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1. General Introduction 
     During the past decades, organocatalysis has drawn remarkable attention and become a 

highly dynamic chemical research area due to its wide applicability in organic synthesis.1 

One dominating class of organocatalysis is Lewis base catalysis, which is a catalytic process 

accelerated by Lewis bases. Nucleophilic catalysis is also a commonly used term in 

organocatalysis, and it is defined as catalysis by a Lewis base, involving formation of a 

Lewis adduct as a reaction intermediate by IUPAC.2 Among nucleophilic catalysts, donor-

substituted pyridines such as 4-(dimethylamino)pyridine (DMAP), cinchona alkaloids, as 

well as some other simple nitrogen or phosphorous bases are proven to be particular versatile 

and have seen extensive applications in organic synthesis.1,3 At the beginning of this thesis, 

two types of common transformations catalyzed by nitrogen-containing and phosphorus-

containing organocatalysts will be briefly reviewed, and the motives and scope of this thesis 

are introduced as follows. 

 

1.1 Acylation Reactions Catalyzed By DMAP Derivatives 
   The acylation of alcohols and amines is a common transformation that can be promoted by 

a variety of catalysts. The utility of DMAP as active catalyst in acylation reactions was 

described in two pioneering reports almost simultaneously by Litvinenko and Kirichenko,4 

and by Steglich and Höfle5 in the 1960s. Since then it has been applied extensively as catalyst 

in many acylation reactions. Recently, the attention has focused on the development of more 

active achiral catalysts or chiral catalysts for the kinetic resolution of alcohols and related 

enantioselective transformations, which have been the subject of a number of reviews.6-8 

   For the development of new active catalysts, the insights into the mechanism of the 

acylation reaction are helpful, and mechanistic studies have therefore been conducted 

recently by Zipse et al.9,10 The currently accepted consensus mechanism involves the 

preequilibrium formation of an acylpyridinium cation through reaction of DMAP with an 

acyl donor (Scheme 1.1). The alcohol then reacts with the acylated catalyst in the rate-

determining second step to form the ester product together with the deactivated catalyst. 

Regeneration of the latter requires an auxiliary base such as triethylamine. 

 

 

 

 

 



 2

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1. Proposed Mechanism for DMAP-Catalyzed Acylation Reaction. 

 

The importance of the stability of the N-acylpyridinium ion I and the effect on the overall 

reaction rate have been shown in recent work by the Zipse group.9,10  It has also been shown 

that the design of these catalysts can be guided by the stability of their acetyl intermediate as 

obtained from theoretical calculations.11  

  Chiral variants of DMAP (selected examples are summarized in Scheme 1.2) have been 

developed extensively to apply for a catalytic, enantioselective process such as the kinetic 

resolution of racemic alcohols. The first process achieving high selectivity was reported by 

Vedejs et al. in 1996 using C2-symmetric phosphines,12 and later more complex bicyclic 

systems.13,14 Other centrally chiral amine catalysts reported for kinetic resolution of alcohols 

include the (S)-prolinol-derived dihydroisoindolines developed by Oriyama,15 the chiral 

DMAP analogs developed by Fuji and Kawabata,16,17 by Campbell,18 by Yamada,19,20 and by 

Connon.21 The nucleophilic catalyst with axial chirality developed by Spivey22,23 and those 

with planar chirality developed by Fu24 are also quite efficient in the kinetic resolution of 

racemic alcohols. A recent addition to the field concerns the class of sulfur-containing 

heterocycles developed by Birman et al.25 The development of new chiral DMAP catalysts is 

still one of the hot topics in organocatalysis. The strategy used in the development of new 

catalysts in most cases involves a series of preparation, characterization and analysis of new 

compounds and the development procedure is by trial and error. 
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Scheme 1.2. Selected Chiral DMAP Derivatives and Related Chiral Acylation Catalysts. 
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1.2 Morita-Baylis-Hillman Reaction 
  The Morita–Baylis–Hillman (MBH) reaction can be broadly defined as a condensation of an 

electron-deficient alkene and an aldehyde using highly Lewis basic tertiary phosphines or 

amines, such as PPh3 and 1,4-diazabicyclo[2.2.2]octane (DABCO), as catalysts.26 

Nevertheless, these reactions are notoriously slow, often requiring days to reach useful levels 

of conversion. Numerous mechanistic studies have attempted to rationalize the low catalytic 

efficiencies observed.27-29 The Morita–Baylis–Hillman reaction involves a sequence of 

Michael addition, aldol reaction, and β-elimination. A commonly accepted mechanism is 

displayed in Scheme 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.3. Proposed Mechanism for the MBH Reaction. 

 

The catalytic cycle is initiated by the conjugate addition of a Lewis basic catalyst, such as 
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through the action of the Lewis base. This species then attacks the aldehyde, leading to 

formation of the zwitterionic alkoxide III. The involvement of both of these species has been 

supported by the isolation of key reaction intermediates27 related to II and III as well as 

recent NMR28 and ESI-MS29 studies. At this point, the mechanism diverges and two distinct 

pathways lead to the observed products. In the first pathway, proton transfer in IV followed 

by elimination of the Lewis basic catalyst completes the catalytic cycle. The second pathway 

involves attack of the alkoxide III on a second molecule of aldehyde which leads to the 

formation of the zwitterionic hemiacetal V. This intermediate facilitates proton transfer and 

subsequent elimination of the catalyst.30  Recently, the theoretical studies of mechanisms of 

MBH reactions have shown that the proton transfer step is the rate-determining step.31-33 

  Even though a number of mechanistic studies have been reported theoretically and 

experimentally, the good design of efficient catalysts for the MBH reaction is still a challenge 

due to its mechanistic complexity. Most of the efficient catalysts developed for the MBH 

reaction are often directly taken from the simple nitrogen or phosphorus bases, or from the 

chiral pool such as cinchona alkaloids.34   
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1.3 Objective and Synopsis 
   As mentioned above, organocatalysts are currently developed via a sequence of steps 

involving preparation, characterization and analysis. Fast development of new highly 

selective and active organocatalysts is difficult due to the mechanistic complexity of 

organocatalytic transformations and a dearth of appropriate quantitative studies. An 

important aim of research in organocatalysis is to accelerate this process. Theoretical studies 

are becoming an important means for the studies of many issues in organocatalysis besides 

conventionally experimental measures because the development of theories and 

computational methods in quantum mechanics (QM), density functional theory (DFT) and 

molecular mechanics (MM), and the fast increase in computer power have opened up a new 

avenue for solving various vital chemical problems. The task of this thesis is to study the 

organocatalytic transformation and investigate factors influencing the activity and selectivity 

of nucleophilic organocatalysts by theoretical methods.      

  This thesis is organized as follows. In Chapter 2, the concept of methyl cation affinity 

(MCA) is introduced and the methodology is discussed about how to calculate the MCA 

values accurately. The use of MCA values as a general descriptor for organocatalytic 

reactivity is discussed. In Chapter 3, the energy difference between the adducts formed by re 

and si face attack to Mosher’s cation (MOSCAre-si) is proposed as a measure of 

stereoinductive potential, by taking the example of cinchona alkaloids. In many 

organocatalytic transformations neutral electrophiles react with neutral nucleophiles to give 

zwitterionic adducts at some stage of the catalytic cycle such as in the MBH reaction. In 

order to identify theoretical methods suitable for the reliable description of the formation of 

zwitterionic adducts, a series of theoretical methods have been investigated in Chapter 4. 

Then, the issues concerning the reactivities and selectivities of organocatalysts in acylation 

reactions are explored. In Chapter 5, the critical design element for acyl-transfer catalysts is 

discussed, meanwhile, the OPLS-AA force field for DMAP derivatives is developed, which 

is helpful to solve conformational search problems during practical calculations. Theoretical 

predictions of the stereochemical outcome of enantioselective acylation reactions are 

discussed in Chapter 6. The factors affecting the selectivity of chiral analogs of 4-

(dimethylamino)pyridine in nonenzymatic enantioselective acylations are discussed and a 

new catalyst with potential high selectivity is suggested. From the perspective of catalysis 

research, 3-amino-1-(2-aminoimidazol-4-yl)-prop-1-ene, a common intermediate in natural 

product synthesis, may be used as an ideal starting point for the development of new 

organocatalysts due to the existence of its potentially four different active sites, based on the 
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assumption of the comparable stability of its various tautomeric forms. The tautomeric 

equilibria in 3-amino-1-(2-aminoimidazol-4-yl)-prop-1-ene have thus been studied 

quantitatively in Chapter 7.  
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2. Methyl Cation Affinity – a General Descriptor of Organocatalytic 
Reactivity 
 
2.1 Introduction 
   A multitude of N- and P-centered bases have recently been tested in their ability to act as 

catalysts in organocatalytic transformations.1 These include secondary and tertiary aliphatic 

amines, pyridines, imidazoles, and tertiary aliphatic and aromatic phosphines, as well as 

combinations thereof as in the quinuclidine bases. Variations in the observed catalytic 

activities have often been rationalized on the basis of variable basicities of the respective 

catalysts. The proton basicities represented by proton affinity (PA) data or pKa data used in 

this process undoubtedly reflect the affinity of basic compounds towards electrophilic species 

in general,35 however, most organocatalytic transformations involve initial nucleophilic 

attack of the catalyst at electrophilic carbon. This type of nucleophilic reactivity may better 

be described by affinity data towards a carbon-based electrophile such as the methyl 

cation,36,37,38 which is termed as methyl cation affinity (MCA). MCA and PA data are defined 

in this context as the reaction enthalpies at 298 K for the transformations shown in equations. 

2.1a and 2.1b. 

           

 

H-Nuc+                       H+   +  Nuc        (2.1a) 

 

CH3-Nuc+                    CH3
+  +  Nuc     (2.1b) 

 

 

That MCA has received little attention in the past is simply due to the lack of reliable 

experimental or theoretical data of this kind. Therefore, in this chapter the performance of 

various theoretical methods for the accurate prediction of methyl cation affinities (MCA) of 

organic bases are first explored and discussed. Then, the theoretical procedure identified to 

provide accurate MCA values is used to calculate MCA values for a wide variety of N- and 

P-based organocatalysts. Correlations between MCA and PA have then been used to identify 

factors leading to the potentially poor predictive value of PA or pKa data.  

 

 

 

  PA 

  MCA 
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2.2 Assessment of Theoretical Methods for Calculations of Methyl Cation Affinities 
 
2.2.1 Using NH3 and PH3 as Model Systems 
   A rigorous comparison of various theoretical methods to model the MCAs of nitrogen and 

phosphorous bases was carried out by first taking small molecules NH3 and PH3. The 

theoretical methods tested here include the compound model chemistries G2,39 G3B3,40 G3,41 

and W1;42,43 and four different density functional theory (DFT) methods, PBEPBE,44 

MPWB95,45,46 B3LYP,47,48,49 B98;50,51,52 as well as CCSD(T) and MP2 calculations with the 

frozen-core (FC) approximation or with all electrons correlated (full). DFT and MP2 

calculations have been performed using a variety of basis sets developed by Pople and 

coworkers53,54 and by Dunning and coworkers.55,56,57 The experimental MCA values58,59 for 

these two systems are incidentally almost identical with +441 and +440 kJ/mol, respectively. 

The deviations between experimentally measured and theoretically calculated MCA values 

ΔMCA = MCA(calc.) - MCA(exp.) for a variety of methods have been collected in Table 2.1, 

positive values indicating MCA(calc.) > MCA(exp.). 

  Good results are obtained using the compound methods G2, G3B3, G3, and W1, the largest 

deviation for NH3 being obtained at G2 level (-5 kJ/mol) and for PH3 at the W1 level (+7 

kJ/mol). Our apprehension that the latter is due to differences between the implementation of 

the W1 method in Gaussian03 (H decontracted in the MTsmall basis set) and the original 

description (H contracted in the MTsmall basis set) was found to be incorrect as both 

approaches produce practically identical results. Whether or not f functions are used on 

phosphorous also is of little relevance for the results obtained for PH3. The results obtained at 

G2, G3B3, and G3 level are in good agreement with those obtained at the more rigorous 

CCSD(T)/aug-cc-pVTZ level, indicating little problems with the additivity assumptions or 

the geometries used in these compound methods.  
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Table 2.1. MCA Values (kJ/mol) for NH3 and PH3 Obtained at Various Levels of Theory, 

Compared with Experimental Values. 

 

 NH3 PH3 
Exp.a +441 +440 
ΔMCA(kJ/mol)b 

   
G2 -5.0 0.0 
G3B3 -3.0 -1.0 
G3 -2.5 +0.2 
W1 (H decontracted) 0.0 +7.0 
W1 (H contracted) -0.4 +6.7 
W1 (H contracted, without f on P) -0.4 +7.2 
CCSD(T)/aug-cc-pVQZc -1.1 +2.9 
   
PBEPBE/6-31++G(d,p) +30.0 +21.0 
MPWB95/6-31++G(d,p) +22.0 +11.0 
B3LYP/6-31G(d) +21.0 -11.0 
B3LYP/6-31++G(d,p) -5.0 -13.0 
B3LYP/6-311++G(d,p) -9.0 -13.0 
B3LYP/aug-cc-pVDZ+2df//B3LYP/6-31G(d) -8.0 -8.0 
B3LYP/6-31++G(2df,p)//B3LYP/6-31G(d) -8.0 -8.0 
B3LYP/cc-pVTZ+dd -1.8 -4.0 
B98/6-31G(d) +27.9 -5.4 
B98/6-31++G(d, p) +3.5 -7.0 
B98/6-31++G(2df,p)//B98/6-31G(d) +1.0 -1.4 
B98/6-31++G(2df,p) +1.0 -0.7 
B98/6-311++G(2df,p) -1.2 +2.0 
B98/cc-pVTZ+d +6.2 +2.4 
   
MP2(FULL)/6-31G(d)c +30.6 +10.9 
MP2(FC)/6-31G(d, p) +22.0 +8.0 
MP2(FC)/6-31++G(d,p) +0.5 +7.0 
MP2(FULL)/6-31++G(d,p) +2.5 +10.0 
MP2(FC)/aug-cc-pVDZ -4.4 -2.1 
MP2(FC)/aug-cc-pVTZ +2.3 +17.2 
MP2(FULL)/aug-cc-pVTZ +9.7 +28.0 
MP2(FC)/6-311G(d, p)//MP2(FULL)/6-31G(d) +16.4 +11.0 
MP2(FC)/6-311+G(d,p)//MP2(FULL)/6-31G(d) +1.2 +20.3 
MP2(FC)/6-311G(2df,p)//MP2(FULL)/6-31G(d) +19.3 +18.7 
MP2(FC)/6-311+G(3df,2p)//MP2(FULL)/6-31G(d) +3.3 +18.6 
MP2(FC)/AVDZ+2df//B3LYP/cc-pVTZ+d -5.2 +6.6 
MP2(FC)/AVTZ+2df//B3LYP/cc-pVTZ+d +2.2 +21.3 
MP2(FC)/AVQZ+2df//B3LYP/cc-pVTZ+d +4.6 +25.3 
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Table 2.1. Continued 
 NH3 PH3 

SCS-MP2(FC)/AVDZ+2df//B3LYP/cc-pVTZ+d -19.7 -12.2 
SCS-MP2(FC)/AVTZ+2df//B3LYP/cc-pVTZ+d -14.4 +1.1 
SCS-MP2(FC)/AVQZ+2df//B3LYP/cc-pVTZ+d -12.3 +5.0 
    
MP2(FC)/6-31++G(d,p)//B98/6-31G(d) +0.6 +7.0 
MP2(FC)/6-31++G(2d,p)//B98/6-31G(d) -4.8 +8.4 
MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) -4.5 +8.5 

a Experimental values from the NIST chemistry webbook; b ΔMCA=MCAcalc. –MCAexp.; c Thermal corrections 
have been taken from G3 theory; d Following the notation of Martin et al.,42,43 the “cc-pVTZ+d” indicates the 
addition of a high-exponent d-type function to the cc-pVTZ basis set for second-row elements, the exponent 
having been set equal to the highest d exponent in the corresponding cc-pV5Z basis set. 
 

The predictive power of the two GGA functionals (PBEPBE and MPWB95) chosen here is 

rather moderate, while much better results are obtained with the two hybrid functionals (B98 

and B3LYP). B98 performs better than B3LYP that has larger errors for PH3. In how far the 

hybrid DFT methods respond sensitively to the basis set choice was subsequently tested for 

B98 and B3LYP. In line with earlier systematic studies of basis set effects in PA 

calculations,60,61,62 poor results are obtained with basis sets lacking diffuse basis functions. 

Addition of further polarization functions improve the B98/6-31++G(d,p) results especially 

for PH3, and very good results are thus obtained at the B98/6-31++G(2df,p) level for both 

systems with ΔMCA = +1.0 (NH3) and -0.7 (PH3). Despite the pronounced effect of diffuse 

and polarization basis functions on the reaction energetics, geometries optimized with much 

smaller basis sets appear to be perfectly suitable for the calculation of accurate MCA values. 

This is exemplified by the similarity of the B98/6-31++G(2df,p) and B98/6-

31++G(2df,p)//B98/6-31G(d) results. Going from a double to a triple zeta basis set such as 6-

311++G(2df,p) has a comparatively minor effect, leading to a slightly lower MCA value for 

NH3 and a slightly higher value for PH3. Similar observations can be made for the results 

obtained at MP2 level, where the best MCA values are obtained with the aug-cc-pVDZ and 

6-31++G(d,p) basis sets. That this is, to some extent, the result of fortuitous error 

cancellation can be seen from the MCAs calculated with the AVxZ+2df basis sets used in the 

framework of W1 theory. Increasing basis set size with x = 2, 3, and 4 leads for both systems 

to increasingly large MCA values, overshooting the experimental values in particular for 

PH3. That error cancellation can also be perturbed through including all electrons in the 

correlation calculation is seen by comparing the MP2(FC)/6-31++G(d,p) and MP2(FULL)/6-

31++G(d,p) results. For both systems the MCA values become more positive on inclusion of 
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all electrons in the correlation calculation, leading to larger deviations at MP2(FULL) than at 

MP2(FC) level. The same trend can be noted in MP2 calculations with the aug-cc-pVTZ 

basis set with somewhat larger absolute deviations. Application of the spin-component-scaled 

(SCS) scaling procedure63 does, for these two cases, not lead to drastically improved results. 

The good results obtained with MP2(FC)/6-31++G(d,p) persist when using B98/6-31G(d) 

instead of MP2 geometries. Addition of a second d function or elimination of diffuse 

functions on hydrogen lead to slightly higher deviations as compared to MP2(FC)/6-

31++G(d,p)//B98/6-31G(d). For NH3 and PH3 we can thus conclude that kJ/mol accuracy is 

obtained either at the G3 level or using the B98 hybrid functional in combination with the 6-

31++G(2df,p) basis set. 

  Structural parameters calculated for the methyl cation adducts of NH3 and PH3 show little 

variation with the employed level of theory. The experimentally determined structure for 

NH3 (r(N–H) = 101.2 pm, a(HNH) = 106.67˚)64 is practically identical to that calculated at 

CCSD(T)/aug-cc-pVQZ level (r(N–H) = 101.3 pm, a(HNH) = 106.55˚). A similarly good 

agreement is found for PH3 (exp.: r(P–H) = 141.6 pm, a (HPH) = 93.56˚; calc.: r(P–H) = 142.1 pm, 

a(HPH) = 93.56˚).64 It should be noted that the calculated geometries refer to a motionless state 

at the minimum of the potential energy surface, while the experimental structures refer to 

ground-state geometries including zero-point motion. Considering the largely similar 

structural data obtained at CCSD(T)/aug-cc-pVQZ and all other levels listed in Table 2.2 it 

appears that the methodological choice for geometry optimizations is indeed not critical for 

the evaluation of exact thermochemical values. The key structural elements related to the 

formation of methyl cation adducts of organic bases are (a) the length of the newly formed X-

CH3 bond r(C–X) (X = N, P) and (b) the pyramidalization of the nitrogen/phosphorous center 

as indicated by the dihedral angle d(H/X/H/H) (Scheme 2.1). 

 

 

 

 

 

 

 

Scheme 2.1.  
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Table 2.2. Structural Parameters r(C–X) [pm], d(H/X/H/H) for CH3XH3
+ and Δd (H/X/H/H) for NH3 

(X=N) and PH3 (X=P) Calculated at MP2, B3LYP, B98, and CCSD(T) Levels of Theory.  
 

level of theory r(C–X) 
[pm] 

d(H/X/H/H) 
[CH3XH3

+] 
Δd(H/X/H/H)

 

NH3    
MP2(FULL)/6-31G(d) 150.8 115.0 +2.0 

MP2(FC)/6-31++G(d,p) 150.6 115.1 -1.6 
MP2(FC)/aug-cc-pVDZ 150.4 115.6 +2.2 
MP2(FC)/aug-cc-pVTZ 150.4 115.6 +1.7 

B3LYP/6-31G(d) 151.7 115.0 +3.1 
B3LYP/6-31++G(d,p) 151.6 115.2 -1.5 
B3LYP/cc-pVTZ+d 151.3 115.4 +2.0 

B98/6-31G(d) 151.5 115.0 +2.9 
B98/6-31++G(d,p) 151.4 115.2 -1.2 

B98/6-31++G(2df,p) 151.2 115.4 +0.6 
B98/6-311++G(2df,p) 151.0 115.3 +0.3 

B98/cc-pVTZ+d 151.0 115.4 +2.5 
CCSD(T)/aug-cc-pVQZ 150.7 115.6 +2.1 

PH3    
MP2(FULL)/6-31G(d) 180.0 114.7 19.7 

MP2(FC)/6-31++G(d,p) 179.8 114.7 19.5 
MP2(FC)/aug-cc-pVDZ 181.2 114.4 20.5 
MP2(FC)/aug-cc-pVTZ 179.2 114.3 20.4 

B3LYP/6-31G(d) 181.4 113.7 20.1 
B3LYP/6-31++G(d,p) 181.4 113.7 19.8 
B3LYP/cc-pVTZ+d 179.5 113.9 20.3 

B98/6-31G(d) 181.3 113.8 20.0 
B98/6-31++G(d,p) 181.2 114.0 20.0 

B98/6-31++G(2df,p) 180.2 113.9 20.3 
B98/6-311++G(2df,p) 179.8 114.1 20.5 

B98/cc-pVTZ+d 179.5 113.9 20.3 
CCSD(T)/aug-cc-pVQZ 179.4 114.3 20.6 

 
This latter parameter is expected to change significantly on going from the neutral 

nucleophile to the corresponding methyl cation adduct. The magnitude of this dihedral angle 

change Δd(X) as defined by eq. (2.2) is a quantitative measure of the structural 

reorganization of the nucleophile on reaction with the methyl cation. 

Δd(X) = d(H/X/H/H) (CH3XH3
+) – d(H/X/H/H) (XH3)  (2.2) 

According to this definition negative values indicate enhanced pyramidalization of the 

nucleophile during electrophilic addition. As already indicated by the insensitivity of the 

MCA values as a function of the underlying geometry there are little differences between the 

geometrical parameters collected in Table 2.2 calculated at different levels of theory. Thus, 
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the C-N bond length in CH3NH3
+ is predicted to be around 151 pm, while the C-P bond 

length varies around 181 pm in CH3PH3
+. The pyramidalization angles d(H/X/H/H) are predicted 

to be rather similar in CH3NH3
+ and CH3PH3

+, but the Δd(H/X/H/H) are not: while rather small 

differences exist in the pyramidalization of NH3 and CH3NH3
+ (leading to small Δd(H/N/H/H) 

values), PH3 is significantly more pyramidalized (with d(H/P/H/H) values around 95°) than 

CH3PH3
+ (with d(H/P/H/H) values around 114°), leading to large positive values for Δd(H/P/H/H). 

This indicates that phosphorous nucleophiles may generally show a much larger structural 

reorganization than comparable nitrogen nucleophiles on reaction with electrophiles. 

Reorganization energies (calculated as the energy difference between the base in its 

optimized gas phase structure and in its structure assumed in the methyl cation adduct) are 

indeed much larger for PH3 (+34.3 kJ/mol) than for NH3 (+1.7 kJ/mol) at the G3 level of 

theory. 

 

2.2.2 Using Small Neutral and Anionic Nuleophiles as Model Systems 
  A larger data set including small neutral and anionic nucleophiles shown in Table 2.3 was 

used to test whether the conclusions reached for NH3 and PH3 are consistent. These small 

model systems include strong, anionic nucleophiles such as NH2
- and OH- as well as weakly 

nucleophilic neutral systems such as HF and HCl. As a consequence the experimentally 

measured MCA values for these systems span a range of more than 1100 kJ/mol. The 

performance of a selection of methods was in this case tested by the mean absolute deviation 

(MAD) values over the complete data set and by selecting certain subsets such as neutral or 

anionic nucleophiles (MAD(n) and MAD(a)) or systems containing first- or second-row 

elements (MAD(1) and MAD(2)). Generally, the compound methods such as G2, G3B3, G3, 

and W1 make very good predictions for the complete data set. The predictive quality is 

usually somewhat better for first-row than for second-row elements. This trend is most 

clearly seen for the W1 method, giving excellent results for the first-row systems, but less 

accurate results for systems containing second-row elements. As a consequence, the results 

obtained at W1 level are not better than those obtained at G3 level, despite the significantly 

larger computational effort. Less accurate results are obtained at B3LYP or MP2 level, much 

in line with the observations made already for NH3 and PH3. For both methods the 

predictions can be drastically improved through combination with basis sets including diffuse 

basis functions. Comparison of MAD values for the respective subsets of the bases shows 

that this is mainly due to the poor results obtained for anionic bases, the effect being 

particularly large for systems containing first-row elements only. For calculations at MP2 
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level the use of B98/6-31G(d) (instead of MP2) geometries leads to a difference of only 0.4 

kJ/mol in the overall MAD value. The computationally most economical method B98/6-

31++G(2df,p)//B98/6-31G(d) gives surprisingly good results for the complete data set with 

MAD values only slightly higher than G3. 
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Table 2.3. MCA Values (in kJ/mol) for Neutral and Anionic Bases Obtained at Various Levels of Theory. 

 Exp.a G2 G3B3 G3 W1 B3LYP-1b B3LYP-2b B98b MP2-1b MP2-2b MP2-3b MP2-4b MP2-5b 

NH3 441 436 438 438.5 440.9 439.2 432 442 463 441.5 441.6 436.2 436.5 
H2O 279 276 275 276 278.3 287.9 274 282.6 301 273.7 273.8 267.4 267.7 
HF 125 124 121 122.6 125.2 141.9 122 129.5 152 114.3 113.3 114.0 114.1 
PH3 440 440 439 440.2 447 436.0 427 438.6 448 447 447 448.4 448.5 
H2S 340 336 337 337.0 343.5 338.1 327 342.2 338 338.1 337.5 340.5 340.3 
HCl 204 200 197 197.5 200.6 199.9 187 204.9 188 187.4 186.7 191.0 190.8 
NH2

- 1234 1225 1232 1231.1 1230.6 1306.7 1223 1235.9 1489 1231.1 1231.6 1225.0 1227.0 
OH- 1159 1153 1159 1158.4 1158.6 1254.4 1149 1166.9 1314 1142.9 1141 1138.4 1139.4 
F- 1080 1078 1080 1082.2 1082.8 1178.5 1065 1085.7 1263 1051.5 1050 1051.2 1052.7 

PH2
- 1116 1124 1121 1121.3 1127.7 1149.6 1109 1118.6 1180 1133.7 1132.6 1129.8 1130.9 

SH- 1033 1034 1032 1031.7 1036.7 1057.3 1016 1029.4 1083 1039.7 1039.1 1031.6 1031.7 
Cl- 952 950 946 947.9 949.6 967.3 925 943 985 941.3 940.2 934.8 935.0 

MADc - 3.2 3.0 2.8 3.3 31.5 12.3 3.7 69.8 10.4 10.8 11.7 11.3 
MAD(n) - 2.8 3.7 2.9 2.5 6.3 10.0 2.3 16.2 7.0 7.4 8.2 8.1 
MAD(a) - 4.7 2.3 2.7 4.1 56.6 14.5 5.1 123.3 13.8 14.2 15.1 14.5 
MAD(1) - 4.3 2.2 2.3 1.3 49.0 8.8 4.1 110.7 10.7 11.3 14.3 13.4 
MAD(2) - 3.2 3.8 3.4 5.3 13.9 15.7 3.3 28.8 10.1 10.2 9.1 9.2 

a Experimental values from the NIST chemistry webbook;58 b "B3LYP-1 = B3LYP/cc-pVTZ+d; "B3LYP-2" = B3LYP/6-311++G(d,p); "B98" = B98/6-31++G(2df,p)//B98/6-
31G(d); "MP2-1" = MP2/6-31G(d,p); "MP2-2" = MP2/6-31++G(d,p); "MP2-3" = MP2/6-31++G(d,p)//B98/6-31G(d); "MP2-4" = MP2/6-31++G(2d,p)//B98/6-31G(d); 

"MP2-5" = MP2/6-31+G(2d,p)//B98/6-31G(d); c "MAD" = mean absolute deviation from experiment over the complete data set, calculated as cal. exp.
1

n

i
i

MCA MCA n
=

−∑ ; 

"MAD(n)" = mean absolute deviation from experiment for all neutrals; "MAD(a)" = mean absolute deviation from experiment for all anions; "MAD(1)" = mean absolute 
deviation from experiment for first-row systems; "MAD(2)" = mean absolute deviation from experiment for second-row systems. 
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2.2.3 Using Small Nitrogen- and Phosphorous-Containing Bases as Model Systems 
    In order to test the performance of the methods described in Table 2.3 for the MCAs of 

larger systems, we have selected a small group of nitrogen- and phosphorous-containing 

compounds representing frequently occurring substructures of organocatalysts (Table 2.4, 

Scheme 2.2). In addition, a number of structurally related cyclic nitrogen compounds such as 

pyrrole have also been studied for comparison. Some of these bases offer more than one basic 

center and only methyl cation addition to the most reactive center has been included in this 

study (as indicated by the arrows in Scheme 2.2). Experimentally measured MCA values are 

not available for these systems and the G3 values are therefore used as the reference in this 

case. The MAD values collected in Table 2.4 thus have to be compared to the difference 

between the MADs in Tables 2.1 and 2.3 and those obtained for the G3 method. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2.2. 
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Table 2.4. MCA Values (in kJ/mol) for Selected Larger Neutral Bases Obtained at Various 
Levels of Theory. 
Systems G3 B98-1a B98-2a MP2-3a MP2-4a MP2-5a MP2-6a 

Pyrrole (C2) 477.3 477.0 499.1 467.3 466.8 466.7 467.0 

Pyrazole (N2) 492.2 495.9 509.6 481.7 484.4 484.7 488.2 

N-methylpyrrole 

(C2) 

503.6 499.0 519.9 493.4 492.6 492.6 492.7 

Pyridine 519.2 520.7 533.3 517.2 518.4 518.7 521.1 

Imidazole (N3) 534.6 535.9 552.4 531.4 531.3 531.7 535.0 

Quinoline 535.4 536.2 549.9 528.3 531.7 531.8 534.8 

Pyrrolidine 538.2 533.1 550.3 542.2 541.1 541.4 541.4 

NMe3 540.7 521.6 535.5 540.4 542.1 542.6 542.7 

N-methylimidazole 

(N3) 

552.5 553.4 568.7 549.1 549.7 550.0 553.0 

DABCO 560.0 546.0 558.8 562.4 562.0 562.2 563.5 

Quinuclidine 578.1 560.9 572.8 579.8 580.4 580.6 581.7 

PMe3 604.7 593.6 591.2 594.6 603.3 604.2 605.9 

PMe2Ph 611.3 600.1 600.4 597.3 608.0 608.5 610.7 

MADb - 7.0 12.8 6.1 4.1 4.0 3.3 
a "B98-1" = B98/6-31++G(2df,p)//B98/6-31G(d); "B98-2" = B98/6-31G(d); "MP2-3" = MP2/6-
31++G(d,p)//B98/6-31G(d); "MP2-4" = MP2/6-31++G(2d,p)//B98/6-31G(d); "MP2-5" = MP2/6-
31+G(2d,p)//B98/6-31G(d); "MP2-6" = MP2/6-311+G(2d,p)//B98/6-31G(d); b "MAD" = mean absolute 

deviation from G3 results over the complete data set, calculated as cal. cal.
1

(G3)
n

i
i

MCA MCA n
=

−∑ . 

  

  The smallest MCA value in this list of compounds has been calculated for pyrrole. Addition 

to the C2 position is significantly more favorable in this case than addition to N1 or C3 

(MCAs are 376.4 kJ/mol for N1 and 436.7 kJ/mol at C3 at MP2-5 level). This selectivity is in 

line with the relative proton affinities of these three positions.65 A methyl group at N1 as in 

N-methylpyrrole leads to slightly higher absolute MCA values, but has little influence on the 

regioselectivity of methylation. Higher MCA values are found for heterocycles containing 

formally sp2 hybridized nitrogen (imidazole, pyridine, N-methylimidazol) and simple 

aliphatic amines. The highest MCAs are found for the bicyclic amines DABCO and 

quinuclidine, and for trimethylphosphine. It is noteworthy that PH3 and PMe3 differ much 

more in their MCA values (440.2 vs. 604.7 kJ/mol) than NH3 and NMe3 (438.5 vs. 540.7 

kJ/mol, all at G3 level). This trend can also be observed in theoretically calculated66,67 or 
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experimentally measured58 proton affinities of these species (PH3 vs. PMe3 = 785.0 vs. 958.8 

kJ/mol, but NH3 vs. NMe3 = 853.6 vs. 948.9 kJ/mol) and appears to reflect the higher 

polarizability of phosphines compared to amines.66,67 In contrast to the results obtained for 

the smaller model systems (Table 2.1 and 2.3) we find for the larger systems in Table 2.4 that 

the results obtained at G3 and B98 level deviate significantly. Moreover, the deviation from 

the G3 results is significantly larger for all systems containing sp3 hybridized nitrogen or 

phosphorous, indicating a systematic origin of this behaviour. 

  In contrast, the performance of the MP2 level is somewhat better now with MAD values of 

around 4 kJ/mol, while a difference of around 8 kJ/mol to the G3 results was obtained for the 

smaller model systems. Best results are obtained at the MP2 level using the 6-311+G(2d,p) 

basis set, closely followed by those obtained with the more economical 6-31+G(2d,p) basis 

set. The MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level thus appears to be the most promising 

approach for the treatment of the large, flexible structures common to the field of 

organocatalysis. 

 

2.2.4 Conclusions  
   MCAs for a large variety of neutral and anionic bases can be predicted accurately with 

compound methods such as G2, G3 or W1. The predictive ability of MP2 calculations is 

slightly lower, but still practically useful. The calculated MCAs depend little on the methods 

used for structure optimization and the MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) method may 

thus offer an affordable option for the characterization of even the largest currently used 

organocatalysts. The performance of the B98 hybrid functional depends strongly on the size 

of systems at hand. The present study reveals that even when DFT methods work 

spectacularly well for small model systems, they fail to carry on their good performance to 

larger systems, a trend noticed recently in several other studies.68,69 In contrast, the 

conventional ab inito methods do not show a major weakness as the size of the system 

increases. This makes the use of hybrid DFT methods for the characterization of 

organocatalysts unsuitable. 
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2.3 Methyl Cation Affinities (MCAs) of Commonly Used Organocatalysts 
  Using a theoretical procedure identified to provide accurate methyl cation affinities even for 

large molecular systems in section 2.2, a set of computed MCA values for a wide variety of 

N- and P-based organocatalysts are presented here. 

  

2.3.1 MCA Values of Commonly Used Organocatalysts 
  Figure 2.1 compiles the MCA values for nitrogen and phosphorous nucleophiles listed in 

Table 2.5 in a graphical manner. The MCA of pyridine (1) is rather low at 518.7 kJ/mol but 

can be enhanced considerably by donor substituents at the C4-position as in 4-

(dimethylamino)pyridine (4-DMAP, 27), 4-pyrrolidinopyridine (PPY, 29), 4-

(tetramethylguanidyl) pyridine (25), annulated pyridine derivative 32, and the 3,4-

diaminopyridine 33. The MCA differences between pyridines 1, 25, 27, 29 and 32 are 

slightly smaller than those found earlier for reaction with the acetyl cation.70,71 The absolute 

MCA values of 1, 27 and 29 are much larger than the affinities of these pyridines towards the 

benzhydrylium cation,72 but the affinity differences are rather comparable. Enlargement of 

the π-system through benzoanellation as in quinoline (4) also leads to higher MCA values, as 

does substitution of 4 with methyl and methoxy substituents (as in 10 and 16). The MCA 

value for 10 of 542.7 kJ/mol is significantly smaller than that for methyl cation addition to 

the quinoline nitrogen in the cinchona alkaloids cinchonidine (12) and cinchonine (13).  
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Figure 2.1. Structures of N- and P-Centered Organocatalysts Ordered by Their MCA Values. 

 

In the absence of any specific interactions between the methyl group attached to the quinoline 

nitrogen and the chiral substituent located at C4, this difference of around 10 kJ/mol reflects 

differences in the polarizability of 10 and 12/13. The very similar values obtained for 12 and 

13 (552.1 vs. 552.4 kJ/mol) indicate that the stereochemistry at the C8/C9 chiral centers has 

little influence on the stability of methyl cation adducts. This observation can also be made 
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for the MCA values for the quinoline nitrogen atoms in quinidine (18) and quinine (22) at 

561.8 and 563.9 kJ/mol. The absolute values are now much larger than those for 12 and 13 

due to the methoxy substituent at C6 position of the quinoline ring. The MCAs of imidazoles 

are intrinsically somewhat higher than those of pyridines. Addition of alkyl substituents to 

the parent system 3 as in N-methylimidazole (11) and in 1-methyl-5-ethylimidazole (24) 

enhance the methyl cation affinity quite significantly, leading to a MCA of 569.1 kJ/mol for 

24.73 The methyl cation affinities of tertiary aliphatic amines are mainly guided by the 

structure of the alkyl groups and their potential to stabilize positive charge through inductive 

effects. The lowest MCA is therefore obtained for trimethylamine (9), the values for 

triethylamine (20) and quinuclidine (26) being larger by 19.7 and 38.0 kJ/mol, respectively. 

The MCA of Huenig’s base (14) is actually lower than that for 20, due to steric repulsion 

between the methyl cation and the isopropyl substituents. The cation stabilizing effects of 

alkyl substituents can be reduced through introduction of electron-withdrawing substituents 

as in DABCO (19), 3-chloroquinuclidine (17), and 3-quinuclidinone (7). The MCA values 

for the quinuclidine nitrogen centers in the cinchona alkaloids 12 and 13 are both very similar 

to that of quinuclidine (26) itself, again indicating little influence of the stereochemistry at 

the C8 and C9 positions on adduct formation. Addition of a methoxy substituent to the 

quinoline ring has a surprisingly large influence on the methyl cation affinities of the 

quinuclidine nitrogen atom in cinchona alkaloids. This enhancement amounts to 8 kJ/mol in 

13/18 and to 10 kJ/mol in 12/22. The quinuclidine nitrogen atom in quinine (22) thus 

represents the center of highest MCA at 594.7 kJ/mol in the cinchona alkaloid systems 

considered here. A similar observation has been made in binding affinity measurements of 

cinchona alkaloids toward OsO4.74 The much higher MCA values of the quinuclidine 

nitrogen atoms in cinchona alkaloids as compared to the respective quinoline nitrogen atoms 

are, of course, in agreement with the outcome of alkylation reactions, which exclusively 

favor alkylation of the N(sp3) nitrogen atom.  

  The largest MCA values calculated here are those for the amidine bases such as 1,8-

diazabicyclo [5.4.0]undec-7-ene (DBU, 36) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN, 37), 

the sulfursubstituted derivative 30,75 and tertiary phosphanes. A very large difference in 

MCA values exists between phosphanes and amines of identical substitution pattern, the 

difference between trimethylamine (9) and trimethylphosphane (34) amounting to 61.6 

kJ/mol. The MCA of phosphanes can be enlarged further through introduction of appropriate 

aromatic and aliphatic substituents. How these motifs can be combined into the design of 

chiral catalysts has recently been demonstrated with phosphanes 38 and 41.14,76 
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Table 2.5 Methyl Cation Affinity (MCA) and Proton Affinity (PA) Data (in kJ/mol). 
 

 MCAa PAa MCA/PAa Exp.b MCAf 

1 518.7 922.6 0.562 930.0, 924.0c 519.2 
2 (pyridyl N) 526.7 961.3 0.548 - - 
3 (N3) 531.7 935.8 0.568 942.8 534.6 
4 531.8 941.7 0.565 953.2, 948.0c 535.4 
5 (N) 532.4 939.2 0.567 920.5, 947.0d - 
6 532.8 938.7 0.567 - - 
7 535.2 934.7 0.573 936.0 - 
8 539.8 949.8 0.568 948.3 538.2 
9 542.6 948.0 0.572 948.9 540.7 
10 542.7 954.2 0.569 - - 
11 (N3) 550.0 956.5 0.575 959.6 552.7 
12 (N(sp2)) 552.1 964.1 0.573 - - 
13 (N(sp2)) 552.4 964.8 0.573 - - 
14 553.8 994.1 0.557 994.3 - 
15 554.6 959.9 0.578 965.6 - 
16 555.7 967.9 0.574 - - 
17 555.9 955.0 0.588 954.0 - 
18 (N(sp2)) 561.8 974.9 0.576 - - 
19 562.2 962.1 0.584 963.4 560.0 
20 562.3 979.2 0.574 981.8 - 
21 (pyridyl N)  563.4 970.8 0.580 - - 
22 (N(sp2)) 563.9 976.5 0.577 - - 
23 (isoindolyl N) 565.6 1006.0 0.562 - - 
24 569.1 976.5 0.583 - - 
23 (pyrrolidyl N) 574.8 1009.7 0.569 - - 
25 (guanidyl N) 576.2 1000.9 0.576 - - 
26 580.6 980.8 0.592 983.3 578.1 
13 (N(sp3)) 580.8 995.0 0.584 - - 
27 (pyridyl N) 581.2 994.1 0.585 997.6 585.4 
28 582.0 989.9 0.588 986.9 - 
12 (N(sp3)) 584.8 993.0 0.589 - - 
18 (N(sp3)) 588.6 1002.3 0.587 - - 
29 (pyridyl N) 590.1 1004.4 0.588 - 594.4 
30 (N(sp2)) 594.4 1010.9 0.588 - - 
22 (N(sp3)) 594.7 1001.8 0.594 - - 
25 (pyridyl N) 597.5 1013.5 0.590 - - 
31 (C(sp2)) 599.2 1008.9 0.594 - - 
32 (pyridyl N) 602.4 1017.0 0.592 - - 
33 602.5 1014.5 0.594 - - 
34 604.2 950.9 0.635 958.8, 950.0c 604.7 
35 608.5 957.8 0.635 969.2, 961.0c 611.3 
36 (N(sp2))  609.6 1044.8 0.583 

 
1047.9, 
1035.4e - 

37 (N(sp2)) 611.3 1032.5 0.592 
 

1038.3, 
1025.7e 614.1 

38 617.8 968.8 0.638 - - 
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Table 2.5. Continued 
 MCAa PAa MCA/PAa Exp.b MCAf 

39 618.4 966.4 0.640 972.8 - 
40 622.4 972.9 0.640 - - 
41 630.7 981.7 0.642 - - 

        a MP2(FC)/6-31+G(2d,p)//B98/6-31G(d); bExperimental values taken from NIST webbook, if not mentioned  
       otherwise; c Ref.; 77 d Ref.; 78 e Ref.; 79  fMP2(FC)/6-31+G(2d,p)//MP2(FC)/6-31G(d). 
 
2.3.2 Correlation of MCA and PA Values 
   How do these MCA values compare to the respective proton affinities? The correlation of 

MCA and PA values in Figure 2.2 shows that there is a good qualitative correlation of both 

measures of electrophilic affinity. However, two factors appear to lead to deviations from this 

correlation. The first of these factors concerns steric effects, which are larger for the addition 

of methyl cations than for protons. As indicated in Figure 2.2 for 2, 14, 23, and 36 these 

effects lead to MCA values smaller than would be expected on the basis of their PA. For all 

nitrogen-based compounds (but excluding the sterically most congested systems 2, 14, 23, 

and 36) the following correlation exits: PA = 343.33 + 1.1175 × MCA (kJ/mol). This is the 

solid correlation line shown in Figure 2.2.  

 
Figure 2.2. Correlation of MCA and PA Values for the Systems Shown in Figure 2.1. 

 

The regression line shifts upward by 13 kJ/mol on consideration of all nitrogen-containing 

compounds: PA = 357.19 + 1.0989 × MCA (kJ/mol). This is hardly surprising for Huenig 

base 14, whose design implies its use as a sterically hindered, nonnucleophilic base. 
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Compounds 23 and 36, however, are frequently used in organocatalytic processes, and the 

steric effects visible in Figure 2.2 may thus affect the reaction rates.   

  Most carbon electrophiles used in organocatalytic transformations are certainly larger than 

the methyl cation, and one must anticipate that steric effects will be even larger in 

synthetically relevant transformations than calculated here. The second factor concerns 

electronic effects when comparing nitrogen and phosphorus bases. The latter are located on a 

different correlation line shifted to lower PA values by approximately 70 kJ/mol. For 

phosphanes 34, 35, 38, 39, 40, and 41, the following correlation exists: PA = 264.64 + 1.1374 

× MCA (kJ/mol). This implies that tertiary phosphanes such as PPh3 (39) or PEt3 (40) will 

have much higher affinities towards carbon electrophiles as compared to amine bases of 

comparable proton basicity. The much higher affinity of tertiary phosphanes for carbon 

electrophiles than for protons is also reflected in reaction rates measured recently for the 

addition to benzhydrylium cations in apolar solvents.72 

 

2.3.3 Correlation of MCA and Experimental Catalytic Rates  
   In how far the MCA values shown in Figure 2.1 correlate with catalytic rate measurements 

involving nucleophilic organocatalysts has subsequently been explored for all currently 

available experimental data.7,11,80-83 The nucleophile-induced addition of methanol to 

acrylamide was studied by Connon et al. (see Scheme 2.3)80 and represents one of the 

examples in which rate data cannot be readily correlated with aqueous pKa values of the 

involved nucleophiles (R2 = 0.39, Figure 2.3).  
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Table 2.6. Correlation of Observed Rate Constants kobs for the Nucleophile-Inuduced 
Addition of Methanol to Acrylamide80 with the Corresponding pKa, PA, and MCA Values. 
 

 kobs
a log (kobs) pKa

a PA 
(kJ/mol)b 

MCA 
(kJ/mol)b 

DABCO (19) 0.00018  -3.74  8.8  962.1  562.2  
4-DMAP (27) 0.0099  -2  9.7  994.1  581.2  
quinuclidine 

(26) 
0.00595  -2.23  11.3 980.8  580.6  

DBU (36) 0.087  -1.06  12.4 1044.8  609.6  
PBu3 (PEt3) (40) 0.061  -1.21  8.4  972.9  622.4  

a Ref. 80; b Calculated at MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level. 

 

 

 
Figure 2.3. Correlation of observed rate constants kobs for the nucleophile-inuduced addition 
of methanol to acrylamide80 with the corresponding pKa, PA (kJ/mol), and MCA (kJ/mol) 
values. The PA and MCA values of PEt3 (40) have been used for PBu3. 

 

  Already using gas-phase PA data yields a much better correlation (R2 = 0.64) with 

experimental rate constants, implying that the polarity of solvent-free or high-concentration 

reaction conditions may not be described well by aqueous phase data. By far the best 

correlation (R2 = 0.91) is obtained when using MCA data, which is due to the results for 

trialkylphosphanes and DABCO. The organocatalytic activity of both compounds correlates 

much better with their affinity towards carbon than with their affinity towards protons. The 

transformation shown in Figure 2.3 has also been studied in the presence of triethylamine 

(20) and Huenig’s base (14), but no rate acceleration has been observed for these two 

compounds. This likely implies that for many substrates employed under organocatalytic 

conditions steric effects will be larger than reflected in the MCA values presented here. 

Similar observations have also been made for the mechanistically more complex Baylis-

Hillman reaction. Comparing the activities of quinuclidine derivatives 7, 17, 26, and DABCO 

19 

  27 
     26
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(19) in the Baylis-Hillman reaction with acrylate esters as substrates, Aggarwal et al. noted 

that DABCO is a much better catalyst than would be expected on the basis of its aqueous pKa 

value.81,82 This was ultimately traced back to a reordering of pKa values in apolar solvents, 

but we note that the observed catalytic efficiency is again fully in line with the relative MCA 

values of these compounds presented here (see Appendix 9.2). That tertiary phosphanes such 

as PMe3 (34) exceed the catalytic activity of 4-DMAP (27) (in agreement with the MCA 

values of these systems) has been shown for intramolecular Baylis-Hillman reactions.84 DBU 

(36) as the nitrogen base with the highest MCA value in Table 2.5 has also been tested in 

these reactions but appears to be basic enough to deprotonate the protic solvent (ethanol) to 

such a degree as to favor addition of alkoxide anions instead. This phenomenon has been 

observed in related reactions before, but it is very difficult indeed to find one mechanistic 

scheme fitting all published cases.80,82,85,86 The high basicity of DBU may also be at the heart 

of its low activity as a catalyst in the acylation of alcohols with anhydrides.75 The acidic side 

products generated in these reactions will, even when neutralized with a large excess of an 

auxiliary amine base, protonate (and thus deactivate) DBU in the course of the reaction. This 

together with the steric effects hindering the formation of a planar, resonance-stabilized 

acyliminium cation will limit the use of DBU as an organocatalyst to some selected cases. No 

such problems can be expected from catalysts combining high MCA with comparatively low 

PA values, and we may use the ratio MCA/PA as a quantitative guideline in this respect. A 

survey of these ratios in Table 2.5 immediately shows that tertiary phosphanes fare much 

better in this respect than all nitrogen-based compounds, underlining the promising prospects 

of this class of compounds in organocatalysis. Reaction rates for the acylation of tertiary 

alcohols with anhydrides in apolar solution catalyzed by pyridines 25, 27, 29, and 32 are in 

full agreement with the relative MCA values of these compounds.7,11,83 Most interestingly, 

PBu3 has been shown to be slightly more effective than 4-DMAP (27) in acylation reactions 

of secondary alcohols.87 This observation is at variance with the proton affinities of 4-DMAP 

and, for example, PEt3 (40) but readily accommodated with respect to the MCA values of 

these two systems. A wide range of results exist for the base-catalyzed hydrolysis of 

carboxylic acid derivatives in water.88 For some catalysts the mechanism has been clearly 

established to proceed through initial formation of acylammonium intermediates.89 The 

reaction rates determined for the quinuclidine derivatives 7, 17, 26, and DABCO (19) in their 

reaction with organic carbonates, for example, are in full agreement with their MCA values. 

