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[…] and Pachamama trembled, for long it roar and longer it went on, and before exhaustion, 

fire slit its throat and cinders went tumbling down the slopes of Tungurahua;  

I was high up, over there, and saw everything  

Later it settled… 

…the next day, the riders stormed by and stirred it all again. 

We can look at the photographs later […] 

- telltale of a friend who witness the August 

2006 eruption of Tungurahua, Ecuador 

 
 

 

 

 

 

…Maman, on est quoi? 
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Summary 

Dome-building eruption models currently lack a fundamental description of the 

rheology and seismogenicity of lavas carrying crystals and bubbles. Especially an 

understanding of their transition from a ductile to a brittle behaviour is essential to forecasting 

the transition from effusive to explosive volcanism. A unique high-load, high-temperature 

uniaxial press was developed to study the rheology and seismogenicity of silicate melts and 

magmatic suspensions under conditions relevant to volcanic systems; but more specifically, as 

they are forced across the ductile to brittle transition. This new apparatus is designed to 

operate at constant stresses (up to 300 kN) or constant strain rates (~10−7 and 100 s−1) and 

further allows us to carry on experiments on samples with high viscosities (108 and 1012 Pa s). 

The rheological instrument represents an advance in that it accommodates homogeneously 

heated samples (±2 °C) of voluminous sizes (up to 790 cm3) which permit the use of natural 

samples and the insertion of thermocouples to monitor the evolution of temperature 

distribution during measurements. In selected experiments a sensor was connected to the 

upper piston to monitor acoustic emission associated with the generation of cracks within the 

melts as they cross the ductile-brittle transition. 

A series of measurements on NIST standard material SRM 717a was initially 

performed to calibrate the instrument. The viscosity determined via Gent’s equation was 

compared to certified viscosity data of the standard material. This work shows that the 

apparatus can resolve the viscosity of voluminous melt samples to within 0.06 logarithmic 

units. Several series of experiments were then carried out on natural samples with high-

crystallinity (>50 %) to simulate dome lava deformation under various stresses and strain 

rates. Under eruptive conditions, dome lavas are non-Newtonian fluids characterized by an 

important component of shear thinning. Moreover a remarkably singular dependence of 

apparent viscosity (η) on strain rate (10-6 s-1 <γ< 10-3 s-1) yielded the following universal 

rheology law at eruptive temperatures (850 ºC <T< 1100 ºC):  

log η = −0.993 + 8974/T - 0.543* log γ 

Beyond strain rates of 10-3 s-1, this equation fails as the brittle regime prevails; the melts suffer 

severe cracking, while showing dependences to both strain and strain rate. Continuous micro-

seismic monitoring of the melts across the ductile-brittle transition revealed that below strain 

rates of about 10-4 s-1 lavas behave in a ductile manner and are essentially aseismic. As strain 

rates increase, a commensurate exponential increase in micro-seismic activity, accompanied 

by crack localisation is observed. Complete brittle failure occurred at strain rates approaching 

10-2 s-1. The evaluation of macroscopic failure using the acceleration of seismicity according 



 xv

to the material failure forecasting method (FFM) yielded very accurate predictions after 4 

seconds of deformation; that is, 8 seconds before complete failure. 

This state-of-the-art apparatus enabled the first systematic rheologic and seismogenic 

measurements on highly crystalline dome lavas. The occurrence of shear thinning described 

here favours the localization of strain along the volcanic conduit margin and therefore the 

development of plug-like flow. The rheological results coupled to the seismicity further 

support the association of seismic swarms with seismogenic shear zones during eruptions. 

Given our observation that lavas may behave like their volcanic rock equivalent at high strain 

rate, careful monitoring of their seismicity should be coupled to failure forecast methods to 

successfully predict impending lava dome eruptions in volcanic crisis.  
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Zussamenfassung 

Dom-Bildenden Eruptionsmodellen ermangelt es zurzeit an der fundamentalen 

Beschreibung durch die Rheologie und die Seismizität der blasen- und kristallreichen Laven. 

Speziell ist ein vertieftes Wissen über den Übergang von einem duktilen zu einem spröden 

Verhalten der Lava notwendig, um den Übergang vom effusiven zu explosiven Vulkanismus 

vorherzusagen. Eine neuartige Hochtemperatur-Uniaxialpresse wurde konstruiert, um die 

Rheologie und die Seismizität von silikatischen Schmelzen und magmatischen Suspensionen 

unter relevanten magmatischen Bedingungen, insbesondere im Bereich des spröd/duktil 

Übergangs, für vulkanische Systeme zu untersuchen. Die neue Presse kann in zwei Moden 

betrieben werden: bei konstanter Kraft (bis zu 300 kN), oder bei konstanter Deformationsrate 

(~10−7 and 100 s−1) um Viskositätsexperimente im Bereich von 108 bis 1012 Pa durchzuführen.  

Das rheologische Instrument ermöglicht erstmals Deformationsmessungen an 

homogen aufgeheizten (±2 °C) und voluminösen Proben  (bis zu 790 cm3) von natürlichen 

Gesteinen bei gleichzeitiger Überwachung der Temperaturverteilung innerhalb der Probe Dies 

ist u.a. zur Abschätzung des „Viskosen-Heizen-Effektes“notwendig. Bei ausgesuchten 

Messreihen wurde zusätzlich ein akustischer Sensor an einem der Stempel angebracht, um die 

akustischen Emissionen während des Deformationsprozesses aufzuzeichnen. 

Die Uniaxialpresse wurde mit Hilfe eines Viskositäts-Standard-Glases (NIST standard 

material SRM 717a) kalibriert. Die Viskosität wurde dabei durch die Gent-Gleichung 

bestimmt und mit den zertifizierten Werten des Standards verglichen. Die Messwerte 

stimmten innerhalb +/- 0.06 logarithmischer Einheiten überein. 

Anschließend wurden einige Messreihen an natürlichen, hochkristallinen (>50 %) Proben 

durchgeführt, um die Verformung von Lava unter verschiedenen Drucken und 

Deformationsraten zu simulieren. 

Unter eruptiven Bedingungen zeigen Dom-Laven ein non-newtonisches, rheologisches 

Verhalten. Die deformations- und temperaturabhängige, apparente Viskosität kann dabei 

durch ein universelles Gesetz im Bereich von 10-6 s-1 <γ< 10-3 s-1, 850 ºC < T< 1100 ºC wie 

folgt beschrieben werden: 

   log η = −0.993 + 8974/T - 0.543* log γ 

Bei höheren Deformationsraten >10-3 s-1 muss die Gleichung modifiziert werden. Im 

Übergang in den spröden Bereich treten zusätzliche Effekte auf. 

Die Auswertung der mikroseismischen Aufzeichnung zeigte, dass Laven bei 

Deformationsraten von < 10-4 s-1 sich im Wesentlichen aseismisch verhalten. Bei höheren 

Deformationsraten wird ein exponentieller Anstieg der mikroseismischen Aktivität 
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beobachtet, die durch Konzentration von Rissen und Brüchen in der Schmelzmatrix und in 

den Kristallen hervorgerufen wird, bis es bei Deformationsraten von etwa 10-2 s-1 zum 

kompletten Makrobruch der Proben kommt. Die Evaluation des makroskopischen Versagens, 

kann durch die “material failure forecasting method” (FFM) nach 4-5 Sekunden des 

Deformationsgeschehens vorhergesagt werden. Also etwa 8 Sekunden vor der kompletten 

Zerstörung des Probenmaterials. 

Die mit Hilfe der neuartigen, “state-of-the-art” Hochtemperatur-Uniaxialpresse 

gewonnenen Ergebnisse ermöglichen erstmals eine systematische, rheologische und 

seismische Untersuchung an natürlichen, hochkristallinen Proben. Das untersuchte non-

newtonische Verhalten der silikatischen Schmelze in einem Vulkanschlot führt zu einer 

Stresslokalisierung innerhalb der Kontaktzone zwischen Magma und Nebengestein. Damit 

kann ein „Plug-Flow“ ausgelöst werden. Die rheologischen Ergebnisse zeigen darüber hinaus, 

dass auch von der unterkühlten, silikatischen Schmelze, seismische Signale ausgesendet 

werden können. Diese wurden bislang ausschließlich dem Zerbrechen von Nebengestein zu 

geschrieben hat und ermöglichen bei Anwendung der “failure forecast method“ die 

Vorhersage der Dom-Eruption bei aktiv überwachten Hochrisikovulkanen. 
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Munich, 14. November 2007 
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“The Earth is not a cold death place” 

- Explosions in the Sky 
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Chapter 1 

INTRODUCTION 

 
Arc volcanoes commonly exhibit cycles of lava dome growth and catastrophic explosions. 

Lava domes are threatening since they act as plugs inside active volcanic craters like corks do 

for bottles of sparkling wine. Their cycle of growth and explosion leads to frequent, 

impulsive, and highly destructive volcanic disasters. For instance two thirds of the population 

of the island of Montserrat, in West Indies, has been evacuated since 1995 due to dome 

activity at Soufrière Hills (Avery, 2003). Fortunately, close monitoring and sever restrictions 

limited the fatalities to less than 10. Less lucky were however the 28000 inhabitants of St-

Pierre in Martinique who were killed in 1902 by the collapse and explosion of a lava dome 

(Lacroix, 1902; Tanguy, 1994). Yet, today, nearly half a billion people live near an active 

volcano, and a serious effort is required to prevent such disasters to recur.  

Nowadays, these active volcanoes are monitored by multiple geophysical and geochemical 

instruments which found our grounds in order to accurately forecast upcoming eruptions. 

Fortunately eruption precursors are numerous. However in the elaboration of eruptive 

scenarios, modellers find themselves facing a dead-end while the rheology, that is the flow 

behaviour, of the lava involved in these eruptions is as of yet very poorly constrained. 

