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Fakulẗat für Physik

Dissertation

vorgelegt von

Matthias Kaminski
geboren am30. März 1978 in Walsrode

20. Mai 2008



Gutachter I: PD Dr. Johanna Karen Erdmenger
Gutachter II: Prof. Dr. Dieter Lüst
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Zusammenfassung

In dieser Arbeit wird die Frage untersucht, welche Effekte chemische Potenziale oder La-
dungsdichten in einem thermischen Plasma haben, das mikroskopisch durch eine stark gekop-
pelte Eichtheorie beschrieben wird. Da störungstheoretische Methoden in diesem Parameter-
bereich im Allgemeinen nicht einsetzbar sind, wird als Hilfsmittel die aus der Stringtheorie
hervorgegangene AdS/CFT Korrespondenz benutzt. AdS/CFT ist eine Eichtheorie/Gravitations-
Dualität (auchHolographiegenannt), die in der hier angewendeten Weise zulässt, störungs-
theoretische Rechnungen in einer Gravitationstheorie in Ergebnisse in einer stark gekoppelten
Feldtheorie zu übersetzen . Die hier betrachtete Modelltheorie istN = 4 Super-Yang-Mills
Theorie in vier Raumzeitdimensionen gekoppelt an fundamentale Hypermultipletts derN =
2 Super-Yang-Mills Theorie. Trotz großer Unterschiede zur Quantenchromodynamik (QCD)
können viele Phänomene der starken Wechselwirkung qualitativ beschrieben werden. Da-
her sind die hier entdeckten Effekte auch als Vorhersagen f¨ur Schwerionenkollisionen am
Beschleuniger RHIC in Brookhaven und am LHC in Genf zu sehen.Insbesondere führen
wir nacheinander baryonische Ladungsdichte, Isospinladungsdichte und schließlich beide La-
dungsarten (oder chemischen Potentiale) gleichzeitig ein.

Wir untersuchen die Thermodynamik des stark gekoppelten Plasmas und geben im kano-
nischen sowie großkanonischen Ensemble Phasendiagramme an. Weiterhin berechnen wir die
wichtigsten thermodynamischen Größen als Funktionen derTemperatur und Ladungsdichten
oder chemischen Potenziale: die freie Energie, beziehungsweise das großkanonische Potenzi-
al, die innere Energie und die Entropie. Resonanzen in der Flavorstrom-Spektralfunktion ver-
halten sich bei kleinen Temperaturen gemäß der (im supersymmetrischen Fall holographisch
gefundenen) Massenformel für Vektormesonen proportional zur Quarkmasse und lassen sich
als Quasiteilchen im Plasma interpretieren. Bei hohen Temperaturen wird die Zerfallsbreite
sehr groß gegenüber der Energie dieser Anregungen und die Resonanzen bewegen sich zu klei-
neren Energien für steigende Quarkmasse. Dies impliziertdie Existenz eines Umkehrpunktes
zwischen den beiden Temperaturregimes, dessen Bedeutung wir ebenfalls diskutieren. Für
Flavorströme mit Isospinstruktur in einem Plasma mit nicht verschwindender Isospindichte
finden wir heraus, dass die Resonanzen in Spektralfunktionen unterschiedlicher Flavorrich-
tungen in Tripletts aufspalten. Eine analytische Untersuchung dieses Falles im hydrodynami-
schen Limes bestätigt diese Triplettstruktur auch für den Diffusionspol, das heißt auch für
die niedrigste quasinormale Frequenz. Weiterhin diskutieren wir das nicht verschwindende
Quarkkondensat. Ferner finden wir heraus, dass der Baryondiffusionskoeffizient auf nicht-
triviale Weise von Baryon- und Isospindichte abhängt. Wirentdecken einen Phasenübergang,
der dem in der 2-Flavor-QCD gefundenen analog ist. Zuletzt erweitern wir unsere hydrodyna-
mischen Betrachtungen auf die Studie der Diffusion schweren Charmoniums im Plasma bei
starker und bei schwacher Kopplung. Das Verhältnis des Transportkoeffizienten zur Massen-
verschiebung ist bei starker Kopplung, wie erwartet, deutlich kleiner als das bei schwacher
Kopplung. Dieser Effekt eines stark verringerten Transportkoeffizienten bei starker Kopplung
wurde bereits im Fall des Viskosität/Entropiedichte-Quotienten beobachtet.





Abstract

In this thesis we explore the effects of chemical potentialsor charge densities inside a thermal
plasma, which is governed by a strongly coupled gauge theory. Since perturbative methods
in general fail in this regime, we make use of the AdS/CFT correspondence which origi-
nates from string theory. AdS/CFT is a gauge/gravity duality (also calledholography), which
we utilize here to translate perturbative gravity calculations into results in a gauge theory at
strong coupling. As a model theory for Quantum-Chromo-Dynamics (QCD), we investigate
N = 4 Super-Yang-Mills theory in four space-time dimensions. This theory is coupled to fun-
damental hypermultiplets ofN = 2 Super-Yang-Mills theory. In spite of being quite different
from QCD this model succeeds in describing many of the phenomena qualitatively, which are
present in the strong interaction. Thus, the effects discovered in this thesis may also be taken
as predictions for heavy ion collisions at the RHIC colliderin Brookhaven or the LHC in
Geneva. In particular we successively study the introduction of baryon charge, isospin charge
and finally both charges (or chemical potentials) simultaneously.

We examine the thermodynamics of the strongly coupled plasma. Phase diagrams are given
for the canonical and grandcanonical ensemble. Furthermore, we compute the most impor-
tant thermodynamical quantities as functions of temperature and charge densities (or chemical
potentials): the free energy, grandcanonical potential, internal energy and entropy. Narrow
resonances which we observe in the flavor current spectral functions follow the (holographi-
cally found) vector meson mass formula at low temperature. Increasing the temperature the
meson masses first decrease in order to turn around at some temperature and then increase
as the high-temperature regime is entered. While the narrowresonances at low temperatures
can be interpreted as stable mesonic quasi-particles, the resonances in the high-temperature
regime are very broad. We discuss these two different temperature-regimes and the physical
relevance of the discovered turning point that connects them. Moreover, we find that flavor
currents with isospin structure in a plasma at finite isospindensity show a triplet splitting of the
resonances in the spectral functions. Our analytical calculations confirm this triplet splitting
also for the diffusion pole, which is holographically identified with the lowest lying quasi-
normal frequency. We discuss the non-vanishing quark condensate. Furthermore, the baryon
diffusion coefficient depends non-trivially on both: baryon and isospin density. Guided by
discontinuities in the condensate and densities, we discover a phase transition resembling the
one found in the case of 2-flavor QCD. Finally, we extend our hydrodynamic considerations
to the diffusion of charmonium at weak and strong coupling. As expected, the ratio of the
diffusion coefficient to the meson mass shift at strong coupling is significantly smaller than
the weak coupling result. This result is reminiscent of the result for the viscosity to entropy
density ratio, which is significantly smaller at strong coupling compared to its value at weak
coupling.



This thesis is based on the author’s work partly published in[1, 2, 3, 4] conducted
from October 2005 until May 2008 at the Max-Planck-Institutfür Physik (Werner-
Heisenberg-Institut), München under supervision of PD Dr. Johanna Karen Erd-
menger. New results extending significantly beyond those published until now are
reported in sections 4.2, 4.4, 4.5, 5.3, 6.3, and 6.4. Completely new ideas are devel-
oped in the three outlook sections 4.6, 5.4 and 6.5.
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Datum der mündlichen Prüfung: 14. July 2008
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One might feel like a giant

with the head up in those clouds,

but still

you need to kneel down, in order to see clearly.

May 2008

1
Introduction

The standard modelof particle physics is a theory of the four known fundamentalforces of
nature which has been tested and confirmed to incredibly highprecision [5]. Unfortunately
the standard model treats gravity and the remaining three forces on different footings, since
gravity is merely incorporated as a classical background.String theoryis a mathematically
well-defined and aesthetic theory successfully unifying gravity with all other forces appearing
in string theory [6, 7, for example], which unfortunately lacks any experimental verification
until now. In this respect string theory and the standard model of particle physics can be
seen as complementary approaches which had been separated by a gap whose size even was
hard to estimate. The advent ofAdS/CFTor more generally thegauge/gravity correspon-
dence[8] (explained in chapter 2) and its intense exploration during the past ten years now
provides us with the tools to build a bridge over this gulch, abridge to connect the experi-
mentally verified gauge theory called the standard model with the consistently unifying novel
concepts of string theory. AdS/CFT amends both string theory and the standard model. In
particular theduality-character of the gauge/gravity correspondence can be usedto extend
our conceptual understanding to thermal gauge theories at strong coupling [9] such as those
found to govern the thermal plasma generated at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory [10].

The standard model and its limitations In order to set the stage for our calculations
and to fit them into the ‘terra incognita’ on the currently accepted map of particle physics, we
start out by reviewing thestandard modeland its limitations. At the time thestandard model
of particle physics [11, for an introduction] is a widely accepted model for the microscopic
description of fundamental particles and their interactions. It claims that in nature two sorts of
particles exist: matter particles (these are fermions, i.e. they carry spin quantum number1/2)
and exchange particles (these are vector bosons, i.e. they carry spin quantum number1). The
matter particles interact with each other by swapping the exchange particles. This means that

3



4 Chapter 1. Introduction

Fermions Family Electric charge Color charge Weak isospin
1 2 3 left-handed right-handed

Leptons νe νµ ντ 0 / 1/2 /
e µ τ -1 / 1/2 0

Quarks u c t +2/3 r, b, g 1/2 0
d s b -1/3 r, b, g 1/2 0

Table 1.1: The matter particles of the standard model carrying spin 1
2

grouped into families
by their masses [5].

Interaction couples to Exchange particle Mass (GeV) JP

strong color charge 8 gluons 0 1−1

electromagnetic electric charge photon 0 1−1

weak weak charge W±, Z0 ∼ 102 1

Table 1.2: The exchange particles of the standard model carrying spin1, the interaction or
force they mediate and the charge to which they couple [5].

the exchange particles mediate the attractive and repulsive forces between the matter particles.
The matter particle content of the standard model is given bytable 1.1. As seen from this table
the matter particles are organized into three families of socalled leptonsandquarkswhich
differ by their mass and quantum numbers. In this thesis the behavior of these quarks1 will be
studied in a regime where a perturbative expansion of the standard model is not possible. In
particular in chapter 5 we will study how quarks are bound into quark-antiquark states (called
mesons) inside a plasma at finite temperature. Furthermore we will examine the transport
properties of quarks and mesons inside a plasma in chapter 6.

The exchange particles given in table 1.2 are responsible for the mediation of the three
fundamental forces: the electromagnetic force, the weak force and the strong force.

Technically the standard model is aquantum field theoryand as such incorporates the ideas
of quantum mechanics, field theory and special relativity. Starting from the classical theory of
electrodynamics it is clear, that if we want to apply it to thesmall scale of fundamental par-
ticles, we need to consider effects appearing at small scales which are successfully described
by quantum mechanics. From this necessityquantum electrodynamics(QED) emerged as the
unification of field theory and quantum mechanics describingtheelectromagnetic force. Next
it was discovered that the force which is responsible for thebeta-decay of neutrons in atomic
nuclei, called theweak forcecan be described by a quantum field theory as well. The standard
model unifies these two quantum field theories to the electro-weak quantum field theory. The
third force, thestrongone is described byquantum chromodynamics(QCD) which the stan-
dard model fails to unify with the electro-weak theory. Bothelectro-weak theory and QCD are
based on the concept ofgauge theories. This means that the quantum field theory is gauged

1To be more precise we have to take in account that the theory wewill be using in this work as a computable
model for strong coupling behavior is the supersymmetricN = 4 Super-Yang-Mills theory coupled to aN =
2 fundamental hypermultiplet. This hypermultiplet contains both fermions and scalars due to supersymmetry
and we will refer to both of them as quarks.
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by making its symmetry transformations local (i.e. dependent on the position in space-time).
By gauging a theory new interactions among matter particlesand gauge bosons arise (e.g. the
electromagnetic, weak and strong interaction in the standard model). This kind of gauge the-
ories is the one which is studied in the AdS/CFT correspondence -as described in chapter 2-
which may also be called gauge/gravity correspondence.

Up to now we have introduced the standard model as an interacting quantum field theory
but in this setup none of the particles has a nonzero mass, yet. Thus one important further
ingredient to the standard model which is not yet experimentally confirmed is the Higgs boson.
This particle is a spin 0 field which is supposed to generate the masses for the standard model
particles via the Higgs mechanism [12].

The standard model leaves many questions open of which we mention only three: The weak
force is1032 times larger than gravity. Where does this hierarchy in coupling strengths come
from? Due to its modeling character the standard model has (at least) 18 parameters (masses
and coupling constants) which need to be put in by hand. What are the physical mechanisms
fixing the values of these parameters? How can gravity be incorporated into the gauge theory
framework?

Some of these problems are theoretically solved by extensions of the standard model: The
minimal supersymmetric standard model(MSSM) [13, for a status report] explains the force
hierarchy (and also yields dark matter candidates). Some further phenomenologically studied
extensions contain extra-dimensions [14, for a review], the non-commutative standard model
with non-commuting space-time coordinates [15] (recent progress may be found in [16, 17,
18, 19]) and the addition of an unparticle sector governed byconformal symmetry [20] which
thus is closely related to the conformal theories we will review in section 2.2.1. But the most
developed and consistent theory known to incorporate gravity in the same conceptual way as
all other forces is string theory (note, thatloop quantum gravity[21, for a recent review] has
the same goal).

Finally, the standard model is computed as a perturbative expansion in the gauge coupling
coefficients. Therefore this description relies on the coupling coefficients to be small. Due
to the fact that the coupling constants are running [11, for pedagogical treatment] (i.e. they
change as the energy at which the particle collision is performed) there are regimes where the
standard model perturbation series is not applicable. The most prominent example of physics
in such regimes is the quark gluon plasma generated in heavy ion collisions at the RHIC col-
lider [22, 23, for example]. Also the ALICE detector at the Large Hadron Collider (LHC)
currently under construction will soon produce data from those strong coupling regimes. Ex-
actly these regimes of gauge theories are now accessible (with certain restrictions) by virtue
of the AdS/CFT correspondence as described in section 2.2.3and methodically introduced in
chapter 3.

String theory String theorycan solve some of the problems mentioned above mainly be-
cause of its fundamental and mathematically structured character. In string theory the funda-
mental objects are not point-like particles butstrings, i.e. one dimensional objects, character-
ized by only one single parameter: the string tensionα′. These strings have to be embedded
into ten-dimensional space-time. Furthermore, they have to satisfy certain boundary condi-
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tion just like a classical guitar string. Closed strings areloops which can propagate through
space-time, whereas the end points of open strings are confined to hyperplanes, so called
branes. The namebranefor higher-dimensional hyperplanes is a generalization ofthe two-
dimensional mem-brane. As a heuristic picture one may imagine an open string to be similar
to a guitar string, being able to carry different excitations. Just like each excitation of the
guitar string corresponds to a distinct tone, each excitation of a string can be identified with
a distinct particle. The excitations of a closed string correspond to different particles. For
example thegraviton which is the massless spin 2 gauge boson mediating the gravitational
force emerges as the quadrupole oscillation of a closed string. Since other exchange particles
such as the photon emerge in the same way as a distinct string excitation, this theory provides
a unified concept from which the gauge interactions arise, including gravity. Therefore string
theory is capable of giving conceptual explanations for thestructure of matter and its interac-
tions in terms of just one string tension parameter. For its consistency string theory requires
ten dimensions (six of which need to be compactified), supersymmetry and it is reasonable
to give dynamics to the branes, as well. We will learn a bit more about string theory in sec-
tion 2.1.1 but a full treatment is beyond the scope of this thesis and the reader is referred to
textbooks [6, 7, for example].

Also string theory rises many problems. First of all it is notknown how to obtain the
standard model from string theory and since that is the experimentally verified theory any
conceptual extension has to incorporate it. A pending theoretical problem is the full quantiza-
tion of string theory. And finally we stress again the lack of experimental predictions which
could distinguish string theory from others, confirm it or rule it out. Without a way to connect
to reality and to verify string theory or at least the concepts derived from it, it is unfortunately
useless for physics.

Current state of AdS/CFT How does the gauge/gravity correspondence calledAdS/CFT
provide tools to connect string theory and possibly the standard model? AdS/CFTis the
name originally given to a correspondence between a certaingauge theory with conformal
symmetry (i.e. it is scale-invariant) in four flat space-time dimensions on one side and su-
pergravity in a five-dimensional space with constant negative curvature called anti de Sitter
space-time (AdS) on the other side [8, 24]. Due to the mismatch in dimensions which is
reminiscent ofholographyin classical optics, the correspondence is sometimes called holog-
raphy. This correspondence arises from a string theory setup taking intricate limits which we
describe in detail in chapter 2. Originally the conformal field theory considered on the gauge
theory side of the correspondence has beenN = 4 Super-Yang-Mills theory (SYM). Today
gauge/gravity correspondence(sometimes loosely called AdS/CFT) is also used to refer to the
extended correspondence involving non-conformal, non-supersymmetric gauge theories with
various features modeling standard model behavior such as chiral symmetry breaking, matter
fields in the fundamental representation of the gauge group and confinement (to name only
a few). Introducing these features on the gauge theory side of the correspondence requires
deformation of the anti de Sitter background on the gravity side. In other words changing the
geometry on the gravity side from AdS to something else changes the phenomenology on the
gauge theory side. Unfortunately there is no version of the correspondence available which
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realizes QCD or even the whole standard model to date. At the moment one relies on the fact
that studying other strongly coupled gauge theories one still learns something about strongly
coupled dynamics in general and maybe even of QCD in particular if one studies features with
a sufficient generality or universality, such as meson mass ratios [25] or the shear viscosity to
entropy ratio of a strongly coupled thermal plasma [9].

The phenomenological virtue of this setup is that we gain a conceptual understanding of
strong coupling physics taking the detour via AdS/CFT. Thatis because AdS/CFT is not only
a correspondence between a gauge theory and a gravity theorybut rather aduality between
them. This means in particular that a gauge theory at strong coupling corresponds to a gravity
theory at weak coupling. Thus we can formulate a problem in the gauge theory at strong
coupling, translate the problem to the dual weakly coupled gravity theory, use perturbative
methods in order to solve this gravity problem and afterwards we can translate the result
back to the strongly coupled gauge theory. As a specific example of this we will compute
flavor current correlation functions at strong coupling in athermal gauge theory with a finite
chemical isospin potential in section 4.2, using the methods reviewed in chapter 3.

Recently AdS/CFT also uncovered a connection between hydrodynamics of the gauge the-
ory and black hole physics [26] which attracted broad attention [27, 28, 29, 30, 31, 32, 33, 34,
35, 9, for example]. Here the main motivation is the so-called viscosity bound

η

s
≥ ~

4π
, (1.1)

which was derived from AdS/CFT for all strongly coupled gauge theories with a gravity dual.
Here the shear viscosityη (measuring the momentum transfer in transverse direction)is di-
vided by the entropy densitys. Due to its universal validity in all calculated cases one hopes
that this bound is a generic feature of strongly coupled gauge theories which is also valid
in QCD. Indeed the measurements at the RHIC collider confirm the prediction in that the
viscosity of the plasma formed there is the smallest that hasever been measured. This phe-
nomenological success of AdS/CFT motivated many extensions in order to come closer to
QCD and the real world.

One particularly important extension to the original correspondence [8] was the introduc-
tion of flavor and matter in the fundamental representation of the gauge group, i.e. quarks and
their bound states, the mesons [36] further studied in [37, 38, 39, 40, 41, 42]. In particular
in [37] it was found that a gravity black hole background induces a phase transition in the
dual gauge theory. Further studies have shown that on the gravity side a geometric transi-
tion (see section 2.1.1) corresponds to a deconfinement transition for the fundamental matter
in the thermal gauge theory. At the moment the flavored extension of the relation between
hydrodynamics and black hole physics is under intense investigation [43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, incomplete list of closely related work]. So
far the effect of finite chemical baryon potential in the gauge theory and the structure of the
phase diagram of these theories have been explored. For a review of the field the reader is
referred to [25], while a brief introduction can also be found here in section 2.3. This con-
nection between introducing fundamental matter and the exploration of its thermodynamic an
hydrodynamic properties in the strongly coupled thermal gauge theory as well as the extension
to more general chemical potentials is central to my work partly published in [1, 2]. This and
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other extensions to the thermal AdS/CFT framework are also the central goal of this thesis.
In the light of the reasonable hydrodynamics findings agreeing with observations, the bridge

between string theory and phenomenologically relevant gauge theories starts to become illu-
minated: Since AdS/CFT is a concept derived from string theory it is by construction con-
nected to that side of the gulch. If on the other hand we can experimentally confirm the
strong coupling predictions made using this concept, then we have found a way to ascribe
phenomenological relevance to a concept of string theory. This is by far no proof that string
theory is the fundamental theory which describes nature, but certainly it would confirm that
these concepts in question correctly capture the workings of nature. One could be even more
brave and take such a confirmation as the motivation to take the correspondence not just as
a phenomenological tool but to take it seriously in its strongest formulation and assume that
the full quantized string theory can be related to the gauge theory fully describing nature (this
would have to be a somewhat extended standard model).

The mission for this thesis The general question I wish to answer in this thesis is: What
is the impact of finite baryon and isospin chemical potentials or densities on the thermal phe-
nomenology of a strongly coupled flavored plasma? The gauge/gravity duality shall be used
to obtain strong coupling results. Since no gravity dual to QCD has been found yet, we work
in a supersymmetric model theory which is similar to QCD in the properties of interest. To
be more precise we consider the gravity setup of a stack ofNc D3-branes which produce
the asymptotically AdS black hole background and we addNf probe D7-branes which in-
troduce quark probes on the gauge dual side. The AdS black hole background places the
dual gauge theory at a finite temperatureT related to the black hole horizon̺H = πTR2,
whereR is the radius of the AdS space. The chemical potential is a measure for the en-
ergy which is needed in order to increase the thermodynamically conjugate charge density
inside the plasma. On the gravity side a chemical potential is introduced by choosing a non-
vanishing background field in time directionA0(̺) 6= 0. The chemical potential then arises
as its boundary valuelim

̺→̺bdy

A0(̺) = µ. Depending on the gauge group from which the fla-

vor gauge fieldA0 arises, the chemical potential can give the baryon chemicalpotential for
theU(1)-part of the gauge group, the isospin chemical potential forSU(2) or other chemical
potentials forSU(Nf ).

In order to study the phenomenology of the plasma with chemical potentials dual to the
gravity setup, which we have just described, we gradually approach the construction of the
phase diagram by computing all relevant thermodynamic quantities. We shall also study ther-
mal spectral functions describing the plasma as well as transport properties, in particular the
diffusion coefficients of quarks and mesons inside the plasma.

Note, that in the previously discussed sense we confirm the AdS/CFT concept with each
reasonable thermal result that we produce. Furthermore, tracing the relation between the
thermal gauge theory and the dual gravity in detail using specific examples will also lead
to a deeper understanding of the inner workings of the AdS/CFT correspondence in general.
Therefore we can aim for the additional goal of finding out something about string concepts
from our studies, rather than restricting ourselves to the opposite direction of reasoning.
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Summary of results We can generally answer the main question of this thesis withthe
statement that introducing baryon and isospin chemical potentials into the thermal gauge
theory at strong coupling has a significant effect on the thermodynamical quantities, on the
correlation functions, spectral functions and on transport processes. Studying both the canon-
ical and grandcanonical ensemble, we find an enriched thermodynamics at finite baryon and
isospin density, or chemical potential respectively. In particular we construct the phase di-
agram of the strongly coupled plasma at finite isospin and baryon densities or chemical po-
tentials, respectively. We compute the free energy, grandcanonical potential, entropy, internal
energy, quark condensate and chemical potentials or densities, depending on the ensemble.
Discontinuities in the quark condensate and in the baryon and isospin densities or potentials
indicate a phase transition at equal chemical potentials ordensities, respectively. This newly
discovered phase transition appears to be analogous to thatfound for 2-flavor QCD in [62].
Conceptually we have also achieved the generalization toU(Nf )-chemical potentials with ar-
bitraryNf and we provide the formulae to study the effect of these higher flavor gauge groups.

As an analytical result we find thermal correlators ofSU(2)-flavor currents at strong cou-
pling and a non-zero chemical isospin potential in the hydrodynamic approximation (small
frequency and momentum). In particular we find that the isospin potential changes the loca-
tion of the correlator poles in the complex frequency plane.The poles we examine are the
diffusion poles formerly appearing at imaginary frequencies. Increasing the isospin potential
these poles acquire a growing positive or negative real partdepending on the flavor current
combination. The result is a triplet-splitting of the original pole into three distinct poles in the
complex frequency plane each corresponding to one particular flavor combination.

From a numerical study we derive thermal spectral functionsof U(1)-flavor currents in a
thermal plasma at strong coupling and finite baryon density.We find mesonic quasi-particle
resonances which become stable as the temperature is decreased. In this low temperature
regime these resonance peaks are also found to follow the vector meson mass formula [38]

M =
L∞
R2

√

2(n+ 1)(n+ 2) , (1.2)

whereL∞ andR are geometric parameters of the gravity setup described in section 5.1. The
radial gravity excitation numbern is related to the peak considered in the spectral function,
starting with the lowest frequency peak atn = 0. This fact and the fact that the peaks become
very narrow confirm that stable mesonic states form in the plasma at sufficiently low temper-
ature (or equivalently at large quark mass). We identify these resonances with stable mesons
having survived the deconfinement transition of the theory in agreement with the lattice re-
sults given in [63] and the findings of [64]. However, the interpretation of the small mass/high
temperature regime is still controversial. In that particular regime we observe very broad
resonances which move first to lower frequencies as the temperature is decreased. Then we
discover a turning point at a certain temperature after which the mesonic behavior described
above sets in. We ascribe the turning behavior to the dissipative character of the excitations
at high temperature and argue that these resonances can not be interpreted as quasi-particles
and therefore their frequency can not be identified with a vector meson mass. The concise
treatment of these speculations we delay to future work using quasinormal modes. Neverthe-
less, we already record our observations in section 5.3 alsoproviding interesting insight in the
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gauge/gravity correspondence in terms of a bulk/boundary solution correspondence.
The spectral functions at finite isospin density show similar resonance peaks with a similar

behavior. Additionally the spectral functions for the three different flavor directions show
a triplet splitting in the resonance peaks which results from the isospin potential breaking
theSU(2)-symmetry in flavor space.

Studying transport properties we find that the quark diffusion in the thermal plasma shows
a vanishing phase transition as the baryon density is increased. This transition is smoothened
to a crossover which appears as a minimum in the diffusion coefficient versus quark mass or
temperature. A similar picture arises when simultaneouslya finite isospin density is intro-
duced. For the case of quarkonium transport in the plasma we find a systematic agreement
between the AdS/CFT calculation and the corresponding fieldtheory calculation confirming
the correspondence on a more than empirical level.

All these effects are caused by significant changes on the gravity side such as: the embed-
dings having a spike and being only of black hole type. For a finite chemical potential there
has to be a finite gauge field on the brane and the field lines ’end’ at the horizon. Also the
resonance peaks in the spectral function are shifted by bothbaryon and isospin densities. We
primarily find that by the presence of a baryon and/or isospinchemical potential the gravity
solutions which for example generate the peak in the spectral function are changed consid-
erably. The same is true for those solutions with vanishing boundary condition called quasi-
normal modes. Their frequencies, called quasinormal frequencies are shifted in the complex
frequency plane by the introduction of finite potentials. Since these quasinormal frequencies
correspond to poles in the correlation function, this result agrees with our analytically found
pole shift in the case of the diffusion pole mentioned above.Especially the triplet-splitting of
the poles upon introduction of isospin appears in both results.

How to read this New results extending significantly beyond those publishedin [1, 2] are
reported in sections 4.2, 4.4, 4.5, 5.3, 6.3, and 6.4. Completely new ideas are developed in the
three outlook sections 4.6, 5.4 and 6.5.

This thesis is structured as follows: For improved readability and overview each of the main
chapters contains a small summary section at its end. After the non-technical introduction
just given in the present introduction chapter, we establish the AdS/CFT correspondence in
chapter 2 on a technical level. The first three chapters (including this introduction) are written
such that they may serve as a directed introduction to the field addressed to graduate students or
researchers who are not experts on string theory or AdS/CFT.The basic concepts needed from
string theory such as branes and duality relations are briefly introduced in section 2.1.1, then
put together with those of conformal field theory consideredin section 2.2.1 in order to merge
these frameworks to the statement of the AdS/CFT correspondence 2.2.3. With chapter 3
we develop the mathematical methods which we use to compute correlation functions and
transport coefficients from AdS/CFT at finite temperature. Section 3.2.2 shows how chemical
potentials are implemented and in section 3.3 the concept ofquasinormal modes is reviewed.
This directed introduction is not designed to cover string theory at any rate (for a concise
introduction the reader is referred to reviews, e.g. [65], or books, e.g. [6, 7]).

The last four chapters collect all my calculations and results which are relevant for the
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aim of this thesis. Each of the chapters 4, 5 and 6 contains an outlook section which is that
one before the summary section. These outlook sections giveexplain some ideas how the
investigation of the present topic in that chapter can be continued. If available also initial
calculations are presented as a starting point. Chapter 4 shows the calculation and results of
correlation functions for thermal flavor currents obtainedanalytically and the thermodynamics
of the thermal gauge theory at finite baryon or isospin or bothpotentials or densities. Chapter 5
shows the numerical calculation and the results and conclusions derived from thermal spectral
functions of flavor currents in a strongly coupled plasma. Finally the transport properties of
quarks and mesons are studied in chapter 6. In chapter 7 we will conclude this thesis putting
stress on the interrelations between our results and on their relation to experiments, lattice and
other QCD results.



2
The AdS/CFT correspondence

In this chapter we briefly review the gauge/gravity correspondence from its origins in string
theory to its application aiming for phenomenological predictions in collider experiments. The
AdS/CFT correspondence, which carries the properties ofholography(in analogy to hologra-
phy in optics) and aduality as well, states that string theory in the near-horizon limitof Nc

coincident M- or D-branes is equivalent to the world-volumetheory on these branes. In the
first section we develop the string theory framework in orderto state the correspondence more
precisely and discuss the existing evidence for this conjectured correspondence in the second
section. The third section then introduces fundamental matter, i.e. quarks into the duality.
Section four includes a study of the AdS/CFT correspondenceat finite temperature introduc-
ing the concepts and notation upon which this present work isbased. A brief overview of
other deformations of the original correspondence and their implications for phenomenology
is given in the last section. We discuss the role of AdS/CFT asa phenomenological tool and
contrast this to ascribing a more fundamental character to it.

2.1 String theory and AdS/CFT

The AdS/CFT correspondence is a gauge theory / gravity theory duality appearing in string
theory. We will see that it is special because it relates strongly coupled quantized gauge the-
ories to weakly coupled classical supergravity and therefore makes it possible to study strong
coupling effects non-perturbatively. It may also be turnedaround and used to study gravity at
strong coupling by computations in the weakly coupled field theory dual. Nevertheless, from
the string point of view this correspondence is one duality among many others. In order to
understand its role in string theory, we start out examiningthe general concept of dualities in
string theory and M-theory.

12
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2.1.1 Dualities and string theory

The AdS/CFT correspondence is heavily used in this work and since it carries the character of
a duality relating one theory at strong coupling to a different theory at weak coupling, in this
section we explore other dualities appearing in string theory in order to understand the role of
AdS/CFT in string theory.

Up to the early 1990s five different kinds of superstring theories had been discovered [7]:
type I, type IIA, type IIB, heteroticSO(32), heteroticE8 × E8. This was a dilemma to string
theory as the unique theory of everything. But in 1995 [66, 67] this dilemma was resolved to
great extend by virtue of dualities. All five string theorieshad been related to each other by so-
called S-, T-dualities, by compactification and by taking certain limits. Let us pick T-duality
as a representative example to study in more detail.

A brief T-duality calculation T-duality in the simplest example of bosonic string theory
compactified on a circle with radiusR in the 25th dimension is a symmetry of the bosonic
string solution under the transformation of the compactification radiusR → R̃ = ls

2/R and
simultaneous interchange of the winding numberW with the Kaluza-Klein excitation num-
berK. This means that bosonic string theory compactified on a circle with radiusR with
W windings around that circle and with momentump25 = K/R is equivalent to a bosonic
string theory compactified on a circle with radiusls

2/R with winding numberK and mo-
mentump25 = W/R. To see this in more detail, consider the closed bosonic string action in
25-dimensional bosonic string theory with target space coordinatesXµ [68]

Sbosonic= −T
∫

dσdτ
√

− det gµν∂αXµ∂βXν , (2.1)

with the metricg, the string tensionT and a1+ 1-dimensional parametrization(σ0 = τ, σ1 =
σ) of the brane world volume whereα, β = 0, 1. Here the parameters are the world-sheet
time τ = 0, . . . , 2π and spatial coordinateσ = 0, . . . , π. Note, that we could generalize this
action (2.1) to the case of a simple p-dimensional object, aDp-braneas we will learn below.
The most general solution is given by the sum of one solution in which the modes travel in one
direction on the closed string (left-movers) and the second solution where the modes travel in
the opposite direction (right-movers)

Xµ = Xµ
L +Xµ

R , (2.2)

which for closed strings are given by

Xµ
L = 1

2
xµ + 1

2
l2sp

µ(τ − σ) + i
2
ls
∑

n 6=0

1
n
αµ

ne
−2in(τ−σ) (2.3)

Xµ
R = 1

2
xµ + 1

2
l2sp

µ(τ + σ) + i
2
ls
∑

n 6=0

1
n
α̃µ

ne
−2in(τ+σ) . (2.4)

These solutions each consist of three parts: the center of mass position term, the total string
momentum orzero modeterm and the string excitations given by the sum. If we compactify
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the 25th dimension on a circle with radiusR, we get

X25
L = 1

2
(x25 + x̃25) + (α′p25 +WR)(τ + σ) + . . . (2.5)

X25
R = 1

2
(x25 − x̃25) + (α′p25 −WR)(τ − σ) + . . . , (2.6)

We leave out the sum over excitation modes (denoted by. . . ) since it is invariant under com-
pactification. The constant̃x25 is arbitrary since it cancels in the whole solution (2.7). Only
thezero modeis affected by the compactification since the momentum becomesp25 = K/R
with K labeling the levels of the Kaluza-Klein tower of excitations becoming massive upon
compactification. An extra winding term is added as well. So the the sum of both solutions in
25-direction reads

X25 = x25 + 2α′K
R
τ + 2WRσ + . . . . (2.7)

We now see explicitly that the transformationW ↔ K, R → α/R applied to equations (2.5)
and (2.6) is a symmetry of this theory because thezero modechanges as(α′K/R±WR) →
(α′WR/α′ ±Kα′/R) = (WR± α′K/R). So we get the transformed solution

X̃25 = x̃25 + 2WRτ + 2α′ K
R
σ + . . . . (2.8)

Comparing the solutions (2.8) and (2.7) we note that the transformed solution is equal to the
original one except for the fact thatσ andτ are interchanged. However, the bosonic string
action is reparametrization invariant1 under(τ, σ) → (τ̃ , σ̃). Therefore we see that physical
quantities like correlation functions are invariant underthe T-duality tranformation.

From this duality we learn how we may start from one string theory and by different ways
of compactification we arrive at two distinct but equivalentformulations of the same physics.
Another important feature is that certain quantities change their roles as we go from one com-
pactification to the other (winding modes turn into Kaluza-Klein modes asK ↔ W ). Finally
we realize that T-duality relates a theory compactified on a large circleR to a theory compact-
ified on a small circleα′/R.

By virtue of T-duality another important ingredient for thegauge/gravity correspondence
was introduced into string theory: Dp-branes. Introducing open strings into the bosonic the-
ory of closed strings, we need to specify boundary conditions at the string end points. A nat-
ural criterion for these boundary conditions is to preservePoincaré invariance. So we would
choose Neumann boundary conditions∂σX

µ = 0 at the end pointsσ = 0, π. Evaluating this
condition for the general solution given in (2.7), we see that the Neumann condition turns into
a Dirichlet boundary condition∂τX

µ = 0. This condition explicitly breaks Poincaré invari-
ance by fixingp of the spatial coordinates of open string ends toτ -independent hypersurfaces.
These surfaces are called Dirichlet- or Dp-branes and have to be considered as dynamical ob-
jects in addition to the fundamental strings. We will see below thatAdS/CFT is a duality
arising from two distinct ways of describing these Dp-branes in open string theory.

1 S-duality exchanges the fundamental strings (i.e. the NS-NS or the Ramond-Ramond two-forms) with the D1-
branes. So, roughly speaking the string behaves like a D1-brane. Generalizing the casep = 1 to arbitraryp
we would find that the Dp-brane action is reparametrization invariant under a change of thep + 1 world-
volume coordinates given byσα → σα(σ̃).
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Analogous to T-duality, S-duality relates a string theory with coupling constantgs to a string
theory with coupling1/gs. In this respect S-duality is very similar to the AdS/CFT duality
which relates a gauge theory at strong coupling to a gravity theory at weak coupling or vice
versa. A particularly interesting example of S-duality is the electric/magnetic duality (which
is also present inN = 4 Super-Yang-Mills theory).

Gauge/gravity dualities We have seen in the last subsection that there exists a variety of
string dualities and it is time now to narrow our view to the subset of gauge/gravity dualities
including the AdS/CFT correspondence.

As for the important special case of gauge/string dualitiesthere are three kinds relating
conventional (nongravitational) QFT to string or M-theory: matrix theory, AdS/CFTandgeo-
metric transitions. It is remarkable that quantum mechanical theories are dualto (i.e. may be
replaced by) a gravity theory.

Matrix theory is a quantum description of M-theory in a flat 11-dimensionalspace-time
background. So this gives an M-theory approximation beyond11-d SUGRA limit. In matrix
theory the dilaton is not massless and therefore there is no dimensionless coupling that could
be used to define a perturbation theory. The fundamental degrees of freedom are D0-branes
and it is written down in a non-covariant formulation.

Let us briefly consider a second gauge/gravity duality called geometric transition. It is
a duality relating open strings to closed strings, and this is a property which it shares with
AdS/CFT.2 One setup in which the geometric transition takes place is given by anN = 1-
supersymmetric confining gauge theory obtained by wrappingD5-branes around topologi-
cally non-trivial two-cycles of aCalabi-Yau manifold(determining the structure of the inter-
nal space). The remaining four directions of the D5 span the four Minkowski directions. On
the D5-branes open string excitations form a supersymmetric gauge theory. The shape of the
Calabi-Yau manifold (of internal space) is parametrized bymoduli. These are scalars appear-
ing in the theory having a constant potential which can thus take arbitrary values. One may
now shrink the two-cycles by varying themoduliof the theory in an appropriate way. At the
limit of a zero-size two-cycle the system undergoes a geometric transition to a (sector of the)
theory in which closed strings are the fundamental objects to be excited. With the vanishing
two-cycles also the D-branes disappear from the description of the system. In section 2.3 we
will meet another particularly interesting example for a geometric transition. That is the tran-
sition from Minkowski to black hole embeddings in the D3/D7-brane setup. In that case the
D7-brane wraps anS3 inside theS5 of theAdS5 × S5 background geometry.

In order to find theAdS/CFT correspondencewe have to consider collections of coincident
M- or D-branes. These branes source flux and curvature. Examples of theories on these branes
with maximal supersymmetry (32 supercharges) are M2-, D3- and M5-branes corresponding
to 3-, 4- and 6-dimensional world-volume theories being superconformal (SCFT):

2 The basic idea of a geometric transition is that a gauge theory describing an open string sector, i.e. a gauge
theory on D-branes, is dual to aflux compactificationof a particular string theory in which no D-branes are
present, butfluxesare present instead. In other words, as a modulus is varied, there is a transition connecting
the two descriptions [68].
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SCFT onNc M2-branes ↔ M-theory onAdS4 × S7

SCFT onNc M5-branes ↔ M-theory onAdS7 × S4

N = 4 SYM onNc D3-branes ↔ type IIB onAdS5 × S5
.

Note that also dS/CFT relating a gauge theory to gravity in positively curved de Sitter space
is interesting because of the experimental observation that our universe is accelerated. If
this acceleration is due to a positive cosmological constant, the matter and radiation densities
approach zero in the infinite future and our universe approaches de Sitter space in future. On
the other dS/CFT might be interesting for the early universe. Nevertheless it is less explored
than AdS/CFT since it features no supersymmetry. Instead ofD-/M-branes, Euclidean S-
branes are used.

2.1.2 Black branes

The gauge/gravity correspondence we explain in this section originated from the study of black
p-branes in10-dimensional string theory and11-dimensional M-theory. It turned out that one
can describe branes in two ways which are different limits ofstring theory: ap-brane is a
solitonic solution to classical supergravity and at the same time ap-brane is the hypersurface
of points where an open string is allowed to end. It was shown thatDirichlet-p-branes (Dp-
branes)give the full string theoretic description of thep-branes found as classical solutions
to supergravity. Furthermore black branes are essential for the study of dual field theories at
finite temperature (as will be seen in the next section). Because of their doubly-important role,
we will expand these thoughts on branes.

Classical solutions In this paragraph we examine the classicalp-brane solutions to super-
gravity because these objects and their classical description (in Anti de Sitter space AdS) are
one of the two fundamental building blocks of the AdS/CFT correspondence.

Black p-branes were found as solutions to classical limits of string and M-theory, like e.g.
the bosonic part of the11-dimensional SUGRA action (with M2 and M5-brane solutions) [68,
equations (12.3), (12.18)]

S =
1

2κ2
11

∫

d11x
√
−G

(

R− 1

2
|F4|2

)

− 1

6

∫

A3 ∧ F4 ∧ F4 (2.9)

or the 10-dimensional SUGRA action (with Dp-brane solutions)

S =
1

2κ2
10

∫

d10x
√−g

[

e−2Φ(R + 4(∂Φ)2) − 1

2
|Fp+2|2

]

, (2.10)

which include a dilatonΦ, the curvature scalarR, gauge field strengthsFp+1 and the cor-
responding gauge fieldsAp. κD denotes the gravity constant in dimensionD = 10 or 11.
Branes are(p + 1)-dimensional objects solving the equations of motion derived from either
action. They can be viewed as higher-dimensional generalizations of a black hole in four di-
mensions. Black hole solutions in four space-time dimensions are point-like objects, which



2.1. String theory and AdS/CFT 17

are surrounded by an event horizon. They have anSO(3) rotational symmetry and a sym-
metry associated with time-translation invariance. Blackp-branes are surrounded by a higher-
dimensional event horizon, they break Lorentz symmetry of theD = d+1-dimensional theory
to

SO(d, 1) → SO(d− p)
︸ ︷︷ ︸

rotational symmetry transverse to brane

× SO(p, 1)
︸ ︷︷ ︸

Lorentz symmetry along brane

(2.11)

The Lorentz-symmetry is enlarged to Poincaré symmetry by translation symmetries along the
brane. There exist two classes ofp-brane solutions: the supersymmetric ones which are called
extremaland the ones which break supersymmetry which are callednon-extremal. The general
extremal Dp-brane solution has the metric

ds2 = H−1/2
p ηijdx

idxj +H1/2
p ξmndymdyn , (2.12)

with the flat Lorentzian metricη along the brane and the Euclidean metricξ perpendicular to
the brane. The harmonic functionHp is

Hp(r) = 1 + (
rp

r
)7−p , (2.13)

and the dilaton

eΦ = gsH
(3−p)/4
p . (2.14)

The general non-extremal solution comes with the metric

ds2 = −∆+∆−
−1/2 − dt2 + ∆−

1/2dxidxi + ∆+
−1∆−

γdr2 + r2∆−
γ+1dΩ2

8−p , (2.15)

with γ = −1
2
− 5−p

7−p
and

∆± = 1 − (
r±
r

)7−p , (2.16)

and the dilaton

eΦ = gs∆−
(p−3)/4 . (2.17)

The special casep = 3: Note that thep = 3-brane solution is special in that it is the only
one in which the dilaton is constanteΦ = gs. We will develop the arguments for the AdS/CFT
correspondence along this specific case below and thereforeinclude the (classical) D3-brane
solution to supergravity here

ds2 = H3
−1/2

(
dt2 + dx2

)
+H3

1/2
(
dr2 + r2dΩ5

2
)
, (2.18)

F5 = (1 + ⋆)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dH3
−1 , (2.19)

H3 = 1 +
R4

r4
, R4 := 4πgs(α

′)2N , (2.20)

where we call the AdS radiusR in agreement with the AdS/CFT literature.



18 Chapter 2. The AdS/CFT correspondence

Dp-branes and DBI-action We have already mentioned that branes, in particular Dp-
branes are the crucial objects to consider in order to understand the AdS/CFT correspondence.
Beyond this general insight into the working of the correspondence in this section we also
include the effective action, theDirac-Born-Infeld (DBI)-action. We will make use of this
formulation later in order to compute brane embeddings, or in other words the location of the
Dp-branes in the ten-dimensional space and additionally fluctuations on these branes.

As mentioned above, T-duality implies the existence of extended dynamical objects in string
theory which are called Dp-branes. Roughly speaking these are the hypersurfaces in target
space on which end points of open strings can lie. Dp-branes arep + 1-dimensional objects
carrying charge and thus coupling to(p+ 1)-form gauge fields.

The Dirac-Born-Infeld (DBI) action is the(p + 1)-dimensional world-volume action for
fields living on a Dp-brane embedded in ten-dimensional space-time. For a Dp-brane with
an Abelian gauge fieldA in a background of non-flat metricgµν , the dilatonΦ and the two-
formBµν in static gauge the DBI action in string frame is given by

SDp = −TDp

∫

dp+1σe−Φ
√

− det {P [g +B]αβ + (2πα′)Fαβ} . (2.21)

Static gauge refers to the choice of world-volume coordinatesσα which by diffeomorphism-
invariance of the action are set equal top+ 1 of the space-time coordinatesXµ, such that the
pull-back is simplified. The remaining(9− p) coordinates are relabeled as2πα′φi. Theφi are
scalar fields of the world-volume theory with mass dimension[φi] = 1. The brane tensionTDp

is given by

TDp =
1

gs(2π)p(α′)(p+1)/2
. (2.22)

Note, that the DBI-action also contains a fermionic contribution (see e.g. [69] for details).
The geometry of a numberN D-branes is more subtle. Coordinates transverse to the brane

are T-dual to non-Abelian gauge fields. The DBI action for this case of non-Abelian gauge
fieldsA is given by

SDp = −TDp

∫

dp+1σe−ΦSTr
{√

detQγ
κ

×
√

− det(Eαβ + Eαγ(Q−1 − δ)γκEγβ + (2πα′)Fαβ

}

. (2.23)

HereQi
j = δi

j + i(2πα′)[φi, φk]Ekj andEkj = gkj + Bkj collects the antisymmetric back-
ground tensors. Choosing the transverse scalar fields such that [φi, φk] = 0 we obtain the
general form of the Abelian DBI action (2.21) but for non-Abelian gauge fieldsA = AaTa

with generatorsTa and field strengthsF = F aTa. The symmetrized traceSTr{. . . } tells us
to symmetrize the expression in the flavor representation indices. Note, that the non-Abelian
DBI-action in this form is only valid up to orderO(α′4). Another limitation is that we can
only consider slowly varying fields.

Let us choose the special case ofNc coincident D3-branes. The world-volume action of this
stack of branes at low energy is that of ad = 4 dimensionalN = 4-supersymmetric Yang-
Mills theory with gauge groupU(Nc). This theory is supersymmetric and obeysconformal
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invariance, meaning that it is a conformal field theory as explained below. The massless
modes of the low energy spectrum for open strings ending on the stack of coincident D3-
branes constitute theN = 4 vector supermultiplet in(3 + 1) dimensions.

BPS states:In supersymmetry representations and especially branes are often classified in
terms of how many supersymmetries they break if introduced to the brane-less theory. The
Bogomolny-Prasad-Sommerfeld (BPS) bound distinguishes between branes which are BPS
and those which are not. Let us see what this means in the example of massive point particles in
four dimensions. TheN -extended supersymmetry algebra for particles of positivemassM >
0 at rest is

{QI
α, Q

† J
β } = 2MδIJδαβ + 2iZIJΓ0

αβ , (2.24)

with the central charge matrixZIJ , supersymmetry generatorsQI , I = 1, . . . ,N and Majo-
rana spinor labelsα, β. The central charge matrix can be brought in a form such that we can
identify a largest componentZ1. The BPS-bound is defined in terms of this component as a
lower bound for the particle’s mass

M ≥ |Z1| . (2.25)

States that saturate the boundM = |Z1| belong to theshort supermultipletalso called theBPS
representation. In this case some relations in the algebra (2.24) become zero such that less
combinations of superchargesQ can be used to generate states starting from the lowest one,
resulting in less possible states. States withM > |Z1| belong to along supermultiplet. De-
pending on the number of central charges which are equal to the mass (e.g.M = |Z1| = |Z2|)
the number of unbroken supersymmetries changes. If for example half of the supersymmetries
of aN = 4 theory are unbroken because2 of the central charges are equal to the mass, then
the representation is calledhalf BPS. In general forn central charges being equal to the mass
we have a(n/N ) BPS representation.

Since BPS states include particles with mass equal to the central charge, the mass is not
changed as long as supersymmetry is unbroken, i.e. these states are stable and in particular we
can examine them at strong and at weak coupling.

Identifying D-p-branes with classical p-branes It is believed that the extremalp-brane
in supergravity and the Dp-brane from string theory are two distinct descriptions of the same
physical object in two different parameter regimes. Here weestablish a direct comparison to
consolidate this statement which lies at the heart of the AdS/CFT correspondence.

In the casep = 3 it can be shown [24] that the classicalp-solution is valid in the regime1 ≪
gsN < N with the string couplinggs and the Ramond-Ramond chargeN =

∫

S8−p

⋆Fp+1. While

the validity of the string theoretic Dp-brane description for a stack ofN D3-branes is limited
to gsN ≪ 1 [24]. As discussed in section 2.1.2 Dp-branes are the(p+ 1)-dimensional hyper-
surfaces on which strings can end. On the other hand they are also sources for closed strings.
This fact can be translated into the heuristic picture that those particular closed string exci-
tations identified with gravitons are sourced by the Dp-brane. This reflects the fact that Dp-
branes are massive (charged) dynamical objects which also curve the space around them. In
particular Dp-branes can carry Ramond-Ramond charges. A stack ofN coincident Dp-branes
carriesN units of the(p + 1)-form charge which can be calculated from the corresponding
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action as shown in [70]. Turning to supersymmetry we find thatthe Dirichlet boundary condi-
tion imposed on the string modes by the presence of a Dp-brane identifies the left-moving and
right-moving modes (see section 2.1.1) on the string and therefore breaks at least half of the
supersymmetry. It turns out that in type IIB string theory branes with oddp preserve exactly
one half of the supersymmetries and hence Dp-branes are BPS-objects. On the other hand
the classicalp-brane solution in supergravity carries the Ramond-RamondchargeN as well
and features the same symmetries. A further check of the identification is the computation
of gauge boson masses (which are analogs of the W-boson masses in the standard model) in
the effective theories in both descriptions. It turns out that breaking theU(N)-symmetry by a
scalar vacuum expectation value in both setups generates bosons with the same masses. These
bosons are analogs of the W-bosons in the standard model which acquire their masses by the
scalar vacuum expectation value of the Higgs field via the Higgs mechanism.

