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Zusammenfassung

Seit ihrer Einführung durch Artzner et al. [3], Föllmer und Schied [20] sowie Frittelli
und Rosazza-Gianin [22] sind kohärente bzw. konvexe Risikomaße ein wichtiges Mittel
zur konsistenten Risikobewertung. Beispiele sind das entropische Riskomaß oder der
Average Value at Risk, welche sich breiter Anwendung in der Versicherungswirtschaft
erfreuen. Die in den Anwendungen vorherrschende Klasse konvexer Risikomaße hat die
Eigenschaft verteilungsinvariant zu sein, d.h. Positionen mit derselben Verteilung wird
dasselbe Risiko zugesprochen. Die vorliegende Arbeit widmet sich insbesondere dem
Studium verteilungsinvarianter konvexer Risikomaße.

Üblicherweise werden konvexe Risikomaße auf dem Raum L∞ := L∞(Ω,F , P) über
einem gegebenen Wahrscheinlichkeitsraum (Ω,F , P) definiert. Ein Vorteil dieses Mo-
dellraums ist, daß die einem konvexen Risikomaß zugrunde liegende Axiomatik auf L∞

automatisch Lipschitzstetigkeit impliziert. Ein weiteres häufig angeführtes Argument
für die Wahl des Modellraums L∞ ist die Invarianz dieses Raumes unter äquivalenter
Maßtransformation, so daß das grundlegende Modell (Ω,F , P) nur bis auf Äquivalenz
bestimmt werden muß. Beim Studium von verteilungsinvarianten konvexen Risikomaßen
greift dieses Argument aber nicht, denn Verteilungsinvarianz setzt die Festlegung eines
verteilungsbestimmenden Referenzmaßes P voraus. Vielmehr ist der Modellraum L∞ für
etliche praktische Anwendungen, in denen sehr häufig mit unbeschränkten Verteilungen,
beispielsweise mit Normalverteilten, modelliert wird, zu klein. Es stellt sich also die
Frage, ob es möglich ist, den Modellraum zu erweitern, ob dabei zusätzliche Anforder-
ungen an Risikomaße gestellt werden müssen und ob dadurch die auf L∞ zur Verfügung
stehende Vielfalt an Risikomaßen stark eingeschränkt wird. Auffällig ist, daß sämtliche
hinlänglich bekannten Beispiele verteilungsinvarianter konvexer Risikomaße auch auf Lp

für p ≥ 1 wohldefiniert sind, wenn man den Funktionswert ∞ zuläßt. In der vorliegenden
Arbeit wird gezeigt, daß dies kein Zufall ist, sondern daß die verteilungsinvarianten
unterhalbstetigen konvexen Funktionen auf L∞ genau denjenigen auf Lp entsprechen.
Damit ist gezeigt

Aufbauend auf diesem Resultat werden im weiteren Verlauf optimale Risikotransfers
studiert. Die Problemstellung ist wie folgt. Gegeben sind n Agenten mit Risiken Xi ∈
Lp, i = 1, . . . , n. Jeder Agent bewertet sein Risiko mittels eines verteilungsinvarianten
unterhalbstetigen konvexen Risikomaßes ρi auf Lp. Das aggregierte Risiko ist X :=
X1+. . .+Xn. Eine Allokation von X ist eine Neuverteilung des aggregierten Risikos, d.h.
jeder Agent nimmt ein neues Risiko Yi ∈ Lp unter der Bedingung, daß Y1 + . . .+Yn = X.
Der Risikowert einer solchen Allokation ist ρ1(Y1)+. . .+ρn(Yn). Eine optimale Allokation
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von X ist eine Allokation von X, welche den Risikowert unter allen Allokationen von
X minimiert. Eine solche optimale Allokation ist insbesondere optimal im Sinne von
Pareto. Die Frage der Existenz und gegebenenfalls der Charakterisierung von optimalen
Allokationen ist Bestandteil des Kapitels 3. Es wird gezeigt, daß unter den genannten
Voraussetzungen optimale Allokationen immer existieren und diese sogar komonoton
gewählt werden können, also insbesondere als Verträge basierend auf dem aggregierten
Risiko X.

Abschließend beschäftigt sich die vorliegende Arbeit mit Subgradienten von verteil-
ungsinvarianten konvexen Risikomaßen auf L1. Subgradienten und die durch sie gegebe-
nen Preisregeln spielen unter anderem in der Equilibriumtheorie eine bedeutende Rolle.
Im Kapitel 4 wird ein verallgemeinerter Subgradientenbegriff eingeführt und der Zusam-
menhang mit optimalen Allokationen und Equilibria erläutert. Die zentrale Aufgabe
dieses Abschnitts ist eine Charakterisierung der Punkte, an denen nicht-leere verallge-
meinerte Subgradienten existieren.
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Abstract

This work addresses three main issues: Firstly, we study the interplay of risk measures
on L∞ and Lp, for p ≥ 1. Our main result is a one-to-one correspondence between
law-invariant closed convex risk measures on L∞ and L1. This proves that the canonical
model space for the predominant class of law-invariant convex risk measures is L1.

Secondly, we provide the solution to the existence and characterisation problem of
optimal capital and risk allocations for law-invariant closed convex risk measures on the
model space Lp, for any p ∈ [1,∞]. Our main result says that the capital and risk
allocation problem always admits a solution via contracts whose payoffs are defined as
increasing Lipschitz continuous functions of the aggregate risk. This result holds without
requiring the monotonicity of the risk measures involved.

Finally, we study subgradients of law-invariant convex risk measures on L1. Here
we introduce the notion of a generalised subgradient and point out its connection with
optimal risk sharing and equilibria. Our main result is a simple condition guaranteeing
the existence of a non-empty generalised subgradient.
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Introduction

This work is based on three papers [17, 18, 19] by the author and D. Filipović. We study
law-invariant convex measures of risk which is the predominant class of risk measures in
use. Three major problems are addressed:

• the extension of the model space (chapter 2),

• existence and characterisation of optimal risk sharings amongst n agents (chap-
ter 3),

• subgradients of law-invariant convex risk measures (chapter 4).

In the following we give a short outline and describe our contributions to solving these
problems.

Artzner et al. [3] introduced the seminal axioms of a coherent risk measure, which then
were further generalised to the convex case by Föllmer and Schied [20] and Frittelli and
Rosazza-Gianin [22]. Convex risk measures are usually defined on L∞ := L∞(Ω,F , P)
for some probability space (Ω,F , P). But there is a growing mathematical finance lit-
erature dealing with convex risk measures beyond L∞, see e.g. [6, 9, 13, 25, 26, 35].
This extended approach is vital since important risk models, such as normal distributed
random variables, are not contained in L∞. However, the interplay between convex
risk measures on L∞ and some extended model space, say Lp for p ≥ 1, has not been
addressed yet. In particular, the question arises wether there is a somehow canonical
way to extend risk measures from L∞ to Lp. Fortunately there is, at least for the pre-
dominant class of law-invariant convex risk measures. This is the topic of chapter 2 in
which we more generally study extensions of closed convex functions from L∞ to Lp.
The main result is that every law-invariant closed convex function, so in particular every
law-invariant convex risk measure, on L∞ is well-defined on L1 too. In other words,
there is a one-to-one correspondence between law-invariant closed convex functions on
L∞ and L1.

Another important issue is the existence of optimal allocations. The setting is as
follows. A number of n agents determine their preferences by means of closed convex risk
measures ρi. Each agent has an initial endowment (risk) Xi. The aggregate endowment
is X := X1+. . .+Xn. The agents may rearrange their portfolios by mutually exchanging
risk under the restriction that the aggregate endowment is left unchanged, that is each
agent may take a new position Yi such that Y1 + . . . + Yn = X. The (re-)distribution
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Introduction

(Y1, . . . , Yn) is called an allocation of X. The optimal allocation problem is to find an
allocation (Ỹ1, . . . , Ỹn) which minimises

ρ1(Y1) + . . . + ρn(Yn) (0.1)

over all allocations (Y1, . . . , Yn). By cash-invariance an optimal allocation (Ỹ1, . . . , Ỹn)
does not only minimise the group risk (0.1), but by rebalancing the cash we may assume
that ρ(Ỹi) ≤ ρ(Xi) too. Thus, we obtain a reduction of group and individual risk. In
particular optimal allocations are optimal in Pareto’s sense. The optimal allocation
problem has been studied by several authors, see e.g. [5, 23, 16, 7, 1, 29]. We devote
chapter 3 to it. Here it is proved that if our model space is Lp and if the convex risk
measures ρi are in addition law-invariant, then there always exists an optimal allocation
which is given by contracts whose payoffs are defined as increasing Lipschitz-continuous
functions of the aggregate endowment X. Moreover, we do not require monotonicity of
the risk measures involved. Similar results have been derived in [23], but only for the
model space L∞ and monotone risk measures.

In chapter 4 we investigate subgradients of law-invariant convex risk measures on L1.
Subgradients of convex risk measures play an important role amongst others in equilib-
rium theory. In particular, we are interested in subgradients corresponding to probability
measures. We introduce a generalised subgradient, give conditions under which this gen-
eralised subgradient is non-empty, and point out its relationship to optimal allocations
and equilibria. As a byproduct we also illumine the connection of law-invariant convex
risk measures with Orlicz spaces and Orlicz hearts. The existence of a link between
law-invariant convex risk measures and Orlicz space theory has been observed on the
level of examples by several authors, e.g. [9]. However, we prove a systematic connec-
tion between law-invariant convex risk measures and certain subspaces of L1 which are
generalised versions of Orlicz spaces.
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1. Preliminary Results, Notational
Conventions, and Basic Assumptions

In this chapter we collect some basic results and notational conventions which will be
used throughtout this text without further explanation. Section 1.1 recalls facts and
notation from the field of convex analysis. Here our notation conforms to the usual
notation as e.g. applied in [14] or [31]. Every reader being familiar with convex analysis
may skip section 1.1. However, in section 1.2 we collect assumptions and notational
conventions, some of which are peculiar to this work - a closer look into this section is
recommended.

1.1. Some Facts and Notation from Convex Analysis

For the convenience of the reader we collect here some standard definitions and results in
convex analysis which will be frequently used throughout this text. For more background
we refer to Rockafellar [31] and Ekeland and Témam [14].

Let E denote a Hausdorff locally convex topological vector space with topological dual
E∗. A function f : E → [−∞,+∞] is convex if

f(λX + (1− λ)Y ) ≤ λf(X) + (1− λ)f(Y ) ∀X, Y ∈ E, ∀λ ∈ [0, 1],

whenever the right-hand side is defined. We write dom f = {f < ∞} for the (effective)
domain of f . We call f proper if f > −∞ and dom f 6= ∅.

f is said to be lower semi-continuous (l.s.c.) if the level sets {X ∈ E | f(X) ≤ k}
are closed for all k ∈ R, or equivalently, if for any net (Xα)α∈D ⊂ E converging to
some X ∈ E we have that f(X) ≤ lim infα f(Xα). This property is also equivalent to
epi f = {(X, a) ∈ E × R | f(X) ≤ a} being a closed set in E × R equipped with the
product topology (see e.g. [14] proposition 2.3).

A convex set C ⊂ E is closed if and only if it is σ(E,E∗)-closed. As a consequence, a
convex function f is l.s.c. if and only if f is l.s.c. with respect to σ(E,E∗).

The closure of f is denoted by cl (f) and defined as cl (f) ≡ −∞, if f(X) = −∞ for
some X, and as greatest convex l.s.c. function majorised by f , else. Hence,

cl(f) = f (1.1)

if and only if either f ≡ ±∞ or f is proper l.s.c. and convex. Any function satisfying
(1.1) is closed.
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1. Preliminary Results, Notational Conventions, and Basic Assumptions

The dual (or conjugate function) of a function f : E → [−∞,+∞],

f∗ : E∗ → [−∞,∞], f∗(µ) = sup
X∈E

(〈µ,X〉 − f(X)),

is a closed convex function on E∗, whereas its bidual (or biconjugate function)

f∗∗ : E → [−∞,∞], f∗∗(X) = sup
µ∈E∗

(〈µ,X〉 − f∗(µ)),

is a closed convex function on E. Moreover, (cl (f))∗ = f∗, and the following convex
duality relation holds (proposition 4.1 in [14])

f∗∗ = cl (f). (1.2)

The set of subgradients of f at X is

∂f(X) := {µ ∈ E∗ | ∀Y ∈ E : f(Y ) ≥ f(X) + 〈µ, Y −X〉}.

Clearly, we may have that ∂f(X) = ∅. If ∂f(X) 6= ∅, then f is said to be subdifferentiable
at X. Moreover, we have (proposition 5.1 in [14])

µ ∈ ∂f(X) ⇔ f(X) + f∗(µ) = 〈µ,X〉. (1.3)

The indicator function of a set C ⊂ E is defined as

δ(X | C) :=

{
0, X ∈ C
+∞, X /∈ C.

δ(· | C) is closed convex if and only if C is convex and closed. Its conjugate is the support
function of C,

δ∗(µ | C) = sup
X∈C

〈µ,X〉.

Notice that E and E∗ can be interchanged in the definition of δ and δ∗.

1.2. Assumptions on the Underlying Probability Space and
More Notational Conventions

Throughout this text, we fix a non-atomic standard probability space (Ω,F , P) (see
section A.3). All equalities and inequalities between random variables are understood
in the P-almost sure (a.s.) sense. We write Lp = Lp(Ω,F , P) for any p ∈ [0,∞] and
‖ · ‖p = ‖ · ‖Lp for any p ∈ [1,∞]. The topological dual space of Lp for p ∈ [1,∞] is
denoted by Lp∗. It is well-known that Lp∗ = Lq with q = p

p−1 for 1 ≤ p < ∞, and that
L∞∗ ⊃ L1 can be identified with ba, the space of all bounded finitely additive measures
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1. Preliminary Results, Notational Conventions, and Basic Assumptions

µ on (Ω,F) such that P(A) = 0 implies µ(A) = 0. The positive order cone is denoted by
Lp

+ and its polar cone by Lp∗
− . With some facilitating abuse of notation, we shall write

(X, Z) 7→ E[XZ] for the dual pairing on (Lp, Lp∗) also for the case p = ∞. For any
X, Y ∈ L0, by X ∼ Y we indicate that X and Y are identically distributed. A function
f : L0 ⊃ V → [−∞,∞] is said to be law-invariant if X, Y ∈ V and X ∼ Y implies
f(X) = f(Y ).
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2. Convex Risk Measures Beyond Bounded
Risks

In this chapter we study convex risk measures on Lp-spaces, and in particular the in-
terplay between closed convex risk measures on L∞ and Lp. We show that every law-
invariant convex risk measure on L∞ can be extended to a law-invariant closed convex
risk measure on L1 (theorem 2.11). Since many of our arguments hold more generally,
in section 2.2 we will study the extension of convex functions from L∞ to Lp, and then
apply our results to convex risk measures. However, first of all, in section 2.1 we define
a convex risk measure on Lp and state some important properties of these functions.

2.1. Convex Risk Measures on Lp

Let p ∈ [1,∞].

Definition 2.1. A convex function ρ : Lp → (−∞,∞] is called convex risk measure if
it is

(i) cash-invariant: ρ(0) ∈ R and ρ(X + m) = ρ(X)−m for all m ∈ R,

(ii) monotone: if X ≥ Y , then ρ(X) ≤ ρ(Y ).

We denote by Aρ := {X | ρ(X) ≤ 0} the acceptance set of ρ.
A positively homogeneous (ρ(tX) = tρ(X) for all t > 0) convex risk measure ρ is

called coherent.

Remark 2.2. Due to monotonicity and cash-invariance, every convex risk measure ρ
on L∞ is real-valued (dom ρ = L∞), and 1-Lipschitz-continuous ([21] lemma 4.3). In
general however, for p ∈ [1,∞), convex risk measures need not be continuous or even
closed. Consider e.g.

ρ : Lp → (−∞,∞] , ρ(X) = −E[X] + δ(X− | L∞) .

This law-invariant coherent risk measure assigns to an endowment X the value ∞ in
case the possible losses are unbounded, and E[−X] else. Clearly, the acceptance set Aρ

is not closed, so ρ is not closed. ♦
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2. Convex Risk Measures Beyond Bounded Risks

The next theorem summarises some fundamental properties of convex risk measures
on Lp. To this end, note that we write U

p for the closure of a set U in Lp.

Theorem 2.3. Let ρ be a convex risk measure on Lp.

(i) int dom ρ 6= ∅ if and only if ρ is real-valued and continuous on Lp.

(ii) Aρ is convex with Aρ + Lp
+ ⊂ Aρ, R ∩ Aρ 6= ∅, and Aρ

p 6= Lp.

(iii) For any A ⊂ Lp satisfying properties (ii) instead of Aρ,

ρA(X) := inf{m ∈ R | X + m ∈ A}

defines a convex risk measure on Lp. Moreover, if A is closed, then AρA = A and
ρA is closed.

(iv) dom ρ∗ ⊂ Pp∗ := {Z ∈ Lp∗
− | E[1Z] = −1} and for all Z ∈ Pp∗ we have

ρ∗(Z) = sup
X∈Aρ

E[ZX] .

Proof. (i): clearly, if ρ is real-valued and continuous, then e.g. 0 ∈ int dom ρ. In order to
prove the converse implication note that according to [35] proposition 3.1 ρ is continuous
on int dom ρ. Hence, it suffices to prove that int dom ρ = dom ρ = Lp. We show this
by means of contradiction. Suppose for the moment that there is a X̃ ∈ Lp such that
ρ(X̃) = ∞. Since the interior of the convex set dom ρ is non-empty by assumption and
X̃ 6∈ dom ρ, an appropriate version of the Hahn-Banach separating hyperplane theorem
ensures the existence of a nontrivial Z ∈ Lp∗ such that

sup
Y ∈dom ρ

E[ZY ] ≤ E[ZX̃] .

Since L∞ ⊂ dom ρ we obtain

tE[ZX] ≤ E[ZX̃] for all X ∈ L∞ and t ∈ R,

and thus E[XZ] = 0 for all X ∈ L∞. As L∞ is dense in Lp, we infer that Z must be
trivial. But this is a contradiction. Therefore, dom ρ = Lp.
(ii): convexity, ∀X ∈ Aρ : X + Lp

+ ⊂ Aρ, and R ∩ Aρ 6= ∅ are obvious by definition of
ρ. Suppose we had Aρ

p = Lp. Then for every n ∈ N there is a Xn ∈ Aρ such that

‖Xn − (−n)‖p = ‖Xn + n‖p ≤
1
2n

.
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2. Convex Risk Measures Beyond Bounded Risks

By monotonicity we may assume that Xn +n ≥ 0. Then, the sequence Yn :=
∑n

k=1 Xk +
k, n ∈ N, converges to

Y :=

( ∞∑
k=1

Xk + k

)
∈ Lp , ‖Y ‖p ≤ 1,

and Y ≥ Yn ≥ Xn + n for all n ∈ N. Thus, by monotonicity, cash-invariance, and
Xn ∈ Aρ we infer

ρ(Y ) ≤ ρ(Xn + n) ≤ ρ(Xn)− n ≤ −n for all n ∈ N.

