
Ludwig Maximilians University, Munich

Faculty of Biology

Zoological Institute

Max Planck Institute of Psychiatry

Neuroendocrinology Group

Study on transcription factors involved in the

pathogenesis of pituitary adenomas

Dissertation

Submitted on 17. December 2001 by

Marily Theodoropoulou



1

1. Berichterstatter: Prof. Dr. Rainer Landgraf
2. Berichterstatter: Prof. Dr. Peter Schlegel

Tag der mündlichen Prüfung: 2. Oktober 2002



Contents

Introduction
The pituitary gland .................................................................................. 1
Pituitary adenomas ................................................................................ 5
Molecular basis of pituitary tumorigenesis ............................................. 11
Aim of the study ..................................................................................... 29

Materials and Methods

Reagents ................................................................................................ 30
Solutions ................................................................................................ 33
Tumor bank formation ............................................................................ 35
Cell culture ............................................................................................. 36
Stimulation experiments ......................................................................... 37
Gene expression studies ........................................................................ 38
Protein studies – immunohistochemistry ................................................ 45
Transfection studies ............................................................................... 51
Statistics ................................................................................................. 53

Results and discussion on ZAC and its regulation in pituitary adenomas

ZAC expression in human normal pituitary gland .................................. 54
ZAC gene expression in pituitary adenomas ......................................... 55
ZAC protein levels in pituitary adenomas ............................................... 57

          ZAC and methylation .............................................................................. 59
Correlation between ZAC and EGFr expression in pituitary adenomas 59
EGFr mRNA expression in normal and adenomatous pituitary ............. 60

           EGFr protein in normal and adenomatous pituitary ............................... 60
  Correlation between ZAC and EGFr expression .................................... 63
           Effect of EGF stimulation on ZAC gene expression .............................. 65
           Effect of octreotide in Zac1 gene expression in GH3 cells .................... 66
           Discussion ............................................................................................. 68

Results and discussion on Menin
MEN1 mRNA in normal and adenomatous pituitary .............................. 73
Menin expression in normal human pituitary ......................................... 73
Menin expression in pituitary tumors ..................................................... 74

           Discussion ............................................................................................. 78

Results and discussion on COUP-TFI
COUP-TFI mRNA in normal and adenomatous pituitary ....................... 81
COUP-TFI protein expression in normal pituitary .................................. 81
COUP-TFI protein expression in Cushing’s and silent adenomas ......... 83
Effect of COUP-TFI overexpression on retinoic acid modulated POMC

           promoter activity..................................................................................... 84
           Discussion ............................................................................................. 85

Summary ......................................................................................................... 88

References ...................................................................................................... 92
Acknowledgements ........................................................................................ 103
Curriculum vitae ............................................................................................. 104



1

INTRODUCTION

The pituitary gland

The pituitary gland, or hypophysis, is a major control point for the proper function of

the endocrine system. It has a small size (average weight in human normal male

adult: 0.6gr), and it resides within a midline depression of the sphenoid bone, the

sella turcica (Fig.1). It is composed of two lobes, the anterior pituitary/

adenohypophysis, and the posterior pituitary/ neurohypophysis (Scheithauer et al.,

1996). The pituitary gland develops from two embryologically different parts: an

invagination of the oral ectodermal, known as Rathke’s pouch; and the infundibulum,

a downward extension of the diencephalon. The cells of the anterior wall of Rathke’s

pouch differentiate and rapidly proliferate under the influence of certain transcription

factors to form the adenohypophysis (Fig.2; Kioussi et al., 1999; Sheng et al., 1996),

while the posterior wall gives rise to the pars intermedia. The infundibulum gives rise

to the pituitary stalk and to the neurohypophysis.

The neurohypophysis is composed of modified glial cells, the pituicytes, and nerve

fibers, extending from the hypothalamus, with their nerve endings. The

adenohypophysis is composed of the pars distalis, which is the largest part of the

gland containing the hormone producing cells; the pars intermedia, filled with

microcysts - rudiments of the Rathke’s pouch; and the pars tuberalis/infundibularis,

which is an upward extension of the anterior lobe towards and around the pituitary

stalk. Although pars intermedia is a prominent and functionally significant feature in

the rodent pituitary, in humans it seems to have little significance.

i
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Fig.1. Anatomic location of the hypophysis.

The pituitary gland is shown residing in the

invagination of the sphenoid bone, the sella

turcica (blue), under the 3rd ventricle (green).

The two lobes, anterior (adenohypophysis; in

grayish color)  and posterior (neurohypophysis)

are indicated. In the adenohypophysis are

shown the 5 hormone-producing cell types:

ACTH-producing (orange); GH-producing

(blue); PRL-producing (green); FSH/LH-

producing (pink); TSH-producing (yellow).

Hormones released from the anterior pituitary gland target and control the function of

other systemic endocrine organs. Six main hormones are produced by the

adenohypophysis: growth hormone (GH), prolactin (PRL), adrenocorticotrophic

hormone (ACTH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and

thyroid stimulating hormone (TSH). GH promotes growth of the skeleton and soft

tissues and has important metabolic effects. Its effects are mediated directly through

GH receptors or indirectly by inducing insulin-like growth factor (IGF-I) synthesis.

PRL has important role in the initiation and maintenance of lactation. ACTH

stimulates glucocorticoid production from the adrenal cortex. It is split product of

proopiomelanocortin (POMC), together β-lipotropic hormone (β-LPH), endorphins,

encephalin, corticotropin-like immunoreactive peptide (CLIP), and α-MSH. FSH and

LH are collectively referred to as gonadotrophins. FSH promotes follicular growth in

the ovaries and spermatogenesis in the testes. TSH is important for the physiological

growth and function of the thyroid gland.

It is evident that the adenohypophysis is a complex system of different cell types.

Initially the identification of these cell types was based on the reaction of the cells to
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staining procedures, which were subsequently divided into basophils, acidophils, and

chromophobes. Nowadays with the advances in immunohistochemical and

ultrastructural techniques five types of cells are distinguished: GH and/or PRL-

producing cells belonging to the acidophilic category; and the basophilic ACTH, TSH

and FSH/LH- producing cells. Apart from the hormone producing/endocrine cells, the

anterior pituitary also contains the folliculostellate cells, which comprise 3-5% of all

adenohypophyseal cells (Allaerts et al., 1990). Their name derives from their stellate

shape, due to thin cytoplasmatic projections, which extend between surrounding

endocrine cells. Folliculostellate cells are distinguished by their immunoreactivity for

the S-100 protein, a low molecular weight soluble protein first isolated from the brain

and initially believed to be exclusively a glial marker. Although the actual function of

folliculostellate cells still remains unknown, recent extensive studies have shown that

they are source of growth factors and cytokines, therefore suggesting an important

role in the paracrine regulation of hormone secretion (Schwartz and Cherny 1992;

Renner et al., 1996).
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Fig.2. Brief schematic presentation of the major steps in pituitary development and the

major transcription factors involved in each.  From the oral ectoderm, the Rathke’s pouch

stem cells arise, one branch of which will give rise to corticotroph lineage and the other to the

precursors of the gonadotroph, lacto- somatotroph, and thyrotroph cell lineages. Expression of

SF1 in some of these cells will commit them to the gonadotroph lineage, while Pit1 is expressed

in the precursor from which the thyrotroph and mammosomatotroph cells will derive. ER:

estrogen receptor.
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Pituitary adenomas

Pituitary adenomas are composed of adenohypophyseal cells and comprise 15% of

all intracranial tumors. The term adenoma refers to a benign glandular tumor, in

which the neoplastic cells remain clustered together in a single mass and do not

metastasize. Although they are usually benign, they can give rise to severe clinical

syndromes due to the hormonal excess they produce, or to visual/ cranial

disturbances because of their considerable intracranial mass. The high clinical

importance together with the peculiar biological characteristics they display, on one

hand, and the obscurity that is covering the differentiation of such a complex cellular

system as the adenohypophysis, on the other, made pituitary adenomas the center of

intensive study during the last decades. However, as will be extensively described in

the following chapters, very few factors are known to be responsible for the

pathogenesis of pituitary adenomas, making the search of genes that could be

implicated, in the one or the other way, in pituitary tumorigenesis, an issue of high

importance.

Classification of pituitary adenomas

A pituitary adenoma can be classified according to the clinical presentation

(functional classification), tumor size and local invasion (anatomical classification), or

histology and cytology (histological examination).

Functional classification

Pituitary adenomas can be classified into clinically functioning or non-functioning,

depending on whether the adenoma development leads to an endocrine syndrome.

Clinically functioning pituitary adenomas are the GH-producing adenomas or
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somatotrophinomas, prolactinomas, ACTH-producing pituitary adenomas or

corticotrophinomas, thyrotrophinomas, and the rare cases of clinically active

gonadotrophinomas.

In the case of somatotrophinomas over-secretion of GH and the subsequent increase

in IGF-I levels, lead to the acromegaly syndrome, which is characterized by bone

expansion in the extremities and progressive disfigurement. Additional symptoms are

hypertension, megalocardia, insulin resistance and diabetes mellitus. Treatment with

somatostatin analogues improves the clinical status of acromegalic patients by

suppressing GH secretion, and in many cases it causes tumor shrinkage, which can

facilitate the complete removal of the tumor during surgery without interfering with

adjacent structures (Stewart, 2000; Melmed et al., 1998).

Prolactinomas are considered as the major cause of hyperprolactinaemia.

Hyperprolactinaemia is causing hypogonadism with subsequent infertility, sexual

dysfunction and osteoporosis. Prolactinomas are the most frequent occurring pituitary

adenomas and are usually microprolactinomas. The incidence is higher in women,

but when occurring in men, these tumors tend to be macroadenomas, with high

degree of invasion. Most prolactinomas can be successfully treated after

administration of dopamine agonists (Colao et al., 2000). However there are cases

with resistance to dopamine treatment, i.e. there is no normalization of serum PRL

levels after three months of treatment (Colao et al., 1997). The reason for dopamine

resistance was demonstrated to be the low expression or total absence of dopamine

D2 receptor in the tumoral cells (Caccavelli et al., 1994).

ACTH-secreting adenomas are associated mainly with Cushing’s disease and less

frequently with Nelson-Salassa syndrome. Corticotrophinomas present with

hyperfunction rather than mass effect, and they are mostly microadenomas. ACTH

hypersecretion leads to hypercortisolism which in turn is responsible for the
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symptoms of the Cushing’s syndrome. Most patients have upper body obesity,

rounded face, increased fat around the neck, thinning arms and legs, thin and fragile

skin which bruises easily. Fatigue, irritation, anxiety and depression are common

psychological findings in these patients (Boscaro et al., 2001). Nelson syndrome-

associated corticotrophinomas are larger and more aggressive. They result from the

lack of glucocorticoid feedback due to prior adrenalectomy (Sonino et al., 1996). In

the absence of efficient medical therapy, transsphenoidal adenomectomy is still the

treatment of choice for corticotrophinomas.

TSH-secreting adenomas or thyrotrophinomas are very rare and usually present with

mass effect symptoms and sometimes with signs of hyperthyroidism.

Transsphenoidal surgery is the treatment of choice although octreotide treatment has

been shown to normalize TSH levels and to cause tumor shrinkage (Beck-Peccoz et

al., 1996).

The non-functioning pituitary adenomas, which comprise 25% of all pituitary

adenomas, do not lead to any endocrine syndrome and they present with symptoms

of an intracranial mass, such as headache and visual field defects. Transsphenoidal

surgery is the first approach in these adenomas, in order to remove the tumor mass

and post-operative radiotherapy is applied to prevent tumor regrowth (Snyder, 1995).

However, radiotherapy has as big side effect the occurrence of hypopituitarism,

therefore development of proper medical therapy would be useful as a less risky

alternative to radiotherapy (Colao et al., 1998).

Anatomical classification

Neuroradiological examination provides information about the tumor size and extent

of local invasion. Adenomas are classified in four grades (Hardy’s classification;

Hardy J, 1979): Grade I refers to microadenomas, i.e. <10mm in diameter; Grade II
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refers to macroadenomas (>10 mm in diameter) that may exhibit suprasellar

extension but no invasion to the surrounding bony structures; Grade III adenomas

are locally invasive tumors; and Grade IV refers to large invasive tumors that can

involve, except the bone, the hypothalamus and the cavernous sinuses.

Histological classification

The advances in immunohistochemistry and electron microscopy led to the

development of a classification system based on the hormonal content of each

pituitary adenoma and the special cytological structures it may exhibit. Using specific

antibodies against each hormone it became evident that acromegaly-associated

pituitary adenomas can also produce PRL (mammosomatotrophinomas and mixed

GH-PRL adenomas) and that some prolactinomas display GH reactivity (‘acidophilic

stem cell adenomas). However the biggest insight was given in the class of the non-

functioning pituitary adenomas. Although most clinically inactive adenomas are

gonadotrophinomas, i.e. show reactivity for either FSH, LH or α-subunit, or a

combination of the three, there are cases that are negative for all the hormones and

for α-subunit (null cell adenomas). However it is of interest that many null cell

adenoma cases were found to express mRNA for the alpha subunit, FSH and LH

(Lloyd et al., 1991). An intriguing class presents adenomas that, although clinically

inactive show reactivity for ACTH and are therefore referred to as silent

corticotrophinomas.

Ultrastructural examination by electron microscopy had subdivided each category

according to special characteristics in the cell morphology of each case. By this way,

GH and PRL producing tumors are further classified into densely and sparsely

granulated somatotrophinomas, according to the density of secretory granules, and

null cell adenomas are divided into oncocytomas, which are characterised by an
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intracellular accumulation of large numbers of dilated mitochondria, and pure null

adenomas.

In the following chapters, the pituitary adenomas will be classified mainly according to

their clinical phenotype and, when necessary, according to their histological findings.

The classification follows a clinicopathological scheme which permits a more

complete characterization and understanding of each case since combining the

clinical and the histological data can facilitate the interpretation of the results derived

from the research of the etiology of pituitary adenomas.

Receptors in pituitary adenomas

The pituitary gland is under continuous control of peptides and proteins originating

from the hypothalamus and the periphery. The stimulatory or inhibitory effect of these

substance is mediated upon binding to cell surface or nuclear receptors. Since the

same receptors mediate the effects of synthetic pharmaceutical compounds, an

understanding of their biological and biochemical properties is important for the

proper design and application of different drugs. Two receptors have drawn attention

in the study of pituitary physiology, the dopamine type 2 receptor (D2R) and the

somatostatin receptors (SSTR), since they mediate the effects of the two most

commonly used, for the treatment of pituitary adenomas, families of drugs, the

dopamine agonists and the somatostatin analogues. In this thesis we will concentrate

to one aspect of the action of somatostatin analogues.

SSTR. Somatostatin is mediating its effect upon binding to a family of five receptors

(SSTR1-5) which belong to the seven transmembrane G-protein coupled receptor

superfamily. SSTR2 is present as two isoforms: SSTR2A and B, which are generated

by alternate mRNA splicing (Patel et al., 1993). All SSTRs are coupled to Gi protein

and inhibit adenylate cyclase and cAMP accumulation. In addition, somatostatin
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signaling involves tyrosine phosphatase activation and ion channel conductance

(Patel et al., 1995).

SSTR2 and 5 are the main receptors found in the adenohypophysis (Shimon et al.,

1997a). SSTR2 is the predominant form in the somatotrophs, but is also present in

many corticotrophs and gonadotrophs (Shimon et al., 1997a; Mezey et al., 1998).

SSTR5 is the predominant SSTR in lactotrophs. In pituitary adenomas, SSTR2

mRNA was found in the majority of acromegaly-associated tumors and in a

significant number of non-functioning adenomas, while there was no expression in

prolactinomas and corticotrophinomas (Greenman and Melmed, 1994a). On the other

hand, SSTR5 is present in most GH-secreting tumors and in all prolactinomas. High

levels of SSTR3 mRNA were detected in most tumors regardless class, while SSTR4

was undetectable (Greenman and Melmed, 1994b).

Native somatostatin binds to all the five receptor forms with high affinity. Search for

more potent analogues resulted in the development of octreotide (SMS-201-995) and

later of lanreotide (BIM-23014) and octastatin (RC-160) (Hofland et al., 1995). All

these three analogues have high affinity for SSTR2 and a moderate one for SSTR3

and 5. Analogues specific for the other SSTR subtypes have been recently

developed (Shimon et al., 1997b).

Somatostatin, far from inhibiting GH secretion, has a wider spectrum of inhibitory

action on the adenohypophysis and other neuroendocrine tumors (Lamberts et al.,

1991). Octreotide and lanreotide are the most frequently used analogues in the

management of acromegaly and of a number of neuroendocrine tumors, such as

carcinoid tumors and endocrine pancreatic tumors (Lamberts et al., 1996; Eriksson

and Oberg, 1999). The therapeutical value of somatostatin analogues in these types

of cancer is due to the inhibitory action on hormone production from the tumors.

However, there is increasing evidence from in vitro studies of an antiproliferative role



11

for octreotide in several tumors, which highlight the potential use of somatostatin

analogues as anti-tumor agents, and pave the way for the search and development

of more potent analogues in cancer therapy.

Molecular basis of pituitary tumorigenesis

General mechanisms of cancer development

Genetic instability is necessary for the genesis and progression of cancer. Cell

transformation and abnormal proliferation results from a disruption in one or more

regulators of cell cycle progression and apoptosis. This can be an activation of a

promoter of cell growth (proto-oncogene) or an inactivation of a blocker of cell

growth/ inducer of apoptosis (tumor suppressor gene; TSG).