Understanding the nature and efficiency of the physico-chemical processes involved in these 

eruptions is fundamental to risk assessment and hazard mitigation. A characterisation of the 

physico-chemical parameters controlling the rheology of lava domes is thus pressing and 

precisely the objective of this study. 



 22

1.1. lava rheology 

Lavas and magmas are primarily silicate melts. In recent years much effort has been 

concentrated on the rheology of single-phase melts (i.e., crystal- and bubble-free lavas) under 

conditions relevant to volcanism. Especially the description of properties such as the 

temperature, pressure and chemical composition on melts’ viscosity has been greatly 

improved (Bouhifd et al., 2004; Dingwell, 1998; Dingwell et al., 1998a; Dingwell et al., 

1998b; Goto et al., 1997; Hess and Dingwell, 1996; Holtz et al., 1999; Scaillet et al., 1996; 

Schulze et al., 1996; Schulze et al., 1999; Stevenson et al., 1998; Stevenson et al., 1995). 

Experimental work showed that silicate melts are viscoelastic fluids behaving according to the 

classical work of Maxwell. Essentially, the melt behaves as a Newtonian fluid at low strain 

rates (that is the stress to strain rate relationship is linear and passes through the origin). 

However, as the deformation speeds up to near the relaxation timescale of the melt structure, a 

transition from a more viscous to more elastic response occurs and the rheology becomes non-

Newtonian (that is the stress-strain rate relationship departs from the linearity). This change of 

behaviour is known as the glass transition temperature and it can be crossed by changing the 

strain rate or the temperature, or a combination of the two (Figure 1-1). 

 
Figure 1-1. Sketch of the glass transition field. During slow deformations, or 
at high temperatures, melts are liquid behaving as Newtonian fluid. Upon 
temperature decrease or strain rate increase, liquids enter an unrelaxed state 
and become non-Newtonian fluids. Ultimately, they may become glasses if 
they cross to the brittle field (modified from Dingwell, 1996). 
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In nature, lavas inevitably contain a varied amount of crystals and bubbles and their 

rheology remains as of yet incompletely resolved (A detail account of the works on 

suspension applied to geological process can be found in Petford, 2003). Rheologists tackled 

the problem of suspension from both sides: by increasing the crystal content of a liquid, and 

by increasing the melt fraction of a rock. Einstein (1606, 1911) and later Roscoe (1952) 

derived equations to quantify the relative viscosity (η) increase caused by the crystal fraction 

(0 to ~40%) in a Newtonian fluid (Figure 1-2): 

 η = η0 (1-Ф/Фm)-n (1) 

where ηo is the viscosity of the melt phase, Ф the crystal fraction, Фm is the critical packing of 

the crystals, and n is a constant considered as an adjustable parameter. This non-linear 

equation predicts an important viscosity increase as the crystal fraction approaches the critical 

packing value. Einstein first pointed the difficulty of using such a general equation while an 

increased crystal content (above as little as ~8%) will occasion common solid-solid collisions 

which drastically influence the suspension rheology. In such cases a departure from a simple 

Newtonian behaviour would result. The critical packing value is indeed critical here, as it 

corresponds to the geometry of the crystal which, depending of their shape, may impede flow 

to different extent. In geological system, the varied shape, size and mean size distribution of 

crystals complicate heavily this variable and therefore the use of such equations. 

 
Figure 1-2. Effects of crystal fraction on the relative viscosity of a melt. The 
theoretical curves at low crystallinity were derived for critical packing values 
of 50, 60, and 70% (after Pinkerton and Stevenson, 1992; Spera, 2000). Solid 
line (and dash line extrapolation) refers to the work of  Bagdassarov and 
Dorfman (1998) for a crystallinity of 50 to 100%. The RCMP and CMF are 
from Arzi (Arzi, 1978), and van der Molen and Paterson (1979). Diagram 
modified from Petford (2003). 
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 Complementary work on partially molten rocks aimed at understanding the strength 

decrease associated with an increase in melt fraction (1978; Bagdassarov and Dorfman, 1998; 

van der Molen and Paterson, 1979). Although their work cared for the strength of molten 

rocks (and not viscosity), their findings revealed an important strength drop at around 25-30% 

melt which was named rheological critical melt percentage (RCMP; later termed critical melt 

fraction, CMF). Later works showed that two strength transitions actually exist: the first and 

most important strength drop actually occurs between 0 and 8% melt and relates to the 

wetting of crystal boundaries, while the CMF accounts for a much smaller strength decrease 

(for further discussion, refer to Rosenberg, 2004; Wickham, 1987).  Nonetheless, the RCMP 

appears to be consistent with the abrupt viscosity increase observed near the critical packing 

value derived in the Einstein-Roscoe works; although strength and viscosity are concepts 

which cannot be directly compared. 

 Recent experimental work tried to track the viscosity jump across the CMF. Lejeune 

and Richet (1995) synthesized melts with defined contents of spherical particles, and 

performed low-load parallel plate experiments. Their work confirmed the uses of Фm = 0,6 

and n = 2,5, and the onset of the CMF around 40% crystals. It also points to the presence of 

yield strengths (~10s kPa) above this crystallinity and the change to a non-Newtonian 

rheology. Costa (2005) used existing experimental data and empirically developed a set of 

equations to compute the apparent viscosity of melts with any crystallinity (0 to 100%). In 

accordance with experimental work of Lejeune and Richet (1995) and the theoretical work of 

Einstein and Roscoe, these new equations helped to outline of crystallinity rheology, yet they 

did not account for the strain-rate dependency of the suspensions. 

Brückner and Deubener (1997) developed a phenomenological flow equation 

describing the strain rate effects on multiphase melts apparent viscosity (ηapp).  

 ηapp = η∞ + (η0 - η∞) (γg/γ) [1-exp(γ/γg)] (2) 

Where η∞ is the ultimate Bingham viscosity when the strain rate (γ) is infinite, η0 is the static 

Newtonian viscosity and γg is the flow relaxation rate. Such an equation poses a problem, 

Bingham conditions at high strain rates cannot be attained as the suspension fails long before. 

Yet this work specifies that an increase in crystal content will result in a stronger strain rate 

dependency of the viscosity.  

Over the last hundred years, experiments, theoretical and empirical models attempted 

to portray the rheological properties of suspension. The difficulty of suspension lies in dealing 

with plasticity in the solid mechanic continuum and with a non-Newtonian fluid in fluid 
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mechanics. The novel work presented here treats both worlds and try to merge the field of 

rheology, volcanology and seismology to forecast volcanic eruptions. 

 

1.2. Seismogenic volcanic conduits 

Seismograms are used to infer the occurrence of certain geologic processes. In active 

volcanic area, volcano-tectonic earthquakes are frequent, yet; two types of seismic signals are 

most commonly related to eruptions (Burlini et al., 2007). (1) High frequency seismic events 

produce high amplitude P- and S-waves with frequency ranging from 5 to 15 H. This seismic 

activity is a precursor to the initiation of an eruptive phase and often occurs as swarm. (2) 

Low frequency earthquakes (also known as long period earthquake or LP) produce emergent 

P-waves, weak S-waves and they have frequencies ranging between 0.1 and 3 Hz. LP and 

volcanic tremors generally coincide with the occurrence of an eruption. While much 

controversy remains as to the processes causing these signals, it is generally accepted that 

they originate within the magma inside the eruptive conduit. 

Recent field work on eroded shallow volcanic conduit uncovered a much complicated 

rheological dynamics. Structural and textural evidences revealed the common existence of 

seismogenic fault zones in which multiple cycles of rupture, slip and healing have occurred in 

the magma due to temperature and strain rate variations across the glass transition  (Figure 1-

3) (Tuffen and Dingwell, 2005; Tuffen et al., 2003). Tensile cracks entwined with shear bands 

are common along conduit margins (Figure 3b, Tuffen and Dingwell, 2005). A complex 

structure of pulverised glass and broken crystals known as tuffisite veins is often observed in 

these tensile cracks. These textures are very similar to the seismogenic fluidization of 

cataclasite in fault zones. It was proposed that cataclasite may be triggered by acoustic energy 

release during rupture (Melosh, 1996). Similarly the formation of tuffisite veins in magma 

stands as a plausible mechanism for the generation of low-frequency seismic events recorded 

during volcanic eruptions (Kumagai and Chouet, 2000). Complementarily, the absence of S-

wave arrivals in hybrid earthquakes is consistent with a source within flowing magma, rather 

than solidified rock (Neuberg, 2000; White et al., 1998). The increasingly widespread 

observation of complex shear bands between the country rocks and the magma thus appears to 

portray a volcanic conduit which may be smaller physically as it is chemically. In other 

words, even though the magma chemically extends out till the crystallized country rock, the 

portion of magma contributing to the eruption dynamic is delimited by the seismogenic shear 

zones, which are dictated by the shear rate to structural relaxation timescale relationship. In 
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this scenario, the locations of crack propagation therefore play a major role in the triggering 

of explosive eruptions. 

 
a 

 
 
b 

 
 
Figure 1-3. Repeated fracture and healing cycles. (a) Example of entwined 
ductile and brittle textures in a volcanic rock from Unzen (Japan). (b) 
Schematic view of seismogenic cycles of fracture and healing within rising 
magma. s corresponds to fault vein, i to injection vein, r to reservoir zone, and 
u to ultracataclasite zone. 

