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1  INTRODUCTION 

I INTRODUCTION 

1 NATURAL PRODUCTS IN CANCER THERAPY 

Cancer is one of the biggest causes of death in developed countries despite the global 

efforts and the major advances achieved in the last decades. Currently, there are three 

principal ways of treating cancer: surgery, radiotherapy and chemotherapy. Surgery 

and/or radiotherapy are frequently used as first line therapy in treating primary cancers. 

However, more effective anticancer therapies are required for most patients to achieve a 

complete eradication of the disease. Chemotherapeutical drugs alone or in combination 

with other additional treatments as anti-angiogenic and immune therapies are needed to 

combat disseminated cancer that cannot be cured solely by surgical excision. 

 

Natural products have played a major role in the treatment of diseases since ancient 

times. For instance, the plant Catharanthus roseus was used as a hypoglycaemic agent in 

many parts of Asia, but it was not until 1958 that the main constituents vincristine and 

vinblastine were found to reveal cytotoxic properties [1]. These agents were first 

introduced in the late 1960s and have contributed significantly to the successful treatment 

of many cancers. Nature is an attractive source of new therapeutic candidate compounds 

because of the tremendous chemical diversity in millions of species of plants, animals, 

marine organisms and microorganisms [2, 3]. For the past three decades natural products 

have been the mainstay of cancer chemotherapy. The importance of natural products in 

the tumor therapy can be realized by the fact that over 60% of the drugs approved for 

treatment of cancer are either of natural origin or their derivatives [4].  

 

Table I.1: Representative anticancer drugs from natural origin in development or clinical use 

Drug Source Status in clinical trial 

Plant-derived anticancer drugs 

Etoposide Podophyllum peltatum Phase III/IV 
Vinblastine, Vincristine Catharanthus roseus (Vinca rosea) Phase III/IV 
Paclitaxel Taxus brevifolia Phase III/IV 
Docetaxel Taxus baccata Phase III/IV 
Topothecan, Irinothecan Camptotheca accuminata Phase I/II 
Combretastatin A-4 Combretum caffrum Phase I/II 

Microbe-derived anticancer drugs 

Bleomycin Streptomyces verticillus Phase III/IV 
Daunomycin, Doxorubicin Streptomyces sp. Phase III/IV 
Epothilones A-D Sorangium cellulosum Phase III/IV 

 

The National Cancer Institute (NCI) started in 1960 with a large-scale screening program 

for natural antitumor agents primary effective against leukemia. The most significant 

drug to emerge from this program was taxol, obtained from the bark of the pacific yew 

Taxus brevifolia. In 1985, the NCI introduced a new program in which extracts from plants, 
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animals and microorganisms are screened against a panel of 60 human tumor cell lines 

derived from different solid human cancer types (colon, brain, breast, kidney, ovary, 

prostate). Examples of very promising antineoplastic agents and their status in clinical 

trials are listed in Table I.1. 

 

 

1.1 MARINE-DERIVED ANTICANCER AGENTS 

A wide range of chemotherapeutic agents used in cancer therapy induce death in the 

malignant cells through apoptosis (described in I.5) or other forms of programmed cell 

death (described in I.4). Inability of tumor cells to undergo apoptosis is one of the 

fundamental hallmarks of cancer and also the major contributor to drug resistance 

developed by many tumor cells [5]. Hence, the identification of potent drugs promoting 

unusual apoptotic mechanisms is a valuable strategy to overcome chemoresistance [6]. 

 

In this respect, the chemical and biological diversity of the marine environment is a 

productive source for the discovery of new anticancer drugs. Most sessile marine 

invertebrates contain a primitive immune system and produce toxic chemicals as a form 

of defense. Many of these products regulate specific biological functions and exert 

pharmacologic activity due to their specific interactions with cellular structures, receptors 

and enzymes [7]. Because these substances become immediately diluted by large volumes 

of seawater, they need to be highly potent on a molecular basis. The majority of the 

marine natural products has been isolated from sponges, molluscs, bryozoans, tunicates 

and marine microorganisms including fungi, bacteria and cyanobacteria. The relationship 

between marine sponges and medicines goes back to Alexandrian physicians as first 

described by the Roman historian Plinius in the first century [8]. However, the 

development of marine compounds as therapeutic agents is still in its infancy due to the 

technical difficulties in collecting marine organisms. Pharmaceutical interest in marine 

sponges evolved in the early 1950s through the discovery of the nucleosides 

spongothymidine and spongouridine in the marine sponge Cryptothecia crypta [8]. These 

nucleotides were the basis for the synthesis of Ara-C, the first marine-derived anticancer 

agent, which is currently used in the treatment of leukemia and lymphoma. The 

systematic investigation of the marine environment is reflected in the discovery of 

approximately 16,000 novel marine-derived products till date [4]. So far, no drug from 

marine sources, whether isolated or by total synthesis, has made it to the commercial 

sector in any disease. However, some of the most promising antitumor compounds 

currently in various phases of human clinical trials for treatment of different cancer types 

(Table I.2) were isolated from marine invertebrates or their associated microbes, and it 

may be expected that this number will increase in future. 
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Table I.2: Marine-derived anticancer drugs [9, 10]. 

Compound Source Chemical class Molecular 

target 

Status in 

clinical trial 

Ascididemin Didemnum sp. aromatic alkaloid caspase-2, 
mitochondria 

preclinical 

Bryostatin 1 Bugula 
neritina 

macrocyclic lactone PKC Phase II 

Discodermolide Discodermia 
dissolute 

lactone tubulin Phase II 

Dolastatin 10 Dolabella 
auricularia 

linear peptide tubulin Phase I/II 

Dolastatin 15 Dolabella 
auricularia 

linear peptide tubulin preclinical 

Ecteinascidin 
743 

Ecteinascidia 
turbinate 

tetrahydroisoquinolone 
alkaloid 

tubulin Phase II 

Eleutherobin Eleutherobia 
sp. / 
Erythropodium 
caribaeorum 

diterpene glycoside tubulin preclinical 

Halichondrin B Halichondria 
okadai 

macrocyclic polyether tubulin preclinical 

Kahalalide F Elysia 
refuscens / 
Bryopsis sp. 

cyclic depsipeptide lysosomes Phase II 

Sarcodictyin Sarcodictyon 
roseum 

diterpene tubulin preclinical 

 

 

1.2 MICROTUBULES AS TARGET IN CANCER THERAPY 

Microtubules, the key components of the cytoskeleton, are filamentous, hollow cylindrical 

structures that are essential in all eukaryotic cells. Their dynamic instability is a crucial 

and indispensable property in the regulation of the development and maintenance of cell 

shape, in the transport of vesicles and organelles throughout the cell, in cell signaling as 

well as cell division and mitosis. Microtubules are composed of globular –tubulin and –

tubulin that are tightly bound together by noncovalent bonds. Tubulin subunits have a 

binding site for GTP and assemble head-to-tail to each other mediated by GTP/GDP 

exchange, following the same direction and leading to a distinct structural polarity 

(Figure I.1). Microtubules are highly dynamic polymers and their polymerization 

dynamics are thoroughly regulated, e.g. through binding of various regulatory proteins 

including dynein and kinesin motor proteins to soluble tubulin and to microtubule 

surfaces [11, 12]. 
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Figure I.1: Polymerization of microtubules (modified from [13]). 

Heterodimers of – and –tubulin assemble to form a short microtubule nucleus. Nucleation is 

followed by elongation of the microtubule at both ends building a cylinder that is composed of 
tubulin heterodimers arranged head-to-tail in 13 protofilaments. 
 

The crucial role of microtubules in vital functions including mitosis, motility and cell-cell 

contacts makes microtubules an important target for cancer chemotherapy [13]. In this 

context, a chemically diverse group of anticancer drugs targeting microtubules and their 

dynamics, has been used with great success in the treatment of cancer (Table I.3). 

Microtubules seem to be targeted in favor by natural products, since most of the 

microtubule interacting agents are derived from natural origin. All of the antimitotic 

drugs studied so far induce apoptosis in a variety of cell types. These compounds act by 

binding to specific sites on the tubulin dimer and can be classified into three major 

categories based on their respective tubulin binding domains including the “vinca 

alkaloid“ domain, the “colchicine“ domain and the “paclitaxel“ domain (Table I.3). 

 

Based on their influence on microtubule dynamics, antimitotic drugs are divided into two 

groups: Some of these compounds including Vinca alkaloids and colchicine inhibit 

microtubule polymerization, whereas others (taxanes) stabilize microtubules. But 

although these compounds exert opposite effects on microtubules, both types share the 

common property of suppressing microtubule dynamics and thereby microtubule 

function, leading to the disruption of the mitotic spindle function and blocking cell cycle 

progression. This failure to proceed through the cell cycle is usually followed by the 

activation of apoptosis.  
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Table I.3: Antimitotic drugs, their binding sites on tubulin and their stages in clinical 

development [13]. 

Drug Binding domain Therapeutical use Status in clinical trial 

Vinblastine Vinca domain Hodgkin’s disease, 
testicular germ-cell 
cancer 

In clinical use, 22 
combination trials in 
progress 

Vincristine Vinca domain Leukemia, 
lymphomas 

In clinical use, 108 
combination trials in 
progress 

Vinorelbine Vinca domain Solid tumors, 
lymphomas, lung 
cancer 

In clinical use, 29 
Phase I-III clinical 
trials (single and in 
combination) 

Dolastatins Vinca domain Potential vascular 
targeting agents 

Phase I/II 

Colchicine Colchicine domain Non-neoplastic 
diseases 

Failed trials 
because of toxicity 

Combretastatins Colchicine domain Potential vascular 
targeting agents 

Phase I/II 

Paclitaxel (Taxol) Taxane site Ovarian, breast and 
lung tumors, 
Kaposi’s sarcoma; 
trials with numeous 
other tumors 

In clinical use; 207 
Phase I-III trials in 
USA 

Docetaxel 
(Taxotere) 

Taxane site Prostate, brain and 
lung tumors 

8 Phase I-III trials in 
USA 

Epothilones Taxane site Paclitaxel-resistant 
tumors 

Phase I-III 

 

 

2 THE SPONGISTATINS 

The spongistatins, a family of macrocyclic lactone polyethers, are promising anticancer 

compounds isolated from marine sponges. Up to now, seven members of this family have 

been discovered by Prof. G. R. Pettit [14] in the Eastern Indian Ocean Hyrtios erecta 

(spongistatins 1-3) [15, 16] and in the African marine sponge Spirastrella spinispirulifera 

(spongistatins 4-7) [17, 18] (Figure I.2). In 1988 his group collected 400 kg (wet wt) of the 

dark brown to black Spongia sp. (family Spongiidea, class Demospongiae) from the 

Eastern Indian Ocean, Republic of Maldives, and made an extraction with methanol 

followed by dichlormethane-methanol. The obtained fraction was separated by LH-20 

Sephadex gel permeation and high-performance liquid chromatography to receive 

colorless spongistatin 1 as an amorphous powder (mp 161-162°C). 
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Figure I.2: Marine sponges. 

Left panel: Eastern Indian Ocean Hyrtios erecta (Spongia) [19] 
Right panel: African Spirastrella spinispirulifera (Prolifera) [20] 
 

All of the spongistatins have exeptionally potent and selective inhibitory activity against a 

subset of the U.S. National Cancer Institute’s (NCI) panel of 60 human cancer cell lines 

[21] (Table I.4, Table I.5), suggesting that they may employ novel mechanisms of action 

different from any other anticancer agent. Spongistatin 1, first introduced as a broad-

spectrum antifungal compound [22], represents the most extraordinarily potent substance 

(GI50 typically 2.5-3.5 x 10-11 M) presently known against a variety of highly 

chemoresistant tumor types tested in the NCI screen. Thus, spongistatin 1 may have 

bright prospects in getting a potent anticancer agent in the future. 

 

Table I.4: Results of comparative antitumor evaluations of spongistatins 1-3 in the NCI in 

vitro primary screen [16]. 

Spongistatin Mean panel GI50/10
-10

 mol l
-1

 Compare correlation coefficient 

1 1.48 1.00 
2 8.51 0.83 
3 8.32 0.90 

 

All compounds were tested in quadruplicate at each of three different concentration ranges (10
-7

, 
10

-8
, 10

-9
 mol l

-1
 upper limits, log10 dilutions x 5) against the entire panel of 60 human tumor cell 

lines comprising the NCI screen. 
 

Table I.5: Results of comparative antitumor evaluations of spongistatins 1, 4 and 5 in the 

NCI in vitro primary screen [17]. 

Spongistatin Mean panel GI50x10
-10

 mol dm
-3

 Compare correlation coefficient 

1 1.17 1.00 
4 1.02 0.93 
5 1.23 0.92 

 

All compounds were tested in quadruplicate at each of five different concentration ranges (10
-8

, 
10

-9
, 10

-10
, 10

-11
, 10

-12
 mol dm

-3
) against the entire panel of 60 human tumor cell lines comprising 

the NCI screen. 
 

The macrocyclic lactone polyether spongistatin 1 contains 23 chiral centers and two 

spiroketal pyran groups. Even though spongistatins are structurally complex (Figure I.3), 

the total synthesis of spongistatin 1 has been recently accomplished [23]. 



7  INTRODUCTION 

 

 

 R1 R2 R3   R 

Spongistatin 1 Cl COCH3 COCH3  Spongistatin 5 Cl 
Spongistatin 2 H COCH3 COCH3  Spongistatin 7 H 
Spongistatin 3 Cl H COCH3    
Spongistatin 4 Cl COCH3 H    
Spongistatin 6 H COCH3 H    
 

Figure I.3: Chemical structure of  the spongistatins. 

 

Bai et al. revealed spongistatin 1 as a potent mitosis inhibiting and tubulin 

depolymerizing natural product [24]. Spongistatin 1 was shown to inhibit microtubule 

assembly, the binding of vinblastine and GTP to tubulin as well as the displacement of 

GDP bound in the exchangeable binding site of tubulin [25, 26]. The proposed binding 

pocket for spongistatin 1 is in close proximity to the GDP exchange site on the -subunit 

of the tubulin heterodimer. Studies of structure-activity relationships indicated that the 

two spiroketal groups serve as critical binding components of spongistatin 1. The binding 

of spongistatin 1 to this pocket may hinder interdimer interactions of tubulin and 

contribute to the tubulin depolymerizing activity of spongistatin 1. 

 

Despite the knowledge of spongistatin 1 as a tubulin-depolymerizing agent and its 

exceeding anticancer activity observed in the NCI screen, the underlying mechanisms 

leading to spongistatin 1-induced cytotoxicity remain to be explored. 
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3 AIM OF THE STUDY 

The main problems in chemotherapy are the often developed resistance of tumor cells to 

anticancer drugs as well as the metastatic spread of tumor cells in distant organs. For this 

reason, chemotherapeutic agents in clinical trials often show limited success, emphasizing 

the need for the development of new and effective chemotherapeutic agents that can 

target the metastatic process as well as multiple signaling pathways to resensitize cancer 

cells to chemotherapy. Although spongistatin 1 proved to be an extremely potent agent 

against a subset of human tumor cell lines including highly chemoresistant tumor types in 

the screening program of the National Cancer Institute (NCI), up to now less work has 

been done to elucidate the effects of spongistatin 1 on the combat of cancer. Recently, 

spongistatin 1 was shown to have an apoptosis-inducing effect in A549 cells by activating 

caspase-3 and by the cleavage of vimentin [27]. Moreover, our working group 

characterized spongistatin 1 as a novel promising therapeutic agent for the treatment of 

leukemic tumor cells especially in the clinical highly relevant situation of chemoresistance 

due to overexpression of XIAP [28]. 

 

These impressive results in leukemic cells encourage to elucidate the activity and 

underlying cytotoxic mechanisms of spongistatin 1 in metastatic cancer cells and 

chemoresistant solid tumors. For this purpose, two different models were pursued: 

First, the impact of spongistatin 1 on the basic processes during the metastatic spread 

were monitored in vitro using the highly invasive pancreatic cancer cell line L3.6pl, 

thereby focusing on the involvement of antiapoptotic events during the metastatic 

cascade. 

Secondly, the apoptotic signaling pathway induced by spongistatin 1 was clarified in the 

human breast cancer cell line MCF-7 in respect to overcome chemoresistance, heading at 

identifying exeptional or unusual signaling. 

 

 

4 PROGRAMMED CELL DEATH 

The balance between cell division and cell death is essential for the development and 

maintenance of tissue homeostasis of multicellular organisms. Deregulation of either 

process has a variety of pathological consequences leading to disturbed embryogenesis, 

neurodegenerative diseases, autoimmunity and the development of cancer. Thus, the 

equilibrium between life and death is tightly controlled [29-31]. Dispensable or potently 

dangerous cells are forced to die by a process called programmed cell death (PCD) and 

are removed by phagocytosis to prevent a host immune response. PCD can be defined as 

a coordinated sequence of events based on cellular metabolism that occurs at specific 

points of development and leads to cell destruction [32]. The most common and best 
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characterized form of PCD is apoptosis, a term first introduced in 1972 by Kerr et al. [33, 

34] to describe a form of cell death in mammals distinctive to necrosis. The word 

apoptosis derives from the Greek denoting a “falling off“, as leaves from a tree [35]. 

Apoptosis is characterized by the activation of a specific family of cysteine proteases, 

called caspases, followed by typical caspase-mediated biochemical and morphological 

changes including cell shrinkage with cytoskeletal rearrangements, mitochondrial outer 

membrane permeabilization, nuclear condensation and cleavage of the chromatin by 

endonucleases, remodeling and blebbing of the plasma membrane. The morphological 

alterations are a consequence of highly conserved, genetically controlled molecular and 

biochemical events and culminate in the fragmentation of the cell into so called “apoptotic 

bodies“. These compact membrane-enclosed structures contain cytosol and cell 

organelles, that are engulfed by macrophages without inciting the inflammation [36, 37]. 

A hallmark of apoptosis is the exposure of phosphatidylserine on the cell surface, which 

mediates their recognition and phagocytosis by macrophages [38]. 

 

 
 

Figure I.4: Overview of apoptotic and necrotic cell death. 

Apoptosis is characterized by morphological changes of the cell like cell shrinkage, chromatin 
condensation and fragmentation of the cell in membrane enclosed apoptotic bodies. These are 
engulfed by macrophages (phagocytosis), thus preventing inflammation. In contrast, in necrosis 
the cell swells and the membrane ruptures, releasing the cellular content into the surrounding 
tissue and thereby inducing inflammation. 
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Whereas apoptosis is an inherent, controlled cellular death program, the conceptual 

counterpart, necrosis, is an uncontrolled, passive mode of cell death that occurs after 

exposure to high concentrations of detergents, ionophores, oxidants or as consequence of 

pathophysiological conditions, such as hyperthermia, hypoxia, ischemia or infection [35, 

39]. As shown in Figure I.4, there are many observable morphological and biochemical 

differences between necrosis and apoptosis. Necrotic cell death is characterized by cellular 

swelling and rupture of the plasma membrane. Due to the ultimate breakdown of the 

plasma membrane, potentially inflammatory cellular contents are released into the 

extracellular fluid provoking a substantial inflammatory response [40]. Typical features of 

apoptotic cell death like DNA fragmentation, membrane blebbing (zeiosis) and formation 

of apoptotic bodies are absent in necrosis. 

In recent years, it has become evident that the classic dichotomy of apoptosis versus 

necrosis is a simplification of highly complex processes. Although caspase-mediated 

apoptosis is the most common cell death program, the process of caspase activation is not 

the only determinant of life and death in PCD [41]. Indeed, various forms of alternative 

cell death pathways, even in the complete absence of caspases, have been described, 

sharing the common feature that they are executed by active cellular processes. This 

distinguishes them from accidental necrosis [37, 41, 42]. Despite the numerous models 

proposed to characterize the various modes of PCD, exclusive definitions do not exist due 

to the overlap and shared signaling pathways between the different death programs. 

Table I.6 [43] gives an overview of the classification of different modes of PCD according 

to morphological changes and biochemical features of the dying cell. 

 

Table I.6: Characteristics of different types of cell death. 

Morphological changes Type of cell 

death Nucleus Cell membrane Cytoplasm 

Biochemical 

features 

Apoptosis chromatin 
condensation, 
nuclear 
fragmentation, 
DNA laddering 

blebbing fragmentation, 
formation of 
apoptotic bodies, 
preservation of 
organelles 

caspase-
dependent 

Necrosis clumping and 
random 
degradation of 
nuclear DNA 

swelling, 
rupture 

increased 
vacuolation, 
organelle 
degradation, 
mitochondrial 
swelling 

no energy 
requirement 

Autophagy partial 
chromatin 
condensation, 
no DNA 
laddering 

blebbing increased 
number of 
autophagic 
vesicles, 
organelle 
degradation 

caspase-
independent, 
increased 
lysosomal 
acitvity 

Mitotic 
catastrophe 

multiple micro-
nuclei, nuclear 
fragmentation 

no consensus on the distinctive 
morphological appearance by now 

caspase-
independent (at 
early stage) 
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5 APOPTOSIS SIGNALING PATHWAYS 

Apoptosis is an evolutionary conserved and tightly regulated cell death program that can 

be triggered by several stimuli, including intracellular stress and receptor-mediated 

signaling. In the classical apoptotic signaling pathway, the activation of the caspase-

family of cysteine-proteases builds the core of the mechanisms leading to cell death. 

 

 

5.1 CASPASES 

Caspases (cysteine aspartate specific proteases) are an evolutionarily ancient class of 

intracellular proteases and common to multicellular organisms that irreversibly commit a 

cell to die. Although the first caspase, interleukin-1 -converting enzyme (ICE, caspase-1), 

was identified in humans, the critical involvement of caspases in the apoptotic process 

was discovered in the nematode worm Caenorhabditis elegans, first documented in 1993 by 

Yuan et al. [44]. In this model organism, apoptosis was determined by three genes 

including an inhibitor (ced-9), an activator (ced-4) and an executor (ced-3). The 

identification of the ced-3 (cell death abnormality-3) gene, encoding a cysteine protease 

that is closely related to the mammalian ICE, led to the discovery of the whole family of 

proteases. Since then, at least 14 distinct mammalian caspases have been identified, of 

which there are 11 of human origin and 3 of murine origin [45]. Some of them are 

implicated in apoptosis (caspases-2, -3, -6, -7, -8, -9, -10 and -12), while others are involved 

in activation of proinflammatory cytokines (caspase-1, -4, -5, -13) or in keratinocyte 

differentiation (caspase-14). Apart from caspases, other proteases are engaged in the 

characteristic apoptotic morphology including other cystein proteases such as calpains, 

cathepsins (lysomal proteases) or serine proteases [46]. They contribute to the acitvation 

of caspases or mediate caspase-independent cell death and are often mutually activated 

by caspases in an amplification loop. 

 

 

5.1.1 GENERAL FEATURES AND CLASSIFICATION OF CASPASES 

Caspases are synthesized as a single-chain of inactive zymogens consisting of an N-

terminal prodomain of variable length followed by a large subunit with a molecular 

weight of about 20 kDa (p20), a small subunit of about 10 kDa (p10) and a linker region 

connecting these catalytic subunits [47]. Based on the structures of the prodomains and 

their functions, caspases are typically divided into three major groups. Caspases with 

large prodomains (> 90 residues) are classified by their phylogenetic relationship in 

inflammatory caspases (caspase-1, -4, -5, -13) and initiator caspases (caspase-2, -8, -9, -10 

and -12), while caspases with short prodomains (20-30 residues) belong to the effector 

caspases (caspase-3, -6, -7) [48, 49] (Figure I.5). 
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Figure I.5: Classification of caspases based on their prodomain structure. 

Initiator caspases contain long prodomains, procaspase-8 and -10 carry two repeats of the DED, 
whereas other initiator caspases possess a CARD domain. Caspases-3, -6 and -7 are apoptotic 
effector caspases with short prodomains. Prodomains are followed by the large subunit (~20 
kDa), a linker region and the small subunit (~10 kDa). 
 

The large prodomains of procaspases comprise structural motifs in the death domain 

superfamily including the death domain (DD), the death effector domain (DED) and the 

caspase recruitment domain (CARD). These structures are essential for the homotypic 

interaction with other proteins and reveal an important role in apoptotic signaling. DEDs 

and CARDs are responsible for the recruitment of initiator caspases into death- and 

inflammation-inducing signaling complexes, resulting in proteolytic autoactivation of 

caspases that subsequently initiates inflammation and apoptosis [47]. Two tandem DEDs 

are found in both procaspase-8 and -10, while the procaspases-1, -2, -4, -5, -9, -12 and -13 

are characterized by the CARD domain (Figure I.5) [50]. 

 

Although caspase zymogens contain a small amount of catalytic activity, they are kept in 

check by a variety of regulatory molecules. Thus, caspases as inactive enzyme precursors 

require a conformational change and usually have to be cleaved to become an active 

enzyme. Mature caspases are heterotetramers formed by an association of two 

heterodimers derived from two precursor molecules, with each comprising the large (p20) 

and the small (p10) subunit (Figure I.6) [48, 51]. The tetramer contains two active sites, 

positioned at opposite ends of the molecule and comprising amino acids of the large and 

the small subunits. 
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Figure I.6: Schematic representation of the proteolytic caspase activation. 

Activation proceeds by cleavage of the N-terminal domain at Asp 119, Asp 296 and Asp 316 (all 
caspase-1 numbering convention) leading to a large (p20) and a small (p10) subunit. The 
activity and specificity determing residues (R179, H237, C285 and R341) are brought into the 
necessary structural arrangement for catalysis. C285 is the catalytic nucleophile. The active 
caspase is a tetramer of two heterodimers, each comprising a large and a small subunit and an 
active site. 
 

The activation of effector caspases is performed by initiator caspases through removal of 

the N-terminal prodomain and the linker peptide within the protease domain by internal 

cleavage at specific Asp residues causing the separation of the large and the small 

subunits. As a consequence, the active site loops undergo drastic conformational changes 

resulting in the catalytical activation of the enzyme [51]. The effector caspases are able to 

directly degrade multiple substrates including the structural and regulatory proteins in 

the nucleus, cytoplasm and cytoskeleton, leading ultimately to cell death. Initiator 

caspases, however, undergo autocatalytic intrachain cleavage, a process usually requiring 

and facilitated by multicomponent complexes, which have modest effect on catalytic 

activity compared with the effector caspases. Upon recruitment to large protein 

complexes, initiator caspases are brought into close proximity by virtue of their long DED 

and CARD domains. The dimerization of inactive monomers is sufficient to trigger the 

activation and processing of procaspases [52]. Up to now, the involvement of different 

multicomponent protein complexes is described. For example, the apoptosome is 

responsible for the activation of caspase-9, whereas the assembly of the death-inducing 

signaling complex (DISC) is indispensable for the activation of caspase-8. Furthermore, 

the inflammasome facilitates the activation of proinflammatory caspases and the 

PIDDosome underlies the activation of caspase-2. 
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5.1.2 SUBSTRATE CLEAVAGE 

Caspases are specific cysteine proteases that recognize at least four (caspase-2 five) 

contiguous amino acids in their substrates, P4-P3-P2-P1. Typically, the cleavage point 

occurs after the C-terminal residue (P1), which is usually an aspartate. The preferred P3 

position is a glutamine residue for all mammalian caspases, whereas the preference in the 

P4 position varies among diffent groups of caspases and contributes to their substrate 

specificity. Thus the general recognition sequence can be described as X-Gln-X-Asp [48, 

53]. The use of the Cys side chain as a nucleophile during peptide bond hydrolysis is 

common to several protease families. However, the primary specificity for Asp is very 

rare among proteases, of the currently known proteases only the serine protease 

granzyme B shares this primary specificity [54]. 

