Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Preparation of Functionalized Organomagnesium Reagents by *ortho*-Magnesiation, Sulfoxide-, Iodine- and Bromine-Magnesium Exchange Reactions.

Christian Bernhard Rauhut

aus

München

2008

<u>Erklärung</u>

Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Professor Dr. Paul Knochel betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet.

München, am 06.12.2007

Christian Bernhard Rauhut

Dissertation eingereicht am 30.10.2008

1. Gutachter: Prof. Dr. Paul Knochel

2. Gutachter: Prof. Dr. Manfred Heuschmann

Mündliche Prüfung am 10.12.2008

This work was carried out from November 2005 to October 2008 under the guidance of Prof. Knochel at the Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität, Munich.

I would like to thank Prof. Dr. Paul Knochel, for giving me the opportunity of doing my Ph.D.in his group, for his support and for his guidance in the course of my scientific research.

I am also very grateful to Prof. Dr. Manfred Heuschmann for agreeing to be my "Zweitgutachter", as well as Prof. Dr. I. P. Lorenz, Prof. Dr. H. Langhals, Prof. Dr. H. Zipse and Prof. Dr. H. R. Pfaendler for the interest shown in this manuscript by accepting to be referees.

I thank Georg Manolikakes, Albrecht Metzger, Fabian Piller, Christoph Rohbogner and Stefan Wunderlich for the careful correction of this manuscript.

I thank all past and present co-workers I have met in the Knochel's group for their kindness and their help. Special thanks to Dr. Murthy Cheemala, Dr. Srinivas Dubbaka and his wife Thresen, Dr. Ching-Yuan Liu and his wife Chaofang for some special lectures in asian cooking and culture.

I would like to thank Laurin Melzig for fruitful collaboration in the sulfoxide chemistry, and my lab F2.004 for not complaining too much about my sulfur chemistry and for all the fun we had.

I would also like to thank Beatrix Cammelade, Vladimir Malakov, Simon Matthe, and Yulia Tsvik for their help in organizing everyday life in the lab and in the office, as well as the analytical team of the LMU for their invaluable help.

Special thanks to the БЦТИАД-crew, who helped me a lot keeping my fine motoric skills on a high level, and all the people who joined our out-door and sportive activities.

Very special thanks to my family and to Kathrin for their love and endless support.

Parts of this Ph. D. thesis have been published:

- Christian B. Rauhut, Viet Anh-Vu, Frasier F. Fleming, Paul Knochel, "Preparation of Functionalized Alkylmagnesium Derivatives Using an I/Mg-Exchange", *Org. Lett.* 2008, 10, 1187.
- Christian B. Rauhut, Laurin Melzig, Paul Knochel, "Meta- and Para-Difunctionalization of Arenes via a Sulfoxide-Magnesium Exchange Reaction", Org. Lett. 2008, 10, 3891.
- 3) Laurin Melzig, Christian B. Rauhut, Paul Knochel, "Meta-and Para-Difunctionalization of Arenes via a Ortho-Magnesiation and a Subsequent Sulfoxide-Magnesium Exchange", Synthesis 2009, manuscript in press.
- 4) Christian B. Rauhut, Christian Cervino, Arkady Krasovskiy, Paul Knochel, "Stereoselective Preparation of Cyclopropylmagnesium Reagents via Br/Mgexchange using *i*PrMgCl·LiCl in the Presence of Dioxane", *Synlett* 2009, 67.
- 5) Christian B. Rauhut, Laurin Melzig, Paul Knochel, "Functionalization of Furan and Thiophene via *ortho*-Magnesiation and Subsequent Sulfoxide-Magnesium Exchange Reaction", *manuscript in preparation*.

to Kathrin, my love.

1. Introduction	1
1.1. Preparation of organomagesium reagents	2
1.1.1. Direct oxidative insertion of magnesium in organic halides	2
1.1.2. Halogen-magnesium exchange reactions	3
1.1.3 ortho-Magnesiation with magnesium amides	7
1.1.4. Sulfur-magnesium exchange reaction	9
1.1.5. Sulfoxide-magnesium exchange reaction	. 10
1.2. Objectives	. 14
2. Results and Discussion	. 16
2.1. Sulfoxide-magnesium exchange on aromatic systems	. 16
2.2. Full functionalization of the furan ring	. 33
2.3. I/Mg-exchange on Csp3-centers	. 37
2.4. Br/Mg-Exchange on cyclopropylbromides	. 46
3. Summary and outlook	. 50
3.1 Sulfoxide-magnesium exchange on aromatic systems	. 50
3.2. Full functionalization of the furan ring	. 51
3.3. I/Mg-exchange on Csp ³ -centers	. 51
3.4. Br/Mg-Exchange on cyclopropyl bromides	. 52
4. Experimental section	. 54
4.1. General considerations	. 54
4.1.1. Solvents	. 54
4.1.2. Chromatography	. 54
4.1.3. Analytical Data	. 55
4.1.4. Reagents	. 56
4.1.5. Non-commercial available Grignard-reagents	. 57
1,5-Bis(chloromagnesio)pentane (43c)	. 57
2-Bromomagnesio propane(d ₇) (51)	. 57
1,6-Bis(chloromagnesio)hexane (77a)	. 58
2,6-Bis(chloromagnesio)heptane (77b)	. 58
2,7-Bis(chloromagnesio)octane (77c)	. 59
1,3-Bis(chloromagnesiomethyl)cyclopentane (77d)	. 59
1,5-Bis(bromomagnesio)-3,3-dimethyl-pentane (77e)	. 60
4.2. Typical procedures	. 61
Typical Procedure for preparation of sulfoxides of type 37 with the $pNMe_2C_6$	5H4-
ligand (TP1):	. 61
Typical procedure for preparation of sulfoxides of type 37 with the pMeOC ₆ I	H4-
ligand (TP2):	. 61
Typical procedure for preparation of sulfoxides of type 37 using the sulfinate (TP3):	45 62
Typical procedure for deprotonation of sulfoxides and Negishi type cross-	
coupling reactions (TP4):	. 62
Typical procedure for the sulfoxide-magnesium exchange leading to arenes o type 53 (TP5).	of 62
Typical procedure for the sulfoxide-magnesium exchange leading to furans o	f
type 61 (TP6):	. 63
Typical procedure for the iodine-magnesium exchange leading to furans of ty	pe
62 (TP7):	. 63
Typical procedure for the bromine-magnesium exchange leading to	
cyclopropanes of type 83a–d (TP8):	. 64

Typical procedure for the bromine-magnesium exchange leading to	
cyclopropanes of type 83e–f (TP9):	64
4.3. Preparation of functionalized organomagnesium reagents	65
4.3.1. Preparation of diarylsulfoxides	65
[4-(4-Chloro-benzenesulfinyl)phenyl]dimethylamine (37a)	65
4-Chlorophenyl 4-methoxyphenyl sulfoxide (37b)	65
{4-[(4-Chlorophenyl)sulfinyl]phenoxy}(triisopropyl)silane (37c)	66
{4-[(4-Chlorophenyl)sulfinyl]-2,6-diisopropylphenyl}dimethylamine (37d)) 67
4-Chlorophenyl 3.4.5-trimethoxyphenyl sulfoxide (37e)	68
Dibuty [4-[(4-chlorophenyl)sulfinyl]phenyl}amine (37f)	
Ethyl 4-{[4-(dimethylamino)phenyl]sulfinyl}benzoate (37g)	
4-Fluorophenyl 4-methoxyphenyl sulfoxide (37h)	
Dimethyl(4-{[4-(trifluoromethyl)phenyl]sulfinyl}phenyl)amine (37i)	72
4-Methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide (37i)	73
$(4-[(4-Methoxynhenyl)sulfinyl]nhenyl}ethynyl)(trimethyl)silane (37k)$	73
5-[(4-Chloronhenyl)thio]-1 2 3-trimethoxybenzene (40)	74
Methyl 4-(dimethylamino)benzenesulfinate (45)	75
4-Iodonhenvl 4'methoxynhenvl sulfoxide (46)	76
4 3 2 Functionalization of diarylsulfoyides	70
4.5.2.1 interior and a subscription of that y sufficiently limit the subscription of that y sufficiently limit the subscription of the subscrip	/ /
$\{4^{-}[(2^{-}bromo_{-}5^{-}chloropineny])\$ sulfinyl]phenyl}dimethylamine (47a)	77
$\{4-1, (4-5), (4-5), (1-5), ($	79
$f^{+}[(4 - 1000 - 3 - cmoroorpheny] - 2 - yr)summyr]phenyl gunnetnyramme (47c) tButyl 5'-chloro-2'- {[A-(dimethylamino)phenyl]sulfinyl} biphenyl-A-carboy$	vlate
(A7d)	9101C 80
$5_{\rm Chloro} - 2_{\rm I} [4_{\rm Chloro} - 2_{\rm I}]$	00 81
5' Chloro 2' {[4 (dimethylamino)phenyl]sulfinyl}binbenyl 4 carbonitrile (01 /7f)
5-Chloro-2-{[4-(unitediylanino)phenyl]sunnyl}oiphenyl-4-carooniune (•/1) 82
4-Fluoro-2-[(4-fluoronhenyl)thio]nhenyl 4-methoxynhenyl sulfoxide (47g)	02
(4. {[4'_Chloro_5_(trifluoromethyl)binbenyl_2-yl]sulfinyl henyl)dimethyls	mine
(47)	84
(471) (4	i) 85
[2 (A Methovybenzenesulfinyl) 5 trifluoromethylphenylethynylltrimethyl	i) 05
(47i)	86 shane
[4' Chloro 6 (A methovybenzenesulfinyl) binhenyl 3 ylethynyl]trimethylsil	00 ana
$(471_{\rm r})$	anc 97
(1/K)	07 QQ
({4-intentoxy-0-[(4-intentoxypricity)/summyfjorpricityf-5-yf}euryffyf)	00
$\left[(4 \prod (4 m)) \sin (4 \pi) \right] = 1.2 \text{ phenyleng} \text{ bis}(athyrno. 2.1)$	00
[{4-[(4-Internoxyphenyl)sunninyl]-1,5-phenylene}0is(ethylie-2,1-	00
(1))))))((1)))(1))))))))))))))))))))))	89
4.5.5. Suitoxide-magnesium exchange	90
4 - Bromo-5-chlorodiphenyi-2-cardonitrile (53a)	90
Ethyl 4 -bromo-4 -chloro-1,1.2,1 -terphenyl-4-carboxylate (530)	91
4 Bromo-4,4 alchioro-1,1.2,1 terphenyl $(53c)$	92
$(4^{\circ}-Bromo-5-cnlorobipnenyi-2-yi)(pnenyi)methanol (53a) \dots$	93
(4-Bromo-5-cnlorobipnenyi-2-yi)(3,4-dicnloropnenyi)methanoi (53e)	94
tButyl 5'-chloro-2'-[2-(ethoxycarbonyl)prop-2-en-1-yl]biphenyl-4-carboxyl	ate
(551)	95
<i>t</i> Butyl 5'-chloro-4"-cyano-1,1':2',1"-terphenyl-4-carboxylate ($53g$)	96
<i>t</i> Butyl 5'-chloro-2'-[(3,4-dichlorophenyl)(hydroxy)methyl]biphenyl-4-	~ ~
carboxylate (53h)	97
4-Chloro-4'-methoxybiphenyl-2-carbonitrile (53i)	98

	5'-Chloro-2'-[(3,4-dichlorophenyl)(hydroxy)methyl]biphenyl-4-carbonitrile (53j)
	Ethyl 4'-chloro-4"-cyano-1 1':2' 1"-terphenyl-4-carboxylate (53k))) 100
	{4-fluoro-2-[(4-fluorophenyl)thio]benzyl}dimethylamine (53])	101
	[4'-Chloro-5-(trifluoromethyl)biphenyl-2-vl](phenyl)methanol (53m)	102
	Ethyl 4"-chloro-4'-(trifluoromethyl)-1 1'-2' 1"-terphenyl-4-carboxylate (53n)	103
	4'-Chloro-5-(trifluoromethyl)biphenyl-2-carbaldehyde (530)	104
	Ethyl 4'-(trifluoromethyl)-2'-[(trimethylsilyl)ethynyl]biphenyl-4-carboxylate	10.
	(53p)	105
	Ethyl 4"-chloro-4'-[(trimethylsilyl)ethynyl]-1 1'2' 1"-terphenyl-4-carboxylate	3
	(53g)	106
	4'-Chloro-5-[(trimethylsilyl)ethynyl]biphenyl-2-carbaldehyde (53r)	107
	{2 4-Bis[(trimethylsilyl)ethynyl]phenyl}(3 4-dichlorophenyl)methanol (53s)	108
4.	3.4. Functionalization of the furan ring	109
	{5-[(4-methoxyphenyl)sulfinyl]-2-furyl}(trimethyl)silane (57)	109
	Ethyl 4-[2-[(4-methoxyphenyl)sulfinyl]-5-(trimethylsilyl)-3-furyl]benzoate	107
	(60a)	111
	[5-[(4-methoxyphenyl)sulfinyl]-4-(phenylethynyl)-2-furyl](trimethyl)silane	
	(60b)	112
	Ethyl 4-[2-(4-chlorophenyl)-5-(trimethylsilyl)-3-furyl]benzoate (61a)	113
	Ethyl 4-[2-formyl-5-(trimethylsilyl)-3-furyl]benzoate (61b)	114
	Ethyl 4-[2-cvano-5-(trimethylsilyl)-3-furyl]benzoate (61c)	115
	Ethyl 4-[3-(phenylethynyl)-5-(trimethylsilyl)-2-furyllbenzoate (61d)	116
	Ethyl 4-[2-(4-chlorophenyl)-5-iodo-3-furyllbenzoate (59)	110
	Ethyl 4-{2-(4-chlorophenyl)-5-[hydroxy(nhenyl)methyl]-3-furyl}benzoate (6	52a)
		117
	Ethyl 4-[2-(4-chlorophenyl)-5-cyano-3-furyl]benzoate (62b)	118
	Ethyl 5-(4-chlorophenyl)-4-[4-(ethoxycarbonyl)phenyl]-2-furoate (62c)	119
	Ethyl 5-(4-chlorophenyl)-3-(3 3-dimethylbutanoyl)-4-[4-	117
	(ethoxycarbonyl)phenyl]-2-furoate (63)	120
4	3.5. Csn ³ -I/Mg-exchange	121
	Ethyl 1-(iodomethyl)cyclohexane carboxylate (64a)	121
	Ethyl 3-iodo-2 2-dimethylpropanoate (64b)	122
	3-Phenyl-2-oxaspiro[4 5]decan-1-one (66a)	123
	Ethyl 1-but-3-en-1-ylcyclohexanecarboxylate (66b)	123
	Ethyl 2 2-dimethylbex-5-enoate (66c)	124
	1-Fthoxyspiro[2 5]oct-1-yl benzoate (66d)	125
	1-Ethoxy-2 2-dimethylcyclopropyl benzoate (66e)	126
	1-(Iodomethyl)-1-[(methoxymethoxy)methyl]cyclohexane (67a)	127
	1-Iodo-2-[(methoxymethoxy)methyl]-3-methylbutane (67b)	128
	6-(Iodomethyl)-1 4-dioxaspiro[4 5]decane (67c)	120
	2-[1-(Iodomethyl)-2-methylpropyl]-1 3-dioxolane (67d)	130
	2-(2-Iodo-1 1-dimethylethyl)pyridine (67e)	131
	{1-[(Methoxymethoxy)methyl]cyclohexyl}acetic acid (74a)	132
	3-[(Methoxymethoxy)methyl]-4-methylpentanoic acid (74b)	132
	5-[(Methoxymethoxy)methyl]-6-methylbent_1-ene (74c)	132
	$6_{(3-Methylhut_3-en_1-yl)-1} 1_{diovasniro[4,5]decane (74d)}$	12/
	2_{14} Diovaspiro[45]dec_6 vi) 1 phanylethanol (74a)	124
	$2-(1,4-D)$ oxaspiro[4.5] ucc-0-yi]-1-piiciiyiciiiaiioi (74 \mathfrak{e})	133
	4 (1 2 Diovolog 2 yl) 2.25 trimethylboxon 2 ol (741)	120
	$4 - (1, 3 - DIOXOIaII - 2 - y1) - 2, 2, 3 - UIIII UII yIII UXAII - 3 - OI (74g) \dots $	13/
	$2-{1-[(Anyuno)neuyi]-2-neuyipiopyi}-1,5-dioxolane (74n)$	130

5.

3-Methyl-1-phenyl-3-pyridin-2-ylbutan-1-ol (74i)	139
2,2,5-Trimethyl-5-pyridin-2-ylhexan-3-ol (74j)	140
2-(1,1-Dimethylpent-4-en-1-yl)pyridine (74k)	141
3-Methyl-3-pyridin-2-ylbutanoic acid (741)	141
4,4-Dimethyl-1,1-diphenyl-1-pyridin-2-ylpentan-3-ol (74m)	142
Ethyl 2-(3,3-diphenyl-3-pyridin-2-ylpropyl)acrylate (74n)	143
Ethyl-2- <i>iso</i> propylhexanoate	144
2-Isopropylhexanol	145
1-Iodo-2-isopropylhexane (79a)	146
4.3.6. Cyclopropanes	147
1-(2,2-Dibromocyclopropyl)-4-fluorobenzene (86):	147
<i>E</i> -1-(2-Bromocyclopropyl)-4-fluorobenzene (83c):	148
(3,4-Dichlorophenyl)(2,2-diphenylcyclopropyl)methanol (85a)	148
2,2-Diphenylcyclopropyl methyl sulfide (85b)	149
Ethyl 4-(2,2-diphenylcyclopropyl)benzoate (85c)	150
1-Chloro-4-(2,2-diphenylcyclopropyl)benzene (85d)	151
<i>E</i> -1-[2-phenylcyclopropyl]-2-(trifluoromethyl)benzene (85e)	152
<i>E</i> -4-[2-phenylcyclopropyl]benzonitrile (85f)	153
<i>E</i> -Ethyl 4-[2-phenylcyclopropyl]benzoate (85g)	153
<i>E</i> -Ethyl 4-[2-(4-fluorophenyl)cyclopropyl]benzoate (85h)	154
Curriculum Vitae	156

Abbreveations:

Ac	acetyl
aq.	aqueous
Ar	aryl
CH_2Cl_2	dichloromethane
dba	trans,trans-dibenzyledenacetone
DMF	N,N-dimethylforamid
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidone
DMSO	dimethyl sulfoxide
Eq.	equation
equiv	equivalent
EI	electron-impact
Et	ethyl
FG	functional group
GC	gas chromatography
h	hour
HRMS	high resolution mass spectrospcopy
<i>i</i> Pr	iso-propyl
IR	infra-red
J	coupling constant (NMR)
LDA	lithium diisopropylamide
М	molarity
т	meta
m	multiplett (NMR)
Me	methyl
min	minute
mp.	melting point
MS	mass spectroscopy
NMP	N-methyl-2-2pyrrolidine
NMR	nuclear magnetic resonance
0	ortho
р	para
Ph	phenyl

SET	single electron transfer
S-Phos	2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl
tBu	<i>tert</i> -butyl
tfp	tri-(2-furyl)phosphine
THF	tetrahydrofuran
TLC	thin layer chromatography
TMEDA	N,N,N',N'-tetrametyhlethylendiamine
tmp	2,2,6,6-tetramethylpiperidyl
ТР	typical procedure

<u>1. Introduction</u>

Carbon-carbon bond formation is of central interest in preparative organic chemistry, since it allows the formation of complex structures. Organometallic chemistry contributes a major part to this objective by providing a range of reactive and selective reagents. From highly reactive organolithium derivatives, across magnesium reagents to zinc or boron compounds, a variety of organometallic intermediates have found numerous applications in synthetic chemistry.¹ Many of these approaches were established in modern process chemistry.² Examples are the preparation of Tamoxifen,³ with the addition of phenylmagnesium bromide to an intermediate keton, or the preparation of 17α -methyl- 11β -arylestradiol (**1**) for osteoporosis treatment (Scheme 1).⁴

Scheme 1: Stereoselective preparation of 17α -methyl- 11β -arylestradiol (1).

¹ a) Hartung, C. G.; Snieckus V. in *Modern Arene Chemistry*, Astruc D., Ed., Wiley-VCH, Weinheim, **2002**, 330; b) Schlosser, M. *Organometallics in Synthesis: A Manual*, Schlosser, M., Ed., Wiley, Chichester, **2002**, 1; c) Knochel, P. *Handbook of Functionalized Organometallics*, Knochel, P., Ed., Wiley-VCH, Weinheim, **2005**; d) Boudier, A.; Bromm L. O.; Lotz, M.; Knochel P. *Angew. Chem., Int. Ed.* **2000**, *39*, 4414.

² Wu, G. G.; Huang, M. in *Organometallics in Process Chemistry*, Larsen, R. D. Ed., Springer, Berlin, **2004**, 1.

³ a) Harper, M. J. K.; Walpole, A. L. *Nature* **1966**, *212*, 87; b) Bedford, G. R.; Richardson, D. N. *Nature* **1966**, *212*, 733; c) Robertson, D. W.; Katzenellenbogen, J. A. J. Org. Chem. **1982**, *47*, 2387; d) McCague, R. J. Chem. Soc., Perkin Trans. 1 **1987**, 1011.

⁴ Larkin, J. P.; Wehrey, C.; Boffelli, P.; Lagraulet, H.; Lemaitre, G.; Nedelec, A.; Prat, D. Org. Process Res. Dev. **2002**, *6*, 20.

1.1. Preparation of organomagesium reagents

1.1.1. Direct oxidative insertion of magnesium in organic halides

Since the first preparation of organomagnesium reagents by *Victor Grignard* in 1901,⁵ a range of improvements was achieved. Still, the most convenient method for the preparation of organomagnesium reagents is the oxidative insertion of Mg into carbonhalogen bonds (Scheme 2, Eq. 1). Although the detailed mechanism of the insertion is not clear, a radical pathway is generally accepted.⁶ The induction period for the insertion depends on the amount of moisture present, and the surface of the magnesium turnings which is in general passivated, i.e. coated with magnesium oxides and Mg(OH)₂. These coatings can be removed by addition of Grignard reagent, 1,2-dibromoethane, or diisobutylaluminium hydride which is used in process chemistry.⁷ The discovery of the *Schlenk* equilibrium revealed the behaviour of organomagnesium reagents in etheral solutions (Eq. 2).⁸ Depending on temperature, solvent and additives (e.g. 1,4-dioxane or [15]-crown-5)⁹ the equilibrium can be shifted from the mono alkylmagnesium species to the dialkyl magnesium species. *Knochel* demonstrated that the more reactive dispecies can be generated from the corresponding magnesium and lithium compounds avoiding the *Schlenk* equilibrium (Eq. 3).

RX	Mg THF or Et ₂ O	RMgX		(1)
2 RMgX		R ₂ Mg +	MgX ₂	(2)
<i>s</i> BuMgCl	+ sBuLi —	>	sBu₂Mg∙LiCl	(3)
(X = Cl. Br	. D			

Scheme 2: Formation of the dialkyl magnesiumspecies by the *Schlenk* equilibrium and the alternative formation by transmetalation.

The use of activated *Rieke* magnesium, prepared by the reaction of lithium naphthalenide with magnesium chloride, opened new perspectives in organometallic

⁵ Grignard, V. Ann. Chim. 1901, 24, 433.

⁶ a) Walborsky, H. M. Acc. Chem. Res. **1990**, 23, 286; b) Garst, J. F. Acc. Chem. Res. **1991**, 24, 95; c) Rogers, H. R.; Hill, C. L.; Fujiwara, Y.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. J. Am. Chem. Soc. **1980**, 102, 217; d) Garst, J. F. in Grignard Reagents, Richey, Jr., H. G., Ed, Wiley, Chicester, **2000**, 185; e) Kharash, M. S.; Reinmuth, O. in Grignard Reactions of Nonmetallic Substances, Prentice-Hall, New York, **1954**; f) Hamdouchi, C.; Walborsky, H. M. in Handbook of Grignard-Reagents, Silverman, G. S.; Rakita, P. E., Eds, Marcel Dekker, New York, **1995**, 145; g) Oshima, K. in Main Group Metals in Organic Synthesis, Yamamoto, H.; Oshima, K, Eds, Wiley-VCH, Weinheim, **2004**.

⁷ Tilstam, U.; Weinmann, H. Org. Process Res. Dev. **2002**, *6*, 906.

⁸ Schlenk, W.; Schlenk, Jr., W. *Chem. Ber.* **1929**, *62*, 920.

⁹ Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 159.

chemistry.¹⁰ With this highly reactive magnesium it was possible to perform a magnesium insertion into carbon-halogen bonds of compounds bearing other sensitive functionalities. But, using the pyrophoric magnesium on large scale involved questionable safety hazards. In contrast, *Knochel* reported recently that the utilization of LiCl in combination with magnesium turnings or powder and low reaction temperatures allowed to the preparation of various functionalized aryl and heteroaryl magnesium derivatives (Scheme 3).¹¹

Scheme 3: Oxidative direct insertion of Mg into carbon-halogen bonds under mild conditions.

1.1.2. Halogen-magnesium exchange reactions

The main drawbacks of the direct insertion of magnesium in carbon-halogen bonds are still the incompatibility of some reduceable electrophilic functional groups and the exothermic reaction itself which is not easy to control during industrial processes.¹² One alternative for the preparation of functionalized organomagnesium reagents is the halogen-magnesium exchange reaction, first demonstrated by *Prévost*.¹³ He was able to prepare cinnamylmagnesium bromide from cinnamyl bromide and EtMgBr in 14% yield. The driving force of the halgon/magnesium-exchange reaction is the stability of the resulting Grignard reagent (sp > sp²(vinyl) > sp²(aryl) > sp³(prim) > sp³(sec)).¹⁴ For the halogen-metal exchange reaction three general mechanistic models are present in

¹⁰ a) Rieke, R. D. *Science* **1989**, *246*, 1260; b) Rieke, R. D.; Hanson, M. V. *Tetrahedron* **1997**, *53*, 1925; c) Lee, J.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. **2000**, *65*, 5428.

¹¹ Piller, F. M.; Appukkuttan, P.; Gavryushin, A; Helm, M.; Knochel, P. *Angew. Chem. Int. Ed.* **2008**, 47, 6802.

¹² Bush, F. R.; De Antonis, D. M. in *Grignard Reagents: New Developements*, Richey H. G. Jr, Ed, Wiley, New York, **2000**, 165.

¹³ Prévost, C. Bull. Soc. Chim. Fr. 1931, 49, 1372.

¹⁴ Hauk, D.; Lang, S.; Murso, A. Org. Process Res. Dev. 2006, 10, 733.

literature.¹⁵ The four center transition state, a radical mechanism and a nucleophilic attack on the halogen atom leading to an ate-complex.

The four center transition state model describes the exchange reaction as a concerted, if not entirely synchronous, bond-breaking and bond-making mechanism (Scheme 4, Eq 1).¹⁶

$$R^{1}Li^{+} R^{2}X \longrightarrow \begin{bmatrix} R^{1}_{j} Li \\ X^{-}R^{2} \end{bmatrix} \longrightarrow R^{1}X^{+}R^{2}Li$$
(1)

$$R^{1}Li + R^{2}X \longrightarrow \left[R^{1}Li^{\bullet +} + R^{2}X^{\bullet -}\right] \longrightarrow R^{1\bullet}Li^{+}R^{2\bullet}X^{-}$$
(2)

$$R^{1} \xrightarrow{} Li^{+} X \xrightarrow{} R^{2} \longrightarrow R^{1}X + R^{2}Li$$

$$R^{1}Li^{+} R^{2}X \longrightarrow \begin{bmatrix} R^{1} - X^{-} - R^{2} & Li^{+} \end{bmatrix} \longrightarrow R^{1}X + R^{2}Li$$

$$C_{6}F_{5}Li^{+} C_{6}F_{5}I \xrightarrow{2 \text{ TMEDA}} \begin{bmatrix} C_{6}F_{5} - I^{-} - C_{6}F_{5} & Li^{+} \end{bmatrix} \cdot 2 \text{ TMEDA}$$

$$(5)$$

Scheme 4: Four centre transition state, radical and ate-complex theory are the three models for the halogen-metal exchange.

In the radical theory, the first step is a SET leading to a caged ion radical pair (Eq. 2). Then, the lithium cation and the halogen anion can be extruded and the radicals can undergo recombination, disproportionation or diffusion processes giving different products. During the reaction of *n*BuLi with *n*BuBr in cumene, *Bryce-Smith* observed a huge amount of dimerized solvent which can be explained by radical reaction with solvent molecules and their recombination.¹⁷

The most favoured explanation developed from the "X-philic" reaction (Eq. 3)¹⁸ to the ate-complex theory (Eq. 4). This model is supported by the isolation and X-ray characterization of an at room temperature stable ate-complex (Eq. 5).¹⁹ Recently, quantum chemical calculations were published, strengthening the ate-complex theory in the case of a halogen-magnesium exchange reaction.

Tamborski reported the influence of the halogen atom on the exchange rate for aromatic systems (I>Br>Cl>>F), and the rate-enhancing effect of electron withdrawing fluoride substituents.²⁰

¹⁵ Bailey, F. M.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1 and references therein.

¹⁶ Wakefield, B. J. in *The Chemistry of Organolithium Compounds*, Pergamon Press, New York, **1974**.

¹⁷ Bryce-Smith, D. J. Chem. Soc. **1956**, 1603.

¹⁸ Zefirov, N. S.; Makhon'khov, D. I. Chem. Rev. **1982**, 82, 615.

¹⁹ Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. **1986**, 108, 2449.

²⁰ Tamborski, C.; Moore, G. J. J. Organomet. Chem. 1971, 26, 153.

The practical value of the halogen-magnesium exchange was demonstrated by the preparation of various functionalized aryl and heteroaryl magnesium derivatives.²¹ Thus, the functionalized iodoquinoline **2** was rapidly converted to the corresponding organometallic compound **3**, furnishing after the reaction with allyl bromide the quinoline derivative **4** in 78% yield (Scheme 5). The aniline derivative **5** was converted in 1 h to the Grignard reagent **6**, and then reacted with ethyl 2-bromo-methacrylate giving the ester **7** in 81% yield.²² Even nitro groups are compatible with an I/Mg-exchange reaction leading to arylmagnesium chlorides of type **8**, even though it is necessary to use PhMgCl instead of the more nucleophilic *i*PrMgCl.²³

R: SO₂CF₃

Scheme 5: Smooth I/Mg-exchange reactions using aromatic iodides.

Knochel also reported efficient reagents for the Br/Mg-exchange reaction, even for the conversion of electron rich substrates, like **9**, which allow a convenient preparation of functionalized arylmagnesium reagents of type **10** starting from the cheaper aryl bromides (Scheme 6).

²¹ For a review see: Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V.-A. *Angew. Chem. Int. Ed.* **2003**, *42*, 4302.
²² a) Staubnitz, A.; Dohle, W.; Knochel, P. *Synthesis* **2003**, 223; b) Jensen, A. E.; Dohle, W.; Sapountzis,

 ²² a) Staubnitz, A.; Dohle, W.; Knochel, P. *Synthesis* 2003, 223; b) Jensen, A. E.; Dohle, W.; Sapountzis, I.; Lindsay, D. M.; Vu, V.-A.; Knochel, P. *Synthesis*, 2002, 63.

²³ Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 1610.

Scheme 6: Br/Mg-exchange performed with an electron rich aryl bromide.

The exchange rate is increased when coordinating functionalities are present in ortho position. These groups are able to form a complex with the exchange reagent and allow therefore a smooth magnesiation at low temperatures (Scheme 7).²⁴

Scheme 7: Br/Mg-exchange reactions supported by chelating functionalities.

The halogen-magnesium exchange on sp^3 -hybridized carbon is more challenging, since the gain of energy is muss less important (both reagents have the same hybridization). In strained systems, like cyclopropyl bromides, the carbon-carbon bond has an increased *p*-character compared to the carbon-halogen bond, reducing the strain. Following this assumption, the s-character of the carbon-halogen bond is increased compared to non-strained aliphatic systems. With an increased s-character a negative charge in an exocyclic orbital is better stabilized, due to favored distribution around the core. Recently, Knochel and Marek reported a stereoselective I/Mg-exchange reaction leading to functionalized cyclopropane derivatives of type **11** (Scheme 8).²⁵

²⁴ a) Varchi, G.; Jensen, A. E.; Dohle, W.; Ricci, A.; Cahiez, G.; Knochel, P. Synlett 2001, 477; b) Abarbi, M.; Dehmel, F.; Knochel, P. *Tetrahedron Lett.* **1999**, *40*, 7449. ²⁵ Vu, V.-A.; Marek, I.; Polborn, K.; Knochel, P. *Angew. Chem. Int. Ed.* **2002**, *41*, 351.

Scheme 8: An I/Mg-exchange reaction for converting a cyclopropyl iodide to the corresponding magnesium derivative 11.

1.1.3 ortho-Magnesiation with magnesium amides

A third important approach for the generation of magnesium derivatives is the deprotonation using magnesium bases. Reacting secondary amines with Grignard reagents furnishes the corresponding magnesium amides which are less nucleophilic than the origin organomagnesium compound (Scheme 9). The preparation of magnesiated species with magnesium amides was already described by *Hauser* for the self condensation of various esters.²⁶ The use of sterically hindered amines, like 2,2,6,6-tetramethylpiperidine (**12** = tmp), for the preparation of these bases prevents unwanted nucleophilc side reactions.²⁷ Recently, *Knochel* reported the use of tmpMgCl·LiCl (**13**)²⁸ which displays a better solubility than tmpMgCl and a higher reactivity for the magnesiation of functionalized aromatic and heteroaromatic compounds (Scheme 9). The main advantages of tmpMgCl·LiCl compared to tmpLi or LDA²⁹ are the long term stability of this reagent at 25 °C, the better compatibility with sensitive functional groups and the greater stability of the metalated products.

²⁶ Hauser, C. R.; Walker, H. G. Jr. J. Am. Chem. Soc. 1947, 69, 295.

²⁷ a) Zhang, M.-X.; Eaton, P. E. Angew. Chem. Int. Ed. 2002, 41, 2169; b) Kondo, Y.; Akihiro, Y.; Sakamoto, T. J. Chem. Soc. Perkin Trans.1 1996, 2331; c) Eaton, P. E.; Lee, C. H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016; d) Eaton, P. E.; Zhang, M.-X.; Komiya, N.; Yang, C.-G., Steele, I.; Gilardi, R. Synlett 2003, 9, 1275; e) Eaton, P. E.; Martin, R. M. J. Org. Chem. 1988, 53, 2728; f) Shilai, M.; Kondo, Y.; Sakamoto, T. J. Chem. Soc. Perkin Trans. 1 2001, 442.

²⁸ Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 2958.

²⁹ a) Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376; b) Turck, A.; Plé, N.; Mongin, F.; Quéguiner, G. Tetrahedron 2001, 57, 4489; c) Schlosser, M. Eur. J. Org. Chem. 2001, 21, 3975; d) Hodgson, D. M.; Bray, C. D.; Kindon, N. D. Org. Lett. 2005, 7, 2305; e) Plaquevent, J.-C.; Perrad, T.; Cahard, D. Chem. Eur. J. 2002, 8, 3300; f) Chang, C.-C.; Ameerunisha, M. S. Coord. Chem. Rev. 1999, 189, 199; g) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206; h) Quéguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heteocycl. Chem. 1991, 52, 187.

Scheme 9: Preparation of tmpMgCl·LiCl (13) and its utilization for deprotonation.

Recent reports showed, that less electron poor aromatics like **14a–b** can be metalated with $tmp_2Mg\cdot 2LiCl$ (**15**), prepared from tmpLi and $MgCl_2$ (Scheme 10).³⁰

Scheme 10: Magnesiation of aromatic substrates with tmp₂Mg·2LiCl (15).

³⁰ Clososki, G. C.; Rohbogner, C.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7681.

The use of the strong directing tetramethylphosphorodiamidate group, allowed to metalate a range of aromatic alcohols.³¹ The strong directing ability of this donor group facilitated the preparation of *para,meta*-difunctionalized aromatics (Scheme 11).

Scheme 11: Use of the strong directing tetramethylphosphorodiamidate group for ortho-magensiation.

1.1.4. Sulfur-magnesium exchange reaction

The preparation of benzylic Grignard reagents was the target of intensive studies, because of their high reactivity and synthetic applicability.³² *Knochel* reported the first S/Mg-exchange reaction allowing a preparation of functionalized benzylic magnesium reagents.³³ The first step was an I/Mg-exchange reaction using *i*PrMgCl leading to a magnesiated species **16** which underwent a cyclylization after the addition of *t*BuOLi,

³¹ Rohbogner, C.; Clososki, G. C.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47, 1503.

³² a) van den Ancker, T. R.; Raston, C. L. Organometallics 1995, 14, 584; b) Alonso, T.; Harvey, S.; Junk, P. C.; Raston, C. L.; Skelton, B.; White, A. H. Organometallics 1987, 6, 2110; c) Appler, H.; Gross, L. W.; Mayer, B.; Neumann, W. P. J. Organomet. Chem. 1985, 291, 9; d) Scholz, J.; Thiele, K.-H.; J. Organomet. Chem. 1986, 314,7; e) Rieke, R. D. Acc. Chem. Res. 1977, 10, 301; f) Harvey, S.; Raston, C. L. J. Chem. Soc. Chem. Commun. 1988, 652; g) Engelhardt, L. M.; Harvey, S.; Raston, C. L.; White, A. H. J. Organomet. Chem. 1988, 341, 39; h) Nicoletti, T. M.; Raston, C. L.; Sargent, M. V. J. Chem. Soc. Chem. Commun. 1988, 652; g) Engelhardt, L. M.; Harvey, S.; Raston, C. L.; White, A. H. J. Organomet. Chem. 1988, 341, 39; h) Nicoletti, T. M.; Raston, C. L.; Sargent, M. V. J. Chem. Soc. Chem. Commun. 1980, 133; i) de Boer, H. J. R.; Akkerman, O. S.; Bickelhaupt, F. J. Organomet. Chem. 1987, 321, 291; j) van den Ancker, T. R.; Harvey, S.; Raston, C. L. J. Organomet. Chem. 1995, 502, 35; k) Harvey, S.; Junk, P. C.; Raston, C. L.; Salem, G. J. Org. Chem. 1988, 53, 3134.

³³ Stoll, A. H.; Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 606.

furnishing the benzylic magnesium reagent 17 (Scheme 12). The driving force of the S/Mg-exchange is the formation of the cyclic dibenzothiophene. Evaporation of the solvent and *i*PrI was necessary, due to the high reactivity of the resulting benzylic magnesium reagent 17 which underwent side reactions with the iodide.

Scheme 12: S/Mg-exchange reaction leading to functionlized benzylmagnesium reagents.

1.1.5. Sulfoxide-magnesium exchange reaction

With the preparation of diastereomerically pure sulfinate esters of menthol, reported by Andersen³⁴ in 1962, a new chapter of chiral auxilliaries was opened.³⁵ The reaction of organometallic reagents with diastereomerically pure sulfinates facilitated the preparation of the corresponding sulfoxides with inversion of the stereo centre at the sulfur atom (Scheme 13).

Scheme 13: Preparation of the Andersen-sulfinate 18 and consecutive reaction with ethylmagnesium bromide to the sulfoxide 19.

³⁴ a) Andersen, K. K. Tetrahedron Lett. 1962, 3, 93; b) Andersen, K. K.; Gaffield, W.; Papanikolau, N. E.; Foley, J. W.; Perkins, R. I. J. Am. Chem. Soc. 1964, 86, 5637.

³⁵ a) Han, Z.; Krishnamurty, D.; Grover, P.; Fang, Q. K.; Su, X.; Wilkinson, H. S.; Lu, Z.-H.; Magira, D. Senanayake, C. Tetrahedron 2005, 61, 6386; For a review see: Senanayake, C. H.; Krishnamurthy, D.; Lu, Z.-H.; Han, Z.; Gallou, I. Aldrichim. Acta 2005, 38, 93.

Kagan reported the utilization of a sulfoxide moiety for the preparation of chiral ferrocene derivatives.³⁶ Further development of this method facilitated the synthesis of new planar chiral P-N-ligands for palladium-catalyzed allylic substitution reactions.³⁷ The sulfoxide moiety was also used for inducing stereochemistry during an addition of organomagnesium reagents to aldehydes in *ortho*-position to the sulfoxide (Scheme 14), and a consecutive sulfoxide-metal exchange reaction.³⁸

Scheme 14: Utilization of a sulfoxide moiety for inducing chirality.

Both approaches availed themselves on highly reactive lithium derivatives which have a low compatibility towards functional groups.

In contrast, *Hoffmann* and *Satoh* reported the generation of magnesium carbenoids by a sulfoxide/magnesium exchange performed on α -chloro-sulfoxides (Scheme 15).³⁹

Scheme 15: Sulfoxide-magnesium exchange using 5 equiv of EtMgCl led to chiral carbenoids and a range of reactive byproducts.

 ³⁶ a) Guillaneux, D.; Kagan, H. B. J. Org. Chem. 1995, 60, 2502; b) Kagan, H. B.; Luukas T. O. in *Transition Metals for Organic Synthesis* Beller, M.; Bolm, C., Eds., Wiley-VCH, Weinheim, 2004, 479.
 ³⁷ Kloetzing, R. J.; Knochel, P. *Tetrahedron: Asymm.* 2006, 17, 116.