2.2 Gauge & gravity and gauge/gravity

This section serves to supply a detailed description of the two theories involved in the AdS/CFT
correspondence: the superconformal quantum field theory (CFT) in flat space on one hand, and
the (limit of ) string theory in Anti de Sitter space (AdS) on the other hand. A direct compar-
ison of their features inevitably leads to the conjectured one-to-one correspondence of fields
and operators, of symmetries and eventually of the full theories.

2.2.1 Conformal field theory

The original formulation of the AdS/CFT correspondence involves a conformal field theory,
hence CFT, on the conformal boundary of anti de Sitter space.Although we will later modify
the correspondence in order to come to more QCD-like theories breaking superconformal
symmetry, we now consider the conformal case in order to haveit as a limit to check the setups
deviating from the conformal case. For example we will see that two-point functions –which
are central to this work– in the conformal case are completely determined by the conformal
symmetry.

CFT’s are invariant under the conformal group which is essentially the Poincaré group ex-
tended by scale-invariance. In the context of renormalization groups it was found that many
quantum field theories exhibit a renormalization group flow between a scale-invariant ultra-
violet (UV) fixed-point (repelling) and a scale-invariant infrared (IR) fixed-point (attracting).
The quantum theory of strong interactions, QCD is scale-invariant at it’s IR fixed-point in the
so-called conformal window. This fixed-point, also called the Banks-Zaks fixed-point, appears
in a distinct window of values for the number of flavors compared to colorsNf < 11/2Nc (for
these values asymptotic freedom is guaranteed) while imposing chiral symmetry (i.e. the
quarks are massless) at the same time. So QCD itself becomes aconformal field theory in
this specific limit. This is only one connection between QCD and CFT which motivates us
to believe that CFT’s are a good approach to learn something about QCD in non-perturbative
regimes.
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CFT’s have played a key role in understanding two-dimensional quantum field theories
since they are exactly solvable by virtue of the conformal group being infinitely large and
yielding infinitely many symmetries. If we would like to study higher dimensions we ob-
tain the conformal group ind dimensions by extending the Poincaré group with the require-
ment of scale invariance. In general the conformal group leaves the metric invariant up to
an arbitrary scale factorgµν(x) → Ω2(x)gµν(x). There are two types of additional trans-
formations enhancing Poincaré to conformal symmetry. First, we have the scale transforma-
tionxµ → λxµ which is generated byD and second, there is the special conformal transforma-
tionxµ → (xµ +aµx2)/(1+2xνaν +a2x2) generated byKµ. Denoting the Lorentz generators
byMµν and translations byPµ, the conformal algebra is given by the set of commutators

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) , [Mµν , Kρ] = −i(ηµρKν − ηνρKµ) ,

[Mµν ,Mρσ] = −iηµρMνσ ± permutations, [Mµν , D] = 0 , [D,Kµ] = iKµ ,

[D,Pµ] = −iPµ , [Pµ, Kν ] = 2iMµν − 2iηµνD , (2.26)

and all other commutators vanish. The algebra (2.26) is isomorphic to the algebra of the
rotation groupSO(d, 2) as may be seen by defining the generators ofSO(d, 2) in the following
way

Jµν = Mµν , Jµd =
1

2
(Kµ − Pµ) , Jµ(d+1) =

1

2
(Kµ + Pµ) , J(d+1)d = D . (2.27)

Note, that we consider all group structures in the Minkowski, not in Euclidean signature.
The conformal algebra is extended to the superconformal algebra by inclusion of fermionic

supersymmetry operatorsQ. From the (anti)commutators we see that we need to include two
further operators for the algebra to be closed: a fermionic generatorS and theR-symmetry
generatorR. The conformal algebra is supplemented by the relations given schematically as
follows

[D,Q] = − i

2
Q , [D,S] =

i

2
S , [K,Q] ∝ S , [P, S] ∝ Q ,

{Q,Q} ∝ P , {S, S} ∝ K , {Q, S} ∝M +D +R . (2.28)

In d = 4 dimensions theR-symmetry group isSU(4) and the fermionic generators are in
the (4, 4) + (4̄, 4̄) of SO(4, 2) × SU(4). Unitary interacting scale-invariant theories are be-
lieved to be invariant under the full conformal group, but this has only been proven ind = 2
dimensions. Given a classical conformally invariant field theory, conformal invariance is bro-
ken if we define a quantum theory since this requires introduction of a cutoff breaking scale
invariance. However, theN = 4 supersymmetric Yang-Mills theory (SYM) in four dimen-
sions is special in this sense because it is a prominent example for a superconformal quantum
field theory. It is shown in [71] that supersymmetry and conformal symmetry are sufficiently
restrictive to limit superconformal algebras tod ≤ 6 dimensions.

The physically relevant representations of the conformal group are given by Eigenfunctions
of the scaling operatorD. Its eigenvalues are−i∆ where∆ is the scaling dimension of the
corresponding stateφ. Its scaling transformation readsφ(x) → λ∆φ(λx). Note that the
commutators in (2.26) imply thatPµ raises the scaling dimension of a field whileKµ lowers
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it. In unitary field theories there are operator of lowest dimension, which are calledprimary
operators. The defining property for a primary operatorOp is that it has the lowest possible
dimension[K,Op] = 0. Correlation functions of fields and in particular of such primary
fields are severely restricted by conformal symmetry. Two-point functions vanish if evaluated
between two fields of different dimension∆. For a single scalar field with dimension∆ it was
shown that

〈φ(0)φ(x)〉 ∝ 1

(x2)∆
. (2.29)

Three-point functions are restricted to have the form

〈φi(x1)φj(x2)φk(x3)〉 =
cijk

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1
. (2.30)

For n-point functions withn ≥ 4 there are more and more independent conformally invari-
ant functions which can appear in the correlator. Similar expressions arise for higher-spin
operators. For example the vector-vector correlator of conserved currentsJa

i (x) (having di-
mension∆ = d− 1) must take the inversion covariant, gauge invariant form

〈Ja
i (x)J b

j (y)〉 = B
δab

(2)d
(�δij − ∂i∂j)

1

(x− y)2(d−2)
, (2.31)

whereB is a positive constant, the central charge of theJ(x)J(y) operator product expan-
sion (OPE). The OPE of a local field theory describes the action of two operatorsO1(x)
andO2(y) shifted towards each other in terms of all other operators having the same global
quantum numbers as their productO1O2 as follows

〈O1(x)O2(y)〉 → 〈
∑

n

Cn
12(x− y)On(y)〉 . (2.32)

In conformal field theories the energy-momentum tensor is included in the conformal algebra
and has scaling dimension∆ = d just as each conserved current has scaling dimension∆ =
d− 1. To leading order the OPE for the energy-momentum tensor with a primary field is

Tµν(x)φ(0) = ∆φ(0)∂µ∂νx
−2 + . . . , (2.33)

while its two-point function turns out to be (see e.g. [72])

〈Tµν(x)Tρσ(y)〉 =
CT

s2d
IT

µν,ρσ(s) ,

IT
µν,ρσ(s) = (δµα − 2

xµxα

x2
)(δνβ − 2

xνxβ

x2
)ET

αβ,ρσ , (2.34)

where the projection operator onto the space of symmetric traceless tensors is given by

ET
αβ,ρσ =

1

2
(δαρδβσ + δασδβρ) −

1

d
δαβδρσ . (2.35)

The two-point function of energy momentum tensor fluctuations in a black hole background
was used to compute a lower bound on the viscosity [26] in a strongly coupled plasma as
mentioned in section 2.5.
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Symmetries and conformal compactification of R1,1 In this paragraph we study the
causal structure and symmetries of two-dimensional Minkowski spaceR1,1 by a series of coor-
dinate transformations calledconformal compactificationin order to generalize this analysis
to four dimensions in the next paragraph. We will see thatconformally compactifiedfour-
dimensional Minkowski space has the same structure as theEinstein static universeand that
it can be identified with theconformal compactificationof AdS5.

The flat space with Euclidean signatureRd can be compactified to thed-dimensional hy-
persphereSn with isometrySO(d). A similar compactification can be obtained in Minkowski
space. To give a specific example for the symmetry structure of globally conformal field the-
ories in flat Minkowski space consider the geometryR1,1. It can beconformally3 embedded
into the cylinderR × S1. It has the conformal isometry group structureSO(2, 2), which is
generated by six conformalKilling vectors. Killing vectors are the vectorsXµ which leave
the metricgµν invariant under infinitesimal coordinate transformationsx′µ = xµ + ǫXµ. This
condition can be rewritten as follows

LXgµν = 0 , (2.36)

utilizing the covariant derivativeD inside theLie derivative

LXY = [X, Y ] = XY − Y X . (2.37)

In local coordinates the Killing condition amounts to theKilling equation

LµXν = DµXν +DνXµ . (2.38)

In order to incorporate conformal symmetries, i.e. rescaling of the metric with a factorλ, we
need to generalize the condition (2.36) to its conformal version

LXgµν = λgµν . (2.39)

The six vectors fulfilling the Killing equation (2.38) inR1,1 are given in light-cone coor-
dinatesr± = t ± x by ∂±, r±∂±, r±2∂±. Isometries generated by the Killing vectors are
related to the standard representation for generators of the conformal group (2.26). The two
translations along the cylinderR × S1 for example are generated by the linear combina-
tion (1 + r±2)∂±. We identify these two generators asJ03 andJ12 given in the standard
representationJab of theSO(2, 2) rotation algebra being linear combinations of the conformal
generators as given in (2.27).

In order to study the causal structure of this two-dimensional Minkowski space, we utilize a
series of transformations given for example in [73]. This chain of transformations is often used
to drawconformal diagramsvisualizing the causal structure of a specific space-time. Our aim
is to map Minkowski space into the interior of a compact spaceand since the transformations
involve a conformal rescaling of the metric, this procedureis therefore often calledconformal
compactification. Beginning with

ds2 = −dt2 + dx2, (−∞ < t, x <∞) , (2.40)

3Hereconformalrefers to a series of transformations which are demonstrated explicitly at the end of this section.
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we first transform to light-cone coordinatesu± = t± x giving

ds2 = −du+du− . (2.41)

Now we map this into a compact region using trigonometric functionsu± = tan ũ± with ũ± =
(τ ± θ)/2. This gives the metric

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dτ 2 + dx2) (|u±| <

π

2
) , (2.42)

which we simplify by a conformal rescaling to our final expression of the conformal compact-
ification of two-dimensional Minkowski space

ds2 = (−dτ 2 + dθ2) . (2.43)

The variables are limited to the compact region−π < θ < π, |τ | + θ < π.

Symmetries and conformal compactification of R1,p, p ≥ 2 In this paragraph we
generalize the above example ofR1,1 to (p + 1)-dimensional Minkowski space which can be
conformally compactifiedand then identified with theconformal compactificationof AdSp+2.

Note, that we can generalize the above example toR1,p conformally embedded intoR ×
Sp, which is theEinstein static universewith isometry groupSO(2, p + 1) as we see by an
analogous series of coordinate transformations. We start from

ds2 = −dt2 + dr2 + r2dΩp−1
2 , (2.44)

and transform tou± = t± r which gives

ds2 = −du+du− +
1

4
(u+ − u−)2dΩp−1

2 . (2.45)

Then changing tõu± by u± = tan ũ± leaves us with

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dũ+dũ− +

1

4
sin2(ũ+ − ũ−)dΩp−1

2) , (2.46)

which transforms under̃u± = (τ ± θ)/2 into

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dτ 2 + dθ2 + sin2 θdΩp−1

2) . (2.47)

Finally we rescale this result conformally in order to obtain

ds2 = −dτ 2 + dθ2 + sin2 θdΩp−1
2 , (2.48)

which we extend maximally to the region0 ≤ θ ≤ π, −∞ < τ < ∞ such that its geome-
try R × Sp becomes obvious and we can identify it as theEinstein static universe.

To summarize these results, we state that the universal cover of the subgroupSO(2) ×
SO(p + 1) of the conformal groupSO(2, p + 1) examined below equation (2.26) (taked =
p + 1) can be identified with the isometry of the whole (not only part of it) Einstein static
universeR × Sp which we just worked out.
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2.2.2 Supergravity and Anti-de Sitter space

The AdS/CFT correspondence relates a conformal field theory(CFT) to a supergravity in Anti
de Sitter space (AdS) times a compact space. In this subsection we examine properties of su-
pergravity in AdS such as symmetries, geometry, field content and coordinate representations.

Anti de Sitter spaceAdSd is a maximally symmetricd-dimensionalLorentzian manifold
of constant negative curvature. It is a vacuum solution to Einstein’s field equations of gen-
eral relativity with an attractive (negative) cosmological constant. A Lorentzian manifold is
a pseudo-Riemann manifold with signature(1, d − 1), which again is the generalization of a
differentiable manifold equipped with a metric, called a Riemann manifold, on which the re-
striction to a positive-definite metric has been replaced bythe condition for the metric not to be
degenerate. To be more specific consider the metric ofAdSp+1 in Poincaré coordinates(r, t, ~x)
given by

ds2 = R2(
dr2

r2
+ r2(−dt2 + d~x2)) , (2.49)

whereR is the radius of AdS andr ∈ [0,∞[ is the radial AdS-coordinate. In this form the two
subgroupsISO(1, p) andSO(1, 1) of the isometry groupSO(2, p+1) are manifest.ISO(1, p)
is the Poincaré transformation on(t, ~x) andSO(1, 1) is a scaling symmetry of (2.49) under
the transformation(t, ~x, r) → (ct, c~x, c−1r). This scaling can be identified with the dilata-
tion D (introduced in section 2.2.1) in the AdS/CFT-dual conformal field theory. Note, that
Poincaré coordinates do not cover the whole AdS. This fact is easier to understand in the Eu-
clidean version of Poincaré coordinates which do not coverthe whole AdS, as well. Turning
the sign of the time component of the metric (2.49) we get the Euclidean analog of Poincaré
coordinates. This system only covers one of the two disconnected hyperboloids of Euclidean
AdS space. We will discuss the structure of AdS and its identification with a hyperboloid
below in the Lorentzian signature case.

Rescaling (2.49) byrR2 = ̺ gives the standard form of the AdS-metric

ds2 =
R2

̺2
d̺2 +

̺2

R2
(−dt2 + d~x2) , (2.50)

By transformation to the inverted coordinatey = r−1, dr2 = y−4dy2 we find another form
often used in the literature

ds2 = R2(
dy2 + (−dt2 + d~x2)

y2
) . (2.51)

Symmetries and geometry of AdS In Euclidean space-time it can be shown that the
(p+ 1)-dimensional hyperbolic space, which is the Euclidean version ofAdSp+1, can becon-
formallymapped to the(p+ 1)-dimensional discDp+1 with the boundary beingSp. The con-
formal mapping orconformal compactificationis a series of coordinate transformations used
to map a given space-time into a compact region and study its causal structure (see e.g. [73]).
One of these transformations is a conformal rescaling of themetric. A similar compactification
is possible in Minkowski space-time as we will see in detail in this subsection.
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In order to studyAdSp+2-space, we consider thed = p+ 2-dimensional hyperboloid

X0
2 +Xp+2

2 −
p+1
∑

i=1

Xi
2 = R2 . (2.52)

The hyperboloid is embedded in the flat(p+3)-dimensional space with one further dimension
and the metric of the ambient space reads

ds2 = −dX0
2 − dXp+2

2 +

p+1
∑

i=1

Xi
2 . (2.53)

This space has isometrySO(2, p + 1), it is homogeneous and isotropic. A solution to (2.52)
is given by the coordinate choice

X0 = R cosh ρ cos τ ,

Xp+2 = R cosh ρ sin τ ,

Xi = R sinh ρΩi (i = 1, . . . , p+ 1;
∑

i

Ω2
i = 1) . (2.54)

Note, that the radial coordinateρ appearing here is different from the radial coordinate̺ in
the previous section. The metric ofAdSp+2 can be obtained by plugging this solution (2.54)
into the metric (2.53) giving the metric inglobal coordinates

ds2 = R2(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2) . (2.55)

In the region0 ≤ ρ, 0 ≤ τ < 2π, this solution covers the hyperboloid once, hence these
coordinates are called global. Expanding the metric (2.55)near the originρ = 0 asds2 ∼
R2(−dτ 2 +dρ2 +ρ2dΩ2), we recognize the cylinder-symmetryS1×Rp+1. TheS1 represents
closed time-like curves which violate causality. In order to cure this, we unwrap the circle
by taking theuniversal coveringof the cylinder with−∞ ≤ τ ≤ ∞. In order to study the
causal structure of this covering space, which we will simply call AdS-space from now on, we
proceed with the conformal compactification by transforming tan θ = sinh ρ (0 ≤ θ < π/2).
The metric becomes

ds2 =
R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θdΩ2) , (2.56)

which we then rescale conformally in order to get

ds2 = (−dτ 2 + dθ2 + sin2 θdΩ2) (0 ≤ θ < π/2, −∞ < τ <∞) . (2.57)

We have obtained the Minkowski metric ofEinstein’s static universe(2.57). Recall that
we found the same metric with one dimension lower after conformal compactification of
Minkowski spaceR1,p in section 2.2.1, equation (2.48). Note that the range for the vari-
ableθ is only half as big in this conformal compactification ofAdSp+2 as for the conformal
compactification of Minkowski spaceR1,p. This means that the conformally compactified
AdSp+2 only covers one half of Einstein’s static universe.
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This space has topologyR × (upper half-sphere ofSp+1) with a boundary at theSp+1-
equatorθ = π/2 which features a topology ofR × Sp. The boundary found here is the
analog of the boundary of the discDn+1 encountered in conformally compactified Euclidean
space. Thus we find that the boundary of conformally compactified AdSp+2 is identical to
the conformal compactification of(p+ 1)-dimensional Minkowski spaceR1,p. Having stated
this we are now equipped with an identification of the space inwhich the conformal field
theory lives (i.e. Minkowski space) with the boundary of thespace on which supergravity
is defined (i.e. AdS). This is a fundamental building block for the AdS/CFT correspondence
which we state in the next section. Note that here the(p+1)-dimensional boundary of(p+2)-
dimensional AdS is related to(p+1)-dimensional Minkowski space. This fact implies that the
information given by the extra-dimension in the gravity theory in AdS has to be encoded in
the gauge theory with one dimension less in a different way. Since this resembles the principle
of holography in optics, the AdS/CFT correspondence is alsocalled AdS/CFT holography. To
be precise the AdS/CFT holography is a particular realization of the more general holographic
principle suggested in [74, 75].

Type IIB supergravity Before we state the correspondence let us review the field content,
symmetries and properties of supergravity. This examination will reveal that the symmetries
of type IIB supergravity onAdS5 × S5 are equal to the symmetries of the superconformal
theory we examined in the preceding section 2.2.1. We will further find some evidence for the
fact that the classical supergravity withp-branes is suspiciously similar to the superconformal
theory living on the stack of Dp-branes.

We are specifically interested in type IIB supergravity in ten dimensions which can be de-
fined onAdS5 and which is the gravity theory appearing in the AdS/CFT (gravity/gauge) cor-
respondence. It is the low-energy effective theory of type IIB string theory. So both have the
same massless fields: two left-handed Majorana-Weyl gravitinos, two right-handed Majorana-
Weyl dilatinos, the metricgµν , the two formB2, the dilatonΦ and the form fieldsC0, C2, C4.
the four-formC4 has a self-dual field strength̃F5. Type IIB supergravity is constructed through
supersymmetry and gauge arguments [76, 77] starting from the equations of motion. Further
it was shown that supergravity is stable on anti de Sitter spaces [78, for supergravity in 5 di-
mensions] with an appropriate set of boundary conditions. Existence of the self-dual five-form
field strength obstructs the covariant formulation of an action, such that we need to find an ac-
tion and add a self-duality constraint by hand. The bosonic part of the action can be written as
the sum of a Neveu-Schwarz (NS), a Ramond-Ramond (RR) and a Chern-Simons (CS) term

S = SNS + SRR + SCS (2.58)

=
1

2κ2

∫

d10x
√−g

[

e−2Φ

(

R + 4∂µΦ∂µΦ − 1

2
|H3|2

)

(2.59)

−1

2

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)]

(2.60)

− 1

4κ2

∫

C4 ∧H3 ∧ F3 , (2.61)
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with Fn+1 = dCn, H3 = dB2, F̃3 = F3 − C0H3, F̃5 = F5 − 1
2
C2 ∧H3 + 1

2
B2 ∧ F3 and the

curvature scalarR . This is the theory which we will relate to a conformal field theory through
the AdS/CFT correspondence.

Note, that this supergravity can also be Kaluza-Klein-compactified onS5 and then truncated
utilizing the Freund-Rubin Ansatz choosing the five-form tobe proportional to the volume
form of S5. The resulting theory isgauged supergravityon AdS5 with possible supersym-
metriesSU(2, 2|N /2), N = 2, 4, 6, 8. Here we only mention the maximally supersymmetric
caseN = 8 which has gauge groupSU(4). TheSO(6)-isometry on the compactification
manifoldS5 becomes the local gauge symmetry in the truncated theory. Inthis thesis we will
not consider the gauged supergravities.

2.2.3 Statement of the AdS/CFT-correspondence

In this section we state the correspondence and provide a comparison of the gravity theory
with the gauge theory which leads to the conjecture. Further, we include a dictionary and a
discussion how to translate or identify objects, e.g. operators in the gauge theory with those,
e.g. fields in supergravity.

The AdS/CFT-conjecture states that (for the case of D3-branes) type IIB superstring theory
compactified onAdS5 × S5 background described in section 2.2.2 is dual toN = 4, d = 4
Super-Yang-Mills theory with gauge groupSU(N) 4 as described in section 2.2.1. This equiv-
alence is called the AdS/CFT-correspondence. The string theory background corresponds to
the ground state of the gauge theory, while excitations and interactions in one description cor-
respond to excitations and interactions in the dual description. There are three different levels
on which the gauge/gravity correspondence is conjectured.Thestrong formconjectures that
the full quantized type IIB string theory onAdS5 × S5 with string couplinggs is dual to the
N = 4 Super-Yang-Mills theory (SYM) in four dimensions with gauge groupSU(N) and
Yang-Mills couplinggYM in its superconformal phase. On the string theory side theAdS5

andS5 have the same radiusR and the five-formF5 has integer flux
∫
F5 = N . The parame-

ters from the string theory are related to those on the gauge theory side by

gs = gYM
2 , R4 = 4πgsN(α′)2 . (2.62)

On the second level a weaker form of the conjecture utilizes the ’t Hooft limit

λ := g2
YMN = fixed, N → ∞ . (2.63)

The gauge theory,N = 4 SYM, in this limit can be expanded in1/N and representing a topo-
logical expansion of the field theory’s Feynman diagrams. Itis conjectured to be equivalent to
type IIB string theory, which can be expanded in powers of thestring couplinggs = λ/N rep-
resenting a weak coupling (classical) string perturbationtheory, i.e. a string loop expansion.

The third and weakest form of the conjecture is thelarge λ limit. Expanding the SYM
theory for largeλ in powersλ−1/2 corresponds to anα′ expansion on the gravity side. On this
level the AdS/CFT correspondence conjectures that type IIBsupergravity onAdS5 × S5 is
dual to the largeλ expansion ofN = 4 SYM theory.

4 Or rather with gauge groupU(N) according to [79].
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Road map to the conjecture In order to put forward an argument for the AdS/CFT con-
jecture, consider a stack ofN parallel D3-branes in type IIB string theory on flat Minkowski
space. Two kinds of string excitations exist in this setup: the closed strings propagating
through the ten-dimensional bulk and the open strings whichend on the D3-branes describing
brane excitations. At energies lower than the inverse string length1/ls only massless modes
are excited such that we can integrate out massive excitations to obtain an effective action
splitting into three partsS = Sbulk + Sbrane+ Sinteraction. The bulk action is identical to the ac-
tion of ten-dimensional supergravity (2.58) describing the massless closed string excitations in
the bulk plus possible higher derivative corrections. These corrections come from integrating
out the massive modes and they are suppressed since they are higher order in1/cut-off = α′.
The brane action is given by the Dirac-Born-Infeld action (DBI) on the stack of D3-branes
already given in (2.23) for Dp-branes. It contains theN = 4 SYM action as discussed be-
low (2.23) plus higher derivative corrections such asα′2trF 4. The interaction between the
bulk modes and the brane modes is described bySinteraction. These are suppressed at low ener-
gies corresponding to the fact that gravity becomes free at large distances. In the same limit the
higher derivative terms vanish from the brane and bulk action leaving two decoupled regimes
describing open strings ending on the brane and closed strings in the bulk, respectively.

Now let us take the same setup ofN D3-branes but describe its low energy behavior in an
alternative way, with supergravity. It will turn out that wecan again find two decoupled sec-
tors of the effective low-energy theory. In supergravity Dp-branes are massive charged objects
sourcing supergravity fields. We have seen the D3-brane solution explicitly in (2.18), (2.19)
and (2.20). Note that the componentgtt = H3

−1/2 = −(1 + R4/r4) being the measure for
physical time or equivalently energy is not constant but depends on the radial AdS coordi-
nater. For an observer at infinityr = ∞ this means that the local energyEobject(r = constant)
of any object placed at some constant positionr is red-shifted on the way to the observer. The
observer measures

E(r = ∞) = (1 +
R4

r4
)−1/4Eobject(r) . (2.64)

Approaching the positionr = 0 which we call the horizon, the object appears to have smaller
and smaller energy. This means that in the low-energy limit we can have excitations with
arbitrarily high local energyEobject as long as we keep them close enough to the horizon. This
regime of the theory is called thenear-horizon region. On the other hand modes that travel
through the whole bulk are only excited in the low-energy limit if their energy is sufficiently
small. These are the two regimes (bulk and near-horizon) of the theory which decouple from
each other in analogy to the string theory approach. In the full theory bulk excitations interact
with the near-horizon region because the Dp-brane located at the horizon absorbs the bulk
excitations with a cross sectionσ ∼ ω3R8 [80, 81]. However, in the low-energy limit this
cross section becomes small because the bulk excitations have a wave length which is much
bigger than the gravitational size of the brane∼ O(R). The low-energy excitations in the
near-horizon region which have an energy low enough to travel through the whole bulk are
caught near the horizon by the deep gravitational potentialproduced by the massivep-branes
at r = 0. In the near-horizon regionr ≪ R the metric (2.18) can be approximated withH3 =



30 Chapter 2. The AdS/CFT correspondence

(1 + (R/r)4) ∼ (R/r)4 such that it becomes

ds2 =
r2

R2

(
−dt2 + dx2

)
+R2dr2

r2
+R2dΩ5

2 , (2.65)

which is the metric of the AdS-spaceAdS5×S5 in the same coordinates as (2.50). This means
that the effective theory near the horizon is string theory (any kind of excitations possible)
onAdS5 × S5 and it decouples from the bulk theory which itself is supergravity (low-energy
excitations only) in the asymptotically (r ≫ R andH3 = 1) flat space.

In both descriptions of Dp-branes we have now found two decoupled theories in the low-
energy limit:

1. For the classical supergravity solution we found supergravity onAdS5 × S5 near the
horizon and supergravity in the flat bulk.

2. For the string theoretic Dp-brane description we found theN = 4 SYM theory in flat
Minkowski space on the stack of D3-branes and ten-dimensional supergravity in the flat bulk.

Since supergravity in the flat bulk is present in both descriptions,
we are lead to identify the near-horizon supergravity inAdS5×S5

and theN = 4 SYM brane theory, as well.

The dictionary The natural objects to consider in a conformal field theory are operatorsO
since conformal symmetry does not allow for asymptotic states or an S-matrix. On the other
side of the correspondence we have fieldsφ which have to satisfy the IIB supergravity equa-
tions of motion inAdS5×S5. AdS/CFT states that the CFT-operatorsO are dual to the fieldsφ
onAdS5 × S5 in a specific way.

Consider as an example for a fieldφ the dilaton fieldΦ. Its expectation value gives the
value of the dynamical string coupling which is constant only for the special case of D3-
branes which we do not consider here (see equation (2.17)). Moreover, the dilaton expectation
value in string theory is determined by boundary condition for the dilaton field at infinity (AdS
boundary). By the correspondence between couplings (2.62)we know that the coupling in the
gravity theory also determines the gauge couplinggY M or ’t Hooft couplingλ. Thus changing
the boundary valuelim

r→rbdy

Φ(r) = Φbdy of the (string theory) dilaton field from zero to a finite

valueΦbdy changes the coupling in the dual gauge theory .
On the gauge theory side a change in the gauge coupling is achieved by changing the

term
∫

d4xΦbdyO in the action, whereO is the operatortrF 2 containing the gauge field
strengthF of the gauge theory.O is a marginal operator and thus its presence changes the
value of the gauge theory coupling compared to the case when the marginal operatorO is not
included into the gauge theory.

So we see by considering this special case of the dilaton, that changing the boundary value
of the fieldφ leads to the introduction of a marginal operator in the dual field theory. Therefore
the AdS-boundary valueφbdy of the supergravity fieldφ acts as a source for the operatorO in
the dual field theory. This statement is conjectured to hold for all fieldsφ in the gravity theory
and all dual operatorsO of the gauge theory (not only marginal ones).

Let us be a bit more precise on what we mean by the boundary valueφbdy of the supergravity
field φ. In the geometry ofAdS5 × S5 we decompose the fieldφ into spherical harmonics on
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theS5 which produces Kaluza-Klein towers of excitations with different masses coming from
the compactification. These latter excitations live onAdS5 with the metricg and (neglecting
interactions) they have to satisfy the free field equation ofmotion

(�g +m2)φ = 0 , (2.66)

which has two independent asymptotic solutions near the boundaryr = ∞

φ(r) = φnnr
4−∆ + φnr

∆ + . . . . (2.67)

Here the 4 is the dimension of the AdS-boundary and∆ is the conformal dimension of the
field. The first term with the coefficientφnn is the non-normalizable solution, the second term
with the coefficientφn gives the normalizable one. The two expansion coefficientsφn andφnn

are related by the AdS/CFT correspondence to the vacuum expectation value〈O〉 of the dual
operator and the external source for the operator respectively. This means that only the non-
normalizable solution acts as a source in the way we discussed above in the example of the
dilaton field

Φ(r) = Φbdy + 〈trF 2〉r−4 , (2.68)

where we used that the dilaton field has conformal dimension∆ = 0 and we note that the
non-normalizable part is related to the asymptotic string couplinggs = eΦbdy.

By virtue of the operator-field duality we can also identify correlation functions in the two
theories but since this discussion is crucial for the present work it will be presented in a sepa-
rate section in 3.1.

Symmetry matching Let us recall the symmetries of IIB supergravity onAdS5 × S5 (as
considered in 2.2.2) and those ofN = 4 super-Yang-Mills (as studied in 2.2.1) in order to
check if the symmetries match on both sides and in order to usethese matching symmetries as
hints which quantities are to be identified with each other inthe correspondence.

TheN = 4 Super-Yang-Mills theory on the gauge theory side of the correspondence has
the following symmetries: aSU(2, 2) conformal symmetry and theSU(4) R-symmetry as
discussed in section 2.2.1. It contains theU(N) gauge vectorAµ, the fermionic fieldsλ1,2,3,4

and the six scalarsX4,5,6,7,8,9. All these fields live in the adjoint representation of the gauge
group.

On the other hand we have supergravity which inAdS5 has theisometry(transformations
leaving the metric invariant) groupSO(4, 2). TheS5 has isometrySO(6). We consider the
covering groups ofSO(4, 2) andSO(6) which areSU(2, 2) andSU(4), respectively. The
AdS5 × S5-background preserves as much supersymmetries as flat Minkowski space does.
Under the spatial isometriesSU(2, 2)×SU(4) the supercharges transform as(4, 4)+(4̄, 4̄) and
so the spatial isommetries combine with the conserved supercharges to give the full symmetry
group ofN = 4 Super-Yang-Mills: the superconformal groupPSU(2, 2|4) as written out in
section 2.2.1.

A direct comparison of these symmetries shows that the global R-symmetry groupSU(4)
of SYM can be identified with the isometries ofS5. Finally the conformal symmetrySU(2, 2)
is identified with the isometry group ofAdS5.
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Holography The AdS/CFT duality carries also the character of a holography. This under-
standing arises from the observation that a four-dimensional gauge theory is related to an
effectively five-dimensional gravity theory. The gauge theory lives on the boundary of the
Anti de Sitter space. We already saw this in section 2.2.2 comparing the conformal compact-
ifications of AdS on one hand and of four-dimensional Minkowski space on the other. There
we found that the(p + 1)-dimensional boundary ofAdSp+2 can be conformally mapped to
one half of the Einstein static universe. Inp dimensions this is a whole Einstein static uni-
verse. Minkowski space was mapped to exactly the samep-dimensional whole Einstein static
universe. Since the first four coordinates in both theories are identified as the common The
p-dimensional Minkowski space, the extra coordinate in the gravity theory is the radial AdS
coordinate. On the gauge theory side this coordinate translates into an energy or renormaliza-
tion scale at which the gauge theory is defined. Excitations with energies higher than this scale
are integrated out on the gauge theory side. So placing the gauge theory on the AdS boundary
corresponds to setting the renormalization scale to infinity and therefore not integrating out
any fields. As we decrease the energy scale, we integrate out more and more fields moving the
gauge theory to finite values of the radial AdS coordinate. Note, that this picture is an incom-
plete heuristic view on the topic which can for example not answer why the correspondence
should still be valid at a finite radius which is not the boundary of AdS.

Evidence Although still a conjecture the AdS/CFT correspondence haspassed a convincing
number of tests of its validity. The first check of the conjecture is the matching of all global
symmetries. These are independent of the couplings and agree exactly as discussed in the
above paragraph.

Generic objects to compute both on the AdS side and then also on the CFT side are corre-
lation functions. It was found in several cases that then-point functions of operatorsO in the
gauge theory match exactly then-point functions of the supergravity field [82] conjecturedto
be dual toO.

Since the correspondence is a duality relating one theory atstrong coupling to another one at
weak coupling, it is not in general possible to compute correlation functions on both sides per-
turbatively. However, there are correlation functions which do not depend on the couplingλ.
N = 4 SYM theory is superconformal and therefore scale-invariant. The superconformal
groupPSU(2, 2|4) remains exact up to one-loop exact anomalies appearing uponquantiza-
tion. These one-loop diagrams appear when the theory is coupled to gravitational or external
SU(4)R gauge fields. All higher order contributions vanish. The one-loop contributions can
be calculated and so correlation functions of e.g. global R-currents can be calculated even at
strong coupling. Thus it is possible to compare these correlation functions to those of the dual
fields in supergravity which are computed perturbatively. Since we do not know how a specific
normalization in the gauge theory translates into a normalization of the gravity theory, we use
the two-point functions in each theory to normalize the R-currentJ → J̃ such that

〈J̃a(x)J̃ b(y)〉 =
δab

|x− y|2∆ , (2.69)

where∆ is the conformal dimension of the operatorJ . The three-point correlator of R-currents
normalized to the two-point correlator was computed in SYM and it was found to agree with
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the three-point correlation function computed from the dual supergravity vector fieldAµ nor-
malized to its two-point correlator

〈J̃a
µ(x)J̃ b

ν(y)J̃
c
ρ(z)〉Sugra= 〈J̃a

µ(x)J̃ b
ν(y)J̃

c
ρ(z)〉CFT . (2.70)

In [82] all three-point functions of normalized chiral operators in four-dimensionalN =
4 SYM computed perturbatively were shown to agree with the correlators obtained from
AdS/CFT in the limit of large number of colorsN . Similar results were obtained for other
correlators and no counter example has been found yet.

Also the spectrum of chiral operators does not change with any coupling and has for exam-
ple been compared in the review [24]. The moduli space of the theories and the behavior of
the theories under deformation by relevant or marginal operators was also reviewed in [24].
These examinations have not yielded any contradiction.

After having motivated the conjecture in its original form featuring adjoint matter fields
only, we now expand the correspondence in order to include fundamental matter.

2.3 Generalizations of AdS/CFT: Quarks and mesons

The original AdS/CFT conjecture does not include matter in the fundamental representation
of the gauge group but only adjoint matter. In order to come closer to a QCD-like behavior
we therefore investigate how to incorporate quarks and their bound states in this section. We
focus on the main results of [36] and [38], however for a concise review the reader is referred
to [25].

Since AdS/CFT has been discovered a lot of modifications of the original conjecture have
been proposed and analyzed. This is always achieved by modifying the gravity theory in
an appropriate way. For example the metric on which the gravity theory is defined may be
changed to produce chiral symmetry breaking in the dual gauge theory [83, 37]. Other mod-
ifications put the gauge theory at finite temperature and produce confinement [84]. Besides
the introduction of finite temperature the inclusion of fundamental matter, i.e. quarks, is the
most relevant extension for us since we are aiming at a qualitative description of strongly
coupled QCD effects at finite temperature. This kind of effects are the ones observed at the
RHIC heavy ion collider.

Adding flavor to AdS/CFT The change we have to make on the gravity side in order
to produce fundamental matter on the gauge theory side is theintroduction of a small num-
berNf of D7-branes. These are also calledprobe branessince their backreaction on the
geometry originally produced by the stack ofN D3-branes is neglected. Strings within this
D3/D7-setup now have the choice of starting (ending) on the D3- or alternatively on the D7-
brane as visualized by figure 2.1. Note that the two types of branes share the four Minkowski
directions0, 1, 2, 3 in which also the dual gauge theory will extend on the boundary of AdS as
visualized in figure 2.2.

The configuration of one string ending onN coincident D3-branes produces anSU(N) gauge
symmetry of rotations in color space. Similarly theNf D7-branes generate aU(Nf ) flavor
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string duality

conventional

3−7
quarks

3−3

SYM

N   probe D7f

Figure 2.1: The figure sketches the original AdS/CFT correspondence between open and
closed strings and its extension to fundamental matter relating open strings to each
other. On the left side the geometry of a stack of coincidentN D3-branes (repre-
sented by the thick vertical line) and a small number of coincidentNf D7-branes
is shown. This is the setup within which the full string theory description is re-
duced to the effective Dirac-Born-Infeld description on the world volume of the
D7-branes. On the left side of the figure the geometry ofAdS5 ×S5 is outlined on
which the classical supergravity description is defined. Ateach point on the disc
representingAdS5 anS5 exists but is not drawn for simplicity. The curved lines
with labelsp− q represent strings starting at the stack of Dp branes and ending on
the stack of Dq-branes. This figure is taken from [25].

0 1 2 3 4 5 6 7 8 9
D3 x x x x
D7 x x x x x x x x

Figure 2.2: Coordinate directions in which the Dp-branes extend are marked by ’x’. D3- and
D7-branes always share the four Minkowski directions and may be separated in
the8, 9-directions which are orthogonal to both brane types.
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gauge symmetry. We will call the strings starting on the stack of Dp-branes and ending on
the stack of Dq-branesp − q strings. The original3 − 3 strings are unchanged while the
3 − 7- or equivalently7 − 3 strings are interpreted as quarks on the gauge theory side ofthe
correspondence. This can be understood by looking at the3 − 3 strings again. They come in
the adjoint representation of the gauge group which can be interpreted as the decomposition
of a bifundamental representation(N2 − 1) ⊕ 1 = N ⊗ N̄ . So the two string ends on the
D3-brane are interpreted as one giving the fundamental, theother giving the anti-fundamental
representation in the gauge theory. In contrast to this the3 − 7 string has only one end on the
D3-brane stack corresponding to a single fundamental representation which we interpret as a
single quark in the gauge theory.

We can also give mass to these quarks by seperating the stack of D3-branes from the D7-
branes in a direction orthogonal to both branes. Now3 − 7 strings are forced to have a finite
lengthL which is the minimum distance between the two brane stacks. On the other hand a
string is an object with tension and if it assumes a minimum length, it needs to have a minimum
energy being the product of its length and tension. The dual gauge theory object is the quark
and it now also has a minimum energy which we interpret as its massMq = L/(2πα′).

The 7 − 7 strings decouple from the rest of the theory since their effective coupling is
suppressed byNf/N . In the dual gauge theory this limit corresponds to neglecting quark
loops which is often calledthe quenched approximation. Nevertheless, they are important for
the description of mesons as we will see below.

Let us be a bit more precise about the fundamental matter introduced by3 − 7 strings. The
gauge theory introduced by these strings (in addition to theoriginal setup) gives aN = 2
supersymmetricU(N) gauge theory containingNf fundamental hypermultiplets.

D7 embeddings & meson excitations Mesons correspond to fluctuations of the D7-
branes5 embedded in theAdS5 × S5-background generated by the D3-branes. From the
string-point of view these fluctuations are fluctuations of the hypersurface on which the7 − 7
strings can end, hence these are small oscillations of the7 − 7 string ends. The7 − 7 strings
again lie in the adjoint representation of the flavor gauge group for the same reason which
we employed above to argue that3 − 3 strings are in the adjoint of the (color) gauge group.
Mesons are the natural objects in the adjoint flavor representation. Vector mesons correspond
to fluctuations of the gauge field on the D7-branes.

Before we can examine mesons as D7-fluctuations we need to findout how the D7-branes
are embedded into the 10-dimensional geometry without any fluctuations. Such a stable con-
figuration needs to minimize the effective action. The effective action to consider is the world
volume action of the D7-branes which is composed of a Dirac-Born-Infeld as given in (2.21)
and a topological Chern-Simons part

SD7 = −TD7

∫

d8σe−Φ
√

− det {P [g +B]αβ + (2πα′)Fαβ}+
(2πα′)2

2
TD7

∫

P [C4]∧F ∧F .
(2.71)

The preferred coordinates to examine the fluctuations of theD7 are obtained from the coordi-
nates given in (2.50) by the transformation̺2 = w1

2 + · · ·+w4
2, r2 = ̺2 +w5

2 +w6
2. Then

5To be precise the fluctuations correspond to the mesons with spins 0, 1/2 and 1 [38, 69].
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the metric reads

ds2 =
r2

R2
d~x2 +

R2

r2
(d̺2 + ̺2dΩ3

2 + dw5
2 + dw6

2) , (2.72)

where~x is a four vector in Minkowski directions0, 1, 2, 3 andR is the AdS radius. The
coordinater is the radial AdS coordinate while̺ is the radial coordinate on the coincident
D7-branes. For a static D7 embedding with vanishing field strengthF on the D7 world volume
the equations of motion are

0 =
d

d̺




̺3

√

1 + w′
5
2 + w′

6
2

dw5,6

d̺



 , (2.73)

wherew5,6 denotes that these are two equations for the two possible directions of fluctuation.
Since (2.73) is the same type of equation as for the motion of asupergravity field in the bulk
which was considered in (2.66), also the solution takes a form resembling (2.67) near the
boundary

w5,6 = L+
c

̺2
+ . . . , (2.74)

with L being the quark mass acting as a source andc being the expectation value of the
operator which is dual to the fieldw5,6. While c can be related to the scaled quark conden-
satec ∝ 〈q̄q〉(2πα′)3.

If we now separate the D7-branes from the stack of D3-branes the quarks become massive
and the radius of theS3 on which the D7 is wrapped becomes a function of the radial AdS
coordinater. The separation of stacks by a distanceL modifies the metric induced on the
D7 P [g] such that it contains the termR2̺2/(̺2 + L2)dΩ3

2. This expression vanishes at a
radius̺2 = r2 − L2 = 0 such that theS3 shrinks to zero size at a finite AdS radius.

Fluctuations about thesew5 andw6 embeddings give scalar and pseudoscalar mesons. We
take

w5 = 0 + 2πα′χ , w6 = L+ 2πα′ϕ (2.75)

After plugging these into the effective action (2.71) and expanding to quadratic order in fluc-
tuations we can derive the equations of motion forϕ andχ. As an example we consider scalar
fluctuations using an Ansatz

ϕ = φ(̺)ei~k·~xYl(S
3) , (2.76)

whereYl(S
3) are the scalar spherical harmonics on theS3, φ solves the radial part of the equa-

tion and the exponential represents propagating waves withreal momentum~k. We additionally
have to assume that the mass-shell condition

M2 = −~k2 (2.77)

is valid. Solving the radial part of the equation we get the hypergeometric functionφ ∝
F (−α, −α + l + 1; (l + 2); −̺2

L2 ) and the parameter

α = −
1 −

√

1 − ~k2R4/L2

2
(2.78)
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summarizes a factor appearing in the equation of motion. In general this hypergeometric
function may diverge if we take̺→ ∞. But since this is not compatible with our linearization
of the equation of motion in small fluctuations, we further demand normalizability of the
solution. This restricts the sum of parameters appearing inthe hypergeometric function to
take the integer values

n = α− l − 1 , n = 0, 1, 2, . . . . (2.79)

With this quantization condition we determine the scalar meson mass spectrum to be

Ms =
2L

R2

√

(n + l + 1)(n+ l + 2) , (2.80)

wheren is the radial excitation number found for the hypergeometric function. Similarly we
can determine pseudoscalar masses

Mps =
2L

R2

√

(n+ l + 1)(n+ l + 2) . (2.81)

For vector meson masses we need to consider fluctuations of the gauge fieldA appearing in
the field strengthF in equation (2.71). The formula for vector mesons (corresponding to e.g.
the̺-meson of QCD) is

Mv =
2L

R2

√

(n+ l + 1)(n+ l + 2) . (2.82)

Note that the scalar, pseudoscalar and vector mesons computed within this framework show
identical mass spectra. Further fluctuations corresponding to other mesonic excitations can be
found in [38, 69].

2.4 AdS/CFT at finite temperature

This present work aims at a qualitative understanding of thefinite temperature effects inside
a plasma governed by QCD at strong coupling. Our focus will mainly be on the fundamental
matter, the quarks and their bound states, the mesons. In this section we describe how to
construct a gravity dual to a finite temperature gauge theorywith flavor degrees of freedom,
i.e. fundamental matter.

A thermodynamics reminder Within this paragraph we remind ourselves of some ba-
sic concepts of thermodynamics which will be important for our desired study of a thermal
quantum field theory at strong coupling.

The first thing to note is that quantum field theory in its application to collider physics is
a theory at zero temperature. However, in order to study heavy-ion collision experiments,
neutron stars and cosmological setups in which there are high enough particle number and
energy densities in order to justify the thermodynamic limit, thermal quantum field theories
have been developed in great detail [85, as an example]. There are two formalisms which can
be used to introduce a notion of temperature into quantum field theory. The simpler method
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is theimaginary-time formalismwhich basically Euclideanizes the time-coordinatet by Wick
rotatationt → −iτEuclid and afterwards compactifies it on a circle with periodβ = 1/T such
thatτ + β ∼ τ . Any correlation function defined on this periodic Euclidean space-time can
be Fourier-transformed to the four momentum coordinates~k. Because of the periodicity and
limited range in the time-coordinate0 ≤ τ ≤ β the Fourier frequencyk0 is discretek0 =
2πTn, n = 0, 1, . . . . These are the real-valuedMatsubara frequencies. The disadvantage
here is that we basically trade the time coordinate for temperature and therefore loose any
notion of temporal evolution of our system. Therefore we canonly describe equilibrium states
with this formalism. In order to incorporate time and temperature at equal footing we need
to employ the more complicatedreal-time formalism. We will come back to this issue when
discussing correlation functions in section 3.1.

If we have the notion of a temperature in our quantum field theory, we can also define a
chemical potentialµ for a conserved total chargeQ =

∫

volumeJ
0 with a charge densityJ0.

Here we assume that the chemical potentialµ is constant with respect to the four Minkowski
directions~x. The chemical potential is a measure for the energy needed toadd one unit of
chargeQ to the thermal system and it is given in terms of the grandcanonical potential in the
grandcanonical ensemble as

µ = −∂J0Ω . (2.83)

In order to prove this recall also that a system in contact only with a heat bath is described by
the canonical ensemble with the partition function

Zcanonical= e−β
R

H , (2.84)

with the Hamiltonian densityH giving the energy of the system after integrating over the
volume. If we would like to work at a finite chemical potential, in addition we need to put our
system into contact with a particle bath. Then the relevant ensemble is the grandcanonical one
with the partition function

Zgrand = e−β
R

(H−µJ0) . (2.85)

The finite charge densityJ0 is the thermodynamically conjugate variable to the chemical
potential. Introducing a finite charge density will also change the chemical potential while
changing the chemical potential will in general also changethe charge density. In the grand
canonical ensemble the grandcanonical potential is definedby

Ω = − 1

β
lnZgrand =

∫

(H− µJ0) , (2.86)

which immediately confirms the chemical potential formula (2.83).
Now a chemical potential in a thermal QFT is given by the time component of a gauge

field A0. This may be seen heuristically by comparing the partition function in the grand
canonical ensemble (including the charge densityJ0) on one hand

Z = e−β
R

(H−µJ0) (2.87)

with the partition function at zero charge density but for a gauge theory including a gauge
fieldAµ coupling to the conserved currentJµ on the other hand

Z[Aµ] = e−β
R

(H−AµJµ) . (2.88)
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Choosing only the time component of the gauge fieldAµ non-zero and having called the
thermodynamical charge density suggestivelyJ0, we can now identify

A0 = µ . (2.89)

Thus we have seen that introducing a finite gauge field time component in a thermal QFT is
equivalent to (and therefore may be interpreted as) the introduction of a finite chemical poten-
tial µ for the charge densityJ0. A more formal treatment of this may be found in section 3.2.2.

Introducing temperature In order to study thermal gauge theories through AdS/CFT we
need a notion of temperature on the gravity side. This means that we need to modify the
background and in particular the background metric in orderto incorporate temperature in
the dual gauge theory. The idea of using a metric describing the geometry of a black hole
comes about quite naturally since black holes are holographic thermal objects themselves
whosed-dimensional exterior physics is completely captured by their (d − 1)-dimensional
horizon surface. This phenomenon is studied in the field calledblack hole thermodynamics.
The Bekenstein-Hawking formula relates the area of the black hole horizon to the entropy of
the complete black hole (bulk) which has a distinct Hawking temperature depending on its
mass.

It was first proposed in [84] that black hole backgrounds or black branes as described in
section 2.1.2 are holographically dual to a gauge theory at finite temperature. The metric for a
stack of black D3-branes can be conveniently written in the form

ds2 =
1

2

( ̺

L

)2
(

−f
2

f̃
dt2 + f̃d~x2

)

+

(
L

̺

)2
(
d̺2 + ̺2dΩ5

2
)
, (2.90)

with

f(̺) = 1 − r4
0

̺4
, f̃(̺) = 1 +

r4
0

̺4
. (2.91)

We obtain this form of the metric from (2.18) by the transformation ̺2 = r2 +
√
r4 − r04

wherer0 is the location of the horizon. The Hawking temperatureTH of the black hole hori-
zon is equivalent to the temperatureT in the thermal gauge theory on the other side of the
correspondence. In order to relate the temperatureT to the factors appearing in metric com-
ponents, we make the metric Euclidean by Wick rotation. Demanding regularity at the horizon
renders the Euclidean time coordinate to be periodic with period β = 1/T = r0/(πL

2). Note,
that this background is confining [84] and preserves all the supersymmetry, i.e. the dual field
theory isN = 4 SYM at finite temperature. Further there exist crucial differences between
the Euclideanized background and its Minkowski version. Wewill discuss this issue in sec-
tion 3.1.1.

