, so that
they should at least be some restrictions of the π-normal forms as given in section
2, i.e., normal forms for the β-, πe1-reduction (oriented from left to right):

NFΛJ 3 N,N0, N1 ::= x | λx.N | y(N0, x.N1)

The conversion (πe2), read from left to right, pulls out the application on the right
hand side of the term. This is already the effect of the π-reduction, so that we keep
this direction. The normal forms will not be allowed to have an application as the
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minor premiss s of another application r(s, x.t). To achieve this, we have to redefine
our normal forms as follows:

PNFΛJ 3 P ::= x | λx.N
NFΛJ 3 N ::= P | y(P, x.N)

The rule (πe3) says that a λ-abstraction can be moved inside a generalised ap-
plication. It seems reasonable to move it as deep as possible, in order to introduce
variables just before their uses. To that effect, we define the deepest λ condition,
DL(X, r) for a set of variables X and a term r, to be true if r is a variable or a
λ-abstraction and if r is a generalised application (r(s, y.t)) by the following:

DL(X, (r(s, y.t))) :⇔ X ∩ (FV(r) ∪ FV(s)) 6= ∅ ∧ DL(X ∪ {y}, t)

We impose the condition DL({x}, N), in case of the abstraction λx.N .

Immediate Simplification

For the conversion (is), known as immediate simplification, we follow Prawitz [78]
by simplifying unused arguments and impose the condition x ∈ FV(N1) in case of
the application y(N0, x.N1).

The rule (πe4) is somewhat problematic because by itself it creates a loop, what-
ever orientation one chooses for it, and we will come back to it later, together with
the last rule (πe5).

Conversion η and Normal Forms

In contrast with the conversions β and πe, the η-conversion requires us to consider
the types of the term involved.

The rule of η-conversion oriented as an expansion (i.e., from left to right in the
definition above) expands a term of arrow type into a generalised application. Con-
sidered together with the β conversion oriented in a reduction from left to right, one
has to impose restrictions on η-expansion to prevent infinite sequence of reductions.
Namely an η-expansion should not expand a term in abstraction form nor the major
premiss r of a generalised application r(s, x.t).

To obtain normal forms for the η-conversion, it suffices to restrict the formation
of pure normal forms for variables to those of ground type. Hence a final step is
to incorporate typing in our normal forms, they will have to verify the following
definition.



64 3. Generalized Applications

Definition 3.7 (ΛJ -normal form). The set NFΛJ of ΛJ-normal forms is defined
inductively together with the set PNFΛJ of pure normal forms as follows:

(x : o) ∈ Γ

Γ`PNF x : o

Γ, x : ρ`NFN : σ

Γ`PNF λx.N : ρ→ σ

Γ`PNF P : ρ

Γ`NF P : ρ

Γ, y : ρ→ σ `PNF P : ρ Γ, y : ρ→ σ, x : σ `NFN : τ

Γ`NF y(P, x.N) : τ

in the clause with conclusion Γ`PNF λx.P : ρ→ σ, we impose the condition
DL({x}, P ) which is true if P is not an generalised elimination and defined oth-
erwise by:

DL(X, (r(s, y.t))) :⇔ X ∩ (FV(r) ∪ FV(s)) 6= ∅ ∧ DL(X ∪ {y}, t)

and in the clause with conclusion Γ`NF y(P, x.N) : τ , we have the condition x ∈
FV(N).

Circular Conversions

Let us come back to the conversions (πe4) and (πe5).

In normal terms as given above, these circular conversions concern occurrences
of lists of generalised applications of the form:

x0(P0, y0.x1(P1, y1.x2(P2, y2 . . .))

(where it may be the case that xi = xj and Pi = Pj). The conversion (πe4) identifies
those such lists where some generalised applications have been permuted, whereas
(πe5) identifies those where some generalised applications have been duplicated.

A (decidable) test for the conversion (πe4) and (πe5) can be done a posteriori on
these normal forms.

Notation 13. We will call the conversions (πe4) and (πe5) circular permutative con-
version and write πec for their union.

Remark 11 (variations on normal forms). One could further impose conditions
on normal forms: If one does not want to allow for repetition, i.e., one forbids
xi = xj and ri =πec rj in a list of generalised applications, then one has only to
check for permutation of these generalised applications and the class of convertible
normal forms even becomes finite. But then a test of inequality modulo =πec has to
be incorporated in the formulation of normal forms.
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3.3 Informal Description

We use normalization by evaluation as a normalizing procedure. First we have to
give a suitable interpretation. In this informal description our interpretation of the
ΛJ calculus is a standard set-theoretical one with the ground type interpreted as the
set of variables:

Definition 3.8 (Type Interpretation). We define the interpretation JρK of a type
ρ, by induction on ρ ∈ Ty

JoK ::= Var

Jρ→ σK ::= JρK → JσK,

where JρK → JσK is the full function space between the set JρK and JσK.
The interpretation of types JTyK of the typed lambda calculus with generalised

application ΛJ is then:

JTyK ::=
⋃
ρ∈Ty

JρK.

To define the interpretation of terms we need first to define the auxiliary notion
of valuation.

Definition 3.9 (Valuation). Given a context Γ, we define a valuation on Γ to
be a partial function η : Var → JTyK⊥ such that for x : ρ ∈ Γ, η(x) is defined and
η(x) ∈ JρK. Given a context Γ, a valuation η on Γ, a variable y 6∈ Γ and an element
a ∈ JσK, we define a valuation (η, y 7→ a) on Γ ∪ {(y : σ)}, called the extension of η
by y 7→ a by,

(η, y 7→ a)(x) ::=

{
a if x = y,

η(x) otherwise.

Remark 12. Valuation functions are partial functions represented as total functions
from the set of variables Var into the set JTyK⊥ = JTyK +{?}, i.e., the interpretation
of types extended with an element ? playing the rôle of an undefined value. In the
following, whenever we will use a valuation applied to some variable, this variable
will belong to the domain of definition of the valuation and the result will therefore
be defined. And although, strictly speaking we should do a case distinction on the
result to know wheither it is defined (an alternative would be to use an exception
monad as presented in definition 1.3), we will consider it to be an element of JTyK.

The interpretation of a term is an element of the interpretation of its type.
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Definition 3.10 (Term Interpretation). We define the interpretation JrKη of a
term r, whenever there is a context Γ, such that Γ` r : ρ and η is a valuation on Γ,
to be an element of JρK, by the following inductive definition:

JxKη =η(x)

Jλx.rKη(a) =JrKη,x7→a
Jr(s, x.t)Kη =JtKη,x7→JrKη(JsKη))

In the normalization algorithm exposed below we will regularly use exceptions.
While a purely functional semantics of exceptions is used in the next section, we
prefer to explain them informally in this section. Let be given a value e of type
E, an exception carrying the exceptional value e can be thrown with the throw(e)
operator. Given a handling function h of type E → T , if an exception is thrown
with throw(e) inside a program p of type T , such an exception e can be caught with
the operator catch(p)(h) and evaluated to h(e).

3.3.1 Several Attempts

Let us write nf for the normalizing function we will describe. In the chapter on
simply typed λ-calculus, this function was given by applying the reify function ↓ to
the interpretation of a term t with the function reflect ↑ as valuation, nf(t) =↓ JtK↑.

The principle here is still the same and we will start from the algorithm of the
last chapter and modify it to produce normal terms of ΛJ . The only syntactical dif-
ference between ΛJ and Λ is in applications, generalised applications for the former,
simple applications for the latter. The only place where syntactical applications
were created in the NbE algorithm of the last chapter was in the definition of the
function ↑ at arrow type:

(↑ρ→σ r)(a) ::=↑σ r(↓ρ a)

Because a generalised application of the form r(s, z.z) translates to a simple
application rΛsΛ, to get a generalised application instead of a simple application, we
could just replace this definition with the following:

(↑ρ→σ r)(a) ::=↑σ r((↓ρ a), z.z)

However there is a problem with this definition. Let us call the pair of term
(r, s) in a generalised application r(s, x.t), a pseudo-application. If we identify λ-
terms with programs, the term r can be seen as a subprogram of t with argument
s.

The system ΛJ can be considered as a simple programming language allowing to
factorise out subprograms occurring with the same argument, i.e., to move out sev-
eral occurrences of a generalised application (r, s) to a same more external position.
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Example 12. Consider the term T ::= t{y/r(s,x.t′)}{y′/r(s,x.t′)} with two subterm
r(s, x.t′) and r(s, x.t′′), where all variables of r and s are free in T . T can be
converted to T ′ = r(s, x.t{y/t′}{y′/t′′}).

In this latter term the pseudo-application (r, s) has been factorized out to the
exterior of the term, and the variable x bound to this pseudo-application is then
used twice.

The normalization function should perform this factorisation of pseudo-applications,
but it is not the case using the algorithm of the last chapter modified as above. To
allow the algorithm to deliver factorized terms, we use the following idea.

When normalizing a term t, if we know that a pseudo-application (r, s) will actu-
ally occur in the normalized term, then one can begin by introducing a generalized
application, the normalized function nf would then read:

nf(t) = r(s, z. ↓ JtK↑)

Of course we have now to modify the function ↑ so that it does not introduce a
second time the pseudo application (r, s). This can be achieved in this particular
case by defining ↑ to be

(↑ρ→σ t)(a) ::=

{
z if t = r and ↓ρ a = s

↑σ t((↓ρ a), z.z) otherwise

To know if a pseudo-application will actually occur in a normalized term, one
can use the NbE algorithm itself. We use environments ε associating a pseudo-
applications to a variable. This environment ε is a partial function. In the environ-
ment ε, a pseudo application (r, s) can be associated with no variable, in this case
the result of the application ε(r, s) of the environment to the pseudo-application is
undefined, and is set to the element ?. Thus an environment is implemented as a
total function ε : Tm× Tm→ Var⊥ where Var⊥ = Var ∪ {?} is the extension of the
set Var by the element ?.

Finally, we modify once again the function ↑ρ→σ t so that applied to a value a, it
continues the computation if the pseudo-application (t, ↓ a) is in the environment,
or else interrupt the computation and return this pseudo-application as exception.
Thus a first run of the NbE-algorithm in an empty environment may return a pseudo
application as exception, in this case we run the NbE-algorithm anew in an updated
environment where the pseudo-application got in the first run is associated to a new
variable. This has to be repeated until no more exceptions are thrown, i.e., until a
normal form is produced.

Hence the final definition of the function ↑ at arrow type is as follows:

(↑ρ→σ t)(a) ::=

{
z if ε(t, ↓ρ a) = z

throw(t, ↓ρ a) if ε(t, ↓ρ a) = ⊥
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Remark 13. As one needs to run the NbE algorithm for each creation of a pseudo-
application, the implementation is particularly inefficient. One could easily optimize
it, for example one could use continuations which would retain the computation done
so far and avoid to do the same computation several times. The advantage of this
use of exceptions is that it provides a simpler framework to reason about the program.
Transposing a reasoning done for a simple program to its optimized version should
be simpler than carrying it out directly for the optimized program.

3.3.2 The Binding Variable Problem

The problem is just a bit more complicated than explained above because the NbE
algorithm can generate subterms with new bound variables as in the definition of ↓
at arrow type:

↓ρ→σ f ::= λx. ↓ f ↑ x (x new)

If we only catch exceptions at the top-level, we would then possibly catch a
pseudo-application with a variable which is not yet bound.

To prevent this situation, we will catch exceptions as soon as new variables are
introduced, i.e., just after a λ. This will allow us to compare the free variables of
the pseudo-application thrown as exception and the variable bound at this λ. If
the bound variable does not occur free in the pseudo-application, then this pseudo-
application is thrown further, otherwise a generalized application is created at this
point.

We are now in position to write a first version of our algorithm. Similarly to the
case of the simply typed λ-calculus, it is possible to restrict both the domain of the
function ↑ and the codomain of the function ↑ to respectively variables and pure
normal forms.

We shall introduce the function doAGA? which produces normal forms from pure
normal forms, and finally observe that the domain of the environments can be re-
stricted to those pseudo-applications whose first component is a variables and second
component a pure normal form.
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Code 5 (↑ and ↓). Let ε0 ∈ Var × PNF → Var⊥ be an environment. The reify
function ↓ρ: (Var × PNF → Var⊥) → JρK → PNF and reflect function ↑ρ: (Var ×
PNF→ Var⊥)→ Var→ JρK are defined simultaneously by induction on the type ρ:

↓oε0 x ::=x

↓ρ→σε0
f ::=λx.doAGA? ((�ε. ↓σε f(↑ρε x)), {x}) ε0 x new

↑oε0 x ::=x

↑ρ→σε0
x(a) ::=let P :=↓ρε0 a in

catch(↑σε0 ε0(x, P ))(�⊥.throw(x, P ))

together with the function doAGA? : ((Var × PNF → Var⊥) → PNF) × P(Var) →
(Var × PNF→ Var⊥)→ NF which inserts generalized application when needed:

doAGA? (f, X)ε0 ::= catch(fε0)

�(x, P ).

{
throw(x, P ) if x 6∈ X and X ∩ FV(P ) = ∅
x(P, y.doAGA?(f, ({y} ∪X))(ε0

(x,P )7→y)) otherwise

The auxiliary function doAGA? (for ”do A Generalized Application”) introduces gen-
eralized applications as soon as the bound variables of a pseudo-application are
bound.

The normalization function for a term r is obtained by applying the function
doAGA? to �ε ↓ερ JrK↑ε and all free variables of r in the empty environment (i.e., the
environment everywhere undefined �t.⊥).

Definition 3.11 (normalization function). We define the normalization function
nf : Tm→ Tm by :

nf(t) = doAGA?(�ε ↓ερ JrK↑ε ,FV(t))(�t.⊥)

3.4 Formalization

We now precisely define the notions we have let informal in the previous sec-
tions: the environment needed to generate new names, the environment associating
pseudo-applications to variables and the handling of exceptions containing pseudo-
applications. To be correctly threaded through the NbE-algorithm both of these
environments and the exceptions have to be incorporated in the interpretation. To
capture this notion in pure functional settings, we will use a combination of mon-
ads (a reader monad for each environment, and an exception or error monad for
exceptions).
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Name Generation Environment

The name generation is dealt with as in the first chapter by defining a name gener-
ation environment. We restate the definition here.

Definition 3.12 (Name Generation Environment). We define a set of name gen-
eration environment or set of environment for short, as a set E together with an
update function (−)− : E → Var → E and an access function new : E → Var. The
extension of e− : V → E to a function from a list of variables e− : L(V ) → E is
defined in a canonical way by

ex,
−→x ::= (ex)

−→x

eε ::= e.

The function (−)− and new have moreover to satisfy the following property for all
e ∈ E:

∀−→x , x 6= new(ex,
−→x ) (†)

Notation 14. The condition that the new function applied to an environment e ∈ E
should never return a given variable x can be expressed by:

∀−→x , x 6= new(e
−→x )

We will abbreviate this condition by x 6∈ e. In the same way we will abbreviate for
a given set of variable X, ∀x ∈ X, x 6∈ e by X 6∈ e.

Postdiction Environment

We call the environment associating a pseudo-application to a variable a postdiction
environment because on the one hand, this environment can be seen as an oracle pre-
dicting in a run of the NbE algorithm with which variables a pseudo-application has
to be replaced, but on the other hand these predictions are obtained from previous
runs of the NbE-algorithms.