 ³⁸ a) Nakamura, S.; Yasuda, H.; Watanabe, Y.; Toru, T. *Tetrahedron Lett.* 2000, *41*, 4157; b) Nakamura, S.; Yasuda, H.; Watanabe, Y.; Toru, T. *J. Org. Chem.* 2000, *65*, 8640; c) Nakamura, S.; Oda, M.; Yasuda, H.; Toru, T. *Tetrahedron* 2001, *57*, 8469; d) Almorín, A.; Carreno, M. C.; Somoza, Á.; Urbano, A. *Tetrahedron Lett.* 2003, *44*, 5597; e) Ruano, J. L.; Ruano, A. M.; Tato, F.; Cardenas, D. *Phosphorus, Sulfur Silicon Relat. Elem.* 2005, *180*, 1443; f) Sugimoto, H.; Nakamura, S.; Shibata, Y.; Shibata, N.; Toru, T. *Tetrahedron Lett.* 2006, *47*, 1337.

³⁹ a) Hölzer, B.; Hoffmann, R. W. *Chem. Commun.* 2003, 732; b) Hoffmann, R. W.; Hölzer, B.; Knopff, O.; Harms, K. *Angew. Chem. Int. Ed.* 2000, *39*, 3072 c) Satoh, T.; Miura, M.; Sakai, K.; Yokoyama, Y. *Tetrahedron* 2006, *62*, 4253; d) Sugiyama, S.; Shimizu, H.; Satoh, T. *Tetrahedron Lett.* 2006, *47*, 8771; e) Satoh, T.; Akita, K. *Chem. Pharm. Bull.* 2003, *51*, 181; f) Satoh, T.; Taguchi, D.; Suzuki, C.; Fujisawa, S. *Tetrahedron* 2001, *57*, 493; g) Satoh, T. *Chem. Soc. Rev.* 2007, *36*, 1561.

Lockard, Capozzi and others demonstrated the enantioselective preparation of dialkylsulfoxides of type **20** starting from chiral sulfoxides (Scheme 16).⁴⁰

Scheme 16: Preparation of chiral dialkylsulfoxides.

Oae, Furukawa and others described a sulfoxide-metal exchange with heteroaryl sulfoxides leading to ligand exchange reactions or ligand coupling reactions (Scheme 17).⁴¹ The pyridine derivative **21** gave with different organometallic species (e.g. MeMgBr, *n*BuLi, or PhMgBr) the benzylic-substituted pyridine **22**.^{41a} On the other hand the reaction of substituted 2-(phenylsulfinyl)pyridines, like **23**, with various pyridylmagnesium bromides furnished products of type **24**, according to the so-called ligand exchange reaction.^{41c}

Scheme 17: Ligand coupling led to 22, and ligand exchange gave the bipyridyl 24.

⁴⁰ a) Lockard, J. P.; Schroeck, C. W.; Johnson, C. R. *Synthesis* **1973**, 485; b) Capozzi, M. A. M.; Cardellicchio, C.; Naso, F.; Rosito, V. *J. Org. Chem.* **2002**, *67*, 7289.

⁴¹ a) Oae, S.; Kawai, T.; Furukawa, N. *Tetrahedron Lett.* **1984**, *25*, 69; b) Kawai, T.; Furukawa, N. *Tetrahedron Lett.* **1984**, *25*, 2549; c) Furukawa, N.; Shibutani, T.; Fujihara, H. *Tetrahedron Lett.* **1989**, *30*, 7091; d) Shibutani, T.; Fujihara, H.; Furukawa, N. *Tetrahedron Lett.* **1991**, *32*, 2943.

Recently, *Satoh* reported the utilization of a sulfinyl group for the synthesis of functionalized furans.⁴² Major drawback was the low compatibility of functional groups, only H and Me substituents were reported in position three and four of furan **25**.

Scheme 18: Utilization of a 1,1-dichlorosulfoxide for the synthesis of furans.

⁴² Miyagawa, T.; Satoh, T. Tetrahedron Lett. 2007, 48, 4849.

1.2. Objectives

In this work, we planned to establish a new route to 1,2,4-trisubstituted aromatic compounds. The reagents used in the synthetic sequence should be compatible with a broad range of functionalities. A sulfoxide moiety will be used, serving two purposes: first it should act as a metalating directing group, leading to *ortho*-metalated sulfoxides of type **26** which can be reacted with electrophiles and second the sulfoxide group should be the source of a new carbon-metal bond generated by a sulfoxide-metal exchange reaction (Scheme 19). This metal species **27** can be reacted with a second electrophile to generate the desired trisubstituted arenes of type **28**.

M: metal

Scheme 19: General approach to 1,2,4 trisubstituted arenes of type 28.

The details of this work are:

- Optimization of the ligand R, leading to a chemoselctive metalation (step 1, Scheme 19) and regioselective cleavage of the sulfur-carbon bond leading to **27**.

- Determining the scope of compatible functionalities.

- Optimization of R^2M for smooth cleavage (step 2) and good compatibility with FG and E^1 .

- Further applications of this two-step procedure to heteroaromatic systems.

A second project will be the examination of an I/Mg-exchange reaction on sp³hybridzed carbon with unstrained systems. *Vu* demonstrated that it is possible to perform an I/Mg-exchange on Csp³ in the presence of a carboxylic ester in γ -position to the carbon-iodine bond.⁴³ It will be studied if a complexation, as shown for the Br/Mgexchange on aromatic systems, might increase the rate of exchange. For this purpose aliphatic primary iodides of type **29** will be examined. A second task will be the

⁴³ a) Vu, V.-A. PhD-Thesis Ludwig-Maximilians-Universität, Munich, **2003**; b) Rauhut, C. B.; Vu, V.-A.; Fleming, F. F.; Knochel, P. *Org. Lett.* **2008**, *10*, 1187.

examination of the possible substitution pattern of the iodide (Scheme 20, R^1 , R^2), and the influence of the exchange reagents nature.

X: Heteroatom for chelation

Scheme 20: I/Mg-exchange performed on Csp^3 with a chelating heteroatom in γ -position to the carboniodine bond.

A third topic will be extension of the stereoselective Br/Mg-exchange on cyclopropyl bromides which was initially explored by *Cervino* (Scheme 21).⁴⁴ Additional experiments for cross-coupling reactions will be performed.

Scheme 21: Stereoselective Br/Mg-exchange and consecutive reaction with electrophiles.

⁴⁴ a) Cervino, C. *Diploma thesis*, Ludwig-Maximilians-Universität, Munich **2005**; b) Rauhut, C. B.; Cervino, C.; Krasovskiy, A.; Knochel, P. *Synlett* **2009**, 67.

2. Results and discussion

2.1. Sulfoxide-magnesium exchange on aromatic systems

The sulfoxide group offers the organic chemist a range of interesting properties. Using its stereochemistry for racemic resolution,³⁶⁻³⁷ or for inducing stereo chemistry, is well described. Some sulfoxides and sulfoxide derivatives are of commercial interest, since they show biologic activity and are used as drugs like Omeprazole (**30**, Figure 1).⁴⁵

Figure 1: Omeprazole 30, a proton pump ihibitor.

The excellent metalating directing abilities of the sulfoxide moiety were described by *Snieckus*,⁴⁶ when he demonstrated that the influence of the sulfoxide function is much stronger than ethers, amidates and amides (Scheme 22).

Scheme 22: Intermolecular metalation competition between a sulfoxide and various directing groups.

In this case the *t*Bu-sulfoxide moiety was employed which showed a special stability against organometallic reagents, and thereby allowed the utilization of *n*BuLi for deprotonation. This extraordinary stability is, from the point of view of a preparative chemist, also its disadvantage, as the functionality is then tied to the molecule. To

⁴⁵ a) Shaojun, S.; Klotz, U. *Eur. J. Clin. Pharmacol.* **2008**, *64*, 935; for a review on proton pump inhibitors see: Katz, P. O.; Koch, F. K.; Ballard, E. D.; Bagin, R. G.; Gautille, T. C.; Checani, G. C.; Hogan, D. L.; Pratha, V. S. V. *Aliment Pharmacol Ther* **2007**, *25*, 197.

⁴⁶ Quesnelle, C.; Iihama, T.; Aubert, T.; Terrier, H.; Snieckus, V. Tetrahedron Lett. 1992, 33, 2625.

increase the synthetic value of the sulfoxide function, it should be possible to remove it, and give rise to a reactive intermediate. This approach is also well described for some special cases (e.g. heterocyclic sulfoxides or ferrocenes),^{36-37,40} but mainly lithium reagents were used for the sulfoxide-metal exchange. More reactive α -chloro-sulfoxides were transformed with organomagnesium reagents to the corresponding carbenoids. Unfortunately the sulfoxide-magnesium exchange reagents were used in great excess (up to 5 equiv). The consecutive reactions required the addition of stoichometric amounts of electrophile which led to product/by-product ratios up to 1:5. The challenges during purification and the waste of resources needed an improvement of the sulfoxide-magnesium exchange.

A synthetic strategy including the metalation of a sulfoxide and after functionalization, a sulfoxide-metal exchange brings up four main requirements:

- a general structure allowing a chemoselective metalation (Scheme 23)
- a general structure leading to a chemoselective sulfoxide-magnesium exchange
- a mild exchange reagent which is compatible with functional groups
- a convenient access to various sulfoxides.

As the *t*Bu-sulfoxide moiety is inert towards organometallic reagents, and other aliphatic groups bearing α -acidic protons,^{40a,47} an aromatic electron rich system for R¹ should fulfill the demand for a selective metalation.

Scheme 23: Theorical pathway of the optimized sulfoxide-functionalization and exchange.

⁴⁷ a) Yamakazi, T.; Ishikawa, N. *Chem. Lett.* **1985**, 889; b) Pyne, S. G.; Dikic, B. *J. Chem. Soc. Chem. Commun.* **1989**, 826.

Furukawa proposed a mechanism for the ligand-exchange,^{41a} which supports the use of an electron rich arene (\mathbb{R}^1 : electron rich arene) in the sulfoxide moiety, regarding the selective cleavage of a sulfoxide-carbon bond (Scheme 24). In this equilibrium the favoured expelled organomagnesium reagent should be the most stable one (i.e. the electron poorest).

Scheme 24: Proposed mechanism for the sulfoxide-magnesium exchange.

Following this assumption a range of diaryl sulfoxides were prepared. Many synthetic routes are described for preparing chiral and racemic sulfoxides.^{34-35,48} A convenient access is the oxidation of the corresponding thioether with cheap and commercial available oxidants like mCPBA or H₂O₂.⁴⁹ Jendralla showed that the reaction of organometallic compounds with thiocvanates leads to the corresponding sulfides in good yields.⁵⁰ Thus, 4-(dimethylamino)phenyl thiocyanate (35)⁵¹ was prepared on large scale (500 mmol) and reacted with 4-chlorophenylmagnesium bromide (36, -20 °C to 25 °C). After aqueous workup the crude mixture was oxidized with mCPBA (1.1 equiv.) 1 M in CH₂Cl₂), giving 37a in 64% yield (Table 1, entry 1). Reaction of 4methoxylbenzene sulfinyl chloride⁵² (38) with 36 (-20 °C to 25 °C) led to 4chlorophenyl 4-methoxyphenyl sulfoxide 37b in 85% yield (entry 2). The sulfoxide 37c performing Br/Li-exchange with was obtained by а (4bromophenoxy)(triisopropyl)silane⁵³ and a consecutive reaction with S-(4chlorophenyl) benzenesulfonothioate⁵⁴ (**39**) leading to the thioether **40**.

The crude sulfide was oxidized with mCPBA (1 h, -20 °C), giving the sulfoxide **37c** in 66% yield (entry 3). In analogous manner **37d** was obtained in 76% yield (entry 4) from (4-bromo-2,6-diisopropylphenyl)dimethylamine,⁵⁵ *n*BuLi and **39**. Similarly the sulfide

⁴⁸ Manchena, O. G.; Bolm, C. Org. Lett. **2006**, 11, 2349.

⁴⁹ a) Ternay, A. L. Jr.; Chasar, D. W.; Sax, M. J. Org. Chem. **1967**, 32, 2465; b) Amos, R. A. J. Org. Chem. **1985**, 50, 1311; c) Nelsen, S. F.; Luo, Y.; Lockard, J. V.; Zink, J. I. J. Org. Chem. **2006**, 71, 4286;

d) Sathicq, A. G.; Romanelli, G. P.; Palermo, V.; Vázquez, P. G.; Thomas, H. J. *Tetrahedron Lett.* 2008, 49, 1441; e) Hinsberg, O. *Chem. Ber.* 1910, 43, 289.

⁵⁰ Jendralla, H.; Chen, L. Synthesis **1990**, 827.

⁵¹ Brewster, R. Q.; Schroeder, W. Org. Synth. 1943, 19, 79.

⁵² Peyronneau, M.; Roques, N.; Mazieres, S.; Le Roux, C. Synlett 2003, 631.

⁵³ Wipf, P.; Methot, J.-L. Org. Lett. **2000**, 26, 4213.

⁵⁴ Kolesnikov, V. T.; Vid, L. V.; Kuz'menko, L. O. *Zhurnal Organicheskoi Khimii* **1982**, *10*, 2163, or in analogous manner to: Fujiki, K.; Tanifuji, N., Sasaki, Y.; Yokoyama, T. *Synthesis* **2002**, 343.

⁵⁵ Yamano, M.; Goto, M.; Kawaguchi, S.; Yamada, M.; Kawakami, J.-I. PCT Int. Appl. 2007, 96.

41 was obtained from 5-bromo-1,2,3-trimethoxybenzene and **39** in 89% yield and oxidized with *m*CPBA (-20 °C, 1.1 equiv in CH₂Cl₂) to the sulfoxide **37e** in 73% yield (entry 5). The dibutylamino substituted sulfoxide **37f** was prepared from dibutyl(4-iodophenyl)amine and **39** in 27% yield (entry 6), using the above described sequence. For the comparison of the sulfoxide moieties, THF (25 ml) was mixed with tetradecane (0.25 g). Six *Schlenk*-flasks were charged with 1.0 mmol of a sulfoxide (**37a-f**, Scheme 25 and Table 1) and 2.0 mL of the tetradecane/THF mixture. *i*PrMgCl·LiCl (1.1 mmol, 1.46 M in THF) was added at -50 °C and after full conversion the ratio **42**/C₁₄H₃₀ was checked by GC by reacting aliquots with allyl bromide and CuCN·2LiCl (cat., Scheme 25 and Table 1). The best results were obtained with *p*MeOC₆H₄ and *p*NMe₂C₆H₄ as ligands.

Scheme 25: Benchmark experiment for chemoselectivity of the sulfoxide magnesium exchange reaction.

Table 1: Evaluation of the ligands for the sulfoxide-magnesium exchange reaction.

Entry	Sulfoxide	Ratio 42/C ₁₄ H ₃₀
4	CI CI NMe ₂	3.19
	37d	
5	CI CI CI CI CI CI CI CI CI CI CI CI CI C	3.03
	37e	
6		2.04
	37f	

Table 1 continued:

The next task was the determination of the appropriate sulfoxide-magnesium exchange reagent. We noticed on an early stage that arylmagnesium derivatives do not react with sulfoxides at low temperature which is advantageous during the deprotonation step. So we focussed on aliphatic reagents and examined in a benchmark reaction, comparable to the ligand test, five Grignard reagents. **37a** was dissolved in a THF/tetradecane mixture and the magnesium reagents (**43a–43e**) were added at $-50 \,^{\circ}$ C. The reaction progress was checked with aliquots reacted with allyl bromide (Table 2). With *i*PrMgCl·LiCl (**43a**) 74% conversion was achieved after 10 min. The other reagents displayed a lower reactivity (23-52% conversion, entry 2-5).

Table 2: Comparison of the magnesium reagents 43	3a-43e by the reaction with the	e
sulfoxide 37a .		

Entry	Grignard reagent	Conversion/% ^a
1	<i>i</i> PrMgCl·LiCl (43a)	74
2	<i>i</i> PrMgBr·LiBr(43b)	50
3	ClMg(CH ₂) ₅ MgCl·2LiCl(43c)	47
4	cHexMgCl(43d)	23
5	cPrMgBr·LiCl(43e)	52

^a Determined by GC-Analysis with $C_{14}H_{30}$ as internal standard.

With these elementary observations in hand, we prepared a range of functionalized sulfoxides (Table 3, entries 1-6). Thus, ethyl 4-iodobenzoate was treated with *i*PrMgCl·LiCl at -20 °C for 10 min, generating the corresponding aromatic magnesium reagent. Then 4-(dimethylamino)phenyl thiocyanate (**35**) was added, and the resulting crude sulfide was oxidized with *m*CPBA leading to the sulfoxide **37g** in 59% yield overall (entry 2). 4-Fluoro-phenylmagnesium bromide (**44**) was reacted with 4-methoxylbenzene sulfinyl chloride (**38**) (-20 °C) furnishing the fluorinated sulfoxide **37h** in 69% yield (entry 3).

Entry	Electrophile	Product	Yield(%) ^a
1	Me ₂ N-SCN	CI NMe2	64
	35	37a	
2		EtO ₂ C	59
	35	37g	
3	MeO	F OMe	69
	38	37h	
4	Me ₂ N-SO ₂ Me	F ₃ C NMe ₂	82
	45	37i	
5		F ₃ C OMe	82
	38	37j	
6	O S OMe	O S OMe	98 ^b
	46	37k	

Table 3: Preparation of functionalized sulfoxides (37a, 37g-k).

^a Isolated yield of analytically pure product. ^b Using an alkynyl zinc reagent, Pd(dba)₂ and tfp.

1-Bromo-(4-trifluoromethyl)benzene was treated with *i*PrMgCl·LiCl for 14 h, leading to analogous magnesium reagent which was reacted with methyl 4the dimethylaminosulfinate (45) or 38 respectively, furnishing the sulfoxides 37i-j in 82% vield (entries 4-5). Reaction of 1,4-diiodobenzene with *i*PrMgCl·LiCl and the sulfinyl chloride 38 gave 4-iodophenyl 4-methoxyphenyl sulfoxide (46) in 73% yield. This Negishi cross-coupling reaction⁵⁶ with transformed in а sulfoxide was trimethylsilylethynyl zinc chloride, prepared from ethynyl(trimethyl)silane, iPrMgCl·LiCl and zinc chloride (1.0 M in THF), to the desired alkyne-substituted sulfoxide 37k in 98% yield (entry 6).

Having these sulfoxides in hands, we developed a convenient protocol for their functionalization. It turned out that tmpMgCl·LiCl (13, 1.1 equiv) reacts regioselectively at -30 °C with these starting materials, furnishing the monometalated species within 20 min. Further reactions with various electrophiles led to a range of difunctionalized sulfoxides (Table 4). Thus, the smooth metalation of 37a, provided after reaction with 1,2-dibromo-tetrachloroethane the sulfoxide 47a in 88% yield (Table 4, entry 1). When zinc chloride (1.0 M in THF) was added after deprotonation, followed by an aryl iodide and a catalyst system (like Pd(PPh₃)₄, or Pd(dba)₂ and tris-ofurylphosphine) the aromatic products 47b-d were obtained in 69-82% yield (entries 2-4). Deprotonation of 37a with subsequent reaction with TosCN furnished the nitrile 47e in 73% yield (entry 4). Negishi cross-coupling with 4-iodobenzonitrile led to the sulfoxide 47f in 92% yield (entry 6). The fluorinated sulfoxide 37h was metalated according to the same procedure, and reaction with S-(4-fluorophenyl) benzenesulfonothioate gave the sulfoxide 47g in 81% yield (entry 7). The trifluoromethyl-substituted substrate 37i was deprotonated with the conditions described above, and converted with a Negishi cross-coupling with 1-chloro-4-iodobenzene to the derivative 47h in 91% yield (entry 8). To demonstrate that this procedure can be performed on large scale, the sulfoxide 47i was prepared on a 40 mmol scale with 75% yield (entry 9).⁵⁷ The functionalization of **37**j with an alkynyl derivative led, after *in* situ reaction with iodine, in a cross-coupling reaction to the sulfoxide 47j (79% yield, entry 10). An alkynyl group was used as primary functionality (37k) and combined with

⁵⁶ a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. **1980**, 102, 3298; b) Negishi, E. Acc. Chem. Res. **1982**, 15, 340; c) Zeng, X.; Quian, M.; Hu, Q.; Negishi, E. Angew. Chem. Int. Ed. **2004**, 43, 2259.

⁵⁷ Melzig, L.; Rauhut, C. B.; Knochel, P. Synthesis, 2009, in press.

one electron poor arene, one electron rich aromatic ring and with a second alkynyl function in 67-73% yield (**47k–m**, entries 11-13).

Entry	Sulfavida	Electrophile	Difunctionalized	Yield
Entry	Suitoxide	Electrophile	Sulfoxide	(%) ^a
1	CI NMe ₂	Cl ₂ BrCCBrCl ₂	CI S NMe2	88
	37a		47a	
2		Br	Br O S CI NMe ₂	82 ^b
	37a		47b	
3			CI S NMe2	69 ^b
	37a		47c	
4		CO ₂ <i>t</i> Bu	CO ₂ tBu O S CI	79 ^b
	37 a		47d	
5		TosCN		73
	37 a		47 e	
6	25	CN	CI CI CI CI CI	92 ^b
	37 a		47f	

Table 4:	Functionalization	with tmpMgCl·LiCl	(13).
----------	-------------------	-------------------	-------

Table 4 continued:
E u fuera	S16		Difunctionalized	Yield
Entry	Suitoxide	Electrophile	Sulfoxide	(%) ^a
12		OMe I I	OMe O S O O Me O Me O Me	67 ^b
	37k		471	
13		i) I2 ii) TMS- ZnCl T	TMS O S OMe	72 ^d
	37k		47m	

Table 4 continued:

^a Isolated yield of analytically pure product. ^b Using 1.1 equiv of zinc chloride (1.0 M in THF) and a palladium catalyst like $Pd(PPh_3)_4$ or $Pd(dba)_2$ and tfp. ^d Using a palladium catalyst like $Pd(PPh_3)_4$ or $Pd(dba)_2$ and tfp.

With these functionalized sulfoxides in hands, the stability of the functional groups and the reactivity of the sulfoxides towards *i*PrMgCl·LiCl was examined. In preliminary experiments we observed a slightly higher reactivity of the sulfoxide moiety in an intermolecular competition reaction between diphenylsulfoxide and iodobenzene (65:35) with *i*PrMgCl·LiCl. But even the reaction of **47a** with *i*PrMgCl·LiCl was not chemoselective and led to a mixture of Br/Mg- and sulfoxide-magnesium exchange. This increased reactivity of the bromide resulted possibly in the strong electron withdrawing character of the sulfoxide moiety. The same effect was observed in the case of the sulfoxide-magnesium exchange of the ethyl 4-benzoate-substituted sulfoxide **37b** (Table 3, entry 2).

Although the sulfoxide **37g** was prepared from ethyl 4-iodobenzoate via a I/Mgexchange with *i*PrMgCl·LiCl at -20 °C, in that case the sulfoxide-magnesium exchange (at -50 °C) led to a mixture of desired product and a large amount of decomposed product. By attaching the bromide on a second arene (**47b**, Table 5, entry 2) the inductive effect of the sulfoxide was decreased and the sulfoxide-magnesium exchange was the dominant reaction in the presence of *i*PrMgCl·LiCl. The reaction of the sulfoxide **47c**, which is the iodinated analogue of the bromide **47b**, with *i*PrMgCl·LiCl resulted only in an I/Mg-exchange.

Thus, the sulfoxides of type **47** were reacted with *i*PrMgCl·LiCl (up to 7 h, -50 °C) and the reaction progress was determined by GC, by reacting aliquots with iodine or water. The iodolysis revealed the iodinated product and a significant amount of protonated species (up to 35%, depending on sulfoxide substrate). The first possible source for the proton was the acidic proton generated with the sulfoxide-magnesium exchange (Scheme 26, compound **48**).

Scheme 26: Excluding deprotonation of the formed sulfoxide 48 as H⁺-source.

To verify this, the model compound **49** was stirred with PhMgCl·LiCl at -50 °C. Aliquots of the reaction were quenched with a solution of freshly distilled Ac₂O in D₂O, the solvent was removed and the residue was analyzed by ¹H-NMR, but no deuterium incorporation (**50**) could be observed. The temperature was increased stepwise to 0 °C, but no deprotonation of sulfoxide **49** could be observed. A second assumption pointed on an intramolecular reaction during the exchange process. To exclude this pathway the heptadeuterated magnesium reagent **51** was prepared and reacted with several functionalized sulfoxides. Aliquots of these reactions were checked by GC-MS, but the isotope pattern did not confirm the intramolecular pathway. A third assumption was that

the generated magnesium reagent **52** acts as a ligand and forms a stable complex which does not react with the offered electrophiles and is then hydrolysed during workup. To rule out this possibility we prepared solutions of 4-methoxyphenyl magnesium bromide and 4-carbethoxyphenylmagnesium chloride and injected them before the addition of *i*PrMgCl·LiCl in standard sulfoxide magnesium exchange reactions. But still the ratio of protonated species to iodinated species were constant. Moisture infiltrating through grindings or tubing was obviated by repeating a sulfoxide-magnesium exchange with five fold amount of substrate which should have reduced the relative amount of protonated species. Monitoring the protonated species during the 5 h reaction time revealed a constant ratio (iodinated product : protonated species) which also militates against penetrating moisture.

In summary we assume that the side reaction occurs during the exchange process, and it was observed that the relative amount of protonated species was decreased by using 2-methyl-THF as solvent. This and the utilization of 0.8 equiv of electrophile led to a convenient and efficient process.

Thus, the sulfoxide **47b** was stirred with *i*PrMgCl·LiCl (5 h, -50 °C, in THF) and reacted with TosCN yielding the nitrile **53a** in 59% (Table 5, entry 1). Cross-coupling reactions with aryl iodides led to the expected products **53b–c** in 50-56% yield (entry 2-3), but due to the presence of a bromidesubstituent this substrate is prone to undergo unwanted cross-coupling reactions. Reaction with benzaldehyde led to the desired alcohol **53d** in 60% yield (entry 4). Performing the reaction in 2-methyl-THF and quenching with 3,4-dichlorobenzaldehyde led to the chlorinated alcohol **53e** in 63% yield (entry 5).

Subjecting the carboxylic ester-substituted sulfoxide **47d** to a sulfoxide-magnesium exchange reaction ($-50 \, {}^{\circ}$ C, 7 h) furnished, with ethyl 2-bromoacrylate,⁵⁸ the product **53f** in 60% yield (entry 6). Cross-coupling with 4-iodobenzonitrile or reaction with 3,4-dichlorobenzaldehyde gave the desired products **53g**–**h** in 50-54% yield (entries7–8). The long reaction time for the sulfoxide-magnesium exchange seems to be the reason for the low yields. With different substitution pattern, and a resulting fast sulfoxide-magnesium exchange, the product was obtained in 78% yield.⁵⁹ Using the nitrile **47e** the sulfoxide-magnesium exchange was performed in 5 min and yielded, after a cross-coupling with 4-iodoanisole, the biphenyl **53i** in 84% yield (entry 9). The 2-(4-

⁵⁸ a) Villiéas, J.; Rambaud, M. *Synthesis*, **1982**, *11*, 924; b) Villiéras, J.; Rambaud, M. *Org. Synth.*, **1988**, 66, 220.

⁵⁹ Rauhut, C. B.; Melzig, L.; Knochel, P. Org. Lett. 2008, 10, 3891.

cyanobenzene)-substituted sulfoxide 47f showed, possible due to the increased sterical hindrance, a longer reaction time (-50 °C, 2 h) and led after cross-coupling reaction or addition to 3,4-dichlorobenzaldehyde to the expected ptoducts 53j-k in 60-63% yield (entries 10–11). The sulfide 47g gave after 1 h at -50 °C with a prestirred mixture of N, N, N', N'-tetramethyldiaminomethane and trifluoroacetic anhydride,⁶⁰ the expected amine 531 in 66% yield (entry 12). This sulfide and related structures were described recently, due to their biological activity, acting as serotonin reuptake inhibitors.⁶¹ The sulfoxides bearing a trifluoromethyl moiety 47h-i underwent a smooth sulfoxidemagnesium exchange (-50 °C, 3 h) and led with benzaldehyde, DMF or in a Negishi cross-coupling reaction to the expected products 53m-o in 68-83% yield (entries 13-15). The aldehyde 530 was prepared on large scale (25 mmol) to demonstrate the possibility of upscaling this procedure. With the sterically less hindered alkynesubstituent, the sulfoxide 47j showed an excellent exchange rate (-50 °C, 5 min) and gave the biphenyl 53p in 87% yield (entry 16). Sulfoxide 47k performed the exchange reaction in 3 h and gave after cross-coupling reaction or reaction with DMF the terphenyl 53q and the corresponding aldehyde 53r in 68% yield (entries 17-18). The bisalkynylated sulfoxide 47m reacted with iPrMgCl·LiCl within 5 min giving, with 3,4dichlorobenzaldehyde, the expected alcohol 53s in 72% yield (entry 19).

⁶⁰ a) Millot, N.; Piazza, C.; Avolio, S.; Knochel, P. *Synthesis* **2000**, 941; b) Gommermann, N.; Koradin, C.; Knochel, P. *Synthesis* **2002**, 2143.

⁶¹ Polivka, Z.; Dobrovsk, K.; Silhankova, A.; Sindelar, K.; Mickova, R.; Valenta, V.; Krejci, I. *PCT Int. Appl.* WO 9717325, **1997**.

Entry	Sulfoxide	Electrophile	Product	Yield
		1		(%) ^a
1	Br O S Cl	TosCN	Br CI CI	59
	47b		53a	
2		CO ₂ Et	Br CO ₂ Et	50 ^b
	47b		53b	
3		Cl	Br Cl	56 ^b
	47b		53c	
4		PhCHO	Br OH Cl	60
	47b		53d	
5		CHO CI CI	Br OH CI	63
	47b		53e	

Table 5: Sulfoxide-magnesium exchange leading to a broad range of 1,2,4-trifunctionalized arenes.

Table 5 continued:

Table	5	continued:
Lanc	0	commucu.

Table 5 continued:

^a Isolated yield of analytically pure product. ^b Using 1.1 equiv of zinc chloride (1.0 M in THF) and a palladium catalyst like Pd(PPh₃)₄ or Pd(dba)₂ and tfp. ^c using CuCN·2LiCl (5 mol %, 1 M in THF).⁶²

⁶² Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

2.2. Full functionalization of the furan ring

The development of previous described two-step difunctionalization of aromatic substrates, allowed us to search for further applications. A full functionalization of furan seemed to offer a good possibility to demonstrate the scope of this procedure.⁶³ Preliminary experiments showed that 2-[(4-methoxyphenyl)sulfinyl]furan (**54**) suits our requirements, but as the 5-position is very acidic, even at –78 °C a mixture of **55** and **56** was obtained after deprotonation with tmpMgCl·LiCl and consecutive reaction with iodine (Scheme 27). Using trimethylsilyl chloride to block this position led to the starting sulfoxide **57**.

Scheme 27: Preparation of the elementary furyl sulfoxide 57.

The utilization of the silyl group should allow the generation of a 2-iodofuran with ICl after the difunctionalization-procedure. The generated furan could be used for further extensions with *i*PrMgCl·LiCl or cross-coupling reactions. One additional option of this approach was a second deprotonation of the furan in position 4, but it turned out that in that case the reaction is too slow and **58** was only obtained in 45% yield (Scheme 28).

⁶³ For reviews and selected publications for furan see: a) Lipshutz, B. H. *Chem. Rev.* **1986**, *86*, 795; b) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong, H. N. C. *Tetrahedron* **1998**, *54*, 1955; c) Padwa, A. Zhang, H. *J. Org. Chem.* **2007**, *72*, 2570.

Scheme 28: General approach for the furan functionalization.

The more convenient route was to perform the sulfoxide-magnesium exchange first, followed by transformation of the trimethylsilyl group to iodine.⁶⁴ This furan **59** can be functionalized with the well described iodine I/Mg-exchange.²¹ Thus, the sulfoxide **57** was treated with tmpMgCl·LiCl, achieving full deprotonation at –40 °C within 20 min. The metalated species was reacted in a cross-coupling reaction with ethyl 4-iodobenzoate, furnishing the sulfoxide **60a** in 77% yield (Table 6, entry 1). Using the previous described protocol for introducing alkynes, the sulfoxide **60b** was obtained in 69% yield (entry 4).

With these furans in hands, the sulfoxide-magnesium exchange was examined. Thus, the sulfoxide **60a** was reacted with *i*PrMgCl·LiCl (-40 °C, 20 min), transmetalated with zinc chloride (1.0 M in THF) and transformed with ethyl 4-iodobenzoate and a palladium catalyst to the corresponding furan **61a** in 68% yield (Table 6, entry 1). Reaction with DMF gave the aldehyde **61b** in 76% yield (entry 2). The nitrile **61c** was generated in 63% yield (entry 3) by the reaction of the magnesiated species with TosCN. Substrate **60b** performed the sulfoxide-magnesium exchange at -78 °C in 15 min, and the consecutive cross-coupling led to the expected furan **61d** in 68% yield (entry 4).

⁶⁴ a) Nakayama, K.; Harigaya, Y.; Okamoto, H.; Tanaka, A. J. Heterocycl. Chem. **1991**, 28, 853; b)
Koyanagi, J.; Yamamoto, K.; Nakayama, K.; Tanaka, A. J. Heterocycl. Chem. **1997**, 34, 407; c) Campo,
M. A.; Larock, R. C. J. Am. Chem. Soc. **2002**, 124, 14326.

Table 6: Deprotonation and sulfoxide-magnesium exchange of functionalized furans.

^a Isolated yield of analytically pure product. ^b Using 1.1 equiv of zinc chloride (1.0 M in THF) and a palladium catalyst like Pd(PPh₃)₄ or Pd(dba)₂ and tfp. ^c Using Pd(dba)₂ and tfp.

For further substitution the trimethylsilyl group was converted to iodine by reaction with ICl, furnishing **59** in 79% yield (Scheme 29).

Scheme 29: Pathway to polyfunctionalized furans.

The I/Mg-exchange was performed with *i*PrMgCl·LiCl (-40 °C, 20 min) and the resulting organomagnesium compound was reacted with benzaldehyde, TosCN or ethyl cyanoformate leading to the expected products **62a–c** in 77–86% yield (Scheme 29). The metalation of **62c** with tmp₂Mg·LiCl (**15**, -40 °C, 25 min) and consecutive copper mediated acylation using 3,3-dimethylbutanoyl chloride led to the furan **63** in 93% yield (Scheme 29).

2.3. I/Mg-exchange on Csp3-centers

Recently, I/Mg- and Br/Mg-exchange reactions on Csp^2 -centers have allowed the synthesis of a range of polyfunctional aryl and hetereoaryl magnesium compounds.^{21,65} Nevertheless, the extension of this procedure to Csp^3 -centers failed in most cases due to the slow I/Mg-exchange rate of alkyl iodides. In case of strained systems, e. g. cyclopropyl halides, compareable results were obtained. Simultaneous to our investigations, an alkoxide-directed I/Mg-exchange was reported, but the use of 2.1 equiv of *n*BuLi excluded most functional groups.⁶⁶ A second disadvantage of this approach was the excess of *n*BuLi which afforded in most cases a stoichometric amount of electrophile, leading to huge amounts of byproducts.

In preliminary experiments Vu could demonstrate that electron poor alkyl iodides can be subjected to an I/Mg-exchange reaction.^{43a} Optimization of the reaction conditions led to the utilization of *i*Pr₂Mg·LiCl, and a DMPU/THF 1:1 mixture (Scheme 30).

Scheme 30: I/Mg-exchange on β-iodoesters 64a–b.

Thus, the alkyl iodide **64a** was prepared by deprotonation of ethyl cyclohexyl carboxylate with LDA and consecutive reaction with CH_2I_2 , giving the iodoester **64a** in 68% yield (Scheme 31). Enolization of ethyl 2-methylpropanoate with LDA gave after reaction with CH_2I_2 the alkyl iodide **64b** in 69% yield.

Scheme 31: Preparation of the carboxylic esters 64a-b.

⁶⁵ a) Krasovskiy A.; Knochel, P. *Angew. Chem., Int. Ed.* **2004**, *43*, 3396; b) Liu, C.; Ren, H.; Knochel, P. *Org. Lett.* **2006**, *8*, 614; c) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. **2001**, *66*, 4333.

⁶⁶ Fleming, F. F.; Subrahmanyan, G.; Vu, V. A.; Mycka R. J.; Knochel P. Org. Lett. 2007, 9, 4507.

An I/Mg-exchange was then performed in a 1:1 THF/DMPU mixture, leading after 14 h at -10 °C to the corresponding homoenolates **65a–b** which were then reacted with various electrophiles. The reaction of **65a** with benzaldehyde gave the expected alcohol which furnished after spontaneous lactonization the spirolactone **66a** in 68% yield (Table 7, entry 1). A copper(I)-catalyzed (5 mol %) reaction of **65a–b** with allyl bromide led to the expected alkenes **66b–c** in 68-78% yield (entry 2-3). Interestingly, the copper(I)-mediated (1.1 equiv) reaction with benzoyl chloride did not furnish the expected ketones, but the cycopropylderivates **66d–e** were obtained in 71–75% yield (entries 4-5).

Entry	Mg-Reagent	Electrophile	Product	Yield(%) ^a
1	EtO ₂ C MgCl	PhCHO	O Ph	68
	65a		66a	
2		Br	EtO ₂ C	78 ^b
	65a		66b	
3	EtO ₂ C Me Me	Br	EtO ₂ C Me Me	68 ^b
	65b		66c	
4		PhCOCl	O Ph OEt	71 ^c
	65a		66d	
5		PhCOCl	Me OEt	75 [°]
	65b		66e	

Table 7: Reaction of the homo enolates 65a-b with various eletrophiles.

^a Isolated yield of analytically pure product; ^b using CuCN·2LiCl (5 mol %, 1 M in THF); ^c Using 1.1 equiv of CuCN·2LiCl (1.0 M in THF).

These structures could be explained by an equilibrium of the homo enolates **65a–b** with an intramolecular attack leading to a cyclopropyl semi-acetal anion. Depending on the

electrophile one nucleophilic center (carbon or oxygen) performs the reaction. Similar reactivities were observed by *Ruehlmann*⁶⁷ and others.

A further extension of the I/Mg-exchange was the examination of chelating substrates. Heteroatoms (oxygen and nitrogen) were placed in γ -position to the carbon-iodine bond (67a–f) which should form an intramolecular complex after the I/Mg-exchange reaction (Scheme 32, 68a-f).

Scheme 32: Conversion of the iodides 67a-f to their corresponding stabilized Grignard reagents 68a-f.

Thus, ethyl 1-(iodomethyl)cyclohexanecarboxylate (64a) was reduced with DIBAL-H (CH₂Cl₂, -78 °C to 25 °C) and the resulting alcohol was reacted with dimethoxymethane and Amberlyst 15[®] furnishing the iodide 67a in 59% yield over both steps (Scheme 33). 2-(Bromomethyl)-3-methylbutanoic acid 69 was treated with borane dimethyl sulfide (-20 °C to 25 °C, 14 h), leading to the corresponding alcohol (81% yield) which was reacted with dimethoxymethane and Amberlyst 15[®] giving corresponding MOM-protected bromide in 90% yield. A reaction with NaI in acetone⁶⁸ furnished the expected iodide 67b in 98% yield (71% over three steps; Scheme 33). 1,4-Dioxaspiro[4.5]dec-6-ylmethanol⁶⁹ **70** was reacted with PPh₃ and iodine,⁷⁰ generating

⁶⁷ a) Ruehlmann K. Synthesis **1971**, 236; b) Nakamura E.; Kuwajima, I. J. Am. Chem. Soc. **1983**, 105, 651; c) Nakamura E.; Shimada, J.-I.; Kuwajima, I. Organometallics, 1985, 4, 641; d) Reissig, H.-U.; Holzinger, H.; Glomsda, G. Tetrahedron, 1989, 45, 3139.

⁶⁸ Finkelstein, H. Chem. Ber. **1910**, 43, 1528.

⁶⁹ a) Nicolaou, K. C.; Dai, W. M. J. Am. Chem. Soc. 1992, 114, 3908; b) Plieninger, H.; Zeltner, M. Chem. *Ber.* **1987**, *108*, 3286. ⁷⁰ Appel, R. *Angew. Chem*, **1975**, *87*, 863.

Scheme 33: Preparation of the starting iodides.

the spiro-acetal 67c in 87% yield. 2-[1-(Bromomethyl)-2-methylpropyl]-1,3-dioxolane⁷¹ 71 was converted in the same fashion to the iodide 67d in 81% yield. For the preparation of the pyridine derivative 67e, 2-methyl-2-pyridin-2-ylpropan-1- ol^{72} (72) was treated with iodine and PPh₃, giving the iodide 67e in 90% yield. The diphenylsubstituted pyridine derivative 67f was prepared according to literature procedures.⁷³

With these starting materials in hands the I/Mg-exchange and the influence of the chelating group was examined. Performing the I/Mg-exchange reaction with *i*PrMgCl·LiCl leads to a slow and incomplete reaction, but using *i*Pr₂Mg·LiCl (73) (0.75 equiv) for the I/Mg-exchange allows the formation of the magnesium reagent 67a within 5 h at 25 °C. Quenching with CO₂ afforded the carboxylic acid 74a with 63% yield (Table 9, entry 1). Although the exchange reagent 73 was also used to prepare other alkylmagnesium species such as 67b, 67c, 67e and 67f (Scheme 32), often an

⁷¹ Rrehs, G.; Urban, E. *Tetrahedron*, **1996**, *52*,1221.