Quarks & chemical potential In order to include fundamental matter in this finite tem-
perature setup we introduce D7-probe branes as described insection 2.3. At vanishing baryon
density it was observed in [37] that these thermal D7-embeddings are special because in the
gauge theory a phase transition appears which is dual to a geometric transition on the gravity
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Figure 2.3: Increasing the temperature from the left to the right picture we see that the black
hole becomes larger. The embedded brane is pulled towards the horizon stronger
and stronger until the probe brane just touches the black hole horizon (middle
picture). Increasing the temperature further the brane is pulled through the horizon.
This picture is taken from [56].

side (see figure 2.3). The setup is governed by a parameterm ∝ Mq/T which is propor-
tional to the quotient of quark massMq and temperatureT . At large values ofm we have
Minkowski embeddingswhich end outside the horizon. We write down the black hole metric
in the coordinates introduced in (2.72)

ds2 =

(

w̃2 +
wH

4

w̃2

)

dx2 +
(w̃4 − wH

4)2

w̃2(w̃4 − wH
4)

dt2 +
1 + (∂̺w6)

2

w̃2
d̺2 +

̺2

w̃2
dΩ3

2 , (2.92)

where we definẽw2 = ̺2 + w6(̺)
2 andwH is the location of the horizon. In theAdS5 × S5-

background the D7-brane fills the AdS wrapping anS3 inside theS5. Looking at theS3-part of
the metric (2.92), forρ = 0, , w6 > wH we find that theS3 shrinks to zero size before reaching
the horizon. These Minkowski embeddings resemble those present at vanishing temperature
at large values ofm.

Decreasing the parameterm we reach a critical value below which the D7-brane always
reaches to the horizon. The geometrical difference is that for theseblack hole embeddingsnow
theS1 in time direction collapses as can be seen from the time component of the metric (2.92).

This means that the D3/D7-system in presence of a black hole undergoes a geometrical
transition. That transition is dual to a first order phase transition in the thermal field theory
dual. The physics of this transition is discussed in greaterdetail in section 4.3.

However, the central achievement of this present work is to introduce a finite baryon and
isospin density in the setup we have just described. We will see that this changes the em-
beddings and also the phase structure of the theory. We will further observe that the phase
transition is softened. This statement will be explained inthe discussion of this system’s
hydrodynamics in chapter 6. We discover a further transition at equal baryon and isospin
densities discussed in the thermodynamics section 4.4.

Brane thermodynamics and holographic renormalization At finite temperature an ex-
tension of the standard AdS/CFT claim is the conjecture thatthe thermodynamics of the ther-
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mal field theory is described by the gravity theory. In particular, on the thermal field theory
side one has to Euclideanize by a Wick rotationx0 → iτE in order to identify the Euclidean
path integral with a thermal partition function. On the gravity dual side one equivalently has to
Euclideanize the AdS-black hole background (3.12). The Euclidean black hole is interpreted
as a saddle-point of the Euclidean path integral such that the classical supergravity action is
conjectured to give the leading contribution to the free energy

SE = βF . (2.93)

Note the typographical difference between the actionS and the entropyS. Recall thatF =
− lnZ. In what follows we will find these thermodynamic definitionsof entropyS, internal
energyE and the speed of soundvs useful

S = −∂F
∂T

, E = F + TS , vs
2 =

∂P

∂E
=
∂P

∂T

(
∂E

∂T

)−1

=
S
cv
. (2.94)

For a stack ofNc black D3-branes such as those described by (2.15) the free energy turns out
to be

F =
−π2

8
Nc

2T 4 . (2.95)

From this the energy and entropy are easily computed and the speed of sound is given by

vs
2 =

1

3
. (2.96)

In order to obtain these finite results we had toholographically renormalizethe gravity ac-
tion by adding boundary terms. Let us review the process ofholographic renormalizationin
order to apply it to our setups later on. In general the Euclideanized AdS-bulk actionSbulk

E Dp

contains ultra-violet (UV) divergences. The first step is toidentify the divergent terms by
introducing a UV-cutoffrmax. Integrating the bulk Dp-action over the(p − 5)-remaining di-
rections and evaluating the result at the cutoffr = rmax we obtain the boundary actionSbdy

E Dp.
This action contains the UV-divergent terms and in order to renormalize the bulk action we
simply subtract this boundary action

Srenormalized
E Dp = lim

rmax→rbdy

(

Sbulk
E Dp − Sbdy

E Dp

)

. (2.97)

This Euclideanized and renormalized bulk action is the one we will derive all thermodynamic
quantities from. We stop at this point since we will not show the explicit applications of
this method in this thesis. The interested reader is referred to the review on holographic
renormalization [86].

2.5 More Phenomenology from AdS/CFT

In this section we give a sketchy overview of the phenomenologically relevant outcomes of
AdS/CFT-applications. Only the paragraph discussing the Sakai-Sugimoto model is a bit more
detailed because that model is in many respects a valuable, partly complementary competitor
to the D3/D7-setup which we study in this thesis. We also briefly discuss both the model
building aspect and the fundamental value of AdS/CFT.
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Low viscosity bound The phenomenologically most striking prediction of AdS/CFT is that
the viscosityη to entropy densitys ratio is incredibly small

η

s
=

1

4π
. (2.98)

This bound is satisfied to leading order in1/Nc in all theories with gravity duals computed up
to now 6. It was observed at the RHIC heavy-ion collider that the quark gluon plasma sup-
posedly formed in this experiment has an extremely low viscosity (well below any viscosity
measured before) numerically comparable with the AdS/CFT value. Most of the models used
to analyze the RHIC data are consistent with ratios in a rangeof η/s ≈ 4/3

4π
. . . 2

4π
[89, 90, e.g.].

This discovery was even celebrated as an experimental possibility of testing the AdS/CFT cor-
respondence. One has to be careful though since no QCD-dual gravity theory has been dis-
covered yet and thus one has to rely on theuniversalityof the observables to be measured. In
the context of these viscosity investigations many different backgrounds have been employed
in order to find out what makes this bound so universal. All investigated gauge theories with
gravity duals show this universal behavior no matter if one breaks conformal symmetry, su-
persymmetry or if one introduces flavor or a finite chemical potential. It is still under lively
investigation which principle is the origin of the viscosity universality.

In a series of papers [26, 28, 29, 31, 32, 34, 35, 9] an identification of hydrodynamic modes
with gravity objects was achieved leading to a detailed gravity description of the hydrody-
namics in a strongly coupled fluid. Recently this framework has been extended to second
order hydrodynamics [91, 92, 93, 94]. Here also a correctionof the widely usedMueller-
Israel-Stewart theoryis proposed based on gravity consistency arguments. It is well known
that hydrodynamics violates causality. Mueller-Israel-Stewart theory is a relativistic gener-
alization of second order hydrodynamics which the authors of [91, 92, 93, 94] claim to be
incomplete.

D3/D7-setup A particularly promising setup is the D3/D7-brane configuration described
in 2.3. Its gauge dual contains massive quarks and a chemicalpotential can be consistently
introduced. Further it exhibits confinement and thus a first order phase transition of the fun-
damental matter in the spectrum. We will study this particular system in most of this thesis.

The calculation of meson spectra [38] in this system was one of the first phenomenological
applications of AdS/CFT. Also ratios of B-meson masses wererecently given [95].

A topic under ongoing investigation is that of heavy-light mesons [95, 96, 97] modeled by
strings spanning from one D7-brane to another after having separated the D7-branes from each
other.

Recently the hadron multiplicities after hadronization ofthe final state in a particle-antiparticle
annihilation [98] have been modelled to surprising accuracy (see also [99]).

Interesting effects such as mass shift analogous to the Stark effect and chiral symmetry
breaking are also observed in gauge/gravity duals with flavor for which pure-gauge Kalb-

6 Note, that a recent investigation [87] had claimed that higher derivative corrections violate the viscosity bound
for a certain family of models. But the same authors also found these very theories to be inconsistent violating
microcausality [88] supporting again the idea of the universality of this bound.
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Ramond B fields are turned on in the background, into which a D7brane probe is embed-
ded [55, 100, 101].

QCD duals Although some aspects of the D3/D7-brane configuration mirror QCD quite
well one main point of criticism is that the dual gauge theoryhas too much symmetry. Re-
member that on the gauge theory side we haveN = 2 supersymmetric Yang-Mills theory
coupled toN = 4 SYM and the conformal symmetry is broken if the quarks becomemassive
by seperating the D3 from the D7-branes. Also a finite temperature, i.e. a black hole back-
ground metric breaks conformal symmetry. In a different background, the Constable-Myers
background all of the supersymmetry is broken and the theoryturns out to be confining [83].
Also chiral symmetry can be broken separately by choosing the background given in [37].
Nevertheless, all these approaches only manage to break part of the symmetry. An explicit
QCD-dual has not been found, yet.

A special QCD dual: Sakai-Sugimoto model The Sakai-Sugimoto modelis an alter-
native D4/D8 anti-D8 brane system withNc D4-branes andNf pairs of D8/anti-D8-branes.
Here the D4-branes generate the geometry very much like the D3 branes do in D3/D7 setups
and the D8 and anti-D8 branes are the flavor branes corresponding to the D7. Since this model
is the second most studied model (after the D3/D7-setup) introducing fundamental matter, we
discuss also a few technical points here. This setup features no quark masses but two distinct
phase transitions corresponding to thechiral symmetry breaking and deconfinement transi-
tion, respectively. Supersymmetry is explicitly broken. In contrast to the D3-setup, there is
one extra-dimensionx4 in the worldvolume of the gauge theory. In order to come down to
four space-time dimensions this extra coordinate needs to be compactified. There is also a
geometrical argument for this coordinate to be periodic: together with the ”radial” coordinate
u it forms a cigar-shaped submanifold, which has a tip atu = uT . To avoid a singularity at this
tip, x4 needs to be periodic with period2πR. The metric of the background at low temperature
is

ds2 = (
u

RD4

)3/2(dt2 + δijdx
idxj + f(u)dx2

4) + (
RD4

u
)3/2(

du2

f(u)
+ u2dΩ2

4) (2.99)

Thex4-circle shrinks to zero atu = uΛ and theD8 and their antibranes have nowhere to end
thus staying connected. So the chiralU(Nf )L × U(Nf )R is broken to a diagonalU(Nf )V in
the low temperature phase.

At finite temperature there always exist two solutions of which one is preferred at low
temperature and the other at high temperature. Connected tothis an asymptotic symmetry
among the two circles (time-direction andx4) exists. In the high temperature phaset andx4

interchange roles (thef(u) in the metric is shifted from one to the other), so that thex4-circle
now does not shrink to zero, but thet-circle does. Chiral symmetry is restored as the flavor
branes may be parallel now.

The biggest advantage of this model over the D3/D7-setup is that chiral symmetry breaking
can be achieved quite naturally. On the contrary, the quark masses are not incorporated from
the start but also arise dynamically. Mesons have also been studied in the Sakai-Sugimoto
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model. For example quark bound states which play the role of QCD pions arise as Goldstone
bosons from the spontaneous symmetry breaking generated upon introducing the probe branes
giving fundamental degrees of freedom. Recent developments of mesons at finite temperature
may be found in [102]. One recent approach generating quark masses dynamically can be
found in [103].

Fundamentalism & phenomenology Let us briefly discuss the phenomenological versus
fundamental value of AdS/CFT. Although still only a conjecture AdS/CFT has failed no com-
parative test so far and it succeeds in describing strong coupling phenomena. The perturbative
or geometric understanding on the gravity side can be translated to an understanding of the
strongly coupled gauge theory on the other side of the correspondence. In this way AdS/CFT
makes it possible to get a qualitative understanding of strong coupling phenomena. At the
present level where we do not have an explicit QCD-gravity dual the qualitative understand-
ing AdS/CFT supplies us with should be seen as being complementary to for example lattice
data providing exact QCD data but also hiding the inner workings of the strongly coupled
theory. In some cases such as for the viscosity bound the quantities involved may even be
protected by universality and thus solely depend on the factthat the gauge theory is strongly
coupled. If this is the case then AdS/CFT results may even continue to be valid for QCD or
the real world. All these results justify the duality at least as a valid phenomenological tool.

Turning around the argument, the phenomenological successof AdS/CFT may be seen as
a hint that the gauge gravity correspondence and the principles from which it was derived
come indeed close to the principles governing nature. Studying explicit instances of the cor-
respondence, for example studying correlators in the D3/D7-setup, could also provide us with
a detailed understanding of how the duality works in generaland it might even suggest a way
to prove AdS/CFT.

2.6 Summary

In this technical introduction chapter we have developed the concepts of the AdS/CFT cor-
respondence and we investigated how these ideas emerged from the careful study in rather
formal areas of string theory (see 2.1). We have shown how modifications of the original cor-
respondence give rise to temperature and fundamental matter in the gauge theory. Temperature
in the gauge theory is generated by a black hole background such as (2.90) on the gravity side.
Fundamental matter alias quarks is introduced by embeddinga stack ofNf probe D7-branes
into the ten-dimensional setup in addition to theN D3 branes, which determine the gravity ge-
ometry (as explained in 2.3). Finally, we discussed the phenomenological picture which can be
drawn by putting the results in different gravity duals together and extrapolating from it what
the phenomenology of a QCD-dual at strong coupling might look like. We are now ready to
develop the methods which we will apply to investigate the promising D3/D7-configuration.
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Holographic methods at finite

temperature

The goal of this work is to develop a qualitative descriptionof thermal QCD-plasma at strong
coupling as it is claimed to be seen at the RHIC heavy ion collider. In order to compute
observables and study qualitative features of this class ofsystems we utilize the AdS/CFT
duality in order to overcome the difficulty that the system isgoverned by QCD at strong cou-
pling. In this present chapter we develop the methods which are needed to derive correlation
functions (section 3.1) in the strongly coupled field theoryby computations on the weakly
coupled gravity side. Furthermore we review how to obtain non-equilibrium observables such
as diffusion coefficients and shear viscosity by the formulation of a gravity dual to relativis-
tic hydrodynamics (section 3.2). Finally in section 3.3 we elucidate the connection between
quasinormal modes known from general relativity in presence of a black hole on the gravity
side and distinct hydrodynamic modes. Note that as stated inthe previous chapter no gravity
dual for QCD has been found, yet. Thus we will apply our holographic methods to quantum
field theories which are similar to QCD in the properties of interest.

3.1 Holographic correlation functions

Since we are interested in the spectral functionsR and in particular in the resonances appear-
ing therein which correspond to mesons due to AdS/CFT (as will be argued in section 5),
our motivation to compute retarded correlatorsGR is sourced by the formulaR = −2 ImGR.
Correlation functions in AdS/CFT have been under intensiveexamination during the past ten
years. They are useful quantities to compare the conjectured gauge/gravity results to results di-
rectly obtained in the quantum field theory as outlined in section 2.2.3 (paragraph ’Evidence’).
Moreover retarded two point correlators in Minkowski spaceare needed to compute non-

45
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equilibrium observables such as transport coefficients (shear viscosity, diffusion coefficient,
heat conductivity,. . . ). We briefly distinguish Euclidean formulation from the Minkowski for-
mulation of correlation functions in AdS/CFT in section 3.1.1. Afterwards we develop analyt-
ical (3.1.2) and numerical (3.1.3) recipes by which correlation functions may be obtained.

3.1.1 Correlation functions in AdS/CFT

In the beginning of AdS/CFT the correspondence for correlation functions was formulated
in Euclidean space-time for simplicity. The idea was to obtain Euclidean correlators from a
conjectured generating functional identity

〈

e
R

∂M
φbdyÔ

〉

= e−Sclassical[φ] , (3.1)

and to analytically continue them afterwards. In this section we review this Euclidean pro-
cedure and the subtleties which make it fail in general if naively extended to the gravity dual
of finite temperature field theories on Minkowski space-time. Finally we justify the correct
prescription to get thermal Minkowski space correlators from a conjectured AdS/CFT identity
similar to (3.1).

The left hand side of (3.1) is the Euclidean space-time generating functional for corre-
lators of operatorŝO in the boundary field theory. In order to Euclideanize the originally
Minkowskian space-time we had to perform a Wick rotationt → τE = it. On the right hand
side we find the action for the classical solution to the equation of motion for the bulk fieldφ
in the bulk metric obeying a boundary condition of the formlim

r→rbdy
φ = φbdy. Either side

may be functionally derived with respect to the boundary field φbdy in order to get Euclidean
correlators of the dual operatorO, such that for the two-point function we have

〈O(x)O(y)〉 =
δ2e−Sclassical[φ]

δφbdy(x)φbdy(y)
. (3.2)

Note that this implies that on the right hand side we know the explicit form of the fieldφ in
terms of its boundary valueφbdy, i.e. we need to solve the equations of motion for the fieldφ
first. The use of the identity (3.1) has proven very useful andwas confirmed by the results for
correlators at zero temperature and for extremal metrics onthe gravity side, respectively.

At finite temperature however this prescription fails. It should be clear that the Euclideaniza-
tion is only a tool for simplification and in principle the correlators should be obtainable
from the full Minkowskian description in AdS/CFT. In practice it will be necessary to derive
Minkowski correlators directly since in order to get them from their Euclidean versions, one
would need to know all theMatsubara frequenciesωn. Matsubara frequencies are the discrete
values which arise in finite temperature field theory from thecompactificationτE ∼ τE +T−1

of the Euclidean time coordinateτE on a circle with the periodT being identified as the tem-
perature in the field theory. Only at these particular frequencies the Euclidean correlators are
defined. The compactification of the Euclidean time appearing in the black hole background
on the gravity side is dual to theimaginary time formalismin the dual thermal field theory. In
many applications for correlation functions such as the derivation of hydrodynamic transport
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coefficients an approximation of some sort is needed during the calculation. For example in
hydrodynamics the frequencies have to be small such that we can not work with all Matsubara
frequencies as would be required to analytically continue Euclidean correlators to Minkowski
correlators. Due to this fact we need the full Minkowski prescription.

As shown in [27] also a naive formulation of (3.1) in Minkowski space-time given by
〈

ei
R

∂M
φbdyÔ

〉

= eiSclassical[φ] , (3.3)

fails since it produces only real valued correlators. In thesame work the authors propose a
working recipe to obtain two-point Minkowski correlators.This is the recipe which we will
make heavy use of and we explain it in the next section 3.1.2. Finally [30] developed a general
prescription involving an analog of (3.1) which can be used to obtainn-point correlators and
which we briefly review here in order to clarify the limits of the two-point correlator recipe
we will use here.

Schwinger-Keldysh formalism for thermal QFT In general the authors of [30] de-
veloped a detailed gravity dual to the real-time formalism of thermal quantum field theory.
For a detailed review of the real-time or Schwinger-Keldyshformalism the reader is referred
to [85, 30] but let us work out the rough ideas here in order to understand the equivalent
features on the gravity side. In this formalism the operators (or fields)O live on the time
contourC shown in figure 3.1.
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tf
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1

2
tf − iσ

ti−iβ

Figure 3.1: The Schwinger-Keldysh contour is a time contourC where points A and B are
identified (this figure is a slightly modified version of that shown in [30]).

The starting pointA and the endB are identified with the conditionO|A = −O|B for
fermionicO andO|A = O|B for bosonicO. Now one introduces sourcesφ1,2 for the oper-
atorO1,2 on the upper (1), respectively lower (2) part of the contour along the original real
Minkowski time direction. Defining an appropriate generating functionalZ one can then de-
fine the matrix valued Schwinger-Keldysh propagator which correlates operators on the upper
and lower parts of the time contour in figure 3.1

iGab(x− y) =
1

i2
δ2 lnZ[φ1, φ2]

δφa(x) δφb(y)
= i

(
G11 −G12

−G21 G22

)

. (3.4)

Transforming to momentum space byG(k) =
∫

dx e−ik·xG(x) we can write down the rela-
tions between the components of the Schwinger-Keldysh propagator and the ordinary retarded
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two-point functionGR

G11(k) = ReGR(k) + i coth
ω

2T
ImGR(k) , ω ≡ k0 ,

G12(k) =
2ie−(β−σ)ω

eβω − 1
ImGR(k) ,

G21(k) =
2ie−σω

1 − e−βω
ImGR(k) ,

G22(k) = −ReGR(k) + i coth
ω

2T
ImGR(k) . (3.5)

For the choice of the arbitrary length parameterσ = β/2 we see that the Schwinger-Keldysh
correlator is symmetricG12 = G21.

Holographic Schwinger-Keldysh formulation Let us now turn to the gravity dual de-
scription of the Schwinger-Keldysh formalism reviewed in the previous paragraph. For the
asymptotically AdS spaces containing a black hole which we consider here, there exists an
analog ofKruskal coordinates. Kruskal coordinates in general relativity cover the entire space-
time manifold of the maximally extended Schwarzschild solution and they are well-behaved
everywhere outside the physical singularity, i.e. they show no coordinate singularities as other
coordinates do, e.g. at the horizon. The identity (3.1) suggests, that one has to know the
explicit form of the classical action including the solution of the equation of motion for the
field φ in terms of boundary values for the field in order to take derivatives of the expression
on the left hand side as shown in (3.2) and get an explicit expression for the correlation func-
tion. Now the main idea is to use this standard AdS/CFT prescription to get the correlation
functions but to carefully impose boundary conditions on the gravity fields in the analog of
the Kruskal time coordinate and not in the ordinary Minkowski time. These boundary con-
ditions on the gravity fields will be subject of a detailed discussion on the level of two point
correlators in the next section 3.1.2. Let us note here only that these boundary conditions
are the point where the naive Minkowski formulation of the AdS/CFT correlator prescription
fails. The reason for this is the fact that in ordinary coordinates the boundary conditions in
Euclidean space-time are completely fixed by the requirement of regularity but this is not the
case in the Minkowski version. For example a scalar gravity field has to fulfill a second order
equation of motion and therefore one needs to fix two boundaryconditions. One of these is
fixed by the boundary dataφ|bdy = φbdy. The other condition is imposed at the horizon where
the scalar locally behaves like(1 − u)β with the radial AdS-coordinateu ∈ [0, 1] which is
defined in the context of the black hole metric

ds2 =
(πTR)2

u
[−f(u)dt2 + dx2] +

R2

4u2f(u)
du2 +R2dΩ5

2 . (3.6)

Here the horizon is located atu = 1, spatial infinity atu = 0 and the functionf is defined
by f(u) = 1 − u2. This metric is obtained from the standard AdS black hole metric with
radial coordinater by the transformationu = (r0/r)

2. The temperatureT = r0/(πR
2)

is a function of the AdS-radiusR and the black hole horizonr0. In Euclidean space-time
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we haveβ = ±ω/(4πT ) and only one of the two signs produces a regular solution. In
Minkowski signature this is completely different since there we computeβ = ±iω/(4πT ) and
both signs can produce regular solutions, thus leaving an ambiguity which needs to be fixed by
another requirement. Now the main achievement in [30] was tosingle out such a requirement

U=0

V=0

R

P

L

F

Figure 3.2: The Penrose diagram for AdS containing a black hole as shown in [30].

which is in general applicable to anyn-point correlator. This requirement involves applying
boundary conditions at the boundaries of different quadrants of the Penrose diagram shown in
figure 3.2 and forming a superposition of those. The diagram shows the causal structure of our
asymptotically AdS space (which contains a black hole) in Kruskal coordinates. In our earlier
attempt to fix boundary conditions we only considered the R-quadrant and its boundaries. The
prescription of [30] takes into account that the full space-time contains four quadrants.

Nevertheless, in what follows it will be sufficient to use a simplified boundary condition,
theincoming wave boundary conditionwhich allows us to restrict ourselves to the R-quadrant,
to use the original Minkowski coordinates and it finally enables us to calculate two-point
functions as discussed in the following section 3.1.2. It isargued in [30] that the general but
also more complicated prescription involving Kruskal coordinates in the case of two-point
correlators reduces to the (simple) prescription that we are about to use.

3.1.2 Analytical methods: correlators and dispersion relations

In order to obtain correlation functions for an operatorO in AdS/CFT one usually has to solve
a second order differential equation (as we have already mentioned in the previous section),
the equation of motion for the particular fieldφ which is dual to the operatorO. Often that
equation of motion can only be solved numerically.1 Thus it is remarkable that in [28, 29]

1 Especially if we consider massive quarks, which implies that we embed aD7-brane. The embedding functions
can in general only be obtained numerically. In this case already the metric componentsgµν appearing in the
equation of motion for our fieldφ are only given numerically since they contain the embeddingfunctions.



50 Chapter 3. Holographic methods at finite temperature

a method has been developed to find the correlators analytically for a field theory at finite
temperature and without quarks. The main idea of this approach is to use the ratio of four-
momentum and temperature~k/(2πT ) := (w, 0, 0, q) 2 as an expansion parameter. Then the
fields are expanded in a perturbation series in orders ofw andq2 and exact solutions to the
equations of motion can be obtained up to the desired order inw andq2. This kind of expan-
sion is known from statistical mechanics and goes by the nameof hydrodynamic expansion.
Note that we only consider the diffusive modes with this choice. In order to find for example
the sound modes and their damping we would have to consider anexpansion inw, qn [104].
From the solutions expanded inw andq2 we will obtain the correlators of the operatorO. The
poles of these correlators can be read off directly from the analytical expressions giving the
dispersion relationsw(q). Note, that we work in the geometry described in [28] where the
fluctuations are chosen along thex3-direction such that~x = (x0 = t, 0, 0, x3 = z). Further-
more we choose the gauge in whichA4 ≡ 0 and we assume that the remaining space-time
directions have already been compactified such that we have to consider a five-dimensional
theory only.

The correlator recipe Let us review the three-step recipe to obtain two-point correlation
functions motivated and developed in [27]. We calculate theretarded two-point correlatorGR

of the operatorO in Minkowski space. The operatorO is dual to a field which we denote byφ,
whereφ can be a scalarΦ, vectorAµ or tensor fieldTµν merely changing the index structure.
Step number one is to find the part of the action which is quadratic in the fieldφ dual toO

S(2) =

∫

dud4xB(u)(∂uφ)2 + . . . , (3.7)

where the factorB depends onu and the momenta only, collecting metric components and all
other factors in front of the derivatives(∂uφ)2. Now the second step is to solve the equation
of motion for the fieldφ. We rewrite the space-time equation of motion in Fourier space such
that all derivatives except∂uφ =: φ′ can be expressed in terms of four-momenta~k

0 = φ′′ + a(~k, u)φ′ + b(~k, u)φ . (3.8)

This second order differential equation in special cases can be solved analytically in the hydro-
dynamic limit of smallw, q2 ≪ 1. 3 The general solution can be split into the field’s boundary
valueφbdy(~k) and the bulk functionF(u,~k)

φ(u,~k) = φbdy(~k)F(u,~k) . (3.9)

To clearly illustrate this step, we will consider details ofthis general procedure in the specific
example below. In step three we finally assemble the solutionF(u,~k) obtained in step two and
the coefficientB(u) from step one to obtain the retarded correlator in Fourier space

GR(~k) = −2B(u)F(u,−~k)∂uF(u,~k)
∣
∣
u→0

. (3.10)

2This choice for the four-momentum is adapted to the symmetries of the problem we will consider in this
section.

3If the coefficientsa, b are sufficiently complicated (they might be given only numerically) we have to reside
to numerical methods, two of which are explained in [34, 33] and [59] reviewed in section 3.1.3 of this work.
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An example To illustrate the three steps in more detail we consider the example ofN = 4
supersymmetric Yang-Mills theory with anR-charge currentJµ dual to the vector fieldAµ in
five-dimensional supergravity. The part of the action quadratic in the gauge fieldA is given by

S(2) = − N2

16π2

∫

dud4x
√

−g(u)FµνF
µν . (3.11)

In order to place our field theory at finite temperature, we will work in the dual AdS black
hole background

ds2 =
(πTR)2

u
[−f(u)dt2 + dx2] +

R2

4u2f(u)
du2 +R2dΩ5

2 , (3.12)

with the radial AdS-coordinateu ∈ [0, 1], the horizon atu = 1, spatial infinity atu = 0 and
the functionf(u) = 1 − u2. This metric is obtained from the standard AdS black hole metric
with radial coordinater by the transformationu = (r0/r)

2. The temperatureT = r0/(πR
2)

is a function of the AdS-radiusR and the black hole horizonr0.
Applying step one of our recipe to the quadratic super-Maxwell action (3.11), we find the

coefficient

B(u) = − N2

16π2

√

−g(u)guugνν′

, (3.13)

(hiding the index structure on the left hand side).

Hydrodynamic expansion and equation of motion Now in step two of the recipe we
take a closer look on the method for solving the equation of motion for our fieldAµ. Us-
ing (3.11) in the Euler-Lagrange equation, we get the equation of motion

0 = ∂ν [
√

−g(u)gµ̺gνσ(∂̺Aσ − ∂σA̺)] . (3.14)

We make use of the Fourier transformation

Ai(u, ~x) =

∫
d4k

(2π)4
e−iωt+ik·xAi(u,~k) . (3.15)

Rewritten in Fourier space we may split the equation of motion (3.14) into five separate equa-
tions labeled by the free indexµ = 0, 1, 2, 3, 4

A′′
t −

1

uf
(q2At + wqAz) = 0 , (3.16)

A′′
x,y +

f ′

f
A′

x,y +
1

uf
(
w2

f
− q2)At = 0 , (3.17)

A′′
z +

f ′

f
A′

z +
1

uf 2
(w2Az + wqAt) = 0 , (3.18)

wA′
t + qfA′

z = 0 . (3.19)
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Note thatAt andAz need to satisfy the coupled set of three equations (3.16), (3.18) and (3.19)
while the transversalAx,y decouple and merely have to satisfy the stand-alone equation (3.17)
separately. However, we can decouple the system forAt, Az rewriting (3.16) as

Az =
uf

wq
A′′

t −
q

w
At , (3.20)

and use it to substituteAz in (3.19) yielding a single second order equation forA′
t

A′′′
t +

(uf)′

uf
A′′

t +
w2 − q2f

uf 2
A′

t = 0 . (3.21)

Note that the appearance of the third derivativeA′′′
t is a generic feature of this particular ex-

ample and has nothing to do with the general method. Since this equation does not depend
on any of the other field components we will solve it separately and impose conditions for the
other components afterwards. Note that (3.21) has singularcoefficients at the horizonu = 1
(and at the boundary as well). We have to invoke theindicial procedurein order to split the
singular behavior(1 − u)β from the regular partF (u) of the solution

A′
t = (1 − u)βF (u) . (3.22)

The indicial exponentβ characterizing the singular behavior is determined by setting A′
t →

(1− u)β, expanding the singular coefficients of (3.21) around the horizonu = 1 keeping only
the leading order term and evaluating (3.21) with these restrictions. The result is a quadratic
equation forβ giving

β = ±iw
2
. (3.23)

By the variable change to a radialξ = − ln(1 − u) with 0 < ξ < ∞ we see that the positive
sign inβ describes an outgoing wave at the horizonA′

t(ξ) ∝ e−iwξ/2 while the negative sign
gives an incoming waveA′

t(ξ) ∝ eiwξ/2. We select the latter solution to be the physical one
since no radiation should come out of the black hole. This is often referred to as theincoming
wave boundary condition.

Now we are ready to write down the hydrodynamic expansion in momentum-temperature
ratiosw, q2 ≪ 1 for the regular partF (u) of the solution

F (u) = F0 + wF1 + q2G1 (3.24)

+w2F2 + q4G2 + wq2H1 + . . . . (3.25)

We will refer to the first line (3.24) as theleading order or first order hydrodynamics terms,
while we coin the second line (3.25)second order hydrodynamics terms. Substituting the
leading order hydrodynamic expansion (3.24) into the equation of motion (3.21) withA′

t =
(u−1)−iw/2F (u) and comparing coefficients in the ordersO(1), O(w) andO(q2) yields three
equations for the three hydrodynamic functionsF0, F1, G1

F ′′
0 +

(uf)′

uf
F ′

0 = 0 , (3.26)

F ′′
1 +

(uf)′

uf
F ′

1 +
i

2
[

1

(u− 1)2
− (uf)′

uf(u− 1)
]F0 = 0 , (3.27)

G′′
1 +

(uf)′

uf
G′

1 −
1

uf
F0 = 0 . (3.28)
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Note that we can compute higher order corrections in this hydrodynamic perturbation ap-
proach by inclusion of higher order terms, e.g. the second order terms (3.25). We would
have to compare coefficients up to the desired order of accuracy and would end up with e.g.
three further equations added to (3.26), (3.27) and (3.28) for three additional hydrodynamic
functionsF2, G2, H1 in the case of second order corrections.

The solutions to (3.26), (3.27) and (3.28) can be obtained analytically if we start out noting
that we may setF0 = constant= C. Then we get4

F1 = C2 +
iC

2
ln(u− 1) − C1 ln u+

C1

2
ln{(u+ 1)(u− 1)} (3.29)

with two undetermined integration constantsC1, C2. These can be fixed by recalling that we
have already chosen the constant order inF (u) independent fromu, w, q2 to be given byC.
So we now have to impose the condition on our solution forF1 that it gives no corrections to
this constantC, meaninglim

u→1
F1 = 0. In this limit two of the terms inF1 become divergent

and the constants have to be chosen such that these cancel each other. After application of this
procedure toG1 as well, we are left with

F1 =
iC

2
ln

2u2

u+ 1
, (3.30)

G1 = C ln
1 + u

2u
. (3.31)

Now we have a first order solution for the derivativeA′
t. We can also fix the constantC in

terms of boundary valuesAbdy for the physical fields. This is important becauseC contains
thew-pole structure of the solution as we will see shortly. Firstwe recall thatlim

u→0
At = Abdy

t

and lim
u→0

Az = Abdy
z . Now substitute the solution forA′

t into equation (3.20) and take the

boundary limit of this expression. This yields

C =
q2Abdy

t + wqAbdy
z

iw − q2 + O(w2, q4,wq2)
. (3.32)

The denominator of (3.32) contains the poles of the solutionwhich are the poles of the retarded
correlator as well.

Taking our third and final recipe-step we assemble the correlator for time components of
theR-charge current

GR
tt = −2 lim

u→0
(− N2

16π2
)
√−gguu δ2

δAbdy
t δAbdy

t

(gttA′
tAt + gzzA′

zAz) , (3.33)

where the double functional derivative encodes the step of selecting the terms in the action
which are relevant (meaning quadratic in the fieldAbdy

t ) in order to be more illustrative here.

4Note, that the complex logarithmln z being a multivalued function has branch points atz = 0, ∞ and in
general a branch cut is defined to extend between these pointson the negative axis. Here we define the
complex logarithm on the first Riemann sheet, such that e.g.ln(−1) = +iπ. All the equations here should
be read with this in mind.
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We finally get

GR
tt =

N2T

16π2

q2

iω −Dq2
, (3.34)

with the constantD = 1/(2πT ) which is identified with the diffusion coefficient. This inter-
pretation is best understood by noting that the diffusion equation

∂tJ
t = D∇2J t (3.35)

can be Fourier transformed to
− iωJ t = D(iq)2J t . (3.36)

This suggests that the retarded correlator we found has the correct pole structure to be the
Greens function for a diffusion problem, in our case this is the diffusion ofR-charges.

Dispersion relations The dispersion relation for theR-charge currentJµ to first hydrody-
namic order is given by

0 = iw − q2 + O(w2, q4,wq2) . (3.37)

Computing the second order hydrodynamics corrections as described above, we obtain the
dispersion relation

0 = iw − q2 + ln 2(
w2

2
+
i

2
wq2 − q4) + O(w3, q6,w2q4) . (3.38)

Since this equation is quadratic inw one at first suspects that two solutions exist, but if we
solve (3.38) and then (recallingw, q2 ≪ 1) expand both solutions inw, we get

w = −iq2 − i ln 2q4 + O(q6) , (3.39)

wdiscard= − 2i

ln 2
+ i ln 2q4 + O(q6) . (3.40)

Only the first (3.39) of these two solutions is compatible with our initial assumption thatw ∼
q2 ≪ 1 since the second solution (3.40) has a constant leading order with an absolute value of
order one.

Dispersion relations and correlators of other operatorsO (e.g. the energy-momentum ten-
sorT µν) dual to other fieldsφ are obtained in the same way.

3.1.3 Numerical methods

It was already mentioned and should be stressed here again that the main difficulty in the
computation of the two-point function for any field theory operatorO is that of solving the
equation of motion for the dual gravity fieldφ. This is thesecond stepundertaken in the
context of the recipe from section 3.1.2. In the previous section we took the small frequency,
small momentum limit (which is called the hydrodynamic limit) in order to obtain an analytical
solution. In this present section we describe two differentnumerical methods to obtain the full
solution to the equation of motion for the gravity fieldφ without taking the hydrodynamic
limit. We consider the (dis)advantages of both methods.
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Integrating forward The kinetic term in the classical gravity action for any fieldfluctua-
tion φ has the quadratic form∂µφ∂νφ. Neglecting interaction terms (since we are only inter-
ested in the two-point functions) the Euler-Lagrange equation for any gravity field fluctuation
is thus quadratic in derivatives of the field fluctuationφ. Fourier-transforming the Minkowski-
direction derivatives into four-momentum components according to equation (3.15) and as-
suming no dependence on the three angular coordinates, onlythe radial AdS-derivatives∂uφ ≡
φ′ has the general form

0 = φ′′ + A(u)φ′ +B(u)φ , (3.41)

and the coefficientsA,B in the backgrounds we will consider only depend on the radialAdS-
coordinateu and on the Minkowski four-momentum~k. Therefore we need to solve second
order differential equations with non-constant coefficients. The coefficientsA,B can be sin-
gular at the boundaryubdy and at the horizonuH . In this case one has to perform theindicial
proceduredescribed in section 3.1.2 yielding an asymptotic form for the solution at the hori-
zon given by (3.22) as

φ = (uH − u)βF (u) .

The incoming wave boundary condition determinesβ to be negative. Now we proceed by
plugging this Ansatz into the equation of motion (3.41) yielding a ’regular’ equation of motion
for the regular factorF (u) = F (uH) + F ′(uH)(uH − u) + . . . of the solutionφ

0 = F ′′(u) + Ã(u)F ′(u) + B̃(u)F (u) . (3.42)

This has to be solved numerically with the boundary conditions

F (uH) = a0 , F ′(uH) = a1 . (3.43)

Explicit values fora0, a1 are found by plugging the asymptotic form of the regular solution
near the horizon

F (u) = a0 + a1(uH − u) + a2(uH − u)2 + . . . , (3.44)

into the equation of motion (3.42). This procedure yields anequation which we can ex-
pand arounduH and by matching coefficients of orders in(uH − u) we get recursive rela-
tions fora0, a1, . . . to any desired order inu. Since we are free to normalizeF (u), we can
choosea0 ≡ 1 and determinea1 from the recursive relations fixing our numerical boundary
conditions (3.43). We will use this method for example in chapter 5.

This method is straightforward and easy to use. We will applyit to find the correlators
giving spectral functions in chapter 5.

Matching in the bulk There are cases (such as the calculation of quasinormal modes) in
which the numerical method described in the previous paragraph fails. An alternative method
to solve the AdS-equations of motion numerically is described in [34, 33]. The basic idea is to
use two asymptotic solutions at the horizon as starting values for numerically integrating them
forward into the bulk, then doing the same with two asymptotic solutions at the AdS-boundary
and to afterwards match the two boundary solutions to the particular horizon solution which
satisfies the incoming wave boundary condition, which we already discussed in section 3.1.2.
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We can not directly determine the linear combination of integrated boundary solutions which
is compatible with the boundary conditions since the incoming wave bounary condition is
given only at the horizon.

We again start out with a second order differential equationof motion for fluctuationsφ as
given in (3.41) in the AdS Schwarzschild black hole background (3.12). Note that in these
coordinates the black hole horizon is located atu = 1 while the AdS-boundary lies atu = 0.
The coefficientsA, B again depend on the dimensionless frequencyw = ω/(2πT ), momen-
tum q = q/(2πT ) and on the radial coordinate0 ≤ u ≤ 1. For definiteness we work in
the setup of [34] as a specific example whereφ are fluctuations of the metric tensor. We
first have to determine the asymptotic behavior of the solution to this equation at the bound-
ary u = 0. The indicial proceduredescribed in 3.1.2 yields the leading order asymptotic
behaviorφ ∝ u0 or φ ∝ u2 with the indicial exponentsβ1 = 0 or β2 = 2 corresponding to the
two possible solutions respectively. For a second order differential equation we can expand the
asymptotic solutionsΦI , ΦII according to [105] into general seriesΦII = (u − ubdy)

β2A(u)
andΦI = (u − ubdy)

β2A(u) lnu + (u − ubdy)
β1C(u) with the indicial exponentsβ1, β2 and

the functionsA(u), B(u), C(u) being analytic atu = 0. So in our example we have the
asymptotic solutions forφ at the boundaryu = 0

ΦI = u0
(

b
(0)
I + b

(1)
I u+ b

(2)
I u2 + . . .

)

+ hZII ln u , (3.45)

ΦII = u2
(

b
(0)
II + b

(1)
II u+ b

(2)
II u

2 + . . .
)

. (3.46)

We obtain recursive relations for the coefficientsbI , bII , h by plugging each expansion (3.45)
and (3.46) separately into the equation of motion, expanding in u aroundu = 0 and by then
comparing coefficients in orders ofu. The most general solution of the equation of motion is a
linear combinationΦ(u) = aΦI +bΦII of the two solutions given in (3.45), (3.45) with coeffi-
cientsa, b. But since we have two boundary conditions our solution is fully determined and we
give special names to the coefficientsa, b which satisfy the two boundary conditions:a → A
andb→ B, such that

φ(u) = A(w, q)ZI + B(w, q)ZII . (3.47)

But how do we findA, B explicitly? In order to see this we also need the two asymptotic
solutions at the AdS-horizonu = 1, where we calculate the indicesγ1 = iw/2 andγ2 =
−iw/2. Just as we did on the boundary, we now have to use the general expansion at the
horizonφI = (1 − u)γ1D(u) andφII = (1 − u)γ2 ¯D(u) giving

φI = (1 − u)−iw/2
(

a
(0)
I + a

(1)
I u+ a

(2)
I u2 + . . .

)

, (3.48)

φII = φ̄I . (3.49)

The first thing we note is that only the first solutionφI is compatible with the incoming wave
boundary condition as described below equation (3.23). We again obtain recursive relations for
the coefficientsaI by plugging (3.48) into the equation of motion and comparingcoefficients.

Now the idea is that we determine the first two coefficients in the asymptotic horizon-
expansion of the one solutionφI satisfying the incoming wave boundary condition (i.e.a

(0)
I
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anda(1)
I in (3.48)). Then we use these two values to numerically integrateφI forward into

the bulk. We repeat this procedure with the two solutionsΦI andΦII at the boundary. Then
we find that linear combination of integrated boundary solutionsΦI andΦII which equals the
incoming horizon solutionφI

AΦI + BΦII = φI . (3.50)

The values of coefficientsaI , bI , bII , h are all fixed by recursive relations, with the exception
of b(0)I , b

(0)
II andb(2)I . Note, that we are free to normalize the solutionsΦI,II such thatb(0)I = 1

andb(0)II = 1. Our freedom to chooseb(2)I arbitrarily reflects the fact that the solutionΦI is still
a solution if one adds a multiple of the other solutionΦII . We chooseb(2)I = 0 for convenience.
This fixes all the asymptotic expansions.

This particular procedure is more complicated and involvesa few more steps than the for-
ward integration but in some cases such as the search for the quasinormal modes (QNMs) it
is necessary to employ a matching in the bulk see e.g. [25, section 7.2] or [48]. The problem
there is that one has to satisfy the incoming wave boundary condition, which implies that the
solution near the horizon is heavily oscillating as(1 − u)−iw/2 and on the other side at the
boundaryu = 0 the solution is required to be normalizable. Numerically itwould be very
difficult to for example start at the boundary with a normalizable solution and try to match a
highly oscillating solution at the horizon by directly integrating forward. Thus the method of
matching integrated solutions in the bulk is preferred here.

3.2 Holographic hydrodynamics

There is convincing evidence [9, for a review] that the AdS/CFT correspondence maps rela-
tivistic hydrodynamics on the (thermal) field theory side toblack hole physics on the grav-
ity side. In this section we remind ourselves of some facts about relativistic hydrodynam-
ics (3.2.1), we review how to introduce a chemical potentialin thermal quantum field the-
ory (3.2.2) and we rederive a method to compute (non-equilibrium) transport coefficients like
the heat conductivity or shear viscosity (3.2.3). The understanding we gain here on the field
theory side will help us substantially interpreting the results from gravity calculations we per-
form in the AdS/CFT context in the coming chapters.

3.2.1 Relativistic hydrodynamics

Relativistic hydrodynamics [106, 107] is an effective theory which describes the dynamics of
a fluid at long wave length and small frequency for fluctuations. Since this theory historically
includes dissipative effects it is formulated in terms of equations of motion and not in terms
of an action principle. These hydrodynamic equations are mostly obtained from a system of
conservation equations an so-calledconstitutive equations. These constitutive equations ex-
press the conserved quantities (e.g. tensor, vector current) in terms ofhydrodynamic variables,
such as temperature and four-velocity of a fluid element. Thethermal system is assumed to
be in local thermal equilibrium but globally the hydrodynamic variables may vary. We can
define the local temperatureT (~x) and the local four-velocityuµ(~x) of a fluid element in the
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system, whereuµuµ = −1. The simplest example of a set of hydrodynamic equations is the
conservation equation for energy and momentum

∂µT
µν = 0 , (3.51)

together with the constitutive equation for the energy-momentum tensor

T µν = (ǫ+ P )uµuν + Pgµν , (3.52)

with the (internal) energy densityǫ, the pressureP The constitutive equation (3.52) is ob-
tained by writing down all possible terms in an expansion in powers of spatial derivatives
of hydrodynamic variables to leading order. We can also include the next to leading order
yielding

T µν = (ǫ+ P )uµuν + Pgµν − σµν . (3.53)

While the leading order (3.52) conserves entropy, the next to leading order (3.53) contains the
dissipative partσµν containing first derivatives ofT (~x) anduµ(~x).

In systems with a conserved currentJµ satisfying

∂µJ
µ = 0 . (3.54)

And this current can be expressed in terms of the hydrodynamic variables by the constitutive
equation

Jµ = duµ −D(gµν + uµuν)∂νd , (3.55)

with the charge densityd in the fluid rest frame and the constantD. The terms correspond to
the processes of convection and diffusion respectively andD is the diffusion coefficient. In
the fluid rest frame this reduces to

J = −D∇d , (3.56)

which is Fick’s diffusion law.
There is an intimate relation between the poles of thermal field theory correlators and the

hydrodynamic modes like for example the diffusion mode governed by the diffusion equation

0 = ∂td−D∇2d . (3.57)

Transformed to Fourier space this equation reads

0 = (ω + iDk2)d . (3.58)

The corresponding field theory two point correlator of a conserved currentJµ is given in
Fourier space by

G(ω,k) ∝ 1

iω −Dk2
. (3.59)

We easily verify that this two point current correlator is a Green function for the diffusion
equation or in other words a solution to the diffusion problem. Such identifications are
also possible for other hydrodynamic modes like the shear and sound modes of the energy-
momentum tensor which are identified with poles in the metricfluctuation correlators (for
details the reader is referred to [9, and references therein]).
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Let us also include the relation between the thermal spectral function R and the retarded
correlation functionGR here for completeness.

R = −2 ImGR . (3.60)

Heuristically the thermal spectral function gives the thermal spectrum of the system at finite
temperature. Resonances appearing in this spectral function are analogous to the spectral
lines one gets when analyzing light with a prism. The resonances are interpreted as quasi-
particles produced in the plasma. Just as it is the case for e.g. the visible light spectrum,
the resonances here have a finite width corresponding to the lifetime of the quasi-particle
excitation since the thermal system features dissipative processes. Let us write the energyω
and spatial momentumq in a four vector~k = (ω, q) while the Green functionGR may be
written as

GR(ω, q) = −i
∫

d4x ei ~k~x θ(x0) 〈[J(~x), J(0)]〉 (3.61)

We may find singularities ofGR(ω, q) in the lower half of the complexω-plane, including
hydrodynamic poles of the retarded real-time Green function. Consider for example

GR =
1

ω − ω0 + iΓ
. (3.62)

These poles emerge as peaks in the spectral function,

R =
2 Γ

(ω − ω0)2 + Γ2
, (3.63)

located atω0 with a width given byΓ. These peaks are interpreted as quasi-particles if their
lifetime 1/Γ is considerably long, i.e. ifΓ ≪ ω0. We will discuss the spectral function again
in chapter 5.

Another facet of the spectral function will be made use of in the diffusion chapter 6. In
its zero frequency limit the spectral function evaluated atzero spatial momentum is related to
the diffusion coefficientD of the chargeQ to which the correlated (GR ∝ 〈JJ〉) currentJ
couples

ΞD = lim
ω→0

R(ρ, ω, q = 0)

2ω
= −2 lim

ω→0

1

2ω
ImGR(ρ, ω, q = 0) , (3.64)

whereρ is the radial AdS coordinate and the susceptibilityΞ is given by

Ξ =
∂J0(µ)

∂µ

∣
∣
∣
∣
µ=0

, (3.65)

with the charge densityJ0 for the conserved chargeQ and the thermodynamically conjugate
chemical potentialµ. This provides us with a method to compute diffusion coefficients us-
ing the fluctuations about a background. An alternative method makes use of themembrane
paradigm in order to compute the diffusion coefficient from metric components only (see
section 6.1).
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3.2.2 Chemical potentials in QFT

Since the introduction of a chemical potentialµ and its thermodynamic conjugate charge den-
sity d is a central point in this work, in this section we make the heuristic statements given
in section 2.4 more precise. All the ideas explained below should be read with the QFT path
integral formalism in mind.

Introducing a chemical potentialµ in a QFT at finite temperature T is formally analogous
to turning on a fictitious gauge fields time-componentAt

5 . Heuristically this can be seen by
the comparison of terms entering the partition functionZ by turning on a chemical potential
on one hand

Z ∝ e−βH → e−β(H−µN) , (3.66)

whereβ is the temperature obtained from compactifying the time coordinate in the imaginary
time formalism,µ is the chemical potential andN is the number operator for a particle. We
are working in the grand canonical ensemble. On the other hand we can turn on a fictitious
gauge fieldAµ belonging to a symmetry which conserves a certain currentJµ

Z ∝ e−βH → e−β(H−AµJµ) , (3.67)

whereAµ = (µ, 0). So roughly we obtain the relations

At ∼ µ , J t ∼ N . (3.68)

The next paragraph describes the above statements in greater detail.
From the Noether theorem we know that every symmetry of a theory contributes a conserved

current

Jµ
Noether=

∂L

∂(∂µAν)
δAν , (3.69)

which for QED equals the electromagnetic current that we observed formally above asJµ. The
conserved charge is obtained by integrating the first component of the current over all space.
This shows that conserved currents are intimately related to charges and introduction of either
implies existence of the other. The electromagnetic current can by Maxwells equations be
written as

Jµ = ∂µF
µν =

∂L

∂Aµ
, (3.70)

and can therefore be regarded as a source of the field strengthor the gauge field.

Finite temperature currents and the chemical potential In the context of a non-SUSY
complex scalar field theory we would like to evaluate the partition function with a chemical
potentialµ and show that at finite temperatures its introduction is equal to introducing a ficti-
tious gauge field. In the grand canonical ensemble the partition function is6

Z = tr[ e−β(H−µN)]

= C

∫

Dπ†Dπ
∫

Dφ†Dφ e
R β
0 dτ

R

d3x

»

iπ ∂φ
∂τ

+iπ† ∂φ†

∂τ
−H(π,φ)+µN (π,φ)

–

, (3.71)

5The identificationAt ∼ µ is solely a field theory matter and has a priori nothing to do with the AdS/CFT-
correspondence.

6This is a standard finite temperature QFT result. See e.g. [108] for reference.
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with the Hamiltonian
H = π†π + ∇φ† · ∇φ+m2φ†φ . (3.72)

The conjugate momenta are defined to beπ(~x) = ∂L
∂φ̇(~x)

= φ̇†. By the Noether formula the

conserved current isJµ = i(φ†∂µφ − φ∂µφ
†). The first component of this is the conserved

charge densityρ = i(φ†π† − φπ). The integrand of the exponent in the path integral can be
rewritten

i
(
π†∂τφ

† + π∂τφ
)
−
(
π†π + ∇φ† · ∇φ+m2φ†φ

)
+ iµ

(
π†φ† − πφ

)

= −
(
π† − i(∂τ − µ)φ

) (
π − i(∂τ + µ)φ†)− (3.73)

−(∂τ + µ)φ†(∂τ − µ)φ−∇φ† · ∇φ−m2φ†φ .