 
1.3. Acoustic Emission (AE) 

The experimental generation of cracks in deforming rocks has been studied intensively 

through acoustic emission (AE) monitoring (e.g., Byerlee and Lockner, 1976; Cox and 

Meredith, 1993; Dobson et al., 2004; Knilljl et al., 1968; Koerner et al., 1981; Lockner and 
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Byerlee, 1977; Main et al., 1993; Meredith et al., 2001; Ohnaka, 1983; Ojala et al., 2004; 

Prikryl et al., 2003). AE generated by microcrack growth are used to track the development of 

macroscopic failure, since their temporal, spatial and size distribution follow a power law akin 

to earthquakes (Ojala et al., 2004). AE are high-frequency strain waves analogous to low-

frequency seismic waves in nature (Dobson et al., 2004).  

Yet, AE were never used to characterize lavas even though they were suggested to 

provide “a sensitive procedure for monitoring the nature of the creep deformation” (Chmelik 

et al., 2002). It seems obvious from our knowledge of the viscoelastic nature of lavas, that AE 

should provide invaluable information to characterize the non-Newtonian regimes across the 

ductile/brittle transition; from its onset at low strain rate to its failure at high strain rate. In 

such cases, the data could be used to test whether eruption forecasting models can predict the 

catastrophic explosion of lava domes.  

 

1.4. Failure Forecast Method (FFM) 

Following the observation that lava extrusions are often preceded by an acceleration of 

seismic activity, Tokarev (1963) first proposed a method to forecast eruptions from the 

accelerating Benioff strain (square root of seismic energy). Voight (1988; 1989) then devised 

a more empirical method know as the material failure forecasting method (FFM) where the 

accelerating rate of precursory phenomena (e.g., hit count, released energy) correlates to the 

likeliness of failure- in this case, of an eruption: 
2

2

d dA
dt dt

αΩ Ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

where d2Ω/dt2 and dΩ/dt are the acceleration and rate of the phenomenon being monitored. A 

and α are parameters to be determined, and more explicitly α is expected to evolve from 1 to 2 

before an eruption (Cornelius and Voight, 1995). De la Cruz-Reyna and Reyes-Davila (2001) 

modified this approached (using a Kelvin-Voigt body) and tentatively matched all existing 

seismic data from two eruptions at Volcán de Colima, Mexico (Figure 1-4). Although their 

method was poorly constrained (and mainly a fit of infinite series of viscoelastic elements), it 

yielded reasonable agreements nonetheless. Kilburn (2003) described the fracturing time 

series that arise from random energy fluctuations within a finite volume subject to a constant 

remote stress and developed the multiscale fracturing method (MFM). He finds that the peaks 

in event rate (rather than all seismic events) describes best the path to failure and also 

confirms the use of α = 2 when approaching failure.  The previous equation can thus be 

simplified to: 



 28

( )1
fA t t

d dt
= −

Ω
 (4) 

Where tf is the time expected at failure. Since the acceleration increase before failure, the 

extrapolation of the inverse rate to 0 should provide the time of failure. Empirically derived 

from the field of rock mechanics, this approach does not yield well-constrained forecasts of 

lava extrusions and explosions. This study thus aims to test that macroscopic failure of 

multiphase lavas at high strain rate can be predicted by the FFM. 

 

 
 

Figure 1-4.  Eruption forecast based on the acceleration of seismicity. The 
heavy curve shows the cumulative counts of seismic event white the thin 
curve depicts the prediction of the model based on the first 8300 minutes. The 
model poorly predicts an eruption at 11627 minutes, that is one day after the 
occurrence of the actual eruption at 10000 minutes (from De la Cruz-Reyna 
and Reyes-Davila, 2001).  

 

1.5 Uniaxial compression experiments 

Following the theoretical work of Gent (1960) on the viscosities of cylindrical melt 

bodies deformed in compression, parallel plate apparatus were developed to study high-

viscosity melts (Bagdassarov and Dingwell, 1992; Fontana, 1970; Lejeune and Richet, 1995; 

Neuville and Richet, 1991) Yet to experiment on natural material in which the crystals are 

abundant and large, a very large press was needed to avoid scaling ratio issues. Investigating 
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the rheological and seismological properties of multiphase melts thus required cutting-edge 

technology which was hitherto unavailable. 

 To achieve this task, a large high-pressure, high-temperature uniaxial press was 

developed and calibrated, and a series of rheological and seismological experiments were 

performed. The objective is to (1) provide accurate viscosity data at a range of pressure and 

temperature relevant to dome-building eruptions; (2) evaluate the rheology, and (3) describe 

the seismogenic character, of multiphase melts across the ductile-brittle transition; and (4) test 

whether the FFM can be use to accurately predict macroscopic failure of multiphase lavas. 
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 “Hit me or kick me or hold me or please believe” 

 - A silver Mt. Zion Memorial Orchestra  
and Tra-la-la Band 
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Chapter 2  

HIGH-LOAD, HIGH-TEMPERATURE DEFORMATION 

APPARATUS FOR SYNTHETIC AND  

NATURAL SILICATE MELTS 

 
A unique high-load, high-temperature uniaxial press was developed to measure the rheology 

of silicate melts and magmatic suspensions at temperature up to 1050 °C. This new apparatus 

is designed to operate at constant stresses (up to 300 kN) or constant strain rates (~10-7 and 

100 s-1), and further allows us to carry on experiments on samples with high viscosities (~108 

and 1012 Pa s). The rheological instrument represents an advance in that it accommodates 

homogeneously-heated samples (+/- 2 ºC) of voluminous sizes (up to 790 cm3) which permit 

the insertion of thermocouples to monitor temperature distribution evolutions during 

measurements. At last this setup allows for accurate measurements of viscosity of natural 

multiphase materials at strain rates and temperatures common to natural systems. The 

apparatus aspires to precisely (1) describe the onset of non-Newtonian behavior and its 

evolution with increasing strain rate until the point of rupture in the brittle regime, (2) 

constrain the effect of crystals and bubbles on the viscosity, and (3) record heating dissipated 

through viscous deformation. Here, a series of measurements on NIST standard material SRM 

717a was conducted to calibrate this state-of-the-art apparatus. To this end, the viscosity 

determined via Gent’s equation is compared to the certified viscosity data of the standard 

material. This work shows that the viscosity of voluminous melt sample can be resolved 

within 0.06 logarithmic units, and furthermore presents the detection of minor viscous 

dissipation for a high-temperature, high-strain-rate experiments. 
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2.1. Introduction 
Many techniques have been used to quantify single-phase melts viscosity and their 

temperature, pressure, and compositional dependences (Ryan and Blevins, 1987). Magmas, 

however, inevitably contain some crystals and bubbles and the description of their influences 

on the rheology remains far from complete (Petford, 2003). Parallel plate technique was used 

to study the suspension rheology of silicate melts containing small particles (Lejeune and 

Richet, 1995), but the large size of crystals and bubbles in natural suspension, and its need to 

overcome a yield strength of 10s of kPa in order to flow (Petford, 2003), call for the 

fabrication of a larger apparatus capable of dealing with this material. 

A unique high-load (<300 kN), high-temperature uniaxial press was developed to 

measure the rheology of silicate melts and magmatic suspensions at temperature up to 1050 

°C. This new apparatus is designed to operate at constant stresses (~20 to 350+ MPa) or 

constant strain rates (~10-7 and 100 s-1), and further allows us to carry on experiments on 

samples with high viscosities (~108 and 1013 Pa s). The rheological instrument represents an 

advance in that it accommodates voluminous samples height times larger than other currently 

available apparatuses. This permits the insertion of thermocouples to monitor temperature 

distribution evolutions during measurements. At last it will allow experiments on natural 

material at strain rates and temperatures common to natural systems (Manns and Bruckner, 

1988; Quane et al., 2004). The range of experiments planned for this instrument especially 

aims at documenting rheological properties at relevant eruptive conditions. Measurements 

with this press shall thus extend the viscosity range investigated by Stein and Spera (2002), 

and describe melt rheology subject to stresses ((i.e., >50 MPa) higher than those of Quane et 

al. (2004). The apparatus essentially aspires to precisely (1) describe the onset of non-

Newtonian behavior and its evolution with increasing strain rate until the point of rupture in 

the brittle regime, (2) constrain the effect of crystals and bubbles on the viscosity, and (3) 

record heating dissipated through viscous deformation. 

The use of parallel plate measurements to study viscosity stem from the early work of 

Gent (1960) which derived the theory to calculate the viscous deformation of a cylindrical 

melt. Here, we present a series of measurements on NIST standard material SRM 717a and 

couple the viscosity determination using Gent equation with certified viscosity data of the 

standard to calibrate this state-of-the-art apparatus. This work shows that we can resolve the 

viscosity of voluminous melt sample within 0.06 log unit, and furthermore present the 

detection of minor viscous dissipation for high-temperature, high strain rate experiments. 
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2.2. Instrument design  
A schematic illustration of the deformation apparatus is presented in Figure 2-1. The 

base unit consists of the load frame (Max Voggenreiter GmbH, Mainleus, Germany). Core of 

the press is a hydraulic CGS 280 servo cylinder with hydrostatic pocket bearings, which 

allows measurements in extension and compression.  The system is equipped with a linear 

variable differential transducer LVDT (incorporated in the servo cylinder; travel range 150 

mm, resolution 0.001 mm) at the top of the upper piston and a load cell at the bottom of the 

lower piston  (Lorenz Messtechnik GmbH, force sensor K11, range +/- 400 kN, accuracy 

class for tension or compression  0.05 %). It is capable of applying constant displacement 

rates from 0.005 up to 600 mm per minute (strain rates ~10-7 to 100 s-1 for samples with 

lengths of 10 to 100 mm) or working in a constant load mode up to 300 kN. The press 

accommodates cylindrical samples with a maximum length and diameter of 100 and 100 mm, 

respectively. Pistons are machined from a nickel base, high-temperature, high-strength alloy 

(Rene 41) with good oxidation resistance up to 1050 °C and are cooled at their ends during 

operation conditions. The servo-cylinder is controlled by the software package HCE-

HCELAB-1X/Z01 (Bosch Rexroth AG, Lohr am Main, Germany) operated on a test bed 

electronic system SYS-HCE-2X (same company) equipped with a measuring amplifier 

ME50S6 (Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany). 

