
 

 

Development and Application of a Model Interface  

To couple Land Surface Models with Regional Climate Models 

For Climate Change Risk Assessment 

In the Upper Danube Watershed  
 

 

 

Dissertation 
der Fakultät für Geowissenschaften 

der Ludwig-Maximilians-Universität München 

 

 

 

 
 

 

 

vorgelegt von: 

Thomas Marke 

aus München 

 

 

Eingereicht am: 04.08.2008 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Gutachter:   Prof. Dr. Wolfram Mauser 
2. Gutachter:   Prof. Dr. Karsten Schulz 
 
 
Tag der mündlichen Prüfung: 10.10.2008 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
„Alle reden vom Wetter, aber keiner unternimmt was dagegen.“ 

Karl Valentin (1882-1948) 
 



 

  



Preface 

 

PREFACE 

In the last decades regional climate models (RCMs) have proven their ability to provide 

valuable information about potential future changes in the earth’s climate system. Research 

projects like GLOWA-Danube (Global Change of the Water Cycle) are given the possibility to 

utilize RCM simulations as meteorological drivers for land surface model components. To 

adequately describe all sorts of water fluxes in the research area of the Upper Danube 

watershed the different components of the interdisciplinary DANUBIA model require data in 

high spatial and temporal resolution. While the latter can be satisfactorily provided by most 

RCMs, the spatial resolution at which atmospheric processes can be resolved is 

computationally limited to at best 10 x 10 km at present. A clear need has been identified to 

develop appropriate methods to bridge the gap between RCMs and high resolution land 

surface models. The application of such downscaling techniques is in particularly necessary 

in highly complex terrain, where the limited spatial resolution of RCM simulations does not 

fully capture the natural climatic variability. In the present work a model interface has been 

developed that provides adequate scaling techniques to overcome the mismatch between 

the model scales permitting the investigation of climate change impacts at regional to local 

scales. 

Besides the downscaling of meteorological simulations, the coupler scales up fluxes 

calculated at the land surface and provides the aggregated fluxes as inputs for the RCMs. As 

the latter allows to consider the nonlinearity and complexity of the interactions between the 

atmosphere and the land surface as well as the mutual dependency of the respective 

processes at the investigated scale the approach can be expected to contribute to a better 

understanding of the complex land-atmosphere-system. A comprehensive description of the 

implemented algorithms is given. Further first results of one-way coupled model runs using 

the regional climate model REMO to simulate the atmosphere and the hydrological model 

PROMET to describe all hydrological relevant processes at the land surface are presented. 

By comparing the results achieved for a potential future climate to those achieved for past 

climate conditions the climate change impact on the water resources is analyzed. 

The model interface SCALMET has been developed in the framework of the GLOWA-

Danube Project at the Ludwig-Maximilians-University in Munich. The financial funding of 

GLOWA-Danube by the German Ministry of Education and Research (BMB+F) is gratefully 

acknowledged.  

At this point, I want to take the chance to thank all those people who have directly or 

indirectly contributed to the successful fulfillment of this work. First of all, I would like to 

express my deepest gratefulness to my supervisor and doctor father Prof. Dr. Wolfram 

Mauser. He not only gave me the opportunity to work in the fascinating field of coupled land-
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atmosphere modeling after my graduation, but supported me for the whole duration of my 

work. His inspiring comments as well as the confidence he placed in me enabled me to 

develop and realize my own ideas. Beyond his support in the process of this thesis, I was 

given the opportunity to gain valuable experience by giving student courses and organizing 

field trips. Finally, I would like to thank him for the excellent working conditions as well as for 

the technical infrastructure I was provided. Both have been fundamental for the successful 

outcome of this work.  

For taking on the second review of this work, I want to express my deepest gratefulness to 

Prof. Dr. Karsten Schulz. 

As an interdisciplinary work can only be successfully realized with interdisciplinary support, 

my special thanks go to my project partners in the field of atmospheric science. I would like 

to thank Dr. Daniela Jacob for providing me the climate model simulations used in the 

framework of this work. I further thank her and the whole REMO developer team at the MPI-

M (Dr. Sven Kotlarski, Holger Göttel, Swantje Preuschmann, Dr. Susanne Pfeifer and Dr. 

Stefan Hagemann) for the invaluable insights in the regional climate model REMO. Cordial 

thanks also go to Dr. Günther Zängl and Andreas Pfeiffer who kept supporting me with 

meteorological advice and expert knowledge concerning the regional climate model MM5. 

Further, I would like to thank all other project partners whose names are not mentioned here 

explicitly for the valuable insights into their disciplines and their willing cooperation.  

Apart from the developers of the meteorological model components I would like to thank all 
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Waldmann should be explicitly mentioned here. Thank you for all your support and the 
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colleagues at the institute for the excellent working atmosphere. Special thanks go to Dr. 

Alexander Löw, Dr. Ulrich Strasser and Dr. Florian Siebel, who have always helped me out 

with scientific advice even when they were very busy themselves. For the supply of 

meteorological data I want to thank Ruth Weidinger and Andrea Reiter, in particular.  

I would also like to thank my office roommates Tobias Hank, Mathias Bernhardt and Florian 

Zabel for the very special atmosphere and all the valuable discussions in our office.  

 

Finally, my thanks go to all my friends who encouraged me to take on and complete this 

thesis and, particularly, to my parents and my girlfriend Stefanie Mayer for their loyal and 

unlimited support, patience and understanding. Above all I want to thank my mum for all that 

she is and for all that she does. It is her I want to dedicate this work to. 



Table of Contents 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................................................. I 

LIST OF TABLES ............................................................................................................................................ VII 

LIST OF ACRONYMS .................................................................................................................................... VIII 

LIST OF SYMBOLS .......................................................................................................................................... X 

SUMMARY ................................................................................................................................................. XVI 

1  INTRODUCTION ..................................................................................................................................... 1 

1.1  THE ROLE OF NUMERICAL MODELS IN CLIMATE CHANGE RESEARCH ......................................................................... 1 

1.2  STATE OF THE ART ........................................................................................................................................... 2 

1.2.1  General Characteristics Of Climate Models ....................................................................................... 2 

1.2.2  Effects of a limited spatial resolution................................................................................................. 4 

1.2.3  Downscaling Techniques .................................................................................................................... 5 

1.3  GLOWA‐DANUBE .......................................................................................................................................... 9 

1.4  MOTIVATION OF THIS THESIS ........................................................................................................................... 11 

2  THE UPPER DANUBE WATERSHED ........................................................................................................ 15 

2.1  CLIMATE ..................................................................................................................................................... 16 

2.2  HYDROLOGY ................................................................................................................................................ 18 

2.3  GEOMORPHOLOGY AND GEOLOGY ................................................................................................................... 20 

2.4  SOILS ......................................................................................................................................................... 21 

2.5  VEGETATION ................................................................................................................................................ 22 

2.6  SOCIO‐ECONOMIC ASPECTS ............................................................................................................................ 23 

3  THE COUPLED MODEL SYSTEM ............................................................................................................ 25 

3.1  THE HYDROLOGICAL MODEL PROMET ............................................................................................................ 25 

3.1.1  The Meteorology Component .......................................................................................................... 26 

3.1.2  The Land Surface Energy and Mass Balance Component ................................................................ 31 

3.1.3  The Vegetation Component ............................................................................................................. 31 

3.1.4  The Snow and Ice Component .......................................................................................................... 32 

3.1.5  The Soil Hydrological and Soil Temperature Component ................................................................. 33 

3.1.6  The Groundwater Component ......................................................................................................... 33 

3.1.7  The Channel Flow Component ......................................................................................................... 34 

3.1.8  The Man‐Made Hydraulic Structures Component ........................................................................... 34 

3.2  THE REGIONAL CLIMATE MODEL REMO .......................................................................................................... 35 

3.3  THE MODEL COUPLING TOOL SCALMET ......................................................................................................... 39 

 



Table of Contents 

 

4  THE SCALING OF METEOROLOGICAL VARIABLES IN SCALMET ............................................................... 42 

4.1  GENERAL DOWNSCALING PRINCIPLES IN SCALMET ............................................................................................ 42 

4.1.1  Direct Interpolation Methods .......................................................................................................... 43 

4.1.2  Regression Based Remapping .......................................................................................................... 49 

4.1.3  Submodel Approach ......................................................................................................................... 53 

4.1.4  Conservation of Mass and Energy between the Model Scales ........................................................ 55 

4.2  DOWNSCALING THE INDIVIDUAL METEOROLOGICAL VARIABLES .............................................................................. 56 

4.2.1  Solar Zenith Angle ............................................................................................................................ 57 

4.2.2  Air Temperature ............................................................................................................................... 57 

4.2.3  Air Humidity ..................................................................................................................................... 61 

4.2.4  Precipitation .................................................................................................................................... 65 

4.2.5  Incoming Shortwave Radiation ........................................................................................................ 69 

4.2.6  Incoming Longwave Radiation ........................................................................................................ 72 

4.2.7  Wind Speed ...................................................................................................................................... 75 

4.2.8  Surface Pressure .............................................................................................................................. 79 

4.2.9  Method Discussion ........................................................................................................................... 80 

4.3  UPSCALING OF LAND SURFACE MODEL OUTPUTS ................................................................................................ 81 

5  APPLICATION TO PAST CLIMATE CONDITIONS ...................................................................................... 83 

5.1  VALIDATION OF THE LAND SURFACE MODEL PROMET ........................................................................................ 83 

5.2  EVALUATION OF THE SCALING METHODS IN SCALMET ....................................................................................... 85 

5.2.1  Meteorological Method Comparison ............................................................................................... 86 

5.2.2  Hydrological Method Comparison ................................................................................................. 102 

5.3  COUPLED MODEL RUNS FOR PAST CLIMATE CONDITIONS ................................................................................... 109 

5.3.1  Choice of Remapping Methods ...................................................................................................... 110 

5.3.2  Model Results ................................................................................................................................ 111 

6  APPLICATION TO CLIMATE PROJECTIONS ........................................................................................... 127 

6.1  THE IPCC SCENARIOS ................................................................................................................................. 127 

6.2  THE A1B SCENARIO – METEOROLOGICAL CONDITIONS IN THE UPPER DANUBE WATERSHED ..................................... 129 

6.2.1  Temperature .................................................................................................................................. 130 

6.2.2  Precipitation .................................................................................................................................. 133 

6.3  THE A1B SCENARIO – HYDROLOGICAL IMPACT IN THE UPPER DANUBE WATERSHED ................................................ 137 

6.3.1  Evapotranspiration ........................................................................................................................ 138 

6.3.2  Snow Hydrology ............................................................................................................................. 141 

6.3.3  Area Runoff and River Discharge ................................................................................................... 143 

7  CONCLUSION AND OUTLOOK ............................................................................................................ 149 

8  REFERENCES ...................................................................................................................................... 157 



Table of Contents 

 

9  APPENDIX ......................................................................................................................................... 172 

A‐1:   EQUATIONS USED TO CONVERT BETWEEN DIFFERENT FORMS OF AIR HUMIDITY ........................................................ 172 

A‐2:   TEMPERATURE‐ELEVATION DEPENDENCE AS REFLECTED IN THE STATION OBSERVATIONS USED FOR THE 

DETERMINATION OF MONTHLY LAPSE RATES FOR THE UD .................................................................................... 174 

A‐3:   DEWPOINT TEMPERATURE‐ELEVATION DEPENDENCE AS REFLECTED IN THE STATION OBSERVATIONS USED FOR THE 

DETERMINATION OF MONTHLY LAPSE RATES FOR THE UD .................................................................................... 176 

A‐4:   SCALMET INPUT FILE CONTAINING THE REQUIRED REMAPPING PARAMETERS ......................................................... 178 

A‐5:   INCOMING LONGWAVE RADIATION FOR THE REFERENCE RUN AND THE SCENARIO RUN .............................................. 179 

A‐6:   INCOMING SHORTWAVE RADIATION FOR THE REFERENCE RUN AND THE SCENARIO RUN ............................................ 180 

A‐7:   THE METEOROLOGICAL STATIONS USED FOR THE EVALUATION OF THE REMAPPING TECHNIQUES IN SCALMET ............... 181 

A‐8:   MAE STATISTIC FOR ALL STATIONS USED WITHIN THE EVALUATION OF TEMPERATURE REMAPPINGS .............................. 182 

A‐9:   MAE STATISTIC FOR ALL STATIONS USED WITHIN THE EVALUATION OF PRECIPITATION REMAPPINGS .............................. 184 

A‐10:  MAE STATISTIC FOR ALL STATIONS USED WITHIN THE EVALUATION OF WIND SPEED REMAPPINGS ................................. 186 

10  CURRICULUM VITAE .......................................................................................................................... 188 

 

 

 

 

 

 

 

  



List of Figures 

 

i 
 

LIST OF FIGURES 

Fig. 1.1:   Schematic representation of the structure and the basic characteristics of a climate model _______ 3 

Fig. 1.2:   Representation of land surface heterogeneities following the tile approach  ___________________ 4 

Fig. 1.3:   Schematic diagram of the time‐slice technique __________________________________________ 6 

Fig. 1.4:   Schematic diagram of the statistical downscaling approach ________________________________ 7 

Fig. 1.5:   Schematic overview of the decision support system DANUBIA ______________________________ 9 

Fig. 1.6:   The integrative model approach in GLOWA‐Danube _____________________________________ 10 

Fig. 1.7:   Schematic diagram of the coupled model system _______________________________________ 12 

Fig. 1.8:   Representation of different land cover types in different spatial resolutions __________________ 13 

Fig. 2.1:   The Danube watershed and the Upper Danube watershed together with the main tributaries 

of the Danube river _______________________________________________________________ 15 

Fig. 2.2:   Average summer and winter precipitation in the Upper Danube watershed for the 

hydrological years 1971‐2000  ______________________________________________________ 16 

Fig. 2.3:   Annual mean temperature and average number of days with snow cover in the Upper 

Danube watershed for the hydrological years 1971‐2000 _________________________________ 17 

Fig. 2.4:   River network and major water bodies in the Upper Danube watershed _____________________ 19 

Fig. 2.5:   Hydrogeologic profile of the Upper Danube watershed ___________________________________ 20 

Fig. 2.6:   Topography and simplified hydrogeology of the Upper Danube watershed ___________________ 21 

Fig. 2.7:   The Upper Danube watershed and its major cities, its traffic network and water ways and 

the countries sharing and surrounding the catchment  ___________________________________ 23 

Fig. 3.1:   Schematic diagram of the different components and interfaces in PROMET  __________________ 25 

Fig. 3.2:   The network of meteorological stations used for the generation of meteorological 

distributions in PROMET ___________________________________________________________ 27 

Fig. 3.3:   Temporal interpolation of rainfall over the time past between the observations for the two 

categories of long and short rain events  ______________________________________________ 28 

Fig. 3.4:   The origins of the regional climate model REMO and schematic illustration of a hybrid 

vertical coordinate system _________________________________________________________ 35 

Fig. 3.5:   The one‐way double nesting model setup used for the REMO simulations ____________________ 36 

Fig. 3.6:   The model domain of the regional climate model REMO together with the Upper Danube 

watershed representing the model domain of the land surface model PROMET _______________ 38 

Fig. 3.7:   Schematic diagram of the coupled model system together with the inputs needed for the 

remapping in SCALMET and the outputs optionally given out by the coupler __________________ 41 

Fig. 4.1:   Representation of topography in the Upper Danube watershed at different spatial 

resolutions ______________________________________________________________________ 42 

Fig. 4.2:   The general quadrilateral grid structure of the bilinear interpolation process _________________ 44 

Fig. 4.3:   Example of two overlapping quadrilateral grids  ________________________________________ 47 



List of Figures 

 

ii 
 

Fig. 4.4:   Directly interpolated REMO control run temperature using the conservative, bilinear and 

inverse distance weighted interpolation scheme ________________________________________ 49 

Fig. 4.5:   The different steps in the process chain of the regression based scaling approach shown by 

the example of temperature remappings ______________________________________________ 53 

Fig. 4.6:   The different steps in the process chain of the submodel approach shown by the example of 

shortwave radiation ______________________________________________________________ 54 

Fig. 4.7:   The temperature‐elevation dependence in REMO control run simulations for two model time 

steps in the year 1982 _____________________________________________________________ 58 

Fig. 4.8:   The two‐layer atmosphere in SCALMET _______________________________________________ 59 

Fig. 4.9:   The elevation dependence of monthly mean air temperature for December and June  __________ 60 

Fig. 4.10:  The dewpoint temperature‐elevation dependence for a model time step in the year 1982 _______ 62 

Fig. 4.11:  The elevation dependence of monthly mean dewpoint temperature for December and June _____ 63 

Fig. 4.12:  REMO air humidity, remapped air humidity achieved using the constant lapse rate approach 

and remapping result using the regression based remapping for a model time step in the 

year 1982  ______________________________________________________________________ 65 

Fig. 4.13:  Precipitation‐elevation dependence in REMO control run simulations and frequency 

distribution of simulated precipitation for a model time step in the year 1982  ________________ 66 

Fig. 4.14:  Process chain in the determination of monthly precipitation adjustment factors for the model 

domain shown for the month of June _________________________________________________ 68 

Fig. 4.15:  Monthly precipitation adjustment factors derived for the Upper Danube watershed together 

with those used by LISTON AND ELDER (2006) (left) and the dependence of the precipitation 

adjustment function on elevation difference for a summer month (right)  ____________________ 69 

Fig. 4.16:  Bilinearly interpolated REMO cloud cover and the amount of diffuse and direct radiation 

calculated by the shortwave radiation submodel in SCALMET for a model time step in the 

year 1982  ______________________________________________________________________ 72 

Fig. 4.17:  REMO shortwave simulations, remapped shortwave radiation and conservatively 

aggregated remapped shortwave radiation for a model time step in the year 1982 ____________ 72 

Fig. 4.18:  The dependence of incoming longwave radiation on terrain elevation in REMO control run 

simulations for a model time step in the year 1982 and REMO incoming longwave radiation 

vs. simulated cloud cover for the same model time step __________________________________ 73 

Fig. 4.19:  Conservatively remapped incoming longwave radiation together with the results of the 

submodel calculations for a model time step in the year 1982 _____________________________ 74 

Fig. 4.20:  The elevation dependence of simulated wind speed for a model time step in the year 1982 ______ 76 

Fig. 4.21:  Terrain curvature calculated for the Upper Danube watershed and schematic illustration of 

the parameters involved in the remapping of wind speed simulations by the wind submodel 

in SCALMET _____________________________________________________________________ 77 

Fig. 4.22:  The CI remapped REMO wind speed simulations, the regression based wind speed 

remapping and the results of the wind model calculations by the example of a model time 

step in the year 1982  _____________________________________________________________ 79 



List of Figures 

 

iii 
 

Fig. 4.23:  Illustration of the upscaling process __________________________________________________ 81 

Fig. 5.1:   PROMET discharge simulations for the proxel representing the gauge in Achleiten _____________ 84 

Fig. 5.2:   Simulated vs. measured daily discharge at the gauge of the Upper Danube watershed in 

Achleiten _______________________________________________________________________ 84 

Fig. 5.3:   Schematic illustration of the processing of observation based meteorological distributions for 

the later evaluation of the different remapping approaches (SCALMET)  ____________________   87 

Fig. 5.4:   The climate stations used within the meteorological evaluation process _____________________ 88 

Fig. 5.5:   Comparison of remapped and observed daily temperatures at the three climate stations in 

St. Leonhard‐Neurur, Rauris and Jenbach for the period 1994‐1996 _________________________ 90 

Fig. 5.6:   Elevation difference (DEM 1 x 1 km ‐ DEM 10 x 10 km) for the Alpine part of the Upper 

Danube watershed _______________________________________________________________ 91 

Fig. 5.7:   Frequency distribution of the mean absolute error (MAE) in temperature remappings for the 

conservative interpolation, the bilinear interpolation, the constant lapse rate remapping 

(CLR) and the regression based remapping (RBR) for the period 1994‐1996  __________________ 92 

Fig. 5.8:   Results of the temperature remappings carried out within the synthetic evaluation approach ____ 93 

Fig. 5.9:   Results of the precipitation remappings carried out within the synthetic evaluation approach ____ 94 

Fig. 5.10:  Comparison of remapped and observed daily precipitation at the three climate stations in St. 

Leonhard‐Neurur, Rauris and Jenbach for the period 1994‐1996  ___________________________ 96 

Fig. 5.11:  Frequency distribution of the mean absolute error (MAE) in precipitation remappings for the 

different remapping methods over the period 1994‐1996 _________________________________ 97 

Fig. 5.12:  Comparison of remapped and observed daily wind speeds at climate stations in St. 

Leonhard‐Neurur, Rauris and Jenbach for the period 1994‐1996  ___________________________ 98 

Fig. 5.13:  Frequency distribution of the mean absolute error (MAE) in wind speed remappings for the 

conservative interpolation, the bilinear interpolation and the regression based remapping 

(RBR) for the period 1994‐1996 _____________________________________________________ 99 

Fig. 5.14:  Comparison of remapped and observed daily global radiation at climate station 

Weihenstephan _________________________________________________________________ 100 

Fig. 5.15:  Observed and remapped course of daily global radiation throughout the year 1994 at 

climate station Weihenstephan  ____________________________________________________ 101 

Fig. 5.16:  The different steps within the hydrological evaluation of the remapping methods 

implemented in SCALMET _________________________________________________________ 103 

Fig. 5.17:  Correlation between modeled and measured discharge at the gauge of the Upper Danube 

watershed in Achleiten and temporal course of simulated and observed discharge at the 

gauge for the period 1994‐1996 ____________________________________________________ 104 

Fig. 5.18:  Correlation between modeled (QPB I) and measured discharge at the gauge of the Upper 

Danube watershed in Achleiten and temporal course of the reference run discharge and the 

QPB I run discharge at the pixel representing the gauge of the Upper Danube watershed in 

Achleiten for the period 1994‐1996 _________________________________________________ 105 

 



List of Figures 

 

iv 
 

Fig. 5.19:  Correlation between modeled (QPB II) and measured discharge at the gauge of the Upper 

Danube watershed in Achleiten and temporal course of the reference run discharge and the 

QPB I run discharge at the pixel representing the gauge of the Upper Danube watershed in 

Achleiten for the period 1994‐1996 _________________________________________________ 105 

Fig. 5.20:  Correlation between modeled (BI) and measured discharge at the gauge of the Upper 

Danube watershed in Achleiten and temporal course of the reference run discharge and the 

BI run discharge at the pixel representing the gauge of the Upper Danube watershed in 

Achleiten for the period 1994‐1996 _________________________________________________ 106 

Fig. 5.21:  Correlation between modeled (CI) and measured discharge at the gauge of the Upper 

Danube watershed in Achleiten and temporal course of the reference run discharge and the 

CI run discharge at the pixel representing the gauge of the Upper Danube watershed in 

Achleiten for the period 1994‐1996 _________________________________________________ 107 

Fig. 5.22:  Difference between simulated and observed discharge at the gauge in Achleiten for two 

SCALMET‐PROMET model runs over the period 1994‐1996 _______________________________ 107 

Fig. 5.23:  Difference in simulated snow water equivalent between two SCALMET‐PROMET model runs  ___ 108 

Fig. 5.24:  Remapped average annual mean temperature and difference between the remapped 

distributions and those provided by the meteorological preprocessor in PROMET for the 

period 1971‐2000 _______________________________________________________________ 112 

Fig. 5.25:  Observation based and remapped monthly mean temperatures in the Upper Danube 

watershed for the period 1971‐2000 and difference in monthly mean temperature between 

remapped REMO control run data and spatially distributed observations ___________________ 113 

Fig. 5.26:  Remapped average annual precipitation and difference between the remapped simulations 

and the spatially distributed observations for the hydrological years 1971‐2000 ______________ 114 

Fig. 5.27:  The average annual precipitation for the Austrian subcatchments within the domain of the 

Upper Danube watershed (1961‐1990) ______________________________________________ 115 

Fig. 5.28:  Remapped REMO precipitation as used in the coupled reference run REMO‐SCALMET‐

PROMET (CRR) for the hydrological years 1971‐2000 and observation based area mean 

annual precipitation in the Upper Danube watershed as used within the uncoupled reference 

run (URR) for the hydrological years 1971‐2000  _______________________________________ 117 

Fig. 5.29:  Observation based and remapped average monthly precipitation in the Upper Danube 

watershed for the period 1971‐2000 and difference in monthly precipitation between the 

remapped REMO data and spatially distributed observations  ____________________________ 118 

Fig. 5.30:  The average modeled water balance in the Upper Danube watershed for the hydrological 

years 1971‐2000 ________________________________________________________________ 119 

Fig. 5.31:  Mean monthly discharge (1971‐2000) simulated in the coupled reference run (CRR) together 

with discharge observation and mean monthly discharge simulated in the uncoupled 

reference run (URR) together with discharge observations at the gauge in Achleiten __________ 120 

 



List of Figures 

 

v 
 

Fig. 5.32:  Monthly peak‐flow discharge (1971‐2000) simulated in the coupled reference run (CRR) 

together with discharge observations and monthly peak‐flow discharge simulated in the 

uncoupled reference run (URR) together with discharge observations at the gauge in 

Achleiten ______________________________________________________________________ 121 

Fig. 5.33: Monthly low‐flow discharge (1971‐2000) simulated in the coupled reference run (CRR) 

together with discharge observations and monthly low‐flow discharge simulated in the 

uncoupled reference run (URR) together with discharge observations at the gauge in 

Achleiten ______________________________________________________________________ 121 

Fig. 5.34:  Low‐flow and flood return periods based on PROMET simulations for the coupled reference 

run (CRR) and observations (OBS) (left) and sorted peak‐flow simulations (CRR and URR) 

together with sorted peak‐flow observations (OBS) for the gauge at Achleiten (right)  _________ 123 

Fig. 5.35:  Average monthly evapotranspiration (1971‐2000) as reflected by the results of the coupled 

reference run (CRR) and the uncoupled reference run (URR) (left) and difference in monthly 

evapotranspiration (CRR‐URR) (right)  _______________________________________________ 125 

Fig. 5.36:  Annual mean evapotranspiration in the Upper Danube watershed and areal standard 

deviation for the coupled reference run and the uncoupled reference run ___________________ 125 

Fig. 6.1:   The CO2‐emissions and changes in temperature for the different IPCC scenarios  _____________ 129 

Fig. 6.2:   Change in annual mean temperature in the Upper Danube watershed _____________________ 131 

Fig. 6.3:   Annual area mean temperature in the Upper Danube watershed as reflected in remapped 

REMO control run and A1B scenario run data _________________________________________ 131 

Fig. 6.4:   Seasonal change in area mean temperature in the Upper Danube watershed ________________ 132 

Fig. 6.5:   Monthly mean temperatures of the coupled reference run and the scenario run (left) and 

absolute change in monthly mean temperatures for the Upper Danube watershed (right) ______ 133 

Fig. 6.6:   Relative change in average annual precipitation in the Upper Danube watershed  ____________ 134 

Fig. 6.7:   Change in annual area mean precipitation for the area of the Upper Danube watershed _______ 134 

Fig. 6.8:   Seasonal change in area mean precipitation for the area of the Upper Danube watershed  _____ 135 

Fig. 6.9:   Average monthly precipitation for the reference run and scenario run meteorology (left) and 

change in average monthly precipitation in the Upper Danube watershed (right) ____________   136 

Fig. 6.10:  Relative change in average seasonal precipitation for the Upper Danube watershed __________ 137 

Fig. 6.11:  The average modeled water balance in the Upper Danube watershed for the hydrological 

years 2011‐2060 ________________________________________________________________ 138 

Fig. 6.12:  Modeled annual evapotranspiration for the coupled reference run and the scenario run _______ 138 

Fig. 6.13:  Change in area mean evapotranspiration for the area of the Upper Danube watershed ________ 139 

Fig. 6.14:  Simulated mean monthly evapotranspiration for the coupled reference run (CRR) and the 

coupled scenario run (CSR) (left) and difference in evapotranspiration between both runs 

(right)  _______________________________________________________________________   140 

Fig. 6.15:  Change in average plant available soil water (upper 20 cm of the soil) in July for the area of 

the Upper Danube watershed ______________________________________________________ 140 

Fig. 6.16:  Change in annual snowfall for the area of the Upper Danube watershed____________________ 141 



List of Figures 

 

vi 
 

Fig. 6.17:  Change in the number of days characterized by the presence of a snow cover (SWE > 1 mm) 

and change in annual snowfall in the Upper Danube watershed  __________________________ 142 

Fig. 6.18:  Decadal change in the number of days characterized by the presence of a snow cover (SWE > 

1 mm) relative to the reference period _______________________________________________ 143 

Fig. 6.19:  Modeled annual mean discharge at the gauge in Achleiten for the reference period and the 

scenario period _________________________________________________________________ 144 

Fig. 6.20:  Mean monthly discharge volumes at the gauge in Achleiten modeled within the reference 

run and the scenario run __________________________________________________________ 145 

Fig. 6.21:  Mean monthly peak‐flow discharge and low‐flow discharge volumes at the gauge in 

Achleiten modeled for the reference run and the scenario run  ____________________________ 145 

Fig. 6.22:  NM7Q and NM7Q50 discharge volumes at the gauge in Achleiten for the reference run and 

the scenario run (left) and frequency distribution of the NM7Q occurrence according to 

discharge simulations (reference run and scenario run) and discharge recordings (right) _______ 146 

Fig. 6.23:  HQ and HQ50 discharge volumes at the gauge in Achleiten for the reference run and the 

scenario run (left) and frequency distribution of the HQ occurrence according to discharge 

simulations (reference run and scenario run) and discharge recordings (right) _______________ 147 

Fig. 6.24:  Low‐flow and flood return periods based on PROMET simulations for the coupled reference 

run (CRR) and the scenario run (CSR) ________________________________________________ 148 

  

 



List of Tables 

 

vii 
 

LIST OF TABLES 

Tab. 2.1:   Hydrological characteristics of the Danube and its main tributaries _________________________ 19 

Tab. 3.1:   Seasonal factors for the calculation of the atmospheric transmissivity for direct solar 

radiation in the midlatitudes (HOTTEL 1976) ____________________________________________ 29 

Tab. 4.1:   Monthly temperature lapse rates derived for the Upper Danube watershed in comparison to 

those presented by KUNKEL (1989) for the Western United States ___________________________ 61 

Tab. 4.2:   Monthly dewpoint temperature lapse rates derived for the Upper Danube watershed in 

comparison to those presented by KUNKEL (1989) for the Western United States _______________ 64 

Tab. 4.3:   Monthly precipitation adjustment factors presented by LISTON AND ELDER (2006) and those 

derived for the Upper Danube watershed  _____________________________________________ 68 

Tab. 4.4:   Coefficients for the calculation of the atmospheric emissivity (LISTON AND ELDER 2006)  __________ 74 

Tab. 5.1:   Elevation and geographical coordinates of the stations St. Leonhard‐Neurur, Jenbach, Rauris 

and Weihenstephan ______________________________________________________________ 89 

Tab. 5.2:   The constellation of the remapping methods used in the four PROMET runs over the period 

1994‐1996 _____________________________________________________________________ 102 

Tab. 5.3:   The main characteristics of the different model runs used for the simulation of past and 

future hydrological conditions in the Upper Danube watershed ___________________________ 109 

Tab. 5.4:   The combination of remapping approaches used for the downscaling of REMO simulations 

within the reference run and the scenario run _________________________________________ 110 

Tab. 5.5:   Statistical characteristics for the average annual precipitation in the Austrian subcatchments 

of the Upper Danube watershed  ___________________________________________________ 116 

Tab. 5.6:   Statistical characteristics for annual precipitation for the hydrological years 1971‐2000 for 

the uncoupled reference run and the coupled reference run ______________________________ 117 

 
 



List of Acronyms 

 

viii 
 

LIST OF ACRONYMS 

ACRONYM DESCRIPTION 

AOGCM Atmosphere-Ocean General Circulation Model 

AOI Area Of Interest 

BI  Bilinear Interpolation 

BMB+F German Ministry of Research and Education  

CI 1st Order Conservative Interpolation 

CLR Constant Lapse Rate Remapping 

CNTRL REMO Control Run 

CRR Coupled Reference Run 

CSR Coupled Scenario Run 

DEM Digital Elevation Model 

DJF December, January and February 

UD Upper Danube Watershed 

DWD Deutscher Wetter Dienst 

ECMWF European Centre for Medium-Range Weather Forecasts 

GCM General Circulation Model 

GLOWA Global Change of the Water Cycle 

HAA Hydrological Atlas of Austria 

HQ Annual peak-flow discharge 

IDW  Inverse Distance Weighted Interpolation 

IPCC Intergovernmental Pannel on Climate Change 

JJA June, July and August  

LAM Limited Area Model 

LSM Land Surface Model 

MAE Mean Absolute Error 

MAM March, April and May 

MPI-M Max-Planck-Institute for Meteorology 

NM7Q Annual 7-days average low-flow discharge 

PIXEL Picture Element 

PROMET Process of Radiation, Mass and Energy Transfer Model 

PROXEL Process Pixel 

RBR Regression Based Remapping 

RCM Regional Climate Model 



List of Acronyms 

 

ix 
 

RMSE Root Mean Square Error 

SCALMET Model to Scale Meteorological Variables 

SON September, October and November 

SRES Special Report on Emission Scenarios 

SWE Snow Water Equivalent 

UBA German Federal Environment Agency  

UML Unified Modelling Language  

URR Uncoupled Reference Run 

ZAMG Zentralanstalt für Meteorology und Geodynamik 
 

 

 

 

 

 



List of Symbols 

 

x 
 

LIST OF SYMBOLS 

SYMBOL DESCRIPTION UNIT

ܽ Parameter of the linear model [none]

ܽ௛ Coeffcient for the calculation of vapor pressure [none]

ܽ௘௦௧ Estimate of ܽ [none]

ܽ଴ Coefficient for the calculation of the atmospheric transmissivity [none]

ܽଵ Coefficient for the calculation of the atmospheric transmissivity [none]

ܽଶ Coefficient for the calculation of the atmospheric transmissivity [none]

ܾ  Parameter of the linear model [none]

ܾ௛ Coeffcient for the calculation of vapor pressure [none]

ܾ௘௦௧ Estimate of ܾ [none]

ܿ௛ Coeffcient for the calculation of vapor pressure [none]

ܿ௣ Specific heat of the air at constant pressure [J/kg °C]

݀ Angular distance [rad]

Current model day [DOY] ݕܽ݀

݀௘  Extreme flow discharge [m³/s]

݀௦ Day of the summer solstice [DOY]

݀௬ Average number of days in a year [d/a]

݁௔ Actual vapour pressure [hPa]

݁௦ Saturation vapour pressure [hPa]

݂ Flux at a given source grid cell [depends]

஺݂ைூ Fractional contribution to the mass/energy budget of an AOI [fraction]

݂ሺ݀௘ሻ  Probability density function of discharge ݀௘ [none]

௟݂ Flux at source grid cell l [depends]

௉݂ Function at point Px [depends]

௦݂௪_ௗ௜௙ Fraction of diffuse shortwave radiation [fraction]

௦݂௪_ௗ௜௥ Fraction of direct shortwave radiation [fraction]

ଵ݂ Factor for the calculation of the atmospheric transmissivity [none]

ଶ݂ Factor for the calculation of the atmospheric transmissivity [none]

ଷ݂ Factor for the calculation of the atmospheric transmissivity [none]

݃ Gravity [m/s²]

݄ Hour of the day [h]

݅ Logically-rectangular grid index [none]

݅௦ Angle between the solar radiation beam and a sloping surface [rad]



List of Symbols 

 

xi 
 

݆ Logically-rectangular grid index [none]

݇ Destination grid cell [none]

݈ Source grid cell [none]

݊ Total number of data pairs [none]

݊௖௟௜௠ Regional climate model pixel [none]

௟௦ Adjusted precipitation at land surface grid resolution [mm]݌

௥௘௙_௜௡௧ Spatially interpolated precipitation [mm]݌

Specific humidity [kg/kg] ݍ

௦ Specific humidity at saturation [kg/kg]ݍ

௔ Aerodynamic resistance [s/m]ݎ

௖௟௜௠ Residual at regional climate model resolution [depends]ݎ

௟௦ Interpolated residuals at land surface model resolution [depends]ݎ

௦ Canopy resistance [s/m]ݎ

∆௦ Slope of the saturation vapour pressure curve [hPa /°C]

Standard deviation [depends] ݒ݁݀_݀ݐݏ

௖௟௜௠_௜௡௧ Spatially interpolated pressure simulations [pa]݌ݏ

௟௦ Surface pressure at land surface model resolution [pa]݌ݏ

଴ Reference sea level pressure [pa]݌ݏ

௖௟௜௠ Simulated temperature  [°C]ݐ

௖௟௜௠_௜௡௧ Spatially interpolated regional climate model temperature [°C]ݐ

௖௟௜௠ Simulated dewpoint temperature [°C]݀ݐ

௥௘௙_௜௡௧ Spatially interpolated reference level dewpoint temperature [°C]݀ݐ

௟௦ Remapped air temperature [°C]ݐ

௥௘௙ Temperature at reference level elevation [°C]ݐ

௥௘௙_௜௡௧ Spatially interpolated reference level temperature [°C]ݐ

௟௦ Topographically adjusted wind speed [m/s]ݏݓ

௟௦_௜௡௧ Spatially Interpolated wind speed [m/s]ݏݓ

௨_௜௡௧ Spatially interpolated u wind component [m/s]ݏݓ

௩_௜௡௧ Spatially interpolated v wind component [m/s]ݏݓ

Independent variable of the linear model [depends] ݔ

௖௢௢௥ௗ X-grid coordinate [m]ݔ

Dependent variable of the linear model [depends] ݕ

௖௢௢௥ௗ Y-grid coordinate [m]ݕ

[depends] ݕ ො Predicted value of the dependent variableݕ

௕ Ratio of actual and potential evapotranspiration [fraction]ݕ



List of Symbols 

 

xii 
 

௖௟௜௠ Flux simulated by the regional climate model [depends]ݕ

ො௖௟௜௠ Flux predicted at regional climate model resolution [depends]ݕ

௖௟௜௠ Mass/energy overrun/deficit at climate model resolution [depends]ݕ∆

௟௦ Corrected flux at land surface model resolution [depends]ݕ

௟௦_஺ைூ௖௢௥ Flux corrected for the AOI mass/energy budget at land surface [depends]ݕ

ො௟௦ Flux predicted at land surface model resolution [depends]ݕ

ത௟௦ Mean conditions over all pixels covered by grid cell n [depends]ݕ

௟௦ Interpolated mass/energy overrun/deficit [depends]ݕ∆

௦ Ratio of actual and potential evapotranspiration (snow months) [fraction]ݕ

Terrain elevation [m.a.s.l.] ݖ

Difference in elevation [m] ݖ∆

௖௟௜௠ Terrain elevation of the regional climate model [m.a.s.l.]ݖ

ா Grid cell elevation in eastern direction [m.a.s.l.]ݖ

௟௦ Terrain elevation of the land surface model [m.a.s.l.]ݖ

௥௘௙ Reference level elevation [m.a.s.l.]ݖ

ே Grid cell elevation in northern direction [m.a.s.l.]ݖ

ௌ Grid cell elevation in southern direction [m.a.s.l.]ݖ

ௐ Grid cell elevation in western direction [m.a.s.l.]ݖ

  

௞ Angular area of the destination grid cell k [rad²]ܣ

௟௞ Angular area of cell l covered by cell k [rad²]ܣ

Ground heat flux [W/m²] ܤ

௙ Cloud fraction [fraction]ܥ

௙_௜௡௧ Spatially interpolated climate model cloud cover [fraction]ܥ

 ௘ܦ Considered extreme flow discharge [m³/s]

Latent heat flux [W/m²] ܶܧ

ܧ ௣ܶ௢௧ Potential annual evapotranspiration [mm]

ܧ ௣ܶ௢௧_௦ Sum of potential evapotranspiration (snow months) [mm]

 ሺ݀௘ሻܨ Probability distribution function of discharge ݀௘ [none]

ത௞ Area averaged flux at destination cell k [depends]ܨ

Sensible heat flux [W/m²] ܪ

௦ Scale height of the atmosphere [m]ܪ

଴ Null hypothesis [none]ܪ

଴  Solar irradiance at the top of the atmosphere [W/m²]ܫ

Number of source grid cells [none] ܮ



List of Symbols 

 

xiii 
 

Mean absolute error [depends] ܧܣܯ

௖ܰ Number of concordances found within the data [none]

ௗܰ Number of discordances found within the data [none]

௘ܰ௜௚௛௕௢௥௦ Number of neighbors [none]

ܲ Annual precipitation [mm]

௖ܲ௢௥ Water balance corrected annual precipitation [mm]

௫ܲ Destination grid point [grid unit]

௘ܲ   Probability for the occurrence of discharge ܦ௘ [%/100]

ܳ Annual discharge [mm]

ܴ Radiation balance [W/m²]

ܴଶ Coefficient of determination [none]

ܴ௚ Gas constant [J/kg K]

[%] Relative humidity ܪܴ

ܴ௞ Kendall coefficient of correlation [none]

ܴ௟௪ Longwave radiation at the land surface [W/m²]

ܴ௟௪_௜௡ Longwave radiation emitted by the atmosphere [W/m²]

ܴ௟௪_௢௨௧ Longwave radiation emitted by the land surface [W/m²]

ܴ௣ Pearson coefficient of correlation [none]

ܴܲ  Return period [a]

ܴ௦௪_ௗ௜௙ Diffuse component of the incoming solar radiation [W/m²]

ܴ௦௪_ௗ௜௙_௖௢௥ Diffuse component of the corrected incoming solar radiation  [W/m²]

ܴ௦௪_ௗ௜௥ Direct component of the incoming solar radiation [W/m²]

ܴ௦௪_ௗ௜௥_௖௢௥ Direct component of the corrected incoming solar radiation  [W/m²]

ܴ௦௪_௜௡ Incoming shortwave radiation [W/m²]

ܴ௦௪_௜௡_௖௢௥ Corrected incoming shortwave radiation [W/m²]

ܴ௦௪_௡௘௧ Net shortwave radiation at the land surface [W/m²]

ܴ௦௪_௢௨௧ Reflected shortwave radiation [W/m²]

ܴ௦௪_௣௢௧ Potential incoming shortwave radiation [W/m²]

∆ܵ Change in water storage [mm]

 ܧܹܵ Snow water equivalent [mm]

Solar zenith angle [rad] ܣܼܵ

௖ܶ Temperature [°C]

ௗܶ Dewpoint temperature [°C]

௞ܶ Temperature [K]

ௗܶ௜௙ Atmospheric transmissivity for diffuse radiation [fraction]



List of Symbols 

 

xiv 
 

ௗܶ௜௥ Atmospheric transmissivity for direct radiation [fraction]

௠ܶ௘௔௡ Mean temperature [K]

View factor for the calculation of the diffuse radiation [none] ܨܸ

ܺ Coefficient for the calculation of incoming longwave radiation [none]

ܻ Coefficient for the calculation of incoming longwave radiation [K/Pa]

஺ܻைூ_௖௢௡௦ Mass/energy budget for an AOI resulting from conservative [depends]

 ஺ܻைூ_௔ௗ௝ Mass/energy budget for an AOI resulting from subgrid [depends]

∆ ஺ܻைூ Difference in mass/energy budgets for an AOI [depends]

ܼ Coefficient for the calculation of incoming longwave radiation [none]

  

[%] Significance level ߙ

௉ Local y-coordinate of Px [grid unit]ߙ

Terrain slope [rad] ߚ

௉ Local x-coordinate of Px [grid unit]ߚ

௦ Slope weight [none]ߛ

௟௦ Emissivity of the land surface [fraction]ߝ

௔ Emissivity of the atmosphere [fraction]ߝ

߳ Random error variate [depends]

Curvature length scale [m] ߟ

Solar declination angle [rad] ߠ

Wind direction [rad] ߴ

௙ Wind direction diverting factor [none]ߴ

௟௦ Terrain adjusted wind direction [rad]ߴ

Small number to prevent zero divisions [none] ߢ

Geographical longitude [rad] ߣ

Geographical longitude of the destination grid cells [rad] ୢߣ

௉ Geographical longitude of point Px [rad]ߣ

ୱ Geographical longitude of the source grid cells [rad]ߣ

ଵ…ସ Geographical longitude of the surrounding grid cell centers [rad]ߣ

Solar azimuth [rad] ߤ

ௗ೐ߤ   Mean of the logarithmized extreme flow ݀௘ [m³/s]

௡ Terrain slope azimuth (north is zero azimuth) [rad]ߦ

௦ Terrain slope azimuth (south is zero azimuth) [rad]ߦ

Density of the air [kg/m³] ߩ

Stefan-Boltzmann constant (5.6704 x 10-8) [W /m² K] ߪ



List of Symbols 

 

xv 
 

ௗ೐ߪ   Standard deviation of the logarithmized extreme flow ݀௘ [m³/s]

߬ Hour angle measured from local solar noon [rad]

߮ Geographical latitude [rad]

߮ୢ Geographical latitude of the destination grid cells [rad]

߮௉ Geographical latitude of point P [rad]

߮ୱ Geographical latitude of the source grid cells [rad]

்߮஼ Geographical latitude of the Tropic of Cancer [rad]

߮ଵ…ସ Geographical latitude of the surrounding grid cell centers [rad]

Empiric constant [none] ߵ

߱ Weight for a considered neighboring source grid cell [none]

߱௪௦ Weight used to modify the interpolated wind speed [none]

߱ଵ௟௞ Second order weight 1 for remapping cell l to grid cell k [none]

߱ଶ௟௞ Second order weight 2 for remapping cell l to grid cell k [none]

߱ଷ௟௞ Second order weight 3 for remapping cell l to grid cell k [none]

Γ௧ Temperature lapse rate [°C/km]

Γ௧ௗ Dewpoint temperature lapse rate [°C/km]

Ω௖ Grid cell curvature [none]

Ω௦ Slope in wind direction [rad]

Շ Precipitation adjustment factor [1/km]

 

 

 

 

 

 

 

 



Summary 

 

xvi 
 

SUMMARY 

Climate change continues to alter weather patterns around the globe, affecting our 

environment in ways that we are only beginning to understand. In order to quantify possible 

future developments in the earth’s climate system, global circulation models (GCMs) are 

utilized to describe climate relevant processes over decades to centuries at a global scale. 

However, there is evidence that many consequences of climatic change occur at far finer 

spatial scales than those currently resolved by GCMs. This applies to changes in the climate 

system as well as to the response to these changed meteorological conditions at the land 

surface. Provided appropriate meteorological drivers, the latter can be investigated by means 

of physically based high resolution land surface models (LSMs).  

As GCMs are not capable to deliver these meteorological drivers with sufficient spatial 

resolution at present, different downscaling techniques are currently applied to provide the 

climate research community with climatic information at higher spatial detail than presently 

achievable with GCMs. An approach that is commonly pursued is to nest regional climate 

models (RCMs) in the model domain of GCMs. Driven by the global simulations, the RCMs 

allow to describe atmospheric processes at higher spatial resolutions within a spatially limited 

geographic area. Still, the spatial resolution at which atmospheric processes can be resolved 

by RCMs is computationally limited to at best 10 x 10 km and does not fully meet the high 

demands on meteorological drivers made by high resolution LSMs (1 x 1 km). A clear need 

has been identified to develop appropriate methods to overcome the scale mismatch 

between the models for the atmosphere and those operating at the land surface in order to 

permit the investigation of climate change impacts at a regional to local scale.  

In the framework of the present thesis the software interface SCALMET has been developed. 

The coupler provides different scaling techniques to adequately span the gap between the 

spatial resolution of RCMs and that of high resolution LSMs. By transferring RCM simulations 

to a finer scale, SCALMET addresses the needs for high resolution meteorological drivers 

within the GLOWA-Danube project (Global Change of the Water Cycle). The GLOWA-

Danube project, by which the present study was initiated and funded, aims to investigate the 

climate change impact on the water cycle of the Upper Danube watershed. To enable the 

research, the integrated decision support system DANUBIA has been developed combining 

the profound knowledge of experts in various disciplines with water related concerns. The 

DANUBIA model is composed out of different interacting numerical models simulating all 

relevant natural and socio-economic processes involved in the hydrological cycle of the 

catchment. To adequately describe the water fluxes at the land surface the models depend 

on meteorological drivers in a spatial resolution of 1 x 1 km.  
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The meteorological fields (temperature, precipitation, air humidity, shortwave radiation, 

longwave radiation, wind speed and surface pressure) which are provided by different RCMs 

and which are scaled down by SCALMET therefore belong to the key quantities required to 

investigate future changes in the hydrological cycle. The study area of the Upper Danube 

watershed is characterized by steep relief and climate gradients. The complex terrain on the 

one hand emphasizes the need to correct coarse grid meteorological simulations with 

respect to subgrid topography, but on the other hand makes the downscaling of the RCM 

simulations a scientific challenge.  

Beyond the downscaling of RCM output in one-way coupled model runs, SCALMET gives the 

option to aggregate the water, energy and momentum fluxes calculated at the land surface. 

Using these spatially aggregated fluxes as inputs for RCMs in the framework of two-way 

coupled model runs is expected to considerably contribute to an improved understanding of 

the complex interactions between the land surface and the atmosphere. 