This shows that using the Euclidean timeτ we can redefine the time derivative∂τ → ∂τ −µ ≡
D0 (and equivalently(∂τφ)† → [(∂τ + µ)φ]† ≡ (D0φ)† ). From standard gauge theory we
know that this is the same as introducing a covariant derivative. But in the case at hand this
gauge field has only one non-zero, constant component, the time componentAτ . Therefore
this gauge field is non dynamical having no kinetic term.

Performing the functional integration overπ andπ† leads to the following expression for
the partition function7:

Z = C ′
∫

Dφ†Dφ e−
R β
0 dτ

R

d3x [(∂τ +µ)φ†(∂τ−µ)φ+∇φ†·∇φ+m2φ†φ] ,

which can be analytically continued to Minkowski space to yield an effective Lagrangian:

C ′
∫

Dφ†Dφ ei
R

dt
R

d3x [(∂t+iµ)φ†(∂t−iµ)φ−∇φ†·∇φ−m2φ†φ]

≡ C ′
∫

Dφ†Dφ ei
R

dt
R

d3xLeff . (3.74)

It is important to note thatLeff is not simplyL+µN , sinceN is a function ofπ in addition
to φ. Instead,

Leff = ∂νφ†∂νφ+ iµ
(
φ†∂tφ− φ∂tφ

†)− (m2 − µ2)φ†φ . (3.75)

The term linear inµ is the expectedµN contribution. The term quadratic inµ arises from the
modification of the conjugate momentaπ = φ̇† + iµφ.

The symmetry under which the current coupling to the chemical potential is conserved
could for example be theU(1)B symmetry. In this case the conserved currentN is the baryon-
number-operator density. The conserved charge is then the baryon number.

7Note that only the first term in the integrand of the path integral is depending onπ andπ†. Considering
−i(∂τ − µ)φ and−i(∂τ + µ)φ† as shifts of the integration variablesπ andπ† (these shifts do not depend on
either of the integration variables), only the second and third term survive the integration to yield the partition
function as an integral over fieldsφ andφ† only
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3.2.3 Transport coefficients: Kubo formula

Kubo formulae relate transport coefficientsΛ in non-equilibrium thermodynamics with re-
tarded Green functions of the associated thermodynamical currentJ . Symbolically we can
write

Λ ∝ 〈[J, J ]〉ret. . (3.76)

These relations hold up to linear order expanding in thermodynamical forces. This is called
the linear response approximation. In the following subsection the Kubo formula will be
derived for a system with energy-momentum conservation only. The principle is extended to
an additional conserved current in the next-to-next subsection.

The derivation of Kubo formulae assumes that the system under consideration has estab-
lished a local thermal equilibrium in order to define meaningful state variables like temper-
atureT , mass densityρ and others locally. On the other hand globally there exists anon-
equilibrium, that means there are gradients of thermodynamical state variables or potentials
across the whole system.

Nonequilibrium Kubo formulae in theory with ∂µT
µν = 0 This subsection generally

follows [109]. Let’s imagine a thermodynamical system in which a gradient (e.g. a tempera-
ture gradient∂µT ) exists. This gradient will cause the system to respond by forming a current
J (e.g. a heat current). With this current the system tries to equilibrate the gradient (e.g. heat
flow diminishes temperature gradient by levelling out temperatures in the whole system). This
kind of gradient is synonymously called a thermodynamical forceF .

We can expand the response of the system (namely the current)to a gradient as a series of
powers of the gradient:

J = a0 (F )0 + a1 (F )1 + a2 (F )2 + . . . . (3.77)

Since the current should vanish with vanishing gradient, the constant term has to vanish and
the linear one is the lowest order contribution with respectto the gradient-expansion. This
contribution gives the linear response of the system to the gradientF . The proportionality-
factora1 is called a transport coefficient, which we will generally denote byΛ.

J = Λ F . (3.78)

We now would like to establish this connection between currentsJ and the gradientsF driving
them. For this reason we will compute the thermal non-equilibrium average of the energy-
momentum tensorTµν containing several (scalar, vector and tensor) currents. In order to be
able to use thermodynamics, we assume from now on that a localequilibrium is established
and we can thus define the state variables such as temperatureand pressure locally. We can
also compute local averages and denote them by〈.〉.

Remember that in equilibrium we can define the probability density matrix̺eq = eβH to be
used as a calculational tool determining thermal averages of operatorsO

〈O〉eq = tr[̺eqO] . (3.79)
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This has an analog in nonequilibrium

〈O〉non−eq = tr[̺non−eqO] . (3.80)

We are interested in the operatorO ≡ Tµν and how to relate its non-equilibrium expectation
value back to quantities which are in local equilibrium (averaged by〈.〉). Zubarev already
proposed the following construction for non-equilibrium [110]:

̺non−eq = exp{−
∫

d3xF νT0ν

︸ ︷︷ ︸

=βH equilibrium

+

∫

d3x

t∫

∞

dt1e
ǫ(t1−t)Tµν∂

µF ν} , (3.81)

whereTµν is the thermodynamical ’current’,∂µF ν is the thermodynamical force (gradient),
while

F ν = βuν . (3.82)

Here we haveβ ≡ 1/T with the temperatureT , uν is the four-velocity component of the fluid
and the parameterǫ is a small number which will be sent to zero in the end. Note that we set the
Boltzmann constantkB = 1 throughout this work. So the average over the energy-momentum
tensor can be written

〈Tµν〉non−eq = tr[exp{−
∫

d3xF νT0ν

︸ ︷︷ ︸

=βH equilibrium

+

∫

d3x

t∫

∞

dt1e
ǫ(t1−t)Tρσ∂

ρF σ} Tµν ] . (3.83)

Expanding the exponential to linear order in the gradient∂ρF σ we get

〈Tµν〉non−eq≈〈Tµν〉eq +

∫

d3x′
t∫

−∞

dt′eǫ(t′−t) (Tµν(~x, t), Tρσ(~x′, t′))
︸ ︷︷ ︸

∝〈Tµν ,Tρσ〉retarded

∂ρF σ(~x′, t′) . (3.84)

The currents collected inTµν may be separated into tensor, vector and scalar currents by means
of the thermodynamical standard form

Tµν = σµν + ǫuµuν − pgµν + puµuν + Pµuν + Pνuµ , (3.85)

where the expansion coefficients are the energy densityǫ, p the pressure, the tensor struc-
tureσµν = [(gµρ − uµuρ)(gνσ − uνuσ) − 1

3
(gµν − uµuν)(gρσ − uρuσ)]T

ρσ and the heat cur-
rentPµ = (gµν − uµuν)uσT

νσ. Note, that the latter will be absent if there is no quantity (such
as a charge density) relative to which that current could be measured. This is a consequence
of relativity since the flow of mass and the flow of heat, i.e. energy becomes indistinguishable.
The bracket(., .) denotes the quantum time correlation functions defined by

(Tµν(~x, t), Tρσ(~x
′, t′)) =

1∫

0

dτ〈Tµν(~x, t)(e
−AτTρσ(~x′, t′)eAτ − 〈Tρσ(~x′, t′)〉)〉 , (3.86)
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where we used the abbreviationA =
∫

d3xF ν(~x, t)T0ν(~x, t). Due to Curie’s theorem tensor
currents likeσµν are only driven by ’tensor gradients’. The scalar and vectorprocesses as
well are only related to scalar and vector gradients. Correlation functions between currents of
different tensor rank vanish. In other words to linear orderin the gradients the scalar, vector
and tensor processes have nothing to do with each other. We now use this fact picking out the
tensor process to replaceTµν by the tensor currentσµν But which tensor gradient drives this
current? To answer this question, we compute

Tρσ∂
ρF σ = σρσ β∂

ρuσ + βPρ(β
−1∂ρβ + uκ∂κu

ρ) − βp′∂ρu
ρ . (3.87)

Now using equation (3.85) on the left hand side of (3.84) and (3.87) on the right, we get

〈σµν〉non−eq≈〈σµν〉eq
︸ ︷︷ ︸

≡0

+

∫

d3x′
t∫

−∞

dt′eǫ(t′−t) (σµν(~x, t), σρσ(~x′, t′))
︸ ︷︷ ︸

∝(tensor structuresµνρσ)×(σαβ ,σαβ)

β∂ρuσ .

(3.88)
Analogous separation works for vector and scalar currents.If now the gradientβ∂ρuσ varies
only slowly compared to the correlation lenght of the rest ofthis integral, we can pull it in front
and get an integral expression for the transport coefficientassociated with tensor processes,
namely the shear viscosity

η ≡ β

5

∫

d3x′
t∫

−∞

dt′eǫ(t′−t) (σαβ(~x, t), σαβ(~x′, t′))
︸ ︷︷ ︸

〈σαβ ,σαβ〉retarded

. (3.89)

This is called a Kubo formula. The coefficients connected to scalar and vector processes are
called bulk viscosityξ and the heat conductivityκ respectively.

Kubo formulae in theory with additional conserved current ∂µJ
µ = 0 Following

Landau and Lifshitz [106] one can imagine a thermodynamicalsystem with an additionally
conserved current

∂µT
µν = 0 , ∂µJ

µ = 0 . (3.90)

In such a relativistic hydrodynamic system the energy-momentum tensor and the conserved
current take the form

Tµν = pgµν + ωuµuν + τµν , Jµ = ρCuµ + νµ , (3.91)

where p is the pressure, with the heat functionω = ǫ + p. ρC is the charge density of the
conserved charge given by the first component of the conserved currentJ0 = ρC . The dissi-
pative part of the current is denoted byνµ. A contemporary application in the context of the
gauge/gravity correspondence is the calculation of the heat conductivity in a R-charged black
hole background [35].
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According to [110] the method described in the previous subsection is completely general
and we can replaceTµν by any conserved current. So for the non-equilibrium density matrix

̺non−eq = exp{−
∫

d3xF νT0ν

︸ ︷︷ ︸

=βH equilibrium

+

∫

d3x

t∫

∞

dt1e
ǫ(t1−t) Jµ

︸︷︷︸

current

Xµ}
︸︷︷︸

associated gradient

. (3.92)

The dissipative partνµ of the conserved current is driven by a gradient in the corresponding
chemical potentialµ. From thermodynamical relations8 one can obtain

νµ = −κ
(
gµλ + uµuλ

)
∂λ
µ

T
, (3.93)

which tells us thatκ is the corresponding transport coefficient. By anology we conclude its
Kubo formula to read

κ ≡ β

3

∫

d3x′
t∫

−∞

dt′eǫ(t′−t)〈να(~x, t), να(~x′, t′))〉retarded. (3.94)

But now that we know how to computeκ we should also give a physical interpretation of it.
κ certainly tells us how big the dissipative currentνµ will be, given a certain gradient in the
chemical potential and temperature∂λ

µ
T

. Like in the previous subsectionτµν had been the
dissipative current connected to the velocity gradient∂µuν, now νµ is the dissipative current
connected to the chemical potentials and the temperatures gradient. So we also know that
Xλ ≡ ∂λ

µ
T

in (3.92)
Interpretation of the dissipative transport coefficientκ: The idea here is to relate the new

currentνµ to the energy-momentum tensor by expressing part ofTµν by νµ. This is done in
two steps. First the new current needs to be translated into acurrent we know. Second, the
new gradient of the chemical potential needs to be translated.

The authors of [35] choose to set the charge currents to zeroJ i = 0 for the sake of interpre-
tation. Using the form ofJµ from (3.91) this immediately tells us

J0 = ρC , 0 = Ji = ρCui + νi (3.95)

which we will use to get an expression for the velocityui = −νi/ρC . We assume the local
velocity to be small. From equation (3.93) it is known, that neglecting terms quadratic in the
velocity:

νλ = −κ∂λ µ

T
(3.96)

So we derive

ui =
1

ρC
κ∂i

µ

T
(3.97)

8To be more precise: from the fact that dissipative processeslike the current or the shear-processes will produce
entropy.νµ andτµν can be related to the entropy they produce.
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Also from (3.91) it is seen that the partT0i of the energy-momentum tensor (usually interpreted
as the heat current) now amounts to

T0i = pg0i + ωu0ui + τ0i = (ǫ+ p)u0ui (3.98)

if we can assume the stress tensor to have vanishing components here by its general inter-
pretation measuring spatial shear effects only. Plugging in our expression for the velocity
yields

T0i = (ǫ+ p)u0
1

ρC
κ∂i

µ

T
(3.99)

This completes the first step being the sought after translation of νµ into T0i via ui.
The second step usesdµ = dp/ρC − sdT/ρC in order to translate the gradient:

∂iµ =
1

ρC

(∂ip− s∂iT ) . (3.100)

Putting the two steps together gives a well known relation

T0i = −
(
ǫ+ p

TρC

)2

κ

︸ ︷︷ ︸

≡κ

[

∂iT − T

ǫ+ p
∂ip

]

(3.101)

As described in Landau and Lifshitz [106], this expression gives the relativistic hydrodynam-
ics heat current. Compared to the non-relativistic one it gets an extra contribution from the
pressure gradient throughout the system. The transport coefficient related to heat flow is the
heat conductivityκ.

We now have two interpretations of the newκ:
1. It relates the dissipative current with the temperature and chemical potential gradient
by (3.93). This is true for general currentsJµ.
2. It also relates the heat current with the temperature and pressure gradient by (3.101). This
interpretation though only holds if the charge current vanishes, soJi = 0.
In the application to R-charged black holes [35] the authorsconclude by looking at the limit
of vanishing charge current, that the dissipative part of the charge current will contribute to
the heat current and thus is the heat conductivity.

3.3 Quasinormal modes

Quasinormal modes of fields on the gravity side of AdS/CFT areintimately related to the
retarded two-point correlation functionsGR of the dual operatorsO in the thermal field theory.
To be more precise the poles appearing in the correlatorGR are exactly located at the frequency
valuesωqn of the quasinormal modes belonging to the dual gravity field.In order to understand
this relation on a technical level, we here review the concept of quasinormal modes in gravity
and explore their relation to thermal correlators through AdS/CFT.
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Quasinormal modes in gravity This paragraph follows closely the work of [111] and
details may be obtained from that original work. Normal modes are the preferred time har-
monic statese−iωnt of compact classical linear oscillating systems such as finite strings or
cavities filled with electromagnetic radiation. The normalfrequenciesωn of these systems
are realωn ∈ R and the general solution can be written as a linear superposition of all pos-
sible eigenmodesn. Quasinormal modes in classical supergravity are the analog of normal
modes but for a non-conservative system. The quasinormal frequencies assume complex val-
uesωqn ∈ C where the imaginary part is associated with the dissipation. In the case of a black
hole background excitations dissipate energy into the black hole and are therefore damped
when traveling through the bulk. Since we would like to utilize AdS/CFT, we are interested in
quasinormal modes in thed dimensional AdS Schwarzschild metric

ds2 = −h(r)dt2 + h(r)−1dr2 + r2dΩ2
d−2 , (3.102)

with

h(r) =
r2

R2
+ 1 −

(r0
r

)d−3

. (3.103)

This factor for large black holes withr0 ≫ R in AdS5 becomesh(r) = r2

R2 −
(

r0

r

)2 9.
Quasinormal modes are the (quasi) Eigenmodes of fluctuations of fields in presence of a black
hole (or black brane) background, also referred to as theringing of the black hole. As a simple
example let us follow [111] and consider the wave equation ofa minimally coupled scalarΦ

∇2Φ = 0 . (3.104)

Assuming spherical symmetry we may use the product Ansatz

Φ(t, r, θ) = r
2−d
2 ψ(r)Y (θ)e−iωt , (3.105)

with the spherical harmonicsY on Sd−2. Splitting the radial from the spherical equation of
motion we obtain

[∂2
r∗ + ω2 − Ṽ (r∗)]ψ(r) = 0 , (3.106)

where the tortoise coordinater∗ is given by

r∗ =

∫
dr

h(r) + 1
. (3.107)

The potentialṼ (r∗) vanishes at the horizonr∗ = −∞ and diverges atr = ∞. In general
this equation has solutions for arbitraryω. The solutions which are called quasinormal modes
are defined to be purely incoming at the horizonΦ ∼ e−iω(t+r∗) (and purely outgoing at
infinity Φ ∼ e−iω(t−r∗) , where the boundary of AdS is located in these coordinates).This
condition can only be satisfied at discrete complex values ofω called quasinormal frequencies.
In the AdS black hole case the potentialṼ diverges at infinityr = ∞, such that we require
the solution to vanish at this location.

9Which is identical to the form used e.g. by Myers et al. in [59]up to a scaling withR2
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In order to have a finite variable range we invert the radial coordinater → 1/x. The radial
equation of motion for the minimally coupled scalar then reads

s(x)
d2

dx2
ψ(x) +

t(x)

x− x+

d

dx
ψ(x) +

u(x)

(x− x+)2
ψ(x) = 0 . (3.108)

In ourAdS5-case the coefficients are given by [111]

s(x) =
(x+

2 + 1)x5

x+
4

+
(x+

2 + 1)x4

x+
3

+
x3

x+
2

+
x2

x+
2
, (3.109)

t(x) = 4r0
2x5 − 2x3 − 2x2iω , (3.110)

u(x) = (x− x+)V (x) , (3.111)

V (x) =
15

4
+

3 + 4l(l + 2)

4
x2 +

9r0
2

4
x4 (3.112)

r0
2 =

x+
2 + 1

x+
4

, (3.113)

wherel(l + 2) is the Eigenvalue of the Laplacian onS3. Note that we do not rewrite (3.108)
such that the factor in front of the second derivative becomes one. That is because the coeffi-
cientss, t, u have finite expansions in(x− x+) and thus are more tractable.

We compute the quasinormal modes numerically by expanding the solution in a power
series about the horizon atx = x+. In order to find the near-horizon behavior we determine
the indices (as explained in section 3.1.2)α = 0 andα = iω/(2πT ). Only the first index
describes ingoing modes at the horizon and we discard the second one. This fixes the leading
order(x − x+)0 for our solution and we expand the remaining analytic part ofit in a Taylor
series about the horizon [105]

ψ(x) = (x− x+)α
∞∑

n=0

an(x− x+)n , (3.114)

Then we demand this series to vanish at infinityr = ∞ equivalent tox = 0. The expan-
sion (3.114) is substituted in the equation of motion (3.108) in order to compare coefficients
of (x− x+)n in each ordern. From this we find the recursion relations

an = − 1

Pn

n−1∑

k=0

[k(k − 1)sn−k + ktn−k + un−k]ak , (3.115)

with the expressionPn = n(n−1)s0 +nt0 = 2x2
+n(nκ− iω). Only the coefficienta0 remains

undetermined as expected for a linear equation.
Together with the condition that the solutionψ should be normalizable and therefore has to

vanish at spatial infinityψ(x = 0) = 0, we have mapped the problem of finding quasinormal
frequencies to the problem of finding the zeroes of

∞∑

n=0

an(ω)(−x+)n = 0 , (3.116)
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in the complexω plane. Equation (3.116) can only be satisfied for discrete values of com-
plexω. We approach the exact result by truncating the series atn and finding the zeroes of the

partial sumψN(ω, x = 0) =
N∑

n=0

an(−x+)n. To be more specific, we really find the minima of

the absolute value squared|ψN(ω, x = 0)|2 of the partial sum and then check if the value at
that minimum is (numerically) zero. The accuracy can be increased by going to largern and
the error is estimated from the change ofw(n) asn is increased.

Alternative QNM computations In more complicated backgrounds (such as the D3/D7-
setup) it is hard or even impossible to write down analyticalexpressions as those used in
the previous paragraph, especially if some factors like theembedding function in the metric
components are only given numerically. In this case one has to reside to numerical methods.

Numerically we can compute|φ|2 directly starting with two boundary conditions at the hori-
zon and search its minimum. In some cases (especially if the solution is oscillating heavily
on one boundary) the numerical method of matching in the bulk[25, section 7.2] has proven
more adequate to find solutionsφ. Numerics may also be improved by a coordinate transfor-
mation to more tractable (non-singular) coordinates. An application of this latter method is
given in [60].

Quasinormal modes in AdS/CFT In the context of AdS/CFT it has been shown [27, 104]
that the lowest lying (i.e. those with the smallest absolutevalue) quasinormal frequency of the
perturbation of a distinct gravity fieldφ coincides with the pole of the two-point function for
the operatorO dual to this distinct field. We can see this by approaching theproblem with
the question: what is the two-point correlator of two gauge-invariant operators? As described
above, the correlator is given by

〈OO〉 = lim
r→rbdy

B(r)φ(r)∂rφ(r) , (3.117)

whereφ(r) is the solution to the gravity equation of motion (ordinary differential equation
ODE) for the fieldφ dual to the operatorO. Here we use the same radial coordinater defined
above in equation (3.102). At the boundary the solution can be written as linear combination
of two local solutions

φ(r) = Aφ1(r) + Bφ2(r) , (3.118)

with A andB being determined by the coefficients in the differential equation for φ. The
coefficientsA andB give that particular linear combination which satisfies theincoming wave
boundary condition at the horizon. Near the boundary the solution (3.118) splits into the
normalizable and non-normalizable parts

φ(r) = Ar−∆−(1 + . . . ) + Br−∆+(1 + . . . ) , (3.119)

The action quadratic in field fluctuationsφ reduces to the boundary term

S(2) ∝ lim
r→rbdy

∫

dω dpq B(r, ω,q)φ(r)∂rφ(r) + contact terms. (3.120)
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Applying (3.117) and assuming∆+ > ∆−, ∆+ > 0 we obtain the two-point function of op-
eratorsO by an expansion in the radial coordinater and taking the boundary limit afterwards

〈OO〉 ∝ B
A + contact terms. (3.121)

The poles of the retarded correlator thus correspond to the zeroes of the connection coeffi-
cientA. On the other handA is determined by the coefficients of the equation of motion for
the field fluctuationφ and thereforeA = 0 is a particular choice of boundary condition for
that field fluctuationφ. As an example consider∆− = 0, ∆+ = 2 andB(r, ω,q) ∝ r3 and
rbdy = ∞. Then

〈OO〉 ∝ lim
r→rbdy

r3 −2Br−3

A + Br−2
+ contact terms. (3.122)

Now we are ready to connect our holographic considerations back to the gravity definition
of quasinormal modes given above (3.116). Comparing the twoapproaches we conclude that
the condition for having quasinormal modes coming from gravity (3.116) and the boundary
condition for the field fluctuation in AdS/CFTA = 0 are identical. For this reason the quasi-
normal frequencies of black hole excitations are identicalto the poles of the retarded two-point
correlator of their AdS/CFT-dual operators.

3.4 Summary

In this chapter we have reviewed some thermodynamics and hydrodynamics in the context of
thermal quantum field theories and we have developed holographic tools to calculate thermal
field theory quantities at strong coupling. The formulationof the gauge/gravity correspon-
dence in the Euclidean version has been contrasted to the Minkowski version. In particu-
lar we found out that the Euclidean prescription is not sufficient to describe non-equilibrium
processes at finite temperature. Motivated by this fact we went on to develop a recipe to
retrieve two-point correlation functions in Minkowski space, which is dual to thereal time
formalism frequently used in thermal quantum field theory. We have especially seen that
correlation functions may be obtained by analytical or numerical methods. The analytical
recipe 3.1.2 relies on the hydrodynamic approximation of perturbations with only small fre-
quency and momentum. In this case we can extract the relevantboundary term of the on-shell
action (first step), solve the equation of motion for the fieldwhich is dual to the operator
which we would like to find correlations of (second step), andfinally we can use the for-
mulaGR(~k) = −2B(u)F(u,−~k)∂uF(u,~k)

∣
∣
u→0

given in (3.10) (third step). Beyond this hy-
drodynamic limit we have seen in 3.1.3 that we can employ two different numerical methods
to take the second step in the prescription and solve the equation of motion for the gravity
field numerically. Furthermore we have derived the Kubo formula which relates transport
coefficients to the retarded two-point correlation function. Finally the poles in the thermal
field theory two-point correlators of an operatorO have been identified with the quasinormal
frequencies of the dual gravity fieldφ.
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Holographic thermo- and

hydrodynamics

In this chapter I present my (partly unpublished) own work onintroducing a chemical isospin
and baryon potential (cf. section 3.2.2) into the thermalN = 4 Super-Yang-Mills theory
coupled to fundamental matter as described in section 2.3. We were the first to consider the
non-Abelian part of the flavor gauge group in the context of AdS/CFT with a finite charge den-
sity [1, 2] and the results are summarized and considerably enhanced especially in sections 4.2
and 4.4.

In the upcoming section 4.1 we will start out with an application of the Kubo formula for
heat conductivity derived in the previous chapter 3.2.3. The rest of this chapter considers the
D3/D7-brane setup with a background flavor gauge field introduced on the D7-brane as de-
scribed in section 2.3, section 2.4 and section 3.2.2. In section 4.2 we first take an analytical
approach to get some exact results for massless quarks, while in chapter 5 we will use nu-
merical techniques. In order to do so we have to employ a small-frequency/small-momentum
approximation coined thehydrodynamic expansion( cf. equation (3.24), and those following
it). These requirements are then relaxed and in section 4.3 the background and its thermody-
namics are generalized to non-zero quark masses in a setup where also arbitrary frequencies /
momenta of the perturbations (cf. chapter 5) are treatable.The price for this generalization is
that we have to use numerical techniques in order to find the (massive) D7-brane embeddings
as analyzed in [56]. In this context we will review the thermodynamics at finiteU(1) baryon
density [42] or finite baryon chemical potential [52] in section 4.3. Investigating the effects of
isospin and the non-Abelian part of the flavor group we will develop the thermodynamics for
the non-Abelian partSU(Nf ) of the full flavor gauge symmetryU(Nf ). We find a significant
impact of isospin on the hydrodynamics as well as on thermodynamics.

71
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4.1 Application of the Kubo formula

The purpose of the calculation ahead is to understand and check the non-equilibrium methods
introduced in the previous chapter 3.2.3. This general understanding is needed in the com-
ing chapter 6 and all our asides on diffusion or other non-equilibrium phenomena. We will
keep the computation as general as possible and only in the very end we apply the result to a
conformal field theory in order to check it. The present computation may be seen as a prepa-
ration to apply similar calculations to more QCD-like theories in order to find their transport
coefficients.

In [109] a relatively general treatment of the problem aheadis given. The problem is simply
how to (carefully) carry out the integrals inside a Kubo formula. Hosoya does this for the Kubo
formula giving the shear viscosity; whereas we are actuallyinterested in the heat conductivity.
But having this sample calculation at hand let’s follow it and we will see that the steps for our
Kubo formula will walk exactly the same path (up to some constant factors).

The viscosity Kubo formula is [109]

η = −1

5
limǫ→0

0∫

−∞

dt1e
ǫt1

t1∫

−∞

dt′
∞∫

−∞

dk0

2π
eik0t′Π̃(k0) , (4.1)

whereΠ̃(k0) is a 2-point correlation function only depending onk0 out of the integration vari-
ables. For the shear viscosity this correlator is the energy-momentum tensor 2-point function
〈TijTij〉. Theǫ appearing here comes from the non-equilibrium thermodynamics formalism
and it parametrizes the (small) deviation from thermal equilibrium. Since we will see that it
formally has exactly the same effect as an ordinary QFT regulator, I will call it the thermal
regulator. Speaking about the ordinary QFT regulators, as is common habit, in (4.1) the field
theory regulator is not explicitly written. We put it back inby k0 → (1 − iǫ0)k

0 in order to
keep track of all the poles appearing.

η = −1

5
limǫ,ǫ0→0

0∫

−∞

dt1e
ǫt1

∞∫

−∞

dk0

2π
Π̃(k0(1 − iǫ0))

t1∫

−∞

dt′eik0(1−iǫ0)t′

︸ ︷︷ ︸
h

1
ik0(1−iǫ0)

eik0(1−iǫ0)t′
it1

−∞

. (4.2)

Of thet′-integral only the upper limit (t1) remains because for the lower bound (−∞) we get

limt′→−∞eip0(1−iǫ0)t′ = limt′→−∞ eik0t′

︸︷︷︸

oscillating

ei(−i)k0ǫ0)t′

︸ ︷︷ ︸

→0

. (4.3)

So from this integral we are left with

1

ik0(1 − iǫ0)
eik0(1−iǫ0)t1 . (4.4)

Note that the use of the regulatorǫ0 together with the integral gives us a new pole for the
k0-integration atk0 = 0. We will see that subsequent integration of this overt1 together with
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the thermal regulatorǫ will give us yet a different pole structure in the complexk0-plane.
Explicitly carrying out the same procedure as before with this new expression we are left with

η = −1

5
limǫ,ǫ0→0

∞∫

−∞

dk0

2π

Π̃(k0(1 − iǫ0))

ik0(1 − iǫ0)

0∫

−∞

dt1e
ǫt1+ik0(1−iǫ0)t1

︸ ︷︷ ︸
1

ik0(1−iǫ0)−iǫ
[1−e(ǫ+ǫ0k0)(−∞)e−ik0)(−∞)]

. (4.5)

This leaves us with thek0-integration and an integrand having two poles1:

1

5(2π)(1 − 2iǫ0)

∞∫

−∞

dk0 Π̃(k0(1 − iǫ0))

k0
︸︷︷︸

≡A

(k0 − i
ǫ

1 − iǫ0
)

︸ ︷︷ ︸

≡B

. (4.6)

To integrate a function like this the Cauchy-Riemann formula
∫

closed contour

f(z)dz

(z − z0)2
= (2πi)∂zf(z)|z=z0

, (4.7)

is usually of great help. But to apply it we first need to turn the integrand with two different
poles into one with two poles at the same position to match theform of the integrand the
Cauchy-Riemann formula. This can be done by introducing Feynman parametersa, b making
use of the formula

1

AB
=

1∫

0

da db δ(a+ b− 1)
1

(aA + bB)2
, (4.8)

which can be verified by carrying out the integrals on the right hand side. Plugging inA = k0

andB = k0 − i ǫ
1−iǫ0

we get

1

AB
=

1∫

0

dadb
δ(a+ b− 1)

(a+ b)2

1

(k0 − i ǫ
1−iǫ0

b
a+b

)2
, (4.9)

which displays the sought-after second order pole atk0 = i ǫ
1−iǫ0

b
a+b

. Use of the Cauchy
formula and integration over the Feynman parameterb yields

η =
i

5
limǫ0→0limǫ→0

1

1 − 2iǫ0

1∫

0

da ∂k0Π̃
∣
∣
∣
k0=i ǫ

1−iǫ0
(1−a)

. (4.10)

Now first taking theǫ0 ordinary field theory limit gives

i

5
limǫ→0

1∫

0

da ∂k0Π̃
∣
∣
∣
k0=iǫ(1−a)

, (4.11)

1We have to assume that the functionΠ̃(k0(1 − iǫ0)) introduces no additional poles.
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and afterwards the thermal regulator limitǫ→ 0 produces

η =
i

5
∂k0Π̃

∣
∣
∣
k0=0

. (4.12)

This formula is true for any correlator̃Π which introduces no new poles ink0 and which does
not depend on any of the time-variables (t′, t1). The Kubo formula for thermal conductivity
will only have a different numerical factor and it will contain the current correlator〈Ja

i J
b
i 〉(~k)

instead of the energy-momentum correlator〈TijTij〉(~k). But both are only functions ofk0 as
required. And from the Fourier-transformation of (2.31) essentially given by

〈Ja
i J

b
i 〉 = −δab lim

ǫd→0
C(ǫd)~k

2+ǫd , (4.13)

with the dimensional regularization parameterǫd and the coefficientC(ǫd) we can see, that the
conformal flavor current correlator contains no poles ink0.

Simply applying formula (4.11) to the conformal flavor current correlator (4.13) (see also [112])
we get the transport coefficient

η = limǫd→0
i

M
∂k0{δabC̃4−ǫd~k2+ǫd}

∣
∣
∣
k0=0

︸ ︷︷ ︸

C̃4−ǫd (1+ǫd/2)~kǫd2k0|
k0=0

= 0 , (4.14)

whereM stands for the factors different from the viscosity case. The vanishing of this trans-
port coefficient can be traced to the thermal regulator by plugging it in before taking any of
the limitsǫd, ǫ0, ǫ → 0. Carrying out all integrations and derivatives before taking these three
limits, the coefficient vanishes exactly when taking the ’thermal’ limit ǫ→ 0.

Our interpretation of this fact is that the conformal symmetry realized in the correlator
does not allow any scale in the theory. In particular conformal symmetry does not allow
introduction of an energy scale like the temperature. Plugging in the conformal correlator
essentially amounts to setting the temperatureT = 0 in the non-equilibrium theory from
which the Kubo formula is derived.

4.2 Analytical Hydrodymamics at finite isospin potential

In this section I present the first available analytical approach towards incorporating a non-
Abelian chemical potential into the context of the AdS/CFT correspondence. The solution
of this problem is a central point in this thesis and we published first results in [1]. I have
extended these calculations considerably for this thesis.In particular we will study AdS/CFT-
predictions about the hydrodynamics on the field theory sideof the duality. The calculation
presented in this section builds on the achievements in the case without any chemical potential
which is presented in [28]. Nevertheless, this study is the first one to take the non-Abelian
effects into account. All earlier approaches have been restricted to theU(1) baryonic part of
the full flavor groupU(Nf ). Also in order to incorporate the non-Abelian structure we need to
develop some new methods and ideas. These mainly unpublished results are interpreted and
compared with the published results [1] involving an additional approximation.
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We need to write down the Dirac-Born-Infeld action in this background and derive the non-
Abelian equations of motion which will be differential equations coupled through the space-
time indicesν in field componentsAa

ν and also through the flavor indicesa. We need to find
theflavor transformation(4.44) from flavor gauge fieldsAa to combinations of those, which
decouple the equations of motion in the flavor indicesa. Then we have to find the on-shell
action to apply the correlator prescription studied in 3.1.2. Furthermore, we need to develop
a modified understanding of how the incoming wave boundary condition fixes the singular
behavior of the gauge field fluctuations at the horizon. This idea amounts to a distinction of
cases for theindices(4.51). In the next four subsections I present my calculations in some
detail. A comprehensive discussion and interpretation is given in subsection 4.2.5.

4.2.1 Calculation of transversal fluctuations

We will work in the D3/D7-setup described in section 2.4 at vanishing quark mass, i.e. with
flat D7-brane embeddings. The coordinates we use are those introduced in equation (3.12). In
order to find the effective action which suffices to describe small gauge field fluctuations we
start from the Dirac-Born-Infeld action (2.21) for a D7-brane, constant dilaton fieldeΦ = gs

and vanishing transversal scalarsφi ≡ 0 so that we get

SD7 = −TD7

∫

d8ξ Str

√

det{g + (2πα′)F̂} (4.15)

whereg is the pull-back of the originally ten-dimensional metric to the eight-dimensional
brane andF̂ is the non-Abelian field strength on the brane for a fieldÂ. Making use of the
determinant expansion formula for small values of|M |

√

det(1 +M) = e
1
2
tr(M− 1

2
M2+ 1

3
M3+... ) = 1 +

1

2
trM − 1

4
trM2 +

1

8
(trM)2 + . . . , (4.16)

we expand the action in gauge field fluctuationsA up to quadratic order inA, which are
contained inF̂ . The non-Abelian field strength tensorF consists of flavor componentsF a

and representation matricesT a as follows

F̂µν = F̂ a
µνT

a = 2∂[µÂ
a
ν]T

a + fabcÂb
µÂ

c
ν T

a, (4.17)

and the fieldÂ is comprised of a background gauge field and fluctuationsA in the context of
the background field method of quantum field theory

Âa
ν = δν0δ

a3µ+ Aa
ν , (4.18)

whereµ is the constant time-component which is interpreted as the chemical potential at the
AdS-boundary. Using (4.16), and noting thatM = g−1F̂ so thattr(g−1F̂ ) = 0 by tracing the
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symmetricg together with the antisymmetriĉF , we obtain

SD7 = −TD7

∫

d8ξ Str{√−g
√

det[1 + g−1(2πα′)F̂ ]}

= −TD7

∫

d8ξ Str{√−g[1 +
1

2
(2πα′)tr(gΣΣ′

F̂Σ′Ω)

−1

4
(2πα′)2tr(gΣΣ′

F̂Σ′Ωg
ΩΩ′

F̂Ω′∆) + . . . ]} (4.19)

= −TD7

∫

d8ξ Str{√−g[1 − (2πα′)2

4
gΣΣ′

gΩΩ′

F̂ΣΩF̂Σ′Ω′ + . . . ]} (4.20)

= −TD7

∫

d8ξ Str{√−g[1Nf×Nf
− (2πα′)2

4
gΣΣ′

gΩΩ′

F̂ a
ΣΩF̂

b
Σ′Ω′T aT b + . . . ]} .(4.21)

The symmetrized flavor trace Str{. . . } applied to the first two terms in the action merely gives
a factor ofNf for the trace over unity while in the second term it gives

Str{T aT b} = trfund(Nf ){T aT b + T bT a}
= trfund(Nf ) [T a, T b]

︸ ︷︷ ︸

ifabcT c

+2trfund(Nf )(T
bT a)

= 2trfund(Nf )(T
bT a) , (4.22)

where we have used that our flavor group generatorsT c are traceless. Furthermore the gen-
erators are HermitianT a† = T a and they live in the fundamental representation of the fla-
vor gauge groupSU(Nf ). It is in general possible to choose linear combinations of agiven
set{T a} such that the trace property

trfund(Nf )(T
aT b) = kaδ

ab (no sum), (4.23)

is satisfied [113, equation (II.7)]. The standard conventions [114] fix the factorka = TR for
all a = 1, 2, . . . , (N2

f −1), where theDynkin indexTR only depends on the representation. For
the fundamental representation we haveTR = 1/2 as we can check explicitly in the example
with Pauli matricesσa for theSU(2) isospin generatorsT a

Iso = σa/2

trfund(Nf )(T
a
IsoT

b
Iso) =

1

4
trfund(Nf )(δ

ab1+ iǫabcσc) =
2δab

4
=

1

2
δab . (4.24)

In the hypothetical case that our flavor generatorsT a would live in the adjoint representation
the Dynkin indexTR would equal the value of the Casimir operatorCA = Tadj = Nf .

As mentioned before, we work in the fundamental representation of the flavor groupSU(Nf ),
therefore we find the D7-brane action in quadratic order of gauge field fluctuationsA

S
(2)
D7 = TD7

(2πα′)2

4
TR(2π2R3)

∫

dud4x
√−ggµµ′

gνν′

F̂ a
µνF̂

a
µ′ν′ , (4.25)

where we have already integrated over the three angular directions5, 6 and7 (on which none
of the fields depends) giving the factor(2π2R3). With the help of equation (2.22) the factor in



4.2. Analytical Hydrodymamics at finite isospin potential 77

front of the action integral in (4.25) can be written as

TD7
(2πα′)2

4
TR(2π2R3) = 2−7π−3gs

−1(α′)−2R3 . (4.26)

Note, that equation (4.25) still contains cubic and quarticterms in the fluctuations but we
have deliberately chosen this covariant form since it is more compact. We will neglect cubic
and quartic contributions in a later step. The fluctuationsAa

µ(t, x = 0, y = 0, z, u) without
loss of generality are assumed to depend on timet, the third directionx3 = z and the radial
AdS coordinateu only while we choose a gauge such that the field has componentsin the
Minkowski directions only, i.e.ν = 0, 1, 2, 3.

F̂ a
µνF̂

a µν = 4∂[µÂ
a
ν]∂

[µÂν] a + 4fabc∂[µÂ
a
ν]Â

µ bÂν c + fabcfab′c′Âb
µÂ

b
νÂ

µ b′Âν c′

= 4∂[µ(δ
a3δν]0µ+ Aa

ν])∂
[µ(δa3δν]0µ+ Aν] a)

+4fabc∂[µ(δa3δν]0µ+ Aa
ν])(δ

b3δµ]0µ+ Aµ] b)(δc3δν]0µ+ Aν] c)

+fabcfab′c′(δb3δµ]0µ+ Ab
µ])(δ

c3δν]0µ+ Ac
ν])(δ

b′3δµ]0µ+ Aµ] b′)(δc′3δν]0µ+ Aν] c′) .(4.27)

This expression simplifies considerably by noting that derivatives acting on the constantµ
vanish. Furthermore the terms including more than two background fieldsµ vanish because
of the antisymmetrization. For example

fabc∂[µA
a
ν]δ

µ0δb3µδν0δc3µ = 0 . (4.28)

The mathematical reason for this to vanish is that more than one background gauge field term
is contracted with one single structure constant. Since every term including the background
gauge fieldµ by our choice always has to contain the factorδ3a, it is clear that more than one
such factor forces two of the flavor indices infabc to be equal to 3:f 33c = 0. Since there are
at most two different structure constants in one single termsuch asffµµAA (schematically),
we can have at most two background gauge fields in one term. Oneof the twoµ has to be
contracted with the first structure constantf the other has to be contracted with the other one.
Since we are interested in two-point functions we are also free to neglect all terms that are cu-
bic or higher order in the field fluctuationsO(AAA,AAAA, . . . ). After these considerations
the action factor (4.27) becomes

F̂ a
µνF̂

a µν = 4∂[µA
a
ν]∂

[µAν] a + 4fa3cg00∂[0A
a
ν]A

ν cµ+ 4fab3g00∂[µA
a
0]A

µ bµ

+fa3cfa3c′µ2Ac
νA

ν c′ + fa3cfab′3µ2g00Ac
0A

b′

0

+fab3fa3c′µ2g00Ab
0A

c′

0 + fab3fab′3µ2Ab
µA

µ b′ (4.29)

= 4∂[µA
a
ν]∂

[µAν] a + 8fab3µg00∂[νA
a
0]A

ν b

+2µ2(gµµ′

A1
µA

1
µ′ + gµµ′

A2
µA

2
µ′ − g00A1

0A
1
0 − g00A2

0A
2
0) . (4.30)

Using this simplified factor (4.30) in the quadratic action (4.25) we derive the equations of
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motion for the gauge field componentsAa
µ using the Euler-Lagrange equation

0 = ∂κ

[

δS
(2)
D7

δ(∂κAd
σ)

]

− δS
(2)
D7

δAd
σ

(4.31)

= ∂κ

[
δ

δ(∂κAd
σ)

(
√−ggµµ′

gνν′

F̂ a
µνF̂

a
µ′ν′)

]

− δ

δAd
σ

(
√−ggµµ′

gνν′

F̂ a
µνF̂

a
µ′ν′) (4.32)

(4.33)

After a few simplifications by interchanging indices the equations of motion can be written as

0 = 2∂κ

[√−ggκκ′

gσσ′ (
∂[κ′Ad

σ′]

)]

+µfdb3
[

δσ0∂κ(
√−gg00gκκ′

Ab
κ′) +

√−gg00gσµ∂µA
b
0 − 2

√−gg00gσµ∂0A
b
µ

]

−µ2√−gg00gσσ′ [
δd1(A1

σ′ −A1
0δ0σ′) + δd2(A2

σ′ −A2
0δ0σ′)

]
. (4.34)

There is one free space-time indexσ which can take values in the four Minkowski direc-
tions (x0 = t, x1 = x, x2 = y, x3 = z) and in the radial AdS-directionx4 = u as well.
Therefore we can split equation (4.34) into five distinct differential equations which are cou-
pled with each other. There is also one free flavor indexd which we will consider in detail
shortly. Let us start choosing the free indexσ = 1

0 = 2∂κ

[√−ggκκ′

g1σ′ (
∂[κ′Ad

σ′]

)]

+µfdb3
[

δ10∂κ(
√−gg00gκκ′

Ab
κ′) +

√−gg00g1µ∂µA
b
0 − 2

√−gg00g1µ∂0A
b
µ

]

−µ2√−gg00g1σ′ [
δd1(A1

σ′ − A1
0δ0σ′) + δd2(A2

σ′ −A2
0δ0σ′)

]
. (4.35)

This equation only involves the gauge field components in thex1-direction and writing down
the other four equations we will see later, that this equation decouples from all of them and
is therefore the simplest one to solve. We note here that the inverse metric is diagonal such
thatgµµ′

= gµ′µ and it vanishes forµ 6= µ′, so we get

0 = 2∂κ

[√−ggκκ′

g11
(
∂[κ′Ad

1]

)]

+µfdb3
[√−gg00g11∂1A

b
0 − 2

√−gg00g11∂0A
b
1

]

−µ2
√−gg00g11

[
δd1A1

1 + δd2A2
1

]
. (4.36)

Now recall that we have chosen the geometry such thatAa
µ(x0, x1 = 0, x2 = 0, x3, x4), which

implies that the derivatives of fluctuations in all other than x0, x3, x4-directions vanish

∂1,2A
a
µ ≡ 0 , ∂5,6,7A

a
µ ≡ 0 . (4.37)

Considering this gives

0 = ∂κ

[√−ggκκ′

g11
(
∂κ′Ad

1

)]

− 2µfdb3
√−gg00g11∂0A

b
1

−µ2√−gg00g11
[
δd1A1

1 + δd2A2
1

]
. (4.38)
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Now we transform to Fourier space with conventions given in equation (3.15)

0 = −iω
[√−gg00g11

(
−iωAd

1

)]
+ iq

[√−gg33g11
(
iqAd

1

)]
+ ∂u

[√−gg44g11
(
∂uA

d
1

)]

−2µfdb3√−gg00g11∂0A
b
1 − µ2√−gg00g11

[
δd1A1

1 + δd2A2
1

]
. (4.39)

We abbreviate derivatives in radial AdS-direction∂uA = A′ and sort the equation in deriva-
tives of the gauge field fluctuationsA, A′, A′′ and normalize it such that the second derivative
has the coefficient one

0 = Ad
1

′′
+
∂u (

√−gg11g44)√−gg11g44
Ad

1

′−g
00
[
ω2Ad

1 − 2ifdb3ωµAb
1 + µ2(δd1A1

1 + δd2A2
1)
]
+ g33q2Ad

1

g44
.

(4.40)
Turning to the free flavor indexd we recall that it can take the values1, 2, 3 corresponding to
the three flavor directions we introduced by assuming anSU(Nf = 2)-isospin flavor symme-
try. We split (4.40) into three equations

0 = A1
1
′′
+
∂u (

√−gg11g44)√−gg11g44
A1

1
′ − g00

[
ω2A1

1 − 2if 1b3ωµAb
1 + µ2(δ11A1

1 + δ12A2
1)
]
+ g33q2A1

1

g44
,

0 = A2
1
′′
+
∂u (

√−gg11g44)√−gg11g44
A2

1
′ − g00

[
ω2A2

2 − 2if 2b3ωµAb
1 + µ2(δ21A1

1 + δ22A2
1)
]
+ g33q2A2

1

g44
,

0 = A3
1
′′
+
∂u (

√−gg11g44)√−gg11g44
A3

1
′ − g00ω2 + g33q2

g44
A3

1 .

By using the antisymmetry of the structure constantsf 3b3 = 0, fabc = −f bac we arrive at

0 = A1
1
′′

+
∂u (

√−gg11g44)√−gg11g44
A1

1
′ − g00 [ω2A1

1 − 2iωµA2
1 + µ2A1

1] + g33q2A1
1

g44
, (4.41)

0 = A2
1
′′

+
∂u (

√−gg11g44)√−gg11g44
A2

1
′ − g00 [ω2A2

2 + 2iωµA1
1 + µ2A2

1] + g33q2A2
1

g44
, (4.42)

0 = A3
1
′′

+
∂u (

√−gg11g44)√−gg11g44
A3

1
′ − g00ω2 + g33q2

g44
A3

1 . (4.43)

Decoupling transformation These three differential equations for flavor components of
the gauge field inx1-direction are coupled in the first two flavor directions while the third
equation for the componentA3

1 decouples from all others. We decouple the first two equations
as well by a field transformation

X1 = A1
1 + iA2

1 , Y1 = A1
1 − iA2

1 . (4.44)

After this transformation the equations of motion for the three new fieldsX1, Y1, A
3
1 are given

by

0 = X1
′′ +

∂u (
√−gg11g44)√−gg11g44

X1
′ − g00(µ− ω)2 + g33q2

g44
X1 ,

0 = Y1
′′ +

∂u (
√−gg11g44)√−gg11g44

Y1
′ − g00(µ+ ω)2 + g33q2

g44
Y1 ,

0 = A3
1
′′
+
∂u (

√−gg11g44)√−gg11g44
A3

1
′ − g00ω2 + g33q2

g44
A3

1 . (4.45)
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We are working in the background given by the metric (3.12) with the inverse components and
determinant

g00 = − u

b2R2f(u)
, g11 = g22 = g33 =

u

b2R2
, g44 = guu =

4u2f(u)

R2
,

√−g =
b4R5

2u3
, b = πT , (4.46)

so that the coefficients can be evaluated to

∂u (
√−gg11g44)√−gg11g44

=
f ′(u)

f(u)
, −g

00(µ∓ ω)2 + g33q2

g44
=

(m ∓ w)2 − q2f(u)

uf(u)2
, (4.47)

where we used the dimensionless frequency, momentum and chemical potential

w = ω/(2πT ) , q = q/(2πT ) , m = µ/(2πT ) , (4.48)

respectively, which have already been introduced at the beginning of section 3.1.2. These
coefficients (4.47) are singular at the horizonu = 1 and at the boundaryu = 0 just like in the
example given in section 3.1.2. Therefore we apply exactly the same steps in order to gain the
indices at the horizon

β = ∓ i

2
(w ∓ m) , (4.49)

where the upper sign inside the bracket belongs to the index for the fieldX1 and the lower one
gives the index forY1. The indices at the boundary for both fields are given by

α1 = 0 , α2 = 1 . (4.50)

Now the question which index produces the solution that satisfies theincoming wave condi-
tion (which tells us to choose only those solutions which propagate into the black hole horizon,
see section 3.1.2 for a detailed discussion) is a bit more subtle than in the previous example.
Let us assume for definiteness that bothm, w ≥ 0. So in the rest of this thesis we assume
that the chemical potentialµ or m is real and writingw in order relations we mean only the
real part ofw. In this case there is only one index choice for the fieldY1 sincew + m ≥ 0
and we know that the negative indexβ = −i/2(w+m) corresponds to the incoming wave. In
contrast to this we have to distinguish four cases for the index ofX1

β =







− i
2
(w − m) for w ≥ m : incoming

− i
2
(w − m) for w < m : outgoing

+ i
2
(w − m) for w ≥ m : outgoing

+ i
2
(w − m) for w < m : incoming

, (4.51)

so fixingm we choose the incoming solution by choosing the first index ifthe frequencyw
is greater or equal to the chemical potentialm, and we choose the last index ifw is smaller.
Let us carry on consideringX1 first. We also need to modify the hydrodynamic expansion
Ansatz (3.24). Recall that our approach is to split the singular from the regular behavior in the
solution according to

X1 = (1 − u)βF (u) , (4.52)
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whereF is a regular function ofu. Our first choice is that the chemical potential is of the
same order as the frequencyw ∼ m and therefore the small quantities to expand the solution
in are(w − m) andq2. In other words we expand in the spatial momentumq2 around zero
while we expand in the frequencyw around the fixed value of the chemical potentialm.

X1(u) = (1 − u)β
(
F0 + (w − m)F1 + q2G1 + . . .

)
, (4.53)

X1
′(u) = −β(1 − u)β−1

(
F0 + (w − m)F1 + q2G1 + . . .

