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Summary

II

Summary

Prion diseases are fatal neurodegenerative diseases which occur in mammals. The abnormal

form (PrPSc) of the host encoded prion protein (PrPC) is the main player in the pathogenesis of

prion diseases. However, the pathogenesis of the disease and the cellular function of the prion

protein is not fully understood.

Both PrPC and PrPSc are thought to interact with different molecules during their cellular

metabolism such as the 37kDa laminin receptor precursor (LRP) which was identified as an

interactor of PrPC in a yeast two-hybrid screen.

Here, the influence of the 37kDa LRP and its mature form, the 67kDa laminin receptor (LR)

on the cellular fate of PrPC and PrPSc has been investigated.

PrPC is found on the surface of neuronal and non-neuronal cells. The same is true for the 37-

kDa/67-kDa laminin receptor (LRP/LR) as shown by flow cytometry, immunofluorescence,

and Western blot analysis of purified plasma membranes of N2a cells. Both the 37kDa- and

the 67kDa-form have been found in purified plasma membrane fractions of N2a cells.

Binding of externally added recombinant PrPC to N2a cells has been shown to be dependent

on the availability of LRP/LR on the cell surface. Blocking of LRP/LR with specific

antibodies resulted in a total inhibition of the binding. The internalization of PrPC has also

been shown to be LRP/LR-dependent, which has been shown by trypsin treatment of the cells.

By lowering the incubation temperature from 37°C to 4°C, the internalization of PrPC was

totally abolished, indicating that the process is active and receptor mediated. In summary

these data demonstrate that the 37kDa/67kDa LRP/LR acts as the cell surface receptor for the

cellular form of the prion protein.

Scrapie infected neuronal cells are a well known model system for the pathogenesis of prion

diseases. They can be used to test the ability of different substances and drugs to inhibit the

formation of abnormal prion protein (PrPres) in these cells.

The incubation of the cells with the LRP/LR specific antibody W3 resulted in a repression of

PrPres formation. Furthermore, transfection of these cells with (i) a plasmid encoding for an

antisense-LRP RNA and (ii) small interfering RNAs (siRNAs) specific for the LRP cDNA

sequence transiently reduced the LRP/LR and the PrPC levels in these cells and subsequently
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blocked PrPres formation permanently. These experiments showed that ablation of LRP/LR

does not only affect the PrPC- but also the PrPSc-metabolism and that LRP/LR is required for

PrPres propagation in cultured cells.

Different isoforms of the 37-kDa/67-kDa laminin receptor have been reported. In addition to

the 37kDa precursor form and the 67kDa mature form two other isoforms of 60kDa and

220kDa respectively, have been identified in mouse brain. All four isoforms bound PrP in

overlay assays using either radiolabelled or immunodetected recombinant PrP.

High-level expression of glycosylated PrP is of particular interest to investigate PrP structure

and function. Dimers of the prion protein have been shown to exist in a pre-oligomerization

state of the infectious agent. A crystal structure of a fully glycosylated PrP-dimer might

clarify the conversion process.

The methylotrophic yeast Pichia pastoris has been used to express and partially purify a

glycosylated monomer and a covalently linked dimer of the human prion protein. Both

proteins revealed proteinase K sensitivity and, as shown by plasma membrane purification,

were found in the plasma membrane of the yeast. The proteins might act as tools for

crystallization trials and PrPCÆPrPSc conversion studies.
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1 Prion diseases

Transmissible spongiform encephalopathies (TSEs), are neurodegenerative diseases caused by

prions (proteinaceous infectious particles) which have been observed in humans and animals.

Human TSEs are Creutzfeldt-Jakob-Disease (CJD), fatal familiar insomnia (FFI), Gerstmann-

Sträussler-Scheinker syndrome (GSS) and Kuru, whereas bovine spongiform encephalopathy

(BSE) is to be found in cattle, chronic wasting disease (CWD) in elk and deer and scrapie in

sheep and goat (Table I) (Lasmézas and Weiss, 2000; Weissmann and Aguzzi, 1997). The

infectious agent, termed prion, is thought to consist of an abnormal protein as the sole

infectious component. Lacking any nucleic acid, these diseases represent not viral diseases but

an entirely new class of infectious diseases, termed prion diseases (Prusiner, 1982). The

abnormal, infectious protein causing TSEs is termed PrPSc (the scrapie form of the prion

protein) and represents an isoform of the host-encoded and naturally expressed protein PrPC

(the cellular form of the prion protein) (Prusiner, 1998). PrPSc and its proteinase K resistant

form PrP 27-30, which is 142 amino acids in length (in case of hamster PrP), are present

predominantly in brains or lymphoreticular organs of humans or animals suffering from prion

diseases and give rise to amyloid plaques (McKinley et al., 1991). PrPC and PrPSc have the

same primary structure, but differ in their three dimensional structure. The key event in

pathogenesis of prion diseases is the conversion from the cellular homolog to the disease-

causing form. It is widely believed, that this process does not involve any nucleic acid and

resulting from this, Stanley B. Prusiner phrased the “protein-only“ hypothesis first in 1982

(Prusiner, 1982). PrPC has a high content in a-helix (42%) and a low b-sheet content (3%),

whereas PrPSc has less a-helix and more b-sheet structures (45%) (Caughey et al., 1991; Pan

et al., 1993).

1.1 The ‘prion’ – an extraordinary infectious agent

Prusiner was not the first to propose that an abnormal protein might be responsible for TSEs.

The idea was suggested first in 1966 by Tikvah Alper (Medical Research Council,

Hammersmith Hospital, London). He found that ultraviolet radiation, that is commonly used
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to inactivate nucleic acid, does not abolish scrapie infectivity (Alper et al., 1967; Alper et al.,

1966). In 1967, J. S. Griffith (Bedford College, London) proposed that infectivity in scrapie

might be caused by a normal cellular protein that displays an altered conformation (Griffith,

1967). Fifteen years later Stanley B. Prusiner took up and developed these ideas and

conducted convincing biochemical analyses on the infectious agent. He purified the prion

protein (PrP) from the infectious material that he termed ‘prion’ and showed that PrP is the

major component of the infectious agent (Prusiner, 1982; Prusiner et al., 1982; Prusiner et al.,

1981). A few years later, the prion protein was sequenced and cloned in collaboration with

Charles Weissmannn (Basler et al., 1986; Oesch et al., 1985).

1.2 The history of prion diseases

In contrast to the prion hypothesis, prion diseases have a much longer history. In 1732 the first

report of natural sheep scrapie emerged in the UK (for review see (Schreuder, 1994)). It owes

its descriptive name to the phenomenon that in some cases the infected sheep scrape off their

wool due to intense itching. The first report of a human TSE appeared in 1920. Hans Gerhard

Creutzfeldt described a case of progressive and fatal disease in a 23-year-old woman, who

presented with mental and neurological disorders (Creutzfeldt, 1920). One year later Alfons

Maria Jakob described the symptoms of three other individuals suffering from a disease in the

pyramidal and extrapyramidal motor systems (Jakob, 1921). In 1922 the term ‘Creutzfeldt-

Jakob disease’ was introduced by Spielmeyer to describe some cases of neurodegenerative

diseases that were characterized by the loss of neurons and gliosis (for review see

(Kretzschmar, 1993)). At that time the agent responsible for the disease was unknown. Some

decades later Gajdusek and Zigas reported a transmissible disease termed ‘kuru’ that affected

children and mostly female adults in the Eastern highlands of Papua New Guinea (Gajdusek

and Zigas, 1957; Zigas and Gajdusek, 1957). In 1959, Hadlow observed neuropathological

similarities between kuru and scrapie and in the same year similarities between CJD and Kuru

were observed, indicating a link between transmissibility and disease (Klatzo et al., 1959).

Indeed, it was found that all three diseases were transmissible. In 1961, Chandler transmitted

scrapie to mice. In 1966, Kuru was transmitted to chimpanzees and in 1968 CJD was also
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transmitted to chimpanzees (Chandler, 1961; Gajdusek et al., 1966; Gibbs et al., 1968). These

findings demonstrated the transmissibility of the disease and the term ‘transmissible

spongiform encephalopathy’ was introduced. Nevertheless, the nature of the agent was still

unclear and it was widely believed that a ‘slow virus’ was responsible for the disease, as was

suggested by the Icelandic virologist Björn Sigurdsson in 1954. He claimed that a slow virus

has

- a very long incubation period

- a shorter progressive clinical course leading to death

- limitation of the infection to a single host and

- pathological changes in a single organ or tissue.

In 1976, Charlton Gajdusek was awarded the first Nobel prize for medicine within this

scientific field for his work on ‘slow virus’ infections. About two decades later the second

Nobel prize in this field, now known as the prion field, was awarded to Stanley Prusiner for

his ‘protein-only’ hypothesis postulated in 1982. This award reflects the enormous work that

has been done over the last twenty years by him and other scientists in the field to prove that a

protein, the prion protein, is the major player in the pathogenesis of prion diseases. It is a

matter of speculation whether Prusiner would have been given the award if there has not been

a large-scale epidemic among cattle in the United Kingdom that provoked a large public

outcry. In 1985, the first case of a novel spongiform encephalopathy in cattle appeared (Wells

et al., 1987). Since then more than 180,000 cattle have been affected by Bovine spongiform

encephalopathy (BSE) in the UK and a few thousand in other European countries and Japan.

As a consequence, several cases of spongiform encephalopathies in captive and zoo animals

of many different species occurred (Schreuder, 1994). Most likely, the zoo animals had been

fed with contaminated food products. The report of affected zoo animals and also domestic

cats gave rise to considerable concern about the possibility or risk of transmission of BSE to

man. To address this problem the National CJD Surveillance Unit was established in

Edinburgh in 1990. In 1996, it had become evident that 10 persons were affected by a new

form of CJD (vCJD) that is distinct from the classical, known forms of CJD (Will et al.,

1996). In contrast to the classical CJD cases all 10 patients were younger than 40 years of age
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(Will et al., 1996). Since then the number of vCJD cases has steadily increased, and by

December 2002 a total number of 141 vCJD patients have been registered.

Table I Transmissible spongiform encephalopathies in animal and man

Man Year (Country)

of first report

Animal Year (Country)

of first report

Sporadic Creutzfeldt-Jakob disease

(sCJD)

1920 (Germany) Scrapie (sheep and goats) 1732 (UK)

Familial Creutzfeldt-Jakob disease

(fCJD)

1924 (Germany) Transmissible mink

encephalopathy (TME) (farmed

mink)

1947 (USA)

Gerstmann-Sträussler-Scheinker

syndrome (GSS)

1928/1936

(Austria)

Chronic wasting disease

(CWD) (captive mule deer and

elk)

1980 (USA)

Kuru 1957 (New

Guinea)
Bovine spongiform

encephalopathy (BSE)

1986 (UK)

Iatrogenic Creutzfeldt-Jakob disease

(iCJD)

1974 (USA)

Exotic ungulate

encephalopathy (zoo animals)

1986 (UK)

Fatal Familial Insomnia (FFI) 1986 (Italy)

Variant Creutzfeldt-Jakob disease

(vCJD)

1996 (UK)

Feline spongiform

encephalopathy (FSE)

(captive/domestic members of

the cat family)

1990 (UK)

1.3 Animal Diseases

Scrapie is a progressive and fatal neurological disease in sheep and very rarely in goats. It has

been well known in Europe for more than two centuries and was also reported in other

continents, such as North America. The transmissibility of scrapie from sheep to goat was first

demonstrated in 1939 (Cuille and Chelle, 1939). Remarkably, it was never reported that the

disease spread to humans (Schreuder, 1994).
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Transmissible mink encephalopathy (TME) occurs endemically in ranch-ranged mink and has

clinico-pathological features similar to those of scrapie. It was first reported in 1947 in

Wisconsin, USA, and since then, more than 23 sporadic outbreaks have been reported

worldwide, including the United States, Canada, Finland, Germany, and the republics of the

former Soviet Union. The last outbreak was in the USA in 1985, after an outbreak-free period

of 22 years (Schreuder, 1994).

Chronic wasting diseases (CWD) appeared for the first time in 1967 in captive mule deer in

Colorado, USA, and was first reported in 1980 (Williams and Young, 1980). In 1982, it was

found in captive Rocky Mountain elk. During the past years it was also found in free-ranging

animals all over the Rocky Mountains from Canada to the USA (Schreuder, 1994). Very

recently, one imported case of CWD in Korea appeared. The mule elk was imported into

Korea from Canada on March 9, 1997 and represents the first case of CWD outside the U.S.A.

and Canada (Sohn et al., 2002).

The first case of bovine spongiform encephalopathy (BSE) occurred in 1985 and was

diagnosed in 1986 (Wells et al., 1987). More than 180,000 cases have been reported by

December 2002. The epidemic was most likely caused by feeding meat and bone meal that

was not properly inactivated to a large number of cattle. The source of the infectious agent is

still speculative. The ‘sheep-origin’ hypothesis proposes a transmission of scrapie material

from sheep to cattle (Wilesmith et al., 1991), whereas the ‘bovine-origin’ hypothesis claims

that the disease originated from a rare case of bovine prion disease and spread in cattle by

ingestion of contaminated meat and bone meal (Philips, 2000).

Since 1986 several cases of Exotic ungulate encephalopathy occurred. These cases might be

directly linked to the BSE epidemic since such cases were not reported previously. Captive

antelope, greater kudu, gemsbok, eland, bison, nyala, Arabian oryx and scimitar-horned oryx

were affected (Schreuder, 1994).

In 1990, the first case of feline spongiform encephalopathy (FSE) was reported in the UK.

Since then, several cases of FSE in domestic cats, puma, cheetah, ocelot and tiger have

occurred.
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1.4 Human Diseases

1.4.1 Kuru

Kuru is a fatal neurodegenerative disease affecting a group of natives in Papua New Guinea

called the ‘Fore’ people. It is characterized by progressive cerebella ataxia followed by

dementia, leading to death in less than a year from onset of disease. However, one case of a

more than 40-year-old man has been reported, suggesting that there might be extremely long

incubation times (J. Collinge, personal communication). The disease was first described by

Vincent Zigas, a physician working for the Australian Public Health Service, and Charlton

Gajdusek, an American virologist and pediatrician of the US National Institutes of Health

(Gajdusek and Zigas, 1957; Zigas and Gajdusek, 1957). The mysterious disorder was

described with the term ‘Kuru’ meaning ‘shivering’. It originated probably in the northern

part of the Fore district at the beginning of the last century and spread through 169 villages

and hamlets in the district and to neighbouring linguistic groups that intermarried with the

Fore people. In the late 1950’s the average incidence of kuru in the Fore district was 1% but

in some villages there was a much higher incidence rate of ~10% (Gajdusek and Zigas, 1959).

Between 1957 and 1982 more than 2,500 people died of Kuru, the youngest patient being 5

years old. Most of the patients were adult women (67%), followed by children (23%) and

Table II Codon 129 polymorphism

Codon 129 Normal population Sporadic CJD New variant CJD

MM 39% 80% 100%

MV 50% 8% --

VV 11% 12% --
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adult men (11%). This phenomenon can be explained by the mourning ritual that was

practised among the Fore people. Mostly women and smaller children participated in the

ritual, whereas men seldom ate the brain and meat of the dead woman. In the late fifties the

ritual practice was stopped and today only a few cases of Kuru are seen every year and there

are no patients born after 1959 (Gajdusek, 1996). The codon 129 genotype found in Kuru

patients has been matched with age and duration of illness. It was found that methionine

homozygosity was overrepresented in younger patients, in patients with a short incubation

period and in patients with a short duration of disease. No influence on clinical symptoms was

observed (Cervenakova et al., 1998).

1.4.2 Sporadic Creutzfeldt-Jakob disease (sCJD)

Sporadic Creutzfeldt-Jakob disease is a rare disease, with an incidence of only 0.5-2 affected

patients per 1.000.000 people per year. The clinical course is generally rapid and in most

cases the duration is less than 12 months with a mean duration of 4 months (Wells et al.,

1987). The disease is reported in all age groups, but the median age of onset is the seventh

decade. It very rarely occurs in people younger than 40 years and men and women are equally

affected. Due to the age distribution the incidence of sCJD is 3 per million per year in the 65

to 74-year-old group and only 0.2 per million in the population below 40 years of age

(Collinge and Palmer, 1992; Ironside, 1998). The sporadic form accounts for ~85% of all CJD

cases, whereas ~15% occur in a familial context. Explanations for the etiology of sCJD

include two hypotheses,

- the occurrence of age-related somatic mutations that happen randomly and might result

in a facilitated conversion of PrPC to PrPSc or

- the spontaneous conversion of PrPC to PrPSc without involvement of mutations

(Prusiner et al., 1998).

Very recent findings try to explain sporadic Creutzfeldt-Jakob disease by suggesting a

conversion of PrP in the cytosol where misfolded PrPC is transported from the endoplasmatic

reticulum. There, it might convert in a rare event to PrPSc representing a seed for further

aggregation (Ma and Lindquist, 2002).
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A common methionine/valin polymorphism is of particular interest in both sporadic CJD and

variant CJD (see chap. 1.4.4), with either methionine or valin present at residue 129 of the

human prion protein. In Caucasians the general distribution is 38% homozygosity for

methionine, the most frequent allele, 51% heterozygosity and 11% of the population is

homozygous for valine (Owen et al., 1990) (Table II). In sporadic CJD more than 80% of the

patients are homozygous for methionine at codon 129, indicating that homozygotes have a

higher risk of developing sCJD compared to heterozygotes (Palmer et al., 1991). So far, the

methionine homozygosity at codon 129 seems to be the only risk factor for developing sCJD

since it is fully documented and statistically significant. However, two recent case control

studies suggest different risk factors. It has been found that sCJD is more common in patients

who have undergone frequent surgery and in people with residence or employment on farms

or in market gardens (Collins et al., 1999). Furthermore, sCJD is described more often in

families with members that have died of dementia due to other causes than sCJD (van Duijn et

al., 1998). None of these studies has been confirmed so far.

1.4.3 Familial Creutzfeldt-Jakob disease (fCJD)

The familial forms of CJD accounts for 5-15% of all CJD patients. They include point

mutation in the Prnp gene and insertions or deletions in the octarepeat region of the gene

(Fig.1) (Goldfarb et al., 1994). Familial CJD with the codon 200 mutation (EÆK) is the most

frequent and has been reported in geographical clusters. Libyan Jews in Israel (Goldfarb et al.,

1990a; Hsiao et al., 1991), Spanish families in rural Chile (Goldfarb et al., 1994), and families

in central Slovakia were affected (Goldfarb et al., 1990b). Furthermore, isolated familial cases

have been reported in Canada, France, Japan, the United States and the United Kingdom

(Goldfarb et al., 1994).

Familial CJD with a codon 178 mutation (DÆN) combined with valine at the polymorphic

codon 129 has been reported in families originating from England, Finland, France, Hungary,

and the Netherlands (Goldfarb et al., 1992). Pedigree analyses of the Finnish family indicated

that codon 178 mutation could have a disease penetration rate of ~100% (Goldfarb et al.,

1994).
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The clinical signs, duration and onset of the disease can vary, depending on the mutation type.

Patients with codon 200 mutation closely resemble the phenotype seen in sCJD with a mean

duration of 8 months and a mean onset at 55 years of age (Brown et al., 1991b), whereas the

codon 178 mutation shows a different phenotype with a longer duration of the disease (mean,

23 months and an earlier age of onset (mean, 46 years) (Brown et al., 1992).

1.4.4 New Variant Creutzfeldt-Jakob disease (vCJD)

In 1990, the National CJD Surveillance Unit (NCJDSU) in the UK started its work. The aim

was to identify and characterize sporadic CJD cases that did not match the usual disease

characteristics. About 5 years later, in 1995 and early 1996, 10 cases of sCJD in remarkably

young patients were reported to the NCJDSU (Bateman et al. , 1995; Britton et al., 1995). The

article ‘A new variant of Creutzfeldt-Jakob disease in the UK’ was published in April 1996

and drew a causal link between the epidemic of BSE in cattle in the UK and new variant CJD

(vCJD) (Will et al., 1996). The most prominent characteristics of this new variant of CJD are

Fig. 1 Mutations and polymorphisms of the human prion protein that are associated with

familial human prion diseases. Main structural elements of the prion protein are shown.
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the young age of the patients and the existence of ‘floride plaques’ in the brain of the patients

(Will et al., 1996). Recently, vCJD was described in a 74-year-old patient (Lorains et al.,

2001). This report, and a very recent report of BSE-infected mice with both sporadic and

variant CJD-like symptoms (Asante et al., 2002) tells us that also old patients and patients

with symptoms similar to sporadic CJD can be infected with the BSE agent. Now, there is

compelling evidence for a direct transmission of BSE from cattle to human beings:

- It was shown that brains of macaques, when inoculated with the BSE agent, show the

same characteristic ‘floride’ plaques seen in vCJD patients (Lasmézas et al., 1996).

- PrPSc in brains of mice, domestic cat and macaque that have been inoculated with

PrPBSE show the same glycosylation pattern as PrPSc from brain of vCJD patients

(Collinge et al., 1996).

- Transgenic mice, expressing human PrP only, can be infected with the BSE agent (Hill

et al., 1997).

- Mice expressing wild type PrP have been infected with the BSE agent and the vCJD

agent. Both show identical lesion profiles and incubation time (Bruce et al., 1997).

- Using a cell free conversion assay human PrPC could be converted to the abnormal

isoform by using PrPBSE as a seed (Raymond et al., 1997).

- Transgenic mice, expressing bovine PrP only, have been infected with the BSE- and

the vCJD agent. Both show the same incubation time, PrPSc-isotype and

neuropathology (Scott et al., 1999).

The different studies show that it is most likely that BSE is transmissible to humans. A very

recent study postulated the existence of two different  disease patterns in transgenic mice

challenged with BSE prions (Asante et al., 2002). The transgenic mice do express human PrP

with methionine at codon 129. After BSE infection some mice show type 4 PrPSc, which is

similar to PrPSc seen in vCJD patients. Surprisingly, other mice show type 2 PrPSc, which is

the most common strain in sporadic CJD patients. This data suggests that patients with a

phenotype related to sporadic CJD might also have been infected with BSE prions. This

finding might explain the recently increased number of sCJD cases in Switzerland and in the

UK.
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1.4.5 Iatrogenic Creutzfeldt-Jakob disease (iCJD)

Iatrogenic transmission of CJD was first suggested in 1974 in the recipient of a corneal

transplant from a donor who died from CJD. Most cases resulted from exposure to infectious

brain (dura mater grafts) and cadavric pituitary tissue derived hormones like gonadotropin and

human growth hormone. In both forms the homozygosity for methionine at codon 129 is

overrepresented and might have some influence on the incubation period of hormone treated

patients, whereas no effect on the incubation period by the codon 129 polymorphism of graft

recipients was observed. The proportion of patients acquiring CJD from growth hormone can

vary from 0.3 to 4.4% in different countries, and acquisition from dura mater varies between

0.02 and 0.05% in Japan (where most cases occurred) (Brown et al., 2000).

1.4.6 Fatal Familial Insomnia (FFI)

The term FFI was first used in 1986 by Lugaresi and co-workers to describe progressive

insomnia and autonomic dysfunction, followed by dysathria, tremor, and myoclonus in a 52-

year-old male in Italy. The patient’s two sisters and many other relatives over three

generations died of a similar disease (Lugaresi et al., 1986). However, in 1939, cases with

severe dementia were described and probably represent early cases of an FFI like disease

(Stern, 1939). The onset of the disease is usually in the fifth decade and ranges from 35-61

years of age and the duration is 13 months in mean (Manetto et al., 1992; Medori et al.,

1992). The predominant feature in most FFI patients is involvement of the thalamus

associated with severe sleep disturbances, often with insomnia, and autonomic dysfunction

(Manetto et al., 1992). Although rare sporadic cases have been reported recently, FFI is a

predominantly familial disease with a mutation in Prnp gene at codon 178 (DÆN) in

combination with methionine at the polymorphic codon 129. The illness duration has been

reported to be significantly shorter with methionine homozygosity (mean, 12 month)

compared to patients with methionine/valine heterozygosity (mean, 21 month) (Gambetti and

Lugaresi, 1998). Very recently, insomnia associated with thalamic involvement was reported

in a case of fCJD, where the patient’s Prnp  gene showed the E200K mutation and

homozygosity for methionine at codon 129 (Taratuto et al., 2002).
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1.4.7 Gerstmann-Sträussler-Scheinker Syndrome (GSS)

GSS, a familial disease with autosomal dominant inheritance, was first described in 1936 by

Gerstmann, Sträussler and Scheinker (Gerstmann et al., 1936). Since then the name GSS has

been used to describe a group of neurodegenerative disorders with a familial origin closely

related to CJD. GSS is primarily associated with mutations at codon 102 and less frequently

with mutations at other codons of the prion protein (Fig.1) (Cervenakova et al., 1999; Doh-ura

et al., 1989; Gajdusek, 1996). The most frequent mutation at codon 102 (PÆL) is associated

with a comparably early onset of disease (mean, 48 years), and a prolonged duration of illness

(mean, 5 years) (Brown et al., 1991a). Slowly progressive gait abnormalities and ataxia are

the common clinical features of this mutation. In contrast to this so-called ‘ataxic GSS’, the

mutation at codon 117 (AÆV) is associated with a ‘dementing’ phenotype (Hsiao and

Prusiner, 1990).

Fig. 2 Structural elements of the prion protein (PrP) and its homolog Doppel (Dpl). Both

Proteins are anchored in the plasma membrane with a glycosylphosphatidylinositol mojety,

orientated towards the extracellular space. PrP and Doppel have similar C-terminal domains,

whereas Dpl lacks a Cu-binding region. The stop-transfer effector (STE) is involved in the

formation of the transmembrane form of PrP (CtmPrP).
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1.5 Structure, function, and trafficking of PrP

Mammalian prion proteins are transported via the endoplasmatic reticulum and secretory

vesicles to the cell surface, where they are anchored by glycosylphosphatidylinositol (GPI)

membrane anchor (Fig.2) (Caughey and Raymond, 1991; Stahl et al., 1987). There, the prion

protein resides for about 60 minutes before it becomes internalized via clathrin-coated pits or

caveolae-like domains (CLDs) (Shyng et al., 1994; Vey et al., 1996). All mammalian prion

proteins are encoded by a single exon as a polypeptide chain of about 250 to 260 amino acid

residues, depending on the species (Oesch et al., 1985; Schätzl et al., 1995; Wopfner et al.,

1999). After the cleavage of an N-terminal signal peptide of 22 residues and a C-terminal

signal peptide of about 23 residues the mature prion protein consists of polypeptide chain of

about 210 residues in length (Basler et al., 1986; Bazan et al., 1987). PrPC has a single

disulfide bridge between cystein 179 and cystein 214 (human PrP) and two N-glycosylation

sites (Turk et al., 1988). It was shown that PrPC contains various glycosylation variants with

more than 52 different bi-, tri-, and tetra-antennary N-linked oligosaccharides (Rudd et al.,

1999). In addition to a GPI-anchored form of the prion protein, the existence of two other

membrane-bound forms was observed: a C-terminal transmembrane form CtmPrP, a N-

terminal transmembrane form NtmPrP (Hegde et al., 1998). CtmPrP and NtmPrP span the

membrane once via a conserved hydrophobic domain with either the C-or the N-terminus

translocated to the ER lumen (Fig.2). One of these forms, CtmPrP, triggers spontaneous

neurodegeneration when overexpressed (Hegde et al., 1998).

So far, all high resolution structural studies have used recombinant PrPC, expressed in E.coli.

However, with optical spectroscopy of natural PrPC from hamster brain it was possible to

elucidate the secondary structure of PrPC. Circular dichroism and infrared spectroscopy

resulted in spectra typical for an a-helical protein with predominantly a-helical (42%) and

minor b-sheet (3%) content (Caughey et al., 1991; Pan et al., 1993; Safar et al., 1993). In the

same studies the secondary structure of PrPSc derived from brain was shown to have a high b-

sheet content (>40%) and less a-helical structures (~20%). These findings are in close

agreement with all high resolution NMR structures that have been recorded so far. The first

structure which has been published was that of recombinant mouse PrPC from residue 121-



Chapter I

17

231 in 1996 (Riek et al., 1996). This was followed by the NMR structure of mouse PrPC

(aa23-231) (Riek et al., 1997), hamster PrPC (aa90-231) (Liu et al., 1999), human PrPC (aa-

23-230) (Zahn et al., 2000) and bovine PrPC (aa25-242) (Lopez Garcia et al., 2000). All four

presently available NMR structures of PrPC have the same structural architecture: a flexible,

apparently unstructured N-terminal tail and a well-ordered C-terminal domain consisting of

three a-helices and two short, antiparallel b-strands. The flexible tail represents an unusual

feature of proteins compared with the presently available protein structure database.

In 2001, a crystal structure of a recombinant PrPC dimer was published (Knaus et al., 2001).

The dimerization involves a three-dimensional swapping of the C-terminal helix 3 and

rearrangement of the disulfide bond. The authors suggest that the observed dimer might

represent a first step in oligomerization and subsequent amyloidosis in prion diseases.

However, it is not clear if the dimeric structure is present under physiological conditions

because of harsh crystallization conditions used in this study. Very recently, a crystal structure

of a copper binding PrP fragment in association with copper was recorded (Burns et al.,

2002).

1.5.1 The conversion of PrPC to PrPSc

No differences in the primary structure of PrPC and PrPSc have been detected, suggesting that

they might differ in their conformation (Stahl et al., 1993). However, the tertiary structure of

PrPSc remains unclear. The protein-only hypothesis tells us that PrPSc might be the only

constituent of the infectious agent (Prusiner, 1998). Within this hypothesis two models have

been proposed to explain the conversion of the host encoded cellular prion protein to the

abnormal form PrPSc. The ‘refolding model’ postulates that PrPC unfolds partly and then

refolds under influence of a PrPSc molecule. Normal and misfolded state are separated by an

activation energy barrier (Prusiner, 1991). The ‘nucleation model’ proposes that PrPC is in

equilibrium with PrPSc, that the equilibrium is largely in favor of PrPC and that PrPSc is only

stable when forming multimers (Jarrett and Lansbury, 1993). Conversion in vitro from PrPC to

a PrPSc-like molecule was first demonstrated in 1994 (Kocisko et al., 1994). Since then, this in

vitro model has been used to elucidate species barrier and strain-specificities of PrPSc (Bessen
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et al., 1995; Raymond et al., 1997). However, due to a less than stoichiometric yield with

respect to PrPSc used as a seed, it was not possible to demonstrate an increase in infectivity.

Recombinant PrPC has been converted to a b-sheet-rich, partially protease resistant state by

using physico-chemical procedures (Jackson et al., 1999; Lu and Chang, 2001). So far, there

have been no reports that such material gives rise to transmissible spongiform

encephalopathies (Shaked et al., 1999).

1.5.2 The function of PrPC

So far, several different approaches to clarify the cellular function of PrPC have been made

resulting in different cellular and biochemical properties of the prion protein.

A common strategy to determine protein function is to ablate the gene of interest and examine

homozygous null mice for novel phenotypes. In the case of PrP knock-out mice (Prnp0/0) the

loss of PrPC is not associated with any phenotype (Lledo et al., 1996; Manson et al., 1994),

despite a resistance towards scrapie infection (Bueler et al., 1993). However, in other reports

Prnp0/0 mice showed a loss of Purkinje cells, late-onset ataxia, alterations in synaptic

processes and altered circadian activity (Sakaguchi et al., 1996) (Collinge et al., 1994; Tobler

et al., 1996). The loss of Purkinje cells was later assigned to the upregulation of the prion-like

protein Doppel (Dpl) in this particular strain of knock-out mice, rather than to the deletion of

PrPC (Moore et al., 1999). Like PrP, Dpl is an N-glycosylated and GPI-anchored membrane-

bound protein, but lacks the octarepeat region and is predominantly expressed in testis

(Silverman et al., 2000). The level of Dpl in mouse brain inversely correlates with the onset of

ataxia and the loss of Purkinje cells (Rossi et al., 2001). It was hypothesized that the lack of

PrPC in PrP0/0 mice might be counterbalanced by an altered expression of other genes during

embryogenesis and therefore no phenotype is observed. Two different approaches were used

to test this hypothesis:

- PrPC-expression was established in a PrP0/0 genetic background controlled by a

regulative transcriptional trans-activator (tTA/tetO-Prnp). Administration of

doxycycline to adult tTA/tetO-Prnp transgenic mice resulted in reduction of PrPC
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levels to 10% compared to wild type mice but had no effect on neuronal viability

(Tremblay et al., 1998).

- The coding region of PrP was deleted using Cre recombinase at an age of nine weeks.

This post-natal knockout did not induce neurodegeneration or pathological changes for

up to 15 months post-knockout. However, afterhyperpolarization potentials (AHPs) in

hippocampal CA1 cells were significally reduced, suggesting a role for PrPC in the

modulation of neuronal excitability (Mallucci et al., 2002).

Copper binding seems to be one of the most prominent features of PrP. It was shown in

several publications

- that PrP binds copper in vitro and in vivo, and

- that the binding of copper influences internalization of PrP (Brown et al., 1997;

Jackson et al., 2001; Lee et al., 2001; Pauly and Harris, 1998)

Fig. 3 Interaction of PrP and LRP/LR involving HSPG’s. LRP/LR binds to PrP via the C-

terminal region (aa 144-179) and a second, HSPG dependent binding domain (aa 53-93)

located within the octarepeat region of PrP.
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Furthermore, binding of PrPC to at least 16 proteins and other macromolecules has been

proposed (for review (Gauczynski et al. , 2001a)). One of these is the 37-kDa/67-kDa laminin

receptor (LRP/LR), that has been identified employing a yeast-two hybrid screen (Rieger et

al., 1997). Via binding to a transmembrane receptor, such as the 37-kDa/67-kDa laminin

receptor, PrPC is able to trigger its own internalization (Gauczynski et al., 2001b) and may

induce other signalling events like the activation of tyrosine kinase Fyn (Mouillet-Richard,

2000).

Heparan sulfate proteoglycans (HSPGs) have been characterized as a major binding partner of

PrPC (Gabizon et al., 1993; Shyng et al., 1995a) (Hundt et al., 2001). HSPGs are thought to

form a complex with PrP in association with the 37-kDa/67-kDa laminin receptor (Fig.3 )

(Hundt et al., 2001) and act as co-factors/co-receptors for PrPC.

