Identifizierung pflanzenabhängig-regulierter Gene in Ustilago maydis

Dissertation

An der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von

Christian Aichinger

München, 2001

1. Gutachter: Prof. Dr. Regine Kahmann

2. Gutachter: Prof. Dr. Jürgen Ebel

Dissertation eingereicht am: 04.12.2000 Tag der mündlichen Prüfung: 26.07.2001

Teile dieser Arbeit wurden in folgendem Artikel veröffentlicht:

Müller, P., Aichinger, C., Feldbrügge, M. and Kahmann, R. (1999). The MAP kinase *kpp2* regulates mating and pathogenic development in *Ustilago maydis*. *Mol. Microbiol* 34, 1007-17.

Inhaltsverzeichnis

Inhaltsverzeichnis	_IV
Abkürzungen und Fachbegriffe	VII
1 Einleitung	_1
1.1 Ustilago maydis	1
1.2 Die molekulare Analyse der Inkompatibilitätsloci <i>a</i> und <i>b</i>	3
1.3 Signale und Signalverarbeitung in <i>U. maydis</i>	4
1 4 Pflanzeninduzierte Gene in <i>U maydis</i>	7
1.5 "Enhancer tranning"	,, 8
1.6 Vorraussetzungen für die Etablierung eines "enhancer trap"-Mutagenese- systems in U. maydis	0 9
1.7 Zielsetzung	_ 11
2 Ergebnisse	_12
2.1 Expressionsanalyse bekannter Gene während der biotrophen Phase	12
2.1.1 Differentielle Genexpression von <i>mfa1</i> , <i>lga2</i> , <i>bE1</i> , <i>bW2</i> und <i>prf1</i> während der biotrophen Phase von <i>U. maydis</i>	
2.1.2 Prf1 ist essentiell für die <i>mfa1</i> -Transkription in Tumorgeweben	14
2.1.3 GFP als in vivo-Reportergen für differentiell exprimierte Gene: Nachweis der Expres	ssion
von <i>mfa1</i> und <i>lga2</i> während des gesamten Lebenszyklus von <i>U. maydis</i>	_15
2.2 REMI-"Enhancer Trap"-Mutagenese	_20
2.2.1 Der experimentelle Aufbau der REMI-"Enhancer trap"-Mutagenese	_20
2.2.2 Isolierung von U. maydis-Mutanten mit pflanzenspezifischer GFP-Expression	22
2.3 Analyse der Mutanten aus der REMI-"enhancer trap"-Mutagenese	_25
2.3.1 Die Mutante #114	25
2.3.2 Die Mutante #1486	_26
2.3.2.1 Eine regulatorische Funktion von GA-Wiederholungen in der Mutante #1486?	29
2.3.2.2 Der Phänotyp der Δ GA-Stämme kann nicht komplementiert werden	31
2.3.3 Die Mutante #219	32
2.3.4 Die Mutante #1685	35
2.3.4.1 Die <i>pig3</i> -Expression wird zu verschiedenen Zeitpunkten im Lebenszyklus von	
U.maydis an- und abgeschaltet	_42
2.3.4.2 Deletionsmutanten für <i>pig3</i> und <i>pig5</i>	44
2.3.4.3 Isolierung von Mutanten, die erhöhte <i>pig3</i> -Expression zeigen	_45
2.3.4.3.1 <i>pig3</i> ist negativ reguliert	45

2.3.4.3.2 Versuch zur Isolierung von Mutanten, die in der Regulation von pig3 geste	<u>jrt</u>
sind	47
3 Diskussion	49
3.1 Tumorspezifische Expression der Gene der <i>a</i> -und <i>b</i> -Paarungstyploci	49
3.3 Identifizierung nflanzeninduzierter Gene in <i>U</i> maydis durch REMI-"enh	ancer
Trap"-Mutagenese	52
3.3.1 Pig2: Eine ungewöhnliche Protein-Disulfid-Isomerase?	55
3.3.2 #1486: Die Deletion einer GA-Region führt zu reduzierter <i>mfa1</i> -Expression und	00
vermindertem filamentösen Wachstum	57
3.3.3 Die Mutante #1685: eine Insel differentiell exprimierter Gene?	58
3.3.4 Die <i>pig3</i> -Expression ist negativ reguliert	59
3.3.5 Die Rolle des <i>p</i> -Locus in der pathogenen Entwicklung	60
3.3.6 Signale zur Induktion der pathogenen Entwicklung von U. maydis	66
4 Zusammenfassung	69
5. Materialien und Methoden	70
5.1 Material und Bezugsquellen	70
5.1.1 Escherichia coli-Stämme	70
5.1.2 Ustilago maydis-Stämme	70
5.1.3 Verwendete Kits	72
5.1.4 Chemikalien, Proteine und Enzyme	72
5.1.5 Nukleinsäuren	72
5.1.6 Sonstige Materialien	73
5.1.7 Plasmide	73
5.2 Plasmidkonstruktionen	75
5.3 Mikrobiologische und genetische Methoden	_ 77
5.3.1 Bestimmung der Zelldichte von U.maydis	77
5.3.2 Kultivierung von E. coli	77
5.3.3 Kultivierung von U.maydis	78
5.3.4 CaCl ₂ -Transformation von <i>E.coli</i> (Cohen <i>et al.</i> , 1972)	78
5.3.5 Transformation von <i>E.coli</i> durch Elektroporation	78
5.3.6 Transformation von U.maydis (Gillissen et al., 1992; Schulz et al., 1990)	78
5.3.7 Test auf filamentöses Wachstum bei U.maydis (Puhalla, 1968)	79
5.3.8 Test auf Pathogenität (Gillissen <i>et al.</i> , 1992)	79
5.3.9 REMI-Mutagenese (Bölker <i>et al.</i> , 1995)	79
5.3.10 Selektion von Mutanten anhand der GFP-Expression in axenischer Kultur	80
5.4 Molekularbiologische Standardmethoden (Sambrook et al., 1989)	80
5.4.1 Handhabung von Nukleinsäuren	80
5.4.1.1 Fällung von DNA	80

5.4.1.2 Phenol/Chloroform-Extraktion von DNA	80
5.4.2 Isolierung von Nukleinsäuren	80
5.4.2.1 Minipräparation von Plasmid-DNA aus E.coli	80
5.4.2.2 "plasmid rescue"	81
5.4.2.3 Maxipräparation von Cosmid- bzw. Plasmid-DNA aus <i>E.coli</i>	81
5.4.2.4 DNA-Isolierung aus U.maydis (Hoffmann und Winston, 1987)	81
5.4.2.5 RNA-Isolierung aus U.maydis	81
5.4.3 in vitro-Modifikationen von DNA (Sambrook et al., 1989)	82
5.4.3.1 Restriktion von DNA	82
5.4.3.2 Dephosphorylierung linearer DNA-Fragmente	82
5.4.3.3 Ligation von DNA-Fragmenten	83
5.4.4 Gelelektrophorese von Nukleinsäuren	83
5.4.4.1 Nicht-denaturierende Agarose-Gelelektrophorese	83
5.4.4.2 Isolierung von DNA-Fragmenten aus Agarosegelen	83
5.4.4.3 Denaturierende Formamid/Formaldehyd-Gelelektrophorese von RNA	83
5.4.4.4 Denaturierende Glyoxal/DMSO-Gelelektrophorese von RNA	84
5.4.5 Transfer und Nachweis von Nukleinsäuren auf Membranen	84
5.4.5.1 Transfer von DNA (Southern-Blot; Southern, 1975)	84
5.4.5.2 Transfer von RNA (Northern-Blot)	.84
5.4.5.3 Herstellung einer DNA-Hybridisierungssonde (Feinberg und Vogelstein, 1984) _	.84
5.4.5.4 Spezifischer Nachweis von an Membranen gebundener DNA	.85
5.4.5.5 Spezifischer Nachweis von an Membranen gebundener RNA	.85
5.4.5.6 Koloniehybridisierung	.86
5.4.6 Sequenzierung von Nucleinsäuren	.86
5.4.7 Sequenzanalyse	.86
5.4.8 Polymerase-Kettenreaktion (PCR)	.86
5.4.9 Anchor-PCR (REMI-"rescue")	.87
5.5 Zellbiologische Methoden	87
5.5.1 Licht- und Fluoreszenzmikroskopie	87
5.5.2 Mikroskopische Analyse der Reporterstämme auf der Oberfläche von Maisblättern un	d
während der biotrophen Phase	87
5.5.3 Bildverarbeitung	88
Literaturverzeichnis	89
Danksagung	96
Lebenslauf	97
Anhang	98

Abkürzungen und Fachbegriffe

Abb	Abbildung	PC	Phenol/Chloroform
ad	"zum Endvolumen auffüllen"	PCR	Polymerase Kettenreaktion
Amp	Ampicillin	PEG	Polyethylenglycol
Amp	Aminosäure(n)	Pellet	Zentrifugationssediment
hn	Basennaar(e)	pg	Picogramm
ср са	cirka	Primer	Startoligonukleotid für die PCR
	evelisebes Adenosinmono	rATP	Riboadenosintriphosphat
CAMF	cyclisches Adenosimilono-	RNA	Ribonukleinsäure
CC	phosphat Characel (Altivitable)	RNase	Ribonuklease
	charcoal (Aktivkolle)	rRNA	ribosomale RNA
CDNA	Deter Diberuhleinen	s.	siehe
	Boten-Ribonukleinsaure	S	Svedbergeinheit
cm		SDS	Natriumdodecylsulfat
d. n.		sec	Sekunde(n)
DIC	Differential interference contrast	S. O.	siehe oben
DMSO	Dimethylsulfoxid	s. u.	siehe unten
DNA	Desoxyribonukleinsaure	Tab.	Tabelle
Dinase	Desoxyribonuklease	Tris	Trishydroxymethylamino-
dATP (A)	Desoxyadenosintripnosphat		methan
dCTP(C)	Desoxycytidintriphosphat	U	Unit (Enzymaktivitätseinheit)
dGTP(G)	Desoxyguanosintripnospnat	Upm	Umdrehungen pro Minute
	Desoxyinosintriphosphat	UV	ultraviolettes Licht
dNTP (N)	Desoxynukleosidtriphosphat	V	Volt
dTTP(T)	Desoxythymidintriphosphat	W	Watt
ddNTP	Didesoxynukleosidtriphosphat	z. B.	zum Beispiel
ds	doppelsträngig	2.2.	
F	Farad und auch Phenylalanin		
Fuz ⁺	filamentöser Phänotyp		
g	Gramm		
GFP	"green fluorescent protein"		
h	Stunde(n)		
H ₂ O _{bid.}	zweifach destilliertes Wasser		
kb	Kilobasenpaar=1000bp		
M&M	Materialien und Methoden		
Μ	Molar		
mM	Millimolar		
MOPS	3-(N-Morpholino)propan-		
	sulphonat		
mRNA	Boten-RNA		
Mrd	Milliarde oder 10 ⁹		
OD	Optische Dichte		
OD ₆₀₀	Optische Dichte bei 600 nm		
ORF	Offener Leserahmen		

1 Einleitung

1.1 Ustilago maydis

Pilze sind sessile, heterotrophe Organismen, die auf die Aufnahme von Metaboliten aus ihrer Umgebung angewiesen sind. Diese können sowohl aus toter Materie stammen, als auch in Lebensgemeinschaften mit Wirtsorganismen aufgenommen werden. Letztere, als Biozönosen bezeichnete Lebensgemeinschaften werden Symbiosen genannt, wenn sie für beide Partner von Nutzen sind. Nützt ein Partner den Metabolismus des anderen aus, ohne daß dieser Vorteile erlangt, ist die Beziehung parasitär. Wird dabei der Wirt vom Pilz abgetötet und erst anschließend kolonisiert, handelt es sich um necrotrophe Parasiten. Biotrophe Pilze hingegen töten ihren Wirt nicht, sondern entnehmen die Metabolite dem laufenden Stoffwechsel.

Ustilago maydis ist ein Vertreter der fakultativ biotrophen Basidiomyceten. Systematisch wird er der Familie der Brandpilze zugeordnet (Ordnung der Ustilaginales, Klasse der Heterobasidiomyceten). Sein enges Wirtsspektrum beschränkt sich auf Zea mays und Euchlena mexicana (Teosinte), die als Wildform des Mais diskutiert wird (Doebley, 1992; Wang et al., 1999). U. maydis kann alle oberirdischen Organe seiner Wirtspflanzen befallen, wobei es zum Ausbleichen von chlorophyllhaltigem Gewebe (Chlorose), Induktion der Anthocyan-Biosynthese und schließlich zur Tumorbildung kommt (Christensen, 1963). Die Vollendung des sexuellen Zyklus von U. maydis ist dabei eng an den Krankheitsverlauf gekoppelt und kann in drei Kernphasen unterteilt werden (Banuett und Herskowitz, 1996; Christensen, 1963). Haploide Sporidien vermehren sich hefeartig durch Knospung, leben saprophytisch und sind nicht pathogen. Kompatible Sporidien können über Konjugationshyphen fusionieren und ein filamentöses Dikaryon ausbilden (Rowell und DeVay, 1954; Snetselaar, 1993). In diesen Stadien ist nur wenig Pilzmaterial auf der Pflanzenoberfläche zu finden, da die filamentösen Dikarien von U. maydis nicht proliferieren. Der morphologische Wechsel ausgehend von den Sporidien kann aber im Labor auf aktivkohlehaltigen Medien nachvollzogen werden (Day et al., 1971; Holliday, 1974). Für alle weiteren Entwicklungsschritte benötigt U. maydis den Kontakt mit der Wirtspflanze. Im Folgenden differenziert sich das filamentöse Dikaryon zu appressorienartigen Strukturen, die das Eindringen in den Wirt ermöglichen (Banuett und Herskowitz, 1996; Snetselaar und Mims, 1993). Die Hyphen dringen vermutlich in meristematisches Gewebe vor, in welchem sie die Vermehrung dieses Gewebes anregen. Die einzige bis dahin sichtbare Reaktion der Pflanze ist die Synthese von Anthocyan. Pilzliches Wachstum innerhalb der Pflanzen scheint demzufolge von den Wirtspflanzen zwar erkannt, aber durch die Pflanzenabwehr nicht bekämpft zu werden. Sichtbar wird die Infektion durch U. maydis etwa nach sieben Tagen mit der Ausbildung der Tumore. Die einzelnen Tumore

Abbildung 1: Der Lebenszyklus von Ustilago maydis. Erläuterungen siehe Text.

stellen nahezu monoklonale Ereignisse dar, so daß angenommen wird, daß die Infektion durch U. maydis ein seltenes Ereignis ist (H. Böhnert, persönliche Mitteilung). Das Tumorgewebe selbst ist ein "sink Organ", in das Assimilate der Pflanze transportiert werden (Billet und Bournett, 1978). U. maydis-Zellen differenzieren in diesem Stadium zu sporogenen Hyphen. Während dieser Phase findet auch die Kernfusion statt, der sich eine massive Proliferation anschließt. Etwa zehn Tage nach der Infektion runden sich die sporogenen Hyphen ab und bilden Präsporen, die schließlich zu Teliosporen, der diploiden Dauerform reifen (Banuett und Herskowitz, 1996; Snetselaar und Mims, 1993). Die Teliosporen werden durch Wind und Regen verbreitet und keimen aus, wenn geeignete Umweltbedingungen den Beginn einer neuen Vegetationsphase signalisieren. Dabei bildet sich zuerst ein Promycel, in das der diploide Kern einwandert und in dem die meiotische Teilung stattfindet. Mit der Abschnürung haploider Basidiosporen vom Promycel kann der Zyklus von neuem beginnen (Banuett und Herskowitz, 1996; Christensen, 1963 und Abb. 1). Fusion, filamentöses Wachstum und Pathogenität werden genetisch durch die zwei Inkompatibilitätsloci a und b kontrolliert (Puhalla, 1968; Rowell und DeVay, 1954). Der a-Locus ist biallelisch, mit den beiden Allelen al und a2. Vom multiallelische b-Locus sind mindestens 20 verschiedene Allele bekannt (Kämper, persönliche Mitteilung). Für den Eintritt in den sexuellen Zyklus müssen

haploide Sporidien unterschiedliche *a* und *b*-Allele tragen. Durch Untersuchungen an künstlichen diploiden Stämmen konnten den beiden Paarungstyploci unterschiedliche Funktionen zugeordnet werden (Holliday, 1961; Puhalla, 1969). Diploide Stämme, die heterozygot für *a* und *b* sind, wachsen filamentös und können in Pflanzen Symptome hervorrufen. Bei gleichen *a*_ aber unterschiedlichen *b*-Allelen wachsen die Stämme hefeartig auf aktivkohlehaltigen Medien, sind aber in der Lage Pflanzen zu infizieren. Stämme mit unterschiedlichen *a*-Allelen und gleichem *b*-Allel wachsen hefeartig, sind aber nicht pathogen. Darüber hinaus konnte in "cytoduction"-Exerimenten gezeigt werden, daß haploide Stämme, mit gleichen *b*- aber unterschiedlichen *a*-Allelen zwar fusionieren, aber kein filamentöses Dikaryon ausbilden können (Trueheart und Herskowitz, 1992). Daraus und im Vergleich zu haploiden Stämmen ergab sich, daß der *a*-Locus die Fusion haploider Sporidien vermittelt. Für filamentöses Wachstum werden zwei unterschiedliche *a*- und *b*-Loci benötigt. Die pathogene Entwicklung hingegen wird ausschließlich vom *b*-Locus bestimmt (Banuett und Herskowitz, 1989; Day *et al.*, 1971; Holliday, 1961; Puhalla, 1968).

1.2 Die molekulare Analyse der Inkompatibilitätsloci a und b

Der b-Locus von U. maydis trägt zwei divergent transkribierte Gene bE und bW, die für Homeodomänen-Proteine kodieren (Gillissen et al., 1992; Kronstad et al., 1989; Schulz et al., 1990). Ein bE/bW-Paar unterschiedlicher Allelität z. B. bE1/bW2 reicht für die pathogene Entwicklung aus (Gillissen et al., 1992). Darüber hinaus wurde gezeigt, daß die bE- und bWin Kombination Heterodimere Proteine nichtallelischer ausbilden, die dann als Transkriptionsfaktoren wirken (Kämper et al., 1995; Romeis et al., 2000). Somit kann auch ein haploider Stamm, CL13 (a1bE1/bW2), der bE1- und bW2-Proteine exprimiert, den Lebenszyklus durchlaufen (Bölker et al., 1995).

Die molekulare Analyse der beiden *a*-Allele zeigte, daß sie für ein Pheromon/Rezeptor-System kodieren (Bölker *et al.*, 1992; Urban *et al.*, 1996). Der *a1*-Locus trägt zwei Gene, *mfa1* und *pra1*. *mfa1* kodiert für eine Pheromonvorstufe, *pra1* für einen Siebentransmembranrezeptor, der das Pheromon der *a2*-Stämme erkennen kann (Spellig *et al.*, 1994; Urban *et al.*, 1996). Der *a2*-Locus enthält entsprechend die Gene *mfa2* und *pra2*, sowie zwei weitere Gene, *lga2* und *rga2_* deren Funktion unbekannt ist (Urban *et al.*, 1996).

Abbildung 2: Die Inkompatibilitätsloci *a* und *b* von *U. maydis* kontrollieren die Fusion, das filamentöse Wachstum und die Pathogenität. Der *a*-Locus kontrolliert die Fusion haploider Sporidien durch ein Pheromon/Rezeptorsystem. Für filamentöses Wachstum werden unterschiedliche *b*-Allele ebenso wie eine kontinuierliche, autokrine Pheromonstimulation benötigt. Die pathogene Entwicklung wird durch den *b*-Locus reguliert. Signale der Wirtspflanze spielen bei der Interaktion zwischen Pilz und Pflanze vermutlich eine wesentliche Rolle.

1.3 Signale und Signalverarbeitung in U. maydis

Die Aufnahme, Weiterleitung und Verarbeitung von Signalen ist für alle Organismen die zentrale Voraussetzung, um adäquat auf Umweltveränderungen reagieren zu können. Die Signale können dabei sowohl abiotischen als auch biotischen Ursprungs sein. Während der Entwicklung von U. maydis sind eine Reihe von Signalen und Signalverarbeitungsprozessen denkbar, die nicht nur eine Anpassung verschiedene Nahrungsmittelangebote, sondern die spezifische an auch Intraspezieskommunikation zwischen kompatiblen Kreuzungspartnern und die Interspezieskommunikation zwischen Pilz und Pflanze ermöglichen. Bislang sind in *U. maydis* Komponenten zweier Signaltransduktionswege beschrieben, die für die Fusion kompatibler Sporidien notwendig sind: der Pheromonweg und eine cAMP-abhängige Signaltransduktionskaskade (Bölker *et al.*, 1992; Gold *et al.*, 1994; Regenfelder *et al.*, 1997; Banuett, 1995; Hartmann *et al.*, 1996; Müller *et al.*, 1999; Urban *et al.*, 1996).

Die cAMP-Kaskade wird von einem bislang nicht näher definierten Umweltsignal aktiviert. Es wird über die α -Untereinheit des G-Proteins Gpa3 auf die Adenylatcyclase Uac1 übertragen (Gold und Kronstad, 1994). Diese kann cAMP bilden, das die Trennung der katalytischen Untereinheit der Proteinkinase A, Adr1, von der regulatorischen Untereinheit, Ubc1, vermittelt. Die daraus resultierende Aktivierung von Adr1 führt zu einer Induktion der *a*- und *b*-Gene. Umgekehrt führt die Deletion aktivierender Komponenten der cAMP-Kaskade zu einer Reduktion sowohl der basalen als auch der induzierten Expression von *mfa1*. Entsprechend sind solche Stämme steril (Gold *et al.*, 1997; Gold und Kronstad, 1994; Regenfelder *et al.*, 1997). Umgekehrt zeigen Mutanten der negativen regulatorischen Komponente der Proteinkinase A, *ubc1*, oder das konstitutiv aktive Allel von *gpa3* (*gpa3Q206L*) starke Induktion der *a*- und *b*-Gene (Krüger *et al.*, 1997).

Der Pheromonweg wird über die Bindung von Pheromon an seinen Rezeptor aktiviert. Nullmutanten der Pheromon- wie auch der Rezeptorgene sind steril (Bölker *et al.*, 1992). Das Pheromonsignal wird vermutlich über ein noch nicht identifiziertes G-Protein auf ein MAP-Kinase-Modul weitergeleitet. Als Komponenten solch eines Moduls wurden kürzlich die Proteine Kpp2, Fuz7 und Kpp4 identifiziert (Banuett, 1995; Müller *et al.*, 1999 und P. Müller, persönliche Mitteilung). Mutationen in der MAPK Kpp2, der MAPKK Fuz7 und der MAPKKK Kpp4 führen zu einer reduzierten Expression der *a*- und *b*-Gene, sowie einer reduzierten Pathogenität.

Die Signale der cAMP-Kaskade sowie des Pheromonwegs werden auf den Transkriptionsfaktor Prf1 geleitet. prf1 kodiert für ein HMG-Box-Protein, welches über die Bindung an kurze DNA-Motive (PRE-Boxen), die sich in den Promotoren der a- und b-Gene befinden, die Expression dieser Gene reguliert (Hartmann et al., 1996; Urban et al., 1996). Darüber hinaus konnten im Prf1-Phosphorylierungsstellen für PKA-Proteine Protein fünf putative und sechs solcher Erkennungssequenzen für die Phosphorylierung durch MAP-Kinasen identifiziert werden, die für die Funktion von Prf1 notwendig sind (Hartmann et al., 1996; M. Leibundgut und M. Feldbrügge, persönliche Mitteilung). Prf1 reguliert sowohl die basale als auch die induzierte Expression der asowie die Expression der b-Gene (Hartmann et al., 1996). Vor der Fusion haploider Sporidien kommt es zu einer Induktion der a- und b-Gene. Nach der Fusion, im filamentösen Dikaryon_ führt die Anwesenheit des aktiven bE/bW-Heterodimers zur Repression der Pheromon- und Pheromonrezeptorgene (Urban et al., 1996). Entsprechend dieser Regulation sind prflDeletionstämme steril. Da Prf1 aber auch die Expression der *b*-Gene reguliert, sind *prf1*-Deletionstämme apathogen, auch wenn sie unterschied- liche *b*-Allele tragen. Dieser Defekt kann aber durch die konstitutive Expression kompatibler bE- und bW-Proteine komplementiert werden (Hartmann *et al.*, 1996).

Abbildung 3: Der Pheromon_ und cAMP-Signaltransduktionsweg von U. maydis. Die einzelnen Genprodukte sind im Text beschrieben. Aktivierende und reprimierende Einflüsse sind durch entsprechende Pfeile dargestellt. Erläuterungen siehe Text.

In Mutationsanalysen konnte für fast alle Komponenten beider Kaskaden, wie z.B. Gpa3, Uac1, Kpp2 oder Kpp4 neben ihrer Rolle in der *a*- und *b*-Genexpression auch eine Beteiligung an der pathogenen Entwicklung beobachtet werden (Hartmann *et al.*, 1996; Müller *et al.*, 1999; Regenfelder *et al.*, 1997). Die Pathogenitätsdefekte konnten dabei nicht oder nur teilweise durch die konstitutive Expression eines aktive_ bE/bW_Heterodimers komplementiert werden. Daraus wurde geschlossen, daß durch den Pheromonsignalweg wie auch den cAMP-Weg neben Prf1 weitere, für die pathogene Entwicklung notwendige Faktoren aktiviert werden. Da diese Aktivierung sich auf die biotrophe Phase auswirkt, sind Pflanzenfaktoren als Signale höchst wahrscheinlich.

1.4 Pflanzeninduzierte Gene in U. maydis

Bislang sind die Prozesse, die nach dem Eindringen von U. maydis in die Wirtspflanze stattfinden, nur auf morphologischer Ebene beschrieben. Das Dikaryon wächst nach der Penetration zunächst intrazellulär, wobei die Zytoplasmamembran nicht beschädigt wird (Snetselaar und Mims, 1993). In diesem frühen Stadium findet keine Kernteilung statt, der Pilz wächst unidirektional und hinterläßt leere Abschnitte durch Septenbildung. In diesen frühen biotrophen Stadien ist nur wenig Pilzmaterial vorhanden, da keine Proliferation stattfindet. Einige Tage nach der Infektion befindet sich U. maydis zwischen den Pflanzenzellen und beginnt als Dikaryon zu proliferieren (Snetselaar und Mims, 1993). Zeitgleich mit der Tumorentwicklung treten sporogene Hyphen auf, aus denen sich Prä- und später Teliosporen entwickeln (Snetselaar und Mims, 1993). U. maydis durchläuft während der biotrophen Phase eine ganze Reihe morphologischer Veränderungen, die bislang aber nicht durch molekulare Marker differenziert werden können. Die einzelnen morphologischen Transitionen legen jedoch den Schluß nahe, daß für die Ausbildung der Infektionssymptome wie auch für die Vollendung des Lebenszyklus eine signalvermittelte Interspezieskommunikation von Bedeutung ist. Die entsprechenden Pflanzensignale könnten über verschiedene Signalwege weitergeleitet und zur Induktion pflanzenspezifisch exprimierter Gene oder zu posttranslationalen Proteinmodifikationen führen, die letztendlich die morphologischen Transitionen in den einzelnen Stadien bewirken. Die Analyse differentiell exprimierter Gene könnte deshalb dazu beitragen, die molekularen Prozesse der pathogenen Interaktion besser zu verstehen und die einzelnen Stadien auf molekularer Ebene zu charakterisieren.

In den letzten Jahren konnten bereits mittels revers genetischer Verfahren in verschiedenen phytopathogenen Pilzen pflanzenspezifisch exprimierte Gene isoliert werden (Pieterse *et al.*, 1991; Basse *et al.*, 2000; Hahn und Mendgen, 1997; Spellig *et al.*, 1996). Über ihre Homologie zu bekannten Proteinen konnten einige Gene dem Primär- und Sekundärmetabolismus, aber z. B. auch Signaltransduktionskaskaden zugeordnet werden (Basse *et al.*, 2000; Hahn und Mendgen, 1997; Spellig *et al.*, 1996). Erstaunlicherweise konnte in keiner der Nullmutanten für diese Gene ein Bezug zur pathogenen Entwicklung festgestellt werden. Andererseits wurde eine differentielle Expression für Gene, wie z. B. *MPG1* aus *Magnaporthe grisea* festgestellt, die aus Mutanten mit Pathogenitätsdefekt isoliert wurden (Talbot *et al.*, 1993). *MPG1* ist in den Appressorien, also bereits sehr früh in der pathogenen Entwicklung induziert. Deshalb wurde vermutet, daß die frühen biotrophen Stadien für die pathogene Entwicklung entscheidend sind. Um diese initialen Prozesse besser zu verstehen, wäre es wünschenswert, früh in der Entwicklung induzierte Gene zu isolieren.

1.5 "Enhancer trapping"

In *U. maydis* besteht das besondere Problem, daß während der frühen Phase der biotrophen Entwicklung kaum Pilzmaterial zu finden ist und dieses zudem nicht von der Wirtspflanze getrennt werden kann. Dadurch sind Techniken, die auf dem Vergleich von mRNA-Populationen beruhen oder auch genomische Ansätze, die die Betrachtung aller Gene erlauben, limitiert (Chu *et al.*, 1998; Spellig *et al.*, 1996). "enhancer trapping" ist eine alternative Methode zur Isolierung differentiell exprimierter Gene. Hier wird die Aktivität von *cis*-Elementen durch ein Reportergen sichtbar gemacht. Da *cis*-Elemente alleine keine Promotoraktivität besitzen, muß das Reporterkonstrukt über einen Basalpromotor verfügen, der die Expression des Reportergens kontrolliert. Der Basalpromotor sollte allein keine oder nur geringe Transkription vermitteln. Aktiviert nun ein "enhancer"-Element den Basalpromotor, hat dies die Expression des Reportergens zur Folge ("enhancer trapping"). Reguliert ein *cis*-Element ein differentiell exprimiertes Gen, so kommt es auch zur differentiellen Expression des Reportergens (Bellen *et al.*, 1989; Lis *et al.*, 1983 und Abb.4).

Abbildung 4: Mögliche Expression eines Reportergens nach Insertion eines "enhancer trapping" Reporterkonstruktes. Kommt es zu einer Insertion in einer Region, in der kein *cis*-Element die Expression des Basalpromotors induziert, ist keine Reportergenaktivität zu beobachten. Führt ein "enhancer"-Element zur konstitutiven Expression des Reportergens, ist unter allen untersuchten Bedingungen Reportergenaktivität nachzuweisen. Reguliert ein "enhancer"-Element die differentielle Expression des Reportergens, so kann zwischen verschiedenen Bedingungen unterschieden werden.

cis-Elemente sind häufig unabhängig von ihrer Orientierung aktiv. Abhängig vom Organismus können sie von einigen hundert Basen bis über viele Kilobasen hinweg aktiv sein. In Pilzen liegen "enhancer"-Elemente aber meistens in direkter Nachbarschaft der durch sie regulierten Gene.

Dadurch sollte der Phänotyp der Insertionsmutanten mit einem der naheliegenden Gene an der Insertionsstelle verbunden sein.

In einer Bank von Mutanten können über das Reportergen die unterschiedlichsten Einflüsse auf die Expression, wie etwa verschiedene Zuckerquellen, Mangelbedingungen, Temperatur usw. untersucht werden. Es lassen sich aber auch Expressionsunterschiede während Zelldifferenzierungsprozessen beobachten. Besonders interessant ist dabei, daß diejenigen Einzelzellen, die einer unterschiedlichen genetischen Kontrolle unterliegen, auch innerhalb eines Zellverbandes unterschieden und über ganze Entwicklungszyklen hinweg verfolgt werden können. "enhancer-trapping" kam deshalb hauptsächlich bei entwicklungsbiologischen Fragestellungen in *Drosophila melanogaster* und *Arabidopsis thaliana*, aber auch in humanen Zellinien oder Mäusen zum Einsatz. Es konnte dabei eine Vielzahl von Mutanten isoliert werden, die stadienspezifische Genexpression zeigten (Bellen *et al.*, 1989; Joyner, 1991; Sundaresan *et al.*, 1995).

1.6 Voraussetzungen für die Etablierung eines "enhancer trap"-Mutagenesesystems in *U. maydis*

Für eine umfassende "enhancer trap"-Mutagenese muß eine Bank von Mutanten hergestellt werden, die das Reporterkonstrukt an möglichst vielen verschiedenen Stellen im Genom trägt. Bei den Ansätzen in Drosophila melanogaster und Arabidopsis thaliana wurden die Mutantenbanken durch Transposoninsertion erstellt (Bellen et al., 1989; Cooley et al., 1988; Smith und Parker, 1993). In U. maydis ist zwar kein Transposonmutagenesesystem etabliert, es besteht aber die Möglichkeit, Insertionsmutanten durch REMI-(restriction enzyme mediated integration) Mutagenese herzustellen (Bölker et al., 1995). Dabei erfolgt die Transformation eines zirkulären Plasmids in Anwesenheit eines Restriktionsenzyms (Abb. 5A). Dieses Enzym wird zusammen mit der Plasmid-DNA von den Zellen aufgenommen. Die Enzymkonzentration wird dabei so eingestellt, daß während dieses Vorgangs sowohl die Plasmid-DNA linearisiert als auch die genomische DNA geschnitten wird. Auf eine noch unbekannte Art erfolgt dann die Integration des Plasmids an einer Schnittstelle im Genom (Abb. 5B). Die Integrationsstelle hängt dabei von der Sequenzspezifität des verwendeten Restriktionsenzyms ab (Bölker et al., 1995; Kuspa und Loomis, 1992; Schiestl und Peters, 1991). Bei einem Restriktionsenzym, das eine Hexanukleotidsequenz erkennt, könnte somit im Durchschnitt etwa alle 4000 bp eine Insertion stattfinden. Die Reisolierung der die Insertionsstelle flankierenden Sequenzen erfolgt so, daß außerhalb des Reporterkonstruktes im Genom geschnitten wird. Nach Zirkularisierung kann das Plasmid inklusive der genomischen U. maydis DNA in E. coli transformiert werden ("plasmid rescue", Abb. 5C). Durch REMI-

Mutagenesen wurden bereits eine Reihe von Pathogenitätsmutanten in phytopathogenen Pilzen erzeugt (Maier und Schäfer, 1999). Einige der Gene wurden isoliert und in der Analyse ergab sich

Abbildung 5: REMI-Insertion und "plasmid rescue". A: Das REMI-Plasmid wird zusammen mit einem Restriktionsenzym "X" transformiert. B: Die Integration erfolgt an der Schnittstelle des Enzyms "X". C: Durch Restriktion mit einem Enzym "Y", das nicht im REMI-Plasmid schneidet, kann, nach Zirkularisierung das Plasmid inklusive der flankierenden Sequenzen reisoliert werden ("plasmid rescue", s. M&M).

ein Zusammenhang zur pathogenen Entwicklung, wie z.B. bei den *pth*-Genen aus *M. grisea* (Sweigard *et al.*, 1998). Bei der Charakterisierung der Mutanten zeigte sich, daß in nur etwa 50% der Mutanten der Phänotyp mit der Insertion cosegregiert. Die Phänotypen in den übrigen Mutanten waren wahrscheinlich auf sogenannte "second site"-Mutationen zurückzuführen, die vermutlich durch das Restriktionsenzym und den Transformationsvorgang verursacht wurden.

Eine erfolgreiche "enhancer trap"-Mutagenese setzt ein geeignetes Reportergen zur Markierung der Expression voraus. Für *U. maydis* wurde kürzlich GFP als *in vivo*-Reportergen etabliert (Spellig *et al.*, 1996). Für die Aktivität von GFP sind keine weiteren exogenen Faktoren oder Substrate nötig, so daß das Protein direkt fluoreszenzmikroskopisch nachgewiesen werden kann (Chalfie *et al.*, 1994). Mit Hilfe von Fusionen eines konstitutiven Promotors an GFP konnte so bereits die biotrophe Entwicklung von *U. maydis* anhand der GFP-Fluoreszenz über den gesamten

Lebenszyklus hinweg verfolgt werden (Spellig, 1996). Darüber hinaus war unter der Kontrolle des Promotors von *gpa4* pflanzenspezifische Geninduktion beobachtet worden (Spellig *et al.*, 1996).

1.7 Zielsetzung

Ziel der Arbeit war es, das Verständnis der molekularen Prozesse der für *U. maydis* spezifischen Wirts-Pflanzeninteraktion zu vertiefen. Dazu sollten pflanzenspezifisch-regulierte Gene isoliert und charakterisiert werden, da davon ausgegangen wurde, daß solche Gene in Pathogenitätsprozessen eine wichtige Rolle spielen. In einem ersten Schritt wurde die Expression bekannter, bereits außerhalb der Pflanze differentiell exprimierter Gene der Paarungstyploci *a* und *b* in Northernanalysen und durch GFP-Reporterstämme während der biotrophen Phase von *U. maydis* bestimmt. Dabei sollte untersucht werden, ob sich die Induktion wie auch die Repression einzelner Gene während des gesamten Lebenszyklus von *U. maydis* nachweisen lassen. Aufbauend auf diesen Ergebnissen sollte durch die Kombination von REMI-Mutagenese und GFP als Reportergen ein "enhancer trap"-Mutagenese-System etabliert werden. Ziel war die Isolierung von Genen, die bereits früh in der biotrophen Phase induziert werden. Gene, die diese Kriterien erfüllen, sollten bezüglich ihrer Funktion und Regulation untersucht werden.

2 Ergebnisse

2.1 Expressionsanalyse bekannter Gene während der biotrophen Phase

Für Northernanalysen in Tumorgewebe wurden die Gene *mfa1*, *pra1*, *lga2*, *prf1*, *bE1* und *bW2* ausgewählt. Sie sind an der Fusion haploider Sporidien, filamentösem Wachstum und Pathogenität beteiligt und ihre Expression ist auf aktivkohlehaltigen Festmedien bereits gut untersucht (Hartmann *et al.*, 1996; Urban *et al.*, 1996).

mfa1 schien zudem gut geeignet, um in *mfa1*:GFP-Reporterstämmen festzustellen, wie sich z.B. eine hohe *mfa1*-Expression vor der Fusion, die anschließend durch das bE/bW-Heterodimer reprimiert wird, auf das relativ stabile GFP-Protein auswirkt. *lga2* war als ein guter Marker für früh durch die *b*–Proteine induzierte Gene bekannt. Anhand eines entsprechenden Reporterkonstruktes sollte sich der Zeitpunkt der *lga2*-Expression bestimmen lassen. Drüber hinaus könnten sich auch so indirekt Hinweise zur Aktivität des b-Heterodimers während der biotrophen Phase gewinnen lassen.

2.1.1 Differentielle Genexpression von *mfa1*, *lga2*, *bE1*, *bW2* und *prf1* während der biotrophen Phase von U. maydis

Für Northernanalysen wurden junge Maispflanzen mit Mischungen von FB1 (*a1b1*) und FB2 (*a2b2*) infiziert. Diese beiden Stämme sind kompatibel und können nach ihrer Fusion Maispflanzen infizieren. Etwa sieben Tage nach der Infektion wurden die so induzierten Tumore kurz vor der Sporulation geerntet. Anschließend wurde das Expressionsniveau von *mfa1*, *pra1*, lga2, *prf1*, *bE1* und *bW2* bestimmt und mit der Expression in Mischungen von FB1 und FB2 auf aktivkohlehaltigen Plattenmedien verglichen (M&M). Da der diploide, solopathogene Stamme FBD11 (*a1a2b1b2*) als Ausgangsstamm für die REMI-Mutagenese dienen sollte, wurde die Expression der ausgewählten Gene auch in diesem Stamm untersucht.

Die mRNA-Menge aus den verschiedenen Präparationen war anhand der konstitutiven Expression des *ppi1*-Gens so eingestellt, daß in allen Spuren vergleichbare Mengen an pilzlicher RNA geladen waren (Abb. 6). Aus dem Vergleich der eingesetzten Menge an Gesamt-RNA ergab sich, daß die Tumorgewebe etwa 1 - 2% Pilz-RNA enthielten.

In Mischungen von FB1 und FB2 sowie in FBD11 war nach 48 h Inkubation auf den Plattenmedium die Expression von *pra1*, *prf1*, *bE1* und *bW2* gut nachweisbar. Es wurde zudem eine hohe *lga2*-Expression beobachtet. Für *mfa1* konnte in den ebefalls gute Expression nachgewiesen werden, in FBD11 Stämmen war diese aber nur gering (Abb. 6). In Tumorgewebe aus Infektionen

mit Mischungen der Stämme FB1 und FB2 war ebenfalls eine gut nachweisbare Expression von mfa1 und pra1 bzw. bW2 zu beobachten, während prf1 hier nur gering exprimiert war und lga2und bE1-Transkripte nicht nachweisbar waren (Abb. 6). In FBD11 ergaben sich auf Plattenmedien im Vergleich zu Mischungen von FB1 und FB2 keine Expressionsunterschiede für pra1, prf1, bE1und bW2. Nur die mfa1-mRNA war hier nicht nachweisbar. In Tumorgewebe aus Infektionen mit FBD11 konnte im Vergleich zur Expression in Wildtyptumoren eine geringere Expression von mfa1, pra1 und prf1 nachgewiesen werden, während alle übrigen Gene (bW2, bE1 und lga2) wie in der Wildtypsituation exprimiert waren (Abb. 6). Mit der Repression von lga2 in den Tumorgeweben zeigt sich für dieses Gen eine deutliche differentielle Expression im Vergleich zu der Situation auf Plattenmedien. Auch mfa1 scheint in Tumorgewebe anders als im filamentösen Dikaryon exprimiert zu werden. Im Dikaryon wird Repression durch das b-Heterodimer beobachtet. Diese Repression scheint in der Pflanze nicht stattzufinden (Abb. 6). Für die *b*-Gene

Abbildung 6: Expressionsanalyse von *mfa1*, *lga2*, *pra1*, *prf1*, *bE1* und *bW2* in Tumorgewebe im Vergleich zur Expression auf Plattenmedien. Die verwendeten Stämme, Stammkombinationen und Tumorgewebe sind über den Spuren angegeben. Für RNA-Präparationen von Plattenmedien wurden die Stämme und Stammkombinationen 48 h auf CM-Aktivkohle-Platten inkubiert. Bei RNA-Extraktionen von Plattenmedien wurden je 1,5 μ g Gesamt-RNA, bei RNA aus Tumor- und Pflanzengeweben je 80 μ g Gesamt-RNA pro Spur geladen. Die zur Detektion der Expression verwendeten Sonden sind in M&M angegeben.

ergab sich ein komplexeres Bild: *bE1* war in Tumorgewebe herunterreguliert, während für *bW2* konstitutive Expression in allen Stadien festgestellt wurde (Abb. 6). *prf1* war zwar im Vergleich zur Situation auf Plattenmedien im Tumor herunterreguliert. Es konnte aber Expression in allen Stadien nachgewiesen werden (Abb. 6). In Tumorgeweben, das aus Infektionen mit FBD11 hervorgegangen war konnte bezüglich der Expression von *bE1*, *bW2*, *prf1* und *lga2* kein Unterschied gegenüber Tumoren aus Infektionen mit FB1 und FB2 festgestellt werden. Auffallend waren aber die vergleichsweise geringen Mengen an *mfa1*- und *pra1*-Transkripten (Abb. 6).

Zusammengefaßt ergibt sich daraus eine tumorspezifische Induktion für die Gene *mfa1* und *pra1* bzw. eine Repression von *lga2* und *bE1*. Durch das Expressionsmuster dieser Gene im Tumor wird auf molekularer Ebene ein neues Stadium von *U. maydis* definiert, daß dieses von haploiden Sporidien und dem filamentösen Dikaryon deutlich abgrenzt.

2.1.2 Prf1 ist essentiell für die mfa1-Transkription in Tumorgeweben

Die differentielle Expression von *pra1*, *mfa1*, *lga2* und *bE1* in Tumorgewebe warf die Frage auf, welche Faktoren diese Gene während der biotrophen Phase regulieren. Anhand der Expression von *mfa1* und *lga2* sollte dies genauer untersucht werden, da für diese Gene bereits zwei Regulatoren, das Prf1-Protein und das bE/bW-Heterodimer bekannt und gut untersucht waren (Hartmann *et al.*, 1996; Romeis *et al.*, 2000; Urban *et al.*, 1996). Da sowohl Prf1 als auch das b-Heterodimer für die Pathogenität essentiell sind, wurden Pflanzen mit den Stämmen HA103 (*a1b^{con}*) und HA108 (*a1b^{con}Δprf1*) infiziert. In HA103 sind die natürlichen Promotoren der *b*-Gene durch konstitutive Promotoren ersetzt. Somit ist die Expression der *b*-Gene in allen Stadien von *U. maydis* gewährleistet (Hartmann *et al.*, 1996). HA108 exprimiert, wie HA103, konstitutiv ein aktives bE1/bW2-Heterodimer. Zusätzlich trägt dieser Stamm eine Deletion des *prf1*-Gens. Dies erlaubt den Einfluß von Prf1 auf die *mfa1*-Expression zu untersuchen. Beide Stämme sind solopathogen und können ohne Kreuzungspartner Pflanzen infizieren. Weder in HA103 noch in HA108 läßt sich auf aktivkohlehaltigen Plattenmedien *mfa1*-mRNA nachweisen, da *mfa* durch den aktiven b-Komplex reprimiert wird bzw. *prf1*-Deletionsstämme *mfa1* nicht exprimieren (Hartmann *et al.*, 1996).

In Tumoren aus Infektionen mit HA103 war eine deutliche Expression von *mfa1* zu beobachten, vergleichbar der Expression in Mischungen kompatibler haploider Stämme, die auf aktivkohlehaltigen Plattenmedien gezogen wurden (Abb. 7). Im Gegensatz dazu war in Tumorgewebe aus Infektionen mit HA108 keine *mfa1*-Transkription nachzuweisen (Abb. 7). Demnach führt die konstitutive Expression eines aktiven bE/bW-Komplexes in Tumorgewebe nicht zu einer

Repression der *mfa1*-Transkription. Darüber hinaus ist *prf1* zwingend für die Transkription von *mfa1* in Tumorgewebe notwendig.

Abbildung 7: Der Einfluß von Prf1 und dem bE/bW Heterodimer auf die *mfa1*-Expression in Tumorgeweben. Die verwendeten Stämme, Stammkombinationen und Tumorgewebe sind über den Spuren angegeben. Für RNA-Präparationen von Plattenmedien, wurden die Stämme und Stammkombinationen 48 h auf CM-Aktivkohle-Platten bei 21°C inkubiert. Bei RNA-Präparationen von Plattenmedien wurden je 1,5 μ g gesamt RNA, bei RNA aus Tumor und Pflanzengeweben je 80 μ g gesamt RNA pro Spur geladen. Die für die Expressionsanalyse verwendeten DNA-Sonden sind in M&M angegeben.

2.1.3 GFP als *in vivo*-Reportergen für differentiell exprimierte Gene: Nachweis der Expression von *mfa1* und *lga2* während des gesamten Lebenszyklus von *U. maydis*

Die starken Unterschiede im Expressionsniveau von *mfa1* bzw. *lga2* zwischen Dikarien, die auf Plattenmedien wuchsen und Pilzzellen in Tumoren lieferten die Voraussetzungen dafür, einen Wechsel von Induktion und Repression mittels geeigneter GFP-Reporterstämme über den gesamten Lebenszyklus hinweg verfolgen zu können. Besonderes Interesse galt dabei der Expression in den frühen Stadien der Entwicklung von *U. maydis*, da durch REMI-"enhancer trapping" primär früh induzierte Gene isoliert werden sollten. Darüber hinaus sollte durch diese Untersuchungen auch eine Optimierung der fluoreszenzmikroskopischen Analyse ermöglicht werden. Mit einem Longpass Filter (LP520 Zeiss) wurde in den folgenden Experimenten Licht mit Wellenlängen von mehr als 520 nm (Rotlicht) herausgefiltert und somit die rote Autofluoreszenz der Mais-Chloroplasten, welche die GFP-Fluoreszenz überlagert, eliminiert.

Die Induktion von *mfa1* war in Mischungen von *mfa1*:GFP-Reporterstämmen und einem kompatiblen Wildtypstamm bereits im Wassertropfentest untersucht worden (Spellig *et al.*, 1996). Dazu wurden die *U. maydis* Zellen in Wasser gewaschen, 1:1 gemischt und in einem Wassertropfen auf einer hydrophoben Oberfläche inkubiert. Die Induktion von GFP konnte dabei schon nach zwei Stunden beobachtet werden. Die *b*-abhängige Repression der *mfa1*-Transkription war aber auch nach 8 h noch nicht zu erkennen (Spellig *et al.*, 1996). Dies wurde auf die lange Halbwertszeit des GFP-Proteins zurückgeführt.

Da die Selektion der REMI-Mutanten nach Infektion stattfinden sollte, wurde die Analyse der mfal-Expression auf der Oberfläche von Maisblättern und beim Wachstum innerhalb der Pflanze untersucht. Es wurden dazu neue Reporterstämme generiert, da bei den bisherigen Stämmen die Leserahmen von mfal und GFP nicht basengenau ausgetauscht waren. In diesen Stämmen war deshalb eine Modifikation der Promotoraktivität nicht auszuschließen. Für den exakten Austausch von mfal durch GFP wurde im Plasmid pCA2 ein 952 bp langes Fragment aus dem mfal-Promotor im Startkodon von mfal an das SGFP-Gen fusioniert (M&M). Dieses Fragment enthält alle bislang bekannten und für die Regulation von mfal notwendigen Elemente (Urban et al., 1996). Das Konstrukt wurde ektopisch in FB1 integriert, da die Deletion von mfa1 zur Sterilität führt. Ein Problem bei ektopischen Integrationen ist, daß regulatorische Elemente an der Integrationsstelle die Expression der Reporterkonstrukte beeinflussen können. Deshalb wurde in einem Vorexperiment die mfal-Expression von vier unabhängigen Transformanden (CA2-1, Ca2-2, CA2-3, Ca2-4) im Kreuzungstest auf aktivkohlehaltigen Plattenmedien untersucht und mit den bekannten Expressionsdaten verglichen. Die Reporterstämme wurden dazu im Verhältnis 1:1 mit einem FB2-Stamm gemischt, auf aktivkohlehaltige Plattenmedien getropft. Nach 24 h Inkubation wurde die Menge an GFP-Protein fluoreszenzmikroskopisch bestimmt (nicht gezeigt). Dabei konnten zwischen den einzelnen Transformanden keine Expressionsunterschiede festgestellt werden. Das Expressionsniveau in den Einzelzellen war jedoch uneinheitlich. Etwa 15 % der Sporidien zeigten GFP-Expression. Waren Konjugationshyphen ausgebildet worden so konnte in etwa 50% der Zellen Fluoreszenz beobachtet werden, die darüber hinaus im Vergleich zu Sporidien wesentlich stärker war. In filamentösen Dikarien wurde die geringste GFP-Fluoreszenz beobachtet, wobei in etwa 20% der Filamente keine Fluoreszenz zu sehen war. Nach 24 h war demnach eine Induktion von mfal in induzierten und fusionsbereiten Zellen zu erkennen. Darüber hinaus konnte auch die babhängige Repression durch Abnahme der Fluoreszenz in den filamentösen Dikarien beobachtet werden.

Für die Expressionsanalyse von *mfa1* auf der Blattoberfläche wurden der Reporterstamm CA2-1 im Verhältnis 1:1 mit FB2 gemischt und jungen Maispflanzen injiziert. Die Proben wurden 24 Stunden nach der Infektion entnommen und die GFP-Menge fluoreszenzmikroskopisch bestimmt (Abb. 8).

Abbildung 8: Nachweis der *mfa1*-Expression in verschiedenen Entwicklungsstadien von U. *maydis* durch GFP-Reporterstämme. Eine 1:1-Mischung der Stämme FB2 und CA2-1 wurde jungen Maispflanzen injiziert. Nach 24 h und dann im Abstand von zwei Tagen nach der Infektion wurden Proben lichtmikroskopisch (DIC) auf Pilzstrukturen hin untersucht, deren Morphologie bestimmt und einzelnen Enwicklungsstadien zugeordnet. A: Sporidien; C: Konjugationshyphen; E: Filamente; G: Appressorien; I und K: Dikarien; M, O, Q, S, U: sporogene Hyphen; W: Prä- und Teliosporen. Die GFP-Expression wurde dann in den Proben fluoreszenzmikroskopisch bestimmt (B, D, F, H, J, L, N, P, R, T, V, X). Der angegebene Größenstand entspricht 3 μ m.