 
Figure 2-1. Sketch of the uniaxial press: (1) load frame; (2) servo cylinder 
with LVDT; (3) load cell; (4) cooling jacket; (5) 3-zone split cylinder furnace; 
and (6) 6-input thermocouple interface (for type K and S). 
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Attached to the load frame is a 3 zone, 12kW, split cylinder furnace (F-A 100-

500/13_3, GERO Hochtemperaturöfen GmbH, Neuhausen, Germany) with CrFeAl-alloy 

heating wires operable up to 1100 °C. Thermal insolation is provided by a stiff fibre 

reinforced oxide ceramic SvM1514 (Walter E.C. Pritzkow Spezialkeramik, Stuttgard, 

Germany) in combination with flexible ceramic fibre blankets Alsiflex 1260 (Promat GmbH, 

Ratingen, Germany). Between 500 and 1050 °C, the three independent PID furnace 

controllers (Eurotherm 2704, Eurotherm Deutschland GmbH, Limburg an der Lahn, 

Germany) achieve a temperature stability of +/- 2 °C within a stable hot zone as long as 120 

mm. At the highest temperatures, thermal equilibration of the system (piston and sample) 

occurs within 7 hours after a change in temperature.  

The sample (enclosing up to three thermocouples equi-spaced alongside), the hot air 

zone and the lower piston temperatures are measured with shielded (Inconel) NiCr-Ni 

thermoelements (T.M.H., Hanau, Germany, Type K, D=1.5 mm) which can be read out by the 

six-input NI SCC-TC02 modules (National Instruments Corporation, Austin, TX, USA) built 

for conditioning signals from thermocouple types K and S. The modules include a 2 Hz 

lowpass filter and an onboard thermistor for cold-junction compensation and are fixed in a 

portable, shielded carrier (NI SC-2345). 

Finally the deformation apparatus, the furnace, and the sample thermocouples are 

controlled and data acquisition is managed by a fast (sampling rate up to 333kS/s, 16-bit, PCI) 

NI 6052E PC-Card inside a standard PC in connection with LabView software (National 

Instruments Corporation, Austin TX, USA).  

 
2.3. Parrallel-plate-type viscosity measurements 

Our calibration is done through a series of measurements on the NIST reference 

material SRM 717a as the exact viscosity can be predetermined using an equation valid for a 

wide range of temperatures (880 to 1555 °C). This standard material is advantageous as the 

large volume provided by the fabricant allows the preparation of large samples. Cylindrical 

core with a 2:1 height to diameter aspect ratio (40 x 20 mm) are prepared for this 

investigation. Three equispaced holes of 2 mm diameter are centrally drilled alongside the 

samples in order to insert three thermocouples and precisely monitor the temperature during 

the experiment. The sample is placed between the pistons and slowly heated up to a fixed 

temperature between 540-630 °C (we work in this low-temperature range to test-calibrate the 

press for high-viscosity measurements). After thermal equilibration, a pre-load is applied to 

get perfect parallel contact between the piston and the sample; then various loads (23-140 

MPa) are applied until a maximum of 33 % strain is obtained [Note, these loads were applied 



 36

as calibration purposes since the viscosities remained in the Newtonian regime. This press is 

however designed to simulate higher stresses and investigate the onset and development of 

non-Newtonian behaviour in transition to the brittle regime]. The resultant length changes 

recorded by the differential transducer are then corrected for the instantaneous displacement 

undergone by the transducer itself upon applied pressure. The compliance of the piston was 

measured through a series of piston-piston load tests at different temperatures. Although very 

minor, this absorbed length changes (l) is understood according to: 

 l  =  0.01691F0.6745 (5) 

where F is the force (N). The corrected values are then treated to obtain the corresponding 

viscosity. 

The bulk viscosity of the melt (η in Pa*s) was calculated via the viscous equation 

developed by Gent for parallel plate measurements: 

 η  =   _2πFh5_________ (6) 
 3Vδh/δt(2πh3+V) 

where h is the length (m), and V is the volume of melt (m3). We choose this equation which 

considers no-slip conditions as our deformed samples showed an absence or negligible 

amount of slip at the piston contact. The temporal profile of the viscosity is then refined via a 

spline smoothing algorithm. 

 
 
2.4. Results on the NIST references material SRM 717a 
 

A series of rheometric measurements were performed on the NIST SRM 717a (Table 

2-1). The obtained viscosity profiles reveal mainly constant values of viscosities with time (or 

strain), which reflect the Newtonian behaviour of the melt under the tested conditions (Figure 

2-2). Exceptions nevertheless arose for experiments at high temperatures and high strain rates, 

when slight viscosity decrease owing to viscous dissipation was monitored. Under the exerted 

conditions the obtained viscosity remained within error of the measurements, but it points to 

the importance of always monitoring the temperature distribution during viscosity 

measurements- especially for higher strain rate experiments in the non-Newtonian regime. A 

complementary investigation is currently undergoing which will serve to elucidate and model 

the extent of this viscous heating effect. 
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Table 2.1. Results for experiments on the SRM reference material 717a. ini: initial conditions; 
end: end conditions. For viscosity calculation purposes, the average temperature was used. 
Note the minor occurrence of viscous heating detected by any thermocouple between the 
initial and end measurements. 
 

Run 
 
 
 

Strain rate 
(s-1) 

 
 

Stress 
(Pa) 

 
 

Strain 
(%) 

 
 

TC low 
(°C) 

 
 

TC mid 
(°C) 

 
 

TC top 
(°C) 

 
 

T av 
(°C) 

 
 

Viscosity 
Log 

(Pa*s) 
measured 

Viscosity 
Log 

(Pa*s) 
calculated 

Resid.
 
 
 

1-41-ini 1.9E-04 1.2E+08 11.2 540.61 541.60 538.23 540.15 11.29 11.40 0.11 
1-41-end 1.5E-04 1.1E+08 15.9 539.99 540.71 537.57 539.42 11.31 11.42 0.11 
2-27-ini 1.1E-04 8.1E+07 6.5 540.84 541.66 538.56 540.36 11.31 11.39 0.08 
2-27-end 1.3E-04 7.9E+07 8.1 540.29 541.31 538.26 539.96 11.32 11.40 0.08 
3-27-ini 1.3E-03 7.8E+07 9.1 569.89 571.96 568.45 570.10 10.27 10.29 0.02 
3-27-end 1.2E-03 6.9E+07 20.4 569.84 572.07 568.59 570.17 10.25 10.29 0.04 
4-10-ini 2.3E-03 2.8E+07 10.3 588.94 589.20 587.82 588.65 9.59 9.69 0.09 
4-10-end 1.9E-03 2.3E+07 24.4 588.47 588.46 586.70 587.88 9.59 9.71 0.12 
5-18-ini 6.0E-03 5.5E+07 4.5 594.01 594.69 591.98 593.56 9.49 9.54 0.05 
5-18-end 5.0E-03 4.4E+07 23.6 596.94 598.18 594.09 596.40 9.41 9.45 0.04 
6-16-ini 6.0E-03 5.0E+07 9.3 599.24 601.21 599.02 599.82 9.43 9.35 -0.08
6-16-end 4.8E-03 3.7E+07 32.2 600.42 602.98 600.11 601.17 9.33 9.31 -0.02
7-17-ini 1.6E-02 4.6E+07 12.5 613.75 615.16 613.36 614.09 8.98 8.95 -0.03
7-17-end 1.3E-02 3.7E+07 31.9 616.67 618.57 615.85 617.03 8.93 8.87 -0.06
8-10-ini 2.3E-02 2.7E+07 14.3 627.31 628.14 625.77 627.07 8.58 8.60 0.02 
8-10-end 2.2E-02 2.5E+07 24.3 628.48 629.58 626.91 628.32 8.55 8.57 0.02 
  

 

 
Figure 2-2. Viscosity data obtained for different initial conditions. Raw 
viscosity values are derived every 0.1 s. 

 
Perhaps the most striking feature of this work is the excellent recovery we have 

between our viscosity measurements and the estimated values obtained via the certified 

equation (Figure 2-3); yet precise in spite of the large sample sizes. Our measurements 
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reproduced the viscosity to a precision of 0.06 log unit (Table 2.1); thus confirming the 

extension of the certified viscosity equation down to 540 °C. A slight offset to lower value 

can be observed at the high-viscosity end of the measurements but the values yet remain 

within the error of the measurement. Our results are furthermore in agreement with 

complementary measurements done in our lab with the micropenetration method on small-

volume samples. 

 

 
Figure 2-3. Obtained viscosity data compared to the certified values. The large 
data symbols span the error of the measurements. The 1:1 linear regression 
agrees to within 0.06 logarithmic units. 