2 Role of the 37-kDa/67-kDa laminin receptor (LRP/LR) in prion

diseases

In 1997, the 37-kDa/67-kDa laminin receptor (Fig.4 ) was identified as an interactor of the

prion protein in eukaryotic cells (Rieger et al., 1997). It was also shown that the LRP/LR

protein level was elevated in organs of TSE-infected animals and scrapie-infected

neuroblastoma cells, and that elevated LRP level correlated with PrPSc-propagation in

different tissues (Rieger et al., 1997). In further studies the direct interaction of PrP and

LRP/LR in vitro and binding of recombinant PrP to LRP/LR on the cell surface was shown

(Gauczynski et al., 2001b; Hundt et al., 2001). Two distinct LRP/LR-binding domains on PrP

were identified using yeast two-hybrid analysis and cell binding studies with recombinant

PrP-peptides (Fig.3 ):

- PrPLRPbd1 aa 144-179 (C-terminal domain)

- PrPLRPbd2 aa 53-93 (octarepeat region)

Binding to the second binding domain has been shown to be mediated by heperan sulfate

proteoglycans (Hundt et al., 2001). Employing mutant CHO cells that lack HSPGs and a PrP-

peptide comprising the octarepeat region of PrP it was shown that this peptide is not able to
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bind to HSPG-deficient CHO cells (Hundt et al., 2001). However, externally added HSPGs

restored the binding of the peptide to these cells, demonstrating that HSPGs are needed for the

binding of the PrP-peptide (Hundt et al., 2001).

Furthermore, it has been shown that the presence of LRP/LR on the cell surface of

mammalian cells is a prerequisite for binding and internalization of externally added PrP (for

review see (Leucht and Weiss, 2002)). Blockage of LRP/LR by pre-incubation with LRP/LR

specific antibodies resulted in an inhibited PrP-binding to the cells (Gauczynski et al., 2001b).

In addition, it was shown that externally added PrP is internalized by an LRP/LR-dependent

mechanism (Gauczynski et al., 2001b). By decreasing the incubation temperature from 37°C

to 4°C, internalization of PrP was totally inhibited, showing that the PrP internalization

process is an active, receptor mediated process (Gauczynski et al., 2001b). At 37°C, 25-50%

of the bound PrP was internalized in an LRP/LR dependent manner (Gauczynski et al.,

2001b).

The 37-kDa/67-kDa laminin receptor has two major isoforms, the mature 67kDa laminin

receptor and the 37kDa laminin receptor precursor. Both forms have been shown to locate in

Fig. 4 Functional domains of LRP/LR. LRP/LR spans the plasma membrane once with its C-

terminus directed towards the extracellular space (Castronovo et al., 1991b). PrP (Rieger et al.,

1997), laminin (Castronovo et al., 1991b)and heparin (Kazmin et al., 2000) binding sites have been

characterized.
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the plasma membrane of neuronal cells (Gauczynski et al., 2001b). However, four PrP-

binding isoforms were identified in mouse brain, including a 60 kDa and a 220 kDa form

(Simoneau et al., in press).

In parallel to the discovery of LRP/LR as a PrP receptor a second protein was found to

interact with the prion protein on the cell surface of mammalian cells (Martins et al., 1997).

This protein has an apparent molecular weight of 66 kDa and has been identified using

complementary hydropathy. There has been plausible theorizing about the 66 kDa protein

being the same protein as LRP/LR and indeed, both proteins are found in brains of mice, share

the same electrophoretic pattern with a doublet band at 60/67 kDa, and display the same

binding behaviour when used in overlay assays together with PrP (Simoneau et al., in press).

In contrast to our findings the 66 kDa protein was recently identified as the murine stress-

inducible protein 1 (STI-1) (Zanata et al., 2002). STI1 is thought to interact with PrPC on the

cell surface inducing neuroprotective signals that rescue cells from apoptosis (Zanata et al.,

2002).

In addition to the previous mentioned influences of LRP/LR on the metabolism of the cellular

prion protein, PrPC, the effect of LRP/LR blockage on the abnormal prion protein, PrPSc, has

been investigated (Leucht et al., in press). Scrapie infected neuroblastoma cells were used as a

model system to elucidate the effect of LRP/LR ablation on the abnormal prion protein in

these cells. The knock-down of LRP/LR expression by transfection of an expression plasmid

carrying an antisense LRP RNA cassette and transfection of siRNAs specific for the LRP

cDNA resulted in a transient reduction of PrPC and in an long lasting decrease of PrPSc

(Leucht et al., in press). The same effect was seen by blocking LRP/LR on the cell surface

with specific antibodies. Most likely these effects are due to inhibited internalization of PrPC

which therefore might not be convertible to PrPSc, and to an inhibited direct binding of

LRP/LR to PrPC or PrPSc. However, little is known about the conversion process and it has to

be investigated wether LRP/LR might be involved in the conversion process.

In summary, LRP/LR plays a crucial role in the metabolism of the normal prion protein and is

required for PrPSc propagation witin the life cycle of prions.
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Zusammenfassung

Kürzlich konnten wir mit Hilfe eines yeast two-hybrid screens ein Protein identifizieren, daß

spezifisch mit dem Prion-Protein (PrP) interagiert. Es handelt sich hierbei um das 37 kDa

Laminin-Rezeptor Vorläuferprotein (37 kDa LRP) (Rieger et al., 1997). Angetrieben durch

diese Entdeckung, konnten wir durch mehrere Versuche die Bedeutung des 37 kDa LRP im

Lebenzyklus von Prionen erarbeiten (Gauczynski et al., 2001b; Hundt et al., 2001; Rieger et

al., 1997). Die Interaktion zwischen 37 kDa LRP und PrP wurde durch Koinfektions- und

Kotransfektionsstudien in Insekten- und Säugerzellen bestätigt (Rieger et al., 1997).

Weiterhin konnte eine Rezeptor/Ligand Bindungskonstante ermittelt werden und eine in vitro

Interaktion zwischen rekombinantem PrP und LRP gezeigt werden (Gauczynski et al., 2001b;

Hundt et al., 2001). Es ist wahrscheinlich, daß LRP auch eine Rolle in der Pathogenese von

Prionenerkrankungen spielt, denn Organe von an Prionenerkrankungen leidenden Tieren

zeigen einen erhöhten Proteinspiegel des 37 kDa LRP und auch bei mit Prionen infizierten

Zellen konnte auf Proteinebene ein erhöhter LRP Spiegel gezeigt werden (Rieger et al., 1997).

Bei Experimenten zur Internalisierung von rekombinantem PrP an Zellen, konnte gezeigt

werden, daß dieser Vorgang abhängig vom 37 kDa/67 kDa Laminin-Rezeptor ist (Gauczynski

et al., 2001b). Umfangreiche mapping Experimente, mit Hilfe des yeast two-hybrid Systems

und Zellbindungsstudien mit unterschiedlichen PrP-Peptiden zeigten, daß zwei Regionen im

Prion-Protein existieren, an die LRP bindet. Eine Region (PrPLRPbd1), Aminosäure 144 bis

179, ist direkt, während die Bindung an die zweite Bindedomäne (PrPLRPbd2), die sich von

Aminosäure  53 bis 93 erstreckt, durch Heperansulfat Proteoglykan (HSPG) Moleküle

vermittelt wird (Hundt et al., 2001), welche als Korezeptoren/Kofaktoren für Prion-Proteine

fungieren.

Abstract

Recently, we identified the 37 kDa laminin receptor precursor (LRP) as an interactor for the

prion protein (PrP), using a yeast two-hybrid screen (Rieger et al., 1997). Employing several

experimental approaches, we showed that the 37 kDa LRP plays an important role within the

life cycle of prions. We could confirm the interaction of both proteins by cotransfection
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studies in insect and COS-7 cells (Rieger et al., 1997). Futhermore a binding constant was

determined and an in vitro interaction of both proteins could be demonstrated (Gauczynski et

al., 2001b; Hundt et al., 2001). It is likely that LRP plays a role in the pathogenesis of prion

diseases, since we observed an increased level of LRP in several organs from rodents,

suffering from prion diseases, and in scrapie infected neuroblastoma cells (Rieger et al.,

1997). Binding and internalization experiments of cellular PrP showed, that this process is

strictly dependent on the presence of the 37 kDa/67 kDa laminin receptor on the cell surface

of mammalian cells (Gauczynski et al., 2001b). Mapping studies, with the yeast two-hybrid

system and cell binding studies indicate that there are two distinct regions on PrP which

interact with LRP (Hundt et al., 2001). One region (PrPLRPbd1) streching from amino acid

144 to 179 is direct, whereas the other region (PrPLRPbd2), which spans from amino acid 53

to 93, encompassing the octarepeat region, is dependent on heperan sulfate proteoglycans

(HSPG’s) (Hundt et al., 2001).

1 Einführung

Übertragbare spongiforme Enzephalopathien sind neurodegenerative Erkrankungen, die durch

Prionen (proteinaceous infectious particles) ausgelöst werden. Dazu gehören die Creutzfeldt-

Jakob Krankheit (CJD), Fatale Familiäre Insomie (FFI), Gerstman-Sträussler-Scheinker

Syndrom (GSS),  Kuru beim Menschen, bovine spongiforme Enzephalopathie (BSE) beim

Rind und die Traberkrankheit (scrapie) beim Schaf (Lasmézas and Weiss, 2000; Weissmann

and Aguzzi, 1997). Prionen sind in jedem Fall innerhalb einer Spezies übertragbar und

bestehen wahrscheinlich nur aus dem abnormalen Prion-Protein (PrPSc) als infektiöse

Komponente und nicht aus Nukleinsäuren, deshalb handelt es sich nicht um eine

Viruserkrankung, sondern um eine vollkommen neue infektiöse Krankheit, die Prionen-

Erkrankung (Prusiner, 1982), bei der das normale Prion-Protein PrPC und damit auch die

abnormale, krankheitsauslösende Form, PrPSc, von einem wirtseigenen Gen abgelesen wird

(Prusiner, 1998). PrPSc und seine ca. 142 AS lange Proteinase K resistente Form, PrP 27-30,

kommen im Gehirn von erkrankten Individuen vor, wo sie amyloide Ablagerungen bilden
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(McKinley et al., 1991). PrPC und PrPSc unterscheiden sich nicht in ihrer

Aminosäurezusammensetzung, sie bilden aber eine unterschiedlich gefaltete dreidimensionale

Struktur (Konformation) aus. PrPC weist einen hohen Anteil an a-Helices auf (42 %) und

besitzt wenig b-Faltblatt Struktur (3 %), wogegen PrPSc weniger a-Helices (30 %), aber mehr

b-Faltblatt Strukturen (45%) aufweist (Caughey et al., 1991; Pan et al., 1993).

1.1 Die BSE Krise und ihre Folgen

1986 wurde der erste Fall von Boviner Spongiformer Enzephalopathie (BSE) in England

histopathologisch bestätigt. In den folgenden Jahren sind über 180.000 BSE Fälle in England

aufgetreten. Bei der Frage um die Herkunft von BSE werden zwei Hypothesen diskutiert. Die

Sheep-origin-Hypothese geht davon aus, daß BSE durch die Interspezies-Übertragung von

scrapie Prionen aus Schafen auf Rinder ausgelöst wurde (Wilesmith et al., 1991). Die Bovine

origin-Hypothese hingegen sieht den Ursprung von BSE in der Übertragung einer spontan

aufgetretenen BSE-Erkrankung beim Rind auf die gesamte Rinderpopulation in

Großbritannien (Philips, 2000).

1996 ist im Zusammenhang mit der BSE-Krise eine neuartige Variante der Creutzfeldt-Jakob

Krankheit (vCJD) aufgetreten (Will et al., 1996). Das nahezu alleinige Auftreten dieser

Krankheitsform in Großbritannien brachte einen ersten Hinweis auf eine

Krankheitsübertragung von BSE infizierten Rindern auf Menschen. Bis jetzt (September

2002) sind über 130 Fälle von vCJD bekannt geworden, bei denen die Patienten

außergewöhnlich jung waren, jedoch keine besonderen Essgewohnheiten hatten (Will et al.,

1999). Einen starken Hinweis auf die direkte Übertragung von BSE-Prionen auf den

Menschen, brachten mehrere Versuche.

- Makkaken, die mit BSE Prionen inokuliert wurden, zeigten die gleichen floriden

Plaques wie vCJD Patienten (Lasmézas et al., 1996).

- Transgene Mäuse, die nur das humane Prion-Protein exprimieren, lassen sich mit BSE

Prionen infizieren (Hill et al., 1997).
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- Wildtyp-Mäuse die mit vCJD Prionen oder BSE Prionen inokuliert wurden, zeigten

vergleichbare Inkubationszeiten und Läsionsprofile (Bruce et al., 1997).

- Bei in vitro Konversionsstudien konnte humanes PrP durch PrPBSE in die Proteinase K

resistente Form überführt werden (Raymond et al., 1997).

- Mäuse, die ausschließlich das bovine Prion-Protein exprimieren, wurden mit BSE

Prionen, sowie mit vCJD Prionen inokuliert und zeigten in beiden Fällen vergleichbare

Inkubationszeiten, neuropathologische Merkmale und PrPSc Ablagerungen (Scott et

al., 1999).

Zusammenfassend kann nunmehr davon ausgegangen werden, daß die neue Variante der

Creutzfeldt-Jakob Krankheit durch mit BSE Prionen kontaminierte Lebensmittel oder andere

Produkte, die Rinderbestandteile enthalten,  ausgelöst wurde.

1.2 Die Rolle eines zellulären Prion-Protein-Rezeptors

Die Protein-only-Hypothese sagt aus, daß das Zelloberflächenprotein PrPC in seine

krankheitsauslösende Isoform PrPSc überführt wird, ein Prozess bei dem die Konformation des

Prion-Proteins einer dramatischen Umwandlung unterworfen ist (Prusiner et al., 1998). Bei

dieser Umwandlung erwirbt das Protein zusätzliche b-Faltblatt Regionen, welches zu einer

partiellen Proteaseresistenz des Proteins führt. Von großem Interesse ist nun die Aufklärung

des Lebenszyklus von Prionen in der Zelle, um den Ort der Konversion näher zu bestimmen

(Abb. 1). PrPC wird im rauhen endoplasmatischen Retikulum (rER) synthetisiert und wird

über den Golgi Apparat und sekretorische Vesikel an die Zelloberfläche gebracht. Dort ist es

über einen Glykosylphosphatidylinositolanteil (GPI) an der Plasmamembran verankert (Stahl

et al., 1987). Nach einer gewissen Verweildauer an der Zellmembran, welche bei

Neuroblastomzellen ungefähr 60 Minuten beträgt (Shyng et al., 1994), wird es über clathrin-

coated pits (Shyng et al., 1994) oder caveolae-like domains (CLD’s) (Vey et al., 1996)

aufgenommen. Die Endozytose könnte durch ein Transmembranprotein, wie den Laminin-

Rezeptor, vermittelt werden, welcher das GPI-verankerte Prion-Protein mit Clathrin

verbindet. Von Harris wurde die Existenz eines PrP-Rezeptors vorgeschlagen, der eine
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Coated-pit-Lokalisationssequenz an seiner zytosolischen Domäne trägt und mit seiner

extrazellulären Domäne an den N-terminalen Teil des Prion-Proteins binden kann (Harris,

1999; Harris et al., 1996). Harris konnte desweiteren beobachten, daß N-terminal verkürzte

Versionen des Prion-Proteins schlechter durch Endozytose in die Zelle aufgenommen werden

und daß deren Konzentration in coated-pits weitaus geringer ist als die von Prion-Proteinen

der vollen Länge (Harris, 1999; Shyng et al., 1995b). Weiterhin konnte er beobachten, daß

Abb.1 Modell für den Lebenszyklus von Prionen. PrPC wird im rauhen Endoplasmatischen

Retikulum (rER) synthetisiert und wird über den sekretorischen Weg an die Zelloberfläche

gebracht, wo es über einen Glykosylphosphatidylinisitolanteil (GPI) verankert ist. Endozytose von

PrPC und möglicherweise PrPSc über clathrin coated vesicles wird vom 37 kDa/67 kDa Laminin-

Rezeptor vermittelt. Die Aufnahme von PrPSc könnte auch unabhängig vom Laminin-Rezeptor

stattfinden. Die Konversion des internalisierten PrPC zu PrPSc findet vermutlich in Endosomen,

Lysosomen oder Endolysosomen satt. PrP Replikation und Aggregation kann in neuronalen Zellen,

sowie Zellen des lymphoretikulären Systems stattfinden. Alternativ dazu kann die Endozytose und

Konversion von PrPC zu PrPSc auch in caveolae-like domains (CLD’s) stattfinden (modifiziert nach

(Gauczynski et al., 2001a; Gauczynski et al., 2001b)).
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Hühner Prion-Protein über Heperansulfat an die Zelloberfläche von Säugerzellen bindet

(Shyng et al., 1995a). Die Interaktion zwischen Heperansulfaten und dem Prion-Protein

wurde bereits von zahlreichen Gruppen beschrieben (Brimacombe et al., 1999; Caughey et

al., 1994; Chen et al., 1995; Gabizon et al., 1993). Kürzlich konnte gezeigt werden, daß

Heparin die Bindung von Kupferionen an PrP kompetitieren kann (Brimacombe et al., 1999),

was darauf hinweist, daß Heparin an die Oktarepeatregion des Prion-Proteins bindet, von der

man weis, daß sie Affinität für Kupferionen besitzt (Brown et al., 1997; Jackson et al., 2001).

In vivo können Heperansulfat-Proteoglykane an das Prion-Protein binden. Heperansulfat

Proteoglykane (HSPG’s) bestehen aus einem Proteinanteil, dem Core-Prtotein, an das über

einen aus vier Zuckermolekülen bestehenden Linker Glykosaminoglykane (GAG’s)

angehängt sind. GAG’s sind unverzweigte, negativ geladene Zuckerketten, die zum Beispiel

aus Heperansulfaten bestehen können. Kürzlich konnten wir drei Heperansulfat-

Bindedomänen im Prion-Protein identifizieren (Warner et al., 2002). HSPG’s spielen

vermutlich eine wichtige Rolle im Lebenszyklus von Prionen. Der Prozess der Aufnahme von

PrPSc in eine Zelle ist noch weitestgehend unklar. Das infektiöse Prion-Protein könnte

- über einen Rezeptor in die Zelle gelangen

- PrPC vermittelt oder

- unspezifisch aufgenommen werden.

Die Konversion des Prion-Proteins in die abnormale Form könnte nach der Aufnahme in

endozytischen Kompartimenten, wie Endosomen, Lysosomen oder Endolysosomen

geschehen. Diese Konversion könnte von einem zellulären Protein, dem Protein X, beeinflußt

werden (Telling et al., 1995). Dabei könnte es sich um ein molekulares Chaperon, wie Hsp60

handeln (Edenhofer et al., 1996). Auch das Phänomen der Speziesbarriere kann mit einem

speziesspezifischem Molekül, wie Protein X, erklärt werden. Dabei könnte Protein X generell

mit dem Prion-Protein assoziiert vorliegen und somit die Bindung und Konversion von PrPSc

anderer Spezies beeinflussen. Ein weiterer Weg in die Zelle könnte über Caveolae führen, in

denen sich GPI verankerte Proteine befinden können (Anderson, 1993). Der

Umwandlungsprozess von PrPC zu PrPSc könnte auch in caveolae like domains (CLD’s)

stattfinden, da beide Formen des Prion-Proteins in diesem Kompartiment nachgewiesen
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wurden (Vey et al., 1996). Um nun den komplexen Vorgang der Umwandlung des Prion-

Proteins zu verstehen ist es notwendig dessen Interaktion mit möglichen Rezeptorproteinen,

sowie die Bedeutung von PrP-ähnlichen Proteinen wie Doppel (Dpl), zu untersuchen.

Doppel wurde entdeckt, als man versuchte den Phänotyp einiger PrP0/0-Mäuse zu erklären (Li

et al., 2000; Moore et al., 1999). (Sakaguchi et al., 1996) konnten erfolgreich PrP0/0-Mäuse

generieren, die im Unterschied zu anderen PrP0/0-Mäusen (Bueler et al., 1992; Lledo et al.,

1996; Manson et al., 1994) einen zum Wildtyp unterschiedlichen Phänotyp zeigten. Die

Mäuse zeigten Ataxien und einen Verlust an Purkinjezellen im Cerebellum. Als man der

Sache auf den Grund ging, stellte man fest, daß das zu PrP ähnliche Protein Doppel

verantwortlich für diese Veränderungen ist. Doppel wird bei Wildtyp-Mäusen nur im Testis

exprimiert, doch durch Deletion einer 1 kb großen Region 5’ des Exons 3 des PrP Gens Prnp

wurde auch der 3’ Spliceakzeptor deletiert und dies führte bei den genannten PrP0/0 Mäusen zu

einer Überexpression von Doppel im Gehirn (Li et al., 2000; Moore et al., 1999; Silverman et

al., 2000). Diese Überexpression ist verantwortlich für die beobachteten Symptome der

Knockout Mäuse, wobei gezeigt werden konnte, daß die Menge von Doppel im Gehirn von

PrP0/0 Mäusen invers proportional zum Beginn der Kranheitssympotme ist und die

Anwesenheit von nur einem Prnp-Allel die Krankheitssymptome verhindern kann (Rossi et

al., 2001). Hierbei handelt es sich um das erste PrP ähnliche Protein, das bei Säugern entdeckt

wurde. Es besteht aus 179 Aminosäuren und besitzt ca. 25 % Homologie zu allen anderen

bekannten Prion-Proteinen. Das Dpl Gen, Prnd, befindet sich 16 kb stromabwärts des PrP

Gens Prnp. Es ist wie PrP selbst ein N-glykosyliertes und mit Glykosylphosphatidylinositol

verankertes Protein, besitzt aber nicht die Prion-Protein-typische Oktarepeatregion (Silverman

et al., 2000). Wie kann nun die Überexpression von Doppel in Gehirn von PrP0/0-Mäusen zu

solchen Veränderungen führen? Durch Experimente mit PrP0/0-Mäusen, die N-terminal

verkürzte Versionen des Prion-Proteins exprimierten, konnte gezeigt werden, daß Mäuse, die

PrP ohne die Regionen von Aminosäure 32-121 oder 32-134 exprimieren Symptome von

Ataxie und Zelldegeneration im Gehirn entwickeln (Shmerling et al., 1998). Kleinere

Verkürzungen, dagegen, hatten keinen Effekt. Wie bei den Symptomen, die durch die

Überexpression von Doppel hervogerufen wurden, konnte auch hier die Entwicklung von
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Krankheitssymptomen durch die Expression von PrP verhindert werden. Da Doppel eine

gewisse Homologie mit dem C-Terminus von PrP hat, kann man davon ausgehen, daß es sich

bei den von Doppel ausgelösten Krankheitssymptomen und den Effekten der verkürzten

Prion-Proteine um vergleichbare Phänomene handelt. An diesem Punkt kommt der PrP-

Rezeptor ins Spiel. Man kann postulieren, daß der PrP-Rezeptor zwar an die verkürzten Prion-

Proteine und Doppel binden kann, aber es in beiden Fällen nicht möglich ist eine

anzunehmende Funktion auszuüben. Dies könnte dann zu dem pathologischen Phänotyp

führen (zur weiteren Übersicht siehe (Gauczynski et al., 2001a)).

Kürzlich wurde eine Aktivität des Prion-Protein bei der Signaltransduktion vorgeschlagen, bei

der das Prion-Protein die Tyrosinkinase Fyn aktiviert (Mouillet-Richard, 2000). Da PrPC auf

der Zelloberfläche GPI verankert vorliegt und Fyn an der Innenseite der Plasmamembran

sitzt, ist es vorstellbar, daß ein Transmembranprotein die Interaktion zwischen Fyn und PrP

vermitteln könnte. Auch hier könnte die Rolle eines Prion-Protein-Rezeptors zu sehen sein.

1.3 Der 37 kDa/67 kDa Laminin-Rezeptor

Der 37 kDa laminin receptor precursor (37 kDa LRP, p40, LBP) ist das Vorläuferprotein des

67 kDa high affinity Laminin-Rezeptors (67 kDa LR) (Tab. 1)(Rao et al., 1989; Yow et al.,

1988). Die 67 kDa Form wurde zunächst aus Tumorzellen isoliert (Lesot et al., 1983;

Malinoff and Wicha, 1983; Rao et al., 1983), wo das Protein eine hohe Affinität zu Laminin

aufweist. Laminin ist ein Glykoprotein der extrazellulären Matrix, wo es in Anhaftung,

Bewegung, Differenzierung und Wachstum von Zellen involviert ist (Beck et al., 1990).

Beide Formen des Laminin-Rezeptors existieren nebeneinander in Säugerzellen, was durch

immunologische Studien von Membranfraktionen gezeigt werden konnte (Gauczynski et al.,

2001b). Die 37 kDa Form kommt auch im Zytosol vor, wo sie mit Ribosomen assoziiert ist

und Aufgaben bei der Proteintranslation übernehmen kann (Auth and Brawerman, 1992; Sato

et al., 1999). Es wurde auch die Existenz dieses Proteins im Kern diskutiert, wo es bei der

Aufrechterhaltung von Strukturen involviert sein soll (Kinoshita et al., 1998; Sato et al.,

1996). Alle Forschungsergebnisse zusammengenommen, handelt es sich um ein

multifunktionelles Protein, welches ausgehend von dem Genprodukt p40 zwei
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unterschiedliche Formen bilden kann, in verschiedenen Zellkompartimenten vorkommt und

dort unterschiedliche Funktionen ausübt. Die Aminosäuresequenz des 37 kDa/67 kDa

Laminin-Rezeptors ist hochkonserviert, mit einer hohen Homologie bei Säugern (Rao et al.,

1989). Durch eine Evolutionsanalyse der Aminosäuresequenz konnte gezeigt werden, daß die

palindromische Sequenz LMWWML verantwortlich für die Fähigkeit ist, Laminin zu binden.

Diese Sequenz liegt im PrP-bindenden Bereich des 37 kDa LRP (Ardini et al., 1998; Hundt et

al., 2001; Rieger et al., 1997). Es scheint, daß das ribosomale Protein p40, das zunächst nicht

die Fähigkeit besaß Laminin zu binden (Auth and Brawerman, 1992), im Laufe der Evolution

durch Aminosäureaustausch und Einführung von posttranslationalen Veränderungen zu einem

lamininbindenden Zelloberflächenprotein evolvierte, welches auch Elastin (Hinek et al., 1988;

Salas et al., 1992) und Kohlehydratketten (für eine Übersicht siehe (Ardini et al., 1998;

Mecham, 1991; Rieger et al., 1999) binden kann.

Die Laminin-Rezeptor Familie ist in vielen eukaryotischen Zellen hochkonserviert (Keppel

and Schaller, 1991; Wewer et al., 1986) und kann auch in Archaea gefunden werden (Ouzonis

et al., 1995). Der 37 kDa LRP fungiert als Rezeptor für das Venezuelanische Equine

Enzephalitis Virus auf Moskitozellen (Ludwig et al., 1996), während die 67 kDa-Form

offensichtlich als Rezeptor für das Sindbis Virus dienen kann (Wang et al., 1992)
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Welche Prozesse liegen der Umwandlung der 37 kDa Form in das 67 kDa Protein zugrunde?

Beide Proteine bestehen aus der 37 kDa-Komponente, wobei mehrere Vorschläge gemacht

wurden, die größere Masse des reifen Proteins zu erklären. Homodimerisierung des 37 kDa-

Proteins, wie auch die Bindung einer anderen Komponente wurden diskutiert (Castronovo et

Tab. 1 Charakteristiken des 37kDa/67kDa Laminin-Rezeptors

Isolation 37 kDa LRP/p40 cDNA (Rao et al., 1989; Yow et al., 1988), 67 kDa

Laminin Rezeptor, isoliert aus Tumoren (Lesot et al., 1983; Malinoff and

Wicha, 1983; Rao et al., 1983)

Vorkommen des 37 kDa

LRP/p40 Gens

Saccharomyces cerevisiae (Davis et al., 1992), Arabidopsis thaliana

(Garcia-Hernandez et al., 1994), Drosophila melanogaster (Kazmin et

al., 2000; Melnick et al., 1993), der Seeigel Urechis caupo (Rosenthal

and Wordeman, 1995), Chlorohydra veridissima (Keppel and Schaller,

1991), Candida albicans (Lopez-Ribot et al., 1994) und das

Archaebakterium Haloarcula marismortui (Ouzonis et al., 1995)

Subzelluläre Lokalisation

des 37 kDa LRP

Auf der Zelloberfläche von Moskito Zellen (Ludwig et al., 1996),

Candida albicans (Lopez-Ribot et al., 1994) und Säugerzellen wie

(MDCK) (Salas et al., 1992); im Zytoplasma auf 40S Ribosomen (Auth

and Brawerman, 1992; Sato et al., 1999); im Nukleus (Sato et al., 1996)

Molekulargewicht 37.000 (Laminin Rezeptor Vorläuferprotein)

67.000 (gereifter Laminin Rezeptor)

Bindungspartner von

- 37 kDa LRP

- 67 kDa LR

Laminin (Rieger et al., 1997), PrPC (Rieger et al., 1997), das

Venezuelanische Equine Enzephalitis Virus (VEE) (Ludwig et al., 1996);

Interaktion mit den Histonen H2A, H2B und H4 (Kinoshita et al., 1998)

Laminin (Beck et al., 1990), Elastin und Kohlehydrate (zur Übersicht

siehe (Ardini et al., 1998; Mecham, 1991; Rieger et al., 1999)), der

Sindbis Virus (Wang et al., 1992)

Funktionelle Domänen Transmembran Domäne; AS 86-101 (Castronovo et al., 1991b), Laminin

Bindedomäne (Castronovo et al., 1991b), PrPC Bindedomäne (Rieger et

al., 1997)
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al., 1991a; Landowski et al., 1995). Andere Studien jedoch schlagen ein durch Fettsäuren

stabilisiertes Heterodimer vor (Buto et al., 1998). Kürzlich wurde gezeigt, daß der 67 kDa-

Laminin-Rezeptor auch auf aktivierten humanen T-Lymphozyten vorkommt und dort

zusammen mit Integrinen eine starke Affinität zu Laminin aufweist (Canfield and Khakoo,

1999). Zusammenfassend kann jedoch gesagt werden, daß die Umwandlung von der 37 kDa-

in die 67 kDa-Form des Laminin-Rezeptors ungeklärt ist.

Der 37 kDa/67 kDa Laminin-Rezeptor ist durch mehrere Gene im Genom von Säugern

vertreten. Beim Menschen sind es 26, bei der Maus 6 Kopien (Fernandez et al., 1991; Jackers

et al., 1996b). Das Gen besteht aus sieben Exons und sechs Introns, wobei es sich bei den

meisten Genkopien wahrscheinlich um Pseudogene handelt (Jackers et al., 1996a). Bei der

Maus gibt Hinweise, das mindestens zwei der sechs Gene aktiv sind und sich auf Chromosom

9 bzw. 6 befinden (Douville and Carbonetto, 1992; Fernandez et al., 1991). Interessanterweise

wurde kürzlich gezeigt, daß sich auf Chromosom 9 möglicherweise Genloci befinden, welche

die Inkubationszeit von Prionen-Erkrankungen bei Mäusen beeinflussen (Stephenson et al.,

2000).

Das Gen, daß für den 37 kDa LRP codiert ist in vielen verschieden Spezies identifiziert

worden, wie Saccharomyces cerevisiae (Davis et al., 1992), Arabidopsis thaliana (Garcia-

Hernandez et al., 1994), Drosophila melanogaster (Melnick et al., 1993), dem Seeigel

Urechis caupo (Rosenthal and Wordeman, 1995), Chlorohydra veridissima (Keppel and

Schaller, 1991), Candida albicans (Lopez-Ribot et al., 1994) und dem Archaebakterium

Haloarcula marismortui (Ouzonis et al., 1995).
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2 Der 37 kDa/67 kDa Laminin-Rezeptor ist der zelluläre Rezeptor für das zelluläre

Prion-Protein

Neuste Forschungsergebnisse zeigen, daß der 37 kDa/67 kDa Laminin-Rezeptor der Rezeptor

für das Prion-Protein ist. Hierbei wurden wesentliche Fragen, welche im Zusammenhang mit

der Interaktion beider Proteine stehen, beantwortet. Liegen beide Proteine im selben

Zellkompartiment vor? Ist die Interaktion spezifisch? Hat die Interaktion Einfluß auf den

zellulären Lebenszyklus des Prion-Proteins? Welche Regionen des Prion-Proteins vermitteln

die Interaktion? Sind Kofaktoren involviert?

2.1 Die zelluläre Lokalisation des 37 kDa/67 kDa Laminin-Rezeptors

Um eine Funktion als zellulärer Rezeptor ausüben zu können, muß zumindest eine der beiden

Formen auf der Zelloberfläche von relevanten Zellen vorkommen. Nach bisherigen Wissens-

stand, sind beide Formen auf der Oberfläche von verschiedenen Zelltypen nachzuweisen. Der

37 kDa LRP dient als Rezeptor für das Venezuelanische Equine Enzephalitis Virus auf

Moskitozellen (Ludwig et al., 1996), ist auf der Oberfläche von Candida albicans lokalisiert

(Lopez-Ribot et al., 1994) und wurde auf der Oberfläche von Madin-Darby canine-kidney

(MDCK)-Zellen gefunden (Salas et al., 1992). Kommt das 37 kDa Laminin-Rezeptor-

Vorläuferprotein auch in anderen Zellkompartimenten vor (Nukleus, Zytosol), so scheint die

Verbreitung der 67 kDa-Form auf die Zelloberfläche beschränkt zu sein. Die 67 kDa-Form

stellt den Rezeptor für das Sindbis Virus auf Hamsterzellen dar (Wang et al., 1992) und ist

eine der Hauptkomponenten auf der Oberfläche von manchen Tumoren, wo er eine entschei-

dende Rolle bei der Metastasierung spielt (Castronovo, 1993).

Kürzlich konnten wir nachweisen, daß das Prion-Protein und der 37 kDa/67 kDa Laminin-

Rezeptor auf der Oberfläche von N2a Zellen, sowie mit rekombinanter Semliki-Forest-Virus-

(SFV)-RNA kotransfizierten Baby Hamster Kidney (BHK) Zellen, kolokalisieren

(Gauczynski et al., 2001b), eine Voraussetzung für eine in vivo Interaktion beider Proteine.