Auf der Blattoberfläche waren zeitgleich Sporidien, Sporidien mit Konjugationshyphen, filamentöse Dikarien und appressorienartige Strukturen zu sehen. In 17 von 100 untersuchten Sporidien war geringe und zudem verschieden starke GFP-Fluoreszenz zu erkennen (Abb. 8b und nicht gezeigt). Zellen mit Konjugationshyphen zeigten zu 50 % GFP-Fluoreszenz, die zudem wesentlich intensiver als in Sporidien war (Abb. 8D). In filamentösen Dikarien konnte zwar GFP-Fluoreszenz beobachtet werden, diese war aber deutlich schwächer als in Zellen mit Konjugationshyphen und den meisten Sporidien war (Abb. 8F). Darüber hinaus war in drei von 20 untersuchten Filamenten keine GFP-

Expression zu erkennen (nicht gezeigt). In appressorienartigen Strukturen war nur noch in 3 von 20 Zellen geringe GFP-Expression nachweisbar (Abb. 8H).

Um die GFP-Expression in den biotrophen Stadien zu untersuchen, wurden Schnittpräparate von infizierten Maisblättern und Tumorgeweben angefertigt. Die Stadien wurden anhand morphologischer Kriterien differenziert und die GFP-Menge fluoreszenzmikroskopisch bestimmt. In verzweigten Dikarien konnte dabei durchwegs starke grüne Fluoreszenz beobachtet werden (Abb. 8J, 8L). Sporogene Hyphen wiesen hingegen wiederum ein heterogenes Expressionsmuster auf. Neben Zellen mit hoher GFP-Expression (Abb. 8N, 8P, 8R) waren auch sporogene Hyphen zu beobachten, die nur geringe oder fast keine Fluoreszenz zeigten (Abb. 8T und 8V). In Teliosporen war keine grüne Fluoreszenz nachweisbar (Abb. 8X).

In Sporidien auf der Blattoberfläche kommt es demnach zu einer Induktion der *mfa1*-Expression, die vermutlich mit der Paarungsbereitschaft einhergeht. Nach der Fusion wurde die Repression von *mfa1* in den filamentösen Dikarien und appressorienartigen Strukturen beobachtet. Bereits kurz nach der Penetration wird *mfa1* in Dikarien erneut induziert und im weiteren Verlauf der Infektion in sporogenen Hyphen wieder reprimiert. Die dabei beobachteten Expressionsunterschiede zwischen morphologisch ähnlichen Stadien lassen vermuten, daß Signale, welche die *mfa1*-Expression regulieren, entweder unterschiedlich verteilt sind, oder daß sich die Zellen trotz morphologischer Ähnlichkeit in unterschiedlichen Entwicklungsstadien befinden.

In einem weiteren Vorexperiment zur Etablierung des REMI-"enhancer trap"-Systems wurde auch für das *lga2*-Gen ein Expressionsprofil über den gesamten Lebenszyklus von *U. maydis* hinweg erstellt. Im Ausgangsplasmid (pCA64) wurde hierbei das *lga2*-Gen komplett durch das SGFP-Gen ersetzt. Das resultierende Plasmid pCA7 wurde in FB2 (*a2b2*) transformiert. Nach Southernanalysen wurden zwei unabhängige Stämme, CA7-3 und CA7-5, in denen *lga2* durch *lga2*:sGFP ersetzt war für die Expressionsstudien ausgewählt. Die *lga2*-Expression wurde anhand der GFP-Menge (s. o.) während der Kreuzung auf aktivkohlehaltigen Plattenmedien und während der biotrophen Phase bestimmt.

CA7-3 und CA7-5 zeigten keine Expressionsunterschiede in verschiedenen Stadien, so daß davon ausgegangen werden kann, daß die beobachtete GFP-Expression der *lga2*-Expression entspricht. Sowohl in haploiden Sporidien als auch in Konjugationshyphen konnte keine GFP-Expression auf Plattenmedien oder auf der Pflanzenoberfläche beobachtet werden (nicht gezeigt). Im Gegensatz dazu war bereits 24 Stunden nach der Inokulation sowohl in Paarungsstrukturen als auch in filamentösen Dikarien GFP-Fluoreszenz zu erkennen (Abb. 9B und 9D). Darüber hinaus konnte auf der Pflanzenoberfläche GFP-Expression in appressorienartigen Strukturen nachgewiesen werden (Abb. 9F). Innerhalb der Pflanze war zu keinem Zeitpunkt Expression zu erkennen (Abb. 9H und 9J). *lga2* wird demnach ausschließlich im filamentösen Dikaryon und in Appressorien

exprimiert. Da die GFP-Expression bereits kurz nach der Fusion nachweisbar war, mußte eine schnelle Induktion von *lga2* erfolgt sein. Nach der Penetration wird *lga2* wieder herunterreguliert.

Abbildung 9: *lga2* ist ausschließlich in filamentösen Dikarien exprimiert. Eine Mischung der Stämme FB2 und CA7-3 wurde in junge Maispflanzen injiziert. Nach 24 h und anschließend im Abstand von zwei Tagen nach der Infektion wurden Proben auf Pilzstrukturen und GFP-Fluoreszenz hin untersucht. Die Proben wurden jeweils mit DIC-Lichtmikroskopie (A: Sporidien und Paarungsstruktur; C: Sporidien und dikaryotisches Filament; E: Appressorium; G: sporogene Hyphe; I: Prä- und Teliosporen) und Fluoreszenzmikroskopie (B, D, F, H, J) untersucht (M&M). Der angegebene Gößenstandard entspricht 3 μ m.

Da für *mfa1*, wie auch *lga2* eine Regulation während der biotrophen Phase stattfindet, sind daran neben der bekannten *b*-abhängigen Regulation vermutlich auch Pflanzenfaktoren beteiligt. Die Expressionsanalyse erlaubt somit den Nachweis differentieller Expression während der biotrophen Phase. Deshalb sollte es möglich sein, auch in einem "screening"-Ansatz Stämme zu isolieren, die GFP spezifisch während der biotrophen Phase exprimieren. Durch Northernanalysen sollte es möglich sein, die ermittelten GFP-Daten für spätere Stadien zu verifizieren.

2.2 REMI-"enhancer trap"-Mutagenese

Nachdem die detaillierte Expressionsanalyse von pilzlichen Genen in verschiedenen Entwicklungsstadien während der biotrophen Phase etabliert war, mußte die bereits bestehende Methode der REMI-Mutagenese (Bölker *et al.*, 1995) so modifiziert werden, daß pflanzeninduzierte Gene markiert und isoliert werden können.

2.2.1 Der experimentelle Aufbau der REMI-"enhancer trap"-Mutagenese

Für die REMI-"enhancer trap"-Mutagenese wurde in zwei Schritten das REMI-Plasmid pCA104 konstruiert. In das Plasmid pSP72 wurde ein 62 bp langes Fragment aus dem *mfa1*-Promotor als

Abbildung 10: Schematische Darstellung der REMI-"enhancer trap"-Mutageneseplasmide pCA104 und pCA125. Die Beschreibung der Plasmide befindet sich im Text, die Konstruktion kann dem M&M-Teil entnommen werden.

ATG-Fusion mit dem SGFP-Gen eingebracht (Abb. 10A). Direkt am 5' Ende des Promotorfragmentes befindet sich eine singuläre *Bam*HI-Schnittstelle. Als Resistenzmarker für die Selektion in *U. maydis* trägt das Plasmid das *hph*-Gen unter der Kontrolle eines DNA-Fragmentes aus *S. cerevisiae*, das konstitutive Expression in *U. maydis* vermittelt (Bölker *et al.*, 1995, Abb. 10B). Diese Resistenzkassette enthält keine *U. maydis* Sequenzen und wurde gewählt, um sonst mögliche homologe Rekombinationsereignisse zu vermeiden (Bölker *et al.*, 1995). Die singuläre *Bam*HI-Schnittstelle kann zur Integration von pCA104 verwendet werden. Das 62 bp lange *mfa1*-Promotorfragment dient als Basalpromotor für das "enhancer trapping". Der Basalpromotor vermittelt allein keine nachweisbare Expression. Befinden sich aber "enhancer"-Elemente im angrenzenden 5'-Bereich, sollte Transkription initiiert werden. Nachdem erste Experimente gezeigt hatten, daß mit pCA104 nur relativ stark exprimierter Gene markiert wurden, wurde das SGFP-Gen in pCA104 durch EGFP ersetzt. Das resultierende Plasmid pCA125 ist in Abb. 10C gezeigt. EGFP besitzt laut dem Hersteller (Clontech) eine sechsfach höhere Lichtemission als SGFP und erlaubt dadurch die Detektion schwächer exprimierter Gene.

Da eine Beteiligung pflanzeninduzierter Gene an der pathogenen Entwicklung nicht auszuschließen war, wurde als Ausgangsstamm für die REMI-Mutagenese der solopathogene, diploide Stamm FBD11(a1a2b1b2) verwendet. Der Verlust eines rezessiven Pathogenitätsgens sollte in dem Stamm nicht zum Verlust der Pathogenität führen, da eine zweite Genkopie vorhanden ist. Die Bedingungen für die Transformation von pCA104 in der Gegenwart von BamHI wurden für FBD11 so angepaßt, daß pro Transformation zwischen 5 und 50 Transformanden isoliert werden konnten (M&M). Da die REMI-Transformation bekanntermaßen neben der Integration eines einzelnen REMI-Plasmids zu Tandem- und Mehrfachintegrationen an verschiedenen Stellen im Genom führt (Bölker et al., 1995; Sweigard et al., 1998), wurden in einem Vorversuch in verschiedenen Transformanden die Integrationsereignisse untersucht. 8 REMI-Transformanden wurden einer Southernanalyse mit pCA104 als DNA-Sonde unterzogen (Abb. 11). Da die DNA mit NcoI restringiert wurde, sollten bei singulären Insertionen drei Banden detektiert werden (Abb. 11A und 11B): das 1,8 kb Fragment entspricht dabei einem internen Vektorfragment, die übrigen Banden stellen die 3'- und 5'- Flanken an der Insertionsstelle dar, wie bei den Transformanden #114, #427 #480 und #500 zu erkennen war. Tandemintegrationen wiesen zusätzlich ein weiteres internes Fragment von 2,8 kb auf (#213, #220 und #430). Es konnten jedoch nur in der Mutante #213 alle 4 erwarteten Fragmente detektiert werden (Abb. 11A und 11C). Die Mutanten #220 und #430 wurden auch dieser Klasse zugeordnet, da das nur bei Tandemintegrationen auftretende 2,8 kb Fragment zu sehen war. Mehrfachintegrationen an verschiedenen Stellen im Genom waren in der Mutante #461 zu beobachten. Neben dem internen 1,8 kb Vektorfragment sollten vier Banden zu erkennen sein, welche die 3'- und 5'- Bereiche an den Integrationsstellen repräsentieren. Hier waren aber nur drei zusätzliche Banden zu sehen (Abb. 11A und 11D). Da jedoch das 2,8 kb Fragment fehlte, wurde in der Mutante #461 von Integrationen an zwei verschiedenen Stellen im Genom ausgegangen.

Auffällig war, daß in dieser Southernanalyse oft nicht alle erwarteten Fragmente sichtbar waren. Das lag vermutlich daran, daß sehr kleine oder sehr große Fragmente nicht detektiert wurden. Durch die charakteristischen Bandenmuster konnten aber trotzdem alle Integrationsereignissen zugeordnet werden. In früheren REMI-Ansätzen fanden in etwa 15 % der Mutanten Mehrfachintegrationen statt

(Bölker *et al.*, 1994). Hier wurden solche Integrationsereignisse in etwa doppelt so vielen Transformanden gefunden. Ein möglicher Grund dafür ist, daß in FBD11 Mutationen und Umstrukturierungen im Genom, die in haploiden Stämmen letal sind, aufgrund des doppelten Chromosomensatzes toleriert werden können.

Abbildung 11: A: Southernblot von REMI-Mutanten zur Analyse der Integrationsereignisse. Die jeweiligen Stämme für die Southernanalyse sind über den Spuren angegeben. DNA wurde aus den jeweiligen Stämmen extrahiert und mit *Nco*I geschnitten. Nach dem Transfer auf eine Membran wurden die Filter mit pCA104 als DNA-Sonde hybridisiert. *Pst*I restringierte λ -DNA diente als Größenstandard. **B**: Schematische einer Einzelintegration des REMI-Plasmids. **C**: Schematische Darstellung von zwei unabhängigen Integrationsereignissen im Genom. **D**: Schematische Darstellung einer Mehrfachintegration mit drei inserierten REMI-Plasmiden. Das REMI-Plasmid pCA104 verfügt über zwei interne *Nco*I-Schnittstellen. Nach Restriktion mit *Nco*I können die einzelnen Integrationsereignisse anhand charakteristischer Bandenmuster zugeordnet werden (siehe Text). *N* = *Nco*I.

Nachdem die Transformationsbedingungen für die REMI-Mutagenese eingestellt waren, wurde eine Bank von Mutanten hergestellt. Es wurden 600 Mutanten mit dem Plasmid pCA104 und 1750 Transformanden mit dem Plasmid pCA125 generiert. Die Mutanten wurden einzeln hochgezogen und in Mikrotiterplatten konserviert. Bei einer geschätzten Genomgröße von 20 Mb und einer zufälligen Verteilung der Integrationsereignisse waren statistisch in etwa der Hälfte aller im Genom vorkommenden *Bam*HI-Schnittstellen REMI-Plasmide integriert.

2.2.2 Isolierung von U. maydis-Mutanten mit pflanzenspezifischer GFP-Expression

Durch die REMI-"enhancer trap"-Mutagenese sollten *U. maydis*-Stämme isoliert werden, die ausschließlich GFP-Fluoreszenz während der biotrophen Phase aufweisen. Ziel war es, zuerst alle Mutanten, die auf synthetischen Medien GFP-Fluoreszenz zeigten, auszusortieren und jene Mutanten weiter zu untersuchen, in denen keine GFP-Expression nachweisbar war.

Da viele Gene durch Umwelteinflüsse wie z.B. das Nahrungsangebot oder den morphologischen Wechsel von hefeartigem zu filamentösem Wachstum reguliert werden, wurde die GFP-Expression der REMI-Mutanten unter verschiedenen Wachstumsbedingungen untersucht. Da die Intensität der Fluoreszenz die Proteinmenge widerspiegelt, wurden zunächst alle Stämme in Flüssigkultur hochgezogen und dann Kulturen mit etwa der gleicher Dichte von Mikrotiterplatten aus auf verschiedene Plattenmedien gestempelt. Dabei konnte in PD- und CM-Medium die Expression bei komplexen Medien untersucht werden. In CM-Medium konnte zudem, da die *a*- und *b*- Gene exprimiert werden, deren Einfluß untersucht werden. Auf PD-CC-Medium, einem Medium, auf dem Kreuzungstests durchgeführt werden, ließ sich neben der *a*- und *b*-abhängigen Regulation auch der Einfluß des filamentösen Wachstums untersuchen. In MM-Medium (MM + 1% Glukose) konnten der Einfluß von Mangelbedingungen und der Glukose auf die Expression untersucht werden (Abb. 12 und M&M). Nach 36 h Inkubation auf den Plattenmedien wurde GFP in den Kolonien durch Blaulicht angeregt und die Fluoreszenz mit Hilfe einer CCD-Kamera (Stratagene) und einem vorgeschalteten HQ525/50m Filter (Chroma Technology) detektiert (Abb. 12 und M&M). Stämme wurden verworfen, sobald unter den getesteten Bedingungen GFP-Fluoreszenz sichtbar war.

Von den 600 Transformanden, die nach Transformation mit pCA104 isoliert wurden, zeigten 78 Mutanten (13 %) grüne Fluoreszenz. Wurde pCA125 als Mutageneseplasmid verwendet, wurde in 735 von 1750 Mutanten (42 %) grüne Fluoreszenz beobachtet. Dieser Unterschied spiegelt vermutlich die höhere Sensitivität von EGFP gegenüber SGFP wieder. In einer mikroskopischen GFP-Analyse von etwa 100 Transformanden konnte die in den Kolonien beobachtete Fluoreszenz verifiziert werden (nicht gezeigt). Deshalb wurde davon ausgegangen, daß die GFP-Expression, die man auf Kolonienebene detektieren konnte, der in Einzelzellen entsprach. Unabhängig vom verwendeten Mutageneseplasmid konnten teilweise große, medienabhängige Unterschiede in der Lichtemission einzelner Klone nachgewiesen werden (Abb. 12). Dies war der erste Hinweis, daß durch REMI-"enhancer trapping" differentiell exprimierte Gene markiert wurden, deren Expression unter den getesteten Bedingungen variierte.

Von ursprünglich 2350 Transformanden wurden die 1537 Stämme, die keine GFP-Fluoreszenz bei Wachstum auf den getesteten Medien zeigten, für den Test auf pflanzenspezifische GFP-Expression ausgewählt. Der Stamm #1486 wurde weiterbearbeitet, da GFP in filamentösen Dikarien im Vergleich zu haploiden Sporidien induziert war. Hier bestand die Hoffnung, anhand dieses Beispiels relativ schnell den Erfolg der "enhancer trapping"-Methode zu überprüfen. (s. Kapitel 2.4.3).

Um Stämme mit pflanzenabhängig induzierter GFP-Expression zu isolieren, wurden mit den Transformanden, die keine GFP-Expression auf Plattenmedien zeigten, Infektionen durchgeführt. In einem Vorexperiment wurde zuerst ermittelt, unter wievielen Transformanden ein Stamm, der GFP

exprimiert, isoliert werden kann. Dazu wurden FBD11-Wildtypstämme mit einem GFP exprimierenden Reporterstamm im Verhältnis10:1 bzw. 50:1 gemischt und anschließend Pflanzen infiziert. In einer fluoreszenzmikroskopischen Analyse konnten dabei jeweils die GFP-exprimierenden Stämm sicher identifiziert werden (nicht gezeigt).

Abbildung 12: Detektion von GFP-Fluoreszenz in Kolonien von REMI-Transformanden auf verschiedenen Plattenmedien. Alle 2350 REMI-Transformanden wurden in YEPS-Hyg50-Medium hochgezogen und in Mikrotiterplatten überimpft und von dort, wie in diesem Beispiel dargestellt, zu je 46 Mutanten auf PD-, MM-, CM- und CM-CC-Platten gestempelt zu werden. GFP-Fluoreszenz wurde nach 36 h Inkubation in den Kolonien bestimmt (M&M). Die Kolonie an Position 6, obere Reihe ist der Stamm #1486.

Um zu gewährleisten, daß alle Mutanten repräsentativ vertreten sind, wurden die Infektionen mit "pools" von 5 - 10 Transformanden durchgeführt. Jeweils zwei, vier und sechs Tage nach der Infektion erfolgte eine fluoreszenzmikroskopische Untersuchung der Zellen in Aufsicht- und Schnittpräparaten (M&M). In 11 infizierten Pflanzen konnten grün fluoreszierende Zellen beobachtet werden (nicht gezeigt). Mit den einzelnen Mutanten dieser "pools" wurden erneut Maispflanzen infiziert. Die Stämmen #114, #219, #271, #424, #500, #698, #704, #727 und #1685 zeigten GFP-Expression beim Wachstum innerhalb und/oder auf der Pflanzenoberfläche (nicht gezeigt). Um Induktion durch Flüssigmedien oder das entsprechende Umfeld auszuschließen, wurden die Stämme acht Stunden in MM- oder CM-Flüssigmedien bzw. Wasser inkubiert. Anschließend wurde die Menge an GFP fluoreszenzmikroskopisch bestimmt. In den Mutanten, #114 und #219 konnte GFP nicht nachgewiesen werden. Somit lag Induktion ausschließlich nach Inokulation von Pflanze vor. In den restlichen Mutanten (#271, #424, #480, #500, 624, #698, #704, #727 und #1685) konnte in Flüssig- und auf Plattenmedien geringe GFP-Expression festgestellt werden. Davon wurde nur die Mutante #1685 weiter bearbeitet, da hier ein sehr großer Unterschied in der Fluoreszenz zwischen Sporidien in axenischer Kultur und solchen, die sich auf der Blattoberfläche befanden, zu erkennen war. Die übrigen Mutanten aus dieser Gruppe wurden verworfen, da keine signifikanten Unterschiede in der GFP-Expression beobachtet werden konnten und somit angenommen werden mußte, daß hier konstitutiv exprimierte Gene markiert wurden. Zusätzlich wurde die Mutante #1486 ausgewählt, da hier eine spezifische Induktion von GFP in dikaryotischen Filamenten auf aktivkohlehaltigen Plattenmedien zu erkennen war. Hier bestand die Aussicht, das entsprechende Gen schnell zu identifizieren, da die Expressionsunterschiede in diesen beiden Stadien vergleichsweise einfach zu bestimmen sind.

2.3 Analyse der Mutanten aus der REMI-"enhancer trap"-Mutagenese

2.3.1 Die Mutante #114

Der Phänotyp der Mutante #114 zeichnete sich dadurch aus, daß GFP-Fluoreszenz nur während des Wachstums in der Pflanze, nicht aber auf Plattenmedien zu beobachten war (Abb. 13 und nicht gezeigt). Southernanalysen zeigten, daß ein einzelnes REMI-Plasmid in das Genom der Mutante

Abbildung 13: A: Pflanzenspezifische GFP-Expression in der Mutante #114. Junge Maispflanze wurden mit der Mutante #114 infiziert. 24 h (A) nach Infektion wurde fluoreszenzmikroskopisch eine grüne Färbung in den Pilzzellen beobachtet. Der Größenstandard, als schwarzer Balken dargestellt, entspricht 3μ m. B: Schematische Darstellung der Integration von pCA104 in der Mutante #114. Die Integration fand im Promotor von *mfa1* statt. Das *mfa1*-Gen ist rot markiert. Der Basalpromotor p*mfa1* wurde bei der Integration dupliziert. Die UAS-Elemente des *mfa1*-Promotors regulieren die GFP-Expression.

inseriert war (Abb. 11). Die Isolierung der genomischen *U. maydis*-DNA, die an der Insertionsstelle das REMI-Plasmid flankiert, erfolgte durch "plasmid rescue". Dazu wurde die DNA der Mutante mit *Mlu*I restringiert, ligiert und anschließend in *E. coli* transformiert. So konnte das Plasmid pCA114-3 isoliert werden. Die Sequenzierung der genomischen *U. maydis* DNA in diesem Plasmid und die anschließende Datenbankanalyse ergaben Sequenzidentität auf Nukleotidebene zum *al*-Locus von *U. maydis* (M&M). Da sich an der Integrationsstelle keine *Bam*HI-Schnittstelle, dafür aber der *mfal*-Basalpromotor befand, handelt es sich bei dieser Insertion vermutlich um eine homologe Integration eines zirkulären REMI-Plasmids in den endogenen *mfal*-Promotor von FBD11 (Abb. 13B). Die Rekombination fand vermutlich zwischen den 62 bp identische Sequenz aus dem *mfal*-Promotor des REMI-Plasmids und der endogenen Kopie statt. Dadurch wurde *mfal* durch GFP ersetzt und unterlag so der Kontrolle des *mfal*-Promotors.

Obwohl in haploiden Sporidien auf aktivkohlehaltigen Plattenmedien *mfa1* exprimiert wird, wurde die Muatante #114 bei der Vorselektion nicht aussortiert. Ein möglicher Grund dafür ist, daß in dem für *b* heterozygoten Mutagenesestamm FBD11 *mfa1* zwar auf Plattenmedien, nicht jedoch während der biotrophen Phase reprimiert wird (Urban *et al.*, 1996, siehe auch Kapitel 2.1.1). Die Markierung eines Gens mit bekannter pflanzenabhängiger Induktion wurde als Positivkontrolle für die "screening"-Bedingungen gewertet.

2.3.2 Die Mutante #1486

In der Mutante #1486 war GFP-Fluoreszenz nur in dikaryotischen Filamenten nachweisbar und damit potentiell ein Gen markiert, das in diesem Stadium induziert wird (Abb. 14). Dies erschien deshalb interessant, weil das filamentöse Stadium eine Voraussetzung für die weitere pathogene Entwicklung von *U. maydis* ist und Gene, die während dieser Phase exprimiert werden, essentiell für die pathogene Entwicklung sein könnten (Banuett, 1992).

Die Versuche zum "rescue" dieser Mutante waren nicht erfolgreich. Deshalb wurde mittels einer Southernanalyse zunächst die Umgebung der Insertionsstelle untersucht, wobei pCA104 als Sonde diente. Die Restriktion mit *Bam*HI ergab, daß beide *Bam*HI-Schnittstellen an der Integrationsstelle vorhanden waren und deshalb wahrscheinlich eine REMI-Integration vorlag.

Durch Restriktion mit weiteren Enzymen konnten die Flanken kartiert werden (Abb. 15). Für die Isolierung der angrenzenden Sequenzen wurde in der Mutante #1486 eine auf PCR basierende Methode verwendet (Anchor-PCR, s. M&M). Dazu wurde die genomische DNA der Mutante mit *SphI* geschnitten, ligiert und die flankierenden Sequenzen durch Primer, die spezifisch an pCA104 binden, amplifiziert (REMI-5' und hyg3'). So konnte ein 1750 bp großes Fragment genomischer *U. maydis* DNA isoliert und in pCRTOPO2.1 (Invitrogen) ligiert werden (pCA233). Anschließend

wurde das Insert aus pCA233 sequenziert (Abb. 16, Anhang und M&M). Auf dem Fragment befand sich kein größerer, durchgehender ORF. Zudem konnte in Northernalysen mit diesem Fragment als DNA-Sonde weder in den Stämmen FB1, FB2, FBD11 noch in Mischungen der Stämme FB1 und FB2, die auf aktivkohlehaltigen Medien gewachsen waren, ein Transkript nach-

Abbildung 14: Die GFP-Expression in der Mutante #1486 ist auf das filamentöse Dikaryon beschränkt. A: Die Mutante #1486 wurde 36 h auf PD-Aktivkohle-Platten inkubiert. B: Anschließend wurden Filamente licht- (DIC) und fluoreszenzmikroskopisch untersucht. Der Größenstandard entspricht 3μ m.

Abbildung 15: Southernanalyse der Mutante #1486. Genomische DNA wurde mit den angegebenen Enzymen geschnitten. B = BamHI, M = MluI, H = HindIII, N = NcoI und S = SalI. Als Sonde wurde das Plasmid pCA104 verwendet. Als Größenstandard diente *Pst*I-geschnittene λ -DNA.

gewiesen werden (nicht gezeigt). Um das Gen zu isolieren, dessen regulatorischen Elemente in dieser Mutante die GFP-Expression steuern, wurden deshalb die flankierenden DNA-Abschnitte aus den entsprechenden Cosmiden 8H11 und 9A durch Hybridisierung mit dem 1750 bp *SphI*-Fragment isoliert und analysiert. Aus dem Cosmid 9A1 wurden ein 4681 bp großes Fragment

sequenziert, welches die Insertionsstelle umfaßte (s. Anhang, Abb. 16). Diese befand sich in einem intergenischen Bereich von 3500 bp zwischen zwei ORFs, *uat1* (*Ustilago maydis* <u>A</u>mmoniumtransporter 1) und *npi5* (non plant induced gene). *uat1* liegt 2300 bp 3' der Insertionsstelle und kodiert für ein putatives Polypeptid von 461 aa mit Homologie zu den Ammoniumtransportern *MEP2/MEP3* aus *S. cerevisiae*. 1200 bp stromaufwärts der Insertionsstelle liegt ein zu *uat1* konvergent transkribierter ORF, *npi5*, der für ein putatives Polypeptid mit signifikanter Homologie zu einem nicht näher untersuchten Protein (NC 001137.2) aus *S. cerevisiae* kodiert (nicht gezeigt).

Abbildung 16: Schematische Darstellung der Integrationsstelle von pCA125 in der Mutante #1486. Offene Leserahmen und deren Orientierungen sind als Pfeile, Sonden für Northern- und Southernanalysen sind als Balken dargestellt. Alle DNA-Sonden wurden aus pCA234 isoliert und sind in M&M angegeben. GAGA markiert die Position der repetetiven GA-Sequenz. An den Positionen -100, -300 und -700 wurden die Konstrukte pSC5, pSC6 und pSC7 inseriert. H = *Hin*dIII, E = *Eco*RI, Bg = *Bgl*II, S = *Sph*I und B = *Bam*HI. Der Größenstandard entspricht 500 bp.

In Northernanalysen wurde die Expression von *uat1* und *npi5* untersucht. Es wurde dazu die Expression in FB1 (*a1b1*), FB2 (*a2b2*), FBD11 (*a1b1a2b2*), HA103 (*a1b^{con}*) bzw. FB1 und FB6a (*a2b1*), die 48h auf aktivkohlehaltigen Platten inkubiert waren, verglichen. FB1 und FB2 wachsen unter diesen Bedingungen hefeartig, FBD11, HA103 und Dikarien, die durch Fusion von FB1 und FB2 entstanden sind wachsen aufgrund der Präsenz des aktiven bE/bW-Heterodimers filamentös. In Mischungen aus FB1 und FB6a kann der Einfluß des Pheromonstimulation auf die Expression untersucht werden. Zusätzlich wurde die Expression von *uat1* und *npi5* in FBD11-Zellen, die in Flüssigminimalmedium (MM), in YEPS-Flüssigmedium (YEPS), in flüssigem CM-Medium sowie in Tumorgewebe aus Infektionen mit Mischungen von FB1 und FB2 bestimmt. Es konnte sowohl für *uat1* als auch *npi5* eine schwache, konstitutiv exprimierte mRNA-Spezies detektiert werden (nicht gezeigt). Deshalb wurde angenommen, daß die regulatorischen Elemente von *uat1* und *npi5* nicht an der differentiellen GFP-Expression in der Mutante #1486 beteiligt sind.

Das *MEP2* Gen aus der Bäckerhefe ist einer der Rezeptoren, die über Gpa2p den intrazellulären cAMP-Spiegel regulieren. In *U. maydis* beeinflußt der cAMP-Spiegel die Zellmorphologie und die Pheromongenexpression (Gold *et al.*, 1997; Müller *et al.*, 1999). Um zu überprüfen, ob *uat1* an der Regulation der Pheromongenexpression beteiligt ist, wurde eine Deletion im *uat1*-Gen eingeführt. Dazu wurde in dem entsprechenden Plasmid pCA240 der Bereich deletiert, der für die aa 18 – 203 von Uat1 kodiert und durch eine Hygromycin B-Resistenzkassette ersetzt (M&M). Die nach der Transformation erhaltenen Deletionsstämme FB1*Δuat1#*3 und *#*5 bzw. FB2*Δuat1#*16 und *#*19 zeigten in Kreuzungsexperimenten mit kompatiblen *uat1*-Mutanten und gegenüber Wildtyppartnern kein verändertes Paarungsverhalten. Bei Infektionen mit Mischungen kompatibler Mutantenstämme wurde gegenüber den Kontrollinfektionen auch keine abweichende Virulenz beobachtet (nicht gezeigt). Hieraus läßt sich ableiten, daß *uat1* weder an der Paarung noch an der pathogenen Entwicklung beteiligt ist. Die Ursache für die stadienspezifische GFP-Expression in der Mutante *#*1486 bleibt somit weiter ungeklärt.

2.3.2.1 Eine regulatorische Funktion von GA-Wiederholungen in der Mutante #1486?

In der Mutante #1486 fiel eine Region in der Nähe der Integrationsstelle durch eine repetitive, polymorphe GA-Dinukleotidsequenz auf (Abb. 16). In FB1 wurden 72 GA-Dinukleotide gezählt, in FB2 hingegen nur 27 (nicht gezeigt). Um diese Wiederholungen aus dem *U. maydis* Genom zu entfernen, wurde mit Hilfe des Plasmids pCA248 eine 600 bp Deletion in den Stämmen FB1, FB2 und SG200 (*a1::mfa2 bE1/bW2*) eingeführt (Abb. 18A, 18B und M&M). In Southernanalysen kann bei homologem Genaustausch ein 5,7 kb *Hin*dIII-Fragment statt des 5,5 kb-*Hin*dIII-Fragments im Wildtyp beobachtet werden (Abb. 18A). Die SG200 Δ GA#43- und #44- Stämme

Abbildung 17: A: Southernanalyse der Δ GA-Mutanten. Aus den pCA248-Transformanden und FB1 wurde DNA präpariert und mit *Hin*dIII geschnitten. Als DNA-Sonde diente ein 5,5 kb *Hin*dIII Fragment aus dem Plasmid pCA234 (M&M). Spur 1: FB1; Spur 2: FB1 Δ GA#27; Spur 3: FB1 Δ GA#5; Spur 4: FB2 Δ GA#29; Spur 5: FB2 Δ GA#7: Spur 5: SG200 Δ GA#43 und Spur 7: SG200 Δ GA#44 Als Größenmarker diente *Pst*I geschnittene λ -DNA. B: Schematische Darstellung der Wildtypsituation und Δ GA-Mutation. Die repetetive GA-Sequenz wurde in pCA248 durch eine Nourseothricin-Resistenzkassette ausgetauscht. H = *Hin*dIII, B =*Bam*HI, Bg = *Bgl*II, E = *Eco*RI, Mu = *Mun*I.
zeigten auf aktivkohlehaltigen Medien gegenüber SG200 keinen Unterschied bezüglich der Filamentbildung, während im Kreuzungstest kompatibler Δ GA-Stämme (FB1 Δ GA#27 und FB2 Δ GA#5 bzw. FB1 Δ GA#29 und FB2 Δ GA#7) vermindertes filamentöses Wachstum beobachtet wurde (Abb. 18A und nicht gezeigt). Im Pathogenitätstest verhielten sich SG200 Δ GA#43-Derivate

Abbildung 18: A: Kompatible Δ GA-Stämme zeigen reduziertes filamentöses Wachstum. FB1 Δ GA#28 und FB2 Δ GA#5 wurden über Nacht in YEPS-Medium hochgezogen, gemischt und anschließend auf PD-Aktivkohle-Platten getropft. Die Filamentbildung wurde nach 36 h bei 21°C mit dem Binokular beobachtet. Die Kolonien sind sechsfach vergrößert dargestellt. B: Δ GA-Mutanten zeigen reduzierte *mfa1*-Expression. Spur 1: FB1; Spur 2: FB1 Δ GA; Spur 3: FB1 x FB2; Spur 4: FB1 Δ GA x FB2 Δ GA . Alle Stämme wurden vor der RNA-Extraktion 48 h auf CM-Aktivkohle-Platten inkubiert. Es wurden je 10 μ g RNA pro Spur geladen. Die verwendeten Sonden zur Expressionsanalyse sind in M&M angegeben.

sowie Mischungen aus FB1 Δ GA#28 und FB2 Δ GA#5 wie die entsprechenden Wildtypstämme (nicht gezeigt). Da kompatible Δ GA-Mutanten reduziertes filamentöses Wachstum zeigten, lag es nahe, daß der deletierte Bereich entweder an der Zell/Zell-Erkennung oder der Ausbildung und Aufrechterhaltung des Filaments beteiligt ist. Deshalb wurde in Northernanalysen die Expression des *mfa1*-Gens und der *b*-Gene, die diese Prozesse kontrollieren, in haploiden Δ GA-Mutanten und Kreuzungen kompatiblen Mutantenstämme auf aktivkohlehaltigen Plattenmedien untersucht und mit den Wildtyp-Kontrollen verglichen (Abb. 18B). Die basale *mfa1*-Expression war in FB1 Δ GA-#28 reduziert. Auch in Kreuzungen kompatibler Mutanten (FB1 Δ GA-#28 und FB2 Δ GA-#5) war ein verringertes *mfa1*-mRNA-Niveau festzustellen (Abb. 18B). Die *mfa2*-Expression war ähnlich der *mfa1*-Expression sowohl in FB2 Δ GA#28 als auch in der Kreuzung kompatibler Δ GA-Mutanten im Vergleich zur jeweiligen Wildtypsituation reduziert (nicht gezeigt). Im gleichen Experiment waren

für die Expression der *b*-Gene aber keine Unterschiede festzustellen (Abb. 18B). Deshalb ist vermutlich die reduzierte Pheromongenexpression in Δ GA-Mutanten die Ursache für die verminderte Filamentbildung. Da sich aber auf dem in Δ GA-Mutanten deletiertem Fragment keine mRNA nachweisen ließ (siehe Kapitel 2.4.5.) und auch die Sequenzanalysen keinen Hinweis auf ein Gen lieferten, bleibt weiter ungeklärt, welche Eigenschaft dieser Region zum Phänotyp der Mutanten führt.

Um den regulatorischen Effekt der GA-Region auf die Pheromongenexpression näher zu charakterisieren, wurden Experimente zur Komplementation des Phänotyps der Δ GA-Mutanten durchgeführt.

Dafür wurden sowohl das Plasmid pSC4, das ein 5,5 kb *Hin*dIII-Fragment mit der GA-Region enthält (Abb. 17 und M&M), als auch die Cosmide 8H11 und 9A1 in FB1ΔGA- bzw. FB2ΔGA-Stämme transformiert. Daraus resultierten die Stämme CA107 (*a1b1*ΔGApSC4) und CA108 (*a2b2*ΔGApSC4) bzw. Transformanden mit den Cosmiden FB1-8H11, FB2-8H11, FB1-9A1 und FB2-9A1. Da durch ektopische Integration die Regulation der potentiell komplementierenden Gene beeinflußt werden könnte, wurden je acht verschiedene Stämme in paarweiser Kombination auf die Ausbildung von dikaryotischen Filamenten im Kreuzungstest untersucht. Es wurde in keinem Fall eine Komplementation des Kreuzungsdefektes beobachtet (nicht gezeigt). Ein möglicher Grund dafür könnte sein, daß die verwendeten Fragmente nicht alle für eine Komplementation benötigten Elemente besaßen. Alternativ wäre möglich, daß die Position der inserierten Fragmente im genomischen Kontext wichtig für die Komplementation ist.

In einem weiteren Experiment zur Charakterisierung der GA-Mutation wurde eine Insertionsmutagenese durchgeführt. Dazu wurden Stämme generiert, die ein SGFPcbx-Fragment mit dem bereits beschriebenen 62 bp *mfa1*-Basalpromotor aus pCA125 an den Positionen -100, - 300 und -700 relativ zur Poly-GA-Sequenz trugen (pSC5, pSC6, pSC7, M&M und Abb. 16). Durch das Einbringen des GFP-Reportergens sollte GFP-Expression festzustellen sein, falls sich ein aktives *cis*-Element in der Nähe befindet. Bei der Analyse von jeweils drei unabhängigen Insertionsmutanten in FB1 und FB2 (FB1SC5, FB2SC5, FB1SC6, FB2SC6, FB1SC7, FB2SC7) wurde aber weder der Δ GA-Phänotyp noch GFP-Expression beobachtet (S. Cubasch, persönliche Mitteilung). In einem weiteren Experiment wurde die Mutante #1486 einer Segregationsanalyse unterzogen. Es konnten Segreganden isoliert werden, die die Δ GA-Mutation in den vier Kreuzungstypen trugen. Nach Mischung solcher Stämme mit kompatiblen Partnern konnte GFP-

Fluoreszenz in den Filamenten nachgewiesen werden, es wurde aber kein Kreuzungsdefekt in Mischungen kompatibler Mutanten festgestellt.

Da der Phänotyp der Δ GA-Mutanten nicht durch Komplementation gerettet werden konnte und Insertionen nicht zum GA-Phänotyp führten, bleibt die Ursache des Phänotyps weiter unklar.

2.3.3 Die Mutante #219

Bei der Mutante #219 kann nach Infektion von Maispflanzen schwache GFP-Fluoreszenz ausschließlich beim Wachstum in der Pflanze beobachtet werden (nicht gezeigt). Um das Integrationsereignis zu untersuchen, wurde für Southernanalysen die DNA mit BamHI geschnitten und mit pCA104 als DNA-Sonde hybridisiert. Es konnten zwei Fragmente von etwa 5,1 kb bzw. etwa 8,4 kb detektiert werden. Demnach lagen zwei Insertionen von pCA104 an unterschiedlichen Stellen im Genom vor. Bei einem Integrationsereignis war mindestens eine BamHI-Schnittstelle verloren gegangen, da das detektierte Fragment größer als der Plasmidanteil allein war (nicht gezeigt). Durch "plasmid rescue" konnten zwei Plasmide, pCA219-13 und pCA219-15 isoliert werden. Diese enthielten neben pCA104 weitere genomische DNA-Sequenzen, die vermutlich die Flanken der Insertionsstelle darstellen (Abb. 19A und Abb. 19B). Beide Plasmide wurden durch Restriktion mit verschiedenen Enzymen kartiert (nicht gezeigt). Die jeweilige U. maydis-DNA wurde sequenziert. Es zeigte sich, daß sich in pCA219-13 nur 5' des Plasmidanteils von pCA104 eine BamHI-Schnittstelle befand, die entsprechende Schnittstelle an der 3'-Position jedoch fehlte. Deshalb war vermutlich eine BamHI-Schnittstelle bei der Integration zerstört worden. Im Plasmid pCA219-15 wurden zwei BamHI-Schnittstellen durch Sequenzierung ermittelt (Abb. 20). Beide Plasmide waren demnach an BamHI-Schnittstellen inseriert. Dies läßt auf eine durch BamHI vermittelte REMI-Integrationen schließen.

Im Plasmid pCA219-13 befand sich die REMI-Insertion in einer 3120 bp langen intergenischen Region von zwei konvergent transkribierten Leserahmen, von denen einer für ein Gen kodiert, das Ähnlichkeit zu Abp1p aus *S. cerevisiae* (NP010012.1) aufwies. Das entsprechende Gen wurde *abp1* (actin binding protein 1) genannt. Das putative Stopkodon von *abp1* befand sich 770 bp vom 3'- Ende von pCA104 entfernt. Der zweite Leserahmen kodierte für ein putatives Polypeptid von 1176 aa mit Ähnlichkeit zum LIM-Domänen-Protein Lrg1p aus *S. cerevisiae* (Müller *et al.*, 1994). Für dieses Gen, *ldp1*, liegt das potentielle Startkodon 2350 bp stromaufwärts des *mfa1*-Basalpromotors (Abb. 19A). Ldp1 gehört zu einer Klasse von Proteinen, die in verschiedenen Organismen an entwicklungsbiologischen Prozessen beteiligt ist (Sanchez-Garcia und Rabbitts, 1994). Die Deletion von Lrg1p beeinträchtigt beispielsweise das Paarungsverhalten und die Sporulation in der Bäckerhefe (Müller *et al.*, 1994). Deshalb wurde versucht, *ldp1*-Nullmutanten

herzustellen. Dafür wurde das Plasmid pCA213 konstruiert, indem 3147 Basenpaare des offene Leserahmens von *ldp1* vom putativen Startkodon an durch eine Nourseothricin-Resistenzkassette ersetzt sind (M&M). pCA213 wurde in FB1 und FB2 transformiert und die Transformanden in Southernanalysen auf homologen Genaustausch hin untersucht. Aus 126 haploiden Transformanden konnte keine *ldp1*-Nullmutante isoliert werden (nicht gezeigt). Es ist deshalb gut möglich, daß *ldp1* für *U. maydis* essentiell ist.

Abbildung 19 : Schematische Darstellung der Integrationsereignisse in der Mutante #219. A: Offene Leserahmen und deren Orientierungen sind als Pfeile dargestellt. pCA104 ist nicht Maßstabsgetreu dargestellt und ist 5,1 kb groß. Die Insertionsschnittstelle ist durch Fettdruck hervorgehoben. B: Die in Northernanalysen verwendeten DNA-Sonden sind in M&M beschrieben. Das *pig2*-Gen wird pflanzenspezifisch induziert. Der Größenstandard entspricht 500 bp. B = BamHI, M = MluI, H = HindIII.

Im Plasmid pCA219-15 wurde die REMI-Insertion in einer intergenischen Region von 1220 bp lokalisiert. 250 bp stromabwärts der Insertionsstelle befand sich ein ORF, der für die C-terminalen 1023 aa eines putatives Polypeptids codiert, das signifikante Ähnlichkeit zu einem 164 kD-Protein aus *S. pombe*, dem bislang keine Funktion zugeornet wurde, aufwies (Altschul *et al.*, 1997). 723 bp stromaufwärts von der Integrationsstelle lag ein weiterer ORF, der divergent zum *mfa1*-Basalpromotor aus pCA104 transkribiert wurde (Abb. 19B). Das vorhergesagte Genprodukt war 551 aa lang und wies Ähnlichkeit zu Protein-Disulfid-Isomerasen auf (Altschul *et al.*, 1997). Tachikawa *et al.*, 1991).

In Northernanalysen wurde die Expression der vier isolierten Gene in FB1, FB2, FBD11 und Mischungen von FB1 und FB2, die auf aktivkohlehaltigen Plattenmedien inkubiert wurden, mit der Expression in Tumorgeweben aus Infektionen mit Mischungen von FB1 und FB2 verglichen. Als DNA-Sonden dienten Fragmente aus den jeweiligen ORFs (M&M, Abb. 19). Für das *abp1*-, das

ldp1- und das Gen, das Homologie zu dem 164 kD-Protein in *S. pombe* aufwies, wurde jeweils ein Transkript beobachtet, dessen Menge nicht variierte (nicht gezeigt). Letzteres wurde deshalb als *npi4* bezeichnet. Aufgrund der Northernanalyse war es unwahrscheinlich, daß die differentielle GFP-Expression in der Mutante #219 durch die regulatorischen Elemente dieser Gene vermittelt wird.

Abbildung 20: *pig2* ist spezifisch in der Pflanze induziert. Die verwendeten Stämme, Stammkombinationen und Tumorgewebe sind über den Spuren angegeben. Bei RNA-Präparationen von Stämmen, die auf Plattenmedien gewachsen waren erfolgte eine vorherige Inkubation der Stämme und Stammkombinationen von 48 h auf CM-Aktivkohle-Platten. Von RNA aus axenischer Kultur wurden jeweils 0,5 μ g Gesamt-RNA und von RNA aus Tumor- und Pflanzengeweben je 80 μ g Gesamt-RNA aufgetragen. Als Sonde zur Detektion von *pig2*-mRNA diente ein 1500 bp langes *Bam*HI/*Mlu*1-Fragment aus pCA219-15 (219-15a). Als Marker für konstitutive Genexpression wurde der Blot mit einem 150 bp *SalI/Pst*1-Fragment aus dem *ppi1*-Gen hybridisiert.

Für das Gen, das Homologie zu Protein-Disulfid-Isomerasen aufwies konnte ein differentielles Expressionsmuster beobachtet werden (Abb. 20). In haploiden Sporidien war eine geringe basale Expression detektierbar. In Mischungen kompatibler Sporidien sowie in FBD11 war demgegenüber eine Induktion festzustellen. In Tumorgewebe, erfolgte eine weitere, im Vergleich zu filamentösen Dikarien etwa achtfache Erhöhung der Expression (Abb. 20). Das Gen wurde aufgrund seiner pflanzenabhängigen Induktion pig2 (plant induced gene2) genannt. Da das REMI-Plasmid im Plasmid p219-15 umgekehrt zur Transkriptionsrichtung des pig2-Gens orientiert war, ist es wahrscheinlich, daß es sich bei dem Element, das die pflanzenspezifische GFP-Expression in der Mutante steuert, um ein cis aktives Element des pig2-Promotors handelt (Abb. 19B). Bei den fluoreszenzmikroskopischen Untersuchungen der REMI-Mutanten konnte bei der Mutante #219 keine Fluoreszenz auf Plattenmedien festgestellt werden. Dies läßt darauf schließen, daß die Expression von pig2 in haploiden Sporidien und im filamentösen Dikaryon nicht für eine detektierbare Menge an SGFP in der Mutante ausreichte. Deshalb kann davon ausgegangen werden, daß markierte Gene relativ stark exprimiert sein müssen, um mit SGFP als Reportergen die entsprechende GFP-Fluoreszenz nachzuweisen zu können. Um pig2 eine Funktion im Lebenszyklus von U. maydis zuzuordnen, wurden von K. Hansson freundlicherweise pig2Insertionsmutanten hergestellt. Dazu wurde im Plasmid pKH222 eine Hygromycin B-Kassette 45 aa nach dem putativen Translationsstart in den ORF von *pig2* inseriert. pKH222 wurde in FB1 und FB2 transformiert und die Transformanden anschließend in Southernanalysen auf homologen Genaustausch hin untersucht. Es konnte eine Reihe solcher Stämme isoliert werden (FB1 $\Delta pig2$ und FB2 $\Delta pig2$), die sich aber in Kreuzungsexperimenten und im Pathogenitätstest nicht von Kontrollstämmen unterschieden (K. Hansson, persönliche Mitteilung). Obwohl *pig2* während der biotrophen Phase induziert wurde, war es für diese Prozesse nicht essentiell.

2.3.4 Die Mutante #1685

In der Mutante #1685 wurde GFP-Fluoreszenz in Sporidien auf der Blattoberfläche beobachtet (Abb. 21), nicht jedoch auf künstlichen Medien (nicht gezeigt). Differentielle Genexpression fand damit in einem Stadium statt, in dem der morphologische Wechsel zum filamentösem Wachstum noch nicht vollzogen war. Deshalb handelte es sich bei dieser Induktion um ein frühes Ereignis vor der biotrophen Phase, das aber dennoch spezifisch für die Interaktion mit der Pflanze ist. Southernanalysen der Mutante #1685 zeigten, daß hier 25 -30 Plasmide in Tandemanordnung im Genom integriert waren (Abb. 24). Damit war eine Reisolierung der Flanken durch Methoden, die auf Ligation beruhen (Transformation oder PCR-Methode) nicht möglich (H. Böhnert und K.- H. Braun, persönliche Mitteilungen). Deshalb wurde die 5'- Flanke an der Integrationsstelle durch Southernhybridisierung mit dem 62 bp *mfa1*-Basalpromotorfragment aus pCA125 als DNA-Sonde identifiziert (Abb. 22). Durch den Vergleich mit dem Bandenmuster im Ausgangsstamm FBD11 konnte die endogene Kopie von *mfa1* nachgewiesen und dadurch von der 5'- Flanke an der Insertionsstelle von pCA125 unterschieden werden (Abb.22).

Die genomische DNA von FBD11 und der Mutante #1685 wurde mit verschiedenen Enzymen geschnitten (Abb. 22). Nach der Hybridisierung mit dem *mfa1*-Basalpromotorfragment war in FBD11 jeweils eine Bande zu erkennen, die der genomischen Kopie von *mfa1* entsprach. In der Mutante waren drei Banden zu erkennen. Ein stark hybridisierendes Fragment mußte den repetitiven Vektoranteil repräsentieren. Zwei Banden gleicher Intensität sollten der 5'-Flanke an der Insertionsstelle und der endogenen Kopie von *mfa1* entsprechen (Abb. 22). Ein 800 bp großes *NcoI*-Fragment, das die stromaufwärts liegenden Fragmente an der Insertionsstelle enthielt, wurde für eine Klonierung ausgewählt, da sich die größeren, potentiell störenden Vektorfragmente hiervon gut abtrennen ließen. Dazu wurde die genomische DNA der Mutante #1685 mit *NcoI* geschnitten und Fragmente der entsprechenden Größe kloniert. Nach Transformation dieser partiellen genomischen *U. maydis* DNA-Bank in *E. coli* konnte durch Hybridisierung mit dem *mfa1*-

DIC GFP

Basalpromotor-Fragment in einem Koloniehybridisierungsexperiment ein Plasmid mit einem 800 bp langen *NcoI*-Fragment isoliert werden (pCA242, M&M).

Abbildung 21: In der Mutante #1685 ist GFP-Expression in Sporidien auf der Blattoberfläche zu beobachten. Die Mutante #1685 wurde in junge Maispflanzen injiziert. Nach 24 h wurden Proben jeweils lichtmikroskopisch (DIC) und fluoreszenzmikroskopisch (GFP) beobachtet und auf Pilzstrukturen und grüne Fluoreszenz hin untersucht (M&M). Der Gößenstandard, als schwarzer Balken dargestellt, entspricht 3 μ m.

Die Sequenzierung ergab, daß das Fragment neben dem *mfa1*-Basalpromotor noch unbekannte genomische *U. maydis*-Sequenzen, vermutlich aus dem 5'-Bereich an der Insertionsstelle, enthielt (Abb. 23A und M&M). Die *Bam*HI-Schnittstelle an der Integrationsstelle war ebenfalls erhalten geblieben, so daß höchstwahrscheinlich eine *Bam*HI vermittelte REMI-Integration vorlag. Da sich auf dem 800 bp-Fragment kein ORF befand, wurden mit dem Fragment als DNA-Sonde die Cosmide 10E1 und 21A2 isoliert, die weitere flankierende Sequenzen enthielten. Nach der Sequenzierung stellte sich heraus, daß die Insertion von pCA125 2509 bp stromaufwärts eines, zum GFP-Gen divergent transkribierten ORFs erfolgt war. Dieser ORF, *pig3*, kodiert für ein putatives Polypeptid von 936 aa, das keine Homologie zu bekannten Proteinen aufwies (Tabelle 1). 248 bp stromabwärts der REMI-Insertion befand sich ein zweiter ORF, *pig4*, der konvergent zu *pig3* transkribiert wird und für ein putatives Polypeptid von 706 aa kodiert (Abb. 23A).