 

A tremendous variety of proteins in apoptosis signal transduction is cleaved by caspases. 

Overall, more than 280 caspase substrates are identified so far. The proteolytic cleavage 

can either induce the functional inhibtion or activation of these mediators, turning off cell-

protective mechanisms and activating pathways that lead to cell destruction [55]. 

Proteolysis of certain components by effector caspases is associated with distinct 

morphological changes of cell death. For example, cleavage of PARP (poly ADP-ribose 

polymerase) inhibits DNA repair, whereas cleavage of ICAD (inhibitor of caspase-

activated DNase) by caspase-3 liberates the active CAD (caspase-activated DNase) 

nuclease that mediates DNA fragmentation. Caspases destroy several proteins involved in 

the maintenance of the cytoskeletal structure, such as focal adhesion kinases or paxillin, 

resulting in cell shrinkage and cell detachment. Initiator caspases are able to activate 

effector caspases but may target also many other proteins in the cell. In this respect, the 

most prominent caspase-8 substrate is the BH3-only protein Bid. After proteolytic 

cleavage, Bid translocates to mitochondria, thus promoting release of cytochrome c. 

Furthermore, cell-protective proteins as c-FLIP (cellular FADD-like ICE-inhibitory 

protein), Bcl-2, Bcl-xL or Akt can be inactivated by caspases. The conversion of 

antiapoptotic into proapoptotic regulators constitutes a positive feedback loop in the 

apoptosis signaling pathway [50, 55]. 

 

 

5.1.3 REGULATION OF CASPASES 

Because caspases execute a central role in the apoptotic process, inappropriate activation 

of caspases leads to a fatal outcome. Therefore, their expression and activation states need 

to be tightly regulated. Caspases are regulated by transcriptional and posttranslational 

mechanisms. Endogenous caspase inhibitors block either the activation of caspases or the 
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proteolytic effect of activated caspases. The major regulation checkpoints are found at the 

level of the activation of initiator caspases.  

The conserved family of inhibitors of apoptosis proteins (IAPs) potently inhibits the 

enzymatic activity of mature caspases and additionally removes caspases through 

proteasomal degradation. The IAP protein family, orginally discovered in the genome of 

baculovirus on the basis of its apoptosis-suppression potential in infected host cells, 

comprises at least eight mammalian members (Figure I.7) [53]. Three conserved structural 

domains are characteristic of IAP proteins: BIR (baculoviral IAP repeat), RING (RING 

zinc-finger) and CARD (caspase-activating and recruitment domain). The BIR domains, 

the hallmark of the IAP family, are ~80-amino acid zinc-binding domains responsible for 

the binding of caspases. XIAP (X-chromosome-linked inhibitor of apoptosis) is the most 

thoroughly characterized mammalian IAP member and also the most potent inhibitor of 

cell death in vitro, bearing three BIR domains with different functions. BIR3 is involved in 

inhibition of caspase-9, whereas the linker region between BIR1 and BIR2 selectively 

targets caspase-3 and -7 [56, 57]. Exept for survivin, all IAPs are comprised of a C-terminal 

RING (really interesting new gene) domain, a E3 ligase that presumably directly targets 

the IAP to the ubiquitin proteasome degradation system. The third structural motif, the 

CARD domain, is found in c-IAP1 and c-IAP2 and functions as protein-protein interaction 

domain which mediates the oligomerization with other CARD-containing proteins [58, 59] 

(Figure I.7, modified from [53]). 

 

 
Figure I.7: Schematic diagram of the structure of mammalian IAP family members. 

The eight members of the IAP family contain at least one BIR domain. Additionally, most IAPs 
have other distinct functional domains, such as the CARD domain and the RING domain, 
functioning as a E3 ligase that presumably directly targets to proteasomal degradation. BIR, 
baculoviral IAP-repeat; c-IAP, cellular IAP; IAP, inhibitor of apoptosis protein; ILP, IAP-like 
protein; ML-IAP, melanoma IAP; NAIP, neuronal apoptosis-inhibitory protein; XIAP, X-
chromosome-linked IAP). 
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The activities of IAPs are antagonized by a group of proteins containing a conserved four-

residue IAP-binding motif (IBM) (Ala-Val-Pro-Ile), such as the mitochondrial proteins 

Smac and Omi/HtrA2 [60, 61]. 

IAPs are not the only endogenous inhibitors of caspases. In contrast to the IAPs, which 

effect specifically caspase-3, -7 and -9, the baculoviral protein p35 is a pan-caspase 

inhibitor targeting most caspases through the formation of an inhibitory complex. 

Another pan-caspase inhibitor is poxvirus CrmA (cytokine response factor A) protein, a 

member of the serine protease inhibitor (serpin) family, which inhibits apoptosis via 

covalent modifications of the caspase active center. Thus, CrmA inhibits not only cysteine 

but also serine proteases, e.g. granzyme B [48, 62]. 

 

 

5.2 EXTRINSIC APOPTOTIC PATHWAY 

In mammals, a wide array of external signals triggers two major apoptotic responses, 

namely the extrinsic pathway (death receptor pathway) or the intrinsic pathway 

(mitochondrial pathway) within the cell, depending on the origin of death stimuli. The 

death receptor pathway is activated by apoptotic stimuli comprising extrinsic signals such 

as the binding of death inducing ligands to cell surface receptors. Death receptors are 

members of the tumor necrosis factor (TNF) receptor gene superfamily and share similar 

cysteine-rich extracellular domains. In addition, death receptors are defined by a 

cytoplasmic domain of about 80 amino acids called the “death domain“ (DD), which plays 

a crucial role in transmitting the death signal from the cell’s surface to intracellular 

signaling pathways [5]. Among them, the death receptors including TNFR1 (TNF 

receptor-1), CD95 (or APO-1/Fas) and the TRAIL (TNF-related apoptosis-inducing 

ligand) receptors DR4 (death receptor-4) and DR5 are best characterized for the induction 

of apoptosis. Decoy receptors, such as the soluble Fas, DcR3, constitute a negative 

regulatory mechanism of the extrinsic pathway. Due to lack of a functional death domain, 

these decoy receptors are unable to elicit the activation of the downstream apoptotic 

signaling pathway. However, they can compete for the binding of death ligands in order 

to block apoptosis triggered by death receptors [29, 63]. The extrinsic pathway is activated 

by the ligation of death receptors to their cognate ligands resulting in receptor 

trimerization, clustering of the death domains and recruitment of adaptor molecules, such 

as Fas-associated death domain (FADD), through homophilic interaction mediated by the 

death domain. FADD in turn recruits procaspase-8 (or procaspase-10) by its death effector 

domain (DED) to the activated CD95 receptor to form the CD95 death-inducing signaling 

complex (DISC). Within the DISC, procaspase-8 is autocatalytically cleaved by induced 

proximity and dimerization. Caspase-8 is released from the DISC as an active 

heterotetramer which is able to activate downstream effector caspases such as caspase-3. 

According to their requirement for mitochondrial pathway in CD95-induced apoptosis, 
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two distinct prototypic cell types have been identified. In type I cells, caspase-8 is 

activated at the DISC in quantities sufficient to directly activate downstream effector 

caspases. However, in type II cells efficient activation of effector caspases depends on a 

mitochondrial amplification loop that relies on caspase-8 mediated cleavage of Bid and 

subsequent release of mitochondrial proapoptotic factors leading to cell death (Figure I.8). 

The identification of Bid as a caspase-8 substrate established a link between the extrinsic 

and the intrinsic pathway [29]. The DISC complex formation downstream of other death 

receptors (DR4/5, TNFR1) is similar to the CD95 pathway. 

 

Signaling by death receptors can be negatively regulated by proteins that associate with 

their cytoplasmic domains, for example c-FLIP. The two splice variants of c-FLIP have 

sequence homology to caspase-8 and caspase-10, but lack enzymatic activity. 

Consequently, the recruitment of c-FLIP to the DISC instead of procaspase-8 or -10 can 

block caspase activation [63]. 

 
 

Figure I.8: The extrinsic apoptotic pathway. 

Binding of death ligands to their receptors leads to receptor trimerization and formation of the 
death inducing signaling complex (DISC). In the DISC, the initiator caspase-8 is recruited by the 
adaptor protein FADD via interaction with the death effector domain (DED) and is activated by 
autocatalytic cleavage. An amplification of the apoptotic signal is possible upon caspase-8 
mediated cleavage of Bid which in turn translocates to mitochondria leading to apoptosis. As a 
negative regulator, FLIP is able to bind to DISC preventing the activation of caspase-8. 
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5.3 INTRINSIC APOPTOTIC PATHWAY 

Intrinsic apoptotic pathways are initiated within the cell. The most important turning 

point in the course of the intrinsic apoptotic process occurs in the mitochondria [64]. 

Apart from being the main energy producers of the cell, mitochondria are crucial 

organelles regulating and mediating apoptotic cell death [29, 63]. Numerous cytotoxic 

stimuli originating from inside the cell including DNA-damage, oxidative stress, actions 

of some oncoproteins and tumor suppressor genes or signals induced by 

chemotherapeutic agents can converge on the mitochondria to induce outer membrane 

permeabilization (MOMP). This permeabilization, mainly mediated and controlled by Bcl-

2 family members (described in I.5.3.1), causes the dissipation of the mitochondrial 

membrane potential ( m), which is required for mitochondrial function as ion transport 

or energy conservation. Upon disruption of the outer mitochondrial membrane, a set of 

proteins that normally resides in the space between the inner and outer mitochondrial 

membranes is released into the cytosol causing either the activation of caspases or acting 

as caspase-independent cell death effectors. These apoptogenic proteins include 

cytochrome c, Smac/DIABLO (second mitochondria-derived activator of caspases/direct 

IAP binding protein with low pI), Omi/HtrA2 (high temperature requirement protein 

A2), AIF (apoptosis-inducing factor) and EndoG (endonuclease G) [65]. 

 

Cytochrome c, an essential component of electron transport in the ATP-generating 

respiratory chain, is considered to be among the major steps in the intrinsic death 

pathway. Once cytochrome c escapes into the cytosol, it is captured by the C-terminal 

region of Apaf-1 (apoptotic protease activating factor 1), a cytosolic protein with an N-

terminal caspase-recruitment domain (CARD). Binding of cytochrome c facilitates the 

association of ATP/dATP with Apaf-1 exposing the CARD. Further oligomerization 

results in a wheel-shaped heptameric structure containing seven cytochrome c/Apaf-1 

complexes. This large multi-protein complex is termed apoptosome and functions as a 

platform to recruit and activate procaspase-9 via CARD-CARD interactions, thereby 

triggering the caspase cascade leading to cell death [66-68]. 

 

Other proteins released from mitochondria, such as Smac/DIABLO and Omi/HtrA2, 

facilitate caspase activation through neutralizing endogenous inhibitors of caspases, the 

inhibitor of apoptosis proteins (IAPs) . Smac and its murine homolog DIABLO are the best 

known antagonists of IAPs, removing IAP-mediated inhibition of active initiator and 

effector caspases. Smac acts as a homodimer, exposing the conserved four-residue IAP-

binding motif (IBM) (Ala-Val-Pro-Ile) at its N-terminus, which is required to recognize a 

hydrophobic groove in the BIR2 and BIR3 domain of IAPs. Caspase-9 contains a similar 

recognition motif (Ala-Thr-Pro-Phe), enabling Smac/DIABLO to compete with caspase-9 

for binding to the BIR3 domain of IAPs. The binding site of the IBM sequence of 



19  INTRODUCTION 

 

Smac/DIABLO maps also to the BIR2 motif. Although the IAP fragment responsible for 

inhibiting caspase-3 and -7 is the linker between BIR1 and BIR2, steric clashes allow 

competition with caspase-3 and -7 [69]. 

 

The mammalian serine protease Omi/HtrA2, a member of the HtrA protein family, 

possesses an IBM, similar to Smac/DIABLO. Omi/HtrA2 executes an essential role in 

mitochondrial homeostasis, but the molecular targets and interaction partners in the 

mitochondrion are as yet undefined. Omi/HtrA2 unleashes caspase activity in a biphasic 

process that frees the active forms of caspase-3, -7 and -9 by proteolytically removing their 

natural inhibitors. The IBM, presented in a trimeric configuration, sequesters IAP proteins 

in a first step. The protease activity of Omi/HtrA2 may then drive the reaction through 

the degradation of bound IAP proteins [70]. Besides its caspase-dependent cytotoxicity, 

Omi/HtrA2 also contributes to apoptosis in a caspase-independent way. This function is 

independent of its IAP-binding activity, but rather depends on the serine protease activity 

of Omi/HtrA2 [66]. 

 

Mitochondria can also release factors involved in caspase-independent cell death 

including the apoptosis-inducing factor (AIF) [71] and endonuclease G (EndoG) [72, 73]. 

AIF is a mitochondrial flavoprotein first identified and characterized in the laboratory of 

Guido Kroemer. Under apoptosis-inducing conditions, AIF is transported to the nucleus 

where it initiates ATP-independent nuclear chromatin condensation as well as large-scale 

(50kb) DNA fragmentation. The molecular mechanism as to how AIF exerts its cytotoxic 

activity is unknown. AIF has no intrinsic nuclease activity and its oxidoreductase activity 

is not required for its apoptogenic function. AIF has been reported [71, 74] being not able 

to cleave DNA by itself, but recruiting or activating endonucleases to facilitate DNA 

fragmentation and chromatin condensation [75]. In mammalian cells, cyclophilin A, a 

peptidyl-propyl cis-trans isomerase, cooperates with AIF to induce the breakdown of 

DNA [76].  

 

Upon apoptotic stimuli, endonuclease G, like AIF, is released from the mitochondrial 

intermembrane space and translocates to the nucleus where it causes oligonucleosomal 

DNA fragmentation. EndoG-induced DNA degradation was observed to be caspase-

independent [71, 72], suggesting an important role of EndoG in bringing about caspase-

independent cell death. 
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Figure I.9: The intrinsic apoptotic pathway. 

Mitochondria are the central organelles in the intrinsic apoptotic pathway. Many apoptotic stimuli 
like chemotherapeutic agents induce mitochondrial membrane permeabilization (MMP) and the 
release of proapoptotic proteins from mitochondria to the cytosol. Cytochrome c binds and 
activates Apaf-1, which in turn recruits procaspase-9 to the apoptosome leading to 
autoactivation of caspase-9 and further activation of downstream effector caspases. Smac and 
Omi/HtrA2 abolish the negative regulation of the caspases by IAP. AIF, EndoG and Omi/HtrA2 
are supposed to induce caspase-independent cell death. The intrinsic apoptotic pathway is 
regulated by the Bcl-2 family proteins. Antiapoptotic Bcl-2 proteins inhibit the release of 
mitochondrial proteins whereas the proapoptotic members contribute to MMP. 
 

 

5.3.1 REGULATION BY BCL-2 FAMILY MEMBERS  

The process of mitochondrial release of proapoptotic factors such as cytochrome c to the 

cytosol is elegantly regulated through members of the Bcl-2 protein family. The Bcl-2 (B 

cell lymphoma) family is an evolutionary conserved group of proteins, acting as potent 

regulators of the intrinsic apoptotic pathway by influencing the permeability of the outer 
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mitochondrial membrane [77, 78]. The fate of the cell depends to a great degree on the 

precise balance of function between pro- and antiapoptotic Bcl-2 proteins. Thus, the Bcl-2 

family functions as a “life/death switch“ determining whether or not the stress apoptotic 

pathway should be activated. The founding member is Bcl-2, first identified as a 

protooncogene involved in human follicular B cell lymphoma and homologue to the C. 

elegans ced-9 gene [79, 80]. In mammals, the Bcl-2 family has at least 20 relatives all of 

which share one to four conserved Bcl-2 homology domains (BH) [77]. The BH domains 

roughly correspond to -helices defining both structure and function. Their three-

dimensional structure is well studied and comprises amphiphilic -helices surrounding 

two central hydrophobic -helices. A hydrophobic groove formed by BH1, BH2 and BH3 

can bind the BH3 -helix of an interacting BH3-only protein (described in I.5.3.2). 

 

The Bcl-2 protein family possesses both antiapoptotic and proapoptotic members which 

are divided into three subclasses defined by structural and functional similarities within 

the four conserved Bcl-2 homology domains (BH 1-4) (Figure I.10). 

The first subfamily contains prosurvival members, protecting cells exposed to diverse 

cytotoxic conditions. These members are characterized by four short BH domains and a 

hydrophobic carboxy-terminal domain which anchors the proteins to intracellular 

membranes of organelles such as the outer mitochondrial membrane, the endoplasmatic 

reticulum (ER) and the nuclear envelope. Bcl-2 is an integral membrane protein, whereas 

Bcl-w and Bcl-xL only becomes tightly associated with the membrane after a cytosolic 

signal. Proposed mechanisms to explain the antiapoptotic function of prosurvival Bcl-2 

family members include their ability to heterodimerize with proapoptotic Bcl-2 family 

members thereby sequestering these proteins [81]. The activity of Bcl-2 is linked to the 

phosphorylation/dephosphorylation status, the phosphorylation of Ser70 of Bcl-2 

abrogates its antiapoptotic properties [11]. Several studies have demostrated that Bcl-2 

phosphorylation can be specifically induced by drugs affecting microtubule dynamics and 

is not seen by DNA damaging agents, suggesting a role for Bcl-2 as the “guardian of 

microtubule integrity“ [82]. The number of phosphorylated sites depends on the intensity 

of kinase activation. Mitotic arrest induces the phosphorylation of Bcl-2 on its serine and 

threonine residues Ser70, Ser87 and Tyr69. A variety of different kinases have been 

implicated in the phosphorylation of Bcl-2, including JNK, c-RAF, ERK1/2, CDK1, PKA 

and PKC  [83]. Bcl-2 is phosphorylated and thereby inactivated at the G2/M phase of 

normally cycling cells as well as in cells arrested at the G2/M phase following treatment 

with microtubule-damaging compounds. The persistent Bcl-2 inactivation through 

phosphorylation during G2/M arrest is an important determinant of the induction of 

apoptosis by microtubule-active drugs. In addition, proteolytic cleavage of Bcl-2 at Asp34 

by caspase-3 converts it from an antiapoptotic to a proapoptotic protein [84]. 
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The second group includes Bcl-2 proteins with proapoptotic activity, e.g. Bax and Bak 

which are structurally similar to the antiapoptotic members but lacking the BH4 domain. 

In healthy cells, Bax is found as a monomer either in the cytosol or loosely attached to the 

outer mitochondrial membrane. Contrary to Bax, Bak has an anchor attaching it to the 

outer mitochondrial membrane in a complex with the voltage-dependent anion channel 

(VDAC). In response to cytotoxic stimuli, Bax translocates to mitochondria and both Bax 

and Bak undergo a conformational change in the N-terminus that exposes the formerly 

buried 6A7 epitope. This conformational change is necessary to create homo-oligomers, 

insert into the mitochondrial membrane and form protein-permeable pores. 

Intermembrane mitochondrial proteins like cytochrome c are released through these 

channels. Another model describes the interaction of Bax and Bak with one or more 

components of the permeability transition pore complex (PTPC), formed by the adenine 

nucleotide translocator (ANT, inner mitochondrial membrane), the voltage-dependent 

anion channel (VDAC, outer mitochondrial membrane) and other proteins [78, 85]. 

The third subfamily, the proapoptotic BH3-only proteins, only sharing sequence 

homology with the short BH3 domain, constitutes a key group of proapoptotic proteins. 

This subfamily includes at least eight members: Bid, Bik, Bad, Bim, Bmf, Hrk, Noxa and 

Puma. Apart from the BH3 domain, these proteins are largely unrelated in sequence to 

either Bcl-2 or each other. 

 

 

Figure I.10 Subfamilies of Bcl-2 related proteins. 

Bcl-2 family members share at least one highly conserved BH domain. Most members have a 
carboxy-terminal hydrophobic domain that aids association with the intracellular membranes. 
BH, Bcl-2 homology; TM, transmembrane domain. 
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Pro- and antiapoptotic proteins can heterodimerize and seemingly titrate one other’s 

function. It is hypothesized that the antiapoptotic proteins inhibit the proapoptotic 

proteins through binding of the BH3 domains, thus sequestering their proapoptotic 

abilities [86, 87]. The ratio between pro- and antiapoptotic proteins may determine the 

susceptibility of a cell to apoptosis. 

 

 

5.3.2 BH3-ONLY PROTEINS 

The activation of BH3-only proteins is regulated at the post-translational level by a variety 

of strategies (Figure I.11) [77, 88]. The regulation of Bid occurs through proteolytic 

cleavage by caspase-8 to its active truncated form tBid followed by myristoylation upon 

the activation of death receptors [89]. These events may trigger rearrangement and 

exposure of the BH3 domain, allowing Bid to bind and inactivate prosurvival molecules. 

Furthermore, Bid can be cleaved independent of death receptors by caspase-3, calpains, 

cathepsins or granzyme B [88]. After truncation, tBid is proposed to induce the 

oligomerization of Bax and Bak resulting in the release of proapoptotic proteins from 

mitochondria to the cytosol. Bid plays an important role in the mitochondrial apoptotic 

pathway as it has been identified as the molecular linker bridging various peripheral 

death pathways to the central mitochondrial release of proapoptotic proteins [90]. 

Bim and Bmf are sequestered by binding to dynein light chains (DLC) associated with 

microtubules and the actin cytoskeleton, respectively. Bim (Bcl-2 interacting mediator of 

cell death) exists in three major isoforms that are generated by alternative splicing: BimEL 

(extra long), BimL (long) and BimS (short). In contrast to BimEL and BimL, BimS does not 

appear to interact with the microtubule complex, yet is still capable of exerting 

proapoptotic activites. In healthy cells, most of the major Bim isoform molecules (BimEL, 

BimL) are bound to the microtubule-associated dynein motor complex by connection to 

LC8 dynein light chain. Therefore, Bim is unable to promote cell death. Apoptotic stimuli 

are thought to disrupt this interaction, causing LC8 and Bim to dissociate from the motor 

complex and translocate together to the mitochondria where Bim is thought to interact 

with Bcl-2 or its homologues and antagonize their antiapoptotic activity [91]. Moreover, 

the activity of Bim was shown to be regulated by the antiapoptotic Bcl-2 family member 

Mcl-1, which possesses a high affinity binding capacity for Bim. Upon apoptotic stimuli, 

the Mcl-1/Bim complex is disrupted allowing Bim to mediate the apoptotic cascade [92-

94]. A similar process occurs with Bmf. Bmf is normally sequestered by the dynein light 

chain 2, but under certain damage signals such as loss of cell attachment (anoikis) Bmf is 

unleashed to trigger an apoptotic response. 

Bad is switched on and off primarily by rapid changes in phosphorylation, which 

modulates its protein-protein interactions and its binding to 14-3-3 scaffold proteins. 

Nonphosphorylated Bad is active due to the exposure of the BH3 domain, while 
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phosphorylated Bad is sequesterd by 14-3-3 molecules. Noxa, Puma and Hrk are 

regulated at the transcriptional level by p53. 

 

 
Figure I.11: Modes of post-translational regulation of BH3-only proteins. 

In healthy cells, BH3-only proteins are held in check by a variety of strategies. Bim and Bmf are 
sequestered to the microtubules or actin cytoskeleton, respectively, via interaction with a dynein 
light chain. Phosphorylated Bad is bound by 14-3-3 scaffold proteins. Bid is synthesized as a 
precursor, which requires proteolytic cleavage to be fully active. 
 

Quantitative assessment of the binding of BH3-only proteins to all Bcl-2 family members 

have revealed an enormous variety in the affinities of different pairs. Bim, tBid and Puma 

bind to all five prosurvival Bcl-2 family proteins, whereas other BH3-only proteins exhibit 

marked selectivity (Figure I.12), e.g. Bad and Bmf bind only Bcl-2, Bcl-xL and Bcl-w, Noxa 

engages only Mcl-1 and A1 [95]. Importantly, the promiscous binding molecules are much 

more potent killers than those selectively engaging Bcl-2-like proteins. Therefore, efficient 

apoptosis requires neutralization of multiple prosurvival proteins. 

 

 
Figure I.12: Differing binding profiles and apoptotic potency of BH3-only proteins. 

The ability of Bim, Puma and tBid to engage all prosurvival proteins contrasts with the selective 
binding of others, characterizing them as potent killers. 
 



25  INTRODUCTION 

 

Because of their multiplicity and complex regulation, BH3-only proteins execute a key 

role in the control of the intrinsic apoptosis pathway. As the multidomain proapoptotic 

Bcl-2 members Bax and Bak are constitutively expressed and inactive in nonapoptotic 

cells, they must be activated by BH3-only proteins to permeabilize the outer 

mitochondrial membrane [96]. In the signaling cascade, the BH3-only proteins act 

upstream of Bax and Bak, because they cannot induce apoptosis in cells lacking these two 

proteins. 

 

Adams et al. [95, 97] describe two distinct models, suggesting how BH3-only proteins 

induce acitvation of the proapoptotic Bax and Bak. In the direct activation model (Figure 

I.13A), certain BH3-only proteins, called activators (Bim, tBid and Puma) are able to bind 

Bax and Bak directly, whereas the remaining BH3-only proteins, termed sensitizers, bind 

only to the prosurvival Bcl-2 family members. Thereby any bound forms of Bim and tBid 

are displaced from antiapoptotic proteins, allowing them to directly activate Bax and Bak 

[98]. On the other hand, the indirect activation model (Figure I.13B) describes all the BH3-

only proteins engaging only their prosurvival relatives and thus preventing them from 

neutralizing Bax and Bak activation [99, 100]. As Bim and tBid inhibit all the prosurvival 

Bcl-2 proteins, they are considered as the most important inducers of apoptosis in this 

model. 

 

A        sensitizer    activator  B  selective             promiscous 

 
Figure I.13: Direct and indirect activation models for Bax and Bak. 

(A) In the direct model, the putative activators Bim and tBid bind directly to Bax and Bak causing 
their activation, whereas the sensitizers only bind to the prosurvival Bcl-2 homologs (Bcl-2). 
(B) In the indirect activation model, the BH3-only proteins are proposed to activate Bax and Bak 
by displacing them from the multiple prosurvival Bcl-2 proteins that sequester their active forms. 
In this model, Bim and tBid are more potent than Bad and other BH3-only proteins owing to the 
greater range of prosurvival proteins that they can engage and neutralize. 
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6 APOPTOSIS AS A BARRIER TO METASTASIS 

6.1 THE METASTATIC CASCADE 

Metastasis is the spread of tumor cells from the primary neoplasm to distant organs and 

their relentless growth, making it one of the most fearsome aspects of cancer. Primary 

tumors are responsible for only about 10% of cancer deaths, the remaining 90% of patients 

die from cancerous growths that are discovered at sites far away from the primary 

tumors. These metastases are formed by cancer cells that have left the primary tumor 

mass and traveled by either blood or lymphatic vessels to seek out new sites throughout 

the body where they may form colonies. Such wandering cells are the dangerous 

manifestations of the cancer process. The understanding of invasion and metastasis is still 

quite incomplete, explaining why these late steps of tumor progression represent the 

major unsolved problems of cancer pathology. 

