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Abstract

This thesis offers new developments in matrix-product state theory for studying the strongly
correlated systems and quantum information processing through three major projects:

In the first project, we perform a systematic comparison between Wilson’s numerical
renormalization group (NRG) and White’s density-matrix renormalization group (DMRG).
The NRG method for solving quantum impurity models yields a set of energy eigenstates
that have the form of matrix-product states (MPS). White’s DMRG for treating quantum
lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a
common algebraic structure for both approaches. We exploit this fact to compare the NRG
approach for the single-impurity Anderson model to a variational matrix-product state
approach (VMPS), equivalent to single-site DMRG. For the latter, we use an “unfolded”
Wilson chain, which brings about a significant reduction in numerical costs compared to
those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced
using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy
space, of the two approaches. Finally, we demonstrate that NRG results can be improved
upon systematically by performing a variational optimization in the space of variational
matrix-product states, using the states produced by NRG as input.

In the second project we demonstrate how the matrix-product state formalism pro-
vides a flexible structure to solve the constrained optimization problem associated with the
sequential generation of entangled multiqubit states under experimental restrictions. We
consider a realistic scenario in which an ancillary system with a limited number of levels
performs restricted sequential interactions with qubits in a row. The proposed method
relies on a suitable local optimization procedure, yielding an efficient recipe for the real-
istic and approximate sequential generation of any entangled multiqubit state. We give
paradigmatic examples that may be of interest for theoretical and experimental develop-
ments.

The third project deals with sequential generation of operations. It is known that
engineering an arbitrary global unitary is generically hard. From this point of view, it
would be desirable to devise a protocol to implement the desired global unitary operation
in a sequential procedure in which an itinerant ancillary system interacts locally and only
once with each qubit in a row. Here the main question will be whether it is possible to
design such a sequentially generated operation which has the same effect of the desired
global unitary or not? We provide optimization protocols that allow an optimal realization
of a sequential version of the target global unitary with an optimal fidelity.
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Chapter 1

Introduction and motivation

One of the most important limitations of numerical calculations on strongly correlated
systems is the great amount of states that have to be considered and the exponential growth
of the dimension of the Hilbert space with system size. A number of techniques have been
introduced in order to reduce the size of the Hilbert space to a manageable size to be able
to reach larger systems, such as quantum monte carlo [1], numerical renormalization group
(NRG) [2, 3, 4] and density-matrix renormalization group (DMRG) [5, 6, 7, 8, 9, 10]. Each
method entails a particular criterion of keeping the most relevant information. One of the
most powerful techniques for studying strongly correlated electron systems is the density-
matrix renormalization group, which was developed by Steven White in 1992 [5]. Its field
of applicability has now extended beyond condensed matter physics and is successfully used
in statistical mechanics, high energy physics and ab initio quantum chemistry [11, 12].

Moreover, models for qubits coupled to a dissipative environment are quantum impurity
models [13, 14, 15], in which a local degree of freedom, the “impurity”, is coupled to a
continuous bath of excitations. For many years, the only reliable numerical approach to the
latter has been the numerical renormalization group (NRG). In this work, we show that
such models can also be addressed using the more powerful and flexible density-matrix
renormalization group [16], and compare its results to those of NRG. In particular, this
opens up perspectives for studying time-dependent driven qubits in the future [17, 18, 19].

The fact that an impurity model can be treated by two related but nonequivalent meth-
ods immediately raises an interesting and fundamental methodological question: How do
the two methods compare? More precisely, to what extent and under which circumstances
do their results agree or disagree? How do the differences in their criteria for keeping the
relevant information manifest themselves? In the first part of this thesis we address this
type of questions.

A few years after the advent of DMRG, it was understood that [20, 21, 22] the approx-
imate ground states produced by DMRG have the form of matrix-product states (MPS)
which can be explored and optimized variationally with an efficient use of computational
resources.

Fortunately, states arising for instance as ground states from local physical interactions
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Figure 1.1: MPS as an effective “net” on the huge Hilbert space of many-body systems
to capture the most relevant information.

are not uniformly distributed in Hilbert space. Hence, it is desirable to find a representa-
tion of quantum many-body states that efficiently describes the resulting local correlations.
The matrix-product-state (MPS) representation turns out to be the one capable of realizing
this idea: In fact, this representation accounts for the power of the density-matrix renor-
malization group method and provides a flexible common basis for a tremendous amount
of recent developments in quantum information and condensed matter theory [23].

Roughly speaking, MPS can be regarded as an effective “net” on the huge Hilbert
space of many-body Hamiltonian to capture the essential physics contained in the most
relevant regions of the Hilbert space (see Fig. 1.1). MPS provides a flexible algebraic
structure to store and manipulate the relevant information. Due to its matrix-product
structure, it makes it possible to exploit the mathematical tools already developed in
linear algebra, most importantly the singular value decomposition (SVD), recognized as a
“singularly valuable decomposition!”, for obtaining an efficient full-rank representation of
the underlying matrices. Moreover, it allows for defining distance measures in the Hilbert
space through the known p-norm or Frobenius norm of the matrices expressible in terms
of the singular value decomposition (see Appendix E).

In this thesis we shall exploit the common matrix-product structure for performing an
exhaustive comparison between NRG and DMRG approaches when applied to a single-
impurity Anderson model [24]. We show that the MPS-based variational formulation of
DMRG is able to fully reproduce all information obtainable from NRG. We also explore the
question how the two approaches compare in numerical demands for the sake of obtaining
the ground state and excited state properties.
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Matrix-product states play an important role also in the context of quantum informa-
tion processing [25, 26, 27, 23]. Paradigmatic multiqubit states, such as Greenberger-Horne-
Zeilinger (GHZ) [28], W [29] and cluster [30] states, can be described by low-dimensional
MPS and are considered valuable resources for quantum information and communication
tasks. The generation of multiqubit entangled states via a single global unitary operation
acting on initially decoupled qubits is in general a difficult problem. From this point of
view, several theoretical and experimental efforts have been oriented towards the sequential
generation of paradigmatic entangled multipartite states. It turns out that the classes of
all sequentially generated multiqubit states, assisted by an itinerant ancilla, are exactly
given by the hierarchy of matrix-product states [26, 31, 32].

However, the sequential recipe for the generation on demand of any arbitrary multiqubit
state requires a full control over the experimental resources which does not quite correspond
to what is the case in practice [31], where only a restricted class of interactions are available
and some atomic or qubit degrees of freedom can not be manipulated easily. In this
sense, two important theoretical and experimental questions appear naturally: will the
sequential generation of a desired multiqubit state still be feasible under given restricted
experimental conditions? And if the answer is no, can we design an efficient protocol that
tells us the best possible approximation to the sequential generation of such state? It this
thesis we address satisfactorily both questions [33]. We demonstrate how linear algebraic
tools accessible to MPS formalism can be exploited to study this relevant constrained
optimization problem [34].

It is noteworthy to mention that engineering a global multiqubit operation acting si-
multaneously on several qubits is known to be a task of formidable difficulty. It will be then
desirable to devise a recipe in which the target multiqubit operation can be implemented in
a sequence of two-qubit operations. In this work we show how the matrix-product operator
(MPO) formalism [35, 36, 37, 38] (a generalized version of MPS formalism from states to
operations) offers a flexible framework to study this problem. In general, the task of se-
quential generation of non-trivially entangling multiqubit operation was proved in Ref. [39]
to be impossible even with a full access to experimental resources. Our numerics confirm
this “no-go” theorem and provides an optimal procedure with which a global unitary can
be implemented in a sequential manner with the maximal fidelity.

This thesis is structured as follows: Part I introduces the numerical methods used
throughout this thesis. A brief introduction to DMRG and the historical transition from
real-space NRG to DMRG are provided in Chapter 2. Moreover, the natural connection
between DMRG and MPS is elucidated here. In Chapter 3, a quantum information per-
spective on matrix-product states is introduced. Various paradigmatic low-dimensional
MPS representation of entangled multiqubit states are presented here. The chapter ends
with an overview of sequential generation of entangled multiqubit states within MPS for-
malism. We point out Part I introduces basic concepts in principle useful for all results of
Prat II, but the introductory materials of Chapter 2 (3) will be specifically needed for the
results of Chapter 4 (5 and 6).

Part II contains our results. In Chapter 4 results of a systematic comparison between
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NRG and variational formulation of DMRG are presented. An MPS reformulation of both
NRG and DMRG is followed by comparison of various ground state and excited state
properties of the single impurity Anderson model. In Chapter 5 we present analytical and
numerical protocols for an efficient sequential generation of entangled multiqubit states
under realistic experimental constraints. Motivated by a recently proved “no-go” theorem
for the sequential generation of global multiqubit operations by Lamata et al [39], in
Chapter 6 we give our numerical results for an optimal sequential generation of certain
canonical multiqubit gates of quantum computation with maximal fidelity.

Part III collects some technical details on various manipulations involving matrix-
product states.

Finally, Part IV contains miscellaneous items, the bibliography, the acknowledgements,
the “Deutsche Zusammenfassung” and author’s curriculum vitae.



Chapter 2

Density-matrix renormalization

group and matrix-product states

Note that the concepts introduced in this chapter will be particularly useful for the calcula-
tions of our first project presented in Chapter 4.

In this chapter, we provide a brief historical overview of two concepts of central impor-
tance to this thesis, namely DMRG and matrix-product states.

Shortly after Wilson’s dramatic success in solving the Kondo problem [40] with a renor-
malization group (RG) method [2], there was considerable excitement about the possibility
of applying the same type of approach to a variety of quantum lattice problems such as
Hubbard and Heisenberg models, with lattice sites replacing energy levels. These real-space
renormalization schemes quickly developed a bad reputation, after several applications of
the method gave poor results. Actually the method had little success for anything but
quantum impurity problems. In order to see what goes wrong with numerical renormal-
ization group (NRG) when applied to real-space models, we first review in Section 2.1
the real-space NRG algorithm for a one-dimensional quantum lattice [7]. In this Section
we also explain how White’s DMRG eventually offered an RG scheme to overcome these
problems. Section 2.2 gives a brief history of MPS and the relevance to strongly correlated
systems. In Section 2.3 we explain how the renormalization procedure in a natural way
leads to a state of matrix-product form.
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2.1 Transition from NRG to DMRG

As a prototypical quantum chain model, we may mention a one-dimensional tight-binding
chain [41] with hopping rates tij and on-site Coulomb interactions Ui, given by

H =
∑

i,j

tija
†
iσajσ +

∑

i

Uini↑ni↓ , (2.1)

where a†i,σ(ai,σ) creates (annihilates) fermions of spin σ = {↑, ↓} in an orbital centered at

site i, and niσ denotes the occupation number operator niσ = a†iσaiσ. In the specific case
that the hopping rates and the on-site interactions are constant (tij = t = const. and
Ui = U = const.) this model reduces to the Hubbard model [42]

H = t
∑

i,j

a†iσajσ + U
∑

i

ni↑ni↓ . (2.2)

In the standard real-space NRG, one begins by breaking the 1D chain into finite identical
blocks. It is usually convenient to start at the very first iteration with blocks consisting
of just one site. We will label the blocks by B and the corresponding block Hamiltonian
by HB. HB contains all terms of the Hamiltonian H involving only sites contained in B.
For example, for the Hubbard model at the first iteration, when B consists of one site,
HB = Uni↑ni↓, or for the Heisenberg model at the first iteration, HB = 0. Rather than
describing B and HB in the usual way by listing the sites of B and using second-quantized
operator expressions for HB, we describe B by a list of the many-body states on the block,
and by quantum numbers and matrix elements between these states. HB is represented
then as an m × m matrix where m is the number of states of the block B. In order
to reconstruct H , additional information about the interactions between blocks is needed
besides HB. For instance, for a Hubbard model one would have to store matrices for aiσ
in order to reconstruct the hopping term. The standard procedure, illustrated in Fig. 2.1,
now goes as follows [7]:

1. At the beginning of an iteration one forms the Hamiltonian for two blocks joined
together HBB where BB has m2 states.

2. The lowest-lying eigenstates uαi1i2, α = 1 . . .m of HBB are the states used to describe
B′ (BB → B′), obtaining by diagonalization of HBB.

3. Then one forms matrix representations of boundary operators corresponding to the
interactions between neighboring blocks for BB from the corresponding matrices for
B.

4. The new block Hamiltonian matrix HB′ is evidently diagonal in this basis, but in
the more general case where the states kept, the uα, are not eigenstates of HBB we
can use this transformation where the m × m2 matrix O is made out of the basis
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Figure 2.1: Sketch of real-space NRG for Hubbard model. The 1D chain is splitted into
finite identical blocks labeled by B and the corresponding block Hamiltonians HB. The
RG procedure is then carried out by iterative diagonalization of the joint blocks HBB .

uα in such a way that the rows of O are the states kept. If O were square, this
would be a unitary transformation. Since O is not square, the transformation is an
isometry (O†O = 1) that truncates away the high-energy states (see also Footnote 2
in Section 5.2 for isometries contrasted to unitaries). Moreover, in order to obtain
new matrices for boundary operators at this stage, it is necessary to use the isometry
O again.

5. Now we can replace B by B′ and start the next iteration.

The iteration is continued until the system is large enough to represent properties of
an infinite system.

Bray and Chui applied the outlined approach to the 1D Hubbard model and the results
were quite discouraging [43]. The reason for this breakdown lies in the physical difference
between Kondo problem and real-space quantum lattices. The most important difference
between the Kondo system and a real-space 1D system is that the couplings between
adjacent layers or sites decrease exponentially in the Kondo system, whereas it remains
constant for a 1D quantum chain system (see for instance Eq. (2.2)). More precisely, for the
Kondo model tij = Λ−i/2 in Eq. (2.1) where Λ is a constant discretization parameter [40, 3].
This exponential decrease is the key to the success of the method for the Kondo system
and related impurity systems, but when applied to quantum lattice problems in a real-
space blocking form, the approach is flawed in its treatment of the boundaries of a block.
More precisely, the fundamental difficulty in the standard approach above lies in choosing
the eigenstates of HBB to be the states kept. Since HBB contains no connections to the
rest of the lattice, its eigenstates have inappropriate features at the block ends. In other
words, merely considering isolated blocks imposes wrong boundary conditions on the block
boundaries. The density-matrix renormalization group (DMRG) was originally developed
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to overcome this sort of problems.

Xiang and Gehring applied a slight variation of the outlined real-space NRG to the
1D Heisenberg model [44]. Their method added a single site to a block at each iteration,
rather than doubling the block size each time, growing the system more adiabatically, so
to speak. This improvement gave somewhat more encouraging results.

White and Noack studied a toy model of the standard particle-in-a-box problem in
detail suggesting two alternatives to the standard approach and they could obtain excellent
results by combining Hilbert spaces from low-lying states of block B obtained by assuming
various combinations of fixed and free boundary conditions [45]. In both methods the
states that were kept were not the eigenstates of the Hamiltonian HBB:

In the first method, the combination of boundary conditions (CBC approach) the
lowest-lying eigenstates of several different block Hamiltonians were kept. The several-
block Hamiltonian differed only in the boundary condition applied to a block, e.g. one
Hamiltonian might have periodic boundary condition applied and another antiperiodic
boundary condition. The rationale for this was that quantum fluctuations in the rest of
system effectively apply a variety of boundary conditions to the block and states from any
single boundary condition cannot respond properly to these fluctuations [7]. The CBC
approach proved very successful for the simple single-particle problems. The lesson was
that any approach using one set of boundary conditions on a block generates a set of states
which is in some sense “incomplete”, and it is impossible to correct this incompleteness
by keeping more states or by applying perturbative corrections. However, CBC approach
turned out to be unsuccessful for interacting systems like a Heisenberg chain. The reason
for this failure was that it is typically very difficult to obtain a set of kept states that
comply with a wide range of boundary behavior associated with different particles.

The other approach proposed by White and Noack, the “superblock” method, forms
the basis for DMRG. In the superblock method one diagonalizes a larger system (the
superblock) composed of three or more blocks including the two blocks BB which are used
to from B′. The wavefunctions for the superblock are projected onto BB and some of
these projected states of BB are kept. The density matrix now tells us which states are
the most important. Indeed, for a system which is strongly coupled to the outside universe,
it is much more appropriate to use the eigenstates of the density matrix to describe the
system rather than the eigenstates of the system’s Hamiltonian. In other words, to analyze
which states to be retained, the block is embedded in some environment and the rest of
the lattice can be viewed as a heat bath at an effective inverse temperature β to which the
system is coupled.

The key idea of DMRG is that rather than keeping the lowest-lying eigenstates of the
Hamiltonian in forming a new effective Hamiltonian of a block of sites, one should keep
the most significant eigenstates of the block density matrix, obtained from diagonalizing
the Hamiltonian of a larger section of the lattice which includes the block.

In that spirit, keeping the most probable eigenstates of the density matrix gives the
most accurate representation of the state of the system as a whole, i.e., the block plus the
rest of the lattice. This intuition can be understood by considering the expectation value
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Figure 2.2: Sketch of the superblock method as the basis for DMRG.

of an arbitrary operator A in the basis of the eigenstates of the reduced density matrix of
the block

〈A〉 = Tr(ρA) =
∑

α

wα〈να|A|να〉 , (2.3)

where wα are the eigenvalues of the reduced density matrix of the block and |να〉 the
corresponding eigenvectors. This relation tells us that if for a particular α, ωα is very small,
we would make accordingly a very small error in expectation value of A if we discard the
state |να〉.

This conclusion that the optimal states to keep are the most probable eigenstates of
the block density matrix can be justified rigorously as follows [6]:

Let us assume we have diagonalized a superblock and obtained a particular state |ψ〉,
e.g. the ground state. Let |i〉 be the complete set of states of the system and |j〉 the states
of the rest of the superblock, namely the environment, as illustrated in Fig. 2.2. The state
of the superblock |ψ〉 then admits an expansion of the form

|ψ〉 =
∑

i,j

ψi,j|i〉|j〉 . (2.4)

We wish to find a procedure for producing a set of states of the system say |uα〉 =
∑

i u
α
i |i〉,

and α = 1, . . . , m, which are optimal for representing |ψ〉 in some sense. More precisely,
we seek an approximate expansion (with the highest possible accuracy) for |ψ〉 of the form

|ψ〉 ≈ |ψ̃〉 =
∑

α,j

aα,j|uα〉|j〉 . (2.5)

Equivalently, we wish to minimize the error

S = ||ψ〉 − |ψ̃〉|2 , (2.6)

by varying over all aα,j and uα, subject to the constraint 〈uα|uα′〉 = δαα′ , since |uα〉 forms
a complete orthonormal basis. The minimization problem above finds a very compact
solution in terms of singular value decomposition from linear algebra

ψ = USV t , (2.7)
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where U and S are l × l matrices, V is an J × l matrix, U is orthogonal, V is column-
orthogonal and the diagonal matrix S contains the singular values of |ψ〉. In matrix
notation this implies an expansion of |ψ〉 of the form

ψij =
m∑

α=1

aαu
α
i v

α
j . (2.8)

Now consider what happens if some of the weight factors aα[aα ≥ 0] are zero or very small.
If that is the case, then |ψ〉 can be very well approximated by discarding them that is
to say by truncating the sum to those with the largest weights. On the other hand, the
density matrix can be expressed in terms of U and S

ρ = |ψ〉〈ψ| = US2U t , (2.9)

which suggests U diagonalizes ρ and the eigenvalues of ρ are wα = a2
α. Recalling that

|ψ〉 could be well approximated by throwing out the smaller aα’s whose square are now
eigenvalues of density matrix, we come up with the conclusion that the optimal states are
the eigenstates of ρ with the largest eigenvalues. Moreover, the deviation of Pm ≡∑m

α=1wα
from unity measures the accuracy of the truncation to m states. A fast decay of density
matrix eigenvalues is essential for the performance of this truncation procedure. This is
typically fast enough for one-dimensional gapped quantum systems, but for critical systems
in one dimension and all systems in higher dimensions may be generically slow [18].

2.2 Matrix-product states in the context of strongly

correlated systems

States that can be parameterized in terms of products of matrices, i.e. so-called matrix-
product states (MPS), were first found in a percolation problem of directed lattice animals
in the context of stochastic models [46, 47] and for certain quantum spin chains [48]. They
have also been arisen in classical kinetic models, lattice gas and also diffusion-coagulation
models [49, 50]. It has been found that the ground state of certain spin-one models and
stationary state for classical particles diffusing between two reservoirs have such a form.
The analogy between stochastic models and strongly correlated systems may be understood
from the formal analogy between a master equation and the Schrödinger equation.

The Matrix-product method in the context of strongly correlated systems was originally
devised as a variational approach appropriate to study the ground state and excitations
of a variety of one-dimensional lattice systems. In that respect, MPS was used for the
construction of the ground state and excitations of 1D or quasi 1D systems in a recursive
way, by relating the states of the system with length n to that of length n− 1.

In the next section, we illustrate how MPS naturally arises when a renormalization
procedure on a one-dimensional system is carried out.
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Figure 2.3: Renormalization procedure leads to a state of the matrix-product form.

2.3 DMRG leads to MPS

Assume we have a block that represents a chain with n − 1 sites, as depicted in Fig. 2.3.
Let ms be the number of possible states of a single lattice site. If we were to treat this
system exactly, there would be mn−1

s states in the Hilbert space which implies that for
large n the exact treatment of the system will be out of question. Assume, therefore,
that an approximation is made and our chain is represented by a smaller set of states
labeled by {|β〉n−1}. This set of states has been chosen by the previous iterations of a
renormalization procedure with the aim to describe the low-energy physics. Assume there
are m states in this basis, with m ≤ mn−1

s . If this is the first iteration, {|β〉n−1} can be
the complete basis. We now add a single site, labeled by sn, say the z component of spin,
to our block resulting in a new block with n sites and ms × m states in its basis. The
basis states are now generated by the product representation {|sn〉 ⊗ |β〉n−1}. We now use
a projection operator An to generate a new truncated basis with typically m states that
represent the most important states of the longer new block. We may now observe that
the basis associated with block n−1 and n are related in a simple manner by the recursion
relation of the form

|α〉n =
∑

β,sn

Aα,(β,sn)
n |sn〉 ⊗ |β〉n−1 , (2.10)

where the initial data |β〉0 should be already supplemented. The matrices An are the
variational parameters of the matrix-product method and their determination is the central
problem one has to solve. White’s DMRG algorithm constitutes a particularly effective
way of computing a suitable projection operator An by keeping the largest eigenvalues of
the reduced density matrix. More precisely, in DMRG the renormalization scheme offered
by singular value decomposition (see Eq. (2.8)) keeps the size of the matrices controllable.

Now if we perform a simple change in notation Aα,βn [sn] ≡ A
α,(β,sn)
n and write the

m× (msm) matrix as a set of ms m×m matrices and also assume that the recursion leads
to a fixed point for the projection operator so that we can drop the site-dependence index
n, by recursively applying the renormalization step in the previous equation, the state of
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the chain of length n takes the form [20, 21]

|α〉n =
∑

sn,...,s1

(A[sn]A[sn−1] . . . A[s1])
α,β |snsn−1 . . . s1〉 ⊗ |β〉0 . (2.11)

We thus see that the renormalization procedure results in a wave function that can be
written in a matrix-product form.