Das Pig4-Protein zeigte in Datenbankanalysen (Altschul *et al.*, 1997) signifikante Ähnlichkeit zu Mitgliedern der Hexose-Transporter-Familie (Abb. 32 und Tabelle 1). Weitere Computeranalyse (Expasy tools) sagten für Pig4 neben zwei Hexose-Transportmotiven, die in Hexosetransporter typischerweise vokommenden 12 Transmembrandomänen voraus (Abb. 32).

Interessanterweise wurde für beide Gene Induktion während der biotrophen Phase festgestellt (Abb. 24). Es lag deshalb die Vermutung nahe, daß sich in dieser Umgebung noch weitere differentiell exprimierte Gene befinden. Auf insgesamt 20180 bp, im folgenden als *p*-Locus bezeichnet, konnten

Abbildung 22: Southernanalyse der Mutante #1685 zur Identifizierung der genomischen 5' Flanke. Die verwendeten Stämme sind angegeben. Die DNA wurde wie folgt geschnitten: Spur 1: *Pst*I; Spur 2: *Nco*I; Spur 3: *Eco*RI; Spur 4: *Sac*II; Spur 5: *Sac*I; Spur 6 *Nco*I/*Pst*I; Spur 7 *Nco*I/*Pst*I; Spur 8: *Nco*I/*Eco*RI; Spur 9: *Nco*I; Spur 10: *Eco*RI; Spur 11: *Pst*I, aufgetrennt, geblottet und anschließend mit dem *mfa1*-Basalpromotorfragment als Sonde hybridisiert. Die mit # gekennzeichneten Banden entsprachen der endogenen Kopie von *mfa1*, wobei die Länge der Fragmente durch Sequenzanalysen des bekannten *a1*-Locus ermittelt wurden oder in FBD11 als Fragmente gleicher Länge nachzuweisen waren. Mit ° gekennzeichnete Banden stellten die Plasmidanteile dar. Die mit * markierte Banden entsprachen der 5' Flanke an der Insertionsstelle im Genom der Mutante. Als Größenmarker diente *Pst*I geschnittene λ -DNA.

4 weitere ORFs, *npi1*, *npi2*, *npi3* und *pig6* sowie ein Sequenzabschnitt, der große Ähnlichkeit zu 5,8s rRNA Genen aufwies, identifiziert werden. *npi3*, *npi1* und *pig6* lagen stromaufwärts der Insertionsstelle, wobei *pig6* und *pig4* divergent und *npi1* konvergent zur Transkriptionsrichtung des GFP-Gens abgelesen wurden (Abb. 23B). *pig3* und *npi2* liegen stromabwärts der Insertionsstelle und werden divergent zum GFP-Gen transkribiert (Abb. 23B). *pig6* kodiert für ein putatives Polypeptid von 603 aa, das hohe Ähnlichkeit zur "multiple drug resistance transporter"-Familie aufweist (Abb. 33 und Tabelle 1). Laut Vorhersage des Protein-programms "Expasy Tools" besitzt Pig6 12 Transmembrandomänen (Abb. 31). *npi1* kodiert für ein putatives Polypeptid von 649 aa Länge, das Homologie zu einem nicht charakterisierten Protein aus Hefe aufweist (YLR290C). Der ORF von *npi2* wurde durch ein Stopkodon unterbrochen, so daß die Größe des putativen Polypeptids nicht bekannt ist. Zudem konnte in einer Proteinanalyse keine Homologie zu bekannten

Proteinen festgestellt werden. Die N-terminalen 351 aa des putativen Npi3-Polypeptids weisen keine Homologie zu bekannten Proteinen auf.

Abbildung 23. A: Schematische Darstellung der REMI-Insertion in der Mutante #1685. Die Insertionsschnittstelle ist durch Fettdruck hervorgehoben. pCA125 ist nicht maßstabsgetreu dargestellt und ist 5,1 kb groß. Pfeile geben die Orientierung der Transkriptionsrichtungen an. B = BamHI, N = NcoI, H = HindIII. Der Größenstandard entspricht 500 bp. B: Der *p*-Locus von *U. maydis* als ORF-Karte dargestellt. pCA125 markiert die Insertionsstelle. ORFs sind hervorgehoben, wobei pflanzenspezifisch exprimierte Gene grün und konstitutiv exprimierte Gene blau dargestellt sind. Der Bereich mit Homologie zu 5,8s rRNAs ist rot gekennzeichnet. Die für Northernanalysen verwendeten DNA-Sonden und davon detektierten Transkripte sind angegeben und in M&M näher beschrieben. Der Größenstandard entspricht 1 kb.

Gene	Anzahl der aa der putativen Polypeptide	Homologie zu	Organismus
nia2	026	koina Homologia zu	
pigs	930	bekannten Proteinen	
pig4	706	Hexosetransporter	D. radiodurans
pig5	-	keine Homologie, kein ORF?	
pig6	603	"multiple drug	P. olsonii
		resistance transporter"	
npi1	649	Homologie zu YLR290C	S. cerevisiae
npi2	?	keine Homologie zu	
		bekannten Proteinen	
npi3	351	keine Homologie zu	
		bekannten Proteinen	
U.m. 5,8s rRN	VA -	5,8s rRNA	

Tabelle 1: Die Gene des *p*-Locus

Um die Expression der Gene des *p*-Locus zu bestimmen, wurden Northernanalysen durchgeführt, wobei jeweils die Genexpression in Mischungen aus FB1 und FB2 auf aktivkohlehaltigen Medien mit der in jungen und alten Tumorgeweben verglichen wurde. Als junge Tumore wurden solche Stadien bezeichnet, in denen die Sporulation noch nicht eingesetzt hatte, während in sogenannten alten Tumoren bereits Teliosporen gebildet wurden (M&M). Alle verwendeten Sonden sind in Abb. 25 bzw. M&M angegeben. In Vorexperimenten wurde gezeigt, daß diese nicht mit RNA-Spezies aus der Maispflanze kreuzhybridisieren (nicht gezeigt). Für *npi1, npi2* und *npi3* wurde je ein Transkript nachgewiesen, dessen Menge in den einzelnen Stadien nicht variierte. Demzufolge sind diese Gene unabhängig von Pflanzenfaktoren exprimiert (Abb. 24).

Die Expression der *pig4*-mRNA war nur in Tumorgewebe nachweisbar, nicht jedoch in axenischer Kultur, wobei die Expression in alten Tumoren höher war als in jungen (Abb. 24). Das *pig4*-Gen wird demnach spezifisch in der späten Entwicklungsphase transkribiert. Für *pig6* konnte keine oder nur sehr geringe Transkription in Tumorgewebe detektiert werden. Dafür war *pig6* in Mischungen von FB1 und FB2 auf aktivkohlehaltigen Plattenmedien stark exprimiert (Abb. 24). Das *pig6*-Gen wird demnach während der biotrophen Phase reprimiert.

Abbildung 24: Die Expression von *pig3*, *pig4*, *pig5* und *pig6* ist pflanzenspezifisch reguliert. Zur Isolierung von RNA aus Tumorgewebe wurden Maispflanzen mit Mischungen aus FB1 und FB2 infiziert und die Tumore wie angegeben geerntet. Der RNA-Extraktionen aus Kreuzungen von FB1 und FB2 ging eine 48 stündige Inkubation auf CM-Aktivkohle-Platten voraus. Es wurden $0,07 \mu g$ poly A⁺ RNA aus axenischer Kultur und je 1 μg poly A⁺ RNA aus Tumorgewebe pro Spur aufgetragen (M&M). Als Sonden zur Analyse der Genexpression wurden folgende Fragmente verwendet: für *pig3* ein 2,1 kb *Sph*I-Fragment (1685h) aus pKH541; für *pig4* ein 1,6 kb *NcoII/Xba*I-Fragment(1685d) aus pKH519; für *pig5* ein 480 bp *Hind*III/*Spe*I-Fragment (1685e) aus pKh541; für *pig6* ein 2,3 kb *Bam*HI/*Eco*RI-Fragment (1685b) aus pKH551; für *npi1* ein 850 bp *Sph*I/*Nco*I-Fragment (1685c) aus pKH551; für *npi2* ein 900 bp *Sph*I-Fragment (1685j) aus KH550; für *npi3* ein 600bp *Pst*I/*Sac*I-Fragment aus pKH570 (1685a). Als Mengenbestimmung für konstitutive Genexpression wurde der Blot mit einem 150 bp *SalI*/*Pst*I-Fragment aus dem *ppi1*-Gen hybridisiert.

Bei den Northernanalysen konnte mit dem Fragment 1685f eine weitere differentiell exprimierte mRNA-Spezies, *pig5*, nachgewiesen werden (Abb. 24). Die höchste *pig5*-Expression konnte in jungen Tumoren beobachtet werden, während in älteren Tumoren weniger und auf

aktivkohlehaltigen Plattenmedien keine Transkription nachweisbar war (Abb. 24). Der *pig5*-mRNA konnte durch Sequenzanalysen aber kein ORF zugeordnet werden. Ob *pig5* für ein Protein kodiert ist somit unklar. Darüber hinaus konnte mit dem Fragment 1685f und weiteren Sonden das *pig3*-Gen nachgewiesen werden. Es wurden dabei drei mRNA-Spezies detektiert (Abb. 24). Ein großes Transkript (ca. 4000 - 4300 nt) konnte in allen untersuchten Stadien beobachtet werden, wobei es in frühen Tumorstadien (sehr junge Tumore) kaum exprimiert wurde (nicht gezeigt). Zwei kürzere mRNA-Spezies (ca. 3000 - 3300 nt) wurden ausschließlich in Tumorgewebe detektiert (Abb. 24). Für die kurzen Transkripte konnte somit ein klares, pflanzenabhängiges Regulationsmuster etabliert werden.

Zusammenfassend läßt sich sagen, daß im *p*-Locus bislang für vier Gene *pig3*, *pig4*, *pig5* und *pig6* pflanzenspezifisch regulierte Transkription nachgewiesen wurde. Alle diese Gene werden zu unterschiedlichen Zeitpunkten in der Entwicklung von *U. maydis* exprimiert. Deshalb sind vermutlich verschiedene Pflanzenkomponenten an der Regulation dieser Gene beteiligt. Zwischen den pflanzenregulierten Genen liegen drei konstitutiv exprimierte Gene, die somit unabhängig von der Regulation der *pig*-Gene exprimiert werden.

Abbildung 25: Die drei Transkripte von *pig3* unterscheiden sich in ihrem 5' UTR. Die PCR-Reaktionen wurden wie in M&M beschrieben durchgeführt und die Produkte anschließend in einem Agarosegel aufgetrennt. Die verwendeten DNAs und Primer sind über den Spuren angegeben. Die Färbung von DNA erfolgte mit EtBr (M&M) und wurden mittels einer Geldoc Anlage (Biorad) detektiert.

Da sich von *pig3* beim Wachstum in der Pflanze in sehr frühen Tumorstadien hauptsächlich die beiden kürzeren mRNA-Spezies, das große Transkript jedoch kaum nachweisen ließ, stellte sich die Frage, ob die Transkription an unterschiedlichen Stellen initiiert wird, und/oder die unterschiedlichen mRNAs für unterschiedliche Proteine kodieren. Durch Northernanalysen mit RNA aus jungen und alten Tumoren sowie RNA von Mischungen aus FB1 und FB2 von aktivkohlehaltigen Plattenmedien wurde durch Hybridisierung mit entsprechenden Sonden (Abb. 23B) aus der 5' Region von *pig3* festgestellt, daß das große Transkript einen etwa 1kb langen 5'

UTR besitzt (nicht gezeigt). Durch RT-PCR- Experimente wurde nun untersucht, ob die Varianz in der Transkriptlänge zu einer Veränderung im putativen Pig3-Polypeptid führt.

Die Oligonucleotide CA30, CA31 und CA33 wurden so gewählt, daß ihre Bindestellen sich an den Positionen +480, -210 und -700 bezüglich dem putativen Startkodon von pig3 befinden. Wenn eine entsprechend lange mRNA existiert, können mit den Primerpaaren Fragmente von 790 bp (CA30/CA33) bzw. 1180 bp (CA30/CA31) amplifiziert werden. Die Fragmente umfassen jeweils das erste Startkodon von *pig3*. Als Matrizen dafür wurden cDNAs, ausgehend von zwei unabhängigen Gesamt-RNA-Präparationen aus "sehr jungen" Tumoren bzw. Mischungen von FB1 und FB2 von aktivkohlehaltigen Plattenmedien, hergestellt (M&M). Mit der Primerkombination CA30/CA33 konnte sowohl in cDNAs aus Mischungen von FB1 und FB2 als auch aus cDNA aus Tumorgewebe das 790 bp Fragment amplifiziert werden (Abb. 25). In der Oligonucleotid-kombination CA30/CA31 konnte jedoch nur mit cDNA aus Mischungen von FB1 und FB2 nicht jedoch mit cDNA aus Tumorgewebe das 1180 bp Fragment amplifiziert werden (Abb. 25). Nach Sequenzierung der PCR-Produkte wurden in keinem Amplikon Sequenzabweichungen zur genomischen *pig3*-Sequenz festgestellt (nicht gezeigt). Das bedeutet, daß alle Transkripte das gleiche putative Startkodon beinhalten und die Transkriptlänge im 5' UTR von *pig3* variiert.

Es wird deshalb angenommen, daß der N-Terminus von Pig3 in allen Stadien das gleiche Polypeptid ist. Spleissvarianten im C-Terminus von Pig3 sind jedoch nicht ausgeschlossen.

2.3.4.1 Die *pig3*-Expression wird zu verschiedenen Zeitpunkten im Lebenszyklus von U. *maydis* an- und abgeschaltet

pig3 schien aufgrund der Lage der REMI-Insertion das Gen zu sein, dessen regulatorische Elemente die GFP-Expression in der Mutante #1685 steuern. Deshalb wurde in GFP-Reporterstämmen die *pig3*-Expression über den gesamten Lebenszyklus hinweg verfolgt. Dazu wurde im Plasmid pCA307 der ORF von *pig3* vom ersten Startkodon bis zum Stopkodon durch das EGFP-Gen ersetzt (M&M). pCA307 wurde in die haploiden Stämmen FB1 (*a1b1*) und FB2 (*a2b2*) transformiert und homologer Genaustausch durch Southernanalyse bestätigt (nicht gezeigt). Durch die homologe Rekombination entstanden dabei nicht nur die gewünschten Reporterstämme, sondern auch *pig3*-Deletionsmutanten (siehe unten). Homologer Genaustausch konnte für zwei unabhängige FB1-Derivate (FB1 $\Delta pig3$ -1 und FB1 $\Delta pig3$ -2 von K. Hansson) und zwei FB2-Derivate (CA307-7, CA307-13) in dieser Arbeit nachgewiesen werden (nicht gezeigt). Für die Expressionsanalyse von *pig3* wurden Maispflanzen mit Mischungen kompatibler GFP-

Reporterstämme infiziert und anschließend die Transkription von *pig3* fluoreszenzmikroskopisch bestimmt (Abb. 26 und M&M).

Abbildung 26: GFP-Expression in *pig3*-Reporterstämmen in verschiedenen Stadien der biotrophen Phase von *U. maydis*. Infiziertes Pflanzenmaterial wurde nach 24 h und anschließend alle 2 Tage nach Infektion auf Pilzbefall und GFP-Fluoreszenz hin untersucht. Der Größenstandard entspricht 3 μ m. Weitere Erläuterungen siehe Text.

In einem Vorexperiment wurde die GFP-Expression in den Reporterstämmen nach Inkubation in PD- und MM-Flüssigmedium untersucht. Dabei konnte nur sehr schwache GFP-Expression

beobachtet werden (Abb. 26B und nicht gezeigt). In Sporidien, die sich auf der Blattoberfläche befanden, war hingegen starke GFP-Expression zu sehen (Abb. 26D und 26F). Im Vergleich dazu zeigten Sporidien mit Konjugationshyphen geringere GFP-Fluoreszenz, und auch in dikaryotischen Filamenten (Abb. 26H) und appressorienartigen Strukturen (Abb. 26J) war geringere GFP-Expression als in Sporidien zu beobachten. Es kommt also zur Induktion von *pig3* in Sporidien auf der Blattoberfläche, in den folgenden Stadien wird *pig3* wieder reprimiert. In Hyphen, die innerhalb der Pflanze wuchsen, war zunächst keine GFP-Fluoreszenz nachweisbar (Abb. 26L, 26N und 26P). Sobald Tumore gebildet wurden, war in den Hyphen erneut GFP-Fluoreszenz zu erkennen (Abb. 26X) und war in Teliosporen nicht mehr nachweisbar (Abb. 26V). Damit kommt es während der Tumorentwicklung erneut zur Induktion von *pig3*, der eine Repression in Teliosporen folgt. Das Expressionsmuster von *pig3* in den GFP-Reporterstämmen entsprach damit der GFP-Expression in dieser Mutante.

pig3 unterliegt demnach einer komplexen differentiellen Regulation, die verschiedene Induktionsund Repressionsschritte beinhaltet. Die Signale, die zu dieser Regulation führen, sollten sowohl auf der Pflanzenoberfläche als auch in Tumorgewebe zu finden sein.

2.3.4.2 Deletionsmutanten für pig3 und pig5

Für pig5 konnte kein offensichtlicher ORF identifiziert werden. Kurze ORFs in dieser Region wiesen keine Ähnlichkeit zu bekannten Proteinen auf. Um dennoch pig5-Nullmutanten herzustellen, wurde ein 354 bp Fragment im Genom deletiert, das als Sonde in Northernanalysen die pig5mRNA erkannt hatte (nicht gezeigt). Diese Deletion verhindert vermutlich nicht nur die Expression von pig5 sondern auch die von pig3, da davon auch der 5' UTR von pig3 betroffen ist. Im Plasmid pCA310 wurde ein 354 bp große Fragment deletiert und durch die cbx-Resistenzkassette ersetzt (M&M). pCA310 wurde in FB1 und FB2 transformiert und Stämme mit homologem Genaustausch durch Southernanalyse selektiert (nicht gezeigt). In den unabhängigen Transformanden FB1 $\Delta pig5#3$, FB1 $\Delta pig5#8$, FB2 $\Delta pig5#13$, FB2 $\Delta pig5#25$ war pig5 durch den entsprechenden Bereich pCA310 ersetzt. In einem Kreuzungstest kompatibler Mutanten auf aktivkohlehaltigen Plattenmedien konnte kein verändertes Paarungsverhalten festgestellt werden. Um zu untersuchen, ob pig5 an der pathogenen Entwicklung beteiligt ist, wurden Maispflanzen mit Mischungen aus kompatiblen Mutantenstämmen infiziert. Im Vergleich zu Infektionen aus FB1 und FB2 ergab sich auch hier keine Veränderung in der Pathogenität (nicht gezeigt). pig5 wird demnach weder für die Paarung noch für die pathogene Entwicklung benötigt. Da der Verlust des pig5Transkriptes nicht experimentell bestätigt wurde und für *pig5* kein ORF abgeleitet werden konnte, muß diese Aussage jedoch mit Vorsicht bewertet werden.

Die Reporterstämme für die pig3-Expressionsstudien waren durch den Austausch von pig3 durch GFP gleichzeitig Nullmutanten von pig3 (siehe oben). Alle Reporterstämme waren lebensfähig und zeigten gegenüber den Ausgangsstämmen keine abweichende Morphologie. Zunächst wurde das Kreuzungsverhalten von Apig3-Mutanten auf aktivkohlehaltigen Plattenmedien untersucht. Dazu wurden CA307-7, CA307-13 und FB2Apig3-1 und FB2Apig3-2 untereinander und gegen die Ausgangsstämme gekreuzt. Sowohl die Kreuzung einer Nullmutante gegen einen kompatiblen Wildtypstamm als auch die Kreuzung kompatibler Mutanten untereinander führte zur Ausbildung des filamentösen Dikaryon und damit zu keiner Veränderung gegenüber der Reaktion in kompatiblen Wildtypstämmen (nicht gezeigt). Da pig3 verstärkt beim Wachstum in der Pflanze exprimiert war, wurde als nächstes der Einfluß des Funktionsausfalls von pig3 auf die pathogene Entwicklung untersucht. Dazu wurden Maispflanzen mit den Stämmen CA307-7 und FB2Apig3-1 bzw. CA307-13 und FB2Apig3-2 infiziert. 90 % der Pflanzen zeigten nach Infektion mit kompatiblen Δpig3-Mutanten Anthocyanfärbung, 98 von 117 infizierten Pflanzen bildeten Tumore aus. Da für die Kontrollinfektion mit den Ausgangsstämmen ebenfalls 92 % Anthocyanbildung und 95 % Tumorentwicklung festgestellt wurde, wird pig3 auch nicht für die sexuelle Entwicklung benötigt.

2.3.4.3 Isolierung von Mutanten, die erhöhte pig3-Expression zeigen

Die pflanzenregulierte Expression der *pig*-Gene warf die Frage auf, welche Faktoren diese Gene regulieren. Eine Möglichkeit solche Faktoren zu isolieren, ist die Erzeugung von regulatorischen Mutanten der *pig*-Gene, die in einem zweiten Schritt komplementiert werden können. *pig3* wurde aufgrund seines Expressionsmusters für eine weitere Charakterisierung ausgewählt, weil Faktoren, die an seiner Regulation beteiligt sind, vermutlich in der frühem Phase der Entwicklung benötigt werden (s. Abb. 26). In einem ersten Schritt wurde der Promotor von *pig3* durch eine Deletionsanalyse näher charakterisiert.

2.3.4.3.1 pig3 ist negativ reguliert

Für Promotordeletionen wurden drei Plasmide hergestellt, die je ein 1077 bp (pCA304), ein 480 bp (pCA305) und ein 262 bp (pCA306) langes Promotorfragment von *pig3* als translationale Fusion an das EGFP-Gen trugen (Abb. 27A und M&M). Für die Transformation in FB2 wurden die

Plasmide jeweils in der *cbx*-Resistenzkassette linearisiert. Erfolgt eine homologe Rekombination am endogenen *cbx*-Locus, so sollten sich alle Konstrukte im selben genomischen Kontext befinden. Dies erlaubt eine vergleichende Expressionsanalyse (Abb. 27A und M&M). Singuläre, homologe Integrationen wurden durch Southernanalysen bestätigt (nicht gezeigt). In den so selektierten Reporterstämmen CA304 (P_{1077}), CA305 (P_{480}) und CA306 (P_{262}) wurde die Aktivität der jeweiligen Promotorfragmente über die GFP-Expression fluoreszenzmikroskopisch und in Northernanalysen bestimmt (Abb. 27B).

Abbildung. 27: *pig3* ist negativ reguliert. A: Schematische Darstellung der jeweiligen Promotor-GFP-Fusionen in den Stämme CA304, CA305 und CA306. B: Fluoreszenzmikroskopische Analyse der GFP-Fluoreszenz in den Reporterstämmen CA304, CA305 und CA306. Die Reporterstämme wurden bis zu einer OD₆₀₀ von 0,8 in PD-Medium inkubiert und anschließend licht- und fluoreszenzmikroskopisch untersucht. Die jeweils verwendeten Stämme sind angegeben. C: Northernanalyse für die Reporterstämme CA304, CA305 und CA306. Die Stämme wurden in PD-Flüssigmedium angezogen und die RNA anschließend bei einer OD₆₀₀ von 0,8 isoliert. Als Kontrolle für konstitutive GFP-Expression wurde RNA aus dem Stamm GW31 (*a2b2* P_{otef}GFP, G. Weinzierl, nicht publiziert) extrahiert. Es sind je 10 μ g RNA pro Spur geladen. Zur Detektion von GFP wurde ein 723 bp langes *NcoI/Not*I-Fragment aus pCA125 verwendet (M&M). Als Ladekontrolle wurde mit einem 1700 bp *Eco*RV/*Sma*I-Fragment aus dem *cbx*-Gen hybridisiert.

Im Stamm CA304 war nur geringe GFP-Fluoreszenz zu beobachten, während in CA305 leichte und in CA306 starke GFP-Expression zu sehen war (Abb. 27B). Ein vergleichbares Expressionsmuster ergab sich auch in Northernanalysen (Abb. 27C). Diese Daten ließen darauf schließen, daß der

pig3-Promotor negativ reguliert war und sich zwischen Position -1077 und -262 *cis*-Elemente befinden müssen, die für die Regulation wichtig sind. Auffallend war, daß mit der Verkürzung der Promotorfragmente auch eine Verkürzung der Transkriptlänge einherging. Daraus ließe sich ableiten, daß möglicherweise die Transkriptionsinitiation vom *cbx*-Locus ausgehend erfolgt. Es ist jedoch anzumerken, daß in verschiedenen Deletionsanalysen von Promotoren im *cbx*-Locus bislang keine Verkürzungen der mRNA-Längen beobachtet wurden (G. Weinzierl, C. Basse, A. Brachmann, persönliche Mitteilung). Des weiteren wurden die Deletionskonstrukte von *pig3* in verschiedenen Orientierungen in den *cbx*-Locus integriert, wobei in allen Fällen die Verkürzungen beobachtet wurde (nicht gezeigt). Deshalb wurde vermutet, daß an kryptischen Initiationsstellen im Promotor von *pig3* diese Transkripte initiiert werden.

Diese Daten zeigten für pig3 negative Regulation. Es kann deshalb angenommen werden, daß die Faktoren, die pig3 regulieren, eine Derepression vermitteln.

2.3.4.3.2 Versuch zur Isolierung von Mutanten, die in der Regulation von pig3 gestört sind

Um Mutanten zu erzeugen, die in der negativen Regulation von *pig3* gestört sind, wurde ein UV-Mutagenesansatz gewählt. Die Experimente mit den GFP-Reporterkonstrukten hatten gezeigt, daß die negative Regulation über die Region -1077 bis -262 im *pig3*-Promotor erfolgt, während das 262 bp-Promotorfragment keine Repression vermittelt. Für die Mutagenese wurden Stämme hergestellt, die unter der Kontrolle beider Promotorfragmente das dominante Markergen *hph* exprimierten, dessen Expression Wachstum auf Hygromycin B-haltigen Medien erlaubt.

Hierfür wurden die beiden Plasmide pCA317 und pCA318 konstruiert, die unter der Kontrolle des 262 bp- bzw. 1077 bp-Fragmentes *hph* als translationale Fusion exprimieren. Beide Plasmide wurden in FB2 transformiert. Anhand einer Southernanalyse wurden Stämme ausgewählt, die singuläre Insertionen im *cbx*-Locus trugen (nicht gezeigt). Die Stämme CA317-2 und -4 tragen die *hph*-Fusion mit dem 262 bp Promotor-Fragment von *pig3*, die Stämme318-6 und318-8 tragen das entsprechende 1077 bp-Fragment. Die endogene Kopie von *pig3* blieb dabei erhalten. Zur Bestimmung der wachstumslimitierenden Hygromycin B-Konzentration wurden die Stämme auf PD-Platten ausgestrichen, denen 0, 50, 200 und 300 μ g/ml Hygromycin B zugesetzt waren. Nach 4 Tagen Inkubation wurde das Wachstum dieser Stämme in Abhängigkeit von der Hygromycin B-Konzentration untersucht und mit dem Wachstum von FB1 und FB2 unter den gleichen Bedingungen verglichen (Abb. 28).

Die Wildtypstämme zeigten bereits bei Konzentrationen von 50 μ g/ml Hygromycin B kein Wachstum mehr. Die Stämme CA317-2 und CA317-4 zeigten Wachstum bei allen getesteten Hygromycin B- Konzentrationen, wobei aber bei 300 μ g/ml Hygromycin B nur geringes

Wachstum zu erkennen ist. Das Wachstum der Stämme CA318-6 und CA318-8 war bis zu einer Hygromycin B-Konzentration von 50 μ g/ml dem der CA317-Stämme vergleichbar. Bei Konzentrationen von 200 μ g/ml war aber deutlich reduziertes und bei 300 μ g/ml Hygromycin B nur noch geringes Wachstum zu erkennen. Durch diese Experimente wird die basale Expression von *pig3*, ausgehend vom 1077 bp Promotorfragment deutlich, da bei einer Konzentration von 50 μ g/ml Hygromycin B Wachstum aller Transformanden zu beobachten war. Bei höheren Hygromycin B-Konzentrationen wuchsen CA318-Stämme besser als CA317-Stämme. Die Selektion nach der Mutagenese erfolgte deshalb bei einer Hygromycin B Konzentration von 300 μ g/ml. In einem Vorexperiment wurde die UV-Dosis für die Mutagenese im Stamm CA318-6 so eingestellt, daß

Abbildung 28: Expressionsanalyse in den *pig3hyg*-Reporterstämmen. Die Stämme FB1, FB2, CA318-6 und -8, sowie CA317-2 und -4 wurden auf PD-Platten mit unterschiedlichen Konzentrationen an Hygromycin B (0, 50, 200 und 300 μ g/ml) ausgestrichen. Anschließend wurden die Stämme 4 Tage bei 28°C inkubiert. Die Platten wurden mit einem GelDoc-Imager (Biorad) fotografiert.

0,1 - 1 % der Zellen überlebten (M&M). Dies sollte zu etwa einer Mutation pro Zelle führen (Holliday, 1954). Es wurden insgesamt 10^9 CA318-6-Zellen mutagenisiert. Zwei Stämme, CAP1 und CAP2 zeigten Wachstum bei einer Konzentration von 300 μ g/ml Hygromycin B (nicht gezeigt). Für beide Mutanten wurde die Expression des endogenen *pig3*-Gens in PD-Flüssigmedium untersucht. Dabei konnte kein Expressionsunterschied im Vergleich zum Ausgangsstamm CA318-6 festgestellt werden (nicht gezeigt). Diese Mutanten haben vermutlich spontan Hygromycin B-Resistenz erlangt, die somit nicht auf eine Mutation in einem Regulator der *pig3*-Expression zurückzuführen waren.

3 Diskussion

3.1 Tumorspezifische Expression der Gene der a- und b-Paarungstyploci

In dieser Arbeit konnte gezeigt werden, daß die Regulation der Gene, mfa1, pra1, bE1 und lga2 aus den Paarungstyploci a und b nicht nur während der Kreuzung haploider Sporidien (Hartmann et al., 1996; Romeis et al., 2000; Urban et al., 1996), sondern auch während des Wachstums in der Pflanze einer komplexen Kontrolle unterliegt. In Northernanalysen aus Tumorgewebe, das aus Infektionen mit Mischungen aus FB1 und FB2 hervorging, wurde im Vergleich zu filamentösen Dikarien Induktion von mfal und pral bzw. Repression von lga2 und bEl beobachtet. Für die unter Pheromonstimulation bzw. durch ein aktives b-Heterodimer stark induzierten Gene mfal und lga2 waren die Expressionsunterschiede leicht festzustellen und dadurch das Expressionsmuster sicher zu bestimmen. Dagegen blieb aufgrund der geringen Menge an pilzlicher RNA in Tumorgewebe der Nachweis schwach exprimierter RNAs schwierig. Für prfl, bE1 und lga2 war damit zunächst nicht klar, ob es zu einer vollständigen Repression kommt oder diese Gene nur wesentlich schwächer exprimiert werden. In Tumorgewebe konnte allerdings keine b-abhängige Regulation von mfa/pra bzw. von lga2 beobachtet werden. Dies steht in Einklang mit einer Repression des bE1-Gens. Deshalb ist es wahrscheinlich, daß in Tumorgewebe kein aktives bE/bW-Heterodimer vorhanden ist. Darüber hinaus ist ein weiteres Gen, *dik6*, das wie *lga2* durch das aktive b-Heterodimer auf Plattenmedien aktiviert wird, in Tumoren nicht exprimiert (G. Weinzierl, persönliche Mitteilung). In diesem Zusammenhang war besonders erstaunlich, daß selbst eine konstitutive Expression des aktiven bE/bW-Heterodimers in Tumorgewebe nicht zur Repression von mfal führte. Im Tumorgewebe müssen demnach Bedingungen vorliegen, die die regulatorische Funktion des aktiven b-Komplexes unterdrücken oder überlagern. Die Daten zeigen zudem, daß der Schlüsselregulator der pathogenen Entwicklung, das aktive bE/bW-Heterodimer, in der frühen Phase dieser Entwicklung hauptsächlich in Filamenten auf der Pflanzenoberfläche benötigt wird. In späteren Phasen, während des Wachstums in der Pflanze, scheint dieser Komplex nicht mehr notwendig zu sein.

Es war bekannt, daß für die Transkription von *mfa1* auf Plattenmedien der Transkriptionsfaktor Prf1 benötigt wird (Hartmann *et al.*, 1996). Wie die Experimente mit einem solopathogenen, haploiden Stamm, in dem *prf1* deletiert ist (HA108), gezeigt haben, wird *prf1* auch für die Transkription von *mfa1* in Tumorgewebe benötigt. Die Expression der Pheromon- und Pheromonrezeptorgene könnte beim Wachstum in der Pflanze darüber hinaus zu einem autokrinen Stimulus führen, der die Transkription von *mfa1* weiter antreibt (Abb. 29). Für eine differenziertere Expressionsanalyse und um die Regulation zeitlich einzugrenzen, wurde die Expression von *mfa1* und *lga2* über den gesamten Lebenszyklus hinweg in Reporterstämmen, die GFP unter der Kontrolle der jeweiligen Promotoren exprimierten, untersucht. *mfa1* war in etwa 30% der haploiden Sporidien in Kreuzungen auf aktivkohlehaltigen Plattenmedien exprimiert. In Konjugationshyphen kam es zur Induktion von *mfa1*. Das heterogene Bild der *mfa1*-Expression in den Sporidien spiegelt dabei vermutlich die Rezeption der eingehenden Signale wieder. Je nach Signalstärke bzw. Aufnahme der Signale wird dann die Paarungsbereitschaft durch die Bildung von Konjugationshyphen ausgelöst, die mit einer erhöhten Pheromongenexpression einhergeht. In filamentösen Dikarien auf der Blattoberfläche war 24 h nach der Infektion nur noch schwache GFP-Fluoreszenz zu erkennen, in appressorienartigen Strukturen wurde in einzelnen Fällen noch geringfügig GFP-Fluoreszenz beobachtet, in anderen war keine Fluoreszenz mehr zu erkennen. Die Restfluoreszenz in diesen Zellen reflektiert vermutlich die hohe Stabilität des GFP-Proteins, da zu erwarten ist, daß die *mfa1*-Expression durch das b-Heterodimer reprimiert wird (Urban *et al.*, 1996). Die Fluoreszenz in diesen GFP-Reporterstämmen ist demnach davon abhängig, wieviel GFP-Protein zu Beginn der Repression in einer Zelle vorhanden ist.

Eine erneute Induktion von *mfa1* war in den frühen biotrophen Stadien etwa einen Tag nach der Infektion in den dikaryotischen Filamenten zu beobachten. In der späteren Entwicklung, nachdem sich bereits Tumore gebildet hatten, wurde für *mfa1* in morphologisch gleichen Stadien sowohl hohe Expression als auch nahezu vollständige Repression festgestellt. Wie dieses Expressionsmuster mit einer möglichen Funktion von *mfa1* zusammenhängt, wird später diskutiert.

Reporterstämme, die GFP unter der Kontrolle des *lga2*-Promotors exprimierten, ließen in haploiden Sporidien keine GFP-Fluoreszenz erkennen. In Paarungsstrukturen, also kurz nach der Fusion, wurde aber bereits *lga2*-Expression nachgewiesen. Wie in Spellig *et al.*, (1996) bereits beschrieben, kann GFP-Fluoreszenz in Abhängigkeit von der Transkriptionsrate bereits innerhalb weniger Stunden beobachtet werden. Nach der Penetration wurde zu keinem Zeitpunkt *lga2*-Expression festgestellt. *lga2* wird demnach unmittelbar nach der Penetration reprimiert. Da der *b*-Locus sowohl die *mfa1*- als auch *lga2*-Expression reguliert, könnte dies bedeuten, daß die b-Proteine zu einem frühen Zeitpunkt, d. h. kurz nach der Penetration, nicht mehr aktiv sind. Die Aktivität der b-Proteine wäre damit auf die kurze Phase des dikaryotischen Wachstums auf der Pflanzenoberfläche beschränkt, eine Schlußfolgerung, die auch schon die Transkriptionsanalysen nahelegten.

Die durchgeführten Expressionsanalysen haben gezeigt, daß auch komplexe Expressionsmuster während der biotrophen Phase von *U. maydis* detailliert darstellbar sind. Eine Voraussetzung für die Analyse von GFP war dabei eine relativ hohe Expression der Gene unter induzierenden Bedingungen und ein relativ "dichter" Promotor während der Repression. Schwach exprimierte Gene können vermutlich nur schlecht nachgewiesen werden. Dadurch bleibt der Einsatz von GFP

als Reportergen auf mittelstark und stark exprimierte Gene beschränkt. Sowohl die Northernanalyse als auch die Expressionsanalyse mittels GFP-Reporterstämme wurden im Laufe der Arbeit durch den Einsatz von PolyA⁺-RNA für die Northernanalyse bzw. ein sensitiveres GFP-Derivat (EGFP) für die Fluoreszenzmikroskopie weiter verbessert (siehe unten).

Bereits in früheren Arbeiten wurden Hinweise gefunden, daß die Aktivierung von Prf1 durch Pflanzensignale erfolgt, wobei die Weiterleitung dieser Signale auf Prf1 über Komponenten des Pheromonsignalwegs vermittelt wird (Hartmann *et al.*, 1996; Müller *et al.*, 1999 und Abb. 29).

Abbildung 29: Der Pheromonsignaltransduktionsweg in dikaryotischen Zellen und während der biotrophen Phase. Aktivierende und inhibierende Interaktionen sind durch entsprechende Pfeile dargestellt. Weitere Erläuterungen siehe Text. A: Regulation des Pheromonsignalwegs während der Paarung. B: Regulation des Pheromonsignalwegs beim Wachstum innerhalb der Wirtspflanze.

Die differentielle Expression der Paarungstypgene in Tumorgewebe zeigt diese Verbindung zum ersten Mal auf molekularer Ebene. Die Funktion dieser Gene in Tumorgewebe ist zwar nicht geklärt (siehe unten), trotzdem können diese Gene als Marker für die biotrophe Entwicklung dienen, da sich das Expressionsmuster im Tumorgewebe von anderen bekannten Situationen (Sporidien, dikaryotisches Filament) unterscheidet. Die Signale, die zur Induktion des pflanzenspezifischen Expressionsmusters führen, stellen vermutlich Schlüsselkomponenten der Wirtsspezifität und der pathogenen Entwicklung von *U. maydis* dar (Müller *et al.*, 1999). Die Natur potentieller Signalstoffe und die Möglichkeit, solche Substanzen zu isolieren, wird in Kapitel 3.3.6 diskutiert.

Die Expression von mfal und pral beim Wachstum in der Pflanze deutete darauf hin, daß in diesem Stadium ein funktionelles Pheromon/Rezeptorsystem exprimiert wird. Da aber Stämme ohne Pheromonrezeptor bzw. ohne Pheromonstimulation den Lebenszyklus vollenden können, ist die Expression dieser Gene während der biotrophen Entwicklung nicht essentiell (Regenfelder et al., 1997; Spellig et al., 1994). Es stellt sich deshalb die Frage, welche Funktion ein aktives Pheromon/Rezeptorsystem in Tumorgewebe erfüllen könnte. In dikaryotischen Filamenten, die heterozygot für b sind, dient es über den autokrinen Stimulus zur Aufrechterhaltung der b-Genexpression und ermöglicht so filamentöses Wachstum. Diese Funktion bedarf aber nur geringer Expression der mfa- und pra-Gene (Bölker et al., 1992). In Schizophyllum commune und Coprinus cineraeus wird das Pheromon/Rezeptorsystem für die Kernwanderung nach der Fusion kompatibler Monokarien benötigt (Wendland et al., 1995, Kronstad und Staben, 1997; Kues, 2000). Dabei werden die Septen aufgelöst und die Kerne des Partners wandern in das Filament ein. Nach der Ausbildung des Heterokaryons vermittelt das Pheromon/Rezeptor-System die Fusion der Schnallen nach der mitotischen Teilung (Kues, 2000). Beide Mechanismen stellen sicher, daß jede Zelle im Heterokaryon ein Paar unterschiedliche Kerne enthält. U. maydis bildet keine Schnallen aus. Auch ist bislang unklar, wie gewährleistet wird, daß Tochterzellen zwei unterschiedliche Kerne erhalten. Ein Erkennungssystem wie das Pheromon/Rezeptorsystem könnte solch eine Aufgabe möglicherweise auch hier vermitteln. Dies stände im Einklang mit dem Befund, daß die Expression von mfal in proliferierenden, dikaryotischen Zellen induziert und in der späten Tumorphase, in der die Kernfusion vermutlich abgeschlossen ist, reprimiert wird. Interessanterweise wurde im Tumorgewebe des diploiden Stamms FBD11 nur geringe Expression des Pheromon/Rezeptor-System nachgewiesen, während bei Dikarien hohe Expression zu beobachten war. Dies könnte ein Hinweis darauf sein, daß in diploiden Stämmen wegen der bereits erfolgten Kernfusion das Pheromon/Rezeptorsystem nicht benötigt und deshalb auch nicht exprimiert wird.

3.3 Identifizierung pflanzeninduzierter Gene in *U. maydis* durch REMI-"enhancer Trap"-Mutagenese

In dieser Arbeit wurde durch die Kombination der REMI-Mutagenese mit einem Reporterkonstrukt, das unter der Kontrolle eines Basalpromotors stand, ein "enhancer trap"-Verfahren entwickelt. Dieses erlaubte die Isolierung von Genen, die früh während der biotrophen Phase induziert werden. Nach der Mutagenese wurden in einem Vortest zunächst alle Transformanden aussortiert, die GFP unter verschiedenen artifiziellen Bedingungen exprimierten. Wurde dabei SGFP als Reportergen verwendet, traf dies auf 14% der Transformanden zu. Mit dem EGFP-Gen konnte dagegen in 42% der Stämme Fluoreszenz beobachtet werden. Dies zeigt zum einen, daß EGFP aufgrund der höheren Sensitivität die Detektion schwächer exprimierter Gene erlaubt. Darüber hinaus läßt die hohe Zahl an markierten Stämmen auf eine hohe Gendichte im Genom von U. maydis schließen. Mit den Stämmen, die im Vortest kein GFP exprimierten, wurden Pflanzen infiziert. Es wurden solche Mutanten isoliert, die nach Kontakt mit der Wirtspflanze GFP exprimierten. Aus insgesamt 2350 Transformanden wurden so zunächst elf Stämme isoliert (#114, #219, #271, #424, #480, #500, 624, #698, #704, #727 und #1685), die diese Eigenschaft aufwiesen. In den Mutanten, #114 und #219 konnte GFP ausschließlich nach Inokulation von Pflanzen beobachtet werden. Sie waren die einzigen Mutanten, die ausschließlich pflanzenabhängige GFP-Expression zeigten. In den restlichen Mutanten (#271, #424, #480, #500, 624, #698, #704, #727 und #1685) konnte in Flüssigmedien und auf Plattenmedien geringe GFP-Expression festgestellt werden. Aus dieser Gruppe wurde nur die Mutante #1685 weiterbearbeitet, da hier ein sehr großer Unterschied in der Fluoreszenz zwischen Sporidien in axenischer Kultur und solchen, die sich auf der Blattoberfläche befanden, zu erkennen war. Die übrigen Mutanten aus dieser Gruppe wurden nicht weiter bearbeitet, da angenommen wurde, daß hier konstitutiv exprimierte Gene markiert wurden. Die Mutante #1486 war nicht aufgrund pflanzenabhängiger GFP-Expression ausgewählt worden, sondern wegen der spezifischen Induktion in dikaryotischen Filamenten auf aktivkohlehaltigen Plattenmedien. Hier bestand die Aussicht, das entsprechende Gen zügig charakterisieren zu können, da in den zu vergleichenden Stadien Expressionsunterschiede leicht festzustellen sind.

Bei der Analyse der Insertionsereignisse stellte sich heraus, daß das Mutageneseplasmid in den weiter untersuchten Mutanten bis auf die Mutante #114 an einer *Bam*HI-Schnittstelle inseriert war. Da die REMI-Mutagenese mit *Bam*HI durchgeführt wurde, liegen höchstwahrscheinlich REMI-Ereignisse vor. Die Insertionsstellen befanden sich in einem maximalen Abstand von 2509 bp vom nächstliegenden ORF entfernt. Die bisher kartierten "enhancer"-Elemente weisen einen Abstand von maximal 1600 bp vom Genstart auf (Hartmann *et al.*, 1996), d. h. die erhobenen Distanzen liegen in etwa in diesem Bereich.

Aus den Mutanten, #114, #219 und #1685 konnte in unmittelbarer Umgebung der Insertionsstelle je ein Gen isoliert werden (*mfa1*, *pig2* und *pig3*), dessen Expression mit der GFP-Expression der zugehörigen Mutante korrelierte. Dies bedeutet, daß nicht nur in Mutanten, die GFP ausschließlich während der biotrophen Phase exprimierten, sondern auch in solchen mit großen Fluoreszenzunterschieden, wie die Mutanten #1685, entsprechend regulierte Gene isoliert werden konnten.

Aufgrund der divergenten Transkriptionsrichtung von *pig2* bzw. *pig3* relativ zum GFP-Gen ist davon auszugehen, daß die regulatorischen Elemente dieser Gene orientierungsunabhängig die GFP-Expression in den Mutanten steuern und demnach "enhancer"-Elemente darstellen. Somit ist eine "enhancer trap"-Mutagenese erstmals erfolgreich in Pilzen angewandt worden.

Wenn eine derartige Methode etabliert wird, stellt sich die Frage, wieviele differentiell exprimierte Gene bei den untersuchten Bedingungen zu erwarten sind. Durch genomische Ansätze wie "microarrays" in S. cerevisiae konnte gezeigt werden, daß z. B. bei der Sporulation rund tausend Gene (16%) differentiell exprimiert werden (Chu et al., 1998). Dabei war etwa die Hälfte der Gene induziert, die andere Hälfte reprimiert. Als reguliert exprimiert galten dabei alle Gene, die einen mehr als zweifachen Expressionsunterschied zeigten (Chu et al., 1998). In einem Ansatz zur Isolierung babhängig regulierter Gene in U. maydis waren 2% aller untersuchten mRNAs b-abhängig induziert. Dabei galten Expressionsunterschiede größer Faktor vier als signifikant (A. Brachmann, persönliche Mitteilung). Bei der Isolierung von Genen, die früh in der biotrophen Phase induziert werden, ist die Situation komplexer, da hier mit unterschiedlichen Entwicklungsprozessen gekoppelte Stadien untersucht werden. Zudem hatten Expressionsanalysen der Gene in den Paarungstyploci gezeigt, daß mit GFP als Marker im Reportersystem und durch die Hintergrundfluoreszenz in der Pflanze nur mittelstark bis stark exprimierte Gene beobachtet werden können. Die Gesamtzahl der somit in Frage kommenden Gene ist aufgrund dieser Unwägbarkeiten nicht im Voraus zu berechnen. Grundsätzlich wurde aber mit einer ähnlichen Größenordnung an differentiell exprimierte Gene gerechnet, wie sie in den oben erwähnten Systemen bestimmt wurde.

Es konnten aus insgesamt 2350 Transformanden nur drei Mutanten isoliert werden, die pflanzenspezifisch regulierte GFP-Expression zeigten. Auffallend war zunächst, daß mit EGFP im Vergleich zu SGFP als Reportergen wesentlich mehr Transformanden im Vortest aussortiert werden konnten und gleichzeitig kein Stamm als falsch positiv identifiziert wurde. Dies zeigt den Einfluß, den die Sensitivität der Expressionsanalyse auf das System hatte und, daß hier durch verbesserte Reportersysteme noch Spielraum für eine Optimierung bleibt. Daß von ursprünglich 987 Stämmen (mit pCA104 bzw. pCA125 erzeugt), die keine Expression auf Plattenmedien zeigten nur drei pflanzenspezifische GFP-Expression zeigten, könnte aber neben der geringen Sensitivität des Reportergens noch an folgenden weiteren Faktoren liegen: (i) Es könnte bei REMI-Insertionen, ähnlich der Integration von T-DNA aus A. tumofaciens in Pflanzen, eine Präferenz der Integrationsstelle für transkribierte Regionen bestehen (Koncz et al., 1992). Diese Möglichkeit wird im Zusammenhang mit dem Auftreten von unabhängigen Integrationsereignissen an der selben Stelle im Genom diskutiert (Lu et al., 1994; Sweigard et al., 1998, Maier und Schäfer, 1999). Als Folge würden REMI-Integrationen in der Nähe von Genen, die zum Zeitpunkt der Transformation nicht exprimiert werden seltener stattfinden als bei solchen die basal exprimiert werden. Dafür spricht, daß alle durch REMI-"enhancer trapping" isolierten Gene (mfa1, pig2 und pig3) eine basale Transkription aufweisen. (ii) In verschiedenen phytopathogenen Organismen wurde gezeigt, daß Gene, die nach Kontakt mit der Wirtspflanze induziert werden, auch in axenischer Kultur unter Mangelbedingungen exprimiert werden (Coleman et al., 1997; Pieterse et al., 1994). Solche Gene konnten in diesem Mutageneseansatz nicht isoliert werden, da entsprechende Mutanten vorher aussortiert wurden.

Unter den gegebenen Bedingungen könnte die Gesamtzahl an unterschiedlichen Mutanten durch Verwendung von verschiedenen Restriktionsenzymen gesteigert werden. Der Gebrauch von nur drei weiteren Enzymen, die eine Hexanucleotidsequenz erkennen, könnte im Schnitt alle 1024 bp eine Integration ermöglichen. Dies käme bei der oben angenommenen "Reichweite" von cis-Elementen fast einer gesättigten Mutagenese gleich. Ein Hauptproblem bei dieser REMI-"enhancer trap"-Mutagenese war, daß die GFP-Expression auf Plattenmedien mit der GFP-Expression beim Wachstum in der Pflanze verglichen werden mußte. Dabei war die, von der Pflanze ausgehende Autofluoreszenz, für die Expressionsanalyse während der biotrophen Phase, gerade bei geringer GFP-Fluoreszenz störend. Eine Möglichkeit, diese Einflüsse zu umgehen, wäre die Schaffung von Wachstumsbedingungen in Kulturmedien, die eine Vollendung des Lebenszyklus von U. maydis erlauben (Ruiz-Herrera et al., 1999). Die von Ruiz-Herrera et al. (1999) beschriebenen Experimente, die eine rein morphologisch Grundlage haben, müßten hierfür durch Verwendung der bekannten pflanzenregulierten Gene als molekulare Marker zunächst verifiziert werden. Alternativ wäre auch denkbar, die Induktion von Genen durch unterschiedliche Pflanzenextrakte oder verschiedener Einzelsubstanzen einer Bibliothek, z. B. in einem automatisierten Testverfahren zu erreichen und so aktivierende Substanzen zu isolieren (s. 3.3.6).

Für die Gene *pig6* und *lga2* konnte Expression nur in Filamenten außerhalb der Pflanze, nicht jedoch während der biotrophen Phase beobachtet werden. Auch die Expression von *mfa1* und *pig3* war in bestimmten Stadien der biotrophen Phase reprimiert. Prinzipiell ist dies nicht ungewöhnlich, da viele Entwicklungsprozesse mit der Repression von Genen einhergehen. So werden z. B. in *S. cerevisiae* von den etwa 1000 Genen, die während der Sporulation differentiell exprimiert werden, etwa 50% reprimiert (Chu *et al.*, 1998). Aufgrund der experimentellen Bedingungen war aber in *U. maydis* bisher eine gezielte Isolierung reprimierter Gene schwierig, da sich für PCR-abhängige Methoden die Mengenverhältnisse von Pilz zu Pflanze noch ungünstiger auf den Nachweis auswirkt, als dies bei der Suche nach induzierten Genen der Fall ist (T. Spellig, persönliche Mitteilung). Die REMI-"enhancer trap"-Mutagenese böte prinzipiell die Möglichkeit, auch solche Gene zu isolieren.

