Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Allgemeine und spezielle Beiträge zur nucleophilen Acyl-Transfer-Katalyse

von Ingmar Held aus Bückeburg

2007

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Hendrik Zipse betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet.

München, den 02.08.2007

Ingmar Held

Dissertation eingereicht am:	02.08.2007
1. Gutachter:	Prof. Dr. H. Zipse
2. Gutachter:	Prof. Dr. H. Mayr
Tag der Disputation	28.11.2007

Die vorliegende Arbeit wurde in der Zeit von März 2004 bis Juli 2007 am Department Chemie und Biochemie der Ludwig-Maximilians-Universität München unter der Anleitung von Herrn Prof. Dr. Hendrik Zipse durchgeführt.

Meinen Eltern

Teile dieser Dissertation sind veröffentlicht in:

The Stability of Acylpyridinium Cations and Their Relation to the Catalytic Activity of Pyridine Bases. I. Held, A. Villinger, H. Zipse, *Synthesis* **2005**, 1425 - 1430.

The DMAP-Catalyzed Acetylation of Alcohols - A Mechanistic Study (DMAP = 4-(Dimethylamino)pyridine). S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H. Zipse, *Chem. Eur. J.* 2005, *11*, 4751 - 4757.

Stacking Interactions as the Principal Design Element in Acyl-Transfer Catalysts. Y. Wei, I. Held, H. Zipse, *Org. Biomol. Chem.* **2006**, *4*, 4223 - 4230.

Modular Design of Pyridine-Based Acyl-Transfer Catalysts. I. Held, S. Xu, H. Zipse, *Synthesis* 2007, 1185 - 1196.

Patentanmeldung:

Modular Design of Pyridine-Based Acyl-Transfer Catalysts, I. Held, H. Zipse, 10 2006 057 580.6, 06.12.2006.

Danksagung

Meinem Doktorvater Prof. Dr. Hendrik Zipse danke ich für die Überlassung dieses interessanten Forschungsthemas, das in mich gesetzte Vertrauen, sein stetes Interesse und seine Diskussionsbereitschaft über wissenschaftliche Aspekte dieser Arbeit und unwissenschaftliche und humoristische Aspekte des Lebens.

Herrn Prof. Dr. Herbert Mayr danke ich für die freundliche Übernahme des Zweitgutachtens.

Danken möchte ich auch den Mitarbeitern der analytischen Abteilung am Department Chemie der Ludwig-Maximilians-Universität München. Mein ganz besonderer Dank geht hier vor allem an Herrn Dr. David S. Stephenson für die Aufnahme von Tieftemperaturmessungen, sowie kinetischen Messungen und vielen 2D-NMR-Spektren. Mein Dank gilt auch Frau Claudia Dubler für Aufnahme vieler 2D-NMR-Spektren.

Herrn Dr. Peter Mayer danke ich für die Durchführung zahlreicher Kristallstrukturanalysen.

Meinem ehemaligen Kollegen Dr. Christian Fischer danke ich herzlich für die tolle Arbeitsatmosphäre und viele interessante Diskussionen. Seine organisierte und ordentliche Arbeitsweise werden mir immer ein Vorbild sein. Ebenfalls bedanke ich mich bei Dr. Harald Steininger für viele humorvolle Gespräche.

Mein besonderer Dank gilt weiter all denjenigen die zum Gelingen dieser Arbeit beigetragen haben:

Herrn Dr. G. Nahari Sastry "for to be very strange". Frau Yin Wei für die gute Zusammenarbeit und viele interessante Diskussionen. Frau Anna Katharina Probst für die gute Verpflegung und die tatkräftige Unterstützung im Labor. Meinen Forschungspraktikanten Herren Alexander Villinger, Frank Roberts, Alexander Penger, Xaver Wurzenberger, Philipp von den Hoff und Aleksandar Vaneski sowie Frau Felicia Wagner. Meinen Kollegen Dr. Michael Zöllinger, Georg Mader, Andi Stanzel, Christoph Pöverlein, Martin Westermaier sowie Julia Fleckenstein für die kritische Durchsicht des Manuskripts.

"Vorhersagen sind schwierig, besonders wenn sie die Zukunft betreffen."

Karl Valentin

Inhaltsverzeichnis

1.	Einl	eitung		1
2.	Mec	hanistiso	che Aspekte der DMAP katalysierten Acetylierung von Alkoholen	2
	2.1	Einleitu	ng	2
	2.2	Dichtef	unktionalstudie zum DMAP-katalysierten Reaktionspfad am	
		Modells	system Acetanhydrid und tert-Butanol	5
	2.3	Kinetise	che Messungen	8
3.	"In-	Silico"-E	Benchmark	12
	3.1	Einleitu	ng	12
	3.2	Bisher b	bekannte Rationalisierungsversuche der katalytischen Aktivität	
		verschie	edener Pyridine	14
	3.3	Berechr	nung der relativen Acylierungsenthalpien	17
	3.4	Diskuss	ion der Ergebnisse	30
	3.5	Zielmol	eküle	40
4.	Synt	these der	· getesteten Zielverbindungen	43
	4.1	Synthes	e von 6,6-Tricycloaminopyridin (TCAP, 41)	43
	4.2	Derivat	isierungsversuche von 6,6-Tricycloaminopyridin (TCAP, 41)	48
		4.2.1	Deprotonierungsversuche von 6,6-Tricycloaminopyridin	48
		4.2.2	Variation der Michael-Akzeptoren in der	
			Heck-Kupplungs-Reaktion	49
		4.2.3	Syntheseversuche zur radikalische Cyclisierung über PTOC-Ester	51
	4.3	Synthes	e der Pyrido[3,4-b]pyrazine-Derivate	54
		4.3.1	Synthese der Tetrahydropyrido[3,4-b]pyrazin 76 und 81	54
		4.3.2	Synthese des Octahydropyrido[3,4-b]chinoxalin rac-97	56
		4.3.3	Synthese des Octahydropyrido[3,4-b]chinoxalin rac-131	60
		4.3.4	Synthese des 2,3-Diphenyl-tetrahydropyrido[3,4- <i>b</i>]pyrazin <i>rac</i> -140	62
	4.4	Synthes	e der (4-Pyridyl)guanidine	66
	4.5	Synthes	e der Triarylamine	71

5.	Mes	sung der katalytischen Effizienz	74
	5.1	Einleitung	74
	5.2	Messung und Auswertung des Steglich-Experiments	74
	5.3	Katalytische Effizienz der 3,4-Diaminopyridin-Derivate	79
		5.3.1 Diskussion der Halbwertszeiten der Acetylierung von Alkohol 21	79
	5.4	Vergleich der katalytischen Effizienz mit den relativen	
		Acetylierungsenthalpien	82
	5.5	Messung der Halbwertszeiten von Isobuttersäureester 167	82
	5.6	Katalytische Effizienz der (4-Pyridyl)guanidine	84
	5.7	Vergleich der katalytischen Effizienz mit den relativen	
		Acetylierungsenthalpien	86
	5.8	Rationalisierungsversuche der hohen katalytischen Effizienz der	
		3,4-Diaminopyridin-Derivate	87
	5.9.	Katalytische Effizienz der Triarylamine und des Imidazopyridins	91
	5.10	Katalytische Effizienz des Fu-Katalysators 171	92
	5.11	Katalytische Effizienz des Iminophosphorans 99	93
6.	Dom	ino-Katalyse in der direkten Umwandlung von Carbonsäuren	
	zum	Ester	94
	6.1	Einleitung	94
	6.2	Reaktionsmechanismus	95
	6.3	Umsatzverfolgung der Veresterung von Isobuttersäure mit tert-Butanol	101

8.	Exp	erimente	eller Teil	113
	8.1	Allgem	eine Arbeitstechniken	113
		8.1.1	Chromatographie	113
		8.1.2	Trocknen von Lösungsmitteln und Reagenzien	113

Anwendung des optimierten Reaktionsprotokolls

Synthese von Benzylestern

6.6 Grenzen des Verfahrens

6.7 Schlussfolgerung

7. Zusammenfassung

6.4

6.5

104

106

108

109

110

		8.1.3	Analytische Methoden	114
		8.1.4	Infrarotspektroskopie	114
		8.1.5	Massenspektroskopie	114
	8.2	Arbeits	vorschriften zur Synthese der Katalysatoren	115
		8.2.1	Arbeitsvorschriften zur Synthese der Pyrido[3,4-b]pyrazin-Derivate	115
		8.2.2	Arbeitsvorschriften zur Synthese der Octahydro[3,4-b]chinoxaline	129
		8.2.3	Synthese der (4-Pyridyl)guanidin-Derivate	139
		8.2.4	Arbeitsvorschriften zur Synthese von TCAP und	
			4-Aminopyridin-Derivaten	154
		8.2.5	Arbeitsvorschriften zur Synthese der Triarylamine	163
		8.2.6	Arbeitsvorschriften zur Synthese von Estern	169
9.	Ums	atzverfo	lgung	180
	9.1	Allgeme	eine Arbeitsmethoden	180
	9.2	Allgeme	eine Durchführung zu den Reaktivitätsexperimenten	180
		9.2.1	Probenvorbereitung und Kinetikmessung mit	
			Acetanhydrid (A)	181
		9.2.2	Probenvorbereitung und Kinetikmessung für	
			Isobuttersäureanhydrid (B)	181
	9.3	Messun	g der Halbwertszeiten der Veresterung von Boc2O-aktivierten	
		Carbons	säuren	181
	9.4	Fitten de	er Edukte, Intermediate und Produkte der Veresterung von	
		Isobutte	brsäure (177) mit <i>tert</i> -Butanol (178)	182
	9.5	Umsatz	grafiken	183
		9.5.1	Umsatzgrafiken aus der NMR-Testreaktion	183
		9.5.2	Umsatzgrafiken aus der Veresterung von	
			Boc ₂ O-aktivierten Carbonsäuren	194
	9.6	Integral	tabellen	196
10	. Kris	tallograj	phischer Anhang	216
11	. "In-	Silico"-B	Benchmark-Anhang	241
Ał	okürz	ungsverz	zeichnis	262
Le	ebenslauf 264			

1. Einleitung

Veresterungsreaktionen stellen eine der wichtigsten Reaktionen in der organischen Chemie dar. Obwohl es sich um eine "klassische" Reaktion mit einer langen Geschichte handelt, werden auch heute kontinuierlich neue Entwicklungen vorgestellt, die diese Umsetzung immer effektiver und vielseitiger machen. Zum Beispiel wurde das Bestreben, Reaktionen so mild und schnell wie möglich zu machen, im Fall der Veresterungsreaktion durch die Entwicklung von 4-(Dimethylamino)pyridin (DMAP, 1) durch *Steglich*^[1] und *Litvinenko*^[2] im Jahre 1968 zum Teil befriedigt. Seither findet DMAP breite Anwendung: von der einfachen Acetylierungsreaktion^[3] über Baylis-Hillman-Reaktionen^[4] und anspruchsvollen Macrolactonisierung^[5] bis zur Naturstoff-^[6] und Kunststoffsynthese.^[7] Kürzlich wurde in der Fachliteratur über eine bemerkenswerte Reaktion berichtet, die erst durch DMAP-Katalyse möglich wird.^[8]

Schema 1: Rückgewinnung von ε-Caprolactam aus 6-Nylon.

Dies ist Grund und Motivation genug, sich mit DMAP-katalysierten Reaktionen auseinanderzusetzen und die Frage zu stellen: Ist es möglich katalytisch effizientere DMAP-Derivate zu entwickeln? Kann man die katalytische Aktivität vorhersagen? Wenn ja, wie? Kann man diese katalytisch reaktiveren DMAP-Derivate da einsetzen, wo DMAP an seine Grenzen stößt? Dies sind Fragen, die sich nicht leicht beantworten lassen und die ein sehr gutes mechanistisches Verständnis von DMAP-katalysierten Reaktionen voraussetzen. Diese Arbeit hat sich zum Ziel gesetzt, Antworten auf diese Fragen zu finden bzw. einer Antwort näher zu kommen.

- ^[3] G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 1978, 17, 569.
- ^[4] Microreview: Y.-L. Shi, M. Shi, Eur. J. Org. Chem. 2007, 18, 2905.

^[1] W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001; Angew. Chem. Int. Ed. Engl. 1969, 8, 981.

^[2] L. M. Litvinenko, A. J. Kirichenko, Dokl. Akad. Nauk SSSR, Ser. Khim. 1967, 167, 97.

^[5] a) J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, *Bull. Chem. Soc. Jpn.* **1979**, *52*, 1989. b) E. P. Boden, G. E. Keck, *J. Org. Chem.* **1985**, *50*, 2394.

^[6] a) D. R. Williams, L. A. Robinson, C. R. Nevill, J. P. Reddy, Angew. Chem. Int. Ed. 2007, 46, 915-918. b) T.

Mita, N. Fukuda, F. X. Roca, M. Kanai, M. Shibasaki, *Org. Lett.* **2007**, *9*, 259. c) M. L. Maddess, M. N. Tackett, H. Watanabe, P. E. Brennan, C. D. Spilling, J. S. Scott, D. P. Osborn, S. V. Ley, *Angew. Chem. Int. Ed.* **2007**, *46*, 591.

^[7] a) R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc. 2001, 123, 11498. b) G. A. Luinstra, G. R. Haas, F.

Molnar, V. Bernhart, R. Eberhardt, B. Rieger, Chem. Eur. J. 2005, 11, 6298.

^[8] A. Kamimura, S. Yamamoto, Org. Lett. **2007**, *9*, 2533.

2. Mechanistische Aspekte der DMAP-katalysierten Acetylierung von Alkoholen

2.1 Einleitung

Zur Entwicklung neuer nucleophiler Katalysatoren, die auf DMAP 4-(Dimethylamino)pyridin (1) basieren, ist die genaue Kenntnis des Reaktionsmechanismus der DMAP-katalysierten Acetylierung von Alkoholen Grundvoraussetzung. Der bis 2004 in der Literatur akzeptierte Reaktionsmechanismus war, dass in einem vorgelagerten Gleichgewicht DMAP mit Acetanhydrid zu einem Acylpyridium-Ion und Acetatanion reagiert.^[9] Im zweiten, geschwindigkeitsbestimmenden Schritt greift der Alkohol das Acylpyridinium-Ion nucleophil an und bildet Ester und freie Essigsäure, die den Katalysator protoniert. Zur Reaktivierung ist eine Auxiliarbase wie Triethylamin notwendig (**Schema 2**).

Schema 2: Bis 2004 in der Literatur diskutierter Reaktionsmechanismus der DMAP-vermittelten Veresterung von Alkoholen in Gegenwart von Acetanhydrid.

Dieser Mechanismus wurde auf Grund von Experimenten mit verschiedenen Acylpyridiniumsalzen und Acetylierungsreagenzien und dem spektroskopischen Nachweis der dabei durchlaufenen Intermediate postuliert. So zeigten Arbeiten von *Kattnig et al.* und auch frühere Versuche von *Steglich et al.* und *Wakselman et al.* dass das Gegenion des Acylpyridiumions und seine Basizität im geschwindigkeitsbestimmenden

^[9] A. C. Spivey, S. Arseniyadis, Angew. Chem. 2004, 116, 5552.

Schritt eine entscheidende Rolle spielen muss (**Tab. 1**).^[10] Aus den Daten war ersichtlich, dass bei Verwendung von K₂CO₃ als Base und Variation des Acetylierungsreagenzes die Reaktion mit Acetylchlorid langsamer ist. Im Gegensatz dazu führt die Verwendung von Pyridin zu einer Reaktionsbeschleunigung der Acetylierung durch Acetylchlorid. Dies lässt sich dadurch erklären, das Pyridin nicht nur als Base wirkt, sondern auch als Acylgruppentransferreagenz (vgl. Einhorn-Variante der Schotten-Baumann-Reaktion).^[11] Pyridin bildet ein weniger stabiles Acylpyridiniumchlorid als DMAP.

Substrat	Base ^a	Ac ₂ O	AcCl
	K ₂ CO ₃	3.2 (1.6)	35 (1.8)
1-Propanol	Pyridin	11 (1.4)	<0.2 (n. b.) ^b
	-	30 (1.6)	33 (1.4)
	K ₂ CO ₃	18 (1.3)	200 (1.3)
2-Propanol	Pyridin	120 (1.6)	<0.2 (n. b.)
	-	350 (1.3)	120 (0.9)

^{*a*} 4 äquiv. K_2CO_3 und 2 äquiv. Pyridin. ^{*b*} n. b. = nicht bestimmt

Tab. 1: Von *Kattnig* und *Albert*^[10] gemessene Halbwertszeiten $\tau_{1/2}$ / min der Veresterung von 1-Propanol **17** und 2-Propanol **19** in Gegenwart verschiedener Basen und Acetylierungsreagenzien. Die Zahlen in Klammern verweisen auf den gemessenen primären kinetischen Isotopeneffekt.

Es fehlten dennoch die Beweise, die die oben beschriebene Annahme belegen. Gegen die Annahme, dass das Gegenion des Acylpyridium-Kations die Base ist, die den Alkohol deprotoniert, sprachen Experimente, in denen die Auxilliarbase variiert wurden. So konnte *Heinrich* zeigen, dass bei Variation der Hilfsbase von DABCO (1,4-Diazabicyclo-[2.2.2]oktan) zu NEt₃ eine Beschleunigung der Acetylierungsreaktion von 1-Ethinyl-cyclohexanol **21** um den Faktor 3.5 erreicht wird (**Tab. 2**).^[12] Die p*K*_a-Werte von DABCO, Triethylamin und DMAP liegen in

^[10] a) E. Guibe-Jampel, G. Le Corre, M. Wakselman, Tetrahedron Lett. 1979, 20, 1157 b) G. Höfle, W. Steglich,

H. Vorbrüggen, Angew. Chem. 1978, 90, 602-615. c) E. Kattnig, M. Albert, Org. Lett. 2004, 6, 945-948.

^[11]A. Einhorn, F. Hollandt, Justus Liebigs Ann. Chem. 1898, 301, 95.

dieser Reihenfolge bei 8.8, 10.7 und 9.2.^[13] Die p K_a -Werte der Basen liegen nahe beieinander und es ist nicht unbedingt einsichtig, warum Triethylamin oder ein zweites DMAP-Molekül im geschwindigkeitsbestimmenden Schritt nicht beteiligt sein sollte.

Tab. 2: Die von *Heinrich*^[12] gemessenen Halbwertszeiten der Acetylierung von 1-Ethinylcyclohexanol 21.

Alternativ zur nucleophilen Katalyse wurde in der Literatur auch die Basenkatalyse diskutiert. Sie wurde aufgrund einer fehlenden Korrelation von katalytischer Aktivität mit pK_a -Werten von Aminen aber ausgeschlossen. Dennoch kann ein basenkatalysierter Reaktionsmechanismus als Konkurrenzreaktion nicht so leicht verworfen werden, da sich die pK_a -Werte von Triethylamin (pK_a =10.7) und DMAP (pK_a =9.2)^[13] in Wasser nur wenig unterscheiden. Auch schließen Messungen von kinetischen Isotopeneffekten eine Basenkatalyse nicht eindeutig aus (**Tab. 1**). Ein primärer kinetischer Isotopeneffekt größer als 2.0 bedeutet, dass dem Mechanismus allgemeine Basenkatalyse zu Grunde liegt. Ein Isotopeneffekt zwischen 1 bis 1.5 bedeutet hingegen, dass nucleophile Katalyse vorliegt.^[14] Diese Diskussion zeigt, dass eine genauere Studie der DMAP-katalysierten Acetylierung notwendig ist.

^[12] M. Heinrich, Dissertation **2003**, LMU Muenchen.

^[13]D. H. Ripin, D. A. Evans, http://daecr1.harvard.edu/pdf/evans_pKa_table.pdf

^[14] a) S. L. Johnston, J. Am. Chem. Soc. **1962**, 82, 1729-1734. b) A. C. Hengge, R. A. Hess, J. Am. Chem. Soc. **1994**, 16, 11256-11263.

2.2 Dichtefunktionalstudie zum DMAP-katalysierten Reaktionspfad am Modellsystem Acetanhydrid und *tert*-Butanol

Nachfolgend ist ein Gasphasenenthalpie-Profil des nucleophilen und des konzertierten basenkatalysierten Reaktionspfades dargestellt (**Abb. 1**). Alle stationären Punkte wurden auf dem B3LYP/6-31G(d)-Niveau optimiert und die zugrunde gelegten Gasphasenenthalpien (ΔH_{298}) wurden auf dem Niveau B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) berechnet.

Abb. 1: Gasphasenenthalpieprofil (ΔH_{298}) der nucleophilen Katalyse und der konzertiert ablaufenden Basenkatalyse.

Im ersten Schritt bildet sich aus den Edukten DMAP, Acetanhydrid und *tert*-Butanol ein ternärer Reaktanten-Komplex, der im Fall der nucleophilen Katalyse über den Übergangszustand 7 zum Intermediat **8b** reagiert. Dieser Komplex lässt sich am besten als schwach gebundener Komplex aus dem Acylpyridinium-Ion, Acetatanion und *tert*-Butanol beschreiben. Anschließend erfolgt eine Umordnung von Acetatanion und *tert*-Butanol zum Intermediat **8a**. Ausgehend von **8a** greift der Alkohol den Carbonyl-Kohlenstoff des Acylpyridium-Ions an, wobei das Acetatanion eine starke Wasserstoffbrücke zum Alkohol ausbildet und damit den Angriff des Alkohols an das Acylpyridinium-Ion unterstützt. In einem konzertierten Mechanismus, in dem vier Bindungen gebildet bzw. gebrochen werden, dargestellt im Übergangszustand **9**, reagiert das Acylpyridiumion mit dem Alkohol zum Ester und einem Komplex **10** aus Essigsäure und DMAP ab. Übergangszustand **9** liegt 8.8 kJ/mol über dem Übergangszustand **7** und ist damit der geschwindigkeitsbestimmenden Schritt in der nucleophilen Katalyse. Dies ist im Einklang mit der experimentellen Annahme, dass der letzte Schritt geschwindigkeitsbestimmend ist. Der energetische Abfall auf -101.4 kJ/mol zum Produktkomplex **10** lässt sich durch eine starke Wasserstoffbrückenbindung zwischen DMAP und Essigsäure erklären.

Abb. 2: Gasphasenenthalpieprofil (ΔH_{298}) der konzertiert und konsekutiv ablaufenden Basenkatalyse.

Aus Abb. 1 wird aber auch deutlich, dass die energetisch günstigste Variante der Basenkatalyse, Übergangszustand 11a, mit 37.9 kJ/mol über dem Übergangszustand 9 ein unattraktiver Reaktionspfad ist. Die stufenweise ablaufende Basenkatalyse stellt eine energetisch noch ungünstigere Variante dar (Abb. 2). Die konzertierte Basenkatalyse verläuft über einen "viergliedrigen-" bzw. "sechsgliedrigen" Übergangszustand. Dabei bezeichnet vierbzw. sechsgliedrig in diesem Falls die Anzahl der involvierten Zentren, die aber nicht im

Übergangszustand in einer gefalteten Cyclobutan- oder Sesselkonformation vorliegen (Abb. 3). Aus den Strukturen wird auch ersichtlich, dass die konzertierte Basenkatalyse weit entfernt von einem synchronen Prozess ist. Die Deprotonierung des *tert*-Butylalkohols ist schon weit vorangeschritten, während die Reprotonierung des sich bildenden Acetat-Ions noch in einem Frühstadium ist. Die hohen Aktivierungsenergien für **11a** und **11b** stellen klar, dass bei Raumtemperatur Basenkatalyse ausgeschlossen werden kann.

Die konsekutive Basenkatalyse startet mit der Deprotonierung des *tert*-Butylalkohols und verläuft anschließend über einen energetisch relativ hoch liegenden Übergangszustand, in dem das Alkoholat langsam die C=O-Doppelbindung des Anhydrids angreift. Diese Variante der Katalyse ist energetisch noch ungünstiger.

Abb. 3: Struktur der Übergangszustände 11b und 11a der konzertierten Basenkatalyse.

Abschließend muss auf Basis dieser Ergebnisse also festgestellt werden, dass die nucleophile Katalyse gegenüber der Basenkatalyse favorisiert ist und, dass das Acetatanion die Base ist, die den Alkohol deprotoniert.

2.3 Kinetische Messungen

Um die Vorhersagen der Rechnungen zu bestätigen, wurden von *Xu* kinetische Messungen durchgeführt.^[15] Er studierte dabei die Testreaktion, in der Cyclohexanol in Gegenwart von Acetanhydrid, DMAP und Triethylamin in Dichlormethan acetyliert wird. Wenn man die Struktur des Übergangszustandes 9 betrachtet (**Abb. 4**) sollten sich folgende Merkmale in der Kinetik widerspiegeln: Da nur ein Molekül DMAP in der Struktur des Übergangszustandes 9 inkorporiert ist, darf die Reaktionsgeschwindigkeit nur ein lineares Verhalten bei Variation der Katalysatorkonzentration zeigen. Genau das Selbe gilt auch für die Änderung der Alkoholkonzentration und der Acetanhydridkonzentration. Es darf aber keine Änderung der Reaktionsgeschwindigkeit mit der Variation der Triethylamin-konzentration auftreten.

Abb. 4: Struktur des Übergangszustandes 9.

Zur Messung der Kinetik wurde die Acetylierung von Cyclohexanol 23 mit Acetanhydrid 2 gewählt (Schema 3).

Schema 3: Acetylierung von Cyclohexanol in Dichlormethan bei 20 °C.

^[15] S. Xu, I. Held, B. Kempf, H. Mayr, W. Steglich, H. Zipse, Chem. Eur. J. 2005, 11, 4751.

Für die in Schema 3 dargestellte Reaktion gilt folgendes Geschwindigkeits-Gesetz:

$$-\frac{d[Cyclohexanol]}{dt} = k_3[Ac_2O][Cyclohexanol][DMAP] + k_2[Ac_2O][Cyclohexanol]$$
(1)

Bei Verwendung eines Überschusses eines der zwei Reaktanten, zum Beispiel Acetanhydrid, vereinfacht sich Gleichung (1) zu:

$$-\frac{d[Cyclohexanol]}{dt} = k_{1\Psi}[Cyclohexanol]$$
⁽²⁾

mit
$$k_{1\Psi} = k_3 [Ac_2 O]_0 [DMAP]_0 + k_2 [Ac_2 O]_0$$
 (3)

Messung der Geschwindigkeitskonstanten unter angemessenen Bedingungen liefert die in Abb. 5 und 6 dargestellten Graphen für die Variation der DMAP-Konzentration (Abb. 5), Triethylamin-, Acetanhydrid- und Cyclohexanolkonzentration (Abb. 6).

Abb. 5: Ergebnisse der kinetischen Messung von Xu.^[15] Auftragung der Abhängigkeit von $k_{1\psi}$ von der DMAP-Konzentration mit $[Ac_2O]_0=0.12$ M, $[Cyclohexanol]_0=0.02$ M und $[NEt_3]_0=0.06$ M.

Abb. 6: Ergebnisse der kinetischen Messung von Xu.^[15] a) Auftragung der Abhängigkeit von $k_{1\psi}$ von der NEt₃-Konzentration mit $[Ac_2O]_0=0.20$ M, $[Cyclohexanol]_0=0.02$ M und $[DMAP]_0=0.0004$ M. b) Auftragung der Abhängigkeit von $k_{1\psi}$ von der Acetanhydridkonzentration mit $[NEt_3]_0=0.06$ M, $[Cyclohexanol]_0=0.02$ M und $[DMAP]_0=0.0004$ M. c) Auftragung der Abhängigkeit von $k_{1\psi}$ von der Cyclohexanolkonzentration mit $[NEt_3]_0=0.06$ M, $[Ac_2O]_0=0.02$ M und $[DMAP]_0=0.0004$ M.

Die in **Abb. 5** und **6** dargestellten Ergebnisse der kinetischen Messungen sind in vollem Einklang mit dem auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau berechneten Enthalpieprofil. Dieses lässt nur den Schluss zu, dass nucleophile Katalyse der zugrunde liegende Reaktionsmechanismus ist und dass das Acetatanion die Base ist, die den Alkohol deprotoniert.

3. "In-Silico"-Benchmark

3.1 Einleitung

Die Synthese neuer chiraler DMAP-Derivate zur kinetischen Racematspaltung von Alkoholen und Aminen erfordert besonders im Fall von *tert*-Alkoholen ein verbessertes Katalysatorendesign, um Reaktionszeiten gering zu halten. So sind in der Literatur keine Beispiele bekannt, in denen mit hohen Enantiomerenüberschüssen racemische Gemische von *tert*-Alkoholen getrennt wurden. Dies verwundert nicht, denn viele der bekannten chiralen Pyridin-Derivate basieren auf dem DMAP- oder PPY- [4-(Pyrrolidino)pyridin] Motiv (**Abb. 7**).^[16]

Abb. 7: Auf DMAP und PPY basierende chirale Acylierungskatalysatoren von *Fu* (25a), *Spivey* (26), *Fuji* und *Kawabata* (27) und Campell (28).

