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1. Introduction 

Good timing is a crucial attribute in nature. Being at the right time at the right place increases 

fitness and the chance to survive. Crucial and general as this statement may be, its principals 

can be found manifold in nature. These principles are reflected in complex interactions from 

human individuals as also from molecules in a cell. Bees and butterflies, for example, increase 

their fitness and chance to survive when they are aware of the time of their favoured flowers 

opening their blossoms to provide access to their nectar. Gazelles in the African steppe in turn 

do so when they can predict the time of day when not to visit a preferred oasis that might be 

shared by their predators at the same time. Therefore, to keep the principles of life arranged 

according to time is a common challenge for all organisms. For humans today, the importance 

of a good timing is furthermore expressed in terms of social virtues. These are, for instance, 

punctuality and obligations representing the maintenance of reliability, like the accuracy of 

flight and work plans or the monthly transfer of the salary. These last examples show that the 

aspects of increased fitness and survival are not necessarily immediately obvious in 

behaviours. What it does show, however, is that everything in nature has its time. The 

common denominator in the mentioned examples is the ability of an inherent time-system to 

track environmental temporal processes. This system owns the purpose to structure the 

existence of an organism by the ability to anticipate (predict) individually important 

environmental alterations. Comparable to organisms which have specialized to certain 

biotopes (Greek bios = life and topos = place) as, for example, to an aquatic or terrestric 

living, some organisms have further specialized to certain chronotopes (Greek chrónos = 

time; Roenneberg, 1992a). The latter means, that these are active during the night- or during 

the daytime hours. The ability to track time and thereby to specialize to individual 

chronotopes has been found in organisms of all phyla and described as so-called internal 

clocks. In analogy to wristwatches humans use to meet social deadlines, the internal clocks 

manage bodily processes to function in a well concerted action in alignment with the external 

24-hour day, to meet biological deadlines.  

Internal clocks are characterized by self-sustained inherent rhythms. This property 

makes the organization of the processes regulated by these internal clocks principally 

independent from external (eventually disturbing) signals. Those temporal biological rhythms 

that show a period of approximately 24 hours are called circadian rhythms (Latin, circa = 

about, dies = day). To maintain synchrony with the environmental 24-hour day the internal, 
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circadian clocks must to be reset each day by so-called entraining signals. Various external 

factors have been identified as entraining signals whereas for mammals, and therefore also for 

humans, the most potent signal is light. Chronobiology investigates these biological internal 

rhythms and the mechanisms behind the temporal organization of living systems. This thesis 

is about those influences from everyday life on the human circadian clock that interfere with 

the temporal organization of meeting biological and social deadlines. These influences are (i) 

the biannual transitions to and from Daylight Saving Time and (ii) shift-work. The subsequent 

paragraphs will introduce into the field of biological clocks and the challenges on these from 

real life. 

1.1. Biological (circa-) Rhythms 

Biological rhythms can either appear dependent or independent from external stimuli 

(Klerman, 2005). Dependent rhythms are triggered by a given stimulus and only occur in 

direct relation to an environmental factor. These rhythms vanish with the vanishing stimulus. 

Independent rhythms continue even in the absence of such external stimuli. External signals 

that are capable to synchronize (entrain) such rhythms are called zeitgebers, from the German 

word for ´time giver´. Most common zeitgebers in nature are light and temperature 

(Roenneberg and Foster, 1997 ; Sweeney and Hastings, 1960 ). Furthermore remarkable and 

unique for the independent rhythms is not only their persistence in zeitgeber absence, but 

additionally their persistence with an inherited period which equals the period of the stimulus. 

In general, biological rhythms are described by their phenomenology, depending on period 

length in relation to the earth’s rotation either around its own axis or around the sun. 

Those rhythms with a period length (much) longer than 24-hours are called infradian, 

rhythms (much) shorter are called ultradian and those rhythms with a period length of about 

24-hours are called circadian rhythms (Latin, circa = about, dies = day). The latter are major 

subject to chronobiological research. Halberg (1959)  was first to describe such terminology 

of rhythms, showing periodicities of circa those of the corresponding stimulus. From this 

terminology, four circa-rhythms can be described in nature. First, these are the rhythms with 

period lengths of about one year and the expression of phenomena of seasonality (e.g. 

breeding rates) corresponding to the turn of the earth around the sun are called circannual 

rhythms. Second and third in relation to the turn of the moon, earth and the sun there are the 

circalunar and the circatidal rhythms. Concerning the circalunar rhythms, the female cycles in 

menstruation are often interpreted to be synchronized with moon phases, whereas this recently 
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has been doubted and ascribed to rather display a synchronization to social or olfactory 

stimuli instead of having an endogenous circalunar clock as a basis (Roenneberg, 1998 ; 

Foster and Roenneberg, 2008 (in press)). Circatidal rhythms as the interplay of ebb and flood 

are mainly stimuli for marine organisms and those living in the shoreline. Last but not least, 

the fourth rhythm to mention in this context is the circadian rhythm that is characterized by a 

period close to 24-hours, orientating on stimuli in the relation to the earth’s rotation around its 

own axis. The evolutionary clou of the circadian clock is giving an organism the opportunity 

to anticipate its “the needs of life” (Moser et al., 2006 ). These “needs” encompass both being 

active during the daylight hours (ergotrophic function of “fight and flight”) and to rest in 

terms of regeneration during the dark period within 24-hours (Moser et al., 2006 ). As already 

mentioned in the previous section many of these aspects finally increase survival. Therefore, 

circadian rhythms are found to regulate many physiological processes in a body, from, for 

example, basal rhythms in heart rate, hormone and electrolyte levels up to complex 

behaviours like the alternation of sleep and wakefulness (see chapter 1.2 below). Figure 1 

provides an overview of the spectrum of internal, spontaneous rhythms found in human 

bodies, which are major topic of this thesis.  

 

Figure 1 Spectrum of biological rhythms in a human body. The spectrum of circadian rhythms is 
presented in this figure at the level of period duration of 1 day (log 105), indicated by rhythms of ‘sleep-
wakefulness’ (left side) and ‘earth rotation (right side) (Figure taken from Moser et al., 2006 ). 

As circadian rhythms are defined on a 24-hour scale and as humans (normally) take a resting 

period within a 24-hour day in which they sleep, chronobiological research combines 
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investigations on both behaviours of wakefulness and sleep, and the interaction of these two. 

This is especially the case for the studies in this thesis. Therefore, before going into detail on 

the principles of the internal clock (which will be explained in chapter 1.3), the following 

section gives a brief overview of sleep basics and associated problems. 

1.2. Sleep  

The alteration between rest (sleep) and activity (wakefulness) is an evolutionary conserved 

behaviour found in invertebrates, vertebrates and mammals (Campbell and Tobler, 1984 ; 

Tobler, 2005 ) and further represents the most obvious states in physiology and behaviour. 

Historically, body and brain have for a long time been regarded to be inactive during sleep. 

This has been disproved by displaying the electric activity of a human brain during sleep with 

means of an electroencephalogram (EEG; first by Caton in 1894). Additionally, this has 

helped to distinguish between the different neuronal states of rest and activity (Berger, 1929 ; 

Loomis et al., 1935 and 1937 ). Dement and Kleitman in 1957  distinguished different sleep 

stages from different neuronal firing rates in the ablated cortical potentials, summated in the 

EEG. Based on these findings, Rechtschaffen and Kales (1968)  established a standardised 

scale for a sleep-EEG, which is still in use today.  

Due to this standard scale, sleep is separated into REM sleep stages (REM = rapid-eye-

movement) and non-REM sleep stages (NREM; aka slow-wave-sleep). REM sleep has been 

first described by Aserinsky and Kleitman (1953)  and is also described as paradoxical sleep, 

because it is characterized by high activity in the electro-occulogram (hence rapid-eye-

movement), a loss of muscle tone in the electromyogram and a low voltage (1-7 Hz), mixed 

pattern in EEG frequency. Ablations of non-REM sleep further display four different sleep 

stages (NREM stages I-IV) which the brain runs through during the night (from stage I to 

stage IV and back to stage I). Stage I represents a stage of transition between wakefulness and 

sleep and stage IV finally represents a stage of deep sleep (Figure 2). The non-REM stages I 

to IV and the REM-sleep stages constitute sleep cycles of 90 to 110 minutes duration each. 

Figure 2 shows that REM-sleep stages become longer in duration over the course of the sleep 

period and the sleep depth in turn decreases, with the latter facilitating the awakening in the 

morning.  



5 
 

Wake

REM-phase

NREM-I

NREM-II

NREM-III

NREM-IV

0 1 2 3 4 5 6 7

Hours since begin of sleep

Wake

REM-phase

NREM-I

NREM-II

NREM-III

NREM-IV

0 1 2 3 4 5 6 7

Hours since begin of sleep
 

Figure 2 The structure of sleep with the 5 different stages, REM-stage and NREM-stages I to IV. These 
5 stages constitute one sleep cycle that takes between 90 and 110 minutes. The duration of the REM-
sleep stages increases over the course of the sleep period (adapted from Roenneberg, 2006 ). 

During the past century, sleep has been studied intensively, but its function still remains 

largely uncertain. Common interpretations range from sleep being necessary for restorative 

processes, for energy conservation and to recreate or to manifest neurologically what has been 

learned during the day. Recently, Tononi and Cirelli (2006)  have put forward the idea that 

during sleep the brain is running through a process of reconsolidation and downscaling of 

neuronal activity and to rearrange synaptic connections, with the purpose to (i) structure 

activity pattern of the past day and (ii) to prepare the brain for the upcoming wake period. 

Sleep therefore constitutes a “concerted cerebral cleanup process” that verifies what is 

important and what is not, in terms that only the important synaptic connections “survive the 

night”. The logic of the Tononi and Cirelli concept (2006)  is underscored by the plausible 

idea that beings sleep because they were awake and not vice versa, that wakefulness results 

from having slept. Therefore, science prefers to speak of a ‘need to sleep’ (or sleep pressure), 

and not of a ‘need to be awake’ (or wake-pressure). Furthermore, this assumption helps to 

explain the observation of why we as humans can only catch up missed sleep instead of being 

able to accumulate a forehanded “sleep-reservoir”. The sleep after a certain period of sleep 

deprivation is characterized by an increased amount of so-called d-waves (characteristic wave 

form in the EEG) that decrease during the recovery sleep. Sleep deprivation therefore has a 

measurable influence on the normal sleep-EEG-structure. The REM-phases occur later during 

the recovery nights, first after the sleep pressure has mainly been decreased.  
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Although, as mentioned above, the definite function of sleep has not been revealed, all 

prevalent hypotheses finally underscore that sleep is important, and likely an important 

counterpart to wakefulness. For example, humans cannot help (at least without external 

substitutes like caffeine or other drugs) from falling asleep after a prolonged period of being 

awake (e.g. after not having slept for one, two or more days). Furthermore, the fact that sleep 

in the animal kingdom has not been eliminated during the course of evolution and that it 

further can be observed in seemingly all species (of course in manifold expressions), does 

show that sleep obviously is important for our existence, health and well being. The next 

section is about the regulation of sleep initiation and termination. 

1.2.1. Two Process Model of Sleep 

Humans cannot end their sleep period on purpose at self selected times without external help 

from an alarm clock, for instance. Further, they cannot prevent from falling asleep beyond a 

certain threshold of tiredness. These two facts show that sleep is regulated by a flexible, but 

autonomous internal system. Borbély (1982)  and Daan (1984)  have introduced a model to 

explain the regulation of sleep timing and wakefulness, that combines these two aspects. This 

model has been introduced as the two-process model of sleep (see additionally a good 

explanation in Foster and Wulff, 2005 ). The model describes, that the longer the time one is 

awake, the higher becomes the sleep pressure that finally leads to sleep initiation. This 

increase in sleep pressure is measurable from the amount of slow d-waves (these constitute a 

characteristic wave form) in the sleep-EEG (homeostatic process S; see black curves in Figure 

3). The slow-wave power in turn decreases during the subsequent sleep period. As the second 

component the internal clock regulates the timing of sleep (circadian process C; grey Curves 

in Figure 3). The internal clock thereby opens a “sleep-window” at a certain point of time and 

gives a threshold that depending on the amount of accumulated sleep pressure makes us fall 

asleep or waking up in a respective circadian fashion. 

Disturbances on the interplay of these two sleep regulating processes described above, 

can lead to circadian rhythm sleep disorders, sleepiness and fatigue which will be described in 

the next chapter and also in the chapter on sleep problems from shift-work (chapter 4.5.1). 
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Figure 3 Two-process model of sleep regulation by Serge Daan und Alex Borbély (Borbély (1982)  and 
Daan (1984) ). The interplay between these two processes regulates both timing and duration of the 
sleep period (I, without sleep deprivation). After sleep depression the “slow wave power” at the 
beginning of sleep period increases and the duration of the recreation sleep is prolonged (II, with sleep 
deprivation) (adapted from Roenneberg, 2006 ). 

1.2.2. Circadian Rhythm Sleep Disorders, Sleepiness and Fatigue  

The importance of the internal clock for a proper sleep initiation and termination has been 

shown in the previous section, as interferences with the function of the internal clock can lead 

to sleep disturbances. These will also be subject in the chapter on sleep problems from shift-

work (chapter 4.5.1). As a clinical form of such disturbances, the term of “Circadian Rhythm 

Sleep Disorders” (CRSD) has been introduced into the manual of the International 

Classification of Sleep Disorders (ICSD codes 780.55-9). The ICSD discusses CRSD being 

influenced by one or more of the following issues: shift-work; time zone travel (e.g. 

transmeridianal flights); irregular sleep/wake behaviour, advanced sleep-phase syndrome, or 

other (so far unspecified) chronobiological and pathophysiological reasons.  

CRSD can lead to (daytime) sleepiness and even fatigue. The latter is a more physically 

pronounced variant of sleepiness, which does not immediately decrease after a sufficiently 
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long sleep period (as sleepiness in most cases does). Fatigue has been characterized by several 

authors to be marked by (i) drowsiness and dullness, (ii) inability to concentrate and (iii) 

awareness of physical discomfort (Yoshitake, 1978) . Chalder (1993)  categorised fatigue into 

a mental and a physical component. Smets et al. (1995 and 1996)  have extended these models 

and created a five dimension system with (i) general fatigue, (ii) physical fatigue, (iii) mental 

fatigue, (iv) reduced motivation and (v) reduced activity. These definitions have in common 

that sleep deficits affect physical and psychological functions in people. These influences are 

discussed as risk factors especially in terms of accidents and injuries. The importance of the 

internal clock in sleep regulation has been pointed out above. In the following chapter I will 

come back the basics and characteristics of the internal clocks and how these are challenged 

in real life. 

1.3. The Internal Clock  

The first description of a process that today is classified as a circadian rhythm dates back to 

the early 18th century. The French astronomer Jean Jacques d'Ortous de Mairan (De Mairan 

1729)  described circadian rhythmicity (without being aware of their existence) in the mimosa 

(Mimosa pudica). He observed an alteration in the folding and unfolding of the leaves of the 

mimosa that pertained in complete darkness. Interestingly, the mimosa belongs to the group of 

heliotrope plants, and heliotrope is Latin for “turning toward the sun”. This observation has 

made him conclude that the mimosa owns an inherent mechanism independent from the 

diurnal changes in light and darkness. In 1905, Simpson and Galbraith  were the first to 

describe such phenomena in animals, in experiments on squirrel monkeys and their rhythm in 

body temperature.  

The mechanism firstly described by de Mairan in 1729 has later been identified to be 

regulated by the ´internal clock´, which orchestrates all daily functions in organisms of all 

phyla. Every single cell in an organism has its own clock, which are all built up in tissue 

clocks, further organ clocks and finally in the internal clock (-work), which is observable as 

an organisms´ entity. All these clocks coordinate processes from gene expression, tissue 

metabolism, body temperature and complex behaviour (as the rhythm of rest (sleep) and 

activity (wakefulness)), which all in combination regulate an organisms´ existence (Moser et 

al., 2006 ). 
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In humans the centre (pacemaker) of this internal clock (-work) resides in the suprachiasmatic 

nucleus (SCN) located in the hypothalamus (Figure 4). Richter (1967)  was the first to 

describe the hypothalamus as the locus of the internal clock, from lesion studies on blinded 

rats. He noticed that the drinking and eating behaviour was abolished when the hypothalamus 

was lesioned. The SCN in humans is build of two nuclei of about 10.000 neurons each (ca. 

0.23 mm3), and is located on both sides at the basis of the lateral ventricles, approximately 

two centimetres behind the bridge adjacent to the crossing of the optic nerves (gr. Chiasma 

opticum; therefore suprachiasmatic nucleus; Figure 4). The cells of the SCN produce self-

sustained, spontaneous excitations, which trigger pulsated releases of hormones and neuronal 

transmitters. These rhythms result from endogenous translation-transcription feedback cycles 

within each cell, regulated by clock genes (with the most prominent being period 1, 2 and 3 / 

chryptochrome 1 and 2; clock and bmal1) and their corresponding products, the clock-

proteins. Via its rhythmic neuronal outputs, the SCN coordinates all the cellular clocks to 

adjust their physiology to the Earth's rotation.  

 

Figure 4 Image of the anatomical connections between the eye (light reception at the retina) and the 
neuronal pathway via the optic nerves to the suprachiasmatic nucleus (SCN). The figure additionally 
shows that Melatonin (synthesised in the pineal gland) is secreted into the blood system (source 
http://thebrain.mcgill.ca).  
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The periods of human internal clocks have been found to vary between 23.5 and 25 hours. 

The length depends on the individuality of the respective (clock) genes, which equals the 

distribution of other genetic traits, like hair-colour or body height. As the human internal 

clock has a period of approximately 24 hours (Latin circa = about and dies = day) it needs to 

be reset, by the neuronal integration of so-called zeitgeber information each day. Zeitgebers 

are environmental signals that are capable to entrain (synchronize) the circadian clock. For 

humans the most potent zeitgeber is (sun-) light (Roenneberg et al., 2007a,b ; Kantermann et 

al., 2007 ; Danilenko et al., 2000 ; Boivin et al., 1996 ). It therefore seems to be no 

coincidence that the SCN is located adjacent to the optic nerves. As in many other animals too 

light is detected exclusively by the eyes in humans. More precisely, light is received by a 

combination of rods, cones, and a recently discovered additional retinal photopigment, 

Melanopsin. This pigment is dispersed in the ganglion cell layer of the retina (Freedman et al., 

1999 ; Panda et al., 2002 ). Melanopsin containing retinal ganglion cells (rGCs) receive photic 

information which is then transmitted via the glutamatergic retinohypthalamic tract (which are 

collaterals of the optic nerve) to the SCN (suprachiasmatic nucleus, Figure 4) (Provencio et 

al., 1998a,b  and 2000 ; Hattar et al., 2002 ). 

The internal biological clock starts to “run free” when it is shielded from the solar and 

social time cues. Remarkably, it does so keeping its inherited and endogenous period close to 

24 hours. This was first shown in the pioneering works done by Jürgen Aschoff together with 

Rütger Wever and their team in the mid-1960ies. Starting with studies in an isolated cellar 

room in a Munich hospital, they later did famous experiments in a bunker, which has 

originally been built for exactly their studies in Andechs (Germany). In this bunker subjects 

have been kept and studied in constant dim-light conditions for several weeks, without any 

access to the external world. These bunker studies gave important insights into the behaviour 

of the human internal clock in zeitgeber absence (Aschoff, 1965, 1967, 1981; Wever, 1979; 

see also the comprehensive review from Mistlberger and Skene, 2004 ). These experiments 

have revealed, that the human clock in some people runs with a period length lightly longer 

than 24 hours and in some slightly shorter. Sleep times or the peak in core body temperature, 

for instance, of those subjects with a period length longer than 24 hours became later every 

day, whereas in those with a period length shorter than 24 hours the respective parameters 

became earlier. Depending on the amount of the deviation from 24 hours (ranges between 

23.5 and 25 hours have been observed) it takes up to several weeks until the internal clock 

reaches the “starting phase point” again.  
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The function of the internal clock is not caused by the zeitgeber itself. The clou of the internal 

clock is, as already mentioned, the regulation of daily body processes even in the absence of 

zeitgebers. Otherwise, such laboratory experiments without zeitgebers would have had an 

unwanted or even fatal outcome. The mentioned independency allows the internal system to 

react flexible to environmental changes on the one hand and on the other to adjust these 

external deviations. One of the most important functions of the internal clock is anticipation. 

To anticipate the rhythmic changes in the environment makes predictions possible and can 

therefore be suggested to increase the fitness of an organism. Limits of this adjustability in 

case of the transition to and from Daylight Saving Time (DST) and shift-work will be 

explained in the chapters 3 and 4. In the next section, the process that ensures a stable 

synchronization of the internal clock to its environment will be introduced. 

1.3.1. Phase of Entrainment – Chronotype 

As introduced in the previous section, zeitgebers are environmental signals that are capable to 

entrain (synchronize) behaviours via influence on the circadian clock. These zeitgebers can be 

different among species. For example, light but also temperature have been found to be potent 

zeitgebers for the fungus Neurospora crassa (Merrow et al., 2001, 2006 ; Roenneberg et al., 

2001, 2005 , Jacobson et al., 2006 ; Madeti (academic dissertation; in preparation)). Nutrients 

are potent zeitgebers for the clock in the unicellular alga Gonyaulax polyedra (Roenneberg et 

al., 1992b, 1995 ). Food is also capable to entrain mammalian behaviour (Honma, 1983; 

Aschoff, 1986 and 1987), and recent results have lead to the suggestion that food intake 

activates the dorsomedial hypothalamic nucleus (DMH) (Mieda et al., 2006 ; Gooley et al., 

2006 ; Fuller et al., 2008 ). However, the latter has been shown only in the absence of light 

stimuli as a zeitgeber and whenever light is present, it turns out to be the most potent 

zeitgeber for the human internal clock. The effectiveness of entrainment depends on various 

aspects of the zeitgeber and the clock. These aspects are (i) the zeitgeber strength, (ii) the 

spectral composition of light (if used as a stimulus), (iii) the duration of exposure to the 

zeitgeber, (iv) the susceptibility of the light perceiving system and (v) the actual phase 

position of the clock (Hätönen, 2000; Pauley, 2004). This actual phase position plays a role 

for the resulting phase position, as zeitgeber exposure before a rhythms´ nadir will advance 

the rhythm, whereas exposure after the nadir will delay the clock. This property can be 

compared with the behaviour of a swing (Roenneberg et al., 2003a). Depending on the actual 

position of the swing, the resultant position after giving a push differs. This means, the swing 
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can stop to swing, can be advanced in position or can be delayed in swinging. Individuals 

adopt a specific temporal relationship to their external zeitgebers (e.g., the time difference 

between dawn and wake-up, the core body temperature minimum, or the melatonin onset). 

This relationship between external and internal time is called phase of entrainment and people 

that differ in this trait are referred to as different Chronotypes (Roenneberg et al., 2003b). The 

Munich ChronoType Questionnaire (MCTQ, Figure 7 in chapter 3), developed by our work 

group, is a simple tool to assess Chronotype in a highly quantitative manner. The MCTQ asks 

for the individually preferred time of sleep on work and free days separately, from which the 

mid point of these sleep periods can be calculated as (i) the Mid-Sleep on Free Days (MSF) 

and (ii) the Mid-Sleep on Work Days (MSW). If, for example, the core sleep period (meaning 

the time from falling asleep until the time of waking up) is from 00:00 h to 09:00 h, the mid-

sleep time point would be at 04:30 h. Sleep times differ between work and free days as many 

people sleep longer on free days when they do not have to go to work in the morning. In 

addition, longer sleep on free days can also result from an accumulated sleep deficit over the 

workweek. A sleep deficit in turn results when the wake up times on work days are earlier 

than the desired wake up times given from the internal clock (see also chapter 1.2.1, The Two 

Process Model of Sleep). Therefore, the mid-sleep time point has to be corrected for the 

weekly sleep deficit to yield the MSF ‘sleep corrected’ (MSFsc). The distribution of 

(uncorrected) MSF and the corresponding different Chronotypes (meaning early to 

intermediate to late Types) in a given population follows a near Gaussian distribution (Figure 

5). This distribution can be, for example, compared with the distribution of body height with 

few very tall and very small people at both ends. 

 

Figure 5 Distribution of Chronotypes calculated by mid-sleep on free days (MSF) from our MCTQ 
Database with entries from 60.000 people mainly dwelling in Germany, Switzerland, Austria and The 
Netherlands. 
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People having their MSF at “04:30 a.m.” would find themselves in the middle of this 

distribution. These therefore would be intermediate Chronotypes with a MSF of 4.5. Further 

adjustments for the sleep deficit can be made for age and sex (MSFsasc; Roenneberg et al., 

2007a ). Figure 6 presents the distributions for MSF, MSFsc and MSFsasc, which can be 

narrowed down and get therefore more reliable (for a certain population) with each step of 

correction (Roenneberg et al., 2007a ). As with other genetic traits, circadian properties 

depend on specific genotypes. Different variants of ‘clock’ genes (Young and Kay, 2001 ; 

Roenneberg and Merrow, 2003 ) are associated, for example, with the period length of the 

circadian rhythm in constant conditions. The free-running periods in a given population are 

distributed around a mean. Both animal experimentation (Pittendrigh and Daan, 1976a,b ) and 

human studies (Wever, 1979 ; Klerman, 2001 ; Dijk and Lockley, 2002 ) have shown this 

distribution to be species-specific. Furthermore, genetic variations partly explain individual 

differences of the circadian clock function under entrained conditions (Jones et al., 1999 ; 

Ebisawa et al., 2001 ; Toh et al., 2001 ; Katzenberg et al., 1998 ; Hamet and Tremblay, 2006).  

 

Figure 6 Distributions of Chronotypes judged by different calculations of mid-sleep. The figure on top 
shows the simple mid-sleep on free days (MSF). The figure in the middle shows the MSF corrected for 
the sleep debt accumulated during the workweek (MSFsc, see text for details). The figure at the bottom 
shows the MSFsc further corrected for age- and sex-dependent changes (MSFsasc, see text for details). 
(Taken from Roenneberg et al., 2007a ) 
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One difficulty in studying circadian rhythms is to elucidate variations, with the aim to 

understand the behaviour of the internal clock in different situations. The next paragraph will 

therefore focus on those external factors that challenge the internal clock and thereby offering 

the opportunity to learn more about the principles of clock functioning. 

1.3.2. Challenges to the circadian clock from real life 

In the previous chapters it has been pointed out that the internal circadian clock regulates 

many physiological functions ranging from cellular events (e.g. cycles of DNA-

transcription/translation, cell metabolism, etc.) to complex behaviours like the alternations 

between sleep and wake. As internal clocks are part of processes aiming at keeping the body 

in a “healthy status”, it seems reasonable to investigate the role of internal clock (mal-) 

functioning leading to certain diseases. Disturbances of circadian rhythms are suggested to be 

part of the causal chain in the development of certain diseases, which will be presented in 

chapter 4.  

Most of the knowledge about the human circadian clock is based on results from 

laboratory studies under controlled, artificial conditions. Very little is known about the impact 

of everyday life on the human circadian clock. Therefore, to yield more knowledge about 

processes of adjustment and adaptation of the human internal clock in everyday life might 

help us to develop strategies for disease management and prevention.  

