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Chapter 1

Introduction

Electron systems with strong interaction received strong theoretical and
experimental interest for several decades. This interest has been inten-
sified with the discovery of heavy-fermion and related non-Fermi-liquid
systems and high-TC superconductors. An extensive and continuous
effort in theoretical field is devoted to the investigation of the most
extensively used nowadays prototype for an exactly solvable model of
many-electron systems - the so-called Hubbard model [1]. Being rel-
atively simple, the Hubbard model contains a great manifold of phe-
nomena which up to now is far from being fully investigated, as well
as the rich possibilities for testing various physical ideas and meth-
ods. It was successfully applied to describe the set of new electronic
phenomena where electronic correlations are significant: such as metal
insulator transition [2], itinerant magnetism [3], spin-density waves [4]
and local pair formation [5, 6] which plays a key role in the explana-
tion of the high-TC superconductivity and the superconductivity in the
heavy-fermion systems.

However, it is very difficult to solve the Hubbard model in gene-
ral, except of the few tractable limits. One is the so-called weak-
coupling limit which leads to the non-interacting electron gas which
is well-understood. However, even for a weak coupling there is an ex-
ceptional situation occurring at the half-filling. Namely, even the in-
finitesimally small Coulomb repulsion drives the system through metal-
insulator transition, which cannot be described by the free-electron pic-
ture [7]. Much less clear is the limit of strong interaction. At a half
filling the model turns to the Heisenberg antiferromagnetic insulator
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8 Chapter 1. Introduction

[7]. However, if the occupation is away from half-filling the behavior of
the system becomes a complete mystery.

During the last 40 years of investigations numerous approaches have
been suggested: decoupling of the Green’s functions [1], the varia-
tional approach [8], linearization of the equations of motion [9], the
self-consistent moments method [10], the composite operators approach
(COM) [11] and many others. However none of them can be consid-
ered as universal. One of the approaches dealing with the simplest
extension of the Hubbard model, which adequately accounts for a sit-
uation in solid, namely, the strongly interacting dilute electron gas in
the one-particle scalar potential, is the so-called Baym-Kadanoff theory
[12]. However, the complexity of the crystals containing many different
atoms per unit cell, interactions between electronic and lattice degrees
of freedom demands a very detailed investigation of the band structure
in such systems and do not allow to apply the Baym-Kadanoff approach
in a straightforward way for the real solid.

The only general ab-initio approach which accounts for the specific
features in real compounds is based on the so-called Density Func-
tional Theory (DFT) developed by Hohenberg, Kohn and Sham [13–
15]. The majority of practical nowadays DFT applications to magnetic
solids are based on the local mean-field description provided by the
so-called Local Spin Density Approximation (LSDA) which treats the
exchange-correlation part of an effective single-particle DFT potential
as a density-dependent exchange-correlation potential treated on the
basis of the results for the homogeneous electron gas. There are a lot
of successes of LSDA, however, there are also some failures related to
the fact that in case when some portion of the electronic structure could
be better described by the atomic-like orbitals, the homogeneous gas is
not a suitable starting point.

Thus, a reasonable strategy in this situation would be to have a
simple and accurate approach that could describe the most important
features of the realistic electron structure and at the same time takes
the most important correlation effects into account.

One of the first successful steps in this direction was the so-called
GW approximation (GWA) for quasiparticle spectra in solids [16, 17]
which delivers the one-particle Green’s function accounting for the non-
local self-energy calculated to the lowest order in the screened non-local
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Coulomb interaction (W). Being applied for strongly correlated systems
like NiO, the GWA gives a rather good description of the size of the
band gap and also improves the description of the O p-band compared
to the LSDA. However, the application to more complex systems has
not been feasible up to now due to large computational efforts.

Another approach accounting for correlation effects in localized d-
and f -shells is the so-called LSDA+U method [18, 19]. The method
separates the localized d- (or f)-electron subsystem from the rest and
introduces the additional Coulomb repulsion U in the form of a Hub-
bard model term. The rest consisting of the delocalized conduction
electrons is described by the orbital-independent one-particle LSDA po-
tential. This approach gives a more reliable description of the electronic
structure within the same charge, spin and orbital ordering than does
the plain LSDA. However, due to the single energy scale it does not de-
scribe the most interesting correlation effects which are connected with
the energy (or time) dependence of the self-energy: the renormalization
of the quasiparticle spectra and mass enhancement.

The real breakthrough in this field was made few years later with
the development of the Dynamical Mean-Field Theory (DMFT) [20–
23]. This approach distinguishes the localized interacting electronic
subsystem from the rest and provides the conditions required by the
Baym-Kadanoff description by treating the coupling of the interacting
subsystem with its environment as a local mean-field. Thus the many-
body problem becomes equivalent to the well-known Anderson model
[24] and can be solved by the corresponding impurity solvers based
on various approximating techniques or applying the so-called Quan-
tum Monte Carlo method (QMC) [25]. The combination of LSDA and
DMFT gains several advantages by using the partially non-local des-
cription of electron correlations. First of all, it is able to deal with
both ground-state and the excitation properties of solids. Second, the
method gives access to finite temperatures (using the Matsubara for-
malism for the Green’s function), thus the critical temperatures of phase
transitions are accessible. In general, the method reproduces the cor-
rect quasiparticle behavior as well as the LSDA and LSDA+U results
in the limits where these methods are valid. Among all the exten-
sions of the LSDA only the LSDA+DMFT approach is presently able
to describe the strongly correlated paramagnetic metals with lower and
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upper Hubbard bands and a narrow quasiparticle peak at the Fermi
level [21, 26]. Since the implementation of the LSDA+DMFT scheme
and its applications is the subject of this thesis, more details about the
assessment and the advantages of the DMFT are given in the following
chapters.

The theoretical background providing a basis for the LSDA+DMFT
scheme used in the present work has the following structure.

Chapter 2 discusses the main concepts of the Hubbard model which
then is used in the construction of the Baym-Kadanoff formalism out-
lined in Chapter 3. In Chapter 4 we consider the formal structure
of the mean-field approximation which allows to built the practically
manageable approaches to the functional theories, such as the LSDA
to the DFT and the DMFT to the more general Spectral Density Func-
tional Theory (SDFT). The functional theories and the corresponding
mean-field approximations is the subject of Chapter 5.

Several aspects will be of a particular interest in this thesis.
First of all, this is the development and implementation of the single-

site impurity solver as an extended version of the so-called T -matrix
approximation for the real energies based on work of Drchal et al. [27].
The extended version delivers the localized single-site dynamical self-
energy in a form of a full matrix including the spin-flip terms. Being
the perturbational approach, the T -matrix approximation is the logical
continuation of the Baym-Kadanoff theory. For this reason the formal
mathematical description of the solver is given in the Section 3.3 which
is included in the theoretical framework.

Chapter 6 is devoted to the implementation of the impurity
solver in the fully self-consistent (both in charge and in self-energy)
LSDA+DMFT scheme within the Korringa-Kohn-Rostoker Green’s
function method. The self-energy is explicitly added as a non-local
energy-dependent potential to the corresponding Kohn-Sham equation.
The latter allows to account for the localized dynamical correlation not
only in the Green’s function but in all the matrix elements as well as
in the self-consistent effective one-particle potential. This gives access
to the various spectroscopies as well as for a better treatment of the
ground-state properties. In particular, applications to the description
of photoemission spectra and the Fano-effect are presented. In addition,
the influence of dynamical and static correlations on the ground-state
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properties (spin and orbital magnetic moments, the total energy) is
separately analyzed.

the double-counting of interaction part corresponding LSDA part is
adequately approach.

In Chapter 7 the application of the LSDA+DMFT scheme to the
linear response theory is considered. The formulation of the linear re-
sponse coefficients, namely of the optical conductivity in the framework
of time-dependent perturbation theory is given in terms of the one-
particle Green’s function. Alternatively to the previous LSDA+DMFT
implementation, the present scheme is based on the Linearized Muffin-
Tin Orbitals (LMTO) method (Sec. 7.3 and 7.4). The choice of the
variational basis formalism and neglecting the charge self-consistency
is motivated by the speed of the calculations. On the other hand, the
account of the localized correlations within the Green’s function only,
turns out to be sufficient to describe the most important features of
optical and magneto-optical spectra in 3d-transition metals which are
not given by the plain LSDA.

In order to probe the applicability of the LMTO+DMFT scheme to
the description of strongly-correlated metallic systems, the optical and
magneto-optical spectra for the heavy-fermion US compound are cal-
culated in addition. In particular with respect to the magneto-optical
properties a noticeable improvement in comparison to the LSDA+U
results is obtained.
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Chapter 2

The Hubbard model

Here we will consider the main concepts and the most important pro-
perties of the Hubbard model with respect to correlated systems. In
particular we will consider two cases, the strong and the weak inter-
action limits and the specific mathematical techniques used in their
description.

2.1 The Hubbard Hamiltonian

The Hubbard model we use describes the valence-band electrons in-
teracting via the two-body repulsive Coulomb potential V . It can be
represented by the following Hamiltonian:

H(t) =

∫

d3r c†(r, t)H0(r)c(r, t)

+
1

2

∫

d3r

∫

d3r′ c†(r, t)c†(r′, t) V (r, r′, t) c(r′, t)c(r, t) . (2.1)

Here c†(r, t), c(r, t) are the operators of electron creation and anni-
hilation in the space-time point (r, t); the one-particle Hamiltonian
H0(r) = K(r)+Vext(r) is the sum of kinetic energy operator K and the
some effective local potential Veff ; the non-local potential V represents
the electron-electron interaction.

Introducing the arbitrary complete basis set {φµ(r)} we turn the

13



14 Chapter 2. The Hubbard model

expression (2.1) into the following form:

H =
∑

µµ′

H0
µµ′

(

c†µcµ′ + h.c.
)

+
1

2

∑

µµ′νν′

Vµµ′νν′c†µc
†
µ′cνcν′ , (2.2)

with the index µ denoting the unit cell R, orbital lm and spin σ quan-
tum numbers. If more than one atom per cell is present a full index
denoting the particular atomic site within the unit cell is used. The
matrix elements of the non-interacting Hamiltonian and the Coulomb
interaction are defined as:

H0
µµ′ =

∫

d3r φ∗µ(r)H
0(r)φµ′(r), (2.3)

Vµµ′νν′ =

∫

d3r

∫

d3r′ φ∗µ(r)φ
∗
µ′(r′)V (r, r′)φν(r

′)φν′(r) . (2.4)

The fermionic operators c†µ, cµ are represented explicitly as

c†(r, t) =
∑

µ

φ∗µ(r)c
†
µ(t), c(r, t) =

∑

µ

φµ(r)cµ(t) . (2.5)

Taking into account the anticommutative relations of the fermionic op-
erators

[c(r, t), c(r′, t)]+ =
[

c†(r, t), c†(r′, t)
]

+
= 0 ,

[

c(r, t), c†(r′, t)
]

+
= δ(r − r′) (2.6)

together with the general equation of motion for any operator X(t)
within the Heisenberg picture:

i
∂

∂t
X(t) = [X(t), H(t)] , (2.7)

and implying that the interaction V is instantaneous, the following
differential equation for c and c† is obtained:
[

i
∂

∂t
−H0(r)

]

c(r, t)=

[
∫

d3r′ V (r, r′)c†(r′, t)c(r′, t)

]

c(r, t) . (2.8)

As we are interested in properties of crystals we consider Hamiltonians
with periodic potentials Vext(r) = Vext(r + R).



2.1. The Hubbard Hamiltonian 15

If the interaction V is switched off, the solution of Eq. (2.8) can be
represented by the Bloch waves:

φkµ(r) = eik·rukµ(r) , (2.9)

where k is the electron crystal momentum and the functions ukµ(r) are
lattice-periodic.

There are two particular classes of materials where the Bloch waves
can be substantially simplified.

For some of the metals in the groups I-IV of the periodic table
electrons behave as if they were nearly free. The prime reason for this
behavior is the high mobility of valence electrons which provides a good
screening of the ionic background potential. For the nearly free elec-
trons the complete neglect of the screened lattice potential is rather
good approximation. In this case we are allowed to set u=1 and con-
sider the eigenstates (2.9) as plane waves. In particular for applications
within low temperature condensed matter physics the solution of the
full Hamiltonian for such systems is constructed by using the ground
state as a reference system. Such delocalized or itinerant electron sys-
tems are characterized by broad energy bands, therefore, most of the
information about their electron properties can be derived from their
band structure.

The second class consists of materials with insulating behavior, in
which the lattice potential confining the electrons is strong and they
are “tightly-bound” to the lattice sites. In this case it is convenient
to develop a theoretical description by using the site-centered Wannier

functions [28, 29] orthogonal for different sites. The latter can be con-
structed as linear combination of all the Bloch states (2.9) for a given
band µ:

WRµ(r) =
1√
N

∑

k

eik·(r−R) ukµ(r) . (2.10)

Since the energy bands for localized electron systems are rather narrow,
the standard band picture fails and we have to consider the electronic
structure in real space.

A variety of properties in both itinerant and localized electron sys-
tems are substantially dependent on the Coulomb repulsion which in
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turn reflects the corresponding behavior - either itinerant or localized.
Here we will briefly review the basic properties of the Hubbard model
which occur due to the presence of localized electron interaction.

As the overlaps of Wannier functions (2.10) decrease exponentially,
the corresponding matrix element VµRµ′R′µ′′R′′µ′′′R′′′ rapidly decreases
with |R−R′| and the most contributing ones will be the on-site elements
VµRµ′RνRν′R = Uµµ′νν′. For simplicity we will consider the single band
case: Uµµ′νν′ = U . We simplify the expression (2.2) by taking into
account electron hopping only between the nearest neighbors:
∫

d3r W ∗
R(r)H0(r)WR′(r) = −tRR′ =

{

−t, if R,R′− n. n.

0, else
(2.11)

The resulting Hamiltonian is known as the one-band Hubbard model:

H = −t
∑

{R,R′}, σ
c†RσcR′σ + U

∑

R

nR↑nR↓ . (2.12)

Here the summation in the kinetic term is done over the pairs of the
nearest neighbors. We introduced the occupation number operator

nRσ = c†RσcRσ , (2.13)

which has a possible eigenvalues 0, 1, or n2
σ = nσ on each site. We also

define the charge operator on site R

nR =
∑

σ

nRσ =
∑

σ

c†RσcRσ , (2.14)

and the local spin operator

~SR =
~

2

∑

σσ′

c†Rσ ~σσσ′cσ′R , (2.15)

where σi
σσ′ are the Pauli matrices.

As the axis of the spin quantization can be chosen arbitrarily, the
Hubbard Hamiltonian should not change under the rotation of the spin
direction. Indeed, taking into account definitions (2.13)-(2.15) one can
express the sum of squares of the on-site spins as

∑

R

~S 2
R =

∑

R

(

1

4
nR − 3

2
nR↑nR↓

)

, (2.16)
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which leads to the following representation for Hamiltonian (2.12):

H = −t
∑

{R,R′}, σ
c†RσcR′σ −

2

3
U
∑

R

~S 2
R +

U

6

∑

R

nR . (2.17)

This expression is invariant with respect to the rotation of the spin
direction. The important property which can be seen immediately is
that for positive repulsive potential U the spin on each site should be
maximized.

2.2 The strong interaction limit

For large values of Coulomb repulsion (U ≫ t) an important parameter
of the Hubbard model is the filling factor n of the electrons. Values of
n = 0 and n = 2 correspond to the totally empty and totally occupied
band. In both cases this indicates the presence of an insulating state.
For an intermediate values of n the system exhibits metallic properties.
However, there is the special case n = 1, when only half of the band is
filled, which corresponds to the so-called Mott insulator [2] which has
the excitation spectrum as illustrated on Fig. (2.1). We will consider the

U

U

Fig. 2.1. The energy spectrum of a Mott insulator consists of two spin configurations
corresponding to the ground state and a virtual state which differs by the number of the
double-occupied sites. In the ground state each site is occupied by one electron.

effects caused by the hopping term t in (2.17) as a small perturbation,
taking t2/U as the relevant order parameter.

As the spin on each site is maximized by the Coulomb repulsion,
the ground state of the system will represent the manifold of all pos-
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sible configurations where one electron sits at each site. Thus differ-
ent ground-state functions are orthogonal. For an N -atomic system
the ground state will be 2N times degenerate. The perturbed levels
caused by the small hopping effects are determined by the number of
the double-occupied sites characterized by the on-site Coulomb repul-
sion U . Following the Brillouin-Wigner perturbation theory [30, 31]
and keeping the terms up to the second order in t2/U one can represent
the system to be described by the Hamiltonian

H =
2t2

|U |
∑

{R,R′}

(

~SR
~SR′ − 1

4

)

, (2.18)

which demonstrate that the total energy could be lowered if the neigh-
boring spins possess antiparallel alignment. Thus, for a large U and the
case of a half-filling we obtain the so-called Heisenberg antiferromagnet.

If the occupation number is not fixed to be one, the restricted
Hilbert space will split into configurations of empty holes, and up and
down spins. The corresponding Hamiltonian possesses the form which
is known as the so-called t-J–model

H = −t
∑

{R,R′}, σ
c†RσcR′σ + J

∑

{R,R′}

(

~SR
~SR′ − 1

4
nRnR′

)

. (2.19)

Due to the hopping term the holes are able to move. They transfer
charge but without carrying spin. The movement of holes can induce
spin-flip events and the long range order spin configurations may get
destroyed. Therefore, this situation requires the quasiparticle treat-
ment in order to describe correlation dynamics. The quasiparticles are
objects corresponding to single particles whose motions are modified
by interactions with the other particles in the system. In the present
context this is equivalent to the lowest-lying excited states of the many-
body system.

2.3 The weak interaction limit

For small values of the Coulomb repulsion (U ≪ t) we can consider
the interaction term as a small perturbation. In this case the electronic
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states are close to those of the non-interacting electron gas. The non-
interacting electron Hamiltonian reduces to the kinetic term of (2.12)
which is conveniently treated in momentum space by making a Fourier
transform of the kinetic part.

One of the early attempts to describe the effects of weak fermionic
interactions was made by Landau who proposed the theory of the so-
called Fermi liquid [32, 33]. It is based on the assumption that the weak

excitation spectrum is built according to the same principle as weak

excitations for the non-interacting electron gas. The essential postu-
late is that the quantity kF (the reciprocal vector corresponding to
the occupied state with the highest energy) is connected to the parti-
cle density n in the same way as in the non-interacting electron gas,

kF =
(

3π2n
)1/3

. Like in the non-interacting electron gas the num-
ber of excited electrons is equal to the number of holes left below the
Fermi energy ǫF (the energy of the highest occupied state). The cir-
cumstances which correspond to this assumption can easily obtained by
considering the density dependence of the kinetic energy for the non-
interacting electron gas ǫkin ∼ k2

F ∼ n2/3. Taking into account that the
typical interaction energy of particles with a mean distance 〈r〉 will be
ǫpot ≈ e2/ 〈r〉 ∼ n1/3, we find that

ǫpot

ǫkin
∼ n−1/3 , (2.20)

which means that in the system of interacting particles the kinetic term

becomes the dominant energy contribution at high densities. Despite of
some similarity with the non-interacting electron gas, there exists a big
difference arising from the fact that the excitations in a Fermi liquid
interact with each other. Some of the well-known consequences of this
interaction are the superconductivity and superfluidity phenomena.

By means of a perturbation theory the excitation of a Fermi liquid
caused by Coulomb interaction V can be expressed as

∆E = 〈GS|V |GS〉 +
∑

|ν〉6=|GS〉

〈GS|V |ν〉 〈ν|V |GS〉
ǫ(0) − ǫν

+ ... . (2.21)

Here |GS〉 is the ground-state many-body wave function of the Fermi
liquid. The analysis of perturbation series shows that in the 1st order
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only those processes will contribute in which both final and initial states
belong to the ground state (often called the Fermi sea). This results in
two possibilities: direct interaction and exchange interaction (Fig. 2.2):

|kσ〉 |k′σ′〉

p = 0 p = 0

kF|GS〉

direct interaction

|kσ〉 |k′σ〉
p = k′ − k

−p

kF|GS〉

exchange interaction

Fig. 2.2. The two possible processes occuring in the 1st-order perturbation theory. The in-
teracting particles are characterized by momentumk and spinσ. The wave-line represents
Coulomb interaction which is characterized by momentump. The figure is taken from
Ref. [34].

The 1st-order contribution is finite that ensuring the stability of the
Fermi liquid for relatively small amplitudes of particle-particle inter-
action. The 2nd-order correction involves the interaction between the
excited states |ν〉. The possible processes again can be classified as
“direct”- and “exchange”-type (Fig. 2.3). However, due to the singular
behavior of the square of the interaction matrix element in the momen-
tum space, the 2nd-order direct term diverges. Similar, the higher-order
corrections also will diverge. Accordingly, it is necessary to account for
the complete perturbation series. The corresponding technique based
on the Green’s function formalism (which we will briefly consider later)
is maturely developed, although its actual ab-initio applications in the
calculations are rather limited, mainly due to the limitation in the com-
putational resources.

For the weak limit of interaction the structure of elementary excita-
tions can be defined analytically and explicitly used in the construction
of realistic spectra. Elementary excitations can occur only in the vicin-
ity of kF. It is reasonable to consider only those which have relatively
long lifetime or small attenuation probability. The attenuation mag-
nitude is determined either by splitting of one excitation into several
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|k + p, σ〉 |k′ − p, σ′〉

|k, σ〉 |k′, σ′〉

kF|GS〉

direct interaction

|k + p, σ〉

|k′, σ〉

|k′ − p, σ〉

|k, σ〉

kF|GS〉

exchange interaction

Fig. 2.3. The two possible processes occuring in the 2nd-order perturbation theory. The
figure is taken from Ref. [34].

others, or by collisions between them. If the energy of excitation is
high enough compared to the temperature, the splitting processes will
be dominant and the attenuation probability is proportional to the
probability of the splitting. Considering the corresponding diagram in

|k〉

|k − p〉

|k′〉

|k′ + p〉

kF|GS〉

Fig. 2.4. The relaxation of the excitation due to the splitting process: Coulomb interaction
with particle|k′〉 splits the excitation|k〉 into two excitations|k − p〉 and|k′ + p〉 which
have lower energies, and the hole left by particle|k′〉 in the Fermi sea.

Fig. 2.4 one can show that the splitting probability is proportional to p2,
where p is the momentum connected with the corresponding Coulomb
matrix element. On other hand, the use of quadratic dependence of
the electron energy on momentum leads to the linear dependence of
the excitation on p. From here it is clear that the attenuation will
be relatively small only for the excitations with moments close to kF.
Considering the finite temperatures, similar speculations show that the
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elementary excitation description of the Fermi liquid is applicable only
for the temperatures.