Consequently ρ(Y ) = −∞. But this is a contradiction to the properness of ρ (defini-
tion 2.1). Hence, Aρ

p $ Lp.
(iii): it is easily verified that ρA is a convex, cash-invariant, and monotone function
such that ρA(0) < ∞. In order to prove that ρA is proper, it suffices to show that ρAp

is proper because ρAp ≤ ρA. Observe that Ap satisfies properties (ii) because A does.
Hence, ρAp is convex, cash-invariant, and monotone too, and ρAp(0) < ∞. If we had
ρAp(0) = −∞, then it follows that R ⊂ Ap, and thus L∞ ⊂ Ap, so actually Ap = Lp

which is a contradiction to the assumption Ap 6= Lp. Consequently, ρAp(0) > −∞. It
is easily verified that Ap = AρAp , so ρAp is l.s.c. Since any l.s.c. convex function which
assumes the value −∞ cannot take any finite value (see [14] proposition 2.4.), and since
ρAp(0) ∈ R, we conclude that ρAp > −∞, i.e. ρAp is proper and thus closed.
(iv): for a proof of dom ρ∗ ⊂ Pp∗, please consult [15] lemma 3.2. The stated represen-
tation of ρ∗(Z) for any Z ∈ Pp∗ follows from E[1Z] = −1, thence E[ZX] − ρ(X) =
E[Z(X + ρ(X))], and cash-invariance of ρ.

Part (i) of theorem 2.3 yields a remarkable dichotomy for convex risk measures ρ on
Lp: either ρ is continuous on Lp or int dom ρ = ∅.

2.2. Lp-closures

In this section we study under which conditions a proper closed convex function defined
on L∞ may be extended to some Lp for p ∈ [1,∞), thereby preserving convexity and
achieving closedness on (Lp, ‖ · ‖p). The derived results are in particular valid for convex
risk measures on L∞.

We fix p ∈ [1,∞] and some function f : L∞ → [−∞,∞]. Its conjugate

f∗(Z) = sup
X∈L∞

(E[ZX]− f(X))

is a closed convex function on L∞∗, and hence on Lp∗. The following is thus well defined.

8



2. Convex Risk Measures Beyond Bounded Risks

Definition 2.4. The Lp-closure of f is defined as

f
p(X) := sup

Z∈Lp∗
(E[ZX]− f∗(Z)), X ∈ Lp. (2.1)

Note that f is trivially extended to a function f̃ on Lp by letting f̃ = f on L∞

and f̃ = ∞ else. Then, it is easily verified that (f̃)∗ = f∗ on Lp∗. In other words,
f

p is the well-known convex closure (or l.s.c. convex regularisation) of f̃ (see e.g. [14]
section 3.2 or [32] section 3). We chose the notation f

p in order to put emphasis on
the dependence on p, because in general f

p will differ with varying p (example 2.28).
However, in theorem 2.11 we show that in case of law-invariance the Lp-closure of f is
independent of p.

Next we recall some properties of f
p (compare to [14] section 3.2 or [32] section 3).

Lemma 2.5. (i) f
p is the greatest closed convex function on Lp majorised by f on

L∞.

(ii) (fp)∗ = f∗|Lp∗.

(iii) f
p is proper if and only if f is proper and dom f∗ ∩ Lp∗ 6= ∅.

(iv) If either f is real-valued or f
p is proper then epi fp = co epi fp, where the right

hand side denotes the Lp × R-closure of the convex hull of epi f .

Proof. By construction, f
p is a closed convex function on Lp with

f
p ≤ f on L∞. (2.2)

Now let g be any closed convex function on Lp with g ≤ f on L∞. Then, for all Z ∈ Lp∗,

g∗(Z) = sup
X∈Lp

E[XZ]− g(X) ≥ sup
X∈L∞

E[XZ]− f(X) = f∗(Z). (2.3)

Hence,
g(X) = g∗∗(X) ≤ sup

Z∈Lp∗
E[XZ]− f∗(Z) = f

p(X),

and (i) is proved.
Now let Z ∈ Lp∗. By definition we obtain

(fp)∗(Z) = sup
X∈Lp

(E[XZ]− sup
Y ∈Lp∗

(E[XY ]− f∗(Y ))) ≤ f∗(Z).

On the other hand, from (2.3) we infer (fp)∗(Z) ≥ f∗(Z). This proves (ii).
Property (iii) is obvious.

9
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As for (iv), inequality (2.2) implies epi f ⊂ epi fp on L∞ × R. By convexity and
closedness of epi fp we thus have co epi fp ⊂ epi fp. To show the converse inclusion, we
note that

g(X) = inf{a | (X, a) ∈ co epi fp}
defines a l.s.c. convex function on Lp (epi g = co epi fp) with f ≥ g on L∞ and g ≥ f

p.
If either f is real-valued or f

p is proper, then g is closed. In view of the first part of the
lemma, we conclude that g = f

p and thus co epi fp = epi fp.

Remark 2.6. Lemma 2.5(iv) does not hold without requiring that f be real-valued or
f

p be proper. Indeed, example 2.29 below shows that co epi fp $ epi fp is possible for a
positively homogeneous monotone closed convex function f . ♦

Lemma 2.5(iv) is of conceptual interest, because a natural approach to extending a
convex risk measure ρ from L∞ to Lp is simply to close the acceptance set Aρ in Lp, i.e.
to study the risk measure given by Aρ

p. Hence, the following corollary:

Corollary 2.7. Let ρ be a convex risk measure on L∞. Then ρp is a closed convex risk
measure on Lp if and only if Aρ

p 6= Lp. In either case, ρp = ρAρ
p and Aρp = Aρ

p.

Proof. Since any convex risk measure ρ on L∞ is real-valued, lemma 2.5(iv) implies

epi ρp = epi ρp, (2.4)

Aρ
p = {X ∈ Lp | (X, 0) ∈ epi ρp} = {X ∈ Lp | (X, 0) ∈ epi ρp} = Aρp . (2.5)

Hence, if ρp is a closed convex risk measure on Lp, then Aρ
p must have the properties

stated in theorem 2.3(ii), in particular Aρ
p 6= Lp.

Conversely, suppose that Aρ
p 6= Lp. We claim that Aρ

p satisfies the conditions of
theorem 2.3(ii). Convexity and Aρ

p ∩ R 6= ∅ are obvious, and we have Aρ
p 6= Lp by

assumption. In order to verify the yet missing condition Aρ
p + Lp

+ ⊂ Aρ
p, let X ∈ Aρ

p

and Y ∈ Lp
+. Choose (Xn)n∈N ⊂ Aρ converging to X. As Y ∧ n ∈ L∞+ for all n ∈ N,

we have Yn := Y ∧ n + Xn ∈ Aρ for all n ∈ N. Since Yn converges to X + Y w.r.t. the
‖·‖p-norm, we conclude that (X+Y ) ∈ Aρ

p. Consequently, according to theorem 2.3(ii),
ρAρ

p is a closed convex risk measure on Lp. As epi ρAρ
p = epi ρp, we infer from (2.4) and

(2.5) that ρp = ρAρ
p and Aρp = Aρ

p.

Definition 2.8. A function g : Lp → (−∞,∞] is called an extension of f to Lp if g = f
on L∞.

In the following we elaborate on the existence and uniqueness of closed convex exten-
sions. Let us first discuss uniqueness. For illustration, consider a closed convex function
g on Lp. Obviously, g|L∞

p
is a closed convex extension of g|L∞ to Lp. That is, g = g|L∞

p

on L∞. However, in general we only have g ≤ g|L∞
p

on Lp, and this inequality may be
strict, as is illustrated by example 2.25. Hence, uniqueness does not hold in general. In
fact, an immediate consequence of lemma 2.5(ii) is the following:

10
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Corollary 2.9. Let g be a closed convex function on Lp. Then g = g|L∞
p

if and only if
g∗ = (g|L∞)∗ on Lp∗.

As for existence of an extension, examples 2.26–2.28 below show convex risk measures
on L∞ which admit no closed convex extension to Lp. We now give necessary and suffi-
cient conditions for the existence of closed convex extensions and illustrate the particular
role of the Lp-closure.

Lemma 2.10. The following properties are equivalent:

(i) There exists a closed convex extension of f to Lp.

(ii) f
p is an extension of f to Lp.

(iii) f is convex and σ(L∞, Lp∗)-closed.

In either case, f
p is the greatest closed convex extension of f to Lp.

Proof. (i) ⇔ (ii): let g be a closed convex extension of f to Lp. Lemma 2.5(i) implies
g ≤ f

p and f = g ≤ f
p ≤ f on L∞. This proves (ii) and also the last statement of the

theorem. The converse implication is trivial.
(ii) ⇒ (iii): this is obvious since f

p|L∞ is convex and σ(L∞, Lp∗)-l.s.c.
(iii) ⇒ (ii): for all X ∈ L∞, the Fenchel–Moreau theorem yields

f(X) = sup
Z∈Lp∗

(E[XZ]− f∗(Z)) = f
p(X).

If we restrict to law-invariant closed convex functions, then existence and uniqueness
of closed convex extensions always holds. This is the message of the following theorem,
the proof of which requires some closer studies of law-invariant convex functions and is
given in section 2.3 below.

Theorem 2.11. For any law-invariant closed convex function f : L∞ → [−∞,∞] and
p ∈ [1,∞), the Lp-closure f

p is the unique law-invariant closed convex extension of f to
Lp. Moreover, f

p = f
1|Lp, and f is σ(L∞, L∞)-closed.

It is easily verified that the Lp-closure preserves monotonicity and cash-invariance.
Hence, according to theorem 2.11, there exists a one-to-one correspondence between
law-invariant closed convex risk measures on L∞ and L1. In this sense, we may conclude
that the canonical model space for law-invariant convex risk measures is L1.

11
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2.3. Law-Invariant Convex Functions on Lp

In the following we collect and prove results on law-invariant convex functions which
will play a fundamental role in the proof of theorem 2.11 which is stated at the end of
this section. Throughout this section we let p ∈ [1,∞].

One of the main ingredients to proving theorem 2.11 is lemma 2.13 below. In fact,
this lemma is an extension of results by Jouini, Schachermayer, and Touzi in [24].

Let G ⊂ F be a sub-σ-algebra. As in [24] we define the conditional expectation on
L∞∗ as a function E[· | G] : L∞∗ → L∞∗ where E[µ | G] is given by

E[E[µ | G]X] := E[µE[X | G]] ∀X ∈ L∞ .

Clearly, this definition is consistent with the ordinary conditional expectation in case
µ ∈ L1 ⊂ L∞∗.

Remark 2.12. If G = σ(A1, . . . , An) is finite, then E[µ | G] ∈ L∞. In order to verify
this, note that for all X ∈ L∞ we have

E[E[µ | G]X] = E[µE[X | G]] =
n∑

i=1

E[X1Ai ]
µ(Ai)
P(Ai)

.

Hence, E[µ | G] =
∑n

i=1
µ(Ai)
P(Ai)

1Ai ∈ L∞. ♦

Note that (L∞, Lr) is a dual pair for every r ∈ [1,∞].

Lemma 2.13. (i) Let D ⊂ L∞ be a ‖.‖∞-closed convex law-invariant set. Then D is
σ(L∞, Lr)-closed for every r ∈ [1,∞].

(ii) A law-invariant convex function f : L∞ → [−∞,∞] is closed if and only if it
closed w.r.t. any σ(L∞, Lr)-topology for every r ∈ [1,∞].

Proof. (i): if D = ∅, the assertion is obvious. For the remainder of this proof, we assume
thus that D 6= ∅.

According to lemma 4.2 in [24], for all Y ∈ D and all sub-σ-algebras G ⊂ F we have

E[Y | G] ∈ D. (2.6)

Now let (Xi)i∈I be a net in D converging to some X ∈ L∞ in the σ(L∞, Lr)-topological
sense, i.e. E[ZXi] → E[ZX] for all Z ∈ Lr. Then, in view of remark 2.12, if G is
finite, we have E[E[µ | G]Xi] → E[E[µ | G]X] for all µ ∈ L∞∗. But by definition
this equals E[µE[Xi | G]] → E[µE[X | G]] for all µ ∈ L∞∗. In other words, the net
(E[Xi | G])i∈I converges to E[X | G] in the σ(L∞, L∞∗)-topology. Since, according
to (2.6), E[Xi | G] ∈ D for all i ∈ I, we conclude that E[X | G] ∈ D, because D is

12
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closed and convex and thus σ(L∞, L∞∗)-closed. Hence, E[X | G] ∈ D for all finite sub-
σ-algebras G ⊂ F . Recalling that we can approximate X in (L∞, ‖ · ‖∞) by a sequence
of conditional expectations (E[X | Gn])n∈N in which the Gns are all finite, we conclude
by means of the norm-closedness of D that X ∈ D. Thus D is σ(L∞, Lr)-closed, and (i)
is proved.

(ii): suppose f is closed. Then, for every k ∈ R the level sets {X ∈ L∞ | f(X) ≤ k}
are ‖.‖∞-closed, convex, and law-invariant. Hence, (i) yields the σ(L∞, Lr)-closedness
of the level sets, i.e. f is closed with respect to the σ(L∞, Lr)-topology. The converse
implication is trivial.

Recall that the (left continuous) quantile function of a random variable X is

qX : (0, 1) → R , qX(s) = inf{x ∈ R | P(X ≤ x) ≥ s} . (2.7)

Lemma 2.14. Let q := p
p−1 where 1

0 := ∞ and ∞
∞−1 := 1. If f : Lp → [−∞,∞] is a

closed convex function, then the following conditions are equivalent:

(i) f is law-invariant.

(ii) f is σ(Lp, Lq)-closed and f∗ (resp. f∗|L1 if p = ∞) is law-invariant.

Moreover, if either holds, then:

f∗(Z) = sup
X∈Lp

∫ 1

0
qX(s)qZ(s) ds− f(X) , Z ∈ Lq ,

and

f(X) = sup
Z∈Lq

∫ 1

0
qX(s)qZ(s) ds− f∗(Z) , X ∈ Lp .

Proof. (i) ⇒ (ii): the first statement is trivial if p ∈ [1,∞) and proved in lemma 2.13 if
p = ∞. Moreover, for any Z ∈ Lq we gather from lemma A.2 that

f∗(Z) = sup
X∈Lp

E[XZ]− f(X) = sup
X∈Lp

(
sup

X̂∼X

E[X̂Z]

)
− f(X)

= sup
X∈Lp

∫ 1

0
qX(s)qZ(s) ds− f(X)

in which the latter expression depends on the law of Z only.
(ii) ⇒ (i): again by lemma A.2

f(X) = f∗∗(X) = sup
Z∈Lq

(
sup
Ẑ∼Z

E[XZ]

)
− f∗(Z)

= sup
Z∈Lq

∫ 1

0
qX(s)qZ(s) ds− f∗(Z)

for all X ∈ Lp. Hence, f is law-invariant.

13
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Next we introduce two orders on L1 which are well-known from utility theory. To this
end, recall that a utility function is a strictly concave and strictly increasing function
u : R → R.

Definition 2.15. For any two X, Y ∈ L1 we define

(i) the concave order:

X �c Y ⇔ E[u(X)] ≥ E[u(Y )] for all concave functions u : R → R,

(ii) the second order stochastic dominance:

X � Y ⇔ E[u(X)] ≥ E[u(Y )] for all utility functions u.

A function f : Lp → [−∞,∞] is said to be �c(�)-monotone if f(X) ≤ f(Y ) whenever
X �c Y (X � Y ).

We will need the following two facts: for X, Y ∈ L1 we have

X � Y ⇔
∫ t

0
qX(s) ds ≥

∫ t

0
qY (s) ds for all 0 < t ≤ 1, (2.8)

and
X �c Y ⇔ X � Y and E[X] = E[Y ] . (2.9)

For a proof of (2.8) and (2.9), we refer to theorem 2.58 and corollary 2.62 in [21]. The
following lemmas 2.16 and 2.17 are essentially proved in [11]. However, for the sake of
completeness, we give proofs here too.

Lemma 2.16. For X, Y ∈ L1:

(i) X � Y if and only if ∫ 1

0
qX(s)f(s) ds ≤

∫ 1

0
qY (s)f(s) ds

for all increasing f : (0, 1) → (−∞, 0] such that both integrals exist.

(ii) X �c Y if and only if ∫ 1

0
qX(s)f(s) ds ≤

∫ 1

0
qY (s)f(s) ds

for all increasing f : (0, 1) → R such that both integrals exist.

14
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Proof. (i): ” ⇐ ”: note that the functions −1(0,t)(·) are increasing for all 0 < t ≤ 1.
Now apply (2.8).
” ⇒ ”: let X � Y .
1. In a first step we assume that f is a simple function, i.e.

f(s) =
n−1∑
i=1

ai1(ti−1,ti](s) + an1(tn−1,tn)(s)

where t0 = 0 < t1 < . . . < tn = 1 is a finite partition of (0, 1), and ai ∈ R such that
a1 ≤ a2 ≤ . . . ≤ an ≤ 0. Applying (2.8) we have

an

∫ 1

0
qX(s) ds ≤ an

∫ 1

0
qY (s) ds ,

and for j = 1, . . . , n− 1:

(aj − aj+1)
∫ tj

0
qX(s) ds ≤ (aj − aj+1)

∫ tj

0
qY (s) ds .

Summing up these inequalities we arrive at
n∑

j=1

aj

∫ tj

tj−1

qX(s) ds ≤
n∑

j=1

aj

∫ tj

tj−1

qY (s) ds

and thus the desired ∫ 1

0
qX(s)f(s) ds ≤

∫ 1

0
qY (s)f(s) ds .

2. Now for general f , we approximate f by simple functions

fk(s) :=

{
− i−1

2k if f(s) ∈ (− i
2k ,− i−1

2k ] for a i = 1, . . . , k2k

−k else
, k ∈ N .

The functions fk converge to f pointwise, and |fk| ≤ |f | for all k ∈ N. Hence, the
dominated convergence theorem in conjunction with 1. yields∫ 1

0
qY (s)f(s) ds = lim

k→∞

∫ 1

0
qY (s)fk(s) ds ≥ lim

k→∞

∫ 1

0
qX(s)fk(s) ds

=
∫ 1

0
qX(s)f(s) ds .

(ii): ” ⇒ ”: let X �c Y . By (2.9) we know that X � Y and
∫ 1
0 qX(s) ds =

∫ 1
0 qY (s) ds.

Hence, by (i), adding up inequalities, we deduce that∫ 1

0
qX(s)f(s) ds ≤

∫ 1

0
qY (s)f(s) ds

15
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for all increasing f : (0, 1) → R which are bounded from above. Finally, the usual
monotone approximation argument from integration theory yields the assertion for any
increasing f : (0, 1) → R.
”⇐”: again, simply apply (2.9) and (i).

The subsequent lemma does not only play an important role in the proof of theo-
rem 2.11, but it is also essential to the proof of theorem 3.4, which is the main result in
chapter 3. Note that both X ≥ Y and X �c Y imply X � Y . However, ≥ and �c are
not related in general.

Lemma 2.17. Let f : Lp → [−∞,∞] be a closed convex function. Equivalent are:

(i) f is law-invariant.

(ii) f is �c-monotone.

Moreover, if in addition f is monotone, then (i) and (ii) are equivalent to

(iii) f is �-monotone.

In particular, if either of the conditions (i), (ii) or (iii) holds, then

(iv) f(E[X | G]) ≤ f(X) for all X ∈ Lp and all sub-σ-algebras G ⊂ F .

Proof. Let q := p
p−1 where 1

0 := ∞ and ∞
∞−1 := 1.

(i) ⇒ (ii): let X �c Y . Then by lemmas 2.14 and 2.16:

f(X) = sup
Z∈Lq

∫ ∞

0
qX(s)qZ(s) ds− f∗(Z)

≤ sup
Z∈Lq

∫ ∞

0
qY (s)qZ(s) ds− f∗(Z) = f(Y ) .

(ii) ⇒ (i): conversely, suppose that f is �c-monotone and let X ∼ Y . Trivially, X �c Y
and Y �c X, so f(X) = f(Y ).
(i) ⇒ (iii): let X � Y . Since f is monotone, we have that dom f∗ ∩ Lq ⊂ Lq

− (see [15]
lemma 3.2). Hence, by lemmas 2.14 and 2.16,

f(X) = sup
Z∈Lq

−

∫ 1

0
qX(s)qZ(s) ds− f∗(Z)

≤ sup
Z∈Lq

−

∫ 1

0
qY (s)qZ(s) ds− f∗(Z) = f(Y ) .