In 1979, Karvonen  wrote that – generally spoken – the process of adaptation between 

two given extremes can either result in complete physical, psychological and social well-

being or lead to death. The major function of the internal clock is – as pointed out earlier – to 

increase fitness and the chance of survival, by providing an organism with the ability to 

anticipate environmental changes. The human body is constantly influenced by external 

stimuli and is therefore challenged to maintain a state of homeostasis (Greek homeo = same 

and stasis = stable). If homeostasis is not maintained, the body runs into and through a 

process called allostasis (Greek allo = different, another). Allostasis is not a steady state but 

an active adaptation process to maintain stability (homeostasis) through change, which is 

strongly context dependent (Korte et al., 2005 ). The concept of allostasis will be adopted in 

chapter 4.7.2 for the discussion on the results from the literature shift-work survey. In analogy 

to a state of intermediate inconsistency like allostasis, the next paragraph will introduce a 

phenomenon from chronobiological research, the so-called internal desynchronisation. 
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1.3.2.1. Internal Desynchronisation 

One important feature of the internal clock is that it is slow in phase adjustment to changes in 

timing of an individuals´ habits or environment. Especially this feature of slow adjustment 

prevents the internal clock from changes in the timing of the body clock in case of, for 

example, a brief nap at noon or awakenings during night, thereby providing a security interval 

in reactivity. For more permanent changes in the alignment of external and internal time, a 

lack of synchrony between the body clock and the environment is regarded to be responsible 

for feelings of sleepiness, discomfort and malaise. An example of an internal/external time 

mismatch is what time zone travellers experience when their internal clocks adjust step-by-

step to the destinations´ environmental cues. This phenomenon known as Jetlag is the result of 

a rapid change in environmental cues (literarily from flying with a jet), which is much too fast 

for the internal clock to follow immediately with adjustment. Therefore, the internal clock 

lags behind the rapid change in time (hence this phenomenon is called Jetlag). 

Studies on Jetlag after time zone travel have yielded insight into the susceptibilities of 

the internal clock in humans. The results show that the internal clock needs about one day for 

adjustment to each hour travelled westward and about 1.5 days after corresponding eastward 

travel (Waterhouse et al., 2002 ; Burgess et al., 2003 , Rüdiger, 2004 , Cajochen, 2005 ). 

Therefore, travelling westwards facilitates the adjustment of the internal clock compared to 

eastward travel. This observation shows that it is easier for humans to delay their sleep times 

than to advance these. It is easier for humans to get to bed later that to initiate sleep earlier. 

Concerning Jetlag after transmeridianal flights, one important aspect needs to be kept in mind, 

namely that Jetlag is experienced only transiently as after sufficient time at the destination, 

synchronization to the new environment is possible. If this synchronisation is not possible, the 

body gets into a condition called internal desynchronisation, which is currently discussed in 

the context of many health deteriorations (Waterhouse, 1999 ; Rüdiger, 2004 ; Cajochen, 

2005 ; Haus and Smolensky, 2006 ).  

The concept of internal desynchronisation was introduced first by Jürgen Aschoff 

(Aschoff, 1965 and Aschoff et al., 1967), from results of the early bunker experiments. Later, 

Rutenfranz et al. (1976) have adapted this concept to the field of shift-work research on 

human health. Internal desynchronisation is suggested leading to physiological stress, further 

to sleep problems and other stress related illnesses (e.g. digestive disturbances or even 

cardiovascular problems). The theory behind internal desynchronisation is a mismatch in 
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entrainment. This mismatch is discussed to result from a discrepancy between internal, 

biological and external, environmental (social) time. Several authors have put forward the 

question if the severity in health problems depends if it is a repeated or a constant 

misalignment. As will be reported in the chapter on health problems in shift-workers (chapter 

4), most health deteriorations are reported for shift-workers employed in a rotational shift 

schedule, compared to those following constant, not changing work schedules. Therefore, in 

case of constant shifts (e.g. offshore workers that stay two weeks offshore and two weeks 

onshore); the internal circadian rhythm has been expected to adjust better.  

Up to today, the principles of internal desynchronisation have mainly been studied in 

laboratory experimentations with animals (Davidson et al., 2006 ; Filipski et al., 2004 ; 

Stokkan et al., 2001  ). Studies in this respect on human health are virtually nonexistent and 

the impact of internal desynchronisation in the aetiology of health problems still remains to be 

elucidated (Brown et al., 2008 ; Martino et al., 2008 ). Steven Brown in this context stated 

that between single cells even from the same tissue “divergent circadian phases of several 

minutes are normal” (personal conversation). This has been found after isolation of both 

human and murine fibroblasts. We can learn form this observation that even single cells from 

the same tissue can be circadian phase divergent. Therefore, a certain divergence in circadian 

phase might be an inherent phenomenon of these cells, which is not caused by external 

influences. This might be an additional factor that has to be taken into account to play a role 

in the individual susceptibility towards mismatches between internal and external time. Future 

research has to reveal the thresholds of internal desynchronisation that lead to disease when 

they are exceeded. The concept of internal desynchronisation will also be discussed further in 

chapter 4.7.2. To elucidate the causalities of internal desynchronisation, adequate parameters 

are needed to quantify the impact from everyday life onto the human internal clock. This will 

be discussed in the following chapter on Social Jetlag. 

1.3.2.2. Social Jetlag 

As described in the previous chapter, Jetlag after transmeridianal travel is associated with a 

number of health problems. The underlying mechanism that leads to Jetlag is the discrepancy 

between the internal, biological time and the external, social time at destination. The latter is 

set immediately with arrival, but the former takes several days to be set to the new time 

regime.  
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In analogy to this, a societal phenomenon arranging from modern life (“24/7-society”), which 

is independent from geographical translocations, has been described recently as ´Social 

Jetlag´ (Wittmann et al., 2006 ). For this thesis, the calculation of Social Jetlag has been 

modified, as proposed by Roenneberg et al. (in preparation). The amount of Social Jetlag will 

be calculated as the difference (in hours) between the individual internal and external mid-

activity time points ( Mid-Actint - Mid-Actext ). Internal time (Mid-Actint) is based on the 

mid-sleep on free days (MSF), calculated from the Munich Chronotype Questionnaire 

(MCTQ, see chapters 1.3.1 and 3). The corresponding mid-activity time point is then 12 hours 

phase apart and results from adding 12 hours to the MSF (e.g. with a MSF of 4.5 the Mid-

Actint .is 4.5+12 = 16.5; which is 16:30 h.). External time (Mid-Actext) is calculated as the 

external mid activity time point, given by mid point of the hours of wakefulness. 

The larger the discrepancy between internal and external time, defined by Mid-Actint - 

Mid-Actext , the higher the level of Social Jetlag. In everyday life Social Jetlag can be 

observed, for example, as result from a sleep deficit due to early work or school beginnings 

that curtail sleep. When sleep is terminated before the desired time from the internal clock 

(see chapter 1.2.1) the sleep duration is decreased. This in turn is often compensated by 

prolonged sleep on free days and weekends. The larger the amount of prolonged sleep, the 

larger is the Social Jetlag. 

The concept of Social Jetlag is central in this thesis to explain and discuss the impact of 

internal desynchronisation to large groups of populations. It will also be used to calculate the 

specific influence from shift-work on the human internal clock (chapter 5). Although Social 

Jetlag does not reflect the impact on single cells and organs (which are assumed to be 

concerned by internal desynchronisation, as pointed out in chapter 1.3.2.1), it will be 

introduced as a promising and easy measurable parameter in real-life studies at an initial step. 

In the next chapter, the aims of this work are presented. 
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2. Aims of this Work  

The common approach in science to study the principles and functions of circadian clocks 

follows examinations in laboratories under controlled, artificial conditions. Real-life studies 

on the human internal clock are rare and often argued to be of minor use and questionable due 

to the many uncontrollable influences. Anyhow, with increasing awareness that the human 

internal clock is involved in almost all facets of health and disease, science cannot ignore the 

importance of studies in the field. Therefore, to increase the applicability of study results from 

the laboratory, it is necessary to validate these with data from real life investigations, because 

science relies on results being reconfirmed. Therefore, the focus of this thesis is put on real 

life studies. This methodological challenge directly leads to the question of how to gather 

valid results about the behaviour of the human internal clock under real life conditions, which 

lead to useful conclusions. The answer to this question of how to study the human clock both 

in real life and on a population wide level is found in (i) the biannual transitions to and from 

Daylight Saving Time (DST; affecting about 25% of the world’s population; see chapter 3) 

and (ii) in Shift-work populations (constituting up to 20% of a workforce; see chapter 4). 

Based on these two major topics, this thesis is separated into three main chapters, which will 

be briefly introduced in the following sections.  

 

2.1. Daylight Saving Time (DST) and the Human Clock (Chapter 3) 

The rational to study the effect of DST has arisen from the facts that: 

(i) DST has merely been studied in respect to the human physiology.  

(ii) DST has to a lesser extent been studied for effects on the internal clock.  

(iii) DST confronts about one quarter of the Worlds´ population that 

(a) Underlines the importance for this study and additionally  

(b) Facilitates the recruitment of subjects as these can be studied directly in 

their real environment.  

(iv) DST is, compared to laboratory or bunker experiments, less expensive in terms 

of study costs for materials (see point iii) and analyses. 
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The approach to study the influence of DST on the human circadian clock was further 

propelled by previous results also from our own work group, on the differential behaviour of 

different Chronotypes in real life settings (Roenneberg et al., 2007a,b, 2003b, 2004, 1989, 

1990a,b). Therefore, DST is an ideal topic for implementing chronobiological approaches to 

real life studies to elucidate the thresholds in adjustment capacities of circadian internal 

clocks. Results of this study have been already published as Kantermann et al. (2007) . 

 

2.2. Shift-Work and the Human Clock (Chapter 4)  

Shift-workers are forced by their schedules to work at times that most people use for 

recreation or sleep. These circumstances make this part of the workforce an excellent sample 

to study the influence of modern industrialised life on the human clock. The need to evaluate 

the health of shift-workers and to elucidate possible shift-work related health risks should be 

of major concern for the following reasons: 

• There are distinct and consistent associations between shift-work and adverse health 

effects, stated by many authors from various different research areas, and 

• Despite the awareness of these associations, the number of shift-workers  increases 

worldwide, and 

• Concepts to adequately quantify the impact of shift-work on health are missing.  

As shift-workers already have been studies all over the world by many investigators, we 

aimed to elaborate the state of knowledge from the respective literature, before starting new, 

cost-intensive studies. The literature survey exclusively focused on field studies in real life, 

for the aforementioned arguments, with special considerations from chronobiology. 

2.2.1. Potential Health Costs from Shift-Work (Chapter 4.7.3) 

As the health situation of shift-workers is of major concern, the costs arising from any shift-

work related health outcome is also of strong concern for the health insurance system. 

Therefore, after evaluating the impact(s) of shift-work on human health from the literature, a 

potential cost analysis will be performed. 
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2.3. Shift-Work/Social-Jetlag-Model (Chapter 5) 

As there are virtually no tools for the quantification of the impact of shift-work on the human 

internal clock, a program has been development (the “Shift-Work/Social-Jetlag-Model”) that 

calculates the amount of Social Jetlag, as quantitative measure of the accumulative 

discrepancy between internal and external time in shift-workers, as has been proposed by 

Roenneberg et al. (in preparation). The idea to this model bases on the main result of the 

findings from the shift-work literature survey (chapter 4). These findings indicate that the 

direction in shift rotation likely lead(s) to different (long- and short term) health outcomes. 

Social Jetlag has been chosen as the output variable of the Shift-Work/Social-Jetlag-Model 

that additionally allows calculating chronotype-specific effects. The Shift-Work/Social-Jetlag-

Model thereby introduces the concepts of chronobiological research into the field of 

epidemiological shift-work research, offering excellent opportunities for the design of 

chronotype-friendly work schedules. 
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3. Daylight Saving Time (DST) and the Human Clock – A Field Survey 

3.1. Introduction  

3.1.1. Brief History of Daylight Saving Time 

Historically, Benjamin Franklin is said to be the initiator of Daylight Saving Time (DST). At 

the end of the 18th century he wrote a satirical letter (Franklin, 1784) in which he proposed the 

Parisians to get up earlier to more properly seize the day (-light). He developed the sparkling 

idea of saving wax for candles, as fewer candles would need to be burned during the 

evenings. He further proposed to tax people for burning candles at night or for closing shades 

during the day. However, Benjamin Franklin never really spoke of changing the clock time. It 

was William Willet, a famous builder of Great Britain, who in 1907 first came up with the 

idea of really changing clock time (Willet, 1907). With his pamphlet “The Waste of 

Daylight”, Willet advertised his mainly profit orientated interest of his workers coming earlier 

to work in the morning. Like perfect salesman do, to sell their products, he additionally put 

emphasise on the benefit of gaining more time in the evenings for outdoor activities. He 

finally did not succeed in convincing the British parliament to really change clock time.  

The introduction of DST as we know it today is also predominantly propelled by the 

idea of saving energy and costs on the one hand and to increase productivity by extending the 

daily working hours by a better use of the natural daylight on the other hand. Anyhow, the 

results on savings in energy are not consistent and most often not convincing. The statement 

that under DST less energy is spent is not really proven. Furthermore, an elevated electricity 

consumption in the mornings has been found by Kellogg and Wolff (2007) . The need to get 

up earlier during DST is “rewarded” by having more free time in the evenings that can be 

spent in daylight. The introduction and use of DST is further justified by an unproven 

statement, of a better fit of daily activities to the daylight hours. Many people complain about 

to commute to work or school in the dark hours of early morning after the time change in 

spring. Also, increase of tiredness and lack of awareness are often mentioned by the people.  

Finally, it was Germany being the first nation that introduced DST on April 30th, 1916. 

Monetary and energy savings motivated the German government. To save electricity, oil and 
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therefore money for the 1st World War preparation, the German population was forced to go 

on a short “eastward flight”, when the clocks changed from 23:00 h to 00:00 h on that day in 

April. Great Britain introduced DST the same year and the United States followed in 1918.  

In the meanwhile, DST is most commonly used in temperate regions, due to the 

considerable variation in the amount of daylight versus darkness across the seasons in those 

regions. The word "summer" in this context includes most of spring after the spring equinox 

and nearly all of autumn (April through October). Likewise, the word "winter" here includes 

part of autumn and a few weeks in spring (November through March). This varies by time 

zone, of course, and can change over time as well. 

All countries in Europe except Iceland observe DST and change on the same date and 

time, starting on the last Sunday in March and ending on the last Sunday in October. 

Europeans commonly refer to the system as summer time: Irish Summer Time, British 

Summer Time, and European Summer Time. This is reflected in the time zones names as 

well, e.g., Central European Time (CET) becomes Central European Summer Time (CEST). 

Today, more than 70 countries worldwide use DST and in 1994, the dates of changing the 

clocks have been standardised among the European Union. Spring change into summertime is 

on the last Sunday in March (0200  0300 h) and autumn change is on the last Sunday in 

October (0300  0200). In the West European (UTC), Central European (CET, UTC+1), and 

East European (UTC+2) time zones the change is simultaneous: on both dates the clocks are 

changed everywhere at 01:00 UTC, i.e. from local times of 01:00/02:00/03:00 to 

02:00/03:00/04:00 in March, and vice versa in October. For further information on the history 

of Daylight Saving Time, I refer to the book “Spring Forward: The Annual Madness of 

Daylight Saving Time” by Michael Downing , which gives a good overview on this subject. 

In the next chapter, I will continue giving a brief overview of the previous studies on the 

impact of DST. 

3.1.2. Brief History of Studies on Daylight Saving Time 

Despite the fact that 1.6 billion people experience DST, few studies have investigated the 

impact of DST-transitions on physiology and behaviour. One found no effect on psychiatric 

disorders (Shapiro et al., 1990) . Others studied the effect on traffic accidents with 

inconsistent results (Varughese and Allen, 2001 ; Ferguson et al., 1995 ; Lambe and 
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Cummings, 2000 ; Pfaff and Weber, 1982 ). Behavioural studies accompanying subjects 

across DST-transitions are rare.  

3.2. The Study on Daylight Saving Time 

A quarter of the world’s population is subjected to a one-hour-time-change twice a year due to 

daylight saving time (DST). Obviously, this reflects a change in social clocks but not 

environmental ones (e.g., dawn). The impact of this artificial time change is poorly 

understood. As in other organisms, the human circadian clock uses daylight to synchronize 

(entrain) to its environment. Entrainment is so exact that human behaviour adjusts to the east-

west progression of dawn within a given time zone (Roenneberg et al., 2007b) . In a large 

survey (n=55,000), we show that the timing of sleep on free days follows the seasonal 

progression of dawn under standard time, but not under DST. 

Contrary to studies on energy savings or traffic accident risks in times around the 

transitions, and despite increasing public complaints about the disadvantages of DST (e.g. 

commuting to work while still dark outside), health effects by these biannual time transitions 

have merely been studied. As DST is introduced in over 70 countries around the globe and 

with suspicion of DST affecting the seasonal adjustment in humans, the aim of this study was 

to gain more insight into the effects of DST on the human circadian clock. We, therefore, 

analysed the timing of sleep and activity for eight weeks around each of the two DST-

transitions in 50 subjects who were chronotyped (analysed for their individual phase of 

entrainment Roenneberg et al., 2007a ). We find that both parameters readily adjust to the 

release from DST in autumn but that the timing of activity does not adjust to the DST 

imposition in spring, especially in late Chronotypes. Our data indicate that the human 

circadian system does not adjust to DST and that its seasonal adaptation to the changing 

photoperiods is disrupted by the introduction of summer time. This disruption may extend to 

other aspects of seasonal biology in humans. Studying the effects of DST-transitions 

essentially investigates the potential re-entrainment of individuals to a new social schedule 

and should, therefore, consider Chronotype (an individual’s phase of entrainment), which 

differs substantially within a given population (Roenneberg et al., 2007a) . Depending on 

genotype (Toh et al., 2001) , gender, age (Roenneberg et al., 2004)  and light exposure, our 

clocks will adopt a different phase relationship to dawn.  
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We have developed a simple tool, the Munich ChronoType Questionnaire (MCTQ, Figure 7) 

to assess Chronotype in a highly quantitative manner. Assessment of how the human clock 

adjusts to DST-transitions at non-equatorial latitudes is confounded by the fact that the times 

of dawn and dusk also change. Dawn times (see grey area in Figure 10) change rapidly around 

the spring DST-transition (which often occurs close to the March equinox) and change to a 

lesser extent around the autumn transition (which often occurs more than a month after the 

September equinox). Given that daylight (including the low light levels at dawn) is the 

predominant zeitgeber for our circadian system (Roenneberg et al., 2007b ) it is unlikely that 

it readily adjusts to the abrupt and purely social DST-transitions. 

3.3. Methods 

Subjects, study design and instruments:  The study included the autumn DST-transition (night 

of Oct 28/29 2006; study period: Oct 3 - Dec 3) and the spring DST-transition (night of Mar 

24/25 2007; study period: Feb 19 - Apr 29). Volunteers (autumn: n= 51, 34 F/29 M; spring: 

n= 49, 32 F/17 M; age: 18-59 y, mean 34.5 y) were recruited by word of mouth from 

Germany, Italy, Switzerland, Scotland, Slovakia, The Netherlands, and Luxembourg. 43 

subjects participated in both transitions and 6 new subjects were recruited for the spring study. 

Prerequisites were: informed consent; regular daytime employment; no diagnosed psychiatric 

diseases or sleep disorders; no travelling during the study periods. Delivery of questionnaires 

(the MCTQ, Figure 7), logs (Figure 8) and actimeters (Figure 9) were scheduled one week 

prior to the actual start of each study period, so that all participants were able to complete the 

full eight weeks in autumn and spring. As a reward, subjects participated in a lottery, whereby 

any subject could win 250 EUR in each study period. At the onset, participants completed an 

abbreviated version of the Munich ChronoType Questionnaire (Roenneberg et al., 2003b)  

(MCTQ; Figure 7), which we developed to assess Chronotype in a highly quantitative 

manner. The questionnaire contains questions about sleep times on both work and free days. 

Chronotype is then expressed as the time of mid-sleep on free days (MSF) because free-day-

schedules are less confounded by social obligations such as regimented work. The MSF is 

corrected for sleep-debt accumulated over the work-week (MSFsc). MSFsc is a reliable 

marker for Chronotype and correlates significantly with the daily rhythms of activity and 

physiology (e.g., melatonin, cortisol or body temperature, recorded in constant routines) . 
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Munich Chronotype Questionnaire (MCTQ) 
 

 
Please complete all sections, regardless of whether you are working on a regular basis or 

not. Use the 24 hour scale, 23:00 instead of 11:00 !!!! 

 

On work days (includes the night before a work day) 

 ... I go to bed at   _________ o’clock  (see image 1) 

 ... at  _________ o’clock, I decide to fall asleep (see image 3) 

 … I need  _________ minutes to fall asleep (see image 4) 

 … I wake up at _________ o’clock (see image 5) 

      without alarm clock     with alarm clock  

 … after  _________ minutes I get up (see image 6) 

On average, how long per day,  
 do you spend outside exposed to daylight (without a roof above head)? ____h ____min 

 

On free days (includes the night before a free day) 

… I go to bed at  _________ o’clock  (see image 1) 

 ... at  _________ o’clock, I decide to fall asleep (see image 3) 

 … I need  _________ minutes to fall asleep (see image 4) 

 … I wake up at _________ o’clock (see image 5) 

      without alarm clock  with alarm clock  

 … after  _________ minutes I get up (see image 6) 

On average, how long per day,  
 do you spend outside exposed to daylight (without a roof above head)? ____h ____min 
 

  

Figure 7 Analysis of the original version of the Munich ChronoType Questionnaire (MCTQ) identified 
the rudimentary questions, necessary for quantitative Chronotype assessment. To avoid any confusion 
concerning the individual questions (e.g., when do you go to bed, get ready to fall asleep, etc.), cartoons 
exemplify the sequence of events from the time people go to bed and get up. Subjects filled out the 
MCTQ at the onset of each study period. 
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Figure 8 Sleep Log: Subjects filled out a sleep-log every morning after wake-up. Its questions relate to 
those in the MCTQ (Figure 7). 



27 
 

 
Every morning, directly after awakening, the following items were estimated and entered into 

the supplied sleep logs (Figure 8): time spent outside during the prior day, bed-time, time of 

preparing for sleep, sleep latency, subjective alertness at bed-time (0 to 10), time of wake-up, 

time of getting up, use of an alarm clock, subjective sleep quality (0 to 10), subjective 

alertness at wake-up (0 to 10), and whether it was the morning of a work or a free day. Time-

spent-outside did not significantly contribute to DST-adjustment, possibly because no 

significant differences were found in time-spent-outside among the subjects. All subjects 

continually wore waterproof actimeters (Daqtometer Version 2.3 by Daqtix GbR, Oetzen 

Germany; Figure 9) around their wrists storing movement accelerations every minute. 

Subjects kept a protocol indicating when not wearing the actimeter.  

 

Figure 9 Image of a wrist worn actimetry device (Daqtometer Version 2.3). An integrated dual axis 
accelerometer (not shown) records both dynamic (motion) and static (gravity, i.e. change in position) 
acceleration. The energy source is a standard 3 Volt watch battery (CR2032).  

Data Analysis  

Sleep and activity data were analysed separately for work and free days (in many subjects, 

free days were not restricted to weekends, and some subjects also worked on Saturday or 

Sunday). Data were also analysed separately for three Chronotype groups based on Mid-

Sleep-on-Free-days corrected for sleep debt (MSFsc) as determined by the MCTQ (Early: 

MSFsc< 3.5, Nautumn/Nspring = 11/12; Intermediate: n= 20/16; Late: MSFsc> 4.5, n= 19/15) .  

Feedback  
LED 
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As a single reference point for sleep, daily mid-sleep times were calculated from the sleep-

logs and were averaged for each week. Activity data, from wake-up to sleep onset (as 

determined by the activity profiles), were consolidated to 10-minute bins and also averaged 

for each week (the Sunday after the actual time change was excluded). For the determination 

of the activity’s phase, we chose the Centre of Gravity method (CoAct; Kenagy, 1980) which 

is independent of the individual shape of the activity profile (see grey areas and squares in 

Figure 11). For further analysis, the weekly phases of both mid-sleep and CoAct for each 

subject were expressed as deviation from their average over the 4 weeks preceding each of the 

transitions (baseline). An additional average was calculated for weeks 7 and 8 in each study 

period (final relative phase). Figure 12A shows the averaged deviations from baseline of the 

entire cohort and Figure 12B shows those for the three groups of Chronotypes.  

3.4. Results 

We investigated the adaptation of the human circadian clock to both season and DST using 

two approaches. First, we mined the MCTQ database (containing 55,000 subjects from 

Central Europe, including the date of entry) for seasonal changes in sleep timing at the 

population level. Secondly, we conducted a longitudinal study to describe the adaptation to 

DST transitions at the individual level (50 subjects investigated for 4 weeks before and 4 

weeks after both the autumn and the spring transition in 2006 and 2007, respectively). Mining 

the MCTQ database shows that mid-sleep on free days, MSF correlates with dawn under 

standard time while it is scattered around 3:30 under DST (Figure 10A). Notably, the onset of 

DST elicits no significant change in sleep timing whereas a large delay follows the offset of 

DST. Self-reported sleep duration changed significantly across seasons (by 20 min; Figure 

10B). 
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Figure 10 Seasonality in sleep timing taken from the MCTQ database (n  55,000)  Annual time courses 
are double plotted (the same data is shown sequentially to more easily visualize systematic trends). A. 
Half-monthly averages of Mid-Sleep times on Free days , MSF (open circles ± SEM) and of wake-up 
times (line). DST-periods are indicated by the open boxes and their transitions by stippled horizontal 
lines; dawn times are shown as a grey to white border. Whereas sleep times track dawn under standard 
time, mid-sleep is scattered around 3:30 (wake-up times around 7:40) under DST. Age and sex ratio 
were not significantly different in the 24 averages and showed no interactions. B. Seasonal changes in 
sleep duration (averaged over both free and work days) result in about 20 min more sleep in winter than 
in summer (cosine fit: r = 0.75; p<0.0001).  

To understand the dynamics of how individuals respond to DST-transitions, we evaluated 

both the phase of sleep (as mid-sleep, calculated from sleep-logs) and the phase of activity (as 

Centre of Activity, CoAct, calculated from wrist actimetry; see Methods). Figure 11 shows 

how an individual’s activity profile reflects early or late Chronotype. The individual weekly 

phase deviations from baseline are averaged for both markers (separately for free and work 

days) either for the entire cohort (Figure 12A) or for the different Chronotype groups (Figure 

12B; see legend for statistical analysis). The timing of mid-sleep and CoAct for all subjects on 

free days fully adjusted to the release from DST in autumn within one week (top left panels in 

Figure 12A). On workdays, this acute response of CoAct was less pronounced, followed by a 

gradual change over the 4 post-transition weeks (top right panels in Figure 12A). While both 

mid-sleep and CoAct on workdays showed a constant (social) phase before the release from 

DST, they paralleled dawn thereafter, similar to the results shown in Figure 10A. 
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Figure 11 Comparison of sleep times and activity profiles between different Chronotypes. Sleep times 
(black bars) and activity (black lines) – recorded during the two longitudinal studies around the autumn 
and the spring DST-transition – averaged for the free days within the four weeks before the autumn 
change in an early (top) and a late (bottom) Chronotype. Sleep-onset and -offset times are taken from 
the sleep-logs; activity levels were measured by wrist actimetry. The phase of mid-sleep is indicated by 
an open circle within the sleep bar and the phase of the Centre of Activity (CoAct, see Methods) as a 
black square. Chronotype correlated highly with the CoAct at baseline (see Methods; r = 0.56, 
p<0.0001). Sleep log entries also correlated with the sleep-times extracted from the activity records 
similarly for both transitions (for the autumn: sleep-onsetbefore: r = 0.38, p<0.001; sleep-endbefore: r = 0.7, 
p<0.001; sleep-onsetafter: r = 0.22, p<0.005; sleep-endafter: r = 0.55, p<0.001). 