 

 
 

Figure I.14: The metastatic cascade (adapted from [101]). 

The classical metastatic cascade encompasses intravasation by tumor cells, their circulation in 
lymph and blood vascular systems, arrest in distant organs, extravasation and growth into 
metastatic foci. 
 

As illustrated in Figure I.14, metastasis is a complex multi-stage process involving a series 

of discrete events that occur in sequence. After the initial transformation and onset of 

primary tumor growth, cells in the primary tumor invade the surrounding stroma and 

migrate towards blood vessels or lymphatics. Following the entry of cells into the blood 

vessels (intravasation), the tumor cells are carried by the circulatory system to other parts 

of the body where they arrest. The arrested cells may proliferate in the vessel or 

extravasate to grow in a secondary organ (colonization) [102]. The small probability of 

successfully completing all steps of this cascade explains the low likelihood that any 

single cancer cell leaving the primary tumor will succeed in becoming the founder of a 
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distant, macroscopic metastasis. Hence, metastasis is a very inefficient process, only 0.01% 

of metastatic clonal cancer cells are able to generate metastatic foci.  

 

The ability of  cancer cells to undero migration allows a change of position within the 

tissues and to enter lymphatic and blood vessels for dissemination into the circulation. To 

migrate, the cell undergoes a transition from a non-polarized to a polarized state, thereby 

modifying its shape to interact with the surrounding matrix. These interactions are 

integrated in the concepts of focal adhesion dynamics, actomysin polymerization and 

contraction. In this respect, cell adhesion to the extracellular matrix (ECM) plays a central 

role in this process [103]. Growing cell protrusions touch the ECM via adhesion 

molecules, most notably transmembrane receptors of the integrin family, forming focal 

contacts. The focal contacts are dynamic in assembly and the turnover of adhesion and de-

adhesion events allows the cell to move. However, the ECM also provides a barrier 

towards the advancing cell body. The most critical event in cancer metastasis is the 

invasion of basement membranes. The degradation of the basement membranes makes 

the difference between benign and malignant tumors. During the dynamic process of 

tumor cell invasion, the cell activates specific proteases, such as matrix metalloproteinases 

(MMP), serine proteinases and cathepsins to degrade matrix components. ECM-

degrading enzymes are frequently upregulated in tumor cells thereby facilitating 

migration and invasion in vitro as well as dissemination and metastasis in vivo. 

 

 

6.2 APOPTOSIS IN THE METASTATIC PROCESS 

Apoptosis is an important mechanism that negatively regulates cancer development. 

Aberrant cell survival resulting from inhibition of apoptosis is expected to contribute to 

tumor progression, oncogenesis and resistance to apoptosis, and is one of the required 

selective advantages that a tumor cell has to form a tumor.  

 

The first step of metastatic dissemination is characterized by the detachment of epithelial 

cells from the extracellular matrix (ECM) and disruption of the actin skeleton. Detachment 

of cells from the extracellular matrix often results in apoptotic cell death, termed anoikis, 

which is derived from the Greek word for “homelessness“. The anchorage of cells to 

components of the extracellular matrix is mainly engaged by integrins, transmembrane 

cell surface receptors composed of a beta and an alpha chain forming heterodimers [104]. 

ECM-dependent inhibition of apoptosis is likely to be mediated by the intergrin-activated 

signaling pathway. Upon detachment from the ECM, the proapoptotic Bcl-2 proteins Bim 

and Bmf are released from its sequestration by the cytoskeleton and trigger the intrinsic 

apoptotic pathway [105]. Furthermore, proteins involved in integrin-mediated signaling, 

like focal-adhesion kinase (FAK), are important players in metastasis. FAK is a non-
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receptor tyrosine kinase that resides at the intracellular tails of integrins and interacts with 

various cytoskeletal proteins. It is composed of an N-terminal FERM (protein4.1, ezrin, 

radixin and moesin homology) domain, a central kinase domain, proline-rich regions 

(PRR) and a C-terminal focal-adhesion targeting (FAT) domain (Figure I.15).  

 

 
 

Figure I.15: Focal adhesion kinase structural features. 

The kinase domain of FAK is flanked by the N-terminus that harbors the FERM domain, and by 
the C-terminus consisting, in addition to the proline rich domains, of the FAT domain. The 
autophosphorylation site (Tyr397) as well as the phosphorylation of two important tyrosins, 
Tyr576 and Tyr577, is required for its activity. 
 

The FERM domain mediates protein-protein interactions and acts as a regulator of FAK 

activity whereas the prolin-rich regions function as binding sites for SRC. FAT promotes 

colocalization of FAK with integrins and focal contacts. Furthermore, FAK is able to 

associate with integrins indirectly through binding to integrin-associated proteins such as 

paxillin and talin (Figure I.16). 

 

 

Figure I.16: Integrin signaling pathway. 

Integrins are heterodimeric transmembrane receptors anchoring the cell to components of the 
extracellular matrix. The focal adhesion kinase (FAK) functions as a key player in the integrin-
mediated signal transduction. Upon integrin ligation FAK is phosphorylated at tyrosin 397 and 
interacts with numerous signaling molecules. FAK mediates the activation of several mitotic 
signaling pathways, such as the PI3k, MAPK, JNK and PKC pathway, thereby FAK influences 
cell adhesion and migration as well as cell-survival pathways. 
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The activity of FAK is regulated at the post-translational level by phosphorylation. 

Autophosphorylation of FAK on a particular tyrosine residue, Tyr397, occurs in response 

to many stimuli, e.g. integrin engagement, thereby recruiting SRC. The association of SRC 

with FAK leads to a conformational change and activation of the kinase activity of SRC, 

which in turn phosphorylates FAK at Tyr576 and Tyr577 within the catalytic domain to 

achieve fully enzymatic activity of FAK. Activated FAK triggers several mitotic signaling 

pathways, such as phosphoinositide-3-OH kinase (PI3k) pathway with the downstream 

target protein kinase B (PKB/Akt), the protein kinase C (PKC) pathway and the Jun-NH2-

terminal kinase (JNK)/mitogen activated protein kinase (MAPK)-pathway (Figure I.16), 

thereby influencing cell adhesion, migration and cell survival. Phosphorylation of FAK at 

Tyr397 has been found in invasive tumors but not in normal epithelial cells [106]. 

Moreover, FAK is frequently overexpressed in metastatic cancers and its activation seems 

to be associated with cell survival [106, 107]. 

 

 
Figure I.17: Resistance of anoikis is a crucial feature of metastatic cells. 

In the primary tumor, integrin-mediated attachment to the extracellular matrix (ECM) triggers the 
phosphorylation of FAK leading to the local organization of the cytoskeleton and to cell survival 
by inducing antiapoptotic pathways. After cell detachment from the ECM, disruption of the actin 
cytoskeleton results in the loss of survival signals and cell death by mitochondria-mediated 
apoptosis. 
 

Since metastatic cells have to survive in a detached state during metastasis, it may be 

necessary for tumor cells to overcome anoikis to disseminate (Figure I.17, modified from 

[105]). Therefore, metastatic cells are characterized by their resistance to anoikis and their 

ability to survive in the absence of extracellular matrix components. Several known 

apoptotic and antiapoptotic proteins are shown to influence both anoikis and metastasis. 
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Although the precise mechanisms have yet to be studied, resistance of apoptosis may be 

mediated by dysregulation of Bcl-2 family proteins (described in I.5.3.1) and may play a 

prominent role both in tumorigenesis and metastasis. In this respect, the expression levels 

of the antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL have been reported to correlate 

with the metastatic potential. Overexpression of Bcl-2 as well as Bcl-xL increases the 

formation of distant metastases without affecting primary tumor growth [108, 109]. 

Furthermore, Bcl-xL was identified as a suppressor of cytoskeleton-dependent cell death 

[109]. 

 

Moreover, the loss of function of proapoptotic genes such as BAX and the downregulation 

of death-associated protein kinase (DAPK) [110] correlates with the tumor progression 

and favors metastasis. These studies demonstrate that crucial apoptotic modulators are 

deregulated in metastatic cancer cells and support the hypothesis that suppression of 

apoptosis plays an important role during the metastatic process. 
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II MATERIALS AND METHODS 

1 MATERIALS 

1.1 SPONGISTATIN 1 

Spongistatin 1, isolated as described in [24], was kindly provided by Prof. G. R. Pettit 

(Cancer Research Institute, Arizona State University, Tempe, USA). The 10 mM stock 

solution prepared in DMSO was stored at –20°C. 

 

 

1.2 REAGENTS 

Reagent     Company 

 

5-Fluoruracil     Sigma, Taufkirchen, Germany 

BI-6C9      Sigma, Taufkirchen, Germany 

Bradford     Bio-Rad, Munich, Germany 

Collagen A     SERVA, Heidelberg, Germany 

Collagen G     BIOCHROME AG, Berlin, Germany 

CompleteTM     Roche, Mannheim, Germany 

Culture flasks, plates, dishes   TPP, Trasadingen, Switzerland 

CytoskelfixTM     Cytoskeleton, Offenbach, Germany 

DMEM     PAN Biotech, Aidenbach, Germany 

DMSO      Roth GmbH,  Karlsruhe, Germany 

ECL PlusTM     Amersham Biosciences, Freiburg, Germany 

FCS gold     PAA Laboratories, Cölbe, Germany 

Human FGF-basic    PeproTech, Rocky Hill, NY, USA 

Gemcitabine     Eli Lilly, Bad Homburg, Germany 

Hoechst 33342     Sigma, Taufkirchen, Germany 

L-glutamine     PAN Biotech, Aidenbach, Germany 

MatrigelTM     BD Biosciences, Heidelberg, Germany 

McCoy’s 5a     PAN Biotech, Aidenbach, Germany 

MitoTracker Red    Molecular Probes, Karlsruhe, Germany 

MTT      Sigma, Taufkirchen, Germany 

Penicillin     PAN Biotech, Aidenbach, Germany 

Polyacrylamide    Roth GmbH, Karlsruhe, Germany 

Poly-HEMA     Sigma, Taufkirchen, Germany 

Precision ALL Blue     Bio-Rad, Munich, Germany 

Propidium iodide    Sigma, Taufkirchen, Germany 

Q-VD-OPh     Calbiochem, Schwalbach, Germany 
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RPMI 1640     PAN Biotech, Aidenbach, Germany 

Staurosporine     Calbiochem, Schwalbach, Germany 

Streptomycin     PAN Biotech, Aidenbach, Germany 

Taxol      Sigma, Taufkirchen, Germany 

Vinblastine     Sigma, Taufkirchen, Germany 

zVAD.fmk     Calbiochem, Schwalbach, Germany 

 

 

1.3 TECHNICAL EQUIPMENT 

Axiovert 25 (Zeiss)    Inverted microscope 

Axiovert 200 (Zeiss)    Inverted microscope 

Curix 60 (Agfa)    Tabletop film processor 

FACSCalibur (Becton Dickinson)  Flow cytometer 

LSM 510 Meta (Zeiss)    Confocal laser scanning microscope 

NucleofectorTM II (Amaxa)   Electroporation device 

Odyssey (Li-Cor)    Imaging system for Western Blot analysis 

SLT spectra (SLT Labinstruments)  ELISA plate reader 

SpectraFluor PlusTM (Tecan)                            Plate-reading multifunction photometer 

SunriseTM (Tecan)    Microplate absorbance reader 

Vi-CellTM (Beckman Coulter)   Cell viability analyser 

 

 

2 CELL CULTURE 

2.1 CELL LINES 

The epithelial breast cancer cell line MCF-7 and caspase-3 reconstituted MCF-7 cells 

(kindly provided by K. Schulze-Osthoff, University of Düsseldorf, Germany) [111] were 

cultured (37°C and 5% CO2) in RPMI 1640 containing 2 mM L-glutamine (PAN Biotech, 

Aidenbach, Germany) supplemented with 10% heat-inactivated FCS (PAA Laboratories, 

Cölbe, Germany). The human melanoma cell line SK-Mel-5 was obtained from ATCC 

American Type Culture Collection (Manassas, USA) and the human pancreatic cancer cells 

Panc-1 from Prof. Lindl (I.A.Z., Munich, Germany). Both cell lines were cultured in 

DMEM supplemented with 1 mM sodium pyruvate and 10% FCS. The human prostate 

cancer cell line LNCaP, (kindly provided by I. Jeremias, Helmholtz Center Munich, 

Germany) was cultured in RPMI 1640 supplemented with 10% FCS. The human ovarian 

cancer cell line SK-OV-3, purchased from ATCC, was cultured in McCoy’s 5a containing 

10% FCS. The human pancreatic cancer cell line L3.6pl [112] (kindly provided by C. Bruns, 

Klinikum Großhadern, Munich, Germany) was cultured in DMEM supplemented with 1 
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mM sodium pyruvate, non-essential amino acids and 10% FCS. A summary of all used 

cancer cell lines is listed in Table II.1. 

 

Table II.1: Summary of used cancer cell lines. 

Carcinoma cell lines Derived tumor 

L3.6pl Human pancreatic tumor 
LNCaP Human prostate cancer 
MCF-7 +/- caspase-3 Human epithelial breast cancer 
Panc-1 Human pancreatic tumor 
SK-Mel-5 Human melanoma 
SK-OV-3 Human ovarian cancer 

 

 

2.2 CULTIVATION 

All cell lines were cultured in tissue culture flasks at 37°C in a humified atmosphere and 

5% CO2. Cell concentration and viability was determined by staining cells with trypan 

blue using a VI-CELLTM cell viability analyzer (Beckman Coulter, Krefeld, Germany). 

 

All used cancer cell lines grow in monolayers adherent to plastic surfaces. Cells were split 

when reaching 85-90% confluence. To maintain genetic stability, cells were not used for 

experiments any longer after reaching passage number 20. Briefly, cells were washed in 

prewarmed PBS (see below) and detached by incubation with 3 ml Trypsin/EDTA (T/E) 

(see below)/75 cm2 flask at 37°C. After detaching, the T/E was inactivated by adding 7 ml 

serum-containing medium. The cell suspension was centrifuged (180 x g, 10 min, RT) and 

resuspended in fresh medium before transferring to culture flasks. For cultivation of the 

L3.6pl cell line, the flasks were coated with Collagen G (0.001% in PBS) 30 min before 

transferring the cells to the flasks. 

 

PBS (pH 7.4) 
 

NaCl     7.20 g 
Na2HPO4    1.48 g 
KH2PO4    0.43 g 
H2O        ad 1,000 ml 
 

 

Trypsin/EDTA (T/E) 
 

Trypsin     0.50 g 
EDTA     0.20 g 
PBS        ad 1,000 ml 
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2.3 SEEDING FOR EXPERIMENTS 

Carcinoma cell lines were detached with T/E and centrifuged as described in II.2.2. The 

cell suspensions were analyzed in the VI-CELLTM, the concentrations were adjusted to 0.3 

x 106 cells/ml and the cells were seeded in 6-, 12-, 24- or 96-well plates approximately 16 h 

before experiments. Similar to cultivation, the 6-, 12-, 24- or 96-well plates were coated 

with Collagen G (0.001% in PBS) 30 min before seeding L3.6pl cells. 

 

 

2.4 FREEZING AND THAWING 

Cryogenic preservation is necessary to obtain a sufficient stock of each cell line. The long 

term storage in liquid nitrogen protects cells from microbial contamination, genetic and 

morphological changes and allows using cells of the similar passage number for 

experiments to increase reproducibility. 

 

Cells in low passages were frozen in special medium (Table II.2) containing higher 

percentage of serum than culture medium and DMSO as a cryoprotector to avoid cell 

rupture. After centrifugation (180 x g, 10 min, 4°C) cells were resuspended in ice-cold 

freezing medium at a concentration of 2-3 x 106 cells/ml. 1.5 ml of the cell suspension was 

transferred into each cryovial and frozen overnight at -20°C. Afterwards, cryovials were 

kept at -80°C for permanent usage or transferred to liquid nitrogen (-196°C) after two days 

for long-term storage. 

 

Table II.2: Freezing medium. 

 L3.6pl LNCaP MCF-7 Panc-1 SK-Mel-5 SK-OV-3 

_ 
RPMI 1640 - 70% 70% - - - 

DMEM 70% - - 70% 80% - 
McCoy’s 5a - - - - - 85% 
FCS gold 20% 20% 20% 20% 10% 10% 
DMSO 10% 10% 10% 10% 10% 5% 

 

The frozen cells were thawed in a water bath (37°C) and subsequently diluted 1:10 with 

prewarmed medium. Cells were centrifuged (180 x g, 10 min, RT) to remove dead cells 

and DMSO. After resuspension in fresh medium, cells were cultured for at least five days 

before conducting any experiment. 
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3 FLOW CYTOMETRY 

3.1 INTRODUCTION 

Flow cytometry has become a technology indispensable in the analysis of cell death 

allowing the measurement of various physical characteristics of single cells or particles 

suspended in a fluid at the same time. This method is ideally suited for the rapid, reliable 

and accurate quantitative analysis of selected physical properties of cells, even if these 

cells form a small population within the mixture of cell types. This analysis is performed 

at rates of thousands of cells per second. Measurable parameters include particle’s relative 

size, relative granularity of internal complexity and relative fluorescence intensity. The 

applications of flow cytometry range from the analysis of cell cycle, cell viability, 

apoptosis, membrane potential, calcium influx, protein expression and localization to the 

investigation of surface antigens and enzymatic activity. 

 

Flow cytometry uses light scattering, light exitation and the emission of fluorochrome 

molecules to generate specific multi-parameter data sets from particles and cells in the size 

rage of 0.5 µm to 40 µm. The particles or cells are presented to the laser by the principle of 

hydrodynamic focusing. In the flow chamber (Figure II.1, modified from [113]) the 

suspension of single cells emerges from the sample needle into a surrounding sheath fluid 

moving with greater velocity. The sheath fluid accelerates the particles, restricts them to 

the center of the sample core and forces them to travel one by one in the central portion of 

the fluid. 

 
Figure II.1: Hydrodynamic focusing in the flow chamber. 

 

When the cells pass the laser beam, the illuminating light is scattered and simultanously, if 

particles have been stained with a fluorescent dye capable to absorb the laser light, 

fluorescence emission occurs. Optical filters collect and send scattered light and emitted 

fluorescence to different detectors (Figure II.2). Morphological parameters like the relative 

size and granularity of a cell influence the light scattering. Low angle scattered light 
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depends on cell size and is measured in line with the laser beam, called forward scatter 

(FSC). The sideward scatter (SSC) which is perpendicular to the laser, bears information 

on the cell light refractive and reflective properties and reveals optical inhomogenity of the 

cell structure including the results from condensation of the cytoplasm or nucleus and 

granularity.  

Fluorescence was measured using the appropriate filters for the respective fluorochromes 

(e.g. FL2 for detection of propidium iodide). All measurements were performed on a 

FACSCalibur (Becton Dickinson, Heidelberg, Germany) equipped with a 488 nm argon 

laser. Sheath fluid is composed as seen below (FACS buffer). 

 

 
 

Figure II.2: Optical bench diagram of a flow cytometer (adapted from [114]). 

 

 

FACS buffer 
 

NaCl     8.12 g 
KH2PO4    0.26 g 
Na2HPO4    2.35 g 
KCl     0.28 g 
Na2EDTA    0.36 g 
LiCl     0.43 g 
NaN3     0.20 g 
H2O     ad 1,000 ml, pH 7.37 
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3.2 NICOLETTI ASSAY 

A characteristic event during the apoptotic process is the activaton of endogenous 

endonucleases causing the fragmentation of nuclear DNA into oligonucleosomal-size 

fragments. Hence, an easy and commonly used assay to quantify apoptotic cell death is 

the determination of nuclei with a subdiploid DNA content after staining with propidium 

iodide (PI). Because of its rapidness and simplicity, this method first described by Nicoletti 

et al. [115] is one of the most widely used for the quantification of apoptosis. 

Briefly, cells are permeabilized in a hypotonic buffer (HFS, hypotonic fluorochrome 

solution) containing the DNA intercalating dye propidium iodide and the resulting red 

fluorescence is measured by flow cytometry. Figure II.3 shows characteristic histrograms 

of untreated control cells and cells stimulated with spongistatin 1 (500 pM, 48 h) after 

staining with propidium iodide. Most cells of untreated cell populations are in G0/G1 

phase containing 2n DNA content. Cells in G2/M phase emit a higher amount of 

fluorescence due to their 4n DNA content, while cells in the S phase appear between the 

G0/G1 and G2/M peaks. DNA fragments of apoptotic cells take up less dye and thus 

appear in a hypodiploid peak “left“ to the G0/G1 peak in the FL2 histogram. 

 

 

Figure II.3: Histogram of untreated and treated PI-stained cells. 

Left panel: Untreated MCF-7 cells stained with PI. 
Right panel: PI-stained MCF-7 cells stimulated with 500 pM spongistatin 1 for 48 h. 
 

Cells were seeded as described in II.2.3 and either left untreated or stimulated with the 

desired substances. In some experiments, caspase inhibitors were added 1 hour before 

stimulation. After various incubation times, cells were harvested by detachment with T/E 

and centrifugation (600 x g, 10 min, 4°C) and washed once with cold PBS. Cells were 
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incubated in 250 µl HFS buffer containing PI (see below) overnight at 4°C and analyzed by 

flow cytometry on a FACSCalibur. The logarithmic mode of FL2 was recorded and the 

instrument settings were adjusted by assigning a fluorescence intensity of 103 to the G0/G1 

peak. The percentage of sub G1 region was quantified as apoptotic cells. Because of the 

elevated spontaneous apoptosis rate (about 10%) of cells transfected with siRNA, results of 

experiments with transfected cells are represented as percental specific apoptosis. Thereby 

the spontaneous apoptosis rate of the control cells is considered as 0% and the apoptosis rate 

of the stimulated cells is set in correlation. 

 

HFS buffer 
 

Prodidium iodide  50 g 
Sodium citrate   0.1 % (w/v) 
Triton X-100   0.1 % (v/v) 
PBS    ad 1 ml 
 
Propidium iodide was added under light protection just before use. 
 

 

3.3 BAX ACTIVATION 

Activation of Bax was measured by FACS analysis upon staining of activated Bax with an 

antibody specifically recognizing the conformationally changed Bax protein. MCF-7 cells 

were left untreated or treated with spongistatin 1. After 8 h cells were harvested with T/E, 

washed with PBS and fixed in PBS/0.5% paraformaldehyde on ice for 30 min. Then, cells 

were washed three times in PBS/1% FCS. Staining with 0.5 µg anti-Bax 6A7 was 

performed in staining buffer (PBS, 1% FCS, 50 µg/ml digitonin). After three washing 

steps, cells were resuspended in staining buffer containing 0.1 µg Alexafluor 488-labeled 

goat-anti-mouse (Molecular Probes, Karlsruhe, Germany) and incubated on ice for 30 min 

in the dark. Following the incubation step, cells were washed three times and measured by 

flow cytometry to detect the conformational change of Bax as evidenced by a shift in FL1 

channel. 

 

 

4 MTT VIABILITY ASSAY 

The mitochondrial respiratory activity is a parameter for cell viability that is used to 

determine the cytotoxic potential of a substance by the MTT assay. This colorimetric assay 

utilizes the tetrazolium salt MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide) and is based on the reduction of MTT by enzymes of the mitochondrial electron 

transport assembly which leads to the formation of a blue formazan derivative (Figure 

II.4). This reduction is proportional to the activity of the assembly and thus to the viability 
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of the cells. The absorption of the blue formazan derivative can be measured at 550 nm in 

a spectrophotometer. 

 

 

Figure II.4: Reduction of MTT to the blue formazan. 

 

The day before stimulation, cells were seeded at a concentration of 0.15 x 105 cells/ml in a 

96-well plate (100 µl per well). After stimulation 10 µl MTT solution (stock solution: 5 

mg/ml in PBS, sterile filtrated and kept in aliquots at -20°C) was added to each well and 

incubated at 37°C for 60 minutes. Afterwards, cells were lysed by adding 190 µl DMSO to 

each well and incubated at room temperature under gentle agitation, protected from light 

for an additional hour. Finally, the absorption of the solubilized formazan crystals was 

measured at 550 nm in an ELISA plate reader (SLT spectra, SLT Labinstruments, 

Crailsheim, Germany). 

 

 

5 COLONY FORMATION ASSAY 

The colony formation assay or clonogenic assay is an in vitro long term cell survival assay 

to determine the effectiveness of cytotoxic agents based on the ability of a single cell to 

grow into a colony. The assay essentially assesses each individual cell in the population to 

undergo “unlimited“ division. 

 

Cells were seeded as described in II.2.2 and left untreated or treated with spongistatin 1 or 

the respective positive controls for 3 h. Subsequently, cells were harvested with T/E and 

washed with PBS to remove any remaining substances. 500 cells per well were seeded as 

triplicate in a 6-well plate using the ViCellTM to determine the cell count. After 7 days of 

culture, cells were stained with 0.5% crystal violet in 20% methanol and the colonies were 

scored. Untreated cells were set at 100% viability. Images of the stained colonies were 

taken with a digital camera (Canon, Krefeld, Germany). 
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6 IN VITRO METASTASIS ASSAYS 

6.1 CELL PROLIFERATION 

In order to assess the effects of spongistatin 1 on cell proliferation, the crystal violet 

staining assay was performed. 

 

1.5 x 103 L3.6pl cells were seeded into flat-bottom 96-well plates coated with Collagen G 

(0.001% in PBS). 24 h after incubation, cells in a reference plate were stained with crystal 

violet solution, serving as baseline (CO-0). The cells in the remaining plates were either left 

untreated or stimulated with increasing concentrations of spongistatin 1 or the respective 

positive controls. Upon an incubation period of 72 h, the medium was removed and cells 

were stained with 100 µl crystal violet solution for 10 min at room temperature. After five 

wash steps with distilled water, bound dye was solubilized by the addition of 100 µl 

dissolving buffer to each well. The absorbance was measured at 540 nm in a plate-reading 

photometer (SPECTRAFluor Plus, Tecan, Crailsheim, Germany). 

 

Crystal violet solution 
 

Crystal violet    0.5% 
Methanol    20% 
H2O 
 

 

Dissolving buffer 
 

Sodium citrate 0.1 M    50% 
Ethanol     50% 
 

 

6.2 CELL MIGRATION ASSAY / WOUND HEALING ASSAY 

The “wound healing“ assay was used to investigate the motility of cancer cells. In this 

assay, a confluent cell monolayer is wounded and the ability of the cells to migrate and 

close the artificial scatch is determined. 