Definition 3.13 (Postdiction Environment). We define the postdiction en-
vironment P as the set Var × PNF → Var⊥ together with an update function
(−)− : P→ ((Var × PNF)× Var)→ P defined by:

ε(x,P )7→y(x′, P ′) ::=

{
y if x = x′ and P =πec P

′

ε(x′P ′), otherwise
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Interpretation Monad

We will now define the monad used in the interpretation, a computation should take
place in a name environment E and a postdiction environment P(= (Var×PNF)→
Var⊥), and it can be aborted by raising an exception containing a pair of a variable
and a pure normal form. Hence the specification of a computation with result within
a set A is:

TA ::= StE(StP(A⊥(Var×PNF))) = E → ((Var × PNF)→ Var⊥)→ (Var × PNF + A)

The unit and multiplication of the monad of the interpretation are defined quite
naturally from the definition of the unit and multiplication of its monad components.

Definition 3.14 (Interpretation monad T ::= StE◦StP◦−⊥(Ne)). The (set operator
of) the interpretation monad T is defined by

TA ::= StE(StP(A⊥(Ne))) (= E → (Ne→ Var⊥)→ Ne + A)

Given m ∈ TA and f ∈ A→ TB, we define the unit ν : A→ TA and multiplication
? : TA→ (A→ TB)→ TB of the interpretation monad by:

νTA ::= νStE ◦ νStP ◦ νA⊥(Ne)

(m ?T f)(e)(ε) ::= m(e)(ε) ?−⊥(E) λa.f(a)(e)(ε)

The update operations for the name environment monad and the postdiction
monad extend component-wise to the interpretation monad.

Definition 3.15 (update for the Name Generation Monad). We define an update
function (−)− : T(A) → Var → T(A) operation by extending the update operation
for the name generation monad by:

mv(e) ::= m(ev)

Definition 3.16 (update for the Postdiction Monad). We define an update func-
tion (−)− : StP(A) → (Ne×Var)→ StP(A) operation by extending the update opera-
tion for postdiction environment by:

m(x,P )7→y(ε) ::= m(ε(x,P )7→y)

This update operation extends in turn into an operation (−)− : TA→ (Ne×Var)→
TA to the interpretation monad just in the same way by:

m(x,P )7→y(e)(ε) ::= m(e)(ε(x,P )7→y)
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The interpretation is a call by value interpretation for computations in the monad
T:

Definition 3.17 (interpretation). The call-by-value interpretation of the ΛJ-
calculus is given on types by

JoK ::= Var

Jτ1 → τ2K ::= JρK → T(JσK)

Given a valuation η on a context Γ (η � Γ), the interpretation of a typed term
Γ ` t : τ is the monadic value JtKη ∈ T(JτK) defined by:

JxKη ::= ν(η(x))

Jr(s, x.t)Kη ::= JrKη ? �f.JsKη ? �a.fa ? �v.JtKη,x7→v
Jλx.rKη ::= ν(�a.JrKη,x7→a)

Code 6 (call-by-value NbE). The function ↓τ : JτK → T(PNFτ ) and ↑τ : Varτ → JτK
are defined simultaneously by:

↓o x ::= ν(x)

↓ρ→σ f ::= new ? �x.doAGA?(f(↑ρ x)? ↓σ, {x})x ? �e.ν(λx.e)

↑o x ::= x

↑ρ→σ x(a) ::= �k ε.(↓ρ a)kε ? �P.

{
throw(x, P ) if ε(x, P ) = ⊥
(↑σ y)ε if ε(x, P ) = y

where the auxiliary function doAGA? : T(PNF)→ P(Var)→ T(NF) is defined by

doAGA?(f,X) ::= catchf

�(x, P ). if ({x} ∪ FV(P )) ∩X = ∅ then throw(x, P )
else new ? �y.

doAGA?(fx,P 7→y, X ∪ {y})y ? �t.
if y 6∈ FV(t)
then ν(t)
else ν(x(p, y.t))

The normalization function is obtained by applying the function doAGA? to
JrK↑? ↓τ in an initial name environment er containing the variables free in r, and an
empty postdiction environment (i.e., the function everywhere undefined �n.⊥)

Code 7. Given a typed term Γ` r : τ , the normalization of the term r is given by:

nfτ (r) ::= doAGA?(JrK↑? ↓τ , er)(�n.⊥)
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The claims of this section state the correctness and completeness of the algorithm
(6) above.

Claim 1 (Correctness).

r =βη nf(r)

Claim 2 (Completeness).

r =βη s =⇒ nf(r) =cc nf(s)

The results in the previous chapter (2) were developed to be a basis to prove
these results. A first exploration lead us to use logical monadic relations whose
monadic part itself is defined inductively. This monadic part has to encompass the
notion of fresh variables, as in the previous chapter, but also the notion of attempts
needed to run the NbE until no exceptions are raised (the base case corresponding
to a monadic value returning directly a value, and the step case corresponding to a
monadic value returning an exception.) For time reason, we have let a formal study
for further research. The conceptual simplicity of the approach using exceptions
allowed us to implement the NbE algorithm in the pure functional language Haskell
without using any primitive operators and we are confident that proofs of the claims
(3) and (4) above will for the same reason be feasible.
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Chapter 4

Sums

This section is dedicated to the study of the extension of the simply typed λ-calculus
by sum types and to the design of a decision algorithm for its theory.

Although the extension itself is seemingly simple (after all we are only adding the
possibility to do case analysis into the system), the study of its theory is extremely
complex. For a general introduction of the difficulties encountered, the reader may
consult [39]. These difficulties depend on which kind of rules one wants to add
besides β-reduction. For the extension by permutative conversion, the system is
proved strongly normalizing in [38] by a CPS-translation, in [75] by a variant of the
reducibility candidate method, and in [55] by an original syntax directed charac-
terisation of the strong normalizable terms. For the extension to a full extensional
system, the permutation of independent case expressions prevents the design of a
reasonable system with the confluence and strong normalization property. Neverthe-
less, Neil Ghani proposes a proof of decidability entirely based on rewriting theory
[45].

Another way, is to use normalization by evaluation. The first algorithm of nor-
malization by evaluation for a system with sum types is given by Olivier Danvy in
[37], using continuation and control operators. Andrzej Filinski presents an algo-
rithm in [43], as well based on continuations and control operators, but in a monadic
setting, which is of particular interest to us.

In [4], Thorsten Altenkirch, Peter Dybjer, Martin Hofmann and Phil Scott prove
constructively the existence of an NbE algorithm, able to decide the whole exten-
sional theory of a simply typed lambda extended with sum types, and hence a direct
program extraction from a formalisation of the proof should provide the algorithm.
An algorithm for an extension by a Boolean type together with the proof of its
correctness and completeness is given in [5]. The challenge to give a practical NbE
algorithm for a system with general sum types, and for a conversion stronger than
merely beta was first taken on by Vincent Balat and Olivier Danvy in [11]. This
approach using continuations and control operators is then further pursued by Vin-
cent Balat in [9] and his coauthors Roberto Di Cosmo, and Marcelo Fiore in [10]. In
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these latter works, the algorithm is optimized and the set of normal forms resulting
from the algorithm is further constrained, and this allows to design an algorithm for
the whole extensional conversion of the calculus.

Our work is based both on the approach developed by Altenkrich and his coau-
thors and Balat and his coauthors, we will present an algorithm based on normal-
ization by evaluation for the normalization of terms in a system with sum types and
extensional conversions. However, our algorithm is based on the notion of exceptions,
which we consider as a much simpler framework than continuations (exceptions can
be seen as trivial continuations).

Moreover we do not use any control operators or imperative effects such as as-
signment. Although for the commodity of a first exposition we will use a pseudo
programming language where exceptions are a built-in feature, we will eventually
give the algorithm in a pure functional style, i.e., in a monadic setting in the con-
tinuation of Filinski [43], but for a stronger conversion relation.

4.1 System

In this first section we present the system Λ+, which is an extension of the simply
typed λ-calculus, Λ, by sum type. A sum type of two types ρ and σ will be inter-
preted as a disjoint union of the interpretations of ρ and σ. We do not consider
product type, which could be interpreted as a cartesian product, because on the one
hand, the essential difficulties are related to sum types and product types would
not introduce much more, and on the other hand a presentation including products
would be heavier.

Types and terms

The sum type constructor collates two types in a new one.

Definition 4.1 (Types). Given a base type o

Ty 3 ρ, σ ::= o | ρ→ σ | ρ+ σ

The sum type comes equipped with two distinct injection constants and a case
analysis operator. A simple example is the type of Boolean, which can be seen as
a sum type of two copies of the unit type. In this case, an injection from the unit
type can be seen as a constant, either true or false. The case analysis operator would
then be simply an if operator. In general, the sum type is built from two types with
more than one inhabitant, the particular inhabitant is then relevant and the case
analysis operator introduces a binding in each branch which allows to use it.
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Definition 4.2 (Terms). Given a countable infinite set of terms variables Var, the
set of terms Tm of the simply typed λ-calculus with sum type is defined inductively
by:

Tm 3 r, s, t ::= x | λxρ.r | rs | ini r | case(r, xρ.s, yσ.t)

where x ∈ Var

Remark and notation 2. We have chosen to express our system in Church style,
which means that types of bound variables are explicitly given at the binding symbol.
The dot after a variable in a branch of a case term binds the variable in the branch,
hence this variable is written with its type. However, for readability, we will allow
us to omit these types when they are clear from the context.

Notation 15. Because a term containing case symbol case can become very large, we

will use sometimes an alternative vertical notation case

(
r,
x · s,
y · t

)
for case(r, x.s, y.t).

Typing

The extension of the typing system from the Λ-calculus to the Λ+ is defined as
follows:

Definition 4.3 (Typing). The typing relation is a ternary relation between con-
texts, terms and types and is defined inductively by

(x : ρ) ∈ Γ

Γ`x : ρ
(Var)

Γ, x : ρ` r : σ

Γ`λxρ.r : ρ→ σ
(→I)

Γ` r : ρ→ σ Γ` s : ρ

Γ` rs : σ
(→E)

Γ` r : ρi

Γ` ini r : ρ0 + ρ1

(+I)

Γ` r : ρ0 + ρ1 Γ, x0 : ρ0 ` s0 : σ Γ, x1 : ρ1 ` s1 : σ

Γ` case(r, xρ00 .s0, x
ρ1
1 .s1) : σ

(+E)

In the terminology of natural deduction, the typing rules are separated into two
classes: those where a type constructor (here → or +) appears in a premise are
called elimination rules, whereas the ones where the type constructor appears in the
conclusion are called introduction rules. The premiss of an elimination rule carrying
the eliminated type constructor is called a major premiss, and the others are called
minor premises.
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Conversions

We will define the theory of the Λ+-calculus, as a list of axioms. The actual conver-
sions are obtained from these axioms as the smallest congruence relation on the term
structure containing these axioms, i.e., a relation which is an equivalence relation
and closed under term formation rules.

We begin by defining what is the contextual closure of an arbitrary relation in
the Λ+-calculus. The name of the conversion R in the definition below can be for
example β, η, π or a combination of those.

Definition 4.4 (Contextual closure). A relation =R is contextually closed if the
following rules hold.

r =R s

rt =R st
(R-AppL)

r =R s

tr =R ts
(R-AppR)

r =R s

λx.r =R λx.s
(R-ξ)

r =R s

in0 r =R in0 s
(R-Inj0)

r =R s

in1 r =R in1 s
(R-Inj1)

r =R s

case(r, xρ00 .s0, x
ρ1
1 .s1) =R case(s, xρ00 .s0, x

ρ1
1 .s1)

(R-Case1)

s0 =R s
′
0

case(r, xρ00 .s0, x
ρ1
1 .s1) =R case(r, xρ00 .s

′
0, x

ρ1
1 .s1)

(R-Case2)

s1 =R s
′
1

case(r, xρ00 .s0, x
ρ1
1 .s1) =R case(r, xρ00 .s0, x

ρ1
1 .s

′
1)

(R-Case3)

The axioms for β-conversions are defined as usual.

Definition 4.5 (β-conversion). The axioms of the β-conversion are given by:

(λx.r)s =β r{s/x} (β→)

case(ini r, x0.s0, x1.s1) =β si{r/xi} (β+)

As mentioned in the introduction, the theory augmented by permutative conver-
sion has already been studied by several authors. This theory allows to identify more
terms than the β-conversion alone and is useful in a natural deduction formulation
of logic with disjunction because they allow to recover a variant of the subformula
property (see [88] or [48] for details).
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Definition 4.6 (π-conversion). The axioms of the permutative conversion are
given by

case(case

(
r,
x0 · s0,
x1 · s1

)
, y0.t0, y1.t1) =π case

(
r,
x0 · case(s0, y0.t0, y1.t1),
x1 · case(s1, y0.t0, y1.t1)

)
(π1)

case(r, x0.s0, x1.s1)t =π case(r, x0.s0t, x1.s1t) (π2)

where in the axiom π2, neither x0 nor x1 occurs free in t.

Considering the type derivations as natural deduction proofs, a permutative con-
version permutes an elimination rule in a major premiss of an elimination rule up-
ward over the minor premiss. For example, the second rule above reads with type
derivation as follows (with neither x0 nor x1 occurring free in t):

Γ` r : ρ0 + ρ1 Γ, x0 : ρ0 ` s0 : σ → τ Γ, x1 : ρ1 ` s1 : σ → τ

Γ` case(r, xρ00 .s0, x
ρ1
1 .s1) : σ → τ

(+-E)
Γ` t : σ

Γ` case(r, xρ00 .s0, x
ρ1
1 .s1)t : τ

(→-E)

=π

Γ` r : ρ0 + ρ1

Γ, x0 : ρ0 ` s0 : σ → τ Γ, x0 : ρ0 ` t : σ

Γ, x0 : ρ0 ` s0t : τ

Γ, x1 : ρ1 ` s1 : σ → τ Γ, x1 : ρ1 ` t : σ

Γ, x1 : ρ1 ` s1t : τ

Γ` case(r, xρ00 .s0t, x
ρ1
1 .s1t) : τ

To sum up, given a term r, the π-conversion pulls out to the exterior of the term
a test term s of a case-subterm case(s, x.t, y.u) only if it occurs in certain position of
the term r. This occurrence conditions of the case-subterm can be relaxed, leading
to the generalisation πe below of the π conversion. We will call the πe the exten-
sional permutative conversion, because together with the η-conversion, it provides
an extensional conversion relation.

Definition 4.7 (πe-conversion). The axiom of the extensional permutative con-
version is given by:

r{case(s,y0.t0,y1.t1)/x} =πe case(s, y0.r{t0/x}, y1.r{t1/x}) (π)

where neither y0 nor y1 occurs free in r.

Remark 14. We use a capture avoiding substitution in the definition of the πe-
conversion for sum type above so that the free variables of s can not be bound in
r.

We define now the η-conversions.
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Definition 4.8 (η-conversion). The axioms of η-conversion, the axioms η→ and
η+ are given by

r =η→ λx.rx (η→)

r =η+ case(r, x0.in0 x0, x1.in1 x1) (η+)

where in the axiom η→, x does not occur free in r.

The η+-conversion is the analogue of the η→-conversion for sum types. It takes an
arbitrary terms of sum types and converts it to a term involving the term constructor
for sum type, i.e., injections.