Arbeiten von *Fischer* und *Xu* zeigen, dass die katalytische Effizienz (*ce*) zur Acylierung von Cyclohexanol bei 20 °C im Fall von Isobuttersäureanhydrid ihr Maximum erreicht (**Tab. 3**).^[17] Die katalytische Effizienz ist als Quotient aus der Reaktionsgeschwindigkeit der katalysierten zur unkatalysierten Reaktion definiert. Das heißt, je schneller die Hintergrundreaktion, desto geringer die katalytische Effizienz. Um die Hintergrundreaktion zu unterdrücken, sollte in einem kinetischen Racematspaltungsexperiment Isobuttersäureanhydrid verwendet werden. Die Kinetik der katalytischen Effizienz wurde unter Bedingungen pseudo-erster Ordnung gemessen bei einer Katalysatorkonzentration von 1 mol% DMAP relativ zum Alkohol. Katalysatorkonzentrationen zwischen 1 und 5 mol% sind typisch für viele kinetische Racematspaltungsexperimente. Die Veresterung mit Isobuttersäureanhydrid von

^[16] a) G. C. Fu, *Acc. Chem. Res.* **2000**, *33*, 412. b) A. C. Spivey, F. Zhu, M. B. Mitchell, S. G. Davey, R. L. Jarvest, *J. Org. Chem.* **2003**, *68*, 7379. c) T. Kawabata, M. Nagato, K. Takasu, K. Fuji, *J. Am. Chem. Soc.* **1997**, *119*, 3169. d) G. Priem, B. Pelotier, S. J. F. MacDonald, M. S. Anson, I. B. Campell, *J. Org. Chem.* **2003**, *44*, 1545.

^[17] C. B. Fischer, S. Xu, H. Zipse, Chem. Eur. J. 2006, 12, 5779.

sek- und *tert-*Alkoholen wird bei geringen Katalysatorkonzentrationen so langsam, dass man mit sehr langen und damit unpraktikablen Reaktionszeiten rechnen muss. Eine Alternative, um lange Reaktionszeiten und kleine Enantiomerenüberschüsse zu vermeiden, ist die klassische Racematspaltung durch Umsetzung des *tert-*Alkohols z. B. mit Mosherssäurechlorid zum entsprechenden Ester und anschließender Trennung der Diastereomere durch Säulenchromatographie.

$$P_{R} = -\frac{d\left[R' - OH\right]}{dt} = k_{2}\left[(RCO)_{2}O\right]_{0} + k_{3}\left[(RCO)_{2}O\right]_{0}\left[DMAP\right]_{0} \qquad (4)$$

$$ce = \frac{r(cat.)}{r(uncat.)} = \frac{k_{3}\left[DMAP\right]_{0}}{k_{2}} \qquad (5)$$

$$ce = \frac{k_{3} \times 10^{-3}}{k_{2}} \qquad (6)$$

	се
R= Me	9.1
R= Et	26.3
R = i - Pr	42.7
R=i-Bu	12.3
R = t-Bu	0.6

Tab. 3: Von *Fischer* und $Xu^{[17]}$ gemessene katalytische Effektivitäten (*ce*) in Abhängigkeit vom Anhydrid.

Schwierigkeiten bereiten auch die Synthesen von *tert*-Butylestern, die oftmals nur über reaktive Carbonsäurederivate oder drastische Bedingungen in guten Ausbeuten darstellbar sind. Dabei müssen die Carbonsäurederivate in einem vorhergehenden Syntheseschritt hergestellt werden. Als Beispiele seien hier die Kupfer(II)-vermittelte Veresterung über 2-Pyridylthioester^[18] **29**, die Umlagerung von *N*-Acyloxy-*N*-alkoxyamiden^[19] **30** und die Synthese mit Di-*tert*-butoxy-*N*,*N*-dimethylaminomethan^[20] **31** genannt (**Schema 4** und **5**).

Schema 4: Von *Kim et al.*^[18] entwickelte Veresterung über 2-Pyridylthioester 29.

Schema 5: Beispiele verschiedener Reaktionen, die zur Synthese sterisch anspruchsvoller Ester verwendet werden können.

Ziel sollte es also sein, reaktivere DMAP-Derivate oder verbesserte Reaktionsbedingungen zu entwickeln, die eine Lösung der oben angesprochenen chemischen Problemstellungen in Aussicht stellen.

3.2 Bisher bekannte Rationalisierungsversuche für die katalytische Aktivität verschiedener Pyridine

In der Literatur sind zwei Rationalisierungsversuche der katalytischen Aktivität von DMAP-Derivaten bekannt. So versuchte *Steglich et al.*^[10b] den Logarithmus der Geschwindigkeitskonstanten einer nucleophil katalysierten Acetylumlagerung in 5-Acyloxyoxazolon **32** gegen den p K_a -Wert zu korrelieren (**Schema 6** und **Abb. 8**). Die Geschwindigkeitskonstanten wurden durch NMR-spektroskopische Verfolgung in Benzol bei 35 °C erhalten.

^[18] S. Kim, J. I. Lee, J. Org. Chem. 1984, 49, 1712.

^[19] S. A. Glover, G. Mo, J. Chem. Soc. Perkin Trans. 2, 2002, 1728.

^[20] U. Widmer, *Synthesis*, **1983**, 135.

Schema 6: Katalysierter Acetyltransfer. Die Reaktion wurde in Benzol bei 35 °C spektroskopisch verfolgt.

Abb. 8: Von *Steglich et al.*^[10] erhaltene Korrelation des *-log k*₂ des Acyltransfers in 32 als Funktion des pK_a -Wertes.

Es zeigte sich, dass die Reaktivität aller in *para*-Position substituierten Pyridine mit dem pK_a -Wert gut korrelieren.

Hassner et al.^[21] versuchten die katalytische Aktivität von DMAP-Derivaten mit der chemischen Verschiebung δ des β -Wasserstoffs zu korrelieren. Es zeigte sich, dass in der Reihe von PPY (**33**) bis 4-(Morpholino)pyridin (**38**) die chemischen Verschiebungen δ größer werden (**Tab. 4**) und die Reaktivitätsabfolge der gemessen Aminopyridine **33** bis **38** gleich der

^[21] A. Hassner, L. R. Krepski, V. Alexanian, *Tetrahedron*, 1978, 34, 2069.

Reaktivität der aus den Stickstoffbasen Pyrrolidine bis Morpholin mit Cyclohexanon gebildeten Enaminen gegenüber Elektrophilen ist.

Pyridin-Derivat	relativer katalytischer	<i>δ</i> (ppm)
	Effekt	des β-Wasserstoffs
33	1.0	6.38
35	0.90	6.55
1	0.63	6.48
34	0.50	6.48
36	0.40	6.55
37	0.30	6.92
38	0.12	6.67

Tab. 4: Eine Gegenüberstellung der chemischen Verschiebung des β -Wasserstoffs und des relativen katalytischen Effekts nach *Hassner et al.*^[21]

Die zwei in der Literatur bekannten Beispiele erweisen sich zur Vorhersage reaktiverer Pyridin-Derivate als unpraktikabel, da sie die Synthese des Pyridin-Derivats voraussetzen und erst dann eine Messung der chemischen Verschiebung des β -Wasserstoffs im Pyridinring bzw. des p K_a -Wertes vorgenommen werden kann, um Rückschlüsse auf die katalytische Aktivität des neuen Pyridinderivats zu treffen. Die gezeigten Korrelationen werden schlechter, sobald es sich um Pyridine handelt, die nicht in *para*-Position substituiert sind.

Da es sich um Acyltransferreaktionen handelt, ist es sinnvoller, die relativen Acylierungsenthalpien zu berechnen um neue reaktivere DMAP-Derivate vorauszusagen.

3.3 Berechnung der relativen Acylierungsenthalpien

Wie unter 2. erwähnt reagiert DMAP mit Acetanhydrid in einem vorgelagerten Gleichgewicht zu einem Acylpyridinium-Ion, wobei das Gleichgewicht auf der Seite des neutralen Katalysators und Acetanhydrid liegt. Unter der Annahme, dass eine höhere Konzentration des entsprechenden Acylpyridinium-Ions zu einer höheren Reaktions-geschwindigkeit führt, kann durch Berechnung der relativen Acylierungsenthalpien eine Vorhersage neuer nucleophiler Katalysatoren getroffen werden. Diese Annahme ist aber nur gültig, wenn kein negativer Einfluss auf die Barrierenhöhe des geschwindigkeits-bestimmenden Schritts besteht. Die relativen Acylierungsenthalpien lassen sich durch eine isodesmische Reaktion berechnen (Abb. 9).

Abb. 9: Isodesmische Acetyltransferreaktion.

Alle Acetylierungsenthalpien ΔH_{298} wurden auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau berechnet.^[22]

$$H_{298}(B3LYP/6 - 311 + G(d, p))/B3LYP/6 - 31G(d)) = E_{tot}(B3LYP/6 - 311 + G(d, p)) + [H_{298}(B3LYP/6 - 31G(d)) - E_{tot}(B3LYP/6 - 31G(d))]$$
(7)

$$\Delta H_{rxn}(298) = H_{298}(c) + H_{298}(d) - [H_{298}(a) + H_{298}(b)]$$
(8)

Eine umfassende Suche nach Konformeren wurde durch Variation aller möglichen Diederwinkel bzw. durch die der DFT-Rechnung vorausgehende Konformationssuche mittels OPLS-AA-Kraftfeld mit dem Programmpaket *BOSS 4.2*^[23] durchgeführt. Alle relevanten Konformere wurden durch Boltzmann-Mittelung berücksichtigt:

^[22] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

^[23] W. L. Jorgensen, *The Encyclopedia of Computational Chemistry*, P. v. R. Schleyer (editor-in-chief), John Wiley & Sons Ltd, Athens, USA, **1998**, 5, 3281.

$$\langle H_{298} \rangle = \sum_{i=1}^{n} w_i H_{298,i}$$
 (9)

wobei die Boltzmann-Faktoren widurch folgende Gleichung gegeben sind:

$$w_{i} = \frac{\exp(-H_{298,i} / RT)}{\sum_{i=1}^{n} \exp(-H_{298,i} / RT)}$$
(10)

Die in Gleichung (9) und (10) verwendeten H_{298} -Werte bezeichnen die in Gleichung (7) definierten Enthalpien bei 298 K und 1 bar Druck.

Alle Rechnungen wurden mit den Programmpaketen GAUSSIAN 98 und 03^[24] durchgeführt.

Zipse et al.^[25] konnte bereits zeigen, dass sich reaktive DMAP-Derivate vorhersagen lassen. So wurden in einer NMR-Testreaktion die Halbwertszeiten von DMAP (1), PPY (33) und TCAP (6,6-Tricycloaminopyridin, 41) bestimmt. Es zeigte sich, dass TCAP etwa 7 mal so reaktiv ist wie DMAP und dass die Halbwertszeiten gut mit den berechneten rel. Acetylierungsenthalpien korrelieren (Tab. 5). TCAP leitet sich aus dem Namen 6,6-Tricycloaminopyridin ab, da es sich um einen Tricyclus handelt, der formal aus 4-Aminopyridin gebildet werden kann. Der **IUPAC-Name** lautet 5,6,9,10-Tetrahydro-4H,8H-[pyrido3,2,1-ij][1,6]naphthyridin.

^[24] Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.

^[25] M. R. Heinrich, H. S. Klisa, H. Mayr, W. Steglich, H. Zipse, Angew. Chem. Int. Ed. 2003, 42, 4826.

Katalysator	1	33	41
$\Delta H_{rxn} (298) / \text{kJ mol}^{-1}$	-82.1	-93.1	-108.9
$\tau_{1/2}$ / min	166	75	21

Tab. 5: Die nach Gleichung 8 berechneten Acylierungsenthalpien ΔH_{rxn} (298) sind den gemessenen Halbwertszeiten gegenüber gestellt.

Anhand dieser Vorarbeiten soll untersucht werden, ob eine Korrelation zwischen der Halbwertszeit und den berechneten Enthalpien in einem umfassenderen Bereich vorhanden ist. Die geringe Anzahl an Datenpunkten macht eine allgemeine Aussage unmöglich, ob eine Korrelation in einem größeren Bereich der Skala von ΔH_{rxn} (298) gilt. Des Weiteren soll untersucht werden, ob die Acetylierungsenthalpien zur Vorhersage von reaktiveren DMAP-Derivaten verwendet werden kann. Hierzu wurden verschiedene reaktive DMAP-Derivate getestet. Es wurde dabei sowohl von bekannten als auch zum damaligen Zeitpunkt noch unbekannten Strukturmotiven ausgegangen.

In den Reaktivitätstest wurden bereits publizierte DMAP-Derivate einbezogen. Bei der Berechnung von konformativ flexiblen Systemen, wie dem von *Fuji* und *Kawabata*^[16] publizierten Katalysator **27**, zeigte sich, dass ein entsprechend parametrisiertes Kraftfeld von großer Hilfe ist. *Wei* konnte durch Parametrisieren des OPLS-AA-Kraftfeldes 24 neutrale und 60 acetylierte Konformere von **27** finden, während bei einer Suche durch Variation aller Torsionswinkel 6 neutrale und 10 acetylierte Konformere gefunden wurden. Interessanterweise ergaben die beiden Rechnungen die gleiche rel. Acetylierungsenthalpie von ΔH_{rxn} (298) = -110.1 kJ/mol. Dennoch zeigt dieses Beispiel, dass eine auf Kraftfeldern basierende Suche nach Konformeren erfolgreicher ist, da nicht garantiert werden kann, dass durch Variation aller Torsionwinkel alle relevanten Konformere berücksichtigt werden. Es wurden deshalb alle konformationell anspruchsvollen Verbindungen einer Konformationssuche mit dem von *Wei* parametrisierten Kraftfeld durchgeführt. Nachfolgend (**Tab. 6**) sind die mit Gleichung **8** berechneten rel. Acetylierungsenthalpien $(\Delta H_{rxn} (298) / \text{kJ mol}^{-1})$, der Abstand zwischen der Acetylgruppe und dem Pyridinstickstoff $(r_{(C-N)} / \text{pm})$, die natürliche Ladung der Acetylgruppe $(q_{NPA}(ac))$ und der Torsionwinkel der Acetylgruppe (d (O-C-N-C) /°) wiedergegeben (**Abb. 10**).

Abb. 10: Definition der verwendeten strukturellen Parameter.

 Tab. 6: Nachfolgend sind die mit Gleichung 8 berechneten relativen Acetylierungsenthalpien f
 ür verschiedene DMAP-Derivate zusammen mit den in Abb. 10 definierten strukturellen Parametern wiedergegeben.

Verbindung	ΔH_{rxn} (298) [kJ/mol]	$r_{(C-N)} [pm]^a$	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
42	1.1	151.6	0.3430	33.2
40	0.0	153.4	0.3660	0.0
	-24.7	148.1	0.3450	0.0
N 44	-28.7	151.3	0.3369	0.0
	-39.0	149.7	0.3180	3.6
	-46.2	149.9	0.3210	3.0

^a Bindungslänge im energetisch günstigsten Konformer. ^b In Einheiten der Elementarladung.

Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm] ^a	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
	-48.7	150.1	0.3240	2.2
	-50.2	146.4	0.3078	0.8
	-52.3	145.6	0.3097	0.0
MeO- 50	-56.6	148.5	0.2960	28.3
	-57.3	148.7	0.2940	4.0
52	-57.9	144.0	0.2861	0.0
	-59.1	148.0	0.2650	34.9
N N 54	-60.4	147.3	0.2750	19.7

Fortsetzung Tab. 6:

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

Fortsetzung Tab. 6:					
Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm] ^a	q _{NPA} (ac) ^b	d (O-C-N-C) [°]	
N N 55	-61.1	148.3	0.3080	0.0	
	-61.8	149.6	0.3050	0.0	
N N 57	-66.2	148.3	0.2930	20.0	
	-67.1	149.3	0.3100	0.9	
Me ₃ Si SiMe ₃	-70.9	148.0	0.2926	0.4	
	-73.1	149.0	0.3050	0.8	
\overbrace{N}^{N}	-75.4	147.2	0.2800	1.9	
N N 62	-77.3	148.6	0.2940	1.3	

^a Bindungslänge im energetisch günstigsten Konformer. ^b In Einheiten der Elementarladung.

Fortsetzung Tab. 6:

Verbindung	ΔH_{rxn} (298) [kJ/mol]	$r_{(C-N)} [pm]^a$	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
	-78.4	147.2	0.2760	5.2
	-82.0	148.7	0.2990	2.1
	-82.1	148.2	0.2980	0.1
	-85.5	148.6	0.3010	2.3
	-88.5	147.6	0.2820	0.7
N N 67	-90.0	146.8	0.2880	0.0
	-91.6	147.5	0.2750	0.1
	-93.0	147.3	0.2769	0.2

^a Bindungslänge im energetisch günstigsten Konformer. ^b In Einheiten der Elementarladung.

Fortsetzung Tab. 6:

Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm] ^a	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
	-93.1	147.9	0.2910	0.2
N N 70	-96.0	146.8	0.2880	0.5
	-101.9	147.0	0.2685	0.2
	-103.2	148.2	0.2910	2.2
	-103.7	147.7	0.2740	0.1
NN 74	-103.9	147.4	0.2770	0.0
	-104.8	147.2	0.2775	1.2
	-105.0	147.7	0.2840	0.7

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

Fortsetzung Tab. 6:				
Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm] ^a	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
	-106.0	147.3	0.2800	0.4
	-106.8	146.0	0.2873	0.0
	-108.9	147.1	0.2790	0.2
	-112.8	147.1	0.2750	0.3
	-113.1	147.3	0.2690	0.4
	-114.4	147.1	0.2740	0.6
	-115.5	147.3	0.2780	0.3

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

Fortsetzung Tab. 6:				
Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm] ^a	q _{NPA} (ac) ^b	d (O-C-N-C) [°]
	-116.5	147.2	0.2740	0.8
	-117.9	147.5	0.2770	0.6
	-118.7	147.1	0.2737	0.6
	-118.9	147.0	0.2720	0.3
	-119.2	147.3	0.2770	0.9
	-120.4	147.2	0.2764	0.8

Screening

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.
Fortsetzung Tab. 6:

Verbindung	Verbindung ΔH_{rxn} (298) [kJ/mol]		$r_{(C-N)} [pm]^a q_{NPA} (ac)^b$		
	N N -120.5		0.2670	0.6	
-120.8 89		147.2	0.2756	3.3	
-120.8		142.7	0.2860	0.0	
	-122.2		0.2740	0.3	
-122.3		147.1	0.2750	0.1	
N N -124.9 93		146.1	0.2679	4.6	

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

Fortsetzung Tab. 6:

Verbindung	Verbindung ΔH_{rxn} (298) [kJ/mol]		q _{NPA} (ac) ^b	d (O-C-N-C) [°]	
	-125.4 94		0.2739	0.0	
	-126.7 95		0.2636	0.4	
-Si N -Si -Si 96		146.3	0.2648	0.5	
	-127.1 97		0.2720	0.4	
N Me Me Me Me Me Me Me Me Me Me Me		144.3	0.2280	5.2	
-130.1 98		146.5	0.2617	0.7	

^a Bindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

Fortsetzung Tab. 0:					
Verbindung	ΔH_{rxn} (298) [kJ/mol]	r _(C-N) [pm]	q _{NPA} (ac) ^b	d (O-C-N-C) [°]	
	-148.2	146.0	0.2546	0.2	
	-154.3	145.8	0.2490	0.1	

Fortsetzung Tab. 6:

^aBindungslänge im energetisch günstigsten Konformer. ^bIn Einheiten der Elementarladung.

3.4 Diskussion der Ergebnisse

Mit Hilfe der relativen Acetylierungsenthalpien und gewählten Strukturparametern der Acetylgruppe lassen sich vielfältige Schlüsse ziehen. Die gewählten Strukturparameter beziehen sich nur auf die Acetylgruppe, da diese im direkten Zusammenhang mit dem Acetyltransfer stehen. Andere Strukturparameter, wie der C-N-Bindungsabstand in 4-Position zeigten sich aufgrund mangelnder Korrelation mit der rel. Acetylierungsenthalpie als ungeeignet.

Die getesteten Pyridin-Derivate lassen sich in zwei Klassen aufspalten: Die Pyridin-Derivate mit Substituenten in 2-Position und die Pyridine mit Substituenten in 3- und 4-Position. Während der Einfluss des Substituenten in 2-Position hauptsächlich sterischer Natur sein sollte, kann angenommen werden, dass der Einfluss des Substituenten in 3- und 4-Position hauptsächlich elektronischen Charakter hat. Alle Pyridine mit großen negativen Acetylierungsenthalpien besitzen keinen Substituenten in 2- oder 6-Position. Der elektronische Einfluß eines Donorsubstituenten in 4-Position kann durch Resonanzstabilisierung des Acylpyridinium-Ions verstanden werden (Abb. 11).

Abb. 11: Resonanzstrukturen des Acylpyridinium-Ions von DMAP.

Für die Pyridine ohne einen potenten Donorsubstituenten sind die Beiträge zur Gesamtwellenfunktion durch Resonanzstrukturen A und B gegeben. Mit Donorsubstituenten in 4-Stellung wird die Resonanzstruktur C immer relevanter. Nachfolgend werden alle großen negativen Acetylierungsenthalpien als günstig und alle kleinen negativen Enthalpien als ungünstig bezeichnet.

Screening

Abb. 12: Korrelation zwischen der Bindungslänge des Carbonyl-Kohlenstoff der Acetylgruppe und dem Pyridin-Stickstoff und den rel. Acetylierungsenthalpien ΔH_{rxn} (298) (links) sowie Auftragung der natürlichen Ladung $q_{NPA}(ac)$ der Acetylgruppe und den rel. Acetylierungsenthalpien ΔH_{rxn} (298) (rechts). Die natürliche Ladung $q_{NPA}(ac)$ ist in Einheiten der Elementarladung angegeben. In der Korrelation wurden alle 4-Aminopyridine berücksichtigt.

Abb. 13: Korrelation zwischen der Bindungslänge $r_{(C-N)}$ aller 3,4-Diaminopyridine und den rel. Acetylierungsenthalpien ΔH_{rxn} (298) (**links**) sowie Auftragung der natürlichen Ladung $q_{NPA}(ac)$ der Acetylgruppe gegen die rel. Acetylierungsenthalpien ΔH_{rxn} (298) (**rechts**). Die natürliche Ladung $q_{NPA}(ac)$ ist in Einheiten der Elementarladung angegeben.

Abb. 14: Korrelation zwischen der Bindungslänge $r_{(C-N)}$ und den rel. Acetylierungsenthalpien H_{rxn} (298) (**links**) sowie Auftragung der natürlichen Ladung $q_{NPA}(ac)$ der Acetylgruppe gegen die rel. Acetylierungsenthalpien ΔH_{rxn} (298) (**rechts**). Die natürliche Ladung $q_{NPA}(ac)$ ist in Einheiten der Elementarladung angegeben. In der Korrelation wurden alle 4-Iminopyridine berücksichtigt.

Eine Auftragung der C-N Bindungslänge gegen die rel. Acetylierungsenthalpie ΔH_{rxn} (298) für alle 4-Aminopyridine mit Aminostickstoff liefert einen guten Trend. Dieser Trend verschlechtert sich zwar, wenn Pyridin (**40**) aus der Korrelation ausgenommen wird, dennoch lässt sich daraus schließen, dass mit immer günstigeren rel. Acetylierungsenthalpien die C-N-Bindungslänge kürzer wird. Gleiches gilt für die Ladung der Acetylgruppe. Dies unterstützt die oben aufgestellte Hypothese, dass mit stärker werdenden Donoreigenschaften des 4-Substituenten Resonanzform **C** relevanter wird (**Abb. 12, 13** und **14**). Für alle 3,4-Diaminopyridine und alle Pyridine mit Iminostickstoff in 4-Position gilt das gleiche: Die Resonanzstruktur **C** wird mit stärkerem Donorpotential relevanter, da sich auch hier die Bindungslänge verkürzt und die Ladung der Acetylgruppe umso kleiner wird, je günstiger die rel. Acetylierungsenthalpien werden. Im Umkehrschluß kann auch die Aussage getroffen werden, dass für Pyridine mit ungünstigen rel. Acetylierungsenthalpien die Bindungslänge und die Ladung der Grenzstruktur **A** und **D** immer irrelevanter wird, da die Bindungslängen und die Ladung der Acetylgruppe immer größer werden.

Es zeigte sich, dass nur ein guter Trend zu erhalten ist, wenn strukturell identische Pyridine miteinander verglichen werden. Für die nucleophilen Katalysatoren, die kein Pyridingrundgerüst besitzen, wie z. B. 52 (Tab. 6, S. 21) und 78 (Tab. 6, S. 25), zeigte sich eine zu große Abweichung, weshalb diese in der Korrelation nicht berücksichtigt wurden.

Eine Betrachtung des Torsionwinkels d(O-C-N-C) gegen die rel. Acetylierungsenthalpie ΔH_{rxn} (298) liefert keinen guten Trend (**Abb. 15**), aber es lässt sich nachvollziehen, dass alle Pyridine mit sterisch anspruchsvollen Substituenten in 2- und/oder 6-Position eine ungünstige rel. Acetylierungsenthalpie besitzen. Bei diesen Verbindungen ist die Acetylgruppe aus der Ebene herausgedreht und somit wird die zusätzliche Stabilisierung, die das Acylpyridinium-Ion durch die Beteiligung von Resonanzstruktur **C** erfährt, relativ zu den Pyridinen ohne Substituent in 2- oder 6-Position kleiner.

Abb. 15: Torsionwinkel d(O-C-N-C) als Funktion der rel. Acetylierungsenthalpie ΔH_{rxn} (298) / kJ mol⁻¹.

Dieses Ergebnis ist in Übereinstimmung mit dem experimentellen Befund, dass das von *Vedejs et al.*^[26] publizierte chirale DMAP-Derivat (**50**, **Tab. 6**, **S. 21**) nur geringe katalytische Aktivität aufweist. Eine Ausnahme bildet hier nur der von *Fu et al.*^[27] publizierte Katalysator **25b**. Erstaunlicherweise ist die Acetylierungsenhalpie mit -128.0 kJ mol⁻¹ sehr günstig und der Bindungslänge zwischen Pyridinstickstoff und Carbonylkohlenstoff der Acetylgruppe mit Abstand der kleinste (**Tab. 6**, **S. 28**). Die Ursache hierfür ist sicherlich in dem starken Elektronendonoreffekt der Ferrocengruppe zu suchen. Die vergleichbaren Indenyl-DMAP-Derivate **61** und **63** zeigen eine rel. Acetylierungsenthalpie von -75 .4 und -78.4 kJ mol⁻¹ (**Tab. 6**, **S. 22/23**). Somit sollte die katalytische Aktivität von **25b** hoch sein. Messungen der Halbwertszeit verschiedener Acylierungsreaktionen von *Fu* und *Ruble*^[27] bestätigen diese Aussage. So wurde zum Beispiel 1-Phenylethanol mit 5 mol% Katalysatorenladung mit Di-

^[26] E. Vedejs, X. Chen, J. Am. Chem. Soc. **1997**, 119, 2584.

^[27] J. C. Ruble, G. C. Fu, J. Org. Chem. **1996**, 61, 7230.

keten in deuterierten Dichlormethan bei Raumtemperatur acyliert (**Tab. 7**). Die Reaktion wurde dabei im NMR verfolgt.

Katalysator	Halbwertszeit / min	
25b	<3	
DMAP (1)	<2	

Tab. 7: Acylierung von 1-Phenylethanol in CD₂Cl₂ bei Raumtemperatur.^[27]

Eine Betrachtung des energetisch niedrigsten acetylierten Konformers von **25b** zeigt, dass die Acetylgruppe mit 5.2° nur gering aus der Ebene herrausgedreht ist. Der sterische Anspruch des annelierten 5-Ringes und die damit verbundene Abweichung von der Coplanarität ist somit gering. Das acetylierte Vorzugskonformer ist bei allen Systemen mit anneliertem 5-Ring (**25b**, **61** und **63**) das Konformer, dessen Carbonyl-Sauerstoff in Richtung 5-Ring zeigt. Die Ursache liegt im geringeren sterischen Anspruch des Sauerstoffs gegenüber der Methylgruppe. Die Struktur ist in sehr guter Übereinstimmung mit der publizierten Kristallstruktur des acylierten Pentaphenylderivats **25a**.^[28]

Abb. 16: Acetyliertes Grundzustandskonformer des von *Fu et al.*^[27] dargestellten nucleophilen Katalysators **25b**. Die Struktur wurde auf B3LYP/6-31-G(d)-Niveau optimiert.

^[28] G. C. Fu, Acc. Chem. Res. 2000, 33, 412.

Generell kann die Aussage getroffen werden, dass an 2,3-Position annelierte Ringe größer fünf eine Änderung der rel. Acetylierungsenthalpie zu ungünstigeren Werten zur Folge haben. Einen positiven Einfluss hat die Annelierung von 5-, 6- oder 7-Ringen in 3,4-Position und 4,5-Position. Dies führt zu den Verbindungen 41, 68, 74 und 77. Während 6,6-TCAP (6,6-Tricycloaminopyridin, 41) eine enorm hohe katalytische Aktivität aufweist, konnte *Heinrich* zeigen, dass die katalytische Aktivität zum 5,6-TCAP 74 (Tab. 6, S. 24) wieder abnimmt, das etwa so effektiv ist wie PPY (33). Eine Vorhersage von *Mayr et al.*^[25] auf Basis von Benzhydryl-Kationen Reaktivitäten gegenüber dem Danishefsky-Dien zeigte eine Korrelation in der Reihe DMAP (1), PPY (33) und TCAP (41) (Abb. 17). Das mit TCAP strukturell verwandte Julolidyl-Kation zeigt die geringste Reaktivität gegenüber dem Danishefsky-Dien.

Abb. 17: Relative Reaktivitäten von Benzhydryl-Kationen gegenüber dem Danishefsky-Dien als Maß für die Fähigkeit der 4-Dialkylaminogruppe, positive Ladung zu stabilisieren.