 

3 x 105 L3.6pl cells were seeded in Collagen G (0.001% in PBS) coated 24-well plates and 

grown as monolayers until they reach confluence. Afterwards, cells were scratched in a 

line across the well using a tip of a micropipette. To remove the floating cellular debris, the 

wounded monolayers were washed twice with PBS and refed with growth medium 

supplemented with 10% FCS. As a negative control, cells were cultured in starving 

medium without FCS to prevent migration. Cells were left either untreated or stimulated 

with spongistatin 1 or the respective positive controls. 16 h after stimulation, the area of 

cell-free wound was detected using an imaging system (TILL Photonics GmbH, 
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Gräfelfing, Germany) and a CCD-camera connected to an Axiovert 200 microscope (Zeiss, 

Oberkochen, Germany). The images were analyzed and the percentage of cell-covered 

area in relation to the total image area was quantified by a specifically designed software 

(S.CO LifeScience, Garching, Germany) as displayed in Figure II.5. Migration was 

expressed as the ratio of pixels covered by cells (yellow) and the number of pixels in the 

wound area (gray). 

 

A    B    C 

 

Figure II.5: Quantitative evaluation of S.CO LifeSciences. 

(A) L3.6pl cells stimulated with growth medium supplemented with 10% FCS. (B) Cells treated with 
spongistatin 1 (100 pM, 16 h). (C) Cells starved with growth medium without FCS for 16 h. The 
uncovered area is displayed in gray, whereas the cell-covered area is highlighted in yellow. 
 

 

6.3 CELL INVASION ASSAY 

One of the most critical events in cancer metastasis is the invasion of basement 

membranes. Basal membrane is a thin continous sheet of extracellular matrix enveloping 

organs and represents a barrier that tumor cells have to cross in order to disseminate. 

During the dynamic process of tumor cell invasion, the cell activates specific proteases to 

degrade matrix components.  

 

In order to evaluate in vitro the metastatic potential of cancer cells, a transwell assay, the 

so-called modified “Boyden chamber“ developed 1987 by Albini et al. [116-118] was 

performed. This assay utilizes a reconstituted basal membrane extracted from the murine 

Engelbreth-Holm-Swarm sarcoma, commonly known as MatrigelTM with the main 

components collagen IV, laminin, entactin and perlecan. MatrigelTM can simply be applied 

in its cold, liquid form over polycarbonate filters (standard size 8 µm) allowing the 

formation of a polymerized matrix. Several growth factors such as vascular endothelial 

growth factor, basic fibroblast growth factor and hepatocyte growth factor stimulate cell 

motility and invasion of target cells, and are frequently used as chemoattractants in the 

chemoinvasion test. The cell invasion assay can be performed in numerous variations 

concerning especially the cell type, MatrigelTM concentration, diameter of the 

polycarbonate filters, chemoattractant and time of incubation. 
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The invasion assay was carried out in a Boyden chamber with polycarbonate filter inserts 

for 24-well plates containing 8 µm pores (BioCoat Inserts, Becton Dickinson Labware, 

Heidelberg, Germany), as illustrated in Figure II.6. Filters were coated on ice with 70 µl 

MatrigelTM (1:20 in starving medium without FCS). 1 x 105 L3.6pl cells were plated in 250 

µl of starving medium (culture medium supplemented with 1% FCS) into the upper 

chamber. The lower chamber was filled with 500 µl of 10% FCS-DMEM supplemented 

with 100 nM hFGF as chemoattractant. Subsequently, cells in the upper chamber were left 

untreated or stimulated with spongistatin 1 or taxol as positive control. After incubation 

for 24 h, noninvaded cells in the inserts were removed with cotton swabs. The invaded 

cells on the underside were fixed with 4% formaldehyde and stained with crystal violet. 

The stained cells were washed five times with H2O, the bound dye was solubilized by 

addition of 300 µl dissolving buffer to each well (II.6.1). The absorbance was measured at 

540 nm in a plate-reading photometer (SPECTRAFluor Plus, Tecan, Crailsheim, Germany). 

 

 
Figure II.6: Schematic diagram of the chemoinvasion assay. 

 

 

6.4 ADHESION ASSAY 

The significance of aberrant cellular adhesion for cancer metastasis is widely recognized. 

In vitro adhesion assays were performed to evaluate the effects of spongistatin 1 on the 

adhesive properties of L3.6pl cells. L3.6pl cells were prestimulated under confluent 

conditions with spongistatin 1 or the respective controls for 3 h. Subsequently, cells were 

harvested with T/E, seeded in 24-well plates precoated with collagen G (0.001% in PBS) 

and allowed to adhere for 16 h. Nonadhered cells were removed by gently washing with 
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PBS and the adhered cells were stained with crystal violet. The stained cells were washed 

five times with H2O, the bound dye was solubilized by addition of 300 µl dissolving buffer 

to each well (II.6.1). The absorbance was measured at 540 nm in a plate-reading 

photometer (SPECTRAFluor Plus, Tecan, Crailsheim, Germany). 

 

 

6.5 INDUCTION OF ANOIKIS 

Anoikis is defined by apoptotic cell death in response to inappropriate cell-matrix 

interactions and plays a significant role in tumor metastasis. Therefore, DNA-

fragmentation of L3.6pl cells was investigated under detached conditions. 

 

To prevent cell adhesion, 24-well plates were coated with a solution of 

polyhydroxyethylmethacrylate (poly-HEMA, Sigma-Aldrich, Taufkirchen, Germany). 

Poly-HEMA was dissolved at 10 mg/ml in ethanol at 65°C. To coat 24-well plates, 200 µl 

of poly-HEMA solution was added to each well. The plates were kept at 37°C for at least 3 

days until the solvent had completely evaporated. For anoikis induction, L3.6pl cells were 

harvested with Trypsin/EDTA and transferred to plates coated with poly-HEMA. 0.15 x 

106 resuspended cells, cultured in growth medium supplemented with 10% FCS, were left 

untreated or stimulated with spongistatin 1 (SP; 500 pM) for the indicated time points. 

Subsequently, cells were gently recovered and DNA fragmentation was analyzed by FACS 

analysis using the Nicoletti method (described in II.5.2). 

 

 

7 MICROSCOPY 

7.1 LIGHT MICROSCOPY 

The characteristic morphological changes of apoptosis as well as other forms of 

programmed cell death, such as cell shrinkage, swelling or formation of apoptotic bodies, 

can be easily detected by light microscopy. 

 

3 x 105 cells/ml (500 µl, 24-well plate) were left untreated or stimulated with the required 

substances for different time periods. Cells were viewed with an Axiovert 25 microscope 

(Zeiss, Oberkochen, Germany) at 40 x magnification. Images were obtained with a 

connected CCD-camera. 
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7.2 FLUORESCENCE MICROSCOPY 

Vital staining of DNA with Hoechst 33342 (bisBenzimide) allows the visualization of DNA 

condensation, a characteristic feature of apoptotic cells, with a fluorescence microscope. 

Hoechst 33342 is a cell permeable fluorescent dye that intercalates in the DNA due to its 

planar structure (Figure II.7). Since the DNA is distributed evenly in the nucleus, healthy 

cells emit only a weak blue fluorescence. Contrary to this, the nucleus of apoptotic cells is 

smaller and therefore shows a strong signal emitted from the condensed DNA. 

 
Figure II.7: Chemical structure of Hoechst 33342. 

 

3 x 105 cells/ml (500 µl, 24-well plate) were left untreated or stimulated with spongistatin 1 

for 48 h. Hoechst solution (final concentration 5 µg/ml) was added to the cells and 

incubated at 37°C for 5 min. Subsequently, pictures were taken using a CCD-camera 

connected to an Axiovert 200 microscope (Zeiss, Jena, Germany). 

 

 

7.3 CONFOCAL LASER SCANNING MICROSCOPY 

Confocal microscopes are increasingly used in life sciences due to the many advantages 

they offer. Among them, the extremely high-quality images are obtained with a maximum 

resolution, three-dimensional information of thick specimens can be received and 

colocalizations of signals from different fluorochromes can be reliably studied. Confocal 

can be defined as “having the same focus“, the final image has the same focus as the point 

of focus in the object. A confocal microscope is able to filter out the out-of-focus light from 

above and below the point of focus in the object by a pinhole, allowing high-quality 

images with ultimate resolution. 

For the visualization of Omi/HtrA2, AIF, EndoG and tubulin during apoptosis, a LSM 510 

Meta (Zeiss, Oberkochen, Germany) was used. Figure II.8 represents schematically the 

beam path of this confocal laser scanning microscope. The excitation light is reflected by a 

main dichroic beamsplitter and focused into the specimen by the objective. The focused 

excitation light is scanned through the specimen point by point. The light returned or the 

fluorescent radiation emitted by the specimen is collected by the objective and focused on 

to a confocal pinhole which allows only the in-focus portion of the light to be imaged. 
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Light passing through the image pinhole is detected by a photodetector while out-of-focus 

interference is rejected. 

 
Figure II.8: LSM 510 Meta beam path (adapted from [119]). 

 

In order to study the localization of Omi/HtrA2, AIF and EndoG during apoptosis, MCF-7 

cells were seeded on glass coverslips coated with collagen A (10% in PBS) in 24-well 

plates. 1 hour prior to the end of stimulation cells were stained with 100 nM Mitotracker 

Red 580 (Molecular Probes, Karlsruhe, Germany). After three wash steps with PBS, cells 

were fixed with 4% paraformaldehyde in PBS for 15 min at room temperature, followed by 

permeabilization through incubation with 0.2% Triton X-100 in PBS for 2 min. Cells were 

blocked with 0.2% BSA and incubated with specific antibodies against Omi/HtrA2, AIF 

and EndoG (Table II.4). The proteins were visualized by secondary antibodies directly 

labeled with Alexa Fluor  488 (Table II.5). Nuclei were stained with the fluorescent dye 

Hoechst 33342 (final concentration 5 µg/ml). Upon washing with PBS, glass coverslips 

were covered with one drop of aqueous mounting medium (Immunotech, Marseille, 

France) and mounted on a microscope slide. Dual-channel images were taken using a 

confocal laser scanning microscope.  

 

Investigating the depolymerization of tubulin by spongistatin 1, MCF-7 cells were 

transiently transfected with an expression plasmid for EGFP-C1-tubulin (a gift from 

Linder, University of Munich, Germany) using the Nucleofector™ II (Amaxa, Cologne, 

Germany) according to manufacturer’s instructions. The transfected cells were seeded on 

glass coverslips coated with collagen A (10% in PBS) for overnight culture. After 
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stimulation, cells were fixed with 4% paraformaldehyde in PBS for 15 min, washed three 

times, and glass coverslips were mounted in aqueous mounting medium (Immunotech, 

Marseille, France). Images were taken using a confocal laser scanning microscope.  

 

 

8 WESTERN BLOT 

Western Blot is a method extensively used by investigators to identify specific proteins 

present in a given sample usually prepared from cell lysates. Denaturated proteins are 

first separated by mass utilizing gel electrophoresis, transferred (“blotted“) onto a 

membrane and finally visualized by immunodetection using specific antibodies. 

 

 

8.1 SAMPLE PREPARATION 

8.1.1 WHOLE CELL LYSATES 

General lysis buffer 
 

Tris-HCl, pH 7.5     30 mM 
NaCl     150 mM 
EDTA            2 mM 
Triton X-100                  1 % 
Complete

TM
 

 

 

Lysis buffer for phosphorylated proteins 
 

Tris-HCl, pH 7.5     20 mM 
NaCl     137 mM 
Na4P2O7        2 mM 
EDTA         2 mM 
C3H7Na2O6P (Na glycerolphosphate)   20 mM 
NaF       10 mM 
Na3VO4                  2 mM 
PMSF         1 mM 
Triton X-100        1 % 
Glycerol       10 % 
Complete

TM
 

 

 

Sample buffer (5x) 
 

Tris-HCl 3.125 M, pH 6.8  100 l 
Glycerol    500 l 
SDS 20 %    250 l 
DTT 16 %    125 l 
Pyronin Y 5%         5 l 
H2O                 ad 1 ml 
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Cells were seeded (see II.2.3) and left either untreated or stimulated with spongistatin 1 or 

the respective positive controls. After the required incubation times cells were harvested 

by detachment with T/E as described in II.2.2, collected by centrifugation (1500 rpm, 10 

min, 4°C) and washed with ice-cold phosphate-buffered saline (PBS). Pellets were 

resuspended in the appropriate lysis buffer (100 µl for three wells) and incubated on ice 

for 30 min or stored at -20°C. PMSF, Na3VO4 and CompleteTM were added to the lysis 

buffer immediately before use. Lysates were centrifuged at 10,000 x g for 10 min at 4°C. 

Supernatants were transferred to new tubes and the protein concentration was determined 

by the Bradford method as described in II.8.2. Lysates were diluted 1:5 with 5 x sample 

buffer, boiled at 95°C for 5 min and stored at -20°C or used immediately for Western Blot 

analysis.  

 

 

8.1.2 CYTOSOLIC AND MITOCHONDRIA CONTAINING FRACTIONS 

The release of mitochondrial intermembrane space proteins to the cytosol is a key event 

during apoptosis [120, 121]. Either they are part of the activation complexes for caspases in 

the cytosol (cytochrome c, Smac/DIABLO, Omi/HtrA2) or they translocate into the 

nucleus mediating DNA fragmentation (AIF, EndoG). To analyze these proteins, the 

cytosol has to be separated from the mitochondria. This is accomplished by a 

permeabilization buffer containing a low concentration of digitonin forming complexes 

with cholesterol in the cell membrane. Thus, small pores are generated through which the 

cytosol is eluted into the iso-osmotic buffer while organelles are retained inside the cell. 

 

Permeabilization buffer 
 

Mannitol    210 mM 
Sucrose      70 mM 
Hepes pH 7.2      10 mM 
EGTA      0.2 mM 
Succinate         5 mM 
BSA          0.15 % (w/v) 
Digitonin              60 g/ml 
 

The release of cytochrome c, Smac/DIABLO and Omi/HtrA2 from mitochondria was 

analyzed as described previously [122]. Briefly, cells were seeded and stimulated as for 

whole cell lysate preparation. Three wells for each sample were collected by centrifugation 

(360 x g, 10 min, 4°C) and washed with PBS. Cell pellets were resuspended in 100 µl 

permeabilization buffer and incubated on ice for 20 min. The cytosolic fraction was 

obtained by centrifugation (360 x g, 10 min, 4°C) of the permeabilized cell suspension and 

the supernatant was cleared of any remaining cell fragments by centrifugation at 13,000 x 

g (10 min, 4°C). The remaining pellet of permeabilized cells containing the mitochondria, 

other organelles and membranes was resuspended in 0.1% Triton X-100 in PBS (100 µl) 
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and lysed for 15 min on ice. The supernatant of the subsequent centrifugation (13,000 x g 

10 min, 4°C) constitutes the mitochondria-enriched fraction. Determination of protein 

concentration was carried out with the Bradford method (see II.8.2). Lysates were diluted 

1:5 with 5 x sample buffer and boiled at 95°C for 5 min. Afterwards samples were stored at 

-20°C or used immediately for Western Blot analysis. 

 

 

8.1.3 NUCLEI ISOLATION 

Translocation of Omi/HtrA2, AIF and EndoG to the nucleus was analyzed using the 

Nuclear Extract Kit (Active Motif, Rixensart, Belgium) according to manufacturer’s 

protocol. Briefly, cells were seeded and stimulated as for whole cell lysate preparation, 

collected by centrifugation (360 x g, 10 min, 4°C) and washed with ice-cold PBS. Cell 

pellets were resuspended in hypotonic buffer and incubated for 15 min at 4°C to swell the 

membranes and make them fragile. Addition of detergent caused leakage of the 

cytoplasmic proteins into the supernatant. The permeabilized cells were centrifuged at 

13,000 x g (1 min, 4°C), the supernatants contained the nonnucleic fraction. To obtain the 

nucear proteins, pellets were resuspended in lysis buffer, incubated for 30 min at 4°C and 

centrifuged at 13,000 x g (10 min, 4°C). The supernatants contained the nuclear protein 

fraction. Determination of protein concentration was carried out with the Bradford 

method. Lysates were diluted 1:5 with 5 x sample buffer and boiled at 95°C for 5 min. 

Samples were stored at -80°C or used immediately for Western Blot analysis. 

 

 

8.1.4 TUBULIN FRACTIONATION 

Separation of soluble and unsoluble tubulin fractions were analyzed according to 

Puthalakath et al. [123] with modifications. Briefly, cells were seeded and stimulated as for 

whole cell lysate preparation. Subsequently, cells were fixed with 10% CytoskelfixTM 

(Cytoskeleton, Offenbach, Germany) in PBS (4 min, -20°C) retaining both actin and tubulin 

based structures, collected by centrifugation (360 x g, 10 min, 4°C) and washed with PBS. 

Cell pellets were resuspended in lysis buffer (see below) and incubated for 20 min at room 

temperature. The soluble fraction was obtained by centrifugation (100,000 x g, 45 min, 

4°C). The supernatant represented the soluble fraction. Pellets were resuspended in 

disassembling buffer, incubated for 30 min at 4°C and centrifuged (1,500 x g, 10 min, 4°C). 

The supernatants contained the unsoluble fractions. The obtained protein fractions were 

analyzed by Western Blot analysis or stored at -20°C. 
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Lysis buffer 
 

PIPES, pH 6.9            100 mM 
Glycerin     2 M 
Triton X-100     0.5 % 
MgCl2      2 mM 
EGTA      2 mM 
GTP      1 mM 
Taxol       5 M 
PMSF                50 mM 
Complete™ 
 

 

Disassembling buffer 
 

Tris/HCl pH 6.8                         100 mM 
MgCl2        1 mM 
CaCl2      10 mM 
 

 

8.2 PROTEIN QUANTIFICATION 

The protein concentration in samples was quantified by the Bradford [124] method based 

on binding of the dye Coomassie Brilliant Blue G-250 to hydrophobic parts of proteins. 

After binding to proteins, the absoption maximum of this dye shifts from 465 to 595 nm 

and absorbance is measured at 595 nm. 

 

To determine the protein content of the samples, first 10 µl of a calibration curve 

containing increasing concentrations of BSA in H2O (0 up to 25 mg/ml BSA) and 10 µl of 

1:10 in H2O diluted cell lysates were incubated with 190 µl Bradford solution (Bio-Rad, 

Munich, Germany, diluted 1:5 in H2O) in 96-well plates for 5-10 min. Absorbance of the 

samples at 595 nm was measured in a microplate absorbance reader (SunriseTM, Tecan, 

Crailsheim, Germany). Before electrophoresis, the required volumes of 1 x sample buffer 

were added to the protein solutions in order to achieve the same protein concentration in 

all samples. 

 

 

8.3 SDS-PAGE 

Equal amounts of the protein samples described above were separated by discontinous 

denaturizing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) according to Laemmli 

[125].  

 

In order to ensure reproducibiliy of the technique, proteins are solubilized and 

denaturated by the anionic detergent sodium dodecyl sulphate (SDS) binding to the 

hydrophobic parts of the proteins. Thereby, the negative charges of SDS destroy the 
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secondary and tertiary structure of the proteins. Further unfolding is achieved by the 

reducing agent dithiothreitol (DTT) included in the sample buffer, cleaving disulfide 

bonds inside the proteins. Denaturated and negatively charged proteins are though drawn 

towards the anode in an electric field. Therefore, the final separation of the proteins in the 

polyacrylamide gel depends solely on their differences in the molecular weight of the 

polypeptides. The discontinous electrophoresis system consists of two layers. First, 

proteins are concentrated in the stacking gel in order to get thin bands, directly 

corresponding to a better resolution and secondly are separated by their size in the 

separating gel. Depending on the molecular weight of the proteins to be analyzed, the 

polyacrylamide (PAA) (RotiphoreseTM Gel 30, Roth, Karlsruhe, Germany) concentration 

was adjusted to yield an optimal separation (Table II.3). Molecular weight of proteins is 

estimated by comparison with prestained broad range molecular weight markers 

(precision All Blue , Bio-Rad, Munich, Germany; MBI-Fermentas, St. Leon-Rot, 

Germany). 

 

Stacking gel 
 

PAA solution 30 %   1.7 ml 
Tris-HCl 1.25 M, pH 6.8   1.0 ml 
SDS 10 %                100 l 
H2O     7.0 ml 
TEMED                    20 l 
APS 10%                  100 l 
 

 

Separating gel 
 

PAA solution 30 %   5.0 ml 
Tris-HCl 1.5 M, pH 8.8                     3.75 ml 
SDS 10 %                150 l 
H2O     6.1 ml 
TEMED       15 l 
APS 10 %      75 l 
 

 

Table II.3 PAA-concentration in the separating gel. 

Protein Acrylamide concentration 

AIF, caspase-9, FAK 10 % 
Bax, Bcl-2, Bcl-xL, Bid, Bim, caspase-2, -6, -7, 

-8, EndoG, Mcl-1, Omi/HtrA2, -tubulin 

12 % 

cytochrome c, Smac 15 % 

 

Electrophoresis was performed using a vertical Mini Protean III system (Bio-Rad, Munich, 

Germany) connected to a power supply (Biometra, Göttingen, Germany). Electrophoresis 

was run at 100 V for 21 min for stacking proteins and at 200 V for 40-42 min for the 

separation of proteins. 
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Electrophoresis buffer 
 

Tris base      3.0 g 
Glycine     14.4 g 
SDS       1.0 g 
H2O        ad 1,000 ml 
 

 

8.4 WESTERN BLOTTING AND DETECTION 

After separation of the protein mixture by electrophoresis, proteins are transferred onto 

blotting membranes binding proteins with high affinity. The membranes are better to 

handle than the gels and the blotting process concentrates proteins, thus increasing 

sensitivity of the subsequent detection of proteins by binding to specific antibodies and 

visualization by chemiluminescence or fluorescence. 

 

The Western Blot analysis was carried out by the tank blotting technique. Nitrocellulose 

membranes (HybondTM-ECLTM, Amersham Biosciences, Freiburg, Germany) were 

activated by soaking in freshly prepared 1 x tank buffer for at least 15 minutes. Transfer 

sandwiches were assembled in a box containing 1 x tank buffer as follows: 

 

Sandwich holder cathode side (black) 
 

Wetted pad 
Soaked blotting paper 
Gel 
Membrane 
Soaked blotting paper 
Wetted pad 

 

Sandwich holder anode side (white) 
 

Sandwiches were mounted in a transfer device (Mini Trans-Blot , Bio-Rad, Munich, 

Germany), the electrophoresis chamber was filled with 1 x tank buffer and transfer was 

performed at 4°C at 100 V for 90 min or at 23 V overnight, with magnetic stirring. 

 

Tank buffer (5x) 
 

Tris base    15.2 g 
Glycine     72.9 g 
H2O        ad 1,000 ml 
 

 

Tank buffer (1x) 
 

Tank buffer (5x)    200 ml 
Methanol    200 ml 
H2O         ad 1,000 ml 
 



MATERIALS AND METHODS  54 

 

Prior to the immunological detection of the relevant proteins, unspecific protein binding 

sites were blocked by incubating the membranes in 5% non-fat dry milk in Tris-buffered 

saline with Tween 20 (TBS-T) for 1 h at room temperature. The membranes were washed 

shortly in TBS-T and incubated in the respective primary antibody solutions in 5% BSA in 

TBS-T (Table II.4) either overnight at 4°C or for 3 h at room temperature. After three wash 

steps in TBS-T for 10 minutes respectively, membranes were incubated with the secondary 

antibodies (Table II.5) either conjugated to horseradish peroxidase or fluorophores, in 1% 

non-fat dry milk in TBS-T for 1 h at room temperature. The membranes were washed 3 

times as described above. All steps regarding the incubation of the membrane were 

performed under gentle agitation. 

 

Table II.4: Primary antibodies. 

Primary antibody Isotype Dilution Company 

AIF rabbit IgG 1:1,000 Upstate, Lake Placid, USA 
Bax rabbit IgG 1:1,000 Santa Cruz Biotechnology, 

Heidelberg, Germany 
Bax 6A7 mouse IgG1 1:1,000 BD Transduction Laboratories, 

Heidelberg, Germany 
Bcl-2 mouse IgG1 1:1,000 Merck Biosciences, Darmstadt, 

Germany 
Bcl-xL rabbit IgG 1:1,000 Cell Signaling, Frankfurt, Germany 
Bid rabbit IgG 1:1,000 Cell Signaling, Frankfurt, Germany 
Bim rabbit IgG 1:1,000 Merck Biosciences, Darmstadt, 

Germany 
caspase-2 mouse IgG1 1:1,000 BD Biosciences, Heidelberg, 

Germany 
caspase-6 rabbit IgG 1:1,000 Cell Signaling, Frankfurt, Germany 
caspase-7 mouse IgG1 1:1,000 BD PharMingen, Heidelberg, 

Germany 
caspase-8 rabbit IgG 1:1,000 Upstate, Lake Placid, USA 
caspase-9 rabbit IgG 1:1,000 Cell Signaling, Frankfurt, Germany 
cytochrome c mouse IgG2b 1:1,000 BD PharMingen, Heidelberg, 

Germany 
cytochrome c 
oxidase 

mouse IgG2a 1:1,000 Molecular Probes Invitrogen, 
Carlsbad, USA 

EndoG rabbit IgG 1:1,000 Prosci incorporated, Poway, USA 
FAK-tot mouse IgG 1:1,000 Santa Cruz Biotechnology, 

Heidelberg, Germany 
FAK-Tyr397 rabbit IgG 1:1,000 Santa Cruz Biotechnology, 

Heidelberg, Germany 
Mcl-1 rabbit IgG 1:1,000 Cell Signaling, Frankfurt, Germany 
Omi/HtrA2 rabbit IgG 1:1,000 R&D Systems, Minneapolis, USA 
Smac/DIABLO rabbit IgG 1:1,000 Biozol, Eching, Germany 

-tubulin mouse IgG2b 1:1,000 Santa Cruz Biotechnology, 
Heidelberg, Germany 
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Table II.5: Secondary antibodies. 

Secondary antibody Dilution Company 

goat anti mouse IgG1:HRP 1:1,000 Biozol, Eching, Germany 
goat anti rabbit:HRP 1:10,000 Dianova, Hamburg, Germany 
goat anti mouse IgG2A:HRP 1:1,000 Biozol, Eching, Germany 

Alexa Fluor  680 goat anti rabbit IgG 1:10,000 Molecular Probes/Invitrogen, 
Karlsruhe, Germany 

Alexa Fluor  680 goat anti mouse IgG 1:10,000 Molecular Probes/Invitrogen, 
Karlsruhe, Germany 

TrueBlot anti rabbit:HRP 1:1,000 NatuTec, Frankfurt, Germany 

 

 

TBS-T (pH 8.0) 
 

Tris base      3.0 g 
NaCl     11.1 g 
Tween 20       1 ml 
H2O        ad 1,000 ml 
 

In order to visualize the proteins, two different methods have been used depending on the 

labels of secondary antibodies. 

On the one hand, luminol was utilized as a substrate for horseradish peroxidase (HRP)-

coupled secondary antibodies. To visualize the proteins of interest, membranes were 

incubated in ECL PlusTM Western Blotting detection reagent (Amersham Biosciences, 

Freiburg, Germany). The enzyme HRP catalyzes the oxidation of luminol in the presence 

of H2O2 (Figure II.9). The appearing luminescence was detected by exposure of the 

membrane to an X-ray film (Super RX, Fuji, Düsseldorf, Germany) for the appropriate 

time periods and subsequently developed in a tabletop film processor (Curix 60, Agfa, 

Cologne, Germany). 