(iii) ⇒ (i): if X ∼ Y , then X � Y and Y � X. Thus, f(X) = f(Y ).
(iv): for any concave function u : R → R Jensen’s inequality yields

E[u(E[X | G])] ≥ E[E[u(X) | G]] = E[u(X)] .

Hence, E[X | G] �c X. Now apply (ii).
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Corollary 2.18. Let ρ : Lp → (−∞,∞] be a law-invariant closed convex cash-invariant
function. Then, ρ(X) ≥ −E[X] + ρ(0) and ρ∗(−1) = −ρ(0).

Proof. Cash-invariance and lemma 2.17 imply that ρ(X) ≥ −E[X] + ρ(0). On the one
hand, since 0 ∈ Lp, we have that ρ∗(−1) ≥ −ρ(0), and on the other hand

ρ∗(−1) = sup
X∈Lp

(E[−X]− ρ(X)) ≤ sup
X∈Lp

(E[−X] + E[X]− ρ(0)) = −ρ(0).

Remark 2.19. Note that the proof of lemma 2.17 relies on lemma 2.13, and thus on
lemma 4.2 in [24], only in case p = ∞. We recall that lemma 4.2 in [24] states that
if ∅ 6= D ⊂ Lp is a convex law-invariant and ‖ · ‖p-closed set, then E[X | G] ∈ D for
all X ∈ D and all sub-σ-algebras G ⊂ F . Indeed, for every such set D, the indicator
function δ(· | D) is a law-invariant closed convex function. Therefore, according to
lemma 2.17(iv), δ(E[X | G] | D) ≤ δ(X | D). This implies E[X | G] ∈ D whenever
X ∈ D. Hence, we have derived an alternative proof of lemma 4.2 in [24] for the cases
p ∈ [1,∞) (but clearly not for p = ∞). ♦

On the basis of the previous results, we are now able to prove theorem 2.11:

Proof of Theorem 2.11. According to lemma 2.13 any law-invariant closed convex func-
tion f : L∞ → [−∞,∞] is σ(L∞, L∞)-closed. Hence, by lemma 2.10 f

p is a closed
convex extension of f to Lp. Lemmas 2.5 and 2.14 yield the law-invariance of f

p. In
order to prove that f

p is the unique law-invariant closed convex extension of f to Lp, let
g be any such extension. For every X ∈ Lp and all m ∈ N there exists a finite partition
Am

1 , . . . , Am
n of Ω such that the Lp-distance between X and the simple random variable

Xm := E[X | σ(Am
1 , . . . , Am

n )] ∈ L∞ is less than 1/m. On the one hand, lemma 2.17(iv)
implies that g(Xm) ≤ g(X) for all m ∈ N. On the other hand, by l.s.c. of g, we know that
g(X) ≤ lim infm→∞ g(Xm). Hence, g(X) = limm→∞ g(Xm). Since the latter observation
in particular holds for f

p, we obtain

g(X) = lim
m→∞

g(Xm) = lim
m→∞

f(Xm) = lim
m→∞

f
p(Xm) = f

p(X)

and uniqueness is proved. Finally, letting g = f
1|Lp yields f

p = f
1|Lp .

2.4. Examples

In this section, first of all, we present some extensions of well-known law-invariant convex
risk measures on L∞. Then, we go on illustrating some pitfalls and difficulties which
have been mentioned in the previous sections. In particular, we show the necessity of
many of our assumptions.
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2.4.1. Extensions of Law-invariant Convex Risk Measures

Example 2.20. Average Value at Risk: Let α ∈ (0, 1] and

Z := {Z ∈ P1∗ | Z ≥ − 1
α
} .

According to theorems 2.3 and 2.11 the corresponding real-valued support function

AVaRα(X) := max
Z∈Z

E[XZ] = − 1
α

∫ α

0
qX(s) ds, , X ∈ Lp ,

is a continuous coherent risk measure on Lp which is the unique extension of the well-
known Average Value at Risk on L∞. ♦

The following example is the extension of the entropic risk measure (see example 4.33
in [21]) to Lp. In case p ∈ [1,∞), we will see that the entropic risk measure is not
continuous.

Example 2.21. Let M∞(P) be the set of all probability measures Q on (Ω,F) such
that Q � P and dQ/dP is bounded. The entropic risk measure of parameter β > 0 is

Entrβ(X) =
1
β

log E[e−βX ] = sup
Q∈M∞(P)

EQ[−X]− 1
β

H(Q | P) , X ∈ Lp,

where H(Q | P) = EQ[log dQ
dP ] denotes the relative entropy. Entrβ is a law-invariant closed

convex risk measure on Lp (theorem 2.11). If p ∈ [1,∞), then {X ∈ Lp | Entrβ(X) =
∞} 6= ∅, whereas, if p = ∞, then dom Entrβ = L∞. Hence, by theorem 2.3, Entrβ is
continuous if and only if p = ∞. ♦

Another common class of law-invariant convex risk measures are the semi-deviation
risk measures which are discussed in the following example.

Example 2.22. For any r ∈ [1,∞], the semi-deviation risk measure is

Devr(X) := −E[X] + ‖(X − E[X])−‖r , X ∈ Lp.

It is a law-invariant closed coherent risk measure on Lp. If 1 ≤ r ≤ s, the Hölder
inequality implies Devr ≤ Devs. Thus Devr is real-valued and ‖ . ‖p-continuous whenever
r ≤ p (theorem 2.3). If r > p, then {X ∈ Lp | Devr = ∞} 6= ∅, so Devr is merely closed
but not continuous. ♦

Clearly, as on L∞, the worst case risk measure is the most conservative convex risk
measure on any Lp:

Example 2.23. −essinf(X), X ∈ Lp, is a law-invariant closed coherent risk measure
on Lp. By cash-invariance and monotonicity, any convex risk measure ρ on Lp satisfies
ρ(X) ≤ ρ(0)−essinf(X). Obviously, if p ∈ [1,∞), then {X ∈ Lp | essinf(X) = −∞} 6= ∅.
Hence, −essinf(·) is continuous if and only if p = ∞. ♦
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2.4.2. Non-uniqueness of Closed Convex Extensions

The following lemma will be used to show that closed convex extensions of convex risk
measures, if they exist, are not unique in general.

Lemma 2.24. Let T ∈ L1 satisfy essinf T < 0 and esssup T = ∞. Denote by A the
closed convex cone generated by T and L1

+. Then ρA is a closed coherent risk measure
on L1 such that ρA 6= − essinf but ρA|L∞ = − essinf |L∞.

Proof. Theorem 2.3 implies that ρA is a closed coherent risk measure on L1 such that
AρA = A. Moreover, ρA 6= − essinf on L1 since ρA(T ) ≤ 0 < − essinf T by construction.

We claim that
A ∩ L∞ = L∞+ , (2.10)

implying that ρA|L∞ = − essinf |L∞ . As for the proof of (2.10), note that A = A
1 where

A = {tX | X ∈ B , t ≥ 0} and B = conv(T,L1
+) + L1

+.

The inclusion L∞+ ⊂ A∩L∞ follows from construction. To show the converse, L∞\L∞+ ⊂
L∞ \ (A ∩ L∞), we choose any S ∈ L∞ such that P(S < 0) > 0. Since S 6∈ L1

+ is
bounded whereas T is unbounded from above, S cannot be an element of the convex
hull conv(T,L1

+), and neither of its monotone hull B, because any convex combination in
conv(T,L1

+) is either P-a.s. positive or unbounded from above, so it cannot be dominated
by S. But then, clearly S 6∈ A too. Now suppose S ∈ A \ A. Then there would be a
sequence (Sn)n∈N ⊂ A converging to S in L1. By monotonicity of A we may assume that
Sn ≥ S for all n ∈ N (otherwise Ŝn := Sn∨S ∈ A will do), and shifting to a subsequence
if necessary, we may assume that Sn → S P-a.s. Clearly, there is some N0 ∈ N such that
P(Sn < 0) > 0 for all n ≥ N0. By construction of A there are tn ≥ 0, αn ∈ (0, 1] and
Xn, Zn ∈ L1

+ such that Sn = tn(αnT + (1 − αn)Xn + Zn). Thus {Sn < 0} ⊂ {T < 0},
and consequently we have P-a.s. that

{S < 0} =
⋃
k∈N

⋂
m≥k

{Sn < 0} ⊂ {T < 0} .

Let ε := E[−S1{S<0}] > 0 and δ := E[−T1{s<0}] > 0. Choose N1 ≥ N0 such that for all
n ≥ N1: ‖S − Sn‖1 = E[Sn − S] ≤ ε

2 . Then, for n ≥ N1 we have:

ε

2
≥ E[Sn − S] ≥ E[(Sn − S)1{S<0}]

= E[(tnαnT + tn(1− αn)Xn + tnZn − S)1{S<0}]
≥ tnαnE[T1{S<0}] + E[−S1{S<0}]
= −tnαnδ + ε .

Consequently, tnαn ≥ ε
2δ =: r > 0, and thus Sn ≥ rT , for all n ≥ N1. But this

contradicts the boundedness of S. Hence S /∈ A and (2.10) is proved.
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2. Convex Risk Measures Beyond Bounded Risks

Example 2.25. Let T and ρA be as in lemma 2.24. It is easily verified that ρA|L∞
1

=
− essinf. Hence both− essinf and ρA are closed convex risk measures that extend− essinf
to L1. This shows that such extensions are not unique in general. ♦

2.4.3. Non-extendable Convex Risk Measures

Example 2.26. Let p ∈ [1,∞) and Z ∈ P∞∗ \ Pp∗. Define ρ(X) := E[XZ]. Then ρ is
a convex risk measure on L∞ with Lp-closure ρp ≡ −∞. Hence, we know by lemma 2.10
that there exists no closed convex extension of ρ to Lp. ♦

The next example shows a coherent risk measure on L∞ which cannot be extended to
any Lp, p ∈ [1,∞).

Example 2.27. Let (Ω,F , P) = ((0, 1],B(0, 1], λ) where λ denotes the Lebesgue measure
restricted to the Borel-σ-algebra B(0, 1], and let An := (0, 1

2n ], n ∈ N. Moreover, let
Pn(·) := P(· | An), and we denote by essinfPn(X) the essential infimum of a random
variable X under the measure Pn. Define

ρ(X) := lim
n→∞

−essinfPn(X) , X ∈ L0 .

In fact, the function ρ∞ := ρ|L∞ is a coherent risk measure on L∞. However, it is easily
verified that for p ∈ [1,∞) there are X ∈ Lp such that ρ(X) = −∞, so ρ fails to be
proper on Lp. Moreover, Aρ∞

p = Lp. The domain of ρ∗∞ is a subset of L∞∗ \L1, because
for any Z ∈ P∞∗ ∩ L1 we have

ρ∗∞(Z) = sup
X∈Aρ

E[XZ] ≥ sup
k,n∈N

E[−k1Ac
n
Z] = sup

k,n∈N
k(1 + E[Z1An ]) = ∞ .

That is condition (iii) of lemma 2.5 is not satisfied. Hence, ρ∞
p = −∞, and, according

to lemma 2.10, ρ∞ is a coherent risk measure on L∞ which admits no closed convex
extension to Lp, p ∈ [1,∞). ♦

Next we illustrate by a simple example that we cannot expect the Lp-closure to be an
extension in general, even if it is a closed convex function on Lp.

Example 2.28. Let ρ(X) := max{E[−X], E[ZX], E[Z̃X]}, X ∈ L∞, for some Z ∈
P2∗ \ L∞ and Z̃ ∈ P∞∗ \ L1. It is easily verified that ρ is a coherent risk mea-
sure on L∞ and that dom ρ∗ is the convex hull co{−1, Z, Z̃}. We have ρp(X) =
max{E[−X], E[ZX]} for all p ∈ [2,∞), but ρ1 = E[−X]. Clearly, ρ1 6= ρ2 on L2

and ρp 6= ρ on L∞ for all p ∈ [1,∞). Hence, ρp is no extension of ρ although ρp is
a continuous coherent risk measure on Lp. Moreover, we observe that Lp-closures for
different p may differ. ♦
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2. Convex Risk Measures Beyond Bounded Risks

2.4.4. A Counter-Example Related to Lemma 2.5

The next example shows that the requirements in lemma 2.5(iv) cannot be dropped in
general.

Example 2.29. Recall example 2.27 and define

f : L∞ → (−∞,∞], X 7→ ρ(X) + δ(X | C)

where C := {X ∈ L1 | X ≥ 0 P-a.s. on [1/2, 1]}. Clearly, C ∩ Lp is convex and closed for
every p ∈ [1,∞]. Hence, f is a closed convex function on L∞, and it is easily verified that
f is also monotone and positively homogeneous. Next we prove by similar arguments as
in example 2.27 that dom f∗∩L1 = ∅ implying that f

p = −∞ for all p ∈ [1,∞). To this
end, note that ρ(k1[0,1/2]) = −k for all k ∈ R. Consequently, for any Z ∈ L∞∗ we have

f∗(Z) ≥ sup
k∈R

k(E[Z1[0,1/2]] + 1),

so either E[Z1[0,1/2]] = −1 or Z 6= dom f∗. Now let Z ∈ L1 such that E[Z1[0,1/2]] = −1.
Then P({Z < 0} ∩ [0, 1/2]) > 0, and since

Xk,n := −k1Ac
n
1[0,1/2]1{Z<0} ∈ C

satisfy ρ(Xk,n) = 0 for all k, n ∈ N, we obtain

f∗(Z) ≥ sup
k,n∈N

E[ZXk,n] ≥ sup
k∈N

−kE[Z1{Z<0}1[0,1/2]] = ∞.

Hence, f
p = −∞ for all p ∈ [1,∞) which is equivalent to epi fp = Lp × R. However, it

is easily verified that co epi fp = (C ∩ Lp)× R $ Lp × R. ♦
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3. Optimal Capital and Risk Allocations

In this chapter we provide a solution to the existence and characterisation problem of
optimal capital and risk allocations for law-invariant closed convex risk measures on
the model space Lp, for any p ∈ [1,∞]. That is, we consider n agents with initial
endowments X1, . . . , Xn ∈ Lp, who assess the riskiness of their positions by means of
some law-invariant closed convex risk measures ρi on Lp. In order to minimise total and
individual risk, the agents redistribute the aggregate endowment X = X1 + · · · + Xn

among themselves. An optimal capital and risk allocation (Y1, . . . , Yn) satisfies Y1+ · · ·+
Yn = X and

ρ1(Y1) + · · ·+ ρn(Yn) = infPn
i=1 Zi=X

(ρ1(Z1) + · · ·+ ρn(Zn)) .

Our main result is theorem 3.4 which states the existence and gives a characterisation
of optimal allocations. In fact, the assertion of theorem 3.4 is more general insofar as it
does not require monotonicity of the ρi.

3.1. Existence of Optimal Allocations

We now formalise the above capital and risk allocation problem. Let n ≥ 2 and
F1, . . . , Fn : Lp → (−∞,∞] be some proper convex functions. Their (infimal) con-
volution at X ∈ Lp is defined as

�n
i=1Fi(X) = F1� . . .�Fn(X) := inf

X1, . . . , Xn ∈ Lp∑n
i=1 Xi = X

n∑
i=1

Fi(Xi).

The following properties are well known (see e.g. [31]).

Lemma 3.1. (i) �n
i=1Fi : Lp → [−∞,∞] is a convex function,

(ii) dom �n
i=1Fi =

∑n
i=1 dom Fi,

(iii) (�n
i=1Fi)∗ =

∑n
i=1 F ∗

i ,

(iv) dom (�n
i=1Fi)∗ =

⋂n
i=1 dom F ∗

i .

22



3. Optimal Capital and Risk Allocations

Definition 3.2. Let X ∈ Lp. An n-tuple (X1, X2, . . . , Xn) ∈ Lp × . . . × Lp such that∑n
i=1 Xi = X is called an allocation of X. The convolution �n

i=1Fi is said to be ex-
act at X if there exists an allocation (X1, X2, . . . , Xn) of X such that �n

i=1Fi(X) =∑n
i=1 Fi(Xi). Such a minimising allocation is called an optimal allocation of X. The

convolution is said to be exact if it is exact at every point X ∈ Lp.

Hence, the capital and risk allocation problem outlined in the beginning of this chapter
is equivalent to finding an optimal allocation for the convolution �n

i=1ρi.

Definition 3.3. An allocation (X1, . . . , Xn) of X ∈ Lp is called comonotone if there
exist increasing functions f1, . . . , fn : R → R such that

∑n
i=1 fi = IdR and Xi = fi(X)

for all i. These functions fi are necessarily 1-Lipschitz-continuous.

The following existence theorem is the main result of this chapter. Its proof needs
some preparation and is given in section 3.5.

Theorem 3.4. Let ρ1, . . . , ρn : Lp → (−∞,∞] be law-invariant closed convex cash-
invariant functions. Then, �n

i=1ρi is a law-invariant closed convex cash-invariant func-
tion on Lp. Furthermore, for every X ∈ Lp there exists a comonotone allocation
(X1, . . . , Xn) such that

�n
i=1ρi(X) =

n∑
i=1

ρi(Xi) .

In other words, �n
i=1ρi is exact, and amongst the optimal allocations of any X ∈ Lp

there is always a comonotone one.

Remark 3.5. The economic message of theorem 3.4 is that the capital and risk al-
location problem always admits a solution via contracts whose payoffs are defined as
(increasing Lipschitz-continuous) functions fi(X) of the aggregate risk X. ♦

We note that the functions ρi in theorem 3.4 do not have to be monotone. In case at
least one of them is monotone (i.e. a convex risk measure), we may draw the following
stronger conclusion:

Corollary 3.6. Let ρ1, . . . , ρn : Lp → (−∞,∞] be law-invariant closed convex cash-
invariant functions, of which at least one is a convex risk measure. Then, �n

i=1ρi is a
law-invariant closed convex risk measure on Lp. Moreover, for every X ∈ Lp there exists
a comonotone optimal allocation.

Proof. In view of theorem 3.4 it remains to prove that �n
i=1ρi is monotone. But this

follows immediately from lemma 3.1 and the fact that a proper closed convex function
F : Lp → (−∞,∞] is monotone if and only if dom F ∗ ⊂ Lp∗

− (see e.g. [15] lemma
3.2).
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3. Optimal Capital and Risk Allocations

Next we apply theorem 3.4 to calculate optimal allocations for Average Value at
Risks, entropic risk measures, and semi-deviation risk measures, respectively. These
convolutions are discussed thoroughly in e.g. [4] or [24] on L∞. In contrast, theorem 3.4
allows for a simple approach to computing these convolutions, and we provide our results
on L1.

Example 3.7. Recall the Average Value at Risk from example 2.20, and let AVaR0 :=
− essinf. Let 0 ≤ β ≤ γ ≤ 1, then

AVaRβ �AVaRγ = AVaRγ .

This is easily verified in view of theorem 3.4, (1.2), lemma 3.1, and the fact that
dom AVaR∗γ ⊂ dom AVaR∗β. ♦

Example 3.8. Recall the entropic risk measure from example 2.21. Let 0 < β ≤ γ.
Theorem 3.4 and lemma 3.1 justify the following dual approach, for any X ∈ L1:

Entrβ �Entrγ(X) = sup
Q∈M(P)

EQ[−X]− 1
β

H(Q | P)− 1
γ

H(Q | P)

= sup
Q∈M(P)

EQ[−X]− β + γ

βγ
H(Q | P)

= Entr βγ
β+γ

(X) .