⁷² a) Rocca, P. Tetrahedron, **1998**, 54, 8771; b) Brocard, J. Annales de Chimie, **1972**, 7, 387; c) Eisch, J.

J.; Csaba, K.A.; Chobe, P.; Boleslawski, M. P. J. Org. Chem. **1987**, 52, 4427. ⁷³ Eisch, J. J.; Kovacs, C. A.; Chobe, P.; Boleslawski, M. P. J. Org. Chem. **1987**, 52, 4427.

excess of iPr_2Mg ·LiCl (up to 1.1 equiv, corresponding to 2.2 isopropyl units) was required to achieve full conversion. This excess led to side reactions with the added electrophiles. We solved this problem by using a dimagnesium species such as **75** (Scheme 34).⁷⁴

Scheme 34: Cyclisation during an I/Mg-exchange reaction.

Recently, a similar approach was reported for an I/Cu-exchange reaction, by using pentane-1,5-dimagnesium bromide and CuCN·2LiCl to generate the exchange reagent **76** (Scheme 35).⁷⁵ As the detection of cyclopentane in the crude reaction mixture was difficult, the cuprate of 3-phenyl-substituted 1,5-*bis*(bromomagnesio)pentane was prepared and used for the I/Cu-exchange. Then, it was possible to detect cyclopentylbenzene as main byproduct (94%).

FG= p-CO₂Et, m-CO₂Et, m-CN, p-CO₂tBu, m-COC₆H₄m-OMe, m-F, p-Br Scheme 35: An I/Cu-exchange reaction reported by *Yang* using the bis-cuprate 76.

For the improvement of the I/Mg-exchange on Csp³-centers a range of 1,5– and 1,6– dimagnesium reagents (Table 8, **77a–f**) was prepared, and compared by their reaction with the alkyl iodide **67b** at –10 °C in THF. The conversion of **67b** was determined by GC, by reacting aliquots with a sat. aq. NH₄Cl-solution. The dimagnesium reagents **43a** and **77a** displayed comparable results i.e. >80% conversion after 1 h (Table 8, entries 1– 2). The other magnesium derivatives **77b–e** showed a lower reactivity (22-54% conversion after 1 h, entries 3-6).

⁷⁴ For a review see: Bickelhaupt, F. Angew. Chem. Int. Ed. **1987**, 26, 990.

⁷⁵ Yang, X.; Knochel, P. Synlett **2004**, 82.

			-		
Entry	Ma Doogont	Conv. ^a	Conv. ^a	Conv. ^a	Conv. ^a
Епиу	Mg-Reagent	after 0.5h	after 1h	after 2h	after 3h
1	CIMgMgCl·2LiCl	61	84	95	-
	43c				
2	CIMg MgCl-2LiCl	72	89	96	-
	77a				
3	CIMg MgCl·2LiCl Me Me	38	42	69	76
	77b				
4	CIMg Me MgCl·2LiCl Me	14	22	29	37
	77c				
5	MgCl MgCl-LiCl	39	54	73	84
	77d				
6	BrMg MgBr	29	39	48	-
	77e				

Table 8: Comparison of dimagnesium reagents 43c and 77a-e by their reaction with the iodide 67b.

^a Conversion was determined by reacting aliquots of the reaction mixture with a sat. aq. NH₄Cl-solution and GC-analysis.

Remarkably, in the case of **77d**, the formation of norbornane during the I/Mg-exchange was observed on GC which supports the cyclisation assumed in Scheme 34. To proof this assumption 3-phenyl-substituted 1,5-*bis*(bromomagnesium)pentane was prepared and its conversion to cyclopentylbenzene during an I/Mg-exchange was confirmed by GC and GC-MS.

In order to make a decision between the utilization of **43c** or **77a**, the isolated yields of the reaction of **43c** and **77a** with **67b** and a consecutive copper(I)-catalyzed reaction with allyl bromide were compared (71% for **43c**, and 70% for **77a**, see also Table 9, entry 3). The Mg-insertion for the preparation of **43c** was slightly cleaner. Iodolysis revealed that 92% of the reactive reagent was the desired di-magnesiumcompound, 5% reduced species, i.e. hexanemagnesium chloride, and 3% eliminated product, i.e. pent-4-

enemagnesium chloride. In comparison, the reagent 77a was obtained only in 88% purity.

Thus, the reaction of the alkyl iodide **67b** with $ClMg(CH_2)_5MgCl \cdot 2LiCl$ (**77a**, 1.1 equiv, 25 °C, 2 h) provided the Grignard reagent **68b** which reacted smoothly with CO₂ or allyl bromide, leading to the MOM-derivatives **74b–c** in 71-73% yield (Table 9, entry 2-3). The treatment of the alkyl iodide **67c** with the exchange reagent **43c** at -15 °C led to the Grignard reagent **68c** after 3 h. Quenching with 3-bromo-2-methylprop-1-ene, benzaldehyde or propionyl chloride gave the desired products with 63–72% yield (entries 4–6).

Entry	Mg-Reagent	Electrophile	Product	Yield (%) ^a
1	OMe O→ MgCl·LiCl	CO ₂	MOMO CO ₂ H	63 ^b
	68a		74a	
2	OMe O → MgCl·LiCl /Pr	CO ₂	/Pr MOMO CO ₂ H	73 ^b
	68b		74b	
3		Br	iPr MOMO	71 ^c
	68b		74c	
4	O → MgCl·LiCl	Br	O_O_Me	72°
	68c		74d	
5		PhCHO	O O O H	72 ^c
	68c		74e	

Table 9: I/Mg-Exchange reaction and subsequent reaction with an electrophile.

Entry	Mg-Reagent	Electrophile	Product	Yield $(\%)^a$
6		EtCOCl		63 ^{c,d}
7	$68c$ $\downarrow Pr$ $\downarrow O \rightarrow MgCl·LiCl$	tBuCHO	74f Pr OH O -O 74c	72 [°]
8	08 0	PhSO ₂ S-/	/4g	58°
9	68d Me Me N→ MgCl·LiCl	PhCHO	74h	56 ^b
10	68e	<i>t</i> BuCHO	74i	61 ^b
11	68e	Br	74j	64 ^b
12	000	CO ₂	Me Me CO ₂ H	75 ^b
13	$68e$ $\xrightarrow{Ph} \xrightarrow{Ph} MgCl \cdot LiCl$	tBuCHO	74I	59 ^b
14	68f	BrCO ₂ Et	74m	59 ^b
	68f		74n	

Table 9 continued:

^a Isolated yield of analytically pure product; ^b Using *i*Pr₂Mg·LiCl (0.65–1.1 equiv) as exchange reagent. ^c Using ClMg(CH₂)₅MgCl·2LiCl (1.1 equiv) as exchange reagent. ^d After transmetalation using CuCN·2LiCl (1.0 equiv).

The reaction of the β -iodoacetal **67d** with the 1,5-dimagnesium species **43c** gave within 3 h at –20 °C the corresponding magnesium reagent **68d**. Quenching with *t*BuCHO or *S*-allyl benzenesulfonothiate⁷⁶ furnished the expected products **74g-h** (entries 7–8) with 58–72% yield. Nitrogen containing heterocycles such as pyridine were also compatible with our reaction conditions. Thus, the reaction of the pyridine derivative **67e** using *i*Pr₂Mg·LiCl (**73**) led after 1.5 h at 25 °C to the Grignard reagent **68e** which was trapped with benzaldehyde, *t*BuCHO, allyl bromide or CO₂ in 56–75% yield (entries 9–12)⁷⁷. For the pyridine derivative **67f** a similar exchange could be performed with *i*Pr₂Mg·LiCl (25 °C, 2.5 h). Reacting **68f** with pivalaldehyde or ethyl 2-(bromomethyl)acrylate led to the expected products **74m–n** (entries 13–14) in 59% yield. To proof the role of the chelatisation, we examined the I/Mg-exchange reaction with two similar alkyl iodides without a heteroatom in γ -position to the carbon iodine bond (Scheme 36). Neither the triphenyl-substituted iodide **78a**,⁷⁸ nor the oxygen free analogue of **78b** underwent a I/M-exchange.

Scheme 36: Attempted I/Mg-exchange reactions without a heteroatom in γ -position to the carbon iodine bond.

⁷⁶ Kozikowski, A. P.; Anes, A.; Wetter, H. J. Organomet. Chem. 1978, 3, 164.

⁷⁷ Pasquinet, E.; Rocca, P.; Godard, A.; Marsais, F.; Quéguiner, G. J. Chem. Soc., Perkin Trans. 1, **1998**, 3807.

⁷⁸ Patrick, T. B.; Zhang, L.; Li, Q. J. Fluorine Chem. 2000, 102, 11.

2.4. Br/Mg-Exchange on cyclopropylbromides

The first reported cyclopropane synthesis was performed in Munich by *Perkin*.⁷⁹ Diethyl malonate was treated with sodium ethylate and dibromoethane. Later, many interesting cyclopropanes were discovered in natural proucts, e.g. thujene or chrysanthemic acid.⁸⁰ The structural elucidation of pyrethrin I (**79a**; Figure 2) and pyrethrin II (**79b**) by *Staudinger* facilitated the synthesis of these strong neurotoxins which are now still used as insecticides.⁸¹

79a: R = Me: pyrethrin I **79b**: $R = CO_2Me$: pyrethrin II

Therefore, the functionalization of cyclopropanes is of general interest. *De Lang*⁸² published already a stereoselective Br/Li-exchange, and after transmetalation to zinc, some consecutive cross-coupling reactions. Recently, a stereoselective I/Mg-exchange on cyclopropyl derivatives, and one example for a stereoselective Br/Mg-exchange (Scheme 37) was published.⁸³

Scheme 37: Stereoselective Br/Mg-exchange and subsequent reaction with an electrophile.

Due to the coordinating effect of the nitrile group the treatment of the cyclopropyl dibromide **80** with *i*PrMgCl gave only the magnesiated cyclopropyl derivative **81** (Scheme 37). Consecutive reactions with various electrophiles led to the expected functionalized cyclopropanes of type **82**.

⁸¹ a) Staudinger, H.; Ruzicka, L. Helv. Chim. Acta **1924**, 7, 177; b)

Figure 2: Structure of pyrethrin I and II.

⁷⁹ Perkin, W. H. Chem. Ber. 1884, 17, 54.

⁸⁰ For reviews see: a) de Meijere, A.; Wessjohann, L. *Synlett*, **1990**, 20; b) de Meijere, A.; Hopf, H. *Chem. Rev.* **2006**, *106*, 4785; c) Brackmann, F.; de Meijere, A. *Chem. Rev.* **2007**, *107*, 4493.

Staudinger, H.; Ruzicka, L. Helv.. Chim. Acta 1924, 7, 201.

⁸² De Lang, R. J.; Brandsma, L. Synth. Commun. **1998**, 28, 225.

⁸³ Kopp, F.; Sklute, G.; Polborn, K.; Marek, I.; Knochel, P. Org. Lett. 2005, 7, 3789.

Extension of the Br/Mg-exchange to cyclopropyl derivatives without a chelating or a electron withdrawing group turned out to be much slower (Scheme 38).^{44b}

Scheme 38: Br/Mg-exchange with *i*PrMgCl·LiCl in a THF/dioxane-mixture (10:1).

The reactivity of *i*PrMgCl·LiCl in THF was too low and did not lead to full conversion, however the utilization of a THF/dioxane-mixture (10:1) gave, due to the shifted Schlenk-equilibrium, shorter reaction times. Under these conditions the cyclopropyl bromide 83a⁸⁴ was subjected to a Br/Mg-exchange within 48 h at 25 °C giving the magnesiated intermediate 84a. Addition to 3,4-dichlorobenzaldehyde (-30 °C to 25 °C, 2.2 equiv) gave the expected alcohol 85a in 64% yield (Table 10, entry 1). Reaction of the Grignard reagent 84a with PhSO₂SMe (-30 °C to 25 °C, 2.2 equiv) furnished the thio ether 85b in 73% yield (entry 2). Transmetalation with zinc chloride (1.0 M in THF) and a consecutive Negishi cross-coupling reaction using Pd(dba)₂ (4 mol%), triso-furylphosphine (8 mol%) and ethyl 4-iodobenzoate (2.2 equiv) furnished the ester 85c in 62% yield (entry 3). A similar cross-coupling with 4-bromo-chlorobenzene (2.3 equiv), Pd(OAc)₂ (1 mol%) and S-Phos⁸⁵ (1.5 mol%) gave the cyclopropane 85d in 67% yield (entry 4). The E-cyclopropyl bromide 83b was converted to the magnesiated species 84b in 8 h at 25 °C (1.1 equiv). Transmetalation with zinc chloride (1.0 M in THF) and a cross-coupling reaction with 1-iodo-2-(trifluormethyl)benzene (1.2 equiv), Pd(dba)₂ (2 mol%), tris-o-furylphosphine (4 mol%) gave the cyclopropane 85e in 46% yield (entry 5). The cross-coupling reaction with 4-bromobenzonitrile (1.2 equiv) or

⁸⁴ Sydnes, L. K.; Bakstad, E. Acta Chem. Scand. 1996, 50, 446.

⁸⁵ a) Altman, R. A.; Buchwald, S. L. *Nature Protocols* **2007**, *2*, 3115; b) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. *Angew. Chem. Int. Ed.* **2004**, *43*, 1871.

ethyl 4-bromobenzoate (1.2 equiv) catalyzed by $Pd(OAc)_2$ (1 mol%) and *S*-Phos (1.5 mol%) furnished the cyclopropylderivatives **85f**–g in 51-58% yield (entries 6-7).

Entry	Cyclopropyl bromide	Electrophile	Product	Yield/% ^a
1	Ph Br Ph	CHO	OH Cl Ph Ph Cl	64
	83a		85a	
2		PhSO ₂ SMe	Ph Ph	73
	83a		85b	
3		CO ₂ Et	Ph Ph	62 ^c
	83a		85c	
4		CI	Ph Ph	67 ^b
	83a		85d	
5	Ph '''Br	CF3	Ph CF3	46 ^c
	83b		85e	

 Table 10: Br/Mg-exchange on cyclopropyl derivatives 83a–c and subsequent reactions

 with electrophiles.

Table 10 continued:

^a Isolated yields; ^b Using 1.1 equiv of zinc chloride (1.0 M in THF), S-Phos (1.5 mol%) and Pd(OAc)₂ (1 mol%); ^c Using 1.1 equiv of zinc chloride (1.0 M in THF), ^cPd(dba)₂ (2 mol%) and tfp (4 mol%).

The 4-fluorobenzene-substituted cyclopropyl bromide⁸⁶ **83c** was treated with *i*PrMgCl·LiCl in 10:1 THF/dioxane for 12 h at 25 °C, furnishing the corresponding organomagnesium reagent which gave after transmetalation with zinc chloride (1.0 M in THF) and cross-coupling reaction, with ethyl 4-bromobenzoate (1.2 equiv), Pd(OAc)₂ (1 mol%) and S-Phos (1.5 mol%), the ester **85h** in 54% yield.

⁸⁶ **83b** was prepared from the corresponding dibromide **86** according to: Dehmlow, E. V.; Lissel, M.; Heider, J. *Tetrahedron* **1977**, *33*, 363.

3. Summary and outlook

3.1 Sulfoxide-magnesium exchange on aromatic systems

In summary, we have developed a convenient two-step synthesis for the preparation of 1,2,4-trisubstituted arenes, using a sulfoxide moiety for the two crucial steps: first we employed the excellent directing abilities of the sulfoxide group for an *ortho*-metalation with tmpMgCl·LiCl which has proven to have a good tolerance towards many functional groups and second, we performed a sulfoxide-magnesium exchange reaction, generating a new reactive organometallic intermediate which was trapped with a range of electrophiles.

Scheme 39: Two-step synthesis of 1,2,4-trifunctionalized arenes.

The chemoselective metalation (Scheme 39, step 1) was achieved due to an electron rich ligand ($pMeOC_6H_4$ or $pNMe_2C_6H_4$) on the sulfoxide function. The selective cleavage of a sulfur-carbon bond led to the functionalized Grignard reagents of type **87**, and not to RMgX, and gave therefore access to smooth reactions with various electrophiles leading to trisubstituted arenes of type **53**.

Extensions of this work could be the application of the two-step synthesis for the preparation of a 1,2,3-trisubstituted aromatics, by starting from *meta*-substituted sulfoxides. Furthermore the sulfoxide group could be used as a protecting group for an organometallic function which can be cleaved after other planned steps furnishing again the metal species.

3.2. Full functionalization of the furan ring

The application of the developed two-step sequence for the functionalization of furan, was accomplished on a few selected examples, demonstrating the power of this sequence for providing a substrate with range of functionalities.

Scheme 40: Functionalization of furan with the developed two-step synthesis and consecutive reactions.

Future work could be the application of the sulfoxide route to other heteroaromatics, like thiophene, benzofuran or pyrrole.

<u>3.3. I/Mg-exchange on Csp³-centers</u>

The examination of the I/Mg-exchange reaction on Csp³-centers revealed that this reaction proceeds under the influence of chelating functionalities, providing additional stability. A new reagent for the I/Mg-exchange reaction was developed which facilitated the reduction of reagent excess, and led therefore to decreasing amounts of byproducts.

Scheme 41: Chelation of the formed Grignard reagents 68a–f, and demonstration of the new Mg/I-exchange reagent 77a.

Future works could be the preparation of chiral Csp³-organomagnesium reagents. The chelatization and the new cyclizing I/Mg-exchange reagent could give an impulse for new experiments.

3.4. Br/Mg-Exchange on cyclopropyl bromides

The Br/Mg-exchange reaction was performed with commercially available *i*PrMgCl·LiCl in a THF/dioxane mixture, leading to a shifted *Schlenk*-equilibrium,⁸⁻⁹ and therefore to an increased reactivity of the Grignard reagent. The formed organometallic species were quenched with various eletrophiles, including Negishi cross-coupling reactions with aryl bromides.

Scheme 42: Br/Mg-exchange with retention of configuration, and consecutive reaction with electrophiles.

4. Experimental section

4.1. General considerations

All reactions were carried out with magnetic stirring and, if air or moisture sensitive, in flame dried glassware under argon. Syringes were used to transfer solvents and reagents, and were purged with argon prior to use.

4.1.1. Solvents

Diethyl ether was was predried over calcium hydride and dried with the solvent purification system SPS-400-2 from INNOVATIVE TECHNOLOGIES INC (Al₂O₃, 1-3 mm, ICN, Eschwege, Germany).

DMF was heated to reflux for 14 h over CaH₂ and distilled from CaH₂.

Ethanol was treated with magnesium turnings (10 g/L), heated to reflux and distilled.

DMPU was heated to reflux for 14 h over CaH₂ and distilled from CaH₂.

Methanol was treated with magnesium turnings (10 g/L), heated to reflux and distilled.

2-Methyl-THF was distilled from sodium benzophenone ketyl under nitrogen and stored under argon.

NMP was heated to reflux for 14 h over CaH₂ and distilled from CaH₂.

THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen.

4.1.2. Chromatography

Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO_2 (Merck 60, F-254). The spots were visitalized by UV light or by staining of the TLC plate with the solution below followed by heating if necessary:

-Phosphormolybdic acid (5.0 g), $Ce(SO_4)_2$ (2.0 g), conc. H_2SO_4 (12.0 mL) in water (230 mL)

- Iodine absorbed on silica gel

-KMnO₄ (0.3g), K₂CO₃ (20 g), KOH (0.3 g), in water (300 mL).

Flash column chromatography was performed using SiO_2 60 (0.04-0.063 mm, 230-400 mesh) from Merck.

4.1.3. Analytical Data

NMR-spectra were recorded on *Bruker* ARX 200, AC 300 WH 400 or AMX 600 instruments. Chemical shifts are reported as δ -values in ppm relative to the solvent peak.

For the characterization of the observed signal multiplicities the following abbreviations were used: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), q (quartet) m (multiplet).

For the characterization of the observed C-signal the following abbreviations were used: CH_3 (primary), CH_2 (secondary), CH (tertiary), and no description for quarternary carbon.

Melting points are uncorrected and were measured on a *Büchi* B.540 apparatus.

Infrared spectra were recorded from 4000-400 cm⁻¹ on a Nicolet 510 FT-IR or a Perkin 281 IR spectrometer. Samples were measured either as film between potassium bromide plates (film), as potassium bromide tablets (KBr) or neat (ATR, Smiths Detection DuraSampl IR II Diamond ATR).

The absorption bands were reported in wavenumbers (cm⁻¹). For the characterization the following abbreviations were used: br (broad), vs (very strong), s (strong), m (medium), w (weak).

Gas chromatography was performed with machines of type *Hewlett-Packard* 6890 or 5890 series II, using a column of type HP 5 (*Hewlett-Packard*, 5% phenylmethylpolysiloxane; length: 15 m, diameter: 0.25 mm; film thickness 0.25 μ m) The detection was accomplished by using a flame ionization detector. Alkanes like decane or tetradecane were used as internal standards.

Mass Spectra were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument for electron impact ionization (EI). High resolution mass spectra (HRMS) was recorded on the same instrument.

4.1.4. Reagents

CuCN·2LiCl solution was prepared by drying CuCN (8.96 g, 100 mmol) and LiCl (8.48 g, 200 mmol) in a *Schlenk*-flask under vacuum for 5 h at 140 °C. After cooling to 25 °C dry THF (100 mL) was added and the mixture was stirred for 24 h.

ZnCl₂ solution was prepared by melting and drying $ZnCl_2$ (27.3 g, 200 mmol) with a Bunsen burner in vacuum for 15 min. After cooling to 25 °C THF (200 mL) and a stirring bar was added and the mixture was stirred until all solids were dissolved.

tmpMgCl·LiCl solution was prepared by adding 2,2,6,6-tetramethylpiperidine (19.8 g, 126 mmol) to freshly titrated⁸⁷ *i*PrMgCl·LiCl (100 mL, 120 mmol, 1.20 M in THF) and continuously stirring of the resulting mixture for 24 h at 25 °C.

tmp₂MgCl·2LiCl was prepared according to literature: In a dry argon-flushed Schlenk tube, 2,2,6,6-tetramethylpiperidine (tmpH; 5.07 mL, 30 mmol) was dissolved in THF (30 mL). This solution was cooled to -40° C, and *n*BuLi (12.5 mL, 30 mmol, 2.4 M in hexane) was added dropwise. After the addition was complete, the reaction mixture was warmed to 0 °C and stirred at this temperature for 30 min. Freshly titrated tmpMgCl·LiCl (30 mL, 30 mmol, 1.0 M in THF) was then added dropwise to the tmpLi solution, and the reaction mixture was stirred at 0 °C for 30 min, warmed to 25 °C, and stirred for 1 h. The solvents were then removed *in vacuo* without heating, affording a yellowish solid. Freshly distilled THF was slowly added with vigorous stirring, until the salts had completely dissolved. The fresh TMP₂Mg·2LiCl solution was titrated prior to use at 0 °C with benzoic acid using 4-(phenylazo) diphenylamine as indicator. A concentration of 0.6 M in THF was obtained.

*i*PrMgCl·LiCl was used as a 1.2 M solution in THF purchased by Chemetall. *n*BuLi was used as a 1.5 M solution in hexane purchased by Chemetall. *t*BuLi was used as a 1.5 M solution in hexane purchased by Chemetall.
MeLi was used as a 1.7 M solution in diethyl ether purchased by Chemetall.

⁸⁷ a) Lin, H. S.; Paquette, L. *Synth. Commun.* **1994**, *24*, 2503; b) Krasovskiy, A.; Knochel, P. *Synthesis* **2006**, 890.

4.1.5. Non-commercial available Grignard-reagents

1,5-Bis(chloromagnesio)pentane (43c)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (7.21 g, 170.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (5.47 g, 225.0 mmol) and THF (45 mL) were added. 1,6-Dichloropentane (10.6 g, 9.8 mL, 75.0 mmol in 30 mL THF) was added dropwise, and the reaction mixture was heated at reflux for 2 h. The solids were allowed to sediment, then the THF-solution was collected (75 mL) and the concentration of magnesium reagent was determined by titration (c = 0.615 M, yield: 62%).

2-Bromomagnesio propane(d₇) (51)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (1.80 g, 42.4 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (1.12 g, 46.0 mmol) and THF (35 mL) were added and a water bath (25 °C) was placed under the flask. Isopropyl bromide(d₇) (5.0 g, 38.5 mmol) was added dropwise, and the reaction mixture was stirred for 4 h. The solids were allowed to sediment over night, then the THF-solution was collected (31 mL) and the concentration of magnesium reagent was determined by titration (c = 1.06 M, yield: 85%).

1,6-Bis(chloromagnesio)hexane (77a)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (9.33 g, 220.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (7.29 g, 300.0 mmol) and THF (70 mL) were added. 1,6-Dichlorohexane (15.5 g, 14.8 mL, 100.0 mmol in 30 mL THF) was added dropwise, and the reaction mixture was heated at reflux for 2 h. The solids were allowed to sediment, then the THF-solution was collected (105 mL) and the concentration of magnesium reagent was determined by titration (c = 0.737 M, yield: 77%).

2,6-Bis(chloromagnesio)heptane (77b)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (2.76 g, 65.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (2.19 g, 90.0 mmol) and THF (20 mL) were added. The magnesium turnings were activated with 1,2-dibromoethane (90 μ L, 1.0 mmol). 2,6-Dichloroheptane (5.07 g, 30.0 mmol in 10 mL THF) was added dropwise, and the reaction mixture was heated to reflux for 4 h. The solids were allowed to sediment over night, then the THF-solution was collected (32 mL) and the concentration of magnesium reagent was determined by titration (c = 0.55 M, yield: 59%).

2,7-Bis(chloromagnesio)octane (77c)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (2.76 g, 65.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (2.26 g, 93.0 mmol) and THF (20 mL) were added. The magnesium turnings were activated with 1,2-dibromoethane (90 μ L, 1.0 mmol). 2,7-Dichloroctane (5.66 g, 30.9 mmol in 10 mL THF) was added dropwise, and the reaction mixture was heated to reflux for 4 h. The solids were allowed to sediment over night, then the THF-solution was collected (27 mL) and the concentration of magnesium reagent was determined by titration (c = 0.97 M, yield: 84%).

1,3-Bis(chloromagnesiomethyl)cyclopentane (77d)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (1.91 g, 45.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (2.99 g, 123.0 mmol) and THF (27 mL) were added. The magnesium turnings were activated with 1,2-dibromoethane (90 μ L, 1.0 mmol). 1,3-bis-(chloromethyl)-cyclopentane (6.86 g, 41.0 mmol in 14 mL THF) was added dropwise, and the reaction mixture was stirred at 25 °C for 24 h. The solids were allowed to sediment, then the THF-solution was collected (48 mL) and the concentration of *bis*magnesium reagent was determined by titration (c = 0.60 M, yield: 70%).

1,5-Bis(bromomagnesio)-3,3-dimethyl-pentane (77e)

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar, a septum and a reflux condenser was charged with LiCl (3.82 g, 90.0 mmol). The salt was dried in high vacuum for 15 min at 400 °C. After cooling to 25 °C magnesium turnings (4.25 g, 175.0 mmol) and THF (40 mL) were added. 1,5-Dibromo-3,3-dimethylpentane (20.6 g, 79.5 mmol in 20 mL THF) was added dropwise, and the reaction mixture was heated at reflux for 2 h. The solids were allowed to sediment, then the THF-solution was collected (66 mL) and the concentration of *bis*magnesium reagent was determined by titration (c = 0.46 M, yield: 38%).
4.2. Typical procedures

<u>Typical Procedure for preparation of sulfoxides of type 37 with the $pNMe_2C_6H_4$ -ligand (TP1):</u>

In a dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, 4-(dimethylamino)phenyl thiocyanate (**35**, 10.0 mmol, 1.78 g) was dissolved in THF (10 mL) and cooled to -20 °C. A solution of a functionalized magnesium reagent (11.0 mmol, approx 1 M) was added and the reaction mixture was allowed to warm to 25 °C. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. The crude sulfide was dissolved in CH₂Cl₂ (40 mL) and cooled to -20 °C. *m*CPBA (2.70 g, 11.0 mmol, 70% in water) dissolved in CH₂Cl₂ (10 mL) was added slowly. After stirring for 1 h at -20 °C the reaction mixture was quenched with a sat. aq. Na₂S₂O₃solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **37**.

Typical procedure for preparation of sulfoxides of type **37** with the $pMeOC_6H_4$ -ligand (TP2):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution (approx. 0.5 M, 10.0 mmol in THF) of the appropriate magnesium reagent and cooled to -20 °C. 4-Methoxybenzene sulfinyl chloride (**44**; 2.48 g, 13.0 mmol) was added slowly and the reaction mixture was allowed to warm to 25 °C. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products **37**.

Typical procedure for preparation of sulfoxides of type **37** using the sulfinate **45** (TP3):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution (approx. 0.5 M, 15.0 mmol in THF) of the appropriate magnesium reagent and cooled to -50 °C. Methyl 4-(dimethylamino)benzenesulfinate (**45**; 3.29 g, 16.5 mmol) was added slowly and the reaction mixture was allowed to warm to 25 °C and stirred for additional 30 min. The reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **37**.

Typical procedure for deprotonation of sulfoxides and Negishi type cross-coupling reactions (TP4):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a sulfoxide of type **37** (1.0 mmol) dissolved in THF (2 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (0.92 mL, 1.1 mmol, 1.20 M in THF) was added dropwise. After 20 min of stirring at -30 °C zinc chloride (1.0 mL, 1.0 mmol, 1.0 M in THF) was added, and the reaction mixture was allowed to warm to 25 °C. A palladium catalyst and an electrophile were added and the reaction mixture was stirred at 25 °C to 50 °C, depending on the subtrate. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **47**.

Typical procedure for the sulfoxide-magnesium exchange leading to arenes of type **53** (TP5):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of sulfoxide of type **47** (1.0 mmol) in 2-methyl-THF (2 mL).

The reaction mixture was cooled to -50 °C and *i*PrMgCl·LiCl (0.92 mL, 1.1 mmol, 1.20 M in THF) was added dropwise. After stirring at -50 °C until GC analysis showed full conversion of the sulfoxide the desired electrophile (0.8 mmol) was added and the reaction mixture was stirred at the given temperature until GC analysis showed full conversion of the electrophile. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (20 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **53**.

Typical procedure for the sulfoxide-magnesium exchange leading to furans of type **61** (TP6):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of a furan of type **60** (1.0 mmol) in 2-methyl-THF (2.0 mL). The reaction mixture was cooled to -50 °C and *i*PrMgCl·LiCl (0.92 mL, 1.1 mmol, 1.20 M in THF) was added dropwise. After stirring at -50 °C until GC analysis showed full conversion of the sulfoxide the desired electrophile (0.80 mmol) was added and the reaction mixture was stirred at the given temperature until GC analysis showed full conversion of the electrophile. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (20 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **61**.

Typical procedure for the iodine-magnesium exchange leading to furans of type 62 (TP7):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of furan of type **61** (1.0 mmol) in THF (2 mL). The reaction mixture was cooled to -40 °C and *i*PrMgCl·LiCl (0.92 mL, 1.1 mmol, 1.20 M in THF) was added dropwise. After stirring at -40 °C for 20 min GC analysis showed full conversion of the furane, the desired electrophile (1.1 mmol) was added and the reaction mixture was stirred at the given temperature until GC analysis showed full conversion

of the electrophile. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **62**.

Typical procedure for the bromine-magnesium exchange leading to cyclopropanes of type **83a–d** (TP8):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with *i*PrMgCl·LiCl (4.40 mmol, 4.40 ml, 1 M in THF) and dioxane (0.2 mL). 2-Bromo-1,1diphenylcyclopropane (546 mg, 2.00 mmol) was added and the reaction mixture was stirred at 25 °C for 2 d, until GC analysis showed full conversion of the bromide. The desired electrophile was added and the reaction mixture was stirred at the given temperature until GC analysis showed full conversion of the electrophile. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **83a–d**.

Typical procedure for the bromine-magnesium exchange leading to cyclopropanes of type **83e–f** (TP9):

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with *i*PrMgCl·LiCl (2.20 ml, 2.20 mmol, 1 M in THF) and dioxane (0.2 mL). E-(2-bromocyclopropyl)benzene (394 mg, 2.00 mmol) was added and the reaction mixture was stirred at 25 °C for 8 h, until GC analysis showed full conversion of the bromide. The desired electrophile was added and the reaction mixture was stirred at the given temperature until GC analysis showed full conversion of the electrophile. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification yielded the products of type **83e–g**.

4.3. Preparation of functionalized organomagnesium reagents 4.3.1. Preparation of diarylsulfoxides

[4-(4-Chloro-benzenesulfinyl)phenyl]dimethylamine (37a)

According to **TP1** the sulfoxide **37a** was prepared from 4-chloro-phenyl magnesium bromide (110 mmol, 0.88 M in THF) and dimethyl-(4-thiocyanato-phenyl)-amine (17.8 g, 100 mmol) and purified by flash chromatography (pentane / ethyl acetate = 1:1, silica gel), furnishing **37a** as a colourless solid (17.9 g, 64% yield).

mp (°**C**): 128-129.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.99 (s, 6 H), 6.65–6.70 (m, 2 H), 7.38–7.46 (m, 4 H), 7.49–7.54 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.1 (CH₃), 112.0 (CH), 126.0 (CH), 127.7 (CH), 129.2 (CH), 130.3, 136.3, 144.8, 152.5.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 2892$ (w), 1596 (s), 1570 (w), 1554 (w), 1509 (m), 1471 (m), 1446 (m), 1388 (w), 1363 (m), 1233 (m), 1192 (m), 1091 (s), 1083 (s), 1060 (m), 1045 (vs), 1010 (s), 826 (s), 815 (m), 807 (s), 799 (m), 738 (s), 711 (w), 607 (w).

MS (EI, 70 eV): *m*/*z* (%) = 279 (19), 263 (34), 233 (25), 232 (23), 231 (80), 230 (30), 168 (100), 152 (25), 136 (30), 44 (19).

HRMS (EI): calcd. for $C_{14}H_{14}^{35}$ ClNO³²S: 279.0485, found: 279.0479.

4-Chlorophenyl 4-methoxyphenyl sulfoxide (37b)

According to **TP2** the sulfoxide **37b** was prepared from 4-chloro-phenyl magnesium bromide (114 mL, 100 mmol, 0.88 M in THF) and 4-methoxybenzene sulfinyl chloride

(24.7 g, 130 mmol) and purified by recrystalization (pentane) furnishing **37b** as a colourless solid (22.6 g, 85% yield).

mp (°**C**): 67-68.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.81 (s, 3 H), 6.92–6.97 (m, 2 H), 7.39–7.43 (m, 2 H), 7.51–7.56 (m, 4 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 55.6 (CH₃), 115.0 (CH), 126.0 (CH), 127.3 (CH), 129.5 (CH), 136.2, 137.0, 144.3, 162.3.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2970 (w), 2944 (w), 2839 (w), 1739 (m), 1591 (m), 1577 (m), 1493 (s), 1473 (s), 1441 (w), 1388 (w), 1304 (m), 1246 (vs), 1168 (s), 1085 (vs), 1032 (vs), 1008 (vs), 828 (vs), 793 (s), 736 (vs), 714 (s).

MS (EI, 70 eV): *m*/*z* (%) = 266 (15), 250 (10), 220 (29), 219 (12), 218 (91), 203 (16), 155 (69), 139 (47), 123 (100), 95 (10).

HRMS (EI): calcd. for $C_{13}H_{11}^{35}ClO_2^{32}S$: 266.0168, found: 266.0172.

{4-[(4-Chlorophenyl)sulfinyl]phenoxy}(triisopropyl)silane (37c)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with a solution (4-bromophenoxy)(triisopropyl)silane (7.20 g, 21.9 mmol) in THF (12 mL). The solution was cooled to -78 °C and *n*BuLi (11.1 mL, 26.2 mmol, 2.35 M in hexane) was added dropwise, and stirred for additional 1.5 h at -78 °C. Then *S*-(4-chlorophenyl) benzenesulfonothioate (6.86 g, 24.1 mmol) was added and reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether 5:1, silica gel) yielded {4-[(4-chlorophenyl)thio]phenoxy}(triisopropyl)-silane as a colourless solid (6.60 g, 80% yield).

The sulfide (4.08 g, 10.4 mmol) was dissolved in CH_2Cl_2 (60 mL) and cooled to -20 °C. *m*CPBA (3.08 g, 12.5 mmol, 70% in water) dissolved in CH_2Cl_2 (25 mL) was added slowly. After stirring for 1 h at -20 °C the reaction mixture was quenched with a sat. aq.

 $Na_2S_2O_3$ -solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 6:1, silica gel) yielded **37c** as a colourless oil (3.22 g, 82% yield, 66% over two steps).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.06 (d, *J* = 6.84 Hz, 18 H), 1.17–1.29 (m, 3 H), 6.91–6.94 (m, 2 H), 7.40–7.54 (m, 6 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 12.6 (CH), 17.8 (CH₃), 120.9 (CH), 126.0 (CH), 127.3 (CH), 129.4 (CH), 136.6, 136.9, 144.4, 159.2.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2945 (s), 2867 (s), 1587 (s), 1491(s), 1390 (w), 1268 (s), 1164 (w), 1091 (m), 1046 (s), 1011 (m), 904 (s), 882 (m), 836 (m), 738 (s), 684 (m), 589 (w), 555 (m).

MS (EI, 70 eV): *m/z* (%) = 408 (15), 392 (14), 368 (11), 367 (46), 366 (27), 365 (100), 360 (10), 339 (15), 337 (30), 323 (11), 311 (23), 310 (12), 309 (47), 295 (22), 293 (12), 235 (11), 206 (11), 163 (18), 159 (23), 150 (22), 147 (10) 136 (12), 135 (17), 121 (14), 59 (11).

HRMS (EI): calcd. for $C_{21}H_{29}^{35}ClO_2^{32}S^{28}Si$: 408.1346, found: 408.1366.

{4-[(4-Chlorophenyl)sulfinyl]-2,6-diisopropylphenyl}dimethylamine (37d)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with a solution (4-bromo-2,6-diisopropylphenyl)dimethylamine (11.4 g, 40.0 mmol) in THF (80 mL). The solution was cooled to -78 °C and *n*BuLi (17.9 mL, 42.0 mmol, 2.35 M in hexane) was added dropwise, and stirred for additional 1 h at -78 °C. Then *S*-(4-chlorophenyl) benzenesulfonothioate (12.5 g, 44.0 mmol) was added and reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was

removed under reduced pressure. {4-[(4-Chlorophenyl)thio]-2,6-diisopropylphenyl}dimethylamine was obtained as a colourless solid (14.6 g, 92% purity, 98% yield).

The crude sulfide was dissolved in CH_2Cl_2 (180 mL) and cooled to -20 °C. *m*CPBA (10.9 g, 44.0 mmol, 70% in water) dissolved in CH_2Cl_2 (50 mL) was added slowly. After stirring for 1 h at -20 °C the reaction mixture was quenched with a sat. aq. $Na_2S_2O_3$ -solution (50 mL) and extracted three times with diethyl ether (100 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 10:1, silica gel) yielded **37d** as a colourless solid (11.1 g, 76% over two steps).

mp (°**C**): 139–140.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.15 (d, J = 6.84 Hz, 6 H), 1.16 (d, J = 6.84 Hz, 6 H), 2.80 (s, 6 H), 3.30 (sep, J = 6.84 Hz, 2 H), 7.30 (s, 2 H), 7.40–7.44 (m, 2 H), 7.54–7.59 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 24.1 (CH₃), 28.6 (CH), 43.9 (CH₃), 120.6 (CH), 126.1 (CH), 129.4 (CH), 136.8, 141.8, 144.4, 151.1.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3083 \text{ (w)}, 2961 \text{ (s)}, 2926 \text{ (m)}, 2867 \text{ (m)}, 2784 \text{ (m)}, 1572 \text{ (w)}, 1475 \text{ (m)}, 1458 \text{ (m)}, 1444 \text{ (m)}, 1387 \text{ (w)}, 1232 \text{ (w)}, 1148 \text{ (w)}, 1089 \text{ (m)}, 1076 \text{ (m)}, 1048 \text{ (vs)}, 1008 \text{ (m)}, 940 \text{ (w)}, 814 \text{ (m)}, 738 \text{ (m)}, 604 \text{ (m)}, 546 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 363 (73) , 348 (14), 317 (12), 315 (32), 300 (20), 253 (14), 252 (100), 222 (14), 220 (28), 159 (11).

HRMS (EI): calcd. for $C_{20}H_{26}^{35}$ ClNO³²S: 363.1424, found: 363.1416.