Chapter 3

Perturbational description

3.1 The Baym-Kadanoff theory

The suitable instrument for the description of physical properties is
the one-particle propagator or one-particle Green’s function G(1, 1′)
which describes the propagation of disturbances which appear when a
single particle is removed at time-space coordinate 1′ = (r1′, t1′) and
added at coordinate 1 = (r1, t1) in a many-particle equilibrium system.
We consider the one-particle propagator defined within the interaction
picture

G(1, 1′;U) =
1

i

〈T [S c(1)c+(1′)]〉
〈T [S]〉 . (3.1)

where U = U(1) is the local scalar potential included in the Hamilto-
nian as

∫

U(r, t)n(r, t)dr. The average occurring in Eq. (3.1) is taken
over the grand-canonical ensemble:

〈X〉 =
Tr {exp {−β(H − µN)}X}
Tr {exp {−β(H − µN)}} (3.2)

where H is the full Hamiltonian of the system, N is the operator of
total number of particles. Both operators are time-independent. β =
1/(kBT ); µ is the chemical potential. T is the time-ordering operator:

T [A1(t1)...AN(tN)] = (−1)PAi1(ti1)...AiN(tiN), ti1 > .. > tiN (3.3)

where P is the parity of permutation needed to order the operators Ai

chronologically.

23
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In the interaction picture all the U dependence of the Green’s func-
tion is encapsulated in the S term:

S = exp

{

−i
∫

U(2)n(2)d2

}

, (3.4)

where n(2) = c(2)c†(2) is the occupation number operator. The oper-
ators c and c+ obey the relationships (2.6) and (2.8). The integration
with respect to time is performed along the imaginary axis from 0 to
−iβ, where β is the inverse temperature. The zero temperature case,
β = 1/(kBT ) = ∞ which corresponds to the ground state of the system,
is included into the considerations on equal footing.

The calculation of the one-particle Green’s function for the sys-
tem with pair interaction implies the necessity to introduce the two-
particle propagator. Indeed, the equation of motion for the one-
particle Green’s function can be derived from Eq. (2.8) applying
the operator 1

i 〈Tr
{

S {·} c†(1′)
}

〉 (acting as 1
i 〈Tr

{

S {·} c†(1′)
}

〉A =
1
i 〈Tr

{

S {A} c†(1′)
}

〉) to both sides.
Expressing the time derivative in the sense of a generalized function

T

[

∂

∂t1
c(1)c†(1′)

]

=
∂

∂t1
T
[

c(1)c†(1′)
]

− δ(1 − 1′) (3.5)

and using the definition (3.1), the equation of motion for G(1, 1′;U) is
obtained from Eq. (2.8) as

[

i
∂

∂t1
−H0(1)

]

G(1, 1′;U) = δ(1 − 1′) −

−i
∫

d2 V (1, 2)G2(12, 1′2
′+;U)

∣

∣

∣

t2=t1
. (3.6)

The superscript “+” means that the time-argument 2 has to be taken
infinitesimally larger than exactly 2 to obey the time-ordering. The
two-particle propagator is defined as

G2(12, 1′2′;U) =

(

1

i

)2 〈T
[

Sc(1)c(2)c†(2′)c†(1′)
]

〉
〈T [S]〉 . (3.7)

The latter can be reexpressed in terms of the one-particle propagator
by variation of G(1, 1′;U) with respect to the scalar potential U :

G2(12, 1′2+;U)
∣

∣

t2=t1
= G(2, 2+;U)G(1, 1′;U) +

δG(1, 1′;U)

δU(2+)
. (3.8)
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Thus the equation of motion (3.6) can be rewritten in terms of one-
particle propagator and its functional derivative:

{

i
∂

∂t1
−H0(1) + i

∫

d2V (1, 2)
[

G(2, 2+;U)+

+
δ

δU(2+)

]}

G(1, 1′;U) = δ(1 − 1′) . (3.9)

There are no techniques available to solve this equation directly, but it
can be used to generate approximate equations.

It is convenient to introduce the inverse Green’s function G−1 as
∫

d1̄G−1(1, 1̄)G(1̄, 1′) =

∫

d1̄G(1, 1̄)G−1(1̄, 1′) = δ(1 − 1′) . (3.10)

Applying it from the right-hand side to Eq. (3.9) we obtain the well-
known Dyson equation connecting non-interacting and interacting one-
particle Green’s functions:

G−1(1, 1′;U) = G−1
0 (1, 1′;U) + Σ(1, 1′;U) . (3.11)

Here G0 is the resolvent of the one-particle Hamiltonian H0, which
describes a single particle propagation in the scalar potential U :

[

i
∂

∂t1
−H0(1)

]

G0(1, 1
′;U) = δ(1 − 1′) . (3.12)

Using the last two expressions we can write the equation of motion
(3.6) as

[

i
∂

∂t1
−H0(1)

]

G(1, 1′) = δ(1 − 1′) +

+

∫

d1̄ Σ(1, 1̄)G(1̄, 1′) . (3.13)

The central quantity of Eq. (3.11) is the Σ term called the self-

energy, which contains the interactions of a certain particle with its
environment via a two-body potential V :

Σ(1, 1′;U) = −i
∫

d2̄V (1, 2̄)G(2̄, 2̄+;U)δ(1 − 1′) +

+i

∫

d2̄d1̄V (1, 2̄)

[

δG(1, 1̄;U)

δU(2̄)

]

G−1(1̄, 1′;U) (3.14)
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This implies the important property of the self-energy - it is a functional

of the one-particle Green’s function only.
Taking into account that

δG(1, 1̄)

δU(2̄)
G−1(1̄, 1′)

= −δG
−1(1, 1̄)

δU(2̄)
G(1̄, 1′)

=
δ
[

G−1
0 (1, 1̄) − Σ(1, 1̄)

]

δU(2̄)
G(1̄, 1′)

= δ(1 − 1̄)δ(1 − 2̄)G(1̄, 1′) − δΣ(1, 1̄)

δU(2̄)
G(1̄, 1′) , (3.15)

and inserting it in Eq. (3.14) leads to the important relation which can
be used to derive approximate expressions for the self-energy:

Σ(1, 1′;U) = iV (1, 1′)G(1, 1′;U) −

− i δ(1 − 1′)

∫

d2̄V (1, 2̄)G(2̄, 2̄+;U)

+ i

∫

d1̄d2̄V (1, 2̄)G(1, 1̄;U)
δΣ(1̄, 1′;U)

δU(2̄)
. (3.16)

For example, neglecting δΣ/δU one derives the famous Hartree-Fock ap-
proximation. The next orders can be obtained by varying the Hartree-
Fock self-energy and reinserting it in (3.16).

It is more convenient to analyze these perturbation series by using
Feynman diagrams (for review see e.g. [35–37]). The summation of
diagrams is a rather complicated problem as one has to account for
an infinite number of terms. The numerical techniques based on the
so-called quantum Monte-Carlo (QMC) method [38, 39] perform the
full summation, but since they are time consuming their applications
are rather limited. On other hand, not all the microscopic physical
processes should be necessarily included in the perturbation expansion.
Indeed, one can try to choose the infinite subset of diagrams describing
a certain type of interaction and derive the analytical expression for
it. Thus, identifying a certain approximate self-energy becomes an
important issue to describe the proper physical nature of the system.
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The general constrain is based on the derivations made above. It was
formulated by Baym and Kadanoff who have shown that an arbitrary
choice of self-energy does not guarantee the fulfillment of microscopic
conservation laws of particle number and energy [40, 41]. To avoid this,
the self-energy should obey the following properties:

• It must be a functional derivative of the Luttinger-Ward potential
[42] which is a functional of the one-particle interacting Green’s
function and the bare Coulomb interaction.

• The self-energy and the interacting one-particle Green’s function
should self-consistently satisfy the Dyson equation (3.11).

The necessity of these requirements was first confirmed in both delocal-
ized and localized correlation descriptions by model GW calculations
[43].

Although the Baym-Kadanoff theory gives a recipe to find the ex-
act self-energy for the effective one-particle problem, its application
to solid state physics requires further assumptions and approximations
in the theory itself as well as the development of the ab-initio meth-
ods which it could be combined with. The latter concerns first of all,
the modification of the approaches based on the well-known density
functional theory within the local density approximation as being the
most successful ab-initio approach in the description of the ground-
state properties of weakly-correlated systems. This will be the subject
of the following chapters. At present we will consider the derivation
of practically manageable approximate expression for the self-energy
which by construction satisfies the Baym-Kadanoff conditions in order
to obey the conservation laws.

3.2 The T-matrix approximation

In the present work the account of correlations is based on the so-
called T -matrix approximation [12] which fulfills the conservation re-
quirements mentioned above. The T -matrix is introduced as a kind of
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an effective interaction:

T (12; 1′2′) =

V (1, 2)δ(1− 1′)δ(2 − 2′)

+ i

∫

d1̄ d2̄T (12; 1̄2̄)G(1̄, 1′)G(2̄, 2′)V (1′, 2′) . (3.17)

Applying the Born expansion for the two-particle Green’s function,

G2(12; 1′2′) ≈
G(1, 1′)G(2, 2′) −G(1, 2′)G(2, 1′)

+ i

∫

d1̄ d2̄G(1, 1̄)G(2, 2̄)V (1̄, 2̄)G2(1̄2̄; 1
′2′) , (3.18)

one can re-express it in terms of the T -matrix as

V (1, 2)G2(12; 1′2′) =
∫

d1̄d2̄T (12; 1̄2̄)

× [G(1̄, 1′)G(2̄, 2′) −G(1̄, 2′)G(2̄, 1′)] . (3.19)

Substituting it into the equation of motion (3.6) and comparing the
result with Eq. (3.13) we can express the self-energy via the T -matrix:

Σ(1, 1′) = −i
∫

d2d2̄ [T (12; 1′2̄) − T (12; 2̄1′)]G(2̄, 2) . (3.20)

The precision of this approach is restricted only by reliance on the
Born approximation (3.18) which is valid for a dilute gas of particles.
However, it has the advantage that even for rather big magnitudes of
the Coulomb interaction the effective interaction represented by the
T -matrix remains finite.

Taking into account the instantaneity and homogeneity of the
Coulomb interaction, i.e. V (1, 1′) = V (1−1′) = V (r1−r1′)δ(t1− t1′), it
follows from Eq. (3.17), that the T -matrix has the following structure:

T (12; 1′2′) = δ(t1 − t2)δ(t1′ − t2′) 〈r1, r2|T (t1 − t1′) |r1′, r2′〉 . (3.21)

The homogeneity of the electron gas also allows to express the product
of the Green’s functions in EQeq:T-matrix-def as

iG(1, 1′)G(2, 2′) = iG(r1 − r1′, t1 − t1′)G(r2 − r2′, t2 − t2′)

= 〈r1, r2|Φ(t1 − t1′) |r1′, r2′〉 . (3.22)
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Inserting these quantities into Eq. (3.17) and making a Fourier transfor-
mation with respect to t1 − t1′ we obtain the following saddle equation
for the T -matrix:

〈r1, r2|T (ǫ) |r1′, r2′〉 =

δ(r1 − r1′)δ(r2 − r2′)V (r1′ − r2′)

+ V (r1′ − r2′)

∫

dr̄1dr̄2 〈r1, r2| T (ǫ) |r̄1, r̄2〉 〈r̄1, r̄2|Φ(ǫ) |r1′, r2′〉 . (3.23)

Considering the Green’s function and all related quantities within a
certain energy-independent basis set {φi(r)} in order to find the T -
matrix we have to solve a simple matrix equation at each energy point ǫ:

T1234(ǫ) = V1234 +
∑

′ V121′2′ Φ1′2′3′4′(ǫ)T3′4′34(ǫ) , (3.24)

where the quantity Φ, known as electron-electron correlation function,
is defined as the convolution of two Green’s functions:

Φ1234(ǫ) = i

∫

dǫ′

2π
G13(ǫ− ǫ′)G24(ǫ

′) . (3.25)

Applying analogous considerations to Eq. (3.20) it is transformed to
the matrix integral form:

Σ12(ǫ) =
1

i

∫

dǫ′

2π
[T121′2′(ǫ

′ + ǫ) − T211′2′(ǫ
′ + ǫ)]G2′1′(ǫ

′) . (3.26)

Fulfilling Eqs. (3.24)-(3.26) by a corresponding transformation of
Eq. (3.11)

G−1(ǫ) = G−1
0 (ǫ) + Σ(ǫ) , (3.27)

we obtain a closed set of equations from where both the interacting
Green’s function and the corresponding self-energy can be found in a
self-consistent way.

If we consider the finite temperature case, the corresponding inte-
gration represents the summation over the so-called Matsubara poles,
ǫn = i(2n − 1)π~/β, n = 1, 2, ... which are the poles of the finite-
temperature Green’s function. For the zero-temperature case the inte-
gration is performed from −∞ to +∞ along the real axis.
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Fig. 3.1. Diagrammatic structure of the self-energyΣ. The shaded regions contain time-de-
pendent diagrams which represent fluctuation dynamics. Theblack box represents the
T -matrix and the wavy line - bare Coulomb interaction. Two dark-shaded channels of
Hartree- and Fock-types contain full account of dynamical effects in the 2nd order. Any
other channel starts at least from the 3rd-order diagrams.

The T -matrix approximation to the self-energy can be expressed by
so-called ladder diagrams which split into two subsets classified accord-
ing to their construction as Hartree– and Fock–channels. The corres-
ponding diagrammatic scheme is illustrated in Fig. 3.1. One can see,
that the 1st-order diagrams represent the conventional Hartree-Fock
approximation. Using the subsequent insertions of the bare Coulomb
potential V denoted by zigzag line we arrive at the simple representa-
tion of the final sum which has the same structure as the corresponding
1st-order diagrams. However, the bare potential is now changed to the
effective renormalized or screened potential, which is now represented
by the T -matrix. The construction of the T -matrix according to the
Eq. (3.17) or (3.24) can also be represented by Feynman diagrams as
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sketched in Fig. 3.2.

+ + + ... == +

Fig. 3.2. Renormalization of the bare potential. Cutting the additional infinite set of the
diagrams along the dashed line leads to the Bethe-Salpeter equation (3.17) for theT -matrix.

In 2nd-order perturbation theory the ladder approximation accounts
for all possible dynamical interactions. Any other dynamical process
will involve at least three distinct collisions. The static part of the self-
energy contained in the 1st-order diagrams should be subtracted from
the final expression if one is interested only in dynamical effects. Of
course one is not restricted to the Hartree-Fock only and can construct
the channels of higher orders. For example, having once calculated
the T -matrix for Hartree- and Fock-channel one can still make use of
it by creating new contributions as shown in the bottom of Fig. 3.1.
This way one goes beyond the standard T -matrix approximation as
represented by Eq. (3.17) and (3.26). However, at least for moderately-
correlated materials the most important dynamics is usually accounted
for by the ladder approximation and the magnitude of the subsequent
channels falls down fast with increasing order. Taking this into account
together with the growing complexity and computational effort in the
calculation of higher-order channels they are often neglected.

For the electron-electron interaction the insertions of the bare po-
tential are connected by the propagator lines having the same direction
(electron-electron correlation function). The channels based on this
type of diagrams are classified as particle-particle (PP) type. In com-
plete analogy one can consider the interaction between the electron and
the hole, which can be represented by connecting the bare potential by
antiparallel lines. This kind of channels is called particle-hole (PH)
type. Building particle-hole interaction in terms of ladder diagrams it
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is easy to see that the 1st- and the 2nd-order diagrams will be the same
as for the PP-channel. After subtraction of these double-counted terms
the PH-channel starts from the third order and can be added to the
PP-channel.

Combining the PP- and PH-channels provides the basis for the so-
called T -matrix Plus Fluctuation Exchange (FLEX) scheme which is of-
ten used in the present work. Originally it follows from the work of Bick-
ers and Scalapino [44]. The extension of the scheme to the multiorbital
case and first self-consistent implementation was made by Lichtenstein
and Katsnelson [45, 46]. Later on, the derivation of the FLEX equa-
tions for real-energies corresponding to the zero-temperature limit was
made by Drchal, Janis and Kudrnovskyy [27]. Recently Pourovskyy,
Katsnelson and Lichtenstein have proposed a further extension of the
FLEX finite-temperature scheme [47] by taking into account relativistic
effects.

3.3 T-matrix formulation for real energies

Here we will derive the TMA equations within the real-energy formal-
ism following the work of Drchal et al. [27], which is extended here
to the full matrix formulation with respect to the spin-orbital basis
set. As we mentioned above, this formalism corresponds to the zero-
temperature limit usually implied when using band structure methods.

The original formulation (3.24)-(3.26) of TMA was given in terms
of causal quantities. However, it is more convenient to work with their
retarded equivalents which possess analytical properties substantially
simplifying the infinite integration on the real axis. We indicate the
causal quantities with a superscript “c” and relate them to the retarded
ones by:

G(c)(ǫ) = ReG(ǫ) + i sgn(ǫ− µ) ImG(ǫ) . (3.28)

Here µ is the chemical potential, ReG and ImG are hermitian and
antihermitian components of the Green’s function matrix G:

ReGΛΛ′ =
1

2
(GΛΛ′ +G∗

Λ′Λ) ,

ImGΛΛ′ =
1

2i
(GΛΛ′ −G∗

Λ′Λ) , (3.29)
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where G∗ is the complex conjugate of G. In practice, the matrix G is
derived in a symmetric form, thus right-hand sides of Eqs. (3.29) are
purely real.

Using Eq. (3.28) we derive the expression for the two-particle prop-
agator Φ in Eq. (3.25) in terms of the retarded Green’s function. For
simplicity we group the pair of the Green’s function matrix indices in
a single index Λ, which numbers the appropriate basis functions:

Im Φ
(c)
ΛΛ′(ǫ) =

=

∞
∫

−∞

dω′

2π

[

ReG
(c)
Λ (ǫ− ǫ′)ReG

(c)
Λ′ (ǫ

′) − ImG
(c)
Λ (ǫ− ǫ′)ImG

(c)
Λ′ (ǫ

′)
]

=

∞
∫

−∞

dω′

2π
[ReGΛ(ǫ− ǫ′)ReGΛ′(ǫ′)

− sgn(ǫ− ǫ′ − µ) sgn(ǫ′ − µ) ImGΛ(ǫ− ǫ′)ImGΛ′(ǫ′)] . (3.30)

Taking into account the analytical properties of the retarded functions
that imply the integral relation:

∞
∫

−∞

dǫ′ [ReGΛ(ǫ− ǫ′)ReGΛ′(ǫ′) + ImGΛ(ǫ− ǫ′)ImGΛ′(ǫ′)] = 0, (3.31)

one can simplify the calculation of the pair-correlation function:

ImΦ
(c)
ΛΛ′(ǫ) =

−
∞
∫

−∞

dω′

2π
[1 + sgn(ǫ− ǫ′ − µ) sgn(ǫ′ − µ)]ImGΛ(ǫ− ǫ′)ImGΛ′(ǫ′)

= sgn(ǫ− 2µ)

ǫ−µ
∫

µ

dǫ′

π
ImGΛ(ǫ− ǫ′)ImGΛ′(ǫ′) . (3.32)

A corresponding procedure we apply to the calculation of the self-
energies given by Eq. (3.26). The infinite integration is now expressed
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as
∞
∫

−∞

dω′

2π
G(c)(ǫ′)T (c)(ǫ′ + ǫ) =

−
∞
∫

−∞

dω′

2π
[1 + sgn(ǫ′ − µ) sgn(ǫ′ + ǫ− µ)]ImG(ǫ′)ImT (ǫ′ + ǫ)

= sgn(ǫ)

µ
∫

µ−ǫ

dǫ′

π
ImG(ǫ′)ImT (ǫ′ + ǫ) . (3.33)

The advantage of the expressions given by Eqs. (3.32) and (3.33) is
that the integration involves only antihermitian/imaginary components
which decay very fast with an energy argument going to infinity. For
practical calculation the range of the Im -components of Φ, T and Σ
can be taken to be finite (roughly within 1 Ry).

The hermitian/real counterparts are related to antihermi-
tian/imaginary by means of the so-called Hilbert transformation based
on Cauchy’s integral theorem (see e.g. Ref. [48]):

f(z0) =
1

2π

∫ ∞

−∞
dx

Im f(x)

x− z0
, (3.34)

where z0 is an arbitrary complex argument taken in the area of ana-
lyticity of the complex function f . The requirement of analyticity is
not critical for the real axis as long as f is just finite (integrable). On
the real axis the Hilbert transform (3.34) is reduced to the so-called
Kramers-Kronig relations:

Re f(x0) =
1

π

∫ ∞

−∞
dx

Im f(x)

x− x0
,

Im f(x0) = −1

π

∫ ∞

−∞
dx

Re f(x)

x− x0
. (3.35)

The result of the Kramers-Kronig relations is determined up to an arbi-
trary additive constant. For the situation considered here this constant
is fixed by requiring a Fermi liquid behavior of the dynamical self-energy
near the Fermi level, i.e. Σ(ǫF) = 0.



Chapter 4

The mean-field approximations

Before considering the next class of the many-body theories based on
total energy functionals, namely the Density Functional Theory (DFT)
[13] and the recently developed Spectral Density Functional Theory
(SDFT) [49], it is instructive to give some overview for the approxima-
tions which allow to develop practical numerical schemes for the corres-
ponding functional theories. The features of these approximations are
very similar and can be unified into a single theoretical approach re-
ferred as the mean-field approximation discussed in the following.

Despite of the complexity of the many-body problem discussed
above for a wide range of systems a rather crude treatment, without
full inclusion of correlations could be applied. This is the case when the
correlations could be included on the average, by considering a certain
particle moving in an effective mean field, which does not depend on
the coordinates of other particles.

The formal structure of any mean–field theory can be illustrated by
taking as a starting point the interaction part of the Hubbard Hamil-
tonian:

Hint =
1

2

∑

µνµ′ν′

Vµνν′µ′c†µc
†
νcν′cµ′ . (4.1)

Considering only the direct interaction and introducing the density op-
erator nµµ′ = c†µcµ′ we can rewrite Eq. (4.1) as

Hint =
1

2

∑

µµ′νν′

Vµνν′µ′nµµ′nνν′ . (4.2)

35
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The mean-field approximation is based on the assumption that the
deviation of the nµµ′ operator from its average 〈nµµ′〉 − nµµ′ is small.
This leads to the following approximation for the averaged product
〈nµµ′nνν′〉 and the corresponding effective mean-field Hamiltonian:

HMF =
1

2

∑

µµ′νν′

Vµνν′µ′〈nµµ′nνν′〉 ,

〈nµµ′nνν′〉 ≈ nµµ′〈nνν′〉 + 〈nµµ′〉nνν′ − 〈nµµ′〉〈nνν′〉 . (4.3)

One can view the product nµµ′〈nνν′〉 as the interaction of the operator
nµµ′ with some effective mean-field 〈nνν′〉. The averages 〈nµµ′〉 can be
determined from the condition of stationarity of the effective system by
minimizing its free energy FMF:

FMF = −1

β
lnTr

{

e−βHMF
}

, (4.4)

with β = 1/kBT , kB the Boltzmann constant and T the temperature.

d

d〈nνν′〉FMF

=
Tr
{

e−βHMF dHMF

d〈nνν′〉

}

Tr {e−βHMF}

=
1

Tr {e−βHMF}Tr







e−βHMF

∑

µµ′

Vµνν′µ′ (nµµ′ − 〈nµµ′〉)







=
∑

µµ′

Vµνν′µ′ (〈nµµ′〉MF − 〈nµµ′〉)

= 0 . (4.5)

Thus we arrive at a closed set of the mean-field equations. This ap-
proach provides a physically sensible method to study interacting sys-
tems where the correlations are weakly deviating from their average
values. The question is under which conditions this criterion is satis-
fied. As we are starting from the point where we don’t know the exact
averages 〈nµµ′〉 one has to do some guess. For localized systems as a
natural choice for such a guess the spatial average 〈nµµ′〉spatial over the
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nearest neighbors can serve. The proximity of the 〈nµµ′〉spatial to the
exact thermodynamic average 〈nµµ′〉 is determined by the central limit

theorem stating that the fluctuations around the expectation value be-
come smaller by the order of N−1/2, where N is the number of nearest
neighbors. This means that the mean-field theory is exact in the limit

of the infinite coordination number. In systems with translational in-
variance this corresponds to the infinite spatial dimensionality. The re-
liability of a mean-field description via dimensionality was investigated
by Metzner and Vollhardt [50] and later by Potthoff and Nolting [51].