Proto-oncogenes are the cellular counterparts of the oncogenes, which when

overexpressed cause tumor formation. Proto-oncogene products are involved in

mediating signals from the cell surface to the nucleus, like protein tyrosine (e.g. src),

serine/threonine kinases (e.g.raf) and G proteins (e.g. ras, gsp), cell surface

receptors (e.g. c-erbB2/neu), transcription factors (c-myc, c-fos, c-myb), and cell

cycle regulators (e.g. cyclin D, mdm2). Proto-oncogenes can be transformed to

oncogenes and lead to tumor formation by an activating mutation or gene

overexpression.

The other mechanism that can lead to cancer development is functional inactivation

of a TSG. According to the classical model of recessive oncogenesis, a genetic

mutation in the coding region of the gene is required to inactivate the TSG but is not

sufficient (therefore the term recessive). An additional alteration in the remaining

allele, a 2nd hit, is necessary for the TSG inactivation to occur (Knudson’s two-hit

hypothesis; Knudson, Jr., 1975). In the classical Knudson’s model the 2nd hit is a loss

of heterozygosity (LOH), i.e. loss of the wild-type, non-mutated allele. However, it
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was soon found out that TSG mutations in sporadic cancers are rare and the seek of

alternative mechanisms of gene silencing began.

DNA methylation

An alternative to coding region mutation was found to be hypermethylation.

Methylation is an epigenetic modification of the genome, in which a methyl group is

added to the 5-position of cytosine within the context of the dinucleotide palindrome

CG (commonly referred to as CpG, with p denoting the phosphate group) (Bird,

1992). CpG are not randomly distributed (Cooper and Krawczak, 1989), but rather

clustered in the 5’ ends of genes in the so called ‘CpG islands’. Approximately 60% of

genes have CpG islands in their promoters which are normally unmethylated. In

normal mammalian cells, DNA methylation is responsible for the silencing of the

inactive X chromosome (Lee and Jaenisch, 1997) and of genes subject to parental

imprinting (Barlow, 1995).

Hypermethylation was demonstrated either as an alternative to LOH for the 2nd hit in

the Knudson’s model of tumorigenesis or as the sole reason of TSG inactivation

(Fig.3). Approximately half of the TSGs responsible for familiar cancer syndromes

(e.g. p16, BRCA1, E-cadherin) have been reported to be hypermethylated in the

sporadic cancers (Herman, 1999). Therefore hypermethylation is now considered to

play a major role in inactivating these genes.

Another way that altered methylation can play a role in cell transformation, is

unmethylation of the CpG in the promoter of an oncogene. Hypermethylation in many

proto-oncogenes is a physiological lock which forbids the activation of these factors

and therefore keep the cell proliferation under control (Jones, 1996). Waving the

heavy methylation from the promoter of these genes lead to the uncontrolled

oncogene expression, and subsequent cell transformation (Fig.3).
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Fig.3. Diagram of the two ways by which hypermethylation can contribute to tumorigenesis. A.

Hypermethylation of a TSG blocks its expression, resulting in uncontrolled cell growth. B. In normal

adult cells protooncogenes are not expressed. One mechanism of silencing is heavy hypermethylation

of the gene promoter. When this mechanism is altered, there is abnormal expression of the

protooncogene resulting in increased cell growth and tumor formation.

The most common TSGs found to play a role in human cancer are parts of the cell

cycle machinery and as such, they can control cell proliferation. For example, the

retinoblastoma susceptibility gene encodes a nuclear protein (Rb) which binds to

nuclear proteins and transcription factors (E2F), preventing them from promoting the

expression of genes essential in cell cycle progression. Other TSGs, like p53, p16,
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and p27 act by inhibiting the assembly of CDK-Cyclin complexes (Fig.4; Pestell et al.,

1999).

Fig.4. Schematic presentation of the major events taking place in the G1 phase. Many tumor

suppressor genes whose expression is lost in cancer (e.g. p16, p27) are exerting their antiproliferative

role by inhibiting the assembly of cyclins (e.g. cyclin D and E) to their cyclin kinase counterparts (e.g.

CDK4 and 2), therefore blocking the release of factors (e.g. E2F) which in turn would promote the

expression of genes involved in cell cycle progression to S phase.

Origin of pituitary adenomas

There were two hypotheses about the origin of pituitary adenomas: the hypothalamic

hypothesis versus the monoclonal expansion model (Fig.5). Nowadays, it is widely

accepted that pituitary adenomas are monoclonal in origin, i.e. they derive from a

single transformed cell (Alexander et al., 1990). However, the issue of monoclonality

was recently brought under discussion after a study which revealed that in many

cases of recurrence, the second tumor was not having the same LOH status as the

original tumor, implying that the second tumor arises from a different clone than the
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first one (Clayton et al., 2000). Even though, it has to be kept in mind that in this

study each individual tumor specimen was still demonstrated to be monoclonal.

Fig.5. Model of pituitary tumorigenesis. Hypothalamic hypothesis (left) vs. the monoclonal

expansion model (center). According to the hypothalamic hypothesis, hormones and growth factors

are causing hyperplasia, and on these hyperplastic cells spontaneous mutations lead to adenoma

formation. The monoclonal expansion model states that one mutation in one single cell transforms it,

and growth factors and hormones acting on this transformed cell enhance its proliferation and the

whole procedure results in a pituitary adenoma. In extremely rare cases an additional mutation leads

to pituitary carcinoma. In the box shown in the right part of the cartoon, are shown the oncogenes and

tumor suppressor genes that have been studied as target genes for the initial ‘transforming’ mutation.

The monoclonality of pituitary adenomas is still the widely accepted model, according

to which genetic events in one cell are enough to transform it and to trigger the

adenoma formation (Fig.5). This event can be an activating mutation in a proto-

oncogene or an inhibiting mutation in a TSG. Somatic mutations frequently found in

other malignancies, such as mutations involving ras, c-erbB2/neu, and p53, are

absent in the majority of pituitary neoplasias.
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LOH studies in pituitary adenomas have revealed that the long arm of the

chromosome 11 (11q13) at the MEN1 locus is lost in a significant number of cases

(Boggild et al., 1994; Prezant et al., 1998; Tanaka et al., 1998; Farrell et al., 1999).

Loss of the RB1 gene locus in the long arm of chromosome 13 (13q) was detected in

invasive tumors and pituitary carcinomas (Pei et al., 1995; Simpson et al., 1999a),

while LOH affecting the long arm of chromosome 10 (10q26) is also detected in

invasive tumors (Bates et al., 1997). On the other hand, LOH on the short arm of

chromosome 9 is present in about 30% of pituitary tumors, independent of their

invasiveness (Farrell et al., 1997). In general, incidence of LOH in 11q13, 13q and

10q26 was found to be higher in invasive than non-invasive adenomas suggesting

that inactivation of these TSGs is responsible for tumor progression but not tumor

initiation (Bates et al., 1997).

As it will be evident from the following chapters, there is a large number of studies

dedicated to reveal genetic alterations and defects in the expression of oncogenes

and TSGs known to be involved in the genesis and progression of other types of

cancer. However, despite the extensive invetsigation the pathogenetic mechanisms

driving pituitary tumorigenesis still remain obscure.

Protooncogenes

G proteins. G proteins play an important role in transducing signals from cell surface

ligand-receptor complexes to downstream effectors (Simon et al., 1991). Three types

are the best known in cell signaling: the stimulatory Gs, which is involved in the

GHRH and CRH pathways, the Gq, in the TRH and GnRH signaling, and the

inhibitory Gi, in the somatostatin and dopamine pathways. They are composed of

three subunits, α, β, and γ, which dissociate when GTP binds. The dissociated

α subunit of Gs (Gsα) stimulates adenylate cyclase, leading to cAMP production,
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which in turn, activates cAMP-depended protein kinases. GTPase activating peptides

release GTP from Gsα, terminating the whole cascade. Activating mutations in the

Gsα inhibit the GTP hydrolysis and maintain Gsα in a constitutively activated state.

Approximately 40% of somatotrophinomas contain mutations in the Gsα proteins, or

gsp, that substitute at arginine 201 or glutamine 227 (Landis et al., 1989). Recently it

was observed that although Gsα is monoallelically expressed in the normal human

pituitary, it is biallelically expressed in the tumors, and that activating mutations occur

on the more highly expressed maternal allele (Hayward et al., 2001).

Cyclin D/ CCND1. Cyclin D1 plays an important role in the regulation of cell

progression through the G1 phase of the cell cycle. The cyclin D1 gene (CCND1) is

located on chromosome 11q13, which is often found to be rearranged in pituitary

tumors. Cyclin D was not found in normal pituitary, but it was observed in 67% of the

non-functioning pituitary adenomas and 37% of somatotrophinomas, suggesting that

its overexpression can lead to tumor formation (Hibberts et al., 1999).

PTTG. Pituitary tumor transforming gene (PTTG) was isolated from the rat pituitary

tumor GH4 cell line by differential RNA display (Pei and Melmed, 1997). PTTG was

found to be highly expressed in several cancers, implying that it is a common and

important factor in malignancy (Heaney et al., 2000; Saez et al., 1999). RT-PCR

revealed low levels of PPTG expression in human normal pituitary and high levels of

expression in the pituitary adenomas, especially in Grade III and IV hormone

secreting pituitary tumors (Zhang et al., 1999a). One possible mechanism of PTTG

action is proposed to be through activation of bFGF, which is a potent mitogenic and

angiogenic factor (Zhang et al., 1999b; Heaney et al., 1999), or through activation of

the c-myc oncogene (Pei, 2001). In additon, PTTG is identical to human securin,
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which is involved in sister chromatid separation (Zou et al., 1999; Wang et al., 2001).

Therefore it is possible that the oncogenic potential of PTTG derives from its ability to

block chromatid separation, resulting in increased chromosome instability.

Tumor suppressor genes

Rb1. Rb1 was suspected as a candidate TSG in pituitary tumor formation, when mice

heterozygous for a RB1 mutation were shown to have a complete predisposition to

pituitary tumors derived from the intermediate lobe (Jacks et al., 1992; Hu et al.,

1994). Although LOH studies revealed loss of the RB1 locus only in invasive pituitary

adenomas and in the rare cases of pituitary carcinomas, in the vast majority of the

pituitary adenomas the RB1 locus seems to be intact (Zhu et al., 1994; Pei et al.,

1995; Bates et al., 1997). However, in a recent study, 27% of somatotrophinomas

and 4% of the non-functioning tumors were not expressing pRb (Simpson et al.,

1999a). No mutation in RB1 gene was detected, and the reason for the loss of Rb1 in

these tumors was found to be hypermethylation of the RB1 promoter (Simpson et al.,

2000). These last findings bring again into discussion a role of Rb1 in the

pathogenesis of, at least, a fraction of pituitary adenomas, and modify the classical

Knudson’s two-hit hypothesis for the few cases with LOH in the RB1 locus, by

substituting gene mutation with promoter hypermethylation.

p53.  p53 encodes a nuclear protein, which regulates the CDK inhibitor p21 (Fig. 3),

and induces cell cycle arrest at the G1/S checkpoint and apoptosis. Although it is the

most frequently mutated gene in human cancers (Hollstein et al., 1991), the studies

performed failed to detect mutation of this gene in pituitary tumors. Mice deficient for

both RB1 and p53 develop pituitary tumors (Harvey et al., 1995). p53 protein

expression was found in a small fraction of invasive adenomas and in carcinomas
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(Thapar et al., 1996), while in another report, abnormal p53 protein accumulation was

described in a high percentage of Cushing’s and invasive non-functioning adenomas

(Buckley et al., 1995). In a later study, the nuclear p53 accumulation in the

corticotrophinomas was associated with a significantly lower apoptotic index

(Kontogeorgos et al., 1999).

p16. This protein belongs to the INK4 (Inhibitor of CDK4) group of CDK inhibitors,

which mainly inactivate the cyclinD/CDK4 complex, preventing it from

phosphorylating pRb and progress to S phase. p16 is inactivated in many cancers,

either by homozygous deletion, or because of hypermethylation induced gene

silencing. p16 was found to be lost in the majority of pituitary adenomas, a finding

that was not associated with gene mutation or gene loss (Woloschak et al., 1996).

The mechanism lying behind p16 loss was found to be hypermethylation of the gene

promoter (Farrell et al., 1997). A subsequent study has pointed the significant

prevalence of hypermethylated p16 in non-functioning pituitary adenomas (70%)

versus somatotrophinomas (9.5%; Simpson et al., 1999b). The latest showed no

correlation between the degree of hypermethylation and tumor invasiveness,

indicating that hypermethylation and subsequent decrease in p16 expression is an

early event in the oncogenesis of this type of pituitary tumors.

Recently using the mouse corticotroph cell line AtT-20 the antiproliferative role of p16

has been confirmed in pituitary cells. In this cell model, p16 is lost due to

homozygous deletion. Transfection of AtT-20 cells with an inducible p16 construct

resulted in G1 arrest and reduced proliferation (Frost et al., 1999).

p27. Attention was drawn to this gene after the observation that mice with

homozygous deletion of p27 develop pituitary tumors of the intermediate lobe (Fero
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et al., 1996; Kiyokawa et al., 1996; Nakayama et al., 1996). In addition, mice haplo-

insufficient for p27, show hyperplasia of the intermediate lobe and are sensitive to

irradiation and carcinogens (Fero et al., 1998). Double knockout mice for p27 and

p18 developed pituitary tumors in the intermediate lobe much earlier when compared

to the p27 knockout mice (Franklin et al., 1998). This finding, together with the high

levels of p27 and p18 expression found in the pituitary gland, point to a collaboration

between the two CDK inhibitors in suppressing pituitary tumorigenesis. On the other

hand, null mutation for cyclin D1 in the p27 null mice, had no effect in averting the

development of pituitary tumors, suggesting that p27 acts independent of cyclin D1in

pituitary tissues (Tong and Pollard, 2001).

These studies triggered a number of investigations to examine the status of p27 in

pituitary adenomas. However, in pituitary tumors no p27 gene mutations were found

and the levels of p27 gene transcript were shown to be  comparable to that of the

normal pituitary gland (Ikeda et al., 1997; Jin et al., 1997; Dahia et al., 1998;

Takeuchi et al., 1998). However, when normal and adenomatous pituitary were

analyzed by immunohistochemistry, p27 protein levels were lower in pituitary tumors

than in normal pituitary (Jin et al., 1997; Lloyd et al., 1997; Bamberger et al., 1999).

The reduction of p27 protein was predominant in corticotrophinomas and in

metastatic tumors (Lidhar et al., 1999). The significant reduction of p27 protein in

corticotrophinomas imply a significant role of p27 in the development of this type of

pituitary adenoma.

These observations fail to place p27 in the classical two-hit model for TSG. However,

they point out a new mechanism of TSG regulation, in which alterations

postranslational level are enough to de-activate the TSG product. In other types of

tumors, it is now proven that abnormalities in the ubiquitin-mediated degradation
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system are responsible for the down-regulation of p27 protein (Pagano et al., 1995;

Loda et al., 1997).

MEN1. MEN1 is the gene mutated in families with multiple endocrine syndrome 1

(MEN1). This autosomal dominant disorder is characterized by neuroendocrine

tumors of the pituitary, parathyroid, pancreas, and duodenum, and less frequently by

tumors of the adrenal and thyroid gland, angiofibromas, leiomas, and lipomas (Marx

et al., 1999; Pannett and Thakker, 1999). The susceptibility locus was mapped to

chromosome 11q13 (Larsson et al., 1988), and ten years later, the gene was

identified by positional cloning (Chandrasekharappa et al., 1997; Lemmens et al.,

1997). MEN1 encodes a 610-amino acid protein termed ‘menin’, which has neither

homology to any known protein nor any conserved motifs. Menin is widely expressed

in most adult tissues (Chandrasekharappa et al., 1997) and is predominantly located

in the nucleus (Guru et al., 1998). Menin functionally interacts with the AP1

transcription factor junD (Agarwal et al., 1999) and suppresses the RAS–mediated

tumor phenotype (Kim et al., 1999), indicating that it may play a role in the cell cycle

regulation. An association between menin expression and cell-cycle has been

suggested (Kaji et al., 1999), and an inhibitory effect of menin on DNA synthesis has

been demonstrated under DNA damaging conditions (Ikeo et al., 2000). Recently

menin was shown to interact with the TGF-β effector Smad3, preventing complex

formation with Smad4 and subsequently inhibiting its transcriptional activity (Kaji et

al., 2001). Menin was also shown to interact with the putative tumor metastasis

suppressor nm23 (Ohkura et al., 2001) and with the NF-kappaB transcription factor

(Heppner et al., 2001) These studies, together with the fact that MEN1 mutations are

of the loss-of-function type and that the wild type allele is lost in tumors derived from

MEN1 affected patients, make MEN1 a candidate tumor suppressor gene.



22

Although MEN1 mutations are found in around 30% of sporadic pancreatic tumours

(Zhuang et al., 1997a; Toliat et al., 1997), and 20% of sporadic parathyroid tumours

(Heppner et al., 1997), they appear extremely rarely, if at all, in sporadic pituitary

adenomas (Zhuang et al., 1997b; Prezant et al., 1998; Schmidt et al., 1999; Wenbin

et al., 1999). LOH in the 11q13 locus has been described in 5-20% of sporadic

pituitary adenomas (Boggild et al., 1994), and gene expression is not down-regulated

in the pituitary tumors (Asa et al., 1998; Prezant et al., 1998; Farrell et al., 1999).

