
  

Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

Phosphoproteomics and proteomic phenotyping to 

assess signal transduction in cancer cells 

 

  

 

Cuiping Pan 

aus 

Guang Dong, VR China 

 

2008 

 



Erklärung 

Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung 

vom 29. Januar 1998 von Herrn Prof. Matthias Mann betreut.  

 

 

Ehrenwörtliche Versicherung 

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.  

 

München, am  30.06.2008 

 

 

 

            

                  Cuiping Pan 

         

 

 

 

Dissertation eingereicht am 02.07.2008 

1. Gutachter: Prof. Dr. Matthias Mann 

2. Gutachter: Prof. Dr. Patrick Cramer 

Mündliche Prüfung am 30.07.2008  



Table of Contents 

I 

 

Table of Contents 

 

Abbreviations ........................................................................................................................... III 

Summary .................................................................................................................................... 1 

1 Introduction ......................................................................................................................... 3 

1.1 Signal transduction in cancer .............................................................................................. 3 

1.1.1   Signal transduction paradigm ............................................................................ 3 

1.1.2   Mechanism of signal transduction ..................................................................... 4 

1.1.3   Altered signal transduction in cancer ................................................................. 6 

1.1.4   Kinases, phosphatases and cancer ..................................................................... 8 

1.1.5   Molecular targeted cancer therapies ................................................................ 12 

1.2 Mass spectrometry in biology ........................................................................................... 16 

1.2.1   General workflow of proteomics ..................................................................... 16 

1.2.2   Mass spectrometric instrumentation ................................................................ 18 

1.2.3   Quantitative proteomics ................................................................................... 30 

1.2.4   Phosphoproteomics .......................................................................................... 33 

2 Aim of the Study ............................................................................................................... 37 

2.1 Cancer cell line to evaluate inhibitors for kinases and phosphatases .......................... 37 

2.2 Liver cell model to assess normal and transformed cells .............................................. 37 

3 Materials and Methods ...................................................................................................... 38 

3.1 Cell models .......................................................................................................................... 38 

3.1.1   Immortalized cell lines ..................................................................................... 38 

3.1.2   Primary hepatocytes ......................................................................................... 39 

3.1.3   Cell culture ....................................................................................................... 41 

3.1.4   Preparation of inhibitor compounds ................................................................ 42 

3.1.5.   Cell stimulation, harvest and protein recovery ............................................... 42 

3.2 Proteome mapping .............................................................................................................. 44 

3.2.1   Sample preparation .......................................................................................... 44 

3.2.2   Mass spectrometric methods ............................................................................ 46 

3.3 Phosphoproteome mapping ............................................................................................... 47 

3.3.1   Sample preparation .......................................................................................... 47 

3.3.2   Mass spectrometric methods ............................................................................ 49 

3.4 Mass spectrometric data analysis ...................................................................................... 50 



Table of Contents 

II 

 

3.4.1   Identification .................................................................................................... 50 

3.4.2   Quantitation ..................................................................................................... 51 

3.4.3   Assign localization of the phosphate group ..................................................... 52 

3.4.4   Phosphoproteomic dataset stored in PHOSIDA database ............................... 52 

3.5 Bioinformatic analysis........................................................................................................ 52 

3.5.1   Gene Ontology and KEGG enrichment analysis ............................................. 52 

3.5.2   Phosphorylation - motif check ......................................................................... 53 

3.5.3   Phosphorylation - structural analysis ............................................................... 54 

3.5.4   Phosphorylation - phosphorylation site predictor ............................................ 54 

4 Results and Discussions .................................................................................................... 55 

4.1   Project 1 - Quantitative phosphoproteome analysis of a liver cell line reveals 

specificity of phosphatase inhibitors ...................................................................................... 55 

4.1.1   Evaluation of the phosphoproteomics technique ............................................. 58 

4.1.2   Phosphoproteome of the mouse liver cell line Hepa1-6 .................................. 63 

4.1.3   Effects of calyculin A, deltamethrin, and pervanadate .................................... 70 

4.1.4   Estimating an upper bound on the stoichiometry of phosphorylation ............. 72 

4.1.5   Conclusions and discussions ............................................................................ 75 

4.2 Project 2 - Global effects of kinase inhibitors on signaling networks revealed by 

quantitative phosphoproteomics.............................................................................................. 78 

4.2.1   Effects of U0126 andSB202190 on the EGFR signaling pathway .................. 80 

4.2.2   Effect of dasatinib on the BCR-ABL signaling pathway ................................ 90 

4.2.3   Conclusions and discussions .......................................................................... 100 

4.3 Project 3 - ‘Proteomic phenotyping’ to assess differences between transformed and 

non-transformed mouse liver cells ........................................................................................ 102 

4.3.1   Proteomes of primary hepatocytes and Hepa1-6 ........................................... 103 

4.3.2   Phenotyping of the proteomes of primary hepatocytes and Hepa1-6 ............ 107 

4.3.3   Conclusions and discussions .......................................................................... 115 

5 Perspectives .................................................................................................................... 121 

6 References ....................................................................................................................... 123 

Appendix ................................................................................................................................ 135 

Acknowledgements ................................................................................................................ 156 

Curriculum Vitae .................................................................................................................... 158 

 



Abbreviations 

III 

 

Abbreviations 

3D   three dimensional 

A2M   alpha-2-macroglobulin 

ABL   Abelson murine leukemia viral oncogene homolog 

ac   alternating current 

AGC   automatic gain control 

AKT   protein kinase B, or Rac (RAC-alpha serine/threonine-protein kinase;

   the term AKT originates from the transformed AKR mouse strain.  

ATF2   activating transcription factor 2 

ATP   adenosine triphosphate  

BCR    breakpoint cluster region protein 

CAMK  calcium/calmodulin dependent protein kinase; 

CDKs   cyclin-dependent kinases 

CID   collision induced fragmentation 

CK1   casein protein kinases 

c-Kit   proto-oncogene tyrosine-protein kinase Kit, or mast/stem cell growth 

   factor receptor  

CML   chronic myelogenous leukemia 

dc   direct current 

DHB   2,5-dihydroxy benzoic acid 

DMEs   drug metabolizing enzymes 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

ECD   electron capture dissociation 

ECM   extracellular matrix 

EDTA   ethylenediaminetetraacetic acid 

EGF   epidermal growth factor 

EGFR   epidermal growth factor receptor 

EMEA   European Medicines Agency 

ErbB   epidermal growth factor receptor (EGFR) family 

ERK   extracellular signal-regulated kinases 

ESI   electrospray ionization 

ETD   electro transfer dissociation 
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FDA   US Food and Drug Administration 

FDR   false discovery rate 

Flt-3   FL cytokine receptor precursor, tyrosine protein kinase receptor 

FTICR   Fourier transform ion cyclotron resonance 

GAP   GTP activated protein 

GIST   gastrointestinal stromal tumors 

GLEPP1  glomerular epithelial protein 1 or receptor-type tyrosine-protein  

   phosphatase O 

GLUT   glucose transporter 

GO   Gene Ontology 

GTP   guanosine triphosphate 

HIFs   hypoxia-induced factors 

HGF   hepatocyte growth factor 

HPLC   high performance liquid chromatography 

HSP   heat shock protein 

HSP27   heat shock protein 27 

IGF   insulin-like growth factor 

IMAC   immobilized metal ion affinity chromatography, 

IP   immunoprecipitation 

IRMPD  infrared multiphoton dissociation 

IRS2   insulin receptor substrate 2 

iTRAQ  isobaric tag for relative and absolute quantitation 

JAKs   Janus kinase, tyrosine protein kianse 

JNK   C-jun-amino-terminal kinase 

LDL   low-density lipoprotein 

LTQ   linear quadrupole ion trap 

LYN   tyrosine protein kinase LYN 

m/z   mass to charge ratio 

MALDI  matrix-assisted laser desorption/ionization 

MAP3K  mitogen-activated protein kinase kinase kinase 

MAP2K  mitogen-activated protein kinase kinase 

MAPK   mitogen-activated protein kinase 

MAPKAP kinase MAPK activated protein kinase 

MBP-C   mannose-binding protein C 
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MeCN   acetonitrile 

MEK   dual specificity mitogen-activated protein kinase kinase 

MS   mass spectrometry 

MSK2   nuclear mitogen-and stress-activated protein kinase 2 or ribosomal  

   protein S6 kinase alpha-4 

mTOR   mammalian target of rapamycin 

Myc   Myc proto-oncogene protein, transcription factor p64 

nanoESI  nanoelectrospray ionization 

NF1   neurofibromin or Neurofibromatosis-related protein NF-1 

NFκB   nuclear factor kappa B 

p90RSK  ribosomal protein S6 kinase alpha 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PDGFR  platelet-derived growth factor receptor precursor 

PDK-1   phosphoinositide-dependant kinase-1 

PEP   posterior error probability 

PI3K   Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PKA   protein kinase A 

PLC   phosphoinositide phospholipase C 

PP1   protein phosphatase 1, serine/threonine phosphatase 

PP2A   protein phosphatase 2A, serine/threonine phosphatase 

PP2B   serine/threonine-protein phosphatase 2B, calmodulin-dependent  

   calcineurin A 

PTEN   phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual- 

   specificity protein phosphatase 

PTKs   protein tyrosine kinases 

PTM   post translational modification 

PTPs   protein tyrosine phosphatases 

RasGAP  Ras GTPase-activating protein 

Rb   retinoblastoma 

RET   proto-oncogene tyrosine-protein kinase receptor ret precursor 

rf   radio frequency 

ROS   reactive oxygen species 

RP HPLC  reverse phase high performance liquid chromatography 
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RTKs   receptor tyrosine kinases 

SCFR   synonym of KIT 

SCX   strong cation exchange 

SDS-PAGE  isodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHIP2   phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 2 

SHP-1   tyrosine-protein phosphatase non-receptor type 6 

SHP-2   tyrosine-protein phosphatase non-receptor type 11 

SILAC   stable isotope labeling by amino acids in cell culture 

Smad2/3  mothers against decapentaplegic homolog 2/3 

SOP   standard operating procedures 

SORI   sustained off resonance irradiation 

Src   proto-oncogene tyrosine-protein kinase Src 

STAT   signal transducer and activator of transcription 

STE   group of homologs of yeast sterile protein kinases 

TCA   tricarboxylic acid 

TFA   trifluoroacetic acid 

TGF-β   transforming growth factor β 

TGFβ R1  transforming growth factor β type 1 receptor 

TKL   tyrosine kinase like 

TNFR   tumor-necrosis factor receptor 

TSC2   tuberous sclerosis 2 protein 

VEGFR  vascular endothelial growth factor receptor 

 



 Summary  

1 

 

Summary 

This thesis applies quantitative mass spectrometry to research topics in relation to cancer. 

Proteome-wide quantification at the protein expression level and phosphorylation level were 

achieved. The technologies developed and used here cover the latest improvements in 

instrumentation in mass spectrometry, strategies in phosphopeptide enrichment in large scale, 

algorithms in data analysis and their streamlined implementation, and data mining in 

downstream bioinformatics. For each of the projects described in this thesis, proteome 

mapping routinely resulted in identification and quantitation of around 4,000 proteins and 

phosphoproteome mapping often lead to quantitation of more than 5,000 phosphorylation sites. 

This ‘systems-wide’ quantitation of the proteome and phosphoproteome is a completely novel 

development, which has not been used in cancer related topics before.  

Three major biology topics are studied in this thesis. In the first project, the phosphoproteome 

of a mouse liver cancer cell line Hepa1-6 was analyzed in-depth, by using phosphatase 

inhibitors (calyculin A, deltamethrin, and Na-pervanadate) to boost phosphorylation. The 

characterization of the phosphoproteome revealed a broad spectrum of cellular 

compartmentalization and biological functions. Quantitation of phosphatase inhibitor 

treatment using the Stable Isotope Labeling by Amino Acids in Cell culture (SILAC) method 

revealed the quantitative effects of these inhibitor compounds on the whole phosphoproteome. 

To our surprise, these three broadband phosphatase inhibitors displayed very different 

efficiency, with tyrosine phosphorylation significantly boosted but serine/threonine 

phosphorylation much less affected. Additionally, a method to estimate an upper bound of the 

stoichiometry of phosphorylation was introduced by comparing phosphorylation in three 

SILAC conditions: non-treated cells, stimulated cells (e.g. with insulin), and only phosphatase 

inhibitor treated cells. The methods developed here can be used directly in development of 

drugs directed against kinases and phosphatases, key regulators in cancer and other diseases.   

The second project continues with the application of phosphoproteomics techniques. Kinase 

inhibitors influence cellular signal transduction processes and therefore are of great potential 

in rescuing aberrant cellular signaling in tumors. In fact they constitute a significant portion of 

drug developing programs in pharmaceutical industry. With the aim of quantifying the effect 

of kinase inhibitors over the entire signaling network, the second project first set out to study 

two very commonly used kinase inhibitor compounds for MAPKs: U0126 and SB202190. 

Their effect on epidermal growth factor (EGF) signal transduction was quantified and 
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compared using the HeLa cell system. The study confirmed that the MAPK cascades are the 

predominant signaling branches for propagating the EGF signaling at early time points of 

stimulation. These large scale examinations also suggest that U0126 and SB202190 are quite 

specific inhibitors for MAPKs as the majority of regulated phosphopeptides appears to belong 

to the MAPK pathways. In the second part of the project, the effect on phosphoproteome 

changes of the chemical compound dasatinib, which was demonstrated to effectively inhibit 

the constitutively activated fusion protein BCR-ABL and was recently approved for chronic 

myelogenous leukemia (CML) therapy, was quantified in the human CML cell line K562. 

Bioinformatic analysis revealed that the most influenced signal transduction branch was the 

Erk1/2 cascade. Overall more than 500 phosphorylation sites were found to be regulated by 

dasatinib, the vast majority not described in the literature yet. 

The third project compared the proteomes of mouse hepatoma cell line Hepa1-6 with the non-

transformed mouse primary hepatocytes. This was performed by combining the SILAC heavy 

labeled form of Hepa1-6 with the primary hepatocytes. To characterize the features of these 

two proteomes, quantitation information (i.e. protein ratios between the two cell types) was 

used to divide all proteins into five quantiles. Each quantile was clustered according to the 

Gene Ontology and KEGG pathway databases to assess their enriched functional groups and 

signaling pathways. To integrate this information at a higher level, hierarchical clustering 

based on the p-value from the first Gene Ontology and KEGG clustering was performed. 

Using this improved bioinformatic algorithm for data mining, the proteomic phenotypes of the 

primary cells and transformed cells are immediately apparent. Primary hepatocytes are 

enriched in mitochondrial functions such as metabolic regulation and detoxification, as well as 

liver functions with tissue context such as secretion of plasma and low-density lipoprotein 

(LDL). In contrast, the transformed cancer cell line Hepa1-6 is enriched in cell cycle and 

growth functions. Interestingly, several aspects of the molecular basis of the “Warburg effect” 

described in many cancer cells became apparent in Hepa1-6, such as increased expression of 

glycolysis markers and decreased expression of markers for tricarboxylic acid (TCA) cycle. 

Studies in this thesis only provide examples of the application of mass spectrometry-based 

quantitative proteomics and phosphoproteomics in cancer research. The connection to clinical 

research, especially the assessment of drug effects on a proteome wide scale, is a specific 

feature of this thesis. Although this development is only in its infancy, it reflects a trend in the 

quantitative mass spectrometry field. We believe that more and more clinical related topics 

can and will be studied by these powerful methods.  
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1 Introduction 

In this proteomics era, mass spectrometry (MS) is a powerful technology to explore important 

questions in biology. Recent progress in MS has enabled close-to-complete proteome 

measurements
1
. Quantity comparison has become very precise even without the aid of 

chemical or metabolic labeling. These achievements have encouraged researchers to apply 

MS to various topics in biology and medicine, including cancer research. 

 

1.1  Signal transduction in cancer 

Signal transduction is an inherent molecular mechanism to respond to extracellular 

environmental changes and to maintain cellular homeostasis. Growth factor signaling is a 

canonical paradigm for response to extracellular signals and such processes are involved in 

growth
2
, differentiation

3, 4
, development

5-7
, immune response

8
, and cell movement

9
, to name a 

few examples. Signaling involved in cellular homeostasis coordinates intracellular 

organization, ensures survival of normal somatic cells
10, 11

 and removes senescent or damaged 

cells
12

, among many other functions. 

 

1.1.1   Signal transduction paradigm 

Signal transduction is a triggered event. It typically consists of three elements: the activator 

which initiates the signal transduction, the effectors which propagate the signal, and the 

attenuators which provide negative feedback and eliminate the signal.  

Epidermal growth factor receptor (EGFR) signaling is a canonical signal transduction 

pathway (Figure 1.1). Ligand binding to the extracellular domain induces EGFR dimerization 

and conformational change. The exposed tyrosine residues of the intracellular kinase domain 

in one monomer are cross-phosphorylated by the other monomer. Phosphotyrosines create 

binding sites and thus bring to the intracellular domain of EGFR numerous SH2 domain 

containing proteins, such as RasGAP, SHP-1, and PI3K. In turn, these proteins recruit more 

signaling molecules to propagate the signal. As a balance, negative feedback loops are 

initiated to attenuate and terminate the signal
13, 14

. 
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Figure 1.1   A canonical growth factor signal transduction network – the EGFR signaling 

pathway. From Sigma Aldrich Key Resources. 

 

It has been estimated that up to 20% of the human genome encodes signaling proteins
15, 16

. 

These include 1,543 signaling receptors
17

, 518 protein kinases
18

, around 150 protein 

phosphatases
19-21

  , and more than 1,850 transcription factors
17, 22

.  

 

1.1.2   Mechanism of signal transduction 

Actions such as conformational change, post-translational modifications, molecular 

interactions, regulated localization, and trafficking are essential to signal transduction. It 

typically is an amplifying process where one upstream effector reacts with multiple 

downstream effectors.  

Phosphorylation is by far the most well studied mechanism of regulation in signal 

transduction. It is also the major subject of this thesis. However, it is noteworthy that research 

in recent years has revealed more and more post-translational modifications as important 

regulatory mechanisms. For example, ubiquitination – the addition of ubiquitin-like molecules 

to lysine residues – is widely recognized as governing protein degradation via the “ubiquitin-
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proteasome pathway”. It also plays a role in protein trafficking, DNA repair and replication, 

and other cellular functions. A related small protein modification – SUMOylation – has been 

demonstrated to be involved in processes like cell cycle progression and apoptosis. As another 

example of an important PTM, acetylation of lysine residue in histone tails generally leads to 

active gene transcription. 

To ensure speed, specificity and efficiency in signal transduction, several mechanisms are 

employed. 

Domain-domain interactions. Structurally conserved protein domains provide recognition 

patterns for biomolecular interactions. Currently the PFAM database documents more than 

3500 domains for Homo sapiens
23

 and a subset of these are commonly employed in signal 

transduction
24

. Signaling proteins may contain tandem domains or multiple types of domains 

to facilitate their functions.  

Different dynamics. Reaction dynamics vary for different proteins
25, 26

 and protein groups
27, 28

. 

Compared to long-term stimulation, signals lasting for only a few seconds can trigger 

different reaction modes
27, 29

. Often, similar dynamics are observed among correlating 

proteins, such as components of complexes
30, 31

. Cells use different signal attenuating 

strategies. While Ser/Thr phosphorylation and tyrosine dephosphorylation are often used to 

quickly attenuate the signal
32-34

, other long term negative feedbacks are also employed, such 

as transcriptional and translational control, protein turnover, and exocytosis
35, 36

.  

Compartmentalization and scaffolding. Co-localization concentrates signaling proteins and 

therefore enhances interaction efficiency
37

. For example, in response to insulin, most proteins 

involved in GLUT4-mediated glucose transport gather in caveolar lipid rafts
38

. Multiple 

localizations may indicate alternative functions of the same protein. For example, the receptor 

tyrosine kinase Flt3 localized on organelle membranes has different activity from that on the 

plasma membrane
30

.   

Tissue specific expressions and isoforms. Proteins can be selectively expressed according to 

their function in different tissues and cell types. For example, GLUT4 is expressed 

predominantly in insulin responsive tissues
25, 39

. It has been estimated that around 40-60% of 

human genes are subjected to alternative-splicing events
40, 41

. Isoforms may perform different 

functions. For example, PLCγ is the only PLC isoform that contains signal transduction 

domains, indicating its active role in signal transduction
42

.  



Introduction 

6 

 

1.1.3   Altered signal transduction in cancer 

In the homeostatic state, signal transduction pathways form a well coordinated and subtly 

balanced network. However, this balance is distorted in tumors, where cell proliferation and 

survival are strengthened and apoptosis is impaired. Cancer, a malignant form of neoplasm, is 

able to invade normal tissues and metastasize to and grow at distant body sites
43

.  

Cancer is characterized by self-sufficiency in growth signals, insensitivity to growth-

inhibitory signals, evasion of apoptosis, limitless replicative potential, tissue invasion and 

metastasis, and sustained angiogenesis
44, 45

. It is an intractable disease with multiple origins 

and complicated etiology.  

 

1.3.3.1   Relentless cell proliferation in cancer 

Relentless cell proliferation in cancer lesions is a prerequisite for cancer transformation
46

. 

There are several check points that guard cell cycle progression. The final commitment to cell 

duplication is the transition from G1 phase to S phase. In this process, the retinoblastoma 

protein (pRb) plays a critical role. Inactivation or deletion of pRb can be found in most human 

cancers
47, 48

. Likewise, p53, the ‘guardian of the genome’, is mutated in most tumors as well 

as Myc, a transcription factor and another critical player in cell cycle
47, 48

.  

CDKs, which are Ser/Thr protein kinases, are the central engines that propel the cell cycle. In 

contrast, inhibitory proteins such as p21
Waf1/Cip1

 and p27
Kip1

 negatively regulate this process. 

In cancer, enhanced activities of CDKs and loss-of-function of p21
Waf1/Cip1

 and p27
Kip1

 are 

often reported
49

. 

 

1.1.3.2   Enhanced cell growth in cancer 

Aberrations in three signaling cascades, Ras, PI3K and mTOR, are considered critical in 

promoting tumor cell growth
50

. Mutations in the master regulators, such as K-Ras, H-Ras, N-

Ras, and the p110α catalytic subunit of PI3K, are found in most human tumors
50

. B-Raf 

activity is enhanced in more than 60% of human malignant melanomas, as well as in some 

colon, thyroid and lung tumors
51

. Furthermore, mutation in one or another PI3K pathway 

component accounts for up to 30% of all human cancers
52

. Mutations in the negative feedback 

loops also contribute to cancer development. For example, inactivation of the GTPase 

activating protein NF1 leads to the accumulation of GTP-bound Ras, and therefore promotes 
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Ras signaling. Sporadic mutations of PTEN, a lipid phosphatase that balances PI3K signaling, 

are so frequently found in tumors that they are now regarded as the second commonly mutated 

tumor suppressor in humans, right after p53
50

.  

 

Figure 1.2   The Ras, PI3K, and mTOR activate cell cycle by inhibiting CDK inhibitors (e.g. 

p27
Kip1

 and p21
Waf1/Cip1

) and activating cyclins. Modified from New et al. 
53

. 

 

The mechanisms of the Ras, PI3K and mTOR pathways to enhance tumor growth are 

manifold. First, they activate CDKs and inhibit cell cycle suppressors, thereby drastically 

promoting cell proliferation
53, 54

 (Figure 1.2).  

 

Figure 1.3   Connection of the three major signaling cascades in promoting neoplasm: Ras, 

PI3K, and mTOR signaling cascades. From Shaw et al. 
50

. 
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Second, constitutively activated signaling can bypass survival factors, which are required for 

the survival of normal cells. Third, hyper-activated mTOR signaling promotes protein 

synthesis and angiogenesis even under nutrient-deficient conditions
55

. This ensures synthesis 

of the protein material for tumor cell expansion. Strikingly, these three pathways are tightly 

interconnected (Figure 1.3). They work in concert to promote tumor growth. 

 

1.1.3.3   Suppressed apoptosis in cancer 

Apoptosis or programmed cell death is mainly implemented via caspases
46

. They can be 

activated by the ligands of the death receptors or by cytochrome c, which is released from 

mitochondria.  In tumors, mutations are reported to suppress apoptosis, for example by 

impairing the release of cytochrome c and therefore violate the major initiating mechanism of 

apoptosis
56-59

. The transcription factor p53 plays a critical role in apoptosis. It induces 

expression of the cell cycle inhibitor p21
waf/cip

 and the pro-apoptotic protein Bax
42

 and also 

functions as an exonuclease in DNA damage repair responses60.  

 

1.1.3.4   Other critical signaling pathways in cancer development 

Besides the aforementioned signaling pathways, other critical events in cancer development 

have become increasingly clear. The NFκB signaling pathway bridges cancer with infection 

and chronic inflammation
45

. Hypoxia induced factors (HIFs) trigger angiogenesis under the 

hypoxia conditions typical of the cancerous microenvironment
55

. A number of signaling 

factors, including TGF-β, HGF and IGF, can facilitate metastasis
61

.  

 

1.1.4   Kinases, phosphatases and cancer 

1.1.4.1   Families of protein kinases and protein phosphatases 

Phosphorylation and dephosphorylation are essential for most signal transduction events. 

Sequencing of the human genome and sequence comparison revealed 518 genes encoding 

protein kinases
18

 and 122 genes encoding protein phosphatases
21, 62

. 

Protein kinases are among the largest protein families in eukaryotes. By sequence homology 

of their catalytic domains, they can be classified into 9 broad groups, 90 families and 145 

subfamilies
18

 (Figure 1.4 and Appendix 1). Based on substrate specificity, protein kinases can 
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be divided into Ser/Thr kinases, tyrosine kinases (PTKs), and dual-specificity kinases. While 

the former two types of kinases selectively phosphorylate serine/threonine or tyrosine residues, 

respectively, the dual-specificity kinases can phosphorylate all of them. Large scale 

phosphoproteomics studies reestablished that tyrosine phosphorylation only accounts for a 

small percentage of overall phosphorylation, with a ratio of pSer:pThr:pTyr of 48:7:131. Out of 

the 518 genes, only 90 encode tyrosine kinases. 

 

 

Figure 1.4   Dendrogram of the human kinome. TK: tyrosine kinase group; TKL: tyrosine 

kinase like group; STE: group of homologs of yeast sterile protein kinases; CK1: casein 
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protein kinases; AGC: PKA, PKG & PKC containing group; CAMK: calcium/calmodulin 

dependent protein kinase group; CMGC: CDK, MAP, GSK3 & CLK containing group. 