While two-way coupled model runs represent a top priority for future applications of 

SCALMET, the present work focuses on the description of the coupler and the implemented 

scaling methods as well as the presentation of results achieved in first one-way coupled 

model runs. The latter includes coupled model runs for past and possible future climate 

conditions. Comparing the results achieved for past climate conditions to those achieved 

within the scenario run (SRES A1B) allows to analyze the change signal contained in the 

model results of the coupled model system. To provide a computationally efficient test 

environment, the land surface in these one-way coupled model runs is reduced to the 

hydrological model PROMET representing the FORTRAN version of the hydrological model 

component in DANUBIA. The meteorological drivers for PROMET in the present study are 

supplied by the regional climate model REMO and are scaled down from 10 x 10 km to 1 x 1 

km in advance of the application in the hydrological model using the methods implemented in 

SCALMET. To transfer the meteorological simulations from the coarse grid mesh of the RCM 

to the finer grid mesh of the hydrological model a roundup of direct interpolation methods 

such as bilinear or inverse distance weighted interpolators have been implemented in the 

coupler. Additionally, an interpolation scheme is introduced that ensures a conservative 

treatment of fluxes within the remapping between the grid scales. However, direct 

interpolators introduce a considerable smoothing and do not compensate the loss of climatic 

variability resulting from a coarse representation of the land surface in RCMs. To overcome 

these drawbacks, more sophisticated scaling approaches have been implemented into the 

software interface. Much care has been taken to guarantee a full transferability of the 

developed downscaling techniques to other RCMs as well as to other geographic regions.  

The whole range of computations performed within the remapping of the different 

meteorological variables is carried out during the run-time of the coupled model system. 
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While the latter noticeably reduces the required data storage capacities, it on the other hand 

limits the complexity of the implemented algorithms for the sake of computational efficiency. 

As many meteorological variables strongly vary with terrain elevation, high resolution 

elevation information is used to adjust meteorological simulations with respect to subgrid 

topography. A regression based remapping approach is presented that analyzes the 

elevation dependence of a considered variable (e.g. temperature, dewpoint temperature or 

precipitation) during the run-time of the coupled model run. Additionally, methods have been 

implemented that apply monthly constant elevation corrections to adjust the comparatively 

coarse RCM outputs beyond the capabilities of direct interpolation methods. As these 

elevation adjustment parameters vary over space and time, meteorological observations 

have been used to derive area specific adjustment parameters for the Upper Danube 

watershed for each month of the year. Naturally not all of the variables required by the land 

surface components of DANUBIA are characterized by a significant elevation dependence. 

Hence, several submodels have been implemented in SCALMET that use additional 

topographic information (slope, aspect, exposure) to adequately span the gap between the 

model scales (e.g. a shortwave radiation model, a longwave radiation model, wind model). 

Irrespective of the applied remapping method, the adjusted high resolution meteorology is 

realigned to the mass/energy budget predetermined by the RCM simulations. Combining 

mass and energy conservation with subgrid adjustments, the techniques implemented in 

SCALMET represent a novel approach.  

The conservation of mass and energy is essential, in particular in two-way coupled model 

runs. However, conserving mass and energy between the model scales implies taking over 

all biases that are included in the meteorological simulations. As biases are known to exist in 

RCM simulations spatially distributed observations are used to quantify the uncertainties 

related to the different remapping methods. These aggregated observations (10 x 10 km) are 

redistributed to the finer grid in SCALMET by means of different remapping algorithms, 

treating the data exactly the same way as the REMO simulations in one-way coupled model 

runs. A comparison of the remapped fields with station observations reveals that the more 

sophisticated scaling techniques in SCALMET notably enhance the quality of the remapped 

fields. Further, using the remapped meteorological data to force PROMET shows that the 

application of remapping methods that account for subgrid variability of topography leads to a 

more realistic simulation of water fluxes and therefore allows the hydrological model to more 

accurately reproduce observed discharge volumes. 

To investigate the overall performance of the coupled model system a one-way coupled 

model run (REMO-SCALMET-PROMET) is set up covering the years 1961 to 2000. For the 

simulation of the meteorological forcings the regional climate model REMO is set up in a 

one-way double nesting technique. The RCM in this setup is driven by the coupled ocean-
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atmosphere model ECHAM5/MPI-OM at the boundaries of the model domain. The 

regression based approach in SCALMET is used to remap temperature, air humidity and 

precipitation simulations from the coarse grid of the regional climate model to the finer grid of 

the hydrological model. Wind speed, shortwave and longwave radiation are remapped using 

the respective submodels. The applied algorithms are chosen as they do not include 

calibrations conducted at present-day climate conditions and can therefore be expected to be 

valid under future climate conditions. Further an uncoupled PROMET run is set up for the 

period 1971 to 2000. The spatially distributed meteorological observations used to force 

PROMET in this run are compared to the remapped REMO simulations to get an impression 

of the quality related to the meteorological drivers used within the coupled model run.  

The comparison of the remapped REMO data to distributed observations shows an average 

overestimation of annual mean temperature of 0.8 °C by the remapped REMO simulations 

for the Upper Danube watershed (1971-2000). Further, an overestimation of annual mean 

precipitation of approximately 11 % is observed in the remapped REMO data. To include 

another source of reference, data originating from the Hydrological Atlas of Austria (1961-

1990) is consulted. The comparison of REMO precipitation simulations to both observation 

based precipitation datasets (1961-1990) shows that the highest overestimation of annual 

precipitation can be found in the alpine part of the catchment. However, it is pointed out that 

all precipitation distributions involved in the comparison are based on model results and 

therefore include considerable uncertainties. The hydrological simulations carried out within 

the coupled model run (REMO-SCALMET-PROMET) show a slightly increased 

evapotranspiration relative to the results of the uncoupled PROMET run considering the 

period 1971 to 2000. The comparison of the annual mean runoff in the watershed simulated 

within the coupled model run to discharge recordings at the gauge in Achleiten further 

reveals an overestimation of measured discharge of 29 %. Comparing discharge simulations 

to discharge recordings on a monthly time basis unfolds that the highest degree of 

overestimation occurs in the months of June and November. The latter applies to the 

simulated mean monthly discharge, as well as to mean monthly peak-flow discharge. In the 

case of low-flow discharge, the highest degree of overestimation is found in the months of 

June and December. This general tendency to an overestimation of actual discharge 

conditions in the Upper Danube watershed is shown to limit the ability of the coupled model 

system to reproduce low-flow and flood return periods.  

After the uncertainties related to the reproduction of past and present-day conditions have 

been clarified, a second one-way coupled model run is set up for the period 2011 to 2060. 

The radiative forcings of the ECHAM5/MPI-OM model in the scenario run reflect the 

greenhouse gas concentrations as defined for the SRES A1B scenario. All biases quantified 

for the one-way coupled reference run (REMO-SCALMET-PROMET) are assumed to affect 
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the model results of the scenario run to a similar extent. Based on this assumption a relative 

comparison of the meteorological and hydrological simulations resulting from the reference 

run to those achieved for the scenario run can be carried out. Comparing the average annual 

mean temperature of the remapped REMO simulations for the reference period (1961-2000) 

to that of the scenario period (2011-2060) a considerable rise in annual mean temperatures 

can be observed for the Upper Danube watershed (≈ 1.2 °C). In particular the higher 

elevations of the Alps are concerned with an increase in annual mean temperature of up to 

1.9 °C compared to the reference period. Besides the enhanced warming in higher elevated 

regions of the Alps compared to the Alpine Foreland, which is reflected by the 10 x 10 km 

REMO simulations as well, a subgrid elevation dependence is found in the change signal 

when comparing the remapped temperature simulations for both runs. The latter can be 

explained by the fact that the mean temperature lapse rate reflected by the REMO reference 

run simulations is higher than that of the scenario run. The regression based remapping 

therefore differently corrects the simulated temperatures with respect to subgrid elevation. 

These circumstances emphasize the outstanding importance of applying remapping 

techniques that are not calibrated and allow the adaption to future meteorological conditions. 

The temperature increase rate in the Upper Danube watershed with approximately 5.2 

°C/100 years unfolds to be about 1.8 times higher than the global average temperature 

increase rate associated with the A1B scenario family (≈ 2.9 °C/100 years). 

Considering the seasonal trends in simulated precipitation a significant decrease in summer 

and autumn can be observed within the scenario period (2011-2060), whereas spring and 

winter are not characterized by significant trends. However extending the analysis upon the 

whole time period of available REMO scenario simulations (2000-2100) clearly shows that 

the change signal in simulated precipitation severely depends on the time period considered 

within the REMO scenario run. Both, changes in summer precipitation (-) and changes in 

winter precipitation (+) are stronger when considering the end of the century (2070-2100) 

than the period analyzed in the present study (2011-2060). Relative to the reference period 

1961 to 2000 the years 2011 to 2060 show a general increase in annual precipitation of 

approximately 5 %.  

The hydrological response to the climate change signal is analyzed by comparing the 

hydrological simulations of the reference period to those achieved for the scenario run (delta 

change approach). As a result of the considerable enhancements in the water and energy 

budget of the Upper Danube watershed a significant increase in annual evapotranspiration is 

found with highest increase rates for the seasons of winter, spring and autumn. In contrast, 

modeled evapotranspiration for the summer months shows much lower increase rates. July 

is even characterized by lower evapotranspiration rates in the scenario run compared to the 

reference run. As evapotranspiration is already very high for these months in the reference 
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run the potential for an increase here is comparatively small. Moreover, water availability is 

limited as a result of the decrease in summer precipitation and the strong increase in 

evapotranspirative water consumption observed for the preceding months. This assumption 

is confirmed by the analysis of the available soil water content, which shows a significant 

decrease in the month of July up to the end of the scenario period in the year 2060. The total 

increase in average annual evapotranspiration amounts to 3.5 % relative to the reference 

period (1961-2000). 

As a consequence of the increase in winter temperatures the annual amount of precipitation 

in the solid state of snow as well as the number of days characterized by the presence of a 

snow cover severely decrease compared to the reference period. The latter two criteria serve 

as a particularly suitable climate change indicator as the temporal storage of water in the 

solid form of snow is very sensitive to climate change. Not only because snowfall and snow 

cover directly react upon temperature and precipitation changes. These quantities further 

represent important water reservoirs in which different aspects of climate change add up and 

interact. Both analyzed criteria show largest decreases in the northern part of the watershed. 

The low temperatures in the higher elevated parts of the Alps as well as of the Bavarian 

Forest result in lowest decreases in snowfall amounts as well as in annual snow cover in 

these regions.  

To analyze the impact of the scenario meteorology upon the runoff conditions in the Upper 

Danube watershed the simulated annual area mean runoff of the scenario run is compared to 

that of the reference run. Since only a small fraction of the additionally available precipitation 

is consumed by the process of evapotranspiration at the land surface, mean annual runoff 

increases by 5.7 %. The simulated mean annual discharge at the gauge in Achleiten does 

not show a significant trend within the scenario period. Monthly mean discharge as well as 

monthly peak-flow and low-flow discharge volumes at the gauge in Achleiten are 

characterized by a notable increase in particular in the hydrological winter half year 

(November-April). In contrast the decrease in summer precipitation in the case of all three 

monthly discharge criteria for some summer months (e.g. August) results in lower discharge 

volumes in summer for the scenario run.  

The lowest annual mean 7-days discharge (NM7Q), which represents a reasonable criterion 

for low-flow conditions, does not show a significant trend within the scenario period. An 

explanation for the fact that the NM7Q is not subject to a decrease can be found in its 

temporal occurance. As could be shown, the NM7Q is mostly found in the hydrological winter 

half year. This time of the year is characterized by an increase in runoff available water due 

to an increase in (liquid) precipitation together with a rise in near surface temperatures. 

However, the lowest NM7Q volumes simulated within the scenario period notably fall below 

the lowest NM7Q discharges found in the simulations for the reference period. Further, a 
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slight shift of the NM7Q towards the hydrological summer half year can be observed in the 

scenario run. The latter indicates an increased potential for the occurrence of extreme low-

flow events in the hydrological summer half year in the future.  

Parallel to the NM7Q, the highest daily discharge in the course of one year (HQ) does not 

show a significant trend within the scenario period. However, comparing the flood return 

periods between the one-way coupled reference run and the scenario run, the discharge 

volumes related to a certain return period are significantly lower in the scenario run. This 

tendency to lower flood-flow discharge volumes in the scenario run is well explicable, as 

highest discharge volumes according to observations and simulations are primarily found in 

the summer half year, which is characterized by a decrease in precipitation and lower melt 

water discharge in the scenario run. Compared to the changes in flood return periods, the 

low-flow return periods are rather unaffected by the climatic changes in the Upper Danube 

watershed.  

The present work has successfully shown the general applicability of the one-way coupled 

model system. The presented methods allow a more realistic reproduction of the climate 

conditions in the research area of the Upper Danube watershed. It was further shown that 

the methods described permit a more accurate simulation of all hydrological determinant 

processes in the catchment. Supplying physically based land surface models with high 

resolution meteorological drivers, SCALMET offers manifold opportunities for future climate 

change investigations. Representing the land surface component in the coupled model 

system, PROMET has proven to be capable to fully utilize the potential of RCM simulations.  

The regional climate change aspects analyzed in the framework of the present thesis will be 

completed by further investigations carried out within the GLOWA-Danube project. The 

inclusion of other disciplines cooperating in the framework of GLOWA-Danube (plant 

physiology, glaciology, tourism, water resources management, economy) within future one-

way coupled model runs opens a variety of climate change research possibilities. Using 

different RCMs (REMO, MM5 and CLM) as well as different climate change scenarios (SRES 

A1B, A2 and B1) within future model runs further will allow to reflect a wider range of 

uncertainties and potential future climatic changes as well as hydrological reactions. In a 

medium-term view, the biases that are presently encountered within the coupled model 

system can be expected to diminish as a result of further improvements in the RCMs.  

Further challenges consist in the application of the coupled model system in different 

geographic regions. In the framework of the BRAHMATWINN project, the coupled model 

system (CLM-SCALMET-PROMET) will be utilized to analyze climate change impacts on the 

water resources in the river basin of the Brahmaputra. The top-priority for future applications 

however is the application of SCALMET in two-way coupled model runs in which SCALMET 

aggregates the energy, mass and momentum fluxes calculated by the land surface model 
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PROMET and provides these fluxes as inputs for the RCMs (MM5 and REMO). As coupling 

high resolution land surface models with mesoscale climate models belongs to the greatest 

challenges in interdisciplinary research, practical difficulties can be expected to arise. 

However, the technical prerequisites for two-way coupled model runs could be successfully 

completed within the present work. 
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1 INTRODUCTION 

1.1 THE ROLE OF NUMERICAL MODELS IN CLIMATE CHANGE RESEARCH 

The atmosphere and the related processes of weather and climate are of highest importance 

for human existence on earth. Without the presence of greenhouse gases in the atmosphere, 

the global mean earth surface temperature would rather take values of -18 °C than +15 °C as 

currently the case. While there has been a physical understanding of the greenhouse effect 

for about hundred years, the risk of an anthropogenic climate change did not become 

commonly recognized until the 1970’s (LOZAN ET AL. 2001). The anthropogenic buildup of 

atmospheric greenhouse gas concentrations together with the observed increase in the 

average near surface temperature have stimulated international research activities designed 

to analyze and understand to what extent and in which way possible impacts will affect the 

social and natural system at different spatial scales.  

Parallel to the increasing need for adequate tools to investigate future climate changes and 

their impacts, climate science has shown an increasing rate of advancement in recent 

decades. This implies research in the field as well as notable evolution of scientific 

methodology, including the models that enable and support the research. An important 

example for this progress is the additional physics and physiology incorporated in climate 

models over the last decades.  

Numerical models represent the primary tools for investigating future impacts of global 

change (HEWITSON AND CRANE 1996). Furthermore, models are capable of explaining what 

happened in the past. As published in the latest IPCC report, climate model simulations 

confirm the great anthropogenic influence on global warming by pointing out that the 

observed patterns of warming and their changes over time could only be simulated by 

climate models that include anthropogenic forcing (IPCC 2007). The model requirements to 

project future climate conditions are clearly formulated. Running the climate models over a 

period of several years with parameters and forcings appropriate to the present climate, the 

models should be able to reproduce the observed climate. If parameters reflecting an 

increasing amount of atmospheric CO2-concentrations are introduced, these models should 

also be able to predict the resulting climate change. 

The increase in supercomputer speeds by roughly a factor of a million in the three decades 

from the 1970’s to the present has offered the possibility to include more and more 

processes and components in the numerical models. At the same time spatial resolution and 

the length of simulations could be drastically increased.  
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As a consequence of all these improvements, current climate models are more realistic than 

those a decade ago. They are able to reproduce the observed large scale changes in 

temperature throughout the 20th century and project the response of many climate variables 

to various scenarios of greenhouse gas and other human-related emissions. The resulting 

climate simulations provide the meteorological drivers for physically based land surface 

models allowing the analysis of climate change impacts at the land surface. However, there 

are still deficiencies in the climate models that limit their application in climate change 

research. The spatial resolution at which atmospheric processes can presently be described 

still suffers computational limitations. Moreover, there are deficiencies in the climate models 

(e.g. uncertainties in the representation of clouds and their interaction with radiation and 

aerosols) resulting in the fact that confidence in the climate estimates is higher for some 

variables (e.g. temperature) than for others (e.g. precipitation) (RANDALL ET AL. 2007).  

 

1.2 STATE OF THE ART 

The following chapters give a deeper insight in the field of climate modeling. The general 

characteristics of climate models as well as currently encountered limitations are briefly 

described.  

 

1.2.1 GENERAL CHARACTERISTICS OF CLIMATE MODELS 

Climate models have developed from early generations of weather prediction models. While 

both types of models still share many characteristics, models used for numerical weather 

prediction are typically run at higher spatial resolution than is possible for climate simulations. 

Although the first generation of general circulation models (GCMs) extremely oversimplified 

the complex climate system, MANABE AND WETHERALD (1967) were already able to simulate 

the effect of global warming as a reaction to doubled CO2-concentrations in the atmosphere 

using a GCM in 1967.  

Current climate projections make use of complex coupled atmosphere-ocean models, 

sometimes even including interactive chemical or biochemical components. These 

atmosphere-ocean general circulation models (AOGCMs) provide the best representation of 

the climate system and its dynamics, unfortunately at high computational costs (RANDALL ET 

AL. 2007). Physical processes are separately described for different spheres of the natural 

system (atmosphere, ocean, land surface, cryosphere and biosphere), including the complex 

interactions between the spheres. The process description is based on fundamental physical 
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laws (e.g. Newton’s laws of motion) represented by mathematical equations that are solved 

using a three-dimensional grid laid over the globe (see Fig. 1.1).  

The different spheres are typically characterized by a different mesh size and number of 

vertical layers. As an example the coupled ocean-atmosphere model ECHAM5/MPI-OM, 

which plays a major role in the later course of this thesis, simulates the atmosphere at a 

spatial resolution of approximately 1.9 x 1.9 ° including 31 vertical layers (ROECKNER ET AL. 

2003). In this coupled model system, the ocean is represented in a horizontal resolution of 

1.5 x 1.5 ° and a vertical resolution of 40 layers (MARSLAND ET AL. 2003). Like most current 

AOGCMs, the ECHAM5/MPI-OM no longer needs flux adjustments between the coupled 

components, which were previously required to maintain a stable climate (JUNGCLAUS ET AL. 

2003).  

 

 
Fig. 1.1: Schematic representation of the structure and the basic characteristics of a climate model. Ocean and atmosphere are 
represented by a set of interacting columns often with different spatial resolutions (based on THOMPSON AND PERRY (1997)). 
 

Besides the huge improvements in climate modeling, there is a continuing awareness that 

these models do not provide a perfect simulation of reality, because resolving all important 

spatial or time scales remains far beyond current capabilities. Although computing resources 

have extremely advanced over the last years, the obligation to high spatial coverage and 

temporal resolution, which are required to adequately simulate the global climate conditions 

over time periods from decades to centuries, still limits spatial resolution.  
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1.2.2 EFFECTS OF A LIMITED SPATIAL RESOLUTION 

The presently encountered limitations in the spatial resolution at which all climate relevant 

processes can be described in climate models lead to uncertainties in the model results. One 

reason for this is that meteorological phenomena can only be resolved if their spatial extent 

exceeds the mathematical grid size by a factor of four (VON STORCH ET AL. 1993). As a 

consequence many physical processes that occur at smaller scales, such as those related to 

clouds, cannot be properly modeled and their known properties must be averaged over the 

larger scale in a technique known as parameterization. These parameterizations often 

contain empirically determined parameters, trying to describe each process as accurately as 

possible. Occasionally, incorrect descriptions of the underlying processes lead to errors in 

parameterizations which have a negative influence on the quality of the climate model output 

(COSGROVE ET AL. 2003). As only some of these parameters can be measured, it is a 

common approach to adjust parameter values in order to optimize model results. These 

parameter adjustments are also known as ‘tuning’ and are only permitted under certain 

conditions (RANDALL ET AL. 2007):  

 

 Constraints of parameter ranges based on observations are not to be exceeded 

 The number of degrees of freedom in the tuneable parameters has to be less than 

the number of degrees of freedom in the observational constraints used in model 

evaluation 

 

A further effect of a rather coarse spatial resolution is that land surface heterogeneities 

cannot be properly represented in climate models. At present, the land surface in climate 

models is often represented by the most common land surface type in the area covered by 

the grid box or by using the so called ‘tile approach‘ (see Fig. 1.2).  

 

 
Fig. 1.2: Representation of land surface heterogeneities within a climate model grid cell following the tile approach. 

 

The latter partitions each climate model grid cell among the underlying land surface types so 

that each type represents a percental fraction of the total cell area (PITMAN 2003). A cell 
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averaged response is calculated by averaging the surface fluxes according to the area 

fractions covered by the different surface types (KLINK 1995). The averaged flux is then 

delivered to the lowest atmospheric level of the respective grid cell. However, this 

representation of subgrid heterogeneities neither allows the atmosphere to respond 

differently to heterogeneous surface forcings, nor does it allow taking into account the 

geographic distribution of the different land surface types as well as their interaction.  

Another problem is that a low climate model resolution implies a coarse representation of 

topography. The result is a local height discrepancy between the orography of the simulation 

and the real orography (FRÜH ET AL. 2006). As a consequence the climate simulations (e.g. 

precipitation) differ from observations (DALY ET AL. 1994). The overall effect of a coarse 

spatial model resolution is, that local consequences of future climate changes, which are the 

ones posing a direct effect on human beings and the environment, can hardly be investigated 

under the given limitations (GERSTENGARBE 2001). While global models explicitly resolving 

e.g. the dynamics of convective clouds may become computationally feasible in a medium-

term view, so called ‘downscaling’ techniques are presently used to derive higher resolution 

climate data on the basis of available coarse resolution global climate.  

 

1.2.3 DOWNSCALING TECHNIQUES 

Although the conceptual application of downscaling methods in form of techniques used to 

translate across spatial scales, e.g. from the synoptic to the regional and local scales, has 

existed for many years, the explicit use of the term in climatological applications has only 

recently become widespread. Basically, there a two different approaches to compensate the 

insufficiency in the spatial resolution of the climate models. While the dynamical approach 

scales the meteorological simulations in a physically based manner, statistical downscaling 

techniques use empiric relations to bridge the scales.  

Besides these two techniques and the different combinations between them, there are further 

scaling approaches mainly used for the distribution of meteorological observations. A brief 

overview of existing downscaling techniques is given in the following.  

 

1.2.3.1 DYNAMICAL DOWNSCALING OF CLIMATE SIMULATIONS 

The dynamical downscaling approach constitutes a process based technique unfortunately 

connected to high computational costs. A typical dynamical technique is the nesting of limited 

area models (LAMs) in the domain of a GCM as done for the simulation of the meteorological 

fields used in this work by utilizing the coupled ocean-atmosphere model ECHAM5/MPI-OM 
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(ROECKNER ET AL. 2003) to supply the meteorological boundary conditions for the embedded 

regional climate model REMO (JACOB 2001). The reduction in the grid mesh size achieved by 

dynamical downscaling methods allows taking into account small scale climate processes 

and enables a higher spatial resolution over a given area (GERSTENGARBE 2001). The 

integration of regional climate models (RCMs) shows that distributions of temperature and 

precipitation contain a significant signal on scales not resolved by the GCMs, whereas the 

large scale circulation follows that of the driving GCM (MURPHY 1999). As a consequence, 

orographically induced precipitation and cyclonic activity at midlatitudes can be better 

reproduced (MACHENHAUER ET AL. 1996). While the method was limited to the simulation of 

short time periods some years ago, computer capacities allow long term applications by now.  

Another dynamical downscaling technique is the time-slice technique (see Fig. 1.3). 

 

 
 

 

In this approach a higher resolution uncoupled atmosphere model is driven by the change of 

the sea temperature as well as the change of the sea ice distribution, both simulated with a 

coarse resolution model (CUBASCH 2001). In other words, the atmospheric high resolution 

model is forced by the mean boundary conditions simulated by a low-resolution AOGCM 

(ZORITA AND VON STORCH 1999). 

 

1.2.3.2 STATISTICAL DOWNSCALING OF CLIMATE SIMULATIONS 

The alternative method of statistical downscaling represents a practical approach for 

addressing current needs in the climate change research community and is computationally 

efficient compared to dynamical downscaling techniques (HEWITSON AND CRANE 1996). The 

approach makes use of quantitative relations between observed large scale circulation and 

small scale local climate (see Fig. 1.4). Empirical techniques can be divided in the following 

subcategories: 

 

 weather generators 

 classification methods 

 transfer functions 

Fig. 1.3: Schematic diagram of the time-slice technique (based on (CUBASCH 2001)). 
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A stochastic weather generator is a numerical model that produces synthetic daily time 

series of a suite of climate variables, such as precipitation, temperature and solar radiation, 

with certain statistical properties (SEMENOV ET AL. 1998). The big advantage of this approach 

is that weather generators can simulate many ‘realisations’ of the climate and thus provide a 

wide range of feasible situations. They represent a computationally inexpensive tool to 

produce site-specific climate change scenarios at the daily time step (SEMENOV ET AL. 1998). 

Although the general principle underlying the classification methods is simple, the practical 

implementation can become quite complicated. After the development of an atmospheric 

circulation classification scheme for an area of interest, a pool of meteorological observations 

is distributed into the defined classes. The circulations simulated by the GCM can then be 

directly linked to one of the defined classes, including the underlying observations of the local 

variable (ZORITA AND VON STORCH 1999). 

 

 
Fig. 1.4: Schematic diagram of the statistical downscaling approach (based on (CUBASCH 2001)). 

 

The transfer function approach is one of the earliest downscaling methods and is considered 

to be of practical importance in the context of climate change (KIM ET AL. 1984). The 

technique is based on linear or nonlinear relationships between a large scale predictor 

variable and a local variable denoted as the predictand. The transfer function in some form of 

y = f(x) is used to derive the small scale local climate from large scale climate simulations, 

assuming that the relationship is valid for the simulation and that it remains stable even in the 

case of climate change. The method does not necessarily imply using the same variable as 

predictor and predictand. As an example, VON STORCH ET AL. (1993) related winter rainfall in 

the Iberian Peninsula to sea level pressure patterns in the North Atlantic using a canonical 

correlation technique.  

In practice, most downscaling techniques are not restricted to just one of the described 

downscaling categories but are a combination of them. Although all of these downscaling 

methods help to increase detail in climate simulations, they strongly depend on the quality of 

the meteorological data provided by the coarse grid model. 
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1.2.3.3 TECHNIQUES TO SPATIALLY DISTRIBUTE CLIMATE OBSERVATIONS 

Beside the statistical and dynamical methods used to scale climate model simulations, there 

are further approaches, which are often used to derive meteorological distributions from 

observational climate data. All of these methods make use of available subgrid information 

(e.g. elevation) within scale adjustments.  

The statistical regression model PRISM (parameter-elevation regressions on independent 

slopes model) for example is a regression-based approach that uses point data, a digital 

elevation model, other spatial data sets, a knowledge base and human-expert 

parameterization to generate high resolution distributions of climatic elements (DALY ET AND 

NEILSON 1992, DALY ET AL. 2001, JOHNSON ET AL. 2000). The resulting meteorological fields 

can be found in various atlases, e.g. the first official update of the manually drawn Climate 

Atlas of the United States (USDOC 1968) or the Hydrological Atlas of Switzerland (SCHWARB 

ET AL. 2001a) (SCHWARB ET AL. 2001b). HIJMANS ET AL. (2005) use the ANUSPLIN package to 

derive monthly distributions of temperature and precipitation aggregated over the years 

1950-2000 for global land areas in a spatial resolution in 1 x 1 km. ANUSPLIN fits thin plate 

smoothing spline functions of longitude, latitude and elevation to climate observations 

(HUTCHINSON 1991, HUTCHINSON 2004). WALTER ET AL. (2006) generated a high resolution 

reference data set of German wind velocity for the years 1951-2001 using a so called 

‘relative altitude’ scheme. Relative altitude is computed by positioning each station at the 

center of a 10 x 10 km grid box and subtracting the mean altitude inside the grid box from the 

real station altitude (WALTER ET AL. 2006). A simple linear regression is used to derive a wind-

altitude dependency that is later applied for elevation corrections of spatially interpolated 

wind speed observations. The resulting high resolution wind data is used for the evaluation of 

RCM simulations.  

While most of the methods described above focus on the development of annual or monthly 

climate maps, other authors have presented techniques to generate high resolution 

meteorological forcings for the application in land surface models on an hourly time basis 

(LISTON AND ELDER 2006, LISTON AND STURM 1998, COSGROVE ET AL. 2003, MAUSER AND 

BACH 2008). The meteorological distribution system MICROMET developed by LISTON AND 

ELDER (2006) corrects spatially and temporally interpolated meteorological observations 

using known temperature-elevation, wind-topography, humidity-cloudiness, and radiation- 

cloud-topography relationships. Although some of the implemented methods originate from 

earlier works focusing on the distribution of daily meteorological fields (THORNTON ET AL. 

1997), the algorithms have been intensively validated for an application on hourly 

observations. COSGROVE ET AL. (2003) generate real-time and retrospective atmospheric 

forcings (0.125 x 0.125 °) on the basis of coarse grid meteorological data (40 x 40 km), 
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derived from merging observations with model fields. After a temporal and spatial 

interpolation hourly values of temperature, specific humidity, incoming longwave radiation 

and surface pressure are corrected for subgrid topography on the basis of differences in the 

terrain elevation of the involved grids. The approach has been followed by various other 

authors in the recent past (KATO ET AL. 2007, SHEFFIELD ET AL. 2006).  

After this short survey of existing downscaling techniques, the GLOWA-DANUBE project will 

be presented in the next paragraphs, followed by a description of the project’s demands 

concerning meteorological data. 

 

1.3 GLOWA-DANUBE 

The GLOWA-initiative (Global Change of the Water Cycle), which this thesis emerges from, 

is funded by the German Ministry of Research and Education (BMB+F) and has been 

established to address the manifold consequences of Global Change on regional water 

resources in a variety of medium sized catchment areas with different natural and cultural 

characteristics (LUDWIG ET AL. 2003). The GLOWA-Danube project focuses on the Upper 

Danube watershed, hereinafter referred to as the UD. The watershed states a representative 

mesoscale test site for mountain-foreland regions in the temperate midlatitudes. The 

project’s main objective is to develop and utilize simulation tools and instruments, allowing 

the formulation and realization of strategies for sustainable and future oriented water 

management, while taking into account global environmental changes and socio-economic 

framework conditions (MAUSER AND LUDWIG 2002). To investigate the sustainability of future 

water use inside the UD, the integrated decision support system DANUBIA has been 

developed (see Fig. 1.5).  

 

 
Fig. 1.5: Schematic overview of the decision support system DANUBIA (GLOWA-DANUBE 2008). 
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The object-oriented, spatially distributed and raster-based DANUBIA model system 

comprises the profound knowledge of experts with water related competence in the fields of 

engineering, social and natural sciences to address all facets of possible climate change 

impacts on the water cycle (LUDWIG ET AL. 2003). 

The project core groups represent the scientific disciplines Hydrology, Remote Sensing/GIS, 

Meteorology, Water Resources Management (groundwater and surface waters), Plant 

Ecology, Environmental Psychology, Environmental Economy, Agricultural Economics and 

Computer Science. All these disciplines have developed separate submodels containing the 

essential physical and socio-economic processes required to quantitatively describe the 

interactions of the different disciplines concerned with water fluxes (see Fig. 1.6). Besides 

these core groups there are several bridge groups representing the scientific disciplines 

Glaciology, Remote Sensing in Meteorology and Tourism Research, which operate specific 

interfaces in the model framework (MAUSER AND LUDWIG 2002).  

 

 
Fig. 1.6: The integrative model approach in GLOWA-Danube (GLOWA-DANUBE 2008). 

 

To guarantee the practical relevance of the investigated future water related problems, a 

strong cooperation with stakeholders in water resources management of the UD has been 

established. For the generation of a common understanding between the project partners, a 

standardized notation of parameters and functions has been established, employing the 

unified modeling language (UML). UML represents an industry standard for the structuring 

and coordination of large projects in software development and allows a platform-

independent structure of computational methods and interfaces (BOOCH ET AL. 2005).  

The basic object for the process description in the DANUBIA model is the ‘proxel’ (process 

pixel). In these three-dimensional grid elements, the processes simulated in different 

modules (e.g. plant growth, evapotranspiration, snowfall) interact using strictly defined 

interfaces. The proxel itself is connected to the surrounding environment through fluxes. 
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Although the size of the proxels is conceptually adjustable depending on the scale of the 

application, for the mesoscale modeling of surface fluxes, as well as for the simulation of key 

socio-economic processes inside the UD, each proxel is commonly defined to cover 1 x 1 

km.  

 

1.4 MOTIVATION OF THIS THESIS  

In spite of all the undeniable progress in climate modeling and the subsequent processing of 

climate model simulations, the currently available climate data do not fully meet the 

requirements of climate research projects like GLOWA-Danube. The demands of land 

surface models applied to investigate climate change impacts as well as the primary needs 

of a society attempting to plan for or respond to climate change, lie at far finer spatial 

resolutions than those resolved by global or RCMs (HEWITSON AND CRANE 1996, LISTON AND 

ELDER 2006, WILBY ET AL. 2004, GACHON AND DIBIKE 2007). Although setting up RCMs at high 

spatial resolutions is in principle practicable, it is computationally prohibitive (LISTON AND 

ELDER 2006). The described existing statistical downscaling techniques are currently used to 

derive climatological distributions at high spatial resolutions but in most cases only in form of 

daily or monthly values (MURPHY 1999) (MURPHY 2000) (KILSBY ET AL. 1998) (BECKMANN AND 

BUISHAND 2002) (WOOD ET AL. 2004) (DALY ET AL. 2002). While such low temporal resolutions 

might satisfy the needs of some climate change investigations, other applications, in 

particular the utilization of climate simulations as meteorological forcings for land surface 

models, require higher temporal resolutions (HEWITSON AND CRANE 1996).  

The objective of this thesis is to develop an instrument that is capable of SCALing 

METeorological variables (SCALMET) provided by different RCMs (REMO (JACOB 2001), 

MM5 (GRELL ET AL. 1995) and CLM (BÖHM ET AL. 2006)) for a later application in the 

transdisciplinary catchment scale model DANUBIA (MAUSER AND LUDWIG 2002). The 

DANUBIA model requires hourly values of meteorological variables with a spatial resolution 

of 1 x 1 km. While the temporal resolution is satisfied by most current RCMs, adequate 

scaling techniques need to be applied to bridge the gap between coarse climate model 

outputs and the fine grid resolution of the terrestrial model components. The scaling 

techniques implemented in SCALMET could most adequately be described as quasi-

physically based approaches as they include statistical methods as well as the description of 

small scale processes in different submodels (e.g. a longwave radiation submodel).  

Unlike other downscaling studies, which produce high resolution meteorological fields for 

long time periods a priori to the application in climate change analysis, SCALMET processes 
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the climate simulations during run-time of the coupled land-atmosphere model and thus 

minimizes data storage requirements. To enable this real-time data processing during the 

coupled model run, the software is required to be as computationally efficient as possible. 

For the downscaling of the meteorological variables from the coarse climate model resolution 

to the finer land surface grid, this limits the complexity of the implemented scaling 

techniques. The scaling methods, as presented in the framework of this work, therefore 

represent an approach to treat every variable individually and as physically based as 

possible, thus minimizing the computational costs to allow long term coupled model runs 

over decades to centuries. Although some of the implemented scaling techniques have been 

used in other studies before (LISTON AND ELDER 2006, LISTON AND STURM 1998, COSGROVE 

ET AL. 2003) they have mostly been applied to observational data and have at present never 

been used in connection with the central aim to conserve fluxes over the scales. The latter in 

particular states an inevitable requirement for bilateral coupled model runs. Combining 

existing techniques for mass and energy conservation with methods accounting for subgrid 

heterogeneities within the distribution of meteorological variables, SCALMET states a novel 

approach in the field of coupled land-atmosphere modeling.  

Another top priority in SCALMET is the transferability of the implemented methods to an 

arbitrary RCM and area of interest. Therefore, besides methods that have been 

parameterized for the model domain of the UD, several downscaling methods are included, 

that allow an unrestrained technical and spatial transferability. 

Besides the downscaling of climate model output, SCALMET provides aggregated land 

surface fluxes as inputs for the meteorological models (see Fig. 1.7).  

 

 
Fig. 1.7: Schematic diagram of the coupled model system. 

 

The latter addresses recently expressed needs to support the climate modeling community 

with expertise in the simulation of various land surface processes (PITMAN 2003).  
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The feedback effect between atmospheric and hydrological variables (e.g. soil moisture) has 

been shown by SCHÄR ET AL. (1999), who demonstrated that the potential for convective 

activity increased if soil moisture was increased. Moreover, SCHÄR ET AL. (2004) suggested 

that an active soil moisture precipitation feedback was linked to the anomalously hot 

European summer in 2003. Further, other authors showed that relatively small improvements 

to the land surface models lead to significant improvements in climate modeling (MILLY AND 

SHMAKIN 2002). Providing RCMs with high resolution surface fluxes represents the best 

approach presently available to account for heterogeneities at the land surface as it allows 

the RCM to fully benefit from the high resolution process description carried out by physically 

based land surface models (KLINK 1995, PITMAN 2003). In consequence, many negative 

effects resulting from a coarse representation of the land surface (see chapter 1.2.2) can be 

resolved. Unlike the physical parameterizations found in climate models, a more realistic 

representation of the land surface (see Fig. 1.8) in combination with an explicit simulation of 

the processes at the land surface at high spatial resolutions accounts for the nonlinearity of 

many climate-related processes.  

 

 
Fig. 1.8: Representation of different land cover types in an area of 10 x 10 km in a land surface model (spatial resolution 
1 x 1 km) (left), in the spatial resolution of the land cover classification (middle) and in a RCM using the ‘tile approach’ (spatial 
resolution 10 x 10 km).  
 

The high resolution process description moreover reduces the risk of errors in 

parameterizations, which often negatively affect the quality of the climate model simulations 

(COSGROVE ET AL. 2003), and thus offers an immense contribution to climate model 

improvements (RANDALL ET AL. 2007, LISTON 2004, BETTS ET AL. 1997, KOSTER AND SUAREZ 

1992). But two-way coupled model runs not only promise to enhance the understanding of 

the land-atmosphere-system and to bring along advances in climate modeling. Moreover, the 

two-way coupled model approach enables the atmosphere to react on vegetation changes 

taking place in the framework of global change. The latter becomes increasingly important 

when considering the fact that changes in vegetation that follow a local change in climate are 

likely to cause a modification in the climate vice versa (HENDERSON-SELLERS AND MCGUFFIE 

1994). The considerable effect of land cover changes on regional scale precipitation and 

evapotranspiration has recently been shown by LI AND MÖLDERS (2008). Moreover, these 
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authors found that due to the significant interactions between CO2-concentrations and 

vegetation, local land cover changes can have a substantial regional impact under climate 

change conditions, even if they have little impact under present time temperature conditions. 

Due to the atmospheric transport of water an impact of changes in vegetation and in 

consequence changes in the water cycle can even be expected for regions characterized by 

unchanged land cover conditions (LI AND MÖLDERS 2008). A more comprehensive summary 

of the land surface representation in climate models as well as of presently known aspects of 

land surface influence on long and short-term climate conditions has recently been given by 

PITMAN (2003). 

While the land surface feedback to the atmosphere is of major interest for the GLOWA-

Danube project, the present work only sets the technical prerequisites and does not include 

the analysis of two-way coupled model runs. Instead, it focuses on the description of the 

implemented scaling methods, their evaluation for past climate conditions and the analysis of 

one-way coupled runs using both, meteorological simulations for current and future climate 

conditions as input for the process description at the land surface. The meteorological data 

applied is provided by the regional climate model REMO (JACOB AND PODZUN 1997, JACOB 

2001). In a cooperative study designed to analyze future climate change in Germany, Austria 

and Switzerland, which has been carried out by the Max-Planck-Institute for Meteorology 

(MPI-M) and the German Federal Environment Agency (UBA) in the year 2006, REMO has 

successfully been setup over the years from 2000 to 2100 to deliver climate change 

scenarios at a regional scale. For the first time the public could be provided with 

meteorological simulations at an extraordinary high spatial resolution of 10 x 10 km, setting 

the perfect basis for an application of this data in the framework of the present thesis.  

The land surface model driven by the remapped REMO meteorology within the one-way 

coupled model runs presented in this work is the hydrological model PROMET (MAUSER AND 

BACH 2008). The model has been developed within the GLOWA-Danube project and 

represents the land surface component in the DANUBIA model. A more detailed description 

of the coupled model system is given in chapter 3. 
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2 THE UPPER DANUBE WATERSHED 

Taking its course from the heights of the Black Forest Massif down to its estuary in the Black 

Sea delta, the Danube crosses 22 geographical longitudes and flows over a distance of 2857 

km across Europe (DOMOKOS AND SASS 1990). Its river basin is the second largest in Europe 

covering 817 000 km² shared by 15 countries (LUDWIG ET AL. 2003).  

 

 
Fig. 2.1: The Danube watershed and the Upper Danube watershed together with the main tributaries of the Danube river. 

 

Landscape is multifaceted, including glacier-covered mountains, wooded mid-mountain 

chains, karst formations, highlands and uplands, table lands, plateaus with deeply carved 

river valleys, and wide plains and depressions. The intensive economic and social 

development of the Danube countries as well as the manifold usage of the water resources 

(drinking and industrial water supply, hydropower and navigation) require an optimal water 

utilization in both, the Danube watercourse and in its tributaries (DOMOKOS AND SASS 1990). 

Research carried out in the framework of GLOWA-Danube is limited to the area of the Upper 

Danube watershed (UD) (see Fig. 2.1). The subcatchment of the Danube river covers an 

area of 76 653 km² with a flow path of 580 km length and is defined by the discharge gauge 

in Achleiten near Passau (Germany) (BLFW 1999).  
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2.1 CLIMATE 

According to the effective KÖPPEN-GEIGER Climate Classification (KÖPPEN 1936), the climate 

in the UD is denoted as a Cfb-climate. While characterized by a warm temperate main 

climate (C), the region belongs to the fully humid areas with warm summers (KOTTEK ET AL. 

2006). The genetic FLOHN Classification classifies the area of the UD as a transition climate 

belonging to the extra tropical zone of Westerlies (FLOHN 1971). Geographically located in 

the northern midlatitudes, the climate in the UD is dominated by the prevailing Westerlies 

and is strongly influenced by the Atlantic climate and its high precipitation amounts. Westerly 

and northwesterly winds dominate in the summer, changing to southwestern wind directions 

in the winter. The heterogeneity of the relief, in particular the differences in the extent of 

exposure to the prevailing winds, as well as the differences in altitude diversify the general 

climate pattern inside the catchment. Northerly winds often carry along humid Atlantic air 

masses causing large advective rainfall. Southerly wind conditions on the other hand can 

result in a regional climatologic phenomenon called foehn. For areas located north of the 

Alps down to the Danube Valley, the foehn is accompanied by dry warm air masses and 

dissolving clouds. Temperature and precipitation show distinct gradients that are closely 

related to topographic features in the UD. Annual mean precipitation increases from north to 

south with values of approximately 700 mm in the Danube Valley to far above 2000 mm at 

higher elevations in the Alps (see Fig. 2.2). 

 

 
Fig. 2.2: Average summer and winter precipitation in the Upper Danube watershed for the hydrological years 1971-2000. The 
maps are based on spatially distributed observations provided by the meteorological preprocessor in PROMET (MAUSER AND 
BACH 2008). 
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The northern rim of the Alps shows an annual mean precipitation of around 1500 mm, largely 

traced back to the holdup of humid air at the Alpine barrier (LUDWIG 2000) (RZD 1986). 

Similar amounts of precipitation can be found in higher elevations of the Bavarian and Black 

Forest. Precipitation minima (≈ 650 mm) occur in the lower elevations of the Naab and 

Altmühl basins as well as in the Nördlinger Ries (BMU 2000). Some Alpine valleys like the 

Inn Valley in Austria also show comparatively low precipitation amounts. Precipitation 

maxima occur in summer, often in connection with convective rain events. In the Alpine 

Foreland and in the Alps, these events frequently cause serious floods. In the lowland areas, 

summer precipitation represents more than 60 % of annual precipitation (RANK ET AL. 2005). 

Only in the higher elevations of low mountain ranges, a secondary maximum is found in the 

winter months of December and January. Compared to the long-term average precipitation, 

extreme years can show variations of up to 150 % in Alpine areas. Extreme daily 

precipitation amounts take values of 150 to 200 mm/d. In most cases these extreme events 

are related to 5b weather situations (RZD 1986). The mean annual area precipitation in the 

German part covering about 73 % of the UD is about 950 mm (RZD 1986). 

Temperature inside the UD is also closely connected to the prevailing relief gradients (see 

Fig. 2.3, left). Temperature lapse rates decrease from 0.5-0.7 K/100 m in summer to 0.2-0.4 

K/100 m in winter, resulting from an increasing occurrence of atmospheric inversions in 

winter (RZD 1986).  

 

 
Fig. 2.3: Annual mean temperature (left) and average number of days with snow cover (right) in the Upper Danube watershed 
for the hydrological years 1971-2000. The temperature map represents spatially distributed observations provided by the 
meteorological preprocessor in PROMET, the snow cover map is based on PROMET model results (PRASCH ET AL 2008a). 
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Compared to the large variability of temperature in the Alpine regions, the long-term mean 

annual temperature in large parts of the Alpine Foreland is rather homogenously around 7 to 

8 °C (see Fig. 2.3, left). With mean temperatures of about 10 °C, the domain of the Danube 

Valley as well as the lower Isar and Naab Valley, represent comparatively warm parts of the 

catchment. In contrast, at higher elevated regions of the low mountain ranges and large parts 

of the Allgäu, mean temperatures are only around 5 to 7 °C. January with approximately -3 to 

-2 °C in the Alpine Foreland and -6 to -13 °C in higher elevations, states the coldest month, 

whereas maximum monthly temperatures of around 16 to 18 °C, representative for large 

parts of the area, are situated in July. However, temperatures reaching less than -20 °C 

casually occur (BMU 2000, RZD 1986).  

Besides its influence on temperature and precipitation, orographic variability is also reflected 

by the local radiation balance, wind regimes and cloud and snow cover resulting in a very 

specific local climate in the Alpine parts of the catchment. Unlike large parts of the catchment 

that are characterized by less than 100 days of snow cover over the time of one year (see 

Fig. 2.3, right), annual snow cover in the Alps can last up to 8 months in altitudes above 2000 

m.a.s.l., changing into a perennial coverage in heights between 2900-3200 m.a.s.l. (RZD 

1986). The temporary storage of water in form of snow is of high importance considering the 

increasing flood risk due to snowmelt contributions to the catchment’s runoff.  

 

2.2 HYDROLOGY 

The hydrological regime of the Danube is distinctly influenced by the regional precipitation 

patterns and the different tributaries of the Danube. The size and heterogeneity of the 

catchment leads to a strong temporal and spatial differentiation of runoff behaviour. 

Consequently the regime changes several times as a result of the different flow regimes of its 

affluents, covering all discharge regimes from straight nival to pluvial (LUDWIG ET AL. 2003). In 

particular the rivers Iller, Lech, Isar and Inn contribute to the Alpine character of the Upper 

Danube. Due to an increasing portion of solid precipitation with increasing altitude, the 

concentrated melting in spring can contribute up to 80-90 % to the total runoff in high-

mountainous regions (DOMOKOS AND SASS 1990). Even if in most cases floods inside the UD 

are induced by convective summer rains, water amounts related to snow melt and glacier 

runoff in combination with characteristic large scale weather patterns (e.g. 5b situations) also 

pose a serious flood risk inside the catchment (LUDWIG ET AL. 2003). 

The river Inn contributes the largest amounts of water inside the Upper Danube watershed 

and is the third largest tributary in the entire Danube basin (see Tab. 2.1). At its mouth in 
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Passau (see Fig. 2.4), the Inn adds as much water to the Danube as the Danube itself 

contains at the point of confluence, although the Inn’s catchment area with 26 000 km² is 

only half as large as the one of the Danube at this point (ICPD 2005).  

 
Tab. 2.1: Hydrological characteristics of the Danube and its main tributaries (1st order tributaries with catchments > 4000 km²) 
(based on ICPD 2005). 
 

River 
 

Mouth at Danube 
[river km] 

Length 
[km] 

Catchment size 
[km²] 

Average  
discharge [m³/s] 

Discharge  
time series 

Danube 0 2780 801463 6460 1914-2003 

Lech 2497 254 4125 115 1982-2000 

Naab 2385 191 5530 49 1921-1998 

Isar 2282 283 8964 174 1926-1998 

Inn 2225 515 26130 735 1921-1998 
 

 

In the course of time, the Danube has lost a number of tributaries to the more erosive Rhine 

river system. Even at present, it loses about half its discharge to the Rhine Basin through 

underground passages in its upper course near Immendingen (ICPD 2005).  