FACS Analysen (fluorescence-activated cell sorting)mit LRP-spezifischen Antikörpern

zeigten, daß der Laminin-Rezeptor auf der Oberfläche von nativen Zellen verschiedenen Typs
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vorkommt. Da durch eine FACS Analyse keine Unterscheidung zwischen den beiden Formen

gemacht werden konnte, stellten wir Membranfraktionen von N2a und BHK Zellen her. So

konnten wir zeigen, daß sowohl die 37 kDa-Form, als auch die 67 kDa-Form in Membranen

von N2a Zellen vorkommen, nicht aber in mit für LRP-kodierender, rekombinanter Semliki-

Forest-Virus-(SFV)-RNA transfizierten BHK Zellen. Im letzteren Fall konnte im Zellysat und

in der Membranfraktion nur  die 37 kDa-Form nachgewiesen werden. Insgesamt zeigen

unsere, sowie ältere Studien, daß der Laminin-Rezeptor durchaus an der Zelloberfläche

vorkommt und somit eine Interaktion mit dem Prion-Protein möglich ist. Nichtdestoweniger

ist eine Unterscheidung zwischen beiden Formen des Laminin-Rezeptors schwierig, deshalb

müssen wir annehmen, daß beide Formen die Fähigkeit besitzen, mit dem Prion-Protein zu

interagieren.
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2.2 HSPG Moleküle als Kofaktoren/Korezeptoren des Prion-Proteins

Das Laminin-Rezeptor-Vorläuferprotein (37 kDa-LRP) wurde in einem yeast two-hybrid

screen als Interaktor für das Prion-Protein (PrPC) identifiziert (Rieger et al., 1997) (Zur

Übersicht siehe (Gauczynski et al., 2001a; Rieger et al., 1999)). In der selben Arbeit konnte

auch eine Interaktion zwischen 37 kDa-LRP und PrPC in Insekten- und COS-7 Zellen

aaa

HSPG

GPI

Heperansulfat
Kette

negativ geladene Zuckermoleküle
Linker

HSPG

Linker

BD1
(AS 144-179)

BD2 (AS 53-93)

PrP HSPG
abhängige
Bindedomäne

direkte
Bindedomäne
(AS 161-179)

LRP/LR

Proteoglykan

Abb. 2 Modell der Funktion des 37 kDa/67 kDa Laminin Rezeptors (LRP/LR) als Rezeptor für das

Prion Protein. PrP bindet an LRP/LR über PrPLRPbd1 and PrPLRPbd2. PrPLRPbd2 (AS 53-93) ist

abhängig von der Anwesenheit eines Heparansulfat (HS) Arms eines HSPG Moleküls. PrPLRPbd1

(AS 144-179) interagiert jedoch direkt mit LRP/LR (wie im yeast two-hybrid System gezeigt

wurde). Die Anwesenheit von beiden Bindestellen, PrPLRPbd1 und PrPLRPbd2, könnte die

Bindung des Prion Proteins beträchtlich stabilisieren. Direkte Bindung von LRP/LR an PrP findet

über die direkte Bindestelle zwischen AS 161-179 auf LRP/LR statt. Die indirekte, HSPG

abhängige Bindedomäne könnte sich zwischen AS 101 und 160 oder zwischen AS 180-285

(mutmaßlich AS 205 und 229 auf LRP (Kazmin et al., 2000)) befinden. Die Assozation von

LRP/LR mit HSPG’s könnte die Beziehung zwischen 37 kDa LRP und 67 kDa LR erklären

(modifiziert nach (Hundt et al., 2001)).
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nachgewiesen werden. Um weitere Indizien für die physiologische Relevanz dieser

Interaktion zu sammeln, untersuchten wir die Bindung des reifen Prion-Proteins und

verschiedener PrP-Peptide an lebende Zellen (Gauczynski et al., 2001b; Hundt et al., 2001).

Die Bindung eines Peptids an Säugerzellen ist dabei von Heparansulfat-Proteoglycanen

(HSPG’s) abhängig (Hundt et al., 2001). Peptide, welche die Region des Prion-Proteins von

Aminosäure 53-93 umfassen, binden nicht an HSPG-defiziente CHO Zellen, aber sehr wohl

an Wildtyp-Zellen (Hundt et al., 2001). Gleichzeitig wurde mit Versuchen im Yeast-two-

hybrid System eine Region des Prion-Proteins als direkte Bindedomäne identifiziert (Hundt et

al., 2001). Hier wurden verkürzte Versionen des Prion-Proteins in der Bait-Position und das

Laminin-Rezeptor-Vorläuferprotein in Prey-Position eingesetzt. Die Region von Aminosäure

144-179 des Prion-Proteins wurde als LRP bindende Region identifiziert. Diese Region

unfasst die erste a -Helix und das zweite b -Faltblatt. Interessanterweise konnte kürzlich

gezeigt werden, daß Anti-PrP-Antikörper, die gegen die Region der ersten a-Helix gerichtet

sind PrPSc Vermehrung im Zellkuktursystem verhindern können (Peretz et al., 2001).

Weiterhin sind diese Antikörper fähig die Infektiösität in Prion infizierten Zellen aufzuheben.

Peptide, die die Regionen von Aminosäure 144-179 des Prion-Proteins umfassen, konnten

auch an Zellsystemen getestet werden, sie binden sowohl ohne, als auch in Anwesenheit von

HSPG’s an Zellen. Zusammenfassend konnten wir zwei Bindedomänen auf dem Prion-

Protein identifizieren:

- PrPLRPbd1, von Aminosäure 144 bis 179 (direkte Bindedomäne)

- PrPLRPbd2, von Aminosäure 53 bis 93 (Heperansulfat Proteoglykan abhängige Bind-

edomäne) (Abb. 2).

Auf LRP konnten wir eine direkte Interaktionsdomäne mit PrP identifizieren (Rieger et al.,

1997), welche sich zwischen Aminosäure 157 und 180 befindet. Verkürzte LRP-Moleküle,

LRP44-101 und LRP44-160, sowie LRP180-295 waren nicht in der Lage mit PrP der vollen

Länge im Yeast-two-hybrid-System zu interagieren (Hundt et al., 2001), was zeigt, daß die

PrP Bindedomäne identisch mit der Laminin Bindedomäne ist. Auch eine direkte Interaktion

zwischen PrPLRPbd1 und LRP161-179 konnte im Yeast-two-hybrid-System gezeigt werden

(Hundt et al., 2001), was beweist, daß sich die direkte Bindedomäne auf LRP von
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Aminosäure 161 bis 179 erstreckt. Exprimiert man nun eine LRP Deletionsmutante, welche

diese Binderegion nicht besitzt, in CHO-Zellen, so kann PrPC nach wie vor an diese Zellen

binden, was zeigt, daß eine zweite Bindedomäne für PrP auf LRP exisiert, welche sich

zwischen Aminosäure 101-160 oder 181- 295 befindet (Hundt et al., 2001). Kürzlich konnten

wir zwei weitere Bindedomänen im zellulären Prion-Protein für Heperansulfate identifizieren

(Warner et al., 2002).

2.3 Die Bindung und Aufnahme von rekombinantem Prion-Protein durch

Säugerzellen

Rekombinantes Prion-Protein kann von Säugerzellen gebunden und internalisiert werden

(Gauczynski et al., 2001b). Dabei untersuchten wir, ob dieser Vorgang von der Anwesenheit

des Laminin-Rezeptors abhängig ist. Dazu wurden BHK Zellen mit rekombinanter für den

Laminin-Rezeptor kodierender Semliki-Forest-Virus-(SFV)-RNA transfiziert. Die Zellen

zeigten daraufhin eine Überexpression des humanen Laminin-Rezeptors, wobei nur die 37

kDa Form nachgewiesen werden konnte. Durch eine FACS Analyse konnte gezeigt werden,

daß sich auch an der Zelloberfläche ein erhöhter Spiegel des Laminin-Rezeptors feststellen

läßt. Dieser erhöhte Rezeptorspiegel auf der Plasmamembran erleichtert eine Bindung und

Aufnahme des Prion-Proteins. Weiterhin konnte die Bindung und Aufnahme von PrP durch

Vorabinkubation mit LRP spezifischen Antikörpern unterdrückt werden, was zeigt, daß die

Bindung des Prion-Proteins von der Anwesenheit des Laminin-Rezeptors an der

Zelloberfläche  abhängig ist (Abb. 3). Wir stellten eine mengenabhängige Bindung des Prion-

Proteins fest, welche in einer sigmoidalen Rezeptor/Ligand Bindungskurve resultierte.

Ausgehend von dieser Kurve konnten wir eine Bindungskonstante (KD) von 1 x 10-7 mol/L

ermitteln (Gauczynski et al., 2001b).
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Doch spielt auch membranständiges Prion-Protein bei der Aufnahme von exogenem PrP eine

Rolle? Wir isolierten primäre Neuronen aus PrP+/+-, sowie PrP0/0-Mäusen, um deren

Aufnahme von exogenem, rekombinantem PrP zu Vergleichen. Es stellte sich heraus, daß die

Aufnahme von PrP von diesen Neuronen wiederrum LRP-abhängig war und daß es keinen

Unterschied in der Effizienz der Aufnahme gab (Gauczynski et al., 2001b). Endogenes PrP

dient also nicht als Korezeptor für die Aufnahme von exogenem PrP. Diese Versuche

unterstreichen die wichtige Rolle des Laminin-Rezeptors als Rezeptor für das zelluläre Prion-

Protein.

Abb.3 LRP/LR abhängige Bindung von rekombinantem PrP an N2a Zellen. (A) N2a Zellen

wurden mit GST::huPrP23-230 (6 µg) inkubiert. Die Bindung des rekombinanten Proteins wurde

über indirekte Immunfluoreszens sichtbar gemacht. Primärer Antikörper monoklonaler anti-PrP

Antikörper 3F4, sekundärer Antikörper anti-Maus IgG Cy3; Zelloberflächenfärbung. (B)

Vorabinkubation von N2a Zellen mit anti-LRP/LR spezifischem Antikörper (W3) verhindert die

Bindung des rekombinantem prion proteins.
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Weiterhin wollten wir wissen, ob die beobachetete erhöhte Aufnahme des Prion-Proteins

einen aktiven Rezeptorvermittelten Prozess darstellt. Durch die Hemmung der

Internalisierung des Prion-Proteins bei einer Inkubationstemperatur von 4°C konnte gezeigt

werden, daß es sich bei der Aufnahme des Prion-Proteins tatsächlich um einen  aktiven

rezeptorvermittelten Prozess handelt (Gauczynski et al., 2001b).

a

LRP überexprimierende
BHK Zelle

LRP

PrP

Bindung von PrP an die Zelloberfläche
und Internalisierung

Keine PrP Oberflächenbindung
und keine Internalisierung

Sekretion

PrP LRPdelTMD

LRPdelTMD überexprimierende
BHK Zelle

Abb.4 Modell zur Wirkungsweise der LRP Transmembran-Deletionsmutante LRPdelTMD. BHK

Zellen, welche volle Länge LRP überexprimieren, binden und internalisieren das prion protein. Im

Gegensatz dazu können BHK Zellen, welche LRPdelTMD in das Medium sezernieren kein prion

protein binden und internalisieren. LRPdelTMD wird in das Medium sezerniert (decoy- oder

Lockvogel- Effekt).
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2.4 Eine Transmembran-Deletionsmutante (TMD) des Laminin-Rezeptors verhindert

die Aufnahme von PrP

Der Laminin-Rezeptor besitzt eine vermeintliche Transmembrandomäne, welche sich von

Aminosäure 86-101 erstreckt (Castronovo et al. , 1991b). Um die Bedeutung der

Transmembrandomäne zu untersuchen, generierten wir eine LRP Deletionsmutante, bei der

diese Region fehlte. Die PrP Bindedomänen des Rezeptors blieben bei dieser Deletion

unberührt. Die Expression dieser Mutante in BHK Zellen durch Transfektion mit

rekombinanter Semliki-Forest-Virus-(SFV)-RNA führte im Gegensatz zum Wildtyp-LRP-

Protein zur Sekretion des mutierten Proteins (Gauczynski et al., 2001b). Wurde nun von

außen zelluläres Prion-Protein zugegeben, war es nicht in der Lage an die Zellen zu binden.

Exogenes Prion-Protein wurde also bereits im Medium von der  dort vorhandenen Laminin-

Rezeptor Mutante gebunden und abgefangen (decoy- oder Lockvogel- Effekt) (Abb. 4). Dies

zeigt, daß die LRP Transmembrandeletionsmutante die Aufnahme von PrP verhindern kann

(Gauczynski et al., 2001b).

3 Ausblick

Die vorgestellten Studien und neusten Vorschungsergebnisse stellen klar heraus, daß es sich

bei dem 37 kDa/67 kDa Laminin-Rezeptor um den Rezeptor für das zelluläre Prion-Protein

handelt. Die Rolle, welche beide Proteine und vor allem das Prion-Protein im endozytotischer

Weg der Zelle spielen ist spekulativ. Dem Prion-Protein werden vielfältige Funktionen in der

Zelle nachgesagt, wie zum Beispiel ein Rolle bei der Kupferbindung (Brown et al., 1997;

Jackson et al., 2001), Superoxiddismutase Aktivität (Brown et al., 1999), Lamininbindung

(Graner et al., 2000), Signaltransduktionsaktivtät (Mouillet-Richard, 2000) und eine

antiapoptotische  Aktivität (Bounhar et al., 2001). Kürzlich wurde sogar eine Funktion im

Nukleinsäuremetabolismus gefunden, wobei PrP eine ähnliche Funktion wie retrovirale

Nukleokapsidproteine ausführen kann (Gabus et al., 2001). Welche  der vorgeschlagenen

Funktionen nun wirklich die Funktion des Prion-Proteins ist oder ob es sich möglicherweise

um ein multifunktionelles Protein handelt bleibt weiterhin Gegenstand der Prionenforschung.
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Die Entdeckung des 37 kDa/67 kDa Laminin-Rezeptors als Rezeptor des Prion-Proteins

könnte weiteren Einblick in die zellulären Verhältnisse und die Funktion von PrP geben.
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I Introduction

The prion protein PrP represents a central player in transmissible spongiform

encephalopathies (TSEs), also known as prion diseases (for review see (Lasmézas and Weiss,

2000)). The physiological role of the cellular isoform of PrP termed PrPc is speculative so far

(for review see (Weissmann, 1996)) and might involve control of circadian activity rhythms

and sleep (Tobler et al., 1996), maintenance of cerebellar Purkinje cell (Sakaguchi et al.,

1996), and normal synaptic functions (Collinge et al., 1994; Fournier et al., 1995; Kitamoto et

al., 1992). Because several reports do not describe any phenotype for PrP (Bueler et al., 1992;

Lledo et al., 1996; Manson et al., 1994) the only proved role of PrPc is its necessity for the

development of TSEs (Bueler et al., 1993) such as bovine spongiform encephalopathy (BSE)

in cattle, new variant Creutzfeldt-Jakob (nvCJD) in humans or scrapie in sheep. A recent

report describes a superoxide dismutase (SOD) activity for PrPc (Brown et al., 1999)

suggesting that PrP might play a role in the cellular resistance to oxidative stress.

In the last 20 years of the past twentieth century, researchers worldwide were eagerly

searching for molecules able to interact specifically with the prion protein in the hope of

identifying interactors (1) that play an important role in the life cycle of prions or (2) that

could be developed into powerful TSE therapeutics.

This chapter summarizes PrP interacting molecules that might be relevant for PrP

pathogenesis or TSE therapy. In the first section we describe putative prion protein receptors

including the role of heparan sulfate proteoglycans (HSPGs). A cellular model will be

presented that describes the possible role of prion receptors and prion proteins, including the

recently identified PrP-like protein termed doppel (Moore et al., 1999). The model

emphasizes the possible role of PrP and its receptor regarding PrP internalization as well as

signal transduction and physiological function, in particular, the 37 kDa laminin receptor

precursor (LRP), an up to now unidentified 66 kDa cell surface protein, and cadherins, which

are then discussed as prion receptors that might trigger the entry of PrP into scrapie infectable

cells. Next, we summarize the role of molecular chaperones, including chemical chaperones

that may catalyze or hamper the conversion process of PrPc to PrPSc. In this context, we

emphasize a possible function for protein X, an as yet unknown protein predicted by S.B.
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Prusiner to be necessary for the PrP conversion process. The occurrence of PrP dimers under

native and denaturing conditions observed in different cell systems and in vitro represents

another aspect of PrP interactions, in this case an interaction of PrP with itself. The possible

role of such PrP dimers in the complex scenario of PrP oligomerization and multimerization

processes is discussed. In the section V we report on a series of PrP interacting molecules

identified using different biochemical approaches such as ligand blotting and yeast two-hybrid

techniques. Among these are the PrP ligand proteins (Pli) encompassing Pli 3-8, Pli 45 and

110 as well as Bcl-2, which belongs to a family of proapoptotic and antiapoptotic molecules.

The role of Bcl-2 in the light of neurodegeneration and apoptosis is discussed. The interaction

between laminin and PrP-mediating neuritogenesis is reported. The last section describes

molecules, mainly of nonproteinaceous origin, which act as therapeutics for the treatment of

TSEs. These include polyanions such as heteropolyanion 23, dextran sulfate 500, pentosan

polysulfate (SP54), and heparin. Other groups of anti-TSE therapeutics include Congo red,

polyene antibiotics such as AmB and MS-8209, IDX, porphorins, phtalocyanes and the

protein clusterin. The possible modes of action of these molecules such as interfering with the

PrPc/PrPSc conversion process followed by PrP accumulation, interfering with the cellular

uptake of PrPc/PrPSc, overstabilization of PrPSc, or competing with cellular glycosamino-

glycans for the binding to PrPc are discussed. The last group of PrP interacting molecules

represent nucleic acids including RNA aptamers, the latter as a possible tool for the diagnosis

of TSEs.

II Cell Surface Receptors

A. The Role of a Cellular Prion Protein Receptor

To understand the pathogenesis of diseases such as TSEs, it is necessary to clarify how the

biological system works under physiological conditions. The main principle of the "protein-

only“ hypothesis is that the cell-membrane glycoprotein PrPc is converted into its pathogenic

isoform PrPSc, a process that involves conformational changes of the protein (Prusiner et al.,
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1998). During this transformation PrP acquires additional regions of ß-sheets in the

polypeptide chain, resulting in a partially resistance to proteases. The cellular pathway of PrPc

is of major interest because here the conversion of PrPc to PrPSc might take place. PrPc is

synthesized in the rough endoplasmatic reticulum (rER). It is passaged via the Golgi and

secretory granules to the cell surface where it is anchored to the plasma membrane by its

glycosylphosphatidylinositol (GPI) moiety (Rogers et al., 1991). According to an endocytic

recycling pathway, the surface-PrPc is internalized by clathrin-coated pits (Shyng et al. , 1994)

or caveolae-like domains (CLDs) (Vey et al., 1996). The endocytosis of PrPc could be

mediated by a transmembrane protein, which might connect the GPI-anchored PrP to clathrin.

Harris postulated the existence of an endocytic PrP-receptor that carries a coated-pit

localization signal in its cytoplasmic domain and whose extracellular domain binds the N-

terminal part of PrPc (Harris, 1999; Harris et al., 1996). He observed that deletions within the

N-terminal region of PrPc result in a decrease of internalization of the protein and

consequently in a reduction of the PrPc concentration in coated pits (Harris, 1999; Shyng et

al., 1995b). In addition, Harris observed that chicken PrP binds to the surface of mammalian

cells via heparan sulfates on the cell surface (Shyng et al. , 1995a). Several researchers

described an interaction between heparan sulfates and PrP (Brimacombe et al., 1999)

(Caughey et al., 1994; Chen et al., 1995; Gabizon et al., 1993). Heparan sulfates have been

shown to be a component of amyloid plaques in prion diseases (Gabizon et al., 1993).

Recently, it has been demonstrated that the addition of heparin competes with the binding of

copper to PrP which occurs in the octarepeat region (Brimacombe et al., 1999; Brown et al.,

1997), suggesting that this region of PrP binds to heparin. The recently observed superoxide

dismutase (SOD) activity of PrPc is dependent on the presence of the octarepeat region

(Brown et al., 1999) confirming the important role of this domain for PrP. HSPGs make up

proteoglycan moieties consisting of proteins carrying glycosaminoglycan (GAGs) chains

made of anionic polysaccharide chains. Heparan sulfate, the main GAG-constituent of

HSPGs, like heparin, consists of disaccharide repeating units of O-/N-sulforyl and N-

acetylglucosamine (or N-acetylgalactosamine) and O-sulforyliduronic acid except that it
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harbors fewer N- and O-sulfate groups and more N-acetyl groups. The proteoglycans HSPGs

are thought to play an important role on the cell surface within the life cycle of prions.

The process by which exogenous PrPSc enters the cell is unclear so far. The uptake of the

infectious agent could also be mediated by a receptor protein or might occur receptor

independent. The conversion of PrPc to PrPSc may take place after internalization in cellular

compartments such as endosomes, lysosomes, or endolysosomes. This conversion process is

thought to be influenced by an unknown protein termed protein X (Telling et al., 1995), which

could represent a molecular chaperone such as Hsp60 (Edenhofer et al., 1996). In addition, it

has been suggested that several proteins possessing a GPI-anchor are excluded from coated

pits and internalized by caveolae (Anderson, 1993). Furthermore, it has been reported that

PrPc and PrPSc are present in CLDs isolated from scrapie-infected neuroblastoma cells and

brains of scrapie-infected hamsters, and it is speculated that the conversion of PrPc into PrPSc

could also take place in these compartments (Vey et al., 1996). To understand the mechanism

of this conversion event as well as the physiological function of the cellular prion protein, it is

important to investigate the involvement of a possible receptor protein as well as of proteins

showing biological properties similar to PrP, such as the recently discovered PrP-like protein

designated doppel (Dpl) (Moore et al., 1999).

The discovery of doppel does not only represent the first PrP-related protein (Moore et al.,

1999), it also could explain some curious, surprising observations within several lines of

Prnp0/0 mice, which differ only in the strategy used to generate PrPc-deficiency. Creating an

internal insertion or deletion within the PrP exon 3, two lines of mice were generated showing

normal development without any pathological phenotype (Bueler et al., 1992; Lledo et al.,

1996; Manson et al., 1994). However, in two other cell lines the entire coding sequence of PrP

as well as a ~1 kb region 5' to exon 3 including the exon 3 splice acceptor site were deleted

(Sakaguchi et al., 1996). These Prnp0/0 mice showed progressive symptoms of ataxia and

Purkinje cell degeneration in the cerebellum. It is suggested that Dpl is involved in a

physiological process in a manner leading to this pathological phenotype. Doppel is the first

PrP-like protein to be described in mammals (Moore et al., 1999). It consists of 179 amino

acid residues showing ~25 % identity with all known prion proteins. The Dpl locus, Prnd, is
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located 16 kb downstream of the PrP gene, Prnp, generating two major transcripts of 1.7 and

2.7 kb. Like PrP, Dpl mRNA is expressed during the embryogenesis but, in contrast to PrP, it

is poorly expressed in the adult central nervous system (CNS) and at high levels in the testis

of mice. However, Dpl is upregulated in the CNS of the two Prnp0/0 lines that develop late-

onset ataxia and Purkinje cell death but not in the normally developed Prnp0/0 lines (Moore et

al., 1999). Therefore, it was assumed that Dpl may provoke neurodegeneration in PrP-

deficient mice, an observation that might explain why some lines of Prnp0/0 mice develop

cerebellar dysfunction and Purkinje cell death, whereas others do not. Moore et al. suggested

that Dpl and PrP may share some biological functions owing to the similarities between these

two proteins (Moore et al., 1999). Would it be possible that PrP and Dpl bind to each other or

would it be also possible that they compete for binding to a common receptor? Dpl synthesis

is thought to occur in the secretory pathway to yield a globular, N-glycosylated, membrane-

associated protein comparable to PrPc, but in contrast to it containing no octarepeat region in

its N-terminal domain (Moore et al., 1999).
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In addition, expression of moderate levels of N-terminal truncated PrP with deletions of

amino acid residues 32-121 or 32-134 caused ataxia and specific degeneration of the granular

layer of the cerebellum in PrP0/0 mice, whereas mice expressing shorter truncations of PrP, up

to residue 106, show no pathological changes (Shmerling et al., 1998). This granule cell

dysfunction was completely abrogated by introducing a single copy of a wild-type murine PrP
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Fig. 1 Model of PrPc- and receptor-mediated signal transduction. In the normal cell, PrPc and

receptor molecules from the same cell or from different cells can interact and promote signal

transduction (A). The same signal might be elicited by the binding of a conjectural protein

designated !, which possesses the functional properties of PrPc explaining why some lines of

PrP0/0 mice develop normally (B). In the absence of PrPc, N-terminal truncated PrP can also

interact with the receptor competing with the binding of !, however, without giving rise to a

signal and leading to ataxia and degeneration of the granular layer of the cerebellum. A similar

event is thought to take place in PrP-deficient mice, which are showing a pathological phenotyp.

In these mice a PrP-like protein called doppel (Dpl) is upregulated in the CNS. It is speculated

that this protein may bind with higher affinity to the receptor than ! does, resulting in ataxia and

degeneration of Purkinje cells (C).
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gene into mice. It is speculated that the truncated PrP may compete with some other molecule

with a function similar to that of PrP for a common ligand or receptor. It was assumed that in

wild-type mice PrP interacts with a presumed receptor promoting signal transduction (Fig.

1A), and the same signal is elicited by interaction of the receptor with !, a conjectural protein

that has the functional properties of PrP, but is not closely related to it on DNA level (Fig. 1B)

(Shmerling et al., 1998). This would explain why the absence of PrPc has no obvious

phenotypic consequences. It is postulated that truncated PrP can interact with the receptor

without giving rise to a signal (Fig. 1C). The affinity of the receptor for truncated PrP would

have to be stronger compared to !, but would be less compared to intact PrP. Only N-terminal

truncated PrP where the deletion extends to or beyond residue 121 shows cerebellar

dysfunction leading to the conclusion that the globular domain of cellular PrP binds to a

receptor, whereas the flexible tail of the N-terminus spanning residues 23 to 120 is

responsible for activation (Shmerling et al., 1998).One possible interpretation for the

pathological phenotype caused by the expression of N-terminal truncated PrP is that such PrP-

mutants assumes a Dpl-like conformation that is neurotoxic and results in the killing of the

granular layer in the cerebellum (Moore et al., 1999). The association of Dpl overexpression

with degeneration of Purkinje cells which were rescued by overexpression of wild-type PrP,

suggest that Dpl and PrP interact perhaps directly or indirectly by competing as ligands for a

common receptor. Therefore, both proteins may play a role in cell contact processes (Fig. 1).

Recently, a signal transduction activity of the prion protein by achieving tyrosine kinase Fyn

was described (Mouillet-Richard, 2000). Since PrPc locates GPI-anchored at the cell surface,

whereas Fyn-kinase is associated with the inner plasma membrane of the cell, a

transmembrane receptor might mediate the PrPc dependent activation of the Fyn-kinase. In

this section we describe the different candidates, identified so far, that may act as prion

protein receptors. Distinct strategies and methods were used to identify the putative receptor

molecule. Further investigations are necessary to clarify the identity of a physiological PrPc-

receptor and to reveal its role in the normal cellular process of PrPc as well as in the

pathogenesis of prion-diseases. Identification and characterization of this receptor are also
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important in designing drugs that could be used to prevent the initial uptake of the infectious

agent into cells.

Table I PrP binding proteins, identity and characteristics

PrP binding

Protein

cDNA

identified

Known

homology

Surface

protein

Method of

identification

Reference

Pli45c Yes GFAP No ligand blot Oesch et al, 1990

Pli110c Yes PSF No ligand blot Oesch et al, 1990

Pli3c Yes human ESTs No PrP-AP screening Yehiely et al, 1997

Pli4c Yes None No PrP-AP screening Yehiely et al, 1997

Pli5c Yes guinea pig organ of

corti, rat and human

ESTs

No PrP-AP screening Yehiely et al, 1997

Pli6c Yes Mouse Aplp1

(amyloid precurser

like protein)

Yes PrP-AP screening Yehiely et al, 1997

Pli7c Yes Mouse Nrf2       (p45

NF-E2 related factor)

No PrP-AP screening Yehiely et al, 1997

Pli8c Yes None No PrP-AP screening Yehiely et al, 1997

37-kDa laminin

receptor precursora

Yes 37 kDa laminin-

receptor precursor

Yes yeast-two-hybrid

screening

Rieger et al, 1997

66-kDa proteina No None Yes complementary

hydropathy

Martins et al,

1997

Cadherinsa Yes Cadherins Yes PrP-AP screening Cashman and Dodelet,

1997

Bcl2c Yes Bcl-2 No yeast-two-hybrid

screening

Kurschner and Morgan,

1995

Chaperons
b

Yes several molecular

chaperons

No various methods DebBurman et al, 1997

Edenhofer et al, 1996

Tatzelt et al, 1996

a See Section II.
b See Section III.
c See Section V.
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B. A 66 kDa Membrane Protein as a Potential Prion Receptor

Employing complementary hydropathy a 66 kDa membrane protein that could act as a cellular

prion protein receptor, was recently identified (Table I) (Martins et al., 1997). By means of

this strategy, a hypothetical peptide mimicking the receptor binding site should bind to the

neurotoxic domain of prion proteins. Here, a peptide encoded by the DNA strand

complementary to that of the human PrP gene, spanning amino acid residues 114 to 129, was

chemically synthesized and used to immunize mice in order to generate antibodies directed

against this complementary prion peptide. The available mouse antisera were used to

investigate the localization of the putative receptor by immunofluorescence and confocal

microscopy approaches, resulting in the detection of an antigen at the cell membrane of

primary mouse neurons. In Western blot analysis of membrane extracts from mouse brain, the

antiserum recognized a specific protein of 66 kDa. In vitro and in vivo binding assays were

performed demonstrating that PrPc and the 66 kDa membrane protein could bind to each other

(Martins et al., 1997). Flow cytometry studies revealed that purified membrane extracts,

prepared from mouse brain, inhibited in vivo recognition of cellular PrP in cultured

neuroblastoma cells (N2a) by anti-PrP antiserum. This process could be reversed by

pretreatment of such membrane extracts with antiserum raised against the complementary

prion peptide and the putative receptor protein. Furthermore, both the complementary prion

peptide and the antiserum against it were able to block the neurotoxic effects mediated by the

human prion peptide 106-126 towards cultured neuronal cells. Martins et al. suggested that a

specific receptor for prion proteins could be responsible for their internalization and for the

cellular responses mediated by PrPc. They speculated that, as PrPc tends to accumulate in

postsynaptic vesicles (Askanas et al., 1993), both PrPc and its receptor are involved in

interneuronal cell adhesion causing neuronal networking (Martins et al., 1997). According to

Martins et al. in the normal cell, PrPc and receptors from the same cell or from different cells

can interact and mediate signal transduction, triggering their physiological function. They

postulated that the infectious agent should interact with the same receptor following

internalization, facilitating the conversion of PrPc into PrPSc and leading to PrPSc accumulation

and finally cell death (Martins, 1999). Further investigations leading to the identification of
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the 66 kDa protein are necessary to clarify the role of this putative receptor in the normal

process of PrPc, as well as in the pathogenesis of TSEs.

C. The 37 kDa Laminin Receptor Precursor (37 kDa LRP)

In a yeast two-hybrid screen, we identified a specific molecule as an interaction partner for the

prion protein: the 37 kDa laminin receptor precursor (37 kDa LRP) (Table I) (Rieger et al.,

1997). We speculated that this protein could act as a potential receptor for the cellular PrP.

This interaction was confirmed by coinfection and cotransfection studies in insect and

mammalian cells, respectively (Rieger et al., 1997). Furthermore, investigations of the LRP

level in several organ and tissues of scrapie-infected mice and hamsters demonstrated that

LRP occurs in higher amounts only in those organs that exhibit infectivity and PrPSc

Fig. 2 Schematic view of the prion protein (PrP) and the 37 kDa laminin receptor precursor (LRP)

on the surface of a scrapie-infectable cell. PrP is anchored by GPI (Blochberger et al., 1997) and is

thought to colocalize with LRP. The putative transmembrane region of LRP stretches from aa 86 to

aa101 (Castronovo et al., 1991b). The laminin binding domains from aa 161 to 180 (Castronovo et

al., 1991b) encompassing the palindromic sequence LMWWML, which appeared during evolution

from the non-laminin-binding ribosomal protein p40 (Ardini et al., 1998), to the laminin-binding

LRP on the cell surface is identical to the PrP binding domain (Rieger et al., 1997).
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accumulation such as brain, spleen and pancreas compared with uninfected control animals

(Rieger et al. , 1997). This was confirmed by cell culture experiments demonstrating an

increased amount of LRP in scrapie-infected mouse neuroblastoma (N2a) cells compared with

uninfected cells. Mapping of the 37 kDa LRP with different peptide fragments identified a

transmembrane domain containing amino acids 86-101 (Castronovo et al., 1991b) and a

laminin-binding domain comprising amino acids 161-180 (Castronovo et al., 1991b), which is

thought to be directed towards the extracellular space (Fig.2). Mapping of the LRP/PrP

interaction site performed in the yeast two-hybrid system demonstrated that the laminin-

binding domain can also function as a PrP binding site (Rieger et al., 1997) (Fig. 2). LRP is

thought to be the precursor of the 67 kDa laminin receptor (67 kDa LR) because attempts to

isolate the gene for the 67 kDa LR resulted in the identification of a cDNA fragment which

encoded a 37 kDa polypeptide (Rao et al., 1989; Yow et al., 1988). This was confirmed by

pulse-chase experiments carried out with antibodies directed against the 37 kDa protein

(Castronovo et al., 1991a; Rao et al., 1989). The 67 kDa laminin receptor was first isolated

from tumor cells (Lesot et al., 1983; Malinoff and Wicha, 1983; Rao et al., 1983) owing to its

high binding capacity to laminin, a glycoprotein of the extracellular matrix that mediates cell

attachment, movement, differentiation and growth (Beck et al., 1990). Engelbreth-Holm-

Swarm (EHS) laminin (Beck et al., 1990), which has been proved to bind to the 37 kDa LRP

(Rieger et al., 1997) (Table II), consists of three polypeptide chains: A or a (440 kDa), B1 or

b, and B2 or g (each 220 kDa), linked via disulfide bonds, resulting in the typical cross-

structure (Beck et al., 1990). Several other classes of laminin binding proteins have been

described including integrins (Albelda and Buck, 1990) and b-galactoside binding lectins such

as galectin-3 (Bao and Hughes, 1995; Ochieng et al., 1993; Yang et al., 1996) equivalent to

CBP-35 (Laing et al., 1989). Immunoblotting assays performed with a polyclonal serum

directed against galectin-3 revealed that the 67 kDa LR carries galectin-3 epitopes, whereas

the 37 kDa LRP does not (Buto et al., 1998).