Adapted from: Cell Signaling Technology.  

 

Protein phosphatases counteract and balance the action of protein kinases. They are generally 

divided into Ser/Thr phosphatases and tyrosine phosphatases (PTPs) (Figure 1.5). 

Interestingly, there are 107 genes encoding tyrosine phosphatases
21

 while only 15 genes 

encode Ser/Thr phosphatases
62

. This suggests that dephosphoyration is regulated differently 

for tyrosine and serine/threonine. Indeed, Ser/Thr phosphatases often recruit distinct 

regulatory proteins to achieve substrate specificity. In contrast, most PTPs possess multiple 

domains which mediate their specificity towards substrates. 



 

 

Figure 1.5   Phosphatase superfamily. (A) Dendrogram of the serine/threonine protein phosphatases, from 

the tyrosine protein phosphatases, from Alonso et al
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Dendrogram of the serine/threonine protein phosphatases, from Andreeva

et al. 
21

. 

 

Andreeva et al.
63

. (B) Classification of 
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1.1.4.2   Protein kinases and protein phosphatases in cancer 

Over 400 human diseases have been connected to protein kinases. In fact, protein kinases 

especially PTKs, comprise a large fraction of the more than100 dominant oncogenes known to 

date. Aberrations of the 31 receptor tyrosine kinases (RTKs) are frequently found in human 

cancers
16

. These include Neu/ErbB2 and EGFR in breast and lung carcinomas and Kit/SCFR 

in several highly malignant tumors such as gastrointestinal stromal tumor, acute myeloid 

leukemia, and lung cancer. Aberrations of cytoplasmic PTKs, such as c-Src, c-Abl, JAKs and 

STATs, are also associated with human malignancy.  

Protein phosphatases generally function as negative regulators of signal transduction. 

Therefore, abnormalities of PTPs often promote cancer development. For example, point 

mutations are commonly observed. In one report, six mutated PTPs were found in colon 

cancer, with equal distribution in receptor and non-receptor PTP families
34

. Strikingly, these 

mutations were mostly located outside the catalytic domains. Another format of abnormality 

is hyper-methylation of the genes for PTPs. Well documented examples include hyper-

methylation-mediated silencing of shp1 and glepp1 
64-67

. Furthermore, those PTPs which can 

positively regulate signal transduction are also reported to malfunction in malignancy. For 

example, SHP2 is reported to be hyper-active in Noonan syndrome and leukemia
68, 69

.  

 

1.1.5   Molecular targeted cancer therapies 

The heavy reliance of many cancers on critical proteins, especially kinases and phosphatases, 

has stimulated interest in developing molecular targeted therapies. Clinical demonstration of 

this concept was only demonstrated at the turn of the 21
st
 century, with the introduction of 

Gleevac (see below). To date, a decade’s development has resulted in the successful 

introduction of several inhibitor compounds and antibodies into clinical use. In fact, this 

exciting process is full of reversals, re-discoveries and innovations
54

. 

 

1.1.5.1   Small molecule inhibitors for kinases and phosphatases 

In the clinic, cyclosporine A has been used as an immunosuppressant for organ transplantation 

surgeries since 1983. It was not until 1991 that its molecular mechanism was revealed – it is 

an inhibitor for phosphatase calcineurin (PP2B)
70

. Rapamycin, another immunosuppressant 

approved for clinical use in 1999, targeted mTOR with the highest specificity among all 
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inhibitors to date
71

. Fasudil, which mainly inhibits the Rho-dependent protein kinase Rock, 

was approved in Japan in 1995 for the treatment of cerebral vasospasm
71

. Certain indirubin 

dyes, included in an ancient Chinese herbal remedy for treating leukemia for hundreds of 

years, were discovered to be potent CDK inhibitors
72

. 

The examples mentioned above indicate that some kinase or phosphatase inhibitor drugs were 

in use long before the concept of molecular targeted inhibition was articulated. Their success 

alleviated two initial concerns, that inhibitors may not achieve sufficient specificity due to the 

conservation of the catalytic domain in protein kinases, and that they may not be able to 

compete with the highly concentrated cellular ATP (2-10 mM). 

The first inhibitor drug developed with the clear aim of molecular targeting to a specific 

cancer protein is imatinib. It entered human clinical trial in 1996 and was approved for 

clinical use in 2001
54

. The molecular target of imatinib (Gleevac) is BCR-ABL and the drug 

achieved very high remission rates. It also inhibits the PDGF receptor and cKIT and achieved 

80% response in gastrointestinal stromal tumors patients with activating KIT mutations
73

. 

With its high efficacy, minimum side effects, and short time to approval, imatinib has 

propelled rapid development of other inhibitor compounds. After G-protein-coupled receptors, 

protein kinases are now the second largest group of drug targets in the pharmaceutical 

industry, comprising 20-30% of drug development programs. An up-to-date list of inhibitor 

compounds in clinical use is displayed in Table 1.1. Over 75 protein kinase inhibitors have 

entered advanced human clinical trials, and it is estimated that over 500 other inhibitor 

compounds are in preclinical studies (http://www.kinexus.ca/science/protein_kinases/). 

 

1.1.5.2   Specificity of the small molecule inhibitors  

Most kinase inhibitor compounds are ATP competitive. Many of them are known to target 

more than one kinase
71

. However, those that achieve high specificity often interact with 

neighboring regions of the ATP binding pocket. This is well demonstrated by the crystal 

structures of SB203580 binding to p38 MAPK and purvalanol binding to CDK2
54

. Crystal 

structures also revealed that imatinib straddles the highly conserved amino-terminal region of 

the activation loop in BCR-ABL and locks the kinase in its inactive conformation
74

. The 

compound BIRB0796 binds to p38 MAPK in a similar way
54

. 
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Table 1.1   Kinase inhibitor compounds in clinical use or clinical trials. From Petrelli et al.
75

. 
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1.1.5.3   Antibody-directed therapy 

Molecular targeted therapies also include other strategies beyond kinase and phosphatase 

inhibitors. Antibody therapy is one of these and increasing in popularity. Antibodies that bind 

to the extracellular domain of RTKs can correct their hyper-active signaling, which is due to 

over-expression or mutation. For example, cetuximab is a monoclonal antibody for EGFR 

which recently received both the FDA (the US Food and Drug Administration) and EMEA 

(the European Medicines Agency) approval to treat head and neck cancers76. Bevacizumab, a 

monoclonal antibody against VEGF, has been approved by the FDA as first line cancer 

therapy that acts against angiogenesis
77

. 

 

1.1.5.4   Combined and multi-target therapies  

Relapse after kinase inhibitor treatment is frequently seen in the clinic and this has 

encouraged the development of second generation inhibitors
78

. So far, cancer cells are known 

to engage in at least two strategies to escape the drug’s effects: to generate second mutations 

in the targeted kinases
79, 80

 or to use other signaling molecules to compensate for the 

suppressed kinases
81, 82

. As a solution, it is suggested to rationally combine inhibitor drugs 

that can target multiple oncogenes in parallel. For example, combination of imatinib and 

dasatnib for treating chronic myelogenous leukemia (CML) has been proposed
83-85

.  
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1.2 Mass spectrometry in biology  

Nearly 20 years after its introduction to biology research, MS has become a tremendous 

success
86

. It has revolutionized the way in which biological information, especially related to 

proteins, can be obtained. With time, MS will become a routine technique to tackle a wide 

variety of biological questions. 

 

1.2.1   General workflow of proteomics 

Mass spectrometry measures the mass to charge ratio (m/z) of molecules. In MS-based 

proteomics, the m/z values of peptides or small proteins are measured, which reflects their 

amino acid composition and possible post-translational modifications. Generally there are two 

measuring approaches, top-down and bottom-up.  

Bottom-up is the most widespread and by far the most successful method in proteomics 

(Figure 1.6). Proteins are enzymatically cleaved at specific sites to yield short peptides which 

typically consist of 6-20 amino acid residues. Mass spectrometers firstly examine the m/z 

value of these peptides (survey scan or MS
1
 scan) and secondly measure their fragments 

generated inside the mass spectrometer by low energy excitation (MS/MS fragmentation). 

Taking a protein database as a reference, mass spectra can be correlated to amino acid 

sequences with the aid of computer algorithms. The found peptide sequences are then 

assigned to proteins, which ultimate leads to protein identification
87

. 

In the top-down approach, small intact proteins are ionized and sprayed into mass 

spectrometers where peptide fragments are subsequently generated using one of a variety of 

activation methods such as CID, ECD, SORI, and IRMPD methods (see abbreviation page). 

Top-down proteomics provides an alternative approach in proteomics to peptide based 

approaches. It obtains better sequence coverage of protein identifications and benefits post 

translational modification (PTM) research. However, it is usually limited to small proteins 

with molecular weight up to 30 kDa
88

 and suffers from the difficulty to solubilize and separate 

proteins in the same way as can be done for peptides.  

Proteomics often deals with complex protein or peptide mixtures. As dynamic range and 

sequencing speed are the limiting factors in the current MS technology
28

, sample complexity 

has to be reduced. On-line separation with reverse phase chromatography (HPLC) connecting 
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on-line to the mass spectrometer has proven to be a useful separation method (Figure 1.6). 

The C18 reverse phase HPLC column elutes peptide mixtures with linearly increasing organic 

solvent, e.g. acetonitril (MeCN). The gradual elution (typically at a few hundred nanoliter per 

minute) with shallow gradients increases  available sequencing time in the MS. Prior to this 

hydrophobicity-based peptide separation, complex samples can be first be separated by one-

dimensional gel
87

, isoelectric focusing
89

, ion-exchange
90, 91

, molecular size
92

, and affinity 

binding such as immunoprecipitation
27, 93

,  IMAC
94, 95

 and TiO2 enrichment
28, 96, 97

.  

 

 

Figure 1.6   General workflow for bottom-up MS-based proteomics. Proteomics samples 

come from tissues, cell lines, body fluids, etc. Protein or peptide samples can be fractionated 

by different means to reduce complexity. Depicted is the nanoLC-MS/MS mode, where 

HPLC is coupled to MS via an electrospray ion source and MS/MS fragmentation is 

performed to generate information of peptide primary structure. Computer algorithms match 

mass spectra to amino acid sequences. The outcome of the experiment is a list of identified 

proteins. 
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For less complex samples, static electrospray – called nanoelectrospray –can be used which 

often yields better identification results. In particular static spray is beneficial for some 

modification studies
98

. 

Data analysis and information mining takes place at the end of the work flow. For example, 

much biological information can be discovered by using different clustering algorithms. 

Frequently used public resources are the Gene Ontology (GO; http://www.geneontology.org/) 

and KEGG pathway databases (http://www.genome.jp/kegg/). Integration of MS-based 

proteomics with other “omics” datasets can provide deeper insights. Examples of these 

valuable datasets are microarray based transcriptome studies
99

 and protein-protein interactome 

and protein complex studies
100, 101

. Modeling of molecular networking is emerging. It is 

expected that integration of these large-scale studies will deliver a new kind of biology 

knowledge that cannot be obtained by each of the separate approaches. 

 

1.2.2   Mass spectrometric instrumentation 

Every mass spectrometer consists of an ion source, a mass analyzer, and a detector. 

Peptide/protein ions are generated in ion source typically by one of two soft ionization 

methods: Matrix-assisted laser desorption/ionization (MALDI)
102

, and electrospray ionization 

(ESI)
103

. Inside mass spectrometers, peptides ions can be separated according to their 

momentum in magnetic sector
104, 105

, kinetic energy in electrostatic sector
106

, velocity in time-

of-flight instruments
107

, path stability in linear quadrupoles
108

, as well as orbital frequency in 

quadrupole ion traps
109

, ion cyclotron resonance mass spectrometer
110, 111 

, and Orbitrap mass 

spectrometer
112

. Finally, ions are detected under high vacuum conditions in detectors. Often 

the electron signals are multiplied via secondary electron multiplier.  

Standard parameters to evaluate a mass spectrometer include resolution, mass accuracy, mass 

range or upper mass limit, and ion dynamic range
113

. 

 

1.2.2.1   Electrospray ionization 

The idea of using electrospray dispersion to produce gas phase ions from solution was first 

introduced by Dole and colleagues in 1968
114

. Fenn and coworkers realized this idea and 

developed the modern day technique of electrospray ionization mass spectrometry (ESI 

MS)
115

. Further improvement by Mann and coworkers introduced nanoelectrospray ionization 
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(nanoESI) which is compatible with nano-flow rates (i.e. at the scale of nanoliter-per-minute) 

for minute amount of samples
116, 117

. 

 

 

Figure 1.7   Electrospray ionization (ESI) process. From Nielsen 
118. 

 

In nanoLC ESI (Figure 1.7), a high voltage of several kilovolts is applied to the thin, sharp tip 

of a metal capillary towards the ion source of the mass spectrometer. The orifice of the ion 

source is warmed up to around 150-200 degrees. Liquid flows through the capillary to the tip 

at a slow flow rate, submicroliter-per-minute in typical set ups. The emerging liquid surface 

disintegrates at such high voltages and temperature condition and liquid droplets are formed. 

Because they have very high surface to volume ratios, droplets quickly shrink by evaporation. 

As solutes are of the same charge, electrostatic repulsion leads to explosion of the liquid 

droplets, a phenomenon termed Coulombic fission. Eventually the strong Coulombic 

repulsion overcomes the surface tension of the droplet, and ions are liberated into the gas 

phase and enter the mass spectrometer as single ions
119

. 

 

1.2.2.2   Linear quadrupole ion trap 

Principles of the LTQ 

The linear quadrupole ion trap (here the LTQ from Thermo Fisher Scientific) contains two 

pairs of orthogonally positioned hyperbolic rods, each segmented into three sections (Figure 
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1.8). The central section is about three times larger than the two end sections. Small slits 

which cut along the rods at the Z axis provide the ion exits. Therefore two detectors are placed 

symmetrically next to the slits to record the radially ejected ions
120

. Direct current (dc) 

voltages are applied to the opposing rods. These opposing rod pairs receive the same voltage, 

while voltages of the neighboring rods are opposite but of the same amplitude. To trap ions in 

the axial direction (Z axis), different dc voltages are applied to the three sections to create a 

deep electric potential well in the center section. To trap ions in the radial direction (XY-

plane), the major radio frequency (rf) is applied to the rod pairs at both x and y axis, with the 

same amplitude but opposite phases, e.g. Vrf cosωt and -Vrf cosωt. To assist ion activation, 

isolation, and ejection, two phases of supplemental alternating current (ac) voltage are 

imposed on the X-electrode.  

 

 

Figure 1.8   Structure of the two-dimensional linear ion trap. From Schwartz et al.
120

. 

 

Independent of kinetic energy and initial position, ions obtain stable trajectories within the 

LTQ only if their m/z values locate in certain stable regions in the ion stability diagram
121

 

(Figure 1.9). For practical reasons, the region A is most interesting, where qmax equals 0.908. 

As seen in equation (1), the m/z value of an ion is inversely proportional to the Mathieu 

parameter qz. From this the minimum m/z values that can be detected in the LTQ is 

determined. The same principle also applies to the three dimensional (3D) ion trap, common 

before the introduction of this 2D ion trap LTQ. This low mass cut-off phenomenon is termed 

“1/3 cut-off” rule for ion traps
122

. 
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Where m is the ion mass; z is the ion charge; U and V are the potentials of dc and rf, 

respectively; az and qz are Mathieu parameters; ω is the angular frequency of the rf; r0 is the 

radius inscribed, i.e. one-half distance between the opposite rods. 

 

 

Figure 1.9   The ion stability diagram of quadruple ion trap. Mathieu parameters (au, qu) are 

plotted to identify the stability regions in both the XY- (radial) and Z- (axial) directions. 

Regions of simultaneous overlap are marked as A and B. From March et al.
109

. The Mathieu 

parameters can be calculated by equation (2) and (3). 

 

To analyze trapped ions, the principle of mass-selective instability is employed where the 

main rf voltage is increased at a constant rate. The ramping of the rf potential amplitude 

causes the qz values of all ion species to increase and eventually to exceed the resonance 
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ejection limit (set as 0.88 in some cases
120

). Ions are radially ejected through the exit slits in 

the X-rods. The supplementary ac signal also contributes to the ion resonance excitation.  

 

Characteristics of the LTQ 

The LTQ offers much better performance over the conventional 3D ion trap
120

: 15 times 

higher ion capacity, 3 times faster scan rate, up to 100% detection efficiency, and up to 70% 

trapping efficiency. These tremendous advances can be directly translated into improved 

identification results in proteomics study
123, 124

.  

Performance of the LTQ was examined by Gorshkov et al
125

. According to their and our 

experience, the  LTQ is able to achieve a mass accuracy of up to 50 ppm and resolution close 

to 1000 (m/z 400), at an ion target value of 5,000 (number of ions filling the trap). In general, 

the LTQ is close to ideal for proteomics studies due to its fast scan rate and high sensitivity. 

However, major caveats of ion traps – when used alone – include low resolution, low mass 

cutoff, and modest mass accuracy. 

 

1.2.2.3   Fourier transform ion cyclotron resonance 

 

Principles of the the FTICR 

Fourier transform ion cyclotron resonance (FTICR) measures ion oscillation frequencies in a 

combined magnetic field and electric field.  Superconducting magnets with field strength of 3 

Tesla or higher are able to provide a uniform, unidirectional and homogeneous magnetic field 

over time. The cubic analyzer cell is composed of six plates (Figure 1.10). Two trapping 

plates are perpendicular to the magnetic field. Two ion excitation plates and two detection 

plates are positioned in parallel to the magnetic field. An ultra-high vacuum of 10
-9

 to 10
-10

 

mBar is required for ion detection. 

The force that an ions experience in a combined magnetic and electric field is: 

    
(4)  

)( BvqqEF ⊗+=  

Where q is the ion charge; E is the electric field strength; v is the ion velocity; B is the 

magnetic field strength. 
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Figure 1.10   Structure of the FTICR analyzer cubic cell. B: magnetic field.  

 

Cyclotron motion 

An ion entering the cubic cell experiences zero force in the Z direction, i.e. direction of the 

magnetic field B. However in the direction perpendicular to the magnetic field B, the Lorentz 

force causes the ion to periodically oscillate in circles. The frequency of this motion, termed 

cyclotron motion, is independent of the ion’s kinetic energy but depends on the m/z value of 

the ion: 

    
(5)  m2

B

⋅

⋅
=

π

q
f c  

Where m is the ion mass; q is the ion charge; B is the magnetic field. 

Kinetic energy influences the radius of the cyclotron orbit. The radius scales with the square 

root of the ion’s kinetic energy
110, 111

.  

 

Trapping motion 

A small (~0.2 V), symmetric positive voltage is applied to the trapping plates to trap positive 

ions. This weak electrical field generates a negative gradient starting from the trapping plates 

towards the center of the cubic cell. Ions oscillate between trapping plates in simple harmonic 

motion, with the trapping motion frequency of 
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 Where m is the ion mass; z is the ion charge; VT is the small symmetric voltage; α and are the 

constants representing the ICR cell geometry. 

 

Magnetron motion 

The electric potential from the two trapping plates distributes among the six plates of the ICR 

cell and generates an uneven potential distribution in space. At the XY-plane, this potential 

decreases when it goes away from the center of the cell. Therefore ions tend to drift away 

from the center with the frequency of 
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Where VT is the small symmetric voltage; α and are the constants representing the ICR cell 

geometry; B is the magnetic field.  

Due to the magnetron motion, the actual detected frequency is the difference between 

cyclotron frequency and magnetron frequency. However, the magnetron frequencies are in the 

order of 1-100 Hz, whereas cyclotron frequencies are of 5 kHz – 5 MHz. Therefore magnetron 

frequencies impose only minute influence on the cyclotron frequencies. As seen from formula 

(7), magnetron frequency is independent of the m/z value, but the radius of ion magnetron 

motion depends on the ion’s initial position within the ICR cell
110

. 

 

Ion excitation and detection 

For detection purpose, the radius of the ion cyclotron motion has to be as large as possible.  A 

sinusoidal voltage is applied to the excitation plates. If the frequency of ions (
mc ff − ) 

matches the applied rf frequency, the ions will absorb energy and oscillate in resonance. They 

spiral with increasing radius towards the detection plates. After the excitation rf is removed, 

ions cycle in a stable manner and are ready for detection. Their periodic motion produces a 

sinusoidal image signal in the detection plates that can be amplified, recorded and processed 

by Fourier transform algorithm to generate mass spectra.  



Introduction 

25 

 

Characteristics of FTICR 

Characteristics of FTICR instruments are listed in Table 1.2. In general, the parts per million 

(ppm) mass accuracy, high resolution, and high dynamic range are the great advantages of 

FTICR. A resolution of 10
6
 was achieved for ions with m/z larger than 1000, by scanning with 

longer transients (>60 seconds) under high vacuum of 10
-10

 mBar
126

. However, the drawbacks 

of FTICR have been slow scanning rate, relatively low sensitivity, and space-charge effect. 

Recently larger cubic cells have become commercially available for reduced space-charge 

effect and improved dynamic ranges. 

 

Table 1.2   Characteristics of FTICR MS 

Mass accuracy Resolution @ 1 s scans Sensitivity Dynamic range 

1ppm 100, 000 0.5 fmol 5000 

 

 

1.2.2.4   Orbitrap 

Principles of the Orbitrap 

The Orbitrap is a new type of mass analyzer which resembles the conventional Kingdon trap, 

already known since 1924, to some degree, but embraces a new concept of trapping and 

analyzing ions. 

The Orbitrap is composed of a spindle-shaped inner electrode and a split, barrel-like outer 

electrode (Figure 1.11). The largest inner diameters for the inner electrode and for the inner 

surface of the outer electrode are 8 mm and 20 mm, respectively
127

. A static, quadro-

logarithmic electrostatic field is generated by the Orbitrap’s axially symmetric electrodes: 
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Where r and z are cylindrical coordinates (z = 0 being the plane of the symmetry of the field); 

C is a constant; k is the field curvature; Rm is the characteristic radius.  
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Ions are pulsed injected into the Orbitrap from an entrance slit offset from its equator. Without 

the need for additional excitation, ions start to oscillate with the combined motions along the 

axial direction (Z direction) and in rotational plane (perpendicular to the Z axis). To squeeze 

ions into tight ion packets and to move them far enough from the out electrodes, an initial 

adjustment by increasing electric fields is performed, typically lasting for 20-100 µs112, 127, 128.  

 

 

Figure 1.11   Cut-away structure of the Orbitrap mass analyzer. From Scigelova et al.
129

. 

 

Rotational motion and ion trapping 

Due to the electric field, ions experience centrifugal and centripetal forces in the plane 

perpendicular to the Z direction. This rotational motion defines a frequency of 
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Where Rm is the characteristic radius; R is the radius of the circle; ω is the frequency of axial 

oscillations. 

And the radius of the rotation is 

    
(10)  eE

eV
r 2=  

Where eV is the ion’s kinetic energy; eE is the force due to the electric field which is directly 

radially inward. 



Introduction 

27 

 

Equation (10) indicates that, once the field strength is fixed for a certain electric sector, the 

radius of the ion rotational motion depends on the ion kinetic energy. In other words, only 

certain ions with appropriate kinetic energies obtain stable trajectories along the rotational 

plane.  

 

Radial ion motion 

The radial component of the electric field also influences the ion’s orbital trajectory. The 

frequency of the radial motion is described by equation (11). The initial position, as well as 

energy distributions in the rotational and radial directions can directly influence the radial 

motion
112

. Therefore with time the ion radial motion will go out of phase, with a speed of 

orders of magnitude faster than in the axial direction.  
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Where Rm is the characteristic radius; R is the radius of the circle.  

 

Axial ion motion and ion detection 

Tight ion clouds can oscillate along the Z direction in-phase, with the frequency described in 

equation (12). This axial frequency is independent of kinetic energy, initial position and other 

ion parameters. Therefore it is unique to each given m/z and severs the purpose of ion 

detection and mass measurement
112

. 

    
(12)  

( )kmq=ω  

Where m is the ion mass; q is the ion charge; k is the field curvature. 

 

Due to the symmetric shape of the electrodes, the image currents generated by the dephased 

rational and radial oscillations in different sections will eventually cancel each other out. 

However, the axial oscillation persists to generate useful signal current, which can be 

translated to mass spectra using the Fourier transform algorithm. 
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Characteristics of the Orbitrap 

Characteristics of Orbitrap are listed in Table 1.3. The Orbitrap ‘inherits’ all the advantages of 

FTICR, i.e. high mass accuracy, high resolution, and high dynamic range while being a much 

smaller instrument and not needing a superconducting magnet. Due to the unique structure of 

the LTQ-Orbitrap instrument, an internal calibration method using a lock-mass can achieve 

sub-ppm mass accuracy
130

. Compared to the FTICR, the Orbitrap has increased sensitivity and 

much reduced space-charge effects. The latter is due the fact that ions with different kinetic 

energies generate different rotational motions and ions are shielded from each other by the 

central electrode. Ion thin rings with different m/z will disperse out, limiting the columbic 

repulsion effects. 

 

Table 1.3   Characteristics of the Orbitrap MS. 

Mass accuracy Resolution @ 1 s scans Sensitivity Dynamic range 

1ppm 60, 000 0.1 fmol 5000 

 

 

1.2.2.5   Hybrid mass spectrometers to study peptide primary sequences 

Hybrid mass spectrometers are commonly used in proteomics studies. The LTQ-FT and LTQ-

Orbitrap combine the advantages of fast scanning rate and high sensitivity of the LTQ and the 

advantages of high mass accuracy, high resolution, and high dynamic range of the FTICR and 

Orbitrap
131, 132

. To reduce space-charge effect, automatic gain control (AGC), which delivers a 

constant number of ions per scan, is used in the LTQ before injection into the FTICR or 

Orbitrap. This has been demonstrated to produce highly accurate m/z measurements by 

cancelling space charge effects. The hybrid nature of the instrument also facilitates fast 

peptide fragmentation in space. 

Peptide fragmentation generates very useful information of amino acid sequences. Collision 

induced fragmentation (CID) is the most widely used method. CID introduces low energy 

fragmentation via collision with inert gases (e.g. helium) at energies of some eV. Repeated 

collisions cause peptides to decompose. Breakage of peptides can happen in several modes 
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(Figure 1.12). In our electrospray-LTQ-FT/Obitrap setup of analyzing tryptic peptides, CID 

mostly generates b and y ions.  