Eine Vergrößerung des 6-Ringes von 41 zum 7-Ring in 77 (Tab.6, S. 25) ergibt eine geringfügig ungünstigere Acetylierungsenthalpie von -2.9 kJ mol⁻¹. Im Vergleich dazu führt eine Verkleinerung des aliphatischen Ringsystems wie in 5,5-TCAP 68 (Tab. 6, S. 23) zu einer ungünstigeren rel. Acetylierungsenthalpie. Alkylierung [79, 80 (Tab. 6, S. 25) und 85 (Tab.6, S. 26)], Arylierung (87 und 92, Tab. 6, S. 26/27), Benzylierung (89 und 94, Tab. 6, S. 27/28) und Silylierung (96, Tab. 6, S. 28) des TCAPs in 4 bzw. 10-Position führt generell zu einer günstigeren rel. Acetylierungsenthalpie, weshalb diese Verbindungen als gute Kandidaten für die Synthese gelten dürften. Die Einführung von Stickstoffen in 5 und/oder 10-Position führt zu 84 und 93 und einer kleineren und damit günstigeren rel. Acetylierungenthalpie ausgehend von TCAP von 10 kJ mol⁻¹ im Falle von 84 (Tab. 6, S. 26) und 16.6 kJ mol⁻¹ im Falle von 93 (Tab. 6, S. 27). Interessanterweise führt die Einführung des zweiten Stickstoffs nur zu einer geringen Verkleinerung der Enthalpie von 6.6 kJ mol⁻¹. Es zeigt sich aber auch, dass die Stickstoffsubstituenten eine größere Elektronendonorwirkung besitzen als Alkylgruppen, was im Einklang mit dem Donorpotential ist, welches man aufgrund von Hammett-Parametern erwarten würde (σ_m (NMe₂)= -0.16 vs. σ_m (Et)= -0.07).^[29] Die Verbindung **93** wurde erstmals von *Han et al.*^[30] synthetisiert. Es zeigte sich, dass bei der Umsatzverfolgung der Acetylierung mit Acetanhydrid von 1-Ethinylcyclohexanol (**21**) etwa dieselbe Reaktionsgeschwindigkeit erreicht wird wie bei der Acetylierung mit 6,6-TCAP. Leider wurden bei der Studie keine Halbwertszeiten bestimmt. Annelierung von Phenylringen an die aliphatischen Ringe der 6,6-TCAP-Struktur führt zu einer ungünstigeren rel. Acetylierungsenergie (**66** und **69**, **Tab. 6**, **S. 23**).

Dass konformative Fixierung durch Annelierung nicht immer der Schlüssel zum Erfolg ist, zeigt die Annelierung von Tetramethylguanidylpyridin (TMGP, **35**). TMGP (**35**) wurde zuerst von *Hassner et al.*^[21] publiziert. Durch Annelierung von **35** zur Verbindung **73** (**Tab. 6**, **S. 24**) wird die rel. Acetylierungsenthalpie um 9.4 kJ mol⁻¹ ungünstiger. Eine Verbesserung zu günstigeren rel. Acetylierungsenthalpie erhält man hingegen, durch Fixierung der Dimethylaminogruppen zum Fünfring in Verbindung **95** und **98** (**Tab. 6**, **S. 28**). Ein Vergleich der rel. Enthalpien von **88** (-120.5 kJ mol⁻¹, **Tab. 6**, **S. 27**) und **95** (-126.7 kJ mol⁻¹), zeigt, dass der Ringschluß zum Imidazolidingrundgerüst zu einer Stabilisierung des Acylpyridinium-Ions von 6.2 kJ mol⁻¹ führt. Die Verlängerung der Alkylkette zum *n*-Hexyl-Derivat **98** hat eine weitere Stabilisierung von 3.4 kJ mol⁻¹ zur Folge.

Inspiriert durch Arbeiten von *Verkade et al.*^[31], in denen er zeigen konnte, dass seine Iminophosphoranbasen die Acetylierung von verschiedenden Alkoholen in Gegenwart von Vinylacetat katalysieren (**Schema 7**), führten Überlegungen zu den Iminophosphoranen **99** und **100** (**Tab. 6**, **S. 29**). Mit -148.2 kJ mol⁻¹ und -154.3 kJ mol⁻¹ besitzen diese Iminophosphorane die günstigste rel. Acetylierungsenthalpie.

Schema 7: Acetylierung mit Vinylacetat in THF bei Raumtemperatur.

^[29] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165.

^[30] S. Singh, G. Das, O. V. Singh, H. Han, Org. Lett. 2007, 9, 401.

^[31] P. Ilankumaran, J. C. Verkade, J. Org. Chem. 1999, 64, 9063.

Während das katalytische Zentrum bei den aliphatischen Phosphoranen von *Verkade* wahrscheinlich der Iminostickstoff ist, wurde durch die Berechnung der rel. Acylierungsenthalpien am Iminostickstoff der Pyridin-Derivate untersucht, in wieweit dieser Stickstoff als katalytisches Zentrum einer Acyl-Transferreaktion in Frage kommt. (**Tab. 8**).

Pyridin-Derivat		Pyridin-Derivat	ΔH_{rxn} (298)	ΔH_{rxn} (298)	
Nr.	R	X	(Pfad A) /kJ mol ⁻¹	(Pfad B) /kJ mol ⁻¹	
35	Η	(Me ₂ N) ₂ C	-113.1	-57.8	
88	CH ₃	(Me ₂ N) ₂ C	-120.5	-69.4	
99	Н	Ph ₃ P	-148.2	-115.1	
100	CH ₃	(o-Tol) ₃ P	-154.3	-96.5	

Tab. 8: Gegenüberstellung der mit Gleichung 8 berechneten rel. Acetylierungsenthalpien ΔH_{rxn} (298) für Pfad A und B.

Die Daten zeigen jedoch, dass der Pyridinstickstoff die günstigeren rel. Acetylierungsenthalpie besitzt und deshalb als katalytisches Zentrum favorisiert sein dürfte.

Das gute Ergebnis der rel. Acetylierungsenthalpie für **84** (**Tab. 6**, **S. 26**) führte dazu, die 3,4-Diaminopyridine näher zu untersuchen. Während alle alkylierten Pyridopyrazine bzw. -chinoxaline rel. Acetylierungsenthalpien zwischen -105 kJ mol⁻¹ für **81** (**Tab. 6**, **S. 25**) und -127.1 kJ mol⁻¹ für **97** (**Tab. 6**, **S. 28**) besitzen, werden die Enthalpien durch Acetylierung der Stickstoffe in 3- oder 4-Position ungünstiger. Dabei hat die Erstacetylierung in 4-Position ungünstigere Auswirkungen auf die rel. Acetylierungsenthalpie als die Erstacetylierung in 3Position. Zum Beispiel steigt die rel. Acetylierungsenthalpie von der dialkylierten Verbindung **97** zu der in 3-Position acetylierten Verbindung **72** (**Tab. 6**, **S. 24**) bis zur diacetylierten Verbindung **46** (**Tab. 6**, **S. 20**) schwächer an als in der Reihenfolge **97** über die in 4-Position acetylierten Verbindung **60** (**Tab. 6**, **S. 22**) und **72**. Die Ursache hierfür liegt in dem größeren elektronischen Einfluß der Aminogruppe in 4-Stellung auf die Stabilität des Acylpyridinium-Ions gegenüber dem Einfluß der Aminogruppe in 3-Stellung. Mithilfe der 3,4-Diamino-pyridinderivate lässt sich also ein großer Bereich der ΔH_{rxn} (298)-Skala abdecken. Während man aufgrund der theoretischen und experimentellen Ergebnisse über den von $Vedejs^{[27]}$ dargestellten Katalysator **50** weiß, dass er keine katalytische Aktivität besitzt, sollte man ebenso für die diacylierten Pyridochinoxaline **45** bis **47** (**Tab. 6**, **S. 20/21**) keine bis nur sehr geringe katalytische Aktivität erwarten, während man für die alkylierten Pyridopyrazine bzw. -chinoxaline **76** (**Tab. 6**, **S. 24**) bis **97** ausgehend von den Ergebnissen von TCAP hohe katalytische Aktivität erwarten sollte.

Ein anderer Ansatz, um zu günstigeren rel. Acetylierungsenthalpien zu gelangen, war die Einführung von Donorsubstituenten am Stickstoff in 4-Position des Pyridins. So führt die Verknüpfung mit einem *p*-Dimethylaminophenylrest zu einer hohen Stabilisierung des Acylpyridium-Ions von -104.8 kJ mol⁻¹ (**75**, **Tab. 6**, **S. 24**). Die Einführung von Trimethylsilylresten an den Stickstoff in 4-Position **59** (**Tab. 6**, **S. 22**) führt hingegen zu ungünstigeren rel. Acetylierungsenthalpie von -70.9 kJ mol⁻¹. Dieses liegt aber weniger an den schwachen Elektronendonoreigenschaften der Trimethylsilylgruppe, sondern vielmehr führt die Sterik dazu, dass die (Bistrimethylsilyl)amino-Gruppe aus der Ebene gedreht ist und somit keine effektive Überlappung mit dem Pyridinring möglich ist.

3.5 Zielmoleküle

Aus diesen theoretischen Vorarbeiten lassen sich verschiedene Zielmoleküle identifizieren. Aufgrund der Bandbreite, die durch die 3,4-Diaminopyridine abgedeckt wird, soll versucht werden, diese zu synthetisieren und ihre katalytische Aktivität zu testen. Mithilfe des modularen Aufbaus der 3,4-Diaminopyridine kann ein großes Spektrum an Verbindungen dargestellt werden. Der Einfluß des Substituenten auf Acyltransferreaktionen kann näher untersucht werden und die Testergebnisse in einem großen Bereich der Skala überprüft werden (**Abb. 18**).

Abb. 18: 3,4-Diaminopyridine decken einen großen Bereich der ΔH_{rxn} (298)-Skala ab.

Weitere potentielle Zielmoleküle sind Pyridin-Derivate mit Guanidinyl-Substituenten in 4-Position wie etwa **88**, **95** und **98** (**Abb. 19**). Interessant ist die Frage, ob **88**, wie vorhergesagt, eine höhere katalytische Aktivität als **35** aufweist.

Abb. 19: Von *Hassner et al.*^[21] dargestelltes TMGP (**35**, 4-(Tetramethylguanidinyl)pyridin) und weitere getestete reaktivere Derivate **88**, **95** und **98**.

TCAP-Derivate mit Substituenten in 4- bzw. 10-Position liefern günstigere rel. Acetylierungsenthalpien. Es stellt sich damit die Frage, ob diese darstellbar sind. Es soll im Rahmen dieser Arbeit versucht werden, ausgehend von den Vorarbeiten von *Heinrich*^[12] und *Yamanaka*^[32], die getesteten TCAP-Derivate **79**, **80** und **85** darzustellen (Abb. **20**)

Abb. 20: Von *Yamanaka*^[32] und *Heinrich*^[12] dargestelltes TCAP (**41**). Es soll versucht werden, die als katalytisch effizienter vorhergesagten Derivate **79**, **80** und **85** darzustellen.

^[32] T. Sakamoto, N. Miura, Y. Kondo und H. Yamanaka, Chem. Pharm. Bull. 1986, 5, 2018.

Als weitere Syntheseziele können die Phosphazene **99** und **100** sowie das Triarylamin **75** identifiziert werden. Die Verbindungen **99** und **100** besitzen mit -148.2 und -154.3 kJ mol⁻¹ sehr günstige rel. Acetylierungsenthalpien und sollten sich deshalb durch hohe katalytische Aktivität auszeichnen (**Abb. 21**).

Abb. 21: Triarylamin 75 und Phosphazene 99 und 100.

4. Synthese der getesteten Zielverbindungen

4.1 Synthese von 6,6-Tricycloaminopyridin (TCAP, 41)

Ausgehend von der publizierten TCAP-Synthese nach *Yamanaka*^[32] wurde versucht, **41** darzustellen (**Schema 8**) und durch Änderung der Reaktionsbedingungen höhere Ausbeuten zu erhalten. Eigene Ausbeuten stehen in Klammern.

Schema 8: Von 1,6-Naphthyridin (101) ausgehende und publizierte Synthese zum TCAP 41 nach *Yamanaka*^[32] Eigene Ausbeuten sind eingeklammert.

Die von *Yamanaka* beschriebene Synthese geht von 1,6-Naphthyridin (101) aus. Durch Bromierung in Eisessig kann 102 in 55 %iger Ausbeute dargestellt werden. Heck-Kupplung mit Ethylacrylat und anschließende Hydrierung in Ethanol führt zum tricyclischen Lactam 48 in 76 %iger Ausbeute. Reduktion von 48 mit Red-Al[®] in Toluol unter Rückfluss liefert 41 in 64 %iger Ausbeute.

Eigene synthetische Bemühungen starteten von 4-Aminopyridin (104). Die Darstellung von 101 ist literaturbekannt^[33] und gelingt unter drastischen Bedingungen durch *Skraup*-Synthese (Schema 9) ausgehend von 104.

^[33] a) Y. Hamada, I. Takeuchi und M. Hirota, *Chem. Pharm. Bull.* **1971**, *19*, 1751. b) Y. Hamada und I. Takeuchi, *Chem. Pharm. Bull.* **1971**, *19*, 1857. c) T. J. Kress und W. W. Paudler, *Chem. Comm.* **1967**, *1*, 3.

Schema 9: Synthese 1,6-Naphthyridin (**101**) nach *Hamada et al.*^[33b] (**B**) und *Paudler et al.*^[33c] (**A**). Eigene Ausbeuten sind eingeklammert.

Während die Synthese nach dem beschriebenen Weg von Paudler^[33c] ohne Zusätze von anorganischen Salzen in einer Ausbeute von 49 % gelingt, kann durch Route B 101 nur in 35 % iger Ausbeute nach Säulenchromatographie dargestellt werden. Einen zeitlich höheren Aufwand erfordert die Abtrennung der anorganischen Salze nach Einstellung eines pH-Wertes von 12 aus der Mutterlauge. Während auf Route A das Natriumsalz der *m*-Nitrobenzolsulfonsäure durch Abnutschen abgetrennt werden kann, ist die Abtrennung von Eisenhydroxid, Natriumborat und dem Natriumsalz der m-Nitrobenzolsulfonsäure zeitintensiv. Die in der Publikation von Hamada et al. [33] angegebene Rohausbeute von 70 % kann nicht reproduziert werden. Dies ist im Einklang mit den Ergebnissen von Heinrich.^[34] Versuche, den "Sulfo-mix"^[35], bei dem es sich um eine für 8 h bei 70 °C gehaltene Mischung aus *m*-Nitrobenzolsulfonsäure, Nitrobenzol und nicht umgesetzter H₂SO₄SO₃ (20%) handelt, durch direkten Einsatz von *m*-Nitrobenzolsulfonsäure zu ersetzen, scheiterten. Die Ausbeuten brachen auf 20 % ein. Ebenfalls geringer werden die Ausbeuten durch Verwendung älteren Oleums. Verwendung von Oleum mit höherem SO3-Gehalt vermindert die Ausbeuten ebenfalls. So wurde versucht, Oleum mit einem SO₃-Gehalt von 60 % einzusetzen. Der Einsatz anderer Oxidationsreagenzien wie die zum Amin 104 korrespondierende Nitroverbindung ergeben auch keine höheren Ausbeuten. Von Kundu wurde zur "Sulfo-mix"-Herstellung Oleum mit 30 %igem SO₃-Gehalt verwendet.^[36] Dieses brachte aber auch keine Verbesserung der Ausbeute. Ebenfalls erfolglos blieben eine Variation der Mengen an Glycerin und Wasser, die Ausbeuten blieben gleich oder wurden geringer. 8-Brom-1,6-naphthyridin (102) ist durch Bromierung in Eisessig in eigener Ausbeute von 52 % zugänglich. Neben dem monobromierten 1,6-Naphthyridin 102 wird das Regioisomer 105 und ein zweifach bromiertes Produkt **106** gefunden. Während sich das dibromierte Produkt durch Flashchromatographie (Kieselgel,

^[34] M. Heinrich, *Dissertation*, **2003**, LMU München.

^[35] W. P. Utermohlen, Jr. J. Org. Chem. 1943, 8, 544.

^[36] Dr. Sandip Kundu, Privatmitteilung, 2005.

CHCl₃/MeOH, 20:1) leicht abtrennen lässt, ist zur vollständigen Abtrennung von **105** eine lange und zeitintensive Gravitationssäule (Kieselgel, CHCl₃/MeOH, 30:1) notwendig. Einfacher ist es, das Regioisomer nicht abzutrennen und mit dem Gemisch aus **102** und **105** die Heck-Kupplung durchzuführen, da sich anschließend die unterschiedlich acrylierten 1,6-Naphthyridine leichter trennen lassen.

Abb. 22: Bei der Bromierung erhaltene bromierte 1,6-Napthyridine.

Die Regiochemie des Nebenprodukts **105** ist im Einklang mit dem ¹H-NMR-Spektrum. Grundsätzlich ist auf Basis des ¹H-NMR-Spektrums auch noch ein anderes Regioisomer **107** denkbar. Dieses ist aber unwahrscheinlich, da man im ¹H-NMR-Spektrum von **105** eine ⁴*J*-Kopplung für die Protonen H_a und H_b beobachtet. Diese findet man auch in 1,6-Naphthyridin (**101**) aber nicht in **106**. Eine ⁴*J*-Kopplung über die Stickstoffatome wurde in den ¹H-NMR-Spektren der Verbindungen **101**, **102** und **106** nicht beobachtet. Somit ist die vorgeschlagene Struktur **105** für das regioisomere Monobromid am wahrscheinlichsten. Mechanistisch lässt sich die Bildung von **105** wohl so verstehen (**Schema 10**): Gegen Ende der Reaktion bildet sich immer mehr HBr. Da HBr eine stärkere Säure als Essigsäure^[37] ist kann es möglich sein, dass auch der zweite Stickstoff von **102** im Sauren protoniert wird, anschließend greift das Bromidion nucleophil 1,6-Naphthyridin an. Eine Bildung von **105** als Nebenprodukt könnte durch Zugabe von Pottasche oder einer anderen Base verhindert werden, wenn die Bromierung nicht in Eisessig ausgeführt wird. Das Problem ist, dass die Bromierung von 1,6-Naphthyridin in Chloroform bzw. Tetrachlorkohlenstoff literaturbekannt ist und zu drei anderen monobromierten Regioisomeren von **102** führt.^[38]

^[37] HBr $(pK_a) = -9$ vs. HOAc $(pK_a) = 4.7$ aus D. A. Evans, D. H. Ripin,

http://daecr1.harvard.edu/pdf/evans_pKa_table.pdf

^[38]W. W. Paudler, T. J. Kress, J. Org. Chem. **1968**, 33, 1384.

Schema 10: Bildung des Monobromids 105 durch nucleophilen Angriff des Bromidions an die zweifach protonierte Verbindung 102.

Ein Eintropfen von Brom durch eine Spritzenpumpe, um eine kurzzeitige lokale Hochkonzentration von Brom zu verhindern, die als Ursache der Bildung von **105** gelten könnte, blieb erfolglos. Die Ausbeuten an Monobromid **102** sind durch Eintropfen von Brom mit einem Tropftrichter in die Reaktionslösung gleich dem sehr langsamen Eintropfen von Brom mit der Spritzenpumpe. Trocknung des Eisessigs durch P₂O₅, um den Einfluß von Wasser auszuschließen, liefert keine bessere Ausbeute. Die Synthese wurde von *Kundu* wiederholt und erbrachte dieselben Ergebnisse.^[36]

Die Heck-Kupplung zum acrylierten 1,6-Naphthyridin **103** gelingt in guten Ausbeuten von 85 %. Die Ausbeute konnte durch Verwendung von Tris(*o*-tolyl)phosphin verbessert werden. Die Cyclisierung zum Lactam **48** durch Hydrierung mit Palladium auf Aktivkohle verläuft in guten Ausbeuten von 87 %. Die Verbesserung konnte durch Verfolgung der Reaktion im NMR erzielt werden. Abschließende Reduktion mit LiAlH₄ in Gegenwart von AlCl₃ ergibt **41** in 74 %iger Ausbeute. Durch Verwendung von LiAlH₄ konnte die Reaktionzeit von 48 h auf 20 h verringert werden. Umkristallisation aus Dichlormethan/Hexan lieferte Kristalle, die für die Röntgenstrukturuntersuchung verwendbar waren. Die Einkristallstruktur ist in **Abb. 23** wiedergegeben und der C-N-Bindungsabstand r₁ mit der berechneten Struktur verglichen worden. Zusätzlich wurde der quadratische Mittelwert (*RMS*) aus den Atomlagen der Kristallstruktur und den Atomlagen der auf B3LYP/6-31G(d) berechneten energetisch günstigsten Struktur gebildet (*RMS* = 0.085). In dem auf B3LYP/6-31G(d)-Niveau optimierten energetisch günstigsten Konformer stehen die CH₂-Gruppen der aliphatischen Ringe von 6,6-TCAP (**41**) zu einer Seite des Moleküls. Wie der *RMS*-Wert von 0.085 beweist, ist die räumliche Geometrie des berechneten TCAP in sehr guter Übereinstimmung mit der Kristallstruktur.

Abb. 23: Auf B3LYP/6-31G(d)-Niveau optimierte Struktur A und Kristallstruktur B.

Ansätze im größeren Maßstab sind nur für die Heck-Kupplung, Hydrierung und Reduktion mit LiAlH₄ möglich. Eine Ansatzvergrößerung für die Synthese von **101** und **102** ist problematisch. So wurde zum Beispiel versucht, die Skraup-Synthese mit der dreifachen Menge von 240 mmol 4-Aminopyridin (**104**) durchzuführen. Es zeigte sich, dass die Ausbeuten von 49 % bei einem Ansatz mit 80 mmol von **104** auf 30 % abfielen und, dass es zunehmend schwieriger wird, die Reaktionsmischung bei Zugabe von Glycerin in den "Sulfo-mix" zu kühlen. Der zweite Reaktionsschritt lässt sich bis zu einer Ansatzgröße von 14.8 mmol **101** problemlos hochskalieren. Ab hier brechen die Ausbeuten ein und es bildet sich immer mehr dibromiertes Naphthyridin **106**.

Schema 11: Von *Han et al.*^[39] publizierte Synthese zum TCAP. Die Synthese gelingt in einer Gesamtausbeute von 37 %.

^[39] S. Singh, G. Das, O. V. Singh und H. Han, *Tetrahedron Let.* **2007**, *48*, 1983.

Eine bessere Synthese von **41** in höheren Gesamtausbeuten wurde 2007 von *Han et al.* veröffentlicht (**Schema 11**).^[39] Es handelt sich dabei um eine fünfstufige Synthese, in der Propargylalkohol in einer Sonogashira-Reaktion als Schlüsselschritt mit 3,5-Diiod-4-aminopyridin (**108**) gekuppelt wird. Während die modifizierte Synthese von *Yamanaka* nur eine Gesamtausbeute von 14 % erreicht, liegt die Gesamtausbeute der Synthese von *Han et al.* bei 37 %, was vor allem an den hohen Ausbeuten in den ersten beiden Schritten der Synthese liegt. So kann 3,5-Diod-4-aminopyridin (**108**) in 70 %iger Ausbeute und das anschließende Kupplungsprodukt **109** in einer Ausbeute von 80 % dargestellt werden.

4.2 Derivatisierungsversuche von 6,6-Tricycloaminopyridin (TCAP, 41)

4.2.1 Deprotonierung von 6,6-Tricycloaminopyridin

Um die als katalytisch effizienter vorhergesagten TCAP-Derivate darzustellen, wurde versucht, diese direkt durch Deprotonierung von TCAP (**41**) in 5 oder 10-Position zu gewinnen. In der Literatur sind mehrere Beispiele zur Deprotonierung von 3-Picolinen und 3,3-Dimethyl-2,2`-bipyridinen bekannt.^[40] Bei der Reaktion wurde jeweils TCAP in THF gelöst, diese Lösung auf -78 °C gekühlt, die jeweilige Base hinzugegeben und auf Raumtemperatur aufgewärmt. Anschließend wurde die bei Raumtemperatur gehaltene Reaktionslösung von **41** mit der jeweiligen Base in eine Lösung des Elektrophils kanalisiert. Unter Kanalisieren versteht man das Einleiten einer Lösung A in eine Lösung B unter Schutzgas durch eine Edelstahlkanüle (**Schema 12** und **Tab. 9**)

Schema 12: Darstellungsversuche von TCAP-Derivaten durch Deprotonierung und anschließendes Kanalisieren in eine Lösung von Elektrophil in THF.

^[40] a) R. I. Papasergio, B. W. Skelton, P. Twiss, A. H. White und C. L. Raston, *J. Chem. Soc. Dalton Trans.* **1990**, *1*, 1161. b) W. P. Leung, K. S. M. Poon, T. C. W. Mak und Z.-Y. Zhang, *Oragnometallics*, **1996**, *15*, 3262.
c) F. Saverio, T. Luigino, *J. Org. Chem.* **1996**, *61*, 4148. d) N. Garelli, P. Vierling, *J. Org. Chem.* **1992**, *57*, 3046.

Base	Elektrophil
LDA	ClSiEt ₃
<i>n</i> -BuLi	ClSiMe ₃
sec-BuLi	ClSiMe ₃ , MeI ^a , EtOD
sec-BuLi, TMEDA	Mel ^a

Tab. 9: Verwendete Basen und Elektrophile zur versuchten Deprotonierung von TCAP (41) (Schema 12).

^aIn diesem Fall wurde nach Kanalisieren in die auf -78 °C gekühlte THF-Lösung mit Methyliodid auf Raumtemperatur aufgewärmt und dann unter Rückfluß erhitzt. Alle Experimente wurden unter Argonatmosphäre durchgeführt.

Bei allen beschriebenen Experimenten wurde entweder Startmaterial isoliert oder im Fall der Zugabe von Methyliodid das entsprechende Pyridinium-Salz isoliert. Ein Abbruch der Reaktion mit deuteriertem Ethanol zeigte laut ¹H-NMR einen 10 %igen Einbau von Deuterium in den Pyridinring. Auch die vielversprechende Variante von *Beak et al.*^[41] mit *sek*-Butyllithium und TMEDA-Zusatz, mit der selbst BOC-geschütztes Piperidin in α -Stellung deprotoniert werden kann, brachte kein positives Ergebnis. Die gezeigten Reaktionen wurden von *Kundu*^[36] mit Kaliumhexamethyldisilazid und *tert*-Butyllithium in THF und DMPU wiederholt. Es ergaben sich keine neuen Ergebnisse.

4.2.2 Variation der Michael-Akzeptoren in der Heck-Kupplungs-Reaktion

Die enttäuschenden Ergebnisse aus den Lithiierungsversuchen führten dazu, die Michael-Akzeptoren im Heck-Kupplungsschritt zu variieren, um zu untersuchen, ob ein in 5-Position monoalkyliertes Derivat von **41** zugänglich ist. In der Literatur sind verschiedene Beispiele bekannt, in denen Crotonsäureethylester oder Zimtsäureethylester mit Arylbromiden gekuppelt wurden.^[42] Es wurde versucht, sowohl die publizierten Protokolle zu übertragen, als auch die verschiedenen Freiheitsgrade aus dem bewährten Heck-Kupplungsprotokoll zu variieren (**Tab. 10**).

^[41] P. Beak, W. J. Zajdel, D. B. Reitz, Chem. Rev. 1984, 84, 471.

 ^{[&}lt;sup>42]</sup> a) J. E. T
 *ö*nder, D. Tanner, *Tetrahedron*, **2003**, *59*, 6937. b) V. Caló, A. Nacci, A. Monopoli, S. Laera und N. Cioffi, *J. Org. Chem.* **2003**, *68*, 2929-2933. c) C. G
 *ü*rtler, S. L. Buchwald, *Chem. Eur. J.* **1999**, *5*, 3107.

Tab. 10: Versuche zur Derivatisierung von 102 durch Variation der Heck-Kupplungs-Reaktionbedingungen.

Nr.	Katalysator	Base	Elektrophil	Lösungsmittel	Additiv
1.	$Pd(OAc)_2$	NEt ₃	Ethylcrotonat	DMF, CH ₃ CN,	-
			Zimtsäureethylester	Ph-Me	
			Maleinsäurediethylester		
2.	$Pd(OAc)_2$	NEt ₃	Ethylcrotonat	CH ₃ CN	Bu ₄ NBr
3.	$Pd(OAc)_2$	NEt ₃	Ethylcrotonat	CH ₃ CN	Bu ₄ NBr
4.	$Pd(OAc)_2$	$MeN(Cy)_2$	Ethylcrotonat	DMF, CH ₃ CN,	Et ₄ NCl
				DMAc	
5.	PdCl ₂ (PPh ₃) ₂	$MeN(Cy)_2$	Ethylcrotonat	DMF, CH ₃ CN	Et ₄ NCl
6.	$Pd(OAc)_2$	$HN(Cy)_2$	Ethylcrotonat	DMF, CH ₃ CN,	Et ₄ NCl
				DMAc	
7.	$Pd_2(dba)_3$	NEt ₃	Ethylcrotonat	CH ₃ CN	Bu ₄ NBr

Als Ligand wurde immer, außer unter **3**., Tris(*ortho*-tolyl)phosphin eingesetzt. Die Reaktion unter **3**. wurde ohne Phosphinligand durchgeführt. Die Reaktionzeiten für Nr. **1-6** betragen 24 h. Die unter **7**. genannte 20 h.

Mit Ausnahme von 7. wurde nur Startmaterial isoliert. Im Falle von 7. ließ sich nach Aufarbeitung mittels Massenspektroskopie und ¹H-NMR ein Gemisch von Regioisomeren der gewünschten Heck-Kupplungsprodukte nachweisen (Abb. 24).

Abb. 24: Isolierte Reaktionsprodukte 110 und 111 aus Reaktion Nr. 7 in einem Verhältnis von 1:2.

