
Correlation Clustering

Arthur Zimek

München 2008

Correlation Clustering

Arthur Zimek

Dissertation

an der Fakultät für Mathematik, Informatik und

Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Arthur Zimek

München, den 06.05.2008

Erstgutachter: Prof. Dr. Hans-Peter Kriegel,
Ludwig-Maximilians-Universität München

Zweitgutachter: Prof. Dr. Thomas Seidl,
Rheinisch-Westfälische Technische Hochschule Aachen

Tag der mündlichen Prüfung: 30.06.2008

v

Abstract

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data. The core step of the KDD process is the application of a Data Min-

ing algorithm in order to produce a particular enumeration of patterns and

relationships in large databases. Clustering is one of the major data mining

techniques and aims at grouping the data objects into meaningful classes

(clusters) such that the similarity of objects within clusters is maximized,

and the similarity of objects from different clusters is minimized. This can

serve to group customers with similar interests, or to group genes with related

functionalities.

Currently, a challenge for clustering-techniques are especially high dimen-

sional feature-spaces. Due to modern facilities of data collection, real data

sets usually contain many features. These features are often noisy or exhibit

correlations among each other. However, since these effects in different parts

of the data set are differently relevant, irrelevant features cannot be discarded

in advance. The selection of relevant features must therefore be integrated

into the data mining technique.

Since about 10 years, specialized clustering approaches have been devel-

oped to cope with problems in high dimensional data better than classic

clustering approaches. Often, however, the different problems of very differ-

ent nature are not distinguished from one another. A main objective of this

thesis is therefore a systematic classification of the diverse approaches devel-

oped in recent years according to their task definition, their basic strategy,

and their algorithmic approach. We discern as main categories the search

vi

for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t.

common behavior (patterns) of objects in axis-parallel subspaces, and (iii)

w.r.t. closeness of objects in arbitrarily oriented subspaces (so called corre-

lation cluster).

For the third category, the remaining parts of the thesis describe novel

approaches. A first approach is the adaptation of density-based cluster-

ing to the problem of correlation clustering. The starting point here is the

first density-based approach in this field, the algorithm 4C. Subsequently, en-

hancements and variations of this approach are discussed allowing for a more

robust, more efficient, or more effective behavior or even find hierarchies of

correlation clusters and the corresponding subspaces. The density-based ap-

proach to correlation clustering, however, is fundamentally unable to solve

some issues since an analysis of local neighborhoods is required. This is a

problem in high dimensional data. Therefore, a novel method is proposed

tackling the correlation clustering problem in a global approach. Finally, a

method is proposed to derive models for correlation clusters to allow for an

interpretation of the clusters and facilitate more thorough analysis in the

corresponding domain science. Finally, possible applications of these models

are proposed and discussed.

vii

Zusammenfassung

Knowledge Discovery in Databases (KDD) ist der Prozess der automatischen

Extraktion von Wissen aus großen Datenmengen, das gültig, bisher unbe-

kannt und potentiell nützlich für eine gegebene Anwendung ist. Der zentrale

Schritt des KDD-Prozesses ist das Anwenden von Data Mining-Techniken,

um nützliche Beziehungen und Zusammenhänge in einer aufbereiteten Da-

tenmenge aufzudecken. Eine der wichtigsten Techniken des Data Mining ist

die Cluster-Analyse (Clustering). Dabei sollen die Objekte einer Datenbank

in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters

möglichst ähnlich und Objekte verschiedener Cluster möglichst unähnlich zu

einander sind. Hier können beispielsweise Gruppen von Kunden identifiziert

werden, die ähnliche Interessen haben, oder Gruppen von Genen, die ähnliche

Funktionalitäten besitzen.

Eine aktuelle Herausforderung für Clustering-Verfahren stellen hochdi-

mensionale Feature-Räume dar. Reale Datensätze beinhalten dank moderner

Verfahren zur Datenerhebung häufig sehr viele Merkmale (Features). Teile

dieser Merkmale unterliegen oft Rauschen oder Abhängigkeiten und können

meist nicht im Vorfeld ausgesiebt werden, da diese Effekte in Teilen der Da-

tenbank jeweils unterschiedlich ausgeprägt sind. Daher muss die Wahl der

Features mit dem Data-Mining-Verfahren verknüpft werden.

Seit etwa 10 Jahren werden vermehrt spezialisierte Clustering-Verfahren

entwickelt, die mit den in hochdimensionalen Feature-Räumen auftretenden

Problemen besser umgehen können als klassische Clustering-Verfahren. Hier-

bei wird aber oftmals nicht zwischen den ihrer Natur nach im Einzelnen sehr

unterschiedlichen Problemen unterschieden. Ein Hauptanliegen der Disser-

viii

tation ist daher eine systematische Einordnung der in den letzten Jahren

entwickelten sehr diversen Ansätze nach den Gesichtspunkten ihrer jeweili-

gen Problemauffassung, ihrer grundlegenden Lösungsstrategie und ihrer algo-

rithmischen Vorgehensweise. Als Hauptkategorien unterscheiden wir hierbei

die Suche nach Clustern (1.) hinsichtlich der Nähe von Cluster-Objekten in

achsenparallelen Unterräumen, (2.) hinsichtlich gemeinsamer Verhaltenswei-

sen (Mustern) von Cluster-Objekten in achsenparallelen Unterräumen und

(3.) hinsichtlich der Nähe von Cluster-Objekten in beliebig orientierten Un-

terräumen (sogenannte Korrelations-Cluster).

Für die dritte Kategorie sollen in den weiteren Teilen der Dissertation in-

novative Lösungsansätze entwickelt werden. Ein erster Lösungsansatz basiert

auf einer Erweiterung des dichte-basierten Clustering auf die Problemstel-

lung des Korrelations-Clustering. Den Ausgangspunkt bildet der erste dichte-

basierte Ansatz in diesem Bereich, der Algorithmus 4C. Anschließend wer-

den Erweiterungen und Variationen dieses Ansatzes diskutiert, die robuste-

res, effizienteres oder effektiveres Verhalten aufweisen oder sogar Hierarchien

von Korrelations-Clustern und den entsprechenden Unterräumen finden. Die

dichtebasierten Korrelations-Cluster-Verfahren können allerdings einige Pro-

bleme grundsätzlich nicht lösen, da sie auf der Analyse lokaler Nachbarschaf-

ten beruhen. Dies ist in hochdimensionalen Feature-Räumen problematisch.

Daher wird eine weitere Neuentwicklung vorgestellt, die das Korrelations-

Cluster-Problem mit einer globalen Methode angeht. Schließlich wird eine

Methode vorgestellt, die Cluster-Modelle für Korrelationscluster ableitet, so

dass die gefundenen Cluster interpretiert werden können und tiefergehen-

de Untersuchungen in der jeweiligen Fachdisziplin zielgerichtet möglich sind.

Mögliche Anwendungen dieser Modelle werden abschließend vorgestellt und

untersucht.

CONTENTS ix

Contents

Abstract v

Zusammenfassung vii

I Preliminaries 1

1 Introduction 3

1.1 Knowledge Discovery in Databases 3

1.2 Outline . 6

2 Sample Applications for Clustering in High Dimensional Data 9

2.1 Gene Expression Analysis . 9

2.2 Metabolic Screening . 11

2.3 Customer Recommendation Systems 11

2.4 Text Documents . 12

II Typical Problems and Solutions in Clustering High
Dimensional Data 13

3 Finding Clusters in High Dimensional Data 17

4 Finding Clusters in Axis-parallel Subspaces 23

4.1 A Problem-Oriented Categorization 24

x CONTENTS

4.2 An Algorithmic-Oriented Categorization 25

4.3 Survey and Categorization of Existing Approaches 27

4.3.1 Projected Clustering Algorithms 27

4.3.2 Subspace Clustering Algorithms 29

4.3.3 Hybrid Clustering Algorithms 31

4.4 Summary . 34

5 Finding Clusters Based on Patterns in the Data Matrix 37

5.1 General Aim and Basic Approaches of Pattern-based Cluster-

ing Algorithms . 38

5.1.1 Constant Biclusters . 40

5.1.2 Biclusters with Constant Values on Rows or Columns . 40

5.1.3 Biclusters with Coherent Values 42

5.1.4 Biclusters with Coherent Evolutions 45

5.2 Pattern Based Clustering Algorithms 50

5.2.1 Constant Biclusters . 50

5.2.2 Biclusters with Constant Values in Rows or Columns . 51

5.2.3 Biclusters with Coherent Values 51

5.2.4 Biclusters with Coherent Evolutions 56

5.3 Summary . 58

6 Finding Clusters in Arbitrarily Oriented Subspaces 61

6.1 General Aim of Algorithms in this Category 61

6.2 Correlation Clustering Algorithms 66

6.2.1 PCA Based Approaches 66

6.2.2 An Approach Based on the Hough Transform 69

6.2.3 Other Approaches . 71

6.3 Summary . 72

7 Discussion 75

7.1 A Heuristic-Based Systematic View 75

CONTENTS xi

7.2 A Problem-Oriented Systematic View 78

7.2.1 “The Curse of Dimensionality” in the Clustering Problem 78

7.2.2 Approaches as Solutions to Specific Problems 82

7.3 On the Difficulties in Solving Undefined Tasks 84

7.3.1 Categorization w.r.t. Task-Definition 84

7.3.2 Categorization w.r.t. Algorithmic Aspects 85

7.3.3 Summary . 87

7.4 Empirical Evaluation: A Desideratum 87

III Density-based Correlation Clustering 89

8 Adapting the Density-based Paradigm for Correlation Clus-

tering: 4C 93

8.1 The Notion of Correlation Connected Clusters 96

8.1.1 Density-Connected Sets 97

8.1.2 Correlation Sets . 99

8.1.3 Clusters as Correlation-Connected Sets 101

8.2 Computing Correlation Connected Clusters 108

8.2.1 Algorithm 4C . 108

8.2.2 Complexity Analysis 108

8.2.3 Input Parameters . 111

8.3 Evaluation . 112

8.3.1 Efficiency . 112

8.3.2 Effectiveness . 112

9 Enhancing Efficiency and Effectiveness: COPAC 121

9.1 Formalization of Correlation Clusters 123

9.2 COPAC . 125

9.2.1 Local Correlation Partitioning 126

9.2.2 Determination of Correlation Clusters 128

xii CONTENTS

9.2.3 Complexity Analysis 134

9.2.4 Parameter Estimation 135

9.3 Evaluation . 137

9.3.1 Efficiency . 137

9.3.2 Robustness, Completeness, and Usability 139

9.3.3 Results on Real-world Data 140

10 Mining Hierarchies of Correlation Clusters: HiCO 147

10.1 Basic Definitions . 149

10.2 Hierarchical Correlation Clusters 152

10.2.1 Main Concepts of HiCO 153

10.2.2 Algorithm HiCO . 158

10.2.3 Runtime Complexity 161

10.3 Evaluation . 162

10.3.1 Data Sets . 162

10.3.2 Results on Synthetic Data 166

10.3.3 Real-world Data . 167

11 Exploring Complex Hierarchical Relationships of Correlation

Clusters: ERiC 171

11.1 Motivation: Drawbacks of HiCO 173

11.2 A Notion of Correlation Clusters 174

11.3 Algorithm ERiC . 176

11.3.1 Partitioning w.r.t. Correlation Dimensionality 177

11.3.2 Computing Correlation Clusters within each Partition . 178

11.3.3 Aggregating the Hierarchy of Correlation Clusters . . . 181

11.3.4 Runtime Complexity 183

11.4 Evaluation . 184

11.4.1 Effectiveness . 184

11.4.2 Efficiency . 193

CONTENTS xiii

12 Increasing the Robustness of PCA-based Correlation Clus-

tering Algorithms 197

12.1 Problem Analysis . 199

12.1.1 Impact of Outliers on PCA 199

12.1.2 Statistic Observations on Data Correlation 201

12.2 A General Framework for Robust Correlation Analysis 204

12.2.1 Increasing the Robustness of PCA Using Weighted Co-

variance . 204

12.2.2 Auto-tuning the Local Context of Correlation Analysis 209

12.3 Application to Existing Approaches 212

12.3.1 Application to Density-based Correlation Clustering

Algorithms . 212

12.3.2 Application to Partitioning Correlation Clustering Al-

gorithms . 213

12.4 Evaluation . 213

12.4.1 Evaluation Methodology 213

12.4.2 Synthetic Data . 214

12.4.3 Real-world Data . 219

IV Global Correlation Clustering 221

13 Local versus Global Correlation Clustering 225

13.1 Motivation . 225

13.2 The “Locality Assumption” in Existing Correlation Clustering

Algorithms . 228

14 Correlation Clustering Based on the Hough-transform 231

14.1 The Hough-transform . 232

14.2 Subspace Analysis: a Novel Principle 235

14.3 Specifying the Boundaries of the Grid 239

14.4 Finding the Extrema of the Parametrization Functions 241

xiv CONTENTS

14.4.1 Global Extremum . 241

14.4.2 Minimum and Maximum Value 242

14.5 Identifying Dense Grid Cells 244

14.6 Efficiently Finding Regions of Interest 246

14.7 Recursive Descent . 248

14.8 Deriving a Hierarchy of Subspace Clusters 249

14.9 Properties of the Algorithm 250

14.9.1 Complexity . 250

14.9.2 Input Parameters . 251

14.9.3 Alternative Parametrization 251

14.10Evaluation . 252

14.10.1Efficiency . 252

14.10.2Effectiveness . 253

14.10.3Real-World Data . 258

14.10.4Alternative Parametrization and Cluster Hierarchies . . 261

V A Quantitative Model for Correlation Clusters 263

15 Related Work 269

15.1 Quantitative Association Rules 269

15.2 Regression Analysis . 270

16 Deriving Quantitative Models for Correlation Clusters 271

16.1 Formalization of Correlation Clusters 271

16.2 Deriving Quantitative Models for Correlation Clusters 275

16.3 Interpretation of Correlation Cluster Models 277

16.4 Evaluation . 278

16.4.1 Synthetic data sets . 278

16.4.2 Real world data sets 281

CONTENTS xv

17 Application 1: Classification 287

17.1 A Classifier Based on Models for Correlation Clusters 287

17.2 Evaluation . 289

18 Application 2: Outlier Detection 293

18.1 Related Work . 296

18.2 Outlier Detection in Subspaces 300

18.2.1 General Idea . 300

18.2.2 Describing Correlation Hyperplanes 302

18.2.3 Subspace Outlier Model 306

18.2.4 Choosing a Reference Set 310

18.2.5 Explaining and Interpreting Outliers 311

18.2.6 Algorithm . 313

18.3 Evaluation . 314

18.3.1 Accuracy . 316

18.3.2 Scalability . 319

18.3.3 Results on Real-world Data 321

VI Conclusions 325

19 Summary 327

20 Future Directions 331

List of Figures 337

List of Tables 343

References 345

Acknowledgements 363

xvi CONTENTS

Curriculum Vitae 365

1

Part I

Preliminaries

3

Chapter 1

Introduction

Nowadays, the amount of data being collected in databases far exceeds the

ability to reduce and analyze data without the use of automated analysis

techniques. Knowledge Discovery in Databases (KDD) is an interdisciplinary

field that is evolving to provide automated analysis solutions. The core

part of the KDD process is the application of specific data mining methods

for pattern discovery and extraction. Section 1.1 introduces first the main

concepts of Knowledge Discovery in Databases. Afterwards the data mining

step is described in more detail and the most prominent methods on data

mining are reviewed. Section 1.2 presents a detailed outline of this thesis.

1.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is the non-trivial process of identi-

fying valid, novel, potentially useful, and ultimately understandable patterns

in data [51]. The KDD process, as illustrated in Figure 1.1, consist of an

iterative sequence of the following steps:

• Selection: Creating a target data set by selecting a data set or focusing

on a subset of attributes or data samples.

• Preprocessing: Performing data cleaning operations, such as remov-

4 1 Introduction

Pre-
processing

Trans-
formation

Data

Selection
Data
Mining

Interpretation/
Evaluation

Patterns Knowledge

Figure 1.1: The KDD process.

ing noise, handling missing data fields, accounting for time-sequence

information, etc.

• Transformation: Finding useful features to represent the data, e.g.,

using dimensionality reduction or transformation methods to reduce

the number of attributes or to find invariant representations for the

data.

• Data Mining: Searching for patterns of interest in a particular repre-

sentation form, e.g., by applying classification rules, regression analysis,

or clustering algorithms to the transformed data.

• Interpretation and Evaluation: Applying visualization and knowl-

edge representation techniques to the extracted patterns. The user

may return to previous steps of the KDD process if the results are

unsatisfactory.

Since data mining is the core step of the KDD process, the terms “KDD”

and “Data Mining” are often used as synonyms. In [51], data mining is

defined as a step in the KDD process which consists of applying data anal-

ysis algorithms that, under acceptable computational efficiency limitations,

produce a particular enumeration of patterns over the data. Existing data

mining algorithms can be classified according to the following data mining

methods [60]:

• Characterization and Discrimination: Summarization and com-

parison of general features of objects.

1.1 Knowledge Discovery in Databases 5

• Association Analysis: Discovering association rules showing attribute

value conditions that occur frequently together in a given data set.

• Classification and Prediction: Supervised learning of models or

functions to organize (new) data objects into predefined classes.

• Evolution Analysis: Modeling trends in time related data that change

in time.

• Clustering: Unsupervised grouping of the data objects into classes

by maximizing the similarity between objects of the same class and

minimizing the similarity between objects of different classes.

• Outlier Analysis: Identifying data objects that cannot be grouped

in a given class or cluster, since they do not correspond to the general

model of the data.

In this thesis, we mainly focus on clustering techniques w.r.t. the special

challenges posed by high dimensional data. In general, clustering aims at

dividing data sets into subsets (clusters). Cluster analysis has been used in a

large variety of fields such as astronomy, physics, medicine, biology, archaeol-

ogy, geology, geography, psychology, and marketing. Many different research

areas contributed new approaches (namely pattern recognition, statistics, in-

formation retrieval, machine learning, bioinformatics, and data mining). In

some cases, the goal of cluster analysis is a better understanding of the data

(e.g. learning the “natural” structure of data which should be reflected by a

meaningful clustering). In other cases, cluster analysis is merely a first step

for different purposes such as indexing or data compression.

While clustering in general is a rather dignified problem, mainly in about

the last decade new approaches have been proposed to cope with new chal-

lenges provided by modern capabilities of automatic data generation and

acquisition in more and more applications producing a vast amount of high

dimensional data. These data need to be analyzed by data mining methods

in order to gain the full potentials from the gathered information. However,

high dimensional data pose different challenges for clustering algorithms that

6 1 Introduction

require specialized solutions. So, this area of research has been a highly ac-

tive one in the recent years with a plethora of proposed algorithms but, in

our opinion, lacking of a systematic problem analysis. Thus, a comparison

of proposed algorithms is difficult both, theoretically and practically.

In this thesis, we aim at characterizing the different problems encountered

when clustering high dimensional data. Afterwards, we describe our special-

ized solutions for some of these problems. The detailed outline is given in

the following.

1.2 Outline

The content of this thesis is organized as follows:

Part I gives a general overview and introduction. The Introduction

(Chapter 1) presents an overview on the filed of Knowledge Discovery in

Databases and Data Mining in a very general manner to present the reader

with the broader context of this thesis. The specialized field of clustering in

high dimensional data is encountered in many fields of possible applications.

Some prominent examples are sketched in Chapter 2 in order to first give

the reader an impression of possible application scenarios. The remainder

of the thesis presents the fundamental problems and corresponding solutions

in a mere theoretical point of view, albeit proposed algorithms are always

evaluated using synthetic and real world data.

Part II provides a deeper analysis of the problems encountered when

clustering high dimensional data. The fundamental problem is sketched in

Chapter 3 and characterizes shortly three different classes of clustering ap-

proaches in terms of their objectives. We discern as main categories the

search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces,

(ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces,

and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called

correlation cluster). Algorithms for these categories are surveyed and ana-

lyzed theoretically in Chapters 4, 5, and 6, respectively. Afterwards, the

1.2 Outline 7

encountered problems and corresponding solutions are discussed in more de-

tail in Chapter 7.

Part III is a collection of contributions of the author to the field of corre-

lation clustering as enhancements of the density-based clustering paradigm.

Chapter 8 describes the starting point for all these adaptations, the algo-

rithm 4C. Further enhancements are described in the subsequent chapters

for flat (Chapter 9) or hierarchical (Chapters 10 and 11) correlation clus-

tering. Some weak points common to all PCA-based correlation clustering

algorithms are addressed in Chapter 12 along with a framework as a remedy

to the weaknesses.

However, there are inherent drawbacks of the density-based approach to

correlation clustering. Part IV is dedicated to address these drawbacks.

Chapter 13 surveys PCA-based approaches w.r.t. these common drawbacks.

A novel approach to correlation clustering not suffering from the same prob-

lems is described in Chapter 14.

Part V moves on to the next step of the KDD-process following the data

mining step: interpretation of the results. As discussed in Chapter 15, this

step is not readily available for correlation clustering so far. Therefore, in

Chapter 16, a model is proposed that can be used to interpret correlation

clusters and to support the domain scientist in designing new and refined

experiments. Possible other applications in data mining based on such models

for correlation clusters are finally proposed in Chapter 17 (Classification) and

Chapter 18 (Outlier Detection).

Part VI concludes the thesis summarizing the contributions and results

(Chapter 19) and pointing out possible future directions (Chapter 20).

8 1 Introduction

9

Chapter 2

Sample Applications for

Clustering in High Dimensional

Data

In many applications cluster analysis of high dimensional data is very impor-

tant. Here, four probably rather prominent examples are described.

2.1 Gene Expression Analysis

Microarray chip technology produces a large amount of data in molecular

biology. Microarray data — also called gene expression data — contain the

“expression level” of genes measured under different conditions, e.g. in differ-

ent tissues, under varying experimental environments, at different time slots

after special treatment, or from different test persons. The expression level

of a gene allows to draw conclusions about the amount of the corresponding

gene product, such as a protein or a regulatory RNA, in the particular cell.

Microarray data usually comprise the simultaneous measurement of the ex-

pression level of thousands of genes under hundreds of conditions. It consists

of a data matrix where the rows correspond to genes and the columns rep-

resent different experimental conditions, different tissues, consecutive time

10 2 Sample Applications for Clustering in High Dimensional Data

slots, or different test persons. Biologists usually want to find patterns in

such massive data sets. Depending on the scope of their research, the data

mining task can vary.

Clustering the Rows. Very often, the biologists want to find groups of

genes with homogeneous expression levels indicating that these genes share

a common function. In that case, the columns usually represent different

experimental conditions or different time slots within a time-dependent ex-

periment. In general, genes may have very different functions depending on

the cellular environment. Thus, the genes will usually cluster differently in

varying subsets of the conditions or time slots. In other words, the clustering

algorithm should take into account that a given gene A may e.g. be grouped

together with gene B but not with gene C in a subset S of the columns,

whereas A may e.g. be grouped together with C but not with B in another

subset T of columns.

Clustering the Columns. In medical research, microarray data is often

used to find genetic relationships and disorders. In that case, the columns

of the gene expression data matrix represent different individuals. The data

mining task is to cluster these individuals. Any clustering algorithm has to

take into account, that the individuals usually differ in many phenotypical

aspects, e.g. gender, age, hair color, specific diseases, etc. These different

phenotypes are caused by different subsets of genes. In other words, e.g.

the individual A may be grouped together with individual B but not with

individual C in a subset S of genes, whereas A may be grouped together with

C but not with B in another subset T of genes.

Co-clustering Rows and Columns. Especially in this application do-

main, the combination of both these tasks, simultaneously clustering the

rows and the columns of a gene expression data matrix, is considered a spe-

cialized problem and a special family of algorithms is dedicated to solve

it. However, the results of clustering rows and clustering columns can be

translated into one another and both pose a classical problem description for

2.2 Metabolic Screening 11

subspace clustering.

2.2 Metabolic Screening

Many governments have implemented a metabolic screening of newborns in

order to detect metabolic diseases in the earliest possible moment. For that

purpose, a blood sample is taken from each newborn and the concentrations

of specific metabolites, i.e. metabolic products, in these blood samples are

measured. In the resulting data matrix, the rows represent the newborns and

the columns represent the metabolites. Biologists usually want to identify

homogeneous groups of newborns suffering from a common metabolic disease.

Usually each metabolic disease causes a correlation between the concentra-

tion of a specific set of metabolites. Thus, any clustering algorithm should

take into account that newborns should be grouped together only if they

exhibit a common correlation among a set of metabolites. In addition, the

set of participating metabolites and the type of correlation can be different

for different diseases, i.e. clusters.

2.3 Customer Recommendation Systems

In customer recommendation systems, customers of a company can vote for

the company’s products. Depending on the portfolio of the company, there

may be a very large set of products. It is now interesting, e.g. for target

marketing purposes, to cluster the customers into groups of homogeneous

voting schemata. Customers that have similar preferences should be grouped

together. For each group, special marketing strategies can be applied taking

each group’s preferences into account. The problem for a cluster analysis

process is that different customers may be grouped together according to

different sets of products. In other words, customer A may share a preference

for a given set S of products with customer B but not with C, whereas A

may share another preference for a different set T of products with C but

not with B. To make the problem even more challenging, the relationships

12 2 Sample Applications for Clustering in High Dimensional Data

between the preferences of the customers of one cluster may be arbitrary

complex like “the lower the products p1 and p2 are rated, the higher the

products p3 and p4 are rated”.

2.4 Text Documents

Clustering collections of text documents such as web pages to find groups of

thematically related documents is important in many applications. Usually,

the text documents are transformed into high dimensional feature vectors,

e.g. using term frequency features. The data matrix to be analyzed then

contains each document as a row where the columns represent the count of

one particular term in the corresponding document. Since the count for any

term occurring in any text document (after excluding stop words, applying

stemming, etc.) needs to be recorded, usually the data contain thousands

of attributes and is thus very sparse featuring a lot of zero values. Again,

related documents will only have a similar word count in a subset of terms,

and these subsets are likely to be different for different groups of thematically

relevant documents. In addition, the thematic groups may overlap, i.e. one

document may be assigned to more than one thematic group according to

similarities of the count value in different subsets of terms. In other words,

document A may share a similar frequency in a given set S of terms with

document B but not with C, whereas A may share another similar frequency

in a different set T of terms with C but not with B.

13

Part II

Typical Problems and Solutions

in Clustering High Dimensional

Data

15

Since almost all research on clustering high dimensional data is relatively

new, it is not covered in most textbooks in different related fields (data

mining, statistics, machine learning, pattern recognition – cf. e.g. [61, 67,

141, 32]) or in not-so-recent surveys on the topic of clustering [74]. Others

[46, 59, 130] sketch the problem rather casually. A more recent edition [60] at

least dedicates a section to the problem sketching some example algorithms

and touching on some problems.

Recently, some surveys already have given overviews on some approaches.

In [109], the problem is introduced in a very illustrative way and some ap-

proaches are sketched. However, there is no clear distinction between differ-

ent subproblems (axis-parallel or arbitrarily oriented) and the corresponding

algorithms are discussed without pointing out the underlying differences in

the corresponding problem definitions. Van Mechelen et al. [137] gave an

overview on older, more specialized work of a special type of pattern-based

clustering (biclustering) in the medical and biological area from a statistics

point of view. Madeira and Oliveira [97] focus on pattern-based clustering

approaches and are especially interested in the application domain of mi-

croarray data. Jiang et al. [75] focus exclusively on the application domain

of gene expression data and discuss clustering approaches structured accord-

ing to the application scenarios. However, in addition to the applications

of full dimensional clustering approaches, they sketch only three bicluster-

ing approaches (named “subspace clustering” in their overview). Tanay et

al. [132] discuss some biclustering algorithms as representatives of different

algorithmic approaches, also focussed on the application to gene expression

data.

Here, we would like to give a more systematic approach to the problem

and on the different tasks and subproblems (axis-parallel, pattern-based,

arbitrarily oriented clustering). Therefore, we will also survey the related

heuristics used by different approaches. Our systematic view is not based

on the application scenarios but on the intrinsic methodological differences

of the various families of approaches based on different spatial intuitions.

Thus, we will also try to integrate the inherently different point of view of

pattern-based approaches into the intuition of patterns in data space.

16

In this part, we will first grasp the problems in clustering high dimensional

data in a general way (Chapter 3). Concluding this introductory survey, we

distinguish three basic classes of clustering algorithms for high dimensional

data. These categories will be surveyed in detail in the subsequent chapters

(Chapter 4–6).

Having introduced the different concepts and approaches, we will discuss

the approaches again in a more general way comparing the different problem-

statements as well as the heuristics and the related restrictions of the different

approaches (cf. Chapter 7).

The systematic overview given in this part has been presented as a tutorial

at ICDM 2007 [89].

17

Chapter 3

Finding Clusters in High

Dimensional Data

When clustering high dimensional data, we face different problems. The

presence of irrelevant features or of correlations among subsets of features

heavily influences the appearance of clusters in the full dimensional space.

The main challenge for clustering here is that different subsets of features

are relevant for different clusters, i.e. the objects cluster in subspaces of the

data space but the subspaces of the clusters may vary. Additionally, differ-

ent correlations among the attributes may be relevant for different clusters.

We call this phenomenon that different features or a different correlation of

features may be relevant for varying clusters local feature relevance or local

feature correlation.

A common way to overcome problems of high dimensional data spaces

where several features are correlated or only some features are relevant is to

perform feature selection before performing any other data mining task. Fea-

ture selection methods like principal component analysis (PCA) can be used

to map the original data space to a lower dimensional data space where the

points may cluster better and the resulting clusters may be more meaningful.

Unfortunately, such feature selection or dimensionality reduction tech-

niques cannot be applied to clustering problems. Feature selection or dimen-

18 3 Finding Clusters in High Dimensional Data

Projection on

first principal

component

PCA

DBSCAN

D
isorder 2

D
is
or

de
r 1

Disorder 3

(a) First dimensionality reduction then clustering.

Projection on

first principal

component

PCA of the

cluster points

DBSCAN

D
isorder 2

D
is
or

de
r 1

Disorder 3

(b) First clustering then dimensionality reduction.

Figure 3.1: Illustration of the local feature relevance/local feature correla-

tion problem.

19

sionality reduction techniques are global in the following sense: they generally

compute only one subspace of the original data space in which the clustering

can then be performed. In contrast, the problem of local feature relevance

and local feature correlation states that multiple subspaces are needed be-

cause each cluster may exist in a different subspace. Figure 3.1(a) illustrates

this problem for a fictive sample two-dimensional data set derived from the

metabolic screening application. The data contain a set of patients, some

of them healthy, others suffering from specific metabolic diseases. For each

patient, the concentrations of two fictive metabolites are measured. There

are four clusters (healthy, disorder 1 – 3) and some noise. Whereas the

cluster of the healthy patients form a conventional two-dimensional cluster,

for each cluster representing ill patients different feature relevance and fea-

ture correlation applies: for disorder 1, a positive correlation between both

attributes can be observed. For disorder 2, a negative correlation between

both attributes can be observed. For disorder 3, only the feature represented

by the y-axis is relevant. If a feature selection method (here PCA) is applied

to these data in order to reduce the dimensionality by one, the four clusters

cannot be separated in the resulting subspace anymore (cf. Figure 3.1(a)).

On the other hand, if the points in the original data space are clustered first

(here using DBSCAN [47]) and afterwards feature selection is applied to each

resulting cluster (e.g. again using PCA), also no reasonable result can be de-

tected (cf. Figure 3.1(b)). In summary, due to the problem of local feature

relevance and local feature correlation, usually no global feature selection can

be applied to overcome the challenges of clustering high dimensional data.

Instead of a global approach to feature selection, a local approach account-

ing for the local feature relevance and/or local feature correlation problems

is required. Since traditional methods like feature selection, dimensional-

ity reduction, and conventional clustering do obviously not solve the above

sketched problems, novel methods need to integrate feature analysis into the

clustering process more tightly. Figure 3.2 illustrates the general challenge for

finding clusters in high dimensional data. Cluster 3 exists in an axis-parallel

subspace, clusters 1 and 2 exist in (different) arbitrarily oriented subspaces:

if the cluster members are projected onto the depicted subspaces, the points

20 3 Finding Clusters in High Dimensional Data

cluster 2

cl
us

te
r 1

cluster 3

subspace for

cluster 3

subspace for

cluster 1

subspace for

cluster 2

Figure 3.2: Illustration of the general aim of clustering algorithms for high

dimensional data.

are densely packed, i.e. similar to each other. Generally, we can derive the

following aim for methods that are designed for clustering high dimensional

data:

The general aim of clustering algorithms designed for high dimen-

sional data is to find clusters in arbitrarily oriented subspaces of

the original feature space.

Of course, the meaning of the term “clusters” is still open to debate. Since

there are different approaches to define a “cluster” in general, there are also

different notions of what constitutes a “subspace cluster”. But assuming

a certain meaning of “cluster”, we discuss different general algorithmic ap-

proaches to finding clusters in high dimensional data.

A näıve solution to the general aim of clustering algorithms for high di-

mensional data is to test all possible arbitrarily oriented subspaces for clus-

ters. Obviously, there is an infinite number of arbitrarily oriented subspaces,

so this näıve solution is computationally infeasible. Rather, we urgently

21

need some heuristics and assumptions in order to conquer this infinite search

space.

As Figure 3.2 suggests, the clusters can in general be found in arbitrarily

oriented subspaces. However, in some applications, it is reasonable to focus

only on clusters in axis-parallel subspaces (like cluster 3 in Figure 3.2). In

that case, the search space of all potential subspaces accommodating clusters

is restricted, but still in O(2d). Many algorithms proposed so far use this

restriction and are limited to finding clusters in axis-parallel subspaces only.

In the literature, those clustering algorithms are usually called projected clus-

tering or subspace clustering algorithms. We review and discuss the problem

of finding clusters in axis-parallel subspaces in Chapter 4.

On the other hand, several applications require solutions for the general

case where clusters may exists in any arbitrarily oriented subspace. The

algorithms of this class of solutions are usually called correlation clustering

algorithms. Let us note that some authors use the term “subspace clustering

algorithm” interchangeably also for “correlation clustering algorithm”. We

review and discuss the problem of finding clusters in arbitrarily oriented

subspaces in Chapter 6.

In between these two main classes of existing algorithms, finding clus-

ters in axis-parallel subspaces and clusters in arbitrarily oriented subspaces,

a third class of algorithms following a slightly different approach has been

proposed. Those algorithms are typically referred to as pattern-based clus-

tering (or sometimes: bi-clustering, co-clustering) algorithms. In fact, some

pattern-based clustering algorithms are restricted to axis-parallel subspace

clusters, whereas other pattern-based clustering algorithms are not restricted

to axis-parallel subspace clusters but are limited to clusters in special cases

of arbitrarily oriented subspaces. However, since the pattern-based cluster-

ing methods take a different approach to the problems presented here and

expose a kind of hybrid approach between axis-parallel and arbitrarily ori-

ented subspace clustering, we discuss them as a separate class of algorithms

in Chapter 5.

22 3 Finding Clusters in High Dimensional Data

23

Chapter 4

Finding Clusters in

Axis-parallel Subspaces

A very common assumption to shrink down the infinite search space of all

possible subspaces is to focus on axis-parallel subspaces only. The assumption

that clusters can only be found in axis-parallel subspaces may be rather

sensible in the context of various applications. The big advantage is that

the search space is now restricted by the number of all possible axis-parallel

subspaces. However, the bound is still rather high: In a d-dimensional data

set the number of k-dimensional subspaces is
(

d
k

)
(1 ≤ k ≤ d) and, thus, the

number of all possible subspaces is

d∑
k=1

(
d

k

)
= 2d − 1.

In the literature, the problem of finding axis-parallel clusters has been

referred to as “projected clustering” and “subspace clustering”. However,

these terms are not consistently used in the literature causing some potential

misunderstanding. Here, we try to establish a standard vocabulary. Origi-

nally, projected clustering and subspace clustering refer to two different sub-

problems of finding clusters in axis-parallel subspaces (or projections). How-

ever, in the literature, these two sub-problems have been mixed up e.g. with

the algorithmic approach used to conquer the search space of possible sub-

24 4 Finding Clusters in Axis-parallel Subspaces

spaces to look for clusters. For example, the distinction between “dimension-

growth subspace clustering” and “dimension-reduction projected clustering”

given in [60] is such a mix-up. In the following, we give two classification

schemata of existing algorithms to find clusters in axis-parallel subspaces.

The first schema is a problem-oriented view of the task and ends up in defin-

ing the terms “projected clustering” and “subspace clustering” in a unified

way. The second schema is an algorithmic view analyzing the algorithmic

approach employed to conquer the exponential search space of possibly in-

teresting subspaces.

4.1 A Problem-Oriented Categorization

Due to the afore mentioned exponential search space, all algorithms that

are limited to finding clusters in axis-parallel subspaces rely on further as-

sumptions that usually affect the results produced. In the literature, there

are generally three different classes of problem statements depending on the

assumptions made.1

1. Projected Clustering Algorithms

A first class of algorithms aims at finding a unique assignment of each

point to exactly one subspace cluster (or noise). Generally, they try to

find the projection where the currently considered set of points clus-

ters best. These algorithms are referred to as projected clustering algo-

rithms. Some algorithms further assume that the number k of clusters

is known beforehand such that an objective function can be defined

which is optimized to derive the optimal set of k clusters.

2. Subspace Clustering Algorithms

A second class of algorithms aims at finding all subspaces where clus-

ters can be identified. Thus, these algorithms are dedicated to find

all clusters in all subspaces. We refer to this group of algorithms as

subspace clustering algorithms.

1Note that problem statements are often not stated explicitly.

4.2 An Algorithmic-Oriented Categorization 25

3. Hybrid Algorithms

A third class of algorithms aims at finding something in between. Usu-

ally, these algorithms aim at finding clusters that may overlap. On

the other hand, these algorithms do not aim at finding all clusters in

all subspaces. Some of the hybrid algorithms only compute interesting

subspaces rather than final subspace clusters. The reported subspaces

can then be mined by applying full dimensional algorithms to these

projections.

Let us note that all classes of algorithms imply that there is a definition of

what constitutes a cluster. The output of these algorithms is a list of clusters

each represented as a pair (X, Y), where X is a subset of data objects and Y

is a subset of data attributes, such that the points in X meet a given cluster

criterion when projected onto the attributes in Y but do not meet the cluster

criterion when projected onto the remaining attributes, i.e. the points in X

are “close” when projected onto the attributes in Y but projected onto the

remaining attributes they are “not close”. Usually, the cluster criterion and

the measure of “closeness” differs from algorithm to algorithm.

4.2 An Algorithmic-Oriented Categorization

A second classification schema of existing algorithms for finding clusters in

axis-parallel subspaces focuses on the algorithmic approach to conquer the

exponential search space of all possible subspaces. In general, this is an im-

portant view because efficiently navigating through this search space is one

of the key challenges for the design of an axis-parallel projected, subspace

or hybrid clustering algorithm. The task is to efficiently identify those sub-

spaces, that accommodate one or more clusters. Compared to evaluating a

given cluster criterion, the search for the subspaces accommodating a clus-

ter is usually the bottleneck even for low dimensional data. For example,

for d = 20, we face more than 1 million possible subspaces. A complete

enumeration of these subspaces is obviously computationally infeasible.

In general, the algorithmic approaches for finding these subspaces, i.e.

26 4 Finding Clusters in Axis-parallel Subspaces

traversing the search space of all possible axis-parallel subspaces, can be

divided into the following two categories.

1. Top-down Approaches

The rational of top-down approaches is to determine the subspace of a

cluster starting from the full dimensional space. This is usually done

by determining a subset of attributes for a given set of points – po-

tential cluster members – such that the points meet the given cluster

criterion when projected onto the corresponding subspace. Obviously,

the dilemma is, that for the determination of the subspace of a cluster,

at least some cluster members must be identified. On the other hand,

in order to determine cluster memberships, the subspace of each cluster

must be known. To escape from this circular dependency, most of the

top-down approaches rely on a rather strict assumption, which we call

the locality assumption. It is assumed that the subspace of a cluster can

be derived from the local neighborhood (in the full dimensional data

space) of the cluster center or the cluster members. In other words,

it is assumed that even in the full dimensional space, the subspace of

each cluster can be learned from the local neighborhood of cluster rep-

resentatives or cluster members. Other top-down approaches that do

not rely on the locality assumption use random sampling in order to

generate a set of potential cluster members.

2. Bottom-up Approaches

The exponential search space that needs to be traversed is equivalent

to the search space of the frequent item set problem in market bas-

ket analysis in transaction databases [14]. Each attribute represents

an item and each subspace cluster is a transaction of the items repre-

senting the attributes that span the corresponding subspace. Finding

itemsets with frequency 1 then relates to finding all combinations of

attributes that constitute a subspace containing at least one cluster.

This observation is the rational of most bottom-up subspace cluster-

ing approaches. The subspaces that contain clusters are determined

starting from all 1-dimensional subspaces that accommodate at least

4.3 Survey and Categorization of Existing Approaches 27

one cluster by employing a search strategy similar to frequent item-

set mining algorithms. To apply any efficient frequent itemset mining

algorithm, the cluster criterion must implement a downward closure

property (also called monotonicity property): If subspace S contains

a cluster, then any subspace T ⊆ S must also contain a cluster. The

reverse implication, if a subspace T does not contain a cluster, then any

superspace S ⊇ T also cannot contain a cluster, can be used for prun-

ing, i.e. excluding specific subspaces from consideration. Let us note

that there are bottom-up algorithms that do not use an APRIORI-like

subspace search but instead apply other search heuristics.

Both the top-down approach and the bottom-up approach are commonly

used in the literature. While the top-down approach tries to anticipate cluster

members and then determines the subspace of each cluster, the bottom-up

approach rather tries to anticipate the subspaces of the clusters and then

determines the cluster members.

4.3 Survey and Categorization of Existing Ap-

proaches

In the following, we survey representative solutions, categorized according to

the task-definition they adopt.

4.3.1 Projected Clustering Algorithms

Projected clustering algorithms aim at finding a unique assignment of points

to subspace clusters. Some algorithms also model noise explicitly, i.e. points

are assigned uniquely to only one cluster or the noise set.

PROCLUS [10] is a k-medoid-like clustering algorithm. It randomly de-

termines a set of potential cluster centers M on a sample of points first.

In the iterative cluster refinement phase, for each of the k current medoids

28 4 Finding Clusters in Axis-parallel Subspaces

the subspace is determined by minimizing the standard deviation of the dis-

tances of the points in the neighborhood of the medoids to the corresponding

medoid along each dimension. Points are then assigned to the closest medoid

considering the relevant subspace of each medoid. The clusters are refined

by replacing bad medoids with new medoids from M as long as the cluster-

ing quality increases. A postprocessing step identifies noise points that are

too far away from their closest medoids. The algorithm always outputs a

partition of the data points into k clusters (each represented by its medoid)

with corresponding subspaces and a (potentially empty) set of noise points.

The k-medoid-style cluster model tends to produce equally sized clusters that

have spherical shape in their corresponding subspaces. In addition, since the

set M of possible medoids is determined in a randomized procedure, dif-

ferent runs of PROCLUS with the same parametrization usually result in

different clusterings. A similar method, LAC (Locally Adaptive Clustering)

[44], starts with k centroids and k sets of d weights (for d attributes). The

algorithm proceeds to approximate a set of k Gaussians by adapting the

weights. The difference to PROCLUS is that weights are computed for all

attributes while for PROCLUS the average cluster dimensionality needs to

be specified. Other variations of PROCLUS are FINDIT [142] employing

additional heuristics to enhance efficiency and clustering accuracy and SSPC

[146] that offers the capability of further enhancing accuracy by using domain

knowledge in the form of labeled objects and/or labeled attributes.

PreDeCon [34] applies the density-based full dimensional clustering algo-

rithm DBSCAN [47] using a specialized distance measure that captures the

subspace of each cluster. The definition of this specialized subspace distance

is based on the so-called subspace preference that is assigned to each point

~p, representing the maximal-dimensional subspace in which ~p clusters best.

A dimension is considered to be relevant for the subspace preference of a

point ~p if the variance of points in the Euclidean ε-neighborhood of ~p is be-

low a user-defined threshold δ. The specialized subspace distance between

points is a weighted Euclidean distance where the dimensions relevant for the

subspace preference of a point are weighted by a constant κ � 1 while the

remaining dimensions are weighted by 1. PreDeCon determines the number

4.3 Survey and Categorization of Existing Approaches 29

of clusters automatically, and handles noise implicitly. In addition, its re-

sults are determinate and the clusters may exhibit any shape and size in the

corresponding subspace. However, PreDeCon requires the user to specify a

number of input parameters that are usually hard to guess.

CLTree [94] is a method that presents an interesting variation of the

theme. The basic idea is to assign a common class label to all existing points

and to add additionally points uniformly distributed over the data space and

labeled as different class. Then a decision tree is trained to separate the two

classes. As a consequence, the attributes are split independently, adaptively,

and in a flexible order of the attributes. However, selecting a split is based

on the evaluation of information gain which is rather costly. Furthermore,

the density of the superimposed artificial data can be expected to heavily

influence the quality of the results. Since the distribution parameters of

existing clusters are unknown beforehand, finding a suitable parametrization

seems rather hard. Another problem is the merging of adjacent regions. A

cluster can easily become separated if the corresponding bins do not “touch”

each other.

4.3.2 Subspace Clustering Algorithms

Subspace clustering algorithms aim at finding all clusters in all subspaces of

the entire feature space.

CLIQUE [13], the pioneering approach to subspace clustering, uses a grid-

based clustering notion. The data space is partitioned by an axis-parallel

grid into equi-sized units of width ξ. Only units which contain at least

τ points are considered as dense. A cluster is defined as a maximal set

of adjacent dense units. Since dense units satisfy the downward closure

property, subspace clusters can be explored rather efficiently in a bottom-

up way. Starting with all 1-dimensional dense units, (k + 1)-dimensional

dense units are computed from the set of k-dimensional dense units in an

APRIORI-like style. If a (k + 1)-dimensional unit contains a projection

onto a k-dimensional unit that is not dense, then the (k + 1)-dimensional

30 4 Finding Clusters in Axis-parallel Subspaces

unit can also not be dense. Furthermore, a heuristic that is based on the

minimum description length principle is introduced to discard candidate units

within less interesting subspaces, i.e. subspaces that contain only a very

small number of dense units. This way, the efficiency of the algorithm is

enhanced but at the cost of incomplete results, i.e. some true clusters are

lost. There are some variants of CLIQUE. The method ENCLUS [40] also

relies on a fixed grid but searches for subspaces that potentially contain

one or more clusters rather than for dense units. Three quality criteria for

subspaces are introduced, one of them implements the downward closure

property. The method MAFIA [105] uses an adaptive grid. The generation

of subspace clusters is similar to CLIQUE. Another variant of CLIQUE called

nCluster [95] allows overlapping windows of length δ as 1-dimensional units

of the grid. In summary, all grid-based methods use a simple but rather

efficient cluster model. The shape of each resulting cluster corresponds to

a polygon with axis-parallel lines in the corresponding subspace. Obviously,

the accuracy and the efficiency of CLIQUE and its variants primarily depend

on the granularity and the positioning of the grid. A higher grid granularity

results in higher runtime-requirements but will most likely produce more

accurate results.

SUBCLU [80] uses the DBSCAN cluster model of density-connected sets

[47]. It is shown that density-connected sets satisfy the downward closure

property. This enables SUBCLU to search for density-based clusters in sub-

spaces in an APRIORI-like style. The resulting clusters may exhibit an

arbitrary shape and size in the corresponding subspaces. In fact, for each

subspace SUBCLU computes all clusters that would have been found by

DBSCAN applied to that subspace only. Compared to the grid-based ap-

proaches, SUBCLU achieves a better clustering quality but requires a higher

runtime.

It has been observed that a global density threshold, as used by SUBCLU

and the grid-based approaches, leads to a bias towards a certain dimension-

ality: a tighter threshold which is able to separate clusters from noise well

in low dimensions tends to loose clusters in higher dimensions whereas a

more relaxed threshold which is able to detect high dimensional clusters will

4.3 Survey and Categorization of Existing Approaches 31

produce an excessive amount of low dimensional clusters. Therefore, the di-

mensionality unbiased cluster model DUSC has been proposed, based on a

density measure adaptive to the dimensionality [18]. As a major drawback,

this approach is lacking of anti-monotonic properties and, thus, pruning the

search space is not possible. A “weak density” is thus defined as a remedy,

providing anti-monotonic properties. This remedy, however, in turn intro-

duces a global density threshold again. A method for visual subspace cluster

analysis based on DUSC is proposed in [19].

4.3.3 Hybrid Clustering Algorithms

Algorithms that do not aim at uniquely assigning each data point to a cluster

and do not aim at finding all clusters in all subspaces are called hybrid

algorithms. Some hybrid algorithms offer the user an optional functionality

of a pure projected clustering algorithm. Others aim at computing only the

subspaces of potential interest rather than the final clusters. Usually, hybrid

methods that report clusters allow overlapping clusters but do not aim at

computing all clusters in all subspaces.

DOC [114] uses a global density threshold to define a subspace cluster

by means of hypercubes of fixed side-length w containing at least α points.

A random search algorithm is proposed to compute such subspace clusters

from a starting seed of sampled points. A third parameter β specifies the

balance between the number of points and the dimensionality of a cluster.

This parameter affects the dimensionality of the resulting clusters and, thus,

DOC usually has also problems with subspace clusters of significantly dif-

ferent dimensionality. Due to the very simple clustering model, the clusters

may contain additional noise points (if w is too large) or not all points that

naturally belong to the cluster (if w is too small). One run of DOC may

(with a certain probability) find one subspace cluster. If k clusters need to

be identified, DOC has to be applied at least k times. If the points assigned

to the clusters found so far are excluded from subsequent runs, DOC can

be considered as a pure projected clustering algorithm because each point is

uniquely assigned to one cluster or to noise (if not assigned to a cluster). On

32 4 Finding Clusters in Axis-parallel Subspaces

the other hand, if the cluster points are not excluded from subsequent runs,

the resulting clusters of multiple runs may overlap. Usually, DOC cannot

produce all clusters in all subspaces.

MINECLUS [147, 148] is based on a similar idea as DOC, but proposes

a deterministic method to find an optimal projected cluster given a sample

seed point. The authors transform the problem into a frequent item set

mining problem and employ a modified frequent pattern tree growth method.

Further heuristics are introduced to enhance efficiency and accuracy.

COSA [53] does not derive a clustering but merely a similarity matrix

that can be used by an arbitrary clustering algorithm afterwards. The matrix

contains weights for each point specifying a subspace preference of the points

similar to PreDeCon. The weights for a point ~p are determined by starting

with the Euclidean k-nearest neighbors of ~p and by computing the average

distance distribution of the k-nearest neighbors along each dimension. As

long as the weight vectors still change, the k-nearest neighbors are again

determined using the current weights and the weights are re-computed. The

number of neighbors k is an input parameter. Very different to PreDeCon,

the weights can have arbitrary values rather than only two fixed values.

In addition, the authors in [53] test the weighting matrix using several full

dimensional clustering algorithms rather than integrating it into only one

specific algorithm.

DiSH [3] follows a similar idea as PreDeCon but uses a hierarchical clus-

tering model. This way, hierarchies of subspace clusters can be discovered,

i.e. the information that a lower dimensional cluster is embedded within a

higher dimensional one. The distance between points and clusters is de-

fined in such a way that it reflects the dimensionality of the subspace that

is spanned by combining the corresponding subspace of each cluster. As in

COSA, the weighting of attributes is learned for each object, not for entire

clusters. The learning of weights, however, is based on single attributes,

not on the entire feature space. DiSH uses an algorithm that is inspired by

the density-based hierarchical clustering algorithm OPTICS [16]. However,

DiSH extends the cluster ordering computed by OPTICS in order to find

4.3 Survey and Categorization of Existing Approaches 33

hierarchies of subspace clusters with multiple inclusions (a lower dimensional

subspace cluster may be embedded in multiple higher dimensional subspace

clusters).

HARP [145] is a Single-Link like hierarchical clustering algorithm but uses

a different “distance function” between points/clusters and does not produce

a hierarchy of subspace clusters. Starting with singleton clusters, HARP

iteratively merges clusters as long as the resulting cluster has a minimum

number of relevant attributes. A relevance score is introduced for attributes

based on a threshold that starts at some harsh value and is progressively

decreased while clusters increase in size. By design, HARP has problems to

find low dimensional clusters. The resulting dendrogram can be cut at any

level in order to produce a unique assignment of points to clusters.

SCHISM [124] mines interesting subspaces rather than subspace clusters,

thus, it is not exactly a subspace clustering algorithm but solves a related

problem: find subspaces to look for clusters. It employs a grid-like discretiza-

tion of the database and applies a depth-first search with backtracking to find

maximally interesting subspaces.

FIRES [88] computes 1-dimensional clusters using any clustering tech-

nique the user is most accomplished to in a first step. These 1-dimensional

clusters are then merged by applying a “clustering of clusters”. The simi-

larity of clusters is defined by the number of intersecting points. The result-

ing clusters represent hyper-rectangular approximations of the true subspace

clusters. In an optional postprocessing step, these approximations can be

refined by again applying any clustering algorithm to the points included

in the approximation projected onto the corresponding subspace. Though

using a bottom-up search strategy, FIRES is rather efficient because it does

not employ a worst-case exhaustive search procedure but a heuristic that is

linear in the dimensionality of the data space. However, this performance

boost is paid for by an expected loss of clustering accuracy. It cannot be

specified whether the subspace clusters produced by FIRES may overlap or

not. In general, the clusters may overlap but usually, FIRES cannot produce

all clusters in all subspaces.

34 4 Finding Clusters in Axis-parallel Subspaces

P3C [102, 103] starts with 1-dimensional intervals that are likely to ap-

proximate higher dimensional subspace clusters. These intervals are merged

using an APRIORI-like bottom-up search strategy. The maximal dimen-

sional subspace cluster approximations resulting from this merging procedure

are reported as so-called cluster cores. In a refinement step, the cluster cores

are refined by using an EM-like clustering procedure. Each cluster core is

taken as one initial cluster for the EM algorithm. Points are assigned to the

closest cluster core using the Mahalanobis distance. The final output of P3C

is a matrix that records for each data point its probability of belonging to

each projected cluster. From this matrix, a disjoint partitioning of the data

points into clusters can be obtained by assigning each point to the cluster

with the highest probability. If overlapping clusters shall be allowed, each

point can be assigned to all clusters with a probability larger than 1/k. P3C

cannot produce all clusters in all subspaces.

4.4 Summary

Two schemata for the classification of algorithms for finding clusters in axis-

parallel subspaces have been presented. The first schema classifies the ap-

proaches according to the definition of the problem the algorithms aim to

solve into projected clustering, subspace clustering and hybrid algorithms.

The second schema distinguishes the algorithmic method to find the sub-

spaces that accommodate the clusters, bottom-up vs. top-down approaches.

In fact, there is a close relationship between the problem-oriented classifica-

tion and the algorithmic-oriented classification. Many projected clustering

algorithms implement a top-down approach, whereas all subspace clustering

algorithms follow a bottom-up approach. This close connection explains the

additions “dimension-growth” and “dimension-reduction” in the distinction

between “dimension-growth subspace clustering” and “dimension-reduction

projected clustering” in [60]. However, this relationship does not hold in

general. In addition, for hybrid approaches there is no close relationship

to any of the algorithmic-oriented classes, i.e. some implement a bottom-up

approach, others use a top-down strategy.

4.4 Summary 35

Table 4.1: Categorization of sample subspace clustering algorithms, pro-

jected clustering algorithms, hybrid approaches

algorithmic-oriented view

category bottom-up top-down

p
ro

b
le

m
-o

ri
e
n
te

d
v
ie

w

subspace

clustering

CLIQUE

nCluster

ENCLUS

MAFIA

SUBCLU

hybrid

DiSH

FIRES

P3C

SCHISM

DOC

MINECLUS

COSA

HARP

projected

clustering
P3C

PROCLUS

SSPC

PreDeCon

DOC

MINECLUS

36 4 Finding Clusters in Axis-parallel Subspaces

A classification of existing approaches has been presented following the

classification w.r.t. their assumed task definition. Table 4.1 overviews the

different categorizations of algorithms and their relationships also for the al-

gorithmic point of view. Note that DOC, MINECLUS, and P3C appear mul-

tiple times since they can optionally produce overlapping or non-overlapping

clusters.

In general, focussing on axis-parallel subspaces is meaningful in several

applications. Since all existing approaches are based on further assumptions,

a fair and comprehensive experimental comparison of all approaches is a

large challenge. However, to decide which algorithm should be chosen for

which task, such a comparison is urgently needed. Leastwise, this survey

is an attempt to provide such a comparison from the theoretical point of

view, sketching the different assumptions and heuristics used by the various

approaches.

37

Chapter 5

Finding Clusters Based on

Patterns in the Data Matrix

Recall the cluster definition of subspace and projected clustering algorithms:

A clustering can be described as a set of pairs (X, Y), where X is a subset

of data objects and Y is a subset of data attributes, such that the points

in X are “close” when projected onto the attributes in Y but projected

onto the remaining attributes they are “not close”. Since the measure of

“closeness” is unspecified by the problem definition of subspace and projected

clustering in principle, also most of the pattern-based clustering algorithms

could be interpreted as subspace or projected clustering algorithms in the

above sense. The clustering algorithms surveyed in Chapter 4 usually define

the “closeness” in a sense of density in terms of the Euclidean distance in

an axis-parallel projection. The pattern-based clustering algorithms, as we

will see in this section, define the “closeness” differently in the sense of a

common behavior of objects in an axis-parallel subspace, i.e., w.r.t. a certain

“pattern” which the objects form in a subset of attributes.

Let us embark upon discussing pattern-based clustering algorithms with

a general consideration. We have seen that the heuristics used in subspace

and projected clustering treat dimensions and points differently. Why are

those directions not interchangeable? A reason may be that heuristics for

speed-up are based on different intuitions for data space and data objects.

38 5 Finding Clusters Based on Patterns in the Data Matrix

Furthermore, dependent on the problem at hand, the spatial intuition may be

natural. Thus, data space and data objects are indeed different concepts for

many applications. However, it is a general characteristic of pattern-based

clustering algorithms (thus also called biclustering, co-clustering, two-mode

clustering, or two-way clustering algorithms) that they treat attributes and

objects interchangeable.1

While we claim to provide a rather thorough overview of existing ap-

proaches in Chapters 4 and 6, in this Chapter we aim merely at pointing out

the connections among different biclustering models and their relationships

to the more general approaches based on spatial intuitions. To present an

overview on different models and connect those models to spatial intuitions,

we follow the structure presented by Madeira and Oliveira [97] and try to

enrich the rather abstract notions of bicluster types by intuitions what the

patterns in a data matrix mean in the original data space. This will lead

us to the surprising perception that, in terms of general subspace clustering

approaches, many approaches in this field tackle rather simple, very special-

ized or even weird problems. For a more exhaustive covering of biclustering

algorithms we refer to the afore mentioned surveys covering biclustering in

biological and medical applications [97, 137, 132]. Recent work on pattern-

based clustering is especially popular in the bioinformatics community fo-

cussing on the applications of biclustering on microarray data, triggered by

[41].

5.1 General Aim and Basic Approaches of

Pattern-based Clustering Algorithms

Pattern-based clustering algorithms depict the data as a matrix A with a set

of rows X and a set of columns Y . The element axy represents the value in row

x and column y. Usually, the rows represent database objects, the columns

1Note that there are counter examples, though. The algorithm MaPle [110] (see below)
enumerates attributes first, based on the reasoning that there are usually much more
objects than attributes in a database.

5.1 General Aim and Basic Approaches 39

are the attributes of the database objects. Thus, the matrix element axy is

the value of object with ID x in the attribute with ID y. We can consider

such a matrix A, with n rows and m columns, defined by its set of rows,

X = {x1, . . . , xn}, and its set of columns, Y = {y1, . . . , ym}. Thus, we can

denote the matrix A by (X, Y). Choosing I ⊆ X and J ⊆ Y as subsets of

the rows and columns, respectively, AIJ = (I, J) denotes the submatrix of A

containing those elements aij with i ∈ I and j ∈ J . Biclustering algorithms

tackle the problem of finding a set of submatrices {(I1, J1), . . . , (Ik, Jk)} of

the matrix A = (X, Y) (with Ii ⊆ X, Ji ⊆ Y ∀i ∈ {1, . . . , k}), where each

submatrix (bicluster) meets a given homogeneity criterion.