 

 
Fig. 2.4: River network and major water bodies in the Upper Danube watershed. 

 

In contrast to the Alpine rivers, tributaries coming from the north are characterized by a 

pluvial regime type with maxima in the winter. 

The anthropogenic regulation of some of the rivers in the watershed has lead to unnatural 

discharge and sediment characteristics, providing man the possibility to influence the storage 

and release of large water amounts and thus reduce the dangers related to floods to a 
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certain extent. Besides their value in flood protection, these artificial reservoirs provide the 

option to increase river discharge in winter, where particularly the Alpine tributaries are 

characterized by low discharge volumes. Unlike these artificial water storages, the various 

lakes inside the catchment pose natural retention basins also largely influencing the water 

flow dynamics within the UD. 

 

2.3 GEOMORPHOLOGY AND GEOLOGY 

The Upper Danube watershed includes a variety of different landscapes and geological 

media. Giving a brief geographical overview, the area can be divided into an area of low 

mountain ranges, the Alpine Foreland and the Alpine region. While the central part of the 

Alpine Massif is dominated by metamorphous crystalline material, the northern part mostly 

consists of calcareous material, showing the typical karst formations (PAWELLEK ET AL. 2001). 

Along the foot of the limestone part of the Alps the tertiary deposits flysch and molasse were 

caught up in the later stages of the Alpine folding, forming a belt of hills and low mountains 

(see Fig. 2.5 and Fig. 2.6, right). 

 

 

Fig. 2.5: Hydrogeologic profile of the Upper Danube watershed (BARTHEL ET AL. 2005, modified). 

 

The southern Alpine Foreland with its quarternary sedimentations, largely shaped by the ice 

ages, is showing the typical glacial and glaciofluvial forms. Within the terminal moraines, 

which mark the points where the glacier lobes once came to rest, many lakes such as the 

Starnberger See and the Ammersee still testify the former presence of the ice masses. Both 

tertiary hills and moraines are partly covered by thick loess layers. Outside the moraines, 

floodwaters have deposited sheets of gravel, which extend as gravel plains and river terraces 

along the courses of tributaries flowing north to the Danube. Leaving the tertiary hills to the 
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north, the Danube Valley is bounded by the mesozoic carbonate sediments of the Swabian 

and Franconian Alb in the north and the crystalline mountains of the Bavarian Forest in the 

northeast (JERZ 1993). 

 

Fig. 2.6: Topography and simplified hydrogeology of the Upper Danube watershed (NGDC 1998, BARTHEL ET AL. 2005, 
modified). 
 

The Upper Danube watershed is characterized by step relief gradients. An overview of the 

topographic conditions in the UD is given in Fig. 2.6 (left). The point of maximal elevation is 

located at Piz Bernina with a height of 4049 m.a.s.l., which, taking into account the height of 

the gauge at Achleiten (287 m.a.s.l.), gives a total difference in altitude of 3762 m within the 

catchment. 

 

2.4 SOILS 

Pedogenesis is influenced by many factors and processes. The manifold environmental 

boundary conditions inside the UD lead to a variety of different soils. In particular the 

presence of large ice masses during the ice ages and the processes related to these climatic 

boundaries are largely reflected by the present soil conditions.  

Regional distinctions in vegetation, climate, relief, bedrock and the time available for the 

development of the soils lead to soil types ranging from very fertile luvisols, situated on loess 

sediments, to barely developed leptosols in mountainous areas (ESBN 2004). Soil texture is 

manifold as well, ranging from coarse sands to loamy clays. The sloped mountain regions 

are often connected to umbric and rendzinic leptosols. Umbric leptosols as well as albic 

luvisols have developed on the crystalline material of the Central Alps, whereas the well 

wooded altitudinal belts show regosols and chromic cambisols developed on calcareous 
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rocks. Inside the Alpine valleys hydromorphic soils like gleyic luvisols and gleysols can be 

found (KUNTZE ET AL. 1994). In the floodplains, the Danube and its tributaries have deposited 

alluvial sediments of varying depth resulting in frequent occurrence of fluvisols in the Upper 

Danube area (ESBN 2004). The highly permeable gravel bedrock of the plains and moraines 

established the basis for the development of luvisols in large areas of the Alpine Foreland 

(ESBN 2004). Together with cambisols, the luvisols pose the dominant soils situated on the 

loess sediments of the tertiary hills. In regions with high groundwater levels, they are 

accompanied by gleysols and gleyic luvisols. Fens characterized by the typical peat soils can 

be found in the catchment as well, in particular at the northern rim of the Alps.  

Fertile cambisols and umbric leptosols are the predominant soil types situated on the 

crystalline material of the Bohemian, Bavarian and Black Forest in the north of the Danube 

Valley. The jurassic parent material of the Franconian and Swabian Alps sets the basis for 

gleyic luvisols and vertisols on the lower jurassic and rendzic leptosols as well as chromic 

cambisols on the upper Jurassic (KUNTZE ET AL. 1994).  

 

2.5 VEGETATION 

Vegetation in the UD represents the product of the prevailing climatic, geomorphologic, 

geologic and anthropogenic boundary conditions and thus shows a high spatial variability. 

Free from human influence, the area would mostly be covered by forest, except of the high 

Alpine regions, where climate conditions are limiting the botanic habitat (RZD 1986). Among 

the deciduous forest species, oak (quercus robur and quercus petrea) and beech (fagus 

silvatica) would cover the largest areas. In reality, man has limited forested areas to sites that 

are inapplicable for agricultural cultivation. Substituting the natural vegetation by large 

plantations of spruce (picea abies), forestry has left over only few pure deciduous forests. 

There are still few places along the river banks of the Danube and its tributaries, where the 

absence of human attention allows a natural development for a variety of species. Besides 

these unique biomes some of the once widespread moorlands have been preserved in their 

natural state in the south of Bavaria. 

Mixed forest, composed by spruce (picea abies), white fir (abies alba) and beech (fagus 

silvatica) together with pure coniferous forests make up the forested areas in the higher 

elevated montane and subalpine regions. Human influence has made spruce the dominating 

forest species in these areas as well. Moreover, spruce is found at the timberline of around 

1900 m.a.s.l. Mixed forests are replaced by spruce in the lower regions of the climatologically 

dryer central part of the Alps. In higher regions larch (larix decidua) and sometimes swiss 
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stone pine (pinus cembra) as well as mountain pine (pinus mugo) reach up to the local 

timberline of 2400 m.a.s.l.. The unfavourable climate conditions above the timberline are 

tolerated only by very few plant species such as grass species (carex curvula) and ericaceae 

(calluna vulgaris) that have adapted to the extreme environmental conditions (ELLENBERG 

1996).  

 

2.6 SOCIO-ECONOMIC ASPECTS 

The UD is largely influenced by human activity. Five different countries share the total 

catchment area. With a percental coverage of 72.7 % the German federal states of Bavaria 

and Baden-Württemberg make up the largest part of the total area (62 % Bavaria, 11 % 

Baden-Württemberg), followed by Austria and Switzerland with fractional contributions of 

approximately 24.1 % and 2.2 % respectively (see Fig. 2.7). With 0.7 % and 0.3 % the Czech 

Republic and Italy only cover small fractions of the river catchment (BLFW 1999).  

 

 
Fig. 2.7: The Upper Danube watershed and its major cities, its traffic network and water ways and the countries sharing and 
surrounding the catchment (based on the ESRI World Database (ESRI 2008)). 
 

Its role as a unique international waterway, flowing 2857 km across Europe, as well as the 

agricultural suitability of the environment has encouraged civilisations and cultures to 

develop on the banks of the Danube since early times (DOMOKOS AND SASS 1990). At 

present, more than 10 million people are hosted in the catchment of the Upper Danube with 

a high density of population (> 100 inhabitants/km²). The cities Munich (1.2 Mio. inhabitants), 

Augsburg (260 000 inhabitants) and Ingolstadt (115 000 inhabitants) state the most important 
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industrial agglomerations. Outside these densely populated areas landuse is dominated by 

forestry and agricultural use of different intensity (LUDWIG ET AL. 2003).  

Most commonly cultivated crops range from sugar-beet (beta vulgaris), potatoes (solanum 

tuberosum L.) and canola (brassica napus L.) to winter and summer grains (mostly triticum L., 

hordeum vulgare L., secale cereale L.) and maize (zea mays L.). Some regions have specialized 

on the cultivation of asparagus (asparagus L.) or hops (humulus L.) as well. While the areas 

favouring an agricultural production are located in the climatically privileged basins along the 

Danube, high precipitation and low temperatures limit the agricultural production in higher 

elevations of the catchment area. As a consequence, these areas are extensively used as 

pastures and grasslands. Besides agriculture and industry, tourism has developed into an 

economic branch of substantial size. In particular the mountainous landscapes of the Alps 

and the Bavarian Forest are attracting tourists throughout the year.  

Water use and management is complex in the UD and includes drinking and industrial water 

supply, hydropower and navigation. Apart from its role in water supply and energy 

production, water management is concerned with flood protection and low-flow management. 

The need to protect land and people against floods as well as the extended water usage for 

energy production are reflected by the large number of river regulations, dams and storage 

reservoirs inside the Upper Danube watershed. Unfortunately the benefit of controlling the 

regional water resources is largely affecting the natural system, as can be seen in the 

substantial shortening of river courses and the destruction of natural retention basins. The 

Danube is navigable below the mouth of the Altmühl near Kelheim and is connected to the 

Rhine-Main River System via the Rhine-Main-Danube-Channel. While it is already used to 

export water from the UD into other regions at present, the export of water using this 

waterway might intensify in the future, due to changes in water availability in Europe (LUDWIG 

ET AL. 2003). 
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3.1.1 THE METEOROLOGY COMPONENT 

The meteorological forcings are supplied by a meteorological preprocessor in the models 

standard configuration. This preprocessor can optionally be substituted by SCALMET, 

providing the technical prerequisite to couple the land surface model with RCMs. The 

meteorological drivers are of great importance for the overall model performance as they 

determine both, the water and the energy budget at the land surface. PROMET requires 

spatial distributions of the following meteorological variables: 

 

 Precipitation [mm] 

 Temperature [°C] 

 Humidity [%] 

 Incoming shortwave radiation (direct) [W/m²] 

 Incoming shortwave radiation (diffuse) [W/m²] 

 Incoming longwave radiation [W/m²] 

 Wind speed [m/s] 

 Surface pressure [Pa] 

 

While the generation of meteorological distributions in SCALMET will be described in a later 

chapter (see chapter 4), the following paragraphs will give a survey of the processing of 

station observations in PROMET. The letter is necessary as the meteorological distributions 

provided by the meteorological preprocessor in PROMET will serve as reference in various 

aspects in the later course of this work.  

To assure a high degree of quality, homogeneity and continuity, meteorological observations 

at a total number of 377 meteorological stations in Germany (DWD) and Austria (ZAMG) are 

used for the generation of the meteorological fields needed for the simulation of land surface 

processes in PROMET (see Fig. 3.2). Temporal resolution and time of measurement vary 

within the meteorological stations. Up to April 2001, measurements at the DWD weather 

stations where taken three times a day at the so called ‘Mannheimer Stunden’ (7:30 a.m., 

2:30 p.m. and 9:30 p.m.). From that time on, the data acquisition system has been partly 

automated and the times of readings have been shifted to 7:00 a.m., 2:00 p.m. and 9:00 p.m. 

In addition to these measurements, hourly synoptic DWD observations have been integrated 

in the climate database. Measurements in the Austrian part of the area are taken twice a day 

for precipitation and 3 times a day for the rest of the required variables. To supply hourly 

values of the meteorological variables for each raster element, temporal and spatial 

interpolation methods need to be applied. 
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Fig. 3.2: The network of meteorological stations used for the generation of meteorological distributions in PROMET. 

 

 

3.1.1.1 TEMPORAL INTERPOLATION OF METEOROLOGICAL OBSERVATIONS 

Continuous meteorological variables like temperature, air humidity and wind speed are 

interpolated, fitting a cubic function through four successive measurements (MAUSER AND 

BACH 2008). In contrast to these meteorological variables, precipitation is connected to single 

events and therefore highly variable over space and time. To adequately distribute 

precipitation observations over the time past between the measurements, several 

assumptions have been made in order to account for regional precipitation characteristics. 

The approach makes a distinction between long events (steady rain) with rather low 

intensities and short events (showers) characterized by high intensities. While short events 

are related to just one singular recording, long term events are associated with at least two 

consecutive precipitation recordings (MAUSER AND BACH 2008). 

The temporal distribution of long rainfall events is carried out in several steps. The beginning 

of the rain event is simulated by slowly increasing rainfall up to the point of time affiliated to 

the measurement. This is done by dividing the first observation into 55.5 equal parts that are 

subsequently multiplied with increasing weights (1.5, 3, 5, 7, 9, 14, 16). The same procedure 

is used to ‘fade out’ a precipitation event using the last observed rainfall amount (LUDWIG 

2000). Rainfall intensities between two consecutive recordings are calculated by equally 

distributing the recorded precipitation over the time between the two measurements (see Fig. 

3.3). For the temporal distribution of precipitation over the time steps before an event a 

Gaussian distribution is applied in case of short events (MAUSER AND BACH. 2008). 
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Fig. 3.3: Temporal interpolation of rainfall over the time past between the observations for the two categories of long and short 
rain events (LUDWIG 2000, modified). 
 

 

3.1.1.2 SPATIAL DISTRIBUTION OF METEOROLOGICAL OBSERVATIONS 

After the meteorological observations have been temporally interpolated, the resulting hourly 

values need to be spatially distributed. The method applied in PROMET makes use of 

parameter-elevation dependencies, which are known to exist for many meteorological 

variables. In a first step, the method determines the prevailing parameter-elevation 

dependency for the current model time step by means of statistic data analysis. The result is 

a regression function that is used in combination with distributed elevation information, 

supplied by a digital elevation model (DEM), to compute a value for the considered 

meteorological variable for each raster element.  

In a next step, the same meteorological observations used to derive the altitudinal lapse 

rates are utilized to account for local deviations from the functional relation. This is done by 

subtracting the observations from the normal field. The residuals, expressed as the 

difference between the predicted values and the observations, are spatially interpolated 

using an Inverse Distance Interpolation approach (IDW). Finally, the interpolated residuals 

are used to correct the predictions made on the basis of the regression function. The method 

allows the consideration of the elevation dependence of the remapped parameters, forcing 

the remapped field through the observations at the station locations.  

Relative humidity, which shows a nonlinear height dependency, is transformed into an 

absolute humidity before the regression analysis and is retransformed to a relative humidity 

subsequent to the remapping process.  
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3.1.1.3 THE RADIATION SUBMODEL IN PROMET 

While precipitation, temperature, humidity, surface pressure and wind speed are directly 

measured at the weather stations, short- and longwave radiative fluxes are computed within 

a radiation submodel using spatially and temporally interpolated cloud cover observations 

(MAUSER AND BACH 2008). The potential incoming shortwave radiation (ܴ௦௪_௣௢௧) is calculated 

as a function of topographic (elevation, slope, aspect) and astronomic parameters (local 

time, time of sunrise and sunset, sun zenith and azimuth, solar constant and eccentricity of 

the earth orbit) (BRUDSAERT 1982). It is composed of direct and diffuse radiation components.  

For the computation of the atmospheric transmissivity for direct solar radiation an approach 

presented by HOTTEL (1976) is applied. The method provides different parameterizations for 

summer and winter conditions in the midlatitudes and accounts for differences in local 

altitude (HOTTEL 1976). Following this approach for the standard atmosphere with clear 23-

km visibility the atmospheric transmissivity for direct radiation ( ௗܶ௜௥) can be written as: 

 

ௗܶ௜௥ ൌ ܽ଴ ൅ ܽଵ כ ݁
ି௔మ

ୡ୭ୱ ሺௌ௓஺ሻ Eq. 3.1 

 

ܽ଴ ൌ ቂ0.4237 െ 0.00821 · ൫6 െ ሺ0.001 · ሻ൯ଶቃݖ · ଵ݂ 

ܽଵ ൌ ቂ0.5055 ൅ 0.00595 · ൫6.5 െ ሺ0.001 · ሻ൯ଶቃݖ · ଶ݂ 

ܽଶ ൌ ቂ0.2711 ൅ 0.01858 · ൫2.5 െ ሺ0.001 · ሻ൯ଶቃݖ · ଷ݂ 

 

with: ܼܵܣ = Solar zenith angle 

 ଵ݂ = Factor depending on season and geographic latitude  

 ଶ݂ = Factor depending on season and geographic latitude 

 ଷ݂ = Factor depending on season and geographic latitude 

 Terrain Elevation = ݖ 

 

The factors ଵ݂ െ ଷ݂ are listed for the midlatitudes in Tab. 3.1. 

 
Tab. 3.1: Seasonal factors for the calculation of the atmospheric transmissivity for direct solar radiation in the midlatitudes 
(HOTTEL 1976). 
 

Season ࢌ૚ ࢌ૛ ࢌ૜ 

Summer 0.97 0.99 1.02 

Winter 1.03 1.01 1.00 
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Diffuse transmissivity ( ௗܶ௜௙) is deducted using the relation between direct and diffuse 

atmospheric transmissivity presented by LIU AND JORDAN (1960): 

ௗܶ௜௙ ൌ 0.271 െ 0.2939 כ ௗܶ௜௥ Eq. 3.2 

The transmissivity for direct solar radiation allows to calculate the direct solar radiation 

component (ܴ௦௪_ௗ௜௥) in form of: 

ܴ௦௪_ௗ௜௥ ൌ ௗܶ௜௥ כ ܴ௦௪_௣௢௧ Eq. 3.3 

For the calculation of the diffuse radiation a view factor (ܸܨ) is introduced. The factor is 

calculated according to the local slope (ߚ) as: 

ܨܸ ൌ ሺ1 ൅ cos ሺߚሻሻ/2 Eq. 3.4 

The diffuse solar radiation component (ܴ௦௪_ௗ௜௙) can be calculated using the atmospheric 

transmissivity for diffuse solar radiation and the view factor as: 

ܴ௦௪_ௗ௜௙ ൌ ௗܶ௜௙ כ ܴ௦௪_௣௢௧ כ  Eq. 3.5 ܨܸ

Finally, the calculated values of direct and diffuse solar radiation are corrected for cloud 

cover on the basis of studies by MÖSER AND RASCHKE (1983). 

The available longwave radiation on the land surface (ܴ௟௪) depends on the thermal emission 

of the land surface (ܴ௟௪_௢௨௧) and the longwave radiation emitted towards the land surface by 

the atmosphere (ܴ௟௪_௜௡): 

ܴ௟௪ ൌ ܴ௟௪_௜௡ െ ܴ௟௪_௢௨௧ Eq. 3.6 

The emitted radiation of the land surface and the atmosphere are determined with respect to 

their temperature and emissivity as: 

ܴ௟௪_௢௨௧ ൌ ௟௦ߝ כ ߪ כ ௞ܶ
ସ Eq. 3.7 

ܴ௟௪_௜௡ ൌ ௔ߝ כ ߪ כ ௞ܶ
ସ Eq. 3.8 

 

with: ߝ௟௦ = Emissivity of the land surface 

  ௔ = Emissivity of the atmosphereߝ 

 Stefan-Boltzmann constant = ߪ 

 ௞ܶ = Temperature [K] 
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For the case that the cloud fraction (ܥ௙) is greater than zero, the radiation emitted by the 

atmosphere is corrected according to BOLZ (1949) as follows: 

ܴ௟௪_௜௡ ൌ 0.99 כ  ൫ߝ௔ כ ߪ כ ௞ܶ
ସ൯ כ ሺ1 ൅ 0.243 כ ௙ܥ

ଶ.ହሻ Eq. 3.9 

As the result of all calculations within the radiation submodel in PROMET the incoming 

shortwave radiation, separated into to direct and diffuse components, as well as the 

longwave radiation balance on the earth surface can be provided for every raster cell and 

every time step. After this short introduction to the meteorological component of the 

PROMET model, the following will give an overview of the different subcomponents 

describing water fluxes at the land surface. While the meteorological input data are spatially 

distributed in advance of all model calculations for a given time step, the land surface 

processes are subsequently described for each of the grid cells in different subcomponents.  

 

3.1.2 THE LAND SURFACE ENERGY AND MASS BALANCE COMPONENT 

The land surface energy and mass balance component iteratively closes the energy balance 

on the land surface which is given as 

ܴ௦௪_௜௡ ൅ ܴ௟௪_௜௡ െ ܶܧ െ ܪ െ ܤ െ ܴ௦௪_௢௨௧ െ ܴ௟௪_௢௨௧ ൌ 0 Eq. 3.10 

where ܴ௦௪_௜௡ and ܴ௟௪_௜௡ represent the incoming radiative fluxes of shortwave and longwave 

radiation respectively, ܶܧ is the latent heat flux given by the actual evapotranspiration, ܪ is 

the sensible heat flux, ܤ is the ground heat flux, and ܴ௦௪_௢௨௧ and ܴ௟௪_௢௨௧ represent the 

outgoing components of shortwave and longwave radiation (MAUSER AND BACH 2008). 

Depending on the aerodynamic resistance of the land surface the component describes the 

transportation of water vapour through the boundary layer into the atmosphere based on 

CAMPBELL AND NORMAN (1998) and MONTEITH (1973). Moreover, the momentum flux is 

calculated as a function of the friction velocity. As it includes the determination of all 

quantities that can optionally be aggregated by SCALMET and can be provided as inputs for 

RCMs in two-way coupled model runs, the land surface energy and mass balance 

component is of particular importance for the coupled model system. 

 

3.1.3 THE VEGETATION COMPONENT 

The vegetation component simulates the water transport and carbon allocations in the 

canopy (MAUSER AND BACH 2008). Carbon and water fluxes are described as a function of a 

plant species specific canopy resistance, which is calculated according to the plants LAI and 
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stomatal conductance as well as the predominant radiation, temperature, air humidity and 

soil water conditions. 

While the current model version also offers a dynamic simulation of plant growth and all other 

plant related processes within a biophysical canopy model (HANK 2008), the present work is 

based on the conventional approach as described in detail by MAUSER AND BACH (2008). The 

method calculates the actual evapotranspiration following the PENMAN-MONTEITH equation 

(PENMAN 1956, MONTEITH 1965) in form of: 

 

ܶܧ ൌ
∆௦ כ ሺܴ െ ሻܤ ൅ ߩ כ ܿ௣ כ ሺ݁௦ െ ݁௔ሻ

௔ݎ

∆௦ ൅ ߛ כ 1 ൅ ௦ݎ
௔ݎ

 Eq. 3.11 

 

with: ܶܧ = evapotranspiration 

 ∆௦ = slope of the saturation vapour pressure curve 

 ܴ = radiation balance 

 ground heat flux = ܤ 

 density of the air = ߩ 

 ܿ௣ = specific heat of the air at constant pressure  

 ݁௦ = saturation vapour pressure 

 ݁௔ = actual vapour pressure  

 ௔ = aerodynamic resistanceݎ 

 ௦ = canopy resistanceݎ 

 psychrometric constant = ߛ 

 

Evapotranspiration is controlled by various plant specific parameters, determining the 

decrease of stomatal conductance due to unfavourable boundary conditions (BALDOCCHI ET 

AL. 1987). Based on the assumption that vegetation is inactive during the time of snow 

coverage, the vegetation model is substituted by a snow model whenever the land surface is 

covered by a snow layer. 

 

3.1.4 THE SNOW AND ICE COMPONENT 

The physically based snow submodel inside PROMET was developed by STRASSER (1998) 

and is further developed by PRASCH ET AL. (2008) and STRASSER ET AL. (2008). Resolving the 

energy balance in the snow layer, the model calculates the accumulation or ablation of snow 

water equivalent for each pixel and model time step. The algorithm used for energy balance 



The Coupled Model System 

 

33 

 

closure distinguishes between ‘no melt conditions’ (air temperature < 273.16 K) and possible 

‘melt conditions’ (air temperature ≥ 273.16 K) (MAUSER AND BACH 2008). While for the latter 

case a snow surface temperature of 273.16 K is assumed within the solution of the energy 

balance, the balance is iteratively solved for temperatures below 273.16 K. This is done by 

considering all relevant sources of energy, including long and shortwave radiation, the energy 

stored in liquid or solid precipitation and the energy related to condensation and sublimation 

processes. The snow albedo needed for the solution of the radiation balance is calculated as 

a function of snow age. Snow melt is simulated according to the available energy budget if 

temperatures meet the above mentioned requirements. Still snow water only leaves the snow 

package if the liquid water storage inside the package is saturated. For a detailed description 

of the implemented algorithms it is referred to STRASSER ET AL. (2008). With its ability to 

account for water storage and release due to snow accumulation or ablation, the snow model 

is of great importance for a realistic description of many hydrological processes in the land 

surface model PROMET (e.g. river discharge).  

 

3.1.5 THE SOIL HYDROLOGICAL AND SOIL TEMPERATURE COMPONENT 

Including the simulation of water fluxes related to infiltration, percolation, capillar rise and 

exfiltration, the soil model in PROMET calculates the volumetric soil water content, the soil 

matrix potential and the soil temperature in the unsaturated soil layers. Besides vertical water 

flow components, the soil model also describes the lateral flows of water in and on the 

unsaturated soil (MAUSER AND BACH 2008). Therefore an approach presented by EAGLESON 

(1978) has been extended to 4 soil layers with different thickness characteristics.  

The calculated matrix potential defines whether the water stored in the soil is available for 

evapotranspiration or not. Excluding the deepest soil layer, all layers can drain vertically and 

horizontally. Percolation of the bottom soil layer directly adds to the groundwater body. 

Besides its influence on local evapotranspiration, the soil conditions largely affect the process 

of runoff formation.  

 

3.1.6 THE GROUNDWATER COMPONENT 

The groundwater component simulates water flow in the saturated parts of the catchment 

and represents the linking element between the unsaturated soil layers and the channel 

network (MAUSER AND BACH 2008). Two subcomponents are available for the simulation of 

groundwater fluxes. The first component, which represents the one used in the present work, 

consists of a linear storage element that is filled by the percolation of the deepest soil layer of 
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every pixel and that is depleted by the process of capillar rise or the discharge into the 

proxels channel (MAUSER AND BACH 2008). A time constant is assigned to each linear storage 

element, depending on the distance between the respective proxel and the next main 

channel. The time constant defines the time that passes until the water storage is assigned to 

the river discharge and takes values ranging from one year (remote proxels) to one hour 

(proxels situated on a main channel).  

Alternatively to the linear storage model, the bottom soil layer can be coupled to the 

MODFLOW ground water model. A detailed description of this subcomponent is given by 

BARTHEL ET AL. (2007) and HARBAUGH ET AL. (2000).  

 

3.1.7 THE CHANNEL FLOW COMPONENT 

The channel flow component directs the lateral water flow concentrations of the soil 

component into the river runoff and further routes the river runoff through the channel 

network and natural reservoirs (MAUSER AND BACH 2008). It is based on the assumption that 

each proxel is part of the channel network and that all proxels are hydraulically 

interconnected by topography. Within the process of transporting the runoff from one proxel 

to its hydraulic neighbor, the lateral flow types overland flow, interflow and groundwater flow 

are treated differently (MAUSER AND BACH 2008). Once the water has entered the channel 

network, it is routed using the Musikingum-Cunge scheme (CUNGE 1969) with modifications 

proposed by TODINI (2007). In order to avoid instabilities within the routing process, the time 

interval of the channel flow component is increased towards a routing pulse of 30 times per 

hour leading to a time step of 2 minutes (MAUSER AND BACH 2008).  

Besides the description of water flow in the channel network, the component accounts for 

runoff retention in natural reservoirs where the inflow of water adds to the water volume and 

changes the lake water level. Further information about the channel flow component and the 

exact parameterization is given by MAUSER AND BACH (2008). 

 

3.1.8 THE MAN-MADE HYDRAULIC STRUCTURES COMPONENT 

The man-made hydraulic structure component is organized analogously to the natural water 

reservoirs concerning the uptake of water. It includes the 15 largest reservoirs in the 

catchment, storing a maximum of 1 125 000 000 m³, which corresponds to 2.2 % of the total 

river discharge volume at the gauge of the UD in Achleiten (MAUSER AND BACH 2008). 

Furthermore it includes 30 water transfer diversions regulating the transfer of water inside the 

catchment as well as between the catchment and the surrounding watersheds using artificial 
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hydraulic connections between the proxels. The outflow of water from the reservoirs as well 

as the transfer of water is determined by look up tables opening a flexible way to supply the 

model with water management strategies.  

For the internal process description, PROMET requires a set of non distributed vegetation 

and soil parameters as well as different spatially distributed information in a user specified 

spatial resolution (soil data, digital elevation model, land use maps). Temporal resolution is 

user defined although the temporal dynamics of the meteorological boundary conditions 

suggest a temporal resolution of at least one hour. Some internal processes (e.g. 

percolation) require an overclocking to adequately simulate the related fluxes though.  

 

3.2 THE REGIONAL CLIMATE MODEL REMO 

The climate simulations used in the framework of the present work have been generated by 

the regional climate model REMO (JACOB 2001, JACOB ET AL. 2001, JACOB AND PODZUN 

1997). The model is based on the Europa-Modell (EM) (MAJEWSKI 1991), which represents 

the former weather prediction model of the German Weather Service. REMO has been 

further developed by the Max-Planck-Institute for Meteorology (JACOB 2001) including the 

implementation of additional physical parameterizations adopted from the ECHAM4 climate 

model (ROECKNER ET AL. 1996). An illustration of the origins of the REMO model is given in 

Fig. 3.4 (left). REMO is a hydrostatic atmospheric circulation model. It is based on the 

primitive equations of atmospheric motion which are solved on a terrain-following hybrid 

vertical coordinate system (JACOB AND PODZUN 1997) (see Fig. 3.4, right).  

 

 

Fig. 3.4: The origins of the regional climate model REMO (left) (KOTLARSKI 2007) and schematic illustration of a hybrid vertical 
coordinate system (right). 
 

In a sigma coordinate system the vertical position of a point in the atmosphere is described 

as the ratio of the pressure difference between the point and the top of the domain to the 

pressure difference between the land surface and the top of the domain. Since the sigma 
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coordinate system is pressure based and normalized the governing equations of the 

atmosphere can be casted into a relatively simple form. Atmospheric processes in REMO are 

described for 20 vertical layers with level intervals increasing from the lower atmospheric 

levels to the higher atmosphere (PFEIFER 2006). 

Temporal integration is approached using a leap frog scheme with semi implicit correction in 

combination with an Asselin-Filter (ASSELIN 1972). Horizontally, the finite difference forms of 

the governing atmospheric equations are written on an Arakawa C-grid where all 

meteorological variables but the wind components are defined by the centers of the 

individual grid boxes (KOTLARSKI 2007). The grid center positions are defined by the 

coordinates of a rotated spherical grid (KOTLARSKI 2007). Rotated coordinate systems are 

often used in the framework of meteorological simulations to minimize latitudinal distortions 

by forcing the equator through the model domain. In case of the current model setup, the grid 

is rotated in such a way that the rotated grid north-pole holds the real geographic coordinates 

of 162 ° western longitude and 39.25 ° northern latitude.  

Following a dynamical downscaling approach (see chapter 1.2.3.1), the RCM is set up in a 

double nesting technique to successively bridge the gap between the global and the regional 

scale in a physically based manner (see Fig. 3.5).  

 

 
Fig. 3.5: The one-way double nesting model setup used for the REMO simulations. Large scale boundaries are supplied by 
different data sources. 
 

While also two-way nesting simulations have been set up recently (LORENZ AND JACOB 2005), 

REMO in the present one-way nesting mode merely updates its meteorological boundaries 

from large scale simulations every 6 hours without giving any feedback to the global model 

(JACOB 2001). The process of updating the RCM with the large scale meteorological 
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boundaries takes place in a relaxation region of 8 grid boxes. In this lateral sponge zone, the 

prognostic large scale variables (surface pressure, horizontal wind components, specific 

humidity, temperature and cloud liquid water) are smoothly transmitted into the limited-area 

model domain following a relaxation scheme proposed by DAVIES (1976). The relaxation 

zone should not be considered when analyzing the meteorological simulations.  

Boundary conditions for the REMO model can be supplied by different data sources (see Fig. 

3.5). For the model validation the boundaries have been provided by the ECMWF ERA-15 

re-analysis data (GIBSON ET AL. 1999). These so called ‘perfect boundaries’ allow the best 

possible model performance, but are naturally constrained to time periods with presence of 

meteorological observations.  

To simulate future climate conditions, the model is forced by global boundaries, provided by 

the coupled ocean-atmosphere model ECHAM5/MPI-OM (ROECKNER ET AL. 2003). Different 

emission scenarios (A1B, B1 and A2), defined by the Intergovernmental Panel on Climate 

Change (IPCC), have been used in scenario runs (2001-2100) to simulate possible future 

climate conditions (JACOB AND PODZUN 1997, JACOB ET AL. 2001). Still, a reasonable analysis 

of the climate change signal included in the scenario runs is only possible if a common basis 

of comparison is ensured. 

To clarify the model’s capability to statistically reproduce the current climate conditions using 

GCM boundaries, REMO has been set up for a control run covering the years 1950-2000 

with the ECHAM5/MPI-OM forcing the model at the boundaries of the model domain (‘REMO 

Climate of the 20th Century Run’) (JACOB AND PODZUN 1997, JACOB ET AL. 2001). A 

comparative analysis between the REMO simulations driven by ECHAM5/MPI-OM in 

combination with current greenhouse gas concentrations to REMO simulations driven by 

ECHAM5/MPI-OM in combination with assumed future greenhouse gas concentrations 

allows the isolation of the climate change signal within the model results. A detailed 

description of the scenario families together with detailed information about the scenario run 

used in the present work is given in chapter 6.1 of this work. 

Alternatively to the climate mode in which the model is run for the generation of all datasets 

used in the present work, the model can be set up in a forecast mode. Unlike the forecast 

mode, the climate mode will not realistically produce a single weather event. As suggested 

by its denotation, the climate mode only realistically simulates the long term climate (JACOB 

2001). Thus, the nesting approach in combination with the climate mode has some important 

advantages over the forecast mode. The comparatively high spatial resolution of the RCM 

together with the long run-time of the model in the climate mode allows the development of 

mesoscale meteorological phenomena that are not resolved by the global model and that are 
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partly suppressed by the frequent model restarts that are affiliated to the forecast mode 

(JACOB 2001). 

For the utilization within in the GLOWA-Danube project the rotated REMO grid is transformed 

to a common Lambert Conformal Conic projection, which represents the standard projection 

used in the project. Fig. 3.6 shows the REMO model domain in the Lambert projection. The 

REMO model domain is overlapping the Upper Danube watershed without invading the 

relaxation zone of the 8 boundary REMO grid boxes.  

 

 
Fig. 3.6: The model domain of the regional climate model REMO together with the Upper Danube watershed representing the 
model domain of the land surface model PROMET. 
 

While the model was run with a horizontal standard resolution of about 18 x 18 km and 55 x 

55 km in the past years, the data used in the present work originate from model runs carried 

out at an extraordinarily high spatial resolution of approximately 10 x 10 km, which is about 

the highest spatial resolution that can be achieved using hydrostatic climate models. The 

applied runs have been conducted in the framework of a cooperative study carried out by the 

Max-Planck-Institute for Meteorology (MPI-M) and the German Federal Environment Agency 

(UBA) to analyze future climate change in Germany, Austria and Switzerland.  
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3.3 THE MODEL COUPLING TOOL SCALMET 

The coupling tool SCALMET has been developed to perform a synchronized exchange of 

energy and water fluxes between the models for the land surface and the atmosphere. While 

the land surface model PROMET describes all processes at a spatial resolution of 1 x 1 km, 

the simulation of the atmospheric processes in climate models at present is limited to a 

coarser spatial resolution of at best 10 x 10 km in case of the regional climate model REMO. 

To bridge the gap between the model scales, adequate scaling techniques have been 

implemented in the software interface. The scaling methods applied combine direct 

interpolation methods, also found in conventional couplers, with more sophisticated scaling 

techniques allowing the consideration of subgrid-scale heterogeneities. As also two-way 

coupled model runs are to be realized, special techniques have been implemented that 

conserve mass and energy between the model scales. As reflected in the aim to conserve 

water and energy fluxes within the remapping process, SCALMET is not pursuing the 

correction of biases in climate model outputs as it is proposed by various authors (KIDSON 

AND THOMPSON 1998, MURPHY 1999, WILBY ET AL. 2000). The research carried out in this 

work, intends to analyze the potential of using present RCM simulations as inputs for the 

terrestrial models without applying any bias corrections. 

The meteorological preprocessor embedded in PROMET is substituted by an interface 

allowing the import of RCM simulations in the coupled model setup. Additionally an export 

interface has been established in PROMET, allowing an export of climate relevant land 

surface simulations to SCALMET, where fluxes are aggregated and exported to the RCM. 

The temporal exchange rate (coupling frequency) depends on the configuration of the 

participating model components. While bilateral coupled model runs will probably require 

higher exchange rates to resolve climate relevant processes in both model components, one-

way coupled model runs are set up at a temporal resolution of one hour at present.  

For an application inside the GLOWA-Danube project, the technical implementation of 

SCALMET has to meet the following requirements: 

 

 Transferability to an arbitrary region of interest 

 Transferability to an arbitrary regional climate model 

 Assurance of validity for future climate conditions 

 Optional conservation of mass & energy between the model scales 

 Low computational costs 
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Although all simulation tools emerging from the GLOWA-Danube project are developed, 

validated and firstly utilized inside the UD, regional transferability should be given as a matter 

of principle. The rapid development of climate models as well as the scientific request for 

climate model intercomparison further requires the flexibility of the coupler concerning an 

application on different RCMs. As the algorithms are to be applied on both, past and future 

climate conditions, no assumptions should be made that are not valid for future conditions. 

The conservation of mass and energy states another important requirement for a coupler. 

Although many authors propose to apply bias corrections in the framework of the 

downscaling process, which are systematically excluded as soon as fluxes follow 

conservation laws, the option to conserve fluxes from one grid to the other must be given to 

prevent model drifts in two-way coupled model runs. Furthermore, the technical 

implementation of mass and energy conservation within the remapping plays an important 

role in the process chain of the downscaling techniques (see chapter 4.1.3).  

One of the main technical principles in SCALMET is that the meteorological simulations 

afiliated to a given model time step are spatially distributed at run-time of the coupled model 

system, which requires a minimization of computational costs. For one-way coupled model 

runs the fact that data are stored in RCM resolution and are mapped to the LSM resolution 

for every time step merely reduces storage requirements. For two-way coupled model 

setups, the interdependence of model results makes the real-time processing of model 

output an inevitable prerequisite. To minimize computational costs at run-time of the coupled 

model run, SCALMET precomputes the interpolation weights according to the interpolation 

algorithm that is chosen by the user in advance of the model run. The methods used for the 

weight computation originate from the SCRIP interpolation package (JONES 1998a) that can 

be found in many couplers like for example the OASIS coupler (VALCKE AND REDLER 2006) 

connecting the MPI-OM and the ECHAM5 model. Once computed, SCALMET writes the 

weights to file. If a run with the same grid constellation and interpolation configuration is 

started, the stored weights can be read into memory further reducing computation time.  

For the remapping of fluxes between the models, SCALMET needs additional sources of 

information. The user has to provide several remapping parameters in form of an ASCII input 

file (see Fig. 3.7). An example parameter input file is given in the appendix (see A-4). Beside 

these inputs, SCALMET needs spatially distributed information on the underlying topography 

in both, RCM and LSM grid resolution. Further, a mask in LSM resolution needs to be 

supplied defining the grid area for which total mass and energy conservation between the 

involved grids should be guaranteed (see chapter 4.1.4). Optionally, a mask in RCM 

resolution can be provided to limit the regression analysis on a certain RCM grid area (see 

chapter 4.1.2).  
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The computation of the interpolation weights as well as some of the methods applied in the 

framework of the implemented scaling techniques further require the exact coordinates for 

the pixel centers and pixel corners for both grids involved. While the land surface model 

PROMET operates on the Lambert Conformal Conic Coordinates System, atmospheric grids 

vary depending on the RCM used. The regional climate model REMO for example uses a 

rotated coordinate system which implies coordinate transformations between the models for 

the land surface and the atmosphere (see chapter 3.2). Fig. 3.7 gives an overview of the 

different inputs and outputs of the coupling tool. 

 

 
Fig. 3.7: Schematic diagram of the coupled model system together with the inputs needed for the remapping in SCALMET 
(left) and the outputs optionally given out by the coupler (right).  
 

Apart from the exchange of meteorological data with the atmospheric model and the land 

surface model, SCALMET provides the option to store the remapping results as well as the 

climate model meteorology in a user defined temporal aggregation (daily, monthly or yearly 

mean/sum).  
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4 THE SCALING OF METEOROLOGICAL VARIABLES IN SCALMET 

4.1 GENERAL DOWNSCALING PRINCIPLES IN SCALMET 

SCALMET includes different approaches to bridge the gap between the model scales. Direct 

interpolation techniques (see chapter 4.1.1) in combination with more sophisticated 

downscaling techniques (see chapter 4.2) have been implemented in the software interface 

to adequately scale RCM simulations. Allowing the consideration of subgrid-scale 

heterogeneities, the latter try to compensate the loss of climatic variability, that is 

systematically caused by the coarse representation of topography in climate models (FRÜH 

ET AL. 2006). As can be seen in Fig. 4.1, especially in mountainous regions with steep climate 

gradients, a coarse spatial resolution does not allow to fully capture environmental variability. 

 

 
Fig. 4.1: Representation of topography in the Upper Danube watershed at different spatial resolutions (1 x 1 km (left) 
10 x 10 km (middle) and 50 x 50 km (right)). 
 

The decrease in spatial resolution pictured in Fig. 4.1 moreover goes together with an 

increasingly flattened topography. The result is a local height discrepancy between the real 

orography and that used within the RCM, leading to a discrepancy between the observed 

and modeled meteorology (DALY ET AL. 1994, FRÜH ET AL. 2006).  

To compensate the loss of climatic variability in RCM outputs, different quasi-physically 

based methods have been implemented in SCALMET. Although the different techniques can 

be arbitrarily combined, they are divided into the following categories for a detailed 

description in the framework of this work: 

 

 Direct interpolation methods 

 Regression based remapping 

 Submodel approach (e.g. shortwave radiation submodel) 
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Although the regression based remapping could generally be denoted as a submodel as 

well, the approaches are treated separately as the processing chains slightly differ. Technical 

details are given in chapter 4.1.2 and 4.1.3. The following paragraphs describe the direct 

interpolation techniques in SCALMET.  

 

4.1.1 DIRECT INTERPOLATION METHODS 

The coupling tool SCALMET includes a roundup of direct interpolation algorithms such as 

inverse distance or bilinear interpolation methods. Beyond these techniques, a conservative 

remapping method is implemented. The method assures conservation of mass and energy 

when meteorological fields are directly interpolated between different model scales (JONES 

1998b). Since direct interpolation methods do not compensate the loss of climatic variability 

caused by a coarse RCM topography, these algorithms only produce satisfying results in 

combination with high resolution climate data or in flat terrain. However direct interpolation 

algorithms constitute essential parts in the remapping processes described in the later 

course of this work. Unless otherwise indicated, the interpolation methods described below 

are based on JONES (1998a).  

 

4.1.1.1 INVERSE DISTANCE WEIGHTED INTERPOLATION 

The inverse distance weighted (IDW) method is a rather simple but computationally efficient 

interpolator. An arbitrary destination grid value is determined as a function of the distance 

between the considered cell itself and a given number of surrounding source grid cells. The 

distance between two cells is determined by the differences in the geographical coordinates 

of the pixel centers. The angular distance ݀ is calculated as 

݀ ൌ  cosିଵ൫cos஦ౚ cos஦౩൫cos஛ౚ cos஛౩ ൅ sin஛ౚ sin஛౩൯ sin஦ౚ sin஦౩൯ Eq. 4.1 

where φୢ and φୱ are the latitudes and λୢ and λୱ are the longitudes of the destination grid 

cells and source grid cells respectively. The larger the angular distance, the smaller is the 

influence a source grid cell has on the output value. The number of neighboring source grid 

cells to be considered is user defined. Studies by WEBER AND ENGLUND (1994) showed that 

inverse distance estimators are very sensitive to the type of data, to the number of neighbors 

considered and to the power of distance chosen for the weighting. The approach presented 

by JONES (1998a) therefore has been enhanced allowing a linear, quadratic and cubic 

weighting of the angular distance. 
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Applying a linear distance function the weights for all considered source grid cells can be 

calculated as: 

߱ ൌ
1/ሺ݀ ൅ ሻߢ

∑ ሺ1/݀௡ ൅ ሻே೐೔೒೓್೚ೝೞߢ
௡

 Eq. 4.2 

 

with: ߱ = Weight for a given neighboring source grid cell 

 ௘ܰ௜௚௛௕௢௥௦ = Number of neighbors considered  

 ݀ = Angular distance 

 Small number to prevent zero divisions = ߢ 

 

To minimize computational costs, distance is not computed between every destination grid 

cell and every source grid cell. Instead, the search for the nearest neighbors is narrowed by 

dividing the participating grids into latitude bins. Only those source grid cells located in the 

same latitude bin (e.g. between 40 and 41 °) are considered in the process of finding the 

nearest neighbors. 

 

4.1.1.2 BILINEAR INTERPOLATION 

The bilinear interpolation scheme implemented in SCALMET uses a local bilinear 

approximation to determine interpolated values for a point in a quadrilateral grid. Just like the 

IDW interpolator, the bilinear interpolation method (BI) calculates the value for a given 

destination grid cell as a weighted average of the surrounding source grid cells. Before the 

value for a given destination grid point Px can be computed, the algorithm has to check which 

four source grid centers are located next to point Px (see Fig. 4.2).  

 

 
Fig. 4.2: The general quadrilateral grid structure of the bilinear interpolation process. 

1 2

4 3

(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

(φp,λp)
(αp,ßp)

(φ1,λ1)
(α1,ß1)

(φ4,λ4)

(α4,ß4)

(φ3,λ3)

(α3,ß3)

(φ2,λ2)
(α2,ß2)

xP



The Scaling of Meteorological Variables in SCALMET 

 

45 

 

The point Px in Fig. 4.2 is surrounded by four source grid centers, each characterized by their 

geographical coordinates (߮, ,ߙ) as well as their continuous local coordinates (ߣ  Assigning .(ߚ

point 1 the logical coordinates (0,0), the logically-rectangular i-j-grid structure shown in Fig. 

4.2 returns a logical grid coordinate for all points in form of (1,0) at point 2, (1,1) at point 3 

and (0,1) at point 4. 

If the logical coordinates (ߙ௉, ) ௉) of point Px were known, the functionߚ ௉݂ሻ at point Px could 

be approximated as: 

௉݂ ൌ ሺ1 െ ௉ሻሺ1ߙ െ ,௉ሻ݂ሺ݅ߚ ݆ሻ ൅ ௉ሺ1ߙ െ ௉ሻ݂ሺ݅ߚ ൅ 1, ݆ሻ ൅ ௉݂ሺ݅ߚ௉ߙ ൅ 1, ݆ ൅ 1ሻ

൅ ሺ1 െ ,௉݂ሺ݅ߚ௉ሻߙ ݆ ൅ 1ሻ 
Eq. 4.3 

ൌ ߱ଵ݂ሺ݅, ݆ሻ ൅ ߱ଶ݂ሺ݅ ൅ 1, ݆ሻ ൅ ߱ଷ݂ሺ݅ ൅ 1, ݆ ൅ 1ሻ ൅ ߱ସ݂ሺ݅, ݆ ൅ 1ሻ  

The geographical coordinates (߮௉, ߣ௉) of point Px are known and can be expressed as:  

߮௉ ൌ ሺ1 െ ௉ሻሺ1ߙ െ ௉ሻ߮ଵߚ ൅ ௉ሺ1ߙ െ ௉ሻ߮ଶߚ ൅ ௉߮ଷߚ௉ߙ ൅ ሺ1 െ  ௉߮ସ Eq. 4.4ߚ௉ሻߙ

௉ߣ ൌ ሺ1 െ ௉ሻሺ1ߙ െ ଵߣ௉ሻߚ ൅ ௉ሺ1ߙ െ ଶߣ௉ሻߚ ൅ ଷߣ௉ߚ௉ߙ ൅ ሺ1 െ  ସ Eq. 4.5ߣ௉ߚ௉ሻߙ

The nonlinear character of Eq. 4.4 and Eq. 4.5 requires an iteration process to determine the 

logical coordinates needed to calculate the weights. The equations can be differentiated to: 

൬
௉߮ߜ

௉ߣߜ
൰ ൌ ܣ ൬

௉ߙߜ

௉ߚߜ
൰ Eq. 4.6 

with: 

ܣ ൌ ቆ
ሺ߮ଶ െ ߮ଵሻ ൅ ሺ߮ଵ െ ߮ସ൅߮ଷ െ ߮ଶሻߚ௉

ሺߣଶ െ ଵሻߣ ൅ ሺߣଵ െ ଷߣସ൅ߣ െ ௉ߚଶሻߣ

ሺ߮ସ െ ߮ଵሻ ൅ ሺ߮ଵ െ ߮ସ൅߮ଷ െ ߮ଶሻߙ௉
ሺߣସ െ ଵሻߣ ൅ ሺߣଵ െ ଷߣସ൅ߣ െ ௉ߙଶሻߣ

 ቇ Eq. 4.7 

The inversion of this equation system returns the two equations needed for the iteration of 

the local coordinates (ߙ௉,  :(௉ߚ

௉ߙߜ ൌ ฬ߮ߜ௉ ሺ߮ସ െ ߮ଵሻ ൅ ሺ߮ଵ െ ߮ସ൅߮ଷ െ ߮ଶሻߙ௉
௉ߣߜ ሺߣସ െ ଵሻߣ ൅ ሺߣଵ െ ଷߣସ൅ߣ െ ௉ߙଶሻߣ

ฬ ൊ det ሺܣሻ Eq. 4.8 

௉ߚߜ ൌ ฬ
ሺ߮ଶ െ ߮ଵሻ ൅ ሺ߮ଵ െ ߮ସ൅߮ଷ െ ߮ଶሻߚ௉ ௉߮ߜ

ሺߣଶ െ ଵሻߣ ൅ ሺߣଵ െ ଷߣସ൅ߣ െ ௉ߚଶሻߣ ௉ߣߜ
ฬ ൊ det ሺܣሻ Eq. 4.9 
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Initializing ߙ௉ and ߚ௉ with values of zero, Eq. 4.8 and Eq. 4.9 can be repeatedly resolved until 

 ௉ are appropriately small. For simple latitude-longitude grids, the iterationߚߜ ௉ andߙߜ

converges in the first iteration. Iterated values for ߙ௉ and ߚ௉ can finally be utilized to calculate 

the interpolation weights following Eq. 4.3. 

