Logo
DeutschClear Cookie - decide language by browser settings
Unterstraßer, Simon (2008): Numerische Simulationen von Kondensstreifen und deren Übergang in Zirren. Dissertation, LMU München: Faculty of Physics
[img]
Preview
PDF
Unterstrasser_Simon.pdf

18Mb

Abstract

Der in den letzten Jahrzehnten zu beobachtende globale Temperaturanstieg wurde teilweise durch anthropogene Emissionen verursacht. Der Flugverkehr trägt durch den Eintrag von direkt oder indirekt strahlungswirksamen Gasen und der Änderung der hohen Bewölkung ebenfalls zum Klimawandel bei. Die größte Unsicherheit besteht momentan bei der Bewertung des Strahlungsantriebs durch gealterte Kondensstreifen, die auch als flugzeuginduzierte Zirren klassifiziert werden. In der vorliegenden Arbeit wurde der Übergang von Kondensstreifen in Zirren mittels numerischer Methoden untersucht und die Entwicklung der geometrischen, mikrophysikalischen und optischen Eigenschaften beleuchtet. Dazu wurde die Entwicklung der Kondensstreifen während der Wirbelphase und der Dispersionsphase separat betrachtet. Unter Verwendung eines vorhandenen LES-Modells mit Eismikrophysik wurde ein 2D-Modell zur Kondensstreifenmodellierung entworfen, das aufgrund seiner Konzipierung eine Vielzahl von Simulationen zuläßt. Somit kann der Einfluß von vielen Parametern wie z.B. der relativen Feuchte, Temperatur, Windscherung oder des Strahlungsszenarios systematisch untersucht werden. Insbesondere wurde ein Modul entwickelt, das im 2D-Modell einen realistischen Wirbelzerfall während der Wirbelphase sicherstellt. Während des Wirbelabsinkens tritt im primären Nachlauf Eiskristallverlust auf und abhängig von der Feuchte (Eisübersättigung) und Temperatur der Umgebungsluft verdampft ein Großteil der Eiskristalle. Bei bestimmten Feuchte- und Temperaturkombinationen hängt die Anzahl überlebender Eiskristalle sensitiv von der Schichtung der Atmosphäre und der Hintergrundturbulenz ab, da diese Größen den Wirbelzerfall beeinflußen. Im Maximalfall überleben 70% der Eiskristalle die Wirbelphase. Bei geringen Übersättigungen und hohen Temperaturen verdampfen alle Eiskristalle im primären Nachlauf und der Kondensstreifen besteht dann nur aus dem sekundärem Nachlauf. Während der Dispersionsphase verbreitern sich Kondensstreifen durch Scherung und in geringerem Maße durch turbulente Diffusion und es findet der Übergang in flugzeuginduzierte Zirren statt. Eine substanzielle Verbreiterung der Kondensstreifen ist nur bei Umgebungsfeuchten größer 120% sichtbar. Die Klimawirksamkeit der Kondensstreifen hängt hauptsächlich von der relativen Feuchte und in kleinerem Maße von der Temperatur und der Scherung ab. In den Standarduntersuchungen sind im Modell die Hintergrundbedingungen statisch angenommen und es tritt kein großräumiges Aufgleiten oder Absinken der Luftmassen auf. In diesem Fall ist die Lebenszeit der Kondensstreifen aufgrund der Sedimentation begrenzt und beträgt zwischen 4-6 Stunden. Der Strahlungseinfluß führt bei geeigneten Umgebungsbedingungen zu einem Aufgleiten der Kondensstreifen, wodurch deren Auflösung aufgrund des zusätzlichen Wasserdampfangebotes verlangsamt wird. Sofern die Kondensstreifen nicht durch synoptischskaliges Aufgleiten der gesamten Luftschicht gestärkt werden, nimmt die optische Dicke der Kondensstreifen mit der Zeit ab, weil die Eiskristallkonzentrationen sowie Eiswassergehalte verdünnt werden und das Höhenwachstum des Kondensstreifens gering ist.