3.3.1 Pig2: Eine ungewöhnliche Protein-Disulfid-Isomerase?

In dieser Arbeit wurde bei der Suche nach pflanzeninduzierten Genen ein Transkript, *pig2*, identifiziert, das in haploiden Sporidien ein basales Expressionsniveau zeigt, in dikaryotischen

Filamenten leicht und im Vergleich dazu in der Pflanze etwa 10-fach induziert war. Das putative 551 aa lange Polypeptid weist 16% Identität und 32% Ähnlichkeit zu der Protein-Disulfid-Isomerase *PDI1* aus *S. cerevisiae* auf (Robinson *et al.*, 1994). PDI-Proteine oder auch Foldasen genannt, bewirken im endoplasmatischen Reticulum die Bildung von Disulfid-Brücken sekretierter Proteine (Braakman *et al.*, 1992; Huppa und Ploegh, 1998). PDI-Proteine können in vier Klassen eingeteilt werden, PDI, ERp72, ERp60 und ERp5, die sich alle dadurch auszeichnen, daß sie entweder zwei oder drei konservierte Thioreduktase-Domänen (APWCxHCK) besitzen (Freedman, 1994). Pig2

Abbildung 30 A: Die Domänenestruktur von Pig2 im Vergleich zu bekannten Foldasen. Thioreduktasezentren sind als dunkelblaue Kästen dargestellt, Sequenzmotive mit Ähnlichkeit zu Thioreduktasezentren sind hellblau hervorgehoben. Die Aminosäurekonsensussequenz der Thioreduktasezentren ist angegeben. B: Dendrogramm eines Sequenzvergleichs von PDI-Proteinen. Sequenzvergleich von PDI-Proteinen aus verschiedenen Organismen mit Pig2. Der Stammbaum wurde mit dem Programm CLUSTAL PPC erstellt. Pig2 und PrpA bilden eine Außengruppe gegenüber den übrigen PDI-Proteinen. Die Proteine wurden anhand eines BLAST-Proteinvergleichs ausgesucht (Altschul *et al.*, 1997).

hingegen besitzt nur eine dieser konservierten APWCxHCK-Domänen und eine weitere Domäne, die zwar Thioreduktasezentren ähnlich, aber nicht dazu identisch ist (Abb. 30A). Im Sequenzvergleich von PDI-Proteinen untereinander stellt Pig2 daher eine Außengruppe dar (Abb. 30B). Kürzlich wurde aus *A. niger* ein Protein, PrpA isoliert, das ebenfalls nur entfernte Verwandtschaft zu anderen PDI-Proteinen aufweist (Abb. 33B). Ähnlich wie bei Pig2 ist nur ein Thioreduktase-Zentrum und ein Thioreduktase ähnliches Motiv vorhanden (EEFxPxCHCK, s. auch Abb. 30A). PrpA besitzt aber *in vivo* Foldaseaktivität (Wang und Ward, 2000). Daher wäre es

möglich, daß auch *pig2* für eine funktionelle Protein-Disulfid-Isomerasen kodiert. Durch Komplementation des letalen Phänotyps von *PDI1*-Nullmutanten in *S. cerevisiae* oder den Nachweis von Disulfid-Isomerase-Aktivität *in vitro* könnte diese Annahme experimentell unterstützt werden (Tachikawa *et al.*, 1991).

Für Pdi1p aus Hefe wurde gezeigt, daß die Expression induziert wird, sobald nicht modifizierte, sekretorische Proteine im ER akkumulieren (Robinson *et al.*, 1994). Die gegenüber Sporidien in dikaryotischen Filamenten erhöhte Expression von *pig2* könnte deshalb mit einem höheren Anteil an sekretierten Proteinen zusammenhängen, die während des filamentösen Wachstums als Adaption an veränderte Umweltbedingungen benötigt werden. Da in Tumorgewebe eine weitere Induktion von *pig2* zu beobachten war, könnte dies bedeuten, daß in diesem Stadium ebenfalls vermehrt Proteine sekretiert werden. Für eine ganze Reihe lytischer Enzyme konnte eine erhöhte spezifische Aktivität beobachtet werden, nachdem Maispflanzen mit Mischungen kompatibler *U. maydis*-Stämme infiziert wurden (Cano-Canchola *et al.*, 2000). Die stadienspezifische Sekretion von Proteinen könnte deshalb für eine Adaption an die Lebensbedingungen innerhalb der Pflanze wichtig sein.

Demnach sollten *pig2*-Deletionsmutanten in dieser Umweltanpassung gestört sein. *pig2*-Nullmutanten zeigen aber keinen offensichtlichen Phänotyp. In *U. maydis* wie auch in der Bäckerhefe existiert mindestens ein weiteres PDI-homologes Gen, *frb23* (A. Brachmann persönliche Mitteilung) bzw. *EUG1* (Holst *et al.*, 1997). Das *EUG1*-Gen aus *S. cerevisiae* kann die Funktion von *PDI1* zumindest partiell übernehmen. Eine ähnliche Situation könnte auch in *U. maydis* vorliegen. Deshalb wäre eine Analyse von *pig2*- und *frb23*-Doppelmutanten aufschlußreich. In *U. maydis* ist ein Gen bekannt, *mig1*, das während der biotrophen Phase induziert wird und dessen Produkt sekretiert wird (Basse *et al.*, 2000). Interessant wäre deshalb auch zu untersuchen, ob und wie sich die *mig1*-Sekretion in *frb23/pig2*-Doppelmutanten verändert.

3.3.2 #1486: Die Deletion einer GA-Region führt zu reduzierter *mfa1*-Expression und vermindertem filamentösen Wachstum

Die Mutante #1486 wurde ausgewählt, weil spezifische GFP-Expression in filamentösen Dikarien zu beobachten war. Expressionsanalysen mit den die Insertionsstelle flankierenden Sequenzen als Sonden, führten aber nicht zur Identifizierung eines Gens, dessen Expressionsmuster dem der GFP-Expression in der Mutante #1486 entspricht. Die Deletion einer polymorphen GA-Region im 3'-Bereich der Insertion hatte einen Kreuzungsdefekt haploider Sporidien zur Folge. Durch Northernanalysen konnte gezeigt werden, daß in Δ GA-Mutanten sowohl die basale als auch die induzierte Pheromongenexpression verringert ist, während die Expression von *bE* und *bW* gegenüber der Wildtypsituation unbeeinflußt blieb. Dieser Phänotyp konnte weder komplementiert noch in einer Insertionsmutagenese wiederhergestellt werden. Auch zeigten Stämme, die durch Segregation der Originalmutante hervorgegangen waren, keinen Δ GA-Phänotyp.

Über eine Ursache für den Phänotyp der GA-Mutanten kann anhand der vorliegenden Daten nur spekuliert werden. Es könnte sein, daß durch die GA-Deletion ein regulatorisches *cis*-Element für ein Gen, das an der Regulation von *mfa1* beteiligt ist, deletiert wurde. Es besteht aufgrund des Induktionszeitpunktes von GFP in der Originalmutante die Möglichkeit, daß dieses Element auch die GFP-Expression in der Mutante reguliert. Ein entsprechendes *cis*-Element müßte dann aber über eine größere Entfernung, d. h. >5,5 kb hinweg aktiv sein, da es sich 3' zum GFP-Gen befinden müßte. Für eine regulatorische Aktivität über größere Distanz würde auch sprechen, daß in Northernexperimenten selbst mit Cosmiden als DNA-Sonde keine differentiell exprimierte mRNA in der Umgebung der Insertionsstelle nachgewiesen werden konnte.

In Pilzen ist eine derartige Regulation über so große Distanz bislang nicht beschrieben. In höheren Organismen hingegen können *cis*-Elemente über viele Kilobasen hinweg Gene regulieren (Kornberg, 2000). Darüber hinaus wurde gezeigt, daß die dreidimensionale Struktur des Chromatins Einfluß auf die Genregulation besitzt (Cremer *et al.*, 1996; Dietzel *et al.*, 1999). So wäre es auch denkbar, daß das regulatorische *cis*-Element erst durch die Fusion kompatibler Sporidien entsteht.

Ein Grund für den Fehlschlag der Komplementation könnte sein, daß das entsprechende Gen auf dem, für die Komplementation eingesetzten Fragment nicht exprimiert wird. Dies ließe sich in Zukunft durch die Verwendung einer Expressionsbibliothek umgehen (G. Weinzierl, persönliche Mitteilung). In dieser Bank sollte der Regulator durch einen konstitutiven Promotor unabhängig von seinen *cis*-Elementen exprimiert sein. Alternativ könnten auch Faktoren isoliert werden, die an die GA-Region binden. Deren DNA-Bindung könnte dann genutzt werden, um diese Faktoren dann anzureichern.

3.3.3 Die Mutante #1685: eine Insel differentiell exprimierter Gene?

In der Mutante #1685 befand sich die Insertion des REMI-Plasmids in einer intergenischen Region zwischen dem *pig3*- und *pig4*-Gen. Beide Gene waren pflanzenspezifisch reguliert, aber nur die Expression von *pig3* entsprach der GFP-Expression in der Mutante #1685. Deshalb kann davon ausgegangen werden, daß in der Mutante vermutlich ein *cis*-Element von *pig3* die Expression von GFP reguliert. In der weiteren Umgebung von *pig3* und *pig4* wurden auf insgesamt etwa 20 kb noch zwei weitere differentiell exprimierte Gene, *pig5* und pig6, sowie drei konstitutiv exprimierte Gene, *npi1*, *npi2* und *npi3* identifiziert. In Northernexperimenten konnte mit einem großen,

stromaufwärts der Insertionsstelle gelegenen Fragment (1685n) als DNA-Sonde ein weiteres konstitutives und zwei zusätzliche tumorspezifisch induzierte Transkripte identifiziert werden (K. Hansson, persönliche Mitteilung). Insgesamt wurden in dieser, als *p*-Locus bezeichneten Region, bislang zehn Gene nachgewiesen, wovon sechs differentiell exprimiert waren.

In den übrigen Mutanten waren bis auf die markierten, differentiell exprimierten Gene *mfa1* und *pig2*, alle weiteren Gene, die in der Nähe lagen, konstitutiv exprimiert (*uat1*, *abp1*, *ldp1*, *npi5*, *npi6*). Berücksichtigt man zudem, daß gegenüber insgesamt 987 Mutanten, in denen Gene mit konstitutiver Expression markiert wurden, nur in drei Fällen pflanzenspezifische Expression nachgewiesen wurden, so stellt der *p*-Locus eine Anhäufung differentiell exprimierter Gene dar.

3.3.4 Die pig3-Expression ist negativ reguliert

Die Promotorcharakterisierung von pig3 ergab, daß dieses Gen negativ reguliert war. Erstaunlicherweise ging die Deletion potentieller Repressorbindestellen nicht nur mit einer erhöhten Transkription von pig3 einher sondern es wurde auch eine Verkürzung der Transkriptlängen beobachtet. Solche Reduzierungen in der Transkriptlänge konnten in verschiedenen Deletionsanalysen von Promotoren, die im selben genomischen Kontext des *cbx*-Locus durchgeführt wurden, bislang nicht beobachtet werden (C. Basse, G. Weinzierl, J. Kämper, persönliche Mitteilungen). Deshalb wurde angenommen, daß die Verkürzungen der Transkripte mit den Eigenschaften des putativen Repressors zusammenhängt. In parallel durchgeführten Experimenten wurde für pig4 ebenfalls negative Regulation nachgewiesen, die mit einer spezifischen Verkürzung der Transkripte einherging (K. Hansson, persönliche Mitteilung). Diese Daten und die Beobachtung, daß in regulatorischen Mutanten von pig4 auch erhöhte Expression von pig3 zu beobachtet war (K. Hansson, persönliche Mitteilung), läßt vermuten, daß an der Repression beider Gene gleiche Faktoren beteiligt sind. Möglicherweise führt das Fehlen der Repressorbindestellen in den Deletionskonstrukten zu einer Änderung in der DNA-Struktur, die einerseits die Derepression der Promotoren zur Folge hat und auch die Transkriptionsinitiation an kryptischen Initiationsstellen erlaubt. Solch eine Dekondensation des Chromatins könnte auch eine Voraussetzung für die Initiation der Transkription der beiden kürzeren pflanzenspezifisch exprimierten mRNAs von pig3 sein. Diese Regulation würde die Vermutung nahelegen, daß der Repressor von pig3 Bestandteil eines chromatinmodulierenden Komplexes ist. In U. maydis wurde bereits mit dem Korepressor Hda1 eine Komponente solch eines Komplexes isoliert. Hda1 zeigt eine signifikante Homologie zu Histondeacetylasen (M. Reichmann, persönliche Mitteilung). Histondeacetylasen reprimieren Gene durch Deacetylierung der Histone, der eine Kondensation des Chromatins folgt (Carmen et al., 1996). Die Deletion von hdal in U. maydis führt unter anderem zur Veränderung der Nucleosomenpositionierung am Promotor des *egl1*-Gens und dadurch zur Derepression von *egl1* (M. Reichmann, persönliche Mitteilung; Schauwecker *et al.*, 1995). Hda1 ist aber nicht nur an der Repression von *egl1* beteiligt, sondern reprimiert auch pflanzenregulierte Gene (C. Basse, S. Huber, persönliche Mitteilung). Für *pig3*, *pig4*, und *pig6* konnte jedoch keine Hda1-abhängige Regulation beobachtet werden (nicht gezeigt). Damit fallen diese Gene vermutlich in eine andere Klasse pflanzenregulierter Gene. Ähnlich wie bei Hda1 könnten diese jedoch ebenfalls durch einen chromatinmodulierenden Repressorkomplex kontrolliert werden. Solche Komplexe könnten wie bei den Hda1 regulierten Genen eine Histondeacetylase enthalten, oder ähnlich wie andere Repressorkomplex, wie z. B. NURF in *D. melanogaster* oder der SWI/SNF-Komplex in *S. cerevisiae*, aufgebaut sein (Cairns *et al.*, 1998; Wittschieben *et al.*, 2000). Die Komplementation der regulatorischen Mutanten von *pig3* und *pig4* und die Charakterisierung der involvierten Gene sollte erste Komponenten des Systems aufdecken.

Die Derepression des pig3-Promotors führte zu einer erhöhten Expression der größten pig3-mRNA Spezies, nicht aber zur Expression der beiden kürzeren, pflanzenspezifischen Transkripte. Letztere könnten durch einen weiteren Regulator gesteuert werden. Dabei wäre sowohl ein zweites reprimierendes System, wie auch eine Transkriptionsaktivierung vorstellbar. Für das mig1-Gen aus U. maydis wurde bereits ein derartiges Regulationssystem beschrieben (Basse et al., 2000). Der Promotor von mig1 ist sowohl negativ als auch positiv reguliert (Basse et al., 2000). Ähnlich könnte auch die Expression von pig3 und pig4 erfolgen. Zunächst wäre eine Derepression der Promotoren notwendig, die hier vermutlich durch die gleichen Faktoren vermittelt wird. Anschließend kommt es zu einer individuellen Induktion der Gene, die bei pig3 auf der Blattoberfläche und bei pig4 im Tumor stattfindet. Übereinstimmend damit ist die Beobachtung, daß in den regulatorischen Mutanten von pig4 die pig4-Expression durch Wachstum auf Inositol spezifisch induziert werden kann, die pig3-Expression aber nicht beeinflußt wird (K. Hansson, persönliche Mitteilung). Ein regulatorisches Prinzip für pflanzenspezifische Expression in U. maydis könnte demnach die Derepression einer ganzen Gruppe von Genen durch Pflanzenkomponenten, Oberflächenbeschaffenheit oder Mangelbedingungen sein. Die Induktion würde dann zu verschiedenen Zeitpunkten in der Entwicklung durch genspezifische Aktivatoren in der Pflanze erfolgen.

3.3.5 Die Rolle des p-Locus in der pathogenen Entwicklung

Im *p*-Locus wurden für sechs ORFs Polypeptide abgeleitet. Nur für Pig4 und Pig6 wurde eine Ähnlichkeit zu bekannten Proteinen festgestellt. Npi2 hat Ähnlichkeit zu einem Protein unbekannter Funktion aus *S. cerevisiae*. In Pig3, Npi1 und Npi3 konnten auch keine Sequenzmotive mit

Ähnlichkeit zu bekannten Proteindomänen identifiziert werden. Diese Proteine sind deshalb vermutlich spezifisch für *U. maydis* oder dazu verwandten Organismen. Diese Gene des *p*-Locus könnten daher eher Funktionen erfüllen, die speziell für die Interaktion von *U. maydis* mit seiner Wirtspflanze benötigt werden.

Das Pig6 Polypeptid zeigt signifikante Homologie zu Proteinen der "multiple drug resistance transporter"-Familie (MDR) (Abb. 31). In *M. grisea* konnte für einen ABC-Transporter, *ABC1*, eine Beteiligung an der pathogenen Entwicklung nachgewiesen werden (Urban *et al.*, 1999). ABC-Transporter vermitteln den Transport von toxischen Substanzen aus den Zellen heraus (Balzi *et al.*, 1994). *ABC1* vermittelt deshalb vermutlich den Efflux von Pflanzensubstanzen mit fungizider Wirkung (Urban *et al.*, 1999). Eine ähnliche Funktion wäre auch für Pig6 denkbar. *pig6*-Nullmutanten zeigten aber keinen Phänotyp. Interessanterweise wurden bei der Suche nach Pig6-homologen Proteinen in der *U. maydis*-Sequenzdatenbank weitere MDR-Proteine mit signifikanter Ähnlichkeit entdeckt (J. Kämper, persönliche Mitteilung). Eine funktionelle Redundanz dieser Proteine ist daher nicht ausgeschlossen. Interessant wäre zu untersuchen, wie diese Gene reguliert werden.

pig6 wird in dikaryotischen Filamenten, d. h. auf der Pflanzenoberfläche, jedoch nicht im Tumorgewebe exprimiert. Der Zeitpunkt der Expression ließe vorhersagen, daß eine Detoxifizierung bereits auf der Blattoberfläche von Maispflanzen notwendig wird.

Die Zusammensetzung der Toxine auf der Oberfläche und die für das Wachstum notwendigen Detoxifizierungssysteme könnten in einem Ausschlußprinzip eine spezifische Kolonisierung des Pathogens auf seiner Wirtspflanze ermöglichen. Dies wäre ein erster Schritt in der Wirtsspezifität der Pathogene.

Der ORF von *pig4* kodiert für ein Polypeptid mit 22 % Identität zu einem Hexosetransporter aus dem Bakterium *D. radiodurans* (Abb. 32). Insbesondere besitzt Pig4 12 Transmembrandomänen, die für diese Klasse von Transportern charakteristisch sind. Deshalb wird davon ausgegangen, daß es sich bei Pig4 um einen Hexosetransporter mit noch zu bestimmender Spezifität handelt. Hexosetransporter dienen der Aufnahme von Zuckermolekülen aus der Umgebung. Dabei regulieren Konzentration und Art des Zuckermoleküle die Expression der jeweiligen Hexosetransporter-Gene (Ozcan und Johnston, 1999). Organismen können sich durch die Aufnahme bestimmter Zucker an Veränderungen des Metabolitenangebots in der Umwelt anpassen. Für *pig4* war keine Induktion zu beobachten, wenn Wildtypzellen verschiedene C-Quellen angeboten wurden. Die Expression von *pig4* konnte allerdings in regulatorischen Mutanten durch Inositol oder Arabinose stimuliert werden (K. Hansson, persönliche Mitteilung). Daher ist es denkbar, daß Pig4 einen Hexosetransporter für Inositol bzw. Arabinose darstellt. Die Deletion von

S. pombe P. olsonii U. maydis	MIRT	GG	PI	 из s	 		 TT	LΥ	s <u>2</u> (20	2 T B	183	1 2 V	IS	ME MR NS	L L Z L V A	S I D Y E S	IT IT λS	с <u>х</u> - Р т Р	к Д
	FEXE LGK- TMMC	ע <mark>ו (צ</mark> וב) -5 ער עי	V S I S I I S S	SRE TRI SRT	5 D I 5	IX IX	NG TG SS	- L Р I Ч Н	EA		SNG 53- 53-	 יד ד	VA	E Q	 н Р	PE	- A	D <u>A</u> R <u>I</u> K <u>A</u>	AI PY AR	D W H
	TIAD RIJC VFAE	E 30 E O C L 3 S	5 S V 2 - V 5 A V	VSL VT- SER	GAS		L S F C	0 G1	RF) - TI - DI	A E	S X N I D N A H T		и УVG Ек	I L S G V A		E D E D D D	O Y F F H D	LV VV SV	TW EW IW	D - V
	GH IF DF?A	E D : C I C E D : E D :	LN PRN ED	PMG PMG PTN	មា <mark>ន</mark> ទាំង ខាន់	IS I IS I I R	K W K W	₩_ T ⊻! C <mark>_</mark> _	V L (T V T T T T	U V L V L G	SV AFA V L I	UU T T S	V V TAV	L 1 S 1 A A		5 V 5 A 5 A	Y S Y A Y V	5 6 2 6 2 6	I I I S I P	D E S
	IASE VIXD MCRD	LH: FON	3 3 - 7 5 - 7 N	IPV EEV HQL		L 3 3 L 3 7 L 3 1	C T S L A I	F L F V Y P	V 3 L S L C :	5 G 7 A 7 A	V G B V G F I C I		2 3 A 1 W A 7 1 <u>A</u>	F L F L	SE CE SE	 	I Y L M V F	GR GR GR	FI CL	Ţ ₩
	YEV FLG YIVC	E E C	FI LS YI	I FC A FC V L F	V G AG V G	SGC AVG LGJ	AE S () AN	N V I N V I N V I		<u>_</u> 7	IVB ILB ILB	L E E	O G	V 7 5 1 A 7	G S G S G S	TP 5P TG	L A L I S I	л и л а мv	G G G G	2 V 2
	ISDI IADI ISD	FT FT WN		R TY R G L R G C	VI.I ATS PM	P G T B I J A I J	AC	FP AP Aλ	VT (FI (IF(7 P 7 P 7 P	TTC ICC SIC	P T P V P V	T G 17 <u>G</u> 17 A	07 33 30 8	ье 7-	 2 Y	- I - E	TO AD QN	SY HF TR	I. L
	E N R N G N R N U N R N	T F I VOV		MIW A⊽P A_Y	AA TGI TGI	A V I L I N F I -	V F I V L L	VF OG LL	IF: LV: IF:	F P F P R	ET ETY ETK			ID IS IT	YK KH	AK AD AA	YI RI KI	RE SS RE	TT LT TT	G G
	N I A - R V D F R Y	YTI FS) KAJ	HE VF AE	R <mark>EF</mark> T <u>D</u> F LEF	G R 1 3	D B S A S L	K N R C S V	AM AF CI	I DJ T T J K N S	AA AT. 3L	IOA SRP IRP	V 5 W T P L V	<u> </u> - 	ТЧ FS IX	E P F P E P	IV IV IV	V C I. T T E	3 T 7, S 7 S	LY LY LW	L M
	TVVY AIVY AFTV	ET:	IX M IX M IX I	N FE L FE L L S	GY AF SIC	PII GII	ГA FC TA	он ХЧ	R G I R G I S I	TN NG TT	K C I E G V E G Q	C C C S S S S) _) _ P _ V	F I F I	CV AV SI	G ▼ MI AG	G I G N A S	V <u>C</u> ML IL	A C A V G N	G
	CIPJ LNMY I.N P	1 Y I 1 X I 1 X I 1 X I 1 X I	THY THY	L <u>K</u> V VRI RKN	NK HK Y A F	K R N A H D A H G	G V G F	IC AP	PE PE PE;	D R A R A R	L Y I L P I L P I T Y I		1 I G 1 N G 2 V <u>G</u>	3 1 3 1 A V	LL AI FF	P P▼ P▼	S N G I G C	ז א <u>ז א</u> ד ד	F A F A Y A	T T T
	TC <mark>Y</mark> F TNS- TSF-	E III C 5 PHV	HW FW SI	IV IV VGP		ASA AIA GIV	F F F F V T	GF CF MT		II 7 T 7 H	V E I V E I V Y I		YN M <u>N</u> З S	Y I Y I		5 ¥ 5 ¥ Cl¥	- D - I - I	HM IY TY	A P A A A S	S S S
	ALAA VIAA ALAA	AT NSI QSI	IR IR AR	YSA SGE NIE	5 G Q G A (G I	J L S J E J I E J	M V L F L F	A R TTT VE	EW J E E J	с н С н	NLG NLG RLG	ř – – ř – –		- IJ - IJ - Ƴ	н w н w	A S A S	SV CV TI	⊐G ⊋A S <u>A</u>	E C B C F T	S S G
	VAHV LACA AVLC	PI	PFI PFI	SYR SYR Syr Sre	EG1 YG YG1	S I S M I S K I	R A RE R A	କାର : ସ୍ଥା ସାହ :	K Y Z K Y Z	A Y A A C Q I	KC- EAD ACQ	SE	I R	SI	AC QC	X A I R	E A S -	2D	c v	D
	к <mark>ков</mark>	E AJ	P V	201 	TDH	13A	L A	s _ 1	N E I	G	D A S	sv	55	R S	5 L	≤ R 	1 1	'1' A	ر ¥ 	A
	NFYD	ICI	X V N	ΤΩΝ	3 A .	IIR	RS	HS	TKO	FR.	RST	L	3 F	3 R	3 Ç	73	R I	AC	A A	3
S. pombe P. olsonii U. maydis	KDTR	LDS	LN	- T																

Abbildung 31: Sequenzvergleich von Pig6 zu "multiple drug resistance transportern" aus *P*. *olsonii* und *S. pombe*. Der Vergleich der Polypeptide wurde mit dem Programm CLUSTAL W durchgeführt. Hydrophobe Bereiche sind rot markiert, hydrophile blau. Identische aa sind eingerahmt.

pig4 führt in *U. maydis* nicht zu einer Reduktion des Wachstums, wenn bestimmte Zucker als alleinige C-Quellen angeboten werden. In *U. maydis* existieren aber mindestens ein weiterer ORF, dessen abgeleitete Proteinsequenz signifikante Ähnlichkeit zu Pig4 aufweist (J. Kämper, persönliche Mitteilung). Dieses Protein könnte zu Pig4 funktionell redundant sein. In der Bäckerhefe ist so ein Fall beschrieben (Ozcan und Johnston, 1999). Dort sind mehr als 20 Hexosetransporter bekannt, wobei allein sieben davon Glukose transportieren (MIPS-Database). Nur die gleichzeitige Deletion aller sieben Glukosetransporter führt hier zu einem Wachstumsdefekt in glukosehaltigem Medium (Ozcan und Johnston, 1999).

Das *pig4*-Gen wird erst spät in der biotrophen Phase induziert. Zu diesem Zeitpunkt haben sich schon Tumore gebildet. Diese stellen "sink" Organe dar, in die Assimilate der Pflanze transportiert werden (Billett und Bournett, 1978). Hexosen als Bestandteil der Assimilatenströme werden dabei durch Hexosetransporter aufgenommen (Truernit *et al.*, 1996). Pig4 könnte deshalb ein Protein sein, das speziell an der Aufnahme von Inositol und Arabinose in der späten Tumorentwicklung beteiligt ist.

Um die Rolle der tumorspezifischen Hexoseaufnahme und deren Rolle in der pathogenen Entwicklung von *U. maydis* näher zu untersuchen, wäre es interessant, Mehrfachmutanten für die Pig4-ähnlichen Hexosetransporter herzustellen. Interessanterweise ist in *S. pombe* Inositol nicht nur C-Quelle im Primärmetabolismus, sondern dient auch als Signalmolekül für die Induktion der Paarung und Sporulation. Entsprechend sind Mutanten, die kein Inositol aufnehmen können, in diesen Funktionen gestört (Niederberger *et al.*, 1998). Da *pig4* in sporogenen Hyphen induziert wird, wäre durchaus eine Funktion denkbar, die neben der Zuckeraufnahme auch signalgebende Wirkung und die Induktion der Sporenbildung beinhaltet.

Trotz der Häufung pflanzenregulierter Gene führten Einzeldeletionen von *pig3*, *pig4 pig5*, *pig6*, bzw. *npi1*, *npi2* oder *npi3* zu keiner Beeinträchtigung der Entwicklungsfähigkeit von U. maydis (K. Hansson, persönliche Mitteilung und diese Arbeit). Dies bedeutet, daß die untersuchten Gene für die sexuelle und pathogene Entwicklung nicht essentiell sind. Alternativ könnte die Aufgabe dieser Proteine von anderen Proteinen, wie dies für *pig4* und *pig6* wahrscheinlich ist, übernommen werden. Interessant wäre herauszufinden, ob in einer Mutante, in der alle Gene gleichzeitig ausgeschaltet sind, die pathogene Entwicklung beeinträchtigt ist. Bemühungen, die Gene *pig3*, *pig4 pig5*, *pig6* und *npi1* gleichzeitig zu deletieren, waren jedoch bislang erfolglos (K. Hansson, persönliche Mitteilung). In phytopathogenen Bakterien sind differentiell exprimierte Gene, die als "cluster" vorliegen und eine Funktion in der pathogenen Entwicklung haben, schon lange bekannt und sehr gut untersucht(Baron und Zambryski, 1995). In bakteriellen Systemen erfolgt die initiale Erkennung des Wirtes und die Expression der für die biotrophe Phase essentiellen Gene durch Pflanzenkomponenten (Baron und Zambryski, 1995). Dieser Erkennungsprozeß löst in beiden

D. radiodurans U. maydis S. cerevisiae	1 1 1	MLLSATTTERSSSS SPPTSATIOTAPLESS PDPEFY0 SHGST PRT
D. radiodurans U. maydis S. cerevisiae	1 46 1	SVSOSROTLGOTRALSO PRYAEPEEOD LTLTDD FYDODDDDDDRD
D. radiodurans U. maydis S. cerevisiae	1 91 1	HJVRK PFLPRRNSASSSVRKSWPNSRPEVKRSNSIOLKRSHPHKM
D. radiodurans U. maydis S. cerevisiae	1 136 1	V D O K R K N E T A A K S G G T D E D G S R S S S S S S C G D G N A S N G G V G E A S R G P
D. radiodurans U. maydis S. cerevisiae	1 181 34	G O V S F E D I F D V T K T L R E N O S M M I S A E F E R MG MG K YO C I N V L C G C I O T K S E Y F N A E L P A K P I A A Y N T V I C L C L MI A F G G F V F G W D T G T I S
D. radiodurans	38	TWAADAMEVLLMGFALPGISAAFEIPKGSPAATMLLTATJAGMIF
U. maydis	226	GYFIDLLWAOALGLIVTOVAJEFADEIGGKTGPLOT-AFSTGLIV
S. cerevisiae	79	GFVN2TDFKRRFGQMKSDGTYYLSDVRTGLIVG-IFNIGCAF
D. radiodurans	83	GAWFWGYLADRVGRRSVFLTTVALGVVFGLAGALAPCLTNLIV
U. maydis	270	GAFFFGFAVDVVGRRWSFYLTTLIASIFGIASGGARSFDGLCV
S. cerevisiae	120	GGITLCRLGDMYGRR-IGLMCVVLVYIVGIVIQIASSDKWYQYFI
D. radiodurans	126	ARFLIGFAIGGTLEVDYSMMAEFVFTAWRGRFLVYLESFWAVGTV
U. maydis	313	LSAFIGFGIGGMIPIDATITLEFLFTNRR-FLVAALSLEOPLGVL
S. cerevisiae	164	GRIISGMGVGGIAVLSPTLISETAFKHIRGTCVSFYQLMITLGIF
D. radiodurans	171	VVAALAWWVSTAFAFAEGWRWLLGLAALPGLVGII
U. maydis	357	VCSGISYGLIPKYACESAETCTRSNNMGWRYTL <u>VT</u> LGCITWLIFV
S. cerevisiae	209	LGYCTN <mark>YGTKDYSN</mark> SVÇWRVPLGLNFAFAIFMIA
D. radiodurans	206	ARIGIE DSPRSLLARGEE AOARAALOKVAO ANGGTL <mark>PAA</mark> PIA
U. maydis	402	AREFIESFRESPOYLLARGKE ARALOIIRDILHT <mark>NK SK</mark> ME PVFTO
S. cerevisiae	243	GMLMVP <u>ESPR</u> FLVEKGRYEDAKRSLAKSNKVT - EDPSIVAE
D. radiodurans	248	H PEO
U. maydis	447	ADFOKAARRIAEHOGGEYLVEFEZOERLHGGALEMSRWETAKXSA
S. cerevisiae	284	MDTIMANVETERLAGNASVGELFSN
D. radiodurans	252	PPRVSPAOLFR-GVLARRTPILMVTWFGLSLGYYGIFSWLP
U. maydis	492	KEMASLFLNAKTLFRNKTMARVTIILWLTFIADFWGFTLAGFYLP
S. cerevisiae	309	KGAILPRVIMGIMIQSLQQLTGNNYFFYYGTTIFNAVGMKDSF
D. radiodurans	292	SFIRACGDLGAVYRSTLLLALAOVPGYLLAAYIV
U. maydis	587	OILRAKGAEODTSISTTYRNYMLVYFPGIFAVALGAAMI
S. cerevisiae	352	OTSIVLGIVNFASTFVALYTVDKFGRRKCLLGGSASM
D. radiodurans	327	EX IGRRVTLVGFLTLGAVGAYLFLLAHDANTVLLCSALLSFAL
U. maydis	576	EAFKVGROWAMVSSG-LMAVSFFLFTIAKDOTGSVVLNAVEYFO
S. cerevisiae	389	AICFVIFSTVGVTSL-YPNGKDOPSSKAAGNVMIVFCCLFIFFFA
D. radiodurans	370	LGAWGSLYAYTPELFPT?LRTTGMGLVSGVARLASVVS?SI
U. maydis	620	SLENSILYAFVPEIYPSOVRGTASGLASTLGRTAGIIA?LA
S. cerevisiae	433	ISWAPIAYVIVAESYPLRVKNRAMATAVGANWINGFLIG?FT?FI
D. radiodurans	411	G - AMLLT3N - LTLALTV FAVC FALAALAA - WGIGVETRGOALAET
U. maydis	661	A - DPL FADOTEOOAKHVLYLAGGVILLCP - IALALLPYDTRGMRV
S. cerevisiae	478	TSAIGESYGYVFMGCLVFSFFYVFFFVCE IKGLTLEEVNEMYVEG
D. radiodurans	458	A I 454
U. maydis	704	Y 704
S. cerevisiae	523	V K FWK S G S W I S K E K R V S E E 541

Abbildung32:SequenzvergleichvonPig4zubekanntenHexosetransporternausD.radioduransundS.cerevisiae.DerVergleichderPolypeptidewurdemitdemProgrammCLUSTALWdurchgeführt.RoteKästenmarkierenhydrophibe, blauehydrophileBereiche.Identische aasind eingerahmt.

Partnern eine signalvermittelte Genregulation aus. Auf der Pflanzenseite werden in der Folge Gene induziert, die an der Abwehrreaktion beteiligt sind. In Bakterien werden Pathogenitätsgene exprimiert, die z. B. Phytotoxine produzieren oder für die Kolonisierung nötig sind (Baron und Zambryski, 1995; Bender *et al.*, 1999; Mahato und Nandy, 1991). Diese Gene liegen häufig als "cluster" auf Plasmiden vor, können aber auch im Genom lokalisiert sein. Die "cluster" umfassen eine Größe von 10 - 200 kb und werden als Pathogenitätsinseln (PAI) bezeichnet. Diese PAIs sind essentiell für die pathogene Entwicklung (Groisman und Ochman, 1996). Im Vergleich zum restlichen Genom kann in diesen DNA-Abschnitten häufig ein unterschiedlicher G/C-Gehalt festgestellt werden (Groisman und Ochman, 1996).

Die wichtige Frage, wie groß der *p*-Locus von *U. maydis* ist und wie viele Gene er umfaßt, kann anhand der vorliegenden Daten nicht bestimmt werden. Da PAIs aber mehr als 100 kb umfassen können und zumindest stromaufwärts des sequenzierten Bereichs weitere pflanzeninduzierte Gene identifiziert wurden, besteht durchaus die Möglichkeit, daß sich der *p*-Locus über einen größeren Bereich erstreckt.

In phytopathogenen Vertretern der verschiedenen Pseudomonas- oder Xanthomonas-Spezies wird nach Kontakt mit der Wirtspflanze das sogenannte Hrp-TypIII-Sekretionssystem induziert (Galan und Collmer, 1999; Hueck, 1998; Van Gijsegem et al., 1995). Die Induktion der hrp-Gene erfolgt über einen gemeinsamen Regulator, der an die sogenannten hrp-Boxen in den Promotoren der hrp-Gene binden kann (Genin et al., 1992; Marenda et al., 1998). In der Folge kommt es zur Ausbildung von Pili, über die vermutlich Pathogenitätsfaktoren in die Wirtspflanze eingeschleust werden (Aldon et al., 2000; Van den Ackerveken et al., 1996). In Bakterien führt somit die konzertierte Expression von Genen zur Ausbildung ganz spezifischer und für die pathogene Interaktion spezialisierter Proteine, die gemeinsam eine Funktion, hier den Transfer von Proteinen, ausführen. Die Gene des p-Locus zeigen jedoch keinerlei Ähnlichkeit zu diesem spezifischen Sekretionssystem. Außerdem war kein Unterschied im G/C-Gehalt im Vergleich zu DNA-Abschnitten aus anderen Regionen im Genom zu erkennen (nicht gezeigt). Da die Gene zu unterschiedlichen Zeitpunkten in der biotrophen Entwicklung induziert bzw. reprimiert werden, ist eine Interaktion der Genprodukte und eine daraus resultierende gemeinsame Funktion wenig wahrscheinlich. Daß die derzeit bekannten Gene des p-Locus eine Aufgabe analog denen des hrp-Gen-"clusters" erfüllen, ist deshalb auszuschließen.

In Bakterien ist eine weitere Gruppe von Pathogenitätsdeterminanten bekannt, die nicht mit den *hrp*-Genen kolokalisieren, aber ebenfalls als PAIs gelten. Ein Beispiel dafür ist eine Gruppe von Genen, die für die Produktion von Tabtoxin in *P. syringae* benötigt wird (Kinscherf *et al.*, 1991). Auch in phytopathogenen Pilzen wird darüber spekuliert, daß Gene, die für die Pathogenität wichtig sind, in bestimmten Chromosomenabschnitten gehäuft auftreten. So konnte für den *Tox1*-Locus in
Cochliobolus heterostrophus ein vom restlichen Genom abweichender G/C-Gehalt festgestellt werden (Kodama *et al.*, 1999). Kleine Chromosomen in *Nectria haematococca* tragen Gene, die für die pathogene Entwicklung nötig sind. Diese Chromosomen ("dispensible chromosomes") können verloren gehen, ohne daß das Wachstum beeinträchtigt ist. Der Pilz verliert aber seine Virulenz (VanEtten *et al.*, 1994). Der *p*-Locus von *U. maydis* liegt auf den Chromosomen XV oder XVI von etwa 21 Chromosomen (nicht gezeigt) und somit nicht auf den kleinsten Chromosomen. Des weiteren ist die Existenz von "dispensible chromosomes" für *U. maydis* bislang nicht beschrieben. Da Gene, die an der Synthese von Toxinen beteiligt sind, in der Regel bekannt sind und solche auf dem *p*-Locus nicht identifiziert wurden ist es eher unwahrscheinlich, daß ein, den oben beschriebenen Szenarien ähnliches Prinzip vorliegt.

Die Anhäufung pflanzenregulierter Gene mit einer partiellen Koregulation könnte aber trotzdem ein Hinweis darauf sein, daß hier eine Insel von Genen identifiziert wurde, deren Produkte zur pathogenen Entwicklung von U. maydis beitragen. Der Mechanismus sollte sich aber von bekannten Systemen unterscheiden. Für die Etablierung biotrophen Wachstums bedarf es neben Genen, welche die Pflanzenabwehr verhindern oder Genen, die essentiell an der Etablierung des pathogenen Stadiums in der Pflanze beteiligt sind, vermutlich einer Reihe von Genen, die eine Versorgung durch Pflanzenmetabolite gewährleisten. Solche Gene könnten wie für pig4 oben diskutiert an der Aufnahme von Metaboliten in Tumoren beteiligt sein. Darüber hinaus kommen für das Wachstum in der Pflanze weitere Faktoren in Frage, die z. B. die Tumorentwicklung einleiten, ein Prozeß, der im Zusammenhang mit einer erhöhten Sekretion von Phytohormonen diskutiert wird (Basse et al., 1996). Auffällig ist bei U. maydis auch, daß die Pflanzenabwehr unterlaufen wird und es erst spät in der Entwicklung zu Nekrosen kommt. Besonders in diesem Prozeß ist gut vorstellbar, daß Stadienabhängig verschiedene Abwehrmechanismen unterlaufen werden müssen. Die regulierte Expression bestimmter Proteine könnte eine Adaption der jeweiligen morphologischen Stadien an die Pflanze ermöglichen und so die Erkennung durch den Wirt verhindern. Für die Gene des p-Locus wäre es denkbar, daß sie an solchen Adaptionen beteiligt sind.

3.3.6 Signale zur Induktion der pathogenen Entwicklung von U. maydis

In dieser Arbeit konnte für sieben Gene, *mfa1*, *lga2*, *pig2*, *pig3*, *pig4*, *pig5* und *pig6* differentielle Genexpression während der biotrophen Phase von U. maydis nachgewiesen werden. Dabei war auffällig, daß die einzelnen Gene mitunter sehr unterschiedliche Expressionsmuster aufwiesen, d. h. zu unterschiedlichen Zeitpunkten in der Entwicklung induziert bzw. reprimiert wurden. Dies läßt vermuten, daß der Pilz durch eine Vielzahl unterschiedlicher Signale in dauernder Kommunikation

mit seiner Wirtspflanze stehen könnte. Die einzelnen Stadien würden demnach durch die Regulation stadienspezifischer Expression der jeweiligen Gene eingeleitet. Dies könnte auch bedeuten, daß die Gene, die für abgeschlossene Phasen nicht mehr benötigt werden, abgeschaltet werden. Die einzelnen Signale und die dadurch regulierten Gene könnten eine andauernde Adaption an das sich ändernde Pflanzenumfeld oder die sich ändernden Bedürfnisse der einzelnen Entwicklungsstadien vermitteln.

Eine der spannendsten Fragen ist natürlich, welche Signale die Expression pflanzeninduzierter Gene regulieren. Im folgenden wird exemplarisch anhand der Expression von *pig3* diskutiert, wie frühe signalvermittelte Kommunikation in *U. maydis* erfolgen und welche Signale involviert sein könnten. Die Induktion von *pig3* erfolgt in Sporidien auf der Pflanzenoberfläche. Da dies auch in haploiden Sporidien ohne einen Kreuzungspartner der Fall ist (nicht gezeigt), d. h. zum Zeitpunkt der Induktion von *pig3* noch keine Zelldifferenzierungen stattgefunden haben, können entsprechende Signale als Induktoren von *pig3* vermutlich ausgeschlossen werden. Des weiteren hat *U. maydis* zu diesem Zeitpunkt keinen direkten Kontakt mit den Pflanzenzellen oder mit intrazellulären Pflanzenstoffen. Das Signal, das *pig3* induziert, sollte deshalb auf der Pflanzenoberfläche zu finden sein. Dabei sind sowohl abiotische als auch biotische Signale denkbar.

In der pathogenen Interaktion von Magnaporthe grisea, dem Erreger der Reisbräune, und seiner Wirtspflanze Reis, erkennt das Pathogen die Oberfläche seiner Wirtspflanze anhand der Textur und Hydrophobizität (Howard et al., 1991). Durch angerauhte, hydrophobe Kunststoffolien läßt sich dieses Signal simulieren und bei Kontakt werden in M. grisea Appressorien induziert und Penetrationshyphen gebildet (Howard und Valent, 1996). In U. maydis können durch solche Kunststoffolien ebenfalls Erweiterungen an den Enden dikaryotischer Filamente induziert werden, die aber morphologische Unterschiede zu appressorienartigen Strukturen aufweisen (J. Krüger, persönliche Mitteilung). Es ließ sich zwar auf solchen Oberflächen keine pig3-Expression in den GFP-Reporterstämmen induzieren (nicht gezeigt), trotzdem sind Oberflächentextur und Hydrophobizität als mögliche Signalfaktoren denkbar. Eine zweite Möglichkeit der Interspezieskommunikation zwischen U. maydis und Z. mays stellt der Austausch molekularer Signale dar. Einige solcher Signalstoffe, die sich auf der Pflanzenoberfläche befinden, sind in anderen Bestandteile Organismen beschrieben. So Colletotrichum-Arten werden von der Oberflächenwachsschicht erkannt. Längerkettige Fettsäuren (> C24) können die Sporenkeimung induzieren, andere, in den Wachsen enthaltene Substanzen werden als Inhibitoren der Sporenkeimung diskutiert (Hwang et al., 1995). Interessant ist in diesem Zusammenhang, daß mit pig6 ein putatives MDR-Protein auf der Pflanzenoberfläche exprimiert wird, das potentiell inhibierende Substanzen aus den Pilzzellen transportieren könnte. Des weiteren werden auch Cutin-Monomere, die Hauptbestandteil der pflanzlichen Cuticula sind, in Fusarium solani pisi als

induzierende Substanzen beschrieben (Rogers *et al.*, 1994). In diesem System kommt es zur Induktion von Cutinase-Genen. Möglicherweise entstehen durch eine basale Aktivität der Cutinasen erst die entsprechenden Derivate der Monomere, die für die spezifische Erkennung nötig sind. Solche Cutin-Monomere werden auch als Signale für Transduktionskaskaden diskutiert, die an der Wirtserkennung beteiligt sein könnten (Kolattukudy *et al.*, 1995; Rogers *et al.*, 1994).

Eine Möglichkeit, den Stoff zu isolieren, der zur Induktion von *pig3* führt, wäre die Inkubation von *pig3*-Reporterstämmen mit den verschiedenen Monomoren dieser Substanzen bzw. die Reinigung von Substanzen ausgehend von Polymergemischen oder Pflanzenextrakten, in denen Oberflächenbestandteile angereichert sind. Alternativ könnten Maiszellkulturen eine Quelle induzierender Moleküle darstellen. Hier wären vor allem sekretierte Stoffe von Interesse, wie sie für die Induktion von *Cladiosporum fulvum*-Genen isoliert wurden (Wubben *et al.*, 1994). Es muß jedoch berücksichtigt werden, daß Zellkulturen nicht die natürliche Umgebung von *U. maydis* widerspiegeln und die entsprechenden Signalstoffe in dieser artifiziellen Situation eventuell nicht gebildet werden.

Interessant wäre natürlich auch, weitere Gene zu isolieren, die zum gleichen Zeitpunkt wie *pig3* induziert werden, da diese Einblicke in das involvierte System und dessen Funktion geben könnten. Da *U. maydis* zum Induktionszeitpunkt dieser Gene saprophytisch lebt, wäre es möglich, den Pilz von der Pflanze, z.B. durch abwaschen, zu trennen. Daraus präparierte RNA könnte dann in eine "representational difference analysis" (RDA) auf der Basis von cDNAs eingesetzt werden (Geng *et al.*, 1998).

4 Zusammenfassung

Die genetische Kontrolle der Fusion haploider Sporidien, des filamentösen Wachstums und der pathogenen Entwicklung wird von einem Pheromon/Rezeptorsystem (*mfa* und *pra*) und dem aktiven bE/bW-Heterodimer vermittelt. Darüber hinaus ist *U. maydis* für die Vollendung des Lebenszyklus auf seine Wirtspflanzen *Z. mays* und *E. mexicana* angewiesen. Für diese sexuelle Entwicklung sind somit geeignete Umweltbedingungen, Intraspezieskommunikation und Erkennung bzw. Wachstum in der Wirtspflanze notwendig. Über letztere Prozesse ist, bis auf Hinweise, daß die frühe Phase wichtig für die pathogene Entwicklung ist, nur wenig bekannt.

In Northernanalysen wurde eine pflanzenspezifische Expression der Paarungstypgene in Tumorgewebe beobachtet. lga2 und bE1 waren im Vergleich zu filamentösen Dikarien reprimiert, während mfa1 und pra1 induziert waren. Die Transkription von mfa/pra benötigt dabei zwar Prf1 als Aktivator, wird aber nicht durch das bE/bW-Heterodimer beeinflußt. Diese Regulation greift, wie Reporterstämme zeigten, die das "Grün Fluoreszierende Protein" (GFP) unter der Kontrolle des mfa1- bzw. lga2-Promotors exprimierten, schon innerhalb von 24 h nach der Penetration.

Durch die Kombination von GFP als Reportergen mit der Restriction Enzyme Mediated Integration (REMI)-Mutagenese wurde eine "enhancer trap"-Mutagenese für U. maydis etabliert, um früh in der biotrophen Phase induzierten Gene zu isolieren. Es wurden 2350 Mutanten hergestellt. Mit der verbesserten GFP-Variante EGFP als Reportergen exprimierten 42% der Stämme GFP in axenischer Kultur. Nach Pflanzeninfektionen mit den übrigen Mutanten wurden drei Stämme isoliert, die pflanzenabhängig GFP exprimierten. In den Mutanten war jeweils ein differentiell exprimiertes Gen markiert worden. mfal war bereits als pflanzenabhängig reguliertes Gen bekannt (s. oben). pig2 ist in Sporidien gering exprimiert und wird in filamentösen Dikarien leicht induziert. Höchste Expression war im Tumor zu beobachten. pig3 war in Sporidien auf der Blattoberfläche und in sporogenen Hyphen exprimiert. In unmittelbarer Nähe von pig3 befinden sich fünf weitere pflanzenregulierte (pig4, pig5, pig6, pig7, pig8) und drei konstitutiv exprimierte Gene (npi1, npi2, npi3). Die Gene dieser p-Locus genannten Region zeigten teilweise sehr unterschiedliche Expressionsmuster. So wird pig6 beim Wachstum in der Pflanze reprimiert, pig5 wird in frühen Tumorstadien und pig4, pig7 und pig8 in sporogenen Hyphen induziert. Wie Promotoranalysen zeigten, werden pig3 und pig4 negativ reguliert. Zudem war in regulatorischen Mutanten von pig4 auch erhöhte Transkription von pig3 zu erkennen. pig3 und pig4 sind somit bezüglich der Repression koreguliert, werden aber von unterschiedlichen Faktoren induziert.

Die Rolle der pflanzeninduzierten Gene und des *p*-Locus in der pathogenen Entwicklung und darin vorkommende Signale werden diskutiert.

5. Materialien und Methoden

5.1 Materialien und Bezugsquellen

5.1.1 Escherichia coli-Stämme

Für sämtliche Klonierungen ohne nähere Angaben wurde der Stamm DH5 α (Hanahan, 1985) verwendet, bei dem es sich um ein Derivat des E. coli-Stammes K12 mit folgenden genetischen Markern handelt: F', endA1, hsdR, hsdM, sup44, thi-1, gyrA1, gyrA96, relA1, recA1, lacZλM15. Für PCR-Klonierungen mit dem Kit TOPO TA Cloning[®] von Invitrogen wurde der E. coli-Stamm TOP10 verwendet: F['], mcrA, λ(mrr-hsdRMS-mcrBC), λ80lacZλM15, $\lambda lacX74$, recA1, deoR, araD139, $\lambda (ara-leu)$ 7697, galU, galK, rpsL (Str^R), endA1, nupG. Die Nomenklatur von E. coli-Stämmen richtet sich nach Demerec, 1966.