Note that although the resulting state is the sum of tensor product of the local Hilbert
space of each site, the coefficients (product of the A-matrices) encode the non-trivial cor-
relations throughout the chain.

The MPS arisen in Eq. (2.11), however, corresponds to the first examples in the liter-
ature of MPS, with site-independent A-matrices, but in the rest of the thesis we shall use
this nomenclature more generally, i.e. we shall also consider site-dependent A-matrices.

Quite recently it was understood [51] that NRG, too, in a natural way produces matrix-
product states. More precisely, when applied to a Wilson chain of single-impurity Anderson
model [24], NRG and DMRG produce approximate ground states of essentially the same
MPS structure. This insight puts NRG and DMRG on a common basis. The detailed
relation between them will be explored in Chapter 4.



Chapter 3

Matrix-product states in the context

of quantum information processing

Note that the concepts introduced in this chapter will be particularly useful for the calcula-
tions of our second and third projects presented in Chapter 5 and 6.

In this Chapter we shall consider a quantum information perspective on matrix-product
states. Apart from its own specific field of applicability, it has been recently shown that
quantum information theory may also shed light on our understanding of the condensed
matter systems and, in particular, on the DMRG and MPS methods [52, 53, 54]. In
Section 3.1 a basic definition of MPS is given in terms of valence-bond picture [55]. This
will be followed in Sections 3.2 and 3.3 by several algebraic tools which are of crucial
importance for obtaining an efficient representation of MPS in the context of quantum
information processing. An MPS description of some familiar low-dimensional entangled
multiqubit states will be provided in Section 3.4. Finally, the main ideas of sequential
generation of states within MPS formalism is presented in Section 3.5.

3.1 Definition and graphical representation of MPS

We will throughout consider pure quantum states |ψ〉 ∈ C
⊗dn

characterizing a system
of n sites, each of which represents a d-dimensional Hilbert space. For instance, each
site could represent a qubit with d = 2. A description of MPS may be intuitively given
in terms of a valence-bond picture which proves useful for understanding multipartite
entanglement [23, 55]: 1

1 This valence-bond-based description of MPS will be in turn useful for the generation of multipartite
entangled states studied in Chapter 5 as well as the decomposition of multipartite entangling global
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Figure 3.1: Graphical representation of an OBC-MPS

We assign two auxiliary sites of dimension Dk, |αk, βk〉 to each site of the chain. Assume
that every pair of neighboring auxiliary sites are in a maximally entangled state of the form

|I〉 =

D1∑

α1=1

D2∑

α2=1

· · ·
Dn−1∑

αn−1=1

|α0, α1〉|α1, α2〉 . . . |αn−1, αn〉 . (3.1)

Then if we apply the map

A[k] =

d∑

ik=1

Dk∑

αk,βk=1

A
[k]
ik ,αk,βk

|ik〉〈αk, βk| , (3.2)

to each of the n sites, we are left with a state of a matrix-product form

|ψ〉 =
∑

i1,...,in

A
[1]
i1
A

[2]
i2
. . . A

[n−1]
in−1

A
[n]
in
|i1 . . . in〉 , (3.3)

where A
[k]
ik

is a Dk × Dk+1 matrix corresponding to the site k ∈ {1, . . . , N}. The bond
dimension of an MPS is defined by

D ≡ max
k

Dk . (3.4)

A very helpful graphical representation of an MPS is given in Fig. 3.1 and will be
heavily used throughout this thesis. Each matrix is represented by a square and the link in
between denotes the contraction (sum) over the common indices. In the case of the MPS
of Eq. (3.3), the product of the A-matrices leads to the links (contractions) of the squares
in Fig. 3.1. Here ik denotes the local state index. In the case of qubits ik = {0, 1}. Note

that A
[k]
ik

in Eq. (3.3) are indeed tensors of rank 3 with three indices (see Ai,α,β arising
in Eq. (3.2)), but for a fixed ik we get a matrix (or tensor of rank 2). In other words,
Ai,α,β encodes the information of d matrices. Note also that throughout this thesis we only
consider MPS with open-boundary conditions (OBC-MPS), which means the first and last
matrices of Eq. (3.3) are indeed vectors: D1 = Dn+1 = 1.

operations studied in Chapter 6.
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It is noteworthy to mention that any state admits such a matrix-product representation
obtained by performing successive Schmidt decomposition (or singular value decomposi-
tion) on the coefficients of the expansion of the state in the computational basis [53, 26].

In the subsequent sections we will show how the MPS language can be exploited for an
efficient representation of multiqubit states.

3.2 Schmidt decomposition and singular value decom-

position

Quantum systems typically loose their individual identities within a highly correlated whole
that can not be described by merely the knowledge of its constituents. Nevertheless, there
exists a useful construction that provides a transparent description of the relation between
the composite system and its constituents given through the Schmidt decomposition [56].

Suppose the composite system |Ψ〉 is made of two subsystems A and B with which
the Hilbert spaces HA and HB are associated, respectively. Then there exist orthonormal
bases {|ai〉} ∈ HA and {|bj〉} ∈ HB, such that

|Ψ〉 =
∑

i

λi|ai〉 ⊗ |bi〉 , (3.5)

with non-negative scalars λi satisfying
∑

i λi = 1 known as Schmidt coefficients. The
number of non-vanishing Schmidt coefficients is defined as the Schmidt rank of the decom-
position. The vectors |ai〉 and |bi〉 are also called the Schmidt vectors associated with the
partitions A and B, respectively.

The decomposition implies that an arbitrary bipartite pure state can be written as a
sum of biorthogonal products. Note that the summation in Eq. (3.5) goes over a single
common index (the smaller of the dimensionalities of Hilbert spaces HA and HB) whereas
in the most general case the sum could go over two indices i and j (see Eq. (3.6)).

The Schmidt decomposition theorem can be proved with the aid of singular value
decomposition (SVD) as follows [57]:

Let {|ci〉} and {|dj〉} be any fixed orthonormal bases for subsystems A and B, respec-
tively. The state of the composite system |Ψ〉 can be obviously written as

|Ψ〉 =
∑

i,j

gi,j|ci〉 ⊗ |dj〉 . (3.6)

Treating the coefficients gij as a matrix and performing SVD on it yields

g = usv , (3.7)

where u and v are unitary matrices and s is a diagonal matrix with non-negative elements.
Inserting this decomposition for g in Eq. (3.6) gives

|Ψ〉 =
∑

i,j,k

uikskkvkj|ci〉 ⊗ |dj〉 . (3.8)
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Making the identifications

|ak〉 ≡
∑

i

uik|ci〉

|bk〉 ≡
∑

j

ukj|dj〉

λk ≡ skk , (3.9)

we arrive at

|Ψ〉 =
∑

k

λk|ak〉 ⊗ |bk〉 , (3.10)

which is the Schmidt decomposition of Eq. (3.5). Moreover, it can be easily verified that
|ai〉 and |bi〉 in Eq. (3.9) are orthonormal bases

〈ai|ai′〉 =
∑

i,i′

〈ci|u∗kiui′k′|ci′〉 =
∑

i,i′

u∗kiui′k′δii′ =
∑

i

(u†)kiuik = δkk′ , (3.11)

where in the last step use has been made of the unitarity of u.

3.3 Vidal decomposition

Vidal proposed an efficient classical protocol for simulation of slightly entangled pure-
state quantum computation on n qubits which exploits computational resources that grow
linearly in n and exponentially in the amount of entanglement [53]. This decomposition also
proves useful in many one-dimensional many-body system, such as quantum spin chains
at zero temperature that turn out to contain sufficiently small amount of entanglement to
be classically simulatable.

Let us consider the expansion of a n-qubit state in the computational basis

|Ψ〉 =
1∑

i1=0

· · ·
1∑

in=0

ci1...in |i1〉 ⊗ · · · ⊗ |in〉 . (3.12)

The Vidal decomposition is then given by [53]

ci1i2...in =
∑

α1,...,αn−1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

. . .Γ[n]in
αn−1

, (3.13)

employing n tensors (of rank 3) {Γ[1], . . . ,Γ[n]} and n − 1 vectors {λ[1], . . . , λ[n−1]} whose
indices take the values in {0, 1} and {1, . . . , χ}, respectively. Here χ ≡ maxA χA, and χA
denotes the rank of the reduced density matrix in the bipartite splitting of the multipartite
state Eq. (3.12). This decomposition essentially re-expresses the 2n coefficients ci1i2...in of
Eq. (3.12) in terms of 2(n− 2)χ2 + (n+ 3)χ parameters.
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Figure 3.2: Graphical representation of the general recipe to arrive at the usual MPS
representation of Eq. (3.1) from Vidal decomposition Eq. (3.13) by performing the con-
tractions over the intermediate indices. In (a) the Vidal representation of Eq. (3.3) has
been depicted in which tensors Γ’s are shown by squares and the newly defined matrices
Λ in Eq. (3.15) by circles. In (b) we have avoided repeating the common indices of the
joint links and we would stick to this convention throughout this thesis for all graphical
representations of this type. In (c) the contraction between Γ’s and Λ’s are performed and
the resulting objects are illustrated by new A squares, leading to Eq. (3.20).

The decomposition above at the first glance may look different from the standard MPS
decomposition introduced by Eq. (3.1) at the beginning of the chapter, but it is easy to
show that it can be reshaped into the usual MPS form by performing the contractions
between Γ’s and λ’s. To see this, we introduce a new dummy primed index, along with a
Kronecker delta

Γ[n]in
αn−1αn

λ[n]
αn

Γ[n+1]in+1
αnαn+1

=
∑

α′
n

Γ[n]in
αn−1αn

λ
[n]
α′

n
δαnα

′
n
Γ

[n+1]in+1

α′
nαn+1

, (3.14)
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and define the new diagonal matrix Λ[n] of the form

Λ
[n]
αnα

′
n
≡ δαnα

′
n
λ

[n]
α′

n
(no sum over α′

n) . (3.15)

Therefore Eq. (3.13) reads

ci1...in =
∑

α1,...,αn−1

∑

α′
1,...,α

′
n−1

Γ[1]i1
α0α1

Λ
[1]
α1α

′
1
Γ

[2]i2
α′

1α2
Λ

[2]
α2α

′
2
Γ

[3]i3
α′

2α3
. . .Γ

[n−1]in−1

α′
n−2αn−1

Λ
[n−1]
αn−1α

′
n−1

Γ
[n]in
α′

n−1αn
,(3.16)

with α0 = αn = 1.

Performing the summations (contractions) over the indices {α1, α2, . . . , αn−1}, yields

ci1...in =
∑

α′
1,...,α

′
n−1

A
[1]i1
α0α

′
1
A

[2]i2
α′

1α
′
2
. . . A

[n−1]in−1

α′
n−2α

′
n−1
A

[n]in
α′

n−1αn
, (3.17)

where we have defined

A[x] ≡
{

Γ[n] for x = n ,
∑

αx
Γ[x]Λ[x] otherwise .

(3.18)

If we also perform further summations over the indices {α′
1, α

′
2, . . . , α

′
n−1}, we arrive at

ci1...in = A[1]i1A[2]i2 . . . A[n−1]in−1A[n]in , (3.19)

which when inserted in Eq. (3.13) yields

|Ψ〉 =

1∑

i1,...,in=0

A[1]i1A[2]i2 . . . A[n−1]in−1A[n]in|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 , (3.20)

which is nothing but the standard representation of the MPS in Eq. (3.3). The graphical
representation of the procedure above has been depicted schematically in Fig. 3.2.

All in all, we may conclude that the Vidal decomposition offers a general recipe for the
MPS representation of any arbitrary state. On the other hand, this decomposition also
allows to define a canonical representation of MPS given by the following theorem [23]:

Theorem (canonical representation of an MPS): Any state |ψ〉 ∈ C⊗dn

has an OBC-
MPS representation of the form Eq. (3.3) with bond dimension D ≤ d⌊n/2⌋ and

1.
∑

iA
[m]
i A

[m]†
i = 1Dm

for all 1 ≤ m ≤ n.

2.
∑

iA
[m]†
i Λ[m−1]A

[m]
i = Λ[m] for all 1 ≤ m ≤ n.

3. Λ[0] = Λ[n] = and each Λ[m] is a Dm+1 × Dm+1 diagonal matrix which is positive,
full-rank and with Tr(Λ[m]) = 1
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This theorem is proven in Ref. [53] by successive singular value decompositions in |ψ〉.
If the gauge conditions 1.-3. are satisfied for an MPS, then the MPS is said to be in the
canonical form [23].

3.4 Prototypical low-dimensional MPS in quantum

information theory

The generation and manipulation of multipartite entanglement lies at the very heart of
quantum mechanics. Among the various kinds of entangled multiqubit states, the W
state [29, 58, 59] plays a distinguished role and provides a test-bed for theoretical studies
of multipartite entanglement, as their entanglement is believed to be maximally persistent
and robust under particle loss [60, 61]. A scalable and deterministic generation of up to
eight-particle entangled states of the W type with trapped ions has recently been reported
in Innsbruck [61].

A W-state of n qubits is defined by

|Wn〉 =
1√
n

(|10 . . . 0〉 + |010 . . .0〉 + . . . |00 . . . 01〉) , (3.21)

with equal superposition of all permutations of |10 . . . 0〉. Since states of this type are
believed to be immune against global dephasing and rather robust against bit flip noise,
they are suitable candidates for quantum communication tasks [62, 63].

Another type of highly entangled states of multiple quantum systems is Greenberger-
Horne-Zeilinger state (GHZ) [28]. They are equal superpositions of two maximally different
states. A GHZ state of n qubits is given by

|GHZn〉 =
1√
2
(|11 . . . 1〉 + |00 . . . 0〉) . (3.22)

Creation of GHZ states with up to six ions have been recently realized in Boulder [64].

It is worth to mention that the W and GHZ states both can be represented with MPS
with bond-dimension D = 2 for any number of qubits n. As an illustrative case, we now
demonstrate explicitly [27] how to obtain such a canonical representation of these paradig-
matic multipartite states for n = 3 by employing the Vidal decomposition introduced in
the previous section.

We first consider the W state with three qubits given by

|W3〉 = c1| ↓↓↑〉 + c2| ↓↑↓〉 + c3| ↑↓↓〉 . (3.23)

The Vidal decomposition of such state according to Eq. (3.13) is given by

|W3〉 =
∑

i1,i2,i3

(∑

α1,α2

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2

)
|i1i2i3〉 . (3.24)
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The aim is now to find the set of tensors {Γ[1],Γ[2],Γ[3]} and vectors {λ[1], λ[2]}. We start
by performing the Schmidt decomposition of such state for the partition 1|23 given by

|W3〉 = N↑| ↑〉
c3
N↑

| ↓↓〉
︸ ︷︷ ︸

|Φ
[23]
↑ 〉

+N↓| ↓〉
[ c1
N↓

| ↓↑〉 +
c2
N↓

| ↑↓〉
]

︸ ︷︷ ︸

|Φ
[23]
↓ 〉

, (3.25)

where |Φ[23]
↑ 〉 and |Φ[23]

↓ 〉 are the Schmidt vectors of the subsystems corresponding to qubits

2 and 3. N↑ and N↓ are the Schmidt coefficients in our case given by N↑
2 = c3

2 and
N2

↓ = c1
2 + c2

2. Comparing Eq. (3.25) with the Vidal decomposition of the partition 1|23

|W3〉 =
∑

i1,α1

Γ[1]i1
α1

λ[1]
α1
|i1〉|Φ[23]

α1
〉 = λ

[1]
↑ Γ

[1]↑
↑ | ↑〉|Φ↑

[23]〉 + λ
[1]
↓ Γ

[1]↑
↓ | ↑〉|Φ↓

[23]〉

+λ
[1]
↑ Γ

[1]↓
↑ | ↓〉|Φ↑

[23]〉 + λ
[1]
↓ Γ

[1]↓
↓ | ↓〉|Φ↓

[23]〉 , (3.26)

gives

λ[1] = (N↑, N↓); Γ[1]↑ = (1, 0); Γ[1]↓ = (0, 1) . (3.27)

Proceeding with the Schmidt decomposition of partition 12|3 yields

|W3〉 = N12,↑
c1
N12,↑

| ↓↓〉 | ↑〉
︸︷︷︸

|Φ
[3]
12,↑〉

+N12,↓

[ c2
N12,↓

| ↓↑〉 +
c3
N12,↓

| ↑↓〉
]

| ↓〉
︸︷︷︸

|Φ
[3]
12,↓〉

, (3.28)

with Schmidt coefficients N2
12,↑ = c21 and N2

12,↓ = c2
2 +c3

2. Again comparing with the Vidal
decomposition of the partition 12|3, in a similar manner to that of 1|23 above, yields

λ[2] = (N12,↑, N12,↓); Γ[2]↑ =

(
0 0
0 1

N↓

)

Γ[2]↓ =

(

0 1
N↑

1
N↑

0

)

. (3.29)

The remaining Γ
[3]i3
α2 may be easily read off from the previous Schmidt decomposition of

the state

Γ[3]↑ =

(
1
0

)

Γ[3]↓ =

(
0
1

)

. (3.30)

In general, one may verify that

Γ[n]in
αn−1αn

= 〈αn−1in|αn〉
1

λ
[n−1]
αn−1

. (3.31)

The construction already indicates the minimal bond dimension of the MPS representation
of W state is D = 2, since this is the maximal rank of Schmidt decomposition of the multi-
partite state over all possible bipartite splittings A|B of the three qubits, χ = maxA χA = 2.
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In a similar manner, the same construction for a GHZ state of three qubits

|GHZ3〉 = c1| ↑↑↑〉 + c2| ↓↓↓〉 , (3.32)

yields

λ[1] = (N↑, N↓) λ[2] = (N12,↑, N12,↓)

Γ[1]↑ = (1, 0) Γ[1]↓ = (0, 1)

Γ[2]↑ =

( 1
N↑

0

0 0

)

Γ[2]↓ =

(
0 0
0 1

N↓

)

Γ[3]↑ =

(
1
0

)

Γ[3]↓ =

(
0
1

)

, (3.33)

where N12,↑ = N↑ = c1 and N12,↓ = N↓ = c2. Again we end up with matrices of maximal
dimensions D = 2 for the MPS representation of a GHZ state with n = 3.

A similar construction may be easily generalized to any number of qubits n, and in all
cases, we observe that any bipartite decomposition of the state gives a Schmidt rank of
χ = 2, which accounts for the fact that GHZ and W states with any number of qubits n
can be described by MPS of optimal bond dimension D = 2.

3.5 MPS for sequential generation of entangled mul-

tiqubit states

The generation of multiqubit entangled states via a single global unitary operation acting
on initially decoupled qubits is in general known to be a difficult problem. Therefore,
several theoretical and experimental efforts have been made to develop sequential protocols
for the generation of paradigmatic entangled multiqubit states [26, 31, 32]. Sequentiality
can in principle enormously reduce the complexity in the physical implementation of a
global operation [39].

A complete characterization of all multipartite quantum states achievable within a
sequential generation scheme was provided by Schön et al in terms of matrix-product
states [26, 31, 32]. They considered a trapped D-level atom coupled to a cavity qubit
with energy eigenstates |0〉 and |1〉. The ancilla performs arbitrary bipartite source-qubit
interactions with each qubit in a row, creating the desired entangled multiqubit state (see
Fig. 3.3). The role of the ancillary system, in practice, is performed by a D-level atom
coupled to a single mode of an optical cavity. The sequentially generated qubits describe
the absence |0〉 or presence |1〉 of a photon emitted from the cavity in a certain time
interval.

Assuming that all qubits are initially in |0〉, the ancilla-qubit interaction may be de-
scribed in the form of an isometry V =

∑

i,α,β V
i
α,β|α, i〉〈β| with {α, β} denoting the ancilla

levels. Applying n ancilla operations of this type on some initial state of the ancilla |φI〉 in
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Figure 3.3: Sequential “quantum factory” of states. A trapped D-level atom as an
itinerant ancilla performs bipartite interactions with a sequence of initially uncorrelated
qubits. After ancilla-qubit operations, the qubits will be in general entangled with the
ancilla as well as among themselves.

a sequential manner, gives rise to the state of the joint system (ancilla+qubit) of the form

|Ψ〉 = V[n] . . . V[2]V[1]|φI〉 . (3.34)

Assuming that the ancilla decouples in the last step from the n-qubit system, such that
|Ψ〉 = |φF 〉 ⊗ |ψ〉 with |φF 〉 being some final state of the ancilla, the qubits end up in a
state of matrix-product form [31]

|ψ〉 =

1∑

in...i1=0

〈ϕF |V in
[n] . . . V

i1
[1] |ϕI〉|in, . . . , i1〉 . (3.35)

Note that the optimal ancilla dimension is given by the bond dimension of the canonical
MPS representation of |ψ〉.

Moreover, it was shown in Ref. [31] that the converse is also true, i.e. every open-
boundary MPS of the form

|ψ〉 =

1∑

in...i1=0

〈ϕF |Ain[n] . . . A
i1
[1]|ϕI〉|in, . . . , i1〉 , (3.36)
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with arbitrary maps A, not necessarily isometries, can be generated sequentially by isome-
tries of the same dimension and such that the ancilla decoupled in the last step.

The physical implementation of the outlined sequential recipe within cavity QED
setup [65, 66, 67] is detailed in Ref. [32].

It is noteworthy to mention that the extension of the family of sequentially generated
matrix-product states to two dimensions has also been recently investigated in Ref. [68].
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Chapter 4

Matrix-product-state comparison of

the numerical renormalization group

and the variational formulation of the

density-matrix renormalization group

This chapter, together with Appendices A, B, D have been published in Physical Review B:

H. Saberi, A. Weichselbaum, and J. von Delft, Phys. Rev. B 78, 035124 (2008).

4.1 Introduction

Wilson’s numerical renormalization group (NRG) is a highly successful method for solv-
ing quantum impurity models which allows the non-perturbative calculation of static and
dynamic properties for a variety of impurity models [2, 3, 4, 69, 70, 71, 72, 73, 74]. NRG
is formulated on a “Wilson chain”, i.e. a tight-binding fermionic quantum chain with hop-
ping matrix elements that decrease exponentially along the chain as Λ−n/2, where Λ > 1
is a discretization parameter defined below and n ≥ 0 is the chain’s site index. It is thus
not applicable to real space quantum lattice problems featuring constant hopping matrix
elements. For these, White’s density-matrix renormalization group (DMRG) is the method
of the choice [5, 6, 7, 8]. It has been known for some time [20, 21, 22] that the approximate
ground states produced by DMRG have the form of matrix-product states (MPS) (see
Eq. (4.7) below) that had previously arisen in certain stochastic models [50] and quantum
information processing [75]. This fact can be exploited to reinterpret the DMRG algo-
rithm (more precisely, its one-site finite-size version) as a variational optimization scheme,
in which the ground state energy is minimized in the space of all matrix-product states
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with specified dimensions [22, 76, 52]. To emphasize this fact, we shall refer to DMRG as
“variational matrix-product state” (VMPS) approach throughout this thesis.