 

The spring transition was anticipated by mid-sleep (hence, a reduced acute post-transition 

phase jump; Figure 12A). This was even more pronounced for the timing of activity (CoAct 

gradually advanced for 5 consecutive weeks), and indicates that the human clock tracks dawn 

as photoperiod increases. However, 2 weeks into DST, CoAct delayed again and settled at an 

advance of less than 30 min (final relative phase; see Methods). Both mid-sleep and CoAct on 

workdays tracked the social clock before the spring change as they did in autumn. While mid-

sleep fully adjusted on workdays (60 % of the subjects indicated using an alarm clock on 

workdays), the incomplete advance of CoAct on free days was similar for workdays. 
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Figure 12 Adjustments to DST-transitions of sleep and activity times resulting from the longitudinal 
study (n=50) A. Phase adjustments of mid-sleep (circles) and activity (CoAct, black squares) around the 
DST-transitions expressed as weekly averages relative to each individual’s baseline (average phase 
during the four pre-transition weeks, see Methods).  Results are shown for the entire cohort both on free 
(left panels) and on work days (right panels). The autumn transition is shown in the top panels, the 
spring transition in the bottom panels. Horizontal bars connected to the respective symbols represent 
SEM which were in most cases smaller than the size of the symbols. B. The comparison between early 
(left panels) and late Chronotypes (left panels) is shown for free days only (otherwise as in A). For the 
changes of mid-sleep on free days in autumn, a mixed ANOVA (within-subject design with Chronotype, 
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early, intermediate and late, as a between-subject factor) shows a significant difference between all 
weeks (F (4.33; 117) =10.00, p<0.001). For both transitions, post-hoc tests show that neither the 4 pre- 
nor the four post-transition weeks differ among each other, while they differ significantly across the 
transitions. In autumn, the CoAct times show no difference between the 8 weeks (F (3.5; 94) =1.89, 
p=.13). The changes for CoAct of early Chronotypes correlates better with dawn than with social time 
(r: 0.938 vs. 0.896). In spring, the phase changes of both mid-sleep and CoAct differ significantly before 
versus after the transition (mixed design ANOVA; mid-sleep: F (4.57; 128) =20.26, p .001; CoAct: F 
(4.84; 170) =4.36, p .001) while they are statistically indifferent among the pre- and post-transition 
weeks. The changes for CoAct of late types between week 1 and 6 correlate better with dawn than with 
social time (r: 0.974 vs. 0.774).   Whereas post-hoc tests show that the final phases reached in the last 
two weeks show no significant difference relative to any of the 4 weeks prior to transition for both 
Chronotypes, they differ significantly between early and late types (t(49)=2.13, p 0.05). 

3.5. Discussion  

Different Chronotypes respond differently to time changes. Most people (except for early 

Chronotypes) adjust more readily to delays than to advances, i.e., they suffer less from jet-lag 

after westward than after eastward flights (Waterhouse et al., 2002) . A similar pattern is 

suggested for DST-transitions (Lathi et al., 2006a,b) . Our results show that adjustment to 

DST-transitions is Chronotype-specific (Figure 12B). We only present results for early and 

late Chronotypes here (‘larks’ and ‘owls’; those for intermediate Chronotypes lie predictably 

in between the two extremes) and concentrate on the less socially influenced free days. Mid-

sleep in both larks and owls showed a large phase jump in response to the autumn delay 

(compare with Figure 10A); the response of the CoAct suggests that owls delay more readily 

than larks (at a level below significance). The Chronotype-specific differences are more 

marked after the spring change. Again both mid-sleep and CoAct moved with dawn before the 

transition to DST (compare with Figure 10A), most prominently in the late Chronotypes who 

gradually advanced their CoAct for 5 consecutive weeks (compare with Figure 12A). Mid-

sleep of larks readily adjusted while an apparent full adjustment in owls was transient. 

Whereas larks advanced their CoAct only by 40 min, owls failed to adjust their CoAct to the 

advance of the social clock. The similarity between the longitudinal study (50 individuals 

followed across the DST-transitions) and those found in the database is remarkable (compare 

Figure 12A&B with Figure 10A). In both cases, the human circadian clock tracks dawn under 

standard time but not under DST. While the human clock (as measured by the CoAct) 

predictably advances from autumn to spring (15:54 SET, averaged between Nov 19 and Dec 

3, compared to 15:14 SET, averaged between Mar 24 and Apr 21), it remains locked to the 

same time between spring and autumn (14:36 SET for both, averaged between Apr 15-29 and 

Oct 3-28, respectively).  
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These results, in combination with those from the database, suggest that the incomplete 

adjustment of activity in larks and the non-adjustment in owls continues beyond the 4 

recorded post-transition weeks and throughout the months of DST. Our results also suggest 

that the circadian clock does not adjust to the DST-transition in spring – especially in late 

types. Notably, the strongest reduction of average sleep duration (for 8 consecutive weeks; 

Figure 10B) follows the spring transition. 

What could trigger the severe effect of DST on seasonal adaptation of the human clock? 

It is unlikely that mid-sleep tracks dawn throughout the summer, especially at higher latitudes. 

It is, however, equally unlikely that the abrupt cessation of dawn-tracking, shown here, 

reflects a threshold beyond which the clock cannot advance (corresponding to a wake-up time 

around 7:30 SET, 8:30 DST). We have previously shown that the human clock is 

predominantly entrained to the natural light-dark cycle (zeitgeberN) and that social time 

affects this entrainment (Roenneberg et al., 2007b) . Behaviourally induced light-dark cycles 

(e.g., by sleeping in a dark room with our eyes closed; zeitgeberB) may compete with 

zeitgeberN, especially in large cities where people efficiently shield themselves from 

environmental signals. We show here that zeitgeberB (sleep time, represented by mid-sleep) 

adjusts to DST, thus the “small” 1-h-time-change induced by DST, may have a much larger 

effect on our biological timing system (Figure 13).  

The seasonal progression in phase relationship between the two zeitgebers is pushed 

back by the equivalent of 4 and 6 weeks in spring and autumn, respectively. The large autumn 

setback is reflected in the sudden, strong delay (Figure 10, Figure 12A&B). Assuming that the 

clock tracks dawn similarly in spring and autumn, the current transition from DST to standard 

time in late October is scheduled one month too late. In addition, DST reduces the seasonal 

amplitude of the relationship between the two zeitgebers (Figure 13B&C). DST-induced 

changes are theoretically equivalent to geographical translocations. The amplitude of the 

relationships as well as the degree of their perturbations by DST increase with latitude. The 

examples shown in Figure 13 are based on the location of Frankfurt. The 1-hour DST-advance 

in spring corresponds to travelling 15° westward and the reduction of amplitude corresponds 

to travelling 17° latitude southward. Thus, DST translocates the inhabitants of Central 

Germany to Morocco in spring and back in autumn, without changing time zone or climate. In 

some animals, the circadian clock adopts a fixed phase in long photoperiods under laboratory 

conditions while they track dawn in short photoperiods (Pittendrigh and Daan, 1976a,b ). The 

interruption of seasonal adjustment in summer shown here, however, exactly coincides with 
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the DST transitions and, therefore, suggests an additional effect of DST rather than a purely 

natural phenomenon. This would mean that DST severely affects our seasonal timing. Like 

other animals, humans are seasonal (Roenneberg and Aschoff, 1990a,b ) (in birth-rates, 

mortality, suicide-rates, etc.). However, seasonality in humans has drastically declined in 

industrialized countries over the last 60 years (Roenneberg, 2004) . The main reason for this is 

probably increased shielding from natural zeitgebers but DST might constitute an additional 

factor for the dissociation of human biology from the seasons. 

 

Figure 13 Relationship between natural and behavioural light: dark cycles (with and without DST). The 
relationship between the natural light-dark cycle (dawn, zeitgeberN; solid curve) and the behavioural 
light-dark cycle (created by using artificial light and sleeping in dark rooms with closed eyes, zeitgeberB, 
exemplified by an arbitrary wake-up time at 7 a.m.; dotted line) changes systematically with season (A). 
DST only affects zeitgeberB by advancing the social clock by one hour in spring and delaying it in 
autumn (B). The 1-hour advance corresponds to travelling 15° westward within the same time zone. 
DST-transitions have large effects on the seasonal relationship between the two zeitgebers. This 
phenomenon becomes more apparent if natural dawn is drawn with respect to local time (consistent with 
social wake-up times) (C). The seasonal progression of the phase relationship between the two 
zeitgebers is delayed by 4 weeks in the spring and by 6 weeks in the autumn (vertical grey arrows).  
Hence, we repeat almost 20% of the seasonal progression of the two zeitgebers every year. In addition, 
DST artificially changes the amplitude of the phase relationship in summer (horizontal white arrows in 
B and C), which mimics a translocation of 17° latitude. The diagrams are drawn for the dawn times in 
Frankfurt/Main (50°7’N/8°41’E) which roughly corresponds to the average coordinates of the 50 
subjects’ places of residence. In this case, the longitudinal and latitudinal translocations would mean 
moving from Frankfurt to Morocco in spring and back in autumn. The amplitude of the relationships as 
well as the degree of their perturbations by DST increases with latitude. 
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This study on the effects of DST on the human internal clock have shown that there is a 

measurable effect, detectable by simple approaches as use of sleep-logs combined with 

actimetry. The next chapter is about the effects from shift-work on human health and the 

internal clock. 

4. Shift-Work and the Human Clock – A Literature Survey 

4.1. Introduction 

Due to the development of a 24-hour-active-world, traditional “9-to-5-jobs” (meaning jobs 

with work hours from 09:00 to 17:00 o’clock) become a rarity. Medical and security services 

are prominent examples of non-standard work hours and especially economic constraints as 

well as expanding global demands force plants and industries to be as productive as possible 

around the clock, seven days per week. In case of physicians, policemen, fire fighters and 

pilots, to name just a few, it becomes obvious that each of us depends on shift-workers and 

relies on them being healthy to do their job. This fact makes the research on shift-workers´ 

health highly important not only for the workers themselves, but on top for the whole society. 

The worldwide increase in the use of shift-work schedules to expand the productive period to 

the full 24-hours each day represents a modern phenomenon that underscores the well-known 

saying of “time is money”. A recent survey by the European Foundation for the Improvement 

of Living and Working Conditions, (2007) showed the percentage of shift-work within the 27 

EU and two EFTA (European Free Trade Association, CH, NO) countries to range between 

about 8 and up to more than 20 percent, depending on classification of the work hours (Figure 

14). The differences in the number of shift-workers in the several countries and work sectors 

can be attributed to different definitions used to declare the status of a shift-worker. 

The respective country codes used in Figure 14 are AT Austria, BE Belgium, BG 

Bulgaria, CY Cyprus, CZ Czech Republic, DK Denmark, EE Estonia, FI Finland, FR 

France, DE Germany, EL Greece, HU Hungary, IE Ireland, IT Italy, LV Latvia, LT 

Lithuania, LU Luxembourg, MT Malta, NL Netherlands, PL Poland, PT Portugal, RO 

Romania, SK Slovakia, SI Slovenia, ES Spain, SE Sweden, UK United Kingdom, HR 

Croatia, Non-EU: NO Norway, CH Switzerland, TR Turkey, AC2 Two countries that joined 

the European Union in 2007: Bulgaria and Romania, CC2 Two candidate countries for 

membership of the EU: Croatia and Turkey, EU27 = 25 EU Member States, plus the AC2.
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Figure 14 Distribution (in percent) of shift-workers within the 27 EU and two EFTA (European Free 
Trade Association, CH, NO) countries (taken from the Fourth European Working Conditions Survey, 
European Foundation for the Improvement of Living and Working Conditions, 2007). 

Figure 15 displays the percentage of shift-work within the 27 EU and two EFTA (European 

Free Trade Association, CH, NO) countries due to working sector. 

 

Figure 15 Distribution (in percent) of shift-workers by work sector within the 27 EU and two EFTA 
(European Free Trade Association, CH, NO) countries (taken from the Fourth European Working 
Conditions Survey, European Foundation for the Improvement of Living and Working Conditions, 
2007). 
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The following section focuses on the already mentioned variability in shift-work definitions. 

4.1.1. Definition of Shift-Work  

The term “shift-work” is a synonym that is used for multiple different work schedules. 

Common descriptions of shift-work are, for example, (i) “work outside the normal working 

hours” (normal working hours are classified as starting between 08:00/09:00 h and ending 

between 16:00/17:00 h), (ii) “a work arrangement, in which one worker replaces another 

within a given work process, in order to maintain continuity in work and productivity over 24-

hours” or (iii) “Working at changing or rotating hours”. These descriptions show that shift-

work is generally regarded due to external time. It has never been described on internal time. 

In many studies (which are excluded for this study) the authors did even not distinguish 

between permanent and rotating shift-workers for their analysis. Such mixed results must be 

interpreted with caution. 

Information on the shift-work status is mostly obtained once at study entry (for the 

baseline evaluation), from either self-administered questionnaires or it has been defined by 

occupational code from respective file from the workplace. Shift-work has never been 

evaluated by the actual number of hours that have been worked. The lack of adequate update 

of the shift-work status might, especially in longitudinal studies, lead to misinterpretations, 

for example, in case of shift-changes (either due to flexible shift changes in case of colleagues 

falling sick or due to long-term reorganisations of the shift-work schedules) throughout a 

workers´ career. Further, work-flexibility, a keyword nowadays to keep up with global 

demands and needs, makes retrospective evaluations very difficult when such irregularities 

(e.g. from work-on-demand or overtime) in the work schedules are disregarded. Therefore, 

calculations on the dose-dependency of only total years in shift-work have to be interpreted 

with caution.  

Definitions of shift-work schedules most often lack the following aspects: 

- Shift type (morning, late, night shift) 

- Change-over times (e.g. to reflect (very) early starting hours for the morning shift) 

- Direction of rotation (e.g. rotating clockwise, counterclockwise, or fixed night work) 

- Speed in rotation (e.g. shift changes every 2 days or on a weekly basis) 

- Length of the shifts (e.g. 6-hour, 8-hour, 12-hour shifts) 
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These missing aspects are not to neglect for the evaluations concerning time and health in 

shift-workers, but are neglected by many researchers. It should further be regarded, that shift 

schedules differ from plant to plant and also work tasks differ in many occupations between 

the different shifts (e.g. due to different production processes between day and night shift or 

because of differing sizes in staff). As heterogeneous the field of shift-work appears, as 

heterogeneous are the reasons of taking a shift-work job. This is subject to the next paragraph, 

followed by a section on the social strata of the shift-work populations, common terms from 

epidemiological research used in this study. Chapter 4.2 finally will tell the rational for the 

shift-work literature survey. 

4.1.2. Reasons for doing Shift-Work 

An open question in the field of shift-work research is, if a shift-worker is “born or made”? 

The answer to this question depends on the individual reasons for people to do shift-work. 

These reasons are multiple and encompass both occupational and personal aspects. Especially 

the personal attitude towards shift-work might influence the perception of concomitant 

burdens. The self-perception and the individual feeling of being committed or not, might 

influence psychosocial stability and acceptance of certain discomforts. For example, nurses 

and night watchmen are seemingly aware right from the start of employment that their duty 

incorporates work hours during the night. In the following, examples will be presented for 

both occupational and personal reasons for people to be employed in shift-work. Especially 

the personal reasons have never been investigated in shift-work populations. 

Occupational reasons for doing shift-work 

• Shift-work is a “usual part of the job” (e.g. for pilots, night watchmen, nurses) 

• Shift-work is necessary to guarantee social security (e.g. for the police or fire brigade) 

• Shift-work is necessary to guarantee medical aid (e.g. for physicians or nurses) 

• Shift-work is used to increase productivity (e.g. in the steel or automobile industry) 

• Shift-work is used by an employer to bridge times of a labour bottleneck 

• Shift-work is chosen by the worker to not depend on welfare (in case of 

unemployment, for instance) 
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Personal reasons for doing shift-work 

• Shift-work offers the chance to earn extra money and to have more spare time to 

follow hobbies (“24-hour society”) 

• Shift-work allows for arrangements with the Partners´ work schedule 

• Shift-work is used to reach a certain status (e.g. it pushes the career or entails a 

“coolness factor” in terms of being “important” because working during the night ) 

• Shift-work might suit people with sleep disorders that cannot sleep during the night 

• Shift-work might arrange from “Moonlighting” 

4.1.3. Shift-Work and Social Strata 

Often shift-workers are said to belong to a lower social class. This conclusion results from a 

bias in the studies, as occupations from “upper social classes” have virtually not been studied 

that conclusively as, for example, nurses and steel workers. Due to the definition of shift-work 

as work outside the normal working hours, than also physicians, lawyers, bank or university 

directors need to be included. These occupations are no classical shift-work jobs and therefore 

never been in focus. Anyhow, it appears very questionable if such superficial argumentation 

on the social class is fruitful, as, needless to say, also well-paid physicians or lawyers would 

be found to smoke or to have low levels of physical leisure time activity. Finally, clarifying 

studies on this subject (upper vs. lower class jobs in terms of shift-work health outcomes) 

have not been performed. 
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4.1.4. Epidemiological terms 

This section gives an overview of the most common epidemiological terms used in the studies 

that will be presented in the next chapters (taken from the Glossary of Terms in The Cochrane 

Collaboration Vs. 4.2.5 Updated May 2005 ). 

Association / Correlation 

A relationship between two characteristics, such that as one changes, the other changes in a 

predictable way. For example, statistics demonstrate that there is an association between 

smoking and lung cancer. In a positive association, one quantity increases as the other one 

increases (as with smoking and lung cancer). In a negative association, an increase in one 

quantity corresponds to a decrease in the other. Association does not necessarily imply a 

causal effect.  

Bias 

A systematic error or deviation in results or inferences from the truth. In studies of the effects 

of health care, the main types of bias arise from systematic differences in the groups that are 

compared (selection bias), the care that is provided, exposure to other factors apart from the 

intervention of interest (performance bias), withdrawals or exclusions of people entered into a 

study (attrition bias) or how outcomes are assessed (detection bias). Reviews of studies may 

also be particularly affected by reporting bias, where a biased subset of all the relevant data is 

available. 

Confidence interval (CI) 

A measure of the uncertainty around the main finding of a statistical analysis. Estimates of 

unknown quantities, such as the odds ratio comparing an experimental intervention with a 

control, are usually presented as a point estimate and a 95% confidence interval. This means 

that if someone were to keep repeating a study in other samples from the same population, 

95% of the confidence intervals from those studies would contain the true value of the 

unknown quantity. Alternatives to 95%, such as 90% and 99% confidence intervals, are 

sometimes used. Wider intervals indicate lower precision; narrow intervals, greater precision. 



41 
 

 

Confounder 

A factor that is associated with both an intervention (and exposure) and the outcome of 

interest. For example, if people in the experimental group of a controlled trial are younger 

than those in the control group, it will be difficult to decide whether a lower risk of death in 

one group is due to the intervention or the difference in ages. Age is then said to be a 

confounder, or a confounding variable. Randomisation is used to minimize imbalances in 

confounding variables between experimental and control groups. Confounding is a major 

concern in non-randomised studies. 

Odds 

A way of expressing the chance of an event, calculated by dividing the number of individuals 

in a sample who experienced the event by the number for whom it did not occur. For example, 

if in a sample of 100, 20 people died and 80 people survived the odds of death are 20/80 = , 

0.25 or 1:4. 

Odds Ratio (OR) 

The ratio of the odds of an event in one group to the odds of an event in another group. In 

studies of treatment effect, the odds in the treatment group are usually divided by the odds in 

the control group. An odds ratio of one indicates no difference between comparison groups. 

For undesirable outcomes an OR that is less than one indicates that the intervention was 

effective in reducing the risk of that outcome.  

Risk Ratio / Relative Risk (RR) 

The ratio of risks in two groups. In intervention studies, it is the ratio of the risk in the 

intervention group to the risk in the control group. A risk ratio of one indicates no difference 

between comparison groups. For undesirable outcomes, a risk ratio that is less than one 

indicates that the intervention was effective in reducing the risk of that outcome. 
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4.2. Rationale for the Study on Shift-Work 

Research of the past decades has revealed associations between shift-work and adverse health 

effects. Certain factors are under discussion to modulate the coping ability of shift-workers 

with related burdens. These factors cover (i) sleep, (ii) social, psychosocial and domestic life 

and (iii) circadian functions, which in turn all three are interconnected to each other (Harma et 

al., 1998 ; Nachreiner, 1998 ; Furnham and Hughes, 1999 ; Boggild et al., 2001 ; Costa, 

2003). According to the literature, shift-workers show higher prevalences of sleep, metabolic, 

cardiovascular and cancer problems compared to non-shift-workers (Knutsson, 2003 ; 

Akerstedt, 2003 ; Costa, 1997 and 2003 ; Haus and Smolensky, 2006 ; van Mark et al., 2006 ). 

These four major categories of health issues, as (i) sleep problems, (ii) cardiovascular 

problems, (iii) metabolic and digestive problems, and (iv) cancer, will also be used in this 

thesis.  

Shift-work directly causes temporal variations in the daily routines of people. Thereby it 

represents a perfect example for chronobiological research of real life influences. Shifted 

work schedules interfere with the daily synchronization with environmental cues and leads 

thereby to exposure to altered (and/or weaker) zeitgeber strengths. This forces workers 

especially during the night hours to be active at times of their physiological trough. In contrast 

to time zone travels with its simultaneous changes in both social and natural zeitgebers (e.g. 

meal times and the hours of dusk and dawn), shift-workers are confronted with only shifts in 

social, external time, challenging the internal clock. The health outcomes ascribed to shift-

workers equal in part those that time-zone travellers also experience (Aschoff, 1978a,b; 

Aschoff and Pohl, 1978; Cho et al., 2000 ; Rafnsson et al., 2001 ; Waterhouse et al., 2002 ). 

Although many aspects in the aetiology of shift-workers´ health problems still need to be 

elucidated, one thing becomes strikingly evident from the actual situation depicted above, 

namely that time not only is plain money, but time is health. 

The aim of this study is to figure out the knowledge about shift-work and health, under 

special considerations from a chronobiological point of view.  
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4.3. Methods  

The internet-databases Pubmed / Medline, Scopus, Psychinfo, Web-of-Science und Biosis 

previews have been used for the literature search, as these give access to the largest number of 

publications on humans and health. Broadly defined search terms have been chosen to scan 

these databases for all entries through December 2007, with the aim to get as much hits on 

original (primary) publications as possible. The respective search terms were: shift-work / 

night work / night shift / shift schedule / alternating shift / alternating night shift / rotating 

shift / rotating night shift. In addition, a hand search in the catalogue of the Bavarian State 

Library and the Library of the Ludwig-Maximilians University has been performed. In case of 

ambiguities, the primary author or the denoted contact person has been contacted. The internet 

database search resulted in a number of Scopus: 2530, Pubmed/Medline: 2071, Biosis 

previews: 1812, Psychinfo (Embase):1763, Web-of-Science: 1799 hits (Figure 16). In 

addition, 2 articles have been found by traditional hand search (not included in Figure 16). 

Simple minimal exclusion criteria (Table 1) have been used to filter explicitly real life studies, 

concerning health aspects in shift-workers. Furthermore, the most important difference to 

previous reviews is that exclusively those studies with a control group of non-shift-workers 

and that have named the investigated shift-systems have been selected. 

 Exclusion criteria for the literature survey 

1 Reviews, Letters, Editorials, Comments  

2 Animal experimentations 

3 Shift-work simulations and laboratory studies 

4 Sample size N < 10 

5 Use of medication (e.g. melatonin or alcohol as sleep substitute) 

6 Sex/gender differences 

7 Impact on family life / social life of other than the shift-worker 

8 Accident / injury estimations 

9 Economy / productivity evaluations 

10 Missing non-shift-work control group 

Table 1 List of exclusion criteria that have been used to filter those articles that concerned shift-work 
health issues in human workers under real-life conditions. 
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Figure 16 Flow chart of the internet literature search. On average 1995 hits have been identified from 
the search on the terms ‘shift-work / night work / night shift / shift schedule / alternating shift / 
alternating night shift / rotating shift / rotating night shift’. A final number of 52 articles remained for 
further analyses. 

4.4. Results  

Of total 9975 hits from the initial search, a number of 1817 hits remained after exclusion of 

duplicates. Use of the exclusion criteria (Table 1) decreased this number to a final number of 

52 publications (Figure 16). The factors that decreased the number of articles most were (i) 

non-presence of a non-shift-worker control group and (ii) that the respective shift-schedule 

was uncertain or even not mentioned. The earliest study dated from 1980 (*Costa et al., 

1980). The selected articles are shown in Table 2 (sorted by shift rotation that has been 

examined in these studies). 
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  Author Year Shift Schedule Rotation 
1 Costa et al. 1980 3x8 h shifts clockwise 
2 Ellingsen et al. 2007 3x8 h shifts clockwise 
3 Harma et al. 1998 3x8 h shifts clockwise 
4 Karlsson et al.  2005 3x8 h shifts clockwise 
5 Knutsson et al. 1986 3x8 h shifts clockwise 
6 Knutsson et al. 1988 3x8 h shifts clockwise 
7 Knutsson et al. 1989 3x8 h shifts clockwise 
8 Knutsson et al.  1990 3x8 h shifts clockwise 
9 Lac and Chamoux 2004 3x8 h shifts clockwise 
10 Nakamura et al.  1997 2x8 h shifts clockwise 
11 Nikolova et al. 2000 3x8 h shifts clockwise 
12 Ohira et al.  2000 3x8 h shifts clockwise 
13 Oishi et al. 2005 3x8 h shifts clockwise 
14 Romon et al. 1992 3x8 h shifts clockwise 
15 Sakata et al.  2003 3x8 h shifts clockwise 
16 Sookoian et al. 2007 2x12 h shifts clockwise 
17 Suwazono et al. 2006 3x8 h shifts clockwise 
18 Di Lorenzo et al. 2003 3x8 h shifts counterclockwise 
19 Garbarino et al. 2002 4x6 h shifts counterclockwise 
20 Ishii et al. 2004 3x8 h shifts counterclockwise 
21 Ishii et al.  2005 3x8 h shifts counterclockwise 
22 Jansen et al. 2003 3x8 h shifts counterclockwise 
23 Karlsson et al. 2003 3x8 h shifts counterclockwise 
24 Morikawa et al.  2005 2x8 h shifts counterclockwise 
25 Morikawa et al.  1999 3x8 h shifts counterclockwise  
26 Prunier-Poulmaire et al. 1998 3x8 h shifts irregular 
27 Wolfhagen et al. 1994 3x8 h shifts irregular + counterclockwise 
28 Burch et al. 2005 night shift permanent 
29 Drake et al. 2004 night shift permanent 
30 Estryn-Behar et al. 1990 night shift permanent 
31 Ingre and Akerstedt 2004 night shift permanent 
32 Lasfargues et al. 1996 night shift permanent 
33 Lee 1992 night shift permanent 
34 Niedhammer et al. 1994 night shift permanent 
35 Sternberg et al.  1995 night shift permanent 
36 Yamasaki et al. 1998 night shift permanent 
37 Ueno et al. 1984 night shift permanent  
38 Ahlborg et al. 1996 night-, 3x8, 2x8 h shifts permanent and rotating 
39 Kubo et al. 2006 night shift rotating night 
40 Viswanathan 2007 night shift rotating night 
41 Davis et al. 2001 night shift rotating night 
42 Hansen et al. 2001 night shift rotating night 
43 Lie et al. 2006 night shift rotating night 
44 O´Leary et al. 2006 night shift rotating night 
45 Schernhammer et al. 2001 night shift rotating night 
46 Schernhammer et al. 2003 night shift rotating night 
47 Schernhammer et al. 2006 night shift rotating night 
48 Tynes et al. 1996 night shift rotating night 
49 Ohayon et al. 2002 2x8 h shifts varios/not defined 
50 Peter et al.  1999 2x8 h shifts varios/not defined 
51 Virtanen and Notkola  2002 2x8 h shifts varios/not defined 
52 Parkes  1999 2x12 h shifts weekly changes 

Table 2 List of final articles from the literature survey on shift-work and health, after applying the 
exclusion criteria (Table 1). The articles in this table are sorted by shift-work rotation (right column). 
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The selected 52 publications cover examinations of a total number of 347 586 subjects (195 

873 shift-workers / 151 713 day workers) from 45 different studies, which were set in the 

USA, Japan, Western and Eastern Europe (Figure 17). The publications cover 57% cross-

sectional, 24% retrospective and 19% prospective examinations (Figure 18). 