 
 

Figure II.9: HRP-luminol reaction. 
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On the other hand, antibodies directly labeled with the fluorophor Alexa Fluor  680 

exhibiting an emission at 680 nm were used to detect proteins of interest by the Odyssey 

imaging system (Li-Cor Biosciences, Lincoln, NE). 

 

 

8.5 MEMBRANE STRIPPING 

After carrying out a Western Blot experiment membranes can be re-used for the detection 

of different proteins. Bound antibodies resulting from the previous experiment must be 

removed to avoid cross reactions and mistaken results. For this purpose, after 

development membranes were washed three times for 10 minutes in TBS-T and incubated 

in stripping buffer for 30 min at 50°C on a shaking platform. Afterwards membranes were 

thoroughly washed (6 x 5 minutes) to remove any remnants of stripping buffer and 

developed with ECL PlusTM solution to confirm stripping effectiveness. Membranes were 

washed one time, blocked in 5% non-fat dry milk in TBS-T for 1 h at room temperature 

and incubated with primary and secondary antibodies as described in II.8.4. 

 

Stripping buffer 
 

Tris-HCl    62.5 mM 
SDS            2 % 
2-Mercaptoethanol   100 mM 
 
2-Mercaptoethanol was added to the stripping buffer immediately before use. 
 

 

8.6 STAINING OF GELS AND MEMBRANES 

Equal protein loading and blotting of samples was checked by staining of gels and 

membranes after Western Blot experiments. A commonly used dye for detecting proteins 

in polyacrylamide gels is Coomassie blue, which penetrates the gel and sticks permanently 

to the proteins. Excess dye is washed out by destaining solution. The transfer of proteins 

to the membranes was checked incubating the membranes with the dye Ponceau S, 

directly staining the proteins reversibly in contrast to Coomassie blue. 

After the tank blot procedure gels were stained with the Coomassie blue solution for 15 

minutes at room temperature. Afterwards gels were washed several times in destaining 

solution until the proteins appeared as blue bands against a clear background. 

 

Coomassie staining solution 
 

Coomassie Blue       3 g 
Glacial acetic acid   100 ml 
Ethanol     450 ml 
H2O             ad 1,000 ml 
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Destaining solution 
 

Glacial acetic acid   100 ml 
Ethanol     300 ml 
H2O         ad 1,000 ml 
 

After development membranes were stained in Ponceau S staining solution (0.2% Ponceau 

S in 5% acetic acid) for 5 minutes on a shaking platform. Membranes were washed in H2O 

until the background disappeared. To remove the Ponceau S staining completely, 

membranes were washed several times in TBS-T. 

 

 

9 IMMUNOPRECIPITATION 

Immunoprecipitation is a method used for the enrichment of proteins of interest out of a 

multitude of proteins. Therefore, a specific antibody is incubated with the cell lysate to 

form an antigen-antibody complex. This complex can be precipitated e.g. by addition of 

Protein G or Protein A, which have a high affinity to the Fc-part of immunoglobulins. 

After dissociation and denaturation of proteins by boiling, the precipitate can be analyzed 

by Western Blot analysis. 

 

Cells were seeded and stimulated as for whole cell lysate preparation. 50 µl Protein A 

sepharose beads (Sigma, Deisenhofen, Germany) for each sample were centrifuged, 

washed and resuspended in lysis buffer. 2.5 µl of the respective primary antibody was 

added per 50 µl Protein A solution and gently inverted overnight at 4°C. Cells were 

collected by centrifugation (360 x g, 10 min, 4°C), washed with ice-cold PBS and lysed in 

general lysis buffer. The content of protein was determined by the Bradford method 

(described in II.8.2). Simultanously, the Protein A-antibody solution was centrifuged 

(3,000 x g, 2 min, 4°C) and carefully washed three times with lysis buffer. Equal amounts 

of protein (300-400 µg) were filled up to a volume of 250 µl with lysis buffer and added to 

the antibody beads mixture. To allow the immune complex to form, the samples were 

gently shaken for 3 hours at 4°C by end over end rocking. Next, the precipitated proteins 

were harvested by centrifugation (14,000 rpm, 10 min, 4°C). 40 µl of the supernatant were 

kept as a binding control. The remaining pellet was carefully washed three times with 500 

µl lysis buffer. After completely removing the last wash solution, samples were mixed 

with Laemmli sample buffer (see below) containing 2-mercaptoethanol, boiled at 95°C for 

5 minutes and analyzed by Western Blot. 

 

The immunoprecipitation and detection of proteins with antibodies from the same species 

is often associated with antibody cross-reactivities and hindrance by interfering with the 

immunoprecipitating immunoglobulin heavy and light chains. Rabbit IgG TrueBlotTM 
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(NatuTec, Frankfurt, Germany) enables the detection of immunoblotted target protein 

bands without this hindrance. TrueBlotTM preferentially detects the non-reduced form of 

rabbit IgG over the reduced, SDS-denaturated form of IgG. When the immunoprecipitate 

is fully reduced, immediately prior to SDS-gel electrophoresis, the reactivity of Rabbit 

TrueBlotTM with 55 kDa heavy chains and the 23 kDA light chains of the 

immunoprecipitating antibody is minimized. Thereby the interference by the heavy and 

light chains of the immunoprecipitating antibody in immunoblotting applications is 

eliminiated. 

 

Cells were seeded and stimulated as for whole cell lysate preparation (II.8.1.1). Cells were 

collected by centrifugation (360 x g, 10 min, 4°C), washed with ice-cold PBS and lysed in 

general lysis buffer. The content of protein was determined by Bradford method. To 

preclear the cell lysate 50 µl of anti-rabbit IgG beads (NatuTec, Frankfurt, Germany) and 

500 µl of cell lysate sample were incubated on ice for 30 min. After centrifugation (10,000 x 

g, 3 min, 4°C), 5 µg of the primary antibodies were added to the supernatant and 

incubated on ice for one hour. Subsequently 50 µl of anti-rabbit IgG beads were added to 

the samples and incubated for another hour on a rocking platform at 4°C. Next, the 

precipitated proteins were harvested by centrifugation (10,000 rpm, 1 min, 4°C) and 40 µl 

of the supernatant were kept as a binding control. The remaining pellet was carefully 

washed three times with 500 µl lysis buffer. After completely removing the last wash 

solution, samples were mixed with Laemmli sample buffer containing 2-mercaptoethanol, 

boiled at 95°C for 10 minutes and analyzed by Western Blot. As secondary antibody the 

Rabbit IgG TrueBlotTM (NatuTec, Frankfurt, Germany) at a 1:1,000 dilution in 5% Blotto is 

used. To visualize the proteins of interest, membranes were incubated in ECL PlusTM 

Western Blotting detection reagent (Amersham Biosciences, Freiburg, Germany) as 

describred in II.8.4. 

 

Laemmli sample buffer (3x) 
 

Tris-HCl    187.5 mM 
SDS            6 % 
Glycerol         30 % 
Bromphenol blue   0.015 % 
2-Mercaptoethanol     12.5 % 
H2O 
 
2-Mercaptoethanol was added to the buffer immediately before use. 
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10 GENE SILENCING BY RNA INTERFERENCE 

The term RNA interference (RNAi) describes the ability of double stranded RNA (dsRNA) 

to target specific mRNAs for degradation, thereby silencing their expression. For the 

discovery of this powerful technique that allows highly specific suppression of individual 

gene function, Craig Mello and Andrew Fire obtained the Nobel Prize in Physiology of 

Medicine in 2006. Downregulation of the gene of interest can be achieved by introduction 

of double-stranded short interfering RNAs (siRNAs) into the cells or by producing the 

silencing RNA within the cells employing expression vectors [126]. 

 

The heart of RNA interference is the short interfering RNA, typically consisting of two 21-

nucleotide (nt) single-stranded RNAs that form a 19-bp duplex with 2-nt 3’ overhangs. 

Long dsRNA molecules are processed by an enzyme called Dicer to form siRNA. The 

antisense strand of the siRNA is used by the RNA interference silencing complex (RISC) to 

guide mRNA cleavage, so promoting RNA degradation (Figure 2.5, modified from [126]). 

In the present work, post-Dicer cleavage products (siRNAs) are used to initiate RNA 

interference. 

 
 

Figure II.10: Short interfering RNA. 

RNA interference is a powerful method for sequence-specific inhibition of gene function. 21-23 
nucleotides long small interfering (si)RNAs are cleaved by DICER out of long dsRNAs. These 
siRNAs can be also chemically synthesized for laboratory use. The antisense strand is guided to 
the RNA induced silencing complex (RISC), where the corresponding mRNA strand is bound and 
degraded, leading to gene silencing. 
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Sense and antisense siRNA oligonucleotides of Bim (sense: 5’-caauugaccuucucgg(dTdT)-

3’; antisense: 5’-ccgagaagguagacaauug(dTdT)-3’)[127], sense and antisense siRNA 

oligonucleotides of EndoG (sense: 5’-augccuggaacaaccugga(dTdT)-3’; antisense: 5’-

uccagguuguuccaggcau(dTdT)-3’) [128], sense and antisense siRNA oligonucleotides of AIF 

(sense: 5’-ggaaauaugggaaagaucc(dTdT)-3’; antisense: 5’-ggaucuuucccauauuucc(dTdT)-3’) 

[129], sense and antisense siRNA oligonucleotides of Bcl-2 (sense: 5’-

caggaccucgccgcugcagacc(dTdT)-3’; antisense: 5’-ggucugcagcggcgagguccuggc(dTdT)-3’) 

[130], sense and antisense siRNA oligonucleotides of Bcl-xL (sense: 5’-

cagggacagcauaucagag(dTdT)-3’; antisense: 5’-gucccugucguauagucuc(dTdT)-3’) [131] and 

oligonucleotides corresponding to a nonsense sequence were purchased from Biomers.net 

GmbH (Ulm, Germany). Sense and antisense siRNA oligonucleotides of Omi/HtrA2 

(sense: 5’-aacggcucaggauucgugg(dTdT)-3’; antisense: 5’-ccacgaauccugagccguu(dTdT)-3’) 

were obtained from Dharmacon (Lafayette, CO, USA). 

The single stranded siRNA oligonucleotides were dissolved to 100 µM stock solutions in 

RNase free water (DEPC H2O) and annealed to create the 20 µM double-stranded siRNAs 

as follows: 15 µl of sense and 15 µl of antisense siRNA were combined with 30 µl RNase 

free water and 15 µl annealing buffer (Ambion, Hamburg, Germany). This solution was 

incubated at 90°C for 1 minute and was left to cool down until the temperature reached 

37°C. Afterwards, the double stranded siRNA was incubated for further 5 minutes at room 

temperature and stored at -20°C. 

 

2 x 106 cells in the exponential growing phase were transfected with 2.5 µg of nonsense, 

Bim siRNA, EndoG siRNA, AIF siRNA, Omi/HtrA2 siRNA, Bcl-2 siRNA or Bcl-xL siRNA 

by electroporation using the Nucleofector™ II (Amaxa, Cologne, Germany) according to 

manufacturer’s instructions. Cells were seeded and stimulated 24 h after nucleofection. 

Efficiency of RNA interference was checked by Western Blot analysis using antibodies 

against Bim, EndoG, AIF and Omi/HtrA2. 

 

 

11 STATISTICS 

All experiments were performed at least three times. Results are expressed as mean value 

± S.E. One-way statistical analysis was performed with GraphPad PrismTM version 3.03 for 

Windows (GraphPad Software, San Diego, CA). Statistical comparisons were made by 

one-way ANOVA with Bonferroni. P values < 0.05 were considered significant. 
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III RESULTS 

1 CYTOTOXICITY OF SPONGISTATIN 1 

Two major problems in chemotherapy are the metastatic spread of tumor cells to 

secondary sites and the frequently developed resistance of cancer cells to anticancer 

agents. Therefore, the cytotoxic effects of spongistatin 1 were examined in different cancer 

cell lines, some being quite insensitive to many chemotherapeutic agents probably caused 

by defects in the apoptotic machinery or by being highly invasive. The epithelial breast 

cancer cell line MCF-7 is characterized by a deficiency in caspase-3 owing to a deletion 

mutation [132]. SK-Mel-5 is a melamona cell line derived from a very aggressive form of 

skin cancer, which is resistant probably due to low Apaf-1 levels [133, 134] to most forms 

of therapy including combined applications of chemotherapy and immunotherapy [135]. 

The human ovary adenocarcinoma cell line SK-OV-3 is featured by depletion of the tumor 

suppressor gene p53, thus making these cells resistant to tumor necrosis factor and several 

cytotoxic drugs including cisplatin. The human pancreatic cancer cell line Panc-1 is 

characterized by its aggressive behavior. Bruns et al. [112] generated the highly metastatic 

human pancreatic cancer cell line L3.6pl by injecting COLO 357 fast-growing cells into the 

pancreas of nude mice. After the establishment of a tumor, hepatic metastases were 

harvested and tumor cells were reinjected into the pancreas. This cycle was repeated 

several times to yield the L3.6pl (pancreas to liver) cell line. 

 

 

1.1 APOPTOSIS INDUCTION BY SPONGISTATIN 1 

1.1.1 CHARACTERISTIC APOPTOTIC FEATURES CAUSED BY SPONGISTATIN 1  

As described in I4, apoptotic cells are characterized by typical morphological alterations. 

Apoptotic cells round up, detach and undergo morphological changes including cell 

shrinkage and the formation of apoptotic bodies. Besides changes in size and shape of the 

entire cell, the nucleus of an apoptotic cell is subject of numerous biochemical processes. 

EndoG and other enzymes condense the chromatin and ultimately the DNA is fragmented 

by endonucleases. 

 

MCF-7 cells exposed to spongistatin 1 for 48 h revealed a typical morphology of dying cells 

(Figure III.1A): MCF-7 cells appeared shrunken and rounded with the formation of 

apoptotic bodies. Furthermore, upon staining the spongistatin 1 treated MCF-7 cells with 

the vital dye Hoechst 33342, the condensation of DNA, a characteristic feature of apoptotic 

cell death, was clearly observed. Untreated cells showed faint staining, whereas treated 

cells appeared bright indicating chromatin condensation (Figure III.1B). 
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Figure III.1: Morphological alterations in spongistatin 1-treated MCF-7 cells. 

MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) for 48 h. (A) 
Morphological alterations were analyzed by light microscopy. (B) Nuclei were stained with Hoechst 
33342 and analyzed by fluorescence microscopy. Representative pictures out of three experiments 
are shown. 
 

 

1.1.2 SPONGISTATIN 1 INHIBITS METABOLIC ACTIVITY 

Moreover, the cytotoxic effect of spongistatin 1 was investigated by the MTT assay 

measuring the metabolic activity as a parameter for cell viabiliy. As shown in Figure III.2, 

spongistatin 1 reduced the mitochondrial respiratory activity of MCF-7 cells in a 

concentration- and time-dependent manner. Spongistatin 1 was effective at concentrations 

as low as 500 pM and with as little as 16 h of exposure to MCF-7 cells. 

 
Figure III.2: Spongistatin 1 induces dose- and time-dependent cell death in MCF-7. 

MCF-7 cells were left untreated (CO) or stimulated with increasing concentrations of spongistatin 1 
for 48 h (left panel), or were treated with spongistatin 1 (SP; 500 pM) for the indicated times (right 

panel). Impairment of metabolic activity was analyzed by MTT assay. Bars, the mean ± S.E. of 

three independent experiments performed in triplicate. ***, p < 0.001 (ANOVA/Bonferroni). 
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1.1.3 DNA FRAGMENTATION IN DIFFERENT CANCER CELL LINES 

In order to quantify the apoptotic potential of spongistatin 1, a classical feature of 

apoptosis, DNA fragmentation, was measured by flow cytometry of propidium iodide 

stained cells according to the Nicoletti method (described in II3.2). In line with its ability to 

decrease the metabolic activity, spongistatin 1 induced apoptosis in a time- and dose-

dependent manner in MCF-7 cells (Figure III.3A). The appearance of apoptotic cells was 

significant at a concentration as low as 200 pM and 16 h upon treatment with spongistatin 

1 (500 pM). Importantly, the apoptosis-inducing effect of spongistatin 1 is not limited to 

MCF-7 cells. Additionally, spongistatin 1 potently induced DNA fragmentation in the 

chemoresistant cell lines SK-Mel-5 and SK-OV-3 as well as in the highly invasive 

pancreatic cancer cell line L3.6pl. In SK-Mel-5 melanoma cells apoptosis was already 

significantly induced at a concentration of 50 pM and 16 h exposure of spongistatin 1, 

whereas a significant onset of DNA-fragmentation in SK-OV-3 started at 32 h. In the 

pancreatic cancer cell line L3.6pl apoptotic cells became significant after 16 h and at a 

concentration as low as 50 pM. 
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Figure III.3: Spongistatin 1 induces dose- and time-dependent DNA fragmentation. 

MCF-7, SK-Mel-5, SK-OV-3 or L3.6pl cells were left untreated (CO) or stimulated with increasing 
concentrations of spongistatin 1 for 48 h (left panels), or were treated with 500 pM spongistatin 1 for 
the indicated times (right panels). SK-OV-3 cells were stimulated with 100 pM spongistatin 1. 

Apoptotic cells were quantified by flow cytometry. Bars, the mean ± S.E. of three independent 

experiments performed in triplicate. ***, p < 0.001 (ANOVA/Bonferroni). 
 

 

1.1.4 SPONGISTATIN 1 INDUCES CELL CYCLE ARREST AT G2/M PHASE 

Microtubule-interacting agents usually induce a cell cycle arrest at G2/M phase followed 

by apoptosis induction [11]. The cell cycle is the series of events during a cell replication 

period comprised of the mitosis and interphase, the latter subdividing into G1/G0, S and G2 

phase depending on the amount of DNA per cell. A major defining characteristic for G1/G0 

is a single DNA content, whereas for G2 a double DNA content. Since spongistatin 1 has 

been described as a depolymerizing agent of the microtubule network [24], it has been 

hypothesized to arrest the cell cycle at the G2/M phase.  
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Figure III.4: Spongistatin 1 induces cell cycle arrest in L3.6pl cells. 

(A) L3.6pl cells were either left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) for 24 
h. Cells were harvested and stained with PI as for Nicoletti method (described in II3.2). Cell cycle 
distribution was quantified by flow cytometry. A representative histogram out of three independent 
experiments is shown. (B) L3.6pl cells were left untreated (CO) or stimulated with spongistatin 1 in 
increasing concentrations (SP; 0.01 to 10 nM), taxol (TAX; 500 nM) or vinblastine (VIN; 20 nM) for 
24 h. Cells were harvested and stained with PI as for Nicoletti method (described in II3.2). The 
distribution of cells in the different cell cycle phases was measured by flow cytometry. For each 

stimulation three bars are shown corresponding to G1/G0, S and G2, respectively. Bars, the mean ± 

S.E. of three independent experiments performed in triplicate. 
 

Indeed, treatment of L3.6pl cells with increasing concentrations of spongistatin 1 resulted 

in a G2/M cell cycle arrest in a concentration dependent way, being significant at a 

concentration of 500 pM. In detail, the number of cells in G1/G0 phase was significantly 

decreased, whereas in contrast the number of cells in G2 clearly increased (Figure III.4). 

These results are consistent with the concentration dependent DNA fragmention upon 

spongistatin 1 treatment of L3.6pl cells (Figure III.3D). As a positive control, the tubulin 

interacting agents taxol and vinblastine, which are well known to induce apoptosis by 

stabilizing or depolymerizing microtubules respectively, were used because they also 

arrest the cell cycle at G2/M phase. 
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1.2 SPONGISTATIN 1 STRONGLY INHIBITS CLONOGENIC SURVIVAL 

OF TUMOR CELLS 

The colony formation assay is an in vitro cell survival assay to determine the effectiveness 

of cytotoxic agents. This assay basically tests every single cell in the population for its 

ability to undergo unlimited division. In contrast to short term tests, e.g. DNA 

fragmentation or MTT assay, the cells are allowed to grow over an extended time period of 

one week following a short period of stimulation of 3 h. This setting is related more closely 

to in vivo conditions in chemotherapy. Thus, it can be determined whether the percentage 

of cells that do not show DNA fragmentation or are still viable in the MTT assay die later 

or are able to grow and to form new colonies, a characteristic of chemoresistant and 

metastatic tumor cells. 

 

Stimulation of MCF-7 cells with spongistatin 1 (SP; 500 pM) reduced the growth of 

colonies by approximately 50% in comparison to the untreated cells, whereas a stimulation 

with a higher concentration of spongistatin 1 (1 nM) eliminated the formation of colonies 

completely (Figure III.5A). Exposure of cells to staurosporine (500 nM) did not inhibit the 

survival of MCF-7 cells. Although taxol induced apoptosis in MCF-7 cells in concentration 

corresponding the apoptosis rate of spongistatin 1 (1 nM) (Figure III.5B), it reduced MCF-7 

colony formation by only 40% and 30%, respectively. The lower panel shows the viablility 

of the cells 3 h after treatment, the point at which the cells are seeded to grow in colonies, 

measured by the trypan blue exclusion assay. In both untreated and treated cells, the 

viability was about 95%, indicating that the cells did not undergo necrosis to this 3 hours 

time point. This strong effect of spongistatin 1 on the clonogenic survival was not limited 

to MCF-7 cells, as this experiment could be repeated using the highly invasive pancreatic 

cancer cell lines Panc-1 and L3.6pl, with consistent results. In these cell lines vinblastine 

and taxol as well as the two anticancer compounds used as standard therapy in the 

treatment of pancreatic cancer, 5-fluoruracil and gemcitabine, just showed marginal effects 

on the clonogenic survival. The concentrations of these substances were chosen by their 

potential to induce DNA fragmentation by about 30%, the same range as the DNA 

fragmentation by spongistatin 1. 

In all three cell lines tested, spongistatin 1 treatment resulted in a strong inhibition of 

clonogenic tumor growth, as shown in Figure III.5A. Most importantly, other 

chemotherapeutic agents, such as the tubulin-antagonists taxol and vinblastine, which were 

also able to induce apoptosis to a comparable extent than spongistatin 1 assured by DNA 

fragmentation, revealed a minor capacity of inhibiting the growth of MCF-7 cells, L3.6pl cells 

or Panc-1 cells.  
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Figure III.5: Spongistatin 1 shows long term effects on the clonal tumor cell growth. 

MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM, 1 nM), taxol 
(TAX; 500 nM, 1 M) or staurosporine (ST; 500 nM). Panc-1 and L3.6pl cells were left untreated 
(CO) or stimulated with spongistatin 1 (SP; 500 pM, 1 nM), vinblastine (VIN; 20 nM), taxol (TAX; 
500 nM), 5-fluoruracil (5-FU; 10 M) or gemcitabine (GEM; 10 nM). (A) A clonogenic assay (upper 
panel) was performed as described in “Materials and Methods” (II5), results are represented as the 
number of colonies in comparison to untreated cells (CO). The images show representative wells of 
the colonies stained with crystal violet. The viability of the cells 3 h after stimulation, when the cells 
are seeded to grow as colonies, was determined by the Trypan blue excusion assay (lower panel). 
(B) Apoptotic cells were quantified after 24 h or 48 h of stimulation by flow cytometry. Bars, the 

mean ± S.E. of three independent experiments performed in triplicate. *, p < 0.01; **, p < 0.05; ***, p 

< 0.001 (ANOVA/Bonferroni). 
 

Taken together, spongistatin 1 potently induced apoptotic cell death in the picomolar 

range in a variety of cancer cell lines that are quite insensitive to many chemotherapeutic 

drugs. Moreover, spongistatin 1 showed strong long term effects on the clonogenic 

survival of MCF-7 cells as well as on highly invasive human pancreatic cancer cell lines. 

This clearly points the potential of spongistatin 1 as a chemoresistance combatant and its 

capability to act as an antimetastatic compound. 

 

These impressive effects of spongistatin 1 were further elucidated in more detail in two 

separate models. First, spongistatin 1 and its effects in the metastatic process were studied 

in vitro using the highly metastatic human pancreatic cancer cells L3.6pl. Secondly, the 

underlying apoptotic signaling pathway induced by spongistatin 1 was investigated in the 

human breast cancer cell line MCF-7. 

 

 

2 ANTIMETASTATIC PROPERTIES OF SPONGISTATIN 1 IN VITRO 

In the orthotopic pancreatic tumor model, performed by Andrea Rothmeier (Department 

of Pharmacy, University of Munich, Germany) in cooperation with Ivan Ischenko and 

Christiane Bruns (Klinikum Großhadern, Munich, Germany), the efficacy of spongistatin 1 

on L3.6pl pancreatic tumor metastasis was exhibited in vivo. This tumor model bears 

clinical relation as the L3.6pl cells were injected into the subcapsular region of the pancreas 

just beneath the spleen of nude mice [136] and allowed to grow and establish a tumor for 

one week. Seven days after the implantation of tumor cells, the mice were injected daily 

with spongistatin 1 (10 µg/kg/day) or solvent (PBS) over 21 days. Subsequently, the 

animals were sacrified and the number of visible liver and lymph node metastases was 

confirmed with a dissecting microscope. In fact, spongistatin 1 was able to reduce the 

formation of metastases in an impressive manner. Liver metastases and regional lymph 

node metastases were detected in all control animals, whereas only a third of spongistatin 

1-treated mice developed metastases in liver and lymph nodes (Table III.1).  
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Table III.1: Orthotopic pancreatic tumor model. 

 
 

Based on these strong in vivo effects of spongistatin 1 on tumor metastasis obtained in the 

orthotopic tumor model, the impact of spongistatin 1 on several steps of the metastatic 

process was studied in vitro using these highly invasive L3.6pl cells. 

 

 

2.1 SPONGISTATIN 1 REVEALS ANTIPROLIFERATIVE PROPERTIES 

Cell proliferation is one of the major steps in tumorigenesis and metastasis. Metastatic 

tumor cells are characterized by strong proliferation in the primary tumor as well as at a 

distant site to establish new metastatic foci. Thus, the effect of spongistatin 1 on tumor cell 

proliferation was assessed using the crystal violet staining assay. As demonstrated in 

Figure III.6, spongistatin 1 effectively inhibited tumor cell proliferation, even in 

concentrations as low as 5 pM. 

 

 
Figure III.6: Spongistatin 1 significantly inhibits tumor cell proliferation after 72 h. 

L3.6pl cells were seeded in 96-well plates. Cells in a reference plate were stained after 24 h serving 
as baseline (CO-0). L3.6pl cells in the remaining plates were either kept untreated (CO) or 
stimulated with increasing concentrations of spongistatin 1 (SP; 5 pM to 10 nM) over a time period 

of 72 h. Bars, the mean ± S.E. of three independent experiments. ***, p < 0.001 

(ANOVA/Bonferroni). 
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2.2 SPONGISTATIN 1 INHIBITS TUMOR CELL MIGRATION 

Cell motility and migration are key features of metastatic cells, allowing for the change of 

position of metastatic cells within tissues and to enter lymphatic and blood vessels for 

dissemination into the circulation. The “wound healing“ assay (described in II6.2) was 

performed to study the effects of spongistatin 1 on the cell motility in vitro. As shown in 

Figure III.7, migration of L3.6pl cells as indicated by the ability to close the artificial 

wound, was significantly inhibited by spongistatin 1, even in nontoxic concentrations. In 

comparison to untreated cells, the percentage of cell-covered area in relation to the total 

image area was reduced to 85%, 70% and 59% with 10 pM, 50 pM and 100 pM spongistatin 

1, respectively. Taxol, a well-known substance to inhibit cell migration, was used as 

positive control. The decreased cell migration was not a consequence of apoptotic cells 

death, as the cells stained with the vital dye Hoechst 33342 showed no chromatin 

condensation (data not shown). 