Quite recently it was understood [51] that NRG, too, in a natural way produces matrix-
product states. In other words, when applied to the same Wilson chain, NRG and VMPS
produce approximate ground states of essentially the same MPS structure. The two ap-
proximate ground states are not identical, though, since the two methods use different
truncation schemes to keep the size of the matrices involved manageable even for very
long Wilson chains: NRG truncation relies on energy scale separation, which amounts to
discarding the highest-energy eigenstates of a sequence of effective Hamiltonians, say Hn,
describing Wilson chains of increasing length n and yielding spectral information asso-
ciated with the energy scale Λ−n/2. This truncation procedure relies on the exponential
decrease of hopping matrix elements along the Wilson chain, which ensures that adding a
new site to the Wilson chain perturbs it only weakly. In contrast, VMPS truncation relies
on singular value decomposition of the matrices consituting the MPS, which amounts to
discarding the lowest-weight eigenstates of a sequence of reduced density matrices [6]. This
procedure makes no special demands on the hopping matrix elements, and indeed works
also if they are all equal, as is the case of standard quantum chain models for which DMRG
was designed.

The fact that a Wilson chain model can be treated by two related but nonequivalent
methods immediately raises an interesting and fundamental methodological question: How
do the two methods compare? More precisely, to what extent and under which circum-
stances do their results agree or disagree? How do the differences in truncation schemes
manifest themselves? VMPS, being a variational method operating in the same space of
states as NRG, will yield a lower-energy ground state than NRG. However, it variationally
targets only the ground state for the full Wilson chain, of length N , say. In contrast, NRG
produces a set of eigenenergies {En

β} and eigenstates {|En
β 〉} for each of the sequence of

effective Hamiltonians Hn, with n ≤ N , mentioned above. From these, a wealth of in-
formation about the RG flow, fixed points, relevant and irrelevant operators, their scaling
dimensions, as well as static and dynamic physical properties can be extracted. Are these
accessible to VMPS, too?

The goal of this chapter is to explore such questions. We shall exploit the common
matrix-product state structure of the NRG and VMPS approaches to perform a systematic
comparison of these two methods, as applied to the single-impurity Anderson model [24].
It should be emphasized that our purpose is not to advocate using one method instead of
the other. Instead, we hope to arrive at a balanced assessment of the respective strengths
and weaknesses of each method.

In a nutshell, the main conclusion (which confirms and extends the results of Ref. [51])
is the following: when applied to a Wilson chain with exponentially decreasing hopping, the
VMPS approach is able to fully reproduce all information obtainable from NRG, despite
being variationally optimized with respect to the ground state only. The reason is that the
VMPS ground state is characterized by products of matrices of the form

∏N
n=0B

[σn] (details
will be explained below), where the matrices with the same index n contain information
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about the energy scale Λ−n/2. As will be shown below, this information can be used to con-
struct eigenenergies {En

β} and eigenstates {|En
β 〉} for a sequence of effective Hamiltonians

Hn in complete analogy with (but not identical to) those of NRG. The agreement between
NRG and VMPS results for these eigenenergies and eigenstates is excellent quantitatively,
provided sufficient memory resources are used for both (and Λ is not too close to 1, see
below). In this sense, NRG and VMPS can be viewed as yielding essentially equivalent
results when applied to Wilson chains amenable to NRG treatment. In particular, all
physical properties obtainable from the eigenspectra and eigenstates of NRG can likewise
be obtained from those of VMPS.

Nevertheless, NRG and VMPS do differ in performance, flexibility and numerical cost.
First, since NRG truncation relies on energy scale separation, it works well only if the
discretization parameter Λ is not too close to 1 (although the continuum limit of the model
is recovered only in the limit Λ → 1). This restriction does not apply to VMPS. Indeed,
we shall find that NRG and VMPS agree well for Λ = 2.5, but less well for Λ = 1.5. This
in itself is not surprising. However it does illustrate the power of VMPS to get by without
energy scale separation. This very useful feature can be exploited, for example, to obtain
resolve sharp spectral features at high energies in dynamical correlation functions [51],
using projection operator techniques. However, the latter results go beyond the scope of
the present work and will be published separately.

Second, since VMPS does not rely on energy scale separation, it does not need to treat
all terms in the Hamiltonian characterized by the same scale Λ−n/2 at the same time, as
is required for NRG. This allows VMPS to achieve a significant reduction in memory cost
compared to NRG for representing the ground state. To be specific: For NRG, we use
the standard “folded” representation of the Wilson chain, in which each site represents
both spin down and spin up electrons, with the impurity site at one end (see Fig. 4.1(a)
below). However, it turns out that apart from the first few sites of the folded chain, the
spin-down and -up degrees of freedom of each site are effectively not entangled with each
other at all (see Fig. 4.3 below). For VMPS, we exploit this fact by using an “unfolded”
representation of the Wilson chain instead [77, 51], in which the spin up and spin down
sites lie on opposite sides of the impurity site, which sits at the center of the chain (see
Fig. 4.1(b) below). This unfolded representation greatly reduces the memory cost, as
characterized by the dimensions, D for NRG or D′ for VMPS, of the effective Hilbert
spaces needed to capture the low energy properties with the same precision: We find that
with the choice D′ = 2m

√
D, VMPS can reproduce the results of NRG in the following

manner: (i) if m = 0, the NRG ground state is reproduced qualitatively; (ii) if m = 1,
all the “kept” states of NRG are reproduced quantitatively; and (iii) if m = 2 all the
“kept” and “discarded” states of NRG are reproduced quantitatively. However, in cases
(ii) and (iii) the reduction in memory costs of VMPS is somewhat offset by the fact that the
calculation of the excited eigenstates needed for the sake of direct comparison with NRG
requires diagonalizing matrices of effective dimension D′2. Note, nevertheless, that all
information needed for this comparison is already fully contained within the VMPS ground
state characterized by dimension D′, since its constituent matrices contain information
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from all energy scales represented by the Wilson chain.

The chapter is organized as follows: Section 4.2 sets the scene by introducing a folded
and an unfolded version of the Wilson chain. In Sections 4.3 and 4.4 we review the NRG
and VMPS approaches for finding the ground state of a folded or unfolded Wilson chain,
respectively, emphasizing their common matrix-product state structure. We also explain
how an unfolded MPS states may be “refolded”, allowing it to be compared directly to
folded NRG states. In Section 4.5 we compare the results of NRG and VMPS, for ground
state energies and overlaps (Section 4.5.1), excited state eigenenergies and density of states
(Section 4.5.2), and the corresponding energy eigenstates themselves (Section 4.5.3). This
allows us, in particular, to obtain very vivid insights into the differences in the truncation
criteria used by the NRG and VMPS approaches, being sharp or smooth in energy space,
respectively (Figs. 4.8 to 4.10). In Section 4.6 we demonstrate that NRG results for the
ground state can be improved upon systematically by first producing an unfolded “clone” of
a given NRG ground state, and subsequently lowering its energy by performing variational
energy minimization sweeps in the space of variational matrix-product states. Finally,
Section 4.7 contains our conclusions and an assessment of the relative pros and cons of
NRG and VMPS in relation to each other.

4.2 Folded and unfolded representations of Wilson

chain

For definiteness, we consider the single-impurity Anderson model. It describes a spinful
fermionic impurity level with energy ǫd and double occupancy cost U (with associated
creation operators f †

0µ, where µ =↓, ↑ denotes spin), which acquires a level width Γ due
to being coupled to a spinful fermionic bath with bandwidth W = 1. Since the questions
studied in this work are of a generic nature and do not depend much on the specific
parameter values used, we consider only the symmetric Anderson model and take U = 1

2
,

U/πΓ = 1.013 and ǫd = −1
2
U throughout this chapter. To achieve a separation of energy

scales, following Wilson [2, 3], the bath is represented by a set of discrete energy levels
with logarithmically spaced energies Λ−n (with associated creation operators f †

nµ), where
n ≥ 1, Λ > 1 is a “discretization parameter”, and the limit Λ → 1 reproduces a continuous
bath spectrum. The discretized Anderson model Hamiltonian can then be represented as

HAM = lim
N→∞

HN , (4.1)

where HN describes a Wilson chain of “length N” (i.e., up to and including site N):

HN = HN↓ + HN↑ + U(f †
0↑f0↑f

†
0↓f0↓ + 1

2
), (4.2a)

HNµ = ǫdf
†
0µf0µ +

N−1∑

n=0

tn(f
†
nµf(n+1)µ + h.c.) , (4.2b)



4.2 Folded and unfolded representations of Wilson chain 33

with hopping coefficients given by

tn ≡
{√

2Γ
π

for n = 0 ,
1
2
(1 + Λ−1)Λ−(n−1)/2ξn for n ≥ 1 ,

(4.3)

ξn = (1 − Λ−n)(1 − Λ−2n+1)−1/2(1 − Λ−2n−1)−1/2 .

In passing, we note that for our numerics we have found it convenient (following Refs. [77]
and [51]) to keep track of fermionic minus signs by making a Jordan-Wigner transforma-
tion [78] of the Wilson chain to a spin chain, using f †

nµ = Pnµs
+
nµ and fnµ = Pnµs

−
nµ. Here s±nµ

are a set of spin-1
2

raising and lowering operators, that for equal indices satisfy {s−nµ, s+
nµ} =

1, (s−nµ)
2 = (s+

nµ)
2 = 0, but commute if their indices are unequal. The fermionic anticom-

mutation relations for the fnµ are ensured by the operators Pnµ = (−1)
P

(n̄µ̄)<(nµ) s
+
n̄µ̄s

−
n̄µ̄ ,

where < refers to some implicitly specified ordering for the composite index (nµ). The Pnµ
need to be kept track of when calculating certain correlation functions, but do not arise
explicitly in the construction of the matrix-product states that are the focus of this work.
This transformation will implicitly be assumed to have been implemented throughout the
ensuing discussion.

For the Anderson model, site n of the Wilson chain represents the set of four states
|σn〉, with σn = (σn↓, σn↑) ∈ {(00), (10), (01), (11)}, where σnµ ∈ {0, 1}, to be viewed as
eigenvalue of s+

nµs
−
nµ, gives the occupancy on site n of electrons with spin µ. Thus, the

dimension of the spinful index σn is d = 4, and that of the spin-resolved index σnµ is d′ = 2.
As a general rule, we shall use the absence or presence of primes, d vs. d′ (and D vs. D′

below), to distinguish dimensions referring to spinful or spin-resolved indices, respectively,
and correspondingly to folded or unfolded representations of the Wilson chain. For other
quantum impurity models, such as the Kondo model or multilevel Anderson models, the
dimension of the local impurity site, say d0, differs from that of the bath sites, d0 6= d. It
is straightforward to generalize the discussion below accordingly.

The Hamiltonian HN of a Wilson chain of length N is defined on a Hilbert space
of dimension dN+1. It is spanned by an orthonormal set of states that, writing |σn〉 =
|σn↓〉|σn↑〉, can be written in either spinful or spin-resolved form,

|σN〉 = |σ0〉|σ1〉 . . . |σN 〉, (4.4a)

= |σ0↓〉|σ0↑〉|σ1↓〉|σ1↑〉 . . . |σN↓〉|σN↑〉, (4.4b)

corresponding to a “folded” or “unfolded” representation of the Wilson chain, illustrated by
Figs. 4.1(a) or (b), respectively. The unfolded representation of Fig. 4.1(b) makes explicit
that the Anderson Hamiltonian of Eq. (4.2) has the form of two separate Wilson chains
of specified spin, described by HN↓ and HN↑, which interact only at site zero. This fact
will be exploited extensively below. Note that the ordering chosen for the |σnµ〉 states in
Eq. (4.4b) fixes the structure of the many-body Hilbert space once and for all. The fact
that the sites of the unfolded chain in Fig. 4.1 are connected in a different order than
that specified in Eq. (4.4b) is a statement about the dynamics of the model and of no
consequence at this stage, where we simply fix a basis.
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Figure 4.1: (a) The standard spinful or “folded” representation of the Wilson chain of
the single-impurity Anderson model, and (b) its spin-resolved or “unfolded” representation.
The latter makes explicit that spin-down and -up states are coupled only at the impurity
sites and not at any of the bath sites. The dashed boxes indicate the chains described by
H1 and Hn, respectively.

4.3 NRG treatment of folded Wilson chain

4.3.1 NRG matrix-product state arises by iteration

Wilson proposed to diagonalize the folded Wilson chain numerically using an iterative
procedure, starting from a short chain and adding one site at a time. Consider a chain
of length n, sufficiently short that Hn can be diagonalized exactly numerically. Denote
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its eigenstates by |En
α〉f , ordered by increasing energy (En

α)f , with α = 1, . . . , Dn and
Dn = dn+1. (We use subscripts f and u to distinguish quantities obtained from a folded
or unfolded Wilson chain, respectively; similarly, in later parts of the chapter we will use
the subscripts r and c for “refolded” and “cloned”.) E.g., for a chain consisting of only the
impurity site, n = 0, the d eigenstates can be written as linear combinations of the form
|E0

α〉f =
∑

σ0
|σ0〉A[σ0]

1α , where the coefficients have been arranged into d matrices A[σ0] of

dimensions 1×d (i.e., d-dimensional vectors), with matrix elements A
[σ0]
1α . Then add to the

chain the site n + 1 and diagonalize Hn+1 in the enlarged Hilbert space spanned by the
(Dnd) states |En

α〉f |σn+1〉. The new orthonormal set of eigenstates, with energies (En+1
β )f ,

can be written as linear combinations of the form

|En+1
β 〉f =

d∑

σn+1=1

Dn∑

α=1

|En
α〉f |σn+1〉A[σn+1]

αβ , (4.5)

with β = 1, . . . , (Dnd). Here the coefficients specifying the linear combination have been
arranged into a set of d matrices A[σn+1] of dimension Dn × Dn+1, with matrix elements

A
[σn+1]
αβ . The orthonormality of the eigenstates at each stage of the iteration, f〈En

β |En
β′〉f =

δββ′ , implies that the A-matrices automatically satisfy the orthonormality condition
∑

σn

A[σn]†A[σn] = 1 . (4.6)

We remark that it is possible to exploit symmetries of Hn (e.g. under particle-hole transfor-
mation) to cast A in block-diagonal form to make the calculation more time- and memory-
efficient. However, for the purposes of the present work, this was not required.

Iterating the above procedure by adding site after site and repeatedly using Eq. (4.5),
we readily find that the NRG eigenstates of HN on the folded Wilson chain can be written
in the form of a so-called matrix-product state [51],

|EN
β 〉f =

∑

{σN}

|σN〉 (A[σ0]A[σ1] . . . A[σN ])1β , (4.7)

illustrated in Fig. 4.2(a). Here matrix multiplication is implied in the product

(A[σn]A[σn+1])αβ =
∑

γ

A[σn]
αγ A

[σn+1]
γβ , (4.8)

and {σN} denotes the set of all sequences σ0, σ1, . . . , σN . This matrix multiplication gener-
ates entanglement between neighboring sites, with the capacity for entanglement increasing
with the dimension Dn of the index being summed over.

4.3.2 NRG truncation

In practice, it is of course not possible to carry out the above iteration strategy explicitly for
chains longer than a few sites, because the size of the A-matrices grows exponentially with
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N . Hence Wilson proposed the following NRG truncation procedure: Once Dn becomes
larger than a specified value, say D, only the lowest D eigenstates |En

α〉f , with α = 1, . . . , D,
are retained or kept at each iteration, and all higher-lying ones discarded. It has recently
been shown [69, 70] that the discarded states can be used to construct a complete basis
of many-body states spanning the full dN+1-dimensional Hilbert space of HN , and that
this basis can be used to greatly improve the accuracy of the NRG-calculations of spectral
functions [71, 72]. Explicitly, the upper limit for the sum over α in Eq. (4.5) is redefined
to be

Dn = min(dn+1, D) . (4.9)

As a result, the dimensions of the A[σn] matrices occurring in the matrix-product state
(4.7) start from 1 × d at n = 0 and grow by a factor of d for each new site until they
saturate at D ×D after truncation has set in. The structure of the resulting states |EN

β 〉f
is schematically depicted in Figs. 4.2(a) and 4.2(b), in which the site index is viewed as a
single or composite index, σn or (σn↓, σn↑), respectively.

Wilson showed that this truncation procedure works well in practice, because the hop-
ping parameters tn of Eq. (4.3) decrease exponentially with n: the resulting separation
of energy scales along the chain ensures that high-lying eigenstates from iteration n make
only a small contribution to the low-lying eigenstates of iteration n+ 1, so that discarding
the former hardly affects the latter. The output of the NRG algorithm is a set of eigen-
states |En

β 〉f and eigenenergies (En
β )f for each iteration, describing the physics at energy

scale Λ−n/2. The NRG eigenenergies are usually plotted in rescaled form,

(εnβ)f = (En
β −En

1 )f/Λ
−n/2 , (4.10)

as functions of n, to obtain a so-called NRG flow diagram; it converges to a set of fixed-
point values as n → ∞. Figure 4.7 in Section 4.5.2 below shows some examples. The
ground state energy of the entire chain is given by the lowest energy of the last iteration,
(EN

G )f = (EN
1 )f .

Despite the great success of NRG, Wilsonian truncation does have some drawbacks.
Firstly, its errors grow systematically as Λ tends to 1, because then the separation of
energy scales on which it relies becomes less efficient. Secondly, it is not variational, and
hence it is not guaranteed to produce the best possible approximation for the ground state
within the space of all matrix-product states of similar form and size. We shall return to
this point later in Section 4.6 and study quantitatively to what extent the NRG ground
state wavefunction can be improved upon by further variational optimization.

4.3.3 Mutual information of opposite spins on site n

A crucial feature of the folded Wilson chain is that all degrees of freedom associated with the
same energy scale, Λ−n/2, are represented by one and the same site and hence are all added
during the same iteration step. Since the spin-down and -up degrees of freedom associated
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Figure 4.2: (a) and (b) show the matrix-product structure of the state |ENβ 〉f of Eq. (4.7),
depicting the site index as a single or composite index, σn or (σn↓, σn↑), respectively. (c)
shows the matrix-product structure of the state |ΨN 〉u of Eq. (4.16). (For the sake of
illustrating Eq. (B.5) of Appendix B, the labels (Bn↓)νν′ in the bottom row are purposefully
typeset “upside down”, so that they would be right-side up if the chain of boxes were all
drawn in one row in the order indicated by Eq. (4.16). Thus, the latter contains the factors
. . . (Bn↓)νν′ . . . (Bn↑)η′η . . . , in that order, compare Eq. (B.5).) Each matrix A or B is
represented by a box, summed-over indices by links, free indices by terminals, and dummy
indices having just a single value, namely 1, by ending in a triangle. The dimensions (d,
D, d′, D′, etc.) next to each link or terminal give the number of possible values taken on
by the corresponding index, assuming Wilsonian truncation for (a) and (b), and VMPS
truncation for (c). Note the similarity in structure between (c) and (b): the dashed boxes in

the former, containing B
[σn↓]
νν′ ⊗B[σn↑]

η′η , play the role of the A
[(σn↓,σn↑)]
α′α matrices in the latter.

Their capacity for entangling neighboring sites is comparable if one chooses D′2 ∝ D [cf.
Eq. (4.24)], since neighboring dashed boxes in (c) are connected by two links of combined
dimension D′2, whereas neighboring A-matrices in (b) are connected by only a single link
of dimension D.
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with each site are thus treated on an equal footing, the resulting matrix-product state
provides comparable amounts of resources for encoding entanglement between local states
of the same spin, involving |σnµ〉|σn+1µ〉, or between states of opposite spin (indicated by
the bar), involving |σnµ〉|σnµ̄〉 or |σnµ〉|σn+1µ̄〉. However, it turns out that for the Anderson
model this feature, though a priori attractive, is in fact an unnecessary (and memory-
costly) luxury: Since the Anderson model Hamiltonian (4.2) couples spin-down and -up
electrons only at the impurity site, the amount of entanglement between states of opposite
spin rapidly decreases with n.

To illustrate and quantify this claim, it is instructive to calculate the so-called mutual
information M↓↑

n of the spin-down and -up degrees of freedom of a given site n. This
quantity is defined via the following general construction [57]. Let C denote an arbitrary
set of degrees of freedom of the Wilson chain, represented by the states |σC〉. Let ρC be
the reduced density matrix obtained from the ground state density matrix by tracing out
all degrees of freedom except those of C, denoted by N\C:

ρC =
∑

{σN\C}

〈σN\C |EN
G 〉f f〈EN

G |σN\C〉 . (4.11)

For example, if C represents the spin-down and up-degrees of freedom of site n, its matrix
elements are:

ρCσnσ′n
=

∑

{σN\n}

(A[σN ]† . . . A[σn]† . . . A[σ0]†)G1

×(A[σ0] . . . A[σ′n] . . . A[σN ])1G . (4.12)

If C represents only the spin-µ degree of freedom of site n, a similar expression holds, with
n replaced by nµ. The entropy associated with such a density matrix is given by

SC = −
∑

i

wCi lnwCi , (4.13)

where wCi are the eigenvalues of ρC , with
∑

i w
C
i = 1. Now, consider the case that C = AB

is a combination of the degrees of freedom of two distinct subsets A and B, represented by
states of the form |σC〉 = |σA〉|σB〉. Then the mutual information of A and B, defined by

MAB = SA + SB − SAB , (4.14)

characterizes the information contained in ρAB beyond that contained in ρA ⊗ ρB. The
mutual information MAB = 0 if there is no entanglement between the degrees of freedom
of A and B, since then ρAB = ρA ⊗ ρB and its eigenvalues have a product structure,
wABij = wAi w

B
j .

We define the mutual information between spin-down and -up degrees of freedom of
site n of the folded chain, M↓↑

n , by Eq. (4.14), taking A = n↓ and B = n↑. Figure 4.3
shows this quantity as function of n for the symmetric Anderson model. Evidently M↓↑

n is
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Figure 4.3: NRG result for the mutual information M↓↑
n between spin-down and -up

degrees of freedom of site n of a folded Wilson chain of length N = 50. The Anderson
model parameters are fixed at U = 1

2 , U/πΓ = 1.013, ǫd = −1
2U throughout this chapter.