4-Chlorophenyl 3,4,5-trimethoxyphenyl sulfoxide (37e)

The sulfide **40** (10.7 g, 34.5 mmol) was dissolved in CH_2Cl_2 (150 mL) and cooled to -20 °C. *m*CPBA (9.34 g, 38.0 mmol, 70% in water) dissolved in CH_2Cl_2 (50 mL) was added slowly. After stirring for 1 h at -20 °C the reaction mixture was quenched with a sat. aq. Na₂S₂O₃-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration, the

solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded **37e** as a colourless solid (8.23 g, 73% yield).

mp (°**C**): 129–130.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.83 (s, 3 H), 3.85 (s, 6 H), 6.84 (s, 2 H), 7.41–7.46 (m, 2 H), 7.54–7.59 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 56.4 (CH₃), 60.9 (CH₃), 101.6 (CH), 126.1 (CH), 129.6 (CH), 137.3, 139.7, 140.4, 144.2, 154.1.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2944 (w), 1584 (m), 1496 (m), 1467 (m), 1429 (w), 1404 (s), 1306 (m), 1225 (s), 1176 (w), 1123 (s), 1192 (s), 1068 (m), 1047 (m), 1008 (m), 990 (m), 824 (m), 736 (m), 699 (w), 612 (m).

MS (EI, 70 eV): *m*/*z* (%) = 326 (71) , 295 (12), 280 (19), 278 (49), 265 (18), 263 (50), 216 (12), 215 (100), 199 (18), 183 (96), 182 (11), 168 (28), 143 (11).

HRMS (EI): calcd. for $C_{15}H_{15}^{35}ClO_4^{32}S$: 326.0380, found: 326.0395.

Dibutyl{4-[(4-chlorophenyl)sulfinyl]phenyl}amine (37f)

A dry and argon-flushed Schlenk-flask, equipped with a stirring bar and a reflux condenser was charged with Mg (1.74 g, 71.7 mmol) in THF (20 mL). A solution of dibutyl(4-iodophenyl)amine (19.8 g, 59.8 mmol) in THF (35 mL) was added dropwise, and heated for additional 12 h at reflux. Then the reaction mixture was cooled to -40 °C and S-(4-chlorophenyl) benzenesulfonothioate (17.0 g, 59.8 mmol) was added and reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration solvent reduced pressure. the was removed under $Dibutyl{4-[(4$ chlorophenyl)thio]phenyl}amine was obtained as a crude product (10.8 g, 70% purity by GC analysis, 36 % yield)

The crude sulfide (10.8 g, 21.6 mmol) was dissolved in CH_2Cl_2 (60 mL) and cooled to -20 °C. *m*CPBA (7.00 g, 28.4 mmol, 70% in water) dissolved in CH_2Cl_2 (40 mL) was added slowly. After stirring for 1 h at -20 °C the reaction mixture was quenched with a sat. aq. Na₂S₂O₃-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 1:1, silica gel) yielded **37f** as a colourless oil (6.02 g, 76% yield, 27% over two steps).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.92 (t, *J* = 7.39 Hz, 6 H), 1.28–1.35 (m, 4 H), 1.49–1.55 (m, 4 H), 3.23–3.25 (m, 4 H), 6.58 (d, *J* = 9.04 Hz, 2 H), 7.35–7.41 (m, 4 H), 7.51–7.53 (m, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 13.9 (CH₃), 20.2 (CH₂), 29.1 (CH₂), 50.7 (CH₂), 111.4 (CH), 125.9 (CH), 128.1 (CH), 128.9, 129.0 (CH), 136.1, 144.7, 150.6.

IR (**ATR**): \tilde{v} / cm⁻¹ = 2955 (s), 2929 (s), 2871 (m), 1586 (s), 1494 (vs), 1463 (m), 1396 (w), 1366 (m), 1285 (m), 1219 (m), 1185 (m), 925 (w), 799 (s).

MS (EI, 70 eV): *m/z* (%) = 363 (43), 347 (21), 322 (40), 321 (18), 320 (100), 315 (11), 306 (17), 304 (34), 280 (16), 278 (39), 272 (32), 264 (14), 262 (22), 252 (24), 248 (13), 184 (10), 167 (11), 161 (15), 119 (17), 105 (18), 104 (10), 41 (17).

HRMS (EI): calcd. for $C_{20}H_{26}^{35}$ ClNO³²S: 363.1424, found: 363.1416.

Ethyl 4-{[4-(dimethylamino)phenyl]sulfinyl}benzoate (37g)

According to **TP1** the sulfoxide **37g** was prepared from 4-carbethoxyphenyl magnesium chloride (13.0 mL, 10 mmol, 0.77 M in THF) and dimethyl-(4-thiocyanatophenyl)amine (1.96 g, 11 mmol) and purified by flash chromatography (pentane / ethyl acetate = 2:3, silica gel), furnishing **37g** as a yellow oil (1.86 g, 59% yield).

mp (°C): 86-88.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.39 (t, *J* =7.15 Hz, 3 H), 2.99 (s, 6 H), 4.38 (q, *J* = 7.15 Hz, 2 H), 6.56–6.70 (m, 2 H), 7.43–7.45 (m, 2 H), 7.64–7.68 (m, 2 H), 8.09–8.13 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.2 (CH₃), 40.0 (CH₃), 61.2 (CH₂), 111.9 (CH), 124.3 (CH), 127.9 (CH), 129.8, 130.0 (CH), 131.9, 151.1, 152.5, 165.7. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2160 (m), 2030 (m), 2022 (m), 2012 (m), 1974 (m), 1716 (w), 1600 (m), 1594 (m), 1512 (m), 1444 (m), 1366 (s), 1316 (m), 1274 (w), 1230 (m), 1196 (m), 1172 (m), 1122 (s), 1104 (s), 1090 (s), 1070 (s), 1036 (w), 1016 (s), 860 (m), 852 (m), 810 (s), 764 (s), 718 (m), 708 (m), 686 (s).

MS (EI, 70 eV): *m/z* (%) = 317 (26), 301 (21), 270 (17), 269 (100), 241 (12), 168 (98), 136 (15).

HRMS (EI): calcd. for $C_{17}H_{19}O_3N^{32}S$: 317.1086, found: 317.1083.

4-Fluorophenyl 4-methoxyphenyl sulfoxide (37h)

According to **TP2** the sulfoxide **37h** was prepared from 4-fluoro-phenyl magnesium bromide (111 mL, 100 mmol, 0.90 M in THF) and 4-methoxybenzene sulfinyl chloride (24.7 g, 130 mmol) and purified by recrystalization (pentane) furnishing **37h** as a colourless solid (22.8 g, 91% yield).

mp (°C): 83–85.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.79 (s, 3 H), 6.92–6.95 (m, 2 H), 7.09–7.15 (m, 2 H), 7.51–7.60 (m, 4 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 55.4 (CH₃), 114.8 (CH), 116.4 (d, J = 22.7 Hz, CH), 126.9 (d, J = 8.9 Hz, CH), 127.0 (CH), 136.5, 141.4 (d, J = 3.0 Hz), 162.1, 164.0 (d, J = 251.2 Hz, CF).

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3052 (w), 2836 (w), 1592 (s), 1577 (s), 1496 (s), 1436 (m), 1410 (m), 1311 (m), 1303 (m), 1254 (s), 1215 (s), 1154 (m), 1089 (s), 1076 (s), 1035 (s), 855 (s), 828 (vs), 810 (s), 798 (s).

MS (EI, 70 eV): m/z (%) = 251 (8), 250 (49), 233 (8), 203 (13), 202 (100), 187 (17), 154 (43), 139 (23), 123 (60), 101 (8). **HRMS (EI)**: calcd. for C₁₃H₁₁FO₂³²S: 250.0464, found: 250.0470.

Dimethyl(4-{[4-(trifluoromethyl)phenyl]sulfinyl}phenyl)amine (37i)

According to **TP3** the sulfoxide **37i** was prepared from 4-(trifluoromethyl)benzene magnesium bromide (25.0 mL, 15 mmol, 0.60 M in THF) and methyl 4-(dimethylamino)benzenesulfinate (**45**, 3.29 g, 16.5 mmol) and purified by flash chromatography (pentane / ethyl acetate = 2:1, silica gel), furnishing **37i** as a colourless solid (3.82 g, 82% yield).

mp (°**C**): 120–122.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.98 (s, 6 H), 6.85–6.70 (m, 2 H), 7.42–7.47 (m, 2 H), 7.65–7.72 (m, 4 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.1 (CH₃), 112.0 (CH), 123.6 (q, J = 271.0 Hz, CF₃), 124.8 (CH), 125.9 (q, J = 3.9 Hz, CH), 127.9 (CH), 129.8, 132.0 (q, J = 32.7 Hz), 150.7, 152.6.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 2906$ (w), 2808 (w), 1600 (s), 1511 (m), 1399 (m), 1369 (m), 1316 (s), 1164 (s), 1140 (s), 1102 (m), 1090 (s), 1075 (m), 1055 (s), 1048 (vs), 1012 (m), 965 (w), 944 (w), 836 (m), 811 (m), 803 (m), 695 (m), 608 (w), 595 (w). **MS** (**EI**, **70** eV): m/z (%) = 313 (20), 265 (50), 264 (13), 168 (100), 136 (15), 119 (5). **HRMS** (**EI**): calcd. for C₁₅H₁₄ONF₃³²S: 313.0748, found: 313.0744. 4-Methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide (37j)

According to **TP2** the sulfoxide **37j** was prepared from 4-trifluoromethylphenylmagnesium bromide (60.0 mL, 30.0 mmol, 0.5 M in THF) and 4methoxybenzene sulfinyl chloride (7.43 g, 39.0 mmol) and purified by flash chromatography (pentane / ethyl acetate = 2:1, silica gel), furnishing **37j** as a colourless solid (7.43 g, 82% yield).

mp (°**C**): 92–94.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.78 (s, 3 H), 6.93–6.95 (m, 2 H), 7.54–7.57 (m, 2 H), 7.67–7.71 (m, 4 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 55.4 (CH₃), 115.0 (CH), 123.4 (q, J = 274.3 Hz, CF₃), 124.7 (CH), 126.1 (q, J = 3.8 Hz, CH), 127.3 (CH), 132.4 (q, J = 32.6 Hz), 135.9, 150.2, 162.4.

IR (**ATR**): $\tilde{v} / \text{cm}^{-1} = 2839$ (w), 1592 (s), 1575 (m), 1491 (s), 1398 (m), 1319 (s), 1305 (s), 1245 (vs), 1183 (s), 1172 (s), 1167 (s), 1141 (s), 1128 (vs), 1106 (s), 1101 (s), 1088 (vs), 1073 (s), 1057 (vs), 1043 (vs), 1022 (s), 1012 (vs), 1004 (s), 956 (m), 845 (m), 834 (s), 823 (vs), 794 (s), 732 (m), 696 (s), 597 (m).

MS (EI, 70 eV): *m/z* (%) = 300 (24), 284 (11), 253 (16), 252 (100), 237 (12), 155 (95), 139 (29), 123 (59), 92 (10).

HRMS (EI): calcd. for $C_{14}H_{11}O_2F_3^{32}S$: 300.0432, found: 300.0427.

({4-[(4-Methoxyphenyl)sulfinyl]phenyl}ethynyl)(trimethyl)silane (**37k**)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with ethinyl(trimethyl)silane (1.96 g, 20.0 mmol) and *i*PrMgCl·LiCl (15.2 mL,

19.0 mmol, 1.25 M in THF) was added at 25 °C. After cessation of gas evolution the reaction mixture was heated to 60 °C for 5 min. After cooling to 25 °C a zinc chloride solution (20.0 mL, 20.0 mmol, 1.0 M in THF) was slowly added. The resulting mixture was stirred for 30 min at 25 °C, then 4-iodophenyl 4'-methoxyphenyl sulfoxide (**46**, 5.37 g, 15.0 mmol), Pd(dba)₂ (0.173 g, 0.30 mmol) and tris-*o*-furylphosphine (0.139 g, 0.60 mmol) were added and the reaction mixture was stirred 14 h at 25 °C. The reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded **37k** a colourless solid (4.85 g, 98% yield).

mp (°C): 122-124.

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.21 (9 H), 3.78 (3 H), 6.90–6.93 (m, 2 H), 7.49–7.52 (m, 6 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = -0.3 (CH₃), 55.4 (CH₃), 96.7, 103.6, 114.8 (CH), 124.3 (CH), 125.6, 127.3 (CH), 132.5 (CH), 136.4, 145.7, 162.2.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2958 (w), 2155 (m), 1591 (s), 1576 (m), 1491 (s), 1481 (m), 1407 (m), 1304 (m), 1245 (vs), 1187 (m), 1171 (m), 1086 (s), 1058 (m), 1046 (s), 1023 (m), 1010 (m), 845 (m), 835 (s), 829 (s), 816 (s), 795 (m), 759 (m), 697 (m), 552 (m).

MS (EI, 70 eV): *m/z* (%) = 328 (12), 313 (17), 312 (18), 297 (26), 281 (20), 280 (100), 266 (17), 265 (84), 158 (23), 155 (16), 143 (12), 139 (50), 123 (25).

HRMS (EI): calcd. for $C_{18}H_{20}O_2^{32}S^{28}Si$: 328.0953, found: 328.0945.

5-[(4-Chlorophenyl)thio]-1,2,3-trimethoxybenzene (40)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with a solution of 5-bromo-1,2,3-trimethoxybenzene (9.51 g, 38.5 mmol) in THF (70 mL). The solution was cooled to -78 °C and *n*BuLi (18.0 mL, 42.4 mmol, 2.35 M in hexane) was

added dropwise, and stirred for additional 1.5 h at -78 °C. Then, *S*-(4-chlorophenyl) benzenesulfonothioate (12.3 g, 43.0 mmol) was added and reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 5:1, silica gel) yielded a colourless solid (10.8 g, 89% yield).

mp (°C): 55-56.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.79 (s, 6 H), 3.84 (s, 3 H), 6.63 (s, 2 H), 7.16–7.26 (m, 4 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 56.2 (CH₃), 60.9 (CH₃), 109.7 (CH), 128.6, 129.2 (CH), 130.6 (CH), 132.4, 135.6, 138.2, 153.7.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2933 (w), 2834 (w), 1575 (s), 1499 (m), 1471 (m), 1433 (m), 1402 (s), 1304 (m), 1228 (s), 1122 (vs), 1088 (s), 992 (m), 876 (w), 811 (m), 771 (w), 740 (w), 620 (w).

MS (EI, 70 eV): *m*/*z* (%) = 313 (4), 312 (20), 310 (62), 297 (23), 296 (11), 295 (100), 267 (21), 143 (15), 124 (20), 44 (11), 43 (53).

HRMS (EI): calcd. for $C_{15}H_{15}^{35}ClO_3^{32}S$: 310.0430, found: 310.0417.

Methyl 4-(dimethylamino)benzenesulfinate (45)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with a solution of 4-(dimethylamino)benzenesulfonyl chloride⁸⁸ (18.0 g, 81.9 mmol) in CH₂Cl₂ (80 mL). Triethylamine (81.0 g, 110 mL, 800 mmol) and triphenylphosphine (21.5 g, 82.0 mmol) were added and the reaction mixture was cooled to 0 °C. Then, methanol (3.3 mL, 82 mmol) in CH₂Cl₂ (50 mL) was added slowly and the reaction mixture was allowed to warm to 25 °C and stirred for 14 h. The solvent was removed

⁸⁸ Binisti, C.; Assogba, L.; Touboul, E; Mounier, M.; Huet, J.; Ombetta, J.-E.; Dong, C. Z.; Redeuilh, C.; Heymans F.; Godfroid, J.-J. *Eur. J. Med. Chem.* **2001**, *36*, 809.

under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 1:1, silica gel) yielded a colourless solid (11.67 g, 72% yield).

mp (°**C**): 45–47.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.01 (s, 6 H), 3.40 (s, 3 H), 6.68–6.75 (m, 2 H), 7.47–7.54 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.1 (CH₃), 48.6 (CH₃), 111.4 (CH), 126.7 (CH), 129.4, 152.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2939 \text{ (w)}, 2904 \text{ (w)}, 2823 \text{ (w)}, 1590 \text{ (vs)}, 1513 \text{ (s)}, 1444 \text{ (m)}, 1368 \text{ (s)}, 1227 \text{ (m)}, 1202 \text{ (m)}, 1105 \text{ (vs)}, 1082 \text{ (s)}, 1069 \text{ (s)}, 955 \text{ (s)}, 825 \text{ (m)}, 812 \text{ (s)}, 655 \text{ (s)}, 631 \text{ (m)}, 616 \text{ (m)}, 566 \text{ (m)}$

MS (EI, 70 eV): *m*/*z* (%) = 199 (21), 169 (11), 168 (100), 152 (11), 136 (25), 120 (9), 77 (8).

HRMS (EI): calcd. for C₉H₁₃O₂N³²S: 199.0667, found: 199.0653.

4-Iodophenyl 4'methoxyphenyl sulfoxide (46)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with 1,4-diiodobenzene (9.93 g, 30.0 mmol) in THF (30 mL) and cooled to 0 °C. *i*PrMgCl·LiCl (25.2 mL, 31.5 mmol, 1.25 M in THF) was added slowly and the reaction mixture was stirred for additional 10 min and then cooled to -50 °C. 4-Methoxybenzene sulfinyl chloride (5.53 g, 29.0 mmol) was added dropwise and after addition the reaction mixture was allowed to warm to 25 °C. After 30 min at 25 °C the reaction mixture was quenched with sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL) and dried (MgSO₄). After filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded a colourless solid (7.62 g, 73% yield).

mp (°**C**): 116–117.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.77 (s, 3 H), 6.89–6.94 (m, 2 H), 7.25–7.32 (m, 2 H), 7.49–7.54 (m, 2 H), 7.72–7.77 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 55.4 (CH₃), 97.1, 114.9 (CH), 126.0 (CH), 127.1 (CH), 136.2, 138.1 (CH), 145.8, 162.1.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 3003$ (w), 2840 (w), 1592 (s), 1574 (s), 1561 (m), 1491 (vs), 1464 (m), 1444 (m), 1407 (m), 1387 (vw), 1377 (m), 1304 (m), 1248 (vs), 1184 (m), 1168 (m), 1083 (s), 1038 (s), 1020 (m), 1000 (s), 827 (m), 808 (s), 795 (m), 713 (m). **MS** (**EI**, **70** eV): m/z (%) = 358 (15), 342 (9), 311 (14), 310 (100), 295 (15), 155 (37), 139 (33), 123 (36), 76 (11).

HRMS (EI): calcd. for $C_{13}H_{11}O_2^{127}I^{32}S$: 357.9524, found: 357.9509.

4.3.2. Functionalization of diarylsulfoxides

{4-[(2-bromo-4-chlorophenyl)sulfinyl]phenyl}dimethylamine (47a)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide **37a** (0.839 g, 3.0 mmol) dissolved in THF (6 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (2.9 mL, 3.3 mmol, 1.14 M in THF) was added dropwise. After 20 min of stirring at -30 °C, 1,2-dibromo-1,1,2,2-tetrachlorethane (1.17 g, 3.60 mmol) was added and the reaction mixture was allowed to warm to 25 °C. The reaction mixture was quenched with a sat. aq. NH₄Cl-solution (100 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (diethyl ether, silica gel) yielded a colourless solid (948 mg, 88% yield).

mp (°C): 134–135.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.96 (s, 6 H), 6.59–6.64 (m, 2 H), 7.45–7.50 (m, 3 H), 7.52 (dd, J = 8.38 Hz, J = 1.98 Hz, 1 H), 8.05 (d, J = 8.38 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.0 (CH₃), 111.6 (CH), 120.2, 127.1 (CH), 128.3, 128.4, 128.7 (CH), 132.6 (CH), 137.0 (CH), 143.9, 152.4.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1716 \text{ (m)}, 1590 \text{ (s)}, 1564 \text{ (m)}, 1552 \text{ (m)}, 1512 \text{ (m)}, 1440 \text{ (m)}, 1362 \text{ (s)}, 1226 \text{ (m)}, 1200 \text{ (m)}, 1194 \text{ (m)}, 1080 \text{ (s)}, 1048 \text{ (s)}, 1034 \text{ (w)}, 1016 \text{ (w)}, 994 \text{ (s)}, 944 \text{ (m)}, 916 \text{ (m)}, 874 \text{ (m)}, 834 \text{ (m)}, 812 \text{ (s)}, 798 \text{ (s)}, 780 \text{ (w)}, 762 \text{ (s)}, 708 \text{ (m)}, 696 \text{ (m)}, 668 \text{ (m)}, 660 \text{ (m)}, 632 \text{ (m)}, 610 \text{ (s)}.$

MS (EI, 70 eV): *m*/*z* (%) = 359 (12), 357 (13), 344 (22), 341 (15), 311 (20), 309 (15), 168 (10), 167 (100), 152 (14), 136 (19).

HRMS (EI): calcd. for C₁₄H₁₃ON⁷⁹Br³⁵Cl³²S: 356.9590, found: 356.9585.

{4-[(4'-bromo-5-chlorobiphenyl-2-yl)sulfinyl]phenyl}dimethylamine (47b)

According to **TP4** the sulfoxide **47b** was prepared starting from sulfoxide **37a** (1.40 g, 5.0 mmol), using Pd(PPh₃)₄ (0.11 g, 0.10 mmol) and 1-bromo-4-iodobenzene (1.58 g, 5.6 mmol) for the cross-coupling. The reaction mixture was stirred for 2 h at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded **47b** as a colourless solid (1.79 g, 82% yield).

mp (°**C**): 147–149.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.92 (s, 6 H), 6.42–6.52 (m, 2 H), 6.87–6.89 (m, 2 H), 6.94–6.97 (m, 2 H), 7.15 (d, J = 2.20 Hz, 1 H), 7.43–7.45 (m, 2 H), 7.56 (dd, J = 8.44 Hz, J = 2.20 Hz, 1 H), 8.17 (d, J = 8.44 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.0 (CH₃), 111.4 (CH), 122.6 (CH), 125.6 (CH), 127.8 (CH), 128.5, 129.0, 129.9 (CH), 130.8 (CH), 131.4 (CH), 135.9, 136.2, 140.5, 142.8, 152.0.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3053 (m), 2905 (m), 2813 (m), 1590 (vs), 1568 (m), 1552 (m), 1509 (s), 1489 (m), 1446 (m), 1363 (s), 1299 (m), 1191 (m), 1083 (s), 1071 (m),

1064 (m), 1057 (m), 1037 (s), 1021 (s), 1008 (s), 945 (m), 887 (w), 835 (m), 802 (s), 717 (m), 554 (w).

MS (EI, 70 eV): m/z (%) = 435 (12), 432 (9), 387 (7), 169 (8), 168 (100), 136 (20). HRMS (EI): calcd. for C₂₀H₁₇ON⁷⁹Br³⁵Cl³²S: 432.9903, found: 432.9895.

{4-[(4'-iodo-5-chlorobiphenyl-2-yl)sulfinyl]phenyl}dimethylamine (47c)

According to **TP4** the sulfoxide **47c** was prepared starting from sulfoxide **37a** (1.40 g, 5.0 mmol), using Pd(PPh₃)₄ (0.11 g, 0.10 mmol) and 1,4-diiodobenzene (3.30 g, 10.0 mmol) for the cross-coupling. The reaction mixture was stirred for 1.5 h at 50 °C Flash chromatographical purification (pentane / ethyl acetate = 1:1, silica gel) yielded **47c** as a colourless solid (1.66 g, 69% yield).

mp (°**C**): 141–141.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.90 (s, 6 H), 6.42 (d, J = 9.06 Hz, 2 H), 6.80 (d, J = 8.11 Hz, 2 H), 6.87 (d, J = 9.06 Hz, 2 H), 7.13 (d, J = 2.38 Hz, 1 H), 7.54 (dd, J = 8.58 Hz, J = 2.38 Hz, 1 H), 7.62 (d, J = 8.11 Hz, 2 H), 8.15 (d, J = 8.58 Hz, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 40.0 (CH₃), 94.2, 111.4 (CH), 125.6 (CH), 127.8 (CH), 128.4 (CH), 128.8, 129.8 (CH), 130.9 (CH), 136.2, 136.4, 137.3 (CH), 140.5, 142.7, 152.0.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 1716$ (m), 1590 (s), 1510 (m), 1446 (m), 1362 (s), 1278 (m), 1224 (m), 1190 (m), 1082 (s), 1066 (m), 1052 (m), 1036 (s), 1020 (s), 1004 (s), 944 (m), 886 (m), 838 (s), 824 (s), 802 (w), 760 (m), 750 (m), 742 (m), 732 (m), 714 (m), 702 (s), 690 (m), 608 (s).

MS (EI, 70 eV): *m/z* (%) = 481 (25), 467 (35), 465 (22), 464 (83), 432 (15), 169 (12), 168 (100), 152 (30), 151 (22), 136 (31).

HRMS (EI): calcd. for: $C_{20}H_{18}ON^{35}Cl^{127}I^{32}S$ [M+H]: 481.9842, found: 481.9841.

*t*Butyl 5'-chloro-2'-{[4-(dimethylamino)phenyl]sulfinyl}biphenyl-4-carboxylate (**47d**)

According to **TP4** the sulfoxide **47d** was prepared starting from sulfoxide **37a** (2.80 g, 10.0 mmol), using Pd(dba)₂ (0.12 g, 0.20 mmol), tris-*o*-furylphosphine (93 mg, 0.40 mmol) and *tert*-butyl 4-iodobenzoate (3.65 g, 12.0 mmol) for the cross-coupling. The reaction mixture was stirred for 15 min at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 1:1, silica gel) yielded **47d** as a colourless solid (3.61 g, 79% yield).

mp (°**C**): 137–139.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.62 (s, 9 H), 2.92 (s, 6 H), 6.40–6.45 (m, 2 H), 6.85–6.90 (m, 2 H), 7.14–7.18 (m, 3 H), 7.57 (dd, J = 8.38 Hz, J = 2.21 Hz, 1 H), 7.91–7.95 (m, 2 H), 8.18 (d, J = 8.60 Hz, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 28.2 (CH₃), 40.1 (CH₃), 81.4, 111.6 (CH), 125.6 (CH), 127.8 (CH), 128.7 (CH), 129.2 (CH), 129.3, 129.4 (CH), 130.0 (CH), 131.8, 136.3, 140.9, 141.1, 142.9, 152.1, 165.3.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2360 (w), 2342 (w), 1712 (vs), 1592 (vs), 1554 (m), 1516 (s), 1474 (w), 1446 (m), 1366 (vs), 1310 (m), 1294 (vs), 1282 (s), 1254 (m), 1236 (m), 1218 (m), 1190 (m), 1170 (s), 1120 (s), 1092 (s), 1086 (s), 1066 (s), 1040 (vs), 1024 (s), 1012 (s), 948 (m), 922 (w), 880 (m), 862 (m), 850 (m), 824 (m), 814 (m), 802 (vs), 774 (s), 730 (w), 710 (m), 668 (w), 636 (w), 610 (m).

MS (EI, 70 eV): *m*/*z* (%) = 457 (22), 456 (17), 455 (67), 384 (20), 383 (42), 382 (27), 351 (28), 170 (19), 169 (40), 168 (100), 152 (31), 136 (83), 119 (15).

HRMS (EI): calcd. for C₂₅H₂₆O₃N³⁵Cl³²S: 455.1322, found: 455.1319.

5-Chloro-2-{[4-(dimethylamino)phenyl]sulfinyl}benzonitrile (47e)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide **37a** (2.80 g, 10.0 mmol) dissolved in THF (20 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (9.17 mL, 11.0 mmol, 1.20 M in THF) was added dropwise. After 20 min of stirring at -30 °C, TosCN (2.36 g, 12.0 mmol) was added and the reaction mixture was stirred for 2 h at 25 °C. The reaction mixture was then quenched with a sat. aq. NH₄Cl-solution (100 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvents were removed under reduced pressure. Flash chromatographical purification (diethyl ether, silica gel) yielded an orange solid (2.23 g, 73% yield).

mp (°C): 179–180.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.99 (s, 6 H), 6.66 (d, J = 9.06 Hz, 2 H), 7.52 (d, J = 9.06 Hz, 2 H), 7.59 (d, J = 1.97 Hz, 1 H), 7.77 (dd, J = 8.51, 1.97 Hz, 1 H), 8.19 (d, J = 8.51 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.0 (CH₃), 110.5, 111.9 (CH), 114.0, 125.7 (CH), 128.1, 128.5 (CH), 133.2 (CH), 133.8 (CH), 136.5, 148.9, 152.8.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3075 (m), 1592 (vs), 1551 (m), 1518 (s), 1454 (m), 1441 (m), 1430 (m), 1376 (s), 1233 (m), 1196 (m), 1180 (m), 1082 (s), 1052 (s), 1034 (s), 996 (m), 832 (m), 811 (m), 796 (m).

MS (EI, 70 eV): *m/z* (%) = 304 (15), 288 (6), 258 (6), 256 (19), 255 (6), 169 (11), 168 (100), 152 (6), 136 (15), 42 (19).

HRMS (EI): calcd. for C₁₅H₁₃³⁵ClN₂O³²S: 304.0437, found: 304.0433.

5'-Chloro-2'-{[4-(dimethylamino)phenyl]sulfinyl}biphenyl-4-carbonitrile (47f)

According to **TP4** the sulfoxide **47f** was prepared starting from sulfoxide **37a** (2.80 g, 10.0 mmol), using Pd(PPh₃)₄ (0.22 g, 0.20 mmol) and 4-iodo benzonitrile (2.75 g, 12.0 mmol) for the cross-coupling. The reaction mixture was stirred for 2 h at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 1:1, silica gel) yielded a colourless solid (3.50 g, 92% yield).

mp (°**C**): 161–163.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.90 (s, 6 H), 6.37 (d, J = 8.82 Hz, 2 H), 6.78 (d, J = 8.82 Hz, 2 H), 7.07–7.08 (m, 1 H), 7.16-7.17 (m, 1 H), 7.35-7.38 (m, 1 H), 7.44–7.49 (m, 1 H), 7.57–7.62 (m, 2 H), 8.21 (d, J = 8.38 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.2 (CH₃), 111.7 (CH), 125.2 (CH), 126.0 (CH), 126.1, 128.4 (CH), 128.7, 129.0, 129.1 (CH), 130.3 (CH), 132.7 (CH), 136.6, 138.1, 140.3, 143.2, 152.5.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2228$ (w), 1588 (vs), 1508 (s), 1444 (m), 1364 (s), 1304 (w), 1228 (m), 1192 (m), 1084 (s), 1036 (vs), 944 (m), 844 (s), 828 (s), 800 (s), 756 (m), 608 (m), 588 (m), 568 (m).

MS (EI, 70 eV): *m*/*z* (%) = 382 (29), 380 (77), 332 (28), 177 (27), 170 (23), 169 (51), 168 (56), 152 (26), 136 (100), 119 (20).

HRMS (EI): calcd. for $C_{21}H_{17}^{35}ClN_2O^{32}S$: 380.0750, found: 380.0753.

4-Fluoro-2-[(4-fluorophenyl)thio]phenyl 4-methoxyphenyl sulfoxide (47g)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide **37h** (1.75 g, 7.0 mmol,) dissolved in THF (14 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (6.9 mL, 7.7 mmol, 1.11 M in THF) was added dropwise. After 20 min of stirring at -30 °C, *S*-(4-fluorophenyl) benzenesulfonothioate (2.25 g, 8.4 mmol) was added and the reaction mixture was stirred for 2 h at 25 °C. The reaction mixture was then quenched with a sat. aq. NH₄Cl-solution (100 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvents were removed under reduced pressure. Flash chromatographical purification (diethyl ether, silica gel) yielded a colourless liquid (2.14 g, 81% yield).

mp (°**C**): 131–133.

¹**H-NMR** (CDCl₃, 600 MHz): δ (ppm) = 3.79 (s, 3 H), 6.68 (dd, J = 8.82 Hz, J = 2.62 Hz, 1 H), 6.89–6.92 (m, 2 H), 6.98–7.02 (m, 2 H), 7.10–7.14 (m, 1 H), 7.20–7.22 (m, 2 H), 7.60–7.63 (m, 2 H), 8.08 (dd, J = 9.06 Hz, J = 5.72 Hz, 1 H).

¹³C-NMR (CDCl₃, **150** MHz): δ (ppm) = 55.4 (CH₃), 114.7 (CH), 115.2 (d, J = 21.9 Hz, CH), 116.9 (d, J = 22.0 Hz, CH), 117.7 (d, J = 24.4 Hz, CH), 126.9 (d, J = 9.4 Hz, CH), 127.4 (d, J = 3.5 Hz), 128.4 (CH), 134.8 (d, J = 8.5 Hz, CH), 135.7, 137.3 (d, J = 8.2 Hz), 140.5 (d, J = 2.9 Hz), 162.1, 163.0 (d, J = 250.0 Hz, CF), 164.2 (d, J = 253.4 Hz, CF).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3080 \text{ (w)}$, 2966 (w), 2940 (w), 2228 (m), 2216 (m), 2190 (m), 2184 (m), 2174 (m), 2160 (m), 2098 (m), 2032 (m), 2022 (m), 1976 (m), 1908 (w), 1750 (w), 1718 (m), 1588 (s), 1578 (m), 1564 (m), 1490 (s), 1458 (s), 1442 (s), 1398 (w), 1382 (m), 1368 (w), 1304 (m), 1278 (m), 1248 (s), 1222 (s), 1202 (s), 1182 (m), 1170 (m), 1158 (m), 1128 (w), 1088 (m), 1078 (m), 1050 (s), 1030 (s), 1020 (s), 892 (s), 862 (s), 834 (s), 824 (vs).

MS (EI, 70 eV): *m/z* (%) = 377 (22), 376 (77), 361 (18), 360 (68), 328 (20), 265 (97), 252 (66), 231 (38), 219 (100), 217 (28), 188 (35), 155 (63), 139 (25), 123 (98), 43 (30), 42 (64).

HRMS (EI): calcd. for $C_{19}H_{14}O_2F_2^{32}S$: 376.0403, found: 376.0394.

(4-{[4'-Chloro-5-(trifluoromethyl)biphenyl-2-yl]sulfinyl}phenyl)dimethylamine (47h)

According to **TP4** the sulfoxide **47h** was prepared starting from sulfoxide **37i** (1.88 g, 6.0 mmol), using Pd(dba)₂ (69 mg, 0.12 mmol), tris-*o*-furylphosphine (56 mg, 0.23 mmol) and 1-iodo-4-chlorobenzene (1.57 g, 6.6 mmol) for the cross-coupling. The reaction mixture was stirred for 1.5 h at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded a colourless solid (2.32 g, 91% yield).

mp (°**C**): 150–152.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.91 (s, 6 H), 6.41–6.45 (m, 2 H), 6.84–6.87 (m, 2 H), 7.01–7.03 (m, 2 H), 7.29–7.31 (m, 2 H), 7.39 (d, J = 1.43 Hz, 1 H), 7.85 (dd, J = 8.34 Hz, J = 1.91 Hz, 1 H), 8.40 (d, J = 8.11 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 40.0 (CH₃), 111.5 (CH), 123.5 (q, J = 273.1 Hz, CF₃), 124.5 (CH), 125.2 (q, J = 3.8 Hz, CH), 126.9 (q, J = 3.7 Hz, CH), 128.1 (CH), 128.4, 128.6 (CH), 130.5 (CH), 132.2 (q, J = 32.9 Hz), 134.6, 135.4, 139.6, 148.7, 152.2.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2817 \text{ (w)}$, 1595 (vs), 1515 (m), 1412 (m), 1366 (m), 1326 (s), 1294 (m), 1256 (s), 1234 (m), 1170 (s), 1137 (vs), 1087 (s), 1052 (s), 1041 (s), 1023 (s), 1014 (s), 948 (m), 841 (m), 825 (m), 803 (s), 743 (m), 720 (m), 697 (m), 660 (m), 657 (m).

MS (EI, 70 eV): m/z (%) = 426 (6), 423 (17), 170 (5), 169 (9), 168 (100), 136 (14). **HRMS (EI)**: calcd. for C₂₁H₁₇O³⁵ClF₃³²S: 423.0671, found: 423.0667. 4'-Chloro-5-(trifluoromethyl)biphenyl-2-yl 4-methoxyphenyl sulfoxide (47i)

According to **TP4** the sulfoxide **47i** was prepared starting from sulfoxide **37j** (10.5 g, 35.0 mmol), using Pd(dba)₂ (201 mg, 0.35 mmol), tris-*o*-furylphosphine (162 mg, 0.70 mmol) and 1-iodo-4-chlorobenzene (10.0 g, 42.0 mmol) for the cross-coupling. The reaction mixture was stirred for 7 h at 50 °C. Flash chromatographical purification (pentane / diethyl ether = 1:1, silica gel) yielded a colourless solid (10.8 g, 75% yield).

mp (°**C**): 113–115.

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 3.74 (s, 3 H), 6.71 (d, J = 8.58 Hz, 2 H), 6.95 (d, J = 8.58 Hz, 2 H), 7.05 (d, J =8.58 Hz, 2 H), 7.34 (d, J = 8.58 Hz, 2 H), 7.41 (s, 1 H), 7.86–7.87 (m, 1 H), 8.37 (d, J = 8.11 Hz, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 55.4 (CH₃), 114.5 (CH), 123.5 (q, J = 272.9 Hz, CF₃), 124.6 (CH), 125.4 (q, J = 3.9 Hz, CH), 127.1 (q, J = 3.7 Hz, CH), 128.1 (CH), 128.8 (CH), 130.6 (CH), 132.6 (q, J = 32.9 Hz), 134.7, 135.0, 135.2, 139.7, 148.2, 162.1.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 1594 (m), 1578(w), 1495 (m), 1468 (w), 1443 (w), 1412 (m), 1393 (w), 1327 (s), 1307 (m), 1292 (m), 1272 (w), 1253 (s), 1240 (m), 1174 (s), 1135 (vs), 1104 (w), 1089 (s), 1075 (s), 1044 (s), 1023 (s), 1012 (s), 966 (w), 949 (w), 910 (m), 839 (s), 827 (s), 822 (s), 815 (s), 795 (m), 822 (s), 815 (s), 794 (m), 743 (m), 697 (m), 661 (m), 656 (m).

MS (EI, 70 eV): *m/z* (%) = 412 (9), 410 (23), 394 (7), 362 (9), 251 (6), 157 (5), 156 (8), 155 (100), 139 (20), 124 (30), 123 (28).

HRMS (EI): calcd. for $C_{20}H_{14}O_2^{35}ClF_3^{32}S$: 410.0355, found: 410.0355.

[2-(4-Methoxybenzenesulfinyl)-5-trifluoromethylphenylethynyl]trimethyl-silane (47j)

A dry and argon-flushed Schlenk-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide 37j (2.19 g, 7.00 mmol) dissolved in THF (14 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (6.4 mL, 7.70 mmol, 1.20 M in THF) was added dropwise. After 20 min of stirring at -30 °C iodine (2.13 g, 8.40 mmol) was added and the reaction mixture was allowed to warm to 25 °C. In second dry and argon-flushed Schlenk-flask, equipped with a stirring bar trimethylethynylsilane (1.38 g, 14.0 mmol) was mixed slowly with *i*PrMgCl·LiCl (8.80 mL, 10.5 mmol, 1.20 M). After cessation of gas evolution the reaction mixture was heated to 60 °C for 5 min. After cooling to 25 °C a zinc chloride solution (11.0 mL, 11.0 mmol, 1.0 M in THF) was added slowly. The resulting zinc reagent was transferred to the previously prepared crude iodide. Pd(dba)₂ (81 mg, 0.14 mmol), tris-ofurylphosphine (65 mg, 0.28 mmol) were added and the reaction mixture was stirred at 50 °C for 4 h. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 4:1, silica gel) yielded a yellow oil (2.19 g, 79% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.28 (s, 9 H), 3.80 (s, 3 H), 6.91–6.93 (m, 2 H), 7.62–7.65 (m, 2 H), 7.68 (d, J = 1.28 Hz, 1 H), 7.68 (dd, J = 8.53 Hz, J = 1.38 Hz, 1 H), 8.23 (d, J = 8.07 Hz, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = -0.5 (CH₃), 55.5 (CH₃), 98.7, 105.8, 114.6 (CH), 121.0, 123.1 (q, *J* = 272.9 Hz, CF₃), 124.0 (CH), 125.9 (q, *J* = 3.4 Hz, CH), 128.2 (CH), 130.2 (q, *J* = 3.8 Hz, 1 H), 132.5 (q, *J* = 33.1 Hz), 135.4, 151.4, 162.3.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2960$ (w), 2161 (w), 1593 (m), 1577 (m), 1495 (s), 1464 (w), 1402 (m), 1326 (vs), 1303 (m), 1250 (s), 1168 (s), 1128 (vs), 1087 (s), 1054 (s), 1038 (s), 900 (s), 840 (s), 826 (s), 796 (m), 759 (m), 754 (m), 692 (m), 655 (m), 645 (m).

MS (EI, 70 eV): m/z (%) = 397 (5), 396 (21), 382 (15), 381 (57), 380 (12), 304 (29), 295 (11), 289 (21), 276 (10), 155 (14), 139 (13), 73 (100). **HRMS (EI)**: calcd. for C₁₉H₁₉O₂F₃³²S²⁸Si: 396.0827, found: 396.0832.