The mean-field framework provides common concepts underlying
different theories dealing with interacting systems, as the Weiss molec-
ular field theory for a classical magnet, density functional theory for the
inhomogeneous electron gas and the spectral density functional theory
for strongly-correlated electron systems [49]. All mentioned approaches
differ by the choice of the particular local or localized quantity for which
the corresponding mean-field free-energy functional is constructed. For
example in Weiss theory it is the on-site magnetization, in density func-
tional theory it is the local electron density, in spectral density func-
tional theory - the localized Green’s function. A detailed overview of
the mean-field representations can be found in the work of Georges [52].
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Chapter 5

The energy functional description

The description of the equilibrium many-body system is in principle al-
ways connected with the problem of minimization its total free energy.
Thus, all the existing many-body theories can be viewed as based on
the free energy functional which for a system at equilibrium has to be
minimized. The minimization is performed with respect to some suit-
able variable (or set of variables) which should contain all necessary
information about the system. Thus, the goal of theory is to construct
the proper free-energy functional of the corresponding variable and to
prove the existence of its global minimum which can then be found by
solving the corresponding variational equation. Since the different con-
structions of the free energy (or total energy) functional (E[ρ], E[G],
...) describe the same many-body system, with respect to their min-
ima they all should coincide. Mathematically this is equivalent to the
possibility to link them by the so-called Legendre transformation.

Another, less strict requirement is that the corresponding variable
should be as simple as possible, or by other words, physically tractable.
From this point of view, the variable of the Baym-Kadanoff theory,
namely the actual Green’s function of the whole many-body system is
too complex. Of course, it contains all the necessary and unnecessary
information. However, the way in which it is derived (the perturba-
tional description discussed in Chapter 3) is rather complicated and
completely unmanageable for realistic systems. Here we will consider
let’s say the “minimal variable set” functional theory which utilizes only
one variable - the local electron density. Due to its simplicity the theory
affords to provide a corresponding “minimal input set”, or alternatively,

39
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the “ab-initio” way to solve the equilibrium many-body problem. This
theory is naturally called Density Functional Theory (DFT) and it will
be the subject of the first section of the present chapter (Sec. 5.1).

As mentioned above, the main goal of any energy functional theory
is to chose a proper variable and to prove the existence of the global
minimum for the corresponding functional. However, these conditions
are not yet sufficient to derive a practically manageable approach. In-
deed, the functional itself (or at least, its derivative) still has to be
found. The construction of the energy functional in terms of the cho-
sen variable is nothing else as the mean-field approximation which was
discussed in Chapter 4. For the local density as a variable this proce-
dure is called the Local Density Approximation (LDA).

On the other hand, the insufficient knowledge of the nature of elec-
tronic interactions does not allow to complete this construction at least
in terms of the local density. We can only describe its most obvious
part and try to guess the unknown one. In many cases when the un-
known part is small this description is sufficient. However sometimes,
namely in case of the strongly-correlated systems the unknown part of
the functional becomes significant and the LDA approach fails. The
possible direction to deal with this problem is to simplify the corres-
ponding energy functional. However, the cost for that is the compli-
cation of the corresponding variable. Thus, the goal is to find a way
which still remains simple but at the same time sufficient to capture
the important part of the unknown interaction. As one of such compro-
mises, specific for locally-correlated systems the so-called LDA+DMFT
(Dynamical Mean-Field Theory) have appeared, which has to be seen
much less ”ab-initio” than pure LDA. It utilizes the advantageous fea-
tures of both approaches - the Baym-Kadanoff theory for the localized
correlated electrons and the local-density description for the rest of the
system. However before considering the DMFT method it will be in-
structive first to make a functional link between LDA and DMFT. This
will be discussed in the Sec. 5.4. In the following Sec. 5.5 the descrip-
tion of the DMFT which is the central aspect of this thesis finally will
be given.
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5.1 Density functional theory

Density functional theory (DFT) is a general many-body theory sup-
plying the framework which enables one to determine the ground state
energy of any system, in particular solids, consisting of electrons in an
external potential. By applying DFT with various boundary conditions
one can calculate energy differences which, in turn, are directly related
to physical observables.

Originally developed by Hohenberg, Kohn and Sham [13–15] in the
mid-sixties, DFT uses the idea of Thomas-Fermi theory meant to cir-
cumvent the technical difficulties implied by the use of many-body tech-
niques – e.g. Hartree-Fock theory – introducing the electron density as
a basic variable rather than the many-electron wave function. As it
will be shown in the following, this way one arrives at a one-particle
problem that is much easier to solve than the corresponding many–
body problem. An appealing feature of the theory is that, unlike the
Hartree-Fock method, it takes the exchange and correlation of the elec-
trons simultaneously into account. The corresponding term, known as
exchange–correlation energy, is the only one requiring a suitable ap-
proximation within DFT.

The theory is based on the two theorems of Hohenberg and Kohn
[13]. The first one states that the total ground state of a system with

N electrons and hence all ground-state properties are functionals of the

local density ρ(r). This allows DFT to define the energy of the system
as a functional of the local density ρ(r):

Etot[ρ] =

∫

d3r ρ(r)Vext(r) + ∆[ρ] , (5.1)

where ∆[ρ] = K[ρ] + EH [ρ] + Exc[ρ] is the sum of the kinetic, Hartree
and exchange-correlation energies [15]. This quantity does not depend
on any external fields reflecting the fact that different many-electron
systems differ only by the local external potential Vext(r) felt by the
electrons. The energy functional ∆[ρ(r)] is nothing else but the internal
energy of the electron gas and it is universal in the sense that it refers to
any system, independent on the number of particles and/or the external
potential.

The second theorem of DFT [13] states that the ground state energy
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functional associated with a given external potential is a minimum over

densities corresponding to a given total electron number N . The density

yielding the minimum total energy is the ground state density. Thus,
the ground state can be found from the stationarity condition (4.5)
minimizing the total energy by means of a functional derivative

δEtot[ρ]

δρ(r)

∣

∣

∣

∣

ρ=ρGS(r)

= 0 , (5.2)

where ρGS is the ground-state electron density. The electron density is
defined as

ρ(r) = −1

π
Im

ǫF
∫

dǫG(r, r, ǫ) , (5.3)

where G(r, r′, ǫ) is the so-called Kohn-Sham Green’s function defined
as a resolvent of the effective one-particle Hamiltonian entering the
corresponding Schrödinger (Kohn-Sham) equation obtained from the
variation of the total energy:

[

ǫ+ ∇2
r − Veff(r)

]

G(r, r′, ǫ) = δ(r− r′), (5.4)

with −∇2
r being the operator of the kinetic energy, and ǫ Lagrange

multipliers. The eigenvalues of the effective one-particle problem {ǫi}
will correspond to the poles of the Green’s function. The following
expressions are used for the effective one-particle potential Veff :

Veff(r) = Vext(r) + VH(r) + Vxc(r) , (5.5)

the external potential created by ionic charges ZR sitting on the lattice
sites R:

Vext(r) =
∑

R

ZR

|r− R| , (5.6)

the Hartree potential:

VH(r) =

∫

d3r′
ρ(r′)

|r− r′| , (5.7)



5.1. Density functional theory 43

and the so-called exchange-correlation potential:

Vxc(r) =
δExc[ρ]

δρ(r)
. (5.8)

Taking the imaginary part of the expression (5.4) in the limit r′ = r
and performing an integration over the space and the energy one obtains
the so-called band energy Eband:

Eband = −1

π
Im

ǫF
∫

dǫ · ǫ
∫

d3r G(r, r, ǫ)

= K [ρ] +

∫

d3r Veff(r)ρ(r)

= K [ρ] +

∫

d3rVext(r)ρ(r) +

∫

d3r VH(r)ρ(r) +

∫

d3r Vxc(r)ρ(r). (5.9)

Using it, one can eliminate the kinetic energy term arriving at the
following expression for the total energy which is easily manageable:

Etot [ρ] = − 1

π
Im

ǫF
∫

dǫ · ǫ
∫

d3r G(r, r, ǫ)

− EH [ρ] +

∫

d3r Vxc(r)ρ(r) +Exc [ρ] . (5.10)

The Hartree energy EH can be written explicitly as

EH [ρ] =
1

2

∫

d3rρ(r)

∫

d3r′
ρ(r′)

|r − r′|

=
1

2

∫

d3r VH(r)ρ(r) . (5.11)

Combining Eqs. (5.3)-(5.8) we can find the local density ρ(r) and the
total energy of the ground state. As the system of equations is closed
it has to be solved in a self-consistent manner.

Although this approach is rigorously applicable to the ground state
only, it is substantially simplified due to the reduction of the many-
body problem to the single-particle problem with the effective local
potential being varied in such a way that the resulting density mimics
the true density of the system.
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The system of Eqs. (5.3)-(5.8) is exact provided the exact is the form
of the exchange-correlation functional Exc[ρ] is known. For the inhomo-
geneous electron gas the exact expression for Exc can be given in a form
of the Coulomb interaction between the electron and its surrounding
exchange-correlation hole described by the density distribution function
ρxc(r, r

′ − r):

Exc[ρ] =
1

2

∫

d3r ρ(r)

∫

d3r′
ρxc(r, r

′ − r)

|r − r′| . (5.12)

The exchange-correlation hole density is defined as

ρxc(r, r
′ − r) = ρ(r′)

∫ 1

0

dλ (gλ(r, r
′) − 1) , (5.13)

where gλ(r, r
′) is the so-called pair correlation function, λ is the coupling

constant. The important property of Exc[ρ] is its independence of the
actual form of the exchange-correlation hole. This can be shown by
making the substitution r − r′ = r′′ [53] bringing the expression of
exchange-correlation functional to the form

Exc[ρ] =

∫

d3r ρ(r)

∫

dr′′r′′
2
∫

dΩ′′ ρxc(r, r
′′) , (5.14)

which depends only on the average over the spherical angle Ω′′. Thus,
Exc[ρ] depends only on the distance but not on the direction of the
Coulomb interaction. Integrating the exchange-correlation density
leads to the sum rule [53]:

4π

∫

dr′r′
2
∫

dΩ ρxc(r, r
′) = −1 , (5.15)

ensuring that the exchange-correlation hole corresponds to a unity
charge around the electron.

5.2 The local density approximation

An expression for the exchange-correlation functional Exc[ρ] that is
widely used is based on the so-called local density approximation (LDA)
which is being relatively simple and at the same time is most successful.
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It uses the same expression for ρxc as in the homogeneous electron gas,
but for each spatial point utilizes the local value of the charge density
ρ(r):

ρLDA
xc (r, r′ − r) = ρ(r′)

∫ 1

0

dλ
[

gh
λ(|r− r′| , ρ(r)) − 1

]

, (5.16)

where gh
λ is the pair correlation function for the homogeneous electron

gas. The advantage of this expression is that it satisfies the sum rule
(5.15). Applying it to the Eq. 5.12 we arrive at the local density ap-
proximation [14]

ELDA
xc [ρ] =

∫

d3r ρ(r)εh
xc(ρ(r)) , (5.17)

where εh
xc(ρ) is the exchange-correlation energy for the homogeneous

electron gas with the density ρ. For the exchange component of the
energy the relation is simple [54, 55]

εh
x(ρ) = −3e2

4

(

3

π

)1/3

ρ4/3 . (5.18)

However, the correlation component εh
c(ρ) on the other hand is not

known exactly. In fact the determination of the correlation energy in
a homogeneous interacting electron system is already a complicated
many-body problem. Early approximate expressions for εh

c(ρ) were
provided by perturbation theory [56, 57] and later became outdated
by highly precise Quantum Monte-Carlo (QMC) calculations for the
Fermi liquid [58]. Modern expressions for εh

c(ρ) [59–61] are the parame-
terizations of these calculations. The approximation (5.17) has proved
to be amazingly successful, even when applied to the systems that are
quite different from the electron gas.

Extending the LDA to spin-polarized systems the additional degree
of freedom is introduced by splitting the local density into spin-up and
spin-down channels [15, 56] resulting into the local spin-density approx-
imation (LSDA):

ELSDA
xc [ρ↑, ρ↓] =

∫

d3r ρ(r)εh
xc(ρ↑(r), ρ↓(r)) , (5.19)
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where εh
xc(ρ↑(r), ρ↓(r)) is the exchange-correlation energy density for the

homogeneous electron gas where the densities for up and down spins
ρ↑(r) and ρ↓(r) are introduced.

The LSDA approach is ab-initio since it does not contain any addi-
tional input parameters. On other hand, the analysis of the accuracy
of a particular form used for the exchange-correlation potential could
be validated mostly by the agreement between calculated and experi-
mental data.

The applicability of LSDA is mostly restricted to macroscopic sys-
tems where the local effects which occur on the scale of N−1 and N−3

(with N being the number of particles) are rather small. On the other
hand, single atoms and cluster systems do not allow to neglect these
effects. A well known example is the hydrogen atom where the LSDA
orbital energy is −0.54 Ry instead of −1 Ry, while the total energy
calculated within LSDA is rather good: −0.976 Ry instead of −1 Ry
[62]. The incorrect asymptotic behavior of the LSDA potential on far
distances results in the overestimation of the total energy and the re-
duction of the binding energy and strong overestimation of the removal
energy as well. This leads to the failure of the LSDA to describe the
existence of negative ions [60], that are found to be stable experimen-
tally.

To overcome these difficulties a lot of techniques were devised, such
as semi-local functionals which include the gradient corrections of lo-
cal density (GGA) [63, 64], orbital functionals which utilize the exact
expression for the exchange energy (OPM) [65–69], the self-interaction
correction method (SIC) [60, 70–73] which is intended to compensate
the incomplete vanishing of self-interaction in LSDA, non-local func-
tionals (in the sense that the functional depends on the integral of
ρ(r) rather than on its derivative as in GGA) (ADA, WDA) [74] and
various hybrid approaches. The general limitation of the mentioned
approaches is due to their formulation in terms of a charge or orbital
density as a fundamental variable which does not reproduce the true
many-body effects and thus, the spectra of strongly correlated systems.
The latter demonstrate both correlated quasiparticle bands and Hub-
bard bands which have no analog in one-particle theory. That is why
the insufficient description of correlations cannot be remedied by either
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using more complicated exchange-correlation functionals in DFT or by
adding a finite number of diagrams of perturbation theory. To achieve
this one should go beyond DFT in order to incorporate the dynamics of
the electrons in the variational functional explicitly. This is possible by
choosing another variable, e.g. the localized time-dependent Green’s
function.

However, before to proceed with the description in terms of dynam-
ical variables we will consider the intermediate step which have become
an important precursor of the localized dynamical description. Namely,
it is a localized non-local, however, static correction of the of the lo-
cal one-particle Hamiltonian introduced to circumvent the difficulties
experienced by the LDA in the description of strongly-correlated solids.

5.3 The LDA+U method

The important difference of LDA from the exact Kohn-Sham density
functional is that in the latter the local potential has to demonstrate
a discontinuous jump when adding or subtracting the electron. This
leads, e. g. to the well-known failure of LDA to describe the band gap
in Mott insulators [75].

The second important aspect is that while the LDA orbital ener-
gies ǫi = ∂Etot/∂ni are often obtained different from the experimen-
tal one-particle excitation spectrum, the total energy ǫtot is calculated
rather accurately. However, as it was shown by Brandow [76], the non-
magnetic LDA calculations combined with on-site Hartree-Fock inter-
actions for the 3d-electrons leads to a rather realistic description of the
various Mott-Hubbard phenomena.

These and analogous observations have led to the formulation of
the so-called LDA+U method [18, 77] which supplements the LDA po-
tential with an orbital-dependent correction by taking approximately
into account the strong localized interactions in d- or f -electron shells.
The main idea of LDA+U method is that it separates from the whole
electron system the localized d-electron subsystem for which the strong
Coulomb repulsion U is taken into account in the form of a model
Hubbard term 1

2

∑

i 6=j ninj. The rest consisting of the delocalized con-
duction electrons is described by the orbital-independent one-particle
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LDA potential.
The one-particle excitation spectrum of such a system is a set of

many-particle states distinguished by the absence or addition of a par-
ticular d-electron. If we treat the localized electrons as having the same
kinetic energy ǫd and experiencing the same Coulomb repulsion U the
total energy of the localized subsystem with N electrons can be repre-
sented as EN = ǫd n+UN(N−1)/2 and the corresponding one-particle
excitation spectrum as ǫ = EN+1−EN = ǫd+UN . The Coulomb energy
of all d-d-interactions in a N -electron system is UN(N − 1)/2. Replac-
ing it by the Hubbard term (neglecting for a while the exchange and
non-sphericity) we obtain the following functional:

Etot = ELDA
tot − 1

2
UN(N − 1) +

1

2
U
∑

i 6=j

ninj , (5.20)

and the corresponding orbital energies:

ǫi =
∂Etot

∂ni
= ǫLDA + U

(

1

2
− ni

)

. (5.21)

The last term shifts the occupied LDA orbitals (ni = 1) down −U/2 and
unoccupied (ni = 0) up +U/2 giving the additional contribution in the
band gap. Similarly one can obtain the orbital-dependent correction
to the one-particle potential as a variation over the particular orbital
instead of the total charge density:

Vi(r) = V LDA(r) + U

(

1

2
− ni

)

. (5.22)

This form restores the discontinuous behavior of the one-electron po-
tential of the exact Kohn-Sham density functional.

5.3.1 The Coulomb interaction matrix

One can treat the orbital-dependent correction more accurately by tak-
ing into account the exchange and non-sphericity of the Coulomb inter-
action by constructing the total energy as a functional of the full local
density and the d-occupation matrix [19]:

Etot [ρ(r), nd] = ELSDA
tot [ρ(r)] +EU [nd] −EDC [nd] , (5.23)
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where EU is the Coulomb interaction energy of the d-shell and EDC

is the so-called double-counting energy which should cancel the part
of the Coulomb d-d-interaction included in ELSDA

tot . In general the oc-
cupation matrix nd can contain spin-flip terms due to some source of
perturbation with lower symmetry as e.g. spin-orbit coupling or non-
collinear magnetic ordering. Thus, the second term in Eq. (5.23) can
be written as

EU =
1

2

∑

1234

(V1324 − V1342)n12n34 , (5.24)

where the indices i, (i = 1, 2, ...) mark the localized spin-orbital basis
function φlσi

(r)Ylmi
. The matrix of the on-site rotationally-invariant

Coulomb interaction V1234 is given in the following form [78]:

V1234 = δσ1σ3δσ2σ4 Um1m2m3m4 = δσ1σ3δσ2σ4

2l
∑

k=0

ak
m1m3m2m4

F k , (5.25)

with the radial Slater F k and the angular ak integrals defined with
respect to the localized orbital functions φl(r)Ylm(r̂) as following:

F k =

∫

r2dr

∫

r′ 2dr′ φ2(r)φ2(r′)
rk
<

rk+1
>

,

ak
m1m3m2m4

=
4π

2k + 1

k
∑

k′=−k

〈Ylm1|Ykk′ |Ylm3〉 〈Ylm2| Y ∗
kk′ |Ylm4〉 . (5.26)

The matrix elements V1212 and V1212 −V1221 are related to the prod-
ucts of the diagonal elements of the occupation matrix and thus can
be identified as pairs of direct and exchange interaction integrals. By
averaging these matrices over all possible pairs of indices {(1, 2)} within
the certain spin subsystem defines the averaged Coulomb direct U and
exchange J integrals used in the expression for EDC. Namely, using
the properties of the integrals F and a, one can obtain the following
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relations

U =
1

(2l + 1)2

∑

mm′

Um1m2m1m2

= F 0,

U − J =
1

2l(2l+ 1)

∑

m 6=m′

(Um1m2m1m2
− Um1m1m2m2

)

= F 0 − 1

2l

2l
∑

k=2

(

C000
lkl

)2
F k , (5.27)

where C000
lkl is a Clebsch-Gordon coefficient. Using these expressions for

the particular cases of d- and f -electrons the exchange integrals can be
written explicitly as

Jl=2 =
1

14
(F 2 + F 4),

Jl=3 =
1

6435
(286F 2 + 195F 4 + 250F 6), (5.28)

The meaning of U can be identified as the change in the energy of the
many-body electron system when moving one d-electron between two
equivalent atoms. This process is accompanied by the inverse movement
of the fast p- and s-electrons which is called screening. This screening
substantially lowers the energy cost needed for the replacement of the d-
electron. Thus the value of U used in the LSDA+U calculations should
significantly smaller than the bare U considered in the Hubbard model.

While the intrasite exchange parameter J could be calculated rather
unambiguously in ab-initio approaches, the estimation of the intra-
site Coulomb interaction parameter U substantially scatters. The un-
screened values of U are typically very large, about 15-20 eV. The
electron screening substantially decreases them normally to about 3-
8 eV. In real solid the screening charge is distributed over the neigh-
boring sites which makes the estimation of U very complicated. While
constrained LSDA studies give rather satisfactory agreement with ex-
periment for Ce, U and late transition-metal oxides, in 3d-transition
metals the values of U are largely overestimated [79, 80]. For example,
in Fe the estimate leads to U=6 eV, while experiments indicate a value
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1-2 eV. For early transition-metal oxides, e.g. VO, the theoretical U is
6 eV which is two times larger than the experimental value. Accord-
ingly, the established procedure is to use the Coulomb and the Stoner
effective interaction in the calculational scheme as input parameters
which is, of course, a serious drawback from the ab-initio viewpoint.
However, it has been found that in many cases LSDA+U method gives
a very successful description which is not too much sensitive to the
small variations of the U parameter near its optimal value.