Remark 15. A difference with the ΛJ-system is that it is possible to present the η+-
and π-conversion in a unique rule:

r{s/x} =ηπ case(s, x.r{in0 x/x}, x.r{in1 x/x})

In this case, we have to make sure that in the typing derivation of r{s/x}, the term
s is typed with a sum type for the right hand side to be well-typed. To the contrary,
checking the applicability of the πe-conversion is syntactical1.

The existence of a strongly normalizing and confluent rewriting system generat-
ing this theory is in fact very unlikely (the only work based on rewriting theory to
decide this theory [45] does not devise a strongly normalizing system). It is probably
for this reason that until very recently, the scientific community has only focused on
some sub-conversions of the whole theory.

4.2 Extended Conversion and Normal Forms

In the definition of the πe-conversion above, because of the substitution involved
there, we have to consider the term at an arbitrary depth. We give here a local
decomposition of this conversion. Apart from the fact that it is always interesting
to give a local characterisation of a global phenomena, this decomposition will help
us to explain difficulties inherent to the extensional calculus with sum types and to
justify the normal form of the term as computed by the NbE algorithm.

1Only in the case the variable x does not actually occurs in the term r of the left hand side of
the πe-conversion rule above, we have to check that the term case(s, y0.t0, y1.t1) to be substituted
for is typable.



4.2 Extended Conversion and Normal Forms 81

Lemma 21 (πe-conversion (local version)). The extensional permutative conversion
can be defined by the following axioms

case

(
case

(
r,
x0 · s0,
x1 · s1

)
,
y0 · t0,
y1 · t1

)
=πe1

case

(
r,
x0 · case(s0, y0.t0, y1.t1),
x1 · case(s1, y0.t0, y1.t1)

)
where x0, x1 6∈ FV(t0, t1)

case(r, x0.s0, x1.s1)t =πe2
case(r, x0.s0t, x1.s1t)

where (x0, x1 6∈ FV(t))

t case(r, x0.s0, x1.s1) =πe3
case(r, x0.t s0, x1.t s1)

ini case(r, x0.s0, x1.s1) =πe4
case(r, x0.ini s0, x1.ini s1)

λx.case(r, x0.s0, x1.s1) =πe5
case(r, x0.λx.s0, x1.λx.s1)

where x 6∈ FV(r)

case(r, x0.case(s, y0.t0, y1.t1), x1.u) =πe6
case

(
s,

y0 · case(r, x0.t0, x1.u),
y1 · case(r, x0.t1, x1.u)

)
where y0, y1 6∈ FV(u), x0 6∈ FV(s)

case(r, x0.u, x1.case(s, y0.t0, y1.t1)) =πe7
case

(
s,

y0 · case(r, x0.u, x1.t0),
y1 · case(r, x0.u, x1.t1)

)
where y0, y1 6∈ FV(u), x1 6∈ FV(t)

case(r, x0.case(r, x0.s0, x1.s1), x1.t) =πe8
case(r, x0.s0, x1.t)

case(r, x0.s, x1.case(r, x0.t0, x1.t1)) =πe9
case(r, x0.s, x1.t1)

r =is case(s, x0.r, x1.r)

where xi 6∈ FV(r)

The seven first conversions (πe1 to πe7) above are just instantiation of the general
π-conversion. The structural closure of these rule generates the general πe-conversion
where substitution is restricted to one occurrence of a variable. The conversion πe8
and πe9 handles the case of multiple occurrences whereas the conversion is handles
the case of zero occurrence.

We will follow the scheme of the last chapter and describe progressively the
normal forms of our system, i.e., we will give some sensible criteria based on the
local definition of the πe-conversion. Whereas the NbE algorithm is not based on
rewriting theory, these normal forms can be understood, up to a certain stage, as
the irreducible terms of a rewriting system obtained by orienting the conversions
above.

The normal forms that we will eventually present are essentially the same as in
the works [9] of Balat and [4] of Altenkirch, Dybjer, Hofmann and Scott. In [4] a
normal form is not merely a term but a set of terms where terms that are convertible
with the conversions that create circularity are identified. Although, this shortens
the presentation we prefer to stick to a more syntactical presentation of normal forms
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as in [9].
First we want our normal forms to be a restriction of the existing normal forms

for the traditional permutative conversion (given as π in the system section or πe1
and πe2 in the alternative definition of πe-conversion above) in order to retain the
subformula property. The set of normal forms NFΛ+ for permutative conversions π
and β-conversions are defined inductively together with a set of neutral terms NeΛ+

as follows:

NeΛ+ 3 n ::= x | nN
NFΛ+ 3 N ::= n | λx.N | iniN | case(n, x1.N1, x0.N0)

The rule πe3, read from left to right, transforms an application term t case(r, x0.s0, x1.s1)
in a case term case(r, x0.t s0, x1.t s1). This is already the effect of the traditional per-
mutative conversion π, so that we keep this direction. Similarly, the rule πe4 move
injections ini case(r, x0.s0, x1.s1) inside a case term case(r, x0.ini s0, x1.ini s1). The
normal forms NF need once more to be split and are defined simultaneously with
neutral forms Ne and PNF.

NeΛ+ 3 n ::= x | nP
PNFΛ+ 3 P ::= n | λx.N | ini P

NFΛ+ 3 N,N0, N1 ::= P | case(n, x1.N1, x0.N0)

The conversion πe5 says that a λ-abstraction can be moved inside a case term. We
choose just as in the last chapter to move the binders λ as deep as possible in order
to introduce variables just before their uses. For that we need to define a condition
which express that a λ is already at the deepest possible position.

For example for the term λz.case(r, x.s, y.t) this condition should state that the
variable z should occur in r, otherwise λz could be moved in front of s and t.
However, to check whether the variable z occurs in r is not enough, for if the term
s is itself a case term, say s = case(r′, x′.s′, y′.t′), and neither z nor x occurs in r′

then we could move λz in a more internal position as follows:

1. first move the term r′ to the outside by converting

λz.case(r, x.case(r′, x′.s′, y′.t′), y.t)

into

λz.case(r′, x′.case(r, x.s′, y.t), y′.case(r, y′.t′, y.t))

2. and now we can move λz inside by converting

λz.case(r′, x′.case(r, x.s′, y.t), y′.case(r, y′.t′, y.t))

into

case(r′, x′.λz.case(r, x.s′, y.t), y′.λz.case(r, y′.t′, y.t))
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Therefore we define the deepest λ condition DL(X, r), for a set of variables X and
a term r, this condition is true if r is a variable or a λ-abstraction and if r is a case
term case(n, x0.N0, x1.N1), it is defined as follows:

DL(X, case(n, x0.N0, x1.N1)) ::= X ∩ FV(n) 6= ∅ ∧ DL(X ∪ x0, N0) ∧ DL(X ∪ x1, N1)

Conversion η and prenormal forms

As already noticed, η-conversions require to consider the types of the term involved.
The rule of η-conversions, oriented as expansions (i.e., from left to right in the
definition above), expand a term r into an abstraction or a case term according
whether the type of r is an arrow type or a sum type.

Considered together with the β-conversion oriented in a reduction from left to
right, one has to impose restrictions on the η→-expansion to prevent infinite sequence
of reductions. Namely an η→-expansion should not expand a λ-abstraction nor the
major premiss r of an application rs. Similarly an η+-expansion should not expand
an injection term ini r nor the major premiss r of a case term case(r, x.s, y.t).

To obtain normal forms for the η-conversion, it suffices to restrict the formation
of pure normal forms for neutral terms to those of ground type. We will need to
further restrict these normal forms in the next section and call prenormal forms the
normal forms obtained at this stage.

Definition 4.9 (prenormal forms). We define by simultaneous induction three
relations −`Ne− : −, −`PNF− : −, and −`NF− : − between context, term and
type,

Γ`Ne x : ρ

Γ`Ne n : ρ→ σ Γ`PNF P : ρ

Γ`Ne nP : σ

Γ`Ne n : o

Γ`PNF n : o

Γ, x : ρ`NFN : σ

Γ`PNF λx.N : ρ→ σ

Γ`PNF P : ρi

Γ`PNF ini P : ρ0 + ρ1

Γ`PNF P : ρ

Γ`NF P : ρ

Γ`Ne n : ρ0 + ρ1 Γ, x : ρi `NFNi : σ

Γ`NF case(n, x0.N0, x1.N1) : σ

in the rule with conclusion Γ`PNF λx.N : ρ→ σ we impose the condition

DL({x}, N) (deepest λ)

which is true if N is not a case term and otherwise defined by:

DL(X, case(n, x0.N0, x1.N1)) ::= X ∩ FV(n) 6= ∅ ∧ DL(X ∪ x0, N0) ∧ DL(X ∪ x1, N1)
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The condition (deepest λ) ensures that the case are introduced as soon as possi-
ble, i.e., as soon as variables occurring in the term to be tested are available, which
means just after a binding symbols or at the top-level.

Notation 16. We will write NeρΓ (resp. NFρΓ and PNFρΓ) for the set of terms r such
that Γ`Ne r : ρ (resp. Γ`NF r : ρ and Γ`PNF r : ρ) and Neρ (resp. NFρ and PNFρ)
for the set of terms r such that there exists a context Γ and r ∈ NeρΓ (resp. r ∈ NFρΓ
and r ∈ PNFρΓ).

Circular Conversions and Immediate Simplification

To design a decision algorithm for the whole conversion relation, one has to face a
first problem, namely the inherent circularity of the πe-conversion.

As one can see in the following example, this circularity problem cannot be solved
by the orientation of the rewrite relation alone.

Example 13. In the example below the term on the right hand side is obtained by
pulling out the two occurrences of the subterm r′ thanks to the conversion πe6 and πe7,
then the term is simplified by using πe8 or πe9, and by reducing the generated β-redex:

case

(
r,
x · case(r′, x′.s′, y′.t′),
y · case(r′, x′.s′′, y′.t′′)

)
= case

(
r′,

x′ · case(r, x.s′, y.s′′),
y′ · case(r, x.t′, y.t′′)

)
with x′, y′ 6∈ FV(r) and x, y 6∈ FV(r′).

The two terms of the example above have exactly the same structure, and al-
though it may be possible to break this circularity, e.g. by introducing an order
on terms (for example induced by the variables they contain), it seems artificial to
select one of these terms as more normal than the other. In terms of programming
if we have to do two tests which are independent from each other, there is no reason
to choose to do a particular one first.

Hence, the normal forms can no longer be unique, their equality is no longer
syntactic but has to be tested with respect to this conversions (i.e., πe6 to πe9).

Notation 17. Due to this circularity, we will call the conversions πe6 to πe9 circular
permutative conversion and write πec for their union as relations.

r =πec s ::= r =πe6
s ∨ r =πe7

s ∨ r =πe8
s ∨ r =πe9

s

A second problem is that the NbE algorithm tends to produce terms which are
in expanded form, i.e., the πe-conversion is oriented from left to right. In particular
this means that if x does not actually occur in r, the term r{case(s,x0.t0,x1.t1)/x} is
converted into case(s, x0.r, x1.r) (is-conversion) .

Seen as a reduction from left to right this would lead immediately to an infinite
loop. Besides, it does not make any sense to introduce superfluous test term as s
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above.Hence the normal forms will have to be irreducible terms for the inverse reduc-
tion (oriented from right to left) known from Prawitz [78] as immediate simplification
reduction.

case(s, x0.r, x1.r) −→is r (x0, x1 6∈ FV(r))

We will deal with these conversions in more detail after having defined a first
version of the normalization algorithm for the prenormal forms defined above.

4.3 Informal Description

To explain the algorithm, we will proceed informally as in the chapter on the simply
typed λ-calculus (2.2.1).

First we need an interpretation, we take the standard set theoretical interpreta-
tion where a sum type is interpreted as a disjoint union of its components and the
ground type is interpreted as the set of neutral term Neo:

Definition 4.10 (Type Interpretation). We define the interpretation JρK of a type
ρ, by induction on ρ ∈ Ty:

JoK ::= Neo

Jρ→ σK ::= JρK → JσK
Jρ+ σK ::= JρK + JσK

where JρK → JσK is the full function space between the set JρK and JσK, and JρK+JσK
is the disjoint union of the set JρK and JσK.

The interpretation of types JTyK of the typed lambda calculus with sum types
Λ+ is then:

JTyK =
⋃
ρ∈Ty

JρK

To define the interpretation of terms we need first to define the auxiliary notion
of valuation.

Definition 4.11 (Valuation). Given a context Γ, we define a valuation on Γ to
be a partial function η : Var → JTyK⊥ such that for x : ρ ∈ Γ, we have η(x) is
defined and η(x) ∈ JρK. Given a context Γ, a valuation η on Γ, a variable y 6∈ Γ
and an element a ∈ JσK, we define a valuation (η, y 7→ a) on Γ ∪ {(y : σ)}, called
the extension of η by y 7→ a by,

(η, y 7→ a)(x) ::=

{
a if x = y,

η(x) otherwise.
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Remark 16. Valuation functions are partial functions represented as total functions
from the set of variables Var into the set JTyK⊥ = JTyK +{?}, i.e., the interpretation
of types extended with an element ? playing the rôle of an undefined value. In the
following, whenever we will use a valuation applied to some variable, this variable
will belong to the domain of definition of the valuation and the result will therefore
be defined. And although, strictly speaking we should do a case distinction on the
result to know wheither it is defined (an alternative would be to use an exception
monad as presented in definition 1.3), we will consider it to be an element of JTyK.

The interpretation of a typed term is an element of the interpretation of its type.

Definition 4.12 (Term Interpretation). Finally, we define the interpretation JrKη
of a term r, whenever there is a context Γ, such that Γ` r : ρ and η is a valuation
on Γ, to be an element of JρK, by the following inductive definition:

JxKη ::= η(x)

Jλxρ.rKη(v) ::= JrKη,x7→v
JrsKη ::= JrKη(JsKη)

Jini rKη ::= ιiJrKη

Jcase(r, xρ.s, yσ.t)Kη ::=

{
JsKη,x7→a if JrKη = ι0 a,

JtKη,y 7→a if JrKη = ι1 a

4.3.1 Several Attempts

We want now to define a reify function ↓, from the interpretation of types to the
set of terms. As previously, we will define it inductively on the type simultaneously
with a function ↑ from the terms to the interpretation.

Let us try to extend to sum types the definition which was given in chapter 2 for
ground and arrow types. An element of the interpretation of a sum type is either a
left injection or a right injection, and hence the function ↓ can be directly extended
by:

↓ρ0+ρ1 ιia ::= ini ↓ρi a

The first difficulty comes when trying to extend the function ↑ at sum type. Let
us look at the problem with an example:

Example 14 (the unsolvable problem). Let us assume we want to normalize the
term xy of sum type with the following typing:

x : o→ o+ o, y : o`xy : o+ o

by ↓ JxyK↑.
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We are faced with the problem to define the result of the function ↑o+o applied to
xy:

↑o+o xy

According to the interpretation the result should lay in a disjoint union, but should
it be a left or a right injection? The core idea is that a sensible answer is ”I don’t
know”.

Example 15 (a solution). The very fact that we failed to choose a value for the
reflection of the term xy, will guide us in a second run of the normalization algo-
rithm. This time we begin by a case distinction on xy, and in each branch of the
alternative, we memorise whether xy corresponds to a left or a right injection.

case(xy, z. ↓xy 7→in0z JxyK↑, z. ↓xy 7→in1z JxyK↑)

The function ↓xy 7→in0 z follows the same definition as ↓ except that in the compu-
tation of ↓xy 7→in0 z JxyK↑, a call to the function ↑ xy will always return in0 ↑ z.