However, these studies do not address the issue of possible alterations at the protein

level. To address this issue menin expression was examined in a series of tumor cell

lines and tissues using Western blot. However, there is no in situ analysis of menin

expression in normal and tumoral tissue due to the lack of an antibody suitable for

immunohistochemistry. The importance of an in situ analysis is evident if we take into

account that techniques like western blot don’t exclude the probability of

contamination with normal tissue and cannot differentiate between endocrine and

non-endocrine parts of the tumor, such as fibroblasts and vessels. In addition, it is

important to be able to assess which cell types in the organ express menin in

physiological and pathological stages. Recently an antibody was developed, which

was proven to be efficient for immunohistochemistry and immunofluoresence (Ferro,

et al 2001). Using this antibody, a series of normal and adenomatous pituitary was

studied by immunohistochemistry, as will be described in the RESULTS section.

ZAC. ZAC (zinc finger protein inducing apoptosis and cell cycle arrest ) is the human

homologue of Zac1 which was isolated from the AtT20 mouse corticotrophinoma cell

line by a functional expression cloning technique, upon its ability to induce the type I

pituitary adenylate cyclase activator protein (PACAP) receptor, together with p53

(Spengler et al., 1997). It was found that ZAC/Zac1 has antiproliferative properties
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related to its ability to induce apoptosis and cell cycle arrest, establishing this

candidate TSG as the first gene structurally unrelated to p53 that shares its apoptotic

and cell cycle blocking functions. The same gene was independently cloned in a rat

model of epithelial ovarian cancer and was named Lot1 (lost on transformation)

because it was lost in transformed rat ovarian surface epithelial cell lines (Abdollahi

et al., 1997).

ZAC/LOT1 is mapped to the chromosome 6q24-25 (Abdollahi et al., 1997) (Varrault

et al., 1998), a region frequently lost in ovarian, breast, kidney and pleural

mesothelial cancers (Fujii et al., 1996; Taguchi et al., 1993; Theile et al., 1996;

Thrash-Bingham et al., 1995), and its expression was found to be reduced in breast

(Bilanges et al., 1999) and ovarian (Abdollahi et al., 1997) cancer cell lines and

primary tumors. Searching for a mechanism responsible for loss of the gene in

ovarian cancer, it was shown that in normal rat ovarian surface epithelial cells the

EGF receptor ligands, EGF and TGFα, were able to down-regulate Lot1 expression,

and this effect was reversed after blocking the EGF receptor signaling pathway

(Abdollahi et al., 1999).

Another mechanism that can be responsible for the reduced levels of ZAC is the

aberrant gene hypermethylation. It was observed that the treatment of breast cancer

cell lines with the methylation interfering agent 5-azacytidine enhanced ZAC gene

expression (Bilanges et al., 1999). A number of studies have demonstrated that ZAC

is an imprinted gene (Piras et al., 2000; El Kharroubi et al., 2001), i.e. the copy of the

gene inherited by the mother is silenced by hypermethylation and only the paternal

copy is expressed. In addition, ZAC was found to reside in an imprinted locus

associated with transient neonatal diabetes mellitus and suggested as a candidate

gene for this disease (Kamiya et al., 2000; Arima et al., 2000). The pitfall with this

studies was that the coding region of the gene was too far from the imprinted locus.
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Finally, the complete characterization of the gene revealed that it is composed of nine

exons, from which only the exon VIII and IX are translated, and that part of exon I

and the promoter are located in a CpG rich region of the chromosome 6q24 (Varrault

et al., 2001). ZAC expression is monoallelic, therefore a single ‘hit’, the inactivation of

the paternally expressed allele, would be sufficient to down-regulate the gene. Taking

into account all these data, it is possible that hypermethylation is one of the

mechanisms responsible for the reduced levels of ZAC in the different types of

cancer.

ZAC/Zac1 has a wide tissue distribution (pituitary, kidney, placenta, adrenals), but it

is most highly expressed in the pituitary gland (Varrault et al., 1998). Zac1-

expression, as studied by in situ hybridization, was found to be high in the anterior

lobe of the mouse pituitary, moderate in the intermediate and very weak in the

posterior lobe (Pagotto et al., 1999). Ablation of the endogenous Zac1 protein by

antisense targeting in murine tumoral pituitary cell lines resulted in enhanced DNA

synthesis, further confirming the antiproliferative role of Zac1 and demonstrating a

role for Zac1 in pituitary cell proliferation (Pagotto et al., 1999).

The antiproliferative properties of ZAC together with its high expression in the

pituitary gland led to the speculation that ZAC may play a role in pituitary

tumorigenesis. Studies on ZAC gene status in pituitary adenomas revealed LOH in 8

out of 18 pituitary adenomas, but no mutations in the ZAC coding region (Pagotto et

al., 2000). However, there is still a possibility of a defect in the transcriptional

regulation of the gene. To address this issue, the expression of ZAC at mRNA and

protein levels was studied in a series of pituitary adenomas as will be described in

the RESULTS section.
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Other factors involved

COUP-TFI.  Chicken ovalbumin upstream promoter-transcription factor or COUP-TF

is an orphan receptor that belongs to the steroid/thyroid hormone receptor

superfamily. It was first identified as a homodimer that binds to a direct repeat

element in the chicken ovalbumin promoter (Sagami et al., 1986). Two COUP-TF

genes were cloned from human cells, COUP-TFI (Wang et al., 1989) or EAR3

(Miyajima et al., 1988) and COUP-TFII (Ritchie et al., 1990; Wang et al., 1991) or

ARP-1 (Ladias and Karathanasis, 1991). COUP-TF homologues have been cloned

from many species, including drosophila and mouse,  and there is a high degree of

homology between species, from metazoans to human, implying that these genes

play an important, and maybe vital, role in cellular function (Qiu et al., 1994; Tsai and

Tsai, 1997). Indeed, in Drosophila, mutation of the COUP-TF homologue (seven-up

gene or svp) is lethal. In zebrafish, chicken, and mouse, COUP-TFs are expressed at

high levels in the developing central nervous system, while in mouse they are highly

expressed in many developing organs (Jonk et al., 1994); (Pereira et al., 1995),

suggesting an important role during embryonic development. Null mutation of COUP-

TFI resulted in defects in neurogenesis and axon guidance (Qiu et al., 1997), while

targeted disruption of COUP-TFII resulted in embryonic lethality due to defects in

angiogenesis and heart development (Pereira et al., 2000). In the mouse, COUP-TFI

is expressed mainly in the central nervous system and nasal septum, while COUP-

TFII shows a wider organ distribution, including central nervous system, testis, ovary,

skin, lung, stomach, intestine, pancreas and salivary gland (Qiu et al., 1994; Pereira

et al., 1995). In addition, COUP-TFII immunoreactivity is observed mainly in

mesenchymal cells, but is absent in terminally differentiated epithelium (Suzuki et al.,

2000), supporting the hypothesis that it plays an important role in the induction of
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epithelial differentiation (Tsai and Tsai, 1997). In adult mice, the expression of

COUP-TFs is dramatically reduced and restricted mainly to distinct parts of the brain,

which are the olfactory nucleus, neocortex and parts of hippocampus and cerebellum

for COUP-TFI, and the reticular and thalamic nuclei for COUP-TFII (Tsai and Tsai,

1997).

All these data point to a role of COUP-TFs in development and differentiation.

However none of the studies had related COUP to pituitary function and pathology.

Attention was drawn on COUP-TFI during an investigation demonstrating the ability

of retinoic acid to prevent experimental Cushing’s syndrome. Retinoic acid was

shown to inhibit POMC promoter and consequently ACTH biosynthesis in the mouse

corticotrophinoma cell line AtT-20 (Paez-Pereda et al., 2001). In addition, retinoic

acid caused a significant inhibition of ACTH production in the majority of

corticotrophinomas studied in primary cell culture but had no effect on ACTH

produced by rat normal pituitary cells, indicating a tumor-specific effect. Searching for

transcription factors that could affect retinoic acid-inducible transcription, COUP-TFI

was the factor that readily came in mind, since it is a well known transcriptional

repressor of vitamin D, thyroid and retinoic acid receptor signaling (Kliewer et al.,

1992; Tran et al., 1992; Cooney et al., 1993), and POMC promoter has two COUP

elements, one within the glucocorticoid binding site and the other adjacent to the AP-

1 binding site (Therrien and Drouin, 1991).

As will be shown in the Results section, RT-PCR and immunohistochemistry revealed

COUP-TFI expression in the human normal pituitary gland but not in Cushing-

associated pituitary adenomas, therefore providing, on one hand, a basis for the

differential response of normal and adenomatous corticotrophs to retinoic acid and,

on the other hand, introducing a candidate that may play an important role in the

differentiation of corticotrophs and the pathogenesis of corticotrophinomas.
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Growth factors

Growth factors are soluble peptides with critical functions in mitogenesis,

angiogenesis,  and gene transcription. The pituitary gland has been shown to be a

reservoir of growth factors, which act in an autocrine/paracrine fashion to regulate

pituitary cell proliferation and hormone secretion (Renner et al., 1996; Ray and

Melmed, 1997). The uncontrolled mitogenic function of growth factors is one of the

mechanisms leading to tumorigenesis. Possible alterations in the expression of

growth factors and/or their receptors in pituitary tumors are subject of ongoing

research, aiming to unravel their possible role in pituitary oncogenesis.  Later in this

thesis, we will concentrate on the epidermal growth factor (EGF) and its receptor

(EGFr).

EGF acts as a mitogen in a broad variety of endothelial and epithelial cell types. In

the pituitary, EGF is detected in most adenohypophyseal cells (LeRiche et al., 1996)

and is a potent stimulator of PRL (White and Bancroft, 1983) and ACTH (Childs et al.,

1995) release. EGF exerts its effects after binding to a tyrosine kinase receptor,

which is the cellular homologue of the v-erbB oncogene product (Downward et al.,

1984). EGF receptor (EGFr) is overexpressed in a wide range of tumors, such as

breast and ovarian cancer and glial cell tumors (Klijn et al., 1992) (Xu et al., 1984).

Despite the fact that there is clear evidence about the presence of EGFr in the

normal adenohypophysis (Chabot et al., 1986; Fan and Childs, 1995), the data

concerning the expression of EGFr in the pituitary tumors are controversial (reflected

in the two recent reviews of Ray and Melmed (1997) and Dahia and Grossman

(1999). Initial studies had failed to show any EGF binding sites in human pituitary

adenomas (Birman et al., 1987), while further investigation using immuno-

histochemical and RT-PCR approach described EGFr in pituitary adenomas, with
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one demonstrating overexpression in most non-functional pituitary adenomas but

absence in the hormone-secreting types (Chaidarun et al., 1994), and the other

showing EGFr expression in all types of pituitary adenomas, but at varying levels

(LeRiche et al., 1996). This last paper had also related EGFr-expression with tumor

aggressiveness.  A recent report has revealed high levels of EGF-binding sites in

macroprolactinomas, also suggesting a link with tumor invasiveness (Jaffrain-Rea et

al., 1998).
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AIM OF THE STUDY

The group of studies described herein aim to understand the role of transcription

factors, which are known or suspected to play an important role in cancer, in the

pathogenesis of certain types of pituitary adenomas.

Three factors were selected for the current study: ZAC, menin, and COUP-TFI. ZAC

was chosen because of its high levels of expression in the pituitary gland and its

proven antiproliferative effects in a mouse model of pituitary tumor. Menin was

selected because one of the major manifestations of familiar MEN1 syndrome is

pituitary adenoma formation. Therefore it is an open question whether alterations in

MEN1 expression can play a role in the formation of sporadic pituitary adenomas.

Since MEN1 gene and its expression are intact in sporadic pituitary adenomas, the

present work seeks to examine possible alterations in the status of the MEN1-gene

product, menin. The implication of COUP-TFI in pituitary pathogenesis was

suspected during a study searching for a mediator of the retinoic acid’s anti-

tumorigenic effects in tumoral but not in normal corticotroph cells.

All the above mentioned genes were studied at the mRNA level using reverse

transcription-PCR and in situ hybridization and, at protein level, using immuno-

histochemistry. In the case of ZAC, mouse cell models of pituitary tumors and human

pituitary adenomas in primary cell culture were used in an attempt to elucidate the

mechanisms responsible for the regulation of this gene’s expression, and to find a

way to pharmacologically induce its expression.
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MATERIALS & METHODS

Reagents

Product Company

[α-33P]dATP NEN (Cologne, Germany)

ABC blocking kit Vector Laboratories (Burlingane, CA, USA)

Acetic acid MERCK (Darmstadt, Germany)

Acridine orange Sigma (St. Louis. MO, USA)

AG 1478 Calbiochem (Darmstadt, Germany)

Agar Life Technologies (Paisley, Scotland, UK)

Ammonium persulfate Sigma (St. Louis. MO, USA)

Amphotericin B Biochrom (Berlin, Germany)

Ampuwa water (for ISH) Frisenius (Germany)

5-Aza-2´-deoxycytidine Sigma (St. Louis. MO, USA)

Beta-mercaptoethanol MERCK (Darmstadt, Germany)

Boric acid Roth (Karlsruhe, Germany)

Bovine serum albumin (for cell culture) Invitrogen Corp (Paisley, Scotland, UK)

Chloroform Sigma (St. Louis. MO, USA)

Collagenase Worthington Biochemical Corp. (Lakewood, NJ, USA)

DATP Roche (Mannheim, Germany)

DCTP Roche (Mannheim, Germany)

DGTP Roche (Mannheim, Germany)

Diaminobenzidine Sigma (St. Louis. MO, USA)

Diethyl-dicarbonate Sigma (St. Louis. MO, USA)

Dimethyl sulfoxide Sigma (St. Louis. MO, USA)

Dithiothreitol Sigma (St. Louis. MO, USA)

DNAse Invitrogen Corp (Paisley, Scotland, UK)

dNTP Mix MBI Fermentas (Vilnius, Lithouania)

DTTP Roche (Mannheim, Germany)

Dulbecco’s modified Eagle medium (DMEM) Invitrogen Corp (Paisley, Scotland, UK)

Dulbecco’s modified Eagle medium (DMEM)

without Phenol Red

Sigma (St. Louis. MO, USA)

EDTA MERCK (Darmstadt, Germany)

Entellan MERCK (Darmstadt, Germany)

Epidermal growth factor Sigma (St. Louis. MO, USA)

Ethidium bromide Sigma (St. Louis. MO, USA)

Fetal calf serum Gibco (Karlsruhe, Germany)

Formamide Sigma (St. Louis. MO, USA)
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Forskolin Sigma (St. Louis. MO, USA)

Glucose MERCK (Darmstadt, Germany)

Guanidine thiocyanate Fluka Chemie AG (Buchs, Switzerland)

Hepes Sigma (St. Louis. MO, USA)

Hexanucleotide Mix Roche (Mannheim, Germany)

Hexanucleotide Mix Roche (Mannheim, Germany)

Hyaluronidase Sigma (St. Louis. MO, USA)

Hydrochloric acid MERCK (Darmstadt, Germany)

Hydrogen peroxide Roth (Karlsruhe, Germany)

Isoamylalcohol MERCK (Darmstadt, Germany)

Isopropanol Sigma (St. Louis. MO, USA)

Isopropanol Sigma (St. Louis, Mo, USA)

KH2PO4 MERCK (Darmstadt, Germany)

Levamisole Sigma (St. Louis. MO, USA)

L-Glutamine Biochrom AG (Berlin, Germany)

Lipofectamine Invitrogen Corp (Paisley, Scotland, UK)

Luciferin Roche (Mannheim, Germany)

Magnesium chloride MERCK (Darmstadt, Germany)

Marker 1kbPlus Life Technologies (Paisley, Scotland, UK)

Octreotide Novartis (Basel, Switzerland)

OPTIMEM 1 Invitrogen Corp (Paisley, Scotland, UK)

Paraformaldehyde MERCK (Darmstadt, Germany)

PD 98059 Calbiochem (Darmstadt, Germany)

Penicillin+Streptavidine mix Biochrom AG (Berlin, Germany)

Peptone ICN Pharmaceuticals (Aurora, OH, USA)

Phenol Roth (Karlsruhe, Germany)

Phosphate based buffer

PBS (for cell culture)

Life Technologies (Paisley, Scotland, UK)

Photoemulsion Ilford K5 (Eppelheim, Germany)

Plasmid Preparation Kit QIAGEN (Hilden, Germany)

Polyacrylamide Invitrogen Corp (Paisley, Scotland, UK)

poly-L-lysine-coated microscope slides

(SuperFrost® Plus)

Menzel-Gläser (Braunschweig, Germany)

Potassium chloride (KCl) MERCK (Darmstadt, Germany)

Reisin Bio-Rad (Hercules, CA, USA)

Reporter lysis buffer Promega GmbH (Mannheim, Germany)

Retinoic acid Sigma (St. Louis, Mo, USA)

Reverse transcriptase

(SuperScript II TM )

Invitrogen (Carlsbad, CA, USA)

Sarcosine, N-Lawryl- Sigma (St. Louis, Mo, USA)
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Sodium acetate dihydrate MERCK (Darmstadt, Germany)

Sodium acetate trihydrate MERCK (Darmstadt, Germany)

Sodium chloride (NaCl) Roth (Karlsruhe, Germany)

Sodium dihydrogen phosphate mono-hydrate

(NaH2PO4-H2O)

MERCK (Darmstadt, Germany)

Sodium hydrogen phosphate dihydrate

(Na2HPO4.2H2O)

MERCK (Darmstadt, Germany)

Sodium peroxide (NaOH) MERCK (Darmstadt, Germany)

Streptavidin R&D systems (Minneapolis, MN, USA)

Taq DNA polymerase MBI Fermentas

TEMED Sigma (St. Louis, Mo, USA)

Terminal transferase Roche (Mannheim, Germany)

Tissue-Tek® Sakura Finetek Europe (Zoeterwoude, The

Nederlands)

Toluidin Blue Sigma (St. Louis, Mo, USA)