 

 

Figure 1.12   Nomenclature for fragment ions
133, 134

. Peptide back bones are shown with 

amino acid side chains represented with R. CID usually generates y and b ions.  

 

An ion detection cycle in our MS-analysis is composed of two parts, the full scan and the 

peptide fragmentation scan. Precursor ions are scanned in the FTICR or Orbitrap for the entire 

range of m/z values (MS). Ions of interest are then separately isolated and accumulated in the 

linear ion trap for CID peptide fragmentation (MS/MS). By retaining fragment ions of interest 

in the trap via ion selective instability mode, further fragmentation (MS
n
) can in principle also 

be performed. This has been proven very useful in deriving sequence information from 

phosphorylated peptides
135

. Recently, multistage activation (MSA) has become available. In 

this special scan mode, the MS/MS/MS fragmentation is generated in the presence of all the 

MS/MS fragments without intervening isolation step. Therefore the resulting mass spectra are 

a combination of MS
2
 and MS

3
 fragments. MSA is routinely used in our phosphorylation 

studies. Due to the fast scan rate in LTQ, the MS event in FT/Orbitrap and MS
n
 events in LTQ 

can be easily combined without extending the cycle duty
135

. 

Other types of fragmentation techniques are also used, such as electron capture dissociation 

(ECD) and electron transfer dissociation (ETD). Electron transfer generates a completely 

different pathway of thermo-energy distribution and peptides tend to fragment at the Cα-NH 

bond. ECD and ETD are suggested to generate complementary mass spectra to those from 

CID
136

. 
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1.2.3   Quantitative proteomics 

Biological research often requires the knowledge of protein amounts and their changes under 

different conditions. To meet these needs, various quantitation methods have been developed 

in the past few years. MS-quantitation that entirely depends on the signal intensity of 

unlabeled peptides, i.e. label-free quantitation, is just emerging. This method demands a very 

precise and accurate performance of the whole proteomics workflow. In contrast, a large 

group of other methods employ stable isotopes for labeling peptides. They usually better 

tolerate the signal fluctuations in HPLC and mass spectrometers. 

Stable isotope encoding changes the physiochemical properties of the peptides by the least 

possible amount. Protein/peptide samples that are labeled with stable isotopes have shifted 

m/z values when compared to their natural, non-isotope-labeled counterparts but are otherwise 

identical in all respects. Thus, stable isotopes such as 
13

C, 
15

N, and 
18

O do not induce shifts in 

HPLC retention times
137

. Therefore labeled and non-labeled peptides show up as pairs in mass 

spectra. Their relative intensities can be directly visualized
138

. Deuterated peptides shift 

slightly from their non-deuterated counterparts
139

. However, this problem can be corrected if 

quantitation is based on the entire elution profiles of HPLC instead of on a few single 

observations
140

. Generally, there are three ways to label proteins or peptides with stable 

isotopes (Figure 1.13)
141, 142

. Metabolic labeling supplies stable isotopes during the growth 

and development of cells
138, 143

 and organisms
144-146

. Chemical labeling modifies certain 

amino acid side chains with natural or isotope-labeled reagents
147, 148

. Enzymatic labeling uses 

trypsin or Glu-C catalyzed incorporation of 
18

O during protein digestion
149, 150

. To distinguish 

the labeled and non-labeled forms of peptides by MS, it is recommended to generate a 

minimum of 4 Da difference in the peptide pairs.  
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Figure 1.13   Strategies in mass spectrometry-based quantitative proteomics. Boxes in blue 

and yellow represent two experimental conditions. Horizontal lines indicate the experimental 

step where samples are combined. Dashed lines indicate points at which experimental 

variation and thus quantification errors can occur. From Bantscheff et al.
141

. 

 

It is advantageous to mix samples at an early stage of the experiment to avoid accumulating 

systematic errors, which can translate into inaccurate quantitation results in the sensitive mass 

spectrometry measurement. From this perspective, metabolic labeling is superior to other 

quantitation methods. Stable isotope labeling with amino acids in cell culture (SILAC) is an 

established method with all the strengths of the metabolic labeling strategy
138, 151

 (Figure 1.14). 

SILAC labeling utilizes arginine and lysine with heavy elements of 
13

C, 
15

N, and 
2
H. The 

most commonly used forms are 
13

C6-Arg, 
13

C6
15

N4-Arg, 
2
H4-Lys and 

13
C6

15
N2-Lys. Up to 

three different biological conditions can be compared in a single SILAC experiment and many 

interesting biological discoveries have been obtained using this method
151

.  
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Figure 1.14   SILAC strategy in quantitative proteomics. (A) Two SILAC states are presented. 

One state is labeled with light isotopes (e.g. 
12

C6
14

N 4-Arg and/or 
12

C6
14

N2-Lys) and the other 

state with heavy isotopes (e.g. 
13

C6
15

N4-Arg and/or 
13

C6
15

N2-Lys). Samples are mixed as early 

as possible to avoid introducing experimental errors. (B) Relative quantities of the peptides 

are visualized in MS spectra. (C) Extracted ion chromatogram indicates that light- and heavy- 

labeled peptides co-elute very well during reverse phase HPLC separation. Modified from 

Ong et al.
142

. 

 

iTRAQ (an isobaric tag for relative and absolute quantitation) is a chemical labeling method 

which can quantify up to eight different conditions in single experiment 152. A multiplexed set 

of isobaric reagents are used to modify each sample. Differently modified peptides display no 

difference in MS scans due to the isobaric property of the mass tags. However, after peptide 

fragmentation the unique, low-mass reporter ion of each tag (113-121 Da) is displayed in 

MS/MS spectra. Quantitation is therefore carried out in MS/MS spectra rather than MS 

spectra.  

Absolute quantitation is another interesting challenge in quantitative proteomics. Using a 

reference sample with known amount, the aforementioned quantitation methods can be used 
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to deduce the absolute amount of proteins in the sample. Successful examples include the 

precise quantitation of Grb2 copy numbers in HeLa cells by means of absolute-SILAC153.  

 

1.2.4   Phosphoproteomics 

Phosphorylation is thought to occur in one third of the proteome. Early estimates suggest that 

there are over 100,000 phosphorylation sites in human proteome. While ubiquitously 

distributed, phosphoproteins are typically of low abundance. Furthermore, often only a few 

percent of the entire protein amount is present in a phosphorylated form
154

. Phosphorylation 

governs most signal transduction processes and many other cellular functions. Therefore the 

study of phosphoproteomics is of great importance. 

To enrich the low abundant phosphorylated proteins or peptides, various methods have been 

developed. Chromatographic methods include affinity binding to phospho-antibodies
27, 155

, 

affinity binding to kinase domains
156

, metal chelation
94, 157, 158

, and ion exchange
159

. Chemical 

modifications of the phosphate group are also used to create affinity tags for purification
160-163

. 

Engineering proteolytic digestion at the phosphorylation sites is also proposed
164, 165

. Among 

these, the chromatography methods are most widely adopted due to their high enrichment 

efficiency and experimental simplicity. 

 

1.2.4.1   Antibody-based enrichment 

Tyrosine phosphorylation comprises less than 2% of the cellular phosphorylation events
31

. 

Fortunately good quality antibodies of phospho-tyrosine (pTyr), such as 4G10 and pTyr100, 

can be employed to enrich pTyr containing proteins or peptides
27, 93, 155

. Antibodies generated 

against kinase substrate motifs, such as AKT motif, are also used to enrich substrates of 

specific kinases
156

. 

  

1.2.4.2   Strong cation exchange (SCX) 

SCX is a low resolution but robust enrichment method
159, 166

. The principle of using SCX in 

phosphopeptide analysis is based on reduced positive charges on the phosphorylated peptides. 

Most tryptic peptides carry one positive charge at each peptide terminus at pH 2.7, as 

specified in the SCX buffer (NH4
+
 from the N-terminal amino group and the positively 



 

charged side chain of trypsin or

the positive charges, effectively reducing the charge state by one, and therefore decrease the 

binding to the SCX column. Generally multiply phosphorylated peptides bind to the column 

with minimum affinity, while non

amino acids (glutamic acid and aspartic acid) can interfere with this strategy. 

coworkers demonstrated large 

fractionation
166

. 

 

1.2.4.3   TiO2 enrichment 

Titanium dioxide (TiO2) particles 

stress. Their unique amphoteric ion

material to silica in chromatography

phosphates in solution has been revisited.  H

chromatography can achieve very high enrichment efficiency (90%) for phosphopeptides in 

simple samples
168

. For complex samples, 

acid residues such as glutamic acid and aspa

proposed the use of 2,5-dihydroxy benzoic acid (DHB) to compete with the acidic peptides 

from binding
96

. Because the binding 

acidic peptides (Figure1.15), this approach has proven to be very successful in large scale 

phosphoproteomic studies
31

. 

 

Figure 1.15   Comparison of binding capacities to titanium dioxide sphere. The binding 

capacities increase from carboxylic group, DHB, to phosphate group. Adapted from 

(ASMS 2005). 

Introduction 

34 

or lysine). The negatively charged phosphate group can counter 

the positive charges, effectively reducing the charge state by one, and therefore decrease the 

Generally multiply phosphorylated peptides bind to the column 

with minimum affinity, while non-phosphorylated peptides bind strongly. However, acidic 

amino acids (glutamic acid and aspartic acid) can interfere with this strategy. 

ers demonstrated large scale identification of 2,001 phosphopeptides 

) particles are stable with regards to mechanical, chemical and 

unique amphoteric ion-exchange properties suggested their use

silica in chromatography
167

. In recent years, its specific 

in solution has been revisited.  Heck and coworkers demonstrated that

achieve very high enrichment efficiency (90%) for phosphopeptides in 

. For complex samples, however, non-specific binding of the acidic amino 

acid residues such as glutamic acid and aspartic acid becomes significant. Larsen et al. 

dihydroxy benzoic acid (DHB) to compete with the acidic peptides 

. Because the binding strengths decrease from phosphopeptide to DHB to 

), this approach has proven to be very successful in large scale 

1.15   Comparison of binding capacities to titanium dioxide sphere. The binding 

capacities increase from carboxylic group, DHB, to phosphate group. Adapted from 

lysine). The negatively charged phosphate group can counter 

the positive charges, effectively reducing the charge state by one, and therefore decrease the 

Generally multiply phosphorylated peptides bind to the column 

phosphorylated peptides bind strongly. However, acidic 

amino acids (glutamic acid and aspartic acid) can interfere with this strategy. Gygi and 

001 phosphopeptides using SCX 

mechanical, chemical and thermal 

suggested their use as an alternative 

. In recent years, its specific affinity to organic 

demonstrated that TiO2 

achieve very high enrichment efficiency (90%) for phosphopeptides in 

specific binding of the acidic amino 

rtic acid becomes significant. Larsen et al. 

dihydroxy benzoic acid (DHB) to compete with the acidic peptides 
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), this approach has proven to be very successful in large scale 

 

1.15   Comparison of binding capacities to titanium dioxide sphere. The binding 

capacities increase from carboxylic group, DHB, to phosphate group. Adapted from Olsen JV 
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1.2.4.4   Phosphorylation beyond Ser, Thr, and Tyr 

In cells, phosphate groups are predominantly attached to the hydroxyl groups in serine, 

threonine and tyrosine residues. These are termed the O-phosphorylation. There are also a 

variety of other phosphorylation modes in cells
154

. In N-phosphorylation, phosphate groups 

attach to histidine and lysine. S-phosphorylation occurs on cysteine. Acyl-phosphotates link to 

aspartic and glutamic acid. New types of phosphorylation have been reported, such as N- or 

O- phosphorylation on hydroxyl-lysine.  

In our phosphoproteomics workflow, acid conditions are employed. This can lead to general 

hydroxylation of most uncommon phosphorylations, e.g. histidine phosphorylation
169

. To 

investigate those phosphorylation events, basic buffer conditions plus negative ion mode are 

recommended.  

 

1.2.4.5   Quantitative phosphoproteomics 

The recent years have witnessed a breakthrough in phosphoproteomics, such that hundreds or 

thousands of phosphorylation sites can be obtained in single experiments
31, 94, 96, 159, 166

. Most 

of these studies contain qualitative information of phosphorylation site identifications rather 

than quantitative information. 

The first large scale quantitative, site specific and time-resolved phosphoproteomics study 

was reported by Olsen et.al, where the phosphoproteome changes after EGF stimulation were 

quantified at several time points
31

. In that study, phosphorylation distribution among Ser, Thr 

and Tyr residues was measured. Dual phosphorylation in kinase activation loops were 

captured, which directly visualized the activation state of the enzymes. Time-resolved studies 

revealed trafficking of phosphoproteins between cytoplasm and nucleus (e.g. STAT5 and 

MAPK1/3). Clustering of phosphopeptides based on their reaction kinetics indicated 

functional groups. Rich biological information was mined from the long list of 

phosphorylated proteins and sites. This work clearly demonstrated the strength of quantitative 

phosphoproteomics.  

Based on the work of Olsen et al, we established a general workflow of quantitative 

phosphoproteomics, which is depicted in Figure 1.16. 

 



Introduction 

36 

 

 

 

Figure 1.16   The general workflow of mass spectrometry-based phosphoproteomics. 
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2 Aim of the Study 

 

2.1 Cancer cell line to evaluate inhibitors for kinases and phosphatases 

SILAC-based quantitative phosphoproteomics was previously demonstrated to be a powerful 

technique to decipher phosphorylation changes after growth factor stimulation in cell lines 
31

. 

In principle, essentially the same technique can be applied to very practical topics such as the 

effect of inhibitor compounds used in everyday research and clinics.  

In this thesis, project 1 is designed as a proof-of-principle study to quantify the effects of 

several commonly used phosphatase inhibitors in laboratories. Meanwhile it is a technology-

centered study, with the aim to analyze the phosphoproteome in depth. Project 2 is designed 

to tackle the effects of some described kinase inhibitors on the entire signaling network, 

including one clinical drug.   

 

2.2 Liver cell model to assess normal and transformed cells 

Elucidation of the properties of transformed cells is a long standingtopic in cancer research. 

Some of these cell lines were derived from tumor tissues, and therefore should retain most 

properties of the tumors. Project 3 is designed to characterize the phenotypes of transformed 

cancer cell line with comparison to primary, non-transformed cells.  

  



Materials and Methods 

38 

 

3 Materials and Methods 

3.1 Cell models 

3.1.1   Immortalized cell lines 

Mouse hepatoma cell line Hepa1-6 

Hepa1-6 was derived from the transplantable hepatoma BW7756, which was chemically 

introduced in C57LBL/6 mice. These cells are adherent and grow as monolayer in culture. 

Hepa1-6 is thought to maintain the major properties and functions of liver, such as secreting 

several liver-specific products including albumin, alpha1-antitrypsin, alpha-fetoprotein, and 

amylase
170

. As demonstrated by several studies, Hepa1-6 has poor immunogenicity
171, 172

. It is 

highly sensitive to adenovirus infection and the antisense treatment targeting the oncogene 

IGF-1. It is highly sensitive to adenovirus infection and susceptible to viral replication, 

progeny production and cytopathic effect. Therefore it has become a popular tumor model for 

experimental immunotherapy studies.  

 

Human epithelial  carcinoma cell line HeLa 

HeLa is descended from cervical carcinoma transformed by human papillomavirus 18 

(HPV18) in a female patient. Rearrangement of chromosomes was observed.  They have a 

modal chromosome number of 82, with four copies of chromosome 12 and three copies of 

chromosomes 6, 8, and 17. HeLa cells are adherent and maintain contact inhibition in vitro. 

 

Human myelogenous leukemia cell line K562 

K562 was the first human immortalized myologenous leukemia line to be established. It 

originated from a female CML patient in blast crisis phase and contains the e14a2 fusion 

protein BCR-ABL. This fusion protein is the product of the Philadelphia chromosome which 

is generated by fusing the long arms of chromosome 9 and 22. These two chromosomes 

encode ABL and BCR, respectively. BCR-ABL exhibits constitutive tyrosine kinase activity 
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of ABL and has been proven to be essential in CML. Therefore K562 cells are tumor models 

for experimental CML studies.  

K562 cells exhibit a second reciprocal translocation between chromosome 15 and 

chromosome 17. They resemble both undifferentiated granulocytes
173

 and erythrocytes
174

. 

They are deficient in major histocompatibility complex (MHC) and they lack herpesviruses. 

K562 cells are rounded and grow in suspension.  

 

3.1.2   Primary hepatocytes 

Isolation and culture of mouse hepatocytes were performed according to standard operation 

procedures established in the German HepatoSys Network and briefly summarized here
175

.  

Briefly, six to twelve weeks old B6 mice were used. The use of mice for hepatocyte isolation 

has been approved by the animal experimental committees and animals were handled and 

housed according to specific pathogen free conditions. Anesthesia was achieved by 

intraperitoneal injection of 5mg/100mg body weight ketamine hydrochloride 10% (115.34 

mg/ml; Essex Tierarznei, Munich, Germany) and 1mg/100mg body weight xylazine 

hydrochloride 2% (23.32 mg/ml; Bayer Leverkusen). HANKS solution I was produced by 

supplementation of BASAL HANKS solution (8 g NaCl, 0.4 g KCl, 3.57 g Hepes, 0.06 g 

Na2HPO4 x 2 H2O, 0.06 g KH2PO4 in 1 L distilled H2O, adjusted pH to 7.4, sterilized) with 

2.5 mM EGTA, 0.1% glucose and penicillin/streptomycin at a dilution of 1 : 100. HANKS 

solution II was produced by supplementation of BASAL HANKS solution with 0.3 mg/ml 

collagenase CLSII and 5 mM CaCl2. Hanks solutions I and II were prewarmed in a 42°C 

waterbath. Collagenase was added immediately prior to liver perfusion. After shaving and 

cleaning the abdomen under sterile conditions, the abdominal cavity was opened and the 

portal vein was cannulated with a 24G catheter. A silicon tube (diameter 2.4 mm) was 

connected to the catheter and HANKS solution I was infused via a peristaltic pump at a flow 

rate of 8 ml per minute After starting the peristaltic pump, the vena cava and the right heart 

ventricle were incised to permit sufficient outflow. The liver was perfused with solution I for 

5 minutes, followed by HANKS solution II for 5-7 minutes. Correct placement of the portal 

vein catheter is evidenced during perfusion by the steady and even change from dark red-

brown to a light brown color in all liver lobes. Following perfusion the liver was transferred to 

a sterile Petri dish and the gall bladder was removed. The following steps were performed in a 

sterile hood. The liver capsule was carefully removed using a pincette. Gentle shaking 
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disintegrated the perfused liver, yielding a suspension of single cells, some cell clumps and 

cell debris. The suspension was placed onto a 100 µm cell strainer and was filtered through 

the mesh by gravity flow. The suspension was transferred to a 50 ml Falcon tube and washed 

twice with Williams E medium (room temperature). Cells were centrifuged at room 

temperature at 37.5 x g for 2 minutes in a cell culture centrifuge. The cells were resuspended 

in Williams medium E and the percentage of intact cells was determined by staining an 

aliquot with trypan blue. On average 70-80% of the cells were viable.  

Hepatocytes were placed on collagen coated tissue culture dishes in FCS cell culture  medium 

(William´s medium E supplemented with 10 % FCS, 100 nM dexamethasone, 2 mM L-

glutamine and 1% penicillin/streptomycin solution) and kept in a humidified cell culture 

incubator at 37°C and 5% CO2 (Figure 1). For 6 cm (diameter) tissue culture dishes 

hepatocytes were plated at a density of 2 x 10
6
 cells/dish in 3 ml FCS-culture-medium. After 4 

h of incubation hepatocytes should be attached to the collagen coated dish. Subsequently, the 

FCS cell culture medium was removed and replaced by serum free cell culture medium 

(William´s medium E supplemented with 100 nM dexamethasone, 2 mM L-glutamine and 1% 

penicillin/streptomycin solution).  

In project 3, after cultivation for 14 hours, the primary hepatocytes were placed on ice and the 

medium was removed. The cells were lysed in modified RIPA buffer.  

 

Materials for isolation and culture of primary hepatocytes: Ultra pure bovine serum 

albumin (BSA), dexamethasone and insulin were obtained from Sigma (Deisenhofen, 

Germany). Fetal calf serum (FCS), penicillin/streptomycin (10.000 U/ml - 10mg/ml) and L-

Glutamin from Gibco (Paisley, Scotland) and William´s medium E (WME) from Biochrom 

(Berlin, Germany). Materials used for hepatocyte isolation and culture were  Abbocath-T 18G 

(Venisystems, Abbott, Ireland),  Peristaltic pumps (Reglo Digital; Isamtech, Zürich, 

Switzerland), 100 µm meshcell strainers (Becton-Dickinson, Heidelberg), collagen I coated 6-

well-plates (Becton-Dickinson, Heidelberg) and tissue culture centrifuges (Labofuge M, 

Heraeus, Stuttgart, Germany). All other chemicals of analytical grade were obtained from 

Merck (Darmstadt, Germany). 
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3.1.3   Cell culture 

Hepa1-6 and HeLa cells were obtained from the American Type Culture Collection (ATCC). 

K562 cells were kindly provided by Henrik Daub. General cell culture conditions were 37 ºC, 

5% CO2, and humidified atmosphere. 

Hepa1-6 and HeLa cells were cultured in DMEM medium (4.5 g/l glucose) supplemented 

with 10% fetal bovine serum, 1% (10 mg/ml) streptomycine / (10,000 U/ml) penicillin, 1% L-

glutamine, and 4.5 g/l glucose. Cells were seeded with 20-30% density and were split or 

harvested when the cell density reached around 90%.  

K562 cells were cultured in suspension in RPMI medium supplemented with 10% fetal 

bovine serum, 1% (10 mg/ml) streptomycine / (10,000 U/ml) penicillin, 1% L-glutamine, and 

4.5 g/l glucose. Cells were seeded with the density of 0.2 x 10
6 

cells/ml, and were split or 

harvested at the density of 1-1.2 x 10
6 

cells/ml. 

The following forms of stable isotope-labelled arginine and lysine were used: L-
13

C6-arginine 

(Arg6), L-
13

C6
15

N4-arginine (Arg10), L-
2
H4-lysine (Lys4), and L-

13
C6

15
N2-lysine (Lys8). 

Normal arginine and lysine used were: L-
12

C6
14

N4-arginine (Arg0) and L-
12

C6
14

N2-lysine 

(Lys0). To generate double encoding SILAC conditions, normal medium deficient in arginine 

and lysine was supplemented with Arg10 and Lys8 for the “heavy” condition, or with Arg6 

and lys4 for the “medium” condition, or with Arg0 and lys0 for the “light” condition. Final 

concentrations of arginine are 28 mg/l in DMEM and 84 mg/l in RPMI. Final concentrations 

of lysine were 73 mg/l in DMEM and 49 mg/l in RPMI. In each SILAC condition, medium 

was supplemented with 10% dialyzed fetal bovine serum with 10 kDa cutoff, 1% (10 mg/ml) 

streptomycine / (10,000 U/ml) penicillin, and 1% L-glutamine.  

SILAC cell culture was essentially the same as described for normal cell culture, except that 

SILAC medium and dialyzed FBS were used. Generally, more than 95% incorporation of the 

labelled amino acids can be achieved after 6 passages of cell proliferation. 

 

Materials for cell culture: DMEM and RPMI medium were obtained from Gibco BRL. 

Medium without Arg and Lys was obtained from PAA Laboratories and SAFC Biosciences. 

L-arginine, L-lysine, L-
13

C6
15

N4-arginine and L-
13

C6
15

N2-lysine were purchased from Sigma-

Aldrich. Fetal bovine serum and dialyzed fetal bovine serum dialyzed were obtained from 
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Invitrogen. L-glutamine (200 mM in 0.85% NaCl) and streptomycin (10 mg/ml)/penicillin 

(10,000 U/ml) were products of Invitrogen. 

 

3.1.4   Preparation of inhibitor compounds 

Calyculin A, deltamethrin, and Na-pervanadate were prepared freshly before the experiment. 

To prepare stock solutions, calyculin A was dissolved in DMSO to 100 µM and deltamethrin 

was dissolved in DMSO to 10 mM. In project 1, these two phosphatase inhibitors were 

applied to cells with final concentrations of 100 nM for calyculin A and 10 µM for 

deltamethrin. To prepare Na-pervanadate, 30% H2O2 was diluted in 20 mM HEPES, pH 7.3 to 

100 mM, then mixed with an equal volume of 100 mM sodium orthavanadate. After five 

minutes, a scoop of catalase was added to the pervanadate stock to neutralize extra H2O2. In 

project 1, Na-pervanadate was applied to cells to a final concentration of 0.5 mM.  

The 10 mM stock solutions of U0126 and SB202190 were prepared by dissolving the 

chemicals in DMSO. In project 2, these two kinase inhibitors were applied to cells with final 

concentrations of 10 µM. Dasatinib dissolved in DMSO was kindly provided by Henrik Daub. 

 

Materials of inhibitor compounds: calyculin A was purchased from Millipore. Deltamethrin 

was purchased from Merck. U0126 was product from Promega. Na-orthovanadate, catalase 

and SB202190 were obtained from Sigma. 

 

3.1.5.   Cell stimulation, harvest and protein recovery 

Cell stimulation in project 1:  

In the double encoding SILAC experiment (Figure 4.1.2), Arg10 and Lys8 labeled Hepa1-6 

cells were treated with 100 nM calyculin A, 0.5 mM pervanadate and 10 µM deltamethrin for 

10 minutes under 37 ºC.  Arg0 and Lys0 labeled cells were left untreated. 

In the triple encoding SILAC experiment (Figure 4.1.17), cells were serum-starved for 24 

hours. Arg0 and Lys0 labeled Hepa1-6 were left untreated. Arg6 and Lys4 labeled cells were 
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stimulated with 100 nM insulin for 5 minutes. Arg10 and Lys8 labeled cells were treated with 

100 nM calyculin A and 0.5 mM pervanadate for 10 min (no deltamethrin). 

 

Cell stimulation in project 2:  

HeLa cells were serum-starved for 16 hours.  Arg10 and Lys8 labeled HeLa cells were 

stimulated with 10 µM kinase inhibitor (U0126 or SB202190) for 20 minutes. Then in the 

presence of the inhibitor compound, 150 ng/ml EGF was added to the medium for another 15 

minutes. Arg6 and Lys4 labeled HeLa cells were stimulated with 150 ng/ml of EGF for 15 

minutes. Arg0 and Lys0 labeled HeLa cells were left untreated. 