)

+(1 − u)β
(
F0

′ + (w − m)F1
′ + q2G1

′ + . . .
)
, (4.54)

X1
′′(u) = β(β − 1)(1 − u)β−2

(
F0 + (w − m)F1 + q2G1 + . . .

)

−2β(1 − u)β−1
(
F0

′ + (w − m)F1
′ + q2G1

′ + . . .
)

+(1 − u)β
(
F0

′′ + (w − m)F1
′′ + q2G1

′′ + . . .
)
. (4.55)

For definiteness let us consider only the caseβ = −i(w − m)/2 wherew ≥ m. Plugging this
expansion into the equation of motion (4.45) and seperatingordersO(1), O(q2) andO(w−m)
from each other gives

O(1) : 0 = F0
′′ − 2u

1 − u2
F0

′ ,

O(w − m) : 0 =
i

2(1 − u)2
F0 +

i

1 − u
F0

′ + F1
′′ − iu

(1 − u2)(1 − u)
F0 −

2u

(1 − u)2
F1

′ ,

O(q2) : 0 = G1
′′ − 2u

1 − u2
G1

′ − 1

u(1 − u2)
F0 . (4.56)

Alternative hydrodynamic expansion By choosing the hydrodynamic Ansatz (4.53) we
assumed from the beginning that the frequency and chemical potential have to be treated at
equal footing. We can check this assumption by taking a slightly more general Ansatz

X1(u) = (1 − u)β
(
F0 + wF1 + mH1 + q2G1 + . . .

)
. (4.57)

The key point here is that we still assumew, m, q2 to be of the same order but we allow an
individual expansion coefficientH1 for the chemical potential. Using this more general ex-
pansion in the equation of motion (4.45) and seperating ordersO(1), O(q2), O(w) andO(m)
from each other gives

O(1) : 0 = F0
′′ − 2u

1 − u2
F0

′ ,

O(w) : 0 =
i

2(1 − u)2
F0 +

i

1 − u
F0

′ + F1
′′ − iu

(1 − u2)(1 − u)
F0 −

2u

(1 − u)2
F1

′ ,

O(m) : 0 = − i

2(1 − u)2
F0 −

i

1 − u
F0

′ −H1
′′ +

iu

(1 − u2)(1 − u)
F0 +

2u

(1 − u)2
H1

′ ,

O(q2) : 0 = G1
′′ − 2u

1 − u2
G1

′ − 1

u(1 − u2)
F0 . (4.58)

Here we see that the coefficientsH1 andF1 have to satisfy the same equation of motion. This
is already clear from the start if we look at the differentialequation (4.45) and the Ansatz so
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that we note thatm andw always appear as a sum(w − m), at least at linear order inw, m

which we solely consider here. So there is no singlem or w, so both have identical factors
in the equation of motion and thus their expansion coefficients have to be identical (provided
both satisfy the same boundary conditions)

H1 = F1 . (4.59)

We have now learned explicitly that our first Ansatz (4.53) isfully justified.

Solving the hydrodynamic differential equations Our efforts have recast our problem
into a set of differential equations (4.45) which are only coupled through the leading order
functionF0. ChoosingF0 to be constant (with respect to the radial coordinate)F0 = C is
compatible with all the equations of motion and decouples the system

O(1) : F0 = C ,

O(w − m) : 0 =
iC

2(1 − u)2
+ F1

′′ − iCu

(1 − u2)(1 − u)
− 2u

(1 − u)2
F1

′ ,

O(q2) : 0 = G1
′′ − 2u

1 − u2
G1

′ − C

u(1 − u2)
. (4.60)

These are effectively first order differential equations with an inhomogeneity and we can solve
them with

F0 = C ,

F1 =
iC

2
ln

1 + u

2
,

G1 =
C

24

[
π2 + 12 lnu ln(1 + u) + 12Li2(1 − u) + 12Li2(−u)

]
. (4.61)

The functionLi2(u) is the double logarithm and the polylogarithm in general is defined as

Lin(u) =
n=∞∑

n=1

uk

kn
. (4.62)

Note, that we would not get these solutions (4.61) simply using Mathematica since the bound-
ary conditions we have to satisfy here are a bit tricky. Just as described in section 3.1.2 the
general solutions forF1 andG1 each come with two integration constants which have to be
fixed by requiring thatlimu→1 F1 = 0 and limu→1 F1 = 0. In this horzion limit two terms
in each solution become divergent and one has to impose the condition that these cancel each
other in order to get a regular solution. See also equation (3.29) and the discussion below
it. The constantC can now be determined in terms of the boundary fields, momentum and
frequency as described in section 3.1.2 and we get

C =
8Xbdy

1

8 − 4w ln 2 + π2q2
. (4.63)
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Now using the solutions (4.61) and the expression forC from (4.63) in the hydrodynamic
Ansatz (4.53) we get the solution to the transversal field

X1,2 =
8Xbdy

1,2 (1 − u)−i w−m

2

8 + π2q2 − 4i ln 2(w − m)

[

1 + (w − m)
i

2
ln

1 + u

2
(4.64)

+
q2

24

(
π2 + 12 lnu ln(1 + u) + 12Li2(1 − u) + 12Li2(−u)

)
]

for w ≥ m ,

while the derivative of its finite part turns out to be

X1,2
′ = i(w − m)Xbdy

1,2 for w ≥ m . (4.65)

We have also included the Minkowski index2 here because writing down the equations of
motion for the componentX2 we discover that it is identical to the equation forX1. Now
recall that we have choosenw ≥ m. Finding the solution for smaller frequenciesw < m

amounts to redoing the above equation with replacing all thefrequency potential brackets by
absolute values(w − m) → |w − m| = (m − w) and keeping all the signs as they are. So we
only have to switch the order in the final solution to get the small frequency solution and we
can write

X1,2 =
8Xbdy

1,2 (1 − u)−i m−w

2

8 + π2q2 − 4i ln 2(m − w)

[

1 + (m − w)
i

2
ln

1 + u

2
(4.66)

+
q2

24

(
π2 + 12 ln u ln(1 + u) + 12Li2(1 − u) + 12Li2(−u)

)
]

for w < m ,

while the derivative of it’s finite part is given by

X1,2
′ = i(m − w)Xbdy

1,2 for w < m . (4.67)

Similarly we get the solution for the other flavor combination fieldsY1,2 by an analogous
computation replacing(w − m) → (w + m)

Y1,2 =
8Y bdy

1,2 (1 − u)−i w+m

2

8 + π2q2 − 4i ln 2(w + m)

[

1 + (w + m)
i

2
ln

1 + u

2
(4.68)

+
q2

24

(
π2 + 12 ln u ln(1 + u) + 12Li2(1 − u) + 12Li2(−u)

)
]

for anyw ,

and its derivative
Y1,2

′ = i(w + m)Xbdy
1,2 for anyw . (4.69)

Finally the third flavor direction components are obtained as in [28]

A3
1,2

′
= iwA3 bdy

1,2 for anyw . (4.70)

Comparing our solutions with those at vanishing chemical potentialµ ≡ 0 [28] we learn
that turning on a constant chemical potentialm results in the substitution

{
w → (w − m) for w ≥ m

w → (m − w) for w < m
. (4.71)

This is due to the fact that the wayAν → µδ0ν +Aν in which we introducem makesµ formally
identical to a time derivative. The easiest way to understand this fact is to note the form of the
covariant derivative appearing in the Lagrangian in time directionD0 = ∂0 + A0 = ∂0 + µ.
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4.2.2 Correlators of transversal components

In this section we compute the on-shell action for transversal and longitudinal or time-like
components of the gauge field. Furthermore the correlators of transversal components are
computed here. Let us first assumew ≥ m for definiteness.

The non-Abelian on-shell action In order to apply the correlator recipe and identify the
relevant terms in the on-shell action to be evaluated at the boundary, we need to compute the
on-shell action first. Starting from the action (4.25) together with the explicit expression (4.30)
we integrate the action by parts to obtain

S
(2)
D7 = TD7TR(2π2R3)

(2πα′)2

4
2

{∫

d4x
[√−gg44gνν′

(∂4A
a
ν)A

a
ν′

]u=1

u=0

−
∫

d4xdu
[

2∂µ′(
√−ggµµ′

gνν′

∂[µA
a
ν])A

a
ν′

−µ2fdb3f ba3√−gg00gjj′(Aa
j′ − Aa

0δj′0)A
b
j

+2µfab3√−gg00gjj′(∂jA
b
j′A

a
0 − ∂0A

b
j′A

a
j )
]}

. (4.72)

Note that we recover the AdS-boundary term (the first term in equation (4.72)) which is also
present in the Abelian background. All other (Minkowski) boundary terms vanish by the
standard QFT normalizability argument for fields[Aν∇Aν ]

∞
~x=−∞ = 0, i.e. the fieldAν(~x) has

to vanish at infinity in order for the action to be finite and forthe theory to be normalizable.
In addition we have three non-vanishing terms with the full integral over the four Minkowski
directions and over the radial AdS direction.

We now identify the second and third term of this on-shell action (4.72) with parts of the
equation of motion. After multiplying the equation of motion (4.34) with the fieldAd

µ and
reordering we get

2∂µ′(
√−ggµµ′

gνν′

∂[µA
a
ν])A

a
ν′ − µ2fdb3f ba3√−gg00gjj′(Aa

j′ −Aa
0δj′0)A

b
j (4.73)

= −µfab3
{

∂κ[
√−gg00gκκ′

Ab
κ′)Aa

0 +
√−gg00gκκ′

(∂κA
b
0A

a
κ′ − 2(∂0A

b
κ)A

a
κ′]
}

.

Substituting this into the action (4.72) finally yields the on-shell action

S
(2)
on-shell = TD7TR(2π2R3)

(2πα′)2

4
2

∫

d4x

{[√−gg44gνν′

(∂4A
a
ν)A

a
ν′

]u=1

u=0

−2µfab3

∫

du
√−gg00g33∂3A

b
[3A

a
0]

}

. (4.74)

Since we transformed the solutions to flavor combinationsXµ, Yµ we also need to transform
the on-shell action to obtain correlators of the new field combinations. In order to make the
result obvious note the relations

A1
j =

Xj + Yj

2
, A2

j =
Xj − Yj

2i
, (4.75)
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and we get the on-shell action for flavor fieldsX, Y andA3 in momentum space after a Fourier
transformation of each gauge field fluctuation

S
(2)
on-shell = TD7TR

(2πα′)2

4
(2π2R3)2

×
∫

d4q

(2π)4

{ √−g g44gjj′
[
1

2
(Xj

′Yj′ + Yj
′Xj′) + A3

j
′
A3

j′

]∣
∣
∣
∣

uh=1

ub=0

(4.76)

+ µq

1∫

0

du
√−gg00g33

(
X[0Y3] − Y[0X3]

)}

.

The term in the last line merely gives contact terms which we neglect here. Our on-shell
action (4.76) superficially suggests that the off-diagonalcorrelators, such asGXY

03 , vanish.
However, due to the fact that some of our bulk solutionsXj andYj depend on more than
one boundary field (as we will see later in e.g. (4.106)), the time-x3-component off-diagonal
correlatorsG03, G30 do not vanish.

Correlators Using the solutions (4.64) in the on shell action (4.76) as prescribed by the
recipe (3.10) gives the transversal correlators

GXY
11 = GXY

22 = (−2)TRTD7
(2πα′)2

4
(2π2)R3

√−gguug11X1
′Y1

X1Y1

∣
∣
∣
∣
u→0

. (4.77)

The factor can be simplified to

(−2)TRTD7
(2πα′)2

4
(2π2R3) = − R3TR

32π3(α′)2gs

, (4.78)

which combines with factors from the metric components to give the overall factorNcTRT
2/4.

Then (4.77) yields the correlators

GXY
11 = GXY

22 = −iNcTRT

8π
(ω − µ)

16 + π2q2 + 4i(ω − µ) ln 2

16 + 2π2q2 + 8i(ω − µ) ln 2
+ . . . . (4.79)

Expanding the fraction in a Taylor double series in(w − m) andq leaves us with

GXY
11 = GXY

22 = −iNcTRT

8π
(ω − µ)

[

1 +
π2q2

16
+ divergentO(q2) + . . .

]

(4.80)

= −iNcTRT

8π
(ω − µ) + . . . for w ≥ m , (4.81)

where we have renormalized all expressions in the second step (subtracted the divergent term
of orderq2). Recall that we have to go through the same procedure with the other indexβ for
small frequenciesw < m. By analogy we know that the correlator turns out to be

GXY
11 = GXY

22 = −iNcTRT

8π
(µ− ω) + . . . for w < m . (4.82)
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The other nonzeroY X-flavor combination gives the correlatorsGY X which involve a
derivative of the fieldY for which we have only one index choiceβ = −i(w + m)/2.

GY X
11 = GY X

22 = −iNcTRT

8π
(µ+ ω) + . . . for anyw . (4.83)

Gauge fluctuations pointing along third flavor direction andthus along the background gauge
field do not feel the chemical potential. Their correlationsturn out to be equal to those found
at vanishing chemical potential [28] up to a different normalization (the correlators from [28]
have to be multiplied by 4 in order to match the correspondingones computed here). Our
correlators read

G33
11 = G33

22 = −iNcTRT

4π
ω + . . . for anyw . (4.84)

All other flavor combinations vanish since the on-shell action (4.76) does not contain any
combination such asX ′X, Y ′Y .

4.2.3 Calculation of longitudinal fluctuations

Starting from the general equation of motion (4.34) we choose the free indexσ = 0, 3, 4
which gives a system of three coupled equations of motion forthe components of gauge field
fluctuationsAa

0, A
a
3

σ = 0 : 0 = Ad
0

′′
+
∂4(

√−gg00g44)

(
√−gg00g44)

Ad
0

′ − g33

g44

[
q2Ad

0 + ωqAd
3 − iqµf db3Ab

3

]
, (4.85)

σ = 3 : 0 = Ad
3

′′
+
∂4(

√−gg33g44)

(
√−gg3g44)

Ad
3

′ − g00

g44

[
(ω2Ad

3 + ωqAd
0)

−iµfdb3(2ωAb
3 + qAb

0) − µ2(δd1A1
3 + δd2A2

3)
]
, (4.86)

σ = 4 : 0 = ωAd
0

′ − q
g33

g00
Ad

3

′ − iµfdb3Ab
0

′
. (4.87)

Recall here that our gauge choice has fixedAa
4 ≡ 0. Using the metric coefficients (4.46) of the

black hole background gives

σ = 0 : 0 = Ad
0

′′ − 1

uf(u)

[
q2Ad

0 + wqAd
3 − iqmfdb3Ab

3

]
, (4.88)

σ = 3 : 0 = Ad
3

′′
+
f ′(u)

f(u)
Ad

3

′
+

1

uf(u)2

[
(w2Ad

3 + wqAd
0)

−imfdb3(2wAb
3 + qAb

0) + m2(δd1A1
3 + δd2A2

3)
]
, (4.89)

σ = 4 : 0 = wAd
0

′
+ qf(u)Ad

3

′ − imfdb3Ab
0

′
. (4.90)

These three equations for the two componentsAa
0, A

a
3 are not independent. Equations (4.88)

and (4.90) imply (4.89). In order to see this we rewrite (4.90)

Ad
0

′
= −w

w
f(u)Ad

3

′
+ i

m

w
fdb3Ab

0

′
, Ad

0

′′
= −w

w
(f ′(u)Ad

3

′
+f(u)Ad

3

′′
)+ i

m

w
fdb3Ab

0

′′
. (4.91)
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Using (4.91) in (4.88) gives

0 = Ad
3

′′
+
f ′(u)

f(u)
Ad

3

′
+

1

uf(u)2

(
wqAd

0 + w2Ad
3

)
− ifdb3

(
m

qf(u)
Ab

0

′′
+

wm

uf(u)2
Ab

3

)

. (4.92)

We compare this expression to the third equation in the system (4.89) and conclude that, if
these two expressions ought to be identical, the following equation has to be satisfied

−ifdb3

(
m

qf(u)
Ab

0

′′
+

wm

uf(u)2
Ab

3

)

=
1

uf(u)2

[
−imfdb3(2wAb

3 + qAb
0) + m2(δd1A1

3 + δd2A2
3)
]
.

(4.93)
In order to verify this relation we go one step back from the general equation of motion (4.34)
and rewrite the term quadratic in the chemical potentialm in terms of structure constantsfdb3

of the flavor group
m2
(
δd1A1

3 + δd2A2
3

)
= −m2fdb3f ba3Aa

3 . (4.94)

Using this identity in (4.93) we get

0 =
imfdb3

qf(u)

[

Ab
0

′′ − 1

uf(u)
(qwAb

3 + q2Ab
0 − iqmf ba3Aa

3)

]

, (4.95)

and comparing to (4.88) we find that the expression in brackets is identical to the right hand
side of the equation of motion (4.88) and therefore has to vanish. In this way we verified that
equation (4.92) implied by (4.88) and (4.90) is equivalent to (4.89). We thus effectively have
two coupled second order differential equations for two components. These we can decouple
as far as the Minkowski indices are concerned by rewriting (4.88)

Ad
3 =

uf(u)

wq
Ad

0

′′ − q

w
Ad

0 + i
m

w
fdb3Ab

3 , (4.96)

and using it in (4.90) gives

0 = Ad
0

′′′
+

(uf(u))′

uf(u)
Ad

0

′′
+

1

uf(u)2

(

w2Ad
0

′ − q2f(u)Ad
0

′ − m2fdb3f ba3Aa
0
′ − 2iwmfdb3Ab

0

′)
,

(4.97)
which depends only on gauge fluctuation componentsAd

0 in time direction. This equation
can be split into three equations, one for each flavord = 1, 2, 3 and we note that the flavor
structure couples these three equations

0 = A1
0
′′′

+
(uf(u))′

uf(u)
A1

0
′′

+
1

uf(u)2

[

(w2 − f(u)q2 + m2)A1
0
′ − 2iwmA2

0
′
]

, (4.98)

0 = A2
0
′′′

+
(uf(u))′

uf(u)
A2

0
′′

+
1

uf(u)2

[

(w2 − f(u)q2 + m2)A2
0
′
+ 2iwmA1

0
′
]

, (4.99)

0 = A3
0
′′′

+
(uf(u))′

uf(u)
A3

0
′′

+
1

uf(u)2
(w2 − f(u)q2)A3

0
′
. (4.100)

The flavor coupling can be resolved as in the transversal caseby use of a flavor transformation

X0 = A1
0 + iA2

0 , Y0 = A1
0 − iA2

0 , (4.101)



88 Chapter 4. Holographic thermo- and hydrodynamics

which has the same structure as (4.44), and we are left with

0 = X0
′′′ +

(uf(u))′

uf(u)
X0

′′ +
(w − m)2 − f(u)q2

uf(u)2
X0

′ , (4.102)

0 = Y0
′′′ +

(uf(u))′

uf(u)
Y0

′′ +
(w + m)2 − f(u)q2

uf(u)2
Y0

′ , (4.103)

0 = A3
0
′′′

+
(uf(u))′

uf(u)
A3

0
′′

+
1

uf(u)2
(w2 − f(u)q2)A3

0
′
. (4.104)

From this point on the solution of this decoupled system of equations almost concurs with
the method applied in the transversal case 4.2.1. The only substantial difference is that because
of the equations being second order equations for the derivativesX0

′, Y0
′, we have to choose

the Ansatz
X0,3

′ = (1 − u)βF (u) , (4.105)

whereF is a regular function ofuwhich is different forX0 andX3. We have chosen an Ansatz
for the derivative of the field instead of choosing this Ansatz for the fieldX itself as in (4.52).
Proceeding analogously to the transversal case we obtain solutions for the derivatives directly
as

X0
′ =







q2Xbdy
0 +(w−m)qXbdy

3

i(w−m)−q2 + lim
ǫ→0

ln ǫ
[

q2Xbdy
0 + (w − m)qXbdy

3

]
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q2X
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3
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ǫ→0

ln ǫ
[

q2Xbdy
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3

]

for w < m
,

(4.106)

Y0
′ =

q2Y bdy
0 + (w + m)qY bdy

3

i(w + m) − q2
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ǫ→0
ln ǫ
[

q2Y bdy
0 + (w + m)qY bdy

3

]

, (4.107)
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3

iw − q2
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ln ǫ
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3

]

, (4.108)

for the time components and similarly for the spatial components

X3
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(4.109)

Y3
′ = −(w + m)qY bdy

0 + (w + m)2Y bdy
3

i(w + m) − q2

− lim
ǫ→0

ln ǫ
[

(w + m)qY bdy
0 + (w + m)2Y bdy
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, (4.110)

A3
3
′

= −wqA3 bdy
3 + w2A3 bdy

3

iw − q2
− lim

ǫ→0
ln ǫ
[

wqA3 bdy
3 + w2A3 bdy

3

]

. (4.111)

Here just as in the case for transversal fluctuations we need to choose the appropriate signs
for the solutions to the fieldsX0,3 in order for the index to be negative such that the incoming
wave boundary condition is satisfied as described in the tranversal case below (4.51).
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4.2.4 Correlators of longitudinal components

The longitudinal and time component correlators are evaluated in analogy to the previous
section and we obtain

GXY
00 =

NcTRTq
2

8π[i(ω − µ) −Dq2]
, (4.112)

GXY
33 =

NcTRT (ω − µ)2

8π[i(ω − µ) −Dq2]
, (4.113)

GXY
03 = − NcTRT (ω − µ)q

8π[i(ω − µ) −Dq2]
= GXY

30 , (4.114)

GY X
00 =

NcTRTq
2

8π[i(ω + µ) −Dq2]
, (4.115)

GY X
33 =

NcTRT (ω + µ)2

8π[i(ω + µ) −Dq2]
, (4.116)

GY X
03 = − NcTRT (ω + µ)q

8π[i(ω + µ) −Dq2]
= GY X

30 , (4.117)

G33
00 =

NcTRTq
2

4π[iω −Dq2]
, (4.118)

G33
33 =

NcTRTω
2

4π[iω −Dq2]
, (4.119)

G33
03 = − NcTRTωq

4π[iω −Dq2]
= G33

30 , (4.120)

where we have introduced the coefficient

D =
1

2πT
. (4.121)

We have not written this out here but the above correlators are understood to change sign in
the same way the transversal ones did. This means we have above correlators forω ≥ µ but
we need to replace(ω−µ) → (µ−ω) for ω < µ for the same reasons discussed below (4.50).

4.2.5 Discussion

This section gives a physical interpretation of the effectscoming from adding a finite constant
isospin chemical potential to theN = 4 SYM theory coupled to a fundamentalN = 2
hypermultiplet. As seen in the previous sections on the gravity side this addition amounts
to adding a background gauge field time component in the AdS-Schwarzschild black hole
background. Furthermore, we compare the approach presented here to the approach taken
in [1] which neglects more terms, in particular those of order O(m2), in the action than the
present approach. We will see that the results of [1] which appear rather cumbersome undergo
a natural completion by taking into account the neglected terms of orderO(m2). The keypoint
to note is that the additional approximation in [1] lead to a misidentification of the leading
order term.
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Discussion of [1] The approach taken in [1] is identical with the one presentedin the
previous sections up to one additional approximation. In that earlier work [1] it was assumed
that the chemical potential is smallm ≪ 1. Therefore we expanded the action to quadratic
order in fluctuations to arrive at an equation identical to (4.30). But then we went on also
neglecting the terms of orderO(m2) in that action which leads to the equations of motion

0 = 2∂κ

[√−ggκκ′

gσσ′ (
∂[κ′Ad

σ′]

)]

+µfdb3
[

δσ0∂κ(
√−gg00gκκ′

Ab
κ′) +

√−gg00gσµ∂µA
b
0 − 2

√−gg00gσµ∂0A
b
µ

]

.

The approximations taken here implym ∼ Aµ
2, (∂νAµ)2 ≪ 1.

Following the standard procedure to study the singular behavior of the solutions at the
horizon, we essentially find the same indices as before in e.g. (4.49), but with the orderO(m2)
missing

β = ∓
√

−1

4
(w ∓ m)2 = ∓

√

−1

4
(w2 ∓ 2wm +m2

︸︷︷︸

set to 0

) . (4.122)

As a result of this the index obtains a non-analytic structure

β = ∓
√

−1

4
(w2 ∓ 2wm) = ∓iw

2

√

1 ∓ 2m

w
, (4.123)

inheriting this non-analytic structure to all the solutions. At this point in the earlier approach
we had to take a further approximation in order to carry out the indicial procedureand the
hydrodynamic expansionproperly. The index containing the square root mixes different or-
ders of the hydrodynamic expansion parametersw, q2. Therefore we approximate the index
throughm ≫ w ≪ 1 by

β = ∓
√

wm

2
or ± i

√
wm

2
. (4.124)

At this point an intricate contradiction with the first approximationO(m2) ∼ 0 taken in [1]
emerges2. As we know from our full calculation including terms of order O(m2) yields
analytic indices and no second approximation is needed. Nevertheless, if we would like to
we can simply take the full index (4.122) without settingm2 ∼ 0, take the full equations of
motion at this point and try to neglect the orderO(m2) by m ≫ w ≪ 1. Doing so we are
forced to conclude thatm2 ≫ w2. Therefore it becomes clear now from the full calculation
that we should have included the orderO(m2) rather than the orderO(w2). We also see
that the term quadratic in chemical potential is even largerthan the mixed term which we
considered in (4.124). Neglecting the terms quadratic in the chemical potentialO(m2) right
from the beginning in [1] has obstructed the clear view of thesituation that our full calculation
now admits.

As a result the cumbersome combination of approximationsm ≫ w andw produced non-
analytic structures in the correlators which we misidentified as frequency-dependent diffusion
coefficients.

2The author thanks Laurence G. Yaffe for drawing his attention to this point and especially for all helpful
discussions of this.
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Technical interpretation and quasinormal modes We can use the intuition we have
gained from our hydrodynamic considerations in section 3.2.1 and from the example calcu-
lation in 3.1.2 to identify the coefficientD appearing in the correlators (4.112) to (4.120) on
the gauge theory side with the diffusion coefficient for the isospin charge we have introduced.
Comparing our correlators to those at vanishing chemical potential we learn that the main ef-
fect of an isospin chemical potential is to shift the location of poles in the correlators by±µ.
In particular this can be seen from the dispersion relation which we read off the longitudinal
correlation functions

ω = −iDq2 ± µ for w ≥ m , (4.125)

ω = iDq2 + µ for w < m and only inGXY , (4.126)

where the positive sign ofµ corresponds to the dispersion of the flavor combinationGXY and
the negative sign ofµ corresponds toGY X . For the third flavor direction correlatorsG33 there
is no chemical potential contribution in the dispersion relation. Looking at the transversal fla-
vor directions withw ≥ m we note that the imaginary part of the pole location is unchanged
while the real part is changed from zero to the value of the chemical potentialµ. So the diffu-
sion pole is shifted from its position on the imaginary axis to the left and right into the complex
frequency plane. According to the AdS/CFT hydrodynamics interpretation this corresponds to
shifting the hydrodynamic modes (poles in the retarded gauge theory correlator are identified
with the quasinormal frequencies as discussed in section 3.3) or equivalently on the gravity
dual side to shifting the quasinormal modes in the complex frequency plane as shown in fig-
ure 4.1 for the two examplesµ = 0.1, 0.2. To be more precise we observe a shift in the
frequency or energy(w±m) of theSU(2)-flavor gauge field fluctuations. Note that the other
solution for the casew < m would produce a pole/ quasinormal frequency in the upper com-
plex frequency plane corresponding to an enhanced mode. This solution is unphysical since if
we have the finite chemical potentialm then any perturbation introduced into the system has
to have this minimum energy at least, i.e. only perturbations with w ≥ m can form inside
the plasma. Now since we are working at finite spatial momentum q for that perturbation, the
energy of that excitation needs to be even larger thanm.

In figure 4.2 we see as an example the two spectral functionsRXY
00 = −2ImGXY

00 (from
equation (3.60)) valid in different regions (see section 3.2.1 for a discussion of the spectral
function). The red curve is the spectral function for the case w < m while the black curve
shows the casew ≥ m. In any case it is true that the spectral function is non-negative since
the negative parts are cut off because they lie outside the region of validity for that particular
solution. Moreover, only the one which is cut off beloww = m (black curve in figure 4.2
for w ≥ m) is physical, i.e. the red curve is discarded entirely.

The right plot in figure 4.3 shows the dependence of the peak inthe spectral function on
spatial momentumq = 0.1, 0.3, 0.5 (in units of2πT ). Increasing the momentum shifts the
peak in the spectral function to larger frequencies while inthe limit q → 0 the peak ap-
proachesw = m. This behavior confirms the interpretation given above of anexcitation
having to have at least the energyw = m in order to be produced in the plasma. The de-
pendence on the chemical potential is shown in the left plot of figure 4.3. The peaks and the
frequency cut-off atw = m, even the whole spectral function is shifted to a higher frequency
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by the amount of the chemical potential. The peak appearing here is the lowest lying one in
a series of resonance peaks which under certain circumstances we will identify with quasi-
particle excitations in section 5.1. It is important to notethat this particular diffusion peak is
not contained in the spectra computed in section 5.1 becausein that section we setq = 0 for
simplicity. Nevertheless the higher peaks and quasinormalmodes show similar behavior. In
the present setup the peak is just interpreted as a resonancein the plasma which corresponds
to the diffusive hydrodynamic mode at smallw, q, m ≪ 1. Note that the high frequency tail
for valuesw 6≪ 1 is not physical since this is the region where our hydrodynamic expansion
breaks down.

The most striking feature here is that the peak in the spectral function does not appear di-
rectly below the pole in the complex frequency plane but slightly shifted to a higherRew.
Looking at the contour plot this behavior can be traced back to the antisymmetric structure of
the pole. The spectral function surfaceR(Re w, Im w) over the complex frequency plane as
shown in figure 4.2 is antisymmetric around the pole with the high Re w side being positive
showing a pole at+∞ and the lowRe w side being negative showing a pole at−∞. From
figure 4.2 it is also obvious that the poles in the spectral function deform the spectral function
surface antisymetrically such that the spectral function at Im w = 0 is deformed antisymmet-
rically accordingly receiving the structure shown as the black (physical) curve abovew = m

in the left plot of figure 4.2. Note that this behavior is stillpresent if we setµ = 0 such that the
diffusion pole lies on the imaginary frequency axis, but thepeak of the spectral function ap-
pears at a shifted positionω ∝ ±Dq2. A computation of the residues (see also [49]) atµ = 0
confirms this behavior for the correlatorsG00 andG33 while the mixed correlatorG03 gives a
peak in the spectral function centered atw = 0.

Physical interpretation The physical interpretation of this frequency or energy shift leads
us into the internal flavor space. Switching on a background gauge field in the third flavor di-
rection only and letting theSU(2)-fluctuations about it point into an arbitrary internal direction
is completely analog to the case ofLarmor precessionin external space-time. Larmor preces-
sion of a particle with spin, i.e. with a finite magnetic moment in external space (Minkowski
space-time) occurs if for example an electron (spin|s| = 1/2) is placed in an external magnetic
fieldB. If themagnetic momentm of the electron points along the external fieldm||B then the
electron does not feel the field and nothing is changed. In contrast to that the transversal spin-
components or equivalently spins entirely orthogonal to the magnetic field feel a torquem×B

leading to the precession of the spin around the magnetic field B. The frequency of this pre-
cession depends on the strength of the external field as well as on thegyromagnetic moment
taking into account quantum effects and is called Larmor frequency. Let us choose the geom-
etry with the magnetic field pointing along the third space direction, then the torque on the
magnetic moment becomes

m ×B =





m2B3

−m1B3

0



 . (4.127)
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Figure 4.1: Left plot: The analytically computed location of the poles in the flavor-transverse
correlation functionsGXY andGY X at finite chemical potentialsµ = 0.1 (red
squares) and atµ = 0.2 (green diamonds). The left most pole corresponds to
the combinationY X, the one in the middle to33 and the right most one toXY .
Right plot: The contour plot shows the value of the spectral function near the pole
for µ = 0.1 in the complex frequency plane.
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Figure 4.2: Left plot: The spectral function computed from the two correlators is shown ver-
sus only real frequenciesw ∈ R for the chemical potentialm = 0.1. We have
chosen to include the negative branches for completeness but note that the in-
coming wave boundary condition always selects the positivebranch such that the
spectral function is always positive. Right plot: The spectral function surface is
shown over complex values of the frequency. This plot shows the structure of the
spectral function around the diffusion pole shifted toRe w = m = 0.1. Note that
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Figure 4.3: Left plot: The spectral function in transversalflavor direction and longitudi-
nal space-time directionRXY

00 for different values of the chemical potentialµ =
0.1 (blue), 0.3 (light-blue), 0.5 (purple). For simplicity we have chosenD =
1/(2πT ) = 1, q = 0.1 (this means that we set the temperature toT = 1/(2π)).
Right plot: This is the same picture as the left plot with the blue curve being
identical to the blue curve in the left plot but the other curves correspond to
a fixed µ = 0.1 and changing momentumq = 0.1 (blue), q = 0.3 (green),
q = 0.5 (red).

Our situation for the flavor field fluctuations is completely analogous except for the fact that
our precession takes place in the internal flavor space rather than in space-time3. We have the
torque on the flavor field fluctuations inside flavor space





X
Y
A3



×





0
0
µ



 =





µY
−µX

0



 , (4.128)

where the components correspond to the three flavor directions{T 1 + iT 2, T 1 − iT 2, T 3} in
the case ofSU(2)-flavor. Assuming that componentsX, Y,A3 andµ are positive, we conclude
thatX andY are precessing with opposite sense of rotation. The flavor field Larmor frequency
is given by the chemical potentialωL = µ. The chemical potentialµ is the minimum energy
which an excitation has to have in order to be produced and propagated in the plasmawmin =
m.

Problem at the horizon We have introduced the chemical potential in our D3/D7-setup
in the simplest possible way by choosing the corresponding gravity background gauge field
componentA0 = µ+ c/ρ+ . . . to be constant throughout the whole AdS bulk. This includes
the special case that this gravity field does not vanish at theblack hole horizon. Unfortunately
there remains a conceptual problem with this simple constant potential apporach. Studying the
AdS black hole metric (3.12), we see that in these coordinates at the horizonu = 1 the time
component of the metric vanisheslim

u→1
g00 = 0. Therefore a vector in time direction such as∂0

is not well-defined in these coordinates. One possible solution to this problem is to claim that
the background flavor gauge field should vanish at the horizon4. Nevertheless we can argue

3The author is grateful to Dam T. Son for suggesting this interpretation.
4The author is grateful to Robert Myers and David Mateos for pointing this out and suggesting to work with a

non-constant background flavor gauge field.



4.3. Thermodynamics at finite baryon density or potential 95

that the constant background field approach is still justified as a qualitative estimate. Com-
paring to figure 4.5 in the next section where we choose a non-constant background field̃A0

which vanishes at the horizon, we notice that the backgroundgauge field solving the equa-
tions of motion is constant almost everywhere. Only in a small region near the horizon it has
a non-zero derivative which drops quickly to approach zero in the bulk as seen from the slope
of Ã0 in figure 4.5. Since we are interested in the boundary theory only, we can argue that the
constant background field is a good approximation in that region. Taking in account the non-
constant behavior of the flavor background near the horizon merely influences the equation
of motion (not the on-shell action for correlation functions). Solving the equations of motion
for gauge field fluctuations we see that the difference is onlya shift of values at the boundary
coming from integrating the peak near the horizon in∂uÃ0.

In order to incorporate both the simplicity of a constant background field in the bulk and the
vanishing boundary condition at the horizon we could use thetheta functionµ(u) = Θ(u −
uH)µ with a constantµ. Nevertheless, the derivative of this potential has a deltapeak at the
horizon and we have not studied yet how this influences our computation. Finally we should
note that there may be other background field configurations solving this setup which might
not have to vanish at the horizon. In order to study this pointwe would have to go to non-
singular coordinates such as Kruskal coordinates.

4.3 Thermodynamics at finite baryon density or

potential

In this section we will review the thermodynamics of the strongly coupled thermal field theory
dual to a D3/D7-brane configuration in the AdS black hole background (3.12). This section
summarizes the results of the work of Myers et al. on this topic [42, 52, 56, 41] and provides
a few additional remarks. This will help us to interpret our own results within this and similar
setups that follow in the next sections and chapters.

Except from changing the radial coordinate fromu to ̺ we also have to be careful with
the definition of the thermodynamic ensemble in which we are working. It is crucial for
the understanding of all brane thermodynamics to understand that we can work either in the
canonical ensembleor in thegrandcanonical ensemble. The canonical ensemble is in contact
with a heat bath only and we work at an arbitrary but fixed charge densitynB. In contrast
to this situation the grandcanonical ensemble additionally is in contact with a particle bath
such that the chemical potential is fixed at an arbitrary value. In the thermodynamic limit both
ensembles are equivalent but we will see that there are phasespace regions in one ensemble
which we can not reach in the other. Therefore it is instructive to consider both.

Brane configuration and background Let us describe the gravity dual of the canonical
ensemble first, i.e. we fix the charge density which in our caseist the baryon charge densitynB.
We consider asymptoticallyAdS5 × S5 space-time which arises as the near horizon limit of
a stack ofNc coincident D3-branes. More precisely, our background is anAdS black hole,
which is the geometry dual to a field theory at finite temperature (see e.g. [28]). We make use



96 Chapter 4. Holographic thermo- and hydrodynamics

of the coordinates of [42] to write this background in Minkowski signature as

ds2 =
1

2

( ̺

R

)2
(

−f
2

f̃
dt2 + f̃dx2

)

+

(
R

̺

)2
(
d̺2 + ̺2dΩ2

5

)
,

(4.129)

with the metricdΩ2
5 of the unit5-sphere, where

f(̺) = 1 − ̺4
H

̺4
, f̃(̺) = 1 +

̺4
H

ρ4
,

R4 = 4πgsNcα
′2, ̺H = TπR2.

(4.130)

HereR is theAdS radius,gs is the string coupling constant,T the temperature,Nc the number
of colors. In the following some equations may be written more conviniently in terms of the
dimensionless radial coordinateρ = ̺/̺H , which covers a range fromρ = 1 at the event
horizon toρ→ ∞, representing the boundary ofAdS space.

Into this ten-dimensional space-time we embedNf coinciding D7-branes, hosting flavor
gauge fieldsAµ. The embedding we choose lets the D7-branes extend in all directions ofAdS
space and, in the limitρ → ∞, wraps anS3 on theS5. It is convenient to write the D7-brane
action in coordinates where

d̺2 + ̺2dΩ2
5 = d̺2 + ̺2(dθ2 + cos2 θdφ2 + sin2 θdΩ2

3), (4.131)

with 0 ≤ θ < π/2. From the viewpoint of ten dimensional CartesianAdS5×S5, θ is the angle
between the subspace spanned by the 4,5,6,7-directions, into which the D7-branes extend
perpendicular to the D3-branes, and the subspace spanned bythe 8,9-directions, which are
transverse to all branes.

Due to the symmetries of this background, the embeddings depend only on the radial co-
ordinateρ. Definingχ ≡ cos θ, the embeddings of the D7-branes are parametrized by the
functionsχ(ρ). They describe the location of the D7-branes in8, 9-directions. Due to our
choice of the gauge field fluctuations in the next subsection,the remaining three-sphere in this
metric will not play a prominent role.

The metric induced on the D7-brane probe is then given by

ds2 =
1

2

( ̺

R

)2
(

−f
2

f̃
dt2 + f̃ dx2

)

+
1

2

(
R

̺

)2
1 − χ2 + ̺2χ′2

1 − χ2
d̺2

+R2(1 − χ2)dΩ2
3.

(4.132)

Here and in what follows we use a prime to denote a derivative with respect to̺ (resp. toρ in
dimensionless equations). The symbol

√−g denotes the square root of the determinant of the
induced metric on the D7-brane, which is given by

√−g = ̺3 f f̃

4
(1 − χ2)

√

1 − χ2 + ̺2χ′2. (4.133)
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The table below gives an overview of the indices we use to refer to certain directions and
subspaces.

AdS5 S3

coord. names x0 x1 x2 x3 ̺ –

µ, ν, . . .
indices i, j, . . . ̺

0 1 2 3 4

The background geometry described so far is dual to thermalN = 4 supersymmetric
SU(Nc) Yang-Mills theory withNf additionalN = 2 hypermultiplets. These hypermulti-
plets arise from the lowest excitations of the strings stretching between the D7-branes and
the background-generating D3-branes. The particles represented by the fundamental fields of
theN = 2 hypermultiplets model the quarks in our system. Their massMq is given by the
asymptotic value of the separation of the D3- and D7-branes.In the coordinates used here we
write [59]

2Mq√
λT

=
M̄

T
= lim

ρ→∞
ρχ(ρ) = m, (4.134)

where we introduced the dimensionless scaled quark massm.
In addition to the parameters incorporated so far, we aim fora description of the system at

finite chemical potentialµ and baryon densitynB. In field theory, a chemical potential is given
by a nondynamical time component of the gauge field. In the gravity dual, this is obtained by
introducing aρ-dependent gauge field componentĀ0(ρ) on the D7 brane probe. For now we
consider a baryon chemical potential which is obtained fromtheU(1) subgroup of the flavor
symmetry group. The sum over flavors then yields a factor ofNf in front of the DBI action
written down below.

The value of the chemical potentialµ in the dual field theory is then given by

µ = lim
ρ→∞

Ā0(ρ) =
̺H

2πα′ µ̃, (4.135)

where we introduced the dimensionless quantityµ̃ for convenience. We apply the same nor-
malization to the gauge field and distinguish the dimensionful quantityĀ from the dimension-
lessÃ0 = Ā0 (2πα′)/̺H .

The action for the probe branes’ embedding function and gauge fields on the branes is

SDBI = −Nf TD7

∫

d8ξ

√

| det(g + F̃ )|. (4.136)

Hereg is the induced metric (4.132) on the brane,F̃ is the field strength tensor of the gauge
fields on the brane andξ are the branes’ worldvolume coordinates.TD7 is the brane tension
and the factorNf arises from the trace over the generators of the symmetry group under
consideration. For finite baryon density, this factor will be different from that at finite isospin
density.
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In [42], the dynamics of this system of branes and gauge fieldswas analyzed in view of
describing phase transitions at finite baryon density. Herewe use these results as a starting
point which gives the background configuration of the brane embedding and the gauge field
values at finite baryon density. To examine vector meson spectra, we will then investigate the
dynamics of fluctuations in this gauge field background.

In the coordinates introduced above, the actionSDBI for the embeddingχ(ρ) and the gauge
fields’ field strengthF̃ is obtained by inserting the induced metric and the field strength tensor
into (4.136). As in [42], we get

SDBI = −NfTD7̺
3
H

∫

d8ξ
ρ3

4
f f̃(1 − χ2)

×
√

1 − χ2 + ρ2χ′2 − 2
f̃

f 2
(1 − χ2)F̃ 2

ρ0 , (4.137)

whereF̃ρ0 = ∂ρÃ0 is the field strength on the brane.Ã0 depends solely onρ.
According to [42], the equations of motion for the background fields are obtained after

Legendre transforming the action (4.137). Varying this Legendre transformed action with
respect to the fieldχ gives the equation of motion for the embeddingsχ(ρ),

∂ρ

[

ρ5f f̃(1 − χ2)χ′
√

1 − χ2 + ρ2χ′2

√

1 +
8d̃2

ρ6f̃ 3(1 − χ2)3

]

= − ρ3f f̃χ
√

1 − χ2 + ρ2χ′2

√

1 +
8d̃2

ρ6f̃ 3(1 − χ2)3

×
[

3(1 − χ2) + 2ρ2χ′2 − 24d̃2 1 − χ2 + ρ2χ′2

ρ6f̃ 3(1 − χ2)3 + 8d̃2

]

.

(4.138)

The dimensionless quantitỹd is a constant of motion. It is related to the baryon number density
nB by [42]

nB =
1

25/2
NfN

√
λT 3d̃. (4.139)

Below, equation (4.138) will be solved numerically for different initial valuesχ0 andd̃. The
boundary conditions used are

χ(ρ = 1) = χ0, ∂ρχ(ρ)
∣
∣
∣
ρ=1

= 0. (4.140)

The quark massm is determined byχ0. It is zero forχ0 = 0 and tends to infinity forχ0 → 1.
Figure 4.4 shows the dependence of the scaled quark massm = 2Mq/

√
λT on the starting

valueχ0 for different values of the baryon density parametrized byd̃ ∝ nB. In general, a small
(large)χ0 is equivalent to a small (large) quark mass. Forχ0 < 0.5, χ0 can be viewed as being
proportional to the large quark masses. At largerχ0 for vanishingd̃, the quark mass reaches a
finite value. In contrast, at finite baryon density, ifχ0 is close to1, the mass rapidly increases
when increasingχ0 further. At small densities there exists a black hole to black hole phase
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Figure 4.4: The dependence of the scaled quark massm = 2Mq/
√
λT on the horizon

valueχ0 = limρ→1 χ of the embedding.

transition which we will discuss in section 4.3. In embeddings where this phase transition is
present, there exist more than one embedding for one specificmass value. In a small regime
close toχ0 = 1, there are more than one possible value ofχ0 for a givenm. So in this small
region,χ0 is not proportional toMq. The equation of motion for the background gauge field
Ã is

∂ρÃ0 = 2d̃
f 2
√

1 − χ2 + ρ2χ′2
√

f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]
. (4.141)

Integrating both sides of the equation of motion fromρH to someρ, and respecting the bound-
ary conditionÃ0(ρ = 1) = 0 [42], we obtain the full background gauge field

Ã0(ρ) = 2d̃

ρ∫

ρ0

dρ
f
√

1 − χ2 + ρ2χ′2
√

f̃(1 − χ2)[ρ6f̃ 3(1 − χ2)3 + 8d̃2]
. (4.142)

Recall that the chemical potential of the field theory is given by limρ→∞ Ã0(ρ) and thus can be
obtained from the formula above. Examples for the functional behavior ofA0(ρ) are shown
in figure 4.5. Note that at a given baryon densitynB 6= 0 there exists a minimal chemical
potential which is reached in the limit of massles quarks.

The asymptotic form of the fieldsχ(ρ) andA0(ρ) can be found from the equations of motion



100 Chapter 4. Holographic thermo- and hydrodynamics

χ

ρ
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

χ

ρ
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

ρ

Ã
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Figure 4.5: The three figures of the left column show the embedding functionχ versus the
radial coordinateρ, the corresponding background gauge fieldsÃ0 and the dis-
tanceL = ρχ between the D3 and the D7-branes atd̃ = 10−4/4. L is plotted
versusr, given byρ2 = r2 +L2. In the right column, the same three quantities are
depicted ford̃ = 0.25. The five curves in each plot correspond to parametrizations
of the quark mass to temperature ratio withχ0 = χ(1) = 0, 0.5, 0.9, 0.99 (all
solid) and0.99998 (dashed) from bottom up. These correspond to scaled quark
massesm = 2Mq/T

√
λ = 0, 0.8089, 1.2886, 1.3030, 1.5943 in the left plot and

to m = 0, 0.8342, 1.8614, 4.5365, 36.4028 on the right. The curves on the left
exhibitµ ≈ 10−4. Only the upper most curve on the left atχ0 = 0.99998 develops
a large chemical potential ofµ = 0.107049. In the right column curves correspond
to chemical potential valuesµ = 0.1241, 0.1606, 0.5261, 2.2473, 25.3810 from
bottom up.
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in the boundary limitρ→ ∞,

Ā0 = µ− 1

ρ2

d̃

2πα′ + · · · , (4.143)

χ =
m

ρ
+

c

ρ3
+ · · · . (4.144)

Here µ is the chemical potential,m is the dimensionless quark mass parameter given in
(4.134),c is related to the quark condensate by

〈ψ̄ψ〉 = −1

8

√
λNfNcT

3c , (4.145)

andd̃ is related to the baryon number density as stated in (4.139).See also figure 4.5 for this
asymptotic behavior. Theρ-coordinate runs from the horizon valueρ = 1 to the boundary
at ρ = ∞. In most of this range, the gauge field is almost constant and reaches its asymptotic
value, the chemical potentialµ, at ρ → ∞. Only near the horizon the field drops rapidly
to zero. For smallχ0 → 0, the curves asymptote to the lowest (red) curve. So there is
a minimal chemical potential for fixed baryon density in thissetup. At small baryon den-
sity (d̃ ≪ 0.00315) the embeddings resemble the Minkowski and black hole embeddings
known from the case without a chemical potential. Only a thinspike always reaches down to
the horizon.

Brane thermodynamics at vanishing charge density and potential In order to under-
stand the dual gauge theory thermodynamics of this gravity setup we have just built up, let us
take one step back and choose the baryon density to vanish, i.e.d̃ = 0. This setup was analyzed
in [56] and we briefly review the results. The most prominent thermodynamic feature of the
D3/D7-setup at vanishing charge densities is a phase transition for the fundamental matter be-
tween a confined and a deconfined phase taking place at the temperatureTfund. Dual to this we
have a geometric transition as shown in figure 4.6 on the gravity side of the correspondence
from a Minkowski phaseto a black hole phase, respectively. This means that at vanishing
density and potential depending on the parameterm Minkowski embeddings and black hole
embeddings are both present. Looking at the free energy (cf.figure 4.7) of these configura-
tions reveals that there are actually three different regions: one low-temperature region where
only Minkowski-embeddings (blue dotted line in figure 4.7) are possible, one intermediate
region where both embeddings are possible but one is thermodynamically favored, and finally
one high-temperature region (m > 0.92) where only black hole embeddings (red line in fig-
ure 4.7) are present. The intersection point of the brancheswith lowest free energy marks
the phase transition near̄M/T = 0.766. This transition of course is reflected in disconti-
nuities and multi-valued regions in thermodynamic quantities such as the free energyF , the
entropyS, the internal energyE and the speed of soundvs. The free energy, entropy and inter-
nal energy are shown for the D3/D7-setup in figure 4.7. These quantities are computed using
equations (2.93) and (2.94) as well as theholographically renormalized(see section 2.4) D7-
brane action. Furthermore the speed of sound can be written as a sum of contributions from
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Figure 4.6: Schematic sketch of the three different kinds ofembeddings which solve the back-
ground equations of motion at vanishing charge density and potential. This figure
is taken from [56].

the D3 and D7-branes which we expand inNf/Nc keeping only the leading order

vs
2 =

S
cv

=
S3 + S7

cv 3 + cv 7
=

1

3
+

λNf

(12π)2πNc

(

mc +
1

3
mT

∂c

∂T

)

+ . . . , (4.146)

with the parameterm which is related to the quark mass by (4.134) and the parameter c being
related to the quark condensate by (4.145). The numerical result is shown in figure 4.8.