Triethanolamine Sigma (St. Louis, Mo, USA)

Tris pure ICN Pharmaceuticals (Aurora, OH, USA)

Trypsin Sigma (St. Louis, Mo, USA)

Vector Red Vector Laboratories (Burlingane, CA, USA)

WST-1 assay Roche (Mannheim, Germany)

X-ray film Kodak (New Haven, CT, USA)

Xylol Roth (Karlsruhe, Germany)

Yeast extract powder ICN Pharmaceuticals (Aurora, OH, USA)
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Solutions

Collagenase Mix 1000 U/ml

Collagenase     : 400 mg/ 100ml solution

Trypsin inhibitor: 10 mg/ 100ml solution

Hyaluronidase  : 100 mg/ 100ml solution

BSA                  : 400 mg/ 100ml solution

Dnase               : 500 µl/ 100ml solution

Citric acid monohydrate

(for antigen retrieval)

10mM

Citric acid monohydrate: 2.1 g/L

Adjust to pH 6.0

Formamide deionized Add  Reisin: 5ml/ 50ml Formamide

Formamide/4xSSC buffer Formamide deionized: 50ml/ 100ml solution

SSC 20x sterile          : 20ml/ 100ml solution

DEPC water               : 30ml/ 100 ml solution

HDB buffer Glucose                      : 18 mg/ 100ml solution

Penicillin/Streptavidin : 1 ml/ 100ml solution

Amphotericin B           : 1 ml/ 100ml solution

LB medium Peptone        :10 g/L

Yeast extract: 5 g/L

NaCl             : 5 g/L

NaOH 1M     : 2 ml/L

Adjust to pH 7.0

Luciferase-assay buffer Tris-HCl 1M pH 7.8 : 7.5 ml/ 100ml solution

MgCl2 1M               : 2.5 ml/ 100ml solution

Before use add 4 µl/ml ATP 0.1 M
Paraformaldehyde

(PFA)

4%

paraformaldehyde             :4 g/100 ml

Sodium phosphate buffer : 20 ml/100ml solution

Ampuwa water                  : 80 ml

Add 1M NaOH to pH 7.4

Heat at 56°C to dissolve

Filter and cool before usage

Store at +4°C for maximum 2 days

Phosphate based buffer

(PBS)

1x

NaCl                  : 8 g/L

KCl                    : 0.2 g/L

Na2HPO4.2H2O : 1.44 g/L

KH2PO4             : 0.2 g/L

Adjust to pH 7.4

Sodium acetate 2M
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Sodium acetate trihydrate: 27.2 g/ 100ml

DEPC                              : 20 µl

Add acetic acid to pH 4.0

Leave at room temperature overnight

Sodium phosphate buffer 50mM

Na2HPO4.2H2O : 7.06 g/L

NaH2PO4. H2O  : 1.32 g/L

Adjust to pH 7.4

Solution D 4M Guanidium thiocyanate

25 mM Sodium citrate pH 7.0

0.5% Sarcosyl

dissolved in DEPC

To complete the medium add:

180µl beta-mercaptoethanol/25ml solution

SSC 20x

NaCl : 175 g/L

Sodium citrate dihydrate: 88.23 g/L

Adjust to pH 7.0

Filter and autoclave before use

Tris borate EDTA buffer

(TBE)

10x

Boric acid (H3BO3) : 61.83 g/L

EDTA                     : 37.2 g/L

Tris pure                 : 30.03 g/L

Adjust to pH 8.0

Tris buffer Tris pure: 12.114 g/L

Adjust to pH 7.6

Tris-based buffer

(TBS)

1x

Tris pure : 2.42 g/L

NaCl        : 8 g/L

Adjust to pH 7.6

Tris-HCl 1M

Tris pure: 121.14 g/L

Add 25% HCl to a pH 8.2
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Tumor bank formation

In the time interval 1997-2001, 343 tumors were received from different neurosurgical

departments in Germany and Italy. All the specimens were inserted in DMEM

immediately after surgical excision and transferred to our laboratory as fast as

possible. Tumors arriving within the same day or one day after the operation date,

were processed for experiment as follows: after removing the fibers and debris, the

tumor was divided into three portions; one part was destined for cell culture as will be

described later in the Pituitary adenomas in primary cell culture session; the

remaining piece was divided into two parts: one was put into an Eppendorf-tube for

RNA extraction, and the other was snap-frozen with dry-ice, for morphological

analysis.

The frozen piece was cut in in 8µm thick sections in cryostat and placed on sterile

poly-L-lysine-coated slides. These slides were fixed in freshly prepared ice cold 4%

PFA, dehydrated and stored in 96% ethanol at +4°C until usage. The first sections of

each tumor were used for the determination of the pituitary hormonal content by

immunohistochemistry. This is important in order, on one hand, to determine if there

is any normal pituitary tissue neighboring to the tumor specimen and, on the other

hand, to get some information about the histological type of the tumor. Some slides

were also sent to a well known pathologist in the field (Prof. Dr. W. Saeger, Dept. of

Pathology, Marienkrankenhaus, Hamburg, Germany) for a complete histological

examination, which included hormonal content of the tumor, percentage of cells

stained for a particular hormone, and proliferation index. The proliferation index was

determined using the monoclonal antibody MIB-1 which binds to the proliferation-

associated nuclear antigen Ki-67.

The next step was to prove the availability of the tumors for an immunohistochemical

study. This was done, in part, with the immunohistochemistry for the intrapituitary
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hormones. In the case of null cell adenomas, that do not stain for any hormone, in

situ hybridization for alpha-subunit, FSH, and LH, was used to determine the

suitability of the tumor, since this type of tumor is expressing at least one of these

hormones at mRNA level despite the absence of any detectable protein.  The two

nuclear proteins Pit1 and SF1 were chosen to determine the suitability of

acromegaly-associated adenomas and prolactinomas, and non-functioning pituitary

adenomas respectively, for immunohistochemical analysis of the nuclear protein in

question.

The piece destined for RNA extraction had to be proven that is containing only tumor

cells and no normal pituitary contamination. In part, immunohistochemical analysis on

tissue cuts, adjacent to the piece destined for the RNA extraction, could provide

information about any normal pituitary cells present in this part of the tumor.

However, to be absolutely sure, PCR was performed for the transcription factors SF1

and Pit1 (Zafar et al., 1995). By this way, prolactinomas and acromegaly-associated

adenomas were excluded from any PCR study if they were shown to express SF1

and non-functioning adenomas were excluded if they expressed Pit1.

Cell culture

Cell lines

The immortalized cell lines used in this study were the rat mammosomatotroph cell

line GH3 and the mouse corticotrophinoma cell line AtT-20. Cells were grown in

DMEM supplemented with 10% FCS, 2.4g/L Glutamine, 2.5 ng/L Amphotericin B,

and 105 U/L Penicillin/ Streptomycin, and incubated in humid atmosphere with

5%CO2 at 37°C. When confluent, cells were washed with PBS, trypsinized,

centrifuged at 1200g for 4 min, and platted according to the demands of each

experiment.
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Pituitary adenomas in primary cell culture

The piece from pituitary adenoma, destinated for cell culture, was washed throughout

with HDB buffer and was mechanically dispersed into small fragments. These

fragments were inserted in solution containing 4g/L collagenase, 0.01 g/L DNAse II,

0.1 g/L soybean trypsin inhibitor and 1 g/L hyaluronidase II and were enzymatically

dispersed in 37°C for 30-45 min. Cell viability was determined by acrinide orange

/ethidium bromide staining. Cells were diluted with DMEM, supplemented with 10%

FCS, to a density of 2x105 cells/ml, distributed in 48-well tissue culture plates, and

maintained at 37°C for 3-4 days before being treated and assayed.

Agent stimulation experiments

Before each stimulation experiment, cells were serum-deprived for 24 hrs in order to

arrest in the G0 phase. In general, stimulants were dissolved in serum free medium,

to avoid possible interactions with growth factors present in the serum. Unless

otherwise indicated, duration of each stimulation was 24 hours. After this time,

medium was removed, cells were washed with PBS, and Solution D was added for

RNA extraction.

For stimulation experiments involving retinoic acid, phenol free DMEM was used.

During incubation with retinoic acid, the plate, containing the cells, was wrapped in

aluminum foil since this substance is light sensitive.

Cell proliferation and viability

Cell proliferation was measured using the WST-1 proliferation assay (Roche

Molecular Biochemicals, Penzberg, Germany). This assay measures the activity of

the mitochondrial succinate-tetrazolium reductase system. In living cells, the WST-1
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substance is converted to a dye which can be read by an ELISA reader. For this

assay, cells were seeded in a 96-well plate (1000 cells/ well), and after 3-4 days they

were stimulated. After 24 hours, the WST-1 reagent was added to a final dilution

1:10, and after 2 hours incubation, the plate was measured with the ELISA reader at

450 nm.

Cell viability was determined by acridine orange/ ethidium bromide staining. Acridine

orange, but not ethidium bromide, can be incorporated into the cells. Therefore if the

cell membrane is intact, i.e. the cell is alive, only acridine orange will pass through

the cell membrane and the cell nucleus will stain green; if the cell is dead the

ethidium bromide will reach the nucleus bypassing the destroyed cell membrane,

intercalate into the DNA and stain the cell nucleus red. On a Neubauer chamber, a

mix of equal volumes of cell suspension and 1:1 acridine orange/ethidium bromide

was placed. Examination was done under UV light. The cell viability was determined

as the percentage of green (= alive cells) in the total number of cells seen on each

chamber area.

Gene expression studies

RNA extraction

Normal and adenomatous pituitary was embedded in 800 µl Solution D and

homogenized using the Ultra-TURRAX T8 (IKA Labortechnik) homogenizer. Solution

D is composed by guanidine thiocyanate and beta-mercaptoethanol, which by

inhibiting the Rnases, activated after cell death, prevents possible RNA degradation.

To the homogenized tissue, 80 µl (1/10 of the initial Solution D volume) sodium

acetate was added to precipitate the genomic DNA, followed by 800 µl phenol and

160 µl Chloroform: Isoamylalcohol (49:1). After 15 min incubation in ice, the solution

was centrifuged for 30 min at maximum speed (12000 rpm) at 4°C. At this stage, due
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to phenol, two phases are clearly visible, which are separated by a thin zone

containing the precipitated genomic DNA. The lower phase contains the phenol-

soluble proteins and cell remains. The upper phase, which is containing the RNA,

was carefully collected, taking special care not to be mixed with the genomic DNA-

containing intermediate zone, and transferred to a new Eppendorf tube. Isopropanol

was added in a volume equal to the upper phase, and the solution was incubated in –

20°C for 2-12 hours to allow the complete RNA precipitation. After 30 min

centrifugation, the supernatant was discarded, the pellet was washed with ice-cold

70% ethanol, and the solution was centrifuged for another 30 min. Then the ethanol

was carefully discarded, the pellet was let to completely air dry, before being

dissolved in 20-100 µl water supplemented with 0.1% (v/v) DEPC. DEPC inactivates

RNases, thus protecting RNA against degradation.

RNA from cell culture was extracted as described above. After removing the cell

culture medium and washing with PBS an appropriate amount of solution D was

added in the petri-dish or well (usually it is 1 ml solution D per petri-dish, 800 µl per

well in a 6-well plate and  200 µl per well in a 48-well plate).

When enough material, each RNA sample was aliquoted, keeping one aliquot in -

20°C for current use, and the remaining at -80°C for long term storage.

The concentration and cleanness of each RNA sample was determined using a

spectrophotometer (Ultrospec II, Pharmacia). Nucleic acids are having an absorption

maximum at 260 nm, while for proteins the value reaches the 280 nm. The ratio

A260/A280 gives information about the quality of the RNA preparation, i.e. if it is free

from proteins and phenol rests. The optimal value for a very clean RNA solution lies

between 1.9 and 2.0. RNA concentration is calculated using the following formula:

A260 . 40 . 60 = χ µg/µl, where 40 is the concentration in µg/µl of RNA giving A260
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value equal to 1, and 60 is the dilution in which the RNA is measured (1µl RNA

solution + 59µl DEPC water)

Reverse transcriptase – polymerase chain reaction (RT-PCR)

1 µg of RNA was incubated with 2mM dNTP mix, 62.5 A260 U/ml random primers

(Hexanucleotide Mix), 10mM dithiothreitol (DTT) and 200 U reverse transcriptase

(SuperScript II) all diluted in 1x First Strand buffer, at 45°C for 1 hour. The reaction is

inactivated by boiling at 95°C for 5 min. The cDNA produced was stored at -20°C.

For the PCR reaction 2 µl cDNA were added in a reaction mixture containing:

3 µl      10x PCR buffer

1.8 µl   25mM MgCl2

3 µl      2mM dNTP Mix

1 µl      amplification primer 1; 10 pmol/µl

1 µl      amplification primer 2; 10 pmol/µl

0.3 µl   Thermus aquaticus (Taq) DNA polymerase

17.9 µl autoclaved, distilled water

The PCR reaction parameters were: denaturation at 95°C for 1 min, annealing at 55-

65°C for 1 min, polymerization at  72°C for 1 min, for 35-40 cycles. In every PCR

reaction, cDNA from normal human pituitary was used as positive control and

reaction in absence of template as negative control. To ensure that the RNA samples

were not contaminated by genomic DNA, PCR reaction was carried for a

housekeeping gene (beta-actin or GAPDH) using as template RNA sample which

had not been reverse-transcribed.
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After each reaction, the products were separated in a 1.2-1.5% agarose gel

depending on the size of the product (1.2% for 400-1000 bp, 1.5% for 200-400 bp)

and visualized by ethidium bromide under UV light.  Electrophoresis took place in 1x

TBE buffer for 15-20 min at 80 V. The 1kb Plus DNA marker was used to determine

the fragment size.

The primers used are listed in Table 1, with their sequences, annealing temperature

and predicted product size. The sequence of each was checked using the NCBI

BLAST program, to exclude the possibility of a sequence similarity with genes other

than the one under investigation. All primers were synthesized by MWG Biotech,

were reconstituted with autoclaved distilled water to reach a concentration of 100 µM,

and were stored at -20°C. The annealing temperature for each pair of primers was

determined by PCR in a range of 55, 60, and 65°C using cDNA from normal human

pituitary as template. The optimum temperature was the one which was yielding an

intense signal with no secondary amplification fragments.

Nested-PCR

To determine the expression of EGFr and EGFr variant III, nested PCR was

performed as previously described (Schlegel et al., 1994). In brief, PCR was

performed on 2µl from the reverse-transcription reaction, using NP1/2 as the outer

primer pair and NP6/7 or JS3/4 as inner primer pairs. NP6/7 amplifies a 1002 bp

PCR fragment in the case of EGFr wild type or a 201 bp fragment remaining from the

deletion of the coding region of exon 2 through exon 7 that characterizes EGFrvIII.

Control PCR using JS3/4 reveals a 391 bp band corresponding to EGFr wild type,

which is expected in all samples expressing EGFr or EGFrvIII.

Semiquantitative RT-PCR
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Semiquantitative PCR was performed in order to quantify the levels of ZAC gene

expression in pituitary adenomas. Two µl cDNA were amplified with the same PCR

reagents as described above but, instead of using dNTP mix, each dNTP was added

separately as follows:

1.2 µl dTTP 10mM

1.2 µl dCTP 10mM

1.2 µl dGTP 10mM

0.2 µl dATP 10mM

plus 0.5 µl (5µCi) α33P-dATP 4mM.

Although the time and temperature were used as defined for the simple PCR, the

number of cycles was 25 for ZAC and 20 for beta-actin. PCR products were

electrophoresed in a 6% acrylamide gel, which was then dried (Model 583 Gel dryer,

Bio-Rad) and exposed to X-ray film (Kodak) or to Phospho-Imager. OD for ZAC and

beta-actin were quantified by digital analysis (Tina 4.0, Raytest, Munich, Germany).

After subtraction of background signals the relative gene expression levels was

determined as the ratio of OD gene /OD beta-actin. PCR reactions were performed in

triplicates for each sample.

In situ hybridization

ISH was performed to study the distribution of ZAC mRNA expression in human

normal and adenomatous pituitary. Eight oligonucleotides (ODNs) were designed at

nucleotide positions 47-92, 300-344, 525-569, 614-659, 777-822, 875-920, 907-952,

and 1002-1046 (Fig.6) and synthesized by Amersham-Pharmacia (Freiburg,

Germany). The ODNs were labeled at the 3’-end with [α-33P]dATP by terminal

transferase.
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Already fixed tissue slides were rehydrated in PBS, pretreated with triethanolamine,

to facilitate the better access of the ODNs into the cell nucleus, dehydrated, and left

to completely dry out. ODNs were dissolved in hybridization buffer and applied on the

dried tissue. A mix of labeled ODNs together with a 100-fold excess of unlabeled

ODNs was always applied as a control. The tissues were well covered by paraffin

films and the slides were placed in a box wet with 50% Formamid/4xSSC buffer,

which was then well shielded and placed in a 42°C dry oven. After 16-24 hours

incubation, sections were well washed to remove every excess ODNs, dehydrated,

and left to dry. A quick image of the hybridization was obtained by exposing the

sections to a phosphorimager analyzer. Then the slides were dipped in Ilford K5

photoemulsion for 28 days, developed, and counterstained with toluidine blue.