 

4.1.1.3 CONSERVATIVE INTERPOLATION 

The conservation of energy, mass and momentum is a fundamental concept of physics. In 

coupled model systems it is indispensable to transfer heat and water fluxes between the 

model components in an accurate and conservative manner in order to maintain the energy 

and water budgets of the coupled climate system. The conservative interpolation method 

used in SCALMET, hereinafter referred to as the CI, is based on JONES (1998b). It is 

accurate up to second-order and conservative to machine accuracy. Unlike other 

conservative remapping methods, the approach is completely general and allows an 

application on any type of grid on a sphere. While for the spatial interpolation within both, the 

bilinear and the IDW approach the distance between the cell centers is used within the 

remapping process, the conservative interpolation method described below determines the 

pixel values according to the overlapping area of source and destination grid cells. Hence, 

the coordinates of the pixel corners, which mark out the pixel area, rather than the pixel’s 

centers are the determinant interpolation criteria within the conservative approach. 

To meet the requirements of conservation, a flux computed for an arbitrary destination grid 

cell (k) must satisfy: 

ത௞ܨ ൌ
1

௞ܣ
න ݂ ܣ݀

஺ೖ

 Eq. 4.10 

 

with: ܨത௞ = Area averaged flux at destination cell k 

 ݂ = Flux at a source grid cell 

= ௞ܣ  Area of the destination grid cell k 

 

As the integral in Eq. 4.10 is over the area of the destination grid cell, only those source grid 

cells that are at least partly covered by the destination grid cell (k) contribute to the 

destination grid value. For the destination grid cell overlapping L source grid cells the 

equation can be written as 

ത௞ܨ ൌ
1

௞ܣ
෍ න ௟݂ ܣ݀

஺೗ೖ

௅

௟ୀଵ

 Eq. 4.11 
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with: ܨത௞ = Area averaged flux at destination cell k 

 ௟݂ = Flux at source grid cell l 

௞ܣ  = Area of the destination grid cell k 

௟௞ܣ  = Area of the source grid cell l covered by the destination cell k 

ܮ  = Number of source grid cells overlapped by k 

 

To compute the overlapping cell areas, the algorithm searches the exact location of the end 

point of a segment and then the next intersection with the other grid. Dependent on the grid 

cells that are associated with the considered subsegment, the integrals can be computed 

and summed.  

 

 
Fig. 4.3: Example of two overlapping quadrilateral grids. Destination grid cell k overlaps source grid cell l over the area of Alk. 

 

Assuming a constant source grid value ௟݂ over the whole grid cell, this first order conservative 

remapping scheme equals an area-weighted interpolation. Unfortunately this assumption is a 

very poor approximation for fields with high spatial frequency making the first order 

conservative interpolation less accurate than bilinear methods. Note that accuracy here 

relates to the ability to interpolate between two data points. Yet, the conservative character 

as well as the low computational costs, make the first order conservative Interpolation the 

standard interpolation scheme used in coupled model systems whenever energy and mass 

have to be conserved (JONES 1998b). The introduction of a constant gradient in x- and y-

direction for each source grid cell extends the method to a second order conservative 

Interpolation scheme. The remapping equation then takes the form of 

ത௞ܨ ൌ ෍ ቈ݂ҧ௟߱ଵ௟௞ ൅ ൬
߲݂
߲߮

൰
௟

߱ଶ௟௞ ൅ ൬
1

cos ሺ߮ሻ
߲݂
ߣ߲

൰
௟

߱ଷ௟௞቉
௅

௟ୀଵ

 Eq. 4.12 

where ߮ and ߣ represent geographical latitude and longitude respectively and the weights 

߱ଵ௟௞, ߱ଷ௟௞ and ߱ଷ௟௞ are calculated as: 
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߱ଵ௟௞ ൌ
1

௞ܣ
න ܣ݀

஺೗ೖ

 Eq. 4.13 

߱ଶ௟௞ ൌ
1

௞ܣ
න  ሺ߮ െ ߮௟ሻ ܣ݀

஺೗ೖ

ൌ
1

௞ܣ
න ߮ ܣ݀ െ

߱ଵ௟௞

௟஺೗ೖܣ

න ߮ ܣ݀
஺೗

 Eq. 4.14 

߱ଷ௟௞ ൌ
1

௞ܣ
න ߣሺ߮ሻሺݏ݋ܿ  െ ܣ݀ ௟ሻߣ

஺೗ೖ

ൌ
1

௞ܣ
න ߣ cos ሺ߮ሻ ܣ݀

஺೗ೖ

െ
߱ଵ௟௞

௟ܣ
න ߣ cos ሺ߮ሻ ݀ܣ

஺೗

 Eq. 4.15 

The second order weights calculated above are an area-weighted distance from the source 

cell centroid. As the remapping from fine grids to coarse grids represents an averaging 

process, the calculation of gradients is not advantageous in case of this remapping direction. 

The gradient components average to zero, when an averaging over the entire source grid 

cell is performed. The disadvantage of the second order conservative remapping is that the 

additional computation of gradients increases computational costs by a factor of 3 (JONES 

1998b). Gradients for meteorological fields have to be calculated using the neighboring 

source grid cells. For fields showing strong gradients, numerical approximations to the 

gradient may be too steep, so that the expected value might even be overshot. This can be 

prevented by limiting the gradients. For the remapping of fields with high spatial frequency 

using constant gradients for each source grid cell however poorly enhances the remapping 

accuracy. As a consequence of the increased computational costs in combination with the 

questionable benefit, the second order conservative scheme is not applied within the 

presented study, although it has been implemented in SCALMET. Instead, the first order 

conservative remapping scheme, which for the further course of this work will be referred to 

as the CI technique, will be used to conservatively transfer fluxes between the model scales. 

 

4.1.1.4 METHOD DISCUSSION 

Three different interpolation methods that are used in SCALMET have been described 

above. Since these methods only consider the spatial relationships among the grid cells, they 

do not compensate the loss of climatic variability caused by a coarse RCM topography (see 

Fig. 4.4). Moreover, the values at a certain destination grid cell are never smaller than the 

minimum or greater than the maximum of the surrounding source grid cells, resulting in a 

smoothed representation of the source grid values. While all of these methods perform 

similar in the flat terrain of the Alpine Foreland, the high-frequent temperature changes in the 

complex terrain of the Alps is considerable smoothened, in particular in case of the IDW 
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method. The direct interpolation algorithms presented above, therefore only produce 

satisfying results in combination with high resolution climate data or in flat terrain (LISTON AND 

ELDER 2006, MARQUÍNEZ ET AL. 2003, MARKE AND MAUSER 2008). 

 

 
Fig. 4.4: Directly interpolated REMO control run temperature using the conservative (a), bilinear (b) and inverse distance 
weighted interpolation scheme (c). In case of the c) 4 neighboring grid cells have been regarded linearly weighting the distance 
between the grid cell centers (based on REMO simulations for May 17th, 1982 (6 p.m.)). 
 

In SCALMET, direct interpolation techniques rather represent important components of the 

remapping process, than solely applied techniques for the spatial distribution of 

meteorological simulations. The methods described are accompanied by more sophisticated 

approaches to adjust the different meteorological variables beyond the possibilities of direct 

interpolation methods. 

 

4.1.2 REGRESSION BASED REMAPPING 

Many meteorological variables strongly vary with elevation (OKE 1987, BARRY AND CHORLEY 

1987). This climate-elevation dependence can be found in both, meteorological 

measurements and simulations. The fact that elevation data are globally available at much 

higher spatial resolutions than climate data makes elevation an excellent statistical predictor 

variable for the generation of meteorological distributions (DALY ET AL. 2002).  

Similar to an approach proposed by MAUSER AND BACH (2008) to spatially distribute 

meteorological observations, SCALMET gives the option to analyze the elevation 

dependence of a meteorological parameter during the run-time of the coupled model system 

for each single time step. Within this process, the mathematical function is determined that 

most closely describes the relationship between the simulated meteorological variable and 

the associated elevation. It should be noted, that due to the fact that RCMs simulate mean 

conditions for the area covered by a model pixel, this functional relationship is based on 

mean meteorological conditions and mean terrain elevation in the spatial resolution of the 
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RCM as well. Although SCALMET is technically capable of performing nonlinear regressions, 

the regression function is, following recommendations of DALY ET AL. (2002), constrained to a 

linear functional description of the parameter-elevation dependence for the following 

reasons:  

 

 Climate-elevation dependence is often linear or can be converted to proximate 

linearity (HIBBERT 1977, HANSON 1982, OSBORN 1984, VUGLINSKI 1972) 

 a linear function allows a stable extrapolation far beyond the elevations of the 

database (DALY ET AL. 2002) 

 a similar (linear) treatment of all meteorological variables decreases the risk of 

inconsistencies arising from the interaction of meteorological variables (e.g. 

temperature-humidity)  

 

The linear model may be written as  

ݕ ൌ ܽ ൅ ݔܾ ൅ ߳ Eq. 4.16 

where ݕ is the dependent variable, ݔ is the independent variable, ܽ and ܾ are parameters 

and ߳ is a random error variate (residual). Only in case of a perfect relationship ߳ will be zero 

and all ݕ can be perfectly well estimated using values of ݔ. Of course this will rarely occur as 

we are dealing with a statistical and not a precise mathematical relationship between the 

analyzed variables.  

A common approach to estimate the parameters ܽ and ܾ is the least squares technique. After 

these parameters are determined, the regression function can be expressed as 

ොݕ ൌ ܽ௘௦௧ ൅ ܾ௘௦௧ݔ Eq. 4.17 

where ݕො is the predicted value of the dependent variable ݔ ,ݕ is the independent (predictor) 

variable and ܽ௘௦௧ and ܾ௘௦௧ are the estimates of ܽ and ܾ respectively. For linearly related, 

normally distributed data, the least square method assures the determination of the best-

fitting curve.  

Unlike many continuous variables, hourly and daily rainfall show a frequency distribution 

function that is often positively skewed and leptokurtic due to its lower boundary of zero and 

the strong presence of precipitation values near that natural boundary (LETTENMAIER 1995, 

VON STORCH AND ZWIERS 1995). Also a transformation to a Gaussian distribution in advance 

of the regression process is technically feasible, the frequent occurrence of near zero rainfall 

amounts make a transformation very problematic in case of precipitation (ZORITA AND VON 
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STORCH 1999, COHN ET AL. 1989). To widen the applicability of the regressive approach on 

not normally distributed data, the ordinary least square approach in SCALMET is 

accompanied by a distribution free regression approach. The method draws back on THEIL 

(1950) and was reviewed by SEN (1968) and PEGORARO (1991). It is median based and thus 

insensitive to outliers. While the Theils-method is slightly less powerful compared to the least 

squares approach when the data meet all assumptions of normality, it allows a much better 

estimate of slope and intercept of the regression line when the distribution is not Gaussian or 

data are auto-correlated (HELSEL AND HIRSCH 1992, HUSSIAN AND SPRENT 1983, DIETZ 1987).  

The choice of the regression method (parametric-nonparametric) depends on the frequency 

distribution of the data, which is tested using a Kolmogorov-Smirnov test (KOLMOGOROV 

1933, SMIRNOV 1933). Since the pixel values simulated by the meteorological models are 

samples originating from a larger statistic population, the significance of the relationship 

between ݔ and ݕ needs to be further investigated. Following recommendations of various 

authors, two statistic significance tests are conducted within the regression analysis 

(BAHRENBERG ET AL. 1999, SCHÖNWIESE 2000, KING 1969).  

One test investigates the significance of the regression function by checking if the regression 

coefficient ܾ௘௦௧ is significantly different from 0. According to conventional definitions, a 

significance level ߙ ൌ 5 % is used for the rejection of the null hypothesis (ܪ଴: ܾ௘௦௧ ൌ 0). The 

significance level ߙ represents the probability of making the decision to reject the null 

hypothesis although it is actually true.  

A second test analyzes the significance of the correlation between the meteorological 

variable and elevation by testing whether the coefficient of correlation is significantly different 

from 0 or not. While the traditional Pearson product-moment coefficient ܴ௣ is used for 

normally distributed data, the Kendall rank order coefficient ܴ௞ is used in case of significant 

deviations from the Gaussian distribution function. Unlike ܴ௣, the Kendall coefficient is a 

distribution-free statistical measure of correlation (SCHÖNWIESE 2000). Correlation is 

determined by computing the number of concordant and discordant changes within the two 

data sets. The Kendall coefficient ܴ௞ is calculated as 

ܴ௞ ൌ
ሾ2ሺ ௖ܰ െ ௗܰሻሿ

݊ሺ݊ െ 1ሻ
 Eq. 4.18 

where ௖ܰ and ௗܰ are the number of concordances and discordances found in the data and ݊ 

is the total sample size (SCHÖNWIESE 2000). The coefficient takes values of -1 for only 

discordant changes, of +1 for only concordant changes in the data and a value of 0 if 

concordances and discordances are equally presented in the data.  
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The significance is tested again using a significance level of 5 = ߙ % for the rejection of the 

null hypothesis ሺܪ଴: ܴ௞ ൌ 0ሻ. For a more detailed description of the significance tests 

performed refer to SCHÖNWIESE (2000).  

As proposed by DALY (2002), the data are spatially interpolated whenever no significant 

relation between a meteorological variable and terrain elevation can be determined for a 

given time step. 

If the significance tests confirm a significant relationship between a climate model simulation 

 ௖௟௜௠, the regression function allows the computation of aݖ ௖௟௜௠ and climate model elevationݕ

value ݕො௖௟௜௠ in the spatial resolution of the RCM as a function of climate model elevation ݖ௖௟௜௠ 

in form of: 

ො௖௟௜௠ݕ ൌ ܽ௘௦௧ ൅ ܾ௘௦௧ݖ௖௟௜௠ Eq. 4.19 

The same coefficients ܽ௘௦௧ and ܾ௘௦௧ can be used to calculate a value (ݕො௟௦) for the considered 

meteorological variable for every grid cell at the spatial resolution of the LSM using land 

surface model elevation (ݖ௟௦):  

ො௟௦ݕ ൌ ܽ௘௦௧ ൅ ܾ௘௦௧ݖ௟௦ Eq. 4.20 

As the derived function will not be able to reproduce the exact value the RCM simulated for 

each grid box, the algorithm produces a residual (ݎ௖௟௜௠) for every climate model grid box in 

form of: 

௖௟௜௠ݎ ൌ ௖௟௜௠ݕ െ  ො௖௟௜௠ Eq. 4.21ݕ

To account for these local differences between the climate model simulations (ݕ௖௟௜௠) and the 

calculated values (ݕො௖௟௜௠), the residuals (ݎ௖௟௜௠) are horizontally interpolated to the land surface 

grid. The interpolated residuals (ݎ௟௦) can be used to correct the calculated subgrid-values 

 :can finally be computed as ( ௟௦ݕ) A subgrid value .( ො௟௦ݕ)

௟௦ݕ ൌ ො௟௦ݕ ൅  ௟௦ Eq. 4.22ݎ

The single steps in the process chain of the regression based remapping are illustrated in 

Fig. 4.5. As can be seen, the regression based remapping produces high resolution 

meteorological fields that largely preserve the conditions predetermined by the coarse grid 

meteorological input data. The latter is well explicable considering the fact that correcting the 

calculated values ݕො௟௦ by the interpolated residuals ݎ௟௦ forces the remapped fields through the 

simulations at the grid cell centers. 
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Fig. 4.5: The different steps in the process chain of the regression based scaling approach shown by the example of 
temperature remappings. 
 

4.1.3 SUBMODEL APPROACH 

The different submodels in SCALMET include further approaches based on elevation 

corrections but also techniques that allow subscale adjustments for those meteorological 

variables that are poorly predictable on the basis of elevation information only. Shortwave 

radiation for example is known to increase with altitude due to a decreasing thickness of the 

atmosphere above but its temporal and spatial distribution is largely determined by other 

topographic features than elevation (e.g. slope, aspect).  

To distribute these parameters in physically realistic ways, several submodels have been 

implemented in SCALMET that will be described in detail in chapter 4.2 (e.g. wind model, 

longwave and shortwave radiation model). Similar to the dynamical downscaling methods 

described in chapter 1.2.3.1, the submodels compute meteorological distributions within the 

domain of the RCM. In this process, subscale information as well as the meteorological 

boundaries provided by the RCM are taken into account to compute a value ݕො௟௦ for a 

considered meteorological variable and all cells within the model domain.  

As the mean meteorological conditions are predetermined by the RCM simulations, the 

destination grid values underlying a given climate model pixel ݊௖௟௜௠ need to be corrected by 

the associated climate model pixel value ݕ௖௟௜௠.  
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To calculate the correction term, all destination grid values that are fully or partly overlapped 

by pixel ݊௖௟௜௠ are conservatively remapped to the coarse resolution of the climate model. The 

mass/energy overrun or deficit ∆ݕ௖௟௜௠ in climate model resolution can be expressed as 

௖௟௜௠ݕ∆ ൌ ௖௟௜௠ݕ െ  ത௟௦ Eq. 4.23ݕ

with ݕത௟௦ representing the mean conditions over the underlying land surface pixel calculated 

within the conservative remapping process.  

Analogously to the residuals in the regression approach, ∆ݕ௖௟௜௠ is spatially interpolated from 

the coarse resolution of the atmosphere to the finer spatial resolution of the land surface grid.  

The interpolated mass/energy overrun or deficit ∆ݕ௟௦ is then used to correct the submodel 

calculations ݕො௟௦ in form of 

௟௦ݕ ൌ ො௟௦ݕ ൅  ௟௦ Eq. 4.24ݕ∆

where ݕ௟௦ is the corrected land surface pixel value. Fig. 4.6 shows the different steps of the 

submodel remapping process.  

 

 
Fig. 4.6: The different steps in the process chain of the submodel approach shown by the example of shortwave radiation.  
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4.1.4 CONSERVATION OF MASS AND ENERGY BETWEEN THE MODEL SCALES 

The conservative interpolation method described in chapter 4.1.1.3 systematically assures 

the conservation of mass and energy between the model scales. Yet, as soon as subgrid 

scale adjustments are carried out, the conservation of mass and energy is not necessarily 

given. Even in the case of the submodel approach, where the subgrid adjusted land surface 

grid values are realigned to the RCM simulations, conservation of mass and energy between 

the climate model grid and the underlying land surface grid is not given for those cases 

where non-conservative spatial interpolators (IDW or BI) have been applied for the 

interpolation of the energy/mass deficit or overrun ∆ݕ௟௦ (see chapter 4.1.3). While using the 

CI for the interpolation of ∆ݕ௟௦ would result in a conservative treatment of fluxes, it is 

unfortunately connected to optical flaws (see chapter 4.1.1.3). To combine the optical 

advantages of non-conservative remapping methods with the conservative treatment of 

fluxes given by the CI, the non-conservative interpolations performed in the regression model 

or the quasi-physically based submodels are accompanied by further processing steps.  

In a first step, the remaining minor differences between the mean conditions of the remapped 

fields and the associated RCM pixels are calculated according to Eq. 4.23. The flux 

difference ∆ݕ௖௟௜௠ in a next step is conservatively interpolated from the RCM resolution to the 

spatial resolution of the LSM using the CI. The interpolated difference ∆ݕ௟௦ is then used to 

correct the land surface grid values following Eq. 4.24.  

Processing the remapped data as described above works satisfactorily well for most 

meteorological variables but reaches its limits whenever a meteorological variable is 

characterized by a natural boundary of zero (e.g. precipitation). Whenever these variables 

are corrected in such a way that this natural boundary is under-run, the respective value 

needs to be set to zero and mass and energy conservation are consequently not fully given. 

Although this mass or energy overrun/deficit is extremely small in most cases, further data 

processing is required to fully conserve fluxes between the model scales. In these final 

processing steps, the whole destination grid area or a masked out area of interest (AOI) (e.g. 

watershed) is used as the basis for conservation. The total mass/energy to be distributed on 

the considered AOI is determined by using the CI to conservatively remap the meteorological 

simulations to the destination grid and by computing the sum ஺ܻைூ_௖௢௡௦ of all conservatively 

remapped destination grid values included in the considered AOI. Comparing the computed 

mass/energy budget to the sum of all subgrid adjusted destination grid values  ஺ܻைூ_௔ௗ௝ within 

the same AOI returns the mass/energy overrun or deficit ∆ ஺ܻைூ given by: 

∆ ஺ܻைூ ൌ ஺ܻைூ_௖௢௡௦ െ ஺ܻைூ_௔ௗ௝ Eq. 4.25 
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A final correction is carried out for each destination grid cell in form of 

௟௦_஺ைூ௖௢௥ݕ ൌ ௟௦ݕ ൅ ஺݂ைூ ∆ ஺ܻைூ Eq. 4.26 

where ݕ௟௦_஺ைூ௖௢௥ is the mass/energy budget corrected destination grid value and ஺݂ைூ is the 

fractional contribution of a considered destination grid cell to the mass/energy budget ஺ܻைூ_௔ௗ௝ 

given by: 

஺݂ைூ ൌ
௟௦ݕ

஺ܻைூ_௔ௗ௝
 Eq. 4.27 

Besides the approach described above, SCALMET gives the option to conceptually pursue 

mass and energy conservation rather for a predefined area of interest than for every 

individual RCM pixel. This implies that mass and energy could generally be transferred 

between neighboring grid cells, while at the same time the conservation of mass and energy 

for a the AOI inside the model domain is not violated. Practically, this option could be of 

interest in the distribution of precipitation across the land surface grid. In its current version, 

REMO does not include an advection of falling rain. Hence, the regional climate model does 

not allow water leaving the upper atmosphere in form of precipitation to be drifted by wind. 

The water reaches the surface in the same atmospheric model column it originated from. On 

top of that, the coarse representation of topography in RCMs leads to a systematic 

displacement of orographic rain which could be compensated by disregarding the 

conservation of mass and energy on a pixel basis. However it is not quite clear at present in 

how far shifting mass or energy is applicable in two-way coupled model runs. Hence, the 

option to conceptually conserve mass and energy rather on the basis of a user defined area 

than for each climate model pixel is not further pursued in the framework of this work. 

 

4.2 DOWNSCALING THE INDIVIDUAL METEOROLOGICAL VARIABLES 

The general downscaling principles in SCALMET have been described in the preceding 

chapters. The following covers the specific scaling options that are available for the 

remapping of each meteorological variable and give detailed information on the procedures 

involved. Although the presented methods are transferable to an arbitrary climate model, this 

work considers the application on REMO simulations only. The data used for the illustrations 

originate from REMO control run simulations (JACOB AND PODZUN 1997, JACOB ET AL. 2001), 

which are described in chapter 3.2. For the control run, the RCM is forced by ECHAM5/MPI-

OM simulations at the boundary of the model domain. As climate is only statistically 



The Scaling of Meteorological Variables in SCALMET 

 

57 

 

reproduced in this model setup, the data used for the visualization must not be directly 

compared to observations.  

 

4.2.1 SOLAR ZENITH ANGLE 

The solar zenith angle plays an important role for many processes at the land surface (e.g. 

distribution of photosynthetic active radiation in the canopy). As it is not affected by the 

underlying earth surface, no subscale adjustments need to be carried out. The coarse grid 

values can directly be remapped from the coarse atmospheric grid to the finer grid 

representing the land surface. For those climate models that do not provide solar zenith 

angle information by default, SCALMET calculates the solar zenith angle ܼܵܣ as a function of 

time and geographical position of the considered pixel in form of  

ܣܼܵݏ݋ܿ ൌ  sin ߠ sin ߮ ൅ cos ߠ cos ߮ cos ߬ Eq. 4.28 

where ߠ is the solar declination angle, ߮ is the geographical latitude and ߬ is the hour angle 

measured from local solar noon (LISTON AND ELDER 2006). The solar declination angle can be 

approximated as 

ߠ ൌ  ்߮஼ cos ቈ2ߨ ቆ
ݕܽ݀ െ ݀௦

݀௬
ቇ቉ Eq. 4.29 

where ்߮஼ is the latitude of the tropic of Cancer, ݀ܽݕ is the day of the year, ݀௦ is the day of 

the summer solstice and ݀௬ is the average number of days in a year. The hour angle ߬ is 

calculated according to the hour of the day ݄ as: 

߬ ൌ ߨ ൬
݄

12
െ 1൰ Eq. 4.30 

Besides the relevance within the land surface model calculations the solar zenith angle is of 

great importance in the shortwave radiation submodel in SCALMET that will be described in 

detail in chapter 4.2.5. 

 

4.2.2 AIR TEMPERATURE 

Simple interpolation algorithms have often been applied in the past to generate high 

resolution temperature distributions on the basis of available temperature observations 

(BURROUGH AND MCDONNELL 2000). These interpolation techniques did not include any 

topographic adjustments and therefore tended to misrepresent the natural temperature 
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distributions in areas characterized by a significant topographic variability (LISTON AND ELDER 

2006). Since temperature typically decreases with increasing elevation (OKE 1987), recent 

studies try to optimize the quality of temperature remappings by taking advantage of this 

strong temperature elevation dependence (LISTON AND ELDER 2006, DODSON AND MARKS 

1997, COSGROVE ET AL. 2003, HIJMANS ET AL. 2005). In SCALMET there are basically two 

options for the correction of temperature simulations on the basis of available subgrid 

elevation. The two methods of the regression based and the constant lapse rate remapping 

of temperature simulations are introduced in the following. The denotation temperature, as it 

is used hereinafter, refers to the near surface temperature associated to a height of 2 m 

above ground. 

 

4.2.2.1 REGRESSION BASED REMAPPING 

The regression based remapping (RBR) analyzes the temperature-elevation dependence for 

every model time step separately. Apart from the conventional approach described in chapter 

4.1.2, SCALMET for the remapping of air temperature offers the option to divide the 

atmosphere into two vertical layers. Using a two-layer atmosphere allows a realistic 

treatment of temperature inversions, which are a common meteorological phenomenon in the 

Alpine Foreland. Examples showing the temperature-elevation dependence found in REMO 

simulations are illustrated in Fig. 4.7. As can be seen in the temperature simulations, there is 

an accumulation of simulated values around 0 °C covering an altitudinal range from 1300 to 

3000 m.a.s.l. (see Fig. 4.7, right).  

 

  
Fig. 4.7: The temperature-elevation dependence in REMO control run simulations for two model time steps in the year 1982 
(left: November 5th (11 a.m.), right: May 17th (6 p.m.)). The left diagram displays a temperature inversion which is described by 
two separate regression functions. 
 

The explanation for this behavior is found in the underlying land surface. The near zero air 

temperatures are located at grid cells that are covered by melting snow, which is 
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characterized by a surface temperature of 0 °C. The turbulent exchange of fluxes 

(momentum, sensible and latent heat) between the land surface and the lowest atmospheric 

level in REMO is based on the Monin-Obukhov theory (MONIN AND OBUKHOV 1954). For a 

surface temperature of 0 °C it results in a near surface temperature close to zero. While the 

right diagram pictures the normal decrease in temperatures up to higher elevations, the 

diagram on the left of Fig. 4.7 gives an example for a temperature inversion reflected by the 

RCM simulations. To determine the approximate height of inversion, the boundary between 

the two atmospheric layers is iteratively shifted from the lowest elevation found in the climate 

model DEM towards higher elevations (see Fig. 4.8). While the increment in this process can 

be arbitrarily set, the current configuration uses a step size of 100 m as a compromise of 

accuracy and computational costs. For each iteration step, separate regression functions are 

determined for both atmospheric layers, describing the temperature-elevation dependence in 

the respective layer.  

 

  
Fig. 4.8: The two-layer atmosphere in SCALMET. Altitudinal temperature variations in case of temperature inversions are 
described by two separate regression functions 
 

The boundary elevation that produces the lowest mean absolute error (MAE) between the 

predictions as a product of the layer’s regression functions, and the simulations found inside 

the different atmospheric layers is finally representing the inversion height. The mean 

absolute error is given by 

ܧܣܯ ൌ
1
݊

෍|ݕపෝ െ |௜ݕ
௡

௜ୀଵ

 Eq. 4.31 

where ݕො are the values predicted by the regression function, ݕ are the observations (here 

RCM simulations) and ݊ is the total number of data pairs.  

The total MAE is computed as the mean error of both atmospheric layers. The process of 

determining the actual inversion layer is illustrated in Fig. 4.8. For the case that the smallest 
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overall MAE for both atmospheric layers is not smaller than the MAE resulting from an 

application of just one linear function, the atmosphere is treated as one layer. 

 

4.2.2.2 CONSTANT LAPSE RATE REMAPPING 

Alternative to the RBR, a scaling approach based on earlier studies by LISTON AND ELDER 

(2006), COSGROVE ET AL. (2003) and DODSON AND MARKS (1997) has been implemented in 

SCALMET. These authors propose the utilization of constant temperature lapse rates to 

adjust interpolated temperature data for subgrid topography. As noted by DODSON AND 

MARKS (1997), lapse rates are expected to vary largely over space and time. Therefore 

LISTON AND ELDER (2006) choose monthly varying temperature lapse rates published by 

KUNKEL (1989) over an application of constant values throughout the year as done by 

COSGROVE ET AL. (2003). In analogy to LISTON AND ELDER (2006), monthly lapse rates are 

used for temperature elevation corrections in SCALMET. To account for the local climate 

conditions inside the Upper Danube watershed, temperature observations at a total number 

of 221 meteorological stations located in Germany and Austria have been analyzed to derive 

monthly temperature lapse rates for the model domain. These stations represent a subset of 

the stations used for the generation of the meteorological forcings in uncoupled PROMET 

runs (see chapter 3.1.1). Fig. 4.9 displays the temperature-elevation dependence reflected 

by the station observations over the period 1971-2000 exemplarily for winter and summer 

situations.  

 

  
Fig. 4.9: The elevation dependence of monthly mean air temperature for December and June. The data have been recorded at 
221 stations in Germany (DWD) and Austria (ZAMG) over the years 1971-2000. 
 

For the months not displayed in Fig. 4.9 similar diagrams can be found in the appendix (see 

A-2). As displayed, temperature gradients are much steeper in summer than in winter, which 

can be explained by the frequent presence of temperature inversions in the winter months. 
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Even though the number of available observations decreases with altitude, the close linear 

relationship between altitude and temperature allows a stable extrapolation. The exact values 

of the lapse rates derived for the UD together with the lapse rates published by KUNKEL 

(1989) are given in Tab. 4.1. As shown the lapse rates by KUNKEL (1989) severely overvalue 

the temperature decrease with increasing elevation in the Upper Danube watershed.  

 
Tab. 4.1: Monthly temperature lapse rates ߁௧ derived for the Upper Danube watershed (UD) in comparison to those presented 
by KUNKEL (1989) for the Western United States. 
 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Γ௧ [°C/km] Kunkel (1989) 4.4 5.9 7.1 7.8 8.1 8.2 8.1 8.1 7.7 6.8 5.5 4.7 

Γ௧ [°C/km] UD 2.6 3.5 4.7 5.3 5.2 5.3 4.9 4.7 4.2 3.3 3.5 3.1 
 

 

Following LISTON AND ELDER (2006) temperature simulations ݐ௖௟௜௠ are adjusted to a reference 

level ݖ௥௘௙, which was chosen to be sea level, in a first step. This is done by using the terrain 

elevation of the climate model ݖ௖௟௜௠ and the monthly varying temperature lapse rate Γ௧ in form 

of:  

௥௘௙ݐ ൌ ௖௟௜௠ݐ  െ Γ௧ ሺݖ௖௟௜௠ െ  ௥௘௙)  Eq. 4.32ݖ

Adjusted to the reference level, temperatures are directly interpolated from the RCM 

resolution to the finer resolution of the land surface grid. The spatially interpolated reference 

temperatures ݐ௥௘௙_௜௡௧ in a next step are adjusted to the topographic height of the land surface 

grid ݖ௟௦, using the same temperature lapse rate Γ௧ in form of  

௟௦ݐ ൌ ௥௘௙_௜௡௧ݐ  ൅ Γ௧ ሺݖ௟௦ െ  ௥௘௙)  Eq. 4.33ݖ

where ݐ௟௦ is the temperature obtained for every grid cell within the land surface grid. 

Subsequent to the topographic adjustment of the interpolated temperature fields, the mean 

temperature over all pixels covered by a certain climate model pixel is realigned to the 

associated RCM pixel value. The exact procedure is described in detail in chapter 4.1.3. A 

comparison of the different remapping methods implemented for the remapping of 

temperature is carried out in 5.2.1.1. 

 

4.2.3 AIR HUMIDITY 

Air humidity is provided in form of different humidity variables depending on the RCM used 

(absolute humidity, specific humidity or dewpoint temperature). The land surface model 
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PROMET requires spatial information on the actual air moisture content in form of the relative 

air humidity. Relative humidity reflects the air’s potential to incorporate and transport 

moisture and thus plays an important role for many hydrological processes. As humidity is a 

nonlinear function of terrain elevation, SCALMET uses the dewpoint temperature, which is 

almost linearly related to elevation, for the humidity-elevation adjustments. In case of the 

regional climate model REMO, dewpoint temperature is directly provided and does not need 

to be calculated on the basis of other humidity variables. Using the dewpoint temperature-

elevation dependence within the remapping process, the remapping options for the 

distribution of air humidity are quite similar to those available for the remapping of 

temperature.  

 

4.2.3.1 REGRESSION BASED REMAPPING 

The regression based remapping determines the dewpoint temperature lapse rate for a given 

time step on the basis of the RCM simulations during the run-time of the coupled model run. 

The determined lapse rate allows to correct the simulated dewpoint temperatures for subgrid 

topography as described in detail in chapter 4.1.2. An example for the dewpoint temperature-

elevation dependence found in REMO simulations is given in Fig. 4.10.  

 

 
Fig. 4.10: The dewpoint temperature-elevation dependence for a model time step in the year 1982 (May 17th, 6 p.m.). 

 

As can be seen, the scattering of simulations around the regression line is slightly larger 

compared to that of temperature simulations for the same time step (see chapter 4.2.2.1, Fig. 

4.7). Thus the coefficient of determination with a value of 0.79 proves the significant elevation 

dependence for the considered model time step.  
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4.2.3.2 CONSTANT LAPSE RATE REMAPPING 

Alternatively to the statistic data analysis, an approach based on the application of constant 

monthly dewpoint temperature lapse rates, hereinafter referred to as the constant lapse rate 

remapping (CLR), has been implemented in SCALMET. The method is based on studies by 

KUNKEL (1989) and has been successfully applied for the generation of humidity distributions 

by LISTON AND ELDER (2006).  

Again lapse rates need to be adjusted to the climate conditions within the UD. The required 

dewpoint temperature data were derived on the basis of relative humidity and temperature 

observations (1970-2000), measured at the same stations used for the determination of the 

temperature lapse rates (see chapter 4.2.2.2). The equations used for the humidity 

conversions are given in the appendix (see A-1).  

As done for the determination of temperature lapse rates, observations have been 

aggregated to monthly means before the analysis. The dewpoint temperature-elevation 

dependence is shown exemplarily for December and June in Fig. 4.11. Similar diagrams can 

be found for all other months of the year in the appendix (see A-3). 

 

  
Fig. 4.11: The elevation dependence of monthly mean dewpoint temperature for December and June. The data have been 
recorded at 221 stations in Germany (DWD) and Austria (ZAMG) over the years 1971-2000. 
 

Both graphs show that the strong elevation dependence of the monthly dewpoint 

temperature is well reflected in the station observations. The variation within mean lapse 

rates throughout the year is shown in Tab. 4.2 for the lapse rates derived for the UD in 

combination with those presented by KUNKEL (1989). While similar values occur in the 

summer months from June to September, deviations of more than 1 °C/km can be found in 

the winter months.The results underline the importance of adjusting lapse rates to the local 

climate conditions in the model domain of the Upper Danube watershed. 
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Tab. 4.2: Monthly dewpoint temperature lapse rates ߁௧ௗ derived for the Upper Danube watershed (UD) in comparison to those 
presented by KUNKEL (1989) for the Western United States. 
 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Γ௧ௗ [°C/km] Kunkel (1989) 5.6 5.8 5.5 5.4 5.2 5.0 4.5 4.5 5.0 5.1 5.5 5.5 

Γ௧ௗ [°C/km] UD 4.4 4.6 4.9 4.8 4.6 4.7 4.3 4.2 4.5 4.4 4.7 4.6 
 

 

In analogy to the lapse rate remapping of temperature simulations, the derived monthly lapse 

rates are used to adjust the simulated dewpoint temperatures ݀ݐ௖௟௜௠ to a reference level ݖ௥௘௙ 

in a first step 

௥௘௙݀ݐ ൌ ௖௟௜௠݀ݐ  െ Γ௧ௗ ሺݖ௖௟௜௠ െ  ௥௘௙) Eq. 4.34ݖ

where ݖ௖௟௜௠ is the terrain elevation of the climate model and Γ௧ௗ is the dewpoint temperature 

lapse rate of the current month. Again the reference level is defined as 0 m.a.s.l. Reference 

level dewpoint temperatures are directly interpolated from the RCM resolution to the finer 

resolution of the land surface grid.  

Finally, the spatially interpolated reference temperatures ݀ݐ௥௘௙_௜௡௧ are adjusted to the 

topographic height of the land surface grid ݖ௟௦ using the monthly lapse rate Γ௧ௗ in form of  

௟௦݀ݐ ൌ ௥௘௙_௜௡௧݀ݐ  ൅ ௟௦ݖ௧ௗሺ߁ െ  ௥௘௙) Eq. 4.35ݖ

where ݐ௟௦ is the dewpoint temperature at a given land surface grid cell. As the dewpoint 

temperature does not scale linearly, the adjusted dewpoint temperatures ݀ݐ௟௦ as well as the 

simulated dewpoint temperatures ݀ݐ௖௟௜௠ are converted to a specific humidity subsequent to 

the elevation adjustments. On the basis of specific humidity, the land surface humidity is 

aligned to the climate model humidity following the general adjustment approach described in 

chapter 4.1.3.  

Fig. 4.12 shows the results of the two remapping approaches presented in the preceding 

paragraphs together with the REMO humidity simulations exemplarily for a model time step 

in the year 1982. Note that the relative humidity shown in Fig. 4.12 a) does not represent a 

direct output of the REMO model. It is calculated on the basis of dewpoint temperature, 

temperature and near surface pressure simulations. This accounts for the remapped humidity 

as well, with the difference that the temperature and surface pressure used to calculate the 

relative humidity represent remapping results here as well. Surface pressure is consequently 

remapped using an approach presented by COSGROVE ET AL. (2003) (chapter 4.2.8) for both 

remapping approaches, whereas temperature is remapped using the constant lapse rate 

approach in case of b) and the regression based remapping in case of c). 
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As displayed, in the case of the regression based remapping subgrid topography seems little 

more pronounced. However, differences between the remapping approaches for the current 

model time step are rather small. An explanation is given by the fact that the temperature 

lapse rate as well as the dewpoint temperature lapse rate calculated within the regression 

analysis (see Fig. 4.7 (right) and Fig. 4.10) are quite similar to the constant lapse rates used 

for the month of May (see Tab. 4.1 and Tab. 4.2). The exact equations used for all humidity 

conversions in SCALMET are given in the appendix (see A-1). 

 

4.2.4 PRECIPITATION 

Since precipitation typically displays complex spatial patterns, the downscaling of 

precipitation is one of the biggest challenges in the field of atmosphere-land surface 

interactions (FRÜH ET AL. 2006). The manifold interactions between topography and local 

rainfall contribute to the large spatial variability of rainfall amounts particularly in mountainous 

regions. Besides the approach of dynamically scaling precipitation simulations (SCHMIDLI ET 

AL. 2007), there are several statistical techniques for the downscaling of simulated rainfall 

using various large scale predictors in different atmospheric pressure levels (e.g. 700 hPa) 

like geopotential height (KIDSON AND THOMPSON 1998, ZORITA AND VON STORCH 1999), 

geostrophic vorticity (WILBY ET AL. 1998), wind speed (MURPHY 1999), atmospheric moisture 

(BECKMANN AND BUISHAND 2002), sea level pressure (CAVAZOS 1999) or precipitation itself 

(WIDMANN ET AL. 2003). Unfortunately these methods sometimes require extensive, climate 

model dependent calibrations (HUTCHINSON 1998) and make use of parameters that are 

often not accessible to the user of the climate simulations. Efforts using terrestrial information 

for the generation of rainfall distributions include the application of various topographic 

predictors like altitude, latitude, continentality, slope, exposure (BASIST ET AL. 1994, WEISSE 

Fig. 4.12: REMO air humidity (a), remapped air humidity achieved using the constant lapse rate approach (b) and remapped 
air humidity achieved using the regression based remapping (c). Air humidity is calculated on the basis of dewpoint 
temperature, temperature and surface pressure (based on REMO simulations for a model time step in the year 1982 (May 17th, 
6 p.m.)). 
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AND BOIS 2001, WOTLING ET AL. 2000, NINYEROLA ET AL. 2000) as well as climatological 

relationships between simulated and observed precipitation (FRÜH ET AL. 2006). 

SCALMET takes advantage of the fact that precipitation generally increases with elevation 

(SPREEN 1947, SMITH 1979). Using this precipitation-elevation relationship, the scaling 

methods applied to distribute precipitation simulations follow a rather pragmatic approach 

that has been pursued in many studies in the recent past (MAUSER AND BACH 2008, 

GOOVAERTS 2000, PRUDHOMME AND DUNCAN 1999, MARTÍNEZ-COB 1996, HIJMANS ET AL. 

2005). In analogy to the options given for temperature remappings, precipitation can either 

be distributed by using the regression based approach or by applying elevation corrections in 

a separate precipitation submodel.  

 

4.2.4.1 REGRESSION BASED REMAPPING 

SCALMET gives the option to analyze the precipitation-elevation dependence for each model 

time step individually. However the elevation dependence of hourly rainfall simulations is 

rather moderate to that found in case of other meteorological variables. Fig. 4.13 (left) shows 

an example for the precipitation-elevation dependence in REMO simulations. As can be 

seen, the scattering of points around the regression line is relatively high. The coefficient of 

determination ሺܴଶሻ with a value of 0.53 confirms the rather moderate correlation between 

hourly rainfall and elevation for the considered model time step.  

 

  
Fig. 4.13: Precipitation-elevation dependence in REMO control run simulations (left) and frequency distribution of simulated 
precipitation (right) (based on REMO simulations for October 17th, 1982 (4 p.m.)). 
 

As precipitation simulations often show strong deviations from the Gaussian distribution (see 

Fig. 4.13, right), the Kendall coefficient ሺܴ௞ሻ is consulted as an additional statistic criterion for 

the analysis of the altitudinal trend in simulated precipitation. Unlike the coefficient of 

determination, the Kendall coefficient does not require the data to be normally distributed. 
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With a ܴ௞ of 0.47 the Kendall coefficient proves the rather moderate correlation between 

elevation and precipitation for the current time step. Though the correlation is highly 

significant at a significance level of 0.1 = ߙ % and is thus regarded to improve the remapping 

of simulated precipitation compared to a simple interpolation. In general, the precipitation-

elevation dependence found in REMO simulations is often not significant resulting in rather 

moderate elevation corrections (see 5.3.2.1.2).  

 

4.2.4.2 ADJUSTMENT FACTOR REMAPPING 

Alternatively to the regression based approach, subgrid adjustments can be carried out using 

an approach presented by THORNTON ET AL. (1997) which is used for the generation of hourly 

precipitation distributions in the meteorological distribution model (MICROMET) developed 

by LISTON AND ELDER (2006). In a first step, simulated precipitation is bilinearly interpolated 

from the spatial resolution of the RCM to the land surface grid resolution. The reference level 

in case of precipitation adjustments is chosen to be the interpolated terrain elevation of the 

RCM to account for the nonlinear character of the elevation adjustment function (see Fig. 

4.15, right). The interpolated rainfall ݌௥௘௙_௜௡௧ can be adjusted to the land surface topography 

 ௟௦ using the following elevation adjustment functionݖ

௟௦݌ ൌ ௥௘௙_௜௡௧݌  ቈ
1 ൅ Շ ሺ ௟௦ݖ െ ௥௘௙ሻݖ
1 െ Շ ሺ ௟௦ݖ െ ௥௘௙ሻݖ

቉ Eq. 4.36 

where ݌௟௦ is the adjusted precipitation in the spatial resolution of the land surface grid, ݖ௥௘௙ is 

the interpolated RCM elevation and Շ is a monthly varying adjustment factor. As this factor is 

spatially and temporally variable, the precipitation adjustment factors used by LISTON AND 

ELDER (2006) have been replaced by factors derived for the area of the Upper Danube 

watershed. The high resolution precipitation data needed for the determination of the 

precipitation adjustment factors is supplied by the meteorological preprocessor in PROMET 

(see chapter 3.1.1). The data covering the period 1970-2000 are temporally aggregated to 

monthly values in a first step and then spatially aggregated to the resolution of the climate 

model REMO. To guarantee an optimal transferability to the REMO model, the data has been 

aggregated not only to the grid size but also to the rotated coordinate system used in the 

RCM by the means of the conservative remapping method described in chapter 4.1.1.3.  

Subsequent to the aggregation process, the precipitation data as well as the RCM elevation 

have been interpolated to the spatial resolution of the LSM. Using Eq. 4.36, the elevation 

adjustment factor Շ could be iteratively determined by finding the value of Շ that produces the 
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lowest MAE between the high resolution precipitation input data and the elevation adjusted 

interpolations (see Fig. 4.14).  

 
Fig. 4.14: Process chain in the determination of monthly precipitation adjustment factors for the model domain shown for the 
month of June. a) observation based precipitation (1970-2000) at 1 x 1 km, b) aggregated precipitation at 10 x 10 km, c) bilinear 
interpolated precipitation at 1 x 1 km, d) adjusted precipitation using the adjustment factor that leads to a smallest MAE 
compared to the input data set shown in a).  
 

Compared to the factors applied by LISTON AND ELDER (2006), the precipitation-adjustment 

factors derived for the UD take rather small values. The absolute values together with the 

total mean absolute error (MAE) and the root mean square error (RMSE) between the 

elevation adjusted precipitation and the input data are given in Tab. 4.3.  

 
Tab. 4.3: Monthly precipitation adjustment factors presented by LISTON AND ELDER (2006) and those derived for the Upper 
Danube watershed (1971-2000). The MAE and RMSE (adjusted-input) give an impression to what degree the adjusted monthly 
precipitation agrees with the distributed observations. 
 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Շ ሾ݇݉ିଵሿ Liston & Elder (2006) 0.35 0.35 0.35 0.30 0.25 0.20 0.20 0.20 0.20 0.25 0.20 0.35 

Շ ሾ݇݉ିଵሿ UD 0.14 0.14 0.14 0.13 0.10 0.10 0.10 0.10 0.10 0.11 0.13 0.13 

MAE [mm] 2.0 1.9 2.1 2.0 2.0 2.7 2.7 2.4 1.8 1.7 2.1 2.3 

RMSE [mm] 3.4 3.2 3.8 3.7 3.3 4.7 4.8 4.3 3.2 2.9 3.6 3.9 

 

Fig. 4.15 (left) displays the derived precipitation adjustment factors in comparison to those 

used by LISTON AND ELDER (2006). Both curves unfold considerable seasonal variations. 

However, variations are less distinct in the case of the factors derived for the UD. On the 

right, the dependence of the precipitation adjustment function (Eq. 4.36) on elevation 

difference is illustrated for the month of June using the factors presented by LISTON AND 

ELDER (2006) and those derived for the UD. As can be seen the correction function under 

application of both factor variants results in only small deviations from linearity.  
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Fig. 4.15: Monthly precipitation adjustment factors derived for the Upper Danube watershed together with those used by 
LISTON AND ELDER (2006) (left). The diagram on the right shows the dependence of the precipitation adjustment function on 
elevation difference for a summer month (June). 
 

For a comparison of the performance of the different scaling options available for the 

remapping of precipitation refer to chapter 5.2.1.2. 