The 37 kDa LRP/67 kDa LR is a multifunctional protein (Table II) and its amino acid

sequence is well conserved throughout evolution, showing a high degree of homology among

mammalian species (Rao et al., 1989). The evolutionary analysis of the sequence identified as
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the laminin-binding site [which we proved to correspond to the PrP binding domain (Rieger et

al., 1997)] suggested that the aquisition of the laminin binding capability is linked to the

palindromic sequence LMWWML, which appeared during evolution concomitantly with

laminin binding (Ardini et al., 1998). This protein evolved from the ribosomal protein p40,

which participated in protein synthesis on 40 S ribosomes without any laminin-binding

activity (Auth and Brawerman, 1992) to a cell surface receptor binding laminin (Rieger et al.,

1997), elastin (Hinek et al., 1988; Salas et al., 1992) and carbohydrates (for review see

(Ardini et al., 1998; Mecham, 1991; Rieger et al., 1999)). In addition, interaction of the

epitope-tagged laminin binding protein LBP/p40 with nuclear structures was observed in

cultured cells (Sato et al., 1996). In vitro analysis revealed that LBP/p40 binds tightly to

chromatin DNA through association with histones H2A, H2B and H4 suggesting that this

protein may play an essential role in the maintenance of nuclear structures (Kinoshita et al.,

1998). The laminin receptor family is highly conserved in a wide spectrum of eucaryotic cells

(Keppel and Schaller, 1991; Wewer et al., 1986), including yeast (Demianova et al., 1996),

and is encoded by archaean genomes (Ouzonis et al., 1995). 37 kDa LRP acts as a receptor for

the Venezuelan equine encephalitis virus on mosquito cells (Ludwig et al. , 1996), whereas the

67 kDa LR functions as a receptor for the Sindbis virus on mammalian cells (Wang et al.,

1992) (Table II). The mechanism of how the 37 kDa precursor protein forms the mature 67

kDa isoform is still unclear. Homodimerization of the 37 kDa LRP (Landowski et al., 1995)

or the involvement of an additional component (Castronovo et al., 1991a) has been discussed.

Recent studies suggested that the 67 kDa LR is a heterodimer stabilized by fatty acid-

mediated interactions (Buto et al., 1998). Very recently, it has been proved that the 67 kDa

LR (also termed laminin binding protein, p67 LBP) is expressed on a subset of activated

human T lymphocytes and, together with the integrin, very late activation antigen-6, mediates

strong cellular adherence to laminin (Canfield and Khakoo, 1999). In summary, the 37 kDa

LRP/67 kDa LR polymorphism remains a mystery. Both forms may act as a receptor for

prions on the surface of scrapie infectable cells.
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Table II Characteristics of the 37 kDa laminin receptor precursora (LRP)/67 kDa

laminin receptorb (LR)

Characteristics

Isolation 37 kDa LRP/p40 cDNA (Rao et al., 1989; Yow  et al., 1988)

67 kDa LR isolated from solid tumors (Lesot et al., 1983; Malinoff and Wicha, 1983; Rao et

al., 1983)

Occurrence of

the 37

LRP/p40 gene

Saccharomyces cerevisiae (Davis et al., 1992), Arabidopsis thaliana (Garcia-Hernandez et

al., 1994), Drosophila melanogaster (Melnick et al., 1993), Urechis caupo (Rosenthal and

Wordeman, 1995), Chlorohydra viridissima (Keppel and Schaller, 1991), Haloarcula

marismortui (Ouzonis et al., 1995), Candida albicans (Lopez-Ribot et al., 1994), mammals

(Ardini et al., 1998)

Cellular

localization of

37 kDa LRP

At the cell surface of mosquito cells (Ludwig et al., 1996) , of Candida albicans (Lopez-

Ribot, 1994) and of mammalian cells such as Madin-Darby canine kidney cells (MDCK)

(Salas et al., 1992); in the cytoplasm on 40S ribosomes (Auth and Brawerman, 1992); in the

nucleus (Sato et al., 1996)

Molecular

weight

37,000 (laminin receptor precursor protein)

67,000 (mature laminin receptor protein)

Binding

partners of

-37 kDa LRP

-67 kDa LR

Laminin (Rieger et al., 1997), PrPc (Rieger et al., 1997), the Venezuelan equine encephalitis

(VEE) virus (Ludwig et al., 1996); association of LBPc/p40 with histones H2A, H2B and H4

(Kinoshita et al., 1998)

Laminin (Beck et al., 1990), elastin and carbohydrates (for review: (Ardini et al., 1998;

Mecham, 1991; Rieger et al., 1999), the Sindbis virus (Wang et al., 1992)

Functional

domains

Transmembrane domain: aa 86-101 (Castronovo et al., 1991b),

Laminin binding domain: aa 161-180 (Castronovo et al., 1991b);

PrPc binding domain: aa 157 and 180 (Rieger et al., 1997)

Functions of

- 37 kDa LRP

- 67 kDa LR

Receptor for laminin (Rieger et al., 1997), PrPc (Rieger et al., 1997) and the Venezuelan

equine encephalitis virus (Ludwig et al., 1996); as ribosomal protein LRP/p40 involved in

protein synthesis (Auth and Brawerman, 1992); possible role of LBPc/p40 in maintenance of

nuclear structures (Kinoshita et al., 1998)

Receptor for laminin (Beck et al., 1990), elastin, carbohydrates (for review: (Ardini et al.,

1997; Mecham, 1991; Rieger et al., 1997)) and the Sindbis virus (Wang et al., 1992); crucial

role in the metastatic potential of solid tumors (Castronovo, 1991b)
a Laminin receptor precursor, LRP
b Laminin receptor, LR
c Laminin binding protein, LBP (equivalent to LRP)
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Mammalian genomes contain multiple copies of the LRP gene, in particular 6 copies in the

mouse and 26 copies in the human genome (Fernandez et al., 1991; Jackers et al., 1996a) a

fact that has hampered the identification of the active gene for a long time. To date, only the

gene for the chicken and the human gene encoding LRP have been isolated (Clausse et al.,

1996; Jackers et al., 1996b). The gene encoding 37 kDa LRP belongs to a multicopy gene

family and contains seven exons and six introns (Jackers et al., 1996b).

The 37 kDa LRP/p40 gene has been identified in different species including Saccharomyces

cerevisiae (Davis et al., 1992), Arabidopsis thaliana (Garcia-Hernandez et al., 1994),

Drosophila melanogaster (Melnick et al., 1993), the sea urchin Urechis caupo (Rosenthal and

Wordeman, 1995), Chlorohydra viridissima (Keppel and Schaller, 1991), the fungus Candida

albicans (Lopez-Ribot et al., 1994) and the archaebacterium Haloarcula marismortui

(Ouzonis et al., 1995), as well as in mammals (Ardini et al., 1998; for review: Rieger et al.,

1999).The 37 kDa LRP also acts as a receptor for alphaviruses such as the Venezuelan equine

encephalitis (VEE) virus on the surface of mosquito cells (Ludwig et al., 1996), has been

identified on the cell surface of the fungus Candida albicans (Lopez-Ribot et al., 1994). and

has been proved to be located on the surface of Madin-Darby canine kidney (MDCK) cells

from dogs, which might be involved in cell attachment, spreading and polarization (Salas et

al., 1992). These findings clearly demonstrate the location of the 37 kDa LRP on the cell

surface.

Within the life cycle of prions, LRP may play a role in the physiological function of PrPc, as

well as in the pathogenesis of prion diseases. We assume that LRP is involved in the

internalization process of PrPc via cavolae-like domains (Vey et al., 1996) or clathrin-coated

pits (Shyng et al., 1994) (Fig. 3). Involvement of clathrin-coated pits in the endocytosis of a

GPI-anchored protein such as PrPc is surprising because PrPc has no cytoplasmic domain that

can interact directly with the intracellular components of coated pits (Harris, 1999). Here a

receptor protein could be responsible for making the connection between the surface-anchored

PrP to clathrin. The uptake of PrPSc is thought to be mediated directly by a receptor protein

such as LRP, but could also be mediated in an indirect manner dependent on the presence of

cellular PrP. We assume that internalized PrPSc interacts with PrPc during the endocytic
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pathway (Fig. 3). PrPc is probably converted into PrPSc within the endosome, lysosomes or

endolysosome influenced by an unknown protein termed protein X (Telling et al., 1995)

which could represent a molecular chaperone such as Hsp60 (Edenhofer et al., 1996).

Recently, a homology of the amino terminus of LRP with members of the Hsp70 family was

observed (Ardini et al., 1998) suggesting that LRP/p40 might be involved in protein folding.

Although we demonstrated a specific interaction between PrP and members of the Hsp60

family including GroEL (Edenhofer et al., 1996), no binding of PrP to members of the Hsp70

family was observed, which suggest no homology to the Hsp60 family (Edenhofer et al.,

Fig.3 Model of the life cycle of prions. PrPc is synthesized in the rough endoplasmatic reticulum

(ER), and after passing through the secretory pathway including the Golgi and secretory vesicles,

reaches the surface of a PrPSc infectable cell where it is anchored via a glycosylphosphatidyl inositol

(GPI) moiety. Endocytosis of PrPc and possibly PrPSc via clathrin coated vesicles could be mediated

by the 37 kDa laminin receptor precursor (LRP). The uptake of the infectious agent could also be

LRP independent. The conversion of the internalized PrPc to PrPSc is thought to take place in the

endosomes, lysosomes or endolysosomes. Molecular chaperones could be involved in this

conversion process. PrP replication and aggregation can occur in neuronal cells of the brain but also

in the cells constituting the lymphoreticular system. Alternatively, endocytosis and conversion of

PrPc into PrPSc could happen in caveolae-like domains (CLDs).
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1996). However, it cannot be excluded that a hypothetical chaperone activity of LRP might be

involved in the PrPc/PrPSc conversion reaction, which is thought to occur in endosomes,

lysosomes or endolysosomes of the endocytic pathway in the life cycle of prions. Other

proteins encompassing an GPI-anchor were internalized by caveolae (Anderson, 1993). It has

been suggested that PrPc and PrPSc are internalized by CLDs, a compartment where the

conversion of PrPc to PrPSc might also take place (Vey et al., 1996). PrPSc accumulation leads

to neuronal cell death resulting in vacuolization and death of the organism. The role of LRP

within the life cycle of prions mediating PrP internalization and its involvement in

pathological mechanisms within the complex scenario of transmissible spongiform

encephalopathies has to be further investigated.

D. The Cadherins

Two cell surface proteins were isolated from murine cells and characterized as so-called prion

protein binding proteins (PrPBPs) (Table III) (Cashman and Dodelet, 1997). Mouse and

human PrPs expressed as fusion proteins to human placental heat-stable alkaline phosphatase

(PrP-AP) bound with high affinity to the surface of many primary cells and cell lines,

particularly to the mouse muscle cell line G8, whereas no binding of AP alone could be

observed. Frog oocytes showing little or no intrinsic PrP-AP surface binding were

microinjected with in vitro transcribed mRNA generated from pooled plasmid clones of a G8

cDNA library. Following selection of clones that showed specific binding to PrP-AP,

sequence analysis revealed the cDNA inserts in two clones, one encoded a portion of

protocadherin-43 spanning amino acid residues 67 to 252 and exhibited the highest level of

PrP-AP binding activity, the other one encoded a portion of OB-cadherin-1 (the N-terminal

cadherin repeat) and showed a moderate PrP-AP binding (Cashman and Dodelet, 1997).

Protocadherin-43 described by Sano et al. (1993) and OB-cadherin-1 described by Okazaki et

al. (1994) belong to a group of cell adhesion proteins designated Cadherins. Cadherins are a

family of transmembrane glycoproteins involved in Ca2+ dependent cell-cell adhesion that

occurs in many tissues mediating development patterning and tissue organization. They

contain a large N-terminal extracellular region consisting of repetitive subdomains including
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the Ca2+-binding sites. Ca2+-binding is required for cadherin interaction and cell-cell adhesion,

a process that results from lateral clustering of cadherin cis dimers and their trans association

with cis dimers on the apposed cell (Steinberg and McNutt, 1999). The C-terminus consists of

a transmembrane region and a highly conserved cytoplasmic domain, through which

cadherins interact with intracellular adhesions proteins such as catenins and stabilize the

internal structure of the cell.

Binding of PrP-AP to cultured cells was significantly reduced in the presence of the calcium

chelator EDTA, indicating that for optimum binding, the presence of divalent cations such as

Ca2+ might be required. Binding of mouse, human and bovine cellular PrP as well as PrPSc

from BSE-affected brain to the candidate receptor was observed (Cashman et al., 1999). prion

proteins could act as novel ligands for cadherin proteins. Cadherins participate in cell-layer

segregation and morphogenesis in development, also in maintenance of cell-cell recognition

in mature tissues, and may participate in disorders in which recognition is deficient, such as

metastatic cancer. It is also possible that they are involved in muscle and immunological

disorders as well as in neurodegenerative diseases such as TSEs (Cashman and Dodelet,

1997). The possible role of cadherins as cell surface receptors for prion proteins, however, has

still to be confirmed.

III. Molecular Chaperones of Mammals

The crucial event in prion diseases involves the conformational change of the cellular form of

the prion protein into the pathogenic isoform. This change causes a dramatic alteration within

the structure. Structural variations of a protein often require a catalysing agent. Molecular

chaperones are prominent candidates that could promote this reaction.

The protein-only hypothesis indicates that the scrapie form of the prion protein can promote

the conversion of the cellular form. This leads to the conclusion that prions themselves can act

as chaperones (Liautard, 1991). Thermokinetic analysis of protein folding shows that a

misfolded chaperone gives rise to new misfolded chaperones, which fit very well to the

protein-only hypothesis in which PrPSc triggers the formation of PrPSc.
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Besides this theory, other proteins can act as promotors for the prion conversion reaction. In

1996 chemical reagents were investigated and were shown to affect formation and

propagation of PrPSc. Cellular osmolytes and proteinaceous chaperones were tested in this

context (Tatzelt et al., 1996b). Chaperones that can prevent the formation of PrPSc (Fig. 4)

might act as powerful tools for the generation of anti-TSE therapeutics.

Molecular chaperones also represent a biochemical and mechanistical link between the

mammalian prions and the “prion-like” proteins in yeast. In this light heat-shock protein

Hsp104 has an effect on the conversion of hamster PrP (DebBurman et al., 1997) and on the

regulation of the yeast nonchromosomal element [PSI+] (Chernoff et al., 1995) suggesting

that the prion concept is of general importance in mammalian and nonmammalian systems.
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Fig.4 Influence of molecular and chemical chaperones on the conversion process of PrPc to PrPSc.

Molecular chaperones such as Hsp104 and GroEL promote the conversion reaction whereas the

chemical chaperones TMAO, DMSO and sucrose prevent PrPSc formation.
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Studies on the transmission of human prion proteins to transgenic mice indicates the existance

of an unknown protein termed “protein X”, which binds to PrP (Telling et al., 1995) and

might act as a molecular chaperone.

A. Heat-Shock Proteins

A number of cellular proteins function in vivo as chaperones that catalyse the formation of

proteins with an intact secondary, tertiary and quaternary structure. Heat shock proteins

(Hsps) are prominent representatives of these chaperones and were first discovered because of

their specific induction during the cellular response to heat shock (Gething and Sambrook,

1992). Nevertheless, the majority of the Hsps are expressed constitutively and their functions

are diverse. Hsps stabilize unfolded protein precursors, rearrange protein oligomers and

dissolve protein aggregates in an ATP-dependent manner.

Hsps are thought to play an important role in the conversion of the cellular prion protein PrPc

to the pathogenic isoform PrPSc (Table III). In 1995 the expression levels of Hsp72, Hsp28

and Hsp73 in normal and scrapie-infected mouse neuroblastoma cells were investigated

(Tatzelt et al., 1995). After heat shock Hsp72 and Hsp28 were both detecTable In normal, but

not in scrapie-infected cells. The constitutively expressed Hsp73, however, was expressed at

comparable levels in both cell types, indicating that Hsp73 could possibly assist the formation

of PrPSc. The lack of Hsp72 and Hsp28 in scrapie-infected cells suggests that chaperones do

not catalyse a refolding of PrPSc into PrPc in these cells. Together, both facts might lead to an

increase of PrPSc concentrations in scrapie-infected cells.

We identified Hsp60 as a PrP binding molecule employing a HeLa cDNA library in prey and

hamster PrP in bait position of the yeast-two-hybrid system (Edenhofer et al., 1996). In vitro

binding studies with recombinant PrP confirmed the specificity of the PrP-Hsp60 interaction.

Mapping analysis employing a series of PrP peptides identified the C-terminus of PrP (aa 180

to aa 210) encompassing a-helix 2 and parts of a-helix 3 (179-193 and 200-217) (Riek et al.,

1996; Donne et al., 1997; Riek et al., 1997) as the Hsp60 binding domain on PrP. GroEL, the

prokaryotic homolog of Hsp60 revealed the same binding domain as Hsp60 on PrP. This
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indicates that eukaryotic as well as prokaryotic chaperones interact with the prion protein and

suggest an important role of heat shock proteins in the conversion process of prion proteins.

Table III Function of heat shock proteins and their effect on the prion protein

Heat shock

protein

Reference First reported function in prion

diseases

Effect on PrP conversion

Hsp28 Tatzelt et al., (1995) Role in Ca2+-dependent

thermoresistance

No effect on PrP

conversion/PrPSc diminishes

synthesis of Hsp28

Hsp40 DebBurman et al., (1997) Co-chaperone of Hsp70s No effect on PrP conversion

Hsp60 Edenhofer et al., (1996) Stabilization of prefolded

structures and folding

Binding to haPrP, binding

domain: aa 180-210

Hsp70 DebBurman et al., (1997) Completion of translocation in

mitochondria

No influence on PrP

conversion

Hsp72 Tatzelt et al., (1995) Prevents aggregation and

accelerates refolding of damaged

proteins

No effect on PrP

conversion/PrPSc diminishes

synthesis of Hsp72

Hsp73 Tatzelt et al., (1995) Cytosolic heat shock protein Assists PrPSc formation?

Hsp90 DebBurman et al., (1997) Stabilizing of inactive precursor

forms in the cytosol

No influence on PrP

conversion

Hsp104 DebBurman et al., (1997) Thermotolerance and ethanol

tolerance in yeast

Promotes conversion of PrPc

GroEL Edenhofer et al., (1996) and

DebBurman et al., (1997)

Antifolding before translocation Binding to haPrP, binding

domain: aa 180-210,

promote conversion of PrPc

GroES DebBurman et al., (1997) Form functional complex with

GroEL

No influence on PrP

conversion

GroEL and the heat shock protein Hsp104 are able to affect the in vitro  conversion of hamster

PrP, confirming the importance of GroEL for the PrP conversion reaction (DebBurman et al.,

1997). However, this process requires the presence of exogenous added PrPSc, suggesting that

the conversion process and further aggregation seem to require a nucleation seed. Molecular

chaperones may probably be not sufficient for this reaction. Other heat shock proteins like

GroES, Hsp40, Hsp70 and Hsp90 do not show any effect in the conversion process. Hsp104
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links mammalian prion proteins and the prion-like yeast protein Sup35. Hsp104 could therby

either promote sup35* or sup35 formation dependening on Hsp104 concentrations. Hsp104

might influence the regulating process of the [PSI+] element in S.cerevisiae (Patino et al.,

1996). In conclusion, heat shock proteins might influence the structure of mammalian and

yeast prions.

B. Protein X

The transmission of human prion proteins to transgenic mice depends on the species of the

endogenous expressed transgenic prion protein and the homozygocity/heterocygocity status of

the expressed transgene. In contrast to transgenic mice ablated for the mouse Prnp gene or

transgenic mice expressing low levels of a chimeric transgene, which are susceptible towards

human prions, transgenic mice expressing the human PrP transgene are completely resistant

towards human prions. This phenomenon reflecting the species barrier can be explained by a

species specific factor termed protein X, which is thought to participate in prion formation.

Protein X might act as a chaperone facilitating or hampering the conversion of PrPc to PrPSc.

The fact that transgenic mice hyperexpressing human PrP are resistant to human prions

(Telling et al., 1995), together with the finding that transgenic mice expressing chimeric

MHu2MPrPc retain human PrP susceptibility suggests that protein X could bind to the cellular

form of the prion protein and the affinity of protein X to prion proteins of different species

may vary. The binding of protein X to the prion protein may result in the PrP conversion

reaction. Differences in the amino acid sequence of PrP of different species may be the main

reason for both effects. The main differences between mouse and human PrP are thought to

reside in the carboxy-terminus of PrP. An epitope mapping of the binding site for protein X

on PrP (Kaneko et al., 1997b) by substitution of the basic residues at aa position 167, 171 or

218 preventing PrPSc formation suggests that the binding site for protein X on PrP resides

within this region. Amino acid 218 is located within the third a-helix of the mouse prion

protein and residues 167 and 171 reside within an adjacent loop. The stoichiometry of the

protein X/ PrPc complex is unknown to date. The fact that the protein X/PrPc interaction was
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abolished by mutations preventing the PrPSc formation might be useful for the development of

anti-TSE therapeutic agents. A prerequiste for that, however, is the identification of protein X.

C. Chemical Chaperones

In contrast to “classical” chaperones consisting of proteins, chemical chaperones represent

chemical compounds of small molecular weight that are able to stabilize proteins and correct

misfolded ones (Welch and Brown, 1996) (Fig. 4). Chemical chaperones such as glycerol,

trimethylamine-N-oxide (TMAO) and dimethylsulfoxide (DMSO) might stabilize the native

conformation of a protein by direct interaction. These compounds termed „cellular osmolytes“

are produced in cells in response to osmotic shock (Somero, 1986). Glycerol, TMAO and

DMSO were tested to determine their influence on the formation of PrPSc in ScN2a cells

(Tatzelt et al., 1996b). All reduced the extent of PrP conversion into its detergent insoluble

form. The stabilizing effect of the native form of a protein was also demonstrated for other

proteins such as the cystic fibrosis transmembrane regulator (CFTR) (Brown et al., 1996). The

presence of chemical chaperones might have an effect on the hydration of proteins. Because

self-association or tighter packaging of the prion protein is enhanced, PrPSc fails to interact

with PrPc so that no PrPc/PrPSc heterodimer is formed leading to an inhibition of the PrP

conversion process (Gekko and Timasheff, 1981). In the case that chemical chaperones might

be transported to the brain bypassing the blood-brain barrier (BBB), they might be useful as

therapeutic agents in TSE-therapy.

The influence of chemical chaperones has also been demonstrated in cell-free conversion

assays (DebBurman et al., 1997). The conversion of hamster PrP using partially denatured

PrPSc was only inhibited by DMSO. Glycerol and cyclodextrin compounds had no effect,

whereas molecular chaperones (Hsp104) were able to block the conversion process. Chemical

chaperones such as glycerol and cyclodextrin, acting as co-chaperones, might have an

influence on molecular chaperones that are lacking in a cell-free system.
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IV. Interaction between prion proteins

According to the protein-only hypothesis, proposed by Prusiner (Fig. 5) the interaction of the

cellular prion protein with the pathological isoform seems to be the crucial step in the

conversion of PrPc to PrPSc. The existence of the hypothetical PrPc/PrPSc heterodimer may

require the presence of a homodimer consisting of two PrPc molecules. This homodimer is

thought to be in equilibrium with the PrPc monomers. It is unclear to date whether the

spontanous conversion reaction involves PrPc monomers or the PrPc homodimers.

In 1986 a 54 kDa protein was identified under denaturing conditions that may act as a dimeric

PrP precursor for the scrapie protein (Bendheim and Bolton, 1986). A 60 kDa form of a

recombinant hamster prion protein was detected in murine neuroblastoma cells in 1995 (Priola

et al., 1995). It appears as a dimer under denaturing conditions analyzed by SDS-PAGE and

under native conditions analyzed by immunoprecipitation. The linkage of both prion proteins

might occur via hydrogen bonding, electrostatic interactions or covalent linkage involving

lysins at the N-terminus of the protein. The observed dimer formation might be due to the

hyperexpression of PrP with high PrP concentrations.

The multimer formation of the prion protein and structural changes during this process has

been investigated by fluorescence correlation spectroscopy (FCS) (Post et al., 1998). Prion

aggregates mainly constituted of PrP27-30 were converted by sonication to monomeric PrP

with an high a-helical content in the presence of 0.2% SDS. The oligomerization process was

then initiated by the reduction of the SDS-concentration. Formation of b-sheet structured

dimers was the initial step followed by oligomerization of these dimers within 10 minutes.

After 1 hour PrP was aggregated. Whether the conversion reaction arises before the

dimerization event or wether dimerization represents the initial step of the conversion process

remains speculative.

prion proteins with mutations in the octarepeat region causing familial CJD show abnormal

aggregation properties (Priola and Chesebro, 1998). Hamster PrPs encompassing two, four

and six octarepeats were expressed in mouse neuroblastoma cells. The fact that PrP dimers

were detectable even under harsh denaturing conditions present in SDS-gel electrophoresis

suggest that the PrP monomers were covalently linked rather than stabilized by noncovalent
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linkages such as hydrophobic interactions. However, covalently linked PrP dimers have still

to be confirmed by other systems.

Because of the lack of convincing experimental data, only a few models describe the PrP-

dimerization process. One of them proposes the highly conserved region from aa 109 to aa122

as a major dimerization domain (Warwicker and Gane, 1996) calculated by a computational
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Fig. 5 Scheme of the conversion process of PrPc to PrPSc. Three possibilities for the

conversion of PrPc into PrP Sc do exist. An exogenous PrPSc triggers the conversion of PrP

monomers leading directly to the hypothesized heterodimer consisiting of PrPc and PrPSc.

Genetic predisposition of an individual leads to a spontanous conversion of PrPc to PrPSc. The

conversion process might proceed after formation of a dimeric PrPc or might occur with a

monomeric PrPc. The central PrPSc heterodimer forms a PrPSc homodimer aggregating into

amyloid fibrils.
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search for potential PrP interaction interfaces. Mutations such as alanine to valine at position

117 of human PrP associated with Gerstmann-Sträussler-Scheinker syndrome reside within

this region, and might alter the stability of the dimer, facilitating the conversion of PrPc to

PrPSc. In addition to the dimerization process, the association of the prion protein to the

membrane could play an important role in TSE pathogenesis (Warwicker, 1999). The putative

membrane-binding domain might be the first a-helix. The agglomeration of the prion protein

on the membrane might influence the orientation and configuration of PrP facilitating the PrP

interaction process.

Whether PrP dimers that have also been observed by us (Hundt, Gauczynski, Riley, and

Weiss, manuscript in preparation) might play an important role in the PrP oligo-

/multimerization process and whether PrP/PrP interfering agents might hamper the entire PrP

aggregation process have still to be investigated.

V. Other PrP interacting molecules

This section first describes PrP interacting molecules identified by ligand blots, yeast two-

hybrid techniques or in vitro selection. Members of the PrP ligand family Pli are described

followed by Bcl-2 belonging to the family of proapoptotic and antiapoptotic molecules.

Second, molecules are summarized acting as therapeutics in TSEs. With the exception of the

protein clusterin, all the other molecules are of nonproteinaceous origin including polyanions,

Congo red, polyene antibiotics, IDX, porphorins and phtalocyanes. Finally, nucleic acids such

as RNA aptamers are described in their function as PrP-interacting molecules.
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A. PrP Ligands (Pli´s)

1. Pli 45 and Pli 110

Two PrP binding proteins were identified in 1990, using ligand blots (Oesch et al., 1990).

These two proteins identified from hamster brain were termed PrP ligands Pli 45 and Pli 110.

To investigate the interaction of purified PrP with other proteins the authors used radiolabeled

PrP27-30 and PrPc, respectively, for the binding of proteins from hamster brain that were

separated by SDS-PAGE and blotted to nitrocellulose (ligand blots).Two major bands became

visible by autoradiography using purified PrP27-30 and immunopurified PrPc. The molecular

weight of the identified proteins were 45,000 and 110,000, respectively, and both proteins

bound to PrPSc and PrPc derived from hamster brain. Other PrP binding proteins ranging from

32-200 kDa were also observed. The stability of the complexes formed by Pli 45 and PrP 27-

30 on nitrocellulose were investigated by intense washing steps and 50% of the radiolabelled

PrP27-30 was washed off after 60 hours, corresponding to a dissociation rate constant of

kD=3x10-6 s-1. Pli 45 revealed a sequence homology of 94.6% to murine GFAP (glial fibrillary

acidic protein) at the cDNA level, suggesting that Pli 45 and GFAP are the same proteins.

Comparitive immunochemistry studies, using polyclonal Pli45- and GFAP specific antibodies

revealed the same staining pattern as monoclonal anti-GFAP antibodies in scrapie-infected

sheep brain. In addition, both antibodies recognized recombinant GFAP expressed in

Escherichia coli, suggesting that Pli 45 and GFAP are indeed the same proteins.

Pli 45 was found exclusively in brain, whereas Pli 110 is present in several tissues, such as

brain, lung, liver, spleen and pancreas. Pli 110 was shown to be identical with PTP-associated

splicing factor (PSF) (Oesch, 1994). Because studies with GFAP0/0 mice revealed that GFAP

is not essential for scrapie development (Gomi et al., 1995; Tatzelt et al., 1996) and PSF is an

essential splicing factor, located in the nucleus (Patton et al., 1993), it seems that Pli45 and

Pli110 do not play a crucial role in prion diseases.
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2. Pli3-Pli8

Seven years after the identification of the first two PrP-binding proteins Pli 45 and Pli 110 six

other PrP ligands were found (Table I) (Yehiely et al., 1997). The authors used a different

system than that used for the identification of Pli 45 and Pli 110. Here, PrP was designed as a

fusion protein with alkaline phosphatase (AP) and secreted by NIH 3T3 cells. PrP-AP was

then used as a probe for screening the mouse brain cDNA library lgt11. Sequence analysis of

nine clones revealed the six unique sequences, Pli3 to Pli8. Two cDNA clones showed

homology to known sequences, to the mouse amyloid precursor-like protein (Aplp1) denoted

Pli6 and to the mouse p45 NF-E2 related factor 2 (Nrf2), termed Pli7. All six Plis revealed the

consensus sequence GXXXXXX(E/P)XP, which is not unique to PrP binding proteins, but

was identified in many other protein sequences. Hence, the authors conclude that it might

represent a functional motif. Negative charge might also play a role in PrP binding, as four

cDNA clones showed an excess of glutamic acids and aspartic acids over lysines and

arginines. Each cDNA clone identified a single copy gene and the chromosomal location of

each clone was identified in this work.

Polyclonal antibodies directed against the polypeptides Pli3 and Pli5 were generated and

purified. Both antibodies recognized proteins from N2a cells and mouse brain on Western

blots. Anti-Pli3 antiserum detected a 70 and a 100 kDa polypeptide, whereas anti-Pli5

antiserum detected a 45 kDa polypeptide. All three identified polypeptides were believed to

be novel PrP-binding proteins. Antisera to Nrf2 (Pli7) and Aplp1 (Pli6) were also used as

probes on N2a cell lysates and mouse brain homogenates. For anti-Nrf2 antiserum, a 66 kDa

protein was found, that corresponds to the predicted size of mouse Nrf2. Aplp1 antiserum

recognized polypeptides of about 85 and 95 kDa molecular mass, which are likely to be two

different forms of Aplp1. The protein levels of Pli3 and Pli5 appeared similar in scrapie-

infected and noninfected brain and N2a cells, whereas higher levels of Pli5 mRNA could be

found in ScN2a cells. The protein levels of Nrf2 were found to be slightly decreased in ScN2a

cells, whereas Aplp1 protein levels remained unchanged in ScN2a cells and infected mouse

brain. Higher mRNA levels for both Aplp1 and Pli5 were found in ScN2a cells.
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Aplp2 is a member of the APP-like (amyloid precursor protein) family, playing an important

role in the pathogenesis of Alzheimer disease (AD). The major component of the senile

plaques that are observed in AD is the Ab peptide, which is derived from the APP protein

(Glenner and Wong, 1984; Masters et al., 1985). PrP and Aplp1 are both membrane proteins;

hence it is likely that they could interact on the cell surface.

B. Bcl-2

Bcl-2 (Table I) represents a well-known member of a rapidly enlarging protein family of

proapoptotic and antiapoptotic molecules, including at least 15 related proteins (Adams and

Cory, 1998). In 1995 the role of Bcl-2 was investigated using a yeast two-hybrid screen

(Kurschner and Morgan, 1995). LexA-Bcl-2 in the bait and a murine cerebellar cDNA-VP16

fusion library in the prey position identified potential Bcl-2 binding proteins. Surprisingly the

prion protein and not bax, which is known to heterodimerize with Bcl-2 (Oltvai et al., 1993),

was pulled out by this screen. The sequenced cDNA clone contained a fusion between the

VP16 domain and mouse PrP, encompassing aa72 to aa245, denoted PrP-VP16. Usinging

LexA-PrP in the bait and Bcl-2-VP16 in the prey position of the yeast two-hybrid system

resulted also in an interaction between PrP and Bcl-2. Interactions with other members of the

Bcl-2 family, such as Bax or A1 were not observed. The PrP mutation P102L, associated with

human Gerstmann-Sträusler-Scheinker syndrome was investigated, and it was shown that this

mutation did not alter the binding behavior of PrP to Bcl-2. Interestingly, the PrP-Bcl-2

interaction could not be confirmed by coimmunoprecipitation assays, suggesting that this

protein interaction can be observed only in the yeast-two-hybrid system.

Bcl-2 and Bax act as antiapoptotic and proapoptotic molecules in apoptosis, respectively.

Moreover, the ratio of Bax-Bcl-2 heterodimers to homodimers of each protein is important for

the regulation of apoptosis (Oltvai and Korsmeyer, 1994; O´Dowd et al., 1988; Yang and

Korsmeyer, 1996). Hence the authors concluded that PrP might play a role in disrupting the

Bax:Bcl-2 ratio by trapping Bcl-2 and favoring Bax-Bax homodimers, which would lead to

cell death by apoptosis (Fig.6). The trapping of Bcl-2 by PrP might occur during trafficking of

PrP before exposure to the cell membrane. Although Bcl-2 and PrP are both membrane
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associated, the physiological cellular location of Bcl-2 is different from that of PrP. Bcl-2 is

thought to be an inner mitochondrial membrane protein (Hockenbery et al., 1990; Motoyama

et al., 1998) or might reside on the mitochondrial outer membrane, the endoplasmatic

reticulum, or the nuclear membrane (Krajewski et al., 1993; Lithgow et al., 1994) , and is not

present on the cell surface membrane.