We should, however, not forget that aqueous solvation leads to a dramatic reduction of 

nucleophilic reactivity in general and also, in part, a reordering of relative reactivities as 
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compared to less polar organic solvents.72 Aside from correlating catalytic efficiencies with 

the MCA values of the corresponding catalysts and thus establishing a Brønsted-type 

correlation between reaction rates and groundstate affinity data, the MCA values in Table 2.5 

can also be used in a more qualitative way to understand the basis of organocatalytic 

processes. This can be exemplified using the proline-catalyzed aldol reaction between 

acetone and aromatic aldehydes.90 The uncatalyzed background reaction corresponds in this 

case to the nucleophilic addition of acetone (or, more likely, its enol) to the aromatic 

aldehyde. The hope for a catalytic process rests on the assumption that the enamine 31 

formed by reaction of acetone and proline is more reactive toward the electrophilic aldehyde 

than the enol of acetone. The MCA value for enamine 31 (599.2 kJ/mol) is much higher than 

that of acetone enol (459.0 kJ/mol) or that of proline (5) itself (532.4 kJ/mol). Even when 

present in equal amounts in the reaction mixture 31 will react much faster with electrophiles 

than acetone enol or proline and thus enable a catalytic cycle. Under most experimental 

conditions, however, the true side reaction to proline catalysis will most likely be that of 

unspecific base catalysis.91 The acetone enolate involved in this process will be a much better 

nucleophile than either acetone enol or enamine 31. A direct comparison of these ionic and 

neutral nucleophiles through their MCA values will not be meaningful due to the large role 

played by environmental factors (solvent, counterion) in the reaction of anionic nucleophiles. 

 

2.3.4 Conclusions  
   The MCA values presented here can be used as a guideline for the optimization of 

organocatalytic transformations. The mechanistic complexity of many such reactions, the 

presence of numerous side reactions, and the broad variety of solvents used under 

experimental conditions make it unlikely that quantitative predictions can be made for 

structurally different organocatalysts with only one single parameter. However, if the general 

limitation of a single parameter approach has been accepted, it is clear that the currently 

known catalytic activities of nitrogen and phosphorous bases are much more readily 

correlated with MCA than with PA or pKa data. 
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3. Estimating the Stereoinductive Potential of Cinchona Alkaloids with a 
Prochiral Probe Approach 
 
3.1 Introduction 
   Cinchona alkaloids and their derivatives play an important role in stereoselective catalysis, 

both as actual catalysts as well as building blocks for ligands in transition metal 

complexes.34,92 The frequent use of these compounds in a variety of chemically distinct 

transformations suggests that the intrinsic structural and electronic properties of these 

alkaloids make them suitable for stereoselective processes.93 The most frequently used 

compounds of this class include cinchonidine (12), cinchonine (13), quinine (22), and 

quinidine (18). One of the inherently useful properties of these compounds is their commercial 

availability. We are testing what properties make these compounds superior to the known, but 

much less frequently used C9-epimers 42, 43, 44 and 45 by using two different cationic 

probes. For the sake of comparison, the chiral tertiary amines such as (S)-proline-derived15,94 

diamine 23 and sparteine 46 (Figure 3.1) will also be included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Cinchona Alkaloids and Selected Chiral Tertiary Amines. 

    

  In Chapter 2, a variety of N- and P- centered bases is ranked according to their affinity 

towards the achiral cation (CH3
+), and this MCA is shown to be correlated better with the 

experimentally observed catalytic efficiencies than PA. These studies here are extended to 
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include affinity values towards a prochiral cation, formally derived from α-methoxy-α-

trifluoromethyl-α-phenylacetic acid (MTPA, Mosher's acid, Ph(OCH3)(CF3)C-CO2H) through 

decarboxylation. The success of this latter acid as a derivatizing reagent for a multitude of 

chiral alcohols suggests that the three substituents connected to C2 (Ph, CF3, OCH3) provide a 

strongly differentiated environment in steric and electronic terms.95,96 In order to emphasize 

the resemblance to Mosher's acid we will refer to this cation as "Mosher's cation" (or MOSC) 

and to the corresponding reaction enthalpies at 298 K then as "MOSCA" values. As described 

in Scheme 3.1, reaction of MOSC with chiral nucleophiles can occur from the re or si face of 

the cation, leading to two diastereomeric adducts with two different affinity values MOSCAre 

and MOSCAsi. 
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Scheme 3.1. 

 

  The development of new chiral descriptors for stereoselective organocatalytic 

transformations is interesting in its own right, and the prochiral MOSCA probe proposed here 

is a practical approach in this direction.  
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3.2 Mosher’s Cation Affinity (MOSCA) values and MCA values 
    The MOSCA values of compounds shown in Figure 3.1 are listed in Table 3.1, and their 

corresponding MCA, PA values are also included for comparison and analysis. Figure 3.2 

compiles the data in Table 3.1 in a graphical manner. 

 

Table 3.1. MCA, PA, MOSCA Values (in kJ/mol) of the N(sp3) Centers in Compounds 
      Shown in Figure 3.1. 

 MCAa PAa MOSCAa ΔMOSCA
re-sia 

ΔMOSCA
re-sib 

   re si   
Cinchonidine 

(12) 
584.8 993.0 215.2 220.7 -5.5 -5.7 

Cinchonine 
(13) 

580.8 995.0 220.7 212.3 8.5 8.9 

Epi-Cinchonidine 
(42) 

562.4 990.1 197.6 188.4 9.2 9.2 

Epi-Cinchonine 
(43) 

564.4 991.1 183.7 180.0 3.7 4.0 

       
Quinine 

(22) 
594.7 1001.8 227.3 233.7 -6.4 -6.0 

Quinidine 
(18) 

588.6 1002.3 231.2 223.3 7.9 8.2 

Epi-Quinine 
(44) 

571.7 999.6 205.6 196.9 8.7 10.2 

Epi-Quinidine 
(45) 

572.3 998.9 193.1 189.3 3.8 3.1 

       
23 574.8 1009.7 224.9 217.6 7.3 7.8 
46 554.9 1044.4 156.3 158.6 -2.3 -1.4 

           a Calculated at MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level; b Calculated at MP2(FC)/6-31+G(2d,p)// 
        MP2(FC)/6-31G(d) level. 
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Figure 3.2. MCA and MOSCA Values of Compounds Shown in Figure 3.1. 

 

The analysis concentrates here on the properties of the quinuclidine substructure in 

alkaloids as it has been shown earlier that the MCA values of the respective N(sp3) center is 

significantly higher than that of the N(sp2) center in the quinoline ring. The MCA values of 

natural cinchona alkaloids 12, 13, 18, 22 are in the range of 580 - 595 kJ/mol, which are 

similar to those of some commonly used organocatalysts such as DMAP, 4-

pyrrolidinopyridine (PPY), and quinuclidines as shown in Chapter 2. The MCA values differ 

by only 4 kJ/mol in the cinchona alkaloids 12 and 13, and by about 6 kJ/mol in alkaloids 18 

and 22. However, the MCA value of epi-cinchonidine 42 is lower than that of 12 by more than 

20 kJ/mol, and similarly the MCA value of epi-quinine 44 is also lower than that of 22 by 
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more than 20 kJ/mol. The MCA values of epi-cinchonine 43 and epi-quinidine 45 are lower 

than the MCA values of 13 and 18 by more than 16 kJ/mol, respectively. Comparing the 

relative energies for neutral molecules and adducts, respectively, the neutral epimers 42 and 

44 are more stable by more than 10 kJ/mol than 12 and 22, and the cations are less stable by 8 

kJ/mol. Addition of a methoxy substituent to the quinoline ring has a surprisingly large 

influence on enhancing the MCA values of the quinuclidine nitrogen atom in cinchona 

alkaloids. This enhancement amounts to 10 kJ/mol in 12/22, 8 kJ/mol in 13/18, 9.3 kJ/mol in 

42/44, and 8 kJ/mol in 43/45. The MCA value of tertiary amine 23, frequently used in 

organocatalytic processes, is 574.8 kJ/mol. The MCA value of 46 is 554.9 kJ/mol, somewhat 

lower than the MCA values of commonly used organocatalysts. The proton affinities of all 

cinchona alkaloids are much less affected by changes in the stereochemistry than the MCA 

values, resulting in rather similar values for all cinchona alkaloids in Table 3.1. 

  The MOSCAre and MOSCAsi values of compounds shown in Figure 3.1 (Table 3.1) are 

substantially smaller in absolute terms than the respective MCA values. The difference 

appears to be close to 370 kJ/mol for the nucleophiles selected here, but the steric bulk and 

internal structure of the MOSC leads to a significantly larger spread of MOSCA than of MCA 

values. The highest MOSCA values are calculated here for quinine (22) and quinidine (18), 

which are also the compounds with highest MCA values. Also in line with the MCA results is 

the finding that all natural alkaloids 12, 13, 18, and 22 have higher MOSCA values than their 

C9 epimers. However, the MOSCA values for the non-natural alkaloids 42/43 and 44/45 are 

farther apart than expected based on their respective MCA data. If the qualitative correlation 

of carbocation affinity values with catalytic activity in Lewis base-catalyzed reactions 

observed earlier holds, one would conclude that 18 and 22 are the most reactive compounds 

and that the respective C9 epimers are significantly less reactive.  

  This has indeed been observed experimentally by Oda et al. in the alkaloid-catalyzed 

alcoholysis of cyclic anhydrides.97 These studies, together with subsequent work by Aitken et 

al.98 and by Bolm et al.,99 also illustrate that numerous other factors contribute to the 

experimentally observed selectivity, one of the critical parameters being the catalyst 

concentration. The generally higher selectivity observed in the presence of higher catalyst 

concentrations indicates the presence of an unselective background process, a general 

phenomenon of base-catalyzed reactions of alcohols with anhydrides.9,10 In addition, a 

catalytic effect of the protonated cinchona alkaloids cannot also be excluded. The intrinsic 

stereoinductive potential of the bases considered here is quantified through the difference 

between re and si face MOSC affinity values as listed in Table 3.1, a negative value 
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indicating preference for si face attack. Negative values are found here for the natural 

alkaloids 12 and 22, while positive values of similar size are found for the alkaloids 13 and 18. 

The opposite preferences for quinine (22) and quinidine (18) parallel numerous experimental 

observations in the alcoholysis of anhydrides, in which catalysis by 22 and 18 yield opposite 

product enantiomers.97,98,99 Experimental studies involving the C9 epimeric cinchona alkaloids 

are much less frequent and appear to indicate the same absolute stereochemical preferences 

for stereochemical pairs 13/43 and 18/45, but with lower absolute ee% values for 43 and 45. 

The stereofacial preference as well as the lower absolute selectivity are closely matched by the 

MOSCA values computed here, predicting the same re facial addition preference for all four 

of these compounds, with MOSCA values being much smaller for 43/45 than for 13/18 (Table 

3.1). It is only for compounds 42 and 44 that the experimental results observed by Oda (near-

racemic product) are in clear contrast to the large positive MOSCA values calculated here. In 

the light of these results reexamination of the catalytic performance of these compounds under 

the conditions developed by Bolm et al. appears highly desirable. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

3.3 Conformational Properties of Cinchona Alkaloids, Their Methyl Cation Adducts and 
MOSC Adducts  
  The conformational analysis of cinchona alkaloids, their methyl cation adducts and MOSC 

adducts will be helpful for understanding their affinity data discussed above. Even though the 

conformation of cinchona alkaloids and their desirable properties have been previously 

studied by force field,100,101 semiempirical,102 and DFT calculations or low level ab initio 

methods,103,104 their cationic adducts’ conformations are rarely studied. Thus, a detailed 

conformational analysis is discussed here.  

  Figure 3.3 shows a pictorial representation of the relative energies of conformers and 

conformer numbers in the range of 0 - 16 kJ/mol for neutral cinchona alkaloids 12, 13, 42, 43 

and their methyl cation adducts at MP2/6-31+G(2d,p)//B98/6-31G(d) level. Similarly, the 

Figure 3.4 shows the same pictorial representation for cinchona alkaloids 22, 18, 44, 45 and 

their methyl cation adducts. The conformers with higher relative energy (>16 kJ/mol) are 

excluded here because their populations are less than 1%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.3. Relative Enthalpies of Conformers of Compounds 12, 13, 42, 43 and Their Methyl 
Cation Adducts at MP2/6-31+G(2d,p)//B98/6-31G(d) Level within an Energy Window of 16 
kJ/mol. 
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Figure 3.4. Relative Enthalpies of Conformers of Compounds 22, 18, 44, 45 and Their Methyl 
Cation Adducts at MP2/6-31+G(2d,p)//B98/6-31G(d) Level within an Energy Window of 16 
kJ/mol. 
 

  The conformational spaces of the neutral bases 12, 13, 18 and 22 are quite large; in contrast, 

the conformational spaces of 42 - 45 are rather narrow. Within the chosen energy window (16 

kJ/mol), the conformer numbers of 12 and 13 decrease from more than 10 conformers to 2 and 

5 conformers, respectively, for their methyl cation adducts. The same observation is also 

found for 18 and 22, and the energy gaps among the cationic conformers increase, compared 

to the neutral forms. However, the conformational space change is not so obvious for 42 - 45. 

These results imply that the methylation of natural cinchona alkaloids 12, 13, 18 and 22 leads 

to a reduction of the conformational space of these molecules. This finding agrees with 

Mueller and Zaera’s finding about the protonation of cinchonidine.103  

  Furthermore, the structures of the lowest conformer for cinchona alkaloids shown in Figure 

3.1 and their methyl cation adducts are analyzed by selected critical geometrical parameters 

summarized in Table 3.2. The structures of the most stable conformers for 12 and 12-CH3
+ at 

the MP2(FC)/6-31G(d)//B98/6-31G(d) level of theory are shown in Figure 3.5. The optimized 

geometries for 12 and 12-CH3
+ at MP2/6-31G(d) level have no significant difference from 
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B98/6-31G(d) optimized geometries. The conformations of cinchona alkaloids studied here 

are classified based on Agranat’s definition.102 Agranat classified the conformers into 18 

classes by syn/anti, open/closed/hindered and α/β/γ. The dihedral angle dC4´a-C4´-C9-C8 is 

expected to be ca. +90° or -90°, which corresponds to syn or anti conformations. Syn/anti refer 

to the conformations in which the methoxy group (or C5´) and the hydroxy group at C9 are on 

the same side or on the opposite side (see Scheme 3.2). The values of dihedral angle dN1-C8-C9-

C4´ refer to the open, closed and hindered nomenclature of cinchona alkaloids conformation 

(see Scheme 3.2). In the open conformations, the quinuclidine N is oriented away from the 

quinoline moiety. In the closed conformations, the lone pair of N points over the quinoline 

moiety. In the hindered conformations, the two rings are on top of each other. The values of 

dihedral angle dH-O9-C9-C8 refer to the orientation of hydroxy group connected to C9 (see 

Scheme 3.2). The hydroxy hydrogen is staggered between C8 and C4´, designated α; the 

hydroxy hydrogen is staggered between C8 and H9, designated β; the hydroxy hydrogen is 

staggered between C4´ and H9, designated γ. The lowest energy conformation of 12, 13, 18, 22 

is classified as anti-hindered-α with intramolecular hydrogen bond (N···H···O9), which is not 

found in Agranat’s semiempirical PM3 studies. Probably, the structures with intramolecular 

hydrogen bond in 12, 13, 18, 22 cannot survive by PM3 calculations.  

 

 

    

 

 

 

 

 

 

 

 

 

Scheme 3.2.  Illustration of Classification of Comformers Using Compound 12. 
 
The lowest energy conformation of 42 - 45 is anti-open-β also with intramolecular hydrogen 

bond (N···H···O9), which is in line with Agranat’s finding. The methylation appears to hinder 

rotation around the C4´ –C9 and C9 – C8 bonds, which makes the quinucline moiety to orient 
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away from quinoline moiety and result in the lowest energy hindered conformation in 12, 13, 

18, 22 vanishing and narrow down their conformational space. However, the methylation does 

not narrow down the conformational space of 42 - 45 because the lowest energy conformation 

of 42 - 45 is open conformation.  

 

Table 3.2. The Lowest Energy Conformation of Cinchona Alkaloids Shown in Figure 3.1 and 
Their Methyl Cation Adducts.a 

 
 rN-C4´  

(Å) 
d C4´a- C4´-C9-C8  

(°) 
dN1-C8-C9-C4´ 

(°) 
dH-O9-C9-C8 

(°) 
Classification 

12 3.373 -82.4 -85.4 -27.0 anti-hindered-α 

12(MP2)b 3.280 -81.8 -81.9 -29.1 anti-hindered-α 

12-CH3
+ 3.928 -78.5 175.7 -174.1 anti-open-γ 

12-CH3
+ 

(MP2)b 
3.866 -73.9 178.8 -174.8 anti-open-γ 

13 3.372 82.3 85.9 27.0 anti-hindered-α 

13-CH3
+ 3.930 78.9 -176.5 174.5 anti-open-γ 

42 3.814 98.9 165.8 -29.2 anti-open-β 

42(MP2)b 3.775 95.6 168.8 -34.1 anti-open-β 

42-CH3
+ 3.953 -68.3 -172.3 161.0 syn-open-γ 

42-CH3
+ 

(MP2)b 
3.882 -63.9 -169.1 161.0 syn-open-γ 

43 3.817 -97.5 -166.8 31.9 anti-open-β 

43-CH3
+ 3.939 -104.6 169.7 -165.7 anti-open-γ 

 

22 3.382 -82.0 -85.5 -26.1 anti-hindered-α 

22-CH3
+ 3.927 -77.9 176.0 -173.8 anti-open-γ 

18 3.349 82.6 83.7 28.9 anti-hindered-α 

18-CH3
+ 3.928 78.9 -174.5 173.8 anti-open-γ 

44 3.816 98.0 165.7 -29.6 anti-open-β 

44-CH3
+ 3.951 -67.9 -171.0 158.6 syn-open-γ 

45 3.819 -97.6 -167.4 32.3 anti-open-β 

45-CH3
+ 3.939 -102.1 169.2 -166.0 anti-open-γ 

a Calculated at the MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level of theory; b Optimized at the MP2(FC)/6-31G(d) 
level of theory.
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Figure 3.5. The Most Stable Conformer of 12 and 12-CH3

+ at the MP2(FC)/6-
31G(d)//B98/6-31G(d) Level of Theory. 

  

  Selected geometrical parameters of the lowest conformation of their MOSC adducts are 

summarized in Table 3.3 and illustrated in Scheme 3.3. Investigating the geometrical 

parameters of MOSC adducts, we found that the dihedral angle dC8-N-C-O differs only slightly 

between re face adduct and si face adduct for cinchona alkaloids 12, 13, 42, 22, 18, 44 which 

indicates the methoxy group in MOSC always points to a similar position in both types of 

adducts. The structures of the most stable conformers for 12-MOSCre+ and 12-MOSCsi+ in 

Figure 3.6 show that the methoxy group in the MOSC prefers to approach the quinoline 

moiety, and the same observation is obtained for other cinchona alkaloids except for 43 and 

45. Further conformational searches involved flipping the quinoline moiety starting from the 

best conformer of 12-MOSCre+ and 12-MOSCsi+, respectively. These latter modifications 

result in new conformers which are less stable than before by more than 10 kJ/mol. 

Furthermore, analysing the charge distribution in the MOSC adducts of 12 (see Table 3.4), we 

found that the methoxy group has more negative charge than the -CF3 and phenyl groups, and 

the hydrogen atoms on the quinoline moiety have a positive charge. This may explain why the 

methoxy group always prefers to approach the quinoline moiety. Charge distribution also 

shows that the fluorine atoms in CF3 have more negative charge than the carbon atom in the 

phenyl group. The electrostatic repulsion in 12-MOSCsi+ is probably less than that in 12-

MOSCre+ because the not so negative carbon in the phenyl group is close to electronegative 
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hydroxy group (rC(Ph)-O(H) = 3.17 Å). In contrast, the more negative fluorine atoms in the CF3 

group are close to the electronegative hydroxy group in 12-MOSCre+. The same observation 

is obtained for 22. The configuration of C9 in compound 13, 42, 18 and 44, is changed, which 

results in that the less negative carbon in the phenyl group is close to the electronegative 

hydroxy group in their MOSCre+ adducts, thus, their MOSCre+ adducts are more stable.  

 

 

   

 

 

 

 

Scheme 3.3.  Illustration of Notation of Geometry Parameters Using Adduct 12-MOSCre+. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.6. The Most Stable Conformer of 12-MOSCre+ and 12-MOSCsi+ at the 
MP2(FC)/6-31G(d)//B98/6-31G(d) Level of Theory (Bond Length in Ångstroms and Dihedral 
Angle in Degree (˚)) . 
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Table 3.3. The Lowest Energy Conformation and Selected Conformation of Cinchona 
Alkaloids’ MOSC Adducts. 
 

 rN-C 

(Å) 

rC(Ph)-O(H)  

(Å) 

rC3'-C10 

(Å) 

dC(Ph)-C-N-C8 

(°) 

dC8-N-C-C(F3) 

(°) 

dC8-N-C-O(Me) 

(°) 

12-MOSCre+ 1.628 5.04 5.833 a 79.4 -38.8 

12-MOSCsi+ 1.616 3.17 5.906 +g -159.2 -43.5 

13-MOSCre+ 1.613 3.16 5.654 -g 159.6 43.9 

13-MOSCsi+ 1.624 5.02 5.688 a -78.8 39.6 

42-MOSCre+ 1.607 3.83 6.821 -g 167.3 53.9 

42-MOSCsi+ 1.617 4.88 6.777 a 78.9 61.3 

43-MOSCre+ 1.615 3.62 6.609 -g 157.9 43.3 

43-MOSCre+-2a 1.631 4.832 3.858 a 59.8 -58.8 

43-MOSCsi+ 1.648 3.298 6.082 -g 68.6 -178.3 

43-MOSCsi+-2b 1.623 3.736 3.735 +g -165.2 -52.1 

 

22-MOSCre+ 1.631 5.08 5.826 a 80.9 -37.5 

22-MOSCsi+ 1.619 3.25 5.889 +g -159.3 -43.5 

18-MOSCre+ 1.615 3.25 5.662 -g 159.7 43.8 

18-MOSCsi+ 1.627 5.08 5.752 a -80.4 38.1 

44-MOSCre+ 1.606 3.83 6.830 -g 167.5 54.2 

44-MOSCsi+ 1.616 4.87 6.773 a -57.1 61.0 

45-MOSCre+ 1.614 3.607 6.134 -g 158.3 43.8 

45-MOSCre+-2c 1.628 4.798 3.888 a 58.7 -60.0 

45-MOSCsi+ 1.646 3.281 6.127 -g 68.7 -178.3 

45-MOSCsi+-2d 1.620 3.729 3.747 +g -165.5 -52.5 
a pseudo-enantiomer of the best conformer of 42-MOSCsi+; b pseudo-enantiomer of the best conformer of 42-
MOSCre+; c pseudo-enantiomer of the best conformer of 44-MOSCsi+; d pseudo-enantiomer of the best 
conformer of 44-MOSCre+. 
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Table 3.4. Charge Distribution in MOSC Adducts of 12. 

            12-MOSCre+   12-MOSCsi+ 

OCH3 Ph CF3 OCH3 Ph CF3 

O -0.596 C -0.122 C +1.117  O -0.594 C -0.141 C +1.122

C -0.321 C -0.223 F -0.346  C -0.321 C -0.233 F -0.345 

H +0.231 C -0.244 F -0.337  H +0.228 C -0.237 F -0.347 

H +0.240 C -0.204 F -0.352  H +0.241 C -0.208 F -0.345 

H +0.226 C -0.221    H +0.227 C -0.205   

  C -0.208      C -0.204   

  H +0.249      H +0.252   

  H +0.249      H +0.254   

  H +0.259      H +0.258   

  H +0.259      H +0.259   

  H +0.259      H +0.258   

sum -0.221  +0.053  +0.081   -0.220  +0.052  +0.085
a NPA/MP2(FC)/6-31G(d)//MP2(FC)/6-31G(d) charges. 
   

  There is another conformational feature of these alkaloids, which has rarely been discussed, 

the conformation of the quinuclidine ring. The quinuclidine ring can twist in two different 

directions, either forming a right-handed screw or left-handed screw (viewed from the 

quinuclidine nitrogen atom along the pseudo C3 symmetry axis, see the Scheme 3.4). 

Analysing of the lowest energy conformation of cinchona alkaloids shown in Figure 3.1, we 

found that the quinuclidine ring in 12, 42, 22 and 44 with S configuration at C8 is twisted as a 

left-handed screw, and that in 13, 43, 18 and 45 with R configuration at C8 is twisted as a 

right-handed screw. These results show that the configuration of C8 influences the direction of 

twist in the quinuclidine ring. The magnitude of the twist dihedral angle is in the range of 10 – 

20°. Dijkstra et al. reported similar results when they investigate the conformation of the 

quinuclidine ring of dihydroquinine and dihydroquinidine through 1H NMR spectra.101 The 

twist direction of the quinuclidine ring is not changed in the corresponding methyl cation 

adducts.  
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Scheme 3.4. Schematic Drawing of the Quinuclidine Ring in Cinchona Alkaloids. 

 

Table 3.5. Quinuclidine Ring Rotation Direction in Cinchona Alkaloids, Their Methyl Cation 
Adducts and MOSC Adducts. 
 

 Neutral 

molecule 

Methyl cation 

 adducts 

MOSCre 

adducts 

MOSCsi 

adducts 

12 left left left left 

13 right right right right 

42 left left right right 

43 right right right right 

     

22 left left left left 

18 right right right right 

44 left left right right 

45 right right right right 

   

  

 

 

 

Scheme 3.5. 

 

  Alkaloids 43 and 45 are pseudo-enantiomers with respect to compounds 42 and 44 (see 

Scheme 3.5), thus the 43-MOSCsi+ and 45-MOSCsi+ adducts are the pseudo-enantiomers of 

42-MOSCre+ and 44-MOSCre+ adducts. The MOSCA values in Table 3.1 show that the 42-

MOSCre+ and 44-MOSCre+ adducts are more stable than their si face adducts, suggesting 
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that the 43-MOSCsi+ and 45-MOSCsi+ adducts should be more stable than their re face 

adducts. However, the si face adducts are found to be slightly less stable than re facial 

adducts. In order to verify that this is not due to any missing conformers, we choose the best 

conformers of the 42-MOSCre+ and 44-MOSCre+ adducts and manually built their pseudo-

enantiomers that are 43-MOSCsi+ and 45-MOSCsi+ adducts as the initial structures, and then 

reoptimized them at B98/6-31G(d) level. The final conformers obtained in this way are less 

stable than the best conformers we found before for 43-MOSCsi+ and 45-MOSCsi+. Analysis 

of the internal quinuclidine ring distortion in the best conformer of each compound’s MOSC 

adducts (see Table 3.5) reveals that the direction of distortion in the MOSC adducts of 12, 13, 

43, 22, 18, 45 remains the same as in the respective neutral compounds and methyl adducts, 

but is changed in the MOSC adducts of 42 and 44. This raises the question why the rotation 

direction of the quinuclidine ring changes in MOSC adducts of epimers 42 and 44 and makes 

the MOSC adducts of these compounds more stable, while this is not so in the MOSC 

adducts of 43 and 45. The rotation direction of the quinuclidine ring in epimers 42 and 44 

changes probably because the repulsion between the incoming MOSC and the OH group on 

C9 is larger than in the adducts of natural cinchona alkaloids. Through the analysis of 

conformation (see Table 3.3), we found that the distance between C10 and C3' in the best 

conformers of MOSC adducts of 42 and 44 is large, which indicates the vinyl group is far 

away from the quinoline moiety and will not induce any repulsion between the vinyl group 

and the quinoline moiety. However, the distance between C10 and C3' in the conformations 

generated for 43-MOSC and 45-MOSC from mirror images of 42-MOSC and 44-MOSC is 

much shorter than in other cinchona alkaloids’ MOSC adducts, leading to an increase in 

repulsive forces. Thus, the supposedly good conformers are not the best ones and other 

conformers without change of rotation direction of the quinucline ring stand for the best ones.  

This may be the reason why 43/45 have the least MOSCA values compared to other cinchona 

alkaloids, and also have small ΔMOSCAre-si values. 
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3.4 Correlation of MOSCA Values with Other Properties 
 
  One further finding concerns the overall dipole moment of MOSC adducts for the cinchona 

alkaloids (Table 3.6), which shows a moderate correlation with the MOSCA values (see 

Figure 3.7). This correlation implies that the energetically most favourable MOSC adducts are 

those with overall lower dipole moments. However, as exemplified by the results for 23, such 

a correlation appears not to be of general validity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Correlation of ΔMOSCA with Other Properties for Cinchona Alkaloids. 
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Table 3.6. MOSCA values (kJ/mol), CCM and Dipole Moments (D) for Compounds Shown 

in Figure 3.1. 

 

    The continuous chirality measure (CCM) developed by Avnir105 is a general approach to 

measure the deviation of the structure of a chiral molecule from having an achiral point group. 

The CCM can be used as a quantitative measurement of the intrinsic chirality of molecular 

systems. CCM values have been calculated for the lowest energy conformations of 

compounds shown in Figure 3.1. There is no quantitative correlation between MOSCA values 

and CCM for the set of compounds studied here. However, there is a moderate correlation 

between ΔMOSCAre-si of cinchona alkaloids 12, 13, 18, 22, 43 - 45 and their respective 

ΔCCMre-si values (see Figure 3.7). 

 

 

 MOSCA ΔMOSCA 
re-si 

CCM ΔCCM 
re-si 

μ 
 

Δμ  
re-si 

 re si  re si  re si  
Cinchonidine 

(12) 
215.2 220.7 -5.5 13.8 15.2 -1.4 6.98 4.51 2.47 

Cinchonine 
(13) 

220.7 212.3 8.5 16.8 10.1 6.7 4.16 7.04 -2.88 

Epi-
Cinchonidine 

(42) 

197.6 188.4 9.2 16.1 10.6 5.5 3.51 6.68 -3.17 

Epi-
Cinchonine 

(43) 

183.7 180.0 3.7 16.8 17.2 -0.4 2.99 5.37 -2.38 

          
Quinine 

(22) 
227.3 233.7 -6.4 16.2 20.2 -4.0 6.49 3.72 2.77 

Quinidine 
(18) 

231.2 223.3 7.9 16.2 9.6 6.6 3.42 6.57 -3.15 

Epi-Quinine 
(44) 

205.6 196.9 8.7 15.9 13.1 2.8 3.14 6.31 -3.17 

Epi-
Quinidine 

(45) 

193.1 189.3 3.8 18.8 19.7 -0.9 6.05 6.6 -0.55 

          
23 224.9 217.6 7.3 9.1 4.3 4.8 4.53 8.34 -3.81 
46 156.3 158.6 -2.3 12.4 8.8 3.6 1.61 2.86 -1.25 
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3.5 Conclusions  
  Taken together the MOSCA values determined here for a series of tertiary amines represent a 

quantitative and easily computable measure of the stereoinductive potential of these 

nucleophiles. These data, together with the methyl cation affinity (MCA) values, are expected 

to facilitate the development of new, more effective and more selective catalysts, in particular 

in an area where initial experiments have already been performed. The stereoinductive 

potential is one of the key factors determining the stereoselectivity in catalytic processes. 

Whether or not such a process is successful depends on a host of additional factors, the 

absolute catalytic efficiency being one of the most relevant. The MOSCA probe studied here 

appears to capture both the catalytic efficiency as well as the stereoselectivity. For the systems 

studied here the most reactive and selective compounds appear to be quinine (22) and 

quinidine (18), while sparteine (46) appears to be neither particularly selective nor reactive. 

The conformational space of natural cinchona alkaloids 12, 13, 18, 22 are narrowed down and 

much more defined after they are combined with electrophiles. This could be a scientific 

reason why they are used frequently in asymmetric organocatalysis. 
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4. The Performance of Computational Methods in Locating the Charge-
Separated Intermediates in Organocatalytic Transformations 
 
4.1 Introduction 
   In Chapter 2 and Chapter 3 we have benchmarked and discussed the formation of cationic 

adducts in catalytic transformations using the selected cations as probes. However, in many of 

these reactions neutral electrophiles react with neutral nucleophiles to give zwitterionic 

adducts at some stage of the catalytic cycle. Recent theoretical studies of these types of 

processes have indicated that some of the most frequently used theoretical methods in 

computational chemistry such as the hybrid functional B3LYP do not describe these 

zwitterionic adducts as minima on the potential energy surface in the gas phase.31,32,33 This 

precludes the use of compound energy methods such as the G3B3 or G3MP2B340,41 schemes 

for the determination of accurate reaction energies. The use of continuum solvation methods 

may, in part, alleviate the problem due to selective stabilization of structures with large dipole 

moment, but the overall results then rest on a quantum mechanical foundation of unknown 

(and possibly also uncertain) quality. In order to identify theoretical methods suitable for the 

reliable description of these types of processes we have selected here the gas phase reaction of 

methylvinylketone (MVK, 47) with trimethylamine (9) and with trimethylphosphine (34) as 

model systems (Scheme 4.1). These addition reactions correspond to the first step in the 

amine- or phosphine-catalyzed Baylis-Hillman and Rauhut-Currier reactions, but may also be 

relevant for many other reactions involving Lewis base catalysis.  

 

 

 

 

 

 

 

   

 

Scheme 4.1.  
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phosphane 34 with 47 may yield the reactant complex 34*47, the zwitterionic adduct 49, and 

also the neutral adduct 50 with pentacoordinated phosphorous. 

  The performance of a range of computational methods is evaluated based on the model 

systems. A rigorous comparison leads us to propose a new and effective computational 

scheme which is applicable to the larger systems that include more ubiquitously used 

electrophile-nuclophile combination in organocatalysis. 

 

4.2 Geometries and Energies of Zwitterionic Adducts 
   Geometry optimizations were initially performed using those electronic structure methods 

typically used in the G2,39 G3,40,41 G4106 and W142,43 compound energy schemes. This 

includes optimizations at HF, MP2 and B3LYP levels. The hybrid density functional method 

mPW1K developed by Truhlar et al. has also been included here since promising results have 

recently been obtained with this method (Table 4.1).107 

  The results compiled in Table 4.1 show that reactant complex  9*47 and zwitterionic adduct 

48 can be located as stationary points at RHF level with a variety of basis sets, while 48 is not 

a stationary point at B3LYP level, irrespective of the basis set choice. Somewhat surprisingly 

48 does not exist as a local minimum at MP2(FC)/6-31G(d) level, but it does exist when 

MP2(FC) calculations are performed with larger basis sets including diffuse basis functions. 

Whether or not the frozen core (FC) approximation is used in these calculations is of little 

consequences for the final results. This is an important result as this precludes use of the 

standard G2, G3 or G4 schemes for this type of stationary point, with the exception of the 

G2+ and G2(+) schemes developed by Gronert108 and by Radom et al.109 for calculations of 

charged systems. These latter two compound schemes involve geometry optimizations at 

MP2(FULL)/6-31+G(d,p) and MP2(FC)/6-31+G(d) level. The inability to locate zwitterionic 

adduct 48 at B3LYP level also precludes the use of the highly accurate W1 scheme recently 

proposed by Martin et al.42,43 Similar to the results obtained at RHF level, all combinations of 

the mPW1K functional with Pople style basis sets predict zwitterionic adduct 48 and reactant 

complex 9*47 as local minima. The reaction energies are, however, significantly closer to 

those obtained at MP2 than at RHF level. Table 4.1 lists reaction energies obtained from total 

electronic energies together with those obtained using enthalpies at 298.15 K. The latter are 

systematically less stabilizing as can be expected due to the loss of translational and rotational 

degrees of freedom. The magnitude of this effect is rather similar for all methods listed in 

Table 4.1, irrespective of whether or not zwitterionic adduct 48 exists as a stationary point on 
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the potential energy surface. The following discussion will therefore be based on reaction 

energies obtained from enthalpies at 298.15 K exclusively.  

 

Table 4.1. Energies and Structural Data for Stationary Points in the Reaction of MVK (47) 
with NMe3 (9).a 
 
 reactant complex 

9*47 
zwitterionic adduct 

48 
level of theory E　 tot 

(kJ/mol) 
H　 298 

(kJ/mol) 
r(C-N) 
(pm) 

E　 tot 
(kJ/mol) 

H　 298 
(kJ/mol) 

r(C-N) 
(pm) 

HF/6-31G(d) -10.94 -5.05 372.4 113.19 125.31 163.8 
HF/6-31+G(d) -7.42 -1.84 380.3 106.43 119.37 160.9 
HF/6-31+G(2d) -5.26 -0.22 387.7 114.19 127.02 160.4 
HF/6-31+G(2d,p) -5.25 -0.21 385.1 113.34 126.04 160.1 
HF/6-311+G(2d,p) -5.14 -0.09 386.0 113.59 126.43 159.8 
B3LYP/6-31G(d)a -16.19 -9.89 353.8 - - - 
B3LYP/6-31G(2df,p)b -17.47 -11.09 352.0 - - - 
B3LYP/cc-pVTZ+d c -10.41 -4.84 362.3 - - - 
B3LYP /6-31+G(d) -8.40 -2.58 360.8 - - - 
B3LYP /6-31+G(2d) -6.77 -1.38 364.2 - - - 
B3LYP /6-31+G(2d,p) -6.90 -1.51 363.3 - - - 
B3LYP /6-311+G(2d,p) -6.31 -0.92 363.1 - - - 
mPW1K/6-31G(d) -15.56 -9.44 345.9 44.60 55.56 165.2 
mPW1K /6-31+G(d) -9.46 -4.09 351.2 40.15 51.55 161.3 
mPW1K/6-31+G(2d) -7.63 -2.34 357.9 46.80 58.36 160.5 
mPW1K/6-31+G(2d,p) -8.00 -2.69 355.2 45.45 56.92 160.0 
mPW1K/6-311+G(2d,p) -8.12 -2.73 354.9 45.52 57.02 160.0 
MP2(FC)/6-31G(d) -24.64 -18.45 345.0 - - - 
MP2(FULL)/6-31G(d)d -25.21 -18.97 343.9 - - - 
MP2(FC)/6-31+G(d) -21.53 -16.38 347.0 22.39 33.77 163.4 
MP2(FULL)/6-31+G(d) -21.80 -16.91 346.8 20.44 31.54 162.8 
MP2(FC)/6-31+G(2d) -19.63 -14.57 349.0 22.50 32.98 163.4 
MP2(FC)/6-31+G(2d,p) -18.55 -13.62 348.9 23.01 33.32 163.3 
MP2(FC)/6-311+G(2d,p) -18.46 -13.34 348.0 20.49 31.45 162.8 
QCISD/6-31+G(d)e -18.93 -14.06 353.9 49.27 60.37 162.2 
QCISD/6-31+G(2d)f -17.45 -12.39 355.4 51.54 62.02 162.1 

a All attempts to locate a cyclic minimum similar to structure 50 also for the nitrogen-based system failed, giving 
the acyclic structure 48 instead; b level of theory used for geometry optimizations in the G3B3 and G3(MP2)B3 
schemes; c level of theory used for geometry optimization in the G4 scheme; d level of theory used for geometry 
optimization in W1 theory; e level of theory used for geometry optimizations in the G2 and G3 schemes; f 
thermal corrections taken from the MP2/6-31+G(d) level of theory; g thermal corrections taken from the MP2/6-
31+G(2d) level of theory.  
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Table 4.2. Energies and Structural Data for Stationary Points in the Reaction of MVK (47) 
with PMe3 (34). 
 

a level of theory used for geometry optimizations in the G3B3 and G3(MP2)B3 schemes; blevel of theory used for 
geometry optimization in the G4 scheme; clevel of theory used for geometry optimization in W1 theory; d level of 
theory used for geometry optimizations in the G2 and G3 schemes; ethermal corrections taken from the MP2/6-
31+G(d) level of theory; f thermal corrections taken from the MP2/6-31+G(2d) level of theory.  
 

The results obtained for PMe3 (34) as the nucleophile differ from those obtained for NMe3 (9) 

in that the zwitterionic adduct (49) corresponds to a local minimum with all methods 

considered here - with the exception of the MP2/6-31G(d) level. Whether or not the frozen 

core (FC) approximation is used in MP2 calculations is again of little consequence for the 

final results. Essentially the same results are obtained using different exponents for the d-type 

polarization functions, indicating that the choices made in the standard 6-31G(d) basis sets for 

N and P are not responsible for the failure to locate zwitterionic adducts 48 and 49 at MP2 

 reactant complex 
34*47 

zwitterionic adduct 
49 

cyclic adduct 
50 

level of theory ΔH298 
(kJ/mol) 

r(C-P) 
(pm) 

ΔH298 
(kJ/mol) 

r(C-P) 
(pm) 

ΔH298 
(kJ/mol) 

r(C-P) 
(pm) 

HF/6-31G(d) -3.57 439.5 101.92 182.3 60.87 185.3 
HF/6-31+G(d) -1.75 442.8 87.15 182.4 61.95 185.0 
HF/6-31+G(2d) -0.46 446.2 81.63 181.5 55.51 184.3 
HF/6-31+G(2d,p) -0.43 445.0 80.85 181.5 56.62 184.3 
HF/6-311+G(2d,p) -0.60 446.3 78.43 181.1 55.33 184.1 
B3LYP/6-31G(d)a -6.66 414.7 65.22 186.4 15.46 187.5 
B3LYP/6-31G(2df,p)b -7.03 413.7 55.77 184.0 2.80 186.6 
B3LYP/cc-pVTZ+d c -2.79 418.6 47.21 182.7 3.01 185.9 
B3LYP /6-31+G(d) -1.98 420.2 55.48 185.7 20.23 187.1 
B3LYP /6-31+G(2d) -1.05 419.3 49.94 184.0 13.57 186.0 
B3LYP /6-31+G(2d,p) -1.06 417.9 48.44 184.0 13.25 186.0 
B3LYP /6-311+G(2d,p) -0.41 420.6 48.56 183.5 13.15 185.9 
mPW1K/6-31G(d) -6.42 408.7 29.97 180.9 -30.92 184.8 
mPW1K /6-31+G(d) -3.20 412.4 19.79 181.3 -28.49 183.7 
mPW1K/6-31+G(2d) -2.00 413.1 13.41 180.2 -36.06 183.7 
mPW1K/6-31+G(2d,p) -2.20 409.7 11.69 180.1 -35.86 183.7 
mPW1K/6-311+G(2d,p) -2.39 408.5 9.53 179.7 -37.89 183.5 
MP2(FC)/6-31G(d) -13.77 405.3 - - -25.35 185.8 
MP2(FULL)/6-31G(d)d -14.78 402.9 - - -30.81 185.5 
MP2(FC)/6-31+G(d) -14.93 406.4 14.90 181.4 -34.53 185.5 
MP2(FULL)/6-31+G(d) -16.07 403.5 10.88 181.0 -40.57 185.2 
MP2(FC)/6-31+G(2d) -12.53 406.0 5.99 180.8 -47.09 185.1 
MP2(FC)/6-31+G(2d,p) -11.83 405.7 7.20 180.9 -48.01 185.2 
MP2(FC)/6-311+G(2d,p) -11.13 406.2 4.32 180.3 -49.96 184.8 
QCISD/6-31+G(d)e -12.35 412.5 46.11 182.0 -1.47 185.7 
QCISD/6-31+G(2d)f -10.12 414.0 39.93 181.5 -10.94 185.4 
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level. The energetics of adduct formation as well as the length of the newly formed C-P bond 

are, however, distinctly different at B3LYP level as compared to MP2 and mPW1K levels.  

   The optimized geometries of adducts 48, 49, 50 at the mPW1K/6-31+G(d) and QCISD/6-

31+G(2d) level of theories are shown in Figure 4.1. The structures as computed at these two 

levels are very similar in practically all details. The zwitterionic character of adducts 48 and 

49 has been assessed by calculating the overall charge of the NMe3 and PMe3 moieties in 

these adducts at the NPA/mPW1K/6-31+G(d) level. The overall charge of the nucleophile 

NMe3 in 48 is quite moderate and amounts to +0.50 e, while the charge of PMe3 in 49 and 50 

amounts to +1.02 e and +0.92 e, respectively. This illustrates that a significantly larger charge-

transfer occurs from PMe3 to the MVK (47) reactant than is the case for NMe3. This also 

illustrates that the Lewis structure shown in Scheme 4.1 for adduct 50 may not be fully 

appropriate.  

  

 

Figure 4.1. The Structures of Adducts 48 – 50 Optimized at mPW1K/6-31+G(d) Level. 
Geometric Parameters Obtained at the QCISD/6-31+G(2d) Level are Shown in Brackets. All 
Distances are in Ångstroms. 

 

48 49 50 
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4.3 Theoretical Benchmarking of Reaction Energies 
    Relative energies have been calculated for all stationary points located before for the two 

model systems (Table 4.3) using G3-type compound energy schemes. In the first set of 

calculations termed "G3(+)" we retain all single point energy calculations of the original G3 

scheme,41 but vary the nature of thermal corrections and geometry optimizations. The most 

accurate results of these variants use geometries optimized at QCISD/6-31+G(2d) level and 

thermal corrections obtained from (unscaled) harmonic MP2(FC)/6-31+G(2d) frequencies. 

The reaction energies for formation of zwitterionic adducts 48 and 49 of +44.4 and +11.6 kJ/ 

mol, respectively, are closely matched by all other variants considered here. This includes the 

most economical approach using geometries and thermal corrections obtained at mPW1K/6-

31+G(d) level. Given the large influence of diffuse basis functions on the stabilities of 

zwitterionic adducts 48 and 49, we have additionally calculated reaction energies using a 

modified G3 scheme termed here "G3+". In this modification the combination of 

QCISD(T)/6-31G(d) single point energies and correction for diffuse functions at MP4 level of 

the G3-scheme are replaced by one single point calculation at QCISD(T)/6-31+G(d) level. 

The reaction energies obtained with this scheme vary by no more than 0.6 kJ/mol from those 

using the G3(+) scheme on the same geometries. Whether these reaction energies can also be 

reproduced using a variant of the much more economical G3(MP2) scheme has been tested 

using geometries obtained at mPW1K/6-31+G(d) level (Table 4.3). This "G3(MP2)(+)" 

approach yields reaction energies deviating by up to 4.1 kJ/mol from the best (G3+) values, 

making it less appropriate for the calculation of benchmark quality data. We can thus conclude 

that combination of the original G3 single point energy scheme with mPW1K/6-31+G(d) 

geometries and thermal corrections provides the most economical way for the determination 

of reliable stabilities of zwitterionic structures. This level will in the following be referred to 

as "G3mPW1K(+)", and includes the following series of calculations: 

• Optimization and frequency calculation at the mPW1K/6-31+G(d) level of theory  

• QCISD(T,FC)/6-31G(d)//mPW1K/6-31+G(d) single point  

• MP4(FC)/6-31+G(d)//mPW1K/6-31+G(d) single point  

• MP4(FC)/6-31G(2df,p)//mPW1K/6-31+G(d) single point  

• MP2(Full)/G3large//mPW1K/6-31+G(d) single point  
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The G3mPW1K(+) enthalpy at 298 K is defined as eq. 4.1. 

 

ΔH298 = E[MP4(FC)/6-31G(d)//mPW1K/6-31+G(d)] + ΔE(+) 

              + ΔE(2df,p) + ΔE(QCI) + ΔE(G3Large) + Hcorr                                 (4.1) 

ΔE(+) = E[MP4(FC)/6-31+G(d)//mPW1K/6-31+G(d)]-  

               E[MP4(FC)/6-31G(d)//mPW1K/6-31+G(d)] 

ΔE(2df,p) = E[MP4(FC)/6-31G(2df,p)//mPW1K/6-31+G(d)]-  

                    E[MP4(FC)/6-31G(d)//mPW1K/6-31+G(d)] 

ΔE(QCI) = E[QCISD(T,FC)/6-31+G(d)//mPW1K/6-31+G(d)]-  

                   E[MP4(FC)/6-31G(d)//mPW1K/6-31+G(d)] 

ΔE(G3Large) = E[MP2(Full)/G3Large//mPW1K/6-31+G(d)]- E[MP2(FC)/6-

31G(2df,p)//mPW1K/6-31+G(d)]-E[MP2(FC)/6-31+G(d)//mPW1K/6-31+G(d)]+ 

E[MP2(FC)/6-31G(d)//mPW1K/6-31+G(d)] 

Hcorr: ZPE + thermal correction to enthalpy (298 K) at mPW1K/6-31+G(d) level 

 

Table 4.3. G3 Reaction Enthalpies at 298.15 K (ΔH298) for Reaction of MVK (47) with NMe3 
(9) and PMe3 (34) (kJ/mol). 
 
  MVK (47) + 

   NMe3 (9) 
MVK (47) + 

           PMe3 (34) 
geometries thermal 

correctionsa 
9*47 48 34*47 49 50 

G3(+)       
MP2/6-31+G(d) HF/6-31+G(d)b -12.77 +44.34 -11.59 +11.34 -48.54
MP2/6-31+G(d) MP2/6-31+G(d) -12.93 +44.57 -11.26 +13.11 -47.68
QCISD/6-31+G(d) MP2/6-31+G(d) -12.80 +45.08 -11.05 +14.16 -47.45
mPW1K/6-31+G(d) mPW1K/6-31+G(d) -12.29 +44.56 -10.66 +12.25 -47.90
MP2/6-31+G(2d) HF/6-31+G(2d)b -12.85 +44.99 -11.74 +10.92 -48.35
MP2/6-31+G(2d) MP2/6-31+G(2d) -12.68 +44.36 -11.51 +11.26 -48.61
QCISD/6-31+G(2d) MP2/6-31+G(2d) -12.60 +44.38 -11.28 +11.62 -48.71
mPW1K/6-31+G(2d) mPW1K/6-31+G(2d) -12.01 +43.09 -10.63 +10.51 -48.24
G3+       
QCISD/6-31+G(d) MP2/6-31+G(d) -13.16 +45.31 -11.41 +14.57 -46.92
QCISD/6-31+G(2d) MP2/6-31+G(2d) -12.94 +44.63 -11.62 +12.14 -48.19
G3(MP2)(+)       
mPW1K/6-31+G(d) mPW1K/6-31+G(d) -11.57 +46.26 -9.59 +16.06 -44.04

a based on unscaled harmonic frequencies except for HF level; b scale factor for harmonic frequence is 0.8929. 

 

Formation of zwitterionic adduct 48 from NMe3 (9) and MVK (47) is endothermic by 44.6 

kJ/mol for the best G3+ method considered here. How does this value compare to the energies 
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obtained directly from geometry optimization as compiled in Table 4.1? Choosing the results 

obtained with the largest basis sets in Table 4.1 (6-311+G(2d,p)) we can see that RHF reaction 

energies are much less favourable (+126 kJ/mol), while reaction energies obtained from 

MP2(FC) or mPW1K calculations are much closer to the G3+ value at +31 and +57 kJ/mol, 

respectively. Similar observations can also be made for zwitterionic adduct 49, whose 

formation is endothermic by 12.1 kJ/mol at G3+ level. Reaction energies are least favorable at 

RHF level (+78 kJ/mol), also unfavourable at B3LYP level (+48 kJ/mol), and close to 

thermoneutral at MP2(FC) and mPW1K level with values of +4 and +9 kJ/mol , respectively.  