To harvest cells, they were washed with ice cold PBS for two times and lysed in modified 

RIPA buffer containing 1% NP-40, 0.1% sodium deoxycholate, 150 mM NaCl, 1mM EDTA, 

50 mM Tris, pH 7.5, 1 mM sodium orthavanadate, 5 mM NaF, 5 mM beta-glycerophosphate 

and protease inhibitors. 660 µl of lysis buffer was added to each 15 cm dish. The lysates were 

kept cold and centrifuged at 17,000g for 15 minutes to pellet cellular debris.  

To recover proteins by acetone precipitation (used in project 1 and 2): Supernatant was 

collected and mixed with four volumes of ice cold acetone to precipitate proteins. The cellular 

debris was digested with benzonase in urea buffer containing 6 M urea, 2 M thiourea and 

10mM Hepes pH 7.5. Dissolved proteins were precipitated by adding four volumes of ice cold 

acetone. Precipitated proteins were collected by centrifugation and dissolved in urea buffer. 

Concentration of the dissolved proteins was measured by the Bradford method (A590nm). Equal 

amounts of protein from each SILAC condition were mixed accordingly.  

To recover proteins by methanol/chloroform precipitation (used in project 3): After centrifuge 

at 17,000g for 15 minutes (as described above), supernatant was collected and a Bradford 

method (A590nm) was used to determine the protein concentrations. Equal amount of the 

proteins from the primary hepatocyte sample and Hepa1-6 sample were mixed, resulting in 

100 µg proteins in total. Protein mixtures were added with four volumes of methanol, one 

volume of chloroform and three volumes of distilled water in a sequential manner. The 

addition of each solvent was followed by a short vortex. After centrifugation of 20,000g for 1 

minute, proteins were focused between organic and inorganic phases. The aqueous phase was 

discarded. Four starting volumes of methanol were added to the protein pellet followed by a 

short vortex. After spinning at 20,000g for 2 minutes, methanol was removed and the protein 
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pellet was air-dried. Precipitated proteins were redissolved in a buffer containing 6 M urea, 2 

M thiourea, 10 mM Hepes, pH 7.5. 

 

Materials: Insulin was purchased from Sigma Aldrich. EGF was from Millipore. Benzonase 

was from Merck. Protease inhibitors (complete tablets) were purchased from Roche 

Diagnostics. If not specified, chemicals were purchased from Sigma Aldrich. Solvent was 

obtained from Fluka, Merck, Riedel de Haen, and BioRad companies.  

 

3.2 Proteome mapping 

3.2.1   Sample preparation 

Protein digestion 

For protein in-solution digestion into peptides, the proteins were reduced with 1 mM 

dithiothreitol, alkylated with 5.5 mM iodoacetamide in dark, and digested for four hours with 

endoproteinase Lys-C (1/100 w/w). After diluting four times with Milli-Q water and adjusting 

to neutral pH with 20 mM ammonium bicarbonate, samples were digested overnight with 

sequencing grade modified trypsin (1/100 w/w). The digestion was quenched by adding 

trifluoroacetic acid (TFA) to reach pH <3. Chemicals and enzymes for protein digestion were 

dissolved in 20 mM ammonium bicarbonate. All incubation steps were performed at room 

temperature.  

For protein in-gel digestion into peptides, protein samples were resolved on a NuPAGE 4%-

12% Bis-Tris SDS-PAGE gel (Invitrogen). The gel was stained with the Colloidal Blue 

staining Kit (Invitrogen) for visualization. Gel slices were excised. Each gel slice was cut into 

1 mm
3
 cubes, washed with 1:1 (v/v) 50 mM ammonium bicarbonate and 50% ethanol. 10 mM 

dithiothreitol was applied at 56ºC for reduction and 55 mM iodoacetamide at 37ºC for 

alkylation in dark. After wash, the gel pieces were dehydrated with 100% ethanol followed by 

rehydration with 12.5 ng/µl trypsin (Promega) in 50 mM ammonium bicarbonate. Trypsin 

digestion was performed overnight at 37ºC. After digestion, supernatants were transferred to 

fresh tubes, and the remaining peptides were extracted by incubating gel pieces two times 
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with 30% MeCN in 3% trifluoroacetic acid (TFA), followed by dehydration with 100% 

MeCN.  

 

Isoelectric focusing to separate peptide mixtures 

Peptides were separated based on their isoelectric points in the Agilent 3100 OFFGEL 

Fractionator and the 3100 OFFGEL Low Res Kit, pH 3-10 according to the manufacturer. 

Peptides were focused for 20 kVh at maximum current of 50A and maximum power of 200 

mW. Each peptide fraction was mixed 10 µl solvent containing 30% MeCN, 5% acetic acid 

and 10% TFA. The resulting solution was loaded into C18 reverse phase StageTips
176

. 

 

StageTip purification 

StageTips 
176, 177

 were prepared by punching out small discs of C18 Empore filter using a 22 G 

flat-tipped syringe and ejecting the discs into P200 pipette tips. The C18 Empore column was 

conditioned by methanol and equilibrated in 0.5% acetic acid, 0.1% TFA in water. Peptide 

samples were adjusted to pH<2.5 and forced through the C18 Empore column. The column was 

washed once with 0.5% acetic acid, 0.1% TFA in water. Peptides were eluted from the 

StageTips by applying 80% MeCN, 0.5% acetic acid. Samples were dried in a SpeedVac to 3 

µl and mixed with equal volume of solvent containing 2% MeCN and 1% TFA. 5 µl samples 

were applied for LC-MS/MS analysis.  

 

Materials: Chemicals for the ‘in solution’ digestion were purchased from Sigma-Aldrich. 

Solvent was obtained from Fluka, Merck, Riedel de Haen, and BioRad companies. 

Endoproteinase Lys-C was obtained from Waco and sequencing grade modified trypsin was 

from Promega. Agilent 3100 OFFGEL Fractionator and 3100 OFFGEL Low Res Kit, pH 3-10 

were purchased from Agilent. For producing StageTips, 3M High Performance Extraction 

Disks C18 was obtained from Varian. 
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3.2.2   Mass spectrometric methods 

C18 RP-HPLC separation 

The peptide mixture was separated by nanoscale C18 reverse-phase liquid chromatography 

(Agilent 1200; Agilent Technologies, Waldbronn, Germany) coupled on-line to a 7-T LTQ-

FT or LTQ-Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany) as described
178

. 

The HPLC is comprises of a solvent degasser, a nanoflow pump, and a thermostated
 
micro-

autosampler. The C18 reverse-phase column, where the chromatographic separation of the 

peptides
 
took place,  is a 20-cm fused silica emitter with 75-µm inner

 
diameter (Proxeon 

Biosystems) packed in-house with methanol
 
slurry of reverse-phase ReproSil-Pur C18-AQ 3-

µm resin
 
(Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) at a constant

 
pressure (50 bar) 

of helium. Samples were picked up by the autosampler and injected to the C18 reverse-phase 

column with a flow rate of 500 nl/min for the first 22 minutes. In the following, peptides were 

eluted at 250 nl/min with an actual separating gradient of 2-40% solvent (80% MeCN in water, 

0.5% acetic acid) over 90 min. The eluate was on-line electrosprayed into the mass 

spectrometer via a nanoelectrospray ion source (Proxeon Biosystems, Odense, Denmark).  

 

 

LC-MS/MS, Top 5 ion sampling  

The mass spectrometers were operated in positive ion mode and employed a data-dependent 

automatic switch between MS and MS/MS acquisition modes. In the LTQ-FT setup, after 

accumulating a target value of 5, 000,000 ions in the LTQ, a full scan was acquired in the 

FTICR analyzer with resolution r=100,000 at m/z 400. In LTQ-Orbitrap analysis, the target 

value was 1,000,000 for full scan in Orbitrap analysis at a resolution r=60,000 at m/z 400. In 

each cycle, full scan determined the five most intense ions from the range 300-1800 m/z. 

These five corresponding ions were next accumulated in the LTQ for sequential fragmentation. 

Total cycle time (full scan to full scan) was approximately 3 s. Fragmentation in the LTQ was 

induced by collision-induced dissociation with a target value of 5,000 ions. Former target ions 

selected for MS/MS were dynamically excluded for a period ranging from 60 to 300 s. The 

actual exclusion time was slightly adjusted according to samples. 

The general mass spectrometric conditions were: spray voltage, 2.2 kV; no sheath and 

auxiliary gas flow; ion transfer tube temperature, 150-180ºC; normalized collision energy 
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using wide-band activation mode; 35% for MS
2
. Ion selection thresholds were: 500 counts for 

MS
2
. An activation q = 0.25 and activation time of 30 ms was applied in MS

2
 acquisitions.  

 

Internal calibration using lock mass 

To improve mass accuracy for identification, the “lock mass” option was utilized in both MS 

and MS/MS scans as described previously
130

. This method makes use of the 

polydimethylcyclosiloxane (PCM) (Si(CH3)2O)) ions generated in the electrospray process 

from ambient ion. The protonated PCM ions are with m/z of 445.120025, and in MS/MS 

mode with m/z of 429.088735. The lock mass was injected into the C-trap with a set “ion gain” 

achieving 10% of the target value of the full mass spectrum. The time of accumulation, 

isolation, and transfer into the C-trap of the lock mass was estimated to be a few ms and did 

not induce any obvious extension of ion cycle time. 

 

Materials:  Nanoscale C18 reverse-phase liquid chromatography (Agilent 1100, Agilent 1200) 

was from Agilent Technologies (Waldbronn, Germany). Nanoelectrospray ion source was 

from Proxeon Biosystems (Odense, Denmark). Reverse-phase ReproSil-Pur C18-AQ 3-µm 

resins were from Dr. Maisch GmbH (Ammerbuch-Entringen, Germany). 

 

 

3.3 Phosphoproteome mapping 

3.3.1   Sample preparation 

Immunoprecipitation of tyrosine phosphorylation proteins 

Immunoprecipitation of tyrosine phosphorylated proteins using agarose-conjugated antibodies 

of 4G10 and pTyr-100 was performed as described before
93

. Cells were lysed with modified 

RIPA buffer and centrifuged with 17,000g for 15 minutes, as described in section 3.1.5.  The 

supernatant was used for immunoprecipitation. Briefly, non-specific binding proteins were 

pre-cleaned with Protein A (Sigma) beads and, following 2 hours incubation with 4G10 

antibody, p-Tyr-100 antibody was added for an additional 4 hours. The incubation was 

performed at 4
o
C. Proteins were eluted from the beads with 3 times 1ml urea buffer. The 
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eluate was directly subjected to in-solution digestion. To collect the proteins not being eluted, 

the antibody beads were boiled in 70
o
C SDS-buffer for 10 minutes. SDS-PAGE was 

performed on a NuPAGE 4%-12% Bis-Tris gel (Invitrogen). In the triple encoding SILAC 

experiment in project 1 (Figure 4.1.17), the gel lane was cut into 4 large slices. Proteins were 

digested in-gel with trypsin, as described in section 3.2.1. 

 

Crude fractionation of phosphopeptides by SCX 

To separate phosphopeptides from non-phosphorylated peptides, the strong cation exchange 

(SCX) method was employed
179

. 10-20 mg of proteins was digested in-solution and the 

peptide mixtures were adjusted by TFA to pH 2.7. Precipitates were cleared by centrifuging at 

17000g for 10 min. Peptide solution was then loaded onto a 1 ml Resource S column (GE 

healthcare) connected to the Äkta Purifier chromatography system (Amersham Biosciences). 

The loading was performed in solvent A (5 mM KH2PO4, 30% MeCN, 0.1% TFA, pH 2.7) at 

a flow rate of 1 ml/min. During the loading step, flow-through solution was collected. 

Peptides bound to the column were separated with a linear gradient of 0-30% salt-containing 

solvent B (5 mM KH2PO4, 30% MeCN, 350 mM KCl, 0.1% TFA, pH 2.7). The separation 

lasted for 30 min. In total fifteen 2-ml fractions were collected by an automated fraction 

collector.  

 

Phosphopeptide enrichment by TiO2 

Phosphopeptide enrichment by TiO2 beads was essentially as described
31

 with slight 

modifications. TiO2 beads were pre-incubated with 30 g/L 2,5-dihydroxybenzoic acid DHB in 

80% MeCN and 0.1% TFA. From this 1:1 TiO2 beads slurry, 10 µl was added to each sample 

and rotated end-over-end for 30 min. After one time wash with 1 ml 30% MeCN / 1% TFA 

and one time with 1 ml 50% MeCN / 1% TFA, bound peptides were eluted from beads with 

200 µl NH4OH in 40% MeCN (pH>10.5). Eluates were immediately neutralized in 30% 

MeCN  / 3% TFA solvent. Samples were dried down almost to completion and reconstituted 

in 2% MeCN / 1% TFA for LC-MS/MS analysis. 
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Materials: 4G10 agarose conjugated antibody was purchased from Biozol. Phospho-tyrosine 

mouse mAb (P-Tyr-100) was purchased from New England. Protein A agarose conjugated 

beads were products of Sigma Aldrich. NuPAGE 4%-12% Bis-Tris gel and running buffer 

(MOPS) were obtained from Invitrogen.1 ml Resource S column (GE healthcare) connected 

to the Äkta Purifier chromatography system (Amersham biosciences). Chemicals were 

products of Sigma Aldrich. Solvent was obtained from Fluka, Merck, Riedel de Haen, and 

BioRad companies.  

 

3.3.2   Mass spectrometric methods 

LC-MS/MS method, multi-stage activation 

The mass spectrometers were operated in positive ion mode and employed a data-dependent 

automatic switch between MS and MS/MS acquisition modes. In the LTQ-FT setup, full scan 

mass spectra were acquired at a target value of 5, 000,000 ions with resolution r=100,000 at 

m/z 400. In the LTQ-Orbitrap setup, full scan was acquired at a target value of 1, 000,000 

ions with resolution r=60,000 at m/z 400. For complex samples, a total cycle scan comprised 

of 3 mass ranges was applied: m/z 350-1050, 850-1850, and 350-1850. The top 5 most intense 

ions from the first 2 ranges were selected for fragmentation in the LTQ, whereas in the last 

range the top 7 most intense ions were selected. Fragmentation in the LTQ was induced by 

collision-induced dissociation with a target value of 5,000 ions.  

For accurate mass measurement, the “lock mass” function was enabled for both MS and 

MS/MS scan modes. To improve the fragmentation of phosphopeptides, the multi-stage 

activation algorithm
180

 in the Xcalibur software was enabled for each MS/MS spectrum. 

When a neutral loss of 97.97, 48.99, or 32.66 Thomson (Th) was detected following 

activation of the precursor ion, the neutral loss peptide fragments were further fragmented
180

 

to generate  a variety of structurally informative fragments. Product ions produced during the 

initial activation of isolated precursor ion (MS/MS) and all subsequent neutral loss activations 

(pseudo MS
n
) were simultaneously stored, resulting in “composite” mass spectra for peptide 

identification.  

Former target ions selected for MS/MS were dynamically excluded for a period ranging from 

60 to 300 s. The actual exclusion time was slightly adjusted according to samples. The general 

mass spectrometric conditions were essentially the same as described in section 3.2.2. 
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3.4 Mass spectrometric data analysis 

MaxQuant is an in-house built mass spectrometric data processing software
140

. It consists of 

three components: Feature detection and peptide quantitation (Quant.exe), Identification and 

validation (identify.exe), and Visualization (Viewer.exe). It develops an entire set of 

algorithms in detecting peaks, isotopes and SILAC partners, in quantifying relative peak 

intensities of SILAC partners, as well as in performing statistics to large scale proteomic 

datasets. Its strategy in using different charged states of the same peptide for non-linear re-

calibration and those well identified peptides for global mass re-calibration has lead to an 8-

fold improvement in mass accuracy. This helps to rescue those identifications which would 

otherwise fall out of the required mass accuracy window and generally improves 

identification statistics. Different from conventional method, detection of SILAC partners in 

MaxQuant is performed before the identification and therefore they can be classified into 

groups such that heavy amino acid labeling can be treated as a fixed modification. This 

strategy significantly shortens the time for database search, where too many variable 

modifications often become a bottleneck in deriving results in time. Besides, the new strategy 

strictly constrains the possibility of mismatch. 

 

3.4.1   Identification 

Raw MS spectra were processed in Quant.exe and the derived peak list was searched with the 

Mascot search engine (Matrix Science, London, UK) against concatenated database 

combining forward database (the International Protein Index (IPI)  protein database added 

with 27 commonly observed contaminants) and the reverse database (reversed sequences of 

all proteins from the forward database). For all mouse samples (Hepa1-6 cell line and primary 

hepatocytes) studied in this thesis, the IPI mouse protein database version 3.24 was employed, 

which records 52,326 proteins. For all human samples (HeLa and K562 cell line), IPI human 

protein database version 3.37 was used which contains 69,289 proteins.  

Carbamidomethylation was set as fixed modification. As described above, MaxQuant 

classified SILAC partners according to labeling (i.e. light, medium, and heavy), and within 

each group the corresponding labeling was automatically set as fixed modification. 
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Variable modifications for proteome mapping dataset included oxidation (M), N-acetylation 

(protein), pyro (N-term QC). For phosphoproteome studies, variable modifications also 

include phospho(STY). Full tryptic specificity was required and up to three missed cleavages 

were allowed. Initial mass deviation of precursor ion and fragment ions were up to 10 ppm 

and 0.5 Da, respectively.  

The derived identification lists of peptides and their assigned proteins were further processed 

in Identify.exe. Posterior error probability (PEP) was calculated to estimate the chance of 

random peptide match for each spectrum, given the Mascot score and peptide length. False 

discovery rate (FDR) denotes the percentage of false identification hits in the entire dataset. 

To achieve highly reliable identifications, the following standard operating procedures (SOP) 

were employed:  

Proteome dataset: peptide PEP <=0.1, peptide FDR <=0.01, protein FDR <=0.01, peptide 

length >=6. To identify a protein, at least two peptides should be identified and one of them 

should be unique to this protein in the proteome. 

Phosphoproteome dataset: peptide PEP <=0.1, peptide FDR <=0.01, protein FDR <=1, 

peptide length >=6. Phosphorylation analysis is performed at the peptide level. 

 

3.4.2   Quantitation 

For quantitation, peptide ratios were calculated according to the intensities of all 2D centroids 

from each of the SILAC forms. Linear line fitting to these intensities gave the slope as the 

desired ratio. During this calculation, element enrichment in 
13

C, 
15

N due to the SILAC 

labeling were taken into account. To represent the ratio of a peptide being quantified several 

times, the median value was chosen. To minimize the effect of outliers, protein ratios were 

calculated as the median of all SILAC pair ratios that belong to peptides contained in this 

protein. Intensity based significance value was also calculated to estimate the degree of 

biological regulation. Complementary to this fine-tuning method, a threshold fulfilling 

stringent requirement such as 2-fold change (Ratio>=2 or Ratio<=0.5) is also commonly used 

to derive biological regulation. The latter was applied in all the projects in this thesis.  
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3.4.3   Assign localization of the phosphate group  

For each possible phosphorylation site, the localization post-translational modification (PTM) 

score was calculated by matching the observed b and y ions with the theoretical b and y ions
31

. 

Results are displayed in MaxQuant output tables. To accurately assign the phosphorylation 

sites, two processing steps were performed: entries with PTM scores that are lower than the 

maximum score minus five are ignored, and localization of PTM probabilities are required to 

be at least of 0.75.  

 

3.4.4   Phosphoproteomic dataset stored in PHOSIDA database 

All the phosphoproteomic datasets from project 1 and 2 are stored in the PHOSIDA database 

as a public resource. The data will become available along with the publications. PHOSIDA 

routinely performs motif check (see section 3.5.2), structural analysis (see section 3.5.3), 

phosphorylation site prediction (see section 3.5.4), and evolutionary comparison
181

.  

 

 

3.5 Bioinformatic analysis 

3.5.1   Gene Ontology and KEGG enrichment analysis  

Routine GO analysis 

Cytoscape along with its Plug-in Bingo 2.0
182

 was used to analyze the distribution of 

experimental datasets among various protein groups, and to identify significantly 

overrepresented biological functions of the proteins. 

The Gene Ontology (GO) annotations of proteins were compared with the ones of a reference 

proteome (e.g. identified proteins vs. the entire protein database, or a subset of the identified 

proteins vs. the overall identified proteins). To assign corresponding GO identifiers to each 

IPI entry, the Gene Ontology Annotation database was used. The hypergeometric test and the 

Benjamini & Hochberg False Discovery Rate correction were performed to derive 

overrepresented functions 
182

. A probability value of 0.05 was considered significant. 
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Enrichment analysis based hierarchical clustering 

In project 3, Proteomic phenotyping to assess differences between transformed and non-

transformed mouse liver cells, the quantified proteome was divided into 5 quantiles 

corresponding to probability cutoffs of 0, 0.15, 0.25, 0.75, 0.85, and 1. The enrichment 

analysis for GO biological process and cellular component were done separately for these 

quantiles with respect to the whole quantified proteome by conditional hypergeometric test 

available in the GOstats package
183

 in the R statistical environment
184

. For hierarchical 

clustering we first collated all the categories obtained after enrichment along with their p-

values, and then filtered for those categories which were at least enriched in one of the 

quantiles with p-value < 0.05. This filtered p-value matrix was transformed by function x = –

log10 (p-value).  Finally these x values were transformed to z-score for each GO category by 

using the transformation: 

)(

)(

xsd

xmeanx −

.

 

These z-scores were then clustered by one-way hierarchical clustering using “Euclidean 

distance” as distance function and “Average Linkage clustering” method available in 

Genesis
185

. KEGG pathway enrichment analysis was done in the same way, except that the 

hypergeometric test was employed.  

 

3.5.2   Phosphorylation - motif check 

The known human kinase motifs were used to access the mouse phosphorylation dataset to 

identify possible matching kinase substrates
181

. χ
2
-Test was employed to perform the 

statistical evaluation. The applied χ
2
-Test checks whether the observed number of 

phosphosites that match with a given kinase motifs exceeds the number of expected sites to a 

statistically significant extent. To derive the number of expected motif matching phosphosites, 

the chance was estimated for each kinase motif to match with a given phosphosite according 

to the amino acid composition of the motif and the relative frequencies of each amino acid in 

the entire mouse proteome. This approach was applied to those phosphorylation sites that 

could be clearly assigned within the phosphorylated peptide sequence (class I sites). 

Furthermore, Motif-X
186

 was used to derive potentially new motifs in-silico and to confirm 

the observations of the χ
2
-Test. A probability value of 0.0001 was considered significant. In 
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addition, a minimum occurrence of 20 was required to derive a significant consensus 

sequence. This approach was performed residue-specific on all class I sites using the entire 

mouse proteome as a background model.  

 

3.5.3   Phosphorylation - structural analysis 

In order to check the structural constraints of phosphorylated residues in the mouse liver cells 

used in this thesis, the secondary structure and solvent accessibility prediction tool SABLE 

2.0
181

 was used. The predicted structural conditions of each phosphosite were stored in 

PHOSIDA.  

 

3.5.4   Phosphorylation - phosphorylation site predictor 

A support vector machine (SVM) was trained separately on unambiguously identified 

phosphorylation sites
181

. The essential feature of each phosphorylation site that was used as 

input for this machine learning approach was the raw sequence: the algorithm was mainly 

trained on the phosphorylated residue along with its surrounding sequence (+/- 6 residues). To 

generate a negative set of the same size, sites from mouse proteins that were not, to date, 

detected to be phosphorylated were randomly chosen. The positive and the negative datasets 

were split into a training set (90%) and a test set (10%). Parameters C and σ were then 

optimized by varying them from 2
-10

 to 2
10

 in multiplicative steps of two on the basis of a 

five-fold cross validation on the training set. The optimal model for each set of each 

phosphorylated amino acid was obtained separately using the radial basis function (RBF). 
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4 Results and Discussions 

 

4.1   Project 1 - Quantitative phosphoproteome analysis of a liver cell 

line reveals specificity of phosphatase inhibitors 

 

This work is included in a manuscript that is accepted for publication:  

 

 

Phosphorylation is chemically stable under physiological conditions. However, enzyme-

catalyzed phosphorylation and dephosphorylation can occur at ice-temperatures and in 

disrupted cells, e.g. cell lysates. Chemical compounds such as protease inhibitors and 

phosphatase inhibitors are added during sample preparation, to prevent loss of activity and 

dephosphorylation of the proteins ex vivo. Cell-permeable phosphatase inhibitors can also be 

used on living cells to non-specifically increase levels of phosphorylation, for example in 

phosphoproteomics. Some of these inhibitor compounds are known to target a broad spectrum 

of phosphatases. Here we wanted to use these broadband phosphatase inhibitors to measure 

and quantify a mouse liver cell line (Hepa1-6) phosphoproteome in greatest depth. 

Additionally, the strategy of metabolically labeling the Hepa1-6 using SILAC enabled us to 

compare the specificity of these phosphatase inhibitor compounds. This can be achieved by 

comparing the number of regulated tyrosine phosphorylation sites and the number of 

regulated Ser/Thr phosphorylation sites against the overall identified phosphoproteome. 

Quantitative phosphoproteome analysis of a liver cell line reveals specificity of 

phosphatase inhibitors 

Cuiping Pan, Florian Gnad, Jesper V. Olsen and Matthias Mann  
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Furthermore, by introducing a biological stimulus into an additional SILAC state we were 

able to determine an upper limit to the stoichiometry of phosphorylation sites. 

The following three inhibitor compounds were used in this study. Sodium-pervanadate 

(Figure 4.1.1 A) is a broadband inhibitor for protein tyrosine phosphatases (PTPs). Calyculin 

A (Figure 4.1.1 B) targets PP1 and PP2A, the two largest groups of the serine and threonine 

phosphatase superfamily. Deltamethrin targets PP2B phosphatases.  

 

 

Figure 4.1.1   Chemical structures of phosphatase inhibitors. Panel A displays the 

monoperoxo from of pervanadate in comparison to the phosphate group and vanadate. Panel 

B displays the chemical structure of calyculin A.  

 

Pervanadate is a general term for various reaction products of hydrogen peroxide and 

orthovanadate. These peroxovanadium compounds are general PTP inhibitors. Though analog 

to phosphate group, their mechanism of inhibition is not simply as competitor with phosphate, 

but rather it is suggested that they oxidize the catalytic cysteine residue in the PTPs
187

. 

Calyculin A is a natural product isolated from marine sponge. It possesses a spiro ketal 

skeleton. Although its exact mechanism of action is not clear, it has been demonstrated to be 

highly potent in inhibiting pSer/Thr phosphatases 
188, 189

. Deltamethrin, a pyrethroid ester 

insecticide, has proven to be a specific inhibitor for PP2B190. All these three selected inhibitors 

are membrane permeable and therefore suitable for intact cell treatment.  