Die gezeigten Beispiele machen deutlich, dass die optimalen Reaktionsbedingungen zur Bildung von **110** noch nicht gefunden wurden. Sie machen aber auch deutlich, dass eine Derivatisierung durch ein Heck-Kupplungsprotokoll keineswegs trivial ist und ein ganz anderer synthetischer Ansatz zur Darstellung eines in 4-Position alkylierten TCAP-Derivates nötig ist.

4.2.3 Syntheseversuche zur radikalischen Cyclisierung über PTOC-Ester

Da die oben beschriebenen Versuche zur Einführung einer Alkyl- oder Arylgruppe erfolglos blieben, wurde versucht, die Synthesestrategie fundamental zu ändern. Statt Derivate durch die bekannte Synthese darzustellen, wurde versucht, **85** durch radikalische Cyclisierung herzustellen (**Schema 13**).

Schema 13: Retrosynthetische Zerlegung des TCAP-Derivates 85.

Eine retrosynthetische Zerlegung führt über das Diradikal **112** zum 4-Aminopyridin (**104**). Ein radikalischer Angriff an den Pyridin-Ring ist sinnvoll, da ein elektrophiler Angriff an den vergleichsweise elektronenarmen Pyridinring über ein Carbokation nicht erfolgreich ist. So reagiert Diol **114** in Gegenwart von Polyphosphorsäure zum ungewünschten Eliminierungsprodukt (**113, Schema 14**).^[43]

Schema 14: Von Malakar^[43] durchgeführter ionischer Cyclisierungsversuch.

Synthetisch lässt sich Synthon **112** aus dem *tert*-Alkohol **114** generieren. Dieser ist durch Addition von Methylmagnesiumiodid an Diester **115** zugänglich (**Schema 15**).

^[43] C. Malakar, *Privatmitteilung*, 2006.

Schema 15: Synthese des tert-Alkohols 114 ausgehend von 4-Aminopyridin (104).

Die Synthese von Diethylester 115 gelingt in 53 %iger Ausbeute ausgehend von 104 und Acrylsäureethylester.

Die Generierung von Radikalen aus dem *tert*-Alkohol **114** verläuft über den *in-situ* gebildeten PTOC-Ester **117** (PTOC: Pyridinthionoxycarbonyl-Ester). Diese Methode zur Bildung eines nucleophilen Radikals ist literaturbekannt.^[44] Man geht vom Alkohol aus, setzt diesen mit Oxalylchlorid im Überschuss um und gibt nach üblicher Aufarbeitung unter Argonatmosphäre Bartonsalz hinzu (**Schema 16**). Diese Verbindung ist extrem lichtempfindlich und thermolabil und kann im Fall von *tert*-Alkoholen nicht ohne weiteres isoliert werden.^[44a]

Nach Zugabe von AIBN und zweistündigem Erhitzen unter Rückfluss zeigte sich, dass **85** nicht gebildet wurde. Durch Kugelrohrdestillation und Säulenchromatographie konnte Alken **113** isoliert werden.

Schema 16: In-situ Generierung des PTOC-Esters 117.

 ^{[&}lt;sup>44]</sup> a) P. A. Simakov, F. N. Martinez, J. H. Horner und M. Newcomb, *J. Org. Chem.* **1998**, *63*, 1226. b) D. H. R. Barton, D. Crich, *J. Chem. Soc. Perkin Trans. I*, **1986**, 1603. c) B. Giese, J. Hartung, *Chem. Ber.* **1992**, *125*, 1777.

Eine Variation des Lösungsmittels von Toluol zu Dichlormethan liefert dasselbe Ergebnis. Aus den Arbeiten von *Barton*^[44b] und *Newcomb*^[44a] ist bekannt, dass die Fragmentierung zum Radikal **114** schrittweise abläuft und die Abspaltung von CO₂ zum Alkylradikal umso schneller wird, je stabiler dieses ist. Denkbar ist, dass das aus PTOC-Ester **118** gebildete Radikal **119** unter Wasserstoffeliminierung zum Alken **113** und Pyridin-2-thiol reagiert.

Schema 17: Reaktion des PTOC-Esters 118 zum Alken 113 und weiteren Nebenprodukten in Abwesenheit von Radikalabfangreagenzien.

Aus dem Reaktionsansatz ließ sich nicht nur **113** isolieren, sondern auch das Pyridin-2-thiol. Ein übereinstimmendes M⁺-Signal sowie charakteristische Fragmente wie sie aus **120** und **121** erhalten werden können, wurden durch Massenspektrometrie im Rohprodukt nachgewiesen.

Abschließend lässt sich feststellen, dass ein generiertes Radikal **119** nicht cyclisiert, sondern nur das Eliminierungsprodukt **113** bildet. Diese Ergebnisse werden gestützt durch die Tatsache, dass diese Reaktion von *Malakar* wiederholt worden ist, wobei dieselben Ergebnisse erhalten worden sind. Ferner wurde auch von *Malakar* der Radikalstarter Lauroylperoxid eingesetzt, das Lösungsmittel zu 1,2-Dichlorethan variiert und die Zugabe von Tributylstannan getestet.^[43] Es zeigte sich, dass **113** das Hauptprodukt der Reaktion ist. Somit muss festgestellt werden, dass **85** vermutlich nicht über diese Syntheseroute darstellbar ist.

4.3 Synthese der Pyrido[3,4-b]pyrazin-Derivate

4.3.2 Synthese der Tetrahydropyrido[3,4-b]pyrazine 76 und 81

Der Grundkörper dieser Substanzklasse ist Tetrahydropyrido[3,4-*b*]pyrazin (**124**). Ausgehend von kommerziell erhältlichem 3,4-Diaminopyridin (**122**) und Glyoxal kann durch Kondensation Pyrido[3,4-*b*]pyrazin (**123**) in hohen Ausbeuten synthetisiert werden.^[45] Zur Synthese von **123** setzt man **122** mit wässriger Glyoxal-Lösung in Ethanol bei 70 °C um. Die Tetrahydroverbindung **124** ist durch Reduktion mit Natriumborhydrid bei 40 °C in Ethanol zugänglich.^[46] **76** kann durch reduktive Alkylierung mit Formaldehyd-Lösung in einem Schritt dargestellt werden (**Schema 18**).

Schema 18: Synthese von Verbindung 76.

Verbindung **81** kann über die diacetylierte Verbindung **47** mit nachfolgender Reduktion durch LiAlH₄/AlCl₃ in THF dargestellt werden (**Schema 19**).^[47]

^[45] W. W. K. R. Mederski, D. Kux, M. Knoth, *Heterocycles*, 2003, 4, 925.

^[46] J. Armand, L. Boulares, C. Bellec, J. Pinson, *Can. J. Chem.* **1988**, *66*, 1500.

^[47] C. Sotirou-Leventis, Z. Mao, A.-M. M. Rawashdeh, J. Org. Chem. 2000, 65, 6017.

Schema 19: Synthese von Verbindung 81.

Die Reaktionszeit zur Synthese von **124** durch Reduktion mit NaBH₄ in Ethanol konnte durch Arbeiten bei hoher Konzentration von **123** in Ethanol (4.58 mol/l) auf 2 h reduziert werden. Die vorhergehende Konzentration betrug 0.25 mol/l. **124** kann alternativ in Anlehnung an eine Vorschrift von *Osteryoung et al.*^[48] durch Eintropfen von TFA in eine Reaktionsmischung von **123** und NaBH₄ in THF ohne Kühlung dargestellt werden. Die Aufarbeitung der Reaktion ist aufwendiger, da das Reaktionsprodukt durch intensives Ausschütteln aus der Mutterlauge oder kontinuierliche Flüssig/Flüssig-Extraktion entfernt werden muss. Außerdem stellte sich heraus, dass der Pyridinring unter diesen drastischen Bedingungen auch mit angegriffen wird. So konnte das gewünschte Produkt **124** nach Säulenchromatographie in einer Ausbeute von 45 % isoliert werden.

Eine reduktive Alkylierung mit Acetaldehyd blieb auf der Stufe der monoalkylierten Verbindung **125** stehen (**Schema 20**).^[49] Die Regiochemie der *N*-Alkylierung lässt sich durch HMBC-Kopplung bestimmen.

Schema 20: A) Reduktive Alkylierung endet auf der Stufe der Monoalkylierung. B) Die Regiochemie der Alkylierung konnte durch HMBC-Spektroskopie festgestellt werden. Doppelpfeile bezeichnen die beobachteten HMBC-Kopplungen.

^[48] R. C. Bugle, R. A. Osteryoung, J. Org. Chem. 1979, 44, 1719.

^[49] R. O. Hutchins, W.-Y. Su, R. Sivakumar, F. Cistone, Y. P. Stercho, J. Org. Chem. 1983, 48, 3412.

In 2007 wurde von *Han et al.*^[50] die Synthese von **76** und **81** publiziert. Die Synthese verläuft über die Einführung einer Tritylschutzgruppe in fünf Stufen (**Schema 21**).

Schema 21: Syntheseroute zu 76 und 81 entwickelt von *Han et al.*^[50]

Diese Syntheseroute ist im Fall von **76** um zwei und im Fall von **81** um eine Stufe länger als die in **Schema 18** und **19** beschriebene, da die Syntheseroute über ein Trityl-geschütztes-Pyridopyrazin **126** führt. Die eingeführte Tritylschutzgruppe muss durch Erhitzen in HCl über Nacht wieder abgespalten werden.

4.3.3 Synthese des Octahydropyrido[3,4-b]chinoxalin rac-97

Die Synthese von *rac-*97 startet von 3,4-Diaminopyridin (122) und Cyclohexan-1,2dion (126). Pyridochinoxalin 43 lässt sich durch Kondensation von 122 und 127 in 90 %iger Ausbeute darstellen. Die anschließende Reduktion von 43 wurde zuerst mit NaBH₄ in Ethanol versucht. Hierbei stellte sich aber heraus, dass ein Gemisch von Diastereomeren im Verhältnis von 1 : 1.4 für *trans* : *cis* erhalten wird (Schema 22).

^[50] S. Singh, G. Das, O. V. Singh, H. Han, Org. Lett. 2007, 9, 401.

Schema 22: Synthese von 128 und Reduktion von 43 in Ethanol.

Die Reduktion mit Boran-THF-Komplex in Anlehnung an ein von *Opatz et al.*^[51] beschriebenes Reaktionsprotokoll, liefert das reine *cis*-Isomer, wenn die Boran-THF-Lösung frisch ist. Wahrscheinlich enthält eine ältere Lösung Spuren von Borsäure, die die diastereoselektive Reduktion entscheidend stört. Die Reaktionsführung und Aufarbeitung ist aufwendig, da das gegen Ende der Reaktion, laut publizierter Reaktionsvorschrift, zuzugebene Aminoethanol schwierig abzutrennen ist. Da die Reaktionszeiten durch DC-Kontrolle der Reaktionsmischung optimiert wurden, sei hier folgende Vermutung geäußert: Die Zugabe von Ethanolamin ist in diesem Fall nicht notwendig, um das *cis*-konfigurierte Diastereomer **128c** zu erhalten, da nach 16-stündiger Reaktionzeit bei 40 °C der Punkt mit dem R_f -Wert von 0.36 das gewünschte Produkt abbildet. Nach Zugabe von Aminoethanol und Aufarbeitung erhält man nach Säulenchromatographie zusätzlich zu den Punkt bei 0.36 einen Punkt mit dem R_f -Wert 0.78.

Schema 23: Vergleich der eingesetzten Reduktionsreagenzien. Die einfachste Variante, 128c zu synthetisieren ist die Reduktion mit LiAlH₄.

^[51] C. Kison, N. Meyer, T. Opatz, Angew. Chem. Int. Ed. 2005, 44, 5662.

Es stellte sich durch ¹H-NMR-Spektroskopie heraus, das es bei der Fraktion mit dem R_f -Wert 0.78 um **128c** handelt, das mit Ethanolamin verunreinigt ist. Ein Reaktionsansatz ohne die Zugabe von Ethanolamin würde die Frage klären, ob das Reagenz überflüssig ist oder nicht. Dieser Frage wurde aber nicht weiter nachgegangen, da die Reaktion mit LiAlH₄ viel einfacher durchzuführen ist und höhere Ausbeuten liefert. Nach Reduktion mit LiAlH₄ in THF^[52] gelingt die Diacetylierung entweder durch Acetylierung in Pyridin bei 100 °C in Gegenwart von 25 mol% PPY (**A**) oder durch langsames Eintropfen von Acetanhydrid in die auf 100 °C erhitzte Reaktionslösung von **128c** in Pyridin (**B**). Acetylierungsversuche unter Standardbedingungen mit Acetanhydrid und PPY lieferten nur die monoacetylierte Spezies **129** (**Schema 24**). Eine Reaktion ohne Lösungsmittel mit 10 mol% DMAP liefert ebenfalls **129**.

Schema 24: Versuche zur Darstellung der diacetylierten Spezies rac-46.

Die *cis*-Konfiguration des durch Reduktion erhaltenen Diamins konnte auf der Stufe des Diamins **128c** nicht befriedigend geklärt werden, da es nicht gelang, die Verbindung zu kristallisieren bzw. aus dem ¹H-NMR-Spektrum aufgrund von zu starker Überlappung der Protonensignale die Kopplungskonstanten der relevanten Protonen zu bestimmen. Es gelang aber, die diacetylierte Spezies *rac*-**46** zu kristallisieren und eine Einkristallstruktur zu erhalten. Diese beweist eindeutig die *cis*-Konfiguration der Verbindung (**Abb. 25**).

^[52] R. C. DeSelms, H. S. Mosher, J. Am. Chem. Soc. 1960, 82, 3762.

Abb. 25: Einkristallstruktur von 46.

Eine abschließende Reduktion von *rac*-46 in THF mit LiAlH₄ in Gegenwart von AlCl₃ ergibt den Katalysator *rac*-97.^[47] Die Gegenwart von AlCl₃ ist notwendig, da sonst ein Gemisch aus monoalkylierten und dialkylierten Verbindungen erhalten wird. Die Abspaltung eines Acetylrestes während der Reduktion ist nicht selektiv. Ein GC-MS-Spektrum zeigt zwei Signale mit derselben Masse und unterschiedlichen Retentionszeiten. Die Struktur von *rac*-97 lässt sich durch eine Einkristallstruktur belegen (Schema 25 und Abb. 26).

Schema 25: Synthese von rac-97.

Ein Vergleich der Atomlagen der auf B3LYP/6-31G(d)-Niveau optimierten Struktur mit den Atomlagen der Kristallstruktur liefert ein RMS = 0.833. Dabei wurden alle Atomlagen miteinander verglichen. Ein Vergleich der Kohlenstoff- bzw. Stickstoffatomlagen unter Vernachlässigung der Wasserstoffe verbessert den RMS auf 0.183. Eine gute Übereinstimmung liefert nur das in der energetischen Reihenfolge an 6ter Stelle liegende Konformer. Die Ursache für den größeren quadratischen Mittelwert von 0.833 liegt hauptsächlich an den differierenden C-H-Bindungslängen.

Abb. 26: Auf B3LYP/6-31G(d)-Niveau optimierte Struktur A und Kristallstruktur B von 97.

Verbindung *rac-***97** kann durch die oben beschriebene vierstufige Synthese in einer Ausbeute von 30 % über alle Schritte synthetisiert werden. Die Gesamtausbeute lässt sich auf 45 % erhöhen, wenn die chromatographischen Reinigungsschritte der Synthese-Stufen 1-3 weggelassen werden und zur Diacetylierung die Methode **B** (Schema 24) angewandt wird.

4.3.4 Synthese des Octahydropyrido[3,4-b]chinoxalin rac-131

Ausgehend von *rac*-129 gelingt die Darstellung von *rac*-131 durch Reduktion und erneute Acetylierung. Die Reduktion verläuft mit LiAlH₄ in 55 %iger Ausbeute. Die anschließende Acetylierung ließ sich nicht mit den bereits angewandten und auch neuen Acetylierungsmethoden durchführen. Sowohl die Acetylierung mit Acetanhydrid in Gegenwart von PPY in Pyridin bei 100 °C als auch die Acetylierung bei Raumtemperatur mit Acetanhydrid und 10 mol% DMAP scheiterten. Selbst eine Reaktion mit 10 Äq. Acetylchlorid in Pyridin bei Raumtemperatur sowie 50 °C waren erfolglos.^[53] Es wurde nur das Startmaterial zurückisoliert. Eine Lösung brachte die Reaktion mit *n*-BuLi in THF und nachfolgende Zugabe von Acetylchlorid (**Schema 26**).

^[53] A. Einhorn, F. Hollandt, J. Lieb. Ann. Chem. 1898, 95, 301.

Schema 26: Synthese von rac-131.

Die oben beschriebenen Schwierigkeiten, *rac*-**130** zu acetylieren, lassen sich nur dadurch erklären, dass *rac*-**130** relativ zu Pyridin ein effektiverer nucleophiler Katalysator als Pyridin ist und die Acetylgruppe vom Acylpyridinium-Ion übernommen wird (**Schema 27**).

Schema 27: Gleichgewicht zwischen Acylpyridinium-Ion und Verbindung rac-130.

Eine Zweitacetylierung am Stickstoff in 3-Position ist sehr viel schwieriger, da die Verbindung durch die positive Ladung deaktiviert ist. Die Lithiierung des Stickstoffs in 3-Position verändert die Reaktivitäten und führt zu einer Acetylierung am Stickstoff in 3-Position. Die Konnektivität des Alkyl- bzw. Acetylrestes von *rac*-131 lässt sich durch NOESY-Spektroskopie beweisen (Abb. 27).

Abb. 27: Beobachtete und relevante NOE-Verstärkungen.

Alternativ kann *rac*-130 auch direkt aus 128c durch reduktive Alkylierung mit Acetaldehyd dargestellt werden (Schema 28).

Schema 28: Reduktive Alkylierung von 128c.

Eine Reaktion von *rac*-**128c** mit Acetaldehyd unter sauren Bedingungen führt nur zur monoalkylierten Spezies. Die Regiochemie der Alkylierung wurde nicht aufgeklärt.

4.3.5 Synthese des 2,3-Diphenyl-tetrahydropyrido[3,4-b]pyrazin rac-140

Die Synthese von *rac*-140 gelingt in 5-Stufen ausgehend von 122 durch Kondensation mit Benzil (133) in 94 %iger Ausbeute.^[45] Reduktion mit NaBH₄ bei 40 °C ergibt diastereose-lektiv das Diamin *rac*-135 (Schema 29).^[46]

Schema 29: Synthese von *rac*-135 durch Kondensation von 122 mit Benzil (133) und anschließender Reduktion mit NaBH₄.
Acetylierung in Pyridin bei 100 °C mit Acetanhydrid ergibt nur die monoacetylierte Spezies *rac-137* die man auch durch Reaktion mit Acetylchlorid in Pyridin bei Raumtemperatur erhält (Schema 30).

Schema 30: Monomethylierung von *rac***-136**. Acetylierung in Pyridin mit Acetylchlorid führt zu *rac***-137**. Relevante NOE-Verstärkungen in **136** belegen die Monomethylierung am Stickstoff in 3-Position.

Durch Eschweiler-Clark-Methylierung erhält man die monomethylierte Verbindung *rac*-136.^[54] Untersuchung der Regiochemie der Methylierung durch NOESY-Spektroskopie lässt auf eine Monomethylierung am Stickstoff in 3-Position von *rac*-136 schließen (Schema 30). Die Regiochemie der Acetylierung in Pyridin mit Acetylchlorid lässt sich eindeutig durch die Einkristallstruktur des Reaktionsproduktes *rac*-137 belegen (Abb. 28). Die verwendete Kristallstruktur beinhaltet ein fehlgeordnetes Dichlormethan-Molekül. Die Mole-külstruktur von 137 ist aber einwandfrei gelöst, wie der verfeinerte R-Wert von 0.1142 beweist. (Details siehe Kristallographischer Anhang.)

Abb. 28: Kristallstruktur von 137.

^[54] M. L. Moore, Org. React. **1949**, *5*, 301.

Eine direkte Alkylierung von *rac*-135 mit Methyliodid in Diethylether in Gegenwart von Natriumhydrid oder K_2CO_3 als Base liefert die am Pyridinstickstoff alkylierte Spezies (Schema 31).

Schema 31: Alkylierung von rac-135 mit Methyliodid führt zu einer Alkylierung des Pyridinstickstoffs.

Mit Kenntnis, dass die Acetylierung in Pyridin in Gegenwart von Acetylchlorid gut gelingt, wurde *rac*-136 in Acetylchlorid umgesetzt. Man erhält nach mehrfachem Umkristallisieren aus Ethylacetat die acetylierte Spezies *rac*-139 in einer Ausbeute von 35 %. Alternativ gelingt die Darstellung von *rac*-139 durch Lithiierung mit *n*-BuLi und nachfolgendes Eintropfen von Acetylchlorid (Schema 32).

Schema 32: Synthese von rac-139.

Abschließende Reduktion mit LiAlH₄ liefert *rac*-140 in 53 %iger Ausbeute (Schema 33).

Schema 33: Synthese von *rac*-140.

Die Struktur von 140 lässt sich eindeutig durch eine Einkristallstrukturanalyse belegen (Abb. 29).

Abb. 29: Einkristallstruktur von 140.

Eine Untersuchung, ob sich die Eschweiler-Clark-Methylierung auch auf andere Aldehyde wie zum Beispiel Benzaldehyd ausweiten lässt, ergab, dass die Formylierung die schnellere Reaktion ist und man das in 3-Position *N*-formylierte Produkt *rac*-141 erhält. Die Regiochemie wurde durch NOESY-Spektroskopie geklärt (Abb. 30).

Abb. 30: A) Versuch zur Anwendbarkeit der Eschweiler-Clark-Reaktion auf Benzaldehyd. **B)** Beobachtete und relevante NOE-Verstärkung dargestellt durch Doppelpfeile.

Abschließend lässt sich feststellen, dass in Abhängigkeit vom pH-Wert *rac-135* regioselektiv funktionalisiert werden kann. So lässt sich im basischen Reaktionsmedium der Stickstoff in 4-Postion acetylieren, während im sauren Medium der Stickstoff in 3-Position funktionalisiert werden kann. Dies ist im Einklang mit einer kürzlich publizierten Arbeit von *Caron et al.*, die zeigen konnten, dass sich 3,4-Diaminopyridin in Abhängigkeit vom pH-Wert am 3- oder 4-Stickstoff funktionalisieren lässt.^[55]

^[55] S. Caron, N. M. Do, R. E. McDermott, S. Bahmanyar, *Org. Process Research & Developement*, **2006**, *10*, 257.

4.4 Synthese der (4-Pyridyl)guanidine

Die alkylierten (4-Pyridyl)guanidine **88**, **95**, **98** und **142** lassen sich alle ausgehend von 4-Aminopyridin darstellen. Die Einführung des Alkylrestes geschieht über eine *ortho*-Lithiierung und anschließendes Abfangen der Lithiumorganischen-Verbindung durch ein Alkylhalogenid (**Abb. 31**).

Abb. 31: Syntheseziele 88, 95, 98 und 142.

Die Synthese wurde in Anlehnung an Vorschriften von *Turner et al.* durchgeführt (Schema 34).^[56]

Schema 34: Einführung einer metalldirigierenden Gruppe mit anschließender *ortho*-Methylierung zu Verbindung 144.

Nach Zugabe von Methyliodid reagiert die aus **143** erhaltene an C-3 lithiierte Arylverbindung zu **144** in 72 %iger Ausbeute. Zur Einführung des Hexylrestes musste die Vorschrift von *Turner et al.* abgewandelt werden, da nach Zugabe von 2.5 eq. *n*-BuLi ein butyliertes, hexyliertes Mischprodukt erhalten wurde. Verwendung von exakt 2.0 eq. *n*-BuLi zu **143** führte zu **145** in 45 %iger Ausbeute. Als Nebenprodukt lässt sich hauptsächlich Startmaterial zurückisolieren. Ein weiteres Nebenprodukt könnte ein zweifach alkyliertes Reaktionsprodukt sein, da sich im GC-MS des Rohproduktes ein identischer M⁺- bzw. identische Fragmentsignale wie die theoretisch berechneten nachweisen lassen. Leider lässt sich die braune Suspension des Lithiumkomplexes **145** in THF nicht in eine Lösung von Hexylbromid in THF kana-

^[56] J. A. Turner, J. Org. Chem., **1983**, 48, 3401.

lisieren, da der Innendurchmesser der handelsüblichen Kanülen zu gering ist. Ein Kanalisieren über eine gebogene Glasschliffverbindung erweist sich als aufwendig. Nach Alkylierung des Pyridinringes erfolgt die Entschützung der Pivaloyl-Gruppe durch 6 N HCl,^[57] wobei **147** und **148** in 86 %iger bzw. 99 %iger Ausbeute erhalten wurde.

Schema 35: Hexylierung und Entschützung zu 147 und 148.

Die Guanidinylierung erfolgt über Tetraalkyl-chloroformamidiniumchloride (Vilsmeier-Salze), die nach Vorschriften von *Isobe* et al. dargestellt wurden.^[58]

Schema 36: Darstellung der Vilsmeier-Salze aus den entsprechenden Harnstoffen.

Abfiltrieren des entstandenen Salzes mit einer Schutzgasfritte und Zugabe zu einer Lösung von 149 und 150 in Dichlormethan ergibt die jeweilige guanidinylierte Spezies (Schema 37 und 38).

^[57] C. Janiak, S. Deblon, L. Vehlin, Synthesis, 1999, 959.

^[58] T. Isobe, T. Ishikawa, J. Org. Chem., **1999**, 64, 6984.

Schema 37: Kupplung der Vilsmeier-Salze 149 und 150 mit dem in 3-Position methylierten 4-Aminopyridin 147.^[59]

Die Reaktionen zu **88** und **95** wurden jeweils nach 72 h abgebrochen, da laut DC kein weiterer Reaktionsfortschritt erreicht werden konnte. Es konnte ein großer Anteil an Harnstoff und Startmaterial zurückisoliert werden.

Schema 38: Kupplung des Vilsmeier-Salzes 150 mit 4-Aminopyridin 148.^[59]

Um die langsame Reaktion zu beschleunigen, wurde für die Synthese von **98** versucht, das Gleichgewicht von Edukten in Richtung der Produkte durch einen vierfachen Überschuss an Vilsmeier-Salz **150** zu verschieben. Nach 4 h wurde laut DC vollständiger Umsatz beobachtet und, wie in der Vorschrift von *Isobe* beschrieben, aufgearbeitet. Es zeigte sich, dass nach Säulenchromatographie **98** aber nur in 22 %iger Ausbeute isoliert werden konnte. Dieses lässt den Schluß zu, dass die Aufarbeitungsmethode von *Isobe* für guanidinylierte Pyridine nicht geeignet ist. Deshalb wurde zur Synthese von **151** anders aufgearbeitet (**Schema 39**).

^[59] F. Wagner, Forschungspraktikum, 2006, LMU München

Schema 39: Synthese von 151 über ein Vilsmeier-Salz.

Hier wurde direkt nach Ende der Reaktion, festgestellt durch DC-Kontrolle, chromatografiert (Kieselgel, CHCl₃/MeOH/NEt₃, 40:1:2). Trotzdem sind die Ausbeuten von **151** nicht höher als 18 %. Dies lässt den Schluss zu, dass entweder für eine optimale Reaktion der Reaktanten nicht die richtigen Reaktionsbedingungen gefunden wurden und somit die Vorschrift von *Isobe* modifiziert werden muss, oder dass durch die zweimalige Säulenchromatographie im Fall von **88**, **95** und **98** ein nicht unerheblicher Anteil der guanidinylierten Verbindung hydrolisiert wird. Dagegen spricht aber, dass die R_f -Werte bei zwei-dimensionaler Dünnschichtchromatographie gleich bleiben. Somit ist nur der zuerst genannte Grund plausibel.

In der Publikation von *Isobe* ist eine Synthese zu chiralen Harnstoffderivaten beschrieben, die einen Zugang zu chiralen nucleophilen Katalysatoren ermöglicht.^[60]

Schema 40: Synthese des modifizierten chiralen Thioharnstoffs 152 nach einer Vorschrift von Isobe. [61]

^[60] T. Isobe, K. Fukuda, T. Ishikawa, J. Org. Chem., 2000, 65, 7770.

^[61] C. Bozler, *Diplomarbeit*, **2006**, LMU München.

So wurde durch Modifikation der Synthese von *Isobe* versucht, einen chiralen Katalysator mit den Strukturmotiven von **95** und **98** darzustellen (Schema 40). Ausgehend von BOC-L-Prolin wird das Amid mit Chlorameisensäureisobutylester (IBCF) als aktivierendes Reagenz in 99 %iger Ausbeute gebildet.^[62] Nach Entschützen mit TFA gelingt die Reduktion mit LiAlH₄/AlCl₃ in sehr guten Ausbeuten. Die Synthese von **152** wird durch Umsetzung mit Thiophosgen in 31 %iger Ausbeute beendet. Als Nebenprodukte treten intermolekular gekuppelte Harnstoffderivate auf. Es gelang nicht, diese durch Arbeiten unter Niederkonzentrationsbedingungen zu unterdrücken. Durch Umkristallisation aus Methanol gelang es, Kristalle für die Einkristallstrukturanalyse zu gewinnen (Abb. 32). Durch die Einkristallstruktur lässt sich die Struktur des Harnstoff eindeutig belegen.

Abb. 32: Einkristallstruktur von Thioharnstoff 152.