[4'-Chloro-6-(4-methoxybenzenesulfinyl)biphenyl-3-ylethynyl]trimethylsilane (47k)

According to **TP4** the sulfoxide **47k** was prepared starting from sulfoxide **37k** (1.97 g, 6.00 mmol), using Pd(dba)₂ (69 mg, 0.12 mmol), tris-*o*-furylphosphine (56 mg, 0.24 mmol) and 4-iodo-chlorobenzene (1.57 g, 6.60 mmol) for the cross-coupling. The reaction mixture was stirred for 3 h at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 3:1, silica gel) gave a slightly yellow solid (1.91 g, 73% yield).

mp (°**C**): 147–149.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.22 (s, 9 H), 3.74 (s, 3 H), 6.67–6.72 (m, 2 H), 6.93–6.95 (m, 2 H), 7.01–7.05 (m, 2 H), 7.26–7.32 (m, 3 H), 7.67 (dd, J = 8.02 Hz, J = 1.70 Hz, 1 H), 8.14 (d, J = 8.26 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = -0.3 (CH₃), 55.4 (CH₃), 97.2, 103.4, 114.3 (CH), 124.0 (CH), 125.6, 128.0 (CH), 128.6 (CH), 130.6 (CH), 131.9 (CH), 133.5 (CH), 134.4, 135.4, 135.7, 139.1, 143.9, 161.9.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2958$ (w), 2838 (m), 2157 (m), 1589 (s), 1494 (s), 1470 (m), 1461 (m), 1443 (m), 1300 (m), 1252 (s), 1246 (s), 1184 (m), 1175 (m), 1094 (m), 1083 (s), 1064 (m), 1047 (s), 1021 (m), 1013 (m), 886 (m), 845 (vs), 841 (vs), 837 (vs), 829 (vs), 813 (s), 795 (m), 762 (s), 748 (m), 733 (m).

MS (EI, 70 eV): *m*/*z* (%) = 440 (33), 438 (83), 390 (75), 375 (48), 299 (35), 155 (76), 139 (57), 73 (100).

HRMS (EI): calcd. for $C_{24}H_{23}O_2^{35}Cl^{32}S^{28}Si$: 438.0877, found: 438.0866.

({4'-Methoxy-6-[(4-methoxyphenyl)sulfinyl]biphenyl-3-yl}ethynyl) (trimethyl)silane (**471**)

According to **TP4** the sulfoxide **471** was prepared starting from sulfoxide **37k** (1.97 g, 6.00 mmol), using Pd(dba)₂ (69 mg, 0.12 mmol) tris-*o*-furylphosphine (56 mg, 0.24 mmol) and 4-iodo-4-methoxybenzene (1.54 g, 6.60 mmol) for the cross-coupling. The reaction mixture was stirred for 2 h at 50 °C. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded a slightly yellow solid (1.74 g, 67% yield).

mp (°C): 59–61.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.22 (s, 9 H), 3.73 (s, 3 H), 3.84 (s, 3 H), 6.67–6.69 (m, 2 H), 6.85–6.87 (m, 2 H), 6.93–6.96 (m, 2 H), 7.03–7.05 (m, 2 H), 7.28 (d, J = 1.67 Hz, 1 H), 7.64 (dd, J = 8.23 Hz, J = 1.55 Hz, 1 H), 8.12 (d, J = 8.11 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = -0.2 (CH₃), 55.4 (2 CH₃), 96.7, 103.8, 113.8 (CH), 114.2 (CH), 123.7 (CH), 125.4, 127.7 (CH), 129.7, 130.6 (CH), 131.3 (CH), 133.7 (CH), 135.8, 140.2, 144.1, 159.6, 161.7.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2158 (s), 2030 (s), 1974 (s), 1716 (s), 1608 (m), 1592 (m), 1512 (s), 1494 (s), 1460 (s), 1366 (m), 1246 (vs), 1176 (s), 1044 (s), 1024 (s), 888 (m), 826 (s), 796 (m), 758 (m), 700 (w), 616 (w).

MS (EI, 70 eV): m/z (%) = 435 (19), 434 (41), 419 (28), 418 (57), 403 (32), 387 (23), 386 (65), 371 (30), 310 (19), 296 (16), 295 (54), 249 (20), 185 (11), 155 (25), 73 (100). **HRMS (EI)**: calcd. for C₂₅H₂₆O₃³²S²⁸Si: 434.1372, found: 434.1370.

[{4-[(4-methoxyphenyl)sulfinyl]-1,3-phenylene}bis(ethyne-2,1diyl)]bis(trimethylsilane) (47m)

A dry and argon-flushed Schlenk-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide 37k (657 mg, 2.00 mmol) dissolved in THF (4 mL). The reaction mixture was cooled to -30 °C and tmpMgCl·LiCl (2.33 mL, 2.80 mmol, 1.20 M in THF) was added dropwise. After 20 min of stirring at -30 °C iodine (711 mg, 2.80 mmol) was added and the reaction mixture was allowed to warm to 25 °C. In second dry and argon-flushed Schlenk-flask, equipped with a stirring bar trimethylethynylsilane (393 mg, 4.0 mmol) was added slowly to *i*PrMgCl·LiCl (2.50 mL, 3.0 mmol, 1.20 M in THF). After cessation of gas evolution the reaction mixture was heated to 60 °C for 5 min. After cooling to 25 °C a zinc chloride solution (3.0 mL, 3.0 mmol, 1.0 M in THF) was added slowly. The resulting zinc reagent was transferred to the previously prepared crude iodide. Pd(dba)₂ (23 mg, 0.04 mmol), triso-furylphosphine (19 mg, 0.08 mmol) were added and the reaction mixture was stirred at 50 °C for 4 h. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 9:2, silica gel) yielded 47m as a yellow oil (0.61 g, 72% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.22 (s, 9 H), 0.25 (s, 9 H), 3.80 (s, 3 H), 6.89–6.90 (m, 2 H), 7.53 (s, 1 H), 7.59–7.61 (m, 3 H), 8.00 (d, *J* = 8.35 Hz, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = -0.4 (CH₃), -0.3 (CH₃), 55.5 (CH₃), 97.3, 99.3, 102.9, 104.2, 114.5 (CH), 120.3, 123.4 (CH), 125.5, 128.2 (CH), 132.6 (CH), 136.1, 136.4 (CH), 147.1, 162.1.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2958 (m), 2900 (w), 2837 (w), 2151 (m), 1738 (w), 1592 (m), 1578 (m), 1495 (m), 1460 (m), 1409 (w), 1378 (w), 1302 (m), 1248 (s), 1171 (m),

1084 (m), 1059 (m), 1036 (m), 950 (m), 836 (vs), 825 (vs), 796 (m), 757 (s), 724 (m), 700 (m), 674 (w), 648 (m), 620 (m).

MS (EI, 70 eV): *m/z* (%) = 425 (17), 424 (51), 411 (11), 410 (33), 409 (100), 408 (13), 381 (7), 336 (8), 323 (9), 287 (9), 273 (6).

HRMS (EI): calcd. for $C_{23}H_{28}O_2^{32}S^{28}Si_2$: 424.1349, found: 424.1336.

4.3.3. Sulfoxide-Magnesium Exchange

<u>4'-Bromo-5-chlorobiphenyl-2-carbonitrile (53a)</u>

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47b** (435 mg, 1.00 mmol) in THF (2 mL). The reaction mixture was cooled to -50 °C and *i*PrMgCl·LiCl (0.88 mL, 1.1 mmol, 1.25 M in THF) was added dropwise. After stirring at -50 °C for 5 h TosCN (145 mg, 0.8 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) yielded **53a** as a colourless solid (138 mg, 59% yield).

mp (°C): 185–187.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 7.38–7.35 (m, 3 H), 7.48–7.49 (m, 1 H), 7.61–7.65 (m, 2 H), 7.69 (dd, J = 8.16 Hz, J = 0.44 Hz, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 109.6, 117.6, 123.9, 128.3 (CH), 130.1 (CH), 130.2 (CH), 132.1 (CH), 134.9 (CH), 135.7, 139.5, 145.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3062$ (w), 3030 (w), 2222 (m), 1914 (w), 1906 (w), 1592 (m), 1552 (m), 1496 (w), 1470 (s), 1406 (w), 1382 (m), 1304 (w), 1294 (w), 1278 (w), 1256 (m), 1188 (w), 1106 (w), 1096 (m), 1074 (m), 1036 (m), 1028 (m), 1008 (m), 966 (w), 952 (w), 910 (m), 856 (w), 824 (vs), 812 (vs), 742 (m), 730 (m), 712 (m), 656 (m), 620 (s).

MS (EI, 70 eV): *m/z* (%) = 295 (23), 294 (12), 293 (100), 292 (10), 291 (80), 214 (14), 212 (49), 177 (62).

HRMS (EI): calcd. for C₁₃H₇N⁷⁹Br³⁵Cl: 290.9450, found: 290.9451.

Ethyl 4"-bromo-4'-chloro-1,1':2',1"-terphenyl-4-carboxylate (53b)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47b** (435 mg, 1.00 mmol) in THF (2 mL). The reaction mixture was cooled to $-50 \,^{\circ}$ C and *i*PrMgCl·LiCl (0.88 mL, 1.1 mmol, 1.25 M in THF) was added dropwise. After stirring at $-50 \,^{\circ}$ C for 5 h ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added. After stirring for 20 min at $-50 \,^{\circ}$ C the reaction mixture was allowed to warm to 25 $\,^{\circ}$ C and Pd(PPh₃)₄ (23 mg, 0.02 mmol) and ethyl 4-iodobenzoate (331 mg, 0.8 mmol) were added and the reaction mixture was stirred for 2 h at 50 $\,^{\circ}$ C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) yielded a colourless solid (210 mg, 50% yield).

mp (°**C**): 120–123.

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 1.38 (t, J = 7.18 Hz, 3 H), 4.36 (q, J = 7.18 Hz, 2 H), 6.94–6.96 (m, 2 H), 7.14–7.16 (m, 2 H), 7.33–7.35 (m, 3 H), 7.38–7.41 (m, 2 H), 7.90–7.92 (m, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 14.3 (CH₃), 61.0 (CH₂), 121.6, 127.9 (CH), 129.0, 129.4 (CH), 129.6 (CH), 130.3 (CH), 131.2 (CH), 131.4 (CH), 131.8 (CH), 134.0, 137.9, 138.7, 140.9, 144.6, 166.3.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1714 \text{ (vs)}, 1608 \text{ (m)}, 1466 \text{ (m)}, 1392 \text{ (w)}, 1378 \text{ (m)}, 1362 \text{ (m)}, 1284 \text{ (vs)}, 1236 \text{ (m)}, 1180 \text{ (m)}, 1120 \text{ (s)}, 1100 \text{ (s)}, 1072 \text{ (m)}, 1034 \text{ (m)}, 1024 \text{ (m)}, 1004 \text{ (s)}, 964 \text{ (w)}, 868 \text{ (m)}, 854 \text{ (m)}, 832 \text{ (vs)}, 814 \text{ (s)}, 774 \text{ (s)}, 748 \text{ (m)}, 734 \text{ (m)}, 714 \text{ (m)}, 702 \text{ (m)}, 690 \text{ (m)}, 650 \text{ (m)}, 628 \text{ (w)}, 604 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 418 (22), 417 (19), 416 (80), 415 (15), 414 (68), 372 (13), 370 (48), 368 (37), 306, 13), 264 (32), 263 (22), 262 (100), 228 (27), 227 (36), 226 (84), 224 (16), 114 (13), 113 838).

HRMS (EI): calcd. for $C_{21}H_{16}O_2^{79}Br^{35}Cl$: 414.0022, found: 414.0002.

<u>4"-Bromo-4,4'-dichloro-1,1':2',1"-terphenyl</u> (53c)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47b** (435 mg, 1.00 mmol) in THF (2 mL). The reaction mixture was cooled to $-50 \,^{\circ}$ C and *i*PrMgCl·LiCl (0.88 mL, 1.1 mmol, 1.25 M in THF) was added dropwise. After stirring at $-50 \,^{\circ}$ C for 5 h ZnCl₂(1.1 mL, 1.1 mmol, 1.0 M in THF) was added. After stirring for 20 min at $-50 \,^{\circ}$ C the reaction mixture was allowed to warm to 25 $\,^{\circ}$ C and Pd(PPh₃)₄ (23 mg, 0.02 mmol) and 1-iodo-4-chlorobenzene (191 mg, 0.8 mmol) were added and the reaction mixture was stirred for 2 h at 50 $\,^{\circ}$ C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane, silica gel) yielded a colourless solid (168 mg, 54% yield).

mp (°**C**): 147–148.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 6.94–7.03 (m, 4 H), 7.18–7.23 (m, 2 H), 7.28–7.32 (m, 1 H), 7.35–7.41 (m, 4 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 121.6, 127.9 (CH), 128.4 (CH), 130.3 (CH), 130.9 (CH), 131.2 (CH), 131.4 (CH), 131.8 (CH), 133.2, 133.8, 137.7, 138.4, 138.8, 140.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1590$ (w), 1486 (w), 1472 (m), 1460 (m), 1406 (w), 1394 (w), 1378 (w), 1096 (m), 1070 (m), 1032 (w), 1004 (m), 882 (m), 834 (m), 812 (vs), 754 (w), 744 (m), 722 (m), 710 (w), 698 (m), 650 (w), 636 (w), 628 (w).

MS (EI, 70 eV): *m*/*z* (%) = 379 (31), 378 (11), 377 (67), 375 (43), 264 (26), 263 (18), 262 (100), 226 (40), 131 (12), 113 (29), 112 (11).

HRMS (EI): calcd. for $C_{18}H_{11}^{79}Br^{35}Cl_2$: 375.9421, found: 375.9450.

(4'-Bromo-5-chlorobiphenyl-2-yl)(phenyl)methanol (53d)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47c** (435 mg, 1.00 mmol) in THF (2 mL). The reaction mixture was cooled to $-50 \,^{\circ}$ C and *i*PrMgCl·LiCl (0.88 mL, 1.10 mmol, 1.25 M in THF) was added dropwise. After stirring at $-50 \,^{\circ}$ C for 5 h, benzaldehyde (85 mg, 81 µL, 0.80 mmol) was added. After stirring for 20 min at $-50 \,^{\circ}$ C the reaction mixture was allowed to warm to 25 $\,^{\circ}$ C and stirred for additional 20 min. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 3:1, silica gel) yielded a colourless viscous oil (179 mg, 60% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.36 (s, 1 H), 5.79 (s, 1 H), 7.06–7.12 (m, 4 H), 7.22–7.40 (m, 5 H), 7.50–7.57 (m, 3 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 72.1 (CH), 121.9, 126.6 (CH), 127.6 (CH), 128.2 (CH), 128.4 (CH), 128.8 (CH), 129.6 (CH), 130.8 (CH), 131.3 (CH), 133.1, 138.3, 139.4, 141.5, 143.1.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2228 (w), 1712 (s), 1608 (m), 1590 (m), 1574 (w), 1472 (m), 1454 (w), 1410 (w), 1390 (m), 1380 (m), 1362 (m), 1284 (vs), 1236 (m), 1198 (m), 1180 (m), 1118 (s), 1102 (vs), 1036 (m), 1018 (m), 1004 (m), 926 (w), 906 (m), 868 (m), 848 (s), 834 (s), 826 (s), 774 (s), 762 (m), 752 (m), 734 (m), 704 (vs), 634 (m). **MS** (**EI**, **70** eV): m/z (%) = 373 (75), 371 (60), 321 (56), 319 (54), 277 (79), 276 (42), 275 (80), 239 (40), 181 (44), 152 (57), 150 (18), 105 (100). **HRMS** (**EI**): calcd. for C₁₉H₁₄O⁷⁹Br³⁵Cl: 371.9917, found: 371.9895.

(4'-Bromo-5-chlorobiphenyl-2-yl)(3,4-dichlorophenyl)methanol (53e)

According to **TP5** the sulfoxide **47b** (2.17 g, 5.00 mmol) was treated with *i*PrMgCl·LiCl (4.14 mL, 5.50 mmol, 1.20 M in THF) at -50 °C for 5 h. 3,4-dichlorobenzaldehyde (0.70 g, 4.0 mmol) was added and the reaction mixture was stirred for 20 min at -50 °C. The reaction mixture was then allowed to warm to 25 °C and stirred for additional 20 min. Flash chromatographical purification (pentane / ethyl acetate = 3:1, silica gel) yielded a colourless viscous oil (1.11 g, 63% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.08 (s, 1 H), 5.8 (s, 1 H), 6.87–6.91 (m, 2 H), 7.05–7.10 (m, 2 H), 7.18–7.21 (m, 1 H), 7.31 (dd, J = 8.38 Hz, J = 0.85 Hz, 1 H), 7.35–7.39 (m, 1 H), 7.43–7.45 (m, 1 H), 7.51–7.55 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 71.1 (CH), 122.4, 125.9 (CH), 128.5 (CH), 128.6 (CH), 128.7 (CH), 129.9 (CH), 130.3 (CH), 130.7 (CH), 131.6, 131.7 (CH), 132.6, 133.8, 138.0, 138.6, 141.6, 143.3.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3309 (m), 2975 (w), 2872 (w), 1595 (m), 1465 (s), 1384 (m), 1177 (m), 1094 (m), 1072 (m), 1048 (m), 1026 (s), 1009 (s), 884 (m), 818 (vs), 576 (m).

MS (EI, 70 eV): *m/z* (%) = 446 (17), 444 (60), 442 (95), 439 (50), 389 (44), 347 (35), 345 (100), 342 (98), 295 (26), 215 (33), 214 (26), 177 (32), 175 (61), 173 (34), 152 (32).

HRMS (EI): calcd. for C₁₉H₁₂⁷⁹Br³⁵Cl₃: 439.9137, found: 439.9130.

tButyl 5'-chloro-2'-[2-(ethoxycarbonyl)prop-2-en-1-yl]biphenyl-4-carboxylate (53f)

According to **TP5** the sulfoxide **47d** (456 mg, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.85 mL, 1.10 mmol, 1.30 M in THF) at -50 °C for 7 h. Then CuCN·2LiCl (0.05 mL, 5 mol%, 1.0 M in THF) and ethyl 2-(bromomethyl)acrylate (154 mg, 0.80 mmol) were added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 12:1, silica gel) yielded a colourless liquid (0.193 g, 60% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) =1.21 (t, J = 7.17 Hz, 3 H), 1.60 (s, 9 H), 3.52 (br, 2 H), 4.12 (q, J = 7.2 Hz, CH₂), 5.19 (br, 1 H), 6.19 (br, 1 H), 7.18 (d, J = 8.26 Hz, 1 H), 7.22 (d, J = 2.19 Hz, 1 H), 7.28 (d, J = 2.19 Hz, 1 H), 7.30–7.33 (m, 2 H), 7.98–8.02 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.1 (CH₃), 28.2 (CH₃), 34.7 (CH₂), 60.8 (CH₂), 81.1, 126.5 (CH₂), 127.9 (CH), 128.8 (CH), 129.4 (CH), 129.7 (CH), 131.2, 131.4 (CH), 132.2, 134.4, 139.9, 143.1, 144.3, 165.5, 166.5.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2977 \text{ (w)}, 1709 \text{ (vs)}, 1609 \text{ (w)}, 1593 \text{ (w)}, 1478 \text{ (w)}, 1391 \text{ (w)}, 1367 \text{ (m)}, 1308 \text{ (m)}, 1293 \text{ (s)}, 1252 \text{ (m)}, 1162 \text{ (m)}, 1142 \text{ (m)}, 1115 \text{ (s)}, 1099 \text{ (m)}, 1030 \text{ (m)}, 1015 \text{ (m)}, 948 \text{ (w)}, 861 \text{ (w)}, 846 \text{ (m)}, 817 \text{ (w)}, 777 \text{ (w)}, 769 \text{ (w)}, 708 \text{ (m)}.$

MS (EI, 70 eV): *m/z* (%) = 400 (0.5), 344 (31), 328 (42), 327 (71), 326 (100), 300 (38), 299 (34), 298 (91), 270 (39), 253 (28),

HRMS (EI): calcd. for $C_{23}H_{25}O_4^{-35}Cl$: 400.1441, found: 400.1442.

According to **TP5** the sulfoxide **47d** (912 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (1.76 mL, 2.20 mmol, 1.25 M in THF) at -50 °C for 7 h. Then ZnCl₂ (2.2 mL, 2.2 mmol, 1.0 M in THF) was added and the reaction mixture was stirred for 20 min. Pd(dba)₂ (28 mg, 0.05 mmol), tris-*o*-furylphosphine (23 mg, 0.1 mmol) and 4-iodo-benzobenzonitrile (366 mg, 1.6 mmol) were added and the reaction mixture was stirred for 2 h at 50 °C. Flash chromatographical purification (pentane / diethyl ether = 8:1, silica gel) yielded **53g** as a colourless solid (334 mg, 54% yield).

mp (°**C**): 171–172.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.58 (s, 9 H), 7.10–7.12 (m, 2 H), 7.17–7.19 (m, 2 H), 7.33 (d, *J* = 8.11 Hz, 1 H), 7.42–7.45 (m, 2 H), 7.49–7.51 (m, 2 H), 7.84–7.86 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 28.1 (CH₃), 81.3, 110.9, 118.6, 128.3 (CH), 129.4 (CH), 129.5 (CH), 130.3 (CH), 130.5 (CH), 131.1, 131.6 (CH), 132.0 (CH), 134.6, 137.1, 141.3, 143.5, 144.8, 165.2.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2978$ (w), 2226 (w), 1712 (vs), 1604 (w), 1588 (w), 1476 (w), 1464 (w), 1454 (w), 1390 (w), 1368 (m), 1314 (m), 1294 (s), 1278 (s), 1254 (m), 1190 (w), 1164 (s), 1116 (vs), 1104 (s), 1094 (s), 1034 (w), 1016 (w), 1004 (w), 886 (w), 866 (m), 850 (s), 820 (vs), 774 (m), 752 (w), 728 (w), 706 (m).

MS (EI, 70 eV): m/z (%) = 391 (10), 389 (28), 335 (33), 334 (23), 333 (100), 318 (11), 316 (32), 289 (16), 288 (23), 254 (33), 253 (50), 252 (17), 251 (20), 57 (33), 43 (25). **HRMS (EI)**: calcd. for C₂₄H₂₀O₂N³⁵Cl: 389.1183, found: 389.1176.
*t*Butyl 5'-chloro-2'-[(3,4-dichlorophenyl)(hydroxy)methyl]biphenyl-4-carboxylate (**53h**)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with sulfoxide **47d** (456 mg, 1.0 mmol) dissolved in THF (2 mL). The reaction mixture was cooled to -50 °C and cyclopentyl magnesium bromide (1.15 mL, 1.0 mmol, 0.87 M in THF) was added dropwise. After 7 h of stirring at -50 °C 3,4-dichlorobenzaldehyde (140 mg, 0.80 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 7:2, silica gel) yielded **53h** as a colourless liquid (184 mg, 50% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.63 (s, 9 H), 2.47 (s, 1 H), 5.79 (s, 1 H), 6.88–6.92 (m, 1 H), 7.21–7.25 (m, 2 H), 7.25–7.33 (m, 3 H), 7.39–7.42 (m, 1 H), 7.47–7.50 (m, 1 H), 8.00–8.03 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 28.2 (CH₃), 70.9 (CH), 81.5, 125.8 (CH), 128.5 (CH), 128.7 (CH), 128.8, 129.0 (CH), 129.5 (CH), 129.7 (CH), 130.3 (CH), 131.4, 131.5, 132.5, 133.7 (CH), 138.6, 141.9, 143.3, 143.4, 165.4.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3490 \text{ (m)}, 1692 \text{ (vs)}, 1594 \text{ (w)}, 1470 \text{ (m)}, 1410 \text{ (m)}, 1392 \text{ (m)}, 1380 \text{ (m)}, 1368 \text{ (m)}, 1316 \text{ (vs)}, 1306 \text{ (s)}, 1286 \text{ (s)}, 1250 \text{ (m)}, 1230 \text{ (m)}, 1178 \text{ (m)}, 1158 \text{ (s)}, 1128 \text{ (s)}, 1104 \text{ (s)}, 1094 \text{ (s)}, 1044 \text{ (m)}, 1028 \text{ (s)}, 1014 \text{ (m)}, 878 \text{ (m)}, 860 \text{ (m)}, 838 \text{ (s)}, 824 \text{ (s)}, 784 \text{ (m)}, 776 \text{ (m)}, 752 \text{ (s)}, 734 \text{ (m)}, 708 \text{ (m)}, 692 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 177 (60), 161 (12), 137 (10), 127 (11), 125 (15), 123 (15), 113 (13), 111 (22), 109 (16), 99 (18), 97 (36), 95 (24), 85 (37), 83 (34), 80 (22), 71 (55), 69 (37), 57 (100).

HRMS (EI): calcd. for $C_{24}H_{21}O_3^{35}Cl_3$: 462.0556, found: 462.0531.

4-Chloro-4'-methoxybiphenyl-2-carbonitrile (53i)

According to **TP5** the sulfoxide **47e** (305 mg, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 5 min. Then ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(PPh₃)₄ (22 mg, 0.02 mmol) was added, followed by 4-iodoanisole (187 mg, 0.80 mmol), and the reaction mixture was stirred for 3 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 10:1, silica gel) yielded a colourless solid (164 mg, 84% yield).

mp (°**C**): 104-106.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 3.86 (s, 3 H), 7.01 (d, J = 8.67 Hz, 2 H), 7.42 (d, J = 8.42 Hz, 1 H), 7.47 (d, J = 8.67 Hz, 2 H), 7.57 (dd, J = 8.42, 1.98 Hz, 1 H), 7.70 (d, J = 1.98 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 55.4 (CH₃), 112.4, 114.3 (CH), 117.7, 129.3, 129.9 (CH), 131.1 (CH), 133.0 (CH), 133.1, 133.2 (CH), 143.7, 160.3.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3067 \text{ (w)}, 2952 \text{ (w)}, 2850 \text{ (w)}, 2227 \text{ (m)}, 1607 \text{ (s)}, 1517 \text{ (m)}, 1481 \text{ (s)}, 1469 \text{ (s)}, 1444 \text{ (m)}, 1386 \text{ (m)}, 1304 \text{ (s)}, 1246 \text{ (vs)}, 1181 \text{ (s)}, 1101 \text{ (m)}, 1030 \text{ (s)}, 1014 \text{ (m)}, 834 \text{ (m)}, 814 \text{ (s)}, 796 \text{ (m)}.$

MS (EI, 70 eV): *m/z* (%) = 245 (33), 244 (15), 243 (100), 230 (8), 228 (21), 202 (11), 200 (33), 174 (9), 165 (8), 164 (13).

HRMS (EI): calcd. for $C_{14}H_{10}^{35}$ ClNO: 243.0451, found: 243.0432.

5'-Chloro-2'-[(3,4-dichlorophenyl)(hydroxy)methyl]biphenyl-4-carbonitrile (53j)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47f** (762 mg, 2.00 mmol) in THF (4 mL). The reaction mixture was cooled to -50 °C and *i*PrMgCl·LiCl (1.60 mL, 2.0 mmol, 1.25 M in THF) was added dropwise. After stirring at -50 °C for 2 h 3,4-dichlorobenzaldehyde (280 mg, 1.60 mmol) was added. After stirring for 20 min at -50 °C the reaction mixture was allowed to warm to 25 °C and stirred for additional 20 min. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 1:1, silica gel) yielded a colourless viscous oil (389 mg, 63% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.26 (s, 1 H), 5.69 (s, 1 H), 6.84–6.87 (m, 1 H), 7.12–7.13 (m, 2 H), 7.29–7.35 (m, 3 H), 7.40–7.51 (m, 2 H), 7.66–7.69 (m, 2 H). ¹³**C-NMR (CDCl₃, 75 MHz):** δ (ppm) = 71.2 (CH), 112.0, 118.4, 125.8 (CH), 128.5 (CH), 128.9 (CH), 129.1 (CH), 129.7 (CH), 130.0 (CH), 130.4 (CH), 131.8, 132.2 (CH), 132.7, 134.0, 138.4, 140.9, 143.0, 143.9.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3394$ (w), 2230 (m), 1608 (w), 1594 (w), 1564 (w), 1468 (s), 1388 (m), 1280 (w), 1260 (w), 1226 (w), 1194 (w), 1178 (m), 1130 (m), 1094 (m), 1028 (s), 1016 (s), 884 (m), 842 (s), 824 (vs), 790 (m), 762 (w), 740 (w), 718 (w), 688 (w), 676 (w).

MS (EI, 70 eV): *m/z* (%) = 334 (10), 178 (60), 176 (94), 175 (23), 147 (29), 143 (31), 141 (100), 120 (31), 113 (49), 111 (65), 105 (71), 77 (97), 75 (29), 70 (34), 61 (58), 51 (26).

HRMS (EI): calcd. for C₂₀H₂₁ON³⁵Cl₃: 386.9984, found: 386.9981.

Ethyl 4'-chloro-4"-cyano-1,1':2',1"-terphenyl-4-carboxylate (53k)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the sulfoxide **47f** (762 mg, 2.00 mmol) in THF (4 mL). The reaction mixture was cooled to -50 °C and *i*PrMgCl·LiCl (1.54 mL, 2.0 mmol, 1.30 M in THF) was added dropwise. After stirring at -50 °C for 2 h ZnCl₂ (2.0 mL, 2.0 mmol, 1.0 M in THF) was added. After stirring for 20 min at -50 °C the reaction mixture was allowed to warm to 25 °C and Pd(dba)₂ (57 mg, 0.10 mmol), tris-*o*-furylphosphine (46 mg, 0.2 mmol) and ethyl 4-iodobenzoate (442 mg, 1.6 mmol) were added and the reaction mixture was stirred for 2 h at 50 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 10:1, silica gel) yielded a colourless solid (346 mg, 60% yield).

mp (°**C**): 158–159.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.41 (t, J = 7.15 Hz, 3 H), 4.39 (q, J = 7.09 Hz, 2 H), 7.13–7.28 (m, 4 H), 7.39–7.55 (m, 5 H), 7.91–7.96 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.3 (CH₃), 61.1 (CH₂), 111.2, 118.5, 128.4, 128.7 (CH), 129.5 (CH), 129.6 (CH), 130.2 (CH), 130.3 (CH), 131.9, 132.0 (CH), 134.3 (CH), 138.1, 140.2, 144.1, 144.5, 166.1.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2228 (w), 1712 (s), 1608 (m), 1590 (m), 1574 (w), 1472 (m), 1454 (w), 1410 (w), 1390 (m), 1380 (m), 1362 (m), 1284 (vs), 1236 (m), 1198 (m), 1180 (m), 1118 (s), 1102 (vs), 1036 (m), 1018 (m), 1004 (m), 926 (w), 906 (m), 868 (m), 848 (s), 834 (s), 826 (s), 774 (s), 762 (m), 752 (m), 734 (m), 704 (vs), 634 (m). **MS** (**EI**, **70** eV): m/z (%) = 363 (39), 362 (22), 361 (92), 333 (16), 318 (29), 317 (23), 316 (88), 289 (16), 288 (23), 254 (30), 253 (100), 252 (28), 251 (34), 226 (11), 113 (13).

HRMS (EI): calcd. for $C_{22}H_{16}O_2N^{35}Cl$: 361.0870, found: 361.0859.

{4-fluoro-2-[(4-fluorophenyl)thio]benzyl}dimethylamine (53l)

According to **TP5** the sulfoxide **47g** (538 mg, 1.43 mmol) was treated with *i*PrMgCl·LiCl (0.99 mL, 1.57 mol, 1.59 M in THF). After stirring at -50 °C for 1 h a mixture of trifluoroacetic anhydride (0.147 g, 0.70 mol,) and *N,N,N',N'*-tetramethyldiaminomethane (72 mg, 0.70 mol,) which were previously stirred in CH₂Cl₂ at 25 °C for 1 h was added, the reaction mixture was allowed to warm to 25 °C and stirred for additional 2 h. Flash chromatographical purification (diethyl ether, silica gel) yielded a colourless liquid (183 mg, 66% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 2.25 (s, 6 H), 3.48 (s, 2 H), 6.60 (dd, J = 9.54 Hz, J = 2.38 Hz, 1 H), 6.79–6.82 (m, 1 H), 7.04–7.08 (m, 2 H), 7.25–7.28 (m, 1 H), 7.41–7.45 (m, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 45.1 (CH₃), 61.5 (CH₂), 112.5 (d, J = 21.2 Hz, CH), 115.5 (d, J = 24.1 Hz, CH), 116.7 (d, J = 22.0 Hz, CH), 128.8 (d, J = 3.4 Hz), 131.2 (d, J = 8.2 Hz, CH), 133.2 (d, J = 3.2 Hz), 135.7 (d, J = 8.5 Hz, CH), 140.3 (d, J = 7.7 Hz), 162.0 (d, J = 246.9 Hz, CF), 162.8 (d, J = 249.0 Hz, CF).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2974$ (w), 2944 (m), 2858 (w), 2817 (m), 2770 (m), 1600 (m), 1590 (s), 1576 (m), 1489 (vs), 1479 (vs), 1454 (s), 1397 (w), 1360 (w), 1264 (m), 1250 (m), 1221 (vs), 1174 (m), 1156 (m), 1043 (w), 1025 (m), 1014 (m), 902 (m), 852 (m), 830 (s), 815 (s), 791 (m).

MS (EI, 70 eV): m/z (%) = 279 (64), 278 (33), 265 (17), 264 (100), 233 (21), 232 (85), 200 (23), 183 (24), 182 (38), 181 (18), 149 (43), 138 (17), 109 (16), 58 (47). **HRMS (EI)**: calcd. for $C_{15}H_{15}NF_2^{32}S$: 279.0893, found: 279.0884. [4'-Chloro-5-(trifluoromethyl)biphenyl-2-yl](phenyl)methanol (53m)

According to **TP5** the sulfoxide **47h** (424 mg, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 3 h. Then benzaldehyde (85 mg, 81 µL, 0.80 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 4:1, silica gel) yielded a colourless liquid (198 mg, 68% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 2.08 (s, 1 H), 5.90 (s, 1 H), 7.07–7.14 (m, 4 H), 7.24–7.28 (m, 3 H), 7.35–7.38 (m, 2 H), 7.46 (s, 1 H), 7.69 (d, *J* = 8.37 Hz, 1 H), 7.84 (d, *J* = 8.37 Hz, 1 H).

¹³**C-NMR (CDCl₃, 75 MHz):** δ (ppm) = 72.5 (CH), 123.9 (q, *J* = 272.4 Hz, CF₃), 124.9 (q, *J* = 3.6 Hz, CH), 126.8 (q, *J* = 3.6 Hz, CH), 126.8 (CH), 127.7 (CH), 127.9 (CH), 128.5 (CH), 128.5 (CH), 129.7 (q, *J* = 32.5 Hz), 130.6 (CH), 134.0, 137.8, 140.5, 142.8, 144.6.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3324$ (w), 1485 (m), 1416 (m), 1333 (vs), 1254 (m), 1164 (s), 1119 (vs), 1090 (s), 1075 (s), 1030 (m), 1012 (s), 833 (m), 821 (m), 763 (m), 734 (m), 723 (m), 698 (s).

MS (EI, 70 eV): *m/z* (%) = 364 (10), 362 (26), 310 (20), 309 (100), 283 (13), 249 (10), 105 (13), 77 (10).

HRMS (EI): calcd. for $C_{20}H_{14}O^{35}ClF_3$: 362.0685 , found: 362.0675.

Ethyl 4"-chloro-4'-(trifluoromethyl)-1,1':2',1"-terphenyl-4-carboxylate (53n)

According to **TP5** the sulfoxide **47h** (0.424 g, 1.00 mmol,) was treated with *i*PrMgCl·LiCl (1.00 mL, 1.20 mmol, 1.20 M in THF) at -50 °C for 3 h. Then ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(dba)₂ (12 mg, 0.02 mmol) and tris-*o*-furylphosphine (9 mg, 0.04 mmol) were added, followed by ethyl 4-iodobenzoate (221 mg, 0.80 mmol). The reaction mixture was stirred for 3 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 12:1, silica gel) yielded **53n** as a yellowish solid (255 mg, 79% yield).

mp (°**C**): 104–107.

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 1.39 (t, J = 7.15 Hz, 3 H), 4.37 (q, J = 7.15 Hz, 2 H), 7.03–7.06 (m, 2 H), 7.18–7.22 (m, 4 H), 7.53 (d, J = 8.11 Hz, 1 H), 7.66 (d, J = 1.91 Hz, 1 H), 7.69 (dd, J = 8.34, 1.43 Hz, 1 H), 7.93–7.95 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.3 (CH₃), 61.1 (CH₂), 123.9 (q, J = 271.9 Hz, CF₃), 124.6 (q, J = 3.7 Hz, CH), 127.3 (q, J = 3.7 Hz, CH), 128.5 (CH), 129.4 (CH), 129.5 (CH), 129.6 (CH), 130.4 (q, J = 32.7 Hz), 130.9 (CH), 131.0, 133.6, 138.1, 140.0, 143.0, 144.4, 166.2.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2905$ (w), 1714 (vs), 1607 (m), 1419 (m), 1389 (m), 1333 (s), 1311 (m), 1284 (s), 1252 (m), 1237 (m), 1180 (m), 1166 (s), 1131 (vs), 1118 (s), 1102 (s), 1092 (s), 1085 (vs), 1033 (m), 1024 (m), 1014 (m), 1006 (m), 913 (m), 839 (s), 831 (s), 778 (m), 758 (m), 744 (m), 719 (m), 704 (m).

MS (EI, 70 eV): *m/z* (%) = 406 (27), 405 (19), 404 (100), 361 (24), 360 (15), 359 (80), 331 (18), 297 (25), 295 (11), 226 (24).

HRMS (EI): calcd. for $C_{22}H_{16}O_2^{35}ClF_3$: 404.0791, found: 404.0793.

4'-Chloro-5-(trifluoromethyl)biphenyl-2-carbaldehyde (530)

According to **TP5** the sulfoxide **47i** (10.3 g, 25.0 mmol) was treated with *i*PrMgCl·LiCl (17.3 mL, 27.5 mmol, 1.59 M in THF) at -50 °C for 30 min. Then DMF (1.56 mL, 20.0 mmol) was added and the reaction mixture was allowed to warm to 25 °C and was stirred for additional 1 h. Flash chromatographical purification (pentane / diethyl ether = 15:1, silica gel) yielded a colourless solid (4.74 g, 83% yield).

mp (°C): 58–60.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 7.31–7.35 (m, 2 H), 7.47–7.51 (m, 2 H), 7.68 (s, 1 H), 7.74–7.77 (m, 1 H), 8.12 (d, J = 8.17 Hz, 1 H), 9.99 (s, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 123.3 (q, J = 272.0 Hz, CF₃), 124.9 (q, J = 3.6 Hz, CH), 127.7 (q, J = 3.7 Hz, CH), 128.7 (CH), 129.1 (CH), 131.2 (CH), 134.8, 134.9 (q, J = 32.9 Hz), 135.4, 136.0, 144.8, 190.7 (CH).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3098 \text{ (vw)}, 2860 \text{ (w)}, 2360 \text{ (vw)}, 2342 \text{ (vw)}, 1718 \text{ (w)}, 1696 \text{ (s)}, 1662 \text{ (w)}, 1650 \text{ (w)}, 1614 \text{ (w)}, 1594 \text{ (w)}, 1564 \text{ (vw)}, 1498 \text{ (w)}, 1484 \text{ (m)}, 1444 \text{ (vw)}, 1418 \text{ (m)}, 1390 \text{ (m)}, 1364 \text{ (w)}, 1332 \text{ (s)}, 1310 \text{ (m)}, 1298 \text{ (m)}, 1278 \text{ (m)}, 1246 \text{ (s)}, 1200 \text{ (m)}, 1168 \text{ (s)}, 1120 \text{ (vs)}, 1106 \text{ (s)}, 1092 \text{ (s)}, 1074 \text{ (vs)}, 1030 \text{ (m)}, 1012 \text{ (m)}, 982 \text{ (m)}, 968 \text{ (w)}, 950 \text{ (w)}, 910 \text{ (m)}, 858 \text{ (s)}, 852 \text{ (s)}, 838 \text{ (s)}, 822 \text{ (s)}, 790 \text{ (s)}, 742 \text{ (m)}, 718 \text{ (m)}, 682 \text{ (m)}, 656 \text{ (m)}, 626 \text{ (m)}.$

MS (EI, 70 eV): *m/z* (%) = 286 (22), 285 (21), 284 (67), 283 (41), 249 (100), 220 (23), 201 (29), 152 (32).

HRMS (EI): calcd. for C₁₄H₈O³⁵ClF₃: 284.0216, found: 284.0212.

Ethyl 4'-(trifluoromethyl)-2'-[(trimethylsilyl)ethynyl]biphenyl-4-carboxylate (53p)

According to **TP5** the sulfoxide **47j** (0.396 g, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 5 min. Then ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(dba)₂ (12 mg, 0.02 mmol) and tris-*o*-furylphosphine (9 mg, 0.04 mmol) were added, followed by ethyl 4-iodobenzoate (221 mg, 0.80 mmol). The reaction mixture was stirred for 3 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 16:1, silica gel) yielded a colourless liquid (272 mg, 87% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.13 (s, 9 H), 1.42 (t, *J* = 7.20 Hz, 3 H), 4.41 (q, *J* = 7.17 Hz, 2 H), 7.48 (d, *J* = 8.04 Hz, 1 H), 7.61 (dd, *J* = 8.23 Hz, 1.12 Hz, 1 H), 7.66 (d, *J* = 8.6 Hz, 2 H), 7.84 (s, 1 H), 8.10 (d, *J* = 8.6 Hz, 2 H).