 

Table 4.4. Reaction Enthalpies at 298.15 K (ΔH298) for Reaction of MVK (47) with NMe3 (9) 
and PMe3 (34) (kJ/mol). 
 
 MVK(47) + NMe3 (9) MVK (47) + PMe3 (34) MADa 

Level of theory 9*47 48 34*47 49 50  
mPW1K/G3large// 
mPW1K/6-31+G(d) 

-2.25 +57.10 -2.29 +3.96 -49.51 8.40 

mPW1K/6-311+G(3df,2pd)// 
mPW1K/6-31+G(d) 

-1.90 +56.48 -1.91 +4.81 -48.13 8.00 

MP2(FC)/G3MP2large// 
mPW1K/6-31+G(d) 

-12.38 +27.66 -10.62 -9.65 -68.70 12.17 

MP2(Full)/G3large// 
mPW1K/6-31+G(d) 

-12.63 +26.78 -11.13 -12.70 -71.72 13.40 

B2-PLYP/6-31+G(2d)// 
mPW1K/6-31+G(d)b 

-8.60 +60.42 -7.02 +30.23 -13.64 15.47 

B2-PLYP/G3large// 
mPW1K/6-31+G(d) 

-5.70 +64.78 -4.84 +23.58 -23.75 14.01 

B2-PLYP-M1/6-31+G(2d)// 
mPW1K/6-31+G(d)c 

-12.52 +42.14 -10.04 +15.87 -32.22 4.51 

B2-PLYP-M2/6-31+G(2d)// 
mPW1K/6-31+G(d)d 

-13.42 +37.92 -10.74 +12.55 -36.51 3.91 

B2-PLYP-M2/G3large// 
mPW1K/6-31+G(d)d 

-8.96 +44.73 -7.31 +7.20 -44.91 3.32 

B2-PLYP-M3/6-31+G(2d)// 
mPW1K/6-31+G(d)e 

-11.34 +49.00 -9.17 +24.11 -20.99 9.52 

B2K-PLYP/6-31+G(2d)// 
mPW1K/6-31+G(d) 

-12.38 +46.98 -10.19 +16.41 -32.67 4.83 

G3+//QCISD/6-31+G(2d) -12.94 +44.63 -11.62 +12.14 -48.19  
aMean Absolute Deviation from G3+//QCISD/6-31+G(2d) results; busing original B2-PLYP parameters b=0.73 
and c=0.27 as recommended by Grimme et al.;110,111 cusing parameters b=0.73 and c=0.40; dusing parameters 
b=0.73 and  c=0.43; eusing parameters  b = 0.57 and c = 0.43. 
 

Whether an approach solely based on energy calculations at either density functional or MP2 

level can be identified that more closely approximates the G3mPW1K(+) results has been 

further explored in Table 4.4. The MAD values reported here refer to the results obtained at 
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the G3+//QCISD/6-31+G(2d) level described in Table 4.3, and other single point calculations 

are based on structures obtained at mPW1K/6-31+G(d) level. A first attempt involves 

mPW1K calculations using significantly larger basis sets than those used in Table 4.1 for 

geometry optimizations. The final MAD values obtained are quite good, but not small enough 

for high-precision predictions. This is also true for MP2 calculations using larger basis sets. 

The double-hybrid B2-PLYP scheme has recently been proposed by Grimme as a systematic 

improvement over both hybrid DFT and MP2 theories.110,111 The exchange-correlation 

energies are calculated in this scheme according to eq. (4.2): 

 

Exc = (1-ax) Ex
GGA + axEx

HF + bEc
GGA + cEc

PT2  (4.2) 

 

The mixing parameter ax is used here to weigh the relative contributions of exact exchange 

Ex
HF and GGA exchange Ex

GGA. The correlation energies are equally calculated as a mix of 

GGA-derived correlation energy (using the LYP functional) and correlation energy calculated 

using second-order perturbation energy (PT2). This latter calculation is based on KS orbitals 

(and thus differs from MP2 energies based on HF orbitals). The mixing parameters ax = 0.53, 

b = 0.73 and c = 0.27 have been optimized by Grimme using the G2/97 thermochemical data 

set.111 For the systems studied here we find that the overall MAD values are slightly higher for 

B2-PLYP than those obtained for MP2 calculations. The results obtained for the small 6-

31+G(2d) basis set are very similar to those obtained for the larger G3large basis set, 

indicating little dependence of the results on the particular choice of the basis set. In a more 

recent study Martin et al. showed that the mixing parameters for exchange and correlation 

energies used in the B2-PLYP scheme take on quite different values when optimized for 

different sets of reference data.112 As a result a new mixing scheme termed "B2K-PLYP" with 

broader applicability has been proposed using ax = 0.72, b = 0.58 and c = 0.42. The MAD 

value for B2K-PLYP is significantly smaller at 4.8 kJ/mol than for B2-PLYP when using the 

6-31+G(2d) basis set. Using c = 0.40 (B2-PLYP-M1 in Table 4.4) gives MAD = 4.5 kJ/mol 

for the data set chosen here, indicating a large dependence of the stability of zwitterionic 

intermediates on the particular choice of this parameter. Using c = 0.43 (B2-PLYP-M2 in 

Table 4.4) gives MAD = 3.9 kJ/mol, a value surprisingly similar to that used in the B2K-

PLYP scheme. That this is mainly due to the treatment of correlation energies has been shown 

here by keeping the mixing parameters for exchange energies ax and for GGA-derived 

correlation b at the original B2-PLYP values (using ax = 0.53, b = 0.73), while searching for 

the optimal choice of parameter c describing the admixture of PT2 correlation energies. The 
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MAD value can be lowered further when using the larger G3large basis set (instead of 6-

31+G(2d)), giving MAD = 3.3 kJ/mol at the B2-PLYP-M2/G3large//mPW1K/6-31+G(d) 

level. Rescaling of the PT2 correlation energies is, in principle, rather similar to the strategy 

pursued in "scaling all correlation" (SAC) methods such as SAC/3 or PCI-X, in which it is 

assumed that correlation energy calculations such as MP2 recover only a limited amount of 

the overall correlation energy.113,114 Best results are indeed obtained here for combinations 

with b + c > 1, which effectively corresponds to scaling up correlation energies in absolute 

terms. This can also be verified by combining the optimized c = 0.43 parameter with b = 0.57. 

This B2-PLYP-M3 variant gives significantly inferior results as compared to B2-PLYP-M2. 

The similarity of the results obtained with B2-PLYP-M2 and B2K-PLYP and the inferior 

results obtained with B2-PLYP-M3 also illustrates that rescaling the correlation energies (as 

in B2-PLYP-M2) and rebalancing the mixture of exchange energies (as in B2K-PLYP) have 

rather similar consequences for the dataset chosen here. Considering the limited size of this 

data set this conclusion cannot be made in general terms at the moment, but certainly suggests 

that departure from the b + c = 1 recipe pursued in developing the B2-PLYP and B2K-PLYP 

models offers one more opportunity of optimizing the performance of double-hybrid 

functionals.  

  Beyond resolving methodological issues, the results compiled in Tables 4.3 and 4.4 also 

illustrate quite clearly how much stronger PMe3 binds to a neutral electrophile such as MVK 

(H298 = +12.1 kJ/mol) as compared to NMe3 (H298 = +44.6 kJ/mol). The binding energy 

difference at the reference G3+//QCISD/6-31+G(2d) level amounts to 32.5 kJ/mol in favor of 

PMe3, which parallels the higher binding affinity of PMe3 to methyl cations (H298 = -604.7 

kJ/mol) as compared to that of NMe3 (H298 = -540.7 kJ/mol). As a second point we note that 

the cyclic adduct 50 is energetically much more favourable than zwitterionic adduct 49 at all 

levels of theory considered here. The relative stability of these two structures will, of course, 

depend on the polarity of the reaction medium to some extent. The high stability of 50 is 

nevertheless noteworthy as this type of intermediate is typically excluded from considerations 

in phosphine-mediate Baylis-Hillman reactions.  

 

4.4 Extension to Larger Systems 
    In order to verify that the observations made for the small nucleophiles NMe3 (9) and PMe3 

(34) are also valid for larger electrophile/nucleophile combinations, we have calculated the 

stability of zwitterionic adducts between the electrophiles and nucleophiles shown in Scheme 

4.2. The list of nucleophiles includes commonly used catalytic N-centered bases such as N-
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methylimidazole (NMI, 11) and N,N-dimethylaminopyridine (DMAP, 27) as well as phenyl-

substituted phosphines 35 and 39. On the side of the electrophiles we include additional 

alkenes bearing electron-withdrawing substituents such as 51 and 54, as well as the weakly 

electrophilic thiourea 52 and the strongly electrophilic imine 53.  

 

 

 

 

 

 

 

 

 

Scheme 4.2. 

 

Table 4.5. Reaction Enthalpies at 298.15 K (ΔH298) for Reaction of Selected Nucleophiles and 
Electrophiles (kJ/mol).a 

 
 9 34 11 27 35 39 

B2PLYP-M2/6-31+G(2d)//mPW1K/6-31+G(d) 
47 +37.92 +12.55 +40.40 +35.42 +13.39 +22.79 
51 - +59.49 - - +53.51 +61.69 
52 - +50.33 +99.79 +79.02 +48.62 +60.68 
53 -16.53 -32.73 +13.60 -20.54 -33.93 -24.05 
54 - +16.48 +43.64 +31.52 +15.06 +30.90 

G3(MP2)mPW1K(+) 
47 +46.26 +16.06 +53.56 +41.61 +12.66 / 
51 - +64.87 - - +57.05 / 
52 - +34.31 +92.85 +68.52 +33.28 / 
53 -15.38 -32.10 +22.25 -10.17 -31.33 / 
54 - +8.31 +46.93 +38.98 +8.57 / 

G3mPW1K(+) 
47 +44.56 +12.25 +49.70 / / / 
51 - +62.74 - - / / 
52 - +32.31 +90.70 / / / 
53 -17.71 -36.59 +18.75 / / / 
54 - +4.26 +43.51 / / / 

                                               a only acyclic zwitterionic adduct considered here;  
                               - no stable zwitterionic adduct at mPW1K/6-31+G(d) level. 
 

The results obtained for these systems are collected in Table 4.5. For reaction of acrylonitrile 

(51) with N-centered nucleophiles 9, 11, and 27, and also for the reaction of electrophiles 52 

NN

51

CN
H2N NH2

S

52

11

N

NMe2

27

P
Ph

35

Electrophiles

Nucleophiles

SO2H

54

N
CO2H

5347

O

PN

9 34

P
PhPh

Ph

39
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and 54 with NMe3 (9) no stable zwitterionic adducts could be found at the mPW1K/6-

31+G(d) level. For all other combinations reaction energies have been calculated at B2-PLYP-

M2/6-31+G(2d) level, and for selected systems also at G3(MP2)mPW1K(+) and 

G3mPW1K(+) level. The results obtained at this latter level for reactions of PMe3 (34) show 

that reaction energies with the electrophiles selected here cover a range of almost 100 kJ/mol 

with 51 being the least effective and 53 being the most effective electrophile. The results 

obtained at G3(MP2)mPW1K(+) differ from the G3mPW1K(+) values by no more than 4.4 

kJ/mol, while deviations of up to 18 kJ/mol occur at B2-PLYP-M2/6-31+G(2d) level. A 

similar comparison involving all nucleophiles could not be led to completion due to size 

limitations, but the B2-PLYP-M2/6-31+G(2d) level results indicate that PMe3 (34) is the most 

and NMI (11) is the least effective nucleophile with reaction energy differences of 27.9 

kJ/mol. The phosphines 34 and 35 give reaction energies of comparable size, while reaction of 

PPh3 (39) is slightly less favorable. This finding is different from the one obtained in Chapter 

2, in which the MCA value of PPh3 (39) is larger than those of 34 and 35. Analysis of the 

mPW1K/6-31+G(d) optimized structures reveals that the newly formed C-P bond in the 

zwitterionic adduct between PPh3 (39) and MVK (47) is 184.2 pm, which is longer than the 

newly formed C-P bond (181.3 pm) in adduct 49 by 3 pm or so. The difference of the newly 

formed C-P bond in their corresponding methyl cation adducts is only 1.5 pm or so. It may 

indicate that the steric repulsion between the MVK (47) and phenyl substituents in PPh3 (39) 

probably leads to the zwitterionic adduct less stable than the adduct between the MVK (47) 

and PMe3 (34), which is not an issue for methyl cation adducts because the methyl cation is 

such a small electrophile. 

 

4.5 Conclusions 
   The commonly used hybrid density functional B3LYP fails to give correct adduct 

geometries for nitrogen-containing nucleophiles, whether combined with Pople type basis sets 

or correlation consistent basis sets. The MP2/6-31G(d) level of theory does not give correct 

adduct geometries either. Geometry optimizations at the mPW1K/6-31+G(d) level provide a 

reliable basis for the development of compound energy schemes for the accurate description 

of zwitterionic adducts between neutral nucleophiles and electrophiles. Accurate energetics 

can be obtained using modified G3 schemes as well as double-hybrid DFT methods such as 

B2K-PLYP or B2-PLYP-M2. This latter class of methods also allows for the systematic 

investigation of large systems typically formed as intermediates in organocatalytic reactions. 
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5. Critical Design Elements for Acyl-Transfer Catalysts 
 
5.1 Introduction 
  Using chiral pyridine derivatives based on DMAP (4-(dimethylamino)pyridine, 27) or PPY 

(4-(N-pyrrolidino)pyridine, 29) major advances have recently been made in kinetic resolution 

experiments, in particular in those involving secondary alcohols as substrates.8,90,115,116 The 

design of these catalysts requires a delicate balance between two partially opposing effects: (a) 

the use of steric effects for the shielding of parts of the reaction center and thus the control 

over the conformational space of the selectivity-determining transition states; and (b) the rate 

enhancement of substrate turnover as compared to the uncatalyzed background reaction. In 

order to avoid an overly large reduction of the rate of the catalyzed process through steric 

effects, some of the catalyst designs involve the use of stacking interactions between the core 

pyridine ring and some side chain functional groups. How these interactions can lead to 

enhanced rates and to enhanced control of the conformational space at the same time can be 

illustrated with the minimal two-step sequence for the catalyzed group-transfer process in 

Scheme 5.1. 

 

N N+ R X R

- X

N + R Y

A AB

Y

 
 

Scheme 5.1. 

 

Initial reaction of the catalyst A with the electrophilic reagent RX (with R often being an acyl 

group) generates the cationic intermediate B. Subsequent reaction of B with the nucleophilic 

reagent Y− regenerates the catalyst A and produces the product RY. Intermediate B is usually 

not detected directly under experimental conditions, but most indirect evidence points to the 

fact that the first of these steps is fast and reversible as compared to the second, product-

forming step. Stabilization of intermediate B through stacking interactions will under these 

conditions translate into an overall enhanced rate of reaction. That the stacking interactions 

are more favorable at the pyridinium cation stage B than in the neutral catalyst is plausible in 

 
+ 
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systems containing electron-rich π-systems connected to the pyridine ring through a flexible 

linker unit.  

 In order to probe the involvement of stacking interactions in catalysts based on the pyridine 

nucleus in a systematic manner, a series of selected catalysts (see Scheme 5.2) are studied 

using several different theoretical methods. For the sake of computational accuracy, a rigorous 

and fast conformational search is required for the flexible catalysts 55 – 59. Thus, the OPLS-

AA force field, which lacks appropriate parameters for the systems studied here, is first 

developed and then implemented for conformational search. The performance of various 

theoretical methods for describing stacking interactions is compared and discussed. The 

conformational properties of acylpyridinium-cations predicted theoretically are discussed and 

also compared to experimental results. Their catalytic potential is explored and compared to 

several achiral pyridine derivatives, whose catalytic potential has been tested in the past.10,71,83  
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5.2 Force Field Development and Selection of Methods 
 
5.2.1 Development of OPLS All-Atom Force Field and Conformational Search 
 
  The conformational space of all systems presented in this chapter has initially been studied 

with the OPLS-AA force field as implemented in BOSS 4.6.117 Potential parameters for the 

description of 4-aminopyridines and their acetylpyridinium cations are currently not part of 

the default OPLS-AA force field.118  

  Two sets of OPLS-AA force field parameters for calculation on 4-aminopyridines (A) and 4-

aminopyridinium cations (B) have been developed. 

 

 

 

 

 

 

 

A.                                                               B. 

   Most atom types are taken from AMBER atom type defined in Ref. 119. A new atom type is 

defined for the nitrogen atom connected to C4 position of pyridine ring and is termed as 

“NN’’ in both cases.  

   In both cases, Coulomb parameters have been derived using the CM1 procedure with the 

AM1 wavefunction. Lennard-Jones parameters are taken from similar compounds, such as 

pyridines, and tertiary amines in OPLS-AA force field. Bond and angle parameters are also 

chosen from OPLS-AA force field. For missing bond stretching and angle bending 

parameters, the equilibrium bond length req and bond angle θeq are taken from MP2(FC)/6-

31G(d) optimized geometry, and force constants Kr and Kθ are also taken from similar 

compounds in the OPLS-AA force field. Most dihedral parameters are chosen from similar 

compounds again, special dihedral parameters are selected to reproduce the potential energy 

profile at the B3LYP/6-31G(d) level of theory (see Figure 5.1) for conformational isomers of 

A with R1=R4=H, R2=R3=Me.  
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Figure 5.1. Potential Energy Profiles at the B3LYP/6-31G(d) and OPLS-AA Levels of 
Theory. 

 

  All of force field parameters are summarized in Appendix 9.5.2. The conformational space 

of both types of species has then been searched by systematic conformational search using the 

Monte Carlo search facility implemented in BOSS 4.6. The procedure of conformational 

search by BOSS 4.6 is also described in detail in Appendix 9.5.2. The structures of identified 

conformers by OPLS-AA were used for the subsequent quantum chemistry calculations.  
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5.2.2 Selection of Methods 
   It is known from theoretical studies of supramolecular complexes of a variety of π-systems 

such as benzene, naphthalene and the DNA bases that a correct description of dispersion 

interactions is required already at the stage of geometry optimization.63,120-122 It is widely 

recognized that Hartree–Fock calculations describe dispersion interactions rather poorly due 

to their neglect of correlation effects. Good results are often obtained already at the MP2 level. 

An overestimation of dispersion forces observed in some cases at this latter level can be 

remedied either through more highly correlated single reference approaches such as 

CCSD(T)123 or through rescaling the MP2 correlation energies according to the SCS-MP2 

procedure.63,121,122 Unfortunately, gradient-corrected density functional methods such as 

BLYP and hybrid functionals such as Becke3LYP are not able to describe dispersion 

interactions correctly in a systematic fashion due the essentially local design of these 

functionals.63,121,122 How far a correlated treatment is also required for the correct description 

of conformational properties of the catalysts under study here is investigated using catalyst 55 

as a test case. A rigorous conformational search has first been performed for 55 and its acetyl 

intermediate by modified OPLS-AA force field, then the identified conformers were 

reoptimized at the B3LYP/6-31G(d) level of theory, identifying 24 conformers for neutral 55 

and 54 conformers for the corresponding acetyl intermediate 55Ac. The potential of this level 

of theory was tested in earlier studies of the catalytic potential of pyridine bases.10,71,83 Based 

on the Boltzmann-averaged enthalpies calculated at the B3LYP/6-311+G(d,p)//B3LYP/6-

31G(d) level approximately 30 conformations make a significant contribution (>1%) to the 

conformational ensemble at 298 K, the energetically most favorable conformer of 55Ac 

contributing 9.5%. The existence of stacked conformations in pyridinium cations can be 

determined in structural terms using the distance between the center of the pyridine ring and 

the center of the closest lying six membered aromatic ring (as indicated in Figure 5.2). This 

distance amounts to 5.20 Å in the most favorable conformer optimized at the B3LYP/6-

31G(d) level, which is not a π–π stacking structure and does not agree with the spectroscopic 

studies performed by Kawabata and coworkers.17 Kawabata and coworkers have studied 

catalyst 55 and its acyl intermediate using 1H NMR in CDCl3 at 20 °C. Based on an analysis 

of the chemical shift and NOE data, an “open” conformation with little interaction between 

the pyridine nucleus and the naphthalene π-system was predicted for 55 in its neutral form and 

a “closed” conformation for the acylpyridinium cation formed from 55 and isobutyryl chloride 

(see Figure 5.2). The chemical shift data also indicates that the pyridine ring is 

conformationally flexible in neutral 55 (leading to identical resonances for the C2/C6 and 
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C3/C5 protons), but conformationally restricted in the corresponding acyl intermediate (giving 

four different signals for the four pyridine protons). However, more problematic is the fact 

that none of the other 52 conformational isomers found at the B3LYP level shows any type of 

stacking interactions. Repeating the conformational search at the RHF/3-21G level124 again 

yields a large number of conformational isomers for 55Ac (52 structures), this time including 

stacked conformations. Additional consideration of MP2(FC)/6-31G(d) single point energies 

makes one of the stacked conformations the energetically most favorable one. In order to 

verify that this single point approach does not lead to artefactual results, the six best 

conformations obtained at the MP2(FC)/6-31G(d)//RHF/3-21G level have been reoptimized at 

the MP2(FC)/6-31G(d) level. The results collected for these conformers in Table 5.1 indicate 

that the relative ordering is identical at both levels.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2. 1H NMR Study of 55 (A) and Its Acyliminium Ion (B) in CDCl3 at 20 °C. Arrows 
Denote the Observed NOEs. In A, Protons Ha, Hb and Hc, Hd Appear at δ 8.01 and 6.37 ppm, 
Respectively. In B, Protons Ha, Hb, Hc, and Hd Appear Independently at δ 7.45, 8.73, 5.69, and 
6.87 ppm, Respectively.17 
 

  The stacked conformation 55Ac-1 is even more stabilized when relative energies are 

calculated at the MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d) level, predicting an energy gap 

in excess of 10 kJ/mol between stacked and non-stacked conformations. Application of the 

SCS-MP2 scaling protocol63 to the MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d) energies for 

55Ac does indeed reduce the energy difference between stacked and other conformations to 

4.9 kJ/mol, while the relative conformational ordering remains approximately the same as 

before (Table 5.1). 
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Table 5.1. Relative Enthalpies (in kJ/mol) for Selected Conformers of 55Ac at Different 
Levels of Theory. 
 

 

Finally, we have also tested geometry optimizations at the RHF/MIDI! level in combination 

with MP2/6-31G(d) single point calculations as the basis of conformational searches. Despite 

the fact that the MIDI! basis set125 yields better structural data as compared to the smaller 3-

21G basis set, there is no significant improvement here as compared to MP2(FC)/6-

31G(d)//RHF/3-21G. We may thus conclude that the sequence of full conformational 

screening at the MP2(FC)/6-31G(d)//RHF/3-21G level, reoptimization of the best conformers 

at MP2(FC)/6-31G(d) level, and calculation of SCS-MP2(FC)/6-311+G(d,p)//MP2(FC)/6-

31G(d) single point energies for the best conformers appears to represent the best protocol for 

the determination of high level results. The following discussion of structural properties of 

catalysts 55 – 59 and their acetyl intermediates is therefore based on the results obtained in 

this fashion. 

 

 

 

 

 

 

 

 55Ac-1 55Ac-2 55Ac-3 55Ac-4 55Ac-5 55Ac-6 

ΔH298  
HF/3-21G 

18.30 0 8.95 2.81 10.18 14.27 

ΔH298  
HF/MIDI! 

12.33 0 4.39 2.79 5.88 13.67 

ΔH298  
MP2/6-31G(d)//HF/3-21G 

0 1.24 3.09 3.66 6.05 6.07 

ΔH298  
MP2/6-31G(d)//HF/MIDI! 

0 2.30 6.24 5.39 8.11 8.33 

ΔH298  
MP2/6-31G(d) 

0 0.63 2.05 5.79 12.76 13.25 

ΔH298  
MP2/6-311+G(d,p)// 
MP2/6-31G(d) 

0 11.53 14.46 14.61 27.63 24.56 

ΔH298 
SCS-MP2/6-311+G(d,p)// 
MP2/6-31G(d) 

0 4.90 8.25 9.00 17.75 17.94 
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5.3 Conformational Properties of Acylpyridinium-Cations 
The energetically most favorable conformer of catalyst 55 is shown in Figure 5.3 together 

with the two best conformers of the acetyl intermediate 55Ac.  

 

 

 

 
 

 

 

 

 
 
 
 
Figure 5.3. Structures of the Energetically Most Favorable Conformers of Catalyst 55 and Its 
Acetylated Form 55-Ac as Optimized at the MP2(FC)/6-31G(d) Level of Theory. Distances 
Are Given in Ångstroms. 

 

55 

55Ac-2 

55Ac-1 
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In the more favorable of these latter structures 55Ac-1 the naphthalene ring is positioned quite 

ideally on top of the pyridinium ring, while the second best conformer 55Ac-2 may best be 

described as “side-on” in the sense that the C–H bonds of the pyridinium ring point towards 

the naphthalene π-system. The different relative orientation of the two π-systems is clearly 

reflected in the different values of the stacking parameter (3.25 vs. 4.47 Å, Table 5.2), but has 

little effect on other key structural variables such as the C–N bond distance between acetyl 

group and pyridine ring (1.471 vs.1.473 Å). This latter bond distance has earlier been found to 

be a sensitive structural probe for the stability of the acetyl intermediates of differently 

substituted pyridines as exemplified in Table 5.2 with the values for catalysts 1, 25, 27, 29, 

32.71 For these latter systems a good correlation is also found between the overall charge of 

the acetyl group and the C–N bond distance, with shorter bonds correlating with lower overall 

(positive) charges. However, the charge of the acetyl group is largely constant for the six best 

conformers of 55Ac as are the respective C–N bond distances (Table 5.2). This implies that 

the energy differences between these conformers (up to 18 kJ/mol) do not result from 

differences in the stabilization of the overall positive charge of the system. One further 

difference between 55Ac-1 and 55Ac-2 concerns the orientation of the acetyl group oxygen 

atom, which points in the direction of the naphthalene side chain in 55Ac-1 and in the 

opposite direction in 55Ac-2. The former orientation had been predicted by Kawabata et al. 

based on NOE measurements between the acetyl group hydrogen atoms and the pyridine ring 

protons.17 Aside from the stacked and side-on conformers described in Table 5.2 and Figure 

5.3 additional structures of 55Ac exist in which the naphthalene ring is rotated away from the 

pyridine ring with stacking parameters beyond 6 Å. These structures contribute very little to 

the conformational ensemble at 298 K (<1%) and are therefore not explicitly discussed here.  

In conclusion it is only conformer 55Ac-1 which is in line with all direct and indirect 

conclusions derived from the NMR data for this system. The most favorable conformer found 

for the neutral catalyst 55 can best be described as “T-shaped”. This structure alone is 

insufficient to explain the rapid interconversion of the C2–C6 protons of the pyridine ring in 

55, but not in 55Ac. However, one major difference between these two systems is the much 

shorter (1.337 vs. 1.408 Å) and thus stronger C–N bond connecting the pyridine ring to the 

amino-substituent at C4. Rotation around this bond (which has partial double bond character 

in 55Ac, but not in 55) is required for rapid equilibration of the hydrogen atoms on the two 

sides of the pyridine ring and the barrier for rotation around this bond is certainly higher in 

55Ac than in 55. 
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The conformational properties of the acetyl intermediates of catalysts 56 – 59 can easily be 

classified based on the structures shown in Figure 5.4 and the structural and charge data in 

Table 5.2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Structures of the Energetically Most Favorable Conformers of Catalysts 56 – 59 
and Their Respective Acetylated Forms as Optimized at the MP2(FC)/6-31G(d) Level of 
Theory. Distances are given in Ångstroms.
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Table 5.2 Structural and Electronic Characteristics of Acetyl Intermediates of Catalysts Shown in Scheme 5.2.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a Bond distance betwwn pyridine nitrogen and acetyl carbon atoms; b NPA/MP2/6-31G(d)//HF/3-21G charges; c NPA/MP2/6-31G(d)//MP2/6-31G(d) charges; d Distance 
between the center of pyridine ring and the center of the closest aromatic ring (or C=S group); e Energy differences (in kJ/mol) between conformers calculated from 
H298(MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d)) data; f Energy differences (in kJ/mol) between conformers calculated from H298(SCS-MP2(FC)/6-
311+G(d,p)//MP2(FC)/6-31G(d)) data; g  Geometries of systems 58Ac and 58 optimized at HF/3-21G* level. 

system R(C-N)a (Å) 
RHF/3-21G 

R(C-N)a (Å) 
MP2/6-31G(d) 

q(Ac)b

NPA 
q(Ac)c

NPA 
 

Stacking 
parametersd (Å) 

HF/3-21G 

Stacking 
parametersd (Å) 
MP2/6-31G(d) 

ΔEe 
(kJ/mol) 

ΔEf 
(kJ/mol) 

1Ac 1.500 1.540 +0.368 +0.380 - - - - 
27Ac 1.459 1.486 +0.303 +0.314 - - - - 
29Ac 1.456 1.482 +0.296 +0.307 - - - - 
32Ac 1.451 1.478 +0.287 +0.298 - - - - 
25Ac 1.445 1.472 +0.273 +0.287 - - - - 
55Ac-1 
55Ac-2 
55Ac-3 
55Ac-4 
55Ac-5 
55Ac-6 

1.448 
1.447 
1.448 
1.447 
1.448 
1.451 

1.471 
1.473 
1.474 
1.471 
1.472 
1.478 

+0.281 
+0.279 
+0.280 
+0.279 
+0.279 
+0.285 

+0.285 
+0.287 
+0.289 
+0.287 
+0.288 
+0.296 

3.57 
5.23 
5.18 
5.32 
5.20 
4.70 

3.25 
4.47 
4.60 
4.29 
4.65 
4.57 

0.0 
11.53 
14.46 
14.61 
27.63 
24.56 

0.0 
4.90 
8.25 
9.00 
17.75 
17.94 

56Ac 1.453 1.478 +0.291 +0.301 - - - - 
57Ac-1 
57Ac-2 

1.458 
1.458 

1.481 
1.482 

+0.290 
+0.284 

+0.293 
+0.292 

3.68 
4.51 

3.50 
4.41 

0.0 
12.69 

0.0 
7.59 

58Ac-1 

58Ac-2 
1.457 g 
1.458 g 

1.480 
1.481 

+0.299 
+0.301 

+0.307 
+0.309 

3.83 
3.83 

3.81 
3.70 

0.0 
0.48 

0.0 
0.78 

59Ac-1 
59Ac-2 

1.450 
1.450 

1.477 
1.476 

+0.294 
+0.295 

+0.299 
+0.298 

4.41 
4.32 

4.44 
4.39 

0.0 
1.86 

0.00 
1.74 
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A comparison of the related systems 56 and 57 shows that catalyst 57 contains a π-system 

capable of stacking interactions, while 56 does not. A close contact between the pyridinium 

π-system and the benzene ring contained in the amide side chain of 57Ac is indeed visible in 

the energetically most favorable conformer of this system displayed in Figure 5.4. However, 

the distance between the ring midpoints of 3.50 Å is significantly longer than the distance 

between the acetyl group and the oxygen atom of the dihydrobenzofuran side chain of 2.76 

Å. This latter contact appears to originate from electrostatic complementarity of the most 

electronegative center of the side chain and the partially positively charged acetyl group in 

57Ac. It is clear from this description that further variation of the side chain heteroatoms may 

result in even stronger electrostatic interactions, implying more stable acetyl intermediates 

and better conformational control. The second best conformer of 57Ac-2 orients the side 

chain in a side-on fashion to the pyridinium ring and is less stable than 57Ac-1 by 7.6 kJ/mol. 

No spectroscopic data appear to exist for the acyl intermediates of 56 and 57. However, 57 

has been found to give slightly better selectivities than 56 in kinetic resolution experiments of 

alcohols.18 

   Catalyst 58 differs from the previous systems in that close contacts between the pyridine 

ring and parts of the side chain (here: the thiocarbonyl group) exist at both the neutral and the 

cationic stage. The stacking distance is even smaller for neutral 58 than for 58Ac. One major 

difference between the neutral and cationic forms of 58 concerns the orientation of the tert-

butyl group, which points towards the dimethylamino group in acetyl-intermediate 58Ac, and 

in the opposite direction in neutral catalyst 58. Non-stacking conformations are energetically 

very unfavorable for both species. Yamada and coworkers have studied catalyst 58 and its 

alkyl- and acyl-pyridinium derivatives by 1H NMR measurements.20  Through comparison to 

model compounds lacking the thiocarbonyl moiety it was concluded that acylation of 58 

leads to a “conformationally locked” pyridinium cation involving stacking interactions 

between the pyridinium nucleus and the thiocarbonyl bond. Calculations performed on the 

isobutyrylpyridinium-cation of 58 at the B3LYP/6-31G(d) level of theory also show that 

these intermediates have clear conformational preferences with respect to the orientation of 

the tert-butyl side chain.20 The orientation of the tert-butyl side chain is directly comparable 

to what is found here for the acetyl intermediate. However, while no significant 

conformational preference exists for the acetyl group in 58Ac (syn and anti conformer differ 

by less than 1 kJ/mol at all levels studied here), a clear preference for an anti conformation 

(pointing the carbonyl oxygen atom away from the substituent at C3) has been found 

experimentally for the isobutyryl group.  
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   No stacking interactions between the pyridine ring and the phenyl side chain exist in the 

neutral or cationic forms of catalyst 59. Still the rigid phenylnaphthyl side chain has clear 

conformational preferences at both stages, orienting the phenyl substituent towards the acetyl 

group in cation 59Ac and towards the diethylamino group in neutral 59. Previous theoretical 

studies of the conformational space of catalyst 59 at the PM3 level as well as the X-ray 

crystal structure of protonated 59 shows that the π-systems contained in 59 are connected in a 

rather rigid manner. This excludes the conformational rearrangement described in Scheme 

5.1. The most favorable orientation of the acetyl group in 59Ac-1 is in line with the 

assignment made for the situation in solution based on 1H NMR spectroscopic results.126 
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5.4 Reaction Enthalpies for Acetyl Group Transfer 
  The stability of acetyl intermediates of catalysts shown in Scheme 5.2 has been assessed 

using the reaction enthalpy at 298.15 K for the isodesmic reaction (5.1) shown in Scheme 

5.3. 
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Scheme 5.3 

 

Previous results for catalysts 1, 25, 27, 29, 32 have been obtained at the B3LYP/6-

311+G(d,p)//B3LYP/6-31G(d) level of theory.71 Given the problematic performance of this 

level in describing the conformational properties of the larger catalysts 55 – 59 we 

concentrate here on the results obtained from calculations at Hartree–Fock and MP2 levels of 

theory (Table 5.3).  

  Perusal of the results for the non-stacking catalysts 1, 25, 27, 29, 32 shows a clear trend to 

smaller reaction enthalpies on going from the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) to the 

MP2(FC)/6-31G(d)//RHF/3-21G level. This reduction is still visible when MP2(FC)/6-

31G(d) optimized geometries are used and thus reflects the intrinsic properties of the MP2 

method. Additional consideration of SCS-MP2 single point energies calculated with the large 

6-311+G(d,p) basis set predicts practically the same values. Comparison of the results 

obtained from the most economical and the most expensive MP2 versions considered here 

(MP2(FC)/6-31G(d)//RHF/3-21G vs. SCS-MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d)) 

shows these to be strikingly similar for most systems. The relative ordering of the stabilities 

of catalysts 1, 25, 27, 29, 32 is practically identical at all levels selected here with one 

exception: while catalyst 25 is predicted to give more stable intermediates than catalyst 32 at 

the Hartree–Fock and B3LYP levels, largely similar values are obtained at the MP2 levels for 

both systems. 

(5.1) 
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Table 5.3. Stabilities of Acetyl Intermediates of Catalysts Shown in Scheme 5.2 as Expressed through the Heat of Reaction ΔHrxn of Isodesmic 
Reaction (5.1) at 298.15 K (in kJ/mol).    
  

a The following abbreviations have been used: "RHF-1" = RHF/3-21G//RHF/3-21G; "RHF-2" = RHF/MIDI!//RHF/MIDI!; "B3LYP-1" = B3LYP/6-31G(d)//B3LYP/6-
31G(d); "B3LYP-2" = B3LYP/6-311+G(d,p)//B3LYP/6-31G(d); "MP2-1" = MP2(FC)/6-31G(d)//RHF/3-21G; "MP2-2" = MP2(FC)/6-31G(d)//RHF/MIDI!; "MP2-3" = 
MP2(FC)/6-31G(d)//MP2(FC)/6-31G(d); "MP2-4" = MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d); "MP2-5" = SCS-MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d);"RHF-4"= 
RHF/6-311+G(d,p)//MP2/6-31G(d).

system ΔHrxn 

RHF-1a 

ΔHrxn 

RHF-2a 

ΔHrxn 

B3LYP-1a 

ΔHrxn 

B3LYP-2a 

ΔHrxn 

MP2-1a 

ΔHrxn 

MP2-2a 

ΔHrxn 

MP2-3a 

ΔHrxn 

MP2-4a 

ΔHrxn 

MP2-5a 

ΔHrxn 

RHF-4 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

27 -89.24 -85.47 -82.54 -82.08 -78.97 -77.19 -77.67 -76.16 -78.77 -82.79 

29 -99.67 -95.15 -93.42 -93.1 -88.49 -89.21 -89.84 -86.20 -89.11 -94.39 

32 -110.58 -102.07 -107.06 -108.9 -101.75 -100.60 -101.51 -99.48 -101.41 -107.27 

25 -117.76 -106.46 -114.27 -113.1 -99.98 -102.17 -99.22 -94.74 -98.50 -115.73 

55 -116.22 -104.36 -110.84 -110.19 -109.77 -109.91 -119.16 -130.32 -120.93 -90.96 

56 -87.56 - - - -81.95 - -84.60 -82.36 -85.37 -90.00 

57 -113.30 - - - -114.44 - -106.08 -110.43 -105.78 -110.01 

58 -80.27 - - - -69.48 - -69.76 -70.28 -74.03 -76.27 

59 -109.18 - -102.89 -105.25 -92.31 - -92.93 -91.03 -93.09 -96.34 
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Turning to the results obtained for catalysts 55 – 59 we note that the two “π-stacking” 

catalysts 55 and 57 give particularly stable acetyl intermediates. The actual stability values 

for these two systems depend much more on the computational level than those for all other 

systems. Concentrating on the results obtained at the SCS-MP2(FC)/6-

311+G(d,p)//MP2(FC)/6-31G(d) level (“MP2-5”), the most stable acetyl intermediate is 

formed by catalyst 55 (−120.9 kJ/mol). The magnitude of the correlation contribution to this 

reaction energy of 30.0 kJ/mol (obtained as the difference between SCS-MP2(FC)/6-

311+G(d,p)//MP2(FC)/6-31G(d) and RHF/6-311+G(d,p)//MP2(FC)/6-31G(d) energies) is in 

clear support of strong dispersion interactions121 between the naphthalene side chain and the 

pyridinium ring system in 55Ac.  

  The involvement of π-stacking interactions in acyl intermediates of catalyst 57 can be 

assessed through comparison to catalyst 56, whose acetyl intermediates differ in stability by 

20.4 kJ/mol. To equate this difference to the magnitude of dispersion interactions is, 

however, not correct considering the stability difference between 56 and 57 of 20.0 kJ/mol 

predicted at RHF/6-311+G(d,p)//MP2(FC)/6-31G(d) level. The absence of a notable 

correlation effect on the stabilization energies together with the structural characteristics for 

the acetyl intermediate 57Ac-1 noted above suggests that the higher stabilization energy of 

57Ac as compared to 56Ac is mainly due to electrostatic effects between the acetyl group and 

the side chain. Stacking interactions appear not to play a prominent role in catalysts 58 and 

59. In catalyst 58 the balance between the inductive electron-withdrawing power of the acyl 

substituent at C3 of the pyridine ring and the stacking interactions between the thiocarbonyl 

group and the pyridine ring in its cationic form appear to result in net destabilization 

compared to DMAP 27. That dispersion interactions are indeed not decisive for the 

stabilization of 58Ac relative to 58 is also reflected in a negative correlation contribution of 

−2.2 kJ/mol for this system. In catalyst 59 this is certainly due to the rigid σ-bond framework 

preventing the large-scale conformational rearrangement described in Scheme 5.1, but 

inductive substituent effects appear to be sufficiently large to make the acetyl intermediate 

59Ac quite stable even in the absence of stacking interactions. With respect to the general 

reaction scheme described in Scheme 5.1 we may expect catalysts 55, 56, 57, and 59 to be 

more reactive than DMAP (27) at ambient temperature or above since their acetyl 

intermediates are more stable than that of DMAP. 
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5.5 Conclusions 
  The conformational preferences of catalysts 55 – 59 studied at the SCS-MP2(FC)/6-

311+G(d,p)//MP2(FC)/6-31G(d) level are in line with the limited existing experimental data 

available for these systems. Stacking conformations dominate the appearance of the 

acetylpyridinium intermediates of catalysts 55, 57, and 58. Dispersion interactions are mainly 

responsible for this situation in 55Ac, while electrostatic effects dominate in 57Ac. The 

conformational preferences of the acetyl intermediates of 58 and 59 are mainly enforced by 

the rigidity of the σ-framework, leading to a stacking conformation in 58Ac and a non-

stacking conformation in 59Ac. Large conformational changes still occur in both of these 

latter systems on formation of the acetyl intermediate, supporting the “conformational 

switch” picture derived from experimental 1H NMR studies. In methodological terms we 

have shown that studies of the acetyl intermediates of catalysts 55 – 59 require correlated 

levels, the MP2(FC)/6-31G(d)//RHF/3-21G level providing a reasonable lower limit of effort. 

DFT methods such as the popular B3LYP hybrid functional are not able to describe stacking 

interactions induced through dispersion interactions properly. 
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6. Optimal Selectivity of Chiral Analogues of 4-(Dimethylamino)Pyridine 
for Nonenzymatic Enantioselective Acylations: a Theoretical Investigation  
 
6.1 Introduction 
   Organocatalysis has been at the forefront of research in organic chemistry in recent years, 

and one of the most studied fields concerns acyl group transfer reactions mediated by chiral 

catalysts. Chiral catalysts based on amine and phosphine structural motifs have been 

designed and synthesized for kinetic resolution (KR) of alcohols and related stereoselective 

transformations.7,127 Chiral dimethylamino-pyridine (DMAP) catalysts have been 

demonstrated to be good catalysts for enantioselective acyl-transfer reactions by Vedejs,115,128 

Fuji,16,17 Fu8,129 and Spivey.23,130 Spivey’s group130 has developed a series of axially chiral, 

atropisomeric derivatives of 4-dialkylaminopyridines as catalysts for the KR of racemic sec-

alcohols. KR experiments proceeded using racemic 1-(1-naphthyl)-ethanol 60 as the substrate 

and isobutyric anhydride 61 as acyl donor (see Scheme 6.1) in the presence of the 

enantiomerically pure biaryl catalyst 59a. The alcohol (R)-60 reacts faster than the alcohol 

(S)-60 with 61 to produce ester (R)-62 and carboxylic acid 63 using the catalyst 59a, and the 

selectivity factor (s) of 24 was obtained at -78 ˚C. In the similar manner, KR experiments 

were performed using a series of atropisomeric derivatives with various 4-dialkylamino 

groups. They found that the selectivities of these catalysts are dependent on the nature of the 

4-dialkylamino group, but have not offered an explanation on why this is so. Spivey’s 

findings have motivated us to perform theoretical investigations for better understanding the 

acylation reaction of racemic alcohols and the factors influencing the selectivities of these 

catalysts.  
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 The mechanisms of DMAP-catalyzed acetylation of alcohols have been investigated 

theoretically in detail by Zipse’s group.10 The currently accepted consensus mechanism for 

acylation reactions of alcohols is described in Scheme 6.2, which involves the preequilibrium 

formation of an acylpyridinium cation, and then its reaction with the alcohol in the rate-

determining second step to form the ester product with the protonated catalyst, and finally 

regeneration of the activated catalyst with an auxiliary base. An alternative mechanism is the 

deprotonation of the alcohol by catalyst and subsequent attack of the alkoxide at the acyl 

donor; however, previous DFT calculations show that it is much less favorable.10 Whether 

this finding persists for the acylation of racemic secondary alcohols is still a question, 

therefore, we investigate the mechanism carefully again using Spivey’s catalyst 59a and sec-

alcohol 60.     

 

 

 

 

 

 

 

 

 

  

 

 

 

Scheme 6.2. 

 

   In order to shed light on the enantioselectivities of chiral DMAP-catalysts for acyl-transfer 

reactions, we have investigated theoretically the acylation of racemic secondary alcohols by a 

series of Spivey’s catalysts and substrates in detail. The most important question we concern 

is whether the enantioselectivities of chiral DMAP-catalyzed acyl-transfer reactions can be 

rationalized with the transition state in the rate-determining step that is also considered as the 

selectivity-determining step. The possible role of 4-dialkylamino substituents on the chiral 

transformation is discussed and a catalyst modification to improve the enantioselectivity is 

suggested.  
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6.2 Nucleophilic Catalysis vs. Base Catalysis 
  In order to check whether the commonly accepted mechanism persists, we have first 

investigated the nucleophilic and general base catalysis pathways for the reaction of racemic 

1-(1-naphthyl)ethanol (60) with isobutyric anhydride (61) catalyzed by 59a at the B3LYP/6-

311+G(d,p)//B3LYP/6-31G(d) level of theory used in the previous theoretical studies of 

DMAP-catalyzed acetylation of alcohols.10 All conformers of reactants 60 and 61, and 

products 62 and 63 have been searched carefully and optimized at B3LYP/6-31G(d) level 

and obtained the relative enthalpies at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of 

theory. The conformational spaces of the transition states (TSs) along the nucleophilic 

catalysis pathway were searched by modified OPLS-AA force field and then the identified 

conformers were reoptimized at B3LYP/6-31G(d) level in order to obtain the relative 

enthalpies at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The IRC 

calculations have been run using the best conformer of TS to obtain the reactant complex, 

intermediate, and product complex. The TSs along the base-catalyzed pathway were located 

based on the previously suggested “four-membered” and “six-membered” structures10 and 

optimized at B3LYP/6-31G(d) level. Using these structures the relative enthalpies at the 

B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory have been calculated. The 

nucleophilic and general base catalysis pathways are plotted in Figure 6.1 by using the 

lowest-energy conformer and the relative enthalpies for stationary points located on the 

potential energy surface are shown in Table 6.1. The diastereomeric transition states and 

intermediates are denoted as (R)-* and (S)-*, which represent the corresponding 

configuration of the involved alcohol. 

  The reaction is initiated through formation of a ternary complex 64 of reactants 60, 61 and 

catalyst 59a for both the nucleophilic and general base catalysis pathway. Along the 

nucleophilic catalysis pathway, the reactant complex 64 passes through the first TS 65 to 

yield intermediates 66, which then pass through the second TS 67 with concomitant proton 

transfer to product complex 68. The alternative base-catalyzed reaction pathway procedes 

through concerted TSs 69 to product complex 68 in one single step. The diastereomers 

including R-configuration alcohol are always a few kJ/mol lower than those including S-

configuration alcohol. The most energetically favorable transition state (R)-69 along the base 

catalysis pathway is located 40 kJ/mol or so above the transition state (R)-65 and 53 kJ/mol 

or so above the transition state (R)-67. Single point calculations have also been done at the 

MP2/6-31G(d)//B3LYP/6-31G(d) level of theory for the best conformers of (R)-65, (R)-67, 

(R)-69. The energy of (R)-69 is also higher than that of (R)-65 and (R)-67 by more than 30 
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kJ/mol at MP2/6-31G(d)//B3LYP/6-31G(d) level. This indicates that the nucleophilic 

catalysis pathway is more favorable than the general base catalysis pathway, which is in line 

with Zipse group’s previous finding on DMAP-catalyzed reaction of acetic anhydride and 

tert-butanol. 

 

Table 6.1. Relative Enthalpies (in kJ/mol) for Stationary Points Located on the Potential 

Energy Surface at B3LYP/6-311+G(d, p)//B3LYP/6-31G(d) Level. 

 

 

 

 

 

ΔH298 (gas phase) 
Nucleophilic catalysis 
59a+60+61 0.00 
(R)-64 (reactant complex) -22.98 
(S)-64 (reactant complex) -22.54 
(R)-65 (first TS) 26.80 
(S)-65 (first TS) 34.29 
(R)-66 (intermediate) 7.56 
(S)-66 (intermediate) 11.72 
(R)-67 (second TS) 14.06 
(S)-67 (second TS) 20.10 
(R)-68 (product complex) -87.35 
(S)-68 (product complex) -86.87 
59a+(R)-62 +63 -21.61 
Base catalysis (concerted) 
59a+60+61 0.00 
(R)-64 (reactant complex) -22.98 
(S)-64 (reactant complex) -22.54 
(R)-69 (TS) 67.23 
(S)-69 (TS) 77.49 
(R)-68 (product complex) -87.35 
(S)-68 (product complex) -86.87 
59a+(R)-62+63 -21.61 
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Figure 6.1. Gas Phase Enthalpy Profile (ΔH298) Calculated at the B3LYP/6-311+G (d,p)//B3LYP/6-31G(d) Level of Theory. 
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6.3 Reaction Barriers and Conformational Space of TSs  
   The energy difference between the diastereomeric TSs of the rate-determining step is the 

key point to predict the enantioselectivity. Thus, the enthalpy profile including TSs and 

intermediates along the nucleophilic catalysis pathway shown in Figure 6.1 is chosen 

particularly to put in Figure 6.2 in order to discuss the reaction barriers and the 

conformational space of TSs in detail.  