 

 
Figure III.7: Spongistatin 1 reduces tumor cell migration. 

Upper panel, a confluent L3.6pl monolayer was scratched and subsequently left untreated or 
stimulated with spongistatin 1 (SP; 10 pM, 50 pM, 100 pM) or taxol (TAX; 5 nM) for 16 h. One 
representative image out of three independent experiments is shown. Lower panel, the graph 

displays the ratio of pixels covered by cells and pixels in the wound area. Bars, the mean ± S.E. of 

three independent experiments. *, p < 0.01; **, p < 0.05; ***, p < 0.001 (ANOVA/Bonferroni). 
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2.3 EFFECTS OF SPONGISTATIN 1 ON TUMOR CELL INVASION 

Invasive and metastatic cells have to cross basement membranes in order to disseminate. 

The degradation of the membrane by proteolytic enzymes constitutes a critical condition 

for metastatic cells to penetrate into secondary tissues. In order to evaluate in vitro the 

effect of spongistatin 1 on tumor cell invasion, a transwell assay using MatrigelTM as 

reconstituted basal membrane and hFGF as chemoattractant was performed (described in 

II6.3). Treatment of L3.6pl cells with 10 pM spongistatin 1 showed no effect on the tumor 

cell invasion, whereas a concentration of 100 pM spongistatin 1 reduced the number of 

invading cells about 25% (Figure III.8). Taxol was again used as a positive control, revealed 

a 20% decrease in tumor cell invasion. 

 
Figure III.8: Effect of spongistatin 1 on tumor cell invasion. 

A transwell invasion assay was performed as described in II6.3 using Matrigel
TM

 and hFGF as a 
chemoattractant. L3.6pl cells were seeded in the upper chamber and left either untreated or were 
stimulated with spongistatin 1 (SP; 10 pM, 100 pM) or taxol (TAX; 5 nM). After 24 h, invaded cells 

were fixed, stained with crystal violet and the absorbance was measured. Bars, the mean ± S.E. of 

three independent experiments. n.s., non significant; *, p < 0.01; ***, p < 0.001 (ANOVA/Bonferroni). 
 

 

2.4 SPONGISTATIN 1 INHIBITS THE ADHESION OF CANCER CELLS 

The significance of aberrant cellular adhesion for cancer metastasis is widely recognized. 

Cell adhesion plays an important role at two different steps in the metastatic process. First, 

tumor cell motility is essential for migration and invasion and is a dynamic process 

involving adhesion to the extracellular matrix as well as detachment events. Secondly, 

tumor cell adhesion is critical for the arrest of circulating metastatic cells at a distant site. 

 

In order to investigate the effects of spongistatin 1 on cell adhesion, an in vitro adhesion 

assay was performed, mimicking the conditions of the latter process. L3.6pl cells in 

confluent conditions were treated with spongistatin 1 over a period of three hours. 
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Subsequently, the cells were detached and allowed to adhere for 16 h. In contrast to 

vinblastine, gemcitabine and 5-FU, spongistatin 1 was able to reduce the adherance of 

detached tumor cells in a concentration-dependent manner with a decrease of adhered 

cells to about 50% at a concentration of spongistatin 1 as low as 1 nM (Figure III.9).  

 

 

Figure III.9: Spongistatin 1 inhibits adhesion of L3.6pl cells. 

L3.6pl cells were either left untreated (CO) or stimulated with spongistatin 1 (SP; 0.1 nM, 0.5 nM, 1 
nM), vinblastine (VIN; 20 nM), gemcitabine (GEM; 10 nM) or 5-fluoruracil (5-FU; 10 M) for 3 h. 
Subsequently, cells were harvest with T/E, seeded on Collagen G-coated plates and allowed to 
adhere for 16 h. Adhered cells were stained with crystal violet and absorbance was measured. 

Bars, the mean ± S.E. of three independent experiments. n.s., non significant; ***, p < 0.001 

(ANOVA/Bonferroni). 
 

 

2.5 FAK IS DEPHOSPHORYLATED BY SPONGISTATIN 1  

Proteins involved in the integrin signaling, such as the focal adhesion kinases (FAK), are 

central players in the metastatic process. The activation of FAK leads to a number of cell 

biological processes including cell attachment, proliferation, migration, invasion and 

survival. The activity of FAK is regulated at the post-translational level by 

phosphorylation. Autophosphorylation of FAK on a particular tyrosine residue, Tyr397, 

occurs in response to many stimuli, e.g. attachment to the extracellular matrix, resulting in 

the enzymatic activity of FAK. Phosphorylation of FAK at Tyr397 reflects its kinase activity 

and is frequently found in invasive tumors.  

 

As shown in Figure III.10, FAK is constitutively activated by phosphorylation at Tyr397 in 

L3.6pl cells. As soon as 30 min upon spongistatin 1 exposure, FAK was dephosphorylated 

and thereby hypothetically inactivated. The total protein level stayed equal during the 

time of the experiment. Interestingly, treatment with taxol or gemcitabine FAK did not 

induce a dephosphorylation at this residue. 
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Figure III.10: Spongistatin 1 dephosphorylates FAK at Tyr397. 

L3.6pl cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM), taxol (TAX; 500 
nM), vinblastine (VIN; 20 nM) or gemcitabine (GEM; 10 nM) for the indicated times. Total FAK level 
and phosphorylation of FAK on Tyr397 was analyzed by Western blot. All experiments were carried 
out three times. 
 

 

2.6 SPONGISTATIN 1 INDUCES APOPTOSIS IN ANOIKIS - RESISTANT 

CELLS 

Metastatic cells are characterized by their resistance to anoikis, apoptosis caused by 

detachment from the extracellular matrix. During migration and intravasation into the 

circulation metastatic cells are either deprived of extracellular matrix or exposed to foreign 

matrix components Therefore, the ability to survive in the absence of normal matrix 

components represents a crucial property of metastatic cells. 

 

In order to investigate if the selected cancer cell line is resistant to anoikis, L3.6pl cells were 

seeded on plates coated with poly-HEMA to prevent cell adhesion. Indeed, L3.6pl cells did 

not undergo apoptosis when they were kept in suspension over 24 h as DNA 

fragmentation did not exceed 12%. However, spongistatin 1 was able to overcome this 

resistance to anoikis and to induce DNA fragmentation, being significant 24 h after 

stimulation with spongistatin 1 (Figure III.11). 
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Figure III.11: Spongistatin 1 induces apoptosis in anoikis-resistant tumor cells. 

L3.6pl cells were seeded in 24-well plates coated with poly-HEMA to prevent cell adhesion. 
Subsequently, cells were left untreated or stimulated with spongistatin 1 (SP; 500 pM) for the 

indicated times. Apoptotic cells were quantified by flow cytometry. Bars, the mean ± S.E. of three 

independent experiments. n.s., non significant; ***, p < 0.001 (ANOVA/Bonferroni). 
 

Based on a variety of previous experiments by several groups, there is evidence indicating 

that higher resistance to apoptosis of metastatic cancer cells is associated with 

dysregulation of proteins involved in the regulation of the apoptotic cascade. Among 

them, expression and activity of Bcl-2 family proteins, especially Bcl-2 and Bcl-xL, seem to 

be associated with both metastasis and resistance to apoptosis. 

 

 
Figure III.12: Inactivation of antiapoptotic Bcl-2 family proteins. 

L3.6pl cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM), staurosporine 
(ST; 500 nM) or taxol (TAX; 500 nM) for the indicated times. Western Blot analysis was performed 
using antibodies against the inactive phosphorylated forms of Bcl-2 and Bcl-xL. Equal protein 
loading was controlled by staining membranes with Ponceau S (a representative section of the 
stained membrane is shown). All experiments were carried out three times. 
 
In fact, spongistatin 1 influences the activity of antiapoptotic Bcl-2 proteins. As shown in 

Figure III.12, Bcl-2 was phosphorylated and thereby inactivated upon treatment with 

spongistatin 1 for 8 h. In addition, spongistatin 1-treatment induced both downregulation 

or degradation and phosphorylation of Bcl-xL, whereas the protein levels upon stimulation 

with staurosporine or taxol were not affected.  
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2.7 INVOLVEMENT OF BCL-2 AND BCL-XL IN METASTSIS 

In order to elucidate the functional involvement of these two antiapoptotic Bcl-2 proteins in 

anoikis-resistance and metastasis, the expression of Bcl-2 and Bcl-xL was silenced by siRNA. 

Interestingly, downregulation of Bcl-2 as well as Bcl-xL sensitized L3.6pl cells to anoikis. 

Whereas L3.6pl cells transfected with a nonsense sequence showed a DNA fragmentation by 

about 30% upon culturing in suspension for 24 h, silencing of Bcl-2 and Bcl-xL led to an 

increased apoptosis induction by about 50% (Figure III.13).  

 

 

 

Figure III.13: Bcl-2 and Bcl-xL knockdown sensitizes L3.6pl cells to anoikis. 

Upper panel, L3.6pl cells were transfected with oligonucleotides encoding for either Bcl-2 siRNA, 
Bcl-xL siRNA or a nonsense sequence. Cells were cultured in plates coated with poly-HEMA to 
prevent cell adhesion for the indicated times. Apoptotic cells were quantified by flow cytometry. 

Represented are the mean ± S.E. of two independent experiments. Lower panel, downregulations 

of Bcl-2 and Bcl-xL protein levels were verified by Western Blot. Equal protein loading was 
controlled by staining membranes with Ponceau S (a representative section of the stained 
membrane is shown). 
 

In addition, the influence of Bcl-2 and Bcl-xL on the metastatic cascade was investigated. 

Since cell motiliy and migration are essential features in this process, a “wound healing“ 

assay was performed using L3.6pl cells silenced by Bcl-2 siRNA and Bcl-xL siRNA. Indeed, 

both Bcl-2 and Bcl-xL are sufficient for cell motility as the migration of L3.6pl cells was 

inhibited both after Bcl-2 and Bcl-xL downregulation. As shown in Figure III.14, L3.6pl cells 
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transfected with a nonsense sequence were able to migrate and to close the artificial 

wound, whereas the scratch stayed open upon silencing L3.6pl cells with Bcl-2 siRNA and 

Bcl-xL siRNA, respectively. 

 

 
Figure III.14: Involvement of Bcl-2 and Bcl-xL in cell migration. 

Upper panel, L3.6pl cells were transfected with oligonucleotides encoding for either Bcl-2 siRNA, 
Bcl-xL siRNA or a nonsense sequence. A confluent cell monolayer was scratched and cell migration 
was monitored after 16 h. One representative image out of three is shown. Lower panel, 
downregulations of Bcl-2 and Bcl-xL protein levels were verified by Western Blot. Equal protein 
loading was controlled by staining membranes with Ponceau S (a representative section of the 
stained membrane is shown). 
 

 

 

3 SIGNAL TRANSDUCTION PATHWAYS IN SPONGISTATIN 1-

INDUCED APOPTOSIS 

Caused by the deficiency in caspase-3, the human breast cancer cell line MCF-7 is an 

interesting model to study the underlying apoptotic mechanisms caused by spongistatin 1 

to overcome chemoresistance. For all experiments in MCF-7 cells, a concentration of 500 

pM spongistatin 1 was applied, which induced about 30% DNA-fragmentation after 48 h 

of treatment (Figure III.3). 
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3.1 RELEASE OF PROAPOPTOTIC PROTEINS FROM MITOCHONDRIA 

A majority of chemotherapeutic agents mediate apoptosis via the intrinsic pathway [6]. 

Based on this knowledge, we initially monitored the mitochondrial events upon 

spongistatin 1 treatment. Members of the Bcl-2 protein family are the major regulators of 

the intrinsic apoptotic pathway. Proapoptotic Bcl-2 proteins like Bax form pores in the 

outer mitochondrial membrane after their activation followed by a release of proapoptotic 

factors into the cytosol. The proapoptotic Bcl-2 proteins are antagonized by the 

antiapoptotic Bcl-2 family members including Bcl-2 and Bcl-xL. Anticancer agents causing a 

mitotic arrest are demonstrated to inactivate Bcl-2 by phosphorylation [83], thereby 

activating Bax and promoting apoptosis. 

As shown in Figure III.15A in the upper panel, treatment with spongistatin 1 did not 

provoke an upregulation of Bax protein over an extended time period. However, upon 

spongistatin 1 treatment Bax underwent a N-terminal conformational change resulting in 

oligomerization of the protein and formation of pores in the outer mitochondrial 

membrane. This conformational change could be analyzed using specific antibodies 

against the normally occluded N-terminus. FACS analysis of MCF-7 cells with such 

antibodies revealed an activation of Bax as early as 8 h, evidenced by a shift in the FL1 

channel (Figure III.15A, lower panel). In addition, the antiapoptotic proteins Bcl-2 and Bcl-

xL were phosphorylated and thereby inactivated upon stimulation with spongistatin 1 for 4 

h (Figure III.15B). 
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Figure III.15: Spongistatin 1 induces the intrinsic apoptotic pathway by activation of Bax and 

inactivation of Bcl-2 and Bcl-xL. 

(A) Upper panel, MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 
pM) for the indicated times. Western Blot analysis was performed using antibodies against Bax. 
Lower panel, MCF-7 cell were either left untreated (CO) or incubated with spongistatin 1 (SP; 500 
pM) for 8 h. The conformational change was measured by flow cytometry using activation-specific 
antibodies against Bax. The filled histrogram shows the staining of untreated cells with secondary 
antibody and the gray lines indicate the specific staining for active forms of Bax. The numbers 
describe the median. The table indicates the x-fold FL1-shift upon treatment with spongistatin 1 
(SP; 500 pM, 8 h). (B) MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 
500 pM) for the indicated times. Western Blot analysis was performed using antibodies against Bcl-
2 and the inactive phosphorylated forms of Bcl-2 and Bcl-xL. Equal protein loading was controlled 
by staining membranes with Ponceau S. One representative blot of three is shown. 
 

As a consequence of both Bax activation and inactivation of Bcl-2 and Bcl-xL, spongistatin 1 

triggered the release of cytochrome c, Smac and Omi/HtrA2 from the mitochondria to the 

cytosol starting 8 h after stimulation and becoming significant 16 h upon treatment with 

spongistatin 1 (Figure III.16). 
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Figure III.16: Spongistatin 1 induces the release of proapoptotic proteins from mitochondria. 

Cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) or as positive control with 
staurosporine (ST; 500 nM) and taxol (TAX; 500 nM) for the indicated times. Cytosol and 
mitochondrial protein fractions were prepared and cytochrome c, Smac/DIABLO, Omi/HtrA2 were 
detected by specific antibodies using Western Blot analysis. Cytochrome c oxidase served as 
control for the quality of the extraction procedure. Equal protein loading was controlled by staining 
membranes with Ponceau S (a representative section of the stained membrane is shown). One 
representative blot of three is shown. 
 

 

3.2 MINOR ROLE OF CASPASES IN SPONGISTATIN 1-INDUCED 

APOPTOSIS 

Caspases are described as the major executioners of classical apoptotic morphology 

induced by various stimuli. But there is growing evidence that apoptotic cell death can 

also be mediated independent of caspases by other factors like AIF and EndoG. The 

activation of initiator and effector caspases was elucidated by Western Blot analysis 

(Figure III.17A). A weak appearance of cleavage products 16 h after stimulation suggests a 

rather poor activation of the initiator caspases-8 and -9. Even though cleavage products of 

the effector caspases-2, -6 and -7 were difficult to detect in MCF-7 cells, a slight decrease of 

the proform could be observed after 32 h of spongistatin 1 treatment.  
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Figure III.17: Marginal participation of the caspases in spongistatin 1-induced cell death. 

(A) MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) for the 
indicated times. Expression of caspase-8, -9, -2, -6 and -7 was assessed by Western Blot analysis. 
Cleavage products are indicated by arrows. Equal protein loading was controlled by staining 
membranes with Ponceau S (a representative section of the stained membrane is shown). All 
experiments were carried out three times. (B) MCF-7 cells and caspase-3 reconstituted MCF-7 cells 
(MCF-7 casp.3) were left untreated (CO) or stimulated with increasing concentrations of 
spongistatin 1 for 48 h. Staurosporine (ST; 500nM) was used as a positive control. Apoptotic cells 

were quantified by flow cytometry. Bars, the mean ± S.E. of three independent experiments 

performed in triplicate. n.s., non significant; ***, p < 0.001 (ANOVA/Bonferroni). 
 

Moreover, MCF-7 cells reconstituted with caspase-3 acquired no greater sensitivity to 

spongistatin 1. In contrast, stimulation with staurosporine (ST) showed clear caspase-3-

dependent DNA fragmentation, indicating a marginal impact of caspase-3 in the apoptotic 

signaling of spongistatin 1 in MCF-7 cells (Figure III.17B). Due to this weak activation of 

the caspases occuring very late in the apoptotic process induced by spongistatin 1, an 

inferior participation of the caspases is supposed. To exclude a functional involvement of 

the caspases, their actual role in the spongistatin 1-evoked cell death was examined using 

the broad-range caspase inhibitor N-(2-quinolyl)valyl-aspartyl-(2,6-difluorophenoxy)-

methylketone (Q-VD-OPh) (Figure III.18). Presence of Q-VD-OPh only led to a moderate 

decrease in the apoptosis rate of spongistatin 1 (21.4%), whereas a more pronounced 

reduction was seen when cells were treated with taxol (69.5%). To ensure that the effect of 

spongistatin 1 is not a unique property of MCF-7 cells, this experiment was repeated with 

comparable results in four additional cell lines derived from different tumors, the 

melanoma cell line SK-Mel-5, the prostate cancer cell line LNCaP and the pancreatic cell 

lines Panc-1 and L3.6pl. In the L3.6pl cell line the experiment was performed after 24 h and 

48 h treatment of spongistatin 1. Pretreatment with the caspase-inhibitor Q-VD-OPh led 

only to a protection from DNA fragmentation about 6% when the cells are stimulated for 

24 h, whereas after 48 h a protection about 34 % was detectable, confirming that the 

caspases are actived to a small extend and very late in the apoptotic process. 
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Figure III.18: Spongistatin 1 induces cell death mainly independent of caspases in several 

cancer cell lines. 

MCF-7 cells, SK-Mel-5, Panc-1, LNCaP and L3.6pl cells were left untreated (CO), incubated with 
spongistatin 1 (SP; 500 pM) or taxol (TAX; 500 nM) for the indicated times or pretreated with Q-VD-
OPh (10 M, 1 h) and then stimulated with spongistatin 1 (SP; 500 pM) or taxol (TAX; 500 nM) for 

the indicated times. Apoptotic cells were quantified by flow cytometry. Bars, the mean ± S.E. of 

three independent experiments performed in triplicate. n.s., non significant; *, p < 0.01; ***, p < 
0.001 (ANOVA/Bonferroni). The numbers describe the percental inhibition of apoptosis by Q-VD-
OPh. 
 

To varify the effects of spongistatin 1 on caspase activation with the broad-range caspase-

inhibitor N-(2-quinolyl)valyl-aspartyl-(2,6-difluorophenoxy)-methylketone (Q-VD-OPh), 

the experiment was repeated in MCF-7 cells using a further pan-caspase-inhibitor, namely 

the N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD.fmk). As shown 
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in Figure III.19, the same results were obtained with these both caspase inhibitors, 

establishing the marginal role of caspases in the spongistatin 1-induced cell death. 

 

 
Figure III.19: The pan-caspase-inhibitors zVAD.fmk and Q-VD-OPh exhibit equal effects in 

MCF-7 cells. 

MCF-7 cells were left untreated (CO), incubated with spongistatin 1 (SP; 500 pM, 48 h) or 
pretreated with zVAD.fmk (25 M, 1 h) or Q-VD-OPh (10 M, 1 h) and then stimulated with 
spongistatin 1 (SP; 500 pM, 48 h). Apoptotic cells were quantified by flow cytometry. Bars, the 

mean ± S.E. of two independent experiments performed in triplicate; ***, p < 0.001 

(ANOVA/Bonferroni). 
 

These data suggest that caspases are not central in spongistatin 1-induced cell death, which 

clearly suggests the involvement of caspase-independent apoptotic pathways. 

 

 

3.3 SPONGISTATIN 1-INDUCED APOPTOSIS INVOLVES AIF AND 

ENDO G, BUT NOT OMI/HTRA2 

In search for apoptotic factors working independently of caspases, spongistatin 1 was 

hypothesized to induce the translocation of Omi/HtrA2, AIF and EndoG to the nucleus. 

Besides its caspase-dependent cytotoxicity, Omi/HtrA2 is reported to induce apoptosis in 

a caspase-independent way based on its serine protease activity. The proapoptotic 

mitochondrial proteins AIF (apoptosis inducing factor) and endonuclease G are well 

described death effectors working independently of caspases during cell death. Upon 

apoptotic stimuli, AIF and EndoG translocate from mitochondria to the nucleus inducing 

chromatin condensation and DNA fragmentation. 

 

As shown in Figure III.20A by both Western Blot analysis and confocal microscopy, no 

translocation of  Omi/HtrA2 from the mitochondria to the nucleus was detectable. 

However, spongistatin 1 caused a translocation of AIF and EndoG to the nucleus, observed 

by an increase of these proteins in the nuclear fraction (Figure III.20B, C). These results 

were further supported by confocal microscopy studies. Untreated control cells show the 

co-localization of these proteins with a mitochondrial dye, proving the mitochondrial 
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localization of these proteins. Upon treatment with spongistatin 1, AIF and EndoG were 

found in the nucleus demonstrated by co-localization of these proteins with the nuclei.  

 

A    Omi /HtrA2 

 

B    AIF 
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C    EndoG 

 
Figure III.20: Spongistatin 1 induces the translocation of AIF and EndoG to the nucleus. 

Upper panel, cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) for 24 h. 
Nonnucleic and nuclear protein fractions were prepared and Omi/HtrA2 (A), AIF (B) and EndoG (C) 
were detected by specific antibodies using Western Blot analysis. Cytochrome c oxidase served as 
a control for the quality of the extraction procedure. Lower panel, cells were left untreated (CO) or 
treated with spongistatin 1 (SP; 500 pM) for 24 h. The translocation of Omi/HtrA2 (A), AIF (B) and 
EndoG (C) from mitochondria to the nucleus was analyzed by confocal microscopy. Nuclei are 
shown blue, mitochondria red and Omi/HtrA2, AIF and EndoG green, respectively. All experiments 
were performed three times with consistent results. 
 

In order to elucidate the impact of these factors on the spongistatin 1-induced cell death, 

the expression of these proteins was silenced by siRNA. As no translocation of Omi/HtrA2 

to the nucleus was detectable (Figure III.20A), downregulation of this protein did not 

protect cells against DNA fragmentation upon stimulation with spongistatin 1 even when 

caspases were inhibited with zVAD.fmk (Figure III.21A). Therefore, Omi/HtrA2 was 

considered not to be involved in the cell death pathway initiated by spongistatin 1. 

Interestingly, downregulation of AIF did not lead to a significant reduction in DNA 

fragmentation upon stimulation with spongistatin 1 despite its translocation to the 

nucleus. In contrast, silencing of EndoG by siRNA induced a marked decrease in the 

apoptosis rate. Moreover, these two factors were shown to act independently of caspases, 

as preincubation with the pan-caspase inhibitor zVAD.fmk had no effect on the DNA 

fragmenation (Figure III.21A). Previous in vitro studies using recombinant AIF [71, 74], 

demonstrated, that AIF is not able to cleave DNA by itself, but needs the interplay with 

endonucleases to facilitate DNA fragmentation and chromatin condensation [75, 76]. 
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Therefore, AIF was hypothesized to collaborate with EndoG in the apoptotic signaling 

induced by spongistatin 1. In fact, cotransfection of MCF-7 cells with AIF and EndoG 

siRNA showed an advanced reduction in DNA fragmentation in response to spongistatin 

1 indicating the functional role of these factors collaborating in the apoptotic process 

induced by spongistatin 1 (Figure III.21B). 
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Figure III.21: AIF and EndoG, but not Omi/HtrA2, assume a functional role in spongistatin 1-

induced apoptosis. 

(A) MCF-7 cells were transfected with oligonucleotids encoding for either Omi/HtrA2 siRNA, AIF 
siRNA, EndoG siRNA or a nonsense sequence. Cells were left untreated (CO), incubated with 
spongistatin 1 (SP; 500 pM, 48 h) or pretreated with zVAD.fmk (25 M, 1 h) and then stimulated 
with spongistatin 1 (SP; 500 pM, 48 h). Apoptotic cells were quantified by flow cytometry. Results 
are represented as the percental specific apoptosis. (B) MCF-7 cells were transfected or 
cotransfected with oligonucleotids encoding for either AIF siRNA and EndoG siRNA or a nonsense 
sequence. Cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) for 48 h. 
Apoptotic cells were quantified by flow cytometry. Results are represented as the percental specific 

apoptosis. Bars, the mean ± S.E. of three independent experiments performed in triplicate. n.s., non 

significant; ***, p < 0.001 (ANOVA/Bonferroni). Downregulations of Omi/HtrA2, AIF and EndoG 
protein levels were verified by Western Blot. Equal protein loading was controlled by staining 
membranes with Ponceau S (a representative section of the stained membrane is shown). 
 

 

3.4 BID IS NOT ENGAGED IN SPONGISTATIN 1-MEDIATED CELL 

DEATH 

The next step was to identify upstream effectors in spongistatin 1-induced apoptosis. 

Multiple evidence demonstrates that the balance of pro- and antiapoptotic Bcl-2 protein 

family members is crucial for the regulation of mitochondrial integrity and function. In this 

range, the BH3-only proteins play a key role in the regulation of the intrinsic apoptotic 

pathway by either activating the proapoptotic Bcl-2 family members or inhibiting the 

antiapoptotic Bcl-2 proteins. Since the BH3-only proteins Bid and Bim execute a highly 

proapoptotic function by acting as direct agonists of Bax or Bak, they were considered to 

be central factors regulating the release of AIF and EndoG from the mitochondria. 

 

First, the involvement of Bid was examined. Under physiological conditions, inactive full-

length Bid resides in the cytosol and removal of the N-terminal repressor of the 

membrane-anchoring segment by proteolytic cleavage is necessary to activate the 
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proapoptotic function of Bid. Western Blot analysis of total protein cell lysate with an 

antibody detecting Bid and truncated Bid (tBid) revealed that no cleavage of Bid occurred 

during spongistatin 1-induced apoptosis, whereas upon treatment with staurosporine the 

active truncated form of Bid was detectable (Figure III.22).  

 

 
Figure III.22: Bid is not cleaved to its active form tBid upon spongistatin 1 treatment. 

MCF-7 cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) or 
staurosporine (ST; 500 nM) for the indicated times. Activation of Bid was analyzed by Western Blot. 
Equal protein loading was controlled by staining membranes with Ponceau S (a representative 
section of the stained membrane is shown). One representative blot of three is shown. 
 