C. Laminin

Laminin (LN) is a glycoprotein of the extracellular matrix (ECM) [for review see Beck et al.,

(1990)] that mediates cell attachment, communication, differentiation, movement and neurite

outgrowth promotion (Hunter et al., 1989). Laminin is the first ECM protein detected during

embryogenesis. In later development and in mature tissue, laminin serves as an ubiquitious

and major noncollagenous component of basement membranes (Beck et al., 1990). Laminin

was first isolated from Engelbreth-Holm-Swarm (EHS) tumor (Timpl et al., 1979) and from

extracellular deposits of murine parietal yolk sac (PYS) carcinoma cells (Chung et al., 1979).

A specific binding between laminin and the amyloid precursor protein (APP), the precursor of

the amyloid peptide involved in Alzheimer`s disease, has been identified (Narindrasorasak et

al., 1992). APP and b-amyloid peptide (1-40) interaction with the extracellular matrix

promotes neurite outgrowth, suggesting that the complex might play a normal physiological

role in the brain (Kibbey et al., 1993; Koo et al., 1993). Recently, a direct interaction between

the cellular prion protein (PrPc) and laminin was reported (Graner et al., 2000). An

involvement of the PrPc-laminin interaction in neuritogenesis induced by NGF plus laminin in
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the PC-12 cell line was further suggested (Graner et al., 2000). Neuritogenesis, induced either

by laminin or its g-1-derived peptide in primary cultures from rat or either wild-type or PrP

null mice hippocampal neurons, might imply that PrPc could be the main cellular receptor for

the particular g-1 domain located to the carboxy terminus of laminin (Graner et al., 2000).

D. Therapeutics

1. Polyanions

Polyanions (Table IV), including heteropolyanion 23 (HPA-23), Dextran Sulfate 500 (DS

500), pentosan polysulfate (SP54) and heparin are known to bind the prion protein and/or

prevent PrPSc accumulation in animals and cell systems (Brimacombe et al., 1999; Caughey

and Raymond, 1993; Diringer and Ehlers, 1991; Ehlers and Diringer, 1984; Farquhar et al.,

1999; Gabizon et al., 1993; Kimberlin and Walker, 1983; Kimberlin and Walker, 1986;

Ladogana et al., 1992). The first polyanion denoted as an anti-scrapie drug was HPA-23

(Kimberlin and Walker, 1983; Kimberlin and Walker, 1986). The effect of HPA-23 was tested

in several different scrapie strains, such as 139A, ME7, 22A and 263K. HPA-23 was effective

in all these strains and prolonged the lifetimes of the animals significantly after scrapie

injection. Less effect was observed when scrapie material was injected intraperitoneally or if

the drug was given more than 48 hours after scrapie infection. Injection before to infection

with scrapie is not effictive, owing to the rapid metabolization or excretion of HPA-23. HPA-

23 is thought to interfere with early replication of PrPSc in the lymphoreticular system,

reducing the efficiency of scrapie infection. These results, together with the brain toxicity of

this molecule suggest, that HPA-23 has limited therapeutic value.

Two high-molecular-weight polyanions, carrageenan and DS 500, were shown to be highly

efficient in reducing scrapie titers in mice infected with the 139A strain of scrapie (Ehlers and

Diringer, 1984; Kimberlin and Walker, 1986). All intravenous or intraperitoneal combinations

of injecting DS 500 or scrapie reduced the effective titer about 100- to 200 fold. The effect of

DS 500 is long-lasting. Application of DS 500 up to 10 weeks before to infection increases
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the incubation period in mice. However, DS 500 itself is highly toxic and causes up to 50%

mortality at a dose of 2 mg per mouse. Like HPA-23, DS 500 is thought to prevent PrPSc

replication in spleen and lymph nodes and its mode of action is likely to be independent of its

activity as a B-cell mitogen. The high-molecular-weight and negative charge may represent

important factors in the anti-scrapie effect of DS 500. SP54 (Pentosan Polysulfate, Fig. 7A)

has an anti-scrapie effect comparable to DS 500, but is less toxic. It has been shown that SP54

significally increases scrapie incubation period in hamsters infected with 263K scrapie strain

and in mice infected with the 139A, Me7 and 22A strains of scrapie (Ehlers and Diringer,

1984; Farquhar et al., 1999; Ladogana et al., 1992). SP54 is even effective if only a single

low-dose is injected after infection. A single injection of 250 µg of SP54 increased the mean

incubation period of the ME7 strain by up to 66% and 1 mg of SP54 protected mice

completely from the 22A scrapie strain. SP54 is thought be effective during the very early

events of pathogenesis by interfering with the uptake of PrPSc by nerve endings and/or carrier

cells. The low-dose effect and the lower in vivo toxicity compared to other polyanions make

SP54 a promising candidate in the field of anti-scrapie polyanions.
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Table IV Antiscrapie drugs likely to interact directly with PrP

Drug Tested scrapie

strain

Successfull

y treated

animals

Suggested mode of action Comments References

HPA-23 139A, ME7,

22A and 263K

Mouse and

hamster

Prevents early agent replication in

the LRS, competes with GAG

(glycosaminoglycan) binding site

Effective in a lot of

scrapie strains, rapid

metabolism and

excretion,

toxic

Kimberlin and

Walker (1983;

Kimberlin and

Walker (1986

DS 500 139A Mouse Prevents agent replication in the

LRS due to its high molecular

weight and negative charge,

competes with GAG

(glycosaminoglycan) binding site

Long-lasting anti-

scrapie effect but toxic

at therapeutic doses

Ehlers and Diringer

(1984); Kimberlin

and Walker (1986)

Pentosan

Polysulfate

139A, ME7,

22A and 263K

Mouse and

hamster

Interferes with PrPSc uptake from

nerve endings, competes with GAG

(glycosaminoglycan) binding site

Very promising drug,

effective at extreme

low dose

Ehlers and Diringer

(1984); Farquhar  et

al. (1999);

Ladogana et al.

(1992)

Amphotericin B C506M3 and

263K

Mouse and

hamster

Direct prevention of PrP conversion

or interference with PrPSc uptake

Acute nephrotoxicity

and low solubility,

widely used for the

treatment of fungals

Pocchiari  et al.

(1987); Xi  et al.

(1992)

MS-8209 C506M3 and

263K

Mouse and

hamster

Same as for AmB Lower toxicity than

AmB

Adjou et al. (1995);

Demaimay et al.

(1997)

Adjou et al. (1999)

Congo Red 263K and

139A

Hamster Binding to PrPc with polyanion-like

behavior, or binding to PrPSc

(overstabilisation)

Dyes amyloid Caspi et al. (1998);

Caughey et al.

(1993); Ingrosso et

al. (1995)

Anthrycycline 263K Hamster Binding to PrPSc, preventing

amyloid deposition

Used for the treatment

of malignancies

Tagliavini et al.

(1997)

Porphyrins and

Phtalocyans

263K Mouse

expressing

hamster PrP

Binding to PrPSc Inhibits cell free PrPc/Sc

conversion

Caughey et al.

(1998); Priola et al.

(2000)

Cp-60/Cp-62 ScN2a cells None Mimicking dominant negative

inhibition of prion replication

Identified by using a

computational database

search

Perrier et al. (2000)

IPrP13 (b-sheet

breaker)

139A Mouse Direct change of PrP secondary

structure

Synthetic peptide Soto et al. (2000)

Clusterin

[apolipoprotein J

(apo J)]

----- None,

prevents

aggregation

of PrP106-

126

Binding to PrPc/Sc Binds to extraneuronal

PrPBSE

McHattie and

Edington (1999)
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All anti-scrapie polyanions published so far might act by competing directly with the binding

of cellular glycoaminoglycans (GAGs) to PrPc (see chapter II. A) and/or PrPSc (Brimacombe

et al., 1999; Caughey et al., 1994). Indeed, GAGs are involved in the metabolism of PrPc (see

chapter II.A) and thus in the biogenesis of PrPSc. It was shown by surface plasmon resonance,

that pentosan polysulfate shows the strongest binding to recombinant PrP followed by heparin

and dermatan sulfate. This correlates to the ability of the molecules to delay scrapie disease

and reduce PrPSc accumulation in scrapie-infected cell lines (Caughey and Raymond, 1993).

2. Congo Red

Congo red (Fig. 7C, Table IV) is a dye that can be used as a diagnosic stain for amyloids. It is

well known that Congo red can inhibit PrPres accumulation in Sc+-MNB cells and PrPSc

replication in 263K and 139H treated hamsters (Caspi et al., 1998; Caughey et al., 1994;

Caughey et al., 1993; Ingrosso et al., 1995). The mechanism of the Congo red anti-scrapie

effect probably involves direct binding to PrPc, which again is thought to block the binding of

cellular GAGs to PrPc, as described for polyanions (Caughey et al., 1994). The proposed

direct binding of Congo red to PrPSc is thought to stabilize PrP Sc, the abnormal isoform of the

prion protein, and prevents its partial denaturation, which could be necessary for agent

replication (Caspi et al., 1998).

3. Polyene Antibiotics

Amphotericin B (AmB) and MS-8209 (Fig. 7D) are polyene macrolide antibiotics, that have a

ring structure containing a hydrophobic and a hydrophilic region on either side of the

molecule. They are used for the treatment of systemic fungal infections like candidiasis,

histoplasmosis and aspergillosis (Medoff et al., 1983). The effects of AmB and its derivative

MS-8209 were studied in several models of rodents including 263K-infected hamsters. Both

were very efficient in delaying scrapie disease and PrPSc accumulation. MS-8209 shows at

least a five times lower toxicity and a higher solubility and is able to double the incubation

time of scrapie in hamsters. In contrast to polyanions, polyene antibiotics are effective even
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after intracerebral infection (Adjou et al., 1995; Demaimay et al., 1994; McKenzie et al.,

1994; Pocchiari et al., 1987; Xi et al., 1992). Presently AmB and its derivatives are the only

category of antiscrapie drugs that are prolonging the incubation period when given at late

stages of infection (Demaimay et al., 1997). However, the effect of polyene antibiotics vary

between scrapie strains (Adjou et al., 1996). Note that the only reported treatment of clinical
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CJD with AmB in humans was unsuccessful (Masullo et al., 1992). Several possible

mechanisms are involved in the antiscrapie effect of polyene antibiotics. AmB and MS-8209

have been proposed to directly affect the PrPsen to PrPres conversion step and thus prevent

PrPres accumulation (Adjou et al., 1999; Adjou et al., 1997; Demaimay et al., 1997).

Nevertheless a more indirect mode of action seems to be possible, whereby AmB and its

derivatives disturb the uptake of PrPres by cells most likely by interfering with membrane

cholesterol-rich domains (rafts) (Bolard, 1986; Taraboulos et al., 1995).

4. Other Therapeutics

Anthracycline 4´-iodo-4´deoxy-doxorubicin (IDX) (Fig. 7B; Table IV) is a derivative of the

drug doxorubicin, which is successfully used in the treatment of several malignancies

(Barbieri et al., 1987). IDX binds to amyloid fibrils and induces amyloid resorption in patients

suffering from plasma cell dyscrasias with immunoglobulin light-chain amyloidosis (Gianni et

al., 1995; Merlini et al., 1995). IDX was shown to delay the clinical signs of scrapie disease in

263K-infected hamsters when co-incubated with the 263K material prior to intracerebral

inoculation. At a molecular level IDX is thought to bind the abnormal form of PrP, thereby

decreasing the number of template molecules available for the PrPc conversion process

(Tagliavini et al., 1997).

Porphyrins and phtalocyans (Table IV) prevented PrPres accumulation in scrapie-infected

mouse neuroblastoma cell cultures (Caughey et al., 1998) and prolonged the incubation period

in hamster PrP expressing mice infected with 263K scrapie (Priola et al., 2000). The

molecules also inhibited a cell-free conversion of hamster PrPsen to PrPres, showing that the

effect seems to be due to direct PrP-binding. Nevertheless, because PrPres preparations are

not completely pure, interactions with other molecules might be possible. Some other

interactions with cells involved in scrapie pathogenesis can also not be excluded (Manuelidis,

2000).

Based on the proposal of a protein X binding domain (Kaneko et al., 1997b) synthetic drugs

were identified that are able to inhibit PrPSc formation in ScN2a cells (Perrier et al., 2000).

Two compounds, Cp-60 and Cp-62 (Table IV) act in a dose-dependent manner and show low
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toxicity. They are suggested to mimic the dominant negative inhibition of PrP replication

originally reported for a PrP mutant (Kaneko et al., 1997a).

A 13-residue b-sheet breaker peptide (iPrP13) (Table IV) was shown to partly reverse PrPSc to

a PrPc like state. Mice inoculated with iPrP12-pretreated infectious material showed delayed

appearance of clinical symptoms (Soto et al., 2000). The peptide is thought to directly change

the conformation of PrPSc from a b-sheeted to a more a -helical secondary structure and

therefore reduce infectivity.

An effect of clusterin (Table IV) on the in vitro aggregation of the prion neuropeptide 106-

126 was tested. Clusterin co-localizes with extraneuronal PrPBSE in terminal BSE and the

aggregation of the neuropeptide 106-126 was inhibited by clusterin in a dose-dependent

manner (McHattie and Edington, 1999). The neurotoxicty of peptide 106-126 is subject of

discussion, since a recent report described aggregation but no neurotoxicity for this peptide

(Kunz et al., 1999).

Dapsone (Manuelidis et al., 1998) and flurpirtine (Perovic et al., 1995) have also been

described as TSE therapeutics. In contrast to the previously described drugs, however, a direct

interaction with PrP is unlikely (Table V)

Table V Antiscrapie drugs not thought to interact directly with PrP

Drug Tested on

scrapie strain

Success in animal

treatment

Suggested mode of action References

Dapsone SY Mouse Altering of macrophage

processing of infectious agent

and modulation of

inflammatory factors

Manuelidis et al,

(1998)

Flurpirtine

(Katadolon)

---- None, cures neuronal

cells treated with

PrP106-126

Lowers toxic effect of

PrP106-126 by normalization

of GSH levels

Perovic et al. (1995)
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E. Nucleic Acids

So far, no nucleic acid directly linked to scrapie infectivity has been identified. The existence

of scrapie-specific homogeneous nucleic acid of more than 80 nucleotides has been excluded

by analysis of highly purified scrapie preparations involving improved return refocusing gel

electrophoresis (Kellings et al., 1992). However, the presence of a nucleic acid associated

with infectivity cannot be ruled out, as the BSE agent can be transmitted to mice in the

absence of detectable abnormal PrP (Lasmézas et al., 1997).

The in vitro interaction of nucleic acid with PrP has been described for both DNA and RNA.

Using fluorescence labelled DNA, it was shown that the bindingstrength of peptide PrP106-

126 to DNA was of a similar order of magnitude as the binding of retroviral protein p10 with

model nucleic acids (Nandi, 1997). It was also shown that PrP106-126 polymerizes in the

presence of DNA in solution, whereas the peptide alone fail to polymerize (Nandi, 1998).

RNA aptamers that bind specifically to recombinant hamster PrP (Weiss et al., 1995) but not

to recombinant PrP90-231 (Weiss et al., 1996) were isolated by in vitro selection (Weiss et

al., 1997). RNA aptamers of three different motifs were isolated, and all revealed a G quartet

scaffold, which was proved to be essential for PrPc binding. An RNA aptamer of only 29

nucleotides, representing the G quartet scaffold, was sufficient for PrPc recognition. The

interaction of the G quartet scaffold with PrPc was directed exclusively against the amino

terminus (aa23-52) of PrP. However, it could not be excluded that the aptamer recognizes

PrPSc, but failed to recognize PrP27-30, lacking aa23-89 from the amino terminus.
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Abstract

The accumulation of PrPSc in scrapie-infected neuronal cells has been prevented by three

approaches: (i) transfection of ScMNB cells with an antisense laminin receptor precursor

(LRP) RNA-expression plasmid, (ii) transfection of ScN2a and ScGT1 cells with small

interfering RNAs (siRNAs) specific for the LRP mRNA, and (iii) incubation of ScN2a cells

with an anti LRP/LR antibody. LRP antisense RNA and LRP siRNAs reduced LRP/LR

expression and inhibited PrPSc accumulation these cells. The treatments also reduced PrPc

levels. The anti-LRP/LR antibody, W3, abolished PrPSc accumulation and reduced PrPc levels

after 7 days of incubation. Cells remained free of PrPSc after beeing cultured 14 additional

days without the antibody, whereas the PrPc level was restored. Our results demonstrate the

necessity of the laminin receptor (LRP/LR) for PrPSc propagation in cultured cells and suggest

that LRP/LR-specific  antibodies as powerful therapeutic tools in the treatment of

transmissible spongiform encephalopathies.

Introduction

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative

disorders which includes Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform

encephalopathy (BSE) in cattle, and scrapie in sheep (Aguzzi and Weissmann, 1998;

Lasmézas and Weiss, 2000; Prusiner et al., 1998; Weissmann, 1999). The main pathogenic

event in the development of TSEs is the conversion of PrPc, the normal cellular form of the

prion protein, to PrPSc. An important feature of PrPSc is its partial resistance to proteases,

which makes it biochemically distinguishable from PrPc (Caughey and Raymond, 1991).

Recently, we identified the laminin receptor (LRP/LR) as the cell-surface receptor for the

cellular prion protein (PrPc) (Gauczynski et al., 2001b). Heparan sulfate proteoglycans

(HSPGs) have been shown to function as cofactors or co-receptors the binding of PrPc to

LRP/LR (Hundt et al., 2001). The LRP/LR has been shown to interact directly with the prion

protein in the yeast two-hybrid system (Rieger et al., 1997). This interaction was confirmed

by pull-down assays in cotransfected COS-7 cells and coinfected insect cells (Rieger et al.,

1997). Furthermore, increased levels of the LRP were found in the brain, spleen and pancreas

of scrapie-infected mice and hamsters as well as in scrapie-infected neuroblastoma cells,
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which are a well characterized in vitro model for scrapie infection (Rieger et al., 1997). These

data suggest a link between the LRP/LR and prion propagation.

The non-integrin LRP/LR laminin receptor is a multifunctional protein that is required for cell

differentiation, movement and growth (for review see (Gauczynski et al., 2001a)).  Its cDNA

encodes a 37-kDa precursor protein (LRP) also known as p40 and has been cloned from

different species by several groups.This protein has been reported to be ribosome-associated,

to bind to histones H2A, H2B and H4 and to be the precursor of the metastasis-associated 67

kDa mature high-affinity laminin receptor (LR) (for review (Gauczynski et al., 2001a; Leucht

and Weiss, 2002)).  The 67-kDa LR is consistently upregulated in aggressive carcinoma

suggesting a role in cell homeostasis and cohesion. The amino acid sequence of the receptor is

highly conserved throughout evolution with at least 98.3% homology between mouse, human

and bovine sequences and 99% homology between rat and human sequences (for review

(Gauczynski et al., 2001a; Leucht and Weiss, 2002)). Published data suggest the existence of

at least six LR genes in the mouse genome; one of them is localised on chromosome 9 and at

least two copies are thought to be functional (Douville and Carbonetto, 1992). Using TRIBE-

MCL, an algorithm for the detection of protein families (Enright et al., 2002), five LR genes

were identified when the program was used to search the latest mouse draft genome sequence

(Mouse Genome Sequencing Consortium, 2003, available at http://www.ensembl.org). The

LRP gene on chromosome nine has seven exons and six introns, but in contrast to earlier

results (Douville and Carbonetto, 1992) no LRP/LR gene on chromosome 6 has been

identified. Interestingly, genes which affect susceptibility to prions have been identified on

mouse chromosome nine (Stephenson et al., 2000).

PrP specific antibodies have successfully been used in preventing prion propagation in vitro

and in vivo as follows: first, the accumulation of PrPSc in scrapie-infected neuroblastoma cells

was inhibited by PrP-specific antibodies (Peretz et al., 2001); second, scrapie infection was

abolished by transgenic expression of PrP specific antibodies in mice (Heppner et al., 2001).

The epitope recognized by the antibody that has the most potent effect on PrPSc, D18, consists

od amino-acid residues 132-156 of PrP, which includes helix A (residues 144-154). Because

PrP residues 144-179 have been shown to constitute a binding site for the LRP/LR (Hundt et

al., 2001), we investigated whether an antibody directed against the LRP/LR, the cellular

receptor of PrPc (Gauczynski et al., 2001b), can also be used to interfere with the metabolism

of PrPSc. To ablate LRP/LR expression from all putative LRP/LR-encoding genes, we used an
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antisense RNA and a small interfering RNA (siRNA) approach. We investigated whether

these strategies had an effect on prion propagation in several scrapie infected cell systems.

Results and Discussion

Antisense LRP mRNA prevents PrPSc propagation

To produce LRP antisense messenger RNA, we cloned a region of LRP complemantary DNA

from nucleotide position –65 to 901 into the expression plasmid pCI-neo, to produce the pCI-

neo-asLRP plasmid. After transient transfection of pCI-neo-asLRP into ScMNB cells, we

confirmed antisense LRP RNA expression in these cells (Figure 1A). The level of LRP

mRNA was greatly reduced 38 h after tranfection (Figure 1B). Using phosphoimaging, this

reduction was quantified and LRP mRNA levels were found to be 80-85% of normal LRP

mRNA expression levels. A similar reduction in target mRNA has been shown in other

studies that have used the antisense RNA method to downregulate the expression of the

myelin basic protein (Katsuki et al., 1988) (80% reduction), and Wnt-1 (Erickson et al., 1993)

(up to 98% reduction). At the level of protein expression, no LRP was detected by western

blotting 48 h after transfection (Figure 1C). Analysis of the cells 72 h post transfection

showed an absence of PrPSc propagation (Figure 1D) in cells with reduced LRP levels (Figure

1C). Levels of PrPSc were unaffected in cells transfected with the pCI-neo as compared with

untransfected cells (Figure 1D). In ScMNB cells we were able to detect only the

diglycosylated form of PrP using the SAF70 antibody, whereas in ScN2a and ScGT1 cells we

observed the classic three-band pattern. We observed a reduction in PrPc level which might be

caused by an altered PrPc metabolism. Previous data indicate that PrPc internalization is

strongly dependent on the presence of LRP/LR at the cell surface (Gauczynski et al., 2001b),

where LRP/LR binds to PrPc via two distinct binding domains: the octapeptide region and the

region encompassing amino acids 144 to 179 (Hundt et al., 2001). This is consistent with a

very recent study, in which it was found that the octarepeat region is essential for

internalization of PrPc (Nunziante et al., 2002). Hence, the altered PrPc level is likely to be

due to a perturbed metabolism of the protein.
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LRP-specific siRNAs prevent PrPSc propagation

SiRNAs were used to verify the results obtained using the LRP antisense RNA construct. This

method has been used succesfully in other studies to knock-down target gene expression

levels (Elbashir et al., 2001). We tested four different LRP-specific siRNAs for their ability to

repress LRP expression in ScN2a cells. All of them repressed LRP/LR synthesis (Figure 2A).

Figure 2B shows data from a timecourse experiment carried out to analyse the effect of

siRNA-LRP3 on PrPSc propagation in ScN2a cells. Seventy-two hours after transfection PrPSc

propagation was completely abolished by siRNA-LRP3, whereas siRNA-LRP1, siRNA-LRP4

and a control siRNA (lamin A/C, described in Elbashir et al., 2001) had a smaller effect

(siRNA-LRP1+ siRNA-LRP4) or no effect (control) on PrPSc levels. PrPc levels were reduced

in the presence of siRNA_LRP 3. The same effects were observed with LRP antisense RNA

72 h after transfection. In contrast to PrPSc, PrPc levels increased 96 hours after transfection

probably due to a decrease in siRNA effectiveness with time.

We also tested the efficiency of the reduction of LRP expression using siRNAs in ScGT1

cells showing a robust PrPSc phenotype (that is, these cells propagate PrPSc over a long period

of time). The results were consistent with those obtained using ScN2a cells, with a strong

reduction of PrPSc correlated with LRP downregulation (Figure 2C).

Anti-LRP/LR antibody W3 prevents PrPSc accumulation

LRP/LR specific antibodies have been used successfully to compete with recombinant prion

protein for binding to the LRP/LR in different mammalian cell types (Gauczynski et al.,

2001b), showing that the LRP/LR has a crucial role in the metabolism of PrPc. Using the

LRP/LR-specific antibody, W3, (Rieger et al., 1997) in ScN2a cells and observed a reduction

of PrPSc to undetectable levels (Figure 3A, B). The antibody was used at different

concentrations of 6-64 µg ml-1. At a concentration of 12 µg ml-1 a reduction in PrPSc level was

observed. At a higher concentration (64 µg ml-1), PrPSc accumulation was totally abolished

after incubation for three days indicating a dose dependent effect (Figure 3A). In a timecourse

experiment, we found a complete clearance of PrPSc after incubation for one week, using an

antibody concentration of 32µg ml-1 (Figure 3B). These results are concistent with a previous

study, in which different anti-PrP antibodies were used to reduce PrPSc levels in cultured cells
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(Peretz et al., 2001; Table I). In that study, PrP antibody concentrations of 1.2-10 µg ml-1

were sufficient to clear PrPSc from ScN2a cells after one week of incubation (Table I).

We also incubated ScN2a cells in which PrPSc had been previously cleared by W3 for a

further two weeks without any antibody, and showed that no PrPSc reappeared (Figure 3B).

PrPc levels in W3-treated cells were reduced after 7 days of W3 antibody incubation and

totally restored after a further two-week incubation in the absence of the antibody (Figure

3B).

Table I Efficacy of anti-PrP and anti-LRP/LR antibodies in

clearance of PrPSc from ScN2a cells

Antibody anti-

LRP/LR

anti-PrP1

Incubation time 1 week 1 week

Antibody W3 D18 D13 R1 R2

Effective

Concentration

[µgml-1]

32 1.2 2.5 10 10

1 data taken from (Peretz et al., 2001)

Role of LRP/LR in PrPSc propagation in cultured cells

The knock down of LRP/LR on the cell surface by LRP antisense RNAs or siRNAs, and the

blockage of LRP/LR binding sites by the W3 anti-LRP/LR antibody are most likely to

interfere with PrP levels by blocking the PrP internalization process. However, some PrPc can

still be synthesized and transported via the secretory pathway to the cell surface (Figures 1D,

2B, 3). Conversion of PrPc into PrPSc is thought to take place either at the cell membrane or in

the endocytic pathway. Thus, it is possible that due to the lack of PrPc within the endocytic

pathway no PrPSc can be formed resulting in a time dependent reduction of PrPSc (Figure 2B,

3B). It is also possible that that the LRP/LR has a function in the conversion of PrPC to PrPSc

and that the abcense of LRP/LR from the cell surface affects PrPSc formation. PrPSc
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propagation cannot be restored after cessation of incubation with anti-LRP/LR antibody (Fig.

3B) due to the absence of any PrPSc to re-initiate the conversion process. In contrast, PrPc

levels were completely restored after cessation of incubation with the anti-LRP/LR antibody

(Fig. 3B). Furthermore, depletion or blockage of LRP/LR on the cell surface might directly

prevent PrPSc binding and internalization. In summary our results show, that the LRP/LR is

not only involved in PrPc metabolism, as demonstrated in previous reports (Gauczynski et al.,

2001b; Hundt et al., 2001), but also plays a central role in prion propagation. The fact that

LRP/LR specific antibodies are able to clear PrPSc from neuroblastoma cells provides

possibilities for the development of new experimental therapies for TSEs..

Methods

Construction of pCI-neo-asLRP. Base –65 to 901 of the LRP cDNA were amplified by

PCR with reverse transcription (RT-PCR) from total RNA isolated from N2a cells,

introducing the restriction sites NheI and SmaI. The LRP cassette was cloned via NheI/SmaI

in antisense orientation into the plasmid pCI-neo, resulting in pCI-neo-asLRP.Cloning was

confirmed by sequencing.

Cell culture. ScMNB and ScN2a cells (both lines are neuroblastoma cells chronically

infected with scrapie) were grown in DMEM, 10% fetal bovine serum, 2mM Glutamax, 100

units/ml penicillin and 10 µgml-1 streptomycin sulfate, at 37°C with 5% CO2. ScN2a cells

were produced as described previously (Bosque and Prusiner, 2000). The ScGT1-7 cells (GT1

hypothalamic neuronal cells chronically infected with the Chandler scrapie isolate) were

provided by S. Lehmann, and were cultured as previously described (Mange et al., 2000) with

the exception that Dulbbecco’s modified Eagles medium (DMEM) was replaced with Opti-

MEM (Gibco Life Sciences).

Inhibition studies using the W3 antibody. ScN2a cells (1x106) were incubated in normal

growth medium (DMEM, 10% fetal bovine serum, 2mM Glutamax) supplemented with the

purified polyclonal anti-LRP/LR  antibody, W3, at varying concentrations. After incubation

the cells were harvested, lysed and analyzed by western blotting.

Inhibition studies using LRP antisense RNA. ScMNB cells were grown in a six-well plate

to 60% density. The cells were transfected with pCI-neo-asLRP and pCI-neo (control

plasmid) using Lipofectamin (Invitrogen) according to the manufacturer’s instructions.
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Transfection efficiencies were determined using a chloramphenicol acetyltransferase

construct, and  were estimated to be approximatlely 80% on average (data not shown). Cells

were harvested 72 h after transfection, lysed and analysed by western blotting.

siRNA inhibition studies. Four different pairs of complementary 21-nucleotide RNAs

corrosponding to regions of the LRP cDNA were made (Ambion). As a control the lamin A/C

RNA duplex was used (Elbashir et al., 2001). The single stranded complementary RNAs

were annealed in annealing buffer (provided by the manufacturer) for 1 min at 90 °C,

followed by 1 h at 37 °C. The RNA duplexes were transfected into ScN2a cells (cultured in

Opti-MEM medium, Invitrogen) using Oligofectamin (Invitrogen) in accordance with the

manufacturer’s instructions. ScGT1-7 cells were seeded in 60-mm petri dishes (5 x 105 cells

per dish) and transfected the following day with 10µg of each 21-nucleotide RNA pairs using

Exgen 500 (Fermentas) in accordance  with the manufacturer’s instructions.

Ribonuclease protection assays. Total RNA was purified from transfected ScMNB cells and

used in a Ribonuclease Protection Assay (RPA) using the RPA III kit (Ambion). An antisense

riboprobe was made by in vitro transcription from pCI-neo-asLRP, following linearization of

the plasmid with EcoRI, in the presence of (a-32P)-UTP. The antisense riboprobe was

combined with the total RNA and the mixture was then precipitated. The precipitates were

dissolved in hybridization buffer, denatured and hybridized with the total RNA. This was

followed by incubation with RNAse for 30 min at 37°C, followed by inactivation of the

RNAse and ethanol precipitation of the RNA. Protected RNA fragments were separated on a

5% acrylamid/urea gel and visualized using a Storm 860 phosphorimager equipped with

ImageQuant software.

RT-PCR. Total RNA was purified from transfected ScMNB cells and cDNA synthesis was

carried out using an oligo(dT) primer in an RT-reaction. The resulting cDNA was then

amplified by PCR using a 5´-oligodeoxyribonucleotide corrosponding to a sequence in the 3´-

end of the cytomegalovirus promoter and a 3´-oligodeoxyribonucleotide corrosponding to a

sequence in the 5´-region of the simian virs 40 polyadenylation signal. PCR products were

separated on a 1% agarose gel and stained withethidium bromide.

Western blotting. Cytoplasmic lysats were made using a buffer containing 10 mM Tris/HCl

pH 7.5, 100 mM NaCl, 10 mM EDTA, 0.5 % Triton X-100, and 0.5 % sodium desoxycholate.

After centrifugation, the total protein content of the lysats was measured (BCA-Protein Assay,

Pierce) and equal amounts of protein from each lysate were analysed. For PrPSc detection, cell
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lysats were digested with proteinase K (20 µg ml-1) for 1 h at 37°C. The reaction was stopped

by addition of Pefabloc (1 mM) and the proteins were denatured with 6 M guanidine

hydrochloride. The samples were boiled in SDS sample buffer and analyzed on an SDS

polyacryamid gel containing 12.5% acrylamid. For PrPc or PrPSc detection (from ScN2a cells)

10% Bis-Tris gels with MES running buffer (NuPAGE, Invitrogen) were used. Proteins were

blotted on a polyvinylidene difluoride  membrane, blocked and incubated overnight with the

monoclonal antibody SAF70/SAF32/SAF84 (diluted 1:5000 in blocking solution) or A7

(diluted 1:2500 in blocking solution) for PrP detection. The polyclonal anti LRP/LR antibody

W3 (Rieger et al., 1997) (1:2000) or the monoclonal antibody 43512 (1 µg ml-1) for LRP

detection or anti-b actin antibody (Chemicon) (1:5000) for b-actin detection. After washing

with TBS/0.05% Tween 20 the blot was incubated for 1 h with a peroxidase-conjugated

secondary antibody (Sigma) (1:2500). Detection was carried out by enhanced

chemiluminescence (Western Lightning, NEN).
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Fig. 1 Abolition of PrPSc propagation using laminin receptor precursor (LRP) antisense RNA. (A)

Analysis by PCR with reverse transcription of total RNA extracts of transfected ScMNB cells.

Oligodesoxythymidine-primed complementary DNA was amplified by PCR using specific primers for

the pCI-neo plasmid. This gave a 322-bp cDNA fragment for the pCI-neo transfected cells and a

1115-bp cDNA fragment for the pCI-neo-asLRP transfected cells. (B) A ribonuclease protection assay

was carried out on total RNA from cells transfected with either pCI-neo or pCI-neo-asLRP; the RNA

was then separated on a 5% acrylamid/urea gel. 5 µg and 10 µg of total RNA was used and in both

cases the level of LRP messenger RNA was reduced by 80-85% in cells transfected with pCI-neo-

asLRP (quantified with posphorimaging). (C) Western blot analysis of cell lysats from pCI-neo and

pCI-neo-asLRP transfected ScMNB cells assayed 48 hours after transfection. LRP was detected using

the polyclonal anti-LRP/LR antibody, W3. b-actin was detected using an anti-b-actin antibody as

loading control. (D) ScMNB cells were transfected with pCI-neo and pCI-neo-asLRP. The PrPSc

content of ScMNB cells was determined 72 h after transfection. The monoclonal anti-PrP antibody

SAF70 was used for PrPSc detection and the SAF32 antibody was used for dtection of PrPC.