  The systems investigated here are very flexible and have a large conformational space. A 

systematic conformational search of TSs 65 and 67 was first done using a modified OPLS-

AA force field, and then the conformers identified by force field within the energy window of 

40 kJ/mol were reoptimized at the B3LYP/6-31G(d) level of theory, and single point 

calculations were done at the B3LYP/6-311+G(d, p) level of theory. Figure 6.2 shows a 

pictorial representation of the relative energies of all conformers of transition states 65 and 

67. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Relative Energies (Relative to the Best Conformers of 59a+60+61) of All 
Conformers of Transition States 65 and 67 and the Intermediate 66 at B3LYP/6-311+G(d, 
p)//B3LYP/6-31G(d) Level. 
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  Surprisingly, the energy of first TS 65 in the formation of an acylpyridinium cation is higher 

than that of the second step commonly considered as the rate-determining step by 13 kJ/mol 

or so at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level. In order to see whether this 

observation also persists by other theoretical methods, we chose several other theoretical 

methods to do single point calculations again based on the optimized B3LYP/6-31G(d) 

structures. The DFT methods with dispersion corrections (DFT-D) and MP2 methods are 

chosen because we assume that the dispersion interactions may exist and play some roles due 

to the system studied here including several aromatic rings, however, the popular B3LYP 

functional cannot predict this type of interaction accurately. The single point calculations 

were done at different theoretical levels of theories for conformers whose populations are 

more than 1% at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level. The relative Boltzman-

averaged enthalpies between (R)-65 and (R)-67 at different levels of theories are investigated 

carefully and compared (see Figure 6.3). In order to avoid the basis set superposition error 

(BSSE), the relative enthalpies are calculated with respect to the reactant complex instead of 

the separated reactants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Relative Energies of (R)-65 and (R)-67 with Respect to the Reactant Complex at 

Different Levels of Theories. 
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The energy difference between (R)-65 and (R)-67 varies with theoretical methods, the 

variation is in the range of -14 kJ/mol and +14 kJ/mol. Thus, different theoretical methods 

predict different rate-determining steps using the same model system. At this point, it is hard 

to pin down which method is more reliable without higher level theoretical benchmark data 

that are too difficult to get for such a big system. MP2 results seem more basis sets dependent 

and they are much more computationally costly than DFT methods for the system studied 

here. We will use the economic DFT methods B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) and 

B3LYP-D/6-311+G(d,p)//B3LYP/6-31G(d) to calculate the catalytic selectivity in section 6.4 

and to see which calculated results are in line with Spivey’s experimental results. 

  In principle, the rate-determining step is also considered to be the selectivity-determining 

step. Thus, it is difficult to predict which step is the selectivity-determining step due to the 

uncertainty of rate-determining step described above. We have tried to calculate the free 

energy difference of diasteromers in these two steps to match the experimental value (see 

Table A9.6.1 in Appendix). It turns out that the free energy difference of the diastereomers of 

TS 67 is closer to experimental values. The detailed theoretical prediction of catalytic 

selectivity is discussed in the section 6.4. We focus our attention here on the structures and 

the energy difference of the diastereomers of TS 67 to investigate the possible factors 

influencing the stereoselectivity of catalyst 59a.  

   Through analysis of the optimized geometries of transition state 67, we found that all 

conformers can be classified into the four types shown in Scheme 6.3. Figure 6.4 shows a 

pictorial representation of the relative energies of the conformers of (R)-67 and (S)-67, 

respectively. Generally speaking, the carboxylate group is bonded to the left or right side of 

the pyridine ring by weak hydrogen bonding and the alcohol approaches the reaction center 

either from the front face or the back face of the pyridine ring. Type 67-I shows that the 

carboxylate group is bonded to the right side of the pyridine ring and the alcohol approaches 

the reaction center from the back side. For this type the conformers with R-configuration 

alcohol are more stable than the conformer with S-configuration alcohols by more than 20 

kJ/mol. In type 67-II and 67-III, the conformers with S-configuration alcohol are more stable 

than the conformers with R-configuration alcohol. Conformers in type 67-IV have poor 

stabilities, no matter including either R-configuration or S-configuration alcohol. The most 

stable conformer with R-configuration alcohol belongs to the type 67-I, which is more stable 

than the most stable conformer with S-configuration alcohol classified into the type 67-III by 

6.1 kJ/mol.   
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Scheme 6.3. The Classified Conformer Types of TS 67. 

 

 

 

Figure 6.4. Relative Energies (kJ/mol) of Conformers of TS 67. 
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The B3LYP/6-31G(d) optimized structures of the most stable conformers of (R)-67 and (S)-

67 are shown in Figure 6.5. Analysis of the structures reveals that the alcohol 60 (shown by 

light green color in Figure 6.5) approaches the reaction center from the back face of the 

pyridine ring in (R)-67 and the front face of the pyridine ring in (S)-67. There is no 

siginificant steric hindrance when alcohol approaches the reaction center from the back face 

of the pyridine in (R)-67. In contrast, alcohol approaching the reaction center from the front 

face of the pyridine in (S)-67, the steric repulsion between the tilted phenyl ring of the 

catalyst 59a and the naphthyl ring of alcohol 60 may lead to the energy of (S)-67 higher than 

that of (R)-67 by 6 kJ/mol or so.  
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Figure 6.5. The Most Stable Conformer of (R)-67 and (S)-67 at the B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) Level of Theory. 
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6.4 Theoretical Prediction of Selectivity and a Modification of Catalyst 
  Spivey et al. have reported that varying the 4-dialkylamino substituents influence the 

selectivities of catalysts, however, there is no clear correlation between the selectivity of 

catalyst and the steric bulk or chain length of alkyl groups. We choose a series of catalysts 

59a - 59c (shown in Scheme 6.4) and use the same substrate 60 to investigate their selectivity 

theoretically and compare them with experimental results. The experimental selectivity 

factors (s) of catalysts 59a - 59c and transformed free energy difference (ΔG195,exp) are 

collected in the first column of Table 6.2. The relation formula between selectivity factors (s) 

and transformed free energy difference is shown as follows.  

Selectivity factor r

s

ks
k

=  (6.1) 

                                                                                                                  (6.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6.4. Catalysts and Substrates Used to Model Kinetic Resolution of sec-Alcohols. 

   

  The enthalpy and free energy difference between the diastereomers of the TS 67 considered 

as the selectivity-determining TS for 59a, 59b, 59c were calculated by DFT methods and also 

listed in Table 6.2. The conformational space of TS 67 for 59b and 59c were also searched in 

the similar way as for catalyst 59a by modified OPLS-AA force field and then the identified 

conformers were reoptimized at B3LYP/6-31G(d) level. Experimental results show that the 

pyrrolidino-substituted catalyst 59c is the least selective catalyst and the 4-

dimethylaminopyridine based catalyst 59b and 4-diethylaminopyridine based catalyst 59a 
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have better selectivity. The enthalpy differences ΔH298 for the TS 67 of catalysts 59a - 59c 

calculated at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level have no significant difference, 

and cannot reflect the experimental trends of ΔG195,exp. The calculated free energy differences 

ΔG298 for the TS of catalysts 59a - 59c calculated at the same level theory cannot reproduce 

experimental results either and even predict the opposite result that the pyrrolidino-

substituted catalyst 59c should have higher selectivity than 59a and 59b. If we obtain ΔS298 

by formula 6.3 and we assume that the ΔH298 and ΔS298 approximately have the same value as 

ΔH195 and ΔS195, respectively, we get ΔG195 by formula 6.4. The free energy difference ΔG195 

estimated at experimental temperature (195 K) does not improve theoretical results either.  

 

                                                                                        (6.3) 

                                                                                        (6.4) 

                                                                                         

Table 6.2. Comparison of Experimental and Calculated Energy Difference (in kJ/mol) for the 
Diastereomers of TS 67 for Catalysts 59a - 59c. 
 

Experimental 
(195 K)a 

Theoreticalb Theoreticalc Cat. 

s ΔG195,exp 
 

s ΔG195 ΔG298 ΔH298 s ΔG195 
 

ΔG298 ΔH298 

59a 24 5.16 36 5.82 5.65 6.13 15.9 4.48 6.09 1.42 
59b 10 3.74 35 5.78 5.60 6.12 2.5 1.51 1.60 1.34 
59c 3.5 2.03 150 8.12 9.38 5.73 4.8 2.55 4.03 -0.26 

a. s values are taken from experimental results and temperature is 195 K, and ΔG195, exp is obtained based on 
equation (6.2); b. B3LYP/6-311+G(d,p)//B3LYP/6-31G(d), Boltzmann-weighted average; c. B3LYP-D/6-
311+G(d,p)//B3LYP/6-31G(d), Boltzmann-weighted average. 
 

The thermal corrections recalculated at 195 K do not improve the results (see Table A9.6.2 in 

Appendix). After addition of dispersion corrections, the enthalpy differences ΔH298 for the 

TS of catalysts 59a - 59c are significantly smaller, but both free energy difference ΔG298 and 

ΔG195 cannot reproduce the experimental results. Failure to reproduce experimental results 

leads us to doubt whether we find the right TS models or we cannot calculate free energy 

accurately although the TS models are chosen correctly. If the free energy differences of TS 

67 used above cannot be correlated to experimental results correctly, the free energy 

differences of TS 65 or intermediate 66 might be correlated to experimental results correctly. 

Thus, we chose catalyst 59a and substrate 60 to investigate their free energy differences of 

TS 65 or intermediate 66. Disappointingly, they are not able to be correlated with 

298 298
298

195 195 195

298
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experimental results correctly either (see Table 9.6.1 in Appendix). The experimental results 

show that the free energy differences ΔG195,exp for different catalysts are less than 4 kJ/mol, 

which indicates the influence of 4-dialkylamino substituents to the selectivity is not so 

dramatic and makes the theoretical predictions very difficult. The possible reason for 

deviation of theoretical results from experimental results could be that the 4-dialkylamino 

substituents are far away from the reaction center and variation of 4-dialkylamino 

substituents mainly induces entropy variations, which are small values; because the structural 

changes of catalysts are just variations of 4-dialkylamino groups from restricted pyrrolidino 

ring to more flexible alkyl chains. Unfortunately, it is a challenge to evaluate the entropy 

change accurately by commonly used theoretical methods.  

  Further we did theoretical selectivity predictions for one catalyst 59a with various substrates 

60, 70-72 shown in Scheme 6.4, which leads to the changes near the reaction center. In order 

to save computational costs, we just use the best conformers obtained at the B3LYP/6-

311+G(d,p)//B3LYP/6-31G(d) level of theory to predict the free energy difference of TS (R)-

67 and (S)-67 for the catalyst 59a instead of using Boltzman-averaged values of all 

conformers. The enthaly difference ΔH298 only varies by 0.2 kJ/mol from using the enthalpy 

of one best conformer to using the average enthalpies of all of conformers (see Figure 6.6). 

Thus, using one best conformer’s enthalpy will not lose the calculation accuracy 

significantly. The variation of substrates is assumed not to change the comformational space 

of TS 67 dramatically shown in Figure 6.4. We use the best conformers of TS type (R)-67-I 

and (S)-67-III with substrate 60 as our TS template to get the new TS with other substrates. 

We keep the main part of  (R)-67-I and (S)-67-III and just vary the substrate part to build the 

initial input structure, and then reoptimize the structure to obtain the TSs (R)-67 and (S)-67 

with a series of substrates. The free energy and enthalpy difference of TS (R)-67 and (S)-67 

for the catalyst 59a with a series of substrates are calculated at B3LYP/6-

311+G(d,p)//B3LYP/6-31G(d) level  and compiled in Table 6.3. Inspection of Table 6.3 

reveals that the calculated enthalpy differences ΔH298 have the same trend as the experimental 

results; however, the calculated free energy differences are not fully in line with the 

experimental results. Figure 6.7 shows clearly that the ΔH298 is moderately correlated to 

ΔG195,exp, which supports our suggested TS models are appropriate for modelling the changes 

near the reaction center. The TS models we found may be used as templates to predict the 

potential selectivity of new catalysts if we modify some part of catalyst near the reaction 

center. 
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 Figure 6.6. The Number of Conformers Required to Calculate Accurate Energy Difference. 
 

 

Table 6.3. Comparison of Experimental and Calculated Energy Difference (in kJ/mol) for the 
Diastereomers of TS 67 for Catalysts 59a – 59d and Substrates 60, 70 – 72.a 

 

a Using the best conformers of (R)-67-I and (S)-67-III; b ΔG195,exp obtained through the equation  

ΔH298 = 1.7465*ΔG195,exp -3.3948, and then transformed to selectivity factor. 
   

            

Cat. Sub. Experimental (195 K)    TS (67) 
  s ΔG195,exp 

 
s ΔG195 

 

ΔG298  ΔH298 

59a 60 24 5.16 23.5 5.12 4.63 6.04 
59b 60 10 3.74 35.3 5.78 5.60 6.12 
59c 60 3.5 2.03 149.7 8.12 9.38 5.73 
59d 60 - - 1808.9 

(118b) 
12.16 

(7.74b) 
13.23 10.13 

 
59a 60 24 5.16 23.5 5.12 4.63 6.04 
59a 70 13 4.16 248.2 8.94 11.88 3.38 
59a 71 25 5.22 27.1 5.35 5.26 5.51 
59a 72 8.4 3.45 4.42 2.41 2.15 2.91 
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Figure 6.7. Correlation between Experimental and Calculated Energies for the 

Enantioselectivity. 

 

   Based on our TS models, the attached blocking groups on the phenyl ring of catalysts can 

block the alcohols to approach the reaction center from the front face of pyridine ring, which 

is the favorite position for S-configuration alcohol to approach the reaction center, thus the 

reaction rate of S-configuration alcohol is much slower, and results in higher 

enantioselectivity. Thus, we suggest adding groups such as methyl groups on the tilted 

phenyl group as “blocking groups” to make new catalyst 59d shown in Scheme 6.4, and it 

may improve catalytic selectivity. Inspection of our TS conformational space shown in 

Figure 6.4 reveals that the (R)-67-I type TS wins a lot by energy than other types of TS, 

therefore we just investigated the best conformer of this type of TS for TSs involving R-

configuration alcohols. We reoptimized the new TS by using the conformer identified 

previously and replaced the catalyst part by new catalyst 59d. However, for TSs involving S-

configuration alcohols the most stable TS type (S)-67-III with catalyst 59a may not be the 

most stable one with catalyst 59d due to the steric hindrance, and the (S)-II type of TS may 

become the most stable type because this type of TS is only 5 kJ/mol or so above (S)-67-III. 

Thus the best conformers of both (S)-67-III and (S)-67-II types were investigated with 

catalyst 59d to avoid overlooking an important conformer. In this case, the (S)-67-II type TS 
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is more stable than (S)-67-III type TS. Then, we calculated the total energy difference ΔEtot, 

enthalpy difference ΔH298, free energy difference ΔG298 between (R)-67-I and (S)-67-II with 

new catalyst 59d, and obtained the extrapolated ΔG195,exp based on their correlation equation 

obtained above, and  the selectivity factor is s = 118 (see Table 6.3), which indicates the 

catalyst 59d with potential high selectivity. Recently, experimental results of Spivey’s group 

gave some evidences for this. They synthesized a new catalyst in which phenyl groups were 

added on the tilted phenyl group as “blocking groups” to get catalyst 59e (shown in Scheme 

6.4). Their results have shown the catalytic selectivity factor of the new catalyst can be 

improved to s = 39, however, the reaction rate is lower by a factor of 2 as compared to the 

catalyst 59a. The phenyl “blocking” groups in catalyst 59e maybe too big and hinder the 

alcohol to approach the reaction center, which leads to its low reactivity. In our suggested 

catalyst 59d, the methyl “blocking” groups are rather small. Thus, it may improve the 

catalytic selectivity and keep high catalytic activity simultaneously. 

 

6.5 Conclusions 
  Similar to the acylation reactions with achiral catalysts, the commonly accepted 

nucleophilic mechanism is more favorable than the general base mechanism for the reaction 

of racemic 1-(1-naphthyl)ethanol (60) with isobutyric anhydride (61). The identified TS 

models in the selectivity-determining step reveal that alcohols with different configuration 

prefer different directions to approach the reaction center. The key TS model is helpful for 

catalyst design, thus a new catalyst with potential high selectivity is suggested and its 

selectivity is predicted theoretically. Whether this theoretical prediction is true still requires 

experimental evidence. 
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7. Tautomeric Equilibria in 3-Amino-1-(2-aminoimidazol-4-yl)-prop-1-ene, 
a Central Building Block of Marine Alkaloids 
 
7.1 Introduction 

3-Amino-1-(2-aminoimidazol-4-yl)-prop-1-ene (73) is a metabolite of the 2-

aminoimidazole class of natural products holding a central position in the modular synthesis 

of a large variety of marine alkaloids.131-135 The flexible use of this building block in the 

biosynthesis of pyrrol-imidazole alkaloids has recently been suggested to be due to the 

variable reactivity of 73, acting as a nucleophile in one tautomeric form and as an 

electrophile in another. Equilibration between the respective tautomeric forms thus stands at 

the center of a comprehensive biosynthetic scheme proposed by Al-Mourabit et al.131 In order 

to support the participation of different tautomeric forms of 73 along various biosynthetic 

pathways, Al-Mourabit et al. have recently described the results of theoretical studies 

suggesting the comparable stability of the four tautomeric forms I - IV of 73 shown in Figure 

7.1. Based on the assumption of the comparable stability of its various tautomeric forms, 73 

may be an ideal starting point for the development of new organocatalysts due to the 

existence of its potentially four different active sites. However, we found that the theoretical 

evidences provided by Al-Mourabit et al. were not rigorous and convincing. We have 

therefore revisited the question of thermodynamic stability of tautomeric forms of 73, using 

selected theoretical methods known for their performance in the prediction of thermodynamic 

stabilities.70,136,137   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. 2-Aminoimidazole Metabolite 73 and its Tautomers I - IV. 
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7.2 Stabilities of Neutral Tautomers 
 
7.2.1 Tautomeric Equilibria in Gas Phase 

Initial studies were performed at the RHF/6-31G(d) level of theory, the same level used by 

Al-Mourabit et al. (Table 7.1).132 The first entry of Table 7.1 is taken from Ref. 132 and shows 

tautomer IV to be more stable than the other tautomers by around 5 kJ/mol. Carefully 

searching the conformational space of all four systems by rotation around all rotatable bonds, 

we identified 18 conformers for tautomers I, III, and IV, and 9 conformers for II, respectively 

(see Table A33 in Appendix 9.8). According to this conformational analysis, the results 

reported in Ref. 132 are based on the best conformer for IV, but higher energy conformers of 

tautomers I - III. Using the best conformers for all four tautomers, the relative energies 

reported in the second row of Table 7.1 are obtained. Accordingly, tautomer III is the most 

stable one at the RHF/6-31G(d) level, the other forms being less stable by, at most, 6 kJ/mol. 

Including thermal corrections to enthalpies at 298.15 K (ΔH298 in Table 7.1) does not lead to 

any significant changes in relative energies. The relative enthalpies have subsequently been 

recalculated with three other theoretical methods known for their performance in predicting 

accurate thermochemical data. This includes calculations for all conformers with Becke's B98 

hybrid functional50 in combination with the 6-31G(d) basis set, the MP2(FC)/6-

31+G(2d,p)//B98/6-31G(d) level recently identified as a reliable method for the calculation of 

proton and methyl cation affinities of N- and P-bases,137 and the G3MP2B3 compound 

method developed by Curtiss et al.40,68 The G3MP2B3 level is considered to be the most 

accurate in this series of methods.40,138                       

All methods agree in that tautomers I and III, which include the aromatic imidazole ring 

system in its standard tautomeric form, are of almost identical stability, while tautomers II 

and IV are much less stable. At G3MP2B3 level tautomers II and IV are predicted to be less 

favorable than III by 21.8 kJ/mol and 22.9 kJ/mol, respectively. Thus, tautomers II and IV are 

unlikely to coexist with the other tautomers in the gas phase. The non-aromatic C2-H 

tautomer of 73 is ruled out here because it is much less stable than all other tautomers. The 

calculation at B98/6-31G(d) level indicate relative energies between III and the C2-H 

tautomer in excess of 90 kJ/mol. 
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Table 7.1. Relative Energies (kJ/mol) of the Best Conformer of Tautomers I – IV of 
Compound 73 Shown in Figure 7.1. 
 

 Level of theory I II III IV 

ΔEtot
a RHF/6- 31G(d) 4.9 5.0 5.9 0.0 

ΔEtot
b RHF/6- 31G(d) 0.5 6.0 0.0 1.7 

ΔH298 RHF/6- 31G(d) 0.1 4.9 0.0 0.2 

ΔH298 B98/6-31G(d) 1.2 12.0 0.0 15.3 

ΔH298
c MP2/6-31+G(2d,p)//B98/6-31G(d) 1.4 27.5 0.0 32.9 

ΔH298 G3MP2B3 0.1 21.8 0.0 22.9 
      a Ref. 132; b This work; c Thermochemical corrections calculated at B98/6-31G(d) level. 
   

  The structures of the energetically most favorable conformers at the MP2(FC)/6-

31+G(2d,p)//B98/6-31G(d) level of theory for I - IV are shown in Figure 7.2. All structures 

have in common that both amino groups are non-planar in all four tautomers, and that the 

side chain attached to the C4 position assumes an extended conformation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Structures of the Best Conformer of Tautomers I - IV of Compound 73 at the 
MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) Level of Theory. 
 

  Conditions favoring tautomeric equilibration between isomers I - IV will also allow for the 

E/Z-isomerization of the C=C double bond in 73. While Z-configured alkenes are usually 

considered to be less stable than the corresponding E-isomers, other effects may compensate 

these differences in polyfunctional systems such as 73. We have therefore also studied 

tautomers V – VIII (Figure 7.3) derived from I - IV through E/Z isomerization. 
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Conformational searches performed at RHF/6-31G(d) and B98/6-31G(d) level again 

identified a large number of different conformers. The energetically most favorable 

conformer was subsequently used for comparison to isomer III (Table 7.2). 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. E/Z-Isomers of Tautomers I – IV of Compound 73. 

 

Table 7.2. Stabilities (kJ/mol) of the Best Confomer of Tautomers V-VIII (Figure 7.3) 
Relative to Tautomer III.a 
 
 Level of theory V VI VII VIII 

ΔH298 RHF/6- 31G(d) 10.2 -3.0 -3.8 11.5 

ΔH298 B98/6-31G(d) 13.7 4.0 -17.7 22.5 

ΔH298 MP2/6-31+G(2d,p)//B98/6-31G(d) 3.7 19.6 -15.4 39.5 

ΔH298 G3MP2B3 2.5 14.6 -12.3 29.7 
a Using the best conformer of III as the reference. 
 
All methods agree that tautomer VII is more stable than III. Concentrating on the best 

(G3MP2B3) results, this stability difference amounts to -12.3 kJ/mol. Inspection of the 

structure of VII (Figure 7.4) identifies the formation of an intramolecular hydrogen bond 

between the terminal NH2 group and the imidazole ring system as the cause for this enhanced 

stability. E/Z-isomerization of the other three tautomers I, II, and IV also leads to some 

changes in their relative stability, but the effects are smaller than observed for III. In 

conclusion we can thus state that gas phase enthalpies predict isomer VII as the only 

significantly populated tautomeric/isomeric form of 73 under equilibrating conditions.  

 



 

98 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Structures of the Best Conformer of Tautomers V -VIII of Compound 73 at the 
MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) Level of Theory. 

 

7.2.2 Tautomeric Equilibria in Water 
   In order to test the influence of aqueous solvation effects on this conclusion, we have 

calculated solvation free energies in water ΔGsolv for all conformers of tautomers I - VIII at 

the PCM/UAHF/RHF/6-31G(d) level139-141 using the previously optimized gas phase 

structures. Combination of these solvation free energies with gas phase enthalpies obtained at 

either MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) or G3MP2B3 level yields the relative 

enthalpies in water ΔH298 (water) compiled in Table 7.3 in columns 3 and 4. Structural 

relaxation in aqueous solution can, of course, lead to significant changes in relative stabilities. 

The solvation free energies ΔGsolv for all conformers of tautomers I - VIII were therefore 

calculated again at the PCM/UAHF/RHF/6-31G(d) level using the optimized structures in 

aqueous solution at PCM/UAHF/B98/6-31G(d) level. The solvation free energies ΔGsolv are 

calculated at PCM/UAHF/RHF/6-31G(d) level because the PCM/UAHF model has been 

parameterized at Hatree-Fock level. The solvation free energies ΔGsolv are also calculated at 

PCM/UAHF/B98/6-31G(d) level with optimized B98/6-31G(d) gas phase geometries and 

solution phase geometries, respectively, and combined with either MP2(FC)/6-

31+G(2d,p)//B98/6-31G(d) or G3MP2B3 level to yield the relative enthalpies in water ΔH298 

(water) (compiled in Table A9.7.1, see Appendix 9.7). The resulting relative stabilities of 

tautomers I - VIII are essentially identical to those reported in Table 7.3. In the same manner, 

combination of these solvation free energies with gas phase enthalpies obtained at either 
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MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) or G3MP2B3 level yields the relative enthalpies in 

water ΔH298 (water) compiled in Table 7.3 in columns 5 and 6. The numbers shown for 

isomers I - VIII are those for the most stable conformers in water.  

  Comparison of relative enthalpies in the gas phase ΔH298 (gas, G3MP2B3) and in aqueous 

solution ΔH298 (water, G3MP2B3) shows the most significant changes for the stability of 

isomer VII. From the results obtained at G3MP2B3 level with relaxed geometries in aqueous 

solution (column 6 in Table 7.3) it is evident that conformer VII is much less well solvated 

than all other tautomers, which, in essence, means that the benefit of the intramolecular 

hydrogen bond is lost in a strongly polar medium such as water. Z-isomer VII therefore ends 

up being less stable by 4.5 kJ/mol than E-isomer III under aqueous conditions. Surveying the 

results for all other systems in Table 7.3 we note that isomer I is predicted to be equally 

stable as III. Most importantly we also note that isomers void of the aromatic imidazole ring 

system (II, IV, VI, and VIII) are rather unstable also under aqueous conditions. Comparison 

of the results obtained at MP2 and G3MP2B3 level indicates that none of these conclusions 

depends on the particular choice of gas phase energies. Also, the influence of solution phase 

relaxation on the relative stability of tautomers I - VIII is rather minor. 
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Table 7.3. Relative Energies (kJ/mol) of Isomers of I -VIII in the Gas Phase and in Water.a 

Isomer G3MP2B3 
ΔH298

b 
(gas) 

MP2 
ΔH298

c 
(water) 

G3MP2B3 
ΔH298

d 
(water) 

MP2 
ΔH298

e 
(water) 

G3MP2B3 
ΔH298

f 
(water) 

  gas phase  
geometries 

solution phase  
geometries 

I 0.1 0.5 -0.1 0.4 -0.2 

II 21.8 34.5 29.7 36.7 31.8 

III 0.0 0.0 0.0 0.0 0.0 

IV 22.9 25.4 15.2 28.3 19.9 

V 2.5 10.8 10.2 10.0 9.5 

VI 14.6 29.9 25.7 31.6 27.4 

VII -12.3 -1.7 2.8 0.7 4.5 

VIII 29.7 40.0 29.9 42.1 32.1 
a Using the best conformer of III as the reference; b The best conformer G3MP2B3 gas phase data; c Sum of 
H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv calculated at PCM/UAHF/RHF/6-
31G(d)//B98/6-31G(d) level; d  Sum of H298(gas phase, G3MP2B3) and ΔGsolv calculated at PCM/UAHF/HF/6-
31G(d)//B98/6-31G(d) level;  e Sum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv 
calculated at PCM/UAHF/RHF/6-31G(d)//PCM/UAHF/B98/6-31G(d) level; f Sum of H298(gas phase, 
G3MP2B3) and ΔGsolv calculated at PCM/UAHF/HF/6-31G(d)//PCM/UAHF/B98/6-31G(d) level. 
 

 

7.3 Stabilities of Protonated Forms 
   The low thermodynamic stability of tautomeric forms II and IV casts some doubt on their 

proposed involvement as electrophiles in synthetic and biosynthetic reactions.131,132 

Especially under acidic conditions it would seem conceivable that the protonated forms of 73 

are much more likely to act as electrophiles. The actual availability of the cationic forms 

depend, of course, on the basicity of 73 in aqueous solution and we use the thermodynamic 

cycle  shown in Figure 7.5 to derive a quantitative estimate for the pKa of the protonated form 

of 73 in aqueous solution under standard conditions. The basicity of 73 is compared here to 

that of 2-aminoimidazole 74, whose protonated form is known to have pKa = +8.5.142 The 

reaction free energy in the gas phase ΔGrxn,gas can accurately be calculated using the same 

methods as before and a value of -16.4 kJ/mol is obtained at G3MP2B3 level. Additional 

consideration of solvation effects at the PCM/UAHF/RHF/6-31G(d)//PCM/UAHF/B98/6-

31G(d) level leads to a reaction free energy in solution ΔGrxn,sol of -13.8 kJ/mol based on the 

equation 7.1. 
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This implies that metabolite 73 is more basic than 2-aminoimidazole 74 by 2.4 pKa units with 

pKa(73-H+) = +10.9. Under the, in part, strongly acidic reaction conditions employed in 

transformations of 73 and its derivatives involving either mineral acids or CH3SO3H (pKa = -

0.6 in aqueous solution)132,143 we can thus assume that 73 is present quantitatively in its 

protonated form. The reactivity of 73 under these conditions will thus be that of I-3H+ or one 

of its tautomeric forms. In order to explore the possibility that the energetically unfavorable 

neutral tautomers II and IV are stabilized at the protonated stage we have used the same 

theoretical methods as before to compare the relative stabilities of the three tautomers shown 

in Figure 7.6. The relative energies of these systems are compiled in Table 7.4. As expected 

the tautomer I-3H+ is the most stable one. The tautomer IV-1H+ is less stable than I-3H+ by 

7.6 kJ/mol in aqueous solution, which represents a much smaller energy difference of these 

tautomers as compared to the neutral stage (19.9 kJ/mol). A second tautomer IV-3H+ is much 

less stable than IV-1H+ and therefore most likely not involved in reactions under acidic 

conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. The Thermodynamic Cycle Used to Calculate Relative pKa in Aqueous Solution. 
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Figure 7.6. Tautomeric Forms of Protonated Metabolite 73. 
 
 
 
Table 7.4. Relative Energies (kJ/mol) of Cationic Tautomers in the Gas Phase and in Water.a 
 

Isomer G3MP2B3 
ΔH298

b 
(gas) 

MP2 
ΔH298

c 
(water) 

G3MP2B3 
ΔH298

d 
(water) 

MP2 
ΔH298

e 
(water) 

G3MP2B3 
ΔH298

f 
(water) 

  gas phase 
geometries 

solution phase 
geometries 

I-3H+ 0.0 0.0 0.0 0.0 0.0 
IV-1H+ 13.4 12.8 8.7 12.4 7.6 
IV-3H+ 68.2 63.5 57.4 61.4 55.4 

a Using the best conformer of I-3H+ as the reference; b The best conformer G3MP2B3 gas phase data; c Sum of 
H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv calculated at PCM/UAHF/RHF/6-
31G(d)//B98/6-31G(d) level; d Sum of H298(gas phase, G3MP2B3) and ΔGsolv calculated at PCM/UAHF/HF/6-
31G(d)//B98/6-31G(d) level; e Sum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv calculated 
at PCM/UAHF/RHF/6-31G(d)//PCM/UAHF/B98/6-31G(d) level; f Sum of H298(gas phase, G3MP2B3) and 
ΔGsolv calculated at PCM/UAHF/HF/6-31G(d)// PCM/UAHF/B98/6-31G(d) level. 
    

  One example where occurrence of the unstable neutral tautomer IV has been suggested 

concerns the H/D exchange reactions in compound 75 in refluxing deuterated trifluoroacetic 

acid (Figure 7.7).132 If we assume the basicity of 75 to parallel that of 73 then 75 will be fully 

protonated under these conditions. Selective H/D exchange at position C5 as well as cis/trans 

isomerization to yield product 76 without H/D exchange at C7 can be rationalized with the 

three protonated forms 77, 78 and 79. As already implied by Al-Mourabit et al. H/D 

exchange at all heteroatoms can be expected to be fast under these conditions as compared to 

cis/trans isomerization. This latter process can be initiated through formation of C5-

protonated tautomer 77 and subsequent cyclization to intermediate 78. Ring-opening to 

intermediate 79 and isomerization between the C5- and N1-protonated forms complete the 

reaction sequence. Other processes, in which neutral 73 has been suggested to act as 

electrophile,131 may similarly involve the protonated form of 73 instead. 
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Figure 7.7. H/D-Exchange and cis/trans Isomerization of 75 under Acidic Conditions as 
Reported in Ref. 132. 
  
 
7.4 Conclusions    
  In conclusion, the tautomers II and IV of 2-aminoimidazole metabolite 73 reported as 

energetically favorable before132 are unlikely to coexist with tautomers I and III, in the gas 

phase as well as in water. The tautomers I and III have almost identical stability in the gas 

phase and in water, and thus will both be accessible in solution. The Z-isomer of III, tautomer 

VII, should not be ignored because it is more stable than any other tautomer in the gas phase 

and competitive with I and III in water. These conclusions are independent of the particular 

theoretical methods chosen for solution phase calculations. The low thermodynamic stability 

of tautomers II and IV casts some doubt on the role of these isomers as electrophiles in 

synthetic and biosynthetic reactions.131 The protonated form of the 2-aminoimidazole moiety, 

which is present in many synthetically used derivatives of 73, may fill this role much more 

comfortably and with much less thermodynamic effort.133,134,135 The calculated pKa of 73-H+ 

of +10.9 in aqueous solution indeed suggests that 73 is present quantitatively in its protonated 

form even under mildly acidic reaction conditions. Protonation also decreases the stability 

difference between the most stable tautomer III and the less stable tautomer IV, offering an 

explanation for the apparent involvement of this latter tautomer in H/D exchange experiments.  
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8. Summary and General Conclusions 
  In the present work, the theoretical benchmarking has been done for studying the issues in 

organocatalytic processes and other chemical process such as tautomeric equilibrium, and the 

descriptors for organocatalytic acitivities and selectivities are developed, meanwhile the 

acitivities and selectivities of organocatalysts for acyl transfer reactions are studied 

theoretically. The key results of the thesis are summerized as follows. 

 (1) Methyl Cation Affinities (MCAs) are defined in this context as the reaction enthalpies at 

298 K for the transformations shown in equation 8.1. MCA for a large variety of neutral and 

anionic bases can be predicted accurately with compound methods such as G2, G3 or W1. 

The predictive ability of MP2 calculations is slightly lower, but still practically useful. The 

performance of the B98 hybrid functional depends strongly on the size of the systems at 

hand. The calculated MCAs depend little on the methods used for structure optimization and 

the MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) method is identified to offer an affordable option 

for the characterization of even the largest currently used organocatalysts. The identified 

method is used to calculate the MCA values of a set of commonly used N- and P-based 

organocatalysts (see Scheme 8.1). The MCA values presented here can be used as a guideline 

for the optimization of organocatalytic transformations. The mechanistic complexity of many 

such reactions, the presence of numerous side reactions, and the broad variety of solvents 

used under experimental conditions make it unlikely that quantitative predictions can be 

made for structurally different organocatalysts with only one single parameter. However, if 

the general limitation of a single parameter approach has been accepted, it is clear that the 

currently known catalytic activities of nitrogen and phosphorus bases are much more readily 

correlated with MCA than with PA or pKa data. 

 

CH3-Nuc+                   CH3
+  +  Nuc      (8.1) 
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(2)  The new concept of Mosher’s cation affinities (MOSCA) is defined (see Scheme 8.2) and 

developed. Taken together the MOSCA values determined for a series of tertiary amines 

represent a quantitative and easily computable measure of the stereoinductive potential of 

these nucleophiles. These data, together with the MCA values, are expected to facilitate the 

development of new, more effective and more selective catalysts, in particular in an area 

where initial experiments have already been performed. The stereoinductive potential is one 

of the key factors determining the stereoselectivity in catalytic processes. Whether or not 

such a process is successful depends on a host of additional factors, the absolute catalytic 

efficiency being one of the most relevant. The MOSCA probe studied here appears to capture 

both the catalytic efficiency as well as the stereoselectivity. For the cinchona alkaloids and 

selected tertiary amines studied the most reactive and selective compounds appear to be 

quinine (22) and quinidine (18), while sparteine (46) appears to be neither particularly 

selective nor reactive.  

 

 

 

 

 

Scheme 8.2. 

 

(3) In many organocatalytic transformations neutral electrophiles react with neutral 

nucleophiles to give zwitterionic adducts at some stage of the catalytic cycle such as in the 

Morita-Baylis-Hillman (MBH) reaction. A series of theoretical methods have been studied 

systematically in order to identify theoretical methods appropriate for the reliable description 

of the formation of zwitterionic adducts using the model systems shown in Scheme 8.3. 
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The commonly used hybrid density functional B3LYP in computational studies of organic 

reactions fails to give correct adduct geometry for nitrogen-containing nucleophile, whether 

combined with Pople type basis sets or with correlation consistent basis sets. Geometry 

optimizations at the mPW1K/6-31+G(d) level provide a reliable basis for the development of 

compound energy schemes for the accurate description of zwitterionic adducts between 

neutral nucleophiles and electrophiles. Accurate energetics can be obtained using modified 

G3 schemes as well as double-hybrid DFT methods such as B2K-PLYP or B2-PLYP-M2. 

This latter class of methods also allows for the systematic investigation of large systems 

typically formed as intermediates in organocatalytic reactions. 

(4) The conformational preferences of 4-DMAP derivatived catalysts studied at the SCS-

MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d) level are in line with the limited existing 

experimental data available for these systems. It has been shown that stacking interactions 

can play a decisive role in the stability as well as the conformational preferences of these 

transient intermediates (see Scheme 8.4). Stacking conformations dominate the appearance of 

the acetylpyridinium intermediates of catalysts 55, 57, and 58.  

N N+ R X R

- X

N + R Y

A AB

Y

 
Scheme 8.4. 

 

 

 

 

 

Scheme 8.5. 

 

Dispersion interactions are mainly responsible for this situation in 55Ac, while electrostatic 

effects dominate in 57Ac. The conformational preferences of the acetyl intermediates of 58 
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conformation in 58Ac and a non-stacking conformation in 59Ac. Still, large conformational 

changes occur in both of these latter systems on formation of the acetyl intermediate, 

supporting the “conformational switch” picture derived from experimental 1H NMR studies. 

In methodological terms we have shown that studies of the acetyl intermediates of catalysts 

55 – 59 require correlated levels, the MP2(FC)/6-31G(d)//RHF/3-21G level providing a 

reasonable lower limit of effort. DFT methods such as the popular B3LYP hybrid functional 

are not able to describe stacking interactions induced through dispersion interactions 

properly. 

(5) Similar to acylation reactions with achiral catalysts, the commonly accepted nucleophilic 

mechanism is more favorable than the general base mechanism for the reaction of racemic 1-

(1-naphthyl)ethanol (60) with isobutyric anhydride (61). The identified TS models in the 

selectivity-determining step can be classified into four types (see Scheme 8.6) and reveal that 

alcohols with different configuration prefer different directions to approach the reaction 

center. The key TS model is helpful for catalyst design, thus a new catalyst with potential 

high selectivity is suggested and its selectivity is predicted theoretically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 8.6. 

 

(6) The tautomers II and IV of 2-aminoimidazole metabolite 73 reported as energetically 

favorable before132 are unlikely to coexist with tautomers I and III, in the gas phase as well as 
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in water. The tautomers I and III have almost identical stability in the gas phase and in water, 

and thus will both be accessible in solution. The Z-isomer of III, tautomer VII, should not be 

ignored because it is more stable than any other tautomer in the gas phase and competitive 

with I and III in water. These conclusions are independent of the particular theoretical 

methods chosen for solution phase calculations. The low thermodynamic stability of 

tautomers II and IV casts some doubt on the role of these isomers as electrophiles in synthetic 

and biosynthetic reactions.131 The protonated form of the 2-aminoimidazole moiety, which is 

present in many synthetically used derivatives of 73, may fill this role much more 

comfortably and with much less thermodynamic effort.133,134,135 The calculated pKa of 73-H+ 

of +10.9 in aqueous solution indeed suggests that 73 is present quantitatively in its protonated 

form even under mildly acidic reaction conditions. Protonation also decreases the stability 

difference between the most stable tautomer III and the less stable tautomer IV, offering an 

explanation for the apparent involvement of this latter tautomer in H/D exchange 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 8.7. 

  Our findings are helpful for better understanding the properties of organocatalysts and the 

mechanism of organocatalytic prosses and help organocatalyst design. We hope that we can 
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future. 
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9. Appendix 
9.1 Computational Details for MCA  
   The MCA values computed in assessment of theoretical methods for calculation of MCA 

have been determined as the heat of reaction ΔHrxn at 298.15 K for reaction (1a) for neutral 

nucleophiles (X) and for reaction (1b) for anionic nucleophiles (X-). 

CH3-X
+

ΔH298
CH3

+ + X (1a)

CH3-X
ΔH298

CH3
+ + X- (1b)  

If not mentioned otherwise, thermal corrections to enthalpies at 298.15 K have been 

calculated at the same level as geometry optimizations using the rigid rotor/harmonic 

oscillator approximation. All data refer to true minima on the potential energy surface with 

all-positive vibrational frequencies. All calculations were carried out with Gaussian 03 suite 

of programs.144 Geometry optimizations at CCSD(T) level have been performed with 

MOLPRO 2002.6.145 

  For all N- and P-centered organocatalysts presented in Chapter 2, the geometries have been 

optimized at the B98/6-31G(d) level of theory. The conformational space of flexible 

organocatalysts has first been searched using the MM3 force field and the systematic search 

routine in the TINKER program.146 All stationary points located at force field level have then 

been reoptimized at B98/6-31G(d) level as described before. Starting geometries for the 

cationic adducts have been generated from the neutral structures through addition of a proton 

or methyl cation, followed by subsequent reoptimization at B98/6-31G(d) level. 

Thermochemical corrections to 298.15 K have been calculated for all minima from unscaled 

vibrational frequencies obtained at this same level. The thermochemical corrections have 

been combined with single-point energies calculated at the MP2(FC)/6-31+G(2d,p)//B98/6-

31G(d) level to yield enthalpies H298 at 298.15 K. In conformationally flexible systems 

enthalpies have been calculated as Boltzmann-averaged values over all available conformers. 

This procedure has recently been found to reproduce G3 methyl cation affinity values of 

selected small- and medium-sized organocatalysts within 4.0 kJ/mol. All quantum 

mechanical calculations have been performed with Gaussian 03.144 
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9.2 Correlation of pKa, PA, and MCA Values with Available Experimental Rate Data of 
Organocatalytic Processes. 
 
 Reaction 

ratea 
log (rate) pKa

b PAc 

(kJ/mol)
MCAc 

(kJ/mol) 
DABCO (19) 0.016 -1.8 8.8 962.1 562.2 
4-DMAP (27) 0.038 -1.42 9.7 994.1 581.2 
DBU (36) 0.762 -0.12 12.4 1044.8 609.6 

a Reaction rate data from Ref. 82; b pKa values from Ref. 7; c Calculated at MP2/6-31+G(2d,p)//B98/6-31G(d) 
level. 
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R2 = 0.9272
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 Reaction ratea log (rate) pKa

a PAb 

(kJ/mol) 
MCAb 

(kJ/mol)
3-quinuclidinone (7) 0.0013 -2.89 6.9 934.7 535.2 
3-chloroquinuclidine (17) 0.0082 -2.09 8.9 955.0 555.9 
DABCO (18) 0.21 -0.68 8.5 962.1 562.2 
quinuclidine (26) 1.8 0.26 11.3 980.8 580.6 

a Reaction rate data and pKa values from Ref. 81 ; b Calculated at MP2/6-31+G(2d,p)//B98/6-31G(d) level. 
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 Reaction half-livesa 

(τ1/2, min) 
-log(τ1/2) PAb  

(kJ/mol) 
MCAb 

(kJ/mol) 
32 67 -1.83 1017.0 602.4 
33 129 -2.11 1014.5 602.5 
PPY (29) 171 -2.23 1004.4 590.1 
4-DMAP (27) 304 -2.48 994.1 581.2 
25 260 -2.41 1013.5 597.5 

a Reaction rate data from Ref.11 ; b Calculated at MP2/6-31+G(2d,p)//B98/6-31G(d) level. 
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 log (k2)a pKa
a PAb 

(kJ/mol) 
MCAb 

(kJ/mol) 
PPY (29) 0.4 10.2 1004.4 590.1 
4-DMAP (27) 0.0 9.7 994.1 581.2 
N-methylimidazole (11) -2.2 7.4 956.5 550.0 
4-methylpyridine (6) -3.4 6.2 938.7 532.8 
3-DMAP (21) -3.7 6.8 970.8 563.4 
DBU (36) -4.1 12.4 1044.8 609.6 
DABCO (19) -4.3 8.8 962.1 562.2 
Pyridine (1) -4.5 5.4 922.6 518.7 
NEt3 (20) -6.2 10.7 979.2 562.3 
2-DMAP (2) -9.1 7 961.3 526.7 

         a Reaction rate data and pKa values from Ref. 7; b Calculated at MP2/6-31+G(2d,p)//B98/6-31G(d) 
      level. 
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Correlation of pKa, PA and MCA with the rate data for the acylation reaction described in 
Ref. 7, including 4-substituted pyridines 1, 6, 27, and 29, and N-methylimidazole (11). 
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9.3 Computational Details for MOSCA 
  The geometries of all systems have been optimized at the B98/6-31G(d) level of theory. The 

conformational space of cinchona alkaloids has first been searched using the MM3 force field 

and the systematic search routine in the TINKER program.146 The conformers of 46 were 

taken from Wiberg’s previous studies.147 All stationary points located at force field level have 

then been reoptimized at B98/6-31G(d) level as described before. Starting geometries for the 

cationic adducts have been generated from the neutral structures through addition of a methyl 

cation, followed by subsequent reoptimization at B98/6-31G(d) level. For conformational 

search of MOSC adducts, the best conformer of the methyl cation adducts was chosen as the 

central structure. The methyl cation was replaced by MOSC, and then the new C-N bond was 

rotated to search possible conformers, and for cinchona alkaloids the rotation of hydroxy 

group was also considered. In order to avoid missing important conformers, we also checked 

the conformers by flipping the quinoline moiety and twisting the quinuclidine ring of the best 

conformer of 12-MOSCre+ and 12-MOSCsi+, respectively. It turns out that these conformers 

are less stable than before by more than 10 kJ/mol. Thermochemical corrections to 298.15 K 

have been calculated for all minima from unscaled vibrational frequencies obtained at this 

same level. The thermochemical corrections have been combined with single-point energies 

calculated at the MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level to yield enthalpies H298 at 

298.15 K. In conformationally flexible systems enthalpies have been calculated as 

Boltzmann-averaged values over all available conformers. All quantum mechanical 

calculations have been performed by Gaussian 03.148 
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9.4 Computational Details for the Stability of Zwitterionic Adducts 
 All data refer to true minima on the potential energy surface with all-positive vibrational 

frequencies. All calculations were carried out with Gaussian 03 suite of programs.144 

Thermochemical corrections to 298.15 K have been calculated for all minima from unscaled 

vibrational frequencies. B2-PLYP and related calculations can be performed in Gaussian03 

using the generalized input format for DFT methods in combination with extra overlays for 

the PT2 calculation. One sample input file is shown as follows. 
 
%chk=/home/yin/bhr/nme3_mpw1k_6-31+gd.chk 
%mem=2000mb 
%nproc=2 
#P BLYP/6-31+G(2d) scf=tight geom=check guess=read iop(3/76=0470005300,3/78=0730007300) 
extraoverlay 
 
8/10=90/1; 9/16=-3/6; 
 
nme3_mpw1k_6-31+g2d-spb2 
 
0 1 
 

In the output file: 
SCF Done:  E(RB+HF-LYP) =  -174.064195599     A.U. after   10 cycles  

…… 

E2 =    -0.7746642262D+00 EUMP2 =    -0.17483885982487D+03 

Then, Etot(B2-PLYP) can be calculated as follows. 

Etot(B2-PLYP)= E(RB+HF-LYP) + 0.27*E2 = -174.2733549 
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9.5 Computational Details for Chapter 5 
 
9.5.1 Theoretical Methods 
 The conformational space of all systems studied here has initially been studied with the 

OPLS-AA force field as implemented in BOSS 4.6.117 Potential parameters for the 

description of 4-aminopyridines and their acetylpyridinium cations are currently not part of 

the default OPLS-AA force field.118 The nitrogen atom attached to C4 of the pyridine ring 

has therefore been defined as a new nitrogen atom type. Appropriate force field parameters 

for the neutral catalysts and the acetylpyridinium cations have then been developed from a 

series of ab initio calculations at the B3LYP/6-31G(d) and MP2/6-31G(d) level of theory. 

Coulomb parameters have been derived using the CM1 procedure with the AM1 

wavefunction. The conformational space of both types of species has then been searched 

using the Monte Carlo conformational search facility implemented in BOSS 4.6.  