Now, in the search for comonotone optimal allocations, the following ansatz seems nat-
ural. We guess that for any X ∈ L1 there must be an (obviously comonotone) optimal
allocation amongst the allocations of type (aX, bX) where a ∈ [0, 1] and b := 1 − a. If
so, then

β + γ

βγ
log E[e−

βγ
β+γ

X ] =
1
β

log E[e−βaX ] +
1
γ

log E[e−γbX ]

which is equivalent to

log E[e−
βγ

β+γ
X ] =

γ

β + γ
log E[e−βaX ] +

β

β + γ
log E[e−γbX ] .

Clearly, a = γ
β+γ and b = β

β+γ satisfy this equation. Hence, ( γ
β+γ X, β

β+γ X) is a comono-
tone optimal allocation of X. ♦

Example 3.9. As for the semi-deviation risk measures (example 2.22), recall that
Devp ≤ Devr for 1 ≤ p ≤ r < ∞. Consequently, dom Dev∗p ⊂ dom Dev∗r , and in
conjunction with theorem 3.4 and lemma 3.1 we conclude that Devp �Devr = Devp.
Hence, (X, 0) is a comonotone optimal allocation of X ∈ L1. ♦
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3. Optimal Capital and Risk Allocations

Remark 3.10. The closedness requirement in theorem 3.4 cannot be dropped, as the
following example shows. Let ρ1(X) = −E[X] + δ(X− | L∞), and ρ2 = AVaRα on L1,
for some α ∈ (0, 1). In remark 2.2 we saw that ρ1 is not closed. We claim that

ρ1�ρ2 = −E. (3.1)

Indeed, on the one hand, we know that ρ∗1 = δ(· | {−1}) and that ρ∗2(−1) = 0 (corol-
lary 2.18). Hence, (ρ1�ρ2)∗ = ρ∗1 + ρ∗2 = δ(· | {−1}) which implies ρ1�ρ2 ≥ −E. On the
other hand,

ρ1�ρ2(X) = inf
X1+X2=X

E[−X1] + δ(X−
1 | L∞) + AVaRα(X2)

≤ inf
K∈N

E[−X1{X>−K}] + AVaRα(X1{X≤−K})

≤ E[−X] + lim
K→∞

AVaRα(X1{X≤−K}) = E[−X]

because AVaRα is continuous and X1{X≤−K} → 0 in L1 for K →∞. This proves (3.1).
Now, choose any X ∈ L1 being unbounded from below. Suppose there is an optimal

allocation (X1, X2) of X. Then X1 must be bounded and X2 unbounded from below,
respectively. In view of lemma 3.11 below, we thus have AVaRα(X2) > E[−X2], and
hence

ρ1�ρ2(X) = ρ1(X1) + ρ2(X2)
= E[−X1] + δ(X−

1 | L∞) + AVaRα(X2)
> E[−X1] + E[−X2] = E[−X],

which contradicts (3.1). Hence, there exists no optimal allocation of X. ♦

Lemma 3.11. Let 0 ≤ β < γ ≤ 1. Then

AVaRβ(X) ≥ AVaRγ(X),

and equality holds if and only if X ≥ c a.s. and P[X = c] ≥ γ for some constant c ∈ R.
In particular, AVaRβ(X) = E[−X] if and only if X is constant.

Proof. The case β = 0 is obvious. Suppose β > 0. Since qX is increasing, we have

(γ − β)
∫ β

0
qX(s) ds ≤ β

∫ γ

β
qX(s) ds,

with equality if and only if qX(s) = qX(γ) for all s ≤ γ. This proves the claim.

Remark 3.12. The law-invariance requirement in theorem 3.4 cannot be dropped: let
Z ∈ L1

+ be non-constant with E[Z] = 1. Then ρ1 = −E[·] and ρ2 = E[−Z·] are convex
risk measures on L∞, and ρ2 is not law-invariant. Thus theorem 3.4 does not apply.
Indeed, the convolution ρ1�ρ2 ≡ −∞ is not exact. ♦
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3.2. Uniqueness of Optimal Allocations

Let ρ1, . . . , ρn : Lp → (−∞,∞] be convex cash-invariant functions. Due to cash-
invariance of ρi, uniqueness of an optimal allocation can only hold up to rebalancing
the cash. That is, (X1, . . . , Xn) is an optimal allocation of X if and only if (X1 +
c1, . . . , Xn + cn) is so, for all cash positions ci ∈ R with

∑n
i=1 ci = 0.

The following sufficient condition for uniqueness is straightforward.

Proposition 3.13. Suppose ρi, i = 1, . . . , (n − 1), are strictly convex in the following
sense

ρi(λX + (1− λ)Y ) < λρi(X) + (1− λ)ρi(Y ) for all λ ∈ (0, 1),

for all X, Y ∈ dom ρi with X − Y /∈ R. Then any optimal allocation of X ∈ Lp with
�n

i=1ρi(X) < ∞ is unique up to rebalancing the cash.

Proof. Let X ∈ Lp with �n
i=1ρi(X) < ∞. We argue by contradiction and suppose

(X1, . . . , Xn) and (Y1, . . . , Yn) are optimal allocations of X with Xj − Yj /∈ R for a
j ∈ {1, . . . , n− 1}. Then, for any λ ∈ (0, 1), Zi := λXi + (1− λ)Yi defines an allocation
of X with

n∑
i=1

ρi(Zi) < λ

n∑
i=1

ρi(Xi) + (1− λ)
n∑

i=1

ρi(Yi) = �n
i=1ρi(X).

But this contradicts the optimality of (X1, . . . , Xn), whence the claim.

For instance, the optimal allocation for the entropic risk measure in example 3.8 is
unique up to rebalancing the cash. More recent examples of strictly convex risk measures
can be found in [8].

Without the strict convexity assumption in proposition 3.13, uniqueness does not hold
in general. A trivial example is

(−E)�(−E) = −E.

In this case, all allocations of any X ∈ L1 are optimal allocations of X. Another example
is the following.

Example 3.14. Let 0 ≤ β ≤ γ < 1. Choose A ∈ F and Q � P such that P[A] > 0 =
Q(A) and dQ/dP ≤ 1/γ ≤ 1/β. Then,

0 = AVaRβ(1A) = AVaRγ(1A) = AVaRβ �AVaRγ(1A).

Hence, both (1A, 0) and (0, 1A) are comonotone optimal allocations of 1A. ♦

On the other hand, the strict convexity assumption in proposition 3.13 is not necessary
for uniqueness up to rebalancing the cash. This is shown by the following example.
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Example 3.15. Let β ∈ (0, 1) . We know that AVaRβ � − E = −E (example 3.7).
Suppose (Y, X − Y ) is an optimal allocation of X. This implies AVaRβ(Y ) + E[−(X −
Y )] = E[−X], that is, AVaRβ(Y ) = E[−Y ]. In view of lemma 3.11 we conclude that Y
must be constant, i.e. a cash position. Hence, the optimal allocation (0, X) is unique up
to rebalancing the cash. ♦

3.3. Problem Reduction

First note that it suffices to prove theorem 3.4 for n = 2, because

�n
i=1ρi =

(
�n−1

i=1 ρi

)
�ρn.

For the sake of simplicity, we will further restrict our studies to the case p = 1. By nature
of the arguments presented in the proof of theorem 3.4 (section 3.5), it will become clear
that they all literally carry over to Lp, simply by replacing L1 with Lp and choosing the
appropriate dual. However, in what follows, we give another justification for the retreat
to L1 by proving in corollary 3.16 that the assertions of theorem 3.4 for the Lp-cases
can be derived from the L1-case. The reason for this is theorem 2.11 and the following
observation. Let

A := {(f, g) | f, g : R → R are increasing , f + g = IdR} .

Clearly, if (f, g) ∈ A, then both f and g are 1-Lipschitz-continuous. Hence, |f(X)| ≤
|X|+ |f(0)| and |g(X)| ≤ |X|+ |g(0)|, implying that

if X ∈ Lp then (f(X), g(X)) ∈ Lp × Lp. (3.2)

Thus, if X ∈ Lp, then the set {(f(X), g(X)) | (f, g) ∈ A} of all comonotone 2-
dimensional allocations of X is a subset of Lp × Lp.

Corollary 3.16. Let ρ, µ : Lp → (−∞,∞] be two law-invariant closed convex cash-
invariant functions. Suppose theorem 3.4 is true for the model space L1. Let ρ∞ := ρ|L∞
and µ∞ := µ|L∞. Then,

ρ�µ = ρ∞
1�µ∞

1|Lp .

In particular, the assertions of theorem 3.4 are true for Lp too.

Proof. According to theorem 2.11 we have ρ = ρ∞
1|Lp and µ = µ∞

1|Lp . By assumption,
and since the L1-closure preserves cash-invariance, for any X ∈ Lp ⊂ L1 there is a
comonotone optimal allocation (f(X), g(X)), i.e.

ρ∞
1�µ∞

1(X) = ρ∞
1(f(X)) + µ∞

1(g(X)).
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Clearly, ρ∞
1�µ∞

1(X) ≤ ρ�µ(X), and since (f(X), g(X)) ∈ Lp×Lp by (3.2), we deduce
that

ρ∞
1�µ∞

1(X) = ρ(f(X)) + µ(g(X)) = ρ�µ(X) .

Hence, ρ�µ is simply the restriction of ρ∞
1�µ∞

1 to Lp and thus a law-invariant closed
(w.r.t. ‖ · ‖p) convex cash-invariant function. (The l.s.c. stems from the fact that ‖ · ‖p-
convergence implies ‖ · ‖1-convergence.) Moreover, ρ�µ is exact, and there is always a
comonotone optimal allocation.

3.4. Comonotone Concave Order Improvement

Recall the concave order �c from definition 2.15. It is proved in [21] corollary 2.62 that

X �c Y ⇔ E[X] = E[Y ] and E[(X − c)+] ≤ E[(Y − c)+] ∀ c ∈ R . (3.3)

The following proposition will turn out to be the fundament on which the proof of
theorem 3.4 is built. It is based upon the results of Landsberger and Meilijson in [27], and
states that every allocation is dominated in concave order by a comonotone allocation.
The importance of this result is clear by lemma 2.17 where we established that any
law-invariant closed convex function is �c-monotone.

Proposition 3.17. (see proposition 1 in [27]) For any allocation (Y, Z) of X ∈ L1,
there is (f, g) ∈ A such that f(X) �c Y and g(X) �c Z.

Unfortunately, Landsberger and Meilijson [27] only proved this result for random
variables X supported by a finite set. Therefore, we give a full proof here.

Proof. We divide the proof into three steps.
Step 1: We start out as in [27] by noticing that Jensen’s inequality implies that

(E[Y | X], E[Z | X]) is an allocation of X which is at least as good as (Y, Z), meaning
that E[Y | X] �c Y and E[Z | X] �c Z. Let h1, h2 : R → R be measurable functions
such that h1(X) = E[Y | X], h2(X) = E[Z | X]. Clearly, we may assume that h1 +h2 =
IdR. If h1 and h2 are increasing, we are done, if not, we go on improving this allocation.
However, we have now established that during the remainder of this proof we may
restrict ourselves to improve allocations (Y, Z) of type Y = h1(X) and Z = h2(X) for
some measurable functions h1, h2 : R → R such that h1 + h2 = IdR.

Step 2: Suppose X is a simple random variable, i.e. X =
∑n

i=1 xi1Ai for a partition
A1, . . . , An of Ω and real numbers xi such that xi 6= xj for i 6= j. Let yi := h1(xi)
and zi := h2(xi). Then h1(X) =

∑n
i=1 yi1Ai and h2(X) =

∑n
i=1 zi1Ai . We set x :=

(x1, . . . , xn), y := (y1, . . . , yn), z := (z1, . . . , zn) and pk := P(Ak), k = 1, . . . , n. Let π be
a permutation of {1, . . . , n} such that xπ := (xπ(1), . . . , xπ(n)) ∈ D := {x̃ ∈ Rn | x̃1 ≤
x̃2 ≤ . . . ≤ x̃n}. Observe that (h1(X), h2(X)) is comonotone if and only if yπ, zπ ∈ D.
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For sake of brevity we may and will assume w.l.o.g. that x ∈ D already. Supposing that
(y, z) is not comonotone, i.e. y 6∈ D or z 6∈ D or both, the following algorithm by M.
Landsberger and I. Meilijson transfers (y, z) into a comonotone allocation:

Since (y, z) is not comonotone, there must exist an i such that y1 ≤ . . . ≤ yi, z1 ≤
. . . ≤ zi but either yi+1 < yi or zi+1 < zi. W.l.o.g. let us assume that zi+1 < zi. Then
there is a smallest j such that zi+1 < zj . For k = j, . . . , i we set

ynew
k = yk +

pi+1∑i+1
l=j pl

(zj − zi+1) and znew
k = zk −

pi+1∑i+1
l=j pl

(zj − zi+1)

whereas

ynew
i+1 = yi+1 −

∑i
l=j pl∑i+1
l=j pl

(zj − zi+1) and znew
i+1 = zi+1 +

∑i
l=j pl∑i+1
l=j pl

(zj − zi+1) .

The other coordinates of y and z are left unchanged. Finally, set y := ynew and z := znew

and repeat the procedure in case the output is not comonotone.
Let (Y new, Znew) := (

∑n
i=1 ynew

i 1Ai ,
∑n

i=1 znew
i 1Ai). Firstly, (Y new, Znew) is obviously

an allocation of X, secondly, we claim that Y new �c Y and Znew �c Z, i.e. each cycle of
the algorithm improves the allocation, and finally, it is easily verified that the algorithm
returns a comonotone allocation in at most n(n−1)/2 cycles (observe that znew

j = znew
i+1 ).

In order to show that Y new �c Y and Znew �c Z, let u : R → R be any concave function.
Introducing the abbreviations

α :=
pi+1∑i+1
l=j pl

∈ (0, 1) and λk :=
zj − zi+1

zk − zi+1
∈ (0, 1]

and recalling that concavity is equivalent to

∀a < b < c :
u(b)− u(a)

b− a
≥ u(c)− u(a)

c− a
≥ u(c)− u(b)

c− b
, (3.4)
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we compute:

i+1∑
k=j

u(znew
k )pk =

i∑
k=j

u((1− αλk)zk + αλkzi+1)pk + u((1− α)zj + αzi+1)pi+1

≥
i∑

k=j

[(1− αλk)u(zk) + αλku(zi+1)] pk

+ [(1− α)u(zj) + αu(zi+1)] pi+1

=
i+1∑
k=j

u(zk)pk + (1− α)(u(zj)− u(zi+1))pi+1

− α

i∑
k=j

λk(u(zk)− u(zi+1))pk

(3.4)

≥
i+1∑
k=j

u(zk)pk ,

because λk(u(zk)−u(zi+1)) ≤ u(zj)−u(zi+1) by inequality (3.4). A similar computation
for Y new shows that Y new �c Y and Znew �c Z.

Step 3: Let X be any integrable random variable. Recalling the usual monotone
approximation from Lebesgue integration theory, let (Yn)n∈N and (Zn)n∈N be sequences
of simple random variables converging P-a.s. and in L1 to Y and Z respectively such that
|Yn| ≤ |Y | and |Zn| ≤ |Z| for all n ∈ N. Then Xn := Yn+Zn converges to X P-a.s. and in
L1. By step 2, for each n ∈ N, there exists a comonotone improvement (fn(Xn), gn(Xn))
of (Yn, Zn). Choose N ∈ N such that ‖Yn‖1 ≤ ‖Y ‖1 + 1, ‖Zn‖1 ≤ ‖Z‖1 + 1, and
‖Xn‖1 ≤ ‖X‖1 + 1 for all n ≥ N . Since all fn (and gn) are 1-Lipschitz-continuous, we
have that |fn(0)| ≤ |Xn|+ |fn(Xn)|. Taking expectations on both sides yields

|fn(0)| ≤ E[|Xn|] + E[|fn(Xn)|] ≤ E[|Xn|] + E[|Yn|] ,

because fn(Xn) �c Yn and x 7→ −|x| is concave. Hence, if n ≥ N , we get |fn(0)| ≤
‖X‖1 + ‖Y ‖1 + 2 =: K1 and similarly |gn(0)| ≤ ‖X‖1 + ‖Z‖1 + 2 =: K2, and thus
fn(0), gn(0) ∈ [−K, K] for K := max{K1,K2}. Therefore, by lemma A.3, there is a sub-
sequence (fnk

)k∈N of (fn)n∈N and a 1-Lipschitz-continuous increasing function f : R → R
such that f(a) = limk→∞ fnk

(a), a ∈ R. Now it is easily verified that (gnk
)k∈N converges

pointwise to the 1-Lipschitz-continuous increasing function g := IdR−f . Hence, the se-
quence fnk

(Xnk
) converges P-a.s. to f(X), and gnk

(Xnk
) = Xnk

−fnk
(Xnk

) converges P-
a.s. to g(X). Since |fnk

(Xnk
)| ≤ |Xnk

|+K ≤ |Y |+|Z|+K and |gnk
(Xnk

)| ≤ |Y |+|Z|+K
for large enough k ∈ N, we can apply the dominated convergence theorem which yields
f(X), g(X) ∈ L1 and ‖f(X) − fnk

(Xnk
)‖1 → 0, ‖g(X) − gnk

(Xnk
)‖1 → 0 for k → ∞.
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Moreover, in view of (3.3), we have that

E[f(X)] = lim
k→∞

E[fnk
(Xnk

)] = lim
k→∞

E[Ynk
] = E[Y ] ,

and for all c ∈ R:

E[(f(X)− c)+] = lim
k→∞

E[(fnk
(Xnk

)− c)+]

≤ lim
k→∞

E[(Ynk
− c)+] = E[(Y − c)+] ,

and similarly for g. Hence, (f(X), g(X)) is a comonotone allocation of X satisfying
f(X) �c Y and g(X) �c Z according to (3.3).

3.5. Proof of Theorem 3.4

In view of section 3.3 we only have to prove theorem 3.4 for n = 2 and p = 1. To this
end, let ρ1, ρ2 : L1 → (−∞,∞] be law-invariant closed convex cash-invariant functions.
We divide the proof into four steps.

Step 1: ρ1�ρ2 is proper, convex, and cash-invariant.

Proof. It is easily verified that the convolution preserves the convexity of ρ1 and ρ2.
According to corollary 2.18 we have that ρi(X) ≥ −E[X] + ρi(0) for all X ∈ L1 and
i = 1, 2. Hence,

ρ1�ρ2(X) = inf
X1+X2=X

ρ1(X1) + ρ2(X2)

≥ inf
X1+X2=X

−E[X1]− E[X2] + ρ1(0) + ρ2(0)

= −E[X] + ρ1(0) + ρ2(0) ,

so ρ1�ρ2(0) = ρ1(0) + ρ2(0) < ∞ and ρ1�ρ2 is proper. Furthermore, for all r ∈ R we
obtain

ρ1�ρ2(X + r) = inf
Y ∈L1

ρ1(X + r − Y ) + ρ2(Y ) = ρ1�ρ2(X)− r

due to the cash-invariance of ρ1.

Step 2: ρ1�ρ2(X) = inf(f,g)∈A ρ1(f(X)) + ρ2(g(X)) , X ∈ L1.

Proof. This is an immediate consequence of proposition 3.17 and lemma 2.17.

Step 3: ρ1�ρ2 is exact, and for each X ∈ L1 there exists a comonotone optimal
allocation.
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Proof. Suppose X ∈ L1 is such that ρ1�ρ2(X) = ∞. Then every comonotone allocation
(f(X), g(X)) is optimal.