 

In retrospect we introduced here a new high-load, high-temperature deformation 

apparatus designed to sample at high data acquisition rate and thus to explore the non-

Newtonian field of silicate melts with high precision and accuracy. The large size of the 

apparatus allow for the investigation of large samples in which we can insert thermocouples 

necessary in order to study viscous dissipation and the rheology of multiphase melts. The 

agreement obtained by this newly developed instrument is highly satisfactory and suitable to 

undertake viscosity measurements on large natural samples (Lavallée et al., 2007). 
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“In nature reality is selection 

the tool of critical intervention 
fragmentation is the rule 

unity is not taught in school” 

- Sonic youth
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Chapter 3 

NON-NEWTONIAN RHEOLOGICAL LAW FOR HIGHLY 

CRYSTALLINE DOME LAVAS 
 

Volcanic eruption models are hampered by the lack of multiphase magmatic flow laws. Most 

rheological models estimate the viscosity of multiphase lavas via the Einstein-Roscoe 

equation, but this simplification cannot be used for high-crystallinity and it does not consider 

the non-Newtonian, strain rate dependence of viscosity. Here, experiments on natural samples 

using a unique high-load, high-temperature uniaxial apparatus were carried out to simulate 

multiphase lava deformation under various stresses and strain rates. Multiphase lavas exhibit 

an important component of shear thinning, and appear to invalidate the adequacy of Einstein-

Roscoe-based formulations for highly-crystalline lava rheology. Indeed the remarkably 

singular dependence of viscosity (η) on strain rate (γ) yields a novel, universal rheology law 

at eruptive temperatures (T):  

log η = −0.993 + 8974/T - 0.543* log γ (7) 

This work reveals the importance of considering micro-cracking and viscous dissipation at 

very high strain rate (>10-3 s-1), thus explaining the occurrence of seismic swarms along the 

conduit margins, and consequently supporting plug-like magma ascent models. 
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3.1. Introduction 

Understanding the nature and efficiency of physico-chemical processes involved in 

effusive and explosive volcanism is fundamental to risk assessment and hazard mitigation. 

Such processes are unfortunately not easily accessible or observables in actual eruptions. In 

the past, risk assessment has been chiefly relied on monitoring combined with numerical 

simulations. Recently however, advances in experimentation on natural materials at relevant 

temperatures and pressures has contributed to quantification and modeling of magmatic 

behavior in conduits and domes during eruption (Alidibirov and Dingwell, 1996; Kennedy et 

al., 2005; Spieler et al., 2004; Tuffen et al., 2003). 

Accompanying this development is the fact that the description of single-phase melt 

properties such as the temperature, pressure and compositional dependence of viscosity has 

been vastly improved in the past decade (Giordano et al., 2006; Hui and Zhang, 2007). This 

combination of developments has advanced the physico-chemical basis of volcanic 

simulations in terms of mechanistic considerations and effective parameterizations greatly 

(Gonnermann and Manga, 2003; Melnik and Sparks, 1999; Papale, 1999a). Lavas, however, 

inevitably contain some crystals and bubbles and the description of their influences on the 

rheology remains far from complete (McBirney and Murase, 1984; Petford, 2003). In fact, 

observations from dome-building eruptions, in particular, reveal variable but very high levels 

of both vesicularity and crystallinity in erupting lavas.  

In fluid mechanics, a suspension rheology is generally understood as a fluid in which 

the addition of particles increases the viscosity nonlinearly according to the Einstein-Roscoe 

equation (Einstein, 1906; Einstein, 1911; Roscoe, 1952). Problems with this expression 

nonetheless exist when extrapolating to particle concentrations greater than ~50% as the 

mixture becomes non-Newtonian and therefore strain rate dependent (Stevenson et al., 1996; 

Vigneresse and Tikoff, 1999). Suspension rheology studies on basaltic (Pinkerton and Norton, 

1995; Ryerson et al., 1988), andesitic (Lejeune and Richet, 1995), rhyolitic melts (Alidibirov 

et al., 1997; Murase et al., 1985; Stevenson et al., 1996), and synthetic melts (Bruckner and 

Deubener, 1997; Deubener and Bruckner, 1997) at low to moderate stresses support this 

nonlinear increase of viscosity. Their findings seem to be consistent with an onset of non-

Newtonian flow behavior at crystallinity greater than ~30%, and yield stresses of a few 

kilopascals (see discussion in Barnes, 1999). Furthermore, numerical models have 

emphasized that the extent of viscosity and yield stress increases across this transition depend 

on the degree of particle anisotropy and crystal size distribution (Saar et al., 2001). In this 

area, modeling volcanic eruptions is badly hampered by a paucity of data and, as a 
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consequence, the lack of an expression that describes the strain-rate dependence of the 

rheology of lavas hosting crystals and bubbles (Petford, 2003). 

Here we investigated the rheology of natural melts subject to a wide range of stresses 

and strain rates. This study reveals important effects of strain rate on lava apparent viscosity 

and includes the generation of a general expression for the non-Newtonian regime of lavas 

with high crystal content. 

 

3.2. Measurement method and viscosity determination 

We used a high-load, high temperature uniaxial press to investigate the stress-strain rate 

behavior of multiphase lava (further details in Hess et al., in press). Here, cylindrical samples 

with a length to width aspect ratio of two (80 × 40 mm and 40 × 20 mm), and with a length at 

least ten times that of the largest crystal, were prepared for this study. This geometry 

minimized both edges and crystal-size scaling effects. The samples were inserted in the press 

and placed between two axial pistons which are surrounded by a three-zone furnace. The 

system was heated and equilibrated at high temperatures (940 to 1010 +/- 1.5 °C), then 

various loads (1–60 MPa) were applied to the sample until a maximum of 33% strain was 

obtained. Length changes of the sample were recorded at a rate of 10 times per second and the 

apparent viscosity of the melt (ηb in Pa*s) was then calculated via an equation developed by 

Gent (1960) for parallel plate measurements. Our calibration work demonstrated that we 

resolve the viscosity in Pa*s with an accuracy of +/-0.06 log unit (Hess et al., 2007).  

Four active volcanoes were selected for this study, namely Unzen, in Japan, Colima, in 

Mexico, Bezymianny, in Russia, and Anak Krakatau, in Indonesia (Table 3-1). The textures in 

the rocks were examined through microscopy and the open porosity of every sample was 

measured prior to, and after each experiment (Table 3-2). The samples for all volcanoes were 

highly degassed (≤0.1 +/− 0.05%) and no volatiles were lost during the extensive heat 

treatment as confirmed by weight loss tests before and after treatment. The rocks chosen for 

this study cover wide ranges of geochemistry, crystallinity and vesicularity, and thus represent 

a significant portion of the range of lavas at active volcanic systems. We have used them to 

test the hypothesis that a simple non-Newtonian rheological law is capable of dealing with 

this range of materials, nonetheless. 
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Table 3-1. Normalized geochemical composition of 12 measurements on glass phase of each 
sample. 
 

 
Note: The analyses were done with an electron microprobe, using a 15 kV, 20 nA scanning box mode (102 µm2). 

Standards: Si, Al and Fe: Ke-12 rhyolite; Na and Mg: albite; Ca: orthoclase; P and Ti: wollastonite; Mn: By-21; K and Ti: 
by-25. (1) Viscosity of the melt phase estimated at 940 °C after the work of Giordano et al.16 and Hess et al.8. (2) Viscosity 
of the bulk estimated via the Einstein-Roscoe equation for the melts with crystal content within the limit of the Einstein-
Roscoe equation (see Table 1). Here we considered the ideal packing of 0.6 and the adjustable parameter value of 2.5 
suggested by Lejeune and Richet (1995). 
 

Table 3-2. Petrological and textural characteristics of rock samples. 

 
 

3.3. Results 

More than 40 experiments were performed to describe the influence of stress, and 

resultant strain rate, on the apparent viscosity of the multiphase lavas. At low applied stresses 

(<15 MPa) the initial deformation was characterized by a rapid nonlinear increase in viscosity 

until a steady value was reached (Figure 3-1). We associate this initial portion of apparent 

viscosity increase to the elastic responses of the press and sample upon application of stress. 

At intermediate stresses (~15–30 MPa) deformation occurred at a constant strain rate and the 

viscosity remained constant over the whole measurement (Figure 3-1). An instantaneous 

viscosity decrease was observed for each applied stress increment. At higher stresses (>30 

MPa), the viscosity temporally decreased upon deformation; a delayed decrease of ~0.15 log 

unit occurred under a constant stress applied. In this rheological regime, the degree of delayed 

viscosity decrease was accentuated with increasing stress, and temperature increases 
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attributed to viscous heating began to be recorded by the thermocouple array (Figure 3-1). 

During these highest-stress experiments, the viscosity sometimes abruptly plunged and 

accompanying micro-cracking of the samples could be registered. Cracking of super-cooled 

melt results from high deformation rates which drive the system toward the brittle-ductile 

transition (Dingwell, 1996; Tuffen et al., 2003). 

 

 
Figure 3-1. Typical viscosity profile for an experiment at 940 ºC in which 
incremental stresses were applied. At 14 MPa, the viscosity nonlinearly 
increased with deformation due to elastic responses of the sample and the 
piston. At 24 MPa, the viscosity was constant throughout; however note the 
instantaneous decrease with respect to the viscosity at lower stress. A similar 
instantaneous drop can be noticed at 44 MPa, but here the high strain rate and 
accompanied viscous heating lowered the effective viscosity over the duration 
of the measurement. 

 

Post-experiment textural analyses provide important complementary insights into 

suspension rheology. Upon deformation, the samples bulged laterally and extensional micro-

cracks developed in periphery (Figure 3-2a). In the glass phase these cracks generally extend 

from one crystal to the next, whereas in the crystal phase the cracks seem to focus in the 

largest crystals primarily. We also notice a higher population of cracks inside the crystals for 

the experiments at higher strain rates. Even though cracks formed, some pores inside the melt 

closed and healed upon deformation; the end porosity values thus remained very similar to the 

initial porosity values, except for Krakatau samples in which the higher porosity lessened the 

occurrence of micro-cracking while allowing for more open pores to close (Table 3-2). 
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Figure 3-2. Post-experiment textures. (a) Bulging and minor lateral 
extensional cracking in a Colima sample deformed at 30 MPa. (b) Crystal re-
orientation and alignment characteristic of ductile response of the suspensions 
at medium stress (vertically applied stress). (c) Crystal re-orientation and 
breakage due to brittle response of the suspensions at high strain rates 
(vertically applied stress). 
 