Chapter IV

98

Fig. 2 Inhibition of PrPSc propagation using small interfering RNAs (siRNAs). (A) Western blot

analysis of ScN2a cells transfected with siRNAs. Cells were analysed 72 hours after transfection using

the polyclonal anti-laminin receptor (LRP/LR) antibody W3. (B) The effect of siRNAs on PrPSc

propagation was assayed 72 hours after transfection (left panel). The time dependent effect of siRNA-

LRP3 on PrPSc propagation (right panel) was analysed using the SAF70 antibody; PrPc was detected

with the SAF32 antibody. b-actin was detected using an anti-b-actin antibody as loading control. (C)

Western blot analysis of siRNA-transfected ScGT1 cells at 72 hours after transfection. The cells were

analysed using the mAb LR43512 (lower pannel) and the mAb SAF84 (upper pannel). All samples were

normalized to equal protein concentrations.
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Fig. 3 The effect of the W3 anti-laminin receptor (LRP/LR) antibody on PrPSc propagation. (A) ScN2a

cells were incubated with W3 at varying concentrations. The PrPSc content was determined after a 72 h

incubation with the antibody W3. An anti VLA-6 (integrin-type laminin receptor) antibody was used as

control. PrPSc was detected using the A7 polyconal antibody; PrPc was detected with the SAF32

antibody. (B) ScN2a cells were incubated with W3 at 32µg/ml for varying durations. The last lane

shows W3-treated ScN2a cells after an additional 2-week incubation without any antibody. PrPSc was

detected with the SAF 70 antibody, PrPc was detected with the SAF32 antibody. b-actin was detected

using an anti-b-actin antibody as loading control.
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Abstract

Recently, we identified the 37-kDa laminin receptor precursor (LRP) as an interactor for the

prion protein (PrP). Here, we show the presence of the 37-kDa LRP and its mature 67-kDa

form termed high-affinity laminin receptor (LR) in plasma membrane fractions of N2a cells,

whereas only the 37-kDa LRP was detected in baby hamster kidney (BHK) cells. PrP co-

localizes with LRP/LR on the surface of N2a cells and Semliki Forest virus (SFV) RNA

transfected BHK cells. Cell-binding assays reveal the LRP/LR-dependent binding of cellular

PrP by neuronal and non-neuronal cells. Hyperexpression of LRP on the surface of BHK cells

results in the binding of exogenous PrP. Cell binding is similar in PrP+/+ and PrPo/o primary

neurons, demonstrating that PrP does not act as a co-receptor of LRP/LR. LRP/LR-dependent

internalization of PrP is blocked at 4°C. Secretion of an LRP mutant lacking the

transmembrane domain (aa86 to aa101) from BHK cells abolishes PrP binding and

internalization. Our results show that LRP/LR acts as the receptor for cellular PrP on the

surface of mammalian cells.

Introduction

The prion protein is an ubiquitous host protein expressed by all known mammals (Oesch et

al., 1991; Oesch et al., 1985; Schätzl et al., 1995) predominantly in the brain (Chesebro et al.,

1985). While its exact function is still unknown, a role has been proposed in synaptic

transmission by neuronal cells (Collinge et al., 1994; Fournier et al., 1995; Kitamoto et al.,

1992), in sleep behaviour (Tobler et al., 1996) and in cell survival (Kuwahara et al., 1999)

(for review see (Weissmann, 1996)). The Purkinje cell degeneration (Sakaguchi et al., 1996),

however, was not due to the lack of PrP, but to overexpression of doppel (Dpl) (Moore et al.,

1999). PrP binds copper in vivo (Brown et al., 1997) and reveals signal transduction activity

by activating tyrosine kinase Fyn (Mouillet-Richard, 2000). PrP is essential for the

development of transmissible spongiform encephalopathies (TSEs) (Bueler et al., 1993) also

known as prion diseases, which represent fatal neurodegenerative diseases such as scrapie in

sheep, BSE in cattle and Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker
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syndrome (GSS) and fatal familial insomnia (FFI) in humans (for review see (Lasmézas and

Weiss, 2000; Prusiner et al., 1998; Weissmann and Aguzzi, 1997)).

It is thought that an abnormal form of PrP, termed PrPres for its partial resistance to

proteolytic digestion, which accumulates in the brain of infected individuals, is a major

component of the infectious agent of TSEs (Prusiner, 1982). The process leading to the

harmful form of the protein results in a conformational change of a-helices or unstructured

regions of PrPc to b-sheet structures in PrPres (Caughey et al., 1991). It is still unknown if the

neuronal death observed in TSEs is due to a loss of function of PrPc or to the toxicity of

PrPres. In this context, the identification of the cellular receptor for PrP would be a key step

towards both, the understanding of disease pathogenesis and the development of therapeutics.

Within the life cycle of the prion protein, PrPc is transported to the cell surface where it

remains GPI anchored. PrPc is internalized via clathrin coated pits (Shyng et al., 1994) or

caveolae like domains (Vey et al., 1996). The conversion of PrPc into PrPres may take place

at the cell surface, in endosomes, lysosomes or endolysosomes. This process is thought to be

influenced by an unknown protein termed protein X (Telling et al., 1995), which could

represent a molecular chaperone such as Hsp60 identified as an interactor for PrPc

(Edenhofer et al., 1996). The presence of a specific so far unidentified cell-surface receptor

for PrP has been deduced from complementary hydropathy (Martins et al., 1997).

Simultaneously, we identified the 37-kDa laminin receptor precursor (LRP) – which

represents the precursor of 67-kDa laminin receptor (LR) - as an interactor for the prion

protein in a yeast two-hybrid screen (Rieger et al., 1997) and hypothesized that LRP could act

as a receptor or co-receptor for PrP (for review (Gauczynski et al., 2001; Rieger et al., 1999)).

In the present study, we confirm the presence of the 37-kDa LRP and its mature 67-kDa

isoform at the plasma membrane of N2a cells. We found that PrP co-localizes with LRP/LR

at the surface of N2a and with LRP on BHK cells, the latter hyperexpressing LRP and PrP by

recombinant (rec.) Semliki Forest virus vectors (for review on the SFV-system see

(Liljestrom and Garoff, 1991b; Tubulekas et al., 1997)). The relationship between 37-kDa

LRP and 67-kDa LR is unknown so far (for review see (Gauczynski et al., 2001)). As we

observed in this study both forms of the receptor in plasma membrane fractions of N2a cells,

we suppose that both forms may act as the receptor for cellular PrP. We investigated the role

of LRP/LR as a receptor for cellular PrP by the development of various cell-
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binding/internalization assays for PrP. We further studied by PrP hyperexpression on baby

hamster kidney (BHK) and Hela cells the possible role of endogeneous PrP acting as a co-

receptor for LRP/LR on the cell surface. Employing an LRP deletion mutant lacking the

transmembrane domain of LRP, termed LRPdelTMD, we also investigated the necessity of

LRP for PrP binding and internalization. We conclude from these data that 37-kDa LRP/67-

kDa LR acts as the main cell-surface receptor for PrP.

Results

Co-localization of 37-kDa LRP/67-kDa LR with PrP on the surface of neuroblastoma

cells

Immunofluorescence (IF) analysis of non-permeabilized murine neuroblastoma cells

(N2a[MHM2]) employing LRP- (Figure 1A) and PrP- (Figure 1B) specific antibodies

demonstrated that PrP and LRP/LR co-localize on the surface of these cells (Figure 1C). The

integrin LR VLA6 failed to co-localize with PrP (Figure 1D-F) and LRP/LR on the cell

surface (Figure 1G-I). Fluorescence-activated cell (FAC) scans of non-permeabilized N2a

cells employing an LRP specific antibody confirmed the cell-surface location of LRP/LR

(Figure 1J). The b-galactoside lectin galectin-3 (gal-3) (Yang et al., 1996), which was used as

a control throughout the experiments because of a previously reported cross-reactivity with

LRP (Buto et al., 1998), is not expressed on the surface of N2a cells (Figure 1L). Western

blot analysis of cytoplasm free plasma membrane fractions of N2a cells using a monoclonal

antibody against LRP/LR revealed that the 37-kDa form (LRP) and to a lesser extent its

mature 67-kDa form (LR), are located on the plasma membrane of N2a cells (Figure 1K). IF

and FACscans of non-permeabilized primary cultures of mouse cortical neurons (data not

shown) and HeLa cells (Figure 4B) also demonstrated the cell-surface location of LRP/LR on

these cells, used for PrP binding experiments.

Location and orientation of LRP and human PrP on BHK cells transfected by

recombinant Semliki Forest virus RNA
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In order to investigate more precisely the localization and orientation of LRP on the surface

of mammalian cells, the Semliki Forest virus (SFV) system was used to express rec.

LRP::FLAG in BHK cells. Immunofluorescence analysis (Figure 2A, left inset) and

FACscans (Figure 2D) reveal a low level of endogenous LRP expression. Gal-3 was not

expressed on the surface of BHK cells (Figure 2F). Detection of LRP::FLAG at the surface of

SFV LRP-FLAG RNA transfected BHK cells with a FLAG antibody (Figure 2A)

demonstrates that LRP acts as a type 2 receptor with its C-terminus oriented to the

extracellular space. Flow cytometry confirmed the cell-surface location of LRP::FLAG

(Figure 2E). Endogeneous LRP (Figure 2G, lane 1), hyperexpressed LRP::FLAG (Figure 2G,

lanes 2 and 4) and human PrP (Figure 2G, lane 6) are located at the plasma membrane of

BHK cells. Expression of LRP::FLAG in this cell system did not result in the 67-kDa form of

the LR. These data lead to the model for LRP depicted in Figure 2C showing the laminin-

binding domain (Castronovo et al., 1991) coinciding with the direct PrP-binding site located

between amino acids (aa)161 and 179 (Hundt et al., 2001). An LRP mutant (LRPdelTMD)

lacking the proposed transmembrane domain (Castronovo et al., 1991) secreted to the

extracellular space of BHK cells (Figure 5D) demonstrating that this region indeed represents

the transmembrane domain of LRP. Transfection of SFV human PrP RNA into BHK cells led

to the translocation of non-tagged human PrP to the surface of BHK cells (Figure 2B). We

then aimed to verify whether the cellular location of LRP and PrP would allow them to

interact with each other. Co-expression of LRP::FLAG and human PrP in BHK cells proved

that LRP (Figure 2H) and PrP (Figure 2I) co-localize to a large extent on the cell surface

(Figure 2J).

LRP/LR-dependent binding of human PrP to mammalian cells

To investigate a possible role of LRP/LR for the PrP binding and internalization, we

established cell-binding assays with prion proteins. We confirmed that the PrPc moiety of rec.

GST::huPrP, employed in most of our assays, displays a conformation similar to native PrPc

by CD spectroscopy (Figure 3E) as shown previously for  glutathione S-transferase (GST)-

fused hamster PrP23-231 (Volkel et al., 1998). The binding of GST::huPrP23-230 to N2a

cells (Figure 3A) can be totally abolished by pre-incubating the cells with the LRP antibody

W3 (Figure 3A, inset). Exogeneous PrP bound to the cell surface (Figure 3C) and co-
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localized partly with LRP/LR (Figure 3B and D). The binding curve deduced from western

blot quantification of the GST::huPrP binding to N2a cells (Figure 3 F) reveals that at a

GST::PrPc concentration of 4 µg/ml (used in the co-localization assay) the receptor molecules

were not saturated (visible as green dots on the cell surface in Figure 3 D). This is a possible

explanation for the incomplete co-localization, which is compatible with the kD of 1 x 10-7

mol/l deduced from this binding curve.

Table I Summary of the displacement capacity of antibodies for the binding of human

PrP to neuronal cells.

Inoculum saturationa Pre-incubation of cellsa Dilution Binding Inhibition

pAb anti-PrP (JB007) +++

Pre-immune serum

(PrP immunization)

-

pAb/mAb anti-GST -

pAb anti-LRP 1/50

1/100

1/500

1/1000

1/10000

+++

++

+

-

-

pre-immune serum

(LRP immunization)

1/50 -

mAb anti-LRP 167-243 1/5

1/50

++

+

mAb anti-LRP 285-295 1/5

1/50

-

-

pAb anti-GFAP 1/50 -

pAb anti-laminin 1/50 -

mAb anti-VLA6 1/50 -

mAb anti-lutheran protein 1/50 -

pAb anti-galectin-3 Ab 1/50 -

mAb anti-Hsp60 1/50 -

mAb anti-Hsp70 1/50 -

mAb anti-Hsp90 1/50 -

aN2a and NT2 cells have been incubated with GST::huPrP23-231 after pre-incubation of the protein with the

indicated antibodies (inoculum saturation) or after pre-incubation of the cells with the indicated antibodies.
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Antibody displacement capacities were analysed by Immunofluorescence. Concentrations of all undiluted

antibodies used range between 1.5 and 1.7 mg/ml.

+++, ++, + : Inhibition of binding;

- :  No inhibition of binding.

At this GST::PrPc amount there might also be more receptor molecules on the cell surface

than could bind 4 µg of PrP. The association of rec. PrP with N2a cells was competed in a

dose-dependent manner with the LRP antibody W3 (Figure 3G; Table I).

Recently, a homology of the N-terminus of LRP with members of the Hsp70 family was

observed (Ardini et al., 1998) suggesting that LRP/p40 might be involved in protein folding.

Antibodies directed against the molecular chaperones Hsp60, 70 or 90 (Figure 3H; Table I),

however,  did not influence the PrP-binding reaction. GST::huPrP23-230, saturated with a

GST antibody prior to exposure, bound also to human NT2 cells (data not shown). Authentic

PrPc from hamster brain membrane preparations bound LRP/LR-dependent to MNB cells

(Figure 3I). All experiments performed to verify the strict LRP/LR and PrP specificity of the

binding reaction are summarized in Table I. Pre-immune serum, antibodies directed against

GST, GFAP, laminin or gal-3 revealed no effect. Antibodies against other LRs such as the

lutheran protein (El Nemer et al., 1998) and the integrin laminin receptor VLA6 (Magnifico

et al., 1996) did not inhibit the binding of PrP. In addition, we observed that the lutheran

protein failed to interact with LRP in the yeast two hybrid system (data not shown).

Saturation of the rec. protein with the PrP antibody JB007 led to a complete inhibition of the

binding. A monoclonal antibody directed against aa 285-295 of LRP/LR failed to compete for

the binding of GST::huPrP, whereas the monoclonal LRP/LR antibody directed against aa

167-243 reduced the binding of PrP to neuronal cells (Figure 3G and Table I).

Hyperexpression of LRP on the cell surface of BHK cells by the SFV system enhanced

binding of recombinant PrP

Next we aimed to verify whether a quantitative relationship exists between PrP binding and

the amount of LRP available on the cell surface. Untransfected BHK cells with a low level of

endogenous LRP (Figure 3J, lower panel and Figure 2A, left inset) in the absence of any

detectable LR bind only barely detectable amounts of rec. PrP (Figure 3J, upper panel and

Figure 3L, triangles). In contrast, hyperexpression of LRP::FLAG at the surface of BHK cells

(Figure 3J, lanes 1-5, lower panel and Figure 2A) led to an enhanced dose-dependent binding
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of GST::huPrP (Figure 3J, lanes 1-5, upper panel and Figure 3L, squares). Binding of non-,

mono- and diglycosylated human PrP (without any tag) produced in the SFV-system was

significantly increased when LRP::FLAG was hyperexpressed at the cell surface (Figure 3K,

lanes 1-5 versus 6-10 and Figure 3M, squares versus triangles). Next, we wanted to verify

whether additional PrP on the cell surface influences the binding of externally added rec. PrP.

The co-expression of LRP::FLAG (Figure 3J, lanes 6-10, lower panel) and human PrP

(Figure 3J, lanes 6-10, upper panel) on the cell surface reduced the dose-dependent

GST::huPrP binding (Figure 3J, lanes 6-10, upper panel and Figure 3L, diamonds) when

compared with cells transfected with LRP::FLAG only (Figure 3L, squares). This finding

suggests that PrP does not act as a co-receptor for LRP for the binding of externally added

PrP on the surface of mammalian cells.

Binding behaviour of PrP to HeLa cells hyperexpressing PrP at the cell surface

The function of PrPc is unknown. However, due to its topography, it has been hypothesized

that it could function as a receptor (Weissmann, 1996). We wanted to know whether PrP acts

as a co-receptor for LRP/LR. To this purpose, we determined whether transiently transfected

HeLa cells (~ 10-20 % of total cells) with a low level of endogeneous PrP (Figure 4E, non-

transfected cells) and a high level of LRP/LR on the cell surface (Figure 4B) hyperexpressing

human PrP on their surface (fine red frame, Figure 4A) showed an enhanced binding of

externally added rec. PrP compared with non-transfected HeLa cells. The binding of rec. PrP

to cells hyperexpressing PrP was not increased compared with normal cells (Figure 4D-F,

compare cells stained in red with the others). Both the binding of PrP to transfected and to

non-transfected cells could be efficiently inhibited with the LRP specific antibody (data not

shown).

Similar binding of PrP to neurons isolated from PrPo/o mice and PrP wild-type mice

In order to confirm that PrP at the cell surface does not participate in the binding of rec. PrP,

we performed binding assays on primary cultures of neurons from PrPo/o mice versus wild-

type mice. The binding of GST::huPrP was similar for both types of neurons (Figure 4G and
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I) and was completely abolished by pre-incubating PrP+/+ or PrPo/o cells with the LRP

antibody W3 (Figure 4H, J).

LRP/LR-dependent binding and internalization of recombinant PrP by  N2a cells

The internalization of PrP was shown on N2a cells incubated with GST::huPrP and

trypsinized (Figure 5A, lane 3); it was blocked by the LRP antibody (Figure 5A, lane 5),

whereas the gal-3 antibody had no effect (Figure 5A, lane 4). Lowering the incubation

temperature to 4°C resulted in a complete inhibition of the PrP internalization process (Figure

5B, lane 3) confirming that the process is active and receptor-mediated. These results

demonstrate the LRP/LR-dependent internalization of the human prion protein.

Secretion of an LRP mutant lacking the transmembrane domain totally abolished PrP

binding and internalization

In order to prove the necessity of LRP for the binding and internalization process, we

compared the GST::huPrP binding/internalization by BHK cells expressing full-length LRP

with cells expressing an LRP mutant lacking the proposed transmembrane domain (aa 86 to

101) (Castronovo et al., 1991) termed LRPdelTMD. This mutant was detected in the

supernatant of the cells and in the crude lysates revealing its presence at high amounts in the

secretory pathway and its secretion to the extracellular space (Figure 5D, lanes 7-9, middle

and lower panel, respectively), whereas full-length LRP::FLAG was detected in the crude

lysate only (Figure 5D, lanes 4-6, middle panel). Binding and internalization of GST::huPrP

was observed in cells expressing wild-type LRP (Figure 5D, upper panel, lanes 5 and 6) but

not in those expressing LRPdelTMD (Figure 5D, upper panel, lanes 8 and 9). Untransfected

BHK cells having an extremely low level of endogeneous LRP bound no or only minimal

amounts of externally added GST::huPrP (Figure 5D, lane 2). Binding and internalization of

non-tagged highly glycosylated human PrP by LRP::FLAG hyperexpressing cells (Figure 5D,

lanes 10 and 11) confirmed the observations made with GST-tagged human PrP. Levels of

endogeneous LRP, as well as LRP::FLAG and LRPdelTMD::FLAG were only marginally

reduced after trypsin treatment due to the fact that significant amounts of these proteins are
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located in the secretory pathway. Densitometric measurements revealed that N2a (Figure 5A

and B) and BHK cells (Figure 5D) internalize between 25 and 50% of the bound PrP.
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Discussion

The interaction of PrP
c
 with 37-kDa LRP suggested that LRP and its mature 67-kDa LR

might act as a receptor or co-receptor for cellular PrP (Rieger et al., 1997). In order to

investigate this hypothesis we initiated a series of cell-binding/internalization assays

employing neuronal and non-neuronal cells, recombinant as well as authentic prion proteins

and a series of recombinant wild-type and mutated LRP molecules.

Localization of LRP/LR

A prerequiste for LRP/LR-dependent binding/internalization of PrP is the cell-surface

location of LRP/LR. LRP has been found on 40S ribosomes and was dubbed p40 (Auth and

Brawerman, 1992), in the nucleus (Sato et al., 1996) and on the cell surface. 37-kDa LRP is

located in plasma membrane fractions of mosquito cells acting as a receptor for the

Venezuelan equine encephalitis virus (Ludwig et al., 1996), in cell wall fractions of Candida

albicans (Lopez-Ribot et al., 1994) and on the cell surface of mammalian cells such as

Madin-Darby canine kidney cells (Salas et al., 1992). We showed by IF, flow cytometry and

analysis of plasma membrane fractions that the 37-kDa LRP is located on the surface of

neuroblastoma cells and non-transfected or LRP::FLAG hyperexpressing BHK cells. The 67-

kDa form of the LR locates also to the cell surface (for review see (Gauczynski et al., 2001))

where it acts as a receptor for the Sindbis virus (Wang et al., 1992). We showed the presence

of 67-kDa LR in plasma membrane fractions of N2a cells and concluded that the 37-kDa

LRP/67-kDa LR might act as a receptor for PrP at the plasma membrane. The 37-kDa

LRP/67-kDa LR polymorphism is unsolved so far. The association of cell-surface molecules

such as HSPGs with 37-kDa LRP might explain the appearance of the 67-kDa form of the

receptor (Hundt et al., 2001). LRP::FLAG hyperexpressing BHK cells revealed the cell-

surface localization of LRP with its C-terminus oriented to the extracellular space enabling

prion proteins to interact with PrP-binding domains on LRP. In summary, we showed (i) the

membrane location of LRP/LR and (ii) the co-localization of PrP with LRP/LR on the surface

of neuroblastoma cells and LRP/PrP hyperexpressing BHK cells.
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LRP/LR-dependent binding of PrP to cells

For PrP binding and internalization experiments, we used externally added recombinant

human PrP or authentic hamster prion protein, and a series of mammalian cells including

murine neuroblastoma cells (N2a, MNB), primary cultures of neurons, human

teratocarcinoma (NT2) and BHK cells. We proved LRP/LR-dependent binding of

GST::huPrP and authentic hamster PrP to these cells. The kD for the binding of rec. PrP to

N2a cells was of 1x10-7 mol/l, which is in good agreement with the kDs of other cell-surface

receptors such as the N-formyl peptide receptor (Christophe et al., 2001) or the proteinaceous

receptor on the surface of antigen presenting cells (Sondermann et al., 2000).

The strict LRP/LR specificity of the PrP binding to NT2 and N2a cells was demonstrated in

competition assays with a series of different antibodies (Table I). Whereas the LRP antibody

W3 raised against the entire protein (Rieger et al., 1997) competed totally for the binding of

GST::huPrP to neuronal and non-neuronal cells, mAb LRP285-295 did not compete for the

binding since aa 285-295 stretches outside the PrP binding domain (Hundt et al., 2001). mAb

LRP167-243 encompassing parts of the direct binding domain (Hundt et al., 2001) was able

to reduce the binding of PrP. Antibodies against the lutheran protein representing an erythroid

receptor for laminin (El Nemer et al., 1998),  failed to compete for PrP cell binding. This

receptor did not  interact with PrP in the yeast two-hybrid system (data not shown). Anti-

integrin receptor VLA6 antibodies (Magnifico et al., 1996) and anti-b-galactoside lectin gal-3

antibodies also failed to compete for the PrP-binding reaction. VLA6 does not co-localize

with PrP and LRP/LR on the cell surface. The use of  LRP hyperexpressing BHK cells

demonstrated the quantitative relationship between the number of LRP receptor molecules

and the PrP-binding process.

LRP/LR-dependent internalization of PrP

N2a cells internalized 25-50% of the human PrP bound to the cell surface in an LRP/LR-

dependent manner. The PrP internalization process represents an active receptor-mediated

event, confirmed by lowering the incubation temperature of N2a cells to 4°C resulting in a

total blockage of PrP internalization without affecting PrP binding.

Expression of an LRP mutant lacking the putative transmembrane domain (LRPdelTMD)

(Castronovo et al., 1991) in BHK cells resulted in secretion of LRPdelTMD to the
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extracellular space confirming the hitherto indirect evidence that the transmembrane region

stretches from aa 86 to 101. In contrast to full-length LRP hyperexpressing BHK cells,

LRPdelTMD hyperexpressing cells did not bind or internalize PrP due to the secretion of the

mutant to the extracellular space. Untransfected BHK cells similarly failed to bind and

internalize PrP due to insufficient amounts of LRP on the cell surface, confirming that LRP is

essential for PrP binding and internalization.

Endogeneous PrP does not act as a co-receptor for LRP/LR

The co-localization of LRP/LR and PrP at the surface of mammalian cells raises the

possibility that PrP could act as a co-receptor for LRP/LR. Binding of rec. PrP to HeLa or

BHK cells expressing additional PrP on the cell surface was not increased. On PrP plus LRP

hyperexpressing BHK cells, PrP had even the adverse effect of hampering the increased

binding due to LRP hyperexpression, probably by recruiting a proportion of the latter receptor

for its own metabolism. Unaltered binding of rec. PrP to primary cortical neurons isolated

from PrP knock-out mice confirmed that the absence of PrP on the cell surface had no

influence on the LRP/LR-dependent PrP binding, demonstrating that endogeneous PrP does

not act as a co-receptor for LRP/LR.

Role of LRP/LR in the metabolism of PrP and implications for the pathogenesis of TSEs

Our study has several implications in terms of both the metabolism of PrPc and the

pathogenesis of TSEs. Our co-localization and internalization data suggest that LRP/LR is

essential  for the normal cell cycle of PrP by mediating the internalization of PrPc after its

exposure at the cell surface. Internalization of PrP might occur via caveolae-like domains

(Vey et al., 1996) or via clathrin-coated pits (Shyng et al., 1994). The receptor-mediated

endocytosis of the protein (by LRP/LR), would direct the complex into clathrin-coated pits

(for reviews see (Pley and Parham, 1993; Schmid, 1997)) rather than caveolae-like domains

(for review (Maxfield and Mayor, 1997)). The role of LRP/LR as a receptor for the

extracellular-matrix proteins laminin and elastin also suggests that its interaction with PrP

may induce a signal involved in cell survival. In this respect, it has been shown that primary

neurons devoid of PrP are more prone to neuronal death than their PrP expressing

counterparts (Kuwahara et al., 1999). One possibility is that the interaction of an LRP/LR
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receptor on one cell with a PrP molecule on another cell would contribute to cell-to-cell

communication essential for cell survival. Recently, a signal transduction activity of PrP by

activating tyrosine kinase Fyn was described (Mouillet-Richard, 2000). The plasma

membrane-associated LRP/LR (Figure 1 and 2) might mediate the signal transduction of the

extracellular GPI-anchored PrP with the intracellular plasma membrane-associated Fyn

kinase involving cell-surface HSPGs (Hundt et al., 2001).

The fact that PrPc binds to and is internalized by LRP/LR raises the possibility that PrPres is

also bound/internalized by LRP/LR. The expression of LRP/LR in human small intestinal

mucosa (Shmakov et al., 2000) suggests that it may represent the portal of entry for PrPres

after oral contamination. Our recent finding that LRP levels are increased in only those

organs of rodents that accumulate PrPres, indicates that PrPres intervenes in the metabolism

of LRP (Rieger et al., 1997). Whether the internalization of PrPres relies on the presence of

LRP/LR, PrPc or both may be answered by cell biological studies. The generation of

transgenic mice devoid of LRP/LR might also help to determine whether LRP/LR acts as the

receptor for the infectious agent.

Also of relevance for pathogenesis, a saturation of the binding sites of LRP/LR  may occur as

a consequence of PrP accumulation in TSEs rendering the receptor unavailable to its ligand

laminin and contributing to neurodegenerative processes. The absence of laminin-binding to

its receptor sensitizes neurons to death, as demonstrated in mice affected with the weaver

syndrome (Murtomaki et al., 1995).  Keeping in mind that laminin plays a central role in cell

growth, differentiation and migration and that any interference with these functions may be

deleterious for the organism, our findings demonstrating that PrP associates with and is

internalized by LRP/LR into the cell open new avenues of research for anti-TSE therapeutics,

either to block the entry of the infectious particle, to modify the metabolism of PrP or to

interfere with the neurodegenerative process.

Materials and methods

Semliki Forest virus system

pSFV1-LRP::FLAG, pSFV1-LRPdelTMD::FLAG, pSFV1-huPrP1-253 were constructed as

described in the Supplementary data (see pages 82-88). pSFV-1 (Liljestrom and Garoff,
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1991b), pSFV3-lacZ (Life Technologies) and the ORF from human PrP (Krasemann et al.,

1996) were used. Transfections of BHK-21 C13 cells with rec. SFV-RNAs (transfection

efficiencies = 90-100 %) are described (see Supplementary data).

HeLa cells expressing huPrP

Human epitheloid carcinoma of cervix HeLa cells (ATCC CCL2) were transfected with

pCR3-uni™-huPrP1-253 containing human Prn-p cDNA (Jaegly et al., 1998) for huPrP

expression as described (see Supplementary data).

Tissue culture of N2a, N2a [MHM2], MNB, NT2, HeLa, BHK, Sf9 cells, primary mouse

cortical neurons, PrPo/o neuronal cultures

N2a, N2a [MHM2], MNB, NT2, HeLa, BHK, Sf9 cells, primary mouse cortical cultures and

PrP0/0 neuronal cultures (C. Weissmann, Zürich) were cultivated and prepared as described

(see Supplementary data).

Generation of recombinant and authentic proteins

pAcSecG2T-huPrP was generated and rec. baculoviruses produced as described (see

Supplementary data). Rec. GST, GST::huPrP23-230, dialyzed against 20 mM HEPES, pH 7.4

were expressed in the baculovirus system as described for GST::haPrP proteins (Weiss et al.,

1995; Weiss et al., 1996). Authentic PrPc was prepared from hamster brain membrane

fractions (Meyer et al., 1986). Human PrP was expressed in the SFV-system (see

Supplementary data).

Far-UV Circular dichroism analysis

CD spectra of GST::huPrP23-230 were recorded as described (see Supplementary data).
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PrP binding/internalization assays followed by immunofluorescence analysis, confocal

microscopy or western blotting

For competition studies the cells were either pre-incubated with the individual antibody

before the addition of rec. protein or the rec. protein was pre-incubated with the individual

antibody before addition to the cells (inoculum saturation). After 18 h of incubation, cells

were processed (with or without trypsin treatment) for IF-staining, confocal microscopy or

western blotting as described in the see Supplementary data.

FACS analysis (flow cytometry)

Single-cell suspensions were prepared, cells treated and data acquisition obtained as described

(see Supplementary data).

Isolation of plasma membranes

Plasma membrane preparations were done according to (Vleurick et al., 1999).

Calculation of binding curves for recombinant PrP to cells and determination of the kD

for the interaction of PrP with LRP/LR

Calculations (NIH-Image)/kD determination (Prism 3) were performed as described (see

Supplementary data).

Antibodies

The antibodies used are described in the Supplementary data. For saturation of pAb LRP W3

with rec. PrP, immobilized GST::LRP was incubated with pAb LRP W3 and the supernatant

assayed by IF on N2a/BHK cells.
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Supplementary data

Supplementary data for this chapter are shown subsequently to the figures (see pages 122-

128).
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Fig. 1 Plasmamembrane-associated LRP/LR and PrP co-localize on the surface of neuroblastoma cells.

Non-permeabilized N2a [MHM2] cells were incubated with the pAb LRP W3 [sec. Ab fluorescein

isothiocyanate (FITC)] (A), pAb LRP W3 saturated with rec. GST::LRP [sec. Ab carbocyanine Cy2, 4¢-

6-diamidine-2-phenylindole (DAPI)] (A, left inset) or the mAb LRP (aa 285-295 of LRP, sec. Ab Cy2)

(A, right inset) and the mAb PrP 3F4 [sec. Ab indocarbocyanine (Cy3)] (B), or the pAb PrP M-20 (B,
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inset). Merge of (A) and (B) DAPI staining (C ) (magnification x630). N2a [MHM2] cells were

incubated with the mAb VLA6 CD49f (sec. Ab Cy2) (D) and the pAb M-20  (sec. Ab Cy3) (E). Merge

of (D) and (E) DAPI staining (F). N2a [MHM2] cells were incubated with the pAb LRP W3  (sec. Ab

Cy2) (G) and the mAb VLA6 CD49f (sec. Ab Cy3) (H). Merge of (G) and (H) DAPI staining (I).  (J)

Non-permeabilized N2a cells were analysed by FACscans. Filled profile, isotype control. non-filled

profile, pAb LRP W3. Fluorescence intensity (abscissa) is plotted against relative cell numbers

(ordinate). (K ) Purified plasma membranes from N2a cells were analysed by western blotting

employing a mAb LRP (directed against aa 167-243) (lane 1). Molecular weight markers are indicated.

(L) Non-permeabilized N2a cells were analysed by FACscans. Filled profile, isotype control, non-filled

profile, anti-gal-3 antibody. Fluorescence intensity (abscissa) is plotted against relative cell numbers

(ordinate).
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Fig. 2 Orientation, localization of LRP::FLAG and PrP and co-localization of both proteins in BHK

cells transfected with rec. SFV RNAs. (A) Immunolocalization of LRP::FLAG to the cell membrane of

non-permeabilized BHK cells transfected with rec. SFV LRP-FLAG RNA. Subcellular location was

determined by IF using the mAb FLAG M2 (sec. Ab FITC). (Insets) Untransfected BHK cells incubated



Chapter V

122

with the pAb LRP W3 (left), mAb FLAG M2 (right). (B) Immunolocalization of human PrPc to the cell

membrane of non-permeabilized BHK cells transfected with rec. SFV huPrP1-253 RNA. Subcellular

location was determined by IF using the mAb PrP 3B5 (sec. Ab Texas Red). (Inset) Untransfected BHK

cells (Ab 3B5). (C) Orientation of LRP on the cell surface. Orientation and localization of LRP on the

cell surface is confirmed in (A). *The direct PrP binding domain suggested by (Rieger et al., 1997) and

mapped in detail by (Hundt et al., 2001) is identical with the laminin-binding domain (Castronovo et al.,

1991). **The transmembrane domain (TMD) was first suggested by (Castronovo et al., 1991). Secretion

of an LRP mutant lacking the transmembrane domain (LRPdelTMD) to the extracellular space of BHK

cells (Figure 5D) confirmed that the TMD indeed stretches from aa 86 to 101 of LRP. FACscans of non-

permeabilized non transfected (D) and SFV LRP-FLAG RNA transfected BHK cells (E). Filled profile,

isotype control; non-filled profile, pAb LRP W3. (F) FACscans of non-permeabilized non-transfected

BHK cells. Filled profile, isotype control; non-filled profile, pAb gal-3 . Fluorescence intensity

(abscissa) plotted against relative cell numbers (ordinate). (G) Western blot analysis of plasma

membrane fractions from non-transfected and rec. SFV transfected BHK cells. Purified plasma

membranes from non-transfected cells (lanes 1, 3 and 5) and cells transfected with SFV LRP-FLAG

RNA (lanes 2, 4) or SFV huPrP1-253 RNA (lane 6) were analysed by western blotting using mAb LRP

(aa 167-243) (lanes 1 and 2), mAb FLAG M2 (lanes 3 and 4) or mAb 3B5 (lanes 5 and 6). (H-J) IF-

analysis of non-permeabilized BHK cells co-transfected with rec. SFV RNAs encoding for LRP::FLAG

and human PrP. Immunostaining was performed using (H) the pAb LRP W3 non-sarurated and (H,

inset) saturated with rec. GST::LRP (sec. Ab Cy2, DAPI staining) and (I) mAb 3B5 (sec. Ab Cy3). (J)

Merge of (H) and (I) DAPI staining (magnification A, B, H-J, x630).
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Fig. 3 LRP/LR-dependent binding of PrP by neuronal and BHK cells transfected with rec. SFV RNAs.