Lines connecting data points are guides for the eye. The slight differences in behavior
observed for even or odd n are reminiscent of the well-known fact [2] that the ground state
degeneracy of a Wilson chain is different for even or odd N .

very small for all but the first few sites, and decreases exponentially with n. This implies
that for most of the folded chain, there is practically no entanglement between the spin-
down and -up degrees of freedom. Consequently, the corresponding matrices occurring in
Eq. (4.7) for |EN

G 〉f in effect have a direct product structure: loosely speaking, we may
write A[σn] ≃ B[σn↓] ⊗ B[σn↑]. In the next subsection, we will exploit this fact to achieve
a significant reduction in memory cost, by implementing the effective factorization in an
alternative matrix-product ansatz [see Eq. (4.16) below], defined on an unfolded Wilson
chain which represents n↓ and n↑ of freedom by two separate sites.
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4.4 DMRG treatment of unfolded Wilson chain

4.4.1 Variational matrix-product state ansatz

As pointed out by Verstraete et al. [51], an alternative approach for finding a numerical
approximation for the ground state can be obtained by variationally minimizing the ground
state energy in the space of all “variational matrix-product states” (VMPS) of fixed norm.
Implementing the latter constraint via a Lagrange multiplier λ, one thus considers the
following minimization problem,

min
|Ψ〉∈{|ΨN 〉u}

[〈Ψ|HN |Ψ〉 − λ(〈Ψ|Ψ〉 − 1)] . (4.15)

The minimization is to be performed over the space of all variational matrix-product states
|ΨN〉u having a specified structure (see below), with specified dimensions D′

n for the matri-
ces, whose matrix elements are now treated as variational parameters. This minimization
can be performed by a “sweeping procedure”, which optimizes one matrix at a time while
keeping all others fixed, then optimizing the neighboring matrix, and so forth, until conver-
gence is achieved. The resulting algorithm is equivalent to a single-site DMRG treatment
of the Wilson chain. Our main goal is to analyze how the energies and eigenstates so
obtained compare to those produced by NRG.

Having decided to use a variational approach, it becomes possible to explore matrix-
product states having different, possibly more memory-efficient structures than those of
Eq. (4.7) and Fig. 4.2(a). In particular, we can exploit [77] the fact that the Anderson
model Hamiltonian (4.2) couples spin-down and -up electrons only at the impurity site,
as emphasized in Eq. (4.2) and Fig. 4.1(b). For such a geometry, it is natural to consider
matrix-product states defined on the unfolded Wilson chain (subscript u) and having the
following form, depicted schematically in Fig. 4.2(c):

|ΨN〉u =
∑

{σN}

|σN〉(B[σN↓]. . . B[σ0↓]B[σ0↑]. . . B[σN↑])11.

(4.16)

The order in which the B[σnµ] matrices occur in the product mimics the order in which the
sites are connected in the unfolded Wilson chain. (The fact that this order differs from
the order in which the basis states |σnµ〉 for each site are arranged in the many-body basis
state |σN〉, see Eq. (4.4b), does not cause minus signs complications, because we work with
Jordan-Wigner-transformed effective spin chains.) Each B[σnµ] stands for a set of d′ = 2

matrices with matrix elements B
[σnµ]
νη , with dimensions D′

n×D′
n−1 for B[σn↓] and D′

n−1×D′
n

for B[σn↑], where

D′
n = min(d′

N−n
, D′), (4.17)

as indicated on the links connecting the squares in Fig. 4.2(c). This choice of matrix di-
mension allows the outermost few sites at both ends of the unfolded chain to be described
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exactly (similarly to the first few sites of the folded Wilson chain for NRG), while introduc-
ing truncation, governed by D′, for the matrices in the central part of the chain. The first

index on B
[σN↓]
1ν and the second index on B

[σN↑]
ν1 are dummy indices taking on just a single

value, namely 1, since they represent the ends of the chain. The triangles in Fig. 4.2(c)
are meant to represent this fact. As a result, Eq. (4.16) represents just a single state,
namely the ground state, in contrast to Eq. (4.7), which represents a set of states, labeled
by the index β. Moving inward from the endpoints by decreasing n, the matrix dimension
parameter D′

n increases by one factor of d′ for each site, in such a way that the resulting
matrices are of just the right size to describe the outside ends of the chain (from n to
N) exactly, i.e. without truncation. After a few sites, however, truncation sets in and the
matrix dimensions saturate at D′ ×D′ for the central part of the chain.

To initialize the variational search for optimal B-matrices, it turns out to be sufficient
to start with a set of random matrices with normally distributed random matrix elements.
Next, singular value decomposition is used to orthonormalize the B-matrices in such a way
[see Eq. (A.1)] that the matrix-product state Eq. (4.16) has norm 1 (see App. A for details).
Thereafter, variational optimization sweeps are performed to minimize Eq. (4.15) one B-
matrix at a time [51]. The technical details of this procedure will be published separately.
After a sweeping back and forth through the entire chain a few times, the variational
state typically converges (as illustrated by Fig. 4.13 in Sec. 4.6.2 below), provided that
D′ is sufficiently large. We shall denote the resulting converged variational ground state
by |EN

G 〉u. Its variational energy, (EN
G )u, turns out to be essentially independent of the

random choice of initial matrices.

4.4.2 VMPS truncation

Since D′ × D′ is the maximal dimension of B-matrices, D′ is the truncation parameter
determining the effective size of the variational space to be searched and hence the ac-
curacy of the results. Its role can be understood more explicitly using a technique that
is exceedingly useful in the VMPS approach, namely singular value decomposition: any
rectangular matrix B of dimension m×m′ can be written as

B = USV† , with U †U = V†V = 1 , (4.18)

where S is a diagonal matrix of dimension min(m,m′), whose diagonal elements, the so-
called “singular values”, can always be chosen to be real and non-negative, and U and V† are
column- and row-unitary matrices (with dimensions m×min(m,m′) and min(m,m′)×m′,
respectively). Due to the latter fact, the matrix norm of B is governed by the magnitude
of the singular values.

For any given site of the unfolded Wilson chain, this decomposition can be applied
in one of two ways (depending on the context, see App. A) to the set of matrices with

elements B
[σnµ]
νη : introduce a composite index ν̄ = (σnµ, ν) (or η̄ = (σnµ, η)) to arrange

their matrix elements into a rectangular matrix carrying only two labels, with matrix

elements Bν̄η = B
[σnµ]
νη (or B̃νη̄ = B

[σnµ]
νη ), and decompose this new matrix as B = USV†.
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Figure 4.4: (a) Typical singular value spectrum for site 5↓ of the unfolded Wilson chain,
obtained by singular value decomposition of B[σ5↓]. It shows, roughly, power-law decrease
for large enough β, modulo steps due to degeneracies in the singular value spectrum. (b)
D′-dependence of the truncation error τ(D′) [Eq. (4.19)].

Now, if this is done for any site for which the set of matrices B[σnµ] have maximal
dimensions D′ × D′, the corresponding matrix S will likewise have dimensions D′ × D′.
Let its diagonal elements, the singular values sν (with ν = 1, . . . , D′), be labelled in order
of decreasing size. (Their squares, s2

ν , correspond to the eigenvalues of the density matrix
constructed in the course of the single-site DMRG algorithm [6].) If D′ is sufficiently large,
the sν are typically found to decrease with increasing ν roughly as some negative power of
ν, as illustrated in Fig. 4.4(a). The last and smallest of the singular values, s2

D′ (squared,
following Ref. [6]), thus indicates the weight of the information that is lost at that site due
to the given (finite) choice of D′: by choosing D′ larger, less information would be lost
since more singular values (though of smaller size) would be retained. Repeating such an
analysis for all sites of the unfolded Wilson chain, one may define the largest of the s2

D′

parameters of the entire chain,

τ(D′) = max
{nµ}

(s2
D′) , (4.19)

as “truncation error” characterizing the maximal information loss for a given value of D′.
Typically, τ(D′) decreases as some negative power of D′, as illustrated in Fig. 4.4(b). In
this way, D′ assumes the role of a cutoff parameter that directly governs the accuracy of
the VMPS approach, in a way analogous to the parameter D of NRG.
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4.4.3 Refolding

The VMPS approach purposefully focusses on finding an optimal description of the vari-
ational ground state |EN

G 〉u. Nevertheless, the B-matrices from which the latter is con-
structed contain information about all energy scales of the model, due to the logarithmic
discretization of the Wilson chain. In particular, information about the scale Λ−n/2 is en-
coded in the set of matrices B[σnµ] associated with the two site n↓ and n↑. From these,
it is possible to extract excited-state eigenspectra and energy flow diagrams in complete
analogy to those produced by NRG. In this subsection we explain how this can be accom-
plished by a technique to be called “refolding”, which combines the two matrices B[σn↓]

and B[σn↑] into a single matrix, say B[σn], and thereby recasts unfolded matrix-product
states into folded ones. It should be emphasized that this procedure simply amounts to an
internal reorganization of the representation of the VMPS ground state.

Consider a given matrix-product state |ΨN〉u of the form (4.16), defined on an unfolded
Wilson chain of length N (e.g. the converged ground state |EN

G 〉u). To refold it (subscript
r) , it is expressed as a state of the following form [same as Eq. (4.7)]

|ΨN〉r =
∑

{σN}

|σN〉(B[σ0]B[σ1] . . . B[σN ])11 , (4.20)

defined on a folded Wilson chain of length N and normalized to unity, r〈Ψn|Ψn〉r = 1.
Graphically speaking, this corresponds to rewriting a state of the form shown in Fig. 4.2(c)
in terms of states of the form of Fig. 4.2(a). To obtain the matrices needed for Eq. (4.20),
one constructs, for every site n of the refolded chain, a set of d matrices B[σn] from a com-
bination of the two sets of spin-resolved matrices B[σn↓] and B[σn↑] of the unfolded chain
(App. B gives the details of this construction). This is done in such a way, using singular
value decomposition, that (i) the resulting matrices B[σn] satisfy the orthonormality condi-
tions (4.6) (with A→ B), thereby guaranteeing the unit normalization of the the refolded
state |ΨN〉r; and (ii) the B[σn] matrices have a structure similar to that of the matrices
A[σn] generated by NRG, except that their dimensions, Dr

n ×Dr
n+1, are governed by

Dr
n = min(dn, dN+1−n, D′2) (4.21)

[instead of Eq. (4.9)], for reasons explained in App. B. Thus, their dimensions have the
maximal value Dr × Dr, with Dr = D′2, in the central part of the refolded chain, while
decreasing at its ends towards 1 × d or d× 1 for n = 0 or N , respectively.

Now, suppose that a converged variational ground state |EN
G 〉u has been obtained and

refolded into the form |ΨN〉r, so that the corresponding orthonormalized matrices B[σn]

for the refolded Wilson chain of length N are the building blocks of the ground state of
the system. Then it is possible to extract from them information about the many-body
excitation spectrum at energy scale Λ−n/2 that is analogous to the information produced
by NRG. To this end, consider a subchain of length n of the full refolded Wilson chain,
and use the definition

|Ψn
β〉r =

∑

{σn}

|σn〉(B[σ0]B[σ1] . . . B[σn])1β , (4.22)
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[as in Eq. (4.20), but with N replaced by n] to construct a set of states |Ψn
β〉r on this sub-

chain. These states, shown schematically by sites 0 to n of Fig. 4.2(a), form an orthonormal
set, r〈Ψn

α|Ψn
β〉r = δαβ , due to the orthonormality [Eq. (4.6)] of their constituent matrices.

They can thus be viewed as a basis for that subspace of the many-body Hilbert space for
the length-n Wilson chain, i.e. of that subspace of span{|σn〉}, which VMPS sweeping has
singled out to be most relevant for describing the ground state |EN

G 〉u of the full chain of
length N . Therefore we shall henceforth call the |Ψn

β〉r “(refolded) VMPS basis states” for
this subchain.

This basis can be used to define an effective “refolded Hamiltonian” Hn
r for this sub-

chain, with matrix elements

(Hn
r )αβ = r〈Ψn

α|Hn|Ψn
β〉r . (4.23)

Appendix C gives the details of how (Hn
r )αβ can be calculated efficiently in the MPS

basis in a recursive manner. Its eigenvalues and eigenstates, say (En
β )r and |En

β 〉r, are the
VMPS analogues of the NRG eigenvalues and eigenstates, (En

β )f and |En
β 〉f , respectively.

They differ, in general, because VMPS and NRG use different truncation criteria, but are
expected to agree well for sufficiently large choices of D′ and D. This is indeed found to
be the case, as will be shown in detail in the next section.

4.5 Comparison of NRG and VMPS results

Having outlined the NRG and VMPS strategies in the previous section, we now turn to a
comparison of their results. This will be done, in successive subsections, by comparing their
ground state energies and the overlaps of the corresponding ground states; the eigenspectra
and density of states obtained from both approaches; and finally, the energy eigenstates
used in the two approaches. We will thereby gain more insights into the differences between
NRG and VMPS truncation criteria. Before embarking on a detailed comparison, though,
some remarks on the choices to be made for D and D′ are in order.

Since the structure of the matrix products occurring in Eqs. (4.7) and (4.16) differ, the
spaces consisting of all states of the type |En

β 〉f or |En
β 〉r, to be called the “NRG-subspace”

or “VMPS-subspace” for a length-n chain, respectively, constitute nonidentical subspaces
of the dn+1-dimensional Hilbert space spanned by the basis states |σn〉. The extent to
which they describe the energy eigenstates of HN with comparable accuracy will depend
very strongly on the choices made for D and D′. It turns out (numerical evidence will be
presented below) that with the choice

D′ = d′
m
√
D , (4.24)

the VMPS-subspace is sufficiently large to give highly accurate representations of all kept
states of NRG (including, in particular, the ground state) for the choice m = 1, or of
all kept and discarded states of NRG for the choice m = 2. The fact that D′ should be
proportional to

√
D can be made plausible by considering the following question: given



4.5 Comparison of NRG and VMPS results 45

a folded Wilson subchain of length n (i.e. consisting of sites 0 to n) and its equivalent
unfolded version, what are the smallest values for the dimensions D and D′ for which
both approaches describe the ground state exactly, i.e. without any truncation? Answer:
On the one hand, the folded subchain has n + 1 sites of dimension d, and hence a total
dimension dn+1; to ensure that the ground state in this space is described exactly, the kept
space of the previous iteration must not involve any truncation, implying D = dn. On the
other hand, for the equivalent unfolded subchain, the spin ↓ and ↑ parts each have n + 1
sites of dimension d′, hence each have a Hilbert space of total dimension d′(n+1); to ensure
that this space is described without truncation, its dimension should equal the maximal
dimension of the B-matrices at sites 0µ, implying D′ = d′n+1. Using d′ =

√
d we readily find

D′ = d′
√
D, establishing the proportionality between D′ and

√
D and suggesting the choice

m = 1 to achieve an accurate VMPS-representation of the ground state. Actually, we find
numerically that already m = 0 yields good qualitative agreement between the VMPS and
NRG ground states, while m = 1 yields a quantitatively accurate VMPS-representation of
the NRG ground state also for larger chain lengths, that do involve truncation. Since such
ground states are built from the kept spaces of previous iterations, this implies that for
m = 1, all kept states in NRG (not only the ground state) are likewise well represented by
VMPS. Indeed, we will find this to be the case. Moreover, it turns out numerically that
with m = 2, it is also possible to achieve an accurate VMPS-representation of all kept and
discarded NRG-type states, as will be extensively illustrated below.

For the results reported below, we show data only for even iteration number n, to avoid
even/odd oscillation effects that are typical and well-understood for Wilsonian logarithmic
discretization, but not of particular interest here. We set D′ = d′m

√
D throughout and

specify the choices made for m. All VMPS results shown in this section are extracted from
randomly initialized, fully converged variational ground states |EN

G 〉u of the form (4.16).

4.5.1 Ground state energies and overlaps

Figures 4.5(a) and 4.5(b) compare the NRG and VMPS ground state energies, (EN
G )f

and (EN
G )u, for three values of Λ and, in (a), two values of m. They illustrate three

points. Firstly, for a given Λ the VMPS ground state energies are smaller than those of
NRG, (EN

G )u < (EN
G )f , as expected, since VMPS is a variational method and NRG is not.

Secondly, Fig. 4.5(a) shows that larger values ofm yield lower VMPS ground state energies,
as expected, since their variational space is larger. Thirdly, the improvement of VMPS over
NRG, as measured by the energy difference (EN

G )f − (EN
G )u shown in Fig. 4.5(b), becomes

more significant for smaller Λ, as expected, since the truncation scheme of NRG relies
heavily on energy scale separation, and hence becomes less efficient for smaller Λ.

Figure 4.5(c) compares the overlap between NRG and VMPS ground states, charac-
terized by the deviation from 1 of the overlap |f〈EN

G |EN
G 〉u|. The latter can be calculated
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straightforwardly from

f〈EN
G |EN

G 〉u =
∑

{σN}

(A[σN ]† . . . A[σ0]†)G1 (4.25)

×(B[σN↓] . . . B[σ0↓]B[σ0↑] . . . B[σN↑])11

where the index contractions associated with the summation over repeated indices are
illustrated in Fig. 4.6(a). Fig. 4.5(c) shows that the deviation of the overlap from 1 becomes
larger the smaller Λ, again illustrating that then the NRG truncation scheme becomes less
reliable.

4.5.2 Comparison of eigenspectra and density of states

Figure 4.7 compares the energy flow diagrams obtained from NRG and refolded VMPS
data, the latter obtained by diagonalizing the effective Hamiltonian of Eq. (4.23). It shows
the rescaled energies (εnβ)f,r of Eq. (4.10) as functions of n, for four combinations of m
and Λ, and illustrates the same trends as found in the previous subsection: Firstly, the
NRG and VMPS flow diagrams clearly agree not only for the ground state but also for a
significant number of excited states. Evidently, the variational space searched by VMPS
is large enough to capture considerable information about excited states, too, although
the VMPS method was designed to optimize only the ground state. Moreover, for a given
choice of Λ, NRG and VMPS eigenenergies coincide for a larger number of states for m = 2
than for m = 0 [compare (b) to (a) and (d) to (c)], because the variational space is larger.
Secondly, for a given choice of m, NRG and VMPS eigenenergies agree better for Λ = 2.5
than for Λ = 1.5 [compare (c) to (a) and (d) to (b)], as expected, because larger Λ leads to
better energy scale separation and reduces the inaccuracies inherent in NRG’s Wilsonian
truncation scheme.

As a complementary way of analyzing spectral information we also consider the “density
of states”, for a given iteration number n,

ρn(ε) =

Dmax∑

α=1

δσ(ε− εnα) , (4.26)

using the rescaled eigenenergies εnβ of Eq. (4.10). Here δσ(ε) = e−ε
2/σ2

/(σ
√
π) is a Gaussian

peak of width σ and unit weight, used to broaden the discrete spectrum in order to be able
to plot it, and the number of states included in the sum is taken as Dmax = dD or dmD for
NRG or VMPS results, respectively. Figure 4.8 shows such a density of states for several
choices of m and iteration number n. It illustrates three points:

Firstly, although for small energies ρn(ε) grows rapidly with ε, as expected for a many-
body density of states, it does not continue to do so for larger ε (the exact density of states
would), due to the truncation inherent in both NRG and VMPS strategies. For NRG,
ρn(ε) drops to 0 very abruptly, because by construction Wilsonian truncation is sharp in
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Figure 4.5: Comparison of NRG and VMPS results for (a,b) the ground state energies
and (c) the ground state overlaps, plotted as a functions of D with D′ = d′m

√
D, for three

values of Λ and, in (a), for two values of m. In (a) the reference energies ENref for each
Λ were obtained by extrapolating the VMPS data points for m = 2 to D′ → ∞, which
represents the best estimate of the true ground state energy available within the present
set of methods. The power law fits to the numerical data in (b) and (c), shown as dashed
lines, were made for the three data points with largest D, for which the dimensions are
large enough to have reliable NRG data.
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Figure 4.6: Contraction patterns used to calculate (a) the overlap f〈ENG |ENG 〉u [Eq. (4.25)]
between folded NRG and unfolded VMPS ground states, and (b) the overlap matrix S̃nαβ =

r〈Ψn
α|Enβ 〉f [Eq. (4.28b)] between refolded VMPS basis states and folded NRG eigenstates.

Boxes represent A or B matrices in the graphical representation of Figs. 4.2(a) and 4.2(c),
respectively (including the labelling conventions used there), and links connecting them
represent indices that are being summed over.

.

energy space (at each iteration only the lowest dD eigenstates are calculated). In contrast,
for VMPS ρn(ε) decreases more gradually for large ε, because VMPS truncation for states
at site n is based not on their energy, but on the variationally determined weight of their
contribution to the ground state of the full Wilson chain of length N . Evidently, these
weights decrease with increasing ε less rapidly than assumed by NRG.

Secondly, the agreement of the VMPS curve for ρn(ε) with that of NRG is rather poor
for m = 0 (disagreement sets in already within the range of kept states of NRG, indicated
by the shaded region), better for m = 1 (the range of kept states is fully reproduced), and
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Figure 4.7: Comparison of energy flow diagrams from NRG (dashed red lines) and refolded
VMPS data (solid black lines), showing the rescaled energies (εnβ)f,r [Eq. (4.10)] versus n,
calculated for even iteration numbers and four combinations of m (= 0 or 2) and Λ (=
1.5 or 2.5). The number of NRG states shown (kept and discarded) is Dd; the number of
refolded VMPS states shown is Dr = D′2 = dmD, this being the maximal dimension of
refolded matrices B[σn]. For m = 2 and Λ = 2.5, the NRG and DMRG flow diagrams agree
very well, see (d).

very good for m = 2 (disagreement sets in only close to the upper end of range of discarded
states).

Thirdly, for large n, ρn(ε) becomes increasingly spiky. This reflects the fact that the
spectrum approaches a fixed point with regularly-spaced eigenenergies, as is evident in the
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Figure 4.8: Results for the density of states, ρn(ε) [Eq. (4.26)], broadened with a Gaussian
broadening function. In each panel, the red vertical dashed and solid lines [which coincide
in (a)] indicate the energies of the highest-lying kept and discarded NRG states of that
iteration, while the shaded area indicates the range of kept NRG states.

energy flow diagrams of Fig. 4.7.

4.5.3 Comparison of energy eigenstates

To compare the energy eigenstates produced by NRG and refolded VMPS for a chain of
length n, we analyze the overlap matrix

Snαβ = r〈En
α|En

β 〉f . (4.27)

It can be conveniently calculated from Sn = UnS̃n, where Un
αβ = r〈En

α|Ψn
β〉r is the matrix

that diagonalizes the effective Hamiltonian matrix Hn
αβ of Eq. (4.23), and the matrix

S̃nαβ = r〈Ψn
α|En

β 〉f , (4.28a)

=
∑

{σN}

(B[σn]† . . . B[σ0]†)α1(A
[σ0] . . . A[σn])1β (4.28b)
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characterizes how much weight the NRG eigenstates have in the space spanned by the
refolded VMPS basis states, and vice versa. The contractions implicit in Eq. (4.28b) are
illustrated in Fig. 4.6(b).