 

4.2.5 INCOMING SHORTWAVE RADIATION 

Although solar radiation is expected to increase with elevation due to a reduction of the 

optical air mass in higher elevations, terrain elevation only poorly predicts the spatial 

variability in solar radiation fluxes. For the remapping of the incident shortwave radiation a 

separate solar radiation submodel has been implemented in SCALMET. The included 

radiation calculations have been shown to satisfactorily predict large proportions of the 

spatial and temporal variability in radiative fluxes even in complex terrain (LISTON AND ELDER 

2006). Direct and diffuse radiation components are computed as a function of the earth-sun 

geometry, local topographic features (slope and aspect) and cloud cover (LISTON AND ELDER 

2006). The incoming shortwave radiation reaching the earth surface (ܴ௦௪_௜௡ሻ including 

adjustments for sloping terrain can be expressed as 

ܴ௦௪_௜௡ ൌ ଴ ൫ܫ ௗܶ௜௥ cos ݅௦ ൅ ௗܶ௜௙ cos  ൯ Eq. 4.37ܣܼܵ

where ܼܵܣ is the solar zenith angle, ݅௦ is the angle between the direct solar radiation beam 

and a sloping surface and ௗܶ௜௥  and ௗܶ௜௙  are the atmospheric transmissivities for direct and 

diffuse solar radiation respectively (LISTON AND ELDER 2006). The solar zenith angle ܼܵܣ is a 

function of time and geographic position. Its exact calculation is described in chapter 4.2.1 

(Eq. 4.3). The variable ܫ଴  represents the solar irradiance at the top of the atmosphere. 

Impinging upon a surface normal to the solar beam, the solar constant ܫ଴  can be 
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approximated as 1370 W/m² (KYLE ET AL. 1985). The angle ݅௦ between the direct solar 

radiation beam and a sloping surface is given by  

cos ݅௦ ൌ cos ߚ cos ܣܼܵ ൅ sin ߚ ൅ sin ܣܼܵ cosሺߤ െ  ௦ሻ Eq. 4.38ߦ

where ߚ is the terrain slope, ߤ is the solar azimuth and ߦ௦ is the terrain slope azimuth with 

both having south as zero azimuth. The solar azimuth ߤ can be computed as 

ߤ ൌ ଵି݊݅ݏ ൤
cos ߠ sin ߬

sin ܣܼܵ
൨ Eq. 4.39 

where ߠ is the solar declination angle (see Eq. 4.29) and ߬ is the hour angle measured from 

solar noon (see Eq. 4.30). The slope of the terrain is calculated in form of 

ߚ ൌ ଵି݊ܽݐ ቈ൬
௟௦ݖߜ

௖௢௢௥ௗݔߜ
൰

ଶ

൅ ൬
௟௦ݖߜ

௖௢௢௥ௗݕߜ
൰

ଶ

቉

ଵ
ଶ
 Eq. 4.40 

where ݖ௟௦ is the terrain elevation and ݔ௖௢௢௥ௗ and ݕ௖௢௢௥ௗ are the horizontal grid coordinates. 

The three grid dimensions are also used to compute the terrain slope azimuth ߦ௦ as: 

௦ߦ ൌ
ߨ
2

െ ଵି݊ܽݐ ൤൬
௟௦ݖߜ

௖௢௢௥ௗݕߜ
൰ ൬

௟௦ݖߜ

௖௢௢௥ௗݔߜ
൰൘ ൨ Eq. 4.41 

To take into account the absorption, reflection and scattering of shortwave radiation by 

clouds, the climate model cloud cover ܥ௙ is interpolated to the land surface grid and is used 

to scale the fraction of solar radiation reaching the earth surface. This is done by modifying 

the net sky transmissivities following BURRIDGE AND GADD (1974) in form of 

ௗܶ௜௥ ൌ ሺ0.6 െ 0.2 cos ܼሻ ሺ1.0 െ  ௙_௜௡௧) Eq. 4.42ܥ

ௗܶ௜௙ ൌ ሺ0.3 െ 0.1 cos ܼሻ  ௙_௜௡௧ Eq. 4.43ܥ

where ܥ௙_௜௡௧ is the interpolated RCM cloud cover. The direct ሺܴ௦௪_ௗ௜௥ሻ and diffuse 

ሺܴ௦௪_ௗ௜௙ሻ components of the incoming solar radiation can now be calculated as: 

ܴ௦௪_ௗ௜௥ ൌ ଴ܫ ሺ ௗܶ௜௥ cos ݅ሻ Eq. 4.44 

ܴ௦௪_ௗ௜௙ ൌ ଴ܫ ൫ ௗܶ௜௙ cos ܼ൯ Eq. 4.45 
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Successive to the model calculations the results are compared and adjusted to the mean 

conditions given by the RCM simulations using the approach described in detail in chapter 

4.1.3. The parameter used within this modification is the global radiation ሺܴ௦௪_௜௡ሻ 

representing the sum of direct and diffuse radiation: 

ܴ௦௪_௜௡ ൌ ܴ௦௪_ௗ௜௥ ൅ ܴ௦௪_ௗ௜௙ Eq. 4.46 

Under the assumption that the global radiation has been correctly partitioned into direct and 

diffuse radiation components (Eq. 4.44 and Eq. 4.45) the fractions given by 

௦݂௪_ௗ௜௥ ൌ ቈ
ሺܴ௦௪_ௗ௜௥ሻ
ሺܴ௦௪_௜௡ሻ

቉ Eq. 4.47 

௦݂௪_ௗ௜௙ ൌ ቈ
ሺܴ௦௪_ௗ௜௙ሻ
ሺܴ௦௪_௜௡ሻ

቉ Eq. 4.48 

are stored for the repartitioning of the global radiation subsequent to the alignment to the 

RCM simulations. As the global radiation does not belong to the REMO standard deliveries, it 

is computed using the simulated net shortwave radiation at the land surface ܴ௦௪_௡௘௧ and the 

shortwave radiation reflected by the land surface ܴ௦௪_௢௨௧ in form of: 

ܴ௦௪_௜௡ ൌ ܴ௦௪_௡௘௧ ൅ ܴ௦௪_௢௨௧ Eq. 4.49 

Having adjusted the submodel calculations towards the RCM radiation, the corrected global 

radiation ܴ௦௪_௜௡_௖௢௥ is repartitioned using the weights for direct and diffuse radiation fractions 

(Eq. 4.47 and Eq. 4.48) in form of 

ܴ௦௪_ௗ௜௥_௖௢௥ ൌ ௦݂௪_ௗ௜௥ ܴ௦௪_௜௡_௖௢௥ Eq. 4.50 

ܴ௦௪_ௗ௜௙_௖௢௥ ൌ ௦݂௪_ௗ௜௙ ܴ௦௪_௜௡_௖௢௥ Eq. 4.51 

where ܴ௦௪_ௗ௜௥_௖௢௥ is the corrected direct solar radiation and ܴ௦௪_ௗ௜௙_௖௢௥ is the corrected diffuse 

solar radiation component. Fig. 4.16 shows the calculated direct and diffuse radiation 

exemplarily for a model time step in the year 1982. As can be seen, the amount of direct and 

diffuse shortwave radiation striking the land surface is largely dominated by the interpolated 

climate model cloud cover.  
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Fig. 4.16: Bilinearly interpolated REMO cloud cover and the amount of diffuse and direct radiation calculated by the shortwave 
radiation submodel in SCALMET exemplarily for a model time step in the year 1982 (November 5th, 11 a.m.). 
 

The RCM global radiation together with the remapping result is pictured in Fig. 4.17. As 

displayed, the solar radiation submodel clearly brings out small scale topographic features, 

yet accounting for the actual atmospheric conditions and the energy budget given by the 

RCM simulations.  

 

 
Fig. 4.17: REMO shortwave simulations (calculated out of the net surface shortwave radiation and the outgoing shortwave 
radiation) (left), remapped shortwave radiation (middle) and conservatively aggregated remapped shortwave radiation (right) for 
a model time step in the year 1982 (November 5th, 11 a.m.). 
 

Although a first glance might suggest that solar energy is not maintained, particularly in the 

southeast of the model domain (yellow spots), the conservative remapping of the high 

resolution radiation fields back to the RCM resolution disproves this first impression.  

 

4.2.6 INCOMING LONGWAVE RADIATION 

The amount of longwave radiation emitted by the atmosphere is largely dominated by the air 

temperature and the absolute air moisture content (LISTON AND ELDER 2006). As both 

typically decrease with increasing elevation, atmospheric downward longwave irradiance can 
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also be expected to decrease with terrain elevation. An example for the elevation 

dependence of longwave radiation as reflected in REMO simulations is shown in Fig. 4.18.  

 

  
Fig. 4.18: The dependence of incoming longwave radiation on terrain elevation in REMO control run simulations for a model 
time step in the year 1982 (May 17th, 6 p.m.) (left). REMO incoming longwave radiation vs. simulated cloud cover for the same 
model time step (right). 
 

The frequent presence of clouds in higher elevations and the increased thermal radiation 

emitted by the water molecules within the clouds often lead to large deviations from the linear 

elevation dependency. The diagram in Fig. 4.18 (right) clarifies that the largest deviations 

from the regression function occur together with a densely clouded atmosphere. To account 

for cloud cover within the downscaling of atmospheric downward irradiance, a longwave 

radiation submodel has been implemented in SCALMET. The model is based on studies 

carried out by LISTON AND ELDER (2006) and IZIOMON ET AL. (2003). It calculates the incoming 

longwave radiation based on the Stefan-Boltzmann law while taking into account cloud cover 

and elevation-related variations of atmospheric emissivity. The incoming longwave radiation 

ܴ௟௪_௜௡ impinging upon the earth’s surface can be written as 

ܴ௟௪_௜௡ ൌ ௔ߝ ߪ ሺ ௞ܶሻସ Eq. 4.52 

where ߪ is the Stefan-Boltzmann constant, ߝ௔ is the atmospheric emissivity and ௞ܶ is the air 

temperature [K]. The atmospheric emissivity ߝ௔ is calculated as a function of the spatially 

interpolated RCM cloud cover ܥ௙_௟௦, atmospheric vapor pressure ݁௔ and air temperature in 

form of  

௔ߝ  ൌ ൫1 ൅ ௙_೗ೞܥ ܼ
ଶ൯ ൤1 െ ܺ exp ൬െܻ

݁௔
ሺ ௞ܶሻ൰൨  Eq. 4.53 ߵ

where ߵ is an empiric constant defined as 1.083. The equation used for the calculation of the 

vapor pressure ݁௔ on the basis of dewpoint temperature is given in the appendix together 

y = -0.0418x + 353.94
R² = 0.89
n=1999
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with all other equations used for the humidity conversions in SCALMET (see A-1). The 

coefficients ܺ,ܻ and ܼ depend on terrain elevation ݖ௟௦ according to Tab. 4.4.  

 
Tab. 4.4: Coefficients for the calculation of the atmospheric emissivity (LISTON AND ELDER 2006). 
 

Coefficient ࢙࢒ࢠ ൏ ૛૙૙ ࢓ 200 ࢓ ൑ ࢙࢒ࢠ ൑ ૜૙૙૙ ૜૙૙૙ ࢓ ࢓ ൏  ࢙࢒ࢠ

 ܺ 0.35 0.35 ൅ ሺݖ௟௦ െ 200ሻ ൬
0.51 െ 0.35
3000 െ 200൰ 0.51 

 ܻ ሾK/Paሿ 0.1 0.1 ൅ ሺݖ௟௦ െ 200ሻ ൬
0.13 െ 0.1

3000 െ 200൰ 0.13 

ܼ 0.224 0.244 ൅ ሺݖ௟௦ െ 200ሻ ൬
1.1 െ 0.224
3000 െ 200൰ 1.1 

 

 

As can be seen the values for ܺ, ܻ and ܼ in elevations between 200 m and 3000 m represent 

the result of a linear interpolation between the coefficients below 200 m and those above 

3000 m, depending on the actual terrain elevation (LISTON AND ELDER 2006). Fig. 4.19 shows 

an example for the remapping of incoming longwave radiation by means of the longwave 

radiation submodel in SCALMET.  

 

 

 

To give an impression of the REMO inputs, the conservatively remapped REMO simulations 

are shown on the left. In analogy to the amount of incoming shortwave radiation, incoming 

longwave radiation is calculated in RCM resolution using the net longwave radiation and the 

Fig. 4.19: Conservatively remapped incoming longwave radiation together with the results of the submodel calculations for a 
model time step in the year 1982 (May 17th, 6 p.m.). 



The Scaling of Meteorological Variables in SCALMET 

 

75 

 

outgoing longwave radiation simulated by the regional climate model REMO. As shown, the 

submodel calculations notably pronounce orographic detail. Moreover, the inclusion of 

humidity and cloud cover influence within the remapping locally increases the amount of 

incoming radiative energy as a result of an enhanced atmospheric emission. 

 

4.2.7 WIND SPEED 

Local wind speed is dominated by a variety of land surface and climate features. 

Correspondingly manifold are the efforts to determine high resolution local wind conditions on 

the basis of coarse wind simulations or point observations. While many studies make use of 

highly complex models (LISTON ET AL. 1993, ROSS ET AL. 1988, SHERMAN 1978), the run-time 

scaling concept in SCALMET strongly limits model complexity to minimize computational 

costs.  

 

4.2.7.1 REGRESSION BASED REMAPPING 

Taking advantage of the fact that wind velocity, besides its dependence on exposure to the 

current wind direction, is largely influenced by terrain elevation, WALTER ET AL. (2006) 

generated a high resolution reference data set of German wind velocity. These authors 

recommend to rather use the so called ‘relative altitude’ than the absolute altitude as a 

predictand for local wind speed. Relative altitude is calculated by centering the available 

station observations in a 10 x 10 km grid box and by computing the difference between the 

grid box mean elevation and the station elevation.  

For the application in SCALMET, monthly aggregated wind speeds at 221 meteorological 

stations in Germany and Austria have been analyzed to derive the monthly dependence of 

wind velocity on relative altitude. While the relative altitude approach yielded results similar to 

those presented by WALTER ET AL. (2006) using only German stations, the inclusion of the 

Austrian stations resulted in a very weak relative altitude-wind speed correlation. This 

behavior can be explained by the fact, that the frequent occurrence of very high elevations in 

Alpine regions (mountain tops) partly balances the high absolute station altitudes. The results 

are high wind velocities at moderate relative altitudes. Therefore absolute altitude is preferred 

to relative altitude for elevation adjustments in SCALMET. The wind velocity-elevation 

dependence can be determined for every single model time step using the regression based 

approach (see chapter 4.1.2). An example for the relationship between wind speed and 

terrain elevation included in REMO simulations is given in Fig. 4.20.  
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Fig. 4.20: The elevation dependence of simulated wind speed for a model time step in the year 1982 (May 17th, 6 p.m.). 

 

Alternative to the regression approach, a wind submodel is provided to quasi physically 

remap RCM simulations.  

 

4.2.7.2 THE WIND SUBMODEL 

The wind submodel is based on RYAN (1977) and LISTON AND STURM (1998) and uses wind-

topography relationships to adjust wind speed simulations for subgrid topography. In a first 

step, the u- and v- wind components simulated by the RCM are directly interpolated to the 

land surface grid. The interpolated wind components ݏݓ௨_௜௡௧ and ݏݓ௩_௜௡௧ are combined for the 

calculation of the resulting wind speed ݏݓ௟௦_௜௡௧ as: 

௟௦_௜௡௧ݏݓ ൌ ටݏݓ௨_௜௡௧
ଶ ൅ ௩_௜௡௧ݏݓ

ଶ Eq. 4.54 

The wind direction ߴ is calculated using ݏݓ௨_௜௡௧ and ݏݓ௩_௜௡௧ in form of 

ߴ ൌ
ߨ3
2

െ tanିଵ ቆ
௨_௜௡௧ݏݓ

௩_௜௡௧ݏݓ
ቇ  Eq. 4.55 

where north is defined as zero wind direction (LISTON AND ELDER 2006). To topographically 

modify the calculated wind speeds and directions, the topographic slope, the slope azimuth 

and the topographic curvature need to be calculated. The terrain slope ߚ is calculated 

following Eq. 4.40, the terrain slope azimuth ߦ௡ with north given a zero azimuth is calculated 

as 

y = 0.0016x + 1.0386
R² = 0.55
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where ݔ௖௢௢௥ௗ and ݕ௖௢௢௥ௗ are the horizontal grid coordinates and ݖ௟௦ is the terrain elevation. 

For the calculation of topographic curvature, a curvature length scale ߟ needs to be 

specified. The length scale represents the radius used within the curvature calculations and 

takes values of approximately half the wavelength of the topographic features within the 

model domain (half the distance between two neighboring mountain ridges) (LISTON AND 

ELDER 2006). SCALMET calculates the curvature length scale automatically on the basis of 

the terrain slope in two separate passes for x- and y-direction (see Fig. 4.21).  

 

 
Fig. 4.21: Terrain curvature calculated for the Upper Danube watershed (left) and schematic illustration of the parameters 
involved in the remapping of wind speed simulations by the wind submodel in SCALMET (right). The curvature length scale ߟ 
is calculated as half the distance between two slope changes from positive to negative. 
 

Within this process, the user is optionally allowed to specify a threshold for the minimal 

topographic length scale to be included in the calculation of a mean curvature length scale in 

x- and y-direction. This offers the choice of focusing on large scale topographic features. If 

not manually set, the minimum topographic curvature length scale is systematically given by 

the spatial resolution of the land surface grid. The final value of the curvature length scale is 

calculated as the mean of the x- and y-length scales. For the model domain of the Upper 

Danube watershed and the given spatial resolution of 1 x 1 km, SCALMET calculates a mean 

curvature length scale of 3 grid increments (which at the given spatial resolution of 1 x 1 km 

corresponds to a distance of 3000 m). The latter is calculated without specifying a minimum 

for the length scales to be considered. The calculated value shows good accordance with 

samples taken at selected cross-sections from high resolution remote sensing data. 

Topographic curvature is calculated for each pixel of the land surface grid by computing the 

difference between the elevation of the actual grid cell and the average elevation of the two 

opposite grid cells. Both are located a length scale distance away from the considered grid 
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cell. This is done for four different directions (S-N, W-E, SW-NE, NW-SE) successively. The 

final grid cell curvature Ω௖ is calculated as the mean curvature computed for the different 

directions in form of  

Ω௖ ൌ
1
4

቎
௟௦ݖ െ 1

2 ሺݖௌ ൅ ேሻݖ
ߟ2

൅
௟௦ݖ െ 1

2 ሺݖௐ ൅ ாሻݖ
ߟ2

൅
௟௦ݖ െ 1

2 ሺݖௌௐ ൅ ோሻݖ
ߟ2

൅
௟௦ݖ െ 1

2 ሺݖேௐ ൅ ௌாሻݖ
ߟ2

൩ 

Eq. 4.57 
 

where ݖௌ, ݖே, ... are the grid cell elevations at curvature length scale distance from the 

considered grid cell and ݖ௟௦ is the elevation of the considered land surface grid cell. Besides 

terrain curvature, the slope in wind direction Ω௦ needs to be calculated using the terrain slope 

 :in form of ߚ

Ω௦ ൌ ߚ cosሺߴ െ  ௡ሻ Eq. 4.58ߦ

Following LISTON AND ELDER (2006), both, Ω௖ and Ω௦ are scaled to range from -0.5 to +0.5 

over the whole model domain to simplify the weight calculation given by  

߱௪௦ ൌ 1 ൅ ௖Ω௖ߛ ൅  ௦Ω௦ Eq. 4.59ߛ

where ߱௪௦ is the weight used to modify the interpolated wind speed ݏݓ௟௦_௜௡௧ and ߛ௖ as well as 

  .௦ are the curvature weight and slope weight respectivelyߛ

According to LISTON AND ELDER (2006), valid values of ߛ௖ and ߛ௦range from 0 to 1 while the 

current configuration with values of 0.5 gives equal weight to slope and curvature. In a last 

step, the topography modified wind speed ݏݓ௟௦ is calculated as: 

௟௦ݏݓ ൌ ௟௦_௜௡௧ݏݓ ߱௪௦ Eq. 4.60 

Lee and concave slopes yield negative values for Ω௦ and Ω௖ and windward and convex 

slopes yield positive values for Ω௦ and Ω௖ respectively. As a result, wind speed is reduced for 

lee and concave slopes and increased for windward and convex slopes.  

Wind direction is terrain modified following RYAN (1977) by introducing a wind direction 

diverting factor in form of:  

௙ߴ ൌ െ0.5 Ω௦ sinሾ2ሺߦ௡ െ  ሻሿ Eq. 4.61ߴ

The factor is added to the wind direction resulting in a terrain adjusted wind direction ߴ௟௦ 

given by: 
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௟௦ߴ ൌ ߴ ൅  ௙ Eq. 4.62ߴ

Although PROMET does not use the wind direction in the current model version, a terrain 

modified wind direction is computed to open additional options for future developments in the 

hydrological model. An example for a remapping based on the presented wind model is 

shown together with the result of the regression based remapping in Fig. 4.22.  

 

 
Fig. 4.22: The CI remapped REMO wind speed simulations (a), the regression based wind speed remapping (b) and the 
results of the wind model calculations (c) by the example of a model time step in the year 1982 (May 17th, 6 p.m.). 

 

As displayed, the regression based remapping and the submodel remapping for the 

considered model time step produce very similar results with a slight tendency of the wind 

submodel to produce higher wind speed maxima. 

 

4.2.8 SURFACE PRESSURE 

Surface pressure is the one meteorological variable that is most closely connected to terrain 

elevation giving the option to use terrain elevation as a predictor within the generation of high 

resolution surface pressure fields. This can be done using a time-independent formulation in 

form of 

௟௦݌ݏ ൌ ଴݌ݏ exp ቀെ
௟௦ݖ

ܪ
ቁ Eq. 4.63 

where ݌ݏ௟௦ is the surface pressure in height ݖ௟௦, ݌ݏ଴ and is a reference sea level pressure 

(101300 Pa) and ܪ is the scale height of the atmosphere (≈ 8000 m) (WALLACE AND HOBBS 

1977). In analogy to the regressive approach described in chapter 4.1.2, the residuals 

representing local deviations from the elevation dependence given by Eq. 4.63, are 

calculated for each grid cell of the RCM by using the coarse terrain elevation of the RCM and 

the surface pressure simulations. The correction of the high resolution surface pressure 
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computations with the interpolated residuals forces the interpolated pressure fields through 

the simulations, which are spatially referenced to the source grid centers.  

Alternatively to the correction of high resolution surface pressure calculations with coarse 

resolution RCM simulations, a remapping method is implemented that directly adjusts coarse 

surface pressure simulations using subgrid topography in the spatial resolution of the land 

surface model. According to COSGROVE ET AL. (2003), a high resolution atmospheric pressure 

 ௖௟௜௠_௜௡௧ in form of݌ݏ ௟௦ can be calculated using spatially interpolated pressure simulations݌

௟௦݌ݏ ൌ
௖௟௜௠_௜௡௧݌ݏ

݌ݔ݁ ൬ ݖ∆݃
ܴ௚ ௠ܶ௘௔௡

൰
 

Eq. 4.64 

where ݃ is gravity, ∆ݖ is the difference in elevation between the interpolated climate model 

elevation and the elevation in the spatial resolution of the land surface model, ܴ௚ is the gas 

constant and ௠ܶ௘௔௡ is the mean air temperature [K] assumed to be 

௠ܶ௘௔௡  ൌ ൣ൫ݐ௖௟௜௠_௜௡௧ ൅ ௟௦൯ݐ · 0.5൧ ൅ 273.16 Eq. 4.65 

with ௖ܶ௟௜௠_௜௡௧ representing the directly interpolated climate model temperature and ௟ܶ௦ the air 

temperature in the spatial resolution of the land surface grid [°C]. 

 

4.2.9 METHOD DISCUSSION 

The downscaling techniques embedded in SCALMET to adequately remap coarse RCM 

outputs have been presented in the previous chapters. As has been shown, the majority of 

the required meteorological variables can be remapped using different approaches. This 

offers the option to comparatively analyze the different scaling techniques (see chapter Fig. 

5.2) and accounts for the fact that different approaches might be most suitable depending on 

the concrete application. The data available for the regression analysis for example are a 

function of the spatial resolution of the RCM and the size of LSM domain. While the relatively 

high spatial resolution of the regional climate model REMO (10 x 10 km) in combination with 

the spatial extent of the UD provides a large enough sample size for the regression based 

remapping, the rather low spatial resolutions provided by other RCMs might limit the 

statistical sample size and therefore constrain the applicability of the regression approach. 

Besides its limiting effect concerning the available climate model simulations for a given area 

of interest, a relatively coarse climate model resolution largely levels elevation extremes and 

thus leads to an increasing degree of extrapolation beyond the elevations used within the 

regression analysis whenever the regression function is used for the calculation of high 
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resolution meteorological fields. Moreover, comparatively coarse spatial resolutions raise the 

risk that horizontal gradients (e.g. gradients in precipitation) are interpreted as vertical 

gradients within the regression based remapping. Hence, constant lapse rates in some cases 

might be preferable for the downscaling of rather coarse RCM output (e.g. 50 x 50 km).  

Another issue that influences the applicability of some of the presented methods is their need 

for an adaptation to the prevailing climate conditions in the area of interest. As has been 

pointed out in the last chapters, lapse rates (temperature, dewpoint temperature) and 

adjustment factors (precipitation) are subject to large variations over space and time.  

Although the adjustment of the required scaling parameters is rather simple, the required 

meteorological data might not be available in some regions of the earth, due to a too sparse 

net of meteorological observations. The regression based approach does not need any 

adjustments as it is completely free of any parameterization. While parameterized elevation 

corrections are only valid for present climate conditions and can not be assumed to be stable 

in the future, the regression approach is unrestrictedly applicable on future climate 

conditions. 

 

4.3 UPSCALING OF LAND SURFACE MODEL OUTPUTS 

The term ‘upscaling’ as it is used in the following paragraphs denotes the process of 

remapping fluxes from the finer spatial resolution of the land surface to the comparatively 

coarse resolution of the atmosphere. Fluxes that can currently be provided as inputs for 

RCMs in two-way coupled model runs are: 

 

 Latent heat flux [W/m²] 

 Sensible heat flux [W/m²] 

 Momentum flux [Pa] 

 Reflected shortwave radiation [W/m²] 

 Outgoing longwave radiation [W/m²]  
Fig. 4.23: Illustration of the upscaling process. 

 

Heat and radiative fluxes as well as the momentum flux are calculated within the land surface 

energy and mass balance component in PROMET (see chapter 3.1.2).  

Apart from its importance in fully coupled model runs, the remapping from coarse to fine 

resolutions states an important element within the different downscaling techniques 

described in the preceding chapters. Whenever fluxes need to be compared between the 
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scales, the remapped meteorological fields are required to be aggregated to the spatial 

resolution of the RCM in a conservative manner. Compared to the rather complex remapping 

algorithms that are needed to adequately bridge the gap from the coarse climate model 

resolution to the finer land surface grid, the process of upscaling land surface calculations is 

rather simple. As all fluxes that are provided as inputs for climate models scale linearly, the 

upscaling merely consists of computing the area weighted mean value of all land surface 

pixels that are at least partly overlapped by a considered RCM pixel. The technical 

prerequisites are given by the implementation of the conservative remapping method (JONES 

1998b) which allows a conservative treatment of all land surface fluxes within the remapping 

from the fine spatial resolution of the land surface to the resolution of the RCM. In analogy to 

the weights needed for remapping from coarse to fine resolutions, the weights for the 

contrary remapping direction are calculated at the beginning of the coupled model run or can 

optionally be read from file.  
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5 APPLICATION TO PAST CLIMATE CONDITIONS 

The following chapters will attempt to quantify the uncertainties that are included in the 

different models of the coupled model system (REMO-SCALMET-PROMET). In a first step 

the performance of the land surface model PROMET will be shown for past climate 

conditions. In a second step uncertainties related to the downscaling of the meteorological 

fields with SCALMET will be pointed out. This is done by aggregating meteorological 

observations provided by the meteorological preprocessor in PROMET to the spatial 

resolution of REMO. In analogy to the application of re-analysis data as ‘perfect boundaries’ 

in regional climate modeling, these aggregated observations serve as ‘perfect boundaries’ for 

the downscaling in SCALMET, excluding biases that are possibly included within climate 

simulations. The downscaling results are later compared to meteorological observations, 

allowing an evaluation of the performance of the different approaches. Besides the 

comparison to meteorological observations, the remapped fields are used as meteorological 

forcings in PROMET. The latter offers the option to quantify the direct impact of the 

downscaling upon the water cycle. Finally, the analysis of coupled model runs using REMO 

climate simulations for past climate conditions in the Upper Danube watershed will give an 

overall impression of the uncertainties arising from the combination of all involved models 

(REMO, SCALMET and PROMET). Comparing discharge simulations with measurements at 

the gauge in Achleiten will analyze the coupled model’s ability to reproduce past hydrological 

conditions in the UD.  

 

5.1 VALIDATION OF THE LAND SURFACE MODEL PROMET  

The following chapter aims at clarifying PROMET’s ability to reproduce the determinant 

hydrological processes in the UD for past climate conditions without applying any area 

specific calibrations. As the model has been exhaustively validated in a recent study by 

MAUSER AND BACH (2008) using meteorological observations to drive the hydrological model, 

only a brief survey of the model performance will be given in the framework of the present 

work. 

In order to show the model’s ability to simulate river discharge conditions in the UD, the 

modeled daily stream flow is compared to discharge measurements at the Gauge of the 

watershed in Achleiten. The simulated daily stream flow is generated by aggregating hourly 

simulations to daily values. The data presented in Fig. 5.1 shows the aggregated stream flow 

over the period 1971-2000 for the proxel representing the gauge in Achleiten together with 

discharge measurements.  
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The chronological sequence above is accompanied by a regression based comparison 

illustrated in Fig. 5.2. Both illustrations show a good reproduction of the stream flow on a 

daily basis.  

 

 
Fig. 5.2: Simulated vs. measured daily discharge at the gauge of the Upper Danube watershed in Achleiten. 

 

The illustrations lead to the conclusion that PROMET is able to model the daily and seasonal 

variability of water fluxes in the UD with good accuracy. Apart from the validation examples 

presented above, MAUSER AND BACH (2008) validated the model by: 

 

 comparing the annual modeled water balance with measured annual runoff volumes 

for the UD and individual subcatchments (1971-2003) 
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Fig. 5.1: PROMET discharge simulations for the proxel representing the gauge in Achleiten. The displayed daily values have 
been calculated on the basis of hourly simulations for the hydrological years 1971-2000. 
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 extending the comparison between daily discharge simulations and daily discharge 

recordings to several subcatchments 

 comparing hourly discharge simulations to hourly discharge recordings 

 comparing modeled and measured annual peak discharge volumes 

 comparing modeled and measured annual 7-day average low-flow discharge 

volumes 

 comparing modeled and measured flood and low-flow return periods 

 

The validation of the water balance carried out by MAUSER AND BACH (2008) proved that the 

spatially distributed precipitation amounts together with the simulated evapotranspiration 

allow to reproduce the long-term runoff volumes as well as their inter-annual variability. The 

analysis of daily discharge simulations shown for the gauge in Achleiten in Fig. 5.1 and Fig. 

5.2 has been extended to several subcatchments of the UD by MAUSER AND BACH (2008). As 

could be shown, the quality of simulated daily discharge is very good in general with a slight 

tendency to decrease with decreasing catchment size. As MAUSER AND BACH (2008) could 

further demonstrate on the example of the flood wave during August 1995, PROMET is able 

to reproduce hourly discharge with a high level of accuracy. The analysis of extreme events 

in case of peak discharge volumes showed an overestimation of approximately 16 %. An 

explanation is given by the fact that the reduction in river discharge due to inundations during 

flood events is not accounted for in the current version of PROMET. The annual 7-days 

average low-flow could be reproduced with good accuracy and a small overall bias. Finally, 

the analysis of modeled flood and low-flow periods carried out by MAUSER AND BACH (2008) 

show a good agreement with observed return periods with a slight tendency for the 

simulations to overestimate flood and low-flow discharge volumes for longer return periods. 

For a more detailed description of the model validation briefly summarized above it is 

referred to MAUSER AND BACH (2008). 

 

5.2 EVALUATION OF THE SCALING METHODS IN SCALMET 

In order to show SCALMET’s capability to generate high resolution distributions on the basis 

of a coarse meteorological input grid, the spatially distributed observations provided by the 

meteorological preprocessor in PROMET are remapped to the grid of the regional climate 

model REMO. This synthetically derived coarse grid meteorology is redistributed to the finer 

resolution of the land surface grid in order to examine to what degree SCALMET is able to 
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reproduce station observations. Further validation is carried out by forcing the hydrological 

model PROMET with the redistributed meteorology. In combination with hydrological 

simulations driven by the original meteorological fields this approach gives an impression of 

the noise related to the scaling of the meteorological fields and its impact on hydrology. 

 

5.2.1 METEOROLOGICAL METHOD COMPARISON 

The data used for the comparison of the redistributed meteorology with meteorological 

observations in the framework of this synthetic approach cover the years 1994-1996. 

Although this time period clearly falls below the standard climate period of 30 years, the 

general accuracy of the remapping process is expected to be well reflected, even if working 

with a rather short period of time. The comparison with observations is constrained to those 

meteorological variables that have been recorded by the meteorological network in the UD 

(see chapter 3.1.1.2). Hence, the comparison of measured and redistributed values will only 

be carried out for temperature, precipitation, wind speed and global radiation. Global 

radiation holds an exceptional position as the incoming radiation that has been redistributed 

by SCALMET is not based on direct measurements (see chapter 3.1.1.3). A comparison of 

the redistributed solar radiation therefore includes both, the uncertainties related to the 

generation of shortwave radiation by PROMET as well as those occurring within the 

redistribution by SCALMET. Thus an impression is given how well the indirect calculation of 

solar radiation reproduces the radiative conditions at the climate stations.  

Validation for all meteorological variables is carried out on a daily time basis for two reasons. 

First the meteorological observations are not available on an hourly basis for the majority of 

the remapped variables. As has been described in chapter 3.1.1, meteorological variables 

are recorded three times a day with partly varying recording times for the different 

meteorological parameters and meteorological stations. The second reason for choosing 

daily values is that the meteorological input distributions themselves do not necessarily 

represent the observations even if referred to at the exact time and place of the 

measurement. Precipitation amounts for example are distributed over the time between the 

measurements, based on several assumptions described in detail in chapter 3.1.1.1. The 

comparison of daily values minimizes the influence of the temporal interpolation and 

therefore seems to be an adequate basis for a comparative analysis.  

The analysis is carried out on a pixel basis. While a comparison of station (point) recordings 

with a pixel based (area) remapping, at least in the case of temperature, would require to 

correct either the observation or the remapping result with respect to the elevation difference 

between the station altitude and the mean pixel altitude, a methodically consistent and 
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technically convenient method is given by a direct comparison of pixel values at the locations 

of the climate stations. For the validation of temperature, precipitation and wind speed 

remappings, the total number of 377 available climate stations (see chapter 3.1.1) has been 

reduced to a subset of 73 stations utilizing only  

 

 Stations within the PROMET model domain (Upper Danube watershed) 

 Stations that have recorded over the whole period of time (1994-1996) 

 Stations that are located in highly complex topographic terrain 

 

The latter seems to be reasonable as all of the described remapping methods are based on 

topographic corrections. It is obvious that only in complex terrain these techniques unfold 

their potential and are capable to qualitatively adjust the coarse grid information beyond the 

possibilities of direct interpolation methods. Including the large number of stations located in 

the relatively flat terrain of the Alpine Foreland would therefore only weaken the 

expressiveness of the following analysis as mean errors would notably decrease due to the 

overrepresentation of stations in flat terrain.  

 

 
Fig. 5.3: Schematic illustration of the processing of observation based meteorological distributions (PROMET) for the later 
evaluation of the different remapping approaches (SCALMET). The distributions provided by the meteorological preprocessor in 
PROMET (a) are aggregated offline from a spatial resolution of 1 x 1 km to 10 x 10 km (b). The aggregated distributions are 
remapped from 10 x 10 km to a spatial resolution of 1 x 1 km (c). Finally the remapped distributions are compared to the input 
distributions at the pixels representing the meteorological stations used for the generation of the meteorological fields in 
PROMET (d). 
 

As Fig. 5.3 shows, the spatially distributed station meteorology is first conservatively 

transferred to the rotated REMO grid at a spatial resolution of 10 x 10 km. The resulting 

coarse grid meteorology is then treated the same way as RCM simulations. It is remapped by 
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SCALMET from 10 x 10 km to 1 x 1 km on an hourly time basis. The remapped hourly 

meteorological fields are aggregated to daily values in a last step providing the data needed 

for the evaluation of the implemented remapping methods. 

As the global radiation does not belong to the standard recordings at most climate stations 

only 3 stations are considered in case of global radiation remappings. All 76 climate stations 

used in the analysis are shown together with digital elevation models in the spatial resolution 

of the coarse grid meteorology and in the spatial resolution of the land surface model 

PROMET in Fig. 5.4. 

  

 

 

The station locations that are outlined in red and labeled with numbers are the stations 

represented by diagrams in the following chapters. Tab. 5.1 shows the geographical 

coordinates and the exact elevations for the stations themselves, for the pixels containing the 

stations in the high resolution DEM and for those in the coarse resolution DEM. 

The following chapters will cover the evaluation of the different remapping approaches for the 

individual meteorological parameters. Thereby the specific advantages and disadvantages of 

the different remapping methods will be pointed out by a method intercomparison. The 

Fig. 5.4: The climate stations used within the meteorological evaluation process. The black dots indicate the stations used for 
the evaluation of temperature, precipitation and wind speed remappings (T, P WS), whereas the red dots mark the stations 
used for the evaluation of global radiation remappings (GR). The data used within the diagrams in the following origin from the 
stations outlined in red (1-4).  
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remapping results are shown in contrast to those achievable by a direct interpolation using 

the bilinear and conservative techniques presented in chapter 4.1.1.  

 
Tab. 5.1: Elevation and geographical coordinates of the stations St. Leonhard-Neurur (Austria), Jenbach (Austria), Rauris 
(Austria) and Weihenstephan (Germany). 
 

Map  
Number 

Station  
Name 

Station 
Elevation 
[m.a.s.l.] 

DEM 
1 x 1 km 
[m.a.s.l.] 

DEM 
10 x 10 km 
[m.a.s.l.] 

Latitude 
[°] 

Longitude
[°] 

1 St. Leonhard-Neurur 1462 1730 2458 47.02 10.86 

2 Jenbach 530 527 1341 47.39 11.75 

3 Rauris 931 1022 1530 47.22 12.99 

4 Weihenstephan 470 485 468 48.40 11.70 
 

 

 

5.2.1.1 TEMPERATURE 

For the distribution of temperature simulations two remapping approaches, both based on 

altitudinal corrections, have been presented (see chapter 4.2.2). One is the application of 

constant monthly temperature lapse rates as proposed by LISTON AND ELDER (2006) or 

KUNKEL (1989) which will be related to in the following as the constant lapse rate remapping 

(CLR). The second technique makes use of the temperature-elevation dependence within a 

run-time statistical data analysis, similar to the approach proposed by MAUSER AND BACH 

(2008). It will be denoted as the regression based remapping (RBR) in the following. The 

performance of these two remapping approaches will be shown in comparison to the 

remapping methods of a bilinear interpolation (BI) and a conservative interpolation (CI).  

Fig. 5.5 shows the correlation between the observed daily mean temperatures, represented 

by the input pixel values at the station locations, and the simulated daily mean temperatures, 

given by the pixel values of the remapping results at the station locations for three Alpine 

climate stations over the period 1994-1996. The chosen stations represent three different 

elevation belts covering altitudes from 530 m.a.s.l. (climate station in Jenbach) to 1463 

m.a.s.l. (climate station in St. Leonhard-Neurur). Detailed information about the stations 

represented in the diagrams is given in Tab. 5.1, information about all 73 stations used in the 

analysis together with the results of the analysis for all stations can be found in the appendix 

(see A-7). The coefficient of determination is close to 1 for all remapping approaches, 

indicating that the correlation between the input data and the remapping result in general is 

very high at the pixels representing the different station locations. 
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Fig. 5.5: Comparison of remapped and observed daily temperatures at the three climate stations in St. Leonhard-Neurur (left), 
Rauris (middle) and Jenbach (right) for the period 1994-1996. The graphs show the results of a direct conservative interpolation 
(CI), a bilinear interpolation (BI), the constant lapse rate remapping (CLR) and the regression based remapping (RBR).  
 

The coefficients of determination further indicate that almost all of the total variance within 

the observations is explained by the respective remapping results. This is not hard to explain, 
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considering the fact that the temporal dynamics in local temperature is predetermined by the 

aggregated station meteorology.  

Taking a closer look at the regression line, the intercepts manifest a constant 

underestimation of temperature for the direct interpolation methods at all stations. An 

explanation is given by the fact that neither of the direct interpolation methods accounts for 

the subgrid variability of orography. Temperatures at pixels in higher elevations than the 

mean elevation of the associated 10 x 10 km pixel are consequently overestimated, whereas 

temperatures at pixels in elevations lower than the 10 x 10 km mean elevation are 

underestimated by a direct interpolation in most cases. The altitudinal difference resulting 

from the spatial resolution of the two grids involved in the remapping process is illustrated in 

Fig. 5.6.  

 

 
Fig. 5.6: Elevation difference (DEM 1 x 1 km - DEM 10 x 10 km) for the Alpine part of the Upper Danube watershed. 
The numbers are aligned to the stations St.Leonhard-Neurur (1), Jenbach (2) and Rauris (3).  
 

As shown all three climate stations for a spatial resolution of 1 x 1 km are located in pixels 

characterized by lower altitudes than the altitude of the associated coarse grid pixel (10 x 10 

km). The constant temperature underestimation reflected by the remapping results of the 

direct interpolation methods (CI and BI) is severely minimized by those remapping methods 

that apply elevation corrections within the remapping process (CLR and RBR). 

The slope of the regression lines is close to 1 for all remapping methods, indicating that the 

method’s ability to reproduce the observations is of similar efficiency over the whole range of 

daily temperature values. While the coefficients of determination are generally close to 1 for 

all remapping methods, highest values are found in case of the RBR, followed by the CLR. 

Similar to the coefficients of determination, the model efficiency described by the Nash-

Sutcliffe Coefficient (NASH AND SUTCLIFFE 1970) is very high for all methods. The mean 

model efficiency considered over the whole period of time (1994-1996) at all 73 stations 

takes values of 0.93 (std_dev௦௧௔௧௜௢௡௦ = 0.09) for both interpolation methods, 0.99 

(std_dev௦௧௔௧௜௢௡௦ = 0.01) for the CLR and 1.00 (std_dev௦௧௔௧௜௢௡௦ = 0.01) for the RBR.  

Since the values of the coefficient of determination and the Nash-Sutcliffe model efficiency 

are close to saturation (1.00), the mean absolute error (MAE) is consulted to serve as an 
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additional efficiency criterion. While the direct interpolation methods are characterized by 

mean absolute errors of 1.59 °C (std_dev௦௧௔௧௜௢௡௦ = 1.06 °C) and 1.56 °C (std_dev௦௧௔௧௜௢௡௦ = 

1.06 °C) for the CI and the BI respectively, the temperature-elevation corrections within the 

CLR and the RBR notably reduce the mean absolute errors to 0.52 °C (std_dev௦௧௔௧௜௢௡௦ = 0.34 

°C) and 0.31 °C (std_dev௦௧௔௧௜௢௡௦ = 0.28 °C) respectively. Fig. 5.7 shows the frequency 

distribution of the MAE, averaged over all 73 stations, related to all considered remapping 

methods. As can be seen, the methods of the CI and BI lead to a frequent occurrence of 

comparatively high MAEs.  

 

 
Fig. 5.7: Frequency distribution of the mean absolute error (MAE) in temperature remappings for the conservative interpolation 
(CI), the bilinear interpolation (BI), the constant lapse rate remapping (CLR) and the regression based remapping (RBR) for 
the period 1994-1996.  
 

As displayed, the MAE is clearly shifted towards lower values as soon as temperature is 

corrected for the influence of subgrid elevation. The illustration, in accordance with the 

analysis of all other statistic criteria used within the evaluation of the different remapping 

approaches above, manifests that the regression based remapping (RBR) shows the best 

overall performance in the remapping of coarse grid temperature fields, at least for the 

current grid constellation (10 x 10 km  1 x 1 km). A complete survey of the MAE at all 73 

stations is given in the appendix (see A-8). The results of all remapping methods included in 

the analysis are shown in Fig. 5.8. As shown, the inclusion of elevation corrections leads to a 

more realistic reproduction of the natural climate system. While the mean values is preserved 

over the model domain, the regression based remapping as well as the constant lapse rate 

remapping lead to slightly higher temperature extremes in lower elevations and to notably 

lower temperatures in the higher elevated parts of the Alps. Further the graphic unfolds that 

both elevation corrections considering the annual mean temperature lead to very similar 

results. Part of this effect is well explicable considering the fact that the energy to be 

distributed over each 10 x 10 km area is predetermined by the RCM meteorology. However, 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Cu
m

m
ul

at
iv

e 
Pe

rc
en

ta
ge

 [
%

]

MAE Frequency Distribution - Temperature

Conservative Interpolation (CI)

Bilinear Interpolation (BI)

Constant Lapse Rate Remapping (CLR)

Regression Based Remapping (RBR)

MAE [°C]



Application to Past Climate Conditions 

 

93 

 

the regression based method can be expected to better reflect the actual atmospheric 

conditions on a shorter time basis compared to an application of monthly constant lapse 

rates, particularly as it allows to account for temperature inversions (see chapter 4.2.2.1).  

 

 
Fig. 5.8: Results of the temperature remappings carried out within the synthetic evaluation approach. The maps represent the 
annual mean temperature for the period 1994-1996. 
 

 

5.2.1.2 PRECIPITATION 

For the remapping of precipitation two methods have been described in the preceding 

chapters of this work. One is the elevation correction of simulated rainfall by means of a 
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precipitation factor as proposed by LISTON AND ELDER (2006) and THORNTON ET AL. (1997) 

which will be referred to in the following as the adjustment factor remapping (AFR). The other 

method presented is a regression based remapping approach similar to the approach 

proposed by MAUSER AND BACH (2008), referred to in the following as the regression based 

remapping (RBR). In analogy to the analysis of temperature remappings, these techniques 

are confronted with the results of direct interpolation methods (BI and CI). The remapping 

results of all methods considered are displayed in Fig. 5.9. 

 

 
Fig. 5.9: Results of the precipitation remappings carried out within the synthetic evaluation approach. The maps represent the 
average accumulated precipitation for the period 1994-1996.  
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As can be seen the conservative interpolation (CI) results in a precipitation distribution that 

fully follows the grid structure of the coarse grid meteorological inputs (10 x 10 km). While the 

bilinear interpolation (BI) in large parts of the Alpine Foreland yields results comparable to 

those of the adjustment factor remapping (AFR) and the regression based remapping (RBR), 

the small scale orographic variability in Alpine regions is not reflected in the results of the BI. 

The methods of the AFR and the RBR result in very similar distributions, with a slightly higher 

elevation sensitivity for the RBR. The latter is also reflected in the standard deviation which 

increases from the direct interpolation methods over the AFR up to a value of 360 mm for the 

RBR. The average annual precipitation in the UD for the hydrological years 1994 to 1996 

takes a value of 1068 mm for all considered remapping methods.  

Continuing the evaluation of the precipitation remappings, the remapped precipitation at 

those pixels containing the climate stations in St. Leonhard-Neurur, Rauris and Jenbach in a 

spatial resolution of 1 x 1 km is compared to daily rain gauges at the climate stations (see 

Fig. 5.10). As has already been experienced in connection with temperature remappings, for 

the current grid constellation even the direct interpolation techniques are capable of 

reproducing the general dynamics in daily precipitation, resulting in very high coefficients of 

determination for all remapping methods. Compared to the coefficients of determination of 

the RBR, the direct interpolation of rainfall sometimes even leads to higher coefficients of 

determination at the stations shown in the diagrams. 
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Fig. 5.10: Comparison of remapped and observed daily precipitation at the three climate stations in St. Leonhard-Neurur (left), 
Rauris (middle) and Jenbach (right) for the period 1994-1996. The graphs show the results of a conservative interpolation (CI), 
a bilinear interpolation (BI), the adjustment factor remapping (AFR) and the regression based remapping (RBR). 
 

However, the slopes of the regression lines with values significantly greater than 1 show an 

overestimation of precipitation which is increasing with increasing precipitation amounts for 

the stations pictured above. With slopes near 1, both remapping methods including elevation 

corrections within the remapping process (AFR and RBR) clearly reduce this overestimation. 

The mean Nash-Sutcliffe model efficiency of all 73 stations is close to 1 for all remapping 

options, ranging from 0.96 (std_dev௦௧௔௧௜௢௡௦ = 0.06) and 0.97 (std_dev௦௧௔௧௜௢௡௦ = 0.04) for the 

direct interpolation techniques of the CI and BI respectively to values of 0.98 (std_dev௦௧௔௧௜௢௡௦ 

= 0.03) for the AFR and 0.97 (std_dev௦௧௔௧௜௢௡௦ = 0.03) for the RBR. In analogy to the coefficient 

of determination the high model efficiency can be explained by the fact that dynamics in 

precipitation amount and occurrence is predetermined by the coarse grid meteorology (10 x 

10 km) to a large degree.  

Considering the MAE for all 73 stations, highest values occur in combination with the CI 

(0.56 mm, std_dev௦௧௔௧௜௢௡௦ = 0.3 mm) and the BI (0.48 mm, std_dev௦௧௔௧௜௢௡௦ = 0.3 mm). The 

elevation corrections performed by the AFR and the RBR slightly decrease the MAE to 

values of 0.35 mm (std_dev௦௧௔௧௜௢௡௦ = 0.25) and 0.45 (std_dev௦௧௔௧௜௢௡௦ = 0.27) respectively. Fig. 