What we just described can be quite naturally implemented with exceptions and
environments.

Every function is evaluated within an environment which is a finite map from
terms to the injection of a variable. In the first computation of the normalization
function, we begin with the empty environment; this environment corresponds to
our knowledge that at a certain point in the computation we are in a certain branch
of a case and that the test term of the corresponding branch is the left or right
injection of the bound variable introduced by the case.

If in a subcomputation, the function ↑ at sum type is applied to a term for which
we do not know whether the result should be a left or right injection (i.e., the term
is not in the environment), then we abort the computation by raising an exception
containing this term.

In a second computation we use this term for a case distinction and in each
branch we update the environment with the binding of the term to the left or the
right injection.

4.3.2 The Binding Variable Problem

The problem is just a bit more complicated than explained above because the NbE
algorithm can generate subterms with new bound variables as in the definition of ↓
at arrow type:

↓ρ→σ f ::= λx. ↓ f ↑ x

If we only catch exceptions at the top-level, we would then possibly catch a term
with a variable which is not yet bound.
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What we can do however is to catch exceptions as soon as the new variables are
introduced, i.e., just after the binding symbols, the λ or the binding dots of a case
expression.

We are now in position to write a first version of our algorithm:
The environment is implemented as a partial function ε : Ne→ Var + Var taking

a (neutral) term as argument and returning an injection of a variable x, in0 x or
in1 x. The update operation −n7→ini x for the environment is defined by

εn7→ini xn′ ::=

{
ini x if n′ = n,

ε(n′) otherwise.

The function catch and throw have standard behaviours: In an expression throw(n),
the function throw packs the term n into an exception and throw this exception. This
exception is then caught in the first upper expression of the form catch E h (where
throw(n) occurs in E), i.e., the expression catch E h evaluate to hn, the application
of the handler h to the content n of the exception.

Code 8 (NbE for sum types). Let ε0 ∈ Ne → (Var + Var)⊥ be an environment.
The function ↓ρ: (Ne→ (Var+Var)⊥)→ JρK → PNF and ↑ρ: (Ne→ (Var+Var)⊥)→
Ne→ JρK are defined simultaneously by induction on the type ρ:

↓oε0 n ::= n

↓ρ→σε0
f ::= λx.doACase?(�ε. ↓σε f(↑ρε x), {x})ε0 x new

↓ρ0+ρ1
ε0

ιic ::= ini ↓ρiε0 c
↑oε0 n ::= n

↑ρ→σε0
n ::= �v. ↑σε0 (n ↓ρε0 v)

↑ρ+σ
ε0

n ::=

{
let ini x = (catch ε0(n) throw(n)) in

ιi ↑ρiε0 x

where doAcase? : ((Ne→ (Var+Var)⊥)→ PNF)×P(Var)→ (Ne→ Var+Var)→ NF
is defined by

doAcase?(f,X)ε0 ::= catch (fε0)

�n.if FV(n) ∩X = ∅ then throw(n)

else case

(
n,

x · doAcase?(f, (X ∪ {x}))ε0n7→in0 x,
x · doAcase?(f, (X ∪ {x}))ε0n7→in1 x

)
, x new

The auxiliary function doAcase? takes three arguments. Its first argument is a
function taking itself as first argument an environment, its second argument is a set
of variables, and its third argument is an environment (a function from neutral terms
to an injection of a variable ini x). In the expression doAcase?(f,X)ε0, the function
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f is evaluated in the environment ε0, the result is either a term or an exception ⊥(n)
containing a neutral term n. In case of an exception ⊥(n), the set of free variables
of n is compared to X, and if there is no variable in common then the exception is
thrown further up, else a case term is created whose test term is the neutral term n
and each branch is the result of the evaluation of doAcase? for the same function f ,
but in an updated environment (in each branch the neutral term n is now associated
either with in0 x or in1 x for a new variable x).

Remark 17. In the algorithm above, the line in the function doAcase?:

if FV(n) ∩X = ∅ then throw(n)

ensures that if a neutral term n thrown as an exception and containing a variable
x that has not been bound either by a λ-abstraction λx directly before the doAcase?
function or by a binding in a case expression x· after this function, will be thrown
upper in the computation tree. This ensures that neutral terms of sum type are
captured at the uppermost binding possible, just after their creation by a binding or at
the top-level. This is not a trivial idea, as we could just have caught every exceptional
neutral terms after the function doAcase?, and create a new case distinction operator
at this level.

This latter approach would still yield a correct algorithm in the sense that the
result is convertible with the term given as input in the normalization function.

The advantage of creating the distinction operator as soon as possible is that it
allows to further constrain the set of normal forms, and this is essential if we are
after a decision algorithm. This idea of creating the distinction operator as soon as
possible first appears explicitly in the works of Vincent Balat [9], and his coauthors,
Roberto Di Cosmo and Marcelo Fiore [10], with an implementation with controls
operators and an election of a best prompt (uppermost binding).

The normalization function for a term r is obtained by applying the function
doAcase? to �ε ↓ερ JrK↑ε and all free variables of r in an empty environment, i.e., the
function undefined everywhere �t.⊥.

Code 9 (Normalization function). The normalization function nf : Tm → NF is
defined by:

nf(Γ` r : ρ) ::= doAcase?(�ε ↓ρε JrK↑ε ,FV(t))(�t.⊥)

4.3.3 Toward Completeness

Although the algorithm we have just presented is sound in the sense that the result
of our algorithm is βη-equal to the initial term, it is not yet complete. In particular
two terms which are βη-equal can be normalized to syntactically different terms.
As explained in the introduction, the syntactical equality is not suitable to identify
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terms which only differ in the order of independent case eliminations. What we need
is an equality test based on the circular conversion (conversion πe6 to πe9) and the
immediate simplification (is).

First, let us consider the immediate simplification conversion:

case(r, x0.s, x1.s) −→is s (x0, x1 6∈ FV(r)) (is)

Whether the test term r in the rule above is a left or a right injection is irrelevant,
because the two branches of the alternative are anyway the same. We call such
terms redundant.

The reduction (is) above erases the whole term r, and hence the variables it
contains. A consequence is that this reduction does not preserve prenormal forms
because it can break the deepest λ condition (deepest λ).

Example 16. Suppose the following term is a prenormal form,

λx.case(t{case(r,x0.s,x1.s)/z}, y0.t0, y1.t1)

with x ∈ FV(r) but x 6∈ FV(s) and x 6∈ FV(t). An immediate simplification reduction
leads to the following term:

λx.case(t{s/z}, y0.t0, y1.t1)

but this term does no longer verify the deepest λ condition (deepest λ) because x 6∈
t{r/z}.

To avoid these redundancies we want to define the set of normal forms as a
restriction of the set of prenormal forms. But as the example above shows, this can
not be achieved by merely firing the immediate simplification reductions (is) from a
term in prenormal form. To define the set of normal forms, we will integrate a test
of redundancy directly in the inductive definition of prenormal forms.

Among the circular conversions, let us consider the conversion πe8 and πe9.

case(r, x0.case(r, x0.s0, x1.s1), x1.t) =πe8
case(r, x0.s0, x1.t)

case(r, x0.s, x1.case(r, x0.t0, x1.t1)) =πe9
case(r, x0.s, x1.t1)

If we consider λ-terms as programs, the term s1 in the conversion πe8 and the term
t0 in the conversion πe9 are superfluous, they will never be used whatever value r is
evaluated to. We call such terms junk terms. And although we do not want to select
a normal form between two terms which differ only in the order of independent test,
we do want to eliminate such junk terms from normal forms.

We will define the normal forms as a restriction of the prenormal forms by in-
troducing two conditions, one to avoid redundancy (redundancy freeness) and one
to avoid junk (junk freeness).
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These two conditions require an equality test between two occurrences of a sub-
term, but using syntactical equality for this equality test is not enough. For example,
if the terms r and r′ only differ by the order of independent case elimination (i.e.,
r =πec r

′), we still want to eliminate the junk term s1 in the term

case(r, x0.case(r′, x0.s0, x1.s1), x1.t),

or remove the redundancy in the term

case(r, x0.r
′, x1.t) (if x0 6∈ FV(s) and x1 6∈ FV(t)).

This equality has indeed to be tested modulo circular conversions.

The work of Thorsten Altenkirch and his coauthors [4] avoids this test of modulo
circular conversions altogether by defining a normal form, which identifies terms
differing in the order of independent case eliminations (independent case eliminations
are grouped together into a binary function from a set of neutral terms). To keep
the presentation simple, we prefer a more syntactical presentation to this elegant
solution, and therefore follow the way of Vincent Balat [9] and his coauthors [10]
and use a test modulo circular permutative conversions.

4.3.4 Normal Forms

We now define the normal forms of our system. Eventually, the goal of designing
normal forms is to obtain a set of representatives for each class of terms modulo
βη. The considerations in the last sections lead to the following definition of normal
forms.
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Definition 4.13 (normal forms). We define by simultaneous induction three re-
lations −`Ne− : −, −`PNF− : −, and −`NF− : − between context, term and
type,

(x, ρ) ∈ Γ

Γ`Ne x : ρ

Γ`Ne n : ρ→ σ Γ`PNF P : ρ

Γ`Ne nP : σ

Γ`Ne n : o

Γ`PNF n : o

Γ, x : ρ`NFN : σ

Γ`PNF λx.N : ρ→ σ

Γ`PNF P : ρi

Γ`PNF ini P : ρ0 + ρ1

Γ`PNF P : ρ

Γ`NF P : ρ

Γ`Ne n : ρ0 + ρ1 Γ, xi : ρi `NFNi : σ

Γ`NF case(n, x0.N0, x1.N1) : σ

in the rule with conclusion Γ`PNF λx.N : ρ→ σ we impose the condition

DL({x}, N), (deepest λ)

where for a set of variables X and normal form N , DL(X, N) is true if N is not a
case term and otherwise defined by:

DL(X, case(n, x0.N0, x1.N1)) ::= X ∩ FV(n) 6= ∅ ∧ DL(X ∪ x0, N0) ∧ DL(X ∪ x1, N1)

in the rule with conclusion Γ`NF case(n, x0.N0, x1.N1) : σ, we impose the condition

RF(case(n, x0.N0, x1.N1)) ::= x0 6∈ FV(N0) ∧ x1 6∈ FV(N1)⇒ Γ`N0 6=πec N1 : σ
(redundancy freeness)

and the condition

JFΓ(∅, case(n, x0.N0, x1.N1)) (junk freeness)

where JFΓ(Ne, x,N) is true if N is not a case term and otherwise defined by:

JFΓ(Ne, case(n, x0.N0, x1.N1)) ::= ∀n′ ∈ Ne,Γ`Ne n 6=πec n
′ : σ ∧ JFΓ,xi(Ne, Ni)

(4.1)

To produce such normal forms, the first change in the algorithm is that the new
condition of redundancy freeness has to be checked where the algorithm produces a
case term case(n, x.N0, x.N1) by testing if x occurs in N0 or N1 and if N0 =πec N1.
The auxiliary function doAcase? is changed accordingly.

The second change concerns the environment ε associating a neutral term to an
injection of a variable x, in0 x or in1 x. These environment should now be defined
on the set of neutral terms up to circular permutative conversions, and hence the



4.4 Formalization 93

update operation has to be changed to:

εn7→ini xs =

{
ini x if s =πec n
ε(s) otherwise

Code 10 (NbE for sum types). Let ε0 ∈ Ne → (Var + Var)⊥ be an environment.
The reify function ↓ρ: (Ne → (Var + Var)⊥) → JρK → PNF and reflect function
↑ρ: (Ne→ (Var+Var)⊥)→ Ne→ JρK are defined simultaneously by induction on the
type ρ:

↓oε0 n ::= n

↓ρ→σε0
f ::= λx.doAcase?(�ε ↓σε f(↑ρε x), {x})ε0

↓ρ0+ρ1
ε0

ιic ::= ini ↓ρiε0 c
↑oε0 n ::= n

↑ρ→σε0
n ::= �v. ↑σε0 (n ↓ρε0 v)

↑ρ+σ
ε0

n ::=

{
let ini x = (catch ε0(n) throw(n)) in

ιi ↑ρiε0 x

where doAcase? is defined by

doAcase?(f,X)ε0 ::= catch (fε0)

�n.if FV(n) ∩X = ∅ then throw(n)

else let N0 = doAcase?(f,X ∪ {x})ε0n7→in0 x in

let N1 = doAcase?(f,X ∪ {x})ε0n7→in1 x in

if x 6∈ FV(N0) ∧N0 =πec N1 then N0

else case(n, x.N0, x.N1)

The auxiliary function doAcase? has to be applied at the top-level to catch exception
containing neutral terms with only free variables.

Code 11 (Normalization function).

nf(Γ` r : ρ) = doACase?(�ε ↓ερ JrK↑ε , �t.⊥,FV(t))

4.4 Formalization

We return now to the notions we have let informal in the previous sections: the name
generation environment needed to generate new names, the environment associating
variables to neutral terms and the handling of exceptions. This section is very
similar to the corresponding one of the last chapter. We use a reader monad for
each environment and an exception monad to handle the exceptions.
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Name Generation Environment

The definition of the name generation environment here is the same as in the chapter
handling the simply typed λ-calculus (2), we restate it here.

Definition 4.14 (Name Generation Environment). We define a set of name gen-
eration environment or set of environment for short, as a set E together with an
update function (−)− : E → Var→ E and an access function new : E → Var.

The extension of e− : V → E to a function from a list of variables e : L(V )→ E
is defined in a canonical way by

ex,
−→x ::= (ex)

−→x

eε ::= e.

The function (−)− and new have moreover to satisfy the following property for
all e ∈ E:

∀−→x , x 6= new(ex,
−→x ) (†)

Notation 18. The condition that the new function applied to an environment e ∈ E
should never return a certain variable x can be expressed by:

∀−→x , x 6= new(e
−→x )

We will abbreviate this condition by x 6∈ e. In the same way we will abbreviate for
a given set of variables X, ∀x ∈ X, x 6∈ e by X 6∈ e.

Postdiction Environment

The second environment we will use, associates injections of a variable to neutral
terms of sum type. It comes with an update operation defined up to the circular
conversions πec .

Definition 4.15 (Postdiction Environment). We define the set P of postdiction
environment as the set Ne → (Var + Var)⊥ together with an update function (−)− :
P→ (Ne× Var)→ P:

εn7→ini xn′ ::=

{
ini x if n =πec n

′

ε(n′) otherwise

Interpretation Monad

We will now define the monad used in the interpretation, a computation should
take place in the name generation environment E and the postdiction environment
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P(= Ne→ (Var+Var)⊥), and it can be aborted by throwing an exception containing
a neutral term. Hence the computation type TA for a result type A is:

T ::= StE(StP(A⊥(Ne))) = E → (Ne→ (Var + Var)⊥)→ Ne + A

The unit and multiplication of the monad of the interpretation are defined quite
naturally from the definition of the unit and multiplication of its monad components.

Definition 4.16 (Interpretation monad T ::= StE ◦StNe→(Var+Var)⊥ ◦−⊥(Ne+)). The
(set operator of) the interpretation monad T is defined by

TA ::= StE(StNe→(Var+Var)⊥(A⊥(Ne+)))

(= E → (Ne→ (Var + Var)⊥)→ A⊥(Ne+))

Given m ∈ TA and f ∈ A→ TB, we define the unit ν : A→ TA and multiplication
? : TA→ (A→ TB)→ TB of the interpretation monad by:

νTa ::= νStE(νStNe→(Var+Var)⊥ (νA⊥(Ne+)a))

m ?T f(e)(s) ::= m(e)(s) ?−⊥(Ne+) λa.f(a)(e)(s)

The update operation for the name environment monad and the postdiction
monad extend to the interpretation monad.