  All conformers identified in this way have subsequently been reoptimized at the RHF/3-21G 

level of theory. For some of the systems optimizations at the RHF/MIDI! and B3LYP/6-

31G(d) levels of theory have also been performed. Finally, geometry optimizations have also 

been performed at the MP2(FC)/6-31G(d) level for the best conformers identified at the 

MP2(FC)/6-31G(d)//RHF/3-21G level. For the best conformers identified at fully optimized 

MP2(FC)/6-31G(d) level additional single point calculations have been performed at the 

MP2(FC)/6-311+G(d,p) level of theory. In all cases default convergence criteria have been 

used. Thermochemical corrections to enthalpies at 298.15 K (H298) have been calculated at 

the same level as that used for geometry optimization. The only exception concerns 

geometries optimized at MP2(FC)/6-31G(d) level. In this latter case thermochemical 

corrections have been taken from the HF/3-21G level. All calculations have been performed 

with Gaussian 03.144 
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9.5.2 Force Field Parameters and Conformational Search 
 
 
 
 
 
 
 
 
 
 
 
 
          
 
                             A                                                                                      B 
 
 
List of atom types for A and B 
Atom type Description σ, Å ε,  

kcal/mol 
CT Any sp3 carbon 3.500 0.066 
CA Any aromatic sp2 carbon 3.550 0.070 
C Any carbonyl sp2 carbon 3.750 0.105 
NC Nitrogen in pyridine ring 3.250 0.170 
NN Nitrogen in amino group 

connected to pyridine 
ring 

3.250 0.170 

N Nitrogen in amide group 3.250 0.170 
O Carbonyl oxygen or in 

amides 
2.960 0.210 

OH Oxygen in hydroxyl 
group 

3.120 0.170 

OS sp3 oxygen in five-
membered ring 

2.900 0.140 

S S in five-membered ring 3.550 0.250 
S= In C=S group 3.550 0.250 
HC hydrogen attached to 

aliphatic carbon 
2.420 0.030 

HA Hydrogen attached to 
aromatic carbon 

2.420 0.030 

HO Alcohol hydrogen 0.000 0.000 
H Amide hydrogen 0.000 0.000 

 

N

N

R1 R4

R3R2

N

N

R1 R4

O

R2
R3
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Bond and Angle Parameters for A 
Type req or θeq Kr Sourcea 

CA-CA 1.400 469.0 old 
CA-NC 1.339 483.0 old 
CA-HA 1.080 367.0 old 
CA-NN 1.360 529.0 new 
CT-NN 1.456 337.0 new 
CT-HC 1.090 340.0 old 
CT-CT 1.529 268.0 old 
CA-CT 1.510 317.0 old 
CT-OH 1.410 320.0 old 
OH-HO 0.945 553.0 old 
C –O 1.212 570.0 old 
C -CT 1.500 317.0 new 
CT-N 1.335 490.0 old 
C -N 1.449 337.0 old 
N –H 1.010 434.0 old 
CT-OS 1.410 320.0 old 
CA-OS 1.364 450.0 new 
C –S= 1.640 400.0 old 
C –S 1.760 250.0 old 
CT-S 1.810 220.0 new 
CA-CA-CA 120.0 63.0 old 
CA-CA-NC 124.0 70.0 old 
CA-NC-CA 117.0 70.0 old 
HA-CA-CA 120.0 35.0 old 
HA-CA-NC 116.0 35.0 old 
NN-CA-CA 121.4 70.0 new 
NN-CT-CT 102.0 65.0 new 
CT-NN-CA 117.6 150.0 new 
CT-NN-CT 116.0 30.0 new 
CT-NN-CT in five-
membered ring 

110.0 60.0 new 

NN-CT-HC 109.5 35.0 new 
HC-CT-HC 107.8 33.0 old 
HC-CT-CT 110.7 37.5 old 
CT-CT-CT 112.7 58.35 old 
CT-OH-HO 108.5 55.0 old 
OH-CT-CT 109.5 50.0 old 
CA-CT-CT 114.0 63.0 old 
CT-CA-CA 120.0 63.0 old 
C -CT-CT 111.1 63.0 old 
CT-C –N 116.6 70.0 old 
C –N –H 119.8 35.0 old 
N –C –O 122.9 80.0 old 
H –N –CT 118.4 38.0 old 
CT-CT-N 109.7 80.0 old 
HC-CT-N 109.5 35.0 old 
CA-C –O 120.4 80.0 new 
CA-OS-CT 111.8 100.0 new 
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Type req or θeq Kr Sourcea 

N –CT-CA 111.2 80.0 new 
CA-CA-OS 109.5 50.0 old 
CT-CT-OS 120.0 70.0 new 
HC-CT-OS 109.5 35.0 old 
N -C –S= 125.0 70.0 new 
S –C –S= 125.0 70.0 new 
C –S –CT 98.9 62.0 new 
S –CT-CT 114.7 50.0 old 

a. old parameters published in literatures117,118,149 
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Dihedral angle parameters for A 
Dihedral angle V1 V2 V3 V4 Sourcea 
HC-CT-CT-HC 0.0 0.0 0.30 0.0 old 
HC-CT-CT-CT 0.0 0.0 0.30 0.0 old 
CT-CT-CT-CT 6.622 -2.6 -0.4 1.3 new 
CA-CA-CA-CA 0.0 7.250 0.0 0.0 old 
CA-CA-CA-NC 0.0 7.250 0.0 0.0 old 
CA-CA-NC-CA 0.0 7.250 0.0 0.0 old 
HA-CA-CA-CA 0.0 7.250 0.0 0.0 old 
HA-CA-CA-HA 0.0 7.250 0.0 0.0 old 
HA-CA-CA-NC 0.0 7.250 0.0 0.0 old 
CT-CA-CA-CA 0.0 7.250 0.0 0.0 old 
CT-NN-CT-CT 0 1.2 0 0.7 new 
CA-CA-NN-CT 0 3.75 1.0 0 new 
CA-NN-CT-HC 0 0 0.35 0 new 
CT-NN-CT-HC 0 0 0.435 0 new 
CA-NN-CT-CT 0 1.2 0 0.7 new 
CA-N –CT-CT 0 1.2 0 0.7 new 
NN-CT-CT-CT 2.392 -0.674 -0.6 0 new 
NN-CT-CT-OH 6.28 -5.1 2.03 0 new 
CT-C –N –H 0.0 4.9 0.0 0.0 old 
CT-C –N –CT 2.3 6.089 0.0 0.0 old 
NN-CT-C -O 0.0 0.0 0.0 0.0 new 
H –N –CT-CT 0.0 0.0 0.0 0.0 old 
H –N –CT-CA 0.0 0.0 0.0 0.0 old 
CT-CT-C –O 0.0 1.166 0.0 0.0 old 
O –C –N –H 0.0 4.90 0.0 0.0 old 
H –N –CT-HC 0.0 0.0 0.0 0.0 old 
N –CT-CT-HC 0.0 0.0 0.464 0.0 old 
HC-CT-CA-CA 0.0 0.0 0.0 0.0 old 
CT-CA-CA-HA 0.0 7.25 0.0 0.0 old 
CA-CA-CA-OS 0.0 7.25 0.0 0.0 new 
CT-CA-CA-OS 0.0 7.25 0.0 0.0 new 
CA-CT-CT-OS -1.336 0.00 0.00 0.00 new 
CA-OS-CT-CT 0.650 -0.250 0.670 0.0 new 
CT-OS-CA-CA 0.0 3.0 0.0 0.0 new 
CA-CA-C -O 0.0 0.0 0.0 0.0 new 
CA-CA-C -N 0.0 1.1 0.0 0.0 new 
CA-C –N -C 2.30 6.089 0.0 0.0 new 
CA-CA-CA-C 0.0 7.250 0.0 0.0 new 
S=-C –N -C 0.0 6.50 0.0 0.0 new 
C –N –CT -CT -1.396 -0.427 0.0 0.0 new 
CT-CT-S –C 0.925 -0.576 0.677 0.0 new 
HC-CT-S –C 0.0 0.0 0.647 0.0 new 
S=-C –S -CT 0.0 6.5 0.0 0.0 new 

a. old parameters published in literatures.117,118,149 
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 Bond and Angle parameters for Ba 

Type req or θeq Kr Sourceb 
CA-CA 1.412 469.0 new 
CA-NC 1.369 483.0 new 
CA-NN 1.320 483.0 new 
CT-NN 1.448 483.0 new 
CT-C 1.500 317.0 new 
NC-C -CT 116.6 700.0 new 
NC-C -O 122.5 80.0 new 
O –C -CT 120.4 80.0 old 
CT-NN-CT 119.0 60.0 new 
CT-NN-CT 
in five-membered 
ring 

108.0 60.0 new 

CA-NN-CA 117.6 150.0 new 
a. only listing parameters different from A; b. old parameters published in literatures.117,118,149 
 
Dihedral angle parameters for Ba 

Dihedral angle V1 V2 V3 V4 Sourceb 

CA-CA-NN-CT 0.0 4.50 1.0 0.0 new 
CA-NC-C -O 0.0 7.5 0.0 0.0 new 
CA-NC-C -CT 0.0 14.0 0.0 0.0 new 
O –C –CT-HC 0.0 0.0 0.0 0.0 new 
NN-CT-CT-OH 7.5 0.0 3.0 0.0 new 
NC-C –CT-HC 0.0 0.0 0.0 0.0 new 

a. only listing parameters different from A; b. old parameters published in literatures.117,118,149 
 
 
 
How to run conformational search by BOSS4.6? 

The Z-matrix for the BOSS input file can be converted from PDB or mol file by xPDBZ or 

xMOLZ scripts included in the BOSS4.6 program suit. The atom type and parameters should 

be described in the parameter files. The correct atom type No. for each atom is required to be 

specified manually in BOSS input file, which should correspond to the atom type No. in the 

parameter file. First of all, all charges are set to zero in the parameter file, CM1 charges can 

be calculated by script xAM1CM1, and then the obtained CM1A charges are inserted in the 

parameter file. Then a Monte Carlo conformational search can be run by script xCS included 

in the BOSS4.6 program suit, and the number of trial structures can be varied by changing 

variable “configurations” in script xCS. Monte Carlo conformational searching results are 

written to the *.out file and the Cartesian coordinates of all optimized conformers are 

summarized in the *.plt file in mol format. The utility program csmol in the BOSS4.6 

program suit is used to separate the concatenated *.plt.mol file. 
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9.6 Computational Details for Chapter 6 
Stationary points (reactant, product and transition state geometries) were optimized and 

characterized by frequency analysis at the B3LYP/6-31G(d) level of theory. The 

conformational space of transition states TS 65 and TS 67 for catalyst 59a with substrate 60  

has initially been studied with the OPLS-AA force field as implemented in BOSS 4.6.117 The 

conformational space of transition state TS 67 for catalyst 59b and 59c with substrate 60 has 

also initially been studied with the OPLS-AA force field. In order to save computational cost, 

the structures of transition state TS 67 for catalyst 59a with substrates 70 – 72 were initially 

built based on the best conformers of TS 67 for catalyst 59a with substrate 60 and then 

reoptimized at the B3LYP/6-31G(d) level of theory. A similar technique was used to obtain 

TS 67 for the new suggested catalyst 59d. Potential parameters for the description of 4-

aminopyridines and their acetylpyridinium cations are currently not part of the default OPLS-

AA force field.118 The nitrogen atom attached to C4 of the pyridine ring has therefore been 

defined in the section 9.5. Appropriate force field parameters for the transition states have 

then been developed from a series of ab initio calculations at the B3LYP/6-31G(d) level of 

theory. Coulomb parameters have been derived using the CM1 procedure with the AM1 

wavefunction. The conformational space of both types of species has then been searched 

using the Monte Carlo conformational search facility implemented in BOSS 4.6. The 

energetically most favorable conformers identified in this way have subsequently been 

reoptimized at the B3LYP/6-31G(d) level of theory, and single point calculations have been 

performed at the B3LYP/6-311+G(d, p) level of theory with Gaussian 03 D.01.148 Dispersion 

corrections to DFT (termed DFT-D) proposed by S. Grimme150 were used to calculate the 

accurate dispersion interaction by the ORCA 2.6.4 program package.151 Thermochemical 

corrections to free energies (G298) and enthalpies at 298.15 K (H298) have been calculated at 

the same level as that used for geometry optimization.  
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Table A9.6.1. Comparison of Experimental Values with Calculated Energy Difference (in 
kJ/mol) for the Diastereomers of TS 67, TS 65 and Intermediate 66 of Catalyst 59a, 
Respectively.a 

a. Using the best conformers identified at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. 

 
 
 
Table A9.6.2. Comparison of Experimental and Calculated Energy Difference (in kJ/mol) for  
the Diastereomers of TS 67 for Catalysts 59a -59c. 
 
 
 
 

 
 

 

 

a. Frequecy calculations recalculated at 195 K and obtained thermal corrections at 195 K at the B3LYP/6-31G(d) 
level of theory, where the ΔG195 and ΔH195 are different from those estimated ΔG195 and ΔH195 shown in Table 
6.2. 
 

 

 

 

 

 

 

 

Cat. Sub. Experimental (195 K) TS (67) 
  s ΔGexp ΔG195 ΔG298 ΔH298 

5.82 5.65 6.13 
TS (65) 

3.2 0.92 7.57 

Intermediate (66) 

59a 60 24 5.16 

2.3 1.35 4.15 

Experimental (195 K) Theoreticala Cat. 
s ΔGexp 

 
s ΔG195  ΔH195  

59a 24 5.16 110.6 7.63 5.99 
59b 10 3.74 74.1 6.98 6.26 
59c 3.5 2.03 457.1 9.93 5.43 
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9.7 Computational Details for Chapter 7 
Geometry optimizations of all systems have been performed at the RHF/6-31G(d) and the 

B98/6-31G(d) level of theory. Thermochemical corrections to enthalpies at 298.15 K have 

been calculated at the same level of theory using the rigid rotor/harmonic oscillator model. 

Single point calculations at MP2(FC)/6-31+G(2d,p) level have been calculated based on the 

B98/6-31G(d) geometries. Combination of these energies with thermochemical corrections 

obtained at B98/6-31G(d) level yield enthalpies described as "H298(MP2(FC)/6-

31+G(2d,p)//B98/6-31G(d))" in the text. For the four best conformers obtained at 

MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) level refined relative enthalpies have been calculated 

using the G3(MP2)B3 compound method developed by Curtiss et al.40,68 For the sake of 

consistency identical B98/6-31G(d) geometries were used in the MP2(FC)/6-31+G(2d,p) and 

G3(MP2)B3 calculations. Solvent effects have been calculated using the PCM continuum 

solvation model in its IEF-PCM incarnation139,141,152 in combination with UAHF radii.139,140 

All calculations have been performed with Gaussian 03, Revision D.01.148 
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Table 9.7.1. Relative energies (kJ/mol) of isomers of I -VIII of compound 73 in the gas phase and in water.a 
Isomer G3MP2B3 

ΔH298
b 

(gas) 

MP2 
ΔH298

c 
(water) 

G3MP2B3 
ΔH298

d 
(water) 

PCM 
ΔGsolv 

MP2 
ΔH298

e 
(water) 

G3MP2B3 
ΔH298

f 
(water) 

PCM 
ΔGsolv 

MP2 
ΔH298

g 
(water) 

G3MP2B3 
ΔH298

h 
(water) 

PCM 
ΔGsolv 

MP2 
ΔH298

i 
(water) 

G3MP2B3 
ΔH298

j 
(water) 

PCM 
ΔGsolv 

  gas phase geometries solution phase geometries gas phase geometries solution  phase geometries 
I 0.1 0.5 -0.1 -78.2 0.4 -0.2 -77.2 -0.6 -1.6 -72.9 -1.2 -2.1 -76.6 
II 21.8 34.5 29.7 -71.0 36.7 31.8 -67.8 35.1 29.6 -63.2 37.0 31.6 -64.4 
III 0.0 0.0 0.0 -79.8 0.0 0.0 -78.7 0.0 0.0 -70.1 0.0 0.0 -73.3 
IV 22.9 25.4 15.2 -86.2 28.3 19.9 -81.6 27.5 17.5 -77.2 29.1 19.3 -78.6 
V 2.5 10.8 10.2 -77.2 10.0 9.5 -76.8 9.3 8.1 -71.4 8.3 7.1 -75.6 
VI 14.6 29.9 25.7 -67.1 31.6 27.4 -64.2 29.6 24.7 -60.1 31.6 26.7 -61.3 
VII -12.3 -1.7 2.8 -63.7 0.7 4.5 -60.9 -4.1 -0.9 -59.5 -3.5 -0.3 -62.1 
VIII 29.7 40.0 29.9 -82.6 42.1 32.1 -80.5 41.3 30.6 -74.0 42.0 30.6 -77.2 

a Using the best conformer of III as the reference; b The best conformer G3MP2B3 gas phase data; c Sum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv 
calculated at PCM/UAHF/RHF/6-31G(d)//B98/6-31G(d) level; d Sum of H298(gas phase, G3MP2B3) and ΔGsolv calculated at PCM/UAHF/HF/6-31G(d)//B98/6-31G(d) level; 
eSum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv calculated at PCM/UAHF/RHF/6-31G(d)//PCM/UAHF/B98/6-31G(d) level; f Sum of H298(gas phase, 
G3MP2B3) and ΔGsolv calculated at PCM/UAHF/HF/6-31G(d)// PCM/UAHF/B98/6-31G(d) level; g Sum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv 
calculated at PCM/UAHF/B98/6-31G(d)//B98/6-31G(d) level; h Sum of H298(gas phase, G3MP2B3) and ΔGsolv calculated at PCM/UAHF/B98/6-31G(d)//B98/6-31G(d) level; 
i Sum of H298(gas phase, MP2/6-31G+(2d,p)//B98/6-31G(d)) and ΔGsolv calculated at PCM/UAHF/B98/6-31G(d)//PCM/UAHF/B98/6-31G(d) level; j Sum of H298(gas phase, 
G3MP2B3) and ΔGsolv calculated at PCM/UAHF/B98/6-31G(d)// PCM/UAHF/B98/6-31G(d) level. 
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9.8 Energies of All Compounds 
 
Table A1. Energy Components (in Hartree) Used in Compound Methods. 

 EMP2/6-311G(d,p) EMP4/6-311G(d,p) EQCISD(T) EMP2/6-311+G(d,p) EMP4/6-311+G(d,p) EMP2/6-311G(2df,p) EMP4/6-311G(2df,p) E (G2)   

CH3
+ -39.356173 -39.3796871 -39.3810565 -39.3563022 -39.379823 -39.3693997 -39.3935637 -39.375147 -39.385587   

NH3 -56.408752 -56.4280383 -56.4284262 -56.4152414 -56.4343359 -56.4356164 -56.456560 -56.450543 -56.458644   

NH3-CH3
+ -95.949810 -95.9895208 -95.9907232 -95.9506444 -95.9904424 -95.9910081 -96.0329236 -96.005603 -96.007798   

PH3 -342.612249 -342.641293 -342.643089 -342.612962 -342.642092 -342.638995 -342.672753 -342.646761 -342.679022   

PH3-CH3
+ -382.148413 -382.195036 -382.197122 -382.149572 -382.196325 -382.191011 -382.196325 -382.204451 -382.229601   

 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3)   

CH3
+ -39.325375 -39.3461692 -39.3474594 -39.3257779 -39.3466708 -39.3602393 -39.3842278 -39.4161441 -39.4305791   

NH3 -56.354212 -56.3712589 -56.3720978 -56.3630364 -56.3800587 -56.4148069 -56.4354807 -56.4930272 -56.5070204   

NH3-CH3
+ -95.868201 -95.903027 -95.9048088 -95.8700788 -95.9052871 -95.9632777 -96.0043073 -96.0896105 -96.1014963   

PH3 -342.551705 -342.578315 -342.580626 -342.553371 -342.580063 -342.612923 -342.646168 -342.940711 -342.978514   

PH3-CH3
+ -382.054772 -382.096063 -382.098770 -382.056589 -382.098133 -382.155787 -382.205766 -382.539553 -382.574097   

 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3B3)   

CH3
+ -39.325307 -39.3462055 -39.3475151 -39.3257113 -39.3467107 -39.3601836 -39.3842477 -39.4159518 -39.4313689   

NH3 -56.3541849 -56.3713001 -56.3721478 -56.3629145 -56.380006 -56.4147932 -56.4355054 -56.492865 -56.508301   
NH3-CH3

+ -95.868174 -95.903068 -95.9048591 -95.8700568 -95.9053365 -95.9631954 -96.0042907 -96.0894534 -96.103415   

PH3 -342.551493 -342.578347 -342.580723 -342.553127 -342.580064 -342.612745 -342.646094 -342.940462 -342.980048   

PH3-CH3
+ -382.054650 -382.096185 -382.098925 -382.056463 -382.098254 -382.155524 -382.205676 -382.538965 -382.576073   

 ESCF(D) ESCF(T) ESCF(Q) ECCSD(D) ECCSD(T) ECCSD(Q) ECCSD(T)(D) ECCSD(T)(T) Enocore Ecore+relativistic E(W1) 

CH3
+ -39.235814 -39.247671 -39.249979 -39.367153 -39.402063 -39.410925 -39.369119 -39.405138 -39.408494 -39.472562 -39.483495 

NH3 -56.204899 -56.220044 -56.223777 -56.417907 -56.471167 -56.486415 -56.423109 -56.479421 -56.479725 -56.561568 -56.586358 

NH3-CH3
+ -95.591187 -95.618280 -95.624515 -95.955712 -96.046293 -96.071399 -95.964859 -96.060175 -96.067344 -96.214075 -96.248084 

PH3 -342.480525 -342.490809 -342.493955 -342.652845 -342.692440 -342.702993 -342.657635 -342.699626 -342.698609 -343.815853 -343.834150 
PH3-CH3

+ -381.866048 -381.890040 -381.895946 -382.187554 -382.266499 -382.287628 -382.196452 -382.279392 -382.281795 -383.463072 -383.495102 
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Table A2. Total Energies, Enthalpies, Free energies (in Hartree). 
 
system PBEPBE/6-31++G(d, p) MPWB95/6-31++G(d, p) B3LYP/6-31++G(d, p) 

 Etot H298 G298 Etot H298 G298 Etot H298 G298 

CH3
+ -39.4114936 -39.377083 -39.400000 -39.4455635 -39.411277 -39.434192 -39.484827 -39.449647 -39.472537 

NH3 -56.4901538 -56.452683 -56.474560 -56.5362699 -56.498932 -56.520808 -56.5671081 -56.528897 -56.550750 
NH3-
CH3

+ 
-96.0913366 -96.009312 -96.036936 -96.1681475 -96.086417 -96.114045 -96.2282966 -96.144459 -96.172058 

PH3 -342.9536698 -342.926500 -342.950396 -343.1524863 -343.125449 -343.149341 -343.146994 -343.119135 -343.142992 

PH3-CH3
+ -382.5479531 -382.479220 -382.508961 -382.7771739 -382.708621 -382.738363 -382.8017229 -382.731269 -382.760923 

 B98/6-31G(d) B98/6-31++G(d, p) B98/6-31++G(2df, p) 

 Etot H298 G298 Etot H298 G298 Etot H298 G298 

CH3
+ -39.4629215 -39.427481 -39.450370 -39.4672005 -39.432002 -39.454894 -39.4678459 -39.432812 -39.455706 

NH3 -56.5246395 -56.486143 -56.507987 -56.5425519 -56.504184 -56.526035 -56.5450007 -56.506780 -56.528629 
NH3-
CH3

+ 
-96.1766453 -96.092221 -96.119817 -96.1895229 -96.105488 -96.133076 -96.1916132 -96.107929 -96.135526 

PH3 -343.0846545 -343.056498 -343.080340 -343.0910288 -343.063053 -343.086902 -343.0956863 -343.067855 -343.091706 
PH3-CH3

+ -382.7205109 -382.649500 -382.679119 -382.7304879 -382.659938 -382.689591 -382.7380616 -382.667973 -382.697595 

 B98/6-311+G(2df, p) B98/cc-pVTZ+d    

 Etot H298 G298 Etot H298 G298    

CH3
+ -39.474864 -39.439894 -39.462781 -39.4771006 -39.442169 -39.465054    

NH3 -56.5596843 -56.521532 -56.543379 -56.5599807 -56.521833 -56.543673    
NH3-
CH3

+ 
-96.2125935 -96.128946 -96.156545 -96.2179613 -96.134335 -96.161955    

PH3 -343.1198154 -343.092077 -343.115928 -343.1261069 -343.098235 -343.122080    
PH3-CH3

+ -382.7703092 -382.700328 -382.729936 -382.7789325 -382.708894 -382.738494    
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Table A2. Continued 

 B3LYP/6-31G(d) B3LYP/6-311++G(d, p) B3LYP/cc-pVTZ+d 

 Etot H298 G298 Etot H298 G298 Etot H298 G298 

CH3
+ 

-39.4803875 -39.44499 -39.466187 -39.4914712 -39.456518 -39.479406 -39.4951851 -39.460203 -39.483083 
NH3 -56.5479476 -56.509624 -56.531469 -56.582722 -56.544638 -56.566488 -56.5847251 -56.546681 -56.568520 
NH3-
CH3

+ -96.2148647 -96.130638 -96.158242 -96.2490586 -96.165513 -96.193107 -96.2576794 -96.174162 -96.201779 

PH3 -343.1402806 -343.112204 -343.136055 -343.173329 -343.145604 -343.169464 -343.1824695 -343.154737 -343.178586 
PH3-CH3

+ -382.791348 -382.72045 -382.750089 -382.8349804 -382.764904 -382.794557 -382.8510126 -382.780989 -382.810592 

 B3LYP/aug-cc-pVDZ+2df// 
B3LYP/6-31G(d) 

B3LYP/6-31++G(2df,p)// 
B3LYP/6-31G(d) 

B98/6-31++G(2df, p)// 
B98/6-31G(d) 

   

 Etot H298 Etot H298 Etot H298    
CH3

+ 
-39.4808922 -39.4454947 -39.4849782 -39.4495807 -39.467844 -39.432403    

NH3 -56.57075 -56.5324264 -56.56903 -56.5307064 -56.544909 -56.506412    
NH3-
CH3

+ -96.2271944 -96.1429677 -96.2295844 -96.1453577 -96.191588 -96.107164    

PH3 -343.1697534 -343.1416768 -343.1511162 -343.1230396 -343.095684 -343.067527    
PH3-CH3

+ -382.8226991 -382.7518011 -382.8081611 -382.7372631 -382.737986 -382.666975    

 MP2(FC)/6-31G(d, p) MP2(FC)/6-31++G(d, p) MP2(FULL)/6-31++G(d, p) 

 Etot H298 G298 Etot H298 G298 Etot H298 G298 

CH3
+ 

-39.3466256 -39.310184 -39.333043 -39.3474824 -39.311036 -39.333896 -39.3521523 -39.315671 -39.338528 
NH3 -56.3832165 -56.343945 -56.365771 -56.3925249 -56.353408 -56.375240 -56.3963329 -56.357181 -56.379011 
NH3-
CH3

+ -95.9164643 -95.830482 -95.858001 -95.9183628 -95.832597 -95.860124 -95.9276312 -95.841765 -95.869288 

PH3 -342.5785766 -342.549520 -342.573329 -342.5805271 -342.551515 -342.575324 -342.5928861 -342.563802 -342.587610 
PH3-CH3

+ -382.1030677 -382.030199 -382.059682 -382.1055001 -382.032807 -382.062296 -382.1237074 -382.050872 -382.080340 
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Table A2. Continued 

 MP2(FC)/aug-cc-pVDZ MP2(FC)/aug-cc-pVTZ    

 Etot H298 G298 Etot H298 G298    

CH3
+ 

-39.3451925 -39.309465 -39.332363 -39.380956 -39.345242 -39.368108    
NH3 -56.4048893 -56.366718 -56.388579 -56.4605409 -56.422151 -56.443989    
NH3-
CH3

+ -95.9266144 -95.842460 -95.870034 -96.0208043 -95.936293 -95.963871    

PH3 -342.6140542 -342.585821 -342.609687 -342.6612883 -342.632914 -342.656750    
PH3-CH3

+ -382.1327532 -382.062067 -382.091692 -382.2235166 -382.152281 -382.181818    

 MP2(FC)/6-311G(d, p)// 
MP2(FULL)/6-31G(d) 

MP2(FC)/6-311+G(d, p)// 
MP2(FULL)/6-31G(d) 

MP2(FC)/6-311G(2df, p)// 
MP2(FULL)/6-31G(d) 

MP2(FC)/6-311+G(3df, 2p)// 
MP2(FULL)/6-31G(d) 

 

 Etot H298 Etot H298 Etot H298 Etot H298  
CH3

+ 
-39.3561733 -39.32227117 -39.3563022 -39.32240007 -39.3693997 -39.33549757 -39.3751466 -39.34124447  

NH3 -56.4087524 -56.37190527 -56.4152414 -56.37839427 -56.4356164 -56.39876927 -56.4505427 -56.41369557  
NH3-
CH3

+ -95.9498098 -95.86932567 -95.9506444 -95.87016027 -95.9910081 -95.91052397 -96.0056033 -95.92511917  

PH3 -342.6122485 -342.5850134 -342.6129617 -342.5857266 -342.6389946 -342.6117595 -342.6467605 -342.6195254  
PH3-CH3

+ -382.1484134 -382.0803303 -382.149572 -382.0814889 -382.1910109 -382.1229278 -382.2044508 -382.1363677  

 MP2(FC)/AVDZ+2df// 
B3LYP/cc-pVTZ+d 

MP2(FC)/AVTZ+2df// 
B3LYP/cc-pVTZ+d 

MP2(FC)/AVQZ+2df// 
B3LYP/cc-pVTZ+d 

MP2(FULL)/6-31G(d)a  

 Etot H298 Etot H298 Etot H298 Etot H298  
CH3

+ 
-39.3450761 -39.310094 -39.3809167 -39.3459346 -39.3913418 -39.3563597 -39.3294346 -39.29553247  

NH3 -56.4048022 -56.3667581 -56.4605317 -56.4224876 -56.47774 -56.4396959 -56.3573778 -56.32053067  
NH3-
CH3

+ -95.9263483 -95.8428309 -96.020752 -95.9372346 -96.049291 -95.9657736 -95.876174 -95.79568987  

PH3 -342.6255651 -342.5978326 -342.6660404 -342.6383079 -342.6780135 -342.650281 -342.5622591 -342.535024  
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Table A2. Continued 
PH3-CH3

+ -382.1480408 -382.0780172 -382.2299733 -382.1599497 -382.253881 -382.1838574 -382.0703814 -382.0022983  

 SCS-MP2(FC)/AVDZ+2df// 
B3LYP/cc-pVTZ+d 

SCS-MP2(FC)/AVTZ+2df// 
B3LYP/cc-pVTZ+d 

SCS-MP2(FC)/AVQZ+2df// 
B3LYP/cc-pVTZ+d 

   

 Etot H298 Etot H298 Etot H298    
CH3

+ 
-39.35431818 -39.31933608 -39.39270271 -39.35772061 -39.40424974 -39.36926764    

NH3 -56.40471108 -56.36666698 -56.46254896 -56.42450486 -56.48120973 -56.44316563    
NH3-
CH3

+ -95.92998284 -95.84646544 -96.02823253 -95.94471513 -96.05922366 -95.97570626    

PH3 -342.6333656 -342.6056331 -342.6765331 -342.6488006 -342.689805 -342.6620725    
PH3-CH3

+ -382.1579499 -382.0879263 -382.2445422 -382.1745186 -382.2708392 -382.2008156    

 MP2(FC)/6-31++G(d,p)// 
B98/6-31G(d) 

MP2(FC)/6-31++G(2d,p)// 
B98/6-31G(d) 

MP2(FC)/6-31+G(2d,p)// 
B98/6-31G(d) 

CCSD(T)/aug-cc-pVQZ  

 Etot H298 Etot H298 Etot H298 Etot H298  
CH3

+ 
-39.3472954 -39.3118544 -39.35271 -39.317269 -39.3523703 -39.3169293 -39.41446811 -39.38056598  

NH3 -56.3922142 -56.3537172 -56.4084832 -56.3699862 -56.4081946 -56.3696976 -56.49520549 -56.45835836  
NH3-
CH3

+ -95.9181921 -95.8337681 -95.9378347 -95.8534107 -95.9373165 -95.8528925 -96.08694074 -96.00645661  

PH3 -342.58018 -342.552023 -342.5944711 -342.566314 -342.5942623 -342.5661053 -342.7093457 -342.6821105  
PH3-CH3

+ -382.105133 -382.0341218 -382.1253799 -382.054369 -382.1248738 -382.0538628 -382.299433 -382.2313498  
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Table A3. Energy Components (in Hartree) Used in Compound Methods. 
 

 EMP2/6-311G(d,p) EMP4/6-311G(d,p) EQCISD(T) EMP2/6-311+G(d,p) EMP4/6-311+G(d,p) EMP2/6-311G(2df,p) EMP4/6-311G(2df,p) EMP2/6-311+G(3df,2p) E (G2)   

H2O -76.2636539 -76.2760675 -76.2760682 -76.2745467 -76.2869005 -76.2989426 -76.3134592 -76.3181084 -76.3320551   
H2O –
CH3

+ 
-115.7418351 -115.7758378 -115.7765544 -115.7443563 -115.778578 -115.7930759 -115.8297244 -115.8088658 -115.8202133   

HF -100.2667223 -100.2737373 -100.2734582 -100.2784688 -100.3196208 -100.3099778 -100.3196208 -100.3291624 -100.3500024   
HF –
CH3

+ 
-139.6794291 -139.7097307 -139.7099896 -139.6826326 -139.7134397 -139.7406416 -139.7741023 -139.7569892 -139.7804386   

H2S -398.8464033 -398.8708497 -398.871991 -398.8474222 -398.8720092 -398.8846984 -398.915636 -398.8931709 -398.9307055   

H2S –
CH3

+ 
-438.3414728 -438.3869299 -438.3889048 -438.3428497 -438.3883975 -438.3949372 -438.4463998 -438.4082902 -438.4420025   

HCl -460.2439949 -460.2627779 -460.2633628 -460.2446732 -460.2636034 -460.2913067 -460.3184956 -460.2987361 -460.3401763   
HCl –
CH3

+ 
-499.6800815 -499.7212771 -499.7229007 -499.6825626 -499.7239069 -499.7430762 -499.792483 -499.7574104 -499.7993944   

NH2
- -55.7033584 -55.7206462 -55.7206628 -55.7550372 -55.7713574 -55.7358816 -55.7551733 -55.796123 -55.8174306   

NH2
- –

CH3
+ 

-95.587429 -95.625426 -95.6262548 -95.5936211 -95.6316241 -95.6332419 -95.6736198 -95.6522254 -95.6669114   

OH- -75.5734647 -75.5831861 -75.5829333 -75.6397948 -75.6497547 -75.6144489 -75.6267351 -75.688111 -75.7127714   
OH- –
CH3

+ 
-115.4362047 -115.4684746 -115.4687664 -115.4448553 -115.4773327 -115.492731 -115.5278737 -115.5136598 -115.5349074   

F- -99.6132607 -99.6170987 -99.6168155 -99.6786867 -99.6844252 -99.661476 -99.6683231 -99.7321343 -99.7605987   

F- –
CH3

+ 
-139.4379569 -139.4662011 -139.4660127 -139.4471949 -139.4759304 -139.5049317 -139.5366384 -139.5250964 -139.5542149   

PH2
- -342.007302 -342.0325443 -342.0338521 -342.0110183 -342.0366089 -342.0427836 -342.0735216 -342.054701 -342.0949421   

PH2
- –

CH3
+ 

-381.8099322 -381.8560422 -381.8580367 -381.8111779 -381.8574545 -381.8569491 -381.9082766 -381.8699132 -381.9060371   

SH- -398.270903 -398.2908558 -398.2916407 -398.2732325 -398.2935269 -398.318382 -398.3452208 -398.3292224 -398.3715768   

SH- –
CH3

+ 
-438.0349851 -438.0367079 -438.0784717 -438.0367079 -438.078974 -438.0941867 -438.1432716 -438.1070487 -438.1484647   

Cl- -459.7002638 -459.7142799 -459.7145205 -459.7035702 -459.7181627 -459.7565305 -459.7792463 -459.7654629 -459.8089958   
Cl- –
CH3

+ 
-499.4262789 -499.4632312 -499.4642332 -499.4284828 -499.46574 -499.4958597 -499.5418767 -499.5078424 -499.5538301   
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Table A3. Continued 
 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3)   

H2O -76.1968478 -76.2073266 -76.2078917 -76.209702 -76.2203046 -76.2670957 -76.281815 -76.3616032 -76.3820445   

H2O –
CH3

+ 
-115.6458511 -115.6752243 -115.6765192 -115.6501491 -115.6800422 -115.7531739 -115.7895456 -115.8932148 -115.9148666   

HF -100.1821715 -100.1884344 -100.1884269 -100.2028717 -100.2095363 -100.2532943 -100.2639553 -100.3733753 -100.4011055   

HF –
CH3

+ 
-139.5717365 -139.5984594 -139.5987566 -139.5787823 -139.6063009 -139.6803946 -139.7145114 -139.8421534 -139.8762893   

H2S -398.7884133 -398.8119981 -398.8133937 -398.7901901 -398.8138912 -398.8541231 -398.8850194 -399.1951051 -399.2383723   
H2S –
CH3

+ 
-438.2506351 -438.2922796 -438.2946316 -438.2526567 -438.2945658 -438.3550781 -438.4057343 -438.7513225 -438.7944814   

HCl -460.1923572 -460.210878 -460.2115698 -460.194414 -460.2130797 -460.2555299 -460.2828801 -460.6074144 -460.6546645   

HCl –
CH3

+ 
-499.5951716 -499.6332052 -499.6349421 -499.5975385 -499.6358842 -499.6992388 -499.7481471 -500.1067473 -500.1582113   

NH2
- -55.6469426 -55.6625353 -55.6630989 -55.7076649 -55.7225299 -55.7058268 -55.7250843 -55.8362354 -55.8638397   

NH2
- –

CH3
+ 

-95.5065291 -95.5398446 -95.5413523 -95.5155673 -95.5492274 -95.6017196 -95.6411677 -95.7356467 -95.7601223   

OH- -75.5131415 -75.5213761 -75.521828 -75.5883569 -75.5966723 -75.5744104 -75.5873945 -75.7287895 -75.7602389   

OH- –
CH3

+ 
-115.3461339 -115.3738528 -115.3748548 -115.357706 -115.3859979 -115.4490143 -115.4837442 -115.5976121 -115.6292246   

F- -99.5266066 -99.5307477 -99.530704 -99.6238467 -99.62975 -99.5837754 -99.5927206 -99.7736485 -99.8091883   
F- –

CH3
+ 

-139.3358539 -139.3606801 -139.3605832 -139.3532406 -139.3788664 -139.4385448 -139.4708204 -139.6098531 -139.6496423   

PH2
- -341.9406873 -341.9646155 -341.966272 -341.9612127 -341.9855402 -342.0023881 -342.0333789 -342.3499756 -342.3964133   

PH2
- –

CH3
+ 

-381.7211928 -381.7628851 -381.7654993 -381.7245506 -381.7665403 -381.8197833 -381.8702134 -382.2055908 -382.2512697   

SH- -398.2104514 -398.2299729 -398.2308468 -398.2296044 -398.2495555 -398.2739882 -398.3013357 -398.6320254 -398.6806093   
SH- –
CH3

+ 
-437.9526647 -437.9914968 -437.9932967 -437.955745 -437.9949283 -438.053285 -438.1017907 -438.4505858 -438.501628   

Cl- -459.6521044 -459.6662592 -459.6665483 -459.6711454 -459.6858399 -459.7082425 -459.7314657 -460.0746719 -460.1235999   

Cl- –
CH3

+ 
-499.3545576 -499.388677 -499.3898387 -499.3574609 -499.3919573 -499.4506048 -499.4962323 -499.8574906 -499.9130225   
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Table A3. Continued 
 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3B3)   

H2O -76.1968451 -76.2073245 -76.2078898 -76.2096739 -76.220278 -76.2671089 -76.2818268 -76.3615987 -76.3837249   
H2O –
CH3

+ 
-115.645785 -115.6752171 -115.6765104 -115.6500936 -115.680049 -115.7531439 -115.7895811 -115.8931989 -115.9169751   

HF -100.1821715 -100.1884343 -100.1884268 -100.2028711 -100.2095356 -100.2532962 -100.2639572 -100.3733769 -100.4027805   
HF –
CH3

+ 
-139.5716854 -139.598521 -139.5988308 -139.5788377 -139.6064741 -139.6803758 -139.714602 -139.842112 -139.8778114   

H2S -398.7883098 -398.812039 -398.8134686 -398.7900884 -398.8139354 -398.8539529 -398.8849269 -399.1948494 -399.2398373   
H2S –
CH3

+ 
-438.2502873 -438.292295 -438.2947189 -438.2523044 -438.2945826 -438.3547596 -438.4057129 -438.7506468 -438.796703   

HCl -460.1923035 -460.2108867 -460.2115945 -460.1943718 -460.2131004 -460.2554106 -460.2827982 -460.6072522 -460.6561245   
HCl –
CH3

+ 
-499.5945306 -499.6329972 -499.634839 -499.5969146 -499.6357028 -499.6985248 -499.7478978 -500.1057431 -500.1600253   

NH2
- -55.6468384 -55.6626363 -55.6632096 -55.7070814 -55.7221122 -55.7055258 -55.7249224 -55.835573 -55.8648525   

NH2
- –

CH3
+ 

-95.5064917 -95.5398909 -95.5414081 -95.5155238 -95.5492689 -95.6016371 -95.6411381 -95.7354694 -95.7623002   

OH- -75.5131039 -75.5214157 -75.5218792 -75.5882803 -75.5966461 -75.5741983 -75.5872386 -75.7285308 -75.7616558   
OH- –
CH3

+ 
-115.3460757 -115.3738476 -115.374855 -115.3575822 -115.3859276 -115.4490037 -115.4837592 -115.5974953 -115.6317384   

F- -99.5266066 -99.5307477 -99.530704 -99.6238467 -99.62975 -99.5837754 -99.5927206 -99.7736485 -99.8114563   
F- –

CH3
+ 

-139.3357595 -139.3606356 -139.3605501 -139.3529295 -139.3785973 -139.438607 -139.4708966 -139.6096806 -139.6520607   

PH2
- -341.9405805 -341.9646649 -341.9663609 -341.9610292 -341.98551 -342.0020599 -342.0331555 -342.3495878 -342.3976641   

PH2
- –

CH3
+ 

-381.720988 -381.7629753 -381.7656533 -381.7243382 -381.7666251 -381.8195179 -381.8701407 -382.2050579 -382.2532821   

SH- -398.210406 -398.2300052 -398.2308956 -398.2295509 -398.2495753 -398.2738123 -398.3012183 -398.6318269 -398.6819578   
SH- –
CH3

+ 
-437.9524538 -437.9915533 -437.993397 -437.9555565 -437.9950132 -438.0529778 -438.1017083 -438.4499936 -438.5036817   

Cl- -459.6521044 -459.6662592 -459.6665483 -459.6711454 -459.6858399 -459.7082425 -459.7314657 -460.0746719 -460.1258679   
Cl- –
CH3

+ 
-499.3543147 -499.3886843 -499.3898784 -499.357256 -499.392009 -499.4503507 -499.4962149 -499.8570295 -499.9151909   
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Table A3. Continued 

 ESCF(D) ESCF(T) ESCF(Q) ECCSD(D) ECCSD(T) ECCSD(Q) ECCSD(T)(D) ECCSD(T)(T) Enocore Ecore+relativistic E(W1) 
H2O -76.040697 -76.060203 -76.065649 -76.266789 -76.332818 -76.353858 -76.271707 -76.341387 -76.341421 -76.448751 -76.483034 

H2O –
CH3

+ 
-115.365029 -115.398190 -115.406120 -115.740332 -115.844906 -115.875457 -115.749391 -115.859109 -115.867059 -116.039026 -116.080838 

HF -100.032733 -100.060691 -100.068237 -100.258414 -100.341565 -100.368821 -100.262400 -100.349072 -100.350619 -100.495430 -100.537719 
HF –
CH3

+ 
-139.299620 -139.341267 -139.351342 -139.672125 -139.793305 -139.829715 -139.680493 -139.806656 -139.815071 -140.024194 -140.074443 

H2S -398.704016 -398.716159 -398.719392 -398.886787 -398.936111 -398.949439 -398.892156 -398.944944 -398.942619 -400.333038 -400.357604 

H2S –
CH3

+ 
-438.043618 -438.069457 -438.075400 -438.382585 -438.470275 -438.493355 -438.392939 -438.485753 -438.487339 -439.942523 -439.979007 

HCl -460.095437 -460.108675 -460.112004 -460.280759 -460.338894 -460.356192 -460.285595 -460.347923 -460.345067 -462.072931 -462.104837 
HCl –
CH3

+ 
-499.377995 -499.406305 -499.412324 -499.719313 -499.817764 -499.844172 -499.729504 -499.833883 -499.834825 -501.627345 -501.670256 

NH2
- -55.534309 -55.547278 -55.550794 -55.760252 -55.810546 -55.825360 -55.768400 -55.822614 -55.787342 -55.868857 -55.928901 

NH2
- –

CH3
+ 

-95.229871 -95.255240 -95.261360 -95.599455 -95.688874 -95.713927 -95.609755 -95.704399 -95.707773 -95.854415 -95.892353 

OH- -75.394777 -75.411576 -75.416505 -75.633758 -75.696056 -75.716510 -75.641400 -75.708284 -75.667528 -75.774694 -75.849322 
OH- –
CH3

+ 
-115.060812 -115.091825 -115.099473 -115.442193 -115.545136 -115.575604 -115.452303 -115.560902 -115.564710 -115.736727 -115.782829 

F- -99.428282 -99.450807 -99.457462 -99.662690 -99.739301 -99.765819 -99.668634 -99.749538 -99.711293 -99.855988 -99.937440 
F- –

CH3
+ 

-139.056857 -139.096979 -139.106622 -139.435299 -139.555703 -139.592303 -139.444340 -139.570138 -139.575091 -139.784514 -139.838841 

PH2
- -341.881510 -341.891098 -341.893965 -342.055547 -342.095726 -342.106478 -342.061786 -342.105192 -342.088544 -343.205552 -343.240213 

PH2
- –

CH3
+ 

-381.520332 -381.542835 -381.548334 -381.851595 -381.929603 -381.950116 -381.861900 -381.944655 -381.945548 -383.127691 -383.160630 

SH- -398.136023 -398.146284 -398.149182 -398.317865 -398.365941 -398.380008 -398.324283 -398.376612 -398.359177 -399.749318 -399.790626 
SH- –
CH3

+ 
-437.735380 -437.759833 -437.765485 -438.076350 -438.164364 -438.187566 -438.087340 -438.181157 -438.180572 -439.635835 -439.675045 

Cl- -459.563645 -459.573481 -459.576353 -459.744538 -459.799177 -459.817752 -459.749772 -459.809281 -459.791917 -461.519446 -461.568383 
Cl- –
CH3

+ 
-499.123966 -499.149673 -499.155427 -499.465324 -499.562460 -499.589815 -499.475656 -499.579330 -499.578076 -501.370720 -501.417712 
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Table A4. Total Energies, Enthalpies, Free energies (in Hartree). 
 