 

Figure 17 Distribution of nations from the selected 52 articles. The majority of studies have been 
performed in Japan, the United States of America and Sweden. 

 

Figure 18 Distribution of study types in the selected 52 articles. Most studies are cross-sectional studies 
(57%), followed by similar equal numbers of retrospective and prospective studies (24% and 19%, 
respectively). 
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The initial idea was to perform a statistical meta-analysis on the data from the selected 

articles. This idea has been skipped for the reasons mentioned in the next section. 

4.4.1. Why no Meta-Analysis? 

The profit of a statistical meta-analysis is a combinatory and quantitative evaluation of the 

selected studies (Cochrane Handbook for Systematic Reviews of Interventions, 2006 ; Spector 

and Thompson, 1991 ). In most cases, meta-analyses are performed to summaries results from 

clinical trials to provide physicians and clinicians with a comprehensive overview to a certain 

subject. To do a meta-analysis, the most important prerequisite of the material is 

comparability in methods and outcomes. The studies selected from the literature search in this 

thesis do not fulfil these two minimal prerequisites and therefore do not allow performing a 

meta-analysis. The idea to perform a statistical meta-analysis on the shift-work literature for 

this thesis has additionally been skipped because of diversity in and an incomparability of the: 

• … methods (e.g. objective or subjective evaluations of heart diseases) 

• … statistics (e.g. odds ratios, relative risks or only percentage differences) 

• … duration of studies and number of follow up investigations 

• … outcomes (e.g. diagnostic criteria are often uncertain) 

• … definitions of shift-work and differences in the shift schedules 

• … occupations and workplaces of the shift-workers 

• … occupations of the control group, if different to the shift-workers 

• … control for confounders and other statistical bias 

This incomparability of the shift-work studies strongly underlines one of the biggest 

weaknesses of epidemiological shift-work research. Unlike as in clinical trials, which are in 

most cases designed to be comparable to other trials, the health examinations on shift-workers 

are highly individual, and further often depend on the methodological possibilities in the field 

and not on the necessary examinations that would allow for such comparability. There are 

finally no two studies that would stand a direct comparison. Therefore, to avoid meaningless 

conclusions and to not obscure the differences in the studies, a narrative, informative form in 

presenting the studies’ characteristics and findings has been chosen for this literature survey. 

The results presented for the shift-workers in this health survey are significantly different 

from the results of the non-exposed control group, otherwise it is explicitly stated. Where 

relative risks or odds ratios are given, these are listed separately in each chapter. Chapter 4.5 

presents the results from the articles on health and shift-work. The selected articles that passed 
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the exclusion criteria are indicated by an asterisk (*), to distinguish these from references that 

did not fulfil the exclusion criteria but that have been added for explanatory purposes, 

especially in terms of background information on certain variables. The following sections 

will handle background information to the selected articles. These sections focus on the key 

epidemiological studies (section 4.4.1), studied occupations (section 1), studied sexes/genders 

(section 4.4.4), and the data acquisition by questionnaires and interviews (section 4.4.5). 

4.4.2. Key epidemiological Studies  

The workers that have been studied in the identified examinations either were recruited from 

certain individual work places or via data from large-scale epidemiological cohorts. The key 

epidemiological cohorts were: 

1. Long Island Breast Cancer Study Project (LIBCSP) (Gammon et al., 2002) 

2. Seattle Case-Control Study (SCCS) (Davis et al., 2001) 

3. Danish Case-Control Study (DCCS) (Hansen, 2001) 

4. Japan Collaborative Cohort Study for the Evaluation of Cancer Risk (JACC) (Ohno 
and Tamakoshi, 2001; Tamakoshi et al., 2005) 

5. Work Lipids and Fibrinogen Study (WOLF) (Peter et al., 1998; Alfredsson et al., 
2002) 

6. Nurses Health Study I and II (NHS-I and II) (Colditz et al., 1997) 

7. Maastricht Cohort Study on Fatigue at Work (MC) (Kant et al., 2003) 

8. Helsinki Heart Study (HHS) (Frick et al. 1987; Manttari et al., 1987) 

9. Swedish Midwives Association (SMA) (Ahlborg et al., 1996) 

10. Telecom cohort (TC) (Tynes et al., 1996) 

11. Fertility cohort (FC) (Tynes et al., 1996) 

12. Female occupational cancer cohort (OC) (Tynes et al., 1996) 

13. Swedish Twin Register (Lichtenstein et al., 2002) 

4.4.3. Occupations 

The majority of studies were done on workers from the industrial sector. These workers were 

blue-collar-workers, for example workers from paper-and-pulp, steel or chemical industry, or 

from nuclear plants. The second group constituted workers from the health care sector (nurses 

and midwives). About 1/3 of the studies did not list the workers´ occupations. The latter 

therefore constitute a heterogeneous working population in respect to the occupations and 
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work-related exposures. Controls in all studies were regular (white-collar) day workers, which 

not always have the same comparable occupational background. White-collar workers in most 

cases are employed in administrative jobs, instead of doing tasks, for example, at an assembly 

line. 

4.4.4. Sexes / Genders 

43% of the studies examined exclusively male subjects, 30% studied exclusively female 

subjects, 22% investigated both sexes, but not separately, and 5% of the studies presented 

results separately for females and males (Figure 19). Male-dominated works were mostly 

industrial jobs like steelworkers and workers at nuclear power plants, whereas female-

dominated works were health care occupations like nurses and midwives. Some authors 

excluded women from the study population, either when they were underrepresented or to 

eliminate any effect of the menstrual cycle. 

 

 

Figure 19 Distribution of sexes/genders studied in the selected 52 articles. The majority of studies 
investigated exclusively male subjects (43%, ‘males only’), followed by 30% of studies with female 
subjects only. One fifth (22%) of the studies did not give the information on the female/male ratio 
(‘sexes not separated’). Only 5% of the studies listed the results separately for females and males. 

4.4.5. Questionnaires and Interviews 

The use of questionnaires and interviews is very common in shift-work studies and 

epidemiological research in general. From the literature, there was no common or standard 
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shift-work questionnaire or interview-procedure identifiable. The questionnaires that have 

been used in the selected studies were: 

• Eppworth Sleepiness Scale, ESS (Johns, 1991) 

• General Health Questionnaire (GHQ-28) (Goldberg and Hillier, 1978) 

• Morningness-Eveningness Questionnaire (MEQ) (Horne and Ostberg, 1976) 

• The Standard Shiftwork Index (Barton et al., 1995)  

• The Job Content Questionnaire (JCQ) (Karasek et al., 1998)  

• Stanford Sleep Questionnaire and Assessment of Wakefulness (SQAW) including 

General Sleep Disturbances Scale (GSDS) (Douglass et al., 1986) 

• Neuroticism scale from the Eysenck Personality Questionnaire (Eysenck et al., 1985) 

• Framingham Type-A scale (Haynes et al., 1978) 

Additionally used were: 

• National Health Insurance Records 

• Company records 

• Investigator developed self-administered questionnaires on sleep or diet  

The questionnaires have been filled out by the workers themselves or by the investigators, 

either in face-to-face or telephone interviews. Estimations of prevalent sleep problems were 

done using diagnostic manuals, mostly the ICSD (Thorpy 1990; 1997; 2001) (International 

Classification of Sleep Disturbances) or otherwise by comparing the scores from the used 

scales quantitatively. Medical evaluations have been performed due to criteria of the DSM-IV 

(1994) or the ICD-6 to -10 (1952-1957; 1958-1968; 1969-1986; 1987-1996; 1997-2002), and 

the ICD-O (1976). 
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4.4.5.1. Pros and Cons of Questionnaires  

One advantage of using questionnaires in shift-work research is them being quickly 

implemented, covering various health and social aspects and giving the researcher the 

possibility to reach large number of subjects in a non-cost-expensive and short lasting time. 

Questionnaires are definitely useful to obtain information about certain behavioural aspects, 

as for example about sleeping or lifestyle habits. 

The most mentioned disadvantage is that questionnaires are subjective and can give no 

clear results on, for example, organic diseases like cardiovascular problems. For example, in 

Kivimäki et al. (2006) , the prevalence of cardiovascular diseases (CVD) has been estimated 

by answers to the question: “Have you ever been told by a physician that you have or have 

had any of the following diseases?”. CVD in this study was determined by answering yes to 

the options “myocardial infarction”, “angina pectoris” and “hypertension (ICD-10 codes I10-

I15)”. This method likely leads to misclassifications, as it inherits the risk of recall bias. 

Furthermore, giving an affirmative answer to the question on hypertension (ICD-10 codes 

I10-I15), does not automatically indicate the prevalence of CVD.  

Further problems with special focus on shift-work research are, that the questionnaires … 

• … are self-structured and not comparable and not validated and verified in prospective 

studies 

• … do not account for inter-cultural differences (e.g. coping behaviours) 

• … not standardised for shift-work studies  

• … are individually interpreted by the investigators (highly interpretive) and therefore 

entail the risk of miss-classification due to differences in answers 
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4.5. Findings from the selected Articles 

This chapter presents the most potent results on health and shift-work that have been 

evaluated from the selected 52 articles. If not mentioned explicitly, all results presented in this 

chapter show significant differences between the shift- and day-workers (all studies had a 

control group of workers that were not exposed to shift-work, see exclusion criteria chapter 

4.3). The health topic from the selected n=52 articles have been separated due to 4 main 

health categories. The Figure 20 shows the distribution of the articles by the 4 main health 

categories (i) cardiovascular, (ii) sleep, (iii) metabolism and (iv) cancer. Most of the articles 

focused on cardiovascular problems (31% of the articles), followed by sleep and metabolism 

(each with 25%), and finally cancer diseases (19%). These four topics are confirmed by 

findings from previous articles and will be dealt with in the next chapters.  

 

Figure 20 Distribution of the selected 52 articles due to the 4 main health categories. The majority of 
articles publishes results on cardiovascular problems (31%), followed by sleep and metabolism (with 
each 25%) and finally 19% on cancer diseases. 
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The results will be presented in the following sequence, with (i) sleep problems (section 

4.5.1), (ii) cardiovascular problems (section 4.5.3; focus on altered blood pressure, heart rate 

and Coronary Heart Disease) and lifestyle risk factors, (iii) cancer (section 4.5.5) and (iv) 

metabolic and digestive problems (section 4.5.7). These sections will be followed by a 

discussion on methodological problems and difficulties with interpreting the results (chapter 

4.6). 

4.5.1. Shift-Work and Sleep  

Sleep problems are the most mentioned problems by shift-workers. These are most 

consistently discomforts, in both women and men equally, which emerge soon, even after 

only one or two night shifts in a row. Sleep problems have been examined only subjectively 

(no electroencephalographic evaluations (EEG), for example) and have been gathered mainly 

in cross-sectional examinations from self-administered questionnaires, both validated ones 

and/or investigator developed tools. Interviews either were done at the workplace (mostly 

during annual health check-ups by the occupational physicists) or via telephone surveys, 

sometimes by random-digit dialling procedures.  

Sleep problems have been described to derive from a shortage of sleep duration, either 

by difficulties falling asleep or premature awakening, or both, especially after a night shift 

(period) (*Ohayon et al., 2002 ; *Parkes, 1999 ; *Lee, 1992 ; *Prunier-Poulmaire et al., 1998 , 

*Ingre and Akerstedt, 2004 , *Estryn-Behar et al., 1990  and * Burch et al., 2005 ). Also 

daytime sleep after a night shift is shortened, as it is often accompanied by acoustic 

disturbances and further marked by a difficulty in falling asleep due to a lack of sleep 

propensity from the internal clock, as daytime sleep for humans is “sleep at the wrong time” 

(see Two-Process-Model of Sleep, chapter 1.2.1).  

In this respect, Kogi in 1982  mentioned, that also sleep satisfaction depends on the time 

of day one sleeps and that sleep dept often remains unpaid. The author writes, that sleep 

deficit is not a pure accumulative process, as sleep deficit is not a “real dept”, as, for example, 

a lack of oxygen that can be paid off accurately.  
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Kogi (1982)  mentioned two possibilities in context of sleep deficit in shift-workers, (i) sleep 

deficit can be paid off by smaller quantity of sleep of different quality and (ii) the unpaid 

deficit may be transformed into some remnant effects which may or may not exert long-term 

effects. 

That not only the timing, but also the direction in shift-rotation might have an impact on 

the accumulation of sleep deficits has been shown. This will be discussed more in detail in 

chapter 4.7.1, and therefore only briefly added to this section. Basically, in clockwise 

(forward) rotation, the successively later rising hours over the course of a shift cycle (with 

early – late –night shifts) allow for sleep debt compensation. In contrast, counterclockwise 

(backward) rotating shift systems rather increase the sleep dept. This can be attributed to the 

successive earlier get up times, which cannot be compensated by earlier bed times and lack of 

sleep propensity from disturbances to the internal clock. In addition to this, *Garbarino et al. 

(2002)  found that sleep before a night shift and an early morning shift is shortest. 

Further, night shift (*Lee, 1992 ; *Ueno et al., 1984 ) and irregular shift-work (*Harma 

et al., 1998 ; *Niedhammer et al., 1994 ; *Ohayon et al., 2002 ) have not only been reported to 

result in the high numbers of sleep disturbance, but further be difficult to arrange with the 

social life. According to these results, *Lee (1992)  wrote that age and family reasons rather 

modulate sleep problems, than caffeine or alcohol do. Workers delay their sleep times, for 

social reasons to take part in family activities, meet friends, follow hobbies, and do the 

household. Further, the sleep hours are shifted because of the work schedule in times of the 

day, in which the body is not “programmed” to sleep, due to the circadian rhythm. The 

circadian rhythm does not allow for sleep during the daytime hours. If sleep can be initiated 

anyhow, acoustic disturbances can more easily wake up the workers. Environmental factors 

were a too bright bedroom, the „general life in a house“, children in the house or on the street, 

traffic and aircraft noise, construction or renovation works. Workers with shift-work sleep 

disorder (SWSD; see chapter 4.5.2) showed generally “shorter time in bed”, and further 

higher prevalences of co-morbidities as ulcer or heart diseases and depression. See respective 

works done by *Garbarino et al. (2002)  and *Drake et al. (2004) .  
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What are the consequences of too few sleep hours and not recreational rest? 

The lack of sufficient sleep is found to lead to sleepiness in the middle run, which in turn is 

leading to a lack of awareness and decreased reaction times. As a long-term consequence of 

chronic sleep dept, fatigue has been stated to emerge by *Lee, 1992 ;* Drake et al., 2004 ; 

*Niedhammer et al., 1994 ; *Harma et al., 1998 ; *Parkes, 1999 ; *Garbarino et al., 2002 ; 

*Ohayon et al., 2002 ; *Jansen et al., 2003 . In addition to this, *Jansen et al. (2003)  have 

found different shift systems leading to different levels of fatigue. Lowest in the group of day 

workers (18.1%), followed by those doing irregular shifts (19.1%), whereas the latter has 

defined exactly in the study. 5-shift-workers reported with 23.7% slightly lower levels of 

fatigue, than 3-shift-workers with 28.6%. Fatigue was stated to be a major reason to change 

from shift to permanent day work. As night shift is shown to increase sleep dept, studies from 

*Drake et al. (2004)  and *Ohayon et al. (2002)  showed that most sleep was gathered by 

workers on the afternoon shift, followed by the day shift and finally the night shift. 

Although not major topic to this thesis, it should be noted that the effects of sleep 

deficits resultant in daytime sleepiness and fatigue can severely impair the working capacity 

and increase the risk of accidents (e.g. falling asleep while commuting home after a night 

shift) and injuries. The most prominent and disastrous examples of consequences of sleep 

deficits are the incidences at (i) the nuclear power plant Three Mile Island (at 04:00 h on 

March 28th,1979), (ii) the Davis-Besse reactor (in June 6th, 1985) and (iii) the nuclear plant in 

Chernobyl (at 01:23 h on April 26th, 1985) or accidents that happened in the NASA space 

shuttle program (Mitler et al., 1988 ; Folkard, 1997 ; Waterhouse et al., 1993 ). The common 

ground of all these disasters is them having happened in the early morning hours and that 

these are highly attributed to human error, due to sleep loss, lack of attention and alertness. 

This clearly shows that sleep deficits from shift-work must be seriously regarded as a 

potential risk factor for the individuals´ and public safety. The fact that these disasters 

happened during the early morning hours as a result of a lack of alertness from sleep dept, 

goes in line with finding of this shift-work literature survey, that sleep problems have been 

found predominantly in fixed night workers and counterclockwise rotators employed in 3x8 h, 

5x8 h, 4x6 h and 2x12 systems (which are found to suffer more from sleep curtailments than 

clockwise rotators, which will be pointed out in chapter 4.7.1).  
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Overview of the findings on shift-work and sleep problems 

The Figure 21 shows a taxonomy of the articles about sleep problems (n=13; representing 

25% of the initially selected 52 articles). The results are presented due to shift-work schedule, 

shift rotation, sexes/genders and occupations, for both significant ( ) and non-significant 

results (Ø). Each of the end-bars in Figure 21 (with information about shift rotation, 

sex/gender and occupation) represents one article. If one end-bar concerns more than one 

article, this is listed in brackets behind the respective shift rotation. Sleep problems have been 

found for various shift systems as 2-shift, 3-shift, 5-shift work (with 8 hours duration each 

shift), for 4-shift work (with 6 hours each shift) and for permanent night shift. For permanent 

night work, the most results have been found with 6 articles (see ‘6x’ in the end-bar). The 

distribution of sleep problems is equal for females and males. The occupations have not been 

specified by most authors. Only on article found no difference in sleep problems between 

permanent night workers and the day working control group (*Niedhammer et al., 1994 ). 

Despite the amount of studies that have been performed concerning sleep problems in shift-

workers, one question still remains open. This question aims at distinguishing between (i) 

those that develop sleep problems because of the shift-work schedule and (ii) those that have 

chosen to do shift-work because they already have sleep problems (*Drake et al., 2004 ). This 

dilemma reflects a hen-egg-problem that definitely justifies further research. 
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Figure 21 Taxonomy of the selected articles about sleep problems (n=13). The taxonomy shows the 
distribution of articles showing significant ( ) and non-significant (Ø) differences in sleep problems 
between the shift-work and control group for the respective work schedule, shift rotation, sexes and 
occupational group. 
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4.5.2. Shift-Work Tolerance - Shift-Work Sleep Disorder (SWSD)  

As not all shift-workers suffer from their work schedule, several approaches have been 

performed to measure shift-work tolerance. These attempts base on the finding and intensity 

of (i) sleep alterations, (ii) persisting fatigue, (iii) changes in behaviour, (iv) digestive troubles 

and (v) regular use of sleeping pills. Especially the coexistence of (i), (iii) and (v) have been 

introduced as shift-work intolerance. These criteria show that the consequences of shift-work 

on the human health mostly regard sleep disturbances and its consequences of sleepiness and 

fatigue as a central issue. 

The concept of shift-work sleep disorder (SWSD) has been introduced to the clinical 

field and added to the International Classification of Sleep Disorders (codes 307.45-1). Shift-

work sleep disorder (ICSD codes 307.45-1) is discussed in relation to the following issues: 

night shift; irregular work hours; transient insomnia; transient excessive sleepiness; “work 

shift” change in conventional sleep/wake schedule; acute-phase shift of sleep and frequently 

changing sleep/wake schedule. There is no obvious difference between the sexes. A family 

disposition has not been observed. No known anatomical or biochemical pathology has been 

described. The condition is directly related to the circadian interference with sleep during the 

morning and evening, which conflicts with the need of the shift-workers to sleep at these 

times. 

Symptoms of shift-work sleep disorders  

The symptoms of SWSD (ICSD codes 307.45-1) are insomnia, excessive sleepiness and 

inability to stay asleep for the usual sleep duration. The latter is especially the case when the 

sleep is tried to introduce at daytime hours after a night shift (e.g. after 6 a.m.). Sleep length is 

reduced by about four hours per week and mainly affects the REM sleep and stage 2 of the 

non-REM sleep, which leads to unsatisfactory and not refreshing sleep. 

Improvements of environmental conditions to alleviate sleep initiation and sleep 

maintenance can bring some profit, but cannot diminish the problems entirely. Especially 

shifts starting early in the morning (e.g. at 4 a.m.) are related to difficulties in sleep initiation 

and with awakening. Excessive sleepiness generally is a problem during shifts, and mainly 

during the night, which is related to a need of napping and a reduced alertness, with 

decrements in the mental abilities, as reduced performance ability.  
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The latter is further discussed in context of safety issues. Besides the problems while on shift, 

the individual spare time must be used for recreation and sleep deficit compensation. Finally, 

beside such individual struggles, alternating work hours can make it difficult to keep up with 

social contacts. Although not examined conclusively, an increase in the rate of divorce or 

decrease in the chance of marriage, for example, might indicate that the working conditions 

can discredit social relationships. On the long run, shift-workers might run the risk of social 

marginalization, which in turn must be considered as an additional risk factor (e.g. from 

changes in behaviour like an increased alcohol or cigarette consumption) in any shift-work 

related (health) problem. 

4.5.3. Shift-Work and the Cardiovascular System 

The most potent cardiovascular problems that have been identified from the literature are 

alterations in (i) blood pressure and risk of hypertension, (ii) heart rate and (iii) an increased 

prevalence of Coronary Heart Disease (CHD). The evaluation of cardiovascular problems 

follows two approaches. The first is, to compare (correlate) datasets yielded in large-scale 

cohort studies (e.g. WOLF-study) and/or occupational files from annual health check-ups at 

the workplace. The second approach is to collect data in cross-sectional field investigations. 

The effect of shift-work on cardiovascular risk factors as, for example concerns measures of 

blood pressure, heart rate and the risk of developing hypertension (ICD-10 codes I10-I15). No 

difference between females and males were found. The underlying methodology and criteria 

for the diagnoses remain uncertain in some studies. This makes comparisons of the studies 

(partly) impossible. Another problem that occurs from is that no information about the time 

points (or time spans like “incidence happened in the morning hours”, for example) of any 

cardiovascular events has been regarded. Although it is known that physiological parameters 

like blood pressure and heart rate do show circadian rhythms, and further that cardiovascular 

events like stroke or heart attack mostly peak in the early morning hours (between 04:00 and 

06:00), such information is completely ignored in the selected studies. None of the studies has 

evaluated the time points of the respective events or based their analysis adequately on 

internal time of the workers. 
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4.5.3.1. Blood Pressure and Hypertension (ICD-10 codes I10-I15)  
Shift-workers have been found to exhibit higher levels of blood pressure than their day-

working colleagues. High blood pressure is known as one of the most potent reasons for the 

development of hypertension (ICD-10 codes I10-I15). Statistically elevated levels of blood 

pressure (BP) have been found by *Ohira et al. (2000)  (for systolic blood pressure only), 

*Yamasaki et al. (1998) , *Morikawa et al. (1999)  (OR 3.6, CI: 1.41-9.1), *Oishi et al. (2005)  

with an RR of 1.23 (CI: 1.05-1.44) (for diastolic blood pressure only) and in a study by 

*Prunier-Poulmaire et al. (1998)  with an RR of 3.1 (CI:1.05-9.1). In contrast, no significant 

elevations in both systolic and diastolic blood pressure levels in shift-workers were stated by 

*Knutsson et al. (1988)  and *Nikolova et al. (2000) . *Sternberg et al. (1995)  compared 

blood pressure rhythms of day and shift-working bakery workers and found a shifted peak 

(due to external time) in blood pressure rhythm in the latter. The systolic and diastolic peaks 

for the day workers were at 23:00 and 22:00 h, respectively. For the shift-workers these peaks 

were shifted to 04:00 and 03:00 h, respectively. *Sakata et al. (2003)  found an increased risk 

in the development of hypertension (whereas not strictly defined to the ICD-10 codes I10-I15) 

in clockwise rotating 3-shift-workers with an RR of 1.1 (CI: 1.01-1.97). In a follow-up study 

by *Oishi et al., 2005  shift-work was furthermore found to propel the development from mild 

to severe hypertension (ICD-10 codes I10-I15) by 23%. An age effect on the development of 

hypertension in shift-workers was pointed out by *Morikawa et al. (1999) , with hypertension 

(ICD-10 codes I10-I15) being significantly more prevalent in the 18-29 year old and in ex-

shift-workers, that have switched to day work. BMI, systolic BP and consumption of alcohol 

showed marginal effects on the results. Shift-work seniority to be an important modulator 

factor in the aetiology of hypertension (ICD-10 codes I10-I15) was also mentioned by *Ohira 

et al. (2000)  and *Nikolova et al. (2000) . In addition to the adverse effects of the factor shift-

work “itself”, various other factors have been stated, though without conclusive results, as, for 

example, a high work load, an effort-reward imbalance, high noise levels at the workplace, 

stressful work environment, heat, dust exposure, passive smoking and also long walking, 

prolonged standing, doing monotonous works and stressful contact with customers (= German 

„nervlich belastender Kundenverkehr“; *Virtanen und Notkola, 2002 ; *Peter et al., 1999  

with an RR of 1.7 (CI: 1.15-2.5); *Prunier-Poulmaire et al., 1998 ). *Virtanen und Notkola, 

2002  recently mentioned that stress from psychosocial factors (e.g. high work load and low 

control) had a stronger impact on health deteriorations than stress from physical and 

physiological (occupational) factors like noise or sedentary work. Additionally, effects 
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arranging from factors as active smoking, leading a sedentary lifestyle and from elevated age 

have been pointed out by several authors (*Peter et al., 1999 ; *Prunier-Poulmaire et al., 

1998). Finally, shift-work in many studies is the only variable remaining different between the 

healthy and the affected workers.  

4.5.3.2. Heart Rate 

Heart rate measurements have been performed using 24-hour ambulatory recorders (e.g. 

Holter-recorders). Although data on the 24-hour profiles of shift- and non-shift-workers was 

collected, none of these studies have evaluated the profiles on individual internal time, but 

rather on external time due to the classical medical criteria (which obviously are not 

established on populations of shift-workers, but rather on normative day-working 

populations). The evaluations concentrated on (i) comparison of the profiles´ shape (total 

daily heart rate rhythm was found to be flattened in shift-workers) and comparisons of the 

peaks and troughs between day and shift-workers. *Virtanen und Notkola (2002)  calculated 

the reduction in risk of several heart problems for the extinction of the factors like high work 

load, decision latitude, noise and shift-work (as a general unspecified factor). The authors 

determined a reduction of death due to cardiovascular disease by 8%, due to myocardial 

infarction by 10% and due to cerebrovascular disease by 18%. *Ishii et al. (2004)  and *Ishii 

et al. (2005)  showed an direct impact of shift-work on heart rate, measuring sympathetic and 

parasympathetic neuronal activity via ECG. *Yamasaki et al. (1998)  additionally found lack 

of recreation phase in the heart rate profile in shift-workers.  