Figure 4.9 shows the overlap matrix Snαβ on a color scale ranging from 0 to 1, for
m = 1 and several values of n. For the region of low excitation energies (about the first
hundred or so states) its structure is evidently close to block-diagonal, indicating that
both sets of states from which it is built are reasonably good energy eigenstates. Had both
sets been perfect energy eigenstates, as would be the case for D′ and D large enough to
avoid all truncation, the blocks would be completely sharp, with sizes determined by the
degeneracies of the corresponding energies. Sharp blocks are indeed observed for n = 2
[Fig. 4.9(a)], because no truncation has occurred yet. The “fuzziness” shown by the blocks
in Fig. 4.9(b) to 4.9(d) for larger n implies that truncation is beginning to make itself
felt, causing NRG and VMPS to increasingly disagree on how to construct the eigenstates
corresponding to a given range of eigenenergies. Note that the fuzziness becomes markedly
more pronounced for α, β > 256. The reason is that whenever Snαβ is nonzero for β > D,
the associated VMPS states have weight among the discarded states of NRG, implying
that NRG discards some states relevant for building the VMPS ground state. Thus, Snαβ
quite literally measures to what extent the truncation criteria of NRG and VMPS are
compatible. Near the end of the chain, for n = 18 [Fig. 4.9(d)], the off-diagonal spread is
significantly reduced compared to the middle of the chain (n = 6, 12) [Fig. 4.9(b,c)], for
two reasons. Firstly, the dimensions of the refolded B-matrices become small for n near
N , see Eq. (4.21), so that the amount of truncation is much less severe near the end of the
chain than in its middle. Secondly, the eigenspectra have converged to their fixed point
values, so that the number of different eigenenergies in a given energy interval is reduced,
thus reducing the fuzziness in Fig. 4.9(d).

Next consider the total weight which a given NRG-state |En
β 〉f has within the refolded

VMPS-subspace for that n,

w
(n)
β =

Dr
n∑

α=1

|Sαβ|2 =

Dr
n∑

α=1

|S̃αβ|2 . (4.29)

It satisfies 0 ≤ w
(n)
β ≤ 1. Weights less than 1 imply that the VMPS-subspace is too small

to adequately represent the corresponding NRG state. The second equality in Eq. (4.29),
which follows from the unitarity of U , is useful since it implies that these weights can also
be calculated directly from the refolded states |Ψn

β〉r [Eq. (4.22)], without the need for diag-
onalizing the large (D′2 ×D′2-dimensional) effective refolded Hamiltonian Hn

r [Eq. (4.23)].

Figure 4.10 shows such weights w
(n)
β for various choices of n, Λ andm. Their dependence

on m reinforces the conclusions of the previous subsection: For m = 0 (blue + symbols),
the weights are equal to 1 for the lowest state of each iteration, but less than 1 for many
of the kept states. This shows that the VMPS subspace is large enough to accurately
represents the NRG ground state, but significantly too small to accurately represent all
kept states. For m = 1 (green × symbols), the weights are close to 1 only for the kept
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Figure 4.9: Plot of the overlap matrix Snαβ = r〈Enα |Enβ 〉f [Eq. (4.27)] between refolded
VMPS and NRG energy eigenstates, with a color scale ranging between 0 and 1. In (a),
with n = 2, no truncation occurs at all, and both state labels α and β run from 1 to
dn+1 = 64. In (b) to (d), truncation does occur: For the folded NRG eigenstates |Enβ 〉f , the
label α runs from 1 to Dd = 1024, i.e. it includes all kept and discarded NRG states, while
for the refolded VMPS eigenstates |Enβ 〉r, the label β runs from 1 to Dr

n = D′2 = 1024
[Eq. (4.21)].

states, while smoothly decreasing towards 0 for higher-lying discarded states. Finally, for
m = 2 (orange ◦ symbols), the weights of both kept and discarded NRG states are all close
to 1, implying that the VMPS subspace is large enough to accurately represent essentially
all states kept track of by NRG. Note that form = 0 and 1, the decrease of the weights w

(n)
β

with increasing energy occurs in a smooth and gradual fashion, illustrating yet again the
smooth nature of VMPS truncation when viewed in energy space. When a smaller value
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Figure 4.10: For several NRG iteration numbers n and two values of Λ (different panels),

this figure shows the weights w
(n)
β [Eq. (4.29)] with which NRG states |Enβ 〉f with rescaled

NRG eigenenergies (εnβ)f [Eq. (4.10)] are found to lie in the VMPS-subspace of dimension

D′ = d′m
√
D, with m = 0, 1 or 2 (indicated by +, × or ◦, respectively). In each panel,

the red vertical dashed and solid lines indicate the energies of the highest-lying kept and
discarded NRG states of that iteration. For n = 3, both of these lines are missing, since
truncation has not yet set in. The choices for n in the left and right panels of each row are

related by Λ
−n1/2
1 = Λ

−n2/2
2 , to ensure that both panels show a comparable energy scale.
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of Λ is used [compare panels (a-d) to (e-h)] the weights of the higher-lying states of a given
iteration tend to spread out over a larger range of values, since NRG has a weaker energy
scale separation for smaller Λ. Finally, the increasing spikyness of the eigenspectrum with
increasing n, see Fig. 4.10(d,h), is due to the approach to a fixed point spectrum with
regularly-spaced eigenenergies, as mentioned above.

The results just discussed may be represented more compactly by considering, for a
given iteration n, the integrated weights obtained by summing up the weights of all NRG
states of type X,

W
(n)
X =

1

dD

∑

β∈X

w
(n)
β , (4.30)

where X = K,D,A stands for kept, discarded or all, respectively. All three types of in-
tegrated weights are normalized to the total number dD of all NRG states calculated at
a given iteration (with d = 4 here), and reach their maximal values (1

4
, 3

4
and 1, respec-

tively) when all the individual weights for that iteration equal 1. Figure 4.11 shows such
integrated weights for several values of m and Λ. Upon increasing m from 0 to 2, the
integrated weights tend toward their maximal values, doing so more rapidly for larger Λ.
For m = 2, they essentially saturate their maximal values, indicating yet again that the
VMPS variational space is now large enough to fully retain all information kept track of
by NRG.

To summarize the result of this section: The VMPS approach reproduces NRG ground
state properties much more cheaply, requiring only D′ =

√
D for qualitative agreement,

and D′ = d′
√
D for quantitative agreement. Moreover, it can also reproduce all kept and

discarded NRG eigenstates if D′ = d′2
√
D is used. However, to obtain excited energy

eigenstates, we have to refold, requiring the diagonalization of matrices of dimension D′2×
D′2. The numerical cost of doing so is comparable to that of NRG.

The fact that VMPS gives access to the same information on eigenstates and eigenvalues
as NRG has a very significant and reassuring consequence: all physical properties of the
model that can be calculated by NRG can also be calculated by VMPS, in combination
with refolding.

4.6 Cloning and variational improvement of NRG ground

state

Viewed in MPS language, the NRG method constructs the ground state in a single sweep
along the chain: each A is calculated only once, without allowing for possible feedback
of information from A’s describing lower energies to those of higher energies calculated
earlier. Thus, the resulting NRG ground state |EN

G 〉f , to be denoted simply by |G〉f below,
is not optimal in a variational sense. In this section we investigate to what extent the
ground state energy can be lowered further by performing variational energy optimization
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sweeps on |G〉f that serve to account for feedback of information from low to high energy
scales. This feedback turns out to be small in practice, as will be seen below, but it is
not strictly zero and its importance increases as the logarithmic discretization is refined
by taking Λ → 1.

4.6.1 Mapping folded to unfolded states by cloning

Our first step is to rewrite a given NRG ground state |G〉f in a form amenable to subsequent
energy minimization sweeps. To this end, we use a variational cloning procedure (subscript
c),

|G〉f cloning−→ |G〉c ∈ {|ΨN〉u} , (4.31)

which maps |G〉f of the form of Eq. (4.7) [Fig. 4.2(a)] onto an unfolded state |G〉c of
the form |ΨN〉u of Eq. (4.16) [Fig. 4.2(c)]. Since their matrix-product structures differ,
this mapping will, for general values of D and D′, not be exact, though its accuracy
should improve systematically with increasing D′ and hence increasing dimensions of the
variational space. To be explicit, we seek the best possible approximation to |G〉f in the
space of all unfolded states of the form (4.16), by solving the minimization problem

min
|G〉c∈{|ΨN 〉u}

[
‖ |G〉f − |G〉c‖2 +λ(‖|G〉c‖2 −1)

]
, (4.32)

which minimizes the “distance” between |G〉c and |G〉f under the constraint, implemented
using a Lagrange multiplier λ, that the norm c〈G|G〉c = 1 remains constant. Varying
Eq. (4.32) with respect to the matrices defining |G〉c leads to a set of equations, one for
each kµ, of the form

∂

∂B[σkµ]

[

(1 + λ) c〈G|G〉c − 2Re
(

f〈G|G〉c
)]

= 0, (4.33)

which determine the B-matrices of the desired “cloned” state |G〉c. These equations can be
solved in a fashion entirely analogous to energy optimization: Pick a particular site of the
unfolded chain, say kµ, and solve the corresponding Eq. (4.33) for the matrix B[σkµ] while
regarding the matrices of all other sites as fixed. Then move on to the neighboring site
and in this fashion sweep back and forth through the chain until convergence is achieved.
Appendix D describes some details of this procedure.

A figure of merit for the success of cloning is the deviation of the overlap |c〈G|G〉f| from
1. This deviation decreases monotonically with successive cloning sweeps and converges to
a small but finite (D′-dependent) value when the cloning process converges, as illustrated
in the inset of Fig. 4.12. The main part of Fig. 4.12 shows that when the number D′ of
VMPS states is increased, the converged value of the overlap deviation approaches 0 as a
power law in D′ (red circles). It also shows that the corresponding VMPS truncation error
τ(D′) incurred during cloning (blue squares), calculated according to Eq. (4.19), likewise
decreases in power-law fashion with D′. All in all, Fig. 4.12 confirms that cloning works
very well if D′ is sufficiently large.
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Figure 4.12: The deviation of the overlap |c〈G|G〉f | from 1 (red circles) and the cloning
truncation error τ(D′) (blue squares), as functions of the number D′ of kept states in the
cloning procedure. Both approach 0 in power-law fashion, as indicated by the dashed line
fits. The inset shows how the overlap deviation from 1 decreases and converges to a small
but finite constant in the course of sequential cloning sweeps.

4.6.2 Variational energy minimization of |G〉c
Having used cloning to find the optimal unfolded representation |G〉c of the NRG ground
state |G〉f , we now variationally minimize its energy by sweeping. We thereby obtain a
sequence of states |G〉kemc of ever lower energy, Ekem , where the index kem = 0, 1, 2, . . . gives
the number of energy minimization sweeps that have been performed. The procedure is
precisely analogous to that described in Section 4.4.1, the only difference being that the
random initial state used there is here replaced by the cloned state |G〉0c = |G〉c as initial
state.

Figure 4.13(a) shows the evolution of the ground state energy Ekem as function of the
number kem of energy minimization sweeps, for both random (squares) and cloned (circles)
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Figure 4.13: Comparison of (a) energies and (b) wave function overlaps for random
initialization (squares) vs. NRG-cloned initialization (circles), as functions of the number
kem of variational energy minimization sweeps. Results are shown for Λ = 1.5 (green, open
symbols, dashed lines) and Λ = 2.5, (blue, filled symbols, solid lines). The energies in
(a) and overlaps in (b) are calculated with respect to a reference ground state |G〉ref with
D′ = 64, obtained by performing 50 energy minimization sweeps starting from random
initialization. The red horizontal straight lines in (a) (dashed or solid for Λ = 1.5 or 2.5,
respectively), show the energy difference ENRG − Eref , where ENRG is the energy of the
NRG ground state |G〉f used as input into cloning. The fact that ENRG does not completely
coincide with the energy Ec = Ekem=0 of the cloned state (horizontal straight lines do not
meet circles at kem = 0) is due to the fact that the deviation of the overlap |c〈G|G〉f | from
1 is not strictly equal to 0 (see Fig. 4.12).
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initial states. Ekem is displayed with respect to the energy Eref of a reference state |G〉ref ,
defined in the figure caption, which represents our best approximation to the true ground
state. Figure 4.13(b) shows how 1−|ref〈G|G〉c| decreases as sweeping procedes, converging
to a small but finite value. For a given value of Λ (1.5, shown in green, open symbols
connected by dashed lines, or 2.5, shown in blue, filled symbols connected by solid lines),
the energies for random and cloned initialization shown in Fig. 4.13(a) converge to the same
value within just a few sweeps. However, the convergence is quicker for the cloned (circles)
than the random (squares) input state, since the former represents an already rather good
initial approximation (namely that of NRG) to the true ground state, whereas the latter
is simply a random state. Nevertheless, the circles show strikingly that the NRG ground
energy is not optimal, in that the energy can be lowered still further by sweeping. Moreover,
this improvement is more significant for small than large Λ (for circled data points, compare
dashed green to solid blue lines for Λ = 1.5 or 2.5, respectively). The reason is that the
NRG truncation scheme becomes less accurate the smaller Λ is, implying that the NRG
result can be improved more significantly by further sweeping. This is again a reminder
that the systematic error of NRG increases as Λ approaches 1, as already observed in
Fig. 4.5.

4.7 Conclusions

In this chapter we presented a systematic comparison between NRG and DMRG, which we
mainly referred to as VMPS, for the single-impurity Anderson model within the framework
of matrix-product states. We first reformulated both NRG and DMRG in the language
of MPS, using a folded Wilson chain for NRG and an unfolded one for DMRG. Then we
quantitatively compared the results of NRG and the VMPS approach for energy eigenvalues
and eigenstates and explicitly analyzed the difference in their truncation criteria, which
are sharp or smooth in energy space, respectively.

The most important conclusion of our study is this: For the purpose of obtaining the
ground state of this model, the VMPS approach applied to the unfolded Wilson chain
yields a very significant increase in numerical efficiency compared to NRG (D′ = d′

√
D),

essentially without loss of relevant information. The physical reason is that the spin-down
and -up chains are only weakly entangled for this model, so that the NRG matrices A[σn]

of dimension D that describe site n of the Wilson chain, can, in effect, be factorized as
a direct product B[σn↓] ⊗ B[σn↑] of two matrices, each having dimension d′

√
D. It should

be emphasized, though, that this property relies on the physics of the model, namely the
weak entanglement of the spin down and up chains. To what extent this property survives
for other impurity models should be a subject for further research, the two-channel Kondo
model being a particularly interesting candidate in this respect.

Nevertheless, the possibility of using unfolded Wilson chains to reduce numerical costs
for ground state calculations is very attractive for possible applications of the VMPS
method to more complicated models involving more than one conduction band [79, 80]. For
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example, the conductance through a quantum dot coupled to two leads can under certain
conditions (linear response, zero temperature, Fermi liquid behavior, etc.) be expressed in
terms a set of phase shifts that are uniquely determined by the ground state occupation of
the dot energy levels [81]. Thus, in such situations reliable knowledge of the ground state
is sufficient to calculate transport properties.

Going beyond ground state properties, we showed that the entire excited state eigen-
spectrum of both kept and discarded NRG states can be recovered within the VMPS
approach with at least the same accuracy as NRG, by using D′ = d′2 ×

√
D and refolding.

However, the latter step requires a subsequent additional diagonalization of matrices of
dimensions D′2, giving rise to a significant increase in numerical resources compared to the
case that only ground state information is required. A quantitative comparison between
NRG and VMPS for the eigenspectrum’s energies and eigenstates showed better agreement
for Λ = 2.5 than 1.5, due to the fact that the NRG truncation scheme becomes increasingly
less accurate the closer Λ approaches 1.

Finally, we used a cloning procedure to recast a given folded NRG ground state into
an unfolded form, and showed that its energy could be lowered further by subsequent
energy minimization sweeps. As expected, we found that sweeping improves the relative
accuracy with which the ground state energy can be determined, the more so the smaller
the value of Λ. For example, for Λ = 1.5 the accuracy changed from O(10−4) before
sweeping to O(10−7) thereafter [see Fig. 4.13(a)]. The fact that such a further variational
improvement of the NRG ground state is possible, however, is of significance mainly as a
matter of principle, not of practice: for the numerous situations where NRG works well (in
particular, for Λ not too close to 1), we expect that such further variational improvement
of the NRG ground state will not noticeably affect any physical observables.

Let us conclude with some comments about the pros and cons of NRG and VMPS.
For quantum impurity models with a comparatively low degree of complexity, such as the
single-lead Anderson and Kondo models, NRG works exceedingly well and for practical
purposes nothing is to be gained from switching to the VMPS approach. The latter is a
potentially attractive alternative to NRG only for two types of situations, namely (i) more
complex quantum impurity models, and (ii) non-logarithmic discretization of the leads.
We briefly discuss these in turn.

(i) For complex quantum impurity models, in particular ones involving several leads,
VMPS achieves a very significant reduction in memory cost, relative to NRG, for describing
ground state properties via unfolding the Wilson chain. There are several caveats, though.
Firstly, this reduction in memory cost applies only when only ground state properties are
of interest. To obtain excited state eigenspectra, the memory costs of NRG and VMPS are
comparable. Secondly, unfolding is expected to work well only for models for which the
subchains that are being unfolded are only weakly entangled, which will not be the case
for all impurity models. For example, the two-channel model might be an example where
unfolding works less well. In general, one needs to check the extent to which degrees of
freedom on different subchains are entangled with each other, by calculating the mutual
information of two sites on different subchains. If this does not decrease rather rapidly with
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their separation from the impurity site, then unfolding will be a poor strategy. Appealingly,
though, such a check can be done purely using NRG data, as illustrated in Section 4.3.3.
Thirdly, the fact that VMPS relies on variationally optimizing the ground state might
cause convergence problems for models which have degenerate ground states. Conceivably
this problem can be reduced by systematically exploiting all relevant symmetries of the
Hamiltonian, including non-Abelian symmetries [22, 82, 36]. However, if states in the local
state space of a folded Wilson chain are related by a non-Abelian symmetry, then this
symmetry would not be manifest in the unfolded representation. Thus, the two possible
strategies for achieving significant memory reduction, namely unfolding and exploitation
of symmetries might not always be mutually compatible; which one is more favorable will
depend on the details of the model, and is an interesting subject for further study.

(ii) The VMPS approach offers clear advantages over NRG in situations where Wilson’s
logarithmic discretization of the conduction band cannot be applied. In the present work,
we found clear indications for this fact in the observation that the improvement of VMPS
relative to NRG becomes more significant as Λ is chosen closer to 1. More importantly,
VMPS offers the possibility, inaccessible to NRG, to improve the frequency resolution of
spectral functions at high frequencies, by using a flexible (non-logarithmic) discretization
scheme which reduces the level spacing of effective lead states in the energy regimes where
higher frequency resolution is desired. For such a discretization scheme Wilsonian energy
scale separation is lost and NRG truncation cannot be applied. However, the ground state
can still be found variationally, and spectral functions can be computed using projection
operator techniques. In this fashion, it has recently been possible to calculate the spectral
function for the Anderson model at large magnetic fields, B > TK, and to resolve the
split Kondo resonance with sufficient accuracy to reproduce the widths expected from
perturbation theory in this regime. These developments, though, go beyond the scope of
the present work and will be published separately [51].
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multiqubit states

Parts of this chapter has recently been submitted for publication to Physical Review Letters:

H. Saberi, A. Weichselbaum, L. Lamata, D. Pérez-Garcia, J. von Delft, and E. Solano,
arXiv:0810.0977

In this chapter we consider the problem of sequential generation of entangled multi-
qubit states under real-world experimental constraints and demonstrate explicitly how the
matrix-product state formalism provides a flexible structure to overcome these experimen-
tal restrictions.

In Section 5.1 a general introduction to the problem of sequential generation of en-
tangled multiqubt states and the associated experimental challenges is presented. In Sec-
tion 5.2 we address the issue of restrictions on the ancilla dimension. Here we use singular
value decomposition (SVD) from linear algebra for approximating an MPS by another of
lower bond dimension. More precisely, we explicitly demonstrate how a given MPS can
be efficiently represented with the less amount of data originally required to represent it.
The MPS formalism which encodes the relevant information in the form of products of
matrices, has the advantage that enables us to make use of linear algebra tools for matrix
analysis. In Section 5.2.1 we present these mathematical tools, which will be used in Sec-
tion 5.2.2 for MPS compression. Finally, the issue of restricted source-qubit interactions
will be addressed in Section 5.3.
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5.1 Introduction

Entangled multiqubit states are of central importance in the fields of quantum computa-
tion and quantum communication [57], and have been the subject of intensive theoretical
and experimental investigations. As pointed out by Schön et al. [31, 32], the classes of
all sequentially generated multiqubit states, assisted by an itinerant ancilla, are exactly
given by the hierarchy of matrix-product states (MPS) [23]. In this context, the required
number of ancilla levels is determined by the dimension of the MPS canonical represen-
tation 1 of the target multiqubit state. Matrix-product states play an important role in
the context of strongly correlated systems [75] and describe the approximate ground states
produced by density-matrix renormalization group (DMRG) [5, 7, 8, 20, 21] and Wilson’s
numerical renormalization group (NRG) [3, 83]. Paradigmatic multiqubit states, such as
Greenberger-Horne-Zeilinger (GHZ) [28], W [29] and cluster [30] states, can be described
by low dimensional MPS and are considered valuable resources for quantum information
and communication tasks.

The generation of multiqubit entangled states via a single global unitary operation
acting on initially decoupled qubits is in general a difficult problem. From this point of
view, several theoretical and experimental efforts have been oriented towards the sequential
generation of paradigmatic entangled multipartite states. As a matter of fact, a number
of sequential and global approaches have been implemented in different physical systems
to produce specifically GHZ [84, 64], W [85, 61, 86], and cluster [87] states. In order to
generate sequentially any multiqubit state, a wide range of ancilla levels and ancilla-qubit
operations are necessary [31]. In this spirit, two important theoretical and experimental
questions appear naturally: will the sequential generation of a desired multiqubit state still
be feasible under given restricted experimental conditions? And if the answer is no, can we
design an efficient protocol that tells us the best possible approximation to the sequential
generation of such state? In this chapter, we answer satisfactorily both questions. We
demonstrate how the MPS formalism allows us to exploit linear algebraic tools to study
this relevant constrained optimization problem [34].