 B3LYP/cc-pVTZ+d B3LYP/6-311++G(d, p) B98/6-31++G(2df, p)// 
B98/6-31G(d) 

MP2/6-31G(d, p) 

 Etot H298 G298 Etot H298 G298 Etot H298 Etot H298 G298 
H2O -76.4598397 -76.434769 -76.456191 -76.45853077 -76.433462 -76.454884 -76.411043 -76.385873 -76.2197857 -76.194121 -76.215545 

H2O –
CH3

+ 
-116.073157 -116.004624 -116.032472 -116.0628916 -115.994362 -116.022202 -115.995104 -115.925902 -115.68943352 -115.618830 -115.646496 

HF -100.483571 -100.47095 -100.490665 -100.48238309 -100.469748 -100.489459 -100.422392 -100.409896 -100.19463907 -100.181786 -100.201496 
HF –
CH3

+ 
-140.038457 -139.98520 -140.013508 -140.02566045 -139.972686 -140.000999 -139.945354 -139.891631 -139.6051299 -139.550033 -139.578026 

H2S -399.432964 -399.414116 -399.437460 -399.42264789 -399.403852 -399.427210 -55.883197 -55.861653 -398.81009809 -398.790430 -398.813747 
H2S –
CH3

+ 
-439.064109 -439.003078 -439.032277 -439.04603648 -438.985011 -439.014243 -95.833629 -95.764776 -438.2930985 -438.229485 -438.258513 

HCl -460.844003 -460.833990 -460.855174 -460.83401919 -460.824045 -460.845238 -75.773857 -75.76263 -460.2054468 -460.195037 -460.216204 
HCl –
CH3

+ 
-500.420954 -500.370323 -500.399546 -500.40255045 -500.351928 -500.381162 -115.695345 -115.639499 -499.629579 -499.576760 -499.605718 

NH2
- -55.895647 -55.873944 -55.895426 -55.925398289 -55.903188 -55.924644 -99.821956 -99.819596 -55.6694656 -55.646985 -55.668469 

NH2
- 

–CH3
+ 

-95.899974 -95.831825 -95.859140 -95.893888543 -95.825708 -95.853036 -139.708936 -139.665524 -95.5939205 -95.524456 -95.551700 

OH- -75.7904039 -75.778927 -75.798497 -75.827448163 -75.815608 -75.835169 -399.340712 -399.321748 -75.52606950 -75.514348 -75.533923 
OH- –
CH3

+ 
-115.772250 -115.716896 -115.743947 -115.76499937 -115.709662 -115.736733 -438.946315 -438.884494 -115.3820093 -115.324822 -115.351762 

F- -99.850177 -99.847817 -99.864336 -99.88869321 -99.886333 -99.902852 -460.746741 -460.736712 -99.52660657 -99.524246 -99.540765 
F- –

CH3
+ 

-139.799833 -139.756876 -139.783190 -139.7913724 -139.748492 -139.774824 -500.298386 -500.247171 -139.360097 -139.315580 -139.341879 

PH2
- -342.574482 -342.558030 -342.581538 -342.58035608 -342.563820 -342.587334 -342.500314 -342.483873 -341.9600264 -341.942721 -341.966199 

PH2
- –

CH3
+ 

-382.515042 -382.456087 -382.485384 -382.50182309 -382.442836 -382.472134 -382.402093 -382.342318 -381.7637955 -381.702408 -381.731556 

SH- -398.853665 -398.844427 -398.865583 -398.85895804 -398.849717 -398.870882 -398.773701 -398.764543 -398.2221489 -398.212590 -398.233734 

SH- –
CH3

+ 
-438.757730 -438.707316 -438.736114 -438.74349752 -438.693058 -438.721844 -438.639967 -438.589038 -437.9877848 -437.935304 -437.963943 

Cl- -460.297536 -460.295175 -460.312558 -460.30372718 -460.301367 -460.318750 -460.212111 -460.209751 -459.65210438 -459.649744 -459.667127 

Cl- –
CH3

+ 
-500.165390 -500.123809 -500.151444 -500.15187767 -500.110248 -500.137894 -500.043397 -500.001311 -499.3782038 -499.335002 -499.362557 
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Table A4. Continued 

 MP2/6-31++G(d, p) MP2/6-31++G(d,p)// 
B98/6-31G(d) 

MP2/6-31++G(2d,p)// 
B98/6-31G(d) 

MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

  

 Etot H298 G298 Etot H298 Etot H298 Etot H298   

H2O -76.2333759 -76.207969 -76.229394 -76.2333078 -76.2081378 -76.2617508 -76.2365808 -76.2616118 -76.2364418   

H2O –
CH3

+ 
-115.6936152 -115.623237 -115.650930 -115.693484 -115.6242819 -115.7248867 -115.655685 -115.7245305 -115.6553285   

HF -100.2159192 -100.203232 -100.222952 -100.215904 -100.2034077 -100.2527867 -100.240291 -100.2527867 -100.2402907   

HF –
CH3

+ 
-139.61246657 -139.557818 -139.585981 -139.612142 -139.5584189 -139.6546912 -139.600968 -139.6544008 -139.6006778   

H2S -398.8122181 -398.792577 -398.815894 -55.7309528 -55.7094088 -55.7506778 -55.7291338 -55.749791 -55.728247   

H2S –
CH3

+ 
-438.2957965 -438.232373 -438.261402 -95.5592078 -95.4903548 -95.5818373 -95.5129843 -95.5813702 -95.5125172   

HCl -460.2077632 -460.197369 -460.218538 -75.6025028 -75.5912758 -75.6322485 -75.6210215 -75.631849 -75.620622   

HCl –
CH3

+ 
-499.6324664 -499.579784 -499.608749 -115.39355 -115.3377035 -115.4277147 -115.371869 -115.4273908 -115.3715448   

NH2
- -55.7320642 -55.709317 -55.730768 -99.6238467 -99.6214867 -99.6594279 -99.6570679 -99.6594279 -99.6570679   

NH2
- 

–CH3
+ 

-95.5595242 -95.489262 -95.516494 -139.376662 -139.3332495 -139.4182667 -139.374855 -139.418347 -139.374935   

OH- -75.6026568 -75.590674 -75.610242 -398.811848 -398.7928836 -398.8305352 -398.811571 -398.8303632 -398.8113992   

OH- –
CH3

+ 
-115.3938995 -115.337025 -115.364041 -438.295108 -438.2332872 -438.3203389 -438.258518 -438.3197511 -438.2579301   

F- -99.6238467 -99.621486 -99.638005 -460.207517 -460.1974884 -460.2285295 -460.218501 -460.2284004 -460.2183714   

F- –
CH3

+ 
-139.3773615 -139.333034 -139.359361 -499.631664 -499.5804487 -499.6596658 -499.608451 -499.6591775 -499.6079625   

PH2
- -341.9810056 -341.963683 -341.987158 -341.980639 -341.9641983 -341.9990677 -341.982627 -341.9984752 -341.9820342   

PH2
- –

CH3
+ 

-381.7675862 -381.706508 -381.735664 -381.767197 -381.7074224 -381.7900043 -381.730229 -381.7894744 -381.7296994   

SH- -398.2415756 -398.232018 -398.253162 -398.24133 -398.2321719 -398.2655131 -398.256355 -398.2653748 -398.2562168   

SH- –
CH3

+ 
-437.991256 -437.939071 -437.967733 -437.990722 -437.9397925 -438.0174778 -437.966549 -438.0170264 -437.9660974   

Cl- -459.671145 -459.668785 -459.686168 -459.671145 -459.6687854 -459.6979091 -459.695549 -459.6979091 -459.6955491   

Cl- –
CH3

+ 
-499.3813075 -499.338325 -499.365887 -499.380914 -499.3388281 -499.4109623 -499.368876 -499.4106808 -499.3685948   
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Table A5.  Energy Components (in Hartree) Used in G3. 
 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3) 

pyrrole -209.480830 -209.5392877 -209.5382593 -209.4964473 -209.5549701 -209.6393209 -209.7053776 -209.9361593 -210.005008 
pyrrole-CH3

+ -248.999848 -249.0811821 -249.0828866 -249.0080542 -249.0899276 -249.1942066 -249.2861353 -249.5373548 -249.615147 
pyrazole -225.503526 -225.5577504 -225.5549956 -225.5196429 -225.5741285 -225.6613392 -225.7237234 -225.9660856 -226.040138 
pyrazole-

CH3
+ 

-265.027154 -265.1002785 -265.0989861 -265.0362896 -265.1100706 -265.2257905 -265.309399 -265.5790957 -265.656309 

N-methyl-
pyrrole 

-248.644006 -248.7180912 -248.7169399 -248.6605179 -248.7349603 -248.838428 -248.9224572 -249.1913352 -249.270822 

N-methyl-
pyrrole-CH3

+ 
-288.172259 -288.2693895 -288.2710348 -288.181812 -288.2797348 -288.4028811 -288.5128668 -288.8025172 -288.890959 

pyridine -247.482518 -247.5529096 -247.5512206 -247.498312 -247.5688412 -247.656671 -247.7356984 -248.0048474 -248.092899 
pyridine-

CH3
+ 

-287.019171 -287.1071207 -287.1061879 -287.0285649 -287.1169809 -287.2336694 -287.332638 -287.6307554 -287.719344 

imidazole -225.519198 -225.573979 -225.5717214 -225.5356519 -225.5907735 -225.6772422 -225.7402134 -225.9825993 -226.057889 
imidazole-

CH3
+ 

-265.063019 -265.1356042 -265.1344617 -265.0718603 -265.1451546 -265.2606753 -265.3437562 -265.6138166 -265.690020 

quinoline -400.640977 -400.7524494 -400.7476536 -400.664985 -400.7766027 -400.9180001 -401.0419096 -401.486926 -401.629249 
quinoline-

CH3
+ 

-440.182783 -440.312324 -440.308330 -440.199561 -440.3296156 -440.5011429 -440.6455051 -441. 118608 -441.261624 

pyrrolidine -211.827206 -211.900702 -211.902816 -211.840003 -211.914494 -212.0174003 -212.1023486 -212.3167399 -212.376014 
Pyrrolidine 

-CH3
+ 

-251.374954 -251.4665189 -251.4693917 -251.3824189 -251.4750799 -251.6027771 -251.708221 -251.9507785 -252.009361 

NMe3 -173.828591 -173.893607 -173.8958721 -173.8394348 -173.9053762 -173.9950051 -174.0708542 -174.2411839 -174.287611 
NMe3-CH3

+ -213.374536 -213.4571903 -213.4600224 -213.3810555 -213.4648003 -213.5805824 -213.6765099 -213.8766135 -213.921541 
N-methyl- 
imidazole 

-264.683017 -264.7535311 -264.751103 -264.7002739 -264. 771430 -264.877052 -264.9581217 -265.238341 -265.324326 

N-methyl- 
imidazole-

CH3
+ 

-304.233176 -304.3215089 -304.320233 -304.243005 -304.332287 -304.466789 -304.567972 -304.8763183 -304.963387 
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Table A5. Continued 
 EMP2/6-31G(d) EMP4/6-31G(d) EQCISD(T) EMP2/6-31+G(d) EMP4/6-31+G(d) EMP2/6-31G(2df,p) EMP4/6-31G(2df,p) EMP2/GTLarge E (G3) 

DABCO -344.158803 -344.2691002 -344.2705728 -344.1767329 -344.2888792 -344.4477919 -344.575089 -344.9220447 -345.022541 
DABCO-

CH3
+ 

-383.711830 -383.8398802 -383.8419238 -383.7261682 -383.8562133 -384.0404943 -384.1878485 -384.5646917 -384.664242 

quinuclidine -328.155211 -328.2687536 -328.270712 -328.1700263 -328.2851647 -328.4417032 -328.571922 -328.9059934 -328.999220 
Quinuclidine 
-CH3

+ 
-367.714997 -367.8459942 -367.8484667 -367.7266416 -367.8592964 -368.0411988 -368.1911446 -368.5561793 -368.647631 

PMe3 -460.068688 -460.1405533 -460.1436557 -460.0767557 -460.1492122 -460.243071 -460.3275004 -460.7465137 -460.809805 
PMe3-CH3

+ -499.630406 -499.7170346 -499.7204397 -499.6361986 -499.7236427 -499.8468508 -499.9482905 -500.4064054 -500.468867 
PMe2Ph -651.203074 -651.3255148 -651.3256122 -651.2247381 -651.3477819 -651.4997256 -651.6388061 -652.2796972 -652.413246 

PMe2Ph-CH3
+ -690.767703 -690.9049877 -690.9054216 -690.7847800 -690.9228728 -691.1074045 -691.2636195 -691.9420731 -692.074754 
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 Table A6. Total Energies, Enthalpies (in Hartree). 

 B98/6-31G(d) B98/6-31++G(2df,p) 
//B98/6-31G(d) 

MP2/6-31++G(d,p)//B98/6-31G(d) MP2/6-31++G(2d,p)//B98/6-
31G(d) 

 Etot H298 Etot H298 Etot H298 Etot H298 

pyrrole -210.0799588 -209.992376 -210.110411 -210.0228282 -209.537954 -209.450372 -209.5824402 -209.4948582 
pyrrole-

CH3
+ -249.740246 -249.609948 -249.767197 -249.636899 -249.0705122 -248.9402142 -249.1202098 -248.9899118 

pyrazole -226.1084608 -226.032319 -226.137783 -226.0616412 -225.5523962 -225.4762542 -225.599795 -225.523653 
pyrazole-

CH3
+ -265.7731898 -265.653899 -265.8022003 -265.6829095 -265.0908652 -264.9715742 -265.1447094 -265.0254184 

N-methyl-
pyrrole -249.3749806 -249.257842 -249.4066678 -249.2895292 -248.7164907 -248.5993517 -248.7691369 -248.6519979 

N-methyl-
pyrrole-

CH3
+ 

-289.04323 -288.883358 -289.0718547 -288.9119827 -288.2589878 -288.0991158 -288.3167589 -288.1568869 

pyridine -248.181760 -248.087612 -248.209349 -248.115201 -247.5372975 -247.4431495 -247.5897175 -247.4955695 
pyridine-

CH3
+ -287.8560148 -287.71821 -287.88373 -287.7459252 -287.0898118 -286.9520068 -287.1480953 -287.0102903 

imidazole -226.124982 -226.048948 -226.1551651 -226.0791311 -225.5686262 -225.4925912 -225.616203 -225.540168 
imidazole-

CH3
+ -265.8066334 -265.686827 -265.8354572 -265.7156508 -265.1266437 -265.0068367 -265.1796182 -265.0598112 

quinoline -401.7646227 -401.621226 -401.806169 -401.6627723 -400.7198073 -400.5764103 -400.8059884 -400.6625914 
quinoline-

CH3
+ -441.4454425 -441.258155 -441.486672 -441.299384 -440.2767169 -440.0894289 -440.3696719 -440.1823839 

pyrrolidine -212.4964237 -212.360236 -212.524057 -212.3878693 -211.9131765 -211.7769885 -211.9585779 -211.8223899 
pyrrolidine 

-CH3
+ -252.1783399 -251.99731 -252.204353 -252.0233231 -251.4764613 -251.2954313 -251.5267993 -251.3457693 

NMe3 -174.4007171 -174.273292 -174.4233976 -174.2959725 -173.9118556 -173.7844306 -173.9494999 -173.8220749 
NMe3-CH3

+ -214.0771833 -213.904726 -214.0994996 -213.9270423 -213.4745742 -213.3021172 -213.5182938 -213.3458368 
N-methyl- 
imidazole -265.4208789 -265.315183 -265.452295 -265.346599 -264.7477155 -264.6420195 -264.803554 -264.697858 

N-methyl- 
imidazole-

CH3
+ 

-305.1086479 -304.959284 -305.139144 -304.9897797 -304.3123599 -304.1629969 -304.373845 -304.224482 
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Table A6. Continued 
 B98/6-31G(d) B98/6-31++G(2df,p) 

//B98/6-31G(d) 
MP2/6-31++G(d,p)//B98/6-31G(d) MP2/6-31++G(2d,p)//B98/6-

31G(d) 
 Etot H298 Etot H298 Etot H298 Etot H298 

pyrrole -345.1949681 -345.003513 -345.2303471 -345.038892 -344.2721013 -344.0806453 -344.3471564 -344.1557004 
pyrrole-

CH3
+ -384.8798256 -384.643824 -384.9152469 -384.6792453 -383.84272 -383.606718 -383.923029 -383.687027 

pyrazole -329.1799428 -328.976697 -329.2137268 -329.010481 -328.274072 -328.070826 -328.3444978 -328.1412518 
pyrazole-

CH3
+ -368.8701586 -368.622359 -368.904329 -368.6565294 -367.8513201 -367.6035201 -367.9273934 -367.6795934 

N-methyl-
pyrrole -460.9963707 -460.875351 -461.0211789 -460.9001592 -460.1498089 -460.0287889 -460.1918918 -460.0708718 

N-methyl-
pyrrole-

CH3
+ 

-500.6907246 -500.527994 -500.721378 -500.5586474 -499.7298604 -499.5671294 -499.7806752 -499.6179442 

pyridine -652.6503727 -652.472848 -652.694197 -652.5166727 -651.3134565 -651.1359325 -651.394642 -651.217118 
pyridine-

CH3
+ -692.3483077 -692.129002 -692.396961 -692.1776556 -690.8945806 -690.6752756 -690.985272 -690.765967 

 MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

MP2/6-311+G(2d,p)// 
B98/6-31G(d) 

    

 Etot H298 Etot H298     
pyrrole -209.5821559 -209.4945731 -209.640727 -209.5531442     
pyrrole-

CH3
+ -249.1195815 -248.9892835 -249.1868016 -249.0565036     

pyrazole -225.5995288 -225.523387 -225.6658105 -225.5896687     
pyrazole-

CH3
+ -265.144227 -265.0249362 -265.2203643 -265.1010735     

N-methyl-
pyrrole -248.7686435 -248.6515049 -248.8388805 -248.7217419     

N-methyl-
pyrrole-

CH3
+ 

-288.3159368 -288.1560648 -288.3947599 -288.2348879 
    

pyridine -247.5894387 -247.4952907 -247.6567807 -247.5626327     
pyridine-

CH3
+ -287.1475701 -287.0097653 -287.2243864 -287.0865816     
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Table A6. Continued 

 MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

MP2/6-311+G(2d,p)// 
B98/6-31G(d) 

  

 Etot H298 Etot H298     

imidazole -225.6159541 -225.5399201 -225.682212 -225.606178     
imidazole-

CH3
+ -265.1791648 -265.0593584 -265.2552292 -265.1354228     

quinoline -400.8056985 -400.6623018 -400.9122748 -400.7688781     
quinoline-

CH3
+ -440.3690547 -440.1817672 -440.4853338 -440.2980463     

pyrrolidine -211.9577559 -211.8215682 -212.0199662 -211.8837785     
pyrrolidine 

-CH3
+ -251.5257262 -251.3446963 -251.5964754 -251.4154455     

NMe3 -173.9486359 -173.8212108 -174.0014971 -173.874072     
NMe3-CH3

+ -213.5172576 -213.3448003 -213.5786899 -213.4062326     
N-methyl- 
imidazole -264.8031187 -264.6974228 -264.8809526 -264.7752567     

N-methyl- 
imidazole-

CH3
+ 

-304.3732 -304.2238361 -304.4607248 -304.3113609 
    

pyrrole -344.3461625 -344.1547074 -344.4469658 -344.2555107     
pyrrole-

CH3
+ -383.9217601 -383.6857585 -384.031602 -383.7956004     

pyrazole -328.3433046 -328.1400588 -328.4368633 -328.2336175     
pyrazole-

CH3
+ -367.9259362 -367.6781366 -368.0284465 -367.7806469     

N-methyl-
pyrrole -460.1908641 -460.0698444 -460.2520868 -460.1310671     

N-methyl-
pyrrole-

CH3
+ 

-499.7796327 -499.6169021 -499.8500326 -499.687302 
    

pyridine -651.3935886 -651.2160639 -651.502793 -651.3252683     
pyridine-

CH3
+ -690.9840525 -690.7647468 -691.1026503 -690.8833446     
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Table A7. Total Energies and Enthalpies (in Hartree) as Calculated at the B98/6-31G(d) and 
MP2(FC)/6-31+G(2d,p)//B98/6-31G(d) Level of Theory for all Systems. If More than One 
Conformer Exist at 298.15 K, Total Energies Represent the Total Energy of the Best 
Conformer and Enthalpies Represent Boltzmann-Averaged Values over all Conformers. 
  
 B98/6-31G(d) MP2(FC)/6-31+G(2d,p)//B98/6-31G(d)
 Etot H298 Etot H298 
CH3

+ -39.462922 -39.427481 -39.3523703 -39.3169293 
enol -193.050400 -192.959496 -192.6113911 -192.5204561 
enol-Me+ -232.706588 -232.573288 -232.1456101 -232.0121949 
enol-H+ -193.403147 -193.300102 -192.9488006 -192.8457561 
1 -248.181760 -248.087612 -247.5894387 -247.4952907 
1-Me+ -287.856015 -287.718210 -287.1475701 -287.0097653 
1-H+ -248.555059 -248.446502 -247.9528770 -247.8443199 
2 -382.107033 -381.935289 -381.1857028 -381.0139584 
2-Me+ -421.783395 -421.567596 -420.7472882 -420.5314891 
2-H+ -382.496991 -382.310686 -381.5640595 -381.3777545 
3 -226.124982 -226.048948 -225.6159541 -225.5399201 
3-Me+ -265.806633 -265.686827 -265.1791648 -265.0593584 
3-H+ -226.503808 -226.413502 -225.9842830 -225.8939773 
4 -401.764623 -401.621226 -400.8056985 -400.6623018 
4-Me+ -441.445443 -441.258155 -440.3690547 -440.1817672 
4-H+ -402.148068 -401.990339 -401.1763456 -401.0186162 
5 -401.004097 -400.849695 -400.1314281 -399.9769728 
5-Me+ -440.682182 -440.483764 -439.6951018 -440.4837637 
5-H+ -401.382624 -401.213650 -400.5012983 -400.3323197 
6 -287.484718 -287.361209 -286.7872853 -286.6637767 
6-Me+ -327.165207 -326.998151 -326.3506969 -326.1836411 
6-H+ -287.864936 -287.727193 -287.1566838 -287.0189408 
7 -403.168063 -402.983620 -402.2223122 -402.0378693 
7-Me+ -442.842228 -442.613615 -441.7872526 -441.5586397 
7-H+ -403.543450 -403.343717 -402.5912529 -402.3915201 
8 -212.496424 -212.360108 -211.9581467 -211.8219125 
8-Me+ -252.178340 -251.997101 -251.5257262 -251.3444449 
8-H+ -212.878286 -212.726750 -212.3328616 -212.1813258 
9 -174.400717 -174.273292 -173.9486359 -173.8212108 
9-Me+ -214.077183 -213.904726 -213.5172576 -213.3448003 
9-H+ -174.779434 -174.636045 -174.3233160 -174.1799269 
10 -441.066943 -440.893993 -440.0039989 -439.8310488 
10-Me+ -480.752394 -480.535599 -479.5714640 -479.3546690 
10-H+ -441.455576 -441.268467 -440.3792438 -440.1921351 
11 -265.420879 -265.315183 -264.8031187 -264.6974228 
11-Me+ -305.108648 -304.959284 -304.3732000 -304.2238361 
11-H+ -265.806634 -265.686824 -265.1791652 -265.0593555 
12 -921.587985 -921.190927 -919.4118894 -919.0138350 
12-1-Me+ -961.279105 -921.191485 -958.9951260 -958.5535059 
12-2-Me+ -961.276693 -960.836390 -958.9821855 -958.5411577 
12-1-H+ -921.986184 -921.573309 -919.8026136 -919.3896852 
12-2-H+ -921.980666 -921.569875 -919.7903104 -919.3789374 
13 -921.588951 -921.191340 -919.4139549 -919.0157722 
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Table A7. Continued 
13-1-Me+ -961.2801043 -960.8381939 -958.9958574 -958.5539275 
13-2-Me+ -961.2787468 -960.8371362 -958.9849166 -958.5429850 
13-1-H+ -921.9867974 -921.5740867 -919.8055074 -919.3924041 
13-2-H+ -921.9827175 -921.5706552 -919.7928420 -919.3806086 
14 -370.8853042 -370.6087365 -369.9124608 -369.6357009 
14-Me+ -410.5629096 -410.2408639 -409.4854796 -409.1635616 
14-H+ -371.2825205 -370.9903894 -370.3041895 -370.0119822 
15 -251.7924062 -251.6273323 -251.1462691 -250.9811893 
15-Me+ -291.4740218 -291.2640310 -290.7193361 -290.5093453 
15-H+ -252.1783395 -251.9971093 -251.5257247 -251.3444513 
16 -555.5467330 -555.3384240 -554.2472113 -554.0389023 
16-Me+ -595.2368724 -594.9846790 -593.8196714 -593.5674780 
16-H+ -555.9402491 -555.7178320 -554.6276035 -554.4051864 
17 -788.7246836 -788.5293730 -787.3925616 -787.1972510 
17-Me+ -828.4036671 -828.1639465 -826.965584 -826.7259070 
17-H+ -789.1050837 -788.8943370 -787.769372 -787.5586253 
18 -1036.067474 -1035.635678 -1033.657729 -1033.224549 
18-1-Me+ -1075.763966 -1075.286566 -1073.243065 -1072.765658 
18-2-Me+ -1075.762467 -1075.285896 -1073.232839 -1072.755469 
18-1-H+ -1036.470314 -1036.022111 -1034.05259 -1033.603882 
18-2-H+ -1036.466421 -1036.019537 -1034.041028 -1033.593499 
19 -345.1949681 -345.0035130 -344.3461625 -344.1547074 
19-Me+ -384.8798256 -384.6438240 -383.9217601 -383.6857585 
19-H+ -345.5814154 -345.3741460 -344.726064 -344.5187946 
20 -292.2934858 -292.0758704 -291.5262623 -291.3086717 
20-Me+ -331.9764071 -331.7138439 -331.1023150 -330.8397663 
20-H+ -292.6860655 -292.4528767 -291.912289 -291.6792654 
21 -382.0956934 -381.9237610 -381.1761503 -381.0042179 
21-Me+ -421.7865302 -421.5708770 -420.7514068 -420.5357536 
21-H+ -382.4871894 -382.3008200 -381.5579681 -381.3716077 
22 -1036.067788 -1035.635220 -1033.655591 -1033.222081 
22-1-Me+ -1075.762849 -1075.285972 -1073.242374 -1072.765521 
22-2-Me+ -1075.759675 -1075.284637 -1073.230128 -1072.753789 
22-1-H+ -1036.469727 -1036.021287 -1034.049578 -1033.601276 
22-2-H+ -1036.463726 -1036.018176 -1034.038380 -1033.591662 
23 -654.7532243 -654.418466 -653.1369481 -652.8021802 
23-1-Me+ -694.4415762 -694.061436 -692.7181950 -692.3380578 
23-2-Me+ -694.4388145 -694.058543 -692.7149422 -692.3345524 
23-1-H+ -655.1579200 -654.807365 -653.5349398 -653.1843848 
23-2-H+ -655.1572657 -654.806566 -653.5336947 -653.1829948 
24 -344.0216398 -343.856129 -343.0281551 -343.0281205 
24-Me+ -383.7165495 -383.507383 -382.7709504 -382.5618212 
24-H+ -344.4151170 -344.235536 -343.5772715 -343.3977086 
25 -609.4372775 -609.163890 -607.9908239 -607.7174364 
25-1-Me+ -649.1479473 -648.830334 -647.5795424 -647.2619291 
25-2-Me+ -649.1299472 -648.812498 -647.5712874 -647.2538382 
25-1-H+ -609.8510049 -609.562806 -608.3893029 -608.101104 
25-2-H+ -609.8406764 -609.552738 -608.3842239 -608.0962855 
26 -329.1799428 -328.976697 -328.3433046 -328.1400588 
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Table A7. Continued 
26-Me+ -368.8701586 -368.622359 -367.9259362 -367.6781366 
26-H+ -329.5722501 -329.353098 -328.7304067 -328.5112546 
27 -382.1009636 -381.928966 -381.179961 -381.0079634 
27-Me+ -421.8014546 -421.58545 -420.7622566 -420.546252 
27-H+ -382.503394 -382.316683 -381.5709543 -381.3842433 
28 -368.4785695 -368.245952 -367.5397612 -367.3071437 
28-Me+ -408.1695073 -407.8919619 -407.1232858 -406.8457582 
28-H+ -368.874974 -368.626692 -367.9301149 -367.6818329 
29 -459.4989989 -459.289442 -458.3839094 -458.1743525 
29-Me+ -499.2030482 -498.949398 -497.9696878 -497.7160376 
29-H+ -459.905327 -459.68109 -458.7787879 -458.5545509 
30 -742.1562367 -741.9858568 -740.8412091 -740.6708473 
30-Me+ -781.8594432 -781.6450973 -780.4285638 -780.2141553 
30-H+ -742.563026 -742.3781526 -741.2384344 -741.053508 
31 -517.6681344 -517.448974 -516.4978850 -516.278861 
31-Me+ -557.3745239 -557.1119377 -556.0866146 -555.824032 
31-H+ -518.0758504 -517.8440739 -516.8925636 -516.660784 
32 -536.9056041 -536.6584017 -535.6024802 -535.3552285 
32-Me+ -576.6143642 -576.3229749 -575.1929957 -574.9015947 
32-H+ -537.3171484 -537.0551323 -536.0022547 -535.7402266 
33 -514.8206196 -514.593191 -513.5930440 -513.3656154 
33-Me+ -554.5300414 -554.258542 -553.1835305 -552.9120311 
33-H+ -515.2323777 -514.99011 -513.9919080 -513.7496403 
34 -460.9963707 -460.875351 -460.1908641 -460.0698444 
34-Me+ -500.6907246 -500.527994 -499.7796327 -499.6169021 
34-H+ -461.3693484 -461.236986 -460.5620179 -460.4296555 
35 -652.6503727 -652.472848 -651.3935886 -651.2160639 
35-Me+ -692.3483077 -692.129002 -690.9840525 -690.7647468 
35-H+ -653.0292176 -652.840324 -651.7674173 -651.5785237 
36 -461.902429 -461.6446806 -460.7547154 -460.4970074 
36-Me+ -501.6127554 -501.3104093 -500.3484611 -500.0461154 
36-H+ -462.3236859 -462.0508904 -461.1653635 -460.8925754 
37 -383.3193429 -383.122174 -382.3792999 -382.1821883 
37-Me+ -423.0310319 -422.7893121 -421.9737231 -421.7319592 
37-H+ -383.7355338 -383.5234792 -382.7851391 -382.5730755 
38 -808.6312857 -808.35591 -806.9763546 -806.7009789 
38-Me+ -848.3339353 -848.016778 -846.5703723 -846.253215 
38-H+ -809.0171876 -808.730614 -807.3541824 -807.0676088 
39 -1035.959842 -1035.669198 -1033.807456 -1033.516812 
39-Me+ -1075.664295 -1075.331649 -1073.401913 -1073.069267 
39-H+ -1036.34727 -1036.045204 -1034.184602 -1033.882536 
40 -578.8822586 -578.670407 -577.7606731 -577.5489056 
40-Me+ -618.583634 -618.3298341 -617.3568199 -617.1029126 
40-H+ -579.2650593 -579.0417938 -578.1405306 -577.9171214 
41 -925.3080029 -924.965507 -923.3652768 -923.0227097 
41-Me+ -965.0151849 -964.6312421 -962.9640597 -962.5798677 
41-H+ -925.6982276 -925.3449745 -923.7476453 -923.3942718 
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Table A8. Total Energies and Enthalpies of Cinchona Alkaloids and Selected Tertiary 
Amines and Their Methyl Cation Adducts, Protonated Adducts, MOSC Adducts (in Hartree). 
 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
12_008 -921.5879846 -921.190399 -919.4118894 -919.014304 
12_005 -921.5887599 -921.191542 -919.4112625 -919.014045 
12_004 -921.5861511 -921.189323 -919.4098786 -919.013050 
12_010 -921.5850499 -921.188253 -919.4093451 -919.012548 
12_012 -921.5847805 -921.187330 -919.4075947 -919.010144 
12_011 -921.5853952 -921.188392 -919.4070268 -919.010024 
12_006 -921.5836642 -921.186572 -919.4071052 -919.010013 
12_003 -921.5814097 -921.184408 -919.4070086 -919.010007 
12_007 -921.5803058 -921.183339 -919.4062430 -919.009276 
12_001 -921.5844783 -921.187465 -919.4061593 -919.009146 
12_002 -921.5831212 -921.186301 -919.4053166 -919.008496 
12_009 -921.5788877 -921.181005 -919.4002252 -919.002343 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
12-CH3

+_001 -961.2750362 -960.833308 -958.9897808 -958.548053 
12-CH3

+_002 -961.2729819 -960.831512 -958.9864824 -958.545013 
12-CH3

+_003 -961.2667798 -960.824939 -958.9824507 -958.540610 
12-CH3

+_004 -961.2707320 -960.829516 -958.9876091 -958.546393 
12-CH3

+_005 -961.2791045 -960.837507 -958.9951260 -958.553528 
12-CH3

+_006 -961.2688374 -960.827676 -958.9854097 -958.544248 
12-CH3

+_007 -961.2695624 -960.828243 -958.9861051 -958.544786 
12-CH3

+_009 -961.2580714 -960.816486 -958.9713196 -958.529734 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

12-H+_001 -921.9812139 -921.568876 -919.795519 -919.3831811 
12-H +_002 -921.9807072 -921.568392 -919.7941734 -919.3818582 
12-H 

+_003 -921.9832872 -921.570825 -919.8001008 -919.3876387 
12-H +_004 -921.9845865 -921.572551 -919.8013306 -919.3892951 
12-H +_005 -921.9852028 -921.573164 -919.800081 -919.3880422 
12-H +_007 -921.9861841 -921.57385 -919.8026136 -919.3902795 
12-H +_009 -921.9763229 -921.563592 -919.7901916 -919.3774608 
12-H +_010 -921.9833979 -921.571368 -919.8010638 -919.3890339 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot H298 

12-MOSCre+_01 -1643.602930 -1643.032404 -1639.993862 -1639.423336 
12-MOSCre+_02 -1643.601236 -1643.030904 -1639.992030 -1639.421698 
12-MOSCre+_03 -1643.600849 -1643.030787 -1639.991977 -1639.421915 
12-MOSCre+_05 -1643.595435 -1643.025021 -1639.986320 -1639.415906 
12-MOSCre+_06 -1643.599146 -1643.029188 -1639.990915 -1639.420957 
12-MOSCre+_07 -1643.594642 -1643.024441 -1639.985503 -1639.415302 
12-MOSCre+_09 -1643.592851 -1643.022340 -1639.983368 -1639.412857 
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Table A8. Continued 
12-MOSCsi+_08 -1643.602689 -1643.031704 -1639.996189 -1639.425204 
12-MOSCsi+_01 -1643.605550 -1643.035196 -1639.993215 -1639.422862 
12-MOSCsi+_02 -1643.603083 -1643.032750 -1639.991598 -1639.421265 
12-MOSCsi+_04 -1643.601347 -1643.030613 -1639.991998 -1639.421264 
12-MOSCsi+_03 -1643.598675 -1643.028064 -1639.988820 -1639.418209 
12-MOSCsi+_09 -1643.595219 -1643.024596 -1639.988626 -1639.418002 
12-MOSCsi+_05 -1643.599268 -1643.028681 -1639.986674 -1639.416088 
12-MOSCsi+_07 -1643.591629 -1643.021710 -1639.982643 -1639.412724 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
13_001 -921.5866549 -921.189726 -919.4101728 -919.013244 
13_003 -921.5852231 -921.188083 -919.4070412 -919.009901 
13_004 -921.5889509 -921.191435 -919.4139549 -919.016439 
13_005 -921.5813729 -921.184376 -919.4085544 -919.011558 
13_009 -921.5860240 -921.189099 -919.4104425 -919.013518 
13_010 -921.5894842 -921.192199 -919.4118589 -919.014574 
13_014 -921.5877194 -921.190186 -919.4138594 -919.016326 
13_017 -921.5836673 -921.186535 -919.4074266 -919.0102943 
13_019 -921.5851201 -921.188262 -919.4083658 -919.0115076 
13_020 -921.5867529 -921.189183 -919.4119593 -919.0143894 
13_021 -921.5844605 -921.187680 -919.4086645 -919.011884 
13_024 -921.5870239 -921.189772 -919.4100112 -919.0127592 
13_027 -921.5862640 -921.189359 -919.4094697 -919.0125648 
13_028 -921.5851751 -921.188372 -919.4092765 -919.0124734 
13_032 -921.5842770 -921.187439 -919.4088214 -919.0119835 
13_035 -921.5881224 -921.190711 -919.4119798 -919.0145683 
13_036 -921.5889490 -921.191737 -919.4110959 -919.0138839 
13_037 -921.5845324 -921.187662 -919.4060303 -919.009160 
13_041 -921.5849067 -921.187900 -919.4085541 -919.0115474 
13_042 -921.5864488 -921.189296 -919.4093327 -919.0121799 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
13-CH3

+_001 -961.2701738 -960.82892 -958.9863796 -958.5451258 
13-CH3

+_003 -961.2761329 -960.83452 -958.9912918 -958.5496789 
13-CH3

+_005 -961.2708816 -960.829177 -958.9887915 -958.5470869 
13-CH3

+_009 -961.2698625 -960.828676 -958.9864472 -958.5452607 
13-CH3

+_010 -961.2801043 -960.838721 -958.9958574 -958.5544741 
13-CH3

+_017 -961.2695043 -960.828426 -958.9869748 -958.5458964 
13-CH3

+_019 -961.2688022 -960.827719 -958.9848667 -958.5437834 
13-CH3

+_020 -961.2683003 -960.826648 -958.9866331 -958.5449808 
13-CH3

+_021 -961.2685341 -960.827574 -958.9849461 -958.543986 
13-CH3

+_024 -961.2789835 -960.837451 -958.9947902 -958.5532577 
13-CH3

+_027 -961.2694122 -960.828039 -958.9851935 -958.5438204 
13-CH3

+_028 -961.269041 -960.82791 -958.9851956 -958.5440646 
13-CH3

+_032 -961.2676998 -960.826777 -958.9842658 -958.543343 
13-CH3

+_035 -961.2697891 -960.827968 -958.9863528 -958.5445318 
13-CH3

+_036 -961.279245 -960.837851 -958.994624 -958.55323 
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Table A8. Continued 
13-CH3

+_037 -961.2752159 -960.833642 -958.9897649 -958.548191 
13-CH3

+_041 -961.2680194 -960.826839 -958.984245 -958.5430645 
13-CH3

+_042 -961.2777295 -960.836122 -958.9935499 -958.5519424 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

13-H+_001 -921.9854970 -921.573439 -919.8021426 -919.3900846 
13-H+_003 -921.9820369 -921.569711 -919.7970468 -919.3847208 
13-H+_005 -921.9874302 -921.575058 -919.8049399 -919.3925677 
13-H+_009 -921.9846153 -921.572554 -919.8024302 -919.3903690 
13-H+_010 -921.9859751 -921.573740 -919.8009993 -919.3887642 
13-H+_014 -921.9867974 -921.574325 -919.8055074 -919.3930351 
13-H+_017 -921.9833559 -921.571260 -919.8004486 -919.3883527 
13-H+_019 -921.9844475 -921.572097 -919.8010013 -919.3886508 
13-H+_020 -921.9851451 -921.572429 -919.8027178 -919.3900017 
13-H+_021 -921.9834898 -921.571202 -919.8011979 -919.3889101 
13-H+_024 -921.9848182 -921.572276 -919.8000823 -919.3875402 
13-H+_027 -921.9847166 -921.572549 -919.8010722 -919.3889045 
13-H+_028 -921.9835273 -921.571602 -919.8009379 -919.3890126 
13-H+_032 -921.9826975 -921.570484 -919.8005513 -919.3883378 
13-H+_035 -921.9864892 -921.573954 -919.8027721 -919.3902370 
13-H+_036 -921.9852688 -921.573068 -919.7998936 -919.3876928 
13-H+_037 -921.9813243 -921.568993 -919.7955719 -919.3832406 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

13-MOSCre+_02 -1643.604216 -1643.033721 -1639.997386 -1639.426891 
13-MOSCre+_01 -1643.604003 -1643.033450 -1639.991993 -1639.421440 
13-MOSCre+_04 -1643.603302 -1643.032845 -1639.991861 -1639.421403 
13-MOSCre+_07 -1643.596255 -1643.026383 -1639.989422 -1639.419550 
13-MOSCre+_03 -1643.598123 -1643.027715 -1639.988594 -1639.418186 
13-MOSCre+_05 -1643.597636 -1643.027356 -1639.985511 -1639.415231 
13-MOSCsi+_01 -1643.604578 -1643.033928 -1639.994649 -1639.423999 
13-MOSCsi+_02 -1643.601806 -1643.031755 -1639.992958 -1639.422907 
13-MOSCsi+_03 -1643.598395 -1643.028319 -1639.991055 -1639.420979 
13-MOSCsi+_07 -1643.593332 -1643.023306 -1639.984099 -1639.414073 
13-MOSCsi+_08 -1643.597859 -1643.027121 -1639.990434 -1639.419696 
13-MOSCsi+_09 -1643.592418 -1643.022222 -1639.985238 -1639.415042 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
42_011 -921.5937026 -921.196290 -919.415943 -919.0185304 
42_008 -921.5931012 -921.195636 -919.416186 -919.0187208 
42_004 -921.5905881 -921.193172 -919.412842 -919.0154259 
42_001 -921.5859910 -921.189057 -919.409452 -919.0125180 
42_003 -921.5843123 -921.186952 -919.4099995 -919.0126392 
42_002 -921.5841879 -921.187245 -919.407321 -919.0103781 
42_005 -921.5831981 -921.186264 -919.407092 -919.0101579 
42_007 -921.583059 -921.185963 -919.4068056 -919.0097096 
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Table A8. Continued 
42_010 -921.5816597 -921.184822 -919.4022503 -919.0054126 
42_009 -921.5813917 -921.184215 -919.4077828 -919.0106061 
42_006 -921.5813376 -921.183983 -919.4060963 -919.0087416 
42_012 -921.5782126 -921.181049 -919.4035414 -919.0063778 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
42-CH3

+_005 -961.275600 -960.834365 -958.9908784 -958.5496434 
42-CH3

+_001 -961.275128 -960.833347 -958.9911647 -958.5493837 
42-CH3

+_002 -961.274996 -960.833715 -958.9912316 -958.5499506 
42-CH3

+_004 -961.274761 -960.833666 -958.9907128 -958.5496178 
42-CH3

+_007 -961.2706736 -960.829269 -958.9849794 -958.5435748 
42-CH3

+_010 -961.267876 -960.826077 -958.9812340 -958.5394350 
42-CH3

+_003 -961.266441 -960.824839 -958.9837564 -958.5421544 
42-CH3

+_006 -961.265867 -960.824347 -958.9820648 -958.5405448 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

42-H+_001 -921.9897650 -921.577438 -919.8057554 -919.3934284 
42-H+_002 -921.9908158 -921.578439 -919.8058960 -919.3935192 
42-H+_003 -921.9787661 -921.566525 -919.7984950 -919.3862539 
42-H+_005 -921.9904078 -921.578058 -919.8053782 -919.3930285 
42-H+_007 -921.9865441 -921.574114 -919.8033243 -919.3908942 
42-H+_010 -921.9765757 -921.564280 -919.7897948 -919.3774991 
42-H+_012 -921.9754354 -921.563082 -919.7936851 -919.3813317 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
42-MOSCre+_01 -1643.599907 -1643.029913 -1639.990878 -1639.420884 
42-MOSCre+_08 -1643.595862 -1643.025974 -1639.986129 -1639.416241 
42-MOSCre+_04 -1643.595263 -1643.024818 -1639.985763 -1639.415318 
42-MOSCre+_02 -1643.590038 -1643.019695 -1639.978220 -1639.407877 
42-MOSCre+_06 -1643.585004 -1643.015109 -1639.973756 -1639.403861 
42-MOSCsi+_07 -1643.598134 -1643.028139 -1639.987531 -1639.417536 
42-MOSCsi+_03 -1643.592530 -1643.022426 -1639.984422 -1639.414318 
42-MOSCsi+_06 -1643.595868 -1643.025713 -1639.984386 -1639.414231 
42-MOSCsi+_08 -1643.589326 -1643.019343 -1639.980353 -1639.410370 
42-MOSCsi+_01 -1643.587537 -1643.017702 -1639.976301 -1639.406466 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
43_001 -921.586855 -921.189962 -919.4101597 -919.0132666 
43_002 -921.5851539 -921.187849 -919.4118147 -919.0145098 
43_003 -921.5843472 -921.187457 -919.4078311 -919.0109410 
43_004 -921.5909415 -921.193734 -919.4132823 -919.0160748 
43_005 -921.5792106 -921.182199 -919.4062212 -919.0092096 
43_006 -921.5837651 -921.187079 -919.4083575 -919.0116714 
43_008 -921.5822106 -921.185048 -919.4084876 -919.0113250 
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Table A8. Continued 
43_009 -921.5858902 -921.188566 -919.4066186 -919.0092944 
43_010 -921.5823639 -921.185137 -919.4097914 -919.0125644 
43_011 -921.5934826 -921.196198 -919.4169003 -919.0196157 
43_012 -921.5939487 -921.196641 -919.4160391 -919.0187313 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
43-CH3

+_001 -961.2761820 -960.834570 -958.9915791 -958.5499671 
43-CH3

+_002 -961.2675148 -960.826028 -958.9856333 -958.5441465 
43-CH3

+_003 -961.2760041 -960.834664 -958.9920441 -958.5507040 
43-CH3

+_005 -961.2670684 -960.825412 -958.9846029 -958.5429465 
43-CH3

+_006 -961.2758561 -960.834986 -958.9924532 -958.5515831 
43-CH3

+_007 -961.2714869 -960.829997 -958.9857173 -958.5442274 
43-CH3

+_009 -961.2689803 -960.827495 -958.9820880 -958.5406027 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

43-H+_001 -921.9907576 -921.578573 -919.8067045 -919.394520 
43-H+_002 -921.9801851 -921.567909 -919.8004411 -919.388165 
43-H+_003 -921.9912899 -921.579292 -919.8065833 -919.3945854 
43-H+_005 -921.9771038 -921.564715 -919.7965835 -919.3841947 
43-H+_006 -921.9909514 -921.578831 -919.8064695 -919.394349 
43-H+_007 -921.9878322 -921.575494 -919.8049421 -919.3926039 
43-H+_009 -921.9812792 -921.569042 -919.7959612 -919.383724 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
43-MOSCre+_01 -1643.591739 -1643.022052 -1639.979353 -1639.409666 
43-MOSCre+_02 -1643.594035 -1643.023841 -1639.986786 -1639.416591 
43-MOSCre+_02f -1643.594301 -1643.024413 -1639.985853 -1639.415965 
43-MOSCre+_03 -1643.588318 -1643.018546 -1639.975928 -1639.406156 
43-MOSCre+_05 -1643.590052 -1643.020011 -1639.976994 -1639.406953 
43-MOSCre+_07 -1643.591980 -1643.021690 -1639.984500 -1639.414211 
43-MOSCre+-2 -1643.592183 -1643.021895 -1639.980660 -1639.410372 
43-MOSCsi+_01 -1643.591871 -1643.022034 -1639.980474 -1639.410638 
43-MOSCsi+_02 -1643.593294 -1643.023359 -1639.985145 -1639.415210 
43-MOSCsi+_02f -1643.593394 -1643.023408 -1639.984166 -1639.414180 
43-MOSCsi+_03 -1643.592200 -1643.022403 -1639.981519 -1639.411722 
43-MOSCsi+_05 -1643.588134 -1643.017814 -1639.975150 -1639.404830 
43-MOSCsi+_07 -1643.583921 -1643.014272 -1639.976940 -1639.407291 
43-MOSCsi+_09 -1643.588586 -1643.018810 -1639.979200 -1639.409425 
43-MOSCsi+-2 -1643.593438 -1643.023461 -1639.983880 -1639.413903 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
22_001 -1036.064045 -1035.63162 -1033.649626 -1033.217202 
22_002 -1036.063271 -1035.63078 -1033.648677 -1033.216186 
22_003 -1036.060307 -1035.628085 -1033.65003 -1033.217808 
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Table A8. Continued 
22_004 -1036.065746 -1035.633292 -1033.653124 -1033.22067 
22_005 -1036.068588 -1035.635811 -1033.654762 -1033.221985 
22_006 -1036.063743 -1035.631425 -1033.650633 -1033.218315 
22_007 -1036.060095 -1035.627863 -1033.64983 -1033.217598 
22_008 -1036.067788 -1035.634853 -1033.655591 -1033.222656 
22_009 -1036.058178 -1035.624878 -1033.643194 -1033.209894 
22_010 -1036.064900 -1035.632649 -1033.653097 -1033.220846 
22_011 -1036.065123 -1035.632846 -1033.65054 -1033.218263 
22_012 -1036.064006 -1035.631081 -1033.651085 -1033.21816 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
22-CH3

+_001 -1075.758261 -1075.281138 -1073.236200 -1072.759077 
22-CH3

+_002 -1075.756332 -1075.279571 -1073.233120 -1072.756359 
22-CH3

+_003 -1075.750382 -1075.273443 -1073.229677 -1072.752738 
22-CH3

+_004 -1075.754008 -1075.277398 -1073.234446 -1072.757836 
22-CH3

+_005 -1075.762849 -1075.286009 -1073.242374 -1072.765534 
22-CH3

+_006 -1075.753359 -1075.277042 -1073.233924 -1072.757607 
22-CH3

+_007 -1075.752695 -1075.275749 -1073.232492 -1072.755546 
22-CH3

+_008 -1075.752904 -1075.276163 -1073.233009 -1072.756268 
22-CH3

+_009 -1075.741733 -1075.264618 -1073.218161 -1072.741045 
22-CH3

+_010 -1075.752606 -1075.276149 -1073.232304 -1072.755847 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

22-H+_001 -1036.464439 -1036.016537 -1034.042318 -1033.594416 
22-H+_002 -1036.464216 -1036.016273 -1034.040968 -1033.593025 
22-H+_003 -1036.467315 -1036.019342 -1034.047485 -1033.599513 
22-H+_004 -1036.467954 -1036.020606 -1034.048352 -1033.601004 
22-H+_005 -1036.469061 -1036.021498 -1034.047347 -1033.599784 
22-H+_006 -1036.467674 -1036.020218 -1034.049005 -1033.601549 
22-H+_008 -1036.469727 -1036.021733 -1034.049578 -1033.601584 
22-H+_009 -1036.460096 -1036.011861 -1034.037043 -1033.588808 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
22-MOSCre+_01 -1758.087101 -1757.481402 -1754.241803 -1753.636104 
22-MOSCre+_02 -1758.085724 -1757.479891 -1754.240389 -1753.634556 
22-MOSCre+_06 -1758.083252 -1757.478000 -1754.238964 -1753.633711 
22-MOSCre+_03 -1758.083808 -1757.478011 -1754.238272 -1753.632475 
22-MOSCre+_05 -1758.079826 -1757.474023 -1754.234721 -1753.628918 
22-MOSCre+_07 -1758.078561 -1757.472803 -1754.233430 -1753.627672 
22-MOSCre+_09 -1758.075877 -1757.470431 -1754.229819 -1753.624372 
22-MOSCsi+_01 -1758.086887 -1757.480574 -1754.241563 -1753.635250 
22-MOSCsi+_02 -1758.088386 -1757.482683 -1754.239736 -1753.634033 
22-MOSCsi+_03 -1758.085827 -1757.479999 -1754.238113 -1753.632285 
22-MOSCsi+_04 -1758.081582 -1757.475894 -1754.235634 -1753.629947 
22-MOSCsi+_05 -1758.079735 -1757.473733 -1754.234196 -1753.628194 
22-MOSCsi+_06 -1758.082237 -1757.476455 -1754.233498 -1753.627717 
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Table A8. Continued 
22-MOSCsi+_07 -1758.074409 -1757.469048 -1754.230301 -1753.624940 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
18_001 -1036.066186 -1035.634125 -1033.653432 -1033.221371 
18_002 -1036.061212 -1035.629042 -1033.651730 -1033.219561 
18_003 -1036.064705 -1035.632445 -1033.650406 -1033.218146 
18_004 -1036.061250 -1035.628863 -1033.652231 -1033.219843 
18_006 -1036.069264 -1035.636554 -1033.655331 -1033.222621 
18_007 -1036.065653 -1035.633417 -1033.654082 -1033.221846 
18_010 -1036.067474 -1035.634889 -1033.657729 -1033.225144 
18_011 -1036.064603 -1035.632424 -1033.651622 -1033.219442 
18_014 -1036.066460 -1035.633434 -1033.655512 -1033.222486 
18_015 -1036.064188 -1035.631910 -1033.652476 -1033.220198 
18_017 -1036.066821 -1035.634217 -1033.653496 -1033.220892 
18_019 -1036.065566 -1035.632922 -1033.651049 -1033.218404 
18_020 -1036.063982 -1035.631807 -1033.652401 -1033.220226 
18_022 -1036.059757 -1035.627553 -1033.651898 -1033.219694 
18_024 -1036.059489 -1035.627123 -1033.650057 -1033.217691 
18_027 -1036.066226 -1035.633741 -1033.652803 -1033.220317 
18_028 -1036.064312 -1035.632147 -1033.651568 -1033.219403 
18_029 -1036.059138 -1035.626945 -1033.65042 -1033.218227 
18_030 -1036.062031 -1035.629745 -1033.648411 -1033.216124 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
18-CH3

+_001 -1075.753524 -1075.276884 -1073.233256 -1072.756616 
18-CH3

+_003 -1075.759363 -1075.282498 -1073.238107 -1072.761242 
18-CH3

+_004 -1075.754225 -1075.277182 -1073.235703 -1072.758660 
18-CH3

+_006 -1075.763966 -1075.286973 -1073.243065 -1072.766072 
18-CH3

+_007 -1075.753568 -1075.277100 -1073.233414 -1072.756946 
18-CH3

+_010 -1075.753090 -1075.276204 -1073.236009 -1072.759123 
18-CH3

+_011 -1075.752147 -1075.275488 -1073.231864 -1072.755205 
18-CH3

+_015 -1075.752244 -1075.275869 -1073.232142 -1072.755767 
18-CH3

+_017 -1075.762838 -1075.285569 -1073.242047 -1072.764778 
18-CH3

+_019 -1075.755076 -1075.278025 -1073.233332 -1072.756281 
18-CH3

+_020 -1075.751413 -1075.275020 -1073.231334 -1072.754941 
18-CH3

+_024 -1075.749003 -1075.272002 -1073.229421 -1072.752420 
18-CH3

+_027 -1075.761463 -1075.284388 -1073.240701 -1072.763627 
18-CH3

+_028 -1075.751363 -1075.274728 -1073.231127 -1072.754492 
18-CH3

+_029 -1075.751456 -1075.274779 -1073.233447 -1072.756770 
18-CH3

+_030 -1075.756970 -1075.279975 -1073.235998 -1072.759002 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