Schema 41: Darstellung des nucleophilen Katalysators 142.^[61]

Während die Synthese von **142** über die oben beschriebene Route gelang, erfolgte der Kupplungsschritt mit **148** nur in 1 %iger Ausbeute. Trotz Lagerung unter Stickstoffatmosphäre zersetzte sich das gebildete Produkt zu **148** und dem entsprechenden Harnstoff.

^[62] H. Y. Rhyoo, Y.-A. Yoon, H.-J. Park, Y. K. Chung, Tetrahedron Letters, 2001, 42, 5045.

Abschließend kann auf Basis dieser Ergebnisse festgestellt werden, dass die Kupplung zu der guanidinylierten Verbindung synthetisch eine Herausforderung darstellt. Die Reinigung der guanidinylierten Verbindungen ist aufwendig, da der bei der Aufarbeitung gebildete Harnstoff aus dem Vilsmeier-Salz und das entsprechende 4-Aminopyridinderivat schwierig abzutrennen sind. Außerdem weisen die Verbindungen eine gewisse Hydrolyseempfindlichkeit auf, die eine Lagerung erschweren.

4.5 Synthese der Triarylamine

Die Triarylamine **75**, **155** und **158** lassen sich in ein oder zwei Schritten ausgehend von *N*,*N*-Dimethylphenylendiamin (**153**), 4-Bromanilinhydrochlorid (**154**) und weiterer Synthesebausteine darstellen (**Schema 42** und **Abb. 33**).

Abb. 33: Synthetisierte Biarylaminopyridine 75, 158 und 159.^[63]

Zur Synthese der Verbindungen wurde auf Vorschriften von *Buchwald, Hartwig* und *Ingold*^[64] zurückgegriffen. 4-Brompyridin muss als Hydrochlorid eingesetzt werden, da die freie Verbindung wärme und luftempfindlich ist und sich zersetzt (**Schema 42**).

155, 55 %

Schema 42: Synthese von 155 durch Buchwald-Hartwig-Aminierung.

^[63] A. Penger, *Forschungspraktikum*, **2006**, LMU München.

^[64] a) J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, S. L. Buchwald, *J. Org. Chem.* 2000, 65, 1158. b) S. Wagaw, S. L. Buchwald, *J. Org. Chem.* 1996, 61, 7240. c) J. F. Hartwig, M. Kawatsura, S. I. Hauckk, K. H. Shaughnessy, L. M. Aleazar-Roman, *J. Org. Chem.* 2000, 65, 1158. c) D. A. Pratt, G. A. DiLabio, L. Valgimigli, G.F. Pedulli, K. U. Ingold, *J. Am. Chem. Soc.* 2002, *124*, 11085.

Nach Säulenchromatographie erhielt man die Verbindung **155** als schwach ockerfarbenes Produkt, das sich schnell dunkelbraun verfärbt. Die Synthese von **158** gelingt in zwei Schritten ausgehend von 4-Bromanilin **156** und Pyrrolidin in DMSO nach einer Vorschrift von *Adapa* (**Schema 43**).^[65]

Schema 43: Synthese von TPA-Derivat 158.

Zuerst wurde die Synthese von **157** ohne Zusatz einer Pd(0)-Quelle durchgeführt. Nach vorschriftsmäßigem Aufarbeiten nach 20 Minuten wurden nur 5 % Ausbeute erhalten. In der Publikation ist eine Reaktionszeit von 10 min und eine Ausbeute von 52 % beschrieben. Da es sich bei der Reaktion auch um eine *Buchwald-Hartwig*-Aminierung handeln muss, wurde beim zweiten Versuch Pd₂(dba)₃ und dppf mit dem Erfolg zugesetzt, dass **157** in 39 %iger Ausbeute isoliert wurde. Es wurde sofort wieder eingesetzt, da auch diese Verbindung sich an der Luft zu verfärben begann. In einem zweiten Kreuzkupplungsschritt konnte **158** in 29 %iger Ausbeute isoliert werden. Die Ursache für die geringe Ausbeute ist ebenfalls die Tendenz der Verbindung, leicht an Luft zu oxidieren. Sie wurde deshalb nach zweimaliger Säulenchromatographie unter Stickstoffatmosphäre gelagert und ihre katalytische Aktivität sofort überprüft.

Die Synthese von 75 gelingt in zwei Stufen ausgehend von 2-Brompyridin (159) in einem Palladium vermitteltem Kreuzkupplungsschritt mit 153 (Schema 44 und 45).

Schema 44: Synthese von 160 durch Buchwald-Hartwig-Aminierung.

^[65] R. Varala, E. Ramu, A. M. Mujahid, S. R. Adapa, *Synlett*, **2004**, *10*, 1747.

Schema 45: Synthese des Triarylamins 75.

Das dabei erhaltene Diarylamin **160** musste sofort nach chromatografischer Aufreinigung weiter umgesetzt werden, da sich auch hier schnelle Verfärbung an Luft feststellen ließ. Der zweite Kupplungsschritt erfolgt in 52 %iger Ausbeute. Die isolierte hellbeige Verbindung **75** verfärbt sich schnell bräunlich an der Luft.

5. Messung der katalytischen Effizienz

5.1 Einleitung

Als Test der katalytischen Effizienz der verschiedenen Katalysatoren wurde das zuerst von *Steglich et al.* entwickelte ¹H-NMR-Experiment verwendet.^[66] Dabei wird der Konzentrationsverlauf der Esterbildung von 1-Ethinylcyclohexanol (**21**, 0.2 M) mit Acetanhydrid (**2**, 0.4 M) in Gegenwart von NEt₃ (0.6 M) beobachtet und die Halbwertszeit als Kenngröße der katalytischen Effizienz ermittelt.

Schema 46: NMR-Testreaktion in CDCl₃. Veresterung von 21 mit 2.

Die Reaktion wurde unter Raumluftbedingungen ohne Schutzgas durchgeführt. Die angegebene Reaktionstemperatur ist in gewissem Umfang von der Klimaanlage des NMR-Raums abhängig. Die Schwankungen werden auf ± 1 °C abgeschätzt.

5.2 Messung und Auswertung des Steglich-Experiments

Die Verfolgung der Esterkonzentration lässt sich durch Verwendung des Programms VNMR automatisieren. Nach Zusammengeben von je 200 µl der Einzelkomponenten (Details siehe Experimentalteil) aus Maßlösungen in ein NMR-Röhrchen wurden in Abhängigkeit des verwendeten Katalysators Messpunkte in Abständen zwischen 60 und 600 s aufgenommen. Die Messintervalle wurden nicht in kleineren Abständen als 60 s gehalten, um eine Intensitätsänderung zu vermeiden. Nach Start der Reaktion kann man den im nachfolgenden ¹H-NMR-Spetrum veranschaulichten Verlauf der Signalintensitäten beobachten (**Abb. 34**). Die chemischen Verschiebungen δ von Acetanhydrid (**2**), Ester **22** und Triethylammoniumacetat (**161**) sind in **Tabelle 11** wiedergegeben und beziehen sich immer auf das Singulett der Acetylgruppe.

^[66] G. Höfle, W. Steglich und H. Vorbrüggen, Angew. Chem. 1978, 90, 602.

Tabelle 11: ¹H-NMR (200 MHz, CDCl₃). Chemische Verschiebungen δ / ppm der Acetyl-Gruppen im Edukt **2** und in den Produkten **22** und **161**.

Verbindung	Acetanhydrid (2)	Ester 22	Triethylammoniumacetat (161)
δ / ppm	2.09	1.91	1.84

Abb. 34: ¹H-NMR (200 MHz, CDCl₃). Änderung der Signalintensitäten in einer Zeit von 1.38 nach Reaktionsbeginn bis 13.7 h der Einzelkomponenten **2**, **21**, **22** und **161** in Gegenwart von 10 mol% DMAP (1).

Der Umsatz der Veresterungsreaktion kann nach (Gl. 11) berechnet werden:

$$Umsatz = \left[\frac{I_{Ester}}{0.25(I_{Ac_2O} + I_{Ester} + I_{HNEt_3OAc})}\right] \cdot 100\%$$
(11)

Dabei bezeichnet *I* die Integralflächen des CH₃CO-Signals der jeweiligen Verbindungen (vgl. **Tab. 11**). Zu jedem Zeitpunkt der Reaktion ist der Gesamtgehalt an "Acetat" in der Reaktion 100 %. Mit fortschreitender Reaktion bildet sich Ester **22** und Triethylammoniumacetat (**161**). Gegen Ende der Reaktion ist die Acetanhydridkonzentration auf die Hälfte ihres Ausgangswerts abgefallen und jeweils 25 % des umgesetzten "Acetats" befindet sich unter dem Esterund Triethylammoniumacetat-Integral. Dies bedeutet, dass ¹/₄ der Summe aller Integrale dem maximalen Umsatz an Ester 22 entsprechen. Mit 1,4-Dioxan (0.2 M, δ = 3.58 ppm) als internem Standard vereinfacht sich die Umsatzberechnung zu (Gl. 12).

$$Umsatz = \left[\frac{I_{Ester}/3}{I_{Dioxan}/8}\right] \cdot 100\%$$
(12)

Die Integration der Produkt- und Edukt-Signale erfolgt über ein selbst geschriebenes Unterprogramm, das die Signale von 2, 22 und 161 automatisch integriert. Da zu Beginn der Messung schon Ester 22 vorhanden ist, muss durch Fitten einer Funktion auf 0 % Umsatz extrapoliert werden. Um eine Fittfunktion zu finden muss das Reaktionsgeschwindigkeitsgesetz für die Veresterungsreaktion von Alkohol 21 betrachtet werden (Gl. 13).

$$-\frac{d[R-OH]}{dt} = \underbrace{k_3[Ac_2O][R-OH][Kat.]}_{\text{katalysierte Reaktion}} + \underbrace{k_2[Ac_2O][R-OH]}_{\text{Hintergrundreaktion}}$$
(13)

Für *tert*-Alkohole ist die Hintergrundreaktion sehr viel kleiner als die katalysierte Reaktion. Somit vereinfacht sich Gl. (13) mit der Annahme, dass die Hintergrundreaktion null ist, zu:

$$-\frac{d[R-OH]}{dt} = k_3[Ac_2O][R-OH][Kat.]$$
(14)

Da die Katalysatorkonzentration über den Gesamtreaktionszeitraum konstant bleibt ([*Kat.*]=konst.) erhält man ein Geschwindigkeitsgesetz zweiter Ordnung.

$$\frac{d[R - OH]}{dt} = -k_2[Ac_2O][R - OH]$$
(15)

Da sich während der Reaktion äquivalente Mengen von Alkohol und Acetanhydrid umsetzen, lässt sich die Konzentration von Acetanhydrid [Ac_2O] durch die Alkoholkonzentration [R-OH] ausdrücken.

$$[Ac_2O] = [Ac_2O]_0 - ([R - OH]_0 - [R - OH]) = [Ac_2O]_0 - [R - OH]_0 + [R - OH]$$
(16)

Einsetzen von Gl. (16) in Gl. (15) ergibt:

$$\frac{d[R-OH]}{dt} = -k_2[R-OH]([Ac_2O]_0 - [R-OH]_0 + [R-OH])$$
(17)

Sortieren der Variablen ergibt:

$$\int_{[ROH]_0}^{[R-OH]} \frac{d[R-OH]}{[R-OH]([Ac_2O]_0 - [R-OH]_0 + [R-OH])} = -k_2 \int_{t_0}^t dt$$
(18)

Die Stammfunktion für das Integral auf der linken Seite ist für $b \neq 0$:^[67]

$$-\frac{1}{b}\ln\left(\frac{ax+b}{x}\right) = \int \frac{dx}{x(ax+b)}$$
(19)

Integration mit a = 1, b = $[Ac_2O]_0$ - $[R-OH]_0$, x = [R-OH] und $t_0 = 0$ ergibt:

$$\left[\ln\left(\frac{[R-OH]+[Ac_2O]_0-[R-OH]_0}{[R-OH]}\right)\right]_{[R-OH]_0}^{[R-OH]} = k_2 t ([Ac_2O]_0-[R-OH]_0)$$
(20)

Subtrahieren ergibt:

$$\ln \frac{[R - OH]_0 ([Ac_2O]_0 - [R - OH]_0 + [R - OH])}{[Ac_2O]_0 [R - OH]} = ([Ac_2O]_0 - [R - OH]_0)k_2t$$
(21)

Die Anfangskonzentration von Acetanhydrid ist doppelt so groß wie die Alkoholkonzentration $[Ac_2O]_0=2[R-OH]_0$. Dadurch vereinfacht sich Gleichung (**21**) zu:

$$\ln\left[\frac{1}{2}\left(\frac{[R-OH]_{0}}{[R-OH]}+1\right)\right] = [R-OH]_{0}k_{2}t \qquad (22)$$

Die Exponentialform lautet:

$$[R - OH] = \frac{[R - OH]_0}{2\exp([R - OH]_0 k_2 t) - 1}$$
(23)

Gleichung **23** ist eine monoexponentielle Funktion und gibt den zeitlichen Verlauf der Alkoholkonzentration mit der Zeit wieder. Um zu Gleichung (**23**) zu gelangen wurden folgende Vereinfachungen gemacht: 1. Die Hintergrundreaktion wurde als null angenommen. 2. Die Katalysatorkonzentration ist konstant. 3. Hydrolyseprozesse sind vernachlässigbar klein. 4. Die Acetanhydridkonzentration kann zu jedem Zeitpunkt der Reaktion durch die Alkoholkonzentration ausgedrückt werden. Diese Näherungen sind speziell für die langsamen Katalysatoren nur bedingt sinnvoll. Es kann nicht ohne weiteres angenommen werden, dass Hydrolysereaktionen keine Rolle spielen und damit auch, dass die Acetanhydridkonzentration durch die Alkoholkonzentration ausgedrückt werden kann (**Gl. 16**). In diesem Fall wäre die Lösung des Geschwindigkeitszeitgesetzes komplexer bzw. das verwendete Geschwindig-keitszeitgesetz (**Gl. 13**) müsste um einen Term, der die Hydrolyse von Acetanhydrid berücksichtigt, erweitert werden. Für Katalysatoren, die während der Reaktion durch Oxidation oder andere Prozesse inaktiv werden, kann die Annahme einer konstanten Katalysatorkonzentration nicht getroffen werden. Ein exakteres Geschwindigkeitsgesetz als das oben beschriebene (**Gl. 13**) wäre nötig, welches noch viel komplexer und schwieriger zu lösen ist. Gleichung **23** stellt also schon eine

^[67] H.-J. Bartsch, *Taschenbuch mathematischer Formeln*, 18. verb. Aufl., Fachbuchverl. Leipzig im Carl-Hanser-Verl., München, Wien, **1998**, 625.

Näherung eines idealisierten Geschwindigkeitsgesetzes (Gl. 13) dar. Des Weiteren muss zur Anwendung von Gleichung 21 der exakte Zeitpunkt des Reaktionsstarts bekannt sein. Dieser Zeitpunkt ist nicht bekannt, da zum Zeitpunkt der Aufnahme des ersten ¹H-NMR-Spektrums bereits Ester vorhanden ist. Es wird deshalb zusätzlich zu den oben gemachten Annahmen eine weitere grundsätzliche Vereinfachung vorgenommen. Da Gleichung 23 eine monoexponentielle Funktion ist wird weiter angenommen, dass sich die gemessenen Datenpunkte für den Esterumsatz durch eine flexible monoexponentielle Gleichung (Gl. 24) Fitten lässt, die zum Zeitpunkt t=0 nicht mathematisch zwingend einen Umsatz von 0 % wiedergeben muss. Diese Bedingung wird durch Gleichung 24 erfüllt.

$$U_t = A \exp(-(t - t_0)k) + const.$$
 (24)

Dabei ist U_t der Umsatz zum Zeitpunkt t. *A*, t_0 , *k* und *const*. sind gefittet Konstanten die die nötige Flexibilität der Funktion gewährleisten.

Abb. 35: Dargestellt ist die Zunahme des Esters 22 mit der Zeit bis 100 % Umsatz in Gegenwart von 10 mol% DMAP. Die gefittete Exponentialfunktion (24) dient zur Extrapolation auf 0 % Umsatz. Aus der Differenz der Zeiten ergibt sich die Halbwertszeit $\tau_{1/2}$ / min.

Näherungsweise berechnet sich somit die Halbwertszeit aus der Zeitdifferenz zwischen 0 und 50 % igen Umsatz (**Abb. 35**). Eine zweite Messung zeigt, dass die zuerst ermittelte Halbwertszeit gut reproduzierbar ist, wenn immer bis 100 % igen Umsatz gemessen wird. Die gefitteten Größen *A*, t_0 , *k* und *const*. haben keine physikalische Bedeutung, da die obige Exponentialfunktion (**Gl. 24**) nicht die Lösung eines Geschwindigkeitsgesetzes ist, sondern nur dazu dient auf 0 % igen Umsatz zurückzurechnen.

5.3 Katalytische Effizienz der 3,4-Diaminopyridin-Derivate

5.3.1 Diskussion der Halbwertszeiten der Acetylierung von Alkohol 21

Die nachfolgenden dargestellten 3,4-Diaminopyridin-Derivate wurden auf ihre katalytische Effizienz getestet (Abb. 36). Zum Vergleich wurden die bereits bekannten Katalysatoren DMAP (1), PPY (33) und TCAP (41) gemessen.

Abb. 36: Vermessene 3,4-Diaminopyridin-Katalysatoren.

In der nachfolgenden **Tab. 12** sind die gemessenen Halbwertszeiten der einzelnen Katalysatoren wiedergegeben. In der letzten Spalte der Tabelle findet sich der gerundete Mittelwert. Alle Kinetik mit NEt₃ als Auxiliarbase wurden mindestens zweimal gemessen, während die Messung mit Hünig-Base nur einmal durchgeführt wurde. Bei nicht vollständiger Umsetzung von Alkohol **21** zum Ester **22** aufgrund mangelnder Stabilität des Katalysators gegenüber den Reaktionsbedingungen wurde der Umsatz nur einmal verfolgt.

Katalysator	Messung 1 τ _{1/2} / min	Messung 2 τ _{1/2} / min	Messung 3 τ _{1/2} / min	$\overline{\tau}_{1/2}$ / min
41 (TCAP)	21	20	22	21 (29)
97	23	28	21	24 (37)
81	51	51	57	53
76	54	57	-	56
33 (PPY)	78	74	73	75
140	144	144	-	144
1 (DMAP)	160	175	163	166
131	-	-	138 ^b	-
130	-	-	159 ^c	-
47	-	-	>38000 ^a	-

Tabelle 12: Gemessene Halbwertszeiten $\tau_{1/2}$ / min. Die Werte in Klammern bezeichnen die Halbwertszeiten mit Hünig-Base als Auxiliarbase.

^aDie Messung wurde nach 25 d und 17 h abgebrochen. Zu diesem Zeitpunkt konnte ein Umsatz von 48% festgestellt werden. Die angegebene Halbwertszeit ist linear extrapoliert. ^bDer Katalysator ist nach einem Umsatz von 58% inaktiv. ^cDer Katalysator wird nach 70 %igem Umsatz inaktiv.

Die beste katalytische Effizienz zeigt Katalysator 97, dessen katalytische Aktivität mit der von TCAP (41) vergleichbar ist. Beide Katalysatoren sind um den Faktor 7 effektiver als DMAP (1). Die Einführung einer Acetylgruppe am Stickstoff in 3-Position führt zu 131, dessen katalytische Effizienz gegenüber 97 dramatisch abfällt. Ein Vergleich zwischen 97 und 81 macht deutlich, dass der Cyclohexylsubstituent gute Elektronendonoreigenschaften besitzen muss, da sich die Halbwertszeit von 81 zu 97 halbiert. Interessanterweise führt die Verwendung einer stärker basischen und sterisch gehinderten Base wie Hünig-Base zu leicht größeren Halbwertszeiten. Die hier gefundenen Zeitunterschiede sind zwar klein, aber theoretisch sollte nach dem in Kapitel 2 besprochenen Mechanismus gar kein Zeitunterschied vorhanden sein, da die Auxiliarbase im geschwindigkeitsbestimmenden Schritt nicht beteiligt ist. Die Katalysatoren mit unterschiedlichen Substituenten in N-3 und N-4-Position wie 131 und 130 zeigen, dass sie nicht inert gegenüber den Reaktionsbedingungen sind. Eine ESI-MS-Messung der Reaktionslösung zeigt hochaufgelöste Massen, die mit der theoretisch berechneten Masse der Strukturen von 164 und 165 übereinstimmen (Schema 47). Möglicherweise werden 130 und 131 zum N-Oxid 162 oxidiert, das unter diesen Bedingungen umlagert. Der beschriebene Umlagerungmechanismus ausgehend vom Pyridin-N-oxid 162 ist literaturbekannt.^[68] Pyridin-*N*-oxid **162** besitzt dieselbe Masse wie **164** bzw. **165**. Es kann wahrscheinlich ausgeschlossen werden, dass es sich um *N*-Oxid **162** handelt, da Erstens die entsprechende Masse von **163** auch detektiert wurde und Zweitens im ¹H-NMR-Spektrum am Ende der Reaktionskinetik die entsprechenden aromatischen Protonen, die man für das *N*-Oxid **162** erwarten würde, nicht mehr nachgewiesen wurden. Dies kann aber nicht als Beweis für einen grundlegend verschiedenen Mechanismus zur Bildung des Pyridons **164** bzw. **165** gewertet werden, da zum Zeitpunkt der Aufnahme des letzten ¹H-NMR-Spektrums die Umlagerung schon stattgefunden haben kann. Der Oxidationsvorgang zum *N*-Oxid **162** könnte beim Abmessen der Maßlösungen für die Kinetik unter Raumluftbedingungen ohne Schutzgas eingeleitet worden sein.

Schema 47: Mechanismus der Bildung von 164 und 165.

Die Frage, warum Verbindung 97 hingegen unter den gegebenen Reaktionsbedingungen nicht oxidiert wird, lässt sich nicht beantworten. Eine Messung der Redoxpotentiale in CHCl₃ könnte einen Einblick gewähren, warum 131 und 130 oxidationsempfindlich sind. Eine ESI-

^[68] a) T. Cohen, G. L. Deets, *J. Org. Chem.* **1972**, *37*, 55-58. b) J. H. Markgraf, H. B. Brown, Jr; S. C. Mohr, R. Peterson, *J. Am. Chem. Soc.* **1963**, *55*, 958.

MS Messung der Reaktionslösung zeigt, dass **97** die Reaktionsbedingungen überlebt. Eine Umsatzverfolgung mit Chinoxalin **43** als Katalysator zeigt selbst nach 21 Tagen keinen Umsatz zum Ester **22**.

5.4 Vergleich der katalytischen Effizienz mit den relativen Acylierungsenthalpien

In Abb. 37 sind die gemessenen Halbwertszeiten $\tau_{1/2}$ den rel. Acetylierungsenthalpien der Pyridopyrazin- und Pyridochinoxalin-Derivate gegenübergestellt. Die angegebenen Zahlen entsprechen den gemessenen Halbwertszeiten. (Et, Me)

Abb. 37: Auftragung der rel. Acetylierungsenthalpien der 3,4-Diaminopyridine und der gemessenen Halbwertszeiten $\tau_{1/2}$ / min der oben beschriebenen NMR-Testreaktion (**Schema 46**).

Wie bereits in Kapitel **3** diskutiert, sollte für kleine relative Acetylierungsenthalpien ΔH_{rxn} (298) (B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)) auch geringe katalytische Aktivität zu erwarten sein, während für Verbindungen mit großen negativen Acylierungsenthalpien hohe katalytische Aktivität erwartet werden sollte. Mit der Synthese der 3,4-Diaminopyridin-Derivate kann dies gezeigt werden (**Abb. 37**). Die durch die relative Acetylierungsenthalpie vor-

hergesagte katalytische Aktivität kann als Leitfaden zur Synthese katalytisch reaktiver Pyridin-Derivate herangezogen werden. Die für Verbindung **140** gemessene Halbwertszeit von 140 min. bleibt weit hinter der, die aufgrund der berechneten Acetylierungsenthalpie für **82**, zu erwartenden Halbwertszeit zurück.

5.5 Messung der Halbwertszeiten der Bildung von Isobuttersäureester 167

Die höchsten Selektivitäten *S* in kinetischen Racematspaltungsexperimenten mit chiralen DMAP-Derivaten wurden mit Isobuttersäureanhydrid (**166**) erzielt. Es ist deshalb interessant zu wissen, wie gut die dargestellten nucleophilen Katalysatoren bei der Veresterung von Alkohol **21** mit Isobuttersäureanhydrid (**166**) abschneiden (**Schema 48**). Die NMR-Testreaktion wurde in den gleichen absoluten Konzentrationen an Alkohol **21** (0.2 M), Anhydrid **166** (0.4 M) und NEt₃ (0.6 M) durchgeführt. Zusätzlich wurde als interner Standard 1,4-Dioxan (0.1 M) zugegeben.

Schema 48: NMR-Testreaktion mit Isobuttersäureanhydrid (166) in Gegenwart von 10 mol% Katalysator bei 40 °C in CDCl₃.

Die Reaktion wurde in einem unter Stickstoffatmosphäre abgeschmolzenen NMR-Röhrchen durchgeführt. Die Stickstoffatmosphäre diente lediglich dazu, einen Brand beim Abschmelzen zu verhindern. Die für die Kinetikmessung verwendeten Maßlösungen wurden unter Normalbedingungen, d. h. ohne Schutzgas hergestellt. Der Reaktionsumsatz wurde durch Integration des halben Anhydrid-Dubletts ($\delta = 1.14$ ppm) und des internen Standards ($\delta = 3.58$ ppm) berechnet (**Gl. 25**).

$$Umsatz = \left[1 - \frac{I_{Anhydrid}}{3(I_{Dioxan})}\right] \cdot 200\%$$
 (25)

Dabei entsprechen $I_{Anhydrid}$ der Integralfläche des halben Dublett-Signals von Isobuttersäureanhydrid (166) und I_{Dioxan} der Integralfläche des internen Standards 1,4-Dioxan.

Nachfolgend sind die gemessenen Halbwertszeiten wiedergegeben.

Katalysator	Messung 1 τ _{1/2} / min	Messung 2 τ _{1/2} / min	$\overline{ au}_{1/2}$ / min
97	60	66	63 (81)
41 (TCAP)	66	68	67 (86)
81	88	94	91
131	109	115	112 ^b
76	136	122	129
33 (PPY)	168	174	171
140	280	258	269
1 (DMAP)	295	313	304
130	-	298 ^c	-
47	-	>100000	-

Tabelle 13: Gemessene Halbwertszeiten $\tau_{1/2}$ / min. Die Werte in Klammern bezeichnen die Halbwertszeiten mit Hünigs Base als Auxiliarbase.

^aDie Messung wurde nach 31 d und 17 h abgebrochen. Zu diesem Zeitpunkt konnte ein Umsatz von 23 % festgestellt werden. Die angegebene Halbwertszeit ist linear extrapoliert. ^bDer Katalysator ist nach einem Umsatz von 59 % inaktiv. ^cDer Katalysator wird nach 57 % igem Umsatz inaktiv.

TCAP (41) und 97 sind auch hier die besten Katalysatoren mit ähnlichen Halbwertszeiten, gefolgt von 81 und 76, die in diesem Fall einen größeren zeitlichen Abstand zwischen den Halbwertszeiten aufweisen als bei der Acetylierung von Alkohol 21. Die Pyridochinoxaline 131 und 130 werden auch hier nach einiger Zeit inaktiv. Auch hier finden sich im ESI-MS-Spektrum von 131 hochaufgelöste Massen, die zur Struktur von 164 bzw. 165 passen. Sehr wahrscheinlich handelt es sich um eine langsame Oxidation zum *N*-Oxid mit nachfolgender Umlagerung zum 2-Pyridon 164 und 165.

5.6 Katalytische Effizienz der (4-Pyridyl)guanidine

Die in Kapitel 3 dargestellten (4-Pyridyl)guanidine (**Abb. 38**) wurden demselben katalytischen Test unterzogen wie die 3,4-Diaminopyridin-Derivate (**Schema 46**).

Abb. 38: Vermessene (4-Pyridyl)guanidine.

Tabelle 14: Gemessene Halbwertszeiten $\tau_{1/2}$. Die Werte in Klammern bezeichnen die Halbwertszeiten mit Hünigs Base als Auxiliarbase.

Katalysator	Messung 1 τ _{1/2} / min	Messung 2 τ _{1/2} / min	Messung 3 τ _{1/2} / min	$\overline{\tau}_{1/2}$ / min
98	58	53	57	56 (78)
142	98	99	-	99 (76)
95	111	119	-	115
88	142	144	-	141
151	-	-	266	
35	384	368	376	376 (219)

Die katalytische Aktivität aller (4-Pyridyl)guanidine ist generell geringer als die der 3,4-Diaminopyridin- oder 4-Aminopyridin-Derivate. Der beste Katalysator dieser Substanzklasse ist Verbindung **98**, die mit einer Halbwertszeit von $\tau_{1/2} = 56$ min genauso aktiv ist wie Verbindung **81** oder **76**. Auffällig ist das schlechte Abschneiden der von *Hassner et al.* publizierten Verbindung **35**. Der publizierte Wert von 90 % der katalytischen Aktivität von PPY (**33**) ließ sich experimentell nicht verifizieren. In den Messungen von *Hassner et al.* wurde nur der Vollumsatz betrachtet und keine kinetische Messung vorgenommen.^[21] Interessant ist auch die Beobachtung, dass im Fall der Katalysatoren **35** und **142** eine kleinere Halbwertszeit mit Hünig-Base (p $K_a = 11.4$)^[69] gemessen wurde als mit Triethylamin. Eine weitere Messung mit *N*-Methylmorpholin (p $K_a = 7.41$)^[70] im Fall von **142** führte zu einer größeren Halbwertszeit von $\tau_{1/2} = 355$ min als mit Triethylamin. Dies lässt sich wahrscheinlich so interpretieren, dass mit fortlaufendem Reaktionsumsatz immer mehr Essigsäure gebildet wird und dass die Menge an Katalysator die vollständig deprotoniert vorliegt, immer geringer wird. Der Grund

^[69] T. Ljungdahl, K. Pettersson, B. Albinsson, J. Martenson, J. Org. Chem. 2006, 71, 1677.