(A) N2a cells (pre-incubated with pre-immune serum) were incubated with GST::huPrP23-230 (6

µg/ml). Binding of the rec. protein was assessed by IF using mAb GST ( sec. Ab Cy3). (Inset)

Preincubation of cells with pAb LRP W3 (dilution 1:50). (B-D) Co-localization of exogeneous

GST::PrP23-230 with endogeneous LRP/LR on non-permeabilized N2a cells. Cells were incubated with

GST::huPrP23-230 (4 µg/ml). Endogeneous LRP was detected by IF using the pAb LRP W3 (sec. Ab

Cy2, B), exogeneous GST::huPrP was detected by mAb 3F4 (sec. Ab Cy3, C). Merge (D) of (B) and

(C) (magnification A-D x 630). (E) Analysis of GST::huPrP23-230 by SDS-PAGE and FAR-UV CD

spectroscopy. One microgram of GST::huPrP23-230 (lane 1) was analysed on a 12 %SDS-PA-gel

stained with silver. FAR-UV CD spectrum (right panel) of GST::huPrP23-230 in 10 mM sodium

phosphate buffer, pH 7.4. (F) Western blot analysis of the binding assay illustrated in (A-D). Binding of

GST::huPrP to N2a cells. 500 ng/ml (lane 3), 1 µg/ml (lane 4), 2.5 µg/ml (lane 5), 5 µg/ml (lane 6) and

7.5 µg/ml (lane 7) of GST::huPrP23-230, 7.5 µg/ml GST (lane 2) and no protein (lane 1) were incubated

with N2a cells. Total cell extracts were loaded. Protein detection by mAb 3F4 . The binding curve (right

panel) of GST::huPrP23-230 to N2a cells was obtained by densitometric quantification (square pixels)

of the western blot signals for GST::huPrP23-230 plotted against the dose of rec. PrP (µg/ml). kD =

1x10-7 mol/l (calculation described in Supplementary data). (G) pAb LRP W3 and mAb LRP (aa 167-

243) displacement of the GST::huPrP binding to N2a cells. Cells were incubated in the absence of

protein (lane 1), with 7.5 µg/ml GST (lane 2 and 7), 3 µg/ml GST::huPrP23-230 (lanes 3 and 8), 3

µg/ml GST::huPrP23-230 after pre-incubation with pAb LRP W3 at 1:100 (lane 4), 1:10 (lane 5), 1:5

(lane 6), mAB LRP (aa 167-243) at 1:50 (lane 9) and pAb LRP W3 at 1:50 (lane 10). Proteins were

detected by mAb 3 F4 (lanes 1-6 and lanes 8-10) or the pAb GST (lane 7). (H )  GST::huPrP

displacement on N2a cells with antibodies directed against molecular chaperones. Cells were incubated

with 3 µg/ml of GST::huPrP23-230 without antibodies (lane 1) and with pAb LRP W3 (lane 2),

antibodies directed against Hsp60 (lane 3), Hsp70 (lane 4) and Hsp90 (lane 5). Antibody dilution: 1:50.

Blots were developed with the mAb 3F4. (I) LRP-dependent binding of authentic PrP isolated from

hamster brains on MNB cells. MNB cells were incubated with 2 µg/ml of purified PrPc from hamster

brain. Immunostaining was performed with the mAb 3F4 (sec. Ab Texas Red). (Inset) MNB cells

saturated with the pAb LRP W3 (dilution 1:50) prior to PrP treatment (magnification x630). (J-M)

Increased PrP binding by rec. SFV RNA transfected BHK cells overexpressing LRP at the cell surface.

BHK cells (J) were either transfected with SFV LRP-FLAG RNA (lanes 1-5), SFV LRP-FLAG RNA

plus SFV huPrP1-253 RNA (lanes 6-10) or non transfected (lanes 11 -15). Amounts of 0 µg/ml (lanes 1,

6 and 11), 1 µg/ml (lanes 2, 7 and 12), 2 µg/ml (lanes 3, 8 and 13), 4 µg/ml (lanes 4, 9 and 14) and 8

µg/ml (lanes 5, 10 and 15) of GST::huPrP23-230 were added to the cells. Total cell extracts were

analysed by western blotting employing the mAb 3F4 (J, upper panels) or the pAb LRP W3 (J, lower

panels). Please note that endogeneously expressed huPrP appeared as non-, mono- and diglycosylated

isoforms (J). BHK cells (K) were transfected with SFV LRP-FLAG RNA (lanes 1-5) or non transfected

(lanes 6-10). Amounts of 0 µg/ml (lanes 1 and 6), 1 µg/ml (lanes 2 and 7), 2 µg/ml (lanes 3 and 8), 4

µg/ml (lanes 4 and 9) and 8 µg/ml of huPrP23-230 (SFV system) (lanes 5 and 10) were added to the
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cells. Total cell extracts were analysed by western blotting with the mAb 3F4 (K, upper panels) and the

pAb LRP W3 (K, lower panels). Please note that externally added rec. non-tagged human PrP used for

binding studies appeared as non-, mono- and diglycosylated isoforms (panel K). Binding curves were

obtained by quantitating the western blot signals for GST::huPrP in J (L) and for huPrP in K (M) by

densitometry (square pixels). For binding studies the cells were incubated for 18 h with GST::huPrP

before staining with the indicated individual antibody was performed. *GST::huPrP and huPrP

concentrations represent the concentration of added recombinant protein in the cell media. Values (F,

right panel, L and M) were calculated by optical scanning methods (see Supplementary data).
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Fig. 4 Endogenous PrP does not act as a co-receptor of LRP/LR for the binding of exogeneous PrP. (A-

F) Unaltered GST::huPrP23-230-binding by HeLa cells overexpressing human PrP at the cell surface.

(A) Confocal z series of HeLa cells transiently transfected with cDNA encoding for human PrP1-253.

Transfected HeLa cells were analysed employing the mAb 3F4 (sec. Ab Texas Red). Confocal scanning

was performed from the cell surface (top panel left) towards the interior of the cell (bottom panel, right)

(magnification x630). Non-permeabilized HeLa cells were analysed by FACscans. Filled profile,

isotype control (B and C), non-filled profile, pAb LRP W3 (B), pAb gal-3 (C). Fluorescence intensity

(abscissa) is plotted against relative cell numbers (ordinate). (D-F) Binding of GST::huPrP23-230 by

HeLa cells transfected with pCR3-uni™-huPrP1-253. (D) Cells were analysed by IF with pAb GST

(sec. Ab FITC), (E) Immunostaining with mAb 3F4 (sec. Ab Texas Red), (F) Triple labelling with PrP

and GST antibodies, DAPI staining. pCR3-uni™-huPrP1-253 transfected cells are red-colored

(magnification x400). (G-J) LRP-dependent binding of GST::huPrP23-230 by primary culture of

neurons isolated from PrP wild-type and PrPo/o mice. Primary cultures of neurons from wild-type mice

(G  and H ) or PrPo/o mice (I  and J) were incubated with GST::huPrP23-230 (4 µg/ml) after

preincubation with either pre-immune serum (G and I) or pAb LRP W3 (dilution 1:50) (H and J).

Immunostaining was performed with mAb 3F4, DAPI staining and neuron staining with MAP-2

antibody (sec. Ab FITC) (magnification x400).
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Fig. 5 LRP/LR-dependent binding and internalization of GST::huPrP by N2a cells. An LRP mutant

lacking the transmembrane domain (LRPdelTMD) totally abolishes PrP binding and internalization on

BHK cells. (A) Internalization of GST::huPrP by N2a cells. N2a cells not pre-incubated with antibodies

(lane 1-3), pre-incubated with pAb gal-3 (dilution 1:5; lane 4), pAb LRP W3 (dilution 1:5; lane 5) were

incubated with 8 µg/ml of GST::huPrP (lanes 2-5). Non-treated cells (lanes 1 and 2) and trypsin-treated

cells (lanes 3-5) were analysed by western blotting employing mAb 3F4. (B) Temperature-dependent

internalization of PrP by N2a cells. Cells were incubated with 8 µg/ml of GST::huPrP (lanes 2, 3, 5 and

6) at 4°C (lanes 1-3) and 37°C (lanes 4-6). Non-treated cells (lanes 1, 2, 4 and 5) and trypsin-treated
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cells (lanes 3 and 6) were analysed by western blotting employing mAb 3F4. (C) Total cell extracts

from trypsin-treated N2a cells (lane 2) or non-treated cells (lane 1) were analysed by western blotting

employing pAb N-CAM directed against the neuron-specific cell adhesion molecule (N-CAM). (D)

Binding and internalization of GST::huPrP by BHK cells hyperexpressing full-length LRP::FLAG or an

LRP mutant lacking the transmembrane domain (aa 86 to 101) termed LRPdelTMD::FLAG. BHK cells

either non-transfected (lanes 1-3), hyperexpressing LRP::FLAG (lanes 4-6, 10 and 11) or

LRPdelTMD::FLAG (lanes 7-9) by the SFV system were incubated with either 5 µg/ml of GST::huPrP

(lanes 1-9) or 5 µg/ml huPrP (generated in the SFV-system, lanes 10 and 11). Total cell extracts from

non trypsin-treated (lanes 1, 2, 4, 5, 7, 8, and 10) and trypsin-treated cells (lanes 3, 6, 9 and 11) were

analysed by western blotting employing the mAb 3F4 (upper panels), pAb LRP W3 (middle/lower

panels, lanes 1-3, 10 and 11) or the mAb FLAG M2 (middle/lower panel, lanes 4-9). CL, crude lysate;

SN, supernatant.
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Supplementary Material section (SMS)  :

published online as:

Supplementary Material section (SMS) for!:

Gauczynski, S., Peyrin, J.-M., Haïk,, S., Leucht, C., Hundt, C., Rieger, R., Krasemann, S.,

Deslys, J.-P., Dormont, D., Lasmézas, C. I. and Weiss, S. 2001.

The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion

protein.  EMBO Journal, 20, 5863-5875

Materials and methods

Recombinant pSFV plasmid constructions and SFV-mRNA generation

The LRP (aa1-aa295) encoding cDNA was PCR-amplified from pCEP4 introducing BamHI

(5') and XmaI (3‘) restriction sites at the 5' and 3' ends. The 943 bp fragment encompassing

Kozak sequence/AUG (5') and a FLAG-tag (3') was cloned into the pSFV1 (Liljestrom and

Garoff, 1991a) resulting in pSFV1-LRP::FLAG. pSFV1-LRPdelTMD::FLAG  was generated

by the QuikChangeTM site-directed mutagenesis method (Stratagene) employing pSFV1-

LRP::FLAG DNA as template. The human prion ORF (Krasemann et al., 1996) was

subcloned into pBK-CMV (Stratagene, LA Jolla, USA) and subsequently pBS+ (Stratagene,

La Jolla, USA) to create compatible BamHI sites. These BamHI fragments were subcloned

into pSFV1 resulting in pSFV1-huPrP1-253. All constructs were confirmed by dideoxy

sequencing. DNAs pSFV3-lacZ (Life Technologies), pSFV1-huPrP1-253, pSFV1-

LRP::FLAG and pSFV1-LRPdelTMD::FLAG were linearized with SpeI following

purification by phenol-chloroform extraction. Transcriptions were carried out in a total

volume of 50 µl containing 1,5 µg linearized plasmid DNA, 10x SP6 transcription buffer (0,4

M Tris-HCl, pH 8,0 at 20°C; 60 mM MgCl2; 100 mM dithiothreitol; 20 mM spermidine), 1

mM of each ATP, CTP and UTP, 500 µM of GTP, 1 mM of m7G(5')ppp(5')G, 50 units of

RNasin and 50 units of SP6 RNA polymerase and incubated for 2 h at 37 °C. The correct
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length of  the transcripts was verified by agarose gel electrophoresis. RNA was stored at -

20°C.

BHK cell culture, transfection and co-transfection studies with the Semliki Forest virus

(SFV) system

Baby hamster kidney cells (BHK-21 C13; ATCC CCL 10) were cultured in Dulbecco's

modified Eagle's medium supplemented with 10 % heat-inactivated FCS, 2 mM L-glutamine,

100 µg/ml penicillin and 100 µg/ml streptomycin at 37 °C with 5 % CO2. Transfection and

co-transfection (1:1) were carried out with individual SFV-RNAs by electroporation using a

BioRad Gene Pulser. 1/10 volume of the electroporated cells (8x105) was diluted in complete

growth medium and plated on 35 mm cell culture dishes for cell binding assays or wells

containing a sterile glass coverslip for immunofluorescence microscopy. Cells were incubated

for 24 h. Transfection efficiencies as determined by transfecting SFV3-lacZ control RNA

followed by X-gal staining were 90-100% for BHK cells.

Construction of pCR3-uni™-huPrP1-253 and transfection of Hela cells

PCR primers PrPint2an and PrP813ac were used to amplify a 826 bp fragment encompassing

the entire human PrP open reading frame from genomic human DNA. Subcloning of this

fragment into pCR3-uni™ (Invitrogen) encompassing the CMV promoter resulted in pCR3-

uni™-huPrP1-253, confirmed by didesoxy sequencing (Jaegly et al., 1998). The human

epitheloid carcinoma of cervix Hela (ATCC: CCL2) cells were cultured in RPMI 1640

supplemented with 10% heat-FCS, 100 µg/ml of penicillin/streptomycine and 1% L-

glutamine. Confluent cells were transiently transfected overnight in OPTIMEM™ (BRL)

medium on 8 well Labtek® Chambers using 2 µg of DNA in Lipofectin® Reagent mixture

(Life/technologies). Cells were harvested 3 days after transfection in growing medium and

then fixed in 4% PFA. Transfection efficiencies were 10-20%.

Tissue culture of N2a, N2a [MHM2], MNB, NT2 and Sf9 cells

N2a, N2a [MHM2] and MNB mouse neuroblastoma cells, human NT2 cells were maintained

in DMEM medium containing 10 % FCS, 1 % glutamine, 100 µg/ml penicillin and 100 µg/ml
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streptomycine. Spodoptera frugiperda (Sf9) insect cells were maintained in Sf900II serum-

free medium.

Primary mouse cortical cultures

Primary mouse cortical cells were established from 15 day old mouse embryos. Cortices were

dissected in PBS Ca2+/Mg2+ free supplemented by 5% glucose, carefully freed of meninges

and incubated in trypsin/EDTA solution for 10 min at 37 °C. The trypsin was inactivated by

incubation in DMEM containing 4.5 g/l glucose, Glutamax-I and 1% FCS. Cells were then

dissociated mechanically. The suspension was pelleted by centrifugation and resuspended in

DMEM containing B27 and 3% FCS. Eight-well Labtetk® culture slides coated with 10

µg/ml of poly D lysine were seeded at 3x105 cells per well in 0.3 ml of DMEM B27

supplemented by 3% FCS and 100 µg/ml penicillin, 100 µg/ml streptomycin. Cultures were

kept in a water saturated incubator with an atmosphere of 95% air 5% CO2 for 2 days.

Medium was then changed for serum free containing DMEM supplemented with B27

components. After 2 days, cells, which were immunocytochemically defined as 95 % pure in

neurons (according to MAP2 immunolabelling) and containing less than 5% glial cells were

exposed to recombinant PrP. PrP knock-out mice used to establish PrP0/0 neuronal cultures

were kindly provided by C. Weissmann (University of Zürich, Switzerland).

Construction of baculovirus expression vectors, protein synthesis in the Baculovirus,

E.coli and SFV system

cDNA encoding huPrP23-230 (H. A. Kretzschmar, Munich) was generated by PCR and

cloned into the transfer vector pAcSecG2T via BamHI (5´) and EcoRI (3´) resulting in

pAcSG2T-huPrP23-230. Recombinant viruses were generated by co-transfection of the

transfer vectors with linearized viral DNA (Baculogold; Pharmingen). cDNA encoding for

haPrP-peptide 23-89 was cloned via BamHI (5') and EcoRI (3') into pAcSG2T resulting in

pAcSG2T::PrP23-89. Recombinant GST, GST::huPrP23-230, GST::haPrP23-89 and

GST::haPrP90-231 were expressed in baculovirus infected Sf9 cells and purified to

homogeneity as described for hamster GST::PrP fusions previously (Weiss et al., 1995; Weiss

et al., 1996). All recombinant proteins were dialyzed against 20 mM Hepes, pH 7.4.
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Authentic PrPc was prepared from hamster brain membrane fractions as previously described

(Meyer et al., 1986). Highly glycosylated wild-type human PrP was expressed in BHK cells

transfected with pSFV1-huPrP1-253 RNA. 48 h post transfection the cells were harvested,

washed once with PBS and then lysed in PBS supplemented with 0.1% TritonX-100 by

repeated freezing and thawing. The crude lysate was obtained by centrifugation at 14 000 rpm

4°C for 15 min and dialyzed against 20 mM Hepes, pH 7.4. Purified Galectin-3 produced in

E.coli was a generous gift from Prof. Hans-Joachim Gabius, Munich.

Far-UV Circular dichroism analysis

GST::huPrP23-230 was dialyzed against 20 mM Tris.HCl pH 9.0, 5 mM dithiothreitol, 1 mM

EDTA followed by dialysis against 10 mM sodium phosphate buffer, pH 7.4. CD spectra

were recorded on a Jasco model J-710 spectropolarimeter. Measurements were carried out in

a 1 mm path-length cylindrical cuvette at room temperature at 190 -260 nm. Typically 10

spectra were recorded at a scan speed of 20 nm/min with a step resolution of 0.1 nm.

PrP-Binding Assays followed by immunofluorescence analysis and confocal microscopy

For competition studies the cells were either pre-incubated for two hours with the individual

antibody diluted to various concentrations in culture medium or incubated with recombinant

protein which was pre-incubated with the antibody (inoculum saturation). In case of pre-

incubation medium was replaced and cells were incubated overnight with the indicated

amounts of GST::huPrP. Cells were then washed three times with PBS and prepared for IF.

Cells were seeded half confluently on coverslips, grown overnight for attachment, washed

three times with PBS and fixed with 4% paraformaldehyde. Non-permeabilized cells were

fixed with 2 % paraformaldehyde. After rinsing 3 times with PBS, cells were permeabilized

for cytoplasmic staining with 0.2 % Triton X-100 (10 min/4 °C). The preparation was

saturated with a 10 % FCS solution (in PBS) for 1 h at room temperature, washed and

incubated with the primary antibodies diluted in PBS with 10 % FCS for 1 h at room

temperature. Staining of the individual protein was performed with the indicated mono- or

polyclonal antibodies. After washing 3 times with PBS the preparations were diluted in

saturation buffer and incubated in the dark for 45-60 min with the individual secondary

antibodies (goat anti mouse or goat anti rabbit) conjugated with FITC, Texas Red, Cy2
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(green) and Cy3 (red). For nuclear staining 1 µg/ml DAPI for 10 min at RT was used. Please

note that both the primary and secondary antibodies were added after fixing the cells. The

coverslip was mounted with aqueous mounting medium (Fluoromount®) and the slides were

examined using a axioviert fluorescence microscope (Zeiss) with appropiate filters or a Zeiss

confocal microscope. Immunofluorescence images were processed using Metamorph

software®.

FACS analysis (flow cytometry)

Single-cell suspensions were prepared in PBS, 2% fetal calf serum, 20 mM EDTA, 0.01%

sodium azide (FACS buffer). For flow cytometry, cells were incubated with the first antibody

at concentrations of ~1 µg/106 cells for 15 minutes at room temperature. Cells were washed

in FACS buffer before incubation with FITC-conjugated anti-rabbit IgG for 15 minutes at

room temperature. After washing in FACS buffer, data acquisition and analysis were

performed with an EPICS XL-MCL (Coulter) flow cytometer. Dead cells were gated out by

forward and side scatter properties. Polyclonal anti-gal-3 and polyclonal anti-LRP antibody

(W3) were used as primary antibodies, rabbit IgG (Sigma) was used for isotype controls.

PrP-Binding assay in cell culture followed by Western Blotting

3x105 N2a cells and 8x105 BHK cells (either non-transfected or transfected with recombinant

SFV RNAs as described above) were each seeded on 6-well plates and incubated at 37 °C.

For competition studies cells were pre-incubated for two hours with the indicated antibody.

Medium was replaced after pre-incubation. Cells were then incubated in medium containing

different amounts of the individual protein for 18 h at 37°C or 4°C (when indicated). Cells

were then washed several times with PBS and scraped off in PBS. After centrifugation the

pellets were resuspended in lysis buffer (25 mM Tris/HCl pH 7.4, 150 mM NaCl, 1 mM

CaCl2, 3 mM MgCl2, 1 % NP-40). After addition of Laemmli buffer samples were separated

by SDS-PAGE and blotted on PVDF membrane. Western blotting was performed with the

indicated primary antibody and peroxidase-coupled secondary antibodies.

In order to analyze secreted proteins from the medium, the supernatants of transfected or non-

transfected BHK cells were centrifuged at 1100 rpm for 10 min and the supernatants were

analyzed by Western blotting.
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Isolation of plasma membranes

Plasma membrane preparations from 108 N2a and BHK cells, the latter either non-transfected

or transfected with SFV-LRP-FLAG RNA, were prepared as described (Vleurick et al.,

1999).

Calculation of binding curves for recombinant PrP to cells and determination of the kD

for the interaction of PrP with LRP/LR

Western Blots have been optically scanned employing a flat bed scanner. The optical density

of the individual bands has been measured employing the NIH-Image software program. The

resulting values represent square pixels. Background values have been subtracted from the

values measured. Standard curves have been determined to prove that values range within the

linear area. The dissociation constant (KD) for the interaction of PrP with LRP/LR on the cell

surface has been calculated from the binding curve in Figure 3F by using the Prism 3 software

program. The data were analyzed by non-linear regression using a hyperbolic curve fitting

option.

Trypsin cell treatment for PrP internalization studies

Cells were incubated with recombinant proteins as described above. After 18 h at 37°C, cells

were washed several times with PBS and incubated with trypsin (250 µg/ml) at 37°C for 10

min. The reaction was terminated by addition of the cell specific growth medium. Cells were

collected by centrifugation at 1100 rpm for 10 min, washed twice with PBS, lysed and

analyzed by Western blotting.

Antibody saturation

In order to prove specificity of the polyclonal anti-LRP-Ab (W3), W3 was rotated over night

with rec. GST::LRP immobilized to glutathione sepharose beads at 4 °C. The supernatant

failed to recognize LRP by Western Blotting and was employed in IF-analyses on

N2a{MHM2) and transfected BHK cells.
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Antibodies

Polyclonal Ab anti-LRP W3 {Rieger, 1997 #1919}, mAb directed against aa167-243 and

aa285-295 of LRP, respectively, (J.P. Houchins, Minneapolis), the mAB 3B5 (G. Hunsmann),

pAb GST (Santa Cruz Biotech. Inc.) and mAb GST (Sigma), mAb 3F4 (Senetek, USA), mAb

SAF70 against aa 140 to 180 of PrP (Service de Pharmacologie et Immunologie, CEA,

Saclay, France), pAb JB007 (Service de Neurovirologie, CEA, France), pAb against PrP (M-

20) (Santa Cruz Biotech. Inc.), pAb anti-laminin (Roche Diagnostics), mAb anti-lutheran

protein (J.-P. Cartron, INTS, France), pAb anti-GFAP (Roche Diagnostics), pAb MAP-2

(Santa Cruz Biotech. Inc.), mAb anti-VLA-6 CD49-f (Immunotech), Ab anti-N-CAM (Santa

Cruz Biotech. Inc.), Abs anti-Hsp60/70/90 (Sigma, Munich), mAb anti-FLAG M2 (Sigma),

pAb anti-FLAG (Santa Cruz Biotech. Inc.), pAb anti-galectin-3 (H.-J. Gabius, Munich),

secondary FITC, Cy2 (carbocyanine), Cy3 (indocarbocyanine) and Texas Red conjugated

antibodies (used at 1:100 dilutions) (Jackson Laboratories and Southern Biotechnology,

respectively) were used.
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Abstract

The prion protein (PrP) plays a central role in prion diseases and identifying its cellular

receptor appears to be of crucial interest. We showed in the yeast two hybrid system that PrP

interacts with the 37 kDa precursor (LRP) of the high affinity 67 kDa laminin receptor (LR)

which acts as the cellular receptor of PrP in cellular models. However, within the various

isoforms of the receptor that have been identified so far, those which are present in the central

nervous system and which bind PrP are still unknown. In this study, we have purified mouse

brain fractions enriched in the laminin receptor and have performed overlay assays in order to

identify those isoforms which interact with the prion protein.  We show i) the presence, in

mouse brain, of several isoforms of the LRP/LR corresponding to different maturation states

of the receptor (44, 60, 67, and 220 kDa) and ii) the binding of all of these isoforms to PrP.

Our data strongly support the physiological role of the laminin receptor/PrP interaction in the

brain and highlight its relevance for TSE pathologies.
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A fundamental event in the pathogenesis of human and animal prion diseases is the

conformational modification of a normal host-encoded protein (PrPC), from a soluble form to

an aggregated, partially protease resistant form termed PrPSc enriched in b-sheeted structures

(for review see (Prusiner et al., 1998)). The misfolded isoform (PrPSc) of the prion protein

accumulates in the central nervous system and in other areas, such as the lymphoreticular

system, during the development of the disease. PrPsc is thought to be a major component of

the causative agent of transmissible spongiform encephalopathies, also called prion diseases.

Molecules interacting with PrP (for review see (Gauczynski et al., 2001a)) which could play a

role in the replication of the infectious particle, as well as the precise location where the

conversion from PrPC to PrPSc take place have to be identified (Caughey et al., 1991; Telling

et al., 1995). It has been shown that the normal isoform, PrPC, plays a central role in prion

diseases: i) PrP knockout mice are resistant to prion infection (Bueler et al., 1993) ii) when

transgenic mice expressing different levels of PrPC are infected with the agent of prion

diseases, the duration of the incubation period is inversely proportional to the level of PrPc

expressed iii) the PrP gene of the host controls the species barrier (Prusiner, 1993; Scott et al.,

1989) and iv) PrPC expression is necessary for prion-induced neurodegeneration (Brandner et

al., 1996). Thus, characterizing the cellular receptor for the prion protein appears to be of

crucial interest for understanding the mechanisms of prion replication, CNS invasion, and

neurodegeneration characteristically linked to prion diseases.  In the yeast two hybrid system,

we have identified the 37 kDa precursor (LRP) of the 67 kDa laminin receptor (LR) as a

protein which interacts directly with PrPC (Rieger et al., 1997). Coexpression of both LRP

and PrP in insect and mammalian cells has confirmed this interaction (Rieger et al., 1997).

Furthermore, the level of LRP, which has been described previously as a receptor for the

Sindbis virus on mammalian cells (Wang et al., 1992), is increased in organs that support

prion replication and PrPSc accumulation in experimental scrapie or bovine spongiform

encephalopathy infected animals (Rieger et al., 1997). In cellular models including primary

cultures and neuronal cell lines, we demonstrated that LRP acts as the cellular receptor for

PrPc, mediating the binding and internalization of recombinant PrPC (Gauczynski et al.,

2001b; Hundt et al., 2001). We identified interaction domains of the cellular prion protein

with LRP and proposed a model for the interaction complex of PrP with LRP/LR. In this

model, heparan sulfate proteoglycans (HSPGs) would act as co-factors/co-receptors for the
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binding and internalization process of PrP (Hundt et al., 2001) and may account for the

LRP/LR polymorphism.

The polypeptide predicted from the non-integrin laminin receptor cDNA sequence consists of

295 amino acids and the in vitro translation of selectively hybridized mRNA produced a

protein with an apparent molecular weight of 37 kDa on sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) (Rao et al., 1989). However, other isoforms

of the laminin receptor, displaying higher molecular weights, have also been described (Buto

et al., 1998; Castronovo et al., 1991; Landowski et al., 1995; Menard et al., 1997). One of

these isoforms, the 67 kDa high affinity laminin receptor (LR: presumably the mature form of

the receptor), is thought to arise from the heterodimerization of its precursor molecule, the 37

kDa LRP, with a still unidentified molecule (Buto et al., 1998). The 67 kDa LR is believed to

be the functional isoform of the receptor regarding its ability to mediate stong attachement of

cells to laminin (Lesot et al., 1983; Malinoff and Wicha, 1983; Rao et al., 1983) to be

overexpressed on cancer cell suface, and to promote the invasive and metastatic capacity of

these cells (Menard et al., 1997).  Thus, it is of crucial importance to investigate whether this

isoform is normally expressed in mouse brain and whether this isoform binds PrP.

We prepared brain protein fractions from uninfected mouse brain homogenates (abbreviated

here as AS50: 50% ammonium sulfate fraction) according to Martins et al. (Martins et al.,

1997). Using antibodies recognizing specifically the LRP (W3) and the LR (ab711), we

questioned what isoforms of the laminin receptor could be evidenced in the AS50 brain

fraction. With these polyclonal antibodies, we detected 4 different isoforms of the receptor,

migrating at 44 kDa (Figure 1, lane 2), 60 and 67 kDa (Figure 1, lane 1), and 220 kDa (Figure

1, lane 1). The 44 kDa isoform, which has been observed previously in cellular extract such as

A431 human epidermoid carcinoma cells, corresponds to the precursor receptor LRP (Buto et

al., 1998; Rao et al., 1989).  The 60 and 67 kDa doublet bands have also been detected in

A431 cellular extract and other cancer tissues (Buto et al., 1998; Castronovo, 1993). The 60

kDa was described as a differentially phosphorylated isoform of the mature 67 kDa Laminin

receptor (Buto et al., 1998). The last isoform, the 220 kDa protein, presumably corresponds to

an oligomeric form of the LR. The specificity of these antibodies was confirmed since no

bands were detected using the secondary antibody alone (Figure 1, lane 3). It is interesting to

note the different spectrum of recognition of the laminin receptor with the two antibodies

used. In the first case, Ab711, a polyclonal antibody directed against amino acids 263-282 of
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the C-terminal domain of human laminin receptor (Wewer et al., 1987) recognizes only the

higher molecular weight isoforms of the receptor while the antibody W3 raised against full

length LRP (Rieger et al., 1997) recognizes only LRP. This suggests that the corresponding

epitopes are exposed differentially whether the receptor is in a precursor or mature state, and

heterodimerized or oligomerized.

We next wanted to identify which laminin receptor isoform could interact with PrP.  Thus, we

performed overlay assays according to Martins et al. using human GST-PrP fusion protein

(GST-PrP) and the AS50 brain fraction. The integrity of the recombinant protein was first

verified by western blot (Figure 2a, lane 1). For the overlay, the proteins present in the AS50

fraction were separated by gel electrophoresis and overlaid with recombinant GST::PrP.

Then, using a polyclonal antibody directed against GST, we showed the binding of GST::PrP

to several proteins displaying molecular weights of approximately 44 kDa and 60/67 kDa

(Figure 2b, lane 1, arrows). The molecular weight of the bands detected corresponded exactly

to those detected with LRP/LR antibodies (compare with Figure 1). A mock overlay reveals

no unspecific binding of the anti-GST antibody to the AS50 brain fraction (Figure 2b, lane 2).

In order to strengthen the demonstration that PrP binds to proteins exhibiting characteristic

molecular weights for the different LR isoforms in SDS-PAGE (Figure 1), we repeated the

overlay assay using 35S radiolabeled GST::PrP which gives a better resolution of the signal.

Validating our previous results, the 35S labeled GST::PrP bound to several proteins migrating

in the gel at 60 kDa, 67 kDa, 220 kDa, and weakly to the 44 kDa protein (Figure 2c, lane 1)

again demonstrating the interaction between PrP and the laminin receptor. As a control, the

specific interaction of GST::PrP to the proteins of the AS50 fraction was verified using 35S

radiolabeled GST (Figure 2c, lane 2).

In this study, we identified the isoforms of the high affinity laminin receptor which are

expressed in the murine central nervous system and showed that all these isoforms interact

with PrP. We demonstrated the specific binding of both non-radiolabeled and radiolabeled

GST::PrP to the 44 kDa, 60/67 kDa, and 220 kDa isoforms. The 60/67 kDa isoform, referred

to as the mature isoform, is considered to be the functional entity. Therefore, these results are

suggestive of an effective role of the PrP/67 kDa LR interaction in the metabolism of PrPC

and presumably its pathological counterpart PrPres. Hence, further investigations of the

laminin receptor as a potential therapeutic target for TSE pathologies have to be considered.

Moreover, a parallel can be established between our present demonstration and a previously



Chapter VI

145

published study demonstrating the binding of PrP to a 60/66 kDa protein found in the AS50

murine brain fraction (Martins et al., 1997). In this study, Martin’s et al. exploited a concept

called complementary hydropathy, by which peptides encoded by complementary DNA

strands bind to each other, and can be used to produce peptides that mimic the binding site of

a receptor. Surprisingly, both receptor candidates, i.e. the laminin receptor and the protein

isolated by complementary hydropathy (Martins et al., 1997) are found in the 50%

ammonium sulfate brain extract, share the same electrophoresis pattern with a doublet band at

60/67 kDa, and exhibit the same PrP binding properties in overlay assays. The 66 kD band of

the protein isolated by complementary hydropathy was recently identified as the murine

stress-inducible protein 1  (Zanata et al., 2002)

Our study confirms that the non-integrin 67 kDa laminin receptor is present in murine brain

and that it binds PrP.  This fact along with our previous study (Gauczynski et al., 2001b)

demonstrating that the laminin receptor acts as the cell surface receptor internalizing PrP

supports the crucial role of this receptor as the cell surface receptor for the prion protein in the

brain. In order to better comprehend the pathogenesis of prion diseases and to allow new

approaches in therapeutics, the physiological role of the interaction of PrP with the various

isoforms of the receptor (44kDa, 60/67 kDa and 220 kDa) will have to be decrypted by

further biochemical and cell biological studies.
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Fig. 1 Antibodies directed against the non-integrin laminin receptor recognize proteins with molecular

weight of 44 kDa, 60 kDa, 66 kDa, and 220 kDa.