Many approaches make use of mean values of rows, of columns, and of

the complete data matrix or a certain submatrix (i.e., a bicluster). For these

mean values, the following notations are commonly in use. The mean of the

ith row in the bicluster (I, J) is given by

aiJ =
1

|J |
∑
j∈J

aij. (5.1)

The mean of the jth column in the bicluster (I, J) is given by

aIj =
1

|I|
∑
i∈I

aij. (5.2)

The mean of all elements in the bicluster (I, J) is given by

aIJ =
1

|I||J |
∑

i∈I,j∈J

aij (5.3)

=
1

|I|
∑
i∈I

aiJ (5.4)

=
1

|J |
∑
j∈J

aIj. (5.5)

Madeira and Oliveira [97] discern basically four different categories of bi-

clusters, constant biclusters, biclusters with constant values on either columns

or rows, biclusters with coherent values, and finally biclusters with coherent

evolutions. The general problem settings for these categories is discussed in

the following.

40 5 Finding Clusters Based on Patterns in the Data Matrix

5.1.1 Constant Biclusters

A perfect constant bicluster consists of points sharing identical values in all

selected attributes. In the corresponding submatrix (I, J) it holds therefore

for a constant value µ which is typical for the cluster and for all i ∈ I and

j ∈ J :

aij = µ. (5.6)

In a not-so-perfect constant bicluster the values are only similar but not

necessarily identical, i.e.:

aij ≈ µ. (5.7)

This type of bicluster is obviously an axis-parallel subspace cluster. Pro-

jecting the contributing points onto the contributing attributes, the points

cluster at one single point. However, this single point is a special case, since

it has identical attribute values in all directions and, hence, it is always lo-

cated on the bisecting line of the subspace relevant to the cluster (cf. Figure

5.1).

For the following categories, we will focus on perfect biclusters. Generally,

however, real-world biclusters cannot be expected to be perfect, the model will

rather apply only approximately on the data. Allowing for imprecise models

makes the task of finding biclusters even harder. One has to decide, when

a cluster satisfactorily suffices the model in its general form. For example,

optimizing for perfect constant biclusters on the matrix A = (X, Y) will

probably lead to |X| · |Y | biclusters, each consisting of only one point and one

dimension. How to avoid this kind of overfitting constitutes one interesting

question of different contributions to this task.

5.1.2 Biclusters with Constant Values on Rows or Columns

Biclusters with Constant Values on Columns.

Biclusters of points sharing constant values on columns are a more relaxed

case of axis-parallel subspace clusters. The projection onto the contributing

5.1 General Aim and Basic Approaches 41

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.1: Constant bicluster

42 5 Finding Clusters Based on Patterns in the Data Matrix

attributes yields once again a single point, but this point can be arbitrarily

located anywhere in the corresponding subspace (cf. Figure 5.2). For the

corresponding submatrix AIJ = (I, J) it holds for a constant value µ which

is typical for the cluster, with an adjustment value cj for column j ∈ J , and

for all i ∈ I and j ∈ J :

aij = µ + cj. (5.8)

Biclusters with Constant Values on Rows.

Biclusters with constant values on rows accommodate the participating points

on the bisecting line of the participating dimensions (cf. Figure 5.3). For the

corresponding submatrix AIJ = (I, J) it holds for a constant value µ which

is typical for the cluster, with an adjustment value ri for row i ∈ I, and for

all i ∈ I and j ∈ J :

aij = µ + ri. (5.9)

5.1.3 Biclusters with Coherent Values

More sophisticated approaches seek biclusters with coherent values exhibiting

a particular form of covariance between rows and columns. One way to

describe such biclusters is a combination of Equations 5.8 and 5.9. For a

perfect bicluster with coherent values, (I, J), the values aij can be predicted

by an additive model as

aij = µ + ri + cj. (5.10)

Again, ri is an adjustment value for row i ∈ I, cj is an adjustment value for

column j ∈ J . The difference to the simpler model of constant values in rows

or columns is constituted by using both adjustment values simultaneously

to adjust the mean value µ to a certain value in row i and column j. In

fact, biclusters with constant values in columns or rows, respectively, could

5.1 General Aim and Basic Approaches 43

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.2: Constant values on columns

44 5 Finding Clusters Based on Patterns in the Data Matrix

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.3: Constant values on rows

5.1 General Aim and Basic Approaches 45

be regarded as special cases of biclusters with coherent values, where the

adjustment values are ri = 0 (resulting in Equation 5.8) or cj = 0 (resulting

in Equation 5.9).

The corresponding clusters accommodate data points on hyperplanes par-

allel to the axes of irrelevant attributes in the complete data space. Pro-

jected onto the corresponding subspace, the clusters appear as increasing

one-dimensional lines (cf. Figure 5.4). This pattern includes constant lines,

which reduces to the special case of the category of biclusters with constant

values on columns.

Note that decreasing lines are not covered by this model because those

would result in a completely different pattern in the data matrix: while in-

creasing lines consist of positively correlated attributes, decreasing lines re-

sult from negatively correlated attributes. The corresponding pattern cannot

be described by the simple additive models typical for biclustering approaches

which only cover shifted patterns (cf. Figure 5.5).

5.1.4 Biclusters with Coherent Evolutions

In this category, biclusters are constituted by a set of rows and columns,

where the changes of attribute values are common among attribute pairs for

all participating rows not in the exact quantity, but only in the fact, that

a change happens at all. Some approaches require the change of attribute

values to exhibit the same direction (either increasing or decreasing). Some

approaches quantize the occurring attribute values in some discrete states and

address equal state-transitions (e.g. [104, 131]). To obtain an intuition behind

such bicluster models, imagine a quantizing approach with some states. The

set of states constitutes a grid in the data space. A bicluster then contains

a set of points I that fill the same grid cell in the projection of the set of

attributes J contributing to the bicluster (cf. Figure 5.6).

Since quantizing approaches could bluntly be regarded as grid-based, axis-

parallel subspace clustering (cf. Figure 5.6(c)), we will rather inspect an ap-

proach seeking clusters exhibiting a general tendency in attribute values as an

46 5 Finding Clusters Based on Patterns in the Data Matrix

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.4: Coherent values

5.1 General Aim and Basic Approaches 47

(a) Positive correlation (b) Pattern

(c) Negative correlation (d) Pattern

Figure 5.5: Patterns corresponding to positively and negatively correlated

attributes

48 5 Finding Clusters Based on Patterns in the Data Matrix

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.6: Coherent evolutions: state transitions

5.1 General Aim and Basic Approaches 49

(a) Data matrix AXY (b) Data space

(c) Subspace {a1, a2} (d) Pattern

Figure 5.7: Coherent evolutions: change in the same direction

50 5 Finding Clusters Based on Patterns in the Data Matrix

example for biclustering with coherent evolution patterns. This phenomenon

has been grasped as the “order-preserving submatrix” problem [26]. The

idea is to find a subset of rows and columns where a permutation of the set

of columns exists such that the values in every row are increasing.

For this model, we find no spatial intuition corresponding to the visual-

izations given so far (cf. Figure 5.7). However, since all points are located in

a half-space of the relevant subspace (cf. Figure 5.7(c)), one may probably

find related approaches in the field of quantitative association rule mining

(cf. [139, 118, 56]) or in the adaptation of formal concept analysis [54] to

numeric data [112].

5.2 Pattern Based Clustering Algorithms

5.2.1 Constant Biclusters

Hartigan [66] provided the classical description of the biclustering problem.

The quality of a bicluster is given by the sum of squares of all entries assuming

the average value to form the corresponding ideal (perfect) bicluster. This

could also be regarded as the variance of the submatrix AIJ , given the mean

aIJ (see Equation 5.3):

VAR(AIJ) =
∑

i∈I,j∈J

(aij − aIJ)2 . (5.11)

The data matrix is split recursively into two partitions. At each step, the

split maximizing the reduction in the overall sum of squares of all biclusters

is chosen. The splitting stops when the reduction of the sum of squares is

less than that expected by chance.

This procedure is similar to a divisive, top-down hierarchical clustering

and, therefore, results in a rather inefficient procedure.

5.2 Pattern Based Clustering Algorithms 51

5.2.2 Biclusters with Constant Values in Rows or Columns

Algorithms of this category usually apply a normalization to transform the

biclusters into constant biclusters (e.g. [57]). Other approaches described in

the bioinformatics community consider the existence of multiplicative noise,

or constrain the values in rows and columns to certain intervals, or even

provide probabilistic models for the clusters (e.g. [38, 125, 123]).

Besides these application driven methods, we know of no general biclus-

tering approach to this specific problem. However, the problem seems not

that intriguing after all, since it can easily be reduced to the first category,

and, in turn, the following category treats problems belonging to this cate-

gory as special cases.

Let us note that the general subspace and projected clustering algorithms

described in Section 4 tackle the problem of finding biclusters with constant

values on columns in a general way. The problem of finding biclusters with

constant values on rows is a very special case of general correlation clustering

algorithms (cf. Section 6).

5.2.3 Biclusters with Coherent Values

Cheng and Church [41] are credited with having introduced the term bi-

clustering (inspired by [100]) to the analysis of gene expression (microarray)

data. They assess the quality of a bicluster (I, J) by a mean squared residue

value H given by

H(I, J) =
1

|I| · |J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2 . (5.12)

The submatrix (I, J) is then considered a δ-bicluster if H(I, J) ≤ δ for a

given δ ∈ R+
0 . Setting δ = 0 results in perfect δ-biclusters. In this model, a

bicluster is perfect, if each row and column exhibits an absolutely consistent

bias. The bias of column j w.r.t. the other columns is given by aIj−aIJ . The

bias of row i w.r.t. the other rows is given by aiJ−aIJ . In a perfect δ-bicluster,

the value aij is then given additively by a row-constant, a column-constant,

52 5 Finding Clusters Based on Patterns in the Data Matrix

and an overall constant value:

aij = aiJ + aIj − aIJ . (5.13)

Setting µ = aIJ , ri = aiJ −aIJ , and cj = aIj−aIJ , this model corresponds to

the general description of additive models for biclusters with coherent values

given by Equation 5.10. However, the value aij is not directly given as in

Equation 5.13 whenever a δ-bicluster is not perfect. In this case, the value

predicted by the model will deviate from the true model:

aij = res(aij) + aiJ + aIj − aIJ . (5.14)

Equivalently, the residue is given by

res(aij) = aij − aiJ − aIj + aIJ . (5.15)

This value is used in Equation 5.12 to calculate the mean squared residue.

In a similar way, the mean squared residue of a row i or of a column j,

respectively, are defined as

d(i) =
1

|J |
∑
j∈J

(aij − aiJ − aIj + aIJ)2 , (5.16)

d(j) =
1

|I|
∑
i∈I

(aij − aiJ − aIj + aIJ)2 . (5.17)

To find a δ-bicluster, Cheng and Church propose to greedily remove the

row or column (or a set of rows or columns) with maximal mean squared

residue of the row or the column until the remaining submatrix (I, J) satisfies

H(I, J) ≤ δ. Afterwards, in order to find a maximal δ-bicluster, rows and

columns are added to (I, J) unless adding the row or column would increase

the value H(I, J). Curiously, if the number of rows or columns is below

100 (which is still a pretty high number of objects or a high dimensionality,

respectively, in many applications), no multiple row or column deletion is

performed.

So far, the procedure finds one δ-bicluster in a data matrix. In order to

find k δ-biclusters, the procedure is iterated k times. Any δ-bicluster already

5.2 Pattern Based Clustering Algorithms 53

found has to be masked by random numbers. This makes it unlikely that ele-

ments covered by existing biclusters would contribute to any future bicluster,

but does not remove complete rows and columns. The finally resulting set

of k biclusters should therefore be disjunct w.r.t. combinations of rows and

columns, i.e., a data point cannot contribute to different clusters based on

the same attributes, and an attribute cannot contribute to different clusters

for the same data point. Thus, in our sense, the clusters may overlap, and the

subspaces may overlap, but, in theory, not both at the same time. Besides

inserting random numbers, the algorithm is deterministic and should retrieve

equal results in different runs. If not, the random numbers contributed to a

cluster, which would be an alarming effect.

Several later contributions to the field are based on the δ-bicluster model

as proposed by Cheng and Church but address some issues bequeathed by

their approach. As weak points2 in the approach of Cheng and Church one

could state:

1. One cluster at a time is found, then the cluster needs to be masked in

order to find a second cluster.

2. This procedure bears an inefficient performance.

3. The masking may lead to less accurate results.

4. The masking inhibits simultaneous overlapping of rows and columns.

5. Missing values cannot be dealt with.

6. The user must specify the number of clusters beforehand.

With FLOC, Yang et al. [144] introduce another algorithm to find δ-

biclusters. FLOC is a randomized move-based algorithm efficiently approxi-

mating k δ-clusters, again based on the minimization of the average residue.

Initial seed-clusters are optimized by randomly chosen steps of removing or

2In some cases, however, whether a certain point is a “weak” point is a matter of taste.
The stated weak points are addressed as such in several publications reported below.

54 5 Finding Clusters Based on Patterns in the Data Matrix

adding a row or a column. This addresses issue 1. Furthermore, the algo-

rithm allows simultaneous overlapping of rows and columns (issue 4). The

model is adapted in taking only specified values into account for the com-

putation of the residue, thus allowing for missing values, addressing issue

5.3

However, the improvements stated in [144] are paid for by introducing

random events. Therefore, the same authors propose also a deterministic ap-

proach with the p-cluster model [138]. This model specializes the δ-bicluster-

property to a pairwise property of two objects on two attributes as

|(ai1j1 − ai1j2)− (ai2j1 − ai2j2)| ≤ δ (5.18)

or equivalently

|(ai1j1 − ai2j1)− (ai1j2 − ai2j2)| ≤ δ. (5.19)

Inequality 5.18 describes the difference between two objects by their rela-

tive differences of two attribute values (cf. Figure 5.8(a)). Inequality 5.19

describes the difference of two attributes by the absolute differences between

two objects. Both conditions cover identical sets of cases. A submatrix

(I, J) is a δ-p-cluster, if this property is fulfilled for any 2 × 2-submatrix

({i1, i2}, {j1, j2}), where {i1, i2} ⊆ I and {j1, j2} ⊆ J . Formulating the pat-

tern description as a pairwise condition tightens the model for biclusters.

While limiting the overall variance of a bicluster may allow to include some

outliers in a cluster, the pairwise condition excludes outliers more rigorously

(cf. Figure 5.8(c)).

After creating the maximal set of attributes for each pair of objects form-

ing a δ-p-cluster and the maximal set of objects for each pair of attributes

forming a δ-p-cluster, a pruning-step is implemented to lower the impact of

the final step, the search in the set of submatrices. This search, however,

requires exponential time after all. Addressed issues w.r.t. the Cheng and

Church approach are 1, 4, and 6.

Another related approach is MaPle [110], stressing the maximality of the

mined δ-p-clusters, based on the closure property of subclusters coming along

3For another algorithm allowing for missing values see [126].

5.2 Pattern Based Clustering Algorithms 55

(a) Visualization of Inequality 5.18 (b) Visualization of Inequality
5.19

(c) Pairwise differences uncover outliers

Figure 5.8: p-cluster model: pairwise differences

56 5 Finding Clusters Based on Patterns in the Data Matrix

with the model of δ-p-clusters: For a δ-p-cluster (I, J), every submatrix

(I ′, J ′) with I ′ ⊆ I and J ′ ⊆ J is a δ-p-cluster. Note that this is not

necessarily true for the more general bicluster models of Cheng and Church

[41] or Yang et al. [144], since an outlier may be covered by a bigger cluster

but would influence the variance of a smaller cluster considerably (cf. Figure

5.8(c)). MaPle mines for maximal δ-p-clusters, i.e. for a given δ-p-cluster

(I, J) there exists no other δ-p-cluster (M, N) in the data set with I ⊂ M

and J ⊂ N . Essentially, MaPle performs the analysis in a similar way as

the previous approach [138], but uses the closure property for pruning any

superset D′ of the attribute set D once D is found unsuitable to serve as

base for a p-cluster. Still, like the approach in [138], also MaPle is based on

a complete enumeration in the end. Thus, once again, the addressed issues

of the Cheng and Church approach include items 1, 4, and 6.

The CoClus algorithms proposed by Cho et al. [42] seek a marriage of

a k-means-like approach with the cluster models of Hartigan or Cheng and

Church. To avoid poor local minima and empty clusters, a local search

strategy is implemented swapping single rows between clusters if this reduces

the objective function. The addressed issues w.r.t. the Cheng and Church

approach are therefore 1 and 2. However, these algorithms cannot avoid

the typical flaws of k-means-like approaches as being caught in local minima

(despite the local search strategy), requiring specification of the number k

of clusters beforehand, and, as a complete partition of the data set onto

k clusters that are disjunct w.r.t. rows as well as columns, the data set

is assumed to contain no noise. Instead, every attribute is assumed to be

relevant for exactly one cluster. This assumption generally contradicts the

circumstances of clustering high dimensional data and the presence of noise

will generally deteriorate the quality of the clustering result.

5.2.4 Biclusters with Coherent Evolutions

The concept of an order preserving submatrix (OPSM), introduced by Ben-

Dor et al. [26], describes a submatrix (I, J) of the data matrix A where a

permutation π of the set of columns J exists such that for each row i ∈ I and

5.2 Pattern Based Clustering Algorithms 57

each index 1 ≤ m < |J | within the permutation π(J) the following inequality

holds:

aiπ(J)[m] < aiπ(J)[m+1], (5.20)

i.e., according to the given linear order of columns the values in the selected

columns are strictly increasing. The cluster model is then given by the pair

(J, π). The support of a model is the set I of rows fitting to the model

according to Inequality 5.20.

The algorithm of Ben-Dor et al. searches the best model in a greedy

bottom-up-approach (i.e., starting with small models and iteratively extend-

ing the best l of these models). The “best” model is the one with largest

statistical significance (i.e., having the smallest prior probability). This al-

gorithm favors models with a large support.

Liu and Wang [96] follow the same general idea defining a bicluster as OP-

Cluster (order preserving cluster) but weaken the conditions of Ben-Dor et

al. by introducing groups of similar attributes. They also discard the assess-

ment of statistical significance and instead report all (maximal) submatrices

covering at least a given minimum number of rows and columns. The al-

gorithm creates a non-decreasing order of columns for each row (grouping

together similar columns). The resulting set of column-sequences is mined

for frequent patterns.

As said above, we do not have any spatial intuition explaining this model.

The resulting biclusters consist of objects showing a similar trend on a set

of attributes. Whether the corresponding attributes are correlated or even

linearly correlated remains unclear. The results may be interesting in some

application domains, but the clusters are not necessarily accommodated in

any specific subspace of the data space. Considering the model as sketched

above (cf. Inequality 5.20), clearly there is no way to predict an attribute

value for a given instance and a specified column. The model merely allows

to predict the value to exceed a given threshold, namely the attribute value

in the preceding column. Hence, the points occupy half-spaces and, as stated

above, we find this approach being related to quantitative association rule

mining.

58 5 Finding Clusters Based on Patterns in the Data Matrix

5.3 Summary

Independent of the concrete problem formulation and the spatial intuition

behind it, the biclustering problem is sometimes formulated as a graph min-

ing problem (e.g. [43, 131, 126]). The data matrix is then described as a

bipartite graph, where one set of vertices corresponds to the rows, the other

set corresponds to the columns. As an example problem formulation, finding

a minimum set of biclusters to cover all the elements in a data matrix is a

generalization of the problem of covering a bipartite graph by a minimum set

of bicliques, a problem known to be NP-hard [55]. The exact complexity of a

biclustering problem depends on the exact problem definition and the merit

function used to evaluate the quality of a specific biclustering. For most

of the common biclustering problems the computational complexity is not

known. If, however, the computational complexity of a specific biclustering

problem-formulation is known, it usually is an NP-hard problem. Thus, dif-

ferent heuristics, simplifying models, and greedy or randomized approaches

are implemented.4

Although biclustering models do not fit exactly into the spatial intu-

ition behind subspace, projected, or correlation clustering (a summarizing

comparison of patterns in the data matrix, corresponding bicluster mod-

els, and related spatial patterns is given in Figure 5.9), these models make

sense in view of a data matrix and fruitful applications seem to justify the

approach. However, since the cluster models forming the basis of biclus-

tering algorithms differ considerably, conducting a fair comparison among

these algorithms is a non-trivial task. A thorough evaluation — let alone in

comparison with axis-parallel and correlation clustering algorithms — is not

available in the literature. Recently, Prelić et al. [113] performed an evalu-

ation of five selected methods [41, 131, 26, 73, 104]. However, a thorough

comparison of clustering-algorithms requires quite some effort since there is

not the solely and uniquely established comparison method of clusterings.

4Let us note that, of course, clustering in general is also an NP-hard problem although
we are used to efficient solutions. Every efficient clustering algorithm can thus only provide
an approximative solution based on certain assumptions and heuristics, e.g. reflected by
its underlying cluster model.

5.3 Summary 59

Figure 5.9: Comparison: Patterns in Biclustering approaches and their

corresponding spatial intuitions

In view of the rather specialized tasks performed by biclustering approaches,

the comparison of performance w.r.t. effectiveness as well as efficiency should

be performed in a broad context of subspace clustering, projected clustering,

and correlation clustering. Despite (or by virtue) of the specialization of

the biclustering cluster models, this family of clustering approaches seems

to perform well on microarray data. In this application domain, there exists

a vast amount of approaches not covered in this survey (cf. several surveys

focussed on biological and medical applications [137, 75, 97, 132]).

60 5 Finding Clusters Based on Patterns in the Data Matrix

61

Chapter 6

Finding Clusters in Arbitrarily

Oriented Subspaces

6.1 General Aim of Algorithms in this Cate-

gory

While the aim of pattern-based clustering algorithms is easily understood in

terms of corresponding matrix representations, the spatial intuition behind

these approaches is not quite so convincing. A clear pattern in a matrix corre-

sponds to special or even rather artificial constellations of the corresponding

points in space (or even no specific constellation at all). The explaining mod-

els remain rather simple and cannot include simple negative correlations let

alone more complex correlations.

A more general, intuitive approach is adopted by a family of algorithms

known as oriented clustering or generalized subspace/projected clustering or

correlation clustering1 algorithms. These algorithms assume any cluster be-

ing located in an arbitrarily oriented subspace S of the data space Rd. Such

1Note that the term “correlation clustering” relates to a different task in the machine
learning community, where a partitioning of the data shall correlate as much as possible
with a pairwise similarity function f learned from past data (e.g. cf. [20]).

62 6 Finding Clusters in Arbitrarily Oriented Subspaces

Figure 6.1: Points distributed in data space where some attributes are cor-

related cluster densely in a certain projection (arbitrarily oriented subspace).

Figure 6.2: Points distributed in an arbitrarily oriented subspace form a

hyperplane.

clusters appear as hyperplanes of arbitrary dimensionality in the data space.

However, no typical pattern in the data matrix does correspond to these

models based on a spatial intuition. Thus, all approaches known from bi-

clustering need to be dismissed, albeit some bicluster models can be regarded

as special cases of correlation clustering models.

In terms of subspace clustering, an affine subspace S + ~a, S ⊂ Rd with

affinity ~a ∈ Rd is interesting if a set of points exhibits a certain density within

this subspace (i.e., projected onto this subspace) regardless of high variances

along axes in the perpendicular subspace (Rd \S)+~a. In oriented clustering,

these interesting subspaces need not be axis-parallel, but can be arbitrarily

oriented (cf. Figure 6.1).

Assuming high variance along those axes forming the perpendicular sub-

space (Rd \S) +~a, the points building the cluster in S fill the perpendicular

6.1 General Aim of Algorithms in this Category 63

subspace (Rd \ S) + ~a) to a certain extension. In the complete data space

R
d, the points therefore form a hyperplane which is located in the subspace

(Rd \ S) + ~a (cf. Figure 6.2).

Nevertheless, this observation facilitates an alternative way of describing

oriented clustering. Points accommodated on a common hyperplane in data

space appear to follow linear dependencies among the attributes participating

in the description of the hyperplane. Since linear dependencies result in the

observation of strong linear correlations among these attributes, we call this

type of clustering also “correlation clustering”.

In fact, describing correlation clusters in terms of a subspace (hyperplane)

accommodating the points rather than in terms of the subspace, where the

points show high density, opens up different possibilities. Consider again

the simple problem introduction in Figure 3.2. If some arbitrarily oriented

subspaces are chosen to project the points and to search for dense sets of

points, in this example, again all points would cluster densely in all three of

the chosen subspaces. However, the points are accommodated on different

hyperplanes orthogonal to the chosen subspaces.

A common technique to grasp arbitrarily oriented directions of high vari-

ance in a data set is Principal Component Analysis (PCA — for a thorough

introduction see [79]). Again, a local application of PCA is required in order

to find clusters located in different subspaces (cf. the general problem state-

ment in Chapter 3). Generally, applying PCA to a local selection of points

is again based on the locality assumption. It is assumed that the hyperplane

accommodating the points of a correlation cluster is sufficiently reflected in a

local selection of points (e.g. the ε-neighborhood or the k nearest neighbors

of a point).

As a general idea, assume we apply a PCA-based approach to a given set

of points D ⊂ Rd in order to find the directions of high and low variance.

First, we build the covariance matrix ΣD of D:

ΣD =
1

|D|
·
∑
~x∈D

(~x− ~xD) · (~x− ~xD)T, (6.1)

where ~xD denotes the centroid (mean) of all points ~x ∈ D. ΣD is a d × d

64 6 Finding Clusters in Arbitrarily Oriented Subspaces

symmetric positive semidefinite matrix where σDij (i.e., the value at row i

and column j in ΣD) equals the covariance between the dimensions i and

j. The diagonal entry σDii corresponds to the variance of the ith dimension.

ΣD can be decomposed (by PCA2) into the eigenvalue matrix ED of ΣD

and the eigenvector matrix V D of ΣD such that

ΣD = V D ·ED ·V T

D. (6.2)

The eigenvalue matrix ED is a diagonal matrix holding the eigenvalues of ΣD

in decreasing order in its diagonal elements. The eigenvector matrix V D is

an orthonormal matrix with the eigenvectors of ΣD ordered correspondingly

to the eigenvalues in ED. The eigenvectors provide a new orthonormal basis.

The eigenvalue matrix ED can be understood as the covariance matrix of

the original data set when represented in the new axis system V D. All non-

diagonal entries equal zero meaning that all covariances have been removed.

The first eigenvector in V D points to the direction of the highest variance in

the data set D. The second eigenvector points to the direction of the second

highest variance in D perpendicular to the first eigenvector. Assuming D be-

ing a correlation cluster, the major axes in V D, say the first λ eigenvectors,

span the λ-dimensional hyperplane accommodating the points of D. We de-

note the first λ eigenvectors of V D by V̌ D and call them strong eigenvectors.

The remaining eigenvectors are called weak eigenvectors (denoted by V̂ D).

The weak eigenvectors can equivalently define the hyperplane accommodat-

ing the points of D as they all are orthogonal to that hyperplane. While

the trace
∑d

i=1 σDii is invariant under the axis transformation defined by the

eigensystem V D (i.e.,
∑d

i=1 σDii =
∑d

i=1 eDii), the sum of the smallest d− λ

eigenvalues
∑d

i=λ+1 eDii is the minimum under all possible transformations.

Thus, the smallest d − λ eigenvectors define the subspace perpendicular to

the hyperplane accommodating the cluster members, where the projected

points would cluster optimally dense.

How to combine PCA (or related means to discern different subspaces)

with the selection of interesting subspaces, with a suitable definition of λ,

with the selection of points, and with distance measures mainly makes the

2This decomposition is generally in O(d3).

6.1 General Aim of Algorithms in this Category 65

difference among the most common approaches to the task of correlation

clustering.

What means soever are used to find correlation clusters, the general mean-

ing of this family of clusters results in a mathematically clear, explanato-

rily rich, and predictively powerful model for correlation clusters [4]: the

λ-dimensional hyperplane accommodating the points of a correlation cluster

C ⊂ R
d can be defined by a linear equation system consisting of d − λ

equations for d variables, and the affinity, e.g. given by the mean point

~xC = (x̄1 · · · x̄d)
T of all cluster members:

v1(λ+1) · (x1 − x̄1) + v2(λ+1) · (x2 − x̄2) + · · ·+ vd(λ+1) · (xd − x̄d) = 0

v1(λ+2) · (x1 − x̄1) + v2(λ+2) · (x2 − x̄2) + · · ·+ vd(λ+2) · (xd − x̄d) = 0
...

v1d · (x1 − x̄1) + v2d · (x2 − x̄2) + · · ·+ vdd · (xd − x̄d) = 0

where vij is the value at row i, column j in the eigenvector matrix V C derived

by PCA from the covariance matrix of C. As introduced generally above, the

first λ eigenvectors (i.e., the strong eigenvectors) give the directions of high

variance and span the hyperplane accommodating C. The remaining d − λ

weak eigenvectors span the perpendicular subspace. The linear equation

system as sketched above can therefore be given by

V̂
T

C · ~x = V̂
T

C · ~xC (6.3)

The defect of V̂
T

C gives the number of free attributes, the remaining attributes

may actually be involved in linear dependencies. The equation system is by

construction at least approximately fulfilled for all points ~x ∈ C and provides

a quantitative model for the cluster.

However, from the user’s point of view of the application of correlation

clustering on a new data set, the correlations among attributes are observ-

able, while the linear dependencies are merely an assumption to explain the

correlations. Whether or not this assumption is valid can be evaluated by us-

ing the model as a predictive model and by refining the experiments based on

the insights provided by the quantitative model (cf. [4]). Thus, this model

of clustering is not only far more general than the models for biclustering

66 6 Finding Clusters in Arbitrarily Oriented Subspaces

Figure 6.3: ORCLUS: distance of two clusters

sketched in Chapter 5 but also more concise and meaningful. The develop-

ment of this model along with some applications constitutes a contribution

of the author and is discussed in more detail in Part V.

6.2 Correlation Clustering Algorithms

6.2.1 PCA Based Approaches

The broad majority of correlation clustering approaches are based on an ap-

plication of PCA on subsets of points (like range queries or k-nearest neighbor

queries).

As the first approach to generalized projected clustering, Aggarwal and Yu

[11] proposed the algorithm ORCLUS, using ideas similar to the axis-parallel

approach PROCLUS [10]. ORCLUS is a k-means like approach, picking kc >

k seeds at first, assigning the data base objects to these seeds according to a

distance function that is based on an eigensystem of the corresponding cluster

assessing the distance along the weak eigenvectors only (i.e., the distance

in the projected subspace where the cluster objects exhibit high density).

6.2 Correlation Clustering Algorithms 67

Figure 6.4: 4C: distance between two points

The eigensystem is iteratively adapted to the current state of the updated

cluster. The number kc of clusters is reduced iteratively by merging closest

pairs of clusters until the user-specified number k is reached. The closest pair

of clusters is the pair with the least average distance in the projected space

(spanned by the weak eigenvectors) of the eigensystem of the merged clusters

(cf. Figure 6.3). Starting with a higher kc increases the effectiveness, but also

the runtime. The method proposed in [39] is a slight variant of ORCLUS

designed for enhancing multi-dimensional indexing. Another, presumably

more efficient variant is proposed in [91].

In contrast to ORCLUS, the algorithm 4C [35] is based on a density-

based clustering paradigm [47]. Thus, the number of clusters is not decided

beforehand but clusters grow from a seed as long as a density criterion is

fulfilled. Otherwise, another seed is picked to start a new cluster. The density

criterion is a required minimal number of points within the neighborhood of

a point, where the neighborhood is ascertained based on distance matrices

computed from the eigensystems of two points. The eigensystem of a point

~p is based on the covariance matrix of the ε-neighborhood of ~p in Euclidean

space. A parameter δ discerns large from small eigenvalues. In the eigenvalue

matrix E ~p then large eigenvalues are replaced by 1, small eigenvalues by

a value κ � 1. Using the adapted eigenvalue matrix E ′
~p, a correlation

similarity matrix for ~p is obtained by V ~p · E ′
~p · V T

~p. This matrix is then

used to derive the distance of two points, ~q and ~p, w.r.t. ~p, as the general

quadratic form distance:√
(~p− ~q)T ·V ~p ·E ′

~p ·V T

~p · (~p− ~q). (6.4)

Applying this measure symmetrically to ~q and choosing the maximum of both

distances helps to decide whether both points are connected by a similar

68 6 Finding Clusters in Arbitrarily Oriented Subspaces

correlation of attributes and, thus, are similar and belong to each other’s

correlation neighborhood. Figure 6.4 illustrates this idea. The ellipsoids

represent the correlation neighborhoods of some sample objects. In the left

example of Figure 6.4, p and q are not connected because q does not find p in

its correlation neighborhood. On the right hand side, the points p and q are

connected because they find one another in their correlation neighborhood.

As a hierarchical approach, HiCO [7] defines the distance between points

according to their local correlation dimensionality and subspace orientation

and uses hierarchical density-based clustering [16] to derive a hierarchy of

correlation clusters.

COPAC [6] is based on similar ideas as 4C but disposes of some problems

like meaningless similarity matrices due to sparse ε-neighborhoods instead

taking a fixed number k of neighbors — which raises the question how to

choose a good value for k but at least choosing k > λ ensures a meaningful

definition of a λ-dimensional hyperplane. The main point in COPAC, how-

ever, is a considerable speed-up by partitioning the data set based on the

observation that a correlation cluster should consist of points exhibiting the

same local correlation dimensionality (i.e., the same number of strong eigen-

vectors in the covariance matrix of the k nearest neighbors). Thus, the search

for clusters involves only the points with equal local correlation dimensional-

ity. By creating one partition for each occurring correlation dimensionality,

the time complexity rapidly decreases on average by getting rid of a squared

factor d2 in a d-dimensional data set.

Another related algorithm is ERiC [5], also deriving a local eigensystem

for a point based on the k nearest neighbors in Euclidean space. Here, the

neighborhood criterion for two points in a DBSCAN-like procedure is an ap-

proximate linear dependency and the affine distance of the correlation hyper-

planes as defined by the strong eigenvectors of each point. Like in COPAC,

the property of clusters to consist of points exhibiting an equal local corre-

lation dimensionality is exploited for the sake of efficiency. Furthermore, the

resulting set of clusters is also ordered hierarchically to provide the user with

a hierarchy of subspace clusters. In finding and correctly assigning complex

6.2 Correlation Clustering Algorithms 69

patterns of intersecting clusters, COPAC and ERiC improve considerably

over ORCLUS and 4C.

Another approach based on PCA said to find even non-linear correlation

clusters, CURLER [136], seems not restricted to correlations of attributes

but, according to its restrictions, finds any narrow trajectory and does not

provide a model describing its findings.

PCA is a mature technique and allows the construction of a broad range

of similarity measures grasping local correlation of attributes and, therefore,

to find arbitrarily oriented subspace clusters. A major intrinsic drawback

common to all mentioned approaches is the notorious locality assumption.

This assumption is widely accepted. But note that this innocent looking lit-

tle (and often tacit) assumption boldly contradicts the basic problem state-

ment: to find clusters in high dimensional space that is doomed by the curse

of dimensionality. To address problems occurring due to varying density in

the local neighborhood, a framework for selecting a suitable neighborhood

range and to stabilize the PCA by weighting the points has been proposed in

[90]. This framework allows to integrate all existing PCA-based correlation

clustering approaches and shows considerable enhancements in effectiveness.

However, this is not the ultimate solution for problems of high dimensional

data spaces. As we will further discuss in more detail in Chapter 7, the

curse of dimensionality condemns all distances to look alike and, thus, ren-

ders nearest neighbor queries rather meaningless in high dimensional data.

Thus, to successfully employ PCA in correlation clustering in really high

dimensional data spaces may require even more effort henceforth.

The algorithms 4C, COPAC, HiCO, and ERiC as well as the framework

for stabilizing PCA-based approaches are contributions of the author and

will be discussed in more detail in Part III.

6.2.2 An Approach Based on the Hough Transform

A completely different approach is pursued by the algorithm CASH [1] based

on the concepts of the Hough transform [71, 45]. The Hough transform was

70 6 Finding Clusters in Arbitrarily Oriented Subspaces

originally designed to map the points from a 2-dimensional data space (also

called picture space) of Euclidean coordinates (e.g. pixels of an image) into

a parameter space. The parameter space represents all possible 1D lines

in the original 2D data space. In principle, each point of the data space is

mapped into an infinite number of points in the parameter space which is not

materialized as an infinite set but instead as a trigonometric function in the

parameter space. Each function in the parameter space represents all lines

in the picture space crossing the corresponding point in data space. The

intersection of two curves in the parameter space indicates a line through

both the corresponding points in the picture space.

The objective of a clustering algorithm is to find intersections of many

curves in the parameter space representing lines through many database ob-

jects. The key feature of the Hough transform is that the distance of the

points in the original data space is not considered any more. Objects can be

identified as associated to a common line even if they are far apart in the

original feature space. As a consequence, the Hough transform is a promis-

ing candidate for developing a principle for subspace analysis that does not

require the locality assumption and, thus, enables a global subspace cluster-

ing approach. CASH follows a grid-based approach to identify dense regions

in the parameter space, successively attribute-wise dividing the space and

counting the functions intersecting each of the resulting hyperboxes. In a

depth-first search, most promising paths in the search tree are searched first.

A hyperbox is divided along one axis if it contains enough functions to allow

for dense child boxes in turn. If a dense subspace is found, the algorithm is

applied on the data set accounted for by the corresponding hyperbox pro-

jected on the corresponding subspace. This recursive descent allows for find-

ing lower dimensional subspace clusters and implicitly yields a hierarchy of

arbitrarily oriented subspaces and their accommodated clusters. However,

if there are no correlation clusters in the original data space and, hence,

no dense regions in the parameter space (but still, the hyperboxes remain

dense enough to qualify as promising candidates), the complete search space

is enumerated resulting in a worst case time complexity exponential in d.

Probably, some more sophisticated heuristic may make this promising idea

6.2 Correlation Clustering Algorithms 71

more practical for really high dimensional data.

CASH is a contribution of the author and will be discussed in more detail

in Part IV.

6.2.3 Other Approaches

Other basic principles that have been considered suitable for correlation anal-

ysis and for the search for arbitrarily oriented subspace clusters in the liter-

ature include the concepts of the fractal dimension and of random sampling

methods.

Fractal Dimension

There are some attempts to use the concept of self-similarity (fractal dimen-

sion) to cluster data sets [21, 108, 58]. This would provide quite a different

basis to grasp correlations in addition to PCA and, therefore, constitutes a

rather promising approach but does assume the locality of patterns even by

definition. Furthermore, the fractal dimension as a single property of a data

(sub-)set does not yield information regarding the primary directions within

a data distribution and, hence, seems less helpful for correlation clustering

than PCA-based techniques. Among approaches based on these principles

not any proposition seems mature enough to base a fully developed cluster-

ing procedure on it. So it may require some effort to define really effective

approaches to correlation clustering based on the fractal dimension. Never-

theless, we look forward to interesting new proposals in this field.

Random Sampling

In the area of pattern recognition, a correlation clustering procedure based

on random sampling has been proposed in [62]: an l-dimensional subspace as

a cluster hyperplane (technically speaking, a linear manifold) is constructed

by sampling l + 1 points. The sampling is repeated n times, where n is a

72 6 Finding Clusters in Arbitrarily Oriented Subspaces

threshold to ensure that with a certain probability at least the points obtained

by one sample indeed belong to a common cluster. Deriving this kind of

threshold, however, is based on a couple of simplifying assumptions such as

a rough estimate of the number of clusters and the points of the data set

being equally distributed among all existing clusters. Assigning the points

to the corresponding subspace cluster allows to assess the discriminability

allowed for by the current clustering. Starting with 1-dimensional subspaces,

the algorithm proceeds in a bottom-up manner. These considerations have

the nice property that, in a sense, a correlation cluster model is fitted during

the process.

In [65], the authors proposed a similar idea, this time based on RANSAC

[52], an established algorithm to find 1-dimensional lines in a data set by

random sampling. The derived 1-dimensional clusters are then refined by

adding or removing features.

Unfortunately, in both cases, the experimental evaluation does not allow

to estimate the merits of this approach in terms of efficiency or effectiveness

in comparison to other correlation clustering approaches. Only a comparison

with ORCLUS is presented in [62] where the results are rather inconclusive.

However, the authors present convincing formalizations of the problem prob-

ably allowing for further generalizations. In summary, also in this approach

we eagerly anticipate further enhancements.

6.3 Summary

As for biclustering approaches, a thorough evaluation of the different ap-

proaches in this field is still owing, especially in comparison to biclustering

algorithms. Most biclustering approaches do not rely on the locality assump-

tion, which makes them quite successful in many applications albeit their

models are rather restricted compared to the model of correlation clusters.

The idea to mine for objects exhibiting common patterns of correlations is

pursued by both, pattern-based and correlation clustering. While pattern-

based approaches mine for the sole patterns of similar behavior of data ob-

6.3 Summary 73

jects irrespective of their distance in Euclidean space, correlation clustering

approaches widen the field of possible patterns to more complex, positive

and negative correlations of attributes. The drawback of most correlation

clustering approaches is their assumption that points of a cluster are still

densely arranged in Euclidean space. Recent advances in correlation cluster-

ing, however, start to overcome the drawbacks of density-based approaches

in high dimensional data in principle.

74 6 Finding Clusters in Arbitrarily Oriented Subspaces

75

Chapter 7

Discussion

7.1 A Heuristic-Based Systematic View

The general approach to clustering in high dimensional data seeks to find

clusters in arbitrarily oriented subspaces of the data space. So the general

objective is: “Find a partitioning of the data where each cluster may exist

in its own subspace.” The partitioning needs not to be unique, i.e., clusters

may overlap. The subspaces may be axis-parallel or arbitrarily oriented and

may or may not overlap.

Since clustering in general is an NP-hard problem, efficient solutions al-

ways use heuristics to yield approximate solutions in efficient time and space

requirements. These heuristics are reflected usually in different cluster mod-

els and different algorithmic approaches like locally optimizing algorithms,

greedy search procedures, etc. The problem of finding clusters in subspaces

is in fact an even more complex task. A general, näıve solution would ex-

amine all possible subspaces to look for clusters. Clearly, this is impossible

in the general case, since the search space of all possible arbitrarily oriented

subspaces is infinite. Thus, assumptions and heuristics are required to make

feasible solutions possible.

Such assumptions and heuristics are:

76 7 Discussion

• the restriction of the search space to certain subspaces (e.g., axis-

parallel subspaces) or certain patterns in the data matrix

• a clustering criterion implementing the downward-closure property

• selecting one axis of the data matrix as “dimensions”, the other one as

“data objects”

• the locality assumption

• the assumption of simple additive models (“patterns”)

• randomized, greedy procedures

• specifying the number of clusters in advance

Any of the proposed methods is based on at least one assumption. Some

corresponding properties of the most prominent algorithms are indicated in

Table 7.1.

Subspace or projected clustering restricts the search space to axis-parallel

subspaces and makes use of a clustering criterion implementing the down-

ward closure property (usually based on a global density threshold) or makes

use of the locality assumption to enable efficient search heuristics. For exam-

ple, we find most bottom-up approaches here (CLIQUE, ENCLUS, MAFIA,

SUBCLU, and P3C) free from the locality assumption. Instead, they pursue

a complete enumeration approach facilitated by an APRIORI like search.

Thus, they remain in O(2d) in the worst case.

Biclustering and pattern-based clustering approaches restrict the search

space to special forms or locations of subspaces or half-spaces. If they include

correlations among attributes (like δ-bicluster, FLOC, p-Cluster, MaPle, and

CoClus), although they are free of the locality assumption, they are restricted

to very special cases of correlations and pursue either a complete enumeration

or require specification of the number of clusters in advance and perform a

greedy search.

While biclustering approaches often treat rows and columns interchange-

ably, axis-parallel subspace and projected clustering as well as correlation

7.1 A Heuristic-Based Systematic View 77

Table 7.1: Properties of clustering algorithms.

Algorithm co
m

p
le

x
co

rr
el

a
ti
o
n
s

si
m

p
le

p
o
si

ti
v
e

co
rr

el
a
ti
o
n

si
m

p
le

n
eg

a
ti
v
e

co
rr

el
a
ti
o
n

a
x
is

p
a
ra

ll
el

n
o
t

re
ly

in
g

o
n

lo
ca

li
ty

a
ss

u
m

p
ti

o
n

a
d
a
p
ti
v
e

d
en

si
ty

th
re

sh
o
ld

in
d
ep

en
d
en

t
w

.r
.t
.
o
rd

er
o
f
a
tt

ri
b
u
te

s

in
d
ep

en
d
en

t
w

.r
.t
.
o
rd

er
o
f
o
b
je

ct
s

d
et

er
m

in
is

ti
c

a
rb

it
ra

ry
n
u
m

b
er

o
f
cl

u
st

er
s

o
v
er

la
p
p
in

g
cl

u
st

er
s

o
v
er

la
p
p
in

g
su

b
sp

a
ce

s

si
m

u
lt

a
n
eo

u
sl

y
o
v
er

la
p
p
in

g

cl
u
st

er
s

a
n
d

su
b
sp

a
ce

s

a
rb

it
ra

ry
su

b
sp

a
ce

d
im

en
si

o
n
a
li
ty

h
ie

ra
rc

h
ic

a
l
st

ru
ct

u
re

a
v
o
id

in
g

co
m

p
le

te
en

u
m

er
a
ti
o
n

n
o
is

e
ro

b
u
st

axis parallel clustering

CLIQUE [13]
√ √ √ √ √ √ √ √ √ √ √

ENCLUS [40]
√ √ √ √ √ √ √ √ √ √ √

MAFIA [105]
√ √ √ √ √ √ √ √ √ √ √

SUBCLU [80]
√ √ √ √ √ √ √ √ √ √ √

PROCLUS [10]
√ √ √ √

PreDeCon [34]
√ √ √ √ √ √ √ √

P3C [102]
√ √ √ √ √ √ √ √ √ √ √ √

COSA [53]
√ √ √ √ √ √ √ √

DOC [114]
√ √ √ √ √ √ √ √ √

DiSH [3]
√ √ √ √ √ √ √ √ √ √ √

FIRES [88]
√ √ √ √ √ √ √ √ √ √ √ √

pattern-based clustering

Block clustering [66]
√

n a
√ √ √ √ √ √

δ-bicluster [41]
√ √ √ √

n a
√ √ √ √ √ √ √ √

FLOC [144]
√ √ √

n a
√ √ √ √ √ √

p-Cluster [138]
√ √ √

n a
√ √ √ √ √ √ √ √ √

MaPle [110]
√ √ √

n a
√ √ √ √ √ √ √ √ √

CoClus [42]
√ √ √

n a
√ √

OP-Cluster [96]
√

n a
√ √ √ √ √

n a n a n a
√

correlation clustering

ORCLUS [11]
√ √ √ √ √ √ √

4C [35]
√ √ √ √ √ √ √ √ √ √ √

COPAC [6]
√ √ √ √ √ √ √ √ √ √ √ √

ERiC [5]
√ √ √ √ √ √ √ √ √ √ √ √ √

CASH [1]
√ √ √ √ √

n a
√ √ √ √ √ √ √

Heuristics restricting the general problem (see Section 7.1) are here formulated negatively,
i.e., the more marks an algorithm features, the less assumptions are restricting the general
search space (and, roughly, the more general is the algorithm).
Approaches neither marked to find positive or negative correlations, nor axis parallel
clusters, are specialized to certain patterns that constitute very particular subspaces.
n a: not applicable

78 7 Discussion

clustering approaches break this symmetry in favor of more efficient search

heuristics or based on and motivated by specific spatial intuitions. This

asymmetry between columns and rows may also be related to the point of

view of a database researcher where columns correspond to attributes of a

database entry and rows correspond to single database objects. Thus, in the

context of a database, both types of information are addressed in a different

way and it is assumed that the number of database entries (rows) by far

exceeds the number of attributes (columns).

Almost all correlation clustering approaches proposed so far make use

of the locality assumption but avoid complete enumeration. Hence they

are efficient but their effectiveness may be questionable. An approach not

relying on the locality assumption is CASH [1]. In turn, CASH suffers from

the complete enumeration problem and remains rather inefficient. Another

general way to get rid of the locality assumption is to base the clustering on

a random sampling process. For these approaches, however, the quality of a

retrieved clustering is a matter of luck.

7.2 A Problem-Oriented Systematic View

In Section 7.1, we took a view on the different algorithms considering their

different assumptions and heuristics to restrict the most general search space.

Another possible point of view is based on the specific problems associated

with high dimensional data, commonly addressed all at once as the “curse of

dimensionality”.

7.2.1 “The Curse of Dimensionality” in the Clustering

Problem

The term “curse of dimensionality” refers to a bundle of problems related to

high dimensional data spaces. In the following, we list those problems that

are most relevant for clustering high dimensional data.

7.2 A Problem-Oriented Systematic View 79

Problem 1: Bellman is often cited for the term “curse of dimensionality”

which he describes as “a malediction that has plagued the scientists from

earliest days” [24, p. 94]. However, Bellman merely describes the fact that

more dimensions result in more possibilities of values and disable finally a

complete enumeration approach simply because tabularization and visualiza-

tion of functions becomes increasingly difficult or even impossible with more

variables. This problem is mainly known in pattern recognition and more

elaborated in recent textbooks like [32].

Of course, this problem relates to the clustering problem in general: Seek-

ing a clustering of a data set supposes the data being generated by several

functions. Ideally, a clustering model would enable the user to identify the

functional dependencies resulting in the data set at hand and, thus, to even-

tually find new and interesting insights in the laws of nature or economy or

society or whatever domain the data set describes. Those functions are the

more complex the more attributes contribute to the actual relationships.

Problem 2: Concepts like proximity, distance, or neighborhood become

less meaningful with increasing dimensionality of a data set [31, 69, 9].

Roughly, the results in these papers state that the relative distance of the far-

thest point and the nearest point converges to 0 for increasing dimensionality

d:

lim
d→∞

distmax − distmin

distmin

→ 0,

i.e., discrimination between the nearest and the farthest neighbor becomes

rather poor in high dimensional space. This is by far a more fundamen-

tal problem than the mere performance degradation of algorithms on high

dimensional data.

Clearly, the “locality assumption” is somewhat näıve in view of this prob-

lem. As a solution, a more deliberate choice of distance metrics (e.g., the

use of Manhattan distance or even fractional distance metrics) has been pro-

posed [9]. However, this problem could be more fundamentally treated by

dismissing any use of a local neighborhood in the clustering process.

It is important to note that these observations are valid for a broad range

80 7 Discussion

of data distributions and occur simply based on the mere number of dimen-

sions. This problem is independent of the following problem albeit the effect

will be worsened considering Problem 3.

Problem 3: In order to find dependencies and laws describing some occur-

ring phenomena a glut of data is collected and single entities are described

with many possibly related attributes. Among those features, many irrel-

evant attributes can be expected. The relevance of certain attributes may

differ for different groups of objects within the same data set. Thus, since

groups of data are defined by some of the available attributes only, many

irrelevant attributes may interfere with the efforts to find these groups. Ir-

relevant attributes can also be related to as “noise”. However, global feature

reduction methods may be inadequate if there is no global noise but given

sets of attributes are noisy only w.r.t. certain sets of objects.

The challenge for clustering is therefore, related to this problem, to find an

appropriate subset of attributes to describe the similarity of objects belonging

to the same group and possibly different subsets of attributes for different

groups of objects. The cluster objects, then, reside in axis-parallel, affine

subspaces of the complete data space.

Although one could expect, as a rule of thumb, the more irrelevant fea-

tures in a data set, the more dimensions there are at all, this problem can

occur even in rather low dimensional data sets as it can be seen in Figure 7.1:

four clusters in a 3-D data set are characterized by two relevant attributes,

each generated by a Gaussian distribution. The values in the remaining at-

tribute a uniformly distributed in [0, 1] (cf. Figure 7.1(a)). For two clusters,

however, the relevant attributes are x and y (Figure 7.1(b)) while for the

remaining clusters, the relevant attributes are y and z (Figure 7.1(d)). Thus,

these clusters can be discerned in the corresponding projections, the remain-

ing clusters are intermixed. The third projection does also not allow a clear

separation (Figure 7.1(c)). This problem is elaborated in more detail in [109].

Many publications seem to obfuscate problems 2 and 3 but these are

different effects in nature. However, irrespective of Problem 2, distance mea-

7.2 A Problem-Oriented Systematic View 81

(a) Original data set. (b) Projection on the subspace {x, y}

(c) Projection on the subspace {x, z} (d) Projection on the subspace {y, z}

Figure 7.1: A 3-D data set illustrating Problem 3.

82 7 Discussion

sures may be seriously misguided by irrelevant attributes.

Problem 4: Similarly as with Problem 3, in a data set containing many

attributes, there may be some correlations among subsets of attributes. In

sight of feature reduction methods, all but one of these attributes may be

redundant. However, from the point of view of a domain scientist who col-

lected these attributes in the first place, it may be an interesting new insight

that there are so far unknown connections between features.

In view of spatial queries, the observation that the intrinsic dimensionality

of a data set is often lower than the embedding dimensionality (based on

interdependencies among attributes) is often seen as a solution to overcome

the “curse of dimensionality” [48, 25, 106, 86]. In view of the clustering

problem, however, Problems 1-3 remain unaffected by this phenomenon. In

contrast, finding the correct subspace to define a suitable group of objects

becomes a problem even harder since cluster objects may reside in arbitrarily

oriented, affine subspaces (due to Problem 4).

Other Problems: There are quite some other problems related to the

“curse of dimensionality”. Most of those are, however, more relevant for

indexing than for clustering data. Of course, clustering is affected by unbal-

anced range-queries largely searching in ranges beyond the boundaries of the

data set and similar problems but these problems are elaborated extensively

and in more detail in the literature concerned with index-structures (e.g. cf.

[93, 30, 81, 28, 29, 140, 36, 37, 27]). So we base our attempt of a systematic

view on subspace clustering approaches on Problems 1-4 as stated above.

7.2.2 Approaches as Solutions to Specific Problems

In view of the “curse of dimensionality”, the special cases described in Section

7.1 above also reflect special problems.

While Problem 1 plagues all approaches in general, the remaining prob-

lems are differently tackled individually or in combination by different ap-

7.2 A Problem-Oriented Systematic View 83

proaches. A possible remedy for Problem 2 is to avoid neighborhood queries.

Thus, all approaches not relying on the locality assumption may be rela-

tively unaffected by the problem of meaningless distance comparisons. Such

approaches are especially bottom-up or hybrid approaches to axis-parallel

subspace clustering and biclustering approaches (cf. Table 7.1). Note, how-

ever, that Problem 2, as opposed to Problems 3 and 4, occurs necessarily in

rather high dimensional data and can occur in moderate dimensional data

(i.e., d = 10−15). Problems 3 and 4, contrariwise, can occur in 2-dimensional

data sets already. It becomes just more likely that these problems occur by

chance with increasing data dimensionality. It is therefore important not to

mistake Problem 2 for Problem 3 or vice versa.

Problem 3 leads to axis-parallel subspace clusters. So, all axis-parallel

subspace and projected clustering approaches tackle especially this problem.

Besides, this problem further worsens Problem 2.

Biclustering approaches tackle special forms of Problem 4: simple positive

correlations between all attributes in a subset of the attributes. Some take

further assumptions into consideration. The strong point of these approaches

is being unconcerned about Problem 2 since they generally do not take any

distances between database objects into account.

Correlation clustering specifically tackles Problem 4 in a general way. The

occurrence of correlations among attributes alleviates Problems 2 and 3 in

a way. However, with increasing dimensionality one cannot help considering

those problems nevertheless.

The combination of Problems 3 and 4 will result in clusters in very sparse,

arbitrarily oriented subspaces. We expect the next generation of subspace

clustering algorithms to tackle these problems in combination, simultane-

ously considering Problem 2. A first shot is presented in [1], however, here

strikes Problem 1 since this approach is trapped by the exponential time

complexity of the complete enumeration in the worst case.

84 7 Discussion

7.3 On the Difficulties in Solving Undefined

Tasks

Among the multitude of algorithms, the task to solve remains often vague

or undefined. It is often made clear which partial problems of the “curse

of dimensionality” are tackled. But it remains unsaid what the meaning

of the clusters retrieved by an algorithm exactly is. This vagueness is also

an issue for comparatively evaluating different algorithms, as we will see

later (Section 7.4). For now, we will concentrate on the obfuscation in dis-

cussing axis-parallel subspace and projected clustering algorithms resulting

from confusing the two related but obviously not identical points of view for a

classification of approaches: categorization according to the definition of the

task vs. categorization according to algorithmic aspects. As we will see, it is

part of the problem that both points of view are indeed closely interrelated.

7.3.1 Categorization w.r.t. Task-Definition

The problem definition of projected clustering algorithms – to find a unique

partitioning of points into clusters – is obviously heavily influenced by the

traditional full dimensional clustering problem. The only difference is that

clusters may now exist in different subspaces of the original data which makes

the problem much harder to solve. However, in the context of many appli-

cations, it is sensible that points may be assigned to different clusters in

different subspaces. Thus, not allowing any overlap of the clusters may be

too strong a limitation in these applications.

On the other hand, finding all clusters in all subspaces is a rather arbi-

trary problem definition due to two reasons. First, the number of clusters

that are reported is usually very large. This overwhelmingly large set of clus-

ters may quickly be to much for a user to analyze, interpret, and evaluate.

Second, most of the clusters reported may be rather redundant because usu-

ally, any cluster in some k-dimensional subspace is also a cluster (or at least

a subset of one) in all l-dimensional projections (l < k) of that subspace.

7.3 On the Difficulties in Solving Undefined Tasks 85

In fact, the subspace clustering problem can be seen as a justification of a

bottom-up subspace search strategy that delivers exactly the desired solution.

However, the relevance of this problem statement is at least questionable and

heavily depends on the clustering criterion. Most bottom-up algorithms rely

on a density-based cluster model and have to apply a global density threshold

for all subspaces in order to meet the downward closure property. As a con-

sequence, it is often not clear how meaningful the reported lower dimensional

subspace clusters are.

Hybrid approaches seem to offer a good deal between the limitations of the

problem statements of projected clustering and subspace clustering. They

usually allow overlapping clusters but do not overwhelm the user with the

(partly redundant) glut of all clusters in all subspaces. However, it is often

not clear what each single hybrid algorithm exactly searches for.

7.3.2 Categorization w.r.t. Algorithmic Aspects

The problem of the top-down approaches is the circular dependency between

cluster membership assignment and subspace learning from points of the clus-

ter. In order to escape from this circular dependency, top-down approaches

usually make the assumption that a subset of cluster members can be deter-

mined “somehow”. In general, existing approaches implement two strategies

for this “somehow”: Many algorithms assume that the local neighborhood

of cluster centers or other cluster members in the original full dimensional

feature space contains a considerably large number of other cluster members

(locality assumption). Other algorithms try to obtain cluster members from

a random sample of points. The key point of these strategies is that the

higher the number of outliers (non-cluster members) that are included in the

selection, the less accurate will be the determination of the true subspace of

the cluster. This has severe consequences because if the subspace of a cluster

is not found correctly, again the assignment of points to that cluster may be

less accurate. In sight of these considerations, both approaches – the locality

assumption as well as random sampling – are usually rather strict limitations

to the quality and applicability of the corresponding algorithms. A strong

86 7 Discussion

benefit of most top-down-approaches is a good worst-case scalability. Usu-

ally, a complete enumeration of the exponential search space is avoided also

in the worst-case. Typically, algorithms implementing a top-down subspace

search scale at most quadratic w.r.t. the dimensionality d of the data space.

In order to apply an efficient bottom-up subspace search approach sim-

ilar to frequent itemset mining, the cluster criterion must implement the

downward closure property. Existing bottom-up approaches usually rely on

a density-based cluster criterion. A limitation of most of these approaches is

that the cluster criterion must use a fixed density threshold for all subspaces

in order to implement the downward closure property. As a consequence, the

same globally defined density threshold applies for subspaces of considerably

different dimensionality, although a significant cluster in a higher dimensional

subspace will most likely be less dense (in an absolute sense) than a significant

cluster in a lower dimensional subspace. In order to find higher dimensional

subspaces, the user has to define a less strict density threshold. This, how-

ever, would produce a lot of meaningless lower dimensional clusters. On the

other hand, choosing a more strict density threshold, the reported lower di-

mensional clusters will probably be more meaningful but higher dimensional

subspace clusters will most likely be lost. In addition, bottom-up subspace

search is a complete enumeration approach, i.e. the worst-case complexity is

O(2d). On the average, usually the bottom-up search is also considerably less

efficient than the top-down approach because in order to find a k-dimensional

subspace, many 1-dimensional, 2-dimensional, . . ., and (k − 1)-dimensional

subspaces need to be tested. As mentioned above, the fact that bottom-up

approaches produce all lower dimensional projections of subspaces accom-

modating clusters during the bottom-up traversal of the search space can be

seen as an advantage. Thus, for addressing the subspace clustering problem,

a bottom-up strategy would generally make sense as far as the problem of

meaningless lower dimensional subspace clusters is concisely addressed.