We employed SILAC-based phosphoproteomics strategy in this study (Figure 4.1.2). One cell 

population was labeled with normal (‘light’) arginine and lysine and another cell population 

with ‘heavy’ 
13

C6
15

N4-arginine and 
13

C6
15

N2-lysine (Arg10 and Lys8). After complete 
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incorporation, the heavy labeled cells were treated for 10 minutes with a mix of the three 

commonly used phosphatase inhibitors: 100 nM calyculin A, 0.5 mM pervanadate and 10 µM 

deltamethrin, in order to block phosphatases as broadly as possible. We lysed treated and 

control cells, precipitated proteins, mixed them in a one to one ratio and enzymatically 

digested the resulting 20 mg protein mixtures. Peptides were separated by strong cation 

exchange (SCX) and the resulting fractions enriched for phosphopeptides using TiO2 beads in 

the presence of DHB (section 3.3.1). Phosphopeptides were analyzed by high resolution mass 

spectrometry on a linear ion trap Fourier Transform instrument (LTQ-FT), using multistage 

activation. In all, 16 LC MS/MS runs were performed, using conditions described in section 

3.3.2. Data was analyzed as described in section 3.4, requiring a False Discovery Rate (FDR) 

for phosphopeptide identification of less than 1%. 

 

 

 

 

Figure 4.1.2   The strategy of SILAC-based quantitative phosphoproteomics to elucidate the 

efficiency of broadband phosphatase inhibitors in retaining phosphorylation.  
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4.1.1   Evaluation of the phosphoproteomics technique 

Crude fractionation of phosphopeptides by SCX 

 

Figure 4.1.3   Phosphopeptide elution profile of SCX. X-axis represents time and y-axis 

represents UV absorbance at 225 nm (magenta). The green curve indicates salt concentration. 

It directly correlates with the conductivity curve marked in brown. The blue curve displays 

UV absorbance at 280 nm. Other parameters are written at the top. Note the fraction numbers 

are adjacent to the x-axis, namely A1 to B15.. 

 

A total of 20 mg of tryptic peptides were divided into four equal units and fractionated by 

SCX separately. The resulting fractions were combined correspondingly. In each round of 

sample loading, liquids which did not bind to the column (“flow through” fraction) were 

collected. The peptides that bound to the column were eluted by linearly increasing salt 

concentration. All four elution profiles were very similar. One of them is shown in Figure 

4.1.3. Generally the elution profile is not sharp, suggesting that only a crude fractionation is 

achieved. UV absorbance indicates significantly fewer peptides at the late phase of elution 

(fraction A11-B15).  

 



Results and Discussions 

59 

 

The efficiency of phosphopeptide enrichment by TiO2 spheres 

 

Figure 4.1.4   Phosphopeptide enrichment efficiency of TiO2 sphere. SCX fractions are 

marked in x-axis. Y-axis presents the number of peptide identification. On top of each column 

pair marks the enrichment efficiency, which was obtained by dividing the number of 

phosphopeptides by all peptides being identified in that fraction(s). Calculation is based on 

evidence.txt output from MaxQuant. 

 

The resulting fractions from SCX (Figure 4.1.3) were incubated with TiO2 sphere for 

phosphopeptide enrichment. The early fractions and the late fractions were combined before 

incubation. The flow-through fraction, which contained mainly multiple phosphorylated 

peptides, as well as the pellet sample from the cell harvesting step (section 3.1.5) were also 

incubated with TiO2. Because we estimated that the flow-through fraction might contain a rich 

amount of phosphopeptides, six times of TiO2 enrichment were performed in sequence.  

The enrichment worked well, with an overall efficiency of 0.85, defined as the fraction of 

phosphopeptides to all peptides: 100% enrichment efficiency gives the number of 1. The 

enrichment efficiency is displayed in Figure 4.1.4. Out of 17 samples, six samples achieved an 

efficiency equal to or above 0.95. It is noteworthy that the flow-through and pellet samples 

contained many more phosphopeptides than the SCX fractions, indicating that a large portion 

of the peptides did not bind to the SCX column. In fact, the six flow-through samples 

contributed 37% of overall identified non-redundant phosphopeptides (1,996 out of 5,457). 
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Further investigation revealed a significant overlap between adjacent flow-through samples. 

Interestingly, the first two of them constituted 1,222 phosphopeptides, 61% of those identified 

in all the combined six flow-through samples. The number of additional identified 

phosphopeptides levels off with sequential TiO2 enrichment (Figure 4.1.5). This could be 

caused by abundant phosphopeptides saturating the beads or less likely that we ready 

exhaustively recovered all phosphopeptides from these hepatocytes. Therefore further 

fractionation on the SCX flow-through sample should effectively enlarge the identification 

numbers. A promising method to do this would be strong anion exchange but this was not 

pursued here to keep the number of fractions to be analyzed manageable. 

 

 

Figure 4.1.5   Phosphopeptide identifications in flow-through samples. Calculation is based on 

non-redundant phosphopeptides.  

 

HPLC chromatogram 

Depicted in Figure 4.1.6 are two HPLC chromatograms from one SCX fraction and one flow-

through fraction. DHB introduced chemical noise into the mass spectra. The disturbance is 

obvious during sample loading, i.e. the first 22 minutes. However, when phosphopeptides 

started to elute their signal ‘suppressed’ the chemical noise.  

Phosphopeptides are typically of low abundance. In our mass spectrometric data, SCX 

fractions derived from 20 mg starting material typically required around 150 ms fill time in 

each survey scan to fill the trap with one million ions. Due to higher phosphopeptide 

abundance, the typical ion fill time of the flow through fraction from SCX loading was only 

50 ms. 
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Figure 4.1.6   HPLC elution profiles of a complex phosphopeptide mixture. 

 

Mass spectra: accurately pinpointing the localization of the phosphate group 

Phosphopeptide identification was performed with the software MaxQuant. Three MS/MS 

spectra are shown as examples in Figure 4.1.7 to Figure 4.1.9.  

 

 

Figure 4.1.7   MS/MS spectrum to identify the pSer 668 in DNA replication licensing factor 

MCM3. The b5-H3PO4, b6-H3PO4, y13- H3PO4 and y14- H3PO4 fragments clearly pinpoint the 

location of phosphate group to S668. 
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Figure 4.1.8   MS/MS spectrum to identify the pThr 267 in microfibrillar-associated protein 1. 

The b10-H3PO4, y14-H3PO4 and y15-H3PO4 fragments clearly pinpoint the location of phosphate 

group in T267 but not another serine or tyrosine residue. 

 

 

 

Figure 4.1.9   MS/MS spectrum to identify the pTyr 427 in SHC-transforming protein 1. The 

abundant y7 and y9 ions strongly indicate that the phosphate group locates to the tyrosine 

residue but not the serine residue. 
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4.1.2   Phosphoproteome of the mouse liver cell line Hepa1-6 

4.1.2.1   Overall identified phosphorylation sites and their distributions 

The combination of phosphatase inhibitor compounds in this experiment was close to the 

maximum dose and duration tolerated before cells started to detach and show signs of 

apoptosis. Normally growing cells do not significantly phosphorylate many of the important 

substrates that are phosphorylated in specific situations, such as after a given stimulus or at a 

specific point in the cell cycle. Phosphatase inhibitor treatment may enhance these 

phosphorylation sites and thereby make them analyzable by MS. In this way we could 

characterize the phosphoproteome in greater depth. Also, this quantitative strategy allows us 

to determine if the peptide is present – at least in a small amount – in normal cells, i.e. without 

phosphatase inhibitor treatment.  

A total of 1,808 phosphoproteins, 3,430 phosphopeptides, and 4,253 Class I phosphorylation 

sites were sequenced and identified. The majority of phosphopeptides were singly 

phosphorylated (75%), but a substantial fraction were either doubly (20%), triply (4%), or 

more highly (1%) phosphorylated (Figure 4.1.10 A). The distribution between 

phosphotyrosine (pTyr), phosphothreonine (pThr) and phosphoserine (pSer) was close to that 

observed in another large-scale phosphoproteomics study of human epithelial cells (HeLa) 

(Figure 4.1.10 B)
31

.   

 

 

Figure 4.1.10   (A) distribution of mono- and multiple phosphorylated peptides. (B) 

Frequency of class I sites, which are sites with the highest localization probability. 
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4.1.2.2   Characterization of the phosphoproteome of a mouse live cell line 

 

The phosphoproteome is distributed among diverse protein classes, functions and subcellular 

locations.  

Gene Ontology (GO) analysis assigned the phosphoproteome to cellular components, 

biological process and molecular functions (Figure 4.1.11). Given the fact that 

phosphorylation is involved in various cellular events, it is not surprising that these 

phosphoproteins are distributed among many different categories and functions. There are a 

large number of regulatory proteins in the phosphoproteome – for example 51 phosphorylated 

transcription factors and 121 phosphorylated protein kinases and 28 phosphatases.  

 

The phosphoproteome is overrepresented in protein binding and underrepresented in 

mitochondrial and secreted functions.   

In GO, we next analyzed which protein functions are overrepresented in the detected 

phosphoproteome compared to the entire mouse protein database. The results indicated that 

the most significantly overrepresented biological functions of phosphorylated proteins are 

associated with binding to targets ranging from transcription factors to ATP. Kinase binding 

activity, for example, is significantly overrepresented (p= 8*10
-7

). Functions that are related to 

general kinase activities, translational activation, and transcriptional regulation also proved to 

be significant. Conversely, mitochondria and secreted proteins were significantly 

underrepresented in the phosphoproteome similar to what we had already seen in the HeLa 

phosphoproteome 
31

. 
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Figure 4.1.11   Overview of the proteins categories found in the phosphoproteome. Some 

regulatory protein classes such as protein binding, kinase activities, as well as transcriptional 

and translational regulations are strongly represented. Analysis was performed using Gene 

Ontology (GO). 
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Phosphorylation largely localized to coil regions of protein surfaces.  

The solvent accessibility and secondary structure prediction by the bioinformatic software 

SABLE 2.0 revealed that the predominant localization of mouse phosphosites is in coil 

regions on the protein surfaces (Figure 4.1.12). This result is in concordance with the previous 

observation on structural constraints of phosphosites in the human proteome
181

. 

 

 

Figure 4.1.12   (A) Average solvent accessibility of phosphorylated residues is significantly 

higher than that of non-phosphorylated residues. The relative accessibility prediction assigns a 

value between 0 (fully buried) and 9 (fully exposed) to each residue. (B) Phosphorylated 

residues are more frequently located in loops and coils than the non-phosphorylated residues. 

Calculations were performed in SABLE 2.0. Blue: phosphorylated residue; red: non-

phosphorylated residue. 

 

 

Overlap between the mouse live cell line phosphoproteome and SwissProt phosphorylated 

proteins.  

In this experiment, 1,033 phosphorylated proteins were identified that contain class I 

phosphorylation sites and have a corresponding SwissProt accession numbers. The current 

SwissProt release (54.7) reports 3401 proteins that are phosphorylated in mouse, disregarding 

method of experimental detection and including computational prediction by similarity. In 

total, 864 proteins overlapped between these two datasets (Figure 4.1.13). This is a striking 

overlap, given that there are more than 50,000 protein entries in the mouse IPI database. This 

observation implies that the core phosphoproteome, at least at the level probed here, is quite 

well conserved between different mammalian cell types and tissues. However, at the 
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phosphosite level, our dataset has substantial novelty as more than half (1,428) of 2,590 class 

I sites, whose assigned proteins show SwissProt accession numbers, is novel compared to 

what is currently recorded in SwissProt. In total, SwissProt contains 11,304 residues that are 

phosphorylated on mouse proteins. 

 

 

Figure 4.1.13   Overlap of phosphorylation sites found in this study with phosphorylation sites 

in the SwissProt database.  

 

Overlap between the mouse live cell line phosphoproteome and mouse liver tissue 

phosphoproteome.  

We were also interested in determining the overlap in phosphorylation sites between our liver 

cell line and liver tissue. Gygi and coworkers recently published a large-scale study of the 

mouse liver phosphoproteome which contains over 5,600 phosphorylation sites
191

. We 

extracted those phosphorylation sites and compared them to our dataset. Interestingly, this 

overlap was much smaller than the overlap with the phosphorylation sites in SwissProt. About 

half of our phosphoproteins were also detected in the tissue study, and about 30% of the 

phosphorylation sites on those proteins were identical. At this point, it is difficult to assess 

whether this discrepancy is due to differences between cell lines and tissues, or due to 

technical factors – both studies identified roughly equally large proteomes but neither is 

exhaustive.   

 



Results and Discussions 

68 

 

Consensus sequences (motif) of kinase substrates. 

 Each of the phosphorylation sites identified in our dataset is the substrate of one or more 

kinases. Through motif analysis we matched our sites to the known substrate specificities of 

33 human kinases. We used the published human kinase motifs (www.phosida.com) because 

the mouse ones are not known and kinase substrates are generally assumed to be well 

conserved between human and mouse. For each kinase motif, we determined the number of 

phosphorylation sites that matched the pattern, the number of sites expected to match this 

pattern by chance and the statistical significance of any overrepresentation using the χ
2
-test. 

The main finding of the consensus sequence analysis is that phosphorylation sites of the 

mouse proteome match significantly with specified human kinase motifs with only a few 

exceptions such as the motif of the NEK6 kinase (Appendix 2). The number of phosphosites 

that match with given motifs of the protein kinase A (PKA) is ten times higher than one 

would expect by chance, for example. These results were confirmed by the Motif-X algorithm 

186
 (Appendix 3). 

 

4.1.2.3   Assessment of our phosphoproteomics technology 

 

More than three orders of magnitude in phosphopeptide intensities.  

To our knowledge the dynamic range of phosphopeptide detection has not been described 

before. We determined the apex of the intensity over the LC MS peak for the isotope cluster 

of each phosphopeptide. Figure 4.1.14 shows that the identified phosphopeptides follow a 

Gaussian intensity distribution on a logarithmic x-axis, which spans between three to four 

orders of magnitude. This is the same dynamic range than that of unmodified peptide 

detection on our LTQ-FT instrument
131

, and for the LTQ-Orbitrap
192

 and probably reflects 

technical rather than biological properties.   

Also indicated in the figure is the distribution after phosphatase inhibitor treatment. This 

curve is shifted by about a factor two relative to the untreated population, indicating that 

identification of lower abundance phosphopeptides from untreated cells was indeed enabled 

by this phosphatase strategy. This trend is especially striking at the left side of the graph, 

where the abundance bins contain very few ‘heavy labeled’ peptides. These ‘light’ 
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phosphopeptides were only identified because of their more abundant, SILAC-counterparts 

that had been phosphatase inhibitor stimulated.  

 

 

Figure 4.1.14   Number of phosphopeptides in different intensity bins. Just like the proteome, 

the phosphoproteome follows a roughly Gaussian distribution on a logarithmic scale. The 

light shaded bars represent the phosphopeptides from the light labeled SILAC cells (untreated) 

and the black bars the phosphopeptides from the heavy labeled SILAC cells (phosphatase 

inhibitor treated).  

 

Phosphorylation correlates with protein abundance.  

We next compared the abundance of the phosphoproteome of 1,808 proteins to the abundance 

of the proteome of the same cell type (data from Project 3). The proteome (4,089 proteins) 

was binned into abundance classes by means of the added peptide intensities (Figure 4.1.15 

A). We then binned the phosphoproteins into the same abundance classes (Figure 4.1.15 B). 

Comparison of panels A and B reveals that the phosphoproteome roughly follows the 

abundance curve of the proteome, suggesting that to some degree phosphorylation occurs 

evenly among proteins without bias with respect to abundance. Thus, hyper-phosphorylation 

on low abundant proteins, or hypo-phosphorylation on high abundant proteins seemingly is 

not the general phenomena in cells. This comparison also suggests that we are not 

substantially biased against low abundance proteins – at least not compared to a proteome 

analysis.  
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Figure 4.1.15   Proteome and phosphoproteome abundance. (A) Abundance of 4,089 proteins 

in the Hepa1-6 proteome (data from project 3). (B) Percentage of proteins in (A) for which at 

least one phosphorylation site was detected. Note that the left hand tail in this curve is 

depressed even though phosphoproteome measurement enriches for low abundance proteins. 

This is caused by the fact that the chance to detect the corresponding protein in a proteome 

measurement for a low abundance phosphopeptide is small.  

 

4.1.3   Effects of calyculin A, deltamethrin, and pervanadate  

4.1.3.1   Regulation of phosphopeptides by the inhibitor compound mixtures 

We next asked how many phosphopeptides showed a fold-change due to the phosphatase 

inhibitor treatment (Table 4.1.1). Surprisingly, only 27% of the peptides were induced more 

than two-fold by this treatment. Note that some phosphorylation sites (8%) decreased instead 

of increased after phosphatase inhibitor treatment. This is due to the fact that phosphorylation 
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can both activate and deactivate target proteins and its downstream signaling cascade. For 

example, dephosphorylation in glycogen synthase is required for its activation. 

 

 

 

Table 4.1.1   Overall regulation by phosphatase inhibitors. The star (*) indicates that the total 

number of phosphopeptides is calculated by separately summing up all detected phospho-

states for the same peptide. 

 

 

4.1.3.2   Overall regulation of the inhibitor compound mixtures 

As noted, not all phosphosites were equally affected by phosphatase inhibitors. We plotted the 

fold-change of phosphorylation sites for each amino acid separately in Figure 4.1.16. As 

tyrosine phosphorylation is much less abundant compared to serine and threonine 

phosphorylations, we performed immunoprecipitation (IP) to enrich pTyr containing peptides 

using 4G10, a pTyr specific antibody, and obtain 480 pTyr sites (section 4.1.4). The data 

displayed in Figure 4.1.16 A come from this 4G10 IP experiment.  

It is immediately apparent from the figure that tyrosine phosphorylation sites are dramatically 

affected by phosphatase inhibitor, while this is much less the case for serine/threonine. For 

pTyr, the majority of sites are up-regulated at least two-fold (70%). This is presumably due to 

the broad effect of pervanadate on all PTPs combined with the low level of tyrosine 

phosphorylation in untreated resting cells. For phosphothreonine only 41% of the sites were 

up-regulated at least two-fold and for phosphoserine the number is only 26%. This is a 

surprisingly low number considering that the inhibitors we used are generally employed in 

cell biology, and are usually thought to block most phosphatase activity.  
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Figure 4.1.16   Phosphatase inhibitors displayed specificity. Percentage of phosphopeptides 

as a function of up-regulation due to inhibitors.  (A) Most of the phosphotyrosine peptides are 

regulated several fold due to pervanadate treatment. (B) and (C), A proportion, but not all, 

phosphothreonine  and phosphoserine peptides are affected by the treatment of Calyculine A 

and deltamethrine.  

 

4.1.4   Estimating an upper bound on the stoichiometry of phosphorylation 

Quantitative phosphoproteomics, as done with SILAC, compares the relative levels of 

phosphorylation between two cellular states. However, it is frequently also important to know 

the degree of phosphorylation or ‘occupancy’ of a given phosphorylation site. There are few 

available strategies to measure occupancy, particularly in large-scale experiments and they 
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usually involve the use of isotope labeled synthetic peptides
193

 or require the observation of 

both the unphosphorylated and the phosphorylated form of the peptide
194

. 

The work of Erba et.al
195

 addressed the concept of using a phosphatase inhibitor to detect 

phosphorylation occupancy. Several tyrosine phosphorylation sites on EGFR upon EGF 

stimulation were quantified. By using sodium-pervanadate-induced super-physiological 

phosphorylation as a reference, the occupancies of the EGF-induced phosphorylation of these 

tyrosine sites were calculated. However, the endogenous phosphorylation state of these 

tyrosine sites were not considered, therefore one cannot necessarily conclude that these 

occupancy rates were induced by EGF treatment. For complete information one also has to 

include the basic phosphorylation state.  

Therefore we chose to include an additional SILAC state. Three cell populations are 

differentially labeled by SILAC. The light labeled cells serve as control, the medium labeled 

cells are treated with the stimulus of interest, e.g. a growth factor, and the heavy labeled cells 

are treated with the phosphatase inhibitor cocktail. The expected pattern of regulated 

phosphosites is less phosphorylated in the control cells and more phosphorylated in the 

phosphatase inhibitor treated cells, with the growth factor simulated cells somewhere in 

between. Importantly, the stoichiometry of phosphorylation after stimulation cannot be higher 

than the ratio between the heavy and medium labeled forms of the phosphopeptide.  

 

Insulin-induced phosphorylation occupancy 

We investigated the phosphorylation occupancy upon insulin stimulation in these mouse liver 

cells (Figure 4.1.17). We treated triply encoded SILAC liver cells with no stimulus, 5 minutes 

stimulation with 100 nM insulin, and phosphatase inhibitors (section 3.1.5). In order to obtain 

a larger number of pTyr sites, we employed a separate tyrosine enrichment step in our 

experimental protocol. After immunoprecipitation with the pTyr specific antibody 4G10, we 

quantified a total of 480 pTyr sites in this liver cell line.  
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Figure 4.1.17   Experimental design for the phosphorylation site experiment to determine an 

upper limit of stoichiometry. (A) Cells are triple SILAC labeled. One population serves as 

control, one is stimulated with insulin and one is treated with phosphatase inhibitor.   

 

As shown in Figure 4.1.18, insulin induced the phosphorylation site of Y1175 in the 

activation loop of the mouse insulin receptor by more than ten-fold compared to control cells. 

The phosphopeptide ratio between insulin stimulated and phosphatase treated cells is 1.75. 

Since a given phosphorylation site cannot be occupied more than 100%, this data puts an 

upper limit on this phosphorylation site of 60% after 5 minutes insulin stimulation. Figure 

4.1.18 also shows the example of a serine phosphorylation site, which is up-regulated 

compared to basal condition by a factor 2.4. From this it follows that occupancy cannot be 

greater than 24% under the given condition.  
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Figure 4.1.18   Examples of peptides with unchanging phosphoprofile and peptides that are 

phosphorylated in response to insulin and even more increased in response to phosphatase 

inhibitors.  

 

We have found this method to work more generally for tyrosine phosphorylation than for 

serine/threonine phosphorylation, because the latter are less induced by the inhibitors (section 

4.1.3.2).  

 

4.1.5   Conclusions and discussions 

In this project we employed a mixture of three broadband phosphatase inhibitor compounds to 

boost phosphorylation in live cells. This approach enabled us to determine the 

phosphoproteome of mouse liver cell line Hepa1-6 in great depth. Phosphorylation is essential 
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for many cellular processes and malfunction of kinases and phosphatases are often found in 

cancer. There is no doubt that knowledge of complete phosphoproteomes will greatly 

facilitate our understanding of fundamental biological principles as well as disease 

developments at a systematic level. It may even provide guidance to developing therapies and 

drugs. 

In our study, a large Hepa1-6 phosphoproteome containing 4,253 accurately assigned 

phosphorylation sites was derived. General features of the phosphoproteome are similar to 

what our laboratory reported in a recent large-scale study of human HeLa cells
31

. Interestingly, 

the phosphoproteome is highly enriched for protein binding functions and interaction domains. 

This is readily understandable in terms of the signaling functions of this modification. 

However, this finding also implies that a significant proportion of the phosphoproteome 

measured here is indeed functional rather than being phosphorylated through an ‘innocent 

bystander’ effect. If this was not the case, we would have expected preferential ‘background’ 

phosphorylation of the most abundant proteins, i.e. metabolic enzymes and the like.  

For the first time in the phosphoproteomic field, we have assessed the dynamic range of 

phosphopeptide detection, which turned out to be up to four orders of magnitude with our 

current technology.  

We found quite good overlap with phosphorylation sites recorded in SwissProt, but more than 

half of the sites found here are nevertheless novel. This suggests that phosphoproteomic is not 

close to ‘saturation’ yet.  

We employed SILAC for quantitation of the phosphoproteome. Here we used the SILAC 

technology to quantify basal phosphorylation against the degree of phosphorylation after 

applying a cocktail of phosphatase inhibitors. For phosphotyrosine, inhibition was effective 

and the majority of pTyr sites were strongly increased upon treatment. For phosphothreonine, 

and even more for phosphoserine, a majority of sites was unaffected by the inhibitors. This 

was not due to unusually low doses as our protocol is within the range commonly used in the 

literature and as cells began to detach after phosphatase treatment. There are several 

possibilities that could explain the lack of universal up-regulation of pThr/pSer sites. The 

inhibitors could be specific for only some classes of phosphatases and leave others active. 

Alternatively, cellular kinase could have a small rate of phosphorylation for a majority of 

phosphorylation sites. Thus inactivation of phosphatases would not be noticeable for those 

sites. It would be interesting to follow up on the observations made here by testing panels of 



Results and Discussions 

77 

 

phosphatase inhibitors separately, at different doses and for different times. Regardless of the 

outcome of such studies, we conclude that broad action and non-specific of serine/threonine 

phosphatase inhibitors cannot be taken for granted.  

The methods applied here are completely generic and could also be used in the same way for 

testing the specificity of phosphatase inhibitors in development as drugs.  

We also introduced several novel analytical concepts in this project. First, we employed 

phosphatase inhibitors to boost low level phosphorylation sites and make them more likely to 

be sequenced and identified. Importantly, the presence of the SILAC partner peptide from the 

unstimulated cells ensures that the phosphorylation site in question is endogenous and not an 

artifact of the inhibitor. Secondly, we devised a method to put an upper bound on the 

stoichiometry of sites that are heavily regulated by phosphatase inhibitor relative to control 

(as shown for insulin regulated sites). As demonstrated here, phosphoproteomics is fast 

becoming a very streamlined technology that can be used in many different ways to 

characterize signaling pathways and help in drug development.  
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4.2 Project 2 - Global effects of kinase inhibitors on signaling 

networks revealed by quantitative phosphoproteomics 

 

This work is included in a manuscript in preparation:  

 

 

Phosphorylation regulates a vast number of cellular processes and is of pivotal importance in 

signal transduction. Abnormal phosphorylation is found in various diseases, especially in 

cancers, where kinase aberration (usually secondary to genetic alterations) is often critical for 

their etiology and pathology
54

. For this reason much effort has been devoted to understanding 

kinase function and to manipulating their actions. One widely adopted strategy is to suppress 

kinase activity by small molecule inhibitors. While chemical inhibitors have been used in 

laboratory research for decades, the concept of specific kinase inhibitor drugs was only 

established in recent years. Today, kinase inhibitor compounds amount to about 30% of dug 

development programs in the pharmaceutical industry
196

.  