Now let X ∈ dom ρ1�ρ2 and choose a sequence (fn, gn) ∈ A, n ∈ N, such that
ρ1�ρ2(X) = limn→∞ ρ1(fn(X)) + ρ2(gn(X)). By cash-invariance we may assume that
fn(0) = gn(0) = 0 for all n ∈ N. Hence, by lemma A.3, there is a subsequence (fnk

)k∈N
of (fn)n∈N and a 1-Lipschitz-continuous and increasing function f : R → R such that
f(a) = limk→∞ fnk

(a) for all a ∈ R. Clearly, the sequence fnk
(X) converges P-a.s.

to f(X) and gnk
(X) = X − fnk

(X) converges P-a.s. to g(X) where g := IdR−f is a 1-
Lipschitz-continuous increasing function. Since |fnk

(X)| ≤ |X| and |gnk
(X)| ≤ |X| for all

k ∈ N, we may apply the dominated convergence theorem which yields f(X), g(X) ∈ L1

and ‖f(X) − fnk
(X)‖1 → 0, ‖g(X) − gnk

(X)‖1 → 0 for k → ∞. On the one hand, by
l.s.c., we have

ρ1�ρ2(X) = lim
k→∞

ρ1(fnk
(X)) + ρ2(gnk

(X))

≥ lim inf
k→∞

ρ1(fnk
(X)) + lim inf

k→∞
ρ2(gnk

(X))

≥ ρ1(f(X)) + ρ2(g(X)) .

On the other hand, by definition of the convolution, we have ρ1�ρ2(X) ≤ ρ1(f(X)) +
ρ2(g(X)). Consequently, the comonotone allocation (f(X), g(X)) of X is optimal.

Step 4: ρ1�ρ2 is closed and law-invariant.

Proof. We claim that Aρ1�ρ2
is closed. To this end, let (Xn)n∈N ⊂ Aρ1�ρ2

be a sequence
converging to some X in L1. According to step 3 there are (fn, gn) ∈ A, n ∈ N, such
that 0 ≥ ρ1�ρ2(Xn) = ρ1(fn(Xn)) + ρ2(gn(Xn)). By cash-invariance we may assume
that fn(0) = gn(0) = 0 for all n ∈ N. Similar to step 3, employing lemma A.3, we find
a subsequence (fnk

, gnk
)k∈N of (fn, gn)n∈N and (f, g) ∈ A such that fnk

(Xnk
) converges

to f(X) in L1 and gnk
(Xnk

) converges to g(X) in L1. By l.s.c. of ρ1 and ρ2 we obtain

ρ1�ρ2(X) ≤ ρ1(f(X)) + ρ2(g(X))
≤ lim inf

k→∞
ρ1(fnk

(Xnk
)) + lim inf

k→∞
ρ2(gnk

(Xnk
))

≤ lim inf
k→∞

ρ1(fnk
(Xnk

)) + ρ2(gnk
(Xnk

)) ≤ 0 ,

and thus X ∈ Aρ1�ρ2
. Hence, Aρ1�ρ2

is closed, i.e. ρ1�ρ2 is closed. The law-invariance
of ρ1�ρ2 follows from lemma 3.1 and the fact that a closed convex function on L1 is
law-invariant if and only if its dual is (lemma 2.14).

3.6. Optimal Risk Sharing under Constraints

For a comprehensive discussion of risk sharing under constraints we refer to [16]. The
setting is as follows: two agents with initial endowments X1 and X2 in Lp assess their
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individual risk by means of law-invariant closed convex risk measures ρ1 and ρ2 on Lp,
respectively. In order to minimise total and individual risk, they reallocate the aggregate
endowment X = X1 + X2 amongst themselves. As is often the case in practice, this
reallocation procedure might be subject to some restrictions in the sense that not every
risk sharing of X is admissible. We formalise this by defining the set of admissible risk
sharings of X as

AX := {(Y1, Y2) ∈ M1 ×M2 | Y1 + Y2 ≤ X}

where Mi ⊂ Lp are closed convex law-invariant cash-invariant (that is, Y ∈ Mi implies
Y + a ∈ Mi for all a ∈ R) sets such that Xi ∈ Mi, i = 1, 2. Note that we allow for “free
disposal”, i.e. X − Y1 − Y2 ≥ 0 for all (Y1, Y2) ∈ AX . The optimal risk sharing under
constraints problem becomes

inf
(Y1,Y2)∈AX

ρ1(Y1) + ρ2(Y2). (3.5)

In order to solve (3.5), denote ρMi
i := ρi + δ(· | Mi), i = 1, 2. Then

(3.5) = inf
Y1,Y2∈Lp , Y1+Y2≤X

ρM1
1 (Y1) + ρM2

2 (Y2)

= ρM1
1 �ρM2

2 �δ(· | Lp
+)(X)

= ρM1
1 �ρM2

2 �− essinf(X) .

Note that δ(· | Mi) is proper, closed, law-invariant, and convex. By lemma 2.17 we know
that δ(E[Y ] | Mi) ≤ δ(Y | Mi) for all Y ∈ Lp. Hence Y ∈ Mi implies E[Y ] ∈ Mi,
and thus R ⊂ Mi by cash-invariance. We conclude that ρM1

1 and ρM2
2 are law-invariant

closed convex cash-invariant functions. Since −essinf is a law-invariant closed coherent
risk measure, we know by corollary 3.6 that ρM1

1 �ρM2
2 �− essinf is a law-invariant closed

convex risk measure, and that this convolution admits a comonotone optimal allocation
(Y1, Y2, Y3) of X. If ρM1

1 (Y1)+ρM1
2 (Y2)−essinf(Y3) = ∞, then any admissible risk sharing

of X is optimal. Otherwise, if ρM1
1 (Y1) + ρM1

2 (Y2) − essinf(Y3) < ∞, then we have that
−essinf(Y3) < ∞, and thus (Y1 +essinf(Y3), Y2) is a solution of the optimisation problem
(3.5). Also note that (Y1 + essinf(Y3), Y2) = (f(X), g(X)) for some increasing functions
f, g : R → R.
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4. Subgradients of Law-Invariant Convex
Risk Measures on L1

Subgradients play an important role in equilibrium theory (see section 4.4). Given the
model space L∞, we know that every convex risk measure is everywhere subdifferen-
tiable, simply because it is continuous ([14] corollary 2.5 and proposition 5.2). However,
throughout this text, we are interested in model spaces larger than L∞. As we study
law-invariant convex risk measures, theorem 2.11 suggests the model space L1. There-
fore, throughout this chapter, all law-invariant convex risk measures will a priori be
defined on L1. We will also assume that all risk measures ρ are normalised, i.e. ρ(0) = 0.
Moreover, we denote by ρ∞ the restriction of ρ to L∞, i.e. ρ∞ := ρ|L∞ .

4.1. Subgradients and Generalised Subgradients

It is well known that a proper closed convex function on a Banach space is continuous
and subdifferentiable on the interior of its domain (see e.g. [14] corollary 2.5 and propo-
sition 5.2). Recalling theorem 2.3, we know that for every convex risk measure ρ on L1

(which is proper by definition) we have int dom ρ 6= ∅ if and only if ρ is real-valued and
continuous. We summarise these results on subdifferentiability in the following lemma.

Lemma 4.1. Let ρ be a convex risk measure on L1. Equivalent are:

(i) ρ is everywhere subdifferentiable.

(ii) ρ is real-valued and continuous.

(iii) int dom ρ 6= ∅.

An example of a continuous convex risk measure on L1 is AVaRα, for some α ∈ (0, 1]
(see example 2.20). But we have already seen that that closed convex risk measures are
not continuous on L1 in general. An example is the entropic risk measure Entrβ, β > 0,
(example 2.21) which is closed, but not continuous. According to lemma 4.20 below we
have that

Entrβ(X) = E[ZX]− Entr∗β(Z) ⇒ Z =
−e−βX

E [e−βX ]
.

In view of (1.3), we infer that ∂ Entrβ(X) = ∅ for every X ∈ L1 with e−βX /∈ L∞, even
though dom Entrβ includes such X.
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This motivates the following extension of the notion of a subgradient.

Definition 4.2. The generalised subgradient of a convex risk measure ρ on L1 at X ∈ L1

is defined as

δρ(X) := {Z ∈ L1 | (XZ) ∈ L1, ∀Y ∈ L∞ : ρ(Y ) ≥ ρ(X) + E[Z(Y −X)]}.

Lemmas 4.3 and 4.6 below show that δρ is indeed a generalisation of ∂ρ.

Lemma 4.3. Let ρ be a convex risk measure on L1. The following conditions hold:

(i) for all X ∈ L1: ∂ρ(X) ⊂ δρ(X) ⊂ dom ρ∗∞ ∩ L1,

(ii) for all X ∈ L∞: δρ(X) = ∂ρ∞(X) ∩ L1,

(iii) for all X ∈ L1: δρ(X) 6= ∅ ⇒ X ∈ dom ρ.

Proof. We only prove the inclusion δρ(X) ⊂ dom ρ∗∞ ∩ L1, because the rest is obvious
by definition of δρ(X). However, this inclusion follows from the fact that Z ∈ δρ(X)
implies

∞ > E[ZX]− ρ(X) ≥ sup
Y ∈L∞

E[ZY ]− ρ(Y ) = ρ∗∞(Z).

We remark that δρ(X) = ∅ is possible even for bounded risks X ∈ L∞ (see exam-
ple 4.5.1). In order to have δρ(X) 6= ∅ on L∞ at least, we will have to require that ρ
is continuous from below. This property is defined and characterised in the following
proposition (see also [21] proposition 4.21). It is in fact a property of the restriction
ρ∞ of ρ to L∞ only. Note that proposition 4.4(iv) shows that continuity from below is
satisfied by most law-invariant convex risk measures of interest, e.g. by Avarage Value
at Risks, semi-deviation and entropic risk measures.

Proposition 4.4. Let ρ be a law-invariant closed convex risk measure on L1. Then, the
following conditions are equivalent:

(i) ρ is continuous from below, i.e. for every X ∈ L∞ and every sequence (Xn)n∈N ⊂
L∞ with Xn ↑ X we have ρ(Xn) ↓ ρ(X).

(ii) dom ρ∗∞ ⊂ L1.

(iii) The level sets Qk := {Z ∈ L1|ρ∗∞(Z) ≤ k}, k ∈ R, are σ(L1, L∞)-compact.

(iv) {X ∈ L1 | essinf X = −∞} ∩ dom ρ 6= ∅.
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Proof. (i) ⇔ (ii) ⇔ (iii): In view lemma 2.13, we may apply theorem 5.2 in [24] which
establishes the desired equivalences. These equivalences are also partially proved in [21]
proposition 4.21 and [16] theorem C.1.
(i) ⇒ (iv): Fix a decreasing sequence of sets An ∈ F , n ∈ N, such that P(An) > 0 and⋂

n∈N An = ∅. Since ρ is continuous from below and −1An ↑ 0, there is a n1 ∈ N such
that ρ(−1An1

) ≤ 1
2 . Then again, as −1An1

− 1Al
↑ −1An1

for l →∞, there is a n2 > n1

such that ρ(−1An1
− 1An2

) ≤ ρ(−1An1
) + 1

4 . Continuing this construction inductively,
we find for each k ∈ N a nk+1 > nk such that ρ(

∑k+1
i=1 −1Ani

) ≤ ρ(
∑k

i=1−1Ani
) + 1

2k+1 .
The sequence Xk :=

∑k
i=1−1Ani

converges monotonously to X :=
∑∞

i=1−1Ani
which is

unbounded from below. By the monotone convergence theorem, and since ρ∗(−1) = 0
(corollary 2.18), we deduce that

E[|X|] = lim
k→∞

E[−Xk] ≤ lim inf
k→∞

ρ(Xk) ≤ lim inf
k→∞

k∑
i=1

1
2i
≤ 1.

Hence, X ∈ L1 and by l.s.c. of ρ we have that ρ(X) ≤ lim infk→∞ ρ(Xk) ≤ 1, i.e.
X ∈ dom ρ.
(iv) ⇒ (ii): Let X ∈ {Y ∈ L1 | essinf Y = −∞} ∩ dom ρ. According to lemma 4.5
below we may assume that X ≤ 0. Suppose there were µ ∈ dom ρ∗∞ \ L1. Then there
exists a decreasing sequence of sets An ∈ F , n ∈ N, such that P(An) > 0 and

⋂
n An =

∅, but E[−µ1An ] ↓ ε for some ε > 0, because otherwise µ would be σ-additive. By
considering to a subsequence if necessary we may assume that P(An) ≤ P(X ≤ −n). Let
Bn ⊂ {X ≤ −n} such that P(Bn) = P(An), and let πn : Ω → Ω be a measure preserving
transformation such that πn(An) = Bn P-a.s. (see section A.3). Then Xn := X◦πn ∼ X,
and An ⊂ {Xn ≤ −n}. Hence, by law-invariance

ρ(X) = ρ(Xn) ≥ ρ∞(Xn ∨ (−n− 1))
≥ E[µ(Xn ∨ (−n− 1))]− ρ∗∞(µ)
≥ nE[−µ1An ]− ρ∗∞(µ)
≥ nε− ρ∗∞(µ)

for all n ∈ N which can only hold if ρ(X) = ∞. But this is a contradiction to X ∈ dom ρ,
so dom ρ∗∞ ⊂ L1.

In the proof of proposition 4.4 (iv)⇒ (ii) we used the following lemma.

Lemma 4.5. Let ρ be a law-invariant closed convex risk measure on L1. Then X ∈
dom ρ if and only if −X− ∈ dom ρ.

Proof. ”⇐” follows from X ≥ −X− and monotonicity of ρ. As for ”⇒”, let X ∈ dom ρ
and suppose that P(X > 0) > 0, otherwise the assertion is trivial. By lemma 2.17 we
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know that E[X|X1{X<0}] ∈ dom ρ. Clearly,

E[X|X1{X<0}] = X1{X<0} +
E[X1{X≥0}]
P(X ≥ 0)

1{X≥0}.

Hence, by cash-invariance and monotonicity we infer that

ρ(X1{X<0}) = ρ

(
X1{X<0} +

E[X1{X≥0}]
P(X ≥ 0)

)
+

E[X1{X≥0}]
P(X ≥ 0)

≤ ρ(E[X|X1{X<0}]) +
E[X1{X≥0}]
P(X ≥ 0)

< ∞.

We now establish a characterisation of the generalised subgradient which is analogous
to (1.3).

Lemma 4.6. Let ρ be a law-invariant closed convex risk measure on L1 which is con-
tinuous from below, and let X ∈ L1. The following conditions are equivalent:

(i) Z̃ ∈ δρ(X),

(ii) Z̃ ∈ {Z ∈ L1 | (XZ) ∈ L1, ∀Y ∈ L1 : ρ(Y ) ≥ ρ(X) + E[Z(Y − X)]} with the
convention that ∞−∞ := ∞,

(iii) Z̃ ∈ L1 such that (XZ̃) ∈ L1 and ρ(X) = E[Z̃X]− ρ∗∞(Z̃).

Moreover, if Z ∈ L1 is such that (XZ) ∈ L1, then E[XZ]− ρ∗∞(Z) ≤ ρ(X).

Proof. (i) ⇒ (ii): Suppose that (i) holds. We will prove that

ρ(U) ≥ ρ(X) + E[Z̃(U −X)] (4.1)

for all U ∈ L1 with the convention that ∞ − ∞ = ∞. Note that lemma 4.3(i) and
theorem 2.3 (iv) imply Z̃ ∈ L1

−. Let U ∈ L1 such that E[−Z̃U−] < ∞ or E[Z̃U+] > −∞
or both, then by (i), monotone convergence and lemma 4.7 below we obtain that

ρ(U) = lim
m→∞

lim
n→∞

ρ((U+ ∧ n)− (U− ∧m))

≥ lim
m→∞

lim
n→∞

(ρ(X)− E[Z̃X] + E[Z̃(U+ ∧ n)] + E[−Z̃(U− ∧m)])

= ρ(X) + E[Z̃(U −X)],

so (4.1) holds. If U ∈ L1 is such that E[−Z̃U−] = ∞ and E[Z̃U+] = −∞, then
according to our convention, the right hand side of (4.1) equals ∞, so we have to show
that ρ(U) = ∞ too. However, this follows from lemma 4.5 and the first case.
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(ii) ⇒ (iii): Since, in particular, (4.1) is true for all U ∈ L∞, we have E[XZ̃]− ρ(X) ≥
ρ∗∞(Z̃). Moreover, lemma 4.7 below and monotone convergence imply that

E[XZ̃]− ρ∗∞(Z̃) = lim
m→∞

lim
n→∞

E[(−m ∨X ∧ n)Z̃]− ρ∗∞(Z̃)

≤ lim
m→∞

lim
n→∞

ρ∞(−m ∨X ∧ n) = ρ(X). (4.2)

Hence, we obtain E[XZ̃]− ρ(X) = ρ∗∞(Z̃).
(iii) ⇒ (i): is obvious.
The final statement of the lemma follows from a computation similar to (4.2).

The proof of lemma 4.6 relied on the following crucial lemma, the proof of which is
postponed to section 4.3. We remark that a regularity result similar to (4.3) is stated in
[26] for real-valued, and thus continuous, convex risk measures.

Lemma 4.7. Let ρ be a law-invariant closed convex risk measure on L1 which is con-
tinuous from below and let H ∈ L∞, then

ρ(H + X) = sup
m∈N

inf
n∈N

ρ(H + (X+ ∧ n)− (X− ∧m)). (4.3)

The following theorem gives a simple sufficient condition for the existence of gener-
alised subgradients. It is proved throughout sections 4.2 and 4.3.

Theorem 4.8. Let ρ be a law-invariant closed convex risk measure on L1 which is
continuous from below. If for

X ∈ L1 there is an ε > 0 such that (1 + ε)X ∈ dom ρ, (4.4)

then δρ(X) 6= ∅. In this case we may assume that Z ∈ δρ(X) is of type Z = f(X) for a
measurable function f : R → R− which is increasing on {FX > 0}.

Note that if ρ is coherent, then condition (4.4) is equivalent to X ∈ dom ρ. In
example 4.5.4 we illustrate that we cannot expect any better characterisation of the
points at which ρ is generalised subdifferentiable than (4.4). Example 4.5.6 shows that
a straight forward approach to the proof of theorem 4.8 via some maximising sequence
cannot succeed. This is one of the reasons for introducing the space Lρ which is defined
and discussed in the following section.

4.2. The Space Lρ

Throughout this section let ρ be a law-invariant closed convex risk measure on L1.
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Definition 4.9. For C > 0 let

‖X‖C,ρ := inf{λ > 0 | ρ(−|X|/λ) ≤ C}, X ∈ L1,

with the usual convention that inf ∅ = ∞, and define

Lρ := {X ∈ L1 | ‖X‖C,ρ < ∞}.

Clearly, we adopted this idea from Orlicz space theory.

Lemma 4.10. (i) ‖ · ‖C,ρ : L1 → [0,∞] is a law-invariant sub-linear closed function
on (L1, ‖ · ‖1).

(ii) Lρ is well-defined, i.e. independent of C > 0. Moreover, if C ∈ (0, 1), then

C‖ · ‖C,ρ ≤ ‖ · ‖1,ρ ≤ ‖ · ‖C,ρ, (4.5)

and if C ≥ 1, then
‖ · ‖C,ρ ≤ ‖ · ‖1,ρ ≤ C‖ · ‖C,ρ. (4.6)

If ρ is coherent, then for all C > 0:

C‖ · ‖C,ρ = ‖ · ‖1,ρ = ρ(−| · |). (4.7)

(iii) C · ‖X‖C,ρ ≤ ‖X‖∞ for all X ∈ L∞ and C · ‖X‖C,ρ ≥ ‖X‖1 for all X ∈ L1.

(iv) (Lρ, ‖ · ‖C,ρ) is a law-invariant Banach space such that L∞ ⊆ Lρ ⊆ L1. The
inclusion L∞ ⊂ Lρ is strict if and only if ρ is continuous from below. In particular,
we have that {−X− | X ∈ dom ρ} ⊂ Lρ.