5.2 Restrictions on the number of ancilla levels

It is known that any n-qubit state |ψ〉 can be written canonically as an MPS with minimal
dimension D(≤ 2n) [23]. It was also shown that such state can be built sequentially with
a D-dimensional ancilla, if we have access to arbitrary ancilla-qubit unitaries [31]. In
the sequential generation of states, an ancillary system A (e.g. a D-level atom) couples

sequentially to an initially decoupled qubit chain |ψI〉 = |ψ[n]
I 〉 ⊗ · · · ⊗ |ψ[1]

I 〉 (e.g. cavity
photonic qubits that leak out after interacting with an atom). Assuming that in the last
step the ancilla decouples unitarily from the multiqubit system, we are left with the n-qubit

1See Section 3.3 for deatils on MPS canonical representation.
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state [31]

|ψ〉 =

1∑

in...i1=0

〈ϕF |V in
[n] . . . V

i1
[1] |ϕI〉|in, . . . , i1〉 , (5.1)

an MPS of bond dimension dim(|ψ〉) = D, where the D × D-dimensional matrix V ik
[k]

represents the ancilla-qubit operation at step k of the sequential generation (with isometry
condition 2

∑1
ik=0 V

ik†V ik = 1), |ϕI〉 and |ϕF 〉 being the initial and final ancilla state,
respectively. Hence, a relevant experimental question may be raised: how well can we
represent a given multiqubit state |ψ〉 if only an ancilla with a smaller number of levels,
D′ < D, is available? More formally: given a state |ψ〉, with canonical MPS representation
of bond dimension D, what is the optimal MPS |ψ̃〉 of lower bond dimension D′ < D that
minimizes their distance? We want to estimate

min
dim(|ψ̃〉)=D′<D

‖ |ψ〉 − |ψ̃〉 ‖2 . (5.2)

We propose two techniques to perform the MPS approximation above, both exploiting a
suitably designed local optimization of the V -matrices in Eq. (5.1). In the first approach,
we make use of a corollary of the singular value decomposition (SVD) theorem from linear
algebra to perform a local optimization procedure which may be called “MPS compres-
sion”, in analogy to the image compression technique already used in computer science
and engineering [89, 90].

5.2.1 SVD for matrix approximation

In this section we make use of a corollary of singular value decomposition from linear
algebra for approximating a matrix by another of lower rank. The notion of the distance
between matrices is quantified in terms of the theory of matrix norms which is briefly
reviewed in Appendix E. The SVD can be used to obtain an optimal approximation of a
rectangular matrix by another of the same dimension, but smaller rank [91].

First of all, we draw attention to the fact that SVD provides a recipe to obtain an
optimal full-rank representation of a rank-deficient matrix, since SVD inherently reveals
an explicit representation of the rank of the matrices. To see this, we include the following
corollary of the SVD theorem [91]:

Corollary 1: Given the SVD of Am×n and

σ1 · · · ≥ σr > σr+1 = · · · = σp = 0 , (5.3)

2 Note that, if a linear transformation U on an inner-product space is such that U †U = 1, U is called
an isometry or isometric transformation [88]. If, in addition, UU † = 1, then the isometry U is called a
unitary transformation.
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then A is a rank-deficient matrix and

rank(A) = r , (5.4)

A =

r∑

i=1

σiuiv
†
i = Ur Σr V

†
r , (5.5)

where Ur = [u1, · · · , ur] and Vr = [v1, · · · , vr] and Σr = diag(σ1, · · · , σr).

This corollary reveals a great deal about the rank of a given matrix. Once we obtain the
SVD of a matrix, it can be immediately understood whether the given matrix is full-rank
or rank-deficient: If all the singular values of the matrix turn out to be non-zero, the matrix
has as large a rank as possible and is said to have full-rank, otherwise it is called a rank-
deficient matrix and the rank of the matrix is given by the number of non-zero singular
values of that matrix. Since the sum in Eq. (5.5) runs from 1 to r (rather than p) and
r < p, this corollary implies that SVD inherently eliminates the superfluous dimensions.
Note that Eq. (5.5) is now an irreducible representation of the matrix A, in the sense that
the matrix A can not be represented by a lower dimensional matrix Σ anymore. Note also
that Eq. (5.5) is an exact description of the original matrix A and no approximation has
been made yet. Nevertheless, the following corollary of SVD provides us with a recipe
to obtain the best possible lower-rank approximation to a full-rank matrix [91]. Before
going through that, from Eq. (5.5) one may notice that the singular values σi may also be
interpreted as the “weighting factors” of the expansion of matrix A. If any of the singular
values turns out to be comparatively small, then the matrix A may be well-approximated
by discarding the corresponding term of the expansion. This intuition may be justified
more rigorously as follows:

Corollary 2: Let the SVD of the matrix Am×n with rank(A) = r be given by
Eq. (5.5). Then the best possible lower-rank approximation to A which minimizes the
following 2-norm distance

min
rank(Ã)=k<r

‖A− Ã‖2 , (5.6)

is given by

Ã =

k∑

i=1

σiuiv
†
i . (5.7)

Moreover, the distance above is given by

‖A− Ã‖2 = σk+1 . (5.8)
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Note that the matrix Ã in the corollary above has been given in terms of the SVD of the
original matrix A in Eq. (5.5), i.e. U , Σ and V in Eq. (5.7) are those of the matrix A, even
though the matrix Ã could have been decomposed in terms of its own SVD matrices say
Ũ , Σ̃ and Ṽ . In other words, the decomposition (5.7) is identical to (5.5) except that the
sum has been restricted to k. Therefore, the corollary suggests a constructive truncation
scheme to obtain the nearest matrix of rank k (k < r) to the original one:

1. Perform SVD for A, yielding A = U Σ V †.

2. Form the new truncated matrix Σt out of the Σ in SVD of A, by keeping the k largest
singular values of A and discarding the remaining r− k ones (setting them to zero).

3. Replace the old Σ by the new truncated one Σt to obtain Ã = U ΣtV
† as the solution

to the minimization problem.

Quite interestingly, it can be shown that the same holds for the F -norm distance be-
tween matrices so that the nearest lower-rank matrix is given by Eq. (5.7) but the corre-
sponding distance reads [91]

‖A− Ã‖F =

√
√
√
√

r∑

i=k+1

σ2
i . (5.9)

So the corollary can be used as a reconstruction recipe to generate the most optimal
matrices of lower rank out of a given original matrix. This is exactly the central idea of
image compression technique used in computer science [89, 90]. Viewed in this language,
the relative “compression error”(or truncation error) may be quantified by

εc =
‖A− Ã‖F
‖A‖F

=

√
∑r

i=k+1 σ
2
i

√∑r
i=1 σ

2
i

, (5.10)

where use has been made of Eq. (E.8) to express the error in terms of the singular values of
the original matrix A. Thus, for a reasonably well-decaying singular values spectrum, the
original matrix A may be well-approximated by (or “compressed” into) Ã obtained from
the outlined procedure above. However, Ã will always give the best possible representation
of A in the 2-norm and F -norm sense with less amount of numerical resources compared
to that of the original one.

We now find it useful to define the inner product of two matrices in the Frobenius
sense 3

〈A|B〉 =
m∑

i=1

n∑

j=1

a∗ij bij = Tr(A† B) . (5.11)

3 Note that in the case that A and B are matrix representations of linear operators, the inner product
introduced in Eq. (5.11) will be the familiarHilbert-Schmidt inner product associated with the Hilbert
space of linear operators [57].
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Figure 5.1: Matrix approximation with the aid of SVD. (a) The singular values of an
arbitrary matrix A of rank 10. (b) The Frobenius distance between the original matrix
A and the matrix Ak of rank k reconstructed out of A according to Eq. (5.7). (c) The
Frobenius overlap between A and Ak (see Eq. (5.11)) as a measure of the quality of the
matrix approximation procedure.

Note that the Frobenius norm of a matrix already defined in Eq. (E.1) may be recovered
by choosing B = A in the inner product above

‖A‖F =
√

〈A|A〉 =

√
√
√
√

m∑

i=1

n∑

j=1

|aij|2 =
√

Tr(A† A) . (5.12)

Just as in the case of vectors, this inner product may be geometrically interpreted as
the “angle” between two matrices, or alternatively regarding it as an overlap, it is also a
measure of how much two matrices have in common in the Frobenius sense. To establish
this connection note that

‖A−B‖2
F = ‖A‖2

F + ‖B‖2
F − 2 Re{〈A|B〉} , (5.13)

which clearly implies minimizing the Frobenius distance between two matrices is equivalent
to maximizing their Frobenius overlap. Obviously, after normalizing a matrix, i.e. dividing
it by its Frobenius norm, the overlap will be restricted to take values between -1 and 1.

As an illustrative case, Fig. 5.1 shows the results of applying the outlined SVD trun-
cation scheme for an arbitrary matrix of rank 10 in the Frobenius sense.

Since the singular values are sorted in decreasing order and the corresponding distance
is given by Eqs. (5.8) and (5.9), the distance-rank diagram will be always a monotonically
decreasing function, in complete agreement with Fig. 5.1.

5.2.2 SVD for MPS compression

In this section we exploit the result of the last section for a single matrix to approximate
an MPS by another of lower bond dimension. We call an MPS to be compressible if it can
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be rewritten with the smaller bond dimension, otherwise we call it an incompressible MPS.
Important examples of compressible MPSs are the W -state and GHZ state with number
of qubits n > 2 that can be written with MPS of bond-dimension D = 2 (see Section 3.4).

Let the SVD of matrix A with rank(A) = r be given by A =
∑r

i=1 σiuiv
†
i . Then, the

best possible lower-rank approximation to A that minimizes the Frobenius-norm distance
minrank(Ã)=r′<r ‖A− Ã‖F is given by Ã =

∑r′

i=1 σiuiv
†
i [91, 92]. This suggests a truncation

scheme in which one keeps only the r′ largest singular values of A to form the optimal
lower-rank matrix Ã. We exploit now this property, valid for a single matrix, and apply
the outlined truncation to each matrix V ik

[k] , k = 1, ..., n, in Eq. (5.1), yielding an MPS of

lower bond dimension D′ = D − (r − r′). This method offers a good solution for matrices
with well-decaying singular values spectrum.

5.2.3 Variational optimization technique for the reduction of the

ancilla dimension

In the second approach [83], a DMRG-inspired variational optimization of V -matrices [52],
we seek the best possible approximation to |ψ〉 in the space of all MPS |ψ̃〉 of the form

|ψ̃〉 =
1∑

in...i1=0

〈ϕF |Ṽ in
[n] . . . Ṽ

i1
[1] |ϕI〉|in, . . . , i1〉 , (5.14)

with bond dimension D′ < D, by solving the minimization problem of Eq. (5.2) under the
constant-norm condition 〈ψ̃|ψ̃〉 = 1, which is implemented using a Lagrange multiplier λ.
Varying Eq. (5.2) with respect to the matrices defining |ψ̃〉 leads to a set of equations, one
for each ik, of the form

∂

∂Ṽ ik
[k]

[

(1 + λ) 〈ψ̃|ψ̃〉 − 2Re
(
〈ψ|ψ̃〉

)]

= 0 , (5.15)

which determines the optimal Ṽ -matrices of the desired state |ψ̃〉. These equations can
be solved very efficiently using a “sweeping procedure” in which one fixes all but the k’th
Ṽ -matrix and solves the corresponding Eq. (5.15) for the matrix Ṽ ik

[k] . Then one moves on
to the neighboring site and, in this fashion, sweeps back and forth through the chain until
the convergence is reached. The optimization technique used here is reminiscent of the
so-called “cloning” procedure used in Chapter 4 for mapping a folded state to an unfolded
structure. The details of this method is given Appendix D. We point out, however, the
main difference here being the target MPS (|ψ〉) and the “clone” (|ψ̃〉) are of the same
folded structure.

Figure 5.2 illustrates the two optimization schemes outlined above for two different
states, both with D = 16, namely (i) the ground state of the XXZ Heisenberg Hamiltonian
and (ii) a randomly chosen MPS. For (i), which has a well-decaying singular-value spectrum,
the ancilla dimension can be effectively reduced from 16 to 6. Since variational optimization
allows for the feedback of information by several sweeps, it generally performs better than
MPS compression.
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Figure 5.2: Comparison of the variational optimization approach (solid lines) with the
MPS compression technique (dotted lines). We consider the ground-state of the XXZ
Heisenberg Hamiltonian (circles) and a randomly initialized MPS (triangles), indicating
how well these MPS with bond-dimension D can be approximated with those of dimension
D′ < D.

5.3 Restrictions on the source-qubit interactions

Every open-boundary MPS of the form

|ψ〉 =

1∑

in...i1=0

〈ϕF |Ain[n] . . . A
i1
[1]|ϕI〉|in, . . . , i1〉 , (5.16)

with arbitrary A-matrices, not necessarily isometries, can be cast into a canonical MPS
representation with minimal dimension D [53]. Such states, as mentioned above Eq. (5.1),
can be generated sequentially [31], such that the ancilla decouples unitarily in the last
step. We note that the sequential generating isometries can be constructed explicitly by
successive SVD of the A-matrices and exploiting the gauge freedom of the matrix-product
states as outlined in Refs. [31, 32]. This is a general recipe for the sequential generation
of an arbitrary entangled multiqubit state if the required ancilla dimension D and ancilla-
qubit unitaries are available. However, in general, a given physical setup may not have
access to some of the required local ancilla-qubit unitaries. Given such a limitation, we
face an interesting constrained optimization problem: which is the sequential protocol by
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Figure 5.3: The contraction pattern used to calculate the cost function in Eq. (5.22)
including the local ancilla operations UA and local qubit operations UB. The initial states

of the qubits are denoted by |ψ[k]
I 〉.

which a given multiqubit “target” state can be approximately generated with maximal
fidelity?

To address this problem, let us begin by considering the general unrestricted case:
The unitary time evolution of the joint system ancilla-qubit at step k of the sequential
generation may be described by a general unitary UAB

[k] : HA ⊗HB → HA ⊗HB given by

UAB
[k] = e−iH

AB
[k]

t/~ , (5.17)

where HAB
[k] is a general bipartite Hamiltonian that couples the ancilla with the k’th qubit.

The latter can be written as

HAB
[k] =

3∑

jA,jB=0

h
[k]
jAjB

σjA ⊗ σjB , (5.18)

where h
[k]
jAjB

are real-valued coupling constants and σ1, σ2, σ3 are the usual Pauli sigma
matrices, with σ0 ≡ I the identity matrix. For the sake of simplicity we have considered
the case D = 2, but similar generators can be found for D > 2.

Now, suppose that only a restricted set of unitaries are available. As an illustrative
case, let the entangling Hamiltonian have the restricted form of the XY -model [93]

H̃AB
[k] = h

[k]
1 (σ1 ⊗ σ1 + σ2 ⊗ σ2) , (5.19)

containing a single nonzero contribution h
[k]
1 ≡ h

[k]
11 = h

[k]
22 . Given an arbitrary MPS of the

form of Eq. (5.16) with arbitrary A-matrices and the restricted Hamiltonian of Eq. (5.19),

the aim is to find the optimal restricted unitary operations ŨAB
[k] = e−iH̃

AB
[k]

t/~ that when
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applied sequentially to an arbitrary initial state of the joint system |ΦI〉 = |ϕI〉 ⊗ |ψI〉,
yield a state of the form

|Ψ̃〉 = ŨAB
[n] . . . Ũ

AB
[2] Ũ

AB
[1] |ΦI〉 , (5.20)

that is “closest” to the target state of the form |ϕF 〉 ⊗ |ψ〉, where |ϕF 〉 is arbitrary. Note

that the action of each restricted unitary on initial state of qubit, ŨAB
[k] |ψ

[k]
I 〉, produces a

restricted isometry of the form

∑

ik,jk,α,β

Ũ ik ,jk
α,β |αik〉〈βjk|ψ[k]

I 〉 =
∑

ik,α,β

Ṽ ik
α,β|αik〉〈β| , (5.21)

with the definition Ṽ ik
α,β ≡∑jk

Ũ ik ,jk
α,β 〈jk|ψ[k]

I 〉 for the resulting isometry Ṽ AB
[k] . In the ideal

case, when the fidelity reaches unity, the ancilla can be set to decouple unitarily in the last
step. However, this will not be the case in general when the allowed ancilla-qubit unitaries
are restricted. Thus, the optimization problem reads

min
|Ψ̃〉∈H̃[k]

‖ |Ψ̃〉 − |ϕF 〉 ⊗ |ψ〉 ‖2 , (5.22)

involving a multivariable cost function in |ϕF 〉 and {h̄[n]
1 , . . . , h̄

[1]
1 }, with h̄

[k]
1 = h

[k]
1 t, as the

variational parameters, which can be solved in an iterative procedure. We start by picking
a particular unitary, say ŨAB

[k] , and minimize the cost function in Eq. (5.22), varying over

h̄
[k]
1 and regarding couplings of all the other unitaries as fixed. Then we move on to the

neighboring unitary and optimize its coupling. When all unitaries have been optimized
locally, we sweep back again and so forth until convergence. Each iteration of the local
optimization procedure requires the calculation of the overlap of the states in the cost
function of Eq. (5.22), which can be straightforwardly calculated in MPS representation as
illustrated in Fig. 5.3 (with UA and UB set to 1 there). Varying over the vector |ϕF 〉 and
using the resulting optimal one, the cost function simplifies to 2(1 − ‖〈Ψ̃|ψ〉‖), suggesting
the definition of the fidelity of the procedure as

F ≡ ‖〈Ψ̃|ψ〉‖ . (5.23)

For the restricted entangling Hamiltonian of Eq. (5.19), the variational space is so small
(only two parameters at each step), that the variational optimization procedure in general
does not result in much overlap with the target state |ψ〉, as illustrated in the inset of
Fig. 5.4 using the familiar |W 〉n state as target. However, F can be improved by enlarging
the variational space. For example, consider ŨAB in Eq. (5.20) replaced by restricted

unitaries of the form UA
[k]Ũ

AB
[k] , where UA

[k] = e−iH
A
[k]
t/~ are arbitrary local ancilla unitaries of

dimension D×D. The new optimization problem can be treated in the same manner as the
one described in Eq. (5.22), except that before optimizing each ŨAB, we will also vary over
the ancilla operation UA. In this way, we are able to produce the |W 〉n-state with almost
perfect fidelity (e.g. 1 − F ≈ 10−9 for n = 4) as illustrated in Fig. 5.4. In both cases, the
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Figure 5.4: The deviation of the fidelity 1−F = 1−‖〈Ψ̃|ψ〉‖ as a function of the number
n of qubits for the W state with D = 2 when optimizing the couplings hjAjB and the local

ancilla unitaries UA, with initial qubit states all equal, |ψ[k]
I 〉 = |0〉. The inset shows the

case where only the couplings hjAjB are being optimized.

smaller the number of qubits n, the larger the fidelity, which is a purely numerical issue due
to the local optimization. Models requiring the entangling Hamiltonian of the XXZ-form

h
[k]
1 (σ1 ⊗ σ1 + σ2 ⊗ σ2) + h

[k]
2 σ3 ⊗ σ3 , (5.24)

can be simulated in a similar manner.

Moreover, we have found strong numerical evidence that an arbitrary MPS with D = 2
can be generated sequentially if the single-parameter restricted unitaries ŨAB in Eq. (5.20)
are augmented by arbitrary local unitaries for both ancilla and qubit space. The combined
unitary employed was

UA
[k]UB

[k]Ũ
AB
[k] UB

[k] , (5.25)

where UB
[k] = e−iH

B
[k]
t/~ are arbitrary local qubit unitaries (see Fig. 5.3). We have considered,

for this purpose, the generation of 100 randomly chosen MPS and have found that 1 − F
remains below 6 × 10−13 up to n = 5. Note that the combined action of these unitaries
includes (at most) 11 real independent parameters, which in practice can be reduced to 10,
since varying a global phase has no effect. For the sake of the unrestricted ancilla unitaries
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Table 5.1: Comparing the optimal couplings of our simulation hsim
1 to those used for

experimental realization of W state hexp
1 in Ref. [61] for n = 5

site index (k) 1 2 3 4 5
((hsim

1 /hexp
1 ) − 1) × 105 36.50 0.72 8.64 0.62 0.59

we exploit the standard Z-Y decomposition of single-qubit operations given by [57]

UA =

(
ei(α−β/2−δ/2) cos γ

2
−ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2

ei(α+β/2+δ/2) cos γ
2

)

, (5.26)

with α, β, γ and δ being the independent real parameters. In contrast, the unrestricted
unitaries UAB involve 16 real independent parameters. Thus sequential generation of an
arbitrary MPS with D = 2, can be achieved more economically than previously realized: a
sufficient condition is the availability of the set of restricted two-qubit isometries specified
above, instead of the availability of arbitrary two-qubit unitaries [31].

Recently, a lot of effort has been devoted to find minimal sets of one-qubit and two-
qubit gates, and the minimal number of applications, to generate arbitrary two-qubit
unitaries [94, 95, 96]. The existence of these universal sets is of central relevance in quantum
computing, as it is known that two-qubit gates are universal for quantum computation [97,
98]. Our results suggest consideration of a class of problems involving a different paradigm:
which are the universal sets of one-qubit and two-qubit gates that can generate arbitrary
two-qubit isometries? What is the minimal number of applications and how does this
compare to the quantum computing case? We have found numerically, for example, that
some parameter-free fixed two-qubit gates (such as CNOT) plus three local unitaries are
not isometrically universal, as they are not capable of generating an arbitrary state with
F = 1. The general solution associated with this new paradigm remains open.

As a final test of the proposed protocols, we applied our variational prescription to the
sequential generation of W states in an ion chain. Following closely the recent experiment
of Ref. [61], we targeted a W state with the entangling Hamiltonian of the form h1(σ

+ ⊗
σ++σ−⊗σ−), σ+ and σ− being the usual raising and lowering Pauli operators, respectively,
and the initial state |ψI〉 = |1〉|0〉 . . . |0〉 used in experiment. The optimal couplings hsim

1 of
the resulting converged variational MPS |Ψ̃〉 (with 1 −F ≈ 10−9 for n = 5) turned out to
agree very well with the two-qubit rotations hexp

1 used for the experiment of Ref. [61], as
illustrated in Table 5.1.

5.4 Conclusions

In conclusion, we have developed protocols for an efficient sequential generation of en-
tangled multiqubit states under realistic experimental constraints. We demonstrated how
the MPS formalism allows to use optimization techniques for efficiently reducing the high
demands on ancilla dimension (e.g. number of atomic levels). We showed even in a very
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restricted scenario that access to only a limited class of source-qubit interactions is allowed,
it is always possible to find the optimal source-qubit interaction that allows realization of
the desired multiqubit state with an optimal fidelity. Most strikingly, we demonstrated
any arbitrary multiqubit state with D = 2 can be generated sequentially with a single-
parameter entangling Hamiltonian of the XY form together with local ancilla and qubit
unitaries.

Finally we stress that the proposed optimization methods are of wide applicability and
will be of importance for any sequential physical setup. In particular, we can mention
photonic qubits, atoms, ions, superconducting qubits, or quantum dots.
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Chapter 6

Approximate sequential

implementation of global operations

The research reported in this chapter is currently being prepared for publication.

The aim of this chapter is to quantitatively investigate the extent to which a given global
operation can be approximated with subsequent application of local unitary operations.
We employ the matrix-product operator (MPO) formalism to perform a suitably chosen
variational optimization within the space of sequentially generated unitary operations. In
other words, the aim is to see to what extent a global n-qubit unitary operation (n >
2) can be approximated with subsequent application of two-qubit (ancilla-qubit) unitary
operations.

The physical background and motivation is introduced in Section 6.1. In Section 6.2 the
general methodology is presented and the numerical techniques to approach the problem
is developed here. In Section 6.3 we consider the sequential generation of a global isometry
and contrast the issue to that of a unitary. Eventually, a new consideration of the problem
within a different metric is presented In Section 6.4.