Brane thermodynamics at finite baryon density Now we consider a finite baryon den-
sity setup as described at the beginning of this section as was done in [42]. This paragraph’s
title already states clearly that we are working in the canonical ensemble here fixing the baryon
density to a finite value and having the chemical potential asa thermodynamic variable. Look-
ing at the embeddings we find numerically in figure 4.5, we observe that no Minkowski em-
beddings exist at finite baryon density. In other words: there is always a thin spike reaching
from the D7-branes down to the black hole horizon. This spikecan be characterized more
closely looking at the Legendre transformed D7-action for embeddings with a very thin spike,
i.e. in the limitχ→ 1 we find

SD7 ∼ −nqVx
1

2πα′

∫

dt d̺
√

−g00(g44 + gΘΘ(∂4Θ)2)) , (4.147)

which is the Nambu-Goto action for a bundle of fundamental strings with a densitynq stretch-
ing from the D7-brane to the horizon. This means that in the canonical setup for non-zero
baryon density we only have access to black hole embeddings.We can only reach Minkowski
embeddings in the case of vanishing baryon densitynq = 0 (equivalentlyd̃ = 0) while the
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Figure 4.7: The free energy, entropy and internal energy areshown as functions of the
scaled temperature at vanishing charge density and potential. This figure is taken
from [56].

chemical potential may be chosen arbitrarily. In contrast to this vanishing density case, in our
setup developed for finite baryon density, a vanishing density also implies that the chemical
potential vanishes̃µ = 0 as seen from (4.142). Note, that Minkowski embeddings are still pos-
sible but these always imply vanishing density. The system at finite baryon density features an
apparent phase transition. The transition takes place fromblack hole embedings to other black
hole embeddings which is different from the Minkowski to black hole transition at vanishing
density. Furthermore the black hole to black hole transition ceases to exist at a critical point in
the phase diagram 4.9 which lies at(d̃∗ = 0.00315, T ∗

fund/M̄ = 0.7629). Later examinations
in the grandcanonical ensemble have shown that this black hole to black hole transition is not
the thermodynamic process taking place in this region. Thatis because there actually exists a
mixed (Minkowski and black hole) phase in the region around the transition line in figure 4.9
and the mere black hole embeddings considered here do not give the thermodynamic ground
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Figure 4.8: The speed of sound shown as a function of the scaled temperature at vanishing
charge density and potential. This figure is taken from [56].

state of the system. Therefore the transition takes place between a black hole and a (possibly)
mixed phase.
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Figure 4.9: The phase diagram in the canonical ensemble for asystem at finite baryon den-
sity. On the axes the scaled baryon densityd̃ is shown versus the scaled tempera-
tureT/M̄ . This figure is taken from [42].

Brane thermodynamics at finite baryon chemical potential In order to understand
the statements about the correct ground state and how to find the valid phase transition, let us
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now turn to the grandcanonical ensemble. We fix the chemical potential to a finite value and
consider the baryon density as our thermodynamic variable.In figure 4.10 we have sketched
the Minkowski with vanishing density as a grey shaded regionat small temperature and chem-
ical potential. Meanwhile the black hole phase with finite baryon density is shown in white.
It is important to note here that the separation line betweenthese two grey and white regions
does in principal not have to be identical with the line of phase transitions. Recall that in the
canonical ensemble we have found, at least apparently, a black hole to black hole transition, so
this would be a white region to white region transition in thediagram 4.10. The line of phase
transitions is not shown in figure 4.10 and one has to determine it from looking at the free
energy of all configurations that are possible at a given point (T, µ) in the phase diagram. The
resulting grandcanonical phase transition line is shown asthe red line in figure 4.11. In fig-
ure 4.10 we merely show some exemplary equal-density lines in order to illustrate what region
we are able to scan in the canonical ensemble. Figure 4.12 shows the density-temperature
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Figure 4.10: The phase diagram in the canonical ensemble plotted against the variables of the
grandcanonical ensemble. On the axes the scaled chemical potentialµq/Mq, with
the quark massMq is shown versus the scaled temperatureT/M̄ . This figure is
taken from our work [2].

phase diagram which follows from a thorough examination of the system in the grandcanon-
ical ensemble. The red line in figure 4.12 shows the charge density which is computed along
the line of transitions in the grandcanonical ensemble which again is given by the red line
in figure 4.11. Note that on the other side of the phase transition the density is zero and so
in the grandcanonical ensemble the charge density jumps from zero to a finite density in this
region and the intermediate densities under the red curve infigure 4.12 are not accessible. The
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Figure 4.11: The line of phase transitions in the grandcanonical ensemble for a system at finite
baryon chemical potential. On the axes the scaled chemical potentialµq/Mq, with
the quark massMq is shown versus the scaled temperatureT/M̄ . This figure is
taken from [52].

blue line shows the line of black hole to black hole phase transitions which were found in the
canonical ensemble (cf. figure 4.9). The grey shaded region enclosed by blue and green lines
shows a region where the present black hole embeddings are unstable against fluctuations of
baryon charge, i.e. the condition∂nq/(∂µq)|T > 0 is not satisfied for these embeddings. Since
both ensembles in the infinite volume limit are equivalent, we need to explain why there seem
to be regions which one can only enter in the canonical ensemble but not in the grandcanonical
one. The idea here is that for the density-temperature values under the red curve in figure 4.12
the system stays in a mixed phase where both Minkowski and black hole phase are present.
As an analog to this we may recall that for example water features such a mixed phase in the
transition from its liquid to its gaseous phase. Note that the region of the mixed phase (un-
der the red curve in figure 4.12) is not identical with the region where unstable embeddings
exist (grey shaded region in figure 4.12).

Now we understand the statement that the black hole to black hole phase transition found in
the canonical ensemble is not realized. This is because thattransition (blue line in figure 4.12)
lies entirely in the mixed phase. Since in the canonical setup we considered the pure black hole
phase to be the thermodynamic ground state, those results can not be trusted in this particular
region of the mixed phase. We would have to carry out our thermodynamic analysis with that
mixed phase.
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Figure 4.12: The phase diagram in the grandcanonical ensemble for a system at finite chemi-
cal potential. On the axes the scaled baryon densityd̃ is shown versus the scaled
temperatureT/M̄ . This figure is taken from [52].

4.4 Thermodynamics at isospin & baryon density or

potential

Here we consider an extension of the previous section where we worked at finite baryon back-
grounds, i.e. we considered only theU(1)-part of the fullU(Nf ) flavor group. Now we
supplement this setup by switching on a finite isospin background, i.e. theSU(Nf )-part of
the flavor group, at the same time. The results presented hereare my work in collaboration
with Patrick Kerner (cf. [115]) and the results presented here are currently to be published [3].
We have to develop a few new concepts and interpretations butthe resulting calculations are
analogous to those in section 4.3.

The main point of the previous section was to understand the phase diagram and thermo-
dynamics of the gauge theory with finite baryon density or potential which is dual to the
D3/D7-brane setup in a non-extremal AdS-black hole background on the gravity side. We have
learned in that simple example that we need to carry out holographic renormalization (cf. sec-
tion 2.4) in order to get finite thermodynamics and we experienced that there may be unstable
configurations or mixed phases which force us to make use of the thermodynamic ensembles
in a complementary way. That is so important because now we are going to use very sim-
ilar embeddings and carry out the same thermodynamic analysis for a thermal gauge theory
when an isospin and baryon chemical potential (or equivalently their conjugate densities) are
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switched on simultaneously. In principle we are free to compute thermodynamic quantities for
anyNf but since we will work numerically, we need to plug in definitenumbers and for this
purpose let us confine our examination to the special isospincaseNf = 2. The generalization
to arbitrary number of flavors is accomplished in the next section 4.5.

4.4.1 Introducing baryon and isospin chemical potentials and

densities

Starting from the Dirac-Born-Infeld action

SB&I = −TD7

∫

d8ξStr{
√

det(g + (2πα′)FB&I )} , (4.148)

with the baryon and isospin background gauge field

FB&I µν = δµ4δν0

[
F 0

40T
0 + F 1

40T
1 + F 2

40T
2 + F 3

40T
3
]
, (4.149)

with flavor group generatorsT a, a = 1, 2, . . . , (Nf
2 − 1). Here we have assumed that the

background gauge fieldA has its only component in time directionA0 and that it only depends
on the radial AdS-coordinatex4 = ̺. Therefore the only non-vanishing derivative acting on
the background gauge field is the radial one∂4A0 6= 0, while∂0,1,2,3,5,6,7A0 ≡ 0. In general the
background field strength would beF a

µν = 2∂[µA
a
ν] + fabcAb

µA
c
ν , which with our assumptions

becomesF a
µν = δµ4δν0∂4A

a
0 + δµ0δν0f

abcAb
0A

c
0 and the second term vanishes because of the

antisymmetry in indicesb, c. The first term in (4.149) is the baryonic background already
considered in the previous section. The remaining three terms correspond to the three flavor
directionsa = 1, 2, 3 in flavor space and the generators areT a = σa/2 with the Pauli matrices
which we complete by the identityσ0 in order to have a complete basis

σ0 =

(
1 0
0 1

)

, σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (4.150)

Now we would like to find an exact solution for the background field and the D7-brane
embedding and thus we rewrite the action (4.148)

SB&I = −TD7

∫

d8ξStr{
√

− det g
√

det(1 + g−1(2πα′)FB&I )} , (4.151)

= −TD7

∫

d8ξStr{
√

− det g
√

det[1 + g00g44(2πα′)2(FB&I 40)2]} , (4.152)

(4.153)
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and we have performed the second step by calculating the determinant

det(g + (2πα′)FB&I ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g00 0 0 0 (2πα′)FB&I 40 0 0 0
0 g11 0 0 0 0 0 0
0 0 g22 0 0 0 0 0
0 0 0 g33 0 0 0 0

−(2πα′)FB&I 40 0 0 0 g44 0 0 0
0 0 0 0 0 g55 0 0
0 0 0 0 0 0 g66 0
0 0 0 0 0 0 0 g77

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= g00g11g22g33g44g55g66g77 + g11g22g33g55g66g77(2πα
′)2(FB&I 40)

2 ,

= det g
[
1 + g00g44(2πα′)2(FB&I 40)

2
]
. (4.154)

Making use of the spin-representation property (Clifford algebra) of Pauli matrices

{σa, σb} = 2δab , (4.155)

we evaluate the square of non-Abelian background gauge fieldstrengths appearing in (4.151)

(FB&I 40)
2 =

[
(F 0

40)
2 + (F 1

40)
2 + (F 2

40)
2 + (F 3

40)
2
]
(σ0/2)2 +

2F 0
40

[
F 1

40σ
1/2 + F 2

40σ
2/2 + F 3

40σ
3/2
]
(σ0/2) . (4.156)

Recall that we haveF40 = −F04 = ∂4A0, so we do not have to take care of the structure
constant term or any commutator. Now we observe that all terms coupling different flavor
representationsσiσj , i 6= j , i, j = 0, 1, 2, 3 are proportional to the baryonic pieceF 0 and
thus have the formF 0σ0F aσa , a = 1, 2, 3. Thus the determinant simplifies to a sum in which
the flavors are decoupled if we set the baryonic field to zeroF 0

40 ≡ 0. Then for pure isospin
background we have the action

SI = −TD7

∫

d8ξStr{
√

− det g
√1Nf×Nf

+ (2πα′)2g00g44 [(F a
40)

2] (σ0/2)2} ,

= −TD7

∫

d8ξStr{1Nf×Nf
}
√

− det g

√

1 +
(2πα′)2

4
g00g44[(F a

40)
2] ,

= −TD7Nf

∫

d8ξ
√

− det g

√

1 +
(2πα′)2

4
g00g44[(F 1

40)
2 + (F 2

40)
2 + (F 3

40)
2] .

(4.157)

In this setup we can study how the three different charge densities or equivalently how the
three components of the chemical potential in flavor directions influence each other. We will
elaborate on this in section 6.5.

A slightly more complicated case emerges if none of the field-strengths vanishesF i
40 6=
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0 ∀ i = 0, 1, 2, 3

SB&I = −TD7

∫

d8ξStr
{√

− det g

×
√1Nf×Nf

+ (2πα′)2g00g44

[
1

4
((F 0

40)
2 + (F a

40)
2)(σ0)2 +

1

2
F 0

40F
a
40σ

aσ0

]}

.

(4.158)

The complicating feature here is that one has to evaluate thesquare root of a sum of partly
non-diagonal flavor representations. In order to simplify taking the square root inside this
action we only consider the diagonal gauge representationsσ0 which gives the baryonic part
andσ3 which gives the isospin piece. This is equivalent to turningthe flavor coordinate system
until our chemical potential points along the third isospindirection. In this case we get the
action

SB&I3 = −TD7

∫

d8ξStr
{√

− det g

×

√
√
√
√
√
√1Nf×Nf

+
(2πα′)2g00g44

4




((F 0

40)
2 + (F 3

40)
2)

︸ ︷︷ ︸

(F 03)2

(σ0)2 + 2F 0
40F

3
40σ

3σ0












.

= −TD7

∫

d8ξStr
{√

− det g

×

√
√
√
√

(

1 + (2πα′)2g00g44

4
[(F 03)2 + 2F 0

40F
3
40] 0

0 1 + (2πα′)2g00g44

4
[(F 03)2 − 2F 0

40F
3
40]

)





.

= −TD7

∫

d8ξ
√

− det g ×
[√

1 +
(2πα′)2g00g44

4
[(F 03)2 + 2F 0

40F
3
40]

+

√

1 +
(2πα′)2g00g44

4
[(F 03)2 − 2F 0

40F
3
40]

]

.

(4.159)

Note, that there is a term mixing the two flavor field strengthsF 0, F 3 in each of the two
square roots. Since we are interested in the equations of motion for the gauge fields appearing
asF i

40 = ∂4A
i
0, we would end up with a set of coupled equations of motion forA0

0 andA3
0 if we

simply applied the Euler-Lagrange equation to this action.In order to decouple the dynamics
right here, we introduce the rather obvious flavor combinations

X1 = A0
0 + A3

0 , X2 = A0
0 −A3

0 , (4.160)

which yields the action

SB&I3 = −TD7

∫

d8ξ
√

− det g

[√

1 +
(2πα′)2g00g44

4
∂4X1

2 +

√

1 +
(2πα′)2g00g44

4
∂4X2

2

]

.

(4.161)
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Substituting in the explicit metric induced on the D7-brane(4.132) gives

SB&I3 = −TD7

∫

d8ξ

√
h3

4
ρ3f f̃(1 − χ2)

×
(√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f 2
(1 − χ2)(∂̺X1)2

+

√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f 2
(1 − χ2)(∂̺X2)2

)

. (4.162)

These are just two summed up copies of the Abelian action given in (4.137) and in order
to solve for the background gauge fields and for the brane embedding χ we have to apply
the same steps as in 4.3 to each of the two terms. This means that we find two constant of
motiond1, d2 each of which is proportional to a certain flavor charge density. Legendre trans-
forming the action in order to eliminate the fieldsX1, X2 in favor of these constantsd1, d2,
we obtain the action

S̃B&I3 = SB&I3 −
∫

d8ξ

(

X1
δS

δX1

+X2
δS

δX2

)

= −TD7

∫

d8ξ

√
h3

4
̺3f f̃(1 − χ2)

√

1 − χ2 + ̺2(∂̺χ)2

(√

1 +
8d1

2

(2πα′)2T 2
D7̺

6f̃ 3(1 − χ2)3
+

√

1 +
8d2

2

(2πα′)2T 2
D7̺

6f̃ 3(1 − χ2)3

)

.

(4.163)

And from this the equation of motion for the embedding function χ can be deduced in the
following form

∂ρ
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√
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+
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2
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1 + 8d̃2
2
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}

.

(4.164)

This is the equation of motion we need to solve numerically for the embedding functionχ(ρ, d̃1, d̃2).
The boundary conditions onχ are unchanged to those in the purely baryonic caseχ(ρH) = χ0

andχ′(ρH) = 0.
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4.4.2 Thermodynamic quantities

Let us collect the numerical results for thermodynamic quantities graphically here. We will
use a few meaningful parameter combinations to produce plots versus the mass to energy ratio
in order to understand how the finite baryon and isospin densities influence the quark conden-
sate, the themodynamic quantities entropy, internal energy, free energy, and the hydrodynamic
quantity speed of sound.

Let us start out by identifying the string theory objects which produce the spike which is
always present if any of the two (baryon or isospin) densities is non-zero. In the spirit of the
’strings from branes’ approach reviewed in section 4.3 we Legendre-transformed action as

S̃ = −TD7√
2

∫

d8ξ
f
√

f̃

√

1 +
̺2(∂̺χ)2

1 − χ2





Nf∑

i=1

√

d2
i

(2πα′)2TD7
+
̺6f̃ 3(1 − χ2)3

8



 . (4.165)

Note thatχ = cos θ, which becomesχ ≃ 1 if the embedding is very near to the axis. There-
fore, the second factors in the square roots can be neglectedand we get

S̃ = −VxVol(S3)

2πα′

Nf∑

i=1

di

∫

dtdρ
f
√

2f̃

√

1 +
̺2(∂̺χ)2

1 − χ2

= −VxVol(S3)

2πα′

Nf∑

i=1

di

∫

dtd̺
√

−gtt(gρρ + gθθ(∂̺θ)2) . (4.166)

Recognize the fact that the result above can be written as theNambu-Goto action for a bundle
of strings stretching inρ direction but free bending in theθ direction

S̃ = −V3Vol(S3)





Nf∑

i=1

di



SNG , (4.167)

whereV3 is the Minkowski space volume while Vol(S3) gives the volume of theS3.
As we have learned in section 2.4 we need to compute the counter-terms

Sct = −NNf

4
((̺2

max−m2)2 − 4mc) , (4.168)

which holographically renormalize the supergravity action. This renormalized Euclideanized
action is then identified with the free energy (2.93). Here̺max is theUV -cutoff and the
factorN is given by

N =
TD7V3Vol(S3)̺4

H

4T
=
λNcV3T

3

32
, (4.169)

whereV3 again is the Minkowski space volume.
We have computed all thermodynamic quantities (free energy, internal energy, entropy,

speed of sound) in analogy to the case at vanishing densities[56]. In order to accomplish
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Figure 4.13: Numerical results in the canonical ensemble: The dependence of the quark

condensate on the scaled quark massm = 2Mq√
λT

at baryon densities̃dB =
0.00005 (top left), the same value but zoomed into the region near theblack hole
to black hole transition (top right),̃dB = 0.5 (bottom left) andd̃B = 2 (bottom
right). Differently colored curves in one plot show distinct values of the isospin
density in relation to the baryon density present:d̃I = d̃B in orange,d̃I = 3/4d̃B

in red, d̃I = 1/2d̃B in blue, d̃I = 1/4d̃B in green andd̃I = 0 in black. These
plots were generated by Patrick Kerner [115].

this we have made use of the thermodynamic relations given inequation (2.94) and the equa-
tions following it. Nevertheless, here we only show selected quantities in order to keep the
overview. For details confer with [3] and [115]. Results in the canonical ensemble for the
quark condensate are compared in figure 4.13, those for the entropy can be found in 4.16,
free energy in 4.15 . Results from the grandcanonical ensemble are displayed in figures 4.17
and 4.14.

4.4.3 Discussion of numerical results

As an analytical result we find an accidental symmetry in the numerical results which makes
it possible to interchange baryon and isospin density. One result of this is that the numerical
embeddings are always black hole embeddings if eitherd̃B 6= 0, or d̃I 6= 0, or both. Again
these black hole embeddings mimic the behavior of Minkowskiembeddings with a spike from
the brane to the horizon at small temperatures or large quarkmasses just like in the case with
baryon density only. The black hole to black hole phase transition found in the baryonic
case continues to exist at finite isospin. Nevertheless, there are some significant differences
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Figure 4.14: Numerical results in the grandcanonical ensemble: The dependence of the quark

condensate on the scaled quark massm = 2Mq√
λT

at baryon potentialsµB =

0.1Mq (top) andµB = 0.8Mq (bottom) . Differently colored curves in one
plot show distinct values of the isospin potential in relation to the baryon po-
tential present:µI/Mq = 0µB/Mq (black),µI/Mq = 1

4
µB/Mq (green),µI/Mq =

1
2
µB/Mq (blue),µI/Mq = 3

4
µB/Mq (red),µI/Mq = µB/Mq (orange). The dotted

purple curves correspond to Minkowski embeddings. These plots were generated
by Patrick Kerner [115].

to the baryonic case showing in the quark condensate and thermodynamical quantities upon
introduction of isospin density or potential. In particular we find signatures of a new phase
transition across the line of equal potential or density forisospin and baryon charge resembling
the phase diagram found in the case of 2-color QCD [62].

Condensates, chemical potentials and densities Figure 4.13 shows the quark conden-
satec at different baryon densities. Different curves in the plots correspond to different values
for the isospin density in relation to the baryon density. The black curve is from now on always
the case with only baryon density. So in order to find out what the effect of isospin density is,
we look for deviations from the black curves in all diagrams.We change the isospin density in
quarter steps from̃dI = 0/4d̃B to d̃I = 4/4d̃B. Due to the accidental symmetry we can simply
interchangẽdB andd̃I for all d̃I > d̃B and we get the same pictures as for the cased̃I ≤ d̃B.

At small d̃B andd̃I we still observe a phase transition between distinct black hole embed-
dings (see spiraling behavior in the top right plot in figure 4.13). A look on the free energy
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Figure 4.15: Numerical results in the canonical ensemble: The dependence of the free energy

on the scaled quark massm = 2Mq√
λT

at baryon densities̃dB = 0.00005 (top
left), the same value but zoomed into the region near the black hole to black
hole transition (top right),̃dB = 0.5 (bottom left) andd̃B = 2 (bottom right).
Differently colored curves in one plot show distinct valuesof the isospin density
in relation to the baryon density present:d̃I = d̃B in orange,d̃I = 3/4d̃B in
red, d̃I = 1/2d̃B in blue, d̃I = 1/4d̃B in green and̃dI = 0 in black.These plots
were generated by Patrick Kerner [115].

diagram given in figure 4.15 confirms the existence of this transition nearm = 1.306 where
the branches of the free energy curve cross each other. Recall that this is the phase transition
discussed in the baryonic case which was found to be replacedby a transition from the black
hole phase to a mixed phase rather. We will study the dependence of the location of this tran-
sition on isospin and baryon density below. In theT → 0 limit any finite density breaks the
supersymmetry and the chiral condensate asymptotes to a finite non-zero value. We find that
a larger baryon density produces a larger condensate in the limit T → 0. Furthermore we
observe that the maximum appearing in the baryonic (black) condensate curve in the bottom
left plot from figure 4.13) vanishes with increasing isospindensity. Adding larger and larger
isospin density to the baryon density asymptotes to the caseshown in the bottom right plot at
large baryon density. Here the maximum has disappeared. In the limitsT → 0 andT → ∞
introduction of isospin density does not seem to have any effect on the condensate since all
curves unify in these limits.

Calculating the baryon and isospin chemical potentials we find a discontinuity at the val-
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Figure 4.16: Numerical results in the canonical ensemble: The dependence of the entropy

on the scaled quark massm = 2Mq√
λT

at baryon densities̃dB = 0.00005 (top
left), the same value but zoomed into the region near the black hole to black
hole transition (top right),̃dB = 0.5 (bottom left) andd̃B = 2 (bottom right).
Differently colored curves in one plot show distinct valuesof the isospin density
in relation to the baryon density present:d̃I = d̃B in orange,d̃I = 3/4d̃B in
red,d̃I = 1/2d̃B in blue,d̃I = 1/4d̃B in green and̃dI = 0 in black. These plots
were generated by Patrick Kerner [115].

uesd̃B = d̃I . We take this discontinuity as an indicator for the existence of a phase transition
along the lined̃B = d̃I . In particular ford̃B > d̃I we find

lim
m→∞

µB = Mq , lim
m→∞

µI = 0 . (4.170)

For the casẽdB < d̃I the accidental symmetry between baryon and isospin densityallows to
interchange these two and we are back in the case we discussedbefore. Finally, in the crucial
cased̃B = d̃I we can not distinguish between the two densities and both chemical potentials
approach the same value

lim
m→∞

µB =
Mq

2
, lim

m→∞
µI =

Mq

2
. (4.171)

This means that the chemical potential has to change discontinuously when the case of equal
densities is crossed increasing or decreasing one of both densities. We will discuss this phase
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Figure 4.17: Numerical results in the grandcanonical ensemble: The dependence of the grand-

canonical potentialΩ and the entropyS7 on the scaled quark massm = 2Mq√
λT

. We
have choseñµB/Mq = 0.01 in the two plots on top and̃µB/Mq = 0.8 in the
lower ones. Differently colored curves in one plot show distinct values of the
isospin potential in relation to the baryon potential present: µI = 0 (black),µI =
1
4
µB (green),µI = 1

2
µB (blue),µI = 3

4
µB (red),µI = µB (orange). The dotted

purple curves correspond to Minkowski embeddings. These plots were generated
by Patrick Kerner [115].
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transition further in [3] but we have indications that this transition is completely analogous to
the one found in the condensates in the context of 2-color QCD[62]. Here we only collect
more evidence for the transition from calculations in the grandcanonical ensemble.

In order to learn more about the structure of the isospin and baryon phase diagram, we inves-
tigate the setup in the grandcanonical ensemble. Figure 4.14 shows the chiral condensate and
the baryon density versus the mass parameterm. The purple dotted curve in all grandcanoni-
cal plots shows the Minkowski embeddings while the colored curves show results for different
isospin chemical potentials and the black curve always gives the case of non-vanishing baryon
chemical potential only.

The condensate shows a discontinuity (a gap) between the Minkowski and the black hole
embeddings. Increasing the baryon density the lower left plot in figure 4.14 shows that in-
creasing the isospin density there exist black hole embeddings for all values ofm, whereas
the baryonic curve ends at a finitem where the transition to Minkowski embeddings takes
place. While the curves giving the baryon density (right column in figure 4.14) for different
values ofµI have the same zerom limit, they split considerably increasing the mass parame-
term. The isospin density shows a similar behavior except that the splitting between curves
of different isospin potential is larger. From the baryoniccase we remember that we have no
phase transition forµB > Mq (compare the phase transition line in figure 4.9). Looking at
the caseµB = 0.8Mq with the orange (µI = µB), red (µI = 3/4µB) and blue (µI = 1/2µB)
curves in figure 4.14 we conclude from their monotonously ascending behavior that there is
no phase transition for these combinations of potential values. In all these cases the sum of
chemical potentials satisfies(µB + µI) > Mq suggesting that compared to the baryonic case
the same critical value for the phase transition to disappear exists, with the mere difference that
the critical valueMq now has to be compared to the sum of both chemical potentials.Since the
black curve corresponds to(µB + µI) = (0.8 + 0)Mq < Mq the black (baryonic) curve shows
a phase transition. Note that here the introduction and increase of isospin potential drives this
system from a regime with a phase transition into a regime without a phase transition which
is definitely a considerable impact on the system. The condensate shows the same effect.

Thermodynamic quantities Coming to the thermodynamic quantities, we only mention a
few exemplary points where the introduction of isospin has asignificant impact on the quan-
tity. The entropy in the canonical ensemble shows such an impact since the minimum present
at vanishing isospin density in figure 4.16 vanishes as the isospin density is increased. It is also
worthwhile to note that in the large mass limitm → ∞ the baryonic entropy curve (black)
asymptotes to zero while the finite densities generate entropy at any temperature or equiva-
lently mass.

In the grandcanonical ensemble the entropy and internal energy have the same qualitative
behavior shown in figure 4.17. Similar to the condensate the purely baryonic curve in the black
hole phase (black curve withµI = 0) shows a maximum in entropy and energy nearm = 5
before it ends nearm = 7 and the system enters the Minkowski phase following the purple
dotted line for larger mass parameterm. Increasing the isospin chemical potential as in the
condensate we see (figure 4.17, bottom row) that the transition again vanishes since the system
remains in the black hole phase corresponding to the monotonously increasing entropy and
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circular upper edge shows the line of critical points where the transition vanishes.
This plot was generated by Patrick Kerner [115].

energy curves. This interpretation is confirmed by our studies [3] of the grandcanonical
potential shown in figure 4.17.

Black hole to black hole transition In figure 4.18 we trace the location of the black hole
to black hole phase transition in the volume spanned by baryon densityd̃B, isospin densitỹdI

and the mass-temperature parameterm. The result is a two-dimensional surface showing an
apparent rotationalSO(2)-symmetry. Note that we show only one quadrant since the acciden-
tal symmetries between the charge densities mentioned earlier force the other three quadrants
to be identical copies of this first one. The complete phase transition surface would be nearly
circular and finite since it terminates at the critical points on the upper edge. A close study of
the seemingly circular upper edge of this surface shows thattheSO(2)-symmetry is actually
broken. This upper edge contains the critical points at which the phase transition disappears.
An analysis of the inner region moving towards the origin we see that the surface asymptotes
to being rotationally symmetric.

The phase transition line at finite baryon density only corresponds to the front edge (d̃I = 0)
of the surface shown in figure 4.18. Thus, together with the brokenSO(2) symmetry we
conclude that the two differnent densities have actually a different effect than merely taking
the baryon density to be larger. The broken symmetry shows a subtle interplay between isospin
and baryon density.

It would be interesting to study the stability of these phases (or rather the stability of solu-
tions in them). It is not impossible that the finite isospin also influences the thermodynamics
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such that the baryonic black hole to mixed phase transition is qualitatively changed or it may
not even be the favored transition anymore. We plan to study this in [3].

The diffusive part of this system’s hydrodynamics is examined in chapter 6, section 6.3. We
will extend the phase diagram from figure 4.18 there beyond the line of critical points tracing
a minimum appearing in the diffusion coefficient and claiming that this is ahydrodynamic
transition being a softened version of the thermodynamical transitionending at the line of
critical points. The rotational symmetry in that extended transition surface will be obviously
broken to a discreteZ4-symmetry reflecting the accidental symmetries among the charges.

4.5 Generalization to flavor number Nf > 2

In the previous section we restricted our study of the effects of a non-Abelian background
gauge field on the thermodynamic quantities in a strongly coupled gauge theory on the caseNf =
2 for definiteness. In the present section we show how this casecan be systematically gener-
alized to arbitrary flavor groupsU(Nf > 2).

The first step to take is to find a generalization of the diagonal flavor representations which
simplified taking the square root and the symmetrized trace over flavor representations in the
exampleNf = 2. Recall that there are(Nf − 1) diagonal generators in aSU(Nf ) which form
the Cartan subalgebra. Inspired by the interpretation that a diagonal generator of SU(Nf )
should charge one brane differently with respect to all others, we write the diagonal generators
belonging to the Cartan algebra as

λi = diag(1, . . . ,

i-th position
︷ ︸︸ ︷

−(Nf − 1), . . . , 1) i = 1, . . . , Nf − 1 . (4.172)

For this choice of matrices the first flavor component is treated as the reference quantity to
which all isospin charges are measured. We call the unity matrix for the baryonic partλ0.
Thus, we can generalizeF 0

40σ
0 + F 3

40σ
3 to

F
Nf
µν = Fµν = F 0

µνλ
0 +

Nf−1
∑

i=1

F i
µνλ

i . (4.173)

Thus the general effective action for a geometry in which thebackground flavor field points
along the diagonal directions only then reads

SDBI = −TD7

∫

dξ8Str
(√

| det(gλ0 + 2πα′F )|
)

= −TD7

∫

d8ξ
√−gStr

(√

λ0 + (2πα′)2g00g44(F40)2
)

,

(4.174)

where in the second line the determinant is calculated. Since the action in (4.174) is diagonal
in the flavor space, we are able to evaluate the trace (for moredetails see [115]). After a
redefinition of the fields

X0 = A0
0 +

Nf−1
∑

i=0

Ai
0 , Xi =

∑

j 6=i

Aj
0 − (Nf − 1)Ai

0 , i = 1, . . . , (Nf − 1) , (4.175)
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whereXi is the i-th component of the non-Abelian gauge fieldANf , the non-Abelian DBI
action becomes a sum ofNf Abelian DBI actions

S = −TD7

∫

d8ξ

√
h3

4
ρ3f f̃(1−χ2)

( Nf−1
∑

i=0

√

1 − χ2 + ̺2(∂̺χ)2 − 2(2πα′)2
f̃

f 2
(1 − χ2)(∂̺Xi)2

)

,

(4.176)
The constants of motion are given by

di =
δS

δ(∂ρXi)
= (2πα′)2TD7

√
h3

2
ρ3 f̃

2

f

(1 − χ2)2∂̺Xi
√

1 − χ2 + ρ2(∂ρχ)2 − 2(2πα′)2 f̃
f2 (1 − χ2)(∂̺Xi)2

.

(4.177)
From the relations of the gauge fields we can read off the relations between the conjugate
charge densities

dB = dI0 =

Nf−1
∑

i=0

di , dIi =
∑

j 6=i

dj − (Nf − 1)di i = 1, . . . , Nf − 1 . (4.178)

We now construct the Legendre transformation of the action (4.176) to eliminate the fieldsXi

in favor of the constantsdi

S̃ = S −
∫

d8ξ

Nf∑

i=1

Xi
δS

δXi

= −TD7

∫

d8ξ

√
h3

4
̺3f f̃(1 − χ2)

√

1 − χ2 + ̺2(∂̺χ)2





Nf−1
∑

i=0

√

1 +
8d2

i

(2πα′)2T 2
D7̺

6f̃ 3(1 − χ2)3



 .

(4.179)

Finally we obtain the equation of motion for the embeddingχ as

∂ρ






ρ5f f̃(1 − χ2)

∂ρχ
√

1 − χ2 + ρ2(∂ρχ)2





Nf−1
∑

i=0

√

1 +
8d̃2

i

ρ6f̃ 3(1 − χ2)











= − ρ3f f̃χ
√

1 − χ2 + ρ2(∂ρχ)2

{

[3(1 − χ2) + 2ρ(∂ρχ)2]





Nf−1
∑

i=0

√

1 +
8d̃2

i

ρ6f̃ 3(1 − χ2)





− 24

ρ6f̃ 3(1 − χ2)3
(1 − χ2 + ρ2(∂ρχ)2







Nf−1
∑

i=0

d̃2
i

√

1 +
8d̃2

i

ρ6f̃3(1−χ2)







}

.

(4.180)

This equation of motion completes the formulae describing the introduction of the non-Abelian
part of the flavor groupSU(Nf ) in the gravity background for an arbitrary numberNf of fla-
vors. This may be taken as the technical starting point for future investigations of the effects
of non-Abelian chemical potentials with any desired flavor numberNf as long as we stay in
the probe-brane (or quenched) limitNf ≪ Nc.
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4.6 Molecular dynamics

Guided by the intuition obtained from dispersion effects inexamples such as propagation of
light through a prism, we assume that perturbations inside the thermal medium, the plasma,
with different frequencies and momenta will not all interact with the plasma in the same way
and will not propagate in the same manner. Therefore it is reasonable that the constant trans-
port coefficients we have considered so far should actually be modified to incorporate a fre-
quency and momentum dependence. On the thermal gauge theoryside this idea is developed in
the context ofmolecular dynamics[116]. For example the frequency-dependent generalization
of the Kubo type formulae introduced in section 3.2.3 for thegeneral transport coefficientη is
given by

η(ω) = C

∞∫

0

dt eiωt〈Jη(0), Jη(t)〉 , (4.181)

whereC is a thermodynamic constant andJη is the zero spatial momentum limit of the current
relevant for this transport process. For example ifη was the heat conductivity thenJη would
be identified with the heat current.

As described in chapter 2, the gauge/gravity correspondence states that the full gauge the-
ory is encoded in the gravity theory. Thus we can also assume that the momentum dependent
transport coefficients are encoded in the gravity theory. Incontrast to our hydrodynamic (small
frequency, long wave length) approach of section 3.1.2, we can use the more general setup
which will be described and applied in chapter 5 for the computation of flavor current correla-
tion functions. These are valid for perturbations with arbitrary four-momentum. So one way
to find the momentum-dependent transport coefficients on thefield theory side is to compute
the correlators using a numerical gravity calculation. These then have to be substituted into
expressions such as the generalized Kubo formula (4.181).

It would also be interesting to fit these results to the analytic expressions from molecular
dynamics. We may discover relations between the gravity andthermal gauge theory similar to
the identification of correlator poles with quasinormal frequencies.

4.7 Summary

In this chapter I have presented some of the main results of this thesis including the analytic
form of correlators being connected to hydrodynamics. We have also seen the numerically
found thermodynamics at finite non-Abelian flavor charge densities.

The main result for the hydrodynamic case are the correlators which all are similar to

GXY
00 =

NcTRTq
2

8π[i(ω − µ) −Dq2]
for w ≥ m . (4.182)

The longitudinal and time component correlators all have the diffusion poleω = ±µ − iDq2

while transversal modes do not show this diffusive behavior. The correlators have different
dependence on the frequency and spatial momentum (cf. (4.81) and the equations following it
for details). The presence of an isospin potential mainly manifests itself in the pole structure
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of longitudinal (0 and3-component) correlators through shifting the location of the pole in
the complexω-plane by the amount of the chemical potential±µ along the real axis. Thus
the main effect of the isospin potential is that it splits thehydrodynamic diffusion pole located
on the imaginary frequency axis into a triplet. This behavior is a direct consequence of the
changed indicial structure with indicesβ = ±i(w±m)/2. Two directions in flavor space (a =
1, 2) are affected in this way while the third flavor direction parallel to the chemical potential
does not feel the potential. We have developed a physical interpretation of this situation by
analogy to the symmetry breaking which occurs in the case ofLarmor precessionof a spin
inside a real-space magnetic field.

Since the poles of the correlator correspond to quasinormalfrequencies in the gravity con-
text, we have also analyzed the structure of these poles using the imaginary part of the cor-
relator in the complex frequency plane. We found an antisymmetry around the pole which
translates into an antisymmetry in the spectral function. The spectral function displays a low-
energy cut-off at the valuew = m which we interpret as a minimum energy that perturbations
in the plasma need to have in order to be produced. The spectral function also shows the struc-
ture of triplet splitting that we found in the poles. We will see exactly this behavior again in
chapter 5 when we consider spectral functions at finite quarkmass at arbitrary momentum. In
section 4.2.5 we have discussed these results and compared to our earlier approach neglecting
terms of orderO(µ2) in [1].

Furthermore, we have introduced the new concept of a full non-Abelian chemical po-
tential, and we have developed the necessary techniques to analyze its dynamics and the
thermodynamics produced by this setup. These methods include a flavor transformation to
fields∝ (A1 ±A2) decoupling the flavor structure in the corresponding background equations
of motion. For definiteness we have applied our techniques tothe exampleNf = 2 but sec-
tion 4.5 generalizes these concepts and calculational methods to arbitrary flavor numberNf . In
particular we study the quark condensate, the internal energyE, the entropyS, free energyF
and the speed of soundVs. In the two-flavor setup we find two different phase transitions.
One is the black hole to black hole transition known from the baryonic case. However, the
second transition is located at the line in the phase diagrams where isospin and baryon density
or potential are equal. We have strong indications that thistransition is analogous to that one
found for 2-flavor QCD in [62].

Finally, we have considered transport coefficients which depend on frequency and spatial
momentum of the disturbance in the context ofmolecular dynamicsin 4.6. The gravity calcu-
lation should contain all the information about this four-momentum dependence. Therefore,
we suggest to obtain correlators from gravity numerically for fixed frequency and momentum,
and to substitute these correlators into Kubo formulae to obtain the transport coefficients. Re-
peating this procedure scanning through different frequency and momentum values we should
obtain the four-momentum dependence of the transport coefficient numerically.



5
Thermal spectral functions at finite

U(Nf )-charge density

In this chapter we apply numerical techniques to compute thespectral function of vector cur-
rents at finite charge densities. We analyze the spectrum forthe cases of vanishing densities,
finite baryon density (section 5.1), finite isospin densityNf = 2 (section 5.2), as well as fi-
nite baryon and isospin density at the same time (section 5.4). Especially the latter case is
motivated by the possible comparison to the phenomenology of effective two flavor models
of QCD and lattice results. The spectra resulting from our gauge/gravity calculations show
quasi-particle resonances which at low temperatures can beidentified with vector mesons
having survived the deconfinement transition. These mesonscan be seen as analogs of the
QCD rho-meson. A central point to this thesis is also the discovery of a turning point in the
frequency where the resonances appear when the mass-temperature parameterm ∝ Mq/T is
changed (whereMq is the quark mass andT the temperature). At high temperatures the quasi-
particle interpretation of peaks in the spectral functionshas to be modified as we speculate in
section 5.3 utilizing quasinormal modes.

5.1 Meson spectra at finite baryon density

Application of calculation method We now compute the spectral functions of flavor
currents at finite baryon densitynB, chemical potentialµ and temperatureT in the ‘black
hole phase’ which was discussed in section 2.4. Compared to the limit of vanishing chemical
potential treated in [59], we discover a qualitatively different behavior of the finite temperature
oscillations corresponding to vector meson resonances.

To obtain the spectral functions, we compute the correlations of flavor gauge field fluctua-

124
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tionsAµ about the background given by (4.137), denoting the full gauge field by

Âµ(ρ, ~x) = δ0
µÃ0(ρ) + Aµ(~x, ρ) . (5.1)

According to section 4.3, the background field has a non-vanishing time component, which
depends solely onρ. The fluctuations in turn are gauged to have non-vanishing components
along the Minkowski coordinates~x only and only depend on these coordinates and onρ. Ad-
ditionally they are assumed to be small, so that it suffices toconsider their linearized equations
of motion. Note, that in these conventions the field strengthfluctuationsFµν = 2∂[µAν] only
exist in directionsµ, ν = 0, 1, 2, 3, 4. Meanwhile the anti-symmetric background field strength
has only two non-vanishing componentsF̃40 = −F̃04.

The fluctuation equations of motion are obtained from the effective D7-brane action (4.15),
where we introduce small fluctuationsA by settingF̃µν → F̂µν = 2 ∂[µÂν] with Â = Ã +

A. The background gauge field̃A is given by (4.141). Note that from now on we denote
field fluctuations with the simple symbol (e.g.A) and we provide the normalized background
fields with a tildeÃ. The main difference to the fluctuations considered in section 4.2 is
the fact that the present fluctuations now propagate on a non-symmetric backgroundG given
by the symmetric and diagonal metric partg summed with the anti-symmetric gauge field
backgroundF̃

G = g + F̃ , (5.2)

and the fluctuation’s dynamics is determined by the Lagrangian

L =
√

|det(G+ F )|, (5.3)

with the fluctuation field strengthFµν = 2∂[µAν]. Since the fluctuations and their derivatives
are chosen to be small, we consider their equations of motiononly up to linear order, as
derived from the part of the LagrangianL which is quadratic in the fields and their derivatives.
Denoting this part byL2, we get

L2 = −1

4

√

|detG|
(

GµαGβγFαβFγµ − 1

2
GµνGσγFµνFσγ

)

. (5.4)

Here and below we use upper indices onG to denote elements ofG−1. The equations of
motion for the components ofA are

0 = ∂ν

[
√

|detG| (GµνGσγ −GµσGνγ) ∂[γAµ] +
1

2
G[νσ]GµγFµγ

]

. (5.5)

Note, that the last term each in the quadratic Lagrangian (5.4) and in the equation of mo-
tion (5.5) comes from the term[tr(G−1F )]2 in the determinant expansion (4.16). We recall
thatG−1 here including the background gauge fieldF̃ is not symmetric anymore and so the
trace over the contraction with our anti-symmetric field strengthF does not vanish in general.
Nevertheless, in the geometry we have choosen here these extra terms are all proportional to
the gauge fluctuation in time directionA0 which will drop out of our considerations by the
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time we set the spatial momentum of perturbations to zero. Let us keep these terms anyhow
in order to be precise1.

The terms of the corresponding on-shell action at theρ-boundaries are (withρ as an index
for the coordinateρ, not summed)

Son-shell
D7 = ̺Hπ

2R3NfTD7

∫

d4x
√

|detG|

×
((
G04
)2
A0∂ρA0 −G44GikAi∂ρAk

)
∣
∣
∣
∣
∣

ρB

̺H

.
(5.6)

Note that on the boundaryρB at ρ → ∞, the background field strength̃F40(ρB) = 0 and
the background matrixG reduces to the induced D7-brane metricg. Therefore, the analytic
expression for the on-shell action is identical to the on-shell action found in [59]. There, the
action was expressed in terms of the gauge invariant field component combinations

Ex = ωAx + qA0, Ey,z = ωAy,z . (5.7)

In the case of vanishing spatial momentumq → 0, the Green functions for the different
components coincide and were computed as [59]

GR = GR
xx = GR

yy = GR
zz =

NfNcT
2

8
lim
ρ→∞

(

ρ3∂ρE(ρ)

E(ρ)

)

, (5.8)

where theE(ρ) in the denominator divides out the boundary value of the fieldin the limit of
largeρ according to the recipe we developed and discussed in section 3.1.2 and 3.1.3. The ther-
mal correlators obtained in this way display hydrodynamic properties, such as poles located
at complex frequencies (in particular whenE(ρ) = 0 which is the boundary condition on the
equation of motion forE obeyed by quasinormal modes, cf. 3.3). They are used to compute
the spectral function (3.60). We are going to compute the functionsE(ρ, k) = Ebdy(k)F(ρ, k)

numerically in the limit of vanishing spatial momentumq → 0. The functionsF(ρ,~k)
from the recipe in equation (3.10) are then obtained by dividing out the boundary value
Ebdy(~k) = limρ→∞E(ρ,~k). Numerically we obtain the boundary value by computing the
solution at a fixed largeρ. Finally, the indices on the Green function denote the components
of the operators in the correlation function, in our case alloff-diagonal correlations (asGyz,
for example) vanish.

In our case of finite baryon density, new features arise through the modified embedding and
gauge field background, which enter the equations of motion (5.5) for the field fluctuations.
To apply the prescription to calculate the Green function, we Fourier transform the fields as

Aµ(ρ, ~x) =

∫
d4k

(2π)4
ei~k~xAµ(ρ,~k) . (5.9)

We choose our coordinate system to give us a momentum vector of the fluctuation with
nonvanishing spatial momentum only in a single direction, which we choose to be thex1

component,~k = (ω, q, 0, 0).

1The author appreciates the comment on this notation issue given in [61].
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For simplicity we restrict ourselves to vanishing spatial momentumq = 0. In this case
the equations of motion for transversal fluctuationsEy,z match those for longitudinal fluctu-
ationsEx. For a more detailed discussion see [59]. As an example consider the equation of
motion obtained from (5.5) withσ = 2, determiningE = Ey = ωA2,

0 =E ′′ +
∂ρ[
√

| detG|G22G44]

| detG|G22G44
E ′ − G00

G44
̺2

Hω
2E

=E ′′ + ∂ρ ln

(

1

8
f̃ 2fρ3(1 − χ2 + ρ2χ′2)3/2

×
√

1 − 2f̃(1 − χ2)(∂ρÃ0)2

f 2(1 − χ2 + ρ2χ′2)

)

E ′

+ 8w2 f̃

f 2

1 − χ2 + ρ2χ′2

ρ4(1 − χ2)
E.

(5.10)

The symbolw denotes the dimensionless frequencyw = ω/(2πT ), and we made use of the
dimensionless radial coordinateρ = ̺/̺H .

In order to numerically integrate this equation, we determine local solutions of that equation
near the horizonρ = 1. These can be used to compute initial values in order to integrate (5.10)
forward towards the boundary. The equation of motion (5.10)has coefficients which are sin-
gular at the horizon. According to standard methods [105], the local solution of this equation
behaves as(ρ− ρH)β, whereβ is a so-called ‘index’ of the differential equation. We compute
the possible indices to be

β = ±iw. (5.11)

Only the negative one will be retained in the following, since it casts the solutions into the
physically relevant incoming waves at the horizon and therefore satisfies the incoming wave
boundary condition. The solutionE can be split into two factors, which are(ρ − 1)−iw and
some functionF (ρ), which is regular at the horizon. Note, that thisF is different from the
functionF introduced earlier. WhileF results from splitting the full solutionE into a regular
and a regulating part (see section 3.1.2), the functionF results from splitting the full solutionE
into a boundary and a bulk part. The first coefficients of a series expansion ofF (ρ) can be
found recursively as described in [33, 34]. At the horizon the local solution then reads

E(ρ) = (ρ− 1)−iwF (ρ)

= (ρ− 1)−iw

[

1 +
iw

2
(ρ− 1) + · · ·

]

.
(5.12)

So,F (ρ) asymptotically assumes values

F (ρ = 1) = 1, ∂ρF (ρ)
∣
∣
∣
ρ=1

=
iw

2
. (5.13)

For the calculation of numbers, we have to specify the baryondensityd̃ and the mass pa-
rameterχ0 ∼ Mq/T to obtain the embeddingsχ used in (5.10). Then we obtain a solution
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for a given frequencyw using initial values (5.12) and (5.13) in the equation of motion (5.10).
This eventually gives us the numerical solutions forE(ρ).

Spectral functions are then obtained by combining (5.8) and(3.60),

R(ω, 0) = −NfNcT
2

4
Im lim

ρ→∞

(

ρ3∂ρE(ρ)

E(ρ)

)

. (5.14)

Results for spectral functions We now discuss the resulting spectral functions at finite
baryon density, and observe crucial qualitative differences compared to the case of vanishing
baryon density. In figures 5.1 to 5.4, some examples for the spectral function at fixed baryon
densitynB ∝ d̃ are shown. To emphasize the resonance peaks, in some plots wesubtract the
quantity

R0 = NfNcT
2 πw2, (5.15)

around which the spectral functions oscillate, cf. figure 5.5.
The graphs are obtained for a value ofd̃ aboved̃∗ given by

d̃∗ = 0.00315, d̃ = 25/2nB/(Nf

√
λT 3) , (5.16)

where the fundamental phase transition does not occur. The different curves in these plots
show the spectral functions for different quark masses, corresponding to different positions on
the solid blue line in the phase diagram shown in figure 4.10. Regardless whether we chosed̃
to be below or above the critical valuẽd∗, we observe the following behavior of the spectral
functions with respect to changes in the quark mass to temperature ratio.

Increasing the quark mass from zero to small finite values results in more and more pro-
nounced peaks of the spectral functions. This eventually leads to the formation of resonance
peaks in the spectrum. At small masses, though, there are no narrow peaks. Only some broad
maxima in the spectral functions are visible. At the same time as these maxima evolve into
resonances with increasing quark mass, their position changes and moves to lower freqencies
w, see figure 5.1. This behavior was also observed for the case of vanishing baryon density in
[59].

However, further increasing the quark mass leads to a crucial difference to the case of
vanishing baryon density. Above a valuemturn of the quark mass, parametrized byχturn

0 , the
peaks change their direction of motion and move to larger values ofw, see figure 5.2. Still the
maxima evolve into more and more distinct peaks.

Eventually at very large quark masses, given byχ closer and closer to 1, the positions of
the peaks asymptotically reach exactly those frequencies which correspond to the masses of
the vector mesons at zero temperature [38]. In our coordinates, these masses are given by

M =
L∞
R2

√

2(n+ 1)(n+ 2) , (5.17)

wheren labels the Kaluza-Klein modes arising from the D7-brane wrappingS3, andL∞ is
the radial distance in the(8,9)-direction between the stack of D3-branes and the D7, evaluated
at theAdS-boundary,

L∞ = lim
̺→∞

̺χ(̺) ∝ Mq

T
. (5.18)
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Figure 5.1: The finite temperature part of the spectral function R−R0 (in units ofNfNcT
2/4)

at finite baryon densitỹd. The maximum grows and shifts to smaller frequencies
asχ0 is increased towardsχ0 = 0.7, but then turns around to approach larger
frequency values.
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Figure 5.2: The finite temperature part of the spectral function R−R0 (in units ofNfNcT
2/4)

at finite baryon densitỹd. In the regime ofχ0 shown here, the peak shifts to larger
frequency values with increasingχ0.
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Figure 5.3: The finite temperature partR−R0 of the spectral function (in units ofNfNcT
2/4)

at finite baryon densitỹd. The oscillation peaks narrow and get more pronounced
compared to smallerχ0. Dashed vertical lines show the meson mass spectrum
given by equation (5.17).

The formation of a line-like spectrum can be interpreted as the evolution of highly unstable
quasi-particle excitations in the plasma into quark bound states, finally turning into nearly
stable vector mesons, cf. figures 5.3 and 5.4.

We now consider the turning behavior of the resonance peaks shown in figures 5.1 and 5.2.
There are two different scenarios, depending on whether thequark mass is small or large.