Fig.6. Schematic presentation of the relative positions of the primer and ODN sequences on

ZAC. (C2H2).7: zinc finger region; linker: linker region; PQE: proline/ glutamate/ glutamine rich region;

C-ter: COOH terminus; aa: aminoacids against which the ZAC antibody is raised.
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Name Sequence (5’-3’) Tm Fragment (bp)

beta-actin-s human

beta-actin-a human

ACG GGG TCA CCC ACA CTG TGC

CTA GAA GCA TTT GCG GTG GAC GAT G

60 660

COUP-s

COUP-a

GT CCC TGC TAC GCC TCA CC

AGA GTT TCG ATG GGG GTT TT

65 440

GAPDH-s rat

GAPDH-a rat

ATG GTG AAG GTC GGT GTG AAC G

GTT GTC ATG GAT GAC CTT GGC

60 495

Lot-s

Lot-a

CAT AGC CTC ACC CTC AGT CC

AGA GTG CTA TTC CCA AAG GT

60 408

MEN1-s

MEN1-a

GCT GGC TGT ACC TGA AAG GA

CTT GTG GTA GAG GGT GAG TG

60 275

NP1

NP2

GAG CCG GAG CTC TTC GGG GA

CAG TTC CTG TGG ATC CAG AAG AGG

45 -

NP6

NP7

CGG CGA GTC GGG CTC TGG AGG

GTA GCA TTT ATG GAG AGT GAG

60 1002 (EGFrWT) or

201 (EGFrvIII)

SF1-s

SF1-a

GCA TCT TGG GCT GCC TGC AG

CCT TGC CGT GCT GGA CCT GG

71 230

Pit-s

Pit-a

AGT GCT GCC GAG TGT CTA CCA

TTT CTT TTC CTT TCA TTT GCT

59 560

JS3

JS4

GTA CTA CGA GAA TTC CTA ATG CC

CTG TGC AGC CTG CAG CAC ACT GGT

60 391

Z5 (ZAC-s)

Z6 (ZAC-a)

AAC CGG AAA GAC CAC CTG AAA AAC CAC

GTC GCA CAT CCT TCC GGG TGT AGA

60 304

Table.1. List of primers used. 1st column: name of primer. NP1, NP2, NP6, NP7, JS3 and JS4

primers were used for the nested PCR for the identification of EGFr (EGFrWT) and EGFr variant III

(EGFrvIII). 2nd column: Sequences; 3rd column: annealing temperature; 4th column: Size of PCR

product. When using the NP6 and NP7 set of primer, two type of products can be expected: a 1002 bp

fragment corresponding to the wild type of EGFr or a 201 bp fragment corresponding to the EGFrvIII.
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Protein studies

Immunohistochemistry

Principle

In order to determine the expression of a gene at protein level and to visualize the

protein distribution and intensity of expression in the normal cellular and tissue

environment, the method of immunohistochemistry was employed. Specific

antibodies (primary antibodies) are used to identify the protein in question. This

antigen-antibody binding is followed by a series of immunological interactions, which

lead to the enzymatic reaction that will allow the visualization of the signal. As shown

schematically in Fig.7A, the primary antibody already attached to its epitope is linked

to a secondary antibody, that can recognize and therefore bind to the epitopes of the

host animal in which the primary antibody was raised; i.e. when the primary antibody

is mouse monoclonal the secondary antibody is anti-mouse and so on. The

secondary antibody is then linked to the enzymatic complex that will catalyze the

chromogen used and visualize the signal. One system used here is the avidin-biotin

system, in which the secondary antibody is conjugated to biotin beads, which can

bind to the avidin-enzyme complex. The enzyme can be peroxidase or alkaline

phosphatase.

Another enzyme used is the alkaline phosphatase anti-alkaline phosphatase

complex, which can be produced in mouse or rabbit, and therefore be recognized by

the anti-mouse or anti-rabbit IgG, used as secondary antibody (Fig.7B).

Primary antibodies

The primary antibodies and dilutions used are given in Table 2. Each antibody was

tested and optimized on control tissue, which was usually human normal pituitary

gland. Other control tissues used were human tonsils, for antibodies associated with
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cell cycle and proliferation, and meningiomas and glioblastomas, for the antibodies

against EGFr. The standard testing dilution range was 1:50 to 1:2000.

Antibody Source Host Dilution

EGFr (F 4) Sigma (St. Louis. MO, USA) mouse 1:100

EGFr  (E 30) Biogenex (San Ramon, CA, USA) mouse 1:20

Menin Gift from Dr V. Ciminale

(Univ. of Padova, Italy)

mouse 1:100

Human Ki-67/MIB1 DAKO (Glostrup, Denmark) mouse 1:100

Pit1 Santa Cruz Biotech (Santa Cruz, CA, USA) rabbit 1:100

SF1 Upstate Biotech (Lake Placid, NY, USA) rabbit 1:300

S100 Biogenesis (Poole, UK) rabbit 1:20

Human TSH Immunotech (Marseille, France) mouse 1:500-800

Human FSH Immunotech (Marseille, France) mouse 1:500-800

Human LH Immunotech (Marseille, France) mouse 1:500-800

Human Alpha-Sub Immunotech (Marseille, France) mouse 1:500

Human PRL Immunotech (Marseille, France) mouse 1:400

Human ACTH DAKO (Glostrup, Denmark) mouse 1:100

Human GH Gift from Dr C. J. Strasburger

(Medizinische Klinik, Munich, Germany)

mouse 1:800

COUP-TFI (T-19) Santa Cruz Biotech (Santa Cruz, CA, USA) goat 1:500

ZAC Gift from Dr L. Journot (CNRS, Montpellier,

France)

rabbit 1:800

Table.2. List of the primary antibodies used in this group of studies. Antibodies made in mouse

are monoclonal, while the ones made in rabbit and goat are polyclonal.

Protocol for cryostat sections

Frozen normal and adenomatous pituitary tissues were cut in a cryostat (Leica

CM3050 S), in 8 µm thick sections. The slides were fixed in 4% freshly prepared ice

cold PFA, dehydrated and stored in 96% ethanol, at +4°C. At the time of the

experiments, sections were briefly incubated in TBS for 5 min, followed by 30 min
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blocking. Blocking was performed using serum from the same animal species to the

one that gave rise to the secondary antibody; in our case blocking solutions were

consisting of horse or goat serum diluted 1:10 in TBS. After blocking the endogenous

peroxidase activity with 1% H2O2 diluted in TBS for 15 min, sections were incubated

overnight with the primary antibody at 4°C. Then, after washing three times with TBS,

5 min each, sections were incubated for 30 min with the secondary antibody at room

temperature, and after 3 more washings, with the ABC complex for another 30 min.

The ABC was prepared at least 30 min prior usage, in order to give time for the

complex to form, in saline-free tris-based buffer (Tris buffer). After washing three

times in TBS, slides were immersed in freshly prepared DAB (1 mg/ml)

supplemented with 0.01% hydrogen peroxide.  Because DAB is light-sensitive, the

reaction was carried on in semi-darkness, and the reagent was covered with

aluminum foil during the experiment. The time of incubation in DAB varied and was

determined for each primary antibody separately. Optimal time was the one which

was giving the strongest expected signal with the lowest possible background.

A variation of the method made use of ABC linked to alkaline phosphatase (ABC-AP)

and in that case, color was developed using the Vector Red kit. Levamisole (10 mM)

was added to the reaction mixture to block the endogenous alkaline phosphatase

activity. This method was used to immunohistochemicaly determine the hormonal

content for each tumor.

After the development of a satisfactory signal, slides were washed many times in

TBS and counterstained with toluidine-blue, which is staining the cell nuclei pale blue

allowing an easy view of the tissue organization. Excess color was removed by

immersing the slides in 70% ethanol supplemented with acetic acid, and sections

were dehydrated, fixed in xylol and coverslipped using Entellan. Evaluation of

immunohistochemistry was done using the Axioscop II microscope (Zeiss).
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In the ZAC study, immunoreactivity for each tumor was quantified as follows: Staining

was classified as: absent “0”, weak “1”, moderate “2” and strong “3” and the

percentage of cells in each category was determined. Intensity of immunoreactivity

was calculated: 0 x % of unstained cells + 1 x % of weakly stained cells + 2 x % of

moderately stained cells + 3 x % of strongly stained cells. Each value was divided by

300 - a hypothetical maximum for 100% of the cells being strongly stained - providing

final values between 0 (no immunoreactivity) and 1 (maximum immunoreactivity).

In the Menin study, intensity of the nuclear staining was scored as follows: weak “+”,

medium “++”, strong “+++”.

Protocol for paraffin sections

Paraffin sections were deparaffinized according to the following protocol:

5 min xylol

5 min xylol

5 min 100% ethanol

5 min 100% ethanol

3 min 96% ethanol

3 min 80% ethanol

3 min 70% ethanol

3 min 50% ethanol

5 min distilled water

When a nuclear protein was to be detected antigen retrieval was performed at this

stage by microwaving as follows: after washing in distilled water for 1 min, sections

were transferred in citric acid monohydrate buffer, 10mM, pH 6.0, and microwaved

for 5 min at 750 W. Then they were allowed to cool at room temperature for 1 min

before microwaving once more for 4.5 min. This last step was repeated once more.
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After the last microwaving they were left at room temperature for 20 min to

completely cool down. Then they were transferred in distilled water and washed 3

times, 2 min each, before being transferred in TBS and processed according to the

appropriate protocol.

Double immunohistochemistry

In order to see whether two proteins are co-expressed within a cell, double

immunohistochemistry was used. Extra care was needed in the design of the protocol

in order to avoid cross-links between the different antibodies and subsequently false

positive results. In most of the cases, antibodies against the two proteins in question

were one monoclonal and one polyclonal; therefore, they were processed in parallel

as follows: after washing in TBS and blocking in goat serum, sections were incubated

with both antibodies at 4°C overnight. The following day, after washing three times in

TBS, sections were incubated in a solution containing goat anti-rabbit biotinylated Ig

and goat anti-mouse IgG for 30 min. The procedure was repeated once more, and

then sections were incubated in a mix of ABC and mouse alkaline phosphatase anti-

alkaline phosphatase (APAAP) for 30 min, twice. After the second round was

completed the color was developed for the polyclonal antibody using DAB, and after

several washing with TBS, the second color was developed using Vector Red.

Sections were incubated in Vector Red for 40 min twice. Because the anti-mouse IgG

– APAAP method lacks the signal amplifying properties of the avidin-biotin procedure

there is need to repeat each step two times and to prolong the time of color

development sometimes to two hours. In addition, in some cases, the dilution of the

primary antibody had to decrease when used with the anti-mouse IgG – APAAP

protocol.
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When both primary antibodies were monoclonal, immunohistochemistry for the one

protein was performed and completed before the immunohistochemistry for the other

one. It was proven that performing the immunohistochemistry, which is visualized

with DAB prior to the one using Vector Red, yields to better signal with much less

background.

The anti-mouse IgG – APAAP method was usually used for membrane/

cytoplasmatic proteins, for which there was evidence of being highly expressed. For

nuclear proteins, this type of staining was not giving good results because the red

color was masked by the Tholuidin-blue used in the counterstaining.

 

Fig.7. Simplified diagrams showing the principle of the immunohistochemical techniques used.

A. Single immunohistochemistry using the avidin biotin amplification system. The primary antibody

binds to the tissue antigen of interest and a biotinylated secondary antibody binds to an epitope of the

primary antibody. The biotin labeling  forms a complex with the avidin-biotin complex (ABC). The ABC

contains a peroxidase which catalyses a reaction using hydrogen peroxide as substrate and DAB as

chromogen. At the end of the reaction the chromogen gives a brown color to the sites where the
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antibody has bound. An alternative is to use ABC linked to an alkaline phosphatase (ABC-AP), which

produces red color.  B.  Single immunohistochemistry using alkaline phosphatase. The secondary

antibody acts as a bridge between the primary antibody and the alkaline phosphatase anti-alkaline

phosphatase (APAAP) complex, by recognizing epitopes in the primary and anti-alkaline phosphatase

antibodies. The chromogen is Vector Red and gives red color to the immunoreactive sites. Because

there is no amplification system used here the reaction yields faint signals and is suitable only in case

of of proteins, which are suspected to be highly expressed. C. Double immunohistochemistry to

determine in which endocrine cells is the protein under question (e.g. ZAC) expressed. For the

detection of ZAC the ABC system is used, while for the detection of the hormone the APAAP system is

employed. Note that the primary antibodies are derived from different animals, and the system is build

up in such way that there is no probability of cross reaction between the antibodies used for each

detection.

Transfection studies

Plasmid preparation

The plasmids used in this study were the COUP-TFI expression vector, which

expresses 1.5Kb mouse COUP-TFI cDNA under the control of the cytomegalovirus

(CMV) promoter; the empty vector, which was used as a control, and a vector

expressing the luciferase gene under the control of 770 bp of the rat POMC

promoter.

Competent bacteria, i.e. bacteria pretreated in such way that they posses pores and

can therefore easily incorporate a plasmid, were transformed, left to grow overnight

at 37°C on agar containing ampicillin, and stored at +4°C. A colony was picked from

each plate and left in 250ml LB medium containing 50µg/µl ampicillin overnight at

37°C. Plasmid preparation was performed using the QIAGEN plasmid purification

system.

To confirm that the correct plasmid is going to be used for the transfection

experiment, 5µl of each plasmid were digested with EcoRI and HindIII restriction
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enzymes. When run the products in 1.2% agarose gel COUP-TFI was present as the

predicted two bands and the empty vector as one.

Cell transfection

Cell transfection was performed on confluent AtT-20 cells grown in a 6-well plate,

using Lipofectamine as follows: 500ng of POMC-Luc and COUP-TFI or empty vector

plasmids were mixed with 8µl/well of Lipofectamine in OPTIMEM1 medium, and

incubated at room temperature for 45 min; during this time, the Lipofectamine

neutralizes the plasmid DNA and surrounds it by lipid molecules. Cells were washed

two times with OPTIMEM1 and transfected with plasmid for 6 hours. At this step the

lipid molecules of the lipofectamine will fuse with the cell membrane, emptying the

plasmid content into the cytoplasm. Then the transfected cells were supplemented

with fresh DMEM containing 10% FCS and left for 18 hours to recover before

stimulating with retinoic acid for 6 or 24 hours.

Reporter assay

To determine the levels of POMC driven luciferase expression after stimulation with

retinoic acid, a luciferase reporter assay was employed. Luciferase is an enzyme

found in the Photinus pyrallis, the common firefly. Luciferase emits light in the

presence of luciferin and ATP, which can be detected at 562nm wavelength.

After washing one time with PBS, cells were lysed using the reporter lysis buffer and

scraped. The lysates were transferred into Eppendorf tubes and briefly centrifuged.

The supernatants were collected to be assayed as follows: 50µl supernatant was

mixed with equal amount of ATP-containing Luciferase-assay buffer, and luciferase

activity was measured in a Berthold luminometer, using 4 mg/ml luciferin as

substrate. Experiments were carried out in triplicates.
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Statistics

For the quantification of ZAC immunoreactivity, only the tumor groups with sample

sizes ≥7 were considered (acromegaly-associated pituitary adenomas,

prolactinomas, Cushing’s adenomas, gonadotrophinomas, and null cell adenomas).

The means of the final values for the ZAC immunoreactivity within these groups were

compared by a one-way analysis of variance (ANOVA), followed by pairwise

comparisons using Scheffé’s post hoc test in the case of significant group effects. To

approach normality and homogeneity in the data, the final values for the ZAC

immunoreactivity were first transformed with the ”arcsin” transformation and then

used in the ANOVA. Associations between final values for ZAC immunoreactivity and

proliferation index or grade of invasiveness for each tumor were investigated by using

the Spearman correlation coefficient. As nominal level of significance α < 0.05 was

accepted. It was reduced (adjusted according to Bonferroni procedure) for all post

hoc tests in order to keep the type I error ≤ to 0.05.

To determine the significance of octreotide’s effect on cell proliferation, the means of

the OD 450 values were compared by one-way ANOVA.

Statistics to determine the significance of retinoic acid treatment on POMC promoter

activity, were performed using one-way ANOVA in combination with the Scheffé’s

test.
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RESULTS ON
ZAC AND ITS REGULATION IN PITUITARY ADENOMAS

ZAC expression in human normal pituitary gland

Examination of 7 human normal pituitary glands by ISH revealed high levels of ZAC

mRNA expression in the adenohypophysis and low in the neurohypophysis (Fig.8 A).

Abundance of silver grains was observed in all the endocrine cells of the anterior lobe

(Fig.8 C). There was almost no sign of silver grains in the presence of excess of

unlabeled oligodeoxynucleotides used as control of specificity (Fig.8 B and D).

A rabbit polyclonal antibody generated against the ZAC C-terminal (Fig.6; Pagotto et

al., 2000) was used to assess the expression of ZAC protein using immuno-

histochemistry. Strong immunoreactivity for the ZAC protein was evident in the nuclei

of all the endocrine cells (Fig.8 E), which is in agreement with the nuclear localization

of ZAC as previously described (Varrault et al., 1998). Signal specificity was

demonstrated after incubating an adjacent section with the pre-immune serum (Fig

F). Double immunohistochemistry with all the anterior pituitary hormones, revealed

that all hormone producing cells have intense immunoreactivity for ZAC, indicating

that ZAC expression is not restricted to one cell type (examples of colocalization are

shown in Fig.8 G and H).

The expression profile of the protein, as detected by immunohistochemistry supports

the findings by in situ hybridization, indicating that ZAC is abundantly expressed in

the human anterior pituitary and is present in all endocrine adenohypophyseal cells.
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Fig.8. ZAC mRNA and protein expression in

human normal pituitary. A. ZAC mRNA

expression, as determined by ISH, is high in

the anterior lobe of the pituitary (al), and faint

in the infundibulum (inf) and posterior lobe (pl).

C. ZAC mRNA is abundant (silver grains) in all

cells in the anterior pituitary lobe. B and D.