4.5.3.3. Coronary Heart Disease (ICD-10 codes I20-I25)  

Coronary Heart Disease (CHD; including the diagnoses of Ischeamic Heart Disease, IHD and 

Myocardial Infarction, MI; ICD-10 codes I20-I25) are the most mentioned long-term 

consequences for the cardiovascular system. In most of the studies, the incidences of heart 

diseases have been calculated in various populations of shift-workers, irrespective of the 

precise shift-schedule. *Knutsson et al. (1986)  studied male clockwise rotating 3x8 blue-

collar shift-workers and found an increased risk with an odds ratio (OR) of 2.2 for workers 

with a shift-work seniority of 11-15 years and with an OR of 2.8 for those having worked in 

shifts for about 16-20 years, both results for the age group of 45-54 years.
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*Karlsson et al. (2005)  found an elevated risk for the development of Coronary Heart Disease 

of + 24% for workers of 30 years of age (OR 1.24, CI: 1.04-1.49). In the same retrospective 

analysis by *Karlsson et al., 2005 , examining data from 2354 shift-workers and 3088 day 

workers for the years 1952 to 2001, the authors found no significant elevation in the overall 

mortality risk of + 2% (range -7% to +11%). A recent study from *Ellingsen et al., 2007  

found an increase of 62% (RR 1.62, CI 1.2-2.18) in sample of shift-workers compared to the 

non-shift-working employees, from a fertilizer plant in the middle east.  

Overview of the findings on shift-work and cardiovascular problems 

The Figure 22 shows a taxonomy of the articles about the cardiovascular problems Coronary 

Heart Disease, CHD, and Hypertension (n=16; representing 31% of the initially selected 52 

articles). The results are presented due to shift-work schedule, shift rotation, sexes/genders 

and occupations, for both significant ( ) and non-significant results (Ø). Each of the end-bars 

in Figure 22 (with information about shift rotation, sex/gender and occupation) represents one 

article. If one end-bar concerns more than one article, this is listed in brackets behind the 

respective shift rotation. The results in Figure 22 are mainly found for rotational 3-shift work 

(with 8 hour shift duration). No study has investigated (permanent) night shift workers. For 

both CHD and Hypertension significant and non-significant results have been found, whereas 

the ratio basically is about 50:50 (see also the number of respective articles presented in the 

figure, indicated in brackets after the shift-rotation which is listed in the end-bars). Mostly 

males have been studied and the occupational group exclusively was constituted of blue-collar 

workers. Results on altered heart rate are not included into this taxonomy, because these do 

not constitute a clear outcome, but rather a risk factor, compared to hypertension and CHD.  
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Figure 22 Taxonomy of the selected articles about cardiovascular problems with Coronary Heart 
Disease and Hypertension (n=16). The taxonomy shows the distribution of articles showing significant 
( ) and non-significant (Ø) differences in cardiovascular problems between shift-work and control 
group, for the respective work schedule, rotation, sexes and occupational group. 
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4.5.4. Cardiovascular Risk and Lifestyle Factors 

Cardiovascular problems are not uniquely found in shift-work populations. They rather 

represent common epidemiological health problems. Certain risk factors are therefore known, 

which will be discussed in this chapter. The following section additionally includes 

information from articles that have not past the initial exclusion criteria. These articles have 

only been added for purposes of background information. This section further includes 

articles not primarily on cardiovascular problems, but on metabolic problems in general. The 

latter will be mainly dealt with in chapter 4.5.7. Some of these articles are mentioned here, as 

they give information about important risk factors in the aetiology of cardiovascular 

problems.  

The known cardiovascular risk factors can be divided into 4 groups: 

a) Uncontrollable factors: age, being male, genetic disposition 

b) partially controllable factors: hyperlipidaemia, hyperglycaemia, Diabetes mellitus 

(ICD-10 codes E10-E14), low-HDL-cholesterin 

c) controllable factors: smoking, being overweight, arterial hypertension (ICD-10 codes 

I10-I15) 

d) suggested factors: physical inactivity, emotional stress, personality type 

Factors of group a are not subject to this thesis, as these are risk factors equally distributed 

among both day and shift-workers. Factors of group b already have partly been discussed in 

the previous chapters, and shown to be also distributed equally both among day and shift-

workers. Factors of group d are not subject to this chapter, as studies investigating these 

factors have not been included in this study. Therefore, with special interest for the following 

section are the factors of group c (the “controllable” lifestyle factors).  

Lifestyle factors like smoking, alcohol consumption and diet are factors argued to act as 

compensators against stress. As stress is highly suggested to affect shift-workers more than 

day workers, these factors will be discussed as fallows.  



65 
 

 

4.5.4.1. Smoking Behaviour 

Smoking behaviour is a standard variable that is commonly collected in health studies, and 

controlled for, because smoking often is regarded as a confounder. As smoking can also be 

regarded in terms of coping behaviour, this makes especially smoking a mediator instead of a 

confounder. A higher rate of smokers is stated to be more pronounced in those shift-workers, 

that “only have observational” or control tasks to do at night, compared to those who are 

“heavily” working (e.g. steel workers). Needless to say, that the possibility to smoke on the 

job additionally plays a role. In jobs pronounced by monotonous tasks, smoking might serve 

to stay awake and additionally, some might just smoke because of boredom.  

As smoking behaviour has never systematically been studied quantitatively (in terms of 

the number of cigarettes), it can be assumed that most authors are not interested in the 

possibility that a worker increases the number of smoked cigarettes depending whether he/she 

is allowed to smoke on the job or not. This means that only the status of “smoker yes/no” has 

been evaluated. Due to lack of information from these studies, an attribution due to a certain 

shift system and smoking status is therefore also not possible. As said above, mostly for 

health examinations the information about smoking behaviour is collected. Therefore, it 

should be noted that especially studies on sleep problems do not ask for smoking habits. As 

shift-work as a risk factor for stress might lead to both higher smoking rates and increased 

sleep problems, thereby indirectly showing the stress-impact of the schedule, this lack of 

information is not justified. 

Anyhow, the majority of studies show smoking behaviour to be more prevalent among 

shift-workers (Table 3), meaning that the number of smokers is higher among shift-worker 

populations. As said above, this does not mean that the shift-workers smoke more cigarettes. 

Table 3 shows studies separated for their result of having found a higher percentage, lower 

percentage or no difference in the percentage of smokers in the comparison between shift- and 

day workers. This table also includes those articles, that have initially not passed the 

exclusion criteria, but which serve in this case to increase the amount of information. Most 

articles found that shift-workers are more likely smokers than day workers. The number of 

studies that found no difference between the shift- and day workers in respect to their 

smoking behaviour is equal to those that did find an elevation. The number of articles that 
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have been chosen for this survey (these are indicated by an asterisk, *) is similar in both 

groups, with 10 articles in the group of “More smokers among the Shift-Workers” (left 

column) and 11 articles in the group of “No difference between Shift-Workers and control 

group” (right column). Interestingly, some authors even found a higher number of smokers 

among the control group (centre column). 

More smokers among the 

Shift-Workers 

More smokers among the 

control group 

No difference between Shift-

Workers and control group 

Bisanti et al., 1996 *Ishii et al., 2004 *Burch et al., 2005 

Chen et al., 2006 Kawachi et al., 1995 *Ellingsen et al., 2007 

*Di Lorenzo et al., 2003 Koller et al., 1985 Gordon et al., 1986 

Harada et al., 2005 van Amelsvoort, 2001 *Karlsson et al., 2003 

*Harma et al., 1998  *Knutsson et al., 1989 

*Ishii et al., 2005  *Knutsson et al., 1990 

Johansson et al., 1991  *Kubo et al., 2006 

Kivimäki and Kuisma, 2001  Murata et al., 2005 

*Knutsson et al., 1988  Nakayama et al., 1997 

Knutsson et al., 1998  Niedhammer et al., 1996 

Knutsson et al., 1999  *Nikolova et al., 2000 

*Lasfargues et al., 1996  *Ohira et al., 2000 

Mohen et al., 2002  Quera-Salva et al., 1996 

*Morikawa et al., 2005  *Romon et al., 1992 

Murata et al., 1999  Romon-Rousseaux et al., 1985 

Nagaya et al., 2002  *Schernhammer et al., 2003 

Nakamura et al., 1997  Smith et al., 1982 

*Oishi et al., 2005  *Sookoian et al., 2007 

*Sakata et al., 2003   

*Schernhammer et al., 2006   

*Sternberg, 1995   

*Suwazono et al., 2006   

*van Amelsvoort, 2004   

Zhu et al., 2003   

Zhu et al., 2004   

Table 3 List of articles (for each column in alphabetical order) that provide data on the difference in 
smokers between shift-workers and control group. Most studies found a higher number of smokers 
among the shift-workers (left column). The number of articles showing no difference is similar (right 
column). Some authors found a higher number of smokers among the control group (centre column). 
These data does not reflect the number of cigarettes, but only the status of being a smoker “yes/no” 
(*Articles from the initial literature search). 
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4.5.4.2. Alcohol Consumption 

Alcohol consumption has in most studies been shown not be higher in shift-workers, instead 

the day workers are more likely to consume more alcohol. The latter can be explained by the 

circumstances that (i) day workers have simply more opportunities to drink alcohol, because it 

is preferably consumed in the evenings, when the usual day worker commonly is not at his 

workplace, compared, for example, to a night worker. The lack of occasionality to drink 

alcohol and the fact that alcohol consumption while on duty is not permitted in almost all 

occupations, directly decrease the number of situations for shift-workers to drink alcohol 

(Lennernäs et al., 1994 ; Romon-Rousseaux et al., 1985 ; Hermansson et al., 2003 ; Gordon et 

al., 1986 , *Harma et al., 1998 ; *Morikawa et al., 2005 ). Exceptions can be suggested for 

those workers taking alcohol as sleep-substitutes (Ohida et al., 2001 ), whereas this is not 

subject to this thesis (see exclusion criterion number 5 in chapter 4.3). 

4.5.4.3. Dietary habits 

Dietary habits have been investigated by only few authors, showing no or only minor 

differences between shift- and day workers (Romon-Rousseaux et al., 1985 ; Aptel et al., 

1992 ; Lennernäs et al., 1994 ; Niedhammer et al., 1996 ; *Lasfargues et al., 1996 ). Diet 

might be an additional factor with a modulator impact on health. The alimentary situation in 

terms of concrete health risks has not been investigated conclusively. 

4.5.4.4. Body Mass Index (BMI) 

*Di Lorenzo et al. 2003  examined workers from a chemical plant and found the BMI of 185 

shift-workers with 27.7 significantly higher than the BMI of the 134 day workers with 26.6. 

Also *Kubo et al., 2006  found higher BMI in rotating shift-workers in their study on prostate 

cancer (RR 3.0, CI 1.2-7.7). The authors did not find differences in body fat. Also *Karlsson 

et al. (2003)  have not found abdominal obesity to be elevated in shift-workers, but the 

percentage of workers with a BMI of   30 was higher in the shift-work group (15.0%) than in 

the comparison group (14.3%), although this difference was not significant. *Lasfargues et al. 

(1996)  and *Suwazono et al. (2006) , both found higher BMI in shift-workers, the former 

author for women and men separately. 
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No significant difference in BMI was stated by * Viswanathan (2007) , *Nakamura et al. 

(1997) , *Morikawa et al. (1999) , *Ohira et al. (2000)  und Knutsson et al., *1988 , *1989  

and *1990 . In contrast, higher BMI for the reference group was found by *Nikolova et al. 

(2000) , *Sakata et al. (2003)  (RR 1.1, CI: 1.01-1.197), *Oishi et al. (2005)  und *Ishii et al. 

(2005) . These results listed here show no consistent findings on this subject. 

4.5.4.5. Cholesterol 

Also the data on cholesterol is not consistent. Significant elevations of total cholesterol have 

been found by *Nakamura et al. (1997) , whereas *Karlsson et al. (2003)  found decreased 

total cholesterol for the shift-workers (RR 3.48, CI: 1.18-2.03). A separate analysis for HDL-

cholesterol in the latter study has revealed a significant elevation for 3-shift-workers (7.6%; 

n=659) compared with day workers (3.9%; n=665). *Lasfargues et al. (1996)  only found 

decreased values for male workers on a significance level. No statistical differences between 

groups shift and day workers were found by *Knutsson et al. (1988) , *Nikolova et al. (2000) 

, *Sakata et al. (2003) , *Di Lorenzo et al. (2003)  und *Oishi et al. (2005) . 

4.5.4.6. Triglycerides 

As the results on the BMI and cholesterol, so are the results on triglyceride levels not 

consistent. Significantly higher values of triglycerides in shift-workers have been observed in 

studies by *Romon et al. (1992) ,  *Knutsson  et al. (1988) , *Lasfargues et al. (1996)  (for 

night shift-working men and women separately) and *Karlsson et al. (2003)  (RR 1.83, CI: 

1.08-1.4) . The results of the latter study did not differ after control for age, socio-economic 

status, physical activity, smoking, social support and workload. No statistical difference has 

been found by *Nikolova et al. (2000)  , Knutsson et al., *1989  and *1990 , *Di Lorenzo et 

al., 2003 , and *Nakamura et al. (1997) . An increased risk for the metabolic syndrome (due to 

NCEP/ATP III-Definition) has been stated by *Sookoian et al. (2007) , who have analysed 

indicators for this syndrome as the prevalence of an elevated BMI (>30) and waist/hip 

circumference (>102/88 cm), higher levels of triglycerides (>150 mg/dl), decreased high-

density-lipoprotein (HDL) levels (<40 mg/dl in males and <50 mg/dl in females), higher 

arterial blood pressure (>130/85 mmHg) and increased fasting glucose levels (>100 mg/dl). 

(see Grundy et al. (2005)  for further background information).  
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The results from the studies on lifestyle factors and changes in blood parameters, as have been 

listed above, show that all these factors cannot explain the risk of shift-work on health. Most 

studies control for these variables in terms of control for confounders, and find that shift-work 

mostly remains the only difference between health affected workers and not affected workers. 

Further, as most shift-work jobs are from industry, chemistry, nuclear field etc., occupational 

exposures have to be taken into account, especially in case of long-term diseases. 

Additionally, it has to be kept in mind, that many occupational factors like heat, noise, steam, 

dust, exposure to other chemical components, are not clearly defined in their own risk 

potential, therefore also unknown in effect in the context of shift-work. The concepts of stress, 

allostatic load and of circadian misalignment must be scrutinized and broadened in future 

research, to better account for intra- and interindividual differences in the responses of people 

to this time-intensive 24-hour society. 



70 
 

 

4.5.5. Shift-Work and Cancer 

In the mid 1990ies, cancer diseases became subject to shift-work research. More precisely, 

they became subject to studies on night shift-work. This is based on the assumption that light 

during the nocturnal work hours elevates the risk of tumour development. Due to difficulties 

in measuring light exposure in humans in the field, ´night work´ has chosen as a surrogate in 

human epidemiological studies for exposure to light at night. Results exclusively originate 

from correlations of data mostly gathered in large-scale population surveys via questionnaires 

and/or data from official health registries. Measurements of light have never been performed 

in these human epidemiological studies. The keyword in all these studies is the LAN-Theory, 

building the fundamental hypothesis which will be explained in the following section. 

4.5.5.1. Excursion: Light-At-Night (LAN) Theory 

Roenneberg and Lucas (2002) have excellently pointed out the quintessence of the LAN-

Theory, which will be presented briefly here. The LAN-theory is based on hypothetically 

linking the following facts to be causal: 

1. Melatonin represents internal night under the control of the circadian clock 

2. Melatonin levels can be suppressed by light 

3. Melatonin is an indolamine 

4. Indolamines can act as scavengers of oxygen radicals 

5. Oxygen radicals can cause DNA damage 

6. DNA damage can cause cancer 

This theory bases on a supposed interruption of the nocturnal physiological synthesis and 

release of melatonin by the pineal gland (Hill and Blask, 1988 ; Blask et al., 1999, 2005 ; 

Davis et al., 2001 ) which in turn affects the level of estrogens. An unnaturally elevated level 

of estrogens is finally supposed to enhance tumour growth. Melatonin is a free radical 

scavenger and inhibits estrogenic function. This has been shown in in vitro and in murine in 

vivo studies (Cardinali and Pevet, 1998 ; Bartsch and Bartsch, 2006 ; Petranka et al., 1999 ; 

Anisimov, 1997, 2000 ). Estrogens bind to specific receptors on the surface of tumour cells 

and promote growth. A lack of oestrogen inhibition caused by a lack of nocturnal melatonin is 

therefore suspected to lead to tumour growth. Therefore, it is suspected that inhibition of 
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tumour growth being one of the main functions of melatonin (release). The decreased 

melatonin synthesis is expected to be the main causal link to the development of cancer in 

night shift-workers. 

In the following, the prevalent definitions of “night-work” from the respective studies 

are listed. One can easily see, that these are, if anyhow, only approximations of any light 

exposure during the night. These definitions are based on: 

• Only one initial question at study entry on how many years in total they had worked 

“rotating night shifts with at least three nights per month in addition to days or 

evenings in that month”. (see *Schernhammer et al., 2001, 2003, 2006  and 

*Viswanathan et al., 2007 ).  

• Information on work and cancer status used from (i) the Norwegian Board of Health’s 

registry of nurses and (ii) census data from 1960, 1970, and 1980. Shift-work status 

was defined by the census’ work codes ‘nursing’ or ‘nursing and other care work’ or 

the industry code was ‘health work’. (see *Lie et al., 2006 ). 

• Information on “occupational groups in which employees work predominantly at 

night” was obtained from a nationwide interview-based survey on living and working 

environment conditions in 1976 among 2603 women. (see *Hansen et al., 2001 ). 

• A characterisation of exposure to light at night ”working the graveyard shift” 

(between 7:00 p.m. and 9:00 a.m.) in the 10 years before diagnosis of cancer and 

defined by (i) ever worked during the graveyard shift, (ii) hours per week worked 

during the graveyard shift based on a weighted average of all jobs in the 10 years 

before diagnosis, (iii) the number of years worked at least one graveyard shift per 

week (see *Davis et al., 2001 ) 

• The self-reports from interviews if “ever working in at least one job during the past 15 

years that included (i) any shift-work (i.e., any evening or overnight shift job), (ii) any 

evening shift (i.e., including jobs with both evening and overnight shift-work), (iii) 

evening shifts only (i.e., excluding jobs with both evening and overnight shift-work), 

(iv) any overnight shift (i.e., including jobs with both overnight and evening shift-

work) or (v) overnight shifts only (i.e., excluding jobs with both overnight and evening 

shift-work) (see *O’Leary et al., 2006 ) 
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• Estimations from answers to a self-administered questionnaire: “Which form of work 

schedule have you engaged in the longest before now: daytime work, fixed-night work, 

or alternate night and day work (which are referred to as rotating-shift-work)?” (see 

*Kubo et al., 2006 ). 

The following section will provide a short excursion on melatonin. After this excursion, a 

chapter about the details of the respective shift-work-cancer literature will follow.  

4.5.5.2. Excursion on melatonin 

Melatonin is a pulsatile, synthesised by the pineal gland (Figure 4). The time point of 

melatonin synthesis and release is (i) under circadian control from the Nucleus 

suprachiasmaticus (SCN, the major pacemaker) and (ii) also dependent from the intensity of 

the ambient light level, as light is potent to depress the synthesis and release of melatonin 

from the pineal gland, via activation of the SCN. The productive machinery of melatonin 

therefore shows a 24-hour active rhythm, but the final release is mediated by a disinhibition 

from the SCN, when ambient light levels fall beneath a certain threshold.  

Under light-conditions, the SCN exhibits an inhibitory noradrenergic input via the 

paraventricular nucleus and the superior cervical ganglia to the pineal gland. This results in an 

inhibition of the synthesis of Melatonin. Tryptophan is processed by the tryptophan 

hydroxylase to 5-Hydroxytryptophan. The product from the decarboxylation of this 

intermediate is 5-Hydroxytryptamin (5-HT or serotonin). Finally the arylalkylamine-N-

acetyltransferase and the hydroxyindole-O-methyltransferase process N-acetyl-5-

methoxytryptamin, the final melatonin. Brzezinski et al. (1997)  found the threshold of 

melatonin inhibition between 200 and 400 Lux. Maximal inhibition has been postulated at an 

intensity of 600 Lux for the duration of one hour. This correlates with a spectrum of 446 to 

477 nm but is based on results from laboratory examinations under well-controlled conditions 

(Lockley et al., 2003  and Brainard et al., 2001 ). The nocturnal peak of melatonin is reached 

between 02:00 and 04:00 a.m., with levels up to 1400 pmol/l. The normal levels of nocturnal 

melatonin range around 60 pg/ml. The daily levels are about 10 or less pg/ml. Different 

melatonin receptors have been identified in humans. These are three high affinity receptors 

(Mel1a, Mel1b, and Mel1c) and one low affinity receptor (MT2). The high affinity receptors 

are G-protein coupled and their activation leads to an inhibition of adenylate acyclase. These 

receptors are involved in retinal function, circadian rhythms, and reproduction. The low 
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affinity receptor is also G-protein coupled and implemented in the stimulation of 

phosphoinositide hydrolysis. This receptors´ distribution in human physiology further is 

unclear. These receptors have been found in various densities in the retina, other peripheral 

organs and in about 110 brain structures as, for example, in the internal granular layer, 

external plexiform layer, lateral septum, septohippocampal nucleus, caudate putamen, bed 

nucleus of the stria terminalis, nucleus suprachiasmaticus, mediobasal hypothalamic nuclei, 

paraventricular nuclei of the hypothalamus, paraventricular nuclei of the thalamus, 

intergeniculate leaflet, central and medial amygdaloidal nuclei, inferior colliculus, fasciculus 

retroflexus, substantia nigra, frontal, orbitofrontal, parietal cortex, and the pars tuberalis of 

pituitary, to name just the most prominent structures. Besides the pineal gland, melatonin is 

also expressed by the retina itself and by cells in the intestinal tract, whereas the full action 

spectrum of melatonin still needs to be elucidated. 

In context of melatonin depression and cancer development, only very few data are 

available for humans in real life and any causality is highly suggestive nowadays. In the next 

chapter, the studies on shift-work and cancer in humans will be presented. 

4.5.6. Shift-Work Studies on Cancer 

Most results have been obtained via retrospective analyses of data from large cohort studies 

on cancer prevalences and the respective number of years in rotating night work. Markedly, 

primarily nurses doing rotating night work have been studied. No other shift-work schedules 

than night work have been examined, as already mentioned because night shift-work has been 

chosen as a surrogate for light exposure during the night hours (hence, LAN = Light-at-Night 

Theory). It was not night shift-work in general that propelled this field of research. The more 

years employed in night work, the higher the prevalence of cancer. Therefore, the studies in 

cancer risk in shift-workers are somehow different, as these do not explicitly regard the shift 

system itself of being harmful, but rather the circumstance of altered light/dark regimes. 

Anyhow, although these studies are more or less only indirectly real shift-work studies, they 

will be discussed in this thesis as they constitute an important area in shift-work and also 

chronobiological research, that definitely needs further research. Therefore, I will start with an 

overview about the shift-work cancer studies, and then proceed with a brief discussion of the 

intellectual inconsistencies and flaws of these works (see Comment on the LAN-Theory, 

chapter 4.5.6.1). The cancers that have been evidenced to be propelled in incidence from night 

work are breast cancer (with the majority of the studies, Table 4), colorectal cancer, prostate 
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cancer and endometrial cancer. The latter three cancers have only been examined in one study 

each. All studies found that the risk persisted after control for the factors age, age at 

menarche, age at Menopause, age at birth of first child, parity, changes in body weight 

between 18th birthday and menopause, BMI, height, family history of cancer, former benign 

tumour diseases, use of oral contraceptives and postmenopausal hormones, menopausal status 

and alcohol consumption. 

Article shift-schedule RR OR CI min CI max Focus on … 
*Davis et al., 2001 rotating night shift  2,3 1 5,3 Breast cancer 

*Hansen et al., 2001 rotating night shift  1,5 1,2 1,7 Breast cancer 

*Lie et al., 2006 rotating night shift  2,21 1,1 4,45 Breast cancer 

*O’Leary et al., 2006 rotating night shift  1,04 0,79 1,38 Breast cancer 

*Schernhammer et al., 2001 rotating night shift 1,36  1,04 1,78 Breast cancer 

*Schernhammer et al., 2001 rotating night shift 1,79  1,06 3,01 Breast cancer 

*Tynes et al., 1996 rotating night shift  1,5 1,1 2 Breast cancer 

*Schernhammer et al., 2003 rotating night shift 1,35  1,03 1,77 Colorectal cancer 

*Viswanathan, 2007, 2007 rotating night shift 1,47  1,03 2,1 Endometrial cancer 

*Kubo et al., 2006 rotating night shift 3  1,2 7,7 Prostate cancer 

Table 4 Overview of shift-work studies on cancer risk. Presented are the Relative Risks (RR) and Odds 
Rations (OR), and the respective Confidence Intervals (CI). The majority of studies have been 
performed on breast cancer. Only night work schedules have been studied. 

Overview of the findings on shift-work and cancer problems 

The Figure 23 shows a taxonomy of the articles about cancer problems (n=10; representing 

19% of the initially selected 52 articles). The results are presented due to shift-work schedule, 

shift rotation, sexes/genders and occupations, for both significant ( ) and non-significant 

results (Ø). Each of the end-bars in Figure 23 (with information about shift rotation, 

sex/gender and occupation) represents one article. If one end-bar concerns more than one 

article, this is listed in brackets behind the respective shift rotation.  Cancer problems are only 

investigated in (rotating) night workers, and additionally only in females (one exception only 

in the study on prostate cancer by *Kubo et al., 2006 ). All other studies investigated the 

cancer risk in nurses. None of the articles reported non-significant results.  
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Figure 23 Taxonomy of the selected articles about breast, colorectal, endometrial and prostate cancer 
(n=10). The taxonomy shows the distribution of articles showing significant increases in cancer for the 
respective work schedule, rotation, sexes and occupational group.  

The weak evidence from the studies has lead the International Agency for Research on Cancer 

(IARC, a sub-organization of the World Health Organisation, WHO) to constitute an expert 

meeting that has published in 2007 (http://www.iarc.fr) the results of a respective review and 

concluded that due to “limited evidence in humans for the carcinogenicity of shift-work that 

involves night work” and “sufficient evidence in experimental animals for the carcinogenicity 

of light during the daily dark period (biological night)” … “Shift-work that involves 

circadian disruption is probably carcinogenic to humans”. 

4.5.6.1. Comment on the LAN-Theory 

Although, logically, a relationship between light-mediated melatonin suppression and tumour 

growth cannot be ruled out, such a complex scenario (endocrine system, circadian system, 

night-shift-work, etc) requires caution in assigning guilt to this one factor. More thorough 

investigations regarding the specific interactions between the putative causal steps, as well as 

real-life measurements of actual light environments and individual light perception at the 
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retinal level are necessary to evaluate the impact of LAN on health and specifically on cancer 

(Roenneberg and Lucas, 2002) . 

Further, as the basis of the LAN theory comes from studies on rodents, it must be noted 

that the circadian system of nocturnal rodents is approximately 10.000 times more sensitive to 

optical radiation than that of humans (Bullough et al., 2006 ). Direct comparisons of results 

from studies on humans and rodents are therefore merely possible. Stress or immune function 

has neither in rodents nor in humans been elaborated in context of LAN. 

Night shift-workers, both working in rotation or constant shifts, differ in many facets 

from those working under standard conditions: diet, smoking habits and/or alcohol 

consumption, occupational factors, meal times, and sleep-wake rhythms, to name only a few. 

Some of these are confounders that have to be controlled for, whereas the lifestyle factors 

(e.g. smoking or alcohol consumption) must in context of shift-workers be regarded as 

possible mediators towards disease, as such working regimes can have an effect on coping 

strategies and health habits. The whole issue is being complicated as the factors listed above 

further act in concert as a causal basis for the higher tumour risk in night-shift-workers. Some 

would certainly act as confounders merely by the fact that most of them are bound to correlate 

with light-suppressed melatonin levels.  The actual degree of melatonin suppression in night-

shift-workers in context to light exposure has never been examined. 