5.3.2 The double-counting term

The most serious conceptual problem of the LSDA+U approach is the
following. Since there does not exist any microscopic or diagrammatic
representation of the LSDA effective one-particle potential, it is not
possible to express its Coulomb interaction part rigorously in terms of
U and J . Thus, in general the form of the double-counting (DC) term in
Eq. (5.23) remains unknown. That is why the application of LSDA+U
is mostly restricted to systems close to particular limiting cases where
the DC can be found exactly. Namely, these are the so-called atomic
limit (AL) which corresponds to the case when the particular orbital
is either fully occupied or fully empty and the mean-field limit (MF)
which corresponds to the uniform orbital occupation [19].

In the MF-case the Coulomb interaction energy in Eq. (5.24) can be
represented using Eq. (4.3) as a mean-field average over the orbitals:

EDC =
1

2

∑

1234

(V1324 − V1342) 〈n12n34〉

≈ 1

2

∑

12

(V1212 − V1221)

× (n11〈n〉σ2
+ n22〈n〉σ1

− 〈n〉σ1
〈n〉σ2

) , (5.29)

with 〈n〉σ being the average occupation number within a certain σ spin
subsystem:

〈n〉σ =
1

2l + 1

l
∑

m=−l

nσσ
mm . (5.30)
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The corresponding double-counting part of the one-particle potential is
found as

V
DC(MF)
12 =

∂ǫDC

∂n12
= δ12

∑

3

[V1313 − V1331] 〈n〉σ3

= δ12

∑

m′

[Umm′mm′〈n〉−σ1
+ (Umm′mm′ − Umm′m′m) 〈n〉σ1

]

= δ12 [U(2l + 1)〈n〉−σ1
+ U(2l + 1)〈n〉σ1

− (U + 2lJ)〈n〉σ1
]

= δ12 [U(2l + 1)(〈n〉−σ1
+ 〈n〉σ1

) − (U + 2lJ)〈n〉σ1
]

= δ12 [U(N − 〈n〉σ1
) − J(Nσ1

− 〈n〉σ1
)] , (5.31)

with Nσ = (2l + 1)〈n〉σ and N = Nσ + N−σ. Subtracting V DC from
the corresponding potential for the total Coulomb interaction energy
(5.24) we obtain the full LSDA+U one-particle effective potential:

V LSDA+U−MF
12 (r) =

δ12

(

V LSDA
σ1

(r) − V
DC(MF)
11

)

+
∑

34

(V1324 − V1342)n34 . (5.32)

Using the similar technique and implying 〈n〉σ = 1/2, one finds the
corresponding expression for the DC around the atomic limit [19]:

V
DC(AL)
12 = δ12

[

U(N − 1

2
) − J(Nσ1

− 1

2
)

]

. (5.33)

As one can see from Eqs. (5.24) and (5.25), the term F 0 = U con-
tained in the matrix elements Um1m2m3m4

provides the splitting of the
localized states into the lower and upper Hubbard bands. The higher-
order terms F k, k > 0 are responsible for the angular corrections within
the localized shell. When the screening is substantial and the effec-
tive term U − J becomes small, the localized subsystem will be close
to the MF-limit and the higher-order terms will gain the dominance.
Comparing these contribution to the orbital polarization corrections
to the LSDA method suggested by Brooks and coworkers [81–83] one
notices that the LSDA+U includes these corrections in a more general
form, namely without treating the occupation matrix as being spin-
diagonal. Thus, for example the LSDA+U-MF should give similar to
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the OP method improvement concerning the description of the orbital
moments in 3d-transition metals in comparison to the LSDA.

On the other hand, for the strongly-correlated systems as Mott in-
sulators where the strong Coulomb repulsion leads to a large band gap,
the AL-limit is more appropriate. It turns out that also for many other
materials where the electrons are localized by the strong Coulomb re-
pulsion (as rare earths, impurity systems and high-TC superconductors)
LSDA+U is a rather accurate and reliable tool to calculate their elec-
tronic structure.

However, as one can see, LSDA+U only is able to emphasize a cer-
tain type of the inhomogeneities which are already induced within the
LSDA but cannot induce them itself. For example, for the case when
LSDA provides the same occupation for all orbitals, the LSDA+U cor-
rection will vanish. The same is true for the half-filled paramagnetic
band in the Mott insulators: the LSDA+U would never give the in-
crease of the band gap if it was not originally induced by LSDA. This
is the reason why the LSDA+U fails to describe metals in the vicin-
ity of a Mott-Hubbard insulator transition and predicts magnetic order
where it is not observed [84, 85]. This happens due to the absence of the
quasiparticle description which even in the limit of large Coulomb re-
pulsion but with a non-integer occupation number leads to the metallic
character realized by quasiparticles with larger effective mass. In this
sense, LSDA+U can be seen as only the static Hartree-Fock approxima-
tion to the general spectral density functional theory [49] which takes
into account the dynamics of correlations.

5.4 Spectral density functional theory

The practically manageable way to account for the localized dynamical
correlations is the so-called dynamical mean-field theory (DMFT) [86,
87] which will be the subject of the next chapter. On the other hand,
it can be viewed as a particular mean-field approximation to the more
general spectral density functional theory (SDFT) recently developed
by Savrasov and Kotliar [49]. Instead of the local density, the central
quantity in SDFT is the one-particle Green’s function of the many-
body system perturbed by a certain non-local time-dependent localized
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source. The latter means that this perturbation totally vanishes outside
the localized area Ωloc, for example:

θloc(r, r
′) =

{

1, if r − r′ ∈ Ωloc

0, else
. (5.34)

Thus, the function becomes local when the localization area shrinks to
an infinitesimally small space domain. Although the main subject is
to obtain a method accounting for the real-space localized dynamical
correlations, it is worth to mention that the SDFT in the same way
can be formulated by considering the corresponding localized domain
in reciprocal space [49].

We introduce the localized Green’s function Gloc(r, r
′, ǫ) which coin-

cides with the exact Green’s function G(r, r′, ǫ) inside the localization
area and is zero outside:

Gloc(r, r
′, ǫ) = G(r, r′, ǫ)θloc(r, r

′) . (5.35)

The introduction of a localized perturbation Jloc modifies the action
of the system as follows

S ′ [Jloc] = S +

∫

d3rdt

∫

d3r′dt′ Jloc(r, t; r
′, t′)ψ†(r, t)ψ(r′, t′) , (5.36)

where the space integration is restricted to the localization area. The
field operators ψ(r, t) are defined as shown in Eq. (2.5). The partition
function Z and the free energy F become functionals of Jloc:

Z [Jloc] = exp {−F [Jloc]} =

∫

D
[

ψ†ψ
]

e−S ′[Jloc] . (5.37)

The total energy as a functional of the localized Green’s function
(namely, the SDF) is found as the Legendre transformation of the free
energy by exchanging the variable Jloc to Gloc:

ΓSDF [Gloc] = F [Jloc] − Tr {JlocGloc} . (5.38)

The invertibility of the Legendre transformation implies that the vari-
ables Jloc and Gloc are related as:

Jloc = −δΓSDF

δGloc
, Gloc =

δF

δJloc
. (5.39)
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Thus, representing Jloc in terms of Gloc we obtain ΓSDF as a functional
of Gloc only. Obviously, there is a close analogy to the DFT where the
corresponding functional ΓDFT depends on the local density which is
obtained from the corresponding Gloc by shrinking its localization area
and neglecting the time-dependence.

The existence of these functionals for the equilibrium system was
studied within perturbation theory [88]. It is stated in particular [49]
that the proof of the analog of the Hohenberg-Kohn theorem reduces
to the proof of the invertibility of the corresponding functional and the
free energy. This is, on the other hand, equivalent to the possibility to
perform the Legendre transformation from F [Jloc] to Γ[Gloc].

In the next step the total energy is decomposed into the kinetic
energy of the non-interacting system, external potential energy, Hartree
energy and exchange-correlation energy which is done performing the
expansion of ΓSDF in powers of the electron charge [88, 89]. The lowest-
order term is the sum of the kinetic energy and the energy of the exter-
nal potential. In the Baym-Kadanoff approach this term is represented
as

K[G] = Tr {ln G} − Tr
{(

G−1
0 −G−1

)

G
}

, (5.40)

where G0 is the non-interacting Green’s function:

G0(r, r
′, ǫ) = δ(r − r′)

[

ǫ+ ∇2
r − Vext(r)

]−1
. (5.41)

Analogously to the DFT, the SDFT introduces a set of auxiliary
particles in some effective localized non-local and energy-dependent po-
tential Σeff(r, r′, ǫ) and the auxiliary Green’s function G(r, r′, ǫ) defined
in the whole space as:

G−1(r, r′, ǫ) = G−1
0 (r, r′, ǫ) + Σeff(r, r′, ǫ) . (5.42)

The effective potential Σeff is adjusted in such a way that G coincides
with the exact Green’s function Gloc inside the localization domain, i.e.

Gloc(r, r
′, ǫ) = G(r, r′, ǫ)θloc(r, r

′) . (5.43)

Note, that this also guarantees that G delivers the exact density. These
considerations are schematically illustrated by Fig. 5.1. Thus, one can
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r

r’

R 2R

R

2R

locality domain

periodicity
domain

Fig. 5.1. Schematic illustration of the SDFT real-space domains. Theauxiliary Green’s
function G coincides with the exact Green’s function within the locality domain area
bounded by thick curves. Within the translational symmetrythis picture isR-periodic.
In particular to deliver the exact density it is only necessary to have the information about
the Green’s function along the dashed line (r = r′).

represent the kinetic part of the functional in terms of G:

K [G] = Tr {ln G} − Tr
{(

G−1
0 − G−1

)

G
}

(5.44)

and the total SDF functional as:

ΓSDF [G] = K [G] + ΦSDF [Gloc] = K [G] + EH [ρ] + ΦSDF
xc [Gloc] , (5.45)

with ΦSDF being the energy of interaction with the effective potential
Σeff which is separated as a sum of the Hartree energy EH and the
exchange-correlation part ΦSDF

xc .
The minimum of ΓSDF is achieved by variation with respect to the

variable G: δΓSDF[G]
δG(r,r′,ǫ)

= 0, which leads to Eq. (5.42) as well as for the

definition of the effective potential Σeff :

Σeff(r, r′, ǫ) =
δΦSDF [Gloc]

δG(r, r′, ǫ)
=

δΦSDF [Gloc]

δGloc(r, r′, ǫ)
θloc(r, r

′). (5.46)



5.4. Spectral density functional theory 57

Using the definition of G0 in Eq. (5.41) together with Eq. (5.42) we
can construct the pendant of the Kohn-Sham equation:

[

ǫ+ ∇2
]

G(r, r′, ǫ) +

∫

d3r′′ Σeff(r, r′′)G(r′′, r′, ǫ) = δ(r − r′) . (5.47)

If the electron exchange-correlation interaction is not restricted by
the localization domain, then the SDF turns into the Baym-Kadanoff
functional which delivers the full one-particle Green’s function of the
system. Otherwise it can be viewed as a localized approximation to the
Baym-Kadanoff theory which delivers the exact ground-state properties
as far as the form of ΦSDF

xc is known.

Summarizing, we emphasize that SDFT provides the existence of
the one-particle Green’s function functional, that can be minimized
within the self-consistent procedure sketched in Fig. 5.2 that is analo-
gous to that one set up for the DFT.

G−1 = G−1
0 + Σ Gloc = G · θloc

Σnew = δΦSDF[Gloc]
δGloc

Σ=Σnew

G0,Σ

Σ Σnew

G

Gloc

Σ,G

Fig. 5.2. Illustration of the self-consistent solution of the SDF problem. Starting from the
non-interacting functionG0 and the initial guess for the localized self-energyΣ we obtain
the auxiliary functionG within the whole space asG−1 = G−1

0 +Σ. Then the localized part
Gloc is extracted byGloc = Gθloc. The latter is used to derive the self-energy as a functional
derivative ofΦSDF. The loop is repeated until the self-consistent self-energy is found. All
quantities are evaluated for fixed time (or energy) and spacearguments.
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5.5 The dynamical-mean field approximation

Since the dynamical mean-field theory (DMFT) have appeared earlier
than the SDFT itself, it could be represented as a separate approach
without reviewing the SDFT basics. However, one can trace better the
analogy with the DFT-LDA if it is presented as a sort of mean-field
approximation to SDFT. DMFT is based on the work of Metzner and
Vollhardt [50] who derived the non-trivial limit of the Hubbard model
for the large coordination number and the work of Georges et. al [21]
who made the connection between the localized and the delocalized
descriptions. Detailed overviews of DMFT can be found in Refs. [86]
and [87].

First of all, similar to the LDA+U, the DMFT considers the two-
particle interactions within a certain electronic subsystem, namely in
the d-, or f -shell which is well-localized within the atomic site. Thus,
the localization domain is site-centered instead of travelling throughout
the solid as illustrated in Fig. 5.3. This leads to a certain drawback,

BATH

V(r,r’,t)

r’ r

Fig. 5.3. Localization domains in SDFT (upper left side) and in the DMFT (upper right
side). Lower panel: illustration of the Anderson model. Localizedd-electrons coupled
by the non-local time-dependent interactionV (r, r′, t) with the surrounding bath. The
interaction within ad-shell is marked by zigzag lines.
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namely, it is not possible any more to reproduce the exact density of
states from Gloc and as a result to recover the Hartree energy directly.

On the other hand, this situation is rather close to the real systems
containing 3d- and 5f -elements in which the correlated electrons are
well-localized within the atomic sites. Thus, it is natural to consider
the non-local correlation only for the d- or f -electron subsystem within
its localization domain.

However, in real solids the situation is complicated by the addi-
tional coupling of the d-electrons with the s and p delocalized shell.
In the DMFT this problem is avoided by the mean-field description
of the coupling. Namely, the d-electrons feel the time-dependent non-
local interaction with the delocalized shell as a sort of time-dependent
but local mean-field, which is created by the spatial integration over
the delocalized shell. In the literature the latter is usually referred as
“bath”. To perform such an integration we have to know the many-
body wave function of the bath. On the other hand, by presenting
the coupling as an interaction of the randomly situated bath particles
coupled to the certain space point r (see Fig. 5.3), the integral influ-
ence, namely the random variable Vbath(r, t) =

∑

r′ V (r, r′, t) will have
normal (r, t)-parameterized distribution that does not depend on the
particular distribution of V (r, r′, t) once the number of particles in the
bath increases to infinity (Central Limit theorem). As was numerically
shown by Metzner and Vollhardt this sum converges very fast. For ex-
ample, in the model which is equivalent to 6 bath particles it is already
close to the infinite limit [86].

Having incorporated all external influence with respect to the local-
ized electron subsystem into the local scalar potential Vbath, the condi-
tions of the Baym-Kadanoff approach are satisfied and the many-body
problem of the localized shell can be solved exactly using the pertur-
bational technique discussed in Chapter 3. Since the DMFT model
is equivalent to the famous Anderson effective impurity model (AIM)
[3, 24, 90] the corresponding many-body technique solving the Baym-
Kadanoff equations is referred as “impurity solver”.

Of course, the function Vbath(r) is unknown. On the other hand, if
the self-energy and the corresponding Green’s function of the interact-
ing d-system are known, it is possible to find the effective one-particle
Green’s function of the bath G0 from the following saddle-point equa-
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tion:

G−1
0 (r, r′, ǫ) = G−1

loc(r, r
′, ǫ) − Σ(r, r′, ǫ) . (5.48)

Then, it can be used as an input quantity for the Baym-Kadanoff prob-
lem of the interacting d-electrons which can be approximately solved by
one of the impurity solvers which delivers the corresponding self-energy.
Thus we have a closed relationship between all introduced quantities
and the overall problem can be solved self-consistently as shown in
Fig. 5.4. The particular feature of the DMFT is that the whole inter-

G−1 = G−1
0 + Σ Gloc = G · θloc

G−1
0 = G−1

loc − Σ

Impurity solverΣ=Σnew

G0,Σ

Σ Σnew

G

Gloc

G0

Σ,G

Fig. 5.4. Illustration of the self-consistent solution of the DMFT problem. Starting from the
non-interacting functionG0 and the initial guess for the localized self-energyΣ we obtain
the auxiliary functionG within the whole space asG−1 = G−1

0 + Σ. Then the localized
partGloc is extracted byGloc = Gθloc. In the next step the Green’s functionG0 accounting
for the interaction only between the conduction and localized systems is created; for that
reason the many-body interactionΣ is extracted fromGloc. G0 is used as an input for the
many-body problem within the localized shell. The latter issolved by applying a certain
many-body technique (impurity solver) which derives the self-energyΣnew. The loop is
repeated until the self-consistent self-energy is found. All quantities are evaluated for fixed
time (or energy) and space arguments.

acting system is split into one being treated exactly and another one
treated within the mean-field approximation.
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Like any mean-field theory, DMFT becomes exact in the limit of
large coordination number or infinite dimensionality [50]. On the other
hand, there are two particular limits, specific for SDFT, where it be-
comes exact – the non-interacting limit (U = 0) and the atomic limit
(t = 0) [21, 86]. The main constrains of the theory are inherited from
the LDA+U approach, namely it is the arbitrariness in the estimation
of U and the choice of the correlated orbitals.

5.6 LDA+DMFT

Since the DMFT method is not an ab-initio approach, it can be imple-
mented by choosing as a reference the Kohn-Sham ground state pro-
vided by the LSDA approach. Since DMFT treats the systems on the
level of model Hamiltonians and LSDA reliably describes the weakly-
interacting systems, the LSDA+DMFT can provide a reasonable ap-
proximation to the exact functional. As pointed out by Savrasov [49],
one can think about the LSDA as the most primitive impurity solver,
which derives an extremely local self-energy with its localization radius
collapsed to a single r point. This allows to consider the interaction
contribution ΦSDF as a functional of the localized Green’s function Gloc

and the local density ρ:

Φ [Gloc, ρ] = EH [ρ] +ELSDA
xc [ρ] + Φ̃ [Gloc] − ΦDC [Gloc] , (5.49)

where the functional Φ̃ [Gloc] accounts for the strongly correlated local-
ized electrons which cannot be adequately described by LSDA, while
the solution of the impurity model for the itinerant electrons is well ap-
proximated by LSDA and does not need an energy resolution for their
self-energies. The unseparated contributions from the localized and iti-
nerant electrons are accounted via the corresponding double-counting
term ΦDC [Gloc]. The discussion of the DC terms in principle can be
extended from the LSDA+U approach. During the last few years dif-
ferent formulations for the double-counting for particular systems were
proposed [91–95], however none of them can be considered as a rigorous
method to treat the double-counting in the general case. Thus it still
remains one of the shortcoming aspects of LSDA+DMFT method.

A further approximation simplifying the calculations can be made
by considering the SDF as dependent only on the correlated sub-block of
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the Gloc matrix. Indeed, within the localized orbital basis the subspace
of the correlated orbitals can be well-identified. Thus all saddle-point
equations (Fig. 5.4) will involve the size-reduced matrices. As an in-
put the Green’s function G0 for the DMFT scheme the LSDA Green’s
function GLSDA is used.

When the DMFT self-consistency is achieved one can use the con-
verged auxiliary function G to calculate the new density of states which
will in turn modify the Hartree EH [ρ] and the exchange-correlation
ELSDA

xc [ρ] energies. This leads to the doubled iterative procedure which
delivers the minimum of the SDF as a functional of two variables.

Implemented in the form of the LSDA+DMFT scheme, DMFT
studies have already solved many long-standing problems in the des-
cription of correlated systems. Among these results one can mention
the work of Savrasov and Kotliar [84] who gave an explanation for the
mechanism of the α-δ phase transition and the so-called “three-peak”
structure in the photoemission spectrum of Pu. The properties of Mott
insulators were studied by Nekrasov et al. [23] and Laad et al. [96].
The problem of magnetic properties and the DOS spectrum of transi-
tion metals was investigated by Lichtenstein and Katsnelson [93, 97].
The improved description of the pure Fano-effect in the valence band
photoemission of ferromagnets was done by Minár et al. [98]. The des-
cription of angular-resolved photoemission of Ni was done by Braun

et al. [95]. The description of optical and magneto-optical properties in
transition metals was given by Perlov et al. [99, 100] and Chadov et al.

[101].
As it was mentioned above, by taking into account that the notion

of locality is not restricted to the single-site and could be extended to
a cluster or supercell, DMFT could be applied within cluster methods
which leads to the account of some k-dependence of the self-energy,
which is important for the proper description of any type of the non-
local correlations. Since the cluster models interpolate between the
single-site and the full lattice description with increasing cluster size,
they assume 1/d corrections to the DMFT in a non-perturbative way.
Depending on the form in which the “local” Green’s function is derived
in the particular cluster approach combined with the particular imple-
mentation of the DMFT solver it leads to different generalized cluster
techniques as dynamical cluster approximation (DCA) [102, 103] and
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cellular DMFT (CDMFT) [104]. A detailed overview of various cluster
and cellular schemes combined with DMFT can be found in Ref. [105].
One of the complicated aspects in this methods is the proper construc-
tion of the additional inter-site components to the Coulomb interaction
matrix which could be neglected for small clusters but with increasing
size become essential and the effective impurity problem becomes rather
complex. Thus, currently the computational most demanding methods
available for the DMFT are restricted to small clusters. In this respect
a particular interest gain the approach suggested by Sadovskii et al.

[106] in which the analytical expression for the k-dependent self-energy
which accounts for the dynamical non-local short-range collective spin-
density wave-like antiferromagnetic spin fluctuations is derived.
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Chapter 6

Numerical implementation

6.1 DMFT within the KKR method

6.1.1 Solution of the Kohn-Sham equations

For a long time the DMFT scheme was implemented using one of differ-
ent band structure methods based on the LMTO formalism [107, 45, 46,
84, 49]. This gave the opportunity to calculate the electronic structure
for a variety of systems with different degrees of electronic correlations.
In particular, the importance of charge self-consistency first mentioned
in Refs. [84] and [49] has given an important insight into the long-
standing problem of the phase diagram and localization of f -electron
systems and has been used to describe the correlations in half-metallic
ferromagnetic materials [108]. As an alternative to the band structure
methods, more accurate self-consistent methods for solving the Kohn-
Sham equations based on the LSDA in terms of the Green’s functions
have been developed within the multiple scattering theory [109–112].

The first extension of the KKR equations including the on-site lo-
calized multi-orbital dynamical self-energy was proposed in [113]. In
the framework of multiple scattering theory the solution of Eq. (5.4)
is constructed in two steps. For a first step one solves the single-site
scattering problem, to obtain the regular and irregular solutions of the
corresponding Schrödinger equation and the scattering amplitude given
in terms of the single-site t-matrix.

In terms of the four-component relativistic wave functions Φ(r, ǫ)
the corresponding single-particle Kohn-Sham-Dirac equation [114, 115]

65
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with the additional energy-dependent non-local potential Σ reads:
[

c

i
~α ~∇ +

c2

2
(1 − β) + V (r) − ǫ

]

Φ(r, ǫ)

=

∫

d3r′ Σ(r, r′, ǫ)Φ(r′, ǫ) , (6.1)

with αi (i = 1, 2, 3) and β the conventional 4 × 4 Dirac matrices and
σi (i = 1, 2, 3) being the Pauli spin matrices in their relativistic form.
The potential V (r) is conveniently decomposed into

V (r) = Veff(r) + β ~σ · ~B(r) , (6.2)

with Veff the spin-averaged part of the potential including nuclear,
Hartree and spin-averaged exchange-correlation contributions, and
β~σ ~B is its spin-dependent part.