(v) If G is a sub-σ-algebra of F and X ∈ Lρ, then E[X|G] ∈ Lρ.

Proof. We define ΛC(X) := {λ > 0 | ρ(−|X|/λ) ≤ C}.
(i): The law-invariance of ‖·‖C,ρ follows immediately from law-invariance of ρ. Moreover,
it is easily verified that ‖tX‖C,ρ = |t| · ‖X‖C,ρ for all t ∈ R. In order to show that
‖X + Y ‖C,ρ ≤ ‖X‖C,ρ + ‖Y ‖C,ρ it suffices to consider X, Y ∈ Lρ because if either
‖X‖C,ρ = ∞ or ‖Y ‖C,ρ = ∞ or both, the assertion is trivial. To this end let α ∈ ΛC(X)
and β ∈ ΛC(Y ) for some X, Y ∈ Lρ. Then, by monotonicity and convexity

ρ

(
−|X + Y |

α + β

)
≤ ρ

(
− α

α + β

|X|
α

− β

α + β

|Y |
β

)
≤ α

α + β
· ρ
(
−|X|

α

)
+

β

α + β
· ρ
(
−|Y |

β

)
≤ C,

so ΛC(X) + ΛC(Y ) ⊂ ΛC(X + Y ) which proves the triangle inequality. We claim that
‖ · ‖C,ρ is l.s.c. on (L1, ‖ · ‖1). In order to verify this, denote the level sets of ‖ · ‖C,ρ by
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Ek = {Y | ‖Y ‖C,ρ ≤ k}, k ≥ 0, and let (Xn)n∈N ⊂ Ek for some k ≥ 0 be a sequence
converging to X ∈ L1 w.r.t. ‖·‖1. Note that ‖Y ‖C,ρ ≤ k if and only if ρ(−|Y |/(k+ε)) ≤ C
for all ε > 0. Since Xn ∈ Ek for all n ∈ N, l.s.c. of ρ yields

ρ(−|X|/(k + ε)) ≤ lim inf
n→∞

ρ(−|Xn|/(k + ε)) ≤ C

for any ε > 0, and thus X ∈ Ek. Hence, Ek is closed in (L1, ‖ · ‖1) for every k ≥ 0, i.e.
‖ ·‖C,ρ is l.s.c. on (L1, ‖ ·‖1). Hence, we have proved that ‖ ·‖C,ρ is a law-invariant closed
sublinear function on L1.
(ii): Clearly, if (4.5) and (4.6) hold, then Lρ is well-defined. We only prove (4.5) since
the proof of (4.6) is similar and (4.7) is obvious by positive homogeneity. To this end,
let C ∈ (0, 1), X ∈ L1 and λ ∈ Λ1(X), i.e. ρ(−|X|/λ) ≤ 1. Then, convexity of ρ yields
ρ(−C|X|/λ) ≤ Cρ(−|X|/λ) ≤ C. Hence, 1

C Λ1(X) ⊂ ΛC(X), so C‖X‖C,ρ ≤ ‖X‖1,ρ. On
the other hand, since C < 1, we have ΛC(X) ⊂ Λ1(X) and thus ‖X‖1,ρ ≤ ‖X‖C,ρ, and
(4.5) is proved.
(iii) and (iv): (i) and lemma 2.17 yield for all X ∈ L1:

‖X‖C,ρ = ‖|X|‖C,ρ ≥ E[|X|] · ‖1‖C,ρ =
1
C

E[|X|] =
1
C
‖X‖1. (4.8)

Consequently, ‖X‖C,ρ = 0 if and only if X = 0. Apparently, the properties of ‖ · ‖C,ρ

ensure that (Lρ, ‖ · ‖C,ρ) is a normed space. In order to prove that this space is complete
and thus a Banach space, let (Xn)n∈N be a Cauchy-sequence in (Lρ, ‖ · ‖C,ρ). Then by
(4.8), (Xn)n∈N is a Cauchy-sequence in (L1, ‖·‖1). Let X ∈ L1 be the unique ‖·‖1-limit of
(Xn)n∈N. Since ‖ · ‖C,ρ is l.s.c. on (L1, ‖ · ‖1), we obtain ‖X‖C,ρ ≤ lim infn→∞ ‖Xn‖C,ρ <
∞, i.e. X ∈ Lρ. Let ε > 0 and N(ε) ∈ N such that ‖Xn−Xk‖C,ρ ≤ ε for all k, n ≥ N(ε).
As (Xn −Xk) converges to X −Xk w.r.t. ‖ · ‖1 for n →∞, we obtain

‖X −Xk‖C,ρ ≤ lim inf
n→∞

‖Xn −Xk‖C,ρ ≤ ε for k ≥ N(ε).

Thus we may conclude that X is the ‖ · ‖C,ρ-limit of Xn, i.e. (Lρ, ‖ · ‖C,ρ) is complete.
For every 0 6= X ∈ L∞ we obtain

ρ

(
− C|X|
‖X‖∞

)
≤ ρ(−C) = C

by monotonicity and cash-invariance. Therefore, ‖X‖C,ρ ≤ 1
C ‖X‖∞ and L∞ ⊂ Lρ.

Now let X ∈ dom ρ, then ρ(−X−) < ∞ according to lemma 4.5, which implies that
−X− ∈ Lρ. Hence, if ρ is continuous from below, then, by proposition 4.4, there is a
X ∈ dom ρ such that essinf X = −∞, and −X− ∈ Lρ, so Lρ \ L∞ 6= ∅. Conversely,
suppose that X ∈ Lρ \ L∞, then, by definition of ‖ · ‖C,ρ, there is a k > 0 such that
ρ(−k|X|) < ∞. Since X 6∈ L∞, we have either essinf X = −∞ or esssupX = ∞ or
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both, which implies that (−k|X|) ∈ {Y ∈ L1 | essinf Y = −∞} ∩ dom ρ. But then ρ
must be continuous from below (proposition 4.4).
(v): Let X ∈ Lρ and let G be a sub-σ-algebra of F . Then, (i) and lemma 2.17 imply
that ‖E[X|G]‖C,ρ ≤ ‖X‖C,ρ, so E[X|G] ∈ Lρ.

The reason for introducing the Banach spaces (Lρ, ‖·‖C,ρ) is that we will prove that the
domain of ρ|Lρ has a non-empty interior. Hence, we obtain non-empty subgradients at
these interior points. The role of the variable C > 0 in the norms ‖·‖C,ρ will become clear
in (the proof of) theorem 4.13 in which we characterise the interior points of dom ρ|Lρ .

Lemma 4.11. Let ρ be continuous from below. Denote by Lρ∗ the dual space of Lρ and
by ‖ · ‖C,ρ∗ the operator norm corresponding to ‖ · ‖C,ρ . Then,

(i) L∞ ⊂ Lρ∗ ⊂ L1,

(ii) Lρ∗ and ‖ · ‖C,ρ∗ are law-invariant,

(iii) for every Z ∈ Lρ∗ and any sub-σ-algebra G ⊂ F we have E[Z|G] ∈ Lρ∗.

Proof. (i): Since Lρ ⊂ L1 and C‖ · ‖C,ρ ≥ ‖ · ‖1, every element Z ∈ L∞ = L1∗ defines a
continuous linear functional on Lρ via X 7→ E[XZ]. Thus, we may view L∞ as a subset
of Lρ∗. By L∞ ⊂ Lρ and C‖ · ‖C,ρ ≤ ‖ · ‖∞ on L∞ we must have Lρ∗ ⊂ L∞∗. Recall the
general property of normed spaces (see e.g. [2] lemma 6.14)

‖X‖C,ρ = sup
‖Z‖C,ρ∗=1

|E[ZX]|. (4.9)

Suppose we had Zµ ∈ Lρ∗ \ L1. W.l.o.g. ‖Zµ‖C,ρ∗ = 1. This Zµ viewed as a continuous
linear functional on L∞ corresponds to a finitely additive but not σ-additive bounded
signed measure µ on (Ω,F) such that P(A) = 0 implies µ(A) = 0 (see [21] theorem A.50).
Consider the bounded finitely additive measure |µ| on (Ω,F) given by

|µ|(A) = sup

{
k∑

i=1

|µ(Ai)| | A1, . . . , Ak ∈ F are disjoint subsets of A, k ∈ N

}
,

A ∈ F (for details on |µ| consult e.g. [12] section III.1). Since
∑k

i=1±1Ai ∈ Lρ for any
(disjoint) sets A1, . . . , Ak ∈ F , we infer from (4.9) that

|µ|(A) ≤ ‖1A‖C,ρ for every A ∈ F . (4.10)

As |µ| is not σ-additive, there exists a decreasing sequence of sets Bn ↓ ∅ such that
|µ|(Bn) ↓ ε > 0. We will show that

‖1Bn‖C,ρ → 0 (4.11)
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which contradicts (4.10) and thus shows that Lρ∗ ⊂ L1. To this end, note that for every
δ > 0 there is an N(δ) ∈ N such that ρ(−1Bn/δ) ≤ C for n ≥ N(δ) because −1Bn ↑ 0
and ρ is continuous from below. Hence, if n ≥ N(δ), then ‖1Bn‖C,ρ ≤ δ and (4.11) is
proved.
(ii): We claim that

Z ∈ Lρ∗ if and only if Z+, Z− ∈ Lρ∗. (4.12)

To this end, note that for every A ∈ F and X ∈ Lρ monotonicity of ρ yields ‖ ±
1AX‖C,ρ ≤ ‖X‖C,ρ and thus ±1AX ∈ Lρ. Now let Z ∈ Lρ∗. Choosing A = {Z ≥ 0}
shows that Z+ ∈ Lρ∗, because Lρ 3 X 7→ E[Z+X] = E[Z1{Z≥0}X] is a real-valued
linear function, and

|E[Z+X]| = |E[Z1{Z≥0}X]| ≤ ‖Z‖C,ρ∗‖X1{Z≥0}‖C,ρ ≤ ‖Z‖C,ρ∗‖X‖C,ρ.

Similar arguments yield Z− ∈ Lρ∗. The converse implication of (4.12) is trivial.
By (4.12) it suffices to prove the law-invariance property of Lρ∗ for the positive cone

Lρ∗
+ = {Z ∈ Lρ∗ | Z ≥ 0} only. Hence, let Z ∈ Lρ∗

+ . By law-invariance of ‖ · ‖C,ρ,
lemma A.2, and ‖X‖C,ρ = ‖|X|‖C,ρ we obtain

∞ > ‖Z‖C,ρ∗ = sup
‖X‖C,ρ=1

|E[ZX]|

= sup
‖X‖C,ρ=1

sup
Y∼|X|

E[ZY ]

= sup
‖X‖C,ρ=1

∫ 1

0
qZ(s)q|X|(s)ds (4.13)

in which the latter expression depends on the distribution of Z only. Now it is easily
verified that every Z̃ such that Z̃ ∼ Z defines a continuous linear functional on Lρ too.
The law-invariance of ‖Z‖C,ρ∗ for general Z ∈ Lρ∗ follows from a calculation similar to
(4.13), using the fact that ‖X‖C,ρ = ‖|X|1{Z≥0} − |X|1{Z<0}‖C,ρ.
(iii): Let G be a sub-σ-algebra of F and Z ∈ Lρ∗

+ . Then, lemmas 4.10 and 2.17 yield
E[E[Z|G]X] = E[ZE[X|G]] ≤ ‖Z‖C,ρ∗‖X‖C,ρ for every X ∈ Lρ

+. Since X ∈ Lρ if and
only if X+, X− ∈ Lρ, we conclude that E[Z|G] ∈ Lρ∗

+ which, in view of (4.12), completes
the proof.

In definition 2.1 we defined convex risk measures on Lp-spaces only. However, we
think it is obvious how to extend this definition to allow for more general classes of
model spaces such as Lρ-spaces, so we omit that here, and go on as if we had done so.

Lemma 4.12. Let ρ be continuous from below.

(i) The function ρ|Lρ is a law-invariant closed convex risk measure on Lρ. Moreover,
if ρ is coherent, then ρ|Lρ is a real-valued continuous coherent risk measure on Lρ.
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(ii) The dual function ρ|∗Lρ is law-invariant and �c-monotone (i.e. ρ|∗Lρ(Z) ≤ ρ|∗Lρ(Z̃)
whenever Z �c Z̃).

In lemmas 2.14 and 2.17 we proved results similar to (ii) for law-invariant closed convex
functions on Lp-spaces. Clearly, the same arguments hold for law-invariant closed convex
functions on Lρ. However, for the sake of completeness, in the following we give a short
proof of (ii) too.

Proof. (i): Obviously, ρ|Lρ is law-invariant, convex, cash-invariant and monotone. More-
over, ρ|Lρ is l.s.c. because, according to lemma 4.10(iii), if a sequence converges in
(Lρ, ‖ · ‖C,ρ), then this sequence converges in (L1, ‖ · ‖1) and ρ is l.s.c. on (L1, ‖ · ‖1).
Suppose that ρ is coherent. Then, ρ|Lρ is coherent too. Moreover, for every X ∈ Lρ there
is a k > 0 such that ρ(−|X|/k) ≤ 1. Hence, by positive homogeneity and monotonicity
we obtain that ρ(X) ≤ ρ(−|X|) ≤ k < ∞. In other words,

dom ρ|Lρ = int dom ρ|Lρ = Lρ.

We recall that any real-valued closed convex function on a Banach space is continuous
(see [14] corollary 2.5).
(ii): According to lemma A.2 and law-invariance of ρ we have that

ρ|∗Lρ(Z) = sup
X∈Lρ

(
supeX∼X

E[ZX̃]

)
− ρ(X) = sup

X∈Lρ

∫ 1

0
qX(s)qZ(s)ds− ρ(X) (4.14)

in which the latter expression only depends on the distribution of Z. Moreover, it is
proved in lemma 2.16 that Z �c Z̃ if and only if

∫ 1
0 qZ(s)f(s)ds ≤

∫ 1
0 q eZ(s)f(s)ds for all

increasing f : (0, 1) → R such that both integrals exist. This in conjunction with (4.14)
implies that ρ|∗Lρ(Z) ≤ ρ|∗Lρ(Z̃) whenever Z �c Z̃.

Theorem 4.13. Let ρ be continuous from below.

(i) For all X ∈ int dom ρ|Lρ, which is for all X ∈ Lρ in case ρ is coherent, there
exists a measurable function f : R → R− which is increasing on {FX > 0} such
that f(X) ∈ ∂ρ|Lρ(X) ⊂ δρ(X).

(ii) In particular,

if for X ∈ L1 there is ε > 0 such that −(1 + ε)|X| ∈ dom ρ, (4.15)

then X ∈ int dom ρ|Lρ. Moreover, if ρ is coherent and X ∈ L1, then X ∈
int dom ρ|Lρ = Lρ if and only if −|X| ∈ dom ρ.
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Proof. (i): Recall that any closed convex function on a Banach space is subdifferentiable
on the interior of its domain ([14] corollary 2.5 and proposition 5.2). Thus, for every
X ∈ int dom ρ|Lρ , which is for all X ∈ Lρ in case ρ is coherent (lemma 4.12(i)), there
exists Z ∈ ∂ρ|Lρ(X), which means that

ρ|Lρ(X) = E[ZX]− ρ|∗Lρ(Z). (4.16)

Since by Jensen’s inequality E[Z|X] �c Z and as ρ|∗Lρ preserves the concave order
(lemma 4.12), we have E[Z|X] ∈ ∂ρ|Lρ(X) too. Let f : R → R be a measurable function
such that f(X) = E[Z|X]. According to lemma 4.11 the space Lρ∗ is law-invariant, and
by lemma A.2

supeZ∼f(X)

E[XZ̃] =
∫ 1

0
qf(X)(s)qX(s)ds.

Combining these facts with the law-invariance of ρ|∗Lρ and the maximality of the right
hand side of (4.16) implies that we must have

E[f(X)X] =
∫ 1

0
qf(X)(s)qX(s)ds.

In view of lemma A.1 this can only hold if f can be chosen as an increasing function on
{FX > 0}. Since (4.16) is equivalent to

ρ(Y ) ≥ ρ(X) + E[Z(Y −X)] ∀Y ∈ Lρ, (4.17)

and since L∞ ⊂ Lρ, we conclude that ∂ρ|Lρ(X) ⊂ δρ(X).
(ii): If ‖X‖C,ρ < 1, then there exists a λ ∈ (0, 1) such that ρ(−|X|/λ) ≤ C, and by
convexity

1
λ

ρ(−|X|) ≤ ρ(−|X|/λ) ≤ C.

Thus ρ(X) ≤ ρ(−|X|) ≤ λC < ∞, that is

B :=
⋃
C>0

{X ∈ Lρ | ‖X‖C,ρ < 1} ⊂ int dom ρ|Lρ .

If there is a ε > 0 such that −(1 + ε)|X| ∈ dom ρ, then for λ := 1/(1 + ε) ∈ (0, 1) we
have ρ(−|X|/λ) = ρ(−(1 + ε)|X|) =: C < ∞, so X ∈ B. If ρ is coherent, then by (4.7)
X ∈ Lρ if and only if −|X| ∈ dom ρ. Now recall lemma 4.12(i).

Remark 4.14. In view of lemma 4.1 the reader might wonder why on the Banach space
(Lρ, ‖ · ‖C,ρ) it is possible that int dom ρ|Lρ 6= ∅ without ρ|Lρ being real-valued and
continuous and thus subdifferentiable on all of Lρ. The reason is that lemma 4.1 follows
from theorem 2.3(i), the proof of which relies on the fact that L∞ is dense in (L1, ‖ · ‖1).
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This, however, need not be true for (Lρ, ‖ · ‖C,ρ). In example 4.5.4 we show that for the
entropic risk measure Lρ corresponds to an Orlicz space for which it is known that L∞

is not dense. That is one of the reasons why many authors prefer Orlicz hearts (see e.g.
[9]) which are closed sub-spaces of Orlicz spaces such that L∞ is dense. However, Orlicz
hearts are in general much smaller than the corresponding Orlicz space. But we can also
imitate Orlicz hearts, i.e. shift to the closed subspace Mρ ⊂ Lρ given by

Mρ := {X ∈ L1 | ρ(−c|X|) < ∞ ∀c > 0}.

Then ρ|Mρ is a law-invariant real-valued continuous convex risk measure on Mρ, and thus
everywhere subdifferentiable (on Mρ). In case ρ is coherent, we have that Mρ = Lρ.
Nevertheless, in general the following inclusions hold

Mρ ⊂ {X ∈ L1 | X satisfies condition (4.15)} ⊂ Lρ,

and these inclusions may be strict (example 4.5.4). ♦

Remark 4.15. Since X ∈ int dom ρ|Lρ implies that (1 + ε)X ∈ dom ρ|Lρ for small
enough ε > 0, we have

int dom ρ|Lρ ⊂ {X ∈ L1 | X satisfies condition (4.4)}

in which the inclusion is strict unless Lρ = L1. ♦

4.3. Proofs of Lemma 4.7 and Theorem 4.8

Proof of lemma 4.7. Let, H ∈ L∞+ , and X ∈ L1 be bounded from below. Then, H +
(X ∧ n) ∈ dom ρ for all n ∈ N ∪ {∞} due to monotonicity of ρ. Again by monotonicity,
the sequence ρ(H +(X∧n)), n ∈ N, is decreasing and bounded from below by ρ(H +X).
We claim that

ρ(H + X) = lim
n→∞

ρ(H + (X ∧ n)). (4.18)

In order to prove this, suppose for the moment that there is a K > 0 such that
limn→∞ ρ(H + (X ∧ n)) > K > ρ(H + X). Note that since H ≥ 0, we have that

lim
n→∞

ρ(H + X ∧ n) = lim
n→∞

ρ((H + X) ∧ n).