5.1.2 Ustilago maydis-Stämme

Tabelle 2: In dieser Arbeit verwendete U. maydis-Stämme					
Stamm	relevanter Genotyp Resistenz-	Referenz- marker			
FB1	al bl	keine	(Banuett et al., 1989)		
FB2	a2 b2	keine	(Banuett et al., 1989)		
FBD11	a1a2b1b2	keine	(Banuett et al., 1989)		
SG200	1 bE1bW2::mfa2	ble	S. Genin, nicht publiziert		
HA103	al bElbW2 ^{con}	Hyg	(Hartmann et al., 1996)		
HA 108	al bE1bW2 ^{con} ∆prf1	Hyg/cbx	(Hartmann et al., 1996)		

Tabelle	3:	In	dieser	Arbeit	hergestellte	U .	maydis-Stämme
---------	----	----	--------	--------	--------------	------------	---------------

Stamm	relevanter Genotyp	Ausgangs- stamm	transformiertes Plasmid	Resistenz
CA2	a1b1Pmfa1sGFP	FB1	pCA72	Hyg
CA7	a2b2Plga2sGFP	FB2	pCA68	cbx
#114	a1a2b1b2	FBD11	pCA104	Hyg
#219	a1a2b1b2	FBD11	pCA104	Hyg
#213	a1a2b1b2	FBD11	pCA104	Hyg
#220	a1a2b1b2	FBD11	pCA104	Hyg
#271	a1a2b1b2	FBD11	pCA104	Hyg
#427	a1a2b1b2	FBD11	pCA104	Hyg
#430	a1a2b1b2	FBD11	pCA104	Hyg
#461	ala2b1b2	FBD11	pCA104	Hyg

#480	a1a2b1b2	FBD11	pCA104	Hyg
#500	a1a2b1b2	FBD11	pCA104	Hyg
#624	a1a2b1b2	FBD11	pCA104	Hyg
#698	a1a2b1b2	FBD11	pCA104	Hyg
#704	a1a2b1b2	FBD11	pCA104	Hyg
#727	a1a2b1b2	FBD11	pCA104	Hyg
#1486	a1a2b1b2	FBD11	pCA125	Hyg
#1685	a1a2b1b2	FBD11	pCA125	Hyg
FB1 <i>duat1</i>	alb1 <u>A</u> uat1	FB1	pCA240	NAT
FB2 <i>Auat1</i>	$a2b2\Delta uat1$	FB2	pCA240	NAT
FB1ΔGA	a1b1∆GA	FB1	pCA248	NAT
FB2∆GA	a2b2∆GA	FB2	pCA248	NAT
SG200∆GA	a1b1∷mfa2∆GA	SG200	pCA248	NAT
CA107	alb1∆GApSC4	FB1	pSC4	Hyg, NAT
CA108	a2b2∆GApSC4	FB1	pSC4	Hyg, NAT
FB1-8H11	albl	FB1	8H11	cbx, NAT
FB2-8H11	a2b2	FB1	8H11	cbx, NAT
FB1-9A1	alb1	FB1	9A1	cbx, NAT
FB2-9A1	a2b2	FB1	9A1	cbx, NAT
FB1SC5	a1b1	FB1	pSC5	Hyg, NAT
FB2SC5	a2b2	FB2	pSC5	Hyg, NAT
FB1SC6	a1b1	FB1	pSC6	Hyg, NAT
FB2SC6	a2b2	FB2	pSC6	Hyg, NAT
FB1SC7	a1b1	FB1	pSC7	Hyg, NAT
FB2SC7	a2b2	FB2	pSC7	Hyg, NAT
FB1 <i>Apig2</i>	a1b1 <i>∆pig2</i>	FB1	pKH222	Hyg
FB2∆pig2	a2b2 <i>Apig2</i>	FB2	pKH222	Hyg
FB1 <i>Apig3</i>	a1b1pig3::eGFP	FB1	pCA307	cbx
CA307	a2b2pig3::eGFP	FB2	pCA307	cbx
FB1 <i>Apig5</i>	a1b1∆pig5	FB1	pCA310	cbx
FB2∆pig5	a2b2 <i>Apig5</i>	FB2	pCa310	cbx
CA304	a2b2	FB2	pCA304	cbx
CA305	a2b2	FB2	pCA305	cbx
CA306	a2b2	FB2	pCA306	cbx
CA308	a2b2	FB2	pCA308	cbx
CA317	a2b2cbx::Ppig3-262hygc	FB2	pCA317	cbx, Hyg
CA318	a2b2cbx::Ppig311077hygc	FB2	pCA318	cbx, Hyg
CAP1	a2b2cbx::Ppig311077hygc	CA318	UV-Mutante	cbx, Hyg
CAP2	a2b2cbx::Ppig311077hygc	CA318	UV-Mutante	cbx, Hyg

5.1.3 Verwendete Kits

TOPO TA Cloning[®] (Invitrogen) zur Klonierung von PCR-Produkten, JETSORB[®] (Genomed) zur Isolierung von DNA-Fragmenten aus Agarosegelen, JETSTAR[®] (Genomed) zur Plasmid-Maxipräparation, JETQUICK (Genomed) für die Reinigung von Plasmiden zur Sequenzierung und Megaprime[®] DNA Labeling System (Amersham) zur radioaktiven Markierung von DNA-Fragmenten.

5.1.4 Chemikalien, Proteine und Enzyme

Die in dieser Arbeit bezogenen Chemikalien wurden bei folgenden Firmen bezogen: Amersham, Baker, BioRad, Boehringer, BRL, Difco, Mallinckrodt (Phenol), Merck, Pharmacia, Piedel-de Haen, Roth, SeaKem, Serva und Sigma. Enzyme und bioaktive Substanzen stammen von Boehringer, New England Biolabs und Pharmacia. Für Standard PCR wurde ein Laborpräparat verwendet (J. Kämper).

5.1.5 Nukleinsäuren

10 mg/ml Lachssperma-DNA in TE-Puffer, ultrabeschallt und gekocht (Laborpräparat). Für die Herstellung von CM-Medium (siehe 5.1.1.10) wurde Heringssperma-DNA (Sigma) verwendet.

Tabelle 4:	In dieser Arbeit verwendete Oligonukleotide		
Name	Nukleotidsequenz (5' nach 3')	Zweck	
CA5	CGC TGC CAT GGT GAT AGA AGT AAG GTA GTT G	PCR	
CA6	GCG AAG TCC ATC TTC TGC	PCR	
CA7	AGC ATG CCA TGG TTC AGA GGA AAG GGA TTG CT	PCR	
CA8	TCT GGT GGG ACC CAG ACG	PCR	
REMI5'	TGA GAG TGG ATG AGG TTT GGC	PCR, SEQ	
HYG3'	GAA TTG TAA TAC GAC TCA CTA TAG	PCR, SEQ	
UAT1	ATT TTC GAG AAC GGA CAT GTA GCC	SEQ	
UAT2	AAC AAC GAC GGC AAC ACG GTC ATC	SEQ	
pig3 5'	CAG CCA TGG CTT CTG CGC CAA CAC	SEQ	
pig3 3'	TAG CGG CCG CTC GAG CTA GAC TCA ATA C	SEQ	
pig3-1	CAT GCC ATG GTA TAT CCG CGG GCC GGAC	PCR	
pig3-2	TACAAG CTT GTC TAG CTC GAA TGG CGG TG	PCR	
CA30			
CA32			
CA33			
Universal	ACG ACG TTG TAA AAC GAC GGC CAG	PCR, SEQ	
Reverse	TTC ACA CAG GAA ACA GCT ATG ACC	PCR, SEQ	
BamHI-	P-CGGGATCCCG-P	Klonierung	
Linker		-	

Oligonukleotide wurden von der Firma Metabion synthetisiert. Verwendung: PCR: PCR-Amplifikation; SEQ: Sequenzierung. Die Basen sind nach der offiziellen Nomenklatur abgekürzt. P = Phosphatrest

Als DNA-Größenstandards für die Agarose-Gelelektrophorese dienten λ-DNA PstI--Fragmente (Laborpräparate):

λ-DNA <i>Pst</i> I-Fragmente:	11509 bp	1700 bp	216 bp
	5077 bp	1159 bp	211 bp

4749 bp	1093 bp	200 bp
4507 bp	805 bp	164 bp
2838 bp	514 bp	150 bp
2560 bp	468 bp	94 bp
2459 bp	458 bp	87 bp
2443 bp	339 bp	72 bp
2130 bp	264 bp	15 bp
1936 bp	249 bp	1

5.1.6 Sonstige Materialien

Dialysefilter VSPW 0,025 μ m (Millipore), Elektroporationsküvetten 0,2 cm (BioRad), Filterpapier 3MM (Whatman), Glasperlen 150-212 Microns (Sigma), MobiSpin[®] S-300 Säulen (MoBiTec), Nylonfilter[®] Biodyne B (Pall), Papierfilter (S&S 595), Petrischalen (Greiner), 15 ml und 50 ml PPN-Röhrchen (Sarstedt), JETSTAR[®]-Säulen (Genomed), Sigmacote[®] (Sigma), Sterilfilter 0,20 μ m (Sartorius), Thermalpapier (Hitachi).

5.1.7 Plasmide

	Tabelle 5: In dieser Arbeit verwendete Plasmide				
Name	Selektions- marker	Referenz	Herkunft/Anmerkungen		
Standardplasmide für U. maydis					
pTZHyg	Amp ^R , Hyg ^R	F. Schauwecker, pers. Mitteilung	Laborsammlung Das Hygromycin B-Resistenzgen wurde als 3 kb <i>Pvu</i> II-Fragment aus pHLN, mit <i>Bam</i> HI-Linkern versehen, in pTZ18 R kloniert.		
pSLHyg (-)	Amp ^R , Hyg ^R	A. Brachmann unveröffentlicht	Enthält die Hyg-Resistenzkassette aus pTZHgyg mit zwei <i>Not</i> I-Linkern in pSL1180		
pSLCbx(-)	Amp ^R , Hyg ^R	A. Brachmann unveröffentlicht	Enthält die Cbx-Resistenzkassette aus pCbx122 mit zwei <i>Not</i> I-Linkern in pSL1180		
pCBX122 pSL Nat(+)	Amp ^R ,Cbx ^R Amp ^R , Nat ^R	(Keon <i>et al.</i> , 1991) A. Brachmann unveröffentlicht	Laborsammlung Enthält die Nat-Resistenzkassette mit zwei <i>Not</i> I-Linkern in der <i>Not</i> I-Schnittstelle von pSL1180 Fragment aus pCM54 (Tsukuda <i>et al.</i> , 1988) und einem 3,2 kb <i>Eco</i> RI- <i>Hind</i> III-Fragment einer Untereinheit der Succinatdehydrogenase aus einem Carboxin resistenten <i>U. maydis</i> -Stamm		
pSMUT	Amp ^R , Hyg ^R	(Bölker et al., 1995)	Enthält <i>hph</i> -Gen unter der Kontrolle eines 600bp <i>Rsa</i> I-Fragmentes aus <i>S. cerevisiae</i> in pSP72		
pOTEF-SG	Amp ^R , Hyg ^R	(Spellig et al., 1996)	Laborsammlung enthält das SGFP-Gen unter der Kontrolle des otef- Promotors		

verwendete Cosmide

Cosmidbank	Amp^R , Cbx^R	(Bölker et al., 1995)	Cosmidbank des U. maydis-Stammes
pUMcos ^x			FBD11, erzeugt durch Ligation partiell restringierter <i>Mbo</i> I-Fragmente in die
			BamHI-Schnittstelle des Vektors pUMcos.
			pUMcos ist ein Derivat des Vektors
			pScos1 (Stratagene), in dem ein BglII-
			HindIII-Fragment, das die Neomycin-
			Resistenz-Kassette enthielt, durch
			ein EcoRV-SmaI-Fragment aus dem
			Vektor pCBX122 (s. o.), das Resistenz gegen Carboxin in <i>U. maydis</i> vermittelt, ausgetauscht.
9H2	Amp ^R , Cbx ^R		Enthält die flankierende Region der Insertion im Plasmid 219-13 der Mutante #219
9A1	Amp ^R , Cbx ^R		enthält die flankierenden Sequenzen der Insertion in der Mutante #1486
10E1und 21A2	Amp ^R , Cbx ^R		enthält die flankierenden Sequenzen der Insertionsstelle in der Mutante #1685

Standardplasmide und Subklone zur Klonierung

pTZ19R/18R	Amp ^R	(Mead et al., 1984)	Pharmacia
pCR [®] 2.1-TOPO	Amp ^R , Kan ^R	(Shuman, 1994)	Invitrogen Dieses Plasmid wurde zur Zwischen- klonierung von, mit PCR amplifizierten Fragmenten benutzt
pSL1180	Amp ^R		Pharmacia
pSP72	Amp ^R	(Krieg und Melton, 1987)	Promega
pEGFP-N1	Amp ^R , Kan ^R		Clontech, EGFP-Gen
pBSKsGFP-tygnos	Amp ^R	(Spellig et al., 1996)	SGFP-Gen
pKH518	Amp ^R	Karin Hansson (nicht publiziert)	enthält ein 2,7 kb <i>Sph</i> I- Fragment aus 10E1 in pTZ19R
pKH541	Amp ^R	Karin Hansson (nicht publiziert)	enthält das <i>pig3-</i> Gen als 5,5 kb <i>Hin</i> dIII- Fragment in pTZ19R
pKH548	Amp ^R	Karin Hansson (nicht publiziert)	enthält das <i>pig3-</i> Gen als 5,5 kb <i>Hin</i> dIII- Fragment in pTZ19R
рКН550	Amp ^R	Karin Hansson (nicht publiziert)	enthält das <i>npi2</i> -Gen als 3 kb <i>Nco</i> I- Fragment in pTZ19R
pKH551	Amp ^R	Karin Hansson (nicht publiziert)	enthält ein 7 kb <i>Bam</i> HI-Fragment aus 21A2 in pTZ19R
pCA64	Amp ^R		Aus pTZ 6,5 <i>Bam</i> HI a2 (Bölker <i>et al.</i> , 1992) wurde ein 2,5 kb <i>Pst</i> I-Fragment in pTZ 18R kloniert.
pCA205	Amp ^R ,		8 kb <i>Hin</i> dIII-Fragment aus dem Cosmid 9H2 in pTZ18R
pCA234	Amp ^R ,		Aus dem Cosmid 9A1 wurde ein 5,5 kb HindIII-Fragment in pTZ18R kloniert daß, das Insert aus pCA233 umfaßt.

5.2	Plasmidkonstruktionen
-----	-----------------------

	Tabel	le 6: In dieser Arbeit hergestellte Plasmide
Name	Selektions- marker	Klonierungsstrategie
pCA2	Amp ^R , Hyg ^R	Mit den Oligonukleotiden CA5 und CA6 und DNA aus FB1 wurde ein 250 bp Fragment aus dem mfa1 Promotor amplifiziert. Das Fragment wurde mit <i>Nco</i> I und <i>Kpn</i> I geschnitten und in einer 5 Fragment Ligation mit einem 1020 bp <i>NcoI/Xba</i> I-Fragment aus pBKSsGFP-Tyg-nos, 760 bp <i>Kpn</i> I/ <i>Pst</i> I Fragment aus pTZBm 10,0a1 und einem 935 bp <i>Nhe</i> I/ <i>Bam</i> HI Fragment in pTZ18R (<i>Bam</i> HI/ <i>Pst</i> I) ligiert. Das resultierende Plasmid wurde mit <i>Sma</i> I geschnitten und die Hygromycin-Kassette aus pCM54 als <i>Pvu</i> II- Fragment eingesetzt.
B N	NO	Hyg pTZ18R 1 500 bp
pCA7	AmpR, cbxR	Mit den Oligonukleotiden CA7 und CA8 wurde ein 250 bp langes Fragment aus dem <i>lga2</i> -Promotor amplifiziert. Das Fragment wurde mit <i>NcoI</i> und <i>XhoI</i> /blunt geschnitten und zusammen mit dem 1020 bp <i>XbaI</i> blunt/ <i>NcoI</i> Fragment aus in den <i>MunI/XhoI</i> geschnittenen pCA64 kloniert. Dieses Konstrukt wurde <i>SpeI</i> geschnitten, mit Klenov-Polymerase aufgefüllt und die 1,7 kb cbx-Resistenzkassette als <i>EcoV/SmaI</i> Fragment eingesetzt
PLga2	⊢ sGFP ^j	
B N	No	cox · p1219R · 500 bp
pCA104	Hyg ^r	Ausgehend von pHA390 (Hartmann, 1997) wurde ein 240 bp <i>Eco</i> RV- Fragment deletiert, der Vektoranteil dephosphoriliert und gleichzeitig <i>Bam</i> HI- Linker inseriert. Aus dem daraus resultierenden Plasmid wurde die Hygromycin-Resistenzkassette durch <i>Pvu</i> II/ <i>Eco</i> RI herausgeschnitten und durch die <i>Eco</i> RI/ <i>Sma</i> I Hygromycin-Resistenzkassette aus pSMUT ersetzt. Vektor für die REMI-Transformation.
Prayta 2 🔌 🖝 SGB	FD N	C1
B N	No Hyg	→ pSP72 500 bp
pCA125	HygR	Aus peGFP-N1 wurde das 723 bp EGFP-Gen als <i>NcoI/Not</i> I-Fragment ausgeschnitten und in einer Dreifragmentligation mit dem 2 kb <i>Not</i> I/ <i>Cla</i> I und dem2,4 kb <i>ClaI/Nco</i> I-Fragmenten aus pCA104 ligiert. Das resultierende Plasmid pCA125 ist bis auf eine Punktmutation im GFP-Gen zu pCA104 identisch.
pCA114-3	Amp ^R , Hyg ^R	"plasmid rescue" mit <i>Mlu</i> I aus der Mutante #114
pCA219-13	Amp^R, Hyg^R	"plasmid rescue" mit MluI aus der Mutante #219
pCA219-15	Amp ^R , Hyg ^R	"plasmid rescue" mit MluI aus der Mutante #219

pCA424	Amp ^R , Hyg ^R	"plasmid rescue" mit <i>MluI</i> aus der Mutante #424
pCA500-3	Amp ^R , Hyg ^R	"plasmid rescue" mit <i>Mlu</i> I aus der Mutante #500
pCA624-13	Amp ^R , Hyg ^R	"plasmid rescue" mit MluI aus der Mutante #624
pCA698-2	Amp ^R , Hyg ^R	"plasmid rescue" mit MluI aus der Mutante #698
pCA704-15	Amp ^R , Hyg ^R	"plasmid rescue" mit MluI aus der Mutante #704
pCA727-10	Amp^{R}, Hyg^{R}	"plasmid rescue" mit MluI aus der Mutante #727
pCA213	Amp^R , NAT^R	In einer 5-Fragment Ligation wurden folgendeFragmente ligiert. 8,2 kb
		BglII/XhoI aus pCA205,1,5kb MunI/XhoI-Fragment aus pSLNAT, 1020 bp
		NcoI/EcoRV-Fragment aus pCA125, 300 bp BglII/NcoI-PCR-Produkt aus
		LIM-ATG/LIM5' und ein 300bp EcoRI/Bgl/I PCR-Produkt LIM Stop/LIM3'.
		Dadurch wurde der ORF von <i>ldp1</i> durch eine EGFPNAT-Resistenzkassette
		ersetzt und am Startkodon eine NcoI, bzw., am Stopkodon eine EcoRI-
	D	Schnittstelle eingeführt.
pCA233	Amp ^R ,	Die DNA der Mutante #1486 wurde mit SphI geschnitten und ligiert. Diese
		DNA diente als Matrize für die Amplifikation eines 1750 bp PCR-Produkts
		durch die Oligonukleotide Hyg3'/5'REMI. Das Produkt wurde in pCR [®] 2.1-
		TOPO ligiert. "plasmid rescue" der Mutante #1486.
pCA240	Amp ^R , Hyg ^R	Aus pCA234 wurde ein 550 bp <i>Eco</i> RI/ <i>Bam</i> HI durch die entsprechend
	_	geschnittene Hyg-Resistenzkassette aus pSMUT ersetzt. <i>Auat1</i> -Konstrukt.
pCA242	Amp ^R ,	0,8 kb genomisches NcoI-Fragment in pSL1180 aus der Mutante #1685
pCA248	Amp^R , NAT^R	Aus pCA234 wurde ein 600 bp <i>Eco</i> RI/ <i>BgI</i> II-Fragment deletiert und durch die
		NAT-Resistenzkassette ersetzt. Δ GA-Deletionskonstrukt.
pSC4	Amp^{R}, cbx^{R}	pSC4 enthält ein 5,5 kb HindIII-Fragment aus pCA234 und eine cbx-
		Resistenzkassette aus pSLCbx in der BamHI-Schnittstelle von pCA234
		(S. Cubasch, persönliche Mitteilung).
pSC5	Amp ^R , Hyg ^R	Enthält das 2750 bp BamHI/ClaI-Fragment aus pCA125 als Insertion an der
		Stelle -100 bezüglich der GA-Dinukleotidsequenz aus pCA234
		(S. Cubasch, persönliche Mitteilung).
pSC6	Amp ^R , Hyg ^R	Enthält das 2750 bp BamHI/ClaI-Fragment aus pCA125 als Insertion an der
		Stelle -300 bezüglich der GA-Dinukleotidsequenz aus pCA234
		(S. Cubasch, persönliche Mitteilung).
pSC7	Amp ^R , Hyg ^R	Enthält das 2750 bp BamHI/ClaI-Fragment aus pCA125 als Insertion an der
		Stelle -700 bezüglich der GA-Dinukleotidsequenz aus pCA234
		(S. Cubasch, persönliche Mitteilung).
pCA304	Amp^{R}, cbx^{R}	3,8 kb HindIII/NcoI-Fragment aus pCA307 wurde in die entsprechenden
		Schnittstellen von pTZ19R kloniert.
pCA305	Amp^{R}, cbx^{R}	3, 3 kb StuI/HindIII-Fragment aus pCA307 wurde in den HindIII/HincII
		geschnittenen pTZ19R ligiert
pCA306	Amp^{R}, cbx^{R}	pCA307 wurde mit BlpI geschnitten, mit Klenov-Polymerase aufgefüllt und
		nach Restriktion mit HindIII konnte ein 3,1 kb Fragment isoliert werden, das
		in einen SmaI/HindIII geschnittenen pTZ19R ligiert wurde.
pCA307	Amp^{R}, cbx^{R}	PCR-Amplifikation der 5' und 3' Bereiche von pig3 durch die
		Primerkombinationenen pig3-1/rev bzw. pig3-2/uni mit pKH548 als
		Matrize. Verdau der Amplikons mit Blp1/NcoI bzw. NheI/HindIII. 4-

Fragment-Ligation mit pKH548 *NheI/BlpI* geschnitten, dem 2,9 kb *NcoI/Hin*dIII-EGFP-cbx Fragment aus potefegfpcbx (A. Brachmann, persönliche Mitteilung). Konstrukt für GFP-Reporterstämme und *pig3*-Nullmutanten

Ppig3 eGFP Tpig3	
H Bl N Cbx PTZ18R H Bl N Nh EV/Sm	H 500 bp
pCA310 Amp ^R , cbx ^R In einer 4 Fragment Ligation wurde ein 1074 SphI/Hind aus pKH518, ein 788 bp NcoI/XhoI PCR-Fragment (C	dIII-Fragment CA33/CA40
und pCA305alsTemplate) und ein 2,7 kb Ncol/HindIII den SphI/SalI geschnittenen pTZ18R ligiert. pCA317 Amp ^R , cbx ^R . In einer Dreifragmentligation wurde ein 250 bp NcoI/	Fragment in
EcoRI-Hyg-Fragment aus pTHC (M. Reichmann, nicht und ein 850 bp EcoRI/NotI-Fragment aus pTHC in den	t publiziert) 1 NcoI/NotI
pCA318 Amp ^R , cbx ^R , In einer Dreifragmentligation wurde ein 250 bp NcoI/Ed Fragment aus pTHC (M. Reichmann, nicht publiziert) EcoRI/NotI-Fragment aus pTHC in den NcoI/NotI gesc Vektor pCA306 ligiert.	coRI-Hyg ^{R-} und ein 850 bp chnittenen

5.3 Mikrobiologische und genetische Methoden

5.3.1 Bestimmung der Zelldichte von U. maydis

Die Zelldichte von Flüssigkulturen wurde photometrisch in einem Lambda Bio-UV-Spektralphotometer (Perkin Elmer) bei 600 nm bestimmt. Um im linearen Bereich zu messen, wurden die Kulturen so verdünnt, daß eine Messung im linearen Bereich möglich war. Als Nullwert wurde die OD₆₀₀ des jeweiligen Kulturmediums verwendet. Dabei entspricht eine OD₆₀₀ von 1 je nach verwendetem Stamm und Wachstumsstadium in etwa 1-5 x 10^7 Zellen/ml Kultur.

5.3.2 Kultivierung von E. coli

E. *coli*-Stämme wurden entweder als Schüttelkulturen bei 200 Upm oder auf Festmedien unter aeroben Bedingungen bei 37°C kultiviert. Übernachtkulturen wurden aus bei -80°C gelagerten Glycerinkulturen bzw. direkt von YT-Amp-Transformationsplatten angeimpft.

5.3.3 Kultivierung von U. maydis

U. maydis-Stämme wurden entweder als Schüttelkulturen bei 200 Upm oder auf Festmedien unter aeroben Bedingungen bei 28°C kultiviert. Als Nährmedien dienten YEPS (Tsukuda *et al.*, 1988), CM, PD und MM mit 1% Glukose (Holliday, 1974). Zur Selektion von Resistenzen wurde Hygromycin (100-200 μ g/ml), Carboxin (2 μ g/ml) oder Nourseothrizin (200 μ g/ml) zugesetzt. Andere Zusätze werden gesondert angegeben. Übernachtkulturen wurden entweder aus bei -80°C gelagerten Glycerinkulturen oder von bewachsenen Platten, die weniger als einen Monat bei 4°C gelagert wurden, angeimpft.

5.3.4 CaCl₂-Transformation von *E. coli* (Cohen *et al.*, 1972)

Zur Herstellung transformationskompetenter Bakterienzellen wurden 200 ml dYT-Medium 1/200 mit einer frischen DH5 α -Übernachtkultur angeimpft und bis zu einer OD₆₀₀ = 0,5-0,8 bei 37°C und 200 Upm inkubiert. Die Zellen wurden durch Zentrifugation für 15 min bei 3.000 Upm und 4°C (Heraeus[®] Varifuge 3.0R) pelletiert und in 100 ml eiskalter 50 mM CaCl₂-Lösung resuspendiert. Nach 30 min Inkubation auf Eis wurden die Zellen erneut abzentrifugiert (15 min, 3.000 Upm, 4°C, Heraeus[®] Varifuge 3.0R), der Überstand abgenommen und die Zellen in 10 ml eiskalter 50 mM CaCl₂-Lösung, die 15% (v/v) Glycerin enthielt, resuspendiert. Die Zellsuspension wurde zu je 200 μ l aliquotiert, in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

Zur Transformation wurden die Zellen auf Eis aufgetaut, jeweils 50 μ l mit 10 μ l Plasmidlösung (1-5 ng Plasmid) bzw. Ligationsansatz versetzt und 15 min auf Eis inkubiert. Nach einem Hitzeschock von 2 min bei 42°C wurde der Transformationsansatz zur phänotypischen Expression der durch das eingebrachte Plasmid vermittelten Antibiotikaresistenz mit 800 μ l dYT-Medium versetzt und 30 min bei 500 Upm und 37°C in einem Eppendorf-Wärmeblock inkubiert. 200 μ l des Transformationsansatzes wurde auf YT-Platten mit 100 μ g/ml Ampicillin ausplattiert und über Nacht bei 37°C inkubiert. Auf diese Weise konnte eine Transformationsrate von 10⁷ Transformanden pro 1 μ g eingesetzter Plasmid-DNA erreicht werden.

5.3.5 Transformation von E. coli durch Elektroporation

Zur Herstellung Transformationtkompetenter Bakterienzellen wurden 200 ml dYT-Medium 1/200 mit einer frischen DH5 α -Übernachtkultur angeimpft und bis zu einer OD₆₀₀ = 0,5-0,8 bei 37°C und 200 Upm inkubiert. Die Zellen wurden durch Zentrifugation für 15 min bei 3.000 Upm und 4°C (Heraeus[®] Varifuge 3.0R) pelletiert und zweimal in 100 ml H₂O resuspendiert. Nach 30 min Inkubation auf Eis wurden die Zellen erneut abzentrifugiert (15 min, 3.000 Upm, 4°C, Heraeus[®] Varifuge 3.0R), der Überstand abgenommen und die Zellen in 2 ml eiskaltem Wasser, das 10% (v/v) Glycerin enthielt, resuspendiert. Die Zellsuspension wurde zu je 200 µl aliquotiert, in flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

Zur Transformation wurden die Zellen auf Eis aufgetaut, jeweils 40 μ 1 mit 2,5 μ 1 Plasmidlösung (1-5 ng Plasmid) bzw. Ligationsansatz versetzt und 50 sec auf Eis inkubiert. Danach wurden die Zellen in Elektroporationskyvetten (BioRad) überführt. Bei einer Spannung von 2,5 kV wird die DNA in die Zellen transformiert (Elektroporator, BioRad). Beste Effezienzen ergaben sich bei einer Zeitkonstanten von 4,7 ms. Zur phänotypischen Expression der durch das eingebrachte Plasmid vermittelten Antibiotikaresistenz wurden die Zellen mit 800 μ 1 dYT-Medium versetzt und 30 min bei 500 Upm und 37°C in einem Eppendorf-Wärmeblock inkubiert. 200 μ 1 des Transformationsansatzes wurde auf YT-Platten mit 100 μ g/ml Ampicillin ausplattiert und über Nacht bei 37°C inkubiert. Auf diese Weise konnte eine Transformationsrate von 10¹⁰ Transformanden pro 1 μ g eingesetzter Plasmid-DNA erreicht werden.

5.3.6 Transformation von U. maydis (Schulz et al., 1989)

Von einer auf Platte wachsenden Kultur wurde eine 4 ml YEPS-Flüssigkultur angesetzt und für 8-10 h bei 28°C geschüttelt. Diese Vorkultur wurde anschließend 1/300 in 50 ml frischem YEPS-Medium verdünnt und bei 28°C bis zu einer Zelldichte von 1-2 x 10^7 Zellen/ml (bis maximal OD₆₀₀ = 1,0) geschüttelt. Nach Erreichen des optimalen Zelltiters wurden die Zellen durch Zentrifugation (3.200 Upm, 10 min, 4°C, Heraeus[®] Varifuge 3.0R) geerntet, einmal mit 25 ml SCS gewaschen und in 2 ml SCS mit 12,5 mg/ml Novozym resuspendiert. Die in diesem Puffer bei Raumtemperatur erfolgende Protoplastierung kann mikroskopisch verfolgt werden, da die zigarrenförmigen Zellen nach Lyse der Zellwand eine kugelige Form einnehmen. Nach vollständiger Protoplastierung (10-45 min) wurden 10 ml SCS zugegeben und die Protoplasten durch 10 minütige Zentrifugation bei 2.300 Upm (4°C, Heraeus[®] Varifuge 3.0R) pelletiert. Um das Novozym vollständig zu entfernen, wurde dieser Waschgang noch dreimal wiederholt. Anschließend wurde mit 10 ml STC gewaschen und das Pellet danach in einem Volumen von 0,5 ml eiskaltem STC aufgenommen. Die so behandelten Protoplasten können 3-4 h auf Eis oder aliquotiert bei -80°C mehrere Monate aufbewahrt werden.

Zur integrativen Transformation wurden 50 μ l Protoplasten mit 1-5 _l linearisierter Plasmid-DNA (ca. 5 μ g) und 1 μ l Heparin-Lösung für 10 min auf Eis inkubiert. Nach Zugabe von 0,5 ml STC/PEG folgte eine weitere Inkubation von 15 min auf Eis. Anschließend wurde der gesamte Transformationsansatz auf einer kurz vorher mit Top-Agar überschichteten cbx-, Nat- bzw. Hyg-Bottom-Agarplatte ausgestrichen. Nach 2 bis 5 Tagen Inkubation bei 28°C wurden die gewachsenen Kolonien mit Zahnstochern auf frische PD-Platten, die Phleomycin bzw. Hygromycin enthielten, vereinzelt.

5.3.7 Test auf filamentöses Wachstum bei U. maydis (Puhalla, 1968)

Um *U. maydis*-Stämme auf ihre Fähigkeit, filamentös zu wachsen, zu testen, wurden logarithmisch wachsende Kulturen in PD-Medium verwendet. 1-4 μ l dieser Kulturen wurden auf PD-Aktivkohle-Platten, die entweder kein cAMP oder 6 mM cAMP enthielten, getropft. Sollten Kreuzungen auf filamentöses Wachstum untersucht werden, wurde zuerst die optische Dichte der zu kreuzenden Kulturen bestimmt, einander angeglichen und gleiche Volumina miteinander gemischt, bevor die Kulturen auf Aktivkohleplatten getropft wurden. Die Platten wurden bei 28°C inkubiert. Nach 24 - 48 h ist der Fuz⁺-Phänotyp filamentös wachsender Stämme gut zu erkennen und vom glatten Fuz⁻-Phänotyp nicht filamentös wachsender Stämme klar zu unterscheiden.

5.3.8 Test auf Pathogenität (Gillissen et al., 1992)

Um *U. maydis*-Stämme auf Pathogenität zu testen, wurden mit in Flüssigkultur über Nacht angezogenen Zellen in 7-8 Tage alte Maispflanzen (Varietät Early Golden Bantam) bzw. 14-15 Tage alte Maispflanzen (Varietät Gaspar Flint) inokuliert. Die Maispflanzen wurden im Gewächshaus unter kontrollierten Bedingungen (14 h bei 28°C, 10 h bei 18°C) gezüchtet. Die Bonitur erfolgte nach 7 und 21 Tagen oder wie im Ergebnisteil angegeben.

5.3.9 REMI-Mutagenese (Bölker et al., 1995)

Pro 50 μ l Protoplasten des Stammes FBD11 wurden 5 μ g DNA (pCA104 oder CA125) und 1 μ l Heparin-Lösung mit 50 U *Bam*HI gemischt, 10 min auf Eis inkubiert und anschließend wie bei der Transformation linearisierter DNA in *U. maydis* weiterbehandelt.

5.3.10 Selektion von Mutanten anhand der GFP-Expression in axenischer Kultur

FBD11 REMI-Transformanden wurden in 2 ml YEPS-Medium mit 100 μ g/ml Hyg angeimpft und über Nacht bei 28 °C und 200rpm inkubiert. Die Kulturen wurden bei einer OD 600 von 0.8 - 1,3 geerntet, nach ihrer OD sortiert und anschließend zu je 100 μ l in Mikrotiterplatten überführt. Von dort wurden die Kolonien mit einem Mehrfachaluminiumstempel und einer Stempeloberfläche von 0,25 cm² auf CM, MM, PD, PD-Hyg und PD-CC-Platten gestempelt. Die PD-Hyg-Platten dienten der Konservierung. Den Kulturen in den Mikrotiterplatten wurden je 100 μ l NSY-Glycerin zugegeben, gemischt und bei -80 °C aufbewahrt. Die gestempelten wurden bei 28 °C inkubiert. Nach etwa 36 h wurden die Expression in den Mutanten anhand der GFP-Fluoreszenz der Kolonien bestimmt. Dazu wurden die Platten in einem "eagle eye" (Stratagene) mit einer Blaulichtquelle bestrahlt. Die grüne Fluoreszenz wurde mit einer CCD-Kamera, der ein Filter (HQ525/50m Filter; Chroma Technology) vorgeschaltet war, welches nur Licht einer Wellenlänge von 505 nm - 525 nm durchläßt erfaßt. Die GFP Fluoreszenz kann dann auf einem Monitor betrachtet oder das Bild mit einem Thermodrucker ausgedruckt werden. Durch den Vergleich der Intensität des emitierten Lichtes kann die Expressionsstärke abgeschätzt werden.

5.4 Molekularbiologische Standardmethoden (Sambrook et al., 1989)

5.4.1 Handhabung von Nukleinsäuren

5.4.1.1 Fällung von DNA

Die Reinigung und Konzentrierung von Nukleinsäuren aus wäßrigen Lösungen erfolgte durch Fällung. Hierzu wurde die Probe mit 1/10 Volumen 3 M Na-Acetat pH 5,3 und dem 2,5-fachen Volumen an Ethanol versetzt, gemischt und für 5 min auf Eis inkubiert. Das Präzipitat wurde durch 10- bis 20-minütiges Zentrifugieren (15.000 Upm, RT, Heraeus[®] Biofuge 15) pelletiert. Der Niederschlag wurde mit 70% Ethanol gewaschen, um Salze zu entfernen. Nach erneutem kurzem Zentrifugieren wurde das Pellet bei RT getrocknet und in einem kleinen Volumen $H_2O_{bid.}$ oder TE-Puffer gelöst.

5.4.1.2 Phenol/Chloroform-Extraktion von DNA

Proteine und andere Verunreinigungen wurden aus wäßrigen DNA-Lösungen durch Extraktion mit Phenol entfernt. Die Probe wurde mit gleichem Volumen PC kräftig gemischt. Die Phasentrennung erfolgte durch Zentrifugation (15.000 Upm, 5 min, Heraeus[®] Biofuge 15) und die obere wäßrige Phase wurde in ein neues Reaktionsgefäß überführt. Die so gereinigten Nukleinsäuren wurden anschließend mit Ethanol präzipitiert (s. o.).

5.4.2 Isolierung von Nukleinsäuren

5.4.2.1 Minipräparation von Plasmid-DNA aus E. coli

Die Isolierung erfolgte durch "Lyse durch Kochen" nach Sambrook, et al. (1989). 1,5 ml einer *E. coli*-Übernachtkultur wurden 30 sec bei 14.000 Upm (RT, Heraeus[®] Biofuge 15) pelletiert. Das Zellpellet wurde in 350 μ l STET resuspendiert, nach Zugabe von 25 μ l Lysozym-Lösung kräftig geschüttelt und anschließend 45 sec bei 95°C in einem Eppendorf-Heizblock inkubiert. Die lysierten Zellen und die denaturierte genomische DNA wurden 10 min bei 14.000 Upm abzentrifugiert (Heraeus[®] Biofuge 15) und danach mit einem sterilen Zahnstocher aus der wäßrigen Lösung entfernt. Die Reinigung der Plasmid-DNA erfolgte durch Fällung mit 40 μ l 3 M Na-Acetat, pH 5,3 und 420 μ l Isopropanol bei RT für 5 min und anschließender Zentrifugation für 5 min bei 14.000 Upm

(Heraeus Biofuge[®] 15). Das Pellet wurde mit 70 % Ethanol gewaschen und nach Trocknung in 200 μ l TE-Puffer mit 20 μ g/ml RNase A aufgenommen. Mit dieser Methode gelang es routinemäßig, aus 1,5 ml Übernachtkultur etwa 50 μ g Plasmid-DNA zu isolieren.

5.4.2.2 "plasmid rescue"

10 μ g genomischer DNA der REMI-Mutanten wurde mit 10 U *Mlu*I geschnitten. Nach Ligation in insgesamt 20 μ l wurden je 4 μ l DNA (2,5 μ g) in 40 μ l elektrokompetente DH5 α -Stämme transformiert.

5.4.2.3 Maxipräparation von Cosmid- bzw. Plasmid-DNA aus E. coli

Die Maxicosmid- bzw. Maxiplasmidpräparation wurde mit dem JETSTAR[®]-Kit von Genomed durchgeführt. Dabei wurde das Protokoll des Herstellers verwendet.

5.4.2.4 DNA-Isolierung aus U. maydis (Hoffmann und Winston, 1987)

15 ml einer Übernachtkultur wurden pelletiert, der Überstand abgegossen und das Pellet in der restlichen Flüssigkeit resuspendiert. Es wurden 200 μ l *Ustilago*-Lysispuffer und 400 μ l Phenol/Chloroform und 0,3 g Glasperlen zugegeben. Die Proben wurden für 3,5 min gevortext. Es folgte eine Zentrifugation für 10 min bei 10.000 Upm. 400 μ l des Überstands wurden in ein neues Eppendorf-Gefäß überführt und mit 1 ml Ethanol gefällt. Nach Zentrifugation für 5 min bei 15.000 Upm wurde der Überstand abgenommen und das Pellet in 400 μ l TE + 3 μ l RNAse A (10 mg/ml) bei 37°C resuspendiert. Nach einer weiteren Extraktion mit 1 Vol. Phenol/Chloroform wurde der Überstand mit 5.5 μ l 7.5 M Ammoniumacetat versetzt und mit 1 ml Ethanol gefällt. Nach Fällung, Waschen und Trocknung wurde die DNA in 50 μ l TE-Puffer aufgenommen und bei -20°C aufbewahrt.

5.4.2.5 RNA-Isolierung aus U. maydis

a. Isolierung nach der alkalischen Phenol-Methode (Timberlake et al., 1986)

Diese Methode diente zur Präparation von Gesamt-RNA aus Pilzkulturen, die für 48 h auf CM-Charcoal-Festmedien gewachsen waren. Dazu wurde das Pilzmaterial von 3 Platten abgekratzt, in flüssigen Stickstoff überführt und zu einem feinen Pulver gemörsert. Das gefrorene Pulver wurde mit 5 ml RNA-Lysepuffer durchmischt und durch Zugabe von flüssigem Stickstoff erneut eingefroren. Die Mischung wurde zu einem feinen Pulver gemörsert, in 10 ml TE-Phenol überführt, in diesem bei RT aufgetaut und anschließend mit 0,5 ml Glasperlen für 4 min in 50 ml PPN-Röhrchen heftig geschüttelt. Dem Ansatz wurden 10 ml Chloroform zugesetzt, nach Zentrifugation (15 min, 10.000 Upm, 4°C, Beckman Avanti[®]30 Zentrifuge) und Phasentrennung die wässrige Phase in neue Gefäße überführt, dreimal mit dem gleichen Volumen PC ausgeschüttelt, die RNA anschließend durch Zugabe von 1/3 Volumen 8 M Li-Acetat für 2 h bei 0°C gefällt und durch Zentrifugation (15 min, 10.000 Upm, 4°C, Beckman Avanti[®]30 Zentrifuge) in RNA-Waschpuffer gewaschen, nach Trocknung in H₂O_{bid.} aufgenommen und bei -80°C aufbewahrt. Zur Kontrolle und Konzentrationsabschätzung wurde standardmäßig 1 μ l auf einem 1%-igen TAE-Agarosegel analysiert.

b. Isolierung nach der sauren Phenol-Methode (Schmitt et al., 1990)

Diese Methode diente zur Präparation von Gesamt-RNA aus Flüssigkulturen, die für 10 h in PD-Medium mit 0 mM, 6 mM bzw. 15 mM cAMP bis zu einer OD_{600} von maximal 0,8 propagiert wurden. 10 ml einer solchen *U. maydis*-Kultur wurden abzentrifugiert (3.200 Upm, 10 min, 4°C, Heraeus Varifuge 3.0R) und das Pellet in 400 μ 1 AE-Puffer

und 40 μ l 10% (w/v) SDS resuspendiert. Anschließend wurden 440 μ l AE-Phenol zugegeben und die Probe 20 sec gevortext. Der Zellauschluß erfolgte bei 65°C für 4 min unter ständigem Schütteln (Eppendorf-Thermomixer). Im Anschluß daran wurde die Probe bei -80°C gelagert, bis sich Phenolkristalle gebildet hatten (etwa 4 min). Nach Phasentrennung durch Zentrifugation (22.000 Upm, 5 min, 4°C, Beckman Avanti[®]30 Zentrifuge) wurde die obere wäßrige Phase, welche die RNA enthält, in ein neues Gefäß überführt. Es folgte eine Extraktion mit 400 μ l AE-PC. Die wäßrige RNA-Lösung wurde danach mit 40 μ l 3 M Na-Acetat pH 5,3 versetzt und mit 1 ml Ethanol gefällt (1 h bei -20°C). Nach Zentrifugation (22.000 Upm, 20min, 4°C, Beckman Avanti[®]30 Zentrifuge) wurde die RNA mit 80% Ethanol gewaschen, getrocknet, in 20 μ l H₂O_{bid.} aufgenommen und bei -80°C aufbewahrt. Zur Kontrolle und Konzentrationsabschätzung wurde standardmäßig 1 μ l auf einem 1%-igen TAE-Agarosegel analysiert.

c. Isolierung von PolyA⁺RNA aus gesamt-RNA-Präparationen mit Hilfe von Dynabeads (Dynal)

Für die Isolierung von PolyA+-RNA wurde gesamt RNA mit Wasser auf eine Konzentration von 75 $\mu g//100 \mu l$ eingestellt und 2 min bei 65 °C denaturiert. Währenddessen wurden 200 μl Dynabeads Oligo (dT)₂₅ laut Herstellerangabe 2x in Lösung D gewaschen und anschließend in 100 μl Lösung D aufgenommen. Anschließend wurde die RNA hinzugegeben und 5 min bei RT inkubiert. Die entstandene Lösung wurde entfernt und die Beads 2x mit LösungE gewaschen und schließlich in 10 μl Lösung F aufgenommen, 2min bei 65 °C inkubiert und dadurch eluiert. Die Probe wurde von den Beads abgetrennt und in ein neues Gefäß überführt.

5.4.3 in vitro-Modifikationen von DNA (Sambrook et al., 1989)

5.4.3.1 Restriktion von DNA

Zur Spaltung von doppelsträngiger DNA wurden Typ II-Restriktionsendonukleasen unter den vom Hersteller empfohlenen Pufferbedingungen eingesetzt. Ein analytischer Ansatz enthielt:

 $0,5 \mu g$ DNA

 $10 \mu g$ Albumin (falls empfohlen)

- 1-2 U Restriktionsenzym
- in 20 μ l Restriktionspuffer

Nach Inkubation für 1 h bei 37°C (bzw. der für das jeweilige Enzym optimalen Temperatur) wurden dem Ansatz 2 _1 nativer Auftragspuffer zugesetzt und die Reaktionsprodukte auf Agarosegelen analysiert.

5.4.3.2 Dephosphorylierung linearer DNA-Fragmente

5'-terminale Phosphatgruppen können mit Alkalischer Phosphatase aus Kälberdarm abgespalten werden. Da DNA-Stränge ohne 5'-terminale Phosphatgruppen nicht religieren können, kann so die Religation von linearisierter Plasmid-DNA verhindert werden. Ein typischer Reaktionsansatz enthielt:

1 µg	Plasmid-DNA

1 U	Alkalische Phosphatase
in 100 µ1	Alkalische Phosphatase-Puffer

Der Ansatz wurde 2 x 15 min bei 55°C inkubiert. Zur Inaktivierung des Enzyms wurde eine Extraktion mit 100 μ 1 PC durchgeführt. Die wässrige Phase wurde direkt auf ein Agarosegel aufgetragen und die DNA mit JETSORB[®] (Genomed) isoliert.

5.4.3.3 Ligation von DNA-Fragmenten

Doppelsträngige DNA-Fragmente wurden mit Hilfe der T4 DNA-Ligase kovalent verknüpft. Das zu klonierende Fragment wurde in der Regel in fünffach molarem Überschuß gegenüber der dephosphorylierten, linearisierten Plasmid-DNA eingesetzt. Ein typischer Reaktionsansatz enthielt:

100 ng linearisierten, dephosphorylierten Vektor

fünffach molaren Überschuß an linearem Fragment

1 U T4 DNA-Ligase

in 10 µl Ligase-Puffer

Der Ansatz wurde entweder 2 h bei Raumtemperatur oder über Nacht bei 14°C inkubiert. Für Ligationen von nichtüberhängenden Enden wurde generell über Nacht bei Raumtemperatur inkubiert.

5.4.4 Gelelektrophorese von Nukleinsäuren

5.4.4.1 Nicht-denaturierende Agarose-Gelelektrophorese

In einem Agarosegel können Nukleinsäuren im elektrischen Feld entsprechend ihrer Größe aufgetrennt, identifiziert und isoliert werden (Sambrook *et al.*, 1989). In der Regel wurden Gele mit 1% Agarose hergestellt. Hierfür wurde die entsprechende Menge an Agarose in 1 x TAE- oder 0,5 x TBE-Puffer aufgekocht, nach Abkühlung auf ca. 60°C mit Ethidiumbromid versetzt (Endkonzentration 0,5 μ g/ml) und in einen Elektrophoreseschlitten gegossen. Nach Erstarren des Gels wurde die Gelkammer mit 1 x AE- bzw. 0,5 x TBE-Puffer gefüllt. Die Proben wurden vor dem Auftragen im Verhältnis 10:1 mit nativem Auftragspuffer gemischt. Die Elektrophorese erfolgte bei konstanter Spannung (5-10 V/cm). Die DNA-Banden konnten im UV-Durchlicht (304 nm) mit einer "eagle eye"-Apparatur (Stratagene) detektiert und auf Thermalpapier photographisch dokumentiert werden.

5.4.4.2 Isolierung von DNA-Fragmenten aus Agarosegelen

Für die Isolierung von DNA-Fragmenten aus Agarosegelen wurde der JETSORB[®]-Kit (Genomed) verwendet. Das Prinzip besteht darin, die DNA unter Hochsalzbedingungen an eine Silikatmatrix zu binden, von Verunreinigungen freizuwaschen und schließlich unter Niedrigsalzbedingungen die DNA von dieser Matrix zu eluieren. Die Isolierung wurde nach den Angaben des Herstellers durchgeführt. Mit dieser Methode konnten DNA-Fragmente einer Länge von 200 bp bis 5 kb aus Agarosegelen zu etwa 80-90 % isoliert werden.

5.4.4.3 Denaturierende Formamid/Formaldehyd-Gelelektrophorese von RNA

Da RNA-Fragmente, insbesondere solche mit hohem Molekulargewicht, partiell Sekundärstrukturen ausbilden, die das Laufverhalten im Agarosegel beeinflussen können, muß eine Auftrennung unter denaturierenden Bedingungen erfolgen. Die RNA-Probe (10-30 ng) wurde in 20 μ l MOPS-Puffer mit 2,2 M Formaldehyd und 50% Formamid (deionisiert) für 15 min bei 65°C denaturiert, mit 2 μ l denaturierendem Auftragspuffer und Ethidiumbromid (0,05 μ g/ml Endkonzentration) versetzt und auf Eis gestellt. Für das Gel wurden 2 g Agarose in 145 ml H₂O_{bid}. aufgekocht und auf etwa 60°C abgekühlt. Nach Zugabe von 20 ml 10 x MOPS-Puffer und 36 ml Formaldehyd (37%, filtriert) wurde die Agaroselösung gut gemischt und in Elektrophoreseschlitten gegossen.

Das erstarrte Gel wurde mit MOPS-Puffer überschichtet und 5 min bei 8 V/cm vorelektrophoretisiert. Die aufgetragenen Proben wurden bei 5-7 V/cm 2,5 h aufgetrennt. Die 18S- und 28S-rRNA-Banden konnten im UV-Durchlicht (302 nm) mit einer "eagle eye"-Apparatur (Stratagene) detektiert und auf Thermalpapier photographisch dokumentiert werden.

5.4.4.4 Denaturierende Glyoxal/DMSO-Gelelektrophorese von RNA

Eine Denaturierung der RNA kann ebenfalls durch eine Glyoxal/DMSO-Behandlung der Proben erreicht werden. Diese Methode hat den Vorteil, schärfere Banden nach der Northern-Hybridisierung zu erzeugen. Die RNA-Probe (5-15 μ g) wurde dazu in 16 μ 1 MOPS-Puffer mit 1 M Glyoxal und 50% DMSO für 30 min bei 50°C denaturiert, mit 2 μ 1 denaturierendem Auftragspuffer und Ethidiumbromid (0,05 μ g/ml Endkonzentration) versetzt und auf Eis gestellt. Für das Gel wurden 2 g Agarose in 200 ml 1 x MOPS-Puffer aufgekocht und auf etwa 60°C abkühlen gelassen und in Elektrophoreseschlitten gegossen.

Das erstarrte Gel wurde mit MOPS-Puffer überschichtet und 5 min bei 8 V/cm vorelektrophoretisiert. Die aufgetragenen Proben wurden bei 5-7 V/cm 2 h aufgetrennt, das Gel wurde alle 60 min im Puffer umgedreht. Die 18S- und 28S-rRNA-Banden konnten im UV-Durchlicht (302 nm) mit einer "eagle eye"-Apparatur (Stratagene) detektiert und auf Thermalpapier photographisch dokumentiert werden.

5.4.5 Transfer und Nachweis von Nukleinsäuren auf Membranen

5.4.5.1 Transfer von DNA (Southern-Blot; Southern, 1975)

Der Transfer der aufgetrennten DNA-Fragmente aus einem Agarosegel auf eine Nylonmembran erfolgte durch Kapillar-Blot. Hierbei wird die Transfer-Lösung (0,4 M NaOH) aus einem Pufferreservoir über Kapillarkräfte durch das Gel hindurch in einen auf dem Gel plazierten Stapel Papierhandtücher gesaugt. Die DNA-Fragmente werden durch den Pufferstrom aus dem Gel eluiert und binden an die darüberliegende Nylonmembran. Ein gleichmäßig verteiltes Gewicht auf dem Papierstapel garantiert eine dichte Verbindung zwischen den jeweiligen Lagen des Transfersystems. Vor dem Transfer wurde das Agarosegel 15 min in 0,25 M HCl inkubiert, um einen Teil der Purine abzuspalten, damit ein Transfer großer DNA-Fragmente erleichtert wird. Anschließend wurde das Gel für 15 min in DENAT inkubiert.