Because of the localized nature of the DMFT the non-local self-
energy can be represented using an arbitrary set of localized spherically
symmetric functions φΛ(r):

Σ(r, r′, ǫ) =
∑

ΛΛ′

ΣΛΛ′(ǫ)φ†Λ(r)φΛ′(r′) . (6.3)

The right-hand part of the Eq. (6.1) can be approximately written as
follows [113]:

∫

d3r′ Σ(r, r′, ǫ)Φ(r′, ǫ) =
∑

ΛΛ′

ΣΛΛ′(ǫ)φ†Λ(r)

∫

d3r′φΛ′(r′)Φ(r′)

≈
∑

ΛΛ′

ΣΛΛ′(ǫ)Φ(r) . (6.4)

The solution of Eq. (6.1) is represented by the ansatz

Φ(r, ǫ) =
∑

Λ

(

gΛ(r, ǫ)χΛ(r̂)

ifΛ(r, ǫ)χ−Λ(r̂)

)

, (6.5)

where g and f are radial parts of the major and minor components and
the spin-angular function χΛ is given by

χΛ(r̂) =
∑

σ

C σ
ΛY

µ−σ
l (r̂)χσ , (6.6)
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with C σ
Λ = C(l, 1

2, j;µ− σ, σ) the Clebsch-Gordon coefficients, Y µ−σ
l (r̂)

complex spherical harmonics and χσ the Pauli spinor functions [116].
The spin-orbit and relativistic quantum numbers κ and µ, respectively,
have been combined to Λ = (κ, µ), with −Λ = (−κ, µ). Inserting Φ
into Eq. (6.1) leads to a set of coupled radial equations, where the
self-energy is taken into account only for the major component:

∂

∂r
PΛ = −κ

r
PΛ +

[ ǫ

c2
+ 1
]

QΛ − 1

c2

∑

Λ′

V −
ΛΛ′QΛ′ ,

∂

∂r
QΛ =

κ

r
QΛ − ǫPΛ +

∑

Λ′

[

V +
ΛΛ′ + ΣΛΛ′(ǫ)

]

PΛ′ . (6.7)

The auxiliary functions P and Q are defined as

PΛ(r, ǫ) = rgΛ(r, ǫ) ,

QΛ(r, ǫ) = crfΛ(r, ǫ) . (6.8)

The potential matrix is defined as

V ±
ΛΛ′(r) = 〈χ±Λ|Veff ± ~σ ~B |χ±Λ′〉 . (6.9)

The number of coupled partial waves is restricted to 2(lmax + 1)2 by
fixing an upper limit lmax for the angular momentum expansion of the
wave function in Eq. (6.5). For example, for lmax = 2 one has up to 18
partial waves coupled; i.e., one has to solve up to 36 coupled equations
for the functions P and Q. However, for a cubic system with B̂ = ẑ
and lmax = 2 one has at most 3 partial waves coupled due to the high
symmetry of the system.

Using the above radial differential equations a set of 2(lmax + 1)2

linearly independent regular solutions can be created by initializing the
outward integration with a selected spin-angular character dominating
close to the nucleus; i.e., one demands that

ΦΛ(r, ǫ) =
∑

Λ

ΦΛΛ′(r, ǫ)
r→0−→ ΦΛΛ(r, ǫ) . (6.10)

After having solved the system of coupled equations for the wave func-
tions ΦΛ one gets the corresponding single-site t-matrix by introducing
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the auxiliary matrices a and b:

aΛΛ′(ǫ) = −ipr2
[

h−Λ(r, ǫ),ΦΛΛ′(r, ǫ)
]∣

∣

r=R
,

bΛΛ′(ǫ) = ipr2
[

h+
Λ(r, ǫ),ΦΛΛ′(r, ǫ)

]∣

∣

r=R
, (6.11)

with p =
√

ǫ(1 + ǫ/c2) the relativistic momentum [116] and [...] de-
notes the relativistic form of the Wronskian [117], R is the Wigner-
Seitz radius. The functions h± are the relativistic version of the Hankel
functions of the first and second kind [116]:

h±Λ(r, ǫ) =

√

1 + ǫ/c2

c2





h±l (pr)χΛ(r̂)
ipc sgn(κ)

ǫ+ c2
h±

l̄
(pr)χΛ̄(r̂)



 , (6.12)

with the angular momentum l̄ = l − sgn(κ) for the minor component
corresponding to −κ. Finally, the single-site t-matrix is obtained as

t(ǫ) =
i

2p
[a(ǫ) − b(ǫ)] b−1(ǫ) . (6.13)

By a superposition of the wave functions according to the boundary
conditions

ZΛ(r, ǫ) =
∑

Λ′

ZΛ′Λ(r, ǫ)
r→R−→

∑

Λ′

jΛ′(r, ǫ)t−1
Λ′Λ(ǫ) − iph+

Λ(r, ǫ) , (6.14)

one gets an alternative set of linearly independent regular solutions Z
to the single-site Dirac equation. These functions are normalized in
analogy to non-relativistic multiple-scattering theory according to the
convention of Faulkner and Stocks [111] and allow us straightforwardly
to set up the electronic Green’s function (see below). The additionally
needed irregular solutions J are fixed by the boundary condition

JΛ(r, ǫ)
r→R−→ jΛ(r, ǫ) , (6.15)

and are obtained by inward integration. The functions jΛ are the rel-
ativistic version of the spherical Bessel functions defined in analogy to
Eq. (6.12).

Having constructed the regular and irregular solutions of the single-
site problem together with the t-matrix the corresponding expression
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for the Green’s function reads [111]:

G(r + Rn, r
′ + Rm, ǫ) =

∑

ΛΛ′

Zn
Λ(r, ǫ)τnm

ΛΛ′(ǫ)Zm×
Λ (r′, ǫ)

− δmn

∑

Λ

[

Zn
Λ(r, ǫ)Jn×

Λ (r′, ǫ)Θ(r′ − r)

+ Jn
Λ(r, ǫ)Zn×

Λ (r′, ǫ)Θ(r − r′)
]

. (6.16)

The vectors r and r′ are restricted to the n-th and m-th unit cell vol-
umes, which are centered at Rn and Rm respectively. The superscript
”×” is used to distinguish between right- and left-side solutions to
Eq. (6.1). Fortunately, the latter ones are obtained from the same
radial differential equations as the conventional right-hand side solu-
tions Z and J ; i.e., from Eqs. (6.7) with the potential matrix elements
VΛΛ′ replaced by VΛ′Λ.

The central quantity in Eq. (6.16) is the scattering path operator
τ which for the case of the periodic crystal can be obtained via the
Brillouin zone (BZ) integration:

τnm(ǫ) =
1

VBZ

∫

BZ

d3k
[

t−1(ǫ) −G(k, ǫ)
]−1

eikRnm , (6.17)

where VBZ is the volume of the first BZ and Rnm = Rn−Rm and G(k, ǫ)
is the Fourier transform of the real space KKR structure constants
matrix [118] depending only on the relative positions of the scatterers.

In order to obtain the effective impurity Green’s function used in
the DMFT scheme, the KKR Green’s function (6.16) must be projected
onto the impurity site. This is achieved by performing the following
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projection step using the basis functions φΛ:

Gnn
ΛΛ′(ǫ) = τnn

ΛΛ′(ǫ)
∑

Λ1Λ2

[
∫

d3r′φ†Λ(r′)ZΛ1
(r′, ǫ)

] [
∫

d3r′Z×
Λ2

(r′, ǫ)φΛ′(r′)

]

−
∑

Λ1

∫

d3r′





r′
∫

0

d3r′′φ†Λ(r′′)ZΛ1
(r′′, ǫ)



J×
Λ1

(r′, ǫ)φ×Λ′(r′)

−
∑

Λ1

∫

d3r′





rWS
∫

r′

d3r′′φ†Λ(r′′)JΛ1(r
′′, ǫ)



Z×
Λ1

(r′, ǫ)φ×Λ′(r′) . (6.18)

As discussed in Sec. 5.6, only the selected l-diagonal block is used in
the following. For transition metals dealt with mostly here this implies
that only the d-block is considered.

As a rather natural choice of the basis functions the set of ZΛ func-
tions could be taken. However, the numerical tests have shown that the
procedure becomes unstable if the basis functions are energy depen-
dent. To stabilize it we have fixed them at the certain reference energy
corresponding to the center of mass of the correlated shell, which at
each iteration is recalculated.

The scheme of the whole self-consistent LSDA+DMFT approach
adapted within the KKR method is presented in Fig. 6.1. The self-
consistent algorithm corresponds to the general DMFT scheme outlined
in Fig. 5.4. The specific features of the scheme are the following.

The full one-particle Green’s function GLSDA+DMFT is found by solv-
ing the Kohn-Sham-Dirac equations (6.1) which explicitly account for
the localized self-energy Σ. Thus, the Green’s function GLSDA+DMFT

straightforwardly can be identified with the auxiliary Green’s function
G that is used to extract the localized contribution Gloc by projecting
onto the corresponding orbital basis (see Eq. (6.18)). Then the bath
Green’s function G0 (only the d-block of the corresponding matrix) is
calculated using the saddle-point equation (5.48). These steps are sum-
marized in Fig. 6.1 a).

Since all the quantities are built in terms of the analytical retarded
Green’s functions, all the corresponding saddle-point equations can be
written for any complex energy in the upper semi-plane. The choice of
the complex energy mesh provides a satisfactory balance between the
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a)

d) Hilbert
transform

b) Pade approximation’

impurity
solver

c) Anderson
model

Σ(z) ⇒ KSD equations
⇓

G(z) = GLSDA+DMFT(z)

⇓

Gloc(z) = G(z) · θ

⇓

G0(z) = [Gloc(z)−Σ(z)]−1

ǫǫF

G0(z)

G0(ǫ)

Σ(ǫ)

Σ(z)

Fig. 6.1. Self-consistent KKR+DMFT scheme using the impurity solverfor real energies.
The horizontal line represents the real energy axis, with the vertical - imaginary axis cross-
ing at the Fermi levelǫF. Panel (a): the LSDA delocalized Green’s function is calculated
from solutions of the Kohn-Sham-Dirac equation on the complex energy contour (semicir-
cle). Panel (b): localized (single-site projected) Green’s function is continuated analytically
onto the real axis via the Padé approximation. Panel (c): the real-axis impurity solver is
applied to calculate the localized self-energyΣ(ǫ). Panel (d): the self-energy is analytically
continued to the complex contour by an integral Hilbert transformation.

requirements of the highest average imaginary part of energy in order
to keep the number of energy points and the k-points low and the total
length of the curve which in turn makes an impact on the number of
energy points. The currently used complex energy mesh is taken in
the form of a semi-circle with the diameter equal to ǫF − ǫB (ǫB: the
bottom of the valence band) and turned out to be a good compromise
in practical calculations.

In the current implementation two comparable solvers for the
DMFT problem are used: the first one, the TMA (T -matrix approxi-
mation) utilizes the real axis formalism described in Sec. 3.3, another
one [47], the so-called FLEX (T -matrix Plus Fluctuation Exchange) is
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implemented for a complex energy mesh using the Matsubara poles.
In fact any DMFT solver which derives the self-energy for the corres-

ponding impurity problem can be used. In both cases the Padé analyti-
cal continuation (often called Padé approximation) [119] is used to map
the bath Green’s function G0 onto the real axis (Fig. 6.1 b)) (or on the
Matsubara poles) where the many-body problem is solved (Fig. 6.1 c)).
To map back the self-energy from the real axis to the complex plane
the Hilbert transformation (3.34) (or if the self-energy is calculated on
the Matsubara poles - one more Padé approximation) is used, where
the GLSDA+DMFT Green’s function is in turn calculated by solving the
Kohn-Sham-Dirac equations with the new self-energy (Fig. 6.1 a)).

This self-consistent procedure assumes the simultaneous converging
of the local density ρ and the self-energy Σ.

6.1.2 Common features and comparison of the DMFT solvers

According to its construction, the self-energy follows the structure of
the input Green’s function in all the channels and all the orders of per-
turbation theory, having all the symmetry operations which the corres-
ponding Green’s function matrix has. Thus, for example, if we consider
the non-relativistic case, neglecting the spin-orbit coupling, the spin-
flip matrix elements of the self-energy will be zero and the matrix can
be turned to diagonal form by corresponding unitary rotation. If one
works within the spherical potential approximation and is not inter-
ested in the orbital polarization, a practical way is to take the average
over the different elements for each spin channel. The self-energy ap-
plied even in such a simple form already leads to pronounced effects
connected with the spectral properties of 3d-transition metals which
are missed within the LSDA picture. As it follows from various inves-
tigations, the most important role in the improvement of the LSDA
description of DOS, angle-integrated photoemission, total energy and
optical conductivity spectra in 3d-transition metals is played by the
2nd-order (PP) channel of the self-energy, while the static (1st-order)
contribution is rather small and is normally neglected by setting the
self-energy to zero on the Fermi-level. The typical influence of the 2nd-
order self-energy on the DOS spectrum is shown on Fig. 6.2 for hcp Co.
As it follows, the DMFT leads to a noticeable renormalization of the
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Fig. 6.2. Left panel: spin-resolvedd-DOS of hcp Co calculated via the LSDA (full line)
and the LSDA+DMFT (dashed line:U=2.5 eV, dotted line:U=3.5 eV) approach within the
self-consistent KKR+DMFT(TMA) scheme. The correspondingspin-polarized orbital-av-
eraged real and imaginary self-energies are presented in the right panel.

majority-spin DOS spectrum, by shifting the peaks situated near the
Fermi level closer to it and making the band more narrow. Towards the
Fermi level the changes of the DOS spectrum become smaller along with
a correspondent behavior of the self-energy. Due to the small amplitude
of the minority-spin self-energy the changes in the corresponding DOS
component are small as well.

The qualitative analysis of the changes in the DOS spectrum im-
posed by the DMFT is given on Fig. 6.3. As it follows, in the vicinity
of the Fermi level the real component of the self-energy shifts the poles
of the Green’s function closer to the Fermi level, without shifting them
beyond. This means that the integral properties of the system, as, e. g.
magnetic moments are not affected. In general one can expect some
density transfer over the Fermi level due to the imaginary component
of the self-energy which causes some additional broadening of the DOS
peaks. However, since such DOS transfer occurs in both directions and
the broadening width falls down towards the Fermi level rather fast (as
∝ α(ǫ− ǫF)2) it should not noticeably affect the integral properties of
the system. An exception can only be expected for strongly correlated
systems with the large peak of the density of states at the Fermi level
as e. g. in correlated impurities or heavy fermionic systems. However,
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0

0

A

poles of the LSDA Green’s function

peaks shifted and broadened by the DMFT

ǫi ǫi

1 + α

ǫ − ǫF

ǫ − Re Σ(ǫ)

ImΣ(ǫ)

2 |ImΣ|

Fig. 6.3. Schematic illustration of the changes in the one-particle spectrum imposed
by DMFT in the vicinity of the Fermi energy. The addition of the real self-energy
ReΣ(ǫ) ≈ −α(ǫ− ǫF), α > 0, shifts the peaksǫi by1+α times closer to the Fermi energy.
The additional broadening of the shifted peaks occurs due tothe imaginary part of the self-
-energy, ImΣ(ǫ) ≈ −α(ǫ − ǫF)2. The broadening can lead to a change in the occupation
due to the non-compensated transferring of states over the Fermi level as illustrated with a
larger scale on panel A.

by turning to moderately correlated systems, the following tests for the
transition metals show that there is almost no influence of the dynam-
ical effects on their magentic moments observed. The corresponding
results for bcc Fe, hcp Co and fcc Ni are shown on Fig. 6.4. As it
follows, the relative change of the magnetic moments caused by the
broadening of the peaks within the LSDA+DMFT calculations with
respect to the corresponding LSDA moments makes at most 2.5-3%
in the case of Fe. For Co and Ni the deviations from LSDA values
are much smaller. Thus, the magnetic moments in locally correlated

systems depend mostly on static correlation effects.

Far from the Fermi level (e. g. around -7 eV in the case of Co
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Fig. 6.4. Relative values of the spin (open circles) and orbital (filled circles) magnetic
moments of bcc Fe, hcp Co and fcc Ni calculated within the self-consistent LSDA+DMFT
approach as a function ofU with respect to the corresponding LSDA values. The value of
J parameter is fixed at 0.9 eV.

(Fig. 6.2)) the real component of the self-energy changes its sign and
the DOS peaks are shifted into the opposite direction. Together with
the corresponding large broadening in this energy regime it forms the
so-called lower Hubbard band represented by the satellite centered ap-
proximately at 7 eV for U=2.5 eV and at 9 eV for U=3.5 eV.

When studying the influence of localized correlations on such deli-
cate properties as orbital moments, complicated angle-resolved photoe-
mission spectra and magneto-optical spectra, one has carefully account
for the orbital polarization of the self-energy which possesses a rather
complex structure within the fully-relativistic treatment: even if the
spin-flip terms are neglected, the crystal symmetry is broken and we
have to calculate at least 10 non-vanishing elements of the 10 × 10
self-energy matrix. For such a calculation a high precision within the
whole LSDA+DMFT procedure is required, in particular it should be
combined with an account for the non-spherical potential in order to
account correctly for orbital polarization. The situation becomes more
complex if we consider the 5f actinide metal systems. The large spin-
orbit coupling results in a huge amplitude of the spin-flip elements of
the Green’s function and in turn, in large spin-flip matrix elements of
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the self-energy. For this case one has to perform precise calculations
for about 30 non-vanishing energy-dependent matrix elements (accord-
ingly within the impurity solver one will deal with roughly 1000 energy-
dependent elements). Moreover, since the dynamical many-body effects
are exceptionally strong for these systems, the influence of the higher-
order channels as well as of the static contributions should also be in-
vestigated. However, due to the complexity of the 5f actinide systems
this question cannot be answered yet.

The comparison of the corresponding self-consistent self-energies
and densities of states for both TMA and FLEX solvers is given in
Fig. 6.5.

It is instructive to figure out the significance of the 3rd-order chan-
nel since the T -matrix approximation accounts for the 2nd-order PP-
channels only. For this purpose we compare two available solvers,
namely the real-axis T -matrix approximation (TMA) (Sec. 3.3) with
another one, the Matsubara-based T -matrix approximation including
additional 3rd-order PH-channel (FLEX) [47], both implemented in the
self-consistent KKR+DMFT scheme. The additional possible differ-
ence caused by the finite-temperature entropy contribution implicitly
accounted within the Matsubara formalism should be rather small for
the commonly used in FLEX temperature regime T ≈ 400 K that cor-
responds to 0.03 eV. Thus, the main difference between the two solvers
should originate from the 3rd-order contribution.

Filling the d-shell by moving from Fe to Ni one observes more or less
a noticeable difference only for the majority spin-channel in the DOS
spectra caused by the larger majority-spin amplitudes of the self-energy.

To ensure that the effect of the finite temperature is indeed small
we perform complementary FLEX calculations with a PH-channel
switched off (Fig. 6.6). As it follows, despite of the temperature
difference (400 K), the DOS calculated within the real-energy TMA
and complex-energy TMA schemes both using only the 2nd-order PP-
channel become nearly indistinguishable. Thus, we can conclude that
although the influence of the 3rd-order channels is much smaller than
that of the 2nd-order, its contribution is more pronounced than the
entropy contribution in the room-temperature regime.

Since the results of both methods agree very well, we can con-
sider the real-axis-based T -matrix approximation as a reliable technique
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Fig. 6.5. Comparison of the two impurity solvers within the self-consistent KKR+DMFT
calculation of DOS (upper panel) for bcc-Fe, fcc-Co and fcc-Ni. Solid and dashed lines
correspond to the TMA and FLEX (T=400 K) schemes, respectively. In both schemes
the Coulomb effective parameters areUFe=2.0 eV,UCo=2.5 eV,UNi=3.0 eV. The effective
exchange parameter has a value ofJ=0.9 eV for all three systems. The Fermi energy is
set to zero. The lower panels represent the corresponding comparison of spin-resolved
orbital-averaged imaginary self-energies.

which recovers the main features imposed by the dynamical correlations
in 3d-transition metals.

6.2 Application to ground-state properties

6.2.1 Orbital magnetic moments

While the spin magnetic moments in 3d-transition metals, their alloys
and impurities are described rather accurately by LSDA, the orbital
moments are systematically underestimated. For example, the average
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Fig. 6.6. The same comparison as in Fig. 6.5. The dotted one marks calculations using
only the PP-channel in the FLEX scheme (T=400 K).

underestimation for Fe is about 40%, and for Co - about 50%. The
reason for this is well-known: the functional variables of the LSDA
potential (the charge and spin density) are defined as an average over
occupied orbitals. It is natural that such an approximation gives a
good description only for the quantities which are slightly dependent
on the deviations of orbital occupation numbers from their average, as
e.g. spin magnetic moments.

The approximate expression for the orbital moment generally used
within relativistic density functional theory is the following [120]:

µorb = −µB

π
Im

ǫF
∫

dǫ

∫

d3r β lz G(r, r, ǫ) , (6.19)

where β is one of the 4×4 Dirac matrices, lz is the z component of
the 4×4 matrix vector lz = I4 ⊗ (l)z with l the conventional angular
momentum operator. Using perturbation theory one can also show
that the most substantial contribution to µorb is connected with the
differences of the m and −m components of the Green’s function at the
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Fermi level:

µorb ∼ −µB

π
Im
∑

m>0

m
[(

G↑
mm−G↑

−m−m

)

+
(

G↓
−m−m−G↓

mm

)]

∣

∣

∣

∣

∣

ǫ=ǫF

. (6.20)

Thus, the obvious way to increase the orbital moment would be to
use a theoretical approach that accounts for an additional splitting of
Gσ

mm −Gσ
−m−m while retaining at the same time Gσ

mm −G−σ
mm in order

to have the spin moment unchanged [121].
An often used approach to improve the description of orbital mag-

netism is the so-called orbital polarization correction (OP) scheme in-
troduced by Brooks et al. [81–83] in a form of an additional ad hoc term
to the Hamiltonian. As it was shown later by Ebert et al. [122], the OP
enhancement can be partially achieved by utilizing the more general
CDFT (current density functional) theory. Finally, Eschrig et al. [123]
analyzing the CDFT have derived a systematic expression for the OP
correction (for an overview and results of this approach see Ref. [124]).
However, despite of the accurate description of the orbital moments in
pure 3d-transition metals and their alloys [125, 126], the LSDA+OP cal-
culations noticeably overestimate the unquenched orbital moments of
the 3d-transition metal impurities in noble metal hosts [127, 121, 124].
In the case of deposited clusters Gambardella et al. [128] indicated the
need to reduce the Racah parameter by about 50% in order to describe
the experimental orbital moments correctly. However, the calculated
magnetic anisotropy is still much too high [128, 129].