Today it remains unclear if some workers might still produce melatonin during the night 

hours, in case they are not shifted, and additionally during their day sleep period when lying 

in darkness. Finally, these workers might be provided with higher levels of melatonin during 

one shift cycle compared to fixed day workers. As the inhibitory effect of melatonin on 

tumour growth only appears in small ranges of about 10-9 M but not at higher or lower doses, 

one can also suggest the melatonin level to be overall higher in night workers. This puts 

emphasize on the importance to regard individual light exposure on both work and free days. 

From the prevalent results one could also put forward the statement that cancer in night shift-

workers rather is caused by no-light-at-day (no-LAD) instead of light-at-night (LAN). No 

cancer-melatonin association for women with or without cancer was found by Travis et al., 

2004 . An elevated melatonin level in fixed night shift-workers on days off was found by 

Roden et al., 1993 . In addition, it is known fairly little about the actual light levels required to 

suppress melatonin in real-life situations, especially when history-dependent adaptation levels 

are taken into account.  
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Based on this conclusion, more research is strongly recommended to tease apart the 

causalities behind the health-risks of shift-work but the above summary suggests that it is 

unlikely that LAN is acting directly via the scenario presented above. An expert meeting on 

shift-work and breast cancer at the MRC (Medical Research Council) Institute for 

Environment and Health (November 2004)  came to the conclusion that the association 

between shift-work and cancer is only suggestive so far. Although the relationship appears to 

be biologically plausible, there is a lack of empirical data. It was mentioned that the measures 

of shift-work and light-at-night exposure must be improved.  This should include duration of 

shift-working, type and intensity of light exposure, changes in sleep pattern, and variables 

associated with the circadian rhythm. Further mentioned was the lack of more useful 

parameters to measure variations in exposure and effect. 

4.5.7. Shift-Work and Metabolism 

4.5.7.1. Digestive Problems 

Digestive problems have most been analysed in cross-sectional studies and workers employed 

in 3-shift systems. The hypothesis behind the digestive problems is that the alternating work 

hours lead to alterations in habitual eating times. Especially for social reasons (e.g. to eat 

together with the family) some workers delay or advance their eating times, depending on the 

actual work hours (*Lasfargues et al., 1996 ). *Prunier-Poulmaire et al., 1998  found a 

correlation between irregular eating hours and loss of appetite and subjective discomforts. 

Malaise from metabolic consequences like alterations on bowel habits, constipation, 

diarrhoea, flatulence and heartburn have been described (*Ueno et al. (1984) , *Prunier-

Poulmaire et al. (1998)  und *Wolfhagen et al. (1994) , *Lasfargues et al., 1996 , * Lac and 

Chamoux, 2004 ). *Costa et al. (1980)  have found night and 3-shift-work to result in the 

highest rates of morbidity. 

Metabolic (digestive) disorders are found for both females and males and are mainly 

argued to be an effect of eating at times at which, for example, digestive enzymes are at their 

physiological nadir and appetite is low, meaning the digestive tract is not prepared to digest 

during the night. Therefore, these problems would also have a circadian component, because 

digestion processes are regulated by the internal clock, which can become ill-timed when 

strong alterations in eating patterns occur as in night work. Some studies already have been 

discussed in chapter 4.5.4 about cardiovascular problems and the respective risk factors. 
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4.5.7.2. Diabetes mellitus (ICD-10 codes E10-E14) 

*Suwazono et al. (2006)  found a higher prevalence (+35%) for Diabetes mellitus (ICD-10 

codes E10-E14) in 4-Team/3-Shift-workers. *Morikawa et al., 2005  only found shift-work to 

be a predictor for 2-shift, but not 3-shift-workers, after control for age, BMI and family 

history of Diabetes mellitus (ICD-10 codes E10-E14). Concerning Insulin, *Di Lorenzo and 

co-workers (2003)  were not able to find significant differences. 

4.5.7.3. Sub-fecundity (ICD-10 code N97) 

Higher rates of subfecundity (ICD-10 code N97) were found in a study on midwives by 
*Ahlborg et al. (1996) . The authors found significantly decreased values for women doing 2-

shift-work (-22%, range -35 to -6% / Fertility ratio (FR) of 0.78, CI: 0.65-0.94) and for 

women in 3-shift-work (-23%, range -40 to -2% / FR 0.77, CI: 0.61-0.98).  

Overview of the findings on shift-work and metabolic problems 

The Figure 24 shows a taxonomy of the articles about the metabolic problems ulcer and 

duodenitis, diabetes and subfertility (n=13; representing 25% of the initially selected 52 

articles). The results are presented due to shift-work schedule, shift rotation, sexes/genders 

and occupations, for both significant ( ) and non-significant results (Ø). Some of the articles 

have already been discussed in chapter 4.5.4 on the lifestyle variables concerning 

cardiovascular problems. Each of the end-bars in Figure 24 (with information about shift 

rotation, sex/gender and occupation) represents one article. If one end-bar concerns more than 

one article, this is listed in brackets behind the respective shift rotation. Metabolic problems 

have mostly found in rotational 3-shift workers with 8 hour shifts. The results showed no 

sex/gender differences. Information on the occupations was not provided by all authors. For 

the three outcomes (i) ulcer and duodenitis, (ii) diabetes and (iii) subfertility, both significant 

( ) and non-significant results (Ø) have been found. The risk to develop metabolic problems 

was not found to be specifically caused by a certain shift system, and is therefore seemingly 

influenced by various (work related and likely non-work-related) factors. 
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Figure 24 Taxonomy of the selected articles about metabolic problems with ulcer and duodenitis, 
diabetes and subfertility (n=13). The taxonomy shows the distribution of articles showing significant ( ) 
and non-significant (Ø) differences in metabolic problems between the shift-work and control group for 
the respective work schedule, rotation, sexes and occupational group. 
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4.6. Methodological Difficulties with the Shift-Work Literature 

This section is about general methodological difficulties with the shift-work literature. 

Therefore, it is not limited to the selected articles presented above (n=52). The aim of this 

section is to give an overview of the main struggles that arise when dealing with 

epidemiological studies on shift-work. The comparison of the shift-work studies is, as already 

mentioned above, complicated mostly by the heterogeneity in methodology. 

The main differences are (in loose order): 

• Shift-work schedules are not separately analysed (e.g. fixed night work has not been 

separated from rotating schedules) 

• The work hours and direction of rotation are not presented 

• Shift-work is not defined anyhow  

• Weak or non-adjustment of confounders (e.g. lifestyle habits or pre-diseases) 

• The time of day of the measurements has not been regarded (no internal time!) 

• Mostly only single samplings have been performed instead of daily profiles 

In addition to these factors, the interpretation of the results is further complicated by the 

variance in the following aspects: 

a. Study type:  

i. Cross-sectional studies are of minor use for the evaluation of causality, as these only 

represent an actual health state of the population under study. This study type is also 

highly affective for the “Healthy Worker Effect” (see point c in this list).  

ii. Retrospective studies suffer from recall bias or they base on the evaluation of medical 

records, without reflecting individual work profiles and histories.  

iii. Prospective studies are the only possibility to examine the development of certain 

diseases in shift-working populations, when these are followed up for a given period 

and when additionally confounding factors (e.g. lifestyle or shift changes) are 

accounted for. 

b. The study duration, in terms of length (number) of follow up studies, often is too short 

to draw meaningful conclusions. 

c. “Healthy shift-worker” effect: This effect means that a given shift-worker population 

constitutes a self-selected sample, by (i) a preselecting process at employment, that only 
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those workers are employed that could endure shift-work burdens, (ii) selection by drop-

out, that those who do not stand the shift-work burdens leave shift-work. These processes 

finally lead to a population of shift-workers that might be healthier then the control 

groups, as these workers are the “toughest”, in terms of the Darwinian concept of 

“survival of the fittest”. On average, 20% of a shift-work population leave shift-work due 

to severe health problems. About 10% show a huge tolerance and withstand the troubles 

without any complaints. The remaining 70% show different levels of tolerance and 

problems, which are more or less manifest at different times and with different severity. 

Cross-sectional studies are often biased by the “Healthy Worker Effect”, as those shift-

workers that have left shift-work (and, for example, changed to day work) are not 

excluded from the sample. Therefore, the sample must be controlled for the number of 

so-called drop outs. Especially in cross-sectional studies, the shift-workers might appear 

healthier than the control group. An underestimation of any calculated risk or difference 

between the groups is likely to obscure the results. 

d. Direction of shift-work rotation (e.g. clockwise, counterclockwise or permanent night 

work) and also the speed of rotation (e.g. weekly shift changes or changes every two 

days) are under discussion to have distinct effects, but are not studied with great detail up 

to today. 

e. Occupational differences as the level of demand, different tasks, different number of 

workers in different shifts (e.g. fewer at night), of supervisors in shifts (e.g. fewer at 

night), shift durations (e.g. 6-/8-/12-hour shifts), exposures at the workplace (e.g. heat, 

dust, stress) can constitute completely different working conditions and thereby worksite 

related exposures and stressors. 

f. The control group is inadequate, when it differs in too many aspects like the jobs tasks, 

ages, sexes, socio-economic backgrounds etc. 

g. Subjective or objective data sampling, meaning (re-) evaluation of data from primary 

sources (e.g. national health surveys, records from company based annual health check-

ups or insurance files etc.), use of questionnaires, interviews or physiological 

measurements. 

h. Changes and variations in diagnostic criteria can make comparisons of several studies 

difficult. 
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i. Lifestyle differences as the socio-economic status, smoking and drinking behaviour, 

family status, leisure time physical behaviour etc. might additionally play an important 

role in disease development. Health studies should always take both work and private 

life into account. 

4.7. Discussion  

The aim of the literature survey in this thesis was to figure out the state of knowledge about 

shift-work and health with special considerations from chronobiology. In this respect, two 

important aspects became apparent that have made this evaluation striking. First, virtually no 

study has applied thorough chronobiological concepts in field examinations (e.g. to use the 

individual Chronotype, internal time in prospective examinations) and, second, after analysing 

those reliable studies that remained (only 52 in total) it must be stated that after decades of 

shift-work research, the main conclusion that can be drawn reflects the same simple incentive 

that once has propelled the pioneer shift-work researchers, namely that shift-work affects the 

health of some workers negatively. Markedly, shift-work research is pronounced by the use of 

subjunctives and the majority of the results arranges only from correlations of datasets 

gathered from mostly cross-sectional analyses (57%; Figure 18), and rather superficial studies 

in which the influence of altered work hours is basically treated as a co-variable, without 

adequate quantification. In the following section I want to continue first with general 

statements on the topic of shift-work and health.  

Shift-work research is interdisciplinary, combining approaches from biology, pathology, 

psychology and sociology under the roof of epidemiology. Epidemiology is defined as the 

discipline that studies the “distribution and causes of disease prevalences in human 

populations” (MacMahon and Pugh, 1970 ). By this definition it becomes clear that these 

studies do not concern the individual worker, but a given population in total, running the risk 

to loose important information when results are inadequately pooled. 

On the one hand, this interdisciplinary approach offers the advantage that the health 

situation of shift-workers is examined by different expertise. On the other hand, the 

disadvantage is expressed in the large differences in methodology and concepts (see previous 

section 4.6) that make comparison difficult. Sad but true, the reader, therefore, finds himself 

confronted with the fact, that finally there are no two studies that would stand a direct 
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comparison (which, for example, in the field of real clinical studies is far less the case; see, 

for example, reviews from the Cochrane collaboration).  

The aforementioned might be interpreted as a reason why shift-work never has been 

defined adequately in these studies, neither on external time nor least of all on individual 

internal time. This also might be a reason, why no statistical meta-analysis on the total shift-

work issues has been performed, as it is simply impossible and would not lead to useful 

results (see section 4.4.1). The idea of a meta-analysis had also been skipped in this thesis. 

Therefore, the presentation of the material is rather descriptive than statistical. In addition, no 

systematic longitudinal studies have been found, that would have analysed both certain 

specific shift-schedules individually for a broad variety of diseases and health effects, to 

precisely estimate the impact on both sleep and cardiovascular problems, for example.  

Another critical aspect is the small number of occupations that have been studied. As 

shown, shift-workers are employed in many different work sectors (Figure 15), but only few 

of these have been studied, which is of hindrance to give general statements and 

recommendation for the general workforce. This is partly reasonable, as there are certain 

methodological hindrances and obstacles to establish a field-study in running plants and high 

risky occupational fields (e.g. from the initial compliance of the workers to the limits of 

research tools in their applicability in real life settings, as for example in the steel industry or 

during transatlantic flights). Anyhow, the reader should be aware that the knowledge on shift-

work health issues is despite its long history rather limited. Anyhow, the huge variability in 

the studies does also inherit one advantage. Despite the limited interpretability due to the 

manifold methods and approaches used, it is remarkable that some health outcomes are found 

with (at least some) consistency over the past decades. These are especially sleep disturbances 

with its consequences on daytime sleepiness and fatigue on the one hand, and cardiovascular 

events as long-term effects on the other hand.  

Although certain methodological problems have become obvious (chapter 4.6) and 

although causalities between shift-work and certain diseases are not clear in many aspects 

today, it must be noted that anyhow the number of shift-work occupations is increasing 

globally and that the traditional 9-to-5-jobs are about to become extinct. Taking this into 

account, surely, the awareness of shift-work having detrimental effects on human health is 

important as the first step, but as long as adequate concepts to ameliorate the situation of shift-

workers are missing, the only consequence of this knowledge is, to carry on with more 

thorough scientific examinations.  
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A myriad of different shift systems have been introduced worldwide and it seems that nearly 

every plant uses individual schedules, with some industries using 80 and more different 

schedules (private communication with a respective occupational physician from a worldwide 

leading manufacturer of light sources). From this point of view it is interesting, that not much 

is known about the impact of these plenty shift schedules. One important criterion for the 

literature selection used in this study was that the investigated shift-schedule had to be listed. 

Finally, 3-shift systems are studied most, whereas information on the arrangements of the 

three shifts can hardly be found. Therefore, no optimal (in terms of less interfering) shift 

schedule could be identified from the results of these articles.  

Anyhow, as the number of various shift-work schedules that are worked worldwide is 

huge, it offers the opportunity to develop not simply production-site adjusted schedules (as is 

it frequently done today), but further shift-worker adjusted schedules in respect to their 

individual Chronotype. As mentioned above, despite many methodological differences, 

certain health problems have been found with some consistency in these studies. This might 

underline the severity of these problems, even if causalities remain unclear by these 

approaches. On the next pages the prevalent state of knowledge concerning shift-work and 

health will be discussed with additionally elaborating strategies for (better) future research. 

The most prevalent health problems have been categorised into (i) sleep, (ii) 

cardiovascular, (iv) cancer and (v) metabolic problems, as presented in the previous chapters 

in this thesis. In short, sleep problems are named already in the first studies as one of the 

major struggles of shift-employees, mainly arranging from sleep curtailment and insufficient 

time for recreation. Cardiovascular problems first appeared in the literature by the 1980ies, 

have been strongly doubted at that time but have finally been confirmed as a potent long-term 

consequence in the 1990ies, whereas explanations mainly take elevated stress levels as a key 

component in disease development. The most recent association between shift-work and 

disease is a higher incidence of cancer that has first been introduced in the mid-1990ies. As 

already argued in chapter 4.5.6, cancer diseases are not major topic to this thesis but are 

mentioned due to the (even if questionable) consistency in the findings. As already pointed 

out in chapter 4.5.6.1, the argumentative basis (LAN-theory) is elusive today and strongly 

recommends further investigations. Anyhow, without more insights, the cancer risk must be 

interpreted to be at least potentially possible.  
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Finally, digestive problems have been stated to be elevated in shift-workers, which are 

generally interpreted to be influenced by a combination of (i) low-quality food intake 

(especially during the night shift hours, due to closed canteens, for example) (ii) adverse 

lifestyle habits (e.g. smoking and a sedentary lifestyle) and (iii) an unadjusted internal time 

system, that leads to a food and stimuli consumption at times, at which the body is not 

prepared properly in terms of enzyme and hormone state. It must be mentioned, that improved 

diagnostics in medicine have helped to decrease the number of some previously found effects, 

as for example infections with H. pylori, which today are (i) earlier diagnosed and (ii) more 

effectively treated.  

Regarding the field of shift-work research in total, it becomes obvious that since the 

introduction of cancer diseases in the mid-1990ies, no further major finding has been added to 

the area. Instead, rather known health effects appeared disguised in new terminology, as for 

example, the diagnosis of the metabolic syndrome. This syndrome finally just combined 

already known factors that are found elevated in some shift workers (see chapters 4.5.4 and 

4.5.7). The respective factors are an elevated BMI (>30) and waist/hip circumference 

(>102/88 cm), higher levels of triglycerides (>150 mg/dl), decreased levels of high-density-

lipoprotein (HDL; <40 mg/dl in males and <50 mg/dl in females), higher arterial blood 

pressure (>130/85 mmHg) and increased fasting glucose levels (>100 mg/dl). 

Besides the limits mentioned above, the research on shift-work was surely not wasted as 

it has revealed indeed many health modulators from work- and lifestyle, diet and stimulant 

consumption and the psychosocial state of employees on various health outcomes. Anyhow, 

these results have surely strengthened the awareness of the potential effect of shift-work and 

thereby constitute an excellent basis for upcoming studies, to elaborate the weightings of the 

individual modulator factors and develop methods to quantify the exposure to shift-work. 

This literature evaluation here was confronted with many methodological difficulties, as 

pointed out above. Finally, one aspect has been identified that gives promising new insights 

into the field of shift-work research. This aspect is the direction of shift-work rotation, namely 

the differential impact from clockwise and counterclockwise rotation. It could be shown to 

differentially affect sleep and cardiovascular outcomes. This means, that there is evidence that 

indeed the temporal constellations from working in (rotating) shifts play a role in the 

aetiology of certain shift-work burdens and recommend future research to take the aspect of 

time more thoroughly into account. The respective hypothesis of the differential impact from 

shift-work rotation will be figured out more in detail in chapter 4.7.1. The Figure 25 provides 
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an overview of the most significant outcomes due to the shift-work schedules. Most findings 

have been published for 3x8 h clockwise shift-work. The fewest number of results is listed for 

shift systems of 5x8 h or 4x6 h rotational shift-work, as this system has fairly been studied. 

 

Figure 25 Illustration of the main health effects identified from the selected articles, grouped by shift 
schedule and direction of rotation. Most findings have been published for clockwise 3-shift systems with 
8 hour shift durations. The least number of results has been found for 5x8 h schedules (5-shift systems 
with 8 hour shifts) and 4x6 h schedules (4shift systems with 6 hour shift).  
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In the next section I will focus on the evidence found in the literature survey, that the 

direction in shift-rotation might play a mediating role in stress and maybe also in (long-term) 

disease development. 

Sleep and cardiovascular problems – two sides of the same (shift-work) 

medal? 

As mentioned in the previous paragraph, the two main outcomes that have been identified 

from this literature evaluation are sleep problems (as an impact on the short run) and 

cardiovascular problems (as an impact on the long run). Therefore, in the following section 

these two health issues will be focused on more in detail to figure out the hypothetical title of 

this section, namely if sleep and cardiovascular problems constitute two sides of the same 

(shift-work) medal? 

As already pointed out in chapter 4.5.1, sleep problems develop soon after entry in a 

shift-work cycle, mainly on a night shift period and decrease (often also soon) on days off or 

when switching to day work. Therefore, sleep problems can be interpreted by a rather short-

term and transient character. The most prevalent severe and long-term consequences are 

cardiovascular problems, whereas it remains uncertain if, and in case in which way, these are 

connected with the sleep problems. One possible and often used explanation for an increased 

level of heart problems is elevated stress. Measuring stress is highly subjective and stress is 

further individual and context dependent (see also chapter 4.7.2 below). In the literature that 

has been scanned for this survey, stress in shift-workers is discussed to originate from various 

factors as high work load, heat, steam, noise, hectic. Volkholz  already mentioned in 1977 that 

there are several factors at the workplace, which constitute a combined impact on the 

development of stress and even disease. *Virtanen und Notkola, 2002  wrote in this context, 

that stress from psychosocial factors (e.g. high work load and low control) had a stronger 

impact on health deteriorations than stress from physical and physiological (occupational) 

factors like noise or sedentary work. Needless to say, that of course those combinatory effects 

not only exist at the workplace but also outside the workplaces, e.g. at home. It is therefore 

self-evident that an evaluation that does only focus on the worksite-related effects is way too 

short minded. The psychosocial impact from conflicts with the family and friends has been 

mentioned and lead Tenkanen et al. (1998)  and Harma et al., (1990, 1994, 1996, *1998, 

2000)  to conclude that shift-work enhances the burdens of negative lifestyle factors. 
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 Stress, as said, can result in adverse lifestyle habits like cigarette smoking or alcohol 

consumption. Anyhow, increased stress levels are not consistently found in shift-work 

populations and the ability to smoke, for example, depends on the occupational task and/or 

the actual work situation. For example, smoking is not possible or even permitted at all 

workplaces. Nurses would have to leave the station and go out to smoke, whereas some 

workers on a night duty in an isolated control room might be very well permitted to smoke. A 

shown, occupational stressors and adverse lifestyle factors cannot fully explain the health 

deterioration associated with shift-work. Also, these factors (like smoking) appear in most 

cases as both confounders and also mediators to disease, as already pointed out previously in 

this thesis. For example, night shift-workers more than day workers have to fight against the 

tendency of falling asleep when less is to do during the night and cigarette smoking is often 

used as a stimulant against tiredness.  

In the view of chronobiology, shift-workers might besides that discussed above been 

stressed by another circumstance, which is increasingly discussed in the actual research today. 

Shift-workers are struggled to “function” at times within a 24-hour period, at which the body 

is not “adequately prepared”, both in terms of cognitive and also metabolic and physiologic 

resources. The former is expressed in circadian rhythms of alertness, memory and of stress 

tolerance, for example, whereas the latter affects daily rhythms of hormone, enzyme and even 

DNA-synthesis. This would mean that, for example, digestion or the bodily stress response 

itself are “inadequate”, as these rhythms might not adjust to the new time regime (given by 

the work hours) and be still synchronized to a diurnal lifestyle in a night shift-worker who has 

recently started the nocturnal work period. But, these findings are mostly hypothetical, 

originating from laboratory studies and need to be proven in real life settings for how and to 

which extent these affect the health of shift-workers in the short and the long run, 

respectively. 

What the factors are and in which interaction under which circumstances these exactly 

(might) lead to illness, depends obviously on many individual traits, as for example on the 

adjustment capacity of the individual internal clock, the respective susceptibility and coping 

behaviour of the individual worker. Volkholz (1977)  pointed out at this melting pot of 

impacts when he wrote that “not work itself, but those forms of human work that result in 

overstraining are problematic”.  
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Müller (1985)  recommended in turn to realize that stresses and strains are objective external 

factors, that are independent from the workers. Costa in 2003  in addition mentioned that 

shift-work has to be regarded as a modulator or trigger, that acts as a stress factor which 

interferes with co-prevalent disorders. It must be noted at this point, that all the health 

problems that are found and discussed to be elevated in shift-workers (e.g. sleep and 

cardiovascular events) are definitely not unique for this working population. All these 

diseases and health problems are known from epidemiology. The shift-work health problem 

has never been identified, whereas seemingly the ways under which shift-workers are affected 

might differ from that of non-shift-workers. Thereby, the outcome is the same, but the 

aetiology may not. Further, as we know of most of these population diseases to have a 

multifaceted origin in genetic, personality, life-style, social conditions and intervening 

illnesses, shift-work might therefore be also regarded as a factor that likely propels pre-

existing diseases and increases adverse lifestyle habits. Equal to a vicious circle, in the long-

run health is adversely affected. A thorough pre-screening is therefore strongly recommended 

before employment. 

The appeal that arranges from this argumentation is, to take the individual worker into 

focus. The epidemiology of the shift-work health problems as it appears today, clearly shows 

that new concepts are needed, taking the challenge of integrating a new dimension into the 

established methods of analysis, namely the dimension of internal time (Chronotype; see also 

chapter 7.1). With the knowledge from chronobiological research, future research on shift-

work should strictly regard the individual internal circadian physiology and adjustment 

capacity of the individual worker, in the context of individual alterations in physiology due to 

individual alterations in work and sleep hours and the environmental zeitgeber exposure. 

In this respect, Aguirre and Foret (1993)  argued that “the physiological explanations 

given by chronobiological studies are of limited help to account for the complaints of shift 

workers. Even if plausible, there is no evidence whatsoever that, sleep and alertness problems 

apart, the physiological consequences of shift-work could be related to repeated disruption of 

the circadian system”. As the studies in this thesis clearly show, this line of argumentation by 

Aguirre and Foret can definitely not be agreed upon.  



90 
 

Therefore, a thorough (re-) examinations of shift-employees on the fundament of the 

previously gathered results from shift-work research and on the basis of chronobiological 

approaches to ground all investigations on internal time, is very promising to elucidate the 

weightings of the known modulator and interacting factors: 

o Sleep deprivation (with consequences of sleepiness and/or fatigue) 

o Mal-nutrition (e.g., elevated intake of snacks, fast-food, alcohol, caffeine, etc.) 

o Adverse life-style habits (e.g., smoking, sedentary lifestyle, etc.)  

o Elevated (psychosocial) stress (both at work and in the private area at home) 

o Internal desynchronisation (from misalignment of internal and external time) 

The interplay between the social schedule (e.g. work times) and biological (e.g. dawn and 

dusk) zeitgebers and the consequences of a mismatch of these two is illustrated in Figure 26. 

This figure shows that under “normal” conditions, when the social schedule and the biological 

zeitgebers are synchronised the internal clock (SCN) mediates physiological processes during 

which the body is internally synchronized (see upper part of the figure at the right side and 

also chapter 1.3). “Shift-work” (left part of the figure, marked by a red-flash) therefore 

interferes with this harmonic synchronization of social and biological time, leading to 

possibly altered alimentation (eating times) and social routines, whereas the latter can either 

lead to altered light/dark cycles or directly to states of stress and finally to disease. Further, 

altered light/dark cycles might also (or maybe most importantly) play a role in the internal 

desynchronisation of the body, when shielding the worker from the daily light exposure due 

to, for example, night work. From this point two possible outcomes can be depicted. On the 

one hand it is possible that the circadian system adapts to the alterations and adjusts properly 

to the new time regime, getting in synchrony with the new environmental time cues. This 

must be assumed to be likely, because not all shift-workers show complaints or are found to 

become ill. On the other hand, the circadian system does not adjust and the body becomes 

internally desynchronised (destabilized) which results in the adverse health outcomes reported 

in this study at hand (see “stress and disease” in Figure 26).  
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Figure 26 Illustration of the interplay of social schedule and biological zeitgebers and consequences of a 
mismatch between these. Shift-work (indicated by a red flash) represents a social factor that disturbs this 
interplay. The two possible results from this disturbance are ‘stress and disease’ (left side) or ‘adapted 
circadian rhythms’ (right side). 

This shows, that circadian desynchrony does not inevitable lead to disease, but can result also 

in “adapted circadian rhythms”. Social Jetlag (yellow field in Figure 26) has been introduced 

as a mediating variable leading to internal desynchronisation is supposed a very good marker 

for the calculation of the impact of shift-work on humans.  

As mentioned at the beginning of this Discussion, there is evidence that certain health 

outcomes are shift-schedule depended, with special regard of the direction (clockwise vs. 

counterclockwise) in which the shifts rotate. This will be further illuminated in the next 

chapter, starting with an overview of the studies on the direction of shift-work rotation. 



92 
 

 

4.7.1. The Direction of Shift-Work Rotation 

4.7.1.1. Review of the Literature 

Only few studies have compared clockwise and counterclockwise shift-systems in respect to 

impacts on health. These studies have investigated mostly the effect on sleep and social 

factors, like the arrangement of work and private life. Some studies investigated physiological 

rhythms of body temperature and cortisol (Costa et al., 1994 ; Lavie et al., 1992 ; Hakola and 

Harma, 2001 ; Takahashi et al., 2008 ; Kecklund et al., 2008 ). These will be discussed below. 