The update operations for the name environment monad and the postdiction
monad extends component-wise to the interpretation monad.

Definition 4.17 (update for the Postdiction Monad). We define an update func-
tion (−)− : StP(A) → (Ne× (Var +Var))→ StP(A) operation by extending the update
operation for postdiction environment by:

mn7→ini x(ε) ::= m(εn7→ini nx)

This update operation extends in turn into an operation (−)− : TA→ (Ne× (Var +
Var))→ TA to the interpretation monad just in the same way by:

mn7→ini x(e)(ε) ::= m(e)(εn7→ini x)

Definition 4.18 (update for the Name Generation Monad). We define an update
(−)− : T(A) → Var → T(A) operation by extending the update operation for the
name generation monad by:

mv(e) ::= m(ev)

The interpretation is a call by value interpretation for computations in the monad
T:
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Definition 4.19 (interpretation). The call-by-value interpretation of the Λ+-
calculus is given on types by

JoK ::= Ne

Jτ1 → τ2K ::= JρK → T(JσK)

Jτ1 + τ2K ::= Jσ0K + Jσ1K

Given a valuation η on a context Γ (η � Γ), the interpretation of a typed term
Γ ` t : τ is the monadic value JtKη ∈ T(JτK) defined by:

JxKη ::= ν(η(x))

JrsKη ::= JrKη ? λf.JsKη ? λa.fa

Jλx.rKη ::= ν(λa.JrKη,x7→a)

Jcase(r, xρ.s0, y
σ.s1)Kη ::= JrKη ? λ(ιic).JsiKη,x7→c
Jini tKη ::= JtKη ? λc.ν(ιic)

Code 12 (call-by-value NbE). The function ↓τ : JτK → T(PNFτ ) and ↑τ : Neτ →
StP(JτK⊥(Ne)) are defined simultaneously by:

↓o n ::= ν(n)

↓ρ→σ f ::= new ? �x.doAcase?(νStE(↑ρ x) ? f? ↓σ, {x})x ? �e.ν(λx.e)

↓ρ0+ρ1 ιic ::=↓ρi c ? �e.ν(ini e)

↑o n ::= ν(n)

↑ρ→σ n ::= ν(�v. ↓ρ v ? �P.ν(↑σ (nP )))

↑ρ+σ n ::= �ε.


case ε(n) of

⊥ ⇒ throw(n)
ιix⇒ (↑ρi x)ε ? �v.ν(ιiv)

where the auxiliary function doAcase? is defined by

doAcase?(f,X) ::= catchf

�n. if FV(n) ∩X = ∅ then throw(n)
else new ? �x.

doAcase?(upd(f, n, x, L), X ∪ {x})x ? �t1.
doAcase?(upd(f, n, x,R), X ∪ {x})x ? �t2.

if x 6∈ FV(t1) ∧ t1 =πec t2
then ν(t1)
else ν(case(n, x.t1, x.t2))
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Code 13 (Normalization function). The normalization function nf : Tmτ
Γ → NFτΓ

is defined by:

nfτ (r) = doAcase?(ν(↑ Γ) ? �−→a .JrK−→x→−→a ? ↓τ )er(�n.⊥)

where the multiplication ? of the interpretation monad is extended to a list of
monadic values by:

(−→m,m) ? �(−→a , a).m′ ::= −→m ? �−→a .m ? �a.m′

ε ? �ε.m′ ::= m′

The claims of this section state the correctness and completeness of the algorithm
(6) above.

Claim 3 (Correctness).

r =βη nf(r)

Claim 4 (Completeness).

r =βη s =⇒ nf(r) =cc nf(s)

The results in the previous chapter (2) were developed to be a basis to prove
these results. A first exploration lead us to use logical monadic relations whose
monadic part itself is defined inductively. This monadic part has to encompass the
notion of fresh variables, as in the previous chapter, but also the notion of attempts
needed to run the NbE until no exceptions are raised (the base case corresponding
to a monadic value returning directly a value, and the step case corresponding to a
monadic value returning an exception.) For time reason, we have let a formal study
for further research. The conceptual simplicity of the approach using exceptions
allowed us to implement the NbE algorithm in the pure functional language Haskell
without using any primitive operators and we are confident that proofs of the claims
(3) and (4) above will for the same reason be feasible.
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Chapter 5

Inductive Types

Parametric inductive types can be seen as functions taking type parameters as ar-
guments and returning an instantiated inductive type. Correspondingly given func-
tions between parameters one can construct by iteration a copy function between the
corresponding instantiated inductive types which corresponds to the change of pa-
rameters along these functions. This suggests the question whether this construction
defines a functor.

Inductive types are traditionally interpreted as universal objects. This means
that functions which verify the same recursive or iterative equations are equal. Al-
though this interpretation is very useful when proving for example the correctness of
a function with respect to its specification, or for transformations of programs, it is a
very strong requirement known to be undecidable (see [76]). The implementation of
inductive type as universal object is therefore not possible. The commonly adopted
solution has been to design system where only the existential part of the universal
property is retained. This already, allows to define functions from inductive types by
iteration or recursion. This interpretation presupposes also a positive answer to the
previous question ; that parametric inductive types are indeed functors. However,
it is not the case with respect to the equality generated from standard reductions.
We investigate a minimal type system with inductive types and show by means of
modular rewriting techniques that reductions to make this construction a functor
on a subcategory of the system can already be safely added while preserving the
decidability of the internal conversion relation.



100 5. Inductive Types

5.1 System

5.1.1 Types and Schemas

Definition 5.1 (types). Given a countable set TVar of type variables and Const
of constructors, the set Ty of types is defined simultaneously together with the set
KT−→ρ ,−→σ (α) of constructor types over α with type parameters −→ρ ,−→σ :

Ty 3 ρ, σ ::= α | ρ→ σ | µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α))

KT−→ρ ,−→σ (α) 3 κ−→ρ ,−→σ (α) ::= −→ρ →
−−−−−−→
(−→σi → α)16i6n → α

where α ∈ TVar, −→c ⊆ Const, −→σ = −→σ1, · · · ,−→σn. We assume α 6∈ FV(−→ρ ,−→σ ), where
the set of free variable FV(ρ) of a type ρ is defined by:

FV(α) ::= α

FV(ρ→ σ) ::= FV(ρ) ∪ FV(σ)

FV(µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α))) ::= FV(κ−→ρ ,−→σ (α)) \ {α}

The types with → as main symbol are called arrow or functional types, those
with the binding symbol µ are called inductive types. We require the list of con-

structors
−−−−−−−−→
c : κ−→ρ ,−→σ (α) of an inductive type to be non empty. We assume moreover

that the names of constructors are uniquely determined by their inductive type and
that the constructors within an inductive type are different. Within the definition

of constructor type above, the types ρ ∈ −→ρ and −→σi → α ∈
−−−−−−→
(−→σi → α)16i6n stand

for the types of the arguments of a constructor, they are called respectively para-
metric operators, and recursive operators (0-recursive if −→σ is empty and 1-recursive
otherwise).

Parametric and recursive operator verify the so-called strict positivity condition
(inductive type can not occur in the domain of the type of an argument of their
constructor). It is a syntactical condition frequently used to ensure good property
of the system such as termination or well-foundation of inductive predicate defined
over inductive types. With this restriction, the inductive types that can be expressed
in the system correspond essentially to well-founded trees (arbitrary branching and
of finite depth).

Note that we have fixed a particular order on the arguments of a constructor
(first parametric and then recursive), it doesn’t influence the expressivity of the
system and simplifies the presentation.

Notation 19. A constructor type κ(α) has always the form −→τ → α. We shall

write κ−(α) for the list of types −→τ . For µ = µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)), we will write ck :

κ−→ρ ,−→σ (α) ∈ µ if ck : κ−→ρ ,−→σ (α) ∈
−−−−−−−−→
c : κ−→ρ ,−→σ (α)
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To explain the interpretation of parametric inductive type as functor of their
parameter, we need to single out the following notion of Schema of Inductive Type.

Definition 5.2 (Schema of Inductive Type). Given a list of variables
−→
k for induc-

tive type constructors, type variables −→π ,
−→
θ , α (with α 6∈ −→π ∪

−→
θ ), and constructor

types
−−−−−→
κ−→π ,−→θ (α), we define a schema of inductive type S by

S−→π ,−→θ (
−→
k ) ::= µα(

−−−−−−−−→
k : κ−→π ,−→θ (α))

Each inductive type µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)) is obtained by instantiation of the con-

structor variables
−→
k and type parameters −→π ,

−→
θ of a schema of inductive type

µα(
−−−−−−−−→
k : κ−→π ,−→θ (α)).
We now give representative examples of schema and inductive types definable in

our system.

Example 17. A schema can concern the name of the constructors only,

N = µα(k1 : α, k2 : α→ α)(schema of the natural numbers),

it can have a type variable in a parametric operator

Lπ = µα(k1 : α, k2 : π → α→ α)(schema of list)

or type variables in both parametric and 1-recursive operator:

Tπ,θ = µα(k1 : α, k2 : π → (θ → α)→ α)(schema of tree),

Instantiations of these schemas may be N = N(0, s) = µα(0 : α, s : α → α (natural
numbers), N′ = N(0′, s′) (a “copy” of N), L(N′) = LN′(nil, cons) (lists over N′ with
standard names of constructors), T(N,N) = TN,N(leaf, node) (infinitely branching
tree over N), TN,N′(leaf

′, node′) etc.

5.1.2 Terms

The terms of our systems are those of the simply typed λ-calculus extended by
constructor constants from Const and iteration operators (iterators) L−→t Mµ,τ for an
inductive type µ and a type τ (µ stands for the source and τ for the target type).

Definition 5.3 (Terms). The set of terms Tm is generated by the following gram-
mar:

Tm 3 r, s, t ::= x | λxτr | (r s) | ck | L
−→
t Mµ,τ

with x ∈ Var, ck ∈ Const and τ, µ ⊆ Ty.
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Definition 5.4 (Typing). the typing relation is defined by

(x, ρ) ∈ Γ

Γ`x : ρ
(Var)

Γ, x : ρ` r : σ

Γ`λxρ.r : ρ→ σ
(→I)

Γ` s : ρ Γ` r : ρ→ σ

Γ` rs : σ
(→E)

(ck : κ−→ρ ,−→σ (α) ∈ µ) Γ`−→r : κ−−→ρ ,−→σ (µ)

Γ` ck
−→r : µ

(µI)

µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)) = µ Γ `

−−−−−−−→
t : κ−→ρ ,−→σ (τ)

Γ` L−→t Mµ,τ : µ→ τ
(µE)

An argument of a constructor is called parameter argument if its type is a para-
metric operator and recursive argument if its type is a recursive operator.

Example 18. Let be given the following inductive types µ = N, L(ρ),T(ρ, σ) obtained
by instantiation of the schema in the previous example on types ρ and σ, and a type
τ to be the “target-type” in the typing rule (µE) above. The types of the iterator

terms
−→
t (step types) must be:

• τ and τ → τ in case of N;

• τ and ρ→ τ → τ in case of lists L(ρ);

• τ and ρ→ (σ → τ)→ τ in case of trees T(ρ, σ).

Their particularly simple form is due to the use of iteration (as opposed to primitive
recursion where the step type should contain also the types of the arguments of the
constructor).

5.1.3 Reductions

To define a capture avoiding substitution, we begin by defining a contextual substi-
tution, which will allow us to define renaming of bound variables (α-conversion).
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Definition 5.5 (contextual substitution). Given a list of distinct variables −→x =
x1, . . . , xn and of terms −→r = r1, . . . rn of same length, the effect of the contextual
substitution [

−→x /−→r ] is defined by induction on Tm as follows:

x[
−→x /−→r ] ::=

{
ri if x = xi ∧ xi ∈ −→x ,
x otherwise

(λx.r)[
−→x /−→r ] ::=

{
λx.r[x1,...,xi−1,xi+1,...xn/r1,...,ri−1,ri+1,...,rn] if x = xi ∧ xi ∈ −→x
λx.r[

−→x /−→r ] otherwise

(rs)[
−→r /−→x ] ::=(r[

−→r /−→x ])(s[
−→r /−→x ])

L−→t Mµ,τ [−→s /−→y ] ::= L
−−−−→
t[
−→s /−→y ]Mµ,τ

The α-conversion is a congruence on the terms, i.e., an equivalence relation
contextually closed, we define therefore here the notion of contextual closure.

Definition 5.6 (contextual closure). A conversion relation =R is contextually
closed if the following rules hold:

r =R s

rt =R st
(=R-AppL)

r =R s

tr =R ts
(=R-AppR)

r =R s

λx.r =R λx.s
(=R-ξ)

t =R t
′

L−→r , t,−→s Mµ,τ =α L−→r , t′,−→s Mµ,τ
(=R-It)

Definition 5.7 (α-conversion). The α-conversion =α is the smallest congruence
relation generated from the following axiom:

λx.r =α λy.r[x/y] y 6∈ FV(r)

Now that we have defined α-conversion, we are able to define correct (or capture
avoiding) substitution.

Definition 5.8 (correct substitution). Simultaneous (correct) substitution of terms
−→s to variables −→y in a term t, t{−→s /−→y } is defined by:

r{−→x /−→s } = r′[
−→x /−→s ]

where r =α r
′ and no bound variable of r′ is free in a term s ∈ −→s

We will now define the reductions of the systems which are relations between
terms typable with a same type in a same context. As a rule of thumb, to lighten
notations, we will neither precise the type nor the context involved if they can be
easily inferred.
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Definition 5.9 (β-reduction). We define the relation of β-reduction by the fol-
lowing rule:

(λxτ . r) s 7−→β r{s/x} (7−→β)

Definition 5.10 (η-expansion). We define the relation of η-expansion by the fol-
lowing rule:

r 7−→η λx
ρ. r x (7−→η)

where r : ρ→ σ, r is not an abstraction, x 6∈ FV(r).

The condition that r is not an abstraction rules out a source of non-termination.
The usual restriction stating that r should not appear in applicative position (this
would also causes non-termination) is incorporated in the definition of one-step
reduction below.

We will define two variants of the reduction for iteration; first the traditional
one:

Definition 5.11 (ι-reduction). Let µ ≡ µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)), ck : κ−→ρ ,−→σ (α) ∈ µ, and

κ ≡ −→ρ → (−→σ i → α)16i6n → α over α in µ. Given a term ck
−→p −→r , where −→p (with

pi of type ρi) denotes the parameter arguments and −→r (with ri of type −→σ i → µ)

the recursive arguments, and the terms
−→
t of step type

−−−−−→
κ−→ρ ,−→σ (τ), the ι-reduction is

defined by:

(ι) L−→t Mµ,τ (ck
µ−→p −→r ) 7−→ι tk

−→p
−−−−−−−−→
(L−→t Mµ,τ ◦ r) = tk

−→p
−−−−−−−−−−−−−→
(λ−→x .L−→t Mµ,τ (r−→x )) .