Among other reasons for the non-systematic results in the previous
OP-based studies, could also be the insufficient account of localized
many-body correlations. In particular, Solovyev et al. [130, 131] showed
on the basis of model calculations within the random-phase approxi-
mation that the OP picture represents the limiting case of the more
general LSDA+U concept. Thus, based on the discussion (see Sub-
sec. 6.1.2) of the crucial influence of the static many-body interactions
on the delicate balance of the magnetic properties (i.e. spin and orbital
moments), we address the maturely developed LSDA+U technique.

As mentioned above, there are two cases when the DC can be ex-
actly accounted for: the so-called atomic limit (AL) which corresponds
to the case when the particular orbital is either fully occupied or fully
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empty and the mean-field (MF) which corresponds to the uniform or-
bital occupation [19]. In the following test for pure bulk Fe, Co and Ni
we try to figure out which one is more appropriate.
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Fig. 6.7. Relative values of the spin (squares) and orbital (circles)magnetic moments of
bcc Fe, hcp Co and fcc Ni calculated self-consistently within the KKR+LSDA+U approach
as a function ofU with respect to the corresponding averaged experimental values. The
experimental averages are taken over the results given in Refs. [132–134]. Filled squares
and circles correspond to the AL-type of DC, open symbols to the MF-type. The value of
J parameter is fixed at 0.9 eV. The caseU=0 corresponds to a plain LSDA calculation.

In general one observes a strong dependency of the orbital mag-
netic moments and a rather slight one of the spin moments on localized
correlations, which is similar to the OP correction: the small orbital
splittings imposed by the LSDA+U around the Fermi level have almost
no effect on the spin, but enhance the orbital moment appreciably. On
the other hand, the results noticeably depend on a particular type of
DC. It turns out that the MF (mean-field) DC is a more appropriate
choice than the AL-DC which leads to an enormously big growth of the
orbital moments with increasing U parameter. This result is rather nat-
ural, since the AL-DC is more suitable for insulators with the Coulomb
U much larger than the bandwidth. For Fe one finds the optimal U
around 1.3 eV, for Co 1.75 eV and for Ni 1 eV. However, as it follows
from the various DMFT studies as well as DMFT+GW-based estima-
tions [135], the realistic value of U for 3d-transition metals should be
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approximately 1-2 eV higher. The choice of a MF-DC substantially
suppresses the growth of the orbital as well as for the spin moments
and leads to optimal U values around 2 eV for bcc Fe, 2.5-3 eV for hcp
Co and in the range of 1-3 eV for fcc Ni which much better agrees with
the estimations mentioned above.

The final comparison with experiment for the spin and orbital mag-
netic moments, calculated within LSDA+U using MF-DC with the op-
timal values U = 2 eV for bcc Fe, U = 2.5 eV for hcp Co and U = 3 eV
for fcc Ni is shown on Fig. 6.8.
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Fig. 6.8. Spin (right panel) and orbital (left panel) magnetic moments in bcc Fe, hcp Co
and fcc Ni calculated using LSDA+U with MF-DC (black filled bars) compared with plain
LSDA calculations (open bars) and experimental data (hatched bars) taken from [132–134].
The corresponding DMFT parameters areUFe = 2.0 eV,UCo = 2.5 eV andUNi = 3.0 eV
andJFe = JCo = JNi = 0.9 eV.

Among other advantages, the SPR-KKR method utilized in the
present work can be straightforwardly combined with the Coherent Po-
tential Approximation (CPA) theory describing disordered alloys with
the LSDA+U or/and DMFT schemes. The latter is illustrated for bcc
FexCo1−x disordered alloys. As can seen from Fig. 6.9, while the spin
magnetic moments for all approaches agree rather well, LSDA+U con-
siderably improve the orbital moments in comparison with plain LSDA
calculations in a way similar to the result obtained by Ebert and Bat-

tocletti using the LSDA+OP combined with the CPA [126].
As a further example we consider the unquenching of the orbital

moment of 3d impurities embedded in the noble metal Au. In Fig. 6.10
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Fig. 6.9. Spin (right panel) and orbital (left panel) total magnetic moments of disordered
bcc FexCo1−x alloys calculated as a function of concentrationx via the LSDA+U-MF
(black squares), compared with present plain LSDA (open squares, black line) and
LSDA+OP calculations (light filled circles, dashed line) [126], and experimental data (tri-
angles) taken from Refs. [132]. The corresponding LSDA+U parameters areUFe = 2.0 eV,
UCo = 3.0 eV andJFe = JCo = 0.9 eV.

the results of LSDA+U (MF) calculations are compared with the ex-
perimental orbital to spin moment ratios [127]. In light of the previ-
ous discussion (Subsec. 6.1.2) concerning the possibility of a more pro-
nounced influence of dynamical correlations on the magnetic properties
in the systems with a high DOS near the Fermi level additional cal-
culations (LSDA+U(MF)+DMFT) accounting for static and dynamic
correlations have been performed. The observed agreement for the Co
impurity is very satisfying and we obtain a considerable improvement
when comparing to previous OP studies [127, 121, 124]. These studies
give a ratio of about 1.2 to be compared with experimental value 0.35,
that agrees very well with our result. The small deviation for Fe from
experiment could be attributed to the partially itinerant behavior of
d-electrons in Fe which was also indicated in previous DMFT stud-
ies (e. g. in Ref. [99]). On the other hand, the absolute value of the
deviation is comparable to that in the case of Co.

Both the LSDA+U and the LSDA+U+DMFT calculations give



6.2. Application to ground-state properties 83

0

0.1

0.2

0.3

µ or
b / 

µ sp
in

Expt: Brewer, 2004
LSDA
LSDA+U (MF)
LSDA+U (MF)+DMFT

Fe
0.008

Au
0.992 Co

0.015
Au

0.985
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JFe =JCo = 0.9 eV.

nearly the same result thus one can conclude that in these type of sys-
tems there is no pronounced influence of dynamical correlations effects
on their magnetic properties.

6.2.2 Calculation of the total energy

Considering the localized dynamical self-energy as a small perturba-
tion Σ(ǫ) in the system described within the LSDA the approximate
expression for the corresponding total energy can be derived by retain-
ing only the terms linear with respect to the perturbation. Obviously,
all the terms in Eq. (5.10) except for the band contribution are at least
2nd-order in density (or Green’s function). Thus the change of the total
energy is caused mainly by the band-energy change. It can be derived
using the following equation for the perturbed LSDA Green’s function
G = G(ǫ+ Σ(ǫ)):

G(ǫ) = G(ǫ) +G(ǫ)Σ(ǫ)G(ǫ) . (6.21)

Taking into account that G(ǫ) ∼ 1/ǫ the corresponding band energy
will be represented as following:

Eband = −1

π
Im

ǫF
∫

dǫ ǫ [G(ǫ) +G(ǫ)Σ(ǫ)G(ǫ)]

≈ ELSDA
band − 1

π
Im

ǫF
∫

dǫ Σ(ǫ)G(ǫ) (6.22)
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The last term can be identified as the so-called Galitsky-Migdal energy
EGM [136, 137], multiplied by a factor of two:

EGM =
1

2
Tr {ΣG} . (6.23)

Thus, the total energy of the perturbed system can be approximated
as

Etot ≈ ELSDA
tot − 1

π
Im

ǫF
∫

dǫ Σ(ǫ)G(ǫ). (6.24)

Analogously, one can consider the SDFT expression for the total
energy (5.45) with the interaction part given by Eq. (5.49). The ki-
netic contribution given by the Baym-Kadanoff theory (see Eq. (5.44))
can be represented as

K [G] = Tr {lnG} − Tr
{(

G−1 − G−1
)

G
}

= Tr {lnG} + Tr {ΣG} (6.25)

The last term can be identified with the dynamical part of the exchange-
correlation energy Φ̃xc [G], since Σ = δΦ̃xc [G] /δG. Neglecting the
double-counting of the dynamical contribution ΦDC = 0, this leads
to an expression for the corresponding total energy:

Etot = Tr {lnG} + Tr {ΣG} + Tr {ΣG} + ELSDA
H [ρ] + ELSDA

xc [ρ]. (6.26)

Approximating the first term as

Tr {lnG} = Tr
{

ln
(

G−1 + Σ
)−1
}

= −Tr
{

ln
(

G−1 (1 + ΣG)
)}

= Tr {lnG} − Tr {ln (1 + ΣG)}
≈ Tr {lnG} − Tr {ΣG} (6.27)

and retaining in Tr {ΣG} only the 1st-order terms we arrive at a relation
similar to Eq. (6.24):

Etot ≈ Tr {lnG} + Tr {ΣG} + ELSDA
H [ρ] +ELSDA

xc [ρ]

= ELSDA
tot + Tr {ΣG} , (6.28)
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where the trace acts as

Tr {AB} = −1

π
Im

ǫF
∫

dǫ

∫

d3rd3r′A(r, r′, ǫ)B(r′, r, ǫ). (6.29)

The following test for bulk fcc Ni (Fig. 6.11) probes the precision of
the approximations in Eqs. (6.26) and (6.28). As it follows, by adding
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Fig. 6.11. The total energy per atom
for fcc Ni as a function of the lattice
constant calculated by the KKR method.
The open circles mark the LSDA re-
sults, filled squares LSDA+DMFT re-
sults. The increase of theU param-
eter (2.0, 2.5, 3.0 eV) corresponds to
the increase of the line width. Open
squares mark the sum of the LSDA total
energy and the doubled Galitsky-Migdal
contribution2EGM obtained within the
LSDA+DMFT scheme. The light dia-
monds mark the LSDA+U-MF+DMFT
result forU=3.0 eV.

the doubled Galitsky-Migdal energy to the LSDA total energy nearly
perfect agreement with the LSDA+DMFT result is obtained. This
implicitly confirms that the double-counting energy for Ni can be con-
sidered as rather small, in line with the previous discussion. Thus, the
change in the total energy imposed by the account of localized correla-
tions is caused mainly by the 2nd-order dynamical effects. Indeed, the
complementary LSDA+U-MF+DMFT (U=3.0 eV) calculations shown
in Fig. 6.11 demonstrate that the static contribution to the total energy
described within the LSDA+U approach is almost canceled by the MF-
DC.

6.2.3 Summary

Summarizing the results discussed above it is important to empha-
size the influence of localized many-body correlations in 3d-transition
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metals examined for the various situations ranging from the pure bulk
systems, to concentrated alloys and impurity systems.

In particular, when dealing with orbital magnetic moments, the
major importance of static correlations should be stressed. As it fol-
lows from the calculations, the most important contribution comes from
the 1st-order relativistic effects, i.e. primarily the orbital-resolved self-
energy has to be accounted for, while the spin-flip terms can be ne-
glected. Nevertheless, due to the small values of the orbital splittings
induced by the static correlations a highly precise self-consistent cal-
culational scheme accounting for the non-sphericity of the potential is
required.

As it also follows from the calculations of the total energy, the treat-
ment of the localized correlations can be provided more easily if one
strictly separates the static and the dynamical effects which gives an op-
portunity to apply the DMFT methods for the latter and the LSDA+U
technique for the former. Thus, the problem of the correct double-
counting could be treated separately in the context of the LSDA+U.
In particular, the MF-DC could be considered as a more appropriate
and rather universal choice in the case of 3d-transition metals instead
of the often used zero-static approximation.

6.3 Applications to photoemission

6.3.1 Introduction

Much information on the electronic structure of magnetic solids is
gained by valence band photoemission, that in particular allows to
monitor the dispersion of the electronic band structure. However, pho-
toemission spectra are very difficult to interpret without accompanying
theoretical calculations. For these in turn one in general has to solve a
corresponding many-electron problem, which is impossible without the
use of more or less severe approximations. For materials for which the
kinetic energy of the electrons is more important than the Coulomb
interaction, the most successful first principles method is the LSDA.
For the last two decades ab initio calculations of the valence band
photoemission of solids based on the LSDA yielded a good basis for
the interpretation of experimental spectra, often leading to a quanti-
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tative agreement between theoretical and experimental spectra (for an
overview see Ref. [138] and references therein). The situation is very
different when one considers materials showing pronounced correlation
effects, since in all calculations the LSDA eigen-energies are implicitly
interpreted to be the one-particle excitation energies of the system. It is
well known that there are two possible sources of error connected with
that approach: Firstly, the LSDA provides only an approximate ex-
pression for the (local) exchange-correlation potential. Secondly, even
with the exact exchange-correlation potential at hand, one is left with
the problem that there is no known correspondence between the Kohn-
Sham eigen-energies and the one-particle excitation energies [139–142].

In principle for an exact description of the excitation energies the
corresponding many-body problem has to be dealt with in a more sat-
isfying way leading to a complex and non-local self-energy.

The combination of the DMFT with the multiple scattering or Ko-
rringa Kohn Rostoker (KKR) band structure method [143] in a self-
consistent way (as discussed in the beginning of the present chapter)
allows in a straightforward way to incorporate dynamical correlation
effects into calculations of various X-ray spectroscopies among which
valence band photoemission will be discussed here.

Magnetic circular dichroism in magnetically ordered systems is
closely related to the Fano-effect [144] that also occurs as a consequence
of the spin-orbit coupling. The term Fano-effect denotes the observation
that one can have a spin-polarized photo-current from a non-magnetic
sample if circularly polarized radiation is used for excitation. While
for a non-magnetic sample the spin-polarization of the photo-current is
reversed, this symmetry is in general broken for a magnetically ordered
system leading to magnetic circular dichroism. This implies in par-
ticular that if a spin-resolved photoemission experiment is done with
circularly polarized radiation coming in along the direction of the mag-
netization of a ferromagnetic material and spin analysis of the photo-
current is done with respect to this direction, the spin-polarization of
the photo-current due to spin-orbit coupling is superimposed to that
due to magnetic ordering. In the following it is demonstrated by exper-
iments on Fe and Co that the pure Fano-effect can also be observed in
angle-integrated valence band X-ray photoemission spectroscopy (VB-
XPS) for ferromagnets, if the circularly polarized radiation impinges
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perpendicular to the magnetization and if subsequent spin analysis is
done with respect to the direction of the photon beam.

High-energy angle-resolved photoemission spectroscopy (ARPES)
for investigating valence-band dispersions has been challenged more
than 20 years ago [145]. However, only in recent years the technical
problems connected with this could be solved leading to a powerful tool
to investigate the electronic structures and Fermi surfaces of solids. In
contrast to the low-energy ARPES, which is a very surface sensitive
technique, high-energy ARPES primarily probes bulk properties of the
investigated systems. This implies in particular that it becomes possible
to investigate strongly correlated systems, with a reduced influence
of the surface on the measured spectra. So far high-energy ARPES
has been successfully applied among others to investigate a rare-earth
compounds [146, 147] and transition metal oxides [148–150]. We present
here a theoretical approach to calculate high-energy ARPES spectra
with dynamical correlation effects included, based on a fully-relativistic
formalism.

Accompanying calculations based on local spin-density approxima-
tion (LSDA) and using a fully relativistic implementation of the one-
step model of photoemission allow for a detailed discussion of the exper-
imental spectra. In addition we show that the use of LSDA in combina-
tion with dynamical mean field theory (DMFT) leads even for Fe and
Co to an improvement of the agreement of theoretical and experimen-
tal VB-XPS spectra as it will be discussed furthermore in Sec. 6.3.3.
In addition, the first theoretical results for high-energy angle-resolved
valence band photoemission of Ni are presented in Sec. 6.3.4. The theo-
retical framework for these calculations will be reviewed and introduced
in Sec. 6.3.2.

6.3.2 Theoretical framework

A rather sophisticated fully relativistic description of spin and angle-
resolved photoemission has been developed during the last years by
several groups [151–154, 138]. This is based on the one-step-model and
represents the electronic Green’s function by making use of the multiple
scattering or Korringa Kohn Rostoker (KKR) formalism. By dealing
with the multiple scattering problem in real space, a very simple ex-
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pression was derived by Ebert and Schwitalla [153] for the spin-resolved
and angle-integrated valence-band photoemission spectra of ferromag-
netic solids. In this section we will present a formalism to deal with
two special cases discussed here. This includes a generalization of the
expressions derived by Ebert and Schwitalla [153] to the spin-density
matrix formalism as described for example by Ackermann and Feder
[155] for the angle-integrated case. This approach is necessary to de-
scribe properly the pure Fano-effect observed in valence band X-ray
photoemission (VB-XPS) for ferromagnets [98]. In this case the circu-
larly polarized radiation impinges perpendicular to the magnetization
and the subsequent spin analysis is done with respect to the direction
of the photon beam. A second case discussed here is the high-energy
angle-resolved VB-XPS, which in recent years has been extensively ap-
plied to different materials to probe their bulk properties in particular
for strongly correlated compounds [147, 146, 148–150]. The dynamical
correlation effects will be accounted within the LSDA+DMFT scheme.

To deal with the geometry of the photoemission experiment de-
scribed above we adopt the spin-density matrix formalism as described
by Ackermann and Feder [155] for the angle-integrated case. This ap-
proach allows to express the photo-current and its spin polarization in
terms of the spin density matrix

ρ(ǫ) =
∑

msm′
s

|ms〉 Ĩmsm′
s
〈m′

s| . (6.30)

The intensity spin matrix Ĩmsm′
s
(ǫ,k;ω,q, λ) of the photoelectron cur-

rent observed in VB-XPS is derived by starting from Fermi’s ”golden
rule” [156]:

Ĩmsm′
s
(ǫ,k;ω,q, λ) = const

√
ǫ+ ω

∫

dr1

∫

dr2

× φ†kms
(r1, R̂, ǫ+ ω)Xλ

q(r1)

× G(r1, r2, ǫ)X
λ †
q (r2)φkm′

s
(r2, R̂, ǫ+ ω). (6.31)

Here the operator Xλ
q describes the interaction of the electrons and

the radiation field with the vector potential ~Aλ
q(ω) representing the

radiation with the energy ω, wave vector q and polarization λ. The
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initial valence band states at energy ǫ are represented by the single
particle retarded Green’s functions G(r1, r2, ǫ). The corresponding final
state φkms

is identical to a time-reversed LEED state. With the spin
density matrix ρ available the spin-averaged photo-current intensity Ī
and photo-electron spin polarization P are given as Ī = Tr {ρ} and P =
Tr {~σρ} /Ī, respectively, with ~σ the vector of spin matrices. Finally, if
a spin analysis of the photo-current is performed with respect to a
direction n̂, the corresponding spin-projected photo-current Iσ is given
by:

Iλ
σ = (1 + σP·n)Ī/2 , (6.32)

with σ = ±1 corresponding to spin-up and spin-down. In the follow-
ing, the spin density matrix is defined with respect to a right-handed
coordinate system with its z-axis chosen along the magnetization of the
sample that in turn is oriented parallel to the surface plane. The x-axis
coincides with the surface normal that specifies the direction n for the
spin analysis.

Using relativistic multiple scattering theory for spin-polarized sys-
tems, the final LEED states may be expressed by [157]:

φkms
(rn, ǫ

′) = 4π

√

ǫ′ + c2

2ǫ′ + c2

∑

Λ

i−lC−ms

Λ Y µ+ms

l (−k̂)
∑

m

eik·Rm

∑

Λ′

τnm∗
Λ′Λ (ǫ′)

[

T̂ZΛ′(rn, ǫ
′)
]

. (6.33)

Here ǫ′ = ǫ+ω is the energy of the detected photoelectrons, τnm
Λ′Λ is the

scattering path operator, while ZΛ is a regular solution to the single site
Dirac equation. The quantities Cms

Λ and Y ml

l are the Clebsch-Gordon

coefficients and the spherical harmonics, respectively. T̂ is the time
reversal operator.

Inserting Eq. (6.33) and the expression for the electronic Green’s
function [143] into Eq. (6.31) allows one to deal with spin- and angular-
resolved photoemission spectra in a fully relativistic way in complete
analogy to the approach of Feder and coworkers [158]. This leads to
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the following expression for the intensity spin matrix:

Ĩmsm′
s
(ǫ,k;ω,q, λ) = C

∑

Λ Λ′′

il−l′′C−ms

Λ C
−m′

s

Λ′′ Y µ+ms∗
l (−k̂)

×Y µ′′+m′
s

l′′ (−k̂)
∑

mm′

eik·(Rm−Rm′)
∑

nn′

eiq·(Rn−Rn′)
∑

Λ′Λ′′′

τnm
Λ′Λ(ǫ′)τn′m′∗

Λ′′′Λ′′(ǫ′)

×
[

∑

Λ1Λ2

Mqλ
Λ′Λ1

τnn′

Λ1Λ2
(ǫ)M̄qλ

Λ2Λ′′′ − δnn′

∑

Λ1

Iqλ
Λ′Λ1Λ′′′

]

. (6.34)

The corresponding transition matrix elements Mqλ
ΛΛ′, M̄qλ

ΛΛ′ and

Iqλ
ΛΛ′Λ′′ are given by [153]:

Mqλ
ΛΛ′ =

∫

dr
[

T̂ ZΛ(r, ǫ′)
]×
Xλ

q(r)ZΛ′(r, ǫ) , (6.35)

M̄qλ
ΛΛ′ =

∫

dr Z×
Λ (r, ǫ)Xλ×

q (r)
[

T̂ ZΛ′(r, ǫ′)
]

, (6.36)

and

Iqλ
ΛΛ′Λ′′ =

∫

dr

∫

dr′ [T ZΛ(r, ǫ′)]
×
Xλ

q(r)ZΛ′(r<, ǫ)

× J×
Λ′(r>, ǫ)X

λ×
q (r′) [T ZΛ′′(r′, ǫ′)] . (6.37)

Here ZΛ(r, ǫ) and JΛ(r, ǫ) are the regular and irregular solutions to the
Eq. (6.1).