Microscopic analysis also revealed a range of textures indicative of both viscous and 

elastic deformations. The alignments of crystals and melt into flow bands perpendicular to the 

applied stress evidenced the viscous response of the bulk in all samples and its dominant 

control on the obtained viscosity (Figure 3-2b). Otherwise, samples deformed at high strain 

rates were further characterized by multiple micro-cracks through phenocrysts (Figure 3-2b). 

In general these cracks were subparallel to the direction of stress, and restricted to the 

phenocrysts which had undergone rotation into perpendicular flow bands. At very high strain 

rates, micro-cracks were more closely concentrated and developed into longer fractures. The 

presence of large crystals sometimes deviated fracture propagation which showed their 

influence in changing the stress distribution. The micro-textural analysis showed the high 

importance of crystal organization in affecting the bulk of deformation and resultant non-

Newtonian flow regime. 

 

3.4. Singular non-Newtonian description of strain rate 

The non-linearity between the applied stresses and resulting strain rates reveals that 

lava suspensions are pseudo-plastic fluids with a strong shear thinning component and 
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without any observable yield strength (Figure 3-3). The strain rate (γ) can therefore be 

associated to the applied stress (σ) through a power law equation (Ostwald, 1925): 

σ = kγn   (8) 

where k and n are the Ostwald and non-Newtonian constants, respectively (Figure 3-3). 

Interestingly the non-Newtonian parameter remains nearly constant for all samples, permitting 

the following simplification: 

σ = kγ0.51 (9) 

The accordance of the suspensions to a singular non-Newtonian constant is further 

reflected in the obtained viscosity data 

 
Figure 3-3. Stress-strain rate profile of experiments at 940 °C. Suspension 
lavas behave as pseudo-plastic fluids with a strong component of shear 
thinning of 0.510. 

 

The results of all performed experiments reveal a linear relationship between the 

logarithms of viscosity and strain rate (Table 3-3; Figure 3-4). Interestingly and surprisingly, 

regardless of the volcano, and therefore the geochemistry, the crystal content, or the presence 

of 0–25% bubbles, all calculated viscosities equally decrease by 1.5 orders of magnitude by 

accelerating the strain rate from 10−6 to ~10-2.5 s-1; point at which the strain rate began to 

speed up and the viscosity dropped under a given applied pressure. In contrast, single-phase 

melts at a similar viscosity are Newtonian up to ~10-3 s-1, that is their viscosity does not 

exhibit a dependence on the strain rate up to this limit where viscous heating lowers the 

viscosity (Hess et al., submitted). The viscosity/strain rate linear relationship and the deviation 
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from this main trend can thus be decoupled which ease our task to pinpoint different 

mechanical influences. Here we suggest that the presence of crystals causes the common, 

linear trend described whereas the deviation from this trend is an effect of micro-cracking and 

viscous heating which serves to increase the temperature of the interstitial melt and therefore 

decrease the viscosity further. 

 

Table 3-3. Linear regressions for viscosity-strain rate data sets. 

 
 

 
Figure 4. Viscosity-strain rate profiles for all performed experiments. The 
green line was modeled by averaging the best fit curves for each volcano at 
940 °C (Table 3-3). The blue and red dash lines display the curves obtained 
through our general non-Newtonian rheological law (Equation 7) at 980 and 
1010 °C, respectively. The viscosity estimates of Unzen (open diamond) and 
Colima (open circle) lavas plotted on the y axis were determined with the 
Einstein-Roscoe equation (see Table 3-2). 
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3.5. General non-Newtonian rheological law  

The ubiquitous decrease in viscosity with increasing strain rate provides a valuable 

opportunity to refine our physico-chemical picture of eruptive flows. The range of apparent 

viscosities exhibited by the suspensions is mildly narrower than that of the interstitial melt 

viscosities obtained in previous work for pure melt phases within our temperature range 

(Table 3-1, Figure 3-4, Giordano et al., 2006; Hess and Dingwell, 1996). This suggests that 

for high-crystal content lavas (50–80%) the rheological regime is primarily dictated by the 

crystal phase while the importance of the interstitial melt viscosity is lessened. That 

observation implies, in turn, that with greater than 50% particles, suspension rheology 

equations such as the Einstein-Roscoe equation is, to a first order, irrelevant, for the 

description of these lavas as it overlooks their strain rate dependency. 

The effect of strain rate is universal in this investigation, regardless of crystallinity or 

chemistry (see a and b parameters in Table 3-3). The strain rate dependency of viscosity was 

obtained by averaging the slopes (a) and intersections (b) of the linear regressions at 940 °C. 

We then followed Hess and Dingwell (1996) method and used the various b values of Unzen 

and Colima to parameterize the temperature dependence according to the well known non-

Arrhenian behavior of silicate melts. Thus, a general expression capable of describing the 

non-Newtonian rheology of these lavas between ~850 and 1010 °C is provided by: 

log ηb = −0.993 + 8974/T - 0.543* log γ (7) 

where ηb is the apparent viscosity (Pa s), T the temperature (°C) and γ the strain rate 

(s-1). It is important to stress that this is not a theoretical equation; it rather was entirely 

derived empirically and is only applicable when the vesicle content is below 25% and at 

moderate strain rates between 10-2.5 and 10−6 s-1. Yet this master equation described the 

entirety of our suspension viscosities within +/−0.2 log unit. We anticipate it will be highly 

effective in delivering insights into the modeling of magma ascent and volcanic eruption. 

In a nutshell, the shear thinning exhibited by suspension lavas favors plug flow inside 

conduits (Ramos, 1999). At an active volcano such magma ascent dynamics is identified by 

the detection of periodic seismic swarms at a limited depth range along the conduit margin 

(Iverson et al., 2006; Rowe et al., 2004; Tuffen et al., 2003), and surficially expressed by 

dome growth or the extrusion of a spine. Plug disruption is known to produce catastrophic 

explosive eruption (Gonnermann and Manga, 2003; Papale, 1999b), but numerical models 

beg for better rheological constraints. Yet, the master equation and data presented herein 

strongly support recent modeling of stick-slip motion during the 2004–05 dome growth phase 
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at Mount St Helens (Iverson et al., 2006), and therefore will help merge the fields of 

volcanology, seismology, and numerical modeling in upcoming times of volcanic crisis. 

In summary, the observed micro-textures and obtained viscosity data presented a new 

view on the rheology of lava containing 50%–80% crystals. Within this limit, the suspension 

obeys a simple linear regression which predicts its rheology up to strain rates of 10-2.5 s-1. 

Above this strain rate, rheological models need to consider micro-cracking and heating 

generated by viscous dissipation. The simple equation non-Newtonian description of strain-

rate dependent rheology proposed here should enable its easy incorporation in current 

volcanic eruption models. We anticipate that the result will greatly enhance understandings of 

volcanic flows. 



 51

 

 



 52

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
“To turn up the signal, wipe out the noise” 

- Peter Gabriel  
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Chapter 4 

SEISMOGENIC LAVAS: FRACTURE AND ERUPTION 

FORECASTS 
 

Volcanic dome-building episodes commonly exhibit acceleration in both effusive 

discharge rate and seismicity before explosive eruptions (Sparks, 2003). This should 

enable the application of material failure forecasting methods (FFM) to eruption 

forecasting (Kilburn, 2003; Voight, 1988). To date, such methods have been based 

exclusively on the seismicity of the country rock (Voight, 1989). It is however clear 

that the rheology and deformation rate of the lava ultimately dictate eruption style 

(Dingwell, 1996). The highly crystalline lavas involved in these eruptions are 

pseudoplastic fluids which exhibit a strong component of shear thinning as their 

deformation accelerates across the ductile to brittle transition (Lavallée et al., 2007). 

Thus understanding the nature of the ductile-brittle transition in dome lavas may well 

hold the key to an accurate description of dome growth and stability. Here, results of 

rheological experiments with continuous micro-seismic monitoring reveal 1) that 

domes lavas are seismogenic and 2) that the character of the seismicity changes 

markedly across the ductile-brittle transition. Below strain rates of 10-4 s-1 lavas 

behave in a ductile manner and are essentially aseismic. As the strain rate increases, an 

exponential increase in micro-seismic activity, accompanied by crack localization is 

observed. Complete brittle failure occurs at strain rates approaching 10-2 s-1. Thus, 

molten lava may behave more like its volcanic rock equivalent than a fluid at these 

higher strain rates. These results demonstrate for the first time that lavas can be 

seismogenic. They contain the promise that magma seismicity, combined with FFM, 

can be applied successfully to dome-building eruptions for volcanic forecasting. 
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4.1. Introduction 

Arc volcanoes commonly exhibit cycles of dome growth building up to catastrophic 

explosions, leading to dome collapse. Increasingly, these volcanoes are routinely monitored 

by multi-parameter (geophysical and geochemical) systems which provide a basis in practice 

for hazard management and forecasting of upcoming eruptions (Sparks, 2003). Fortunately for 

monitoring, precursory signals of volcanic unrest are common and numerous; yet their origins 

remain to be deciphered and properly characterised in mechanistic way. In particular, volcanic 

eruptions generate various types of seismic signals including continuous tremor and it is 

within the complexities of their waveforms that the description of the responsible internal 

processes (e.g., fluid oscillation, melt migration and fracturing) is likely to be found (Chouet, 

1996; Harrington and Brodsky, 2007; McNutt, 2005; Neuberg, 2000; Neuberg et al., 2000). 