7.4 Empirical Evaluation: A Desideratum 87

7.3.3 Summary

In summary, a big problem in the field of finding clusters in axis-parallel

subspaces is that existing papers usually lack a meaningful task definition.

Very often, the problem statement is geared to the proposed algorithm, i.e.

the task that is to be solved is defined such that it matches the outcome of

the proposed algorithm. For example, the algorithm PreDeCon computes a

DBSCAN-like partitioning of the data but each cluster may exist in a different

subspace. The problem statement of projected clustering perfectly matches

this result. As a consequence, the accuracy and applicability of methods for

finding clusters in axis-parallel subspaces is hard to compare because each

algorithm produces different clusters not only because of different problem

definitions but also because of the application of different cluster models.

Obviously, the problem statement should dictate the algorithm’s outcome

and not vice versa. But as long as a meaningful general problem statement is

missing, no algorithms can be designed to tackle it. By then, it is likely that

further algorithms with slightly different problem statements will be pro-

posed. However, an important contribution to the field would be to carefully

analyze relevant applications and to extract a meaningful problem definition

that can be tackled.

7.4 Empirical Evaluation: A Desideratum

Newly proposed algorithms are often evaluated in a sloppy way taking into ac-

count only one or two competitors – if at all – or even with a so called “näıve”

ad hoc solution for comparison of efficiency and effectiveness. Recently, an

understanding for the need for consolidation of a maturing research area

is rising in the research community as illustrated by the discussions about

the repeatability of results for SIGMOD 2008, the Panel on performance

evaluation at VLDB 2007, and the tentative special topic of “Experiments

and Analyses Papers” at VLDB 2008. However, a fair and conclusive ex-

perimental evaluation of algorithms based on such a variety of assumptions

88 7 Discussion

and intuitions, pursuing so different search heuristics, and providing such a

diversity of models and representations of results seems rather difficult.

Aside from comparing apples and oranges in an evaluation of different

algorithms – what would qualify as a good experimental evaluation? By

all means, only stating that clusters can be found by a given approach is

far too less because any partitioning algorithm like k-means reports always

clusters. A solid evaluation needs to analyze the clusters in order to show

that the grouping reflects some domain specific knowledge. This is some-

how frustrating because clustering as an unsupervised learning task aims

at finding (beside already known information) previously unknown knowl-

edge. However, the usefulness of newly derived knowledge can usually only

be interpreted by a domain expert which is most likely not at hand. Thus,

showing that a clustering method can reproduce existing knowledge and does

not produce implications that contradict existing knowledge will be a rather

solid statement. On the other hand, if a (true) domain expert can be asked

to interpret the results, this would be the ne plus ultra in reliability of the

experiments. Unfortunately, the latter is most likely the rarest though most

expedient and, thus, thrilling scenario. After all, this is, why we should do

data mining at all.

So far, there exists no complete competitive empirical evaluation w.r.t.

efficiency and effectiveness of all or at least of the most prominent approaches.

We sincerely hope that the systematic view and the theoretical comparison of

different cluster models and objectives provided in this survey may be helpful

for empirical studies in the future. However, a fair empirical evaluation

of the different approaches is not a trivial task. The different heuristics

and assumptions (cf. Section 7.1) and the different problems tackled (cf.

Section 7.2) should always be kept in sight. In most cases, whether the

trade-off between efficiency and effectiveness is tolerable will depend on the

application.

89

Part III

Density-based Correlation

Clustering

91

In this part, several contributions of the author to the field of correla-

tion clustering as surveyed in Part II (see Chapter 6) are described in more

detail. We focus in the following on density-based subspace clustering in ar-

bitrarily oriented subspaces and describe the adaptation of the density-based

clustering paradigm to the problem of correlation clustering.

The first, direct adaptation of density-based clustering to correlation clus-

tering is presented in Chapter 8. This first approach has been enhanced in

several ways w.r.t. efficiency as well as to effectiveness. These enhancements

are described in Chapter 9.

Chapter 10 describes the first approach to mining hierarchies of correla-

tion clusters. Some drawbacks of this first approach are described in Chapter

11, together with corresponding enhancements.

In Chapter 12, some weak points common to all approaches to correla-

tion clustering based on PCA are discussed. Improvements within the local

approach to correlation clustering, common to the density-based approaches

discussed in this part, are proposed and evaluated.

The single chapters in this part allow for a self-contained reading. This

means, that some definitions may reoccur in several chapters in a similar

way. As a result, to technically comprehend a given chapter reading the

previous chapter is not required. In short, the technical contributions have

been sketched in the survey of Chapter 6. Nevertheless, the sequence of

chapters reflects a climax from solutions for simple to complex problems, all

based on the density-based paradigm.

92

93

Chapter 8

Adapting the Density-based

Paradigm for Correlation

Clustering: 4C

In this chapter, we describe the first adaptation of the density-based cluster-

ing paradigm to the correlation clustering problem. Density-based clustering

in general aims at partitioning the objects (described by points in a high di-

mensional feature space) of a data set into dense regions (clusters) separated

by regions with low density (noise). Knowing the cluster structure is im-

portant and valuable because the different clusters often represent different

classes of objects which have previously been unknown. Therefore, the clus-

ters bring additional insight about the stored data set which can be exploited

for various purposes such as improved marketing by customer segmentation,

determination of homogeneous groups of web users through clustering of web

logs, structuring large amounts of text documents by hierarchical clustering,

or developing thematic maps from satellite images.

An interesting second kind of hidden information that may be interesting

to users are correlations in a data set. A correlation is a linear dependency

between two or more features (attributes) of the data set. The most impor-

tant method for detecting correlations is the principal components analysis

94 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

(a) 2D view.

attribute 1 attribute 2

(b) Parallel coordinate plot.

Figure 8.1: 1-Dimensional Correlation Lines

(PCA). Knowing correlations is also important and valuable because the di-

mensionality of the data set can be considerably reduced which improves

both the performance of similarity search and data mining as well as the

accuracy. Moreover, knowing about the existence of a relationship between

attributes enables one to detect hidden causalities (e.g. the influence of the

age of a patient and the dose rate of medication on the course of his disease

or the co-regulation of gene expression) or to gain financial advantage (e.g.

in stock quota analysis), etc.

Methods such as PCA, however, are restricted, because they can only be

applied to the data set as a whole. Therefore, it is only possible to detect

correlations which are expressed in all points or almost all points of the data

set. For a lot of applications this is not the case. For instance, in the analysis

of gene expression, we are facing the problem that a dependency between two

genes does only exist under certain conditions. Therefore, the correlation is

visible only in a local subset of the data. Other subsets may be either not

correlated at all, or they may exhibit completely different kinds of correlation

(different features are dependent on each other). The correlation of the whole

data set can be weak, even if for local subsets of the data strong correlations

exist. Figure 8.1 shows a simple example, where two subsets of 2-dimensional

points exhibit different correlations.

95

To the best of our knowledge, both concepts of density-based clustering

(i.e. finding densely populated subsets of the data) and correlation analysis

have not yet been addressed as a combined task for data mining. The most

relevant related approach is ORCLUS [11], but since it is k-medoid-based, it is

very sensitive to noise and the locality of the analyzed correlations is usually

too coarse, i.e., the number of objects taken into account for correlation

analysis is too large. In this chapter, we present a new method which is

capable of detecting local subsets of the data which exhibit strong correlations

and which are densely populated (w.r.t. a given density threshold). We call

such a subset a correlation connected cluster.

In lots of applications such correlation connected clusters are interest-

ing. For example in E-commerce (recommendation systems or target mar-

keting) where sets of customers with similar behavior need to be detected,

one searches for positive linear correlations. In DNA microarray analysis

(gene expression analysis) negative linear correlations express the fact that

two genes may be co-regulated, i.e. if one has a high expression level, the

other one is very low and vice versa. Usually such a co-regulation will only

exist in a small subset of conditions or cases, i.e. the correlation will be

hidden locally in the data set and cannot be detected by global techniques.

Figures 8.1 and 8.2 show simple examples how correlation connected clusters

can look like. In Figure 8.1 the attributes exhibit two different forms of linear

correlation. We observe that if for some points there is a linear correlation

of all attributes, these points are located along a line. Figure 8.2 presents

two examples where an attribute z is correlated to attributes x and y (i.e.,

z = a + bx + cy). In this case the set of points forms a 2-dimensional plane.

As stated above, in this chapter, we propose an approach that meets

both the goal of clustering and correlation analysis in order to find corre-

lation connected clusters. The remainder is organized as follows: In Sec-

tion 8.1 we formalize our notion of correlation connected clusters. Based

on this formalization, we present in Section 8.2.1 an algorithm called 4C

(Computing Correlation Connected C lusters) to efficiently compute such

correlation connected clusters and discuss the computational complexity and

the parametrization of our algorithm, while Section 8.3 contains an extensive

96 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

(a) 3D view.

attribute 1 attribute 2 attribute 3

(b) Parallel coordinate plot of one plane.

Figure 8.2: 2-Dimensional Correlation Planes

experimental evaluation of 4C.

Parts of the material presented in this chapter has been published in a

similar way in [35]. In comparison to this earlier publication, some minor

errors and notational flaws are corrected.

8.1 The Notion of Correlation Connected Clus-

ters

In this section, we formalize the notion of a correlation connected cluster.

Let D be a database of d-dimensional feature vectors (D ⊆ Rd). An element

P ∈ D is called point or object. The value of the i-th attribute (1 ≤ i ≤ d) of

P is denoted by pi (i.e. P = (p1, . . . , pd)
T). Intuitively, a correlation connected

cluster is a dense region of points in the d-dimensional feature space having at

least one principal axis with low variation along this axis. Thus, a correlation

connected cluster has two different properties: density and correlation. In

the following, we will first address these two properties and then merge these

ingredients to formalize our notion of correlation connected clusters.

8.1 The Notion of Correlation Connected Clusters 97

8.1.1 Density-Connected Sets

The density-based notion is a common approach for clustering used by various

clustering algorithms such as DBSCAN [47], DBCLASD [143], DENCLUE

[70], and OPTICS [16]. All these methods search for regions of high density

in a feature space that are separated by regions of lower density.

A typical density-based clustering algorithm needs two parameters to de-

fine the notion of density: First, a parameter MinPts specifying the minimum

number of objects, and second, a parameter ε specifying a volume. These

two parameters determine a density threshold for clustering.

Our approach follows the formal definitions of density-based clusters un-

derlying the algorithm DBSCAN. The formal definition of the clustering

notion is presented and discussed in full details in [47]. In the following we

give a short summary of all necessary definitions.

Definition 8.1 (ε-neighborhood)

Let ε ∈ R+ and O ∈ D. The ε-neighborhood of O, denoted by NO
ε , is defined

by

NO
ε = {X ∈ D | dist(O, X) ≤ ε}.

Based on the two input parameters ε and MinPts, dense regions can be

defined by means of core objects:

Definition 8.2 (core object)

Let ε ∈ R+ and MinPts ∈ N. An object O ∈ D is called core object w.r.t. ε

and MinPts, if its ε-neighborhood contains at least MinPts objects, formally:

Coreden(O) ⇔ |NO
ε | ≥ MinPts.

Let us note, that we use the acronym “den” for the density parameters ε

and MinPts. In the following, we omit the parameters ε and MinPts wherever

the context is clear and use “den” instead.

98 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

A core object O can be used to expand a cluster, with all the density-

connected objects of O. To find these objects the following concepts are

used.

Definition 8.3 (direct density-reachability)

Let ε ∈ R+ and MinPts ∈ N. An object P ∈ D is directly density-reachable

from Q ∈ D w.r.t. ε and MinPts, if Q is a core object and P is an element

of NQ
ε , formally:

DirReachden(Q, P) ⇔ Coreden(Q) ∧ P ∈ NQ
ε .

Let us note, that direct density-reachability is symmetric only for core

objects.

Definition 8.4 (density-reachability)

Let ε ∈ R+ and MinPts ∈ N. An object P ∈ D is density-reachable from

Q ∈ D w.r.t. ε and MinPts, if there is a chain of objects P1, . . . ,Pn ∈ D,

P1 = Q, Pn = P such that Pi+1 is directly density-reachable from Pi, formally:

Reachden(Q, P) ⇔
∃P1, . . . ,Pn ∈ D : P1 = Q ∧ Pn = P ∧
∀i ∈ {1, . . . , n− 1} : DirReachden(Pi, Pi+1).

Density-reachability is the transitive closure of direct density-reachability.

However, it is still not symmetric in general.

Definition 8.5 (density-connectivity)

Let ε ∈ R+ and MinPts ∈ N. An object P ∈ D is density-connected to an

object Q ∈ D w.r.t. ε and MinPts, if there is an object O ∈ D such that both

P and Q are density-reachable from O, formally:

Connectden(Q, P) ⇔
∃O ∈ D : Reachden(O,Q) ∧ Reachden(O, P).

8.1 The Notion of Correlation Connected Clusters 99

Density-connectivity is a symmetric relation. A density-connected clus-

ter is defined as a set of density-connected objects which is maximal w.r.t.

density-reachability [47].

Definition 8.6 (density-connected set)

Let ε ∈ R+ and MinPts ∈ N. A non-empty subset C ⊆ D is called a density-

connected set w.r.t. ε and MinPts, if all objects in C are density-connected

and C is maximal w.r.t. density-reachability, formally:

ConSetden(C) ⇔

(1) Connectivity: ∀O,Q ∈ C : Connectden(O, Q)

(2) Maximality: ∀P, Q ∈ D : Q ∈ C ∧Reachden(Q, P) ⇒ P ∈ C.

Using these concepts DBSCAN is able to detect arbitrarily shaped clus-

ters by one single pass over the data. To do so, DBSCAN uses the fact, that

a density-connected cluster can be detected by finding one of its core-objects

O and computing all objects which are density reachable from O. The cor-

rectness of DBSCAN can be formally proven (cf. Lemmata 1 and 2 in [47],

proofs in [120]). Although DBSCAN is not in a strong sense determinis-

tic (the run of the algorithm depends on the order in which the points are

stored), both the run-time as well as the result (number of detected clusters

and association of core objects to clusters) are determinate. The worst case

time complexity of DBSCAN is O(n log n) assuming an efficient index and

O(n2) if no index exists.

8.1.2 Correlation Sets

In order to identify correlation connected clusters (regions in which the points

exhibit correlation) and to distinguish them from usual clusters (regions of

high point density only) we are interested in all sets of points with an intrinsic

dimensionality that is considerably smaller than the embedding dimension-

ality of the data space (e.g. a line or a plane in a three or higher dimensional

space). There are several methods to measure the intrinsic dimensionality

100 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

of a point set in a region, such as the fractal dimension or the principal

components analysis (PCA). We choose PCA because the fractal dimension

appeared to be not stable enough in our first experiments.

The PCA determines the covariance matrix M = [mij] with mij =∑
S∈S

(si − s̄i) · (sj − s̄j) of the considered point set S where s̄i is the mean

of all points S ∈ S in attribute i, and decomposes it into an orthonormal

matrix V called eigenvector matrix and a diagonal matrix E called eigen-

value matrix such that M = V · E · V T. The eigenvectors represent the

principal axes of the data set (as normalized by linear translation to the

origin) whereas the eigenvalues represent the variance along these axes. In

case of a linear dependency between two or more attributes of the point set

(correlation), one or more eigenvalues are close to zero.

A set forms a λ-dimensional correlation hyperplane if d − λ eigenvalues

fall below a given threshold δ ≈ 0. Since the eigenvalues of different sets

exhibiting different densities may differ a lot in their absolute values, we

normalize the eigenvalues by mapping them onto the interval [0, 1]. This

normalization is denoted by Ω and simply divides each eigenvalue ei by the

maximum eigenvalue emax. We call the eigenvalues ei with Ω(ei) ≤ δ close

to zero.

Definition 8.7 (λ-dimensional linear correlation set)

Let S ⊆ D, λ ∈ N (λ ≤ d), E = e1, ..., ed the eigenvalues of S in descending

order (i.e. ei ≥ ei+1) and δ ∈ R+ (δ ≈ 0). S forms an λ-dimensional linear

correlation set w.r.t. δ if at least d − λ eigenvalues of S are close to zero,

formally:

CorSetλ
δ (S) ⇔ |{ei ∈ E |Ω(ei) ≤ δ}| ≥ d− λ.

where Ω(ei) = ei/e1.

This condition states that the variance of S along d − λ principal axes

is low and therefore the objects of S form a λ-dimensional hyperplane. We

drop the index λ and speak of a correlation set in the following wherever it

is clear from context.

8.1 The Notion of Correlation Connected Clusters 101

Definition 8.8 (correlation dimension)

Let S ∈ D be a linear correlation set w.r.t. δ ∈ R+. The number of eigenval-

ues with ei > δ is called correlation dimension of S, denoted by CorDim(S).

Let us note, that if S is a λ-dimensional linear correlation set, then

CorDim(S) ≤ λ. The correlation dimension of a linear correlation set S
corresponds to the intrinsic dimension of S.

8.1.3 Clusters as Correlation-Connected Sets

A correlation connected cluster can be regarded as a maximal set of density-

connected points that exhibit uniform correlation. We can formalize the

concept of correlation connected sets by merging the concepts described in

the previous two subsections: density-connected sets (cf. Definition 8.6) and

correlation sets (cf. Definition 8.7). The intuition of our formalization is to

consider those points as core objects of a cluster which have an appropriate

correlation dimension in their neighborhood. Therefore, we associate each

point P with a similarity matrix M P which is determined by PCA of the

points in the ε-neighborhood of P . For convenience we call V P and EP the

eigenvectors and eigenvalues of P , respectively. A point P is inserted into a

cluster if it has the same or a similar similarity matrix like the points in the

cluster. To achieve this goal, our algorithm looks for points that are close to

the principal axis (or axes) of those points which are already in the cluster.

We will define a similarity measure M̂ P for the efficient search of such points.

We start with the formal definition of the covariance matrix M P associ-

ated with a point P .

Definition 8.9 (covariance matrix of a point)

Let P ∈ D. The matrix M P = [mij] with

mij =
∑

S∈NP
ε

(si − s̄i) · (sj − s̄j) (1 ≤ i, j ≤ d),

where s̄i is the mean of all points S ∈ N P
ε in attribute i, is called the covari-

ance matrix of the point P . V P and EP (with M P = V P · EP · V T

P) as

102 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

P
major axis of

the data set

(a)

P

/

(b)

Figure 8.3: Correlation ε-neighborhood of a point P according to (a) M P

and (b) M̂ P .

determined by PCA of M P are called the eigenvectors and eigenvalues of the

point P , respectively.

We can now define the new similarity measure M̂ P which searches points

in the direction of highest variance of M P (the major axes). Theoretically,

M P could be directly used as a similarity measure, i.e.

distM P
(P, Q) =

√
(P −Q)T ·M P · (P −Q) where P, Q ∈ D.

Figure 8.3(a) shows the set of points which lies in an ε-neighborhood of

the point using M P as similarity measure. The distance measure puts high

weights on those axes with a high variance whereas directions with a low

variance are associated with low weights. This is usually desired in similarity

search applications where directions of high variance have a high distinguish-

ing power and, in contrast, directions of low variance are negligible.

Obviously, for our purpose of detecting correlation clusters, we need quite

the opposite. We want so search for points in the direction of highest variance

of the data set. Therefore, we need to assign low weights to the direction of

highest variance in order to shape the ellipsoid such that it reflects the data

distribution (cf. Figure 8.3(b)). The solution is to change large eigenvalues

into smaller ones and vice versa. We use two fixed values, 1 and a parameter

κ � 1 rather than e.g. inverting the eigenvalues in order to avoid problems

with singular covariance matrices. The number 1 is a natural choice because

8.1 The Notion of Correlation Connected Clusters 103

the corresponding semi-axes of the ellipsoid are then epsilon. The parameter

κ controls the “thickness” of the λ-dimensional correlation line or plane, i.e.

the tolerated deviation.

This is formally captured in the following definition:

Definition 8.10 (correlation similarity matrix of a point)

Let P ∈ D and let V P , EP be the corresponding eigenvectors and eigen-

values of the point P . Let κ ∈ R be a constant with κ � 1. The new

eigenvalue matrix ÊP with diagonal entries êi (i = 1, . . . d) is computed from

the eigenvalues e1, . . . , ed in EP according to the following rule:

êi =

 1 if Ω(ei) > δ

κ if Ω(ei) ≤ δ

where Ω is the normalization of the eigenvalues onto [0, 1] as described above.

The matrix M̂ P = V P · ÊP ·V T

P is called the correlation similarity matrix.

The correlation similarity measure associated with point P is denoted by

cdistP (P, Q) =
√

(P −Q)T · M̂ P · (P −Q).

Figure 8.3(b) shows the ε-neighborhood according to the correlation sim-

ilarity matrix M̂ P . As described above, the parameter κ specifies how much

deviation from the correlation is allowed. The greater the parameter κ, the

tighter and clearer the correlations which will be computed. It empirically

turned out that our algorithm presented in Section 8.2.1 is rather insensitive

to the choice of κ. A good suggestion is to set κ = 50 in order to achieve

satisfying results, thus — for the sake of simplicity — we omit the parameter

κ in the following.

Using this similarity measure, we can define the notions of correlation core

objects and correlation reachability. However, in order to define correlation-

connectivity as a symmetric relation, we face the problem that the sim-

ilarity measure in Definition 8.10 is not symmetric, because distP (P, Q) =

distQ(Q, P) does in general not hold (cf. Figure 8.4(b)). Symmetry, however,

is important to avoid ambiguity of the clustering result. If an asymmetric

104 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

P

Q

P

Q

(a)

P

Q

P

Q

(b)

Figure 8.4: Symmetry of the correlation ε-neighborhood: (a) P ∈

NM̂ Q
ε (Q). (b) P 6∈ NM̂ Q

ε (Q).

similarity measure is used in DBSCAN a different clustering result can be

obtained depending on the order of processing (e.g. which point is selected as

the starting object) because the symmetry of density-connectivity depends

on the symmetry of direct density-reachability for core-objects. Although

the result is typically not seriously affected by this ambiguity effect we avoid

this problem easily by an extension of our similarity measure which makes it

symmetric. The trick is to consider both similarity measures, distP (P, Q) as

well as distQ(P, Q) and to combine them by a suitable arithmetic operation

such as the maximum of the two. Based on these considerations, we define

the correlation ε-neighborhood as a symmetric concept:

Definition 8.11 (correlation ε-neighborhood)

Let ε ∈ R+. The correlation ε-neighborhood of an object O ∈ D, denoted by

NM̂ O
ε (O), is defined by:

NM̂ O
ε (O) = {X ∈ D | max{cdistO(O, X), cdistX(X, O)} ≤ ε}.

The symmetry of the correlation ε-neighborhood is illustrated in Figure

8.4. Correlation core objects can now be defined as follows.

Definition 8.12 (correlation core object)

Let ε, δ ∈ R+ and MinPts, λ ∈ N. A point O ∈ D is called correlation

core object w.r.t. ε, MinPts, δ, and λ (denoted by Corecor
den(O)), if its ε-

8.1 The Notion of Correlation Connected Clusters 105

neighborhood is a λ-dimensional linear correlation set and its correlation ε-

neighborhood contains at least MinPts points, formally:

Corecor
den(O) ⇔ CorSetλ

δ (N P
ε) ∧ |NM̂ P

ε (P) | ≥ MinPts.

Let us note that in Corecor
den the acronym “cor” refers to the correlation

parameters δ and λ. In the following, we omit the parameters ε, MinPts, δ,

and λ wherever the context is clear and use “den” and “cor” instead.

Definition 8.13 (direct correlation-reachability)

Let ε, δ ∈ R+ and MinPts, λ ∈ N. A point P ∈ D is direct correlation-

reachable from a point Q ∈ D w.r.t. ε, MinPts, δ, and λ (denoted by

DirReachcor
den(Q,P)) if Q is a correlation core object, the correlation dimen-

sion of N P
ε is at least λ, and P ∈ NM̂ Q

ε (Q), formally:

DirReachcor
den(Q, P) ⇔

(1) Corecor
den(Q)

(2) CorDim(N P
ε) ≤ λ

(3) P ∈ NM̂ Q
ε (Q).

Correlation-reachability is symmetric for correlation core objects. Both

objects P and Q must find the other object in their corresponding correlation

ε-neighborhood.

Definition 8.14 (correlation-reachability)

Let ε, δ ∈ R+ (δ ≈ 0) and MinPts, λ ∈ N. An object P ∈ D is correlation-

reachable from an object Q ∈ D w.r.t. ε, MinPts, δ, and λ (denoted by

Reachcor
den(Q,P)), if there is a chain of objects P1, · · · , Pn such that P1 =

Q, Pn = P and Pi+1 is direct correlation-reachable from Pi, formally:

Reachcor
den(Q, P) ⇔

∃P1, . . . ,Pn ∈ D : P1 = Q ∧ Pn = P ∧
∀i ∈ {1, . . . , n− 1} : DirReachcor

den(Pi, Pi+1).

106 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

It is easy to see, that correlation-reachability is the transitive closure of

direct correlation-reachability.

Definition 8.15 (correlation-connectivity)

Let ε, δ ∈ R+ and MinPts, λ ∈ N. An object P ∈ D is correlation-connected

to an object Q ∈ D if there is an object O ∈ D such that both P and Q are

correlation-reachable from O, formally:

Connectcorr
den (Q,P) ⇔

∃o ∈ D : Reachcorr
den (O, Q) ∧ Reachcorr

den (O,P).

Correlation-connectivity is a symmetric relation. A correlation-connected

cluster can now be defined as a maximal correlation-connected set:

Definition 8.16 (correlation-connected set)

Let ε, δ ∈ R+ and MinPts, λ ∈ N. A non-empty subset C ⊆ D is called

a density-connected set w.r.t. ε, MinPts, δ, and λ, if all objects in C are

density-connected and C is maximal w.r.t. density-reachability, formally:

ConSetcor
den(C) ⇔

(1) Connectivity: ∀O, Q ∈ C : Connectcor
den(O,Q)

(2) Maximality: ∀P, Q ∈ D : Q ∈ C ∧Reachcor
den(Q, P) ⇒ P ∈ C.

The following two lemmata are important for validating the correctness

of our clustering algorithm. Intuitively, they state that we can discover a

correlation-connected set for a given parameter setting in a two-step ap-

proach: First, choose an arbitrary correlation core object O from the data-

base. Second, retrieve all objects that are correlation-reachable from O. This

approach yields the density-connected set containing O.

Lemma 8.1

Let P ∈ D. If P is a correlation core object, then the set of objects, which

are correlation-reachable from P is a correlation-connected set, formally:

Corecor
den(P) ∧ C = {O ∈ D |Reachcor

den(P, O)}
⇒ ConSetcor

den(C).

8.1 The Notion of Correlation Connected Clusters 107

Proof.

(1) C 6= ∅:
By assumption, Corecor

den(P) and thus, CorDim(N P
ε) ≤ λ.

⇒ DirReachcor
den(P, P)

⇒ Reachcor
den(P, P)

⇒ P ∈ C.

(2) Maximality:

Let X ∈ C and Y ∈ D and Reachcor
den(X, Y).

⇒ Reachcor
den(P, X) ∧Reachcor

den(X, Y)

⇒ Reachcor
den(P, Y) (since correlation reachability is a transitive relation).

⇒ Y ∈ C.

(3) Connectivity:

∀X, Y ∈ C : Reachcor
den(P, X) ∧Reachcor

den(P, Y)

⇒ Connectcor
den(X, Y) (via P). 2

Lemma 8.2

Let C ⊆ D be a correlation-connected set. Let P ∈ C be a correlation core

object. Then C equals the set of objects which are correlation-reachable from

P , formally:

ConSetcor
den(C) ∧ P ∈ C ∧Corecor

den(P)

⇒ C = {O ∈ D |Reachcor
den(P, O)}.

Proof.

Let C̄ = {O ∈ D |Reachcor
den(P, O)}. We have to show that C̄ = C:

(1) C̄ ⊆ C: obvious from definition of C̄.

(2) C ⊆ C̄: Let Q ∈ C. By assumption, P ∈ C and ConSetcor
den(C).

⇒ ∃O ∈ C : Reachcor
den(O,P) ∧Reachcor

den(O,Q)

⇒ Reachcor
den(P, O) (since both O and P are correlation core objects and

correlation reachability is symmetric for correlation core objects.

⇒ Reachcor
den(P, Q) (transitivity of correlation-reachability)

⇒ Q ∈ C̄. 2

108 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

8.2 Computing Correlation Connected Clus-

ters

8.2.1 Algorithm 4C

In the following we describe the algorithm 4C, which performs one pass over

the database to find all correlation clusters for a given parameter setting. The

pseudo code of the algorithm 4C is given in Figure 8.5. At the beginning each

object is marked as unclassified. During the run of 4C all objects are either

assigned a certain cluster identifier or marked as noise. For each object

which is not yet classified, 4C checks whether this object is a correlation

core object (see STEP 1 in Figure 8.5). If the object is a correlation core

object the algorithm expands the cluster belonging to this object (STEP 2.1).

Otherwise the object is marked as noise (STEP 2.2). To find a new cluster, 4C

starts in STEP 2.1 with an arbitrary correlation core object O and searches

for all objects that are correlation-reachable from O. This is sufficient to

find the whole cluster containing the object O, due to Lemma 8.2. When

4C enters STEP 2.1 a new cluster identifier “clusterID” is generated which

will be assigned to all objects found in STEP 2.1. 4C begins by inserting

all objects in the correlation ε-neighborhood of object O into a queue. For

each object in the queue it computes all directly correlation reachable objects

and inserts those objects into the queue which are still unclassified. This is

repeated until the queue is empty.

As discussed in Section 8.1 the results of 4C do not depend on the order

of processing, i.e. the resulting clustering (number of clusters and association

of core objects to clusters) is determinate.

8.2.2 Complexity Analysis

The computational complexity with respect to the number of data points as

well as the dimensionality of the data space is an important issue because

the proposed algorithms are typically applied to large data sets of high di-

8.2 Computing Correlation Connected Clusters 109

algorithm 4C(D, ε, MinPts, λ, δ)

// assumption: each object in D is marked as unclassified

for each unclassified O ∈ D do

STEP 1. test Corecor
den(O) predicate:

compute NO
ε ;

if |NO
ε | ≥ MinPts then

compute M O;

if CorDim(NO
ε) ≤ λ then

compute M̂ O and NM̂ O
ε (O);

test |NM̂ O
ε (O)| ≥ MinPts;

STEP 2.1. if Corecor
den(O) expand a new cluster:

generate new clusterID;

insert all X ∈ NM̂ O
ε (O) into queue Φ;

while Φ 6= ∅ do

Q = first object in Φ;

compute R = {X ∈ D |DirReachcor
den(Q,X)};

for each X ∈ R do

if X is unclassified or noise then

assign current clusterID to X

if X is unclassified then

insert X into Φ;

remove Q from Φ;

STEP 2.2. if not Corecor
den(O) O is noise:

mark O as noise;

end.

Figure 8.5: Pseudo code of the 4C algorithm.

110 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

mensionality. The idea of our correlation connected clustering method is

founded on DBSCAN, a density based clustering algorithm for Euclidean

data spaces. The complexity of the original DBSCAN algorithm depends on

the existence of an index structure for high dimensional data spaces. The

worst case complexity is O(n2), but the existence of an efficient index reduces

the complexity to O(n log n) [47]. DBSCAN is linear in the dimensionality of

the data set for the Euclidean distance metric. If a quadratic form distance

metric is applied instead of Euclidean (which enables user adaptability of the

distance function), the time complexity of DBSCAN is O(d2 · n log n).

We begin our analysis with the assumption of no index structure.

Our algorithm has to associate each point of the data set with a similarity

measure that is used for searching neighbors (cf. Definition 8.10). We assume

that the corresponding similarity matrix must be computed once for each

point, and it can be held in the cache until it is no more needed (it can be

easily decided whether or not the similarity matrix can be safely discarded).

The covariance matrix is filled with the result of a Euclidean range query

which can be evaluated in O(d · n) time. Then the matrix is decomposed

using PCA which requires O(d3) time. For all points together, we have

O(d · n2 + d3 · n).

Checking the correlation core point property according to Definition 8.12,

and expanding a correlation connected cluster requires for each point the

evaluation of a range query with a quadratic form distance measure which

can be done in O(d2 · n). For all points together (including the above cost

for the determination of the similarity matrix), we obtain an worst-case time

complexity of O(d2 · n2 + d3 · n).

Under the assumption that an efficient index structure for high dimen-

sional data spaces (e.g. [30, 27]) is available, the complexity of all range

queries is reduced from O(n) to O(log n). Let us note that we can use Eu-

clidean range queries as a filter step for the quadratic form range queries

because no semi-axis of the corresponding ellipsoid exceeds ε. Therefore, the

overall time complexity in this case is O(d2 · n log n + d3 · n).

8.2 Computing Correlation Connected Clusters 111

8.2.3 Input Parameters

The algorithm 4C needs four input parameters which are discussed in the

following:

The parameter ε ∈ R
+ specifies the size of the local areas in which

the correlations are examined and thus determines the number of objects

which contribute to the covariance matrix and consequently to the correlation

similarity measure of each object. It also participates in the determination of

the density threshold, a cluster must exceed. Its choice usually depends on

the volume of the data space (i.e. the maximum value of each attribute and

the dimensionality of the feature space). The choice of ε has two aspects.

First, it should not be too small because in that case, an insufficient number

of objects contribute to the correlation similarity measure of each object and

thus, this measure can be meaningless. On the other hand, ε should not

be too large because then some noise objects might be correlation reachable

from objects within a correlation connected cluster. Let us note, that our

experiments indicated that the second aspect is not significant for 4C (in

contrast to ORCLUS).

The parameter MinPts ∈ N specifies the number of neighbors an object

must find in an ε-neighborhood and in a correlation ε-neighborhood to exceed

the density threshold. It determines the minimum cluster size. The choice

of MinPts should not be to small (MinPts ≥ 5 is a reasonable lower bound)

but is rather insensitive in a broad range of values.

Both ε and MinPts should be chosen hand in hand.

The parameter λ ∈ N specifies the correlation dimension of the correla-

tion connected clusters to be computed. As discussed above, the correlation

dimension of a correlation connected cluster corresponds to its intrinsic di-

mension. In our experiments, it turned out that λ can be seen as an upper

bound for the correlation dimension of the detected correlation connected

clusters. However, the computed clusters tend to have a correlation dimen-

sion close to λ.

The parameter δ ∈ R (where 0 ≤ δ ≤ 1) specifies the lower bound for

112 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

the decision whether an eigenvalue is set to 1 or to κ � 1. The choice of

δ influences the tightness of the detected correlations, i.e. how much local

variance from the correlation is allowed. Our experiments also showed that

δ ≤ 0.1 is usually a good choice.

8.3 Evaluation

In this section, we present a broad evaluation of 4C. We implemented 4C

as well as the comparative methods DBSCAN and ORCLUS in JAVA. All

experiments were run on a Linux workstation with a 2.0 GHz CPU and 2.0

GB RAM.

8.3.1 Efficiency

According to Section 8.2.2 the runtime of 4C scales superlinear with the

number of input records. This is illustrated in Figure 8.6 showing the results

of 4C applied to synthetic 2-dimensional data of variable size.

8.3.2 Effectiveness

We evaluated the effectiveness of 4C on several synthetic data sets as well

as on real world data sets including gene expression data and metabolome

data. In addition, we compared the quality of the results of our method to

the quality of the results of DBSCAN and ORCLUS. In all our experiments,

we set the parameter κ = 50 as suggested in Section 8.1.3.

Synthetic Data Sets

We first applied 4C on several synthetic data sets (with 2 ≤ d ≤ 30) consist-

ing of several dense, linear correlations. In all cases, 4C had no problems to

identify the correlation-connected clusters. As an example, Figure 8.7 illus-

trates the parallel coordinate plot of the three clusters and the noise 4C found

8.3 Evaluation 113

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

database size (x 1,000)

ru
nt

im
e

(s
 x

 1
,0

00
)

Figure 8.6: Scalability against database size.

on a sample 10-dimensional synthetic data set consisting of approximately

1,000 points.

Real World Data Sets

Gene Expression Data. We applied 4C to the gene expression data set

of [134]. The data set is derived from time series experiments on the yeast

mitotic cell cycle. The expression levels of approximately 3000 genes are

measured at 17 different time slots. Thus, we face a 17-dimensional data

space to search for correlations indicating co-regulated genes. 4C found 60

correlation connected clusters with few co-regulated genes (10-20). Such

small cluster sizes are quite reasonable from a biological perspective. The

parallel coordinate plots of four sample clusters are depicted in Figure 8.8. All

four clusters exhibit simple linear correlations on a subset of their attributes.

Let us note, that we also found other linear correlations which are rather

complex to visualize.

114 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

Dataset D
Cluster 1

Cluster 2

Cluster 3

Noise

Figure 8.7: Clusters found by 4C on 10D synthetic data set. Parameters:

ε = 10.0, MinPts = 5, λ = 2, δ = 0.1.

8.3 Evaluation 115

Sample Cluster 1 Sample Cluster 2

Sample Cluster 4Sample Cluster 3

Figure 8.8: Sample clusters found by 4C on the gene expression data set.

Parameters: ε = 25.0, MinPts = 8, λ = 8, δ = 0.01.

116 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

Metabolome Data. We applied 4C on a metabolome data set [92]. The

data set consists of the concentrations of 43 metabolites in 2,000 human

newborns. The newborns were labeled according to some specific metabolic

diseases. Thus, the data set consists of 2,000 data points with d = 43. 4C

detected six correlation connected sets which are visualized in Figure 8.9.

Cluster one and two (in the lower left corner marked with “control”) consists

of healthy newborns whereas the other clusters consists of newborns having

one specific disease (e.g. “PKU” or “LCHAD”). The group of newborns suf-

fering from “PKU” was split in three clusters. Several ill as well as healthy

newborns were classified as noise.

Comparisons to Other Methods

We compared the effectiveness of 4C with related clustering methods, in

particular the density-based clustering algorithm DBSCAN and the projected

clustering algorithm ORCLUS. For that purpose, we applied these methods

on several synthetic data sets including 2-dimensional data sets and higher

dimensional data sets (d = 10).

Comparison with DBSCAN. The clusters found by DBSCAN and 4C

applied on the 2-dimensional data sets are depicted in Figure 8.10. In both

cases, DBSCAN finds clusters which do not exhibit correlations (and thus

are not detected by 4C). In addition, DBSCAN cannot distinguish varying

correlations which overlap (e.g. both correlations in data set B in Figure

8.10) and treat such clusters as one density-connected set, whereas 4C can

differentiate such correlations. We gain similar observations when we applied

DBSCAN and 4C on the higher dimensional data sets. Let us note, that these

results are not astonishing since DBSCAN only searches for density connected

sets but does not search for correlations and thus cannot be applied to the

task of finding correlation connected sets.

Comparison with ORCLUS. A comparison of 4C with ORCLUS re-

sulted in quite different observations. In fact, ORCLUS computes clusters of

8.3 Evaluation 117

PKU

PKU

PKU

LCHAD

control

control

Figure 8.9: Clusters found by 4C on the metabolome data set. Parameters:

ε = 150.0, MinPts = 8, λ = 20, δ = 0.1.

118 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

Clusters found
by DBSCAN

Clusters found
by 4C

Dataset A

Dataset B

Figure 8.10: Comparison between 4C and DBSCAN.

8.3 Evaluation 119

Figure 8.11: Three correlation connected clusters found by 4C on a 3-

dimensional data set. Parameters: ε = 2.5, MinPts = 8. δ = 0.1, λ = 2.

correlated objects. However, since it is a k-medoid based, it suffers from the

following two drawbacks: First, the choice of k is a rather hard task for real-

world data sets. Even for synthetic data sets, where we knew the number of

clusters beforehand, ORCLUS often performs better with a slightly different

value of k. Second, ORCLUS is rather sensitive to noise which often appears

in real-world data sets. Since all objects have to be assigned to a cluster,

the locality of the analyzed correlations is often too coarse (i.e. the subsets

of the points taken into account for correlation analysis are too large). As a

consequence, the correlation clusters are often blurred by noise objects and

thus are hard to obtain from the resulting output. Figure 8.11 illustrates a

sample 3-dimensional synthetic data set, the clusters found by 4C are marked

by black lines. Figure 8.12 depicts the objects in each cluster found by OR-

CLUS (k = 3 yields the best result) separately. It can be seen, that the

correlation clusters are — if detected — blurred by noise objects. When we

applied ORCLUS on higher dimensional data sets (d = 10) the choice of k

became even more complex and the problem of noise objects blurring the

clusters (i.e. too coarse locality) simply cumulated in the fact that ORCLUS

often could not detect correlation clusters in high dimensional data.

120 8 Adapting the Density-based Paradigm for Correlation Clustering: 4C

Figure 8.12: Clusters found by ORCLUS on the data set depicted in Figure

8.11. Parameters: k = 3, l = 2.

121

Chapter 9

Enhancing Efficiency and

Effectiveness: COPAC

Correlation clusters appear as lines, planes, or, generally speaking, hyper-

planes of arbitrary dimensionality di < d in the data space, exhibiting a

relatively high density of data points compared to the surrounding space.

Correlation clustering algorithms group the data sets into subsets called cor-

relation clusters such that the objects in the same correlation cluster are all

associated to the same hyperplane of arbitrary dimensionality. For sake of

brevity, if we have a correlation cluster associated to a λ-dimensional hy-

perplane, we will speak of a λ-dimensional correlation cluster. We will refer

to the dimensionality of a hyperplane associated to a correlation cluster as

correlation dimensionality. Of course, in applying correlation clustering one

must be aware that, although linear correlation among features may indicate

linear dependencies, the detected correlations can also be caused by features

not comprised in the data set or they may even occur coincidentally.

Algorithms for correlation clustering integrate the concepts of clustering

and correlation detection in a sophisticated way. The first approach that is

exclusively designed to detect correlation clusters is ORCLUS [11] that inte-

grates PCA into k-means clustering. The algorithm 4C [35] that integrates

PCA into a density-based clustering algorithm shows superior effectiveness

over ORCLUS (see Chapter 8).

122 9 Enhancing Efficiency and Effectiveness: COPAC

However, existing correlation clustering methods have several severe prob-

lems. The most important problem is that the correlation dimensionality of

the detected correlation clusters heavily depends on a user-defined input pa-

rameter. ORCLUS generates results such that the correlation dimensionality

of the respective correlation clusters corresponds to a user-provided parame-

ter l. 4C limits the correlation dimension of the detected correlation clusters

to the user-defined parameter λ. In fact, 4C tends to uncover correlation

clusters of a correlation dimensionality that is rather near to λ. As a conse-

quence, both methods may produce incomplete results, i.e. both are not able

to find all correlation clusters of different correlation dimensionality during

a single run, especially if the correlation dimensionalities of different cor-

relation clusters vary considerably. A second drawback related to the first

problem is the poor usability of the existing methods because they require

the user to specify parameters that are usually hard to determine, e.g. the

number of clusters, or the “thickness” of the correlation hyperplane. Further

limitations of existing work include a weak robustness against noisy data and

a poor scalability for large databases.

The most straightforward possibility to overcome the first limitation is

to apply one of the existing algorithms multiple times (in fact O(d) times,

where d is the dimensionality of the feature space). Obviously, this is not

a reasonable solution due to the considerable high computational cost for

one single run. In this chapter, we propose the novel correlation clustering

algorithm COPAC (COrrelation PArtition Clustering) that simultaneously

searches for correlation clusters of arbitrary dimensionality. Let us point

out that COPAC does not require the user to specify the number of clusters

or any parameter regarding the correlation dimensionality beforehand. In

order to further enhance the usability of COPAC, we will discuss the effect

of the input parameters of COPAC. In addition, our experimental evaluation

shows that COPAC is superior to ORCLUS and 4C in terms of runtime and

produces significantly more accurate and complete results.

This chapter is organized as follows: We present a formalization of corre-

lation clusters in Section 9.1. Section 9.2 describes the algorithm COPAC in

detail. A thorough experimental evaluation of COPAC (Section 9.3) demon-

9.1 Formalization of Correlation Clusters 123

strates that COPAC is superior to ORCLUS and 4C in terms of runtime and

produces significantly more accurate and complete results.

The material presented in this chapter has been partially published in [6].

9.1 Formalization of Correlation Clusters

In this section, we prepare the introduction of our approach by formalizing

the notion of correlation clusters. In the following we assume D to be a

database of n feature vectors in a d-dimensional feature space, i.e. D ⊆ Rd.

A correlation cluster is a set of feature vectors that are close to a common,

arbitrarily oriented affine subspace of a given dimensionality di (1 ≤ di <

d). In the data space the correlation cluster appears as a hyperplane of

dimensionality di.

In general, one way to formalize the concept of correlation clusters is to

use PCA. Formally, let C be a correlation cluster, i.e. C ⊆ D, and X̄ denote

the centroid of all points in C. The d×d covariance matrix Σ C of C is defined

as:

Σ C =
1

|C|
·
∑
X∈C

(X − X̄) · (X − X̄)T.

Since the covariance matrix Σ C of C is a positive semi-definite square matrix,

it can be decomposed into the eigenvalue matrix E C of Σ C and the eigenvector

matrix V C of Σ C such that Σ C = V C · E C · V T

C. The eigenvalue matrix

E C is a diagonal matrix storing the d non-negative eigenvalues of Σ C in

decreasing order. The eigenvector matrix V C is an orthonormal matrix with

the corresponding d eigenvectors of Σ C.

Now we define the correlation dimensionality of C as the number of dimen-

sions of the (arbitrarily oriented) subspace which is spanned by the major

axes in V C. Let us note that the correlation dimensionality is closely re-

lated to the intrinsic dimensionality of the data distribution. If, for instance,

the points in C are located near by a common line, the correlation dimen-

sionality of these points will be 1. That means we have to determine the

principal components (eigenvectors) of Σ C. The eigenvector associated with

124 9 Enhancing Efficiency and Effectiveness: COPAC

the largest eigenvalue has the same direction as the first principal component,

the eigenvector associated with the second largest eigenvalue determines the

direction of the second principal component and so on. The sum of the eigen-

values equals the trace of the square matrix Σ C which is the total variance

of the points in C. Thus, the obtained eigenvalues are equal to the variance

explained by each of the principal components, in decreasing order of impor-

tance. The correlation dimensionality of a set of points C is now defined as

the smallest number of eigenvectors explaining a portion of at least α ∈]0, 1[

of the total variance of C. These ideas are illustrated in Figure 9.1. Figure

9.1(a) shows a correlation cluster of correlation dimensionality 1 correspond-

ing to a correlation line. Only one eigenvector (v1) explains the total variance

of C. Figure 9.1(b) shows a correlation cluster of correlation dimensionality

2 that corresponds to a correlation plane. Here, two eigenvectors explain the

total variance of C. Let us note that in the displayed examples, the correla-

tions are perfect, i.e. there is no deviation from the correlation hyperplane

but all points within the set perfectly fit to the correlation hyperplane. As a

consequence, the eigenvalues of the eigenvectors that are orthogonal to the

correlation hyperplane (e.g. v2 and v3 in Figure 9.1(a) or v3 in Figure 9.1(b))

will be zero. However, in real-world data sets, this is a quite unrealistic

scenario, i.e. the eigenvalues of some eigenvectors that are orthogonal to the

correlation hyperplane may be considerably small but not zero. The value

of α accounts for that fuzziness. Let us define the correlation dimensionality

more formally:

Definition 9.1 (correlation dimensionality)

Let α ∈]0, 1[. Then the correlation dimensionality λC of a set of points C
is the smallest number r of eigenvalues ei in the d× d eigenvalue matrix E C

explaining a portion of at least α of the total variance:

λC = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

Typically, values for α are chosen between 0.8 and 0.9. For example,

α = 0.85 denotes that the obtained principal components explain 85% of the

total variance. In the following, we call the λC-dimensional subspace which

9.2 COPAC 125

v
1v

2

v
3

(a) 1-dimensional correlation cluster

v
1v

2

v
3

(b) 2-dimensional correlation cluster

Figure 9.1: Correlation dimensionality.

is spanned by the major axes of C the correlation hyperplane of C. Since we

follow the convention that the eigenvectors are ordered decreasingly in the

eigenvector matrix, the major axes correspond to the λC first eigenvectors of

Σ C.

Thus, the correlation dimensionality λC is the dimensionality of the sub-

space containing all points of the set C allowing a small deviation correspond-

ing to the remaining portion of variance of 1− α. The remaining, neglected

variance scatters along the eigenvectors vλC+1, . . . , vd.

9.2 COPAC

As discussed above, in correlation clustering algorithms like ORCLUS and

4C the user needs to estimate an appropriate correlation dimensionality in

advance. If this estimation is wrong, the quality of the derived clustering

deteriorates considerably. An alternative would be, of course, to run the

respective algorithms several times, each time using another guess for the

correlation dimensionality. We propose an approach that does not require

a parameter specifying the correlation dimensionality and searches the data

for clusters of all possible correlation dimensionalities simultaneously. It is

possible, as we will show, to perform this search in superior or at least com-

petitive average efficiency even if compared to single runs of ORCLUS, that

126 9 Enhancing Efficiency and Effectiveness: COPAC

will uncover only a specified number of clusters of a predefined correlation

dimensionality. Thus, COPAC can retrieve superior information in equal or

less runtime than ORCLUS or 4C.

The general idea of COPAC is as follows: We adapt the definition of

correlation cluster dimensionality (cf. Definition 9.1) as a property of single

database objects resulting in the notion of local correlation dimensionality.

We partition the database objects according to their local correlation dimen-

sionality in a first step. The local correlation dimensionality of a point P

represents the cluster correlation dimensionality of the set of points in the

neighborhood of P in the database, i.e. the correlation dimensionality of the

correlation cluster—if existing—P should belong to. Thus, database objects

of different local correlation dimensionality cannot form a common correla-

tion cluster. As a consequence, it is sufficient to extract correlation clusters

from each of the partitions separately. Therefore, in a second step, we apply

a novel correlation clustering algorithm to each of the partitions in order to

compute correlation clusters of different correlation dimensionalities. In the

following, we describe both steps in more detail.

9.2.1 Local Correlation Partitioning

In the first step of COPAC we partition the objects of the database according

to their local correlation dimensionality. The local correlation dimensionality

is defined analogously to Definition 9.1.

Definition 9.2 (local correlation dimensionality)

Let α ∈]0, 1[, P ∈ D, and NP denote the set of points in the local neigh-

borhood of P . ENP
is the eigenvalue matrix of ΣNP

which is the covariance

matrix of NP . Then the local correlation dimensionality λP of the point P is

the smallest number of eigenvalues ei in the eigenvalue matrix ENP
explain-

ing a portion of at least α of the total variance, i.e.

λP = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

9.2 COPAC 127

Again, values for α typically range from 0.8 to 0.9.

An important aspect of Definition 9.2 is the notion of the local neigh-

borhood of a point P , denoted by NP . The set of points belonging to NP

should reflect the correlation in the local neighborhood of P . In [35] (see

Chapter 8), the correlation in the neighborhood of P is determined in terms

of the ε-neighborhood of P . However, the proper representation of the lo-

cal correlation is very sensitive to the choice of ε. If ε is chosen too small,

NP will contain an insufficient number of points, resulting in an unstable

covariance matrix. As a consequence, PCA will fail to determine the proper

correlation. On the other hand, if ε is chosen too high, NP will contain noise

points that do not fit to the local correlation but are located near to P . In

that case, the local correlation dimensionality of P derived by PCA of ΣNP

will be considerably higher than the dimensionality of the local correlation

to which P belongs. In addition, the global choice of ε as proposed in [35]

(see Chapter 8) may cause that both sketched problems appear for different

points in the database, i.e. for some points ε is chosen too high, whereas for

some other points ε is chosen too low.

Due to these considerations, we use the k-nearest neighbors of P to deter-

mine the local correlation dimensionality of P , i.e. NP contains the k-nearest

neighbors of P . This ensures, that the number of points inNP is large enough

to avoid the first problem mentioned above if k is chosen properly. Usually,

it seems to be a good choice to set k = 3 · d in order to derive a meaningful

covariance matrix ΣNP
and a stable singular value decomposition of ΣNP

to

yield its principal components. Thus, the local correlation dimensionality is

well defined even for outliers. Furthermore, the range of the k-nearest neigh-

bors is adaptive to variations of the local density: A higher local density

for a point is more accurately resolved using k-nearest neighbors, while the

ε-neighborhood would provide a considerably larger amount of points result-

ing in a local correlation dimensionality that does not reflect the actual local

correlation dimensionality as exactly as the k-nearest neighbors do.

Still, however, the value for k is chosen globally for all points and may

be suitable for some local neighborhoods (and some clusters), for others

128 9 Enhancing Efficiency and Effectiveness: COPAC

not. This problem is addressed in another approach which we will discuss in

Chapter 12 below.

Based on Definition 9.2, the first step of COPAC partitions the database

objects according to their local correlation dimensionality. The local corre-

lation dimensionality of a point is based on the covariance matrix for the

k-nearest neighbors of that point in D. Then all points P sharing a com-

mon local correlation dimensionality λP are assigned to a partition DλP
of

the database D. This results in a set of d disjoint subsets D1, . . . ,Dd of D,

where Di contains all points exhibiting a correlation dimensionality of i. Of

course, some partitions may remain empty. If not a single point exhibits a

local correlation dimensionality of i, then Di = ∅. In terms of correlation

clustering, Dd contains only noise, because if λP = d, then there is no lin-

ear dependency of features found among the neighbors of P . Note that the

number of attributes actually involved in linear dependencies within cluster

C is not λC, but d− λC.

Let us note that by means of this first step of COPAC one does not only

yield an appropriate correlation dimensionality for each point in advance,

but presumably also a considerable reduction of the number of data points

n, that are to be processed by each single run of a correlation clustering

algorithm, on average n
d
. In fact, COPAC processes each data object only

once during the second step when determining the correlation clusters.

9.2.2 Determination of Correlation Clusters

Once we have partitioned the database objects into partitions D1, . . . , Dd

according to their local correlation dimensionality in D, we can extract the

correlation clusters from each of the partitions. Since each point P ∈ D
can only be part of a correlation cluster of dimensionality λP , we can run

the correlation cluster extraction on each partition D1, . . . ,Dd−1 separately.

As discussed above, the points in Dd are noise because there is no linear

dependency among a set of features in the local neighborhood of these points.

To detect the correlation clusters in a given partition Di, we can use any

9.2 COPAC 129

correlation clustering algorithm proposed so far. Since 4C has shown superior

effectiveness over ORCLUS (see Chapter 8), we base our method to compute

the correlation clusters on the concepts of 4C. The most important aspect of

applying density based clustering is that each partition Di may contain noise

points that have a local correlation dimensionality of i but do not belong

to any correlation cluster. In fact, 4C is reported to be much more robust

against noise than ORCLUS.

However, our method is considerably different from 4C in two aspects:

First, in contrast to 4C (and also to ORCLUS), we can restrict our method

to find only correlation clusters of a given correlation dimensionality, because

the points in Di can only be part of a correlation cluster with correlation

dimensionality i. Second, 4C limits itself to “connected” correlation clusters,

i.e. points that share a common hyperplane but are located significantly far

apart are not assigned to the same cluster. Our method overcomes this

limitation.

The general idea of our correlation clustering method is to integrate PCA

as a correlation primitive into the density-based clustering algorithm DB-

SCAN [47]. For that purpose we define a distance measure that assesses the

distance between two given points evaluating how well they share a com-

mon hyperplane. The Euclidean distance between the respective points is

assessed only to measure the deviation orthogonal to the common hyper-

plane. To yield such a distance measure we first define a distance between

two points with respect to one of the points. This distance is based on a

distance matrix for each point P that is derived by an adaptation of the

eigenvalues of the covariance matrix of the local neighborhood of P :

Definition 9.3 (correlation distance matrix)

Let P ∈ D, λP the local correlation dimensionality of P , and V P , EP the

corresponding eigenvectors and eigenvalues of the point P based on the local

neighborhood of P , i.e. NP . An adapted eigenvalue matrix ÊP with diagonal

entries êi ∈ {0, 1}, (i = 1, . . . , d) is derived according to the following rule:

êi =

 0 if i ≤ λP

1 if i > λP

130 9 Enhancing Efficiency and Effectiveness: COPAC

P

Q

cdistP(P,Q)

cdistQ(Q,P)

v1

v1

v2

v2

Figure 9.2: Correlation distance measure of a point.

The matrix M̂ P = V P · ÊP ·V T

P is called the correlation distance matrix of

P .

Using the correlation distance matrix of P one can easily derive a distance

measure that assesses the distance between P and another point Q w.r.t. P :

Definition 9.4 (correlation distance measure)

Let P, Q ∈ D. The correlation distance measure between P and Q w.r.t.

point P is given by:

cdistP (P, Q) =
√

(P −Q)T · M̂ P · (P −Q).

Basically, the correlation distance measure w.r.t. a point P is a weighted

distance where the weights are based on the local neighborhood of P . The

weights are constructed to take into account only distances along the eigen-

vectors that correspond to small eigenvalues, while distances along the λP

first eigenvectors of NP are neglected. Thus, assessing the distance between

P and Q using the correlation distance measure of P will in general not

yield the same result as using the correlation distance measure w.r.t. Q.

The concept of the correlation distance measure w.r.t. two points P and

Q, with λP = λQ = 1, is visualized in Figure 9.2. As it can be seen,

cdistP (P, Q) 6= cdistQ(Q, P). Therefore, given the correlation distance mea-

sures for both points, P and Q, we define a distance function (i.e. a distance

measure that fulfills symmetry and reflexivity) as follows:

9.2 COPAC 131

Definition 9.5 (correlation distance)

Let P, Q ∈ D. The correlation distance between P and Q is given by:

cdist(P, Q) = max {cdistP (P, Q), cdistQ(Q, P)}

For example, the correlation distance for the points P and Q in Figure

9.2 is equal to the correlation distance measure between both points w.r.t.

Q, i.e. cdist(P, Q) = cdistQ(Q, P).

Having defined a suitable distance function for correlation clustering, we

can now integrate these concepts into a clustering algorithm. We propose to

integrate the correlation distance into the density-based clustering algorithm

GDBSCAN [120] which is a generalization of the well-known DBSCAN clus-

tering algorithm [47]. The choice of GDBSCAN is because of its efficiency

and its effectiveness. GDBSCAN is robust against noise and does not require

the user to specify the number of clusters in advance.

DBSCAN iteratively performs the following procedure for each not yet

processed point P ∈ D: First, the ε-neighborhood of P in the feature space

is computed. If this ε-neighborhood contains less than MinPts points, P

is marked as noise and the procedure is performed for the next unclassified

point in D. Else, if P ’s neighborhood contains at least MinPts points, P

is considered as core point and a new cluster is initiated. All points in the

ε-neighborhood of P are inserted into a queue and are marked with the

same cluster-ID as P . As long as this queue is not empty, the described

procedure is repeated for the next point in the queue. If the queue is empty,

the procedure starts with another arbitrary not yet marked point. DBSCAN

terminates after a single scan over the database. ε ∈ R+ and MinPts ∈ N+

are the input parameters specifying the density threshold points within a

cluster must exceed.

The GDBSCAN framework as proposed in [120] provides a very easy

possibility to integrate any similarity model into the algorithmic schema of

DBSCAN. The basic idea is that instead of the ε-neighborhood one has to

specify a generalized neighborhood of an object O, denoted by NNPred(O),

given by NNPred(O) = {P |NPred(O,P)}, where NPred(O, P) is a predicate

132 9 Enhancing Efficiency and Effectiveness: COPAC

on O and P that has to be reflexive and symmetric. In addition, to decide

whether or not object O is a core point, a generalized minimum weight of

NNPred(O) must be defined, denoted by MinWeight(NNPred(O)).