This reduction may create β-redexes. Obvious redexes appear if the iteration
terms tk above is an abstraction λ−→y .s. Moreover if an abstracted variable y ∈ −→y
corresponding to a 1-recursive argument is in applicative position inside this iteration
term, this too will produce subsequent a β-redex (it will be substituted by a term

λ−→x L−→t Mµ,τ (r−→x ) ∈
−−−−−−−−−−−−−→
(λ−→x .L−→t Mµ,τ (r−→x )) ).

Since our system is equipped with η-expansion, one can require functional iter-
ation terms to be abstractions and 1-recursive variables inside iteration terms to be
applied as a pre-condition and then define a modified ι-reduction carrying out all
these administrative β-reductions in one step.

We begin by defining sets of terms It(−→y ) where variables−→y , meant to correspond
to 1-recursive arguments in an iteration term, are in applicative position.

Definition 5.12. Let typed variables −→y = y
−→σ1→τ
1 , . . . , y

−→σn→τ
n be given, we define

inductively the set of terms It(−→y ) where these variables always appear applied to a
maximal number of arguments

It(−→y ) 3 t ::= (yi
−→
t )τ | x | λz.t | tt | L−→t M | ck

−→
t (x 6∈ −→y )
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To carry out administrative reductions due to variables corresponding to 1-
recursive argument in applicative position, we need to define first a modified substi-
tution.

Definition 5.13 (Modified substitution). The effect of modified simultaneous sub-
stitution t〈−−→u•r/−→y 〉 of variables −→y by compositions of −→u and −→r (with ui : µi → τ ,
ri : −→σi → µi) into a term t ∈ It(−→y ), is defined recursively on It(−→y ):

yi
−→
t 〈−−→u•r/−→y 〉 ::= u(r

−−−−−→
t〈−−→u•r/−→y 〉) (the essential case)

x〈−−→u•r/−→y 〉 ::= x

(λz.t)〈−−→u•r/−→y 〉 ::= λz.t〈−−→u•r/−→y 〉 where z 6∈ −→y and z 6∈ FV (−−→u • r)
(tt)〈−−→u•r/−→y 〉 ::= t〈−−→u•r/−→y 〉t〈−−→u•r/−→y 〉

L−→t M〈−−→u•r/−→y 〉 ::= L
−−−−−→
t〈−−→u•r/−→y 〉M

ck
−→
t 〈−−→u•r/−→y 〉 ::= ck

−−−−−→
t〈−−→u•r/−→y 〉

(At the third line α-conversion may be needed.)

Definition 5.14 (ι2-reduction). Let µ ≡ µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)), ck : κ−→ρ ,−→σ (α) ∈ µ, and

κ ≡ −→ρ → (−→σ i → α)16i6n → α over α in µ. Let a term ck
−→p −→r be given, where

−→p (pi of type ρi) denote the parameter arguments and −→r (ri of type −→σ i → µ)

the recursive arguments. Let the terms
−→
t of step-type (iteration terms) be fully

η-expanded externally, i.e., tk = λ
−→
xρ
−−−→
y
−→σ i→τ .sk, and moreover sk ∈ It(

−−−→
y
−→σi→τ
i ). Under

these conditions the ι2-reduction is defined by:

L. . . , λ−→x−→y .sk M, . . . (ck
−→p −→r ) 7−→ι sk{

−→p /−→x }〈
−−−→
LtM•r/−→y 〉

Example 19 (multiplication by 2). Although primitive recursion is encodable in our
system, for sake of simplicity we present here functions definable using iteration,

• the multiplication by 2 of natural numbers:

×2 ::= L0, λx.s(sx)M

the associated ι2-reduction for the term s t is:

(×2)(s t) −→ι2 s(s(×2 t))

• the pointwise multiplication by two of a list of natural number

map×2 ::= Lnil, λxy.cons(×2x)yM

the associated ι2-reduction for the term cons a l is:

map×2(cons a l) −→ι2 cons (×2 a) (map×2 l)
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• the selection of even branches in a tree can be defined as:

sel2 ≡ Lleaf, λxy.nodex (λz.y(×2 z))M

the associated ι2-reduction for the term node t f is:

sel2(node t f) −→ι2 node t (λz.sel2(f(×2 z)))

The reductions defined above rewrite redex appearing at the exterior of the term,
these reductions are extended to subterms via a contextual closure incorporating the
usual restriction on applicative position in η-expansion.

Definition 5.15 (One-step Reduction). The One-step reduction −→R is defined
as the smallest relation such that:

r 7−→R r
′

r −→R r
′ (R-Ax)

r −→R r
′ r 67−→η r

′

rs −→R r
′s

(R-AppL)
s −→R s

′

rs −→R rs
′ (R-AppR)

r −→R r
′

λx.r −→R λx.r
′ (R-ξ)

t −→R t
′

L−→r , t,−→s M −→R L−→r , t′,−→s M
(R-Rec)

R can be for example β, η, ι, ι2.

Notation 20. The transitive closure of −→R will be written
+−→R, its reflexive tran-

sitive closure
∗−→R, its inverse relation ←−R. The composition {(r, s) | ∃ t, r −→R

t∧ t −→S s} of two reduction relations −→R and −→S will be written −→R;−→S

their union {(x, y) | x −→R y∨x −→S y} will be denoted by −→RS. Alternatively
we will use the name of the relations so that R, R+, R∗, R−1, R;S, RS will stand for

−→R,
+−→R,

∗−→R, ←−R, (−→R;−→S), −→RS respectively. The reduction relation
R \ S stands for the set of pair (r, s) ∈ R but (r, s) 6∈ S.

The R-derivations (sequences of terms such that two successive terms are in a
one step reduction relation −→R) will be denoted by d, e.... The expression t

∞−→R

will denote an infinite derivation beginning at t.

5.2 Extended Conversions

5.2.1 General Results

The rewriting system generated from β, η and ι reductions has been proven to be
convergent, i.e., strongly normalizing and confluent, in numerous works (for example
[23]) and we will not repeat the proof here.

Theorem 2. The reduction βηι is convergent.
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The system with the alternative ι-reduction ι2 is proved convergent using a (par-
ticularly simple) embedding (i.e.,, a reduction preserving encoding of a system within
another).

Theorem 3. 1. The system equipped with βηι2-reduction is embeddable in he one
equipped with βηι-reduction,

2. the reduction βηι2 is convergent.

Proof. 1. The embedding is the identity on terms and one βηι2-reduction is sim-
ulated by one ι-reduction followed by several β-reductions.

2. The embedding (1) above means that for each reduction in βηι2 there exists
a sequence of reductions in βηι, hence βηι2 is strongly normalizing, otherwise
βηι would not be strongly normalizing.

If t is a normal form in βηι, then t is a normal form in βηι2 (the reductions of
βηι2 apply on redexes of βηι under some restrictions). If t is a normal form in
βηι2, then t is a normal form in βηι. The set of normal form for βηι and βηι2
are the same. Moreover

+−→βηι2 is a subrelation of βηι, hence the set of normal
form of a term t are the same in the two systems, hence βηι2 is confluent.

5.2.2 Inductive Type Schemas as Functors

We will now define a subcategory I of the whole system for which we will prove
the functorial laws of inductive types to be decidable. The set of object I0 of this
category I will be inductive types and the set I1 of arrows is constituted of identity
terms, iterators, and compositions thereof.

Definition 5.16. The subset I0 is the set of all inductive types µα (
−−−−−−−−→
c : κ−→ρ ,−→σ (α)).

The subset of typable terms I1 : ρ→ σ for ρ, σ ∈ I0 is defined as follows:

I1 3 a, a′ ::= λxµ.x | L−→t M | a ◦ a′
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Definition 5.17 (Instantiation of schemas and copy of inductive type). The in-

stantiation function Cp0
S : Const|

−→
k | ×I |

−→π |+|
−→
θ |

0 → I0 for a schema of inductive type

S = µα(
−−−−−−−−→
k : κ−→π ,−→θ (α)) is defined by:

Cp0
S(−→c ,−→ρ ,−→σ ) ::= µα(

−−−−−−−−→
c : κ−→ρ ,−→σ (α)).

If moreover, given inductive types
−→
ρ′ ,
−→
σ′ there exists terms f, f ′ in I1, with typing

fi : ρi → ρ′i and f ′i : σ′i → σi, we define the copy function Cp1
S taking these terms

and the relabelling function l : −→c 7→
−→
c′ as arguments by:

Cp1
S(l,
−→
f ,
−→
f ′ ) := L−→t M : Cp0

S(−→c ,−→ρ ,−→σ )→ Cp0
S(
−−→
l(c),

−→
ρ′ ,
−→
σ′ )

with tk ∈
−→
t given by:

tk ::= λ
−→
xρ
−−−→
y
−→σi→ϕ′ · c′k

−−−→
◦x(f)

−−−−−−−→
λ−→z .y

−−−→
◦z(f ′)

where the function ◦x(fk) which returns a β-reduced form of fkx is defined recur-
sively:

• ◦x(λxµ.x) = x

• ◦x(L
−→
t M) = L−→t Mx

• ◦x(a ◦ a′) = ◦x(a){◦x(a′)/x}

With the notation of the definition above and given constructor names
−→
c′′ , types

−→
ρ′′,
−→
σ′′, relabelling functions l′ :

−→
c′ →

−→
c′′ , and terms g : −→ρ →

−→
ρ′′ ∈ I1 and g′ :

−→
σ′′ →

−→σ ∈ I1, the following equalities are provable:

Cp1
S(l,−→g ,

−→
g′ ) ◦Cp1

S(l,
−→
f ,
−→
f ′ ) = Cp1

S(l′ ◦ l,
−−→
g ◦ f,

−−−→
f ′ ◦ g′)

Cp1
S(id,

−→
id ,
−→
id ) = idCp0

S

This means that with respect to an extensional model the pair (Cp0
S,Cp1

S) defines a
functor. This result is well known, and a categorical proof (of a generalisation of this
result) can be found for example in Varmo Vene’s doctoral thesis ([89]). However,
these equalities do not hold w.r.t. the conversion relation. We shall extend the
reduction relation in order to obtain a functor w.r.t. the conversion relation while
preserving confluence and strong normalization of the underlying rewrite system.

In the following we will lighten the notation and omit all unnecessary material.
By analogy with category theory we will write CpS instead of Cp0

S, Cp1
S and often

just Cp when S will be clear from the context. In the same way we will not write
the relabelling functions which we will not consider as part of the calculus.
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Definition 5.18 (χ-reductions). The χ-reductions are given by:

Cp(−→g ,
−→
g′ )(Cp(

−→
f ,
−→
f ′ )t) 7−→χ◦ Cp(

−−→
g ◦ f,

−−−→
f ′ ◦ g′)t

Cp(
−→
id ,
−→
id )t 7−→χid

t

Example 20. The function map×2 of the previous example can be written as CpL(×2).
The χ◦-reduction for the composition of two functions map×2 states that doubling
every element of a list from a list where every element has already been doubled
should reduce to doubling the double of every element of the initial list.

CpL(×2)CpL(×2)t −→χ◦ CpL(×2 ◦ ×2)t

The function sel2 of the previous example can be written as CpT (id,×2). The χ◦-
reduction for the composition of two functions sel2 states that selecting even branches
from a tree where one has already selected even branches should reduce to selecting
the even branches of the even branches of this tree.

CpT (id,×2)(CpT (id,×2)t) −→χ◦ CpT (id,×2 ◦ ×2)t

An advantage is, for example, for a function ×4, in order to prove that we have

CpT (id,×2)(CpT (id,×2)t) = CpT (id,×4)t or

CpL(×2)CpL(×2) = CpL(×4),

one only has to prove ×2 ◦ ×2 = ×4.

Remark 18. The restriction of the function Cp to functions generated by iterators
or compositions thereof is clearly a limitation of our results. Although our results
are still interesting in themselves, an extension to the the general case is a topic of
current research.

5.3 Main Theorems

In this sections we will derive the convergence of the system augmented by the χ◦
and the χid reductions by using modular properties of abstract reduction systems.

5.3.1 Adjournment

Definition 5.19 (Adjournment). Given two reduction relations S and R, we say
that S is adjournable w.r.t. R in a derivation d, if

d = t −→S−→R
∞−→RS ⇒ ∃ e = t −→R

∞−→RS

If S is adjournable w.r.t. to R in all derivation d, then we say that S is adjournable
w.r.t. to R.
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Remark 19. S is adjournable w.r.t. R in particular in the case: −→S;−→R⊆−→R

;−→RS. The notion of adjournability is traditionally expressed with this weaker
condition (where d is not taken into account) (cf. [7]).

Lemma 22 (Adjournment). If R and S are strongly normalizing and S is adjourn-
able w.r.t. to R then RS is strongly normalizing.

Proof. Let us suppose that there is an infinite RS-derivation beginning from a term
t. As R and S are strongly normalizing, this derivation consists of an alternation of
finite R- and S-derivations. In particular the derivation is of the form

t −→X t′ −→S−→R
∞−→RS

with an initial fragment X = R∗ or X = R∗S+. We can adjourn the derivation
following t′ to obtain a derivation

t −→X t′ −→R
∞−→RS

The iteration of this process will infinitely increase the number of R-reductions in
the beginning, preserving the infinite tail and we shall have a contradiction with the
assumption that R is strongly normalizing.

5.3.2 Convergence of βηι2χ◦

Theorem 4 (Strong normalization of χ◦). The χ◦-reduction is strongly normalizing
and adjournable with respect to βηι2-reduction.

To ease the exposition we will need to single out a particular occurrence of a
subterm t′ of a term t, we will then use the notation C[t′] for the term t, in this
notation C is called a context.

This notation can be defined formally by adding an extra symbol [] to the defi-
nition of terms, this symbol [] called a hole can be considered as a special variable
not allowed to be bound.

Definition 5.20 (context). A context with multiple occurrences K is given by the
grammar:

K,L ::= [] | x | λxτK | (K L)

A simple context C (or just context) is a context with multiple occurrences K where
the symbol [] occurs once and only once. The notation C[t] is an abbreviation for
the contextual substitution C[[]/t] of a term t in the simple context C.
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Proof. Since χ◦ is strongly normalizing (by a simple argument on the size of the
term), it remains to show that χ◦ is adjournable w.r.t. βηι2. It is adjournable if
and only if it is adjournable w.r.t. all infinite derivations d =−→χ◦−→βηι2 d

′. We
consider the reduction −→βηι2 following the first −→χ◦-segment in d.

Let us consider a χ◦-reduction followed by a ι2-reduction. In this case, the
adjournment of χ◦-reduction with respect to traditional ι-reduction is not possible.