Since (H + X) ∧ n ∈ L∞ ⊂ int dom ρ|Lρ , according to theorem 4.13, for each n ∈ N
there is a Zn ∈ δρ((H + X) ∧ n) such that Zn = fn(X + H) for a measurable function
fn : R → R− which is increasing on {FH+X > 0}. Hence, K < ρ((H + X) ∧ n) ≤
E[Zn((H + X)∧n)]− ρ∗∞(Zn), because ρ∗∞(Zn) ≤ ρ|∗Lρ(Zn). As X + H is bounded from
below we infer that

ρ∗∞(Zn) ≤ E[((H + X) ∧ n)Zn]− ρ((H + X) ∧ n)
≤ − essinf(H + X)− ρ(H + X) =: r,
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so Zn ∈ Qr for all n ∈ N. Since Qr is weakly sequentially compact (proposition 4.4) and
L1(Ω, σ(H + X), P) is weakly complete, we may assume, by considering a subsequence
if necessary, that (Zn)n∈N converges weakly to some Z ∈ Qr and that Z = f(H +X) for
a measurable function f : R → R−. Since the Hahn-Banach separation theorem implies
that there is a sequence of convex combinations of the Zn which converges P-a.s. to Z
([36] corollary III.3.9), we may also assume that f is increasing on {FX+H > 0}. Let Gk,
k ∈ N, be a sequence of sub-σ-algebras of F such that E[X + H|Gk] ∈ L∞ for all k ∈ N
and limk→∞E[X + H|Gk] = X + H in L1 and P-a.s. The following estimation shows
that the sequence (ZE[X + H|Gk])k∈N is uniformly integrable. To this end let a ∈ R
such that FX+H(a) > 0. Then,

|ZE[X + H|Gk]| ≤ |Z|‖(X + H) ∧ a‖∞ + |f(a)|E[|X + H| |Gk] =: Yk,

because |f | is decreasing on {FX+H > 0}. Since (Yk)k∈N is uniformly integrable, so is
(ZE[X + H|Gk])k∈N. Consequently, we obtain

E[Z(H + X)]− ρ∗∞(Z) = lim
k→∞

E[ZE[H + X|Gk]]− ρ∗∞(Z)

≤ lim
k→∞

ρ∞(E[H + X|Gk])

= ρ(H + X) < K (4.19)

in which the last equality is due to lemma 2.17 and l.s.c. of ρ. On the other hand,
we observe that for all k ≥ n we have E[Zk((H + X) ∧ n)] − ρ∗∞(Zk) > K (because
(H +X)∧k ≥ (H +X)∧n). Hence, by monotone convergence and l.s.c. of ρ∗∞ we obtain

E[Z(H + X)]− ρ∗∞(Z) = lim
n→∞

E[Z((H + X) ∧ n)]− ρ∗∞(Z)

≥ lim
n→∞

lim sup
k→∞

E[Zk((H + X) ∧ n)]− ρ∗∞(Zk)

≥ K. (4.20)

Clearly, (4.20) contradicts (4.19), and thus (4.18) is proved. For general H ∈ L∞, and
X ∈ L1 monotonicity and l.s.c. of ρ imply that ρ(H + X) = limm→∞ ρ(H + (X ∨−m)).
In conjunction with (4.18) and cash-invariance we obtain

ρ(H + X) = lim
m→∞

ρ((H + ‖H‖∞) + (X ∨ −m)) + ‖H‖∞
= lim

m→∞
lim

n→∞
ρ(H + (n ∧X ∨ −m)).

Proof of theorem 4.8. Let X ∈ L1 and suppose that there is an ε > 0 such that (1+ε)X ∈
dom ρ. Then, in particular, −(1 + ε)X− ∈ dom ρ (lemma 4.5), and thus −X− ∈
int dom ρ|Lρ (theorem 4.13). Let

ρX+(U) := ρ(X+ + U), U ∈ Lρ.
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It is easily verified that ρX+ is a closed convex risk measure on (Lρ, ‖ · ‖C,ρ). Note that
monotonicity implies dom ρ|Lρ ⊂ dom ρX+ . Hence, −X− ∈ int dom ρX+ which implies
that ∂ρX+(−X−) 6= ∅ ([14] corollary 2.5 and proposition 5.2). Let Z ∈ ∂ρX+(−X−),
i.e.

ρX+(−X−) = E[−ZX−]− ρ∗X+(Z). (4.21)

We claim that

(ZX+) ∈ L1 and ρ∗X+(Z) ≥ E[−ZX+] + ρ∗∞(Z). (4.22)

Suppose we knew (4.22). Then, (4.21) yields

ρ(X) = ρX+(−X−) ≤ E[ZX]− ρ∗∞(Z),

or in other words Z ∈ δρ(X). In order to verify (4.22), in a first step we compute

sup
U∈L∞

E[ZU ]− ρ(X+ + U) = sup
U∈L∞

lim
n→∞

E[ZU ]− ρ((X+ ∧ n) + U)

≤ lim inf
n→∞

sup
U∈L∞

E[ZU ]− ρ((X+ ∧ n) + U)

≤ sup
U∈L∞

E[ZU ]− ρ(X+ + U) (4.23)

in which the first equality follows from lemma 4.7. Hence, all inequalities in (4.23) must
in fact be equalities. Secondly, we obtain that

ρ∗X+(Z) ≥ sup
U∈L∞

E[ZU ]− ρ(X+ + U)

= lim inf
n→∞

sup
U∈L∞

E[ZU ]− ρ((X+ ∧ n) + U)

= lim inf
n→∞

sup
U∈L∞

E[Z(U − (X+ ∧ n))]− ρ(U)

= E[−ZX+] + ρ∗∞(Z),

in which the first equality is due to our first step, and the last equality follows from
monotone convergence. Thus, as ρ∗X+(Z) < ∞, we must have that E[−ZX+] < ∞ and
ρ∗∞(Z) < ∞, and (4.22) is proved.

It remains to be shown that Z may be chosen as an increasing function of X. To
this end, note that according to lemma 4.6 we have ρ(X) = E[ZX] − ρ∗∞(Z). By
lemma 2.17, which implies that ρ(X) ≤ E[E[Z|X]X]− ρ∗∞(E[Z|X]) and thus E[Z|X] ∈
δρ(X) (lemma 4.6), we may assume that Z = f(X) for a measurable function f : R →
R−, and still Z ∈ Lρ∗ (lemma 4.11(ii)). Moreover, since −X− ∈ Lρ, and Lρ∗ is law-
invariant (lemma 4.11(iii)) we have that (−Z̃X−) ∈ L1 for all Z̃ ∼ Z. Consequently,
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E[Z̃X] is well-defined for all Z̃ ∼ Z, so we may apply lemma A.2 in the following.
Recalling that −(qX)− = q−X− we obtain

−∞ < E[ZX] ≤
∫ 1

0
qZ(s)qX(s)ds ≤

∫ 1

0
qZ(s)q−X−(s)ds < ∞

in which we applied lemmas A.1 and A.2. If E[ZX] <
∫ 1
0 qZ(s)qX(s)ds, then according

to lemma A.2 there would be a Z̃ ∼ Z such that E[Z̃X] > E[ZX]. Since Z̃X ∈ L1

(lemma A.1), by law-invariance of ρ∗∞, and by lemma 4.6, we would have that

ρ(X) = E[ZX]− ρ∗∞(Z) < E[Z̃X]− ρ∗∞(Z̃) ≤ ρ(X)

which is a contradiction. Therefore, E[XZ] =
∫ 1
0 qZ(s)qX(s)ds, so f may be chosen as

an increasing function on {FX > 0} (lemma A.1).

4.4. Optimal Risk Sharing

In this section we pick up the optimal risk sharing problem from chapter 3. We consider
n agents with initial endowments Xi ∈ L1, whose preferences, in contrast to the more
general setting of chapter 3, are represented by law-invariant closed convex risk measures
ρi on L1 which are continuous from below, i = 1, . . . , n. We write

X := X1 + . . . + Xn

for the aggregate endowment. In this setting, theorem 3.4 extends as follows.

Theorem 4.16. The convolution �n
i=1ρi is a law-invariant closed convex risk measure

on L1 which is continuous from below. Its restriction to L∞ satisfies

(�n
i=1ρi)∞ = �n

i=1((ρi)∞). (4.24)

Moreover, for every X ∈ L1, there exists a comonotone optimal allocation, and the first
order condition

δ�n
i=1ρi(X) =

n⋂
i=1

δρi(Yi) (4.25)

holds for every comonotone optimal allocation (Y1, . . . , Yn) of X. In particular, if there
is ε > 0 such that

(1 + ε)X ∈
n∑

i=1

dom ρi (= dom �n
i=1ρi), (4.26)

then δ�n
i=1ρi(X) 6= ∅.
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Proof. According to corollary 3.6 �n
i=1ρi is a law-invariant closed convex risk measure

on L1 admitting a comonotone optimal allocation (Y1, . . . , Yn) for any X ∈ L1. The
continuity from below of �n

i=1ρi follows from proposition 4.4 and lemma 3.1. The relation
(4.24) follows from corollary 3.16.

As for (4.25), let (Y1, . . . , Yn) be any comonotone optimal allocation of X. Suppose
Z ∈ δ�n

i=1ρi(X). Then

ρ1(Y1) + . . . + ρn(Yn) = �n
i=1ρi(X) = E[ZX]− (�n

i=1ρi)∗∞(Z)

=
n∑

i=1

E[ZYi]− (ρi)∗∞(Z)

by (4.24), lemmas 3.1 and 4.6, and the fact that ZYi ∈ L1 due to comonotonicity of
the allocation. Now lemma 4.6 implies that Z ∈

⋂n
i=1 δρi(Yi). Conversely, let Z ∈⋂n

i=1 δρi(Yi), then again by (4.24), and lemmas 3.1 and 4.6

�n
i=1ρi(X) =

n∑
i=1

ρi(Yi) =
n∑

i=1

E[ZYi]− (ρi)∗∞(Z)

= E[ZX]− (�n
i=1ρi)∗∞(Z).

Whence Z ∈ δ�n
i=1ρi(X). The final statement of theorem 4.16 is simply an application

of theorem 4.8.

Note that the statement (4.25) may be void (∅ = ∅).
The subgradients δ�n

i=1ρi(X) induce equilibrium pricing rules as follows. We identify
each Z ∈ PR := −P∞∗ ∩ L1 with the absolutely continuous probability measure Q � P
given by dQ/dP = Z, and with the corresponding pricing rule

L1(Q) := L1(Ω,F , Q) 3 Y 7→ EQ[Y ].

Definition 4.17. An allocation (Ỹ1, . . . , Ỹn) of X together with a pricing rule Q ∈ PR
is called an equilibrium if Xi, Ỹi ∈ L1(Q), EQ[Ỹi] ≤ EQ[Xi], and

ρi(Ỹi) = inf{ρi(Yi) | Yi ∈ L1(Q) ∩ L1, EQ[Yi] ≤ EQ[Xi]}

for all i = 1, . . . , n.

For a thorough discussion of equilibria with respect to convex risk measures we refer
to [16]. The following theorem establishes the connection between equilibria, optimal
allocations and generalised subgradients.

Theorem 4.18. The following conditions are equivalent:

(i) There exists an equilibrium (Ỹ1, . . . , Ỹn; Q).
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(ii) There exists a comonotone equilibrium (Ỹ1, . . . , Ỹn; Q).

(iii) There is Z ∈ δ�n
i=1ρi(X) such that ZXi ∈ L1 for all i = 1, . . . , n.

Moreover, if (Ỹ1, . . . , Ỹn) is a comonotone optimal allocation of X and (iii) holds, then
(Ỹ1 + c1, . . . , Ỹn + cn; Q) where dQ/dP = −Z and ci = EQ[Xi − Ỹi] is an equilibrium.

Proof. Let Q � P be a probability measure on (Ω,F) such that Xi ∈ L1(Q) for all
i = 1, . . . , n. We claim that

inf
Y ∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ) = E[ZXi]− (ρi)∗∞(Z) (4.27)

where Z := −dQ/dP. In order to verify this, note that by cash-invariance of ρi it is
obvious that the infimum on the left-hand since of (4.27) equals the infimum taken over
those Y ∈ L1(Q) ∩ L1 satisfying EQ[Y ] = EQ[Xi]. Now for every Y ∈ L1(Q) ∩ L1 such
that EQ[Y ] = EQ[Xi] lemma 4.7 and monotone convergence imply that

ρi(Y ) = lim
m→∞

lim
n→∞

ρi((Y + ∧ n)− (Y − ∧m))

≥ lim
m→∞

lim
n→∞

E[Z((Y + ∧ n)− (Y − ∧m))]− (ρi)∗∞(Z)

= E[ZY ]− (ρi)∗∞(Z) = E[ZXi]− (ρi)∗∞(Z).

Hence, we have established ≥ in (4.27). Moreover, since EQ[Y + EQ[Xi − Y ]] = EQ[Xi]
for every Y ∈ L1(Q) and by cash-invariance we obtain

inf
Y ∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ) = inf
Y ∈L1(Q)∩L1

ρi(Y + EQ[Xi − Y ])

= EQ[−Xi]− sup
Y ∈L1(Q)∩L1

(
EQ[−Y ]− ρi(Y )

)
≤ E[ZXi]− sup

Y ∈L∞

(
E[ZY ]− ρi(Y )

)
= E[ZXi]− (ρi)∗∞(Z),

and (4.27) is proved.
(i) ⇔ (ii): suppose there exists an equilibrium (Ỹ1, . . . , Ỹn; Q). Let (Y1, . . . , Yn) be any
comonotone optimal allocation of X, which exists according to theorem 4.16. Then Yi ∈
L1(Q) by comonotonicity and the fact that X ∈ L1(Q) by definition of an equilibrium.
By rebalancing the cash, this is by adding ci = EQ[Xi − Yi] to each Yi, we achieve that
EQ[Yi + ci] = EQ[Xi] for all i = 1, . . . , n, and the modified allocation (Y1 + c1, . . . , Yn +
cn) is still comonotone and optimal due to

∑n
i=1 ci = 0 and cash-invariance of the ρi.

Consequently, we may w.l.o.g. assume that (Y1, . . . , Yn) satisfies EQ[Yi] = EQ[Xi]. But
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then ρi(Ỹi) ≤ ρi(Yi) for each i = 1, . . . , n (definition 4.17), which can only hold if
(Ỹ1, . . . , Ỹn) is itself optimal and ρi(Ỹi) = ρi(Yi). Hence, (Y1, . . . , Yn, Q) is a comonotone
equilibrium. The converse implication is trivial.
(ii) ⇒ (iii): in the first part of the proof, we established that the allocation given by any
equilibrium must be optimal. Hence, in view of (4.27), and lemma 3.1 we conclude that

�n
i=1ρi(X) =

n∑
i=1

ρi(Ỹi) =
n∑

i=1

E[ZXi]− (ρi)∗∞(Z)

= E[ZX]− (�n
i=1ρi)∗∞(Z)

where Z := −dQ/dP. Consequently, we have proved that Z ∈ δ�n
i=1ρi(X) (lemma 4.6).

(iii) ⇒ (ii): suppose there is Z ∈ δ�n
i=1ρi(X) and let Q be given by dQ/dP := −Z.

Moreover, let (Y1, . . . , Yn) be any comonotone optimal allocation of X such that EQ[Yi] =
EQ[Xi] for all i = 1, . . . , n (theorem 4.16 and rebalancing the cash). The equality (4.25)
implies that Z ∈ δρi(Yi) for all i = 1, . . . , n. This in conjunction with (4.27) and
lemma 4.6 yields

ρi(Yi) = E[ZYi]− (ρi)∗∞(Z) = E[ZXi]− (ρi)∗∞(Z) = inf
Y ∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ),

so we infer that
ρi(Yi) = inf

Y ∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ).

Consequently, (Y1, . . . , Yn; Q) is an equilibrium. This also proves the closing statement
of the theorem.

Finally, we provide two sufficient conditions for the existence of an equilibrium.

Lemma 4.19. Suppose there is ε > 0 such that (1 + ε)X ∈
∑n

i=1 dom ρi. If either

∀ P̃ ∈ PR : X ∈ L1(P̃) ⇔ Xi ∈ L1(P̃) for all i = 1, . . . , n (4.28)

or
Xi ∈ L�n

i=1ρi for all i = 1, . . . , n, (4.29)

then there exists an equilibrium.

Proof. In case of (4.28) combine theorems 4.16 and 4.18. In case of (4.29) recall the
proof of theorem 4.8 too.

Condition (4.28) is always satisfied if Xi ∈ L∞, i = 1, . . . , n, or if the initial risks Xi

may be somehow controlled by the aggregate risk X, which should be satisfied in most
interesting cases. Condition (4.29) will be applied in example 4.5.2.
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4.5. Examples

In example 4.5.1 we show that a law-invariant closed convex risk measure ρ on L1 which
is not continuous from below may have empty generalised subgradients even for bounded
risks. Examples 4.5.2, 4.5.3, and 4.5.4 illustrate our results, in particular theorems 4.8,
4.13, and 4.18 by means of Average Value at Risks, semi-deviation risk measures and
entropic risk measures. In examples 4.5.2 (Average Value at Risk) and 4.5.3 (Semi-
Deviation Risk Measure) the spaces Lρ will coincide with some Lebesgue space Lp which
are a subclass of Orlicz hearts. Orlicz hearts are proposed as model spaces for convex
risk measures in [9] in an attempt to enlarge the model space from L∞ to a space
containing unbounded risks. Given a continuous convex function Φ : [0,∞) → [0,∞)
with Φ(x) = 0 ⇔ x = 0, the set

LΦ := {X ∈ L0 | ∃c > 0 : E[Φ(|X|/c)] < ∞} (4.30)

is the Orlicz space generated by Φ whereas

MΦ := {X ∈ L0 | ∀c > 0 : E[Φ(|X|/c)] < ∞} (4.31)

is the corresponding Orlicz heart. LΦ is a Banach space under the Luxemburg norm

‖X‖Φ := inf{λ > 0 | E[Φ(|X|/λ)] ≤ 1}, (4.32)

and MΦ is a closed subspace of LΦ such that L∞ is dense. For details on Orlicz spaces and
hearts please consult [30]. We will elaborate on the connection between ρ respectively
Lρ and some Orlicz space/heart. In example 4.5.4, in which we study the entropic risk
measure, we will see that Lρ corresponds to an Orlicz space which is strictly larger
than the corresponding Orlicz heart, and we will find that the set of points satisfying
condition (4.15) is also strictly larger than this Orlicz heart. Example 4.5.5 then shows
that, although the above mentioned prominent examples of law-invariant convex risk
measures are all linked to certain Orlicz spaces, the class of Lρ-spaces covers a far
greater variety of law-invariant Banach spaces.

The section closes with Example 4.5.6 which illustrates some of the technical difficulties
in the proof of theorem 4.8, and thus motivates the way of proof we chose.

4.5.1. Essential Infimum

Let ρ = − essinf and let X ∈ L∞ be such that P(X = essinf X) = 0. Then δρ(X) = ∅,
because for every probability measure Q � P we have that Q(X = essinf X) = 0.
Supposing we had −dQ/dP ∈ δρ(X), then EQ[X − essinf X] = 0, which would imply
that X = essinf X Q-a.s., and thus would be a contradiction. Hence, δρ(X) = ∅,
although ∂ρ∞(X) 6= ∅.
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4.5.2. Average Value at Risk

Consider the Average Value at Risk (AVaRα) at level α ∈ (0, 1]. We know that AVaRα

is continuous on L1 (example 2.20) and thus everywhere subdifferentiable by lemma 4.1.
Clearly, LAVaRα = L1, and in view of lemma 4.10 and continuity w.r.t. ‖ · ‖1 it is easily
verified that ‖ · ‖C,AVaRα and ‖ · ‖1 are equivalent. Thus Lρ∗ = L∞. According to
theorem 4.13 for every X ∈ L1 there is a fα : R → R− which is increasing on {FX > 0}
such that fα(X) ∈ ∂ AVaRα(X) ⊂ δ AVaRα(X). It is proved in [21] theorem 4.47 and
remark 4.48 that

fα(X) = − 1
α

(1{X<qX(α)} − κ1{X=qX(α)})

where κ is defined as

κ :=

{
0 if P(X = qX(α)) = 0,
α−P(X<qX(α))

P(X=qX(α)) otherwise

does the job. Note that fα is indeed increasing, does depend on X, and is not continuous.
Let βi ∈ (0, 1] for i = 1, . . . , n, and let γ := maxi=1,...,n βi. According to example 3.7

�n
i=1 AVaRβi

= AVaRγ .