Thus, in order to integrate our correlation distance measure into the

GDBSCAN algorithm, we need to specify (i) a symmetric and reflexive pred-

icate NPred(P, Q) on two points P, Q ∈ D and (ii) a minimum weight Min-

Weight.

The key issue is the predicate NPred(P, Q). Intuitively, we define this

predicate analogously to the ε-neighborhood, using the correlation distance

from Definition 9.5.

Definition 9.6 (neighborhood predicate)

Let P, Q ∈ D and ε ∈ R+. The neighborhood predicate of P and Q is given

by: NPred(P, Q) ⇔ cdist(P, Q) ≤ ε.

The neighborhood predicate NPred(P, Q) is reflexive and symmetric, since

it is based on the reflexive and symmetric correlation distance as defined in

Def. 9.5. We show this formally in the following lemma.

Lemma 9.1

The neighborhood predicate NPred(P, Q) as defined in Definition 9.6 is re-

flexive and symmetric.

Proof.

Let P, Q ∈ D and ε ∈ R+.

(i) reflexivity: clear since

NPred(P, P) ⇔ cdist(P, P) ≤ ε

⇔ cdistP (P, P) ≤ ε

⇔ 0 ≤ ε.

9.2 COPAC 133

p

v
2

v
1

Figure 9.3: Visualization of NNPred(P).

(ii) symmetry:

NPred(P, Q) ⇔ cdist(P, Q) ≤ ε

⇔ max {cdistP (P, Q), cdistQ(Q, P)} ≤ ε

⇔ max {cdistQ(Q, P), cdistP (P, Q)} ≤ ε

⇔ cdist(Q, P) ≤ ε

⇔ NPred(Q, P).

2

The neighborhood predicate is visualized in Figure 9.3. In particular, the

figure shows the neighborhood of P , i.e. NNPred(P). All objects Q within

this neighborhood have a distance less or equal to ε to the correlation hy-

perplane specified by the correlation distance matrix of P . This hyperplane

is indicated by the dashed line. Furthermore, if an object Q is a member of

the neighborhood of P , then also P must have a distance less or equal to ε

to the correlation hyperplane of Q. In other words, Q ∈ NNPred(P) if and

only if the correlation distance measure between P and Q w.r.t. P and w.r.t.

Q both do not exceed ε.

The second issue is to define the minimum weight MinWeight on the

neighborhood. Intuitively, if MinWeight of the neighborhood of a point P is

true, P is considered as core point by the run of GDBSCAN. Analogously to

traditional clustering, we require that a point P finds at least MinPts points

in its ε-neighborhood using the correlation distance as distance function.

134 9 Enhancing Efficiency and Effectiveness: COPAC

algorithm COPAC

// STEP 1: Partition data objects according to
// local correlation dimensionality
// (cf. Section 9.2.1)

initialize D1, . . . ,Dd with Di = ∅;
for each P ∈ D do

compute λP according to Definition 9.2;
DλP

= DλP
∪ {P};

endfor

// STEP 2: Extract clusters from each partition
// (cf. Section 9.2.2)

for each Di ∈ D1, . . . ,Dd−1 do
GDBSCAN(Di, NPred(ε), MinWeight(µ));

endfor

Figure 9.4: The COPAC algorithm.

Definition 9.7 (minimum weight)

Let NNPred(P) be the neighborhood of P based on the neighborhood predicate

as defined in Definition 9.6 and µ ∈ N+. The minimum weight of NNPred(P)

such that P ∈ D is a core point is given by:

MinWeight(NNPred(P)) ⇔ |NNPred(P)| ≥ µ.

Now, having defined the neighborhood predicate of an object and the

minimum weight predicate of the neighborhood of an object, we can use the

GDBSCAN framework to compute the correlation clusters in each partition.

The overall procedure of COPAC is visualized in Figure 9.4: Step 1 partitions

the database points according to their local correlation dimensionality.1 Step

2 applies GDBSCAN with NPred and MinWeight as defined in Definitions

9.6 and 9.7, respectively.

9.2.3 Complexity Analysis

The preprocessing step of COPAC works for each point as follows: First a

k-nearest neighbor query is performed, which has a complexity of O(n) since

1Note that it is a recommendable procedure to normalize the data in order to derive
an appropriate correlation dimensionality. We usually followed this procedure.

9.2 COPAC 135

the data set is scanned sequentially. Based on the result of the k-nearest

neighbor query, the d× d covariance matrix is determined. This can be done

in O(k · d2) time. Then the covariance matrix is decomposed using PCA

which requires O(d3) time. Thus, for all points together we have a time

complexity of O(n2 + k · d2 · n) in the first step of COPAC, since k must

exceed d, as discussed above.

Applying GDBSCAN to the data set in the second step of COPAC results

in a time complexity of O(d2 · n2). This is due to the fact, that the original

GDBSCAN has a worst case complexity of O(n2) on top of the sequential

scan. If a quadratic distance function is used, like in our algorithm, the time

complexity of GDBSCAN increases to O(d2 · n2).

Thus, the overall worst-case time complexity of COPAC on top of the

sequential scan of the data set is O(k · d2 · n + d2 · n2). However, usually the

data points are distributed over several partitions. In the best-case, the data

points are uniformly distributed over all possible correlation dimensionalities,

and all partitions will contain n
d

points. Thus, the best-case reduces the

required runtime of the second step of COPAC to O(n2) and the overall

time-complexity to O(k · d2 · n + n2).

9.2.4 Parameter Estimation

COPAC has three input parameters the choice of which we discuss in the

following.

Parameter k. The parameter k ∈ N+ specifies the number of points con-

sidered to compute the neighborhood NP of a point P ∈ D. From this

neighborhood, the d × d covariance matrix ΣP and, thus, the correlation

dimensionality λP of P is computed. As discussed above, k should not be

too small in order to produce a stable covariance matrix. For example, in

order to model a λ-dimensional correlation, we need at least λ points that

span the corresponding λ-dimensional hyperplane. On the other hand, it

should not be too high in order to reflect only the local correlation. Oth-

136 9 Enhancing Efficiency and Effectiveness: COPAC

objects

(
-

1
)-

d
is

ta
n

ce
pivot object O

possible

values for

noise objects

objects within a cluster

Figure 9.5: A sample (µ− 1)-distance diagram.

erwise, noise points could also destabilize the correlation matrix and, thus,

the computation of the local correlation dimensionality. It turned out that

setting k = 3 · d was robust in all our tests throughout all our experiments.

In general, setting 3 · d ≤ k seems to be a reasonable suggestion.

Parameter µ. The parameter µ ∈ N+ specifies the minimal weight predi-

cate on the neighborhood predicate in the GDBSCAN framework. In fact, µ

specifies the minimum number of points in a cluster and, therefore, is quite

intuitive. In general, the choice of µ depends on the application. Obviously,

µ ≤ k should hold.

Parameter ε. The parameter ε ∈ R+ is used to specify the neighbor-

hood predicate in the GDBSCAN framework. In general, ε can be chosen

as proposed first for the DBSCAN specialization [47] and also in [120]. The

procedure depends on the choice of µ and works as follows. Given the pa-

rameter µ, we compute the (µ−1)-nearest neighbor distances of all points in

D. These distances are plotted: the points are sorted according to decreas-

ing (µ − 1)-nearest neighbor distances along the x-axis. The corresponding

(µ − 1)-nearest neighbor distances are plotted along the y-axis. Figure 9.5

depicts such a sample (µ− 1)-distance diagram. The main idea now is that

9.3 Evaluation 137

the (µ − 1)-nearest neighbor distances of the noise points are scattered sig-

nificantly, whereas the (µ−1)-nearest neighbor distances of the points inside

a correlation cluster should be rather similar. Thus, a plateau in the (µ−1)-

distance diagram indicates that the participating points form a correlation

cluster. If we determine the first object O of the first plateau in the (µ− 1)-

distance diagram, called the pivot object, we can extract O’s (µ−1)-distance

and set ε to this value (cf. Figure 9.5). For performance reasons, we can com-

pute the (µ− 1)-distance diagram only for a sample, e.g. only for 10% of the

points in D.

Let us note that we have in fact a fourth parameter α to compute the

correlation dimensionality λP of a point P ∈ D. This parameter specifies

the portion of the total variance of the points which is explained by the

λP greatest eigenvalues of the covariance matrix of P ’s neighborhood. As

discussed above, this parameter is very robust in the range between 0.8 ≤
α ≤ 0.9. Thus, we choose α = 0.85 throughout all our experiments.

9.3 Evaluation

In all our experiments, we choose the parameters for COPAC as suggested in

Section 9.2.4. All competitors have been implemented within the framework

ELKI [8].

9.3.1 Efficiency

For evaluation of efficiency, we used synthetic data sets where the number

of points or the dimensionality has been varied. We created several ran-

domized data sets based on a predefined distribution of random points over

a given number of clusters. For the impact of the dimensionality of the

data space on the runtime, we created 10 data sets with a dimensionality

of d = 10, 20, 30, . . . , 100. For each data set, 10,000 points were distributed

over d − 1 clusters of correlation dimensionality λ = 1, . . . , d − 1. Similarly

we created 10 data sets of dimensionality d = 10 with an increasing number

138 9 Enhancing Efficiency and Effectiveness: COPAC

1

10

100

1 000

10 000

10 20 30 40 50 60 70 80 90 100
dimensionality

ru
nt

im
e

[s
ec

]

COPAC

4C

ORCLUS

Figure 9.6: Runtime vs. data dimensionality.

0
20 000
40 000
60 000
80 000

100 000
120 000
140 000
160 000
180 000
200 000

50 100 150 200 250 300 350 400 450 500
size * 1000

ru
nt

im
e

[s
ec

]

COPAC

4C

ORCLUS

Figure 9.7: Runtime vs. data set size.

of points ranging from 50,000 to 500,000, distributed over several correlation

clusters of correlation dimensionality λ = 1, . . . , 9 and noise. Here all clusters

are equally sized containing 2500 points.

Generally, the runtime complexity of 4C can be regarded as an upper-

bound for the runtime-complexity of COPAC. The worst-case for COPAC

occurs when all points share a common correlation dimensionality and, thus,

the partitioning provides only one partition containing the complete data

set. The performance of COPAC for such data would be comparable to

the performance of 4C in terms of efficiency. But even if the case occurs

9.3 Evaluation 139

that all points have an identical correlation dimensionality λ, the gain of

COPAC is the additional information that no clusters with a correlation

dimensionality different from λ are present in the data. This information is

not given after the corresponding run of 4C. However, usually the data will be

distributed over several partitions, thus the runtime decreases considerably,

as experimentally demonstrated.

In our first experiment we compared the runtime of COPAC, 4C, and

ORCLUS w.r.t. the dimensionality d of the data set. As parameters for

COPAC we used ε = 0.02, µ = k = 100 and α = 0.85. Since the number of

points within a cluster reaches its minimum for d = 100 we set the parameter

µ and k to this minimum value. As a fair setting we gave as parameter k

to ORCLUS the exact number of clusters in the data set and parameter l

was set to the maximal occurring correlation dimensionality, i.e. k = d and

l = d − 1. The parameters for 4C were set to ε = 0.1, µ = 100, λ = d − 1

and δ = 0.01. As it can be seen in Figure 9.6, COPAC gains a significant

speed-up over ORCLUS and 4C (note the logarithmic scale).

In our second experiment we evaluated the impact of the size of the

data set on the runtime of COPAC, 4C, and ORCLUS. The parameters for

COPAC were set to ε = 0.02, µ = k = 3 · d = 30 and α = 0.85. As

before, the parameter k of ORCLUS was set to the exact number of clusters

in the data set and parameter l was set to the maximal occurring correlation

dimensionality. As parameters for 4C we used analogously ε = 0.1, µ =

3 · d = 30, λ = d− 1 = 9 and δ = 0.01. Figure 9.7 illustrates the runtime of

COPAC, 4C, and ORCLUS w.r.t. the data set size. Again, COPAC clearly

outperforms ORCLUS and 4C in terms of efficiency.

9.3.2 Robustness, Completeness, and Usability

To demonstrate the robustness, completeness, and usability of COPAC in

comparison to ORCLUS and 4C, we synthesized a data set D ∈ R3 with

two clusters of correlation dimensionality 2, three clusters of correlation di-

mensionality 1, and some points of noise. The data set is depicted in Figure

140 9 Enhancing Efficiency and Effectiveness: COPAC

9.8(a). The clusters partially intersect making the separation of the clusters

a highly complex task.

The predefined clusters in the synthetic data set have been separated

clearly by COPAC (cf. Figure 9.8). As parameters we used µ = 50 and

k = 50. In order to determine a suitable value for ε we computed the (µ−1)-

nearest neighbor distance diagram as suggested in Section 9.2.4. This way,

we derived 0.004 as a suitable value for ε. Neither ORCLUS nor 4C were able

to find the clusters equally well, although we test a broad range of parameter

settings. Best results for ORCLUS were reported setting l = 2 and k = 5 (cf.

Figure 9.9). For 4C we found the best results with ε = 0.1, µ = 50, λ = 2,

and δ = 0.25 (cf. Figure 9.9).

In summary, COPAC shows better robustness against noise and parame-

ter settings than ORCLUS and 4C. Due to the heuristics presented in Section

9.2.4, the parameter choice for COPAC was very easy and results in a com-

plete detection of clusters. For both ORCLUS and 4C, we needed several

runs with different parameters in order to produce the best but still not

optimal (i.e. complete) results.

9.3.3 Results on Real-world Data

Metabolome data

We used the Metabolome data set of [92] consisting of the concentrations of 43

metabolites in 20,391 human newborns. The newborns were labeled accord-

ing to some specific metabolic diseases. The data contain 19,730 healthy new-

borns (“control”), 306 newborns suffering from phenylketonuria (“PKU”),

and 355 newborns suffering from any other diseases (“other”). COPAC finds

several pure or almost pure clusters. Table 9.1 shows the number of labeled

newborns in each cluster, the remaining newborns were classified as noise.

The parameters were chosen as suggested in Section 9.2.4 (ε = 0.15, µ = 10,

k = 130 ≈ 3 · d). ORCLUS never found clusters that were equally pure as

the clusters found by COPAC although we tested a broad range of parame-

ters. Using proper settings of the correlation dimensionality, 4C found some

9.3 Evaluation 141

(a) Synthetic data set. (b) Partition 1 – Cluster 1.

(c) Partition 1 – Cluster 2. (d) Partition 1 – Cluster 3.

(e) Partition 2 – Cluster 1. (f) Partition 2 – Cluster 2.

Figure 9.8: Synthetic data set: partitions and clustering with COPAC.

142 9 Enhancing Efficiency and Effectiveness: COPAC

(a) ORCLUS – Cluster 1. (b) ORCLUS – Cluster 2.

(c) ORCLUS – Cluster 3. (d) ORCLUS – Cluster 4.

(e) ORCLUS – Cluster 5. (f) 4C – Cluster 1.

(g) 4C – Cluster 2.

Figure 9.9: Synthetic data set: clustering with ORCLUS and 4C.

9.3 Evaluation 143

Table 9.1: COPAC clustering on Metabolome data.

λ c ID # control # PKU # other
7 7-1 0 88 0
8 8-1 2 30 0
9 9-1 0 26 0

10 10-1 26 0 0
10-2 0 41 3

11 11-1 0 27 32
11-2 156 0 0

12 12-1 841 0 1
12-2 0 4 33

13 13-1 2241 0 12
14 14-1 3411 2 23
15 15-1 5222 3 20
16 16-1 5561 3 8
17 17-1 1788 0 1
18 18-1 20 0 0

noise 460 82 222

pure “PKU” clusters, but were not able to detect pure “control” clusters. To

derive information with 4C that is comparable to COPAC, several runs of

4C with different parameter settings are required, where each single run of

4C needs considerably more time than one complete run of COPAC.

Wages data

The Wages data set2 consists of 534 11-dimensional observations from the

1985 Current Population Survey. Since most of the attributes are not nu-

meric, we used only 4 dimensions (A=age, YE=years of education, YW=years

of work experience, and W=wage) for correlation analysis. COPAC detected

three correlation clusters in this data set. Parameters were chosen according

to Section 9.2.4 (ε = 0.01, µ = 12, k = 12 = 3·d), the results are summarized

in Table 9.2. Since there are no predefined classes in this data set, models

for the found clusters were derived using the algorithm as proposed in [4].

2http://lib.stat.cmu.edu/datasets/CPS_85_Wages

144 9 Enhancing Efficiency and Effectiveness: COPAC

Table 9.2: COPAC clustering on Wages data.

c ID λ # objects Description
1 2 188 YE = 12; A = const· YW
2 2 12 YE = 16; A = const· YW
3 3 98 YE + YW = A - 6

noise 236

These models provide meaningful descriptions: The first cluster consists only

of people having 12 years of education, whereas the second cluster consists

only of people having 16 years of education. Furthermore, in both of these

clusters the difference between age and work experience is a specific constant.

In the third cluster only those employees are grouped, which started school

in the age of 6 years and after graduation immediately began working. Thus,

the sum of years of education and work experience equals the age minus 6.

Neither ORCLUS nor 4C were able to detect meaningful clusters in the wages

data.

Wisconsin Breast Cancer data

The (original) Wisconsin Breast Cancer database [98] consists of 699 patients

suffering from two types of breast cancer, benign (“B”) and malignant (“M”).

Each patient is represented by a 9-dimensional vector of specific biomedical

features. Parameters were chosen according to Section 9.2.4 (ε = 1.0, µ = 30,

k = 30 ≈ 3 · d). COPAC detected six pure correlation clusters in this data

set, the results are summarized in Table 9.3. Again COPAC outperforms its

competitors since neither ORCLUS nor 4C were able to detect pure clusters

in these data.

Gene expression data

This data set was derived from an experimental study of apoptosis in human

tumor cells3. Apoptosis is a genetically controlled pathway of cell death. The

3The confidential data set is donated by our project partners.

9.3 Evaluation 145

Table 9.3: COPAC clustering on breast cancer data.

c ID λ # B # M
1 2 108 0
2 3 12 0
3 4 100 0
4 5 46 0
5 5 0 113
6 6 0 126

noise 50 2

data set contains the expression level of 4610 genes at five different time slots

(5, 10, 15, 30, 60 minutes) after initiating the apoptosis pathway. COPAC

found two different, biologically relevant clusters of functionally related genes.

Parameters were chosen according to Section 9.2.4 (ε = 0.5, µ = 10, k = 20).

The first cluster contains about 20 genes related to the mitochondrion,

especially to the mitochondrion membrane. The genes in the cluster exhibit

a negative correlation of each of the first five time slots with the last time

slot, i.e. the expression level decreases over time. This indicates that the

volume of the energy metabolism (which is located in mitochondria) is de-

creasing during cell death. The second cluster that contains several genes

that are related to the tumor necrosis factor (TNF) and several interleukin

and interleukin receptor genes. Interleukins play a key role in the human im-

mune system, especially in cancer response. The strong correlation with the

TNF-related genes makes perfectly sense, since the cells respond to necrosis.

The correlation among the genes in this cluster is similar to that of cluster 1

and, thus, also suggests that the activity of the corresponding genes decreases

with proceeding cell death.

146 9 Enhancing Efficiency and Effectiveness: COPAC

Table 9.4: COPAC clustering on expression data.

cID sample gene names description

1 NDUFB10, MTRF1, TIMM17A, proteins located

CPS1, NM44, COX10, FIBP, in and/or related

TRAP1, MTERF, HK1, HADHA, to mitochondrial

ASAH2, CPS1, CA5A, BNI3PL, membran

TOM34, ME2

2 TNFRSF6, TNFRSF11A, proteins related

TNFRSF7, TNFRSF1B, to tumor necrosis

TNFRSF5, TNFRSF1A, TRAF5, factor (TNF)

TRAF2, TNFSF12

IL1A, IL1B, IL2, IL6, IL10, IL18, interleukins or

IL24, IL1RN, IL2RG, IL4R, IL6R, their receptors

IL7R, IL10RA, IL10RB, IL12A, activating

IL12RB2, IL15RA, IL22R immune response

147

Chapter 10

Mining Hierarchies of

Correlation Clusters: HiCO

In Part II it was demonstrated that a trivial combination of the concepts

of clustering and correlation detection is not sufficient to find correlation

clusters. Therefore, algorithms for correlation clustering have to integrate

the concepts of clustering and correlation detection in a more sophisticated

way. The algorithm ORCLUS [11], for instance, integrates PCA into k-

means clustering and the algorithms 4C [35] and COPAC [6] integrate PCA

into the density based clustering algorithm DBSCAN [47]. These algorithms

decompose a data set into subsets of points, each subset being associated to

a specific λ-dimensional hyperplane.

Since ORCLUS and 4C use the correlation dimensionality λ as a global

parameter, i.e., the correlation dimensionality of the resulting clusters must

be determined by the user, they are both not able to find all correlation

clusters of different dimensionality during one single run. COPAC over-

comes this drawback. However, searching clusters of different dimensionality

is essentially a hierarchical problem because several correlation clusters of

low dimensionality may together form a larger correlation cluster of higher

dimensionality, and so on. For example, consider two lines in a 3D space

that are embedded into a 2D plane (cf. Figure 10.1). Each of the two lines

forms a 1-dimensional correlation cluster. On the other hand the plane is a

148 10 Mining Hierarchies of Correlation Clusters: HiCO

Figure 10.1: Hierarchies of correlation clusters.

2-dimensional correlation cluster that includes the two 1-dimensional correla-

tion clusters. In order to detect the lines, one has to search for 1-dimensional

correlation clusters, (λ = 1), whereas in order to detect the plane, one has

to search for 2-dimensional correlation clusters (λ = 2).

None of the previously proposed algorithms for correlation clustering is

able to detect hierarchies of correlation clusters. Therefore, in this chapter

we propose HiCO (Hierarchical Correlation Ordering), a new algorithm for

searching simultaneously for correlation clusters of arbitrary dimensionality

and detecting hierarchies of correlation clusters. Additionally, HiCO over-

comes another drawback of the existing non-hierarchical correlation cluster-

ing methods like 4C, COPAC and ORCLUS, since HiCO does not require

the user to define critical parameters that limit the quality of clustering such

as a density threshold or the number of clusters in advance.

This chapter is organized as follows: Section 10.1 introduces basic defini-

tions in a similar way as the previous chapters. However, the definitions vary

slightly w.r.t. the definitions presented earlier as different concepts are based

upon them. Section 10.2 introduces the algorithm HiCO with its main con-

cepts and properties. An experimental evaluation in comparison to ORCLUS

and 4C is presented in Section 10.3.

The concepts presented in this chapter have been published in [7].

10.1 Basic Definitions 149

10.1 Basic Definitions

To determine how two points are correlated, we introduce in Section 10.2 a

special distance measurement called correlation distance. This measurement

is based on the local correlation dimensionality of a point which reflects the

dimensions having a strong correlation in the neighborhood of this point.

In order to compute the correlation distance between two points we have to

determine in a preprocessing step for each point P of the data set:

1. The local covariance matrix ΣP which is the covariance matrix of the

k nearest neighbors of P .

2. The local correlation dimensionality λP which indicates the dimension-

ality of the subspace accommodating the k nearest neighbors of P .

3. The local correlation similarity matrix M̂ P which is used to compute

the local correlation distance between two points.

In the following, D denotes a set of points and dist is the Euclidean

distance function.

Definition 10.1 (local covariance matrix)

Let k∈N, k≤|D|. The local covariance matrix ΣP of a point P ∈D w.r.t.

k is formed by the k nearest neighbors of P .

Formally: Let X be the centroid of NN k(P), then

ΣP =
1

|NN k(P)|
·

∑
X∈NN k(P)

(X −X) · (X −X)T

Since the local covariance matrix ΣP of a point P is a square matrix it

can be decomposed into the eigenvalue matrix EP of P and the eigenvector

matrix V P of P such that ΣP = V P ·EP ·V T

P .

The eigenvalue matrix EP is a diagonal matrix holding the eigenvalues

of ΣP in decreasing order in its diagonal elements. The eigenvector matrix

V P is an orthonormal matrix with the corresponding eigenvectors of ΣP .

150 10 Mining Hierarchies of Correlation Clusters: HiCO

Unlike in [35] we do not base the local covariance matrix on a range query

predicate because for our hierarchical clustering method, we do not have a

predefined query radius and there exists no natural choice for such a radius.

Therefore, we prefer to base the local correlation on a certain number k of

nearest neighbors which is more intuitive.

Now we define the local correlation dimensionality of a point P as the

number of dimensions of the (arbitrarily oriented) subspace which is spanned

by the major axes of the k nearest neighbors of P . If, for instance, the points

in a certain region of the data space are located near by a common line, the

correlation dimensionality of these points will be 1. That means we have to

determine the principal components of the points in NN k(P). The eigen-

vector associated with the largest eigenvalue has the same direction as the

first principal component, the eigenvector associated with the second largest

eigenvalue determines the direction of the second principal component and

so on. The sum of the eigenvalues equals the trace of the square matrix ΣP

which is the total variance of the points in NN k(P). Thus, the obtained

eigenvalues are equal to the variance explained by each of the principal com-

ponents, in decreasing order of importance. The correlation dimensionality

of a point P is now defined as the smallest number of eigenvectors explaining

a portion of at least α of the total variance of the k nearest neighbors of P :

Definition 10.2 (local correlation dimensionality)

Let α ∈]0, 1[. Then the local correlation dimensionality λP of a point P is

the smallest number r of eigenvalues ei in the d × d eigenvalue matrix EP

for which ∑r
i=1 ei∑d
i=1 ei

≥ α

We call the first λp eigenvectors of V P strong eigenvectors, the remaining

eigenvectors are called weak.

Typically α is set to values between 0.8 and 0.9, e.g. α = 0.85 denotes

that the obtained principal components explain 85% of the total variance.

In the following we denote the λP -dimensional subspace which is spanned by

the major axes of the neighborhood of P the correlation hyperplane of P .

10.1 Basic Definitions 151

In the third step of the preprocessing phase we associate each point with a

so-called local correlation similarity matrix which is used to compute the local

correlation distance to another point of the data set. The local correlation

similarity matrix can be derived from the local covariance matrix in the

following way:

Definition 10.3 (local correlation similarity matrix)

Let point P ∈ D, V P the corresponding d×d eigenvector matrix of the local

covariance matrix ΣP of P , and λP the local correlation dimensionality of P .

The matrix ÊP with diagonal entries êi (i = 1, . . . , d) is computed according

to the following rule:

êi =

 0, if i ≤ λP

1, otherwise

The matrix M̂ P = V P · ÊP · V T

P is called the local correlation similarity

matrix of P .

Definition 10.4 (local correlation distance)

The local correlation distance of point P to point Q according to the local

correlation similarity matrix M̂ P associated with point P is denoted by

LocDistP(P, Q) =
√

(P −Q)T · M̂ P · (P −Q).

LocDistP(P, Q) is the weighted Euclidean distance between P and Q

using the local correlation similarity matrix M̂ P as weight. The motivation

for the adaptation of M̂ P is that the original local covariance matrix ΣP

has two undesirable properties: (1) It corresponds to a similarity measure

and to an ellipsoid which is oriented perpendicularly to the major axes in the

neighborhood of P . This would result in high distances to points lying within

or nearby the subspace of the major axes and in low distances to points lying

outside. Obviously, for detecting correlation clusters we need quite the oppo-

site. (2) The eigenvalues vary with the data distribution, so some points P

may have higher eigenvalues in EP than others and this would lead to incom-

parably weighted distances. Thus, to compute comparable local correlation

distances an inversion and a scaling of the eigenvalues has to be performed.

152 10 Mining Hierarchies of Correlation Clusters: HiCO

Intuitively spoken, the local correlation distance LocDistP(P, Q) equals the

Euclidean distance between Q and the correlation hyperplane exhibited by

the neighbors of P . Thus, if Q lies within the correlation hyperplane of P

then LocDistP(P, Q) = 0.

We call the matrix Ê the selection matrix of the weak eigenvectors because

V P · Ê provides a matrix containing only weak eigenvectors. We will later

also use another matrix ĚP = I d×d − ÊP where the 0 and 1-entries of the

diagonal elements are changed. We call this matrix ĚP the selection matrix

of the strong eigenvectors since V P · ĚP provides a matrix containing only

strong eigenvectors. The selection matrices ÊP and ĚP only depend on the

local correlation dimensionality λP : ÊP is a d×d diagonal matrix where the

first λP diagonal elements are 0 and the remaining d− λP diagonal elements

are 1 (and vice versa for ĚP).

Note that the local correlation distance is not yet the similarity measure

which is directly used in our hierarchical clustering algorithm. It is merely a

construction element for the actual correlation distance measure which will

be defined in the following section.

10.2 Hierarchical Correlation Clusters

Hierarchical clustering methods in general are able to find hierarchies of

clusters which are nested into each other, i.e. weaker clusters in which some

stronger clusters are contained. The hierarchical density based clustering

method OPTICS, for example, is able to detect clusters of higher density

which are nested in clusters of lower but still high density.

The task of correlation clustering as defined in [35] is to group those

points of a data set into same clusters where the correlation is uniform. Our

general idea is to evaluate the correlation between two points with a special

distance measure called correlation distance. This distance results in a small

value whenever many attributes are highly correlated in the neighborhood

of the two points. In contrast, the correlation distance is high if only a few

10.2 Hierarchical Correlation Clusters 153

attributes are highly correlated or the attributes are not correlated at all.

Therefore, our strategy is to merge those points into common clusters which

have small correlation distances. A hierarchy of correlation clusters means

that clusters with small correlation distances (e.g. lines) are nested in clusters

with higher correlation distances (e.g. 2d-planes).

10.2.1 Main Concepts of HiCO

Once we have associated the points of our database with a local correlation

dimensionality and with a decomposed local similarity matrix, we can now

explain the main idea of our hierarchical clustering algorithm. Conventional

hierarchical clustering algorithms like SLINK or OPTICS without the idea

of correlation work as follows: They keep two separate sets of points, points

which have already been placed in the cluster structure and those which have

not. In each step, one point of the latter set is selected and placed in the first

set. The algorithm always selects that point which minimizes the distance

to any of the points in the first set. By this selection strategy, the algorithm

tries to extend the current cluster hierarchy as close to the bottom of the

hierarchy as possible.

We will adapt this paradigm. In the context of hierarchical correlation

clustering, the hierarchy is a containment hierarchy of the correlation prim-

itives. Two or more correlation lines may together form a 2-dimensional

correlation plane and so on. We simulate this behavior by defining a similar-

ity measure between points which assigns a distance of 1, if these two points

(together with their associated similarity matrices) share a common corre-

lation line. If they share a common correlation plane, they have a distance

of 2, etc. Sharing a common plane can mean different things: Both points

can be associated to a 2-dimensional correlation plane and the planes are the

same, or both points can be associated to 1-dimensional correlation lines and

the lines meet at some point or are parallel (but not skew).

If we associate a pair of points with a distance measure with the prop-

erties mentioned before, we can generally use the well-known hierarchical

154 10 Mining Hierarchies of Correlation Clusters: HiCO

q1

2

q2

p1

Figure 10.2: Spaces spanned by two vectors.

clustering algorithms. Intuitively, the distance measure between two points

corresponds to the dimensionality of the data space which is spanned by the

strong eigenvectors of the two points. By the notion spanning a space we

do not mean spanning in the algebraic sense of linear independence which

considers two vectors to span a 2-dimensional space even if they have only

a minimal difference of orientation. In our context, a vector q adds a new

dimension to the space spanned by a set of vectors {p1, . . . , pn} if the “dif-

ference” between q and the space spanned by {p1, . . . , pn} is substantial, i.e.

if it exceeds the threshold parameter ∆. This is illustrated in Figure 10.2:

the space spanned by {q1} ∪ {p1} is considered to be the same as the space

spanned by p1 only. On the other hand, the set of vectors {q2} ∪ {p1} span

a 2-dimensional space, as the “difference” between q2 and p1 exceeds ∆.

We first give a definition of the correlation dimensionality of a pair of

points λ(P, Q) which follows the intuition of the spanned space. Later we

will give a method for computing this dimensionality efficiently, given the

local eigenvector matrices and the local correlation dimensionalities of P

and Q, respectively. The correlation dimensionality is the most important

component of our correlation similarity measure which will later be extended

a little bit one more time.

Definition 10.5 (correlation dimensionality)

The correlation dimensionality between two points P, Q ∈ D, denoted by

λ(P, Q), is the dimensionality of the space which is spanned by the union of

the strong eigenvectors associated to P and the strong eigenvectors associated

10.2 Hierarchical Correlation Clusters 155

to Q.

If we would like to determine the correlation dimensionality of two points

P and Q in a strong algebraic sense, we would have to look exactly for the

linearly independent vectors in the union of the strong eigenvectors of P

and Q. These n vectors form a basis of the n-dimensional subspace spanned

by the strong eigenvectors of P and Q. Note that we are not interested in

the spanned space in the strong algebraic sense. That means we are not

looking for vectors that are linearly independent in strict algebraic sense but

only for those vectors that are linearly independent in our relaxed notion as

mentioned above in order to allow a certain degree of jitter of data points

around a perfect hyperplane.

An obvious idea for computing the correlation dimensionality of a pair of

objects is to compare the strong eigenvectors pi ∈ V P · ĚP and qi ∈ V Q · ĚQ

in a one-by-one fashion. However, two vector pairs {p1, p2} and {q1, q2} can

be linearly dependent although each vector is independent from each of the

other three vectors.

We can test one of the strong eigenvectors, say p1 ∈ V P · ĚP whether

or not it is linearly independent (in our relaxed sense) to all the strong

eigenvectors qi ∈ V Q · ĚQ by substituting it into the local similarity matrix

of Q, i.e. by testing: pT
1 · M̂ Q · p1 > ∆2.

If this comparison holds then we know that p1 opens up a new dimension

compared to Q, and that the correlation dimensionality λ(P, Q) is at least

(λQ + 1). But if we test a second vector p2 ∈ V P · ĚP we still have the

problem that p2 can be linearly dependent from V Q · ĚQ
⋃{p1} without

being linearly dependent from any vector in V Q · ĚQ and {p1} alone. This

problem is visualized in Figure 10.3. The strong eigenvectors p1 and p2 of

P (depicted in dashed lines) are each linearly independent from the strong

eigenvectors q1 and q2 of Q (depicted in solid lines) and by definition also

linearly independent from each other (they are even orthogonal). However,

p2 is linearly dependent from the vectors in V Q · ĚQ
⋃{p1}.

Therefore, before testing p2, we have to integrate p1 temporarily into the

156 10 Mining Hierarchies of Correlation Clusters: HiCO

Q

P
p2

p1

q1

q2

Figure 10.3: Two points with their eigenvectors.

eigenvector matrix V Q (but only if p1 indeed opens up a new dimension).

To do so, we have to replace temporarily the weak eigenvector qλQ+1 by the

new strong eigenvector p1 and then orthonormalize the resulting matrix.

To orthonormalize the set of vectors {q1, . . . , qλQ
, p1, qλQ+2, . . . , qd} the

following steps have to be applied according to the method of Gram-Schmitt:

Note that the vector qλQ+1 is temporarily replaced by vector p1, i.e. qλQ+1 =

p1.

1. xi := qi −
∑i−1

k=1〈qk, qi〉qk for i = λQ + 1, . . . , d

2. qi := xi

||xi|| for i = λQ + 1, . . . , d

The resulting vectors {q1, . . . , qd} build now again an orthonormal basis

of the d-dimensional feature space.

We have to make (d − λQ) vectors orthogonal which causes some prob-

lems because (1) we have to guarantee the linear independence (this time

in the strong algebraic sense) of the remaining eigenvectors in V Q because,

otherwise, orthonormalization could fail. (2) The effort is considerable high

because this orthonormalization (which is in O(d2)) must be performed every

time a new vector is integrated into V Q. Therefore, our actual algorithm

computes the test pT
i ·(V Q ·ÊQ ·V T

Q) ·pi > ∆2 in an indirect way by replacing

Ê by Ě which will yield the advantage that less vectors (one instead of up

to d vectors) have to be orthonormalized. The justification for the indirect

computation is given by the following lemma:

10.2 Hierarchical Correlation Clusters 157

Lemma 10.1 (Indirect Similarity Computation)

Let V be an orthonormal matrix consisting of the strong eigenvectors of ΣQ,

some of the added and orthonormalized eigenvectors of ΣP and the remaining

orthonormalized weak eigenvectors of ΣQ. Then

xT · (V · Ê ·V T) · x = xT · x− xT · (V · Ě ·V T) · x

Proof.

xT · (V · Ê ·V T) · x = xT · (V · (I − Ě) ·V T) · x
= xT · (V · I ·V T) · x− xT · (V · Ě ·V T) · x
= xT · x− xT · (V · Ě ·V T) · x

2

The advantage of this computation is that now in the joint matrix M̌ Q =

V Q · ĚQ · V T

Q the weak eigenvectors qm for m > λQ are not considered.

Keeping the weak eigenvectors orthonormal after every insertion of a new

strong eigenvector of ΣP causes the main effort in orthonormalization: With

direct computation, up to d vectors have to be orthonormalized after each

insertion. Therefore, the overall complexity is O(d2) per insertion. Using

the indirect computation it is sufficient to orthonormalize only the inserted

vector which can be done in O(d) time. Note also that in this case the linear

independence of the vector to be orthonormalized to the strong eigenvectors

in V Q is given, because this vector is even linearly independent in our relaxed

sense (and linear independency in weak sense implies linear independency in

strict sense).

The algorithm for computing the correlation distance is presented in Fig-

ures 10.4 and 10.5. First, the correlation dimensionality λ(P, Q) for a pair of

points (P, Q) is derived as follows: For each of the strong eigenvectors qi of

Q test whether qT
i ·qi−qT

i · (V P · ĚP ·V T

P) ·qi > ∆2. If so, increase λP by one

and set pλP
to the orthonormalized vector of qi. Finally, λP (Q) contains the

correlation dimensionality of the point pair (P, Q) w.r.t. P . In an analogue

way λQ(P) is derived for the same point pair. The overall correlation di-

mensionality λ(P, Q) is the maximum of both, λP (Q), and λQ(P). λ(P, Q) is

158 10 Mining Hierarchies of Correlation Clusters: HiCO

now the major building block for our correlation distance. As λ(P, Q) ∈ N,

many distances between different point pairs are identical. Therefore, there

are many tie situations during clustering. We resolve these tie situations

by additionally considering the Euclidean distance as a secondary criterion.

This means, inside a correlation cluster (if there are no nested stronger cor-

relation clusters), the points are clustered as by a conventional hierarchical

clustering method. Formally we define:

Definition 10.6 (correlation distance)

The correlation distance between two points P, Q∈D, denoted by CDist(P ,Q),

is a pair consisting of the correlation dimensionality of P and Q and the Eu-

clidean distance between P and Q, i.e. CDist(P, Q) = (λ(P, Q), dist(P, Q)).

We say CDist(P, Q) ≤ CDist(R,S) if one of the following conditions

holds:

(1) λ(P, Q) < λ(R,S),

(2) λ(P, Q) = λ(R,S) and dist(P, Q) ≤ dist(R,S).

10.2.2 Algorithm HiCO

Using the correlation distance defined above as a distance measure, we can

basically run every hierarchical (or even non-hierarchical) clustering algo-

rithm which is based on distance comparisons. Examples for such algorithms

are Single-Link, Complete-Link, and the density-based clustering methods

DBSCAN (non-hierarchical) and OPTICS. Since OPTICS is hierarchical and

more robust w.r.t. noise than Single- and Complete-Link, we use the algo-

rithmic schema and visualization technique of OPTICS for HiCO.

As suggested in [16] we introduce a smoothing factor µ to avoid the Single-

Link effect and to achieve robustness against noise points. Thus, instead of

using the correlation distance CDist(P, Q) to measure the similarity of two

points P and Q we use the correlation reachability Reachµ(O,P) to compare

these two points. The correlation reachability of a point P relative from a

10.2 Hierarchical Correlation Clusters 159

function correlationDistance(P , Q, ∆)

compute ĚP from ÊP ;

V P = eigenvector matrix of P ;

λP = correlation dimensionality of P ;

compute ĚQ from ÊQ;

V Q = eigenvector matrix of Q;

λQ = correlation dimensionality of Q;

for each strong eigenvector qi ∈ V Q do

if qT
i qi − qT

i V P ĚPV T
P qi > ∆2 then

adjust(V P , ĚP , qi, λP);

λP = λP + 1;

end if

end for

for each strong eigenvector pi ∈ V P do

if pT
i pi − pT

i V QĚQV T
Qpi > ∆2 then

adjust(V Q, ĚQ, pi, λQ);

λQ = λQ + 1;

end if

end for

CDist = max(λP , λQ);
return (CDist,distEuclid(P,Q));

end

Figure 10.4: Pseudo code correlation distance.

160 10 Mining Hierarchies of Correlation Clusters: HiCO

procedure adjust(V , Ě , x, λ)

// set column (λ + 1) of matrix V to vector x

vλ+1 := x;

for each strong eigenvector vi ∈ V do

vλ+1 := vλ+1 − 〈vi, x〉 · vi

vλ+1 := vλ+1

||vλ+1|| ;

set column (λ+1) of Ě to the (λ+1)-th unit vector;

end

Figure 10.5: Pseudo code orthonormalization.

algorithm HiCO(D, k, µ, α, ∆)

//1. Preprocessing

for each P ∈ D do

compute ÊP ,V P ;

end for

//2. Clustering

// priority queue pq is ordered by Reachµ

for each P ∈ D do

P .Reach = ∞;

insert P into pq;

end for

while pq 6= ∅ do

O := pq.next();

R := µ-nearest neighbor if O;

for each P ∈ pq do

new cr := max(CDist(O,R),CDist(O,P));
pq.update(P , new cr);

end for

end while

end

Figure 10.6: Pseudo code HiCO algorithm.

10.2 Hierarchical Correlation Clusters 161

point O is defined as the maximum value of the correlation distance from O

to its µ-nearest neighbor and the correlation distance between P and O.

Definition 10.7 (correlation reachability)

For µ ∈ N, µ ≤ |D| let R be the µ-nearest neighbor of O ∈ D w.r.t. the

correlation distance. The correlation reachability of a point P ∈ D relative

from point O w.r.t. µ ∈ N is defined as

Reachµ(O,P) = max(CDist(O,R),CDist(O,P))

Using this correlation reachability, HiCO computes a “walk” through the

data set and assigns to each point O its smallest correlation reachability

with respect to a point considered before O in the walk. In each step of

the algorithm HiCO selects that point O having the minimum correlation

reachability to any already processed point. This process is managed by a

seed list which stores all points that have been reached from already processed

points sorted according to the minimum correlation reachabilities. A special

order of the database according to its correlation-based clustering structure is

generated, the so-called cluster order, which can be displayed in a correlation

reachability diagram. Such a correlation reachability diagram consists of the

reachability values on the y-axis of all points, plotted in the order which

HiCO produces on the x-axis. The result is a visualization of the clustering

structure of the data set which is very easy to understand. The “valleys” in

the plot represent the clusters, since points within a cluster typically have

lower correlation reachabilities than points outside a cluster.

The complete integration of our distance measure into the algorithm

HiCO can be seen in Figure 10.6.

10.2.3 Runtime Complexity

Let n be the number of data points and d be the dimensionality of the data

space. In the preprocessing step the correlation neighborhoods are precom-

puted which requires O(nd + kd2) for the determination of the covariance

162 10 Mining Hierarchies of Correlation Clusters: HiCO

Figure 10.7: 3D synthetic data set (DS1).

matrix. Since this is done for each object in the data set and k < n, we

have a runtime complexity of O(n2d2) for the preprocessing step. During the

run of HiCO, we have to evaluate for each pair of points of the database its

correlation dimensionality. This requires again a complexity of O(n2d2). In

addition, we have to decompose the covariance matrix of each point into the

eigenvalue matrix and the eigenvector matrix. This step has a complexity of

O(nd3). Thus, the overall runtime complexity of HiCO is O(n2d2 + nd3).

10.3 Evaluation

10.3.1 Data Sets

For our experiments, we used several synthetic data sets containing points

marked with cluster labels that represent the hierarchical clustering struc-

ture. In addition, we used four real-world data sets. The first one, called

“DS2”, is a data set derived from a medical study to develop screening meth-

ods in order to identify carriers of a rare genetic disorder. Four measurements

were made on blood samples of approximately 150 people who do not suffer

from the disease and on 50 carriers of the disease.

As a second data set we used the “El Nino” data, a benchmark data set

10.3 Evaluation 163

Cluster 1 Cluster 2

Cluster 3

(a) Reachability plot.

(b) Cluster 1. (c) Cluster 2.

(d) Cluster 3.

Figure 10.8: Results of HiCO applied to DS1 (Parameters: µ = k = 20,

α = 0.90, ∆ = 0.05).

164 10 Mining Hierarchies of Correlation Clusters: HiCO

(a) Cluster 1.

(b) Cluster 2.

(c) Cluster 3.

Figure 10.9: Results of ORCLUS applied to DS1 (Parameters: k = 3,

l = 2).

10.3 Evaluation 165

Cluster 1

Cluster 2

(a) Reachability plot.

(b) Cluster 1.

(c) Cluster 2.

Figure 10.10: Results of OPTICS applied to DS1 (Parameters: ε = 1,

minPts = 20).

166 10 Mining Hierarchies of Correlation Clusters: HiCO

from the UCI KDD Archive1. The data set called “DS3” contains oceano-

graphic and surface meteorological readings taken from a series of buoys po-

sitioned throughout the equatorial Pacific. It contains approximately 800 9D

objects. The third data set called “DS4” consists of approximately 550 11D

observations from the 1985 Current Population Survey2. The fourth data

set called “DS5” consists of the concentrations of 43 metabolites in 2,000

newborns. The newborns were labeled according to some specific metabolic

diseases.

10.3.2 Results on Synthetic Data

We applied HiCO to several synthetic data sets. In the following, we focus

on the 3-dimensional data set “DS1” depicted in Figure 10.7. It contains

a hierarchy of correlation clusters consisting of two 1D correlations (lines)

belonging to a 2D correlation (plane) and noise. The correlation reachability

distance diagram computed by HiCO is shown in Figure 10.8(a). As it can

be observed, HiCO detects two 1D correlation clusters that are embedded

within a 2D correlation cluster. Additionally, some objects have a correlation

distance of 3 (which equals the data dimensionality), i.e. they can be regarded

as noise. We analyzed the “valleys” in the correlation reachability diagram

marked with “Cluster 1”, “Cluster 2”, and “Cluster 3”. The points that are

clustered together in that correlation clusters are depicted in Figures 10.8(b),

10.8(c), and 10.8(d). As it can be seen, the correlation plane “Cluster 3”

corresponds to the 2D correlation cluster in the diagram, whereas the two

correlation lines “Cluster 1” and “Cluster 2” exactly correspond to the 1D

correlation sub-clusters of “Cluster 3” in the diagram. Obviously, HiCO

detects the hidden correlation hierarchy exactly.

For comparison, we applied ORCLUS, OPTICS and 4C on the same data

sets, but none of them were able to find the correlation clusters equally well,

despite reasonable parameter settings. For ORCLUS we choose e.g. k = 3

and l = 2, but as it can be seen in Figure 10.9, ORCLUS was not able to

1http://kdd.ics.uci.edu/
2http://lib.stat.cmu.edu/datasets/CPS_85_Wages

10.3 Evaluation 167

find the correlation clusters hidden in the synthetic 3D data set.

We also applied OPTICS to the synthetic 3D data set (cf. Figure 10.10).

OPTICS detected a hierarchy of clusters according to its density based

paradigm, but it was not able to separate the correlation within these clus-

ters.

Figure 10.11 shows the results of two 4C runs with different parameter

settings. As parameter λ was set to one in the first run, 4C detected four

1-dimensional clusters consisting of the two lines in the synthetic 3D data set

(cf. Figure 10.11(a)), but 4C failed to detect the 2-dimensional correlations.

According to the parameter setting of λ = 2 in the second run, 4C found one

2-dimensional correlation cluster consisting of the two lines and the plane (cf.

Figure 10.11(b)). In both runs, 4C was not able to detect all three correlation

clusters as HiCO did.

10.3.3 Real-world Data

The results of HiCO applied to the real-world data sets are shown in Figure

10.12. Applied to the DS2 data (cf. Figure 10.12(a)), HiCO found a cluster

with correlation dimensionality of 2 embedded in a larger 3-dimensional cor-

relation cluster. The cluster with a correlation dimensionality of 2 mostly

consists of carriers of the genetic disorder. Most of the people not suffering

from the disease belong to the cluster with a correlation dimensionality of 3.

The resulting reachability diagram of HiCO applied on data set DS3 is

depicted in Figure 10.12(b). As it can be seen, the hierarchy contains a 1-

dimensional correlation cluster and four 2-dimensional clusters. Analyzing

these clusters, we found that the observations belonging to these clusters

were mostly made from neighbored buoys.

The result of HiCO on DS4 is depicted in Figure 10.12(c). We can observe

a strong hierarchy of correlation clusters. HiCO computed four 2-dimensional

correlation clusters embedded in a 3-dimensional correlation cluster which is

again embedded in a 4-dimensional cluster. The hierarchy ends up with 5-

dimensional and 6-dimensional clusters. The first of the 2-dimensional clus-

168 10 Mining Hierarchies of Correlation Clusters: HiCO

Cluster 3

Cluster 2

Cluster 1

Cluster 4

(a) Parameters: λ=1, ε=0.1, µ=20, δ=0.2.

Cluster 1

(b) Parameters: λ=2, ε=0.25, µ=20, δ=0.1.

Figure 10.11: Results of 4C applied to DS1.

10.3 Evaluation 169

(a) DS2 (µ=10, k=25).

(b) DS3 (µ=15, k=40).

(c) DS4 (µ=10, k=40).

0

2

4

6

8

10

12

14

16

18

(d) DS5 (µ=10, k=100).

Figure 10.12: Results of HiCO on real-world data sets (Parameters: ∆ =

0.25, α = 0.8).

170 10 Mining Hierarchies of Correlation Clusters: HiCO

ters consists only of white married women, living not in the southern states of

the USA and not belonging to any union. To the second 2-dimensional clus-

ter male persons with the same attributes as the women in the first cluster

have been assigned. The third 2-dimensional cluster consists of unmarried

white women being no union member and living in the northern states. And

last but not least people belonging to the fourth 2-dimensional cluster have

the same attributes as the third cluster but being men instead of women.

Obviously, HiCO computed pure correlation clusters on this data set.

Finally, HiCO retrieved on DS5 7-dimensional and 8-dimensional correla-

tion clusters embedded in higher dimensional clusters (cf. Figure 10.12(d)).

These clusters of relative low dimensionality consist only of newborns suffer-

ing from phenylketonuria (PKU), while the healthy newborns are grouped in

the clusters of higher dimensionality.

To summarize, our experiments show that HiCO detects several interest-

ing correlation cluster hierarchies in real-world data sets.

171

Chapter 11

Exploring Complex

Hierarchical Relationships of

Correlation Clusters: ERiC

The first approach that can detect correlation clusters is ORCLUS [11], inte-

grating PCA into k-means clustering. The algorithm 4C [35] and its variant

COPAC [6] integrate PCA into a density-based clustering algorithm. These

approaches can be seen as “flat” approaches in the following sense. A corre-

lation cluster C1 with dimensionality λ1 may be embedded in (and therefore

may be part of) another correlation cluster C2 with dimensionality λ2 > λ1.

In general, there may be a kind of hierarchy among correlation clusters that

are embedded into higher dimensional correlation clusters. Since neither OR-

CLUS nor 4C and COPAC can detect such hierarchies, the algorithm HiCO

[7] was proposed tackling correlation clustering as a hierarchical problem, i.e.

exploring the information of correlation clusters of lower correlation dimen-

sionality that together form a larger correlation cluster of higher correlation

dimensionality. Although it is represented by the same models (dendro-

gram or reachability diagram), the resulting hierarchy is different from the

hierarchies computed by traditional hierarchical clustering algorithms such

as Single-Link or OPTICS [16]. The hierarchy among correlation clusters

reflects the relationships among the subspaces in which these correlation

172 11 Complex Hierarchical Relationships: ERiC

(a) Sample data set 1 (b) Sample data set 2

Figure 11.1: Simple (a) and complex (b) hierarchical relationships among

correlation clusters

clusters are embedded rather than spatial vicinity or density. As a simple

illustration consider the data set depicted in Figure 11.1(a): Two lines, i.e.

1-D correlation clusters, are embedded within a plane, i.e. a 2-D correlation

cluster. The resulting hierarchy consists of the two 1-D clusters as leaf-nodes

of the hierarchy-tree both having the 2-D correlation cluster as parent node.

HiCO aims at generating a tree-based representation of the correlation clus-

ter hierarchy.

However, it may not always be appropriate to reflect the hierarchy of

correlation clusters as a tree. A correlation cluster may be embedded in

several correlation clusters of higher dimensionality, resulting in a hierarchy

with multiple inclusions (similar to the concept of “multiple inheritance” in

software engineering). Consider e.g. the data set depicted in Figure 11.1(b):

One of the 1-D correlation clusters is the intersection of two 2-D correla-

tion clusters, i.e. it is embedded within two clusters of higher dimensionality.

Those multiple inclusions can only be represented by a graph-based visual-

ization approach which is beyond the capabilities of previous methods such

as HiCO.

In this chapter, we propose a new algorithm called ERiC (Exploring Re-

lationships among Correlation clusters) to completely uncover any complex

hierarchical relationships of correlation clusters in high dimensional data sets

11.1 Motivation: Drawbacks of HiCO 173

including not only single inclusions (like HiCO) but also multiple inclusions.

In addition, ERiC provides a clear visualization of these complex relation-

ships by means of a graph-based representation.

This chapter is organized as follows: We first elaborate in more detail the

drawbacks of the predecessor method HiCO (Section 11.1). We recall the

notion of correlation clusters formally in Section 11.2. Section 11.3 presents

the algorithm ERiC to overcome the shortcomings of HiCO. An experimental

evaluation of ERiC in comparison to ORCLUS, 4C, and HiCO is shown in

Section 11.4.

The material presented in this chapter has been partially published in [5].

11.1 Motivation: Drawbacks of HiCO

HiCO incorporates a distance measure taking into account local correlation

dimensionalities into the hierarchical clustering algorithm OPTICS [16]. The

resulting reachability-plot allows to derive a simple hierarchy of correlation

clusters. Let us consider two main drawbacks of HiCO: Firstly, HiCO uses

a relatively complex distance measure for every distance query in the clus-

tering step. This results in considerable computational efforts. Secondly,

HiCO assumes a relatively simple hierarchy of correlation clusters. Multiple

inclusions cannot be derived from the resulting plot. Thus, the detected hi-

erarchical structure of correlation clusters can be misleading or even simply

wrong.

This limitation is illustrated in Figure 11.2 depicting the resulting reacha-

bility plot when applying HiCO on the sample datasets from Figure 11.1. As

it can be observed, the resulting plots look almost identical for both, sample

data set 1 (cf. Figure 11.2(a)) and sample data set 2 (cf. Figure 11.2(b)).

Since valleys in the plot indicate clusters, both plots reveal the same infor-

mation of two 1-D clusters embedded within one 2-D cluster. In fact, in data

set 2 the two 2-D clusters cannot be separated and the complex hierarchy

consisting of the multiple inclusion cannot be detected by HiCO. The true

174 11 Complex Hierarchical Relationships: ERiC

(a) (b) (c)

Figure 11.2: (a) and (b): Results of HiCO on the data sets shown in Figure

11.1 and (c): the true hierarchical relationships

hierarchy hidden in sample data set 2 can only be represented by a graph

model. Figure 11.2(c) envisions such a visualization of the complete hierar-

chy allowing for multiple inclusions. In fact, our method ERiC will produce

such a visualization.

11.2 A Notion of Correlation Clusters

In this section, we prepare the introduction of our approach by formalizing

the notion of correlation clusters. In the following, we assume D to be a

database of n feature vectors in a d-dimensional feature space, i.e. D ⊆ Rd.

A correlation cluster is a set of feature vectors that are close to a common,

arbitrarily oriented subspace of a given dimensionality λ (1 ≤ λ < d). In the

data space, the correlation cluster appears as a hyperplane of dimensionality

λ.

In general, one way to formalize the concept of correlation clusters is to

use PCA. Formally, let C be a correlation cluster, i.e. C ⊆ D, and let X̄

denote the centroid of all points in C. The d× d covariance matrix Σ C of C
is defined as:

Σ C =
1

|C|
·
∑
X∈C

(X − X̄) · (X − X̄)T.

Since the covariance matrix Σ C of C is a positive semi-definite square matrix,

11.2 A Notion of Correlation Clusters 175

it can be decomposed into the eigenvalue matrix E C of Σ C and the eigenvector

matrix V C of Σ C such that Σ C = V C · E C · V T

C. The eigenvalue matrix

E C is a diagonal matrix storing the d non-negative eigenvalues of Σ C in

decreasing order. The eigenvector matrix V C is an orthonormal matrix with

the corresponding d eigenvectors of Σ C.

Now we define the correlation dimensionality of C as the number of dimen-

sions of the (arbitrarily oriented) subspace which is spanned by the major

axes in V C. Let us note that the correlation dimensionality is closely re-

lated to the intrinsic dimensionality of the data distribution. If, for instance,

the points in C are located near by a common line, the correlation dimen-

sionality of these points will be 1. That means we have to determine the

principal components (eigenvectors) of Σ C. The eigenvector associated with

the largest eigenvalue has the same direction as the first principal component,

the eigenvector associated with the second largest eigenvalue determines the

direction of the second principal component and so on. The sum of the eigen-

values equals the trace of the square matrix Σ C which is the total variance

of the points in C. Thus, the obtained eigenvalues are equal to the variance

explained by each of the principal components, in decreasing order of impor-

tance. The correlation dimensionality of a set of points C is now defined as

the smallest number of eigenvectors explaining a portion of at least α ∈]0, 1[

of the total variance of C.

In the following, we call the λC-dimensional subspace which is spanned

by the major axes of C the correlation hyperplane of C. Since we follow the

convention that the eigenvalues are ordered decreasingly in the eigenvalue

matrix E C, the major axes correspond to the λC first eigenvectors of Σ C.

Thus, the correlation dimensionality λC is the dimensionality of the sub-

space containing all points of the set C allowing a small deviation correspond-

ing to the remaining portion of variance of 1− α. The remaining, neglected

variance scatters along the eigenvectors vλC+1, . . . , vd.

176 11 Complex Hierarchical Relationships: ERiC

11.3 Algorithm ERiC

As discussed above, hierarchical clustering schemata such as the agglomera-

tive schema (e.g. used by Single-Link), the divisive schema, or the density-

based schema (e.g. used by OPTICS) cannot uncover complex hierarchies

that exhibit multiple inclusions. The reason for this is that the resulting com-

plex hierarchy of an algorithm implementing any of the traditional schemata

is only capable of producing a tree-like hierarchy rather than producing a

graph-like hierarchy. Thus, approaches like HiCO, that integrate a suit-

able “correlation distance measure” into traditional hierarchical clustering

schemata cannot be used to handle hierarchies with multiple inclusions.

As a consequence, ERiC follows a different strategy. The basic idea of

ERiC is to first generate all correlation clusters and, second, to determine

the hierarchy from this result. Obviously, during the computation of the

clusters it would be very helpful to aggregate information that can be used

to explore the hierarchical relationships among these clusters. In addition,

it is required to compute all correlation clusters for all possible correlation

dimensions simultaneously.

Since none of the existing correlation clustering algorithms meets both

requirements we propose a novel approach to determine the complete set of

correlation clusters and additional information for the hierarchy generation

process. In particular, our algorithm ERiC consists of the following three

steps: First, the objects of the database are partitioned w.r.t. their “corre-

lation dimensionality” (cf. Section 11.3.1) in a similar way as proposed for

the algorithm COPAC (cf. Chapter 9). This correlation dimensionality of

a point p ∈ D will reflect the dimensionality of the correlation cluster in

which p fits best. In a second step, the points within each partition are

clustered using a “flat” correlation clustering algorithm (cf. Section 11.3.2).

The result of these two steps is the complete set of correlation clusters with

the additional information regarding their dimensionality. To explore the

relationships among the correlation clusters found during step 2, we follow a

bottom-up strategy. For any cluster Ci with correlation dimensionality λi, we

consider those clusters Cj with correlation dimensionality λj > λi as possible

11.3 Algorithm ERiC 177

parents. A cluster Cj is a parent of Ci, if Ci is embedded in (and therefore part

of) Cj. Using this information, ERiC creates the final result (i.e. a hierarchy

of correlation clusters with multiple inclusions) in the third step (cf. Section

11.3.3).