^[70] H. K. Hall, J. Am. Chem. Soc. 1957, 79, 5441.

hierfür ist die enorm hohe Basizität dieser Verbindungen (**35**, $pK_a = 13.9$).^[21] Dies ist aber nicht im Einklang mit dem Ergebnis für Verbindung **98**. Die Basizität sollte durch die Einführung des elektronenschiebenden Hexylrest noch weiter ansteigen. Man findet aber einen Anstieg der Halbwertszeit von Triethylamin zu Hünig-Base von ca. 20 min.

5.7 Vergleich der katalytischen Effizienz mit den relativen Acylierungsenthalpien

Ein Vergleich der katalytischen Aktivität mit den berechneten Acylierungsenthalpien zeigt, dass eine Korrelation innerhalb der Substanzklasse der (4-Pyridyl)guanidine besteht (**Abb. 39**). Die angegebenen Zahlen entsprechen den gemessenen Halbwertszeiten.

Abb. 39: Auftragung der rel. Acetylierungsenthalpien der (4-Pyridyl)guanidine und die gemessenen Halbwertszeiten $\tau_{1/2}$ / min der oben beschriebenen NMR-Testreaktion (**Schema 46**).

Aus den gezeigten Grafiken (**Abb. 39**) der rel. Acetylierungenthalpien ΔH_{rxn} (298) und den gemessenen Halbwertszeiten lässt sich nur ein guter Trend ableiten, wenn man sich innerhalb einer Katalysatorenklasse bewegt, was die Grenzen des in Kapitel **2** beschriebenen Reaktivitätstests aufzeigt. Aufgrund der Annahmen kann aber auch keine generelle Korrelation zwischen allen nucleophilen Katalysatoren und der Halbwertszeit erwartet werden. In dem angewandten Reaktivitätstest wird nur ein thermodynamischer Parameter berücksichtigt. Ferner wird die Annahme gemacht, dass eine höhere Konzentration und damit eine größere Stabilisierung des Acylpyridinium-Ions in dem vorgelagerten Gleichgewicht der Acetylierungsreaktion in einer Steigerung der Reaktionsgeschwindigkeit äußern. Auf Basis dieser Ergebnisse kann festgestellt werden, dass diese Annahme richtig ist. Eine bessere Korrelation zwischen den Halbwertszeiten ist nur dann möglich, wenn zusätzlich kinetische Größen wie z. B. die Aktivierungsenergie für den geschwindigkeitsbestimmenden Schritt berücksichtigt werden.

5.8 Rationalisierungsversuche der hohen katalytischen Aktivität der 3,4-Diaminopyridin-Derivate

Um besser zu verstehen, warum die 3,4-Diaminopyridine eine höhere katalytische Aktivität besitzen, wurde der nucleophile Reaktionspfad für Verbindung 76 berechnet (Abb. 40).

Abb. 40: Gasphasenenthalpie-Profil des nucleophilen Reaktionspfades vom Intermediat 8a und 168 über den Übergangszustand des geschwindigkeitsbestimmenden Schritts 9 und 169 zum Produktkomplex 10 bzw. 170. Werte sind in kJ mol⁻¹ angegeben. Die Rechnungen erfolgten auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau. Der DMAP-katalysierte nucleophile Reaktionspfad ist gleich dem in Abb. 1 (Seite 5) dargestellten.

Die Rechnungen wurden auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau durchgeführt (**Abb. 40**). Startpunkt sind die isolierten Edukte Acetanhydrid und *tert*-Butanol sowie Katalysator DMAP (1) oder Pyridopyrazin **76** in der Gasphase. Der Übergangszustand zum Intermediat **8** bzw. **168** wurde mitberechnet, ist aber in **Abb. 40** vernachlässigt. Die Übergangszustände **9** bzw. **169** liegen energetisch am höchsten, weshalb eine Betrachtung des Übergangszustandes zum Intermediat (**8a** und **168**) irrelevant ist. Der obere Reaktionspfad ist gleich dem nucleophilen Reaktionspfad der in **Abb. 1** (**Seite 5**) dargestellt ist. Die Energiewerte sind in kJ mol⁻¹ angegeben. Die Nummern **8**, **9** und **10** beziehen sich auf Strukturen des DMAP katalysierten Reaktionspfades. Ein Vergleich der beiden nucleophilen Reaktionspfade zeigt, dass das Intermediat **168** relativ zu **9** um 5.9 kJ mol⁻¹ und der Übergangszustand **169** relativ zu **9** um 8.5 kJ mol⁻¹ stabilisiert ist. Ein Vergleich der Bindungslänge vom *tert*-Butylalkohol zum Acetat sowie von der Acetylgruppe zum *tert*-Butylalkohol zeigt, dass der Acyltransfer im Übergangszustand **169** weiter fortgeschritten ist als im Übergangszustand **9**. In **9** ist dafür der H-Transfer weiter fortgeschritten (**Abb. 41**).

Abb. 41: Übergangszustand 9 für DMAP (1, links) und 169 für Katalysator 76 (rechts).

Interessant ist auch die Wasserstoffbrückenbindung zwischen Pyridinring und Acetatmolekül (**Abb. 41** und **42**). Sowohl im Übergangszustand **169** mit einer Bindungslänge von 2.095 Å als auch Übergangszustand **9** mit einer Bindungslänge von 1.962 Å ist die Wasserstoffbrückenbindung zu finden.

Abb. 42: Übergangszustand 169. Das Acetatmolekül bildet eine Wasserstoffbrückenbindung mit einer Bindungslänge von 2.095 Å zum Pyridopyrazin 76 aus.

Die um 0.13 Å kürzere Wasserstoffbrücke vom Acetatmolekül zum DMAP (1) im Übergangszustand 169 wird wahrscheinlich durch die höhere positive Ladung im DMAP-Molekül verursacht. Die Wasserstoffbrückenbindung ist nur in den energetisch günstigsten Übergangszuständen 9 und 169 zu finden und nicht in energetisch höher liegenden Konformeren.

Zusammenfassend lässt sich feststellen, dass auf Basis der DFT-Rechnungen ein energetischer Unterschied zwischen dem Intermediat **168** und **8a** und geschwindigkeitsbestimmenden Schritten **9** und **169** im Gasphasenenthalpieprofil des nucleophilen Reaktionspfades gefunden wurde. Dieses ist im Einklang mit dem Befund, dass Katalysator **76** die Acetylierung von Alkohol **22** effizienter katalysiert als DMAP (1). Ferner zeigt dieses Ergebnis auch, dass sich eine größere Stabilisierung des Intermediats in einer energetischen Absenkung des nachfolgenden Übergangszustandes äußert. Es bestätigt sich also, dass die Berechnung der rel. Acetylierungsenthalpie ΔH_{rxn} (298) (**Gl. 8, Seite 17**) zur Vorhersage von katalytisch effizienteren Pyridin-Derivaten verwendet werden kann. Eine Ursache für die höhere katalytische Effizienz von **76** lässt sich leider nicht auf relevante strukturelle Unterschiede zwischen den Übergangszuständen **9** und **169** zurückführen.

Aus der Messung der Halbwertszeiten lässt sich der Unterschied der Aktivierungsenergien mit Hilfe der Arrhenius-Gleichung näherungsweise berechnen. Die Arrhenius-Gleichung wird hier unter der Annahme angewandt, dass der wesentliche Beitrag zur Geschwindigkeitsänderung bei Variation des Katalysators von DMAP (1) zu 76 die direkte Folge der Änderung der Aktivierungsenergie ist und der Quotient der A-Parameter von DMAP (1) und Pyridopyrazin **76** ungefähr eins ist. Die entropischen Beiträge der beiden Katalysatoren dürften aufgrund des kleinen Konformationsraums der beiden Katalysatoren ähnlich sein, was die Annahme, dass der Quotient der A-Parameter ungefähr eins ist, stützt. Ferner wird hier die Annahme gemacht, dass sich aus den näherungsweise erhaltenen Halbwertszeiten Geschwindigkeitskonstanten über die Gleichung **26** berechnen lassen.

$$k = \frac{\ln 2}{\tau_{1/2}}$$
(26)
$$k_{DMAP} = A_{DMAP} \exp\left(-\frac{E_a}{RT}\right)$$
(27)

Für Pyridopyrazin (76) erhält man bei Anwendung der Arrhenius-Gleichung:

$$k_{93} = A_{93} \exp\left(-\frac{E_a}{RT}\right)$$
(28)

Division der Gleichungen ergibt unter Verwendung der gemessenen Halbwertszeiten für DMAP (1, $\tau_{1/2}$ = 166 min) und Pyridopyrazin (76, $\tau_{1/2}$ = 56 min):

$$\frac{k_{93}}{k_{DMAP}} = 2.964 = \exp\left(-\frac{\Delta E_a}{RT}\right)$$
(29)
$$1.08 = -\frac{\Delta E_a}{RT}$$
(30)
$$\Delta E_a = -2.69 \text{ kJ mol}^{-1}$$

Aus den DFT-Rechnungen ergibt sich aber ein Aktivierungsenergieunterschied von $\Delta E_a =$ -8.5 kJ mol⁻¹. Da die hier verwendeten Halbwertszeiten nur näherungsweise den exakten Halbwertszeiten entsprechen (vgl. **Abschnitt 5.2**), kann eine genauere Bestimmung der Halbwertszeiten durch Anwendung von **Gl. 23** nützlich sein um eine besseren Übereinstimmung der ΔE_a -Werte zwischen Theorie und Experiment zu liefern. Zur Ableitung von **Gl. 23** sind aber auch Annahmen gemacht worden, die auch zu Abweichungen im ΔE_a -Wert zwischen Theorie und Experiment. Da aber nicht nur Annahmen und Vereinfachungen auf der Seite der Experimente gemacht worden sind, kann auch eine Annäherung der ΔE_a -Wert zwischen Theorie und Experiment durch akkuratere theoretische Methoden erzielt werden. Sicherlich ist eine reine enthalpische Betrachtung in der Gasphase, wie sie in **Abb. 40** gezeigt wird, ungenügend um die Realität zu beschreiben. Akkurater ist es, die freie Energie zu betrachten und auch Lösungsmitteleffekte mit zu berücksichtigen.

5.9 Katalytische Effizienz der Triarylamine und des Imidazopyridins 52

Die synthetisierten Triarylamine (**Abb. 43**) zeigten schon bei der Synthese eine leichte Oxidierbarkeit. Dies wurde durch eine Zweitionisierung im Massenspektrum der betreffenden Verbindungen bestätigt. In der kinetischen Vermessung zeigten alle Verbindungen, dass sie leicht oxidiert werden und die Reaktion nur bis zu einem kleinen Esterumsatz katalysieren. Die NMR-Testraktion wurde im Fall der Triarylamine in C_6D_6 durchgeführt, da die Verbindungen eine zu geringe Löslichkeit in CDCl₃ aufwiesen. Die Verbindung **75** wurde im AK Straub dargestellt und zeigte schon bei der Aufreinigung durch Destillation nach kurzer Zeit eine braune Verfärbung. Dies deutet auf eine starke Oxidationsempfindlichkeit gegenüber Luftsauerstoff hin. In der Tat zeigte die Verbindung in der kinetischen Vermessung nur einen Esterumsatz von 37% in CDCl₃. Wahrscheinlich wird der Katalysator durch *N*-Oxid- Bildung inaktiv.

Abb. 43: Vermessene Diarylaminopyridine und Imidazopyridin 52.

Katalysator	Esterumsatz %		
52	37 (276 min)		
75	16 (255 min)		
158	47 (722 min)		
155	50 (800 min)		

Tabelle 15: Erreichter Umsatz der Triarylaminopyridine. Werte in Klammern

 geben die Reaktionszeit in Minuten wieder nachdem die Reaktion stoppte.

5.10 Katalytische Effizienz des Fu-Katalysators 171

Von Strem-Chemicals wurde der von *Fu et al.*^[71] dargestellte und publizierte planar chirale Katalysator **171** gekauft und vermessen (**Abb. 44**). Bei der Acetylierung von Alkohol **2** zeigte der Katalysator **171** einen Esterumsatz von 68 % bevor er inaktiv wurde. Allerdings wurden die 68 % Esterumsatz schon bei Aufnahme des ersten Datenpunktes während der Kinetik beobachtet. Dies bedeutet, dass der Katalysator eine 1. Halbwertszeit von weniger als 3 min haben muss, wenn man berücksichtigt, dass nach Pipettieren der entsprechenden Maßlösungen in das NMR-Röhrchen und der Zeit, bis das erste ¹H-NMR aufgenommen ist, ungefähr 4 min vergehen.

Abb. 44: Von *Fu et al.*^[71] synthetisierter planar chiraler Katalysator 171.

Eine ESI-MS-Messung der Reaktionslösung zeigt, dass der Ferrocenligand vom Ferrocen zum Ferrocinium-Kation oxidiert wurde (Abb. 45). Im Spektrum befinden sich hochaufgelöste Massen, die mit der Struktur von 172 übereinstimmen.

Abb. 45: Detektierte Masse im ESI-MS-Spektrum nach Ende der Reaktionskinetik, die wahrscheinlich zur Struktur 172 gehört.

^[71] G. C. Fu, Pure Appl. Chem. 2001, 73, 347.

5.11 Katalytische Effizienz des Iminophosphorans 99

Nach einer Vorschrift von *Wang et al.*^[72] wurde das Iminophosphoran **90** in einer Ausbeute von 50% dargestellt (**Schema 49**). Das synthetisierte Iminophosphoran wurde in der katalytischen Testreaktion mit Alkohol **21** vermessen. Es konnte kein Umsatz an Ester festgestellt werden. Stattdessen wurde im ³¹P-NMR bei Zugabe von Acetanhydrid und NEt₃ ein Signal für Triphenylphosphinoxid ($\delta = 28.4$ ppm) detektiert. Der eigentliche Katalysatorenpeak verschiebt sich um 5 ppm von $\delta = 5$ ppm zu $\delta = 10$ ppm. Die gesamte Messung wurde mit Triphenylphosphin als externem Standard ($\delta = -6$ ppm) durchgeführt. In der Arbeit von *Wang et al.* wird Iminophosphoran **99** als Aza-Wittig-Reagenz eingesetzt. Dabei wird ein Isocyanat mit **99** gekuppelt (**Schema 49**). Iminophosphoran **99** weist also eine grundlegend verschiedene Reaktivität auf, als auf Pyridin basierende nucleophile Katalysatoren.

Schema 49: Darstellung von Iminophosphoran nach Wang et al.^[72] Einsatz von 99 als Aza-Wittig-Reagenz.

Die Synthese des Iminophosphorans **99** über eine Staudinger-Reaktion und der Reaktivitätstest mit Alkohol **21** wurden durch *Kundu*^[36] wiederholt. Es ergaben sich keine neuen Ergebnisse.

^[72] Q. Zhang, C. Shi, H.-R. Zhang, K. K. Wang, J. Org. Chem. 2000, 65, 7977.

6. Domino-Katalyse in der direkten Umwandlung von Carbonsäuren zum Ester

6.1 Einleitung

Eine direkte Umwandlung von Carbonsäuren zu Estern ist durch *in-situ* Aktivierung der Carbonsäure mit Carbodiimiden möglich. Große Vorteile besitzt diese milde Veresterungsmethode gegenüber herkömmlichen Methoden, wenn in dem Substrat viele verschiedene Funktionalitäten vorhanden sind, die nicht inert gegenüber den Reaktionsbedingungen sind. Ein Nachteil dieser Methode ist, dass im Laufe der Reaktion Harnstoff-Nebenprodukte entstehen, die abgetrennt werden müssen.^[73] Deswegen finden Dialkylcarbonate als Aktivierungsreagenzien ebenfalls Verwendung.^[74] Die dabei anfallenden Nebenprodukte sind CO₂ und der entsprechende Alkylalkohol R₃-OH (**Schema 50**).

Schema 50: Umwandlung von Carbonsäure zum Ester durch Dialkylcarbonate.

Elegante Arbeiten von *Gooßen et al.* ^[74a,b] haben gezeigt, dass dieser Ansatz breit anwendbar ist, solange der "Substrat"-Alkohol (R₂-OH) signifikant reaktiver ist als der "Reagenz"-Alkohol (R₃-OH). Diese Bedingung kann durch die Verwendung von Pyrokohlensäuredi-*tert*butylester (Boc₂O, **173**) leicht erfüllt werden, zudem erhöht der Einsatz von Lewis-Säuren oder elektronenreichen Pyridinen wie DMAP (**1**) die Reaktionsgeschwindigkeit. Motiviert durch die neu entwickelten Acylierungskatalysatoren auf DMAP-Basis soll die Anwendbarkeit der Gooßen-Veresterung neu untersucht werden und ihre Anwendbarkeit auf die Synthese von sterisch anspruchsvollen Estern studiert werden.

^[73] a) B. Neises, W. Steglich, *Angew. Chem.* 1978, 7, 556. b) H. Wiener, C. Gilon, *J. Mol. Cat.* 1986, 37, 45.
^[74] a) L. J. Gooßen, A. Döhring, *Adv. Synth. Catal.* 2003, 345, 943. b) L. J. Gooßen, A. Döhring, *Synlett* 2004, 2, 263. c) K. Takeda, A. Akiyama, H. Nakamura, S. Takizawa, Y. Mizuno, H. Takayanagi, Y. Harigaya, *Synthesis* 1994, 1063.

6.2 Reaktionsmechanismus

Der bisher vermutete Reaktionsmechanismus geht davon aus, dass in einem ersten Schritt Boc₂O (**173**) mit der Carbonsäure **174** zu einem gemischten Anhydrid **175** reagiert, welches anschließend in Gegenwart eines nucleophilen Katalysators CO₂ und das "Reagenz"-Alkoholat bildet. Dieses greift das Acylpyridinium-Ion an und *tert*-Butylester **176** wird gebildet (**Schema 51**).^[74a,b]

Schema 51: Vermuteter Reaktionsmechanismus zur Bildung des tert-Butylesters 176.

Die Annahme, dass während der Reaktion gemischte Anhydride auftreten, führt aufgrund des linearen Zusammenhangs zwischen der Anhydridkonzentration und der Reaktionsgeschwindigkeit zu der Überlegung unter Hochkonzentrationsbedingungen zu arbeiten.^[75]

Um den zugrundeliegenden Reaktionsmechanismus zu untersuchen wurde die Modellreaktion der Veresterung von Isobuttersäure (177) in Gegenwart von Boc₂O (173, 1.3 Äq.), *tert*-Butanol (178, 1.1 Äq.), 1,4-Dioxan (179, 1 Äq.) und DMAP (1, 0.05 Äq.) ¹H-NMR-spektroskopisch verfolgt (Schema 52). Eine um 0.3 Äquivalente größere Menge relativ zu 177 von 173 wurde gewählt um vollständigen Umsatz zu gewährleisten. 1,4-Dioxan (179) dient als interner Standard.

Schema 52: Veresterung von Isobuttersäure als Modellreaktion unter Hochkonzentrationsbedingungen. 1,4-Dioxan (179) dient als interner Standard zur Umsatzberechnung.

^[75] C. B. Fischer, S. Xu, H. Zipse, Chem. Eur. J. 2006, 12, 5779.

Während der Reaktion konnte die Abnahme der Isobuttersäure- (177), die Zu- und Abnahme der gemischten bzw. symmetrischen Anhydride (181, 166) und die Zunahme des Esters 180 verfolgt werden. Der Umsatz wurde nach Gleichung (31) berechnet.

$$Umsatz = \left(\frac{I_{Ester}/9}{I_{Dioxan}/8}\right) \cdot 100\%$$
(31)

Dabei bezeichnet I_{Ester} die Integralfläche der *tert*-Butylgruppe des Esters **180** und I_{Dioxan} die Integralfläche des Dioxansignals ($\delta = 3.58$ ppm). Die Zuordnung der chemischen Verschiebungen δ der einzelnen Signale ist nachfolgend in dem ¹H-NMR-Spektrum der in **Schema 52** beschriebenen Reaktion nach 2 h und 33 min Reaktionszeit in **Abb. 46** wiedergegeben. Die chemischen Verschiebungen der isolierten reinen Verbindungen befinden sich in **Tab. 16**. **Abb. 46:** ¹H-NMR-Spektrum (400 MHz, CDCl₃) der Veresterung von Isobuttersäure (177) mit *tert*-Butanol

(178) nach 2 h und 33 min Reaktionszeit. Die Pfeile kennzeichnen die den Signalen zugeordneten Protonen.

Verbindung	<i>δ t</i> -Bu (s, 9H) / ppm	<i>δ i-</i> Pr (d, 6H) / ppm	<i>δ i-</i> Pr (sep; 1H) / ppm
180	1.42	1.09	2.38
178	1.26	-	-
181	1.48	1.19	2.59
173	1.49	-	-
177	-	1.20	2.58
166	-	1.22	2.66

Tabelle 16: Chemische Verschiebungen δ der reinen Edukte, der während der Reaktion detektierten Intermediate und reinen Produkte, die bei der Veresterung von Isobuttersäure (177) mit *tert*-Butanol (178) und Boc₂O (173) auftreten.

Da die chemische Verschiebung δ von Druck, Temperatur, Lösungsmittel und Konzentration abhängig ist, ergeben sich für den weiteren Reaktionsverlauf Änderungen der in **Tab. 16** angegebenen chemischen Verschiebungen der reinen Verbindungen.^[76] Isobuttersäure (177) reagiert quantitativ innerhalb von 20 min Reaktionszeit (**Abb. 47** und **48**), was durch das Verschwinden des Dublett-Signals der Isopropylgruppe bei $\delta = 1.14$ ppm im ¹H-NMR-Spektrum verfolgt werden kann. Gleichzeitig tauchen zwei neue, stark überlappende Dublett-Signale bei $\delta = 1.22$ und $\delta = 1.19$ ppm auf.

Abb. 47: ¹H-NMR-Spektroskopische (400 MHz, CDCl₃) Verfolgung der Veresterung von Isobuttersäure (1 Äq; 177) mit *tert*-Butanol (1.1 Äq; 178) in Gegenwart von Boc₂O (1.3 Äq; 173) und 1,4-Dioxan (1 Äq; 179) bei 23 °C.

^[76] a) R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.* **2001**, 73, 1795. b) T. D. Ferris, M. D. Zeidler, T. C. Farrar, *Molecular Physics*, **2000**, *98*, 737. c) D. F Ewing, *Organic Magnetic Resonance*, **1973**, *5*, 321.

Das erstere dieser Signale ist identisch mit dem Signal des Isobuttersäureanhydrids (166), während das letztere am wahrscheinlichsten dem gemischten Anhydrid (181) zugeordnet werden kann. Die Intensität dieser beiden Signale erreicht nach 20 min ein Maximum und entspricht zu diesem Zeitpunkt 96 % der Substrat-Konzentration. Erst zu diesem Zeitpunkt erscheinen erste Signale des Esters 180, erkennbar an einem Dublett bei $\delta = 1.09$ ppm. Die Reaktion ist nach 170 min bereits praktisch vollständig abgelaufen, was den Vorteil der Hochkonzentrations-Methode illustriert. Eine Auftragung des Umsatzes der intermediär auftretenden Anhydride (181, 166), der Isobuttersäure (177) sowie des Isobuttersäure-*tert*-butylester (180) mit der Zeit ergibt die in Abb. 48 dargestellten Kurven.

Abb. 48: Ab- und Zunahme der Konzentration der Edukte, Intermediate und Produkte der Veresterung von Isobuttersäure (177) mit *tert*-Butylalkohol (178) in Gegenwart von Boc₂O (173) und 5 mol% DMAP (1).^a

Die Analyse der zeitlichen Veränderung von Edukt- und Produkt-Konzentrationen durch quantitative Verfolgung der Isopropyl-Dublett- und *tert*-Butyl-Singulett-Signale zeigt weiter-

^a Details zu den verwendeten Fittfunktionen für Abb. 48 siehe experimentellen Teil.
hin, dass die intermediäre Bildung der Anhydride deutlich schneller verläuft (ca. $\tau_{1/2} = 3 \text{ min}$) als die Bildung des Ester-Produkts **180** ($\tau_{1/2} = 84 \text{ min}$). Alle oben beschriebenen Ergebnisse können unter Annahme des in **Abb. 49** gezeigten Domino-Katalyse-Mechanismus erklärt werden. ^[77]

Abb. 49: Domino-Katalyse-Mechanismus der DMAP-vermittelten Veresterung von Isobuttersäure (177).

Dieser Mechanismus basiert auf der Bildung des gemischten Anhydrids **181** durch einen ersten katalytischen Prozess, der von Katalysatoren wie DMAP getragen wird. Das gemischte Anhydrid **181** wird nachfolgend in einem zweiten, ebenfalls DMAP-katalysierten Schritt in den Ester **176** umgewandelt. Bei nur langsam verlaufender Ester-Bildung ist die Umsetzung des gemischten Anhydrids mit weiterer Säure **177** zum symmetrischen Anhydrid **166** natür-

^{[&}lt;sup>77]</sup> a) L. F. Tietze, U. Beifuss, Angew. Chem. Int. Ed. 1993, 32, 131. b) L. F. Tietze, Chem. Rev. 1996, 96, 115.
c) A. Bruggink, R. Schoevaart, T. Kieboom, Org. Proc. Res. Dev. 2003, 7, 622. c) D. E. Fogg, E. N. Dos Santos, Coord. Chem. Rev. 2004, 248, 2365. d) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C. Bazan, Chem. Rev. 2005, 105, 1001. e) C. J. Chapman, C. G. Frost, Synthesis, 2007, 1.

lich ebenfalls denkbar. Eine Nebenreaktion kann durch Reaktion von Intermediat **183** mit [']BuOH auftreten, in der sich [']Butylcarbonat (**182**) bildet. In beiden katalytischen Kreisläufen wird durch Decarboxylierung des Kohlensäure-*tert*-butylmonoester oder seines Anions ein 1 Äq. [']Butanol (**178**) gebildet. Dies liefert die Triebkraft der Reaktion und macht die Bildung der Anhydride **166** und **181** und des Produkts (**180**, im Fall von [']BuOH als R₂OH) praktisch irreversibel. Dass bei der Reaktion von Isobuttersäure (**177**) mit **1** sowohl das symmetrische als auch das gemischte Anhydrid intermediär auftritt, lässt sich durch NMR-Spektroskopie beweisen (**Abb. 50**).

Abb. 50: ¹H-NMR-Spektren der Isobuttersäurekinetik. Septett-Region ist vergrößert dargestellt. Im ersten ¹H-NMR ist das Singulett von Boc₂O (173) zusätzlich vergrößert. Es bildet sich Isobuttersäureanhydrid (166) und gemischtes Anhydrid (181).

Das ¹H-NMR kann basierend auf den Intensitätsunterschieden und der chemischen Verschiebung der Signale so interpretiert werden, dass sich zuerst das symmetrische- (**166**), anschließend das gemischte Anhydrid **181** bildet. Dies kann aber nicht 100 %ig geklärt werden, da eine Integration der Multipletts aufgrund zu starker Überlappung der auftretenden Septett-, Singulett- und Dublett-Signale für **166** und **181** nicht möglich ist.

Auffallend ist die verspätete Bildung des Esters nach ca. 20 min. Dies kann entweder durch Bildung eines stabilen Intermediats im ersten Katalysezyklus oder außerhalb des Katalysezyklus, z. B. durch Protonierung des Katalysators durch Isobuttersäure, verstanden werden.

Abb. 51: Kinetik der Veresterung von Isobuttersäure (177) mit ¹Butanol (178) in Gegenwart von Boc₂O (173) und 10 mol% Katalysator ohne Zugabe von Auxiliarbase.^[78]

^[78] P. v. d. Hoff, *Forschungspraktikum* 2006, LMU München.

Höhere absolute Geschwindigkeiten werden bei der Verwendung von 10 mol% anstatt 5 mol% Katalysator beobachtet. Die anfängliche Phase verzögerter Produktbildung wird auf diese Weise deutlich verkürzt und die Halbwertszeit für den DMAP-vermittelten Prozess ergibt sich nun zu $\tau_{1/2} = 40$ min. Die Umsatzgeschwindigkeit kann durch die Verwendung von Katalysatoren, die elektronenreicher als DMAP (1) sind, weiter gesteigert werden (**Abb. 51**) Während für das kommerziell erhältliche PPY (**33**) nur geringe Steigerungen beobachtet wird, lassen sich mit den Diaminopyridinen-Derivaten **81** und **97** deutlich größere Effekte erzielen.

Abb. 52: Kinetik der Veresterung von Isobuttersäure (177) mit ^{*t*}Butanol (178) in Gegenwart von Boc₂O (173), 5 mol% Katalysator und 2 Äq. NEt₃.