18-H+_001 -1036.468900 -1036.021425 -1034.049063 -1033.601588 
18-H+_003 -1036.465251 -1036.017590 -1034.043965 -1033.596304 
18-H+_004 -1036.471033 -1036.023001 -1034.051905 -1033.603873 
18-H+_006 -1036.469922 -1036.022067 -1034.048284 -1033.600429 
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Table A8. Continued 
18-H+_007 -1036.468966 -1036.021373 -1034.050215 -1033.602623 
18-H+_010 -1036.470314 -1036.022375 -1034.052590 -1033.604651 
18-H+_011 -1036.467820 -1036.020295 -1034.047881 -1033.600357 
18-H+_014 -1036.468427 -1036.020786 -1034.049680 -1033.602039 
18-H+_015 -1036.467903 -1036.020274 -1034.049280 -1033.601651 
18-H+_017 -1036.468656 -1036.020765 -1034.047237 -1033.599346 
18-H+_019 -1036.461187 -1036.013311 -1034.038792 -1033.590916 
18-H+_020 -1036.466996 -1036.019450 -1034.048423 -1033.600878 
18-H+_024 -1036.466047 -1036.018239 -1034.048998 -1033.601190 
18-H+_027 -1036.467320 -1036.019542 -1034.045863 -1033.598085 
18-H+_029 -1036.468475 -1036.020693 -1034.049488 -1033.601706 
18-H+_030 -1036.462827 -1036.015211 -1034.041877 -1033.594261 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
18-MOSCre+_01 -1758.089079 -1757.482983 -1754.245720  -1753.639625 
18-MOSCre+_02 -1758.086967 -1757.481117 -1754.238695 -1753.632844 
18-MOSCre+_03 -1758.081215 -1757.475679 -1754.235692 -1753.630157 
18-MOSCre+_06 -1758.086117 -1757.480192 -1754.238379 -1753.632454 
18-MOSCre+_07 -1758.080637 -1757.474930 -1754.232354 -1753.626647 
18-MOSCre+_09 -1758.073677 -1757.468394 -1754.229712 -1753.624429 
18-MOSCsi+_01 -1758.088831 -1757.482880 -1754.242752 -1753.636801 
18-MOSCsi+_02 -1758.080947 -1757.475539 -1754.238234 -1753.632826 
18-MOSCsi+_03 -1758.085017 -1757.479075 -1754.239741 -1753.633799 
18-MOSCsi+_06 -1758.080731 -1757.474890 -1754.238224 -1753.632382 
18-MOSCsi+_07 -1758.075108 -1757.469477 -1754.232627 -1753.626996 
18-MOSCsi+_09 -1758.076332 -1757.471045 -1754.230981 -1753.625694 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
44_001 -1036.069980 -1035.637348 -1033.655999 -1033.223368 
44_002 -1036.060772 -1035.628432 -1033.651101 -1033.218761 
44_003 -1036.061379 -1035.629225 -1033.645507 -1033.213353 
44_004 -1036.073096 -1035.640465 -1033.659264 -1033.226632 
44_005 -1036.072849 -1035.640180 -1033.659619 -1033.226950 
44_006 -1036.057383 -1035.625117 -1033.646699 -1033.214433 
44_007 -1036.065999 -1035.633384 -1033.653150 -1033.220535 
44_008 -1036.063713 -1035.631218 -1033.653399 -1033.220904 
44_009 -1036.062208 -1035.629989 -1033.650035 -1033.217815 
44_010 -1036.064545 -1035.632063 -1033.648819 -1033.216336 
44_011 -1036.063588 -1035.631520 -1033.654862 -1033.222794 
44_012 -1036.063071 -1035.630915 -1033.650758 -1033.218603 
44_013 -1036.060730 -1035.628410 -1033.649180 -1033.216859 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
44-CH3

+_001 -1075.758208 -1075.281675 -1073.237548 -1072.761015 
44-CH3

+_002 -1075.750370 -1075.273370 -1073.231407 -1072.754406 
44-CH3

+_003 -1075.758599 -1075.281679 -1073.236661 -1072.759740 
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Table A8. Continued 
44-CH3

+_004 -1075.751593 -1075.274793 -1073.228145 -1072.751344 
44-CH3

+_005 -1075.758893 -1075.282147 -1073.238368 -1072.761622 
44-CH3

+_006 -1075.754349 -1075.277519 -1073.232202 -1072.755373 
44-CH3

+_007 -1075.748924 -1075.272049 -1073.228549 -1072.751675 
44-CH3

+_008 -1075.758310 -1075.281794 -1073.238198 -1072.761683 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

44-H+_001 -1036.47379 -1036.026008 -1034.052194 -1033.604412 
44-H+_002 -1036.463488 -1036.015641 -1034.046685 -1033.598839 
44-H+_004 -1036.464182 -1036.016571 -1034.042085 -1033.594474 
44-H+_005 -1036.47352 -1036.025752 -1034.053123 -1033.605355 
44-H+_006 -1036.471088 -1036.023347 -1034.051572 -1033.603831 
44-H+_007 -1036.458393 -1036.010889 -1034.038478 -1033.590974 
44-H+_008 -1036.474456 -1036.026842 -1034.052981 -1033.605367 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
44-MOSCre+_01 -1758.082768 -1757.477270 -1754.237604 -1753.632106 
44-MOSCre+_02 -1758.078549 -1757.473387 -1754.232529 -1753.627367 
44-MOSCre+_03 -1758.072636 -1757.467147 -1754.224494 -1753.619006 
44-MOSCre+_04 -1758.077853 -1757.472186 -1754.232257 -1753.626591 
44-MOSCre+_08 -1758.067127 -1757.462117 -1754.219701 -1753.614691 
44-MOSCsi+_07 -1758.080712 -1757.475250 -1754.233964 -1753.628502 
44-MOSCsi+_01 -1758.074077 -1757.46862 -1754.226609 -1753.621152 
44-MOSCsi+_02 -1758.075044 -1757.469844 -1754.229000  -1753.623800 
44-MOSCsi+_06 -1758.068479 -1757.462669 -1754.221523 -1753.615712 
44-MOSCsi+_09 -1758.078083 -1757.472529 -1754.23062 -1753.625065 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
45_001 -1036.066757 -1035.634453 -1033.653665 -1033.221362 
45_002 -1036.064613 -1035.632176 -1033.655313 -1033.222875 
45_003 -1036.063787 -1035.631846 -1033.651134 -1033.219193 
45_004 -1036.073255 -1035.640778 -1033.66053 -1033.228052 
45_006 -1036.058509 -1035.626247 -1033.649403 -1033.217141 
45_007 -1036.063209 -1035.630900 -1033.650992 -1033.218684 
45_008 -1036.061724 -1035.629189 -1033.651763 -1033.219228 
45_009 -1036.073426 -1035.640779 -1033.659562 -1033.226915 
45_010 -1036.061778 -1035.629425 -1033.653193 -1033.22084 
45_011 -1036.060798 -1035.628276 -1033.651248 -1033.218726 
45_013 -1036.06548 -1035.632868 -1033.649409 -1033.216797 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
45-CH3

+_001 -1075.759890 -1075.282709 -1073.238806 -1072.761625 
45-CH3

+_002 -1075.751348 -1075.274404 -1073.233069 -1072.756125 
45-CH3

+_003 -1075.759227 -1075.282477 -1073.238871 -1072.762121 
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Table A8. Continued 
45-CH3

+_004 -1075.759484 -1075.282844 -1073.239723 -1072.763083 
45-CH3

+_006 -1075.750040 -1075.273217 -1073.231028 -1072.754205 
45-CH3

+_007 -1075.754991 -1075.278206 -1073.232573 -1072.755788 
45-CH3

+_013 -1075.752728 -1075.275879 -1073.229197 -1072.752348 
 B98/6-31G(d) MP2/6-31+G(2d,p)// 

B98/6-31G(d) 
 Etot H298 Etot “H298” 

45-H+_001 -1036.474576 -1036.026716 -1034.053847 -1033.605988 
45-H+_002 -1036.464880 -1036.017131 -1034.048621 -1033.600872 
45-H+_003 -1036.474995 -1036.027336 -1034.053486 -1033.605827 
45-H+_004 -1036.474442 -1036.027046 -1034.053450 -1033.606054 
45-H+_006 -1036.460176 -1036.012420 -1034.043405 -1033.595649 
45-H+_007 -1036.472390 -1036.024645 -1034.052974 -1033.605228 
45-H+_013 -1036.465316 -1036.017551 -1034.043134 -1033.595369 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
45-MOSCre+_01 -1758.071703 -1757.466694 -1754.225036 -1753.620027 
45-MOSCre+_02 -1758.071484 -1757.466074 -1754.222728 -1753.617318 
45-MOSCre+_03 -1758.077001 -1757.471537 -1754.233897 -1753.628433 
45-MOSCre+_04 -1758.074804 -1757.469711 -1754.226469 -1753.621376 
45-MOSCre+_05 -1758.072838 -1757.467284 -1754.223426 -1753.617872 
45-MOSCre+_09 -1758.074977 -1757.468885 -1754.231469 -1753.625377 
45-MOSCre+-2 -1758.074917 -1757.469920 -1754.227396 -1753.622399 
45-MOSCsi+_01 -1758.074895 -1757.469573 -1754.227608 -1753.622286 
45-MOSCsi+_02 -1758.076414 -1757.471179 -1754.232221 -1753.626986 
45-MOSCsi+_03 -1758.075342 -1757.470189 -1754.228495 -1753.623341 
45-MOSCsi+_05 -1758.071021 -1757.465588 -1754.222066 -1753.616632 
45-MOSCsi+_09 -1758.071545 -1757.466157 -1754.226083 -1753.620695 
45-MOSCsi+-2 -1758.076534 -1757.470870 -1754.231179 -1753.625515 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 
23_1 -654.7492304 -654.414312 -653.1329555 -652.7980371 
23_2 -654.7479671 -654.413103 -653.1320615 -652.7971974 
23_3 -654.7532243 -654.418531 -653.1369481 -652.8022548 
23_4 -654.7443606 -654.409563 -653.1299122 -652.7951146 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

23-CH3
+_1 -694.4348506 -694.054790 -692.7107562 -692.3306956 

23-CH3
+_2 -694.4415762 -694.061442 -692.718195 -692.3380608 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

23-H+_1 -655.141367 -654.790594 -653.5186232 -653.1678502 
23-H+_2 -655.1441714 -654.793312 -653.5217463 -653.1708869 
23-H+_3 -655.1440534 -654.793600 -653.5206657 -653.1702123 
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Table A8. Continued 
23-H+_4 -655.15792 -654.807365 -653.5349398 -653.1843848 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

23-MOSCre+_1 -1376.775325 -1376.266609 -1373.723672 -1373.214955 
23-MOSCre+_2 -1376.773697 -1376.264624 -1373.720932 -1373.211859 
23-MOSCre+_3 -1376.769370 -1376.260250 -1373.715651 -1373.206531 
23-MOSCsi+_3 -1376.775878 -1376.267013 -1373.721319 -1373.212454 
23-MOSCsi+_2 -1376.772857 -1376.264142 -1373.720307 -1373.211592 
23-MOSCsi+_1 -1376.772932 -1376.264167 -1373.719996 -1373.211230 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

46_1 -654.7492304 -654.414312 -653.1329555 -652.7980371 
46_2 -654.7479671 -654.413103 -653.1320615 -652.7971974 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

46-CH3
+_1 -736.1670902 -735.706313 -734.3148393 -733.8540621 

46-CH3
+_2 -736.1682069 -735.707928 -734.3129545 -733.8526756 

46-CH3
+_3 -736.1674464 -735.706487 -734.3148327 -733.8538733 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

46-H+_1 -696.8893978 -696.458337 -695.1368098 -694.705749 
46-H+_2 -696.9042990 -696.473310 -695.1519640 -694.720975 

 B98/6-31G(d) MP2/6-31+G(2d,p)// 
B98/6-31G(d) 

 Etot H298 Etot “H298” 

46-MOSCre+_1 -1418.478383 -1417.888939 -1415.302406 -1414.712962 
46-MOSCre+_2 -1418.474201 -1417.884423 -1415.293339 -1414.703561 
46-MOSCre+_3 -1418.467735 -1417.878659 -1415.289952 -1414.700877 
46-MOSCsi+_1 -1418.479207 -1417.889898 -1415.301225 -1414.711916 
46-MOSCsi+_2 -1418.469595 -1417.880386 -1415.290017 -1414.700808 
46-MOSCsi+_3 -1418.478015 -1417.888451 -1415.301781 -1414.712216 
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Table A9. Total Energies and Enthalpies of NMe3 (9), PMe3 (34), MVK (47) and Their 
Adducts and Complexes (in Hartree). 
 

 HF/6-31G(d) HF/6-31+G(d) HF/6-31+G(2d) 
 Etot H298 Etot H298 Etot H298 

47 -229.806306 -229.703424 -229.813430 -229.710750 -229.820729 -229.719123 
9 -173.269299 -173.133640 -173.272906 -173.137545 -173.274999 -173.141287 

48 -403.032495 -402.789337 -403.045799 -402.802829 -403.052234 -402.812029 
34 -459.567374 -459.439280 -459.569796 -459.441993 -459.572141 -459.446060 
49 -689.337018 -689.103886 -689.352294 -689.119548 -689.363825 -689.134090 
50 -689.353963 -689.119521 -689.363054 -689.129147 -689.375077 -689.144041 

9*47 -403.079773 -402.838987 -403.089161 -402.848994 -403.097733 -402.860494 
34*47 -689.377139 -689.144064 -689.385966 -689.153411 -689.394906 -689.165357 

 HF/6-31+G(2d,p) HF/6-311+G(2d,p)  
 Etot H298 Etot H298   

47 -229.834145 -229.732131 -229.877813 -229.776010   
9 -173.292332 -173.158308 -173.322146 -173.188433   

48 -403.083306 -402.842431 -403.156696 -402.916290   
34 -459.591526 -459.465063 -459.630786 -459.504652   
49 -689.396869 -689.166399 -689.480871 -689.250790   
50 -689.407422 -689.175630 -689.490944 -689.259589   

9*47 -403.128477 -402.890520 -403.201918 -402.964479   
34*47 -689.427696 -689.197356 -689.510696 -689.280892   

 B3LYP/6-31G(d) B3LYP /6-31+G(d) B3LYP /6-31+G(2d) 
 Etot H298 Etot H298 Etot H298 

47 -231.235183 -231.138593 -231.247553 -231.151066 -231.252087 -231.156248 
9 -174.474415 -174.346923 -174.481766 -174.354635 -174.480914 -174.354713 

48 - - - - - - 
34 -461.098422 -460.977318 -461.104538 -460.983820 -461.103674 -460.983983 
49 -692.310644 -692.091071 -692.332828 -692.113626 -692.338648 -692.121211 
50 -692.330843 -692.110022 -692.347273 -692.127052 -692.353641 -692.135061 

9*47 -405.715763 -405.489282 -405.732249 -405.506553 -405.735581 -405.511487 
34*47 -692.338286 -692.118449 -692.354674 -692.135510 -692.358059 -692.140630 

 B3LYP /6-31+G(2d,p) B3LYP /6-311+G(2d,p) B3LYP /6-31G(2df,p) 
 Etot H298 Etot H298 Etot H298 

47 -231.262648 -231.166627 -231.313286 -231.217422 -231.253479 -231.157475 
9 -174.494600 -174.368354 -174.531297 -174.405237 -174.489614 -174.363241 

48 - - - - - - 
34 -461.119470 -460.999663 -461.170061 -461.050350 -461.117011 -460.997056 
49 -692.365560 -692.147842 -692.466791 -692.249276 -692.350853 -692.13329 
50 -692.380092 -692.161242 -692.481381 -692.262765 -692.372412 -692.153466 

9*47 -405.759874 -405.535558 -405.846988 -405.623009 -405.749746 -405.524939 
34*47 -692.384445 -692.166694 -692.485402 -692.267930 -692.375277 -692.157210 

 B3LYP /cc-pVTZ+d     
 Etot H298     

47 -231.326094 -231.230100     
9 -174.542137 -174.416062     

48 - -     
34 -461.186237 -461.066489     
49 -692.496069 -692.278608     
50 -692.514248 -692.295442     

9*47 -405.872195 -405.648005     
34*47 -692.515298 -692.297652     
 mPW1K /6-31G(d) mPW1K /6-31+G(d) mPW1K /6-31+G(2d) 

 Etot H298 Etot H298 Etot H298 
47 -231.1595826 -231.060288 -231.1677200 -231.068480 -231.174176 -231.075795 
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Table A9. Continued 

9 -174.4287667 -174.297700 -174.4333788 -174.302578 -174.434669 -174.305052 
48 -405.5713636 -405.336825 -405.5858077 -405.351422 -405.591021 -405.358617 
34 -461.0730236 -460.948758 -461.0763315 -460.952349 -461.078027 -460.955317 
49 -692.2231393 -691.997633 -692.2384318 -692.013290 -692.248911 -692.026004 
50 -692.2463790 -692.020840 -692.2579971 -692.031679 -692.269076 -692.044845 

9*47 -405.5942742 -405.361583 -405.6047015 -405.372614 -405.611750 -405.381738 
34*47 -692.2371435 -692.011491 -692.2471850 -692.022047 -692.254815 -692.031873 

 mPW1K /6-31+G(2d,p) mPW1K /6-311+G(2d,p) mPW1K/G3large// 
mPW1K/6-31+G(d) 

 Etot H298 Etot H298 Etot “H298” 
47 -231.1848716 -231.086265 -231.2301345 -231.131754 -231.239052 -231.139812 
9 -174.4482869 -174.318588 -174.4801497 -174.350777 -174.487966 -174.357166 

48 -405.6158462 -405.383175 -405.6929462 -405.460814 -405.709615 -405.475230 
34 -461.0938734 -460.971003 -461.1366978 -461.014151 -461.147186 -461.023204 
49 -692.2760684 -692.052815 -692.3650754 -692.142276 -692.386651 -692.161509 
50 -692.2955251 -692.070928 -692.3844590 -692.160335 -692.408192 -692.181874 

9*47 -405.6362065 -405.405876 -405.7133765 -405.483570 -405.729921 -405.497834 
34*47 -692.2814541 -692.058105 -692.3696406 -692.146817 -692.389027 -692.163889 

 mPW1K/6-311+G(3df,2pd)// 
mPW1K/6-31+G(d) 

    

 Etot “H298”     
47 -231.2392279 -231.139988     
9 -174.4881315 -174.357331     

48 -405.7101920 -405.475806     
34 -461.1454675 -461.021485     
49 -692.3847810 -692.159640     
50 -692.4061228 -692.179805     

9*47 -405.7301285 -405.498041     
34*47 -692.3873394 -692.162201     

 MP2(FC) /6-31G(d) MP2(FULL) /6-31G(d) MP2(FC) /6-31+G(d) 
 Etot H298 Etot H298 Etot H298 

47 -230.4866670 -230.388763 -230.5085951 -230.410599 -230.502459 -230.404967 
9 -173.8285982 -173.698370 -173.8464634 -173.716146 -173.839519 -173.709890 

48 - - - - -404.333065 -404.101733 
34 -460.0686967 -459.944835 -460.0948309 -459.970921 -460.076783 -459.953758 
49 - - - - -690.575811 -690.352789 
50 -690.5683612 -690.343253 -690.6184788 -690.393254 -690.595241 -690.371618 

9*47 -404.3246498 -404.094162 -404.3646623 -404.133972 -404.349792 -404.120835 
34*47 -690.5627738 -690.338843 -690.6112444 -690.387151 -690.586676 -690.364153 

 MP2(FULL) /6-31+G(d) MP2(FC) /6-31+G(2d) MP2(FC) /6-31+G(2d,p) 
 Etot H298 Etot H298 Etot H298 

47 -230.5249747 -230.427390 -230.5618313 -230.465568 -230.607307 -230.509992 
9 -173.8577726 -173.728070 -173.8794972 -173.752097 -173.949129 -173.820021 

48 -404.3749606 -404.143447 -404.4327570 -404.205102 -404.547671 -404.317322 
34 -460.1036288 -459.980571 -460.1194620 -459.998871 -460.191422 -460.068947 
49 -690.6269323 -690.403816 -690.6809060 -690.462156 -690.797920 -690.576195 
50 -690.6468862 -690.423171 -690.7019660 -690.482374 -690.819853 -690.597224 

9*47 -404.3910523 -404.161899 -404.4488044 -404.223213 -404.563500 -404.335199 
34*47 -690.6367417 -690.414081 -690.6879778 -690.469212 -690.805122 -690.583445 

 MP2(FC) /6-311+G(2d,p) MP2(FC)/G3MP2large// 
mPW1K/6-31+G(d) 

MP2(Full)/G3large// 
mPW1K/6-31+G(d) 

 Etot H298 Etot “H298” Etot “H298” 
47 -230.6775889 -230.581079 -230.7553794 -230.656139 -230.974264 -230.875024 
9 -174.0019530 -173.873765 -174.0673161 -173.936515 -174.241264 -174.110463 

48 -404.6717383 -404.442865 -404.8165040 -404.582119 -405.209674 -404.975288 
34 -460.2527375 -460.131142 -460.3254119 -460.201429 -460.746824 -460.622841 
49 -690.9308342 -690.710577 -691.0863870 -690.861246 -691.727859 -691.502717 
50 -690.9524103 -690.731249 -691.1100547 -690.883737 -691.751499 -691.525181 
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Table A9. Continued 
9*47 -404.6865713 -404.459925 -404.8294561 -404.597369 -405.222383 -404.990296 

34*47 -690.9364906 -690.716461 -691.0867530 -690.861615 -691.727242 -691.502104 
 QCISD/6-31+G(d) QCISD/6-31+G(2d) 
 Etot “H298” Etot “H298” 

47 -230.5443916 -230.446900 -230.600729 -230.504466 
9 -173.8906110 -173.760999 -173.928651 -173.801251 

48 -404.4162350 -404.184903 -404.509748 -404.282093 
34 -460.1364251 -460.013399 -460.178096 -460.057505 
49 -690.6657602 -690.442738 -690.765512 -690.546762 
50 -690.6844817 -690.460859 -690.785731 -690.566139 

9*47 -404.4422113 -404.213254 -404.536027 -404.310436 
34*47 -690.6875248 -690.465003 -690.784593 -690.565827 

 B2PLYP/6-31+G(2d)// 
mPW1K/6-31+G(d) 

B2PLYP/G3Large// 
mPW1K/6-31+G(d) 

B2PLYP-M1/6-31+G(2d)// 
mPW1K/6-31+G(d) 

 Etot “H298” Etot “H298” Etot “H298” 
47 -231.0230511 -230.9238108 -231.1814226 -231.082182 -231.147263 -231.048022 
9 -174.2733549 -174.1425541 -174.4101402 -174.279339 -174.374061 -174.243261 

48 -405.2777379 -405.0433522 -405.5712343 -405.336849 -405.509618 -405.275232 
34 -460.7997445 -460.6757620 -461.0221397 -460.898157 -460.894007 -460.770024 
49 -691.8132016 -691.5880598 -692.1965015 -691.971360 -692.037145 -691.812003 
50 -691.8310847 -691.6047666 -692.2157035 -691.989385 -692.056638 -691.830320 

9*47 -405.3017288 -405.0696413 -405.5957785 -405.363691 -405.528138 -405.296050 
34*47 -691.8273834 -691.6022454 -692.2073196 -691.982182 -692.047010 -691.821872 

 B2PLYP-M2/6-31+G(2d)// 
mPW1K/6-31+G(d) 

B2PLYP-M2/G3Large// 
mPW1K/6-31+G(d) 

B2PLYP-M3/6-31+G(2d)// 
mPW1K/6-31+G(d) 

 Etot “H298” Etot “H298” Etot “H298” 
47 -231.1759268 -231.0766865 -231.3877052 -231.288465 -230.973626 -230.874385 
9 -174.3973012 -174.2665004 -174.5816361 -174.450835 -174.222338 -174.091537 

48 -405.5631286 -405.3287429 -405.9566487 -405.722263 -405.181646 -404.947260 
34 -460.9157596 -460.7917771 -461.2266240 -461.102642 -460.683479 -460.559496 
49 -692.0888239 -691.8636821 -692.6135074 -692.388366 -691.649840 -691.424698 
50 -692.1086887 -691.8823706 -692.6345310 -692.408213 -691.668195 -691.441877 

9*47 -405.5803861 -405.3482986 -405.9748005 -405.742713 -405.202329 -404.970241 
34*47 -692.0976935 -691.8725555 -692.6190274 -692.393889 -691.662514 -691.437376 

 B2K-PLYP/6-31+G(2d)// 
mPW1K/6-31+G(d) 

  

 Etot “H298”     
47 -230.9313821 -230.8321418     
9 -174.2012820 -174.0704812     

48 -405.1191156 -404.8847299     
34 -460.6746595 -460.5506770     
49 -691.6017120 -691.3765702     
50 -691.6215806 -691.3952625     

9*47 -405.1394265 -404.9073390     
34*47 -691.6118368 -691.3866988     
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Table A10. Total Energies and Enthalpies of NMe3 (9), PMe3 (34), MVK (47) and Their 
Adducts and Complexes (in Hartree) at G3(+) Level Based on Different Geometries and 
Thermal Corrections. 
 

G3(+) 
Geometry Thermal 

correction 
Geometry Thermal 

correction 

 
MP2/6-
31+G(d) 

HF/ 
6-31+G(d) 

MP2/ 
6-31+G(d) 

MP2/ 
6-31+G(d) 

 G3tot H298(G3) G3tot H298(G3) 

47 -231.052427 -230.9599255 -231.052427 -230.954935 
9 -174.320151 -174.1986275 -174.320151 -174.190539 

48 -405.359832 -405.1416653 -405.359832 -405.128500 
34 -460.834535 -460.7196379 -460.834535 -460.711509 
49 -691.884474 -691.6752445 -691.884474 -691.661452 
50 -691.908227 -691.6980522 -691.908227 -691.684604 

9*47 -405.379355 -405.1634160 -405.379355 -405.150398 
34*47 -691.893255 -691.6839760 -691.893255 -691.670733 

G3(+) 
Geometry Thermal 

correction 
Geometry Thermal 

correction 

 
QCISD/ 

6-31+G(d) 
MP2/ 

6-31+G(d) 
mPW1K/ 

6-31+G(d) 
mPW1K/ 

6-31+G(d) 
 G3tot H298(G3) G3tot H298(G3) 

47 -231.052508 -230.955016 -231.052728 -230.953487 
9 -174.319879 -174.190267 -174.319895 -174.189095 

48 -405.359445 -405.128113 -405.359996 -405.125610 
34 -460.834111 -460.711085 -460.834713 -460.710731 
49 -691.883772 -691.660750 -691.884693 -691.659551 
50 -691.907797 -691.684174 -691.908781 -691.682463 

9*47 -405.379115 -405.150158 -405.379352 -405.147264 
34*47 -691.907797 -691.670310 -691.893417 -691.668279 

G3(+) 
Geometry Thermal 

correction 
Geometry Thermal 

correction 

 
MP2/ 

6-31+G(2d) 
HF/ 

6-31+G(2d) 
MP2/ 

6-31+G(2d) 
MP2/ 

6-31+G(2d) 
 G3tot H298(G3) G3tot H298(G3) 

47 -231.052631 -230.9612144 -231.0526306 -230.956368 
9 -174.319993 -174.1999408 -174.3199927 -174.192593 

48 -405.359719 -405.1440210 -405.3597189 -405.132064 
34 -460.834321 -460.7209593 -460.8343212 -460.713730 
49 -691.884559 -691.6780153 -691.8845591 -691.665809 
50 -691.908204 -691.7005887 -691.9082035 -691.688612 

9*47 -405.379380 -405.1660505 -405.3793801 -405.153789 
34*47 -691.893246 -691.7005887 -691.8932460 -691.674480 

G3(+) 
Geometry Thermal 

correction 
Geometry Thermal 

correction 

 
QCISD/ 

6-31+G(2d) 
MP2/ 

6-31+G(2d) 
mPW1K/ 

6-31+G(2d) 
mPW1K/ 

6-31+G(2d) 
 G3tot H298(G3) G3tot H298(G3) 

47 -231.052501 -230.956238 -231.052439 -230.954058 
9 -174.319628 -174.192228 -174.319825 -174.190208 

48 -405.359218 -405.131563 -405.359667 -405.127263 
34 -460.833742 -460.713151 -460.834773 -460.712064 
49 -691.883713 -691.664963 -691.884784 -691.661877 
50 -691.907532 -691.687940 -691.908729 -691.684498 

9*47 -405.378854 -405.153263 -405.378853 -405.148842 
34*47 -691.892451 -691.673685 -691.893113 -691.670170 
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Table A11. Total Energies and Enthalpies of NMe3 (9), PMe3 (34), MVK (47) and Their 
Adducts and Complexes (in Hartree) at G3+ and G3(MP2)(+) Levels Based on Different 
Geometries and Thermal Corrections. 
G3+ Geometry Thermal 

 correction 
G3+ Geometry Thermal 

 correction 
 QCISD/ 

6-31+G(d) 
MP2/ 

6-31+G(d)  
QCISD/ 

6-31+G(2d) 
MP2/ 

6-31+G(2d) 
 G3tot H298(G3)  G3tot H298(G3) 

47 -231.0518908 -230.9543988 47 -231.051904 -230.955641 
9 -174.3198365 -174.1902245 9 -174.319586 -174.192186 

48 -405.3586973 -405.1273653 48 -405.358484 -405.130829 
34 -460.8341880 -460.7111620 34 -460.833817 -460.713226 
49 -691.8830347 -691.6600127 49 -691.882991 -691.664241 
50 -691.9070560 -691.6834330 50 -691.906815 -691.687223 

9*47 -405.3785920 -405.1496350 9*47 -405.378347 -405.152756 
34*47 -691.8924289 -691.6699069 34*47 -691.892057 -691.673291 

G3(MP2)(+) Geometry Thermal 
correction    

 mPW1K/ 
6-31+G(d) 

mPW1K/ 
6-31+G(d)    

 G3tot H298(G3)    

47 -230.8223126 -230.723072    
9 -174.1340983 -174.003298    

48 -404.9431349 -404.708749    
34 -460.4000774 -460.276095    
49 -691.2181926 -690.993051    
50 -691.2422597 -691.015942    

9*47 -404.9628639 -404.730776    
34*47 -691.2279559 -691.002818    

 
Table A12. Total Energies and Enthalpies (in Hartree) for Selected Nucleophiles, 
Electrophiles, Their Zwitterionic Adducts. 
 

System mPW1K/6-31+G(d) 
B2PLYP-M2/6-31+G(2d)// 

mPW1K/6-31+G(d) 
 Etot H298 Etot “H298” 

51 -170.7722837 -170.714693 -170.800470 -170.7428793 
52 -548.1779580 -548.108884 -548.074252 -548.0051780 
53 -283.1056817 -283.041928 -283.165399 -283.1016454 
54 -627.0714233 -627.000858 -627.0193259 -626.9487606 
11 -265.4567244 -265.347809 -265.4698923 -265.3609769 
27 -382.1580634 -381.981125 -382.1614305 -381.9844921 
35 -652.7608826 -652.578509 -652.6236039 -652.4412303 
39 -1036.132093 -1035.833005 -1036.048669 -1035.749581 

47+11 -496.6113098 -496.399939 -496.6336465 -496.4222757 
47+27 -813.5983671 -813.417249 -813.5092635 -813.3281454 
47+35 -883.9210272 -883.637389 -883.7964567 -883.5128185 
47+39 -1267.285189 -1266.884678 -1267.218098 -1266.817587 
51+34 -631.8277473 -631.644817 -631.6949270 -631.5119967 
51+35 -823.5119169 -823.270362 -823.4052821 -823.1637272 
51+39 -1206.874591 -1206.516277 -1206.827278 -1206.468964 
52+34 -1009.232446 -1009.037341 -1008.972889 -1008.777784 
52+11 -813.5983671 -813.417249 -813.5092635 -813.3281454 
52+27 -930.3056019 -930.056004 -930.2091718 -929.9595739 
52+35 -1200.916207 -1200.661933 -1200.682163 -1200.427889 
52+39 -1584.277537 -1583.906571 -1584.102613 -1583.731647 
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Table A12. Continued 
53+9 -457.5488234 -457.34894 -457.5743236 -457.3744402 

53+34 -744.1966177 -744.006245 -744.0962614 -743.9058887 
53+11 -548.5654424 -548.388897 -548.6339861 -548.4574407 
53+27 -665.2754581 -665.030253 -665.3391675 -665.0939624 
53+35 -935.8807409 -935.631693 -935.8048482 -935.5558003 
53+39 -1319.246422 -1318.880824 -1319.225983 -1318.860385 
54+34 -1088.145714 -1087.949129 -1087.930845 -1087.734259 
54+11 -892.5184908 -892.335494 -892.4761114 -892.2931146 
54+27 -1009.221629 -1008.970446 -1009.172429 -1008.921246 
54+35 -1279.829254 -1279.574167 -1279.639343 -1279.384256 
54+39 -1663.189548 -1662.817756 -1663.058366 -1662.686574 

 G3(MP2)(+) G3 
 Etot “H298” Etot “H298” 

51 -170.5204646 -170.4628746 -170.7010533 -170.6434633 
52 -547.5066504 -547.4375764 -547.9530360 -547.8839620 
53 -282.7665891 -282.7028351 -283.0049137 -282.9411597 
54 -626.3729731 -626.3024081 -626.8715327 -626.8009677 
11 -265.0431588 -264.9342438 -265.3171267 -265.2082117 
27 -381.5367315 -381.3597925 -380.9455964 -380.7686574 
35 -651.7645020 -651.582128 -652.4192921 -652.2369181 
39 / / / / 

47+11 -495.8482847 -495.6369137 -496.354138 -496.142767 
47+27 -612.3467952 -612.0670162 / / 
47+35 -882.584014 -882.300376 / / 
47+39 / / / / 
51+34 -630.8971922 -630.7142622 -631.513229 -631.330299 
51+35 -822.2648286 -822.0232736 / / 
51+39 / / / / 
52+34 -1007.895710 -1007.700605 -1008.777492 -1008.582387 
52+11 -812.5175724 -812.3364544 -813.2387445 -813.0576265 
52+27 -929.0208683 -928.7712703 / / 
52+35 -1199.261303 -1199.007029 / / 
52+39 / / / / 
53+9 -456.9118744 -456.7119914 -457.3368824 -457.1369994 

53+34 -743.1815296 -742.9911566 -743.8562019 -743.6658289 
53+11 -547.8051479 -547.6286029 -548.3187730 -548.1422280 
53+27 -664.3117066 -664.0665006 / / 
53+35 -934.5459438 -934.2968958 / / 
53+39 / / / / 
54+34 -1086.771924 -1086.575338 -1087.706663 -1087.510077 
54+11 -891.4017745 -891.2187785 -892.1756020 -891.9926060 
54+27 -1007.898537 -1007.647354 / / 
54+35 -1278.136356 -1277.88127 / / 
54+39 / / / / 
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Table A13. Total Energies and Enthalpies (in Hartree) as Calculated at the RHF/3-21G, RHF/MIDI!, B3LYP/6-31G(d), and MP2(FC)/6-31G(d) 
Level of Theory for Pyridine Derivatives. Enthalpies Represent Boltzmann-Averaged Values over all Conformers at 298.15 K.  
 
system RHF/3-21G RHF/MIDI! B3LYP/6-31G(d) MP2(FC)/6-31G(d) 
 Etot H298 Etot H298 Etot H298 Etot H298 
1 (pyridine)         
neutral -245.312006 -245.210873 -245.239861 -245.138871 -248.2849730 -248.190715 -247.482532 -247.381399 
cationic -396.611964 -396.453100 -396.502142 -396.343739 -401.2995391 -401.151170 -400.047896 -399.889032 
27 (DMAP)         
neutral -377.662675 -377.478683 -377.549433 -377.365951 -382.2573045 -382.085088 -380.995265 -380.811273 
cationic -528.997389 -528.754901 -528.845015 -528.603374 -535.3039587 -535.076979 -533.590978 -533.34849 
29 (PPY)         
neutral -454.150742 -453.926606 -453.994262 -453.771056 -459.6842867 -459.474417 -458.165699 -457.941563 
cationic -605.489443 -605.206794 -605.293543 -605.012166 -612.7351191 -612.470454 -610.766062 -610.483413 
32  (TCAP)         
neutral -530.641930 -530.378134 -530.451331 -530.188070 -537.120287 -536.872902 -535.350370 -535.086379 
cationic -681.985246 -681.662480 -681.753326 -681.431814 -690.176536 -689.874134 -687.955445 -687.632677 
25 (hassner)         
neutral -602.383832 -602.092424 -602.223406 -601.932562 -609.6827138 -609.409084 -607.694519 -607.403111 
cationic -753.730110 -753.379503 -753.527572 -753.177979 -762.742090 -762.413064 -760.299073 -759.948535 
55 (Fuji)         
neutral -1062.779108 -1062.299958 -1062.386677 -1061.906916 -1075.637970 -1075.189326 -1072.172053 -1071.694251 
cationic -1214.126219 -1213.586451 -1213.689635 -1213.151531 -1228.694660 -1228.191998 -1224.783758 -1224.247268 
56 (camp. 1)         
neutral -737.456443 -737.105080 - - - - -743.917660 -743.566306 
cationic -888.791029 -888.380658 - - - - -896.515880 -896.106163 
57 (camp. 2)         
neutral -1077.818934 -1077.361609 - - - - -1087.252421 -1086.795387 
cationic -1229.163093 -1228.646988 - - - - -1239.859269 -1239.343424 
58 (yamada)         
neutral -1605.228930 -1604.834070 - - - - -1616.334113 -1615.940289 
cationic -1756.560014 -1756.106872 - - - - -1768.927544 -1768.474493 
59 (spivey)         
neutral -1063.622982 -1063.139172 - - -1076.627385 -1076.174102 -1073.1186586 -1072.634876 
cationic -1214.966385 -1214.422984 - - -1229.682430 -1229.173746 -1225.7209592 -1225.177906 
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Table A14. Total Energies and Enthalpies (in Hartree) as Calculated at the MP2(FC)/6-31G(d)//RHF/3-21G, MP2(FC)/6-31G(d)//RHF/MIDI!, 
B3LYP/6-311+G(d,p)//B3LYP/6-31G(d), and MP2(FC)/6-311+G(d,p)//MP2(FC)/6-31G(d) Level of Theory for Pyridine Derivatives. Enthalpies 
Represent Boltzmann-Averaged Values over all Conformers at 298.15 K.  
system MP2(FC)/6-31G(d)// 

RHF/3-21G 
MP2(FC)/6-31G(d)// 

RHF/MIDI! 
B3LYP/6-311+G(d,p)// 

B3LYP/6-31G(d) 
MP2(FC)/6-311+G(d,p)// 

MP2(FC)/6-31G(d) 
 Etot H298 Etot H298 Etot H298 Etot H298 
1 (pyridine)         
neutral -247.480304 -247.379171 -247.480857 -247.379867 -248.3511637 -248.2569057 -247.608924 -247.507791 
cationic -400.044798 -399.885934 -400.044747 -399.886344 -401.4019729 -401.2536038 -400.251941 -400.093077 
27 (DMAP)         
neutral -380.991642 -380.807650 -380.993441 -380.809959 -382.3599769 -382.1877604 -381.213684 -381.029692 
cationic -533.586980 -533.344492 -533.587477 -533.345836 -535.4427011 -535.2157214 -533.886472 -533.643984 
29 (PPY)         
neutral -458.162244 -457.938108 -458.163261 -457.940055 -459.8042135 -459.5943438 -458.425954 -458.201818 
cationic -610.761224 -610.478575 -610.761889 -610.480512 -612.8911759 -612.6265108 -611.102583 -610.819934 
32  (TCAP)         
neutral -535.345874 -535.081962 -535.347705 -535.084678 -537.254445 -537.0070597 -535.651626 -535.387643 
cationic -687.950248 -687.627479 -687.951018 -687.629470 -690.347629 -690.0452261 -688.333589 -688.010819 
25 (hassner)         
neutral -607.687554 -607.396146 -607.690260 -607.399416 -609.845803 -609.5721731 -608.050009 -607.758601 
cationic -760.291530 -759.940989 -760.294290 -759.944809 -762.940980 -762.611971 -760.730507 -760.379970 
55 (Fuji)         
neutral -1072.160959 -1071.682893 -1072.163484 -1071.685718 -1075.915101 -1075.467624 -1072.764316 -1072.286499 
cationic -1224.768436 -1224.231467 -1224.770119 -1224.234057 -1229.007589 -1228.506292 -1225.457641 -1224.921420 
56 (camp. 1)         
neutral -743.911902 -743.560388 - - - - -744.357643 -744.006246 
cationic -896.508466 -896.098366 - - - - -897.032430 -896.622801 
57 (camp. 2)         
neutral -1087.238575 -1086.780666 - - - - -1087.859053 -1087.401980 
cationic -1087.847005 -1239.331018 - - - - -1240.544747 -1240.029325 
58 (yamada)         
neutral -1616.326463 -1615.932519 - - - - -1616.891340 -1616.497581 
cationic -1768.918946 -1768.465745 - - - - -1769.562782 -1769.109634 
59 (spivey)         
neutral -1073.106046 -1072.621996 - - -1076.892420 -1076.439019 -1073.691705 -1073.208010 
cationic -1225.707404 -1225.163917 - - -1229.984546 -1229.475804 -1226.370998 -1225.827967 
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Table A15. Total Energies and Enthalpies (in Hartree) as Calculated at the SCS-MP2(FC)/6-
311+G(d,p)//MP2(FC)/6-31G(d) Level of Theory for Pyridine Derivatives. Enthalpies 
Represent Boltzmann-Averaged Values over all Conformers at 298.15 K. 

 
system SCS-MP2(FC)/6-311+G(d,p)// 

MP2(FC)/6-31G(d) 

 Etot H298 
1 (pyridine)   
neutral -247.583611 -247.482478 
cationic -400.215941 -400.057077 
27 (DMAP)   
neutral -381.181350 -380.997358 
cationic -533.844447 -533.601959 
29 (PPY)   
neutral -458.386137 -458.162000  
cationic -611.053190 -610.770541 
32  (TCAP)   
neutral -535.602550 -535.338577 
cationic -688.274568 -687.951801 
25 (hassner)   
neutral -607.997488 -607.706080 
cationic -760.668735 -760.318195 
55 (Fuji)   
neutral -535.602550 -1072.168817 
cationic -688.274568 -1224.789477 
56 (camp. 1)   
neutral -744.292015 -743.940629 
cationic -896.957388 -896.547743 
57 (camp. 2)   
neutral -1087.744456 -1087.287380 
cationic -1240.417955 -1239.902269 
58 (yamada)   
neutral -1616.802534 -1616.408729 
cationic -1769.464658 -1769.011525 
59 (spivey)   
neutral -1073.565565 -1073.0818010 
cationic -1226.234859 -1225.6918564 
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Table A16. Total Energies and Enthalpies (in Hartree) as Calculated at the RHF/6-
311+G(d,p)//MP2(FC)/6-31G(d) Level of Theory for Pyridine Derivatives. Enthalpies 
Represent Boltzmann-Averaged Values over all Conformers at 298.15 K. 
 
system RHF/6-311+G(d,p)// 

MP2(FC)/6-31G(d) 
 Etot H298 
1 (pyridine)   
neutral -246.7509029 -246.6497699 
cationic -398.9237915 -398.7649275 
27 (DMAP)   
neutral -379.8691959 -379.6852039 
cationic -532.0743842 -531.8318962 
29 (PPY)   
neutral -456.7987245 -456.5745885 
cationic -609.0083452 -608.7256962 
32  (TCAP)   
neutral -533.731066 -533.4670918 
cationic -685.9458719 -685.6231073 
25 (hassner)   
neutral -605.9001196 -605.6087116 
cationic -758.1184977 -757.7679479 
55 (Fuji)   
neutral -1068.955233 -1068.477411 
cationic -1221.163428 -1220.627081 
56 (camp. 1)   
neutral -741.750892 -741.399740 
cationic -893.958842 -893.549178 
57 (camp. 2)   
neutral -1084.0820908 -1083.624969 
cationic -1236.297955 -1235.782026 
58 (yamada)   
neutral -1613.693426 -1613.299462 
cationic -1765.896857 -1765.443668 
59 (spivey)   
neutral -1069.8038777 -1069.3203059 
cationic -1222.0151850 -1221.4721568 
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Table A17. Enthalpies for all Stationary Points Located on the Potential Energy Surface 
along Nucleophilic and Basis Catalysis Pathways of Acylation Reaction at Different Levels 
of Theory.a 

a. using the best conformer at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory and thermal 
correction is taken at B3LYP/6-31G(d) level; b. Relative to the reactant complex . 
 
 
 
 
 

 B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

MP2(FC)/6-31G(d)// 
B3LYP/6-31G(d) 

 H298 (gas) 
hartree 

ΔH298 (gas) 
kJ/mol 

H298 (gas)b 

hartree 
ΔH298 (gas)c 

kJ/mol 
59a+60+61 -2155.015976 0.00 - - 

(R)-64 
(reactant complex) 

-2155.024727 -22.98 -2147.511223 0.0 

(S)-64 
(reactant complex) 

-2155.024562 -22.54 - - 

(R)-65 
(first TS) 

-2155.005768 26.80 -2147.508455 7.23 

(S)-65 
(first TS) 

-2155.002914 34.29 - - 

(R)-66 
(intermediate) 

-2155.013093 7.56 - - 

(S)-66  
(intermediate) 

-2155.011512 11.72 - - 

(R)-67 
 (second TS) 

-2155.010620 14.06 -2147.506622 12.08 

(S)-67  
(second TS) 

-2155.008320 20.10 - - 

(R)-68 
(product complex) 

-2155.049246 -87.35 - - 

(S)-68 
(product complex) 

-2155.049064 -86.87 - - 

59a+(R)-62+63 -2155.024206 -21.61 - - 
(R)-69  

(TS along basis  
catalysis pathway) 

-2154.990370 67.23 -2147.494859 42.96 

(S)-69 
 (TS along basis 

catalysis pathway) 

-2154.986461 77.49 - - 
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Table A18. Total Energies, Enthalpies and Free Energies (in Hartree) for Catalysts 59a – 59c. 
 