11.3.1 Partitioning w.r.t. Correlation Dimensionality

In the first step of ERiC, we partition the database according to the local

correlation dimensionality of the database objects reflecting the correlation

dimensionality of the local neighborhood of each point.

Definition 11.1 (local correlation dimensionality)

Let α ∈]0, 1[, p ∈ D, and let Np denote the set of points in the local neighbor-

hood of p. Then the local correlation dimensionality λp of the point p is the

smallest number of eigenvalues ei in the eigenvalue matrix ENp explaining a

portion of at least α of the total variance, i.e.

λp = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

Let us note that ENp is the eigenvalue matrix of ΣNp which is the covariance

matrix of Np. Typically, values for α are chosen between 0.8 and 0.9. For

example, α = 0.85 denotes that the obtained principal components explain

85% of the total variance. The set of points Np of p should well reflect

the correlation in the local neighborhood of p. Thus, one may e.g. choose

the k-nearest neighbors of p as the neighborhood Np of p. This way, one

can ensure to consider a set of points large enough to derive a meaningful

covariance matrix ΣNp . Obviously, k should considerably exceed d. On the

other hand, k should not be too large, as otherwise too many noise points

may influence the derivation of the local correlation structure.

Based on Definition 11.1, the first step of ERiC partitions the database

objects according to their local correlation dimensionality, derived from the

k-nearest neighbors of each object. A point p ∈ D with λp = i is assigned to

a partition Di of the database D. This results in a set of d disjoint subsets

178 11 Complex Hierarchical Relationships: ERiC

D1, . . . ,Dd of D. Some of these subsets may remain empty. In terms of

correlation clustering, Dd contains noise, since there is no linear dependency

of features within the neighborhood of p, if λp = d.

This first step of ERiC yields an appropriate correlation dimensionality

for each point in advance. Furthermore, the number n of data points to

process in the clustering step for each partition is reduced to n
d

on the average.

11.3.2 Computing Correlation Clusters within each Par-

tition

Having performed the partitioning of the database D in step 1, a clustering

step is performed for each partition separately. For the clustering proce-

dure, we can utilize the fact that all points within a given partition Di share

a common local correlation dimensionality i. This enables a much more

efficient procedure in comparison to HiCO. Based on the local correlation

dimensionality of a point p, we distinguish strong eigenvectors that span the

hyperplane associated with a possible correlation cluster containing p, and

weak eigenvectors that are perpendicular to this hyperplane.

Definition 11.2 (strong and weak eigenvectors)

Let p ∈ D, λp be the local correlation dimensionality of p, and let V p be

the corresponding eigenvectors of the point p based on the local neighborhood

Np of p. We call the first λp eigenvectors of V p strong eigenvectors, the

remaining eigenvectors are called weak.

To easily describe some matrix computations in the following, we define

a selection matrix for weak eigenvectors as follows.

Definition 11.3 (selection matrix for weak eigenvectors)

Let p ∈ D, λp be the local correlation dimensionality of p, and let E p be

the corresponding eigenvectors and eigenvalues of the point p based on the

local neighborhood Np of p. The selection matrix Êp for weak eigenvectors

11.3 Algorithm ERiC 179

with diagonal entries êi ∈ {0, 1}, i = 1, . . . , d, is constructed according to the

following rule:

êi =

 1 if i > λp

0 otherwise

Based on this definition, the weak eigenvectors of p are given by V p · Ê p.

For the clustering, we will associate two points, p, q ∈ Di, to the same

cluster, if their strong eigenvectors span approximately the same hyperplane.

This will not be the case, if any strong eigenvector of p is linearly independent

from the strong eigenvectors of q or vice versa. The number i of strong

eigenvectors is the same for p and q as both are placed in the same partition

Di. But we can even define this condition more general for a different number

of strong eigenvectors. However, we need to consider linear dependency in

a weakened sense to allow a certain degree, say ∆, of deviation. In real

world data, it is unlikely to find a correlation cluster that perfectly fits to

a hyperplane. We therefore define an approximate linear dependency among

the strong eigenvectors of two points.

Definition 11.4 (approximate linear dependency)

Let ∆ ∈]0, 1[, p, q ∈ D, and w.l.o.g. λp ≤ λq. Then the strong eigenvectors

of p are approximately linear dependent from the strong eigenvectors of q if

the following condition holds for all strong eigenvectors vi of p:√
vT

i ·V q · Ê q ·V T

q · vi ≤ ∆

If the strong eigenvectors of p are approximately linear dependent from the

strong eigenvectors of q, we write

span(p) ⊆∆
aff span(q)

As indicated above, ∆ specifies the degree of deviation of a straight plane a

correlation cluster may exhibit.

Definition 11.4 does not take into account any affinity. Thus, we consider

the strong eigenvectors of p approximately linear dependent from the strong

180 11 Complex Hierarchical Relationships: ERiC

eigenvectors of q (span(p) ⊆∆
aff span(q)), although possibly p /∈ span(q),

i.e., the space spanned by the strong eigenvectors of p is (approximately)

parallel to the space spanned by the strong eigenvectors of q. To exclude

affine subspaces, we additionally assess the distance between p and q along

the weak eigenvectors of q, i.e., perpendicular to the hyperplane defined by

the strong eigenvectors of q. This distance which we call affine distance is

defined as follows.

Definition 11.5 (affine distance)

Let p, q ∈ D, w.l.o.g. λp ≤ λq, and span(p) ⊆∆
aff span(q). The affine distance

between p and q is given by

distaff(p, q) =
√

(p− q)T ·V q · Ê q ·V T

q · (p− q)

Combining approximate linear dependency (Definition 11.4) and the affine

distance (Definition 11.5) yields the definition of a correlation distance be-

tween two points.

Definition 11.6 (correlation distance)

Let δ ∈R+

0 , ∆∈]0, 1[, p, q ∈D, and w.l.o.g. λp ≤ λq. Then the correlation

distance CDist between two points p, q ∈ D, denoted by CDist(p, q), is

defined as follows

CDist(p, q) =

0 if span(p) ⊆∆

aff span(q)

∧distaff(p, q) ≤ δ

1 otherwise

The parameter δ specifies a certain degree of jitter. Two parallel sub-

spaces M , N are considered distinct, if the affine distances distaff(m, n) and

distaff(n, m) exceed δ for any two points m ∈ M and n ∈ N , otherwise

the subspaces are considered to be equal. Since the relations span(p) ⊆∆
aff

span(q) and distaff(p, q) are based on the local neighborhood of q, they

are not symmetric. For λp < λq, these measurements yield the notion of

a subspace span(p) embedded in another subspace span(q) of higher di-

mensionality as required to deduct a hierarchy of subspaces. However, as a

11.3 Algorithm ERiC 181

distance function for clustering within one partition, all clusters are supposed

to exhibit equal dimensionality. We therefore construct a symmetric distance

function as

dist(p, q) = max (CDist(p, q),CDist(q, p)) .

In each partition, we perform a density-based clustering using DBSCAN

with dist as distance function. DBSCAN is chosen due to its efficiency,

effectiveness, and usability: The input parameter ε determining the range

of neighborhood is set to 0 since the distance d is binary. The parameter

µ (= MinPts in DBSCAN) determines the minimum size of a cluster. This

parameter can be intuitively set according to the nature of a given problem.

As a result, we get a set of clusters for each partition Di.

11.3.3 Aggregating the Hierarchy of Correlation Clus-

ters

As mentioned above, the parent of a cluster Ci with correlation dimensionality

λi can be any cluster Cj with correlation dimensionality λj > λi. Each

cluster Ci derived in step 2 gets assigned a centroid xi as mean value over

all cluster members. Then the cluster centroid xi gets assigned a set of

strong and weak eigenvectors using all cluster members as neighborhood Nxi

as specified in Definitions 11.1 and 11.3. Assuming the clusters sorted in

ascending order w.r.t. their correlation dimensionality (as already given by

the partitions D1, . . . ,Dd), ERiC starts with the first cluster Cm and checks

for each cluster Cn with λn > λm whether span(xm) ⊆∆
aff span(xn) and

distaff(xm, xn) ≤ δ according to Definitions 11.4–11.5, i.e. the CDist(xm, xn)

is derived (Definition 11.6). If CDist(xm, xn) = 0, cluster Cn is treated as

parent of cluster Cm, unless Cn is a parent of any cluster Co that in turn is

already a parent of Cm, because in that case the relationship between Cn and

Cm is that of a grandparent. The pseudo code of this procedure is depicted

in Figure 11.3.

The resulting hierarchy is visualized using a graph-like representation.

An example is depicted in Figure 11.2(c) showing the hierarchy of correlation

182 11 Complex Hierarchical Relationships: ERiC

method buildHierarchy(ClusterList cl)

// cl = 〈Ci〉 is sorted w.r.t. λCi

λmax := d; // d = dimensionality of data space

for each Ci ∈ cl do

for each Cj ∈ cl with λCi < λCj do

if λCj = λmax ∧ Ci.parents=∅ then

Ci.addParent(Cj);

else

if CDist(Ci, Cj) = 0 ∧
(Ci.parents=∅ ∨
¬ isParent(Cj , Ci.parents)) then

Ci.addParent(Cj);

end if

end if

end for

end for

end.

Figure 11.3: The method to build the hierarchy of correlation clusters.

method isParent(Cluster P, ClusterList cl)

for each C ∈ cl do

if CDist(P, C) = 0 then

return true;

end if

end for

return false;

end.

Figure 11.4: The method to check wether a cluster is parent of one of the

clusters in a list.

11.3 Algorithm ERiC 183

clusters in sample data set 2 (cf. Figure 11.1). In general, the representation

is organized top-down w.r.t. the correlation dimensionality similar to a tree

but allows multiple inclusions. The “root” of the graph contains all objects

in partition Dd. All correlation clusters with equal correlation dimensionality

are placed at the same level below the root. Thus, 1D correlation clusters

are placed at the bottom level. Each object is placed in that correlation

cluster with the smallest correlation dimensionality. An edge between two

nodes indicates a (containment) relationship. In fact, a node N represents

a cluster of all objects assigned to N as well as all objects assigned to child

nodes of N .

11.3.4 Runtime Complexity

The preprocessing step of ERiC works for each point as follows: First a k-

nearest neighbor query is performed, which has a complexity of O(n) since

the data set is scanned sequentially. Based on the result of the k-nearest

neighbor query, the d× d covariance matrix is determined. This can be done

in O(k · d2) time. Then the covariance matrix is decomposed using PCA

which requires O(d3) time. Thus, for all points together we have a time

complexity of O(n2 + k · d2 · n) in the first step of ERiC, since d � k as

discussed above.

Applying DBSCAN to the data set in the second step of ERiC results in

a time complexity of O(d3 ·n2
i), where ni is the number of points in partition

i. This is due to the fact, that the original DBSCAN has a worst case

complexity of O(n2) on top of the sequential scan. Applying the correlation

distance as given in Definition 11.6, the overall time complexity of DBSCAN

is O(d3·n2
i). Assuming on average a uniform distribution of the points over all

possible correlation dimensionalities, all partitions contain n
d

points. Thus,

for d partitions, the required runtime reduces to O(d2 · n2).

The hierarchy aggregation considers all pairs of clusters (Ci, Cj) associated

to different partitions (i.e., λi < λj) and determines the CDist for the

corresponding cluster representatives. Let |C| be the number of clusters.

184 11 Complex Hierarchical Relationships: ERiC

Then the complexity of this method corresponds to O(|C|2 · d3). However,

in the experimental evaluation, we show the hierarchy aggregation to require

only a marginal runtime compared to the overall runtime of ERiC. This is

due to the fact that |C| � n.

Thus, the overall runtime complexity of ERiC can be considered as O(n2 ·
d2).

11.4 Evaluation

11.4.1 Effectiveness

Synthetic Data Set

The accuracy of ERiC in comparison to ORCLUS, 4C, and HiCO has been

evaluated on several synthetic data sets. Exemplarily, the results on one data

set named “DS1” are shown. The synthetic data set contains 3-dimensional

objects grouped in a complex hierarchy of arbitrarily oriented correlation

clusters with multiple inclusion and noise points. The attribute values of the

synthetic data set are in the range of 0.0 to 1.0.

The synthetic data set “DS1” (cf. Figure 11.5) contains 3-dimensional

objects grouped in a complex hierarchy of four 1-dimensional and three 2-

dimensional correlation clusters with a multiple inclusion and some noise

points. The results of ERiC applied to “DS1” using a parameter setting of

k = 16, µ = 30, α = 0.85, δ = ∆ = 0.1 are shown in Figure 11.6. In the

upper left Figure 11.6(a) the three 2-dimensional correlation clusters found

by ERiC are marked with different colors, the upper right Figure 11.6(b)

shows the four 1-dimensional correlation clusters found by ERiC. In the lower

Figure 11.6(c) the resulting hierarchy visualized by the correlation clustering

graph is depicted. As it can be seen, the graph illustrates the correct and

complete hierarchy. One can see at a glance that the data set contains

two 1-dimensional clusters (lines “1 1” and “1 3”) embedded within a 2-

dimensional cluster (plane “2 2”), one separate 1-dimensional cluster (line

11.4 Evaluation 185

Figure 11.5: Data set “DS1”.

cluster [2_2]

cluster [2_1]

cluster [2_0]

(a) 2-dimensional correlation clusters.

cluster [1_3]

cluster [1_2]

cluster [1_0]
cluster [1_1]

(b) 1-dimensional correlation clusters.

(c) Correlation clustering graph.

Figure 11.6: Results of ERiC on “DS1”.

186 11 Complex Hierarchical Relationships: ERiC

cluster 2

cluster 3cluster 1

cluster 5

cluster 4

(a) Results of 4C with λ = 1.

cluster 2
cluster 1

cluster 4

cluster 5

cluster 3

(b) Results of 4C with λ = 2.

Figure 11.7: Results of 4C with different λ-parameter settings on “DS1”.

“1 2”), and a multiple inclusion of one 1-dimensional cluster (line “1 0”)

embedded within two 2-dimensional clusters (planes “2 1” and “2 2”).

For comparison, ORCLUS, 4C, and HiCO have also been applied to data

set “DS1”, but none of the existing state-of-the-art correlation clustering

approaches performs equally well. The algorithm 4C can produce a “flat”

clustering, i.e., 4C can either detect the 1-dimensional correlation clusters

or the 2-dimensional one, but not both within a single run. The results of

4C with different settings for parameter λ which is an upper bound for the

correlation dimensionality of the clusters to be found, are depicted in Figure

11.7. The left Figure 11.7(a) shows the five 1-dimensional correlation clusters

found by 4C with a parameter setting of λ = 1, ε = 0.05, µ = 10, δ = 0.2. As

it can be seen, 4C splits the compact cluster “1 2” (shown in Figure 11.6) into

two clusters. The three 2-dimensional planes have been classified as noise

in this run. In the right Figure 11.7(b) the five 2-dimensional correlation

clusters detected by 4C with a parameter setting of λ = 2, ε = 0.1, µ =

25, δ = 0.1 is shown. In this run, on the one hand, 4C has problems to

separate the 1-dimensional correlation clusters “1 1”, “1 2”, and “1 3” from

the 2-dimensional correlation cluster “2 2” as ERiC did (cf. Figure 11.6). On

the other hand, 4C splits compact clusters into several parts, e.g., clusters

“1 2”, “2 0”, and “1 0”. When looking at the results of ORCLUS on “DS1”

(k = 7, l = 2) which are depicted in Figure 11.8, one can see that ORCLUS

11.4 Evaluation 187

(a) ORCLUS - cluster 1. (b) ORCLUS - cluster 2. (c) ORCLUS - cluster 3.

(d) ORCLUS - cluster 4. (e) ORCLUS - cluster 5. (f) ORCLUS - cluster 6.

(g) ORCLUS - cluster 7.

Figure 11.8: Results of ORCLUS on “DS1”.

188 11 Complex Hierarchical Relationships: ERiC

[2_0]
[2_1] [2_2]

[1_0] [1_2] [1_1] [1_3]

[all]

Figure 11.9: Result of HiCO on “DS1”.

completely failed to detect all correlation clusters in data set “DS1”.

Since both 4C and ORCLUS produce a flat clustering, no hierarchy can

be derived from their results. Last but not least, the result of HiCO with

a parameter setting of k = 16, µ = 30, α = 0.85, ∆ = 0.1 on “DS1” is

depicted in Figure 11.9. The obtained correlation reachability diagram has

been analyzed and the objects in the “valleys” have been marked with the

according cluster memberships. As it can be seen, HiCO can detect the

simple hierarchical relationships, but the multiple inclusion of cluster “1 0” in

cluster “2 0” cluster “2 1” is not visible at all in the resulting correlation plot.

In summary, while ERiC has no problems to reveal the complete hierarchy

of correlation clusters and to detect all correlation clusters correctly, the

competitors all fail to produce the true clusters and the proper hierarchy.

Real-world Data Sets

Additionally to the synthetic data set, the effectivity of ERiC has been eval-

uated by using several real-world data sets. First, ERiC has been applied

11.4 Evaluation 189

on the “Wages” data set1 consisting of 534 11-dimensional observations from

the 1985 Current Population Survey. Since most of the attributes are not

numeric, only 4 dimensions (YE=years of education, W=wage, A=age, and

YW=years of work experience) have been used for clustering. The param-

eters of ERiC were chosen to k = 5, µ = 4, α = 0.85, δ = ∆ = 0.01. The

results are shown in Figure 11.10(a). ERiC found seven correlation clusters.

The two one-dimensional correlation clusters “1 0” and “1 1” contain both

the data of people having 12 years of education. The people in the first corre-

lation cluster are all of age 22 and have a working experience of 4 years. The

second 1-dimensional correlation cluster contains people at the age of 38 with

a working experience of 16 years. The four 2-dimensional correlation clusters

found by ERiC consist of people having constant years of education and a

linear dependency between their age and their years of working experience.

In the 3-dimensional correlation cluster “3 0” those employees are grouped

which started school at the age of 6 years and after graduation immediately

began working. Thus, the years of education equals the difference of the

age, the years of working experience and 6. The contents of the correlation

clusters are summarized in Figure 11.10(b). Neither HiCO, 4C nor ORCLUS

were able to detect meaningful correlation clusters in the “Wages” data set.

Then, ERiC has been applied to the (original) Wisconsin “Breast Can-

cer” Database from the UCI ML Archive2. This data set consists of 683

patients suffering from two types of breast cancer, benign and malignant.

Each patient is represented by a 9-dimensional vector of specific biomedical

features. ERiC detected four almost pure correlation clusters in this data

set. The hierarchy generated by ERiC on this data set with a parameter

setting of k = 30, µ = 30, α = 0.85, δ = ∆ = 0.75 is depicted in Figure 11.11.

The resulting hierarchy contains four correlation clusters that are placed in

two different branches in the graph. It is worth mentioning that the two

lower dimensional correlation clusters “2 0” and “3 0” in the first branch are

pure clusters, i.e., they only contain benign patients. The higher dimensional

correlation cluster “5 0” and its parent cluster “6 0” in the second branch

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages
2http://www.ics.uci.edu/~mlearn/MLSummary.html

190 11 Complex Hierarchical Relationships: ERiC

(a) Hierarchy generated by ERiC

cluster description

1 0 YE = 12, A = 22, YW = 4

1 1 YE = 12, A = 38, YW = 20

2 0 YE = 14, A = YW + 20

2 1 YE = 12, A = YW+18

2 2 YE = 16, A = YW + 22

2 3 YE = 13, A = YW+19

3 0 YE = A - YW - 6
(b) Contents of found clusters

Figure 11.10: Results of ERiC on “Wages” data.

11.4 Evaluation 191

malignant

benign

Figure 11.11: Results of ERiC on “Breast Cancer” data.

are nearly pure, they contain almost only malignant patients. Some patients

from both classes could not be separated and were labeled as noise. Again

ERiC outperforms its competitors, since none of them were able to detect

pure correlation clusters in these data.

A third real-world data set used for evaluating ERiC is the “Pendigits”

data set3 containing approximately 7,500 16-dimensional points, representing

certain features of hand-written digits. The objects are labeled according to

the digit. The resulting hierarchy computed by ERiC with a parameter

setting of k = 15, µ = 10, α = 0.85, δ = ∆ = 0.5 is depicted in Figure 11.12.

Interestingly, all clusters found by ERiC are pure, i.e., contain only objects

from one class. The clusters forming the observed multiple inclusion also

contain objects from the same class.

In summary, the experiments confirmed that ERiC finds meaningful clus-

ter hierarchies allowing for multiple inclusions in real-world data sets.

3http://www.ics.uci.edu/~mlearn/databases/pendigits/

192 11 Complex Hierarchical Relationships: ERiC

Figure 11.12: Results of ERiC on “Pendigits” data.

11.4 Evaluation 193

1

10

100

1,000

10,000

100,000

1,000,000

10 20 30 40 50 60 70 80 90 100
dimensionality

ru
nt

im
e

[s
ec

]

ERiC
HiCO
4C
ORCLUS

Figure 11.13: Runtime of ERiC, HiCO, 4C, and ORCLUS w.r.t. the di-

mensionality.

11.4.2 Efficiency

For the evaluation of efficiency, synthetic data sets have been used where the

dimensionality or the number of points has been varied.

For the impact of the dimensionality of the data space on the runtime, 10

data sets with a varying dimensionality of d = 10, 20, 30, . . . , dmax = 100 have

been created. For each data set, 10,000 objects were equally distributed over

10 correlation clusters, where the single attributes have values in the range

of [0.0, 1.0]. In the first experiment, the runtime of ERiC, HiCO, 4C and

ORCLUS has been compared w.r.t. the dimensionality of the data set. The

parameters for ERiC were set to k = 50, µ = 500, α = 0.999, δ = ∆ =

0.01. HiCO has been applied to the data sets with a parameter setting of

k = 50, µ = 500, α = 0.999, ∆ = 0.01. The λ parameter of 4C was set

to the maximal occurring correlation dimensionality, i.e., λ = d − 1. The

parameter µ which determines the minimum number of objects within a

correlation cluster was set to µ = 500. The remaining parameters were set

to ε = 0.1, δ = 0.01. As a fair setting the parameter k of ORCLUS was set

to the exact number of correlation clusters in the data set and parameter l

was set to the maximal occurring correlation dimensionality, i.e., k = 9 and

l = d − 1. As it can be seen in Figure 11.13, ERiC clearly outperforms the

other competitors (please note the logarithmic scale of the runtime-axis).

194 11 Complex Hierarchical Relationships: ERiC

0

25,000

50,000

75,000

100,000

125,000

50 100 150 200 250 300
size * 1,000

ru
nt

im
e

[s
ec

]

ERiC
4C
ORCLUS

Figure 11.14: Runtime of ERiC, 4C, and ORCLUS w.r.t. the size of the

data set.

Analogously, for the impact of the size of the data set on the runtime,

six data sets of dimensionality d = 10 have been created with an increasing

number of objects ranging from 50,000 to 300,000. The objects are equally

distributed over nine correlation clusters of correlation dimensionality λ =

1, . . . , 9 and noise, where the attribute values are in the range of 0.0 to 1.0.

The parameters for ERiC were set to k = 50, µ = 2, 500, α = 0.999, δ =

∆ = 0.01. Again, the λ parameter of 4C was set to the maximal occurring

correlation dimensionality, i.e., λ = 9. The remaining parameters of 4C were

set to µ = 2, 500, ε = 0.1, δ = 0.01. As before, the parameter k of ORCLUS

was set to the exact number of correlation clusters in the data set, and

parameter l was set to the maximal occurring correlation dimensionality, i.e.,

k = l = 9. Figure 11.14 illustrates the runtime of ERiC, 4C, and ORCLUS

w.r.t. the data set size. The runtime of HiCO w.r.t. the size of the data

set (k = 50, µ = 2, 500, α = 0.999, ∆ = 0.01) is far above the others and

therefore omitted in the chart for clearness. ERiC clearly outperforms 4C

and shows a runtime comparative to that of ORCLUS.

Additionally, the overall runtime w.r.t. the number of correlation clusters

in the data set of ERiC to its competitors has been compared. For this

experiment five data sets of dimensionality d = 10 have been created. For

each data set, 10,000 objects were equally distributed over a varying number

c = 20, 30, 40, 50, 60 of correlation clusters. The parameters for ERiC and

11.4 Evaluation 195

1

10

100

1000

10000

100000

20 30 40 50 60

number of correlation clusters

ru
nt

im
e

[s
ec

]

ERiC
HiCO
4C
ORCLUS

Figure 11.15: Runtime of ERiC, HiCO, 4C and ORCLUS w.r.t. the number

of clusters.

0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%
0.14%
0.16%
0.18%

10 20 30 40 50
number of correlation clusters

%
 o

f t
ot

al
 ru

nt
im

e

Figure 11.16: Runtime of the third step of ERiC (hierarchy aggregation)

w.r.t. the number of clusters.

HiCO were set to k = 50, µ = 50, α = 0.999, ∆ = 0.01. 4C has been applied

to the data sets with a parameter setting of λ = 9, µ = 50, ε = 0.01 and

δ = 0.01. Again, the parameter k of ORCLUS was set to the exact number

of correlation clusters in the data set, and parameter l was set to the maximal

occurring correlation dimensionality, i.e., l = 9. As it can be seen in Figure

11.15 the runtime of ERiC is quite robust w.r.t. the number of correlation

clusters in the data set (and also the runtimes of HiCO and 4C are). Again,

ERiC gains a significant speed-up over its competitors.

In the last efficiency experiment, the impact of the number of correlation

clusters in the data set to the runtime of the third step of the ERiC algorithm,

196 11 Complex Hierarchical Relationships: ERiC

the hierarchy aggregation, has been analyzed. For this purpose, the data

set of the former experiment has been used and the parameters of ERiC

were also chosen as before. Figure 11.16 shows the fraction of the runtime

of the third step of ERiC in comparison to the overall runtime of ERiC. As

already mentioned in Section 11.3.4, the runtime of the hierarchy aggregation

is negligible since it only requires a marginal runtime of at most 0.15% in

relation to the overall runtime of the ERiC algorithm.

197

Chapter 12

Increasing the Robustness of

PCA-based Correlation

Clustering Algorithms

The major challenge of correlation clustering is identifying the correct sub-

space of a cluster. Most correlation clustering algorithms [11, 35, 136, 7, 6, 5]

apply principal component analysis (PCA) to a subset of points in order to

define the correct subspace in orientation and weighting of the transformed

axes. PCA is a mature technique and allows the construction of a broad range

of similarity measures grasping local correlation of attributes and, therefore,

allows to find arbitrarily oriented subspace clusters. It is easy to see that the

more points of this subset are cluster members that are located on the com-

mon hyperplane, the more accurate the procedure of determining the correct

subspace (i.e. hyperplane) will be. However, a drawback common to all those

approaches is the notorious locality assumption. Since cluster memberships

of points are obviously not known beforehand, it is assumed that the local

neighborhood, e.g. the ε-neighborhood or the k-nearest neighbors, of cluster

points or cluster centers represents the correct subspace suitably well in its

orientation and variance along axes. This assumption is widely accepted but

it boldly contradicts the basic problem statement, i.e. “find clusters in a high

dimensional space”, because high dimensional spaces are typically doomed

198 12 Increasing the Robustness

by the curse of dimensionality. The term “curse of dimensionality” refers

to a bundle of problems occurring in high dimensional spaces. The most

important effect in the sight of clustering is that concepts like “proximity”,

“distance”, or “local neighborhood” become less meaningful with increas-

ing dimensionality of a data set (as elaborated e.g. in [31, 69, 9]). As a

consequence of these findings, the discrimination between the nearest and

the farthest neighbor becomes rather poor with increasing data dimensional-

ity. This is by far a more fundamental problem than the mere performance

degradation of algorithms on high dimensional data: The higher the dimen-

sionality of a data set is, the more outliers will be placed inevitably in the

set of neighboring objects.

As we will see in this chapter, PCA is very sensitive to outliers. In other

words, if the local neighborhood of cluster members or cluster centers to

which PCA is applied in order to find the correct subspace of the corre-

sponding cluster contains noise points that do not belong to the cluster, the

subspace determination process will be misled. Thus, in view of the “curse of

dimensionality”, to successfully employ PCA in correlation clustering in high

dimensional data spaces may therefore require more sophisticated techniques

of selecting a representative set of neighbors.

This chapter is organized as follows: Section 12.1 presents an analysis of

the problems occurring when PCA is used as a basic principle for correlation

analysis. We then propose a general framework ready to integrate any of

the PCA-based correlation clustering algorithms (see Section 12.2). The

application of the framework is exemplarily discussed for ERiC and ORCLUS

in Section 12.3. Finally, the impact of the new concepts on the performance

of ORCLUS and ERiC is evaluated in Section 12.4.

The material presented in this chapter will appear in [90].

12.1 Problem Analysis 199

12.1 Problem Analysis

To the best of our knowledge, all correlation clustering algorithms that use

PCA as the method to determine the correct subspace of a cluster face the

following problem. In order to determine the correct subspace of a cluster,

a (considerably large) number of cluster members needs to be identified first

such that PCA can be applied to them. On the other hand, in order to

identify points of a particular cluster, the subspace of this cluster needs to

be determined first. To escape from this vicious circle all algorithms rely

on the locality assumption, i.e. it is assumed that the points in the local

neighborhood of cluster members or cluster representatives sufficiently reflect

the correct subspace of the corresponding cluster such that applying PCA to

those neighboring points reports the cluster hyperplane.

As stated above, selecting a meaningful neighborhood becomes more and

more difficult with increasing data dimensionality. A neighboring set of

points will almost certainly contain outliers, i.e. points that do not belong

to the cluster and, thus, are not located on the hyperplane of the cluster.

Obviously, these outliers are not helpful to assign a meaningful local cor-

relation dimensionality and orientation. On the other hand, all correlation

clustering approaches available rely on an arbitrarily chosen set of neighbor-

ing points. We therefore argue to choose a neighboring set of points in a more

sophisticated way to enhance the robustness of local correlation analysis and,

consequently, to enhance the robustness of correlation clustering algorithms.

12.1.1 Impact of Outliers on PCA

Correlation analysis using PCA is a least squares fitting of a linear function

to the data. By minimizing the mean square error, outliers are emphasized

in a way that is not always beneficial, as can bee seen in Figure 12.1. This

data set consists of 5 points in a 2D space that are strictly positively corre-

lated and, thus, are located on a common 1D hyperplane plus one additional

outlier that is not located on that 1D hyperplane. When applying PCA on

these six points and computing the strongest eigenvector of the correspond-

200 12 Increasing the Robustness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 12.1: Simple data set with 6 points and largest eigenvector after

PCA.

ing covariance matrix, the resulting vector is directed towards the outlier (cf.

Figure 12.1). This implies that in certain situations, adding only one single

extra point to the correlation computation can cause the resulting strongest

eigenvector(s) to flip into a completely different direction. Let us note that

if the outlier point would have been closer to the other points it would, at a

certain distance, not have made any difference on the vector orientation, but

this distance threshold for the flip is rather small.

As a consequence, one needs to carefully select the points that are in-

cluded into the computation of the cluster hyperplane. In addition, one can

consider using a modified correlation analysis procedure which is less sensi-

tive to the effect of outliers. In fact, there are obviously multiple strategies to

handle these issues. The most obvious one – using outlier detection to remove

outliers from the computation – can usually not be applied to this problem

because we face the same vicious circle when searching for outliers as we face

when detecting cluster points: in order to identify outliers that do not belong

to any clusters, the subspaces of the clusters need to be determined first; in

order to determine the correct subspace of a cluster, a (considerably large)

number of cluster members needs to be identified first such that PCA can be

applied to them; etc. Instead, we introduce two ideas to stabilize PCA for

correlation clustering. First, we explore a local optimization strategy that

handles the problem of picking appropriate neighboring points in a way that

12.1 Problem Analysis 201

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3 0.4

 0.5
 0.6

 0.7
 0.8 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Figure 12.2: Data set with a 2D plane and an embedded 1D line.

is easy to integrate in many correlation clustering algorithms. Second we will

add a modified correlation analysis to further stabilize results which is based

on the integration of a suitable weighting function into PCA.

12.1.2 Statistic Observations on Data Correlation

Without loss of generality, we assume that the points on which PCA is applied

to find the correct subspace of a particular cluster are selected as the k-nearest

neighbors (kNN) of cluster members or cluster representatives. Later, we

will discuss the extension of our ideas to methods like ORCLUS that use

neighborhood concepts other than kNN.

When comparing the relative strength of the normalized eigenvalues (i.e.

the part of the total variance explained by them) computed for the kNN of

a particular point w.r.t. increasing values of k (ranging from 0 to 50% of the

data set), a behavior similar to that shown in Figure 12.3 can usually be

observed. We used a 3D data set shown in Figure 12.2, with a set of 200

outlier points (noise), a correlation cluster of 150 points sharing a common 2D

hyperplane (plane), and a correlation cluster of 150 points that are located

on a common 1D hyperplane (line) that is embedded into the hyperplane of

202 12 Increasing the Robustness

the 2D cluster. In Figure 12.3 there are three plots in this graph representing

the behavior of the eigenvalues of a sample noise point, of a sample point on

a 2D, and of a sample point on a 1D line in the data set (embedded within

the 2D plane), respectively.

Examining the noise point (green dotted lines in Figure 12.3) we observe

a minimum relative strength of the first eigenvalue of about 0.4 for k =

10% − 15% (cf. Figure 12.3(a)). Since the minimum possible value for the

strongest eigenvector in a 3D data set is 1/3 = 0.33, the noise point shows

approximately no correlation when looking at its kNN with k = 10%− 15%

of the data set. The second eigenvector (cf. Figure 12.3(b)) shows similar

behavior in that particular range of k confirming our conclusions.

For the point in the 1D cluster (red solid lines in Figure 12.3), the first

eigenvector (cf. Figure 12.3(a)) explains 80% of the complete variance at

around k = 7%, i.e. using this value for k, the kNN of the particular point

form the 1D line of the cluster. It is worth noting that the amount of variance

explained for the 1D cluster case drops quickly when increasing k beyond this

point. The reason for this is that – since the line is embedded in a plane

– with increasing k more and more points of the kNN are points from the

2D cluster. As a consequence, the variance explained by the first eigenvector

decreases, whereas the variance explained by the second eigenvector increases

simultaneously (cf. Figure 12.3(b)). Then, at k ≈ 10%, we have again a very

high strength of the first eigenvector (less points from the 2D cluster and more

points from the 1D cluster are considered), etc. In other words, depending

on the value of k, the kNN of the point form the 1D cluster line or the 2D

cluster plane.

For evaluating the 2D cluster, the relevant graph (depicting the behavior

of the second eigenvector) is shown in Figure 12.3(b). In a 3D data set, a

value of around 1/3 would be typical for uncorrelated data and is observable

on noise points. For the sample point from the 2D cluster it peaks at almost

45% for about k = 10%. Together with the first graph, this means that the

first two eigenvectors explain almost the complete variance at that particular

value for k. In other words, for k = 10%, the kNN of this point reflect the 2D

12.1 Problem Analysis 203

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

k / size of data set

(a) First eigenvector

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

k / size of data set

(b) Second eigenvector

Figure 12.3: Relative strength of eigenvectors.

204 12 Increasing the Robustness

plane of the cluster sufficiently. Compared to this observation, the variance of

the sample point from the 1D cluster embedded in the 2D cluster (red dotted

line) along the first two eigenvectors is significantly below the expected value

(which is not surprising, having seen that the first eigenvector reaches 80%).

These simple examples illustrate that it is essential to select a sufficient set

of points by choosing a suitable value for k. A slight change in k can already

make a large difference. Moreover, we have seen that it is rather meaningful

to choose even significantly different values of k for different points.

12.2 A General Framework for Robust Cor-

relation Analysis

The above presented considerations induce two important aspects. First,

since PCA is a least square fitting and we cannot assume that there are no

outliers in the kNN of a point, adjusting the weighting of the points during

PCA should improve the results. Second, the selection of points to which

PCA is applied can be improved by both micro-adjusting the value of k (to

avoid sudden drops in the explained variance) as well as choosing significantly

different k for different points in the data set. In the following, we will discuss

both aspects in more detail. In fact, our framework for making PCA-based

correlation analysis more robust uses both ideas.

12.2.1 Increasing the Robustness of PCA Using Weighted

Covariance

As mentioned above, PCA is a common approach to handling correlated data.

It is also commonly used for dimensionality reduction by projecting onto the

λ strongest (i.e. highest) components. In correlation clustering, PCA is a key

method to finding correlated attributes in data.

PCA operates in two steps. In the first step, for any two attributes, i.e.

dimensions, d1 and d2 the covariance Cov(Xd1 , Xd2) of these two dimensions

12.2 A General Framework for Robust Correlation Analysis 205

is computed. In the second step, the eigenvectors and eigenvalues of the

resulting matrix (which by construction is positive, symmetric and semi-

definite) are computed. The computation of eigenvectors and eigenvalues on

a symmetric matrix is a standardized procedure which cannot be altered to

make the overall process more robust. Instead, the stabilization has to be

implemented during the first step.

Given an attribute X, we can model the values of k points in that partic-

ular attribute, denoted by xi for the i-th point, as a random variable. Then,

the covariance between two attributes X and Y is mathematically defined as

Cov(X, Y) := E((X − E(X)) · (Y − E(Y))), (12.1)

where E is the expectation operator. Usually, one uses the mean of all values

of the corresponding attribute as expectation operator, i.e.

E(X) =
1

k

k∑
i=1

xi =: x̂, (12.2)

so we have

Cov(X, Y) :=
1

k

k∑
i=1

(xi − x̂)(yi − ŷ). (12.3)

Obviously, all data points are treated equally in this computation. But

given that we want to reduce the effect of outliers, it is more appropriate to

use a different expectation operator. Given arbitrary weights ωi for all points

i (1 ≤ i ≤ k and Ω :=
∑k

i=1 ωi), we can define a new expectation operator

Eω(X) :=
1

Ω

k∑
i=1

ωixi =: x̂ω. (12.4)

With this new expectation operator, we can give each point in kNN a different

weight. In particular, we can give potential outliers a smaller weight. Using

Eω(X), we can compute the covariance as given below.

Covω(X, Y) :=
1

Ω

n∑
i=1

ωi(xi − x̂ω)(yi − ŷω). (12.5)

Steiner’s translation still applies, which leads to the following slightly simpler

equation.

Covω(X, Y) = (
1

Ω

n∑
i=1

ωixiyi)− (
1

Ω

n∑
i=1

ωixi) · (
1

Ω

n∑
i=1

ωiyi). (12.6)

206 12 Increasing the Robustness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Const
Linear

Exponential
S-Curve

Gauss
Erfc

Figure 12.4: Some weight functions.

This form is particularly nice for computation. It is also trivial to prove that

if ωi = 1 for all i, we have Cov(X, Y) = Covω(X, Y). If a point i is assigned

the weight ωi = 2, the result would be the same as if we had two points with

the same coordinates as i. If a point i is weighted by ωi = 0, the result is the

same as if point i had not been included in the computation at all.

We can now use arbitrary weighting functions to calculate the weights

to be used. Obviously, we again have the dilemma that we do not know

which points are outliers and need to get assigned a lower weight. However,

since all algorithms use the locality assumption, we can make the following

considerations: On the one hand, it is usually very likely that taking the

local neighborhood of points includes a lot of outliers. But on the other

hand, the neighbors that are near to the query point will more likely be

cluster members than the neighbors that are farther apart from the query

point. So a distance-based weighting function will most likely weight cluster

points higher and outliers lower.

Some examples of distance-based weighting functions are given in Figure

12.4. We have chosen parameters such that the value at x = 0.0 is about

12.2 A General Framework for Robust Correlation Analysis 207

f(0.0) ∼ 1.0 and at x = 1.0 it is about f(1.0) ∼ 0.1. Weights too close

to 0.0 are not very useful, because then, these points are not considered for

the computation at all. The example weighting functions we have used in

our experiments (cf. Figure 12.4) include a constant weighting of 1.0 (solid

red line in Figure 12.4), a linearly decreasing function ranging from 1.0 to

0.1 (dashed blue line in Figure 12.4), an exponential fall-off (green dashed

line in Figure 12.4), a sigmoid-curved fall-off (violet dotted line in Figure

12.4), a Gauss function (green dashed-dotted line in Figure 12.4), and the

complementary Gauss Error Function Erfc (red dashed-dotted line in Figure

12.4). The last one is a function well-known from statistics related to normal

distributions and, thus, probably the most sound choice.

In our experiments, all of the alternative weighting functions (except the

constant weight) lead to similar improvements so there is no reliable mea-

sure or significance to establish a ranking between the different weighting

functions. In fact, it is plausible that different functions are appropriate for

different underlying causes in the data or assumptions in the clustering pro-

cess (e.g. clustering algorithms assuming a Gauss distribution might benefit

best from a Gaussian weighting function).

For distance-based weighting functions, several tasks arise. We have cho-

sen to scale distances such that the outermost point has a distance of 1.0,

i.e. a weight of 0.1, ensuring that this point has still some guaranteed influ-

ence on the result. This choice is somehow arbitrary, but it has at least the

benefit of fairness. On the other hand, this fairness comes at the cost that

all weights depend on the outermost point. When points are selected using

a range query, the query range could offer a better normalization. When an

incremental computation is desired, a completely different choice might be

appropriate. Additionally, we are computing weights based on the distance

to a query point. This is appropriate for situations where the data are ob-

tained via kNN or ε-neighborhoods. When computing the correlation for an

arbitrary set of points, the distance might need to be computed from the

centroid or medoid of that set.

In the above described toy example of five cluster points plus one outlier

208 12 Increasing the Robustness

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

k / size of data set

(a) First eigenvector.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

k / size of data set

(b) Second eigenvector.

Figure 12.5: Relative strength of eigenvectors (with Erfc weight).

12.2 A General Framework for Robust Correlation Analysis 209

(cf. Figure 12.1), the observed sensitivity to that outlier is significantly de-

creased, given that the outlier will only be weighted at around 0.1. Applying

the weighting function to the 3D example data set of Figure 12.2 we also

observe an increased robustness of the correlation analysis. Figures 12.5(a)

and 12.5(b) depict the effect of a weighted covariance on the relative strength

of the first eigenvector and the normalized sum of the first two eigenvectors,

respectively, using the Erfc weighting. Compared to Figures 12.3(a) and

12.3(b) we can derive that many of the sudden drops have been erased, while

the overall shape is well preserved. Especially for higher values of k, sudden

jumps have mostly disappeared. Therefore, this measure is useful to avoid

choosing a particularly bad value of k, i.e. a k where the kNN of the partic-

ular point do not reflect the correct subspace of the corresponding cluster,

by somewhat averaging with neighbors. Peaks usually are shifted towards a

slightly higher value of k. This is natural since the added points are weighted

low at first.

12.2.2 Auto-tuning the Local Context of Correlation

Analysis

Graphs such as Figure 12.3(a) show that even small differences in k can

lead to significantly different results. Therefore, it is reasonable not to use

a fixed value of k, i.e. a fixed number of neighboring points, but rather to

adjust the value of k for each point separately. For example, one can use

a globally fixed number of neighbors kmax and then individually select for

each point the k ≤ kmax neighbors that are relevant for the particular point.

As far as kmax is sufficiently large, we should in general be able to select

a reasonable k, so that this strategy produces accurate results. Of course

there are different strategies of selecting k. Since there are O(2kmax) subsets

of the given kmax points that could be used, simply trying all combinations

of subsets of k points (1 ≤ k ≤ kmax) is not feasible. Probably the easiest

strategy of O(kmax) complexity is to test for any k (1 ≤ k ≤ kmax) only

the k nearest points, resulting in kmax tests. The next question that arises

is how to evaluate the results of the kmax tests in order to report the best

210 12 Increasing the Robustness

k = 3

k = 16

perfect cluster

hyperplane

Figure 12.6: Problems with jitter.

value for k. The obvious strategy of returning the result that maximizes the

relative strength of eigenvalues has shown to be not very reliable because of

jitter: one particular k value could result in a “perfect” hyperplane consisting

mainly of points that form a subspace completely different to the subspace

of the cluster. Figure 12.6 illustrates this effect: using only the three points

in the red ellipsoid, we will hardly find the correct hyperplane of the cluster

although all those three points are cluster members because they do not fit

the subspace perfectly. Rather, the three points perfectly form a different

line so the relative strength of the first eigenvalue will be very high (appr.

100%). In fact, we are more interested in a range of k values where we have a

high and stable relative strength of eigenvalues, so we need a more elaborate

filtering.

In our evaluations, we have chosen the strategy to use the k nearest points

for correlation analysis, with kmin ≤ k ≤ kmax, where kmin is a minimum

number of points such that the PCA is at least somewhat sensible at this data

set dimension. The motivation behind the introduction of the lower bound

kmin is that we need at least λ points to span a λ-dimensional hyperplane

and 3 · λ has been considered as a lower bound of points such that the

detection of a λ-dimensional hyperplane by PCA is trustworthy rather than

arbitrary. To avoid jitter and outlier effects, we use a sliding window to

apply a dimensionality filter and average the variance explained by the largest

eigenvalues.

12.2 A General Framework for Robust Correlation Analysis 211

Let

ex(E, λ) :=

∑λ
i=1 ei∑d
i=1 ei

(12.7)

be the relative amount of variance explained by λ eigenvalues E = {ei}
representing a hyperplane of dimensionality λ. Most correlation clustering

algorithms rely on a level of significance α ≤ 1 to decide how many eigen-

vectors explain a significant variance and, thus, span the hyperplane of the

cluster. Intuitively, the eigenvectors are chosen such that the correspond-

ing eigenvalues explain more than α of the total variance. The number of

those eigenvectors is called local dimensionality (of a cluster), denoted by

λE, formally

λE = min
λ∈{1...d}

{λ | ex(E, λ) ≥ α} . (12.8)

Let us note that almost all correlation clustering algorithms use this no-

tion of local dimensionality. Typical values for α are 0.85, i.e. the eigenvectors

that span the hyperplane explain 85% of the total variance along all eigen-

vectors.

As indicated above, for filtering out the best value of k, we are intuitively

interested in a value where (i) the local dimensionality λ is stable, i.e. in-

creasing or decreasing k by a small degree does not affect the value of λ, and

(ii) ex(E, λ) is maximal and stable, i.e. increasing or decreasing k by a small

degree does not affect the value of ex(E, λ). The motivation behind these

considerations is that the value of k that fulfills both properties leads to the

determination of a robust hyperplane, that maximizes the variance along its

axis. In other words, using the neighbors determined by k, the hyperplane

reflects all of these neighbors in a best possible way and there are most likely

only very few neighbors that are outliers to this hyperplane. In addition,

increasing or decreasing k, i.e. adding or deleting few neighbors, does not

affect the correlation analysis.

To find the value of k that meets both properties, we determine ex(E, λ)

for all kmin ≤ k ≤ kmax. We then use a sliding window W = [kl, ku] and

choose k = (kl + ku)/2 such that for all k′ in W (i.e. kl ≤ k′ ≤ ku) the local

dimensionality λ is the same and the average of ex(Ek′ , λ) is maximized.

Additionally, if this maximum is at the very beginning or end of our search

212 12 Increasing the Robustness

range (i.e. kl = kmin or ku = kmax), we discard it. We can still obtain multiple

maxima, one for each dimensionality λ. In this case we pick the lowest like

all correlation clustering algorithms aiming at finding the lowest dimensional

subspace clusters. Those are the most interesting ones since they involve the

largest set of correlations among attributes.

12.3 Application to Existing Approaches

In the following, we discuss how our concepts can be integrated into existing

correlation clustering algorithms in order to enhance the quality of their

results. Exemplarily, we show this integration with two different types of

algorithms, the latest density-based algorithm ERiC and the k-means-based

algorithm ORCLUS.

12.3.1 Application to Density-based Correlation Clus-

tering Algorithms

The integration of our concepts into ERiC is rather straightforward. ERiC

determines for each data point p the subspace of the cluster to which p

should be assigned (hereafter called the subspace of p). The subspace of p is

computed by applying PCA to the kNN of p where k needs to be specified

by the user.

Using our concepts, we can simply replace the parameter k by the global

maximum kmax of neighbors that should be considered. Both the weighting

and the auto-tuning can then be applied directly when computing the sub-

space of p. First, from the kmaxNN of p, the optimal kp ≤ kmax for detecting

the subspace of p is determined as described in Section 12.2.2 based on a

weighted covariance as described in Section 12.2.1. Second, the subspace of

p is computed by applying PCA using a weighted covariance on the kpNN of

p (cf. Section 12.2.1).

The integration of our concepts into other density-based algorithms like

12.4 Evaluation 213

COPAC, HiCO, and 4C can be done analogously.

12.3.2 Application to Partitioning Correlation Clus-

tering Algorithms

ORCLUS determines the subspace of each cluster C by applying PCA to the

local neighborhood of the center of C, denoted by rC . The local neighborhood

of rC includes the set SC of all points that have rC as their nearest cluster

representative.

Using our concepts, we can simply consider SC as the maximum set of

points that should be considered for PCA, i.e. kmax = |SC |. Both the weight-

ing and the auto-tuning can then be applied directly when computing the

subspace of C. First, from the SC , the optimal kC ≤ kmax for detecting

the subspace of C is determined as described in Section 12.2.2 based on a

weighted covariance as described in Section 12.2.1. Second, the subspace

of C is computed by applying PCA using a weighted covariance on the kC

points in SC that are closest to rC (cf. Section 12.2.1).

12.4 Evaluation

12.4.1 Evaluation Methodology

In order to evaluate the results of our novel concepts integrated into ERiC and

ORCLUS, we generated artificial data sets with a well-defined gold standard,

i.e. we defined certain data distributions and all points in our data set are

assigned to the distribution with the maximum density in that particular

point. Since both ERiC and ORCLUS have different properties and, here,

we are not interested in judging which algorithm is better for which data set,

we generated different data sets for each algorithm.

To evaluate the quality of the clustering, we employ a pair-counting F-

measure, considering the noise points to be a cluster on its own. This means

214 12 Increasing the Robustness

that any two points in the data set form a pair if they belong to the same

cluster (or noise). Let C = {Ci} be a clustering (with Ci being the clusters in

C, including the noise cluster). Then PC := {(a, b) | ∃Ci : a ∈ Ci ∧ b ∈ Ci}
is the set of pairs in clustering C. The F-measure to evaluate how good a

clustering C matches the gold standard D is then defined as

F (C, D) :=
2 · |PC ∩ PD|

2 · |PC ∩ PD|+ |PC \ PD|+ |PD \ PC |
.

Obviously, F (C, D) ∈ [0, 1], where F (C, D) = 1.0 means that the clustering

C is identical to the gold standard D.

12.4.2 Synthetic Data

For evaluating the influence of our novel methods on both ORCLUS and

ERiC, we used several synthetic data sets ranging from 3 to 100 dimensions.

In the following discussion, we focus on some lower dimensional data sets for

a clear presentation.

ERiC

We first focus on two 3D synthetic data sets that can be seen in Figure 12.7.

Figure 12.8(a) gives the results for data set DS1 shown in Figure 12.7(a).

We plotted the F-measure of the compared algorithms along the y-axis and

varied the parameters k and kmax along the x-axis. The blue line represents

the results of the unmodified ERiC algorithm. Obviously the choice of k

is nontrivial, a value of about k = 34 gives the best results. The violet

dotted line is the result when using the Erfc weight in PCA. Obviously, the

results are significantly better, and any k in 35 < k < 65 gives good results.

Therefore choosing a good k has become a lot easier using only the weighting

approach. The green line with the short dash-dot pattern depicts the result

of ERiC using a Gauss weight. As it can be seen, the results using a simple

Gaussian weighting do not significantly differ from the Erfc weighting results.

The remaining three lines show the results of ERiC when using the auto-

tuning of the parameter k, i.e. for each point the optimal k ≤ kmax is de-

12.4 Evaluation 215

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3 0.4

 0.5
 0.6

 0.7
 0.8 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) DS1: a 1D lines (150 points) embedded within a 2D plane (150
points) plus 200 points noise.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3 0.4

 0.5
 0.6

 0.7
 0.8 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(b) DS2: five 1D lines (100 points each) plus 200 points noise.

Figure 12.7: 3D synthetic data sets used for evaluating ERiC.

216 12 Increasing the Robustness

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120 140 160

ConstantWeight-auto
ConstantWeight-vanilla

ErfcWeight-auto
ErfcWeight-vanilla
GaussWeight-auto

GaussWeight-vanilla

(a) DS1.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140 160

ConstantWeight-auto
ConstantWeight-vanilla

ErfcWeight-auto
ErfcWeight-vanilla
GaussWeight-auto

GaussWeight-vanilla

(b) DS2.

Figure 12.8: Results of ERiC with different weight functions and auto-

tuning on 3D synthetic data sets.

12.4 Evaluation 217

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 20 40 60 80 100 120 140 160

ConstantWeight-auto
ConstantWeight-vanilla

ErfcWeight-auto
ErfcWeight-vanilla
GaussWeight-auto

GaussWeight-vanilla

Figure 12.9: Results of ERiC with different weight functions and auto-

tuning on a sample 10D synthetic data set.

termined separately (for these graphs, the x-axis represents the chosen kmax

value). The red line is using the traditional PCA without any weighting,

while the dashed green and the orange line with the long dash-dot pattern

represent the results using the Erfc and Gauss weights, respectively. The

results show that kmax simply needs to be chosen high enough in order to

achieve reasonably good results. While these results do not reach the re-

sults of choosing the optimum k (which is not possible without knowing the

gold standard), they approach the optimal value quite well. This observation

dramatically simplifies the choice of the k/kmax parameter.

Figure 12.8(b) depicts the results on DS2 shown in Figure 12.7(b). Over-

all, the results on DS1 and DS2 are comparable. However, given that every

point has just one “sensible” dimensionality – the other data set had points

that had both a sensible 1D and 2D context – and the noise level is not

as high, the effect of the weighted PCA on DS2 is not as high as on DS1.

Since increasing the noise level will increase the difference between the non-

weighted and weighted graphs, the weighting is especially interesting for noisy

(e.g. higher dimensional) data.

218 12 Increasing the Robustness

All observations that could be made for the two 3D data sets could also be

made for higher dimensional data sets. For example, Figure 12.9 shows the

results of ERiC with different extensions for a sample 10D data set. Again,

the version of ERiC using an Erfc weighted PCA in combination with the

auto-tuned selection of k achieved the best overall F-measure. Also, as long

as kmax is chosen sufficiently high, we get rather accurate results.

In summary, we observed that in all cases, the combination of the Erfc

weighted PCA and the auto-tuned selection of k considerably increased the

F-measure of the resulting clustering and significantly reduced the complex-

ity of selecting sufficient input parameters compared to the original ERiC

algorithm.

ORCLUS

The results of ORCLUS are harder to evaluate, because the results of OR-

CLUS depend on the order in which the data points are processed. Therefore,

we generated 100 permutations of the original data, applied ORCLUS with

optimal parameters to all of them, and averaged the results. The data set

used in these computations was a 10-dimensional data set, containing 10

clusters of dimensionalities 2 to 5. The results are given in Table 12.1.

Each of these values was obtained by running ORCLUS and its vari-

ants on the same 100 permutations of the input data set and averaging the

resulting F-measure values. The standard deviation over the 100 resulting

F-measure values is given to show the dependence of ORCLUS on picking

good seeds. It can be observed that the benefits of using a weighted PCA

are smaller (≈ 0.02) than those of using an auto-tuning PCA (≈ 0.09) and

the combination of both actions further improves the results. Interestingly,

in this experiment, a linear weighting function is slightly better (by up to

0.02) than a Gaussian or Erfc weighting. However, in general on different

data sets, there is no significant difference observable comparing different

weighting functions. In summary, using our novel concepts, the F-measure

on this data set is improved by approximately 0.1 corresponding to a 10%

quality boost.

12.4 Evaluation 219

Table 12.1: Impact of the integration of our novel concepts into ORCLUS.

Variant Avg. F-measure St. Dev.

ORCLUS 0.667 0.046

ORCLUS + Gauss weight 0.684 0.055

ORCLUS + Exponential weight 0.676 0.054

ORCLUS + Erfc weight 0.683 0.061

ORCLUS + Linear weight 0.686 0.056

ORCLUS + Auto 0.751 0.070

ORCLUS + Auto + Gauss 0.763 0.069

ORCLUS + Auto + Exponential 0.754 0.075

ORCLUS + Auto + Erfc 0.754 0.075

ORCLUS + Auto + Linear 0.771 0.078

Table 12.2: Results on NBA data using ERiC with autotuning and Erfc

weighting.

cluster ID dim Description

1 4 “go-to-guys”

2 4 guards

3 4 reserves

4 5 small forwards

12.4.3 Real-world Data

We applied the enhanced version of ERiC (using autotuning and Erfc weight-

ing) on a data set containing average career statistics of current and former

NBA players1. The data contains 15 features such as “games played” (G),

“games started” (GS), “minutes played per game” (MPG), “points per game”

(PPG), etc. for 413 former and current NBA players. We detected 4 inter-

esting clusters each containing players of similar characteristics (cf. Table

12.2). In addition, several players were assigned to the noise set. Cluster 1

contains active and former superstars like Michael Jordan, Scottie Pippen,

1obtained from http://www.nba.com

220 12 Increasing the Robustness

Table 12.3: Clustering results on Metabolome data using ERiC with auto-

tuning and Erfc weighting.

cluster ID dim Description

1 10 PKU

2 10 controll

3 11 PKU

4 12 PKU

5 13 PKU

Gary Payton, Allen Iverson, Larry Bird, Dominique Wilkins, and LeBron

James, etc. The second cluster features point and shooting guards, e.g. Reg-

gie Miller, Nate McMillan, Tim Hardaway, John Stockton, Steve Kerr, Glen

Rice, Steve Nash, Derek Anderson, and Eddie Jones, among others. A third

cluster contains only very few players that are not so well-known because they

are usually reserves. The fourth cluster consists of small forwards such as

Bryon Russell, Detlef Schrempf, Morris Peterson, Sean Elliott, Josh Howard,

Tom Chambers, Jerome Kersey, and Al Harrington. Let us note that we also

applied the original ERiC algorithm (without the extensions) to the NBA

data set but could not get any clear clusters. In summary, using our novel

concepts, the algorithm ERiC is now able to detect some meaningful clusters

on the NBA set.

In addition, we applied our novel concepts in combination with ERiC to

the Metabolome data set of [92] consisting of the concentrations of 43 metabo-

lites in 20,391 human newborns. The newborns were labeled according to

some specific metabolic diseases. The data contain 19,730 healthy newborns

(“control”), 306 newborns suffering from phenylketonuria (“PKU”), and 355

newborns suffering from any other diseases (“other”). The results are de-

picted in Table 12.3. As it can be seen, we could separate several of the

newborns suffering from PKU from the other newborns. Again, the original

version of ERiC could not find any comparatively good results.

221

Part IV

Global Correlation Clustering

223

In the previous part, several contributions to the field of correlation clus-

tering have been discussed. All original approaches to correlation clustering

proposed in Part III are based on a marriage of the density-based cluster

paradigm and PCA. Clustering following the density-based paradigm is ei-

ther flat (as it applies to the algorithms in Chapters 8 and 9) or hierarchical

(as the algorithms discussed in Chapters 10 and 11). The hierarchy of corre-

lation clusters, however, is not only a containment hierarchy of clusters but

also of the corresponding subspaces.

While Chapter 12 tackled some weak points common to all approaches to

correlation clustering based on PCA, there remain intrinsic drawbacks in the

application of these PCA-and-density-based approaches to high dimensional

data. These have been basically discussed in Part II and can be summarized

in the so called “locality assumption”: The application of the density-based

paradigm to clustering in arbitrarily oriented subspaces of high dimensional

data assumes the subspace preference of a point being manifest in its local

neighborhood. This locality assumption is presumably the main reason why

all these approaches discussed in the previous part are suitable to cluster

data sets of moderate dimensionality only. The same applies to the algorithm

ORCLUS [11] which is not density-based but partitioning (a k-medoid-like

approach). Nevertheless, PCA is applied on a local selection of points (the

Voronoi-parcel of the respective cluster-medoid) in order to ascertain the

suitable subspace.

This part now presents a first attempt to overcome this limitation in

principle and leads therefore to a global approach to correlation clustering.

We will first recall the difficulties in näıvely accepting the “locality as-

sumption” (Chapter 13). Afterwards we present a fundamentally new ap-

proach for a global correlation analysis (Chapter 14).