The necessity of Bid cleavage to its active proapoptotic form tBid was recently challenged 

by the fact that full-length Bid was also able to translocate to the mitochondria resulting in 

a breakdown of the mitochondrial membrane potential and subsequent induction of 

apoptosis [137]. Thus, the actual role of Bid in the spongistatin 1-induced apoptosis was 

further elucidated using the Bid-inhibitor BI-6C9 [138].  

 

 
 

Figure III.23: Bid is not involved in spongistatin 1-induced cell death. 

MCF-7 cells were left untreated (CO), incubated with spongistatin 1 (SP; 500 pM, 48 h) or 
pretreated with zVAD.fmk (25 M, 1 h) or BI-6C9 (20 M, 1 h) and then stimulated with spongistatin 

1 (SP; 500 pM, 48 h). Apoptotic cells were quantified by flow cytometry. Bars, the mean ± S.E. of 

three independent experiments performed in triplicate. n.s., non significant; ***, p < 0.001  
(ANOVA/Bonferroni). 
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As shown in Figure III.23, pre-treatment of MCF-7 cells with BI-6C9 did not protect the cells 

from DNA fragmentation. Even in combination of BI-6C9 with the pan-caspase-inhibitor 

zVAD.fmk, there was no difference in the DNA fragmentation observed, supporting the 

previous finding that Bid is not engaged in the apoptotic signaling mediated by spongistatin 

1. 

 

 

3.5 MAJOR ROLE OF BIM IN SPONGISTATIN 1-INDUCED APOPTOSIS 

Next, the role of the BH3-only protein Bim as a key regulator in the apoptotic pathway 

induced by spongistatin 1 was investigated. Spongistatin 1 has been reported to 

depolymerize the microtubule network by interacting with tubulin [24]. The working 

hypothesis was that spongistatin 1 releases Bim from its sequestration at the microtubule 

associated dynein motor complex, thereby activating its proapoptotic function. 

 

 

3.5.1 SPONGISTATIN 1 FREES BIM FROM ITS SEQUESTRATION BY 

MICROTUBULES 

In order to confirm that spongistatin 1 inhibits microtubule assembly, MCF-7 cells were 

transfected with GFP-tubulin and exposed to spongistatin 1. As observed in Figure III.24A, 

the tubulin scaffold in MCF-7 cells transfected with GFP-tubulin was dissolved in 8 h upon 

treatment with spongistatin 1. In addition to this, the level of -tubulin decreased in the 

unsoluble fraction and increased in the soluble fraction (Figure III.24B). 
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Figure III.24: Spongistatin 1 depolymerizes tubulin, thereby releasing Bim from its 

sequestration at microtubules.  

(A) Spongistatin 1 acts as a tubulin depolymerizing agent. MCF-7 cells were transfected with 
plasmids encoding for GFP-tubulin. Cells were left untreated (CO) or treated with spongistatin 1 
(SP; 500 pM) for 8 h. The depolymerization of the tubulin was analyzed by confocal microscopy. 
GFP-tubulin is shown green. (B) Spongistatin 1 induces the release of Bim from the microtubules. 
MCF-7 cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) for 8 h. Soluble 

and unsoluble fractions were prepared and -tubulin and Bim were detected by Western Blot 

analysis. Equal protein loading was controlled by staining membranes with Ponceau S (a 
representative section of the stained membrane is shown). One representative blot of three is 
shown. 
 

Thereby Bim was released from the microtubules shown by a diminished Bim level in the 

unsoluble fraction and an elevation of Bim in the soluble fraction upon stimulation with 

spongistatin 1. The protein level of Bim in the whole cell lysate stayed equal during the 

entire process (Figure III.27). 

 

 

3.5.2 SPONGISTATIN 1 DISRUPTS THE MCL-1/BIM COMPLEX 

As Bim was originally described as a Bcl-2 interacting protein capable of triggering the 

mitochondrial pathway by either directly activating Bax or by binding prosurvival Bcl-2 

proteins [91], Bim was suggested to block Bcl-2 and/or activate Bax via binding to these 

factors. However, immunoprecipitation experiments shown in Figure III.25 indicated that 

Bim is constitutively associated with Bcl-2, Bcl-xL and Bax, but did not support the view of 

Bim translocating to Bcl-2, Bcl-xL or Bax during induction of apoptosis by spongistatin 1. 

No enhanced translocation of Bim to Bcl-2, Bcl-xL or Bax was respectively detectable upon 

treatment with spongistatin 1. 

 

 
Figure III.25: Bim is constitutively associated with Bcl-2, Bcl-xL and Bax. 

MCF-7 cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) for 8 hours. Bim 
was precipitated and its interactions with Bcl-2, Bcl-xL, Bax and Bax (6A7) were detected by specific 
antibodies using Western Blot analysis. Equal protein precipitation was controlled by detecting Bim 
with a specific antibody. The whole cell lysate (WCL) was used as control for protein detection. All 
experiments were carried out three times. 
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As Bim and Mcl-1 are well-known binding partners, the sequestration of Bim by the 

antiapoptotic Bcl-2 family member Mcl-1 was expected to block the Bim-mediated 

mitochondrial apoptosis cascade. Therefore, the binding of Mcl-1 and Bim upon treatment 

with spongistatin 1 was assessed by immunoprecipitation experiments either by 

precipitating Bim (Figure III.26A) or Mcl-1 (Figure III.26B).  

 

 
Figure III.26: Spongistatin 1 disrupts the Mcl-1/Bim complex. 

Cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) for 8 h. Bim (A) or 
Mcl-1 (B) was precipitated and the interaction with Mcl-1 or Bim was detected by Western Blot 
analysis, respectively. Equal protein precipitation was controlled by detecting Bim or Mcl-1 with a 
specific antibody. The whole cell lysate (WCL) was used as control for protein detection. All 
experiments were carried out three times. 
 

In both settings spongistatin 1 was able to disrupt the Mcl-1/Bim complex, shown by a 

decrease of the associated proteins, whereas the levels of the precipitated proteins stayed 

equal. This effect is not due to a degradation of either Mcl-1 or Bim, since it was no change 

in protein levels of both factors during the whole time of the experiment detectable (Figure 

III.27).  
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Figure III.27: Bim and Mcl-1 are not degraded upon spongistatin 1-treatment. 

Cells were left untreated (CO) or stimulated with spongistatin 1 (SP; 500 pM) for the indicated 
times. Bim (upper panel) and Mcl-1 (lower panel) protein levels were detected by Western Blot 
analysis, respectively. Equal protein loading was controlled by staining membranes with Ponceau S 
(a representative section of the stained membrane is shown). One representative blot of three is 
shown. 
 
 

3.5.3 BIM KNOCKDOWN PREVENTS CELL DEATH BY SPONGISTATIN 1 

Elucidating the functional role of Bim in the spongistatin 1-induced cell death, the 

expression of this protein was downregulated by siRNA. Bim siRNA induced specific gene 

silencing of Bim over a period of 72 h as determined at protein level. Most importantly, 

silencing of Bim by siRNA reduced significantly DNA fragmentation upon stimulation 

with spongistatin 1 (Figure III.28), demonstrating that Bim functions as a major 

proapoptotic factor in the spongistatin 1-induced cell death. 

 

 

Figure III.28: Bim siRNA inhibits spongistatin 1-induced cell death. 

MCF-7 cells were transfected with oligonucleotides encoding for either Bim siRNA or a nonsense 
sequence. Upper panel, cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) 
for 48 h. Apoptotic cells were quantified by flow cytometry. Results are represented as the 

percentage of specific apoptosis. Bars, the mean ± S.E. of three independent experiments 

performed in triplicate. ***, p < 0.001 (ANOVA/Bonferroni). Lower panel, downregulation of the Bim 
protein level was verified by Western Blot using an antibody against the all three splice variants 
BimEL, BimL and BimS. Equal protein loading was controlled by staining membranes with Ponceau S 
(a representative section of the stained membrane is shown). 
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3.5.4 BIM FUNCTIONS AS A PROAPOPTOTIC FACTOR UPSTREAM OF 

MITOCHONDRIA 

To verify the notion that Bim acts upstream of mitochondria, Bim was silenced by siRNA 

and the impact of its downregulation on the release of proapoptotic factors from the 

mitochondria to the cytosol as well as the translocation to the nucleus was investigated.  

 

 
 

 

Figure III.29: Bim functions as a proapoptotic regulator upstream of mitochondria. 

MCF-7 cells were transfected with oligonucleotides encoding for either Bim siRNA or nonsense 
sequence. Upper panel, cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) 
or as positive control with taxol (TAX; 500 nM) for the indicated times. Cytosol and mitochondrial 
protein fractions were prepared and cytochrome c, Smac/DIABLO, Omi/HtrA2 were detected by 
specific antibodies using Western Blot analysis. Cytochrome c oxidase served as control for the 
quality of the extraction procedure. Lower panel, downregulation of the Bim protein level was 
verified by Western Blot using an antibody against the three splice variants BimEL, BimL and BimS. 
Equal protein loading was controlled by staining membranes with Ponceau S (a representative 
section of the stained membrane is shown). All experiments were carried out three times. 
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Silencing of Bim by siRNA led to a diminished release of Smac from the mitochondria to 

the cytosol, whereas the release of cytochrome c and Omi/HtrA2 was not affected (Figure 

III.29). These proteins are thought to be involved in the caspase-mediated apoptotic 

pathway. As previously shown in Figure III.18, the caspases are not central in the signaling 

pathway induced by spongistatin 1. Therefore, cytochrome c, Smac and Omi/HtrA2 might 

also play an inferior role in this signaling cascade. 

 

More importantly, Bim is involved in the caspase-independent apoptotic pathways as it 

triggered the translocation of mitochondrial AIF and EndoG to the nucleus (Figure III.30). 

These two factors acting independely of caspases were previously shown to be involved in 

spongistatin 1-mediated apoptosis (Figure III.21).  

 

 
 

 

Figure III.30: Bim is involved in the caspase-independent apoptotic pathway. 

MCF-7 cells were transfected with oligonucleotides encoding for either Bim siRNA or nonsense 
sequence. Upper panel, cells were left untreated (CO) or treated with spongistatin 1 (SP; 500 pM) 
for 24 hours. Nonnucleic and nuclear protein fractions were prepared and AIF and EndoG were 
detected by specific antibodies using Western Blot analysis. Cytochrome c oxidase served as a 
control for the quality of the extraction procedure. Lower panel, as a control, the Bim protein levels 
in cell lysates from nonsense and Bim siRNA transfected cells were analyzed by Western Blot. 
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In MCF-7 cells transfected with Bim siRNA, no translocation of AIF and EndoG to the 

nucleus was detectable, whereas in cells transfected with a nonsense sequence AIF and 

EndoG translocated to the nucleus shown by an increase of these proteins in the nuclear 

fraction. 

 

Finally, to prove the impact of Bim and caspase-independent players such as EndoG on 

spongistatin 1-induced apoptosis, cells were cotransfected with Bim and EndoG siRNA. 

Indeed, a marked reduction in DNA fragmentation equal to the level of the control cells in 

response to spongistatin 1 exposure could be observed (Figure III.31) indicating that 

EndoG dominates the cell death pathway triggered by Bim in response to spongistatin 1 

treatment. This supports the notion of Bim as a major proapoptotic factor involved in 

caspase-independent apoptotic signaling pathways.  

 

 

 
Figure III.31: Bim and EndoG are the major regulators of spongistatin 1-induced cell death.  

MCF-7 cells were cotransfected with oligonucleotides encoding for either Bim siRNA and EndoG 
siRNA or nonsense sequence. Upper panel, cells were left untreated (CO) or treated with 
spongistatin 1 (SP; 500 pM) for 48 h. Apoptotic cells were quantified by flow cytometry. Results are 

represented as the percental specific apoptosis. Bars, the mean ± S.E. of three independent 

experiments performed in triplicate. ***, p < 0.001 (ANOVA/Bonferroni). Lower panel, 
downregulation of Bim and EndoG protein levels were verified by Western Blot. Equal protein 
loading was controlled by staining membranes with Ponceau S (a representative section of the 
stained membrane is shown). All experiments were performed three times with consistent results.  
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IV DISCUSSION 

Unfortunately, the anticancer drugs that are nowadays in clinical use have only limited 

success due to two major problems. First, the high mortality rates associated with cancer 

are caused by the metastatic spread of tumor cells from the site of their origin. Despite 

recent advantages in early detection and new therapeutic options for cancer patients, 

metastatic progression is attributed to 90% of human cancer fatalities and represents the 

major unsolved problem in cancer therapy. Secondly, a common problem in 

chemotherapy is the often developed resistance of cancer cells to anticancer agents. Since 

cytotoxic effects of many anticancer drugs are mediated via the apoptotic pathway, 

resistance to chemotherapy often reflects an inability of tumor cells to undergo apoptosis 

[5]. Hence, there is need for the development of novel and pharmacologically effective 

chemotherapeutic agents as well as characterizing and targeting unusual apoptotic 

signaling pathways to resensitize cancer cells to chemotherapy. In this respect, the 

spongistatins are promising substances in the combat against metastatic and 

chemoresistant cancer cells, particularly because of their exceptional potency on the 60 

human cancer cell line panel of the National Cancer Institute (NCI). 

 

 

1 SPONGISTATIN 1, A POTENT ANTICANCER AGENT 

The current study presents the marine natural compound spongistatin 1 as a powerful 

apoptosis inducing agent in various human tumor cell lines. Spongistatin 1 treated cancer 

cells exhibited characteristic features of apoptotic cell death including cell shrinkage, 

formation of apoptotic bodies (Figure III.1) and cell cycle arrest at G2/M phase (Figure 

III.4). Of note, spongistatin 1 was able to induce DNA fragmentation, a hallmark of 

apoptosis, in several cancer cell lines characterized by their insensitivity to many 

chemotherapeutic drugs or by their increased invasiveness (Figure III.3). The human 

pancreatic cancer cell line L3.6pl and the human epithelial breast cancer cell line MCF-7 

were choosen for further experiments. Both spongistatin 1 as well as the anticancer agent 

taxol induced DNA fragmentation in MCF-7 cells and L3.6pl cells, however spongistatin 1 

was effective at a concentration 1000-fold lower than taxol (Figure III.5). Most importantly, 

spongistatin 1 showed strong long term effects on the clonogenic survival of both of these 

cell lines. Spongistatin 1 was able to almost completely suppress the growth of colonies, 

whereas established anticancer drugs including the tubulin-antagonists taxol and 

vinblastine in concentrations corresponding to the apoptosis rate of spongistatin 1 reduced 

the accumulation of colonies to a minor extent (Figure III.5). Thus, the inhibitory effects of 

spongistatin 1 on clonal tumor cell growth are not only caused by its impact on 

microtubules, but they seem to be specific for this compound. 
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Taken together, spongistatin 1 can be regarded as a powerful apoptosis-inducing and 

growth-inhibiting agent even in metastatic and apoptosis resistant cells. Therefore, it 

seemed of special interest to clarify the underlying mechanisms of spongistatin 1-induced 

cytotoxicity, shown in two separate models. First, the effects of spongistatin 1 on critical 

steps in the metastatic cascade were studied in vitro using the highly invasive pancreatic 

tumor cell line L3.6pl cell. Secondly, apoptotic signaling pathways to circumvent 

chemoresistance were investigated in the caspase-3 deficient human epithelial breast 

cancer cell line MCF-7. 

 

 

2 ANTIMETASTATIC EFFECTS OF SPONGISTATIN 1 

Pancreatic adenocarcinoma is characterized by aggressive invasion, early metastasis and 

resistance to chemotherapeutic agents. The 5-year overall survival rate for all patients with 

pancreatic cancer is only 4%, a statistic which is essentially unchanged from two decades 

ago despite intensive research [139]. More efficient therapies for pancreatic carcinoma, 

especially targeting the metastatic process, are thus needed. 

The basis of this project represents the strong antimetastatic potential of spongistatin 1 in 

vivo, studied in the orthotopic pancreatic tumor model [112, 136]. Intriguingly, 

spongistatin 1 was able to decrease the formation of liver metastases by about 78% and 

lymph node metastases by about 66% (Table III.1). Motivated by these impressive data, the 

current study focused on the impact of spongistatin 1 on central steps in the metastatic 

cascade in vitro. 

 

 

2.1 SPONGISTATIN 1 INFLUENCES CRITICAL STEPS IN THE 

METASTATIC PROCESS 

The understanding of mediators involved in critical steps in the metastatic process is 

essential for the development of targeted therapies for pancreatic carcinoma. 

Firstly, cell proliferation is one of the key steps in tumorigenesis and metastasis. Metastatic 

tumor cells are characterized by a strong proliferation in the primary tumor as well as at a 

secondary site to establish there metastatic foci [140]. Of note, spongistatin 1 strongly 

inhibited tumor cell proliferation even at remarkably low concentrations in the picomolar 

range (Figure III.6). 

 

Secondly, an important aspect of the metastatic cascade adresses cell migration and 

invasion. Tumor cells must invade through the adjacent basement membrane into 

surrounding tissues and then migrate to and invade the vasculature to disseminate to 

distant sites. Indeed, in vitro experiments, namely the “wound healing” assay and the 
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modified “Boyden chamber”, revealed antimetastatic properties of spongistatin 1 by 

inhibiting migration as well as invasion, respectively, even in nontoxic concentrations 

(Figure III.7, Figure III.8). 

These fundamental processes in cancer metastasis involve a dynamic interaction between 

the tumor cells and the extracellular matrix (ECM) as well as proteolytic remodeling of the 

ECM [103]. Multiple sets of proteolytic proteins are upregulated and activated during 

cancer progression. The principle classes of enzymes that degrade the ECM- and cell-

associated proteins are the matrix metalloproteinases (MMPs), which are zinc-dependent 

endopeptidases that cleave and degrade a wide sprectrum of ECM components. In vivo 

studies performed by our working group revealed, that MMP-9 was activated in the 

primary tumor established from L3.6pl cells in the orthotopic pancreatic tumor model. 

Importantly, spongistatin 1 was able to downregulate MMP-9 at the transcriptional level 

(data unpublished), thereby probably inhibiting tumor cell invasion. 

 

Thirdly, cell adhesion has an essential role in regulating metastatic processes, particularly 

at two different steps: On the one hand, tumor cell motility and invasion are dynamic 

processes involving the formation of adhesions to the ECM at the leading edge of the cell 

and detachment from the ECM at the tailing edge. Thus, the cell can be put forward by 

cytoskeletal contraction. On the other hand, metastatic tumor cells in the circulatory 

system must arrest at a distant site by attachment to the subendothelial ECM [140]. Our 

data demonstrates an impact of spongistatin 1 on the latter process of tumor cell adhesion, 

the arrest of detached cells at a secondary site. L3.6pl cells prestimulated with spongistatin 

1 for three hours showed a decreased ability to attach on collagen-coated (Figure III.9) 

surfaces.  

 

In this context, focal adhesion kinase (FAK) is a central player in functional adhesion 

signaling, cell motility and survival of human solid tumors. These properties may be 

linked to FAK overexpression or to a constitutive activation of FAK in a subset of 

metastazing cancer cells. Increased FAK expression and activity are frequently correlated 

with malignant or metastatic disease and poor patient prognosis [141]. Several reports 

have implicated that the activity of FAK correlates with phosphorylation at specific 

tyrosine residues. Although phosphorylation at Tyr397 might not necessarily reflect FAK 

kinase activity in different tumor types [107, 142], there is evidence that FAK 

phosphorylation, especially at the Tyr397 residue, may regulate tumor cell migration. 

Chatzizacharias et al. [143] demonstrated recently that increased FAK tyrosine 

phosphorylation and consequently increased FAK signaling seem to drive cells to a more 

aggressive and even malignant phenotype. Hence, FAK displayed an important aspect in 

the metastatic process to be adressed in our present study. In fact, the used L3.6pl cells 

revealed a constitutive activation of FAK by phosphorylation at Tyr397. Treatment with 
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spongistatin 1 led to a dephosphorylation of FAK at Tyr397 (Figure III.10), which may be 

linked with an inactivating of this enzyme and a diminished migration and invasion of 

L3.6pl cells. 

 

 

2.2 APOPTOSIS AND METASTASIS 

Matrix-independent passage of cancer cells trough blood and/or lymph compartments is 

an essential component of the metastatic cascade. Therefore, metastatic cancer cells by 

definition would have to acquire the ability to survive in a detached state. Since 

detachment of cells from the extracellular matrix induces programmed cell death, 

metastatic dissemination may depend upon the resistance of metastatic cells to apoptosis. 

Several previous studies exhibited that most cell lines derived from solid tumors grow in 

an anchorage-independent manner in suspension culture [144]. Moreover, experimental 

evidence demonstrated that suppression of anoikis, apoptosis caused by detachment from 

the ECM, in transformed cells strongly enhances their tumorigenicity in vivo [145]. These 

observations support the hypothesis that induction of apoptosis is one of the key 

mechanisms for elimination of misplaced cells and may prevent metastatic spread. Indeed, 

the used metastatic L3.6pl cells were resistant to anoikis and this resistance was abolished 

by treatment with spongistatin 1. Culturing L3.6pl cells in suspension conditions and not 

allowing them to adhere did not induce anoikis. Intriguingly, upon treatment with 

spongistatin 1, these cells overcame anoikis-resistance and showed significant DNA-

fragmentation after 24 h (Figure III.11). Thus, spongistatin 1 can be considered as a 

potential compound in the combat against metastasis, generating a link between 

apoptosis-induction and metastasis-inhibition. 

 

To investigate the underlying mechanisms of spongistatin 1 on anoikis, we focused on 

several known factors of the apoptotic machinery that have been shown to be involved in 

anoikis-resistance and metastasis. There is some experimental evidence indicating that a 

higher resistance to apoptosis of metastatic cancer cells is associated with the dysfunction 

of apoptosis regulatory factors. Among them, the Bcl-2 family proteins seem to play a 

prominent role in both tumorigenesis and metastasis. The antiapoptotic proteins of the 

Bcl-2 family function in carcinogenesis by preventing apoptosis of tumor cells instead of 

promoting cell proliferation. Elevated expression of antiapoptotic Bcl-2 was shown to be 

associated with an increased metastatic phenotype in several human pancreatic cancer cell 

lines and simultaneously confered a resistance to apoptotic responsiveness [146]. 

Furthermore, Fernandez et al. [147] revealed Bcl-xL to improve cell survival without 

cellular adhesion and in the circulation, thereby enhancing anchorage-independent 

growth, which may cause metastasis. Additionally, Espana et al. [148] demonstrated in 

vivo that an overexpression of Bcl-xL in highly metastatic MDA-MB-435 cells enhances 
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metastatic activity. Although Bcl-2 and Bcl-xL are closely related to each other and repress 

cell death through common mechanisms [149], they are not functionally equivalent. 

Previous findings indicate that overexpression of Bcl-xL correlated better with tumor 

metastasis than Bcl-2 [147, 148]. Consistent with these findings, we proposed an 

involvement of both Bcl-2 and Bcl-xL in spongistatin 1-mediated cytotoxicity. Western Blot 

analysis indicated that Bcl-2 was phosphorylated and thereby inactivated upon 

spongistatin 1 treatment, whereas Bcl-xL is both phosphorylated and its protein levels are 

diminished by spongistatin 1 (Figure III.12). The additional downregulation or 

degradation of Bcl-xL may demonstrate the predominant role of this protein in the 

metastatic process. Knockdown experiments of Bcl-2 and Bcl-xL using siRNA technique 

confirmed the functional role of these two proteins in anoikis resistance (Figure III.13). We 

suppose that spongistatin 1 overcomes the resistance to anoikis by inactivating these two 

proteins. Besides their involvement in resistance to anoikis, Bcl-2 and Bcl-xL were 

previously shown to promote migration and invasion. In a recent study, Du et al. [150] 

presented Bcl-xL as a factor which is able to trigger cell motility and invasion by 

remodeling the actin cytoskeleton, affecting cell shape and adhesion. Thus, Bcl-xL may 

provide prometastatic properties different from neutralizing proapoptotic Bcl-2 family 

members. In agreement with these findings, our data support the notion of an 

involvement of the antiapoptotic proteins Bcl-2 and Bcl-xL in cell motility and migration 

(Figure III.14). Because of their key roles in the regulation of both apoptosis and 

metastasis, Bcl-2 and Bcl-xL display potential targets for chemotherapy.  

 

 

2.3 CONCLUSION AND FURTHER DIRECTIONS 

The presented data introduces spongistatin 1 as a potent antimetastatic agent in vivo and in 

vitro against the highly invasive and anoikis-resistant pancreatic cancer cells L3.6pl. 

Spongistatin 1 was shown to affect critical events in the metastatic cascade including 

proliferation, cell migration, invasion and adhesion. Additionaly, our results, namely the 

inactivation and/or downregulation of the prosurvival proteins Bcl-2 and Bcl-xL as well as 

knockdown experiments of these proteins combined with apoptosis and migration assays, 

reinforce the hypothesis of a functional link between apoptosis inhibition and metastasis. 

However, besides this study more functional experiments are necessary to establish the 

involvement of apoptotic processes in the metastatic cascade. For example, performing 

metastasis assays with silenced FAK would give some information about the importance 

of this factor in the distinct metastatic steps. Furthermore, the investigation of downstream 

targets of FAK would be interesting to get detailed insights into the signaling pathways. 

Proteins of the Bcl-2 family are both key regulators of the intrinsic apoptotic pathway and 

important factors in the metastatic process [151]. In this respect, these proteins are 

currently under investigation by our group. Overexpression as well as silencing of Bcl-2 
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and Bcl-xL in combination with functional metastatic assays, such as the tumor invasion 

assay, would give important information in the understanding of the functional 

involvement of antiapoptotic processes in metastasis. 

 

 

3 APOPTOTIC SIGNALING PATHWAYS 

In order to elucidate the apoptotic mechanisms of spongistatin 1, we focused on signaling 

pathways to overcome chemoresistance of the human breast cancer cells MCF-7. As MCF-

7 cells are quite insensitive to many chemotherapeutic agents due to a deletion in caspase-

3, this cell line represents a good model to study apoptotic mechanisms to combat 

chemoresistant cells [152]. Breast cancer is the leading cause of cancer death amongst 

women in developed countries [153]. Despite increased understanding of the molecular 

aberrations underlying this disease and advances in treatment, therapeutic resistance 

remains the major obstacle to an effective cure, emphazing the need for pharmacological 

therapeutics that trigger unusual signaling pathways to overcome chemoresistance. The 

principal mediators of apoptosis are caspases, and failure to activate these caspases 

accounts for cancer cell resistance to apoptosis [154, 155]. Therefore, the triggering of 

caspase-independent apoptotic pathways is an attractive therapeutic strategy to overcome 

chemoresistance [156].  

 

 

3.1 INVOLVEMENT OF THE INTRINSIC APOPTOTIC PATHWAY 

Since the intrinsic apoptotic pathway is frequently triggered by chemotherapeutic agents, 

mitochondrial events upon spongistatin 1 treatment were initially monitored. Critical 

regulators of this pathway are members of the Bcl-2 protein family. The interplay between 

opposing members of the Bcl-2 family influences the permeability of the outer 

mitochondrial membrane. Multidomain proapoptotic proteins, such as Bax, are referred to 

as essential regulators of apoptosis signaling based on several knock-out studies [157, 158]. 