Control for signal specificity using an excess of

unlabeled oligonucleotides. E. Strong

immunoreactivity for ZAC protein (brown) is

detected in the nuclei of all adenohypophyseal

cells. F. Specificity of immunoreactivity

demonstrated using preabsorbed serum. G

and H. ZAC colocalization with FSH (G) and

LH (H) (black arrows) in normal anterior

pituitary. All sections are counterstained with

toluidine blue.

ZAC gene expression in pituitary adenomas.

The levels of ZAC expression were assessed in 25 pituitary adenomas (Fig.9), by

semi-quantitative PCR using two different sets of primers (Fig.6). All the pituitary

adenomas had lower levels of expression when compared to the normal pituitary

gland. However, ZAC mRNA levels were dramatically reduced in the

gonadotrophinomas and were absent in most null cell adenomas (Fig.9).
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Fig.9. ZAC gene expression in 2 normal pituitaries and 25 pituitary adenomas as determined by

RT-PCR. The numbers are corresponding to the tumors shown in the table; PIT: normal pituitary; Ø:

PCR in absence of template. The graph shows quantitative analysis of the absorbance AZAC:Aβ-actin

ratio in the samples shown in the ZAC and β-actin gel photos. The mean of ZAC:b-actin ratios is set as

100% of seven normal pituitaries. The values of the pituitary adenomas are presented as a

percentage of the normal pituitaries. ACRO: acromegaly associated adenomas; PROL: prolactinomas;

TSH: thyrotrophinomas; CUSH: Cushing’s associated adenomas; GONA: gonadotrophinomas; NULL:

null cell adenomas. ZAC gene expression is reduced in most adenomas when compared to the PIT,

but the reduction is dramatic and the signal is many times lost in the GONA and NULL.

Study of 65 cases (14 acromegaly associated adenomas, 8 prolactinomas, 7

Cushing’s adenomas, 2 thyrotrophinomas, 19 gonadotrophinomas, and 15 null cell

adenomas) by in situ hybridization using eight different oligodeoxynucleotides (their

binding sites is indicated in Fig.6) confirmed these findings. No or only weak signal

was present in the vast majority of non-functioning pituitary adenomas (Fig.10).
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Fig.10. Expression of ZAC in a representative member of each adenoma type, as determined by

ISH and IHC. In the top row are displayed phosphorimages showing ZAC mRNA expression, in the

middle row, histoautoradiographs of the same sections, and in the bottom row, ZAC immunoreactivity

in adjacent sections of the same adenomas. ZAC mRNA and protein levels are high in ACRO, PROL

and CUSH but are dramatically reduced in GONADO and lost in NULL (20x magnification).

ZAC protein levels in pituitary adenomas

Immunohistochemical analysis of the same set of tumor confirmed the findings at

mRNA level. ZAC protein staining was moderate in most pituitary adenomas when

compared to normal pituitary, but was faint or absent in non-functioning pituitary

adenomas (Fig.10). Quantification of the signal intensity and distribution revealed

significantly less intense signal in both gonadotrophinomas and null cell adenomas,

when compared to the other tumor subclasses. In the cases of non-functioning

tumors displaying ZAC immunoreactivity, the signal was heterogeneously distributed,

suggesting that areas immunopositive for ZAC can be restricted to areas
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immunopositive for hormones. However, using double immunohistochemistry it

became clear that ZAC staining is independent of the hormonal status of the cells,

being present or absent in gonadotrophin-producing cells and gonadotrophin-

negative areas/cells.

Fig.11. Quantitative presentation of ZAC immunoreactivity. The intensity of ZAC signal was

calculated in a total of 65 pituitary adenomas. The mean values in GONA and NULL are significantly

lower compared to those of ACRO, PROL and CUSH (Scheffe’s post hoc test: P<0.05). Values are

presented as the mean ± SE, and asterisks indicate statistical significant differences.

Therefore ZAC protein is reduced in pituitary adenomas when compared to the

normal  pituitary gland, which is in agreement with the data derived by PCR and in

situ hybridization at mRNA level. Our results demonstrate a dramatic decrease of the

signal in non-functioning tumors, when compared to normal pituitary or clinically

active tumors. When ZAC protein levels were compared with proliferation index or

tumor invasiveness, no significant correlation was found, implying that loss of ZAC

gene expression is an early event in pituitary tumorigenesis.
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ZAC and methylation

ZAC gene promoter has a CpG island, suggesting that ZAC/Zac down-regulation can

also be due to aberrant promoter hypermethylation. To test this hypothesis GH3 cells

were treated with the anti-methylating agent 5’-aza-deoxycytidin (5-Aza-dC). The

result was an up-regulation of Zac1 gene levels in a dose dependent manner, as

shown in Fig.12, attributing the reduction of Zac1 expression in this cell line to

promoter hypermethylation.

Fig.12. Effect of the demethylating agent 5’-aza-deoxycytidin on Zac1 gene expression in GH3

cells. Zac1 gene expression is increased in a concentration dependent manner after two days of

stimulation with the agent. The picture is shown after inverting the original image, which was

visualized by ethidium bromide staining.

Correlation between ZAC and EGFr expression in pituitary adenomas

In rat ovarian epithelial cells, EGF stimulation leads to ZAC downregulation,

suggesting that probably the reduced ZAC levels observed in most non-functioning

tumors can be due to high EGFr levels (Abdollahi et al., 1999). However, the

controversial results about the status of EGFr in pituitary adenomas (indicated in the

reviews of Dahia and Grossman, 1999; Ray and Melmed, 1997) cannot provide a

definite picture about EGFr expression in these tumors. To elucidate this controversy,

we initiated a new examination for the presence of EGFr mRNA and protein in a

large number of pituitary tumors.
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EGFr mRNA expression in normal and adenomatous human pituitary

To study the levels of EGFr mRNA in normal and adenomatous pituitary nested PCR

was performed. This type of PCR was chosen because it gives information about the

levels of the wild type form of EGFr (EGFrWT) and the presence of constitutively

active EGFr variant III (EGFrvIII; Schlegel et al., 1994). This mutant EGFr derives

from a 801 bp in-frame deletion in the extracellular part of the receptor and is found

in some forms of cancer. As positive control for EGFrWT, a meningioma known to

express high levels of EGFr was used. A plasmid having the fragment derived from

the 800 bp deletion, was used as positive control for EGFrvIII.

RT/Nested PCR in all three normal pituitary glands resulted in the amplification of the

predicted 1002 bp band corresponding to the wild type EGFr (EGFrWT). From the 47

adenomas examined, EGFrWT transcript was present in both Cushing’s adenomas,

6/9 acromegaly associated tumors, 1/4 prolactinomas, and 19/30 non-functioning

pituitary adenomas, while both thyrotrophinomas studied had no detectable EGFr

mRNA (Fig.13). The constitutively active EGFrvIII was not detected in any tumors

studied.

EGFr protein in normal human pituitary and pituitary adenomas

To assess the EGFr protein status, initially three mouse monoclonal antibodies were

tested: two against the intracellular (clone F4 and clone c11/IgG1) and one against

the extracellular (clone E30) part of the receptor. The clone c11/IgG1 was dropped

because it produced unspecific staining in vascular structures and connective tissue.

A meningioma was included in every immunohistochemical reaction as positive

control. In the normal pituitary gland, EGFr immunoreactivity was dispersed in 20-

30% of the anterior pituitary cells (Fig.13 B), and the staining was abolished after

preabsorption of the clone F4 antibody with its homologous antigen (Fig.13 C).

Double-IHC revealed EGFr immunoreactivity in a small number of somatotrophs,
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corticotrophs, lactotrophs, and gonadotrophs, which is in accordance with previous

observations in rat anterior pituitary cells (Fan and Childs, 1995). In addition, EGFr

was found to be expressed in a small number of folliculostellate cells, as revealed

after colocalization with the folliculostellate cell marker S100. Immunohistochemistry

on paraffin embedded pituitary tissues with the clone E30 confirmed these results.

To examine the expression of EGFr in the different types of pituitary tumors,

immunohistochemistry was performed on 82 cases (17 acromegaly-associated

adenomas, 11 prolactinomas, 7 Cushing’s adenomas, 5 thyrotrophinomas, and 42

clinically non-functioning pituitary adenomas), all of which were cryostat sections and

some also paraffin embedded. In this part of the study all the cases were taken

collectively without making distinction other than the pituitary adenoma type to which

they belong. Since the clone E30 antibody works only on paraffin embedded

sections, comparison between the immunoreactivities derived from the two

antibodies was made only in the cases that were both cryostat and paraffin

embedded.

From the 40 clinically active pituitary adenomas involved in the study, 18 were

immunopositive for EGFr, while only 6 out of 42 clinically inactive tumors displayed

EGFr immunoreactivity. As shown in Table 3, the percentage of endocrine cells

immunopositive for the receptor was 2-30% in acromegaly associated adenomas,

prolactinomas, and thyrotrophinomas, reaching the 50% in most Cushing’s

adenomas, while in the 6 immunopositive NFPA, it did not exceed the 10%. It is

therefore evident, that clinically active tumors express EGFr more frequently than

non-functioning pituitary adenomas. It is of interest that the highest levels of

expression occur in the Cushing’s associated pituitary adenomas.
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Fig.13. EGFr expression in normal and adenomatous pituitary. A. Top panel, nested PCR

screening for EGFr WT (1002 bp) and EGFr vIII (201 bp) using the NP6/7 inner primer pair; Ø: PCR in

absence of template; Control plasmid: shows the position of the band corresponding to the EGFr vIII;

Meningioma: is used as positive control for the EGFr WT; Pit: normal anterior pituitary gland. Second

panel, control PCR using the JS3/4 inner primer pair reveals presence of EGFr; Control plasmid for

JS3/4 shows the position of the band corresponding to the EGFr fragment. Third panel, β-actin in the

same set of tumors. B. EGFr protein (brown) in human adenohypophysis using the clone F4 antibody.

EGFr immunopositive cells are scattered comprising around 30% of anterior pituitary cells. C. Parallel

section incubated with the preabsorbed clone F4 antibody. Almost all the staining is abolished. D.

EGFr staining in a representative Cushing’s associated pituitary adenoma. Immunoreactive cells are

abundant throughout the tissue. E. Representative EGFr immunopositive non-functioning pituitary

adenoma. EGFr immunoreactivity is concentrated in a small number of cells (filled arrows) leaving

most of the tissue immunonegative. All the four tissues are cryostat sections. Nuclei are

counterstained with toluidine blue.
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Tumor type % of cases immunopositive
for EGFR

Mean % of
immunopositive cells

ACRO 28% 2-40%
PROL 42% 1-30%
CUSH 83% 10-50%
NFPA 28% 1-10%

Table 3. Distribution of EGFr immunopositivity among four pituitary tumor types: acromegaly-

associated adenomas (ACRO), prolactinomas (PROL) Cushing’s adenomas (CUSH), and non-

functioning pituitary adenomas (NFPA). Second column: percentage of cases per tumor category

which showed even the slightest EGFr immunoreactivity. Third column: mean percentage of EGFr

immunopositive cells, determined as follows: three representative areas of the tumor were counted for

cells expressing EGFr protein using a grid and the mean was calculated.

Correlation between ZAC and EGFr expression

To compare ZAC and EGFr expression in the same tumor specimens, 16 additional

pituitary adenoma cases (5 acromegaly associated tumors, 2 prolactinomas, 1

thyrotrophinoma, 3 gonadotrophinomas, and 5 null cell adenomas) were examined

by PCR for ZAC and by nested PCR for EGFr. Nested PCR revealed EGFr

expression in 7 cases: 4 acromegaly-associated pituitary adenomas, 1 prolactinoma,

1 gonadotrophinoma, and 1 null cell adenoma. The immunohistochemical

examination of these pituitary tumors, together with the 82 cases described above,

revealed no correlation between ZAC absence and EGFr presence. In most NFPA, in

which ZAC expression was reduced or lost, none or only few EGFr positive

endocrine cells were present. In the few tumors showing strong EGFr

immunoreactivity, double immunolabeling for EGFr and ZAC confirmed that ZAC

expression was independent of EGFr status. An example is shown in Fig.14 in which

double immunohistochemistry in a Cushing’s adenoma, displaying low levels of ZAC

and moderate number of EGFr immunopositive cells, revealed that some of these

EGFr expressing cells could display ZAC immunoreactivity similar to the EGFr

immunonegative cells.
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Altogether, these results indicate that in the majority of non-functioning pituitary

adenomas there is no correlation between loss of ZAC and presence of EGFr. In

addition the finding of ZAC expression in EGFr positive cells suggest that EGFr may

not play a role in the regulation of ZAC in pituitary tumors.

Fig.14. Comparison between ZAC and EGFr expression in 16 additional cases of pituitary

tumors. A. Top panel, nested PCR screening for EGFr WT (1002 bp) and EGFr vIII (201 bp) using the

NP6/7 inner primer pair; M: 1-kb Plus DNA Ladder (Life Technologies, Inc) ; Ø: PCR in absence of

template; Control plasmid: shows the position of the band corresponding to the EGFr vIII;

Meningioma: is used as positive control for the EGFr WT. Second panel, control PCR using the JS3/4

inner primer pair reveals presence of EGFr; Control plasmid for JS3/4 shows the position of the band

(391 bp) corresponding to the EGFr fragment. Third and fourth panel, ZAC and β-actin expression in

the same set of tumors. B. Double IHC for ZAC (brown) and EGFr (red) in a CUSH, revealing cells

immunopositive for EGFr and negative for ZAC (empty arrow) and immunopositive for ZAC and

negative for EGFr (open arrows), but also cells immunopositive (filled arrows) or immunonegative for

both ZAC and EGFr (40x magnification). Nuclei are counterstained with toluidine blue.
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Effect of EGF stimulation on ZAC gene expression

Our studies by PCR and immunohistochemistry showed no correlation between ZAC

absence and EGFr expression. Moreover, they suggested that EGFr signaling may

not influence ZAC gene expression in pituitary cells, as it is the case in ovarian

epithelial cells. To prove whether this is the case or not, we studied the effect of EGF

on Zac1 gene expression in the rat pituitary tumor cell line GH3. GH3 cells, despite

the fact that they have the characteristics of mammosomatotroph cells, are

characterized by very low basal levels of Zac1 gene expression (Fig.15 A),

resembling, in this context, the non-functioning pituitary adenomas.

The stimulation with EGF led to reduction of Zac1 mRNA levels, and this effect was

reversed by the MAPK inhibitor PD 098509 and the EGFr tyrosine kinase inhibitor

tyrphostin AG 1478 (Fig.15 A). In addition, EGF stimulation in 27 cases of non-

functioning pituitary adenomas in primary cell culture resulted in ZAC downregulation

in 6 cases (Fig.15 C). All these 6 cases were proven to be EGFr immunopositive by

PCR and immunohistochemistry.

Therefore, ZAC/Zac1 can be a target of a signaling pathway involving EGFr tyrosine

kinase and MAPK activation (Fig.15 B). However, only in a small number of non-

functioning pituitary adenomas which are expressing EGFr, can this mechanism be

the reason for the reduction in ZAC gene expression.
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Fig.15. Effect of EGF on ZAC/Zac1 gene expression. A. Semiquantitative RT-PCR reveals a

downregulation of Zac1 after stimulating GH3 cells with 1µM EGF. This inhibitory effect is reversed

when co-stimulating with 1µM PD-098059 (EGF+PD) or 1µM tyrphostin (EGF+AG). In the graph are

shown the values of each stimulation, presented as a percentage of the unstimulated control. B.

Schematic presentation of the major components of the EGFr signaling pathway. With red arrows are

indicated the steps of the pathway inhibited by the PD-098059 and tyrphostin (AG-1478). C. RT-PCR

on the 6 cases of non-functioning pituitary adenomas in which EGF resulted in ZAC downregulation.

Case 5 is a representative of the majority of non-functioning pituitary tumors, in which EGF has no

effect.

Effect of octreotide on  Zac1 gene expression in GH3 cells

The next step in this study was to examine whether ZAC/Zac1 gene expression can

be regulated by compounds, frequently used for the treatment of pituitary adenomas.

The GH3 cell line is not an appropriate model to study the effect of dopamine

agonists in Zac1 gene expression because it does not express D2R (Dr M. Paez-

Pereda, personal communication); therefore this study concentrated on the effect of

the somatostatin analogue octreotide.
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Octreotide treatment in GH3 cells resulted in decreased proliferation, but not in

apoptosis, as determined by the acridine orange/ethidium bromide staining. The

antiproliferative effect of octreotide was reversed when pretreating with pertussis

toxin, indicating the involvement of Gi protein (Fig.16 A). This antiproliferative effect

was accompanied by a significant increase in Zac1 levels (Fig.16 B). The stimulatory

effect of octreotide on Zac1 was reversed after pretreatment with pertussis toxin, and

after co-stimulation with the phosphatidylinositol 3-Kinase (PI3K) inhibitor, LY 294002

(Fig.16 C).

Fig.16. Effect of Octreotide on ZAC/Zac1 gene expression. A. Results of WST1 assay

demonstrating the inhibitory effect of 1µM octreotide (Octreo) on GH3 cell proliferation (One-Way

ANOVA: P<0.05). This effect reversed after 6 hours pretreatment with 100 ng/µl pertussis toxin (PTX).

B. Increased Zac1 gene expression after stimulating for 24 hours with 1µM octreotide, as determined

by semiquantitative RT-PCR. C. RT-PCR showing Zac1 expression after stimulating with octreotide

with concentrations 1µM (Octreo-6), 100nM (octreo-7), 10nM (Octreo-8), and 0.1nM (Octreo-10). 1µM

octreotide failed to upregulate Zac1 when applied in cells pretreated for 6 hours with 100ng/µl

pertussis toxin (Octreo-6+PTX) or co-stimulated with 1µM LY-294002 (Octreo-6+LY). D. Schematic

presentation of the major components of the SSTR2 signaling pathway.