5.11 shows the frequency distribution of the MAE for all remapping methods. As shown, the 

CI scheme introduces largest biases within the remapping process. The BI performs slightly 

better but still shows considerable MAEs in higher ranges, whereas the elevation 
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adjustments within precipitation remappings noticeably lower the occurrence of MAEs in 

higher MAE ranges. 
 

 

 

Compared to the RBR, the AFR remapping shows a slightly better performance. Obviously, 

the monthly adjustment factors better reflect the precipitation-elevation dependence than the 

regression functions that are derived on the basis of hourly precipitation distributions at a 

spatial resolution of 10 x 10 km. A complete picture of the remapping results for the different 

years and all 73 stations is given in the appendix (see A-9). 

 

5.2.1.3 WIND SPEED 

For the distribution of wind speed two approaches have been implemented in SCALMET. 

Both methods apply subgrid topographic corrections within the remapping process. Since the 

wind model proposed by LISTON AND STURM (1998) and LISTON AND ELDER (2006) requires 

information on the wind u- and v-components, which do not belong to the standard 

recordings at the climate stations, the following meteorological evaluation is constrained to 

the regression based remapping (RBR). The RBR results together with the results of the 

direct interpolation techniques are shown for three Alpine stations in Fig. 5.12.  

The inclusion of elevation corrections in the remapping process increases the coefficient of 

determination at all stations considered in the analysis. In analogy to the coefficients of 

determination the Nash-Sutcliffe efficiency takes lower values for the remapping of wind 

speed than for the remapping of temperature and precipitation.  
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The mean model efficiency over all 73 climate stations increases from values of 0.53 

(std_dev௦௧௔௧௜௢௡௦ = 0.60) and 0.55 (std_dev௦௧௔௧௜௢௡௦ = 0.62) for the CI and BI respectively, to a 

mean model efficiency of 0.73 (std_dev௦௧௔௧௜௢௡௦ = 0.35) for the RBR.  

While the scattering around the regression line is similar within the direct interpolation 

methods of the CI and BI, the occurrence of outliers is strongly reduced in the RBR. 

Considering the MAE over all 73 stations, the CI and the BI show values of 0.49 

(std_dev௦௧௔௧௜௢௡௦ = 0.35) and 0.46 (std_dev௦௧௔௧௜௢௡௦ = 0.36) respectively. 

 

   

   

   

Fig. 5.12: Comparison of remapped and observed daily wind speeds at climate stations in St. Leonhard-Neurur (left), Rauris 
(middle) and Jenbach (right). The graphs show the results of a conservative interpolation (CI), a bilinear interpolation (BI) and 
the regression based remapping (RBR). 
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The application of elevation corrections within the remapping decreases the MAEs to 0.37 

(std_dev௦௧௔௧௜௢௡௦ = 0.32) for the RBR. Fig. 5.13 shows the MAE frequency distribution for all 

remapping methods. 

 

 

The illustration proves that the inclusion of elevation corrections is able to reduce the 

occurrence of MAEs in higher error ranges compared to the direct interpolation techniques. 

For the MAEs at all 73 climate stations refer to the appendix (A-10). 

 

5.2.1.4 SHORTWAVE RADIATION 

The quality assessment for shortwave radiation remappings slightly differs from the 

preceding validation of temperature, precipitation and wind speed remappings. As described 

PROMET generates the shortwave radiation distributions that are used for the aggregation to 

10 x 10 km and the later redistribution to spatial resolution of 1 x 1 km in SCALMET not on 

the basis of global radiation observations directly. The amount of incoming shortwave 

radiation is calculated as a function of a pixel’s geographic location, time, topographic 

features and observed cloud cover (see chapter 3.1.1.3). A comparison of pixel values in the 

input grid with the same pixels in the remapped grid therefore would, even if the exact pixels 

containing the climate stations are considered, only compare the radiation submodel used in 

PROMET with the one used in SCALMET.  

To give an impression of the accuracy of the remapping result, the remapped pixel radiation 

is directly compared to observations. This approach of course includes a variety of 

uncertainties such as 
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Fig. 5.13: Frequency distribution of the mean absolute error (MAE) in wind speed remappings for the conservative 
interpolation (CI), the bilinear interpolation (BI) and the regression based remapping (RBR) for the period 1994-1996.  
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 uncertainties related to the cloud cover observations 

 uncertainties occurring from the radiation model in PROMET 

 uncertainties occurring from the radiation model/remapping in SCALMET 

 uncertainties related to the radiation recordings at the climate stations 

 

that have to be considered when interpreting the results. The comparison of shortwave 

radiation remappings with radiation measurements is carried out by utilizing recordings taken 

at three meteorological stations located in Hohenpeissenberg, Weihenstephan and Passau 

(see red dots in Fig. 5.4). The small number of stations results from the fact that only few of 

the 377 available climate stations record global radiation. The number is further reduced by 

the temporal constraint to the years 1994 to 1996. Global radiation recordings at the stations 

represent mean conditions over the sampling period of 1 hour. These hourly values have 

been aggregated to a daily mean global radiation in a first step. Days that include erratic 

measurements have been excluded from the analysis. The observed daily mean global 

radiation then is compared to the daily mean radiation at those pixels within the remapped 

grid that include the respective climate station in the spatial resolution of 1 x 1 km. Fig. 5.14 

shows the correlation between the observed and the remapped global radiation at the 

climate station in Weihenstephan for the conservative interpolation (CI), the bilinear 

interpolation (BI) and the radiation submodel in SCALMET. 

 

   
Fig. 5.14: Comparison of remapped and observed daily global radiation at the climate station Weihenstephan (Germany). The 
graphs show the results of a conservative interpolation (CI), a bilinear interpolation (BI) and the solar radiation submodel for the 
period 1994-1996. 
 

As displayed the direct interpolation methods produce very similar results which are 

characterized by a moderate correlation between the observed and the remapped global 

radiation and large scattering of points around the regression line. The reason for this 

similarity can be found in the station’s relative location to the pixel center. Weihenstephan is 

located very close to the center of the 10 x 10 km grid box. Here, the result of a bilinear 
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remapping is very similar to the mean conditions within the grid box, which are conserved for 

all underlying subpixels when the conservative interpolation method is applied.  

The radiation submodel in SCALMET with a coefficient of determination of 0.93 increases the 

correlation compared to the direct interpolation methods. The scattering around the 

regression line is visibly reduced, further confirming the enhanced accordance between the 

observed and the remapped global radiation achieved by applying the submodel remapping 

approach. Considering the mean Nash-Sutcliffe model efficiency at all three stations for the 

time from 1994 to 1996, the inclusion of the radiation model within the remapping process 

enhances the model efficiency to a mean value of 0.90 (std_dev௦௧௔௧௜௢௡௦ = 0.02) compared to 

0.54 (std_dev௦௧௔௧௜௢௡௦ = 0.07) for both direct interpolation methods. While the CI and the BI 

lead to a relatively high MAE of 46.8 W/m² (std_dev௦௧௔௧௜௢௡௦ = 4.3 W/m²) and 46.8 W/m² 

(std_dev௦௧௔௧௜௢௡௦ = 4.4 W/m²) at the stations respectively, for the radiation submodel the MAE 

is reduced to 23.4 W/m² (std_dev௦௧௔௧௜௢௡௦ = 2.4 W/m²). The temporal course of radiation 

throughout the year 1994 is shown for the station in Weihenstephan in Fig. 5.15.  

 

 
Fig. 5.15: Observed (black) and remapped (red) course of daily global radiation throughout the year 1994 at the climate station 
Weihenstephan. The remapped radiation represents the value of the pixel containing the climate station. The data used for the 
remapping in SCALMET is based on meteorological distributions provided by the meteorological preprocessor in PROMET. 

 
The comparison of the observed and the remapped global radiation displays that the 

temporal changes in radiative fluxes are well reproduced, although the amplitude is slightly 

smoothed. Since the amplitude is a function of the radiative energy budget predetermined by 

the coarse grid meteorology, it can be assumed that for a given coarse grid energy budget, 

the approach performs well in the spatial distribution of the available radiative energy. 

The last chapters have shown that the quasi-physically based scaling techniques are 

capable of enhancing the remapping performance compared to a direct interpolation of the 

meteorological variables. At the same time the results of the preceding analysis have shown, 
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that elevation alone, especially for the remapping of wind speed, does not explain all of the 

spatial variance in wind speed distributions.  

 

5.2.2 HYDROLOGICAL METHOD COMPARISON 

Following the meteorological evaluation of the different scaling techniques in SCALMET the 

hydrological impact resulting from an application of the different methods in separate 

PROMET runs will be examined. Unlike the preceding analysis at the stations, this 

hydrological comparison will always evaluate a combination of remapping methods, resulting 

from the remapping methods chosen for the different meteorological parameters. As the 

variety of methods available for each meteorological parameter principally allows a large 

number of different remapping combinations, the following analysis will focus on four 

combinations: 

 

 Quasi-physically based approach (QPB I) 

 Quasi-physically based approach (QPB II) 

 Conservative interpolation (CI) 

 Bilinear interpolation (BI) 

 

Four PROMET model runs have been set up for the hydrological years 1994-1996 using 

these combinations of remapping methods. Tab. 5.2 presents the remapping methods 

chosen for the different parameters within the four combinations.  

 
Tab. 5.2: The constellation of remapping methods used within the four PROMET runs over the period 1994-1996. 
 

Parameter QPB I QPB II BI CI 

Solar Zenith BI BI BI CI 

Temperature Constant lapse rate Regression based BI CI 

Air Humidity Constant lapse rate Regression based BI CI 

Precipitation Adjustment factor Regression based BI CI 

Shortwave Radiation (in) Submodel Submodel BI CI 

Longwave Radiation (in) Submodel Submodel BI CI 

Wind Speed Regression based Regression based BI CI 

Surface Pressure Submodel Submodel BI CI 
 

 



Application to Past Climate Conditions 

 

103 

 

The remapping combinations denoted as QPB I and QPB II only differ with respect to the 

remapping of temperature, humidity and precipitation. The two approaches of regression 

based and constant elevation corrections (lapse rates, precipitation adjustment factors) are 

compared within the evaluation. As the aggregated meteorological fields do not contain 

information on the u- and v-component of wind speed, the wind model again could not be 

included in the evaluation process. In analogy to the meteorological comparison in chapter 

5.2.1 the regression based remapping is used for the spatial distribution of wind speed 

instead. For the remapping of radiative fluxes the submodel approach was chosen for both 

QPB combinations. The remapping of surface pressure for both QPB combinations is based 

on an approach by COSGROVE ET AL. (2003), which is described in detail in chapter 4.2.8.  

As can be seen in case of the CI and the BI combinations, all parameters are consequently 

remapped using the respective direct interpolation method. In analogy to the meteorological 

comparison in chapter 5.2.1, these techniques have been included in the analysis to allow a 

direct comparison to the more sophisticated methods implemented in SCALMET. Similar to 

the meteorological comparison, the coarse grid meteorology used for the downscaling is 

derived from observational data that have been spatially distributed by the meteorological 

preprocessor in PROMET in advance. Fig. 5.16 shows the different stages of the 

hydrological evaluation process. The meteorological data are aggregated offline from 1 x 1 

km to a spatial resolution of 10 x 10 km using the conservative remapping method 

implemented in SCALMET in a first step.  

 

 
Fig. 5.16: The different steps within the hydrological evaluation of the remapping methods implemented in SCALMET. The 
spatially distributed observations provided by the meteorological preprocessor in PROMET are aggregated offline from 1 x 1 
km to 10 x 10 km in a first step. Various coupled model runs are set up, in which the aggregated meteorology is remapped 
using the different approaches to be evaluated. The results are compared to discharge measurements at the gauge in 
Achleiten. 
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The aggregated hourly values are stored to file and treated similar to RCM simulations. 

Within four coupled model runs covering the hydrological years 1994-1996, the data are read 

from file for each model time step and are remapped from the coarse resolution of 10 x 10 

km to the finer spatial resolution of 1 x 1 km. The remapping in SCALMET is carried out 

utilizing the combinations of remapping approaches presented in Tab. 5.2. To get an 

impression of the performance of the hydrological model forced by the different 

meteorological boundaries, the hydrological simulations need to be compared to 

observations. The most accurately measured quantity available is the discharge recorded at 

the gauge Achleiten. Therefore the simulated discharge at the LSM pixel containing the 

gauge in Achleiten is compared to the local discharge measurements.  

An uncoupled PROMET run has been set up for the same period of time to serve as an 

additional source of reference. Comparing the model simulations achieved using the different 

remapping constellations with the results of the PROMET reference run gives an impression 

of the change in the meteorological forcings and its impact on hydrology.  

The correlation between daily discharge observations and the discharge modeled in the 

uncoupled PROMET run, directly using the distributed observations as provided by the 

meteorological preprocessor in PROMET as meteorological forcings, is illustrated in Fig. 5.17 

(left). The slope of the regression line with a value close to unity together with the coefficient 

of determination of 0.89 clarify that PROMET is capable of reproducing the measured daily 

discharge for the period 1994-1996 with good accuracy. This capability is reflected in the 

temporal course of the modeled discharge at the gauge in Achleiten for the considered 

period of time as well (see Fig. 5.17, right). 

 

 
Fig. 5.17: Correlation between modeled and measured discharge at the gauge of the Upper Danube watershed in Achleiten 
(left) and temporal course of simulated and observed discharge at the gauge for the period 1994-1996 (right). The model results 
have been generated by directly forcing PROMET with the meteorological distributions provided by the meteorological 
preprocessor in PROMET.  
 

For the hydrological years 1994-1996, the Nash-Sutcliffe model efficiency (NASH AND 

SUTCLIFFE 1970) takes a value of 0.84, again confirming the model’s ability to reproduce daily 

discharge volumes with good accuracy.  
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The first remapping method constellation to be analyzed is the QPB I run. As shown in Tab. 

5.2, monthly lapse rates and precipitation adjustment factors are used in this run for elevation 

corrections within the remapping of temperature/humidity and precipitation respectively. The 

scatterplot shows a very high correlation between simulated and observed daily discharge 

volumes for the considered period of time (see Fig. 5.18, left). With a coefficient of 

determination of 0.89 and a slope very close to that of the reference run, the QPB I run 

performs as well as the PROMET reference run. The graph in Fig. 5.18 (right) shows the 

temporal course of the discharge volumes simulated in the reference run and the QPB I run. 

 

 
Fig. 5.18: Correlation between modeled (QPB I) and measured discharge at the gauge of the Upper Danube watershed in 
Achleiten (left) and temporal course of the reference run discharge (black line) and the QPB I run discharge (red line) at the 
pixel representing the gauge of the Upper Danube watershed in Achleiten for the period 1994-1996 (right). 
 

The line representing the simulated discharge of the QPB I run is almost congruent with that 

of the reference run. The local discharge maximum in April 1994, which is overestimated in 

the reference run, is slightly flattened. Discharge at the beginning of May 1996, which is also 

slightly overestimated in the reference run, is little lower in the QPB I constellation as well. 

Considering the Nash-Sutcliffe model efficiency (NASH AND SUTCLIFFE 1970), the QPB I run 

with a value of 0.85 slightly outperforms the reference run. A similar picture is presented by 

the results of the quasi-physically based remapping constellation II (see Fig. 5.19).  

 

 
Fig. 5.19: Correlation between modeled (QPB II) and measured discharge at the gauge of the Upper Danube watershed in 
Achleiten (left) and temporal course of the reference run discharge (black line) and the QPB I run discharge (red line) at the 
pixel representing the gauge of the Upper Danube watershed in Achleiten for the period 1994-1996 (right). 
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Differently from the QPB I run, temperature, humidity and precipitation are corrected for 

subgrid elevation using the run-time regression technique in case of the QPB II run. Showing 

the same coefficient of determination and a very similar slope, the QPB II run as well 

performs very similar to the QPB I run and the reference run. While the QPB I run partly 

lowers the overestimation of discharge peaks in spring, the QPB II meteorology almost fully 

reproduces the discharge volumes of the reference run. The Nash-Sutcliffe model efficiency 

with a value of 0.85 for the QPB II run is equal to that of the QPB I run and slightly higher 

than that of the PROMET reference run. 

In a next step the hydrological simulations based on a direct interpolation of all 

meteorological variables are analyzed. Fig. 5.20 (left) shows the correlation between the 

observed discharge at Achleiten and the discharge modeled with PROMET using the BI 

forcings.  

 

 
Fig. 5.20: Correlation between modeled (BI) and measured discharge at the gauge of the Upper Danube watershed in 
Achleiten (left) and temporal course of the reference run discharge (black line) and the BI run discharge (red line) at the pixel 
representing the gauge of the Upper Danube watershed in Achleiten for the period 1994-1996 (right). 
 

As listed in Tab. 5.2 this constellation is based on a bilinear interpolation of all meteorological 

parameters. Compared to the reference run the coefficient of determination with a value of 

0.85 is slightly lower using the bilinear interpolation method to bridge the scales from the 

aggregated meteorology (10 x 10 km) to 1 x 1 km.  

A very similar picture is given by the analysis of the model results achieved using the 

conservative interpolation method to transfer all meteorological variables from the coarse to 

the fine scale. Fig. 5.21 (left) shows the correlation between the observed discharge and the 

discharge modeled with PROMET using the CI meteorology. While the coefficient of 

determination is slightly lower than that of the BI run, the temporal course of daily discharge 

simulations is almost identical. The Nash-Sutcliffe model efficiency for both direct 

interpolation based meteorologies with values of 0.75 and 0.76 for the CI and BI constellation 

respectively, is significantly lower than that of the QPB I and QPB II run. Both runs using a 

direct interpolation for the remapping of all meteorological variables slightly flatten some of 
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the discharge peaks in the year 1994, which are overestimated by PROMET in the reference 

run (see Fig. 5.17, right). Taking a closer look at the deviations from the reference run, it 

becomes evident that a directly interpolated meteorology partly leads to lower discharge 

values, mainly in winter, and to temporarily higher values, mostly in spring. 

 

 
Fig. 5.21: Correlation between modeled (CI) and measured discharge at the gauge of the Upper Danube watershed in Achleiten 
(left) and temporal course of the reference run discharge (black line) and the CI run discharge (red line) at the pixel representing 
the gauge of the Upper Danube watershed in Achleiten for the period 1994-1996 (right). 
 

This underestimation of winterly discharge and the subsequent overestimation of discharge 

in spring both are confirmed by considering the absolute deviation from the discharge 

measurements as shown for the bilinearly interpolated meteorology in Fig. 5.22. 

 

 
Fig. 5.22: Difference between simulated and observed discharge at the gauge in Achleiten for two SCALMET-PROMET model 
runs over the period 1994-1996.  
 

Although a more sophisticated remapping, as shown for the QPB II in Fig. 5.22, leads to an 

overestimation of spring discharge comparable to that found in the reference run as well, the 

overestimation is significantly lower than that for the BI run. The reason for this behaviour 

can be found in differences within the seasonal storage of water in the snow pack.  

Fig. 5.23 shows the difference in simulated snow water equivalent (SWE) between the BI and 

the QPB for the 3rd of April 1995. As pictured in Fig. 5.23, in case of the BI run much higher 
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values of SWE occur in the Alpine valleys combined with lower SWE in higher elevations. 

These conditions can be traced back to the local temperature conditions in the respective 

altitudinal belts. A bilinear interpolation of the meteorological forcings does not account for 

subgrid orographic variability. As a result temperatures are overestimated for all subpixels 

that are characterized by higher elevations than that of the associated 10 x 10 km pixel and 

underestimated for those subpixels that are located in lower elevations than the 10 x 10 km 

mean elevation (see chapter 5.2.1.1). 

 

 
Fig. 5.23: Difference in simulated snow water equivalent (SWE) between two SCALMET-PROMET model runs (April 3rd, 1995). 
The SWE simulations using a quasi-physically based remapping (QPB II) is subtracted from the SWE simulations resulting from 
a bilinear interpolation (BI) of all meteorological parameters. For the sake of visualization the SWE difference is overlaid by a 
semitransparent hillshade effect. 
 

This underestimation of temperatures in lower elevations leads to a comparatively high 

amount of snow in the valleys. Particularly in the small Alpine valleys, where the mean 

elevation in the spatial resolution of the coarse grid meteorology largely misrepresents the 

real topographic situation, differences in the SWE of more than 350 mm (corresponding to a 

snow depth of approximately 70 cm, assuming a snow density of 500 kg/m³) occur. The 

prolonged storage of water in the snow pack leads to comparatively lower discharge volumes 

in the months of March and April. With temperatures increasing in May, snow water is 

released leading to higher discharge volumes compared to the QPB II run. The application of 

elevation corrections, as done in the case of the QPB II run, results in temperature 

distributions that more realistically represent the temperature conditions in the Alpine valleys. 

The latter results in an enhanced representation of snow cover dynamics and allows to more 

accurately reproduce the observed discharge volumes.  
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5.3 COUPLED MODEL RUNS FOR PAST CLIMATE CONDITIONS 

The following chapter shows the performance of the coupled model system (REMO-

SCALMET-PROMET) for past climate conditions. The simulations will serve as a current 

state reference for the scenario run in a later chapter of this work. Besides the comparison of 

discharge volumes simulated for the period 1971-2000 within the coupled reference run to 

recorded discharge volumes at the gauge in Achleiten, an uncoupled PROMET run forced by 

spatially distributed meteorological observations will serve as an additional source of 

reference to evaluate both, the meteorological forcings as well as the hydrological 

simulations resulting from the coupled reference run. To guarantee a common understanding 

of the different runs referred to in the following chapters of this work an overview of the main 

run characteristics is given by Tab. 5.3. 

 
Tab. 5.3: The main characteristics of the different model runs used for the simulation of past and future hydrological conditions 
in the Upper Danube watershed. 
 

Run Denotation  Atmosphere Land surface Time Period  Purpose  

Data Distribution 

Uncoupled  
Reference Run 
(URR)  

Station 
Observations PROMET  PROMET 1971-2000   

 
Control 

Coupled  
Reference Run 
(CRR)  

REMO 
Control Run 

(CNTRL) 

SCALMET  PROMET 1971-2000  

SCALMET  PROMET 1961-2000   
 

Change 
Coupled 
Scenario Run 
(CSR) 

REMO 
A1B Run SCALMET PROMET 2011-2060 

 

 

The meteorological drivers for the one-way coupled model run for the period 1961-2000 and 

2011-2060 are provided by the REMO control run (‘Climate of the 20th Century Run’) and the 

REMO A1B scenario run respectively (JACOB AND PODZUN 1997, JACOB ET AL. 2001). Within 

both runs, the RCM is forced by the global ECHAM5/MPI-OM model at the boundaries of the 

model domain. The REMO simulations as well as the remapped fields and the hydrological 

simulations of the reference run, therefore must not be compared directly to measurements 

related to a certain year (see chapter 3.2). Still, the long-term mean meteorological and 

hydrological conditions can be compared to observations to get an impression of the 

performance of the coupled model system. Before the results of the coupled reference run 

(CRR) are presented and analyzed, the choice of the remapping methods applied within 
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both, the simulation of past and future hydrological conditions inside the UD will be 

described. 

 

5.3.1  CHOICE OF REMAPPING METHODS 

The performance of the different remapping methods implemented in SCALMET has been 

analyzed in the preceding chapters of this work (see chapter 5.2). The meteorological and 

hydrological evaluation revealed that for the remapping of all meteorological variables 

needed for the description of the hydrological relevant processes on the land surface, the 

quasi-physically based approaches clearly outperform direct interpolation methods.  

While a further comparison of the different remapping approaches within long-term 

simulations (decades to centuries) is undoubtedly worth striving for in the future, for the 

present work one combination of remapping methods had to be chosen to be consistently 

used within both, the coupled reference run and the scenario run. Besides the performance 

within the evaluation process, the degree to what the remapping methods can be expected to 

be stable under future climate conditions is a central criterion for the selection of the 

remapping methods applied. The configuration used within the control and scenario runs is 

given in Tab. 5.4.  

 
Tab. 5.4: The combination of remapping approaches used for the downscaling of REMO simulations within the reference run 
(1961-2000) and the scenario run (2011-2100). 
 

Parameter Remapping Method 

Solar Zenith Submodel 

Temperature Regression based 

Air Humidity Regression based 

Precipitation Regression based 

Shortwave Radiation (in) Submodel 

Longwave Radiation (in) Submodel 

Wind Speed Submodel 

Surface Pressure Submodel 
 

 

Temperature, humidity and precipitation are remapped using the regression based approach 

described in chapter 4.1.2. Although the application of monthly constant elevation corrections 

in the case of precipitation showed slightly better results, the regression based remapping 

has been preferred for the coupled model runs, as it is completely unparameterized and 

therefore unrestrictedly applicable to future conditions. Incoming shortwave and longwave 
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radiation are scaled using the shortwave and longwave radiation models in SCALMET 

respectively (see chapter 4.2.5 and 4.2.6). For the remapping of wind speed the wind 

submodel described in chapter 4.2.7.2 is applied. Although the performance of the wind 

model could not be evaluated for the UD, the model is expected to improve the results of the 

remapping process compared to the regression based approach, as wind speed is remapped 

accounting for wind direction. Since the solar zenith angle does not belong to the available 

REMO outputs, it is calculated as a function of time and geographical position (see chapter 

4.2.1). In analogy to the hydrological evaluation process described in chapter 5.2.2 surface 

pressure is remapped based on an approach proposed by COSGROVE ET AL. (2003) (see 

chapter 4.2.8).  

  

5.3.2 MODEL RESULTS 

The model results of the coupled reference run (REMO-SCALMET-PROMET) cover the 

years 1961 to 2000. The period is considered to serve as a reasonable reference for a 

comparison to the scenario run (2011-2060), as it covers a time period of similar length. To 

provide an adequate spin up time to the hydrological model, the model run has been set up 

starting with the year 1959. The REMO data providing the meteorological fields for the 

downscaling in SCALMET, originate from the REMO control run (see Tab. 5.3).  

As the discharge measurements needed for the evaluation of runoff simulations are not 

available for the time before 1970, the period 1971-2000, representing a subset of the 

coupled reference run data, is chosen to check the plausibility of the model results (see Tab. 

5.3). In the following paragraphs, the meteorological input as well as the hydrological output 

is compared between the coupled and the uncoupled reference run. 

 

5.3.2.1 METEOROLOGY 

A comprehensive knowledge of the quality related to the meteorological drivers is of prime 

importance for the later interpretation of the hydrological model results. The following 

paragraphs show and discuss the meteorological data used to force the hydrological model 

PROMET in the coupled reference run. To get an impression of the quality of the remapped 

REMO simulations the latter are compared to distributed observations. Although the 

reference distributions are based on observations, they need to be considered as model 

results as well. KOTLARSKI ET AL. (2005) have shown that the results of a comparison 

between simulations and observational data largely depend on the reference data set 

applied. This has to be kept in mind when interpreting the results. However, it is important to 
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clarify to what degree the meteorological forcings used within the coupled model run differ 

from those used in the uncoupled reference run, in order to interpret differences in the 

hydrological model results. The evaluation focuses on temperature and precipitation, as 

these parameters are most determinant for near surface hydrological processes (KOTLARSKI 

ET AL. 2005). 

 

5.3.2.1.1 Temperature 

The spatially distributed average annual mean temperature in the UD (1971-2000) calculated 

on the basis of remapped REMO simulations is illustrated in Fig. 5.24 (left). As displayed, the 

regression based remapping leads to a spatial distribution that largely follows topography. To 

get an impression in how far the remapped REMO simulations differ from the spatially 

distributed observations (PROMET), the mean observed temperature conditions have been 

subtracted from the remapped data (see Fig. 5.24, right). 

 

Fig. 5.24: Remapped average annual mean temperature (left) and difference between the remapped distributions and those 
provided by the meteorological preprocessor in PROMET (right) for the hydrological years 1971-2000. The observation based 
temperature distributions have been subtracted from the remapped fields for the generation of the map on the right. 
 

The illustration unfolds that the remapped REMO data for the non-alpine part of the 

catchment considerably overestimates mean annual temperatures by up to 2 °C. This warm 

bias is well known in the REMO community. It is traced back by KOTLARSKI (2007) to an 

overestimation of the real temperature conditions in summer, possibly related to inaccuracies 

within the vertical diffusion in the RCM and a strong reduction of evaporation, due to low soil 
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moisture conditions in summer. For the UD the largest overestimation of observed 

temperature conditions for the period 1971-2000 is found in the simulations for April (see Fig. 

5.25). A plausible explanation for this overestimation of temperatures could possibly be found 

in the snow conditions at the land surface of the RCM in the month of April. As the flattened 

topography leads to an overestimation of temperatures in higher elevations, snow amounts in 

these regions might be underrepresented. An increased absorption of shortwave radiation 

together with a not present cooling of near surface air masses by snow at the land surface 

could result in an overestimation of air temperatures. As REMO snow simulations are not 

analyzed in the framework of this thesis, this assumption is not further pursued. 

 

 
Fig. 5.25: Observation based and remapped monthly mean temperatures in the Upper Danube watershed for the period 
1971-2000 (left), difference in monthly mean temperature between remapped REMO control run data and spatially distributed 
observations (right). The latter have been subtracted from the remapped REMO simulations for the generation of the bar chart 
above. 
 

The general magnitude of overestimation displayed in Fig. 5.25, as well as that of 

underestimation of temperatures in January, is comparable to the results of studies by 

KOTLARSKI ET AL. (2005). Unlike in the plain Alpine Foreland, in some of the higher elevations 

of the Alps the remapped REMO data show lower annual mean temperatures than those 

found in the observation based distributions (see Fig. 5.24). While this general tendency is 

found in the original REMO data as well, it is locally modified due to the temperature-

elevation corrections in SCALMET. Considering the area mean temperature, the remapped 

REMO temperature with 7.4 °C (std_dev௔௥௘௔ = 3.3°C) is 0.8° higher than that of the 

distributed observations (6.6 °C, std_dev௔௥௘௔ = 2.4 °C). 

 

5.3.2.1.2 Precipitation 

The mean annual precipitation (1971-2000) calculated on the basis of remapped REMO 

control run data is shown in Fig. 5.26. The map on the left shows that the regression based 
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remapping in case of precipitation leads to a spatial distribution that is less determined by 

topography, compared to the remapping of temperature. This can be explained by the fact, 

that the precipitation-elevation dependence found in REMO simulations is often not 

significant. In this case, the meteorological simulations are directly interpolated from the 

model resolution of the RCM to the spatial resolution of the LSM (see chapter 4.1.2).  

 

Fig. 5.26: Remapped average annual precipitation (left) and difference between the remapped simulations and the spatially 
distributed observations (right) for the hydrological years 1971-2000. The observation based precipitation distributions have 
been subtracted from the remapped REMO fields for the generation for the map on the right. 
 

In order to analyze in how far the remapped REMO precipitation differs from the observation 

based meteorology, the latter is subtracted from the remapped REMO data. The resulting 

spatial differences in precipitation are illustrated in Fig. 5.26 (right). The spatially distributed 

difference in precipitation amounts gives a rather heterogeneous picture. Although some 

areas are characterized by lower precipitation amounts in the remapped REMO data 

compared to the distributed observations, the effect is overcompensated by much higher 

precipitation amounts, in particular in the Alpine areas. With 1157 mm (std_dev௔௥௘௔ = 596 

mm) for the hydrological years 1971-2000 the average annual precipitation in the remapped 

REMO data is 113 mm higher than that of the PROMET distributions (1044 mm, std_dev௔௥௘௔ 

= 334 mm).  

To involve another source of reference, the Hydrological Atlas of Austria (HAA) is consulted 

(KLING ET AL. 2007). The atlas provides digital maps of average annual precipitation amounts 

in Austria for the years 1961-1990 on a catchment basis. Assuming that discharge and areal 

evapotranspiration in high Alpine regions can be determined with higher accuracy than areal 
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precipitation, KLING ET AL. (2007) adjust spatially distributed precipitation recordings with 

respect to the catchment water balance in form of 

௖ܲ௢௥ ൌ
ܳ ൅ ൫ܧ ௣ܶ௢௧ െ ܧ ௣ܶ௢௧_௦൯ · ௕ݕ ൅ ܧ ௣ܶ௢௧_௦ · ௦ݕ

ܲ
 Eq. 5.1 

with: ௖ܲ௢௥ = Corrected annual precipitation [mm] 

 ܳ = Annual discharge [mm]  

ܧ  ௣ܶ௢௧ = Potential annual evapotranspiration [mm] 

ܧ  ௣ܶ௢௧_௦ = Sum of potential evapotranspiration in months with snow cover 

[mm] 

 ௕ = Ratio of actual and potential evapotranspiration (calculatedݕ 

using the Bargov-Equation (GLUGLA AND TIEMER 1971)) 

 ௦ = Ratio of actual and potential evapotranspiration for months withݕ 

snow cover (assumed to be 0.3) 

 ܲ = Annual precipitation [mm] 

 

For more detailed information concerning the calculation of area precipitation within the HAA 

and the water balance model applied refer to KLING ET AL. (2007a) and KLING ET AL. (2007b). 

The mean annual precipitation resulting from the calculations above, together with the 

PROMET distributions and unscaled REMO simulations are shown for the Austrian 

subcatchments within the UD in Fig. 5.27.  

 

 
Fig. 5.27: The average annual precipitation for the Austrian subcatchments within the domain of the Upper Danube watershed 
(1961-1990). The three precipitation maps on the right represent data originating from the meteorological preprocessor in 
PROMET (top), the Hydrological Atlas of Austria (middle) (KLING ET AL 2007 b) and REMO control run simulations (bottom) 
(JACOB AND PODZUN. 1997, JACOB ET AL. 2001). For the sake of visualization, all maps are overlaid by a semi transparent 
hillshade effect. 
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While there is quite a good agreement in the spatial patterns of precipitation amounts within 

the observation based distributions (top and middle), the REMO simulations (bottom) locally 

picture different spatial patterns. In particular in the central part of the displayed area, annual 

precipitation amounts of more than 2750 mm frequently occur, exceeding the maximum 

precipitation found in the observation based distributions. A comparison of the average 

annual precipitation amounts reveals that for the considered area, the REMO simulations 

deviate from the mean conditions reflected by the HAA and the PROMET distributions by 234 

mm and 370 mm respectively (see Tab. 5.5). 

 
Tab. 5.5: Statistical characteristics for the average annual precipitation in the Austrian subcatchments of the Upper Danube 
watershed. The data sources PROMET, HAA and REMO represent the PROMET precipitation distributions, the Hydrological 
Atlas of Austria (KLING ET AL. 2007) and the original REMO control run simulations respectively. 
 

Data Source Pmean [mm] Pmin [mm] Pmax [mm] Pstd_dev [mm] 

PROMET 1323 673 2476 301 

HAA 1459 651 2683 350 

REMO 1693 541 3795 650 
 

 

Yet, the mean values of the PROMET and REMO precipitation distributions show very similar 

deviations from the mean of all data sources (1492 mm). The reason for this behavior is that 

locally higher precipitation amounts in the REMO simulations are partially compensated by 

areas characterized by lower precipitation amounts than those found in the PROMET and 

HAA data. Still, the general tendency to higher precipitation values remains. At least in some 

cases, the locally higher precipitation amounts, as well as the spatial patterns in the REMO 

simulations illustrated in Fig. 5.27 might rather be the result of a spatial displacement than of 

a general overestimation. Displaces can be caused due to the coarse spatial resolution and 

the associated representation of topography, but also due to the fact that REMO belongs to 

the view climate models that do not use a ‘tuned’ topography. A further explanation for 

displacements in precipitation amounts consists in the missing advection of falling rain in 

REMO. To reduce the effects of displacements, the REMO developers suggest to use a 3 x 3 

pixel average rather than the originally simulated pixel precipitation. While this advice might 

be followed in the framework of future one-way coupled model runs, for the current work 

unfiltered REMO simulations are used to provide the meteorological conditions for the 

underlying area of 10 x 10 km. This is done deliberately to avoid a manipulation of the 

original data and to maintain similar conditions to those needed for two-way coupled model 

runs, where the conservation of mass and energy does not permit a 3 x 3 pixel filter anyhow. 

To get an impression of the interannual variability found in the observation based 
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precipitation distributions used within the uncoupled reference run and the remapped REMO 

data driving PROMET in the coupled reference run, the area mean annual precipitation in the 

UD is graphically displayed in Fig. 5.28.  

 

  
Fig. 5.28: Remapped REMO precipitation as used in the coupled reference run REMO-SCALMET-PROMET (CRR) for the 
hydrological years 1971-2000 (left)and observation based area mean annual precipitation in the Upper Danube watershed as 
used within the uncoupled reference run (URR) for the hydrological years 1971-2000 (right). As the REMO model is forced by a 
simulated ECHAM5/MPI-OM meteorology at the model boundaries, merely the inter-annual variability and general dimensions 
should be compared between the model runs and not the exact values for a certain year. 
 

Although a direct comparison of yearly values is conceptually prohibitive, the inter-annual 

variability and the general dimensions can be compared in the two model runs. The statistical 

characteristics for area mean annual precipitation (1971-2000) are summarized for both 

model runs in Tab. 5.6. While extreme and mean values, confirm the general tendency of the 

remapped REMO data to overestimate precipitation, the largest percental deviations from the 

long-term mean value show similar values to those of the distributed observations.  

 
Tab. 5.6: Statistical characteristics for annual precipitation for the hydrological years 1971-2000 for the uncoupled reference 
run (URR) and the coupled reference run (CRR). 
 

Statistic Criteria Precipitation URR Precipitation CRR 

Mean (1971-2000) [mm] 1044 1157 

Max (1971-2000) [mm] 1250 1390 

Min (1971-2000) [mm] 789 902 

Std_Dev [mm] 112 123 

Max. Dev. from Mean (↑) [%] 20 20 

Max. Dev. from Mean (↓) [%] 24 22 
 

 

Fig. 5.29 shows the average monthly precipitation in the area of the UD (1971-2000) as 

displayed in the remapped simulations and the distributed observations. The differences in 
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average monthly precipitation displayed in Fig. 5.29 (right) are calculated by subtracting the 

observation based data from the remapped REMO precipitation on a monthly time basis. 

 

Fig. 5.29: Observation based (PROMET) and remapped average monthly precipitation (REMO CNTRL) in the Upper Danube 
watershed for the period 1971-2000 (left), difference in monthly precipitation between the remapped REMO data and spatially 
distributed observations (right). 
 

According to the bar charts, the largest differences in precipitation amounts occur in winter 

and spring. Similar results have been achieved by KOTLARSKI ET AL. (2005), who compared 

precipitation simulations of different RCMs including the regional climate model REMO to 

various observational datasets. According to these authors, an overestimation of precipitation 

up to 44 % (24 mm/month) is found within the RCM simulations for spring and winter months. 

As shown in Fig. 5.29 (right), the overestimation of precipitation compared to the PROMET 

distributions for the months of May and December even exceeds 24 mm/month. The latter 

can be explained by the fact that KOTLARSKI ET AL. (2005) only considered the German part of 

the RCM domain excluding large parts of the Alps, which have been shown to be subject to a 

comparatively high degree of overestimation (see Fig. 5.27). Compared to winter 

precipitation remapped summer precipitation shows smaller differences to the PROMET 

distributions. For March, July and October, the remapped simulations even fall below the 

area mean PROMET precipitation for the UD. In analogy to the overestimation of summer 

temperatures, KOTLARSKI ET AL. (2005) attribute the low precipitation amounts in summer to 

an intense evaporation in early summer, resulting in a reduced soil water availability in late 

summer. 

 

5.3.2.2 HYDROLOGY 

The following paragraphs analyze the hydrological model results generated within the one-

way coupled model run. In a first step the annual water balance is analyzed. The catchment 

water balance is given by  
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ܲ ൌ ܶܧ ൅ ܳ ൅ ∆ܵ Eq. 5.2 

where ܲ is the annual precipitation, ܳ is the annual runoff, ܶܧ is the annual 

evapotranspiration and ∆ܵ is the change in water storage (BAUMGARTNER AND LIEBSCHER 

1995).  

 

5.3.2.2.1 The Water Balance 

The annual water balance of the coupled reference run is calculated for each hydrological 

year in the period 1971-2000 by subtracting the daily evapotranspiration from precipitation. 

Following MAUSER AND BACH (2008), it is assumed that changes in ground water storage can 

be neglected from year to year. The resulting water volume under this assumption can be 

compared to the discharge recorded at the gauge of the watershed in Achleiten. Fig. 5.30 

shows the simulated average annual water balance in the UD for the coupled reference run 

over the years 1971-2000.  

 

 
Fig. 5.30: The average modeled water balance in the Upper Danube watershed for the hydrological years 1971-2000. The 
hydrological model PROMET in the one-way coupled model run was forced by remapped REMO control run simulations. 
 

Forcing PROMET with remapped REMO control run simulations over the standard climate 

period 1971-2000, the combination of spatially distributed precipitation (1157 mm) and 

simulated evapotranspiration (404 mm) leads to an area mean runoff of 753 mm. Compared 

to the recorded discharge of 584 mm at the gauge in Achleiten, the simulated runoff 

overestimates the real conditions by about 29 % (169 mm). 

 

5.3.2.2.2 Monthly Discharge 

To get an impression to what extent the seasonal dynamics in river discharge at the gauge in 

Achleiten can be reproduced by the coupled model system, the simulated mean monthly 
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discharge is compared to observed discharge volumes (see Fig. 5.31, left). The diagram on 

the left shows that mean discharge conditions at the gauge of the watershed in Achleiten are 

noticeably overestimated in the coupled reference run (CRR). The temporal characteristics of 

this discharge overestimation are closely linked to the magnitude of overestimation found in 

the remapped REMO precipitation (see Fig. 5.29, right).  

 

Fig. 5.31: Mean monthly discharge (1971-2000) simulated in the coupled reference run (CRR) together with discharge 
observations (left) and mean monthly discharge simulated in the uncoupled reference run (URR) together with discharge 
observations at the gauge in Achleiten (right). 
 

However, the comparatively strong overestimation of precipitation in the winter months of 

January and February does not fully result in a congruent overestimation of discharge 

volumes. The reason for this behavior can be found in the low temperatures in winter, which 

in the remapped REMO data are even lower than in reality due to a general underestimation 

of temperatures in January (see Fig. 5.25). Combined with a certain underestimation of 

temperatures in higher elevations (see Fig. 5.24, right), the latter result in an increase in 

water storage in a solid state reducing runoff and in consequence the degree of discharge 

overestimation in January and February. With rising temperatures in spring and summer the 

water temporarily stored in the snow pack is released due to snowmelt and contributes to the 

comparatively high discharge overestimation in spring and summer. As shown in Fig. 5.31 

(right) the uncoupled model run, which is based on distributed meteorological observations, 

much better reproduces the annual course of discharge volumes at the catchment outlet.  

In a next step, the simulated peak-flow and low-flow discharge volumes are compared to 

observed discharge volumes at the gauge in Achleiten for both reference runs. To calculate 

the analyzed quantities, the years 1971-2000 have been analyzed separately for the 

highest/lowest daily discharge value found in the different months of the year. The peak-

flow/low-flow discharge volumes shown in Fig. 5.32 and Fig. 5.33 represent the average 

value of the monthly peak-flow/low-flow discharge volumes found in the years 1971-2000. 
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Fig. 5.32: Monthly peak-flow discharge (1971-2000) simulated in the coupled reference run (CRR) together with discharge 
observations (left) and monthly peak-flow discharge simulated in the uncoupled reference run (URR) together with discharge 
observations at the gauge in Achleiten (right). 
 

Analogously to mean monthly discharge, the coupled reference run for the considered period 

overestimates mean peak-flow discharge volumes with a highest degree of overestimation in 

November (60 %) (see Fig. 5.32, left). In contrast to all other months of the year, the 

simulated peak-flow discharge for March is characterized by a slight underestimation 

compared to the observed discharge volumes.  

The observation based meteorology of the uncoupled reference run allows a much better 

reproduction of the observed peak-flow conditions (see Fig. 5.32, right). The highest 

overestimation here can be observed in May with a percentage of 24 %. The months from 

January to March are characterized by a certain underestimation of observed peak-flow 

discharge in the uncoupled reference run.  

Considering the mean monthly low-flow discharge volumes simulated in the coupled 

reference run, the low-flow discharge volumes recorded at the gauge at Achleiten are almost 

continuously overestimated by around 20 % (see Fig. 5.33, left).  

 

Fig. 5.33: Monthly low-flow discharge (1971-2000) simulated in the coupled reference run (CRR) together with discharge 
observations (left) and monthly low-flow discharge simulated in the uncoupled reference run (URR) together with discharge 
observations at the gauge in Achleiten (right). 
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The month of June is characterized by the highest overestimation of mean monthly low-flow 

discharge (28.5 %), whereas April shows the lowest degree of overestimation of measured 

discharge volumes with about 10 %. 

As displayed in Fig. 5.33 (right), the uncoupled reference run, which is based on distributed 

meteorological observations, reproduces the low-flow conditions at the outlet of the UD with 

good accuracy. The highest overestimation can be found in November. With +15 % it is small 

compared to the general tendency to overestimate discharge volumes in the coupled 

reference run.  

 

5.3.2.2.3 Return Periods of Extreme Events 

The last paragraphs have shown the performance of the coupled model system concerning 

the reproduction of discharge characteristics on a monthly time basis. In the following, the 

capability to reproduce flood and low-flow return periods is investigated. The determination of 

return periods for extreme events is connected to a probabilistic extrapolation beyond the 

available data base. A distribution function that is often recommended to analyze the 

frequency of extreme discharge events is the lognormal distribution (PLATE 1993). It is 

particularly suitable for the analysis of flood return periods as the function asymptotically 

converges to 0 for extremely high discharge values. The latter corresponds to the conceptual 

understanding of flood discharge, which is expected to occur with decreasing frequency with 

increasingly extreme values.  

By fitting the parameters ߤௗ೐ and ߪௗ೐ to the observed/simulated extreme flow discharge 

volumes ݀௘, the probability density function ݂ሺ݀௘ሻ in form of  

݂ሺ݀௘ሻ ൌ
1

ߨௗ೐√2ߪ
1

݀௘
݁

ሺ୪୬ ௗ೐ିఓ೏೐ሻమ

ଶఙ೏೐
మ  Eq. 5.3 

can be used to describe the frequency related to the occurrence of a certain discharge event 

(EVANS ET AL. 1993). The parameter ߤௗ೐ and ߪௗ೐ represent the mean value and the standard 

deviation of the logarithmized observed/simulated extreme discharge volumes, which 

according to the definition of the lognormal distribution are normally distributed if ݀௘ follows a 

lognormal distribution. To calculate the probability ௘ܲ that a discharge value ܦ௘ occurs which 

is less or equal ݀௘, the probability distribution function ܨሺ݀௘ሻ is calculated as the integral of 

the probability density function in form of (EVANS ET AL. 1993): 

௘ܲሺܦ௘ ൑ ݀௘ሻ ൌ ሺ݀௘ሻܨ ൌ
1

ߨௗ೐√2ߪ
න

1
ݐ

ௗ೐

଴
݁

ି
ሺ୪୬ ௧ିఓ೏೐ሻమ

ଶఙ೏೐
మ  Eq. 5.4 ݐ݀
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While the probability of ܦ௘ ൑ ݀௘ is needed for the investigation of low-flow return periods, the 

investigation of flood return periods requires the return probability of a discharge that equals 

or is greater than ݀௘. This probability is given by:  

  ௘ܲሺܦ௘ ൒ ݀௘ሻ ൌ 1 െ ௘ܲሺܦ௘ ൑ ݀௘ሻ Eq. 5.5 

The probability connected to the occurrence of an extreme event is related to the return 

period ܴܲ as: 

௘ܲ ൌ 1
ܴܲൗ  Eq. 5.6 

Eq. 5.1 to Eq. 5.6 permit to establish a relation between a certain discharge volume and its 

return period. Applying the lognormal distribution to extrapolate extreme flow discharge on 

the basis of 25 yearly low-flow and peak-flow discharge values, the return periods displayed 

in Fig. 5.34 (left) can be calculated. The peak-flow discharge represents the highest daily 

mean discharge, whereas the low-flow discharge represents the lowest 7-day average 

discharge in the course of the hydrological year. As displayed the flood return periods 

calculated on the basis of the coupled reference run simulations severely differ from reality. 

The observed peak-flow discharge with a return period of 25 years occurs every 2.5 years 

according to the model results of the coupled reference run. The discharge volume 

corresponding to a return period of 25 years in the coupled reference run (11380 m³/s) is 

almost twice as high as that for the same return period calculated on the basis of discharge 

recordings (5890 m³/s). As can be seen the gap between the observed and modeled 

discharge widens towards longer return periods. 

 

 
Fig. 5.34: Low-flow and flood return periods based on PROMET simulations for the coupled reference run (CRR) and 
observations (OBS) (left). Sorted peak-flow simulations (CRR and URR) together with sorted peak-flow observations (OBS) 
for the gauge at Achleiten (right). 
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Although PROMET tends to slightly overestimate peak-flow discharge by approximately 16 % 

(MAUSER AND BACH 2008), the high degree of overestimation in the coupled model run as it is 

displayed in Fig. 5.34 (left) cannot be attributed to this rather small percentage of 

overestimation. The explanation can rather be found in the mean monthly peak-flow 

discharge displayed in Fig. 5.32 (left). The illustration unfolds that the highest absolute 

overestimation of peak-flow discharge in June (1320 m³/s) temporally coincides with naturally 

high peak-flow discharge volumes, resulting in a severe overestimation of yearly peak-flow 

discharge in the coupled reference run.  