While many doubts remain as to the exact nature of volcano-seismic source mechanisms, it is 

nevertheless commonly accepted that brittle failure along the conduit margin can play a major 

role. To date, volcanic eruption forecasting models such as the material failure forecast 

method (FFM) assume that the seismicity originates from fracturing of the volcanic edifice 

(i.e., is not magmagenic) (Voight, 1988; Voight, 1989). However recent fieldwork on eroded, 

shallow conduits has uncovered abundant evidence of a more complex magma rheology. In 

particular structural and textural evidence have revealed the common existence of 

seismogenic fault zones in which multiple cycles of rupture, slip and healing have occurred in 

the magmas due to strain rate variations across the glass transition (Tuffen and Dingwell, 

2005; Tuffen et al., 2003). Elegant numerical models have further elucidated this shearing-

induced fragmentation along the conduit walls; nevertheless, the implementation of these 

scenarios clearly awaits better rheological and seismological constraints (Gonnermann and 

Manga, 2003; Papale, 1999b).  

Ultimately  it is the competition between the strain rate and the relaxation timescale of 

a melt which dictates whether the eruption will proceed effusively or explosively (flow or 

blow) (Dingwell, 1996). Classically, a pure, single-phase melt behaves as a Newtonian fluid 

at low strain rate, but as the deformation speeds up to near the relaxation timescale of the melt 

structure, the melt becomes non-Newtonian. Viscous heating and microcracking ensue (Hess 

and Dingwell, 1996; Webb and Dingwell, 1990). In nature, dome lavas inevitably contain a 

variable amount of crystals and bubbles, yet their rheological influence remains incompletely 

resolved (Petford, 2003). Recent experimental and theoretical studies have helped in defining 

a realistic view of their non-Newtonian behaviour (Caricchi et al., in press; Cordonnier et al., 

Submitted; Costa, 2005; Lavallée et al., 2007). Nevertheless their complex mechanical state 
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involving components of fluid and solid behaviours denies us a complete constitutive 

relationship to date. Essentially, three rheological effects have been recognized as the strain 

rate (or stress) is increased (Cordonnier et al., Submitted; Lavallée et al., 2007). (1) An 

instantaneous viscosity decrease, recoverable upon stress release, defines multiphase lavas as 

a viscoelastic, or pseudoplastic fluid with a strong component of shear thinning. As the strain 

rate is further increased, the viscosity becomes strain dependent where a delayed decrease in 

viscosity is caused by (2) minor viscous heating and (3) audible cracking. This late cracking 

of lavas as it embraces the brittle regime may hold the key to forecasting lava dome eruptions.  

The experimental generation of cracks has been studied extensively in the field of rock 

mechanics (Dobson et al., 2004; Ojala et al., 2004; Prikryl et al., 2003). Acoustic emission 

(AE) generated by microcrack growth are used to track the development of macroscopic 

failure, since their temporal, spatial and size distribution follow a power law akin to 

earthquakes (Ojala et al., 2004). AE events are high-frequency strain waves analogous to low-

frequency seismic waves in nature (Dobson et al., 2004). Yet, AE has seldom been used to 

characterize deformation of lavas even though it has been proposed to provide “a sensitive 

procedure for monitoring the nature of the creep deformation” (Chmelik et al., 2002). The 

viscoelastic deformation described in our previous work is comparable to creep deformation 

(Lavallée et al., 2007). Here we use AE for the first time to characterize the acoustic character 

of the non-Newtonian regime of dome lavas across the ductile-brittle transition – from its 

onset at low strain rate to its failure at high strain rate – and to evaluate the failure prediction 

capability of the FFM. 

 

4.2. Method and calibration 

The experimental arrangement for this investigation couples two now well-established 

techniques. Firstly, a well-calibrated, high-load, high-temperature uniaxial press was used to 

study the effects of stress and strain rate on the apparent viscosity of lavas from Colima 

(Mexico) and Bezymianny (Russia) volcanoes (see Chapters 2 and 3). Secondly, a fast AE 

monitoring system was close-coupled to the press, and used to record AE output 

simultaneously and continuously during each deformation experiment (Figure 4-1).  

Brittle failure during deformation was recorded by a computer developed by Physical 

Acoustics Corporation. AE generated by each crack increment produced a wave packet, or a 

hit. The AE sensor was positioned at the extremity of the upper piston which was used as a 

waveguide. For the purpose of the present study we used a WD broadband sensor operating 

between 100 and 1000 kHz with a peak sensitivity at 55 V or -62,5 dB. Used in a differential 
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mode, the sensor connected to a PCI-2 AE computer via preamp set at a 40 dB gain. The 

computer equipped with the AEwinTM real-time acquisition software acquired all incoming 

data and enabled replay and post-experiments analyses.  

 

 
 

Figure 4-1. Sketch of the experimental setup. The high-load, high-temperature 
uniaxial press consists of a: (1) load frame; (2) servo cylinder with LVDT; (3) 
load cell; (4) cooling jacket; (5) 3-zone split cylinder furnace; and (6) 6-input 
thermocouple interface (for type K and S). The AE sensor (7) was glued to the 
cool, upper end of the piston and connected to PCI-2AE computer.  
 

Preliminary tests were performed to assess the background noise generated by the 

uniaxial press, its hydraulic system and the surrounding heating furnace. We ran piston-to-

piston deformation tests and purely viscous melt deformation on NIST standard material SRM 

717a. Fortunately, our apparatus and setup produces little noise, which was nearly completely 

eliminated through the addition of a detection threshold at 50 dB. The second noise source 

was distinct and thus easily filtered out as it is produced by the hydraulic system during the 

transitional ramps to higher load. During these loading ramps which last six seconds, the press 

produces a peak of noise around 70-80 dB which (at stresses below 20 MPa) last up to ten 

seconds. The one remaining background noise was sporadic and could not be filtered (Figure 

4-2). Generally of low amplitude (< 54 dB), a few hits recurred in average 13 times per 
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millimetre of deformation. Even though some of these events reached (76 dB), we judged 

them insignificant as (1) they were single peak hit unaccompanied by a tail of lower 

amplitude hits, and therefore (2) with an incoherent B-value, and because (3) the absolute 

energy produced was generally 1-2 orders of magnitude lower than events for multiphase melt 

deformation. 

 
 

Figure 4-2. Background noise calibration experiments. AE hits recorded 
during deformation of the NIST reference material 717a, used to calibrate the 
noise of the uniaxial press. 
 

 We chose volcanic rocks from dome-building eruptions at Colima, in Mexico, and 

Bezymianny, in Russia, because extensive experimental work was performed on them 

(Cordonnier et al., Submitted; Kueppers et al., 2006a; Kueppers et al., 2006b; Lavallée et al., 

2007; Mueller, 2007; Mueller et al., 2005; Mueller et al., 2004; Richard et al., 2006; Scheu et 

al., 2007; Spieler et al., 2004). The textures in the rocks were examined through microscopy 

and the open porosity of every sample was measured prior to, and after each experiment. 

At Colima, we collected dense lava dome blocks from a lahar deposit. The rocks are 

dacite with ~50 to 60 % of commonly euhedral crystals up to 2.5 mm in length. The 
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microlites showed minor signs of flow alignment. A dacitic lava dome block was similarly 

sampled at Bezymianny, but the phenocryst (up to 2 mm) and microlite contents reach ~80 %, 

and they are generally anhedral and mechanically eroded. Unlike inside Colima’s dome rock 

the microlites at Bezymianny are more randomly interlocked and show no textural fabrics. 

The samples for both volcanoes were highly degassed (≤0.1 +/− 0.05 %) and no volatiles were 

lost during the extensive heat treatment as confirmed by weight loss tests before and after 

treatment. The rocks chosen for this study cover wide ranges of geochemistry, crystallinity 

and vesicularity, and thus represent a significant portion of the range of lavas at active 

volcanic systems. Experiments were performed under stresses of 1-40 MPa and temperatures 

of 900-980°C, i.e. under P-T conditions of dome-building eruptions. 

 

4.3. Seismogenic profile across the ductile to brittle field 

Viscosity profiles for multiphase lavas deforming under successively increasing 

increments of stress have been described recently (Lavallée et al., 2007). Here we extend that 

work to include the associated AE energy released by microcracking during deformation 

(Figure 4-3). Multiphase melt deformation under low stress (8 MPa) is typically characterized 

by a strong elasticity and thus a viscosity which increases at a decreasing rate until it 

stabilizes at a high, constant value (Figure 4-3A). Under these low stresses, no viscous heating 

is generated and the temperature remains constant (Figure 4-3B). A moderate number of AE 

is recorded during the viscosity increase, but with time the AE rate decreases to close to zero 

as viscosity stabilizes. Since the AE events are generally of low amplitude, the cumulative AE 

energy also remains low (Figure 4-3C). At intermediate stresses (16 MPa), the viscosity is 

often observed to remain relatively constant over the duration of the deformation, and minor 

viscous heating increases the temperature by about 0.5 °C (Figure 4-3A,B). Under this regime 

AE energy production rate also remains essentially constant (Figure 4-3C) but with occasional 

higher energy signals. Finally, at high stress (24 MPa), the viscosity decreases markedly 

during deformation (Figure 4-3A). This extreme regime is characterized by a noticeable 

degree of viscous heating and an accelerating output of AE energy (Figure 4-3B,C). Overall, 

the increase in AE energy with increasing stress is due both to an increase in the number of 

events and to an increase in individual event amplitude (c.f., earthquake magnitude). This is, 

in turn, manifested in a decrease of the seismic b-value (slope of the cumulative number of 

events vs. amplitude) from >3.5 to as low as <1.5 in some cases. This observation implies a 

change from more distributed small-scale cracking at lower stresses to more localized larger-

scale cracking at higher stresses. Here we caution that we use the b-values qualitatively, as we 
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are not able to precisely locate individual AE events with the current experimental setup. 

Nevertheless, the general attitude of the rheological and seismogenic profiles was similar for 

every multiphase melt tested irrespective of their chemical components, crystal content, or 

temperature. 