224

225

Chapter 13

Local versus Global Correlation

Clustering

13.1 Motivation

Subspace clustering is a data mining task which has attracted considerable

attention during the last years. There are two main reasons for this popular-

ity. Firstly, conventional (full space) clustering algorithms often fail to find

useful clusters when applied to data sets of higher dimensionality, because

typically many of the attributes are noisy, some attributes may exhibit corre-

lations among another, and only few of the attributes really contribute to the

cluster structure. Secondly, the knowledge gained from a subspace clustering

algorithm is much richer than that of a conventional clustering algorithm. It

can be used for interpretation, data compression, similarity search, etc.

As discussed in Part II, we can distinguish between subspace clustering

algorithms for axis-parallel subspaces [13, 80, 10, 114, 34, 2, 3] and those for

subspaces which are arbitrarily oriented (called oriented clustering, gener-

alized subspace clustering, or correlation clustering, e.g., [11, 35]). In both

cases, the data objects which are grouped into a common subspace cluster,

are very dense (i.e., the variance is small) when projected onto the hyperplane

which is perpendicular to the subspace of the cluster (called the perpendicular

226 13 Local versus Global Correlation Clustering

space plane). The objects may form a completely arbitrary shape with a high

variance when projected onto the hyperplane of the subspace in which the

cluster resides (called the cluster subspace plane). This means, that the ob-

jects of the subspace cluster are all close to the cluster subspace plane. The

knowledge, that all data objects of a cluster are close to the cluster subspace

plane is valuable for many applications: If the plane is axis-parallel, this

means that the values of some of the attributes are, more or less, constant

for all cluster members. The whole group is characterized by this constant

attribute value, an information which can definitely be important for the

interpretation of the cluster. This property may also be used to perform a

dedicated dimensionality reduction for the objects of the cluster and may

be useful for data compression (because only the higher-variance attributes

must be stored at high precision individually for each cluster member) and

similarity search (because only the high-variance attributes need to be indi-

vidually considered for the search and an index needs only be constructed

for the high-variance attributes).

If the cluster subspace plane is arbitrarily oriented, the knowledge is even

more valuable. In this case, we know that the attributes which define the

cluster subspace plane, have a complex dependency among each other. This

dependency defines a rule, which again characterizes the cluster and which

is potentially useful for cluster interpretation. Similarly to the case of axis-

parallel clusters, this dependency rule may also be used for dimensionality

reduction, data compression, similarity search, and indexing. Consider, for

example, Figure 13.1 which contains two general subspace clusters in a very

noisy environment. For each of the subspace clusters, we know that the

x and y coordinates are approximately linearly dependent from each other

(y ≈ mi · x + ti), and, therefore, only one of them needs to be stored at

full precision, indexed, etc. Furthermore, the knowledge of the degree of

dependency, as well as the slope and intercept may be important for the

interpretation of the cluster in the context of the application.

One well-known effect of the “curse of dimensionality” is the correlation

among attributes in high dimensional data. While full dimensional cluster-

ing approaches are easily misled by these correlations, generalized subspace

13.1 Motivation 227

Figure 13.1: Data set with two non-dense general subspace clusters in a

noisy environment

clustering approaches, hence also called correlation clustering, make use of

this effect to identify clusters in subspaces of arbitrary dimensionality. How-

ever, finding axis-parallel or generally oriented subspace clusters is not a

trivial task. The number of possible axis parallel subspaces is exponential

in the number of dimensions, and the number of general subspaces is even

infinite. Therefore, a complete enumeration of all possible subspaces to be

checked for clusters is not feasible. Consequently, all previous solutions rely

on specific assumptions and heuristics, and try to find promising subspaces

during the clustering process, for instance in an iterative optimization. We

will see that this previous approach of learning suitable subspaces works well

if (but only if) subspace clusters are locally well separated and no outlier ob-

jects (belonging to no cluster) exist. In the presence of outliers in the local

neighborhood of cluster points or cluster representatives in the entire feature

space, most previous subspace clustering algorithms fail to detect subspace

clusters, because the algorithms try to find suitable subspaces for each cluster

from the local neighborhood of cluster points or cluster representatives in the

entire feature space. This fundamental assumption all existing approaches

to correlation clustering are based upon is called the “locality assumption”.

Outliers in the neighborhoods, that do not belong to the corresponding clus-

228 13 Local versus Global Correlation Clustering

ter prevent the algorithms from finding suitable subspaces, and the absence

of a precise subspace prevents the algorithm from effectively filtering out the

outliers.

In high dimensional spaces, however, where distances cannot be used to

differentiate between near and far points, the concept of local neighborhoods

is meaningless [31, 69, 9]. Consequently, the neighborhoods of cluster points

or cluster representatives will contain a large number of outliers that do not

belong to the corresponding cluster. However, those problems arise even if

the number of outliers is very small (e.g. 5-10 outliers in the complete data

set). Thus, an environment of heavy noise such as that of Figure 13.1 is

completely out of the scope of previous subspace clustering methods even in

lower dimensional data spaces, as we will discuss more deeply in Section 13.2

for locally optimizing approaches such as ORCLUS [11] and for density-based

approaches such as 4C [35] and its variants (see Part III).

13.2 The “Locality Assumption” in Existing

Correlation Clustering Algorithms

Existing approaches for subspace clustering rely on certain heuristics that

use specific assumptions to shrink down the search space and thus to reduce

the runtime complexity. However, if these assumptions are not true for a

given data set, the methods will either fail to detect any suitable patterns or

exhibit an exponential runtime.

Many subspace clustering algorithms (e.g. [13, 80, 10, 114, 34, 2, 3])

assume that the subspace clusters are axis-parallel. Otherwise, they will

not find any pattern. Pattern-based subspace clustering algorithms (e.g.

[41, 144, 138, 110, 96]) are limited to find only clusters that represent pair-

wise positive correlations in the data set. In contrast, arbitrarily oriented

hyperplanes (subspace clusters) may also represent more complex or nega-

tive correlations.

Here, we focus on the generalized problem of finding arbitrarily oriented

13.2 The “Locality Assumption” 229

subspace clusters. All existing algorithms for this problem assume that the

cluster structure is significantly dense in the local neighborhood of the cluster

centers or other points that participate in the cluster. In the context of high

dimensional data this “locality assumption” is rather optimistic. Theoretical

considerations [69] show that concepts like “local neighborhood” are not

meaningful in high dimensional spaces because distances can no longer be

used to differentiate between points. This is a consequence of the well-known

curse of dimensionality.

ORCLUS [11] is based on k-means and iteratively learns the similarity

measure capturing the subspace containing a given cluster from the points as-

signed to the cluster in each iteration by applying PCA on these points. Since

the algorithm starts with the Euclidean distance, the algorithm learns the

subspaces from the local neighborhood of the initial cluster centers. However,

if this local neighborhood contains some noise or the clustering structure is

too sparse within this local neighborhood, the learning heuristic will be mis-

led because PCA is rather sensitive to outliers. In those cases, ORCLUS will

fail to detect meaningful patterns. These considerations accordingly apply to

the method proposed in [39] which is a slight variant of ORCLUS designed

for enhancing multi-dimensional indexing.

4C [35] integrates PCA into density-based clustering. It evaluates the

Euclidean neighborhood of each point p to learn the subspace characteristics

in which p can be clustered best. Similar to ORCLUS, 4C thus relies on the

assumption that the clustering structure is dense in the entire feature space.

Otherwise 4C will also fail to produce meaningful results. The same holds

true to some variations of 4C like COPAC [6], HiCO [7], and ERiC [5], and

also for robustified versions of these algorithms as described in [90]. (See

Part III for a detailed description of these algorithms.)

The method CURLER [136] merges the clusters computed by the EM

algorithm using the so-called co-sharing level. The resulting clusters need not

to represent linear correlations. Rather, any dense pattern in the data space is

found that may represent a more complex, not necessarily linear correlation.

CURLER also relies on the assumption that the subspace clustering structure

230 13 Local versus Global Correlation Clustering

is dense in the entire feature space because both the generation as well as

the merging of micro-clusters uses local neighborhood information.

In summary, as discussed in Part II, Chapter 7, existing approaches to

the correlation clustering problem tackle only one problem out of the bundle

of problems known as “curse of dimensionality”, namely the occurring cor-

relation of attributes. In view of the remaining problems (esp. irrelevance

of neighborhood and irrelevant attributes), the “locality assumption” cannot

lead to satisfactory solutions in high dimensional data. This may be the rea-

son why all these algorithms appear suitable only for data sets of moderate

dimensionality.

To overcome the restrictions of the “locality assumption” for correla-

tion clustering, a truly “global” search for correlations among attributes is

required. A “global” approach should not be obfuscated by irrelevant at-

tributes or meaningless neighborhood queries. The next chapter is dedicated

to describe a first shot in this direction.

231

Chapter 14

Correlation Clustering Based

on the Hough-transform

Obviously, the “locality assumption” that the clustering structure is dense in

the entire feature space and that the Euclidean neighborhood of points in the

cluster or of cluster centers does not contain noise is a very strict limitation

for high dimensional real-world data sets. In [69] the authors show that

in high dimensional spaces, the distance to the nearest neighbor and the

distance to the farthest neighbor converge. As a consequence, distances can

no longer be used to differentiate between points in high dimensional spaces

and concepts like the neighborhood of points become meaningless. Usually,

although many points share a common hyperplane, they are not close to

each other in the original feature space. In those cases, existing approaches

will fail to detect meaningful patterns because they cannot learn the correct

subspaces of the clusters. In addition, as long as the correct subspaces of

the clusters cannot be determined, obviously outliers and noise cannot be

removed in a preprocessing step.

In this chapter, we propose to use the ideas of the Hough transform [71]

to develop an original principle for characterizing the subspace containing a

cluster. This way, correlation clusters are sought in a truly “global” way,

thus overcoming the limitations of the “locality assumption”.

232 14 Correlation Clustering Based on the Hough-transform

This chapter is organized as follows: The fundamental concepts of the

Hough-transform are introduced in Section 14.1. Based on these ideas, a

generalization to d-dimensional data and the basic principle to make use of

these concepts for correlation clustering are sketched in Section 14.2. This

principle enables us to transform the task of subspace clustering (in data

space) into a grid-based clustering problem (in parameter space). Unlike

grid-based methods operating directly in the data space, our method does

not suffer from grid resolution and grid positioning problems. In order to

perform this transformation, we first need to define the boundaries of the

grid (cf. Section 14.3). In this step, some rather technical considerations are

required. These are described in detail in Section 14.4 so as to not obstruct

the flow of reading. Then we will show how to identify dense grid cells that

represent potential subspace clusters (cf. Section 14.5). Since the parameter

space is d-dimensional for a d-dimensional data space, finding dense grid

cells becomes rather costly for higher dimensional data sets. Thus, we will

propose a more efficient search strategy for finding regions of interest in

the parameter space (cf. Section 14.6). An important step in the clustering

process is a recursive descent in order to find lower dimensional clusters. We

describe this descent in more detail in Section 14.7. We will also discuss how

this recursive descent can be used to derive a hierarchy of subspace clusters

(cf. Section 14.8). We will also summarize our subspace clustering algorithm

CASH (Clustering in Arbitrary Subspaces based on the Hough transform)

and discuss some of its properties (cf. Section 14.9). Finally, an experimental

evaluation is presented in Section 14.10.

The concepts presented in this chapter are partially published in [1].

14.1 The Hough-transform

The basic Hough transform has been introduced in the computer graphics

community to address the problem of finding linear segments in pictures

(especially straight lines) by [116]. Most work focuses on discretized 2D data.

The key idea is to map each point of a 2D picture (or data space D) such as

14.1 The Hough-transform 233

p1

p2

p3

picture space

p1

p2

p3

parameter space

f
f

f

x

y

m

t

(ms,ts)

s

Figure 14.1: Hough transform from picture space to parameter space using

slope and intercept parameters.

a pixel onto a set of points (e.g. a line) in a parameter space P . An area of

the parameter space containing many mapped points (e.g. the intersection

of many lines) indicates a potential feature of interest. In general, a linear

segment s can be represented by its slope ms and its axis intercept ts in a

system of Cartesian coordinates, i.e. y = ms · x + ts. We can now take m

and t as the axes of the parameter space and reformulate the line equation

by ts = −ms · x + y. Thus, each 2D picture point p = (xp, yp) ∈ D in the

picture space is mapped on a line fp with slope −xp and intercept yp in the

parameter space, i.e. a line fp represented by t = −m · xp + yp. The line fp

in the parameter space models all linear segments (lines) that pass through

p in the original picture space. Thus, whenever several lines fp1 , . . . , fpk
in

the parameter space intersect at a given point (mi, ti) ∈ P , this indicates

that the points p1, . . . , pk ∈ D are located on a common line in picture space

given by y = mi ·x+ ti. A simplified example of the relationship between the

picture space and the parameter space is visualized in Figure 14.1. The three

picture points p1, p2, and p3 are located on a common line s represented by

y = ms · x + ts in the picture space (left). The corresponding mappings in

the parameter space (right) fp1 , fp2 , and fp3 intersect at point (ms, ts) in the

parameter space.

Obviously, both the slope and the intercept are unbounded which may

cause some problems when applying this basic technique. Thus, [45] proposed

234 14 Correlation Clustering Based on the Hough-transform

parameter space

p1
f

p2f

p3
f

α

δ

picture space x

y

(αs,δ s)

p1

p2

p3

δs
αs

s

Figure 14.2: Hough transform from picture space to parameter space using

angle and radius parameters.

to use spherical (also known as polar) coordinates, i.e. to use a parameter

space based on angle and radius parameters rather than on slope and inter-

cept parameters. The normal parametrization of a linear segment s in 2D is

given by the angle αs of its normal and its distance (radius) δs from the ori-

gin, i.e. s is represented by x · cos αs + y · sin αs = δs. If αs is restricted to the

interval [0, π), the normal representation of a line is unique. The mapping

from the picture space onto the parameter space using angle/radius works

similar to the mapping using slope/intercept. In either case, the parameter

space represents all possible 1D lines in the original 2D data space.

In principle, each point of the data space is mapped on an infinite number

of points in the parameter space which is not materialized as an infinite set

but instead as a trigonometric function in the parameter space. Each func-

tion in the parameter space represents all lines in the picture space crossing

the corresponding point in data space. The intersection of two curves in the

parameter space indicates a line through both the corresponding points in

the picture space. The objective of a clustering algorithm is to find inter-

sections of many curves in the parameter space representing lines through

many database objects. The key feature of the Hough transform is that the

distance of the points in the original data space is not considered any more.

Objects can be identified as associated to a common line even if they are far

apart in the original feature space. As a consequence, the Hough transform

14.2 Subspace Analysis: a Novel Principle 235

is a promising candidate for developing a principle for subspace analysis that

does not require the locality assumption and, thus, enables a global subspace

clustering approach.

14.2 Subspace Analysis: a Novel Principle

Our novel principle for subspace analysis is based on a generalized descrip-

tion of spherical coordinates. Generalized spherical coordinates combine d−1

independent angles α1, . . . , αd−1 with the norm r of a d-dimensional vector

x = (x1, . . . , xd)
T to completely describe the vector x w.r.t. the given or-

thonormal basis e1, . . . , ed. We present a formalization analogously to [99]:

Definition 14.1 (Spherical coordinates)

Let ei, 1 ≤ i ≤ d, be an orthonormal basis in a d-dimensional feature space.

Let x = (x1, . . . , xd)
T be a d-dimensional vector on the hypersphere of radius

r with center at the origin. Let ui be the unit vector in the direction of the

projection of vector x onto the manifold spanned by ei, . . . , ed. For the d− 1

independent angles α1, . . . , αd−1, let αi, 1 ≤ i ≤ d − 1, be the angle between

ui and ei. Then the generalized spherical coordinates of vector x are defined

by:

x1 = r · cos(α1)

x2 = r · sin(α1) · cos(α2)
...

xi = r · sin(α1) · . . . · sin(αi−1) · cos(αi)
...

xd−1 = r · sin(α1) · . . . · sin(αd−2) · cos(αd−1)

xd = r · sin(α1) · . . . · sin(αd−2) · sin(αd−1)

Generally:

xi = r ·

i−1∏
j=1

sin(αj)

 · cos(αi),

236 14 Correlation Clustering Based on the Hough-transform

where αd = 0.

For any point p ∈ D ⊆ Rd there exists an infinite number of hyperplanes

containing p. The spherical coordinates are utilized to define the normal

vector of the Hessian normal form for any of those hyperplanes, i.e., each

hyperplane is uniquely defined by a point p and d−1 angles α1, . . . , αd−1, with

αi ∈ [0, π), defining the normal vector. Thus, any point p together with any

tuple of angles α1, . . . , αd−1, can be mapped by the following parametrization

function to the distance of the corresponding hyperplane to the origin.

Definition 14.2 (Parametrization Function)

Let p = (p1, . . . , pd)
T ∈ D ⊆ R

d be a d-dimensional vector, and let n =

(n1, . . . , nd)
T be a d-dimensional unit vector specified by d−1 angles α1, . . . , αd−1

according to Definition 14.1. Then the parametrization function fp : Rd−1 →
R of vector p denotes the distance of the hyperplane defined by the point p

and the normal vector n to the origin:

fp(α1, . . . , αd−1) = 〈p, n〉

=
d∑

i=1

pi ·

i−1∏
j=1

sin(αj)

 · cos(αi)

Based on Definition 14.2, we can map any point p ∈ Rd to a function in a

d-dimensional parameter space P representing all possible hyperplanes con-

taining p. This parameter space is spanned by the d− 1 angles α1, . . . , αd−1

of the normal vectors defining the hyperplanes in Hessian normal form and

their distances δ = fp(α1, . . . , αd−1) to the origin.

By means of the parametrization function (Definition 14.2), we can also

extend the properties of the original Hough transform as stated in [45] for

the mapping of 2-dimensional points to d-dimensional data spaces and the

corresponding parameter spaces:

Property 14.1

A point p ∈ D ⊆ R
d in data space is represented by a sinusoidal curve

fp : Rd−1 → R in parameter space P.

14.2 Subspace Analysis: a Novel Principle 237

1p

2p

3p

1x
2x

3x

s

(a) Three points p1, p2, p3 on a plane s ⊆ R3.

1pf

1
2

2pf

3pf

),,(21

sss

(b) Corresponding parametrization functions.

Figure 14.3: Transform of a 3-dimensional data space into a 3-dimensional

parameter space.

238 14 Correlation Clustering Based on the Hough-transform

Figure 14.3 illustrates a 3-dimensional example of this property. Three

points p1, p2, and p3 in data space are mapped onto the corresponding sinu-

soidal curves fp1 , fp2 , and fp3 , respectively, in parameter space.

Property 14.2

A point (α1, . . . , αd−1, δ) ∈ P in parameter space corresponds to a (d − 1)-

dimensional hyperplane in data space.

In Figure 14.3, the point (αs
1, α

s
2, δ

s) in parameter space represents the

2-dimensional plane s with

δs = cos(αs
1) · x1 + sin(αs

1) · cos(αs
2) · x2 + sin(αs

1) · sin(αs
2) · x3

in data space.

Property 14.3

Points that are located on a (d − 1)-dimensional hyperplane in data space

correspond to sinusoidal curves through a common point in parameter space.

The three points p1, p2, p3 ∈ D (Figure 14.3) are located on the 2-dimensional

plane s. Their corresponding sinusoidal curves fp1 , fp2 , fp3 intersect in the

point (αs
1, α

s
2, δ

s) ∈ P , where αs
1, α

s
2 and δs are the parameters of plane s as

given above (cf. Property 14.2).

Property 14.4

Points located on the same sinusoidal curve in parameter space represent

(d− 1)-dimensional hyperplanes through the same point in data space.

For example, in Figure 14.3, fp1 in parameter space represents all 2-

dimensional planes through p1 in data space. Thus, any point on fp1 in

parameter space represents a given 2-dimensional plane in data space that

passes through p1.

Properties 14.1 – 14.4 induce that an intersection point in the parame-

ter space indicates points in the data space that are located on a common

14.3 Specifying the Boundaries of the Grid 239

(d− 1)-dimensional hyperplane. In order to detect those linear hyperplanes

in the data space, the task is to search for points in the parameter space

where many sinusoidal curves intersect. Since computing all possibly inter-

esting intersection points is computationally too expensive, we discretize the

parameter space by some grid and search for grid cells with which many

sinusoidal curves intersect. For that purpose, for each grid cell the number

of intersecting sinusoidal curves is aggregated. Due to this discretization of

the parameter space, exact intersections are no longer considered. Rather, a

slight impreciseness is allowed modelling a certain degree of jitter given by

the grid resolution. The higher the grid resolution is, the lower is the allowed

degree of jitter, i.e. the more accurate the recognition of the line segments.

With the proposed concepts, we transform the original subspace cluster-

ing problem (in data space) into a grid-based clustering problem (in param-

eter space).

14.3 Specifying the Boundaries of the Grid

To define a discretization of the parameter space, the range of the axes must

be known. The axes for the angle-parameters α1, . . . , αd−1, are bounded by

[0, π). The δ-axis ranges from the minimum of all minima of all parametriza-

tion functions to the maximum of all their maxima within [0, π)d−1. Each

fp is a sinusoid with a period of 2π. Thus, any fp has exactly one global

extremum in the interval [0, π)d−1. If the extremum of fp is a maximum,

the minimal value for fp in the given interval has to be determined and vice

versa.

To find the global extremum of a parametrization function fp in the in-

terval [0, π)d−1, those angles α1, . . . , αd−1 need to be determined where all

the first order derivatives of fp are zero, and the Hessian matrix of fp is ei-

ther positive or negative definite. As noted above, fp is guaranteed to have

exactly one global extremum fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values for the

angles α̃n (n = 1, . . . , d − 1) of the global extremum of fp are given by (cf.

240 14 Correlation Clustering Based on the Hough-transform

Section 14.4.1 for details):

α̃n = arctan

d∑

j=n+1
pj ·

[
j−1∏

k=n+1
sin(α̃k)

]
· cos(α̃j)

pn

Given the global extremum of a parametrization function fp in the inter-

val [0, π)d−1, we have to distinguish several cases to determine the opposite

value, i.e., to determine the maximum of fp if the global extremum of fp is

a minimum, or, to determine the minimum of fp if the global extremum is

a maximum. In the following, we describe how to determine the point αmin

where the parametrization function fp has a minimum in interval [0, π)d−1

given that the global extremum is a maximum. In the opposite case, the

point αmax where the parametrization function fp has a maximum in interval

[0, π)d−1 given the global extremum is a minimum can be determined anal-

ogously. Please refer to Section 14.4.2 for a detailed formalization of this

step.

We determine the point αmin = (αmin
1 , . . . , αmin

d−1) where the parametriza-

tion function fp has a minimum in interval [0, π)d−1 as follows: First, the

angle αd−1 on axis (d− 1) is determined where fp has an extremum on this

axis. Dependent on the type of the extremum in αd−1 and the location of

αd−1 in the interval [0, π), the minimum angle αmin
d−1 on axis (d−1) in interval

[0, π) is determined. In the next step, axis (d− 2) will be considered: Now,

the angle αd−2 will be determined, where fp has an extremum on this axis

under the constraint of the known minimum on axis d− 1, which is given by

αmin
d−1. Analogously to the first step, dependent on the type of the extremum

in αd−2 and the location of αd−2 in the interval [α̌d−2, α̂d−2), the minimum

angle αmin
d−2 is determined. In this way, all minimum angles are determined

under the constraint of the known minima on the already processed axes.

In summary, given for each parametrization function fp its minimal and

maximal value αmin
p and αmax

p in interval [0, π)d−1, the δ-axis of the parameter

space P is bounded by

[δmin, δmax] = [minp∈D(fp(α
min
p)), maxp∈D(fp(α

max
p))]

14.4 Finding the Extrema of the Parametrization Functions 241

and P = [δmin, δmax]× [0, π)d−1.

14.4 Finding the Extrema of the Parametriza-

tion Functions

In the following, a detailed formalization of the computational steps for iden-

tifying the extrema of a parametrization function fp are given. First (14.4.1),

the determination of the global extremum of a parametrization function fp

in the interval [0, π)d−1 is described. Then (14.4.2), based on this deriva-

tion, it is specified, how to identify the minimum of fp in a given interval

[α̌, α̂) ⊆ [0, π)d−1. The maximum of fp in a given interval [α̌, α̂) ⊆ [0, π)d−1

can be determined analogously.

14.4.1 Global Extremum

Each parametrization function fp is a sinusoid with a period of 2π. Thus,

any fp has exactly one global extremum in the interval [0, π)d−1. To find

the global extremum of fp, those angles α1, . . . , αd−1 need to be determined

where all the first order derivatives of fp are zero, and the Hessian matrix is

either positive or negative definite. The first order partial derivatives of the

parametrization function fp are given by:

∂fp

∂αn

(α) =
n−1∏
i=1

sin(αi)·

−pn · sin(αn) +
d∑

j=n+1

pj · cos(αn) ·

 j−1∏
k=n+1

sin(αk)

 · cos(αj)

Accordingly, the Hessian Matrix of fp is defined as

Hfp(α) =

(
∂2fp

∂αn∂αm

)
(α) ∈ Rd−1×d−1

for 1 ≤ n, m ≤ d− 1.

The extrema of parametrization function fp are characterized by the fol-

lowing properties:

242 14 Correlation Clustering Based on the Hough-transform

1. α̃ = (α̃1, . . . , α̃d−1) is an extremum point of fp ⇒ ∇fp(α̃) = 0, i.e.

∂fp

∂α1

(α̃) = . . . =
∂fp

∂αd−1

(α̃) = 0.

2. ∇fp(α̃) = 0 and the Hessian matrix Hfp at α̃ is positive definite ⇒ α̃

is a minimum point

3. ∇fp(α̃) = 0 and the Hessian matrix Hfp at α̃ is negative definite ⇒ α̃

is a maximum point

For any first order partial derivative ∂fp

∂αn
(α̃)

.
= 0, (1 ≤ n ≤ d− 1), one of

the following conditions holds:

sin(α̃1) = 0
...

sin(α̃n−1) = 0

tan(α̃n) =

d∑
j=n+1

pj ·
[

j−1∏
k=n+1

sin(α̃k)

]
· cos(α̃j)

pn

Since the first n−1 conditions yield an indefinite Hessian matrix, accord-

ing to the last condition, a point α̃ = (α̃1, . . . , α̃d−1) can be an extremum

point of parametrization function fp only if

α̃n = arctan

d∑

j=n+1
pj ·

[
j−1∏

k=n+1
sin(α̃k)

]
· cos(α̃j)

pn

As noted above, fp is guaranteed to have exactly one global extremum

fp(α̃1, . . . , α̃d−1) in [0, π)d−1. The values for the angles α̃n, n = 1, . . . , d − 1

of the global extremum are given by the equation above.

14.4.2 Minimum and Maximum Value

Let α̌ = (α̌1, . . . , α̌d−1) and α̂ = (α̂1, . . . , α̂d−1) for a given interval [α̌, α̂) ⊆
[0, π)d−1, 1 ≤ i ≤ d − 1. To determine the point αmin = (αmin

1 , . . . , αmin
d−1)

14.4 Finding the Extrema of the Parametrization Functions 243

where the parametrization function fp has a minimum in interval [α̌, α̂) the

following steps for each dimension n = d− 1, . . . , 1 have to be performed:

1. Let

αn = arctan

d∑

j=n+1
pj ·

[
j−1∏

k=n+1
sin(αmin

k)

]
· cos(αmin

j)

pn

be the value where fp has an extremum on the n-th axis under the

constraint of known minimum angles αmin
n+1, . . . , α

min
d−1.

2. Given α = (c1, . . . , cn−1, αn, α
min
n+1, . . . , α

min
d−1) ∈ [α̌, α̂)n−1×[0, π)×[α̌, α̂)d−1−n,

where ci are arbitrarily chosen values in [α̌, α̂), we differentiate the fol-

lowing cases:

i. fp has a maximum in α:

A. α̌n ≤ αn ≤ α̂n:

A1. αn − α̌n ≤ α̂n − αn: αmin
n → α̂n.

A2. αn − α̌n > α̂n − αn: αmin
n = α̌n.

B. αn < α̌n: αmin
n → α̂n.

C. αn > α̂n: αmin
n = α̌n.

As illustrated in Figure 14.4, if αn is inside the interval and nearer

to the left boundary (A1), the minimum value αmin
n is located

at the right boundary and vice versa (A2). If αn is outside the

interval (B and C), the minimum value αmin
n is located at the

opposite boundary.

ii. fp has a minimum in α: The same principle of reasoning has to

be applied contrariwise.

A. α̌n ≤ αn ≤ α̂n: αmin
n = αn.

B. αn < α̌n: αmin
n = α̌n.

C. αn > α̂n: αmin
n → α̂n.

The maximum αmax = (αmax
1 , . . . , αmax

d−1) of fp in a given interval [α̌, α̂) ⊆
[0, π)d−1 can be determined analogously.

244 14 Correlation Clustering Based on the Hough-transform

-2

0

2

n

nnn
min

-2

0

2

n

n nn
min

-2

0

2

n

nn
min

n
-2

0

2

n

nnn
min

A1. A2.

B. C.

Figure 14.4: Different cases for finding the minimum of a parametrization

function in a given interval.

14.5 Identifying Dense Grid Cells

Given a discretized parameter space, now those grid cells (hypercuboids) have

to be found that are intersected by parametrization functions of a minimum

number µ of functions. Hypercuboids containing at least µ parametriza-

tion functions are called dense regions of the parameter space. Those dense

regions represent arbitrarily oriented subspaces in the data space accommo-

dating at least µ points. This is illustrated in Figure 14.5. The two subspace

clusters forming lines in the data space (cf. Figure 14.5(a)) are represented

by two distinct dense regions in the parameter space (cf. Figure 14.5(b)).

To find those dense regions in the parameter space, for each grid cell or

hypercuboid the number of parametrization functions which intersect this hy-

percuboid has to be counted. This can be done conveniently by determining

those values αmin
p and αmax

p in a given interval [α̌, α̂) ⊆ [0, π)d−1 that minimize

and maximize a parametrization function fp. Then, all hypercuboids based

on this interval and positioned between fp(α
min
p) and fp(α

max
p) are intersected

by fp. The values αmin
p and αmax

p in a given interval [α̌, α̂) ⊆ [0, π)d−1 that

minimize and maximize fp can be determined analogously to the algorithm

specified in Section 14.3 where the given interval was assumed to be [0, π)d−1.

14.5 Identifying Dense Grid Cells 245

C1

C2

(a) Two lines in data space.

dense region

cluster C1

α

δ

dense region

cluster C2

(b) Dense regions in parameter space.

Figure 14.5: Dense regions in parameter space capturing two lines in data

space.

246 14 Correlation Clustering Based on the Hough-transform

14.6 Efficiently Finding Regions of Interest

A region qualifying as a dense region, but containing exclusively one cluster,

possibly need to be defined by a rather small interval of angles and also a

rather small interval of distances from the origin because otherwise the same

interval could also contain functions representing points of other clusters (cf.

the dense region of cluster C1 in Figure 14.5). For that purpose, a rather

high number of intervals in each dimension of the parameter space is needed,

resulting in a huge number of grid cells possibly qualifying as dense regions.

Thus, searching the parameter space with a predefined grid in the range [0, π)

for each angle and [δmin, δmax] for the distance from the origin, is not feasible

for high dimensional data in terms of space and time complexity.

To avoid exponential complexity, the following search strategy for the

parameter space is proposed:

Step 1 The axes (distance and angles) are divided successively in a static

order given by δ, α1, . . . , αd−1. After dividing one axis, from the re-

sulting 2 hypercuboids the one containing most points is selected for

refinement. If both hypercuboids contain an equal amount of points,

the first one is selected (arbitrarily). The selected hypercuboid is di-

vided recursively by splitting the next axis. The neglected hypercuboid

is kept in a queue.

Step 2 If both children of a divided hypercuboid contain less than µ points,

the search in the corresponding path is discontinued. Unless the queue

is empty, the next hypercuboid in the queue is examined using the same

procedure. In the queue, hypercuboids are ordered descendingly by

the amount of points contained by a hypercuboid. If two hypercuboids

contain an equal amount of points, the smaller one is preferred, since

a smaller interval containing an equal amount of data points is a more

promising candidate.

Step 3 At a predefined depth (i.e. a given number s of successive splits), a

hypercuboid (i.e. the corresponding interval) is considered to be suffi-

ciently small to define a hyperplane containing a subspace cluster. If

14.6 Efficiently Finding Regions of Interest 247

the number of points within the hypercuboid exceeds a predefined num-

ber µ of points, these points are considered to build a subspace cluster.

The corresponding subspace is treated as a new data space containing

all the points accounted for in the hypercuboid. This new data space of

dimensionality d − 1 undergoes the same procedure recursively, while

d > 2, i.e., CASH is called for the points in the hypercuboid using

the corresponding subspace as data space (see Section 14.7 for a more

detailed explanation of the recursive descent). If no subspace cluster

of lower dimensionality is found in this (d − 1)-dimensional space, all

the points in this subspace are supposed to build a (d− 1)-dimensional

subspace cluster.

Step 4 All points participating at a (d−1)-dimensional subspace cluster de-

rived at a search path are removed from the d-dimensional data space.

The queue is reorganized and hypercuboids are removed, if they con-

tain now less than µ points. A new search path based on the next

hypercuboid in the queue is pursued.

Step 5 The search is complete, if in the d-dimensional space no interval is

found containing at least µ points.

This search strategy determines clusters of at least µ points in any ar-

bitrarily oriented subspace and provides a description with an accuracy re-

garding the orientation α and the distance δ from the origin as defined by

the predefined number s of splits.

Unlike traditional grid-based clustering approaches, CASH has no prob-

lems if a region of interest (i.e., a cluster) is located at the boundary of two

connected grid cells, g1 and g2. In that case, the functions will intersect both

neighboring grid cells and both grid cells, g1 and g2, will be dense. CASH

will refine one of these grid cells (e.g. g1 – cf. step 1) until the cluster is found.

After that, CASH eliminates the participating points (i.e., functions) and,

thus, the second grid-cell (g2) will not be dense anymore (step 4).

Due to the recursive search in an obtained cluster (step 3), a cluster hi-

erarchy is gained along the way, i.e., a subspace cluster may in turn contain

248 14 Correlation Clustering Based on the Hough-transform

nested subspace clusters of lower dimensionality. In that case, it may be inter-

esting to report all nested clusters and the information of the “contained-in”

relationships. Section 14.8 provides more details on how a such a hierarchy

can be obtained.

14.7 Recursive Descent

In this Section, we describe in more detail the recursive procedure to find

lower dimensional clusters within higher dimensional clusters as mentioned

in Step 3 of the search heuristic (Section 14.6).

If CASH finds a cluster, i.e. a d-dimensional hypercuboid g (d > 2) at a

predefined depth (i.e., a given number s of successive splits) being sufficiently

dense, the search space is transformed according to the current orientation

and affinity of the subspace defined by the hypercuboid g. In particular, the

hypercuboid g defines a subspace by means of the Hessian normal form with

a certain error (as defined by the intervals of angles [α̌i, α̂i) for each axis i

and the interval of distances [δmin, δmax] from the origin spanned by g). The

corresponding hyperplane (a (d − 1)-dimensional affine subspace) is given

by spherical coordinates of the normal vector n assuming the mean of δmin

and δmax as the length (radius r) of n and for each angle the mean of the

corresponding values of α̌ and α̂, respectively. In other words, the spherical

coordinates of n are given by

r =
δmin + δmax

2
(14.1)

and

αi =
α̌i + α̂i

2
(14.2)

(for 1 ≤ i ≤ d−1). The Cartesian coordinates are given as in Definition 14.1

by

xi = r ·

i−1∏
j=1

sin(αj)

 · cos(αi). (14.3)

The normal vector n is then completed to an orthonormal basis by adding

d−1 linear independent arbitrary basis vectors (which is generally possible in

14.8 Deriving a Hierarchy of Subspace Clusters 249

a d-dimensional space). The corresponding orthonormal matrix N facilitates

the transformation of the parametrization functions from the d-dimensional

space into the (d − 1)-dimensional subspace by multiplication with N and

projection onto the space given by N \n. This way, a new, (d−1)-dimensional

subspace is defined. The data set corresponding to this subspace contains

only the parametrization functions intersecting the hypercuboid g. For the

next step, CASH is applied to the points of the cluster represented by g

transformed into the new (d−1)-dimensional subspace. In each next step the

search space is therefore reduced in dimensionality and at least not increased

w.r.t. the number of database objects.

14.8 Deriving a Hierarchy of Subspace Clus-

ters

By means of the recursive descent, CASH directly yields a hierarchy of ar-

bitrarily oriented subspace clusters. All points belonging to a dense (d− 1)-

dimensional grid cell also belong to the d-dimensional grid cell that has been

previously analyzed in order to find lower dimensional clusters. Thus, when

recursively descending after identifying a cluster, we simply have to store a

pointer from the higher dimensional cluster to the lower dimensional cluster.

As a result, we get a containment hierarchy of clusters and their correspond-

ing subspaces. This hierarchy displays an important relationship among clus-

ters. If any l-dimensional cluster A is contained in a k-dimensional cluster

B (l < k) according to this relationship, this means that all points of cluster

A are not only located on a common l-dimensional cluster hyperplane but

also located on the k-dimensional cluster hyperplane that is shared by the

points in B. Cluster B can thus be regarded as a superset of A. A higher di-

mensional superset B of a cluster A can be regarded as an interesting cluster

itself, if |B − A| ≥ µ.

From the point of view of a hierarchy of subspaces, the difference between

the points in B − A and the points in B is that points in B − A exhibit a

correlation not only among the l attributes that are correlated for the points

250 14 Correlation Clustering Based on the Hough-transform

in B but also among k− l additional attributes. Knowing these relationships

is quite interesting when evaluating and interpreting the reported clusters in

order to find hidden causalities in the data.

The hierarchy can be visualized as a tree. Each node of a tree represents

a cluster. The root node (level 0) of the tree represents the entire database

forming a “dummy” d-dimensional cluster in which all other “true” clusters

are contained. A node at level k represents a (d−k)-dimensional cluster. An

edge between a k- and an l-dimensional cluster (l < k) represents the con-

tainment of the l-dimensional cluster within the k-dimensional one. Finally,

any node on level l ≥ 1 without parent node is linked to the root.

14.9 Properties of the Algorithm

The algorithm CASH transforms the data objects from D ⊆ Rd into a cor-

responding parameter space (based on radius and angles) P = [δmin, δmax]×
[0, π)d−1. After that, CASH identifies dense regions in that parameter space

using the search strategy proposed above. These dense regions represent ar-

bitrarily oriented subspace clusters in the data space. For each dense region,

a recursive descent is initialized. The resulting hierarchy of subspace clusters

is visualized by a tree structure placing the complete database in the root of

the tree representing the entire database.

14.9.1 Complexity

Let N be the number of data points in a d dimensional data space. When bi-

secting the parameter space of αi and δ, we need to determine those database

points, whose parameter functions intersect with the generated cells in the

parameter space. This is done by the maximization and minimization of δ

given the constraints on αi (i.e., α̌i ≤ αi < α̂i for all 1 ≤ i ≤ d− 1) requiring

O(d3) time per object and cell.

The CASH algorithm performs a recursive bisection of the data space

14.9 Properties of the Algorithm 251

where all bisections with fewer than µ associated database points are dis-

carded. Since bisection cells which do not belong to any cluster are only

randomly associated to a few arbitrary points, the bisection process for those

cells stops at a high level of the bisection tree. Only cells belonging to actual

subspace clusters are bisected until the defined maximum number s of bisec-

tion levels is reached. Therefore, for a data set containing c > 0 clusters, a

number O(s · c) of nodes in the bisection tree are encountered, each causing

O(N · d3) work to find all subspace clusters. Together, we have an average

time complexity in O(s · c ·N · d3).

14.9.2 Input Parameters

CASH requires the user to specify two input parameters: The first parameter

µ specifies the minimum number of sinusoidal curves that need to intersect a

hypercuboid in the parameter space such that this hypercuboid is regarded

as a dense area. Obviously, this parameter represents the minimum number

of points in a cluster and thus is very intuitive. The second parameter s

specifies the maximal number of splits along a search path (splitlevel). Thus,

it controls the maximal allowed deviation from the hyperplane of the cluster

in terms of orientation and jitter. We show in our experiments, that CASH

is rather robust w.r.t. s. Since CASH does not require parameters that are

hard to guess like the number of clusters, the average dimensionality of the

subspace clusters, or the size of the Euclidean neighborhood based on which

the similarity of the subspace clusters is learned, it is much more usable and

stable than its competitors.

14.9.3 Alternative Parametrization

It is also possible to treat the splitlevel for the radius and the angles sepa-

rately. This increases the number of parameters by one but allows to treat

different kinds of deviations from the idealized cluster hyperplane differently:

The allowed variance in the radius corresponds to the allowed thickness of

the hyperplane, i.e., the tolerated deviation of cluster members orthogonally

252 14 Correlation Clustering Based on the Hough-transform

0

500

1 000

1 500

2 000

2 500

3 000

10 20 30 40 50 60 70 80 90 100
size * 1000

ru
nt

im
e

[s
ec

] CASH
4C
ORCLUS

Figure 14.6: Scalability w.r.t. size.

from the hyperplane. This kind of error is usually encountered in real world

data sets. The tolerated variance in the angles corresponds to the tolerated

variance in the orientation of the hyperplane. A larger allowance here makes

it possible to grasp clusters where the members do not follow a perfectly

linear correlation.

14.10 Evaluation

14.10.1 Efficiency

To evaluate the scalability of CASH w.r.t. the size of the data set, we cre-

ated ten data sets containing four, equally sized one dimensional clusters

in a 5 dimensional data space with an increasing number of points ranging

from 10,000 to 100,000. CASH performs comparably well to ORCLUS. Both

outperform 4C significantly (cf. Figure 14.6). As a fair setting, we gave as

parameter k to ORCLUS the exact number of clusters in the data set (i.e.

k = 4), and parameter l has been set to the correct correlation dimension-

ality of the clusters (i.e. l = 1). For 4C, the parameters have been set to

14.10 Evaluation 253

1

10

100

1 000

10 000

100 000

1 000 000

1 10 100
dimensionality

ru
nt

im
e

[s
ec

]

slope = 3.14
corresponding to O (d ³)

Figure 14.7: Scalability of CASH w.r.t. dimensionality.

MinPts = 100, ε = 0.1, λ = 1, and δ = 0.01, reflecting the actual cluster

structure in the synthetic data sets. The parameter setting for CASH was

s = 40 and µ = 2, 500.

To assess the impact of the dimensionality of the data space on the run-

time of CASH, we created 10 data sets ranging in dimensionality from 5 to

50, each data set containing a one dimensional cluster of 10.000 points. The

parameters were set to s = 50 and µ = 5, 000. Figure 14.7 shows the scalabil-

ity of CASH logarithmically on both axes, dimensionality and runtime. The

graph is a line with slope 3.14, approximately corresponding to the expected

runtime behavior.

In both test scenarios, the objective was to find 1-dimensional clusters in

a d-dimensional data space, since this is the most complex task for CASH, re-

quiring a maximal recursive descent from d−1 until subspace dimensionality

1 is reached.

14.10.2 Effectiveness

The parameter s clearly influences the runtime behavior to a certain degree.

However, CASH reaches satisfying behavior in terms of effectiveness for even

254 14 Correlation Clustering Based on the Hough-transform

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
maximum splitlevel

[%
]

F-Measure
Runtime

Figure 14.8: F-measure and runtime of CASH w.r.t. maximum split level.

relatively low values for s. Figure 14.8 illustrates the effect of s on runtime

and effectiveness simultaneously. On a 5-dimensional data set containing two

1-dimensional clusters, each containing 500 points, and 500 points of noise,

CASH reaches an F -measure of 100% already for s = 35, while the runtime

remains relatively low with 3.29% compared to the maximum runtime for

s = 75.

To assess the robustness of CASH against noise, we created ten data sets

containing an increasing level of noise objects ranging from 0 to 90% of the

complete data set. Figure 14.9 shows the comparison in robustness with

ORCLUS and 4C. The parameter setting for ORCLUS has been l = 1 and

k = 2, reflecting the true number of clusters and their dimensionality. For 4C,

the optimal parameter setting has been used with MinPts = 5, ε = 0.12, λ =

1, and δ = 0.01. For CASH, the parameters have been chosen as s = 30 and

µ = 50. Let us note that CASH did not require any efforts for optimization

of parameter settings. While both 4C and ORCLUS performed relatively

well for very low levels of noise objects, their performance deteriorates for a

higher degree of noise. CASH remains constantly on an F -measure of 100%

up to a noise level of 80%. Even for an extremely high level of noise (90%),

14.10 Evaluation 255

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40 50 60 70 80 90

level of noise objects [%]

F-
M

ea
su

re
 [%

]

CASH
4C
ORCLUS

Figure 14.9: F-Measure w.r.t. noise level.

CASH still reaches an F -measure of 94%.

We illustrate the robustness of CASH against noise on an exemplary

3-dimensional data set depicted in Figure 14.10(a). CASH finds the 2 1-

dimensional subspace clusters (each of size 50) embedded in 500 noise points

exactly (cf. Figure 14.10(b)). The results of ORCLUS (with optimal param-

eter setting l = 1 and k = 2) are shown in Figures 14.10(c) and 14.10(d). As

it can be seen, the clusters found by ORCLUS do not reflect the real cluster

structure at all. For 4C, we tried several parameter settings. Unfortunately,

4C was never able to find a meaningful cluster structure at all.

Further experiments on high dimensional data sets have been performed

with CASH, 4C, and ORCLUS. The data sets contained complex subspace

cluster structures with sparse clusters, including subspace clusters of signifi-

cantly differing dimensionality, subspace clusters hierarchically embedded in

higher dimensional subspaces, and noise objects. In none of the performed

experiments, 4C or ORCLUS were able to find meaningful clusters, while

CASH exactly detected the cluster structures in most cases. As an example,

we present the results on a complex 3-dimensional data set shown in Figure

14.11(a), containing three 1-dimensional clusters each of 500 points, two 2-

256 14 Correlation Clustering Based on the Hough-transform

(a) Synthetic data set DS1. (b) CASH - Clustering.

(c) ORCLUS - Cluster 1. (d) ORCLUS - Cluster 2.

Figure 14.10: Clustering synthetic data set DS1.

14.10 Evaluation 257

(a) Data set DS2. (b) CASH – Cluster 1 - 5.

(c) 4C – Cluster 1 - 8. (d) ORCLUS – Cluster 1 - 5.

Figure 14.11: Clustering results on synthetic data set DS2.

(a) 4C – Cluster 1 - 8. (b) ORCLUS – Cluster 1 - 5.

Figure 14.12: Clustering results on DS2 after noise removal.

258 14 Correlation Clustering Based on the Hough-transform

Table 14.1: CASH clustering on Wages data.

c ID dim # objects Description

1 2 215 YE = 12; A - YW = 18

2 2 70 YE = 16; A - YW = 22

3 3 247 YE + YW = A - 6

dimensional planes each containing 500 points, and 500 points of noise. One

of the planes is intersected by two lines, the other plane is intersected by one

line. Here, CASH is able to identify the cluster structure of all 5 clusters

exactly (Figure 14.11(b)). In contrast, 4C (cf. Figure 14.11(c), parameters

optimized to MinPts = 20, ε = 0.1, λ = 2, and δ = 0.01) and ORCLUS

(cf. Figure 14.11(d), parameters k = 5 and l = 2 reflect the cluster structure

exactly) could not compete. Both missed very large and important parts

of the clustering structure. This bad behavior of the two competitors can

partly be explained by the high degree of noise present in the data set. The

influence of noise on the existing approaches can be observed in Figure 14.12.

Omitting the noise points, 4C is able to detect the cluster structure relatively

well (cf. Figure 14.12(a)) but cannot handle intersecting clusters. Even on

the data set without noise points, ORCLUS was not able to identify the 5

clusters correctly (cf. Figure 14.12(b)). This again illustrates the superiority

of CASH over existing methods especially in terms of noise robustness.

14.10.3 Real-World Data

We applied CASH on the Wages data set1, a data set containing average

career statistics of current and former NBA players2 and a gene expression

data set [127]. The Wages data consist of 534 4D observations (A=age,

YE=years of education, YW=years of work experience, and W=wage) from

the 1985 Current Population Survey. As parameters for CASH we used

µ = 70 and s = 40. The results are summarized in Table 14.1: CASH

detected three pure subspace clusters in this data set, two data objects have

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages
2obtained from http://www.nba.com

14.10 Evaluation 259

Table 14.2: CASH clustering on NBA data.

c ID dim Description

1 1 “go-to-guys”

2 2 shooting guards

3 2 point guards

4 2 starting centers

5 8 point guards

6 9 power forwards

7 9 small forwards

8 10 well-known rebounder

9 12 role players/reserves

been identified as noise objects. The first cluster consists only of people

having 12 years of education and having started their working life at the age

of 18. The second cluster consists only of people having 16 years of education

and having started their working life at the age of 22. In the third cluster

only those employees are grouped, which started school in the age of 6 years

and after graduation immediately began working. Thus, the sum of years of

education and work experience equals the age minus 6.

The NBA data contains 15 statistical measures such as “games played”

(G), “games started” (GS), “minutes played per game” (MPG), “points per

game” (PPG), etc. for 413 former and current NBA players. As parameters

for CASH we used µ = 30 and s = 45. CASH detected 9 interesting clusters

of very different dimensionality each containing players of similar character-

istics (cf. Table 14.2). In addition, several players were noise. The detected

correlations confirmed basketball fundamentals. For example, in cluster 1

containing superstars like Michael Jordan, Larry Bird, Shaquile O’Neal, and

James Worthy, PPG of all players were negatively dependent on G and MPG.

On the other hand, the more games the players were in (G), the higher the

number of starting line-up appearances (GS). Let us note that this cluster

also contains less well-known players that had similar characteristics such

as Rik Smits, Dan Majerle, and Rick Fox. The three clusters containing

guards all showed correlations between G and MPG on the one hand, and

260 14 Correlation Clustering Based on the Hough-transform

(a) Data set DS3.

[c1_0]

[c2_0]

[c1_3] [c1_1]

[all]

[c1_2]

[c2_1]

(b) Hierarchy detected by CASH.

Figure 14.13: Hierarchies found on synthetic data set DS3.

the number of assists and steals per game on the other hand. For the guards

in cluster 3, this correlation was positive, whereas for the guards in cluster 5,

this correlation was negative. On the other hand, cluster 3 exhibits a positive

correlation between the G and GS. In cluster 5 these two attributes are also

correlated but in a negative fashion. This indicates that the coaches in the

NBA usually decided to start with the better point guards.

In the gene expression data set (24 dimensions, 4,000 genes) CASH found

several clusters of functionally related genes that are biologically interest-

ing and relevant according to three biologically proven criteria including (i)

known direct interactions of the genes or the according gene products, (ii)

known common complexes of the genes or the according gene products, and

(iii) participation of the according gene products in common pathways.

Neither ORCLUS nor 4C were able to detect meaningful clusters in our

real-world data sets. One reason for this may be that the found clusters are

highly overlapping. Thus, neither ORCLUS nor 4C can learn the appropriate

similarity measure capturing the subspaces of the clusters from the local

neighborhood.

14.10 Evaluation 261

14.10.4 Alternative Parametrization and Cluster Hi-

erarchies

Last but not least, we investigated the possibilities of our novel method

to produce a hierarchy of correlation clusters. We applied CASH on a 3-

dimensional data set “DS3” shown in Figure 14.13(a). The data set con-

tains several correlation clusters including four 1-dimensional clusters, a

2-dimensional cluster with two embedded 1-dimensional clusters and a 2-

dimensional cluster with one embedded 1-dimensional cluster. Some noise

points are also added. All clusters do not exhibit a perfect correlation, i.e.

the points of the cluster deviate from the common cluster hyperplane by a

small degree. In this experiment we used the alternative parametrization as

described in Section 14.9 where the allowed deviation of the hyperplane can

be specified independently from the allowed variance of the orientation of the

cluster hyperplane. Parameters were s = 8, δ jitter = 0.0011 (specifying the

allowed deviation from the cluster hyperplane), and µ = 90. With this alter-

native parametrization, CASH had no problems to recognize the true cluster

structure. In contrast, using the original parametrization, we could not find

a parameter setting for which CASH achieved 100% accuracy. In summary,

all our experiments indicate that generally, the alternative parametrization

achieves at least the same accuracy compared to the original parametrization

and – in some cases – is even superior.

In addition, the correct relationships between all correlation clusters have

been detected. The resulting hierarchy among the clusters reported by CASH

is displayed in Figure 14.13(b). The root (level 0) of the hierarchy represents

a 3-dimensional “dummy cluster” containing the entire database denoted by

“all”. All other clusters are obviously contained in this “cluster”. On level 1,

we have the two 2-dimensional clusters “c2 0” and “c2 1”. On level 2 we have

the four 1-dimensional clusters. The edges indicate that clusters “c1 0” and

“c1 3” are contained in cluster “c2 0”, cluster “c1 1” is contained in cluster

“c2 1”, and cluster “c1 2” is not contained in any higher dimensional cluster

(except the root).

262 14 Correlation Clustering Based on the Hough-transform

263

Part V

A Quantitative Model for

Correlation Clusters

265

The detection of correlations between different features in a given data set

is a very important data mining task. High correlation of features may result

in a high degree of collinearity or even a perfect one. Thus, strong correla-

tions between different features correspond to approximate linear dependen-

cies between two or more attributes. These dependencies can be arbitrarily

complex, one or more features might depend on a combination of several

other features. In the data space, dependencies of features are manifested

as lines, planes, or, generally speaking, hyperplanes exhibiting a relatively

high density of data points compared to the surrounding space. Knowledge

concerning these arbitrary correlations is traditionally used to reduce the

dimensionality of the data set by eliminating redundant features. However,

detection of correlated features may also help to reveal hidden causalities

that are of great importance and interest to the domain expert.

Correlation clustering has been introduced as a novel concept of knowl-

edge discovery in databases to address the task of detection of dependencies

among features and to cluster those points that share a common pattern

of dependencies. It corresponds to the marriage of two widespread ideas:

First, correlation analysis performed e.g. by principle component analysis

(PCA) and, second, clustering which aims at identifying local subgroups of

data objects sharing high similarity. Correlation clustering groups the data

set into subsets called correlation clusters such that the objects in the same

correlation cluster are all associated to a common hyperplane of arbitrary

dimensionality. In addition, many algorithms for correlation cluster analysis

also require the objects of a cluster to exhibit a certain density, i.e. feature

similarity.

Correlation clustering has been successfully applied to several application

domains (see e.g. [11, 144, 35]). For example, costumer recommendation sys-

tems are important tools for target marketing. For the purpose of data anal-

ysis for recommendation systems, it is important to find homogeneous groups

of users with similar ratings in subsets of the attributes. In addition, it is

interesting to find groups of users with correlated affinities. This knowledge

can help companies to predict customer behavior and thus develop future

marketing plans. In molecular biology, correlation clustering is an important

266

method for the analysis of several types of data. For example, in metabolic

screening, the collected data set usually contains the concentrations of cer-

tain metabolites in the blood of thousands of patients. In such data sets, it is

important to find homogeneous groups of patients with correlated metabo-

lite concentrations indicating a common metabolic disease. Thus, several

metabolites can be linearly dependent on several other metabolites. Uncov-

ering these patterns and extracting the dependencies of these clusters is a

key step towards understanding metabolic or genetic disorders and designing

individual drugs. A second example where correlation clustering is a sound

methodology for data analysis in molecular biology is DNA microarray data

analysis. Microarray data usually contain the expression levels of thousands

of genes expressed in different samples such as experimental conditions, cells

or organisms. Roughly speaking, the expression level of a gene indicates

how active this gene is, i.e. it allows to draw some conclusions about the

amount of the product of a given gene in the given sample. The recovering

of dependencies among different genes in certain conditions is an important

step towards a more comprehensive understanding of the functionality of or-

ganisms which is a prominent aspect of systems biology. In addition, when

the samples represent some patients, it is important to detect homogeneous

groups of persons exhibiting a common linear dependency among a subset of

genes in order to determine potential pathological subtypes of diseases and

to develop individual treatments.

In all these cases, however, knowing merely of the existence of correlations

among some features is just a first step. It is far more important to reveal

quantitatively and as exactly as possible which features contribute to which

dependencies as a second step. Having performed this second step, model-

ing a system becomes possible, that describes the respective underlying data

quantitatively as well as qualitatively. Thus, in order to gain the full prac-

tical potentials from correlation cluster analysis, this second step is urgently

needed. All existing approaches to correlation clustering usually focus only

on the first step of detecting the clusters. To the best of our knowledge,

there is no method for the second step of extracting quantitative correlation

cluster information.

267

In this part, we describe an approach to handle this second step of data

analysis. We introduce general concepts for extracting quantitative informa-

tion on the linear dependencies within a correlation cluster such that domain

experts are able to understand the correlations and dependencies in their

data. In fact, our method can be applied to any correlation clusters, re-

gardless of what correlation clustering algorithm produced the results. As

output, we obtain a set of linear equations that are displayed to the user.

These equations can be used to understand the dependencies hidden in the

analyzed data set and to create complex real-life models. As an example,

how this information can be used for further analysis, we additionally intro-

duce a framework to predict the probability that a new object is generated

by a specific model of the derived ones.

This part is organized as follows. In Chapter 15 we review existing ap-

proaches for deriving descriptions of quantitative dependencies among several

attributes. Our concepts to derive quantitative models of correlation clusters

are proposed in Chapter 16. Chapters 17 and 18 discuss possible applica-

tions of a model for correlation clusters on classification and outlier detection,

respectively.

268

269

Chapter 15

Related Work

Let us note that none of the approaches to correlation clustering surveyed

so far provides a cluster model including an explicit description of the corre-

lations within the cluster. However, there are two areas remotely related to

the ideas described in this part which we will shortly sketch in this chapter.

15.1 Quantitative Association Rules

An interesting approach to derive descriptive models of quantitative relation-

ships among subsets of attributes is known as quantitative association rule

mining. Some earlier approaches to this task loose information requiring dis-

cretization of attributes (e.g. [128]) or representation of numerical values in a

rule’s right-hand side by some statistical characterizations, e.g. the mean or

sum of the values (cf. [139]). Discretization of attributes, moreover, does not

overcome the restriction to axis parallel dependencies. Recently, Rückert et

al. [118] proposed to base quantitative association rules on half-spaces, thus

allowing the discovery of non-axis-parallel rules and possibly accounting for

cumulative effects of several variables. The rules derived by this approach

are of the form “if the weighted sum of some variables is greater than a

threshold, then a different weighted sum of variables is with high probability

greater than a second threshold”. This approach has been shown to be useful

270 15 Related Work

in detecting some rules of gene-expression data sets [56]. However, these as-

sociation rules do not yet uncover continuous linear dependencies, but stick

to certain thresholds, reflecting the boundaries of half-spaces. Thus, these

approaches appear to be more related to certain types of biclustering (see

Section 5.1.4).

15.2 Regression Analysis

A task very similar to the one tackled in this part is linear and multiple

regression analysis (e.g. cf. [59] for an overview). The general purpose of lin-

ear regression is to learn a linear relationship between a “predictor” variable

and a “response” variable. Multiple regression extends this task by allowing

multiple “predictor” variables. Other non-linear regression models can be

used to learn non-linear relationships among the predictor and the response

variables. However, the main difference between regression analysis and our

approach is that in regression analysis, the predictor variables are assumed

to be independent. Since correlation clusters are defined to consist of points

that exhibit a linear dependency among a set of attributes, we want to iden-

tify these dependencies when deriving a quantitative model for each cluster.

Obviously, we cannot define any independent variable(s), i.e. we cannot de-

rive a set of predictor variables. Thus, regression analysis cannot be applied

to derive quantitative models for correlation clusters as envisioned in this

part.

271

Chapter 16

Deriving Quantitative Models

for Correlation Clusters

In this chapter, first a formalization of correlation clusters is presented (sim-

ilar to previous formalizations) in Section 16.1, suitable to base the concepts

for deriving quantitative models as described in Section 16.2. Some consid-

erations guiding the interpretation of the derived models are presented in

Section 16.3. Finally, the concepts presented in this chapter are evaluated in

Section 16.4.

The material presented in this and the subsequent chapter has been pub-

lished in [4].