For the XPS regime a number of simplifications can be used. First,
one can assume that XPS primarily probes bulk properties. This means
that it is sufficient to deal with the excitation process for a representa-
tive unit cell at R0. Second, arguments can be given [159, 160] that for
the XPS regime the k conservation does seem to hold at these energies
(how well is still to be understood - see Refs. [146–150]). As a conse-
quence, the photocurrent I(ǫ,k, ms;ω,q, λ) is determined only by the
electronic properties within the unit cell at site R0. Furthermore, all
multiple scattering events for the final state can be ignored [160] for
high energies of the exciting radiation. This single scatterer approx-
imation amounts to restrict the sum over sites Rm in Eq. (6.33) to
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Rm = Rn. Accordingly, Eq. (6.34) can be rewritten:

Ĩmsm′
s
(ǫ,k;ω,q, λ) = C

∑

Λ Λ′′

il−l′′C−ms

Λ C
−m′

s

Λ′′

× Y µ+ms∗
l (−k̂)Y µ′′+m′

s

l′′ (−k̂)

×
{

∑

Λ1 Λ2

[

∑

Λ′

t0Λ′Λ(ǫ′)Mqλ
Λ′Λ1

]

τ 00
Λ1Λ2

(ǫ)

[

∑

Λ′′′

t0∗Λ′′′Λ′′(ǫ′)M̄
qλ
Λ2Λ′′′

]

−
∑

Λ′ Λ′′′ Λ1

t0Λ′Λ(ǫ′)Iqλ
Λ′Λ1Λ′′′t

0∗
Λ′′′Λ′′(ǫ′)

}

. (6.38)

The corresponding expression gets quite simple if it is averaged with
respect to k to simulate an angle-integrated spectrum:

Ĩmsm′
s
(ǫ;ω,q, λ) = C

∑

Λ Λ′′

l = l′′

µ + ms = µ′′ + m′

s

C−ms

Λ C
−m′

s

Λ′′

{

∑

Λ1 Λ2

[

∑

Λ′

t0Λ′Λ(ǫ′)Mqλ
Λ′Λ1

]

τ 0 0
Λ1Λ2

(ǫ)

[

∑

Λ′′′

t0∗Λ′′′Λ′′(ǫ′)M̄
qλ
Λ2Λ′′′

]

−
∑

Λ′Λ′′′Λ1

t0Λ′Λ(ǫ′) Iqλ
Λ′Λ1Λ′′′ t

0∗
Λ′′′Λ′′(ǫ′)

}

. (6.39)

Finally, to compare theoretical spectra based on Eq. (6.39) various
broadening mechanisms are incorporated in a phenomenological way.
Intrinsic life-time effects are described by a Lorentzian-broadening with
an energy dependent width Γ(ǫ) = a+ b(ǫ− ǫF)2. Instrumental broad-
ening in turn is accounted by Gaussian broadening with a broadening
parameter σ (for the spectra to be shown below the following parame-
ters have been used: Fe: a = 0.01 eV, b = 0.01 eV−2, σ = 0.4 eV; Co:
a = 0.01 eV, b = 0.01 eV−2, σ = 0.2 eV). In the case of high-energy
angle-resolved VB-XPS the influence of finite life times has been rep-
resented by a Lorentzian broadening according to the kinetic energy of
the final state (Γ = 0.1 eV, as calculated from the universal curve of
electron attenuation length).

Within this approach correlation effects are represented by a com-
plex localized self-energy Σ(ǫ) that enters the Kohn-Sham-Dirac equa-
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tions (6.1) used to calculate the one-particle Green’s function. Thus,
the correlation effects are directly included into the scattering path
operator τnn

Λ′Λ in Eq. (6.34), and therefore the correlation effects are
accurately included in the VB-XPS calculations presented below. The
correlation effects are treated in the framework of LSDA+DMFT using
the FLEX version of the of DMFT solver. Having some evidence that
the LSDA+DMFT double-counting is rather small in 3d-transition met-
als, we take into account the purely dynamical correlations neglecting
the static component of the self-energy.

6.3.3 Fano-effect in the VB-XPS of Fe and Co

The experimental VB-XPS intensities I and spin polarization ∆Iλ are
calculated for a photon energy of 600 eV for Fe and Co, that have been
normalized to have a maximum amplitude of 100, are summarized in
Fig. 6.12, where the theoretical results based on the LSDA (dashed
line) as well as LSDA+DMFT (straight line) are compared with ex-
perimental data [161]. The self-energy within the DMFT is calculated
in terms of two parameters - averaged screened Coulomb interaction U
and exchange interaction J . The screening of the exchange interaction
is usually small and the value of J can be calculated directly and is
approximately equal to 0.9 eV for all 3d elements. This value has been
adopted for all our calculations presented here. For the value of U we
used for Fe 2 eV and for Co 1.5 eV. As can be seen in Fig. 6.12 the
theoretical results based on the LSDA (dashed line) for both metals are
in fair agreement with the corresponding experimental data. This can
be expected, as Fe and Co are considered to be weakly correlated sys-
tems. However, by including the corresponding self-energy calculated
by means of the DMFT we obtain a considerable improvement for the
spin averaged intensity I as well the as spin polarization ∆I+; in par-
ticular in the case of Fe. For the total intensity I of Fe we observed
essential improvement in the energy region -2 to -8 eV, where a quasi-
particle satellite structure comparable to the well known 6 eV satellite
of Ni is present. The observed double peak structure of the spin polar-
ization ∆I+ is shifted even more to lower energies. In addition a small
but finite polarization is obtained in the region of high binding energy.
In the case of Co the DMFT did not modify the obtained spectra as
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Fig. 6.12. Left: The experimental (dots) and theoretical data (LSDA - dashed line,
LSDA+DMFT - full line) for spin and angle-integrated VB-XPSspectra of bcc-Fe and
hcp-Co for a photon energy of 600 eV. Right: Spin-difference∆I = I↑+ − I↓+ of the pho-
tocurrent for excitation with circularly polarized radiation. For the calculation of the elec-
tronic self-energy within DMFT we usedJ=0.9 eV andU=2 eV for bcc-Fe andU=1.5 eV
for hcp-Co and the temperatureT=350 K.
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much as in the case of Fe.

6.3.4 High-energy angle-resolved VB-XPS of Ni

In the top panel of Fig. 6.13 we present the Bloch spectral functions
A(k, ǫ) in the Γ−∆−X direction as calculated by means of the LSDA
(left) and LSDA+DMFT (right), respectively. In the case of Ni there
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Fig. 6.13. Top: Bloch spectral functionsA(k, ǫ) in theΓ−∆−X direction obtained within
the LSDA (left) and LSDA+DMFT (right) schemes. Bottom: Angle-resolved VB-XPS
spectrum of Ni for a photon energy of 600 eV, normal emission and the k-vector (in units
of 2π/a) oriented along the [001]-direction (U=3.0 eV,J=0.9 eV andT=500 K). The ex-
perimental data (marked by various symbols) are taken from Refs. [62, 162–164].

are three main correlation effects: narrowing of the occupied part of the
d-band, decrease of the exchange splitting and presence of the famous
6 eV satellite compared to the LSDA calculations. The first two one
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can clearly see in the corresponding theoretical data. The 6 eV satel-
lite is clearly visible in the DOS curves (presented in Sec. 6.1.2) but
obviously not in the k-resolved Bloch spectral function for Γ −X line.
This reflects the anisotropy of the contributions to the 6 eV satellite
in reciprocal space. The main contribution to the 6 eV satellite comes
from the Γ − K direction. However, the position of the 6 eV satellite
is shifted to a slightly lower binding energies (7-8 eV). This shift and
the large broadening of the resonance is normally attributed due to the
perturbation approach of the DMFT solver used here.

As it follows the band structure calculated by LSDA+DMFT is in
sound agreement with previous experimental data [62, 162–164]. The
lower panel of Fig. 6.13 shows corresponding angle resolved VB-XPS
spectra for a photon energy of 600 eV, normal emission and the k vector
oriented along the [001]-direction. One can clearly see the shift of the
majority bands torwards the Fermi level as a direct consequence of
the real part of the self-energy. The imaginary part of the self-energy
provides a noticeable broadening of the states. Because of the matrix
elements (see Eq. 6.34) and the resulting selection rules, some bands
are not observed in the theoretical spectrum. On the other hand, in
comparison with Bloch spectral functions, the intensity is weighted by
these matrix element.

6.3.5 High-energy angle-integrated VB-XPS of NiMnSb

Local correlation effects also substantially influence the formation of
the peculiar two-peak structure of the high-energy angle-integrated VB-
XPS spectrum of the half-metallic Heusler alloy NiMnSb which is not
reproducible within the LSDA picture.

Indeed, as it follows from Fig. 6.14, the LSDA calculations for the
photon energy 500 eV lead to three distinct peaks in the VB-XPS spec-
trum. On the other hand, as indicated by different studies on NiMnSb
[166–168] this two-peak structure is always visible in the high-energy
photoemission spectrum depending slightly on the film thickness, ori-
entation of the surface and the account for the attenuation of x-rays
within the solid.

Our calculations presented on Fig. 6.14 (left panel) show that the
account of local correlations for the d-shell of Mn noticeably reduces
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Fig. 6.14. Left panel: comparison of the VB-XPS spectrum calculated via the full-potential
SPR-KKR method with experimetal data (marked with black squares) measured at the pho-
ton energyEphot=500 eV [165]. Solid black line corresponds to the plain LSDAresult, dot-
ted - LSDA+U-AL, solid light (green) - LSDA+U-AL+DMFT (UMn = 3 eV,JMn = 0.9 eV).
Middle panel: decomposition of the calculated total VB-XPSspectra into Mn- (dashed line)
and Ni-contributions (dot-dashed line). Right panel: comparison of the spin polarization.

the false high-energy peak introduced by LSDA in the VB-XPS spec-
trum at about 1.5 eV below the Fermi level. First of all it is reflected
already in the LSDA+U result indicating the importance of static cor-
relations. As we are interested in the shift of the total d-band of Mn we
adopt the so-called atomic limit form (LSDA+U-AL) as was suggested
before [168]. For the d-shell of Ni the account of correlations is not so
important as it is mostly fully occupied. As it follows from Fig. 6.14,
the further account of the dynamical correlations via the DMFT re-
duces the intensity of the low-energy peak in a proper way, however,
its amplitude still remains relatively high compared to experiment.

As it follows from the middle panel of Fig. 6.14, the shift of the high-
energy LSDA peak occurs mainly due to the shift of the Mn states away
from the Fermi energy. At the same time a slight modification of the
Ni states in comparison with the LSDA spectrum also takes place due
to the hybridization with the Mn d-states which are affected by the
account for correlations. Finally, the importance of self-consistency of
the calculations should be stressed.

The right panel of Fig. 6.14 shows the comparison of the calculated
spin polarization with experiment. As it follows, the account of corre-
lations reduces the spin polarization value at the Fermi level calculated
with LSDA bringing it to a very close agreement with experiment.
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Chapter 7

Application to linear response theory

In this chapter we will consider the derivation of the linear response
coefficients in terms of the one-particle Green’s function. The derivation
of the generalized response coefficients for the non-interacting electron
gas within the Green’s function approach can be found in [169].

7.1 Time-dependent perturbation theory

We consider the non-interacting electronic system described by the
Hamiltonian H0 and the density matrix ρ0. If we switch on a time de-
pendent external perturbation V (t), the Hamiltonian of the perturbed
system is:

H(t) = H0 + V (t) . (7.1)

Turning to the interaction picture which is best suited for time depen-
dent perturbation theory, we have for the density matrix:

ρI(t) = e
i
~
H0tρ(t)e−

i
~
H0t (7.2)

together with the following equation of motion:

∂

∂t
ρI(t) = − i

~
[V I(t), ρI(t)] (7.3)

which follows from the definition of ρ and the Schrödinger or Dirac
equation [170]. If we switch on V (t) adiabatically and integrate the
resulting equation of motion (7.3) with respect to time imposing the

99
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boundary condition ρI(t)
∣

∣

t→−∞ = ρ0, we obtain, keeping the terms
linear with respect to the perturbation:

ρI(t) = ρ0 −
i

~

t
∫

−∞

dt1[V
I(t1), ρ

I(t1)]

≈ ρ0 −
i

~

t
∫

−∞

dt1[V
I(t1), ρ0]. (7.4)

The time dependent expectation value for any local operator O which
does not possess an explicit time dependency is calculated as follows:

〈O〉 (t) = Tr
{

ρI(t)OI(t)
}

= Tr
{

ρ0O
I(t)
}

− i

~

t
∫

−∞

dt1Tr
{

ρ0

[

OI(t), V I(t1)
]}

. (7.5)

Evaluating of the last term we have implicitly applied the cyclic invari-
ance of the trace for each term. In general the perturbative potential
dealt in response theory has the form:

V I(t) =
∑

β

BI
β(t)Fβ(t) , (7.6)

with ~F the generalized vector force and ~B the vector coupling operator.
In the Schrödinger representation ~B is not time dependent, while ~F
depends on time explicitly.

Considering the orthonormal single-particle basis |n〉 of electronic
orbitals and the fermion creation and annihilation operators in the in-
teraction representation

cI†n (t) = c†ne
i
~
(ǫi−µ)t, cIn(t) = cne

− i
~
(ǫi−µ)t, (7.7)

with µ the chemical potential, we obtain the following representation
for OI (and an analogous one for BI

β):

OI(t) =
∑

nn′

Onn′ cI†n (t)cIn′(t) =
∑

nn′

Onn′ c†ncn′ eiωnn′t , (7.8)
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with Onn′ = 〈n|O |n′〉 the matrix element in the basis of some suitable
single-particle orbitals and ωnn′ = (ǫn − ǫn′)/~. Also representing the
Fβ term using its Fourier transform

Fβ(t1) =
1

2π

∞
∫

−∞

dω1 Fβ(ω1)e
−iω1t1e0+t1 , (7.9)

where e0+t1 accounts for the adiabatic switching of the perturbation, we
can rewrite the last term in Eq. (7.5) as:

〈O〉(1) (t) = − i

2π~

∑

β, nn′, mm′

Onn′Bβmm′Tr
{

ρ0

[

c†ncn′, c†mcm′

]}

×
∞
∫

−∞

dω1Fβ(ω1)

t
∫

−∞

dt1e
iωnn′teiωmm′t1e−iω1t1e0+t1. (7.10)

To apply the Fourier transformation with respect to the time variable,
we evaluate the Fourier transform of the second integral in Eq. (7.10)
as

1

2π

∞
∫

−∞

dteiωt

t
∫

−∞

dt1e
iωnn′teiωmm′t1e−iω1t1e0+t1

=
1

2π

∞
∫

−∞

dteiωteiωnn′t

0
∫

−∞

dt1 e
iωmm′(t1+t)e−iω1(t1+t)e0+(t1+t)

=
1

2π

∞
∫

−∞

dt ei(ω+ωnn′+ωmm′−ω1−i0+)t

0
∫

−∞

dt1e
i(ωmm′−ω1−i0+)t1

= δ(ω − ω1 + ωnn′ + ωmm′)
1

ωmm′ − ω1 − i0+
. (7.11)

The expression for the trace operation in Eq. (7.10) we evaluate as
follows:

Tr
{

ρ0

[

c†ncn′, c†mcm′

]}

= Tr
{

ρ0c
†
ncm′

}

δmn′ − Tr
{

ρ0c
†
mcn′

}

δnm′

= [ΘT (ǫn − µ) − ΘT (ǫm − µ)] δmn′δm′n , (7.12)



102 Chapter 7. Application to linear response theory

with ΘT (ǫ − µ) = 1/(e
ǫ−µ
T + 1) being the Fermi function. Inserting

Eqs. (7.11) and (7.12) into Eq. (7.10) we obtain the following expression
for the expectation value:

〈O〉(1) (ω) =
∑

β

∞
∫

−∞

dω1σβ(ω, ω1)Fβ(ω1) , (7.13)

with σβ the linear response coefficient defined as:

σβ(ω, ω1) =
i

~
δ(ω − ω1)

∑

nm

[ΘT (ǫn − µ) − ΘT (ǫm − µ)]

× OnmBβmn

ω1 − ωmn + i0+
. (7.14)

The delta function δ(ω − ω1) ensures that the linear component of the
response O(1) has the same frequency as the perturbation. Thus we can
consider σ(ω, ω1 = ω) as a single-variable function:

σβ(ω) = i
∑

nm

ΘT (ǫn − µ) − ΘT (ǫm − µ)

~ω + ǫn − ǫm + i0+
OnmBβmn . (7.15)

Further we will be interested in the zero-temperature limit:

ΘT=0(ǫ) =

{

1, ǫ ≥ 0

0, ǫ < 0
, µT=0 = ǫF , (7.16)

which means, in particular, that the Θ function at T = 0 K does not
have poles in the upper (and lower) complex semi-plane. Taking this
into account we make use of the residue theorem applying it for the
real axis path:

iΘ(ǫn − ǫF)

ǫn − ǫm + ~ω + i0+
= −1

π

∞
∫

−∞

dǫ
Θ(ǫ− ǫF)

(ǫ− ǫn)(ǫ− ǫm + ~ω + i0+)
,

iΘ(ǫm − ǫF)

ǫn − ǫm + ~ω + i0+
=

1

π

∞
∫

−∞

dǫ
Θ(ǫ− ǫF)

(ǫ− ǫm)(ǫ− ǫn − ~ω − i0+)
. (7.17)
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Inserting this in Eq. (7.15) we have:

σβ(ω) = −1

π

∞
∫

−∞

dǫΘ(ǫ− ǫF)
∑

nm

OnmBmn

×
[

1

(ǫ− ǫn)(ǫ− ǫm + ~ω + i0+)
+

1

(ǫ− ǫm)(ǫ− ǫn − ~ω − i0+)

]

. (7.18)

It is now straightforward to replace the manifold of initial and final
states by the one-particle Green’s function:

G(ǫ) =
∑

n

|n〉 〈n|
ǫ− ǫn

. (7.19)

Inserting Eq. (7.19) into Eq. (7.18) and implying 0+ = 0 we obtain:

σβ(ω) = −1

π

ǫF
∫

−∞

dǫ [Tr {OG(ǫ + ~ω)BβG(ǫ)}

+ Tr {OG(ǫ)BβG(ǫ− ~ω)}] , (7.20)

with Tr {} the trace over the single particle basis states |n〉.

7.2 Optical conductivity

In the presence of an external vector potential ~A(r, t) the time depen-
dent perturbation of the electronic system is given as:

V (t) = −1

c

∫

d3r ~J(r) ~A(r, t) , (7.21)

with ~J(r) the current density. According to Eq. (7.6) we identify ~A with

the generalized vector force and ~J with the vector coupling operator.
Applying this to calculate the time dependent expectation value of the

current density operator
〈

~J(r)
〉

(ω) using Eqs. (7.13) and (7.20), we

obtain the following expression for the corresponding linear response
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coefficient:

σαβ(r, r′, ω) =
1

πc

ǫF
∫

−∞

dǫ

× [Tr {Jα(r)G(ǫ+ ~ω)Jβ(r
′)G(ǫ)}

+ Tr {Jβ(r
′)G(ǫ)Jα(r)G(ǫ− ~ω)}] . (7.22)

Considering the Coulomb interaction as instantaneous, we use the
Coulomb gauge for ~A(r, t): ~E(r, t) = −(1/c) ∂

∂t
~A(r, t) with ~E the exter-

nal electric field. This leads to

~A(r, ω) =
c

iω
~E(r, ω) . (7.23)

Identifying now ~E with the vector force, we renormalize accordingly
the coefficient in Eq. (7.22) as

σαβ(r, r′, ω) = − i

πω

ǫF
∫

−∞

dǫ

× [Tr {Jα(r)G(ǫ+ ~ω)Jβ(r
′)G(ǫ)}

+ Tr {Jβ(r
′)G(ǫ)Jα(r)G(ǫ− ~ω)}] . (7.24)

which is called the non-local optical conductivity. As it follows, for
ω = 0, i.e. in the static case, it diverges for pure ordered systems. As
an analytical function it can be partitioned into hermitian or absorp-

tive and antihermitian or dispersive components, which are connected
with each other by Kramers-Kronig relations (3.35). For example, the

absorptive part σ
(1)
αβ of σαβ in Eq. (7.24) is given by:

σ
(1)
αβ (r, r′, ω) =

1

πω

ǫF
∫

−∞

dǫTr {Jα(r)ImG(ǫ)Jβ(r
′)ImG(ǫ+ ~ω)} , (7.25)

where ImG stands for the antihermitian component of the Green’s
function.

As we will restrict ourselves in the following to the bulk systems with
translational symmetry, we will be interested in the spatially averaged
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optical conductivity, since the spatial variations of ~A are rather small
compared to the unit cell dimension:

σ
(1)
αβ (ω) =

1

V

∫

d3r

∫

d3r′ σ(r, r′, ω) (7.26)

Since the expression (7.26) is derived in terms of the one-particle
Green’s function, the assumption of non-interacting electrons made
above can be ignored by applying Eq. (7.26) using the interacting one-
particle Green’s function derived as a solution of the corresponding
Dyson equation (3.11).

The optical conductivity tensor can be considered as the central
quantity which being determined once, can be used to obtain all the
other optical and magneto-optical properties of the system. In particu-
lar, for the small complex Kerr angle, which combines the Kerr rotation
θK and ellipticity εK, the following approximate expression can be used
[171]:

θK(ω) + iεK ≈ − σxy(ω)

σxx(ω)

√

1 +
4πi

ω
σxx(ω)

. (7.27)

Being the real and imaginary parts of a complex analytical function,
the quantities θK and εK are in turn, connected by Kramers-Kronig
relations (see Eq. (3.35)). In the analysis of the complex Kerr rotation
spectrum it is sufficient to consider in details only the real part of the
MOKE spectrum, i.e. the rotation, as the Kerr ellipticity is a related
quantity.

In the calculations presented below for the magneto-optical Kerr
effect (MOKE) the spin-orbit coupling which is together with exchange
splitting the actual source of MOKE is taken into account via the
second-variation technique.

7.3 Green’s function within the variational ba-
sis formalism: implementation in the LMTO
method

Despite the straightforward way to calculate the one-particle Green’s
function with the so-called Korringa-Kohn-Rostoker (KKR) Green’s
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function method, in the present work we utilize the wave function basis
formalism [99] which with respect to the optical calculations has several
advantages as it will be clear in the following.

Within this approach the one-particle basis functions we use to rep-
resent the Green’s function are energy-independent. Taking into ac-
count the translational symmetry explicitly, the corresponding expres-
sion for the absorptive part of optical conductivity (7.26) reads:

σ
(1)
αβ (ω) =

1

πω

∫

d3k

~ω
∫

−∞

dǫ
∑

nn′

Mα
nn′(k, ǫ)M

β
n′n(k, ǫ+ ~ω) , (7.28)

with the corresponding spectral weighted matrix element:

Mα
nn′(k, ǫ) =

∑

m

Gnm(k, ǫ) 〈mk| Jα |n′k〉 , (7.29)

where Gnm is the Green’s function matrix represented in the energy-
independent single-orbital basis:

G(ǫ) =
∑

k,nm

|nk〉Gnm(k, ǫ) 〈mk|

=
∑

k,nm

|nk〉 〈nk| (ǫ+ Σ(ǫ) −H0)
−1 |mk〉 〈mk| . (7.30)

The advantage of the expression (7.28) is that it implies that for each
pair of energies ǫ and ǫ+ ~ω just the traces have to be calculated.

The efficiency and accuracy of the calculations is determined by
the choice of the basis functions |n〉. One of the computationally
most efficient variational methods developed to be applied to the solid
state is the so-called Linear Muffin-Tin Orbitals (LMTO) method [172,
173] which allows one to get a rather accurate description of the va-
lence/conduction band in the range of about 1 Ry, which is enough for
the calculations of the optical spectra (~ω < 6 − 8 eV).