6.1 Introduction

Engineering arbitrary global unitary gates is generically known to be “hard problem”, as it
requires exponentially many gates to approximate [57]. However, in quantum computation
it would be desirable to perform them efficiently. From this point of view, it will be
then desirable to devise a protocol to implement the desired global unitary operation
in a sequential unitary procedure in which an itinerant ancillary system (e.g. a D-level
atom) interacts locally and only once with each qubit in a row. This type of quantum
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factory of operations can be seen as a quantum Turing machine [99]. Note that this is
different from the sequential generation of states which was studied in Chapter 5 where an
entangled multiqubit state was targeted to be generated by sequential coupling of an ancilla
to initially uncorrelated qubits. Here the main question will be whether it is possible to
design a sequentially generated operation which has the same effect of the desired global
unitary or not. The answer to this question turns out to be negative as proved by Lamata
et al [39]. Nevertheless, in this chapter we provide optimization protocols that allow an
optimal realization of a sequential version of the target global unitary with a certain fidelity.
Our numerics confirm the “no-go” theorem and all theoretical claims of Ref. [39] and sheds
light on the various aspects of this newly-developed line of research.

We first consider the map N → N which was proved to be impossible to be implemented
sequentially.

6.2 Sequential decomposition of global unitaries within

Frobenius norm metric: The map N → N

Let us assume that Ug is the target global unitary operator that we wish to implement and
Ũ is the sequentially decomposable unitary operator, implemented through a sequence of
unitaries U1, U2, . . . , UN , that is actually implemented in practice. The sequential imple-
mentation of a N -qubit global unitary Ug suggests that at a certain step, let’s say k, the
two-body unitary operation Uka entangles the ancilla a and qubit k and leaves the other
qubits unchanged, the global entangling unitary at step k being more explicitly Uka⊗12k−1 .
Let the resulting sequentially implemented global operation Ũ with the aid of an ancilla a
of dimension D be given by

Ũ = UNa . . . U2aU1a . (6.1)

Expressing each local unitary in terms of a basis

Uka =
d∑

ik,jk=1

D∑

αk,βk=1

U ik,jk
αk,βk

|αkik〉〈βkjk| , (6.2)

the sequentially implemented Ũ reads

Ũ =

( d∑

iN ,jN=1

D∑

αN ,βN=1

U iN ,jN
αN ,βN

|αN iN 〉〈βNjN |
)

. . .

( d∑

i1,j1=1

D∑

α1,β1=1

U i1,j1
α1,β1

|α1i1〉〈β1j1|
)

. (6.3)

Summing over the ancillary indices (α and β) and defining
∑

αkβk
U ik ,jk
αk ,βk

|αk〉〈βk| ≡ U ik ,jk
[k]

we arrive at

Ũ =

d∑

iN ,...i1=1

d∑

jN ,...j1=1

U iN ,jN
[N ] . . . U i1,j1

[1] |iN〉〈jN | ⊗ · · · ⊗ |i1〉〈j1| , (6.4)
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Figure 6.1: Graphical representation of (a) the sequentially implemented Ũ contrasted
to the global Ug and (b) the cost function Eq. (6.8) in MPO language.

as a matrix-product operator (MPO) [35, 36, 37, 38] already arisen in the calculation of
finite-temperature density matrices [100]. On the other hand, the target global unitary
itself expressed in terms of a basis reads

Ug =
d∑

iN ,...i1=1

d∑

jN ,...j1=1

D∑

α,β=1

U iN ,...,i1,jN ,...,j1
α,β |αiN . . . i1〉〈βjN . . . j1| . (6.5)

Summing again over the ancillary degrees of freedom yields

Ug =

d∑

iN ,...i1=1

d∑

jN ,...j1=1

U iN ,...,i1,jN ,...,j1
[N...21] |iN〉〈jN | ⊗ · · · ⊗ |i1〉〈j1| . (6.6)

In Fig. 6.1(a) the graphical representation of Ug (acting simultaneously on N qubits)
in MPO language has been contrasted to that of sequentially implementted Ũ . The aim is
now to find the best possible sequential representation Ũ of the global unitary operation
Ug by minimizing the corresponding Frobenius distance [91] as the cost function 1

C = ‖Ug − Ũ‖2
F = 2D − 2Re{Tr(U †

g Ũ)} . (6.7)

The cost function exploiting the MPO expressions of Ug and Ũ reads

C = 2D − 2Re{Tr

(
∑

iN ,...,i1

∑

jN ,...,j1

∑

i′
N
,...,i′1

U
i′N ,...,i

′
1,j

′
N ...j

′
1

[N...21]

†
U iN ,jN

[N ] . . . U i1,j1
[1] ⊗ |iN . . . i1〉〈i′N . . . i′1|

)

} .(6.8)

The calculation of the trace on the right hand side of the equation above finds a very simple
form in MPO representation as depicted in Fig. 6.1(b). So the minimization problem can

1See Appendix E for some details on Frobenius norm.



80 6. Approximate sequential implementation of global operations

be done very efficiently in an iterative method in which we fix all but one of the local
operators, let’s say the U[k], and minimize the cost function Eq. (6.8) by varying over the
matrix elements of U[k]. In the next iteration, the neighboring local operator is optimized,
and once all the operators have been optimized locally, we sweeps back again and so on
until convergence.

In the case that ancilla is a qubit, i.e. D = 2, the local two-body unitaries may be
expanded in terms of the complete basis of Pauli matrices

U[k] = exp(−i
3∑

j1,j2=0

h
[k]
j1,j2

σj1 ⊗ σj2) , (6.9)

where h
[k]
j1,j2

are real-valued coefficients and σ1, σ2, σ3 are the usual Pauli sigma matri-
ces, with σ0 ≡ I the identity matrix. The minimization of the cost function Eq. (6.8)
then amounts to finding the optimized coupling matrix h[k] at each step of the iterative
optimization. The fidelity of the sequential implementation of the global unitary Ug may
be quantified as F = 1 − C̃ where C̃ denotes the normalized converged cost function C
of Eq. (6.8) at the last sweep. The normalization is taken care of after dividing by the
Frobenius norm of the involved operators.

6.2.1 Results for ancilla of dimension D = 2

We have applied the outlined procedure to some well-known global gates of quantum
computing when the ancilla has the dimension D = 2, as illustrated in Table 6.1: 2

For instance Controlled-NOT (CNOT) and controlled-phase (C-phase)(as two-qubit
global unitary operations) can be implemented sequentially with fidelity 70.71%. The
error 29.29% we associate with the existence of a “fidelity gap”, a strict theoretical red-line
beyond which the corresponding gate can not be implemented sequentially. We may note
also that those global gates that are equivalent up to local operations (e.g CNOT and
C-phase where CNOT= (I ⊗ H) C-phase (I ⊗ H) and H being the Hadamard) give the
same values of fidelity.

We now consider the scaling of the fidelity with the number of qubits n. For this
purpose, we have considered a generalized CNOT, defined by Gn ≡ Cn-NOT depicted
schematically in Fig. 6.2(a), and have observed the size of the gap tends to zero when
n becomes large. Figure 6.3(a) illustrates this fact. This may suggest the classical limit
in analogy to the quantum cloning in which the fidelity increases with the number of
clones. This behavior may be also associated with the fact that the matrix representation
of Cn-NOT becomes more and more similar to the identity matrix, as one increases n.

2We point out the C-phase (sometimes also called Controlled-Z) and the so-called “Controlled-i” (C-i,
sometimes called C-phase) may be distinguished by their explicit matrix representations as

C-phase=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1







and C-i=







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i







.
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Table 6.1: The values of the Frobenius fidelity for sequential implementation of various
global gates with ancilla of dimension D = 2.

global unitaries: CNOT C-phase C-i SWAP σ1 ⊗ σ2 Toffoli Fredkin
Fidelity: 0.7071 0.7071 0.9239 0.50 1 0.75 0.75

However, we have also considered another n-qubit gate, defined by

Ln ≡ (C1-NOT ⊗ IDn−2) . . . (C2-NOT ⊗ ID) Cn−1-NOT , (6.10)

depicted schematically in Fig. 6.2(b). Unlike Gn ≡ Cn-NOT, the fidelity here saturates
to a fixed value for large n (see Fig. 6.3(b)). We have investigated numerically that the
matrix representations of Ln for all values of n > 2 remain very similar to each other,
which explains the observed behavior.

6.2.2 Results for ancilla of dimension D = 4

Similar techniques can be applied for the case D = 4, except that we should use a complete
basis of 4 × 4 matrices instead of the Pauli matrices which already did the job for D = 2.
The local two-body unitaries may now be expanded by

U[k] = exp(−i
3∑

j1=0

15∑

j2=0

h
[k]
j1,j2

σj1 ⊗mj2) , (6.11)

where m denotes the set of linearly independent Hermitian matrices given by







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0













0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0













0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0













0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1













0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0













0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0













0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0













0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0













0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0













0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0













0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0













0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0
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Figure 6.2: Quantum logic gate representation of the two n-qubit global gates, Cn-NOT
and Ln, studied here.







0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0













0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0













0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0













0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0







(6.12)

We have applied the same optimization techniques for the gates of Table 6.1 and have
found out the values of the gap remain unchanged for D = 4 compared to that of D = 2.
Since D = 4 is the maximum possible ancilla dimension for both N = 2 and N = 3 case
(for N = 3 any bipartite decomposition of the qubits yields a Schmidt rank identical to
that of N = 2), quite interestingly, we can conclude that the reported values of the gap
are fundamental of the gates, irrespective of the ancilla dimension.

6.3 Sequential decomposition of global isometries within

Frobenius norm metric: The map M → N

Here we consider the possibility of sequential decomposition of a global isometry, i.e. the
map M → N when M < N . The aim here is to investigate this issue within the numerical
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Figure 6.3: Scaling of the fidelity with n for two paradigmatic n-qubit gates studied here.

framework described in the last section.

6.3.1 The map 1 → N

We start with the sequential decomposition of the global isometry when M = 1, which was
proved to be always possible if the ancilla dimension is large enough [101]. In this case,
the corresponding index of only the first qubit for both global and sequential operations
is free and the rest are contracted with some initial state of the qubits |ψI〉. We also
consider here an initial state of the ancilla |φI〉. The overlap pattern of Fig. 6.1 will be
then modified as depicted in Fig. 6.4. We have applied our numerics for the case 1 → 3
to Toffoli and Fredkin gates and the fidelity turns out to be 1 even with D = 2. However,
we have also considered some randomly-generated 1 → 3 isometries and have realized the
fidelity remains below 1 with D = 2 and this is not in contradition with the claim of the
last paragraph that the case 1 → N can always be done sequentially, since one may require
higher ancilla dimension. When we tried D = 4 for these gates, they gave the expected
fidelity 1.

In particular, we have considered the 1 → 3 isometry of the UQCM transformation in
the context of the quantum cloning [101, 102] given by Eq. (3.29) of Ref. [103] which it
has been proven to be sequentially decomposable with D = 4. Our numerics applied to
this type of global isometry approves this theoretical claim: The so-called Hillery gate can
be decomposed sequentially with fidelity 1 when D = 4. Quite interestingly, D = 2 gives
fidelity F = 0.9129, indicating this type of presumably highly entangling gate requires the
maximum ancilla dimension to be implemented sequentially.

All in all, strong numerical confirmation of the theoretical result of Ref. [101].
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Figure 6.4: Graphical representation of the Frobenius overlap of a global isometry with
the sequentially implemented one for the case 1 → N

6.3.2 The map M → N when 1 < M < N

This may be or may not be possible sequentially, as proved in Ref. [39]. The numerical
framework remains the same as the case for 1 → N except that one would contract on
some initial states of the qubits in Fig. 6.4 for the last N −M indices of the qubits on
both global and sequential isometries. Our numerics imply that, for example, the map
2 → 3 for Toffoli can be done with fidelity F = 1 when D = 4, but some other randomly
generated 2 → 3 isometries do not admit such a sequential decomposition even with D = 4,
in complete agreement with the theoretical claim of Ref. [39].

6.4 Sequential decomposition of global unitaries within

p-norm metric: The map N → N

The aim is to study the sequential decomposition of unitaries in terms of the p-norm of
operators instead of the Frobenius one. 3 The same formalism of the Frobenius metric holds
also here except that we replace the F -norm by the p-norm (p = 2) in the corresponding
cost function of Eq. (6.7)

C = ‖Ug − Ũ‖2
2 . (6.13)

Obviously such a cost function may exceed 1. In order to bound the cost function (or
equivalently the fidelity defined by F = 1 − C) between 0 and 1, we may make use of the

3See Appendix E for p-norm contrasted to Frobenius norm.
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Table 6.2: The values of the p-norm fidelity for sequential implementation of various
global gates with ancilla of dimension D = 2 and for several runs of the program

global unitaries: CNOT C-phase C-i SWAP Toffoli Fredkin
F (run 1): 0.8533 0.8535 0.9609 0.5000 0.6578 0.5000

F (run 2): 0.8531 0.8533 0.9593 0.4999 0.6498 0.5000

F (run 3): 0.8519 0.8529 0.9589 0.4999 0.5241 0.4996

F (run 4): 0.8512 0.8526 0.9495 0.4999 0.5000 0.4890

F (run 5): 0.8507 0.8525 0.9481 0.4999 0.4122 0.4491

triangular inequality valid for the p-norm that [91]

‖A+B‖2 ≤ ‖A‖2 + ‖B‖2 . (6.14)

As a result, the normalized cost function C̃ reads

C̃ =
‖Ug − Ũ‖2

2

(‖Ug‖2 + ‖Ũ‖2)2
, (6.15)

which is guaranteed to change only between zero and 1. The same goes with the normalized
fidelity F̃ = 1−C̃. On the other hand, it is known that the 2-norm of any unitary matrix is
1. So the normalization factor in this case is always 4, irrespective of the dimension of the
unitaries. Note that in the Frobenius norm case, the normalization factor used to grow with
the dimension of the matrices, whereas in the 2-norm case it remains constant. In the case
of the Frobenius metric, the trace product of the unitaries allowed for a very straightforward
calculation of the norm within MPO language (see Eq. (6.8) and Fig. 6.1(b)). This ceases
to be the case for the p-norm, since there is no such a trace product relation. The p-norm
of a matrix A is defined by [91]

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

, (6.16)

and in the specific case that p = 2, it finds the characterization ‖A‖2 = ρ(A†A)1/2, where
ρ denotes the spectral radius [104]. 4 Alternatively, it is known that ‖A‖2 = maxi(σi)
where σi are the singular values of A [91]. It is clear from the definition that computing
‖A‖p is a nonlinear optimization problem over Cn. The objective function is non-convex,
so there will usually be local maxima having function values less than the global maximum
‖A‖p [104]. Up to now, no reliable numerical method has been developed that can guarantee
to compute the global maximum at a reasonable cost. It is a well-known issue in numerical
analysis that 2-norm computation is iterative and decidedly more complicated than the

4The spectral radius of a matrix A is defined by ρ ≡ maxi(|λi|) where λi’s are the eigenvalues of A.
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Table 6.3: The values of the Frobenius fidelity adopting the same normalization scheme
as the 2-norm metric (D = 2)

.
global unitaries: CNOT C-phase C-i SWAP σ1 ⊗ σ2 Toffoli Fredkin

Fidelity: 0.8536 0.8536 0.9619 0.75 1 0.875 0.875

computation of Frobenius norm, 1-norm or ∞-norm [91, 104]. Nevertheless, MATLAB
offers a built-in routine (norm) that can calculate the 2-norm of the matrices. We have
exploited this routine for the task of the optimization techniques of global unitaries in the
same manner described for the Frobenius norm and here are the results:

For two-qubit global operations like CNOT we do observe a systematic behavior if we
allow multiple runs of the program and the resulting data are quite close to each other.
In that sense, the data for n = 2 look fairly reliable, as illustrated in Table 6.2. It is
interesting to see again that: CNOT and C-phase do give the same values of the fidelity,
as expected. Conrolled-i gives the highest fidelity among the two-qubits gates considered
here and SWAP gives the lowest fidelity. The same happened in the F-norm case.

We should note, however, that in order to compare the values of the fidelity within
2-norm to that of F-norm, we should be careful to adopt the same normalization schemes
for the corresponding cost functions, which is not yet the case. The normalization strategy
adopted for F-norm inspired by the decomposition of the form

CF = ‖Ug − Ũ‖2
F = ‖Ug‖2

F + ‖Ũ‖2
F − 2Re{Tr(U †

g Ũ)} , (6.17)

where the normalization was taken care of by

C̃F =
C

‖Ug‖2
F + ‖Ũ‖2

F

, (6.18)

whereas in the 2-norm case we made use of the triangular inequality of the norms to bound
the fidelity between 0 and 1 (see Eq. (6.15)). If we employ the same strategy as the 2-norm
for the normalization of F-norm, the values of the fidelities will be modified as illustrated
in Table 6.3. We can see that in all cases the 2-norm fidelities remain smaller than the
F-norm, in complete agreement with the fundamental inequality already known from linear
algebra [91]

‖A‖2 ≤ ‖A‖F . (6.19)

On the other hand, it is interesting to see except for SWAP, the values of the fidelities are
very close to each other in both metrics.

Unlike the well-behaved numerics for n = 2, the statistics is not as well-behaved as
the Frobenius metric for n > 2 within the 2-norm metric. In the case of the F-norm, we
enjoyed a very well-behaved and fast convergence of the fidelities to unique values for any
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number of qubits, no local minima occurred. In the 2-norm case, for n > 2 different runs
of the program give different values of the fidelity, so the values of the fidelities are not
uniquely determined. Table 6.2 illustrates this fact for Toffoli and Fredkin gates. Given
the numerical challenges for computation of p-norm described before, it is absolutely no
surprise to see this type of behavior in particular for large matrices which require more
optimization iterations and consequently are more prone to running into local minima.
Therefore, it seems numerically hard to obtain reliable results for n > 2 within the 2-norm
metric.

6.5 Conclusions

In conclusion, we have developed theoretical and numerical protocols for an efficient se-
quential decomposition of global multiqubit operations. We demonstrated how the newly
developed method of matrix-product operator (MPO) can be exploited as a flexible nu-
merical framework to study the associated optimization problems. Our numerics confirm
the “no-go” theorem and all theoretical claims of Ref. [39] and offers efficient optimization
techniques for the sequential realization of any arbitrary global multiqubit operation with
an optimal fidelity.

We believe results presented in this chapter will be particularly useful for future imple-
mentation of quantum networks, quantum error correction, quantum cryptographic tasks
and realted physical setups.
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Part III

Appendix





Appendix A

Orthonormalization of B-matrices of

unfolded Wilson chain

To keep the notation simple, in this appendix we shall imagine the sites of the unfolded
Wilson chain to be stretched along a line running from left to right, enumerated by an
index k running from 1 for site N↓ to K = 2(N + 1) for site N↑. Correspondingly, matrix-
product states will generically be written as |Ψ〉 =

∑

{σK} |σK〉(∏K
k=1B

[σk]), with matrix

elements B
[σk]
νη .

It is convenient to ensure that every B-matrix in a matrix-product state satisfies one
of the following two orthonormality conditions:

∑

σk

B[σk]†B[σk] = 1 , (A.1a)

∑

σk

B[σk]B[σk]† = 1 . (A.1b)

In particular, if all B-matrices satisfy either the first or the second of these conditions, the
corresponding matrix-product state is automatically normalized:

〈Ψ|Ψ〉 =
∑

{σK}

(B
[σK ]†
1ν′ . . . B

[σ1]†
η′1 )(B

[σ1]
1η . . . B

[σK ]
ν1 ) = 1 . (A.2)

This follows by iteratively applying Eq. (A.1). To start the iteration, note that for matrices
at the beginning or end of the chain, where one of the matrix indices is a dummy index with
only a single value, Eqs. (A.1a) or (A.1b) imply

∑

σ1
B

[σ1]†
η′1 B

[σ1]
1η = δη′η or

∑

σK
B

[σK ]
ν1 B

[σK ]†
1ν′ =

δνν′ , respectively. In the NRG approach, all A-matrices naturally satisfy Eq. (A.1a) [cf.
Eq. (4.6)].

In the VMPS approach, it is convenient to ensure that during variational optimization
sweeps, Eq. (A.1a) holds for all matrices to the left of the site, say k, currently being
updated, and Eq. (A.1b) for all matrices to its right. Thus, after optimizing the set of
matrices B[σk] at site k, this set should be orthonormalized before moving on to the next
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site, such that it satisfies Eq. (A.1a) when sweeping from left to right (or Eq. (A.1b) when
sweeping from right to left). This can be achieved using singular value decomposition [cf.
Eq. (4.18)]: Arrange the matrix elements of the set of matrices B[σk] into a rectangular

matrix carrying only two labels, with matrix elements Bν̄η = B
[σk]
νη (or Bνη̄ = B

[σk]
νη ),

by introducing a composite index ν̄ = (σk, ν) (or η̄ = (σk, η)). Using singular value
decomposition [Eq. (4.18)], write this new matrix as B = USV†. Then rewrite the matrix-
product of two neighboring B-matrices as B[σk]B[σk+1] = B̃[σk]B̃[σk+1] (or B[σk−1]B[σk] =
B̃[σk−1]B̃[σk ]), where the new matrices B̃ are defined by

B̃[σk]
νγ = Uν̄γ , B̃

[σk+1]
γδ = (SV†B[σk+1])γδ , (A.3)

(or B̃
[σk]
δη = V†

δη̄ , B̃
[σk−1]
γδ = (B[σk−1]US)γδ ). (A.4)

The property U †U = 11 (or V†V = 11) ensures that the new set of matrices B̃[σk] at site k is
orthonormal according to Eq. (A.1a) (or Eq. (A.1b)), as desired. Now proceed to the next
site to the right (or left) and orthonormalize B̃[σk+1] (or B̃[σk−1]) in the same manner, etc.

The above procedure can be used to orthonormalize the matrices of a randomly gen-
erated matrix-product state before starting VMPS sweeping. Likewise, during VMPS
sweeping, each newly optimized matrix can be orthonormalized in the above fashion be-
fore moving on to optimize the matrix of the next site.