16.1 Formalization of Correlation Clusters

In the following we assume D to be a database of n feature vectors in a

d-dimensional real-valued feature space, i.e. D ⊆ Rd. A cluster is a subset

of those feature vectors exhibiting certain properties, e.g. the members of a

cluster may be close to each other in the feature space compared to non-

members, or – in case of correlation clustering – they may be close to a

common regression line, while other points are not. Generally, clustering

272 16 Deriving Quantitative Models for Correlation Clusters

algorithms as those discussed above (Part III) can provide (implicitly or

explicitly) a description of the found clusters by means of a covariance matrix

per cluster.

Formally, let C be a cluster, i.e. C ⊆ D, and x̄C denote the centroid (mean)

of all points x ∈ C. The covariance matrix Σ C of C is defined as:

Σ C =
1

|C|
·
∑
x∈C

(x− x̄C) · (x− x̄C)
T

In general, the covariance matrix describes a distribution of attributes.

EM-like algorithms utilize such a description of a distribution of attributes

to derive a Gaussian model that may have created the observed data. In

case of correlation clusters, however, a far more adequate description may

be possible. Indeed, the fact, that correlations between features have been

found, even disqualifies the covariance matrix as an adequate model of a

correlation cluster, since it is sort of a probabilistic model of scatter around a

certain mean value. Strong correlations as in correlation clusters, on the other

hand, do suggest not only probabilistic scatter, but linear dependencies, and

(by a higher perspective of interpretation) perhaps even functional or causal

relations. Thus, we will now consider the intrinsic properties of correlation

clusters, and how to make use of them in order to derive a more appropriate

model covering dependencies quantitatively.

Consider a correlation cluster C that is derived using any algorithm ca-

pable of finding correlation clusters. Since the covariance matrix Σ C of C is

a square matrix, it can be decomposed into the eigenvalue matrix E C of Σ C

and the eigenvector matrix V C of Σ C such that

Σ C = V C ·E C ·V T

C

The eigenvalue matrix E C is a diagonal matrix holding the eigenvalues of

Σ C in decreasing order in its diagonal elements. The eigenvector matrix V C

is an orthonormal matrix with the corresponding eigenvectors of Σ C.

Now we define the correlation dimensionality of C as the number of di-

mensions of the (arbitrarily oriented) subspace which is spanned by the major

16.1 Formalization of Correlation Clusters 273

axes in V C (based on the intuitions presented in Chapter 9). The correlation

dimensionality is closely related to the intrinsic dimensionality of the data

distribution. If, for instance, the points in C are located near a common line,

the correlation dimensionality of these points will be 1. The eigenvector asso-

ciated with the largest eigenvalue has the same direction as the first principal

component, the eigenvector associated with the second largest eigenvalue de-

termines the direction of the second principal component and so on. The

sum of the eigenvalues equals the total variance of the points in C, i.e., the

variance explained by each of the principal components, in decreasing order

of importance. The correlation dimensionality of a set of points C is now de-

fined as the smallest number of eigenvectors explaining a portion of at least

α of the total variance of C:

Definition 16.1 (correlation dimensionality)

Let α ∈]0, 1[. Then the correlation dimensionality λC of a set of points C is

the smallest number r of eigenvalues ei in the d × d eigenvalue matrix E C

explaining a portion of at least α of the total variance:

λC = min
r∈{1,...,d}

{
r

∣∣∣∣∣
∑r

i=1 ei∑d
i=1 ei

≥ α

}

Typically, values for α are chosen between 0.8 and 0.9. For example,

α = 0.85 denotes that the obtained principal components explain 85% of the

total variance. In the following, we denote the λC-dimensional affine space

which is spanned by the major axes of C, i.e. by the λC first eigenvectors of C
and translated by, e.g. the mean vector x̄C, the correlation hyperplane of C.

Thus, the correlation dimensionality λC is the dimensionality of the affine

space containing all points of the set C allowing a small deviation correspond-

ing to the remaining portion of variance of 1− α. The remaining, neglected

variance scatters along the eigenvectors eλC+1, . . . , ed.

We therefore distinguish between two disjoint sets of eigenvectors:

Definition 16.2 (strong and weak eigenvectors)

We call the first λC eigenvectors of V C strong eigenvectors. The strong

274 16 Deriving Quantitative Models for Correlation Clusters

e
1

e
2

e
3

(a) 1-dimensional correlation cluster

e
1e

2

e
3

(b) 2-dimensional correlation cluster

Figure 16.1: Correlation dimensionality of correlation clusters.

eigenvectors of V C are denoted by V̌ C. The remaining eigenvectors are called

weak eigenvectors. We denote the weak eigenvectors by V̂ C.

For an illustration see Figure 16.1: in the correlation cluster of correlation

dimensionality 1 (Figure 16.1(a)) e1 is a strong eigenvector whereas e2 and e3

are weak eigenvectors. In the correlation cluster of correlation dimensionality

2 (Figure 16.1(b)) e1 and e2 are strong eigenvectors whereas e3 is a weak

eigenvector. The eigenvectors are overexemplified in this example. Suppose

they were scaled by their corresponding eigenvalues. If no variance remains

along an eigenvector, as it may e.g. appear for e2 and e3 in Figure 16.1(a),

this eigenvector will disappear since the corresponding eigenvalue becomes

zero.

While the correlation hyperplane is spanned by the strong eigenvectors,

it is equally well defined by the weak eigenvectors that are orthogonal to this

hyperplane in Rd. Furthermore, describing the correlation cluster by means

of the weak eigenvectors (instead of the strong eigenvectors) directly yields

an equality system that defines not only the corresponding hyperplane, but

also allows to directly inspect the underlying dependencies among attributes

numerically, as we will show in more detail subsequently.

16.2 Deriving Quantitative Models for Correlation Clusters 275

16.2 Deriving Quantitative Models for Cor-

relation Clusters

Let C be a λ-dimensional correlation cluster in D (C ⊆ D). Thus, there are

λ strong eigenvectors and d − λ weak eigenvectors in the describing matrix

of eigenvectors derived by PCA on the points of cluster C. A λ-dimensional

hyperplane defining the correlation cluster C is therefore completely defined

by the mean point (centroid) x̄C = (x̄1 · · · x̄d)
T of all points belonging to

cluster C and the set of weak eigenvectors, V̂C, that are normal vectors to

the hyperplane. Then we can derive the following equation system to describe

the hyperplane, consisting of d− λ equations:

v(λ+1),1(x1 − x̄1) + v(λ+1),2(x2 − x̄2) + · · ·+ v(λ+1),d(xd − x̄d) = 0

v(λ+2),1(x1 − x̄1) + v(λ+2),2(x2 − x̄2) + · · ·+ v(λ+2),d(xd − x̄d) = 0
...

vd,1(x1 − x̄1) + vd,2(x2 − x̄2) + · · ·+ vd,d(xd − x̄d) = 0

where vi,j is the value at column i, row j in the eigenvector matrix VC of C.

As we have pointed out, only the weak eigenvectors are relevant. Thus we

can equivalently denote this equation system by

V̂C
T · x = V̂C

T · x̄C.

The defect of V̂C
T

gives the number of free attributes, the other attributes

may actually be involved in linear dependencies. Basically, these dependen-

cies are revealed by transforming the equation system using Gauss-Jordan

elimination. The thus derived reduced row echelon form of the matrix is

known to be unique [149]. The unique form does, of course, not provide new

information, but it is easily comparable to alternative solutions and conve-

niently interpretable by inspecting experts. To enhance numerical stability,

we suppose to use total pivoting for the Gauss-Jordan elimination.

By construction, the equation system is – at least approximately – fulfilled

for all points x ∈ C. But, furthermore, it suggests a quantitative model for the

cluster. This model could be evaluated using retained data points. Besides,

276 16 Deriving Quantitative Models for Correlation Clusters

as we will see in the next chapter, it may also serve as a predictive model to

classify new data points.

In summary, we propose the following general method to derive quanti-

tative models of clusters in a data set of feature vectors D ⊂ Rd:

1. Run a clustering algorithm on D that is able to find correlation clus-

ters, i.e. use e.g. 4C or ORCLUS. However, also k-means or DBSCAN is

possible, provided that a proper distance function taking into account

the correlation dimension is used. If the result may be restricted to

clusters of positively correlated features, even the usage of any general

biclustering or pattern-based clustering algorithm will be possible. The

decision for a specific clustering algorithm will also determine whether

or not a data object may belong to several clusters simultaneously. In

our experiments we use COPAC [6], as it has been shown to improve

over 4C as well as ORCLUS w.r.t. efficiency, effectiveness, and robust-

ness.

2. For each correlation cluster Ci ⊂ D found in the previous step:

(a) Derive the covariance matrix ΣCi
.

(b) Select the weak eigenvectors V̂Ci
of ΣCi

with respect to a certain

α.

(c) Derive the equation system describing the correlation hyperplane:

V̂Ci

T · x = V̂Ci

T · x̄Ci

(d) Apply Gauss-Jordan elimination to the derived equation system

to obtain a unique description of quantitative dependencies by

means of the reduced row echelon form of the equation system.

16.3 Interpretation of Correlation Cluster Models 277

16.3 Interpretation of Correlation Cluster Mod-

els

Suppose by applying this method we obtain the following solution describing

a cluster in a 5-dimensional feature space R5:

1x1 + 0x2 + c1x3 + 0x4 + e1x5 = f1

0x1 + 1x2 + c2x3 + 0x4 + e2x5 = f2

0x1 + 0x2 + 0x3 + 1x4 + e3x5 = f3

This would provide a quantitative model describing a correlation cluster of

correlation dimensionality 2 (corresponding to the number of free attributes,

or, equivalently, the number of strong eigenvectors) where we have linear

dependencies among

• x1, x3, and x5

• x2, x3, and x5

• x4 and x5

by given factors c1, e1, c2, e2, and e3.

Note that we must not draw any conclusions concerning causalities be-

tween attributes. But relations between certain attributes are quantitatively

and uniquely defined. To resolve these relations to any formula that suggests

a causality we have to rely on the domain knowledge of experts. However,

we believe that uncovered quantitative relationships will lead to refined ex-

periments and help to finally explore supposable causalities. Thus, we could

choose experimental settings involving either

• x4 and x5, or

• x2, x3, and x5, or

• x1, x3, and x5,

278 16 Deriving Quantitative Models for Correlation Clusters

and changing the quantities in relation to each other. The dependencies re-

vealed in the original experiment could have been interpreted such as fall or

rise of an arbitrary subset of S ⊂ {x1, x3, x5} caused fall or rise of the re-

maining subset {x1, x3, x5} \ S. Further experiments could refine the model

by excluding certain combinations of causal models. Of course, the three

variables, x1, x3, and x5, may also simply be connected by a fourth variable,

that has not been monitored so far. Thus, trivially, a quantitative connec-

tion will never guarantee a direct causal relationship. Furthermore, in many

domains, one-way causal relationships provide only one part of the whole

picture, since systems often are regulated by negative-feedback-loops, that

make causalities circular. Nevertheless, modeling parts of a complex system

remains useful even under restrictive constraints (as shown e.g. for genetic

regulatory interaction networks, cf. [72]).

16.4 Evaluation

In our experiments we use the correlation clustering algorithm COPAC [6]

to generate the correlation clusters in a preprocessing step to our method.

We chose this algorithm due to its efficiency, effectiveness, and robustness.

In each case, parameters for clustering were chosen according to the recom-

mendations in [6]. Let us again note that any other (correlation) clustering

algorithm is applicable for preprocessing.

16.4.1 Synthetic data sets

For our experiments we used several synthetic data sets containing correla-

tion clusters in the unit cube of Rd that have been generated by a generic

data generator. The generated correlation clusters form a λ-dimensional hy-

perplane which is specified by an equation system of d − λ equations. The

distances of the points to the hyperplane are normally distributed with a

specified standard deviation and a mean of zero.

The first data set DS1 consists of five correlation clusters, each forming a

16.4 Evaluation 279

Figure 16.2: Synthetic data set DS1.

Table 16.1: Dependencies on DS1 data.

Generated Found
dependencies standard deviation dependencies

cluster 1 x1− x3 = 0 σ = 0.0246 x1− 1.0069x3 = −0.0035

x2 + 0.5x3 = 0.75 x2 + 0.5065x3 = 0.7537

cluster 2 x1− x3 = 0 σ = 0.0243 x1− 1.0027x3 = −0.0028

x2− x3 = 0 x2− 0.9901x3 = 0.0022

cluster 3 x1 + x3 = 1 σ = 0.0238 x1 + 1.0008x3 = 1.0005

x2− x3 = 0 x2− 1.0011x3 = 0.0000

cluster 4 x1− x3 = 0 σ = 0.0246 x1− 1.0009x3 = 0.0000

x2 + x3 = 1 x2 + 0.9999x3 = 0.9995

cluster 5 x1 + x3 = 1 σ = 0.0249 x1 + 0.9975x3 = 0.9988

x2 + x3 = 1 x2 + 0.9968x3 = 0.9992

280 16 Deriving Quantitative Models for Correlation Clusters

(a) DS20 (σ0 = 0) (b) DS21 (σ1 = 0.0173) (c) DS22 (σ2 = 0.0346)

(d) DS23 (σ3 = 0.0520) (e) DS24 (σ4 = 0.0693) (f) DS25 (σ5 = 0.0866)

Figure 16.3: Synthetic data sets with different values for standard devia-

tion.

line of 1,000 points in R3 (cf. Figure 16.2). In each cluster, the distances of

the points to the correlation lines are normally distributed with a standard

deviation of about 1.5% of the maximum distance in the unit cube. The pur-

pose of this data set is to demonstrate the capability of our proposed method

to obtain a quantitative model for the correlation clusters. As it can be seen

in Table 16.1 we derived a good approximation of the equation systems that

define the models for the correlation clusters despite the obviously strong

jitter in the data set.

In the second experiment we evaluated our method on data sets with

varying standard deviation. We generated six data sets (DS20, . . ., DS25)

forming a 2-dimensional hyperplane in R3 with different values for the stan-

dard deviation of the distances. The values for the standard deviation were

set to σ0 = 0% up to σ5 = 5% of the maximum distance in the unit cube

(cf. Figure 16.3). The results are shown in Table 16.2. As expected, with in-

creasing standard deviation of the distances, the detected correlation models

suffer from a slight blurring, i.e. the coefficients of the models slightly de-

viate from the exact coefficients. However, the general correlations are still

detected and also the hidden quantitative relationships are still uncovered

16.4 Evaluation 281

Table 16.2: Dependencies on DS2 data.

Generated Found
dependencies standard deviation dependencies

DS20 x1− 0.5x2− 0.5x3 = 0 σ = 0 x1− 0.5000x2− 0.5000x3 = 0.0000

DS21 x1− 0.5x2− 0.5x3 = 0 σ = 0.0173 x1− 0.4989x2− 0.5002x3 = 0.0000

DS22 x1− 0.5x2− 0.5x3 = 0 σ = 0.0346 x1− 0.5017x2− 0.4951x3 = 0.0016

DS23 x1− 0.5x2− 0.5x3 = 0 σ = 0.0520 x1− 0.5030x2− 0.5047x3 = −0.0059

DS24 x1− 0.5x2− 0.5x3 = 0 σ = 0.0693 x1− 0, 4962x2− 0.5106x3 = −0.0040

DS25 x1− 0.5x2− 0.5x3 = 0 σ = 0.0866 x1− 0.4980x2− 0.4956x3 = 0.0064

rather clear even if the points stronger deviate from the optimal hyperplane.

In general, our proposed method has proven to be rather robust w.r.t. small

jitter.

In addition to the reported experiments on 3-dimensional data, we per-

formed several experiments on higher dimensional data. In all experiments,

we achieved results of similar high quality, i.e. all linear dependencies hidden

in the data were correctly uncovered.

16.4.2 Real world data sets

Wages data. The Wages data set1 consists of 534 11-dimensional observa-

tions from the 1985 Current Population Survey. Since most of the attributes

are not numeric, we used only 4 dimensions (A=age, Y E=years of education,

Y W=years of work experience, and W=wage) for correlation analysis.

COPAC detected three correlation clusters in this data set. The resulting

dependencies of these clusters are summarized in Table 16.3. The first cluster

1http://lib.stat.cmu.edu/datasets/CPS_85_Wages

282 16 Deriving Quantitative Models for Correlation Clusters

Table 16.3: Dependencies on Wages data.

cID derived dependencies

1 Y E = 12

Y W − 1 ·A = −18

W − 0.07 ·A = 5.14

2 Y E = 16

Y W − 1 ·A = −22

3 Y E + 1 · Y W − 1 ·A = −6

consists only of people having 12 years of education, whereas the second

cluster consists only of people having 16 years of education. Furthermore,

in both of these clusters the difference between age and work experience is

a specific constant, namely years of education plus 6, which makes perfectly

sense. Additionally, for the first cluster, we found a dependency between

wage and age: the wage equals a constant plus a small factor times the

age of an employee, i.e., the older an employee, the more he earns. This

relationship is independent from the attribute work experience. Note that

years of education is a constant where this condition holds. In the third

cluster only those employees are grouped which started school in the age of

6 years and after graduation immediately began working. Thus, the sum of

years of education and work experience equals the age minus 6.

Gene expression data. This data set was derived from an experimental

study of apoptosis in human tumor cells2. Apoptosis is a genetically con-

trolled pathway of cell death. The data set contains the expression level

of 4610 genes at five different time slots (5, 10, 15, 30, 60 minutes) after

initiating the apoptosis pathway.

We analyzed two correlation clusters detected by COPAC. The derived

2The confidential data set is donated by our project partners.

16.4 Evaluation 283

Table 16.4: Dependencies on Gene expression data.

cID derived dependencies sample gene names

1 M5− 1.05 ·M60 = −0.12 NDUFB10, MTRF1, TIMM17A, TOM34,

M10−M60 = −0.17 CPS1, NM44, COX10, FIBP, TRAP1,

M15−M60 = 0 MTERF, ME2, HK1, HADHA, ASAH2,

M30− 1.1 ·M60 = 0.11 CPS1, CA5A, BNI3PL

2 M5− 0.98 ·M60 = 0 TNFRSF6, TNFRSF11A, TNFRSF7,

M10− 0.98 ·M60 = 0 TNFRSF1B, TNFRSF10B,TNFRSF5,

M15− 0.97 ·M60 = 0 TNFRSF1A, TRAF5, TRAF2,

M30− 0.97 ·M60 = 0 TNFSF12

dependencies of these clusters are depicted in Table 16.4. The attributes

are abbreviated by Mi, where i denotes the time slot of this attribute, e.g.

M5 denotes time slot “5 minutes”. The first cluster contains several genes

that are located at the mitochondrial membrane. The first four time slots

exhibit a negative linear relationship with M60. Similar observations can be

made for the second cluster that contains several genes that are related to the

tumor necrosis factor (RNF). The uncovered dependencies suggest that the

activity of the corresponding genes decrease with proceeding cell death. The

strong negative correlations among genes related to mitochondria (cluster

1) indicates that the volume of the energy metabolism (which is located in

mitochondria) is decreasing over time. In addition, the correlation among

the genes related to RNF makes sense since the dying cells are tumor cells.

Breast cancer data. We also applied our method to four correlation

clusters found in the Wisconsin Breast Cancer data derived from UCI ML

Archive3. This data set measures nine biomedical parameters characteriz-

ing breast cancer type in 683 humans (humans with missing values were

removed from the data set). The parameters include Clump Thickness (at-

tribute “A1”), Uniformity of Cell Size (“A2”), Uniformity of Cell Shape

3http://www.ics.uci.edu/~mlearn/MLSummary.html

284 16 Deriving Quantitative Models for Correlation Clusters

(“A3”), Marginal Adhesion (“A4”), Single Epithelial Cell Size (“A5”), Bare

Nuclei (“A6”), Bland Chromatin (“A7”), Normal Nucleoli (“A8”), and Mi-

toses (“A9”).

The derived dependencies of the four clusters are depicted in Table 16.5.

Let us note that each cluster only contains humans suffering from a benign

tumor type. The patients suffering from a malignant tumor type were clas-

sified as noise. The dependencies in the first cluster are quite clean and

indicate a constant behavior of seven attributes. In addition, A5 is related

to A7. The models of the remaining clusters are quite complex. Mostly, the

first attributes which measure an aggregated information about the shape

and the size of the tumor cells exhibit a relationship to more specific mea-

surements on single parts of the tumor. In general, since the clusters only

contain benign tumors, our results indicate that this mostly harmless tumor

type can still be explained and modeled by linear relationships among the

measurements, whereas the more dangerous tumor type cannot be explained

or modeled through any linear relations among the measurements.

16.4 Evaluation 285

Table 16.5: Dependencies on Wisconsin breast cancer data.

cID derived dependencies

1 A1 = 2, A2 = 1, A3 = 1, A4 = 1, A6 = 1, A5− 0.1 ·A7 = 1.9

A8 = 1, and A9 = 1

2 A1− 0.4 ·A4 + 0.7 ·A5− 0.2 ·A6 + 0.9 ·A7− 24 ·A8 = −20.9

A2 + 0.03 ·A4− 0.05 ·A5 + 0.02 ·A6 + 0.02 ·A7− 0.3 ·A8 = 0.8

A3 + 0.2 ·A4 + 0.1 ·A5 + 0.1 ·A6 + 0.2 ·A7− 1.8 ·A8 = 0.3

3 A1 + 82.2 ·A6 + 7.8 ·A7− 42 ·A8− 18.5 ·A9 = 38.5

A2− 1.9 ·A6− 0.2 ·A7 + 0.9 ·A8 + 1.8 ·A9 = 1.5

A3− 60.1 ·A6− 6.5 ·A7 + 25.1 ·A8 + 141 ·A9 = 97.5

A4− 7.2 ·A6− 0.4 ·A7− 1.1 ·A8 + 15.6 ·A9 = 7.6

A5− 18.8 ·A6− 1.4 ·A7− 0.5 ·A8 + 45.9 ·A9 = 26.1

4 A1− 5.4 ·A5 + 1.6 ·A6− 0.1 ·A7 + 1 ·A8− 16.3 ·A9 = −21.1

A2 + 1.7 ·A5− 0.6 ·A6 + 0.2 ·A7− 0.7 ·A8− 9.9 ·A9 = −6.5

A3− 1.8 ·A5− 0.8 ·A6− 0.3 ·A7− 0.7 ·A8− 11.9 ·A9 = −8.5

A4− 2.3 ·A5− 0.2 ·A6 + 0.2 ·A7 + 0.4 ·A8 + 8.6 ·A9 = 6.5

286 16 Deriving Quantitative Models for Correlation Clusters

287

Chapter 17

Application 1: Classification

Classification is a well established data mining task using a broad variety of

techniques. However, using correlation cluster models as a basis for classi-

fication is a fundamentally new approach to classification. In this chapter,

we first shortly describe the adaptation of correlation cluster models to serve

as predictive models and discuss the difference to classical classification ap-

proaches (Section 17.1), and second, we evaluate the proposed concept in

comparison to established classification approaches (Section 17.2).

17.1 A Classifier Based on Models for Corre-

lation Clusters

Having derived a descriptive model, it can be refined by determining an

average distance of the cluster members from the correlation hyperplane.

Such deviations are typically to be expected in natural systems. At least,

one has to account for errors in measurement. The distance of a point to

a hyperplane is thereby naturally defined as the Euclidean distance to its

perpendicular projection onto the hyperplane, i.e.:

d(x, C) = ||x− x̄C − projC−x̄C
(x− x̄C)||,

288 17 Application 1: Classification

+

+

+
+

+

+

+

+

(a) Linear decision
boundaries

+
+

+

+

+

+

+

+

+

+

+

(b) Axis parallel deci-
sion rules

+
+

+
+

+

+

+

+

+ +

+

(c) Density functions

+

+

+

+

+

+

+

+

+

(d) Deviations from
hyperplanes

Figure 17.1: Decision models of different types of classifiers

where C denotes the idealized hyperplane of a correlation cluster. By def-

inition, the hyperplane C is an affine space, that is a subspace translated

by x̄C, the mean vector of all points of the cluster corresponding to C.

projS : Rn → R
n denotes the perpendicular projection of a vector to an

arbitrary subspace S of Rn. If S is given by an orthonormal basis, e.g. the

set of strong eigenvectors derived for the corresponding correlation cluster,

{s1, · · · , sλS}, then

projS(x) = 〈x, s1〉s1 + 〈x, s2〉s2 + · · ·+ 〈x, sλS 〉sλS .

Assuming the deviations fit to a Gaussian distribution with µ = 0, the

standard deviation σ of the distances of all cluster members suffices to define

a Gaussian model of deviations from the common correlation hyperplane.

For each of the derived models, the probability is given for a new data object

to be generated by this specific Gaussian distribution. A set of models for

a set of correlation clusters can therefore provide a convenient instrument

for classification in the perspective of different linear dependencies among

the data. The probability that an object x was generated by the jth of n

Gaussian distributions, Cj, is given by

P (Cj|x) =

1
σj

√
2π

e
− 1

2σ2
j

(d(x,Cj))
2

∑n
i=1

1
σi

√
2π

e
− 1

2σ2
i

(d(x,Ci))
2 .

Compared to many traditional classification algorithms, like SVM or

kNN, our predictive models do not only provide a separating boundary be-

17.2 Evaluation 289

tween classes (cf. Figure 17.1(a)), but also give a meaningful definition of

the class. So do other classifiers, like decision trees or rule based learners,

but their descriptions usually are limited to (at least in sections) axis par-

allel decision boundaries (cf. Figure 17.1(b)). The models provided by the

EM algorithm or other Bayesian learners differ from our models in that they

simply define a scattering around a mean point, using a quadratic form dis-

tance function or a density function for a certain probability distribution (cf.

Figure 17.1(c)). For underlying linear dependencies, a quadratic distance

function will resemble our models only if the dependencies are perfectly ex-

pressed in the data without any aberrations. Accounting for some variance

perpendicular to a hyperplane, while the hyperplane represents a linear de-

pendency among several attributes, is a novel approach among the family of

classification algorithms (cf. Figure 17.1(d)).

17.2 Evaluation

As sketched above, the quantitative models generated by our method can

e.g. be used to predict the class of a new object. To evaluate this potential,

we used three 2-dimensional synthetic data sets each with 5 classes. The first

data set (“DS30”) contains 50 points per class, the second and the third data

sets (“DS31” and “DS32”) each contain 100 points per class. Each class is

generated according to a certain linear dependency. The class distributions

in DS30 and DS31 exhibit a jitter of 0.5% of the maximum distance in the

unit cube, whereas the jitter of the classes in DS32 is 0.75%. The third data

set is depicted in Figure 17.2. Note that these data sets are rather artificial

and are only applied for a proof of principle.

We compared the classification accuracy of our sketched classifier to sev-

eral other standard learning approaches. For this comparison we used the

WEKA framework [141] with standard parameter settings, in particular,

kNN (IBk) with k = 1 (best results reported), SVM (SMO), rule-based

learner (PART), Naive Bayes, decision tree (J48), and multinomial logistic

regression (Logistic). The results are depicted in Table 17.1. As it can be

290 17 Application 1: Classification

Figure 17.2: Data set DS32.

17.2 Evaluation 291

Table 17.1: Comparison of different classifiers in terms of accuracy (in %).

Our IBk SMO PART NB J48 Log.
method

DS30 95 91 62 82 65 82 67

DS31 94 94 54 85 64 83 60

DS32 91 91 58 81 60 83 57

seen, our approach significantly outperforms most of the other approaches,

except kNN, in terms of accuracy. Note the good results of kNN are traded

for by abstaining from learning a model.

Let us note that standard classifiers will most likely produce comparative

or even better results if the classes are generated through models that cannot

be captured by our concepts of linear dependencies. However, our small

example may show that if the classes are generated by a model of linear

dependencies as captured by our proposed concepts, our method obviously

yields a better prediction accuracy than standard supervised learners.

292 17 Application 1: Classification

293

Chapter 18

Application 2: Outlier

Detection

Outlier detection is a major data mining task which aims at finding the

“different mechanism” in the data. Finding outliers that do not fit well to

the general data distribution is very important in many practical applications

including e.g. the detection of credit card abuse in financial transactions data,

the identification of measurement errors in scientific data, or the recognition

of exceptional protagonists in athletic statistics.

Hawkins specifies an outlier is “an observation which deviates so much

from other observations as to arouse suspicions that it was generated by a dif-

ferent mechanism” [68]. Inspired by this definition, several outlier detection

schemata have been proposed over decades and research is actively ongoing.

Proposed outlier detection models differ widely in how an outlier is modeled

and detected (based on statistical considerations, depth contours, deviations,

distances, or local divergences in different properties such as density or reso-

lution) and in addressing the problem globally or locally. However, all those

approaches somehow rely on the full dimensional Euclidean data space in

order to examine the properties of each data object to detect outliers.

Usually, a real world data set contains several groups of observations (i.e.

data objects) that have been generated by different mechanisms or statistical

294 18 Application 2: Outlier Detection

processes. These different mechanisms may show their effects in varying

subsets of attributes, i.e. varying subsets of features are correlated differently

for different subsets of data objects. This way, each mechanism defines a

correlation of features for a local subset of data objects which we call local

correlation throughout the rest of the paper. The mechanisms can therefore

only be identified properly in various arbitrarily oriented subspaces of the

original feature space rather than in the full dimensional data space.

A mechanism is supposed to have generated a minimum number of data

objects in order to be considered as significant. Outliers are those objects

that have not been generated by these mechanisms or processes, i.e. those

objects that do not fit into the corresponding local correlations. The subset of

points that show a local correlation are located on a common λ-dimensional

hyperplane, where λ < d and d is the dimensionality of the full dimensional

data space. As a consequence, outliers are those objects that are not located

on those hyperplanes.

This general idea is visualized in Figure 18.1. In the full dimensional

(2D) space there is obviously no outlier because the object density is equal

for all objects. However, all objects except for object o are located on a

common hyperplane (cf. the 1D line L), i.e. these points have been generated

by a common mechanism that shows its effect in a special combination of the

attributes x1 and x2. On the other hand, object o is an outlier because o is not

located on that hyperplane and, thus, is not generated by the mechanism that

generates the points on the line L. We can find o as an outlier if we project

the objects on the subspace S perpendicular to the line L. In that subspace,

object o deviates considerably from the line L. Existing outlier detection

approaches cannot identify o as an outlier because these approaches do not

take any local correlations into account. In order to detect o as an outlier in

the subspace S, we need a novel subspace outlier model.

Let us note that the situation in Figure 18.1 is rather idealized. In prac-

tice, we cannot expect the points that have been generated by a common

mechanism to follow the corresponding correlation that strictly. In other

words, the points will most likely not fit to the common hyperplane perfectly

295

x1

x2

interesting

subspace S

o

L

Figure 18.1: The general idea of finding outliers in subspaces of the original

feature space.

but may exhibit a certain degree of jitter. This jitter has to be considered,

when searching for points that deviate considerably from the common hy-

perplane.

In this paper, we introduce an outlier model that detects outliers as points

that do not fit to any significant local correlation in the data. In contrast to

existing methods, this model is the first approach to consider local correla-

tions within the outlier detection process, i.e. to identify outliers in arbitrarily

oriented subspaces of the original feature space.

The remainder of this chapter is organized as follows. We review related

work in section 18.1. Our novel outlier model to detect outliers in arbitrarily

oriented subspaces of the original feature space is described in Section 18.2.

An experimental evaluation of the accuracy and scalability of the proposed

methods in comparison to existing methods is presented in Section 18.3.

296 18 Application 2: Outlier Detection

18.1 Related Work

Existing approaches for outlier detection can be classified as global or local

outlier models. A global outlier approach is based on differences of properties

compared over the complete data set and usually models outlierness as a

binary property: for each object it is decided whether it is an outlier or

not. A local outlier approach rather considers a selection of the data set and

usually computes a degree of outlierness: for each object a value is computed

that specifies “how much” this object is an outlier. In those applications

where it is interesting to rank the outliers of the database and only retrieve

the top-n outliers, a local outlier approach is obviously favorable. In such a

scenario, algorithms can save computational overhead because they do not

need to compute the outlierness of all objects but can prune objects that

cannot be among the top-n outliers as soon as possible.

The most efficient way to tackle the problem of finding outliers is to use

training data. If some objects in the database are already marked as outliers,

the problem is a supervised one and any supervised learner can be used to

classify unknown objects as outliers or non-outliers. An example approach

for supervised outlier detection is [150]. This global approach has one obvious

drawback. Usually, outlier detection is an unsupervised problem, i.e. we most

often do not have any previous knowledge about the data. In the rare case

where we can apply supervised techniques we further face the problem that

the set of outliers is usually rather small compared to the set of non-outliers.

As a consequence, the classification problem is highly unbalanced.

In statistics, outlier detection is usually addressed by a global approach

that models the data by means of a multivariate Gaussian distribution and

measures the Mahalanobis distance to the mean of this distribution. The

classical textbook of Barnett and Lewis [22] discusses numerous tests for

different distributions. Another selection of classical statistical methods for

outlier detection can be found in [79]. Often, objects that have a distance of

more than 3·σ to the mean (σ denotes the standard deviation of the Gaussian

distribution) are considered as outliers. In fact, it can be shown that the

Mahalanobis distances follow a χ2-distribution with d degrees of freedom (d

18.1 Related Work 297

is the dimensionality of the data space). The decision rule for outlier/non-

outlier can than be reformulated as follows: Objects that have a distance of

more than χ2(0.975) are considered as outliers. Though statistically sound,

this method suffers from the following limitation. Usually, real-world data

cannot be modeled adequately by only one Gaussian distribution. As a

consequence, the mean of the distribution may be itself an outlier and judging

objects by calculating their distance to the mean becomes useless. Using k >

1 Gaussian distributions does not solve this problem because it is usually not

known beforehand how many distributions should be chosen in order to model

the data adequately. In addition, since the outliers are considered when

computing the mean and the standard deviation, and since both values are

rather sensitive to outliers, this method is not really robust. [117] proposed

a solution for the latter problem using a more robust estimation of the mean

and the standard deviation.

Depth-based approaches organize data objects in convex hull layers ex-

pecting outliers from data objects with shallow depth values only [135, 119,

78]. These approaches originate from computer graphics and are infeasi-

ble for data spaces of high dimensionality due to the inherent exponential

complexity of computing convex hulls.

Deviation-based outlier detection groups objects and considers those ob-

jects as outliers that deviate considerably from the general characteristics of

the groups. This approach has been pursued e.g. in [17, 121]. The forming of

groups at random is rather arbitrary and so are the results depending on the

selected groups. Forming groups at random, however, is inevitable in order

to avoid exponential complexity.

Probably the best-known definition of a global outlier is the concept of

distance-based outliers introduced in [83]. An object o of a data set D is

considered a DB(p,D)-outlier if at least a fraction p of the objects of D has a

distance of greater than D to o. Variants of the global DB-outlier model in-

clude e.g. [115], [23], and [85]. Additionally, in [115] an algorithm for ranking

DB-outliers is presented. Each object is ranked according to its distance to

its k-th nearest neighbor. A partition-based algorithm is used to efficiently

298 18 Application 2: Outlier Detection

mine top-n outliers. An approximation solution to enable scalability with

increasing data dimensionality is proposed in [15]. However, as adaptation

to high dimensional data, only the time-complexity issue is tackled. The

inherent problems of high dimensional data are not addressed by this or any

other approach. On the contrary, the problems are even aggravated since

the approximation is based on space filling curves. Another approximation

based on reference points is proposed in [111]. This approximation, too, is

only on low dimensional data shown to be valuable.

As an extension of the distance based outlier detection, some algorithms

for finding an explanation for the outlierness of a point are proposed in [84].

The idea is to navigate through the lattice of combinations of attributes

and to find the most significant combination of attributes where the point

is an outlier. This is an interesting feature because an explicit and concise

explanation why a certain point is considered to be an outlier (so that a user

could conveniently gain some insights in the nature of the data) has not been

provided by any other outlier detection model so far.

The notion of local outlierness has been introduced in [33] overcoming

the limitations of a global view on outlierness. The authors introduce the

density-based local outlier factor (LOF) that assigns a degree of outlierness to

each object of the database. The LOF compares the density of each object o

of a data set D with the density of the k-nearest neighbors of o. A LOF value

of approximately 1 indicates that the corresponding object is located within a

cluster, i.e. a region of homogeneous density. The higher the difference of the

density around o is compared to the density around the k-nearest neighbors

of o, the higher is the LOF value that is assigned to o. Several extensions and

refinements of the basic LOF model have been proposed. In [133] the authors

introduce a connectivity-based outlier factor (COF), whereas a spatial local

outlier measure (SLOM) is proposed in [129]. In [76] a model is described

that considers both nearest neighbors and reverse nearest neighbors of an

object when estimating its density. In [77] the authors use the concept of

micro-clusters to efficiently mine the top-n density-based local outliers in

large databases, i.e. those n objects having the highest LOF value. A similar

algorithm is presented in [76] for the proposed extension of the LOF model.

18.1 Related Work 299

Another local outlier detection schema called Local Outlier Integral (LOCI)

is proposed in [107] which is based on the concept of a multi-granularity de-

viation factor (MDEF). The main difference between the LOF and the LOCI

outlier model is that the MDEF of LOCI uses ε-neighborhoods rather than

k-nearest neighbors. The authors propose an approximative algorithm that

computes the LOCI values of each database object for any ε value and dis-

plays the results as a rather intuitive outlier plot. Thereby, the approach

becomes much less sensitive to input parameters. The authors further intro-

duce an exact algorithm for outlier detection using the LOCI model.

The resolution-based outlier factor (ROF) proposed in [50] is a mix of

the local and global outlier detection paradigm. The outlier schema is based

on the idea of resolution change. Roughly speaking, the “resolution” spec-

ifies the number of objects considered to be neighbors of the data objects

and is a data driven concept, i.e., it is based on distances rather than on

parameterized concepts like k-nearest neighborhood or ε-neighborhood.

An approach claimed to be suitable especially for high dimensional data

is proposed in [12]. The idea resembles a grid-based subspace clustering

approach where not dense but sparse grid cells are sought to report objects

within sparse grid cells as outliers. Since this is exponential in the data

dimensionality, an evolutionary algorithm is proposed to search heuristically

for sparse cells. Besides the complexity problems, this approach relies on

full dimensional Euclidean distances similar to all other approaches reported

so far. As a consequence, it is not a solution for the problems typically

encountered in high dimensional data in general and for the problem of local

correlations among attributes in particular.

To the best of our knowledge, no outlier detection approach has been

proposed so far that considers correlations of attributes for outlier detection

and searches for outliers in arbitrarily oriented subspaces of high dimensional

data.

Outlier detection is orthogonal to clustering where the aim is to find a

natural grouping of sets of similar data objects. In fact, clustering algorithms

have similar problems like outlier detection approaches in high dimensional

300 18 Application 2: Outlier Detection

data. Thus, a lot of specialized methods have been proposed for clustering

high dimensional data. Solutions include the detection of clusters in axis-

parallel subspaces of the data space, the detection of pattern-based clusters,

and the detection of clusters in arbitrarily oriented subspaces of the data

space (see Part II). Although outliers can usually be seen as objects that

do not fit well into any cluster, subspace clustering algorithms can usually

not be used for subspace outlier detection because these algorithms search

for clusters and their corresponding subspace rather than outliers and their

corresponding subspaces. Any object that is not assigned to a subspace

cluster need not necessarily be a remarkable outlier in any of the subspaces

in which the detected clusters exist.

18.2 Outlier Detection in Subspaces

18.2.1 General Idea

In general, local outlier detection models have shown better accuracy than

global models. Existing techniques for local (and also global) outlier de-

tection do not consider correlations of features. This is a severe limitation

in many applications where correlations among attributes indicate different

mechanisms or statistical processes in the data. For example, in many scien-

tific applications the relationship between causation and effect can only be

exploited when considering correlations among attributes.

Here, we try to overcome this limitation of existing approaches by propos-

ing a local outlier model that considers correlations. In the following we as-

sume D to be a database of n feature vectors in a d-dimensional real-valued

feature space, i.e. D ⊆ R
d. Data objects that show a similar correlation

among some attributes are located on a common λ-dimensional (λ < d) hy-

perplane, hereafter also called correlation hyperplane. The basic idea of our

approach is that a data point o is an outlier w.r.t. a set of (local) reference

objects C if o is not located on the hyperplane spanned by the points of C. If

the objects in C and o itself are projected on the (arbitrarily oriented) sub-

18.2 Outlier Detection in Subspaces 301

space perpendicular to the hyperplane spanned by the objects in C, we can

observe that the objects in C exhibit a high density in that subspace whereas

o is considerably far apart from these objects. This idea is visualized in Fig-

ure 18.1. If o and the objects in C (located on line L) are projected onto the

subspaces S perpendicular to the line that is spanned by the objects in C, we

can observe that o significantly deviates from the set of objects C in S. Since

we implement a local approach, we will select neighbors of o as the reference

set C.

In summary, we consider a set of reference objects C for an object o in

order to evaluate the outlier degree of o w.r.t. C similar to existing local

outlier detection approaches. However, fundamentally different to existing

approaches, we do not consider the density of o and the density of the neigh-

bors of o in the full dimensional space. Rather, we determine the correlation,

i.e. the hyperplane, defined by the neighbors of o and evaluate the devia-

tion of o to its neighbors in the subspace perpendicular to that hyperplane.

This procedure measures how good o fits to this correlation, i.e. how far

apart from the hyperplane o is in the original feature space. The motivat-

ing idea for this approach is the assumption of possible dependencies among

different attributes. Different mechanisms that have generated the data will

then most likely exhibit also different sets of dependencies among attributes.

Eventually, these linear dependencies are also interesting themselves in or-

der to grasp possible underlying mechanisms, since those mechanisms are

presumably unknown if a local outlier detection approach is performed.

In the following, we first introduce a concept to describe correlation hy-

perplanes (cf. 18.2.2). Based on this description, we then present our outlier

model (cf. 18.2.3). We discuss the choice of the local reference set C such that

a significant mechanism can be modeled from C and the weighted construc-

tion of the covariance matrix in order to derive the principal components in a

robust way (cf. 18.2.4). As an innovative and highly useful concept a method

to derive an explanation for the found outliers is presented (cf. 18.2.5). A

description of the outlier detection algorithm based on the proposed concepts

and a discussion of its properties (cf. 18.2.6) rounds up this Section.

302 18 Application 2: Outlier Detection

18.2.2 Describing Correlation Hyperplanes

The basic concept of our approach is a description of a correlation hyperplane.

In order to evaluate how good a point fits to the correlation hyperplane that

is spanned by a reference set, we use Principal Component Analysis (PCA)

as a well established concept to determine and represent any λ-dimensional

hyperplane (λ < d).

For a set of points C ⊆ D and the centroid (mean) x̄C of all points x ∈ C,

the covariance matrix Σ C of C is generally defined as:

Σ C =
1

|C|
·
∑
x∈C

(x− x̄C) · (x− x̄C)
T (18.1)

The covariance matrix Σ C for a set of points C generally describes a distribu-

tion of attributes which can be utilized to derive a Gaussian model that may

have created the observed data. This way, the covariance matrix represents a

probabilistic model of scatter around a certain mean value. However, in case

of correlation hyperplanes a far more adequate description or model may

be possible because strong correlations (as they appear in correlation hy-

perplanes) do not only suggest probabilistic scatter, but linear dependencies

among attributes. These linear dependencies among attributes may repre-

sent (by a higher perspective of interpretation) functional or causal relations.

Thus, we argue not to use the covariance matrix to model the correlation

among a set of points C. Rather, we will consider the intrinsic properties of

correlation hyperplanes, and elaborate how to make use of them in order to

derive a more appropriate model covering dependencies even quantitatively.

Let us note that this model cannot only be used to define outliers w.r.t.

correlation hyperplanes but also to derive qualitative knowledge about the

outliers in the sense of specifying the correlations w.r.t. to which the objects

are outliers.

The covariance matrix Σ C of any point set C can be decomposed into the

eigenvalue matrix E C of Σ C and the eigenvector matrix V C of Σ C such that

Σ C = V C ·E C ·V T

C.

The eigenvalue matrix E C is a diagonal matrix holding the eigenvalues of Σ C

18.2 Outlier Detection in Subspaces 303

in decreasing order in its diagonal elements. The eigenvector matrix V C is

an orthonormal matrix with the corresponding eigenvectors of Σ C.

We denote the number of dimensions of the (arbitrarily oriented) subspace

which is spanned by the major axes in V C as the correlation dimensionality

of C. In order to compute the correlation dimensionality of C we have to

determine the principal components (eigenvectors) of the points in C. The

eigenvectors are sorted by descending eigenvalues, i.e. the eigenvector associ-

ated with the largest eigenvalue e1 represents the first principal component,

the eigenvector associated with the second largest eigenvalue e2 determines

the direction of the second principal component and so on. The sum of the

eigenvalues ei (1 ≤ i ≤ d) equals the trace of the square matrix Σ C which is

the total variance VAR(C) of the points in C, i.e.,

VAR(C) =
d∑

i=1

ei.

Thus, each obtained eigenvalue represents the fraction of the variance ex-

plained by the corresponding principal component, in decreasing order of

importance. If all components would have equal importance, each eigenvalue

would exactly explain 1
d

of the total variance VAR(C). In case of a corre-

lation hyperplane, only a subset of components is important. The number

of these important components equals the correlation dimensionality. Thus,

the correlation dimensionality of a set of points C is intuitively defined as the

number of eigenvectors vi such that all these vi explain more than 1
d

of the to-

tal variance VAR(C) each. These ideas are illustrated in Figure 18.2. Figure

18.2(a) shows a set of points C that span a correlation hyperplane H of cor-

relation dimensionality 1 corresponding to a (perfect) line. One eigenvector

(v1) already explains the total variance of C and, thus, more than 1
d
·VAR(C).

Figure 18.2(b) shows a set of points C that span a correlation hyperplane H

of correlation dimensionality 2 corresponding to a (perfect) plane. Here, two

eigenvectors explain the total variance of C and each of them explain more

than 1
d

of the total variance.

Let us note that in the displayed examples the correlations are perfect,

i.e. there is no deviation from the hyperplane but all points within the set

perfectly fit to the hyperplane. In real-world data sets, this is obviously

304 18 Application 2: Outlier Detection

x
1

x
2

x
3

v
1

v
3

v
2

H

(a)

x
1

x
2

v
1

v
3

v
2

H

x
3

(b)

Figure 18.2: Illustration of the correlation dimensionality.

a rather unrealistic scenario. The points will most likely deviate from the

(idealized) hyperplane. As a consequence, it is not suitable to select only

those components that each explain the expected part of the total variance of

the points (because in these cases, there are no such components). Rather, we

require an important component to explain more than a certain percentage

α of the expected portion of the total variance, i.e. α · 1
d
· VAR(C). For

α = 1, the threshold exactly reflects the expected variance covered by a single

eigenvector for perfectly uniformly distributed data. This way, the correlation

dimensionality represents the dimensionality of a hyperplane neglecting a

certain amount of deviation in orthogonal direction.

Definition 18.1 (correlation dimensionality)

The correlation dimensionality λC of a set of points C is the number r ∈
{1, . . . , d} of those eigenvectors vi that each explain more than a percentage

α ∈ R+ of the expected part of the total variance:

λC =
∣∣∣∣{vi | ei > α · 1

d
· VAR(C), where 1 ≤ i ≤ d

}∣∣∣∣ .
We call the first λC eigenvectors of V C, i.e. those eigenvectors explaining

more than the expected part of the total variance, strong eigenvectors. The

18.2 Outlier Detection in Subspaces 305

strong eigenvectors of V C are denoted by V̌ C. The remaining eigenvectors

are called weak eigenvectors, denoted by V̂ C.

For α, a fixed value of 1.1 showed stable results. Thus, α needs not be

considered an issue for parametrization but could easily be assumed being

a fixed value. Nevertheless, a higher value of α allows for an adjustment to

generally noisy data. A lower value allows for an adjustment to data where

a paramount axis of correlation would otherwise cover axes of interesting

correlations with smaller variance. Note that this reasoning differs subtly

from the assessment of the correlation dimensionality presented in previous

chapters.

The λC-dimensional affine subspace which is spanned by the major axes of

C, i.e. by the λC first eigenvectors of C and translated by e.g. the mean vector

x̄C defines the correlation hyperplane HC of C. In other words, the correlation

dimensionality λC is the dimensionality of the affine subspace containing all

points of the set C allowing a small deviation. The remaining, neglected

variance scatters along the eigenvectors vλC+1, . . . , vd.

Using the concepts introduced in Chapter 16, we can describe this corre-

lation hyperplane HC by a unique equation system:

V̂
T

C · x = V̂
T

C · x̄C. (18.2)

By construction, the equation system is — at least approximately — fulfilled

for all points x ∈ C. But, furthermore, it suggests a quantitative model for the

points in C and, therefore, allows to determine whether another point deviates

strong enough from this model to be supposedly generated by a different

process. While the model is defined in a deterministic way, the deviation

may be more adequately modeled as a stochastic process. In combination,

as we will see next, these two components yield a subspace outlier model

suitable both, to approximately describe a process possibly responsible for

the reference set of objects for an object o, and to assign to o a degree of

outlierness w.r.t. this process, i.e., a probability of being an outlier.

306 18 Application 2: Outlier Detection

x1

x2

o

H
N

dist(o, H
N
)

Figure 18.3: Illustration of the distance of an object o to a hyperplane HC.

18.2.3 Subspace Outlier Model

Having derived a descriptive model, it can be refined by determining an

average distance of points in C from the correlation hyperplane HC, i.e. in

the subspace perpendicular to HC. As discussed above, due to jitter, such

deviations of points in C from HC are typically to be expected in natural

systems, e.g. due to errors in measurement. The distance of an object o to a

hyperplane HC is thereby naturally defined as the Euclidean distance to its

perpendicular projection onto the hyperplane, i.e.:

dist(o,HC) = ||o− x̄C − πHC−x̄C(o− x̄C)||,

where πS : Rn → R
n denotes the perpendicular projection of a vector onto an

arbitrary subspace S of Rn. If S is given by an orthonormal basis, e.g. the set

of strong eigenvectors derived for the corresponding correlation hyperplane,

{v1, · · · , vλS}, then

πS(x) = 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vλS 〉vλS .

The idea of this distance dist(o,HC) is illustrated in Figure 18.3. As-

suming the distances dist(o,HC) of all o ∈ C fit to a Gaussian distribution

18.2 Outlier Detection in Subspaces 307

x1

x2

o

N (o)

N (o) S

H
N (o)

Gaussian distribution of

deviations of x N (o)

from H
N (o)

Figure 18.4: Gaussian distribution of the distances of all points in C to HC.

with µC = 0, the standard deviation σC of these distances suffices to define a

Gaussian model of deviations from the common correlation hyperplane (cf.

Figure 18.4). The probability density function of this distribution is given

by

f(o) =
1

σC
√

2π
e
− 1

2σ2
C
dist(o,HC)2

.

This probability density is a very intuitive measurement for the degree

of outlierness of any o ∈ D w.r.t. the set of points in C. However, in order

to be able to interpret this probability density, one needs to scale it because

the probability density depends on the standard deviation of the underly-

ing distribution. As a consequence, a point o may strongly deviate from a

corresponding hyperplane HC but due to a plain Gaussian curve (i.e. a high

standard deviation) the value of f(o) may still be rather high. This problem

is visualized in Figure 18.5. Three probability density functions f1, f2, and

f3 with varying standard deviations obviously return very different values

f1(x), f2(x), and f3(x), respectively, for a given observation x.

A resulting value reflecting the outlier degree in the range of [0, 1] would

be more useful, since this could be interpreted as “outlier probability” of a

given point and probabilities of different points are comparable so that e.g.

308 18 Application 2: Outlier Detection

x

f1

f2

f3

f2(x)

f3(x)

f1(x)

f1

f2

f3

Figure 18.5: Probability density functions with varying standard deviation.

a ranking of the top outliers can be computed. Note that, in this context,

we cannot achieve such a probability as easily as in a classification-context

where we simply have to decide which of several processes is most likely to

have generated a given observation (cf. Chapter 17). Here, contrariwise, we

have only one Gaussian process and need to decide whether or not a given

observation is generated by this process.

Since we are assuming that the distances of objects o ∈ C to the hyper-

plane HC follow a Gaussian distribution, it seems appropriate to use some

Gaussian density function to compute a probability that any o ∈ C was gen-

erated by the same mechanism as the other points o′ ∈ C. As normalization,

the standard deviation σC of the local neighborhood can then be used.

The cumulative density function (cdf) Φ for Gaussian distributions is

known to be defined as

ΦµC ,σ2
C
(x) :=

1

σC
√

2π

∫ x

−∞
e
− (u−µC)2

2σ2
C du.

There is a well-known variant of this formula in statistics known as the

(Gaussian) error function erf (x). While this function essentially is just a

18.2 Outlier Detection in Subspaces 309

scaled and normalized version of Φ, it has exactly the scaling we are interested

in. The error function is commonly defined as

erf (x) :=
2√
π

∫ x

0
e−t2dt.

The relationship between the Gaussian Φ function and the erf function is as

follows:

ΦµC ,σ2
C
(x) =

1

2

(
1 + erf

(
x− µC

σC
√

2

))
.

The erf (x) error function still needs some scaling to account for the variance.

The appropriate scaling used in statistics is erf
(

a
σC
√

2

)
. When using this

scaling, the function computes the probability, that the error of a single

point is up to a constant within error margin a. In other words, given an

error margin a, it returns the probability that points are within this margin.

Now we are actually interested in the opposite, that the given point

is not part of the same distribution. Obviously, this can be computed by

1 − erf
(

a
σC
√

2

)
. In statistics, this term is also known as the complementary

(Gaussian) error function, denoted by erfc
(

a
σC
√

2

)
. In particular, the func-

tion is monotonously decreasing with erfc(0) = 1 and limx→∞ erfc(x) → 0.

This makes the resulting value — the probability that the given point is an

outlier — very easy to interpret. A value of 0 indicates that the particu-

lar point o perfectly fits to the hyperplane HC, i.e. is no outlier, whereas a

considerably higher value indicates o being an outlier.

Definition 18.2 (correlation outlier probability)

Let C denote a local set of reference objects. The correlation outlier proba-

bility of o ∈ D w.r.t. C, denoted by COPC(o), is defined as

COPC(o) := erfc

(
dist(o,HC)

σC
√

2

)

Since dist(o,HC) ≥ 0 and 0 ≤ erfc(x) ≤ 1 for x ≥ 0 it follows that

0 ≤ COP(o) ≤ 1.

In many applications, it could also be interesting to derive a binary deci-

sion whether or not an object o is an outlier rather than assigning an outlier

310 18 Application 2: Outlier Detection

score to o. In this scenario, we can simply follow the statistically sound

and well-established notion of outliers (cf. Section 18.1) and define outliers

to be points that deviate at least 3 · σC from the mean of a given Gaussian

distribution.

Definition 18.3 (correlation outlier)

Let C(o) denote the reference set of any object o ∈ D. The set of outliers

in D includes all objects o that have a distance to the corresponding hyper-

plane HC(o) spanned by the points in C(o) of more than 3 times the standard

deviation σC:

OutlierSet =
{
o ∈ D | dist(o,HC(o)) > 3 · σC

}
.

As a final remark, let us note that our model is valid even if no strong

eigenvectors are found at all. This case is even brought forward by setting

the threshold for selecting a strong eigenvector by a factor α = 1.1 slightly

higher than the expected value 1
d
·VAR(C). In this case, the model relaxes to

the special case of a full dimensional Gaussian model, as known from classical

statistical approaches, and it assigns to each point the probability of being

generated by the Gaussian distribution defined for the reference set.

18.2.4 Choosing a Reference Set

So far, we have not yet discussed how to choose the reference set C w.r.t.

which the correlation outlier probability COP(o) of an object o ∈ D is deter-

mined. We noted above that we strive for a local outlier detection model and

that C should be defined as the neighbors of o. In fact, we use the k-nearest

neighbors of o for some input parameter k. The set of k-nearest neighbors

of o is the smallest set Ck(o) ⊆ D \ {o} that contains at least k points from

D \ {o} and for which the following condition holds:

∀x ∈ Ck(o),∀x′ ∈ D \ Ck(o) : ‖o− x‖ < ‖o− x′‖.

Intuitively, k determines a threshold for the minimum number of points nec-

essary to determine a significant mechanism. In addition, it should be noted

18.2 Outlier Detection in Subspaces 311

that k is large enough to span a λ dimensional hyperplane. Since PCA is

more stable the more points it is applied to, we suggest to choose at least

k > 3 · d following [90]. A significantly higher value is of course suitable. On

the other hand, k should not be chosen too high, because then it is likely that

C contains points that are generated by different mechanisms themselves. In

that case, PCA cannot detect a meaningful correlation hyperplane.

In order to get the principal components in a more stable and robust

way, we determine a weighted covariance matrix unlike the general definition

in Equation 18.1. Instead, points contribute to the covariance weighted de-

creasingly with increasing distance from the mean. As weighting function we

use again erfc as described in [90]. Since we assume a Gaussian error model,

erfc appears to be the most appropriate choice.

18.2.5 Explaining and Interpreting Outliers

By now, we are able to detect objects o that do not fit well to the mecha-

nism that has generated the k-nearest neighbors Ck(o) of o. Objects o that

significantly deviate from the correlation hyperplane HCk(o) spanned by the

k-nearest neighbors Ck(o) of o are retrieved as outliers. Obviously, it would

also be interesting for the user not only to retrieve outliers but also to get

an interpretation and explanation why objects are considered outliers.

Although a plethora of different approaches and models for outlier detec-

tion has been proposed since decades, as discussed in Section 18.1, only some

of them can provide an explanation of the outlier status of a given object. In

those cases, this explanation is given only implicitly. Of course, it would be

very useful for any user of an outlier detection method to get an explicit ex-

planation why a certain point is considered an outlier and what the meaning

of its outlierness is. Only one approach has been proposed to derive explicit

explanations for the outlier status of an object [84]. This approach is applied

to distance-based outliers that are already found.

Here, we discuss the meaning of our outlier model, the possible expla-

nations for the outlierness of a given object based on this model, and the

312 18 Application 2: Outlier Detection

potential utilization of such explanations.

As indicated above, we can utilize our modeling of correlation hyperplanes

not only to derive an outlier score or a binary outlier decision, but also to de-

rive a qualitative and quantitative model that explains the correlation w.r.t.

which an outlier has been identified as an outlier. Unlike the argument pre-

sented in [4] for correlation clusters, here we are not interested primarily in

finding the properties of the reference set itself but rather how the properties

of a potential outlier differ from the properties of the reference set. However,

in a first step we need to grasp the properties of the reference set in an easily

interpretable way. Recall that the correlation hyperplane HC of a set of points

C is described by the equation system defined in Equation 18.2. The defect

of V̂
T

C represents the number of free attributes, the other attributes may be

involved in linear dependencies (correlations). Similar to models for correla-

tion clusters [4] (cf. Chapter 16), we can reveal these dependencies exhibited

within the reference set, i.e. the correlations of attributes, by transforming

the equation system into a reduced row echelon form of the matrix. This

unique form is conveniently interpretable by unexperienced users.

To give an example, consider the following equation system describing

the properties of a reference set C ⊆ R5:

1x1 + 0x2 + 0x3 + 0x4 + e1x5 = f1

0x1 + 1x2 + 0x3 + d2x4 + e2x5 = f2

0x1 + 0x2 + 1x3 + d3x4 + e3x5 = f3

This would provide a quantitative model describing a correlation hyperplane

accommodating the reference set C. Obviously, the dimensionality of the hy-

perplane is λC = 2, corresponding to the number of free attributes. This way,

we can assume to have linear dependencies among the attribute sets {x1, x5},
{x2, x4, x5}, and {x3, x4, x5}, specified by the factors e1; d2 and e2; and d3 and

e3, respectively. Note that this is, of course, only an assumption supported

by observed correlations. But this assumption could be examined further in

refined experiments. If we assume these linear dependencies describing a de-

terministic component of a mechanism responsible for the reference set C and

the Gaussian model of deviations describing the stochastic component of the

mechanism, we can further determine if, how far, and in which directions a

18.2 Outlier Detection in Subspaces 313

given point deviates from these properties. This will eventually also allow to

qualify a possible unknown mechanism responsible for the potential outlier.

The distance of a potential outlier from the hyperplane defined by the

reference set can be interpreted as an error vector. This error vector describes

the minimally required movement and the exact direction of this movement

of the point in order to fit it perfectly to the mechanism which generated the

reference set.