In fact, spongistatin 1 was able to trigger the intrinsic mitochondrial pathway by activating 

Bax (Figure III.15). Moreover, the antiapoptotic proteins Bcl-2 and Bcl-xL are 

phosphorylated in response to spongistatin 1 treatment, causing an inactivation of these 

proteins. As Bcl-2 phosphorylation is a specific feature of microtubule affecting drugs [82], 

this phosphorylation may be associated with the tubulin depolymerization and G2/M 

arrest induced by spongistatin 1. The activation of proapoptotic Bax and concomitant 

inactivation of prosurvival Bcl-2 and Bcl-xL by spongistatin 1 unbalances the ratio of pro- 

and antiapoptotic Bcl-2 proteins, thereby permeabilizing the outer mitochondrial 

membrane. 
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The release of mitochondrial intermembrane space proteins to the cytosol is a key event 

during the intrinsic apoptotic pathway [120, 121]. For instance, cytochrome c is required 

for the initiation of the apoptosome and activation of caspases, whereas Smac and 

Omi/HtrA2 are believed to enhance caspase activation through the neutralization of the 

inhibitors of apoptosis proteins. Although a release of cytochrome c, Smac and 

Omi/HtrA2 from the intermembrane space of mitochondria to the cytosol could be 

detected early during spongistatin 1-induced apoptosis, the activation of the caspases 

occured late and only slightly (Figure III.17A). In addition, MCF-7 cells reconstituted with 

caspase-3 did not show a significant increase in DNA-fragmentation upon spongistatin 1 

treatment in comparison to MCF-7 cells depleted of caspase-3, whereas the expression of 

functional caspase-3 greatly enhanced the sensitivity of these cells to staurosporine, a well-

known apoptosis-inducing agent able to trigger both the extrinsic and the intrinsic 

apoptotic pathway [159] (Figure III.17B). Furthermore, the functional role of caspases was 

assured using the pan-caspase inhibitor Q-VD-OPh. Presence of Q-VD-OPh led to a 

moderate reduction in DNA fragmentation (Figure III.18). This effect was not limited to 

MCF-7 cells but also observed in several other tumor cell lines. 

 

These data strongly suggest that caspases, especially caspase-3, are not the key players in 

the spongistatin 1 induced apoptotic signaling. Tumor cells often develop resistance to 

apoptosis by deregulation of apoptotic mechanisms, one of them is inactivation and 

depletion of caspases [5], the core of classical apoptotic pathways. As spongistatin 1 was 

able to induce apoptosis despite the inferior role of the caspases in spongistatin 1-induced 

cell death it can be considered as a valuable agent circumventing chemoresistance. Several 

studies indicate that apoptosis might not even require caspase activation [79, 160], asking 

for an additional involvement of caspase-independent apoptotic pathways. 

 

 

3.2 CASPASE-INDEPENDENT MECHANISMS 

For that reason, our study focused on the involvement of proapoptotic factors working 

independently of caspases. Mitochondria have been referred to also release factors 

involved in caspase-independent cell death including Omi/HtrA2, apoptosis-inducing 

factor (AIF) and endonuclease G (EndoG) [161]. 

 

Multiple previous studies demonstrated that the serine protease Omi/HtrA2 promotes 

apoptosis by mechanisms similar to Smac. Omi/HtrA2 is formed as a precursor and 

translocates to the mitochondria, where it is processed to its mature form by proteolytic 

cleavage. Thereby, the IBM motif is exposed allowing Omi/HtrA2 to interact with XIAP 

and promote caspase-dependent cell death. But unlike Smac, Omi/HtrA2 contributes to 

caspase-independent apoptosis due to its protease activity in addition to its physical 
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inhibition of IAPs [162]. Indeed, siRNA-mediated knockdown of Omi/HtrA2 combined 

with pan-caspase inhibitor zVAD.fmk almost completely protected HeLa cells from 

undergoing staurosporine-induced cell death, whereas caspase-inhibition alone was 

significantly less effective [163]. Besides its mitochondrial localization, Omi/HtrA2 was 

also been detected in the nucleus of resting cells [70]. Thus, Omi/HtrA2 was hypothesized 

to translocate to the nucleus upon spongistatin 1 treatment and to exert its serine protease 

activity. However, we could not detect any translocation of Omi/HtrA2 from 

mitochondria to the nucleus neither by Western Blot analysis nor confocal microscopy 

(Figure III.20). Additionally, knockdown experiments of Omi/HtrA2 using siRNA 

techniques confirmed that Omi/HtrA2 did not exhibit a functional role in spongistatin 1-

induced cell death (Figure III.21). 

 

The second factor working independent of caspases and elucidated in this study was AIF. 

AIF is a mitochondrial flavoprotein, its main function during apoptosis is to translocate to 

the nucleus and initiate large-scale (50kb) DNA fragmentation. In vitro studies using 

recombinant AIF showed [71, 74], that AIF is not able to cleave DNA by itself, but recruits 

or activates endonucleases to facilitate DNA fragmentation and chromatin condensation 

[75] buiding up a so-called “degradeosome“ [76]. Third, upon apoptotic stimuli 

endonuclease G, like AIF, translocates from the mitochondria to the nucleus and 

contributes extensively to apoptotic nuclear DNA degradation into oligonucleosomal 

fragments in a caspase-independent way. Of note, upon spongistatin 1 treatment, AIF and 

EndoG translocated from mitochondria to the nucleus, shown by both Western Blot 

analysis and confocal microscopy (Figure III.20). 

Niikura et al. proposed in a recent study [164] that both AIF and EndoG are essential in 

the caspase-independent cell death signaling pathway, whereas one of these two factors 

alone is not able to induce apoptosis. In contrast to these findings, Arnould et al. 

demonstrated that AIF and EndoG define a caspase-dependent mitochondria-initiated 

apoptotic DNA degradation pathway [165, 166]. Hence, it remains to be examinated 

whether caspases are required for the release of AIF from mitochondria and for DNA 

fragmentation, and whether EndoG could be the endonuclease interacting and 

cooperating with AIF. Our data indicates, that AIF and EndoG collaborate in spongistatin 

1-induced cell death. Combined silencing of these genes with siRNA resulted in a marked 

reduction in DNA fragmentation (75%, Figure III.21) whereas gene silencing of AIF and 

EndoG individually did not rescue apoptosis in the case of AIF or only by 45% upon 

EndoG downregulation. Moreover, the functional role of both proteins appeared to be 

independent of caspase-activation as preincubation with the pan-caspase inhibitor 

zVAD.fmk did not show a pronounced protection from apoptosis (Figure III.21). These 

results are in agreement with the findings of Niikura et al. [164]. Our experiments support 

the notion that AIF alone is not able to induce DNA fragmentation, but enhances the 
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activity of endonucleases. We hypothesize that EndoG is an endonuclease that interacts 

and cooperates with AIF in spongistatin 1-induced apoptosis. 

 

 

3.3 INVOLVEMENT OF BIM 

The release of mitochondrial proteins, especially AIF and EndoG, is largely regulated by 

members of the Bcl-2 protein family. Since the BH3-only proteins tBid and Bim execute a 

highly proapoptotic function by antagonizing all the prosurvival Bcl-2 family proteins 

[95], they were supposed to be central factors regulating the release of AIF and EndoG 

from the mitochondria. A functional link between these two proteins and Bim was 

recently presented by Liou et al. [167], associating BimEL upregulation with the AIF 

translocation. In two additional studies, BH3-only proteins, especially tBid and Bim, are 

shown to induce the translocation of EndoG from mitochondria to the nucleus [72, 73]. 

 

First, the activation of Bid by cleavage to its truncated form tBid was studied by Western 

Blot analysis. Upon spongistatin 1 treatment, full-length Bid was not cleaved into its active 

form tBid (Figure III.22) in contrast to staurosporine, which has been previously described 

to mediate apoptosis in MCF-7 cells through the contribution of Bid cleavage [168]. 

However, the necessity of Bid cleavage to its proapoptotic acting relative tBid has been 

recently challenged by the finding that full-length Bid also mediates apoptosis in epithelial 

cells without any previous cleavage by caspase-8 or interaction with other Bcl-2 family 

members [169]. Based on this information, further studies were required to elucidate the 

involvement of Bid in the spongistatin 1-induced cell death. Initially we pretreated with 

the small molecular Bid inhibitor BI-6C9, developed in the laboratory of Maurizio 

Pellecchia (The Burnham Institute, La Jolla, USA), but it did not decrease DNA 

fragmentation by spongistatin 1 (Figure III.23). As we could not detect any cleavage of Bid 

to the active form tBid as well no protection by the Bid-inhibitor BI-6C9 upon spongistatin 

1 treatment, we concluded that Bid does not participate in the spongistatin 1-mediated 

apoptotic pathways. 

 

Hence, our study focused on the involvement of Bim in the apoptosis signaling pathway 

induced by spongistatin 1. Puthalakath et al. demonstrated that under physiological 

conditions Bim is bound to the dynein light chain (LC8) of microtubules and thereby 

sequestered from other Bcl-2 family members [123]. Apoptotic stimuli are thought to 

disrupt this interaction thereby freeing Bim to translocate to the mitochondria and 

releasing proapoptotic factors from the intermembrane space to the cytosol. In line with 

the findings of Puthalakath et al. [123], our results confirmed the association of Bim with 

the microtubular complex in healthy cells. By depolymerizing the tubulin scaffold, 

spongistatin 1 freed Bim from its sequestration by the microtubules (Figure III.24). 



DISCUSSION   110 

 

Originally, Bim was described as a Bcl-2 interacting protein capable of initiating the 

mitochondrial pathway by either directly activating Bax-like proteins or by binding to 

prosurvival Bcl-2 family members. These interactions disturbe the balance between pro- 

and antiapoptotic Bcl-2 proteins resulting in the release of proapoptotic molecules from 

the intermembrane space of mitochondria to the cytosol [91]. Recently Weber et al. [170] 

demonstrated that the BimS apoptosis inducing potential is correlated with mitochondrial 

localization, but not the ability to bind to Bcl-2. Nevertheless, the essential activity of BimS 

is assumed to be the activation of Bax. Contrary to this hypothesis, the results of Willis et 

al. [99] suggest that Bim is able to induce apoptosis without binding Bax. Our 

immunoprecipitation experiments examining as to whether Bim binds to Bcl-2, Bcl-xL, Bax 

and conformationally changed Bax, respectively, revealed that even in untreated cells Bim 

is already associated with Bcl-2, Bcl-xL and Bax. However, no enhanced translocation of 

Bim to Bcl-2, Bcl-xL and Bax upon induction of apoptosis by spongistatin 1 has been 

observed (Figure III.25). 

Moreover, the activity of Bim has been described to be regulated by the antiapoptotic Bcl-2 

family member Mcl-1, possessing a high affinity binding capacity for BH3-only proteins 

such as Bim and thereby functioning as a reservoir for those proapoptotic proteins [171]. 

Bim shows a higher affinity for Mcl-1 than Bcl-2 suggesting Bim to counteract Mcl-1 more 

actively than Bcl-2 [172, 173]. Consistent with this previous observation, our data obtained 

from immunoprecipitation experiments indicates that spongistatin 1 is able to disrupt the 

Mcl-1/Bim complex, thereby abolishing the sequestration of the potent proapoptotic 

protein Bim (Figure III.26). A common view is that antagonizing the prosurvival activity of 

Mcl-1 requires its elimination from cells via degradation by the proteasome machinery. 

Indeed, many death stimuli caused a rapid decrease in Mcl-1 levels that correlated with 

apoptosis [174]. However, a recent study by Lee et al. [175] demonstrated that Bim-

induced cell death is not associated with Mcl-1 degradation and functional inactivation of 

Mcl-1 does not always require its elimination. According to these findings, the disruption 

of the Mcl-1/Bim complex was not due to the frequently reported degradation [92] neither 

of Mcl-1 nor Bim, since the protein levels of both factors stayed equal during the entire 

experiment (Figure III.27). 

 

Bim has been characterized by several previous studies as a critical initiator of apoptosis in 

various cell lines [91, 176] and animal models [177]. Deletion of the bim gene revealed that 

Bim is essential for hematopoietic homeostasis. For instance, Bouillet et al. [178] showed, 

that the bim-/- mice had excess hematopoietic cells and those cells were refractory to certain 

apoptotic stimuli. Furthermore, a recent study proposed the reexpression of Bim as a 

strategy to sensitize cells for the treatment with anticancer agents, since enforced 

expression of Bim in leukemic cells was associated with a time-dependent increase in the 

percentage of apoptotic cells [179]. Intriguingly, in line with these previous findings, 



111  DISCUSSION 

 

silencing of Bim by siRNA led to a marked decrease in DNA fragmentation upon 

stimulation with spongistatin 1, demonstrating that Bim functions as a major proapoptotic 

factor in the spongistatin 1-induced cell death. Based on the following two facts, we could 

identify Bim as a central proapoptotic regulator targeted by spongistatin 1 upstream of 

mitochondria. First, the silencing of Bim by siRNA rescued the cells from apoptosis and 

led to a diminished release of mitochondrial proteins (Figure III.29). The release of Smac 

was inhibited significantly, whereas Omi/HtrA2 and cytochrome c were not affected. 

However, these factors are supposed to play a minor role in the apoptotic pathway by 

spongistatin 1, because they induced apoptosis mainly by influencing the activity of 

caspases that are shown to be nonessential in the spongistatin 1-mediated cell death. 

Secondly and most importantly, the translocation of the caspase-independent acting 

proteins AIF and EndoG by spongistatin 1 was inhibited in cells silenced with Bim siRNA 

(Figure III.30). Moreover, cotransfection experiments with Bim siRNA and EndoG siRNA 

downregulating these proteins indicated that EndoG dominates the potential pathways to 

cell death triggered by Bim after spongistatin 1 treatment and confirmed a direct 

functional link between Bim and the caspase-independent factor EndoG (Figure III.31). 

These findings established the hypothesis of the involvement of Bim in caspase-

independent apoptotic pathways. 

 

 

3.4 CONCLUSION 

Based on the presented data, we propose the mechanism of spongistatin 1-induced cell 

death as illustrated in Figure IV.1. The tubulin depolymerizing agent spongistatin 1 

releases the BH3-only protein Bim from its sequestration both by the microtubule network 

and by the antiapoptotic protein Mcl-1. In turn, Bim triggers the translocation of AIF and 

EndoG from mitochondria to the nucleus leading to caspase-independent apoptosis. 

 

In conclusion, the natural marine compound spongistatin 1 potently induces apoptosis 

and inhibits long term survival of the human epithelial breast cancer cells MCF-7, which 

are quite insensitive to many chemotherapeutic drugs due to deletion of caspase-3. The 

clarified novel mechanism of action makes spongistatin 1 a promising candidate for the 

sensitization of chemotherapy-resistant tumor cells. Engagement of caspase-independent 

apoptotic pathways by spongistatin 1 provides a range of valuable targets. Among them, 

BH3-only proteins like Bim as well as proapoptotic proteins such as AIF and EndoG 

contribute to cell death in the absence of caspases. Spongistatin 1 proves both to be a 

valuable tool to discover novel modes of action in apoptotic signaling, especially the 

involvement of Bim in caspase-independent apoptosis, as well as to be a promising new 

anticancer agent in the combat against chemoresistance. 
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Figure IV.1: Proposed mechanism of spongistatin 1-induced apoptosis. 

Thick arrows propose the main signaling pathway of spongistatin 1. The tubulin depolymerizing 
agent spongistatin 1 frees Bim from its sequestration both by the microtubule network and by the 
antiapoptotic protein Mcl-1. Bim triggers the translocation of AIF and EndoG from mitochondria to 
the nucleus leading to caspase-independent apoptosis. Thin arrows indicate the inferior role of the 
caspase-dependent cell death induced by spongistatin 1. 
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V SUMMARY 

Spongistatin 1 is a new experimental chemotherapeutic agent isolated from a marine 

sponge with powerful anticancer properties in a variety of cancer cell lines exerting 

apoptosis as well as long term effects on the clonogenic survival. The current study 

presents the impact of spongistatin 1 on the two major problems limiting the success of 

chemotherapy, namely the metastatic spread of tumor cells to secondary sites and the 

development of chemoresistance. 

Intriguingly, spongistatin 1 revealed strong antimetastatic effects in the orthotopic 

pancreatic tumor model, reducing the formation of liver and lymph node metastases. 

Based on these impressive in vivo data, the antimetastatic potential of spongistatin 1 was 

monitored in vitro. In fact, spongistatin 1 influenced several events in the metastatic 

process including proliferation, tumor cell migration, invasion and adhesion at a 

secondary site. Moreover, spongistatin 1 was able to overcome anoikis resistance of 

metastatic L3.6pl cells, probably through inactivation and/or downregulation of the 

antiapoptotic proteins Bcl-2 and Bcl-xL. Besides their involvement in resistance to anoikis, 

knockdown studies indicate an essential role of these proteins in cell migration. 

Spongistatin 1 proves to be a potent antimetastatic agent both by affecting critical steps in 

the metastatic cascade and by affecting apoptotic pathways thereby circumventing 

anoikis-resistance. 

Investigating the apoptotic mechanisms induced by spongistatin 1 with the focus on 

signaling pathways to circumvent chemoresistance, we were able to identify two facts: 

First, spongistatin 1 induces the intrinsic pathway of apoptotic cell death, shown by the 

activation of Bax and the subsequent release of proapoptotic factors from mitochondria to 

the cytosol. Interestingly, apoptosis occurs mainly independent of caspases, involving 

AIF and EndoG. Upon treatment with spongistatin 1, AIF and EndoG translocate from 

mitochondria to the nucleus and contribute to spongistatin 1-mediated apoptosis as 

demonstrated via genetic silencing. Secondly, spongistatin 1 acts as a tubulin 

depolymerizing agent by freeing the proapoptotic BH3-only protein Bim from its 

sequestration both by the microtubular complex and by the antiapoptotic Bcl-2 family 

member Mcl-1. Silencing of Bim by siRNA leads to a diminished release of mitochondrial 

proteins into the cytosol as well as to a decreased translocation of AIF and EndoG to the 

nucleus resulting in a protection against DNA fragmentation and apoptosis. We identified 

Bim as an important factor upstream of the mitochondria executing a central role in the 

caspase-independent apoptotic signaling pathway induced by spongistatin 1. 

Taken together, spongistatin 1 is both an effective tool to characterize novel modes of 

action in the apoptotic pathways as well as a promising new experimental cytotoxic drug. 

Its strong anticancer potential, especially against metastatic and chemoresistant tumor 

cells, may render spongistatin 1 a valuable chemotherapeutic compound in future. 
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VII APPENDIX 

1 ABBREVIATIONS 

AIF     Apoptosis inducing factor 

ANOVA    Analysis of variance between groups 

ANT     Adenine nucleotide translocator 

Apaf-1     Apoptotic-protease-activating factor-1 

APS     Ammonium persulfate 

ATCC     American Type Culture Collection 

ATP / dATP    Adenosine-5’-triphosphate / 2’-desoxyadenosine-5’- 

triphosphate 

BAD     Bcl-2 antagonist of cell death 

Bak     Bcl-2 antagonist killer 1 

Bax     Bcl-2-associated X protein 

Bcl     B-cell lymphoma 

BH     Bcl-2 homology 

Bid     Bcl-2 interacting domain death agonist 

Bik     Bcl-2 interacting killer 

Bim     Bcl-2 interacting mediator of cell death 

BIR     Baculoviral IAP repeat 

Bmf     Bcl-2 modifying factor 

bp     Base pair 

BSA     Bovine serum albumin 

CAD     Caspase-activated DNase 

CARD     Caspase recruitment domain 

Cdc42     Cell division cycle 42 

CDK     Cyclin-dependent kinase 

CED     Cell-death abnormality 

c-FLIP     Cellular FLICE-inhibitory protein 

c-IAP 1 / c-IAP 2   Cellular inhibitor of apoptosis 1/2 

CrmA     Cytokine response modifier A 

DAPK     Death-associated protein kinase 

DD     Death domain 

DED     Death effector domain 

DEPC     Diethylcarbonate 

DIABLO    Direct IAP binding protein with low pI 

DISC     Death-inducing signaling complex 

DLC     Dynein light chain 

DMSO     Dimethylsulfoxide 
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DNA     Desoxyribonucleic acid 

DR4 / DR5    Death receptor 4/5 

ds     Double strand 

DTT     Dithiothreitol 

ECL     Enhanced chemiluminescence 

ECM     Extracellular matrix 

EDTA     Ethylenediaminetetraacetic acid 

EGTA     Ethylene glycol-bis(2-aminoethylether) tetraacetic  

acid 

ELISA     Enzyme-linked immunosorbent assay 

EndoG     Endonuclease G 

ERK     Extracellular signal-regulated kinase 

FACS     Fluorescence-activated cell sorter 

FADD     Fas-associated death domain 

FAK     Focal adhesion kinase 

FasL     Fas ligand 

FAT     Focal-adhesion targeting 

FCS     Foetal calf serum 

FERM     Protein4.1, ezrin, radixin and moesin homology 

FL     Fluorescence 

FSC     Forward scatter 

GFP     Green fluorescent protein 

HEPES     N-(2-Hydroxyethyl)piperazine-N’-(2-ethanesulfonic 

acid) 

HFS     Hypotonic fluorochrome solution 

Hrk     Harakiri 

HRP     Horseradish peroxidase 

HSP     Heat-shock protein 

HtrA2     High-temperature-requirement protein A2 

IAP     Inhibitor of apoptosis 

ICAD     Inhibitor of caspase-activated DNase 

ICE     Interleukin-1  converting enzyme 

JNK     c-Jun N-terminal kinase 

kDa     Kilo Dalton 

MAPK     Mitogen activated protein kinase 

Mcl-1     Myeloid cell leukemia-1 

MMP     Matrix metalloproteinase 

MMP     Mitochondrial membrane permeabilization 

mRNA     Messenger ribonucleic acid 
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MTT     3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium  

bromide 

NADH    Nicotinamide adenine dinucleotide 

NAIP     Neutral apoptosis inhibitory protein 

NCI     National Cancer Institute 

NF-kB     Nuclear factor kappa B 

nt     Nucleotide 

OMM     Outer mitochondrial membrane 

p-     Phospho- 

p38 MAPK    p38 mitogen-activated protein kinase 

PAA     Polyacrylamide 

PARP     Poly(ADP-ribose) polymerase 

PBS     Phosphate buffered saline 

PCD     Programmed cell death 

PI     Propidium iodide 

PIDD     p53-induced protein with a DD 

PI3k     Phosphoinositide-3-OH kinase 

PKA     Protein kinase A 

PKB     Protein kinase B 

PKC     Protein kinase C 

PMSF     Phenylmethylsulfonylfluoride 

Poly-HEMA    Polyhydroxyethylmethacrylate 

PRR     Proline-rich region 

PS     Phosphatidylserine 

PSR     Phosphatidylserine receptor 

PTPC     Permeability transition pore complex 

Puma     p53-upregulated modulator of apoptosis 

Q-VD-OPh N-(2-Quinolyl)valyl-aspartyl-(2,6-

difluorophenoxy)methylketone 

RAIDD RIP associatd ICH-1/CED-3-homologous protein 

with DD 

RING     Really interesting new gene 

RISC     RNA interference silencing complex 

RNAi     RNA interference 

SDS     Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis 

SEM     Standard error of the mean 

shRNA    Short hairpin RNA 
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siRNA     Short interfering RNA 

Smac     Second mitochondria-derived activator of caspases 

SSC     Side scatter 

TBS-T     Tris-buffered saline with tween 

T/E     Trypsin/EDTA 

TEMED    N, N, N’, N’ tetramethylenediamine 

TNF     Tumor necrosis factor 

TNF-R1    Tumor necrosis factor receptor 1 

TRAIL     TNF-related apoptosis-inducing ligand 

TRAIL-R1/TRAIL-R2   TNF-receptor associated apoptosis-inducing ligand 

receptor 1/2 

TRAF2     TNF-receptor associated factor 2 

UV     Ultraviolet 

VDAC     Voltage-dependent anion channel 

WB     Western Blot 

XIAP     X-chromosome-linked inhibitor of apoptosis 

zVAD.fmk N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-

fluoromethylketone 
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2 ALPHABETICAL LIST OF COMPANIES 

Active Motif    Rixensart, Belgium 

Alexis     Grünberg, Germany 

AGFA     Cologne, Germany 

Amaxa     Cologne, Germany 

Ambion    Hamburg, Germany 

Amersham Biosciences  Freiburg, Germany 

Applichem    Darmstadt, Germany 

Applied Biosystems   Foster City, CA, USA 

BD Biosciences   Heidelberg, Germany 

BD PharMingen   Heidelberg, Germany 

Beckman Coulter   Krefeld, Germany 

Becton Dickinson   Heidelberg, Germany 

Biochrome    Berlin, Germany 

Biomers.net    Ulm, Germany 

Biometra    Göttingen, Germany 

Biomol     Hamburg, Germany 

Bio-Rad    Munich, Germany 

Biotrend Chemikalien GmbH Cologne, Germany 

Biozol     Eching, Germany 

Calbiochem    Schwalbach, Germany 

Canon     Krefeld, Germany 

Cell Signaling    Frankfurt, Germany 

Cytoskeleton    Offenbach, Germany 

Dharmacon    Lafayette, CO, USA 

Dianova    Hamburg, Germany 

EliLilly    Bad Homburg, Germany 

Fermentas    St. Leon-Rot, Germany 

Fuji     Düsseldorf, Germany 

Gibco/Invitrogen   Karlsruhe, Germany 

Immunotech    Marseille, France 

Invitrogen    Karlsruhe, Germany 

Kodak     Rochester, USA 

Li-Cor Biosciences   Lincoln, NE 

Merck Biosciences   Darmstadt, Germany 

Millipore    Schwalbach, Germany 

Minerva Biolabs   Berlin, Germany 

Molecular Probes/Invitrogen Karlsruhe, Germany 

NatuTac    Frankfurt, Germany 



APPENDIX   136 

 

Olympus Optical   Hamburg, Germany 

PAA Laboratories   Cölbe, Germany 

PAN Biotech    Aidenbach, Germany 

PeproTech    Rocky Hill, NY, USA 

Peqlab Biotechnologie GmbH Erlangen, Germany 

Perkin Elmer    Überlingen, Germany 

Peske     Aindling-Arnhofen, Germany 

Prosci incorporated   Poway, USA 

Promega    Heidelberg, Germany 

Promocell    Heidelberg, Germany 

R&D Systems    Minneapolis, USA 

Roche     Mannheim, Germany 

Roth GmbH    Karlsruhe, Germany 

Santa Cruz    Heidelberg, Germany 

S.CO LifeScience   Garching, Germany 

SERVA Electrophoresis GmbH Heidelberg, Germany 

Sigma-Aldrich   Taufkirchen, Germany 

SLT Labinstruments   Crailsheim, Germany 

Stratagene    La Jolla, USA 

Tecan     Crailsheim, Germany 

TILL Photonics   Gräfelfing, Germany 

TPP     Trasadingen, Switzerland 

Upstate    Lake Placid, NY, USA 

USB     Cleveland, USA 
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