¹³C-NMR (CDCl₃, 300 MHz): δ (ppm) = -0.5 (CH₃), 14.3 (CH₃), 61.1 (CH₂), 100.2, 102.5, 122.4, 123.0 (q, *J* = 32.7 Hz), 123.6 (q, *J* = 273.0 Hz, CF₃), 125.2 (q, *J* = 3.9 Hz, CH), 129.2 (CH), 129.8 (CH), 130.1 (CH), 130.2, 130.3 (q, *J* = 4.0 Hz, CH), 143.4, 146.2, 168.3.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2960$ (w), 2905 (w), 2159 (w), 1717 (s), 1608 (m), 1416 (w), 1396 (m), 1368 (w), 1329 (vs), 1313 (m), 1273 (vs), 1250 (s), 1168 (s), 1125 (vs), 1100 (s), 1080 (s), 904 (s), 834 (s), 778 (m), 755 (m), 745 (m), 704 (m), 648 (m).

MS (EI, 70 eV): *m/z* (%) = 391 (11), 390 (35), 375 (36), 345 (16), 332 (27), 331 (100), 303 (11), 165 (19), 75 (12).

HRMS (EI): calcd. for $C_{21}H_{21}O_2F_3^{28}Si$: 390.1263 , found: 390.1260.

Ethyl 4"-chloro-4'-[(trimethylsilyl)ethynyl]-1,1':2',1"-terphenyl-4-carboxylate (53q)

According to **TP5** the sulfoxide **47k** (0.439 g, 1.00 mmol,) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 3 h. Then ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(dba)₂ (12 mg, 0.02 mmol) and tris-*o*-furylphosphine (9 mg, 0.04 mmol) were added, followed by ethyl 4-iodobenzoate (221 mg, 0.80 mmol). The reaction mixture was stirred for 3 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 15:1, silica gel) yielded a colourless liquid (235 mg, 68% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.26 (s, 9 H), 1.38 (t, *J* = 7.15 Hz, 3 H), 4.35 (q, *J* = 7.15 Hz, 2 H), 7.01–7.02 (m, 2 H), 7.15–7.18 (m, 4 H), 7.35 (d, *J* = 8.46 Hz, 1 H), 7.51–7.52 (m, 2 H), 7.90 (d, *J* = 8.11 Hz, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 0.1 (CH₃), 14.3 (CH₃), 61.0 (CH₂), 95.6, 104.3, 123.1, 128.3 (CH), 128.9, 129.3 (CH), 129.6 (CH), 130.5 (CH), 131.0 (CH), 131.1 (CH), 133.1, 134.0 (CH), 138.7, 139.4, 139.5, 145.1, 166.3.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2980 (w), 2962 (w), 2932 (vw), 2360 (vw), 2342 (vw), 2156 (w), 1710 (s), 1652 (vw), 1608 (w), 1568 (vw), 1558 (vw), 1538 (vw), 1514 (vw), 1494 (w), 1476 (w), 1462 (w), 1408 (w), 1380 (w), 1366 (w), 1308 (w), 1298 (w), 1272 (s), 1250 (s), 1196 (w), 1178 (m), 1124 (m), 1102 (s), 1090 (m), 1044 (w), 1024 (m), 1014 (m), 1004 (m), 944 (vw), 908 (w), 890 (m), 832 (vs), 778 (s), 758 (s), 746 (s), 718 (m), 704 (m), 674 (m), 652 (m), 636 (m), 616 (m).

MS (EI, 70 eV): *m/z* (%) = 434 (33), 433 (28), 432 (100), 419 (62), 418 (50), 417 (26), 389 (32), 186 (13), 154 (16).

HRMS (EI): calcd. for $C_{26}H_{25}O_2^{35}Cl^{28}Si$: 432.1312, found: 432.1301.

<u>4'-Chloro-5-[(trimethylsilyl)ethynyl]biphenyl-2-carbaldehyde (53r)</u>

According to **TP5** the sulfoxide **47k** (439 mg, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 3 h. Then DMF (62 µL, 0.80 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 15:1, silica gel) yielded a colourless solid (0.170 g, 68% yield).

mp (°**C**): 109–110.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.25 (s, 9 H), 7.27–7.31 (m, 2 H), 7.41–7.46 (m, 2 H), 7.49 (dd, J = 1.61, 0.62 Hz, 1 H), 7.53–7.57 (m, 1 H), 7.94 (dd, J = 7.93, 0.50 Hz, 1 H), 9.91 (d, J = 0.74 Hz, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = -0.3 (CH₃), 99.1, 103.6, 127.8 (CH), 128.6, 128.7 (CH), 131.1 (CH), 131.3 (CH), 132.9, 134.0 (CH), 134.7, 135.4, 144.3, 191.0 (CH).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2956 \text{ (m)}, 2851 \text{ (m)}, 1682 \text{ (vs)}, 1592 \text{ (s)}, 1492 \text{ (m)}, 1476 \text{ (m)}, 1399 \text{ (w)}, 1391 \text{ (m)}, 1248 \text{ (s)}, 1242 \text{ (s)}, 1188 \text{ (s)}, 1091 \text{ (s)}, 1012 \text{ (m)}, 904 \text{ (w)}, 893 \text{ (m)}, 839 \text{ (vs)}, 829 \text{ (vs)}, 824 \text{ (s)}, 802 \text{ (s)}, 757 \text{ (s)}, 663 \text{ (m)}.$

MS (EI, 70 eV): m/z (%) = 314 (10), 312 (26), 299 (35), 298 (23), 297 (100), 131 (12). **HRMS (EI)**: calcd. for C₁₈H₁₇O³⁵Cl²⁸Si: 312.0737, found: 312.0733.

{2,4-Bis[(trimethylsilyl)ethynyl]phenyl}(3,4-dichlorophenyl)methanol (53s)

According to **TP5** the sulfoxide **47m** (425 mg, 1.00 mmol) was treated with *i*PrMgCl·LiCl (0.92 mL, 1.10 mmol, 1.20 M in THF) at -50 °C for 5 min. Then 3,4-dichlorobenzaldehyde (140 mg, 0.80 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 4:1, silica gel) yielded a colourless oil (257 mg, 72% yield).

¹**H-NMR (CDCl₃, 200 MHz):** δ (ppm) = 0.24 (s, 18 H), 2.60 (s, 1H), 6.17 (s, 1 H), 7.20 (dd, J = 8.33 Hz, J = 2.11 Hz, 1 H), 7.37 (d, J = 8.7 Hz, 1 H), 7.41 (s, 1 H), 7.42 (s, 1 H), 7.53 (d, J = 1.83 Hz, 1 H), 7.57–7.58 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = -0.3 (CH₃), -0.1 (CH₃), 72.6 (CH), 95.5, 101.4, 110.8, 103.5, 121.2, 122.9, 125.9 (CH), 126.1 (CH), 128.1 (CH), 130.3 (CH), 131.5, 132.3 (CH), 132.4, 136.3 (CH), 142.8, 144.8.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 3326$ (w), 2958 (w), 2150 (m), 1483 (w), 1469 (m), 1389 (m), 1248 (s), 1186 (m), 1163 (w), 1131 (w), 1031 (m), 956 (m), 836 (vs), 797 (m), 757 (s), 716 (m), 699 (m), 677 (m), 670 (w), 647 (m), 624 (w), 619 (w), 600 (w), 566 (w). **MS** (**EI**, **70** eV): m/z (%) = 446 (11), 444 (14), 429 (19), 409 (16), 375 (15), 374 (17),

373 (73), 372 (25), 371 (100), 358 (26), 357 (15), 356 (38), 336 (16), 75 (12).

HRMS (EI): calcd. for $C_{23}H_{26}O^{35}Cl^{28}Si_2$: 444.0899, found: 444.0887.

4.3.4. Functionalization of the furan ring

{5-[(4-methoxyphenyl)sulfinyl]-2-furyl}(trimethyl)silane (57)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with 2-furyl(trimethyl)silane (2.10 g, 15.0 mmol) in diethyl ether (45 mL). The reaction mixture was cooled to 0 °C and *n*BuLi (7.4 mL, 17.5 mmol in hexane) was added dropwise. The reaction mixture was allowed to warm to 25 °C and stirred for additional 10 min. In a second dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum 4-methoxybenzene sulfinyl chloride (**38**, 4.2 g, 22.0 mmol) was dissolved in THF (20 mL) and cooled to -50 °C. The lithiated furane was added dropwise and the reaction mixture was allowed to warm to 25 °C and was then stirred for additional 30 min. The reaction mixture was quenched with sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 2:1, silica gel) yielded the **57** as a yellow oil (3.43 g, 78%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.20 (s, 9 H), 3.82 (s, 3 H), 6.56–6.58 (m, 2 H), 6.96–7.01 (m, 2 H), 7.61–7.66 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = -1.9 (CH₃), 55.4 (CH₃), 114.5 (CH), 114.8 (CH), 120.2 (CH), 127.0 (CH), 132.8, 157.5, 162.0, 166.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1716 \text{ (m)}, 1594 \text{ (m)}, 1578 \text{ (w)}, 1494 \text{ (m)}, 1462 \text{ (w)}, 1442 \text{ (w)}, 1410 \text{ (w)}, 1366 \text{ (w)}, 1304 \text{ (m)}, 1248 \text{ (s)}, 1182 \text{ (m)}, 1172 \text{ (m)}, 1140 \text{ (w)}, 1084 \text{ (s)}, 1050 \text{ (s)}, 1024 \text{ (m)}, 920 \text{ (m)}, 830 \text{ (vs)}, 794 \text{ (s)}, 756 \text{ (s)}, 712 \text{ (m)}, 702 \text{ (m)}, 652 \text{ (m)}, 630 \text{ (s)}.$

MS (EI, 70 eV): *m/z* (%) = 248 (23), 247 (100), 246 (15), 232 (39), 231 (40), 182 (11), 165 (17), 157 (14), 155 (18), 139 (84), 115 (14), 73 (81).

HRMS (EI): calcd. for $C_{14}H_{18}O_3^{32}S^{28}Si$: 294.0766, found: 294.0735.

Ethyl 4-[2-(4-chlorophenyl)-5-iodo-3-furyl]benzoate (59)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of ethyl 4-[2-(4-chlorophenyl)-5-(trimethylsilyl)-3-furyl] (**61a**; 2.59 g, 6.50 mmol) in CH₃CN (33 mL). The reaction mixture was cooled to 0 °C and ICl (1.57 g, 9.75 mmol) was added dropwise. The reaction mixture was allowed to warm to 25 °C and stirred for additional 1 h. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL) and a sat. aq Na₂S₂O₃ (10 mL) and extracted three times with CH₂Cl₂ (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 25:1, silica gel) yielded **59** as a colourless solid (2.31 g, 79% yield).

mp (°**C**): 97–98.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.40 (t, J = 7.15 Hz, 3 H), 4.39 (q, J = 7.15 Hz, 2 H), 6.70 (s, 1 H), 7.22–7.26 (m, 2 H), 7.35–7.42 (m, 4 H), 8.00–8.04 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.3 (CH₃), 61.0 (CH₂), 88.4, 123.8 (CH), 124.5, 127.4 (CH), 128.1, 128.2 (CH), 128.7 (CH), 129.6, 130.0 (CH), 134.1, 137.2, 153.5, 166.1.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3062 (w), 2986 (w), 2942 (w), 2908 (w), 1716 (vs), 1674 (w), 1652 (w), 1644 (w), 1634 (w), 1610 (s), 1568 (w), 1562 (w), 1504 (m), 1476 (m), 1446 (m), 1412 (m), 1392 (m), 1360 (m), 1310 (m), 1292 (s), 1272 (vs), 1252 (s), 1184 (m), 1156 (w), 1126 (s), 1104 (vs), 1094 (s), 1082 (s), 1038 (m), 1020 (s), 1010 (s), 966 (m), 950 (m), 924 (s), 868 (m), 850 (s), 836 (vs), 818 (s), 806 (s), 768 (vs), 740 (s), 718 (m), 704 (s), 684 (s), 638 (m), 630 (m), 614 (m).

MS (EI, 70 eV): *m*/*z* (%) = 454 (17), 453 (12), 452 (54), 297 (22), 269 (16), 189 (16), 174 (15), 140 (33), 139 (100), 111 (17), 43 (15).

HRMS (EI): calcd. for $C_{19}H_{14}O_3^{35}Cl^{127}I$: 451.9676, found: 451.9664. Ethyl 4-[2-[(4-methoxyphenyl)sulfinyl]-5-(trimethylsilyl)-3-furyl]benzoate (**60a**)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide **57** (5.89 g, 20.0 mmol) dissolved in THF (40 mL). The reaction mixture was cooled to -40 °C and tmpMgCl·LiCl (19.8 mL, 22.0 mmol, 1.11 M in THF) was added dropwise. After 20 min of stirring at -40 °C ZnCl₂ (11.0 mL, 11.0 mmol, 1.0 M in THF) was added slowly and the reaction mixture was stirred for 20 min at -40 °C and was then allowed to warm to 25 °C. Pd(dba)₂ (115 mg, 0.20 mmol), tris-*o*-furylphosphine (93 mg, 0.40 mmol) and ethyl 4-iodobenzoate (6.63 g, 24.0 mmol) were added and the reaction mixture was stirred for 1 h at 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 1:1, silica gel) yielded **60a** as a yellow oil (6.52 g, 77% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.22 (s, 9 H), 1.41 (t, *J* = 7.14 Hz, 3 H), 3.83 (s, 3 H), 4.40 (q, *J* = 7.14 Hz, 2 H), 6.79 (s, 1 H), 6.94–7.01 (m, 2 H), 7.60–7.67 (m, 4 H), 8.07–8.13 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = -1.98 (CH₃), 14.3 (CH₃), 55.5 (CH₃), 61.1 (CH₂), 114.4 (CH), 121.0 (CH), 127.1 (CH), 128.6 (CH), 129.9 (CH), 130.1, 131.8, 132.2, 135.3, 151.8, 161.9, 161.1, 166.4.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2958 (w), 1594 (m), 1578 (w), 1542 (vw), 1494 (m), 1462 (w), 1442 (w), 1408 (w), 1304 (m), 1248 (s), 1184 (m), 1172 (m), 1140 (w), 1106 (w), 1084 (s), 1050 (s), 1024 (s), 920 (m), 828 (vs), 794 (s), 756 (s), 712 (m), 702 (m), 652 (m), 630 (m).

MS (EI, 70 eV): *m/z* (%) = 428 (5), 427 (12), 426 (37), 397 (5), 396 (9), 395 (29), 394 (100), 291 (5), 275 (5), 139 (8), 73 (34).

HRMS (EI): calcd. for $C_{23}H_{27}O_5^{32}S^{28}Si$ (M+H): 443.1348, found: 443.1347. [5-[(4-methoxyphenyl)sulfinyl]-4-(phenylethynyl)-2-furyl](trimethyl)silane (**60b**)

A dry and argon-flushed Schlenk-flask, equipped with a stirring bar and a septum, was charged with the sulfoxide 57 (2.94 g, 10.0 mmol) dissolved in THF (20 mL). The reaction mixture was cooled to -40 °C and tmpMgCl·LiCl (9.91 mL, 11.0 mmol, 1.11 M in THF) was added dropwise. After 20 min of stirring at -40 °C iodine (2.79 g, 11.0 mmol) was added and the reaction mixture was allowed to warm to 25 °C. In second dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar ethynylbenzene (1.53 g, 1.65 mL, 15.0 mmol) was added slowly to *i*PrMgCl·LiCl (9.43 mL, 15.0 mmol, 1.59 M in THF). After cessation of gas evolution the reaction mixture was heated to 60 °C for 5 min. After cooling to 25 °C a zinc chloride solution (7.5 mL, 7.5 mmol, 1.0 M in THF) was added slowly. The resulting zinc reagent was transferred to the previously prepared crude iodide. Pd(dba)₂ (115 mg, 0.2 mmol), triso-furylphosphine (93 mg, 0.4 mmol) were added and the reaction mixture was stirred at 50 °C for 2 h. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvents were removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 5:1, silica gel) yielded 60b as a yellow oil (2.71 g, 69% yield).

¹**H-NMR** (**C**₆**D**₆, **300 MHz**): δ (ppm) = 0.00 (s, 9 H), 3.15 (s, 3 H), 6.50 (s, 1 H), 6.61– 6.65 (m, 2 H), 7.03–7.06 (m, 3 H), 7.46–7.49 (m, 2 H), 7.69–7.73 (m, 2 H).

¹³C-NMR (C₆D₆, **75** MHz): δ (ppm) = -2.2 (CH₃), 54.9 (CH₃), 79.4, 96.2, 112.6, 114.9 (CH), 123.2 (CH), 123.7, 127.0 (CH), 128.7 (CH), 128.9 (CH), 131.9 (CH), 133.9, 160.2, 162.2, 165.9.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 3060$ (w), 2959 (w), 1737 (w), 1592 (m), 1578 (m), 1493 (s), 1462 (m), 1442 (m), 1303 (m), 1249 (s), 1171 (s), 1140 (m), 1086 (s), 1058 (s), 1044 (s), 1025 (s), 926 (m), 839 (s), 826 (s), 689 (s), 636 (s), 583 (m), 565 (m). **MS** (**EI**, **70** eV): m/z (%) = 348 (6), 347 (24), 346 (100), 139 (6), 73 (21).

HRMS (EI): calcd. for $C_{22}H_{22}O_3^{32}S^{28}Si$: 394.1059, found: 394.1050.

Ethyl 4-[2-(4-chlorophenyl)-5-(trimethylsilyl)-3-furyl]benzoate (61a)

According to **TP6** the sulfoxide **60a** (6.20 g, 14.0 mmol) was treated with *i*PrMgCl·LiCl (9.5 mL, 15.4 mmol, 1.46 M in THF) at -50 °C for 2 h. Then ZnCl₂ (16.0 mL, 16.0 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(dba)₂ (81 mg, 0.14 mmol) and tris-*o*-furylphosphine (65 mg, 0.28 mmol) were added, followed by 4-iodo-1-chlorobenzene (2.67 g, 11.2 mmol). After 1 h at 50 °C the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 25:1, silica gel) yielded a colourless solid (3.05 g, 68% yield).

mp (°C): 83–85.

¹**H-NMR** (C₆D₆, 400 MHz): δ (ppm) = -0.28 (s, 9 H), 1.04 (t, *J* = 7.04 Hz, 3 H), 4.16 (q, *J* = 7.24 Hz, 2 H), 6.64 (s, 1 H), 6.97–7.00 (m, 2 H), 7.27–7.30 (m, 2 H), 7.33–7.37 (m, 2 H), 8.14–.8.17 (m, 2 H).

¹³C-NMR (C_6D_6 , 100 MHz): δ (ppm) = -2.0 (CH₃), 13.9 (CH₃), 60.5 (CH₂), 122.3, 123.6, 127.8 (CH), 128.4 (CH), 128.7 (CH), 129.5, 129.6 (CH), 130.0 (CH), 133.7, 138.9, 152.3, 159.7, 165.6.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2990 \text{ (vw)}, 2974 \text{ (w)}, 2956 \text{ (w)}, 2900 \text{ (vw)}, 1710 \text{ (s)}, 1668 \text{ (w)}, 1652 \text{ (w)}, 1608 \text{ (m)}, 1588 \text{ (w)}, 1558 \text{ (w)}, 1510 \text{ (w)}, 1476 \text{ (m)}, 1446 \text{ (w)}, 1414 \text{ (w)}, 1402 \text{ (w)}, 1366 \text{ (w)}, 1312 \text{ (w)}, 1292 \text{ (m)}, 1274 \text{ (s)}, 1248 \text{ (s)}, 1180 \text{ (m)}, 1148 \text{ (m)}, 1126 \text{ (m)}, 1110 \text{ (s)}, 1100 \text{ (s)}, 1090 \text{ (s)}, 1050 \text{ (w)}, 1024 \text{ (m)}, 1014 \text{ (m)}, 982 \text{ (w)}, 972 \text{ (w)}, 954 \text{ (m)}, 940 \text{ (m)}, 876 \text{ (w)}, 828 \text{ (vs)}, 774 \text{ (s)}, 756 \text{ (s)}, 742 \text{ (m)}, 722 \text{ (m)}, 704 \text{ (s)}, 632 \text{ (m)}.$

MS (EI, 70 eV): *m*/*z* (%) = 401 (10), 400 (36), 398 (100), 310 (17), 295 (15), 169 (7), 73 (7).

HRMS (EI): calcd. for $C_{22}H_{23}O_3^{35}Cl^{28}Si$: 398.1105, found: 398.1098.

Ethyl 4-[2-formyl-5-(trimethylsilyl)-3-furyl]benzoate (61b)

According to **TP6** the sulfoxide **60a** (845 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (1.38 mL, 2.20 mmol, 1.59 M in THF) at -50 °C for 2 h. Then DMF (117 mg, 0.12 mL, 1.60 mmol,) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 8:1, silica gel) yielded **61b** as a yellow oil (384 mg, 76% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.35 (s, 9 H), 1.40 (t, *J* = 7.15 Hz, 3 H), 4.39 (q, *J* = 7.15 Hz, CH₂), 6.88 (s, 1 H), 7.61–7.63 (m, 2 H), 8.10–8.11 (m, 2 H), 9.75 (s, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = -2.0 (CH₃), 14.3 (CH₃), 61.2 (CH₂), 122.5 (CH), 128.9 (CH), 129.9 (CH), 130.7, 135.4, 136.9, 151.2, 166.0, 168.1, 178.0 (CH).

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 2960$ (w), 1714 (s), 1670 (s), 1612 (w), 1578 (w), 1562 (w), 1464 (w), 1414 (w), 1394 (w), 1366 (m), 1310 (w), 1272 (s), 1250 (s), 1180 (m), 1102 (s), 1022 (m), 988 (m), 938 (m), 838 (vs), 794 (s), 772 (s), 756 (s), 734 (m), 704 (s), 648 (w), 630 (m).

MS (EI, 70 eV): *m/z* (%) = 317 (20), 316 (100), 315 (12), 301 (40), 287 (23), 271 (28), 243 (19), 229 (19), 228 (44), 128 (14), 83 (14), 73 (12), 42 (15).

HRMS (EI): calcd. for $C_{17}H_{20}O_4^{28}Si$: 316.1131, found: 316.1128.

Ethyl 4-[2-cyano-5-(trimethylsilyl)-3-furyl]benzoate (61c)

According to **TP6** the sulfoxide **60a** (845 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (1.38 mL, 2.20 mmol, 1.59 M in THF) at -50 °C for 2 h. Then TosCN (290 mg, 1.60 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) yielded **61c** as a colourless solid (297 mg, 63% yield).

mp (°**C**): 73–74.

¹**H-NMR (CDCl₃, 400 MHz):** δ (ppm) = 0.33 (s, 9 H), 1.39 (t, *J* = 7.14 Hz, 3 H), 4.38 (q, *J* = 7.14 Hz, 2 H), 6.94 (s, 1 H), 7.71–7.75 (m, 2 H), 8.08–8.12 (m, 2 H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = -2.1 (CH₃), 14.3 (CH₃), 61.1 (CH₂), 112.7, 119.6 (CH), 125.8, 126.8 (CH), 130.3 (CH), 130.8, 133.5, 135.7, 165.9, 168.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3112 \text{ (vw)}, 2982 \text{ (w)}, 2960 \text{ (w)}, 2360 \text{ (vw)}, 2342 \text{ (vw)}, 2224 \text{ (w)}, 1716 \text{ (s)}, 1678 \text{ (w)}, 1614 \text{ (w)}, 1474 \text{ (w)}, 1446 \text{ (w)}, 1420 \text{ (w)}, 1410 \text{ (w)}, 1394 \text{ (w)}, 1366 \text{ (w)}, 1318 \text{ (w)}, 1290 \text{ (w)}, 1268 \text{ (s)}, 1250 \text{ (s)}, 1232 \text{ (m)}, 1220 \text{ (m)}, 1190 \text{ (m)}, 1120 \text{ (m)}, 1108 \text{ (s)}, 1024 \text{ (w)}, 992 \text{ (w)}, 938 \text{ (m)}, 842 \text{ (vs)}, 768 \text{ (s)}, 760 \text{ (s)}, 722 \text{ (w)}, 696 \text{ (m)}, 680 \text{ (m)}, 668 \text{ (w)}, 632 \text{ (m)}, 618 \text{ (m)}.$

MS (EI, 70 eV): *m/z* (%) = 314 (25), 313 (100), 299 (17), 298 (68), 270 (11), 268 (39), 226 (29), 225 (30), 210 (17), 198 (15), 126 (13), 73 (16), 61 (14), 43 (60).

HRMS (EI): calcd. for $C_{13}H_{17}O_3N^{28}Si$: 313.1134, found: 313.1128.

Ethyl 4-[3-(phenylethynyl)-5-(trimethylsilyl)-2-furyl]benzoate (61d)

According to **TP6** the sulfoxide **60b** (395 mg, 1.0 mmol) was treated with *i*PrMgCl·LiCl (0.69 mL, 1.1 mmol, 1.59 M in THF) at -78 °C for 15 min. Then ZnCl₂ (1.1 mL, 1.1 mmol, 1.0 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Pd(dba)₂ (12 mg, 0.02 mmol) and tris-*o*-furylphosphine (9 mg, 0.04 mmol) were added, followed by ethyl 4-iodobenzoate (221 mg, 0.8 mmol). After 1 h at 50 °C the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 6:1, silica gel) yielded **61d** as a brown oil (212 mg, 68% yield).

¹**H-NMR** (**C**₆**D**₆, **400 MHz**): δ (ppm) = 0.19 (s, 9 H), 1.02 (t, J = 7.14 Hz, 3 H), 4.13 (q, J = 7.14 Hz, 2 H), 6.72 (s, 1 H), 6.99–7.07 (m, 3 H), 7.51–7.55 (m, 2 H), 8.23–8.26 (m, 2 H), 8.37–8.40 (m, 2 H).

¹³C-NMR (C₆D₆, 100 MHz): δ (ppm) = -1.9 (CH₃), 14.2 (CH₃), 60.8 (CH₂), 83.4, 95.3, 105.9, 123.9 (CH), 125.0 (CH), 125.4 (CH), 128.6 (CH), 128.8, 130.3, 130.4 (CH), 131.7 (CH), 134.8, 157.8, 160.7, 165.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2322 \text{ (m)}, 17011 \text{ (m)}, 1608 \text{ (m)}, 1320 \text{ (m)}, 1281 \text{ (s)}, 1271 \text{ (m)}, 1193 \text{ (w)}, 1138 \text{ (w)}, 1103 \text{ (s)}, 1093 \text{ (w)}, 1040 \text{ (w)}, 1000 \text{ (w)}, 970 \text{ (m)}, 836 \text{ (s)}, 810 \text{ (vs)}, 780 \text{ (m)}, 753 \text{ (s)}, 640 \text{ (m)}.$

MS (EI, 70 eV): m/z (%) = 388 (100), 345 (1), 344 (1), 300 (3), 285 (1). HRMS (EI): calcd. for $C_{24}H_{24}O_3^{28}Si$: 388.1494, found: 388.1479. Ethyl 4-{2-(4-chlorophenyl)-5-[hydroxy(phenyl)methyl]-3-furyl}benzoate (62a)

According to **TP7** the furan **59** (226 mg, 0.50 mmol) was treated with *i*PrMgCl·LiCl (0.38 mL, 0.55 mmol, 1.46 M in THF) at -40 °C for 20 min. Then benzaldehyde (64 mg, 60µL, 0.60 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 2:1, silica gel) yielded **62a** as a colourless solid (179 mg, 83% yield).

mp (°**C**): 65–67.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.42 (t, *J* = 7.11 Hz, 3 H), 2.63 (s, 1 H), 4.40 (q, *J* = 7.14 Hz, 2 H), 5.91 (s, 1 H), 6.29 (s, 1 H), 7.24–7.27 (m, 2 H), 7.37–7.45 (m, 7 H), 7.53–7.55 (m, 2 H), 7.97–8.03 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.3 (CH₃), 61.0 (CH₂), 70.1 (CH), 111.4 (CH), 122.4, 126.6 (CH), 127.7 (CH), 128.3 (CH), 128.3 (CH), 128.6 (CH), 128.7 (CH), 129.0 (CH), 129.3, 129.9, 133.8, 138.4, 140.3, 148.0, 155.6, 166.3.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3418 (w), 2980 (w), 1712 (s), 1694 (s), 1608 (m), 1566 (w), 1552 (w), 1510 (w), 1482 (m), 1464 (w), 1452 (m), 1402 (m), 1392 (m), 1368 (m), 1310 (m), 1272 (vs), 1178 (s), 1094 (vs), 1048 (m), 1012 (s), 974 (m), 952 (s), 918 (m), 862 (m), 830 (s), 774 (s), 750 (m), 728 (s), 722 (s), 698 (vs), 630 (m).

MS (EI, 70 eV): *m/z* (%) = 434 (26), 433 (25), 432 (82), 430 (36), 418 (34), 417 (37), 416 (100), 415 (39), 293 (26), 189 (19), 140 (28), 139 (87), 105 (55).

HRMS (EI): calcd. for C₂₆H₂₁O₄³⁵Cl: 432.1128, found: 432.1126.

Ethyl 4-[2-(4-chlorophenyl)-5-cyano-3-furyl]benzoate (62b)

According to **TP7** the furan **59** (915 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (2.20 mmol, 1.51 mL, 1.46 M in THF) at -40 °C for 20 min. Then TosCN (471 mg, 2.60 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 2:1, silica gel) yielded **62b** as a colourless solid (539 mg, 77% yield).

mp (°**C**): 142–144.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.40 (t, J = 7.17 Hz, 3 H), 4.39 (q, J = 7.13 Hz, 2 H), 7.23 (s, 1 H), 7.28–7.32 (m, 2 H), 7.39–7.45 (m, 4 H), 8.04–8.08 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.3 (CH₃), 61.2 (CH₂), 111.3, 122.8, 124.9 (CH), 125.2, 127.0, 128.2 (CH), 128.5 (CH), 129.1 (CH), 130.3 (CH), 130.4, 135.8, 135.9, 152.6, 165.9.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 2994$ (w), 2228 (m), 1714 (s), 1670 (w), 1610 (m), 1562 (w), 1476 (m), 1448 (w), 1414 (w), 1404 (w), 1388 (w), 1364 (w), 1308 (w), 1290 (m), 1270 (vs), 1178 (m), 1140 (m), 1126 (m), 1096 (s), 1048 (w), 1024 (m), 1014 (m), 976 (m), 954 (m), 870 (m), 854 (m), 834 (vs), 772 (s), 748 (m), 726 (m), 714 (m), 704 (s), 690 (m), 664 (w), 646 (w), 630 (m), 618 (w), 608 (m).

MS (EI, 70 eV): *m/z* (%) = 353 (34), 352 (21), 351 (100), 323 (15), 308 (21), 307 (14), 306 (61), 243 (30), 214 (20), 189 (12).

HRMS (EI): calcd. for $C_{20}H_{14}O_3N^{35}Cl$: 351.0662, found: 351.0658.

Ethyl 5-(4-chlorophenyl)-4-[4-(ethoxycarbonyl)phenyl]-2-furoate (62c)

According to **TP7** the furan **59** (814 mg, 1.80 mmol) was treated with *i*PrMgCl·LiCl (1.36 mL, 1.98 mmol, 1.46 M in THF) at -40 °C for 20 min. Then, ethyl cyanoformate (232 mg, 2.34 mmol,) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 2:1, silica gel) yielded **62c** as a colourless solid (614 mg, 86% yield).

mp (°**C**): 119–120.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.33–1.39 (m, 6 H), 4.32–4.39 (m, 4 H), 7.22–7.26 (m, 3 H), 7.38–7.48 (m, 4), 7.99–8.03 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.3 (2 CH₃), 61.1 (2 CH₂), 120.7 (CH), 123.5, 127.9, 128.3 (CH), 128.4 (CH), 128.9 (CH), 130.1 (CH), 135.1, 137.2, 143.6, 151.4, 158.5, 166.1 (2 C_q).

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2986 (w), 2964 (w), 2942 (w), 2904 (w), 1712 (vs), 1614 (w), 1590 (w), 1562 (w), 1536 (w), 1524 (w), 1508 (w), 1474 (m), 1464 (m), 1446 (w), 1414 (w), 1402 (m), 1392 (m), 1366 (m), 1322 (s), 1304 (m), 1288 (m), 1268 (vs), 1252 (s), 1206 (s), 1174 (vs), 1124 (s), 1110 (vs), 1092 (vs), 1050 (m), 1016 (s), 1008 (s), 970 (m), 954 (m), 870 (m), 860 (m), 848 (m), 836 (s), 774 (s), 766 (s), 740 (m), 726 (s), 706 (s), 694 (s), 636 (m), 614 (m).

MS (EI, 70 eV): *m/z* (%) = 400 (38), 399 (28), 398 (100), 370 (18), 353 (27), 325 (15), 269 (16), 189 (29), 57 (12), 44 (37).

HRMS (EI): calcd. for C₂₂H₁₉O₅³⁵Cl: 398.0921, found: 398.0930.

Ethyl 5-(4-chlorophenyl)-3-(3,3-dimethylbutanoyl)-4-[4-(ethoxycarbonyl)phenyl]-2furoate (63)

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum, was charged with a solution of the furan **62c** (359 mg, 0.90 mmol) in THF (2 mL). The reaction mixture was cooled to -40 °C and tmp₂Mg·LiCl (2.45 mL, 1.35 mmol, 0.55 M in THF) was added dropwise. The reaction mixture was stirred for 25 min and then ZnCl₂ (1.45 mL, 1.35 mmol, 1.0 M in THF) was added, followed by CuCN·2LiCl (1.35 mL, 1.35 mmol, 1.0 M in THF). Then 3,3-dimethylbutanoyl chloride (363 mg, 0.40 mL, 2.70 mmol,) was added dropwise and the reaction mixture was allowed to warm to 25 °C. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL) and extracted three times with diethylether (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 6:1, silica gel) yielded **63** as a colourless oil (414 mg, 93% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.86 (s, 9 H), 1.37 (t, J = 7.15 Hz, 3 H), 1.40 (t, J = 7.15 Hz, 3 H), 2.50 (s, 2 H), 4.38 (q, J = 7.15 Hz, 2 H), 4.39 (q, J = 7.15 Hz, 2 H), 7.23–7.25 (m, 2 H), 7.36–7.38 (m, 4 H), 8.05–8.06 (m, 2 H).

¹³**C-NMR (CDCl₃, 150 MHz):** δ (ppm) = 14.3 (CH₃), 14.3 (CH₃), 29.3 (CH₃), 30.7, 56.9 (CH₂), 61.2 (CH₂), 61.4 (CH₂), 121.6, 127.1, 128.1 (CH), 128.9 (CH), 129.9 (CH), 130.1 (CH), 130.6, 135.4, 135.5, 136.5, 138.6, 151.1, 157.9, 166.1, 199.4.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 1714 (vs), 1478 (m), 1404 (m), 1366 (s), 1324 (m), 1276 (s), 1222 (m), 1176 (s), 1154 (m), 1130 (s), 1110 (s), 1104 (s), 1092 (s), 1074 (m), 1014 (s), 958 (m), 866 (m), 842 (s), 824 (m), 794 (m), 782 (m), 772 (m), 744 (s), 732 (m), 714 (s), 700 (m), 654 (m).

MS (EI, 70 eV): *m/z* (%) = 498 (31), 497 (25), 496 (100), 451 (15), 440 (15), 439 (16), 427 (21), 425 (69), 367 (21), 321 (16), 307 (11), 138 (15).

HRMS (EI): calcd. for $C_{28}H_{29}O_6^{35}$ Cl: 496.1653, found: 496.1645.

4.3.5. Csp3-I/Mg-exchange

Ethyl 1-(iodomethyl)cyclohexane carboxylate (64a)

Diisopropylamine (6.20 mL, 44.0 mmol) was dissolved in 30 mL THF, cooled to $-30 \,^{\circ}$ C. *n*BuLi (17.7 mL, 44.0 mmol) was added slowly. After warming up to 0 $^{\circ}$ C the reaction mixture was cooled to $-78 \,^{\circ}$ C and ethyl cyclohexanecarboxylate was added dropwise. After 1 h at $-78 \,^{\circ}$ C CH₂I₂ (5.20 mL, 65.0 mmol) was added. The reaction mixture was warmed up to 25 $^{\circ}$ C overnight and then poured in 100 mL sat. aq. NH₄Cl-solution and extracted three times with ether. The organic phase was dried (MgSO₄). After filtration, the solvent was removed under reduced pressure and the crude product was purified by fractionated distillation (bp. 75 $^{\circ}$ C, 0.5 mbar). A colourless liquid (9.27 g, 68%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 1.27 (t, J = 7.03, 3 H), 1.58–1.33 (m, 8 H), 3.31 (s, 2 H), 2.13–2.07 (m, 2 H), 4.17 (q, J = 7.13 Hz, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.3 (CH₃), 15.8 (CH₂), 22.9 (CH₂), 25.6 (CH₂), 34.2 (CH₂), 47.1, 60.8 (CH₂), 173.8.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2980 (w), 2932 (s), 2856 (m), 1724 (s), 1448 (m), 1368 (w), 1316 (w), 1280 (w), 1236 (w), 1212 (s), 1168 (m), 1136 (m), 1116 (w), 1096 (w), 1024 (w), 964 (w), 932 (w), 912 (w), 852 (w), 608 (w).

MS (EI, 70 eV), *m/z* (%): 296 (8), 223 (14), 169 (85), 141 (9), 123 (46), 96 (16), 95 (100), 81 (27), 67 (19), 55 (16).

HRMS (EI): calcd. for $C_{16}H_{17}O_2^{127}I$: 296.0273, found: 296.0288.

Ethyl 3-iodo-2,2-dimethylpropanoate (64b)

Diisopropylamine (15.4 mL, 0.11 mol) was dissolved in 100 mL THF, cooled to $-30 \,^{\circ}$ C. *n*-BuLi (44.0 mL, 0.11 mol) was added slowly. After warming up to 0 $^{\circ}$ C the reaction mixture was cooled to $-78 \,^{\circ}$ C and methyl 2-methylpropanoate (13.6 mL, 100 mmol) was added dropwise. After 1 h stirring at $-78 \,^{\circ}$ C CH₂I₂ (5.20 mL, 65.0 mmol) was added. The reaction mixture was allowed to warm up to 25 $^{\circ}$ C, stirred for 14 h and was then poured in 100 mL sat. aq. NH₄Cl-solution and extracted three times with diethyl ether. The organic phase was dried (MgSO₄). After filtration the solvent was removed under reduced pressure and the crude product was purified by fractionated distillation (bp. 75 $^{\circ}$ C, 3 mbar). A slightly yellow liquid (17.7 g, 66%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) =1.27 (t, *J* = 7.03 Hz, 3 H), 1.32 (s, 6 H), 3.34 (s, 2 H), 4.16 (q, *J* = 7.3 Hz, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.2 (CH₃), 16.5 (CH₂), 25.4 (CH₃), 43.2, 61.1 (CH₂), 174.4.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2980 (m), 2936 (w), 2904 (w), 2872 (w), 1728 (s), 1472 (w), 1444 (w), 1384 (w), 1364 (w), 1296 (m), 1232 (w), 1204 (w), 1176 (s), 1160 (m), 1132 (m), 1084 (w), 1024 (w), 960 (w), 940 (w), 912 (w), 864 (w), 804 (w), 760 (w), 620 (w).

MS (EI, 70 eV), *m/z* (%): 256 (21), 211 (5), 184 (2), 183 (62), 155 (2), 130 (6), 129 (100), 101 (2), 101 (9), 87 (8), 83 (5), 73 (49), 59 (9), 57 (12), 56 (17), 55 (54), 45 (6), 43 (12).

HRMS (EI): calcd. for C₇H₁₃O₂¹²⁷I: 255.9960, found: 255.9972.

3-Phenyl-2-oxaspiro[4.5]decan-1-one (66a)

The alkyl iodide **64a** (296 mg, 1.0 mmol) was dissolved in THF (1 mL) and DMPU (1 mL) and cooled to $-10 \,^{\circ}$ C, then *i*Pr₂Mg·LiCl (0.95 ml, 0.8 mmol, 0.84 M in THF) was added and the reaction mixture was stirred for 14 h. The reaction mixture was cooled to $-20 \,^{\circ}$ C and benzaldehyde (0.18 g, 0.17 mL, 1.7 mmol) was added. After 30 min of stirring at $-20 \,^{\circ}$ C the temperature was raised to 25 $^{\circ}$ C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 6:1, silica gel) afforded colourless crystals⁸⁹ (157 mg, 68%).

mp (°C): 59–60.

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 1.15–1.55 (m, 4 H), 1.61–2.00 (m, 7 H), 2.68 (dd, *J* = 13.1 Hz, 6.7 Hz, 1 H), 5.42 (dd, *J* = 9.76 Hz, 6.68 Hz, 1 H), 7.29–7.39 (m, 5 H). ¹³**C-NMR** (**CDCl**₃, **75 MHz**): δ (ppm) = 22.4 (CH₂), 25.6 (CH₂), 31.8 (CH₂), 34.4 (CH₂), 42.5 (CH₂), 45.5, 78.2 (CH), 125.5 (CH), 128.5 (CH), 128.9 (CH), 140.1, 181.5.

MS (EI, 70 eV), *m/z* (%): 230 (15), 185 (13), 129 (17), 126 (23), 105 (10), 104 (100), 91 (13).

HRMS (EI): calcd. for C₁₅H₁₈O₂: 230.1307, found: 230.1302.

⁸⁹ Treves, G. R.; Stange, H.; Olofson, R. A. J. Am. Chem. Soc. **1967**, 89, 6257.