Techniques to measure inhibitor effects were only established in a high throughput manner in 

the last ten to twenty years. Conventionally interactions between the inhibitor compound and 

a panel of selected kinases are profiled in vitro
71, 197

. When systematic screening methods are 

introduced, these enzyme assays can include more kinases and cover the kinome more broadly. 

As a result, tests that are less biased can be performed. Examples of these advanced methods 

include phage plaque assays combined with quantitative PCR
198

, yeast three-hybrid
199

, and 

mass spectrometry with affinity chromatography
200, 201

. While these in vitro studies greatly 

help in defining the targets of kinase inhibitors, they have several limitations. Chemical or 

genetic modifications are often required, such as fusing kinases with bacterial phage proteins 

in phage plaque assays, with linker proteins in the yeast three-hybrid approach or addition of 

Global effects of kinase inhibitors on signaling networks revealed by quantitative 

phosphoproteomics  

Cuiping Pan et al. 
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chemical linkers to inhibitor compounds in affinity chromatography purification. These 

manipulations are often laborious and time-consuming. Besides they risk changing the 

properties of kinases and inhibitor compounds. Furthermore, these methods can only address 

the direct targets of the inhibitor compounds but not their influence on the cellular signaling 

network in total. For example, the same kinases can be employed by multiple signaling 

pathways, thus their functions on downstream signaling events can be difficult to predict. This 

complexity complicates the picture and therefore it is difficult to estimate or predict the 

overall effects of inhibitor compounds in a cellular environment. Certainly a cell-based 

approach, which allows system-wide elucidation of the effects of kinase inhibitors, will 

further improve the target evaluation process.  

While cell imaging provides direct visualization of the kinase inhibition effects in vivo
202-205

, 

cell system based quantitative mass spectrometry is able to simultaneously monitor protein 

expression and modification events at a much broader scale. Stable-isotope labeling by amino 

acids in cell culture (SILAC), a metabolic labeling method applied during cell growth, 

generates completely stable isotope labeled cell populations that are otherwise equal to non-

labeled cells. This system enables a direct comparison of several cell populations with 

different biological or chemical treatments. For example, when SILAC was applied to study 

the effect of the Her2 kinase inhibitor, cellular changes of tyrosine phosphorylated proteins 

due to this treatment could be quantified
206

. 

In recent years, studies of phosphorylation have been greatly enhanced by progresses in mass 

spectrometric techniques. Significantly, phosphopeptide enriching methods such as IMAC 

and titanium sphere chromatography have demonstrated detection of thousands of 

phosphorylation sites, completely changing the capabilities of the phosphoproteomics field
28, 

94-97
. We reasoned that the combination of SILAC and the most recent phosphoproteomics 

technique should provide a powerful tool to explore the effects of kinase inhibitors on the 

overall cellular signaling network. This could help translating our knowledge of kinase 

inhibitor effects from the unit of individual proteins to the level of the whole (phospho)-

proteome. Furthermore, modern phosphoproteomics makes it possible to identify and quantify 

individual phosphorylation sites. As multiple phosphorylation sites on the same protein can 

have different functions and can be regulated differently, this detailed information can 

precisely pinpoint the responsive sites and provide a much more detailed picture of the 

inhibitor effects.  
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As proof of principle, we first examined two widely used inhibitor compounds in signal 

transduction laboratories: U0126 as a MEK1/2 inhibitor and SB202190 as a p38α/β inhibitor. 

Next, we applied the same technique to screen the effects of dasatinib, a clinical drug used to 

inhibit mutated BCR-ABL in chronic myelogenous leukemia (CML). 

 

4.2.1   Effects of U0126 andSB202190 on the EGFR signaling pathway 

U0126 and SB202190 are very potent, cell-permeable inhibitors for MEK1/2 and p38α/β, 

respectively. Their corresponding IC50 values are at the sub-micromole range. Previous 

studies characterized both as highly selective inhibitor compounds
71, 198

. However due to their 

pharmacological limitations, neither of the two inhibitors entered clinical trials but they are 

instead used as research compounds in laboratories. Thousands of publications employed 

these compounds and various kinase functions have been derived.  

SB202190 is a pyridinyl imidazole (Figure 4.2.1). It binds to the ATP pocket of p38α/β, and 

therefore precludes ATP binding to the kinase. Since ATP pockets are conserved among 

kinases, it is suggested that the specificity of the inhibitor compound is largely achieved by 

utilizing other residues than the direct ATP binding sites. A likely additional interaction site 

on the inhibitor is the 4-phenyl ring 54, 207.   

 

 

Figure 4.2.1   Chemical structure of SB202190, a p38α/β MAPK inhibitor. Its chemical name 

is 4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole, with the molecular 

formula: C20H14FN3O. Molecular mass is 331.34 g/mol. 

 

Different from SB202190 and most other inhibitor compounds, U0126 (Figure 4.2.2) does not 

compete with ATP. Therefore the high ATP concentration in the intracellular milieu (2-10 
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mM) has only minimum influence and U0126 represents a unique group of kinase inhibitors. 

U0126 exerts its inhibitory effect mainly by binding to inactivated MEK1/2 and precludes 

allosteric change of the kinase domain. Therefore MEK1/2 are locked in their inactive 

confirmation
71

.   

 

Figure 4.2.2   Chemical structure of U0126, a MEK1/2 inhibitor. Its chemical name is 1,4-

diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene, with the molecular formula: 

C18H16N6S2. Molecular mass is 380.50 g/mol. 

 

MAPK family proteins propagate signals for various growth factors and inflammatory stimuli. 

MAPK signaling consists of several tiers: upstream signaling proteins such as growth factor 

receptors, MAP3Ks, MAP2Ks, MAPKs, and downstream proteins such as the ribosomal 

protein S6 kinase p90RSK. There are four major MAPK cascades: ERK1/2, ERK5, JNKs, and 

p38 MAPKs. These cascades are similar but can perform different cellular functions
208, 209

. To 

investigate their specific kinase functions it is important to have highly selective kinase 

inhibitor compounds. For example, to study ERK1/2-dependent cellular functions, U0126 and 

PD 98059 are often employed as ERK1/2 are generally considered as the highly dominant, if 

not the only, physiological target of MEK1/2 (also called MAP2K1/2). For elucidating the 

cellular functions of p38α/β, inhibitor compounds such as SB202190 and SB203580 are 

frequently applied.  

ERK1/2 and p38α/β can be activated by EGF in HeLa cells31. Based on this cell system, we 

examined the effect of SB202190 and U0126 on the overall signaling network. We set up 

three conditions in which HeLa cells were SILAC-labeled with distinct forms of arginine and 

lysine. Light labeled cells (Arg0, Lys0) remained untreated and served as control. Medium 

labeled cells (Arg6, Lys4) were stimulated with growth factor, whereas heavy labeled cells 

(Arg10, Lys8) were treated with both kinase inhibitor and growth factor stimulation (Figure 

4.2.3 A).  
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Figure 4.2.3   Strategy to detect the effects of kinase inhibitors on cellular signaling network.  

(A) Three SILAC-labeled cell populations are subjected to different treatments as indicated. 

(B) Principle response of the targeted kinase and its downstream substrates in the three 

SILAC conditions.  
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For the two inhibitor treatments a concentration of 10 µM was applied to heavy labeled cells 

for 20 minutes. In the presence of the inhibitor we applied 150 ng/ml of EGF to the cells for 

another 15 minutes. The medium labeled cells were treated with 150 ng/ml of EGF for 15 

minutes. Combined cell lysates from these three conditions were subjected to our 

phosphoproteomics processing workflow as described in section 3.3.  A simple diagram of the 

targeted kinase and their downstream substrates is displayed in Figure 4.2.3 B. 

 

4.2.1.1   Identification and quantitation results 

Mass spectrometric data from the two inhibitor experiments were processed and quantified 

with in-house developed software MaxQuant. Identification was performed by searching the 

IPI_human protein database using the Mascot algorithm. Statistical calculations are based on 

combined Mascot plus post-translational modification (PTM) scores. The following criteria 

have to be met for all included peptides: peptide posterior error probability (PEP) <=0.1, and 

peptide false discovery rate (FDR) <=0.01 (see section 3.4). Using the PTM score
31

, we could 

localize the phosphate groups with high confidence (Class I phosphosites) in 5,497 cases. A 

total of 5,748 phosphopeptides were quantified from 2,048 proteins. 

Quantitation results of experiments with both inhibitors are listed in Table 4.2.1. 

Phosphopeptides were grouped into three major categories based on their response to EGF, 

namely up-regulated (Ratio M/L>=2), down-regulated (Ratio M/L<=0.5), and non-changed 

(0.5<Ratio M/L<2). Within each category, phosphopeptides were further sorted according to 

their response to the kinase inhibitor. The majority of the phosphopeptides (~85%) were 

influenced by neither the growth factor nor the kinase inhibitors. Even though the overall 

numbers of quantified phosphopeptides are different in both experiments, the percentages of 

EGF up- and down-regulated phosphopeptides are similar, with ~10% upregulated and ~2% 

downregulated in each case. This indicates that the difference in overall phosphopeptide 

numbers is mainly due to technical factors. 

Not surprisingly, multiple phosphopeptides of the same protein can have different response 

patterns. A striking example is the neuroblast differentiation-associated protein AHNAK. 

Among 50 quantified phosphopeptides of AHNAK, six of the nine possible response patterns 

were found.    
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Table 4.2.1   Quantitation results of the U0126 and SB202190 experiments. 

 

M/L represents ratio of “medium labeled cells” (EGF stimulation) versus “light labeled cells” 

(inhibitor pretreatment and EGF stimulation). Within each category, ratios are further 

classified according to their responses to the inhibitor. Up-regulation: Ratio>=2.0; down-

regulation: Ratio<=0.5. 

 

 

4.2.1.2   Effects of the inhibitors on MEK1/2 and p38 α/α/α/α/ββββ signaling branches 

 

Known and novel substrates of MEK1/2 and p38α/β 

Phosphorylation of the activation loop directly reflects kinase activity. We captured the 

relevant phosphopeptides from the activation loops of ERK1/2 and p38α in both experiments. 

In agreement with many other reports, they were highly induced by EGF but suppressed by 

their corresponding inhibitors without cross reaction (Figure 4.2.4). Several specific 

downstream targets of these inhibited kinases, such as Thr69/Thr71 in the transcription factor 

ATF2
210

 and Thr359/Ser363 in the kinase p90RSK211, displayed the same response patterns. 

Some phosphorylation sites of the upstream proteins were not affected. Examples include 

Ser991/Ser995 of the EGFR. 
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Figure 4.2.4   Effects of the inhibitors on known substrates of signaling branches of ERK1/2 

and p38 α/β.   
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In principle, downstream substrates of the targeted kinase should display the same response 

pattern as the kinase itself. However, a different response pattern can still be observed for the 

kinase downstream substrates if a phosphatase is involved or the signaling kinetics at later 

stages is considered (for example, the P9 pattern in Table 4.2.1). Phosphatases reverse 

phosphorylation and therefore decrease the intensity of phosphopeptides in MS. Under the 

specific EGF stimulation condition in this study, those late regulation events of 

phosphorylation may not have happened. To simplify further analysis, we will only consider 

those phosphopeptides with the same response pattern to the kinase (up upon EGF stimulation 

and down upon inhibitor treatment; P3 in Table 4.2.1) as potential direct or indirect 

downstream substrates. On this basis, there are 151 potential peptide substrates of MEK1/2, 

and 276 (excluding p38α/β) potential peptide substrates of p38α/β.There are 78 shared 

peptides between these two groups of potential kinase substrates. Analysis in Gene Ontology 

indicates that their corresponding proteins are involved in diverse biological processes but 

their molecular function is dominantly ‘binding’ (e.g. protein binding, nucleotide binding, and 

metal ion binding). 

 

Crosstalk between MEK1/2 and p38α/β signaling pathways 

To better define shared and specific substrates, we selected those peptides that were quantified 

in both inhibitor experiments. Again to simplify interpretation, EGF up-regulation 

(RatioM/L>=2) was set as a prerequisite. Phosphosites with accurate localization, i.e. class I 

sites, are classified into three groups (Figure 4.2.5 A): MEK1/2 specific (“U” group), p38 α/β 

specific (“S” group), and shared (“X” group) phosphosites.   

Proline at the +1 position following pSer/pThr is a well accepted kinase motif for MAPKs. 

Within each group we analyzed the adjacent amino acid residues surrounding each 

phosphorylation site.  Interestingly, the percentages of proline-directed phosphopeptides 

(pS/pT-P motif) are low, ranging from 15% to 30% (Figure 4.2.5 B). This indicates that the 

majority of these potential substrates are secondary or further downstream substrates of 

MEK1/2 and p38α/β. This is not unexpected, as MAP2Ks and MAPKs are generally located 

in a relatively upstream position in growth factor signaling pathways.  
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Figure 4.2.5   (A) Overlap between potential phosphosite substrates of MEK1/2 (Red circle) 

and p38α/β (blue circle). (B) Distribution of proline-directed and non-proline-directed 

phosphorylation sites. U (U0126) group - specific to MEK1/2, S (SB202190) group - specific 

to p38α/β, and X group - shared. 

 

Although ERK1/2 and p38α/β share 50% sequence similarity, they are employed in different 

cellular responses
209

. ERK1/2 are activated by various stimuli to regulate meiosis, mitosis, 

and postmitotic functions in differentiated cells. p38 MAPKs are strongly activated by 

cytokines and stress factors, including osmotic shock and heat shock, and to regulate immune 

and stress responses. The conserved motif in kinase activation loop is Thr-Glu-Tyr (TEY) for 

ERK1/2 and Thr-Gly-Tyr (TGY) for p38α/β. Previously, comparison of the substrates for 

ERK1/2 and p38α/β was reported at the transcription level
212

. Here we are able to compare 

their substrates at the phosphorylation level in the overall signaling network. Generally, 

phosphorylation involves rapid and short-term regulation events whereas transcription starts 

later, typically after 30 minutes. Our comparison is based on an active signaling network after 

15 minutes of EGF stimulation, where the signal was propagated to various downstream 

effectors and the forward signal dominated over the feedback signal. It is within this network 

that we discovered many differentially regulated phosphosites by MEK1/2 and p38α/β. These 

phosphosites come from important signaling proteins, such as JNK3, PLC, MSK2, HSP27, 

death-inducer obliterator 1, DNA topoisomerase 2-alpha, and so on.  

Requiring EGF up-regulation as a prerequisite, we have limited our analysis to a small, more 

easily analyzable dataset. Still, caution should be exercised in data interpretation. U0126 was 

previously reported to inhibit ERK5, a fourth family member of MAPKs besides ERK1/2, 

JNKs, and p38 MAPKs. ERK5 shares the same consensus motif TEY as ERK1/2. However, 
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ERK5 is unique in its carboxy-terminal half and possesses a nuclear translocation signal in its 

sequence. It is involved in cardiovascular development and neural differentiation
208

. Due to 

their distinctive features, the downstream substrates of ERK5 and ERK1/2 may be different. 

Suppressing both at the same time can cause ambiguity in assigning the structure of the 

network. From the perspective of drug effect screening, it is precisely the strength of our 

unbiased, systematic approach using quantitative MS that it provides a clear view of the 

overall effects of the inhibitor treatment.  

 

Evaluation of EGF signal propagation 

Based on the analysis of phosphorylation sites, we created a rough model of EGF signal 

propagation upon 15 minutes of 150ng/ml EGF stimulation (Figure 4.2.6).  

 

 

  

Figure 4.2.6   A simple model of EGF signal propagation. Overall 350 class I phosphosites 

were up-regulated by EGF in both inhibitor experiments. The percentages of proline-directed 

phosphorylation events are listed.  The three groups (U, X, and S) are the same as in Figure 

4.2.5.  
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Overall 350 class I phosphorylation sites were activated by EGF. Of these, 82% participated 

in MAPK cascades as judged by their suppression after MAPK inhibitor treatments, leaving 

only a small role for other signaling cascades. Within the MAPK cascades, the signal diverged 

to MEK1/2, p38α/β and other branches. The fraction of proline-directed peptide substrates is 

only 15 – 30%, indicating that the signal spreads from a limited set of direct substrates to a 

broad set of secondary and further downstream effectors. Although only a rough estimate, this 

model is very interesting in itself. It suggests that MAPK cascades are predominant in these 

growth factor induced signal transduction events. Again, it clearly demonstrates the strength 

of quantitative MS and systems biology approach in reconstructing the signaling network. 

 

4.2.1.3   Potential side effects of the inhibitor compounds  

Off-target effects are a major concern for inhibitor compound development. As most kinase 

inhibitors are ATP competitors and ATP binding pockets are conserved among kinases, it is 

likely that inhibitor compounds suppress more kinases than the targeted one. The fact that 

these suppressed kinases can have limited sequence homology further complicates analysis. 

Besides the off-target issue, there is an equally important question in the field, namely the 

secondary effect of the kinase inhibitor compound on the signaling pathway. This issue has 

been addressed to a lesser degree and in a less systematic manner due to the technical 

limitations. The strength of our approach is to examine the global effects of kinase inhibitors 

over the entire network. 

Previously we discussed the potential peptide substrates of MEK1/2 and p38α/β. Here we set 

out to inspect some other phosphorylation changes that can potentially introduce drastic 

effects into the signaling network. Phosphopeptides that were up-regulated by the inhibitor 

compounds compared to EGF only treatment (RatioH/M>=2) are at first unexpected and 

demonstrate the ability to distort EGF effects and therefore are of great interests.  

In the SB202190 dataset, 70 phosphopeptides fulfilled this criterion. Among the list are 

Tyr301 of A-Raf and three phosphosites (Thr58, Ser61, and Ser63) from PP2A regulatory 

subunit beta. A-Raf closely resembles Raf-1, a major signaling molecule of the EGF response, 

in sequence and activation mechanism. Ras-GTPase and Src can activate both Rafs by 

phosphorylating two adjacent tyrosine residues, Tyr-301/302 in A-Raf and Tyr-340/341 in 

Raf-1
213

. We detected reduced phosphorylation of Tyr301 in A-Raf upon EGF treatment 

(RatioM/L=0.5). However SB202190 treatment reversed this down-regulation (RatioH/M=9.5) 
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such that this phosphorylation site is now up-regulated instead. This suggests that the A-Raf 

signaling branch is greatly activated after the inhibitor treatment. The reversed 

phosphorylation of the regulatory subunit of phosphatase PP2A (RatioM/L=0.1, RatioH/M=8) 

likewise could induce a drastic change, given the fact that PP2A governs dephosphorylation 

events on various signaling molecules.  

Together, 50 phosphopeptides in the U0126 dataset display RatioH/M>=2. Interesting examples 

include the activation motif of JNKs (Thr221/Tyr223 with RatioM/L=2.6, RatioH/M=6.5), IRS-2 

(Ser596 with RatioM/L=1.1, RatioH/M=2.2), and HSP27 (Ser15 with RatioM/L=3.6, RatioH/M=6.9 

and Ser26 with RatioM/L=5.2, RatioH/M=12). JNKs are well-known stress-activated protein 

kinases and constitute an important branch of MAPK cascades. HSP27 is phosphorylated at 

Ser15, Ser78 and Ser82 by MAPKAP kinase 2 as a result of activation of the p38 MAP kinase 

pathway214. The further up-regulation of JNK pathway and p38 MAPK pathway by U0126 

treatment indicates a potential interplay among several MAPK cascades. As distinctive 

functions of these MAPK family proteins have been reported, attention should be paid to the 

effect of the kinase inhibitors on them.  

Importantly, proteins regulating transcriptional process are found in both datasets with 

RatioH/M>=2 from SB202190 and U0126 experiments. It indicates a long-term effect of the 

inhibitors at the transcriptional and protein expression levels. 

 

4.2.2   Effect of dasatinib on the BCR-ABL signaling pathway 

Chronic myelogenous leukemia (CML) is characterized by over-proliferation of myeloid cells. 

The fundamental principle of its etiology is the fusion of two chromosomes to produce the 

chimeric protein BCR-ABL. In normal physiology Bcr is encoded by chromosome 22 

whereas the non-receptor tyrosine kinase ABL is encoded by chromosome 9. In CML, 

however, the long arms of chromosome 22 and chromosome 9 are fused together, resulting in 

the so-called Philadelphia chromosome and the constitutively activated tyrosine kinase BCR-

ABL
215

. Two predominant BCR-ABL fusions are involved in CML
216

: fusion of the first 13 

exons of BCR to exon 2 of ABL results in the b2a2 fusion (e13a2), and fusion of the first 14 

exons of BCR to exon 2 of ABL results in the b3a2 fusion (e14a2).  
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Treatment of CML has been greatly advanced by using small inhibitor compounds to 

selectively inhibit the kinase activity of BCR-ABL. The first BCR-ABL inhibitor drug 

Gleevec
®

, or imatinib, was rapidly approved by Food and Drug Administration (FDA) in the 

US in the beginning of the 21
st
 century. In fact, the success of imatinib for the first time 

proved the novel concept of using small kinase inhibitor compounds as rational drugs and 

opened a new field in drug development. This achievement was so striking that an editorial 

essay from The Oncologist praised it as breaking the barrier of “The oncologic four-minute 

mile”217. Later, a second generation of inhibitor drugs appeared in the clinic, with the aim of 

inhibiting point-mutated versions of BCR-ABL. Among these is dasatinib (Figure 4.2.7), a 

highly potent, orally active inhibitor for both inactive and active BCR-ABL. Dasatinib is most 

potent towards chronic phase CML, with complete hematologic responses in 90% of patients, 

52% of whom achieved a major hematologic response
218

. Distinct in chemical structure from 

imatinib, dasatinib is able to inhibit most BCR-ABL variants found in CML patients
219

. In cell 

line tests, dasatinib displayed an over 300 fold higher potency than imatinib
220

. Today the 

combination of imatinib and dasatinib is recommended for CML therapy. 

 

 

Figure 4.2.7   Chemical structure of dasatinib. Its chemical name is N-(2-Chloro-6-methyl-

phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-

carboxamide, with the molecular formula: C18H16N6S2. Molecular mass is 380.50 g/mol. 

 

Dasatinib binds to the kinase domains of ABL kinase (Figure 4.2.8). It has a similar potency 

towards Src family kinases and PDGFR
221

. Research on dasatinib’s mechanism of action 

focuses on two major themes: the direct binding targets and more downstream signaling 

molecules. Mass spectrometry has played an important role in these investigations. Recently 

Goss et al
216

 analyzed immunoprecipitated protein in tandem MS and derived a common 

phosphotyrosine signature for BCR-ABL in six different CML cell lines. Hantschel et al
222

 



Results and Discussions 

92 

 

and Bantscheff et al
201

 combined affinity purification technique with quantitative mass 

spectrometry to screen the binding targets of dasatinib. In the study from Bantscheff et al 

seven broad-band inhibitors were immobilized in one affinity column (kinomebead) to test the 

competition of certain kinase inhibitor compounds with those unspecific ligands. Interestingly 

these kinase beads are able to cover 80% of the phylogenetic tree.  

 

 

Figure 4.2.8   Crystal structure of the Abl kinase domain complexed with dasatinib. From 

Hantschel et al.
222

, based on PDB ID code 2GQG 

 

Here we describe a simplified assay to elucidate the effects of this drug on signaling pathways.  

It employs SILAC-based phosphoproteomics to analyze, for the first time, the effect of a 

current cancer drug in a cell line without any bias and in a systems-wide manner. 

The human immortalized myologeous leukemia cell line K562 bears the e14a2 fusion and 

expresses constitutively activated BCR-ABL. Therefore it serves as a suitable cell model for 

studying CML. In our experiments, three groups of K562 cells were cultured in “light”, 

“medium” and “heavy” SILAC conditions (Figure 4.2.9). In contrast to the MAPK inhibitor 

studies described above no stimulus is necessary because BCR-ABL itself provides a 

constitutive signal. While “light” cells were treated with DMSO only, “medium” and “heavy” 

cells were treated with 5 nM and 50 nM dasatinib for one hour, respectively. In this way, a 

dose dependence can in principle be measured. Cells were harvested and enriched for 
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phosphopeptides as described in section 3.1.5 and 3.3, respectively. Data analysis was 

performed according to section 3.4. The resulting dataset has 99% identification confidence. 

 

 

Figure 4.2.9   Strategy to detect the effect of dasatinib on the cellular signaling network.  

Three populations of SILAC cells were treated with control solution and two different 

inhibitor concentrations for one hour to examine phosphoproteome changes.  

 

4.2.2.1   A large number of phosphosites are suppressed by dasatinib 

We identified 4,833 phosphopeptides from 1,804 proteins, from which 4,286 class I 

phosphosites were derived. About 12% of these phosphopeptides were suppressed by 5 nM 

dasatinib treatment, while a ten-times larger dose of dasatinib down-regulated 16% of the 

phosphopeptides (Table 4.2.2).  As expected, there is much more down-regulation than up-

regulation. Reassuringly, most regulated phosphopeptides and phosphosites in the treatment 

with low dose were also quantified as down-regulated sites in the experiment with high dose 

inhibition (79%). This also implies that these large-scale quantitative phosphorylation 
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experiments were quite reproducible. Interestingly, there was a small proportion of up-

regulated sites as well. However, overlap between these sites is low (~10%). When the 

criterion of down-regulation is loosened to 50% change (Ratio>=1.5), the overlap increases to 

~30% (69 phosphopeptides), with 219 down-regulated phosphopeptides in 5 nM dasatinib 

treatment and 206 in 50 nM dasatinib treatment. These sites will not be discussed further.   

 

Table 4.2.2   Quantitation of phosphopeptides from dasatinib treated K562 cells. 