Appendix B

Refolding

This appendix describes how to refold an unfolded matrix-product state of the form

|Ψn
νη〉u =

∑

{σN}

|σn〉(B[σn↓]. . . B[σ0↓]B[σ0↑]. . . B[σn↑])νη,

(B.1)

shown schematically by sites n↓ to n↑ of Fig. 4.2(c). Its two indices will be treated as a
composite index β = (ν, η) below. The variational matrix-product state |ΨN〉u of Eq. (4.16)
discussed in the main text is a special case of Eq. (B.1), with n = N and ν = η = 1 . The
goal is to express Eq. (B.1) as a linear combination,

|Ψn
νη〉u =

∑

α

|Ψn
α〉rCn

αβ , (B.2)

(β = (ν, η) is a composite index) of an orthonormal set of “refolded basis states” of the
form of Eq. (4.22),

|Ψn
α〉r =

∑

{σn}

|σn〉(B[σ0]B[σ1] . . . B[σn])1α , (B.3)

shown schematically by sites 0 to n of Fig. 4.2(a). To this end, we procede iteratively in
n. We use singular value decomposition to iteratively merge, for every pair of sites n↓ and

n↑ of the unfolded chain, the matrices B
[σn↓]

νν′ and B
[σn↑]

η′η into a new set of matrices B
[σn]
α′α for

site n of the refolded chain, thereby trading the indices σn↓, σn↑ and νη of Fig. 4.2(c) for
the indices σn and α of Fig. 4.2(a). This is to be done in such a way that the matrices B[σn]

are orthonormal in the sense of Eq. (4.6), and that for the first few sites their dimensions
increase in a way analogous to those of the A[σn] matrices of NRG, starting from 1 × d at
site n = 0.

For the first iteration step, start with n = 0, make a singular value decomposition of
the matrix-product

(B[σ0↓]B[σ0↑])ν′η′ = (U0S0V0†)σ0β′, (B.4)
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with β ′ = (ν ′, η′), and use U0 to define a new set of d matrices B[σ0] for site 0 of the

refolded chain, with matrix elements B
[σ0]
1α′ = U0

σ0α′ . The B[σ0] have dimensions 1 × d (the
dummy first index has just one value), and are by construction orthonormal in the sense
of Eq. (4.6), since U0†U0 = 11. Upon inserting Eq. (B.4) into Eq. (B.1), the factor U0

produces the first matrix factor B[σ0] in the refolded state (B.3), thus completing the first
iteration step. For the second iteration step, contract the factors S0V0† with the factors
B[σ1↓] and B[σ1↑] in Eq. (B.1), factorize the result as U1S1V1† and use U1 to construct new
matrices B[σ1] for site 1 of the refolded chain, etc. To be explicit, for general n, make a
singular value decomposition of the matrix-product

∑

ν′η′

B
[σn↓]

νν′ (S(n−1)V(n−1)†)α′β′B
[σn↑]

η′η = (UnSnVn†)ᾱβ, (B.5)

with composite indices ᾱ = (σn, α
′), σn = (σn↓, σn↑), β = (ν, η) and β ′ = (ν ′, η′). Then

use Un to define a new set of orthonormal matrices B[σn] for site n of the refolded chain,
with matrix elements B

[σn]
α′α = Un

ᾱα. In this way one readily establishes that |Ψn
νη〉u can be

written in the form of Eq. (B.2), with Cn
αβ = (SnVn†)αβ.

The dimensions of the matrices B[σn] initially grow by a factor of d with each iteration
step, until their dimensions are restricted by the number of possible values of the composite
index β, namely D′2

n , with D′
n given by Eq. (4.17). Thus, the B[σn] have dimensions

Dr
n ×Dr

n+1, with Dr
n = min(dn, D′2

n−1), which leads to Eq. (4.21).



Appendix C

Calculation of the effective refolded

Hamiltonian within the MPS

formalism

In this appendix we provide the details of how the effective Hamiltonian of the refolded
Wilson chain (Hn

r defined in Eq. (4.23)) can be efficiently obtained within the MPS for-
malism in a recursive manner. We first note that the Jordan-Wigner transformed SIAM
Eq. (4.2) for the chain of length N can be written as [79, 10]

HN =
N∑

k=1

~gk · ~σk +
N−1∑

k=1

~fk · (~σk ⊗ ~σk+1) , (C.1)

where ~fk and ~gk denote the hopping terms and on-site interactions at site k, respectively,
and ~σk ≡ (σkx, σ

k
y , σ

k
z ) with σx, σy and σz being the usual Pauli matrices. The couplings

structure is depicted schematically in Fig. C.1. Here the original fermionic model has been
mapped onto a spin Hamiltonian where use been made of the relation between the Pauli
matrices and the fermionic creation/annihilation operators

σx = c+ c† σy = i(c− c†) , (C.2)

We may now note that the Hamiltonian at site k of the Wilson chain may be splitted
into three parts (as depicted in Fig. C.2)

Hk
L = Hk−1

L + Hk−1,k + Hk , (C.3)

where Hk−1
L is the Hamiltonian at site k − 1, Hk denotes the local contribution from the

current site k, and Hk−1,k are those terms of the Hamiltonian that couple site k− 1 to site
k.

Having refolded the Wilson chain, we now begin from left of the refolded chain by
constructing the effective Hamiltonian for site k = 1. Obviously, Hk−1

L = Hk−1,k = 0 for
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Figure C.1: Couplings structure of the unfolded and refolded Wilson chain

k = 1. So the only non-vanishing term will be the local contribution H1, for SIAM given
by

H1 =

3∑

p=1

g(N + 1, p)σN+1
↑p + g(N + 2, p)σN+2

↓p + f(N + 1, p)σN+1
↑p σN+2

↓p , (C.4)

The aim is now to calculate the matrix elements of H1 in the basis of the current site

(H1
r)αβ = r〈Ψ1

α|H1|Ψ1
β〉r , (C.5)

To keep the notation simple, we drop the subscript r for refolded chain throughout this
appendix and use the symbols l and r for the left and right site of the chain upon going
to the next iteration. In the MPS language the basis of the current site |r〉 (the one to the
right) can be constructed from that of the previous one |l〉 (the one to the left) as

|r′〉 =
∑

l′,σ′↑,σ
′
↓

B
[σ↑,σ↓]

r′l′ |l′σ′
↑σ

′
↓〉 , (C.6)

For the sake of simplicity, we split x{1} to two parts Ig and If containing the contributions
from g and f couplings, respectively, i.e. x{1} ≡ Ig + If . Ig then reads

Ig =
∑

l,σ↑,σ↓

∑

l′,σ′↑,σ
′
↓

3∑

p=1

B
[σ↑,σ↓]†
rl B

[σ′↑,σ
′
↓]

r′l′

(

g(N + 1, p)〈l|l′〉〈σ↓|σ′
↓〉〈σ↑|σN+1

↑p |σ′
↑〉 (C.7)

+g(N + 2, p)〈l|l′〉〈σ↑|σ′
↑〉〈σ↓|σN+2

↓p |σ′
↓〉
)

,
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Figure C.2: Hamiltonian at site k splitted into the left, local and the couping between
left and local part.

where use has been made of the fact that each σ operator only acts on its own basis |σ〉,
e.g.

〈σ↑σ↓|σN+1
↑p |σ′

↑σ
′
↓〉 = 〈σ↑σ↓|σN+1

↑p ⊗ 1
N+1
↓p |σ′

↑σ
′
↓〉 = 〈σ↑|σN+1

↑p |σ′
↑〉〈σ↓|σ′

↓〉 , (C.8)

Ig then reads

Ig =
∑

l,σ↑,σ↓,σ
′
↑

3∑

p=1

B
[σ↑,σ↓]†

rl B
[σ′↑,σ↓]

r′l g(N + 1, p)(sx{p})σ↑,σ′↑ (C.9)

+
∑

l,σ↑,σ↓,σ
′
↓

3∑

p=1

B
[σ↑,σ↓]†
rl B

[σ↑,σ
′
↓]

r′l g(N + 2, p)(sx{p})σ↓,σ′↓

where use has been made of the facts 〈l|l′〉 = δll′ and 〈σ|σ′〉 = δσσ′ and we have defined
〈σ↑|σN+1

↑p |σ′
↑〉 ≡ (sx{p})σ↑,σ↑′ and 〈σ↓|σN+2

↓p |σ′
↓〉 ≡ (sx{p})σ↓,σ↓′

The contribution Ig comes from the coupling between spin-up and down of the impurity
f(N + 1), so If for k = 1 takes the form

If = 〈r|
3∑

p=1

f(N + 1, p)σN+1
↑p σN+2

↓p |r′〉 , (C.10)

In a similar vein, If simplifies to

If =
∑

l,σ↑,σ↓

∑

σ′↑,σ
′
↓

3∑

p=1

B
[σ↑,σ↓]†

rl B
[σ′↑,σ

′
↓]

r′l f(N + 1, p)(sx{p})σ↑σ′↑(sx{p})σ↓σ′↓ , (C.11)
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Figure C.3: Graphical MPS representation of calculating the effective refolded Hamilto-
nian for the site k = 1.

Putting altogether, x{1} can be graphically represented in MPS language as in Fig. C.3.

In order to go to the next site, we still need to calculate the matrix elements of σN+1
↑p

and σN+2
↓p in the current basis of site k = 1

(

Sx↑{1}{p}
)

rr′
≡ 〈r|σN+1

↑p |r′〉 , (C.12)

which can be simplified as

(

Sx↑{1}{p}
)

rr′
=
∑

l,σ↑,σ↓

∑

σ′↑

B
[σ↑σ↓]†

rl B
[σ′↑σ↓]

r′l (sx{p})σ↑σ′↑ , (C.13)
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Similarly, for the spin-down part we will have
(

Sx↓{1}{p}
)

rr′
≡ 〈r|σN+2

↓p |r′〉 =
∑

l,σ↑,σ↓

∑

σ′↓

B
[σ↑σ↓]†
rl B

[σ↑σ
′
↓]

r′l (sx{p})σ↓σ′↓ , (C.14)

which provides us with all the data needed to go to the next site.

At site k = 2 of the refolded chain, the recursive form of the Hamiltonian reads

H2
L = H1

L + H1,2 + H2 . (C.15)

So the effective Hamiltonian x{2} entails three contributions denoted by

(x{2})rr′ ≡ 〈r|H2
L|r′〉 = I1 + I2 + I3 . (C.16)

Note here that the right basis r is now at site k = 2 and the left basis is the previous site
k = 1. We now calculate each part separately. For the first contribution I1 we have

I1 = 〈r|H1
L|r′〉 =

∑

l,σ↑,σ↓

∑

l′

B
[σ↑σ↓]†

rl B
[σ↑σ↓]

r′l′ (x{1})ll′ . (C.17)

where we have made the identification 〈l|H1
L|l′〉 = (x{1})ll′.

For the second contribution to the effective Hamiltonian at site k = 2 we have

I2 = 〈r|H1,2|r′〉 = 〈r|
∑

p

f(N, p)σN+1
↑p σN↑p +

∑

p

f(N + 2, p)σN+2
↓p σN+3

↓p |r′〉 . (C.18)

Once again, plugging in the MPS recursive relation for the current basis of Eq. (C.6) yields

I2 =
∑

l,σ↑,σ↓

∑

l′,σ′↑,σ
′
↓

3∑

p=1

B
[σ↑σ↓]†

rl B
[σ′↑σ

′
↓]

r′l′

(

f(N, p)〈l|σN+1
↑p |l′〉〈σ↑σ↓|σN↑p|σ′

↑σ
′
↓〉 (C.19)

+f(N + 2, p)〈l|σN+2
↓p |l′〉〈σ↑σ↓|σN+3

↓p |σ′
↑σ

′
↓〉
)

.

We may now make the identifications from Eqs. (C.12) and (C.13), noting that |r〉 basis
there is now regarded as |l〉 for the current site k = 2

〈l|σN+1
↑p |l′〉 =

(

Sx↑{1}{p}
)

ll′
〈l|σN+2

↓p |l′〉 =

(

Sx↓{1}{p}
)

ll′
, (C.20)

which are already known from the previous iteration (see Eqs. (C.13) and (C.14)). After
inserting this in Eq. (C.19) and taking care of those inner products that simplify to δσσ′
or sx{p}, we arrive at

I2 =
∑

l,σ↑,σ↓

∑

l′,σ′↑

3∑

p=1

B
[σ↑σ↓]†

rl B
[σ′↑σ↓]

r′l′ f(N, p)
(
Sx↑{1}{p}

)

ll′
(sx{p})σ↑σ′↑ (C.21)

+
∑

l,σ↑,σ↓

∑

l′,σ′↑

3∑

p=1

B
[σ↑σ↓]†

rl B
[σ↑σ

′
↓]

r′l′ f(N + 2, p)
(
Sx↓{1}{p}

)

ll′
(sx{p})σ↓σ′↓ .
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Figure C.4: Graphical MPS representation of calculating the effective refolded Hamilto-
nian for the site k = 2..

Since for SIAM the on-site interactions g vanish except for the impurity we simply get
I3 = 〈r|H2|r′〉 = 0. Putting altogether, we arrive at the graphical representation depicted
in Fig. C.4 for x{2}.

It is easy to verify that the general recipe for obtaining the effective refolded Hamilto-
nian at site k > 1 is given by Fig. C.5. This offers a recursive relation for obtaining the
effective Hamiltonian at any site k > 1 from the information of the previous site.

Having obtained the matrix elements of the effective “refolded Hamiltonian”, we may
now diagonalize it to obtain the eigenvalues and eigenstates (En

β )r and |En
β 〉r used for

the calculation of eigenspectra and density of states in Section 4.5.2 as well as energy
eigenstates in Section 4.5.3.
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Figure C.5: General recipe for obtaining the effective refolded Hamiltonian in a recursive
manner when k > 1.
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Appendix D

Variational “cloning” of folded to

unfolded states

This appendix gives some details of the cloning procedure of Section 4.6.1. The goal is
to solve the variational Eq. (4.33), which determines the B-matrices of the cloned state
|G〉c. As described in the main text, this can be done by sweeping back and forth along
the unfolded Wilson chain, and updating one matrix at a time.

Let kµ label the site to be updated and write the cloned state, which is assumed to be
of the form (4.16), as

|G〉c =
(

Xkµ
l

)

1ν
B

[σkµ]
νν′

(

Xkµ
r

)

ν′1
. (D.1)

Here we introduced the shorthands
(

Xkµ
l

)

1ν
=

(

B[σN↓] . . . B[σklµl
]
)

1ν
, (D.2a)

(

Xkµ
r

)

ν1
=

(

B[σkrµr ] . . . B[σN↑]
)

ν1
, (D.2b)

for the products of matrices standing before or after the one of present interest in the
unfolded Wilson chain, and the labels klµl or krµr label the sites just before or after this
site. Moreover, assume that all the B-matrices in Xl and Xr have been orthonormalized
according to Eq. (A.1a) or (A.1b), respectively. (This can always be ensured by suit-
ably orthonormalizing each B-matrix after updating it, see below.) These orthonormality
relations immediately imply similar ones for the matrix products just introduced:

∑

σN↓,...,σklµl

(

Xkµ
l

)†

ν1

(

Xkµ
l

)

1ν′
= δνν′ , (D.3a)

∑

σkrµr ,...,σN↑

(

Xkµ
r

)

ν1

(

Xkµ
r

)†

1ν′
= δνν′ . (D.3b)

Thus, the norm of |G〉c can be written as

c〈G|G〉c =
1

N
∑

νν′

B
[σkµ]†

ν′ν B
[σkµ]

νν′ , (D.4)
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Figure D.1: Graphical representation of the variational equation used for cloning,
Eqs. (4.33) or (D.5), drawn for the case µ =↑, and assuming all matrix elements to be
real, using the labelling conventions of Figs. 4.2(a) and 4.2(c). The upper part of the figure
represents 1

2
∂

∂B[k↑] c〈G|G〉c; it simplifies to B[k↑] [left hand side of Eq. (D.5)] upon realizing
that the parts in dashed boxes represent the left hand sides of Eqs. (D.3a) and (D.3b), and
hence reduce to unity.
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where N is a normalization constant ensuring that the norm equals unity.

Using Eq. (D.4), the variational Eq. (4.33) readily reduces to

B
[σkµ]

νν′ =
∑

{σ′N}

(A[σN ]† . . . A[σ0]†)G1

1 + λ

(

Xkµ
l

)

1ν

(

Xkµ
r

)

ν′1
,

(D.5)

where {σ′N} denotes the local indices of all sites except the index σkµ of site kµ, and we have
assumed all A- and B-matrices to be purely real (exploiting the time-reversal invariance
of the present model). This equation (graphically represented in Fig. D.1) completely
determines the new matrix B[σkµ] in terms of the A-matrices specifying the NRG input
state |G〉f and the B-matrices of sites other than the present one, which had been kept
fixed during this variational step.

Having calculated B[σkµ], it should be properly orthonormalized, following the procedure
of Eq. (A.3) or Eq. (A.4), depending on whether we are sweeping from left to right or vice
versa. In other words, use the singular value decomposition USV† of the new-found matrix
B[σkµ], to transfer a factor SV† or US onto its right or left neighbor, respectively, and rescale
this neighbor by an overall constant to ensure that the new state |G〉c is still normalized to
unity. This concludes the update of site kµ. Now move on to its neighbor, etc., and thus
sweep back and forth through the unfolded Wilson chain, until convergence is reached.
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Appendix E

Matrix norm and singular value

decomposition

The norm of a matrix is not uniquely defined and there are several non-equivalent defi-
nitions of the norm of a matrix and each one suits a particular theory [91]. Let us now
introduce two important norms that we shall use throughout this thesis and are indeed the
most frequently used matrix norms in numerical analysis. The F -norm (Frobenius norm)
of an m× n matrix A is defined by

‖A‖F =

[ m∑

i=1

n∑

j=1

|aij |2
]1/2

. (E.1)

Note that this is an entry-wise norm which treats an m× n matrix as an 1×m · n matrix
(or indeed a vector).

Another important definition of the norm of a matrix called p -norm is given by

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

, (E.2)

where the corresponding vector p -norm (for p ≥ 1) is defined by

‖x‖p = (|x1|p + · · ·+ |xn|p)1/p . (E.3)

The theory of the norms can be exploited to prove one of the most important decom-
positions in matrix analysis [91] which can be stated as follows [92, 91]:

Singular value decomposition (SVD): Let A be an m× n arbitrary matrix (Am×n) and
let p = min{m,n}. Then there exists a matrix Σm×n = [σij ] with σij = 0 for all i 6= j and
σ11 ≥ σ22 ≥ · · · ≥ σpp ≥ 0, and there are two unitary matrices Um×m = [u1, · · · , um] and
Vn×n = [v1, · · · , vn] such that

A = U Σ V † , (E.4)
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The σii (or simply σi) are called the singular values of A and have the following impor-
tant properties [92]:

1. The singular values of A are exactly the nonnegative square roots of the p largest
eigenvalues of of either A†A or AA†.

2. The singular values of A and A† are the same.

3. Notice that the singular values of a matrix are unitarily invariant, i.e., the singular
values of U1AU2 are the same as those of A for all unitary matrices of appropriate
sizes U1 and U2.

It is also worthwhile to mention that F -norm and 2-norm (p -norm for p = 2) are
unitarily invariant, namely

‖UA V ‖F = ‖A‖F , (E.5)

and

‖UA V ‖2 = ‖A‖2 , (E.6)

where U and V are unitary matrices of appropriate sizes [91]. This property will be
particularly useful for the lower-rank approximation of a matrix in the next section. Also,
this invariance characteristic has a useful immediate consequence: A unitarily invariant
norm of a matrix A is a function only of singular values of A, since

‖A‖F,2 = ‖UΣV †‖F,2 = ‖Σ(A)‖F,2 , (E.7)

where use has been made of the singular value decomposition and unitarily invariance of
the F -norm and 2 -norm [92]. Moreover, it can be shown that the explicit functionality of
the F -norm and 2-norm in terms of the singular values is given by [91]:

‖A‖2
F =

p
∑

i=1

σ2
i , (E.8)

and

‖A‖2 = σ1 . (E.9)



Part IV

Miscellaneous
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Deutsche Zusammenfassung

In dieser Doktorarbeit werden am Beispiel dreier größerer Projekte neue Entwicklungen
im Bereich der Theorie von Matrixproduktzuständen (MPZ), die zur Untersuchung stark
korrelierter Systeme sowie im Gebiet der Quanteninformationsverarbeitung Anwendung
finden, vorgestellt:

In einem ersten Projekt vergleichen wir systematisch Wilson’s Numerische Renormierungs-
gruppe (NRG) mit White’s Dichtematrixrenormierung (DMRG). Ein auf NRG basierter
Zugang zu Quantenstörstellmodellen führt zu Energieeigenzuständen, die die Form von
Matrixproduktzuständen annehmen. Die Anwendung von White’s DMRG auf Quanten-
gitterprobleme kann gleichermaßen in der Sprache der MPZ formuliert werden. Diese
bildet somit eine gemeinsame algebraische Struktur für beide Herangehensweisen. Wir
nutzen dies um einen auf NRG beruhenden Zugang zum Anderson-Modell einer einzelnen
Störstelle mit einem variationellen Matrixproduktzustand (VMPZ) zu vergleichen, der der
DMRG für einen Gitterplatz entspricht. Für zweiteren nutzen wir eine entfaltete Wilson-
Kette, die, verglichen mit NRG, eine erhebliche Reduzierung des numerischen Aufwan-
des erlaubt. Wir zeigen, dass alle NRG-Eigenzustände durch VMPZ reproduziert werden
können und vergleichen zwei Trunkierungenskriterien, scharf bzw. glatt im Energieraum.
Wir zeigen, dass NRG-Ergebnisse systematisch durch eine variationelle Optimierung im
Raum der VMPZ verbessert werden können, wobei die von NRG erzeugten Zustände als
Anfangswert dienen.

In einem zweiten Projekt zeigen wir, wie MPZ eine flexible Struktur bilden, um Opti-
mierungsprobleme unter Nebenbedingungen zu lösen. Diese Nebenbedingungen treten auf
bei der schrittweisen Bildung verschränkter Zustände aus mehreren Qbits unter experi-
mentellen Bedingungen. Wir betrachten ein realistisches Szenario, in dem ein Hilfssystem
(ancilla) mit einer begrenzten Anzahl an Energieniveaus schrittweise begrenzte Wechsel-
wirkungen mit Qbits in einer Reihe ausführt. Die vorgeschlagene Methode beruht auf einem
geeigneten lokalen Optimierungsverfahren, das eine effiziente Vorschrift für eine realistis-
che und näherungsweise Erzeugung eines beliebigen verschränkten Zustands vieler Qbits
beinhaltet. Wir führen paradigmatische Beispiele an, die von Interesse für experimentelle
oder theoretische Entwicklungen sein können.

Das dritte Projekt behandelt die sequentielle Erzeugung von Operationen. Es ist
bekannt, dass die Erzeugung einer beliebigen globalen unitären Operation mit prinzipiellen
Schwierigkeiten verbunden ist. Vor diesem Hintergrund wäre es wünschenswert, ein Pro-
tokoll zu entwickeln, das die gewünschte unitäre Operation im Rahmen einer sequenziellen
Prozedur darstellt, bei der ein Hilfssystem lokal und jeweils nur einmal mit jedem Qbit
einer Reihe wechselwirkt. Der Hauptaspekt hierbei ist die Frage, ob es möglich ist, eine
solche sequenziell generierte Operation zu entwickeln. Wir geben Optimierungsprotokolle
an, die eine optimale Realisierung einer sequenziellen Version der erwünschten globalen
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unitären Operation mit optimaler Fidelity erlaubt.
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