Aufbau des Blots von unten nach oben:

Whatman 3MM-Brücke zum Pufferreservoir Agarosegel Nylonmembran (Biodyne[®] B) 2 Lagen Whatman 3MM Stapel Papierhandtücher Glasplatte Gewicht (ca. 500 g) ibar Nacht - Anachlia and uurda dan Eilten ag

Der Kapillar-Blot erfolgte über Nacht. Anschließend wurde der Filter getrocknet und die DNA-Moleküle durch UV-Behandlung (280 nm) für 2 min kovalent mit der Membran verknüpft.

5.4.5.2 Transfer von RNA (Northern-Blot)

Der Transfer der Nukleinsäuren auf eine Nylonmembran (Biodyne B, 0,45 μ m, PALL) erfolgte durch Kapillar-Blot in 20_SSC über Nacht (Aufbau wie für Southern-Blot beschrieben). Anschließend wurde der Filter getrocknet und die RNA-Moleküle durch UV-Bestrahlung (2 min, 280 nm) kovalent mit der Membran verknüpft. Der Transfer wurde durch Anfärben der Membran in 0.1% Methylenblau in 0.3M NaAc nachgewiesen.

5.4.5.3 Herstellung einer DNA-Hybridisierungssonde (Feinberg und Vogelstein, 1984)

Die Herstellung von Hybridisierungssonden mit sehr hoher spezifischer Aktivität erfolgte durch "Primer Extension" mit Hilfe des Megaprime[®] DNA Labeling System-Kits (Amersham).

5.4.5.4 Spezifischer Nachweis von an Membranen gebundener DNA

Die Biodyne[®] B-Membranen wurden zur Absättigung der unspezifischen Bindungsstellen mit Southern-Hybridisierungspuffer für 20 min bei 65°C präinkubiert. Nach Wechsel der Hybridisierungslösung wurde die bei 95°C für 5 min denaturierte, radioaktive Hybridisierungsprobe zugegeben (Endkonzentration etwa 10⁶ cpm/ml). Spezifische Hybridisierung erfolgte bei 65°C über Nacht. Die Filter wurden zweimal je 15 min bei 65°C mit Southern-Waschpuffer gewaschen. Die Detektion erfolgte in Kassetten für den Phosphoimager Image Quant STORM840[®] (Molecular Dynamics). Nach 12 bis 24 Stunden wurden die strahlungssensitiven "Screens" der Kassetten im Phosphoimager eingelesen und mit dem dazugehörigen Computerprogramm Image Quant[®] bearbeitet.

5.4.5.5 Spezifischer Nachweis von an Membranen gebundener RNA

Nach einer 30-minütigen Präinkubation der Membranen bei 60°C in Hybridisierungspuffer wurde die radioaktiv markierte DNA-Sonde zugegeben und über Nacht hybridisiert. Die Filter wurden anschließend zweimal für 20 min bei 60°C gewaschen und in Kassetten für den Phosphoimager Image Quant STORM840[®] (Molecular Dynamics) exponiert. Nach 12 bis 24 h wurden die strahlungssensitiven "Screens" der Kassetten im Phosphoimager eingelesen und mit dem dazugehörigen Computerprogramm Image Quant bearbeitet.

Als Sonden für die Northernanalyse wurden folgende Fragmente verwendet:

- *mfa1* Ein 0.7kb *Eco*RI-Fragment aus pUMa1 (Bölker *et al.*, 1992)
- *mfa2* Ein 0.3kb *PstI-SpeI-Fragment* aus pUMa2 (Bölker *et al.*, 1992)
- pra1 Ein 1,3 kb EcoRI/EcoRV-Fragment aus pUma1 (Urban et al., 1996)
- lga2 Ein 0,8 kb EcoRI cDNA-Fragment aus pMU152 (Urban et al., 1996)
- *bE1* Ein 1,4 kb *NdeI/Bam*HI-Fragment aus pUb1 (Schulz *et al.*, 1990)
- *bW2* Ein 1,9 kb *Nde*I-Fragment aus pJBbW2 (J. Bergemann, 1993)
- *prf1* Ein 1,5 kb *Sall/Bgl*II-Fragment aus pSP-4,7H (A. Hartmann, 1997)
- ppil Ein 150 bp Sall/PstI-Fragment aus pppil (R. Bohlmann, 1996)
- pig2 219-15a Ein1,8 kb MluI/BamHI-Fragment aus pCA219-15
- npi4 219-15b Ein2,5 BamHI-Fragment aus pCA219-15
- *npi5* 1486c Ein 3 kb *MluI/Hin*dIII-Fragment aus pCA234 1486d Ein 1 kb *SphI/Hin*dIII-Fragment aus pCA234
- npi8 Ein 1,2 kb MluI/BamHI-Fragment aus pCA500
- *npi9* Ein 2 kb *MluI/Bam*HI-Fragment aus pCA624
- *npi9* Ein 0,7 kb *MluI/Bam*HI-Fragment aus pCA624
- abp1 219-13a Ein 750 bp BamHI/MluI-Fragment aus pCA219-13
- *ldp1* 219-13c Ein 1 kb *Hin*dIII/*Bam*HI-Fragment aus pCA219-13
- *uat1* 1486b Ein 1,9 kb *Hin*dIII/*Mlu*I-Fragment aus pCA234
- *cbx* Ein 1.7kb *Eco*RI-*Eco*RV Fragment aus pCbx122 (Keon *et al.*, 1991)
- GFP Ein 1020 bp NcoI/NotI-Fragment aus pCA104

Sonden für den *p*-Locus

pig3	1685e Ein 480 bp <i>Hin</i> dIII/StuI-Fragment aus pKH541
	1685f Ein 1,2 kb SphI/StuI-Fragment aus pKH541
	1685g Ein 0,6 kb SphI/XhoI-Fragment aus pKH541
	1685h Ein 2,1 kb SphI -Fragment aus pKH541
pig4	1685d Ein_1,6 kb NcoI/XbaI-Fragment aus pKH519
pig5	1685e Ein_480 bp_HindIII/StuI-Fragment aus_pKH541
pig6	1685b Ein 2,3 kb BamHI/EcoRI-Fragment aus KH551
npi1	1685c Ein 850 bp Ncol/SphI-Fragment aus KH551

 npi2
 1685j Ein 900bp SphI-Fragment aus KH550

 npi3
 1685a Ein 600 bp PstI/SacI-Fragment aus KH570

 5,8s rRNA
 1685i Ein 1,3 kb SphI -Fragment aus pKH541

 pig4, pig6,
 1685k Ein 9 kb BamHI-Fragment aus KH551

 npi1
 16851 Ein 7 kb BamHI-Fragment aus pKH551

Sonden, die in der Abbildung 24 verwendet wurden sind unterstrichen

5.4.5.6 Koloniehybridisierung

Nach der Transformation partieller DNA-Banken in E. coli wurden die Transformanden 30 min bei 4°C gekühlt. Anschließend wurde eine ungeladenen Nylonmembran (PallA) für etwa 30 sec auf die Bakterien gelegt, mit einer Spritzennadel an drei Stellen so markiert, daß die Filter später den Platten zugeordnet werden konnten. Anschließend wurden die Filter vorsichtig abgezogen, und für 5 min auf, mit DENAT getränkte Whatman Papiere gelegt. Danach wurden die Filter für weitere 5 min in RENAT inkubiert, getrocknet und für 2 h bei 60°C gebacken. Der Nachweis von DNA erfolgte wie in 5.4.5.3 beschrieben.

5.4.6 Sequenzierung von Nukleinsäuren

Plasmid-DNA wurde mit einem ABI 377 Sequenzierautomat von Perkin Elmer sequenziert. Vor der automatischen Sequenzierung wurde die Plasmid-DNA mit dem JETQUICK[®]-Kit (Genomed) aufgereinigt.

Die Sequenzreaktion wurde mit 30 Zyklen nach Angabe des Herstellers durchgeführt. Das Prinzip entspricht der Didesoxy-Methode nach Sanger *et al.*, (1977). In den Reaktionsansatz wurden ddNTPs gegeben, durch deren Einbau ein Kettenabbruch erfolgt. Die verschiedenen Basen sind mit unterschiedlichen Fluoreszenz-Farbstoffen markiert.

Nach der Sequenzreaktion wurde die DNA gefällt. Das getrocknete Pellet wurde in 4 μ l Formamid/25 mM EDTA (4:1)-Puffer aufgenommen. Nach der Zugabe von 6 μ l Auftragspuffer wurde die Probe 5 Minuten bei 95°C aufgekocht. Ein 2 μ l Aliquot wurde anschließend auf das Gel aufgetragen.

Die Banden wurden nach der Auftrennung in einem Sequenzgel und Anregung durch einen Laser von einer Photozelle detektiert. Die erhaltenen Sequenzen wurden mit der Software des ABI 377 Systems auf einem Apple Macintosh ausgewertet.

5.4.7 Sequenzanalyse

Zur Sequenzanalyse und für Homologievergleiche wurden folgende Programme benutzt: DNA-Strider 1.2, SequenceNavigator, BLAST, CLUSTAL W, SeqVu, Prosite, SWISS-Prot.

5.4.8 Polymerase-Kettenreaktion (PCR)

Mit Hilfe der PCR-Amplifikation können definierte DNA-Sequenzen aus einem komplexen Gemisch von DNA selektiv angereichert werden. Man benötigt hierzu zwei Primer, von denen der eine zum 3'-Bereich der gewünschten Sequenz und der andere zum Gegenstrang des 5'-Bereiches komplementär ist. Die Reaktionen wurden in einem Omni Gene-Gerät (Hybaid) oder einem Robocycler Gradient[®] (Stratagene) durchgeführt.

Ein typischer PCR-Ansatz enthielt:

100 ng DNA Primer 1 (10 pmol/_l) 5 µl 5 µl Primer 2 (10 pmol/_l) $1 \mu l$ dNTPs (je 10mM dATP, dCTP, dGTP und dTTP) $1 \mu l$ Taq DNA-Polymerase (1 U/_l) 6 µ1 25 mM MgCl₂ 10 µ1 10_PCR-Puffer in 50 μ l H₂O_{bid} überschichtet mit 50 µl Paraffin, falls Reaktion ohne Heizdeckel.

Die Reaktionszeiten waren wie folgt:

1 Zyklus Denaturierung bei 94°C 1 Minuten
 25 - 33 Zyklen Amplifikation
 20" Denaturierung bei 94°C
 30" Binden der Primer bei 55-62°C
 pro 800 bp 1' Polymerisation durch Taq bei 72°C
 1 Zyklus Verlängerung bei 72°C 5 Minuten
 ist nötig um nicht vollständig synthetisierte Fragmente zu komplettieren

5.4.9 Anchor-PCR (REMI-"rescue")

10 μ g genomische DNA wurde mit 10 U Resriktionsenzym verdaut und in 20 μ l ligiert. Für die PCR-Reaktion wurden 2 μ l Ligationsansatz verwendet. Amplifikation erfolgte nach dem Standardprotokoll bei einer Annealingtemperatur von 60°C.

5.5 Zellbiologische Methoden

5.5.1 Licht- und Fluoreszenzmikroskopie

Mikroskopische Analysen wurden an einem Zeiss Axiophot durchgeführt. Für "Differential Interference Contrast" (DIC)-Mikroskopie wurde ein 100x, 1,4 numerische Apartur Plan-APOCHROMAT[®] Objektiv (Zeiss) verwendet. Für digitale Aufnahmen mit einer hochauflösenden CCD-Kamera (C4742, Hamamatsu) wurde ein 4-fach-Tubus in den Lichtgang eingesetzt, die Bilder mit dem Programm HiPic 4.2.0[®] (Hamamatsu) bearbeitet und als "tif-image" gespeichert. Für die Fluoreszenzmikroskopische Analyse von GFP wurde der FITC-Filtersatz (Zeiss) verwendet, dem ein LP520 Filter vorgeschaltet war.

5.5.2 Mikroskopische Analyse der Reporterstämme auf der Oberfläche von Maisblättern und während der biotrophen Phase

Zur mikroskopischen Analyse wurden 0,5 cm² große Quadrate aus Maisblätter 1, 2, 4 und 6 Tage nach der Infektion mit den REMI-Mutanten unweit der Infektionsstelle entnommen. Dabei wurde darauf geachtet, daß keine nekrotischen Bereiche mitausgeschnitten wurden, da dort Hintergrundsfluoreszenz auftritt. Die Quadrate wurden in einem Tropfen Wasser auf Objektträger gelegt und analysiert. Um Reporterstämme beim Wachstum innerhalb der Pflanze und in Tumorgewebe zu untersuchen, wurden mit der Hand Querschnitte angefertigt und für die Analyse Stellen ausgewählt, die 3 - 6 Zellschichten dick waren.

5.5.3 Bildverarbeitung

Zur Kontrastverstärkung und zur Skalierung der Maßstäbe wurden die digitalen Bilder im Programm Image Proplus[®] bearbeitet. Im TIFF-Format konnten sie anschließend in Adobe Photoshop[®] (Adobe Systems, Inc.) exportiert werden und wurden in diesem Programm bei gleichbleibender Auflösung auf die nötige Größe reduziert. Zur Komprimierung der Daten wurden die Bilder anschließend im JPEG Format gespeichert und konnten daraufhin im Progamm Canvas6TM (Deneba) geöffnet und dort beschriftet werden.

Zur Kontrastverstärkungund zur Skalierung der Maßstäbe wurden die digitalen Bilder im Programm Image Proplus[®] bearbeitet. Im TIFF-Format konnten sie anschließend in Adobe Photoshop[®] (Adobe Systems, Inc.) exportiert werden und wurden in diesem Programm bei gleichbleibender Auflösung auf die nötige Größe reduziert. Zur Komprimierung der Daten wurden die Bilder anschließend im JPEG-Format gespeichert und konnten daraufhin im Progamm Canvas6TM (Deneba) geöffnet und dort beschriftet werden.

Literaturverzeichnis

Aldon, D., Brito, B., Boucher, C. and Genin, S. (2000). A bacterial sensor of plant cell contact controls the transcriptional induction of *Ralstonia solanacearum* pathogenicity genes. *EMBO J.* **19**, 2304-14.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389-402.

Aziz, N. H., Farag, S. E., Mousa, L. A. and Abo-Zaid, M. A. (1998). Comparative antibacterial and antifungal effects of some phenolic compounds. *Microbios* 93, 43-54.

Balzi, E., Wang, M., Leterme, S., Van Dyck, L. and Goffeau, A. (1994). *PDR5*, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator *PDR1*. *J Biol. Chem.* 269, 2206-14.

Banuett, F. (1995). Genetics of *Ustilago maydis*, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179-208.

Banuett, F. and Hershkowitz, I. (1989). Different a alleles of *Ustilago maydis* are necessary for maintenance of filamentous growth but not for meiosis. *Proc. Natl. Acad. Sci. USA* 86, 5878-5882.

Banuett, F. and Herskowitz, I. (1996). Discrete developmental stages during teliospore formation in the corn smut fungus, *Ustilago maydis*. *Development* 122, 2965-76.

Baron, C. and Zambryski, P. C. (1995). The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? *Annu Rev. Genet.* 29, 107-29.

Basse, C. W., Lottspeich, F., Steglich, W. and Kahmann, R. (1996). Two potential indole-3acetaldehyde dehydrogenases in the phytopathogenic fungus *Ustilago maydis*. *Europ. J. Biochem.* 242, 648-56.

Basse, C., W., Stumpferl, S., and Kahmann, R., (2000). Charakterization of a *Ustilago maydis* gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation. *Mol. Cell. Biol.* **1**, 329-39

Bellen, H. J., O'Kane, C. J., Wilson, C., Grossniklaus, U., Pearson, R. K. and Gehring, W. J. (1989). P-element-mediated enhancer detection: a versatile method to study development in Drosophila *Genes Dev.* **3**, 1288-300.

Bender, C. L., Alarcon-Chaidez, F. and Gross, D. C. (1999). *Pseudomonas syringae* phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. *Microbiol. Mol. Biol. Rev.* 63, 266-92.

Billett, E. E., and J. H. Bournett (1978). The host-parasite physiology of the maize smut fungus *Ustilago* maydis: II Transmission of 14C labeled assimilates in smutted maize plants. *Phys. Plant Path.* 12, 103-112.

Bölker, M., Bohnert, H. U., Braun, K. H., Gorl, J. and Kahmann, R. (1995). Tagging pathogenicity genes in *Ustilago maydis* by restriction enzyme-mediated integration (REMI). *Mol. Gen. Genet.* 248, 547-52.

Bölker, M., Urban, M. and Kahmann, R. (1992). The a mating type locus of *U. maydis* specifies cell signaling components. *Cell* 68, 441-50.

Bohlmann, R. (1996). Dissertation

Braakman, I., Helenius, J. and Helenius, A. (1992). Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. *EMBO J.* 11, 1717-22.

Cairns, B. R., Erdjument-Bromage, H., Tempst, P., Winston, F. and Kornberg, R. D. (1998). Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. *Mol. Cell* 2, 639-51.

Cano-Canchola, C., Acevedo, L., Ponce-Noyola, P., Flores-Martinez, A., Flores-Carreon, A. and Leal-Morales, C. A. (2000). Induction of lytic enzymes by the interaction of *ustilago maydis* with *zea mays* tissues [In Process Citation]. *Fungal Genet. Biol.* 29, 145-51.

Carmen, A. A., Rundlett, S. E. and Grunstein, M. (1996). HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. *J. Biol. Chem.* 271, 15837-44.

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994). Green fluoreszent protein as marker for gene expression. *Science* 263, 802-805

Christensen, J. J. (1963). Corn smut caused by Ustilago maydis. Am. Phytopathol. Soc. Monogram 2.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O. and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast [published erratum appears in Science 1998 Nov 20;282(5393):1421]. *Science* 282, 699-705.

Cohen, S., Chang, A. C. Y. and Hse, C. (1972). Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of *E.coli* R-factor DNA. *Proc. Natl. Acad. Sci. USA* 69, 2110-2114.

Coleman, M., Henricot, B., Arnau, J. and Oliver, R. P. (1997). Starvation-induced genes of the tomato pathogen *Cladosporium fulvum* are also induced during growth in planta. *Mol. Plant Microbe Interact.* 10, 1106-9.

Cooley, L., Kelley, R. and Spradling, A. (1988). Insertional mutagenesis of the Drosophila genome with single P elements. *Science* 239, 1121-1128.

Cremer, C., Munkel, C., Granzow, M., Jauch, A., Dietzel, S., Eils, R., Guan, X. Y., Meltzer, P. S., Trent, J. M., Langowski, J. and Cremer, T. (1996). Nuclear architecture and the induction of chromosomal aberrations. *Mutat. Res.* 366, 97-116.

Day, P. R., Anagnostakis, S. L. and Puhalla, J. E. (1971). Pathogenicity resulting from mutation at the *b* locus of *Ustilago maydis*. *Proc. Natl. Acad. Sci. U S A* 68, 533-5.

Dietzel, S., Schiebel, K., Little, G., Edelmann, P., Rappold, G. A., Eils, R., Cremer, C. and Cremer, T. (1999). The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. *Exp. Cell. Res.* 252, 363-75.

Doebley, J. (1992). Mapping the genes that made maize. Trends in Genetics 8, 302-7.

Feinberg, A. P. and Vogelstein, B. (1984). "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. *Anal. Biochem.* 137, 266-7.

Freedman, R. B. (1994). Protein folding. Folding helpers and unhelpful folders. Curr. Biol. 4, 933-5.

Galan, J. E. and Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. *Science* 284, 1322-8.

Geng, M., Wallrapp, C., Müller-Pillasch, F., Frohme, M., Hoheisel, J. D. and Gress, T. M. (1998). Isolation of differentially expressed genes by combining representational difference analysis (RDA) and cDNA library arrays. *Biotechniques* 25, 434-8.

Genin, S., Gough, C. L., Zischek, C. and Boucher, C. A. (1992). Evidence that the *hrpB* gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. *Mol. Microbiol.* **6**, 3065-76.

Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bölker, M. and Kahmann, R. (1992). A two-component regulatory system for self/non-self recognition in *Ustilago maydis*. *Cell* 68, 647-57.

Gold, S., Duncan, G., Barrett, K. and Kronstad, J. (1994). cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. *Genes Dev.* 8, 2805-16.

Gold, S. E., Brogdon, S. M., Mayorga, M. E. and Kronstad, J. W. (1997). The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. *Plant Cell* 9, 1585-94.

Groisman, E. A. and Ochman, H. (1996). Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791-4.

Hahn, M. and Mendgen, K. (1997). Characterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library. *Mol. Plant Microbe Interact.* 10, 427-37.

Hanahan, D. (1985). Techniques for transformation of E.coli: IRL Press.

Hartmann, H. A., Kahmann, R. and Bölker, M. (1996). The pheromone response factor coordinates filamentous growth and pathogenicity in *Ustilago maydis*. *EMBO J*. 15, 1632-41.

Hartmann, H.A. (1997). Dissertation

Hoffmann, C. S. and Winston, F. (1987). A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation in *E.coli*. *Gene* 57, 267-272.

Holliday, R. (1961). The genetics of U. maydis. Genet.Res.Comb. 2, 204-230.

Holliday, R. (1974). Ustilago maydis. New York: Plenum Press.

Holst, B., Tachibana, C. and Winther, J. R. (1997). Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. *J. Cell. Biol.* 138, 1229-38.

Howard, R. J., Ferrari, M. A., Roach, D. H. and Money, N. P. (1991). Penetration of hard substrates by a fungus employing enormous turgor pressures. *Proc. Natl. Acad. Sci. U S A* 88, 11281-4.

Howard, R. J. and Valent, B. (1996). Breaking and entering: host penetration by the fungal rice blast pathogen *Magnaporthe grisea*. Annu Rev. Microbiol. 50, 491-512.

Hueck, C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. *Microbiol Mol. Biol. Rev.* 62, 379-433.

Huppa, J. B. and Ploegh, H. L. (1998). The eS-Sence of -SH in the ER. Cell 92, 145-8.

Hwang, C. S., Flaishman, M. A. and Kolattukudy, P. E. (1995). Cloning of a gene expressed during appressorium formation by *Colletotrichum gloeosporioides* and a marked decrease in virulence by disruption of this gene. *Plant Cell* 7, 183-93.

Joyner, A. L. (1991). Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development. *Bioessays* 13, 649-56.

Kämper, J., Reichmann, M., Romeis, T., Bölker, M. and Kahmann, R. (1995). Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in *Ustilago maydis*. *Cell* 81, 73-83.

Keon, J. P., White, G. A. and Hargreaves, J. A. (1991). Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, *Ustilago maydis*. *Curr*. *Genet*. **19**, 475-81.

Kinscherf, T. G., Coleman, R. H., Barta, T. M. and Willis, D. K. (1991). Cloning and expression of the tabtoxin biosynthetic region from *Pseudomonas syringae*. J. Bact. 173, 4124-32.

Kodama, M., Rose, M. S., Yang, G., Yun, S. H., Yoder, O. C. and Turgeon, B. G. (1999). The translocation-associated tox1 locus of *Cochliobolus heterostrophus* is two genetic elements on two different chromosomes. *Genetics* 151, 585-96.

Kolattukudy, P. E., Rogers, L. M., Li, D., Hwang, C. S. and Flaishman, M. A. (1995). Surface signaling in pathogenesis. *Proc. Natl. Acad. Sci. U S A* 92, 4080-7.

Koncz, C., Nemeth, K., Redei, G. P. and Schell, J. (1992). T-DNA insertional mutagenesis in Arabidopsis. *Plant Mol. Biol.* 20, 963-76.

Krieg, P. and Melton, D. (1987). In vitro synthesis with SP6 RNA-Polymerase.

Kronstad, J. W. and Staben, C. (1997). Mating type in filamentous fungi. Annu. Rev. Genet. 31, 245-76.

Kronstad, J. W., Wang, J., Covert, S. F., Holden, D. W., McKnight, G. L. and Leong, S. A. (1989). Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus *Ustilago* maydis. Gene **79**, 97-106.

Krüger, J., Loubradou, G., Regenfelder, E., Hartmann, A. and Kahmann, R. (1998). Crosstalk between cAMP and pheromone signalling pathways in *Ustilago maydis*. *Mol. Gen. Genet.* 260, 193-8.

Kues, U. (2000). Life history and developmental processes in the basidiomycete *Coprinus cinereus*. *Microbiol*. *Mol. Biol. Rev.* 64, 316-53.

W. F. (1992). Tagging developmental genes in *Dictyostelium* by restriction enzyme-mediated integration of plasmid DNA. *Proc. Natl. Acad. Sci. U S A* 89, 8803-7.

Lis, J. T., Simon, J. A. and Sutton, C. A. (1983). New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. *Cell* 35, 403-10.

Lu, S., Lyngholm, L., Yang, G., Bronson, C., Yoder, O. C. and Turgeon, B. G. (1994). Tagged mutations at the Tox1 locus of *Cochliobolus heterostrophus* by restriction enzyme-mediated integration. *Proc. Natl. Acad. Sci. U S A* 91, 12649-53.

Mahato, S. B. and Nandy, A. K. (1991). Triterpenoid saponins discovered between 1987 and 1989. *Phytochemistry* **30**, 1357-90.

Maier, F. J. and Schäfer, W. (1999). Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. *Biological Chemistry* 380, 855-64.

Marenda, M., Brito, B., Callard, D., Genin, S., Barberis, P., Boucher, C. and Arlat, M. (1998). PrhA controls a novel regulatory pathway required for the specific induction of *Ralstonia solanacearum* hrp genes in the presence of plant cells. *Mol. Microbiol.* 27, 437-53.

Mead, D. A., Szczesna-Skorupa, E. and Kemper, B. Singlestrand DNA .

Müller, L., Xu, G., Wells, R., Hollenberg, C. P. and Piepersberg, W. (1994). LRG1 is expressed during sporulation in *Saccharomyces cerevisiae* and contains motifs similar to LIM and rho/racGAP domains. *Nucleic Acids Res.* 22, 3151-4.

Müller, P., Aichinger, C., Feldbrugge, M. and Kahmann, R. (1999). The MAP kinase kpp2 regulates mating and pathogenic development in *Ustilago maydis*. *Mol. Microbiol*. 34, 1007-17.

Niederberger, C., Graub, R., Schweingruber, A. M., Fankhauser, H., Rusu, M., Poitelea, M., Edenharter, L. and Schweingruber, M. E. (1998). Exogenous inositol and genes responsible for inositol transport are required for mating and sporulation in *Schizosaccharomyces pombe*. *Curr. Genet.* 33, 255-61.

Ozcan, S. and Johnston, M. (1999). Function and regulation of yeast hexose transporters. *Microbiol. Mol. Biol. Rev.* 63, 554-69.

Pieterse, C. M., Derksen, A. M., Folders, J. and Govers, F. (1994). Expression of the Phytophthora infestans ipiB and ipiO genes *in planta* and *in vitro*. *Mol. Gen. Genet*. 244, 269-77.

Pieterse, C. M., Risseeuw, E. P. and Davidse, L. C. (1991). An *in planta* induced gene of *Phytophthora infestans* codes for ubiquitin. *Plant Mol. Biol.* 17, 799-811.

Puhalla, J. E. (1968). Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics 60, 461-74.

Puhalla, J. E. (1969). The formation of diploids of *Ustilago maydis* on agar medium. *Phytopathology* 59, 1771-2.

Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bölker, M. and Kahmann, R. (1997). G proteins in *Ustilago maydis*: transmission of multiple signals? *EMBO J.* 16, 1934-42.

Robinson, A. S., Hines, V. and Wittrup, K. D. (1994). Protein disulfide isomerase overexpression increases secretion of foreign proteins in *Saccharomyces cerevisiae*. *Biotechnology* (*N Y*) 12, 381-4.

Rogers, L. M., Flaishman, M. A. and Kolattukudy, P. E. (1994). Cutinase gene disruption in *Fusarium solani f sp pisi* decreases its virulence on pea. *Plant Cell* 6, 935-45.

Romeis, T., Brachmann, A., Kahmann, R. and Kämper, J. (2000). Identification of a target gene for the bE-bW homeodomain protein complex in *ustilago maydis* [In Process Citation]. *Mol. Microbiol.* 37, 54-66.

Rowell, J. B. and DeVay, J. E. (1954). Genetics of *Ustilago zeae* in relation to basic problems of its pathogenicity. *Phytopathology* 44, 356-362.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). *Molecular Cloning: A laboratory manual*. Cold Spring Harbor: Cold Spring Harbor Press.

Sanchez-Garcia, I. and Rabbitts, T. H. (1994). The LIM domain: a new structural motif found in zinc-finger-like proteins. *Trends Genet*. 10, 315-20.

Sanger, F., Nicklen, S. and Coulsen, A. R. (1977). DNA Sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74, 5463-5467.

Schauwecker, F., Wanner, G. and Kahmann, R. (1995). Filament-specific expression of a cellulase gene in the dimorphic fungus *Ustilago maydis*. *Biological Chemistry Hoppe-Seyler* **376**, 617-25.

Schiestl, R. H. and Petes, T. D. (1991). Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U S A 88, 7585-9.

Schmitt, M. E., Brown, T. A. and Trumpower, B. L. (1990). A rapid and simple method for preparation of RNA from *Saccharomyces cerevisiae*. *Nucleic Acids Res.* 18, 3091-3102.

Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I. and Kahmann, R. (1990). The *b* alleles of *U. maydis*, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif [published erratum appears in Cell 1990 Feb 9;60(3):following 520]. *Cell* 60, 295-306.

Seshachalam, D. (1974). A protein-nucleic acid complex in teliospores of Ustilago maydis. Antonie Van Leeuwenhoek 40, 265-74.

Shuman, S. (1994). Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. *J. Biol. Chem.* 269, 32678-84.

Smith, C. J. and Parker, A. C. (1993). Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J. Bact. 175, 2682-91.

Snetselaar, K. M. (1993). Microscopic observation of Ustilago maydis mating interactions. Exp. Mycol. 17, 345-355.

Snetselaar, K. M. and Mims, C. W. (1993). Light and electron microscopy of *Ustilago maydis* hyphae in maize. *Mycol. Res.* 98, 347-355.

Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.

Spellig, T., Bölker, M., Lottspeich, F., Frank, R. W. and Kahmann, R. (1994). Pheromones trigger filamentous growth in *Ustilago maydis*. *EMBO J.* **13**, 1620-7.

Spellig, T., Bottin, A. and Kahmann, R. (1996). Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus *Ustilago maydis*. *Mol. Gen. Genet*. 252, 503-9.

Spellig, T., Regenfelder, E., Reichmann, M., Schauwecker, F., Bohlmann, R., Urban, M., Bölker, M., Kämper, J. and Kahmann, R. (1994). Control of mating and development in *Ustilago maydis*. Antonie Van Leeuwenhoek 65, 191-7.

Spellig, T. (1996). Dissertation

Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J. D., Dean, C., Ma, H. and Martienssen, R. (1995). Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. *Genes Dev.* 9, 1797-810.

Sweigard, J. A., Carroll, A. M., Farrall, L., Chumley, F. G. and Valent, B. (1998). *Magnaporthe grisea* pathogenicity genes obtained through insertional mutagenesis. *Mol. Plant Microbe Interact.* 11, 404-12.

Tachikawa, H., Miura, T., Katakura, Y. and Mizunaga, T. (1991). Molecular structure of a yeast gene, *PDI1*, encoding protein disulfide isomerase that is essential for cell growth. *J. Biochem. (Tokyo)* **110**, 306-13.

Talbot, N. J., Ebbole, D. J. and Hamer, J. E. (1993). Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus *Magnaporthe grisea*. *Plant Cell* 5, 1575-90.

Talbot, N. J., McCafferty, H. R. K., Ma, M., Moore, K. and Hamer, J. E. (1997). Nitrogen starvation of the rice blast fungus *Magnaporthe grisea* may act as an environmental cue for disease symptom expression. *Phys. Mol. Plant Pathology* **50**, 179-95.

Trueheart, J. and Herskowitz, I. (1992). The *a* locus governs cytoduction in Ustilago maydis. J. Bact. 174, 7831-3.

Truernit, E., Schmid, J., Epple, P., Illig, J. and Sauer, N. (1996). The sink-specific and stress-regulated Arabidopsis *STP4* gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. *Plant Cell* 8, 2169-82.

Tsukuda, T., Carleton, S., Fotheringham, S. and Holloman, W. K. (1988). Isolation and characterization of an autonomously replicating sequence from *Ustilago maydis*. *Mol. Cell. Biol.* 8, 3703-9.

Urban, M., Bhargava, T. and Hamer, J. E. (1999). An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. *EMBO J.* 18, 512-21.

Urban, M., Kahmann, R. and Bölker, M. (1996). Identification of the pheromone response element in Ustilago maydis. Mol. Gen. Genet. 251, 31-7.

Van den Ackerveken, G., Marois, E. and Bonas, U. (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. *Cell* 87, 1307-16.

Van Gijsegem, F., Gough, C., Zischek, C., Niqueux, E., Arlat, M., Genin, S., Barberis, P., German, S., Castello, P. and Boucher, C. (1995). The *hrp* gene locus of *Pseudomonas solanacearum*, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. *Mol. Microbiol.* 15, 1095-114.

VanEtten, H., Funnell-Baerg, D., Wasmann, C. and McCluskey, K. (1994). Location of pathogenicity genes on dispensable chromosomes in *Nectria haematococca* MPVI. *Antonie Van Leeuwenhoek* 65, 263-7.

Wang, H. and Ward, M. (2000). Molecular characterization of a PDI-related gene *prpA* in *Aspergillus niger* var. awamori. *Curr. Genet.* 37, 57-64.

Wang, R. L., Stec, A., Hey, J., Lukens, L. and Doebley, J. (1999). The limits of selection during maize domestication. *Nature* 398, 236-9.

Wubben, J. P., Joosten, M. H. and De Wit, P. J. (1994). Expression and localization of two *in planta* induced extracellular proteins of the fungal tomato pathogen *Cladosporium fulvum*. *Mol. Plant Microbe Interact*. 7, 516-24.

Danksagung

Mein Dank gilt an erster Stelle Regine Kahmann, die zu jeder Zeit an meiner Arbeit interessiert war und meine persönlichen Interessen gefördert hat. Besonders dankbar bin ich ihr für die wissenschaftliche Freiheit, die sie mir immer gewährt hat.

Meinen Eltern möchte ich danken für die liebevolle Unterstützung während des gesamten Studiums, für aufmunternder Worte und viele schöne Urlaube.

Jörg, Tina und Georgi möchte ich für den wissenschaftlichen und philosophischen Austausch danken.

Der Gruppe kann ich nicht genug danken für das alles was ich gelernt, erlebt und erfahren habe, und was mich geprägt und verändert hat. Danke euch allen. Einige von euch sind mir über die Zeit besonders an Herz gewachsen. Allen voran mein lieber Philip, der mir ein Freund geworden ist. Julia, danke für viele Einsichten, spannenden Diskussionen, viel Spaß und Billard. Gerhard, Siegi, Mic, Olli, Alex, Andreas und Abram, es war mir immer eine Freude. Schade, daß wir als Team nicht zusammen bleiben können. Bedanken möchte ich mich auch bei Goran Matic, Marc Leibundgut, Steffi Grüneis, Steffi Cubasch und natürlich bei Karin Hansson, die viel zum Gelingen dieser Arbeit beigetragen haben.

Ich möchte hier die Gelegenheit nutzen, mich auch bei meinen Freunden zu bedanken, die mir all die Jahre zur Seite standen, obwohl für die meisten meine Arbeit immer reichlich obskur blieb. Die Wissenschaft fordert viel, und ich bin froh, Euch zu haben. Flo möchte ich besonders für die vielen gemeinsamen Urlaube, tolles Chaos und das "Gartenhaus" danken. Alex, Helge, Annette und Susanne: Danke für eine gute Zeit, offene Worte und viel Spaß. Das Leben als Wissenschaftler kann sehr einsam sein, ihr wart immer für mich da. Danke!! Ein Freund sollte noch besondere Erwähnung finden, meine Frau Sandra, der ich mehr verdanke als ich hier zusammenfassen kann. Du bist ein seltener Glücksfall im Leben.

Lebenslauf

Personalien

Christian Andreas Aichinger geboren am 26. Dezember 1969 in Landsberg am Lech verheiratet seit dem 12. Juni 1999

Schulbildung

1976 - 1980	Grundschule in München
1976 - 1979	Leon-Feuchtwanger Gymnasium, München
1979 - 1989	Graf-Rasso Gymnasium, Fürstenfeldbruck
1989	Abitur
1989 - 1990	Wehrdienst

Studium

1990 - 1995	Studium der Biologie an der LMU-München
1994 - 1995	Diplomarbeit bei Prof. R. Kahmann über
	"Anreicherung von Umc1-Bindesequenzen in Ustilago
	maydis"
1995	Diplom in Biologie

Promotion

1995 - 2000	Arbeit am Institut für Genetik und Mikrobiologie an
	der LMU-München
	Promotion zum Thema:
	Identifizierung pflanzenabhängig-regulierter Gene in Ustilago
	maydis

Anhang

Die ORFs der angegebenen Gene wurden in putative Polypeptide übersetzt. Wichtige Restriktionsschnittstellen sind angegeben.

Mutante #1685

npi3

-210																						ç	ggtco	cccc	cg -20	01
-200	00 cagcatgagtcggtcaccaaacacacagccaaattcagtttggaaagactccgaaaaagaccttcaaagaagagcacgagccgtccgagacccgagatca -101																									
-100	0 gcgcaccttgtttatcggcaacctccccatcgaggcgggtcagtcgcgttccctgcagcgcaagctcatcttttcctcgagtccttctcgccctatccc -1																									
1	ATG	ATC	ACC	AAA	GCC	CAT	GGC	CTC	CGC	TTC	CGT	TCG	GTA	GCT	TTC	TCC	GTA	CCC	ACA	GTT	CAT	ccc	GAC	CAA	GTC	75
1	М	I	т	К	А	н	G	L	R	F	R	s	v	А	F	s	v	Р	т	v	н	Р	D	Q	v	25
76	AAC	GAC	GAA	GAT	GAG	GAC	GCT	GAC	AAG	AAG	AAA	AAG	AAG	AAG	GGC	AAG	GCC	AAA	GAA	CGA	AGC	CAG	AAC	TAC	CGC	150
26	N	D	Е	D	Е	D	А	D	к	к	к	к	к	к	G	к	А	к	Е	R	s	Q	N	Y	R	50
151	GAA	GCT	GTC	GCT	GCC	GTC	GAA	GGT	GGA	GAC	AAT	GCA	CAA	GCT	CCA	TTG	ACA	GCT	CAA	CAG	AAG	CGC	AAA	ATT	GCC	225
51	Е	А	v	А	А	v	Е	G	G	D	N	А	Q	А	Р	L	т	А	Q	Q	к	R	к	I	A	75
226	TTC	ATC	AAC	AAG	GAC	TTT	AAC	GAA	AAG	GCC	AAG	ACG	GTC	TCT	GCA	TAC	GTT	ACC	ATT	GCC	CAT	ccc	AAA	GCA	GTG	300
76	F	I	N	к	D	F	N	Е	к	А	к	т	v	s	А	Y	v	т	I	А	Н	Р	к	А	v	100
301	CTC	GAT	CAC	CTG	TAC	GAC	ATT	GCA	CCA	CGC	CAG	TCC	AAG	ccc	AAG	AGT	GCT	GCC	AAG	ACC	CCA	ACA	CAA	CTC	ATT	375
101	L	D	Н	L	Y	D	I	А	Р	R	Q	s	к	Р	к	s	А	А	к	т	Р	т	Q	L	I	125
376	CAG	ATC	GAC	CCA	CGA	CTC	ACG	GGC	TCC	GTT	CTT	GCT	GCT	CTG	ATC	GCC	TCG	TTC	GCC	GAC	GGT	CAA	GAC	TTC	CTA	450
126	Q	I	D	Р	R	L	т	G	s	v	L	А	А	L	I	А	s	F	А	D	G	Q	D	F	L	150
451	GGC	CGT	CAT	CTG	CGT	GTC	GAC	CTG	GTC	AAA	TCC	ATA	TCG	ccc	GCT	GAG	GTG	CTC	TCC	TCC	GGT	CTG	GAA	AAG	GTC	525
151	G	R	Н	L	R	v	D	L	v	к	s	I	s	Р	А	Е	v	L	s	s	G	L	Е	к	v	175
526	AAG	ACC	TTC	GAT	GCC	ACG	CTC	ACC	GGC	TCT	ACG	AGC	TCC	AAT	ACG	GAC	CTC	AAG	AGT	ACA	CTC	TTC	GCC	GGC	GGA	600
176	К	т	F	D	А	т	L	т	G	S	т	S	S	N	т	D	L	К	S	т	L	F	А	G	G	200
601	CTC	GAT	TTT	GAG	GTG	GAC	GAG	GAG	GAA	GTT	CGT	GCA	TTC	TTC	GAA	GCG	CTA	CTC	GTC	GAG	GAG	CTT	GGC	TCG	GCC	675
201	L	D	F	Е	v	D	Е	Е	Е	v	R	А	F	F	Е	А	L	L	v	Е	Е	L	G	S	А	225
676	GGC	GAC	GCC	GTT	ACC	ATT	CCC	ATA	ACC	GGT	CTC	GAT	GGT	GAG	CCA	GCA	TCC	AAA	CAG	CTG	CTC	GAA	TCA	TTG	TCG	750
226	G	D	А	v	т	I	Р	I	т	G	L	D	G	Е	Р	А	s	к	Q	L	L	Е	s	L	s	250
751	CGC	GAG	TTC	CCC	TTC	ATC	CTA	CCA	GAG	AAG	CGT	AAG	GCA	CGC	GAG	ACG	GTC	ACA	CGC	AAT	GCC	GAG	TAC	GTC	CGT	825
251	R	Е	F	Ρ	F	I	L	Ρ	Е	K	R	K	А	R	Е	т	v	т	R	N	А	Е	Y	V	R	275
826	TCG	GTG	CGC	CTC	ATT	CGC	GAT	GCA	GCT	ACC	CAA	ATG	GGC	AAA	GGT	TTC	GGC	TAC	GTC	CGC	TTT	GTC	TCG	CAG	CAG	900
276	S	v	R	L	I	R	D	А	А	т	Q	М	G	К	G	F	G	Y	v	R	F	v	S	Q	Q	300
901	TGC	GTT	GAT	GAA	GTC	ATG	GCC	ATC	TAC	AAC	GCC	GAG	CAG	GCG	TTC	TTG	GAA	TCC	GTC	AAG	GGC	GTT	AAA	GGC	AGT	975
301	С	v	D	Е	v	М	A	I	Y	N	А	Е	Q	А	F	L	Е	S	v	К	G	v	K	G	S	325
976	CTG	GGT	GCC	TCT	GCT	GCT	ATT	GCT	GCC	GGT	GGA	AAA	GAG	TTC	AAA	CGT	CGA	CTC	AAG	CTC	AAA	GGG	CGA	CCG	ATC	1050
326	L	G	А	s	А	А	I	А	А	G	G	К	Е	F	К	R	R	L	К	L	К	G	R	Ρ	I	350
1051	CGT	GTA	TCC	TAC	TGC	AAG	TCT	CAG	ACC	AAG	ACT	GGG	ACG	CCT	GCG	AAC	CGC	AAG	AAT	CGA	GGT	GTT	GCT	GCT	AAA	1125
351	R	v	S	Y	С	К	s	Q	т	К	т	G	т	Ρ	А	N	R	К	N	R	G	V	А	А	K	375
1126	GAC	GAC	GCT	GGA	CAA	CAG	GAG	CCC	TCG	ACG	CCT	CAG	CGC	AAG	TCG	CCT	CGC	TAC	GAG	CGC	TCG	AGT	GGC	GCA	CCC	1200
376	D	D	A	G	Q	Q	Е	Ρ	s	т	Ρ	Q	R	К	s	Ρ	R	Y	Е	R	s	s	G	А	Ρ	400
1201	ACA	ccc	AAC	GGC	ACA	TCG	CCT	CAT	GCG	ATT	GGA	AAG	CGT	CAA	AGT	ATG	CTT	CCT	GGA	GCA	AAC	AAG	ATC	GTG	CCT	1275
401	т	Ρ	Ν	G	т	s	Р	Н	А	I	G	К	R	Q	s	М	L	Р	G	А	N	К	I	v	Р	425
1276	GGC	AGT	CCT	AGC	TCT	TTG	CGC	GCG	GCT	GGC	GAC	CCG	GCT	GAG	ATT	GCC	AAA	AAG	GCA	GAG	CTC	TAC	GCC	ACG	CTC	1350
426	G	S	Ρ	S	S	L	R	А	А	G	D	Ρ	А	Е	I	А	К	K	А	Е	L	Y	А	т	L	450
1351	ACA	AAG	CAA	CAG	CGC	AAG	CAG	ATG	AAA	AAG	GAC	GAT	GCC	GAC	AGA	GTC	AAC	CGT	CGC	ATG	GCG	AAG	AAG	AAC	AAG	1425
451	т	K	Q	Q	R	K	Q	М	К	K	D	D	A	D	R	v	N	R	R	М	A	K	K	N	K	475

1426 AAG CTA GGC GCG ACG CAG CCG TCC TTC GGT AAA TTG GAC AAG AGT CTG GCT GCC GAG GGA GCT AAA GCC AAG AGC 1500

476	К	L	G	А	т	Q	Р	S	F	G	К	L	D	К	S	L	А	A	Е	G	А	К	А	К	S	500
1501	AAA	GAG	AGG	GTC	AAA	CTG	AAG	CAG	CCG	GGT	GGT	GCA	GGT	GTA	CAC	GCA	GCT	AAG	CGC	TTC	AGG	AGC	GGT	GCA	GGC	1575
501	K	Е	R	v	К	L	K	Q	Ρ	G	G	А	G	v	Н	А	А	K	R	F	R	S	G	А	G	525
1576	CCC	AGT	AGC	TCT	TCC	GCT	GCA	AAA	CCT	CGG	CCC	AAG	CCG	AAA	ATC	TAG	tgco	cage	tacag	geeed	catci	cacga	aatco	cttto	ccaga	1659
526	Ρ	s	s	S	s	А	А	К	Ρ	R	Ρ	К	Ρ	К	I	*										541
1660	tcad	cgago	ccaco	cccga	attco	gtcta	attto	catt	tcg	tcgt	tgatt	tcgto	ctgca	atge	ttcg	ttaco	gtgc	tgcgo	ctcgo	gtgi	tctgi	gtte	gagto	ggtgo	cgacc	1759
1760	gtti	tgtco	catt	ttgta	acago	cgct	tacta	aaago	caaaq	gcaco	ggcgt	tgto	gtg	gccad	ccgt	ggaca	acga	tagea	atcad	ccato	gctco	gcaca	agtco	gcgao	ccttg	1859
																							В	amHI		
1860	tata	rata	rct co	actor	+++a	atco	acaco	racca	attr	tnt?	acact	-ctaa	anna	atto	rcati	Lacas	atra	rtac	aaaa	aata	rcdas	atact	acG	ATCO	-	1955

 $1860 \ {\tt tgtcgtacctcgctctttgatccaccgccaattctgtacactctaaggacattgcattgcgatgactacaaaatggtgcgaatactgcGGATCC \qquad 1955$

pig6

		EcoRI																								
-858	GAATTCttcggacaatcaaaactcgacatgtaacgtgtgagccaacgacgatgtgcga -														-801											
-800	gcgo	catgo	gccaa	ataaa	aagad	gtto	cgtg	gttgg	gtgct	gctt	gaaa	actca	atco	ggato	cggat	cgca	atgca	agaga	atato	ggtca	acct	aagt	tata	acta	attcc	-701
-700	ttaa	aaaa	cacad	cacat	tgcca	ageco	ggcgg	gcaat	tgca	agto	cgt	gatga	acca	aato	ccgto	cagag	geeeg	gtccq	gttto	tttq	gcco	gctto	jageo	acad	cgtca	-601
-600	cagt	tga	gttti	tggti	taco	ctto	cacgo	ottoa	acgct	tcad	gcto	gcaco	gctgo	cacgo	ctgca	acgct	gcad	gcto	gcaco	gette	gtco	ggta	aaat	ttt	gagat	-501
-500	gcaa	accad	cgcaa	atcad	caaad	catco	gttt	tgaaa	acgta	acaca	acat	geeg	gtttt	ctgo	tgto	gtati	atto	gtag	gctat	acta	igcaç	gtagt	cace	jaato	cacga	-401
-400	atca	acaaa	atcad	caaat	tcaca	aato	cacaa	aaggo	gtaco	gagga	agtad	caaq	gtcaa	acaaç	gtcgo	ccgca	aacto	gtgci	gcto	gtggo	atct	cace	gtatt	cggg	gattg	-301
-300	atte	gggat	ttcca	acgti	toggt	aacq	gtggi	tgatt	cace	gatto	cacga	attca	acgat	tgtt	ttgo	cggco	ttt	ggcco	cgaca	ageto	agaa	igtti	ttcc	agag	gagcg	-201
-200	acto	gttt	cgga	actca	aatto	gageo	catad	cgtct	cct	ggtto	cggct	tact	tcg	gtgct	acca	atcto	cate	ggct	gatto	cgtt	gata	acgca	atgca	acto	ctcg	-101
-100	ctga	ataga	acaco	cacaa	agcta	ataag	gagca	aacad	ctgco	ctggt	gcad	tgtt	ctto	ctgca	agto	cctco	gatco	ctace	gttc	gccad	cage	jaggo	ctta	igcco	ctcga	-1
1	ATG	ACT	CGT	ACC	GGT	GGT	TTT	CCA	ACA	ATG	TCG	AGT	CAT	ACA	CCT	GCT	GCT	ACG	ACA	CTG	TAT	TCG	CAG	CAA	CAG	75
1	М	т	R	т	G	G	F	Р	т	М	s	s	н	т	Р	А	А	т	т	L	Y	S	Q	Q	Q	25
76	CAA	ACA	CAC	TCA	CAC	CCT	GTC	ACA	TCC	AAC	TCG	GTT	GCA	GAA	GGC	GCC	AGC	ACG	CCA	AAC	ACC	ATG	ATG	ACC	GTT	150
26	Q	т	H	S	Н	Ρ	v	т	S	N	S	v	А	Е	G	А	S	т	Ρ	N	т	М	М	т	v	50
151	GAA	GCG	TCA	TCC	TCC	AGA	ACG	CGC	ACC	GAC	TCG	CTC	TCG	TCG	CAT	CAC	ACA	TCA	CCT	GTC	TCG	CGC	AGC	ACC	ATC	225
51	Е	А	S	S	s	R	т	R	т	D	s	L	s	s	Н	Н	т	S	Ρ	v	s	R	S	т	I	75
226	GTC	GCC	GAA	CAA	CAT	CCG	CCA	GAA	TTC	AGC	AAA	GCG	GCC	AGA	CAC	GTC	CCA	GCA	GAA	TTG	CGG	тст	GCT	GTA	TCG	300
76	v	А	Е	Q	Н	Ρ	Ρ	Е	F	S	K	A	А	R	Н	v	Ρ	А	Е	L	R	s	A	v	S	100
301	GAA	CGA	CGC	TCC	ACC	ATT	CCA	TTC	GAC	GAT	GAT	GAT	CAC	GCG	CAT	ACC	GAT	CTA	GAA	AAA	GTG	GCG	CAA	GCC	GAC	375
101	Е	R	R	S	т	I	Ρ	F	D	D	D	D	Н	А	Н	т	D	L	Е	K	v	A	Q	A	D	125
376	GAC	CAC	GAC	AGT	GTG	ATC	TGG	GTC	GAC	TTC	CCC	GCA	CAT	GAC	CCC	GAG	GAC	CCT	TTC	AAC	TTC	AGC	AAG	ACG	CGC	450
126	D	Н	D	s	v	I	W	v	D	F	Ρ	A	Н	D	Ρ	Е	D	Ρ	F	N	F	s	K	т	R	150
451	AAA	TGG	TGC	ATC	ACC	ATC	CTT	GGC	GTG	CTG	TTC	ACC	GCC	GAA	\mathbf{GTT}	GCA	GCC	ACC	GCC	TCC	GCC	TAT	GTG	ССТ	GGT	525
151	К	W	С	I	т	I	L	G	v	L	F	т	А	Е	v	А	А	т	А	s	A	Y	v	Ρ	G	175
526	ATC	CCA	TCG	ATG	GAG	CGT	GAT	\mathbf{CTT}	GAC	ATC	ACC	AAC	CAC	CAA	CTC	AGT	CTG	CTC	GGC	ATC	GCC	ATC	TAC	ССТ	CTG	600
176	I	Ρ	s	М	Е	R	D	L	D	I	т	Ν	н	Q	L	s	L	L	G	I	A	I	Y	Ρ	L	200
601	GGC	TTT	GCC	TTG	CCT	CCG	CTG	GTG	CTC	GCG	CCG	CTG	TCC	GAG	GTG	TTT	GGC	AGA	AAT	CCC	ATG	TAC	ATC	GTC	TGC	675
201	G	F	А	L	Ρ	Ρ	L	v	L	А	Ρ	L	s	Е	v	F	G	R	N	Ρ	М	Y	I	v	С	225
676	CAT	CTC	TGC	TAT	ACG	GTG	CTC	TTC	GTT	GGG	CTC	GGA	TTC	GCC	AAC	AAC	GCC	GCG	ACA	GTC	ATC	ATT	CTA	CGA	TTC	750
226	н	L	С	Y	т	v	L	F	v	G	L	G	F	А	N	N	А	А	т	v	I	I	L	R	F	250
751	CTG	CAG	GGC	GCA	TTT	GGG	AGT	ACC	GGA	AGC	ACA	ATG	GTG	GGA	GGA	ACC	ATC	TCG	GAT	ATC	TGG	AAC	AGC	AAG	GAG	825
251	L	Q	G	А	F	G	S	т	G	S	т	М	v	G	G	т	I	S	D	I	W	N	S	К	Е	275
826	CGC	GGT	CAG	CCA	ATG	GCG	CTC	TTC	GCC	ACA	GCC	GCC	ATC	TTC	GGT	ACC	GGT	ATT	GGA	ССТ	GTC	TGG	GCG	GGC	TGG	900
276	R	G	Q	Ρ	М	А	L	F	А	т	A	A	I	F	G	т	G	I	G	Ρ	v	W	A	G	W	300
901	GTG	GAG	CAG	AAC	ACG	AGG	CTA	CAA	TGG	AGG	TGG	ATT	CAG	TAC	ATC	CAA	GCC	ATC	TAT	ACA	GGC	TTC	ATC	CTG	TTG	975
301	v	Е	Q	N	т	R	L	Q	W	R	W	I	Q	Y	I	Q	А	I	Y	т	G	F	I	L	L	325
976	CTT	CTT	CTC	ATC	TTT	CTG	CGA	GAA	ACG	AGA	GGA	AGT	ATT	CTG	CTG	ACA	CGT	CGA	GCC	GCC	AAG	CTG	CGC	AAG	ACG	1050
326	L	L	L	I	F	L	R	Е	т	R	G	S	I	L	L	т	R	R	А	A	К	L	R	К	т	350
1051	ACC	GGT	GAT	CCG	AGG	TAC	AAG	GCA	CGA	GCC	GAA	CTC	GAA	CGC	TCT	TCG	TTG	AGT	GTG	CTC	ATC	AAG	AAC	TCG	CTC	1125
351	т	G	D	Ρ	R	Y	K	А	R	A	Е	L	Е	R	S	S	L	S	V	L	I	K	N	S	L	375
1126	ACC	CGT	CCG	CTC	GTT	TTT	CTC	ATC	AAG	GAA	CCC	ATC	GTG	ACG	TTT	TTC	TCG	CTC	TGG	ATC	GCG	TTC	ACG	TGG	GGA	1200
376	т	R	Ρ	L	v	F	L	I	K	Е	Ρ	I	v	т	F	F	S	L	W	I	A	F	т	W	G	400