Hence, as we are in the situation of (4.29), and assuming w.l.o.g. that β1 = γ, we
obtain that for any initial risks Xi ∈ L1 and X :=

∑n
i=1 Xi an equilibrium is given by

(X + c1, c2, . . . , cn; Q) where dQ/dP = −fγ(X) and c1 = EQ[X1 −X], ci = EQ[Xi] for
i = 2, . . . , n.

4.5.3. Semi–Deviation Risk Measure

Let p ∈ [1,∞). Devp (examples 2.22 and 3.9) is a law-invariant closed coherent risk
measure on L1 which is continuous from below (proposition 4.4 (iv)). In fact Devp

is continuous if restricted to (Lp, ‖ · ‖p). It easily verified that LDevp = Lp, and that
‖ · ‖C,Devp and ‖ · ‖p are equivalent. Thus we have that LDevp ∗ = Lq for q ∈ (1,∞]
such that 1

p + 1
q = 1. By theorem 4.8, for every X ∈ dom ρ there is a f : R → R−

which is increasing on {FX > 0} such that f(X) ∈ δ Devp(X) ∩ Lq (the fact that
f(X) ∈ LDevp ∗ = Lq is shown in the proof of theorem 4.8). It is known (see e.g. [1] or
[15]) that

f(X) =

−1 if X = constant,

−1 + δ E[((X−E[X])−)p−1]−((X−E[X])−)p−1

‖(X−E[X])−‖p−1
p

otherwise
(4.33)

does the job. Suppose agent 1 uses Devp and agent 2 Devr for 1 ≤ p ≤ r < ∞ and that
the initial risks satisfy X1, X2 ∈ Lp. Then, in view of example 3.9 and theorem 4.18, we
have that (X + c1, c2; Q) is an equilibrium, where X = X1 + X2, −dQ/dP is given by
(4.33), and c1 = EQ[X1 −X], c2 = EQ[X2]. The extension of this two-agent case to the
n-agent case is obvious.
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4.5.4. Entropic Risk Measure

Recall the entropic risk measure

Entrβ(X) =
1
β

log E[e−βX ], X ∈ L1,

with parameter β > 0 from example 2.21. For simplicity we consider ρ := Entr1. Then,
ρ∗∞(Z) = E[−Z log(−Z)] for every Z ∈ P∞∗ ∩ L1. In the following we illustrate the
quality of condition (4.4). To this end, assume that X ∈ L1 satisfies condition (4.4),
i.e. there exists k > 1 such that kX ∈ dom ρ. Then we have Z := − e−X

E[e−X ]
∈ L1, and

XZ ∈ L1 too, because |X|e−X ≤ C + e−kX for some constant C > 0 and E[e−kX ] < ∞
by assumption. It is proved in [21] lemma 3.29 and example 4.33 that

ρ(X) = E[ZX]− ρ∗∞(Z),

and thus Z ∈ δρ(X) by lemma 4.6. Obviously, Z = f(X) for an increasing function
f : R → R−. Now we show that condition (4.4) is in some sense the best we can expect.
For this purpose, consider an X ∈ L1 being distributed according to

FX(x) = C ·
∫ −1∧x

−∞

eu

u2
du

for an appropriate constant C > 0. It is easily verified that X ∈ dom ρ and X ∈ Lρ, but
(1 + ε)X 6∈ dom ρ for all ε > 0. We claim that δρ(X) = ∅. Suppose we had δρ(X) 6= ∅.
Then, according to lemma 4.20 below, this would imply that Z := − e−X

E[e−X ]
∈ δρ(X).

But this cannot hold because

E[ZX] =
E[−Xe−X ]

E[e−X ]
= ∞,

so we must have δρ(X) = ∅.
Next we elaborate on the connection with Orlicz spaces and Orlicz hearts. To this end,

we let Φ(x) = exp(x)− 1, x ≥ 0, and define LΦ, MΦ, and ‖ · ‖Φ as in (4.30), (4.31), and
(4.32) respectively. It is well-known that L∞ ⊂ LΦ is not dense and that the Orlicz heart
MΦ $ LΦ is the ‖·‖Φ-closure of L∞ in LΦ. Note that Lρ = LΦ, and that ‖·‖Φ = ‖·‖log 2,ρ.
In search for subgradients, as an alternative to the space Lρ, one could think of choosing
the Orlicz heart MΦ, because ρ|MΦ is closed and real-valued, and thus continuous and
everywhere subdifferentiable ([14] corollary 2.5 and proposition 5.2). However, in doing
so, we would neglect a lot of points at which ρ is generalised subdifferentiable. In fact,
we have that

MΦ $ int dom ρ|Lρ $ {X ∈ L1 | X satisfies condition (4.4)}. (4.34)
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The fist inclusion of (4.34) follows from theorem 4.13(ii). The fact that this inclusion
must be strict is easily verified by considering any X being distributed according to

FX(x) = eλx · 1(−∞,0](x) for λ > 1.

On the one hand, −k|X| ∈ dom ρ for every k ∈ (1, λ), so X ∈ int dom ρ|Lρ by (4.15).
On the other hand, for c ≥ λ we have E[Φ(c|X|)] = ∞, so X 6∈ MΦ. The last strict
inclusion in (4.34) is justified in remark 4.15.

Suppose that the preferences of agent 1 are given by Entrβ and those of agent 2 by
Entrγ for β, γ > 0. Let X1, X2 be the initial endowments and X := X1+X2 the aggregate
endowment such that X1e

−αX , X2e
−αX ∈ L1 and δ Entrα(X) 6= ∅ for α := βγ

β+γ . Then,
in view of theorem 4.18, example 3.8, lemma 4.20 and proposition 3.13, the unique
equilibrium is(

γ

β + γ
X + c1,

β

β + γ
X + c2; Q

)
in which Q is given by

dQ
dP

=
e−αX

E [e−αX ]
,

and c1 = EQ[X1 − γ
β+γ X], c2 = EQ[X2 − β

β+γ X].

Lemma 4.20. Let β > 0. We have

∀Y ∈ L1 : Z ∈ δ Entrβ(Y ) ⇒ Z = − e−βY

E[e−βY ]
.

Proof. Let Y ∈ dom Entrβ and define the probability measure P̃ ≈ P by

dP̃
dP

=
e−βY

E[e−βY ]
.

Suppose there is a Z ∈ δ Entrβ(Y ). Then, dQ
dP = −Z defines a probability measure

Q � P, and we have that

Entrβ(Y ) = EQ[−Y ]− 1
β

EQ

[
log

dQ
dP

]
(4.35)

in which both EQ[−Y ] < ∞ and EQ[log dQ
dP ] < ∞ (lemma 4.6). Note that

log
dQ
dP

= log
dQ
dP̃

+ log
e−βY

E[e−βY ]
= log

dQ
dP̃

− βY − β Entrβ(Y ),

and thus
βY + β Entrβ(Y ) + log

dQ
dP

= log
dQ
dP̃

. (4.36)

Since the left hand side of (4.36) is Q-integrable, we obtain log dQ
deP ∈ L1(Q) and

Entrβ(Y )−
(

EQ[−Y ]− 1
β

EQ

[
log

dQ
dP

])
=

1
β

EQ

[
log

dQ
dP̃

]
.

By (4.35) we conclude that EQ[log dQ
deP ] = 0 which is equivalent to Q = P̃.
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4.5.5. The Variety of the Lρ-spaces

The spaces Lρ of the preceding examples all corresponded to Orlicz spaces. This is no
suprise since the presented risk measures are all closely connected to some Orlicz space
generating function. However, as we should expect, this is not the case in general. In
this example we will show that Lρ might almost be any law-invariant Banach space of
random variables. To this end, let (L, ‖ · ‖L) be a Banach space satisfying the following
conditions:

(i) ‖ · ‖L : L1 → [0,∞] is a law-invariant closed (w.r.t. ‖ · ‖1) sublinear function such
that ‖X‖L = ‖|X|‖L and |X| ≥ |Y | ⇒ ‖X‖L ≥ ‖Y ‖L,

(ii) R ⊂ L = {X ∈ L1 | ‖X‖L < ∞}.

Consider the law-invariant closed coherent risk measure ρ on L1 given by

ρ(X) = E[−X] +
1

‖1‖L
‖(X − E[X])−‖L, X ∈ L1.

It is easily verified that Lρ = L. Note that (L, ‖ · ‖L) is not necessarily an Orlicz space.
Conditions (i) and (ii) are for instance satisfied by any Lorentz space (see [30] section 10.3
for a definition) which do not coincide with Orlicz spaces in general ([30] theorem 10.3.3
and [28]). A concrete example is the space given by

‖X‖L =
1
2

∫ 1

0

q|X|(s)√
1− s

ds, X ∈ L1.

4.5.6. An Example Illustrating Difficulties in the Proof of Theorem 4.8

The seemingly simplest approach to proving theorem 4.8 is trying to exploit the continu-
ity from below (proposition 4.4) directly. The idea is to fix some sequence (Z̃n)n∈N ⊂ L1

such that ρ(X) = limn→∞E[Z̃nX] − ρ∗∞(Z̃n) and trying to ensure that (Z̃n)n∈N ⊂ Qr

for some r ∈ R so that Z̃n converges σ(L1, L∞)-weakly to some Z̃ ∈ Qr. Provided the
strategy works out so far, it may seem that Z̃ is a good candidate for an element in
δρ(X). However, in this example we will see that in general this approach fails. To this
end, let (Ω,F , P) = ((0, 1],B(0, 1], λ) where B(0, 1] is the Borel-σ-algebra over (0, 1] and
λ denotes the Lebesgue-measure restricted to B(0, 1]. Let the probability measures Qn

be given by
dQn

dP
= n1(0, 1

n2 ] +
n

n + 1
1( 1

n2 ,1],

and let Z̃n := −dQn/dP, n ∈ N. Moreover, let

Q := {Z ∈ L∞ | ∃n ∈ N : Z ∼ Z̃n},
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and define a law-invariant closed coherent risk measure on L1 by

ρ(X) := sup
Z∈Q

E[ZX] = sup
Z∈Q

∫ 1

0
qX(s)qZ(s) ds, X ∈ L1,

where the last equality, and thus the law-invariance of ρ, follows from law-invariance of
Q and lemma A.2. Note that the following computations also imply that ρ is continuous
from below (proposition 4.4). Consider the point Y (ω) := − 1√

ω
, ω ∈ (0, 1], in L1. Since

the function Y is increasing, it is immediate that

sup
Z∼ eZn

E[ZY ] = E[Z̃nY ] =
4n

n + 1

and thus
ρ(Y ) = lim

n→∞

4n

n + 1
= 4.

Note that the sequence Z̃n converges σ(L1, L∞)-weakly to Z̃ := −1, and that E[Z̃Y ] = 2.
Hence, E[Z̃Y ] < ρ(Y ), so Z̃ 6∈ δρ(Y ), although we know that δρ(Y ) 6= ∅ by theorem 4.8.
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A.1. Hardy-Littlewood Inequalities

Lemma A.1 (theorem A.24 in [21]). For any two random variables X and Z we have∫ 1

0
qX(1− s)qZ(s)ds ≤ E[XZ] ≤

∫ 1

0
qX(s)qZ(s)ds,

provided that the integrals are well-defined. Moreover, if Z = f(X) for a measurable
function f : R → R and the upper(lower) bound is finite, then the upper(lower) bound is
attained if and only if f can be chosen as an increasing(decreasing) function on either
{FX > 0} if Z is bounded from above, or on {0 < FX < 1} else.

The following lemma is an extension of lemma 4.55 in [21]. For the sake of completeness
we provide a self-contained proof.

Lemma A.2. Let X, Z ∈ L1.

(i) If E[X̃Z] is well-defined for every X̃ ∼ X and if
∫ 1
0 |qX(s)qZ(s)|ds < ∞, then

supeX∼X

E[ZX̃] =
∫ 1

0
qX(s)qZ(s)ds. (A.1)

(ii) In particular, condition (i) is satisfied if (X̃Z) ∈ L1 for all X̃ ∼ X.

Proof. step 1. Suppose the distribution function FZ of Z is continuous. Then U :=
FZ(Z) has a uniform distribution on (0, 1) and Z = qZ(U) P-a.s.. For X̄ := qX(U) ∼ X
we have that

E[|X̄||Z|] = E[|qX(U)||qZ(U)|] =
∫ 1

0
|qX(s)||qZ(s)|ds. (A.2)

Thus, if E[X̃Z] is well-defined for every X̃ ∼ X and if
∫ 1
0 |qX(s)qZ(s)|ds < ∞, then

(A.1) follows from

E[X̄Z] =
∫ 1

0
qX(s)qZ(s) ds

and lemma A.1. Moreover, if (X̃Z) ∈ L1 for all X̃ ∼ X, then E[X̃Z] is well-defined for
every X̃ ∼ X, and

∫ 1
0 |qX(s)qZ(s)|ds < ∞ follows from (A.2).
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step 2. Now suppose Z has no continuous distribution. Denote by D the countable set
of all z ∈ R such that P[Z = z] > 0. W.l.o.g. (by adding a constant to Z if necessary) we
may assume that 0 6∈ D. Let Az := {Z = z}, z ∈ D. Since (Ω,F , P) contains no atoms,
for each z ∈ D there is a random variable Uz being uniformly distributed on (0, |z|2 ∧ 1)
under the measure P(· | Az). We claim that the distributions of

Zn := Z − 1
n

∑
z∈D

sgn(z)Uz1Az , n ∈ N,

are continuous. Indeed, for any y ∈ R

P(Zn = y) = P(Zn = y, Z 6∈ D) +
∑
z∈D

P(Z = z, Uz = sgn(z)n(z − y))

= P(Z = y, Z 6∈ D) +
∑
z∈D

P(Az)P(Uz = sgn(z)n(z − y) | Az)

= 0 .

Note that Z± − 1 ≤ Z±n ≤ Z±. Hence, for all n ∈ N and for every X̃ ∼ X

• E[X̃Z] is well-defined if and only if E[X̃Zn] is well-defined,

• (X̃Z) ∈ L1 if and only if (X̃Zn) ∈ L1, and

•
∫ 1
0 |qZ(s)qX(s)|ds < ∞ if and only if

∫ 1
0 |qZn(s)||qX(s)|ds < ∞.

Furthermore, we observe that Zn converges to Z P-a.s. and in L1. So in particular,
the respective quantile functions converge almost everywhere. Therefore, the sequence
(qXqZn)n∈N converges almost everywhere to the integrable function qXqZ , and we have
|qXqZn | ≤ |qXqZ |. Consequently, the dominated convergence theorem in combination
with step 1 yields∫ 1

0
qX(s)qZ(s) ds = lim

n→∞

∫ 1

0
qX(s)qZn(s) ds

= lim
n→∞

supeX∼X

E[X̃Zn] = supeX∼X

E[X̃Z]

where the last equality follows from

|E[X̃Zn]− E[X̃Z]| ≤ 1
n
‖X‖1 for all X̃ ∼ X such that X̃Z ∈ L1.

Hence, (i) is proved. In order to prove (ii) let

Z := Z +
∑
z∈D

sgn(z)Uz1Az
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and note that Z has a continuous distribution and Z± ≤ Z
± ≤ Z± + 1. Hence, for all

X̃ ∼ X we have (X̃Z) ∈ L1 if and only if (X̃Z) ∈ L1, and∫ 1

0
|qZ(s)qX(s)|ds ≤

∫ 1

0
|qZ(s)qX(s)|ds

which, in view of step 1, completes the proof.

A.2. An Arzela-Ascoli Type Argument

The following lemma is needed for the proofs in sections 3.4 and 3.5.

Lemma A.3. Let fn : R → R, n ∈ N, be a sequence of increasing 1-Lipschitz-continuous
functions such that fn(0) ∈ [−K, K] for all n ∈ N where K ≥ 0 is a constant. Then there
is a subsequence (fnk

)k∈N of (fn)n∈N and an increasing 1-Lipschitz-continuous function
f : R → R such that limk→∞ fnk

(x) = f(x) for all x ∈ R.

Proof. The Lipschitz-continuity guarantees that fn(x) ∈ [−K, K + x] if x ≥ 0 and
fn(x) ∈ [−K + x,K] if x ≤ 0. Hence, by a procedure well-known from the standard
proof of the Arzela-Ascoli theorem, we are able to extract a subsequence (fnk

)k∈N of
(fn)n∈N such that limk→∞ fnk

(q) exists for all q ∈ Q. In fact, we can easily show that
the sequences (fnk

(x))k∈N must converge for all x ∈ R. To this end, let ε > 0 be arbitrary
and choose q ∈ Q and N0 ∈ N such that |q − x| < ε/3 and |fnk

(q)− fnl
(q)| < ε/3 for all

k, l ≥ N0. Then for all k, l ≥ N0:

|fnk
(x)− fnl

(x)| ≤ |fnk
(x)− fnk

(q)|+ |fnk
(q)− fnl

(q)|+
+|fnl

(q)− fnl
(x)|

≤ 2|x− q|+ |fnk
(q)− fnl

(q)| < ε ,

in which we did apply the Lipschitz-continuity twice. Now it is easily verified that
f(x) := limk→∞ fnk

(x), x ∈ R, is a 1-Lipschitz-continuous increasing function.

A.3. Standard Probability Space

Two proability spaces (Ω,F , P) and (Ω′,B, Q) are isomorphic mod 0 if there exists null-
sets A ∈ F and B ∈ B and a bijection f : Ω\A → Ω′\B such that both f and f−1 are
measurable and measure-preserving (i.e. P(C ∩ Ac) = Q(f(C ∩ Ac)) for all C ∈ F) on
the restricted probability spaces. The map f is called isomorphism mod 0. An atom-less
probability space (Ω,F , P) is standard if it is isomorphic mod 0 to the probability space
([0, 1],B([0, 1]), λ) where B([0, 1]) denotes the Borel-σ-algebra over [0, 1] and λ is the
Lebesgue-measure restricted to B([0, 1]) (see [33] section 2). A mapping τ : Ω → Ω is
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a measure preserving transformation if it is an isomorphism mod 0. Given an atom-less
standard probability space (Ω,F , P) and two sets A,B ∈ F such that P(A) = P(B),
there exists a measure preserving transformation τ : Ω → Ω such that τ(A) = B P-
a.s. and τ(B) = A P-a.s. and τ = IdΩ on Ac ∩ Bc P-a.s. This is a direct consequence
of the definition of standardness and the fact that for every subset A ∈ F such that
P(A) > 0 the restricted probability space with conditional measure is again standard
(see [33] section 2, in particular 2.3 and 2.4). For instance, if Ω is a complete separable
metric space, F the corresponding σ-algebra of Borel-sets, and P a probability measure
on (Ω,F), then (Ω,F , P) is standard (see e.g. [34] theorem 9, p. 327).
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[15] Filipović, D. and Kupper, M. (2007), Monotone and Cash-Invariant Convex Func-
tions and Hulls, Insurance: Mathematics and Economics, 41, 1–16.
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