68

Discussion

In this thesis, it is demonstrated that ZAC mRNA and protein are highly expressed in

human adenohypophysis but its levels are reduced in most pituitary adenomas and

dramatically reduced or absent in non-functioning pituitary adenomas. These findings

are of high interest in light of the antiproliferative properties of ZAC (Pagotto et al.,

1999). Additionally, ZAC is located to chromosome 6q24-q25, a region known to

harbor putative tumor suppressor genes involved in solid tumor development

(Foulkes et al., 1993). Eight out of 18 samples displayed LOH for at least one

informative marker, but no mutations were found in the ZAC coding region in these

tumors (Pagotto et al., 2000). However, as shown in this thesis, ZAC mRNA and

protein were lost or reduced in non-functioning adenomas with statistical significance.

An interesting finding was the greater decrease of ZAC mRNA and protein

expression in null cell adenomas in comparison to gonadotrophinomas. Null cell

adenomas are tumors of gonadotroph origin displaying little or no immunoreactivity to

gonadotrophins and are thought to be de-differentiated terminal tumoral entities

(Holm, 1995). Therefore, the loss of ZAC in the less differentiated null cell adenomas

suggest that ZAC may play a role in pituitary development and more specifically in

the differentiation of the gonadotroph lineage.  Furthermore, our data provide more

evidence for ZAC to be considered as a TSG.

No correlation was found between ZAC expression and proliferation index or

invasiveness of pituitary adenomas, indicating that loss of ZAC expression may be

an early event in pituitary transformation. One early molecular process that might act

as an alternative mechanism of gene silencing is gene methylation. Recent studies

have shown that ZAC is an imprinted gene, and that its promoter is having at least

one CpG island, making ZAC gene expression susceptible to hypermethylation

(Varrault et al., 2001). Treating different human breast cancer cell lines with the de-

methylating agent 5-Aza-dC resulted in ZAC re-expression (Varrault et al., 1998). In
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the pituitary tumor model GH3, treatment with 5-Aza-dC resulted in dose dependent

increase in Zac1 expression, suggesting the possibility of gene silencing due to

promoter hypermethylation, also in the case of pituitary adenomas. However, the

limitations, set by the low proliferation rate of primary pituitary tumors in culture,

prevented similar experiments in non-functioning tumors.

Aberrant signaling by growth factors and hypothalamic peptides in an auto- or

paracrine manner may contribute to the transformation processes taking place during

pituitary tumorigenesis. EGF was shown to downregulate Zac1 gene expression in

rat ovarian epithelial cells, suggesting that aberrant EGFr signaling pathway can be

responsible for the downregulation of ZAC expression in pituitary tumors. However,

the previous controversial results about the status of EGFr in pituitary adenomas

have made it difficult to establish a role for EGF in pituitary oncogenesis (Dahia and

Grossman, 1999; Ray and Melmed, 1997)).

The present study attempted to solve this controversy by examining the presence of

the receptor at mRNA and protein level. All the techniques pointed out to the fact that

EGFr is more frequently expressed in clinically active than in non-functioning pituitary

adenomas. These data are in contrast with a previous study that has shown EGFr ir

only in clinically inactive adenomas but not in the hormone secreting tumors

(Chaidarun et al., 1994). However, they are partially in agreement with another study

that had shown EGFr in half clinically active adenomas and in most non-functioning

adenomas (LeRiche et al., 1996).

The expression of ZAC and EGFr was assessed in a number of pituitary adenomas

together with the presence of EGFvIII, a constitutively active variant of EGFr which is

highly expressed in malignant tumors. No correlation was observed between ZAC

and EGFr status, and most non-functioning adenoma cases studied were completely

devoid of EGFr expression.
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The data derived from our studies, forced us to speculate that regulation of ZAC

gene expression in pituitary tumors is not susceptible to the EGFr signaling pathway.

However, stimulation of the pituitary mammosomatotroph cell line GH3 with EGF led

to further decrease in Zac1 mRNA levels, in signaling pathway involving EGFr

tyrosine kinase and MAPK activation. In addition, in the few cases of non-functioning

pituitary adenomas expressing EGFr, EGF downregulated ZAC gene expression.

These data lead to the conclusion that ZAC/Zac1 gene expression can be under the

control of the EGFr signaling pathway in pituitary cells. However, due to the absence

of EGFr expression in non-functioning pituitary adenomas, factors other than EGF

must be responsible for the low levels of ZAC in these tumors.

Having in mind the antiproliferative role of ZAC/Zac1, it is of great importance to find

a way to pharmacologically manipulate its expression. In the present study, the

somatostatin analogue octreotide was investigated in respect to Zac1 gene

expression using the GH3 cell line as a model. Octreotide acts through the

somatostatin receptor 2 (SSTR2), which is coupled to the Gi protein (Gu and

Schonbrunn, 1997) therefore inhibiting adenylate cyclase and cAMP production

(Chen et al., 1997), and to PLC and inositol lipid pathway (Tomura et al., 1994).

Despite the fact that octreotide is known to inhibit growth in several cell models, its

mode of action is not fully elucidated. It has been demonstrated that SSTR2 mediate

G1 cell cycle arrest by increasing p27/Kip1 levels, through a pathway involving the

tyrosine phosphatase src homology 2-containing tyrosine phosphatase 1 and

inhibition of MAPK (Pages et al., 1999).

In this thesis, it is shown that octreotide inhibits GH3 cell proliferation and increases

Zac1 mRNA levels. Both effects were mediated by a pertussis toxin sensitive

pathway. The stimulatory effect of octreotide on Zac1 gene expression was reversed

after co-stimulating with the PI3K inhibitor LY-294002, implicating the PI3K signaling

in the regulation of Zac1 gene expression.
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The antiproliferative action of octreotide on GH3 cells has been already

demonstrated in a previous study, which revealed that octreotide blocks the G0/G1

cell cycle transition (Cheung and Boyages, 1995). It is of interest that ZAC/Zac1

induces cell cycle arrest acting at this cell cycle point (Spengler et al., 1997). A recent

study, comparing proliferation index and apoptosis of a series of octreotide treated

and untreated acromegalic tumors, showed that the proliferation index is much lower

in treated than in untreated tumors, while there is no difference in the apoptotic index

(Losa et al., 2001). This is in agreement with our observations in GH3 cells, in which

treatment with octreotide resulted in a decrease in proliferation but not in apoptosis.

Moreover, in our study the highest levels of ZAC expression were observed in

acromegaly associated tumors, all of which were treated with somatostatin

analogues before the neurosurgical operation. This observation adds to the

speculation of a stimulatory effect of somatostatin analogues on ZAC gene

expression. These findings make Zac1 a candidate mediator of the antiproliferative

effects of octreotide.

Altogether these data implicate the novel putative tumor suppressor gene ZAC in the

pathogenesis of non-functioning pituitary adenomas. Although downregulation of the

gene can be attributed to the EGFr signaling in the few cases, expressing the

receptor, the mechanism responsible for ZAC reduction or loss in the majority of non-

functioning tumors remains obscure. Our preliminary results refer to gene silencing

by promoter hypermethylation as an interesting mechanism that may apply in this

type of tumors, although additional studies must be performed to prove this

speculation. On the other hand, the strong effect of octreotide, in upregulating ZAC

gene expression, provides a novel mechanism for the antiproliferative action for this

drug and suggest to reconsider the option of using somatostatin analogues for the

pharmacological treatment of non-functioning adenomas. Future studies will aim to

elucidate the status of SSTR expression and function in this type of pituitary
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adenomas, as well as the efficiency of treatment with novel, more specific and potent

somatostatin analogues. The elucidation of the mechanisms responsible for the

regulation of ZAC gene expression, is of high importance since it may pave the way

for the development of new therapeutical approaches, more applicable to this type of

pituitary tumors whose growth cannot be pharmacologically limited at present.
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RESULTS ON MENIN

MEN1 mRNA in normal and adenomatous pituitary

MEN1 gene expression was assessed using RT-PCR in 2 normal anterior pituitary

glands, and 20 pituitary adenomas. The MEN1 transcript was amplified in all 20

adenomas, which is consistent with previous reports (Asa et al., 1998; Prezant et al.,

1998; Farrell et al., 1999) that have demonstrated intact MEN1 gene expression in all

sporadic pituitary adenoma cases.

Menin expression in normal human pituitary

Using a monoclonal antibody against the menin C-terminus (mAb#4-15;  Ferro, et

al.), immunohistochemical examination was performed in 7 human pituitary glands.

Menin immunoreactivity was present in almost all endocrine cells of the anterior lobe,

and in some pituicytes of the posterior lobe (Fig.17 A). The staining was nuclear,

which is in agreement with previous observations in transfected cells (Guru et al.,

1998). The specificity of the signal was determined by using the mouse pre-immune

serum (Fig.17 B) and after preabsorbing the mAb #4-15 antibody with the

immunogen (Fig.17 C).

Double immunohistochemistry revealed menin immunoreactivity in all types of

hormone producing cells and in folliculostellate cells, indicating that its expression is

not restricted to one particular cell population (examples in Fig.17 E and F). The

nuclei of the fibroblasts and endothelial cells were devoid of any menin

immunoreactivity.



74

Fig.17. Menin expression in human adenohypophysis. A. Menin is present in the nuclei of all

endocrine cells but not in the nuclei of endothelial cells. The specificity of the mAb #4-15 is

demonstrated by depletion of the signal after incubation with the preimmune serum (B) or after

preabsorption of the antibody with the GST-Menin immunogen (C). Preabsorption with the GST alone

doesn’t alter the antibody activity (D). Menin colocalizes with all the adenohypophyseal hormones; e.g.

with PRL (E) and ACTH (F).

Menin expression in pituitary tumors

Immunohistochemical analysis of 58 sporadic pituitary adenomas (listed in Table 4)

revealed the same nuclear distribution of menin staining as in the normal

adenohypophyseal cells. Although all the endocrine cells in each tumor were

expressing menin, there was a big fluctuation in the intensity of the immunoreactivity,

which varied from levels comparable to the normal pituitary (Fig.18 A) down to weak,

almost undetectable signal (Fig.18 C). In brief, only 21% of the adenomas examined
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had strong, i.e. comparable to that of the normal adenohypophysis, signal for menin.

Another 33% displayed an average level of expression, and the remaining 47%

demonstrated weak menin immunoreactivity. The intensity correlates neither with the

histological and clinical features of the tumor nor with the grade and invasiveness

(Table 4).

A rare case of a PRL-secreting pituitary carcinoma was included in the study. This

adenoma had been operated twice before it finally transformed into carcinoma

(Winkelmann et al, 2001). The samples derived from the first and the second

operations still retained weak menin immunoreactivity (Fig.18 D), while the autoptical

tissues obtained three years later from a parasellar and orbital invasion and from

metastases derived from medulla oblongata, spinal canal and left femur, were menin

immunonegative (example medulla oblongata in Fig.18 E).

A pituitary adenoma derived from a patient with familiar MEN1 syndrome was also

included in the study. In this tumor, the MEN1 gene in one allele was lost and in the

other carried a mutation (Cetani et al., 1999). Immunohistochemistry for menin

resulted in no signal (Fig.18 G), confirming the specificity of the mab#4-15 antibody.

The possibility of poor preservation was excluded by immunohistochemistry for the

nuclear proteins Pit1 in the case of acromegaly-associated tumors and

prolactinomas, and SF1, for non-functioning pituitary adenomas.
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Age/Sex Diagnosis IHC G Menin ir
1. 460 28/M ACRO GH III ++
2. 511 43/M ACRO GH/PRL III +
3. 521 44/F ACRO GH II +++
4. 559 35/F ACRO GH III ++
5. 384 36/M ACRO GH/PRL II +
6. 506 33/M ACRO GH III +
7. 508 31/F ACRO GH III ++
8. 549 64/F ACRO GH/α-sub/FSH III +
9. 572 65/F ACRO GH III +
10. 513 50/M ACRO GH/PRL III +
11. 575 64/M ACRO GH/PRL III +++
12. 699 36/F ACRO GH/PRL III ++
13. 314 64/M ACRO GH/PRL II +++
14. 445 80/M ACRO GH/PRL II +
15. 545 42/F ACRO GH/PRL/α-sub III +++
16. 553 32/M ACRO GH/PRL II ++
17. 624 58/F ACRO GH/PRL II +++
18. 555 52/F ACRO GH/FSH/LH II +
19. 455 30/M CUSH ACTH I ++
20. 473 16/M CUSH ACTH I +++
21. 482 24/F CUSH ACTH II ++
22. 528 62/F CUSH ACTH II +
23. 529 34/M CUSH ACTH I +++
24. 563 24/F CUSH ACTH II +
25. 306 44/F PROL PRL II ++
26. 310 63/M PROL PRL III ++
27. 488 42/F PROL PRL III +
28. 495 48/F PROL PRL III +
29. 523 37/F NFPA PRL III +
30. 591 43/F PROL PRL III ++
31. 570 42/M NFPA ACTH III ++
32. 597 69/M NFPA ACTH II +
33. 383 51/F NFPA α-sub II ++
34. 312 63/M NFPA LH/α-sub II ++
35. 391 51/F NFPA FSH /LH II ++
36. 403 72/M NFPA FSH/LH II +++
37. 464 61/M NFPA FSH II +++
38. 538 46/M NFPA FSH III +
39. 539 28/M NFPA FSH III +
40. 550 50/M NFPA FSH III ++
41. 551 35/M NFPA FSH III +
42. 566 76/M NFPA α-sub/FSH/LH II +++
43. 582 31/F NFPA FSH II +
44. 587 37/F NFPA α-sub/FSH/LH III ++
45. 629 65/M NFPA FSH III +
46. 698 46/F NFPA LH II +
47. 700 53/M NFPA FSH/LH/α-sub II ++
48. 406 48/M NFPA None III ++
49. 407 77/M NFPA None II +++
50. 446 70/M NFPA None III +
51. 481 63/F NFPA None II +
52. 574 60/M NFPA None II ++
53. 577 52/F NFPA None III +
54. 585 49/M NFPA None III +
55. 609 59/F NFPA None III +
56. 627 69/F NFPA None II +
57. 498 51/F NFPA None III +
58. 509 73/F NFPA None II +++
59. 389 50/M PROL PRL IV +
60. 397 50/M PROL PRL IV +
61. Para 53/M PROL PRL IV 0
62. Orbi 53/M PROL PRL IV 0
63. Med 53/M PROL PRL IV 0
64. Fem 53/M PROL PRL IV 0
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Table 4. List of the 58 tumors used for the menin study plus the tissues derived from pituitary

carcinoma [# 59: 1st intervent; # 60 2nd intervent; # 61 parasellar invasion; # 62 orbital invasion; # 63

metastasis to medulla oblongata; # 64 metastasis to femural bone. The samples # 61-64 were  taken

at autopsy].  Information is given about the age, sex, clinical diagnosis of each patient. Tumor grade is

given in column [G]. In the column [IHC] are listed the finding of the immunohistochemical examination

for the 5 hormone and α-subunit in each case. Menin immunoreactivity (Menin ir) was determined by

two independent investigators and categorized in 4 classes: (0): no Menin ir; (+) weak ir; (++)

moderate ir; (+++) strong ir.

Fig.18. Menin immunoreactivity in pituitary adenomas. Upper row. Representative picture from

each type of menin ir in sporadic pituitary adenomas. Menin ir varied from A. strong to B. moderate;

and C. weak. Middle row.  Menin ir in tissues derived from different stages of a PRL-producing

carcinoma progression. D. Menin ir is weak in tumor obtained at the second intervent, and E. is totally

absent in the autoptic tissues from the metastasis to the medulla oblongata. F. Immunostaining for

PRL of a parallel section proves the pituitary origin of the tissue. The insets in pictures A to E show

immunostaining for the transcription factors Pit1 or SF-1. Last row.  Menin ir in a PRL-producing tumor
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from a patient with familiar MEN1 syndrome. G. No menin ir is detected in the tumors specimen. H.

The suitability of the tissue is proven by a strong ir for the transcription factor Pit1. I. Moderate PRL

immunoreactivity in a section parallel to that displayed in [G].

Discussion

The fact that one of the most common manifestations of the polyendocrine syndrome

MEN1 is the development of pituitary adenomas together with the increasing

evidence that MEN1 is a putative tumor suppressor gene, has drawn the attention  to

a possible role of this gene in the pathogenesis of sporadic pituitary adenomas.

Immunohistochemistry in human normal pituitary gland revealed that most endocrine

cells of the adenohypophysis displayed high levels of menin expression. Analyzing a

large number of pituitary adenomas, it became evident that, despite the fact that

most of the endocrine cells composing the adenoma were displaying a nuclear

staining for menin, the highest percentage of the cases had weaker signal when

compared to the normal adenohypophysis. There was no correlation between menin

immunoreactivity and clinical and immunohistochemical diagnosis of each tumor

studied, which is consistent with the observation that pituitary adenomas in MEN1

patients are not restricted to a certain clinical or histological  type. In addition, there

was no correlation between menin intensity and tumor grade and invasiveness.

However, it is of interest that in the sole case of pituitary carcinoma included in our

study, there was a complete loss of menin immunoreactivity in the latest specimens

of the tumor, despite the retention of signal in the earlier specimens, indicating a

possible role of menin in the transition from a benign phenotype to malignancy.