C[Cp−→g ,
−→
g′

(Cp−→
f ,
−→
f ′

ck
−→p −→r )] −→χ◦ C[Cp−−→

g◦f,
−−−→
f ′◦g′ck

−→p −→r ]

−→ι2 C[ck

−−−−−−−−−→
◦x(g ◦ f){p/x}

−−−−−−−−−−−−→
λ−→z .(y

−−−−−−→
◦z(f ′ ◦ g′))〈

−−−−−−−−−−→
Cp−−→

g◦f,
−−−→
f ′◦g′

•r/−→y 〉]

≡ C[ck

−−−−−→
◦p(g ◦ f)

−−−−−−−−−−−−−−−−−−−→
λz.Cp−−→

g◦f,
−−−→
f ′◦g′(r

−−−−−−→
◦z(f ′ ◦ g′))]

It can be adjourned as follows:

C[Cp−→g ,
−→
g′

(Cp−→
f ,
−→
f ′

ck
−→p −→r )]

−→ι2 C[Cp−→g ,
−→
g′

(ck

−−−−−−−→
◦x(f){p/x}

−−−−−−−−−→
λ−→z .(y

−−−→
◦z(f ′))〈

−−−−−−−→
Cp−→

f ,
−→
f ′
•r/−→y 〉)]

≡ C[Cp−→g ,
−→
g′

(ck

−−−→
◦p(f)

−−−−−−−−−−−−−−−−→
λ−→z .(Cp−→

f ,
−→
f ′

(r
−−−→
◦z(f ′))))]

−→ι2 C[ck

−−−−−−−−−→
◦x(g){◦p(f)/x}

−−−−−−−→
λ−→z .y

−−−→
◦z(g′)〈

−−−−−−−−−−−−−−−−−−−−−−−−−→
Cp−→g ,

−→
g′
•(λ−→z .(Cp−→

f ,
−→
f ′

(r
−−−−→
◦z(f ′))))/−→y 〉]

≡ C[ck

−−−−−→
◦p(g ◦ f)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
λ−→z .Cp−→g ,

−→
g′

((λ−→z .(Cp−→
f ,
−→
f ′

(r
−−−→
◦z(f ′))))

−−−→
◦z(g′))]

−→β C[ck

−−−−−→
◦p(g ◦ f)

−−−−−−−−−−−−−−−−−−−−−−−−→
λ−→z .Cp−→g ,

−→
g′

(Cp−→
f ,
−→
f ′

(r
−−−−−−→
◦z(f ′ ◦ g′)))]

−→χ◦ C[ck

−−−−−→
◦p(g ◦ f)

−−−−−−−−−−−−−−−−−−−→
λz.Cp−−→

g◦f,
−−−→
f ′◦g′(r

−−−−−−→
◦z(f ′ ◦ g′))]

For the other cases, the adjournment method works without complication. (We
will abbreviate in the following Cp−→g ,

−→
g′

(Cp−→
f ,
−→
f ′
t) and Cp−−→

g◦f,
−−−→
f ′◦g′t by Lχ◦(t) and

Rχ◦(t)):

1. For β-conversion:

(a) For C ≡ C[(λx · p[Lχ◦(t)]) q], we have

C −→χ◦ C[(λx · p[Rχ◦(t)]) q] −→β→ C[p[Rχ◦(t)]{q/x}]

In this case, we can adjourn χ◦ by

C −→β→ C[p[Lχ◦(t)]{q/x}] −→χ◦ C[p[Rχ◦(t)]{q/x}]

(b) For C ≡ C[(λx · p) q[Lχ◦(t)]], we have

C −→χ◦ C[(λx · p) q[Rχ◦(t)]] −→β→ C[p{q[Rχ◦ (t)]/x}]

In this case, we can adjourn χ◦ by

C −→β→ C[p{q[Lχ◦ (t)]/x}] ∗−→χ◦ C[p{q[Rχ◦ (t)]/x}]



112 5. Inductive Types

2. For η-conversion, there is no interesting overlap with χ◦-conversion as we have
the following facts about a χ◦-redex Lχ◦():

• Cp−→
f ,
−→
f ′

and Cp−→g ,
−→
g′

are iterators ;

• and t and Lχ◦(t) inhabit an inductive type.

Theorem 5 (Strong normalization of βηι2χ◦). The reduction βηι2χ◦ is strongly
normalizing.

Proof. As the reductions βηι2 and χ◦ are strongly normalizing and χ◦ is adjournable
with respect the reduction βηι2, we can apply the adjournment lemma (22).

By Newman’s lemma (see [74] for the original proof), a strongly normalizing and
locally confluent system is confluent, so we need only to check local confluence.

Theorem 6 (Confluence of βηι2χ◦). The reduction βηιχ◦ is confluent.

Proof. As βηι2χ◦-conversion is strongly normalizing, it is enough to show that βηι2χ-
conversion is locally confluent, by Newman’s Lemma. As βηι2- and χ◦-conversions
are both confluent, the proof is by verification (case analysis) that ←−χ◦ ;−→βηι2 ⊆
∗←−βηι2χ◦ ;

∗−→βηι2χ◦ .

Theorem 7 (Convergence of βηι2χ◦). The reduction βηι2χ◦ is convergent.

Proof. The reduction βηι2χ◦ is strongly normalizing by theorem (5) and convergent
by theorem (6).

5.3.3 Pre-adjusted Adjournment

We would like to be able to adjourn χid-reduction w.r.t. ι2-reduction. However,
there is a difficulty, let us consider an example:

Example 21. Trying to adjourn directly the following derivation, where node is the
constructor for arbitrary branching tree:

Cp−→
id ,
−→
id

(node p x) −→χid
node p x −→βηι node p′ x

results in first applying a ι2-contraction and then a χid-contraction:

Cp−→
id ,
−→
id

(node p x) −→ι2 nodexλz.yz{p/x}〈Cp−→
id ,
−→
id
•x/y〉

≡ node p λz.Cp−→
id ,
−→
id

(xz)

−→χid
node p λz.xz,

and there is no way to close the fork with the initial derivation.
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The solution is to incorporate some η-expansion in the first derivation before
applying the adjournment lemma.

Definition 5.21 (insertability). Given two reduction relation R, T , with T ⊂ R,
T is said to be insertable in R if there exists a relation S on the support of R with
T ⊆ S and the two following conditions hold:

S−1; (R \ T ) ⊆ R+;S−1 S−1;R ⊆ T ∗;S−1

R+

��

S
??�������

R\T ��?
??

??
??

S

??

T ∗

��

S
??�������

R ��?
??

??
??

S

??

Lemma 23 (insertion). Given two reduction relations R, T such that T is insertable
in R and T is strongly normalizing. If there exists an infinite derivation d from t
and an object t′ with t→T t

′, then there exists an infinite derivation d′ from t′.

Proof. As T is strongly normalizing, d contains infinitely many R \ T -reductions
(possibly interleaved with finite sequences of T -reductions). As T is insertable in R
there exists a relation S with (t, t′) ∈ T ⊆ S, and we can construct a derivation d′

where every reduction R \ T of d are repercussed along S by a R+-reduction in d′.
Hence R+ contains infinitely many R+-reductions (possibly interleaved with finite
sequences of T ∗-reductions) and is therefore infinite

Definition 5.22 (Conditional Adjournment). Let R, S be reduction relations, an
infinite derivation d = t −→S−→R

∞−→RS beginning with t and P a predicate on the
terms. Then S is adjournable w.r.t. R in d under condition P, if

d = t −→S−→R
∞−→RS ∧P(t)⇒ ∃ e = t −→R

∞−→RS,

S is adjournable w.r.t. R under condition P, if S is adjournable w.r.t. R in d under
condition P for all d.

We now introduce the notion of realisation of a condition by a reduction relation
T , which says that starting from some term t we will always find after a finite number
of reductions from T a term t′ satisfying the condition.

Definition 5.23 (realization). Let T be a reduction relation and P a predicate on
the terms. T realises P for t if ∃ t′, t→∗T t′ ∧ P(t′). T realizes P if T realizes P for
all terms.

Lemma 24 (pre-adjusted adjournment). Given reductions relations R, S, T with
S, T ⊆ R, S is adjournable with respect to R under condition P and T is insertable
in R, strongly normalizing and realizes P, then S is adjournable w.r.t. R.
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Proof. Given a derivation d = t −→S−→R
∞−→RS beginning with t,

• either P(t) and then S is adjournable w.r.t. R in d

• or as T realizes P , ∃ t′, t →+
T t′ ∧ P(t′). But T is insertable and strongly

normalizing so by lemma 23, there exists an infinite derivation from t′. Hence,
as T ⊆ R S is adjournable w.r.t. R.

Definition 5.24 (unrestricted η-expansion η). we define the rewrite rule for un-
restricted η-expansion η by:

t 7−→η λx
ρ.tx if t : ρ→ σ

The one step reduction reduction relation −→η is defined as the contextual closure
of 7−→η

Lemma 25 (weak condition for insertability). In the definition of the insertability,
if the relation S is the transitive reflexive closure of a reduction relation T ′, we
establish some sufficient condition for T to be insertable. Given reduction relations
R, T, T ′, if the relation T ′ verifies the two conditions:

T ′−1;R \ T ⊆ R∗; (R \ T );R∗; (T ′−1)
∗

T ′−1;T ⊆ R∗; (T ′−1)
∗

R∗ // R\T //
R∗

��

T ′
??�������

R\T ''OOOOOOOOOOOOO

T ′∗

77

T ∗

��

T ′
??�������

R ��?
??

??
??

T ′∗

??

then T is insertable:

(T ′−1)
∗
;R \ T ⊆ R+; (T ′−1)

∗
(T ′−1)

∗
;R ⊆ T ∗; (T ′−1)

∗

R+

��

T ′∗
??�������

R\T ��?
??

??
??

T ′∗

??

T ∗

��

T ′∗
??�������

R ��?
??

??
??

T ′∗

??

Proof. cf lemma 6.4 in [23].

Lemma 26. η-expansion is insertable.
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Proof. Take the transitive reflexive closure of η as relation S in the definition of
insertability 5.21.

By lemma 25, it is enough to show:

←−η;R\ −→η⊆ R∗;R\ −→η;R
∗;←−∗η ∧ ←−η;−→η⊆ R∗;←−∗η

The proof is simple and we will only discuss the critical cases (why we take the
reflexive transitive closure of η instead of merely η for S).

• for β, there are two non trivial cases:

C[(λx.r)(λy.sy)]
β

))
C[(λx.r)s]

η
66mmmmmmmmmmmmm

β ((QQQQQQQQQQQQQ
C[r{(λy.sy)/x}]

C[r{s/x}]
η

∗
55

As the subterm s can be substituted in an applicative position, this case illus-
trates the need for η to expand a term in applicative position. Remark also
that the variable x can occur several times in r or not occurs at all, so that
we need to take the reflexive transitive closure of η.

C[λz.((λxy.r)s)z]
β

**
C[(λxy.r)s]

η
55lllllllllllll

β ))RRRRRRRRRRRRR
C[λz.(λy.(r{s/x}))z]

C[λy.r{s/x}]
η

∗
44

This case illustrates the need for the η-expansion to be applicable to a subterm
in abstraction form.

• for ι2, the situation is similar to β, the η can take place in a parameter argu-

ment: for−→p = p0, . . . , pi, . . . , pn (i ∈ [0, . . . , n]) we write
−→
p′ for p0, . . . , λx.pix, . . . , pn.

C[L
−−−−→
λ−→x−→y .tMck

−→
p′−→r ]

ι2

))

C[L
−−−−→
λ−→x−→y .tMck

−→p −→r ]

η
66mmmmmmmmmmmm

ι2 ((QQQQQQQQQQQQ
C[tk{

−→
p′/−→x }〈

−−−−−−−−→
Lλ−→x−→y .tM•r/−→y 〉]

C[tk{
−→p /−→x }〈

−−−−−−−−→
Lλ−→x−→y .tM•r/−→y 〉]

η

∗
55
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or in a recursive argument: for −→r = r0, . . . , ri, . . . , rn (i ∈ [0, . . . , n]) we write
−→
r′ for r0, . . . , λx.rix, . . . , rn.

C[L
−−−−→
λ−→x−→y .tMck

−→p
−→
r′ ]

ι2

))

C[L
−−−−→
λ−→x−→y .tMck

−→p −→r ]

η
66mmmmmmmmmmmm

ι2 ((QQQQQQQQQQQQ
C[tk{

−→p /−→x }〈
−−−−−−−−−→
Lλ−→x−→y .tM•r′/−→y 〉]

C[tk{
−→p /−→x }〈

−−−−−−−−→
Lλ−→x−→y .tM•r/−→y 〉]

η

∗
55

or in the iterator: for
−→
t = t0, . . . , ti, . . . , tn (i ∈ [0, . . . , n]) we note

−→
t′ :=

t0, . . . , λz.tiz, . . . , tn. The non trivial case is i = k:

C[L
−−−−−→
λ−→x−→y .t′Mck

−→p −→r ]
ι2

))

C[L
−−−−→
λ−→x−→y .tMck

−→p −→r ]

η
66mmmmmmmmmmmm

ι2 ((QQQQQQQQQQQQ
C[λz.(tk{

−→p /−→x }〈
−−−−−−−−−→
Lλ−→x−→y .t′ M•r/−→y 〉)z]

C[tk{
−→p /−→x }〈

−−−−−−−−→
Lλ−→x−→y .tM•r/−→y 〉]

η

∗
44

5.3.4 Convergence of βηι2χ

Theorem 8 (Strong Normalization of χid). 1. χid -reduction is strongly normal-
izing,

2. χid -reduction is adjournable with respect to βηι2χ◦ under the condition that
1-recursive arguments −→r = r1 . . . rn of a constructor c−→p −→r of type µ are fully
eta-expansed externally, i.e., ri = r′i = λ−→x .(r′i−→x )µ.

proof of theorem 8. We will abbreviate Cp−→
id ,
−→
id
t by Lχid

(t)

1. For ι2-conversion:

(a) For C ≡ C[Cp−→
id ,
−→
id

(ck
−→p −→r )], by η-insertion we can put the terms −→r

in full externally eta-expansed form. We will write r for a term r fully
η-expansed externally. We can then always adjourn

C[Cp−→
id ,
−→
id

(ck
−→p −→r )] −→χid

C[ck
−→p −→r ] −→βηι · · ·
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by

C[Cp−→
id ,
−→
id

(ck
−→p −→r )] −→ι2 C[(ck

−→x
−−−−−→
λ−→z .y−→z ){−→p /−→x }〈

−−−−−−−→
Cp−→

id ,
−→
id
•r/−→y 〉]

≡ C[ck
−→p
−−−−−−−−−−−−→
λ−→z .Cp−→

id ,
−→
id

(r−→z )]

−→∗β−→χid
C[ck
−→p −→r ]

(b) For C ≡ C[L. . . , λ−→x−→y .tr[Lχid
(s)], . . .M (ck

−→p −→r )] and
−→
t ∈ I t(y

−−−→−→σi→τ ) (one

remarks that I t(y
−−−→−→σi→τ ) is stable under←−χid

), we have three possibilities:

i. Either r 6= k and then we have

C[L. . . , λ−→x−→y .tr[Lχid
(s)], . . .M (ck

−→p −→r )]
χid

uulllllllllllllll
ι2

))

C[L. . . , λ−→x−→y .tr[s], . . .M (ck
−→p −→r )]

ι2 ))RRRRRRRRRRRRRR C[tk {
−→p /−→x } 〈

−−−−−−−−−−−−−−−−−−−−−−→
(L ...,λ−→x−→y .tr[Lχid

(s)],...M•rRi )/−→y 〉]

χid

∗

uu

C[tk {
−→p /−→x } 〈

−−−−−−−−−−−−−−−−−−→
(L ...,λ−→x−→y .tr[s],...,M•rRi )/−→y 〉]

with as many χid-conversions as there are variables −→y occurring in
tk.

ii. or r = k, and then

• either Lχid
(s) is a strict subterm in tr[Lχid

(s)]:

C[L. . . , λ−→x−→y .tr[Lχid
(s)], . . .M (ck

−→p −→r )]
χid

uulllllllllllllll
ι2

**

C[L. . . , λ−→x−→y .tr[s], . . .M (ck
−→p −→r )]

ι2 ((RRRRRRRRRRRRRR C[tr[Lχid
(s)] {−→p /−→x } 〈

−−−−−−−−−−−−−−−−−−−−−−→
(L ...,λ−→x−→y .tr[Lχid

(s)],...M•rRi )/−→y 〉]

χid

+

tt

C[tr[s] {
−→p /−→x } 〈

−−−−−−−−−−−−−−−−−→
(L ...,λ−→x−→y .tr[s],...M•rRi )/−→y 〉]

with as many χid-conversions as there are variable −→y occurring
in tk plus one for the Lχid

(s) occurring already in tr before ι2-
reduction.