 
Figure 4-3. Experimental results for successive deformation of a Colima melt 
at 8, 16, and 24 MPa: (a) The apparent viscosity profile shows the 
instantaneous decrease associated with each stress increment. This is the 
origin of the non-Newtonian behaviour. (b) The internal melt temperature 
shows an increase associated with minor viscous heating at high stress. (c) 
The cumulative AE energy output is minor and constant at low to moderate 
stress and increase exponentially at high stress (1 fJ = 10-15 J).  
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Suspension rheology involves cracking throughout the spectrum. In general, the rates 

of AE output increases non-linearly with increasing strain rate and accelerates exponentially 

as failure is approached (Figure 4-4). The deformation is essentially aseismic at strain rates 

below 10-4 s-1 (a few minor AE are generated by internal rearrangement). The presence of 

crystals within a melt apparently significantly lowers the strain rate corresponding to the onset 

of the ductile-brittle transition in these multiphase magmas. Textural analysis of deformed 

samples indicates that cracking generally develops in plagioclase crystals; presumably 

because they are commonly twinned and zoned, and possesses important cleavage planes 

along {001}, {010} and {110}. Textural analysis also reveals the alignment of crystals during 

deformation and the development of large-scale cracks at high strain rates (also reflected in 

the decrease of seismic b-value). Complementary quantitative analyses of fabrics developed 

in Colima and Bezymianny samples using the automated pattern analysis software 

AMOCADO (Gerik and Kruhl, submitted) revealed an increase in the overall anisotropy of 

the suspension by ~29 % upon 33 % strain (Figure 4-5). The anisotropy of the crystal phase 

however decreased by 19 %. These observations suggest that during deformation, elongated 

crystals become broken into more equant fragments (lowering the crystal anisotropy) while 

the fragments from the original crystals align themselves perpendicularly to the applied stress 

to ease flow migration of the interstitial melt (increasing the overall anistropy).  

 
Figure 4-4. AE energy released rates for Colima and Bezymianny lavas at 
different strain rates. Although the crystallinities of Colima (~55 % crystals) 
and Bezymianny (~80 % crystals) melt samples were significantly different, 
the behaviour of both melts were very similar at a given temperature. It is 
rather the temperature which may serve to attenuate AE. 
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Figure 4-5. Anisotropic changes associated with deformation. These show the 
results of an experiment on Colima at 940 °C under 40 MPa. Photographs of 
thin sections (a) before the experiment, and (b) after the experiment (the 
applied stress was parallel with the long axis of the thin section). Both thin 
section were prepared along the same plane in the original rock sample. The 
post-experiment thin section shows a clear align of the crystals perpendicular 
to the applied stress. The anisotropy analysis of the whole the sample as a 
whole increased by 39% when comparing the axis ratios (c) before the 
experiment, and (d) after the experiment. In contrast, the anisotropy of the 
crystal phase alone decreased by 19%, when comparing the results (e) before 
and (f) after. These anisotropy graphs are direction vs slop plots for the 
intersection of segments with the analysed fabric. Each ring is equivalent to a 
count of (c) 500 units, (d) 1000 units, (e) 1250 units, and (f) 50 units (refer to 
the work of Gerik and Kruhl, submitted). 
 

 

4.4. Application of the failure forecast method (FFM) 

Given our observation that multiphase lavas behave brittlely at high strain rate, we 

have chosen to test whether crack growth and macroscopic failure of a multiphase melt at 

high strain rate is comparable to rock failure. The material failure forecast method (FFM) 

relies on the production rate of precursory phenomena (e.g., seismicity rate, AE rate, seismic 
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energy release, etc.), and correlating their accelerations to the likeliness of failure – in this 

case, of an eruption – via the equation 
2

2

d dA
dt dt

αΩ Ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (10) 

where d2Ω/dt2 and dΩ/dt are the acceleration and rate of the phenomenon being monitored, 

and A and α are empirically determined parameters (Cornelius and Voight, 1995; De la Cruz-

Reyna and Reyes-Davila, 2001; Kilburn, 2003; Tokarev, 1963; Voight, 1988). More explicitly 

α is expected to evolve from 1 to 2 before an eruption (Cornelius and Voight, 1995). Recent 

description of the fracturing time series that arise from random energy fluctuations within a 

finite volume subject to a constant remote stress proposed that the peaks in event rate (rather 

than all seismic events) predict best the path to failure and that α = 2 when approaching 

failure (Kilburn, 2003). The equation can thus be simplified to: 

( )1
fA t t

d dt
= −

Ω
 (11) 

where tf is the expected time-to-failure. Since the acceleration increases before failure, the 

extrapolation of the inverse rate to zero should provide the time-to-failure. Although 

empirically derived from the field of rock mechanics, this approach appears to provide a good 

representation of precursory accelerations preceding natural eruptions (De la Cruz-Reyna and 

Reyes-Davila, 2001); especially, when the acceleration of energy released is used (Smith et 

al., 2007). However, the predictions yielded by the model remain uncertain until shortly 

before an eruption, and thus an improved treatment must unfortunately await better 

rheological and seismological constraints (Smith et al., 2007). 

Our deformation experiments at very high strain rates on Colima lavas were 

characterized by clear exponential increases in the AE event rate and energy rate until 

complete failure soon thereafter. We can therefore retrieve a data distribution analogous to 

AE measured for rocks before failure by simply inverting the AE rate as shown in Figure 4-6. 

Extrapolations of the peak energy rate data points after four seconds yield indeed a very 

accurate prediction of the macroscopic failure of lava which occurred after twelve seconds. 

Although the test cannot be used to model more accurate α values at this point, it is strongly 

suggestive that the choice of an exponent equalling two and the use of peak energy values are 

appropriate for the forecasts of lavas dome eruption induced by shear strain. An earlier 

attempt to use the acceleration of seismic energy release to forecast two volcanic eruptions at 

Colima (July 1994 in hindsight and November 1998 in foresight) has shown that the method 

only became reasonably accurate shortly before the eruption (De la Cruz-Reyna and Reyes-

Davila, 2001). That study further specifies that such forecasting models “require that the 
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medium be considered as a closed-continuum system”. Under such conditions, our work 

reveals the possibility of accurate early predictions. We attribute the difficulty of using the 

FFM in real-time during volcanic crisis to the use of seismic data which may not all originate 

from a common process. For instance, stick-slip motion along fault planes in the upper 

conduit (e.g., Mount St. Helens, Iverson et al., 2006) would alter the seismic signals derived 

from shear-induced fragmentation at greater depth. Such a signal distinction is an essential 

prerequisite to future forecasting attempts. The present findings indicate that runaway growth 

of the strain rate and seismic energy release rates prior to volcanic eruption is likely to be the 

result of lava crossing the ductile-brittle transition as a result of increasing strain rate. 

 
Figure 4-6. Application of the FFM on a Colima lava. Experiment at 940 °C 
deformed under 40 MPa (strain rate of 7x10-3 s-1). The FFM prediction was 
based on the extrapolation of peak energy rates (lower values on this inverse 
scale), following the work of Kilburn (2003). Extrapolation of peak energy 
rates after 4 seconds of deformation (doted line) predicts well the time of 
complete failure (arrow). 
 

This work may have high impact in the realm of eruption forecast modelling. This is 

the first time that a series of rheological and acoustic tests has been able to expose the strong 

seismogenic character of multiphase lavas across the ductile-brittle transitional field. Below 

10-4 s-1 lavas are nearly aseismic. In contrast high-strain rate experiments clearly reveal an 

exponential increase in acoustic emission and a localization of the cracking until complete 

failure around 10-2 s-1. Energy rate acceleration before failure at high strain rates directly 

supports the application of FFM to dome-building eruptions. We urge its immediate testing in 

volcanic unrest events worldwide. 
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“You’re under the soil 

Yes, deep in the soil 

So we'll end with a whistle and end with a bang 

and all of us fit in our places” 

- Genesis
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Chapter 5 

CONCLUSIONS 
 

5.1. Conclusions 

A major leap was made in the rheologic and seismogenic description of highly-

crystalline dome lavas across the ductile-brittle transition. This achievement resulted from the 

development, thorough calibration, and use of a high-temperature, high-load uniaxial press 

which allowed for high-accuracy viscosity measurements on large melt samples. The 

accuracy of +/-0.06 logarithmic units indeed permitted the distinction of three primordial 

rheological effects across the ductile-brittle transition: (1) a non-Newtonian fluidity 

characterized by an important component of shear thinning, and a singular dependence of 

apparent viscosity on strain rate; (2) an increasing heat production from viscosity energy 

dissipation with increasing strain rate; and (3) a continuous growth of microscopic cracks 

until the brittle regime prevails beyond a strain rate of 10-3 s-1. 

Cracking of the lavas was monitored by an acoustic sensor. Below a strain rate of 

about 10-4 s-1 lavas behave in a ductile manner and are essentially aseismic. At higher strain 

rates, crack growths and localization generate a commensurate exponential increase in micro-

seismic activity, until complete brittle failure occurred at strain rates close to 10-2 s-1. 

Application of the material failure forecasting method (FFM) to predict macroscopic failure 

of the melt using the acceleration of seismic energy release yielded very accurate predictions 

after 4 seconds of deformation (that is, 8 seconds before complete failure). 

Ours findings on the rheology and seismology of multiphase dome lavas concur with 

the localization of strain along the volcanic conduit margin and therefore the development of 

plug-like flow. The rheological results coupled to the seismicity further support the 

association of seismic swarms with seismogenic shear zones during eruptions. This study 

therefore emphasise the need to carefully monitor the seismicity during volcanic unrest; in 

particularly, heed the acceleration of seismic energy release that can be use with failure 

forecast methods to successfully predict impending lava dome eruptions.  
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