A mouse brain fraction partially purified by ammonium sulfate precipitation (20 µg) was

electrophoretically separated and analyzed by Western blotting using two polyclonal antibodies

recognizing either the 37 kDa laminin receptor precursor or the mature 67 kDa laminin receptor. The

following polyclonal antibodies were employed in this study: ab711, directed against the peptide P20A

(PTEDWSAQPATEDWSAAPTA) amino acids 263-282 from the C-terminal domain of human laminin

receptor cDNA, and W3, raised against full length LRP protein.

Methods: Purification of murine laminin receptor by successive ammonium sulfate precipitations. A

20% murine brain homogenate was prepared as previously described (Martins et al., 1997). Briefly,

mouse brains were homogenized in a 20% ratio in 50 mM Tris-HCl pH 7. 4, 0.2 % sodium

deoxycholate, 0.5% Triton X-100, 1 mM aproptinin, 1 mM leupeptin, 1 mM PMSF, and 1 mM

benzamidine and then centrifuged at 12 000g for 30 min. The supernatant was then submitted to

successive precipitations with 30% and 50% ammonium sulfate salt. The 50% fraction precipitate

(AS50), was then dissolved into 20 mM Tris-HCL pH 7. 4, and 120 mM NaCl. Protein samples were

separated on 12% SDS-PAGE gels and transferred to nitrocellulose. The nitrocellulose blots were then

blocked in Blotto (Phosphate Buffered Saline (PBS) containing 5% dry skim milk powder and 0.1%

Tween 20) for 1 hr and then rinsed with PBS-Tween. Blots were then exposed for 1 hr to anti-laminin

receptor polyclonal antibodies ab711 (Abcam ltd, UK) and W3 (Rieger et al., 1997). The blots were

washed three times and then exposed to anti-rabbit peroxidase-coupled secondary antibodies (Southern

Biotechnology: 1/10000). Peroxidase reactions were detected using enhanced chemiluminescence

according to protocols provided by the manufacturer (Amersham).
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Fig. 2 The proteins recognized by anti-LRP antibodies in the AS50 brain fraction bind PrP. A ,

Verification of the integrity of the recombinant GST::PrP band probed with the PrP-specific antibody

3F4 (lane1). B, Proteins from the AS50 brain extract were separated by Western blot and overlaid either

with recombinant GST::PrP (lane 1) or with control solution (lane 2). The binding of the GST::PrP was

visualized with a polyclonal antibody directed against GST. C, Overlay of 35S radiolabeled GST::PrP

(lane 1) and GST (lane 2) on immobilized proteins of the AS50 brain fraction.

Methods: All overlay assays were performed on nitrocellulose blots with proteins separated by SDS-

PAGE. Blots were incubated with 4 µg/ml of recombinant GST::PrP in PBS containing 0.05% Tween

20 for 3 hrs at room temperature.  After three washes in PBS-Tween (0.05%), the immunoblots were

further incubated with an anti-GST polyclonal antibody for 1 hr. The reactive bands were visualized

with anti-rabbit peroxidase-coupled antibodies. Immunoblots were developed by enhanced

chemiluminescence. Overlay assays accomplished with 35S radiolabeled proteins were performed using

the same methodology without antibodies, and revealed by exposing X-ray films to the blots.

Purification and expression of heterologous proteins (GST::PrP and GST): the recombinant

GST::huPrP23-230 was synthesized in Sf9 cells by infection with the recombinant baculovirus

AcSG2T::huPrP23-230 and radiolabeled in the presence of 35S-methionine as described for the

GST::haPrP23-231 (Weiss et al., 1995). Radiolabeling of GST was done as for GST::huPrP23-230.

Both proteins were purified to homogeneity as described (Weiss et al., 1995).
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Abstract

There is evidence that prion protein dimers may be involved in the formation of the scrapie

prion protein, PrPSc, from its normal (cellular) form,  PrPc. Very recently,  the crystal structure

of the human prion protein in a dimeric form was reported (Knaus et al., 2001). Here we

report for the first time the overexpression of a human PrP dimer covalently linked by a

FLAG peptide (PrP::FLAG::PrP) in the methylotropic yeast Pichia pastoris. FLAG-tagged

human PrP (aa1-aa253) (huPrP::FLAG) was also expressed in the same system. Treatment

with tunicamycin and endoglycosidase H showed that both fusion proteins are expressed as

various glycoforms. Both PrP proteins were completely digested by proteinase K (PK),

suggesting that the proteins do not have a PrPSc structure and are not infectious. Plasma

membrane fractionation revealed that both proteins are exported to the plasma membrane of

the cell. The glycosylated proteins could be a powerful tool for crystallization trials,

PrPc/PrPSc conversion studies  and other applications in the life cycle of prions.

Introduction

Transmissible spongiform encephalopathies (for review: (Lasmézas and Weiss, 2000;

Prusiner et al., 1998; Weissmann and Aguzzi, 1997)) are fatal neurodegenerative disorders

such as Creutzfeldt-Jakob disease in humans (Creutzfeldt, 1920), bovine spongiform

encephalopathy in cattle (Hope et al., 1988)  and scrapie in sheep or goat (for review:

(Dickinson, 1976)). They are associated with the accumulation of an abnormal form of the

prion protein, PrPSc, derived from the normal cell surface glycoprotein PrPc (Prusiner, 1982).

PrPc requires the 37kDa/67 kDa laminin receptor for internalization (Gauczynski et al.,

2001b), a process which is thought to require heparan sulfate proteoglycans (HSPGs)

mediating the binding of PrPc to its receptor via indirect binding domains (Hundt et al., 2001).

The conversion of PrPc to PrPSc is thought to take place in compartments of the endocytic

pathway such as endosomes, lysosomes or endolysosomes (for review see (Gauczynski et al.,

2001a)). PrPSc and PrPc have very different biochemical properties. PrP
c
 is mainly a-helical

and is readily degradable by proteinase K, whereas PrPSc is characterized by an increase in b-

sheet conformation, a higher tendency to aggregate, insolubility and proteinase K  resistance
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(Meyer et al., 1986; Pan et al., 1993; Prusiner et al., 1984). In cases where the disease is

transmitted, prion replication appears to involve the interaction between host PrPc and

pathogenic PrPSc from an external source (Prusiner et al., 1984).

There is evidence that prion protein dimers may play a role in the conversion of PrPc to PrPSc.

Very recentlly the crystal structure of the human prion protein in a dimeric form was reported

(Knaus et al., 2001). Formation of the dimer involves the three-dimensional swapping of

helix 3 and rearrangement of the disulfide bond. The authors suggest that the 3D domain-

swapping-dependent oligomerization may be an important step in the PrPc/PrPSc conversion

process. Formation of PrP dimers were also observed in N2a cells and in scrapie-infected

hamster brains (Priola et al., 1995). They have also been identified as intermediates in the PrP

oligo-/multimerization process by fluorescence correlation spectroscopy (Post et al., 1998)

and molecular modelling suggested the existence of PrP dimers (Warwicker and Gane, 1996),

which could be involved in interspecies transmission (Warwicker, 1997). Recently, covalently

linked multimers were observed on Western blots of PrPSc purified from hamster brain

infected with the 263K strain of scrapie (Callahan et al., 2001).  It was suggested that these

multimers may be the result of some PrP molecules in the PrPSc aggregates becoming

covalently crosslinked in vivo. A monomer-dimer eqilibrium was detected under native

conditions in at least a fraction of PrPc purified from bovine brains (Meyer et al., 2000).

Recently, a dimeric a-helical intermediate was observed during the in vitro conversion of

recombinant hamster PrP to large insoluble aggregates (Jansen et al., 2001).

In this study we expressed a covalently-linked human PrP dimer (PrP::FLAG::PrP) and  full-

length human PrP (huPrP::FLAG)  in the methylotropic yeast, Pichia pastoris. This powerful

expression system makes use of the highly inducible alcohol oxidase promoter to express

large amounts of glycosylated protein. The proteins were expressed as fusion proteins  to a

FLAG peptide and the native prion signal sequence and GPI anchor were included to direct

secretion of the protein. Expressions were carried out with tunicamycin, which blocks

glycosylation in vivo, to confirm the mixed glycoform expression. Optimization of expression

resulted in yields of approximately 50-100mg/l. The sensitivity of the expressed FLAG fusion

proteins to proteinase K and endoglycosidase H was determined. The fusion proteins were

detected in the yeast plasma membrane fraction but not in the media, suggesting secretion of

the protein to the cell membrane.
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Materials and methods

Reagents and antibodies

The monoclonal anti-PrP antibody 3B5 directed against the octapeptide repeat region of

human and bovine PrP was a gift from G. Hunsmann, Göttingen, Germany, and the 3F4

antibody directed against aa 109-112 of hamster and human PrP was from Chemicon. Anti-

FLAG antibody M2, secondary anti-mouse IgG-POD conjugate and tunicamycin were from

Sigma. Proteinase K, endoglycosidase H and Pefablock were purchased from Roche

Diagnostics.

Plasmid constructions

(1) Construction of pPICZB-huPrP1-227FLAG228-253. The insertion of a FLAG encoding

sequence for the pSFV1-huPrP1-227FLAG228-253 plasmid is described elsewhere (Hundt et

al., accepted). The cDNA was amplified by PCR from this plasmid, introducing EcoRI and

XbaI restriction sites at the 5‘ and 3‘ ends. The amplified fragment was cloned into the Pichia

pastoris expression plasmid pPICZB via EcoRI/XbaI restriction sites, resulting in pPICZB-

huPrP1-227FLAG228-253.

(2) Construction of pPICZB-huPrP1-230FLAGhuPrP1-227FLAG228-253. cDNA encoding

huPrP1-253 was amplified by PCR and cloned into pSFV1, as described (Krasemann et al.,

1996), resulting in pSFV1-huPrP1-253. The cDNA encoding huPrP1-230 was amplified by

PCR from this plasmid, introducing EcoRI and HindIII restriction sites at the 5‘ and 3‘ ends.

A second fragment (FLAGhuPrP23-227FLAG228-253) was amplied by PCR from the

pSFV1-huPrP1-227FLAG228-253 plasmid, introducing a HindIII restriction site and a FLAG

encoding sequence at the 5‘ end and an XbaI restriction site at the 3‘ end. These two

fragments were restricted, ligated and cloned into the Pichia pastoris plasmid pPICZB via

EcoRI/XbaI restriction sites, resulting in pPICZB-huPrP1-230FLAGhuPrP23-227FLAG228-

253.
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Expression in Pichia pastoris

The P. pastoris expression system uses the promoter from the alcohol oxidase gene, AOX1,

to express heterologous proteins. The expression vector pPICZB (EasySelect Pichia

Expression Kit, Invitrogen) was digested with EcoRI and XbaI and ligated to the inserts.

DH5a cells were transformed with the ligation products and plated on low salt LB/zeocin

medium (0.5% yeast extract, 1% tryptone, 0.5% NaCl, and 25 µg/ml zeocin). The

transformants were tested by restriction analysis, and positive clones were amplified to make

larger amounts of DNA.

The nucleotide sequences of the resulting plasmids were confirmed by dideoxy sequencing.

Prior to transformation into yeast, the plasmids were digested with SacI. The DNA was

transformed into Pichia pastoris (SMD 1168) according to the manufacturer's instructions and

the cells were plated onto YPD/zeocin medium (1% yeast extract, 2% peptone, 2% D-glucose,

0.1mg/ml zeocin). For secondary selection of multicopy transformants using zeocin, clones

were pooled, diluted in sterile water and about 1¥10
4
 cells were spread on YPD plates

containing increasing concentrations (200, 400, 600 and 1000 µg/ml) of zeocin.

10 clones with high zeocin resistence were selected for a test expression.  Single colonies

were used to inoculate 10ml of BMGY (1% yeast extract, 2% peptone, 1.34% yeast nitrogen

base without amino acids, 0.00004% biotin, 1% glycerol, 50 µg/ml kanomycin, 0.1M

potassium phosphate buffer, pH 6.0). The cultures were grown overnight at 28°C to an A600

of 2-6 and then harvested (2000g, 5 min, room temperature). The cultures were resuspended

in medium that contained 0.5% methanol instead of glycerol in order to induce the yeast cells

to express the heterologous protein.  One ml aliquots of culture were removed every 24 hours

and centrifuged at 6000 rpm for 2 minutes in a microcentrifuge. Sixty microlitres of the

supernatant were added to 30µl  of 3¥SDS-loading buffer. The pellet was resuspended in

0.5ml distilled water and 60µl were added to 30µl 3¥SDS-loading buffer. Expression of the

recombinant protein was monitored by SDS-PAGE followed by Western blotting and

detection with anti-PrP specific antibodies (3F4 or 3B5) or the anti-FLAG M2 antibody.
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Larger-scale expression and optimization

The highest expressing clones of the covalently-linked dimer and monomer as determined by

Western blot anysis were used to inoculate 25ml cultures of BMGY.  The cultures were

grown at 28°C (230rpm) to an A600 = 2-6. After centrifugation the cultures were resuspended

in 100ml BMMY containing 0.5%, 1.0% or 2% methanol (to an A600 of 1) in 1l baffled

flasks and shaken at 28°C (200 rpm) for 72 hours. 1ml aliqouts were removed every 24 hours

for analysis of protein expression.

Expression in the presence of tunicamycin

Tunicamycin was used to block in vivo glycosylation. It was added to 10ml cultures of  the

covalently-linked dimer and monomer (from a stock solution of 1mg/ml in 0.1M NaOH) to a

final concentration of 15µg  tunicamycin/ml culture.  Small-scale expression was carried out

essentially as described above, with tunicamycin being included in the BMGY and BMMY

culture media. 1ml aliquots were removed 24 hours after induction and expression of the

covalently linked dimer and monomer in the cell lysate was analysed by SDS-PAGE and

Western blotting. The monoclonal antibody 3B5, which recognises the octarepeat region of

human and bovine PrP, was used for protein detection.

Cell lysis and sensitivity to proteinase K

Cell pellets containing over-expressed FLAG-tagged covalently linked dimer and monomer,

isolated from 2ml of each culture were resuspended in 1ml  lysis buffer (10 mM Tris/HCl

buffer, pH 7.5, containing 10 mM EDTA, 100 mM NaCl, 0.5% Triton X-100, and 0.5%

deoxycholate). An equal volume of glass beads (500 microns) was added to each suspension

and the cells were broken by vortexing for a total of 4 minutes in bursts of 30 s alternating

with cooling on ice for 30 s. The glass beads were separated by centrifugation (4000 rpm for

10 mins, 4°C).

Resistance of the covalently linked PrP dimer and monomer to proteinase K was assessed.

100ml aliquots of the supernatants were incubated with proteinase K (0-4 mg/ml) at 37°C for 1

hour. Digestion was stopped by the addition of Pefablock to a final concentration of 1mM and
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samples were analysed by immunoblotting (with the 3B5 and 3F4 antibody) after of SDS-

PAGE.

Sensitivity to endoglycosidase H

Cell pellets containing overexpressed FLAG-tagged covalently linked PrP dimer and

monomer were lysed as above, but in the following lysis buffer; 40mM sodium citrate, pH

5.5, 0.05% SDS, 0.5 mM PMSF. 50ml aliquots of the supernatants were incubated with or

without 0.5 units/ml endoglycosidase H at 37°C for 3 hours. The reaction was stopped by

addition of 3 ¥ SDS-loading buffer and heating to 95°C for 5 minutes. Deglycosylation was

monitored by SDS-PAGE followed by Western blotting and detection with 3B5 antibody.

Purification of yeast plasma membrane fraction

The plasma membrane fractions of yeast overexpressing the FLAG fusion proteins were

purified using standard procedures (Panaretou and Piper, 1996). Pichia pastoris culture

pellets (from 50ml cultures) were resuspended in 10ml cold lysis buffer (25mM imidazole,

pH 7.0, 2mM EDTA, 0.4M sucrose). The cells were re-pelleted by centrifugation and the

supernatants discarded. Two ml of glass beads and 2ml of lysis buffer were added and cells

were broken by vortexing as described above. 9ml of cold lysis buffer was added and the cell

debris and glass beads were pelleted by centrifugation (530g, 20 mins, 4°C). The supernatant

was removed and centrifuged (22 000g, 30minutes, 4°C) to pellet the plasma and

mitochondria fractions. The supernant (cytosolic fraction) was removed and the pellet taken

up in TBS containing 5% Triton X-100. This was further diluted to 20ml with TBS containing

0.1% sarcosine, 0.1% NP-40 and 100mM dithiothreitol.

Immunoprecipitation

The FLAG fusion proteins were immunoprecipitated with 200µl of a 50% slurry of protein A-

Sepharose (Pharmacia) and 10µl of 3B5 antibody as described previously (Caughey et al.,

1999).
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Removal of GPI anchor by cleavage with enterokinase

Enterokinase cleaves the final lysine of the FLAG-peptide and was used here to remove the

GPI-anchor of huPrP::FLAG. The expressed dimer was also treated with enterokinase even

though it has two potential cleavage sites. Yeast cells were lysed in TBS, 0.1% Triton X-100,

and 100µl of each supernatant was incubated with CaCl2 (final concentration 10mM) and

enterokinase (50µl added, 1unit/µl) at 37°C for 20 hours. The reaction was terminated with

EDTA (20mM).

SDS – polyacrylamide gel electrophoresis and immunoblotting

Protein samples were separated on 12% Mighty Small gels according to the manufacturer's

protocol (Hoefer, Pharmaciea Biotech Inc. San Francisco, CA) and transferred

electrophoretically onto pre-wetted polyvinyldifluoride membranes. The blots were incubated

with an anti-PrP antibody (3F4, 3B5, 1:5000 dilution) or  with an anti-FLAG M2 antibody

(1:600 dilution). The incubation steps were preformed as described previously (Weiss et al.,

1995; Weiss et al., 1996) and the bound antibody was visualized with 3,3'-diaminobenzidine

tetrahydrochloride.

Results

Expression of covalently linked human PrP dimer and  huPrP::FLAG proteins in Pichia

pastoris

A covalently linked dimer of the human PrP (PrP::FLAG::PrP), with the FLAG octapeptide

(DYKDDDDK) as a linker and at its C-terminus (Figure 1A) was expressed in Pichia

pastoris. The FLAG peptide is used as an epitope tag for detection and purification of

recombinant proteins and was chosen here because of its highly charged, polar sequence. For

comparison, we also expressed a C-terminally FLAG-tagged human PrP molecule (Figure 1B,

huPrP::FLAG).
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Plasmids pPICZB-huPrP1-227FLAG228-253 and pPICZB-huPrP1-230FLAGhuPrP1-

227FLAG228-253, transformed into the protease deficient P. pastoris strain SMD 1168,

exhibited high levels of intracellular production of the FLAG-tagged proteins (Figure 2).

Antibody 3B5 (and also 3F4 and anti-FLAG M2, results not shown) recognized 3 bands with

apparent molecular masses ranging from approximately 25 to 33kDa for huPrP::FLAG

(Lanes 1 and 2) and approximately 5 bands for PrP::FLAG::PrP (Lanes 3 and 4), indicating

that the fusion proteins were glycosylated.  Higher molecular weight bands were also detected

for huPrP::FLAG at approximately the same molecular weight as the dimer bands which

suggests that the expressed PrP::FLAG forms covalently-linked dimers. Priola et al. (Priola et

al., 1995) also observed a 60-kDa PrP dimer derived from hamster PrP expressed in murine

neuroblastoma cells. This 60-kDa PrP was not dissociated under several harsh denaturing

conditions.

Optimum expression was obtained with a 0.5 - 1.0 % methanol concentration and an

induction time of 24 hours (Figure 2). After longer induction times, degradation of the fusion

proteins occurred. Our data represent the first high-level expression of PrP in Pichia pastoris,

with an approximate expression yield  of 50-100 mg fusion protein/l.

Effect of tunicamycin and endoglycosidase H sensitivity

HuPrP::FLAG has two potential glycosylation sites (N-X-S/T) whereas the covalently linked

dimer has four sites. To investigate whether the higher molecular weight bands were due to

glycosylated protein, we expressed the fusion proteins in media containing tunicamycin

which blocks glycosylation in vivo and analysed the cell lysates by SDS-polyacrylamide gel

electrophoresis and Western blotting (Figure 3). In the presence of tunicamycin there was no

detectable glycosylated human PrP::FLAG (Fig. 3A). With the covalently-linked dimer, the

bands corresponding to the tri- and tetraglycosylated forms were strongly reduced (Fig. 3B).

Endoglycosidase H cleaves high mannose sugars and was used to confirm the expression of

various glycoforms of the fusion proteins. Cell lysate supernatants containing overexpressed

huPrP::FLAG or PrP::FLAG::PrP were incubated with endoglycosidase H (0.5 units/ml) for 3

hours at 37°C. Separation of proteins by SDS-PAGE and immunodetection with the 3B5

antibody (Figure 4) showed no detectable higher molecular weight bands of huPrP::FLAG,

corresponding to the mono- and diglycosylated forms. By contrast with the PrP::FLAG::PrP
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there is some residual glycosylation which may be consistent with the covalent prion dimer

having some tertiary structure.

Proteinase K sensitivity

In order to analyse the resistance of the covalently linked dimer to proteinase K (PK) and to

compare it with huPrP::FLAG expressed in the same system, the cell lysate supernatants were

incubated with 0, 2 and 4 µg/ml PK for 1 hour at 37°C. Analysis by SDS-PAGE and Western

blotting employing the 3B5 antibody (Figure 5) and the 3F4 antibody (data not shown)

showed that the fusion proteins have similar PK sensitivity, both being completely digested

by 4µg/ml PK. Evidently PK is able to degrade the prion monomer and covalent dimer

equivalently.

Secretion of the fusion proteins to the plasma membrane

The plasma membrane fractions of Pichia pastoris overexpressing huPrP::FLAG and

PrP::FLAG::PrP were isolated and analysed by Western blotting (Figure 6B and C). Both

fusion proteins were detected in the plasma membrane fraction and in the cytosolic fraction of

the cells. Coomassie blue staining confirms that the covalently linked dimer is overexpressed

and transported to the cell membrane (Figure 6A, Lane 1). This finding is in good harmony

with the fact that both of our proteins are glycosylated.

Immunoprecipitation

The FLAG fusion proteins were immunoprecipitated with the anti-PrP antibody 3B5 directed

against the octapeptide repeat region of human and bovine PrP, and Protein A sepharose. The

beads were washed and analysed by SDS-PAGE and immunoblotting (Figure 7),

demonstrating that the various glycosylation forms of both the dimer and monomer are

specifically recognised by PrP antibodies in solution, under non-denaturing conditions.
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Enterokinase cleavage

Enterokinase is a highly specific serine protease which cleaves after the carboxy-terminal

lysine of the recognition sequence Asp-Asp-Asp-Asp-Lys. This is the last five amino acids of

the FLAG –tag. Enterokinase was used to remove the final lysine of the FLAG peptide and

the GPI anchor of huPrP::FLAG. The expressed dimer was also treated with enterokinase

even though it has two potential cleavage sites.

Comparison of the digested HuPrP::FLAG (Figure 8, lane 2) with the undigested protein

(Figure 8, lane 1) shows a slight reduction in molecular weight. However no difference in

apparant molecular weights was observed in the case of the dimer (Figure 8, lanes 3 and 4).

Since the dimer contains two FLAG-tags, one as the linker peptide and one close to the C-

terminus,  we would expect a reduction in the amount of dimer and the appearance of

monomer bands after cleavage with enterokinase. The results obtained indicate that the dimer

may have some tertiary structure, which might protect the internal cleavage site from the

protease.

Discussion

In the present study we used the methylotropic yeast Pichia pastoris to express high-levels of

non-, mono-, and diglycosylated full-length human PrP and  various glycoforms of a

covalently linked human PrP dimer. Over the last few years interest in the P. Pastoris

expression system has grown since it has the potential for high level expression. It has been

reported that in some cases up to several grams of the target recombinant protein per litre of

culture have been obtained (for review see (Romanos, 1995)), however it is normally

necessary to carry out fermentation to achieve this level of protein expression.

In mamalian cells high mannose sugars are added to PrPc in the endoplasmic reticulum and

are subsequently modified in the Golgi, becoming endoglycosidase H resistant. In yeast, no

modification of the high mannose sugars occurs and the glycosyl groups remain

endoglycosidase H sensitive.

The physical state of the recombinant prion protein, monomer or covalent dimer, is unclear at

present. The endoglycosidase H studies suggest that the covalently linked PrP dimer has some

three-dimensional structure, stable enough to interfere with the deglycosylation by the
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enzyme. Equally the effects of tunicamycin in abolishing glycosylation are less complete with

the covalent dimer. The proteinase K sensitivity status of the FLAG tagged prion protein and

the covalently linked PrP dimer, however, proved to be similar. This suggests neither

recombinant  protein has the PrPSc structure, which is PK resistant (Taraboulos et al., 1990).

The similarity in their cleavage properties is however not inconsistent with the covalent dimer

retaining some tertiary structure. We suppose that the structure of the covalently linked PrP

dimer reported here might be different from the structure of the crystallized PrP dimer where

the N- and C-termini of the two chains appear to be very far apart (Knaus et al., 2001). The

organization of our covalently linked dimer  might also be different from other PrP dimers

observed.

The availablility of large amounts of recombinant PrP expressed in E. coli has allowed the

solution structure of mouse, hamster, human and bovine PrP to be determined by NMR

spectroscopy (Donne et al., 1997; Lopez Garcia et al., 2000; Riek et al., 1997; Zahn et al.,

2000). However, these recombinant proteins lack two glycosyl groups and a

glycosylphosphatidylinositol (GPI) membrane  anchor. Very little is known about the effect

of these two post-translational modifications on the structure and function of PrP.

We proved that our recombinant FLAG tagged prion protein expressed in Pichia pastoris is

highly glycosylated and differs in this respect from other non-glycosylated bacterially

expressed prion proteins (Riek et al., 1996; Riek et al., 1997). Further structural studies with

our glycosylated prion protein will prove whether glycosylations will influence the

secondary/tertiary structure of the prion protein.

The generation of a covalently linked enzymatically active dimer has been described for the

protease of human immunodeficiency virus (HIV) type one, composed of two copies of the

protease sequence linked by a structurally flexible hinge region (Krausslich, 1991). The

expressed dimer was stable and active against HIV polyprotein substrates. It was reported

recently that human PrP crystallizes in a dimeric form  (Knaus et al., 2001). Formation of the

dimer involves 3D swapping of the C-terminal helix and rearrangement of the disulfide bond.

The authors suggest that this oligomerization may be an important step in the PrPc/PrPSc

conversion process. We hypothesize that the covalently linked PrP dimer might be a useful

tool in cell-free conversion assays (Horiuchi et al., 2000). It could be used as a template in the

assay or added to investigate whether the rate conversion of PrPc to PrPSc is altered. In

addition, a covalently linked PrP dimer might be a suitable tool in cell culture studies of non-
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infected or scrapie infected neuroblastoma cells, investigating again its role in the PrPc and

PrPSc propagation process.

Very recently, the 37/67 kDa laminin receptor has been identified as the cell surface receptor

for cellular PrP (Gauczynski et al., 2001b). This process might involve cell surface HSPGs

identified as co-factors for PrP binding (Hundt et al., 2001). The covalently linked PrP dimer

might interfere with the PrPc/PrPSc internalization process on neuronal cells.
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Fig. 1 Schematic diagram of FLAG-tagged PrP constructs and processing in the yeast cell. Both amino-

and carboxyl terminal fragments are removed. The GPI anchor and high mannose glycans are added and

the proteins are secreted to the cell surface. (A) Human PrP-covalently linked to another huPrP via a

FLAG peptide linker. A second FLAG tag is located at the C-terminus, before the GPI anchor to aid

detection and purification. The numbering of amino acid residues refers to the location on the untagged

human PrP. (B) C-terminally FLAG-tagged human PrP.
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Fig. 2 Expression of FLAG-fusion proteins monitored by SDS-PAGE and Western blot analysis. Shown

is a 12% polyacrylamide gel, immunodetection was carried out with the 3B5 antibody. (Lane 1) Lysate

of cells expressing PrP::FLAG in 0.5% methanol; (Lane 2) PrP::FLAG in 1.0% methanol; (Lane 3)

PrP::FLAG::PrP in 0.5% methanol and (Lane 4) PrP::FLAG::PrP in 1.0% methanol.

Fig. 3. Expression of FLAG-fusion proteins in the presence or absence of tunicamycin monitored by

SDS-PAGE and Western blot analysis, immunodetection was carried out with the 3B5 antibody. (Lane

1) Lysate of cells expressing PrP::FLAG in the absence and (Lane 2) in the presence of 15µg/ml

tunicamycin. (Lane 3) Lysate of cells expressing PrP::FLAG::PrP in the absence and (Lane 4) in the

presence of 15µg/ml tunicamycin.
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Fig. 4 Digestion with endoglycosidase H, monitored by SDS-PAGE and Western blot analysis.

Immunodetection was performed with the 3B5 antibody. (Lanes1-2) Lysate supernatants  of cells

expressing PrP::FLAG, treated with 0 (Lane1) and 0.5 (Lane 2) units/ml endoglycosidase H. (Lanes 3-4)

Lysate supernatants of cells expressing PrP::FLAG::PrP treated with 0 (Lane 3)  and 0.5 (Lane 4)

units/ml endoglycosidase H. At molecular weights less than 46 kDa a number of smaller bands are

observed, these are most probably cleavage products. Note that the huPrP-FLAG monomer labels apply

to lanes 1 and 2.
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Fig. 5 Digestion with proteinase K, monitored by SDS-PAGE and Western blot analysis.

Immunodetection is with the 3B5 antibody.  (Lanes1-3) Lysates of cells expressing PrP::FLAG,

digested with 0 (Lane 1), 2 (Lane 2) and 4 (Lane 3) µg/ml proteinase K. (Lanes 4-6) Lysates of cells

expressing PrP::FLAG::PrP digested with 0 (Lane 4), 2 (Lane 5) and 4 (Lane 6) µg/ml proteinase K.

Fig. 6 Isolation of crude plasma membrane fractions (A) from yeast cells overexpressing

PrP:FLAG::PrP, analysed by SDS-PAGE and Coomassie blue staining. (Lane 1) membrane fraction

(Lane 2) cytosolic fraction, (B) analysed by Western blotting using the 3B5 antibody. (Lane 1)

membrane fraction (Lane 2) cytosolic fraction. (C) Isolation of crude plasma membrane fraction from

yeast cells overexpressing huPrP::FLAG analysed by Western blotting using the 3B5 antibody. (Lane 1)

membrane fraction.
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Fig.7 Immunoprecipitation of FLAG-fusion proteins monitored by Western blotting, with the 3B5

antibody. (Lane 1) huPrP::FLAG (Lane 2) PrP::FLAG::PrP.

Fig. 8 Enterokinase cleavage of FLAG-fusion proteins monitored by Western  Blotting employing the

3B5 antibody. (Lane 1) untreated huPrP::FLAG, (Lane 2) enterokinase treated huPrP::FLAG, (Lane 3)

untreated PrP::FLAG::PrP, (Lane 4) enterokinase treated PrP::FLAG::PrP.
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aa amino acid

Ab antibody

AD Alzheimer disease

AmB amphotericin B

APP amyloid precursor protein

APS ammonium persulfate

ATP adenosine triphosphate

BD binding domain

BHK baby hamster kidney

boPrP bovine PrP

bp base pair

BSA bovine serum albumin

BSE bovine spongiforme encephalopathy

CD circular dichroism

cDNA complementary (to mRNA) DNA

CFTR cystic fibrosis transmembrane regulator

CHO chinese hamster ovary

CJD Creutzfeldt-Jakob disease

CLDs caveolae-like domains

CWD chronic wasting disease

Cy2 carbocyanine

Cy3 indocarbocyanine

DAPI 4¢-6-diamidine-2-phenylindole

DS-500 dextran sulfate 500

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

Dpl doppel

DWS aspartic acid-tryptophan-serine

ECM extracellular matrix

e.g. for example [Lat.: exempli gratia]

EHS Engelbreth-Holm-Swarm

ER endoplasmic reticulum

FACscans Fluorescence-activated cell scans

FCS fetal calf serum

FITC fluorescein isothiocyanate

FFI fatal familial insomnia

GAG glycosaminoglycan
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gal-3 galectin-3

GFAP glial fibrillary acidic protein

GPI glycosyl phosphatidylinositol

GSS Gerstmann-Sträussler-Scheinker syndrome

GST glutathione-s-transferase

h hour

haPrP hamster PrP

HPA-23 heteropolyanion 23

Hsp heat shock protein

HSPG heparan sulfate proteoglycan

huPrP human PrP

IDX 4‘-iodo-4‘-deoxy-doxorubicin

i.e. that is [Lat.: id est]

IF immunofluorescence

kb kilobases

kDa kiloDalton

LR laminin receptor

LRP laminin receptor precursor

LRS lymphoreticular system

mAb monoclonal Ab

min minutes

moPrP mouse PrP

mRNA messenger RNA

M molar

MW molecular weight

NMR nuclear magnetic resonance

PAA polyacrylamide

pAb polyclonal Ab

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction

PIPLC phosphatidylinositol-specific phospholipase C

PK proteinase K

PrPc cellular prion protein

PrP-CAA prion protein cerebral amyloid angiopathy

Pli PrP ligand

PrPSc prion scrapie (pathogenic isoform of PrPc)

rec. recombinant

rER rough endoplasmic reticulum

RNA ribonucleic acid

rpm rounds per minute
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SDS sodium dodecyl sulfate

SFV Semliki Forest virus

siRNA short interfering RNA

SP54 pentosan polysulfate

TEMED N,N,N',N'-tetramethylethylendiamine

TGN trans-golgi-network

TMAO trimethylamine-N-oxide

TMD transmembrane domain

TSE transmissible spongiforme encephalopathy

UK United Kingdom

vCJD new variant CJD

X-gal 5-bromo-4-chloro-3-indoyl-b-D-galactopyranoside
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