Ethyl 1-but-3-en-1-ylcyclohexanecarboxylate (66b)

The alkyl iodide **64a** (296 mg, 1.0 mmol) was dissolved in THF (1 mL) and DMPU (1 mL) and cooled to $-10 \,^{\circ}$ C, then $iPr_2Mg\cdotLiCl$ (0.95 ml, 0.7 mmol, 0.74 M in THF) was added and the reaction mixture was stirred for 14 h. Then, the reaction mixture was cooled to $-20 \,^{\circ}$ C and CuCN·2LiCl (0.1 mL, 1.0 M in THF) was added followed by allyl bromide (240 mg, 0.17 mL, 2.0 mmol). After 30 min at $-20 \,^{\circ}$ C the temperature was raised to 25 $^{\circ}$ C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 10:1, silica gel) afforded a colourless liquid⁹⁰ (164 mg, 78%).

¹**H-NMR (CDCl₃, 300 MHz**): δ (ppm) = 1.81–1.26 (m, 6 H), 1.31–1.37 (m, 2 H), 1.55– 1.57 (m, 5 H), 1.93–1.97 (m, 2 H), 2.06–2.08 (m, 2 H), 4.13 (q, *J* = 7.15 Hz, 2 H), 4.89– 4.98 (m, 2 H), 5.71–5.78 (m, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.5 (CH₃), 23.4 (CH₂), 26.2 (CH₂), 28.7 (CH₂), 34.4 (CH₂), 39.9, 46.8 (CH₂), 60.2 (CH₂), 114.6 (CH₂), 138.8, 176.8. MS (EI, **70** eV), *m/z* (%): 211 [M+H]⁺ (2), 156 (100), 128 (12), 81 (26), 67 (10). HRMS (EI): calcd. for C₁₃H₂₃O₂ [M+H]⁺: 211.1698, found: 211.1711.

Ethyl 2,2-dimethylhex-5-enoate (66c)

The alkyl iodide **64b** (256 mg, 1.0 mmol) was dissolved in THF (1 mL) and DMPU (1 mL) and cooled to -10 °C, then *i*Pr₂Mg·LiCl (1.02 ml, 0.65 mmol, 0.64 M in THF) was added and the reaction mixture stirred overnight. Then, the mixture was cooled to

⁹⁰ a) Nuhrich, A.; Moulines, J. *Tetrahedron* **1991**, *47*, 3075; b) Clive, D. L. J.; Pham, M. P.; Subedi, R. J. Am. Chem. Soc. **2007**, *129*, 2713.

-20 °C and CuCN·2LiCl (0.1 mL, 1.0 M in THF) was added followed by allyl bromide (302 mg, 0.22 mL, 2.50 mmol). After 30 min of stirring at -20 °C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO4), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) afforded a colourless liquid⁹¹ (116 mg, 68%).

¹**H-NMR (CDCl₃, 400 MHz)**: δ (ppm) = 1.16 (s, 6 H), 1.23 (t, *J* = 7.24 Hz, 3 H), 1.58– 1.62 (m, 2 H), 1.95–2.01 (m, 2 H), 4.10 (q, *J* = 7.24 Hz, 2 H), 4.90–5.01 (m, 2 H), 5.72– 5.82 (m, 1 H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 14.4 (CH₃), 25.3 (CH₃), 29.6 (CH₂), 40.0 (CH₂), 42.2, 60.4 (CH₂), 114.6 (CH₂), 138.8 (CH), 177.9.

MS (EI, 70 eV), *m/z* (%): 171 [M+H]⁺ (2), 125 (6), 117 (6), 116 (100), 97 (32), 96 (7), 88 (41), 81 (8), 73 (8), 70 (6), 55 (36).

HRMS (EI): calcd. for $C_{13}H_{23}O_2[M+H]^+$: 171.1385, found: 171.1399.

1-Ethoxyspiro[2.5]oct-1-yl benzoate (66d)

The alkyl iodide **64a** (296 mg, 1.0 mmol) was dissolved in THF (1 mL) and DMPU (1 mL) and cooled to $-10 \,^{\circ}$ C, $iPr_2Mg\cdotLiCl$ (0.95 ml, 0.7 mmol, 0.74 M in THF) was added. After 7 h of stirring the mixture was cooled to $-20 \,^{\circ}$ C and CuCN·2LiCl (1.40 mmol, 1.40 mL, 1.0 M in THF) was added. After 30 min of stirring, PhCOCl (211 mg, 0.17 mL, 1.50 mmol) was added. After additional 30 min of stirring at $-20 \,^{\circ}$ C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the

⁹¹ a) Ashby, E. C.; Park, B.; Patil, G. S.; Gadru, K.; Gurumurthy, R. J. Org. Chem. 1993, 58, 424; Juaristi, E.; Jimbnez-Vizquez, H. A. J. Org. Chem. 1991, 56, 1623; Fehr , C.; Galindo, J. Helv. Chim. Acta. 1986, 69, 228.

solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 30:1, silica gel) afforded a colourless liquid (194 mg, 71%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.82 (d, J = 6.08 Hz, 1 H), 0.90 (d, J = 6.08 Hz, 1 H), 1.18 (t, J = 7.17 Hz, 3 H), 1.26–1.77 (m, 10 H), 3.68–3.89 (m, 2 H), 7.40–7.46 (m, 2 H), 7.53–7.58 (m, 1 H), 8.03–8.06 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 15.4 (CH₃), 22.6 (CH₂), 24.9 (CH₂), 25.0 (CH₂), 26.3 (CH₂), 30.4 (CH₂), 30.9 (CH₂), 31.1, 64.3 (CH₂), 93.5, 128.4 (CH), 129.7 (CH), 130.3, 133.0 (CH), 165.5.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2976 (w), 2928 (s), 2852 (m), 1732 (s), 1600 (w), 1448 (m), 1380 (w), 1336 (w), 1312 (w), 1272 (s), 1240 (m), 1168 (m), 1120 (m), 1084 (s), 1064 (s), 1024 (s), 992 (w), 912 (w), 708 (s).

MS (EI, 70 eV): m/z (%) = 169 (7), 168 (6), 123 (9), 106 (9), 105 (100), 95 (19), 81 (18), 77 (21).

HRMS (EI): calcd. for C₁₇H₂₂O₃: 274.1569, found: 274.1590.

1-Ethoxy-2,2-dimethylcyclopropyl benzoate (66e)

The alkyl iodide **64b** (768 mg, 3.0 mmol) was dissolved in THF (1 mL) and DMPU (1 mL) and cooled to $-10 \,^{\circ}$ C, *i*Pr₂Mg·LiCl (4.40 ml, 1.95 mmol, 0.44 M in THF) was added and the reaction mixture was stirred for 14 h. The reaction mixture was cooled to $-20 \,^{\circ}$ C and CuCN·2LiCl (4.50 mmol, 4.50 mL, 1.0 M in THF) was added. After 30 min of stirring PHCOCl (633 mg, 0.52 mL, 4.50 mmol) was added. After additional 30 min of stirring at $-20 \,^{\circ}$ C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 30:1, silica gel) afforded a colourless liquid (526 mg, 75%).

¹**H-NMR** (CDCl₃, 300 MHz): δ (ppm) = 0.84 (d, J = 6.17 Hz, 1 H), 0.90 (d, J = 6.17 Hz, 1 H), 1.14 (s, 3 H), 1.19 (t, J = 7.28 Hz, 3 H), 1.28 (s, 3 H), 3.68–3.85 (m, 2 H), 7.41–7.46 (m, 2 H), 7.54–7.58 (m, 1 H), 8.04–8.08 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 15.3 (CH₃), 20.3 (CH₃), 20.9 (CH₃), 23.6 (CH₂), 24.1, 64.2 (CH₂), 93.2, 128.4 (CH), 129.7 (CH), 130.2, 133.0 (CH), 165.4. **IR (ATR):** $\tilde{\nu}$ / cm⁻¹ = 2980 (m), 2956 (m), 2928 (m), 2888 (m), 2872 (m), 1732 (s), 1476 (w), 1452 (w), 1372 (w), 1316 (w), 1284 (w), 1260 (m), 1200 (m), 1124 (m), 1084 (s), 1048 (s), 1024 (m), 912 (w), 708 (s).

MS (EI, 70 eV): m/z (%) = 235 (0.01), 113 (2), 106 (6), 105 (100), 77 (10). **HRMS (EI):** calcd. for C₁₄H₁₉O₃ [M+H]⁺: 235.1286, found: 235.1286.

1-(Iodomethyl)-1-[(methoxymethoxy)methyl]cyclohexane (67a)

Ethyl 1-(iodomethyl)cyclohexanecarboxylate (**64a**) (2.96 g, 10.0 mmol) was dissolved in CH₂Cl₂ (40 mL) and cooled to -78 °C. *i*Bu₂AlH (15 mL, 30 mmol, 2 M in hexane) was added. After 3 h of stirring, methanol (10 mL) was added and the pH was adjusted to 7 using 1M HCl. The aqueous layer was extracted three times with ether. The organic phase was dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. After flash chromatographical purification (pentane/ CH₂Cl₂ 5:1, silica gel) a colourless liquid (1.21 g, 85%) was obtained. [1-(Iodomethyl)cyclohexyl]methanol (2.59 g, 10.2 mmol) was dissolved in dimethoxymethane (3.04 g, 3.5 mL, 40.0 mmol) and stirred with Amberlyst-15[®] (0.2 g) at 25 °C for 18 h. The resin was filtered off and washed three times with ether (30 mL). The solvent was removed under reduced pressure and after flash chromatographical purification (pentane / ethyl acetate = 50:1, silica gel) a colourless liquid (2.09 g, 69%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) =1.60–1.30 (m, 10 H), 3.34–3.36 (m, 7 H), 4.59 (s, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 19.5 (CH₂), 27.7 (CH₂), 26.0 (CH₂), 32.4 (CH₂), 36.5, 55.3 (CH₃), 72.5 (CH₂), 96.7 (CH₂).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2924$ (s), 2882 (m), 2854 (m), 2822 (w), 1450 (w), 1226 (w), 1212 (w), 1182 (w), 1148 (m), 1126 (w), (m), 1070 (w), 1042 (vs), 996 (w), 976 (w), 960 (w), 918 (m).

MS (EI, 70 eV): m/z (%) = 298 (1), 139 (10), 125 (9), 109 (56), 97 (11), 75 (11), 67 (10), 45 (100).

HRMS (EI): calcd. for $C_{10}H_{19}^{127}IO_2$: 298.0430, found: 298.0452.

1-Iodo-2-[(methoxymethoxy)methyl]-3-methylbutane (67b)

2-(Bromomethyl)-3-methylbutanoic acid (14.6 g, 75.0 mmol) was dissolved in THF (70 mL) and cooled to -20 °C. Then, borane dimethyl sulfide (7.5 g, 9.5 mL, 100 mmol) in THF (70 mL) was added slowly. After addition the reaction mixture was stirred overnight at 25 °C. The reaction mixture was quenched at 0 °C with potassium carbonate (15 g, 108 mmol) in water (225 mL). The organic layer was separated, and the aqueous layer was extracted three times with ether (100 mL). The combined phases were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. A colourless oil (11.0 g, 81%) was obtained and used without further purification.

Rac-2-(bromomethyl)-3-methylbutan-1-ol (10.9 g, 60.0 mmol) was stirred with Amberlyst $15^{\text{(0)}}$ (0.70 g) and dimethoxymethane (62 mL, 0.70 mol) for 48 h. The mixture was filtered and after removing of the solvent a colourless oil (12.2 g, 90%) was obtained and used without further purification. 1-Bromo-2-[(methoxymethoxy)methyl]-3-methylbutane (10.0 g, 44.4 mmol) was dissolved in acetone (150 mL) and heated at reflux for 2 h with sodium iodide (46.1 g, 0.15 mol). The mixture was diluted with water (100 mL) and extracted three times with ether (100 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvents were removed under reduced pressure. After flash chromatographical purification (pentane / ethyl acetate = 30:1, silica gel) a pale yellow liquid (11.8 g, 98%, 71% over three steps) was obtained.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.93 (d, J = 6.7 Hz, 6 H), 1.21–1.32 (m, 1 H), 1.62–1.76 (m, 1 H), 3.28–3.49 (m, 3 H), 3.36 (s, 3 H), 3.62 (dd, J = 9.73 Hz, 4.45 Hz, 1 H), 4.60 (s, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 10.7 (CH₂), 19.7 (CH₃), 20.2 (CH₃), 29.1 (CH), 46.1 (CH), 55.4 (CH₃), 68.2 (CH₂), 96.7 (CH₂).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2960 \text{ (m)}, 2928 \text{ (m)}, 2880 \text{ (m)}, 2824 \text{ (w)}, 2767 \text{ (w)}, 1464 \text{ (w)}, 1440 \text{ (w)}, 1424 \text{ (w)}, 1412 \text{ (w)}, 1388 \text{ (w)}, 1256 \text{ (w)}, 1196 \text{ (w)}, 1140 \text{ (m)}, 1108 \text{ (s)}, 1040 \text{ (s)}, 944 \text{ (w)}, 932 \text{ (w)}, 916 \text{ (m)}, 876 \text{ (w)}, 864 \text{ (w)}, 848 \text{ (w)}, 772 \text{ (w)}, 632 \text{ (w)}, 604 \text{ (w)} 584 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 272 (8), 169 (8), 155 (10), 113 (56), 99 (33), 95 (23), 83 (99), 75 (100), 55 (54), 46 (13), 45 (33).

HRMS (EI): calcd. for $C_8H_{17}^{127}IO_3$: 272.0273, found: 272.0256.

6-(Iodomethyl)-1,4-dioxaspiro[4.5]decane (67c)

Triphenylphosphine (16.3 g, 62.0 mmol) was dissolved in toluene (60 mL) and imidazole (5.58 g, 82.0 mmol) was added. Iodine (20.8 g, 82 mmol) was added and the sluggish stirring mixture was heated at 90 °C for 15 min. Then CH_2Cl_2 (60 mL) was added followed by 1,4-dioxaspiro[4.5]dec-6-ylmethanol (7.05 g, 40.9 mmol) dissolved in a 1:1 mixture of toluene and CH_2Cl_2 (60 mL). The mixture was heated at reflux for 2 h. After cooling to 25 °C, the mixture was extracted with a sat. aq. Na₂S₂O₃ solution (25 mL), washed with water (25 mL) and dried (MgSO₄). After filtration, the solvents were removed under reduced pressure. The product was purified by a short filter column (pentane / ethyl acetate = 25:1, silica gel) and a colourless light sensitive liquid (10.1 g, 87%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.16–1.72 (m, 7 H), 1.86–1.93 (m, 1 H), 2.07– 2.13 (m, 1 H), 2.90 (dd, *J* = 10.76 Hz, 9.47 Hz, 1 H), 3.52 (dd, *J* = 9.54 Hz, 2.59 Hz, 1 H), 3.86–3.99 (m, 4 H). ¹³**C-NMR (CDCl₃, 75 MHz):** δ (ppm) = 7.6 (CH₂), 23.9 (CH₂), 24.4 (CH₂), 30.0 (CH₂), 34.5 (CH₂), 47.8 (CH), 64.8 (CH₂), 110.3.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2932$ (s), 2880 (m), 2856 (m), 1476 (w), 1444 (w), 1352 (w), 1320 (w), 1276 (w), 1240 (w), 1176 (m), 1156 (m), 1125 (m), 1084 (s), 1056 (s), 1012 (m), 960 (w), 948 (w), 924 (s), 860(m), 804 (w), 788 (w), 764 (w), 668 (w), 620 (w), 592 (w).

MS (EI, 70 eV): *m/z* (%) = 156 (35), 155 (100), 113 (28), 99 (24), 93 (9), 83 (9), 55 (23).

HRMS (EI): calcd. for C₉H₁₅O₂¹²⁷I: 282.0117, found: 282.0131.

2-[1-(Iodomethyl)-2-methylpropyl]-1,3-dioxolane (67d)

2-[1-(Bromomethyl)-2-methylpropyl]-1,3-dioxolane⁹² (2.58 g, 17.5 mmol) was dissolved in acetone (60 mL) and sodium iodide (8.99 g, 60.0 mmol) was added. The reaction mixture was heated at reflux for 1.5 h and after cooling to room temperature water (150 mL) was added. The water phase was extracted twice with ether (100 mL), and then the combined organic phases were extracted with a sat. aq. sodium thiosulfate solution (50 mL) and with brine (50 mL). The ether phase was dried (MgSO₄) and after removal of the solids, the solvent was removed under reduced pressure. After flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) a colorless liquid (3.85 g, 81%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.97 (d, J = 2.65 Hz, 3 H), 0.99 (d, J = 2.43 Hz, 3 H), 1.68–1.75 (m, 1 H), 1.98–2.07 (m, 1 H), 3.22–3.34 (m, 2 H), 3.80–3.97 (m, 4 H), 4.87 (d, J = 3.53 Hz, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 4.3 (CH₂), 19.3 (CH₃), 20.4 (CH₃), 28.7 (CH), 48.8 (CH), 64.7 (CH₂), 65.0 (CH₂), 104.6 (CH).

⁹² Rrehs, G.; Urban, E. *Tetrahedron*, **1996**, *52*, 1221.

IR (ATR): $\tilde{V} / \text{cm}^{-1} = 2960$ (s), 2876 (s), 2764 (w), 2360 (w), 2340 (w), 1740 (w), 1464 (w), 1424 (w), 1388 (m), 1368 (w), 1296 (w), 1280 (w), 1264 (w), 1200 (w), 1176 (w), 1108 (s), 1032 (m), 1012 (m), 964 (m), 952 (m), 856 (w). MS (EI, 70 eV): m/z (%) = 269 (8), 99 (18), 74 (23), 73 (24), 55 (18), 45 (100). HRMS (EI): calcd. for C₈H₁₅O₂¹²⁷I: 270.0117, found: 270.0127.

2-(2-Iodo-1,1-dimethylethyl)pyridine (67e)

Triphenylphosphine (16.67 g, 75.0 mmol) was dissolved in toluene (100 mL), imidazole (7.49 g, 110 mmol) was added. Iodine (19.0 g, 75.0 mmol) was added and the sluggish stirring mixture was heated at 90 °C for 15 min. Then CH_2Cl_2 (100 mL) was added, followed by 2-methyl-2-pyridin-2-ylpropan-1-ol (7.40 g, 49.0 mmol) dissolved in a 1:1 mixture of toluene (50 mL) and CH_2Cl_2 (50 mL). The reaction mixture was heated at reflux for 2 h. After cooling to 25 °C, the reaction mixture was extracted with a sat. aq. thiosulfate solution (25 mL), washed with water (25 mL) and dried (MgSO₄). After filtration the solvents were removed under reduced pressure. The product was purified by a short filter column (pentane / ethyl acetate = 20:1, silica gel) and a colourless liquid (11.5 g, 90%) was obtained.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.50 (s, 6 H), 3.62 (s, 2 H), 7.10–7.15 (m, 1 H), 7.27–7.30 (m, 1 H), 7.59–7.65 (m, 1 H), 8.56–8.58 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 23.1 (CH₂), 27.6 (CH₃), 40.9, 119.7 (CH), 121.4 (CH), 136.2 (CH), 149.0 (CH), 164.8.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3088 \text{ (w)}, 3052 \text{ (w)}, 3000 \text{ (w)}, 2964 \text{ (s)}, 2928 \text{ (m)}, 2864 \text{ (w)}, 1588 \text{ (s)}, 1572 \text{ (m)}, 1472 \text{ (s)}, 1432 \text{ (s)} 1380 \text{ (m)}, 1360 \text{ (m)}, 1300 \text{ (w)}, 1212 \text{ (m)}, 1156 \text{ (m)}, 1108 \text{ (w)}, 1092 \text{ (w)}, 1048 \text{ (w)} 992 \text{ (w)}, 928 \text{ (w)}, 884 \text{ (w)}, 836 \text{ (w)}, 808 \text{ (w)}, 780 \text{ (s)}, 744 \text{ (s)}, 624 \text{ (w)}, 616 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 261 (2), 135 (10), 134 (100), 120 (7), 119 (12), 118 (18), 93 (12), 92 (8).

HRMS (EI): calcd. for $C_9H_{12}N_1^{127}I_1$: 261.0014, found: 261.0025.

{1-[(Methoxymethoxy)methyl]cyclohexyl}acetic acid (74a)

The alkyl iodide **67a** (295 mg, 1.0 mmol) was dissolved in THF (1 mL) and cooled to 0 °C, iPr_2Mg ·LiCl (0.93 mL, 0.75 mmol, 0.81 M in THF) was added and the reaction mixture was warmed to 25 °C. After stirring for 5 h the reaction mixture was cooled to -20 °C and carbon dioxide was bubbled through the solution for 10 min. Ethyl acetate (20 mL) was added and the reaction mixture was extracted twice with a sat. aq. sodium carbonate solution (5mL). The combined aqueous layers were neutralised using 2 M HCl and extracted three times with ethyl acetate (15 mL). The solvent was removed under reduced pressure and the product was dried 5 h in high vacuum. A colourless oil (136 mg, 63%) was obtained.

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 1.39–1.47 (m, 10 H), 2.43 (s, 2 H), 3.35 (s, 3 H), 3.48 (s, 2 H), 4.62 (s, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 21.4 (CH₂), 26.6 (CH₂), 33.0 (CH₂), 37.0, 40.3 (CH₂), 55.2 (CH₃), 73.1 (CH₂), 96.7 (CH₂), 177.9.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2926 \text{ (vs)}, 2856 \text{ (m)}, 2826 \text{ (w)}, 1730 \text{ (m)}, 1702 \text{ (vs)}, 1452 \text{ (w)}, 1212 \text{ (m)}, 1148 \text{ (m)}, 1108 \text{ (s)}, 1038 \text{ (vs)}, 918 \text{ (m)}, 900 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 171 (47), 156 (19), 155 (15), 154 (24), 153 (98), 126 (41), 123 (15), 122 (11), 97 (13), 96 (24), 95 (56), 94 (22), 92 (15), 80 (79), 79 (26).

HRMS (EI): calcd. for $C_{11}H_{20}O_4[M-H]^+$: 215.1283, found: 215.1298.

3-[(Methoxymethoxy)methyl]-4-methylpentanoic acid (74b)

The alkyl iodide **67b** (272 mg, 1.0 mmol) was dissolved in THF (1 mL) and cooled to 0 °C, iPr_2Mg ·LiCl (1.36 mL, 1.10 mmol, 0.81 M in THF) was added and the reaction mixture was warmed to 25 °C. After 45 min, the reaction mixture was cooled to -20 °C
and carbon dioxide was bubbled through the solution for 10 min. Ethyl acetate (20 mL) was added and the reaction mixture was extracted twice with a sat. aq. sodium carbonate solution (10 mL). The combined aqueous layers were neutralised using 2 M HCl and extracted three times with ethyl acetate (15 mL). The solvent was removed under reduced pressure and the product was dried 5 h in high vacuum. A yellow oil (139 mg, 73%) was obtained.

¹H-NMR (CDCl₃, 300 MHz): δ (ppm) = 0.90 (d, J = 3.09 Hz, 3 H), 0.92 (d, J = 3.09 Hz, 3 H), 1.75–1.78 (m, 1 H), 1.99–2.10 (m, 1 H), 2.38 (d, J = 7.06 Hz, 2 H), 3.35 (s, 3 H), 3.45 (dd, J = 9.70 Hz, 7.06 Hz, 1 H), 3.54–3.59 (m, 1 H), 4.59 (s, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 19.4 (CH₃), 19.7 (CH₃), 28.7 (CH), 34.1 (CH₂), 41.2 (CH), 55.3 (CH₃), 68.6 (CH₂), 96.5 (CH₂), 179.2.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2960 (s), 2932 (s), 2880 (m), 2828 (w), 2772 (w), 1704 (s), 1468 (w), 1440 (w), 1412 (w), 1388 (w), 1280 (w), 1216 (w), 1148 (m), 1108 (s), 1036 (s), 944 (w), 916 (m).

MS (EI, 70 eV): *m*/*z* (%) = 145 (24), 129 (30), 128 (24), 127 (100), 100 (50), 85 (20), 83 (16), 70 (17), 69 (61), 45 (46).

HRMS (ESI): calcd. for $C_9H_{19}O_4[M+H]^+$: 191.1283, found: 191.1281.

5-[(Methoxymethoxy)methyl]-6-methylhept-1-ene (74c)

The alkyl iodide **67b** (0.41 g, 1.50 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, ClMg(CH₂)₅MgCl·2LiCl (2.68 ml, 1.65 mmol, 0.62 M in THF) was added and the temperature was raised to 25 °C. After 2 h the reaction mixture was cooled to -30 °C and CuCN·2LiCl (0.08 mL, 5 mol %, 1 M in THF) and allyl bromide (0.363 g, 0.26 mL, 3.0 mmol) was added. The reaction mixture was stirred for additional 30 min, then the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 40:1, silica gel) afforded a colourless liquid (198 mg, 71%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.88 (d, J = 7.06 Hz, 6 H), 1.31–1.47 (m, 3 H), 1.76–1.87 (m, 1 H), 1.99–2.16 (m, 2 H), 3.35 (s, 3 H), 3.40–3.50 (m, 2 H), 4.59 (s, 2 H), 4.91–5.03 (m, 2 H), 5.73–5.83 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 19.2 (CH₃), 19.6 (CH₃), 27.6 (CH₂), 28.2 (CH), 32.0 (CH₂), 43.6 (CH), 55.2 (CH₃), 68.7 (CH₂), 96.6 (CH₂), 114.3 (CH₂), 139.1 (CH).

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3076 (w), 2956 (s), 2928 (s), 2876 (s), 2768 (w), 1640 (w), 1463 (w), 1440 (w), 1388 (w), 1368 (w), 1216 (w), 1152 (m), 1108 (m), 1044 (s), 996 (w), 912 (m), 644 (w).

MS (EI, 70 eV): m/z (%) = 124 (4), 123 (10), 81 (12), 69 (34), 67 (11), 55 (19), 45 (100).

HRMS (EI): calcd. for C₁₁H₂₂O₂: 186.1620, found: 186.1652

6-(3-Methylbut-3-en-1-yl)-1,4-dioxaspiro[4.5]decane (74d)

The alkyl iodide **67c** (564 mg, 2.0 mmol) was dissolved in THF (2 mL) and cooled to $-15 \,^{\circ}$ C, ClMg(CH₂)₅MgCl·2LiCl (2.8 ml, 2.2 mmol, 0.79 M in THF) was added. After 3 h, the reaction mixture was cooled to $-30 \,^{\circ}$ C and CuCN·2LiCl (0.1 mL, 1M in THF) and 3-bromo-2-methylprop-1-ene (324 mg, 0.25 mL, 2.4 mmol) was added. The reaction mixture was stirred for additional 30 min, then the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 20:1, silica gel) afforded a colourless liquid (302 mg, 72%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.16–1.36 (m, 4 H), 1.44–1.54 (m, 2 H), 1.58– 1.62 (m, 2 H), 1.70 (s, 3 H), 1.72–1.81 (m, 3 H), 1.90–1.95 (m, 1 H), 2.04–2.09 (m, 1 H), 3.89–3.97 (m, 4 H), 4.66–4.67 (m, 2 H). ¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 22.4 (CH₃), 23.9 (CH₂), 24.5 (CH₂), 26.1 (CH₂), 29.0 (CH₂), 34.7 (CH₂), 35.6 (CH₂), 44.1 (CH), 64.7 (CH₂), 64.8 (CH₂), 109.6 (CH₂), 110.9, 146.4.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3072 (w), 2932 (s), 2876 (m), 2864 (m), 1648 (w), 1448 (m), 1372 (w), 1352 (w), 1280 (w), 1188 (w), 1156 (m), 1140 (w), 1088 (s), 1060 (m), 1028 (w), 948 (w), 924 (m), 884 (m), 800 (w), 768 (w), 664 (w).

MS (EI, 70 eV): *m/z* (%) = 210 (30), 156 (8), 142 (6), 125 (12), 113 (21), 99 (100), 86 (10), 55 (16), 41 (10).

HRMS (EI): calcd. for C₁₃H₂₂O₃: 210.1620, found: 210.1633.

2-(1,4-Dioxaspiro[4.5]dec-6-yl)-1-phenylethanol (74e)

The alkyl iodide **67c** (564 mg, 2.0 mmol) was dissolved in THF (2 mL) and cooled to $-15 \,^{\circ}$ C, ClMg(CH₂)₅MgCl·2LiCl (3.3 ml, 2.2 mmol, 0.79 M in THF) was added. After 3 h the reaction mixture was cooled to $-30 \,^{\circ}$ C and benzaldehyde (318 mg, 0.30 mL, 3.0 mmol) was added. The reaction mixture was stirred for additional 60 min, then the temperature was raised to 25 $^{\circ}$ C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 3:1, silica gel) afforded a colourless liquid (378 mg, 72%). The diastereomeric ratio was determined by ¹H-NMR (3:1). NMR-Data is given for the main diastereomeric.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.14–2.14 (m, 11 H), 3.05 (s, 1 H), 3.96–4.05 (m, 4 H), 4.83–4.87 (m, 1 H), 7.24–7.37 (m, 5 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 23.6 (CH₂), 24.6 (CH₂), 31.1 (CH₂), 38.5 (CH₂), 40.4 (CH₂), 42.3 (CH), 64.3 (CH₂), 64.6 (CH₂), 72.4 (CH), 110.7, 125.8 (CH), 127.1 (CH), 129.3 (CH), 144.9.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 3420$ (w), 3060 (w), 3028 (w), 2932 (s), 2884 (m), 2860 (m), 1492 (w), 1448 (w), 1352 (w), 1336 (w), 1284 (w), 1156 (w), 1088 (s), 1056 (m), 1016 (w), 924 (m), 888 (s), 864 (w), 800 (w), 756 (m), 700 (s). **MS** (**EI**, **70** eV): m/z (%) = 262 (15), 200 (11), 156 (18), 155 (100), 133 (13), 120 (23), 113 (19), 105 (15), 99 (64), 77 (8).

HRMS (EI): calcd. for C₁₆H₂₂O₃: 262.1567, found: 262.1567.

1-(1,4-Dioxaspiro[4.5]dec-6-yl)butan-2-one (74f)

The alkyl iodide **67c** (0.564 g, 2.0 mmol) was dissolved in THF (2 mL) and cooled to -15 °C, ClMg(CH₂)₅MgCl·2LiCl (2.8 ml, 2.2 mmol, 0.79 M in THF) was added. After 3 h the reaction mixture was cooled to -30 °C and CuCN·2LiCl (2.5 mL, 2.5 mmol, 1.0 M in THF) was added. After stirring for 30 min at -30 °C propanoyl chloride (231 mg, 0.22 mL, 2.50 mmol) was added and the reaction mixture was stirred for additional 30 min. The temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether 3:1, silica gel) afforded a colourless liquid (268 mg, 63%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.02 (t, *J* = 7.28 Hz, 3 H), 1.27–1.37 (m, 3 H), 1.4–1.50 (m, 1 H), 1.55–1.56 (m, 2 H), 1.68–1.78 (m, 2 H), 2.14 (dd, *J* = 16.10 Hz, 7.94 Hz, 1 H), 2.24–2.29 (m, 1 H), 2.37–2.42 (m, 2 H), 2.60 (dd, *J* = 15.88 Hz, 5.29 Hz, 2 H), 3.63–3.95 (m, 4 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 7.9 (CH₃), 23.8 (CH₂), 24.5 (CH₂), 30.2 (CH₂), 34.2 (CH₂), 36.1 (CH₂), 40.6 (CH), 42.4 (CH₂), 64.4 (CH₂), 64.5 (CH₂), 110.0, 211.1. **IR (ATR):** $\tilde{\nu}$ / cm⁻¹ = 2972 (m), 2936 (s), 2884 (m), 2860 (m), 1708 (s), 1460 (w), 1448 (w), 1376 (w), 1352 (w), 1276 (w), 1256 (w), 1220 (w), 1156 (m), 1108 (m), 1092 (s), 1064 (w), 1032 (m), 948 (w), 924 (s), 876 (w), 800 (w), 768 (w), 628 (w). **MS (EI, 70 eV):** m/z (%) = 212 (10), 183 (6), 156 (10), 155 (84), 141 (12), 113 (26), 100 (12), 99 (100), 86 (15), 57 (19), 55 (46). **HRMS (EI)**: calcd. for C₁₂H₂₁O₃[M+H]⁺: 213.1491, found: 213.1477.

4-(1,3-Dioxolan-2-yl)-2,2,5-trimethylhexan-3-ol (74g)

The alkyl iodide **67d** (540 mg, 2.0 mmol) was dissolved in THF (2 mL) and cooled to -20 °C, ClMg(CH₂)₅MgCl·2LiCl (3.3 ml, 2.2 mmol, 0.67 M in THF) was added. After 3 h *t*BuCHO (215 mg, 0.27 mL, 2.5 mmol) was added. After 30 min of stirring at -20 °C the temperature was raised to 25 °C and the reaction mixture was stirred for additional 30 min. Then, the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) afforded a colourless liquid (333 mg, 72%). The diastereomeric ratio was determined by ¹H-NMR (4:1). NMR data is given for the main diastereomer.

¹**H-NMR (C₆D₆, 400 MHz):** δ (ppm) = 0.89–1.06 (m, 15 H), 1.45–1.52 (m, 1 H), 1.59– 1.64 (m, 1 H), 1.70–1.77 (m, 1 H), 1.9–2.03 (m, 1 H), 3.17–3.43 (m, 5 H), 3.58 (m, 1 H), 4.65 (d, J = 4.65 Hz, 1 H).

¹³C-NMR (C₆D₆, 100 MHz): δ (ppm) = 18.9 (CH₃), 20.7 (CH₃), 26.1 (CH₃), 27.7 (CH₂), 30.0 (CH), 35.5, 46.9 (CH), 64.5 (CH₂), 64.3 (CH₂), 80.4 (CH), 106.2 (CH). IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3476 (m), 2956 (s), 2872 (m), 1480 (w), 1468 (w), 1388 (w), 1316 (w), 1244 (w), 1220 (w), 1156 (w), 1116 (m), 1080 (m), 1060 (m), 1008 (m), 948 (m), 812 (w).

MS (EI, 70 eV): *m/z* (%) = 174 (11), 173 (16), 144 (21), 130 (15), 129 (51), 111 (100), 101 (49), 83 (32), 74 (10), 73 (28), 69 (22), 57 (16), 45 (29).

HRMS (EI): calcd. for C₁₃H₂₆O₃: 230.1882, found: 230.1865.

2-{1-[(Allylthio)methyl]-2-methylpropyl}-1,3-dioxolane (74h)

The alkyl iodide **67d** (540 mg, 2.0 mmol) was dissolved in THF (2 mL) and cooled to $-20 \,^{\circ}$ C, ClMg(CH₂)₅MgCl·2LiCl (3.31 ml, 2.20 mmol, 0.66 M in THF) was added. After 2.5 h *S*-allyl benzenesulfonothioate (563 mg, 2.50 mmol) was added. After 30 min of stirring at $-20 \,^{\circ}$ C the temperature was raised to 25 $^{\circ}$ C and the reaction mixture was stirred for additional 30 min. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) afforded a yellow liquid (251 mg, 58%).

¹**H-NMR** (**C**₆**D**₆, **400 MHz**): δ (ppm) = 1.01–1.04 (m, 6 H), 1.93–1.96 (m, 1 H), 2.22–2.27 (m, 1 H), 2.58 (dd, J = 12.91 Hz, 7.43 Hz, 1 H), 2.82 (dd, J = 13.01 Hz, 5.38 Hz, 1 H), 2.93–2.98 (m, 2 H), 3.28–3.20 (m, 2 H), 3.45–3.48 (m, 2 H), 4.90–5.02 (m, 3 H), 5.70–5.78 (m, 1 H).

¹³C-NMR (C₆D₆, 100 MHz): δ (ppm) = 20.0 (CH₃), 20.6 (CH₃), 27.8 (CH), 28.5 (CH₂), 35.8 (CH₂), 47.6 (CH), 64.5 (CH₂), 64.9 (CH₂), 104.9 (CH), 116.5 (CH₂), 135.2 (CH). **IR (ATR):** $\tilde{\nu}$ / cm⁻¹ = 3080 (w), 2956 (s), 2876 (s), 1636 (w), 1468 (w), 1424 (w), 1400 (w), 1368 (w), 1300 (w), 1228 (w) 1176 (w), 1144 (m), 1108 (s), 1048 (m), 1020 (m), 988 (w), 944 (m), 916 (s), 760 (w), 744 (w), 592 (w).

MS (EI, 70 eV): *m/z* (%) = 175 (10), 154 (9), 143 (4), 111 (5), 99 (25), 85 (5), 73 (100), 55 (9).

HRMS (EI): calcd. for $C_{11}H_{20}O_2^{32}S$: 216.1184, found: 216.1182.

3-Methyl-1-phenyl-3-pyridin-2-ylbutan-1-ol (74i)

The alkyl iodide **67e** (0.522 g, 2.0 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, *i*Pr₂Mg·LiCl (2.13 ml, 1.40 mmol, 0.66 M in THF) was added and the reaction mixture was warmed to 25 °C. After 1.5 h of stirring the reaction mixture was cooled to -20 °C and benzaldehyde (0.31 mL, 0.32 g, 3.0 mmol) was added. After 30 min at -20 °C the temperature was raised to 25 °C and the reaction was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 15:2, silica gel) afforded a pale yellow liquid (270 mg, 56%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.46 (s, 3 H), 1.55 (s, 3 H), 1.88 (dd, J = 15.00 Hz, 2.21 Hz, 1 H), 2.42 (dd, J = 15.00 Hz, 2.21 Hz, 1 H), 4.94 (dd, J = 10.14 Hz, 2.21 Hz, 1 H), 6.91 (s, 1 H), 7.18–7.45 (m, 6 H), 7.70–7.76 (m, 1 H), 8.56–8.59 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 28.3 (CH₃), 31.5 (CH₃), 41.3, 52.0 (CH₂), 71.2 (CH), 120.6 (CH), 121.3 (CH), 125.8 (CH), 126.7 (CH), 128.2 (CH), 137.3(CH), 146.9, 147.5 (CH), 168.1.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3360 (m), 3088 (w), 3060 (w), 3028 (w), 2964 (s), 2928 (m), 2908 (m), 2684 (w), 1592 (s), 1572 (m), 1476 (s), 1432 (s), 1388 (w), 1364 (w), 1292 (w), 1200 (w), 1156 (w), 1120 (w), 1064 (m), 1052 (m), 1024 (w), 1004 (w), 912 (w), 788 (m), 748 (m), 727 (m), 700 (s), 636 (w), 564 (w).

MS (EI, 70 eV): *m*/*z* (%) = 240 (12), 208 (8), 135 (41), 134 (43), 122 (10), 121 (100), 120 (95), 106 (19), 93 (27), 79 (14), 77 (14).

HRMS (EI): calcd. for C_{16} H₁₈N₁O₁ [M-H]⁺: 240.1388, found: 240.1392.

2,2,5-Trimethyl-5-pyridin-2-ylhexan-3-ol (74j)

The alkyliodide **67e** (522 mg, 2.0 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, *i*Pr₂Mg·LiCl (2.13 ml, 1.40 mmol, 0.66 M in THF) was added and the reaction mixture was warmed to 25 °C. After 1.5 h of stirring the mixture was cooled to -20 °C and pivaldehyde (0.26 g, 0.33 mL, 3.0 mmol) was added. After stirring 30 min at -20 °C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 15:2) afforded a slightly yellowish liquid (275 mg, 61%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.89 (s, 9 H), 1.37 (d, J = 7.5 Hz, 6 H) 1.71– 1.73 (m, 1 H) 1.99–2.07 (m, 1 H) 3.32–3.35 (m, 1 H), 5.36 (s, 1 H), 7.08–7.12 (m, 1 H), 7.35–7.39 (m, 1 H), 7.61–7.67 (m, 1 H), 8.45–8.49 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 25.8 (CH₃), 27.8 (CH₃), 32.3 (CH₃), 35.0, 40.8 (CH₂), 44.0, 75.8 (CH), 120.8 (CH), 121.1 (CH), 137.0 (CH), 147.5 (CH), 168.5.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3224$ (m), 3088 (w), 3060 (w), 3032 (w), 2952 (s), 2864 (m), 1592 (m), 1568 (w), 1492 (w), 1476 (w), 1428 (w), 1360 (w), 1244 (w), 1156 (w), 1096 (w), 1076 (w), 1036 (w), 1016 (w), 944 (w), 756 (w), 700 (m).

MS (EI, 70 eV): *m*/*z* (%) = 206 (5), 165 (10), 164 (100), 134 (22), 121 (66), 119 (96), 118 (6), 106 (8), 93 (7), 92 (7).

HRMS (EI): calcd. for $C_{14}H_{22}O_1N_1 [M-H]^+$: 220.1780, found: 220.1771.