Fig. 5.34 (right) shows the logarithm of the yearly peak-flow discharge used within the 

analysis together with the logarithm of the yearly peak-flow discharge resulting from the 

uncoupled reference run. As shown the degree of overestimation rises with increasingly 

extreme peak flow discharge. While the coefficients of determination are high in case of both, 

the observation based and the simulation based peak-flow discharge, the simulated peak-

flow discharge volumes show comparatively high deviations from the regression line in 

higher ranks. This particularly applies to the results of the coupled reference run indicating 

that the lognormal distribution does not satisfactorily reflect the actual data distribution. As 

the lognormal distribution well describes the distribution of observed peak-flow discharge, it 

could be argued that the peak-flow discharge simulated by the coupled model system on the 

basis of remapped REMO simulations does not correctly reflect the natural discharge 

conditions in the UD. Considering the reproduction of low-flow return periods biases appear 

to be comparatively small. 

  

5.3.2.2.4 Evapotranspiration 

To complete the analysis of the water balance, the simulated evapotranspiration is analyzed 

in the following. Again, the statistical characteristics of the coupled reference run are 

compared to those of the uncoupled reference run for the time period 1971-2000. The 

average annual evapotranspiration with a value of 404 mm is very close to that simulated by 

PROMET on the basis of spatially distributed meteorological observations (398 mm). 

Considering the combination of the comparatively high precipitation amounts found in the 

REMO data and the warm bias in REMO temperatures, much higher evapotranspiration 

rates could be expected for the coupled model run. The fact that only a small part of the 

additionally available precipitation is returned to the atmosphere via evapotranspirative 

processes, can be explained by the limiting effect of the available energy budget. With a 

fraction of 81 % the largest part of the overall difference in precipitation amounts is found in 

the winter half year, where the available energy strongly limits evapotranspiration. However 
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the comparatively high temperatures in spring lead to notably higher evapotranspiration rates 

in spring for the coupled reference run. 

 

Fig. 5.35: Average monthly evapotranspiration (1971-2000) as reflected by the results of the coupled reference run 
(CRR) and the uncoupled reference run (URR) (left) and difference in monthly evapotranspiration (CRR-URR) (right).  
 
 

In particular in April, the month characterized by the highest overestimation of temperatures 

in the remapped REMO data (see Fig. 5.25), evapotranspiration is much higher in the 

coupled reference run than in the uncoupled reference run.  

To get an impression of the inter-annual variability, the mean annual evapotranspiration for 

the years 1971-2000 together with the area standard deviation from the area mean value are 

shown in Fig. 5.36. As can be seen the mean annual evapotranspiration as well as the 

spatial statistics, represented by the areal standard deviation, are very similar in both model 

runs.  

 

Fig. 5.36: Annual mean evapotranspiration in the Upper Danube watershed and areal standard deviation for the coupled 
reference run (left) and the uncoupled reference run (right). As the REMO model is forced by a simulated ECHAM5/MPI-OM 
meteorology at the model boundaries, merely the inter-annual variability and general dimensions should be compared between 
the model runs. 
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5.3.2.3 DISCUSSION 

The last paragraphs have discussed both, the meteorological forcings as well as the 

hydrological results of the coupled reference run (REMO-SCALMET-PROMET). 

Summarizing the analysis of remapped REMO temperature and precipitation simulations for 

the years 1971-2000, the comparison of remapped simulations to spatially distributed 

observations show a noticeable overestimation of mean temperatures and annual 

precipitation for the area of the UD. However it has to be noted, that all reference datasets 

used within the comparison are based on model results and therefore include considerable 

uncertainties. This is partly reflected by the rather large differences between the two 

observation based precipitation datasets of the HAA and the PROMET distributions (see 

chapter 5.3.2.1.2). Besides the inaccuracies related to the spatial distribution of precipitation, 

the input precipitation gauges are subject to large measurement errors as a consequence of 

evaporative losses and wind drift. As RCMs are not affected by such errors, this might partly 

explain the higher precipitation amounts in regional climate simulations. Despite all 

explanations, there is evidence that the real rainfall conditions within the UD are 

overestimated to a certain degree. As most of the overrepresentation of rainfall occurs in the 

winter half year, where evapotranspiration rates are naturally low, runoff volumes simulated in 

the coupled model run are higher than those recorded at the catchment outlet in Achleiten. 

This applies to annual and monthly mean conditions as well as to low- and peak-flow 

discharge volumes. The overestimation in peak-flow discharge volumes further leads to 

considerable biases in the return periods of peak-flow discharge.  

Within the scenario run, the coupled model system will be utilized in the same configuration 

as in the coupled reference run. As all uncertainties related to the different components of the 

coupled model system can be expected to be in a similar dimension within both runs, it is 

possible to analyze the climate change signal in the model runs. This socalled ‘delta change 

approach’ is particularly recommended when using meteorological simulations to force 

physically based hydrological models, as the latter are very sensitive to biases in the 

meteorological input (ANDRÉASSON ET AL. 2004, GERLINGER 2004). 
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6 APPLICATION TO CLIMATE PROJECTIONS 

6.1 THE IPCC SCENARIOS 

Climate models are utilized to model and to quantify the climatic response to present and 

future human activities. To gain confidence in the climate model simulations, the models have 

to prove their ability to reproduce past and current climate conditions without changes in 

external climate forcing. Given a satisfactory model performance, these simulations serve as 

a baseline for a comparison to the results obtained for possible future atmospheric 

conditions.  

For the generation of a possible future climate, the climate models are forced by different 

greenhouse gas and aerosol scenarios. The scenarios provide time-dependent profiles of 

atmospheric aerosol and greenhouse gas concentrations for the future and are based on 

different assumptions concerning future emissions of climate relevant gases into the 

atmosphere. Of course the estimation of future developments comes with a large number of 

uncertainties including both, the range of emissions and future gas concentrations in the 

atmosphere as well as the climate reaction upon these altered boundary conditions. To 

coordinate the worldwide efforts in the field of climate change research, but also to allow an 

intercomparison of climate model simulations, international standards for possible future 

green house gas concentrations are required. In the year 2000 the Intergovernmental Panel 

on Climate Change (IPCC), representing the world’s leading scientists in the field of climate 

change, presented a set of emission scenarios in the Special Report on Emission Scenarios 

(SRES) (IPCC 2000).  

The scenarios are based on different storylines of socioeconomic and demographic 

developments covering a wide range of plausible and consistent possible future 

developments. Depending on several assumptions related to economic growth, energy 

intensity and efficiency as well as the growth of the world population, four scenario families 

have been worked out providing the radiative forcings for a large number of climate model 

runs (A1, A2, B1, B2).  

The A-families are characterized by a domination of economic drivers, whereas the B-

families assume environmental concerns to be the driving force. A further differentiation is 

given by the number associated with the scenario families. While the A1 and B1 scenario 

families are rather globally orientated, the A2 and B2 scenario families pursue a rather 

regional policy.  
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The following gives a brief survey of the scenario families and their main characteristics as 

presented by the IPCC (2000): 

 

A1: The A1 storyline and the associated scenario are based on an expanding economic 

prosperity together with a rapid introduction of new and efficient technologies. The 

global population reaches its maximum in the mid-century followed by a later decline in 

population up to the year 2100. Following its rather global orientation, an increase of 

cultural and social interactions as well as a substantial reduction in regional differences 

in per capita income is assumed. The scenario family distinguishes between three 

directions of technical change in the energy system represented by three different 

scenario groups. While for the A1T scenario group technological emphasis is put on 

non-fossil energy sources, the A1FI scenario group assumes an intensive use of fossil 

energy sources. Not relying on one particular energy source, the A1B scenario group 

assumes a balanced employment and further development of all available energy 

sources.  

A2: The A2 storyline and scenario pictures a very heterogeneous world characterized by a 

society willing to preserve local identities. Population is continuously growing due to a 

retarding convergence of fertility patterns across the regions. Economic development 

takes place on a regional level with per capita economic growth and changes in 

technology taking much more time compared to other scenarios. 

B1: The B1 scenario and storyline displays a convergent world with similar population 

growth as in the A1 scenario storyline. Economic structures develop toward a service 

and information economy going together with an introduction of clean and resource 

efficient technologies. Solutions to social, economic and environmental sustainability 

are pursued on a global level, thus not creating additional climate initiatives. 

B2: The B2 scenario and storyline pictures a world in which the goals of economic, social 

and environmental sustainability are pursued on a local and regional level. The world 

population is continuously growing, however not as rapidly as in the A2 storyline. 

Economic development is less distinct and technical change takes more time and is 

more diverse compared to the storylines of B1 and A1B.  

 

The course of CO2-emissions from 1990-2100 together with the related increase of air 

temperatures are displayed for all scenarios described above in Fig. 6.1. For further 

information concerning the scenario families and storylines refer to IPCC (2000). 

The scenarios describe possible future evolutions of the driving forces for future greenhouse 

gas emissions. All scenarios assume that no additional climate initiatives will be brought up 



Application to Climate Projections 

 

129 

 

and that none of the currently pursued targets (e.g. those of the Kyoto Protocol) will be 

reached. The IPPC puts strong emphasis on the fact, that all scenarios are equally probable. 

 

Fig. 6.1: The CO2-emissions and changes in temperature for the different IPCC scenarios (based on IPCC 2000). 
 

 

6.2 THE A1B SCENARIO – METEOROLOGICAL CONDITIONS IN THE UPPER 

DANUBE WATERSHED 

The last chapter has given an introduction to the different IPCC scenarios and their main 

characteristics. For this thesis the A1B scenario was chosen to provide the radiative forcings 

for the regional climate model REMO. The scenario belongs to the family of the A1 scenarios 

and represents the scenario group, for which a balanced utilization of energy sources (fossil 

and non-fossil) is assumed (see chapter 6.1). The following paragraphs will show the 

regional impact of globally altered radiative forcings as predetermined by the A1B emission 

scenario. Only temperature and precipitation will be considered, as these variables are 

known to be very sensitive to changes in atmospheric greenhouse gas concentrations. 

Moreover, temperature and precipitation represent the most important atmospheric quantities 

in hydrological applications (KOTLARSKI ET AL. 2005). All comparisons that are shown in the 

following represent remapped REMO simulations. The data used within the one-way coupled 

reference run originates from the REMO control run, whereas the data used within the 

scenario run originates from the REMO A1B run (see Tab. 5.3). The time span to be 

considered in the scenario run has been defined within the GLOWA-Danube Project to cover 

the years 2011 to 2060 to deliberately exclude present day climate conditions.  

Within the analysis both, changes relative to the reference run as well as trends within the 

scenario period will be identified. Trends within the scenario period are tested for significance 
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using a nonparametric Mann-Kendall test (MANN 1945). Depending on the significance level 

 .(% 10 < ߙ) or not significant (% 10 ≥ ߙ) the trends are regarded as significant ߙ

 

6.2.1 TEMPERATURE  

Temperature is the one meteorological parameter that is most commonly analyzed and 

referred to in the context of climate change. The increasing amount of greenhouse gases in 

the atmosphere – the most important ones are water vapor (H2O), carbon dioxide (CO2), 

ozone (O3), nitrous oxide (N2O) and methane (CH4) – alters the radiation budget of the earth-

atmosphere-system. The result is an increase in thermal radiation emitted by the 

atmosphere, an effect that is also known as the greenhouse-effect. Surface temperature and 

as a direct consequence the temperature of the surrounding air masses increase. Besides 

the general rise in temperatures as a result of altered greenhouse gas concentrations, 

important changes in the large scale circulation are simulated by RCMs that also affect 

regional temperature conditions. The increased frequency of westerlies in winter enhances 

the warming in central Europe, whereas more frequent easterly flows lead to an increased 

frequency of very warm months in summer (VAN ULDEN ET AL. 2007). The changes in 

circulation as well as a diversity of local factors lead to locally different change signals, 

although the radiative forcings are globally predetermined in the framework of the A1B 

scenario (see Fig. 6.1). Fig. 6.2 shows the change in mean annual temperatures as reflected 

by the remapped REMO simulations used within the coupled reference run (1961-2000) and 

the scenario run (2011-2060) for the domain of the UD. The area mean temperature rise 

between the coupled reference run and the scenario run for the UD takes a value of 1.17 °C 

(std_dev௔௥௘௔ = 0.11 °C). Lowest temperature increases of about 1 °C are primarily found for 

the area of the Danube Valley near Passau, while values of around 1.9 °C occur in the higher 

elevated parts of the Alps. Besides the general tendency to higher values in the Alpine areas 

that is predetermined by the REMO simulations, the change signal in the remapped annual 

mean temperature shows a certain elevation dependency. An explanation is given by the fact 

that the temperature-elevation dependence reflected by the REMO scenario simulations is 

different from that reflected by the meteorology of the reference run. With a mean annual 

lapse rate of 5.5 °C/km the temperature decrease with elevation in the coupled reference run 

for all REMO pixels inside the UD is slightly larger than that of the scenario run (5.3 °C/km). 

As a consequence temperatures for subgrid pixels in higher elevations than the mean 10 x 

10 km elevation are less corrected towards lower values within regression based remapping 

for the scenario run than for the reference run. The temperature increase for these pixels 

therefore is higher than that of the associated 10 x 10 km REMO pixel. This emphasizes the 
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importance of applying remapping methods that are able to adapt to changing meteorological 

conditions. 

 

 
Fig. 6.2: Change in annual mean temperature in the Upper Danube watershed (A1B (2011-2060) - Reference 
(1961-2000)). For the sake of visualization the map is overlaid by a semitransparent hillshade effect. 
 

The temperature rise shown in Fig. 6.2 is the result of a highly significant (1 .0 = ߙ %) 

continuous increase in near surface air temperatures in the domain of the UD (see Fig. 6.3). 

Although only the years 2011 to 2060 have been regarded in the coupled scenario run 

(REMO-SCALMET-PROMET), the years 2061 to 2100 have been included in Fig. 6.3 to 

show the development of temperature conditions for the subsequent years. 

 

 
Fig. 6.3: Annual area mean temperature in the Upper Danube watershed as reflected in remapped REMO control run and A1B 
scenario run data. 
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The average increase rate found in area mean annual temperatures simulated for the UD 

takes a value of about 5.2 °C/100 years. Comparing this increase rate to the global trend of 

approximately 2.9 °C/100 years as it is characteristic for the A1B scenario family (IPCC 

2007) unfolds, that the regional trend in the UD is 1.8 times larger than the global mean. 

Besides the inter-annual variability displayed in Fig. 6.3, a certain seasonal variability can be 

found in the temperature trends (see Fig. 6.4).  

 

  

  
Fig. 6.4: Seasonal change in area mean temperature in the Upper Danube watershed. The seasonal area mean temperature of 
the reference period (1961-2000) is subtracted from the seasonal area mean temperature of a considered year in the scenario 
period). 
 

Highest increases of mean air temperatures are simulated for the winter months (≈ 0.06 

°C/year). While for the years 2011 to 2060 an increase in mean monthly temperatures of 

approximately 1.7 °C can be observed for February, the subsequent months of March and 

April are characterized by a significantly lower increase in monthly temperatures of 0.6 and 

0.3 °C respectively (see Fig. 6.5). As shown in Fig. 5.25 (chapter 5.3.2.1.1) within the direct 

comparison between remapped REMO control run data and spatially distributed 

meteorological observations, these two months are characterized by the highest degree of 

overestimation of monthly mean temperatures in the control run simulations (1971-2000). 
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Fig. 6.5: Monthly mean temperatures of the coupled reference run and the scenario run (left) and absolute change in monthly 
mean temperatures for the Upper Danube watershed (right) (A1B (2011-2060) - Reference (1961-2000)).  
 

While summer and autumn are characterized by similar trends of approximately 0.05 

°C/year, the spring months of March, April and May are characterized by slightly lower 

temperature increase rates of approximately 0.04 °C/year.  

The increase in air temperatures has several hydrological consequences. Higher 

temperatures can be expected to result in higher evapotranspiration rates. The temperature 

increase in winter is of particular hydrological relevance as precipitation to an increasing 

degree falls in the liquid phase in winter. Further the water quantities stored in the solid state 

of snow generally decrease with increasing temperatures. As a direct consequence 

discharge regimes might change in the future.  

 

6.2.2 PRECIPITATION 

The amount of water in the atmosphere is largely determined by the air temperature. Higher 

temperatures lead to an increased evapotranspiration of water from the land surface and 

water bodies into the surrounding air. Warmer air shows an increased ability to hold and 

transport water. As a consequence Atlantic air masses will be able to transport increasing 

amounts of water into the Central European areas. The changes in the circulation for Central 

Europe further lead to an increase in precipitation in winter due to the increased frequency of 

westerly flows. Many RCMs further simulate a decrease in summer precipitation as a result 

of an increased frequency of easterly flows in combination with a more pronounced summer 

drying (VAN ULDEN ET AL. 2007). The change signal in annual precipitation in the area of the 

UD is illustrated in Fig. 6.6. The changes are calculated relative to the remapped 

meteorology of the coupled reference run. Thereby, the average annual precipitation of the 

reference run (1961-2000) is subtracted from the average annual precipitation of the 

scenario run (2011-2060). The resulting difference in precipitation is then divided by the 
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reference run conditions and multiplied by 100 to get the percental change in precipitation 

amounts. As can be seen there is an increase in annual precipitation in the UD for the period 

2011 to 2060 relative to the reference run. 

 

 
Fig. 6.6: Relative change in average annual precipitation in the Upper Danube watershed (A1B (2011-2060) - Reference 
(1961-2000)). For the sake of visualization the map is overlaid by a semitransparent hillshade effect. 
 

While the increase relative to 1961-2000 considering the years 2011-2060 with 

approximately 5 % is comparatively high, the inclusion of the years 2061-2100 reduces the 

increase relative to 1961-2000 to less than 1 %. This can be explained by the fact that there 

is a decrease in annual precipitation for the years from approximately 2060 to 2100 (see Fig. 

6.7).  

 

 
Fig. 6.7: Change in annual area mean precipitation for the area of the Upper Danube watershed. The change signal represents 
the deviation from the mean conditions in the reference period (1961-2000). 
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Considering the trend within the scenario period, a significant decrease in annual 

precipitation can only be observed including the years 2061-2100 into the analysis (see Fig. 

6.7). This emphasizes that simulated changes in meteorological variables largely depend on 

the time period considered.  

Changes in precipitation amounts are expected to vary seasonally. For the area of Germany 

an increase in winter rainfall combined with decreasing precipitation amounts in summer is 

simulated by the majority of climate models (MAHRENHOLZ 2007). Again changes are 

displayed including the years 2061-2100. As linear trends in case of precipitation have 

shown to be very sensitive to the time period considered (see Fig. 6.7), a five year running 

average is introduced as an additional criterion to give a smoothened impression of the long 

term trend in precipitation. The changes in remapped REMO precipitation for the area of the 

UD are shown over the period 2011-2100 in Fig. 6.8.  

 

  

  
Fig. 6.8: Seasonal change in area mean precipitation for the area of the Upper Danube watershed. The change signal 
represents the deviation from the mean conditions in the reference period (1961-2000). 
 

As displayed, the inter-annual variability of simulated precipitation is very high for all 

seasons. The increase in winter precipitation is rather moderate for the area of the UD 

largely depending on the time period considered. While comparatively strong increases in 
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precipitation amounts can be found for the years 2070-2090, the years 2011-2060 only show 

very little increases in winter precipitation. In spring, remapped precipitation of the scenario 

period is almost continuously above the mean reference run precipitation. This is due to the 

increased rainfall in March, which shows the highest increase compared to the reference 

period (see Fig. 6.9). While the decrease in summer rainfall is rather little for the period 2011-

2060, there is a distinct falloff in the subsequent years 2061-2100 (see Fig. 6.8). 

 

Fig. 6.9: Average monthly precipitation for the reference run and scenario run meteorology (left) and change in average 
monthly precipitation in the Upper Danube watershed (right) (A1B (2011-2060) - Reference (1961-2000)). 
 

Simulations for autumn within the period 2011-2060 show increased rainfall amounts, 

followed by a decline for the subsequent years (2060-2090). The change in precipitation 

amounts is not only subject to seasonal variations, it further shows distinct spatial patterns. 

The spatial distribution of the change signal in remapped rainfall simulations is shown in Fig. 

6.10 for all four seasons. While spring and autumn precipitation show a distinct increase over 

the whole domain, changes in seasonal precipitation for winter and summer produce a rather 

heterogeneous picture. However, in summer the few areas with increased precipitation 

amounts cannot compensate the dominant decrease of rainfall amounts in the major part of 

the domain. The increase in winter for the period 2011-2060 is rather moderate as the 

highest increases in winter precipitation are found in the subsequent years 2070 to 2100. 

 

As a result of the seasonal changes in precipitation that have been analyzed above, the 

average annual precipitation in the domain of the UD increases from 1160 mm in the 

reference run (1961-2000) to 1217 mm in the scenario period (2011-2060). This absolute 

increase of 57 mm corresponds to a relative gain of approximately 5 %. 
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Fig. 6.10: Relative change in average seasonal precipitation for the Upper Danube watershed (A1B (2011-2060) - Reference 
(1961-2000)). For the sake of visualization all maps are overlaid by a semitransparent hillshade effect.  
 

6.3 THE A1B SCENARIO – HYDROLOGICAL IMPACT IN THE UPPER DANUBE 

WATERSHED  

The previous chapters of this work have shown the climate change signal given by the 

differences in temperature and precipitation between the coupled reference run (1961-2000) 

and the coupled A1B scenario run (2011-2060). In the following, the hydrological impact of 

these altered meteorological boundary conditions will be analyzed. Thereby, the results of the 
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coupled scenario run are compared to those of the coupled reference run. In a first step the 

mean annual water balance for the scenario run is analyzed. In analogy to the reference run, 

this is done by subtracting the daily evapotranspiration from rainfall. The result is displayed in 

Fig. 6.11. 

 

 
Fig. 6.11: The average modeled water balance in the Upper Danube watershed for the hydrological years 2011-2060. 
The hydrological model PROMET in the one-way coupled model run was forced by a remapped REMO (A1B) meteorology. 
 

 

6.3.1 EVAPOTRANSPIRATION 

The amount of water returned to the atmosphere within the process of evapotranspiration 

largely depends on the water and energy budget. Further plant transpiration which 

contributes to the total evapotranspiration is highly sensitive to the duration of the vegetation 

period. Due to the increase in temperature and precipitation and the prolonged vegetation 

period, evapotranspiration with a mean value of 415 mm is 14 mm (3.5 %) higher in the 

scenario run than in the reference run (401 mm).  

 

 
Fig. 6.12: Modeled annual evapotranspiration for the coupled reference run and the scenario run 
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Parallel to the increase in temperature, evapotranspiration continuously increases up to the 

end of the time period considered (see Fig. 6.12). Analyzing the trend by means of a Mann-

Kendall test (MANN 1945) reveals that the trend in evapotranspiration is highly significant (ߙ = 

0.1 %). In analogy to temperature and precipitation, the changes in evapotranspiration show 

a high seasonal variability (see Fig. 6.13).  

 

 

 
Fig. 6.13: Change in area mean evapotranspiration for the area of the Upper Danube watershed (A1B (2011-2060) - 
Reference (1961-2000)). 
 

As displayed, the most notable and significant trends are found in winter and spring. 

Considering the absolute increase a considerable rise in monthly evapotranspiration can be 

observed for spring, autumn and winter (see Fig. 6.14). These seasons are characterized by 

little evapotranspiration in the reference run. The increase in monthly mean temperatures in 

the months of January, February and December together with the increase in precipitation 

amounts (in a liquid state) lead to a monthly evapotranspiration occasionally exceeding 10 

mm/month. Similar tendencies can be observed in the case of spring and autumn. Summer 

evapotranspiration does not show a significant increase. As shown in Fig. 6.14, for the month 

of July even a decline in evapotranspiration can be observed comparing the 

evapotranspirated water quantities of the scenario run to those of the reference run. It is 
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necessary to point out that evapotranspiration in July is generally very high. In the reference 

run the month of July is characterized by the highest monthly rates of approximately 74 mm. 

 

 
Fig. 6.14: Simulated mean monthly evapotranspiration for the coupled reference run (CRR) and the coupled scenario run 
(CSR) (left) and difference in evapotranspiration between both runs (right) (A1B (2011-2060) - Reference (1961-2000)). 
 
 

The cause for the fact that evapotranspiration in July is not subject to further increases in the 

scenario run is found in the limiting effect of water availability. Fig. 6.15 shows the change in 

the average plant available soil water content in the top soil layer, which represents the upper 

20 cm of the total soil column for the month of July.  

 

 
Fig. 6.15: Change in average plant available soil water (upper 20 cm of the soil) in July for the area of the Upper Danube 
watershed. The change signal represents the deviation from the mean conditions in the reference run (1961-2000). 
 

The diagram shows an increase in soil water variability for the month of July in the scenario 

period (2011-2060). Further a severe decrease in the average plant available soil water up to 

the end of the considered period can be observed that has been proven to be significant at a 

significance level of 10 = ߙ %. The decrease in soil water in July is the result of a strongly 

increased evapotranspiration in June in combination with a decrease in precipitation in this 

month. 
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6.3.2 SNOW HYDROLOGY 

Water fluxes in the UD are largely determined by the seasonal storage of water in the snow 

pack. Moreover, snow plays an important role for winter tourism in the research area of the 

UD. This huge importance together with the manifold reactions of snow dynamics to different 

climate change signals (e.g. changes in temperature, precipitation and radiation) call for a 

detailed examination of changes in snow cover and snow fall between the reference period 

(1961-2000) and the scenario period (2011-2060). 

As a consequence of the rise in temperatures, the duration of the seasonal snow cover as 

well as the time and duration of snowmelt can be expected to change in the scenario period.  

Further the amount of solid precipitation is expected to decrease parallel to the rise in 

temperatures. All these circumstances are of particular hydrological relevance, as they 

largely dominate the amount of hydrologically available precipitation and in consequence the 

river discharge regimes in the catchment. To investigate the snow hydrological impact of the 

scenario meteorology, the number of days characterized by snow cover (snow water 

equivalent > 1 mm) together with the annual amount of solid precipitation has been 

compared between the reference run (1961-2000) and the scenario run (2011-2060). Fig. 

6.16 shows the change in annual snowfall relative to the mean conditions of the reference 

period. 

 

 
Fig. 6.16: Change in annual snowfall for the area of the Upper Danube watershed. The change signal represents the deviation 
from the mean conditions in the reference run (1961-2000). 
 

It has to be pointed out that the visualized snowfall quantities are not based on REMO 

simulations directly. Snowfall amounts have been computed by the hydrological model 

PROMET on the basis of remapped precipitation simulations. Thereby, the wet bulb 

temperature is used to decide whether the precipitation is liquid or solid. To minimize all 

uncertainties that are connected to the combination of the individual components of the 

coupled model system, only relative changes are considered.  
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As Fig. 6.16 shows, there is a strong decrease in annual snowfall that could be proven to be 

highly significant (1 = ߙ %). The spatial distribution of simulated changes in annual snowfall 

is shown together with the change in the number of days characterized by the presence of a 

snow cover in Fig. 6.17. The illustrations unfold a decrease in both, snowfall and snow cover 

days for the whole domain. As displayed the change signal in yearly snowfall and that in the 

number of days with snow cover give a very similar picture. Temperatures in higher elevated 

parts of the Alps and the Bavarian Forest still allow a comparatively high number of snow 

cover days and large snowfall amounts in the scenario run. 

 

 
Fig. 6.17: Change in the number of days characterized by the presence of a snow cover (SWE > 1 mm) and change in annual 
snowfall in the Upper Danube watershed (A1B (2011-2060) - Reference (1961-2000)). 
 

In those higher elevated regions which are characterized by an increase in precipitation (see 

Fig. 6.6 and Fig. 6.10) snowfall is even increased and snow cover duration at least not 

shortened. A different picture unfolds considering the lower elevations of the Alpine valleys. 

Here, the number of snow cover days decreases by sometimes over 30 % combined with a 

decrease in annual snowfall of up to 25 %. Even higher decrease rates can be found in the 

Alpine foreland with a general tendency from lower decrease rates in the south to higher 

decrease rates in the north. Fig. 6.18 shows the decadal change in days with snow cover for 

the Alpine part of the catchment. The different stages represent the change calculated by 

comparing the mean conditions of the considered decade to the mean conditions of the 

reference run (1961-2000). Again, a day with snow cover is defined as a day with a SWE 

larger than 1 mm. As shown the decrease in snow cover days traces the continuous rise in 

temperatures up to the end of the scenario period in the year 2060. Again, highest decrease 
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rates are observed in the lower elevations of the Alpine foreland and the Alpine Valleys. 

Some of the higher elevated places in the Alps are characterized by a comparatively small 

decrease in snow cover days due to an increase in precipitation in combination with very low 

temperatures in these regions. 

 

 
Fig. 6.18: Decadal change in the number of days characterized by the presence of a snow cover (SWE > 1 mm) relative to the 
reference period (1961-2000). 
 

The simulated changes in snow cover severely modify the water quantities seasonally stored 

in form of snow. Changes in discharge conditions, in particular in summer can be expected to 

be the direct consequence. Winter tourism, which represents an important economic branch 

in the catchment, would be severely affected by the simulated development of snow cover in 

the Alps.  

 

6.3.3 AREA RUNOFF AND RIVER DISCHARGE 

The last paragraphs have analyzed various aspects of climatic and hydrological change in 

the UD. All of these altered climatological and hydrological boundaries directly or indirectly 

affect the runoff characteristics in the UD. Changes in the spatial and temporal distribution of 

precipitation dominate the water budget of the catchment. Temperature conditions, on the 

other hand, determine whether rainfall is solid or liquid and, as a consequence, whether the 

precipitating water is hydrologically available or stored in the snowpack. Further, a rise in 

temperature increases evaporative losses and therefore reduces the water quantities 

available for runoff formation at the land surface. A more frequent occurrence of extreme low-

flow conditions in the future could be the direct consequence. The latter would have manifold 

consequences on the natural and socio-economic system in the UD. Hydropower stations as 

well as thermal power stations and river navigation particularly depend on river discharge. 

The increase in precipitation on the other hand could lead to an increase in peak-flow 

discharge and to severe floods in the future.  
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The following analyzes the climate change impact on the runoff conditions in the UD. As has 

been shown in Fig. 6.11, the subtraction of annual evapotranspiration from rainfall leads to an 

area mean runoff of 802 mm for the years 2011 to 2060 within the model domain of the UD. 

Compared to the area mean runoff of the reference run (759 mm) this corresponds to an 

increase of 43 mm (≈ 5.7%). The incline can be explained by the enhanced water availability 

due to an increase in precipitation of 57 mm compared to the reference run (see chapter 

6.2.2). As reflected by the increase in evapotranspiration of 14 mm, the increased water 

availability is only partly compensated by an intensification of evapotranspirative processes. 

Apart from the average change in runoff compared to the reference run, the annual mean 

routed discharge at the gauge in Achleiten can be examined for the presence of a trend 

within the scenario period. Fig. 6.19 shows the annual mean river discharge simulated for the 

gauge of the watershed in Achleiten. 

 

 
Fig. 6.19: Modeled annual mean discharge at the gauge in Achleiten for the reference period (1961-2000) and the scenario 
period (2011-2060). 
 

As can be seen the regression line indicates a slight decrease in simulated discharge 

volumes from 2011 to 2060. However, testing the trend on the basis of a nonparametric 

Mann-Kendall test (MANN 1945) leads to the result that the decrease in simulated discharge 

volumes is not statistically significant (10 < ߙ %). In other words, the probability that a 

negative trend would be falsely assumed is greater than 10 %. Beyond the analysis of yearly 

discharge volumes changes in monthly discharge need to be analyzed.  

The simulated mean monthly discharge at the gauge in Achleiten is illustrated in Fig. 6.20 for 

the control run and the scenario run. As displayed, monthly mean discharge volumes are 

characterized by a considerable increase relative to the reference run, in particular in the 

hydrological winter half year from November to April (20 % in February). An explanation is 

given by the strong increase in runoff available water due to higher precipitation amounts in 

most of these months, parallel to an increase in temperatures. The latter rises the percentage 
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of liquid precipitation in winter and reduces the water quantities stored in form of snow. 

Spring melt in the Alpine part of the catchment is most probably slightly shifted towards the 

beginning of the year further increasing runoff available water in late winter and early spring. 

 

 
Fig. 6.20: Mean monthly discharge volumes at the gauge in Achleiten modeled within the reference run (1961-2000) and the 
scenario run (2001-2060). The grey bars indicate the difference between both model runs (A1B - Reference). 
 

The hydrological summer half year (May-October) shows rather little increases in mean 

monthly discharge. The period from July to September is even characterized by lower 

monthly discharge volumes in the scenario run as a result of the decrease in summer 

precipitation in combination with lower melt water contributions to summer discharge. 

Fig. 6.21 shows the mean monthly peak-flow discharge together with the mean monthly low-

flow discharge for the coupled reference run and the scenario run. For both runs, the peak- 

and low-flow discharge quantities have been calculated on the basis of daily discharge 

simulations.  

 

Fig. 6.21: Mean monthly peak-flow discharge and low-flow discharge volumes at the gauge in Achleiten modeled for the 
reference run (1961-2000) and the scenario run (2011-2060). The grey bars indicate the difference between both model runs 
(A1B - Reference). 
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The graphs provide a picture quite similar to that of average monthly discharge characterized 

by a tendency to higher discharge values in the scenario run. In particular in the winter half 

year the increased water availability notably increases mean monthly flood and low-flow 

discharge volumes. Analogously to the mean monthly discharge conditions, the decrease in 

precipitation in summer together with a decrease in melt water discharge for some summer 

months lowers monthly peak- and low-flow discharge. In contrast, the month of July in the 

case of peak-flow discharge and the month of June in the case of low-flow discharge show 

higher discharge volumes in the coupled scenario run than in the reference run.  

Although the mean monthly low-flow discharge for most months of the year shows an 

increase in discharge volumes in the scenario run, the increase in temperatures together with 

the decrease in rainfall amounts in summer might lead to extreme low-flows events that are 

not captured by comparing the mean conditions of the reference run to those of the scenario 

run. To research into this presumption, the 7-days average low-flow discharge (NM7Q) is 

considered as a sensitive measure of drought. It represents the lowest mean discharge over 

the period of seven subsequent days in the course of one year. Fig. 6.22 (left) shows the 

NM7Q for the reference run and the scenario run. The black line in the diagram on the left 

represents the 7-days average low-flow discharge with a return period of 50 years (NM7Q50). 

It is calculated for a considered year by fitting a lognormal distribution to the NM7Q values of 

the precedent 25 years. As described in detail in chapter 5.3.2.2.3, the latter allows the 

computation of the low-flow discharge related to a certain return period.  

 

  
Fig. 6.22: NM7Q and NM7Q50 discharge volumes at the gauge in Achleiten for the reference run and the scenario run (left) and 
frequency distribution of the NM7Q occurrence according to discharge simulations (reference run and scenario run) and 
discharge recordings (right). 
 

The figure (left) shows that there is no significant trend in NM7Q discharge volumes within 

the scenario run (10 < ߙ %). An explanation for the fact that the NM7Q volumes do not 

significantly decrease within the period 2011 to 2060 can be found in the frequency 

distribution of the NM7Q (see Fig. 6.22, right). For both, measured and simulated discharge 
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volumes for past conditions, the NM7Q values at gauge Achleiten entirely occur in the 

months from October to March. As almost all of the months that show a frequent occurrence 

of NM7Q discharge volumes in the past, are characterized by increases in precipitation and 

temperature in the scenario run, water availability in these months is rather enhanced than 

reduced. However, the change in the meteorological boundary conditions leads to a 14 % 

occurrence of NM7Q discharge in the months from April to September indicating a slight shift 

of NM7Q occurrence towards the hydrological summer half year for the scenario run. 

Compared to the reference period, the NM7Q50 is characterized by lower values at the end of 

the scenario run period, which is mostly due to the low NM7Q values in the middle of the 

scenario period that largely affect the NM7Q50 for the years 2040 to 2060. The two lowest 

NM7Q discharge volumes found in the scenario run with 405 m³/s (2032) and 362 m³/s 

(2038) considerably fall below the lowest NM7Q volumes found in the reference run 

indicating that there is an increased potential for the occurrence of extreme low-flow events 

in the future. 

In order to analyze changes in extreme peak-flow discharge between the reference and the 

scenario run, the HQ representing the highest daily discharge for a given year, is graphically 

displayed in Fig. 6.23. 

 

  
Fig. 6.23: HQ and HQ50 discharge volumes at the gauge in Achleiten for the reference run and the scenario run (left) and 
frequency distribution of the HQ occurrence according to discharge simulations (reference run and scenario run) and discharge 
recordings (right). 
 

The illustration displays a noticeably reduced variability in HQ volumes within the scenario 

run. While a slight but not significant trend towards higher HQ volumes can be observed for 

the scenario period, the HQ discharge with a return period of 50 years (HQ50) takes lower 

values in the scenario run compared to the HQ50 discharge at the end of the reference 

period. Again, the frequency distribution of the HQ occurrence is consulted to explain the 

comparatively low HQ volumes in the scenario run. As displayed in Fig. 6.23 (right), highest 

daily discharge volumes in the course of one year are most frequently found in summer 
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within both, the coupled reference run and the scenario run. A similar picture has already 

been given by Fig. 6.21 (left) showing the mean monthly peak-flow discharge, which is 

characterized by highest peak-flow discharge volumes in summer. The decreases in 

precipitation and melt water in summer reduce runoff available water in summer and in 

consequence the HQ discharge volumes in the scenario run. 

The reduction in extreme peak-flow discharge is confirmed considering the flood return 

periods of the reference and the scenario run. As Fig. 6.24 shows the peak-flow discharge 

associated to a certain return period is notably reduced in the scenario run compared to the 

return periods calculated for the reference run.  

 

 
Fig. 6.24: Low-flow and flood return periods based on PROMET simulations for the coupled reference run (CRR) and the 
scenario run (CSR). A lognormal distribution is applied to calculate the displayed return periods. 
 

The discharge related to a return period of 25 years in the reference run corresponds to a 

discharge with a return period of 100 years in the scenario run. Compared to the change in 

flood discharge, the low-flow return periods seem to be rather unaffected. However, care has 

to be taken when interpreting the results of an extrapolation of extreme events. Since the 

statistical distribution of the discharge data and its parameters assume stationary conditions, 

the expressiveness of the extrapolations might be weakened under climate change 

conditions. 
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7 CONCLUSION AND OUTLOOK 

The preceding chapters of this work have analyzed the potential of RCM simulations as input 

for land surface models. As the spatial resolution at which atmospheric processes can be 

resolved is still computationally limited to at best 10 x 10 km the land surface representation 

in RCMs strongly differs from natural realities. Particularly in complex terrain, the limited 

spatial resolution of RCMs does not fully capture the small scale variability in the natural 

climate system. To overcome these drawbacks, adequate scaling techniques need to be 

applied in advance of utilizing the RCM data as meteorological drivers for high resolution 

land surface models (1 x 1 km).  

The coupling tool SCALMET has been presented as a model interface developed to bridge 

the gap between the model scales. Different interpolation techniques have been described, 

including a remapping scheme that allows a conservative treatment of fluxes within the 

remapping process. However, these interpolation techniques do not compensate the loss of 

subscale climate variability in climate model simulations. To overcome these drawbacks, the 

direct interpolation methods are combined with more sophisticated methods.  

A regression based remapping method was presented that allows the analysis of the 

elevation dependence of a considered meteorological variable for every model time step 

separately. For the case that a significant linear relationship between a considered variable 

(e.g. temperature) and elevation is detected, the determined regression function is used to 

topographically adjust the RCM outputs. While the approach produces good results for a 

remapping from 10 x 10 km to 1 x 1 km, it is not quite clear in how far a much coarser spatial 

resolution of the RCM might limit its applicability (≥ 50 x 50 km). Therefore alternative 

techniques have been implemented that apply monthly lapse rates (temperature and 

dewpoint temperature) or a precipitation adjustment factor to adjust simulated fields for the 

influence of subgrid topography. Naturally, not all of the meteorological variables required to 

describe processes at the land surface are characterized by a significant elevation 

dependence. Hence, several submodels have been implemented in SCALMET that use 

additional topographic information (e.g. slope, aspect or exposure) to adequately span the 

gap between the model scales.  

Irrespective of the applied remapping approach, the adjusted high resolution meteorology is 

realigned to the mass/energy budget predetermined by the RCM simulations. This 

conservative treatment of fluxes represents a crucial prerequisite for coupling regional 

climate models with land surface models, in particular in a two-away coupled model setup. 

However conservatively remapping climate model simulations implies fully taking over all 

biases that might be included in the RCM output.  
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The biases that are known to exist in climate model simulations hamper the verification of the 

remapping methods. Therefore a synthetic experiment is carried out to analyze the 

performance of the different remapping approaches. Spatially distributed observations are 

aggregated to the RCM resolution of 10 x 10 km using the conservative remapping method 

implemented in SCALMET. The coarse grid meteorology is later used for the downscaling in 

SCALMET. The comparison of the remapped fields with station observations showed that the 

remapping approaches accounting for subgrid variability considerably enhance the 

remapping results compared to conventional interpolation techniques. Further, using the 

remapped fields as meteorological drivers for the hydrological model PROMET clarified that 

the more sophisticated downscaling techniques lead to a more realistic simulation of water 

fluxes and in consequence enhance the accuracy of discharge simulations. 

A one-way coupled model run is set up to investigate the overall performance of the coupled 

model system for past climate conditions (1961-2000). The meteorological drivers are 

supplied by the regional climate model REMO and are remapped by SCALMET using the 

regression based approach in combination with different submodels for a quasi-physically 

based remapping of all required meteorological variables. These remapping techniques have 

been chosen as they do not include calibrations carried out under present-day climate 

conditions and can therefore be expected to be valid under future climate conditions. 

Additionally an uncoupled model run is setup covering the years 1971 to 2000. Both, the 

spatially distributed observations used to drive the hydrological model PROMET in this 

uncoupled model run as well as the hydrological model results provide a basis of comparison 

to the remapped climate model simulations and the model results of the one-way coupled 

reference run. A comparison of the remapped REMO data with spatially distributed 

observations provided by the meteorological preprocessor in PROMET reveals a mean 

overestimation of annual mean temperatures of 0.8 °C for the Upper Danube watershed 

(1971-2000). Highest deviations from the observation based meteorology occur in April with 

an overestimation of monthly mean temperature exceeding 2.5 °C. In case of precipitation for 

both, the remapped as well as the original REMO simulations, an overestimation of area 

mean annual precipitation of approximately 11 % is observed. The largest deviations from the 

observation based meteorology occur in the months of May and December. A further 

comparison additionally consulting precipitation data originating from the Hydrological Atlas 

of Austria (KLING ET AL. 2007b) showed that the highest overestimation of annual precipitation 

considering the period 1961 to 1990 can be found in the Alpine part of the catchment. Please 

note that although much care has been taken to only compare data covering exactly the 

same years, all precipitation distributions involved in the comparison somehow represent 

model results and therefore include considerable uncertainties.  
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The examination of the hydrological simulations carried out within the coupled model run 

(REMO-SCALMET-PROMET) showed that the biases included in the meteorological 

simulations largely affect the results of the hydrological model PROMET. The warm bias in 

REMO near surface temperature simulations, together with the increased water availability 

caused by a certain overestimation of precipitation amounts, lead to a slightly enhanced 

evapotranspiration relative to the results of the uncoupled model run considering the period 

1971-2000. Comparing the modeled annual area mean runoff for the Upper Danube 

watershed to discharge measurements at the gauge in Achleiten further revealed an 

overestimation of discharge recordings of 29 %. Similar overestimations unfold considering 

the mean monthly discharge as well as the mean monthly low-flow and peak-flow discharge. 

The general tendency to overestimate discharge volumes could be shown to strongly limit 

the capability of the coupled model system to reproduce the return periods of low-flow and 

flood return periods.  

A second one-way coupled model run is setup for the period 2011 to 2060. The biases 

quantified for the coupled reference run (1961-2000) are assumed to affect the hydrological 

model results to a similar extent for both runs. This assumption allows a relative comparison 

of the meteorological and hydrological simulations yielded within the reference and the 

scenario run. Within the change analysis, both, changes relative to the reference run as well 

as trends within the scenario period have been identified. Considering the climate change 

signal in the remapped REMO simulations, a notable increase in the annual mean 

temperature (2011-2060) in the Upper Danube watershed is observed (≈ 1.2 °C) compared to 

the temperatures of the reference period (1961-2000). It was found that the average 

temperature increase rate in the Upper Danube watershed with approximately 5.2 °C/100 

years is elevated by a factor of 1.8 compared to the global average temperature rise resulting 

from the atmospheric greenhouse gas concentrations defined for the A1B scenario family. 

The increase is stronger in the higher elevations of the Alps than in the Alpine foreland. 

Beyond this trend that is predetermined by the 10 x 10 km simulations, a slight subgrid 

elevation dependence is found in the change signal. This is due to the fact that the mean 

temperature lapse rate determined within the regression based remapping on the basis of 

the REMO control run simulations (5.5 °C/km) differs from that reflected in the REMO 

scenario simulations (5.3 °C/km). This shows the importance of applying downscaling 

techniques that are not parameterized and are therefore capable to react to altered 

meteorological conditions.  

The analysis of seasonal trends in precipitation simulated for the scenario period revealed a 

significant decrease in precipitation in summer (JJA) and autumn (SON) and a slight but not 

significant increase in precipitation in spring (MAM) and winter (DJF). However, it became 
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evident that the change signal in simulated precipitation strongly depends on the time period 

considered within the REMO scenario run from 2000 to 2100. This in particular applies to 

changes in summer and autumn precipitation which are characterized by much stronger 

decreases for the end of the century (2070-2100). It further applies to winter precipitation 

showing comparatively high increases for the years 2070 to 2100. Considering the years 

2011 to 2060, the general increase in annual precipitation compared to the reference period 

amounts to approximately 5 %.  

The hydrological consequences of these altered meteorological conditions are quantified by 

comparing the hydrological simulations of the coupled reference run (1961-2000) to those of 

the scenario run (2011-2060). Thereby a significant increase in annual evapotranspiration 

can be observed that largely follows the linear trend in the temperature increase up to the 

end of the considered period in the year 2060. Highest increase rates are found for the 

seasons of winter (DJF), spring (MAM) and autumn (SON). This is well explicable when 

considering the increase in the water and energy budget in these seasons. In summer much 

lower increases in evapotranspiration are simulated. For the month of July even a decline in 

monthly evapotranspiration can be observed. The analysis of changes in plant available soil 

water has shown that this decline is most probably due to limitations in water availability as a 

result of the decrease in summer precipitation and the enhanced evapotranspirative water 

consumption in the preceding months. The total increase in evapotranspiration relative to the 

reference run takes a value of 3.5 %. 

As the catchment hydrology is largely affected by the amount of water temporarily stored in 

the snow pack, the annual days of snow coverage as well as the annual amount of solid 

precipitation have been analyzed in order to detect snow hydrological changes between the 

reference and the scenario run. Both analyzed criteria show a very similar picture 

characterized by the largest decreases in the northern part of the watershed. While the lower 

elevations of the Alps also show high decreases in annual snowfall and snow cover days, the 

low temperatures in the higher elevated Alpine regions as well as in parts of the Bavarian 

Forest still allow comparatively high snowfall amounts and a large number of snow cover 

days.  

The impact of the scenario meteorology upon the runoff conditions in the Upper Danube 

watershed is analyzed by comparing the simulated annual area mean runoff of the scenario 

run to that of the reference run. The comparison reveals an increase in mean annual runoff of 

5.7 % (43 mm). This is well explicable when considering the fact that only a small fraction of 

the additionally available precipitation (57 mm) is returned to the atmosphere by an 

intensification of evapotranspiration at the land surface (14 mm). Considering the mean 

annual discharge simulated for the gauge in Achleiten no significant trend can be found 
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within the scenario period. Yet, the increase in precipitation and temperature is shown to 

affect the mean monthly discharge, the mean monthly low-flow discharge and the mean 

monthly peak-flow discharge at the gauge of the watershed in Achleiten. For all discharge 

criteria a considerable increase is observed, in particular for the hydrological winter half year 

(November-April). However, the decrease in summer precipitation in combination with a 

decrease in melt water discharge in the case of some summer months leads to a reduction in 

discharge for all considered discharge criteria. To analyze changes in the occurrence of 

extreme low-flow events, the lowest 7-days average discharge (NM7Q) is analyzed for both 

coupled model runs. No significant trend towards lower values is found within the scenario 

run. An explanation is given by the fact that the lowest NM7Q values mainly occur in the 

winter half year. The increase in runoff available water due to an increase in (liquid) 

precipitation and near surface temperatures tends to raise the NM7Q in the winter half year. 

However, the lowest NM7Q discharge volumes found in the scenario run are significantly 

lower than those of the reference run. Moreover, the NM7Q occurrence is slightly shifted 

towards the hydrological summer half year in the scenario run indicating an increased 

potential for the occurrence of extreme low-flow events in summer in the future.  

The highest daily discharge in the course of one year (HQ) does not show a significant trend 

within the scenario period as well. However, the comparison of the flood and low-flow return 

periods calculated for the scenario run to the return periods determined for the coupled 

reference run unfolds much lower discharge volumes for a considered return period (e.g. 50 

years) in the case of flood flow. As most flood events in the Upper Danube watershed occur 

in the summer half year, the lower discharge volumes for a given return period are most 

probably due to the decrease in precipitation in summer combined with lower melt water 

contributions to summer discharge. Low-flow return periods do not differ notably between 

both runs. 