One possible explanation for the weak menin immunoreactivity could be loss of

heterozygosity at the MEN1 locus. Menin is biallelically expressed, therefore loss of

one allele would theoretically result in decreased protein levels. LOH in 11q13, the

MEN1 gene locus, was described in 5-20% of sporadic pituitary adenomas (Boggild

et al., 1994). In the series of pituitary adenomas used in this study, LOH was
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detected in 4 out of 12 cases  ( Theodoropoulou et al ). All the 4 cases (# 6, 9, 38,

and 39 in Table 4) were scored weak for menin. On the other hand, two cases of the

remaining 8 specimens (# 2, and 43), which did not have LOH, also had weak menin

immunoreactivity.

 Analysis of the gene transcription by RT-PCR revealed no variation in the MEN1

mRNA levels between neoplastic and non-tumorous pituitaries, confirming previous

studies (Asa et al., 1998; Farrell et al., 1999; Satta et al., 1999). Therefore alterations

in the transcriptional regulation of the gene do not account for the reduction of menin

documented at protein levels by immunohistochemistry, which brings the suggestion

that defects in the translational and postranslational processing may be responsible

for the reduced levels of menin in sporadic pituitary adenomas.

This hypothesis is not paradoxical, since there are cases of proteins involved in cell

cycle and tumor formation, which are regulated at protein level and their fate is

determined by postranslational modifications. One paradigm is p27/Kip1, a regulator

of cell cycle progression, which despite normal expression, its protein levels are

reduced in a significant percentage of pituitary adenomas (Lidhar et al., 1999; Jin et

al., 1997)

Although the exact mechanism is not yet clarified for the case of pituitary adenomas,

abnormalities in the ubiquitin-mediated degradation system have been shown to lie

behind the downregulation of p27/Kip1 in other types of tumors (Pagano et al., 1995;

Loda et al., 1997). In conclusion, this study provides, for the first time, information

about the pattern of menin expression in the normal and adenomatous pituitary. In

human pituitary, menin is highly expressed in the anterior lobe, while tumorous

transformation is associated with reduction in menin levels in a significant percentage

of pituitary adenomas. Menin is a candidate tumor suppressor gene, which is

speculated to play an important role in cell cycle regulation; therefore its decrease in

sporadic pituitary adenomas may be a factor contributing in pituitary tumor formation.
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Future studies will address whether defects in the translational or postranslational

machinery are responsible for the abnormal regulation of menin levels.
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RESULTS ON COUP-TFI

COUP-TFI mRNA in normal and adenomatous pituitary

RT-PCR for COUP-TFI was performed in two normal pituitaries and six

corticotrophinomas. Both normal pituitaries expressed COUP-TFI mRNA, while all

the six tumors failed to amplify the 440 bp product corresponding to the COUP-TFI,

demonstrating that this factor is not expressed in Cushing’s associated adenomas.

COUP-TFI protein expression in normal pituitary

To examine if COUP-TFI is physiologically expressed in the corticotrophs of the

human normal adenohypophysis, its protein expression was assessed by

immunohistochemistry. COUP-TFI protein was found to be present in 10-20%

endocrine cells of the adenohypophysis (Fig.19 A). Double immunohistochemistry

revealed COUP-TFI immunoreactivity almost exclusively in ACTH immunopositive

cells (Fig.19 B). However COUP-TFI was found in no more than 20% of corticotroph

cells. It is of interest that the highest percentage of COUP immunopositive cells was

concentrated in the corticotroph-rich area found proximal to the rudimentary

intermediate lobe of the hypophysis (Fig.19 C).
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Fig.19. Immunohistochemical localization of COUP-TFI in human normal adenohypophysis. A.

COUP-TFI immunopositive cells (brown) in the human normal anterior pituitary (10x magnification). In

the inset is shown a parallel section in absence of the primary antibody (w/o AbI). B. Double

immunohistochemistry with ACTH (red) and COUP-TFI in human adenohypophysis reveals a small

number of ACTH-cells immunopositive for COUP (dark red; 5x magnification). In the inset above, a

region containing cells immunoreactive for both ACTH and COUP (filled arrows) or only for ACTH

(open arrows) is shown at higher magnification (20x). C. Double immunohistochemistry with ACTH

and COUP-TFI, revealing the abundance of COUP-TFI immunopositive ACTH-cells in the border of

the anterior lobe (al) and posterior lobe (pl) of the pituitary gland.
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COUP-TFI protein expression in Cushing’s and silent corticotroph adenomas

Immunohistochemistry was performed in seven Cushing’s associated pituitary

adenomas, all of which were completely immunonegative for COUP-TFI (Fig.20 A).

In addition, 13 cases of silent corticotrophinomas were analyzed and all but one

displayed no COUP-TFI immunoreactivity (Fig.20 B). The one silent cortico-

trophinoma, immunopositive for COUP-TFI, had parts with a moderate number of

ACTH immunopositive cells and a big area with no ACTH immunoreactivity. It is of

interest that the areas immunopositive for ACTH and COUP overlapped (Fig.20 C

and D), and that the piece immunonegative for ACTH was also totally immuno-

negative for COUP (Fig.20 E and F).

These data confirm the observation at mRNA level, that COUP-TFI is not expressed

in the corticotrophs of the Cushing’s adenomas and of the silent corticotrophinomas.



84

 Fig.20. COUP-TFI expression in corticotrophinomas. A. Complete absence of COUP-TFI

immunoreactivity in a representative Cushing’s associated adenoma and B. a silent corticotrophinoma

C. COUP immunoreactivity in the only immunopositive silent corticotrophinoma and D. ACTH staining

in a parallel section. Notice the similarity in the COUP and ACTH staining patterns. E and F. A

representative area of the same silent corticotrophinoma, demonstrating total absence not only of

immunoreactivity for COUP-TFI but also for ACTH.

Effect of COUP-TFI overexpression on retinoic acid modulated POMC promoter

activity

This investigation originated from the search for a factor that can be responsible for

the absence of retinoic acid effect on ACTH production from the normal pituitary

cells, despite the inhibitory effect in corticotrophinoma cells. COUP-TFI was shown to

be expressed in normal but not in tumoral corticotrophs and is therefore a candidate

factor responsible for this controversial effect.

To prove the effect of COUP-TFI on the POMC promoter, the factor was

overexpressed in the mouse corticotrophinoma cell line AtT-20. Cells overexpressing

COUP-TFI were transfected with plasmid containing luciferase gene downstream to

the POMC promoter, and stimulated with retinoic acid. The effect of retinoic acid on

POMC promoter was determined by detecting the luciferase activity. AtT-20 cells

expressing a vector which was not containing the COUP-TFI gene (empty vector)

were used as negative control.

In cells transfected with the empty vector, retinoic acid stimulation resulted in

significant decrease in the POMC promoter activity, while in cells overexpressing

COUP-TFI, it had no effect, clearly indicating that COUP-TFI acts as a transcriptional

repressor for the retinoic acid effect on POMC promoter.
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Fig.21.  In AtT-20 cells transfected with 400ng

vector that doesn’t express the COUP-TFI

gene (empty vector) stimulation with 10nM

retinoic acid (RA) resulted in decrease of basal

and forskolin (Forsk) induced POMC relative

luciferase activity. This effect was not observed

in the cells transfected with the COUP-TFI

containing vector (COUP-TFI vector).

Discussion

It was recently shown that retinoic acid can revert Cushing’s syndrome in an

experimental animal model and inhibit ACTH synthesis from mouse and human

corticotrophinomas but not from normal pituitary cells (Paez-Pereda et al., 2001). To

elucidate the molecular basis of this difference in retinoic acid response, attention

was focused to the transcription factor COUP-TFI, which is a well known retinoic acid

signaling inhibitor (Kliewer et al., 1992; Tran et al., 1992; Cooney et al., 1993).

Our RT-PCR data reveal COUP-TFI expression in the normal but not in the

adenomatous pituitary. Investigation of the COUP-TFI protein expression pattern by

double immunohistochemistry, demonstrated the exclusive expression of this factor

in corticotroph cells of the human adenohypophysis. Therefore the differential

expression of this retinoic acid signaling inhibitor may be responsible for the different

response of normal and tumoral corticotrophs to retinoic acid treatment. In addition,

transfection studies in AtT-20 cells, showed that COUP-TFI overexpression reverts

retinoic acid induced inhibition of POMC promoter activity. On the other hand,

transfection with COUP-TFI had no noticeable effect on the basal POMC promoter

activity, suggesting that probably COUP-TFI itself is not of high importance for the

proper POMC gene transcription in AtT-20 cells.
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The finding of abundant COUP-TFI expression in the corticotroph rich area of the

intermediate lobe is of certain interest. Despite the fact that in rodents the

intermediate lobe (or pars intermedia) is an organ with a certain physiological

function, in humans its significance is under debate. However, there is evidence that

the pars intermedia is the source of the clinically silent corticotroph adenoma, a

rather enigmatic type of pituitary adenoma, which although stains immunopositive for

ACTH, it is not associated with alterations in cortisol levels and Cushing’s syndrome

(Horvath et al., 1980; Lamberts et al., 1982; Scheithauer et al., 2000). In our study,

the examination of a relatively big number of these rare tumors revealed loss of

COUP-TFI in all cases except one.

In general, COUP-TFI is recognized as a developmental factor (Tsai and Tsai, 1997),

therefore its loss in corticotroph tumors suggest that it may play a role in pituitary

differentiation. Corticotroph development is under the control of transcription factors

like CUTE, Ptx1, and Lhx3, while the maturation and proliferation of embryonic

corticotrophs are subject to the stimulatory action of CRH and the negative feedback

of corticosterone. Ptx1, which plays a role in the early steps of pituitary

organogenesis, is expressed by all early pituitary cells, and only later in development,

in synergy with CUTE, is it restricted to the POMC expressing cells (Lamonerie et al.,

1996). Lhx3 is required for the primordial cells to differentiate to pituitary stem cells

early in development, but it is not important for the differentiation of the corticotroph

lineage. However later in differentiation this factor becomes necessary for the

corticotroph cell proliferation (Sheng et al., 1996). CUTE/Neuro D1 is the only factor

which seems to be specific for corticotroph cells (Poulin et al., 2000). Recently

another factor, the Tbx19, was shown to be specifically expressed in primordial

corticotroph cells (Liu et al., 2001). However, this factor alone is not able to commit

pituitary cells to the corticotroph lineage, and its role in POMC gene expression

seems to be controversial.
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In the present study it is demonstrated that COUP-TFI is expressed exclusively in

ACTH-producing cells of the normal human pituitary but not of corticotrophinomas,

and should therefore be considered as a candidate for a role in the differentiation of

the corticotroph lineage. Although additional studies should be done before to derive

a definite conclusion, its absence from tumoral corticotrophs, which are supposed to

be a undifferentiated entity, implies that it plays a role in later differentiation, probably

in the final steps of corticotroph development.

These data implicate into pituitary oncogenesis and differentiation a transcription

factor previously unrelated to pituitary physiology. COUP-TFI was found to be

expressed in the human normal pituitary, and more precisely in ACTH containing

cells, but not in any clinically active or inactive corticotroph adenoma. This orphan

receptor is known as a developmental factor, therefore its loss upon corticotroph cell

transformation suggests that it may be involved in pituitary organogenesis.
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SUMMARY

 Pituitary adenomas are common neoplasms, with a wide spectrum of pathological

presentations. Although they are usually benign they can cause serious clinical

problems to the patients bearing them. Studies during the last two decades had

focused in elucidating the pathology and molecular biology of these neoplasms.

Despite the extensive investigations, the pathogenetic mechanisms that drive the

development of these tumors still remain obscure.

This thesis aimed to contribute in this obscure field, providing results about the

expression of two candidate tumor suppressor genes in a significant number of

pituitary adenomas. The one is ZAC/Zac1, a zinc finger transcription factor which

induces cell cycle arrest and apoptosis. We demonstrated that its expression is

dramatically reduced/lost in the vast majority of non-functioning pituitary adenomas, a

fact that directly implicates this gene in the pathogenesis of this type of tumors.

ZAC/Zac1 is not mutated in pituitary tumors, therefore defects in the regulation of its

gene expression must be responsible for the low mRNA levels seen in these tumors.

In rat ovarian epithelial cells, Zac1 expression is downregulated by the EGFr

signaling. However, this model cannot apply for the vast majority of non-functioning

tumors, because, as was demonstrated in this study, they do not express EGFr.

Another interesting possibility is derived from the recent data about the ZAC

promoter. It was found that ZAC is an imprinted gene with a promoter that contains

one CpG island. Therefore, one possibility is that promoter hypermethylation may be

responsible for the ZAC downregulation in this type of tumors. We showed that

treatment of the rat pituitary tumor cell line GH3 with the methylation interfering agent

5-Aza-2´-deoxycytidine results in Zac1 gene expression increase. These promising

data imply that similar mechanism may be responsible for the ZAC silencing in the
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pituitary tumors. However, to fully address this issue, similar studies must be

performed in a human non-functioning pituitary tumor cell model.

The fact that ZAC/Zac1 exerts antiproliferative action in pituitary cells in vitro, gave

rise to the question whether the antiproliferative properties of drugs commonly used

for the treatment of pituitary tumors can be mediated through this factor. The

somatostatin analogue octreotide has been shown to inhibit cell cycle at the G0/G1

transition and this is the point at which ZAC/Zac1 is acting. In this study, it is shown

that octreotide is enhancing Zac1 gene expression in vitro, and this effect is pertussis

toxin sensitive and is involving PI3K. These data are of particular interest since they

provide a novel mechanism through which octreotide can block cell growth. Although

the use of octreotide as antiproliferative agent did not give promising results in the

treatment of non-functioning adenomas, there is a number of new, more potent,

somatostatin analogues, which have to be examined in this context. Elucidating the

mechanisms responsible for the regulation of ZAC gene expression will facilitate the

development of new pharmaceutical approaches which can target the re-activation of

this gene, therefore providing a block for the uncontrolled growth in pituitary tumors

that very often cannot be pharmacologically treated.

Another candidate tumor suppressor gene expected to play a role in pituitary

tumorigenesis is MEN1, the gene responsible for multiple endocrine neoplasia type

1. Originally the studies of MEN1 gene and gene expression gave disappointing

results. MEN1 gene is not mutated in sporadic pituitary tumors and is normally

expressed. However, the lack of appropriate antibodies for in situ studies prevented

the examination of this factor at protein level. In this study, it is demonstrated, for the

first time, the expression pattern of menin in normal and adenomatous pituitary using

immunohistochemistry. It is shown that the MEN1 gene product, menin, is highly

expressed in the human adenohypophysis but variably in pituitary tumors. A

significant percentage of the tumors studied was found to have very low levels of
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menin when compared to the normal adenohypophysis, an observation that implicate

MEN1 in the pathogenesis of sporadic pituitary adenomas not anymore at gene or

transcriptional level, but at protein level. Defects in translational or post-translational

processing of menin are suspected to be responsible for the low levels of this protein

in sporadic pituitary adenomas, although the exact mechanism remains to be

elucidated. Nevertheless, the decrease of menin in a significant percentage of

pituitary tumors provides a new piece in the complex puzzle of pituitary oncogenesis.

An important concept which could be extrapolated from these results is that the

alterations in the levels of ZAC and menin are not result of gene mutation, but of

defective gene transcription, as in the case of ZAC, or protein translation/ post-

translational modification, as is the case for menin. Our observations are in line with

an increasing number of studies, which demonstrate that mutation of a tumor

suppressor gene is not as frequent in sporadic cancer as initially expected to be.

Different mechanisms of regulation of gene expression, such as promoter

hypermethylation, are shown to be often responsible for the silencing of tumor

suppressor genes in many forms of human cancer. On the other hand, there are

tumor suppressor gene products whose physiological function is secured by a strict

regulation at post-translational level. Defective postranslational modifications, such

as excessive ubiquitinization, can increase the protein turnover and deprive the cell

of this protein and the inhibitory control that it exerts in cell cycle progression.

Elucidating the defects in the processing of each tumor suppressor gene product, is

of extreme importance since it can suggest new targets for novel, more effective,

therapeutical approaches.

The third part of  this thesis deals with the transcriptional repressor COUP-TFI. This

is the first time that this transcription factor is implicated in pituitary physiology and

pathology. Initially described as the key element responsible for the differential

response of  normal and adenomatous corticotrophs to retinoic acid treatment,
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COUP-TFI was soon proven to be a factor restricted to corticotroph cells.  We show

that COUP-TFI is expressed exclusively in a fraction of the ACTH-producing cells of

the normal adenohypophysis, but not in Cushing’s associated adenomas. The

intriguing finding of highest incidence of COUP-TFI expressing cells in the

corticotroph rich area near the residual intermediate lobe, prompted the investigation

of this factor in the interesting class of the silent corticotrophinomas. No COUP-TFI

was found in most of these rare neoplasms. The finding of loss of COUP-TFI

expression in tumoral corticotrophs could implicate it either in growth control or in

pituitary differentiation. This factor is known to play an important role in neuronal

development, and is considered as a developmental factor. Despite the extensive

studies performed, the factors responsible for the differentiation of the corticotroph

lineage still remain unidentified. Until now, only the transcription factor CUTE/

NeuroD1 has been demonstrated to be specific for corticotroph differentiation. The

fact that COUP-TFI is found exclusively in corticotroph cells but not in any clinically

active or silent corticotrophinoma suggest that this factor must be considered as a

candidate factor playing a role in pituitary development. Future studies will address

whether COUP-TFI is a key element in corticotroph differentiation and it may play a

particular role in the physiology of the corticotrophs of the intermediate lobe.

In conclusion, these results highlight the role of these three transcription factors in

the pathogenesis of pituitary adenomas, therefore contributing to the understanding

of the complex puzzle underlying the formation and maintenance of these peculiar

intracranial neoplasms.
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