 Phosphopeptides Class I phosphosites 

All 4833 4286 

Down-

regulation 

(Ratio<=0.5) 

5 nM 587 524 

50 nM 778 708 

overlap 465 424 

Up-regulation 

(Ratio>=2) 

5 nM 52 45 

50 nM 33 29 

overlap 6 3 

 

Dasatinib is known to down-regulate several important signaling proteins. Table 4.2.3 lists 

some of the well-known proteins that were captured in our study. The activating 

autophosphorylation sites of ABL1 (in the fusion protein), SRC, MAPK1 and MAPK3 were 

significantly suppressed, indicating that their kinase activities were reduced. Additionally, 

tyrosine phosphorylation of BCR, LYN and BTK was drastically down-regulated. The pThr-

58 of c-Myc is known to be regulated by mitogen stimulation. It is crucial for various 

functions of c-Myc, such as transcription regulation
223

, altered intracellular location
224

, and 

protein degradation225. Following upstream kinase inhibitions, Thr-58 was largely 

dephosphorylated after dasatinib treatment in our experiments. This demonstrates that large-

scale quantitative phosphoproteomics can pin-point crucial sites involved in cell proliferation. 
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Table 4.2.3   Marker phosphopeptides downregulated by dasatinib. 
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4.2.2.2   Proline-directed phosphorylation is dominant in BCR-ABL signaling 

To evaluate the signaling affected by dasatinib, we selected a sequence window of 13 amino 

acids with the down-regulated phosphorylation sites positioned in the center.  The derived 

sequences for those 424 commonly down-regulated phosphorylation sites were submitted to 

WEBLOGO (http://weblogo.berkeley.edu/logo.cgi) for assessing kinase substrate motifs.  

 

 

Figure 4.2.10   WEBLOGO (http://weblogo.berkeley.edu/logo.cgi) evaluates kinase substrate 

motif for the down-regulated phosphorylation sites by both 5 nM and 50 nM dasatinib. The 

frequency plot is depicted here. Upper panel: All 424 down-regulated sites were assessed. 

Lower panel: within the 424 phosphosites, those identified from singly phosphorylated 

peptides were assessed.  
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We submitted all the sequence windows for 424 phosphosites at once (Figure 4.2.10 upper 

panel), as well as selectively submitted those down-regulated sites identified from singly 

phosphorylated peptides (Figure 4.2.10 lower panel).  The resulting frequency plots are very 

similar. Most strikingly, proline-directed phosphorylation (pS/pT-P) accounts for more than 

half of the phosphorylation events. The web logos suggest the substrate motifs of ERK1/2 and 

AKT. To confirm this, we manually filtered the sequence window for the classical ERK1/2 

motif (V/PXpS/pTP) and ATK motif (K/RXRXXpS/pT). Indeed, 91 sequences passed the 

selection for ERK1/2 substrates and 26 for ATK substrates. These numbers indicate ERK1/2 

and AKT signaling cascades make up a significant portion of BCR-ABL signaling pathway. 

 

4.2.2.3   Effect of dasatinib on the overall BCR-ABL signaling pathway 

The accumulating knowledge in BCR-ABL signaling has revealed several critical pathways 

that contribute to chronic myeloid leukemia transformation
226

. In association with SHC and 

GRB2, BCR-ABL activates ERK1/2 and JAK/STAT pathways and therefore causes cells to 

bypass the growth factor-dependency of proliferation and cell growth. BCR-ABL activates the 

PI3K-AKT and JAK/STAT pathways to enhance cell survival, while its activation of focal 

adhesion components (actin, FAK, CAS, etc) leads to a decrease in cell adhesion and 

abnormal interaction with extra-cellular matrix and stroma.  

According to the summary from Weisberg et al
226

, we recapitulated the BCR-ABL signaling 

network with details of detected, down-regulated phosphosites (Figure 4.2.11). These 

signaling molecules distribute among the various aforementioned pathways. 

Critical proteins involved in the three major MAPK cascades were suppressed, including the 

autophosphorylation loop of p38α and ERK1/2. This is in agreement with the ERK1/2 kinase 

substrate motif analysis, where a large number of suppressed phosphosites display the 

classical substrate motif for ERK1/2. 
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Figure 4.2.11   Effect of dasatinib on the BCR-ABL signaling pathway. The phosphorylation sites that are suppressed by both 5 nM and 50 nM 

dasatinib are displayed on the left. Signaling pathways are based on Weisberg et al.
226

.  
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Previous studies provide increasing evidence that a major mechanism of BCR-ABL 

transformation is via suppression of apoptosis
227

. Primary CML progenitors required growth 

factors for proliferation
228

. Yet in the absence of serum or growth factors, primary CML 

progenitors had increased cell viability compared to normal cells
229

. Antisense 

oligonucleotide–mediated down-regulation of BCR-ABL conferred susceptibility of BCR-

ABL positive cells to apoptotic stimuli
230

 and did not affect cell cycle progression
229

. We 

captured several sites of the BCL superfamily proteins as well as the p53 binding protein 2, an 

essential regulator of p53 in apoptosis and cell growth. 

Overall, phosphopeptides from 33 phosphatases and 130 kinases were quantified. By applying 

the criterion that at least one phosphorylation has to be suppressed by half, 6 phosphatases and 

27 kinases are selected. Dasatinib is known to bind to a large number of kinases. Carter et al 

tested a panel of 148 kinases and dasatinib influenced 76 of them
231

. In our dataset – even 

though the selection was broaden to 25% suppression (Ratio<=0.75) – only 14 phosphatases 

and 51 kinases were influenced by dasatinib. This may generally reflect the difference 

between cell line studies and ex vivo enzyme assays. If our observation with dasatinib proves 

to be more widely applicable, it suggests that off target effects from in-vitro effects may not 

be reflected in cells in all cases. One obvious reason for this could be that off-target effects 

depend on the concentration of kinases and substrates. These are usually normalized in-vitro, 

whereas our assay uses the ‘correct’ cellular concentrations. Therefore, if there is an off-target 

effect on a very minor cellular constituent, this may not have an appreciable effect on the 

overall signaling network. Additionally, different cell types retain their cell-type specific 

features to different degrees and therefore may not employ all possible in-vivo substrates to 

respond to a stimulus. Some of the in-vitro targets may not even be expressed in the cell type 

under study.  

These observations indicate that the two major themes, i.e. to study direct binding targets of 

the inhibitor compounds and to investigate their influence on cellular signaling network, 

should be combined. Together we will provide a much more complete picture of the drug 

effects and mechanism of actions. 
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4.2.3   Conclusions and discussions 

In this project we quantified the effects of three kinase inhibitors, including a clinical drug, on 

the phosphorylation changes in the entire cellular signaling network. Two of the inhibitors, 

U0126 and SB202190, are very commonly employed in bench research to elucidate the 

cellular functions of their target kinases. To our knowledge there has been little investigation 

on the overall effects of these inhibitors on the general signaling network and some of the 

derived functions may actually be induced by secondary signaling molecules rather than the 

targeted kinases. Therefore interpretation of the cellular assays must be done with caution.  

We derived a simple EGF signal propagation model based on the suppression of 

phosphorylation by selective MAPK inhibitors, which indicates that MAPK signaling 

cascades are dominant in the early phase of EGF signal transduction, i.e. after 15 minutes of 

150 ng/ml EGF treatment. Bearing in mind that U0126 and SB202190 may not only suppress 

their designed targets (MEK1/2 and p38α/β, respectively), this model is only a rough estimate. 

We applied the same strategy of SILAC-based quantitative phosphoproteomics to inspect the 

cellular effects of dasatinib, a clinical drug for CML therapy. Two different concentrations 

were employed to enhance the reliability of the substrate list. The influenced signaling 

molecules distribute among several critical signaling pathways for BCR-ABL induced CML 

transformation. Specific sites from these signaling molecules were pinpointed, providing site-

specific information of the inhibitory mechanism. 

Phosphorylation is a critical modification for various signal transduction events in normal and 

transformed cells. Selectively inhibiting the crucial kinases or phosphatases has proven a 

useful strategy for correcting the abnormal enzyme activities which can distort cellular 

signaling networks. Establishment of this novel type of drugs in the clinic is represented by 

imatinib, dasatinib, erotinib, and others. As the majority of studies so far have focused on the 

direct binding targets of these inhibitor compounds, there is a need to elucidate their global 

influence on signal transduction. Our quantitative phosphoproteomics approach is able to 

examine the cellular effect at the phosphorylation and - in principle – at the protein expression 

level.  Thus our datasets complement the mechanism of actions previously described for the 

three investigated kinase inhibitors.  

Since the first kinase-targeted inhibitor compound was successfully developed and applied to 

patients, clinicians have been constantly in battle with disease evolution. Besides elevated 

protein expression levels, point mutations have been frequently reported in the targeted 
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kinases. This drug-resistance has motivated scientists to screen more compound libraries and 

further develop inhibitor compounds. To meet the need of testing the efficacy and dynamics 

of the new compounds in an unbiased way and on a global scale, we believe our simple but 

powerful SILAC-based quantitative phosphoproteomics technique can greatly facilitate the 

screening processes from the early phase of the drug development. 

Two interesting concepts have started to emerge in the drug development field: that multi-

kinase inhibitory compounds can be effective drugs and that the combination of multiple 

inhibitors in one therapy can lead to much better clinical results . For example, sunitinib 

exerts antitumor activity and induces tumor regression in cancer patients via inhibition of 

growth promoting signaling in tumor cells (e.g. c-Kit, Flt-3, RET) and of receptors expressed 

on cells of stroma (e.g. VEGFR, PDGFR)
75, 232

. Combination of pharmacological inhibitors of 

PI3-K (LY294002 and Wortmannin) with imatinib induced more apoptosis in both chronic 

and blast crisis CML cells
233

. The T315I point mutation in BCR-ABL conferred resistance to 

imatinib and dasatinib. However, a PDK-1 inhibitor (OSU-03012), which essentially inhibits 

Akt activation, can synergize with imatinib in inducing apoptosis even in cells expressing the 

T315I BCR-ABL. As more and more complex inhibitory therapies are attempted, the cellular 

effects of these inhibitor compounds will become even more complicated. With our unbiased, 

high-throughput, and robust technique, we believe that knowledge of principles of drug 

actions can be derived relatively fast and that this can  guide future drug development. 
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4.3 Project 3 - ‘Proteomic phenotyping’ to assess differences between 

transformed and non-transformed mouse liver cells 

 

This work is included in a submitted manuscript:  

 

 

The cell line Hepa1-6 was isolated from the mouse liver with hepatoma
170

, therefore it is 

thought to retain the characteristics of both mouse hepatocytes and cancer (Section 3.1.1). In 

this project we compared the proteome of freshly isolated hepatocytes from healthy mice and 

the proteome of Hepa1-6, with the aim of characterizing their differences at a systematic and 

quantitative level. Striking differences in protein expression, molecular function and signal 

transduction pathways were revealed. Clearly, cancer-derived cell lines are mostly dedicated 

to proliferation and growth, representing major characteristics of cancer. The primary 

hepatocytes, on the other hand, maintain their functions in metabolism and organ context. 

Proteome quantitation in this study helped to reveal these functional differences at the level of 

the proteome for the first time. This should help to better evaluate research results derived 

from this cell line. More generally, this study alerts the biologists to where cell lines may 

significantly distort intracellular network and therefore where caution should be applied when 

analyzing cell line results. Fortunately, the proteomic phenotyping strategy (Figure 4.3.1) 

presented in this work is very robust. It can be applied to studies like the one presented here, 

i.e. comparing a cell line and their cognate primary cells, but is not limited to this type of 

study. Due to the strength of the novel bioinformatic algorithm (section 3.5.1 and section 

4.3.2) developed in this work, even proteomes originating from distinct sources can be 

compared quantitatively and systematically in terms of specific cellular functions.  

Comparative proteomic phenotyping of cell lines and primary cells to assess 

preservation of cell type specific functions 

Pan, C
1
; Kumar, C

1
; Bohl, S; Klingmueller, U; and Mann M. 

1
 both authors contributed equally 
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4.3.1   Proteomes of primary hepatocytes and Hepa1-6 

To characterize phenotypic differences between cell lines and primary cells, we labeled the 

murine hepatoma cell line Hepa1-6 with Arg10 (Arg
13

C6
15

N4) and Lys8 (Lys
13

C6
15

N2), i.e. 

heavy forms of the amino acids used in SILAC labeling. Primary hepatocytes were isolated 

from six to twelve weeks old B6 mice according to standard operating procedures established 

by the German systems biology competence network HepatoSys. After isolation primary 

hepatocytes were cultured in dishes for 14 h. Proteins from completely labeled Hepa1-6 and 

primary hepatocytes were extracted and mixed in equal amounts (section 3.1.5). 100 µg of 

proteins from each of two mixtures were separated by isoeletric focusing and analyzed in the 

LTQ-FT using the top 5 LC-MS/MS method (section 3.2). For biological and technical 

replicates, we obtained primary hepatocytes from two mice and treated the samples separately 

during the experiments. Data analysis was done according to section 3.4.1.  

 

 

Figure 4. 3.1   Strategy for comparing primary cells with immortalized cell lines. SILAC 

–labeled Hepa1-6 cell line was combined with mouse primary hepatocytes. After cell lysis 

and digestion peptide mixtures were separated by isoelectric focusing (Offgel) and analyzed 

by LC/MS-MS using an LTQ-FT mass spectrometer. 
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4.3.1.1   Excellent reproducibility of the identification and quantitation of the proteomes 

We used high resolution mass spectrometry to identify and quantify around 4,000 proteins in 

each mixture of primary hepatocytes and Hepa1-6. The overlap of identified proteins is very 

large between the two datasets (Figure 4.3.2, inset). As quantitation in each dataset was 

performed, we also wanted to evaluate if the relative protein expressions were reproducible 

between the biological replicates. With 100% similarity set to be 1, the Pearson correlation 

coefficient of these two datasets is 0.95 (Figure 4.3.2). Given that these two primary 

hepatocyte samples were obtained from different mice, this correlation coefficient is excellent. 

On one hand, this reflects the robustness and stability of our experimental protocols and 

particularly the LC-MS/MS system. On the other hand, the homogenous genetic background 

of these B6 mice also contributed greatly to the reproducibility. 

 

 

Figure 4.3.2   Replicate experiments of comparing Hepa1-6 cell line with primary hepatocytes 

from two mice achieved very high degree of reproducibility at both identification  level 

(inserted in the upper-left corner)  and quantitation level (about 4,000 proteins quantified; 

Person correlation coefficient 0.95).  
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We then combined the two datasets and analyzed them together in MaxQuant using stringent 

and unified criteria (section 3.4.1). At a false positive rate of less than one percent, a total of 

4,089 proteins were identified and quantified between the two cell populations. In the 

following, unless otherwise specified, the analyses were performed on the two proteome 

datasets separately. 

 

4.3.1.2    Drastic changes in protein expressions in primary hepatocytes and Hepa1-6  

We compared the expressions of proteins that were present in both primary hepatocytes and 

Hepa1-6. The primary and cell line proteomes overlap qualitatively but are very different 

quantitatively, with more than half of the proteome changing at least two-fold between the 

two conditions (Figure 4.3.3).  
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Figure 4.3.3   Fold-change distributions of the proteome. (A) Quantitative comparison of the 

Hepa1-6 cell line vs. the primary cell proteome. The distribution was divided into five 

quantiles as follows. High relative expression in primary cells (0-15%, at least four-fold 

down-regulation), mostly expressed in primary cells (15-25%, -4 to -1.5 fold regulation), not 

highly regulated proteins (25-75%;  - 1.5 to +2.8), mostly expressed in Hepa1-6 (75-85; 2.8 to 

3.6 fold), highly expressed in Hepa1-6 (85-100%, more than 3.6 fold change). Color coding of 

these categories is indicated at the top of the panel. (B) Biological replicate of the experiment 

showing excellent reproducibility (see figure 4.3.2). 

 

Many proteins are expressed at much lower levels in the immortalized cell line than in the 

primary cells whereas comparatively few were up-regulated in Hepa1-6. This is surprising 

since cancer cells are thought to be de-differentiated and to express many genes 

inappropriately.  

 

4.3.1.3 Changing glucose level in cell culture does not induce drastic proteome changes  

 

 

Figure 4.3.4   Quantitative comparison of the Hepa1-6 proteome cultured in high glucose (38 

mM) and physiological glucose concentration (8 mM). Two independent comparisons (A) and 

(B) were performed starting from cell culture and SILAC labeling. 

 

It is usually recommended to cultivate Hepa1-6 cells in high glucose medium (38 mM). 

Therefore we asked whether some of the observed phenotypic changes are attributable to this 

circumstance. To address this experimentally, we performed another SILAC experiment 



Results and Discussions 

107 

 

comparing Hepa1-6 cells cultured in high glucose against cells cultured in physiological 

glucose levels in mice (8 mM) for three weeks In this experiment, there were hardly any 

overall changes in the proteome and 96% of the proteins were of constant abundance within a 

factor of 1.5 (Figure 4.3.4 A). This was also confirmed in a replicate experiment (Figure 4.3.4 

B). These results rule out a dominant role of the super-physiological glucose level in the 

proteome differences between primary cells and cell lines. Furthermore, they demonstrate 

excellent quantitative accuracy of our experiment on a proteome-wide basis. 

 

4.3.2   Phenotyping of the proteomes of primary hepatocytes and Hepa1-6 

4.3.2.1   Functional clustering on top of quantitative clustering - a method for proteomic 

phenotyping 

To functionally understand the differences between the two cell populations, we divided the 

fold-change distribution between primary hepatocytes and the Hepa1-6 cell line into five 

quantiles according to relative protein expression (Figure 4.3.3). Each quantile was assessed 

separately for overrepresented pathways, biological processes and cellular components with 

Gene Ontology (GO) and KEGG pathway analysis
234, 235

 (Section 3.5.1). We retained each 

functional category that reached at least 95% statistical significance in one of the quantiles 

and then performed one-way unsupervised clustering of the p-values of the resulting 

categories. This analysis differs from the more familiar clustering of overrepresented genes 

themselves, which is frequently employed in microarray-based experiments. It integrates the 

strength of statistical testing (taking p-values as input for clustering) with the intuitive 

simplicity of hierarchical clustering. By automatically classifying related processes and 

pathways based on their up or down-regulated protein measurements, it provides an unbiased 

global portrait of representative biological functions, enabling visual interpretation of the 

phenotype in terms of aggregate functional modules on a systems level.  

 

4.3.2.2   P-value clustering on the proteomes of primary hepatocytes and Hepa1-6 

We applied this novel p-value clustering strategy to our two proteome datasets. The result of 

KEGG pathway over-representation analysis for one of the dataset is shown in figure 4.3.5 

and Appendix 4. For the same dataset, results from the cellular component category in Gene 

Ontology, and the biological function category in Gene Ontology are displayed in Appendix 5 
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and 6. We verified the robustness of these functional assignments by comparing the shared p-

value matrix of the replicate experiments against each other (Appendix 7-9). This correlation 

was 0.86 for KEGG, 0.85 for GO biological process and 0.92 for GO cellular compartment. 

 

 

Figure 4.3.5   Functional phenotyping of the proteome. The five quantiles (see Figure 4.3.3) 

were separately analyzed for enriched KEGG pathways and clustered for the z-transformed p-

values. The color bar on top represents the quantiles. Representative pathways enriched in the 

protein population of each quantile are annotated. For complete listing of significant 

categories and p-values see Appendix 4.  
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4.3.2.3   Cell growth related proteins are highly expressed in Hepa1-6 

The most prominent cluster of proteins expressed at higher levels in Hepa1-6 relates to cell 

division and encompasses categories such as cell cycle (p < 10
-9

), DNA synthesis (p < 10
-4

) 

and RNA polymerase (p < 10
-3

). This cluster consists of 10 enriched pathways, of which at 

least five relate to increased cell proliferation. Relative expression levels of proteins involved 

in the cell cycle are depicted in Figure 4.3.6. Biologically, this is not surprising since 

hepatocytes in the liver and in our primary culture are largely arrested in the G0 phase of the 

cell cycle, whereas Hepa1-6 cells double every 18 hours. Nevertheless, the fact that this 

phenotypic trait is so clearly grouped in the cluster analysis makes it an excellent positive 

control.  

 

Figure 4.3.6   KEGG pathway mapping of cell cycle. The color bar on top represents the 

quantiles. Proteins that are marked with two colors are likely to represent isoforms. 
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TGFβ-mediated signaling is more highly represented in the Hepa1-6 cell line and the 

canonical members TGFβ R1, Smad2/3, Smad4, p107 and p15 are all up-regulated 

significantly (Figure 4.3.7). This was unexpected because TGFβ  is usually associated with 

growth inhibition whereas Hepa1-6 has increased proliferation rate compared to primary 

hepatocytes. However, the biological actions of TGFβ are complex and it is thought to shift 

from a growth inhibitory to a growth promoting role during cancer development
236

. Thus up-

regulation of this pathway suggests that in the Hepa1-6 tumor cells, TGFβ may have growth 

promoting effects. Taken together, our data indicate that biological functions related to many 

important signaling pathways are well preserved in Hepa1-6.  

 

 

Figure 4.3.7   Proteomics phenotyping at the pathway level. KEGG pathway mapping shows 

that TGFβ signaling pathway is predominantly present in the cell line. 
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4.3.2.4   Proteins relevant to liver functions are highly expressed in primary hepatocytes 

 

Drug metabolizing enzyme families are highly expressed only in primary cells. 

 One of the most enriched categories in the quantile most expressed in primary cells is the 

P450 family of enzymes (p < 10
-16

). These enzymes are mainly involved in metabolizing 

endogenous substances and xenobiotics237, a prototypical function of the liver. We identified 

32 different P450 proteins and 25 of them were down-regulated at least tenfold in the cell line. 

Furthermore, the flavin monooxygenase (FMO), UDG-glucuronosyltransferase (UGT), 

sulfotransferase (SULT), and glutathione S-transferase (GST) - additional prominent drug 

metabolizing enzyme families (DMEs) - were also severely down-regulated in Hepa1-6 

(Appendix 10). Only three P450s were up-regulated. Two of them (CYP1A1 and CYP2S1) 

are known to be regulated by the aryl hydrogen receptor
238, 239

. This receptor was also more 

highly expressed in Hepa1-6, providing a ready explanation for the up-regulation. The third 

up-regulated P450 protein (RIKEN clone E130013F06) has only been characterized on the 

basis of sequence homology and may have functions different from traditional P450 enzymes.  

Reduction of DME activity is a notorious difficulty in toxicological assays in cell lines. 

Toxicologists therefore attempt to stimulate liver cell lines with the aim of boosting DMEs 

activity
240

. Quantitative knowledge of the changes in the profile of DMEs could provide a 

rational basis to adapt cell systems to more closely mimic hepatocytes in vivo. 

 

Proteins related to liver organ context were highly expressed.  

Another prominent and cell-specific function of hepatocytes is production of plasma proteins. 

Figure 4.3.5 reveals that ‘complement and coagulation cascade’ is specific for the primary 

cells (p < 10
-2

). Inspection of the pathway involved (Appendix 11) shows that major liver-

produced factors, such as C3, C4, MBP-C, F2, F5, A2M, Serpin A1/C1 and apolipoproteins 

are down-regulated more than five-fold in Hepa1-6 compared to primary hepatocytes. 

Interestingly, p-value clustering in cellular component category revealed a heavy 

overrepresentation of extracellular matrix (p < 10
-18

) in primary hepatocytes (Appendix 5 and 

8). Apparently, the cell line also shows lower expression of proteins related to communication 

with stroma and with tissue maintenance. Thus, it is likely that loss of tissue context allows 

the cell line to shut down this function, which is nonessential for propagation in culture. 
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Mitochondrial and other metabolic related proteins are highly expressed in primary 

hepatocytes. 

 

In the cellular component p-value clustering, mitochondria are indicated as the most 

overrepresented group in the primary hepatocytes (p < 10
-62

).  

 

 

 

 

Figure 4.3.8   Phenotypic proteome comparison at the pathway level. Mapping of protein 

ratios on the fatty-acid metabolism pathway reveals that almost the entire module is down-

regulated several-fold in Hepa1-6. Proteins are color-coded according to their relative 

expression in the two cell types according to the scheme in Figure 4.3.3. Proteins that are 

marked with two colors are likely to represent isoforms. 
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It is known that hepatocytes contain 1000–2000 mitochondria per cell making up one fifth of 

the cell volume. Consistent with this feature, we identified a large number of mitochondrial 

proteins. The IPI mouse database used in this study contains 990 proteins with mitochondrial 

annotations. A total of 479 mitochondrial proteins study were found in our proteome, 

comprising around 12% of the proteome. Of these identified mitochondrial proteins, 69% 

were in the asymmetric tail of the distribution, indicating they were expressed several fold 

lower in Hepa1-6 cells than in primary hepatocytes. These proteins carry out well known 

mitochondrial functions, such as fatty acid synthesis, β-oxidation, and alcohol metabolism 

(Figure 4.3.8).  

We independently confirmed this observation by DAPI and Mitotracker staining (Figure 

4.3.9).  

 

Figure 4.3.9   Nuclear (DAPI) and mitochondrial (Mitotracker) staining of primary 

hepatocytes and Hepa1-6 cells. Many primary hepatocytes are binuclear
241

.  

 

Indeed, primary hepatocyte nuclei were much smaller whereas in these cells mitochondria 

were much more abundant with respect to Hepa1-6. Concurrent with this, fatty acid 

metabolism was drastically down-regulated in Hepa1-6 according to enrichment analysis of 

KEGG pathways (Figure 4.3.5). Likewise, ‘oxidative phosphorylation’ (p < 10
-29

), ‘urea 

cycle’(p < 10
-4

) and ‘steroid biosynthesis’ (p < 10
-2

) were statistically significantly enriched in 

the quantile most expressed in primary hepatocytes. These down-regulated metabolic 

functions at least partially take place in mitochondria. Conversely, parts of the glycolysis 

pathway were up-regulated in Hepa1-6 (Appendix 12). Together, our results portray a drastic 
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metabolic rearrangement, away from oxidative metabolism in the mitochondria and towards 

less efficient anaerobic metabolism. As discussed further below, these findings provide 

evidence for the Warburg hypothesis, that cancer cells shift towards glycolytic metabolic 

pathways242.  

 

4.3.2.5   Proteins involved in several signaling pathways were expressed to similar 

degrees in primary hepatocytes and Hepa1-6 

In the category containing the 50% of proteins with the least change, many household 

functions and organelles including ribosome (p < 10
-2

), proteasome (p < 10
-3

), splicing (p < 

10
-4

) and Golgi apparatus (p < 10
-3

) are significantly enriched. Interestingly, several signaling 

pathways are also preferentially located in this quantile. These include the ErbB and PI3K 

signaling pathways (Figure 4.3.10). This finding is in agreement with the requirement of 

growth factor containing serum for the maintenance of most cell lines.  

 

 

Figure 4.3.10   Phenotypic proteome comparison at the pathway level. KEGG pathway 

mapping of ErbB and PI3K signaling pathway shows that they are equally present in primary 

cells and the cell line. 
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4.3.2.6   Other observations 

Some categories shared by both cell types and enriched when analyzed using the  KEGG 

database represent  non-liver functions (such as ‘long term potentiation’) or even non-animal 

functions (such as ‘CO2 fixation’).  However, the enzymes found in these categories function 

both in liver tissue as well as in neurons or plants. For example, all identified CO2 fixation 

proteins also function in citric acid cycle. Most identified proteins for long-term potentiation 

are kinases and phosphatases involved in EGF, insulin and other signaling pathways. 