1201 TTC ATG ATG ATG ATG CTT CTC AGG TCA ATC GGG TTG ATC ACG CTG ACG CAA CAA CAT GGG TTT ACG CCG GAA CAA AAC GGA CTA 1275 401 F M Y M L L S S S I G L I T A Q H G F T P G Q N G L 425 1276 GTT TTC TTG TCC ATC GCT GCC GCG CGC AGC ATC CTG GCC AAC CTG CTG AAC CCA ATC CAA GAG TAC CTA TAC AGA AAG 1350

PstI

426 V F L S I A G A G I L G N V L N P I Q E Y L Y R K 450 1351 AAC TAC GCC AGA CAT GGA CCT GAA GCG CGA CTC TAC CTC GCC TGC GTT GGC GCC GTC TTC TTC CCC GTC GGC TGC 1425 С v v v 451 N Y R н G Р Е А R L Y LA G А F F Р G С 475 А 1426 TTC ATC TAC GCC TGG ACG AGT TTT CCA CAC GTC TCA ATA GTC GGG CCT ATC GTA GGA ATC GTA GTG ACA ATG ACT 1500 476 F Ι Y A W т S FPHV s I V G P I v G I v V т М т 500 1501 TCG GTT TTC CAC GTA TAC CTA TGC TGC TTC TCG TAC CTG GCA GAC TGC TAC CTG ACA TAC GCC AGT TCA GCT TTG 1575 501 S V F H V Y L C C F S Y L A D C Y L T Y A S S A L 525 1576 GCT GCG CAG AGC TTT GCT AGA AAT ATT TTC GGT TTC ATC TTT CCG CTC TTC GTC GAG CAA TTT TAT CAC CGC CTC 1650 SFARNIF GFIFP F v Е O F 550 526 A A O L Y HRL 1651 GGT TAC CAA TGG GCT AGC ACA CTT TCT GCG CTC TTG GGA GCT GTC TTG GGC GTC GTA CCT TTC ATC CTC TTT TTC 1725 551 G Y O W A S T L S A L L G A V L G v v Ρ F Т L F F 575 1726 TAC GGC AAG AAG ATT CGC GCC AGA AGC AAG ATC AGC CAG GCA CTG CAA AAA CAG CAT CAA GAA CAA CAG CAA CAC 1800 576 Y G K S K I SOAL К Н Н 600 K I R А R 0 0 0 E 0 0 0 BamHI 1831 1801 AAG TCT TAA gctagtctaacttcgtcactGGATCC 601 K S * 603

npi1

-317 CTGCAGqqtccacccca -301 1 ATG CAG CAG CAC ACT CTG CTA GTC GTT GGA GGG GCT GGC TTC CTC GGC AGT GCC ATC TCG AAG GCT GCA CTT GCC 75 1 M Q H T L L V V G G A G F L G S A I S K A A L A 25 76 AAA GGC TGG CGC GTA CTC TCG ATC TCG CCA TCA GGA ACA CCG TAC CAC ACA CCC GCC GGC CAC CGT CCA GCT TGG 150 26 K G W R V L S I S P S G T P Y H T P AGHRPAW 50 151 TCG TCT AGC CCT AAC ATC GAA TGG CAT GCG GCT GAC GCG CTC AAT CCT TCT TAT GCG CAT CTA GCA GAT CGG 225 51 S S S P N T E W H A A D A T. N P S S Y A H T. A D R 75 226 GCT ACT GCT GCT GCT GCG CAC ACG GTT GGC ATC CTT CTC GAG TCG GAT TAC AAG TCA AAA TCG TCG CAG GCT TTG CCC 300 н т V Ρ 76 A T A A V G ILLESDYK SKS S 100 O A L 301 ATT CGC AAT GCG ATC GCC GGT ATC GCC AGA GGT TGG GGC TGG AAC CTT AGC GCA ACA AAG GCT GAT GCG AAC CCG 375 GTAR G W GWNL S т Р 101 T R N а т а А к Α D А N 125 376 CTA CAT GAC GCC AAG TAT CCG GGC GCG GAT GCT GCA CCT GCG TCT TCT TCG TCT TCT GGA AGC TCA TCC AAG TTC 450 126 L Н D A K Y P G A D A A P A S S S S S G S S S к F 150 451 AGC TAC GAG CAC ATG AAC CGA GAC AGC GCA ATT GCG GTT GCT CAC ACT TTC CTC TCT TCG TTA CGA CAT CGC TAT 525 151 S Y E H M N R D S A I A V A H T F L S S L R H R Y 175 526 TTC CAT TCG ACT GGG ACG CTG AGC TCG GCA GCC AGA TCA GAA CCT GCG CCA TTC ATC TAC ATT TCG GCC GAG GAT 600 176 F H S T G T L S S A A R S E P A P F I Y I S A D 200 F 601 CTC TTT CGA CCT GTG GTG GAT GCA AGG TAC ATC CGC ACA AAA CGT CAA GCC GAG TCA GCC ATT GCA CGC CTT GCA 675 201 T. FRPVVDARYIRTKROAE S А Т А R T. Α 225 676 TCT CAC CAA GCT CCT CGA CCT CGA AGC TCC TCT GAA CAA GAT GCG CGT ATC ATC TTT GAT TCG GAC GGC GCA 750 226 S н HOAPRPRSSSEODARIIF D S D G А 250 751 GGT CTG GAA GCT GAA CTT CAC GAT GAG CTC ACG TCC GAC TCA TCT GAT GTG CAT GGC TTT GAG GAT CGC GAT ACA 825 251 G E Е L Н D Е L T S DS s D v Н G F Е D R D т 275 т. А 826 CAG TCG AGC GCG TCT CAG GGT TTG GTG CGG CCC GTG TTC TTG CGA CCG GGA CTC ATG TAT CAC CCG CAC ACT CGA 900 276 0 s S А S O G L V R P V F L R P G L M Y Н Р Н т R 300 901 CCT GCT TCG ACA CTA CCC GCT GCG ATC TTG GAG GCG TCA GCT GCG CTC CAT CGC TCT CCA CCG CTG CCG CTT CCC 975 301 PASTLPAAILEASAALHRSPPLPLP 325 976 ATC CCG ACC CCG GCA CAG CTG ATC GCC AAG CTT GGG AGT GGC GGC AGT GCA ACG CAG TCG ATA GCA CGT CTG CTG 1050 326 I P T P A Q L I A K L G S G G S A T Q S I A R L L 350 1051 ACC ACG CCA CCA TTG CAT GTC GAT ACG GTG GCC AAA GCG GTG TGC GCT GCT ATC GAG GAT GAA AAT GTA TTT GGA 1125 351 T P P L H V D T V A K A V C A A I E D E N V F G 375 1126 GCG GTG GAT GTG TAC GGT ATT CGT AAG CTT GCT GGC TGG AAA GAC GAT GCT TCG CTT GGT GCC AGT GTC TAT GGT 1200 376 A V D V Y G I R K L A G W K D D A S L G A S V Y G 400 1201 GAG AGC GTA GTG AGC GGT GCG CGT ACG GGA CGA CCA TGG CCG TCG AAT CAT CAG CAA GCC GCT GCA CGC TGC TTC 1275 401 E S v v S G A R T G R P W P S N H O O A A A R С F 425

1276 GAG ACC TGT CCC TGG CCA TGC TGC TGC TGC TGC TGC TGC TGC GCC GGC TGG GCA ACA GCG AAG TTT CTT CAG CTT 1350 426 E T C P W P C C C C C C C Y A G W A T A K F L Q L 450 1351 CCG GAC CTG GGC AAG CTC GCT TCA AGT GCC CTG TCG TCC GCA TCC ACG ATC ACA GGC GGC AAA GGC GGG GAG AGT 1425 451 P D L G K L A S S A L S S A S T I T G G K G G E S 475 1426 CGG TCG TAC CAG GAT GAG CAG GGC AGA ACC GTG TAC GAA ACG TGC AAG ATG CTA TCG CAC CCT GCG CAG ACG CTG 1500 476 R S Y Q D E Q G R T V Y E T C K M L S H P A Q T L 500 1501 TTC GAG GTA GTC GCC GAC GTG AAC TCG TAC AAG CAG TTC GTT CCC TAC TGC CAA GAC TCG CGC GTA CTC GGG CCT 1575 501 F E V V A D V N S Y K Q F V P Y C Q D S R V L G P 525 1576 GCG CGC TCT CAG CCG GGC CAA GCA CCA CCA GTG GTA CTC GCA GAT CTC ACC GTC GGC TTC GGC AGC TTC TCA GAA 1650 526 A R S O P G O A P P V V L A D L T V G F G S F S E 550 1651 ACG TAC ACT TCG CAA GTC ACA CTC TTC TCG CCT TGC ACA AAA GGC TCC AGC CCT GGC GTC GGA AGT GTG GTA GCA 1725 551 TYTSOVTLFSPCTKGSSPGVGSVVA 575 1726 GAA GCG GTC CAG CCC AAC CGC GTG TTT TCC TTC CTC TCG ACA AAG TGG ACT TTT CAC CCC AGA CAA GAC GAC AAG 1800 576 E A V Q P N R V F S F L S T K W T F H P R Q D D K 600 1801 ACG CTG GTC GAG TTC AGC CTG GTC TAT GCG TTC AGA AAC CCG GTC TAC GCT GCC GTC GGA AAC GTG TTC GAA 1875 601 T L V E F S L V Y A F R N P V Y A A V A G N V F E 625 1876 CAG ATG AGC GCA CAG ATG ATC GAT GCT TTC GAA CAG AGG GCG AAC AAG CTG CAT CCT GCC CAG CAC CGT TGA tcta 1951 626 Q M S A Q M I D A F E Q R A N K L H P A Q H R * 649 $2052\ {\tt ttgggactggggcgcatcggaggcgcatcggaggcgcatcagagggcgcatcagagggcgcatcagaggggcgcatcagagcggaaaatgttgaaa\ 2151$ $2252 \ gaacgetetaccaactgagetaaacceettatattacatggtetteagattgaatatatgatcagtgageactggettetactcatacaacgaacatgt \ 2351 \ 235$ 2452 cacgctaccgaggtgaggtgaggtctcgttcggatcgaggcgacgtccgtggcttacttgtgagttaggcggcgtggtgatgcgcgttttgagacgctcg 2551 2552 tcacqaacacatqactcaqatcqaqtcaqaqcqqaatcacqaatcqcqaaqtqtqaatqctqatqataaqttaaaattqqtcttqtttqcqataaqttaa 2651 EcoRI

2652 gacgaagtcggaGAATTC

2669

pig4

PstI

1042															C	FGCAG	Gatg	gcgo	ctgad	cggat	ttcc	gctgt	caat	caaq	gaatg	-1001
-1000	aato	atga	aatca	atgaa	atcg	tgaat	togt	gaato	cgtga	atco	gtgaa	atget	gcto	catto	cgcaq	gaato	cgcga	aagg	gcate	gacad	cgaco	ctgad	cgcca	attco	gtact	-901
-900	cgct	tcad	caaaa	agca	gtct	gcagt	ttgad	ccato	cgaca	aggta	actt	gaco	ctcct	ttaa	actci	ggt	gcaga	aatq	gcgto	gate	gctga	acago	ccgt	gcto	gttgc	-801
-800	atto	cacad	ctcat	tttta	accco	ctcti	tgcgo	ggt	gcate	gccat	ctca	atcga	aaaat	tcag	ttcg	gttto	cgcco	cacct	tgtt	ggct	ttccd	ctcad	caget	ctgo	ctcaa	-701
-700	cgt	gtage	ggta	gcgti	tgaat	tgtga	aggad	ccggt	ttga	attaa	atggg	gagga	acaaq	gage	gagag	gtgga	atato	gtctq	gaato	gtad	ccgaa	aggco	gatti	tcgo	catgg	-601
-600	gttg	gctti	ttgga	acgco	cgtg	tgttg	gaggi	toggo	catgt	ttga	acgca	ageo	cacco	gtcg	gtaat	ggti	ctag	gttga	accgo	cata	tcat	tccaa	attga	agcta	atggt	-501
-500	cgad	gcto	ctcc	togt	gtcto	cacgo	gtgaa	aagca	aggga	aggo	catto	geegt	tgco	gate	ccaad	caget	tcto	caaco	cgcaa	acgto	gcaad	cgtgo	caago	cgaad	ccccg	-401
-400	acto	cacga	actg	tagg	gatgo	ctcti	taact	ttgat	gcct	tcad	caaad	ctc	gttta	agcg	tttci	gtco	ctcco	ctcct	cctt	cate	gttco	ccctt	cato	cctco	ccttg	-301
-300	ttac	gati	tage	cgage	gttto	cttgo	ccaad	ctgco	ctaga	ageco	gccat	caca	attti	tctg	caato	ctggo	ctgco	gatca	agtgo	ctage	cggco	caage	gtaco	ctgat	cgcc	-201
-200	tggg	gctgi	ttcto	cgtto	ctct	ggaco	ggtga	atcca	acto	ctt	ttct	tctt	cttt	tcact	tagag	gataa	atcta	accca	aaaga	acgto	ctgct	tacgo	ctcct	cggca	accgg	-101
-100	aaad	gago	ccact	tcttq	ggac	tcgaa	accco	cctct	gttt	cgaq	ggatt	atto	cccgt	tgaa	ctttq	gctto	ctgco	catco	gtctq	ggago	ccact	tgcgt	ggt	gagat	agca	-1
1	ATG	СТТ	CTC	TCT	GCT	ACG	ACG	ACT	AAA	CGC	TCT	TCC	TCA	TCA	TCT	CCT	CCC	ACA	TCA	GCT	ACT	TTG	CAG	ACC	GCG	75
1	М	L	L	S	A	т	т	т	K	R	S	S	S	S	S	Р	Ρ	т	S	А	т	L	Q	т	A	25
76	CCA	TTG	CGA	TCG	TCA	CCC	GAC	CCG	CGT	TTT	TAT	CAG	TCG	CAC	GGC	TCT	ACA	CCA	CGC	ACG	TCG	GTC	TCT	CAA	TCT	150
26	Ρ	L	R	S	S	Ρ	D	Ρ	R	F	Y	Q	S	н	G	S	т	Ρ	R	т	S	v	S	Q	S	50
151	AGA	CAG	ACC	AAA	GGT	CAG	ACT	CGT	GCA	TTG	TCA	CAA	ccc	CGC	TAC	GCC	GAG	CCA	GAG	GAG	CAA	GAC	TTG	ACG	TTG	225
51	R	Q	т	К	G	Q	т	R	А	L	s	Q	Ρ	R	Y	А	Е	Ρ	Е	Е	Q	D	L	т	L	75
226	ACC	GAC	GAT	TTC	TAC	GAC	CAA	GAC	GAC	GAC	GAC	GAC	GAT	CGA	GAT	CAC	GAC	GTA	AGA	AAG	CCT	TTC	TTG	CCT	CGC	300
76	т	D	D	F	Y	D	Q	D	D	D	D	D	D	R	D	H	D	v	R	K	Ρ	F	L	Ρ	R	100
301	CGA	AAC	AGT	GCA	TCG	TCG	AGT	GTG	CGA	AAG	AGC	TGG	ccc	AAC	TCG	CGT	CCA	GAC	GTC	AAG	AGG	TCC	AAT	TCA	ATT	375
101	R	N	S	А	S	S	S	v	R	K	S	W	Ρ	N	S	R	Ρ	D	V	K	R	S	N	S	I	125
376	CAA	TTG	AAG	CGT	TCT	CAC	CCT	CAC	AAG	ATG	GTG	GAC	CAA	AAA	AGG	AAA	AAC	GAG	ACG	GCT	GCC	AAG	TCG	GGT	GGC	450
126	Q	L	К	R	s	н	Р	н	К	М	v	D	Q	К	R	К	N	Е	т	А	А	К	S	G	G	150
451	ACC	GAC	GAG	GAT	GGC	AGC	CGT	TCG	TCC	AGT	AGC	TCC	TGT	GGA	GAT	GGG	AAC	GCT	AGC	AAT	GGC	GGC	\mathbf{GTT}	GGT	GAA	525
151	т	D	Е	D	G	s	R	s	S	S	S	S	С	G	D	G	N	A	s	N	G	G	V	G	Е	175
526	GCA	TCA	CGT	GGA	CCT	GGC	GAT	GTG	AGC	TTT	GAC	GAC	ATT	TTC	GAT	GTC	ACC	AAA	ACG	CTG	CGC	GAG	AAC	CAA	TCC	600
176	А	s	R	G	Р	G	D	v	s	F	D	D	Ι	F	D	v	т	К	т	L	R	Е	N	0	s	200
601 ATG ATG ATG TCG GCA GAG TTT GAT CGT ATG GGA ATG GGC AAG TAT CAG ATC TGC ATC TGG GTT CTG TGC GGA TGC 675 I S A E F D R M G M G K Y Q I C I W V L C G C 201 M M 676 GGC TAC TTT ATC GAC CTG TTG TGG GCG CAA GCG CTG GGC TTG ATT GTC ACG CAA GTG GCG TTC GAG TTT GCT GAC 750 Y FIDLLWAOALGLIVTOVAFEF А D 250 751 GAG ATC GGC GGC AAA ACC GGC CCA CTT CAG ACG GCA TTC TCG ACA GGA CTC ACG GTG GGC GCC TTC TTC TTC GGC 825 251 E I G G K T G P L O T A F S T G L T V G A F F F G 275 826 TTT GCG GTC GAC GTA GTG GGC CGA CGA TGG AGC TTC TAT CTG ACG ACG TTG ATC GCG TCG ATT TTT GGG ATT GCC 900 276 F A V D V V G R R W S F Y L T T L I A S I F G I A 300 901 AGT GGA GGC GCA CGC AGC TTT GAT GGT CTC TGC GTG CTG TCG GCT TTC ATC GGG TTC GGT ATC GGT GGC AAT ATT 975 301 S G G A R S F D G L C V L S A F I G F G I G G N I 325 976 CCG ATC GAC GCG ACG ATC ACG TTG GAG TTT CTG CCC ACA AAT CGA CGC TTT CTC GTG GCG GCG CTA TCG CTG TTT 1050 326 P I D A T I T L E F L P T N R R F L V A A L S L F 350 1051 CAG CCG TTG GGG GTG CTG GTA TGC TCG GGC ATC TCG TAT GGA CTG ATT CCA AAG TAT GCG TGC GAG TCG GCC GAG 1125 PLG V L V C S G I S Y G L I P K Y A C E S A E 375 351 0 1126 ACG TGT ACG CGA TCG AAC AAC ATG GGC TGG CGA TAC ACA CTG TAC ACA CTC GGC TGT ATC ACC TGG CTC ATC TTT 1200 R S N N M G W R Y T L Y T L G C I T W L F 400 376 Т С т I 1201 GTG GCT CGA TTC TTC ATC TTC AGC TTC CGC GAG TCG CCG CAG TAT CTG CTG GCA CGT GGA AAG GAG GCT AGA GCG 1275 401 V A R F F I F S F R E S P O Y L L A R G K E A R A 425 1276 CTC CAG ATT ATT CGG CAG ATT CTG CAT ACG AAC AAG AGC AAG ATG GAG CCG CTC TTT ACG CAG GCT GAT TTC CAG 1350 426 L Q I I R Q I L H T N K S K M E P L F T Q A D F 0 450 1351 GAG GCG GCG AGA CGG ATT GCA GAG CAC CAA GGC GGT GAA TAC CTG GTG GAG CCA GAG GAG CAA GAG CGG CTG CAC 1425 451 E A A R R I A E H O G G E Y L V E P E E O E R L H 475 1426 GEC GET GEA CTE AAG ATG TEG AGG TEG GAG ACG GEC AAG AAA TEG GEC AAG GAA ATG GEG TEG ETE TTT ETG AAT 1500 476 G G A L K M S R W E T A K K S A K E M A S L F L N 500 1501 GCA AAG ACG TTG TTT CGG AAC AAG ACG ATG GCG AGG GTA ACT ATC ATT CTT TGG CTC ACG TTT ATT GCC GAC TTT 1575 501 A K T L F R N K T M A R V T I I L W L T F I A D F 525 1576 TGG GGG TTT ACG CTC GCA GGT TTC TAC CTG CCT CAA ATC CTG CGC GCC AAG GGA GCC GAG CAG GAC ACG TCG ATC 1650 526 W G F T L A G F Y L P O I L R A K G A E O D T S I 550 1651 TCG ACG ACC TAC CGC AAC TAC ATG CTG GTC TAC TTT CCC GGC ATA TTC GCA GTG GCG CTG GGT GCG GCG ATG ATC 1725 551 S T T Y R N Y M L V Y F P G I F A V A L G A A M I 575 1726 GAA GCG CCA AAA GTA GGA CGC CAA TGG GCC ATG GTG GTA TCA TCA GGC TTG ATG GCC GTT TCG TTC TTC CTG TTC 1800 576 E A P K V G R Q W A M V V S S G L M A V S F F L F 600 1801 ACG ATT GCC AAA GAT CAG ACG GGC AGC GTG GTG GTG CTG AAC GCG GTC GAG TAC TTT TTC CAG AGC CTG TTC AAC AGT 1875 601 т I A K D O T G S V V L N A V E Y F F O S L F N S 625 1876 ATT CTG TAT GCT TTT GTG CCA GAG ATC TAT CCA TCG CAA GTC AGA GGA ACA GCG AGC GGA CTG GCA TCG ACG TTG 1950 626 I L Y A F V P E I Y P S O V R G T A S G L A S T L 650 1951 GGA CGG ATC GCG GGC ATC ATA GCA CCG CTC GCA GCC GAT CCG CTG TTC GCA GAT CAG ACG GAA CAG CAA GCG AAG 2025 651 G R т А G I I А Р L А А D Р L F А D 0 т E 0 0 А к 675 2026 CAC GTT CTG TAT CTA GCG GGT GGG GTG ACG CTG CTG TGC CCA ATA GCG CTG GCG TTG CTG CCG TAC GAT ACG AGG 2100 676 H v С D V L Y L А G G т L L Ρ I А L А L L Ρ Y т R 700 701 G М R v Y 706 2195 a acgcaacatgcaccaggcactgaggcactgatgatcgtgttaccagtgtgaccgcaaggcgaatcgtgaatcgtgaatcgtgaatcgcgaataggtcagcagcatct 2294

BamHI (REMI-Insertion und bis NcoI REMI-

2295cacatettggtaacttatttgeaattageagtggteaatagagtgeeeGGATCCagageggacataaattatagttagtgetggee23942395ttggatgaatgeagaeeggagegeggaegggeaggeegtgttagetgegteetttatgeatteetgeeagteegaaeecagaateecagaaeecagaeegggaeaaeecagaeeggggaeaecaaeageggggaeaecaaeageggggaeaecaaeagegggaeaecagaeggggaeaecagaeggggaeaecagaeegggaeaecagaeegggaeaecagaeegggaeaecagaeeggaeecageecagee

"rescue")

3295 tggatctcagttgcaggtttcggggctgtgttcctgcgcttgtcatgctcagctgcgggtggctctgacacaggtacgcggaaattcaactcgcgcgcat 3394 3395 gttggctcccttccgtcttttcgtgttgttttctttcgctcttggccgtcttggtgcctgattctgattcgtacagttcaatctggacctgtcgtgcg 3494

3495 tatcgccccagtttccgtgttccgcagttgcgcacatgtttccccttgaacttgggcagaaatgcagattagcggaatcacggaatgtcgaatacaatcgtg 3594 HindIII 3795 gttAAGCTT 3803 pig3 HindIII -1067 AAGCTTggcgtgcctcgctcctttttcgtgccaagccatttcacgatttccaaccctctctccctct -1001 -1000 ctgatcttgtcgttcttgtcgtcgtcgttgttatcatcatcatcatcatcatcgtcgtcgtcgtcgttcatcttctgctgtacatcaatctgccggttgt -901 -900 tcatccacgcccgtccgtacacccagcgaacgcttctgctaccaagctggtcaagcactgtctctgttccgcgcatcttgcgtccgtacaccgtccttcc -801 -800 aaccgcttgcctcgctgcgtctacgtctcgcttcatttcattctactaccaacgtccgtgactacgcgcttcatatcgcaacgtgccttgcaatctggac -701 -700 cccgtttccatatcgactcgaccttcgacgtgtcccgagcttcgcgtcccgacccacgcctctttcgtcttgttccaatcaacttgttccgtaaggcttac -601 StuI -500 ttagcatcacatccgcgtgacccacccctcagagcacatttctcctttgcgtttcaacccaaacgcacatcatctcataatcctttcatctcacgccgcg -401 -400 cgcacctcttgccagaagccttggctcaaccatccgtaatcgtgcgattgcgcagaaccgaatccccagtacagtttacccacactctgcctcgactcct -301 -300 cgaccccgccccgtaaccatctctggctcggactctgactctggctcagctgcggtgcatctttctatcccgcttcgctcctcccccatcacctcaggcgc -201 -200 catcgactctggtccacacctagtcccgcttctttggcgccagtgtcgatcggtttgatcctacatcaccgcatccccgatcaccgctgatcgggtcggca -101 -100 tcacctcggacaacagttcttgtacccgtgtctacacccgccgtcctcgccatcgtcaccacactcgagtgaaattagacgtccgggccgggatataag -1 1 ATG GCT TCT GCG CCA ACA CCA GCT CCC TTG CCC ACA CAA CCT TTG CTT TCT CAC TTG GCA AGA TCC ACC TTG GGT 75 Р н 1 M Р т Р А Р L т Р L L S L А R S L G 25 А S А 0 т 76 GCT GCA TTC GAT CCT CGT ACC ATC TCT GCT TTG CCC TCG CCA TCC TCT TCC TCT CGG CCT GCT TCC ATC CAC 150 F DP R TISALPSPSSS S R P А S I н н 50 151 CGT GCC CAC GTA CAT CAC CTC ACC ATG TCG CCC TCG CCT TCG CAT TCC TTT GCC GAG AAT CCA CGC GCA TTC AAC 225 51 RAHVHHLTMSPSPSHSFAENPRAFN 75 226 AAC ATC TCT TCA GCA TAC AAC AAG CGC AAC GGC ACC CCC AAC ACT GCC ACC TCT CGA ACA GCC TTG GCC TCG 300 76 N I S S A Y N K R N G T P N T A T T S R T A L A S 100 301 GAC GAG GCG CTA CAG CAC TCC TAT GCA GCT CGC AAT TCG CCT CAG CGT ATG CCT TCG CAT ACC GCG CCT CTA CCG 375 E A L O H S Y A A R N S P O R M P S H T A P 101 D т. Р 125 376 CCG CAC CGT CCG CTT GAT CCC ATC CAG AGT CGC GTC TAT GGT CTC ACA GCA GAC TTG CGT GAG CCC AGC ACA CCG 450 H R P L D P T O S R V Y G L T A D I, R E P 126 P S т Р 150 451 GCT GTC CAC GCT CCA GCA CTC GAC GAT GCC ACC CGC ATG GCG CGT CTG CTC AAC GAG CAG AAA CCC AAC TTT AGC 525 H A P A L D D A T R M A R L L N E O K P N F 151 A v S 175 526 GTC GAG GTC TTT GCC TCG TCC TTT GAT AAC CGT GGC TAT CCA GTC ATC TCG GGT CGC GCC ACT GTA CGC GGA 600 176 V F A S S F D N R G Y P V I S G R A A T V R G 200 601 ATT GTA CGC ATG CCC GCC GCC ACC GGC TGC GAC GTT CTC ATG ACC ATC TCG GCG CAT ACA ACC TCT GGA TCG CCC 675 201 I V R M P A A T G C D V L M T I S A H T T S G S P 225 676 GCA GCC GTG TGG CAA GGC ATC GCA CTG GCA CCC TAC TCG GCC GGC GGC GAA AAG ACT GTC TTT GAG ATC AAG GAT 750 226 A A V W Q G I A L A P Y S A G G E K T V F E I K D 250 751 CGT CTT GTC GCC AAT TAC GAC CTT GTC AGG CCA CGC GCC GCC TAT GCA CCC AAG AAC GAA GAG ATG ATG GAG CCG 825 251 R T. V A N Y D T. V R P R A A Y A P K N E E M M E P 275 826 CCG CAG CTC TCC CAG GAT GAT CTC GTG CTA CCC ATC CCT TTC CAA GTC CAG TTG CCA CTC GGC AAA TCC ACG CGC 900 O L S O D L V L P I P F O V O L P L G K S 300 276 P т R 901 TTC ATC GAC GGT GAA ATG CAG GCT GTC CCC GTC TCG CTT CCA CCC AGC TTT GAG ATC AGC TCG AAA CAC GCT GCG 975 G E M Q A V P V S L P P S F E I S S K H A A 301 F Ι D 325 976 CAG GAA AAG CGC GAC ATA CGT TTG GCG ACC AAG GGC AAG GCC AAA GTG CCC TTG GCC AAG GAA CTC ATC GAA AAG 1050 3260 E K R D I R L A T K G K A K V P L A K E L I E K 350 1051 GGT TTC AGC AAG GTG TAT CGC ATC GGC TGT TAC TAT CAA GTC ACC TGG ACC CTC ATT CGA TCC AAC AAG GAC AAG 1125 351 G F S K V Y R I G C Y Y Q V T W T L I R S N K D K 375 1126 TCG AAA AAG TTT TCG AGC AAG TCG TCC AGG GAA CCT GCC GAG GGC GAC TCG TTG ACG CTA CCC TTT ATC TTT CTC 1200 376 S K K F S S K S S R E P A E G D S L T L P F I F L 400 1201 GGC GAG CCA ACG AGC CTG CCA CCT CAT CCG CCT ACC TTG CCA TCT TCG ATC AGC CCA GAT GTA TTT CTG CTC CCA 1275 401 G E P T S L P P H P P T L P S S T S P D V F L L P 425 1276 GAC ACA ACG TTG GGC GAT CAG TGG ACT CTG CAT CGA TCC CAA GCA AAG TGG TCC GGA TCC ATG TTG AAA GCG TCT 1350 426 D T T L G D O W T L H R S O A K W S G S M L K A S 450 1351 AGG AAG ACG GTC GAG GTG GAG CTC CAC ATG CCC AAT CCA CCC GTG CTC CAG GCG CCT TCA GTG TTG CCG TTG ATG 1425

E L H M P N P P V L Q A P S V L P L M 475 451 R K т v E v 1426 GTC GTC TTG CGA CCC ACT GAT CCG ACG CTG CTC TCG AAC GTG CGC ACA AGA GCT CCG AGC GAG ACC TCG ACA GCG 1500 Р Ν v 476 V v L R Р т D т LL S R т R А Р S Е т S т А 500 1501 CCC GGT TCT CCT GCC GTT GGA CAG GTC GAC GAC CCC ATC GAA AGC ATG TCT TCC CCC ACC ATG GCC TCG ACC GCG 1575 501 P S Ρ А v GOVDDPI E S M S s Ρ т М А s т А 525 1576 TCC ACC ATG GCT GCA TCG CCG CCT TTG TCT CAG CCT TTG CAG CAG CGC GAT GCT GAC ACC GAA TCG ATC AAG ACA 1650 A A S P P L S Q P L Q Q R DТ т 526 S T M DA Е s Т Κ 550 1651 TCA CGC AGC ATC ATG TCG AGA TTC ATC AAG CCT TCC GCC AGC TTG GCG CGC TTC CCA GCC TCG TCC TCT CGC AAG 1725 FIKPSASLA 575 551 S R S I M S R R F P А s S S R Κ 1726 GGA CCA TCG AGC ATT TTT AGC GGT CGA CGA CCC AAC ACG GCT CCC AGC TCC GGT AGC TCC GAG ACG GGC ATG ACG 1800 576 G P S S IFS GRRPNTAPS S G S S E т G М т 600 1801 GAT GCC ATG ACC GAT CGA ACC TTT GTT GCT GCA GGT GCT CTT CCA GAT CTG GTG AGC TTG GTG TGT GTC TCG CTG 1875 601 D Α т D R т F v А AGA L Р D L v S L v С v т. 625 М S 1876 ATT CAG ACG ACG TTT AGC AGC AAC GAC AAC ATC AAC GAT GGA CCA GAA CAT CGC AGA AAG TTG CTC TCC GTC GCC 1950 N 626 I 0 т т F S S Ν D I N D G Р Е Н R R к L L S v А 650 1951 GAT CTC GAA GAA GTG GAC GTG CAC GCG TTA CTC GTC AAC TCG GAC TCT TCG GGT AGC CAG GCA GGT TCT CGA CCG 2025 651 D L Е Е V D V H A L L V N S D s S G s 0 А G s Р 675 R 2026 GGC TCA AGC AGG TCG CCG GAA GAC ATG GCG CAG ATC AAC GAG GCG GCA GCC GCT GCG AAA GCT GCC GGC GTG CGT 2100 676 G S S R S P E D M A Q I N E A A A A A A A A G V R 700 2101 GTG CTG GTG GGC TCG TTG AAG GTG GCC GGC AGC ACA CCG CCC AGT TTC CGC TGT CAC GGG TTG GAA GTC AAG TAT 2175 $701 \ V \quad L \quad V \quad G \quad S \quad L \quad K \quad V \quad A \quad G \quad S \quad T \quad P \quad P \quad S \quad F \quad R \quad C \quad H \quad G \quad L \quad E \quad V \quad K \quad Y$ 725 2176 GCG CTC AAG GTG GAT CTC TTG CCT GCG AAT CGG TAC GGC GGT AGC GAT GGT GTA GAG AAG GCG ATG CGC AGT CTA 2250 726 A L K V D L L P A N R Y G G S D G V E K A M R S L 750 2251 GGT ATC GGT GGT AGA AGT CGT GGA TTT TCG GAT GGC ATA AGC ACT ACA GCT TCG ATG CAC ACA CAG ACG CAG TTC 2325 751 G G R S R G F S D G I S T T A S M H T Q T Q F 775 2326 ACT TCG CTC TCT GGC GAT GCA AAC AGC CCA CCG ACG ACG CCG CCG AAC CTC ATG TCG CCA GTC ATG TTT GGC ACG 2400 776 T S L S G D A N S P P T T P P N L M S P V M F G T 800 2401 CGC TCG CCC GAA GGT CCT GCT TCG CGC GCG TTC TCG CGC ACC ACC GGC AGC CGA AAC GCG TCG CCT CTG AAT GGT 2475 S Р Е G Р A S R A F S R тт G S R N A s Р L Ν G 825 2476 CAG AAT GTC GGA ATG GCC ATC TCT ACG ACG GAC GAA AGC GCA GTA ACT GCC GAC GCA GCT GAA GCA CAC GAA CAT 2550 826 0 Ν v G M A I S T T D E S A V T A D A A E A H E Н 850 2551 GGA CGT GCG CCC ATC GCA CCT TAC CCC AAC GCC TAC CCG CAA CAC CAG CTG CCA CAG CAG ACT ACT AGA CCA ACC 2625 851 G R A P I A P Y P N A Y P Q H Q L P Q Q T T R P т 875 2626 GCG TCC GTC TAC AGC TCT GTC AGG TCA GGC TGG GGA AGC GCC TCC ATG TCT GAC GCT TCA GGC ATG CAG AGT AGC 2700 876 A S V Y S S V R S GWGSASMS DAS G м 0 S S 900 2701 ATC TAC ATG AGC GAA TGG GGT AGG GAC AGG AAG ACC GTA AGC AAG ATC AAC AAG ACC ATC GGC GAG ATG TGG CTG 2775 901 T Y М S E W G R D R К т v S K I Ν Κ т I G Е М W т. 925 2776 GAT ATA CGG CTG GTC AGG GGA TAT GGC GCG TAT TGA gtctagctcgaatggcggtgttgaccccgacaagcggtcgaaacatggtcgc 2863 926 D v R G Y G А Y 937 I R L $2864 \ {\tt gtttgtcgtcaatctaatcagttacagtacatgcgtttgctatagcataaatgtgatttggcgtcgttttcagagaggatcagctgtttcgagaggcttgt \ 2963$ $\tt 3064 accaacacagaggtgttcaacattcacgattgtcctaagtgtgatctaagctaggttacgagttgtctgcggttatcaagtcatttgccacatgacttg \tt 3163$ Homologie zu 5,8s rRNA $3264 \ gaaacccagactgtgaaaggccgatagctatacttgttcgtaactgagtcATCTGCGGCCATAGAGACATGAAAATACCGGATTCCGTTCGATCTGCGCA \ 3363$ $\tt 3364 \ {\tt GTCAAGCATGTCGTCGCCTAGTCAGTACTGCGGTGGGGGGACCACGCGGGAATCCTAGGTGCTGCAgttetettttttttttttttttettettgaettettgaate \ {\tt 3463}$ $3464 \ \texttt{atcgacagattgttcggccagcttcttggttgttggtgagttccgcattgcttcggtttcatcccgttggaggcgctcacctttttcgcccaacgatgtc \ 3563$ 3564 gtctgctacgacgtcacgtggtccttcagacatctcaagtggtataggggcatcagcttgtgtggtcctttaagcgggtcgtcgttctttgatacgctcg 3663 3664 gtttggtggcagaaaaaaactcaacaagcgggatatcgtctccaaaaacagcattgctttacaagaagctacttagaccattggtctcaagcagtctcacat 3763

HindIII 3964 tctgagcgagtgagagatgcggcatcaacacaAAGCTT

4001

npi3

HindIII

-898	$\label{eq:accord} AAGCTTgcgtccacggtctgtgcaccacgcactcagagtgtgcacctgcgcaatctcgaatcacgaatgcttcaagtgtcgatctgaaccacaatcacgaacccttgccaccaacca$														-801											
-800	acco	cctct	tgco	cacaa	accaa	aagaq	gcct	ttgca	agcto	Jacad	gette	ggtco	ctcc	ggcad	tgca	aagt	acga	acca	atgat	gate	gctga	agaga	agagt	gtct	gtgc	-701
-700	ctgo	gtgg	gagaa	agego	gaaaq	gegge	catg	aggag	gatad	ctctq	gtcgo	tgtt	gggg	ggata	acttt	taga	ataco	cgtca	aacad	gcag	gtato	gacto	gaaga	agact	gtca	-601
-600	agag	ggcag	gcati	ttgt	tcct	tati	tcct	tttt	gctct	tget	tttt	ctcq	gttgt	gtto	Jacad	ggad	cate	gaati	ccagt	tace	gaged	ttag	gctga	agaa	agcgt	-501
-500	tgaa	aaato	gage	gctgo	ccct	tgtgi	tccta	aagct	tacag	gtaag	Jacgo	gctta	aggt	aaaa	acata	actco	gtgad	tgtg	gette	gaaca	accco	taad	ctcgt	gatt	gagt	-401
-400	gcca	aagto	gegto	cacad	cggcq	gegeg	gttg	ctgca	agcaa	aggad	cct	ggatt	ctco	atto	tcca	acato	gaatt	cat	gatto	gtga	attgt	gatt	ttc	gtgga	agca	-301
-300	tcad	cgcat	ggad	cacaç	geega	acga	ggage	ctaad	ctcad	gato	gtgad	ctcad	ctcgt	gact	ttga	actgo	tcaa	agago	cggca	igaga	acca	jaaaa	atcga	aggaa	aagg	-201
-200	caco	cttco	caaaa	actca	acago	ccaat	tcca	cactt	tgaca	agget	ccad	gcto	cacad	gtca	acttt	cgad	tgag	getto	caaco	gtcad	cttat	aata	aggo	cagat	catc	-101
-100	caco	catgo	ctco	catco	caagt	caco	ctca	ctgto	gato	cgcat	cgct	gtca	ageco	gcgto	cata	agaca	aagt	tget	gttt	ccct	tgego	cagea	agad	ctga	acaca	-1
1	ATG	ccc	ATG	TCG	GTG	CAG	AAC	CCA	CTC	GAA	CTG	CCA	CTG	ССТ	GTG	GTG	GTG	GAT	ACT	CTA	CTA	ССТ	ATG	CTA	TCG	75
1	м	Р	м	s	v	Q	N	Р	L	Е	L	Р	L	Р	v	v	v	D	т	L	L	Р	м	L	s	25
76	GAT	CGC	GAC	TTG	GCC	TCA	CTG	CGA	TGC	GTC	TCC	AAG	CAT	GCC	AAG	TTG	CTT	GTC	GAA	GAC	GAG	GTG	СТА	TGG	AAA	150
26	D	R	D	L	А	s	L	R	с	v	s	к	н	А	к	L	L	v	Е	D	Е	v	L	W	к	50
151	CGC	AAA	GTG	CTG	GCC	GAC	TTT	ACT	TTT	ccc	GCG	TAT	GCA	ACT	GCT	CGT	ATG	GGC	GGT	TGG	TAT	CGC	CTC	TAC	ACC	225
51	R	к	v	L	А	D	F	т	F	Р	А	Y	А	т	А	R	м	G	G	W	Y	R	L	Y	т	75
226	GGA	CTC	AGC	AAC	ССТ	GAC	ATC	TAT	GTC	TGG	GGT	CAG	GAT	AGC	ААТ	GGT	CGA	CTT	GGC	ATC	ACG	AGA	CAC	GAG	CGT	300
76	G	L	s	N	Р	D	I	Y	v	W	G	0	D	s	N	G	R	L	G	I	т	R	н	Е	R	100
301	TCT	CAA	CAG	ATG	CGC	GCC	CAT	CTC	ACA	AAT	ATC	~ AGC	GCA	GGT	ATC	CCT	TAC	CCG	ATC	AAG	CTC	ACC	TCG	AGA	GTG	375
101	S	0	0	М	R	A	н	L	т	N	I	S	A	G	I	Р	Y	Р	I	к	L	т	S	R	v	125
376	СТТ	CGC	GAC	TCG	GTG	САТ	CAG	AAG	GCC	AAG	AGC	AGC	CCG	CGG	GCG	CCG	TGG	TCG	AGA	тса	TCG	CCG	AAG	GTT	GGT	450
126	т.	R	D	s	v	н	0	ĸ	A	ĸ	s	s	P	R	A	P	W	s	R	s	s	P	ĸ	v	G	150
451	САТ	TCC	ATG	СТС	GAA	ССТ	⊊ CGA	CGG	GCC	AAG	TGT	GGG	-	GGG	GCA	CAA	 тga	АТС	- CGTZ	AG	р раас			י דידי די	GAT	525
151	н	S	м	т.	F	D	P	P	Δ	ĸ	C	G	т.	G	۵011 ۵	0	*	м	v v	c	r Inik	P 000	N		D	8
526	CCA	TAC	CCT	АТС	тса		CCC	CAA	АСТ	CCT	2	CAC			GCC	C AT	מממ	מממ	v TCT	GCC	GCC	አልጥ	CCG	ት አጥር	CCT	600
520	D	v	D	M	c	Ъ	C	0	c	C	т	u CAC	acc v	т	J GCC	D	v	v	c	acc a	N GCC	N	D	т	7	33
601			1	ACC	0	т тсл	CCC	v CC™	л ПСС	CCT	т Стс	н тсл	л тсл	-		ש יששישיי		л лтс	CTTC	700	CTTC	CCC	т тлс	т Слт	л ттс	679
34	F IIC	c	D	лсө т	D	c	D	D	ruc C	N SCI	W	c	*	CAAC		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GGA	м	W	c	010 W	C	v	U U	T	070
679	L CCA	GCA	CGT	1 CCC	т Стт	TCC	ACC		с тст	СУШ	v CCC	TCC	TCC	מממ	CTTC	CAA	GAC	TAC	CATC	ט זגראני	v AGTTCZ			11 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		760
0,5	C	л	D	D	т	c	c	c	c	u u	D	c	c	v	T	0	D	*	CAIC	moru	10101	10/1/1	Juner	1110.	ACCC	26
761	d Ameri			ית מממי	ц гассч			ССТ(5 רכיייסר			5 70 70 70	5 			Q CCCC	ם יאאמי	 PCTPC(າດຫດາ			\ <u>\</u>	PCC AC		COTTC	20
961	mmm																									960
061																									CACA	1060
1061	GULA		AICG.				AGCA0		AGCC	CAGAG					CDD	CAC		CCT		CTC	JACII	CAR	CNN		mmm	1141
1001	CAA	50190	JAACU	91190		SACIO	JGAI	M	c	u CAC	v	D	m	D	GAA F	GAG F	D	C	T	010 W	N	0	0	T	 E	10
1142	C 2 C	CNC	mmc	C 3 m	<u>сс</u> т	CAC	<u>с</u> лп	CCTT	сл. П	 	T CTTC	CAC	1	сл. П	<u>ссс</u>	CNC	D mcm	G	ссс П	v mmc	CUDA	Q 2 m	V mmc	700	r mcm	1016
1142	GAC	U	TIG	U	D	GAG	U	D	GAI	GGI	GIC	GAG	ACG m	U	GCG	CAG	rer	GGA	D	TIG	T	GAI	TIG	ACG m	ICI C	1210
1217		п ттт		п	к mmm	E CTTC		к поп		G	v NAC	E TCC			A CTTC	Q CCN	ъ сст	G	C D D						5	43
1217	CGC	 	CAC	GIG	111	- CIC	GAG		D	GCA	AAG	1GG	GAG	AGG	T	GCA	GCI	111	GAA	GAI	D	CAG	GGI	T	D	1291
44	R	F'	н	V	F	L	E	5	R	A	ĸ	W	E	R	L	A	A	F	E	D	P	Q	G	L	P	1266
1292	GGT	TTC	GAC	тст	GCG	TGG	CTG	AAA	GAT	GGG	CGA	GGA	GCC	CAA	GGA	AGC	GTG	GCG	GCA	-	CGC	ACA	TTT	CGG	CGC	1366
69	G	F	D	s	A	W	L	ĸ	D	G	R	G	A	Q	G	s	V	A	A	F	R	Т	F	R	R	93
1367	AAT	TTC	GGA	CAT	TTG	TCG	TTT	TCC	ACA	CTG	TCA	AGC	CAG	CCA	AAC	GGC	CGC	AAT	GGC	GGG	ATG	GGC	AGC	CAG	CAG	1441
94	N	F	G	H	L	S	F	S	Т	Г	S .	S	Q	Р	N	G	R	N	G	G .	м	G	S.	Q	Q	118
1442	TGC	TGG	AAA	CCG	ACC	AGG	ACG	CAC	AGA	cgct	tgto	gttgo	tgg	jatco	ytcca	atgto	ggc	gtcto	cccga	agcta	aatco	ccaca	acto	gcago	gctcg	1532
119	C	Ŵ	ĸ	P	T	R	Т	H	Ŕ																	127
						NCOI																				
1533	cggo	cgtaa	atcaa	aagto	gaCCI	ATGG																				1555

Mutante #1486

uat1

-3116	cgatgcatgcattct	-3101
-3100	ggactttcgttctgccatcacctccctgcttgacatgtctctacattgtcaggtatcactgagaggatgacgcccgaaggtcaaaaggcgtgattttgat	-3001
-3000	${\tt gttgttgccatttagcagtcacgagtatctaggagtttgttggagtttcatcagtctgccgtcggtacgcacgtatcgtacggcagatgaagacggatag$	-2901
-2900	${\tt tcgaaatcagtcggccatctttagacgctgcttgtgcagagagcgttctgcattcacgattcgtttgcttctgcttgatccctggcgccgctcactttgt$	-2801
-2800	${\tt tcgcatcaatagaggaaaagccctgacgtacaacgccgcattttcacaacaccctagccgagcagccaaagataagaaaggcgtgctgtgattggctgcg$	-2701