Possibly, the inspection of the error vector oerr of an object o leads the

domain scientist to the conclusion that o should not be treated as an outlier

(despite a large distance from the model of the reference set) but the model

needs to be corrected in order to explain the object o and the reference set

by the same mechanism. In this case, the error vector could be interpreted as

another strong eigenvector, spanning a model-hyperplane of dimensionality

λC+1 together with the strong eigenvectors V̌ C. One could easily supplement

d− (λC + 1) vectors orthonormally to all vectors in oerr ∪ V̌ C in order to get

a new equation system describing a new scientific model, as discussed above.

18.2.6 Algorithm

With the concepts described in the previous subsections, we are now able to

evaluate outliers by considering local correlations in the data. In addition,

we can derive a model for each outlier o that explains why o is considered an

outlier. In particular, the correlation w.r.t. which o has been identified as an

outlier is revealed quantitatively by means of an equation system.

An efficient algorithm for computing the outlier probability of all objects

o ∈ D is given in Figure 18.6. An algorithm to compute the set of outliers

according to Definition 18.3 can be derived in a straightforward manner. The

only input parameter is k, the number of nearest neighbors that are included

into Ck(o), which has already been discussed above.

The algorithm computes the k-nearest neighbors Ck(o) of each object o

which requires O(n2) time using a sequential scan but can be supported

by any well-established index structure reducing the runtime to O(n · log n)

314 18 Application 2: Outlier Detection

algorithm computeCOP

// input: the number k of neighbors to determine Ck(o)

for each o ∈ D do
compute Ck(o) the k-nearest neighbors of o;
determine ΣCk(o) and HCk(o);
determine dist(o,HCk(o));
compute COPCk(o)(o) according to Definition 18.2;

end for

Figure 18.6: Computing the COP.

on average. In addition, for each object o the correlation hyperplane HC(o)

is determined by applying PCA and the correlation outlier probability is

computed which in summary requires O(k ·d3) time. Since k � n, the overall

runtime complexity is O(n2 ·d3) without index and O(n log n ·d3) when using

a spatial index for nearest neighbor search. If the objects should be ranked

according to decreasing COP values, this does not affect the overall runtime

since sorting can be achieved in O(n log n) in the worst case. Thus, the

runtime complexity is at most that of standard local outlier approaches like

LOF and LOCI which both also rely on the computation of neighborhoods.

However, in contrast to LOF and LOCI, our COP requires the computation of

the neighbors only once for each object. LOF and LOCI compare the density

of the neighborhood of each object o with the density of the neighborhood

of each neighbor of o. To avoid multiple similarity queries for each object,

LOF and LOCI can of course materialize the neighborhoods but this results

in a huge storage overhead. In summary, COP does not have these problems

and is expected to scale well even to very large databases in terms of runtime

and storage cost.

18.3 Evaluation

We compared COP to two existing approaches. The first competitor is LOF

representing the local outlier approaches that do not consider correlations.

All other existing methods in that category have similar characteristics as

LOF in comparison to COP. The second approach called “Stat” is a sta-

18.3 Evaluation 315

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) Data set.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1 0

 2

 4

 6

 8

 10

 12

 14

 16

LO
F

(b) Results of LOF.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

C
O

P

(c) Results of COP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(d) Error vectors for COP.

Figure 18.7: Comparison of COP and LOF on a sample 2D data set (Both

algorithms used k = 30).

316 18 Application 2: Outlier Detection

tistical approach that can be considered as a special case of COP using d

weak eigenvectors for all points regardless of the correlation among the cor-

responding neighbors. Stat considers a point an outlier if it is sufficiently

far apart from the mean of its neighbors (using the Mahalanobis distance)

rather than from the correlation hyperplane spanned by the neighbors. All

three competitors require only one input parameter k specifying the number

of neighbors relevant for the determination of the outlier score.

18.3.1 Accuracy

First, we evaluated the differences between COP and LOF on a sample 2D

toy data set (cf. Figure 18.7(a)) containing points from three different gener-

ating mechanisms located on a common 1D correlation hyperplane for each

mechanism, and several outliers that deviate from these hyperplanes. The re-

sulting LOF values are depicted in Figure 18.7(b). We can observe that LOF

fails to detect outliers and non-outliers correctly in two general cases. First,

if the points deviate clearly from the correlation hyperplane representing a

generating mechanism but do not exhibit a lower density than the points

on the hyperplane, the outliers are not detected. Second, points that are

located on a hyperplane of the corresponding mechanism but are far apart

from the rest of the points are mistakenly classified as outliers. In Figure

18.7(c) the COP values are plotted along the y-axis. It can be observed that

our novel correlation outlier model overcomes these two limitations of LOF.

Using COP, we detect only those points as outliers that deviate from the

correlation hyperplane of the generating mechanism regardless of their full

dimensional density. In contrast to existing techniques, the outliers found by

COP can also be explained. Figure 18.7(d) illustrates for each point the “er-

ror vector”, i.e. the vector that is perpendicular to the hyperplane spanned

by the corresponding k-nearest neighbors. Each arrow is scaled according

to the distance of the corresponding point to the corresponding correlation

hyperplane. It can be seen that for most outliers, the direction of the er-

ror vector is approximately perpendicular to the hyperplane spanned by the

points of the corresponding generating mechanism.

18.3 Evaluation 317

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3 0.4

 0.5
 0.6

 0.7
 0.8 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0Noise
Line1
Line2
Line3
Line4
Line5

(a) Gold standard.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 20 40 60 80 100

F
-M

ea
su

re

k

COP
LOF

(b) F-measure of COP and LOF.

Figure 18.8: Accuracy of COP and LOF on a sample 3D data set w.r.t.

parameter k.

318 18 Application 2: Outlier Detection

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) Data set.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

C
O

P

(b) Results of Stat.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

C
O

P

(c) Results of COP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(d) Error vectors for COP.

Figure 18.9: Comparison of COP and Stat on a sample 2D data set.

18.3 Evaluation 319

We studied the impact of the parameter k on the COP and the LOF

values. We used a 3D data set with three generating mechanisms each ex-

hibiting a different correlation and several points that considerably deviate

from these generating mechanisms. Each point in the data set is labeled as a

member of a generating mechanism, or as an outlier (cf. Figure 18.8(a)). We

computed the COP value and the LOF value for different parameter settings

and evaluated how accurate the outliers were identified using the well-known

F-measure. The results are shown in Figure 18.8(b). In general, it can be

observed, that both methods are rather robust around 15 ≤ k ≤ 20 and

degenerate significantly when clearly increasing k. In addition, the accuracy

of COP is significantly above LOF in the range of a relevant parameter set-

ting. The best F-measure achieved by COP is approximately 94% while LOF

yields a maximum F-measure of approximately 88%. This is not surprising

due to the characteristics of the data. This shows that COP is more suit-

able for data sets that show characteristics like the data set shown in Figure

18.8(a), appearing very likely in real-world data sets.

A last experiment compares COP with Stat on a 2D sample data set

shown in Figure 18.9(a). Again, the accuracy of COP (cf. Figure 18.9(c)) is

superior than the competing approach (cf. Figure 18.9(b)).

18.3.2 Scalability

In order to show the scalability of COP to large databases, we conducted

a series of experiments where we fixed all but one of the free parameters

including the database size n, the data dimensionality d and the number

k of neighbors considered for the reference sets and altered the remaining

parameter. We also used an R∗-tree as underlying index-structure in all

experiments.

The runtime required to compute the COP value for all database objects

w.r.t. increasing database size n in comparison to LOF is shown in Figure

18.10(a). Both approaches scale super-linear as expected. Let us note that we

used materialized neighborhoods for LOF so that each neighborhood needs to

320 18 Application 2: Outlier Detection

 0 20000 40000 60000 80000 100000 120000

R
un

tim
e

(n
or

m
al

iz
ed

)

Data set size

Scalability in n (5 dimensions, k=500, R*-Tree)

COP
LOF

(a) Scalability w.r.t. n.

 0 5 10 15 20 25 30

R
un

tim
e

(n
or

m
al

iz
ed

)

Dimension

Scalability in d (10k points, k=100, R*-Tree)

COP
LOF

(b) Scalability w.r.t. d.

 0 200 400 600 800 1000 1200 1400 1600

R
un

tim
e

(n
or

m
al

iz
ed

)

k

Scalability in k (25k points, 5 dimensions, R*-Tree)

COP

(c) Scalability w.r.t. k.

Figure 18.10: Scalability of COP.

18.3 Evaluation 321

be computed only once similar to COP. However, this implies a considerably

higher storage overhead of LOF over COP.

We also examined the scalability of our novel outlier detection approach

compared to LOF w.r.t. the dimensionality of the data points d. The results

shown in Figure 18.10(b) suggest a linear scalability of both approaches.

However, as discussed in the previous section, we expect COP to have a

super-linear growth of runtime when increasing d.

Last but not least, we evaluated the impact of the parameter k on the

runtime of the algorithm to determine the COP value of all database objects

(Figure 18.10(c)). The results confirmed the theory that the algorithm for

computing COP scales constant w.r.t. k.

In summary, our experiments have demonstrated that our novel outlier

approach scales well to very large databases similar to established outlier

models for large databases.

18.3.3 Results on Real-world Data

NBA data

We used COP to find outliers in a data set containing 15 statistical measures

for 413 former and current NBA players obtained from the NBA website1.

Features include the number of games played, the number of games in which

the corresponding player appeared in the starting line-up, the number of

minutes played per game, the number of points recorded per game, etc. We

intentionally altered one arbitrarily selected record to produce a “measure-

ment error” as follows. For the former player Danny Manning, we registered

83 games played and 398 appearances in the starting line-up which is obvi-

ously a contradiction2.

Table 18.1 depicts the top three outliers according to COP. The highest-

1http://www.nba.com
2If Danny Manning or any supporter of Danny Manning reads this thesis, we apologize

for our selection.

322 18 Application 2: Outlier Detection

Table 18.1: Top outliers in the NBA data using COP.

Rank Player COP

1 Danny Manning 0,905

2 Jim McIlvaine 0,583015206

3 Dennis Rodman 0,561434904

ranked outlier is in fact the record featuring the measurement error (“Danny

Manning”). The model explaining the outlier is rather interesting. The re-

sulting error vector for this player indicates that he should have played 164

games more and should have appeared as starter in 178 games less. The

second-ranked outlier is Jim McIlvaine an already retired center known to

be a good shotblocker but a poor scorer. In fact the error vector of this

player explains that exactly these characteristics qualified him as a signifi-

cant outlier. The negative relationship between blocked shots and points per

game is outstanding. The outlier with the third highest probability is Den-

nis Rodman, a retired power forward known to be a tremendous rebounder.

However, the error vector of this player indicates an exceptionally high num-

ber of assists. This is interesting because usually, the big players like power

forwards or centers are good rebounders but hand out only few assists. On

the other hand, Rodman can be identified as a big man with an exceptionally

high numbers of assists.

We also applied LOF on that data set. Even when trying to optimize

the parameter MinPts, LOF could not find significant outliers. In all cases,

the top outlier achieved a LOF value of below 1.8. This indicates that the

objects in that data set exhibit a rather uniform density and outliers like

the measurement error can only be detected when considering correlations

as implemented by COP.

18.3 Evaluation 323

Table 18.2: Top outliers in the Wages data using COP.

Rank COP Description

1 0,911460762 low W despite high YE

2 0,880472682 low W despite high YE

3 0,879739261 high W despite low YE

4 0,856091566 low W despite high YE+YW

5 0,819392181 low W despite high YE+YW

Wages data

We further applied COP to the Wages data set3 containing 534 entries from

the 1985 Current Population Survey. Each data object features four at-

tributes (A=age, YE=years of education, YW=years of work experience,

and W=wage).

The top five outliers according to COP are listed in Table 18.2. All

these outliers have very high scores. The two top-ranked objects are outliers

because the corresponding persons have an exceptionally low wage compared

to a rather large number of years of education. While there seems to be a

rather large number of persons featuring a positive correlation among YE and

W, these two outliers stand out due to a negative correlation among YE and

W. The third-ranked outlier features also a negative correlation among YE

and W but with contrary properties. The next two outliers exhibit a low wage

although they have a high value in YE and YW, i.e. a long working experience

and a sound education. This is contrary to another distinctive generating

mechanism featuring a positive correlation among W and YE+YW. Again,

LOF could not find significant outliers in that data set.

3http://lib.stat.cmu.edu/datasets/CPS_85_Wages

324 18 Application 2: Outlier Detection

325

Part VI

Conclusions

327

Chapter 19

Summary

This thesis aimed at serving a twofold purpose. The first task was to system-

atically survey the very heterogenous field of clustering adaptations for high

dimensional data. Second, we contributed new approaches and integrated

them in the proposed systematics of algorithms and the reviewed problems

typically encountered in the field.

Part I served to illustrate the background and motivation of the topic

with the general context of data mining (Chapter 1) and some prominent

application scenarios (Chapter 2).

Part II addressed the first main objective of the thesis in arranging the

heterogeneous field of clustering algorithms for high dimensional data ac-

cording to the typically addressed subproblems and approaches. To this end,

Chapter 3 sketched the fundamental problem in clustering high dimensional

data and characterized three different classes of clustering algorithms. The

subsequent chapters discussed these different classes of algorithms in more de-

tail. First, axis-parallel clustering with the consuetudinary but questionable

categorization in projected and subspace clustering is surveyed in Chapter

4. Pattern-based clustering algorithms are surveyed in Chapter 5. Here,

the point was not to give an exhaustive overview on existing approaches but

to point out the relationship and differences in comparison to subspace and

correlation clustering. The latter class of algorithms has been surveyed in

328 19 Summary

Chapter 6. Most of the approaches to this field have been developed by the

author and constitute the second major contribution of the thesis. Chapter

7 concluded the systematic part with a discussion of the main problems and

solutions. We have identified different aspects of the notorious “curse of di-

mensionality” that are addressed with different focus by different types of

algorithms. So far, no efficient all-round-algorithm has been proposed and it

seems unlikely to get one. It is not even clear whether such a solution would

be desirable. Another open question, as pointed out in this systematic part,

is the evaluation of different approaches. Since any approach uses its own

assumptions and heuristics (and often even defines the objective in a different

way), a comprehensive and fair experimental evaluation of a reasonable set

of representatives for the different classes of solutions is not only missing so

far but seems also a very demanding and complex task.

Contributions to the category of correlation clustering algorithms have

been presented in Parts III–V. Part III collected adaptations of the density-

based paradigm using PCA as a primitive to grasp correlated attributes and

derive the corresponding arbitrarily oriented subspace. The first adaptation

is the algorithm 4C (Chapter 8). A more robust, more efficient and more

effective variant for flat correlation clustering is COPAC (Chapter 9). Hi-

erarchical correlation clustering has been tackled by the approaches HiCO

(Chapter 10) and ERiC (Chapter 11). For all correlation clustering algo-

rithms based on PCA on a local selection of points, a framework to enhance

the suitability of the selected set and the robustness of the applied PCA has

been discussed in Chapter 12.

Nevertheless, as we have seen in Part IV, there remain weak points of all

these density-based approaches applying PCA on a local selection of represen-

tative points (see Chapter 13). They rely on the so called locality assumption

which is in view of high dimensional data rather näıve, as has also been dis-

cussed in Part II. Thus, as a global approach to correlation clustering, the

algorithm CASH has been proposed and discussed in Chapter 14.

None of the existing correlation clustering algorithms derives a quanti-

tative and qualitative model for each correlation cluster which is urgently

329

needed in order to gain the full practical potentials from correlation cluster

analysis. Part V described an original approach to derive quantitative infor-

mation on the linear dependencies within correlation clusters. As discussed

in Chapter 15, this step is not readily available for correlation clustering

so far. The concepts for deriving quantitative and qualitative correlation

clustering models described in Chapter 16 are independent of the clustering

approach and can thus be applied as a post-processing step to any correla-

tion clustering algorithm. The broad experimental evaluation demonstrated

the beneficial impact of the proposed method on several applications of sig-

nificant practical importance. It has been exemplified how the method can

be used in conjunction with a suitable clustering algorithm to gain valuable

and important knowledge about complex relationships in real-world data.

Furthermore, as sample applications of the approach, Chapter 17 sketched

how these quantitative models can be used to predict the probability distri-

bution that an object is created by these models, and Chapter 18 described

an adaptation of the approach to the outlier detection problem.

In Part VI, so far we summarized the contributions and results (Chapter

19) of the thesis. In the remaining Chapter 20, we will point out some open

questions and possible directions for future work.

330 19 Summary

331

Chapter 20

Future Directions

At the end of this thesis, let us emphasize the potentials of the proposed

methods for future research. For correlation clustering, future research could

be guided by the following considerations:

• In the approaches discussed in this thesis, a deviation orthogonally to

a correlation hyperplane has been accounted for based on thresholds or

even using a refined Gaussian model of deviations. In this sense, the

models discussed so far, tacitly assume the points being uniformly dis-

tributed within the correlation hyperplane. It could also be interesting

to account for different distributions of the points within the correla-

tion hyperplane, although this would lead to a considerably different

intuition of the meaning of correlation clusters.

• There is no perfect solution for the assessment of the most suitable value

of the correlation dimensionality of a given data set. Throughout the

approaches discussed in this thesis, we used several different definitions

of the correlation dimensionality. Naturally, all of them work differently

well for different data sets. There are many aspects in this matter which

are not discussed yet in depth. This would require some more analyses

and could be another interesting aspect for future work.

• Another point of interest could be to define the correlation cluster mod-

332 20 Future Directions

els in a slightly more general way, allowing full dimensional clusters as

a special case (as discussed for the outlier model in Chapter 18). This

matter is also closely related to the assessment of the correlation dimen-

sionality. In order to relax to the full dimensional case, a correlation

dimensionality of 0 must be possible, i.e., no eigenvector is regarded as

“strong”.

• While much work has been done in identifying linear correlations among

subsets of features in high dimensional data, the field of detecting non-

linear correlations is largely unexplored. Using standard (linear) PCA,

algorithms can detect linear correlations within a data set but fail in

identifying non-linear structures. The concept of Kernel PCA [122] is

a possibility for applying a nonlinear form of PCA and, thus, is very

well suited to extract nonlinear structures in the data. It would be

interesting to investigate how the concepts of Kernel PCA could be

combined with clustering to find non-linear correlation clusters in ar-

bitrarily oriented subspaces. A related idea is to extend the derivation

of a quantitative and qualitative model for linear correlation clusters

to one for nonlinear correlation clusters. This problem could also be

tackled by means of the Kernel PCA. Similarly, the Hough-transform

is only a special case of many possible transformations. This field is

also a resource of potential new approaches to non-linear correlation

clustering.

Aside from these concrete issues, we would like to conclude this thesis

with some informal final remarks.

It is a well accepted opinion that there is not such a thing like a general

clustering technique suitable to all problems and universally applicable to ar-

bitrary data sets. The aim of the concrete task of data analysis influences the

choice of the clustering algorithm and obviously also the interpretation of the

results of the clustering process. The appropriate choice of a clustering ap-

proach adequate to the problem at hand should be based on knowledge of the

basic principles the particular clustering approach is based upon. Similarly,

the interpretation of clustering results should be guided by the knowledge of

333

the kinds of patterns a particular algorithm can or cannot find. In the survey

on different approaches (Part II), we aimed at supporting such decisions and

interpretations by a systematic overview on the different kinds of algorithms

specialized to different problems known to occur in high dimensional data.

The family of axis-parallel subspace and projected clustering algorithms

assumes that data objects belonging to the same cluster are near by each

other but allows to assess the corresponding distance of objects w.r.t. sub-

sets of the attributes due to the problem of increasingly poor separation of

near and far points in higher dimensional data and the problem of irrelevant

attributes. Pattern-based approaches often disregard the assumption, that a

cluster consists of objects that are near by each other in the Euclidean space

or some Euclidean subspace and, instead, aim at collecting objects following

a similar behavioral pattern over a subset of attributes. These patterns relate

to simple positive correlations among the considered attributes. Correlation

clustering approaches generalize this approach to arbitrary complex positive

or negative correlations but often assume, again, a certain density of the

points in Euclidean space, too.

In identifying the problems addressed by the different families of algo-

rithms and surveying the basic approaches pursued, we hope to stimulate

further research. However, since different problems are addressed in different

ways by the various approaches, questions arise whether more general solu-

tions are possible addressing more problems in one approach. The presented

systematic of different subspace clustering tasks — axis-parallel, pattern-

based, arbitrarily-oriented, and here the aspects for future work: allowing

also for search of non-linear correlations instead of the restriction to linear

correlations — are subtly guided by this very same desire of finding the even

more general solution that can tackle the even more general problem. This is,

after all, a fundamental motivation in computer science: to describe a prob-

lem as generally as possible and to design a solution (if possible, a universal

one) that tackles the original, concrete problem as a special case.

Accordingly, as a vision of data mining in the future, a more complex

modeling of the world than mere feature vectors has been figured (cf. [87]).

334 20 Future Directions

The basic idea in such considerations is to make data mining approaches even

more general and suitable to all kind of different data. This way, the com-

plexity of real-world objects could be tackled in a more direct way compared

to simplified representations by means of numerical attributes.

However, this quest for the always more general solution is a double-

edged sword. Representing complex objects by means of simple objects like

numerical feature vectors could also be understood as a way to incorporate

domain knowledge into the data mining process and, as such, is a worthwhile

goal. The domain expert seeks ways to use the important features of an

object to e.g. classify new objects of the same type, eventually by employing

sophisticated functions to transform attributes of some type to features of

some other type. In the progress to generalized data mining one should

not disregard of course the advances made so far. Incorporating domain

knowledge fundamentally facilitates meaningful data mining.

But also restricting oneself to numerical data, it has been suggested that

the more general approach would be preferable and also gain the better re-

sults since any structure imposed on the data would lead to biased results

[63, 64]. On the first glance, this seems to make sense. On the other hand,

it is unclear whether this really is what potential users need. More than

that: For supervised learning it is well known that a bias-free learning is fu-

tile [101]. In our opinion, in the context of unsupervised learning it remains

to be seen whether the more general approach is theoretically the better

one.1Practically, however, the domain expert should decide which bias – if

any – is most meaningful in a given application. Anyway, a clustering ap-

proach seems to be more useful if it is able to provide a model describing the

clusters found. This allows to understand the grouping, to identify under-

lying mechanisms quantitatively, and, eventually, to refine scientific theories

or target marketing strategies. What is more, while defining a model is not

possible without defining the task properly, a properly defined task will help

to develop an optimization approach based on a suitable model.

1There are even hints that the universal approach is impossible, see [49].

335

Unfortunately, practitioners of cluster analysis usually are not able to use

the approach that suits their purpose best but only those approaches that

are available in conveniently accessible statistical or data mining software

systems. We totally agree with Kettenring [82] that a more close cooperation

of developers and practitioners of cluster analysis in order “to make sure

that what is being offered represents best practices [. . .] would be a much

more valuable contribution to cluster analysis than the next methodological

advances”. So, as a final remark, let us express the opinion that focussing

on old or new problems in developing new clustering approaches should even

more closely analyze the needs of potential applicants. The ultimate goal of

clustering is to find new knowledge by analyzing data sets describing some

aspects of the world. And eventually, in these realms of applications, truth,

as beauty, is in the eye of the beholder, or, as Hamlet said, “for there is

nothing either good or bad, but thinking makes it so”.

336 20 Future Directions

LIST OF FIGURES 337

List of Figures

1.1 The KDD process. 4

3.1 Illustration of the local feature relevance/local feature corre-

lation problem. 18

3.2 Illustration of the general aim of clustering algorithms for high

dimensional data. 20

5.1 Constant bicluster . 41

5.2 Constant values on columns 43

5.3 Constant values on rows . 44

5.4 Coherent values . 46

5.5 Patterns corresponding to positively and negatively correlated

attributes . 47

5.6 Coherent evolutions: state transitions 48

5.7 Coherent evolutions: change in the same direction 49

5.8 p-cluster model: pairwise differences 55

5.9 Comparison: Patterns in Biclustering approaches and their

corresponding spatial intuitions 59

6.1 Points distributed in data space where some attributes are

correlated cluster densely in a certain projection (arbitrarily

oriented subspace). 62

6.2 Points distributed in an arbitrarily oriented subspace form a

hyperplane. 62

338 LIST OF FIGURES

6.3 ORCLUS: distance of two clusters 66

6.4 4C: distance between two points 67

7.1 A 3-D data set illustrating Problem 3. 81

8.1 1-Dimensional Correlation Lines 94

8.2 2-Dimensional Correlation Planes 96

8.3 Correlation ε-neighborhood of a point P according to (a) M P

and (b) M̂ P . 102

8.4 Symmetry of the correlation ε-neighborhood: (a) P ∈ NM̂ Q
ε (Q).

(b) P 6∈ NM̂ Q
ε (Q). 104

8.5 Pseudo code of the 4C algorithm. 109

8.6 Scalability against database size. 113

8.7 Clusters found by 4C on 10D synthetic data set. Parameters:

ε = 10.0, MinPts = 5, λ = 2, δ = 0.1. 114

8.8 Sample clusters found by 4C on the gene expression data set.

Parameters: ε = 25.0, MinPts = 8, λ = 8, δ = 0.01. 115

8.9 Clusters found by 4C on the metabolome data set. Parame-

ters: ε = 150.0, MinPts = 8, λ = 20, δ = 0.1. 117

8.10 Comparison between 4C and DBSCAN. 118

8.11 Three correlation connected clusters found by 4C on a 3-

dimensional data set. Parameters: ε = 2.5, MinPts = 8.

δ = 0.1, λ = 2. 119

8.12 Clusters found by ORCLUS on the data set depicted in Figure

8.11. Parameters: k = 3, l = 2. 120

9.1 Correlation dimensionality. 125

9.2 Correlation distance measure of a point. 130

9.3 Visualization of NNPred(P). 133

9.4 The COPAC algorithm. 134

9.5 A sample (µ− 1)-distance diagram. 136

9.6 Runtime vs. data dimensionality. 138

LIST OF FIGURES 339

9.7 Runtime vs. data set size. 138

9.8 Synthetic data set: partitions and clustering with COPAC. . . 141

9.9 Synthetic data set: clustering with ORCLUS and 4C. 142

10.1 Hierarchies of correlation clusters. 148

10.2 Spaces spanned by two vectors. 154

10.3 Two points with their eigenvectors. 156

10.4 Pseudo code correlation distance. 159

10.5 Pseudo code orthonormalization. 160

10.6 Pseudo code HiCO algorithm. 160

10.7 3D synthetic data set (DS1). 162

10.8 Results of HiCO applied to DS1 (Parameters: µ = k = 20,

α = 0.90, ∆ = 0.05). 163

10.9 Results of ORCLUS applied to DS1 (Parameters: k = 3, l = 2).164

10.10Results of OPTICS applied to DS1 (Parameters: ε = 1, minPts = 20).165

10.11Results of 4C applied to DS1. 168

10.12Results of HiCO on real-world data sets (Parameters: ∆ =

0.25, α = 0.8). 169

11.1 Simple (a) and complex (b) hierarchical relationships among

correlation clusters . 172

11.2 (a) and (b): Results of HiCO on the data sets shown in Figure

11.1 and (c): the true hierarchical relationships 174

11.3 The method to build the hierarchy of correlation clusters. . . . 182

11.4 The method to check wether a cluster is parent of one of the

clusters in a list. 182

11.5 Data set “DS1”. 185

11.6 Results of ERiC on “DS1”. 185

11.7 Results of 4C with different λ-parameter settings on “DS1”. . 186

11.8 Results of ORCLUS on “DS1”. 187

11.9 Result of HiCO on “DS1”. 188

340 LIST OF FIGURES

11.10Results of ERiC on “Wages” data. 190

11.11Results of ERiC on “Breast Cancer” data. 191

11.12Results of ERiC on “Pendigits” data. 192

11.13Runtime of ERiC, HiCO, 4C, and ORCLUS w.r.t. the dimen-

sionality. 193

11.14Runtime of ERiC, 4C, and ORCLUS w.r.t. the size of the data

set. 194

11.15Runtime of ERiC, HiCO, 4C and ORCLUS w.r.t. the number

of clusters. 195

11.16Runtime of the third step of ERiC (hierarchy aggregation)

w.r.t. the number of clusters. 195

12.1 Simple data set with 6 points and largest eigenvector after PCA.200

12.2 Data set with a 2D plane and an embedded 1D line. 201

12.3 Relative strength of eigenvectors. 203

12.4 Some weight functions. 206

12.5 Relative strength of eigenvectors (with Erfc weight). 208

12.6 Problems with jitter. 210

12.7 3D synthetic data sets used for evaluating ERiC. 215

12.8 Results of ERiC with different weight functions and auto-

tuning on 3D synthetic data sets. 216

12.9 Results of ERiC with different weight functions and auto-

tuning on a sample 10D synthetic data set. 217

13.1 Data set with two non-dense general subspace clusters in a

noisy environment . 227

14.1 Hough transform from picture space to parameter space using

slope and intercept parameters. 233

14.2 Hough transform from picture space to parameter space using

angle and radius parameters. 234

LIST OF FIGURES 341

14.3 Transform of a 3-dimensional data space into a 3-dimensional

parameter space. 237

14.4 Different cases for finding the minimum of a parametrization

function in a given interval. 244

14.5 Dense regions in parameter space capturing two lines in data

space. 245

14.6 Scalability w.r.t. size. 252

14.7 Scalability of CASH w.r.t. dimensionality. 253

14.8 F-measure and runtime of CASH w.r.t. maximum split level. . 254

14.9 F-Measure w.r.t. noise level. 255

14.10Clustering synthetic data set DS1. 256

14.11Clustering results on synthetic data set DS2. 257

14.12Clustering results on DS2 after noise removal. 257

14.13Hierarchies found on synthetic data set DS3. 260

16.1 Correlation dimensionality of correlation clusters. 274

16.2 Synthetic data set DS1. 279

16.3 Synthetic data sets with different values for standard deviation.280

17.1 Decision models of different types of classifiers 288

17.2 Data set DS32. 290

18.1 The general idea of finding outliers in subspaces of the original

feature space. 295

18.2 Illustration of the correlation dimensionality. 304

18.3 Illustration of the distance of an object o to a hyperplane HC. 306

18.4 Gaussian distribution of the distances of all points in C to HC. 307

18.5 Probability density functions with varying standard deviation. 308

18.6 Computing the COP. 314

18.7 Comparison of COP and LOF on a sample 2D data set (Both

algorithms used k = 30). 315

342 LIST OF FIGURES

18.8 Accuracy of COP and LOF on a sample 3D data set w.r.t.

parameter k. 317

18.9 Comparison of COP and Stat on a sample 2D data set. 318

18.10Scalability of COP. 320

LIST OF TABLES 343

List of Tables

4.1 Categorization of sample subspace clustering algorithms, pro-

jected clustering algorithms, hybrid approaches 35

7.1 Properties of clustering algorithms. 77

9.1 COPAC clustering on Metabolome data. 143

9.2 COPAC clustering on Wages data. 144

9.3 COPAC clustering on breast cancer data. 145

9.4 COPAC clustering on expression data. 146

12.1 Impact of the integration of our novel concepts into ORCLUS. 219

12.2 Results on NBA data using ERiC with autotuning and Erfc

weighting. 219

12.3 Clustering results on Metabolome data using ERiC with au-

totuning and Erfc weighting. 220

14.1 CASH clustering on Wages data. 258

14.2 CASH clustering on NBA data. 259

16.1 Dependencies on DS1 data. 279

16.2 Dependencies on DS2 data. 281

16.3 Dependencies on Wages data. 282

16.4 Dependencies on Gene expression data. 283

16.5 Dependencies on Wisconsin breast cancer data. 285

344 LIST OF TABLES

17.1 Comparison of different classifiers in terms of accuracy (in %). 291

18.1 Top outliers in the NBA data using COP. 322

18.2 Top outliers in the Wages data using COP. 323

BIBLIOGRAPHY 345

Bibliography

[1] E. Achtert, C. Böhm, J. David, P. Kröger, and A. Zimek. Robust

clustering in arbitrarily oriented subspaces. In Proceedings of the 8th

SIAM International Conference on Data Mining (SDM), Atlanta, GA,

2008.

[2] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, and

A. Zimek. Finding hierarchies of subspace clusters. In Proceedings of

the 10th European Conference on Principles of Knowledge Discovery

and Data Mining (PKDD), Berlin, Germany, 2006.

[3] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, I. Müller-Gorman, and

A. Zimek. Detection and visualization of subspace cluster hierarchies.

In Proceedings of the 12th International Conference on Database Sys-

tems for Advanced Applications (DASFAA), Bangkok, Thailand, 2007.

[4] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Deriv-

ing quantitative models for correlation clusters. In Proceedings of the

12th ACM International Conference on Knowledge Discovery and Data

Mining (SIGKDD), Philadelphia, PA, 2006.

[5] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. On ex-

ploring complex relationships of correlation clusters. In Proceedings of

the 19th International Conference on Scientific and Statistical Database

Management (SSDBM), Banff, Canada, 2007.

[6] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust,

complete, and efficient correlation clustering. In Proceedings of the 7th

346 BIBLIOGRAPHY

SIAM International Conference on Data Mining (SDM), Minneapolis,

MN, 2007.

[7] E. Achtert, C. Böhm, P. Kröger, and A. Zimek. Mining hierarchies of

correlation clusters. In Proceedings of the 18th International Conference

on Scientific and Statistical Database Management (SSDBM), Vienna,

Austria, 2006.

[8] E. Achtert, H.-P. Kriegel, and A. Zimek. ELKI: a software system

for evaluation of subspace clustering algorithms. In Proceedings of the

20th International Conference on Scientific and Statistical Database

Management (SSDBM), Hong Kong, China, 2008.

[9] C. C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising be-

havior of distance metrics in high dimensional space. In Proceedings of

the 8th International Conference on Database Theory (ICDT), London,

U.K., 2001.

[10] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S.

Park. Fast algorithms for projected clustering. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD),

Philadelphia, PA, 1999.

[11] C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters

in high dimensional space. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Dallas, TX, 2000.

[12] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional

data. In Proceedings of the ACM International Conference on Man-

agement of Data (SIGMOD), Santa Barbara, CA, 2001.

[13] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining applica-

tions. In Proceedings of the ACM International Conference on Man-

agement of Data (SIGMOD), Seattle, WA, 1998.

BIBLIOGRAPHY 347

[14] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules. In Proceedings of the ACM International Conference on Man-

agement of Data (SIGMOD), Minneapolis, MN, 1994.

[15] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional

spaces. In Proceedings of the 6th European Conference on Principles

of Knowledge Discovery and Data Mining (PKDD), Helsinki, Finland,

2002.

[16] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Or-

dering points to identify the clustering structure. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD),

Philadelphia, PA, 1999.

[17] A. Arning, R. Agrawal, and P. Raghavan. A linear method for de-

viation detection in large databases. In Proceedings of the 2nd ACM

International Conference on Knowledge Discovery and Data Mining

(KDD), Portland, OR, 1996.

[18] I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: dimensionality

unbiased subspace clustering. In Proceedings of the 7th International

Conference on Data Mining (ICDM), Omaha, NE, 2007.

[19] I. Assent, R. Krieger, E. Müller, and T. Seidl. VISA: visual subspace

clustering analysis. ACM SIGKDD Explorations Newsletter, 9(2):5–12,

2007.

[20] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine

Learning, 56:89–113, 2004.

[21] D. Barbara and P. Chen. Using the fractal dimension to cluster

datasets. In Proceedings of the 6th ACM International Conference on

Knowledge Discovery and Data Mining (SIGKDD), Boston, MA, 2000.

[22] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wi-

ley&Sons, 3rd edition, 1994.

348 BIBLIOGRAPHY

[23] S.D. Bay and M. Schwabacher. Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. In Proceed-

ings of the 9th ACM International Conference on Knowledge Discovery

and Data Mining (SIGKDD), Washington, D.C., 2003.

[24] R. Bellman. Adaptive Controll Processes. A Guided Tour. Princeton

University Press, 1961.

[25] A. Belussi and C. Faloutsos. Estimating the selectivity of spatial queries

using the ‘correlation’ fractal dimension. In Proceedings of the 21st

International Conference on Very Large Data Bases (VLDB), Zurich,

Switzerland, 1995.

[26] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local struc-

ture in gene expression data: The order-preserving submatrix problem.

In Proceedings of the 6th Annual International Conference on Compu-

tational Molecular Biology (RECOMB), Washington, D.C., 2002.

[27] S. Berchtold, C. Böhm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.

Independent Quantization: An index compression technique for high-

dimensional data spaces. In Proceedings of the 16th International Con-

ference on Data Engineering (ICDE), San Diego, CA, 2000.

[28] S. Berchtold, C. Böhm, and H.-P. Kriegel. The Pyramid Technique:

Towards breaking the curse of dimensionality. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD),

Seattle, WA, 1998.

[29] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and T. Seidl. Fast

nearest neighbor search in high-dimensional spaces. In Proceedings of

the 14th International Conference on Data Engineering (ICDE), Or-

lando, FL, 1998.

[30] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An index

structure for high-dimensional data. In Proceedings of the 22nd In-

ternational Conference on Very Large Data Bases (VLDB), Bombay,

India, 1996.

BIBLIOGRAPHY 349

[31] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is

“nearest neighbor” meaningful? In Proceedings of the 7th International

Conference on Database Theory (ICDT), Jerusalem, Israel, 1999.

[32] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,

2006.

[33] M. M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander. LOF: Identifying

density-based local outliers. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Dallas, TX, 2000.

[34] C. Böhm, K. Kailing, H.-P. Kriegel, and P. Kröger. Density connected

clustering with local subspace preferences. In Proceedings of the 4th

International Conference on Data Mining (ICDM), Brighton, U.K.,

2004.

[35] C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of

correlation connected objects. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Paris, France, 2004.

[36] C. Böhm and H.-P. Kriegel. Dynamically optimizing high-dimensional

index structures. In Proceedings of the 7th International Conference on

Extending Database Technology (EDBT), Konstanz, Germany, 2000.

[37] C. Böhm and H.-P. Kriegel. Efficient construction of large high-

dimensional indexes. In Proceedings of the 16th International Con-

ference on Data Engineering (ICDE), San Diego, CA, 2000.

[38] A. Califano, G. Stolovitzky, and Y. Tu. Analysis of gene expression

microarrays for phenotype classification. In Proceedings of the 8th In-

ternational Conference on Intelligent Systems for Molecular Biology

(ISMB), San Diego, CA, 2000.

[39] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A

new approach to indexing high dimensional spaces. In Proceedings of

the 26th International Conference on Very Large Data Bases (VLDB),

Cairo, Egypt, 2000.

350 BIBLIOGRAPHY

[40] C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based subspace

clustering for mining numerical data. In Proceedings of the 5th ACM

International Conference on Knowledge Discovery and Data Mining

(SIGKDD), San Diego, CA, pages 84–93, 1999.

[41] Y. Cheng and G. M. Church. Biclustering of expression data. In

Proceedings of the 8th International Conference on Intelligent Systems

for Molecular Biology (ISMB), San Diego, CA, 2000.

[42] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared

residue co-clustering of gene expression data. In Proceedings of the 4th

SIAM International Conference on Data Mining (SDM), Orlando, FL,

2004.

[43] I. S. Dhillon. Co-clustering documents and words using bipartite spec-

tral graph partitioning. In Proceedings of the 7th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), San

Francisco, CA, 2001.

[44] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma. Subspace

clustering of high dimensional data. In Proceedings of the 4th SIAM

International Conference on Data Mining (SDM), Orlando, FL, 2004.

[45] R. O. Duda and P. E. Hart. Use of the Hough transformation to detect

lines and curves in pictures. Communications of the ACM, 15(1):11–15,

1972.

[46] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John

Wiley&Sons, 2nd edition, 2001.

[47] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algo-

rithm for discovering clusters in large spatial databases with noise. In

Proceedings of the 2nd ACM International Conference on Knowledge

Discovery and Data Mining (KDD), Portland, OR, 1996.

[48] C. Faloutsos and I. Kamel. Beyond uniformity and independence:

Analysis of R-trees using the concept of fractal dimension. In Pro-

BIBLIOGRAPHY 351

ceedings of the ACM International Conference on Management of Data

(SIGMOD), Minneapolis, MN, 1994.

[49] C. Faloutsos and V. Megalooikonomou. On data mining, compression,

and Kolmogorov complexity. Data Mining and Knowledge Discovery,

15(1):3–20, 2007.

[50] H. Fan, O. R. Zäıane, A. Foss, and J. Wu. A nonparametric out-

lier detection for efficiently discovering top-N outliers from engineering

data. In Proceedings of the 10th Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD), Singapore, 2006.

[51] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. Knowledge discovery

and data mining: Towards a unifying framework. In Proceedings of the

2nd ACM International Conference on Knowledge Discovery and Data

Mining (KDD), Portland, OR, 1996.

[52] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395, 1981.

[53] J. H. Friedman and J. J. Meulman. Clustering objects on subsets of

attributes. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 66(4):825–849, 2004.

[54] B. Ganter and R. Wille. Formal Concept Analysis. Mathematical Foun-

dations. Springer, 1999.

[55] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[56] E. Georgii, L. Richter, U. Rückert, and S. Kramer. Analyzing microar-

ray data using quantitative association rules. Bioinformatics, 21(Suppl.

2):ii1–ii8, 2005.

[57] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering anal-

ysis of gene microarray data. Proceedings of the National Academy of

Sciences of the United States of America, 97(22):12079–12084, 2000.

352 BIBLIOGRAPHY

[58] A. Gionis, A. Hinneburg, S. Papadimitriou, and P. Tsaparas. Dimen-

sion induced clustering. In Proceedings of the 11th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD),

Chicago, IL, 2005.

[59] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Aca-

demic Press, 2001.

[60] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Aca-

demic Press, 2nd edition, 2006.

[61] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The

MIT Press, 2001.

[62] R. Haralick and R. Harpaz. Linear manifold clustering. In Proceedings

of the 4th International Conference on Machine Learning and Data

Mining in Pattern Recognition (MLDM), Leipzig, Germany, 2005.

[63] R. Harpaz. Model-Based Linear Manifold Clustering. PhD thesis, The

City University of New York, Department of Computer Science, 2007.

[64] R. Harpaz and R. Haralick. Linear manifold correlation clustering.

International Journal of Information Technology and Intelligent Com-

puting, 2(2), 2007.

[65] R. Harpaz and R. Haralick. Mining subspace correlations. In Proceed-

ings of the IEEE Symposium on Computational Intelligence and Data

Mining (CIDM), Honolulu, HI, 2007.

[66] J. A. Hartigan. Direct clustering of a data matrix. Journal of the

American Statistical Association, 67(337):123–129, 1972.

[67] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical

Learning. Data Mining, Inference, and Prediction. Springer, 2001.

[68] D. Hawkins. Identification of Outliers. Chapman and Hall, London,

1980.

BIBLIOGRAPHY 353

[69] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest

neighbor in high dimensional spaces? In Proceedings of the 26th Inter-

national Conference on Very Large Data Bases (VLDB), Cairo, Egypt,

2000.

[70] A. Hinneburg and D. A. Keim. An efficient approach to clustering

in large multimedia databases with noise. In Proceedings of the 4th

International Conference on Knowledge Discovery and Data Mining

(KDD), New York City, NY, 1998.

[71] P. V. C. Hough. Methods and means for recognizing complex patterns.

U.S. Patent 3069654, December 18 1962.

[72] D. Husmeier. Sensitivity and specificity of inferring genetic regula-

tory interactions from microarray experiments with dynamic Bayesian

networks. Bioinformatics, 19(17):2271–2282, 2003.

[73] J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules

using large-scale gene expression data. Bioinformatics, 20(13):1993–

2003, 2004.

[74] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.

ACM Computing Surveys, 1999.

[75] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression

data: A survey. IEEE Transactions on Knowledge and Data Engineer-

ing, 16(11):1370–1386, 2004.

[76] W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking outliers us-

ing symmetric neighborhood relationship. In Proceedings of the 10th

Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), Singapore, 2006.

[77] W. Jin, A.K. Tung, and J. Han. Mining top-n local outliers in large

databases. In Proceedings of the 7th ACM International Conference

on Knowledge Discovery and Data Mining (SIGKDD), San Francisco,

CA, 2001.

354 BIBLIOGRAPHY

[78] T. Johnson, I. Kwok, and R. Ng. Fast computation of 2-dimensional

depth contours. In Proceedings of the 4th International Conference on

Knowledge Discovery and Data Mining (KDD), New York City, NY,

1998.

[79] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition,

2002.

[80] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected subspace

clustering for high-dimensional data. In Proceedings of the 4th SIAM

International Conference on Data Mining (SDM), Orlando, FL, 2004.

[81] N. Katayama and S. Satoh. The SR-tree: An index structure for high-

dimensional nearest neighbor queries. In Proceedings of the ACM In-

ternational Conference on Management of Data (SIGMOD), Tucson,

AZ, 1997.

[82] J. R. Kettenring. A perspective on cluster analysis. Short Communi-

cation. Statistical Analysis and Data Mining, 1(1):52–53, 2008.

[83] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based out-

liers in large datasets. In Proceedings of the 24th International Confer-

ence on Very Large Data Bases (VLDB), New York City, NY, 1998.

[84] E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-

based outliers. In Proceedings of the 25th International Conference on

Very Large Data Bases (VLDB), Edinburgh, Scotland, 1999.

[85] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchthold. Efficient bi-

ased sampling for approximate clustering and outlier detection in large

datasets. IEEE Transactions on Knowledge and Data Engineering,

15(5):1170–1187, 2003.

[86] F. Korn, B.-U. Pagel, and C. Falutsos. On the “dimensionality curse”

and the “self-similarity blessing”. IEEE Transactions on Knowledge

and Data Engineering, 13(1):96–111, 2001.

BIBLIOGRAPHY 355

[87] H.-P. Kriegel, K. M. Borgwardt, P. Kröger, A. Pryakhin, M. Schu-

bert, and A. Zimek. Future trends in data mining. Data Mining and

Knowledge Discovery, 15(1):87–97, 2007.

[88] H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic frame-

work for efficient subspace clustering of high-dimensional data. In Pro-

ceedings of the 5th International Conference on Data Mining (ICDM),

Houston, TX, 2005.

[89] H.-P. Kriegel, P. Kröger, and A. Zimek. Detecting clusters in moderate-

to-high dimensional data: Subspace clustering, pattern-based cluster-

ing, and correlation clustering. Tutorial at the 7th International Con-

ference on Data Mining (ICDM), Omaha, NE, 2007. http://www.ist.

unomaha.edu/icdm2007/conference/ArthurZimekTutorial2.pdf%.

[90] H.-P. Kriegel, Peer Kröger, E. Schubert, and A. Zimek. A general

framework for increasing the robustness of PCA-based correlation clus-

tering algorithms. In Proceedings of the 20th International Conference

on Scientific and Statistical Database Management (SSDBM), Hong

Kong, China, 2008.

[91] J. Li, X. Huang, C. Selke, and J. Yong. A fast algorithm for finding

correlation clusters in noise data. In Proceedings of the 11th Pacific-

Asia Conference on Knowledge Discovery and Data Mining (PAKDD),

Nanjing, China, 2007.

[92] B. Liebl, U. Nennstiel-Ratzel, R. von Kries, R. Fingerhut, B. Ol-

gemöller, A. Zapf, and A. A. Roscher. Very high compliance in an

expanded MS-MS-based newborn screening program despite written

parental consent. Preventive Medicine, 34(2):127–131, 2002.

[93] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-Tree: An index

structure for high-dimensional data. VLDB Journal, 3:517–542, 1995.

[94] B. Liu, Y. Xia, and P. S. Yu. Clustering through decision tree construc-

tion. In Proceedings of the 9th International Conference on Information

and Knowledge Management (CIKM), Washington, D.C., 2000.

356 BIBLIOGRAPHY

[95] G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering

with flexible dimension partitioning. In Proceedings of the 23st Inter-

national Conference on Data Engineering (ICDE), Istanbul, Turkey,

2007.

[96] J. Liu and W. Wang. OP-Cluster: Clustering by tendency in high

dimensional spaces. In Proceedings of the 3th International Conference

on Data Mining (ICDM), Melbourne, FL, 2003.

[97] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological

data analysis: A survey. IEEE Transactions on Computational Biology

and Bioinformatics, 1(1):24–45, 2004.

[98] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear

programming. SIAM News, 23(5):1–18, 1990.

[99] K. S. Miller. Multidimensional Gaussian Distributions. John Wi-

ley&Sons, 1964.

[100] B. Mirkin. Mathematical Classification and Clustering. Kluwer, 1996.

[101] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[102] G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering

algorithm. In Proceedings of the 6th International Conference on Data

Mining (ICDM), Hong Kong, China, 2006.

[103] G. Moise, J. Sander, and M. Ester. Robust projected clustering. Knowl-

edge and Information Systems (KAIS), 14(3):273–298, 2008.

[104] T. M. Murali and S. Kasif. Extracting conserved gene expression motifs

from gene expression data. In Proceedings of the 8th Pacific Symposium

on Biocomputing (PSB), Maui, HI, 2003.

[105] H.S. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for cluster-

ing massive data sets. In Proceedings of the 1st SIAM International

Conference on Data Mining (SDM), Chicago, IL, 2001.

BIBLIOGRAPHY 357

[106] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimensionality

curse using multiple fractal dimensions. In Proceedings of the 16th In-

ternational Conference on Data Engineering (ICDE), San Diego, CA,

2000.

[107] S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and C. Faloutsos. LOCI:

Fast outlier detection using the local correlation integral. In Proceed-

ings of the 19th International Conference on Data Engineering (ICDE),

Bangalore, India, 2003.

[108] E. Parros Machado de Sousa, C. Traina, A. Traina, and C. Faloutsos.

How to use fractal dimension to find correlations between attributes. In

Proc. KDD-Workshop on Fractals and Self-similarity in Data Mining:

Issues and Approaches, 2002.

[109] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimen-

sional data: A review. SIGKDD Explorations, 6(1):90–105, 2004.

[110] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. MaPle: A fast

algorithm for maximal pattern-based clustering. In Proceedings of the

3th International Conference on Data Mining (ICDM), Melbourne, FL,

2003.

[111] Y. Pei, O. Zäıane, and Y. Gao. An efficient reference-based approach

to outlier detection in large datasets. In Proceedings of the 6th In-

ternational Conference on Data Mining (ICDM), Hong Kong, China,

2006.

[112] J. Pfaltz. What constitutes a scientific database? In Proceedings of the

19th International Conference on Scientific and Statistical Database

Management (SSDBM), Banff, Canada, 2007.

[113] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Guis-

sem, L. Hennig, L. Thiele, and E. Zitzler. A systematic comparison and

evaluation of biclustering methods for gene expression data. Bioinfor-

matics, 22(9):1122–1129, 2006.

358 BIBLIOGRAPHY

[114] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A Monte

Carlo algorithm for fast projective clustering. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD),

Madison, WI, 2002.

[115] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for

mining outliers from large data sets. In Proceedings of the ACM Inter-

national Conference on Management of Data (SIGMOD), Dallas, TX,

2000.

[116] A. Rosenfeld. Picture Processing by Computer. Academic Press, 1969.

[117] P. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum

covariance determinant estimator. Technometrics, 41:212–223, 1999.

[118] U. Rückert, L. Richter, and S. Kramer. Quantitative association rules

based on half-spaces: an optimization approach. In Proceedings of

the 4th International Conference on Data Mining (ICDM), Brighton,

U.K., pages 507–510, 2004.

[119] I. Ruts and P. J. Rousseeuw. Computing depth contours of bivariate

point clouds. Computational Statistics and Data Analysis, 23:153–168,

1996.

[120] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering

in spatial databases: The algorithm GDBSCAN and its applications.

Data Mining and Knowledge Discovery, 2:169–194, 1998.

[121] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration

of OLAP data cubes. In Proceedings of the 6th International Conference

on Extending Database Technology (EDBT), Valencia, Spain, 1998.

[122] B. Schölkopf and A. J. Smola. Learning with Kernels. Support Vec-

tor Machines, Regularization, Optimization, and Beyond. MIT Press,

2002.

[123] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich

probabilistic models for gene expression. Bioinformatics, 17(Suppl.

1):S243–S252, 2001.

BIBLIOGRAPHY 359

[124] K. Sequeira and M. J. Zaki. SCHISM: a new approach to interesting

subspace mining. International Journal of Business Intelligence and

Data Mining, 1(2):137–160, 2005.

[125] Q. Sheng, Y. Moreau, and B. De Moor. Biclustering microarray data

by Gibbs sampling. Bioinformatics, 19(Suppl. 2):ii196–ii205, 2003.

[126] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining maximal quasi-

bicliques to co-cluster stocks and financial ratios for value investment.

In Proceedings of the 6th International Conference on Data Mining

(ICDM), Hong Kong, China, 2006.

[127] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders,

M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive

identification of cell cycle-regulated genes of the yeast saccharomyces

cerevisiae by microarray hybridization. Molecular Biology of the Cell,

9:3273–3297, 1998.

[128] R. Srikant and R. Agrawal. Mining quantitative association rules in

large relational tables. In Proceedings of the ACM International Con-

ference on Management of Data (SIGMOD), Montreal, Canada, 1996.

[129] P. Sun and S. Chawla. On local spatial outliers. In Proceedings of

the 4th International Conference on Data Mining (ICDM), Brighton,

U.K., 2004.

[130] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.

Addison Wesley, 2006.

[131] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically sig-

nificant biclusters in gene expression data. Bioinformatics, 18(Suppl.

1):S136–S144, 2002.

[132] A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A sur-

vey. In S. Aluru, editor, Handbook of Computational Molecular Biology.

Chapman & Hall, 2006.

360 BIBLIOGRAPHY

[133] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. Enhancing effec-

tiveness of outlier detections for low density patterns. In Proceedings

of the 6th Pacific-Asia Conference on Knowledge Discovery and Data

Mining (PAKDD), Taipei, Taiwan, 2002.

[134] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.

Church. Systematic determination of genetic network architecture. Na-

ture Genetics, 22:281–285, 1999.

[135] J. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[136] A. K. H. Tung, X. Xu, and C. B. Ooi. CURLER: Finding and visual-

izing nonlinear correlated clusters. In Proceedings of the ACM Inter-

national Conference on Management of Data (SIGMOD), Baltimore,

ML, 2005.

[137] I. Van Mechelen, H.-H. Bock, and P. De Boeck. Two-mode cluster-

ing methods: a structured overview. Statistical methods in medical

research, 13:363–394, 2004.

[138] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern

similarity in large data sets. In Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Madison, WI, 2002.

[139] G. I. Webb. Discovering associations with numeric variables. In Pro-

ceedings of the 7th ACM International Conference on Knowledge Dis-

covery and Data Mining (SIGKDD), San Francisco, CA, pages 383–

388, 2001.

[140] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and perfor-

mance study for similarity-search methods in high-dimensional spaces.

In Proceedings of the 24th International Conference on Very Large Data

Bases (VLDB), New York City, NY, 1998.

[141] I. H. Witten and E. Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2nd edition, 2005.

BIBLIOGRAPHY 361

[142] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. FINDIT: a fast

and intelligent subspace clustering algorithm using dimension voting.

Information and Software Technology, 46(4):255–271, 2004.

[143] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. A distribution-based

clustering algorithm for mining in large spatial databases. In Proceed-

ings of the 14th International Conference on Data Engineering (ICDE),

Orlando, FL, 1998.

[144] J. Yang, W. Wang, H. Wang, and P. S. Yu. δ-clusters: Capturing

subspace correlation in a large data set. In Proceedings of the 18th

International Conference on Data Engineering (ICDE), San Jose, CA,

2002.

[145] K. Y. Yip, D. W. Cheung, and M. K. Ng. HARP: a practical projected

clustering algorithm. IEEE Transactions on Knowledge and Data En-

gineering, 16(11):1387–1397, 2004.

[146] K. Y. Yip, D. W. Cheung, and M. K. Ng. On discovery of extremely

low-dimensional clusters using semi-supervised projected clustering. In

Proceedings of the 21st International Conference on Data Engineering

(ICDE), Tokyo, Japan, 2005.

[147] M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected

clustering. In Proceedings of the 3th International Conference on Data

Mining (ICDM), Melbourne, FL, 2003.

[148] M. L. Yiu and N. Mamoulis. Iterative projected clustering by sub-

space mining. IEEE Transactions on Knowledge and Data Engineering,

17(2):176–189, 2005.

[149] T. Yuster. The reduced row echelon form of a matrix is unique: A

simple proof. Mathematics Magazine, 57(2):93–94, 1984.

[150] C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust outlier

detection in high dimensional datasets. In Proceedings of the 5th In-

ternational Conference on Data Mining (ICDM), Houston, TX, 2005.

362 BIBLIOGRAPHY

363

Acknowledgements

While I was working on this thesis I received a lot of support and encour-

agement. I am very grateful for all the help I got during the last few years

that did pass by far too fast. Unfortunately, I can mention only some of all

these adjuvant people, but my sincere thanks are dedicated, of course, to all

of them.

First of all, I want to express my dearest thanks to my supervisor and

first referee on this thesis, Prof. Dr. Hans-Peter Kriegel. He initiated and

supported this work with his great experience and with providing the orga-

nizational background and gave me the opportunity to work on this chal-

lenging domain. It is not a secret that he is especially able to create an

inspiring and supportive working atmosphere within his database research

group. Furthermore, I warmly thank Prof. Dr. Thomas Seidl for his interest

in my work and his immediate willingness to act as the second referee on this

thesis.

This work was inspired by many discussions and cooperations with my

colleagues. Without them this work could never have grown. I am very

grateful for all the support I got during the past years and of course I will

not forget all the fun we had. In particular, I want to thank Dr. Elke Achtert,

Johannes Aßfalg, Thomas Bernecker, Prof. Dr. Christian Böhm, Dr. Karsten

Borgwardt, Dr. Stefan Brecheisen, Tobias Emrich, Franz Graf, Dr. Karin

Kailing, Dr. Peer Kröger, Dr. “Pete the Weasle” Peter Kunath, Dr. Alexey

Pryakhin, Dr. Matthias Renz, Dr. Matthias Schubert, Marisa Thoma, Steffi

364

Wanka, and Andreas Züfle for constructive and productive team-work, as

well as for many helpful discussions.

The background help of Susanne Grienberger was another reason that

working in Hans-Peter Kriegel’s group was that comfortable. Her support in

managing the administrative burden and in preparing manuscripts as well as

teaching material was invaluable.

Furthermore, I want to express special thanks to Franz “Sherlock” Krojer,

who helped to master all technical issues. He promptly provided tools that

helped to accelerate my work – and if these tools ever did unexpectedly not

work, his eagerness to clarify the issue was always a pleasure.

I also appreciate the substantial help of the students whose study thesis

or diploma thesis I supervised. They helped me to manage the large amount

of necessary tasks including implementation, data processing, and testing.

Productive discussions contributed to further development of the ideas I tried

to lay out in this thesis.

Last but not least, I like to express my deepest gratitude to my family

and my friends for their support and encouragement during the time I was

engaged in this study. I regret having been unavailable and absentminded

often in the last years and I am much obliged for all their persistent truth

and faithfulness.

Arthur Zimek

Munich, July 2008

365

Curriculum Vitae

Arthur Zimek was born on August 18, 1971 in Nuremberg, Germany. He

attended primary school from 1979 to 1982, and high-school from 1982 to

1991.

From July 1991 until September 1992, he served in the mandatory civil

service at the hospital Marienhospital Darmstadt, Germany.

He studied Theology at the Universities Mainz and Innsbruck from 1992

to 1997, graduating with a diploma degree in Theology in 1997.

He studied Philosophy at the Hochschule für Philosophie in Munich from

1997 to 2000, graduating with the degree Magister Artium in Philosophy.

He entered the Ludwig-Maximilians-Universität München (LMU) in 2000,

studying Bioinformatics. His diploma thesis was on “Hierarchical Classifica-

tion Using Ensembles of Nested Dichotomies”, supervised by Prof. Dr. Stefan

Kramer (TUM). He graduated with the diploma degree in Bioinformatics in

2005.

366

In May 2005, Arthur Zimek started working at the LMU as a research and

teaching assistant in the group of Prof. Dr. Hans-Peter Kriegel, the chair of

the teaching and research unit for database and information systems at the

Department “Institute for Computer Science”. His research interests include

knowledge discovery in databases, machine learning and data mining and the

application scenario of computational biology and bioinformatics.