Therefore, overrepresentation of these ‘CO2 fixation’, ‘long term potentiation’ and similar 

categories reflects the still evolving state of annotation of pathway databases rather than a 

limitation of our technology.  

 

4.3.3   Conclusions and discussions 

4.3.3.1    A robust and powerful technique to assess cell type preserved characteristics 

Taking advantage of the ability of SILAC to compare the levels of thousands of proteins in 

different cellular states89, 243 and a novel bioinformatic approach, we have, for the first time, 

compared the proteomes of primary cells to cell lines. The resulting quantitative proteome of 

more than 4,000 proteins had an asymmetric distribution, with many proteins down-regulated 

in the cell line. Bioinformatic analysis of the quantitative proteomics phenotypes revealed that 

Hepa1-6 cells are deficient in mitochondria, reflecting re-arrangement of metabolic pathways, 

drastically up-regulate cell cycle associated functions and largely shut down drug 

metabolizing enzymes characteristic for the liver. This phenotype is ‘rational’ for rapidly 

dividing and not nutrient limited cells and may partly reflect Darwinian selection of cell 

clones.  

Many biological experiments are performed in cell lines since they are readily available and 

readily accessible. The development of tissue culture techniques and establishment of cell 

lines has been ongoing for several decades. However, there are general concerns that cell lines 

may differ from the in vivo situation in important aspects. Cell lines are usually derived from 

tumors and have adapted to growth in culture. Thereby they may lose tissue specific functions 

and acquire a molecular phenotype quite different from cells in vivo. Thus animal experiments 

or studies in primary cell lines are often preferred despite their added complexity. Accurate 

molecular phenotypes to determine if the function to be investigated is preserved in cell lines 

would enable a rational choice of the most appropriate experimental system. In biotechnology 
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and the pharmaceutical industry this goal obtains added urgency in light of efforts to reduce 

animal experimentation to a minimum.  

Here we introduced a straightforward technology to quantify these differences. Our proof-of-

principle study in a mouse liver cell line and their cognate primary cells clearly demonstrated 

drastic functional differences. This quantitative knowledge of proteome changes provides an 

important basis to adapt cell lines to closer resemble physiological conditions. 

Our technology is accurate, relatively rapid and should now allow selection of the appropriate 

cell system based on a global and unbiased profile according to desired biological function. 

Furthermore, it can be used to manipulate the cell line system to better reflect the in vivo 

situation at the proteome level. While we have based our analysis on protein expression levels, 

it could just as well be applied to assess fidelity of signaling pathways in cell lines using 

SILAC-based quantitative and global phosphoproteomics
31

.  

Our analysis differs in important points from the more familiar measurement of mRNA levels 

by microarray and its associated bioinformatics
244

. Even though reproducibility of microarray 

chips has become much better during recent years, the data is not quantitative with respect to 

the final, desired parameter – the global change in protein levels. Furthermore, results of any 

specific transcript on the chip generally have to be validated by RT-PCR and then by 

quantitative immunoblotting. This is impractical for large numbers of proteins. In contrast, 

quantitative proteomics inherently contains the fold-change for each protein, and increasingly 

also that of specific isoforms. The quantitative nature of our results also made it possible to 

directly group overrepresented functions and processes instead of the evaluating the 

transcriptional profile. 

Here we have analyzed interesting, but relatively general phenotypic, traits of two cell 

populations. While many of the resulting observations can be immediately rationalized in 

terms of biological function, they have never been quantified in a global and unbiased way. 

The combination of very high quantitative accuracy at the proteome level with increasingly 

accurate pathway databases should allow even richer assessment of the phenotypic state of 

any cell population in the future. Rapid advances in MS techniques and programming 

algorithms have made label-free quantitation more precise and accurate. Thus the algorithms 

described here may also be applicable to more distantly related proteomes and those that 

cannot be SILAC-labeled.  
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4.3.3.2    Molecular basis of metabolic differences between transformed and non-

transformed cells  

Our observation that mitochondrial proteins are drastically under-represented in transformed 

cells is a rediscovery of an old paradigm: the “Warburg effect”. In normal physiology glucose 

oxidation is composed of two steps: glycolysis in the cytoplasm, and the TCA cycle and 

oxidative phosphorylation in mitochondria. However in tumor cells, this principle of 

metabolism is violated. Back in the 1930s, the German biochemist Otto Warburg discovered 

that cancerous cells had elevated glycolysis and produced more lactic acid even in the 

presence of oxygen. This points out that pyruvate, the end product of glycolysis in most 

normal cells, is processed one step further in the cytoplasm to generate lactic acid, while in 

normal physiology it should be transferred to mitochondria. Warburg’s discovery has been 

confirmed by many reports, as reduced mitochondria content and impaired oxidative 

phosphorylation are seen in various cancer types
245, 246

 and even in slowly growing tumors
247

. 

Below we speculate that some of the alterations observed in our comparison of transformed 

and non-transformed cells shed light on the molecular basis of the Warburg effect. Note 

however, that it is difficult to separate differences between cancer cells and primary cells from 

differences due to adaption to life in cell culture.  

 

Table 4.3.1   Key proteins involved in TCA cycle and glycolysis distribute differently 

between primary hepatocytes and the transformed hepatocytes Hepa1-6. 
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In our proteome wide comparison study, we quantified key enzymes involved in glucose 

metabolic processes (Table 4.3.1). Two pivotal mitochondrial enzymes in the TCA cycle that 

specifically control ATP production
248

, fumarate hydratase and succinate dehydrogenase, are 

down-regulated in transformed cells. In contrast, several enzymes involved in glycolysis were 

over-expressed in Hepa1-6, mainly represented by the key proteins involved in rate-limiting 

steps such as hexokinase, phosphofructokinase, and pyruvate kinase. In fact, hexokinase II 

over-expression in hepatoma represented the first significant insight into the molecular basis 

of “Warburg effect”
249, 250

. It was revealed that hexokinase II directly binds to the 

mitochondrial outer membrane and utilizes mitochondrial ATP to rapidly phosphorylate 

glucose, therefore the first rate-limiting step is overcome and glycolysis is initiated. Tumor 

cells adopt this strategy to ensure a continuous and rapid flux of glycolysis. 

Glycolysis and oxidative phosphorylation are the two major ATP generating pathways within 

cells. While glycolysis alone can generate two ATP molecules, the complete oxidation of 

glucose via glycolysis and oxidative phosphorylation can generate much more - 36 molecules 

ATP. Apparently mitochondria are much more efficient in producing energy. Energy is in 

constant demand for the rapid proliferation of tumor cells. But what are the reasons for tumor 

cells to favor the less efficient energy generating pathway?  

One significant factor is the shrinkage of mitochondria in neoplasm
251, 252

. We observed that 

over 60% of mitochondrial proteins were under-expressed by at least two-fold in the 

transformed cells (Hepa1-6) compared to non-transformed primary cells. This is in good 

agreement with our fluorescent staining that mitochondria are drastically reduced (Figure 

4.3.9).  

Furthermore, accumulated mutations in mitochondrial DNA (mtDNA) often lead to deficient 

respiration and ATP generation in neoplasm
249

. One of the causes of mtDNA damage is the 

side product of oxidative phosphorylation, the reactive oxygen species (ROS). ROS damages 

several enzymes involved in the TCA cycle, such as aconitase
253

. In normal physiology 

reduction of superoxide is carried out by enzymes. Hydrogen peroxide (H2O2) is slowly 

reduced to water by glutathione peroxidase in mitochondria and by peroxisomal enzyme 

catalase in the cytosol249. In our study we observed that the mitochondrial enzyme glutathione 

peroxidase was down-regulated by half in transformed hepatocytes. Therefore it is possible 

that accumulated ROS contributed to the mitochondrial dysfunction and shrinkage in the 

transformed cell line Hepa1-6. As a consequence, the impaired mitochondrial functions may 

contribute to force tumor cells into a switch in the metabolic network.  
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A third significant factor contributing to the metabolic switch is the oxygen deficiency in the 

tumor microenvironment. Rapid proliferation drives tumor cells away from blood vessels, and 

the relatively slow vascularization usually causes a suppressed oxygen supply. As oxygen is 

the ultimate receiver of electrons in oxidative phosphorylation, this hypoxic environment 

hinders execution of this cellular respiration process.   

While the “Warburg effect” reflects the distortion of homeostasis in the whole tumor system, 

it actually represents single cell Darwinian evolution. Tumor cells need to develop an 

alternative strategy to meet the needs of rapid proliferation, growth and survival, and invasion 

to other tissues. The “Warburg effect” can confer a number of benefits to tumor cells. First, it 

provides building blocks for synthesizing biomolecules. The elevated glycolysis and its 

derivative pentose phosphate pathway can generate a large amount of carbon precursors for 

the synthesis of nucleic acids, phospholipids, fatty acids, cholesterol, porphyrins, and so on. 

Second, lactic acid production can regenerate NAD+ from NADH and therefore equilibrate 

the initial conditions for glycolysis. Furthermore it creates an acidic environment where tumor 

cells may be less exposed to attack of the immune system.  

As the “Warburg effect” is apparently very beneficial for tumor development, cells use other 

strategies to promote and strengthen this metabolic switch. Growth factor signaling pathways 

are often reported to be hyper-active in various tumor types. Besides their canonical functions 

of enhancing cell proliferation and survival, some of the RTK signaling proteins also 

influence metabolism. For instance, Ras, PI3K, Akt and BCR-ABL are able to promote 

glycolysis
248

. In the absence of oxygen, HIF-1 increases the expression of most glycolytic 

enzymes and glucose transporters GLUT1 and GLUT3
254

. Consistent with these previous 

findings, our study revealed over-expression of several growth factor signaling proteins in 

cancer cells (Table 4.3.2).  

 

Table 4.3.2   Key proteins involved in cancer development and upregulated in Hepa1-6. 
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Enhanced glycolysis is one of the fundamental principles shared by various tumor types. The 

accumulating knowledge of its molecular basis has lead to the development of glycolysis 

inhibitors for cancer therapy
248

. The strength of this strategy lies in its applicability to all 

tumor cells, which bypasses the difficulty of cancer heterogeneity. Heterogeneity is a 

notorious feature of cancer. Different types of cancer possess multiple genetic and epigenetic 

alterations. Even within the same type of cancer, malignant cell populations may contain 

diverse genetic alterations. This genetic instability can evolve over time, leading to ever 

higher degree of heterogeneity. Therefore target-specific drugs may function only partially in 

clinics. In contrast, a direct attack on the common weakness of all tumor cells, i.e. a heavy 

reliance on glycolysis, may simultaneously suppress various tumor types. As healthy cells can 

consume other energy fuels, such as protein and lipid, glycolysis inhibition may not induce an 

adverse effect in these cells, reducing potential side effects. However, cautions should still be 

exercised as there are indeed organs which employ glucose as a major source of energy. These 

organs include the brain, retina, and testis. For this reason, this inhibition therapy has to be 

adjusted precisely and evaluated thoroughly.  

To date, a few inhibitor compounds targeting glycolysis pathway have been under 

evaluation
248

. 2-Deoxyglucose, a glucose analog competing as hexokinase substrate, and 

lonidamine which inhibits the kinase activity of hexokinase, have both entered clinical trials. 

Therefore it is likely that in the future, glycolysis inhibition compounds will be applied in 

clinical therapy and contribute to cancer treatment. 

  



Perspectives 

121 

 

5 Perspectives 

Even though the current work flow of quantitative mass spectrometry in cell line studies will 

continue to contribute to various topics in cancer research, it is foreseeable that future 

directions will move towards analysis of real clinical samples. Technology innovations will be 

required to fulfill this task. They can come from three major directions: 

 

1. Innovations in proteomics technique 

Clinical samples often come from limited sources. Proteomics technique will have to adjust to 

decreased sample amounts. Currently, in our laboratory a minimum of ten micrograms of 

proteins are required for proteome mapping while for phosphoproteome analysis one 

milligram is generally needed. Therefore there is an urgent need to improve the performance 

of chromatographic separation and mass spectrometry in analyzing low abundance proteins, 

especially in post-translational modifications studies. 

 

2. Innovations in biological research models for proteomics studies 

For convenience and reproducibility, cell line models are regularly used to study cancer. 

However, these ex vivo systems cannot fully represent in vivo conditions. For example, tissue 

context is lost as single cell populations are cultivated in solid plastic dishes. Oxygen 

concentration is significantly increased in cell culture incubators compared to normal 

physiology. As a worse case, hypoxia is a common condition for tumor cell growth, which 

entails further decreased oxygen concentration. Therefore there is a need to improve the 

current models for cancer research. For example, studies on primary cells will become more 

prevalent in the future. Three-dimensional cell culture systems are already frequently used, 

such as Matrigel. Analysis will be more frequently performed on biopsy samples. In this 

regard, protein quantitation can be carried out using the corresponding SILAC labeled cell 

line as an internal standard. In the long run, label-free quantitative mass spectrometry will 

become more robust and may be the method of choice for quantitative proteomics for patient 

samples.  
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3. Innovations in computational biology 

Data mining will become even more important with the advent of more large scale datasets. 

Individual difference should be minimized among patient samples and the significant factors 

contributing to the disease should be highlighted. Integration of various “omics” data will 

certainly improve data mining and reveal valuable biological information at the systems level. 

Mathematical modeling will play an important role, and it may already be widely used in a 

few years from now. 
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Appendix 

Appendix 1   Dendrogram of the human kinome. From Science (New York, N.Y 298, 1912-1934 (2002). 
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Appendix 2   χ
2
-test to assess enriched kinase motifs in the Hepa1-6 

phosphoproteome from project 1. 

 

  

motif kinase 

class 1 

(observed) 

class 1 

(expected) 

class 1  

(chi-square) 

R.p[ST] PKA 414 236.5 141.21 

R[RK].p[ST] PKA 220 27 1388.57 

KR..p[ST] PKA 82 13.6 345.14 

S..p[ST] CK1 502 357.2 64.19 

[ST]...pS CK1 716 523.8 82.02 

p[ST]..E CK2 772 290.4 858.34 

pS...S GSK3 502 319.7 113.67 

p[ST]P.[RK] CDK2 265 29.5 1893.37 

R..p[ST] CAMK2 817 236.5 1510.35 

R..p[ST]V CAMK2 41 14.3 50.02 

P.p[ST]P ERK 261 16 3765.95 

V.p[ST]P ERK 59 15.6 121.19 

PEp[ST]P ERK 11 1.1 89.12 

R[RST].p[ST].[ST] AKT 134 6.5 2504.87 

R.R..p[ST] AKT 164 13.4 1698 

R..p[ST].R PKC 7 13.4 3.07 

[LVI].[RK]..p[ST] PKD 236 96.9 204.42 

[IEV]pY[EG][EDPN][IVL] LCK 1 0.1 8.11 

[IVL]pY..[PF] ABL 10 1.7 41.35 

[ED]..pY..[DEAGST] SRC 5 3.8 0.4 

pY..[ILVM] ALK 26 18.7 3.68 

[DPSAEN].pY[VLDEINP] EGFR 20 12.8 4.79 

p[ST]P.[KR] CDK1 265 29.5 1893.37 

p[ST]P[KR] CDK1 166 29.5 636.09 

[RK].p[ST][ILV] Aurora 133 96.9 13.77 

[RKN]R.p[ST][MILV] Aurora-A 61 8 351.8 

[DE].p[ST][VILM].[DE] PLK 13 12.9 0 

[ED].p[ST][FLIYWVM] PLK1 73 147.1 38.69 

L..p[ST] NEK6 272 412.8 53.29 

L.R..p[ST] CHK1/2 108 23.4 307.58 

[MILV].[RK]..p[ST] CHK1 260 107.4 222.54 

F..Fp[ST][FY] PDK1 2 0.4 6.4 

[FLM][RK][RK]p[ST] NIMA 13 8.6 2.26 
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Appendix 3 A   Motif extraction for serine phosphorylation (Hepa1-6 

phosphoproteome from project 1) by Motif-X algorithm.  

Motif Motif Score Foreground Matches Foreground Size Fold Increase 

R-X-X-pS-P-X-P 37.77 40 3653 20.02 

pS-P-X-K 31.95 116 3613 10.27 

K-X-X-X-X-P-X-pS-P 37.35 22 3497 23.48 

P-X-pS-P 27.79 182 3475 7.14 

R-X-X-pS-P 27.51 98 3293 8.63 

pS-P-X-R 26.40 85 3195 8.39 

pS-D-X-E-X-E 41.56 67 3110 37.98 

pS-P-X-X-X-X-K 24.58 65 3043 8.44 

R-X-R-X-X-pS-X-S 36.55 41 2978 14.04 

D-pS-E-X-E 44.40 49 2937 29.84 

K-X-X-X-X-X-pS-P 23.51 55 2888 8.41 

R-R-X-pS 32.00 115 2833 8.96 

D-X-pS-D-X-E 38.53 35 2718 40.63 

R-X-X-X-pS-P 20.95 51 2683 7.17 

pS-D-X-E-D 39.39 32 2632 40.83 

E-pS-E-X-E 39.08 33 2600 22.81 

G-X-X-pS-P 20.90 62 2567 6.56 

R-S-X-pS-X-X-X-L 35.09 25 2505 17.89 

G-X-X-pS-P 20.90 62 2567 6.56 

pS-D-X-E 32.00 98 2480 12.39 

L-X-R-S-X-pS 29.68 23 2382 16.59 

K-X-X-pS-P 20.44 38 2359 7.67 

R-X-R-X-X-pS 25.76 67 2321 7.76 

R-X-X-pS-X-S 32.00 79 2254 6.63 

pS-P 16.00 362 2175 3.85 

D-pS-D-X-D 43.13 38 1813 50.56 

E-X-X-pS-E-X-E 37.47 23 1775 26.10 

pS-X-E-D 32.00 74 1752 9.30 

pS-X-D-E 32.00 53 1678 10.71 

R-X-X-pS-X-D 22.75 32 1625 9.44 

pS-X-X-E-X-E 26.65 51 1593 6.12 

pS-X-X-S-X-X-E 28.09 54 1542 4.92 

R-K-X-pS 23.75 36 1488 9.05 

pS-D-X-D 28.72 43 1452 10.75 

pS-X-E-E 26.85 49 1409 5.75 

K-R-X-pS 32.00 45 1360 10.42 

R-X-X-pS-X-P 21.63 32 1315 7.53 

pS-E-X-D 24.12 32 1283 8.30 

R-R-pS 25.61 33 1251 7.64 

R-X-X-pS 16.00 125 1218 2.87 

D-pS-X-D 25.39 27 1093 9.95 

R-X-X-S-X-X-pS 27.19 43 1066 5.80 

R-pS-X-S 24.92 35 1023 5.93 

pS-X-X-X-E-D 21.84 29 988 7.05 

pS-X-X-E-D 21.68 25 959 8.18 

D-S-X-pS 18.25 24 934 5.09 

pS-L-D 15.89 20 910 4.93 

pS-X-S-D 16.18 24 890 6.22 

G-pS 10.78 118 866 1.91 

pS-S-P 15.20 32 748 4.49 

K-pS 9.72 77 716 2.19 

S-X-X-pS 8.46 119 639 1.72 

pS-X-X-X-X-X-D 9.63 58 520 2.51 

pS-X-D 6.80 42 462 2.44 
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E-pS 7.32 53 420 2.24 

pS-L 5.34 71 367 1.71 

S-X-pS 4.64 52 296 1.80 

pS-X-X-X-X-P 4.93 35 244 2.19 

pS-X-S 4.44 39 209 1.96 

R-pS 4.87 24 170 2.65 

R-X-pS 4.18 20 146 2.66 

 

 

Appendix 3 B    Motif extraction for threonine phosphorylation (Hepa1-6 phospho-

proteome from project 1) by Motif-X algorithm. 

Motif Motif Score Foreground Matches Foreground Size Fold Increase 

pT-P-P 22.24 33 427 14.18 

P-X-pT-P 20.67 29 394 11.72 

pT-P 16.00 95 365 4.75 

pT-X-X-E 10.70 50 270 2.86 

pT-X-P 8.03 38 220 2.80 

pT-X-X-D 9.66 33 182 3.57 

R-X-X-pT 5.65 24 149 2.93 

S-X-pT 4.91 27 125 2.43 
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Appendix 4      Primary hepatocyte vs. Hepa1-6 cell line Sample 1 enriched KEGG 

pathway categories clustered. Five quantiles according to Figure 4.3.3 were accessed.  
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Appendix 5   Primary hepatocyte vs. Hepa1-6 cell line Sample 1 enriched GO 

cellular component categories clustered. Five quantiles according to Figure 4.3.3 were 

accessed. 
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Appendix 6   Primary hepatocyte vs. Hepa1-6 cell line Sample 1 enriched GO 

biological processes categories clustered. Five quantiles according to Figure 4.3.3 

were accessed. 
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Enlarged Appendix 6 
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Appendix 7      Primary hepatocyte vs. Hepa1-6 cell line Sample 2 enriched KEGG 

pathway categories clustered. Five quantiles according to Figure 4.3.3 were accessed. 
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Appendix 8   Primary hepatocyte vs. Hepa1-6 cell line Sample 2 enriched GO 

cellular component categories clustered. Five quantiles according to Figure 4.3.3 were 

accessed.
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Appendix 9   Primary hepatocyte vs. Hepa1-6 cell line Sample 2 enriched GO 

biological processes categories clustered. Five quantiles according to Figure 4.3.3 

were accessed. 
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Enlarged Appendix 9 
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Appendix 10    Protein ratios for drug metabolizing enzymes in proteome comparison of primary hepatocyte vs. Hepa1-6 cell line 

(project 3). 

 

Family Protein Names Uniprot ID Number of  

peptides 

Number of 

unique peptides 

Ratio H/L 

Normalized 

Ratio H/L 

Count 

Cytochrome P450s 

CYP 1A2 P00186 9 5 0.07 3 

CYP 27 Q9DBG1 13 13 0.02 23 

CYP 2A12 P56593 24 21 0.04 29 

CYP 2A4 P15392 5 1 0.07 4 

CYP 2B19 O55071 6 1 0.01 3 

CYP 2B20 Q62397 16 11 0.09 17 

CYP 2C29 Q64458 11 6 0.04 12 

CYP 2C37 P56654 9 1 0.05 4 

CYP 2C40 P56657 6 6 0.03 10 

CYP 2C44 Q3UEM4 3 3 0.14 2 

CYP 2C54 Q6XVG2 9 2 0.01 1 

CYP 2C70 Q91W64 17 17 0.07 9 

CYP 2D10 P24456 12 4 0.02 16 

CYP 2D26 Q8CIM7 16 12 0.02 22 

CYP 2D9 P11714 10 6 0.02 7 

CYP 2E1 Q05421 10 10 0.03 7 

CYP 2F2 P33267 22 22 0.03 31 

CYP 2J5 O54749 3 3 0.03 3 

CYP 39A1 Q9JKJ9 3 3 0.07 3 

CYP 3A11 Q64459 4 4 0.04 3 

CYP 3A13 Q64464 6 6 0.06 12 

CYP 4A12 Q91WL5 11 11 0.07 8 

CYP 4F13 Q99KY6 2 2 0.18 2 
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CYP 4F14 Q9EP75 2 2 0.02 2 

CYP 4V3 Q9DBW0 6 6 0.03 7 

CYP 7B1 Q60991 10 10 0.07 15 

CYP, 2D22 Q91W87 9 5 0.02 5 

CYP, family 51 Q8BSQ7 4 4 0.11 3 

NADPH--CYP reductase P37040 17 17 0.44 50 

CYP 2S1 Q9DBX6 7 7 6.54 12 

CYP 1A1 P00184 10 6 0.79 21 

RIKEN clone: E130013F06 Q80Y48 4 4 1.92 8 

 

Flavin monooxygenase Flavin containing 

monooxygenase 5 

P97872 8 8 0.028 10 

 

UDP-

glucuronosyltransferase 

UGT 1-9 Q62452 6 3 0.028 5 

UGT 1-6 Q64435 12 3 0.02 16 

UGT 1-1 Q63886 10 7 0.031 16 

UGT 2B5 P17717 11 2 0.067 15 

RIKEN clone:C730026L17, 

similar to UGT 2B5 

Q3UEI8 8 5 0.01 2 

RIKEN clone:C730009A09, 
UGT 2 family 

Q3UEC9 12 8 0.014 14 

 

Sulfotransferase 

Arylsulfotransferase ST1A4 P52840 10 10 0.019 24 

Estrogen sulfotransferase, 

testis isoform 

P49891 2 2 0.04 1 

Sulfotransferase family 

cytosolic 1B member 1, 

Q9QWG7-1 4 4 0.167 2 

Tyrosine-ester 

sulfotransferase 

O35401 7 7 0.024 12 

RIKEN clone:A530080C09 Q8BGL3 11 11 0.017 19 

Heparan sulfate 2-O-

sulfotransferase 1 

Q8R3H7 1 1 1.788 1 

 

glutathione S-

transferase 

GST A2, A1, alpha 1, alpha 2 P10648;P13745; 6 3 0.034 4 

GST alpha 1, alpha 2 Q6P8Q0;Q6P8Q1; 6 3 0.034 4 

GST A3 P30115 10 7 0.008 50 
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GST A4 P24472 5 4 0.025 8 

GST kappa 1 Q9DCM2 14 14 0.016 29 

GST Mu 1 P10649 20 13 0.046 134 

GST Mu 2 P15626 15 8 0.47 40 

GST Mu 3 P19639 12 5 0.054 9 

GST P 1;GST P 2; P19157;P46425 15 14 0.033 196 

GST A3 P30115 10 7 0.008 50 

GST A4 P24472 5 4 0.025 8 

GST kappa 1 Q9DCM2 14 14 0.016 29 

GST Mu 1 P10649 20 13 0.046 134 

GST Mu 2 P15626 15 8 0.47 40 

GST Mu 3 P19639 12 5 0.054 9 
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Appendix 11   KEGG pathway mapping of "complement and coagulation pathways" for 

proteome comparison of primary hepatocyte vs. Hepa1-6 cell line (project 3). 
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Appendix 12   KEGG pathway mapping of "glycolysis" for proteome comparison of primary 

hepatocyte vs. Hepa1-6 cell line (project 3). 
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