Anyhow, there is no study that has focused on long-term health effects, like Coronary Heart 

Disease for example, in a longitudinal examination on shift-workers due to the direction of the 

worked shifts.  

Substituted by findings from studies on Jetlag after time zone travel, which indicate that 

adjustment after westward (delaying) flights is easier to manage for the internal clock than 

adjustment after eastward (advancing) travels, several authors (and seemingly workers, too) 

favour clockwise rotation as this work regime allows for better adjustment of the sleep/wake 

cycles and circadian clock, which is mainly supported by subjective self-reports showing 

shift-workers to better cope with clockwise work regimes (*Jansen et al., 2003 ; van 

Amelsvoort et al., 2004 ). To be mentioned in this context is, that the main reasons to leave 

shift-work are high levels of sleepiness and fatigue, increased need for recovery that cannot be 

accomplished for, further poor sleep quality and general malaise, combined with being 

dissatisfied from insufficient time for leisure activities, and increased work-family conflicts 

(van Amelsvoort et al., 2004 ). 

Orth-Gomer (1983)  and Barton and Folkard (1993)  came to the conclusion that 

clockwise rotation has fewer effects on the general health status and feelings of well-being. 

Barton et al. (1995)  found longer night shift periods to be of advantage, judged from results 

obtained with the Standard Shiftwork Index: “Results showed clearly the impact of the 

number of consecutive nights worked on health and well-being, not directly, but indirectly 

through the impact on sleep duration and sleep quality. Sleep duration was shown to increase 

with more consecutive nights worked. This in turn was found to predict sleep quality, which in 

turn was found to be the stronger direct predictor of psychological and physical ill-health i.e. 



93 
 

better health was associated with longer and better quality sleeps.”(cited from Barton et al. 

(1995 ). This indirect evidence mentioned by Barton et al. (1995)  only bases on suggestive 

interactions between “sleep duration – sleep quality – psychological and physical ill-health”. 

Anyhow, a better adjustment of the sleep/wake cycles in clockwise rotation was also 

found by Lavie et al. (1992)  and Hakola and Harma (2001)  using actimetry and sleep-logs. 

Knauth and co-workers in several studies (1983, 1993, 1995a,b, 1996)  have compared 

clockwise and counterclockwise rotation in respect to physiological, psychological and social 

factors. They argue that clockwise rotation decreases problems with time-budgeting, the sleep 

deficit and circadian disturbances, whereas the latter finding concerns shifts in the acrophases 

of hormones. In addition to the direction of shift rotation, the amount of free days between the 

shifts, to compensate for sleep deficits, was found to correlate with the attitude of shift-

workers towards their actual work schedule (Kecklund et al., 2008 ), and shift-systems with 

longer night shift periods are known to lead to higher levels of sleep problems, as presented in 

chapter 4.5.1. This was also found in a recent work by Takahashi et al. (2008) , who 

compared sleep problems among caregivers employed in various shift systems. The 

hypothesis has been put forward that shift-workers´ health problems are mediated by an 

impact on the internal clock in terms of internal desynchronisation has already been 

introduced to this thesis at several chapters, but it must be mentioned again, that results on 

this area are debatable. Gibbs et al. (2002)  are one the few authors, that have realized that the 

initial phase position of the internal clock determines the impact of the shift schedule and its 

direction in rotation.  

As the studies mentioned above mainly focus on sleep and related factors, the next 

section will focus on those studies that have looked at the influence of shift-work on 

physiological parameters. It must be noted, that these studies have mostly been performed 

under laboratory controlled or semi-controlled conditions, and therefore have been excluded 

from the initial pool of hits from the literature survey in this study (chapter 4.3). 

Barnes et al., (1998)  have shown that workers on 12-hour duties, with work hours from 

00:00 h to 12:00 h, advanced their aMT6s (the metabolic product of melatonin, which is 

commonly used as a phase marker in physiological studies) rhythms and workers in a similar 

setting, but working from 18:00 h to 06:00 h, showed a phase delay in the respective aMT6s 

rhythm (Gibbs et al. (2002 ). Also Nesthus et al. (2001)  have presented “surprisingly” the 

result of a delay in circadian temperature acrophase in workers studied in counterclockwise 

rotation, with two evening, two early morning and one midnight shift in a row. The results 



94 
 

from Nesthus et al. (2001)  underline that the initial phase position of the internal clock is of 

importance. Further, Nesthus et al. (2001)  studied the circadian temperature rhythm in shift-

workers and found an attenuation of the amplitude and a delay in the acrophase. In a later 

study by the same group, Boquet et al. (2004)  also found lower amplitude and delay in 

acrophase of the rectal temperature rhythms, but failed to find differences in cortisol, 

melatonin. The authors finally concluded that not the direction in rotation, but the actual shift 

(early morning and night work especially) are detrimental in effect. 

On the contrary, some recent studies do not find significant differences in the effect of 

shift rotation. Tucker et al. in 2000  found no difference between advancing and delaying 

shift-schedules and reasoned, that “the absence of negative effects of advancing shifts upon 

the chronic outcome measures accorded with previous evidence that advancing shifts may not 

be as harmful as early research indicated.” In a study by Cruz et al. (2003),  sleep/wake 

behaviour, subjective sleepiness, sleep quality and mood were not found to differ between 

workers employed in clock- and counterclockwise rotational systems. The authors argue that 

shift type is more important concerning sleep problems than the direction of shift-work. De 

Valck et al. (2007)  found no impact on the cortisol level and subjective sleepiness, and also 

argue in favour to regard of shift type instead of shift direction. 

In addition to the direction of shift rotation, the speed in rotation has been emphasized 

by Costa et al. (1994)  for clockwise rotating nurses showing that sleep/wake behaviour, 

temperature rhythms and plasma-/urinary parameters better adjust to fast rotating clockwise 

shifts (meaning shift changes every 2 or 3 days). Vokac et al. (1981)  for experimental 

counterclockwise rotation came to a similar conclusion, that fast rotating systems do not 

markedly disturb the internal clock. They further argued that partially observed phase shifts of 

temperature rhythms for example, are rather due to masking effects than “true phase shifts 

(entrainment)”. Another example is, that 12-hour shifts are favoured by some employers with 

the aim to offer the employees more free time for the arrangement of work-, social- and 

family life. A recent publication from Loudoun (2008)  otherwise found no benefit from 12-

hour shifts compared to 8-hours shifts on the reconciliation of work- and non-work life, 

among a sample of machine workers. The diversity in the findings and different 

interpretations on the effect of the shift-work direction have lead some authors to state that 

there is no optimal direction (Turek et al., 1986 ) and no optimal speed (Monk et al., 2000 ) in 

shift rotation. 



95 
 

The discussion on the effect of the direction in rotation is, as can be seen from the examples 

above, is marked by controversies and inconsistencies. These data further indicate that the 

underlying mechanisms are more tangled as some scientist might have initially thought. 

Therefore, the articles selected for the shift-work literature survey (n=52) have been examined 

in respect to the direction of the shift-schedule rotation, and as already mentioned above, there 

is evidence of a difference in effect between clockwise and counterclockwise rotation. 

4.7.1.2. Evidence from the articles on the effect of the direction in shift 

rotation 

As introduced in the previous sections, direct comparisons of the studies and their results are 

merely possible due to the heterogeneity from the interdisciplinary approaches used in the 

various shift-work studies. Anyhow, there is one difference emerging when comparing the 

direction in shift-work rotation especially between the studies on sleep and those on 

cardiovascular events. We find cardiovascular problems pronounced in workers employed in 

clockwise than counterclockwise rotation. Sleep problems in turn are found more often for 

counterclockwise rotational shift-work and with its highest number in permanent night 

workers (Figure 27). One can also see that cardiovascular problems are not represented by 

studies on fixed night work. Cancer in turn has exclusively been studied in night working 

populations, but not in other schedules. This limit in findings might partly bias the 

observation mentioned here, but I rather assume that the non-finding of respective articles 

belongs to the overall bias that mostly only those studies are published, that report to find 

significant differences, whereas those studies that do not are not published. Therefore, I argue 

that the non-publishing of more articles on cardiovascular problems in counterclockwise 

rotation falls into this circumstance. Figure 28 shows the result exclusively for sleep and 

cardiovascular problems, as these will be mainly focused on in the following course of this 

thesis. 
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Figure 27 Distribution of the 4 major health categories sleep (blue bars), cardiovascular (red bars), 
metabolic (green bars) and cancer problems (purple bars). The results are presented by the shift 
rotations, namely clockwise (forward), counterclockwise (backward) and fixed night work. The results 
from studies that did not name the direction of shift rotation are grouped under ‘not defined’.  

 

Figure 28 Distribution of the 2 most consistent health outcomes sleep and cardiovascular problems. The 
results are presented by the different shift rotations, namely clockwise (forward), counterclockwise 
(backward) and fixed night work. The results from studies that did not name the direction of shift 
rotation are grouped under ´not defined´. 

The separate analysis of these studies on the direction in shift rotation revealed an age 

difference for the average ages of the studied workers. Table 5 shows the average ages of the 

workers, separated by health category and direction of the shift-work schedule. For reasons of 

completeness, the average ages of the studies from all four categories (sleep, cardiovascular, 

cancer and metabolic problems, respectively) and also the ages for night workers have been 

added to the table.  
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Rotation / health topic clockwise counterclockwise fixed night work 
Sleep problems 38 36 35 

Cardiovascular problems 36 41 42 

Cancer diseases NA NA 47 

Metabolic problems 39 49 38 

Table 5 Presented are the average ages of the workers by the 4 main health categories. Most evident is 
the age difference of the workers studied on cardiovascular and sleep problems (36 and 41 years, 
respectively) for the both shift-work directions clockwise and counterclockwise (NA=no ages, due to no 
available studies for this group, because cancer has not been studied in other shift schedules than night 
work). 

From Table 5 it can be seen that certain age differences appear in the groups. The importance 

of these differences will in the following section be discussed. 

Why might this age difference be important? 

As already said, clockwise rotation, compared to counterclockwise rotation, is often preferred 

(by both employees and employers, for mostly subjective reasons) as the latter leads earlier 

and to more sleep problems, social disarrangements and it thereby makes it difficult for some 

workers to arrange both work and family life. In addition, counterclockwise rotating systems 

are worked in many cases by newly employed and therefore assumingly most likely by 

younger workers. Table 5 shows that sleep problems appear about two years earlier in 

counterclockwise than clockwise rotation, which is in line with the finding mentioned above. 

Pronounced night work also shows to lead earlier to sleep problems. Interestingly, the 

opposite holds true for the finding of cardiovascular problems, and slightly also for metabolic 

problems, as in these studies the workers in counterclockwise rotation are the oldest (on 

average). The point that I want to make here is, if counterclockwise rotation forces workers to 

leave shift-work early in their career, the clockwise workers from these studies cannot be 

former counterclockwise workers (hypothetically spoken), as these are already older (36 vs. 

41 years, respectively). Based on these simple observations, the direction of shift rotation can 

be evidenced to play a role in the aetiology of both short- and long-term health outcomes in 

shift-workers, found here for sleep and cardiovascular problems, respectively. As these shift-

workers can be assumed not to differ in respect in their overall exposure to risk factors and as 

also the course in development of cardiovascular problems can be assumed to be equal in both 

groups, the only difference found here is the direction in shift rotation. 
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The hypothesis for the next part of this thesis therefore is that workers employed in 

counterclockwise rotation are affected in older ages (later) by cardiovascular problems than 

their colleagues from clockwise rotation. Further, it can be hypothesised that the benefit of 

less sleep and social disarrangements from clockwise rotation (as reported in many subjective 

evaluations) might be replaced by a higher risk of developing severe heart problems on the 

long run. This would mean that there is a true difference in effect to the physiology by the 

direction of shift-work rotation that needs further investigation. Sleep problems and 

cardiovascular problems therefore appear as the two sides of the (shift-work) medal. Before I 

will come to discuss how to measure such a difference, I will first argue on the possible basis 

of this difference, to further illustrate the hypothesis. 

What might be the basis of this difference in findings for the different shift rotations? 

Cardiovascular problems develop slowly with time, mostly over years. CHD has been shown 

to be significantly elevated after shift-work seniority of at least 10 years, with increasing risk 

prevalence with increasing years on shift-work (chapter 4.5.3.3). Further, it can be assumed 

that (mostly subjective) first signs and indicators on heart problems are almost always not 

perceived by an affected person. This means, that the factors leading to disease are very likely 

prevalent at least for some years, but the indicators and risk factors are not always clear to the 

people. Studies have shown an impact of shift-work on known cardiovascular risk factors as 

smoking, adverse diet, altered heart rate and blood pressure, whereas this impact is found not 

to be shift-work rotation dependent. Therefore, the aetiology of heart disease is equal to the 

shift-workers, irrespective of the shift-system they are employed in. This strengthens the 

finding of the difference in shift rotation to have a distinct impact. 

Further, in contrast to heart problems, sleep and digestive disturbances are very well 

noticed by a subject pretty soon (with symptoms like altered bowel habits, constipation, 

diarrhoea, flatulence and heartburn). This gives an affected worker directly the opportunity to 

establish countermeasures against the adverse impact (e.g. leaving shift-work in worst case). 

In the following section it will therefore be tried to illustrate how such an individual outcome 

might emerge. The concept of stress will be adapted again as it has been introduced to this 

discussion; chapter 4.7.  
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4.7.2. Direction of Shift-Work Rotation and Stress 

Shift-work research lacks standard operating procedures (SOP) that would allow for accurate 

comparisons of the studies and results, as pointed out in detail in chapter 4.6. Further, there is 

no defined parameter that could be used as a risk estimate for a certain shift-work 

constellations. The concept of internal desynchronisation has been introduced in shift-work 

research, but many aspects of this concept are still uncertain and to be elucidated. Despite the 

open questions in the concept of internal desynchronisation (see also chapter 1.3.2.1) it is a 

promising approach in the basis of chronobiological concepts. Therefore, it will be used to 

explain the impact of shift rotation (clock- vs. counterclockwise) on the mismatch of internal 

and external time. 

A mismatch between social and biological zeitgebers from, for example, constant 

nychthermal work-shifts, might cause a desynchronisation of the internal physiology (chapter 

1.3.2.1), that throws people out of their habitual chronotope (chapter 1.3). Laboratory studies 

have shown that body rhythms differ in their temporal adaptation to changes zeitgebers, 

which indicates that single cell and organ clocks become uncoupled from the rhythm of the 

SCN (Yamazaki et al., 2000 ; Hara et al., 2001 ; Waterhouse  et al., 1999 ). Core body 

temperature for example has been shown to adapt after several days to a shift in sleep times in 

night workers, but only if these keep their permanent nocturnal routines. Stokkan et al. in 

2001  have shown that rodent livers adapt slower than the SCN after phase shifts in light 

exposure.  

In respect to the direction of shift rotation, a different response to advances and delays 

in humans had been observed (Folkard et al., 1978  and 1980 ; Goh et al., 2000 ; Persson et 

al., 2006  van Amelsvoort, 2004 ). In a night shift simulation study it has been shown, that 

both central and peripheral circadian rhythms adapt to new work hour regimes, but that it had 

taken several days and that peripheral clock adapted later than central ones (James et al., 

2007a,b). Adjustment in cortisol pattern in shift-workers has been shown to be only partial, as 

additionally the re-adjustment to day work schedules (advance) was slower than the 

adjustment to the shift schedule (delay) (Karlsson et al., 2006 ). Most of the results are not 

easy to interpret and further it has also been mentioned that more work needs to be done to 

learn more about definite and conclusive markers of the circadian clock in humans (Sack et 

al., 2007a,b ).  
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Although the impact of internal desynchronisation on the development of long-term health 

problems still remains uncertain and so far mostly hypothetical (Brown et al., 2008 ; Martino 

et al., 2008 ), this concept has been introduced to explain the observed problems in shift-

workers, for both transient sleep disturbances and long-term deteriorations of cardiovascular 

functions. Circadian misalignment appears to be plausible explanation for a destabilization of 

the internal physiological status, leading to elevated (chronic) levels of stress. 

In the literature, disturbances in circadian rhythms in humans are in most cases 

described in context of an altered sleep/wake rhythm. The effects of shifted sleep/wake cycles 

therefore are interpreted to cause circadian misalignment by disrupting the endogenous 

circadian rhythms. As light is the primary zeitgeber for the human internal clock, the effect of 

shift-work on the internal clock likely is an effect of altered or weakened zeitgeber exposure 

from altered exposure to the light-dark cycle (e.g. lower light levels while working at night). 

Due to the altered work and sleep times, the workers are not able to expose their internal 

clocks to light at proper times, which in turn weakens the internal system and thereby 

weakens the ability to sleep and function adequately.  

Although neither the term “circadian alignment” nor the term “circadian misalignment” 

has ever been defined properly, for the following explanations, internal desynchronisation will 

be regarded as a (maybe the) potent underlying mechanism that weakens the physiological 

ability to cope with stressors and to reach homeostasis (Greek homeo = same and stasis = 

stable) by a chronically elevated level of allostatic load (allostasis = active adaptation process 

to maintain stability through change). For further information I would like to refer to the 

excellent article on this subject from Korte et al., 2005 . To illustrate how a mismatch of 

internal and external time might lead to an increased level of stress, the functioning of the 

Hypothalamic-Pituitary-Axis (HPA) in stress response will be used. 

In day oriented workers, normally cortical starts to rise before waking up to provide the 

body with sufficient levels of cortisol for the start into the day, for example at 07:00 o’clock 

in the morning. In terms of shifting to night work (meaning an ad-hoc external shift in 8 hours 

or more), the cortisol rhythm might not adjust immediately to the new time regime. Therefore, 

the worker might not be provided with sufficient cortisol when getting up (for example at 

noon or later), but still at 07:00 o’clock when still lying in bed. Cortisol therefore is not 

available in situations of (acute) stress when needed most, and further impairs sleep by 

activating the body at the wrong time (at 7 o’clock, when the night-worker wants to sleep).  
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This example can of course be adapted for all physiological parameters that can become 

misaligned with the external world. If thereby, the body is not capable to adequately react to 

stressors, an increase in allostatic load might be the result. The allostatic load then leads to 

physiological, energetic exhaustion and a chronic stress level, until homeostasis is reached 

again. If the latter is not possible, long-term consequences become likely and sooner or later, 

elevated stress can lead to adverse health conditions for compensation (e.g. smoking or 

alcohol consumption). (See also Akana et al., 1992 ; McEwen et al., 1998 ; Dallman et al., 

2006 ; de Kloet et al., 2005 ; Joels et al., 2008 ). 

Finally, the effect of altered work hours and the repeated adjustment-re-adjustment 

processes that shift-workers have to manage, point at a strongly exhaustive impact and the 

following two questions emerge: What are the parameters (physiological correlates) leading to 

allostatic load (stress) and how to measure these? To answer these questions, is subject to the 

chapter 5. The next chapter will first give an example that underlines the importance of 

developing tools and measures to adequately quantify the impact from shift-work on humans, 

by calculating the monetary aspect of shift-work health problems. Therefore, an exemplified 

calculation of the potential costs arranging from shift-work in terms of cardiovascular 

problems has been performed. 

4.7.3. Potential Health Costs from Shift-Work 

As presented above, the evaluation of the health risks that are associated with shift-work is 

complicated due to the heterogeneity in these evaluations (see additionally chapter 4.6). To 

calculate the most potential costs of shift-work health problems, I have chosen the most 

reasonable severe long-term consequence that could be identified in terms of consistency in 

results obtained in the literature survey in the thesis at hand, namely Coronary Heart Disease 

(CHD; ICD-10 codes I20-I25; chapter 4.5.3).  

CHD has chosen to explain the potential health costs from shift-work because CHD (i) 

shows a high prevalence among the general population (males: 8.9% / females: 6,1% / both 

sexes: 7,3%), (ii) causes half the deaths among the general population (McGraw-Hill 2001), 

(iii) therefore is one of the major lethal factors worldwide, (iv) is clearly defined due to its 

diagnosis by the ICD code and (v) is the most cost intensive outcome with grant total costs 

with 156.4 billion Dollar. 
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The grand total costs include direct costs from hospital, nursing home, physicians/other 

professionals, drugs/other medication, home health care, and also indirect costs from lost 

productivity/morbidity/mortality. Data on the prevalences was taken from those of the 

selected studies where extraction of the respective data was possible (Table 6). The 

background data and the costs for the calculation of the potential health costs form shift-work 

on the risk of CHD have been extracted from the “Heart Disease and Stroke Statistics – 2008 

Update, American Heart Association ”. As the number of shift-workers varies between the 

different countries (Figure 14), an amount of 20% shift-workers among the general workforce 

has been chosen for the calculations here. 

Diagnosis Article Schedule Rotation Sex OR/RR 

CHD overall Ellingsen et al., 2007 3x8 h clockwise  males 1,62 

CHD (11-15 yrs seniority) Knutsson et al., 1986 3x8 h clockwise  males 2,2 

CHD (16-20 yrs seniority) Knutsson et al., 1986 3x8 h clockwise  males 2,8 

CHD (>30 yrs seniority) Karlsson et al., 2005 3x8 h clockwise  males 1,24 

Table 6 Overview studies that have been used for the calculation of the potential cost from shift-work on 
health. 

The following formula was used to calculate the percentage of affected shift-workers from the 

total workforce (with SW=shift-workers and DW=day workers): 

% affected SW = NaffectedSW / (NaffectedSW + NaffectedDW) 

The percentage Dollars from the grand total costs for CHD calculated for the shift-workers 

ranges between 24% and 41%, as shown in Figure 29. Both costs and risk decrease with 

higher shift-work seniority (>30 years). The highest costs are found for shift-workers with a 

seniority between 16 and 20 years (*Knutsson et al. (1986 ). The decrease in risk of CHD 

with increased shift-work seniority of more than 30 years might be due to the “Healthy 

Worker Effect”. This effect describes that by time a certain number of workers (for health 

reasons, fro example) quit shift-work. The remainder than constitutes a population of 

“survivors” which might turn out to be healthier or less affected than the control group. This 

selection effect concerns especially cross-sectional studies if the data is not 

corrected/controlled for the quitters (see also chapter 4.6). Anyhow, although the risk and the 

costs decrease with longer duration on shift-work than 30 years, it still is about 24% increased 

compared to non-shift-workers (Table 6). 
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Diagnosis Article Schedule Rotation Costs bill. $ 

% from 

grant total 

CHD overall Ellingsen et al., 2007 3x8 h clockwise  45,1 29% 

CHD (11-15 yrs seniority) Knutsson et al., 1986 3x8 h clockwise  55,5 35% 

CHD (16-20 yrs seniority) Knutsson et al., 1986 3x8 h clockwise  64,4 41% 

CHD (>30 yrs seniority) Karlsson et al., 2005 3x8 h clockwise  37,0 24% 

Figure 29 The figure shows the potential health costs (in billion Dollar) arranging from shift-work on 
the development of Coronary Heart Disease (CHD). A trend can be seen that costs increase with shift-
work seniority up to 10 years and then decrease for longer time in shift-work. For explanations on this 
finding see text. The table below the figure shows total costs in billion Dollars and percentage costs 
from grant total 156.4 billion Dollars. 
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5. Shift-Work/Social-Jetlag-Model   

5.1. Introduction  

As already introduced above, the hypothesis of an individual impact from clock- and 

counterclockwise rotating shift-work on human health has been built upon the results from the 

shift-work literature survey (chapter 4). Furthermore, the previous chapter (4.7.3) on the 

potential costs of shift-work has shown that there is also strong monetary need to decrease the 

impact of shift-work on both health and the health care system. This chapter will focus on a 

new concept to quantitatively examine the impact of shift-work, aiming at developing 

beneficial concepts in the future. As already introduced in section 4.7.1.1, there are virtually 

no studies that have investigated the impact of distinct shift-systems, neither in the short- nor 

on the long run, on any concrete health effect or even disease development (as for example of 

heart diseases). Most of these studies mainly focused on susceptibilities and sleep problems. 

As found in our study on the impact of the transitions to and from daylight saving time (DST) 

(see chapter 3), even small shifts in environmental zeitgebers (in this case of “only one hour”) 

are found to lead to a measurable effect on the internal clock. The adjustment of the subjects´ 

internal clocks, to the advance of this single hour in external time, was not complete even four 

weeks after the transition to DST in spring, especially in the late Chronotypes (Figure 12 A 

and B). 

5.2. Rationale for the Shift-Work/Social-Jetlag-Model 

From the assumption, that sleep and cardiovascular problems in shift-workers are affected 

differently depending on shift-work directions (counterclockwise vs. clockwise) the question 

has risen of how to quantitatively measure the impact of different shift-work schedules and 

rotation on the human internal clock? A modified concept of Social Jetlag (Wittmann et al., 

2006 ; see also chapter 1.3.2.2) has been proposed by Roenneberg et al. (in preparation) to 

calculate the impact of shift-work on the internal clock and further to estimate the differential 

effect of different directions of shift-work rotations. Social Jetlag is a valid parameter to 

calculate the discrepancy between internal and external time, and is thereby useful as an 

indicator for internal desynchronisation in different Chronotypes (Wittmann et al., 2006 ). 
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Therefore, the purpose of the Shift-Work/Social-Jetlag-Model is to quantify the shift-work 

effects (a) shift-schedule specific and (b) Chronotype specific. 

5.3. Methods  

Theory behind the Shift-Work/Social-Jetlag-Model 

In terms of calculating the discrepancy between internal and external time, the Shift-

Work/Social-Jetlag-Model bases on the Chronotype of the workers (meaning their initial 

phase position from their phase of entrainment on free days, MSF, chapter 1.3.1). This 

approach is also recommended by the results from Gibbs et al. (2002)  and Nesthus et al., 

2001  showing that the initial phase position depicts the phase movement of individual 

rhythms. Therefore, dependent on the initial phase position at entry into a shift cycle 

(meaning if someone is an earlier or later Chronotype), workers have to adjust to an 

individual degree to the subsequent shift. For example, a late Chronotype on a morning shift 

will advance his phase, whereas an early Chronotype will have to advance less or even not. If 

in turn the shift cycles starts on a night shift, both early and late Chronotypes will delay their 

phase, but to a different extent, respectively. In the following examples, the work schedules 

will be represented by capital letters with M=morning shift, L=late shift, N=night shift, 

F=free shift/day off. As said above, a shift schedule in a clockwise direction as, for example,  

FFFFF – EEEEE – LLLLL - NNNNN 

is by most authors argued to cause less problems (please see additionally the review of the 

literature on this topic in chapter 4.7.1). The workers can adjust better, especially to the night 

shifts at the end of the cycle, because the clockwise rotating shift cycle can be regarded as 

“preparing” the worker by successive delays over the course of the shift cycle for the night 

work period (NNNNN). If true, the worker’s internal clock would need to be re-set after 

switching to an early shift or days off. The reset (readjustment period) therefore falls into the 

period of the free days. When starting again with the early shifts of the cycle, the worker 

might be (almost) readjusted to the daily routine. The sleep deficit in this example will occur 

either on the night shift period and/or on the days off.  
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In contrast, in this scenario a counterclockwise worker on a schedule as, for example, 

FFFFF – NNNNN – LLLLL - MMMMM 

will not adjust that easily to the night shifts, because he/she starts the shift cycle with a night 

shift. The gap for the internal clock to adjust ad-hoc to the night work (i) is larger and (ii) the 

shift is additionally to the opposite direction than for the workers in clockwise rotation, for 

whom the adjustment to the night work is facilitated by successive delay through the previous 

shifts. Therefore, the internal clock of a worker on a counterclockwise system does not adjust 

to the night work period and already is advanced when switching to the late shift and the early 

shift. The struggles for the counterclockwise worker are that he/she gathers a higher sleep 

deficit on the night shift period, which he/she carries over to the late and early shift. The 

workers therefore have to recreate on the shift, whereas the clockwise workers is able to 

recreate on the free days after the night shifts. Taken together, there is evidence that the 

impact on the internal clock is less in counterclockwise rotation, and further dependent on the 

Chronotype (meaning an earlier or later phase of entrainment). The next chapter is about 

using Social Jetlag as a parameter to estimate this respective impact. 