The present work has given proof of the general applicability of the one-way coupled model 

system in climate change investigations. The introduced scaling techniques could be shown 

to more realistically reproduce the natural climate system and to enhance the results of one-

way coupled model runs within a synthetic model approach. Forcing PROMET with 

remapped REMO simulations showed that PROMET is able to fully utilize the large potential 

of RCM simulations. The hydrological model has successfully shown its unrestricted ability to 

translate the climate change signal included in the remapped REMO meteorology into a land 

surface reaction.  

In the framework of the present study only some aspects of climatic change and its impacts 

on the hydrological conditions within the Upper Danube watershed could be presented. The 

inclusion of recently developed PROMET components within one-way coupled model runs 
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opens further opportunities for climate change research in the near future. The biophysical, 

fully dynamic vegetation model recently implemented by HANK (2008) allows the simulation 

of a biophysically based plant reaction upon the increasing mediterranization of climate 

conditions. Including the dynamic vegetation model within two-way coupled model runs 

further allows the atmosphere to react upon a vegetation response to climate change 

conditions. The integration of the dynamic glacier model that is currently implemented into 

the hydrological model by PRASCH ET AL. (2008b) in coupled model runs allows to simulate 

the retreat of glaciers in the Upper Danube watershed as a response to climate change. The 

medium-term goal is to transfer the knowledge and technology established within the current 

model setup (PROMET-SCALMET-REMO) into the interdisciplinary DANUBIA model. 

Particularly with respect to the fact that hydrology on a regional scale is to an increasing 

degree affected by human decisions, the human dimensions simulated within the 

interdisciplinary DANUBIA model open further possibilities for the land surface to influence 

climate conditions.  

However, comparatively large biases still persist in the coupled model system (REMO-

SCALMET-PROMET) that limit its ability to reproduce present-day conditions to a certain 

degree. Biases in simulated near surface temperature and precipitation have been shown to 

cause biases in the runoff simulated by means of the physically based hydrological model 

PROMET. The uncertainties in RCM simulations can be attributed to both, uncertainties 

related to the process formulation in the RCM as well as uncertainties resulting from the 

driving climate model. In order to reflect a wider range of uncertainties, future one-way 

coupled model runs carried out in the framework of GLOWA-Danube will involve additional 

RCMs including the mesoscale climate model MM5 (GRELL ET AL. 1995) and the climate 

version of the ‘Lokal Model’ CLM (BÖHM ET AL. 2006). The latter will not only be utilized to 

simulate meteorological conditions within the Upper Danube watershed. In the framework of 

the BRAHMATWINN (BRAHMATWINN 2008) project, the coupled model system (CLM-

SCALMET-PROMET) will be utilized to analyze climate change impacts on the water 

resources in the river basin of the Brahmaputra. 

Apart from the uncertainties related to the reproduction of present-time meteorological and 

hydrological conditions in the Upper Danube watershed, additional uncertainties are 

introduced when projecting climate into the future. The climate projection used within the 

current work only states one of many realizations that have been carried out on the basis of 

the radiative forcings defined within the A1B scenario family (IPCC 2000). To provide a more 

comprehensive picture of potential climate change and its impacts, different scenarios and 

realizations need to be utilized within one-way coupled model runs in the future. 
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Besides the biases found in the simulated climate, downscaling techniques are known to 

introduce additional uncertainties. For the scaling methods in SCALMET, these uncertainties 

inter alia arise from the fact that most approaches strongly simplify the natural system. While 

slope and aspect are accounted for in the remapping of solar radiation, temperature 

distributions are not affected by the different solar radiation levels found at north- and south-

facing slopes. Further, the spatially distributed temperatures are not modified according to 

the sensible and latent heat flux at the land surface. Theoretically, both limitations described 

above could be overcome by including energy balance calculations as they are performed by 

the hydrological model PROMET into the remapping process. However, this would drastically 

increase complexity while at the same time there is an increasing potential concerning the 

introduction of additional biases. The elevation adjustments carried out within the remapping 

of precipitation in SCALMET further do not include the orographically induced spatial 

variability of precipitation. To overcome these deficiencies an orographic precipitation 

submodel would need to be implemented (PANDEY ET AL. 2000, SMITH AND BARSTAD 2004). 

Apart from the fact that accurate high resolution precipitation models accounting for the 

whole range of precipitation mechanisms and structures are not available at present, it is not 

clear in how far a more complex approach can help to improve the quality of the remapping 

results. As SCHULZ AND BEVEN (2003) successfully demonstrated, increasingly complex 

models do not necessarily lead to better model results. Besides the questionable benefit, 

such efforts would notably increase computational costs. As can be seen many 

simplifications in SCALMET are due to a strong limitation of complexity for the sake of 

computational efficiency. The latter represents a top priority in SCALMET as all 

meteorological variables need to be remapped during the run-time of the coupled model 

system. However possibilities exist to enhance the quality of the remapping products in a 

computationally efficient manner. (FRÜH ET AL. 2006) propose a statistical method based on a 

local scaling factor for each day of the year. Within the approach local subgrid variability is 

accounted for by making use of a high resolution observed climatology. In a second step a 

bias correction is carried out which in case of precipitation reduces displacements in 

simulated precipitation by shifting modeled precipitation from inner Alpine regions towards 

the edges of the Alps. Although the approach can be expected to enhance the results of the 

coupled model system it requires a large degree of area- and model-specific adjustments. It 

is further not clear in how far such approaches are applicable in two-way coupled model 

setups, which represent a top priority for near future applications of SCALMET.  

In a medium-term view climate model simulations can be expected to show further 

improvements in both, the quality of the simulations as well as the spatial resolution at which 

atmospheric processes can be resolved. A rather pragmatic approach to reduce the effect of 
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present-time biases in precipitation simulations that is recommended by the developers of 

the regional climate model REMO is to rather use the mean value of a 3 x 3 pixel window 

than the exact precipitation simulated for a considered climate model pixel. Although similar 

filtering techniques have shown little effect on the catchment hydrology in other climate 

change studies (GERLINGER 2004), the approach might be followed in future one-way 

coupled model runs to study the effect on the precipitation amounts and patterns in the 

Upper Danube watershed.  

Although the land surface model components add further inaccuracies, in case of the 

hydrological model PROMET systematic biases could be shown to be rather small. Further 

there is evidence that inaccuracies in the model partly compensate with increasing size of 

the model domain as a result of a larger sample size (MAUSER AND BACH 2008). This, 

together with its physically based model concept sets the ideal prerequisites for fully coupling 

PROMET with RCMs on a regional level.  

Two-way coupled model runs will be realized by coupling PROMET with the regional climate 

model REMO as well as with the mesoscale climate model MM5. Simulating water, energy 

and momentum fluxes at a high resolution within two-way coupled model runs, PROMET is 

expected to make a valuable contribution towards an improved understanding of land-

atmosphere interactions. Although practical difficulties can be expected to arise when 

coupling a high resolution land surface model with medium resolution atmospheric models, 

the technical preparations for two-way coupled model runs have been successfully 

completed with the development of SCALMET in the framework of this work.  
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9 APPENDIX 

A-1: Equations used to convert between different forms of air humidity (BUCK 

1981, CAMPBELL AND NORMAN 1998, COSGROVE ET AL. 2003)  

 

  Saturation vapor pressure ݁௦ ሾܲܽሿ: 

 

݁௦ ൌ ܽ௛ exp ൬
ܾ௛ ௖ܶ

ܿ௛ ൅ ௖ܶ
൰ Eq. 9.1 

 

with: ܽ௛ = 611.21 (over water) and 611.15 (over ice) 

 ܾ௛ = 17.502 (over water) and 22.452 (over ice) 

 ܿ௛ = 240.97 (over water) and 272.55 (over ice) 

 ௖ܶ = Air temperature [°C] 

 

  Actual vapor pressure ݁௔ ሾܲܽሿ: 

 

݁௔ ൌ ܽ௛ exp ൬
ܾ௛ ௗܶ

ܿ௛ ൅ ௗܶ
൰ Eq. 9.2 

 

with: ܽ௛ = 611.21 (over water) and 611.15 (over ice) 

 ܾ௛ = 17.502 (over water) and 22.452 (over ice) 

 ܿ௛ = 240.97 (over water) and 272.55 (over ice) 

 ௗܶ = Dewpoint temperature [°C] 

 

  Relative air humidity ܴܪ ሾ%ሿ: 

 

ܪܴ ൌ 100
݁௔

݁௦
ൌ 100

ݍ
௦ݍ

 Eq. 9.3 

 

with: ݁௦ = Saturation vapor pressure [Pa] 

 ݁௔ = Actual vapor pressure [Pa] 

 ௦ = Specific humidity at saturation [kg/kg]ݍ

 Specific humidity [kg/kg] = ݍ
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  Specific humidity ݍ ሾ݇݃/݇݃ሿ: 

 

ݍ ൌ
ܪܴ ௦ݍ

100
 Eq. 9.4 

 

with: ݍ௦ = Specific humidity at saturation [kg/kg] 

 [%] Relative humidity = ܪܴ 

  

 

  Dewpoint Temperature ௗܶ  ሾ°ܥሿ: 

 

ௗܶ ൌ
ܿ௛ ln ቀ݁௔

ܽ௛
ቁ

ܾ௛ െ ln ቀ݁௔
ܽ௛

ቁ
 Eq. 9.5 

 

with: ܽ௛ = 611.21 (over water) and 611.15 (over ice) 

 ܾ௛ = 17.502 (over water) and 22.452 (over ice) 

 ܿ௛ = 240.97 (over water) and 272.55 (over ice) 

 ݁௔ = Actual vapor pressure [Pa] 
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A-2: Temperature-elevation dependence as reflected in the station observations 

used for the determination of monthly lapse rates for the UD (chapter 4.2.2.2) 
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A-3: Dewpoint temperature-elevation dependence as reflected in the station 

observations used for the determination of monthly lapse rates for the UD 

(chapter 4.2.3.2) 
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A-4: SCALMET input file containing the required remapping parameters 
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A-5: Incoming Longwave Radiation for the reference run (1961-2000) and the 

scenario run (2011-2060). REMO simulations (left), SCALMET longwave 

radiation model (right). 

 

 

 

 



Appendix 

 

180 

 

A-6: Incoming Shortwave Radiation for the reference run (1961-2000) and the 

scenario run (2011-2060). REMO simulations (left), SCALMET shortwave 

radiation model (right). 
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A-7: The meteorological stations used for the evaluation of the remapping 

techniques in SCALMET  

 

STATION NR STATION NAME COUNTRY ALTITUDE [m] LATITUDE [°] LONGITUDE [°]
4137 KEMPTEN (WST) GERMANY 705 47.71 10.33
4142 HINDELANG‐UNTERJ.(AKKST) GERMANY 1053 47.55 10.43
4144 OBERSTDORF (WST) GERMANY 810 47.40 10.28
4146 FISCHEN, KR.OBERALLGAEU GERMANY 757 47.46 10.26
4151 SCHWANGAU‐HORN GERMANY 792 47.58 10.71
4152 OY‐MITTELBERG‐PETERSTHAL GERMANY 872 47.63 10.38
4155 ZUGSPITZE (WST) GERMANY 2960 47.41 10.98
4156 GARMISCH‐PARTENK. (WST) GERMANY 719 47.48 11.06
4157 MITTENWALD GERMANY 920 47.43 11.26
4161 HOHENPEISSENBERG (OBS) GERMANY 977 47.80 11.01
4168 KOHLGRUB,BAD (ROSSHOF) GERMANY 734 47.66 11.08
4169 BAD TOELZ GERMANY 640 47.78 11.55
4175 TEGERNSEE GERMANY 838 47.71 11.76
4176 ROTTACH‐EGERN GERMANY 747 47.68 11.76
4179 KREUTH (KKST) GERMANY 776 47.65 11.75
4535 REICHENHALL.BAD GERMANY 470 47.71 12.88
4536 SCHOENAU A.KOE.SEE AKKST GERMANY 616 47.61 12.98
4541 RAUSCHBERG B.RUHPOLDING GERMANY 1640 47.73 12.68
4543 RUHPOLDING GERMANY 692 47.73 12.66
4546 BAYRISCHZELL GERMANY 789 47.68 12.00
4548 WENDELSTEIN (WST) GERMANY 1832 47.70 12.01
4549 OBERAUDORF GERMANY 480 47.66 12.16
6300 SALZBURG‐FLUGHAFEN AUSTRIA 430 47.80 13.00
6305 SALZBURG‐FREISAAL AUSTRIA 420 47.79 13.05
8800 ACHENKIRCH AUSTRIA 905 47.53 11.70
9016 KUFSTEIN AUSTRIA 493 47.57 12.16
9210 LOFER AUSTRIA 629 47.58 12.69
9215 LOFERER ALM AUSTRIA 1623 47.59 12.64
9450 ST.KOLOMAN AUSTRIA 1000 47.65 13.23
9500 ABTENAU AUSTRIA 714 47.56 13.34
11305 WARTH AUSTRIA 1475 47.25 10.18
11400 HOLZGAU AUSTRIA 1100 47.26 10.34
11505 REUTTE AUSTRIA 850 47.49 10.71
11602 EHRWALD AUSTRIA 960 47.40 10.92
11803 INNSBRUCK‐UNIV. AUSTRIA 578 47.26 11.38
11804 INNSBRUCK‐FLUGPLATZ AUSTRIA 579 47.25 11.35
11901 JENBACH AUSTRIA 530 47.39 11.75
12200 KITZBUEHEL AUSTRIA 763 47.44 12.39
12201 KITZBUEHEL AUSTRIA 763 47.45 12.35
12215 HAHNENKAMM‐EHRENBACHHOEHE AUSTRIA 1790 47.41 12.36
12220 UTTENDORF AUSTRIA 803 47.26 12.56
12301 SAALBACH AUSTRIA 1022 47.37 12.68
12311 SCHMITTENHOEHE AUSTRIA 1973 47.32 12.73
12322 ZELL AM SEE AUSTRIA 766 47.32 12.79
12504 BISCHOFSHOFEN AUSTRIA 543 47.40 13.22
12505 ST.JOHANN IM PONGAU AUSTRIA 634 47.31 13.18
12506 BISCHOFSHOFEN‐BUCHBERG AUSTRIA 733 47.40 13.21
12620 WAGRAIN AUSTRIA 880 47.33 13.30
14300 ST.ANTON AM ARLBERG AUSTRIA 1298 47.13 10.27
14305 GALZIG AUSTRIA 2081 47.13 10.23
14403 LANDECK AUSTRIA 798 47.13 10.56
14512 IMST AUSTRIA 860 47.24 10.74
14520 PRUTZ AUSTRIA 870 47.06 10.66
14600 HAIMING AUSTRIA 695 47.25 10.85
14610 KUEHTAI AUSTRIA 1970 47.20 11.01
14621 ST.LEONHARD‐NEURUR AUSTRIA 1462 47.02 10.86
14801 BRENNER AUSTRIA 1450 47.00 11.51
14812 PATSCHERKOFEL AUSTRIA 2247 47.20 11.46
15001 MAYRHOFEN AUSTRIA 643 47.15 11.85
15101 KRIMML AUSTRIA 1000 47.23 12.18
15300 ENZINGERBODEN AUSTRIA 1480 47.16 12.63
15310 MOOSERBODEN AUSTRIA 2036 47.15 12.71
15321 RUDOLFSHUETTE AUSTRIA 2304 47.13 12.62
15400 RAURIS AUSTRIA 945 47.21 13.00
15401 RAURIS AUSTRIA 916 47.25 12.83
15402 RAURIS AUSTRIA 931 47.22 12.99
15430 KOLM SAIGURN AUSTRIA 1618 47.06 12.98
15500 BADGASTEIN AUSTRIA 1100 47.11 13.13
15515 BADGASTEIN/BOECKSTEIN AUSTRIA 1100 47.09 13.12
17001 GALTUER AUSTRIA 1648 46.96 10.19
17005 ISCHGL‐IDALPE AUSTRIA 2323 46.98 10.31
17301 OBERGURGL AUSTRIA 1938 46.86 11.02
17315 PITZTALER GLETSCHER AUSTRIA 2850 46.92 10.87
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A-8: MAE statistic for all stations used within the evaluation of temperature  

remappings (chapter 5.2.1.1)  

 

TEMPERATURE 1994-1996 CONSERVATIVE INTERPOLATION BILINEAR INTERPOLATION
STATION NR. MEAN obs [°C] MEAN mod [°C] MAE [°C] Std_dev MAE [°C] MEAN mod [°C] MAE [°C] Std_dev MAE [°C]

6300 9.80 9.59 0.24 0.17 9.37 0.46 0.32
6305 9.56 9.08 0.50 0.21 9.29 0.31 0.21
4161 7.24 7.95 0.77 0.30 7.97 0.78 0.48
4169 8.01 7.62 0.41 0.16 7.67 0.34 0.20
4543 6.55 5.96 0.61 0.31 5.21 1.36 0.83
4541 4.48 5.96 1.51 0.49 5.49 1.02 0.61
4535 5.75 7.03 1.32 0.51 6.94 1.21 0.72
4137 7.48 7.24 0.26 0.11 7.54 0.06 0.04
4175 7.62 6.33 1.34 0.49 6.51 1.12 0.67
4548 3.91 6.11 2.33 0.98 5.63 1.76 1.06
4176 7.54 6.33 1.25 0.45 6.16 1.41 0.84
4546 6.50 6.11 0.43 0.30 5.52 1.01 0.67
9450 7.04 6.62 0.43 0.19 6.55 0.50 0.30
4549 8.10 8.15 0.35 0.28 7.85 0.40 0.30
4168 6.10 6.80 0.72 0.30 6.66 0.57 0.35
4179 7.23 6.33 0.93 0.36 5.90 1.35 0.81
4536 8.25 5.81 2.49 0.90 6.87 1.40 0.85
4152 6.66 6.06 0.63 0.25 6.40 0.27 0.17
9215 7.00 4.81 2.25 0.87 4.84 2.20 1.33
9210 7.29 5.73 1.60 0.63 5.85 1.47 0.89
9500 8.12 7.16 0.97 0.35 6.78 1.35 0.81
4151 7.41 6.15 1.33 0.57 6.47 1.00 0.66
9016 9.01 7.16 1.88 0.66 7.71 1.33 0.78
4142 5.98 5.18 0.82 0.32 5.42 0.57 0.34
8800 6.91 5.28 1.67 0.65 5.31 1.64 0.99
11505 7.26 5.25 2.04 0.71 5.51 1.76 1.02
4156 6.98 4.25 2.77 0.98 4.82 2.19 1.23
4146 6.75 5.99 0.78 0.30 6.40 0.35 0.24
12201 6.34 6.23 0.16 0.10 6.49 0.16 0.11
12200 6.26 6.23 0.20 0.16 5.66 0.62 0.37
4157 6.87 4.60 2.34 0.88 5.03 1.86 1.05
12506 7.99 6.65 1.37 0.51 6.18 1.84 1.09
12504 8.34 6.65 1.73 0.64 6.56 1.81 1.08
12215 3.26 4.57 1.35 0.56 4.99 1.76 1.07
4155 -1.80 2.04 3.85 1.11 2.41 4.22 2.17
4144 6.32 5.55 0.82 0.35 5.32 1.04 0.64
11602 6.99 3.72 3.26 0.71 3.76 3.23 1.58
11901 9.29 5.61 3.75 1.36 6.87 2.46 1.47
12301 5.62 4.38 1.26 0.50 4.36 1.28 0.80
12620 5.59 5.48 0.13 0.07 5.44 0.15 0.09
12311 4.00 5.83 1.86 0.69 6.04 2.08 1.24
12322 7.41 5.83 1.64 0.61 6.21 1.25 0.75
12505 6.36 5.89 0.50 0.20 6.10 0.27 0.16
12220 4.95 4.65 0.39 0.22 4.23 0.86 0.57
15401 7.08 3.41 3.75 1.35 4.06 3.08 1.83
11803 9.68 7.11 2.60 0.91 6.82 2.90 1.71
11400 6.21 3.23 3.11 1.26 3.53 2.76 1.69
11804 9.48 7.11 2.43 0.89 7.01 2.53 1.52
11305 4.73 3.16 1.65 0.74 3.26 1.52 0.98
14600 8.89 6.09 2.87 1.14 6.17 2.76 1.67
15101 6.13 3.94 2.21 0.79 2.78 3.40 2.02
15402 6.19 3.81 2.43 0.88 3.41 2.83 1.68
14512 8.07 5.06 3.06 1.14 5.09 3.03 1.85
15400 4.74 3.81 0.95 0.35 3.36 1.41 0.83
14610 1.26 2.14 0.88 0.25 1.12 0.24 0.20
14812 5.56 6.87 1.32 0.45 6.73 1.19 0.71
15300 2.92 1.06 1.87 0.67 0.22 2.71 1.51
15310 1.12 -0.06 1.21 0.52 -0.07 1.19 0.71
15001 5.94 5.43 0.51 0.18 5.82 0.13 0.09
15321 -0.98 -1.31 0.62 0.45 -1.55 0.75 0.54
15500 5.19 3.87 1.34 0.50 3.00 2.22 1.33
14305 3.01 2.50 1.30 0.83 2.13 1.19 0.78
14300 4.99 2.49 2.59 1.16 2.19 2.91 1.88
14403 5.88 3.69 2.24 0.82 3.32 2.61 1.55
15515 5.40 1.69 3.76 1.37 2.20 3.25 1.95
15430 -0.05 0.76 0.82 0.30 0.48 0.53 0.32
14520 7.21 4.35 2.93 1.08 3.60 3.67 2.18
14621 4.40 -0.12 4.61 1.69 -0.10 4.58 2.73
14801 4.61 3.13 1.51 0.58 3.34 1.31 0.79
17005 1.38 0.91 0.48 0.20 0.97 0.41 0.25
17001 3.10 1.23 1.91 0.73 1.32 1.81 1.06
17315 -2.31 -1.50 0.83 0.33 -1.63 0.70 0.43
17301 1.97 -0.86 2.87 1.03 -0.44 2.45 1.47
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TEMPERATURE 1994-1996 CONSTANT LAPSE RATE REMAPPING REGRESSION BASED REMAPPING
STATION NR. MEAN obs [°C] MEAN mod [°C] MAE [°C] Std_dev MAE [°C] MEAN mod [°C] MAE [°C] Std_dev MAE [°C]

6300 9.80 9.56 0.31 0.20 9.55 0.30 0.20
6305 9.56 9.56 0.18 0.15 9.54 0.20 0.15
4161 7.24 7.20 0.29 0.25 7.25 0.18 0.18
4169 8.01 8.01 0.10 0.08 7.98 0.06 0.06
4543 6.55 6.53 0.44 0.34 6.47 0.16 0.16
4541 4.48 4.56 0.30 0.23 4.60 0.16 0.13
4535 5.75 5.90 0.38 0.27 5.97 0.26 0.22
4137 7.48 7.49 0.03 0.02 7.49 0.02 0.03
4175 7.62 7.55 0.33 0.25 7.50 0.17 0.15
4548 3.91 3.94 0.53 0.44 3.99 0.37 0.29
4176 7.54 7.47 0.43 0.34 7.41 0.20 0.18
4546 6.50 6.43 0.43 0.34 6.40 0.19 0.19
9450 7.04 7.02 0.15 0.12 7.01 0.05 0.04
4549 8.10 8.34 0.35 0.31 8.31 0.33 0.29
4168 6.10 6.17 0.21 0.16 6.20 0.15 0.15
4179 7.23 7.16 0.42 0.33 7.11 0.18 0.16
4536 8.25 8.23 0.43 0.34 8.16 0.18 0.17
4152 6.66 6.65 0.09 0.07 6.64 0.05 0.08
9215 7.00 6.93 0.71 0.55 6.84 0.26 0.24
9210 7.29 7.27 0.47 0.37 7.21 0.18 0.16
9500 8.12 8.02 0.42 0.32 7.96 0.20 0.17
4151 7.41 7.35 0.43 0.39 7.31 0.25 0.25
9016 9.01 8.79 0.41 0.27 8.73 0.37 0.26
4142 5.98 5.95 0.18 0.14 5.94 0.07 0.05
8800 6.91 6.88 0.51 0.40 6.84 0.18 0.14
11505 7.26 7.11 0.49 0.37 7.05 0.38 0.31
4156 6.98 6.51 0.72 0.47 6.44 0.91 0.69
4146 6.75 6.59 0.19 0.15 6.58 0.19 0.16
12201 6.34 6.34 0.08 0.07 6.35 0.06 0.06
12200 6.26 6.23 0.17 0.15 6.22 0.13 0.10
4157 6.87 6.69 0.52 0.42 6.64 0.31 0.30
12506 7.99 7.87 0.57 0.44 7.80 0.24 0.19
12504 8.34 8.23 0.56 0.43 8.13 0.26 0.23
12215 3.26 3.37 0.61 0.48 3.42 0.19 0.16
4155 -1.80 -0.71 1.26 0.72 -0.64 1.58 1.17
4144 6.32 6.41 0.37 0.30 6.36 0.16 0.15
11602 6.99 6.22 0.85 0.51 6.15 1.01 0.73
11901 9.29 9.19 0.75 0.59 9.07 0.32 0.28
12301 5.62 5.52 0.47 0.36 5.49 0.26 0.25
12620 5.59 5.58 0.05 0.04 5.59 0.03 0.03
12311 4.00 4.12 0.63 0.50 4.18 0.26 0.18
12322 7.41 7.36 0.37 0.32 7.30 0.33 0.26
12505 6.36 6.35 0.08 0.07 6.36 0.05 0.05
12220 4.95 5.03 0.40 0.37 5.02 0.41 0.36
15401 7.08 6.92 0.94 0.73 6.82 0.38 0.28
11803 9.68 9.47 0.85 0.65 9.35 0.43 0.36
11400 6.21 6.01 0.89 0.69 5.96 0.50 0.35
11804 9.48 9.49 0.78 0.64 9.39 0.32 0.27
11305 4.73 4.73 0.61 0.50 4.69 0.24 0.22
14600 8.89 8.46 0.86 0.59 8.36 0.74 0.49
15101 6.13 5.92 1.02 0.79 5.84 0.42 0.29
15402 6.19 6.06 0.85 0.66 5.99 0.32 0.23
14512 8.07 8.03 1.01 0.76 7.93 0.36 0.34
15400 4.74 4.69 0.42 0.33 4.66 0.15 0.12
14610 1.26 1.41 0.25 0.19 1.40 0.18 0.12
14812 5.56 5.66 0.37 0.28 5.70 0.17 0.12
15300 2.92 2.37 0.81 0.58 2.32 0.79 0.70
15310 1.12 0.99 0.37 0.28 0.96 0.18 0.16
15001 5.94 5.93 0.06 0.06 5.94 0.05 0.07
15321 -0.98 -0.79 0.47 0.46 -0.81 0.29 0.30
15500 5.19 5.04 0.67 0.51 5.00 0.26 0.20
14305 3.01 2.91 0.75 0.59 2.89 0.65 0.49
14300 4.99 4.63 1.17 0.88 4.57 0.71 0.48
14403 5.88 5.74 0.79 0.62 5.68 0.29 0.20
15515 5.40 5.20 0.99 0.76 5.13 0.37 0.27
15430 -0.05 0.01 0.17 0.13 0.02 0.07 0.05
14520 7.21 6.98 1.11 0.86 6.88 0.43 0.29
14621 4.40 3.04 1.89 1.15 2.97 1.44 0.53
14801 4.61 4.58 0.43 0.34 4.55 0.13 0.09
17005 1.38 1.33 0.13 0.10 1.32 0.09 0.06
17001 3.10 3.00 0.51 0.39 2.96 0.23 0.17
17315 -2.31 -2.29 0.24 0.19 -2.27 0.07 0.05
17301 1.97 1.84 0.76 0.59 1.79 0.24 0.18



Appendix 

 

184 

 

A-9: MAE statistic for all stations used within the evaluation of precipitation  

remappings (chapter 5.2.1.2)  

PRECIPITATION 1994-1996 CONSERVATIVE INTERPOLATION BILINEAR INTERPOLATION
STATION NR. MEAN obs [°C] SUM mod [mm] MAE [mm] Std_dev MAE [mm] SUM mod [mm] MAE [mm] Std_dev MAE [mm]

6300 1339.17 1346.76 0.38 0.86 1448.77 0.54 1.21
6305 1445.63 1605.35 0.53 1.00 1523.02 0.43 0.96
4161 1068.66 1037.10 0.14 0.30 1047.04 0.14 0.29
4169 1367.34 1426.99 0.23 0.43 1435.43 0.22 0.36
4543 2125.08 2133.62 0.35 0.65 2243.62 0.35 0.59
4541 2276.11 2133.62 0.48 0.93 2217.75 0.18 0.30
4535 1959.04 1892.79 0.51 0.89 1859.76 0.53 0.93
4137 1252.09 1334.56 0.28 0.53 1259.66 0.07 0.14
4175 1557.05 1772.88 0.64 1.06 1760.70 0.57 0.92
4548 1762.82 1642.23 0.84 1.51 1726.30 0.36 0.68
4176 1709.02 1772.88 0.25 0.44 1829.34 0.36 0.57
4546 1626.19 1642.23 0.35 0.68 1732.54 0.44 0.84
9450 1710.71 1774.78 0.32 0.57 1756.58 0.15 0.23
4549 1474.85 1438.97 0.79 1.45 1485.59 0.55 1.03
4168 1548.46 1389.30 0.57 1.15 1428.13 0.37 0.74
4179 1818.61 1772.88 0.34 0.72 1856.94 0.23 0.40
4536 1677.07 1799.00 0.49 0.83 1777.60 0.31 0.50
4152 1528.98 1628.56 0.50 0.86 1518.09 0.13 0.24
9215 1761.08 1756.67 0.51 0.85 1865.15 0.36 0.62
9210 1682.82 1756.55 0.31 0.49 1774.06 0.30 0.49
9500 1562.88 1639.66 0.23 0.41 1593.00 0.23 0.40
4151 1345.91 1444.92 0.94 1.75 1446.56 0.77 1.49
9016 1265.95 1420.68 0.46 0.75 1391.83 0.46 0.80
4142 1750.54 1763.33 0.53 0.91 1736.51 0.16 0.27
8800 1616.59 1825.48 0.66 1.27 1836.24 0.62 1.11
11505 1437.97 1518.15 0.73 1.42 1531.28 0.64 1.25
4156 1395.83 1508.48 0.89 1.51 1492.56 0.69 1.18
4146 1575.48 1727.78 0.54 0.93 1674.56 0.44 0.84
12201 1400.27 1375.10 0.21 0.35 1330.56 0.21 0.37
12200 1377.21 1375.10 0.40 0.70 1404.62 0.14 0.23
4157 1448.95 1555.56 0.75 1.37 1515.46 0.45 0.77
12506 1051.67 1270.14 0.62 1.03 1295.32 0.68 1.14
12504 1103.12 1270.14 0.49 0.79 1265.64 0.48 0.80
12215 1593.41 1434.19 0.51 0.95 1420.85 0.50 0.84
4155 1850.32 1583.41 1.18 1.87 1616.98 1.20 1.90
4144 1769.74 1789.09 0.40 0.75 1779.44 0.33 0.57
11602 1327.95 1489.11 0.76 1.30 1546.04 0.77 1.26
11901 1136.00 1691.61 1.52 2.75 1430.60 0.81 1.49
12301 1332.89 1427.52 0.69 1.38 1393.32 0.61 1.25
12620 1432.93 1418.15 0.14 0.26 1477.33 0.13 0.25
12311 1396.59 1188.33 0.58 0.98 1155.03 0.67 1.08
12322 1097.70 1188.33 0.44 0.77 1139.37 0.30 0.57
12505 1308.27 1215.48 0.38 0.68 1241.06 0.19 0.31
12220 1405.53 1369.77 0.31 0.63 1440.15 0.43 0.77
15401 1102.19 1450.30 1.07 1.87 1403.21 0.84 1.43
11803 853.28 959.93 0.31 0.56 1020.50 0.46 0.83
11400 1354.08 1614.77 0.96 1.56 1552.96 0.67 1.09
11804 844.93 959.93 0.41 0.75 991.35 0.46 0.83
11305 1837.64 1933.65 0.79 1.35 1918.03 0.58 1.06
14600 681.49 937.45 0.79 1.54 856.23 0.54 1.04
15101 1094.55 1282.12 0.62 1.06 1383.21 0.80 1.34
15402 1076.78 1327.81 0.69 1.15 1371.32 0.81 1.38
14512 702.60 1095.51 1.12 2.22 1031.75 0.94 1.91
15400 1263.74 1327.81 0.21 0.34 1384.17 0.34 0.57
14610 1368.17 1228.43 0.40 0.70 1319.68 0.19 0.35
14812 1073.21 994.17 0.23 0.36 972.62 0.28 0.46
15300 1703.31 1960.14 1.00 1.80 2166.29 1.40 2.49
15310 2041.10 1883.13 0.59 1.01 2042.20 0.24 0.39
15001 1216.83 1244.93 0.11 0.21 1231.17 0.09 0.18
15321 2426.67 2332.81 0.64 1.06 2451.80 0.49 0.81
15500 1249.78 1337.85 0.36 0.63 1493.90 0.67 1.15
14305 1488.60 1716.74 1.54 2.62 1572.00 1.28 2.08
14300 1348.19 1440.53 1.25 2.09 1457.13 1.29 2.10
14403 932.21 1098.40 0.47 0.82 1078.70 0.41 0.70
15515 1386.22 1696.23 0.86 1.46 1633.67 0.70 1.18
15430 2055.87 1900.04 0.46 0.78 1920.92 0.37 0.59
14520 722.95 933.33 0.61 1.13 987.11 0.75 1.27
14621 936.91 1266.77 0.91 1.57 1254.78 0.88 1.51
14801 1070.14 1102.29 0.27 0.48 1104.89 0.19 0.34
17005 1214.03 1226.20 0.14 0.22 1229.27 0.10 0.17
17001 1026.43 1133.48 0.34 0.62 1082.49 0.17 0.35
17315 1503.29 1400.92 0.29 0.48 1410.12 0.26 0.42
17301 1081.26 1289.27 0.57 0.93 1275.79 0.53 0.89
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PRECIPITATION 1994-1996 ADJUSTMENT FACTOR REMAPPING REGRESSION BASED REMAPPING
STATION NR. MEAN obs [°C] SUM mod [mm] MAE [mm] Std_dev MAE [mm] SUM mod [mm] MAE [mm] Std_dev MAE [mm]

6300 1339.17 1432.02 0.52 1.18 1430.01 0.52 1.18
6305 1445.63 1499.72 0.41 0.93 1495.48 0.40 0.92
4161 1068.66 1092.75 0.14 0.29 1111.62 0.25 0.48
4169 1367.34 1409.64 0.16 0.26 1407.55 0.19 0.31
4543 2125.08 2091.21 0.22 0.46 2118.92 0.30 0.54
4541 2276.11 2327.31 0.19 0.35 2315.67 0.24 0.44
4535 1959.04 1962.62 0.46 0.85 1968.19 0.54 0.96
4137 1252.09 1265.64 0.08 0.15 1263.60 0.07 0.14
4175 1557.05 1660.80 0.31 0.53 1662.60 0.41 0.68
4548 1762.82 1893.90 0.42 0.93 1888.85 0.65 1.15
4176 1709.02 1700.36 0.15 0.26 1706.59 0.30 0.50
4546 1626.19 1645.84 0.36 0.64 1652.52 0.29 0.60
9450 1710.71 1708.56 0.07 0.11 1703.81 0.11 0.19
4549 1474.85 1443.22 0.55 1.08 1436.66 0.53 1.02
4168 1548.46 1464.37 0.30 0.60 1473.64 0.33 0.64
4179 1818.61 1730.76 0.31 0.58 1737.19 0.39 0.65
4536 1677.07 1645.19 0.15 0.28 1635.16 0.33 0.56
4152 1528.98 1494.89 0.14 0.27 1496.19 0.13 0.25
9215 1761.08 1658.46 0.34 0.59 1650.62 0.56 0.97
9210 1682.82 1638.45 0.19 0.32 1624.52 0.36 0.63
9500 1562.88 1487.91 0.29 0.58 1468.27 0.34 0.65
4151 1345.91 1375.37 0.73 1.44 1363.23 0.67 1.37
9016 1265.95 1308.35 0.37 0.63 1280.02 0.46 0.81
4142 1750.54 1685.51 0.22 0.39 1683.78 0.21 0.36
8800 1616.59 1681.98 0.26 0.44 1673.16 0.36 0.65
11505 1437.97 1397.75 0.61 1.27 1379.12 0.74 1.39
4156 1395.83 1353.75 0.67 1.19 1355.40 0.79 1.38
4146 1575.48 1655.52 0.42 0.80 1658.66 0.42 0.81
12201 1400.27 1343.86 0.18 0.32 1347.22 0.17 0.30
12200 1377.21 1360.25 0.11 0.20 1339.60 0.16 0.28
4157 1448.95 1378.58 0.45 0.85 1352.10 0.53 0.92
12506 1051.67 1174.33 0.36 0.61 1121.05 0.34 0.58
12504 1103.12 1150.90 0.20 0.35 1096.79 0.28 0.50
12215 1593.41 1552.21 0.25 0.42 1613.74 0.39 0.69
4155 1850.32 1913.56 1.12 1.90 1962.63 1.52 2.51
4144 1769.74 1675.67 0.40 0.75 1681.42 0.39 0.73
11602 1327.95 1357.91 0.55 0.98 1317.99 0.88 1.45
11901 1136.00 1250.91 0.33 0.61 1199.70 0.37 0.74
12301 1332.89 1304.15 0.58 1.29 1259.18 0.57 1.21
12620 1432.93 1463.48 0.10 0.20 1460.71 0.10 0.21
12311 1396.59 1289.59 0.34 0.53 1382.56 0.33 0.56
12322 1097.70 1067.87 0.31 0.61 1013.45 0.40 0.79
12505 1308.27 1219.92 0.25 0.40 1209.86 0.27 0.44
12220 1405.53 1369.43 0.43 0.83 1344.40 0.45 0.89
15401 1102.19 1189.71 0.33 0.53 1124.85 0.53 0.84
11803 853.28 866.13 0.21 0.42 764.18 0.54 0.99
11400 1354.08 1342.77 0.49 0.86 1313.20 0.68 1.16
11804 844.93 852.32 0.28 0.58 749.72 0.55 1.03
11305 1837.64 1769.73 0.59 1.11 1773.77 0.61 1.13
14600 681.49 743.04 0.35 0.71 644.29 0.56 1.08
15101 1094.55 1152.79 0.32 0.56 1066.23 0.57 0.96
15402 1076.78 1183.30 0.32 0.55 1112.08 0.46 0.78
14512 702.60 861.97 0.53 1.11 774.06 0.55 1.02
15400 1263.74 1285.57 0.11 0.19 1231.42 0.23 0.43
14610 1368.17 1297.60 0.23 0.42 1277.32 0.27 0.45
14812 1073.21 1029.46 0.17 0.26 1092.84 0.20 0.36
15300 1703.31 1930.26 0.93 1.69 1935.49 1.03 1.73
15310 2041.10 1919.36 0.38 0.68 1915.25 0.41 0.75
15001 1216.83 1215.30 0.08 0.14 1213.54 0.10 0.17
15321 2426.67 2362.43 0.50 0.85 2361.16 0.49 0.83
15500 1249.78 1326.41 0.29 0.50 1274.23 0.36 0.58
14305 1488.60 1498.84 1.26 2.11 1481.40 1.19 2.02
14300 1348.19 1262.81 1.29 2.23 1197.90 1.24 2.20
14403 932.21 927.37 0.13 0.23 812.46 0.59 0.99
15515 1386.22 1385.45 0.31 0.54 1341.13 0.62 0.99
15430 2055.87 1963.21 0.26 0.42 1973.58 0.24 0.39
14520 722.95 807.39 0.30 0.48 664.54 0.70 1.13
14621 936.91 1048.96 0.35 0.60 956.85 0.55 0.92
14801 1070.14 1029.60 0.22 0.46 969.50 0.34 0.64
17005 1214.03 1203.84 0.09 0.13 1183.26 0.13 0.21
17001 1026.43 981.73 0.13 0.25 983.17 0.25 0.43
17315 1503.29 1456.28 0.14 0.23 1487.39 0.14 0.24
17301 1081.26 1119.52 0.16 0.28 1023.96 0.49 0.79
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A-10: MAE statistic for all stations used within the evaluation of wind speed  

remappings (chapter 5.2.1.3)  

 

WIND SPEED 1994-1996 CONSERVATIVE INTERPOLATION BILINEAR INTERPOLATION
STATION NR. MEAN obs [m/s] MEAN mod [m/s] MAE [m/s] Std_dev MAE [m/s] MEAN mod [m/s] MAE [m/s] Std_dev MAE [m/s]

6300 2.60 2.23 0.38 0.25 2.17 0.47 0.34
6305 1.66 1.89 0.27 0.20 1.99 0.37 0.27
4161 4.69 4.26 0.44 0.21 4.28 0.41 0.20
4169 3.26 3.29 0.08 0.07 3.38 0.12 0.07
4543 1.67 1.83 0.18 0.15 2.00 0.34 0.21
4541 2.11 1.83 0.30 0.19 1.95 0.17 0.13
4535 1.96 1.75 0.27 0.24 1.84 0.20 0.18
4137 1.87 1.91 0.09 0.08 1.84 0.04 0.03
4175 3.91 4.37 0.47 0.28 4.14 0.24 0.16
4548 6.94 5.63 1.38 1.08 6.30 0.67 0.51
4176 3.92 4.37 0.45 0.27 4.25 0.33 0.21
4546 5.85 5.63 0.38 0.36 5.73 0.33 0.29
9450 1.97 2.12 0.16 0.10 2.08 0.11 0.07
4549 3.33 2.88 0.63 0.51 3.38 0.46 0.39
4168 1.38 1.59 0.27 0.18 1.53 0.18 0.13
4179 3.89 4.37 0.48 0.34 4.17 0.29 0.21
4536 1.71 2.18 0.49 0.32 2.03 0.32 0.21
4152 2.05 2.24 0.22 0.16 2.14 0.09 0.05
9215 1.32 1.89 0.58 0.34 1.90 0.59 0.33
9210 1.27 1.70 0.44 0.25 1.67 0.41 0.23
9500 1.56 1.77 0.22 0.14 1.83 0.28 0.18
4151 1.89 2.16 0.46 0.39 2.07 0.35 0.31
9016 2.16 2.69 0.54 0.35 2.76 0.61 0.35
4142 2.29 2.56 0.30 0.22 2.41 0.13 0.09
8800 3.13 3.33 0.27 0.24 3.50 0.39 0.24
11505 1.88 2.29 0.54 0.47 2.25 0.48 0.42
4156 1.24 2.82 1.59 0.92 2.54 1.30 0.75
4146 2.59 2.47 0.33 0.32 2.41 0.32 0.33
12201 1.93 2.16 0.24 0.14 2.00 0.09 0.09
12200 1.78 2.16 0.39 0.18 1.92 0.15 0.13
4157 1.80 2.56 0.82 0.45 2.30 0.56 0.30
12506 1.10 1.39 0.30 0.19 1.46 0.37 0.24
12504 1.01 1.39 0.38 0.25 1.37 0.37 0.24
12215 2.38 2.01 0.39 0.21 1.99 0.40 0.22
4155 5.81 3.77 2.04 1.04 3.55 2.26 1.15
4144 1.79 2.17 0.42 0.37 2.10 0.34 0.27
11602 1.30 2.63 1.33 0.67 2.71 1.42 0.68
11901 2.20 2.98 0.81 0.61 2.69 0.50 0.39
12301 1.23 1.65 0.49 0.35 1.66 0.48 0.34
12620 1.46 1.51 0.06 0.06 1.49 0.03 0.03
12311 2.04 1.69 0.36 0.24 1.58 0.47 0.31
12322 1.47 1.69 0.31 0.32 1.63 0.24 0.25
12505 1.40 1.54 0.15 0.12 1.45 0.06 0.04
12220 1.44 1.60 0.18 0.19 1.70 0.29 0.30
15401 1.45 2.26 0.83 0.60 2.12 0.68 0.45
11803 2.10 2.62 0.53 0.35 2.69 0.60 0.40
11400 1.49 2.12 0.74 0.51 2.06 0.62 0.42
11804 2.12 2.62 0.58 0.38 2.67 0.61 0.40
11305 1.52 2.25 0.75 0.52 2.10 0.60 0.44
14600 0.69 1.29 0.60 0.39 1.33 0.64 0.38
15101 1.40 1.94 0.68 0.67 2.16 0.83 0.57
15402 1.63 2.14 0.52 0.38 2.25 0.63 0.43
14512 0.64 1.46 0.83 0.52 1.37 0.75 0.48
15400 1.96 2.14 0.19 0.15 2.26 0.31 0.22
14610 2.81 2.71 0.12 0.09 2.91 0.12 0.10
14812 2.88 2.63 0.26 0.17 2.61 0.27 0.19
15300 1.89 2.94 1.05 0.60 3.31 1.42 0.95
15310 2.97 3.25 0.31 0.19 3.35 0.37 0.19
15001 1.90 2.02 0.12 0.11 1.91 0.04 0.06
15321 4.69 4.16 0.59 0.55 4.34 0.42 0.38
15500 1.85 2.12 0.32 0.20 2.33 0.48 0.30
14305 2.49 2.85 0.68 0.56 2.71 0.54 0.42
14300 2.01 2.25 0.62 0.50 2.43 0.69 0.54
14403 1.35 1.82 0.47 0.32 1.90 0.55 0.36
15515 1.81 2.62 0.82 0.52 2.50 0.70 0.43
15430 3.05 2.86 0.23 0.18 2.94 0.12 0.07
14520 1.02 1.60 0.60 0.43 1.80 0.79 0.51
14621 1.55 2.52 1.00 0.67 2.51 0.98 0.64
14801 2.03 2.39 0.36 0.27 2.35 0.32 0.21
17005 2.82 2.90 0.10 0.10 2.92 0.10 0.07
17001 2.60 2.98 0.40 0.28 2.99 0.39 0.27
17315 3.06 2.87 0.20 0.16 2.91 0.16 0.12
17301 2.38 2.97 0.60 0.40 2.91 0.53 0.36
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WIND SPEED 1994-1996 REGRESSION BASED REMAPPING
STATION NR. MEAN obs [m/s] MEAN mod [m/s] MAE [m/s] Std_dev MAE [m/s]

6300 2.60 2.16 0.47 0.34
6305 1.66 1.97 0.36 0.28
4161 4.69 4.33 0.37 0.22
4169 3.26 3.35 0.10 0.08
4543 1.67 1.91 0.24 0.15
4541 2.11 2.01 0.11 0.10
4535 1.96 1.91 0.15 0.13
4137 1.87 1.85 0.03 0.02
4175 3.91 4.08 0.17 0.14
4548 6.94 6.41 0.59 0.55
4176 3.92 4.17 0.24 0.16
4546 5.85 5.67 0.29 0.25
9450 1.97 2.05 0.08 0.05
4549 3.33 3.35 0.47 0.41
4168 1.38 1.56 0.20 0.12
4179 3.89 4.09 0.20 0.15
4536 1.71 1.94 0.23 0.16
4152 2.05 2.12 0.07 0.04
9215 1.32 1.77 0.44 0.23
9210 1.27 1.58 0.31 0.17
9500 1.56 1.74 0.20 0.14
4151 1.89 2.01 0.31 0.28
9016 2.16 2.69 0.54 0.34
4142 2.29 2.38 0.09 0.07
8800 3.13 3.40 0.28 0.21
11505 1.88 2.15 0.43 0.38
4156 1.24 2.43 1.20 0.79
4146 2.59 2.40 0.32 0.33
12201 1.93 2.01 0.09 0.09
12200 1.78 1.89 0.12 0.11
4157 1.80 2.19 0.49 0.33
12506 1.10 1.35 0.26 0.18
12504 1.01 1.26 0.25 0.18
12215 2.38 2.10 0.29 0.17
4155 5.81 3.75 2.06 1.30
4144 1.79 2.03 0.28 0.28
11602 1.30 2.55 1.27 0.79
11901 2.20 2.53 0.35 0.28
12301 1.23 1.58 0.41 0.28
12620 1.46 1.48 0.03 0.02
12311 2.04 1.71 0.33 0.20
12322 1.47 1.55 0.20 0.20
12505 1.40 1.43 0.04 0.03
12220 1.44 1.64 0.25 0.24
15401 1.45 1.93 0.47 0.32
11803 2.10 2.51 0.42 0.30
11400 1.49 1.89 0.45 0.31
11804 2.12 2.50 0.45 0.31
11305 1.52 2.01 0.50 0.32
14600 0.69 1.17 0.49 0.33
15101 1.40 1.95 0.63 0.48
15402 1.63 2.07 0.44 0.30
14512 0.64 1.17 0.53 0.33
15400 1.96 2.17 0.22 0.15
14610 2.81 2.89 0.09 0.07
14812 2.88 2.68 0.20 0.13
15300 1.89 3.16 1.28 0.84
15310 2.97 3.27 0.30 0.14
15001 1.90 1.90 0.04 0.08
15321 4.69 4.28 0.46 0.43
15500 1.85 2.19 0.36 0.24
14305 2.49 2.66 0.49 0.39
14300 2.01 2.27 0.51 0.37
14403 1.35 1.73 0.38 0.27
15515 1.81 2.30 0.50 0.33
15430 3.05 2.97 0.09 0.08
14520 1.02 1.57 0.55 0.36
14621 1.55 2.29 0.74 0.37
14801 2.03 2.26 0.23 0.15
17005 2.82 2.90 0.08 0.08
17001 2.60 2.88 0.28 0.21
17315 3.06 2.95 0.12 0.09
17301 2.38 2.75 0.37 0.25
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