REMI-Insertion

												REM	T-TU	sert	LOU											
-2700	ggeo	cacto	gtta	tcace	ggaaq	gegga	acaat	ttc	gcgtt	gaat	tttG	GATCO	Cageo	cagca	aagga	agago	geget	tggco	cagat	gcag	gtcaa	acaca	atgaa	acago	gcacc	-2601
								EC	ORI																	0501
-2600	gago	acca	acaa	gttt	gegad	cgtga	atge	;AA'I".	LCgcg	gtcga	acati		gataa	agcai	agga	aact	ageo	ctcci	.ctca	aatt	gaco	getge	getet	tgao.	ctcgc	-2501
-2500	gete	ggtga	agge	ctgta	atteg	JCTTO	cacgo	etega	atteg	Jtaaa	atcto	gtgo	cgtto	cccq	jeceo	cegeo	JECEI		igeto	Jtcag	jeega	iaaac	ageo	caact	Lactg	-2401
-2400	tato	tato	ctct	gttga	accca	actco	gaati	tatta	aatat	taad	cttai	tggo	catg	tatg	cgci	cgat	ggt	gatag	gtcad	caagt	ctga	agca	actac	ctgto	ccaac	-2301
																					GA	-Din	ukle	otid	seque	nz
-2300	atgt	atci	tgate	gageo	cggai	ttcco	cacao	ttga	aacaa	agaad	cgago	yaaaa	aaag	tette	ggeto	cttto	getti	tgaco	caact	cggo	CaGAC	SAGAG	SAGAC	GAGAG	GAGAG	-2201
-2200	AGAG	SAGAG	GAago	gaaa	tgaco	gatto	cgcga	aatco	gtgco	etget	ttgga	atgag	gataq	geeto	gegti	tgtga	attgo	ccaa	jacat	tgto	gatat	tggt	tage	caato	cacac	-2101
-2100	gcct	atci	tete	tggat	tgcto	catco	cgcad	gato	cagao	gagto	cgcad	cctga	agaat	ttgca	atgag	gacga	aaaga	aacca	igaaa	acca	gggct	tggc	cagao	cggcg	ggata	-2001
-2000	agta	acggo	catto	gttci	tecco	caget	ttato	gcaad	cgctt	ctat	ttti	tgttq	ggtto	gtcgi	ctta	agggt	gtto	ggcat	tccq	jaggo	etgeo	ggcaa	accgo	cctco	ccagt	-1901
		E	3glII																							
-1900	cacc	aAG	АТСТа	accco	gacgo	gtcti	tggct	agat	tgtag	gatgo	catco	gtgaa	aagca	aacgo	gttga	agtga	acaga	acaaq	gttgt	tget	gtca	acgo	tgtt	cct	geege	-1801
-1800	gttt	gcgg	gtcto	gette	gctgo	ctctq	gtaga	aggeo	caaaq	gcaad	cctaa	actto	ggtaa	aaaca	ataat	cgto	caaco	gaggt	aggt	ttaa	atttt	aggo	gcago	caaco	cctcg	-1701
-1700	tgag	gtgci	tgc	ttgg	tcgaq	gacaa	agaca	atcca	attta	ageet	tttco	cctto	gtcaa	agcta	aaago	cctco	ccgaa	acgao	gtaga	attgo	cagao	gcgta	agttt	cgaat	tcaa	-1601
-1600	tcgg	gttc	tete	tegeo	ctcg	tgtga	atgta	aaaco	cagto	gacgo	cagto	cgcgt	tgggo	cggao	gaaga	agaco	ggcad	caaga	atgat	gaga	aaago	gato	cacaç	gaato	cacgc	-1501
-1500	atto	cagea	atte	taaaa	agaaa	aaato	ctgga	agaco	gagto	cgcct	tctt	ttcg	ggtte	gtcaa	attto	gtcta	acaat	tttg	ggcat	tcca	acgo	gegtt	ctgt	cgga	agaat	-1401
-1400	cgto	gaato	ccgaa	agtca	aggao	ggaco	cgtgo	gctga	atgto	gcato	gcati	cago	gatto	cagga	attca	aggat	tcaq	ggati	caaq	gatto	cagga	attta	aggat	tgag	ggatt	-1301
-1300	gago	gatto	gagga	attca	aggat	taad	caatt	tcg	tctgt	gagt	ttggi	tggta	agtco	gtgaq	gtggi	rgaat	tgto	gagti	gtgt	tttq	gttct	gcgt	gttt	tgco	gtcga	-1201
-1200	catt	ggca	atga	ttage	cttga	aagco	ggaat	cgga	aacgt	ggaa	aaggt	tggat	tctgo	cctci	geet	ccgco	cttgo	caaco	gaco	gatto	ggcco	gtete	gtcgt	cccgo	catcg	-1101
-1100	tgtatgttgcggtgatgaaacgctttcaactgggtgggttcactttcagacggttcgactcgacatgagcctcgcaagacgcacgacggggaaagcagaac -10 the second state and the se															-1001										
-1000	atotoatogacaacaacaacatgtatgagacaacaacacgtaaacgaccacagogtotoaccagaaaattotggotgcatcgcotcgcttgtgcca -9															-901										
-900	taacgcgttctgtaatctttcatctatcccgtcctcattcgtcctcgcaatctgcatcgaatcttcgcgcgagccactcaaggccctcctccccacag -8															-801										
-800	attacacttctccgctccttggccacacagggtcatcattgtcgacccatcagatcgagtcagttgtgtgtg															-701										
-700	cagtacttcagctttgcgtggagcagagacacgtaccttgaaccaatcacatatgccccaacttgatcttcccatcgccttataggtcgagcaccctcct -															-601										
-600	cgttcatcattcattgtattctgtctcgccttcccccttcccccttcctccttcttct															-501										
-500	aagaccettlegteegteectteeceettetetetetetetetetetete															-401										
-400	tctg	gacto	gagt	tcgc	geeto	cgcct	tcgco	ctcgo	cctt	ggtco	gcagt	ttgi	tctad	caaaa	atggi	ccaad	catca	actta	acggt	gtgo	ettea	agca	accco	gatgo	gctcc	-301
-300	tcgg	gctad	cctco	gage	gccat	tegeo	caaco	ggaad	ctgad	atta	atcg	ttc	ttac	ggcco	caaat	ggc	gagag	gcgto	gctt	ccta	atteg	Jacad	ggtga	acatt	tcct	-201
-200	gggt	ctca	acat	gtaco	gcto	ctcgt	tatg	gctca	atgat	tccd	cggto	ctcg	gttad	cctct	acto	ctggt	ctto	gctco	gcaga	aaga	acgo	gett	caco	ctcct	tttg	-101
-100	ctca	actt	tggco	cgcto	ctcgo	ccgti	tgtct	ttt	tgggg	gctad	ctcgo	ctcad	cctt	ttcto	caaad	cctca	aggeo	gctti	ccto	cggca	atct	gaga	caact	ttg	gctac	-1
1	ATG	GGT	GTT	CTC	GAA	AAT	ccc	GTG	CCT	CAG	GCA	TAC	AAC	AAA	GTG	ccc	GAA	ATT	GTA	TAC	GCC	ATC	TAC	CAG	TGC	75
1	М	G	v	L	Е	N	Р	v	Р	Q	А	Y	N	к	v	Р	Е	I	v	Y	А	I	Y	Q	С	25
76	ATG	TTC	GCC	AAC	CTT	GTC	ccc	GCC	ATC	GCC	ATC	GGT	GCC	GCT	TGT	GAG	CGT	GGC	CGT	GTC	TGG	CCT	TTC	CTC	GTC	150
26	М	F	А	N	L	v	Р	А	I	А	I	G	А	А	С	Е	R	G	R	v	W	Р	F	L	v	50
151	TTT	ACC	TTT	GTC	TGG	ACC	ACG	CTC	GTC	TAC	GAT	GTG	ATC	GCC	TGC	TGG	GTC	TGG	AAC	CCC	ACC	GGT	TGG	GCG	TTC	225
51	F	т	F	v	W	т	т	L	v	Y	D	v	I	А	С	W	v	W	N	Р	т	G	W	А	F	75
226	AAG	TGG	GGT	GTT	CTT	GAC	TAC	GCC	GGT	GGT	GGA	ccc	GTC	GAG	ATT	AAC	TCG	GGT	ATC	ACT	GGT	CTC	GTC	ATC	TCT	300
76	к	W	G	v	L	D	Y	А	G	G	G	Р	v	Е	I	N	s	G	I	т	G	L	v	I	s	100
301	TAC	TAT	CTT	GGC	ССТ	CGT	ACC	GGT	TAT	GGC	ACC	GAG	CGT	CTA	CTC	TTC	AAG	CCA	CAC	AAC	GTT	TCC	TAC	ATC	TTC	375
101	Y	Y	L	G	Р	R	т	G	Y	G	т	Е	R	L	L	F	к	Р	н	N	v	s	Y	I	F	125
376	CTG	GGC	ACC	GCC	TTC	CTC	TGG	TTC	GGC	TGG	ATC	GGC	TTC	AAC	GGT	GGT	TCG	GTC	TTT	GCT	GCC	AAC	CTC	CGT	GCG	450
126	L	G	т	A	F	L	W	F	G	W	I	G	F	N	G	G	s	v	F	A	A	N	L	R	A	150
451	GCT	ATG	GCC	ATC	AGC	ACC	ACC	AAC	CTC	GCC	GCT	TCG	TCC	GCC	GGT	CTC	ACC	TGG	ATG	TTC	CTC	GAC	TGG	CGT	CTC	525
151	A	М	A	I	s	т	т	N	L	A	А	s	s	А	G	L	т	W	М	F	L	D	W	R	L	175
526	GAA	CGC	AAG	TGG	TCC	GTC	GTT	GGC	TTC	TGC	ACG	GGT	GCC	ATT	GCT	GGT	CTC	GTC	GCC	ATC	ACT	CCC	GCT	GCT	GGC	600
176	E	R	ĸ	W	s	v	v	G	F	C	т	G	Δ	т	Δ	G	т.	v	Δ	т	Ψ	P	Δ	Δ	G	200

А А 601 TTT GTC GGC ATG CCC GCT GTT GTC GTC GTC GGA GTC GTT TCC TCG GCC GTT TCC AAC TTT GCC ACC GTT CTC AAG 675 201 F V G M P A A L L V G V V S S A V S N F A T V L K 225 676 GGC CCC ATG CGC GTT GAC GAT GTC ATG GAC ATT TTC TCG GTC CAC GCT CTC GCC GGT ATT GTT GGC ACC CTT CTC 750 226 G P M R V D D V M D I F S V H A L A G I V G T L L 250 751 ACC GGT ATC TTC GCC CAG GCT TCC GTA GCC AAC AAC GAC GGC AAC ACG GTC ATC GCC GGT GGC TGG CTC GAC TCA 825 251 T G I F A Q A S V A N N D G N T V I A G G W L D S 275 826 AAC TGG ATC CAG CTC GCC TAT CAA CTC GCC TAC TGT GTC GCT GTC ACC TGT TGG TGT GGT GGC GTC ACG TTT GCT 900 276 N W I Q L A Y Q L A Y C V A V T C W C G G V T F A 300 901 ATC ATG TT GTT ATT GAC CAC ATT CCT TAC ATC GGT CCC TTC CGT TCG AGC GAG ATG GGT GAA GTG GGT GGT ATG 975 301 I M F V I D H I P Y I G P F R S S E M G E V V G M 325

976 GAT GAG GAC CAG TGT GGC GAG TGG GCT TAC GAC TAC GCC TTT ATC AAC CGT GAT CTT GAG GGC AAC TAC AAG CCC 1050 Q C G E W A Y D Y A F I N R D L E G N Y K P 326 D Е D 350 1051 GAC CAC GGT CAG ACG CTC GAC ATC AAC GAA AAG ATG CCC AAC GTT CAT CAA ACC GAC TCG CTG CGC TCC GAA ACG 1125 351 D Н G 0 т L D I Ν Е K М Р Ν v н 0 т D s L R s т 375 1126 CAC GCC GAC TCG AGC CAA GAC AAC TCC AAC TCG CAG CTC GCC GCT GCC GAA CAC CAG TCT CCA TCC ACC GCT GAA 1200 376 H А D S S 0 D N S NSOLA А А EHOS Ρ s т А Е 400 1201 CCA GCC GTG GAA ATG AAG CAG GCT TAA aagttgcaaagacgtcgtagagtgcaagggttcgaatgccaacacgtcgaccgtttccaacg 1291 409 401 P AVEMKQA* $1292 \ \texttt{ctttcttttgatgtatataccgttttcattcgttcctcgttccatggaatcaactctaatctgtacaattttgacctctgctaattggcgaccactcg \ 1391 \ \texttt{ctttctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatgtatataccgttttcattggcgaccactcg \ 1391 \ \texttt{ctttgatgtatgtatgtggcgaccactcg \ 1391 \ \texttt{ctttgatgtatgtatgtggcgaccactcg \ 1391 \ \texttt{ctttgatgtatgtgggaccactcg \ 1391 \ \texttt{ctttgatgtatgtggggaccactcg \ 1391 \ \texttt{ctttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtggaccactcg \ 1391 \ \texttt{cttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtgggaccactcg \ 1391 \ \texttt{cttgatgtggaccactcg \ 1391 \ \texttt{cttgatgggaccactcg \ 1391 \ \texttt{cttgatggaccactcg \ 1391 \ \texttt{cttgatggaccactggac$ 1492 tgaccaacaatccgtcaatctcgccaacttcggattgacacaagacatgagatgctgaaccgtgaatg 1559

npi5

GCT TCT TGG ACC ATC TCG GAA TGG GCC GAA TAC TTT AAC ACG CCC AAG GAA AAG AAG AAA AAG ACG CTC AAC 75 Е W А Е YFNTP K E К К ккт Ν 25 А s W т I s L 76 GTC ATC TCG CTC GAG GTG ACA GGT ACG CCA ATG CAA GCC TAC GTC GAA GCG CCT CAG CTA GTT CGA GAT CTA GAC 150 26 V I Е v т G т Р М 0 А Y v Е А Р 0 L v R D D 50 s L L 151 TGG GTG ACG CGC GAC TGG CCA GCG GAA CGC CGC GAC GCT TCG TGT TCT GAA AAT AGC TGG CCC AAG GTG CAC CGC 225 A E R R D A S C S E N 51 W V Т R D W P s W P К v Q R 75 226 TAT GTG CTT ATG GGT GTA GAA GGC GCC TAT TCG GAT TGG CAC ATT GAT TTC GCC GGA AGC AGC GTC TAT TAC CAC 300 76 Y V L м G v E G A Y S D W H I DF А G S S v Y Y н 100 301 GTC ATC TGG GGC CAA AAA ACG TTT CTG TTT GCT CCA CCC ACT GCG CGC AAT CTG GCG GCC TAC AAA GCA TGG TGC 375 101 V ΙW G O K T F L F A P P T A R N L ААҮКА W С 125 376 AGC AGC ACA CGC CAG GAC TTT GAC TGG CTC GGC GAT CAT CTT CAC AGC CTC ACG CGC GTC GAC ATA GGA CCC GGT 450 F s 126 S ѕ т R O D D WLGDHL Н L т R v D I G Р G 150 451 GAA ACC ATG CTC ATT CCA TCT GGC TGG TTG CAC TGC GTC TAT ACG CCC AAG AAC ACG CTC GTG GTA GGC GGC AAT 525 Р s G W L H СУҮТР К N т L v v G 175 151 E т М L I G Ν 526 TTT TTG ACC GAC TGG AAC GTA GCT ACG CAG TGG AAA CTC GTC GAG ATC GAA GAG GCT ACC AAA GTA CCC CGG AAG 600 176 F т D W N V A TQWKLVEI Е ЕАТ K V P R K 200 L 601 TTC CGC TTC CCC CAT CTC AAG CGT CTC AGC TGG GTT CGT GGC CAA AGG CTG GAA TGA tcgactcgagccgctggcaagaat 681 201 F R F P H L K R L S W V R G Q R L 219 Е 682 tcgagacgctaac 694

Mutante #219

p219-15

abp1

CGG TGG AGC TGG TAC GGG TAT ACT GCC GCC GCA AAC GCG CCA CCT GCG CCT GTT GCT CCC CCC GCG CCC CCG 75 R W S W Y G Y T A A A N A P P A P V A P P A P P 25 76 GCA CTT CAT ACA CTT CCT GCA GCT GCA GCT GTA TCC GCA CCC GAG GAA GCC GAG GAA GAG GCG CCA GCT GCA CCG 150 ΑΑΑΑΥ SAP EEA Е Е EAP 26 A LH т L P А Α Р 50 151 CCC GCT CCT TCT CCC CCT GCT CAT ACA GAG GCG GAT GTG GGA GGA GCT GCA GAG CAA CTA GAG TCG ACG CAT 225 51 P A P Р S Р Р АНТ EADVGGAAEOL Е 75 S т н 226 CTC TCT GCT GTC AGT GCT GGC AGC AAC AAG GGT CTA CGC GGT CGC GTT GCG TGG GCG TAC GAA GCA GCT GAA GAC 300 76 L S А V S A G S N K G L R G R V A W A Y E A A Е D 100 301 AAC GAA TTG ACG CTT GTC GAG GGA GCG ATC ATC TCA CAC ATT GAA CAG ATC GAC GAA GGT TGG TCG GGT GTA 375 101 N E L т L V E G A I I S H I E O I D E G W W S G v 125 376 GAT GAG CAC GGT CAA GAG GGT CTG TTC CCT GCC TCG TAC GTG GAG CTG ATT GAA GGC GAG GCT GAG CCG GAA GAA 450 126 D E H G O E G L F P A S Y V E L I E G E A E P E E 150 451 GAG GCC GCA CCG CCA GCA CCG CCA GCC CCA GCC CCA CCT GCT GCC GCT AGC GAG ACA GAA GAG CAA GAC 525

151	Е	А	А	Ρ	Ρ	А	Ρ	Ρ	А	Р	Ρ	А	Р	Ρ	А	А	А	А	s	Е	т	Е	Е	Q	D	175
526	GAC	CAA	GGC	ATT	CCA	ccc	CCT	CCC	CCA	CCG	CCG	CCT	GTT	CCG	CCT	GTA	GCA	CCT	GCA	GCA	CCT	GCA	GCA	CCT	GCT	600
176	D	Q	G	I	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	v	Ρ	Ρ	v	А	Ρ	А	А	Ρ	А	А	Р	A	200
601	CTG	CAA	GAG	GAA	GCG	ccc	GCG	CCT	ССТ	CCG	CCG	CCT	CCT	GCA	CGC	GTT	GCT	GCT	GCC	GTA	GAG	GAC	CGC	GGT	CTG	675
201	L	Q	Е	Е	А	Р	А	Р	Ρ	Р	Ρ	Р	Р	А	R	v	А	А	А	v	Е	D	R	G	L	225
676	GTC	TGC	ACA	GCT	ATG	TAC	GAC	TTT	GAC	GCG	TCG	GAA	GAC	AAC	GAG	CTT	ACC	TTC	GCC	GAG	GGT	GAC	ACG	ATC	ATC	750
226	v	С	т	А	М	Y	D	F	D	А	S	Е	D	N	Е	L	т	F	А	Е	G	D	т	I	I	250
751	CAC	GTC	GAC	GAC	CAG	ATC	AGC	GAT	GAT	TGG	TGG	AGC	GGT	ACA	AAC	GAG	CGT	ACG	GGC	GCT	CAG	GGG	TTG	TTC	CCC	825
251	н	V	D	D	Q	I	S	D	D	W	W	S	G	т	N	Е	R	т	G	А	Q	G	L	F	Р	275
826	GCC	AAC	TAT	GTT	GAG	CGA	GCT	TAG	gtgo	ggtt	agca	aact	cageo	catca	acaaq	gtcad	cgaat	tgcti	gata	agaco	gagtt	gaaa	agaat	gttt	tgtg	917
276	A	N	Y	v	Е	R	A	*																		283
918	8 atgtctgtatgggggggggggggtatgtgtgtgtgtatcttagatcccgatctgatgtggggcgcaaatcgggggctgtcggcgacggcgaatggaaggatgcaaat															1017										
1018	aagtgccatgaatgttggagagccgcctgctggcttagccgagttttggacagaca															1117										
1118	cgctggtgcaagctttttgagatggtctacaggtgcacggaagcgcagtgtgtgt															1217										
1218	cgaa	iggco	gaago	ggtca	acgao	gaget	ctag	gcgat	cata	acca	atgaa	atgga	atcat	tgc	gcgat	gtgg	gggc	gcagt	atgo	cggta	atget	ctg	gageo	cacac	ttgt	1317
1318	gago	Itage	gatto	gacgo	cagaa	aacgo	gagag	ggaga	agtgo	caago	caaaa	agtga	acgao	gtgad	catto	ctgto	gatgo	ctgga	ageco	gagat	gtag	gtcad	cgagt	gggg	Itttc	1417
													Bar	nHI	REM	[-Int	tegra	atior	1)							
1418	caac	cgco	geget	tccc	geego	caaco	cgca	ggtat	cgad	cgtct	gaco	cttgg	gtGG/	ATCC	ttt	gctg	gaagt	tcaad	gtat	ccad	ccct	gtt	gcgad	ccgcc	gacg	1517
1518	aact	ccca	atget	tccca	actco	gacct	tggo	ccaad	aato	gcgtt	gcto	gtag	gagaa	ataaq	gctad	cacto	gtaaq	gctca	agtca	aaggo	ctgta	accco	ggcaa	atcaa	igatt	1617
1618	cgto	gaga	acaaq	gcate	gcaad	cadad	gaaat	gggg	ggt	gtttt	cggo	ctggo	ctgca	agcga	atato	gttco	ctgga	acato	gctca	aattt	gcct	ttat	gcgt	gget	ggga	1717
1718	tgcg	jacto	ctgca	agaco	gctco	caagt	cggt	caad	aaad	ccaca	acgco	caaat	cacq	gaati	gggt	tcc	gtati	tcgat	ctco	ccgct	ttct	ttco	ttto	ccact	caca	1817
1818	gaco	ytgaa	agcco	cccgo	cgact	tgaat	ctag	ggact	aaat	agad	gato	ccaco	catco	gtgaa	aagat	ttga	acaaq	gttag	gagag	gttca	acta	aagat	taad	cttga	ictgt	1917
1918	taco	ytgta	actt	tcga	geega	accco	gtgao	ctgtt	cgaq	gttgo	gtgi	tccaq	gctgt	tcca	acaca	acgao	cggat	taggo	ggcca	atcca	acggo	ccaaa	aaaaa	aaaaa	laaaa	2017
2018	aaco	cag	ttcaa	attca	aaaaa	atgaa	aagaa	agcaa	igtta	agaaa	agto	cacaç	gtcad	gaat	gtgo	ctgct	tcaca	agcto	cagaa	aaggo	gtgaa	aago	ggggg	caaca	ıggga	2117
2118	cgaç	jacti	tacaa	atcad	cctgo	cgtgi	tage	cgtga	igact	gtto	gtgat	tgtti	taad	ttaa	actta	aggti	tgagt	tage	caggt	cgca	agtco	gagat	ttga	acto	tgac	2217
2218	ccgt	ctt	ttcg	gatto	ctgco	gcato	cggct	gege	tgco	gggtt	tag	tgtgi	tatad	catga	acg											2275

ldp1

-1537 cgtggctgttgcggagctgtttccctgtcgtgcgtcg -1501 -1300 tgctgtgcgctgtgctaatcacgaatgctctgcgttgacgttgcgcttgctactcgctgcacttgccgcccacccgattcctctcgatgtcactgtaccc -1201 -1200 ctttgtcatcaccgttttcttcgtctacactgcatcctccaccgtacctgccatcatcctcctcttctggccgtctggcttcgtacgatcgaccgctac -1101 -1000 cgtacacatacgcgcgcgcgcgctgctgctcgctcccttgtctcgcgcaaaacaacgacacacgtatagccccattcctctacactcgcccaccttgccca -901 -700 agcagaatcggtcgtcatcgagcctatctctagccacgcccgtctcgcctttctgtttggtggcaagcaggcgtcctttatgtgcacaaacaccccgcgt -601 $-600 \ acagcacttccctttccctgtcgtcctcttgcggcatctcctagacattgatcatccacacattcaacgcctctcgacgacacctcaccc \ -501$ -400 ccggtgcgtctacgtcagcagcagcagcagcagcagcagcagcagcacattgcatcatccacagcgctccaacacagcacacatcggacggcagcagctc -301 -300 gtactattctaacgtcgccgaagatctcaagcgtgccaccgcagatatcaacctcgctggctcctcacagtcagccgctgcagcttccgggctctcaacag -201 -100 gtccatccacctccttagccactagcattgcgacagcacctcttcgcgcaatcgtgcagacatggacaggataaagagtcgcgctgtagatccggg -1 1 ATG GAG CTG GGA AAA GGA AAA AGA AAA ATA CGA AGT ATC CAG CTC GAT GCG CTC CAA CAG CGC CGA GTC TGC TCC 75 E L G K G K R K I R S I Q L D A L Q Q R R V C S 1 M 25 26 Q P A F P C L L S S S T P S R H L Q S T K N Q Q W 50 151 CCC AGA TCT CGC GCC CTC CAG CGT CTC GGG CGT CCA TTC CAA CTT TGC CTC GCC TCA GAA CCT CCA AGC TCC TTT 225 51 P R S R A L Q R L G R P F Q L C L A S E P P S S F 75 226 CAA CCC TAT TTC TGG CAA CGC CGC CGT CGA AGC GTC CAG CAC CGA ATT CAG TCT CTT CCA ACA CAG ATG CAA ATG 300 $76 \ Q \ P \ Y \ F \ W \ Q \ R \ R \ R \ S \ V \ Q \ H \ R \ I \ Q \ S \ L \ P \ T \ Q \ M \ Q \ M$ 100 301 GTT CGG GTC AAC ACC ATC TGG TCT TCC GCT CCT GCG CCG GAC CAG AGA TCA GCT CAA ACA TCG TCA TCT TCC 375 101 V R V N T I W S S A P A P D Q Q R S A Q T S S S S 125 376 GCC ACT TCG CCG AGA CGG CGC GAT CAG ACC TGT CAA GCA TGC GGC AAG ATC ATG ACT GGT CAG TTT GTC CGA GCG 450 126 A T S P R R R D Q T C Q A C G K I M T G Q F V R A 150

451 CTC GGC AGC GTC TAC CAT CTC GAC TGC TTC CGA TGC AAC GAC TGC GAC AAA GTC GTC GCC GCC AAG TTT TTC CCA 525 151 L G S V Y H L D C F R C N D C D K V V A A K F F P 175 526 GCT ACC GAC GAC ATG GTC GAC TCC TCG GGC ACA GGC CGT CTC TTT CCT CTC TGC GAG ACC GAC TAC TTT CGA CGT 600 176 A D D М v D S s G т G R L F Р L С Е т D Y F R R 200 601 CTC GAC CTC ATC TGT GCA AAG TGC AGC GGT GCG CTA AGA GGC AGC TAC ATC ACG GCG CTT GGC AAG AAG TTT CAC 675 201 L D L I С A K C S G A L R G S Y I Т A L G Κ к F Н 225 676 GTC GAG CAT TTC ACC TGC TCG GTC TGC CCA ACC GTC TTT GGT CCT CAG GAT AGC TAC TAC GAG CAT GAC GGC AGT 750 226 V E H F T C S V C P T V F G P O D S Y Y E H D s 250 G 751 GTC TTT TGC CAC TTT CAT TAC AGC ACC CGC TTC GCC ATC AAG TGC ACA GGC TGC AAA ACG GCC ATC CTC AAG CAG 825 251 V FC НF нузтверткствс к т А т т. К 0 275 826 TTT GTC GAG ATC AAT CGC AAC AAC ACA GAC GAA CAT TGG CAT CCC GAG TGC TAC ATG ATC CAC AAG TTC TGG AAC 900 276 F v EINRNNTDEHWHPECY М Т н KF W Ν 300 901 ATC AAG TTG TGT CCC ACC GGA TCC ACT CCC AAA GAC GGC GCC GCA GCC GTG TCC GAA GTG ACT GCT ACC GAC AAC 975 v 301 I C P T G S T P K D G A A A S E v т т D N 325 K L А 976 GGA ATC GAC AGC CCC GCG CTG CAG CAC TCA GCC AGT CAA GGA GAC GCC GTC GAG TCG TCG CCC GGT CAA TCC GCT 1050 D S Р A L ОН SASOGDAVE S S Р G 350 326 G I 0 S Α 1051 CCT TCG CGC ACA GAG CCA TCT CCC GAC GCT ACC GAG ATC GAG GCC ACC GAG ACA CCT TCC AGT CTC AAG CAC AAG 1125 351 P S R T E P S P D A T E I E A T E T P S S L Κ н Κ 375 1126 CAG AAA CAG ATG GAG GAG CGC GTC TAC CGC ATC TGG ACC GTA CTT TCT GCC TTT GAA GAG AGC TCC GCA GCG TGC 1200 376 Q K Q M E E R V Y R I W T V L S A F E E S S A A C 400 1201 ATC TCT GAA ATG CTC CGC CAC GTC AGC AGC GGC CGC TAC CTC GGC GGT GTC AGG ATG GCT GAG AAG TTC ATC CTA 1275 401 T S E M T, R H V S S G R Y T, G G V R M A E K F T T, 425 1276 CAT GTC GAG ATT CTT TTC TCT GCC ATC GAC GAC TTG GAG GCC AAC TTT CGC AAG GAA GAT GCC AAA GGC GTC TCG 1350 426 H V E I L F S A I D D L E A N F R K E D A K G V S 450 1351 CAC ATT CGT GAA GCC AGA ATG TTA TGC AAG AAG ATC GTC AAA TTC TTT TCC TTG CTT TCG CAC ACG CAG GAA ACA 1425 451 H I R E A R M L C K K I V K F F S L L S H T O E T 475 1426 GGT GCA AGG AGG ATG GGC ATC ACT CAG GAA CTC CTC TCG CTC GTT ACG GGT CTG GCA CAC TAT CTC AAG ATC CTC 1500 476 G A R R M G I T O E L L S L V T G L A H Y L K I L 500 1501 ATC CGT ATC GCC TTG ACG GGC GCG CTC AAG TTG GAC CGC GAG TTC AAC AAC GAA AGC GCT CTC CAT TGG TTC CTG 1575 501 I R I A L T G A L K L D R E F N N E S A L H W F L 525 1576 AGC CAG CTC GCC TTT TCC GCC AAG CTG GGC AGC ATC ACT GCC GAC GAC AAG CAG GGC ACG CAG CAG CCC AAC ACT 1650 526 S Q L A F S A K L G S I T A D D K Q G T Q Q P N т 550 1651 AAT ACC GTC GGC CCA GAC GGC AAA TGG TAT GGC TAC CGC TCC CTG CCC CGA TCC ACC AGC TCG GGC TCG AGC GAA 1725 551 N T V G P D G K W Y G Y R S L P R S T S S G S S E 575 1726 AAC GGC GAA GCA GCA ACC GAT CTT TGC GTT GCA TGT GGA TCC ACC GTT GAA GAA GAG TGC TTG CGT ATG GGC GTC 1800 576 N G E A A T D L C V A C G S T V E E E C L RMGV 600 1801 AAT CTG CGA TGG CAC TCC AAC TGC CTC AAG TGC TCG ACG TGT CAG CGA CCT GCT CTG CGT GAT GGA GCG TCG ACG 1875 601 N L R W н S N С L K С S тсо R Р А L R D G А S т 625 1876 CGC AAG CAA CCT GAC CCT GTA CCT GGT GCA CCG GAG CCA TTA CCA GCT TCG CAG TAC GGT CTC GAG TCC AAG CGC 1950 626 R Р D Р v Ρ G Р Е Р L Р А S Y G Е Κ 0 А 0 L S Κ R 650 1951 AGA CCG TCC GAG GGT AGC GCT GGT CTC CAG AGC GGT CCG CGC TCG TTG TCT TCC AGC TCG TGG ACG TAT GCC TGC 2025 651 R Ρ s Е G S А G L 0 S G Ρ R S L S S s s W т Y А С 675 2026 TTC TGC CCC CAG TGT TCT GGC GGC TTA CAG CTC CGG ACA GGC TTT GAG TCG GTC ACA AGG CTG GAA CAA TAT GCT 2100 676 F СР Q C S GGLQLRTGF E S V т R L Е Q Y А 700 2101 TTC CTC TTA CGT GTT GCG CTC AAC CGC CTA TTT GCA TTG CTG CGC AAG CGC GGC GTT GTT CCG CCT TCG CCG CCA 2175 701 F L L R V A L N R L F A L L R K R G V V P P S Р Р 725 2176 GTT TCA GCG ACG CGT CAG GTG GGA GGA ACT GAC ACT TCC ACG CCG GGT GCT GCA TCG CCA GCT GAT GCC AAC AAA 2250 726 V S A T R O V G G T D T S T P G A A S P A D А Ν K 750 2251 CAG GTT TCA ATG CAC GAG GCG TAC CGC AAC TCG CAA GAC ATC AAG CGA ATG AAG TCG GTG AAT CTA AAT CGC AAG 2325 751 0 V ΕA Y R N S ODIK R М K s v Ν т. N к 775 S м Н R 2326 TTG TCG ACC AAG GCA AAG GTG CCC CGC ATC TCT ACG GTG GTT GGC AGT CCG TCA GGA CGG CAA ACG CAA ACG TCT 2400 776 L s т K А K v Р R I S т v v G S Р s G R 0 т 0 т S 800 2401 GAT ATG CAA AAA CAC TCT CCC TCC GAC ATT GGC CTG CAA ACC GAC AGA CGT TCA CCT CGT CAA GCC AGC CCT 2475 801 D K н s Р s D I G L 0 т D s R R s Р R 0 s Ρ 825 М 0 А 2476 GGC TCC TCG CCG AGG GAA CCT AGT TCG CCC TTC AAG CGT GAA GTC GGT TCG TCT CCA GAA ACC TCG CCG TCG AGT 2550 826 G S S Р R E P S S P F K R E V G S s Р Е т S P s s 850 2551 CGG GCA CGA CAA GCA CAG CCG CCG CCA GGC TAC CAG CAG CAG CAG CAG CAA CAG CAA CAG CCG TAC AAA CAG CAG 2625 851 R A R Q A Q P P Q G Y Q Q Q Q Q Q Q P Y K Q Q 875

2626 CAG GTG TTC CAG CCG GTC CAG CAA CAG CAG CAT CTT CCG TTT GCA TTG CCT CCC CAG CAG CAG CCG CCT CCT CAG 2700 876 Q V F Q P v Q Q Q Q H L P F A L P P Q Q Q P P Q 900 2701 TTT GGC AGC GGC ACG TCC GGA CGT TCT GGA TCG CCC TCA AAC CTG GAG CCT GGC TCG ATT GTG CCG ATC CGA CCT 2775 901 F G s G т s G R s G s Ρ s Ν L Е Р G s I v Р I R Р 925 2776 GCG TTT GCA CGC CAC AAT ACC GAC GTC AAG ATT CGC GAA GAC GGG CCT ATG CGA CAG CCT TCC GGC GAT GAA ATC 2850 926 A F А R Н Ν т D v K I R Е D G Р М R 0 Ρ s G D Е Ι 950 2851 CAG CGC GAG ACA AGG AGT GAG GAC GGC ATC ACG CTC GCT GAT ATC CCG CAC ATC TTG GAA GCC GAG CAG GCG CGC 2925 951 O R E T R S E D G I T L A D I P H I L E A E 975 0 A R 2926 GAG CAG CAC CGA CCG CTG CCA AGC GAA AGC ACG CGC TGC ATC TCC GAG TTG TCG GCT CTG GAG CTG TTT ATC GTC 3000 976 E O н R P L P SESTRCTS E Т. S А т. Е т. F т v 1000 3075 3001 AAG CAC ATG GCA GTC ATG TAC CTT CAG CAG TCG GCG CTG CGA GAC CAC GTC AAC CTG GAC GAT TTG ATC GAA TTC 1001 K н М A V MYLOOSALR D нv N L D D L Ι E F 1025 3076 ATC GAG ACG CGC AAG AAC ACG TTT TGG GGC AAA ATC TTC AAG GGT GGC AAG GAC AAG AAG GAG ATC AAG AAA AAG 3150 Е т R K N т F WGK I FKG G K D Κ Κ Е I Κ к к 1050 1026 I 3151 GGC GTA TTT GGC ATC CCT CTC GAG ATT CTC GTG GAA CGC AAT GGC GCC GAC TCA ACG CTG GGT GCT AGT GCA GCA 3225 v F G I Ρ LEILVERNGA D S т L G А A A 1075 1051 G S 3226 CAT CTG CGC GTA CCT TCG TTC ATC GAC GAT GTG ATC TCG GCC ATG AAG CAG ATG GAT TTG TCA GTC GAA GGC ATC 3300 1076 H L R V P S F I D D V I S A M K O M D L s V Е GΙ 1100 3301 TTC CGC AAG AAC GGC AAC ATC CGT CGA CTC AAG GAG CTG TCC GAA GCG CTC GAC CGT GAC AGC TCG GCA GTG AAT 3375 1101 F R K N G N I R R L K E L S E A L D R D S S A V N 1125 3376 CTG CTC GAT GAC AAT CCG GTT CAG CTG GCG GCG TTG CTC AAG AAG TCC TGC GTG AGC TCC CGG ATC CGC TCA TGA 3450 1126 L L D D N P V Q L A A L L K K S C V S S R I R S * 1150 $\tt 3451 \ cgttcaagctgcaccaagctgttgtcatgtccaaaagctggaatccgaagcggaacgacgtcgcattctgcacat$ 3524

p219-13

npi4

1 ATG ACA TTC TCA ACC TAC ATG CGC TTG TCC GCT ACA AAC TAC CCC TCG ATC ACC TCG CTA GAT GCT GCC ATG CCT 75 T F S T Y M R L S A T N Y P S I T S L D A A M P 1 M 25 76 CAT CTG TGC GAT CGA GCA GGC AAA GAG TTG CGC GCT GCC ACC TAC CGC CTA CTC CGC CAC GCT CTC ATA CAG CCA 150 26 H L C D R A G K E L R A A T Y R L L R H A L I O P 50 151 CTT TCG CCG CTC GTC TCA CGC TGT CGC GAA AAG GGC CTC GAC ATT TAC CTC TCA CGT ACC CTC ATC CGT GAT AAT 225 51 L S P L V S R C R E K G L D I Y L S R T L I R D Ν 75 226 CGT TTT GAG CTC GAA AAG GTG CAA GCC ATC AAA CTC ATA CGA GCC ATC ATG GAG CTG GCA GCA CTG CGA TCC ATC 300 76 R FET. EKVOATKT. TRATM Е Τ. Α А т. R S т 100 301 ACC ACA GCT CCT GAT CGT CTC GCC CTC GAC TTG CAG CAA CTC GTG GCG CCC GGC GTA ATT CGT GCT CTC GCT GCC 375 A L D L Q Q L V A Р G v I 125 101 T т А Р D R L R А L А А 376 GTC GCA GAG CAT TCC GAA GAC AGG CTC CGT CAC ATC TGC CTC GAA ACG CTC GCC GAG CTT GCC GTC TTT GAT CTT 450 126 V A E H S E D RLRHICLETL А Е L А v F D 150 L 451 CGG CTG CTC ATC AAA GCT GGT GGC CTC AGG GCC ACT CTC CAG GCG CTC ACC GAG GGC GCC ACC GAA TTC TCA CCC 525 151 R L L I K A G G L R A T L O A L T E G A T E F S P 175 526 ACT TTG ATC CAG GTC TTC ATC TAC CTC GTT GAC ATG CCT GGC ACT CGT CAG CAT CTG CGT CCA GGT GTC GAT CTC 600 176 T L I O V F I Y L V D M P G T R O H L R P G V D L 200 675 601 GAA ATC GCC CTC TCG GGC TTC ACA GAG ACT CCG GTG CAG AAA CCC ATC ACC TAC GAT GCT CTA CTG CGA TCC ACC 201 E I A L S G F T E T P V O K P I T Y D A L L R S T 225 676 GET TEE GTE GTE GTE CTE CTE CTE CTE TEE GEG GEA GGT CTE ATE TAT CTE TEE ATE GAE GAE GAE GAE CGT GEG ATE 750 226 A S V V T V I, I, R S W A G I, T Y I, C M D D K R A T 250 751 AAA TCG CTT GTC CAG GCG CTA CGT GTC AAC ACG CTC GAC GTC AAG AGC GTT CTA CTC GAC ATG CTC CAC GAC CTC 825 251 K S L V O A L R V N T L D V K S V L L D M L H D L 275 826 TTC AAC GTT CGT GGC GCC ACC GGA CGA GTG GAT CC 860 276 F N V R G A T G R v 286

426	G	L	D	D	Q	А	K	Н	R	S	т	К	s	I	v	S	S									442
2																										
																						BamH	II (R	EMI-	Integ	ration)
-716																						GGA	rccg	tgcco	cgacg	-701
-700	gaco	cacgo	cacga	acag	tcggi	ttggi	ttgg	ttggi	toggt	ctgt	gcaa	actca	aacad	cgggg	gacco	cttga	aacto	ggagt	tatgo	ttt	ggcq	gggg	taaaa	agego	ccctg	-601
-600	acga	aget	gctc	tcca	caat	cgtga	aatto	cagto	gatto	cagaa	attgi	tgta	tcace	gtgaa	atcg	tgegt	tgaat	tcto	cagat	ttc	gtco	cgcta	aatt	ttgaa	aagac	-501
-500	gcad	caca	aaato	cacg	agtc	gtta	gtca	cgtga	aatca	acgaa	atcg	tgaat	tctc	gaato	gtcgo	caagt	tctgt	gagt	gtta	atgto	ccca	aaaa	gttc	gcaca	aatt	-401
-400	aaaq	ggct	gccaa	aaato	cacga	aatca	acga	atcg	cgaat	cgagt	gaat	cago	cagga	aaaaq	gtcad	cgagi	tcgtq	gagto	gtgtg	gagto	cggad	ctgta	acca	cgact	cacg	-301
-300	acto	ctgt	gact	gttc	tgtg	cagto	caca	gtgad	cgagt	cacaç	gtagi	taag	tctg	tctcq	gtgto	ctgta	aagat	aaaq	gcaco	gatte	ggaco	ctt	tgct	gctco	gccat	-201
-200	cato	ccaa	tcaa	ctca	ttca	catto	cgca	ttcad	catt	cgcat	tcad	catto	cgtgi	ttcgo	caaa	cgcti	tctca	acat	ctco	catca	acgad	caaca	atcco	catca	acgac	-101
-100	aaca	aacga	acga	ccgca	atcg	catco	cgac	ctctq	gttgi	tgtg	gtace	gcaaa	atcc	tacco	gacto	ggcat	tctgt	cago	cacad	ctcaq	gegeg	gcca	cgct	gacca	aacgt	-1
1	ATG	CCG	ATG	AGG	TTT	GCT	CCG	ACA	TTC	AAC	CGC	CTC	GTC	GCG	AGC	AGC	TGC	TCA	ccc	TGG	CTT	GCG	GTG	GCA	GCC	75
1	М	Ρ	М	R	F	А	Ρ	т	F	N	R	L	v	А	S	S	С	S	Ρ	W	L	А	v	А	А	25
76	GCG	TTT	GTG	CTG	TCT	GGG	CTG	GTG	CAG	TCG	GCA	GCA	TCC	TCC	TCA	TCC	GAT	GAG	GCA	ACT	CAT	GAT	GGT	CTT	CGA	150
26	А	F	v	L	s	G	L	v	Q	S	А	А	s	s	s	s	D	Е	А	т	н	D	G	L	R	50
151	AAG	CTC	ACT	GCT	GCC	AAT	TTT	ACT	CTC	GTC	AAC	GAT	GGT	GCA	TGG	CTC	ATC	GAA	TTC	TTC	TCG	CCC	GTT	TGC	GTC	225
51	K	L	т	А	А	N	F	т	L	V	N	D	G	А	W	L	I	Е	F	F	S	Ρ	v	С	v	75
226	CAC	TGC	AAG	AAG	TTC	GGC	GCT	ACC	TGG	TCG	GAG	CTC	TCC	CAA	TTA	AGG	ACT	CGC	TTC	ACC	CAA	TAT	CCA	CAG	GCA	300
76	Н	С	К	K	F	G	А	т	W	S	Е	L	s	Q	L	R	т	R	F	т	Q	Y	Ρ	Q	А	100
301	CCC	TTC	ACC	CTC	GCT	CAA	GTC	GAC	TGT	CTC	GCC	CAG	TGG	GAC	TTG	TGC	ACG	GAG	CAG	GGC	GTC	CAG	TTC	TTG	CCT	375

pig

1 ATG ATC CTC GCT CAC TAC GCC ATC ATC GCC GTC GGC AGC ATT GGT CGG CAC AGT CGT ATC GAC GAC AAA CCA TTC 75 1 M I L A H Y A I I A V G S I G R H S R I D D K P F 25 76 ACG ACT TTG CAG AGT CAG AGC TCG CGA CTC GAT CCC ATC ACC AGG CAA CGC TTG GCG CTC TTG CGA TTT GGC CGG 150 26 T T L Q S Q S S R L D P I T R Q R L A L L R F G R 50 151 CAT CGA ACC TCG ACG ACT CAG GGA ATC ACG TAT GGA CTC AAG CAC TTT GAC TTC CAT CTG TCA ATC TGC TCT TGC 225 51 H R T S T T O G I T Y G L K H F D F H L S I C S C 75 226 TGT AAA TCG CTG CCG GCG GTG ATC GCG CTG TTG CTC GCT CGC TTG ACG ATG GAG TCG CTT CAG CCG CAC CAA GAG 300 76 C K S L P A V I A L L A R L T M E S L Q P H Q E 100 301 GCG CAA CGC CTT CAG AAC CAG ATC GAT ATC GAG AAC AAG ATC AAG GAT GGC GCC GAA AAT TTG CTC AGT GTC TTT 375 101 A Q R L Q N Q I D I E N K I K D G A E N L L S V F 125 376 GAC CTA AAG CTC GCC TCC TCT GCA AAG CAA GAC CTT CGC AAG CAG ATC GAG TCT GAG CTC GAC TCG GCC ACC CTC 450 126 D L K L A S S A K Q D L R K Q I E S E L D S A T L 150 451 AGA ATC GCA TCT CTC ACC GCC GAG CTC CAA CGA TGG AAG CAA ACA CAC TCT ACC ACC TCG CCG CCT TCC TGG GCG 525 151 R I A S L T A E L Q R W K Q T H S T T S P P S W A 175 526 TCC AAT CCC TCC GCC TCC GAT TCA GAG TCT GCC TGC AAC ATT CCC GCT TCC ACC ATA TCC AGG CTT GAG CAG TCT 600 176 S N P S A S D S E S A C N I P A S T I S R L E O S 200 601 GCA CTC GGA TTC GAG GGC CGT CCA TTG TTT GAG AGT GCC AGT GCC CAG TCC GGT CCC AGC CAT CAA CCC GTT CGC 675 201 A L G F E G R P L F E S A S A O S G P S H O P V R 225 676 AAC ACC AGC TAC GAC ATC CTT ACC GCC CAT CTC GAC CCC AGC AAT GGC TCT CCA CCT TCC ACC AAC TAT GTC AAT 750 ILTAHLDPSNGS Р 226 N т S Y D Р S т N Y v N 250 751 GAT CTT GGC TCC CAC TTC CAC TTG CAT GCC TGC AGC GCC TTT TCC AAC TCT CGG CAT CGG TCT GGA CGG ACA TGC 825 251 D L G S H F H L H A C S A F S N S R H R S G R T C 275 826 TCC GCT TTC TCT TGC CGG TGC ACA GCC ATC ATC CGT CTC TGC GCT GCG CAC TCC CCT CGC CCA TCC GCC CTG CTT 900 276 S A F S C R C T A I I R L C A A H S P R P S A L L 300 901 TTC GAT CGT TAC TTT GTC CCT TCG ACT CAG CCG GCG CAG CAC ATC GAC GCA GAG CAT GCC CGA TCT CAC GAC CGC 975 301 F D R Y F V P S T Q P A Q H I D A E H A R S H D R 325 976 GAA GTA GAG GAT GCT CGC GCG TCA CGA TCT TTG GCT CTC ATG CTC ATT CGC TCC TTG CGC CCG CCA TCT CCC ATC 1050 326 EVEDARASRSTAT, MITRSTRPPSPT 350 1051 CCT CCA CCC GCA ATG CTG CCC ACT CTC TCA GAA AAT GCC GAC ACG TCC TCA CCA ACC GTT CAA ACT GGC CCC GCT 1125 351 P P P A M L P T L S E N A D T S S P T V O T G P A 375 1126 GTC GTT TCT ACC GCC ACC GTT GAT CCA GTC TCG CCC CCC AGC TCG AAT CTC GCG CTG CCA CGT ATG GCT CGC AGA 1200 376 V V S T A T V D P V S P P S S N L A L P R M A R R 400 1201 ACC GTT GCA CGT TCC AGA GCA GCA GCC ATA GCT TCC GGC GCC TCT TCA CAC GCA CGT ACG CCC AGC AAC GCA ACG 1275 401 T V A R S R A A A I A S G A S S H A R T P S N A T 425 1276 GGT CTC GAC GAT CAA GCC AAG CAC AGA TCG ACC AAA TCA ATC GTC TCG TCG AC 1328

Q V D C L A Q W D L C T E Q G V Q F L P 125 101 P F т LA 376 CGG CTT ACC ATC TAC CAG GAC GGC AAG CAG AAT GCC GAG GAA TAC AAG GGA GAC CGC AAC TAT CCC GAG ATC TCG 450 126 R L т Y 0 D G Κ 0 Ν А Е Е Y Κ G D R Ν Y Р Е s 150 Ι Τ 451 GCT TAC ATT GAT AAG TTT GCC AGA GAA TAT CGT CAG AAG AAG GGC GTT GCT GAC GTA CCG CTT GTA GCG TCC ACC 525 151 A Y I D K F А R Е Y R 0 K K G v А D v Ρ L v А s т 175 526 AAC TCC GAC GCC ACT TCA ACA GCT ATC GAG TCT TCC AAT CCT GCT TCA GAT AAC GCT GCT TCC ATT TCG GCT GCA 600 200 S T A I E S S N P s D N 176 N S D A T А А А S Ι s А А 601 TTG CCA TCC CCA TCT CCG TCG TCA TCC AGC GAG CCA GCT GCT GTT ACC CCA AGT CCG GCA TCC TCT TTG TCC TCC 675 201 L S Ρ S P s S S SEPA v т Р S Ρ s s s s 225 Ρ А А L 676 CTC GAG CCG ATC CAG GAG ATC TTG CCC GCA GGC CCC AAC TCC AAA GGT CAG CTT CTG AGC TAC GGC ACT GCC CCC 750 226 L E P IQEILPAGPNSK G 0 L L S Y G т А Ρ 250 825 751 GTC CAA AAC CAG CAA GAG CTT GCA GCA TGG CTC GCC AAA TCG TCC GGT CAG GGA CCC AGC TTT GTC AAG TTT TTT 251 V N ΕL W L AKS S G 0 G Ρ S F v Κ F 275 0 0 0 А А F 826 GCT CCC TGG TGT CCA CAC TGC AAA GCC ATG GCC GCC GCC TTT AAG CAA CTT AGC CAA TCG CTC AAA GGC AGG GTC 900 276 A Ρ W С Ρ Н С K А MAAA F Κ 0 L S 0 S L Κ G R v 300 901 AAT GTG CTC GAG GTC GAC TGT GAA GCT AAC CAC GCT CTC TGT GCC AGC TAC AAC ATC CGC AGC TAC CCT GTC CTT 975 301 N v L Е V D СЕА N H A L С А s Y Ν I R s Y Р v L 325 976 CGC CTG TAC AAT CAA GGC AAC CTC AAG GAG TAC ACG GGC GGC AGG AAT CAC GAT GCT ATG CTT AAA TGG GTG CTC 1050 326 R L Y N Q G N L K E Y T G G R N H D A M L Κ W V L 350 1051 AAA GCC GTC TCG AGC TCA GGA CTC AAA CCT GTC AGC TCG AGC ACC GAG CTC GTG AGC CTT TCC AAG GAG AAT GAG 1125 351 K A V S S S G L K P V S S S T E L V S L 375 SKENE 1126 GTC ATC TTT CTC TAC CTT CAC TCG CCA GGC ACT CCC ATC GAC GAG GTC CAC GCC GTC GAG ACA GCT AGT CAA GCG 1200 O A 376 УТЕТ, УТ, Н ЅРСТРТ ДЕУНА УЕТА S 400 1201 CTC TTT GGC GCC CGA GCC CCC ATC TTT GTT TCC TCC GAA CCG TCC CTG GTC GAT AGG TAC TCG AGC TCT CTG GCG 1275 401 L F G A R A P I F V S S E P S L L D R Y S S S L A 425 1276 CAG GAC CGT TCT ACA TCC GTT CCC GCC GAG TCT GGC CTG CTG GTG TTC AAG GAT CAT TCG ATA GCC CAG CCC GTC 1350 426 Q D R S T S V P A E S G L L V F v 450 K D H S I А 0 P 1351 TCG GTC CTC AAC CCG TCC AGC TTG CGT GCA TCC GAT TCG GCT TCA GTA GAG GGC GTC TAC TCG GAG CTG GCC ACC 1425 451 S v L Ν Р S s L R А S D S А s v Е G v Y s Е L А т 475 1426 TCC AAG ATC GCC GCC TTC TTG TCT CGT GAG CAG TAC TCG CTC GTC ACG GAG CTC ACA GCT GCC AAC TTT GAG GAG 1500 TEL 476 S K I А А F L S R ΕQ Y SLV т А А N F Е Е 500 1501 ATC GTG CGC AAC CGG GAC GAC GCG CTC GTT GTG CTT GCT GCG CTA TCC GAT ACC TAT CAT GGC TCG CAT CAA GCT 1575 501 I V R N R D D A L V V L A A L S D T Y H G S H 0 A 525 1576 GAC GTT TCT GCC CAA GGT ATC GCG TTG AAA GAA GTC GAA TGT CGA CGC TGC GCT CCG TTT CGC TCG AAT GGA GGT 1650 526 D V S A O G I A L K E V E C R R C A P F R S N G G 550 $1651 \ {\tt TGA} \ {\tt aacaggcttcaacgtcggctcggctcgtgttcgcatggatcgacgggaccgttggaaatcgcccctcaagaagctgtataacatggatgcta \ 1749$ 551 * 551 $1750\ {\tt ccaaagtacctgcagctgttttggtggatggcaaccagttgctgtactacgacctgcccttccgttctggcctctgggccgtcggccgtgagtggccaacca\ 1849$ 1950 gctggcaactacatgaacgcgt 1971