Results for 59a 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP//6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
59a_1 -1076.617372 -1076.165093 -1076.882415 -1076.430136 -1076.242895 -1076.804613 
59a_2 -1076.616695 -1076.164422 -1076.881229 -1076.428956 -1076.242598 -1076.803053 
59a_3 -1076.622467 -1076.169867 -1076.888051 -1076.435451 -1076.247545 -1076.810373 
59a_4 -1076.624664 -1076.171772 -1076.890347 -1076.437455 -1076.248673 -1076.813446 
59a_5 -1076.625219 -1076.172667 -1076.890947 -1076.438395 -1076.248774 -1076.814840 
59a_6 -1076.627273 -1076.174584 -1076.892261 -1076.439572 -1076.250986 -1076.815859 
59a_7 -1076.624492 -1076.171763 -1076.889913 -1076.437184 -1076.248199 -1076.813477 
59a_8 -1076.625219 -1076.171272 -1076.889051 -1076.435104 -1076.248202 -1076.812121 
59a_9 -1076.621758 -1076.168955 -1076.887178 -1076.434375 -1076.246555 -1076.809578 
59a_10 -1076.622976 -1076.170216 -1076.888867 -1076.436107 -1076.247354 -1076.811729 
59a_11 -1076.622845 -1076.170012 -1076.888279 -1076.435446 -1076.247164 -1076.811127 

Results for 59b 

59b_1 -997.995219 -997.602391 -998.2401073 -997.8472798 -997.674305 -997.9191938 
59b_2 -997.996809 -997.603984 -998.2416124 -997.8487873 -997.674747 -997.9195503 
59b_3 -997.997611 -997.604899 -998.2424727 -997.8497607 -997.675193 -997.9200547 
59b_4 -997.999226 -997.606587 -998.2439669 -997.8513278 -997.677662 -997.9224028 

Results for 59c 
59c_1 -1075.425687 -1074.995072 -1075.687764 -1075.257149 -1075.068174 -1075.330251 
59c_2 -1075.424153 -1074.993443 -1075.686247 -1075.255536 -1075.066421 -1075.328514 
59c_3 -1075.423581 -1074.99283 -1075.685874 -1075.255124 -1075.066881 -1075.329175 
59c_4 -1075.424341 -1074.99368 -1075.686608 -1075.255947 -1075.066507 -1075.328774 
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Table A19. Total Energies, Enthalpies and Free Energies (in Hartree) for sec-alcohol 60. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
60_1 -539.728903 -539.508024 -539.877522 -539.656643 -539.555797 -539.704416 
60_2 -539.729933 -539.509145 -539.878222 -539.657434 -539.556961 -539.705250 
60_3 -539.730441 -539.509667 -539.878932 -539.658158 -539.557622 -539.706113 
60_4 -539.728042 -539.507362 -539.877255 -539.656575 -539.55524 -539.704453 
60_5 -539.726038 -539.505299 -539.875044 -539.654305 -539.553025 -539.702031 
60_6 -539.726776 -539.506103 -539.875370 -539.654697 -539.553900 -539.702494 

 
Table A20. Total Energies, Enthalpies and Free Energies (in Hartree) for Isobutyric Anhydride 61. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d, p)// 
B3LYP//6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
61_1 -538.985402 -538.757851 -539.145797 -538.9182460 -538.812546 -538.972941 
61_2 -538.985018 -538.757446 -539.145246 -538.9176740 -538.811257 -538.970977 
61_3 -538.984625 -538.757043 -539.144695 -538.9171130 -538.812367 -538.972884 
61_4 -538.984149 -538.756488 -539.144666 -538.9170050 -538.810579 -538.971155 
61_5 -538.983751 -538.756076 -539.144074 -538.9163990 -538.811761 -538.972171 
61_6 -538.983219 -538.755487 -539.143629 -538.9158970 -538.807372 -538.967261 
61_7 -538.984043 -538.756147 -539.143768 -538.9158715 -538.813111 -538.973339 
61_8 -538.983872 -538.756134 -539.143592 -538.9158540 -538.811503 -538.971826 
61_9 -538.982916 -538.755129 -539.143492 -538.9157045 -538.812335 -538.972405 
61_10 -538.980569 -538.752754 -539.140458 -538.9126430 -538.810824 -538.970549 
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Table A21. Total Energies, Enthalpies and Free Energies (in Hartree) for Ester (R)-62 and Carboxylic Acid  63. 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-62_1 -771.0145362 -770.692440 -771.2194450 -770.8973488 -770.755317 -770.960226 
(R)-62_2 -771.0155590 -770.693467 -771.2209689 -770.8988769 -770.756502 -770.961912 

63_1 -307.7006200 -307.573522 -307.8127947 -307.6856967 -307.612541 -307.724716 
63_2 -307.7102187 -307.582823 -307.8131525 -307.6857568 -307.621989 -307.724923 

 
Table A22. Total Energies, Enthalpies and Free Energies (in Hartree) for Reactant Complex 64. 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-64_1 -2155.365249 -2154.459047 -2155.930929 -2155.024727 -2154.607011 -2155.172691 
(R)-64_2 -2155.364774 -2154.458518 -2155.930003 -2155.023747 -2154.604174 -2155.169403 
(R)-64_3 -2155.363769 -2154.457713 -2155.929197 -2155.023142 -2154.604532 -2155.169961 
(R)-64_4 -2155.363227 -2154.457232 -2155.928842 -2155.022847 -2154.603071 -2155.168686 
(R)-64_5 -2155.363653 -2154.457713 -2155.927447 -2155.021507 -2154.604432 -2155.168226 
(R)-64_6 -2155.365131 -2154.459152 -2155.930257 -2155.024278 -2154.604732 -2155.169858 

       
(S)-64_1 -2155.365316 -2154.458968 -2155.930910 -2155.024562 -2154.605361 -2155.170955 
(S)-64_2 -2155.360083 -2154.454087 -2155.925710 -2155.019714 -2154.601892 -2155.167519 
(S)-64_3 -2155.362907 -2154.456808 -2155.928018 -2155.021919 -2154.606040 -2155.169151 
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Table A23. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 65. 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)//
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-65_1 -2155.340783 -2154.435565 -2155.908441 -2155.003224 -2154.577014 -2155.144673 
(R)-65_2 -2155.339899 -2154.434727 -2155.906840 -2155.001668 -2154.576738 -2155.143679 
(R)-65_3 -2155.341224 -2154.435724 -2155.907925 -2155.002425 -2154.574346 -2155.141047 
(R)-65_4 -2155.342802 -2154.437454 -2155.909107 -2155.003759 -2154.576873 -2155.143276 
(R)-65_5 -2155.343035 -2154.437600 -2155.909267 -2155.003832 -2154.577653 -2155.143885 
(R)-65_6 -2155.345655 -2154.439971 -2155.910742 -2155.005059 -2154.575853 -2155.140941 
(R)-65_7 -2155.346414 -2154.441054 -2155.911128 -2155.005768 -2154.577227 -2155.141941 
(R)-65_8 -2155.344817 -2154.439462 -2155.909934 -2155.004579 -2154.576176 -2155.141293 
(R)-65_9 -2155.346432 -2154.441140 -2155.910865 -2155.005573 -2154.577497 -2155.141930 
(R)-65_10 -2155.340783 -2154.435565 -2155.908441 -2155.003224 -2154.577014 -2155.144673 
(S)-65_1 -2155.339242 -2154.433995 -2155.906604 -2155.001357 -2154.576959 -2155.144321 
(S)-65_2 -2155.341562 -2154.436543 -2155.907933 -2155.002914 -2154.577244 -2155.143586 
(S)-65_3 -2155.340662 -2154.435537 -2155.906652 -2155.001527 -2154.575015 -2155.141005 
(S)-65_4 -2155.340467 -2154.435192 -2155.906289 -2155.001014 -2154.572733 -2155.138555 
(S)-65_5 -2155.342546 -2154.437188 -2155.907604 -2155.002246 -2154.574389 -2155.139447 
(S)-65_6 -2155.342609 -2154.437014 -2155.907545 -2155.001950 -2154.574802 -2155.139738 

 
Table A24. Total Energies, Enthalpies and Free Energies (in Hartree) for Intermediate 66. 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-66_1 -2155.350527 -2154.443986 -2155.919634 -2155.013093 -2154.584531 -2155.153638 
(R)-66_2 -2155.347856 -2154.441049 -2155.917593 -2155.010787 -2154.585213 -2155.154951 
(R)-66_3 -2155.346503 -2154.439940 -2155.912236 -2155.005674 -2154.578171 -2155.143905 
(S)-66_1 -2155.348148 -2154.441549 -2155.918111 -2155.011512 -2154.583161 -2155.153124 
(S)-66_2 -2155.349541 -2154.442418 -2155.917472 -2155.010349 -2154.601892 -2155.169823 
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Table A25. Total Energies, Enthalpies and Free Energies (in Hartree) for TS (R)-67. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-67_1 -2155.344683 -2154.443571 -2155.911732 -2155.010620 -2154.580979 -2155.148028 
(R)-67_2 -2155.343760 -2154.442678 -2155.911154 -2155.010072 -2154.580810 -2155.148204 
(R)-67_3 -2155.343428 -2154.442335 -2155.910464 -2155.009371 -2154.579421 -2155.146457 
(R)-67_4 -2155.343057 -2154.441900 -2155.910546 -2155.009389 -2154.580041 -2155.147530 
(R)-67_5 -2155.342699 -2154.441355 -2155.910441 -2155.009097 -2154.580290 -2155.148032 
(R)-67_6 -2155.342674 -2154.441389 -2155.910113 -2155.008828 -2154.579088 -2155.146527 
(R)-67_7 -2155.341445 -2154.439934 -2155.907835 -2155.006324 -2154.576641 -2155.143031 
(R)-67_8 -2155.341746 -2154.440135 -2155.907567 -2155.005956 -2154.576314 -2155.142135 
(R)-67_9 -2155.340416 -2154.438778 -2155.906460 -2155.004822 -2154.574798 -2155.140842 
(R)-67_10 -2155.339775 -2154.438508 -2155.905842 -2155.004575 -2154.574810 -2155.140877 
(R)-67_11 -2155.338918 -2154.437749 -2155.905937 -2155.004768 -2154.576906 -2155.143925 
(R)-67_12 -2155.338247 -2154.437146 -2155.905303 -2155.004202 -2154.574954 -2155.142010 
(R)-67_13 -2155.338823 -2154.437818 -2155.904680 -2155.003675 -2154.575385 -2155.141242 
(R)-67_14 -2155.336647 -2154.435712 -2155.903655 -2155.002720 -2154.573821 -2155.140829 
(R)-67_15 -2155.336776 -2154.435920 -2155.903414 -2155.002558 -2154.574180 -2155.140818 
(R)-67_16 -2155.337598 -2154.436601 -2155.903525 -2155.002528 -2154.574916 -2155.140843 
(R)-67_17 -2155.337835 -2154.436396 -2155.903653 -2155.002214 -2154.571846 -2155.137664 
(R)-67_18 -2155.334291 -2154.433469 -2155.899712 -2154.998890 -2154.570692 -2155.136113 
(R)-67_19 -2155.334459 -2154.433330 -2155.899931 -2154.998802 -2154.570202 -2155.135674 
(R)-67_21 -2155.333691 -2154.432543 -2155.899534 -2154.998386 -2154.570127 -2155.135970 
(R)-67_22 -2155.331799 -2154.430131 -2155.898531 -2154.996863 -2154.565357 -2155.132089 
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Table A26. Total Energies, Enthalpies and Free Energies (in Hartree) for (S)-67. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(S)-67_1 -2155.342717 -2154.441441 -2155.909596 -2155.008320 -2154.577125 -2155.143086 
(S)-67_2 -2155.342022 -2154.440900 -2155.908998 -2155.007876 -2154.575289 -2155.142450 
(S)-67_3 -2155.342041 -2154.440720 -2155.908002 -2155.006681 -2154.577328 -2155.143174 
(S)-67_4 -2155.340842 -2154.439345 -2155.908003 -2155.006506 -2154.574659 -2155.141592 
(S)-67_5 -2155.341761 -2154.440580 -2155.907607 -2155.006426 -2154.575337 -2155.140753 
(S)-67_6 -2155.340193 -2154.438875 -2155.907126 -2155.005808 -2154.575646 -2155.140676 
(S)-67_7 -2155.339563 -2154.438047 -2155.906702 -2155.005186 -2154.574881 -2155.140107 
(S)-67_8 -2155.340634 -2154.439187 -2155.906050 -2155.004603 -2154.573646 -2155.138875 
(S)-67_9 -2155.340504 -2154.439377 -2155.905534 -2155.004407 -2154.572929 -2155.139690 
(S)-67_10 -2155.340147 -2154.438775 -2155.905373 -2155.004001 -2154.571433 -2155.137342 
(S)-67_11 -2155.339876 -2154.438630 -2155.905105 -2155.003859 -2154.559338 -2155.126726 
(S)-67_12 -2155.335532 -2154.434280 -2155.902293 -2155.001041 -2154.571553 -2155.138344 
(S)-67_13 -2155.335911 -2154.434703 -2155.901820 -2155.000612 -2154.568813 -2155.134793 
(S)-67_14 -2155.334642 -2154.433101 -2155.902030 -2155.000489 -2154.579385 -2155.146264 
(S)-67_15 -2155.334803 -2154.433639 -2155.901594 -2155.000430 -2154.577727 -2155.144703 
(S)-67_16 -2155.333616 -2154.432189 -2155.900947 -2154.999520 -2154.570153 -2155.137484 
(S)-67_17 -2155.333675 -2154.432194 -2155.899655 -2154.998174 -2154.575634 -2155.142773 
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Table A27. Total Energies, Enthalpies and Free Energies (in Hartree) for Product Complex 68. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-68_1 -2155.384261 -2154.477427 -2155.9477203 -2155.0408863 -2154.622758 -2155.1862173 
(R)-68_2 -2155.391142 -2154.483991 -2155.956396 -2155.0492456 -2154.630448 -2155.1957026 

       
(S)-68_1 -2155.382773 -2154.476182 -2155.946588 -2155.0399971 -2154.622695 -2155.1865101 
(S)-68_2 -2155.390166 -2154.483392 -2155.955838 -2155.0490642 -2154.631541 -2155.1972132 

 
 
Table A28. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 69. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
(R)-69_1 -2155.330578 -2154.428852 -2155.892096 -2154.990370 -2154.566639 -2155.128157 
(R)-69_2 -2155.330844 -2154.426787 -2155.891114 -2154.987057 -2154.561806 -2155.122076 
(R)-69_3 -2155.324617 -2154.421188 -2155.887880 -2154.984452 -2154.559232 -2155.122496 
(R)-69_4 -2155.329594 -2154.426106 -2155.893304 -2154.989815 -2154.564939 -2155.128648 

       
(S)-69_1 -2155.327559 -2154.424366 -2155.889653 -2154.986461 -2154.562589 -2155.124684 
(S)-69_2 -2155.326889 -2154.422945 -2155.889172 -2154.985228 -2154.559380 -2155.121663 

 
 
 
 
 
 
 



 

 

175

 
Table A29. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 67 with Catalyst 59b. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
59btsr1 -2076.716129 -2075.874884 -2077.262935 -2076.421690 -2076.006359 -2076.553165 
59btsr2 -2076.713069 -2075.871793 -2077.260449 -2076.419172 -2076.004977 -2076.552356 
59btsr3 -2076.712340 -2075.87108 -2077.258523 -2076.417263 -2076.003002 -2076.549185 
59btsr4 -2076.716058 -2075.87482 -2077.262873 -2076.421635 -2076.006170 -2076.552985 
59btsr5 -2076.713050 -2075.871836 -2077.260376 -2076.419161 -2076.005520 -2076.552845 
59btsr6 -2076.712296 -2075.870999 -2077.257780 -2076.416483 -2076.001521 -2076.547005 
59btsr7 -2076.710690 -2075.869403 -2077.255577 -2076.414290 -2075.998743 -2076.543630 

       
59btss1 -2076.714456 -2075.873226 -2077.260691 -2076.419461 -2076.004963 -2076.551198 
59btss2 -2076.712305 -2075.871028 -2077.258664 -2076.417387 -2076.001713 -2076.548072 
59btss3 -2076.714447 -2075.873120 -2077.260686 -2076.419359 -2076.004232 -2076.550471 
59btss4 -2076.705444 -2075.864360 -2077.251910 -2076.410826 -2075.995275 -2076.541741 
59btss5 -2076.713839 -2075.872730 -2077.259256 -2076.418147 -2076.003607 -2076.549024 
59btss6 -2076.712396 -2075.871203 -2077.257247 -2076.416054 -2076.001160 -2076.546011 
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Table A30. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 67 with Catalyst 59c. 
 

 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/6-311+G(d,p)// 
B3LYP/6-31G(d) 

 E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 
59ctsr1 -2154.144501 -2153.265439 -2154.70852 -2153.829458 -2153.399735 -2153.963754 
59ctsr2 -2154.142919 -2153.263907 -2154.707312 -2153.8283 -2153.398012 -2153.962405 
59ctsr3 -2154.144418 -2153.265388 -2154.708707 -2153.829677 -2153.399573 -2153.963862 
59ctsr4 -2154.142821 -2153.263846 -2154.707101 -2153.828126 -2153.398454 -2153.962734 
59ctsr5 -2154.142842 -2153.263855 -2154.707137 -2153.82815 -2153.398493 -2153.962788 
59ctsr6 -2154.141846 -2153.262782 -2154.7047998 -2153.825736 -2153.395792 -2153.958746 
59ctsr7 -2154.140627 -2153.261536 -2154.703487 -2153.824396 -2153.394392 -2153.957252 
59ctsr8 -2154.138947 -2153.259612 -2154.701439 -2153.822104 -2153.39103 -2153.953522 

       
59ctss1 -2154.142882 -2153.263762 -2154.706432 -2153.827312 -2153.396108 -2153.9596580 
59ctss2 -2154.140006 -2153.260935 -2154.702061 -2153.82299 -2153.393611 -2153.955666 
59ctss3 -2154.141178 -2153.261986 -2154.703323 -2153.824131 -2153.39349 -2153.955635 
59ctss4 -2154.142808 -2153.263626 -2154.70639 -2153.827208 -2153.396468 -2153.960050 
59ctss5 -2154.142508 -2153.263597 -2154.705203 -2153.826292 -2153.396601 -2153.959296 
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Table A31. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 67 Including Catalyst 59a and Different Substrates.  
 

 

  
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 
substrate  type E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 

TS-R I -2155.344683 -2154.443571 -2155.911732 -2155.010620 -2154.580979 -2155.148028 60 
TS-S III -2155.342717 -2154.441441 -2155.909596 -2155.008320 -2154.577125 -2155.143086 
TS-R I -2001.702504 -2000.851189 -2002.235634 -2001.384320 -2000.985550 -2001.518681 70 
TS-S III -2001.702102 -2000.850245 -2002.234888 -2001.383030 -2000.981370 -2001.514155 
TS-R I -2080.330158 -2079.419060 -2080.880932 -2079.969834 -2079.555752 -2080.106526 71 
TS-S III -2080.328509 -2079.417252 -2080.878994 -2079.967737 -2079.554038 -2080.104523 
TS-R I -2005.326490 -2004.403071 -2005.862821 -2004.939402 -2004.538066 -2005.074397 72 
TS-S III -2005.326259 -2004.402575 -2005.861977 -2004.938294 -2004.537860 -2005.073579 

 
Table A32. Total Energies, Enthalpies and Free Energies (in Hartree) for TS 67 Including Catalyst 59d and Substrate 60. 
 

 

  
B3LYP/6-

31G(d) 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 
B3LYP/ 
6-31G(d) 

B3LYP/ 
6-311+G(d,p)// 

B3LYP/6-31G(d) 
catalyst  type E(total, Eh) H298 E(total, Eh) “H298” G298 “G298” 

TS-R I -2233.980833 -2233.020723 -2234.566646 -2233.606535 -2233.166649 -2233.752461 
TS-S II -2233.978138 -2233.017829 -2234.562985 -2233.602676 -2233.162576 -2233.747423 

59d 

TS-S III -2233.976674 -2233.016333 -2234.562153 -2233.601812 -2233.161501 -2233.746980 
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Table A33. RHF/6-31G(d) Results of  Tautomers of Compound 73. 
 
tautomer Etot H298 G298 ΔGsolv

[a] 
(kJ/mol) 

ΔGsolv
[b] 

(kJ/mol) 
I_01 -450.7944679 -450.603457 -450.650149 -76.93 -77.61 
I_02 -450.7926100 -450.601635 -450.647715 -78.81 -78.99 
I_03 -450.7907700 -450.599969 -450.646885 -81.92 -82.72 
I_04 -450.7937385 -450.602769 -450.649696 -78.78 -79.45 
I_05 -450.7908436 -450.600005 -450.646820 -82.01 -82.68 
I_06 -450.7938009 -450.602823 -450.648998 -77.41 -78.20 
I_07 -450.7924861 -450.601545 -450.647778 -78.77 -78.99 
I_08 -450.7946231 -450.603622 -450.649984 -76.91 -77.66 
I_09 -450.7939644 -450.602996 -450.649454 -78.74 -79.45 
I_10 -450.7964789 -450.605459 -450.651338 -77.80 -78.66 
I_11 -450.7960074 -450.604931 -450.650540 -76.16 -76.53 
I_12 -450.7936637 -450.602756 -450.649066 -80.54 -81.13 
I_13 -450.7967861 -450.605722 -450.651701 -77.17 -78.12 
I_14 -450.7937522 -450.602837 -450.649132 -80.25 -81.04 
I_15 -450.7963409 -450.605322 -450.650910 -77.03 -77.95 
I_16 -450.7959584 -450.604886 -450.650500 -76.22 -76.53 
I_17 -450.7964646 -450.605445 -450.651329 -77.86 -78.70 
I_18 -450.7968166 -450.605748 -450.651724 -77.19 -78.16 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

V_19 -450.7928364 -450.601494 -450.647945 -72.18 -72.38 
V_22 -450.7933581 -450.601835 -450.647282 -66.51 -67.78 
V_23 -450.7927888 -450.601441 -450.647885 -72.29 -72.30 
V_25 -450.7934380 -450.601912 -450.647355 -66.34 -67.82 
V_26 -450.7925349 -450.601189 -450.647789 -73.08 -73.01 
V_28 -450.7914039 -450.600009 -450.645170 -71.06 -70.00 
V_29 -450.7897333 -450.598443 -450.644671 -76.25 -75.56 
V_30 -450.7915010 -450.600312 -450.646248 -76.88 -77.15 
V_31 -450.7903609 -450.598971 -450.645309 -74.62 -70.12 
V_32 -450.7897794 -450.598479 -450.644679 -76.13 -75.48 
V_33 -450.7913471 -450.599959 -450.645136 -71.25 -70.37 
V_34 -450.7902722 -450.598892 -450.645230 -72.96 -72.72 
V_35 -450.7913683 -450.600197 -450.646271 -77.04 -77.15 
V_36 -450.7915206 -450.600339 -450.646280 -76.81 -77.15 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

II_01 -450.7943873 -450.603620 -450.649522 -65.85 -69.04 
II_02 -450.794725 -450.603924 -450.649761 -65.13 -68.37 
II_03 -450.7893238 -450.598403 -450.643568 -65.73 -68.99 
II_04 -450.7947035 -450.603909 -450.649758 -65.20 -68.45 
II_05 -450.7940284 -450.603356 -450.649215 -67.75 -71.00 
II_06 -450.7944502 -450.603664 -450.649545 -65.70 -68.91 
II_07 -450.7940106 -450.603341 -450.649201 -67.81 -71.04 
II_08 -450.7889458 -450.598116 -450.64331 -67.06 -70.37 
II_09 -450.7892768 -450.598369 -450.643545 -65.86 -69.08 
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Table A33. Continued 
tautomer Etot H298 G298 ΔGsolv

[a] 
(kJ/mol) 

ΔGsolv
[b] 

(kJ/mol) 
VI_10 -450.7978043 -450.606949 -450.653075 -63.05 -65.56 
VI_11 -450.7968818 -450.606143 -450.652307 -65.25 -68.28 
VI_12 -450.7946715 -450.603914 -450.649724 -60.28 -63.14 
VI_13 -450.7968946 -450.606145 -450.652315 -65.37 -68.16 
VI_14 -450.7975994 -450.606860 -450.653006 -64.06 -66.94 
VI_15 -450.7977173 -450.606893 -450.653060 -63.17 -65.86 
VI_16 -450.7976086 -450.606867 -450.653018 -64.23 -67.07 
VI_17 -450.7936732 -450.603077 -450.649233 -63.29 -66.27 
VI_18 -450.7947299 -450.603954 -450.649745 -60.14 -63.01 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

III_01 -450.7935643 -450.602443 -450.649079 -78.09 -79.24 
III_02 -450.7937954 -450.602588 -450.648538 -76.06 -76.44 
III_03 -450.7908844 -450.599894 -450.646683 -82.03 -82.80 
III_04 -450.7932735 -450.602157 -450.648916 -79.12 -80.21 
III_05 -450.7903265 -450.599339 -450.646481 -80.82 -81.80 
III_06 -450.7927963 -450.601718 -450.647898 -79.25 -80.29 
III_07 -450.7934333 -450.602252 -450.648418 -76.65 -77.03 
III_08 -450.7937332 -450.602636 -450.649084 -78.74 -79.54 
III_09 -450.7933749 -450.602293 -450.648906 -79.38 -80.25 
III_10 -450.7969917 -450.605787 -450.651806 -75.69 -76.99 
III_11 -450.7954993 -450.604283 -450.650146 -76.48 -76.90 
III_12 -450.7930700 -450.602026 -450.648660 -80.95 -81.92 
III_13 -450.7958861 -450.604730 -450.650908 -78.51 -79.41 
III_14 -450.7930267 -450.601999 -450.648723 -80.93 -82.09 
III_15 -450.7955535 -450.604397 -450.650242 -77.94 -79.16 
III_16 -450.7954823 -450.604263 -450.650106 -76.48 -76.86 
III_17 -450.7969987 -450.605791 -450.651811 -75.73 -77.07 
III_18 -450.7958456 -450.604696 -450.650934 -78.69 -79.79 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

VII_19 -450.7986654 -450.606726 -450.651140 -60.94 -65.06 
VII_20 -450.7902411 -450.598703 -450.645138 -75.53 -76.02 
VII_21 -450.7908911 -450.599481 -450.645872 -75.54 -76.02 
VII_23 -450.7914448 -450.599991 -450.646088 -74.25 -74.94 
VII_24 -450.7991974 -450.607244 -450.651565 -59.93 -63.68 
VII_26 -450.7913861 -450.599954 -450.646189 -74.27 -74.81 
VII_28 -450.7897437 -450.598359 -450.643944 -75.06 -75.35 
VII_29 -450.7911703 -450.599668 -450.645828 -73.49 -73.89 
VII_30 -450.7921660 -450.600824 -450.646812 -75.99 -76.82 
VII_31 -450.7902311 -450.598796 -450.645134 -75.77 -75.90 
VII_32 -450.7907004 -450.599217 -450.645489 -74.61 -74.94 
VII_33 -450.7902896 -450.598868 -450.644339 -73.87 -73.81 
VII_34 -450.7906363 -450.599188 -450.645393 -75.07 -75.10 
VII_35 -450.7912077 -450.599959 -450.646097 -78.29 -78.91 
VII_36 -450.7926792 -450.601305 -450.647174 -74.76 -75.56 
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Table A33. Continued 
tautomer Etot H298 G298 ΔGsolv

[a] 
(kJ/mol) 

ΔGsolv
[b] 

(kJ/mol) 
IV_01 -450.7963451 -450.605700 -450.651396 -78.76 -83.47 
IV_02 -450.7953482 -450.604759 -450.650197 -80.94 -85.56 
IV_03 -450.7930685 -450.602591 -450.648753 -82.89 -87.86 
IV_04 -450.7952355 -450.604657 -450.650491 -81.62 -86.11 
IV_05 -450.7929764 -450.602520 -450.648706 -83.09 -88.03 
IV_06 -450.7958282 -450.605285 -450.650648 -80.93 -85.69 
IV_07 -450.7954362 -450.604828 -450.650242 -80.69 -85.31 
IV_08 -450.7963320 -450.605689 -450.651388 -78.84 -83.60 
IV_09 -450.7952044 -450.604634 -450.650473 -81.67 -86.23 
IV_10 -450.7943987 -450.603925 -450.649996 -79.04 -83.72 
IV_11 -450.7947958 -450.604287 -450.649990 -78.26 -82.72 
IV_12 -450.7917416 -450.601393 -450.647795 -81.76 -86.48 
IV_13 -450.7941328 -450.603657 -450.649811 -79.96 -84.39 
IV_14 -450.7918424 -450.601474 -450.647873  -81.50 -86.19 
IV_15 -450.7944501 -450.604064 -450.649730 -80.26 -84.98 
IV_16 -450.7947580 -450.604260 -450.649961 -78.11 -82.72 
IV_17 -450.7943889 -450.603924 -450.650003 -79.14 -83.81 
IV_18 -450.7941842 -450.603695 -450.649831 -79.84 -84.31 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

VIII_19 -450.7919619 -450.601396 -450.647623 -73.42 -76.40 
VIII_22 -450.7909689 -450.600103 -450.645407 -69.44 -73.26 
VIII_23 -450.7917128 -450.601218 -450.647572 -74.08 -77.36 
VIII_25 -450.7911846 -450.600271 -450.645463 -68.87 -72.68 
VIII_26 -450.7904524 -450.600071 -450.647704 -77.83 -79.29 
VIII_28 -450.7876756 -450.596663 -450.642039 -74.51 -76.94 
VIII_29 -450.7898317 -450.598907 -450.644712 -78.37 -82.68 
VIII_31 -450.7890219 -450.598099 -450.643956 -80.46 -83.55 
VIII_32 -450.7898725 -450.598945 -450.644746 -78.20 -82.59 
VIII_33 -450.7877928 -450.596752 -450.642097 -74.09 -76.86 
VIII_34 -450.7889899 -450.598075 -450.643941 -80.53 -83.60 

[a] ΔGsolv calculated at PCM/UAHF/RHF/6-31G(d)//PCM/UAHF//B98/6-31G(d) level; 
[b] ΔGsolv calculated at PCM/UAHF/RHF/6-31G(d)//B98/6-31G(d) level. 
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Table A34. B98/6-31G(d) Results of Tautomers of Compound 73 
 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

I_01 -453.4532556 -453.274704 -453.322371 -75.34 -71.67 
I_02 -453.4517287 -453.273323 -453.320916 -77.35 -73.39 
I_03 -453.4495243 -453.271150 -453.319398 -79.73 -76.07 
I_04 -453.4537971 -453.275125 -453.322790 -76.49 -72.93 
I_05 -453.4494548 -453.271093 -453.319425 -79.84 -76.02 
I_06 -453.4539805 -453.275438 -453.322911 -75.29 -71.84 
I_07 -453.4517853 -453.273405 -453.321184 -77.19 -73.35 
I_08 -453.4532632 -453.274719 -453.322373 -75.40 -71.71 
I_09 -453.4537839 -453.275122 -453.322814 -76.57 -72.97 
I_10 -453.4550960 -453.276494 -453.323524 -76.59 -72.80 
I_11 -453.4551092 -453.276382 -453.322988 -75.24 -71.38 
I_12 -453.4523185 -453.273823 -453.321370 -78.81 -74.85 
I_13 -453.4565513 -453.277759 -453.324808 -75.46 -71.96 
I_14 -453.4523991 -453.273896 -453.321435 -78.49 -74.77 
I_15 -453.4563545 -453.277681 -453.324306 -75.42 -71.96 
I_16 -453.4550580 -453.276338 -453.322964 -75.31 -71.38 
I_17 -453.4550802 -453.276485 -453.323517 -76.64 -72.89 
I_18 -453.4565789 -453.277782 -453.324817 -75.47 -72.01 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

V_19 -453.4527022 -453.273871 -453.321170 -71.32 -67.74 
V_22 -453.4550314 -453.275834 -453.321856 -66.11 -62.80 
V_23 -453.4527076 -453.273890 -453.321190 -71.37 -67.66 
V_25 -453.4550751 -453.275944 -453.322211 -66.12 -62.84 
V_26 -453.4536796 -453.274737 -453.322142 -71.29 -67.40 
V_28 -453.4517986 -453.273009 -453.319249 -68.65 -64.73 
V_29 -453.4492133 -453.270328 -453.316997 -73.27 -69.41 
V_30 -453.4510647 -453.272420 -453.319304 -75.64 -71.42 
V_31 -453.4514444 -453.272466 -453.319335 -70.66 -64.31 
V_32 -453.4492453 -453.270356 -453.317081 -73.18 -69.33 
V_33 -453.4517338 -453.272961 -453.319212 -68.86 -65.06 
V_34 -453.4513358 -453.272353 -453.319198 -69.11 -66.90 
V_35 -453.4517842 -453.273077 -453.320219 -74.78 -70.92 
V_36 -453.4511014 -453.272498 -453.319420 -75.60 -71.42 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

II_01 -453.4511964 -453.272845 -453.319929 -62.67 -61.59 
II_02 -453.4513391 -453.272967 -453.319993 -62.48 -61.30 
II_03 -453.4475806 -453.269223 -453.315492 -62.91 -61.84 
II_04 -453.4513191 -453.272959 -453.320000 -62.52 -61.38 
II_05 -453.4520364 -453.273660 -453.320690 -64.39 -63.22 
II_06 -453.4512504 -453.272878 -453.319930 -62.55 -61.46 
II_07 -453.4520246 -453.273649 -453.320678 -64.43 -63.26 
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Table A34. Continued 
II_08 -453.4479507 -453.269630 -453.315940 -64.33 -63.22 
II_09 -453.4475426 -453.269202 -453.315491 -63.00 -61.92 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

VI_10 -453.4541742 -453.275705 -453.323107 -60.25 -58.79 
VI_11 -453.4533161 -453.274956 -453.322275 -62.30 -61.17 
VI_12 -453.4516861 -453.273361 -453.320300 -58.11 -57.03 
VI_13 -453.4533165 -453.274950 -453.322343 -62.45 -61.04 
VI_14 -453.4551999 -453.276718 -453.324020 -61.15 -59.96 
VI_15 -453.4541020 -453.275650 -453.323066 -60.34 -59.08 
VI_16 -453.4552079 -453.276718 -453.323986 -61.28 -60.08 
VI_17 -453.4516359 -453.273325 -453.320419 -60.55 -59.45 
VI_18 -453.4517383 -453.273461 -453.320824 -57.99 -56.90 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

III_01 -453.4537723 -453.275098 -453.322690 -75.72 -72.13 
III_02 -453.4539240 -453.275159 -453.322336 -73.97 -70.17 
III_03 -453.4506117 -453.272051 -453.320688 -78.61 -75.02 
III_04 -453.4546985 -453.275886 -453.323669 -75.95 -72.55 
III_05 -453.4507518 -453.272174 -453.320087 -78.19 -74.18 
III_06 -453.4542364 -453.275561 -453.323237 -76.19 -72.76 
III_07 -453.4538327 -453.275082 -453.322939 -74.14 -70.63 
III_08 -453.4536714 -453.275004 -453.323060 -76.02 -72.34 
III_09 -453.4546397 -453.275847 -453.323770 -76.11 -72.59 
III_10 -453.4568871 -453.278137 -453.325240 -73.16 -70.08 
III_11 -453.4558900 -453.277076 -453.323909 -74.30 -70.71 
III_12 -453.4529337 -453.274336 -453.322135 -77.99 -74.43 
III_13 -453.4570045 -453.278158 -453.325327 -75.33 -72.01 
III_14 -453.4529479 -453.274361 -453.322239 -77.90 -74.56 
III_15 -453.4569552 -453.278226 -453.325108 -74.80 -71.67 
III_16 -453.4558479 -453.277031 -453.323815 -74.34 -70.67 
III_17 -453.4568862 -453.278110 -453.325217 -73.25 -70.12 
III_18 -453.4570107 -453.278158 -453.325359 -75.40 -72.30 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

VII_19 -453.4637683 -453.284434 -453.329487 -62.15 -59.54 
VII_20 -453.4523217 -453.273469 -453.320586 -72.66 -69.12 
VII_21 -453.4523216 -453.273473 -453.320596 -72.66 -69.16 
VII_23 -453.4525790 -453.273679 -453.320688 -72.03 -68.32 
VII_24 -453.4643174 -453.284974 -453.329925 -61.02 -58.45 
VII_26 -453.4534305 -453.274323 -453.321439 -71.46 -67.78 
VII_28 -453.4509329 -453.272017 -453.318339 -72.13 -68.74 
VII_29 -453.4513222 -453.27227 -453.319362 -70.70 -67.24 
VII_30 -453.4526406 -453.273905 -453.320931 -74.13 -70.33 
VII_31 -453.4520679 -453.272966 -453.32007 -71.98 -68.66 
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Table A34. Continued 
VII_32 -453.4509867 -453.271913 -453.318691 -71.50 -68.12 
VII_33 -453.4514346 -453.272452 -453.318574 -70.96 -67.45 
VII_34 -453.4523043 -453.273226 -453.320218 -71.36 -67.99 
VII_35 -453.4526499 -453.273846 -453.321026 -75.32 -71.50 
VII_36 -453.4530355 -453.274213 -453.321036 -73.21 -69.25 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

IV_01 -453.4493521 -453.271323 -453.318010 -76.15 -74.77 
IV_02 -453.4490732 -453.271093 -453.317486 -78.64 -77.15 
IV_03 -453.4459374 -453.268070 -453.315349 -79.79 -78.45 
IV_04 -453.4497091 -453.271611 -453.318433 -77.89 -76.53 
IV_05 -453.4458578 -453.268009 -453.315325 -79.93 -78.62 
IV_06 -453.4504230 -453.272406 -453.318711 -77.69 -76.36 
IV_07 -453.4491554 -453.271165 -453.317537 -78.43 -76.94 
IV_08 -453.4493437 -453.271298 -453.317970 -76.26 -74.89 
IV_09 -453.4496803 -453.271576 -453.318391 -78.02 -76.69 
IV_10 -453.4474232 -453.269587 -453.316652 -76.71 -75.27 
IV_11 -453.4484728 -453.270506 -453.317007 -76.43 -74.85 
IV_12 -453.4446232 -453.266917 -453.314435 -78.92 -77.45 
IV_13 -453.4485929 -453.27058 -453.317623 -76.65 -75.31 
IV_14 -453.4447220 -453.266974 -453.314428 -78.66 -77.19 
IV_15 -453.4489782 -453.271146 -453.317697 -77.50 -76.15 
IV_16 -453.4484308 -453.270471 -453.316982 -76.49 -74.89 
IV_17 -453.4474193 -453.269602 -453.316684 -76.75 -75.35 
IV_18 -453.4486496 -453.270636 -453.317666 -76.55 -75.19 

tautomer Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

VIII_19 -453.4465922 -453.268735 -453.315673 -71.12 -69.2 
VIII_22 -453.4477273 -453.269475 -453.315381 -65.79 -64.73 
VIII_23 -453.4463751 -453.268571 -453.315595 -71.72 -70.04 
VIII_25 -453.4479523 -453.269676 -453.315541 -65.24 -64.18 
VIII_26 -453.4462903 -453.268247 -453.315627 -73.02 -70.54 
VIII_28 -453.4433377 -453.265115 -453.311013 -69.95 -67.91 
VIII_29 -453.4447844 -453.266687 -453.313391 -76.57 -74.10 
VIII_31 -453.4450675 -453.266779 -453.313655 -77.17 -74.10 
VIII_32 -453.4448261 -453.266735 -453.313431 -76.48 -74.01 
VIII_33 -453.4434167 -453.265206 -453.311152 -69.71 -67.82 
VIII_34 -453.4450375 -453.266747 -453.313599 -77.24 -74.14 

[a] ΔGsolv calculated at PCM/UAHF/B98/6-31G(d)//PCM/UAHF//B98/6-31G(d) level; [b] ΔGsolv calculated at 
PCM/UAHF/B98/6-31G(d)//B98/6-31G(d) level. 
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Table A35. MP2/6-31+G(2d, p)//B98/6-31G(d) Results[a] of Tautomers of Compound 73. 
 Etot “H298” “G298” 

I_01 -452.4267255 -452.2481740 -452.2958410 
I_02 -452.4246776 -452.2462720 -452.2938650 
I_03 -452.4232865 -452.2449122 -452.2931602 
I_04 -452.4262642 -452.2475921 -452.2952571 
I_05 -452.4232408 -452.2448790 -452.2932110 
I_06 -452.4255795 -452.2470370 -452.2945100 
I_07 -452.4246895 -452.2463092 -452.2940882 
I_08 -452.4267513 -452.2482071 -452.2958611 
I_09 -452.4262642 -452.2476023 -452.2952943 
I_10 -452.4284069 -452.2498049 -452.2968349 
I_11 -452.4279538 -452.2492266 -452.2958326 
I_12 -452.4260408 -452.2475453 -452.2950923 
I_13 -452.4289031 -452.2501108 -452.2971598 
I_14 -452.4261016 -452.2475985 -452.2951375 
I_15 -452.4279053 -452.2492318 -452.2958568 
I_16 -452.4279058 -452.2491858 -452.2958118 
I_17 -452.4283911 -452.2497959 -452.2968279 
I_18 -452.4289194 -452.2501225 -452.2971575 

 Etot “H298” “G298” 
V_25 -452.4283922 -452.2492611 -452.2955281 
V_22 -452.4284144 -452.2492169 -452.2952389 
V_33 -452.4269173 -452.2481445 -452.2943955 
V_28 -452.4269320 -452.2481424 -452.2943824 
V_26 -452.4260736 -452.2471310 -452.2945360 
V_23 -452.4259328 -452.2471152 -452.2944152 
V_19 -452.4259292 -452.2470980 -452.2943970 
V_31 -452.4257681 -452.2467897 -452.2936587 
V_34 -452.4257057 -452.2467228 -452.2935678 
V_36 -452.4251998 -452.2465963 -452.2935183 
V_30 -452.4250900 -452.2464452 -452.2933292 
V_35 -452.4250307 -452.2463235 -452.2934655 
V_29 -452.4240889 -452.2452037 -452.2918727 
V_32 -452.4240866 -452.2451973 -452.2919223 

 Etot “H298” “G298” 
II_02 -452.4185242 -452.2401521 -452.2871781 
II_04 -452.4185053 -452.2401452 -452.2871862 
II_06 -452.4184561 -452.2400837 -452.2871357 
II_01 -452.4184092 -452.2400578 -452.2871418 
II_05 -452.4182780 -452.2399016 -452.2869316 
II_07 -452.4182597 -452.2398841 -452.2869131 
II_03 -452.4144155 -452.2360580 -452.2823270 
II_09 -452.4143734 -452.2360328 -452.2823218 
II_08 -452.4138657 -452.2355450 -452.2818550 

 Etot “H298” “G298” 
VI_10 -452.4216527 -452.2431835 -452.2905855 
VI_14 -452.4216641 -452.2431822 -452.2904842 
VI_16 -452.4216639 -452.2431740 -452.2904420 
VI_15 -452.4215748 -452.2431228 -452.2905388 
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Table A35. Continued 
VI_13 -452.4206149 -452.2422484 -452.2896414 
VI_11 -452.4205808 -452.2422207 -452.2895397 
VI_18 -452.4185356 -452.2402583 -452.2876213 
VI_12 -452.4184771 -452.2401520 -452.2870910 
VI_17 -452.4175321 -452.2392212 -452.2863152 

 Etot “H298” “G298” 
III_10 -452.4294012 -452.2506511 -451.4019153 
III_17 -452.4294136 -452.2506374 -451.4019410 
III_18 -452.4285599 -452.2497072 -451.4001091 
III_13 -452.4285462 -452.2496997 -451.4000880 
III_11 -452.4278657 -452.2490517 -451.3998414 
III_16 -452.4278151 -452.2489982 -451.3997823 
III_15 -452.4276642 -452.2489350 -451.3983733 
III_01 -452.4260560 -452.2473817 -451.3983396 
III_08 -452.4259466 -452.2472792 -451.3982218 
III_14 -452.4258608 -452.2472739 -451.3987737 
III_12 -452.4258306 -452.2472329 -451.3987276 
III_04 -452.4259694 -452.2471569 -451.3972403 
III_09 -452.4259286 -452.2471359 -451.3972174 
III_02 -452.4258435 -452.2470785 -451.3977630 
III_07 -452.4257215 -452.2469708 -451.3976103 
III_06 -452.4248928 -452.2462174 -451.3955492 
III_05 -452.4235024 -452.2449246 -451.3962529 
III_03 -452.4232842 -452.2447235 -451.3959567 

 Etot “H298” “G298” 
VII_24 -452.4358393 -452.2564959 -451.4073612 
VII_19 -452.4355508 -452.2562165 -451.4073333 
VII_36 -452.4260850 -452.2472625 -451.3991345 
VII_30 -452.4257991 -452.2470635 -451.3989576 
VII_33 -452.4253631 -452.2463806 -451.3992917 
VII_34 -452.4252735 -452.2461952 -451.3982427 
VII_35 -452.4249966 -452.2461927 -451.3973433 
VII_23 -452.4250588 -452.2461587 -451.3975385 
VII_28 -452.4249774 -452.2460615 -451.3990219 
VII_31 -452.4251329 -452.2460311 -451.3981980 
VII_29 -452.4250617 -452.2460096 -451.3988013 
VII_21 -452.4247366 -452.2458879 -451.3971515 
VII_20 -452.4247399 -452.2458872 -451.3971582 
VII_26 -452.4249861 -452.2458785 -451.3965416 
VII_32 -452.4248379 -452.2457642 -451.3986892 

 Etot “H298” “G298” 
IV_01 -452.4161600 -452.2381309 -452.2848179 
IV_08 -452.4161503 -452.2381047 -452.2847767 
IV_04 -452.4156994 -452.2376013 -452.2844233 
IV_06 -452.4156024 -452.2375854 -452.2838904 
IV_09 -452.4156695 -452.2375652 -452.2843802 
IV_07 -452.4155551 -452.2375647 -452.2839367 
IV_02 -452.4154810 -452.2375008 -452.2838938 
IV_11 -452.4138883 -452.2359215 -452.2824225 
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Table A35. Continued 
IV_16 -452.4138628 -452.2359029 -452.2824139 
IV_18 -452.4135284 -452.2355148 -452.2825448 
IV_13 -452.4134968 -452.2354838 -452.2825268 
IV_15 -452.4131556 -452.2353234 -452.2818744 
IV_10 -452.4131269 -452.2352907 -452.2823557 
IV_17 -452.4131058 -452.2352885 -452.2823705 
IV_03 -452.4131307 -452.2352633 -452.2825423 
IV_05 -452.4130560 -452.2352072 -452.2825232 
IV_14 -452.4108678 -452.2331198 -452.2805738 
IV_12 -452.4108078 -452.2331017 -452.2806197 

 Etot “H298” “G298” 
VIII_25 -452.4138673 -452.2355911 -452.2814561 
VIII_22 -452.4136579 -452.2354056 -452.2813116 
VIII_19 -452.4123681 -452.2345109 -452.2814489 
VIII_23 -452.4121154 -452.2343113 -452.2813353 
VIII_32 -452.4115070 -452.2334159 -452.2801119 
VIII_29 -452.4114625 -452.2333651 -452.2800691 
VIII_26 -452.4111830 -452.2331397 -452.2805197 
VIII_33 -452.4112615 -452.2330507 -452.2789967 
VIII_31 -452.4112752 -452.2329867 -452.2798627 
VIII_34 -452.4112442 -452.2329536 -452.2798056 
VIII_28 -452.4111721 -452.2329494 -452.2788474 

[a] Thermal correction calculated at B98/6-31G(d) level. 
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Table A36. G3MP2B3 Results of Tautomers of Compound 73. 
 Etot H298 G298 

I_18 -452.9527548 -452.941324 -452.988908 
I_13 -452.9527524 -452.941317 -452.988913 
I_17 -452.9523196 -452.940892 -452.988480 
I_10 -452.9522629 -452.940832 -452.988424 
II_02 -452.9443331 -452.933061 -452.980577 
II_04 -252.9443435 -452.933062 -452.980602 
II_05 -452.9439796 -452.932735 -452.980230 
II_06 -452.9441816 -452.932908 -452.980434 
II_01 -452.9441799 -452.932891 -452.980450 
III_10 -452.9527834 -452.941369 -452.989022 
III_17 -452.9527820 -452.941366 -452.989038 
III_18 -452.9521313 -452.940684 -452.988429 
III_13 -452.9521282 -452.940686 -452.988408 
IV_01 -452.9437006 -452.932452 -452.979735 
IV_08 -452.9436883 -452.932440 -452.979723 
IV_09 -452.9432680 -452.931983 -452.979416 
IV_04 -452.9432857 -452.932003 -452.979432 
IV_06 -452.9438292 -452.932662 -452.979611 
IV_11 -452.9420976 -452.930886 -452.977973 
V_25 -452.9515826 -452.940415 -452.987200 
V_22 -452.9515495 -452.940386 -452.987162 
V_36 -452.9491132 -452.937794 -452.985272 
V_33 -452.9496247 -452.938456 -452.985025 
V_28 -452.9496490 -452.938493 -452.985036 
VI_10 -452.9470747 -452.935792 -452.983678 
VI_14 -452.9470297 -452.935763 -452.983618 
VI_16 -452.9470273 -452.935762 -452.983597 
VI_15 -452.9470548 -452.935750 -452.983669 
VII_24 -452.9567476 -452.946055 -452.991563 
VII_19 -452.9567476 -452.945760 -452.991379 
VII_36 -452.9493367 -452.938072 -452.985389 
VII_30 -452.9491743 -452.937863 -452.985337 
VIII_25 -452.9410216 -452.930069 -452.976394 
VIII_22 -452.9408866 -452.929912 -452.976277 
VIII_32 -452.9393930 -452.928241 -452.975455 
VIII_19 -452.9404838 -452.929297 -452.976759 
VIII_23 -452.9403418 -452.929132 -452.976672 
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Table A37. B98/6-31G(d) Results of Tautomers of 73-H+  
 Etot H298 G298 ΔGsolv

[a] 
(kJ/mol) 

ΔGsolv
[b] 

(kJ/mol) 
I-3H+_01 -453.8477855 -453.655964 -453.704526 -277.91 -274.26 
I-3H+_02 -453.8513008 -453.659435 -453.707650 -269.88 -265.56 
I-3H+_03 -453.8448373 -453.653120 -453.702267 -280.06 -275.68 
I-3H+_04 -453.8459807 -453.655080 -453.701215 -285.14 -281.63 
I-3H+_05 -453.8465915 -453.655007 -453.703196 -284.31 -280.12 
I-3H+_06 -453.8500542 -453.658132 -453.706531 -276.21 -272.55 
I-3H+_07 -453.8520217 -453.660145 -453.708076 -272.22 -267.94 
I-3H+_08 -453.8482902 -453.656633 -453.704499 -284.33 -280.41 
I-3H+_09 -453.8472836 -453.655433 -453.703919 -286.01 -282.29 

 Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

IV-1H+_01 -453.8510767 -453.659550 -453.706906 -280.69 -277.02 
IV-1H+_02 -453.8533841 -453.661972 -453.708997 -278.49 -274.43 
IV-1H+_03 -453.8488795 -453.657308 -453.704659 -288.98 -284.47 
IV-1H+_04 -453.8498040 -453.658621 -453.705572 -289.21 -285.14 
IV-1H+_05 -453.8548977 -453.663580 -453.710662 -272.56 -268.11 
IV-1H+_06 -453.8507355 -453.659347 -453.706797 -278.83 -275.01 
IV-1H+_07 -453.8498854 -453.658339 -453.705797 -284.05 -279.37 
IV-1H+_08 -453.8502027 -453.659047 -453.705910 -285.99 -281.54 

 Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

IV-3H+_01 -453.8264195 -453.635725 -453.683098 -287.90 -282.84 
IV-3H+_02 -453.8250236 -453.634163 -453.681373 -294.11 -288.32 
IV-3H+_03 -453.8249985 -453.634782 -453.681837 -297.50 -291.21 
IV-3H+_04 -453.8311661 -453.640522 -453.687644 -281.43 -276.23 
IV-3H+_05 -453.8273765 -453.636912 -453.684250 -284.47 -278.74 
IV-3H+_06 -453.8236862 -453.633171 -453.680897 -288.32 -283.42 
IV-3H+_07 -453.8214575 -453.630827 -453.678384 -296.86 -290.33 
IV-3H+_08 -453.8218814 -453.631774 -453.678940 -299.15 -292.92 
IV-3H+_09 -453.8215640 -453.630941 -453.678456 -296.63 -290.29 

 Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

74 -281.4608308 -281.366415 -281.400796 -55.23 -51.88 
74-H+ -281.8496537 -281.741921 -281.777392 -272.38 -270.29 

[a] ΔGsolv calculated at PCM/UAHF/B98/6-31G(d)//PCM/UAHF//B98/6-31G(d) level;[b] ΔGsolv calculated at 
PCM/UAHF/B98/6-31G(d)//B98/6-31G(d) level. 
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Table A38. MP2/6-31+G(2d,p) Results of Tautomers of 73-H+ 
 Etot “H298” “G298” ΔGsolv

[a] 
(kJ/mol) 

ΔGsolv
[b] 

(kJ/mol) 
I-3H+_01 -452.8045233 -452.6127018 -452.661264 -276.41 -278.95 
I-3H+_02 -452.8077022 -452.6158364 -452.664051 -269.47 -270.12 
I-3H+_03 -452.8023975 -452.6106802 -452.659827 -277.45 -280.45 
I-3H+_04 -452.8017795 -452.6108788 -452.657014 -286.44 -288.70 
I-3H+_05 -452.8023026 -452.6107182 -452.658907 -283.66 -286.31 
I-3H+_06 -452.8069918 -452.6150696 -452.663469 -275.88 -277.48 
I-3H+_07 -452.8085140 -452.6166373 -452.664568 -272.90 -273.01 
I-3H+_08 -452.8038880 -452.6122308 -452.660097 -285.28 -287.15 
I-3H+_09 -452.8036967 -452.6118460 -452.660332 -287.52 -289.53 

 Etot “H298” “G298” ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

IV-1H+_01 -452.7994076 -452.6078809 -452.655237 -280.45 -281.96 
IV-1H+_02 -452.8014767 -452.6100646 -452.657090 -279.26 -280.04 
IV-1H+_03 -452.7963791 -452.6048076 -452.652150 -293.59 -293.67 
IV-1H+_04 -452.7972750 -452.6060921 -452.653043 -290.26 -291.88 
IV-1H+_05 -452.8014588 -452.6101411 -452.657223 -271.52 -271.58 
IV-1H+_06 -452.7974587 -452.6060702 -452.653520 -277.35 -278.53 
IV-1H+_07 -452.7956242 -452.6040778 -452.651536 -287.84 -287.02 
IV-1H+_08 -452.7961767 -452.6050210 -452.651884 -285.40 -286.39 

 Etot “H298” “G298” ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

IV-3H+_01 -452.7749296 -452.5842351 -452.631608 -291.00 -291.96 
IV-3H+_02 -452.7722341 -452.5813735 -452.628584 -304.53 -302.75 
IV-3H+_03 -452.7731042 -452.5828878 -452.629943 -302.13 -302.08 
IV-3H+_04 -452.7797500 -452.5891059 -452.636228 -285.50 -285.31 
IV-3H+_05 -452.7752568 -452.5847923 -452.632130 -289.46 -288.78 
IV-3H+_06 -452.7717580 -452.5812428 -452.628969 -292.19 -293.42 
IV-3H+_07 -452.7682959 -452.5776654 -452.625222 -308.05 -305.68 
IV-3H+_08 -452.7692436 -452.5791362 -452.626302 -304.95 -304.93 
IV-3H+_09 -452.7683836 -452.5777605 -452.625276 -308.12 -305.72 

 Etot H298 G298 ΔGsolv
[a] 

(kJ/mol) 
ΔGsolv

[b] 
(kJ/mol) 

74 -280.8425657 -280.7481499 -280.782531 -58.53 -57.07 
74-H+ -281.2160103 -281.1082776 -281.143749 -271.35 -272.46 

[a] ΔGsolv calculated at PCM/UAHF/RHF/6-31G(d)//PCM/UAHF//B98/6-31G(d) level; [b] ΔGsolv calculated at 
PCM/UAHF/RHF/6-31G(d)//B98/6-31G(d) level. 
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Table A39. G3MP2B3 Results of Tautomers of 73-H+. 
 Etot H298 G298 

I-3H+_07 -453.314216 -453.313272 -453.361800 
I-3H+_02 -453.313032 -453.312088 -453.360942 
I-3H+_09 -453.309462 -453.308518 -453.357550 

IV-1H+_05 -453.309113 -453.308169 -453.355797 
IV-1H+_02 -453.308867 -453.307922 -453.355565 
IV-1H+_04 -453.305509 -453.304564 -453.352191 
IV-3H+_04 -453.288243 -453.287299 -453.334963 
IV-3H+_05 -453.284329 -453.283384 -453.331291 
IV-3H+_03 -453.282788 -453.281844 -453.329549 

74 -281.161830 -281.160886 -281.195512 
74-H+ -281.527356 -281.526412 -281.562160 
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