Die für DMAP (1) und den besten Katalysator 97 erzielten Halbwertszeiten liegen jedoch weniger als um den Faktor 2 auseinander. Dieser Unterschied ist deutlich geringer, als bei der

Acylierung von Alkoholen mit Anhydriden unter basischen Bedingungen beobachtet werden kann.^[79] Ob sich vergleichbare Ergebnisse auch hier durch Zugabe einer Hilfsbase erzielen lassen, wurde für den DMAP-katalysierten Fall durch Zugabe von 2 Äq. NEt₃ (rel. zur Isobuttersäure) untersucht. Im Gegensatz zur Reaktion ohne Hilfsbase (**Abb. 51**) hat die Reaktion im Fall von **97**, **33** und **1** nun keinerlei Anlaufschwierigkeiten mehr und verläuft mit $\tau_{1/2}$ = 47 min. bei 5 mol% Katalysatorladung (**Abb. 52**). Vollständiger Umsatz mit 5 mol% DMAP wird nach ca. 130 min. erreicht. Die besten Resultate werden für Katalysator **97** in Kombination mit 2 Äq. NEt₃ mit $\tau_{1/2}$ = 19 min. und vollständigem Umsatz nach weniger als 60 min. erhalten. Ein etwas größerer, präparativer Ansatz mit 10 mol% DMAP (**1**) als Katalysator verläuft mit $\tau_{1/2}$ = 21 min. Nach Isolierung und Aufreinigung durch Destillation werden 75 % Ausbeute an Isobuttersäure-*tert*-butylester (**180**) erhalten.

Für alle vier Katalysatoren ist die Produktbildung deutlich schneller als dies für einen exponentiellen Verlauf zu erwarten wäre, d. h. dass vollständiger Umsatz nach deutlich weniger als den zu erwartenden 5-6 Halbwertszeiten erreicht wird. Dies lässt sich einerseits dadurch deuten, dass keine Reaktion 1. Ordnung vorliegt, aber auch dadurch, dass z. B. der Katalysator 97 selbst in Anwesenheit von 2 Äq. Auxiliarbase noch immer teilweise protoniert vorliegt. Mit fortschreitendem Umsatz nimmt die Säure-Konzentration kontinuierlich ab, wodurch mehr und mehr Katalysator freigesetzt wird. Dass PPY (33) und DMAP (1) fast dieselbe Reaktionsgeschwindigkeit aufweisen, lässt sich wahrscheinlich durch die Tendenz zur Ausbildung stärkerer Wasserstoffbrückenbindungen durch PPY (33) erklären. Mit fortschreitender Reaktion bildet sich immer mehr ^tBuOH, wodurch die Konzentration eines Wasserstoffbrückendonors zunimmt. Mavr et al.^[80] haben die Nucleophilie von verschiedenen Pyridinen in Wasser und DCM untersucht. So wurde gefunden, dass die Nucleophilie in Wasser von PPY (33) geringer ist als die von DMAP (1). Bezogen auf die hier gefundenen Reaktionsbedingungen könnte das bedeutet, dass PPY (33) stärkere Wasserstoffbrücken-bindungen zu ^tBuOH eingeht als DMAP (1) und dadurch weniger freies katalytisch wirksames PPY (33) vorhanden ist. Die beobachtete Beschleunigung der Reaktionsgeschwindigkeit insbesondere für den Katalysator 97 ist mit dem oben vorgeschlagenen Mechanismus in Einklang. Eine Änderung des zugrundeliegenden Mechanismus zur Basenkatalyse lässt sich ausschließen, da die Hintergrundreaktion mit Triethylamin eine Halbwertszeit von 5 Tagen und 16 h besitzt. Ohne Katalysator und ohne NEt₃ beobachtet man selbst nach 16 Tagen keine Bildung des gemischten oder symmetrischen Anhydrids.

^[79] I. Held, S. Xu, H. Zipse, *Synthesis*, **2007**, 1186.

^[80] F. Brotzel, B. Kempf, T. Singer, H. Zipse, H. Mayr, Chem. Eur. J. 2007, 13, 336-345.

6.4 Anwendung des optimierten Reaktionsprotokolls

Das optimierte Protokoll für die Umsetzung von Isobuttersäure (177) mit ^{*t*}BuOH bietet sich als allgemeines Verfahren für die Umsetzung sterisch gehinderter Säuren entweder mit ^{*t*}BuOH oder mit Alkoholen an, deren sterische Hinderung geringer ausfällt als von ^{*t*}BuOH. Der synthetische Wert dieses Verfahrens wurde deshalb an Substraten mit bekanntermaßen starker sterischer Hinderung überprüft (Schema 53).

Schema 53: Synthese der *tert*-Butylester 184, 186 und 188 aus sterisch anspruchsvollen Carbonsäuren. Verwendete Katalysatoren und gemessenene Halbwertszeiten siehe Tab. 17.

Bei der Synthese des Esters **184** zeigt sich nach 2 h vollständiger Umsatz durch DC-Kontrolle. Nach Isolierung und Aufreinigung kann **184** in 93%iger Ausbeute isoliert werden (**Tab. 17**). Kontrolle des Drehwertes ergab keinen messbaren Verlust an stereochemischer Information.^[82] Die Synthese des letztgenannten Esters **184** gelingt nach der Vorschrift von *Gooßen* nur in einer Ausbeute von weniger als 5%.^[74] Die Reaktion des Z-geschützten Prolins (**185**) mit ^{*i*}BuOH (**178**) dient als Test für die Umsetzung eines stärker funktionalisierten Substrats. Der im Vergleich zu **187** eher geringe sterische Anspruch von **185** führt erwartungsgemäß bereits bei der Verwendung von PPY (**33**) zu einer sehr kurzen Halbwertszeit von $\tau_{1/2} = 11$ min. Hierbei wird Ester **186** als einziges Produkt beobachtet. Vollständiger Umsatz wird in diesem Fall nach 27 min. erreicht. Durch Verwendung des aktiveren Katalysators **97** lässt sich dieses Ziel bereits nach 5 Min erreichen. Der für das Produkt **186** gemessene Dreh-

^[82] P. Barraclough, P. Dieterich, C. A. Spray, D. W. Young, Org. Biomol. Chem. 2006, 4, 1483.

wert in Ethanol bei 27 °C stimmt mit Literaturangaben überein, was keinen messbaren Verlust an stereochemischer Integrität unter den hier gewählten Reaktionsbedingungen impliziert.^[81] *Takeda et al.* konnten den Ester **186** mit 30 mol% DMAP (**1**) in ^{*t*}BuOH (**178**) als Lösungsmittel darstellen, vollständiger Umsatz wurde nach 55 min. Reaktionszeit beobachtet.^[74] Vollständiger Umsatz ist im Fall des Esters **186** unter diesen Bedingungen bereits nach 5 min mit 5 mol% Katalysator **97** erreicht. Das hier vorgestellte Verfahren erzielt also eine Beschleunigung um einen Faktor von mehr als 10 bei gleichzeitiger Verringerung der Katalysatormenge von 0.30 auf 0.05 Äq.

Tabelle 17: Direkte	Synthese sterisc	h gehinderter	Ester durch	Boc ₂ O-vermittelte	Reaktion vo	n Säuren ı	und Al-
koholen bei 23 °C. ^a							

Säure	Alkohol	Produkt	Katalysator	NEt ₃ ^b	$ au_{1/2}$	Umsatz ^c	Ausb. ^d
			(Äq.) ^b	Äq.	[Min]	[%]	[%]
177	178	180	1 (0.1)	-	40	99	71
			1 (0.05))	-	84	88	-
			33 (0.1)	-	35	100	-
			81 (0.1)	-	30	98	-
			97 (0.1)	-	23	100	-
			140 (0.1)	-	28	100	-
			98 (0.1)	-	-	0^{f}	
			1 (0.1)	2.0	21	98	75
			1 (0.05)	2.0	47	99	-
			1 (0.025)	2.0	121	73	-
			33 (0.05)	2.0	49	100	-
			41 (0.05)	2.0	31	93	-
			97 (0.05)	2.0	19	96	-
			-	2.0	8215	69	-
183	178	184	33 (0.05)	2.0	-	- ^e	93
187	178	188	33 (0.05)	2.0	164	99	89
			97 (0.05)	2.0	99	96	-
			-	2.0	10500	58	-
185	178	186	33 (0.05)	2.0	11	100	85
			97 (0.05)	2.0	< 2.5	100	
			-	2.0	12742	51	

^a Bei Verwendung von 1.3 Äq. Boc₂O. ^b Äquivalente relativ zur Säure. ^c Umsatz durch ¹H-NMR-Spektroskopie bestimmt. ^d Isolierte Ausbeute nach Reinigung durch Säulenchromatographie. ^eAufgrund von multipler Signalüberlappung sowohl in CDCl₃, CD₂Cl₂ und [D₆]-Benzol konnte der Umsatz der Reaktion im ¹H-NMR nicht verfolgt werden. ^fNach 24 h konnte keine Esterbildung festgestellt werden.

Die Veresterung von Cyclohexancarbonsäure (187) mit ^{*i*}BuOH (178) ergibt Ester 188 als einziges detektierbares Produkt (Tab. 17). Die Halbwertszeit der Reaktion mit 0.05 Äq. PPY (33) als Katalysator und 2 Äq. NEt₃ als Hilfsbase ist etwa dreimal größer als die der

^[81] a) P. Chevallet, P. Garrouste, B. Malawska, J. Martinez, *Tetrahedron Lett.* **1993**, *34*, 7409. b) G. W. Anderson, F. M. Callahan, *J. Am. Chem. Soc.* **1960**, *82*, 3359.

Umsetzung der Säure 177 unter vergleichbaren Bedingungen. Verwendung des aktiveren Katalysators 97 beschleunigt die Reaktion um den Faktor 1.6 gegenüber PPY (**33**). Die Hintergrundreaktion nur mit NEt₃ ist um den Faktor 106 langsamer als bei der Verwendung von Katalysator 97. Unter Verwendung des traditionellen DMAP/DCC-Verfahrens ist die Umsetzung von 187 zu ihren entsprechenden ^{*t*}Butylestern nicht erfolgreich und die Reaktion bleibt auf der Stufe der Anhydride stehen.^[72]

6.5 Synthese von Benzylestern

Nachdem die Synthese von 'Butylestern näher untersucht wurde, wurde die Aufmerksamkeit auf die Synthese von Benzylestern gelegt (**Schema 54**).

Schema 54: Synthese von Benzylestern. Als Nebenprodukt wurde 195 gewonnen.

Tabelle 18: Direkte Synthese von Benzylestern durch Boc₂O-vermittelte Reaktion von Säuren und Alkoholen bei 23 °C.^a

Säure	Alkohol	Produkt	Katalysator ^a	NEt ₃ ^b	$ au_{1/2}$	Umsatz ^c	Ausb. ^d
			(Äq.)	Äq.	[Min]	[%]	[%]
183	193	189	1 (0.05)	2	-	-	-
			40 (0.05)	2	-	-	95
190	193	191	1 (0.05)	2	~ 2	66	-
			40 (0.05)	2	108	74	70
			-	2	425	66	-
192	193	194	1 (0.05)	2	~ 1	52	-
			40 (0.05)	2	-	-	84

^a Bei Verwendung von 1.3 Äq. Boc₂O. ^b Äquivalente relativ zur Säure. ^c Maximaler Umsatz an Ester durch ¹H-NMR-Spektroskopie ermittelt. ^d Isolierte Ausbeute nach Reinigung durch Säulenchromatographie.

Während die Ester 191 und 194 nach der von Gooßen et al.^[74] entwickelten Methode nicht darstellbar sind, dient das Beispiel 183 zur Überprüfung, ob BOC-geschütztes L-Prolin nach unserem Verfahren in den Benzylester überführt werden kann. In allen drei Fällen bildet sich mit DMAP (1) als Katalysator BOC-geschützter Benzylalkohol (195) als Hauptprodukt. Da dieser mit der Säure nicht weiterreagiert, reagiert der Überschuss Boc₂O (173) mit den Carbonsäure 183, 190 und 192 zum tert-Butylester ab. Dieses Ergebnis führte zu der Überlegung, dass die Reaktion zwischen Boc₂O (173) und dem Alkohol offensichtlich viel schneller sein muss als die Bildung des gemischen Anhydrids. In der Tat reagiert 193 innerhalb 5 min bei 0 °C in Gegenwart von 5 mol% DMAP (1) unter diesen Reaktionsbedingungen vollständig zum BOC-geschützten Benzylalkohol (195). Aber eine Reaktion von 177 zum tert-Butylester 180 bei 0 °C, unter den in Schema 52 (Seite 95) vorgestellten Reaktionsbedingungen, läuft nicht ab. Die Veresterung von 177 zu 180 findet erst bei Raumtemperatur statt. Dies kann übertragen auf die Bildung von Benzylestern so interpretiert werden, dass die DMAP-katalysierte Reaktion von Benzylalkohol 193 zum BOC-geschützten Derivat schneller abläuft als die Veresterung der Carbonsäuren 183, 190 und 192 unter den in Schema 54 angegebenen Bedingungen. Zusätzlich zeigte die Messung der Halbwertszeit der Hintergrundreaktion von o-Fluorbenzoesäure (190), dass der Umsatz an Benzylalkohol (193) zum BOC-geschützten Benzylalkohol (195) geringer ist, als bei der DMAP-katalysierten Reaktion von 190 zum Ester 191. Mit der Hypothese, dass die Bildung des BOC-geschützten Benzylalkohols (195) in Gegenwart von 5 mol% Pyridin (40) langsamer abläuft, als die Bildung der Benzylester 189, 191 und 194 wurde die Boc₂O-vermittelte Veresterung mit 5 mol% Pyridin (40) ausprobiert. In Gegenwart von 5 mol% Pyridin (40) als Katalysator führt die Reaktion zu den gewünschten Benzylestern 189, 191 und 194. Pyridin (40) inhibiert die Bildung des BOC-geschützten Benzylalkohols (195) im Fall von 192 offensichtlich so stark, dass ausschließlich **194** und überhaupt kein BOC-geschützter Benzylalkohol (**195**) isoliert werden konnte. Im Fall der aromatischen Carbonsäure 190 ist unter diesen Reaktionsbedindungen in Gegenwart von 5 mol% DMAP (1) ein Umsatz zum Ester 191 von 66% zu erreichen, während mit 5 mol% Pyridin ein Umsatz zum Ester 191 von 74 % erreicht wird. In einem präparativen Ansatz mit Pyridin (40) als Katalysator ließ sich der Ester in einer Ausbeute von 70 % isolieren. Als Nebenprodukte treten der BOC-geschützte Benzylalkohol (195) und der ^tButylester auf (Ausbeute an ^{*t*}Butylester wurde nur für Säure **190** bestimmt). Die Hintergrundreaktion ist mit einer Halbwertzeit von 425 min um den Faktor 3.9 langsamer als die pyridinkatalysierte Reaktion. Ein ähnliches Verhalten wie 190 zeigt *m*-Nitrobenzoesäure (192). Der Ester 194 lässt sich aber in einer besseren Ausbeute von 84 % isolieren. Die Reaktion von BOC-L-Prolin (183) führt unter den hier angewandten Reaktionbedingungen zum Ester **189** als einzig detektierbares Reaktionsprodukt in einer Ausbeute von 95 % nach Filtration durch Kieselgel. Der nach Aufreinigung am isolierten Ester **189** messbare Drehwert von $\alpha_D^{25} = -82.4^\circ$ ist in sehr guter Übereinstimmung mit der Literatur.^[83]

6.6 Grenzen des Verfahrens

An seine Grenzen stößt das Verfahren bei der versuchten Synthese von Adamantancarbonsäure-*tert*-butylester (**198**). In einer Reaktionzeit von 996 min bildet sich das Anhydrid **197** und ^{*t*}Butylcarbonat (**182**, **Schema 55**).

Schema 55: Versuchte Synthese des Esters 198. Als Produkte wurden lediglich Anhydrid 197 und ^{*t*}Butylcarbonat (182) gewonnen.

Selbst unter drastischen Bedingungen mit Katalysator **97** bei 60 °C reagiert das sich bildende Anhydrid **197** nicht mit ^{*t*}BuOH (**Tab. 19**).

Produkt	Katalysator	NEt ₃	Temp	Reaktionszeit	
	(Äq.) ^a	Äq. ^a	/°C		
197, 182	33 (0.05)	2	RT	12 h	
	33 (0.05)	2	60	24 h	
	97 (0.05)	2	60	24 h	
	97 (0.2)	2	60	48 h	

^a Bei Verwendung von 1.3 Äq. Boc₂O.

 Tab. 19: Reaktion vom Adamantancarbonsäure mit 'BuOH. Als Produkte wurden lediglich das Anhydrid 197

 und *tert*-Butylcarbonat 182 gewonnen.

^[83] A. M. M. Marquet, M. A. Gaudry, S. Boru, FR 2585354 A1, 1987.

Das sich bildende gemischte Anhydrid ist offensichtlich sterisch so gehindert, dass ein Angriff von ^{*t*}BuOH (178) an das entsprechende Acylpyridinium-Ion 199 (vgl. Domino-Katalyse-Mechanismus Abb. 49) nicht stattfindet. Stattdessen greift die Säure (196) oder ihr Anion das Acylpyridinium-Ion 199 an (Schema 56).

Schema 56: Bildung von Adamantancarbonsäureanhydrid 197.

Da nach vollem Umsatz aller Säure immer noch Boc₂O (**173**) und ^{*t*}BuOH (**178**) vorhanden sind werden diese zu ^{*t*}Butylcarbonat (**182**) umgewandelt. In der Literatur finden sich keine Beispiele zur direkten Synthese des Esters **198**.

6.7 Schlussfolgerung

Durch detailierte Analyse des Reaktionsmechanismus ist es gelungen eine optimierte Version der *Gooßen*-Veresterungsreaktion zu entwickeln. Die Verwendung neuer Katalysatoren, einer Auxiliarbase und Hochkonzentrationsbedingungen erlaubt eine Reduktion der Reaktionszeiten von Stunden oder Tagen zu Minuten bei Raumtemperatur. Die direkte Synthese sterisch gehinderter Ester kann auf diese Weise vereinfacht werden. Während für die Synthese sterisch gehinderter Ester die Verwendung elektronenreicher Pyridine von Vorteil ist, muss zur Synthese von Benzylestern auf Pyridin zurückgegriffen werden.

7. Zusammenfassung

Im Rahmen dieser Arbeit ist es gelungen, den Mechanismus der nucleophilen Katalyse durch elektronenreiche Pyridine zu erhellen. Insbesondere wurde geklärt, welche Base den Alkohol im geschwindigkeitsbestimmenden Schritt deprotoniert.

Durch einen theoretischen Test ist es gelungen, schnell und effizient eine größere Zahl von potentiell katalytisch hochreaktiven Pyridin-Derivaten vorherzusagen. Der theoretische Test beruht dabei auf einer isodesmischen Reaktionsgleichung, mit der rel. Acetylierungsenthalpien erhalten werden (Schema 57).

Schema 57: Isodesmische Acyltransferreaktion.

Als katalytisch hoch reaktiv lassen sich die 3,4-Diaminopyridin-Derivate, TCAP-Derivate, (4-Pyridyl)guanidine und Triarylaminopyridine vorhersagen (**Abb. 53**).

Abb. 53: Als katalytisch hoch reaktiv vorhergesagte Pyridinderivate.

Während die Synthese der 3,4-Diaminopyridine, (4-Pyridyl)guanidine und Triarylaminopyridine gelingt, erwiesen sich synthetische Bemühungen zur Darstellung von TCAP-Derivaten als wenig fruchtbar. Katalysator 97 kann in einer Gesamtausbeute von 45 % über alle Schritte synthetisiert werden (Schema 58).

Schema 58: Synthese des Katalysators 97.

Eine Messung der Halbwertszeiten zeigt, dass die einfacher als TCAP (41) zu synthetisierenden 3,4-Diaminopyridin-Derivate (97, 81 und 76) von hoher katalytischer Aktivität sind. Insbesondere ist 97 genauso schnell in der Acylierung von Alkohol 21 wie TCAP (41) (Tab. 20).

Tab. 20: NMR-Testreaktion in CDCl₃ bei 23 °C. Katalysator 97 und 41 besitzen ähnliche katalytische Aktivität.

Die kinetische Vermessung, als auch die Synthese von elektronenreichen Pyridinen zeigt, das diese oxidationsanfällig sind und entweder in CDCl₃ während der kinetischen Vermessung oxidiert werden oder im Fall der Triarylaminopyridine sofort nach der Isolierung.

Eine detaillierte Studie des Reaktionsmechanismus der *Gooßen*-Veresterung hat eine signifikante Verbesserung der Reaktionsbedingungen zur Folge. Es gelingt unter Hochkonzentrationsbedingungen, drei sterisch gehinderte Ester darzustellen, die direkt nur schwer oder gar nicht darstellbar sind. Insbesondere gelingt die Synthese von L-Prolin-*tert*-butylester ohne Verlust an stereochemischer Information. Die Synthese der Benzylester zeigt, dass auf das wenig nucleophile Pyridin zurückgegriffen werden muss, um die Benzylester darzustellen, da sonst nur BOC-geschützter-Alkohol isoliert wird (**Schema 59**).

Schema 59: Synthese von tert-Butyl- und Benzylestern unter Hochkonzentrationsbedingungen.

Abschließend lassen sich die Eingangs gestellten Fragen beantworten. Es wurde gezeigt, dass man reaktivere DMAP-Derivate vorhersagen kann. Zusätzlich muss aber auch festgestellt werden, dass viele der vorhergesagten Derivate oxidationsempfindlich sind. Es konnte auch gezeigt werden, dass der Einsatz von reaktiveren nucleophilen Katalysatoren wie 97 bei sterisch anspruchsvolleren Alkoholen und Carbonsäuren von Vorteil ist. Die Zeitersparnis ist bis zu siebenmal so hoch im Fall von Katalysator 97 und Alkohol 21.

8. Experimenteller Teil

8.1 Allgemeine Arbeitstechniken

Alle Reaktionen, die unter Feuchtigkeitsausschluss durchgeführt wurden, wurden unter Stickstoffatmosphäre, in trockenen Lösungsmitteln und in Reaktionsapparaturen durchgeführt, die im Trockenschrank und mit dem Heißluftföhn getrocknet worden sind.

Im Falle der elektronenreichen Pyridin-Derivate **81**, **76**, **140**, **97**, **131**, **88**, **95**, **98**, **142** und **41** wurde das Lösungsmittel nach Flashchromatographie durch Einleiten eines schwachen Stickstoffstromes in den Rotationsverdampfer, abdestilliert. (Die Reihefolge der Nummern, bezieht sich auf die Reihenfolge, des erscheinens, der den Nummern zugeordneten Strukturen in diesem Abschnitt.)

8.1.1 Chromatographie

Dünnschichtchromatographie wurde, auf mit Fluoreszenzfarbstoff markierten DC-Platten der Firma Merck KGaA (Silicagel 60 F₂₅₄, Schichtdicke 0.2 mm) und Fluka (basisch Aluminiumoxid F₂₅₄, Brockman-Aktivität 1, pH 9.5, Schichtdicke 0.2 mm) durchgeführt. Flash-Chromatographie wurde mit Merck KGaA Silicagel 60 (Korngrösse 0.040-0.063 mm) und Fluka basisches Aluminiumoxid (basisch Aluminiumoxid F₂₅₄, Brockman-Aktivität 1, pH 9.5, Korngrösse 0.05-0.15 mm) bei einem Druck von 1.5 bar für Silicagel und 0.5 bar für basisches Aluminiumoxid durchgeführt.

8.1.2 Trocknen von Lösungsmitteln und Reagenzien

THF und Toluol wurden unter Stickstoffatmosphäre über Natriumhydrid destilliert. MTBE, Pyridin, Triethylamin und CDCl₃ wurden unter Stickstoffatmosphäre über Calciumhydrid destilliert. Acetanhydrid und Isobuttersäureanhydrid wurden unter vermindertem Druck über P_4O_{10} auf trockenes K_2CO_3 destilliert, filtriert und unter vermindertem Druck fraktioniert. Beide Anhydride wurden über 4 Å Molsieb unter Stickstoffatmosphäre aufbewahrt. Isobuttersäure wurde unter Stickstoffatmosphäre über P_4O_{10} destilliert und in einem Schlenk-Kolben über 4 Å Molsieb aufbewahrt. Dichlormethan wurde 24 h über konz. H_2SO_4 gerührt mit gesättigter wässriger NaHCO₃-Lösung gewaschen, über CaCl₂ vorgetrocknet und unter Stickstoffatmosphäre über Calciumhydrid destilliert. Ethanol, Dichlormethan, Ethylacetat und Methanol wurden unter vermindertem Druck abdestilliert. *n*-BuLi wurde mit Diphenylessigsäure titriert und die Molarität bestimmt. Alle anderen Reagenzien, wenn nicht anders im Text erwähnt, wurden mit der höchst möglichen Qualität ohne weitere Aufreinigung verwendet.

8.1.3 Analytische Methoden

¹H- und ¹³C-NMR Spektren wurden mit einem Varian Mercury 200, Varian 300, Varian INOVA 400 und Varian 600 Gerät aufgenommen. NOE-Spektren wurden in CDCl₃ bei 27 °C aufgenommen. Chemische Verschiebungen wurden in ppm relativ zum Lösungsmittelpeak angegeben. Folgende Abkürzungen wurden verwendet um die Multiplizitäten der Signal im ¹H-NMR-Spektrum zu charakterisieren: s = Singulett, d = Dublett, t = Triplett, q = Quartett, quin = Quintett, sex = Sextett, sep = Septett, m = Multiplett, b = broad und Kombinationen der verwendeten Abkürzungen. Alle ¹H und ¹³C Signale wurden mit COSY, NOESY, HSQC, HMBC und DEPT-Experimenten zugeordnet.

8.1.4 Infrarotspektroskopie

IR-Spektren wurden mit KBr-Presslingen als Probenmedium mit einem Perkin-Elmer 1420 Infrarot Spektrometer und einem Perkin-Elmer FT-IR Spectrum BX Spektrometer unter Verwendung der ATR-Technik aufgenommen. Alle Signale sind als vs = sehr intensiv, s = intensiv, m = medium und w = schwach aufgeführt.

8.1.5 Massenspektroskopie

Massenspektren sind mit einem Finnigan MAT 95 unter Verwendung von Elektronenstoss-Ionisation (EI, 70 eV) oder chemische Ionisation (CI, Isobutan) als Ionisationsquelle aufgenommen. ESI-MS Spektren wurden mit einem Thermo Finnigan LTQ FT Instrument aufgenommen. Gaschromatogramme wurden mit einem Varian 3400 GC mit einer 25 m CS-Supreme-5 Kapillarsäule und einem Finnigan MAT 95 Massenspektrometer als Detektor aufgezeichnet. Massenspektren, die durch direkten Einlass aufgezeichnet wurden, wurden an einem Finnigan MAT 95-Spektrometer aufgezeichnet. Die Substanzen wurden dabei an einem Platinfaden verdampft (20 °C - 1600 °C; 120 °C/min) und durch Elektronenstoss-Ionisation (EI, 70 eV) ionisiert.

8.2 Arbeitsvorschriften zur Synthese der Katalysatoren

8.2.1 Arbeitsvorschriften zur Synthese der Pyridopyrazin-Derivate

Pyrido[3,4-b]pyrazin (123)

Zu einer Lösung von 2.82 ml Glyoxal (40 wt. % in Wasser, $\rho = 1.265$ g/ml, 62.4 mmol) in 30 ml Ethanol gab man 2.00 g (18.3 mmol) 3,4-Diaminopyridin (122). Die Reaktionsmischung wurde für 5 h bei 70 °C Ölbadtemperatur gehalten und nach dem Abkühlen auf Raumtemperatur wurde das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie (EtOAc/Isohexan, 9:1) gereinigt. Man erhielt 2.35 g (17.9 mmol, 98 %) 123 als farblosen Pulver.

 $R_f = 0.27$ (Isohexan/EtOAc, 1:9)

¹**H-NMR (200 MHz, CDCl₃):** $\delta = 7.94$ (dd, ³J = 5.8 Hz, ⁴J = 0.6 Hz, 1H, H-7), 8.83 (d, ³J = 5.8 Hz, 1H, H-8), 8.96 (d, ³J = 1.6 Hz, 1H, H-3), 9.02 (d, ³J = 1.6 Hz, 1H, H-2), 9.56 (d, ⁴J = 0.6 Hz, 1H, H-5).

¹³C-NMR (100 MHz, CDCl₃): δ = 121.6 (CH, C-7), 138.0 (C_q), 145.3 (C_q), 147.3 (C-H, C-8), 146.5 (C-H, C-3), 149.2 (CH, C-2), 154.8 (C-H, C-5).

GC-MS (EI): RT 5.45 min, m/z (%) = 132 (8), 131 (M⁺, 100), 104 (25), 77 (13), 50 (10).

IR (KBr): $\tilde{v} = 3435$ (vs), 3092 (w), 3023 (m), 1969 (w), 1758 (w), 1631 (w), 1598 (vs), 1562 (m), 1536 (w), 1488 (s), 1436 (vs), 1416 (m), 1381 (m), 1351 (w), 1290 (w), 1279 (m), 1212 (m), 1201 (m), 1148 (w), 1033 (s), 1014 (s), 972 (w), 959 (vs), 931 (m), 881 (vs), 838 (m), 824 (s), 773 (w), 651 (s), 623 (m), 546 (w), 524 (w), 457 (s) cm⁻¹.

1,2,3,4-Tetrahydropyrido[3,4-b]pyrazin (124)

Vorschrift 1:

Zu einer Lösung von Pyridopyrazin (123) (2.90 g, 22 mol) in 100 ml trockenem Ethanol gab man 2.90 g (76 mmol) NaBH₄-Pulver. Man erhitzte auf 40 °C Ölbadtemperatur und hielt die Reaktionslösung für 24 h bei dieser Temperatur. Anschliessend wurde die Reaktionslösung auf Raumtemperatur abgekühlt und 3 ml Wasser zugegeben. Der anorganische Feststoff wurde abgesaugt und zweimal mit 20 ml DCM gewaschen. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das erhaltene Rohprodukt wurde durch Flashchromatographie auf basischem Aluminiumoxid (EtOAc/MeOH, 10:1) gereinigt. Man erhielt 1.44 g (11 mol, 50 %) 124 als einen farblosen Schaum.