2-(1,1-Dimethylpent-4-en-1-yl)pyridine (74k)

The alkyl iodide **67e** (522 mg, 2.0 mmol) was dissolved in THF and cooled to 0 °C, iPr_2Mg ·LiCl (2.12 ml, 1.4 mmol, 0.66 M in THF) was added. Then solution was warmed to 25 °C and stirred for 1 h. After cooling to -20 °C CuCN·2LiCl (0.1 mL, 1.0 M in THF) was added followed by allyl bromide (363 mg, 0.26 mL, 3.00 mmol). After stirring for 30 min at -20 °C the temperature was raised to 25 °C and after additional 30 min of stirring the reaction mixture was quenched with a sat. aq. NH₄Cl-solution. The aqueous phase was extracted twice with ethyl acetate (30 mL), and two times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvents were removed under reduced pressure. Flash chromatographical purification (silica gel, pentane/diethyl ether 22:1) afforded a colourless liquid⁹³ (226 mg, 64%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.31 (s, 6 H), 1.75–1.77 (m, 4 H), 4.79–4.90 (m, 2 H), 5.65–5.75 (m, 1 H), 7.00–7.04 (m, 1 H), 7.21–7.25 (m, 1 H), 7.52–7.57 (m, 1 H), 8.51–8.53 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 28.1 (CH₃), 29.5 (CH₂), 40.1, 42.8 (CH₂), 114.1 (CH₂), 120.1 (CH), 120.8 (CH), 136.2 (CH), 139.5 (CH), 148.9 (CH), 168.2.

3-Methyl-3-pyridin-2-ylbutanoic acid (741)

The alkyl iodide **67e** (522 mg, 2.0 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, iPr_2Mg ·LiCl (2.13 ml, 1.40 mmol, 0.66 M in THF) was added and the reaction mixture was warmed to 25 °C. After 1.5 h of stirring the reaction mixture was cooled to -20 °C and carbon dioxide was bubbled through the solution for 10 min. Ethyl acetate

⁹³ Pasquinet, E.; Rocca, P.; Godard, A.; Marsais, F.; Quéguiner, G. J. Chem. Soc., Perkin Trans. 1 1998, 3807.

(20 mL) was added and the reaction mixture was extracted twice with 2 M NaOH (10 mL). The combined aqueous layers were neutralised using 2 M aq. HCl and extracted three times with ethyl acetate (20 mL). The solvent was removed under reduced pressure and the product was dried 5 h in high vacuum. A yellow solid (268 mg, 75%) was obtained.

mp (°**C**): 68–69.

¹**H-NMR (DMSO-d6, 400 MHz):** δ (ppm) = 1.36 (s, 6 H), 2.69 (s, 2 H), 7.16 (dd, J = 7.41 Hz, 4.79 Hz, 1 H), 7.40 (d, J = 8.61 Hz, 1 H), 7.64–7.71 (m, 1 H), 8.47–8.48 (m, 1 H), 11.90 (s, 1 H).

¹³C-NMR (DMSO-d6, 75 MHz): δ (ppm) = 28.0 (CH₃), 39.1, 45.8 (CH₂), 119.5 (CH), 120.9 (CH), 136.4 (CH), 148.0 (CH), 166.7, 172.6.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 3084 (w), 2972 (m), 2935 (w), 2880 (w), 2472 (m), 1956 (m), 1708 (s), 1600 (s), 1572 (m), 1480 (m), 1436 (m), 1368 (m), 1344 (m), 1304 (m), 1228 (s), 1212 (m), 1168 (s), 1144 (s), 1096 (w), 1048 (w), 1008 (s), 936 (w), 892 (w), 792 (s), 760 (s), 696 (w), 636 (m).

MS (EI, 70 eV): *m*/*z* (%) = 179 (4), 146 (19), 135 (12), 134 (100), 129 (11), 120 (33), 41 (4).

HRMS (EI): calcd. for C₁₀H₁₃NO₂: 179.0946, found: 179.0936.

4,4-Dimethyl-1,1-diphenyl-1-pyridin-2-ylpentan-3-ol (74m)

The alkyl iodide **67f** (578 mg, 1.5 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, iPr_2Mg ·LiCl (2.01 ml, 0.9 mmol, 0.45 M in THF) was added and the reaction mixture was warmed to 25 °C. After 2.5 h of stirring the reaction mixture was cooled to -20 °C and pivalaldehyde (194 mg, 0.24 mL, 2.25 mmol) was added. After additional 30 min of stirring at -20 °C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ethyl acetate (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure.

Flash chromatographical purification (pentane / ethyl acetate gradient from 15:1 to 1:1, silica gel) afforded pale yellow crystals (304 mg, 59%).

mp (°**C**): 158–160.

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 0.83 (s, 9 H), 2.53 (dd, J = 14.77 Hz, 1.10 Hz, 1 H), 2.68 (dd, J = 8.60 Hz, 0.88 Hz, 1 H), 3.10 (dd, J = 14.77 Hz, 8.60 Hz, 1 H), 6.83 (d, J = 9.70 Hz, 2 H), 6.88 (d, J = 10.14 Hz, 1 H), 7.17–7.19 (m, 1 H), 7.21–7-30 (m, 8 H), 7.51–7.54 (m, 1 H), 7.93 (s, 1 H), 8.56–8.58 (m, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 25.9 (CH₃), 35.3, 44.6 (CH₂), 60.8, 74.6 (CH), 121.5 (CH), 126.4 (CH), 126.5 (CH), 127.2 (CH), 127.8 (CH), 128.2 (CH), 128.6 (CH), 130.0 (CH), 136.6 (CH), 144.6 (CH), 146.6 (CH), 150.3, 165.4.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3196 (s), 3056 (m), 2960 (s), 2946 (s), 2868 (s), 1591 (s), 1564 (m), 1481 (m), 1469 (s), 1423 (m), 1389 (w), 1358 (w), 1289 (w), 1244 (w), 1159 (w), 10897 (m), 1082 (m), 1063 (m), 1049 (w), 788 (w), 756 (s), 701 (s), 635 (m). **MS** (**EI**, **70** eV): m/z (%) = 345 (3), 289 (19), 288 (100), 259 (12), 258 (54), 245 (30), 244 (40), 243 (17), 167 (18).

HRMS (EI): calcd. for C₂₄H₂₇NO: 345.2093, found: 345.2106.

Ethyl 2-(3,3-diphenyl-3-pyridin-2-ylpropyl)acrylate (74n)

The alkyl iodide **67f** (578 mg, 2.0 mmol) was dissolved in THF (1.5 mL) and cooled to 0 °C, *i*Pr₂Mg·LiCl (2.01 ml, 0.9 mmol, 0.45 M in THF) was added and the reaction mixture was warmed to 25 °C. After 2.5 h the reaction mixture was cooled to -20 °C and ethyl 2-(bromomethyl)acrylate (386 mg, 2.9 mmol) and CuCN·2LiCl (0.1 mL, 1.0 M in THF) was added. After 5 min of stirring at -20 °C the temperature was raised to 25 °C and the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (10 mL). The aqueous phase was extracted three times with ether (30 mL). The combined organic layers were dried (MgSO₄), and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / ethyl acetate = 20:1, silica gel) afforded a colourless liquid (328 mg, 59%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.30 (t, J = 7.06, 3 H), 2.09–2.15 (m, 2 H), 2.86–2.92 (m, 2 H), 4.20 (q, J = 7.06, 2 H), 5.53 (s, 1 H), 6.13 (s, 1 H), 7.08–7.12 (m, 1 H), 7.19–7.21 (m, 11 H), 7.54–7.59 (m, 1 H), 8.60–8.62 (m, 1 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.2 (CH₃), 28.4 (CH₂), 39.0 (CH₂), 59.0, 60.5 (CH₂), 120.9 (CH), 124.2 (CH₂), 124.2 (CH), 124.8 (CH), 126.1 (CH), 127.8 (CH), 129.4 (CH), 141.3, 146.2, 148.5 (CH), 166.0, 167.3.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 3085 (w), 3055 (w), 3030 (w), 2979 (w), 2936 (w), 1710 (s), 1628 (w), 1585 (m), 1567 (w), 1368 (w), 1326 (m), 1304 (w), 1257 (m), 1231 (m), 1180 (s), 1133 (s), 1029 (m), 941 (m), 787 (w), 747 (s), 698 (s), 614 (m), 589 (m).

MS (EI, 70 eV): *m*/*z* (%) = 371 (5), 259 (18), 258 (100), 245 (25), 244 (20), 243 (14), 167 (13).

HRMS (EI): calcd. for C₂₅H₂₅O₂N₁: 371.1885, found: 371.1875.

Ethyl-2-isopropylhexanoate

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar and a septum was charged with THF (70 mL) and diisopropylamine (7.08 g, 9.84 mL, 70.0 mmol). The solution was cooled to -40 °C and *n*BuLi (29.5 mL, 70.0 mmol, 2.37 M in hexane) was added slowly. The reaction mixture was allowed to reach 0 °C, and was then transferred slowly into a cooled solution (-78 °C) of ethyl 3-methylbutanoate (8.55 g, 65.7 mmol) in THF (35 mL). The reaction mixture was stirred for 1 h at -78 °C, and then 1-iodobutane (27.6 g, 17.0 mL, 150 mmol) was added dropwise. The reaction mixture was allowed to reach 25 °C over night and was then poured into a sat. aq. NH₄Cl–solution (70 mL). The aqueous layer was extracted three times with dietyl ether (100 mL). The combined organic layers were dried (MgSO₄), and after removal of the solids, the solvent was removed under reduced pressure. A distillation (5.5 mbar, 70–72 °C) yielded ethyl-*iso*propylhexanoate as a colorless liquid (9.59 g, 78%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.83–0.91 (m, 9 H), 1.25–1.31 (m, 7 H), 1.40– 1.62 (m, 2 H), 1.74–1.86 (m, 1 H), 2.01–2.08 (m, 1 H), 4.11 (q, J = 7.15 Hz, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 13.9 (CH₃), 14.4 (CH₃), 20.2 (CH₃), 20.5 (CH₃), 22.7 (CH₂), 29.4 (CH), 30.0 (CH₂), 30.6 (CH₂), 52.8 (CH), 59.8 (CH₂), 175.9.

IR (**ATR**): $\tilde{\nu}$ / cm⁻¹ = 2960 (m), 2936 (m), 2874 (w), 2226 (m), 2214 (m), 2184 (m), 2160 (m), 2098 (m), 2064 (m), 2030 (m), 2022 (m), 1974 (m), 1918 (w), 1732 (vs), 1466 (m), 1448 (m), 1388 (m), 1370 (m), 1316 (m), 1278 (m), 1256 (m), 1222 (m), 1178 (s), 1162 (s), 1144 (s), 1122 (m), 1036 (m).

MS (EI, 70 eV): *m/z* (%) = 144 (100), 143 (24), 141 (25), 130 (94), 129 (20), 115 (26), 113 (21), 101 (17), 87 (24), 73 (55), 71 (45), 57 (47), 55 (16), 42 (26).

HRMS (EI): calcd. for C₁₁H₂₂O₂: 186.1620, found: 186.1631.

2-Isopropylhexanol

A dry and argon-flushed three necked *Schlenk*-flask, equipped with a stirring bar, a dropping funnel and a reflux condenser was charged with dry diethyl ether (240 mL) and LiAlH₄ (7.59 g, 200 mmol). The reaction mixture was cooled to 0 °C and ethyl-2-*iso*propylhexanoate (9.57 g, 51.4 mmol in 120 mL diethyl ether) was added dropwise. The ice bath was removed and the reaction mixture was heated at reflux for 1.5 h. The reaction mixture was cooled to 0 °C, and Na₂SO₄·10H₂O was added until cessation of gas evolution. After filtration, the solvent was removed under reduced pressure. A colorless liquid (6.95 g, 94%) was obtained which was used without further purification.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.85–0.89 (m, 9 H), 1.16–1.39 (m, 8 H), 1.76–1.78 (m, 1 H), 3.54–3.58 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.1 (CH₃), 13.1 (CH₃), 19.8 (CH₃), 23.1 (CH₂), 27.3 (CH₂), 27.8 (CH₂), 30.1 (CH), 46.5 (CH), 63.7 (CH₂).

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2956 (s), 2930 (s), 2872 (m), 2226 (m), 2214 (m), 2190 (s), 2160 (s), 2098 (m), 2030 (s), 2018 (s), 1976 (s), 1910 (m), 1750 (m), 1718 (vs),

1498 (m), 1466 (s), 1386 (m), 1368 (s), 1316 (m), 1278 (m), 1222 (m), 1126 (m), 1042 (s), 700 (m).

MS (EI, 70 eV): *m/z* (%) = 84 (4), 83 (5), 71 (42), 70 (9), 69 (16), 57 (100), 56 (19), 55 (23), 43 (34), 41 (18).

HRMS (EI): calcd. for C₉H₁₉O: 143.1436 (M-H): , found: 143.1356.

<u>1-Iodo-2-isopropylhexane (79a)</u>

A dry and argon-flushed three necked *Schlenk*-flask, equipped with a stirring bar, a dropping funnel and a reflux condenser was charged with dry toluene (100 mL) and triphenylphosphine (18.9 g, 72.0 mmol). Imidazole (6.54 g, 96.0 mmol) and iodine (24.37 g, 96.0 mmol) were added. The reaction mixture was heated at 90 °C for 10 min. Then CH_2Cl_2 (100 mL) was carefully added, followed by 2-isopropylhexanol (6.88 g, 47.7 mmol in 50 mL CH_2Cl_2 /toluene 1:1). The reaction mixture was heated at reflux for 1.5 h, and was then cooled to 25 °C. The excess of iodine was removed with a sat. aq. $Na_2S_2O_3$ -solution (50 mL). The aqueous layer was extracted three times with diethyl ether (100 ml), and dried (MgSO₄). After removal of the solids, the solvent was removed under reduced pressure. The residue was taken up in diethyl ether and filtered over a short pad of silica gel. **79a** was obtained as a colorless liquid (7.87 g, 64%) which was used without further purification.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 0.85–0.92 (m, 9 H), 0.97–1.02 (m, 1 H), 1.13– 1.49 (m, 6 H), 1.68–1.73 (m, 1 H), 3.27 (d, J = 5.01 Hz, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 14.1 (CH₃), 14.2 (CH₂), 19.1 (CH₃), 19.8 (CH₃), 22.8 (CH₂), 29.5 (CH₂), 30.6 (CH₂), 30.7 (CH), 45.6 (CH).

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2958 (s), 2932 (s), 2872 (m), 2226 (m), 2214 (s), 2184 (s), 2160 (s), 2098 (m), 2064 (m), 2030 (s), 2018 (s), 1976 (s), 1910 (m), 1890 (m), 1750 (m), 1718 (vs), 1496 (m), 1464 (s), 1428 (m), 1386 (m), 1368 (s), 1316 (m), 1278 (s), 1222 (s), 1192 (m), 1180 (m), 1158 (m), 1126 (m), 728 (m), 698 (m).

MS (EI, 70 eV): m/z (%) = 169 (4), 155 (6), 127 (32), 85 (52), 72 (4), 71 (100), 69 (11), 57 (75), 55 (22), 43 (91), 41 (32). **HRMS (EI)**: calcd. for C₉H₁₉¹²⁷I: 254.0531, found: 254.0523.

4.3.6. Cyclopropanes

1-(2,2-Dibromocyclopropyl)-4-fluorobenzene (86):

A round bottom flask equipped with a stirring bar was charged with 1-fluoro-4vinylbenzene (6.11 g, 50.0 mmol), CHBr₃ (50.5 g, 0.20 mol), pinacol (0.768 g, 6.50 mmol) and triethylbenzylammonium chloride (0.569 g, 2.50 mmol). NaOH (8.00 g, 0.20 mol in 8mL H₂O) was added dropwise and the reaction mixture stirred vigorously for 16 h. Then the solids were filtered off and washed with CH₂Cl₂ (50 mL). The aqueous layer was extraxted with CH₂Cl₂ (50 mL) and the combined organic phases were dried (MgSO₄). After filtration the solvent was removed under reduced pressure and the crude product was purified by distillation (100 °C, 2.5 mbar), furnishing a colourless liquid (10.2 g, 70%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.98 (t, J = 8.0 Hz, 1 H), 2.16 (dd, J = 10.5 Hz, 7.8 Hz, 1 H), 2.94 (dd, J = 10.2 Hz, 8.6 Hz, 1 H), 7.04–7.11 (m, 2 H), 7.22–7.28 (m, 2 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 27.9 (CH₂), 28.5, 35.6 (CH), 115.7 (d, J = 21.6 Hz, CH), 130.9 (d, J = 8.2 Hz, CH), 132.2 (d, J = 3.1 Hz), 162.6 (d, J = 246.7 Hz, CF).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1606 \text{ (m)}, 1510 \text{ (vs)}, 1434 \text{ (w)}, 1228 \text{ (s)}, 1220 \text{ (s)}, 1158 \text{ (m)}, 1102 \text{ (m)}, 1052 \text{ (m)}, 1038 \text{ (m)}, 1014 \text{ (w)}, 926 \text{ (w)}, 860 \text{ (m)}, 830 \text{ (vs)}, 818 \text{ (s)}, 730 \text{ (m)}, 676 \text{ (s)}, 634 \text{ (w)}.$

MS (EI, 70 eV): *m/z* (%) = 215 (24), 213 (26), 135 (8), 134 (100), 133 (88), 107 (7), 67 (12), 57 (6).

HRMS (EI): calcd. for C₉H₉⁷⁹Br₂F: 291.8899, found: 291.8898.

<u>E-1-(2-Bromocyclopropyl)-4-fluorobenzene (83c):</u>

A dry and argon-flushed two necked *Schlenk*-flask, equipped with a stirring bar and a septum was charged with LiBr (3.02 g, 34.8 mmol). The salt was dried in high vac. (5h, 150 °C) and then dissolved in THF (30 mL) and diethyl ether (30 mL). The solution was cooled to -80 °C and *n*BuLi (14.4 mL, 34.8 mmol, 2.42 M in hexane) was added, and the reaction mixture was cooled to -110 °C. The dibromide **86** (9.23 g, 31.6 mmol) was added dropwise and the reaction mixture was stirred for 1 h at -100 °C. Then ethanol (15 mL) was added the reaction mixture was warmed to 25 °C. The reaction mixture was quenched with a sat. aq. NH₄Cl-solution (50 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration the solvent was removed under reduced pressure. Flash chromatographical purification (pentane, silica gel) furnished a colourless liquid (3.37 g, 50%).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.37–1.55 (m, 2 H), 2.34–2.41 (m, 1 H), 2.94–2.99 (m, 1 H), 6.94–7.05 (m, 4 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 18.7 (CH₂), 21.3 (CH), 26.2 (CH), 115.3 (d, J = 21.3 Hz, CH), 127.5 (d, J = 8.3 Hz, CH), 135.3 (d, J = 3.2 Hz), 161.5 (d, J = 244.3 Hz, CF).

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 1608 \text{ (w)}, 1600 \text{ (w)}, 1510 \text{ (vs)}, 1444 \text{ (w)}, 1226 \text{ (vs)}, 1180 \text{ (w)}, 1160 \text{ (m)}, 1104 \text{ (m)}, 1070 \text{ (w)}, 1042 \text{ (w)}, 1014 \text{ (w)}, 982 \text{ (w)}, 934 \text{ (m)}, 890 \text{ (m)}, 860 \text{ (m)}, 818 \text{ (vs)}, 718 \text{ (m)}, 702 \text{ (m)}, 634 \text{ (w)}, 612 \text{ (s)}.$

MS (EI, 70 eV): *m/z* (%) = 136 (8), 135 (100), 134 (7), 133 (26), 115 (13), 109 (14), 107 (4), 83 (4), 67 (2), 56 (3).

HRMS (EI): calcd. for C₉H₈⁷⁹BrF: 213.9793, found: 213.9777.

(3,4-Dichlorophenyl)(2,2-diphenylcyclopropyl)methanol (85a)

According to **TP8** the cyclopropane **83a** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (4.40 mL, 4.40 mmol, 1.00 M in THF) at 25 °C for 2 d. The reaction mixture was cooled to -30 °C and 3,4-dichlorobenzaldehyde (770 mg, 4.40 mmol) was added and the reaction mixture was allowed to warm to 25 °C. Flash chromatographical purification (pentane / diethyl ether = 2:1, silica gel) yielded **85a** as a colourless solid (473 mg, 64% yield) as a single diastereomer.

¹**H-NMR (CDCl₃, 200 MHz):** δ (ppm) = 1.36 (dd, J = 8.70 Hz, 5.04 Hz, 1 H), 1.70 (s, 1 H), 1.81–1.86 (m, 1 H), 2.06–2.18 (m, 1 H), 3.95 (d, J = 8.61 Hz, 1 H), 7.03–7.31 (m, 12 H), 7.41 (d, J = 8.24, 1 H).

¹³C-NMR (C₆D₆, 100 MHz): δ (ppm) = 17.8 (CH₂), 33.0 (CH), 36.1, 73.2 (CH), 126.1 (CH), 126.5 (CH), 126.9 (CH), 128.4 (CH), 128.5 (CH), 128.6 (CH), 129.3 (CH), 130.3 (CH), 130.5 (CH), 131.6, 132.5, 140.8, 144.6, 146.2.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 3320 \text{ (w)}, 1494 \text{ (m)}, 1468 \text{ (m)}, 1446 \text{ (m)}, 1414 \text{ (w)}, 1390 \text{ (w)}, 1198 \text{ (w)}, 1132 \text{ (m)}, 1072 \text{ (m)}, 1030 \text{ (s)}, 986 \text{ (m)}, 968 \text{ (m)}, 882 \text{ (m)}, 846 \text{ (w)}, 820 \text{ (m)}, 768 \text{ (m)}, 756 \text{ (s)}, 736 \text{ (m)}, 698 \text{ (vs)}, 670 \text{ (m)}, 636 \text{ (m)}, 618 \text{ (m)}.$

MS (EI, 70 eV): *m*/*z* (%) = 352 (22), 350 (37), 194 (28), 193 (90), 191 (76), 189 (30), 188 (44), 183 (44), 181 (36), 180 (100), 179 (40), 178 (49), 167 (32), 165 (68), 115 (72), 91 (35), 44 (52).

HRMS (EI): calcd. for C₂₂H₁₈O³⁵Cl: 368.0735, found: 368.0719.

2,2-Diphenylcyclopropyl methyl sulfide (85b)

According to **TP8** the cyclopropane **83a** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (4.40 mL, 4.40 mmol, 1.00 M in THF) at 25 °C for 2 d. The reaction mixture was cooled to -30 °C and *S*-methyl benzenesulfonothioate (829 mg, 4.40 mmol) was added and the reaction mixture was allowed to warm to 25 °C and

stirred for additional 2.5 h. Flash chromatographical purification (pentane / diethyl ether = 9:1, silica gel) yielded **85b** as a colourless solid (351 mg, 73% yield).

mp (°**C**): 64–65.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.49 – 1.56 (m, 2 H), 2.03 (s, 3 H), 2.66 (dd, J = 7.9 Hz, 5.7 Hz, 1 H), 7.05 – 7.29 (m, 10 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 16.9 (CH₃), 23.0 (CH₂), 30.6 (CH), 39.3, 126.8 (CH), 127.2 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 130.5 (CH), 141.2, 146.0.

IR (KBr): \tilde{v} / cm⁻¹ = 3057 (m), 3025 (m), 2015 (m), 1599 (m), 1495 (m), 1446 (s), 1023 (m), 764 (s), 698 (vs), 610 (s).

MS (EI, 70 eV): *m*/*z* (%) = 240 (4), 194 (10), 193 (67), 192 (100), 191 (32), 189 (11), 178 (35), 165 (28), 116 (10), 115 (96), 91 (24).

HRMS (EI): calcd. for $C_{16}H_{16}^{32}S$: 240.0973, found: 240.0985.

Ethyl 4-(2,2-diphenylcyclopropyl)benzoate (85c)

According to **TP8** the cyclopropane **83a** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (4.40 mL, 4.40 mmol, 1.00 M in THF) at 25 °C for 2 d. The reaction mixture was cooled to -30 °C and ZnCl₂ (2.20 ml, 2.20 mmol, 1 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Then Pd(dba)₂ (46 mg, 0.08 mmol), tris-*o*-furylphosphine (38 mg, 0.16 mmol) and ethyl 4-iodobenzoate (1.21 g, 4.40 mmol) were added and the reaction mixture was stirred for 2 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 15:1, silica gel) yielded **85c** as a colourless solid (423 mg, 62% yield).

mp (°C): 68–70.

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.35 (t, J = 7.18 Hz, 3 H), 1.88 (dd, J = 8.92 Hz, 5.45 Hz, 1 H), 2.02–2.05 (m, 1 H), 2.89 (dd, J = 8.92 Hz, 6.69 Hz, 1 H), 4.31 (q, J = 7.18 Hz, 2 H), 6.90 (d, J = 8.17 Hz, 2 H), 7.07–7.21 (m, 6 H), 7.28–7.29 (m, 4 H), 7.74–7.78 (m, 2 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 14.3 (CH₃), 21.5 (CH₂), 32.4 (CH), 40.3, 60.7 (CH₂), 126.1 (CH), 126.5 (CH), 127.3 (CH), 127.7 (CH) 127.8 (CH), 128.1 (CH), 128.4 (CH), 128.9 (CH), 131.1, 139.6, 144.4, 146.5, 166.6.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2978$ (w), 2206 (w), 2190 (m), 2184 (m), 2160 (m), 2030 (m), 2024 (m), 2018 (m), 1974 (m), 1708 (s), 1608 (m), 1498 (m), 1442 (m), 1366 (m), 1314 (m), 1276 (s), 1222 (m), 1184 (m), 1158 (m), 1126 (s), 1116 (s), 1104 (s), 1076 (m), 1052 (m), 1026 (m), 966 (m), 866 (m), 856 (m), 834 (w), 780 (m), 768 (m), 758 (m), 740 (s), 694 (vs), 608 (m).

MS (EI, 70 eV): *m/z* (%) = 343 (15), 342 (60), 313 (23), 297 (19), 270 (22), 269 (100), 264 (24), 192 (46), 191 (82), 179 (21), 178 (30), 165 (39), 115 (18), 91 (29).

HRMS (EI): calcd. for C₂₄H₂₂O₃: 342.1620, found: 342.1616.

1-Chloro-4-(2,2-diphenylcyclopropyl)benzene (85d)

According to **TP8** the cyclopropane **83a** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (4.40 mL, 4.40 mmol, 1.00 M in THF) at 25 °C for 2 d. The reaction mixture was cooled to -30 °C and ZnCl₂ (2.20 ml, 2.20 mmol, 1 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Then Pd(OAc)₂ (4.0 mg, 0.02 mmol), S-Phos (12 mg, 0.03 mmol) and 1-bromo-4-chlorobenzene (881 mg, 4.60 mmol) were added and the reaction mixture was stirred for 2 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 40:1, silica gel) yielded **85d** as a colourless liquid (406 mg, 67% yield).

¹**H-NMR (CDCl₃, 300 MHz):** δ (ppm) = 1.82 (dd, *J* = 8.99 Hz, 5.59 Hz, 1 H), 1.94 (dd, *J* = 6.44 Hz, 5.47 Hz, 1 H), 2.81 (dd, *J* = 8.99 Hz, 6.56 Hz, 1 H), 6.75–6.80 (m, 2 H), 7.03–7.20 (m, 8 H), 7.25–7.28 (m, 4 H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 21.1 (CH₂), 31.7 (CH), 39.5, 126.0 (CH), 126.4 (CH), 127.3 (CH), 127.7 (CH), 128.1 (CH), 128.4 (CH), 129.1 (CH), 131.1, 131.2 (CH), 137.3, 139.8, 146.6.

IR (**ATR**): $\tilde{\nu} / \text{cm}^{-1} = 2226$ (w), 2190 (m), 2158 (m), 2098 (w), 2064 (w), 2032 (m), 2018 (m), 1974 (m), 1718 (m), 1598 (w), 1494 (s), 1444 (m), 1366 (m), 1316 (m), 1278 (m), 1222 (w), 1130 (w), 1092 (m), 1078 (w), 1022 (w), 1012 (m), 908 (m), 836 (m), 818 (m), 768 (m), 748 (s), 732 (m), 718 (m), 696 (vs), 648 (m), 610 (w). **MS** (**EI**, **70** eV): m/z (%) = 306 (26), 304 (91), 269 (72), 226 (49), 192 (62), 191 (100), 179 (28), 178 (46), 165 (53), 115 (16), 91 (17). **HRMS** (**EI**): calcd. for C₂₁H₁₇³⁵Cl: 304.1019, found: 304.1019.

E-1-[2-phenylcyclopropyl]-2-(trifluoromethyl)benzene (**85e**)

According to **TP9** the cyclopropane **83b** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (2.20 mL, 2.20 mmol, 1.00 M in THF) at 25 °C for 8 h. The reaction mixture was cooled to -30 °C and ZnCl₂ (1.10 ml, 1.10 mmol, 1 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Then Pd(dba)₂ (23 mg, 0.04 mmol), tris-*o*-furylphosphine (38 mg, 0.08 mmol) and 1-iodo-2-trifluoromethylbenzene (653 mg, 2.40 mmol) were added and the reaction mixture was stirred for 2 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 20:1, silica gel) yielded **85e** as a colourless liquid (244 mg, 46% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 1.45–1.55 (m, 2 H), 2.20–2.24 (m, 1 H), 2.51–2.52 (m, 1 H), 7.17–7.21 (m, 4 H), 7.27–7.31 (m, 3 H), 7.47–7.50 (m, 1 H), 7.63 (d, J = 7.63 Hz, 1 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 17.5 (CH), 23.6 (CH₂), 27.4 (CH), 124.6 (q, J = 273.9 Hz, CF₃), 125.7 (CH), 125.8 (q, J = 5.7 Hz, CH), 126.0 (CH), 126.1 (CH), 126.2 (CH), 128.4 (CH), 129.5 (q, J = 30.2 Hz), 131.9 (q, J = 1.8 Hz), 140.6 (CH), 141.7.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2190 \text{ (m)}, 2184 \text{ (m)}, 2160 \text{ (m)}, 2030 \text{ (m)}, 2018 \text{ (m)}, 1976 \text{ (m)}, 1718 \text{ (m)}, 1606 \text{ (m)}, 1496 \text{ (m)}, 1458 \text{ (m)}, 1312 \text{ (vs)}, 1278 \text{ (m)}, 1222 \text{ (w)}, 1180 \text{ (m)}, 1154 \text{ (s)}, 1114 \text{ (vs)}, 1076 \text{ (m)}, 1060 \text{ (m)}, 1034 \text{ (s)}, 764 \text{ (s)}, 752 \text{ (s)}, 732 \text{ (m)}, 696 \text{ (vs)}, 652 \text{ (s)}.$

MS (EI, 70 eV): *m/z* (%) = 263 (17), 262 (100), 261 (24), 221 (11), 193 (50), 184 (13), 183 (13), 178 (20), 117 (29), 116 (12), 115 (47), 97 (12), 91 (39), 83 (10), 71 (11), 69 (11), 57 (18), 44 (16).

HRMS (EI): calcd. for C₁₆H₁₃F₃: 262.0969, found: 262.0969.

E-4-[2-phenylcyclopropyl]benzonitrile (85f)

According to **TP9** the cyclopropane **83b** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (2.20 mL, 2.20 mmol, 1.00 M in THF) at 25 °C for 8 h. The reaction mixture was cooled to -30 °C and ZnCl₂ (1.10 ml, 1.10 mmol, 1 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Then Pd(OAc)₂ (4 mg, 0.02 mmol), S-Phos (12 mg, 0.03 mmol) and 4-bromobenzonitrile (256 mg, 2.40 mmol) were added and the reaction mixture was stirred for 2 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 40:1, silica gel) yielded **85f** as a colourless liquid (256 mg, 58% yield).

¹H-NMR (CDCl₃, 300 MHz): δ (ppm) = 1.46–1.62 (m, 2 H), 2.15–2.25 (m, 2 H), 7.12– 7.15 (m, 2 H), 7.17–7.24 (m, 3 H), 7.27–7.33 (m, 2 H), 7.54–7.58 (m, 2 H). ¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 19.0 (CH₂), 28.1 (CH), 29.3 (CH), 109.2, 119.1, 125.8 (CH), 126.2 (2 CH), 128.5 (CH), 132.2 (CH), 141.3, 148.4. IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2226 (m), 2190 (m), 2160 (m), 2030 (m), 2024 (m), 1992 (m), 1974 (m), 1718 (m), 1604 (s), 1510 (m), 1496 (m), 1462 (m), 1366 (w), 1316 (m), 1278 (m), 1222 (m), 1180 (m), 1120 (m), 906 (m), 898 (m), 850 (m), 820 (m), 762 (m), 750 (s), 732 (m), 696 (vs). MS (EL 70 eV): m/z (%) = 220 (16) 219 (100) 218 (91) 217 (12) 204 (36) 203 (20)

MS (EI, 70 eV): *m/z* (%) = 220 (16), 219 (100), 218 (91), 217 (12), 204 (36), 203 (20), 141 (19), 140 (21), 117 (12), 116 (12), 115 (20), 91 (19).

HRMS (EI): calcd. for C₁₆H₁₃N: 219.1048, found: 219.1042.

<u>*E*-Ethyl 4-[2-phenylcyclopropyl]benzoate (85g)</u>

According to **TP9** the cyclopropane **83b** (456 mg, 2.00 mmol) was treated with *i*PrMgCl·LiCl (2.20 mL, 2.20 mmol, 1.00 M in THF) at 25 °C for 8 h. The reaction mixture was cooled to -30 °C and ZnCl₂ (1.10 ml, 1.10 mmol, 1 M in THF) was added and the reaction mixture was allowed to warm to 25 °C. Then Pd(OAc)₂ (4 mg, 0.02 mmol), S-Phos (12 mg, 0.03 mmol) and ethyl 4-bromobenzoate (596 mg, 2.60 mmol) were added and the reaction mixture was stirred for 2 h at 25 °C. Flash chromatographical purification (pentane / diethyl ether = 10:1, silica gel) yielded **85g** as a colourless liquid (271 mg, 51% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 1.39 (t, J = 7.15 Hz, 3 H), 1.49–1.56 (m, 2 H), 2.19–2.25 (m, 2 H), 4.37 (q, J = 6.84 Hz, 2 H), 7.14–7.21 (m, 5 H), 7.29–7.32 (m, 2 H), 7.96–7.98 (m, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 14.3 (CH₃), 18.8 (CH₂), 28.1 (CH), 28.9 (CH), 60.8 (CH₂), 125.4 (CH), 125.8 (CH), 126.0 (CH), 127.9, 128.4 (CH), 129.7 (CH), 141.8, 148.1, 166.5.

IR (ATR): $\tilde{\nu}$ / cm⁻¹ = 2160 (w), 2030 (w), 1974 (w), 1712 (s), 1608 (m), 1366 (m), 1270 (vs), 1180 (s), 1106 (s), 1098 (s), 1020 (s), 850 (m), 778 (s), 764 (s), 740 (s), 696 (vs).

MS (EI, 70 eV): *m/z* (%) = 266 (27), 237 (14), 221 (20), 194 (15), 193 (100), 192 (11), 191 (10), 177 (26), 114 (48), 91 (12).

HRMS (EI): calcd. for C₁₈H₁₈O₂: 266.1307, found: 266.1303.

<u>*E*-Ethyl 4-[2-(4-fluorophenyl)cyclopropyl]benzoate (85h)</u>

A dry and argon-flushed *Schlenk*-flask, equipped with a stirring bar was charged with *i*PrMgCl·LiCl (2.20 ml, 2.20 mmol, 1 M in THF) and dioxane (0.2 mL). *E*-1-(2-bromocyclopropyl)-4-fluorobenzene (**83c**) (394 mg, 2.00 mmol) was added and the reaction mixture was stirred at 25 °C for 12 h. The reaction mixture was cooled to -30 °C and ZnCl₂ (1.1 mL, 1.1 mmol, 1 M in THF) was added. The reaction mixture was allowed to warm to 25 °C and Pd(OAc)₂ (4 mg, 0.02 mmol), S-Phos (12 mg, 0.03 mmol) and ethyl 4-bromobenzoate (596 mg, 2.60 mmol) were added. The reaction mixture was stirred at 25°C for 2 h. Then the reaction mixture was quenched with a sat. aq. NH₄Cl-solution (20 mL) and extracted three times with ethyl acetate (50 mL). The combined organic layers were dried (MgSO₄) and after filtration, the solvent was removed under reduced pressure. Flash chromatographical purification (pentane / diethyl ether 10:1, silica gel) yielded a colourless liquid (307 mg, 54% yield).

¹**H-NMR (CDCl₃, 600 MHz):** δ (ppm) = 1.39 (t, J = 7.15 Hz, 3 H), 1.47–1.49 (m, 2 H), 2.12–2.15 (m, 1 H), 2.19–2.22 (m, 1 H), 4.36 (q, J = 7.15 Hz, 2 H), 6.96–6.99 (m, 2 H), 7.08–7.11 (m, 2 H), 7.15–7.17 (m, 2 H), 7.96–7.97 (m, 2 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 14.3 (CH₃), 18.7 (CH₂), 27.9 (CH), 28.1 (CH), 60.8 (CH₂), 115.2 (d, *J* = 21.5 Hz, CH), 125.4, (CH), 127.3, (d, *J* = 8.1 Hz, CH), 128.0, 129.7 (CH), 137.4, 147.8, 161.3 (d, *J* = 244.0 Hz, CF), 166.5.

IR (ATR): $\tilde{\nu} / \text{cm}^{-1} = 2184$ (m), 2158 (m), 2030 (m), 2018 (m), 1976 (m), 1712 (s), 1608 (s), 1510 (s), 1366 (m), 1316 (m), 1272 (vs), 1226 (s), 1210 (m), 1180 (s), 1158 (m), 1106 (s), 1020 (m), 816 (s), 770 (s), 698 (m).

MS (EI, 70 eV): *m/z* (%) = 284 (21), 255 (12), 239 (30), 212 (19), 211 (100), 210 (10), 209 (11), 196 (25), 133 (21), 115 (23), 109 (17).

HRMS (EI): calcd. for C₁₈H₁₇O₂F: 284.1213, found: 284.1209

5. Curriculum Vitae

Christian Bernhard Rauhut

Personal Information:

Address:	Straubinger Str. 14
	D-80687 Munich
	Germany
Telephone:	+49-89-57081286 / +49-176-21135498
E-Mail:	christian.rauhut@cup.uni-muenchen.de
Date of Birth:	February 8 th 1977
Place of Birth:	Munich, Germany
Nationality:	German

Education and work experience:

	11/2005-12/2008	PhD student in organic chemistry in the group of Prof. Dr.
		Paul Knochel: "Preparation of Functionalized Organo-
		magnesium Reagents by <i>ortho</i> -Magnesiation. Sulfoxide
		Iodine- and Bromine-Magnesium Exchange Reactions." at
		the Ludwig-Maximilians-University Munich
	3/2005-9/2005	Diploma thesis in organic chemistry in the group of Prof Dr
		Thomas Lindel: "Synthesis of the frame of the marine natural
		product Bastadin 5 through macrocyclizing etherification" at
		the Ludwig-Maximilians-University Munich
	2/2004-3/2004	Dve synthesis LambdaChem GmbH & Co KG Munich
	10/2000-2/2005	Undergraduate studies (Vordinlom) and Graduate studies
	10/2000 2/2002	(Diplom) at the Department of Chemistry and Biochemistry
		Ludwig-Maximilians-University Munich
	6/1998-8/2000	Certified chemical technical assistant at the Chemistry
	0/1//0 0/2000	Academy Dr. Erwin Elbardt Munich
	4/1998-6/1998	Practical training in a laboratory for waste water treatment
	4/1/)0-0/1//0	AVA Everstenfeldbruck
	1/1007_2/1008	Alternative civilian service. Munich
	1/177/-2/1770	Alternative civilian service, Mullion
T (1.1	0/1990	Abitur at the Max-Born-Gymnasium, Germening
Language Skil	lls:	
*		

German: mother-tongue English: fluent French: basic education

Publications:

- Christian B. Rauhut, Viet Anh-Vu, Frasier F. Fleming, Paul Knochel, "Preparation of Functionalized Alkylmagnesium Derivatives Using an I/Mg-Exchange", *Org. Lett.* 2008, 10, 1187.
- Christian B. Rauhut, Laurin Melzig, Paul Knochel, *"Meta-* and *Para-*Difunctionalization of Arenes via a Sulfoxide-Magnesium Exchange Reaction", *Org. Lett.* **2008**, *10*, 3891.
- Laurin Melzig, Christian B. Rauhut, Paul Knochel, "*Meta*-and *Para*-Difunctionalization of Arenes via a *Ortho*-Magnesiation and a Subsequent Sulfoxide-Magnesium Exchange", *Synthesis* 2009, *in press*.
- Christian B. Rauhut, Christian Cervino, Arkady Krasovskiy, Paul Knochel, "Stereoselective Preparation of Cyclopropylmagnesium Reagents via Br/Mg-exchange using *i*PrMgCl·LiCl in the Presence of Dioxane", *Synlett* 2009, 67.
- Christian B. Rauhut, Laurin Melzig, Paul Knochel, "Functionalization of Furan, Benzofuran and Thiophene via *ortho*-Magnesiation and Subsequent Sulfoxide-Magnesium Exchange Reaction", *manuscript in preparation*.

Additional experience:

- Tutorials for undergraduates supporting the lecture "Organische Chemie I" in 2003, 2004 and 2005.
- Organization of the "Münchner Industrie-Tag 2006" at the LMU Munich, Germany.
- Organization of the "5th Asian-European Symposium on Metal Mediated Efficient Organic Synthesis", 2008 in Obernai, France.
- Poster presentation at 5th Asian-European Symposium on Metal Mediated Efficient Organic Synthesis, 2008 in Obernai, France.

Personal Skills and Interests:

- Hiking
- Diving (Open water diver & Advanced open water diver)
- Travelling (Discovering other cultures and meet interesting people)