First, when the quark mass is very smallMq ≪ T , we are in the regime of the phase diagram
corresponding to the right half of figure 4.10. In this regimethe influence of the Minkowski
phase is negligible, as we are deeply inside the black hole phase. We therefore observe only
broad structures in the spectral functions, instead of peaks.

Second, when the quark mass is very large,Mq ≫ T , or equivalently the temperature is very
small, the quarks behave just as they would at zero temperature, forming a line-like spectrum.
This regime corresponds to the left side of the phase diagramin figure 4.10, where all curves
of constantd̃ asymptote to the Minkowski phase.

The turning of the resonance peaks is associated to the existence of the two regimes. Atχturn
0

the two regimes are connected to each other and none of them isdominant.
The turning behavior is best understood by following a line of constant densitỹd in the

phase diagram of figure 4.10. Consider for instance the solidblue line in figure 4.10, starting
at large temperatures/small masses on the right of the plot.First, we are deep in the unshaded
region (nB 6= 0), far inside the black hole phase. Moving along to lowerT/M̄ , the solid blue
line in figure 4.10 rapidly bends upwards, and asymptotes to both the line corresponding to
the onset of the fundamental phase transition, as well as to the separation line between black
hole and Minkowski phase (gray region). This may be interpreted as the quarks joining in
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Figure 5.4: The spectral functionR (in units ofNfNcT
2/4) at finite baryon densitỹd. At large

χ0, as here, the peaks approach the dashed drawn line spectrum given by (5.17).

bound states. Increasing the mass further, quarks form almost stable mesons, which give rise
to resonance peaks at larger frequency if the quark mass is increased.

We also observe a dependence ofχturn
0 on the baryon density. As the baryon density is

increased from zero, the value ofχturn
0 decreases.

Figures 5.4 and 5.5 show that highern excitations from the Kaluza-Klein tower are less
stable. While the first resonance peaks in this plot are very narrow, the following peaks show
a broadening with decreasing amplitude.

This broadening of the resonances is due to the behaviour of the quasinormal modes of
the fluctuations, which correspond to the poles of the correlators in the complexω plane, as
described in the example (3.62) and sketched in figure 5.6. The location of the resonance
peaks on the real frequency axis corresponds to the real partof the quasinormal modes. It is a
known fact that the the quasinormal modes develop a larger real andimaginarypart at higher
n. So the sharp resonances at loww, which correspond to quasi-particles of long lifetime,
originate from poles whith small imaginary part. For higherexcitations inn at largerw,
the resonances broaden and get damped due to larger imaginary parts of the corresponding
quasinormal modes.

For increasing mass we described above that the peaks of the spectral functions first move to
smaller frequencies until they reach the turning pointmturn. Further increasing the mass leads
to the peaks moving to larger frequencies, asymptotically approaching the line spectrum. This
behavior can be translated into a movement of the quasinormal modes in the complex plane.
It would be interesting to compare our results to a direct calculation of the quasinormal modes
of vector fluctuations in analogy to [48].

In [48] the quasinormal modes are considered for scalar fluctuations exclusively, at van-
ishing baryon density. The authors observe that starting from the massless case, the real part
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Figure 5.5: The thermal spectral functionR (in units ofNfNcT
2/4) compared to the zero

temperature resultR0.

Figure 5.6: Qualitative relation between the location of the poles in the complex frequency
plane and the shape of the spectral functions on the realω axis. The function
plotted here is an example for the imaginary part of a correlator. Its value on the
realω axis represents the spectral function. The poles in the right plot are closer
to the real axis and therefore there is more structure in the spectral function. This
figure was generated by Felix Rust [117].
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of the quasinormal frequencies increases with the quark mass first, and then turns around to
decrease. This behavior agrees with the peak movement for scalar spectral functions observed
in [59, figure 9] (above the fundamental phase transition,χ0 ≤ 0.94) where the scalar meson
resonances move to higher frequency first, turn around and move to smaller frequency increas-
ing the mass further. These results do not contradict the present work since we consider vector
modes exclusively. The vector meson spectra considered in [59] at vanishing baryon den-
sity only show peaks moving to smaller frequency as the quarkmass is increased. Note that
the authors there continue to consider black hole embeddings below the fundamental phase
transition which are only metastable, the Minkowski embeddings being thermodynamically
favored. At small baryon density and small quark mass our spectra are virtually coincident
with those of [59]. In our case, at finite baryon density, black hole embeddings are favored for
all values of the mass over temperature ratio. At small values ofT/M̄ in the phase diagram of
figure 4.10, we are very close to the Minkowski regime, temperature effects are small, and the
meson mass is proportional to the quark mass as in the supersymmetric case. Therefore, the
peaks in the spectral function move to the right (higher frequencies) as function of increasing
quark mass.

The turning point in the location of the peaks is a consequence of the transition between
two regimes, i.e. the temperature-dominated one also observed in [59], and the potential-
dominated one which asymptotes to the supersymmetric spectrum.

We expect the physical interpretation of the left-moving ofthe peaks in the temperature-
dominated regime to be related to the strong dissipative effects present in this case. This is
consistent with the large baryon diffusion coefficient present in this regime as discussed in
section 6.2 and shown in figure 6.1. A detailed understandingof the physical picture in this
regime requires a quantitative study of the quasipaticle behavior which we leave to future
work.

Let us emphasize that it is likely that the turning point behavior is not a consequence of the
finite baryon density. In our approach it is just straightforward to investigate theT → 0 limit
since black hole embeddings are thermodynamically favoredeven nearT = 0 at finite baryon
density. We expect that a right-moving of the peaks consistent with the SUSY spectrum should
also be observable for Minkowski embeddings at vanishing baryon density forT → 0. How-
ever this has not been investigated for vector modes neitherin [48] nor in [59]. An extension
of the analysis presented here to perturbations with non-vanishing spatial momentumq 6= 0
has appeared in [61].

5.2 Meson spectra at finite isospin density

Radially varying SU(2)-background gauge field In order to examine the caseNf = 2
in the strongly coupled plasma, we extend our previous analysis of vector meson spectral
functions to a chemical potential withSU(2)-flavor (isospin) structure. Starting from the
general action

Siso = −TrTD7

∫

d8ξ

√

| det(g + F̂ )| , (5.19)
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we now consider field strength tensors

F̂µν = σa

(

2∂[µÂ
a
ν] +

̺2
H

2πα′f
abcÂb

µÂ
c
ν

)

, (5.20)

with the Pauli matricesσa and Â given by equation (5.1). The factor̺2H/(2πα
′) is due to

the introduction of dimensionless fields as described below(4.135). In order to obtain a finite
isospin-charge densitynI and its conjugate chemical potentialµI , we introduce anSU(2)-
background gauge field̃A [1]

Ã3
0σ

3 = Ã0(ρ)

(
1 0
0 −1

)

. (5.21)

This specific choice of the 3-direction in flavor space as wellas space-time dependence sim-
plifies the isospin background field strength, such that we get two copies of the baryonic
backgroundF̃ρ0 on the diagonal of the flavor matrix,

F̃ρ0 σ
3 =

(
∂ρÃ0 0

0 −∂ρÃ0

)

. (5.22)

The action for the isospin background differs from the action (4.137 for the baryonic back-
ground only by a group theoretical factor: The factorTr = 1/2 (compare (5.19)) replaces the
baryonic factorNf in equation (4.136), which arises by summation over theU(1) represen-
tations. We can thus use the embeddingsχ(ρ) and background field solutions̃A0(ρ) of the
baryonic case of [42], listed here in section 4.3. As before,we collect the induced metricg
and the background field strength̃F in the background tensorG = g + F̃ .

We apply the background field method in analogy to the baryonic case examined in sec-
tion 5.1. As before, we obtain the quadratic action by expanding the determinant and square
root in fluctuationsAa

µ. The term linear in fluctuations again vanishes by the equation of
motion for our background field. This leaves the quadratic action

S
(2)
iso = ̺H(2π2R3)TD7Tr

∞∫

1

dρ

∫

d4x
√

|detG|

×
[

Gµµ′

Gνν′
(

∂[µA
a
ν]∂[µ′Aa

ν′]

+
̺H

4

(2πα′)2
(Ã3

0)
2fab3fab′3Ab

[µδν]0A
b′

[µ′δν′]0

)

+ (Gµµ′

Gνν′−Gµ′µGν′ν)
̺H

2

2πα′ Ã
3
0f

ab3∂[µ′Aa
ν′]A

b
[µδν]0

]

. (5.23)

Note that besides the familiar Maxwell term, two other termsappear, which are due to the
non-Abelian structure. One of the new terms depends linearly, the other quadratically on the
background gauge field̃A and both contribute nontrivially to the dynamics. The equation of
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motion for gauge field fluctuations on the D7-brane is

0 = ∂κ

[√

|detG| (GνκGσµ −GνσGκµ) F̌ a
µν

]

(5.24)

−
√

|detG| ̺H
2

2πα′ Ã
3
0f

ab3
(
Gν0Gσµ −GνσG0µ

)
F̌ b

µν ,

with the modified field strength linear in fluctuationšF a
µν = 2∂[µA

a
ν] + fab3Ã3

0(δ0µA
b
ν +

δ0νA
b
µ)̺H

2/(2πα′).
Integration by parts of (5.23) and application of (5.24) yields the on-shell action

Son-shell
iso = ̺HTrTD7π

2R3

∫

d4x
√

|detG|

×
(

Gν4Gν′µ −Gνν′

G4µ
)

Aa
ν′F̌ a

µν

∣
∣
∣

ρB

ρH

. (5.25)

The three flavor field equations of motion (flavor indexa = 1, 2, 3) for fluctuations in transver-
sal Lorentz-directionsα = 2, 3 can again be written in terms of the combinationEa

T =
qAa

0 + ωAa
α. At vanishing spatial momentumq = 0 we get

0 = E1
T
′′

+
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
E1

T
′

(5.26)

− G00

G44

[
(̺Hω)2 + (Ã3

0)
2
]
E1

T +
2i̺HωG

00

G44
Ã3

0E
2
T ,

0 = E2
T
′′

+
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
E2

T
′

(5.27)

− G00

G44

[
(̺Hω)2 + (Ã3

0)
2
]
E2

T − 2i̺HωG
00

G44
Ã3

0E
1
T ,

0 = E3
T
′′

+
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
E3

T
′ − G00(̺Hω)2

G44
E3

T . (5.28)

Note that we use the dimensionless background gauge fieldÃ3
0 = Ā3

0(2πα
′)/̺H and̺H =

πTR2. Despite the presence of the new non-Abelian terms, at vanishing spatial momentum
the equations of motion for longitudinal fluctuations are the same as the transversal equa-
tions (5.26), (5.27) and (5.28), such thatE = ET = EL.

Note at this point that there are two essential differences which distinguish this setup from
the approach with a constant potentialĀ3

0 at vanishing mass followed in [1]. First, the inverse
metric coefficientsgµν contain the embedding functionχ(ρ) computed with varying back-
ground gauge field. Second, the background gauge fieldĀ3

0, which gives rise to the chemical
potential, now depends onρ.

Two of the ordinary second order differential equations (5.26), (5.27), (5.28) are coupled
through their flavor structure. Decoupling can be achieved by transformation to the flavor
combinations [1]

X = E1 + iE2, Y = E1 − iE2 . (5.29)
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The equations of motion for these fields are given by

0 = X ′′ +
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
X ′ − 4

G00 (w − m)2

G44
X , (5.30)

0 = Y ′′ +
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
Y ′ − 4

G00 (w + m)2

G44
Y , (5.31)

0 = E3′′ +
∂ρ(
√

|detG|G44G22)
√

|detG|G44G22
E3′ − 4

G00w2

G44
E3 , (5.32)

with dimensionlessm = Ā3
0/(2πT ) andw = ω/(2πT ). Proceeding as described in sec-

tion 5.1, we determine the local solution of (5.30), (5.31) and (5.32) at the horizon. The
indices turn out to be

β = ±i
[

w ∓ Ā3
0(ρ = 1)

(2πT )

]

. (5.33)

SinceĀ3
0(ρ = 1) = 0 in the setup considered here, we are left with the same index as in (5.11)

for the baryon case. Therefore, here the chemical potentialdoes not influence the singular
behavior of the fluctuations at the horizon. The local solution coincides to linear order with
the baryonic solution given in (5.12).

Application of the recipe described in section 3.1.2, 3.1.3and (3.60) yields the spectral
functions of flavor current correlators shown in figures 5.7 and 5.8. Note that after transform-
ing to flavor combinationsX andY , given in (5.29), the diagonal elements of the propagation
submatrix in flavor-transverseX, Y directions vanish,GXX = GY Y = 0, while the off-
diagonal elements give non-vanishing contributions. The longitudinal componentE3 however
is not influenced by the isospin chemical potential, such that GE3E3 is nonzero, while other
combinations withE3 vanish (see [1] for details).

Introducing the chemical potential as described above for azero-temperatureAdS5 × S5

background, we obtain the gauge field correlators in analogyto [112]. The resulting spectral
function for the field theory at zero temperature but finite chemical potential and densityR0,iso

is given by

R0,iso =
NcT

2Tr

4
4π(w ± m∞)2 , (5.34)

with the dimensionless chemical potentialm∞ = limρ→∞ Ā3
0/(2πT ) = µ/(2πT ). Note

that (5.34) is independent of the temperature. This part is always subtracted when we consider
spectral functions at finite temperature, in order to determine the effect of finite temperature
separately, as we did in the baryonic case.

Results at finite isospin density In figure 5.7 we compare typical spectral functions found
for the isospin case (solid lines) with that found in the baryonic case (dashed line). While the
qualitative behavior of the isospin spectral functions agrees with the one of the baryonic spec-
tral functions, there nevertheless is a quantitative difference for the componentsX, Y , which
are transversal to the background in flavor space. We find thatthe propagator for flavor combi-
nationsGY X exhibits a spectral function for which the zeroes as well as the peaks are shifted to
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Figure 5.7: The finite temperature part of spectral functions Riso − R0,iso (in units

of NcT
2Tr/4) of currents dual to fieldsX, Y are shown versusw. The dashed

line shows the baryonic chemical potential case, the solid curves show the spec-
tral functions in presence of an isospin chemical potential. Plots are generated
for χ0 = 0.5 and d̃ = 0.25. The combinationsXY andY X split in opposite
directions from the baryonic spectral function.

higher frequencies, compared to the Abelian case curve. Forthe spectral function computed
from GXY , the opposite is true. Its zeroes and peaks appear at lower frequencies. As seen
from figure 5.8, also the quasi-particle resonances of thesetwo different flavor correlations
show distinct behavior. The quasi-particle resonance peakin the spectral functionRY X ap-
pears at higher frequencies than expected from the vector meson mass formula (5.17) (shown
as dashed grey vertical lines in figure 5.8). The other flavor-transversal spectral functionRXY

displays a resonance at lower frequency than observed in thebaryonic curve. The spectral
function for the third flavor directionRE3E3 behaves asR in the baryonic case.

This may be viewed as a splitting of the resonance peak into three distinct peaks with equal
amplitudes. This is due to the fact that we explicitly break the symmetry in flavor space by our
choice of the background field̃A3

0. Decreasing the chemical potential reduces the distance of
the two outer resonance peaks from the one in the middle and therefore the splitting is reduced.

The described behavior resembles the mass splitting of mesons in presence of a isospin
chemical potential expected to occur in QCD [118, 119]. A linear dependence of the separa-
tion of the peaks on the chemical potential is expected. Our observations confirm this behavior.
Since our vector mesons are isospin triplets and we break theisospin symmetry explicitly, we
see that in this respect our model is in qualitative agreement with effective QCD models. Note
also the complementary discussion of this point in [58].

To conclude this section, we comment on the relation of the present results to those of
our previous paper [1] where we considered a constant non-Abelian gauge field background
for zero quark mass. From equation (5.33), the difference between a constant non-vanishing
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Figure 5.8: A comparison between the finite temperature partof the spectral functionsRXY

andRY X (solid lines) in the two flavor directionsX andY transversal to the chem-
ical potential is shown in units ofNcT

2Tr/4 for large quark mass to temperature
ratioχ0 = 0.99 andd̃ = 0.25. The spectral functionRE3E3 along thea = 3-flavor
direction is shown as a dashed line. We observe a splitting ofthe line expected
at the lowest meson mass atw = 4.5360 (n = 0). The resonance is shifted to
lower frequencies forRXY and to higher ones forRY X , while it remains in place
for RE3E3. The second meson resonance peak (n = 1) shows a similar behav-
ior. So the different flavor combinations propagate differently and have distinct
quasi-particle resonances.
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background gauge field and the varying one becomes clear. In [1] the field is chosen to be
constant inρ and terms quadratic in the background gauge fieldÃ3

0 ≪ 1 are neglected. This
implies that the square(w ∓ m)2 in (5.30) and (5.31) is replaced byw2 ∓ 2wm, such that

we obtain the indicesβ = ±w

√

1 ∓ Ā3
0(ρ=1)

(2πT )w
instead of (5.33). If we additionally assume

w ≪ Ã3
0, then the1 under the square root can be neglected. In this case the spectral function

develops a non-analytic structure coming from the
√
ω factor in the index.

However in the case considered here, the background gauge field is a non-constant function
of ρ which vanishes at the horizon. Therefore the indices have the usual formβ = ±iω from
(5.33), and there is no non-analytic behavior of the spectral functions, at least none originating
from the indices.

It will also be interesting to consider isospin diffusion inthe setup of the present paper.
However, in order to see non-Abelian effects in the diffusion coefficient, we need to give
the background gauge field a more general direction in flavor space or a dependence on fur-
ther space-time coordinates besidesρ. In that case, we will have a non-Abelian term in the
background field strength̃Fµν = ∂µÃ

a
ν − ∂νÃ

a
µ + fabcÃb

µÃ
c
ν̺H

2/(2πα′) in contrast to∂ρÃ
a
0

considered here.

5.3 Peak turning behavior: quasinormal modes and

meson masses

This section serves to discuss the interpretation of resonance peaks appearing in the spectral
functions we computed previously. That interpretation is closely related to understanding the
movement of the peaks as the mass-temperature parameterm is changed, i.e. the turning of
the resonance peaks observed in section 5.1. Also the quasinormal modes play an important
role here since their location in the complex frequency plane is related to the resonance peaks
appearing in the spectral function. Furthermore knowing the quasinormal modes precisely,
we can quantify qualitative observations in the spectral function’s behavior. Note, that one
important feature to remember about our setup is that the quark massMq and the temper-
atureT do not appear independently but always together in the form of the mass parame-
term = 2Mq/(

√
λT ).

It should be kept in mind that in this present section we collect the intermediate outcomes
of our investigation and we suggest a few possible interpretations. Nevertheless, due to the
intermediate state of our studies this section is very speculative and we are working on testing
the alternatives and making our line of argument concise.

Observations The three pictures 5.9, 5.10 and 5.11 summarize an analysis of the turning
point appearing in vector meson spectral functions at finitebaryon density at a distinct quark
mass to temperature ratiom (roughlym ∝ χ0 up to χ0 = 0.6 or m = 0.8). In order to
obtain the resonance frequency and decay width of the (quasi) mesons the spectral function
peaks were locally (all the values of the peak which are abovethe horizontal axis) fitted to the
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Figure 5.9: The frequency of the first resonance peak (mass oflightest vector meson)
in the vector spectral function is shown depending on the mass of the quarks
parametrized byχ0 for different baryon densities̃d. For the lower curves at small
density we identify a clear turning point (minimum).

Lorentz shape

R − R0|near peak=
AΓ

(w − wn=0,l=0)2 + Γ2
, (5.35)

with the free parameterA, the decay widthΓ and the lowest vector meson resonancewn=0,l=0.
Although this is a crude approach (the resonances do not havethe Lorenz shape but are de-
formed, cf. [49]) the location and width of the peaks are captured quite well (optical check).
The height of the peaks might be a subject to discussion sincethe unknown parameterA varies
roughly between0.1 and10 over the scanned parameter range. Nevertheless, this analysis is
merely designed to find qualitative features and for quantitative results we plan to use a differ-
ent approach utilizing quasinormal modes.

The movement of the resonance frequency visible in figure 5.9suggests two distinct limits.
First, there seems to be no turning point in the case of zero density. With increasing mass
parameterm the resonance peak moves further and further to lower frequencies. Since the
turning point should not be negative, we expect either that the curve goes back up or asymp-
totes to some finite value. The latter conclusion agrees withthe spectra shown in [59], where
for the case of vanishing baryon density the peaks were foundto approach a distinct small fre-
quency as the mass parameter is increased towards its critical valueχ0 → 1. The decrease of
the turning point value with increasing baryon density as shown in figure 5.11 suggests that at
vanishing density the turning point would lie at the critical embeddingχ0 = 1, corresponding
to a quark mass ofm(d̃ = 0, χ0 = 1) ≈ 1.3.
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Figure 5.10: The frequency of the first resonance peak (mass of lightest vector me-
son) in the vector spectral function is shown depending on the mass
of the quarks parametrized byχ0 for different baryon densitiesd̃ =
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1, 10. For the lower curves at small
density we identify a clear turning point (minimum) while the peaks at large den-
sity d̃ > 1 move to higher frequency with increasing parameterχ0.

Second, in the limit of large densities̃d ≫ 1 we again find that the turning point disap-
pears but now there are only right-moving peaks approachinglarger and larger frequencies as
the mass parameter is increased. Note, that this behavior agrees with what we expect if we
are to identify the resonance peaks with meson masses as discussed in section 5.1. However,
the peak movement towards smaller frequencies in the limit of vanishing density as well as at
intermediate densities is a rather unexpected feature in the context of the meson mass interpre-
tation. We may also say that the peak movement to smaller frequencies causes the appearance
of the peak turning point. For this reason later we will focuson explaining the movement of
peaks to smaller frequencies and we will start with the vanishing density case for simplicity
below in the paragraph ‘Heuristic gravity interpretation’.

In order to understand what causes the resonance peaks in thespectral function to move
towards smaller frequencies with increasing mass parameterm, we now examine the solutions
to the regular functionF (cf. (5.12)) which we found numerically and from which the spectral
function is essentially computed using (5.14). In figure 5.13 the real and imaginary part of
the regular functionF (ρ) are shown versus the radial coordinateρ. The two upper plots show
the solution for a vector perturbation with energyw = 1, the two lower plots forw = 2. In
all four plots the solid black line shows results for the flat (massless) embeddingχ0 = 0, the
red dashed curve is evaluated at a finite massχ0 = 0.4. The real and imaginary part ofF (ρ)
show a similar oscillation behavior with decreasing frequency for largerρ. The lower curves
at w = 2 display more oscillations over the entire range ofρ than the upper ones atw = 1.
Note that figure 5.13 shows the whole radial variable range since for the numerical solution
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Figure 5.11: The location of the turning point for the lowestvector meson mass is shown de-
pending on the baryon density. Data points read from curves such as given in fig-
ure 5.10 are displayed as dots, the line shows a quadratic fit0.98−1.21d̃+0.53d̃2.
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the equivalent plot for the turning point in terms of the physical parameterm
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Figure 5.12: Thepreliminary Thirring coupling versus embedding parameterχ0 in the case
of d̃ = 0 (green) and̃d = 0.25 (red).
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we used the cutoffs:ρnum
h = 1.00001, ρnum

bdy = 105. This means that figure 5.13 shows all the
oscillations which are present in the solutions over the whole AdS. This is a key observation
for our interpretation since it means that there is only a finite amount of oscillations in each
solution and the number of oscillations increases with increasing energyw. We will come
back to this observation in the paragraph ‘Heuristic gravity interpretation’. From figure 5.13
it is also evident that the red dashed curve at largerχ0 = 0.4 does not reach the amplitude of
the solid blac flat embedding curve atχ0 = 0. One is tempted to interpret that with growing
mass parameterχ0 or equivalentlym the solutionF (ρ) gets damped more and more.

Considering especially the real parts of the solutions displayed in the left column of fig-
ure 5.13 we observe that the amplitude of this ’streched oscillation’ near the horizonρ = 1
first drops rapidly to remain almost constant in the rest of the variable range10 ∼ ρ ≤ ρbdy.
Note in particular, that all these features appear already in the massless embedding (solid black
line in figure 5.13). Therefore we are lead to conclude that these features of the solutions are
caused by the finite temperature background (the pure AdS solution in terms of Bessel func-
tions would show amplitude damping but no change of frequency).

Nevertheless, we should not forget that the coordinateρ displayed in figure 5.13 is not the
radial distance which the mode experiences but the distancewhich is measured by an observer
at infinity. Therefore the picture might be distorted. In order to get the physical distance which
a comoving observer measures we have to transform to the proper radial coordinate

s =

∫

dρ
√

G44(ρ, χ) , (5.36)

whereG is the metric induced on the D7-brane being a function of the variableρ and the
embeddingχ in general. Since we only have a numerical expression forχ we can not
find an analytic expression for the coordinates. Either we gets numerically from the in-
tegration (5.36) or we restrict ourselves to a near horizon approximation where we know
that χ(ρ) = χ0 + χ2(ρ − 1)2 + . . . . We choose the numerical approach. The solutionF
is plotted versus the proper coordinate in figure 5.14 near the horizon. Note that the range
of 0 ≤ s ≤ 9 shown in these plots corresponds to a much larger range in theoriginal co-
ordinate1 ≤ ρ ≤ 4000. We observe that the solution oscillates with apparently constant
frequency and an evident decrease of the amplitude. Note that the decrease of the amplitude
is very smooth here (compare the first and second maximum for each curve). Increasing the
mass parameterχ0 or equivalentlym we find from the upper plot in figure 5.14 that the am-
plitude is decreasing from curve to curve while the proper wave length grows. We argue that
this wavelenght growth is responsible for the shift of resonance peaks to smaller frequencies.
A qualitative change of this situation which confirms our suspicion happens if we switch on
a finite baryon density (cf. right plot in 5.14). In this case the decrease of the amplitude is
diminished and the growth of the wavelenght is stopped and weobserve a turning behavior
with growing amplitude and decreasing wave length forχ0 = 0.9 (blue curve).

The proper distance (on the brane) between the horizon and a distinct pointρ in the bulk∆s =
s − sH depends on the embedding functionχ0 as seen from equation (5.36). In fact with in-
creasing mass parameterχ0 (orm) we find that the distance∆s also increases. This is already
obvious from the embeddings for increasingχ0 shown in figure 4.5. There the spike reaching
from the brane to the horizon becomes larger and larger with increasingχ0 and thus when
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Figure 5.13: The real and imaginary part of solutionsF (ρ) are shown versus the radial AdS-
coordinateρ. Each plot shows two curves one of which is evaluated at vanishing
massχ0 = 0 (solid black) while the other is generated at a finite massχ0 =
0.4 (dashed red). The two plots on top are generated by a vector perturbation
with energyw = 1 while the two lower plots show the equivalent results at
the doubled energyw = 2. A quasinormal mode would satisfy the boundary
condition lim

ρ→ρbdy

|F | = 0 at the boundary.

traveling the same distance in the coordinateρ, on the brane or rather on the spike one travels
a longer and longer distance.

Before we consider possible explanations let us record one last observation comparing
the movement of the resonance peaks and the minimum appearing in the diffusion coeffi-
cient (cf. section 6.2). In figure 5.15 the lower curve shows the location of the first resonance
peak in the spectral function plotted against the densityd̃. With increasingd̃ the peak moves
to lower mass valuesm. However, the upper curve shows that the location of the diffusion
minimum with increasing densitỹd moves to largerm. This observation suggests that these
two quantities are driven apart from each other by an effect generated through the finite baryon
density.

Heuristic gravity interpretation We now approach the interpretation of the left moving
resonance peaks from the gravity side finding out how the solutions F to the equation of
motion change with increasing mass parameterm and how in turn this influences the spectral
function peaks. So our task is to follow a distinct peak (e.g.the first resonance peak) appearing
in the spectral function at a certainRew while we are changing the mass parameterm. The
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Figure 5.14: Imaginary part of the solution to the regular functionF versus the proper radial
coordinates [115]. The upper plot at vanishing baryon densityd̃ = 0 shows that
the initially sinusodial solution is deformed as the mass parameterχ0 is increased.
Furthermore, its amplitude decreases while the wave lengthincreases. The upper
plot shows that introducing a finite baryon densityd̃ = 0.2 causes the solutions
to change their behavior with increasingχ0: While the first three curves forχ0 =
0.01, 0.5, 0.8 show the same qualitative behavior as those in the upper plot, the
blue curve forχ0 = 0.9 clearly signals a qualitative change with its increased
amplitude. Looking at the wave lengths in the lower plot we realize that already
the green curve (χ0 = 0.8) shows a decreased wave length as well as the blue
curve (χ0 = 0.9).



146 Chapter 5. Thermal spectral functions at finiteU(Nf )-charge density

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

d̃

χturn

mturn

χmin

mmin
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minimum versus the baryon density in the case of scalar fluctuations. This plot
was generated by Patrick Kerner [115].
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Figure 5.16: Contour plot of the flavor current spectral function surface near the lowest quasi-
normal mode in the limitq = 0 [117]. Note, that this is not the diffusion pole.

first problem that arises is how to identify those solutionsF which produce a particular peak
in the spectral function. We would have to scan all possiblew for each choice ofm. Therefore
we take a more elegant detour via the quasinormal modes. As wehave argued before in
figure 5.6 the spectral function can be seen as the real frequency edge of a spectral function
landscape over the complex frequency plane. The resonance peaks we observe in the spectral
function over realw are caused by poles in the complex frequency plane appearingexactly at
the quasinormal mode frequencies of the equation of motion (5.10). Although at the moment
we do not have a concise quantitative relation between the quasinormal frequencies and the
exact location of the resonance peaks in the spectral function at realw, we assume that the
qualitative motion of the resonance peaks is directly caused by the corresponding motion of
the quasinormal frequencies asm is changed. In other words we assume here that if we can
show that the quasinormal frequencies are shifted to smaller Rew asm is increased, then
we have also shown that the resonance peaks move to smallerRew. This is confirmed by
observations from contour plots of the spectral function near quasinormal mode locations
such as figure 5.16. At the moment we will just take this as an assumption motivated by our
observations but we are momentarily working on a concise relation.

Quasinormal modes have a determined behavior at the boundary since by definition (cf. sec-
tion 3.3) they have to vanish thereFQNM(ρ = ρbdy) = 0. This means that if we keep this
boundary condition satisfied by adjustingw as we dial through values ofm, we always pick
that particular solutionF which generates the pole in the spectral function at the quasinormal
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frequency. Thus we have solved the problem how to identify those solutions responsible for
generating a peak in the spectral function.

Connecting the observation of finitely many oscillations ineach solution in figure 5.13 with
the distinct boundary condition at the AdS-boundary, we know that each quasinormal mode so-
lutionFQNM at the complex valuewQNM is fixed on both ends of the variable range (ρH , ρbdy)
and shows a finite number of oscillations in between. This behavior is very similar to that of
solutions we would expect from quantum mechanics in a box. For this reason we start our
line of argument with the assumption that in the case at hand AdS-space in radial direction
can be seen as a ‘box’. As we have seen in figure 5.13, changing the mass parameterm or
equivalentlyχ0, causes the solutionF to change. In our ‘box’ picture we now attribute this
change to the change of the size of the AdS-‘box’. Increasingm is equivalent to decreasing
the temperatureT which results in shifting the location of the horizon in the dimensionful
coordinate̺ = ̺H to a smaller value since̺H = πTR2. This means that we increase the
distance between the horizon and the boundary which makes the ‘box’ larger. In order for the
same number of oscillations2 of F to fit into the larger box, the effective wave length has to
grow and equivalently the effective frequency of the mode has to shrink. It is this shrinking
effective frequency which we suspect to cause a movement of the quasinormal frequency to
smaller real parts and eventually to cause the left-motion of the resonance peaks versus realw.

Note, that the heuristic description of AdS as a box with its size depending on the mass
parameter is supported by our discussion of the proper length s (cf. equation (5.36)) which the
mode experiences on the brane.

Looking at the problem even more generally, we notice that the peak motion to smaller
frequencies appears exclusively at small values of the massparameterm or equivalently at
high temperatures. As we have seen in the analysis of (quasi)meson spectra in section 5.1
in this parameter range it is no longer possible to identify the resonances as quasi-particles.
Due to their large decay width we should rather consider themto be short-lived mesonic
excitations in the plasma. In this regime the finite temperature effects overcome the vacuum
effects governed by supersymmetry. Therefore it is naturalto look for a thermal interpretation
of the left-motion of these resonance peaks as an effect of the plasma interacting with the
probe quarks. If this interaction on the gravity side could be found to damp the functionF
and to become stronger asm is increased, this could give an explanation for the decreasing
frequency in analogy to a damped harmonic oscillator. Exactly this is the approach we take in
the next paragraph to find an analytic solution.

Analytical results Motivated by the exact numerical solution to the fluctuationequations
of motion shown in figure 5.14, we suspect that this damped oscillating curve near the horizon
can be approximated by a dampedquasi-harmonicoscillator, i.e. we should be able to find
an approxiate equation of motion which is a generalization of the damped harmonic oscillator
equation. Byquasi-harmonicwe mean that the oscillator is damped with the damping de-
pending on the location of the mode in radial direction. Fromthe observations in figure 5.13

2Different numbers of oscillations correspond to the different quasinormal modes and according to our reason-
ing also to the different peaks appearing in the spectral function. Here we only want to follow one single
peak in the spectral function and therefore we keep the number of oscillations constant.
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we have already concluded that the amplitude changes rapidly near the horizon and ceases to
change very quickly in order to stay virtually constant until the boundary is reached. Thus it is
reasonable to assume that the damping of the modeF mainly takes place near the horizon and
a near-horizon approximation can capture this effect. In this spirit we take the near-horizon
limit ̺ ∼ 1 and at the same time the high-frequency limitw ≫ 1.

Applying these limits for the flat embeddingχ0 = 0 in the equation of motion (5.10) we
obtain the simplified equation of motion

yH ′′ + (−2iw − y)H ′ + iw

(
1√
7

+ 1

)

H = 0 , (5.37)

where the variable isy = 2iw
√

7
2

(̺ − 1) and the regular functionH(y) comes from the

AnsatzE = (̺ − 1)βF with the redefinitionF = e−
√

7/2w(̺−1)H. This equation of motion
has the form ofKummers equation, which is solved by the confluent hypergeometric function
of first H = 1F1[−iw(1/

√
7 + 1),−2iw, x] and second kindU . Boundary conditions rule

out the second kind solution which is non-regular at the horizon and therefore contradicts the
assumptions put into the AnsatzE = (̺− 1)βF . Since we are interested in how the solution
changes with decreasingm, we need to chooseχ0 non-vanishing. Also with this complication
we still get Kummers equation with changed parameters and the analytic solution forF is
given by
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(5.38)
with the near horizon expansion of the embedding functionχ = χ0 +χ2[χ0, d̃]x

2 + . . . where
we determine recursively

χ2[χ0, d̃] = 3χ0
χ6

0 − 3χ4
0 + 3χ2

0 − 1

4(1 − 3χ2
0 + 3χ4

0 − χ6
0 + d̃2)

. (5.39)

The approximate solution forF is shown in figure 5.17. Furthermore we can calculate the
fraction∂4E/E appearing in the spectral function near the horizon using this analytic solution.
The result is displayed in figure 5.18. This near horizon limit is not the spectral function
since we would have to evaluate it at the boundary which lies far beyond the validity of the
near horizon approximation. Nevertheless, according to our initial assumptions that the effect
of damping mainly takes place near the horizon we further assume that the limit shown in
figure 5.18 already contains the essential features of the spectral function. Indeed the fraction
shows distinct resonance peaks which move to lower frequencies if we increase the mass
parameterm. The right picture shows the same situation at a finite baryondensityd̃ = 1
and we see that the peaks do not move to lower frequencies as much as before. Thus also
the vanishing of the turning point at large densities as observed before is captured by this
approximate solution.

The fact that we find Kummer’s equation to describe the high-frequency near-horizon dy-
namics of our gravity problem is especially interesting in view of a recent thermodynamics
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Figure 5.17: Approximate analytic solution compared to theexact solution atw = 70 , d̃ =
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work on the ‘Propagation of boundary of inhomogeneous heat conduction equation’ [120].
In this work exact analytical solutions of the heat conduction equation in an inhomogeneous
medium are found. That diffusion equation which is the analog of our gravity equation of
motion reads

∂tJ(ρ, t) = ρ1−s∂ρ

[
D(ρ)ρs−1∂ρJ(ρ, t)

]
, (5.40)

with the position dependent diffusivityD(ρ). The authors of [120] show that this can be
transformed into Kummer’s differential equation. In our gravity equation of motion the metric
factors depend on the radial AdS postitionρ and therefore some combination of them can be
seen as analog to the position-dependent diffusivityD(ρ). It might be no coincidence that our
gravity setup leads us directly to a diffusion equation where the diffusion coefficient can be
expressed in terms of metric factors since exactly this is what the membrane paradigm in the
context of AdS/CFT predicts as we will discuss in section 6.1.

Gauge theory speculations On the gravity side we have found some hints that the gravity
solution can be viewed as a damped oscillation with the damping depending dynamically on
the radial AdS position and on the choice of the mass parameter m. Increasing the mass
parameterm we found that the solutionsF are more damped. We attributed this damping to
the metric background and found an analytic near-horizon solution forF which is damped by
coefficients in the near-horizon equation of motion which depend on the radial position, on the
embedding functionχ0 and on the finite baryon densitỹd. Now an open task is to translate this
geometric gravity picture into a thermal gauge theory phenomenology. Our basic assumption
here will be that the damped gravity modes dissipating energy into the black hole horizon
correspond to a dual current dissipating energy into the thermal plasma.

In order to see the peaks and their movement at all, we need to consider the background and
the fluctuations at once. We therefore suggest that the peaksand their motion are generated
by the interaction of the metric components and the gravity field fluctuations which translates
to an interaction between the thermal plasma and the probe quarks we introduce. Our obser-
vations suggest that this interaction dominates the setup at small values ofm andχ0 (high
temperatures). The peak motion to lower frequencies while increasingm ∝ Mq/T means
that at fixed temperatureT as we put more mass energyMq into the excitations, the result-
ing plasma excitation (at low temperatures identified with ameson) is less and less energetic.
Minding energy conservation we have to ask where the energy goes which we put in. A
possible explanation for this behavior is that the energy weput into the excitation is directly
dissipated into the plasma. This would happen if the coupling between the plasma and the
quarks would become stronger and stronger as the mass parameter is increased.

One could try to put these speculations into a more rigorous form by assuming that we have
a Thirring model-like gauge theory here, which describes the self-interaction of our quarks3.
So the idea here is that the quarks couple less and less to eachother and more and more to the
plasma which could be seen as a decrease in theThirring coupling

gThirring ∝
Γ

Ω
, (5.41)

3The author is grateful to Karl Landsteiner for suggesting this approach.
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with the (quasi)meson decay widthΓ and the (quasi)mesonic excitation energyΩ. The Thirring
coupling computed with our setup atd̃ = 0, 0.25 is shown in figure 5.12 versus the quark mass
parameterχ0. At both finite and vanishing baryon density we observe that the Thirring cou-
pling decreases rapidly as the critical valueχ0 = 1 is approached.

A more concise relation between the gravity and gauge setupsshall be given soon [121].

5.4 Meson spectra at finite isospin and baryon density

We have successfully introduced finite baryon and isospin charges simultaneously into the dual
thermal gauge theory by the gravity background described insection 4.4. In the two previous
sections we have studied fluctuations around the two limitsd̃B 6= 0, d̃I = 0 (section 5.1)
or d̃B = 0, d̃I 6= 0 (section 5.2). In order to compare our results to computations in finite
isospin and baryon QCD-models [122, 123, 124] (e.g. latticeQCD and two-flavor QCD) we
need to compute fluctuations about the general cased̃B 6= 0, d̃I 6= 0.

We start from the Dirac-Born-Infeld action (2.21) at vanishingB-field just like in the cases
where only one density is non-zero

SDBI = −TD7

∫

d8ξStr

{√
− detG

[

1 +
1

2
tr(G−1F̃ ) − 1

4
(G−1F̃ )2 +

1

8
tr(G−1F̃ ) + . . .

]}

,

(5.42)
where the field strength

F̃µν = F̃ a
µνT

a = 2∂[µA
a
ν]T

a + fabcAb
µA

c
νT

a + 2fabcÃb
[µA

c
ν]T

a , (5.43)

contains the non-Abelian gauge field fluctuationsA as well as the background fields̃A0, Ã3 (given
by analogs of (4.142) which can be derived from the action (4.161) using the transforma-
tion (4.160)4). In the case of introduced isospin, i.e.Nf = 2 with the Pauli sigma repre-
sentationsT a = σa completed by unityσ0 = 1 the full background is collected inG given
by

G =















g00σ0 0 0 0 2∂[0Ã
α
4]σ

α 0 0 0

0 g11σ0 0 0 0 0 0 0
0 0 g22σ0 0 0 0 0 0
0 0 0 g33σ0 0 0 0 0

2∂[4Ã
α
0]σ

α 0 0 0 g44σ0 0 0 0

0 0 0 0 0 g55σ0 0 0
0 0 0 0 0 0 g66σ0 0
0 0 0 0 0 0 0 g77σ0















, (5.44)

whereg is the metric (4.132) induced on the D7-brane. Note that we now have the com-
plication of two different (diagonal) flavor representations in the determinant

√
− detG and

4Note that in chapter 5 the notation for background and fluctuations is reverse compared to chapter 4. In this
present chapter̃A denotes the background whileA denotes fluctuations about the background. In chapter 4
we usedA to denote the background for simplicity since in that chapter there are no fluctuations.
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furthermore the operatorsF andG do not commute since there are flavor representations
attached to each of them. By our choice the background gauge fields come only with the di-
agonal representations, i.e.α = 0, 3 such that onlyÃ0

0 6= 0 andÃ3
0 6= 0, while the fluctuations

are admitted in any flavor directionAa
µ 6= 0, ∀a = 0, 1, 2, 3. In order to be able to compute

the square roots and the symmetrized flavor trace in the action (5.42) we need to simplify their
arguments.

In order to simplify the expressions appearing in the action, we need to commute the back-
groundG with fluctuationsF̃ . It is reasonable to split the background into parts which live in
distinct representations in order to have definite commutation rules. Taking into account that
we only have background fields in flavor directionsa = 0, 3 the background containing metric
and background gauge fields reads

Gµν =
(

gµν + 2∂[µÃ
0
ν]

)

︸ ︷︷ ︸

=Aµν

σ0 + 2∂[µÃ
3
ν]

︸ ︷︷ ︸

=Bµν

σ3 . (5.45)

Note thatAµν andBµν both come with representations diagonal in flavor space but only Aµν

commutes with all flavor representations.Aµν is further composed of the metric term being di-
agonal in Minkowski space and the antisymmetric2∂[µA

0
ν] which has only two non-vanishing

entries±∂4A
0
0. The non-commuting term with the coefficientBµν is anti-symmetric in the

Minkowski indices and has only the two entries±∂4A
3
0. We can make use of these properties

later in order to simplify the action. For a simplified notation we abbreviateAa
0
′ = ∂4A

a
0.

Looking at the action (5.42) we learn that we need the inversemetricG−1 which we compute
by solving the defining equationGµνGνλ = δµ

λσ
0. The result is

Gµν = Aµνσ0 +Bµνσ3 , (5.46)

with the inverse coefficients for the first5 × 5 entries

Aµν =
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(5.47)
where the only other non-zero entries in the remaining directions are diag(g55, g66, g77) and
the other coefficient is given by

Bµν =
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(5.48)
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with all other entries vanishing.
In the isospin case the action can be simplified considerablysince the representation ma-

trices being spin representations satisfy the Clifford algebra in addition to the commutation
relations

{σa, σb} = 2δab and [σa, σb] = iǫabcσc ∀a, b = 1, 2, 3 ; [σ0, σa] = 0 ∀a, b, c = 0, 1, 2, 3 .
(5.49)

The action (5.42) can now be written in terms of these inverseAµν , Bµν and the fluctua-
tions (5.43). Using their properties along with the group structure simplifications (5.49) we
have to work out the commutation relation forG andF and apply these to simplify the action
terms. For example the term proportional toGµµ′

F̃µνG
νν′

F̃µ′ν′ can be brought to the standard
formGµµ′

Gνν′

F̃µνF̃µ′ν′ + commutators. These formulae may be taken as the starting point for
the calculation of fluctuations about the baryon and isospinbackground.

5.5 Summary

In this chapter we have computed spectral functions to explore the thermal gauge theory dual
to the D3/D7-brane setup with finite baryon and isospin densities.

Upon the introduction of a finite baryon density we found resonance peaks in these spec-
tral functions appearing at distinct frequencies in section 5.1. At small temperatures the en-
ergy (frequency) of the resonances follows the vector mesonmass formula while their width
becomes smaller and their resonance frequency larger when we decrease the temperature fur-
ther. These facts suggest the interpretation that the resonance peaks correspond to mesonic
quasi-particles formed inside the plasma. Having survivedthe deconfinement transition of the
theory these vector mesons are analogous to theρ-meson of QCD.

However, at high temperatures the resonances become very broad and their frequency lo-
cation does not relate to the mass formula. These peaks also move to lower frequencies if
we decrease the temperature or equivalently increase the mass parameterm. There exists a
turning point at which the resonance peaks change their direction along the frequency axis
when the temperature-mass parameterm is changed. We speculate that in the same way in
which the low-temperature (large mass) regime is ruled by mass effects, thethermal regime
is governed by temperature effects. In order to collect evidence for this interpretation we ex-
amined the solutions of the gravity field dual to the flavor current relevant for our spectral
functions in section 5.3. We give an analytic solution for the gravity field equation of motion
and the spectral function fraction in the high-frequency near-horizon limit. This solution is
the confluent hypergeometric function1F1 showing oscillatory and damped behavior.

Introducing a finite isospin density in section 5.2 we discovered a triplet splitting of the
peaks. This behavior agrees with the analytical results showing a triplet splitting of the cor-
relator poles in the complex frequency plane at finite isospin chemical potential for massless
quarks studied in section 4.2. The splitting depends on the size of the chemical potential. Note
again that this behavior is reminiscent of the QCDρ-meson which is a triplet under the QCD
isospin symmetry.

Finally, in the last section 5.4 we introduced the concepts needed to compute gravity fluc-
tuations and to obtain from these the correlators at finite baryon and isospin densities.



6
Transport processes at strong coupling

Experimental results obtained at the RHIC collider suggestthat the plasma state generated
there in collisions of gold ions behaves as a fluid (rather than a gas as originally assumed)
is microscopically governed by QCD at strong coupling and finite temperature. We thus use
the AdS/CFT duality in the present chapter in order to compute transport properties of the
strongly coupled plasma. In particular we focus on the diffusion of conserved charges such
as the baryon charge and isospin charge. Section 6.1 reviewsthe general membrane paradigm
approach to compute diffusion coefficients from the metric components only. We apply the
formulae obtained there in sections 6.2 and 6.3 to find the baryon and the isospin diffusion
coefficients, respectively. Since in the previous chapter we have found evidence for mesonic
quasi-particle states to survive the deconfinement transition inside the plasma, we go on study-
ing the diffusion of such quarkonium states in section 6.4. Finally we consider the case of
a background gauge field in arbitrary flavor direction which induces three different isospin
charges on the gauge theory side. In section 6.5 we study gradients in these three charge
densities which drive thermal currents.

6.1 Membrane paradigm

Let us begin our study of the diffusion properties at finite baryon and isospin densities by mo-
tivating the so calledmembrane paradigmwhich relates transport coefficients to components
of the background metric tensor. In our case this metric tensor will include contributions from
the background gauge fields on the D7-brane. We also restate the neccessary assumptions and
put down the most important formulae. A detailed derivationcan be found in [31] while a
review of the complete subject may be found in [9].

The basic idea behind the membrane paradigm approach is to relate the hydrodynamic nor-
mal modes on the gauge theory side of the correspondence to a gravitational counterpart. This
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gravitational counterpart then has to fulfill the same dispersion relations as the hydrodynamic
modes. For example the gravity mode dual to the diffusion mode should have the dispersion
relationω = −iDq2. The approach used in [31] is to construct the gravity fluctuation with
exactly this dispersion property. Having done this the authors identify the diffusion coefficient
with an expression in the result depending on the metric components. This yields the diffusion
formula for a charge coupled to a conserved vector current

D =

√−g
g11

√−g00g44

∣
∣
∣
∣
ρ=1

∫

dρ
−g00g44√−g . (6.1)

Similar formulae can be found for the gravitational tensor fluctuations dual to the shear mode [31].
There are a few assumptions to be made in order for the derivation to work. First, the metric
components all have to be independent from all coordinates but the radial AdS-coordinatex4.
Second, the time component of the gravity vector fieldA0(ρ) can be expanded in a series
overq2/T 2 ≪ 1 (at least ifρ is not exponentially close to the horizon). Third, spatial gauge
field components change slower with time than the time-component varies over space|∂0A1| ≪
|∂1A0|.

6.2 Baryon diffusion

In this section we calculate the baryon diffusion coefficient and its dependence on the baryon
density. As discussed in [52], the baryon density affects the location and the presence of the
fundamental phase transition between two black hole embeddings observed in [42]. This first
order transition is present only very close to the separation line between the regions of zero
and non-zero baryon density shown in figure 4.10 as discussedbefore in section 4.3. We show
that the fundamental phase transition may also be seen in thediffusion coefficient for quark
diffusion. It disappears at a critical baryon density. Nevertheless, the diffusion coefficient
shows a smoothened transition beyond this critical density, which we will callhydrodynamic
transition and which appears as a minimum in the diffusion coefficient versus quark mass
diagram.

In order to compute the diffusion using holography, we use the membrane paradigm ap-
proach reviewed in section 6.1 developed in [31] and extended in [59]. This method allows
to compute various transport coefficients in Dp/Dq-brane setups from the metric coefficients.
The resulting formula for our background is equation 6.1 which is the same as in [59].

The dependence ofD on the baryon density and on the quark mass originates from the
dependence of the embeddingχ on these variables. The results forD are shown in figure 6.1.

Discussion The thick solid line shows the diffusion constant at vanishing baryon density
found in [59], which reachesD = 0 at the fundamental phase transition. Increasing the
baryon density, the diffusion coefficient curve is lifted upfor small temperatures, still showing
a phase transition up to the critical densityd̃∗ = 0.00315. This is the same value as found
in [42] in the context of the phase transition of the quark condensate.
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Figure 6.1: The diffusion coefficient times temperature is plotted against the mass-scaled tem-
perature for diverse baryon densities parametrized byd̃ = 0.1 (uppermost line in
upper plot, not visible in lower plot),0.004, (long-short-dashed),0.00315 (thin
solid), 0.002 (long-dashed),0.000025 (short-dashed) and0 (thick solid). The fi-
nite baryon density lifts the curves at small temperatures.Therefore the diffusion
constant never vanishes but is only minimized near the phasetransition. The lower
plot zooms into the region of the transition. The phase transition vanishes above a
critical valued̃∗ = 0.00315. The position of the transition shifts to smallerT/M̄ ,
asd̃ is increased towards its critical value.
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The diffusion coefficient never vanishes for finite density.Both in the limit ofT/M̄ → 0
andT/M̄ → ∞, D · T converges to1/2π for all densities, i.e. to the same value as for van-
ishing baryon density, as given for instance in [31] for R-charge diffusion. Near the phase
transition, the diffusion constant develops a nonzero minimum at finite baryon density. Fur-
thermore, the location of the first order phase transition moves to lower values ofT/M̄ while
we increasẽd towards its critical value.

In order to give a physical explanation for this behavior, wefocus on the case without
baryon density first. We see that the diffusion coefficient vanishes at the temperature of the
fundamental deconfinement transition. This is simply due tothe fact that at and below this
temperature, all charge carriers are bound into mesons not carrying any baryon number.