• or Lχid
(s) is not a strict subterm but the whole term itself. Let us

therefore rewrite the original term as C[L. . . , λ−→x−→y .Lχid
(s), . . .M ck

−→p −→r ].
Then we have

C −→χid
C[L. . . , λ−→x−→y .s, . . .M ck

−→p −→r ] −→ι2 C[s]

(because Lχid
(s) inhabits necessarily an inductive type, there-

fore can’t be of functional type and accept arguments, and hence
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−→x ,−→y ,−→p ,−→r are the empty lists). In this case, we can adjourn χid

by

C −→ι2 C[Lχid
(s)] −→χid

C[s] .

(c) For C ≡ C[L. . . , λ−→x−→y .tk, . . .M (ck . . . , pr[Lχid
(s)], . . .−→r )], we have:

C −→χid
C[L. . . , λ−→x−→y .tk, . . .M (ck . . . pr[s] . . .

−→r )]

−→ι2 C[tk {...pr[s].../−→x } 〈
−−−−−−−−−−−→
(Lλ−→x−→y .−→t M•r)i/−→y 〉 .

In this case, we can adjourn χid by

C −→ι2 C[tk {...pr[Lχid
(s)].../−→x } 〈

−−−−−−−−−−−−→
(Lλ−→x−→y .−→t M•rRi )/−→y 〉

−→χid
C[tk {...pr[s].../−→x } 〈

−−−−−−−−−−−−→
(Lλ−→x−→y .−→t M•rRi )/−→y 〉 .

(d) For C ≡ C[L. . . , λ−→x−→y .tk, . . .M (ck
−→p . . . rr[Lχid

(s)] . . .)] (writing a for the
number of recursive arguments), we have:

C −→χid
C[L. . . , λ−→x−→y .tk, . . .M (ck

−→p . . . rr[Lχid
(s)] . . .)]

−→ι2 C[tk {
−→p /−→x } 〈...(Lλ−→x−→y .−→t M•rr[s]) .../−→y 〉 .

In this case, we can adjourn χid by

C −→ι2 C[tk {
−→p /−→x }〈...(Lλ−→x−→y .−→t M•rr[Lχid

(s)]) .../−→y 〉
−→χid

C[tk {
−→p /−→x } 〈...(L−→t M•rr[s]) .../−→y 〉 .

2. For β-conversion:

(a) For C ≡ C[(λx · p[Lχid
(t)]) q], we have

C −→χid
C[(λx · p[t]) q] −→β→ C[p[t]{q/x}].

In this case, we can adjourn χid by

C −→β→ C[p[Lχid
(t)]{q/x}] −→χid

C[p[t]{q/x}].

(b) For C ≡ C[(λx · p) q[Lχid
(t)]], we have

C −→χid
C[(λx · p) q[t]] −→β→ C[p{q[t]/x}].

In this case, we can adjourn χid by

C −→β→ C[p{q[Lχid
(t)]/x}] ∗−→χ C[p{q[t]/x}].

3. For η-conversion, there is no interesting overlap with χid-conversion as we have
the following facts about a χid-redex Lχid

(t):
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• Lχid
is a recursor ;

• and t and Lχid
(t) inhabit an inductive type.

4. For χ◦-conversion The only non trivial case is:

C[Cp−→
f ,
−→
f ′

(Cp−→
id ,
−→
id
t)] −→χid

C[Cp−→
f ,
−→
f ′

(t)]

In this case we can adjourn by

C[Cp−→
f ,
−→
f ′

(Cp−→
id ,
−→
id
t)] −→χ◦ C[Cp−→

f ,
−→
f ′
t]

Theorem 9 (Strong Normalization of βηι2χ). The reduction βηι2χ is strongly nor-
malizing.

Proof. Obviously the eta expansion η realizes the condition that 1-recursive argu-
ments occurring in an iteration term are totally expansed externally. (the terms to
be expansed are neither in application position nor λ-abstraction). Moreover the eta
expansion η is insertable by lemma (26). Theorem (8) sates that χid -reduction is
adjournable with respect to βηι2χ◦ under the condition that 1-recursive arguments
−→r = r1 . . . rn of a constructor c−→p −→r of type µ are fully eta-expansed externally, i.e.,
ri = r′i = λ−→x .(r′i−→x )µ. Hence we can conclude by lemma (24), that χid is adjournable
with respect to βηι2χ◦. Finally as both βηι2χ◦ and χid are strongly normalizing we
can apply lemma (22) to conclude that βηι2χ is strongly normalizing.

Theorem 10 (Confluence of βηι2χ). The reduction βηιχ is confluent.

proof of theorem 10. As βηιχ-conversion is strongly normalizing, it is enough, by
Newman’s Lemma to show that βηιχ-conversion is locally confluent. As βηιχ◦-
and χid-conversions are both confluent, The proof is a verification by case analysis
that ←−χid

;−→βηιχ◦ ⊆
∗−→βηιχ;

∗←−βηιχ.

Theorem 11 (Convergence of βηι2χ). The reduction βηι2χ is convergent.

Proof. The reduction βηι2χ is strongly normalizing by theorem (9) and confluent
by theorem (10).
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Conclusions

This work allowed us to study several deciding algorithms for the theories of typed
λ-calculus. We have gathered our conclusions and suggestions for further work under
the following themes.

Reduction based versus reduction free normalization

At the heart of the thesis is the opposition between reduction (or rewriting) driven
and reduction free algorithms. While the conceptual simplicity of rewriting theory
is attractive to understand the computational behaviour of normalization, reduction
free algorithms provides decidability results, where application of rewriting theory is
not obvious. The two approaches are related and we have tried to explain the latter
in terms of the former. However the relationship between the two approaches has
not yet been enough explored. For example one could further explore the extraction
of reduction proofs which as shown in [18] can produce reduction free algorithm.
As shown in this thesis, there is several possible NbE algorithms for a same system
according to the model of computation used (call-by-value, call-by-name, Algol-like).
Does there exist a proof (or several different proofs) from which these algorithms
can be extracted? The extraction method used in [18] was modified realizability,
does a different method (e.g., functional interpretation) give a different algorithm?

Fresh variables

We have developed a monadic formalisation of fresh variables generation for the NbE
algorithm. We believe that this formalisation is natural in the sense that it follows
closely an intuitive description of what it means for a variable to be fresh. This
treatment reduces the gap between informal description and actual mathematical
formalisation of the algorithm. The main change between informal description to a
pure functional implementation is to pass from simple type to monadic ones. We are
conscious that the simplicity of our solution is due to its specialization for a single
problem, namely the generation of fresh names in NbE algorithm. Nevertheless an
interesting question is how this approach incorporates or relates in the broad body
of research concerning formalisation of system with names and bindings (nominal
reasoning).
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Sequent calculus and natural deduction

Applying the normalization by evaluation for the calculus ΛJ allowed us to tightly
relate cut-free derivations in sequent calculus and natural deduction. Normal forms
for permutative conversion in the ΛJ calculus can be seen as a notation for cut-
free proof of the sequent calculus. Further restrictions on normal forms in the ΛJ -
calculus can be seen as defining normal forms among cut-free proofs. These restricted
normal forms are in turn isomorphic to long normal forms in the simply typed
λ-calculus modulo certain decidable conversions. This sharpens previous results
relating sequent calculus and natural deduction.

Normalization by evaluation for λ-calculus with extensional
permutative conversions

We have given a purely functional algorithm for deciding extensional conversions of
terms in a system with generalized applications ΛJ and one with sum types Λ+. As
already advocated, algorithms described in a pure functional style are much closer
to a mathematical formalisation. In an imperative settings proofs are much more
involved as one has to take into account the existence of a global state, influencing
the behaviour of primitive operations. Hence proofs of correctness and completeness
for these algorithms should be feasible. The conversions of these systems are very
similar, and so are the NbE algorithms we have described. This suggests to carry
out the proofs of correctness and completeness for the simplest system ΛJ -calculus
and then adapt them for the Λ+-calculus. This is still work in progress.

Functoriality of inductive types

Our studies show that functorial laws are admissible for a subcategory of the sys-
tem with inductive types, in the sense that properties derived from these laws, if
expressed as equalities are decidable. Although these results are already interesting
in themselves, an obvious direction for further research is the study of the general
case, both for reduction based and reduction free algorithms.
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inductive types, 100
insertable, 113

instantiation function , 108
interpretation, 20
iterators, 101

Kripke applicative structure, 39
Kripke monadic applicative structure, 40
Kripke monadic logical relation, 40

modified substitution, 105
monad, 12

exception, 13
identity, 13
partiality, 14
state, 13
state reader, 13

monadic logical relation, 38
multiplication, see monad

name generation environment, 27

parameter argument, 102
parametric operators, 100
permutative conversion, 79

circular, 64, 84
extensional, 61, 79, 81
immediate simplification, 63, 85

postdiction environment, 70, 94
pseudo-application, 66, 67

quote, see reify

realisation, 113
recursive argument, 102
recursive operators, 100

0-recursive, 100
1-recursive, 100

reflect, 21, 69, 93
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reify, 19, 21, 69, 93

schema, 101
strict positivity condition, 100
substitution

contextual, 17
correct, 18, 103

throw, see catch
type parameters, 100
typed applicative structure, 36

monadic, 36
typing, 4
typing context, 16
typing relation, 16

unit, see monad
unquote, see reflect

valuation, 20
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[10] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Extensional normalisa-
tion and type-directed partial evaluation for typed lambda calculus with sums.
ACM SIGPLAN Notices, 39(1):64–76, January 2004.

[11] Vincent Balat and Olivier Danvy. Memoization in type-directed partial eval-
uation. In Don Batory, Charles Consel, and Walid Taha, editors, Proceedings
of the 2002 ACM SIGPLAN/SIGSOFT Conference on Generative Program-
ming and Component Engineering, GPCE 2002, number 2487 in Lecture Notes
in Computer Science, pages 78–92, Pittsburgh, Pennsylvania, October 2002.
ACM, Springer.

[12] Henk Barendregt. The impact of the lambda calculus on logic and computer
science. Bulletin of Symbolic Logic, 3(2):181–215, 1997.

[13] Freiric Barral, David Chemouil, and Sergei Soloviev. Non-standard reductions
and categorical models in typed lambda-calculus. Logitcheskie Issledovaniya
(Studies in logic), 12:300–315, December 2005. Moscow, Nauka.

[14] Freiric Barral and Sergei Soloviev. Inductive type schemas as functors. In Dima
Grigoriev, John Harrison, and Edward A. Hirsch, editors, CSR, volume 3967 of
Lecture Notes in Computer Science, pages 35–45. Springer, 2006.

[15] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse in depen-
dent type theory. In F. Honsell and M. Miculan, editors, Proc. of 4th Int. Conf.
on Found. of Software Science and Computation Structures, FoSSaCS’01, Gen-
ova, Italy, 2–6 Apr. 2001, volume 2030 of Lecture Notes in Computer Science,
pages 57–71. Springer, Berlin, 2001.

[16] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. In Gilles
Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, editors, APPSEM, volume
2395 of Lecture Notes in Computer Science, pages 42–122. Springer, 2000.

[17] Ulrich Berger. Program extraction from normalization proofs. In Marc Bezem
and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, Lecture
Notes in Computer Science, pages 91–106, Utrecht, The Netherlands, March
1993. Springer.

[18] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg.
Program extraction from normalization proofs. Studia Logica, 82(1):25–49,
2006.



Bibliography 127

[19] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation func-
tional for typed λ-calculus. In R. Vemuri, editor, Proceedings 6’th Symposium
on Logic in Computer Science (LICS’91), pages 203–211. IEEE Computer So-
ciety Press, Los Alamitos, 1991.

[20] Richard S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, pages 3–42. Springer, 1987.

[21] Frédéric Blanqui. Théorie des Types et Récriture. PhD thesis, Université Paris
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In David H. Pitt, Axel Poigné, and David E. Rydeheard, editors, CTCS, volume
283 of Lecture Notes in Computer Science, pages 140–157. Springer, 1987.

[50] Hugo Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In L. Pacholski and J. Tiuryn, editors, Computer Science
Logic. 8th Workshop, CSL’94. Kazimierz, Poland, September 1994, volume 933
of Lecture Notes in Computer Science, pages 61–75. Springer, 1995.

[51] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis,
University of Edinburgh, 1995.

[52] Martin Hofmann. Nbe with a logical relation. Unpublished work, 1999.

[53] W.A. Howard. The formulae–as–types notion of construction. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, 1980.

[54] Gérard Huet. A unification algorithm for typed λ–calculus. Theoretical Com-
puter Science, 1:27–57, 1975.

[55] Felix Joachimski and Ralph Matthes. Short proofs of normalisation for the
simply-typed λ-calculus, permutative conversions and Gödel’s T . Archive for
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typés ainsi que les algorithmes permettant cette décidabilité. Notre étude prend en
consideration des conversions qui vont au-delà des traditionnelles conversions que
sont les conversions beta, eta ou encore les conversions permutatives (encore
appelées conversions commutatives). Pour décider ces conversions deux classes
d’algorithmes s’opposent, ceux basés sur la récriture où le but est de décomposer et
d’orienter les conversions afin d’obtenir un système convergent, l’algorithme revient
alors à récrire les termes jusqu’à ce qu’ils atteignent une forme irréductible et les
algorithmes dits « libres de réduction » ou la conversion est décidée par un détour
dans un métalangage ; tout au long de cette thèse, nous nous efforçons d’expliquer
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Freiric Barral

Doktorarbeit verteidigt in München am 6. Juni 2008.

Betreuer: Prof. Dr. Martin Hofmann und Prof. Dr. Sergëı Soloviev.
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traditionelle beta, eta oder permutative Konversionen (auch kommutative
Konversionen genannt) hinaus gehen. Um diese Konversionen zu entscheiden, gibt
es zwei ganz verschiedene Klassen von Algorithmen, die zum Einsatz kommen
können: die auf Termersetzungssystem basierende Algorithmen, wobei das Ziel ist,
die Konversionen zu zerlegen und zu orientieren um ein konvergentes System zu
erhalten, und die so genannte

”
reduktionsfreien“ Algorithmen, die die Konversion

rekursiv durch ein Umweg in einer Meta-Sprache entscheiden. Wir bemühen uns in
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Abstract: This thesis studies the decidability of conversions in typed
lambda-calculi, along with the algorithms allowing for this decidability. Our study
takes in consideration conversions going beyond the traditional beta, eta, or
permutative conversions (also called commutative conversions). To decide these
conversions, two classes of algorithms compete, the algorithms based on rewriting,
where the goal is to decompose and orient the conversion so as to obtain a
convergent system, these algorithms then boil down to rewrite the terms until they
reach an irreducible forms; and the “reduction free” algorithms where the
conversion is decided recursively by a detour via a meta-language. Throughout this
thesis, we strive to explain the latter thanks to the former.
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