A test of the scheme presented is represented on Fig. 7.1 which
shows results for different modes of calculation. The optical conduc-
tivity spectra calculated via Eq. (7.28) is compared with that obtained
using the standard wave function scheme:

σαβ(ω) =
1

π

∫

d3k
∑

nm

δ(ǫn − ǫm − ~ω) 〈nk| Jα |mk〉 〈mk| Jβ |nk〉 . (7.31)
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Fig. 7.1. Absorptive part of the optical conductivity calculated viathe standard wave func-
tion approach (WF) (Eq. (7.31)) (solid line) and via the Green’s function (GF) (Eq. (7.28))
(dashed line) with ImΣ = 0.01 Ry for different systems. Cu: non-spin-polarized semi-rel-
ativistic, Au: non-spin-polarized fully relativistic, Fe, Ni: spin-polarized fully-relativistic.
In addition, the off-diagonal component of the optical conductivity for Fe and the Kerr
rotation spectrum for Ni are shown.
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For a zero self-energy both approaches are equivalent though for the
present scheme it is impossible to carry out the calculations exactly on
the real axis because of the divergence of the expression in the second
line of Eq. (7.28). However the introduction of the small imaginary
offset i0+ leads to a mixing of an interband and intraband contributions
to the optical conductivity. Thus to compare the results we subtract
from Eq. (7.28) a Drude-like term which can be expressed as

σ(ω) = σ(0)
γ2

ω2 + γ2
, (7.32)

with γ = 2i0+ and

σ(0) =
1

π

∫

d3k
∑

mn

Mα
nm(k, ǫF)Mβ

mn(k, ǫF) . (7.33)

As it follows for all the systems there is a very satisfying agreement
between these two approaches. In particular the results for Fe and Ni
ensure the applicability of the approach to deal with spin-orbit induced
magneto-optical properties.

7.4 Accounting for localized correlations

The next step concerning the implementation of the DMFT is to use
the available data for the localized non-local self-energy and to in-
vestigate its influence on the results for the optical conductivity and
magneto-optical spectra. The simplest non-local self-energy appears in
the LSDA+U formalism, where the corresponding matrix elements are
real and energy independent. Such a simple form allows one again to
use directly the standard wave-function formalism to calculate the op-
tical conductivity on the basis of the self-consistent potential including
the 1st-order electron correlation corrections. The corresponding calcu-
lations are performed for the rather simple case of hcp Gd for which
is found a very satisfying agreement between the approaches based on
Eqs. (7.31) and (7.28) [99].

In order to include the full perturbation series, i.e. the dynamical
self-energy, all what we need is the energy dependence of the non-local
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Fig. 7.2. The diagonal (up-
per panel) and theoff-diagonal
(lower panel) components of
the absorptive part of the opti-
cal conductivity for Gd calcu-
lated within the LSDA+U ap-
proach. Solid line: using the
standard LMTO wave function
scheme (Eq. (7.31)), dashed line:
via the LMTO-Green’s func-
tion approach (Eq. (7.28)) with
Im Σ = 0.01 Ry.

self-energy ΣΛΛ′(rR, r
′
R, ǫ), Λ = {σlm} which implies the special form

similar to that given in Eq. (6.3):

ΣΛΛ′(rR, r
′
R, ǫ) = φΛ(rR, ǫ) ΣR

ΛΛ′(ǫ)φΛ′(r′R, ǫ) , (7.34)

where φΛ(r, ǫ) stands for the solution of the Schrödinger equation with
the R-centered LSDA potential, normalized to unity within an atomic
cell.

The handling of the expression (7.34) can substantially be simplified
in the framework of the LMTO method by making use of the energy-
independent basis functions

φk
ΛR(r) = Φh

Λ(r− R) +
∑

Λ′R′

hk
ΛR,Λ′R′Φt

Λ′(r− R′) , (7.35)

which perfectly fits to any single-site approximation of the self-energy.
The superscripts ”h” and ”t” stand for the so-called ”head” and ”tail”
parts of the basis functions.
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In the framework of the DMFT one can formally introduce the self-
energy operator which is expressed in the form:

Σ(r, r′, ǫ) =
∑

RR′

δRR′

∑

ΛΛ′

Θ(|r− R|) Y ∗
Λ(r− R)

× ΣR
ΛΛ′(r, r′, ǫ)Θ(|r′ −R′|) YΛ′(r′ − R′) , (7.36)

where Θ(r) = 1 if r is inside the atomic sphere and zero otherwise. Due
to the special construction of the LMTO basis functions (7.35) only the
”head” component will give a significant contribution being projected
on the localized area restricted to the single-site. Thus, in terms of the
”head” functions the matrix elements of the self-energy operator (7.36)
get an extremely simple k-independent representation:

〈

φk
ΛR

∣

∣Σ(ǫ)
∣

∣φk
Λ′R

〉

≈
∫

d3r

∫

d3r′

× Φh∗
Λ (r− R) ΣR

ΛΛ′(r, r′, ǫ) Φh
Λ′(r′ − R). (7.37)

The self-energy (7.37) is used to calculate the interacting Green’s func-
tion via the Dyson equation (3.11) which is treated within the varia-
tional formalism as:

Gk
Λ Λ′(ǫ) =

[

Ok · ǫ−Hk
0 + Σ(ǫ)

]−1

ΛΛ′ , (7.38)

where H0 and O are the LSDA Hamiltonian and overlap matrices rep-
resented within the energy-independent basis functions φk

Λ(r).
The accuracy of this approach is restricted to the discussion given

above to Figs. 7.1 and 7.2 ensuring that the error in determining of
the corresponding Green’s function is substantially smaller than the
approximations made for the estimation of the self-energy itself [99].

The presented so-called LMTO-Green’s function (LMTO-GF) ap-
proach does not include charge self-consistency in the way discussed
earlier self-consistent for the KKR+DMFT scheme or the other
variational-based one, presented in Ref. [174]. The reason is that due
to a construction of the energy-dependent quantities as the Green’s
function and the self-energy on each iteration, the main advantage of
the LMTO method, namely the speed of calculations, would be sub-
stantially reduced. On the other hand, this scheme can be combined
with the fully self-consistent KKR+DMFT calculation which accurately
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delivers the corresponding self-energy that in turn can be used to con-
struct the LMTO Green’s function.

Thus, within the present approach, the influence of the localized
effects on the optical conductivity tensor occurs due to the change
of the Green’s function matrix elements (Eq. (7.30)) only, while the
current-density elements will not be affected. Another possible source
of the influence could be the change of the occupation numbers, and
also the change of the Fermi energy. However, due to the Fermi-liquid
properties of the dynamical self-energy these changes are expected to
be of minor importance and the changes in the optical conductivity
tensor can be straightforwardly attributed to the corresponding mod-
ifications in the one-particle spectrum. This leads in particular to the
conclusion that the account of localized correlations modifies only the
interband part of the optical conductivity, while the intraband contri-
bution (Eq. (7.32)) determined by the Green’s function at the Fermi
level, remains unchanged.

7.5 Applications to 3d-transition metal systems

A first example demonstrating the applicability of the presented ap-
proach is bulk fcc Ni. The corresponding calculated optical conduc-
tivity, Kerr rotation and Kerr ellipticity spectra are shown in Fig. 7.3.
As it is obvious, in spite of the various approximations discussed above
the results are drastically improved by the inclusion of the dynamical
self-energy, demonstrating the surprisingly good agreement with exper-
iment both for the optical conductivity and the MOKE spectra.

Kerr-rotation spectra have received in particular broad interest be-
cause of the discovery of the giant magneto-optical Kerr effect (MOKE)
in PtMnSb [178]. Thus, the magneto-optical properties of the Mn-based
family of Heusler alloys became an important technological issue [175,
179–186]. However, despite of their similar structure, the group of iso-
electronic alloys PtMnSb, NiMnSb and PdMnSb show quite different
maximum amplitudes in their MOKE spectra [178, 175]. A theoretical
description of the observed difference of the MOKE spectra became pos-
sible within ab-initio band-structure calculations [187, 184, 186]. How-
ever, although the various calculated MOKE spectra give reasonable
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Fig. 7.3. Optical and magnetooptical properties of fcc Ni calculatedusing the LMTO–
Green’s function approach. Right panel: absorptive part ofthe optical conductivity, mid-
dle: Kerr rotation, left: Kerr ellipticity. The black dashed line marks the LSDA, the red
(light) solid line the LSDA+DMFT calculations. Black squares stand for the experimental
data found in [175–177]. The self-energy was taken from the self-consistent KKR+DMFT
calculations withU = 3 eV, J = 0.9 eV.

qualitative agreement with experiment, one can notice that there exist
several systematic discrepancies generally ascribed to the use of LSDA.
The following example of the NiMnSb Heusler alloy demonstrates that
a much better description can be obtained by improving the treatment
of the localized many-body correlations.

In the case of NiMnSb the main contribution to the optical transi-
tions comes from the d-shell of Mn which supplies the unoccupied part
of the density of states (DOS). At the same time d-electrons of Mn
should be treated as locally-correlated [188]. Based on this supposition
one can expect an improvement for the MO spectra in NiMnSb by an
appropriate account of localized correlation effects for the Mn d-shell
in band-structure calculations.

The comparison between the MO spectra of NiMnSb calculated
within LSDA, LSDA+DMFT and the experimental results is shown in
Fig. 7.4. As it follows, the account of localized correlations is very im-
portant to describe correctly the positions as well as the magnitudes of
both low- and high-energy Kerr rotation peaks (situated at 1.4 eV and
4 eV). Again as in the previous example for pure Ni the modifications
of the Kerr spectrum are related to the corresponding modifications in
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Fig. 7.4. DOS and magneto-optical spectra of NiMnSb calculated usingLMTO-Green’s
function approach. Right panel shows the d-DOS of Mn, left panel: the complex Kerr
rotation spectra: upper - Kerr rotation, lower - Kerr ellipticity. Black dashed line marks the
LSDA, red (light) solid line - the LSDA+DMFT calculations. Black squares stand for the
experimental data found in [175, 178]. The self-energy was taken from the self-consistent
KKR+DMFT calculations withU = 3 eV, J = 1 eV.

the DOS of Mn (right panel on Fig. 7.4) which is in turn related to the
dynamical self-energy spectrum shown on Fig. 7.5. One can see, that
the Mn d-shell indeed experiences noticeable dynamical correlations as
indicated by the amplitudes up to 4 eV of the imaginary self-energy
component. For the Ni shell it is not so important to account for corre-
lations as it is almost fully occupied. The effective Coulomb interaction
is parameterized for these calculations by U = 3 eV and J = 0.9 eV.
Numerical tests show that approximately the same results are obtained
within the range of U = 3±0.5 eV.

Finally, one can conclude, that the correct description of the
magneto-optical properties of both systems Ni and NiMnSb can be
given only within the proper account of the 2nd-order dynamical corre-
lations, while the 1st-order contributions and the DC can be completely
neglected. The spin-flip blocks of the self-energy and the localized
Green’s function matrices also can be neglected due to the relatively
small spin-orbit coupling.
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Fig. 7.5. Spin-resolved dynamical self-energy for the Mn atom withinbulk NiMnSb ob-
tained from self-consistent KKR+DMFT calculations. Rightpanel: real component, left
panel: imaginary component. Solid and broken lines correspond to majority and minority
spin components.

7.6 Application to heavy-fermion systems

It is well known that 5f electrons are to be made responsible for the
variety of unusual physical properties in actinide compounds [189–
196]. Particularly, this shows up in the magneto-optical properties of U
monochalcogenides and monoptictides which have unusually large Kerr
rotation spectra. One of the most difficult cases are US [190] and UN
[196] which are commonly classified to be itinerant with strong localized
correlations. Whereas LSDA+U calculations substantially improve the
optical conductivity spectrum, they are still far from giving an appro-
priate result for the MOKE. As was indicated by Kraft et al. [190],
the reason could be in the dynamical nature of the optical excitations.
Here we are going to examine the optical conductivity and MOKE spec-
tra of US metal by applying our dynamical perturbational scheme as
complementary to the LSDA+U approach with AL-DC as suggested in
Ref. [193]. Of course, the perturbative approach is not the best way to
treat strong correlations in metals, since the high-order channels pos-
sess a significant importance and the result can substantially deviate
depending on where one makes a truncation. However the qualitative
information delivered by perturbational treatment may in turn, provide
a more or less well defined basis concerning further studies.

The plain LSDA+U-AL results accounting for the 1st-order corre-
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lations for the f -shell are shown in Fig. 7.6. As it follows, the account
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Fig. 7.6. Optical and magnetooptical spectra of US calculated using the LMTO-Green’s
function approach within the LSDA+U-AL approach withU=2 eV,J=0.9 eV. Right panel:
absorptive part of the optical conductivity, middle: Kerr rotation, left: Kerr ellipticity. The
black full line marks the LSDA, red (light) LSDA+U-AL. The black squares mark the
experimental data given in Ref. [197].

of static contributions already lead to substantial modifications of both
the optical conductivity and the Kerr spectra. In particular, one no-
tices that the 3 eV peak falsely positioned due to the LSDA in the
optical spectrum is shifted to the proper position with respect to the
experimental one. On the other hand, the large overestimation of the
MOKE amplitudes indicates the possible importance of higher-order
contributions.

Indeed, as it follows from Fig. 7.7 the account of the 2nd-order chan-
nels noticeably reduces the amplitudes of the MOKE and also improves
the high- and low-energy regimes in the optical conductivity spectra in
comparison with the LSDA+U-AL results.

It is instructive in addition to figure out the influence of the spin-
flip elements of the self-energy on the optical and MOKE spectra which
are expected to be large due to the strong spin-orbit coupling. Fig. 7.8
demonstrate the comparison of the results obtained with and without
account of the spin-flip self-energy matrix elements. As it follows, when
the spin-flip terms are not taken into account the result possesses in-



116 Chapter 7. Application to linear response theory

0 2 4 6 8
Energy (eV)

0

20

40

60

80

σ1 xx
 (

10
15

s-1
)

experiment
LSDA+U-AL
LSDA+U-AL+DMFT

0 1 2 3 4 5 6
Energy (eV)

-4

-2

0

2

4

6

8

θ K

0 1 2 3 4 5 6
Energy (eV)

-6

-4

-2

0

2

4

6

ε K
Fig. 7.7. Optical and magneto-optical spectra of US calculated usingLMTO-Green’s func-
tion approach within the LSDA+U-AL+DMFT approach withU=2 eV, J=0.9 eV. Right
panel: absorptive part of the optical conductivity, middle: Kerr rotation, left: Kerr elliptic-
ity. The black full line marks the LSDA+U, red (light) - LSDA+U-AL+DMFT. The black
squares mark the experimental data given in Ref. [197].

0 1 2 3 4 5
Energy (eV)

-4

-2

0

2

4

6

8

θ K

LSDA+U-AL
LSDA+U-AL+DMFT (spin-diag. Σ)
LSDA+U-AL+DMFT (full Σ)

0 1 2 3 4 5
Energy (eV)

-6

-4

-2

0

2

4

6

ε K

Fig. 7.8. MOKE spectra for US (right panel: Kerr rotation, left: Kerr ellipticity) calculated
by the LMTO-Green’s function approach. The full black line marks LSDA+U-AL results,
filled red (light) - LSDA+U-AL+DMFT and the dashed line - LSDA+U-AL+DMFT with
spin-flip self-energy elements set to zero. For all types of calculationsU=2 eV,J=0.9 eV
has been used.



7.6. Application to heavy-fermion systems 117

terpolative behavior between LSDA+U and the full LSDA+U+DMFT
spectra, noticeably deviating from both. Thus, in contrast to the 3d
transition metals, the account of the full self-energy matrix is important
for correlated actinide systems.

Despite of the general quantitative improvement, the proper descrip-
tion of the optical properties in the U compounds obviously requires a
more accurate treatment of correlations as well as the re-examining of
all the approximations made in the calculational scheme, since each of
them may become a significant factor in case of a strongly correlated
metal. Since the optical spectra are determined by the relative positions
and widths of the p- d- and f -shells the need of the self-consistency in
order to account for all the necessary hybridization effects has to be
stressed. For example, the oscillator model analysis of the UN opti-
cal spectra delivers the 2p-shell of N as centered at -6 eV below the
Fermi energy [196], whereas in the LSDA (LSDA+U) calculations it
corresponds roughly to -3 eV. The analogous situation holds for US
compound. Studying these aspects in details is believed to close the
remaining gap between experiment and theory.
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Chapter 8

Summary

According to the main goal of the present thesis, an efficient computa-
tional LSDA+DMFT toolbox for the description of correlated materials
has been established. As it could be demonstrated, the method devel-
oped in this work provides an appropriate description of 3d-transition
metal correlated bulk systems, concerning their ground-state proper-
ties (magnetic moments, total energies) as well as the high- and low-
energy spectroscopies (valence-band angular-resolved photoemission,
Fano-effect, optical and magneto-optical properties).

As it was demonstrated the incorporation of the perturbational
impurity solvers within the spin-polarized relativistic Korringa-Kohn-
Rostoker (SPR-KKR) Green’s function method gives rise to a fully self-
consistent procedure with respect both to the DFT (charge) and the
DMFT (localized dynamical self-energy) self-consistency requirements.
To our knowledge this approach is one of the first and very few fully
self-consistent LSDA+DMFT implementations. Thus, the solution of
the many-electron problem can be achieved with a high precision. In
turn this opens a possibility to investigate very delicate properties, as
was demonstrated for the example of the orbital magnetic moments of
Fe, Co and Ni.

Moreover, the SPR-KKR method allows to investigate the disor-
dered systems on the basis of the so-called Coherent Potential Approx-
imation (CPA). This in turn was used to improve the LSDA description
of the orbital magentic moments in the disordered CoxFe1−x alloys and
Fe- and Co-impurities in Au host.

Being based on the multiple-scattering formalism, the SPR-KKR
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method have direct access to a description of high-energy spectro-
scopies. As it was shown in this work, the self-consistent account of
localized correlation effects within the SPR-KKR explains the features
of the angle-resolved valence-band photoemission spectra for Ni as well
as of the angle-integrated photoemission spectra and the Fano-effect
for Fe and Co, inaccessible to a plain LSDA treatment.

To develop a relatively fast and accurate approach for the low-
energy spectroscopies, the DMFT was implemented within the wave
function formalism in the framework of the Linearized Muffin-Tin Or-
bitals method (LMTO) which reliably describes the band structure in
the range of 1 Ry around the linearization point. To retain the speed
of calculations several approximations have been made in this scheme.
Namely, the calculations are performed in a one-shot run, that does not
allow to get the charge-self-consistent solution. In such a way all effects
of the localized correlations are encapsulated in the Green’s function
constructed as a resolvent to the LMTO one-particle Hamiltonian and
accounting for the corresponding self-energy via the Dyson equation.
The self-energy could be either calculated on the basis of the LSDA
LMTO Green’s function (in this way it does not account for the self-
consistency of the DMFT) or, if better precision is required it could be
taken from a separate self-consistent calculation, as for example, from
the KKR+DMFT.

As it was demonstrated for pure bulk Ni, the optical and Kerr-
rotation and ellipticity spectra calculated within the LMTO+DMFT
approach are in excellent agreement with experiment. On the other
hand, due to the high speed of the calculations, the scheme can be
applied to a much more complex systems containing many atoms per
unit cell. As it follows from the presented work, the LMTO+DMFT
scheme gives in comparison to a plain LSDA a significantly improved
description of the magneto-optics ( Kerr rotation and ellipticity spectra)
in the half-metallic Heusler ferromagnet NiMnSb, which due to the large
amplitude of the Kerr effect is considered as an important technological
material.

In addition, the LMTO+DMFT approach was applied to the des-
cription of the optical conductivity and magneto-optical spectra in the
heavy-fermion US compound. US and similar compounds are well
known for a variety of their unusual physical properties which are com-
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pletely inaccessible within an LSDA description. That is why, in parti-
cular the study of their optical and magneto-optical spectra, for a long
time remains an issue of broad scientific interest. The qualitative agree-
ment with the corresponding experimental spectra gives justification for
the applicability of the perturbational impurity solvers even for such
a strongly-correlated material. However, the reason for a noticeable
deviations from experimental data cannot be uniquely distinguished
yet. Nevertheless, it is demonstrated that the additional account of the
localized dynamical correlations leads to a noticeable improvement of
the magneto-optical as well as of the optical spectra in comparison to
the LSDA+U approach which accounts for the static correlations only.
Another interesting feature of these calculations is that they show the
importance to account for the full dynamical self-energy matrix includ-
ing the spin-flip elements, due to a large spin-orbit coupling in this
material.

The developments presented in this work in principle can be ex-
ploited and developed in a several directions. First of all this concerns
the fully self-consistent KKR+DMFT scheme. As we have mentioned
above, any other impurity solver accounting for a specific type of the
many-electron interaction can be used. One can think as well about the
combination of different solvers, such as e.g. perturbational one and the
QMC. Second, as we also have mentioned, the whole DMFT scheme
could be extended by expanding the localization area to the cluster of
atoms which gives an opportunity to account for k-dependent dynam-
ical correlations.

The LMTO+DMFT scheme also can be extended to account for k-
dependent dynamical correlations retaining the speed of calculations.
This is possible by simply utilizing the corresponding self-energy calcu-
lated separately within the cluster version of the DMFT, GWA or some
other approach. In particular, a description of the optical properties
of high-TC superconductor cuprates could be given by applying the k-
dependent self-energy describing the non-local dynamical correlations
induced by short-ranged collective antiferromagnetic spin fluctuations
[106].
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outside the scientific work whom I met in Munich.

I express my best wishes and gratitude to Prof. Helen Homonai,
my former teacher at the University in Kiew, for giving me a basic
motivation to become interested in the solid state physics.

The sincere gratitude I address to Dr. Alexander Perlov who was
my first-hand teacher during few years since my arrival in Munich and
a very good friend.

My special thanks I express to my colleague Dr. Sergey Mankovsky
for his permanent support and time he spent kindly answering my ques-
tions and clarifying my strange ideas.

I want also separately to thank my college Dr. Voicu Popescu for
his patience and useful advises.

This dissertation could not be completed without the help of Dr.
Jan Minár. I’m much grateful for his inevitable help with incorporation
of the DMFT code into the SPR-KKR program package.

I’m indebted to Prof. A. Lichtenstein and Prof. M. Katsnelson for
their fruitful ideas and many helpful discussions.

Finally, I want to thank my dear parents, my younger sister

137



138 Acknowledgements

Christina, and, of course, my beloved wife and daughter, Alexandra
and Vasilisa, for their support, their patience and permanent belief. To
them I would like to dedicate this work.

Financial support from the BMBF Projects 05KS4WMB2 and
05KS7WMA is gratefully acknowledged.



Curriculum vitae – Lebenslauf

Persönliche Angaben

• Name: Stanislav Chadov

• Geburtsdatum: 20. August 1977

• Geburtsort: Kiew, Ukraine

• Nationalität: der Ukrainer

• Familienstand: verheiratet, 1 Kind

Schulbildung

• 1984 – 1994: Schule in Kiew, Ukraine

Studium

• 1995 – 2001: Studium der Physik an der Nationalen Technis-
chen Universität, Kiew, Ukraine. Diplomarbeit in theoretischer
Festkörperphysik. Titel: ”Accounting for the spin-orbit coupling
in ab-inito calculations of the magnetic anisotropy in thin films”
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