For non-zero baryon density however, there is a fixed number of charge carriers (free
quarks) present at any finite temperature. This implies thatthe diffusion coefficient never
vanishes. Switching on a very small baryon density, even below the phase transition, where
most of the quarks are bound into mesons, by definition there will still be a finite amount of
free quarks. By increasing the baryon density, we increase the amount of free quarks, which
at some point outnumber the quarks bound in mesons. Therefore in the large density limit
the diffusion coefficient approachesD = 1/(2πT ) for all values ofT/M̄ , because only a
negligible fraction of the quarks is still bound in this limit.

Note that as discussed in [53, 42, 52] there exists a region inthe (nB, T ) phase diagram
at smallnB andT where the embeddings are unstable. In figure 6.1, this corresponds to the
region just below the phase transition at small baryon density. This instability disappears for
largenB (compare also figure 4.12).

6.3 Diffusion with isospin

In this section we consider the diffusion coefficient computed from the membrane paradigm
formula (6.1) adding a finite isospin density to the finite baryon density exclusively considered
in the previous section. The gravity dual to such a theory hasalready been discussed in sec-
tion 4.4. The finite isospin density enters the diffusion coefficient through the D7 embedding
functionχ(ρ, d̃B, d̃I) which appears in the metric componentsgµν(ρ, d̃

B, d̃I). We obtain the
explicit embedding function by solving its equation of motion (4.164) and then simply plug in
the metric coefficients (4.132) into the diffusion formula (6.1). This procedure yields the plots
given in figure 6.2. The physical significance of this diffusion coefficient will be discussed at
the end of this section and for now we refer to it as theeffective baryon diffusion coefficient.

Discussion The diffusion coefficient in this background with finite baryon density and with
finite isospin density (thermodynamical conjugate of the chemical potential in the third flavor
direction) behaves very similar to the case with finite baryon density only. In the limit of
vanishing densities̃dB = 0 = d̃I the diffusion coefficient reduces to the thick black line
shown in figure 6.1 showing a sharp transition from the diffusive black hole phase to the non-
diffusive Minkowski phase at the critical mass-temperature valuemcrit. Again the explanation
is that neither baryon nor isospin charges are available below the criticalm. We now switch on
a small baryon density and increase the isospin density in quarter steps from zero (black curve)
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Figure 6.2: The diffusion coefficient times temperatureDT is plotted versus the mass-
temperature parameterm at baryon density (a)̃dB = 5·10−5 and (b)d̃B = 20. Dif-
ferent curves in one plot show results for distinct values ofthe isospin density (top
down): d̃I = 0 (black),d̃I = 1/4d̃B (green),d̃I = 1/2d̃B (blue),d̃I = 3/4d̃B (red),
d̃I = d̃B (orange). These plots were generated by Patrick Kerner [115].

to d̃I = d̃B (orange curve) in figure 6.2, (a). At these small densities only the case in which
both densities are equal differs significantly from the onlybaryon density case. The diffusion
curve for this case drops up to 50 percent below the baryonic value above the transition and
follows the baryonic case closely below the transition. Zooming in on figure 6.2, (a) would
show a spiraling behavior for all the curves near the location of the former phase transition.
The new location of the transition shifts to smallerm as the isospin density is increased. This
qualitative behavior has also been observed when we increased the baryon density at vanishing
isospin density in the previous section. Thus we can summarize that the introduction of any
of the two densities shifts the location of the phase transition to lower values of the mass-
temperature parameterm (as may be seen in the phase diagram 4.18). At a critical combination
of densities the transition again vanishes.

Increasing the baryon density tõdB = 20 in figure 6.2, (b) we observe a more pronounced
splitting between the different isospin density curves. Again the casẽdI = d̃B drops signif-
icantly below the other isospin value curves. All the curvesshow a clear minimum near the
location of the former phase transition. We interpret this minimum structure as a smoothed
version of the previously sharp phase transition and call ithydrodynamic transition. We fur-
ther identify this transition as a crossover. Following thelocationmmin of the minimum when
varying the two densities we observe that the rotational symmetryO(2) formerly present at
small densities in the phase diagram 4.18, now at large densities is broken to a discreteZ4. All
the diffusion curves approach the value1/(2π) in both the large and small mass limit. This
evolution is shown in the contour plot 6.3. Contours correspond to equal values of the mass
parameterm at the phase transition.

We now come back to the question which diffusion coefficient we have actually calculated
applying the membrane paradigm formula (6.1). Since we havenot changed the formula
at all and taking a closer look at its derivation, we are lead to the conclusion that we have
again calculated the baryon diffusion coefficient. Since the metric background now includes
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isospin density in addition to the baryon density, this formula also incorporates the effect of the
finite isospin density on the diffusion of our baryons. So we conclude that the coefficient we
have computed is the baryon diffusion coefficient taking in account the isospin-driven baryon
diffusion, thus we call it theeffective baryon diffusion coefficient. In order to study the effects
of baryon and isospin diffusion seperately, we have to modify the membrane paradigm and
also our setup to include a non-Abelian structure in the metric background as briefly discussed
in the outlook section 6.5.

6.4 Charmonium diffusion

In accordance with recent QCD lattice results [63] and investigations of [64] we observed
in the previous chapter that in our model D3/D7-theory stable quasi-particle states of quarks
and antiquarks survive the deconfinement transition of the thermal field theory (N = 4 SYM
in our case) which governs the thermal plasma under investigation. After having studied the
diffusion of individual quarks considering their isospin and baryon charge in the previous
sections (see also [125, 126, 127]), we now turn to the diffusion of those quark-antiquark
bound states having survived in the thermal plasma. We will find that similar to the viscosity
boundη/s, the quarkonium diffusion at strong coupling is also significantly smaller than at
weak coupling. The energy loss of heavy quarks and their bound states is experimentally of
high interest [89, 128, 129, 130, 131, 132]. The most prominent example of such bound states
in QCD is charmonium (cc̄), or rather its first excited state calledJ/ψ. In our holographic
setup we examine an analogous configuration of fundamental fields in SYM theory at strong
coupling. We start by illustrating the general idea of our calculation with a review of the
analogous QCD calculation. Afterwards we translate the problem to SYM theory and solve
it by the calculation of correlation functions in the dual gravity theory. The result will be
the quark-antiquark bound state diffusion coefficient at strong coupling. The content of this
section is taken from the work [4] in collaboration with Derek Teaney.

Summary of QCD results Our task is to describe the interactions of a heavy meson with
the QCD medium. We accomplish this by a dipole approximationwhich has yielded a good
estimate of theJ/ψ coupling to nuclei [133]. Following the effective field theory calculation
first carried out in [133], we consider the sum of the pure QCD Lagrangian and an interaction
Lagrangian describing color-electric (indexE) and color-magnetic ( indexB) interactions

L = φ†
viv · ∂φv +

cE
N2

φ†
vOEφv +

cB
N2

φ†
vOBφv , (6.2)

with

OE = −GµαAGα
νAuµuν , OB = 1

2
GαβAGαβ

A −GµαAGα
νAvµvν . (6.3)

G is the non-Abelian field strength of QCD, andcE andcB are coefficients to be determined
from the QCD dynamics. This Lagrangian may be used for describing bound states of heavy
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quarks with four-velocityvµ. In the rest frame of a heavy quark bound state,v = (1, 0, 0, 0),
the operatorsOE andOB are

OE = EA · EA , OB = BA · BA , (6.4)

whereEA andBA are the color electric and magnetic fields.
For the gluons the stress-energy tensor is given by

T µν = 1
4
gµνGαβAGαβ

A −GµαAGα
νA . (6.5)

Using this we may write

OE = T 00 − 1
4
trG2 , OB = T 00 + 1

4
trG2 . (6.6)

cE andcB are polarizabilities which may be determined from meson mass shifts,

δM = −〈HI〉 = −(cB + cE)T 00 − 1
4
(cB − cE)trG2 . (6.7)

If the constituents of the charmonium dipole are non-relativistic it is expected that the mag-
netic polarizabilitycB is of second order in the four-velocityO(v2) relative to the electric
polarizability cE. For heavy quarks we assume thatcB can be neglected and setcB = 0.
Below we will generalize our results to the holographic context.

We expect the kinetics of the heavy meson dipole in the mediumto be described by Langevin
equations for long time scales compared to the medium correlations

dxi

dt
= pi

M
, (6.8)

dpi

dt
= ξi(t) − ηDpi , (6.9)

〈ξi(t)ξj(t′)〉 = κδijδ(t− t′) . (6.10)

Here theξi are components of an arbitrary force acting on the heavy dipole,x, p are its position
and momentum, respectively. In this context the coefficientκ is the second moment of the
force applied to the dipole. The drag coefficientηD and the fluctuation coefficientκ are related
by the Einstein equation

ηD =
κ

2MT
, (6.11)

with the massM and temperatureT .
In the regime of times long compared to medium correlations but short compared to the

time the system needs to equilibrate, we can neglect the dragcoefficient in equation (6.9).
Then the fluctuation coefficientκ is obtained from the correlation of microscopic forcesF i

κ =
1

3

∫

dt〈F i(t)F i(0)〉 . (6.12)

The thermodynamical forceF acting on the heavy dipole is determined by the gradientF =
−∇U of the potentialU identified as the interaction part of the Lagrangian

U = Lint =

∫

d3xφ†
vcE

E2

2
(x, t)φv(x, t) . (6.13)



6.4. Charmonium diffusion 163

So the fluctuation coefficient is given by

κ = − lim
ω→0

2T

3ω

c2E
N4

∫
d3q

(2π)3
q2ImGR

E2E2(ω, q) , (6.14)

where

GR
E2E2(ω,k) = −i

∫

d4xe−i~k·~xΘ(x0)〈OE

2
(x, t)

OE

2
(0)〉 . (6.15)

The three-momentum factorq2 in (6.14) comes from the derivative in the potential gradi-
ent∇U and the term proportional toω2 vanishes in the zero-frequency limit.

In the case of QCD the integral in (6.14) evaluates to

κ =
c2E
N2

64π5

135
T 9 . (6.16)

The fluctuation coefficientκ which we identified with the second moment of the force acting
on the dipole gives the rate of momentum broadening. We also identify the coefficientscE , cB
as the electric and magnetic polarizabilities. These and analogous coefficients in the following
are calledα with an appropriate index (e.g.αF , αT ).

Linear perturbations of N = 4 Super-Yang-Mills theory Our aim is to calculate the
heavy meson diffusion coefficientκ from gauge/gravity duality. This requires the calculation
of the two-point correlators as well as of the polarizabilities in N = 4 Super-Yang-Mills
theory.

To set the scene we transfer the results of the preceding section toN = 4 SU(N) Super-
Yang-Mills theory. We consider the effective Lagrangian

L = φ†
viv · ∂φv +

αT

N2
φ†

vT
µνφvvµvν +

αF

N2
φ†

vtrF
2φv , (6.17)

which is a linear perturbation ofN = 4 Super-Yang-Mills theory by two composite operators.
The polarization coefficientsαT , αF will be determined below from meson mass shifts in
gauge/gravity duality.

The force on the dipole now becomes

F(t) = −
∫

d3xφ†
v∇
[

αTN
2T µνuµuν +

αF

N2
trF 2

]

φv . (6.18)

Again there will be no cross-terms. In the gauge/gravity duality this is reflected in the fact that
at tree level in supergravity, there is no contribution to〈T00(x)trF

2(y)〉 = δ2

δg00(x)δΦ(y)
W = 0,

with g00 the metric component andΦ the dilaton.
We proceed by calculating the stress tensor andtrF 2 correlators from graviton and dilaton

propagation through the AdS-Schwarzschild black hole background. Moreover we determine
the polarizabilityαT by considering the linear response of the meson mass to switching on the
black hole. The polarizabilityαF is obtained by determining the linear response of the meson
mass to a perturbation of the dilaton. As an example we choosethe dilaton deformation of Liu
and Tseytlin [134].
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AdS/CFT setup We consider two different gravity backgrounds, the thermaland the dila-
ton one. Starting with the gravity dual ofN = 4 theory at finite temperature given by the
AdS-Schwarzschild black hole with Minkowski signature (see e.g. [28]). Asymptotically near
the horizon the corresponding metric returns toAdS5 × S5. The black hole background is
needed in the subsequent both for calculating the necessarytwo-point correlators〈T00T00〉
and〈trF 2trF 2〉, as well as for obtaining the polarizability contribution for the linear response
of the meson masses to the temperature.

We make use of the coordinates of [37] to write the AdS-Schwarzschild background in
Minkowski signature as

ds2 =
( r

R

)2
(

−f
2

f̃
dt2 + f̃dx2

)(
R

r

)2
(
dr2 + r2dΩ2

5

)
, (6.19)

with the metricdΩ2
5 of the unit5-sphere, where

f(r) = 1 − r4
H

r4
, f̃(r) = 1 +

r4
H

r4
, rH =

TπR2

√
2
,

R4 = 4πgsNcα
′2, λ = 4πNgs, g2

Y M = 4πgs .

(6.20)

In this section we will work in a coordinate system with inverted radialAdS-coordinateu =
R2/r2 used in e.g. [28]. In these coordinates, the deformedAdS5 part of the metric (6.19)
reads

ds2
5 =

(πTR)2

u

(
−f(u)dx0

2 + dx2
)

+
R2

4u2f(u)
du2 , (6.21)

with f(u) = 1 − u2 and the determinant square root
√−g5 = R10(πT )8

4u3 .
A further necessary ingredient is the polarizability contribution obtained from the linear

response of the meson mass totrF 2. The gravity dual of the operatortrF 2 is the dilaton field.
Therefore, we consider a dual gravity background with a non-trivial dilaton flow. We choose
the dilaton flow of Liu and Tseytlin [134] which corresponds to a configuration of D3 and
D(-1) branes.

In order to fix notation, we write down the string frame metricof [134] in the form

ds2
string = eΦ/2ds2

Einstein = eΦ

[
( r

R

)2

d~x2 +

(
R

r

)2
(
dr2 + r2dΩ2

5

)

]

. (6.22)

The type IIB action in the Einstein frame for the dilatonΦ, the axionC and the self-dual gauge
field strengthF5 = ⋆F5 reads

S =
1

2κ2
10

∫

d10x
√−g

[

R− 1

2
(∂Φ)2 − 1

2
e2Φ(∂C)2 − 1

4 · 5!
(F5)

2 + . . .

]

, (6.23)

with the curvature scalarR and the ten-dimensional gravity constant

1

2κ2
10

=
1

(2π)7(α′)4g2
s

. (6.24)



6.4. Charmonium diffusion 165

Solving the equations of motion derived from (6.23), we obtain the dilaton solution

eΦ = gs(1 +
q

r4
) . (6.25)

Note that the parameterq we are using here differs from that given in [134] in the following
way q = R8

λ
qLiu&Tseytlin.

The dilaton is dual to the field theory operator trF 2 appearing in the gauge theory ac-
tionSgauge=

∫
d4xtrF 2 + . . . . So the expectation value or one-point function of this operator

is given by

〈trF 2〉 =
δS

δΦ
=

N2

2π2R8
q . (6.26)

Correlators According to (6.14) and (6.18) the heavy meson diffusion coefficient is given
by

κ = − lim
ω→0

(
2T

3ω

)∫
d3q

(2π)3
q2

[(αF

N2

)2

ImGR
F 2F 2(ω, q) +

(αT

N2

)2

ImGR
TT (ω, q)

]

, (6.27)

where the bracket is the imaginary part of the force (6.18) correlatorGR
FF . We need to cal-

culate the retarded momentum space correlatorGR
TT of the energy momentum tensor compo-

nentT 00 which is dual to the metric perturbationh00, and the 2-point correlatorGR
F 2F 2 of the

operator trF 2 dual to the dilatonΦ. On the gravity side both field correlators are computed in
the black hole background (6.19) placing the dual gauge theory operator correlation functions
at finite temperature.

For simplicity in this section we work in the conventions andcoordinates of [28]. Espe-
cially the radial coordinate is changed fromr to u with the horizon atu = 1. These are the
same coordinates we have used in section 3.1.2. We apply the method of [27] to find the
two-point Minkowski space correlators from the classical supergravity action as described in
section 3.1.2 .

The classical gravity action for the graviton and dilaton isobtained from (6.23) as

S =
1

2κ2
5

∫

dud4x
√−g5

[

(R− 2Λ) − 1

2
(∂Φ)2 + . . .

]

, (6.28)

where
1

κ2
5

=
Ω5

κ2
10

=
N2

4π2R3
. (6.29)

So comparing to (3.7) we get

BΦ = − 1

4κ2
5

√−g5g
uu . (6.30)

The equation of motion derived from (6.28) in momentum spacereads

Φ′′ − 1 + u2

uf(u)
Φ′ +

w2 − q2f(u)

uf(u)2
Φ = 0 , (6.31)
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with the dimensionless frequencyw = ω/2πT and spatial momentum componentq = q/2πT .
The equation of motion (6.31) has to be solved numerically with incoming wave boundary
condition at the black hole horizon. Computing the indices and expansion coefficients near
the boundary and horizon as done in [33, 34], we obtain the asymptotic behavior as linear com-
bination of two solutions. We get the correlators by applying thematching methoddescribed
in section 3.1.3. Solving (6.31) and matching the asymptotic solutions, we obtain

lim
ω→0

∫
d3q

(2π)3

q2

3ω
[−2T ImGR

F 2F 2(ω, q)] = N2T 9C1 . (6.32)

The corresponding result for the energy-momentum component correlator is obtained in an
analogous way from the action and equations of motion already discussed in [29] . The final
result is

lim
ω→0

∫
d3q

(2π)3

q2

3ω
[−2T ImGR

TT (ω, q)] = N2T 9C2 . (6.33)

Note that the real numbersC1, C2 here are numerical values which are currently being checked.
The final results will appear in [4].

Polarizabilities Looking at the meson diffusion formula (6.27) we realize that we have to
determine the polarizabilitiesαT , αF . In analogy to the QCD calculation we consider the
effective SYM Lagrangian (6.17) leading to the meson mass shift

δM = −αT

〈
T 00
〉
− αF

〈
trF 2

〉
. (6.34)

On the other hand the mesons are dual to the gravity field fluctuations describing the embed-
ding of our D7-brane (cf. section 2.3) and their masses are determined by the dynamics of
the gravity fluctuations. We have already reviewed how to compute meson masses from D7-
brane embeddings in section 2.3. One of the major results there is the meson mass formula
for scalar excitations (2.80) which depends on the angular excitation numberl as well as on
the radial excitationn. From here on we will consider the case of the lowest angular excita-
tion l = 0 only. Picking up the QCD idea that the interaction with external color-fields shifts
the meson mass linearly (cf. equation (6.7)) we write down ananalogous relation for the gauge
condensate〈trF 2〉

δM = −αF 〈trF 2〉 . (6.35)

The constant of proportionalityαF is identified with the polarization. It can be calculated
by determining the meson mass shiftδM at a given value of the gauge condensate〈trF 2〉 ∝
q. Let us now determine the mass shift analytically. This requires the further assumption
that q̄ = q/L4 is small. Next we derive the equation of motion for D7-brane fluctuations as
shown in [135] and subsequently linearize that equation inq, which then gives

− ∂ρρ
3∂ρφ(ρ) = M̄2 ρ3

(ρ+ 1)2
φ(ρ) + ∆(ρ)φ(ρ) , (6.36)

where the operator∆(ρ) is given by

∆(ρ) = −4q̄Teaney
ρ4

(ρ2 + 1)3
∂ρ . (6.37)
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Setting the operator∆ ≡ 0 returns the case of vanishing gauge condensate〈trF 2〉 ≡ 0. So
the term∆φ describes the meson mass shift generated by the condensate on the level of the
equation of motion. We consider the lightest of the mesons bychoosing the lowest radial
excitation numbern = 0 and the solution at vanishing condensate isφ0. Any deviationδφ0

from the solutionφ0 of the caseqTeaney = 0 may be written as a linear combination of the
functionsφn, which are a basis of the function space of all solutions,

φ(ρ) = φ0(ρ) +
∞∑

n=0

anφn(ρ), an ≪ 1, (6.38)

M̄2 = M̄2
0 + δM̄2

0 , δM̄2
0 ≪ 1. (6.39)

Plug this Ansatz into the equation of motion derived in [135], make use of the radial fluctu-
ation equation of motion at vanishingq (2.73) and keep terms up to linear order in the small
parametersan, q̄ andδM2

0 to get

ρ3

(ρ2 + 1)2

∞∑

n=0

anM̄
2
nφn(ρ) = δM̄2

0

ρ3

(ρ2 + 1)2
φ0(ρ)+M̄2

0

ρ3

(ρ2 + 1)2

∞∑

n=0

anφn(ρ)+∆(ρ)φ0(ρ).

(6.40)
We now multiply this equation byφ0(ρ), integrate overρ ∈ [0,∞[ and make use of the fact that
theφn are orthonormal and of the non-interacting lowest mode solution φ0 =

√
12/(ρ2 + 1)

in order to rewrite

δM̄2
0 = −

∞∫

0

dρ φ0(ρ) ∆(ρ)φ0(ρ)

= 4q̄

∞∫

0

dρ
ρ4

(ρ2 + 1)3
φ0(ρ)∂ρφ0(ρ)

= −8

5
q̄.

(6.41)

FromδM̄2
0 = 2M̄0δM̄0 we therefore obtain

δM0 =
L

2R2

δM̄2
0

M̄0

= −
√

2

5R2L3
q = −2π2

√
2

5

R6

N2L3

〈
trF 2

〉
, (6.42)

where we inserted the meson mass formula (2.80) and switchedback to dimensionful quanti-
ties. By comparison with (6.35) we may now identifyαF

αF = 2π2

√
2

5

R6

N2L3
=

√
2

20π

λ3/2

M3
qN

2
. (6.43)

The calculation of the polarizabilityαT is completely analogous. We are now looking
for the proportionality constant of meson mass shifts with respect to deviations from zero
temperature,

δM = −αT

〈
T 00
〉
. (6.44)
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The vacuum expectation value
〈
T 00
〉

=
1

2
π2N2T 4 (6.45)

is proportional to(temperature)4. We eventually obtain the polarizabilityαT as

αT =
9
√

2

160π

λ3/2

M3
qN

2
. (6.46)

These results (6.43) and (6.46) for small values ofq̄ agree very well with the numerical calcu-
lation we performed in parallel (not shown here, see [4] for details) relaxing the assumption
that q̄ needs to be small.

Result Substituting our polarizations (6.43) and (6.46), as well as the correlators (6.33)
and (6.32) into the Kubo equation for the heavy meson diffusion coefficient (6.27) yields

κ =

(√
2

20π

λ3/2

M3
qN

2

)2

(C1N
2T 9) +

(

9
√

2

160π

λ3/2

M3
qN

2

)2

(C2N
2T 9) = C3

λ3T 9

M6
qN

2
, (6.47)

with numerical valuesC1, C2, C3 which are currently being checked. The final results will
appear in [4].

This strong coupling result resembles the weak coupling result obtained from a perturbative
calculation very closely

κ = C̃3
λ3T 9

a−6
0 N2

, (6.48)

where the inverse Bohr radiusa−1
0 replaces the quark massMq as the characteristic energy

scale. In order to compare the weak coupling result (6.48) tothe strong coupling result (6.47),
we need to divide by the corresponding mass shifts(δM)2 such that the Bohr radius and the
quark mass cancel from the results. The numberC̃3 is still being checked. Nevertheless,
our preliminary results indicate that the ratioκ/(δM)2 is about five times smaller at strong
coupling compared to its value at weak coupling. It is reassuring that the viscosity to entropy
quotient shows an analogous behavior being much smaller at strong coupling [26]. After the
exact valuesC3, C̃3 are confirmed we will draw a more precise conclusion [4].

6.5 Diffusion matrix

This section collects a few ideas and formulae which result from working towards the compu-
tation of diffusion matrices. The basic idea here is motivated by the fact that the diffusion of
a certain charge can be induced by different gradients. A setup in which such an effect might
occur is a thermal plasma in which the three flavor charge densities are fixed to three different
values. For example in section 6.3 we found that the simultaneous presence of finite baryon
and isospin density changes the baryon diffusion coefficient in a different way than increasing
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a finite baryon density alone. This motivates the idea to arrange the diffusion coefficients re-
lating distinct gradients to distinct currents in a matrix1. Analogous matrix structures appear
in the context of Ohm’s law at strong coupling for the heat andcharge conductivity [136]. We
will use the D3/D7-system with a non-vanishing isospin density in all three flavor directions
as a sample setup to study. We collect a few intermediate results and ideas in order to develop
the basic plan of the calculation.

Up to now in this work we have chosen a chemical potentialµI along the third flavor di-
rectionσ3 in isospin space. The thermodynamically conjugate quantity is the charge den-
sity d̃I ≡ d̃I3 coupling to this particular flavor direction. Now in generalthere are two more
charge densities̃dI1, d̃I2 to which the corresponding chemical potentials are conjugate. On the
gravity side of the correspondence the flavor gauge field componentsA1 andA2 couple to the
isospin charge densities̃dI1, d̃I2, respectively. The action relevant for this approach including
all three isospin directions has been given in equation (4.157) already. In this section we are
interested in how a gradient in one of the three isospin charge densities̃dI1, d̃I2, d̃I3 influences
the current of a different one of these charge densities. In other words, our goal is to compute
the components of the diffusion matrix

D =





D11 D12 D13

D21 D22 D23

D31 D32 D33



 , (6.49)

appearing in the diffusion equation for three isospin charges

∂0





J1
0

J2
0

J3
0



 =





D11 D12 D13

D21 D22 D23

D31 D32 D33



 ∂i∂i





J1
0

J2
0

J3
0



 . (6.50)

In this general setup all three flavor directions are equal. We have not picked any one of them
to be special as in our previous approach. So it is reasonableto assume that the diffusion
induced by a charge gradient e.g. in 1-direction drives a current in 2-direction with the same
strength as a charge gradient in 2-direction drives a 1-current, which impliesD12 = D21.
Therefore, the diffusion matrix is assumed to be symmetric and can thus be diagonalized. We
have at least two paths which could bring us to our goal: Either we extend the membrane
paradigm by flavor indices, such that we have an equation similar to (6.1) but with flavor
indicesDab = Dab(ga

µν , g
b
ρσ), or we compute the fluctuations and read the diffusion coefficient

from the zero frequency limit of the spectral functions as described in equation (3.64). No
matter which of these two approaches we choose, either one has to incorporate the flavor
structure of fields.

Change the paradigm Starting from the action (4.157)

SI = −TD7Nf

∫

d8ξ
√

− det g

√

1 +
(2πα′)2

4
g00g44[(F 1

40)
2 + (F 2

40)
2 + (F 3

40)
2] .

1The author is grateful to Christopher Herzog for valuable discussions on this topic.
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we first note that the different flavors appear as a sum under the square root and are thus
mixed. This can for example be seen by assuming the background gauge fields to be small
and expanding the square root. At the orderO(F 4, α′4) cross-terms such asF 12

F 22 appear
coming from the expression−1/8[(2πα′)2/4g00g44(F 12

+ F 22
+ F 32

)]2.
Now going back to arbitrary values for the background gauge fields, we try to derive and

solve the equations of motion for the background fields and brane embeddingχ in analogy
to the baryonic case described in section 4.3. We get four equations of motion, one for the
embeddingχ and three for the three different flavor gauge fieldsAa

0. Again we can identify
constants of motion, but now rather than having only one, we have threeda. These can be
used in order to Legendre transform the action and eliminatethe fieldsAa

0 in favor of the three
constants of motionda. Carrying on in this way we assume that the only difference tothe
Abelian case will be that the embedding function will dependon all three isospin densities.

Using the membrane paradigm formula in its original (indexless) version (6.1), gives only
one single diffusion coefficientD. We speculate that one has to go through its derivation
in [31] including the flavor indices from the start. This willpresumably yield a distinct formula
for each flavor combination such as

Dab =

[ √−g
g11

√−g00g44

∣
∣
∣
∣
ρ=1

∫

dρ
−g00g44√−g

]ab

. (6.51)

It is likely that we need to introduce the non-AbelianSU(2) structure in the metric part of the
background as well, not only in the background gauge fields aswe have done until now. So
probably we need to consider an action of the form

∫ √

det[gaσa + (2πα′)F bσb].

Fluctuation approach Alternatively or better additionally in order to check the new ver-
sion of the paradigm, we could use equation (3.64) in order toderive the diffusion matrix
components from the flavor field fluctuations in the form of thespectral function. We spec-
ulate that the flavor components of the diffusion matrix can be related to the correlators of
flavor fields in different directions

ΞabDbc = lim
ω→0

Rac(ρ, ω, q = 0)

2ω
= −2 lim

ω→0

1

2ω
ImGac(ρ, ω, q = 0) , (6.52)

where the susceptibilityΞab is given by

Ξab =
∂da(µ)

∂µb

∣
∣
∣
∣
µb=0

, (6.53)

with the charge densityda for the conserved chargeQa and the thermodynamically conjugate
chemical potentialµa. The retarded correlatorGab results from calculating the correlation of
flavor currentsJa andJ b.

Note, that in section 5.2 we have already computed such spectral functions. We have calcu-
lated fluctuations in different isospin directions about the simplified isospin background̃A3

0.
There we have transformed to flavor combinationsX = E1 + iE2, Y = E1 − iE2 and results
have to be transformed back to the original fields in order to assign the flavor indices appropri-
ately. Of course in this simplified setup two of the flavor charge densities and corresponding
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chemical potentials were set to zero such that the susceptibility matrix has only vanishing en-
tries except for the third flavor directionΞ33 6= 0. We would have to extend the background
as described above in order for the flavor susceptibilities not to vanishΞab 6= 0. Furthermore,
at the moment the numerical precision in the suscpetibilityand spectral functions has to be
improved in order to get reasonable results.

A trivial result? To conclude this section we briefly discuss the probable outcomes for the
calculation of the isospin diffusion matrix. We could bringup the argument that due to the
rotational symmetry in flavor space we can always rotate to a flavor coordinate system in which
the isospin points along the third flavor direction for example. This is the restriction from three
degrees of freedom̃dI

1, d̃
I
2, d̃

I
3 to only oned̃I

3. If this is true then the isospin diffusion matrix
would have to be proportional to unity. However, in the case of finite baryon and isospin
density we have explicitly seen that the baryon diffusion coefficient changes differently if a
finite isospin density is present. Thus we assume that at least in that case the diffusion matrix
can not be proportional to unity. In this case the explanation is that we introduce the physical
baryon and isospin densities and give them different values, so that we can distinguish between
them. Then we transform to non-physical densities in which the problem simplifies. But here
we keep all the degrees of freedom we have since we transform(d̃B, d̃I) → (d̃1, d̃2). After
solving the problem with these simpler flavor coordinates wetransform back to the physical
baryon and isospin densities which we had introduced in the beginning. Since we had chosen
the physical baryon and isospin density to be different, this difference reflects in the response
of the system given by the baryon diffusion coefficient beingchanged compared to the case
of vanishing isospin density. Now we argue that in the case ofvanishing baryon but non-zero
isospin densities a similar effect might occur if we admit different, non-zero, physical charge
densities for all three flavor directions.

6.6 Summary

In this chapter we have studied the diffusion of quarks and their bound states inside a ther-
mal plasma at strong coupling. We started this study by reviewing the membrane paradigm,
a holographic method to find transport coefficients merely knowing the metric components
on the gravity dual side in section 6.1. With this calculational tool at hand we found in
section 6.2 the coefficient of baryon charge diffusion in thethermal theory at finite baryon
charge density which is dual to our D3/D7-setup. That diffusion coefficient approaches a
fixed value ofD = 1/(2πT ) at low and at high temperatures. At intermediate temperatures
the baryon diffusion coefficient shows a minimum which shifts to lower temperatures as the
density is increased. At vanishing baryon density the diffusion coefficient still asymptotes to
the valueD = 1/(2πT ) at large temperatures while it vanishes at the phase transition tem-
perature and for all temperatures below it. We interpret this by the baryon charge carriers, the
quarks to vanish below the transition because they get boundinto quasi-meson states carrying
no net-baryon charge. At finite baryon density by definition we always have a finite amount
of baryon charge carriers so the diffusion coefficient can not vanish for this reason.
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In section 6.3 we additionally introduced a finite isospin density to the baryon density and
studied their combined effect on baryon charge diffusion. The baryon diffusion coefficient
qualitatively behaves as in the pure baryon density case studied before and increasing the
isospin density appears to have the same qualitative effectas adding more baryon density.
That this is not the case can be seen from the study of the extended baryon-isospin density
phase diagram 6.3. In this diagram we have first traced the location of the (black hole to
black hole) phase transition present at small densities. Then we extended it by following the
minimum in the diffusion coefficient mentioned above. Sincethe rotational symmetry in this
phase diagram over the baryon-isospin density plane is obviously broken toZ4, we clearly
see that baryon and isospin density have different effects on hydrodynamics of this theory, so
there is a subtle interplay between them.

Section 6.4 extends our considerations of quark diffusion to the diffusion of their bound
states. In particular motivated by experimental and lattice results hinting at charmonium bound
states having survived the deconfinement phase transition of QCD, we examine the mesonic
bound states which we have found in chapter 5.1. We find the charmonium diffusion to meson
mass-shift quotientκ/(δM)2 to be significantly smaller at strong coupling compared to its
value at weak coupling. The calculation is still being checked, but will be published soon [4].

Collecting basic ideas and proposing some technical starting points in section 6.5 we sug-
gest how to introduce the concept of a flavor diffusion matrix. The matrix structure is based
on the idea that a charge density in one flavor direction mightdrive a current in another. In
analogy to similar effects present in classical systems with different charges studying this ma-
trix may also elucidate the different (baryon and isospin density-induced) contributions to the
effective baryon diffusion coefficient found in section 6.3.
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Conclusion

This final chapter summarizes what we have learned in the course of this thesis about the
thermal gauge theory at strong coupling holographically dual to the D3/D7-setup described in
sections 2.3 and 4.3. In particular we have studied the background introducing finite baryon
and isospin densities and chemical potentials, as well as the fluctuations around this back-
ground. The strongly coupled thermal Super-Yang-Mills theory with finite densities or poten-
tials serves as our model theory for the quark-gluon plasma produced at present and future
colliders (RHIC at Brookhaven, LHC at CERN). I list all of my results and discuss their in-
terrelations. Finally, I give my conclusions and an outlook. Recall for the discussion that our
D3/D7-setup at finite temperature is controlled by the parameterm ∝ Mq/T , thus increasing
the quark massMq is equivalent to decreasing the temperatureT , and vice versa.

Results at a glance and discussion At finite baryon density we have discovered mesonic
quasi-particle resonances in the thermal spectral functions of flavor currents in section 5.1 (see
figure 5.4). These resonance peaks follow the holographic meson mass formula [38]

M =
L∞
R2

√

2(n+ 1)(n+ 2) , (7.1)

at large masses or equivalently at low temperature. This means that increasing the quark mass
(which increasesL∞ as well) the resonance peaks move towards higher frequency.Since also
their width (inversely proportional to the lifetime of thatexciatation) compared to their en-
ergy is narrow, we identify these resonances with stable vector mesons in the plasma having
survived the deconfinement phase transition of the theory. This is in qualitative agreement
with the lattice calculation given in [63] and also with [64]. On the other hand, in the small
mass/high temperature regime the interpretation of spectral function maxima is still controver-
sial (see also [137, 61]). In this high temperature regime wefind broad maxima as opposed to
narrow low-temperature resonance peaks. Moreover, these maxima do not follow the meson
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mass formula at all (see figure 5.1). Quite the contrary is true since we observe the maxima to
move towards lower frequencies as we increase the quark mass. A (stable) particle interpreta-
tion is no longer justified in this high-temperature/ small mass regime. Decreasing the temper-
ature in order to approach the low-temperature regime, we discover a turning point, where the
maxima of the spectral functions change their direction along the frequency axis as discussed
in section 5.3. The location of the lowest lying resonance peak is shown in figure 7.1 (a)
versus the mass parameterχ0 (cf. figure 4.4). Different curves correspond to distinct baryon
densities, with the bottom curve corresponding to the lowest density (cf. figure 5.10 for de-
tails). Thus, we claim that we have to distinguish between the temperature-dominated and the
mass-dominated regime. In section 5.3 we have worked towards an explanation for the high
temperature behavior and for the peak turning we observe. Inthe limit of high frequencies we
have found an analytical solution near the horizon in terms of the confluent hypergeometric
function. This analytical solution (as well as the numerical solution for arbitrary momenta
and radial coordinate values) shows oscillatory behavior and damping in agreement with our
hypothesis: In the high temperature regime there are no stable bound states of quarks, but
merely unstable excitations in the plasma which quickly dissipate their energy to the plasma.
Our analytical solution reproduces the effect of resonancepeaks in the ’spectral function frac-
tion’ (see 5.3) moving towards lower frequencies when the mass parameter is increased. We
have also related these thoughts to quasinormal modes. Further, we commented on that we
could learn more about the inner workings of the gauge/gravity correspondence in this exam-
ple by studying how to relate the bulk solutions generating the peaks in the spectral function
to the spectral functions explicitely (see discussion of the quasinormal mode solutions in sec-
tion 5.3 contained in the paragraph ’Heuristic gravity interpretation’).

We have studied the fluctuations around anSU(2) isospin background as well in section 5.2.
The resulting spectral functions at finite isospin density are shown in figure 7.1 (c). We clearly
observe a triplet splitting of the resonance peaks. Introducing a chemical potential in a specific
flavor direction we have broken theSU(2)-symmetry and we clearly observe the splitting
because our vector mesons are triplets under the isospin group (analogous to theρ-meson in
QCD). As a methodical achievement we have generalized all formulae describing this setup to
includeU(Nf )-chemical potentials with arbitraryNf in section 4.5. Note, that all the spectral
functions we have computed numerically are evaluated for perturbations with vanishing spatial
momentumq = 0. In this limit the correlators for transversal and longitudinal directions
coincide. One effect of this is that we are not able to identify the lowest one of the poles,
i.e. the hydrodynamic diffusion pole which should appear inthe longitudinal correlators.
However, in the analytical calculation in section 4.2 we consider exclusively this pole.

In the hydrodynamic approximation, i.e. at small frequencies and spatial momenta we are
able to find correlators analytically at finite isospin chemical potential (see section 4.2). The
longitudinal correlators are particularly interesting since the diffusion pole appears in them.
We have observed a triplet splitting (see figure 7.1 (d)) of this diffusion pole which can also
be seen from the dispersion relation which we read off the longitudinal correlation functions

ω = −iDq2 ± µ for w ≥ m , (7.2)

ω = iDq2 + µ for w < m and only in GXY , (7.3)

where the positive sign ofµ corresponds to the dispersion of the flavor combinationGXY
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and the negative sign ofµ corresponds toGY X . For the third flavor direction correlatorsG33

there is no chemical potential contribution in the dispersion relationω = −iDq2. We have
argued that by introducing a chemical potential along the third flavor direction and considering
the fluctuations in any flavor direction the setup in flavor space resembles that of Larmor
precession in real space. The fluctuations precede around the designated third flavor direction
with the Larmor frequencyωL = µ. This frequency we also interpret as the minimal energy
any excitation needs to have in order to be produced in the plasma. In this hydrodynamic limit
we have also computed the spectral functions correspondingto the diffusion poles, discussed
the quasinormal modes and the residues. We have also discussed the reconciliation of these
present results with the approach taken in [1] in section 4.2.

From our discussion in section 5.1 we know that the poles of a correlation function in the
complex frequency plane generate the structure in thermal spectral functions (cf. figure 5.6). It
is convincing that upon introduction of isospin we observe the same behavior of triplet splitting
in both the analytical approximation for the diffusion poleshown in figure 7.1 (d) and for the
mesonic resonances in the numerically computed spectral functions shown in figure 7.1 (c).
We are not able to see the effect of the diffusion pole itself in the numerical results because
there we simplified toq = 0. But the higher frequency poles obviously have the same triplet
splitting as the diffusion pole, as we can infer by looking atthe spectral function peaks splitting
more and more when we increase the isospin density and with itthe chemical isospin potential
as well.

We have studied diffusion of quarks and their quarkonium bound states as specific examples
for transport phenomena in chapter 6. Utilizing the membrane paradigm in section 6.2 we have
found the coefficient of baryon or equivalently quark chargediffusion in the thermal theory at
finite baryon charge density which is dual to our D3/D7-setup(see figure 6.1). That diffusion
coefficient approaches a fixed value ofD = 1/(2πT ) at low and at high temperatures. At
intermediate temperatures the baryon diffusion coefficient shows a minimum which shifts to
lower temperatures as the density is increased. The minimumis also lifted if the density
is increased. At vanishing baryon density the diffusion coefficient still asymptotes to the
valueD = 1/(2πT ) at large temperatures while it vanishes at the phase transition temperature
and for all temperatures below it. This effect is caused by the baryon charge carriers, the
quarks which vanish below the transition because they get bound into meson states carrying
no net-baryon charge. At finite baryon density this effect isstill present at sufficiently low
temperature since there the quarks are also bound into mesonic states as we have learned from
our study of the spectral functions. Nevertheless, by definition we always have a finite amount
of baryon charge carriers so the diffusion coefficient can never vanish.

The black hole to black hole phase transition present at finite and increasing baryon density
is shifted to a lower temperature as we see for example in the diffusion coefficient in figure 6.1.
As mentioned above, the transition is lifted in the sense that the minimum in the diffusion
coefficient increases from zero at vanishing baryon densitytowards1/(2π) at large densities.
This black hole to black hole transition continues to exist also if a small isospin density is
introduced additionally.

Simultaneously introducing baryon and isospin density in the background we have discov-
ered a further phase transition indicated by discontinuities in thermodynamic quantities. For
example the quark condensate and the baryon and isospin densities are discontinuous on the
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line of pointsµB = µI . This transition resembles that one found in the case of 2-flavor QCD
found in [62]. In addition we found significant changes in thermodynamic quantities through
simultaneous isospin in section 4.4. These changes are of qualitative nature, i.e. introduc-
ing isospin charge or potential isnot identical to merely introducing more baryon density.
The distinct effects of baryon and isospin charge or potential become obvious in the hydrody-
namic regime. In figure 7.1(b) we see a contour plot of the transition temperature parametrized
bym over the (baryon density, isospin density)-plane. This means that the contours are con-
tours of equal transition temperature. Only the innermost part of this diagram traces the black
hole to black hole transition at small densities. This transition vanishes for baryon densities
aboved̃B

∗ = 0.00315 (see discussion in 4.3). For larger densities we have simplytraced the
location of the minimum in the diffusion coefficient which weidentify as the temperature at
which a softened version of the thermodynamic transition, i.e. a hydrodynamic transition oc-
curs. From the contour plot in figure 7.1(b) we clearly see that an initial rotational symmetry
at small densities suggests that baryon and isospin densityhave the same effect. However
at large densities the outermost contours clearly show thatthe rotational symmetry is broken
to aZ4 symmetry. This means that baryon and isospin density have different effects on the
hydrodynamics of this theory.

Extending our studies of transport phenomena to bound states of quarks, we have com-
puted the diffusion of quarkonium in section 6.4. Our results indicate that the diffusion to
meson mass-shift quotientκ/(δM)2 is significantly smaller at strong coupling than at weak
coupling. This resembles the case of the viscosity to entropy density quotient which takes on
significantly smaller values at strong coupling as well [26].

Conclusions & Outlook In conclusion we have reached the goal of this thesis outlined in
the introduction on page 8. We have successfully incorporated the concepts of baryon/isospin
chemical potentials and densities in the D3/D7-gravity dual modeling quarks and mesons.
We have studied the rich phenomenology of this model on a qualitative level and we have
found many interesting signatures being consistent with lattice results and effective QCD cal-
culations. Nevertheless, we have also found novel structures, which had not been predicted
previously. Based on our experience with its qualitative behavior it would be interesting to
study this model also on a quantitative level. In this analysis quotients of quantities could
prove to be useful, which show universal behavior, such as the viscosity to entropy ratio. Our
preliminary quantitative result on the charmonium diffusion to meson mass-shift ratio clearly
confirms this belief.

Constructing the phase diagram we have shown that isospin density/potential has effects
significantly different from baryon density/potential. Also in the analysis of spectral func-
tions isospin effects such as the triplet splitting distinguish the isospin phenomenology clearly
from the baryonic signatures. One important extension of the work presented here will be the
computation of meson spectra at finite baryon and isospin density as described in section 5.4.
Having both the rich effects of the baryon and isospin background and the interaction with
fluctuations about it will produce a potentially rich phenomenology. The technical considera-
tions in section 5.4 show that this calculation is complex but feasible. Furthermore, we have
restricted our analysis to vector mesons, but it is easy to extend it to scalars and pseudoscalars
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Figure 7.1: These four plots visualize some of the main results of this thesis. (a) Frequency
location of the lowest resonance peak in the spectral function at finite baryon den-
sity d̃B 6= 0. The baryon density is increased from̃dB = 0.01 (the bottom curve)
to d̃B = 10 (the top curve). For details confer figure 5.10 and its discussion in
the text. (b) Contour plot of the location of the phase transition/crossover mass
parameter over the (baryon density, isospin density)-plane. (c) Triplet splitting
of resonance peaks at finite isospin densityd̃I 6= 0 for vanishing spatial momen-
tum q ≡ 0. This splitting corresponds to a triplet splitting of the corresponding
poles in the complex frequency plane. (d) Location of the diffusion pole for the
three different flavor combinationsXY , Y X and33 (cf. section 5.2) computed
analytically in the hydrodynamic limitw, q2, m ≪ 1 at finite spatial momen-
tumq 6= 0. The diffusion pole shows a triplet splitting as well.
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as well (see [115] for parts of an equivalent analysis). Elaborated results on the baryon and
isospin background will we published soon [3].

Nevertheless, also our studies of the setup with baryon density only, brought up interesting
relations. For example the analysis of the resonance peak turning point gives us a deeper
insight in how the gauge/gravity correspondence works in terms of a correspondence between
the gravity bulk solutions and the gauge theory spectral functions. The further study of this
topic will either confirm our speculations about the thermalorigin of the resonance turning
point or prove it wrong. In any case the analytic gravity solutions which we seek to construct
and their direct relation to the gauge theory spectral functions encodes valuable information
about the gauge/gravity correspondence. We will develop this analysis in [121].

Analytical and numerical studies of the charge diffusion coefficients have consistently con-
firmed the interpretations we developed for our spectral functions. For example the decreasing
baryon charge diffusion coefficient at small temperature confirms the meson interpretation of
the formation of narrow resonance peaks. A further way of testing this interpretation would be
the computation of the diffusion coefficient for the quasi-mesons corresponding to the peaks
in the spectral functions. If this quasi-meson diffusion coefficient vanishes above the hard
phase transition at zero densities, this would confirm that these mesons simply vanish there.
At finite density we expect this quasi-meson diffusion only to decrease as the temperature is
increased well above the transition temperature.

The baryon charge diffusion coefficient has been computed both at finite baryon density
only and at finite baryon and isospin densities. We found thatthe isosin density changes the
baryon charge diffusion coefficient significantly. Due to our computational method using the
membrane paradigm we have not been able to separate the diffusive contributions generated
by the finite isospin from those generated by the finite baryondensity. Therefore we suggest to
study these different contributions developing the framework of a diffusion matrix as desribed
in section 6.5. This computation will also answer the question if the effect of finite isospin
density is simply additive, i.e. if we could get its contribution to the diffusion coefficient
by subtracting the diffusion coefficient in the purely baryonic background. Based on our
observations of the minimum in the baryon diffusion coefficient shown in figure 7.1(b), we
suspect a more subtle interplay between baryon and isospin densities. Note, that in section 6.5
we develop the relevant formulae for three different isospin charges rather than for one isospin
and one baryon charge. Nevertheless, the framework once developed should easily generalize
to that case as well.

Now after considering the possibility that modes with different flavor might behave differ-
ently inside the thermal plasma, we should also worry about the fact that modes with different
frequencies or spatial momenta propagate through the plasma in different ways. We have com-
mented on the possible incorporation of this idea into our setup in the context of molecular
dynamics discussed in section 4.6.

Finally, we collect a few pronounced signals which the rich phenomenology explored here
predicts to be seen at colliders. A clear signature are the stable meson resonances having
survived the deconfinement transition, showing a turning behavior in their energy as the tem-
perature is decreased. At sufficiently high isospin densityin the plasma a resonance peak
triplet splitting depending on the amount of isospin density should be visible. We further ex-
pect discontinuities in thermodynamical quantities to show up across the line of equal baryon
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and isospin densities or potentials due to the phase transition we discovered across that line.
Nevertheless, since our supersymmetric model is not QCD we should not be surprised to see
different behavior in some cases in the collider experiments. However, the high-temperature
regime of the baryon diffusion coefficient down to the thermodynamic or hydrodynamic phase
transition should be taken seriously. Also the small value of the charmonium diffusion coef-
ficient is a very interesting effect to look for, given that itresembles the viscosity to entropy
ratio in its strong coupling behavior.
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A
Notation

Here we give an overview of the notation which we use in this thesis if not specified otherwise.
We denote three-vectors in spatial directions by minusculeletters in bold face such asx, four
vectors including the time component are given by~x, higher-dimensional vectors are given
by the plain minuscule letter, e.g.x. If any of the momentum componentsw, q appears in
an order relation such asw ≪ 1 we actually mean to denote the real partRew ≪ 1. The
chemical potential is assumed to take real valuesµ,m ∈ R throughout the whole thesis. All
mathematical sets of numbers are given in bold face font. Forexample the whole numbers
are given byZ, the real numbers are given byR and the complex numbers byC. We work
in natural units, i.e. we set the reduced Planck’s constant~ = 1 and the speed of lightc = 1.
Additionally the Boltzmann constant is chosenkB = 1 for convenience.
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Symbols If not specified otherwise in the text, the following symbolshave been used to
denote the quantities listed below in arbitrary order

p local pressure (A.1)

ǫ internal energy (A.2)

Tµν energy momentum tensor (A.3)

Pµ heat current (A.4)

T local temperature (A.5)

β ≡ 1

T
inverse temperature (A.6)

F free energy in canonical ensemble (A.7)

Ω grandcanonical potential (A.8)

S entropy (A.9)

s entropy density (A.10)

S action (A.11)

µ chemical potential (A.12)

n charge density (A.13)

d conserved charge density (A.14)

uµ four-velocity of a fluid volume (A.15)

c quark condensate〈q̄q〉 (A.16)

Q charge (A.17)

R thermal spectral function (A.18)

D diffusion coefficient (A.19)

η shear viscosity (coefficient) (A.20)

κ quarkonium diffusion coefficient (A.21)

T a Lie group generator (A.22)

Tr ∈ R representation factor (A.23)

Nf number of flavors / D7-branes (A.24)

N ≡ Nc number of colors / D3-branes (A.25)

ρH horizon value of the dimensionless radial AdS coordinate (A.26)

ρB ≡ ρbdy boundary value of the dimensionless radial AdS coordinate (A.27)

̺H horizon value of the dimensionful radial AdS coordinate (A.28)

̺B ≡ ̺bdy boundary value of the dimensionful radial AdS coordinate (A.29)
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mq ≡ Mq quark mass (A.30)

χ0 horizon value of embedding functionχ (A.31)

u dimensionless radial AdS coordinate with0 ≤ u ≤ 1 (A.32)

w ≡ ω

2πT
dimensionless frequency (A.33)

q ≡ q

2πT
dimensionless spatial momentum (A.34)

m ≡ µ

2πT
dimensionless chemical potential (A.35)

Furthermore, the indicesB or I in dB, dI , µB, µI denote baryon or isospin charge densities
and chemical potentials, respectively.
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