Calculation of Social Jetlag with the Shift-Work/Social-Jetlag-Model 

In the following, the Shift-Work/Social-Jetlag-Model will be used to figure out the difference 

between clockwise and counterclockwise rotational schedules in terms of Social Jetlag (SJL) 

as a variable accounting for the discrepancy between internal and external time. The output of 

the Shift-Work/Social-Jetlag-Model is the daily amount of Social Jetlag in hours (as proposed 

by Roenneberg et al., in preparation). The Shift-Work/Social-Jetlag-Model does not only 

allow to predict different amounts of Social Jetlag on the internal clock by both the direction 

and the speed of a shift schedule, but further to show differential impact on different 

Chronotypes (meaning workers with a different phase of entrainment at the start of a shift-

work cycle, Roenneberg et al., 2003a,b ). Table 7 gives an example of the calculation 

procedure of Social Jetlag for a worker employed in a standard 3-shift system, with shift 

durations of 8 hours each shift and shift rotation in a clockwise direction. The shift-work 

hours have been set from 06:00 h to 14:00 h for the morning shift, from 14:00 h to 22:00 h for 

the late shift and for the night shift from 22:00 h to 06:00 h, in respect to common 3-shift 

system mentioned for example in *Knutsson et al. (1988). The calculation of Social Jetlag 

bases on the differences in hours (orange field in Table 7), between a hypothetical internal 
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point of time on two successive days (yellow and brown fields in Table 7, days 18 and 19, 

respectively) by a hypothetical shift (advances, which are indicated by a minus sign (-) and 

delays = grey field in Table 7). The values for Social Jetlag can be then computed for 

different Chronotypes, separately for work days and free days or as a mean over the entire 

shift schedule (see field “mean SJL” in the upper right corner in Table 7). The midpoint of the 

external day is the middle of the period the worker is awake (between getting up from and to 

bed) that varies on the different shifts, because the wake up time is different on a morning 

shift than on a night shift, for example (blue fields in the most left column in Table 7). For 

days off the Mid-Sleep on Free days (MSF, green fields in the most left column in Table 7) is 

used.  

Midpoint of Midpoint of
external day internal 

Shift Day from schedule clock ∆Phi Social Jetlag mean SJL

day off 1 15,5 15,5 0 0 1,5204082
morning shift 2 12,5 15 -0,5 0,5
morning shift 3 12,5 14,5 -0,5 2
morning shift 4 12,5 14 -0,5 1,5
morning shift 5 12,5 13,5 -0,5 1
day off 6 15,5 14,5 1 2
day off 7 15,5 15,5 1 0
day off 8 15,5 15,5 1 0
day off 9 15,5 15,5 1 0
late shift 10 17 16,5 1 1
late shift 11 17 17 1 0
late shift 12 17 17 1 0
late shift 13 17 17 1 0
day off 14 15,5 16,5 -0,5 0,5
day off 15 15,5 16 -0,5 0,5
day off 16 15,5 15,5 -0,5 0
day off 17 15,5 15,5 -0,5 0
night shift 18 23 16,5 1 1
night shift 19 23 17,5 1 5,5
night shift 20 23 18,5 1 4,5
night shift 21 23 19,5 1 3,5
day off 22 15,5 19 -0,5 4
day off 23 15,5 18,5 -0,5 3
day off 24 15,5 18 -0,5 2,5
day off 25 15,5 17,5 -0,5 2  

Table 7 Hypothetical example for an intermediate Chronotype with a MSF of 3.5 (internal Mid-Activity 
is 3.5 + 12 = 15.5 as indicated on days off, green fields), “employed” in a clockwise 3-shift schedule 
(with morning, late and night shifts; indicated as blue fields). The calculation of Social Jetlag (orange 
field) bases on the difference between internal time (column in the middle for internal clock) and 
external time (column for external day), due to the shift-work schedule. For details on the calculation, 
see text. ∆Phi gives the amount of hours the internal clock is shifted, with a ∆Phi of 1 meaning a delay 
of 1 hour and a ∆Phi of -0.5 meaning an advance of half an hour.  
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The wake- and bed hours have been estimated for this example hypothetically by adding time 

to the shift start and end times for (i) getting up, (ii) commute to and from work, and (iii) for 

social interactions after the shift. For the following simulation, the corresponding hours of 

being awake at certain shift-work days are on the morning shift from 04:00 h to 21:00 h 

(midpoint = 12.5), on the late shift from 10:00 h to 00:00 h (midpoint = 17.0) and on the night 

shift from 14:00 h to 08:00 h (midpoint = 23.0). These times are highly individual and depend 

on manifold influences, as pointed out chapter 4.5.1. For the simulation described hereafter, 

the mentioned times have been chosen as an example. The next section will focus on the 

applicability of this Shift-Work/Social-Jetlag-Model to calculate individual levels of advance 

and delay for three different Chronotypes, namely early, intermediate and late. 

Application of the Shift-Work/Social-Jetlag-Model  

The most difficult part of modelling Social Jetlag in shift-workers is that the advance/delay 

capacity of humans in real life is largely not known. The advance/delay capacity simply 

describes the amount of “time” (e.g. minutes or even hours) that the internal clock is capable 

of shifting within one day, e.g. from one shift-day to the subsequent. If advance and delay 

capacity are balanced, one can assume that the internal clock is shifted equally in both 

directions. Therefore, the adjustment in a shift cycle with equal numbers of shifts (5xE-5xL-

5xN, e.g.) would theoretically be balanced. From studies on Jetlag after travelling across time-

zones it has been observed that for the most people the capacity to advance is less than the 

capacity to delay. Hence, it takes longer for the internal clock to adjust travelling eastwards 

compared to a westward travel. In analogy, the amount of the advance/delay capacity can be 

hypothised to depict the amount of Social Jetlag. 

The best way to prove the Shift-Work/Social-Jetlag-Model for its applicability and 

parameters (meaning advance/delay ratios), is the validation against data collected in the field. 

The data that has been used for this validation was collected in a field study on shift-workers 

at a German automobile plant (courtesy Miriam Havel, Havel et al., 2006) . These data (the 

“Automobile-Test-Sample”) compromised measures on various psychological parameters 

from 55 workers employed in a clockwise 3-shift system (with morning, late, night shift), 

with a duration of each shift of 8 hours and changeover times at 06:00, 14:00 and 22:00 

o’clock (as in the example presented in the previous section).  
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The shift schedule of these workers at the automobile plant was as follows (44 days in total): 

FF-MMMMM-FF-LLLLL-FFF-NNNN-FFF-NNNN-FFF-NNNN-FFF-NNNN-FF 

The following variables have been assessed daily for one shift cycle: (i) sleep quality, 

(ii) Basler score, (iii) “intrapsychic Balance”, (iv) “social extrovertism”, (v) vigilance and (vi) 

vitality. For further information on these variables, sampling and methods, please see Havel et 

al., 2006 . A program (the “Shift-Work/Social-Jetlag-Model”) has been developed to 

automate the calculations (Roenneberg et al., in preparation). Furthermore, the program 

enables an upload of certain shift systems, to set start and end times of each shift and to set 

the individual Chronotype (based on MSF) as the initial parameter.  

 

 

 

Figure 30 Screenshot of the Shift-Work/Social-Jetlag Model (Roenneberg et al., in preparation). The 
main functions are indicated, with the options to enter Chronotype (A) as an input variable, to set the 
advance and delay capacities (B), and to set the start and end times of the work shifts (C). Additionally 
the program contains a data table (D) with information about the resultant values of Social Jetlag. The 
corresponding double-plot (E) graphically shows the relationship between internal time (green circles) 
and external time (red squares, given by the work hours) for one shift-cycle. 

 

(F)ree 

(L)ate 

(E)arly  

(N)ight 

E.) Doubleplot of the mid-points of 
external time (red squares) 
and internal (green circles) 

D.) Table of Social Jetlag 
(SJL) (output) 

A.) Chronoytpe (input)) 
B.) Advance/Delay (imput) 

C.) Start + End  hours of    
work shifts (input) 
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The calculation of external mid points follows in analogy to the procedure described in the 

previous chapter. The program then calculates the chronotype-specific levels of Social Jetlag 

as illustrated in Table 7.  

Figure 30 and Figure 31 present screenshots of the program, exemplifying the 

calculation of Social Jetlag for the Automobile-Test-Sample. In the background of the plot 

(right side) the respective shift schedule can be seen, whereas each shift (early, late, night, and 

free) is represented by a different colour.  

In Figure 31 the discrepancies between internal (green circles) and external time (red 

squares) differing in respect to Chronotype and worked shift are shown. Exemplified for an 

early (left) and a late Chronotype (right), one can see that the early Chronotype accumulates 

most Social Jetlag on the night shifts, whereas the late Chronotype accumulates highest Social 

Jetlag on the morning shifts, respectively.  

 

Figure 31 Two double-plots yielded from the Shift-Work/Social-Jetlag-Model (Roenneberg et al., in 
preparation) showing the differences between an early (left figure) and late Chronotype (right figure). It 
is conspicuous, that the early Type (left) on the early shift (red area) does not accumulate Social Jetlag, 
whereas the late (right) Type does. In turn, on the night shifts (blue areas) the late Type does not 
accumulate that much Social Jetlag as the early Type.  
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The data from the Automobile-Test-Sample has been validated against the values of Social 

Jetlag from the model to calculate the most realistic advance/delay capacity of the shift-

workers. The advance/delay ratio showing the highest correlations with the field data will 

then be used to proof or disproof the initial hypothesis, stating that ‘early and late types will 

develop different amounts of Social Jetlag in comparison of clockwise and counterclockwise 

rotation’. To this end, Social Jetlag has been modelled for an early, intermediate and late 

Chronotype (with an average MSF of 1.5, of 3.6 and of 5.6, respectively), which in this 

example are hypothetically “employed” in a clockwise and counterclockwise rotating system. 

Statistics on the results have been performed using Prism Version 4.0c for Macintosh.  

5.4. Results  

The average Chronotype of the Automobile-Test-Sample from the shift-work field study used 

for this exemplified validation was 4.7 (Figure 32). The distribution of Chronotypes in this 

population was Gaussian-like, with more late types, therefore slightly skewed rightwards. The 

validation of the field data with the calculated Social Jetlag values from the model revealed 

significant correlations for an advance/delay capacity of about 0.5 hours (with a Pearson r of 

about 0.3). The Figure 33 shows the different amounts of Social Jetlag (as average hours for a 

total shift cycle from a real existing clockwise work schedule and the corresponding 

hypothetical counterclockwise schedule.) for early (average MSF of 1.5), intermediate 

(average MSF of 3.6) and late Chronotypes (average MSF of 5.6), based on the validated 

advance/delay ratio of 0.5 hours. 
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Figure 32 Distribution of MSF in the shift-work population of the Automobile-Test-Sample. The 
distribution is slightly skewed rightwards; with a higher number of late Chronotypes. The average 
Chronotype of the sample is 4.7.  

To compare the two calculations of Social Jetlag, these have been treated statistically as 

representative data from the same population, which has been tested under the two different 

conditions (i) clockwise and (ii) counterclockwise rotation. Pre-testing of the Social Jetlag 

values for normal distribution, D’Agostino & Pearson omnibus normality test was used 

showing inconsistent results. Therefore, Mann-Whitney-U-test for nonparametric statistics 

has been used to compare the levels of Social Jetlag in early, intermediate and late 

Chronotypes.  

The analysis revealed a statistically significant difference in the amount of Social Jetlag for 

each of the three different Chronotypes (with Early p=0.0009; Intermediate p<0.0001; Late 

p<0.0001). Further, the difference is largest for the Late-Types (average MSF of 5.6) with a 

mean difference in Social Jetlag of 0.34 h. Therefore, the benefit from counterclockwise 

rotation in terms of Social Jetlag reduction is highest in this group. The respective differences 

for early and intermediate Chronotypes were 0.2 h and 0.25 h. Additionally, late types show 

less Social Jetlag in the counterclockwise rotation than early types (compare right and left part 

of Figure 33). Figure 33 shows that clockwise rotation leads to higher Social Jetlag levels in 

the three Chronotypes. 
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Figure 33 Calculation from the Shift-Work/Social-Jetlag-Model for the comparison of the levels of 
Social Jetlag, accumulated in one shift cycle in a clockwise (blue bars) and a counterclockwise (red 
bars) rotational shift cycle. Clockwise shift rotation always leads to significantly elevated levels of 
Social Jetlag, for all three Chronotypes (** p<0.001 / *** p<0.0001; Early p=0.0009, Intermediate 
p<0.0001, Late p<0.0001; Mann-Whitney-U-test). 

5.5. Discussion  

It has been observed that for shift-workers the effects on health differ according to the 

direction of the shift-rotation (see chapter 4.7.1). A special program (the “Shift-Work/Social-

Jetlag-Model”) to calculate such differences has been proposed and developed by Roenneberg 

et al. (in preparation). This program uses Social Jetlag (modified from Wittmann et al., 2006) 

as the outcome variable. Validation with fieldwork data revealed an advance/delay capacity of 

about 0.5 hours. This estimated circadian adjustment capacity found is supported by earlier 

simulated shift-work studies, taking rectal temperature as a circadian marker (0.5 hours/day 

(Eastman et al., 1994 ), 0.8 hours/day (Moog and Hildebrandt, 1987 ). In addition, also full 

laboratory studies have yielded similar results (0.2 hours/day (Czeisler et al, 1990 ), 0.8 

hours/day (Campbell, 1995 , Dawson and Campbell, 1991 ), 1.3 hours/day (Harma et al., 

1994) and 1.4 hours/day (Dawson et al., 1995 ). It should be emphasized here, that the results 

on the shift capacity found by the Shift-Work/Social-Jetlag-Model used in this study is best 

reflected in the results obtained in simulated field shift-work studies (Eastman et al., 1994 ; 

Moog and Hildebrandt, 1987 ). The laboratory based examinations seem to overestimate the 

capacity of the human clock to be shifted in real life. 
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Finally, the calculations of Social Jetlag for clockwise and counterclockwise shift systems are 

found to lead to significantly different amounts of Social Jetlag. This finding proves the initial 

hypothesis stating that ‘early and late types will develop different amounts of Social Jetlag in 

comparison of clockwise and counterclockwise rotation’. 

This initial approach of the Shift-Work/Social-Jetlag-Model is promising and underlines 

the applicability of the concept of using Social Jetlag as a parameter in shift-work studies. In a 

next step, the Shift-Work/Social-Jetlag-Model can be used to validate not only against 

psychological variables, as done in this study, but further against physiological measures 

yielded in field studies (e.g. melatonin, cortisol, body temperature, pH changes in the 

stomach, etc). As pointed out in chapter 1.3.2.1 on the internal desynchronisation, one can 

assume that there are differences in circadian phases, not only between organs but even 

between single cells from the same tissue. To elucidate the principles of internal 

desynchronisation, various parameters must be compared and validated. This has been done in 

the underlying study utilising Social Jetlag and the psychological measures from the 

Automobile-Test-Sample.  

Consequences on the cardiovascular system might be regarded as being perceived less/later 

than sleep problems (which are the predominate afflictions reported during counterclockwise 

rotation). The results in chapter 4.7.1 show that cardiovascular events occur less frequently 

and on average six years later in counterclockwise rotators. This underlines the finding that 

Social Jetlag is a silent stressor that is not perceived as immediate and intense as a sleep 

deficit and social problems. Longitudinal studies now have to proof if the amount of Social 

Jetlag varies with the shift rotation and if it therefore constitutes a mediating factor in the 

aetiology of long-term effects from shift-work on health, like an increase in Coronary Heart 

Disease. 

The main reasons to leave or change the shift-work system are: high levels of fatigue, 

the need for recovery, poor sleep quality, poor general health, insufficient leisure time, and 

work-family conflicts (van Amelsvoort et al., 2004 ). These factors (which obviously are 

dependent from each other!) might be reducible by applying new shift systems with help of 

the Shift-Work/Social-Jetlag-Model. The development of shift-schedules that allow for 

sufficient sleep in respect to internal time (Chronotype) can be beneficial for certain workers. 

Future research is recommended to further unveil variables in the puzzle leading to the 

creation of healthier shift-schedules. 
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6. Conclusion 

6.1. Daylight Saving Time (DST) and the Human Clock (see Chapter 3) 

The influence of the transitions to and from Daylight-Saving-Time (DST) on the human 

physiology has merely been studied previously and the few previous examinations came to 

the conclusion that the “one-hour transition” to and from this artificial summertime does not 

cause major problems for humans to cope with. Adjustments after one week have been found, 

whereas these examinations (i) seldomly lasted longer than for one week after the change and 

(ii) have not based the analysis on internal time. We for the first time are able to show that the 

human internal clock does not adjust to DST within at least 4 weeks after the change to DST, 

which especially holds for the late Chronotypes. 

Further, the transition to DST (advance) takes longer for the internal clock to adjust than 

the transition from DST (delay) back to standard time. This finding is in accordance with 

observations from studies on Jetlag after time zone travel. Additionally we show that even 

small changes on first sight (“only one hour” as it is often argued) indeed can have a 

measurable effect in interfering with the synchronisation of internal and external time. Future 

research has to elucidate in a next step the magnitude of this disturbance on the internal 

clocks´ seasonal adjustment in the context of prevalences of, for example, seasonal occurring 

diseases by comparing populations that use DST with those that do not on a worldwide level.  

6.2. Shift-Work and the Human Clock (see Chapter 4) 

Although shift-workers have been subject to many studies, only few of these studies are 

useful to draw conclusions for the real life other than that shift-work is not good for the health 

of the employees. Certain diseases, both transient sleep problems and also long-term effects 

on the cardiovascular system have been found with some consistency, but causalities and 

explanations are still to be elaborated. In addition, the shift-work health problem could not be 

identified. As we have seen in the study on the effect of the transitions to and from Daylight 

Saving Time, internal time definitely is a valid variable that physiological studies should be 

based on. Further, the discriminative value of Chronotype in medical research should have 

been also found in the shift-work literature survey, but unfortunately no study could be 

identified taking internal time into account for the examination of concrete health problems.  
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6.2.1. Potential Health Costs from Shift-Work (see Chapter 4.7.3) 

To illustrate the monetary aspect of shift-work health burdens, a calculation has been 

performed for the most potential costs from Coronary Heart Disease (CHD, ICD-10 codes 

I20-I25). CHD represents the most severe and consistent long-term outcome found in the 

literature on shift-work and health and further is responsible for half the death among the 

general workforce/population. It was found that shift-workers account for 24 to 41% of the 

total costs arranging from CHD in the USA, with an estimated percentage of shift-workers of 

20% of the general workforce. This shows that shift-work does not only have a 

chronobiological effect, but further a monetary aspect that is not ignorable and both justify 

further intense research.  

6.3. Shift-Work/Social-Jetlag-Model (see Chapter 5) 

There is no real life study on any long-term health effect on shift-workers employed in 

different shift-work directions. As shown in the previous two sections, there is evidence of a 

measurable effect when internal time would be taken as a basis. The Shift-Work/Social-

Jetlag-Model (Roenneberg et al., in preparation) used for the estimation of Social Jetlag in 

shift-workers, as a measurement for the discrepancy between internal and external time, has 

also shown that there are significantly different effects (p<0.001) measurable for early, 

intermediate and late Chronotypes. The Shift-Work/Social-Jetlag-Model allows quantifying 

the influence of alternating wake-sleep hours from shift-work schedules onto the human 

clock. Although the Shift-Work/Social-Jetlag-Model at this point is in a simple form, it has 

already proven the initial hypothesis stating that ‘early and late types will develop different 

amounts of Social Jetlag in comparison of clockwise and counterclockwise rotation’. This 

proof makes the Shift-Work/Social-Jetlag-Model highly potential for future applications (see 

also next chapter 6.4). 

6.4. Outlook on the applicability of the Shift-Work/Social-Jetlag-Model 

The Shift-Work/Social-Jetlag-Model (Roenneberg et al., in preparation) presented here in its 

simple form to estimate the amount of Social Jetlag for different Chronotypes “employed” in 

different shift-work schedules already shows that indeed different amounts of Social Jetlag 

can be calculated in respect to the shift system. The differences are significant (p<0.001) and 

found for early, intermediate and late Chronotypes (MSF 0.5 through 6.5). This preliminary 
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simulation shows that the approach followed in this study, to evaluate the advance/delay 

capacities of the workers´ internal clocks from real life studies, and to improve thereby the 

applicability of the Shift-Work/Social-Jetlag-Model to elaborate new (chronotype-specific) 

shift-schedules, needs further effort, but is already promising at this developmental stage.  

Our workgroup is currently running field experiments with both blue and white collar 

workers from various industries in Germany and Luxembourg. Myriam Juda and Céline 

Vetter are the leading investigators in these studies investigating effects of different shift-

work and also lighting conditions on the internal clock. Therefore, both psychological (e.g., 

alertness, cognitive functioning, reaction times) and physiological (e.g. sleep times, activity 

profiles) parameters are being estimated, which then would be an optimal source for further 

validations and applications of the Shift-Work/Social-Jetlag-Model. That the combination of 

sleep-logs and actimetry is perfectly suited to measure even smaller impacts on the internal 

clock than from shift-work, was shown in this thesis in the study on the effects from DST 

(chapter 3). As in shift-work the workers are shifted by several hours each day (up to 12 hours 

in contrast to the one hour from the DST transitions), these methods are promising for 

upcoming studies. In addition, as already mentioned in the discussion on the results from the 

Shift-Work/Social-Jetlag-Model (chapter 5.5), further examinations of the phenomenon of 

internal desynchronisation are needed. Cross-correlations of data from physiological measures 

on, for example, melatonin, cortisol, body temperature, pH values of the stomach, etc. against 

the data from the Shift-Work/Social-Jetlag-Model would be a possible point to start from. An 

additionally important future perspective of the Shift-Work/Social-Jetlag-Model is to 

implement lighting profiles, based on the chronobiological knowledge on internal time and 

entrainment (chapter 4.7.2). Individual effects of light on the human clock dependent from the 

individual phase of entrainment (Chronotype) are known, which makes it highly interesting to 

incorporate such information into the Shift-Work/Social-Jetlag-Model. Obviously, depending 

on the certain shift (morning-late-night), workers are exposed to different levels of light 

which in turn differently affects the adjustment to the shift-work schedule. Therefore, 

additionally ambient light profiles from workers at the worksite will be collected (via light 

sensitive wrist worn devices) in the running studies in our workgroup. The future perspective 

of the model therefore will be (i) to prove prevalent theories and scrutinise results from both 

laboratory and field studies and (ii) to develop new approaches and shift-schedules on the 

basis of internal time, taking Chronotype and the individual shift-capacity of people into 

account. 
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7. Summary 

This thesis gives a contribution to the understanding of the behaviour of the internal human 

clock in real life, exemplified by influences from (i) the transitions to and from Daylight 

Saving Time (DST) and (ii) Shift-Work employment. The results show that there is evidence 

that future research on human physiology and disease management profits by taking internal, 

biological time as the basal time scale.  

The key results from this thesis are: 

Chapter 3: A clearly measurable chronotype-specific impact from the transitions to 

and from Daylight Saving Time (DST) on the seasonal adjustment of the human internal 

clock could be identified.  

Chapter 4: Increased rates of health problems and diseases in shift-workers have 

been presented, which are suggested to result from alterations between external zeitgebers 

and internal physiological states. Conclusions on any causality cannot be given from the 

selected studies. Overall, a mixture of the influences from both work and private life are 

suspected to mediate the health outcomes in shift-workers. *Virtanen und Notkola, 2002  

recently mentioned that stress from psychosocial factors (e.g. high work load and low control) 

had a stronger impact on health deteriorations than stress from physical and physiological 

(occupational) factors like noise or sedentary work.  

A potential cost analysis showed a clear monetary dimension for shift-work related 

health outcomes, exemplified for CHD, accounting for 24 to 41% of the grand total costs. 

Chapter 5: A newly developed program (the “Shift-Work/Social-Jetlag-Model”, 

Roenneberg et al., in preparation) for the quantification of shift-work effects on the human 

clock calculated as Social Jetlag showed significant chronotype-specific effects for different 

directions in shift rotation (clockwise vs. counterclockwise).  
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The following section gives a hypothetical example to underline the importance of 

taking Chronotype into account in biological, physiological, psychological and medical 

research. 

7.1. Appeal: Importance of Chronotype in Medical Research 

The results of the studies performed for this thesis do clearly underline the importance of 

analysing physiological data on internal time. This is supported by numerous studies from 

chronobiological research that have accumulated results showing, that entrainment of the 

internal clock plays a pivotal role in health and body function. The information of external 

time (social time) in medical issues is of minor use, for the following reason. Concerning 

internal time, two individuals living under the same environmental conditions, are from their 

physiological state closer to each other at the same external time of the day (e.g. at noon), as 

the same persons compared to themselves 12 hours apart. In respect to shift-work, the 

individual impact of a night shift, e.g. with working hours between 2200 h and 0600 h, is 

assumingly pretty different for a late Chronotype than for an early Chronotype. It has been 

stated (Harrington, 1978, 2001) that about 10% of a shift-work population see certain 

advantages in their shift-work schedule. From our own MCTQ-database we can see that 

around 10% of the population constitutes extreme late types, which are active most of their 

time during the night hours. Further the ability to withstand shift-work burdens decreases with 

age (Harma et al., 1994; Harma and Kandolin, 2001), and people become also earlier 

Chronotypes with age (Roenneberg et al., 2007a). Taking into account that the difference in 

Chronotype depicts the differences in physiology, it becomes apparent that comparisons of 

physiological processes only make sense when interpreted on the basis of internal time. The 

importance and advantage of estimating Chronotype in shift-work research becomes apparent 

in the following simple example. Working the night shift would be less problematic for 

workers with habitual bedtimes of 03:00 h in the morning (defined as a very late Chronotype) 

than for those preferring to go to bed at 22:00 h (defined as a corresponding early 

Chronotype). For late Chronotypes in turn, early rising for the morning shift (starting at 06:00 

a.m. forces workers to get up at 05:00 h or even earlier) would be much more stressful and 

exhaustive than for their earlier counterparts. In simple terms, night shifts may be better than 

normal shifts for some individuals, leading to less Social Jetlag and stress, for example (see 
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Chapters 1.3.2.2 and 4.7.2). It may, therefore, be possible that not the “shift-work schedule” 

itself or certain tasks at work are adverse in effect. It might turn out that living against ones 

individual internal biological clockwork turns out to be the culprit. This assumption is proven 

by the results from this thesis. In the study on the effect of Daylight Saving Time on the 

internal clock (Chapter 3), differential impact on early and late Chronotypes has been shown. 

Further, the results from the shift-work literature survey (Chapter 4) and the results from the 

Shift-Work/Social-Jetlag-Model (Chapter 5) additionally point into the direction of 

chronotype-specific effects, especially from the direction in rotation of the shift-schedule. 

Chronotype has been shown to play a role in various physiological and psychological 

parameters. Therefore, estimating Chronotype is recommended to accurately interpret results 

from shift-work research and finally all types of health studies for the benefit of all those 

investigated. In analogy, no one would chose average sized hiking shoes to climb the Mount 

Everest and risk ones life, when she/he is clearly aware that individual fitting footwear is 

available nearby.  
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