Vorschrift 2:

In einen 100 ml Schlenk-Kolben gab man 0.5 g (3.81 mmol) 1 und 10 ml THF. Anschliessend gab man 0.5 g (13.2 mmol) NaBH₄ hinzu und tropfte ohne Eiskühlung langsam innerhalb von 30 min 5 ml 100% ige TFA ein. Nach beendeter Zugabe rührte man noch 1 h bei Raumtemperatur und stoppte dann die Reaktion durch Zugabe von 3 ml Wasser. Unter Eiskühlung tropfte man langsam 50% ige NaOH bis zu einem pH-Wert >12 zu. Man extrahierte mit Dichlormethan (3x20 ml) und Essigester (1x20 ml). Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel unter verminderten Druck abdestilliert. Das nach Abdestillation erhaltene Öl wurde durch Flashchromatographie an basischem Aluminiumoxid gereinigt (EtOAc/MeOH, 10:1). Man erhielt 231 mg (45%) **124** als einen farblosen Feststoff.

 $R_f = 0.15$ (basisches Aluminiumoxid, 20/1, DCM:MeOH).

¹**H-NMR (200 MHz, CDCl₃):** δ = 3.37 (d, ³*J* = 5.8 Hz, 1H, H-3), 3.38 (d, ³*J* = 5.8 Hz, 1H, H-2), 6.29 (d, ³*J* = 5.4 Hz, 1H, H-8), 7.67 (d, ³*J* = 5.4 Hz, 1H, H-7), 7.67 (s, 1H, H-5).

¹³C-NMR (100 MHz, CDCl₃): δ = 40.1 (CH₂), 41.0 (CH₂), 107.8 (C-5), 129.6 (C_q), 135.3 (C-H, C7), 140.1 (C_q), 141.1 (C-H, C-5).

GC-MS(EI): RT 8.09 min m/z (%) = 136 (8), 135 (M⁺ 79), 134 (M⁺-H⁺,100), 133 (10), 132 (7), 131 (2), 120 (4), 107 (7), 105 (4), 94 (2), 93 (7), 80 (2), 79 (3), 78 (4), 67 (4), 66 (2), 53 (2), 52 (2), 52 (3), 51 (2).

IR (KBr): $\tilde{v} = 3349$ (m), 2859 (m), 1593 (s), 1534 (s), 1474 (s), 1344 (s), 1311 (s), 1281 (s), 1256 (w) 1228 (m), 1182 (m), 1102 (m), 1051 (w), 1038 (m), 893 (m), 862 (m), 824 (s), 772 (m) cm⁻¹.

HRMS (EI) (%) berechnet für $C_7H_8N_3$ (M-H⁺): 134.0718, gefunden: 134.0709.

1-(4-Acetyl-3,4-dihydro-2*H*-pyrido[3,4-*b*]pyrazin-1-yl)-ethanon (47)

Zu einer auf 0 °C gekühlten Lösung von **124** (1.49 g, 11 mmol) in 60 ml Pyridin wurden 23 ml (24.7 g, 24.2 mol) Acetanhydrid zugegeben. Die Reaktionsmischung wurde anschliessend für 48 h auf 100 °C erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde das Lösungsmittel im Vakuum abdestilliert und der gelbe Feststoff durch Flashchromatographie an basischem Aluminoumoxid (EtOAc/MeOH, 10:3) gereinigt. Man erhielt 1.93 g (8.80 mmol, 80 %) **47** als einen schwach gelben Feststoff.

 $R_f = 0.28$ (EtOAc/MeOH, 10:3).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 2.25$ (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 3.90 (ddd, ²J = 12 Hz, ³J = 4 Hz, ³J = 4 Hz, 2H, CH₂), 3.94 (ddd, ²J = 12 Hz, ³J = 4 Hz, ³J = 4 Hz, 2H, CH₂), 7.87 (bs, 1H, H-5), 8.32 (d, ³J = 4 Hz, 1H, H-7), 8.46 (m, 1H, H-8).

¹³C-NMR (100 MHz, CDCl₃): δ = 22.3, 22.8 (CH₃), 42.1, 46.5 (CH₂), 117.4 (C-5), 128.2 (C_q), 139.0 (C_q), 145.7 (C-7), 146.9 (C-8), 168.6 (C=O).

GC-MS(EI) RT 9.66 min, m/z (%) = 220 (14), 219 (M⁺, 81), 178 (11), 177 (M⁺-AcO, 100), 176 (10), 162 (3), 159 (2), 136 (7), 135 (78), 134 (M⁺-2AcO, 99), 133 (8), 132 (9), 120 (4), 119 (2), 107 (5), 105 (2), 93 (3), 80 (2), 79 (4), 78 (4), 52 (2), 51 (2), 43 (AcO⁺, 20).

IR (ATR): $\tilde{v} = 2960$ (w), 1684 (s) 1654 (vs) 1582 (m) 1494 (s), 1407 (vs), 1330 (m), 1320 (vs), 1277 (m), 1259 (s), 1248 (m), 1217 (s), 1248 (s), 1217 (s), 1179 (m), 1150 (w), 1118 (m), 1064 (m), 1033 (s), 969 (s), 886 (w), 857 (m), 846 (s), 799 (s), 764 (w), 749 (w), 704 (w) cm⁻¹.

HRMS (EI) berechnet für C₁₁H₁₃N₃O₂ [M⁺]: 219.1008, gefunden: 219.0995.

1,4-Diethyl-1,2,3,4-tetrahydropyrido[3,4-b]pyrazin (81)

In 60 ml MTBE suspendierte man 1.56 g (11.6 mmol) AlCl₃ bei Raumtemperatur. Nach 45 min Rühren wurde die Reaktionsmischung auf 0 °C gekühlt und portionsweise (1.32 g, 34.6 mmol) LiAlH₄ zugegeben. Nach beendeter Zugabe und weiterem Rühren für 15 min wurde (1.00 g, 4.56 mmol) **47** zugegeben und für eine weitere Stunde bei 0 °C gerührt. Anschliessend wurde 8 h unter Rückfluss erhitzt und nach dem Abkühlen auf Raumtemperatur wurde die Reaktionsmischung auf Eiswasser gegossen. Der ausgefallene anorganische Feststoff wurde abgesaugt und zweimal mit 30 ml DCM gewaschen. Die Wasserphase wurde auf pH 12 gebracht und dreimal mit 40 ml DCM extrahiert. Die vereinigten org. Extrakte wurden über Na₂SO₄ getrocknet und das Lösungsmittel wurde unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel gereinigt (EtOAc/MeOH/NEt₃, 10:0.5:1). Man erhielt 0.52 g (60%) **81** als ein farbloses Öl, welches im Gefrierschrank fest wurde.

 $R_f = 0.47$ (EtOAc/MeOH/NEt₃, 10:0.5:1).

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 1.15$ (q, ${}^{3}J = 14$ Hz, 6H, CH₃), 3.22 (m, ${}^{3}J = 6$ Hz, 2H, H - 3), 3.23 (m, ${}^{2}J = 14$ Hz, 4H, CH₂), 3.42 (m, ${}^{3}J = 6$ Hz, 2H, H-2), 6.34 (d, ${}^{3}J = 5.2$ Hz, 1H, H-8), 7.69 (s, 1H, H-5), 7.75 (d, ${}^{3}J = 5.2$ Hz, 1H, H-7).

¹³**C-NMR: (100 MHz, CDCl₃):** *δ* = 10.1, 10.4 (CH₃), 44.6 (CH₂, C-2), 46.5 (CH₂, C-3), 44.9, 45.0 (CH₂), 104.0 (C-8), 130.5, 130.1 (C_q), 131.8 (C-5), 140.7 (C-7).

GC-MS(EI): RT 8.63 min, *m/z* (%) = 192 (10), 191 (M⁺,100), 190 (4), 177 (8), 176 (95), 175 (5), 162 (11), 161 (8), 160 (5), 148 (13), 147 (10), 146 (8), 135 (2), 134 (9), 133 (6), 131 (8), 121 (2), 119 (4), 118 (3), 107 (3), 104 (2), 92 (2), 91 (2), 80 (8), 77 (4).

IR (KBr): $\tilde{v} = 3436$ (s), 3112 (w), 3019 (w), 2964 (w), 1661 (s), 1686 (vs), 1583 (m), 1497 (m), 1409 (s), 1363 (w), 1332 (m), 1311 (s), 1260 (m), 1249 (w), 1232 (m), 1220 (m), 1180 (m), 1150 (w), 1119 (m), 1064 (w), 1035 (m), 985 (m), 970 (m), 858 (m), 847 (m), 802 (m), 765 (w), 740 (w), 704 (w), 647 (w), 614 (w), 592 (w), 577(m), 570 (m), 507 (w) cm⁻¹.

HRMS (EI) berechnet für C₁₁H₁₇N₃ [M⁺]: 191.1422, gefunden: 191.1430.

1,4-Dimethy-1,2,3,4-tetrahydropyrido[3,4-b]pyrazin (76)

Unter Eiskühlung gab man zu **124** (1.26 g, 9.32 mmol) 35 ml Ameisensäure. Anschliessend gab man 12 ml Formaldehyd-Lösung hinzu (<37 % in Wasser) und erhitzte für 48 h auf 110 °C Ölbadtemperatur. Anschliessend ließ man auf Raumtemperatur abkühlen und gab unter Eiskühlung ca. 150 ml 20%ige Natronlauge hinzu. Dabei wurde der pH-Wert von 12 nicht überschritten. Die Mutterlauge wurde mit 250 ml DCM in einem Flüssig/Flüssig-Extraktor über Nacht extrahiert. Die organische Phase wurde über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel (EtOAc/MeOH/NEt₃, 10:1:1) und basischem Aluminiumoxid (EtOAc/MeOH, 10:1) gereinigt. Man erhielt 849 mg (5.32 mmol, 57%) **76** als einen gelben Feststoff.

 $R_f = 0.56$ (basisches Aluminiumoxid, EtOAc/MeOH, 10:1).

¹**H-NMR (400 MHz, CDCl₃):** δ = 2.77 (s, 3H, CH₃), 2.82 (s, 3H, CH₃), 3.12 (m, 2H, H₂C-N), 3.37 (m, 2H, CH₂-C), 6.21 (d, ³*J* = 5.6 Hz, 1H, H-8), 7.56 (s, 1H, H-5), 7.74 (d, ³*J* = 5.6 Hz, 1H, H-7).

¹³C-NMR (75 MHz, CDCl₃): δ = 38.0 (N-1-CH₃), 39.1 (N-4-CH₃), 48.8 (C-3), 49.6 (C-2), 104.0 (C-7), 131.2 (C-5), 132.3 (C-4a), 141.6 (C-7), 142.2 (C-8a).

GC-MS(EI): RT 8.05 min, *m/z* (%) = 164 (8), 163 (M⁺,100), 162 (21), 161 (5), 149 (4), 148 (40) 147 (9), 146 (8), 134 (8), 133 (11), 132 (6), 121 (4), 120 (2), 119 (6), 107 (3), 105 (2), 93 (2), 92 (4), 81 (6), 80 (4), 79 (2), 78 (4), 66 (3), 51 (2), 42 (4).

IR (ATR): $\tilde{v} = 3378$ (w), 3035 (w), 2979 (w), 2873 (m), 2826 (s), 2792 (w), 1581 (s), 1519 (s), 1466 (s), 1454 (s), 1435 (m), 1416 (m), 1380 (w), 1335 (vs), 1290 (s), 1250 (w), 1235 (vs), 1214 (m), 1172 (s), 1114 (s), 1099 (s), 1069 (s), 1030 (m), 936 (w), 911 (w), 883 (s), 815 (s), 800 (s), 783 (s), 746 (m), 709 (m), 622 (m) cm⁻¹.

HRMS (EI) berechnet für C₉H₁₃N₃ [M⁺]: 163.1109, gefunden: 163.1089.

1-Ethyl-1,2,3,4-tetrahydropyrido[3,4-b]pyrazin (125)

In einem 100 ml Rundkolben gab man 400 mg (2.9 mmol) **124**, 15 ml Methanol und 4.5 ml Acetaldehyd (112.2 mmol, 53 eq; $\rho = 0.782$ bei 4°C). Zu der Reaktionslösung gab man anschliessend 530 mg (8.4 mmol) NaBH₃CN und rührte die Reaktionsmischung 5 h bei Raumtemperatur. Anschliessend destillierte man das Lösungsmittel ab und chromatographierte das Rohprodukt an basischem Aluminioxid (EtOAc/MeOH, 10:1). Ausbeute: 338 mg (70 %) **125** als weisser Schaum.

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.18$ (t, ³J = 6.9 Hz, 3H, CH₃), 3.25 (m, 2H, H-3), 3.34 (q, ³J = 6.9 Hz, 2H, CH₂-CH₃), 3.49 (m, 2H, C-2), 4.21 (s, 1H, N-H), 6.31 (d, ³J = 5.4 Hz, 1H, H-7), 7.65 (d, ³J = 5.4 Hz, 1H, H-8), 7.69 (s, 1H, H-5).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 10.4$ (CH₃), 40.8 (C-2), 45.1 (H₃C-H₂C-N), 45.5 (C-3), 107.5 (C-8), 130.6 (C_q, C-4a), 132.0 (C-5), 139.8 (C-7), 141.1 (C-8a).

HRMS (EI): berechnet für $C_9H_{13}N_3$ 163.1109 [M⁺], gefunden 163.1098.

Zu einer Suspension von 2.86 g (26 mmol) 3,4-Diaminopyridin (**122**) in 50 ml Ethanol wurden 5.51 g (26 mmol) Benzil (**133**) zugegeben und die Reaktionsmischung für 6 h auf 70 °C Ölbadtemperatur erhitzte. Nach dem Abkühlen auf Raumtemperatur wurde der ausgefallene gelbe Feststoff abfiltriert. Umkristallisation aus Ethanol ergab 6.91 g (24 mmol, 94 %) **134** als einen schwach gelben Feststoff.

¹**H-NMR (400 MHz, CDCl₃):** δ = 7.32-7.42 (m, 6H, 3,4,5-*Phenyl*-H), 7.54-7.51(m, 4H, 2,6-*Phenyl*-H), 7.98 (dd, ³*J* = 6 Hz, ⁴*J* = 0.8 Hz, 1H, H-7), 8.82 (d, ³*J* = 6 Hz, 1H, H-8), 9.59 (d, ⁴*J* = 0.8 Hz, 1H, H-5).

¹³C-NMR (100 MHz, CDCl₃): δ = 121.3 (C-7), 128.4, 129.4-129.9 (*Phenyl-C*), 136.3 (C_q, C-4a), 143.5 (C_q, C-8a), 147.3 (C-8), 154.5 (C-5), 155.3, 157.9 (C_q, *Phenyl-C*).

GC-MS (EI): RT 12.34 min, *m/z* (%) = 285 (3), 284 (M⁺+H, 22), 283 (M⁺, 100), 282 (46), 206 (2), 181 (3), 180 (25), 179 (17), 154 (3), 153 (5), 152 (3) 142 (1), 141 (8), 140 (4), 127 (2), 104 (3), 103 (14), 102 (3), 78 (2), 77 (5), 76 (4), 51 (2), 50 (9).

2,3-Diphenyl-pyrido[3,4-b]pyrazin (134)

IR (ATR): $\tilde{v} = 3061$ (w), 1589 (m), 1577 (w), 1538 (w), 1492 (w), 1443 (m), 1419 (w), 1379 (s), 1346 (w), 1326 (m), 1315 (m), 1288 (w), 1211 (m), 1244 (w), 1227 (m), 1212 (w), 1180 (w), 1075 (m), 1058 (m), 1020 (m), 1001 (w), 976 (s), 921 (w), 892 (m), 892 (m), 830 (m), 819 (w), 811 (m), 763 (s), 735 (m), 708 (vs), 629 (s), 615 (m) cm⁻¹.

(rac)-2,3-Diphenyl-1,2,3,4-tetrahydro-pyrido[3,4-b]pyrazin (135)

In einen 500 ml Kolben gab man **134** (6.25 g, 22.05 mmol) und 200 ml Ethanol. Zu der Lösung gab man 6.25 g (165 mmol) gepulvertes NaBH₄ und rührt die Reaktionsmischung für 48 h bei 40 °C. Anschliessend kühlte man auf Raumtemperatur ab und stoppte die Reaktion mit 10 ml kalten Wasser. Nach weiteren rühren für 10 min wurde die Reaktionsmischung zweimal mit 100 ml DCM extrahiert und die kombinierten organischen Phasen über Na₂SO₄ getrocknet. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel (EtOAc/NEt₃, 10:1) gereinigt. Man erhielt 4.70 g (74 %) **135** als schwach gelben Feststoff.

 $R_f = 0.23$ (EtOAc/NEt₃, 10:1)

¹**H-NMR (300 MHz, CDCl₃):** δ = 3.99 (s, 1H, N-H), 4.59 (s, 2H, H-2,3), 4.62 (s, 1H, N-H), 6.39 (d, ³J = 5.4 Hz, 1H, H-8), 6.80 (dd, ⁴J = 1.2 Hz, ³J = 9.3 Hz, 2H, 2,6-*Phenyl*-H), 6.84 (dd, ⁴J = 1.2 Hz, ³J = 9.3 Hz, 2H, 2,6-*Phenyl*-H), 7.12 (m, 6H, 3,4,5-*Phenyl*-H), 7.83 (s, 1H, H-5), 7.84 (d, ³J = 5.4 Hz, H-7).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 58.6$, 60.1 (C-2,3), 108.0 (C-8), 127,9-128.4 (*Phenyl-C*), 129.8 (C-4a), 139.8 (C_q, *Phenyl-C*), 140.0 (C_q, C-8a), 134.9 (C-5), 141.3 (C-7) ppm

MS (EI) m/z (%) = 288 (22), 287 (M⁺, 100), 286 (24), 285 (7), 284 (6), 283 (8), 282 (5), 211 (13), 210 (78), 209 (5), 208 (13), 197 (4), 196 (26), 181 (13), 179 (3), 127 (4), 104 (7), 92 (3), 91 (32), 77 (5).

IR (ATR): $\tilde{v} = 3215$ (w), 2830 (w), 1596 (s), 1519 (s), 1493 (w), 1466 (w), 1452 (s), 1360 (m), 1290 (s), 1250 (m), 1231 (m), 1174 (s), 1120 (m), 1072 (m), 1050 (w), 1029 (w), 1005 (w), 989 (w), 950 (w), 905 (w), 844 (w), 810 (m), 770 (m), 723 (m), 675 (vs), 668 (w), 645 (w), 618 (m) cm⁻¹.

HRMS (EI): berechnet für C₁₉H₁₇N₃ 287.1422 [M⁺], gefunden 287.1402.

(rac)-4-Methyl-2,3-diphenyl-1,2,3,4-tetrahydro-pyrido[3,4-b]pyrazin (136)

In einen 100 ml Rundkolben löste man unter Eiskühlung 0.60 g (2.08 mmol) **135** in 15.5 ml (417 mmol, $\rho = 1.22$ g/ml) Ameisensäure und gab 5.1 ml Formaldehyd-Lösung (183.6 mmol, $\rho = 1.22$ g/ml, < 37% in Wasser) hinzu. Anschliessend entfernte man das Eisbad und erhitzte für 48 h auf 120 °C Ölbadtemperatur. Nach dem Abkühlen auf 0 °C gab unter Eiskühlung 50% ige NaOH hinzu bis der pH-Wert der Mutterlauge auf 12 angestiegen ist. Anschliessend extrahierte man dreimal mit 50 ml DCM und trocknete die vereinigten organischen Phasen über Na₂SO₄. Nach dem Abdestillieren des Solvens unter verminderten Druck reinigte man das Rohprodukt an Kieselgel durch Flashchromatographie (CHCl₃/Isohexan/NEt₃, 10:2:1). Man erhielt 564 mg (1.87 mmol, 90%) **136** als gelben Feststoff.

 $R_f = 0.40$ (CHCl₃/Isohexan/NEt₃, 10:2:1).

¹**H-NMR:**(400 MHz, CDCl₃): $\delta = 2.85$ (s, 3H, CH₃), 4.42 (s, 1H, N-H), 4.44 (d, ${}^{3}J = 3.6$ Hz, 1H, H-3), 4.95 (d, ${}^{3}J = 3.6$ Hz, 1H, H-2), 6.50 (d, ${}^{3}J = 5.2$ Hz, 1H, H-8), 6.64 (dd, ${}^{4}J = 2.8$ Hz, ${}^{3}J = 9.2$ Hz, 2H, 2,6-*Phenyl*-H), 6.90 (m, 2H, 2,6-*Phenyl*-H) 7.05 (m, 2H, *Phenyl*-H), 7.16 (m, 4H, *Phenyl*-H), 7.82 (s, 1H, H-5), 7.84 (d, ${}^{3}J = 5.2$ Hz, 1H, H-7).

¹³C-NMR (75 MHz, CDCl₃): δ = 37.2 (CH₃), 57.8 (C-3), 67.9 (C-2), 107.6 (C-8), 127.4-128.5 (*Phenyl-C*), 131.3 (C-5), 131.6 (C_q, C-4a) 137.4, 138.8 (C_q, *Phenyl-C*), 139.9 (C-7, C-8a) ppm.

MS (EI) *m/z* (%) = 302 (22), 301 (M⁺, 100), 300 (5), 286 (5), 224 (10), 222 (4), 211 (13), 210 (87), 209 (3), 208 (6), 195 (11), 181 (6), 179 (3), 178 (3), 178 (3), 150 (7), 132 (3), 127 (3), 120 (3), 104 (4); 92 (3), 91 (31), 85 (4), 83 (6), 78 (4), 77 (5).

IR (ATR): $\tilde{v} = 3200$ (w), 3158 (w), 3029 (w), 2948 (w), 2881 (w), 2824 (w), 1578 (s), 1516 (vs), 1491 (m), 1452 (m), 1421 (m), 1374 (w), 1353 (w), 1326 (w), 1294 (w), 1256 (m), 1235 (m), 1199 (w), 1157 (m), 1131 (m), 1103 (w), 1073 (m), 1054 (m), 1031 (m), 1013 (m), 969 (w), 922 (w), 842 (w), 810 (s), 766 (s), 755 (m), 733 (m), 641 (vs) cm⁻¹.

HRMS (EI): berechnet für $C_{20}H_{19}N_3$ 301.1574 [M⁺], gefunden 301.1559.

(*rac*)-1-(Methyl-2,3-diphenyl-1,2,3,4-tetrahydro-pyrido[3,4-*b*]pyrazin-1-yl)-ethanon (139)

In einen 250 ml Schlenk-Kolben gab man 2.90 g (9.62 mmol) **136** und 100 ml MTBE. Die Lösung wurde auf -78 °C gekühlt und 4.62 ml *n*-BuLi (11.50 mmol, 1.1 eq; 2.5 M in Hexan) wurden in einer Zeit von 10 min zugegeben. Die Reaktionsmischung wurde ohne Kühlung für 30 min gerührt. Anschliessend kühlte man auf -78 °C ab, gab 1.0 ml (0.96 g, 12.5 mmol) Acetylchlorid hinzu. Man ließ auf Raumtemperatur erwärmen und nach weiterem Rühren für 30 min wurde die Reaktion durch Zugabe von 10 ml Wasser gestoppt. Die Mutterlauge wurde dreimal mit Dichlormethan extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Abdestillieren des Solvens unter verminderten Druck wurde das Rohprodukt durch Flashchromatographie (CHCl₃/Isohexan/NEt₃, 10:1:1) gereinigt. Alternativ gelang die Reinigung durch Umkristallisation mit Ethylacetat. Man erhielt 1.2 g (3.49 mmol, 36%) **139** als farblosen Feststoff.

$$R_f = 0.69$$
 (CHCl₃/Isohexan/NEt₃, 10:1:1).

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 2.40$ (s, 3H, *H*₃C-CO-N), 2.86 (s, 3H, *H*₃C), 4.99 (m, 1H, H-3), 5.35 (d, ³*J* = 4.2 Hz, 1H, H-2), 6.53 (d, ³*J* = 7.8 Hz, 2H, 2,6-*Phenyl*-H), 6.80 (bs, 2H, 2,6-*Phenyl*-H), 7.08 (t, 2H, ³*J* = 7.2 Hz, *Phenyl*-H) 7.17 (t, ³*J* = 6.0 Hz, 2H, *Phenyl*-H), 7.22 (t, ³*J* = 6.0 Hz, 1H, *Phenyl*-H), 7.25 (t, ³*J* = 6.0 Hz, 1H, *Phenyl*-H), 8.03 (d, ³*J* = 6.6 Hz, 1H, H-8), 8.17 (s, 1H, H-5), 8.41 (d, ³*J* = 6.6 Hz, 1H, H-7).

¹³C-NMR (150 MHz, CDCl₃): δ = 24.60 (H₃C-CO-N), 36.9 (H₃C), 61.8 (C-3), 63.8 (C-2), 116.9 (C-8), 124.6 (C-5), 128.4-128.9 (*Phenyl-C*), 134.7 (C_q, C-8a), 138.7 (C_q, C-4a),171.0 (*C*=O).

GC-MS (EI) RT 1.22 min, *m/z* (%) = 345 (3), 344 (27), 343 (M⁺, 100), 315 (6), 302 (7), 301 (41), 300 (84), 224 (6), 223 (4), 222 (5), 211 (4), 210 (27), 208 (9), 195 (6), 181 (9), 179 (4), 178 (4), 146 (4), 118 (15), 104 (5); 92 (9), 91 (94), 78 (4), 77 (4), 43 (6).

IR (ATR): $\tilde{v} = 2428$ (m), 2039 (w), 1688 (s), 1613 (w), 1534 (s), 1492 (m), 1454 (w), 1388 (m), 1364 (m), 1345 (m), 1317 (w), 1292 (w), 1292 (w), 1272 (w), 1227 (vs), 1209 (vs), 1122 (w), 1103 (w), 1078 (m), 1028 (m), 998 (m), 822 (s), 799 (m), 768 (m), 704 (m), 691 (m), 638 (w) cm⁻¹.

HRMS (EI): berechnet für C₂₂H₂₃N₃O 343.1685 [M⁺], gefunden 343.1699.

```
(rac)-1-Ethyl-4-methyl-2,3-diphenyl-1,2,3,4-tetrahydro-pyrido[3,4-b]pyrazin (140)
```


In 20 ml THF suspendierte man bei Raumtemperatur 575 mg (4.32 mmol) AlCl₃ und rührte anschliessend für 45 min bei dieser Temperatur. Anschliessend kühlte man auf 0 °C ab und gab 277 mg (7,290 mmol) LiAlH₄ in kleinen Portionen hinzu. Nach beendeter Zugabe wurde die Reaktionsmischung für 15 min weiter gerührt und **139** (1.00 g, 3.32 mmol) zugegeben. Die Mischung wurde für 1 h bei 0 °C gerührt und anschliessend für 12 h auf Rückflußtemperatur erhitzt. Danach wurde die Reaktionsmischung auf Raumtemperatur

abgekühlt und auf Eiswasser gegossen. Der anorganische Niederschlag wurde abfiltriert und die Mutterlauge mit DCM extrahiert. Die vereinigten organischen Phasen wurden über Na_2SO_4 getrocknet und das erhaltene Rohprodukt durch Flashchromatographie (EtOAc/MeOH/NEt₃, 10:1:0.5) an Kieselgel gereinigt. Man erhielt 0.580 g (1.76 mmol, 53 %) **140** als gelben Feststoff.

 $R_f = 0.57$ (EtOAc/MeOH/NEt₃, 10:1:0.5).

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 1.05$ (t, ³J = 7.2 Hz, 3H, H_3 C-CH₂-N), 2.71 (s, 3H, H_3 C), 3.17 (qd, ²J = 14.8 Hz, ³J = 7.2 Hz, 1H, CH₃-C H_{AB} -N), 3.38 (qd, ²J = 14.8 Hz, ³J = 7.2 Hz, 1H, CH₃-C H_{AB} -N), 4.40 (d, ³J = 3.6 Hz, 1H, H-3), 4.55 (d, ³J = 3.6 Hz, 1H, H-2), 6.52 (d, 1H, ³J = 5.6 Hz, H-8) 6.73 (m, 4H, *Phenyl*-H), 7.07 (t, ³J = 7.2 Hz, 2H, *Phenyl*-H), 7.11 (t, ³J = 8 Hz, 2H, *Phenyl*-H), 7.16 (m, 2H, *Phenyl*-H), 7.92 (s, 1H, H-5), 7.96 (d, ³J = 5.6 Hz, 1H, H-7) ppm.

¹³C-NMR (100 MHz, CDCl₃): δ = 11.1 (H₃C-CH₂-N), 37.1 (H₃C-N), 43.3 (H₃C-CH₂-N), 65.7 (C-2), 66.0 (C-3), 104.3 (C-8), 127.7-129.3 (*phenyl*-C), 133.0 (C-5), 133.3 (C_q, C-4a), 137.8, 138.6 (C_q, *phenyl*-C), 140.8 (C_q, C-8a), 141.0 (C-7) ppm.

IR (ATR): $\tilde{v} = 2965$ (w), 2818 (w), 1578 (s), 1518 (vs), 1492 (m), 1452 (s), 1430 (w), 1371 (m), 1356 (m), 1308 (m), 1286 (m), 1266 (s), 1241 (s), 1215 (vs), 1165 (m), 1119 (m), 1067 (s), 1023 (s), 884 (w), 867 (w), 828 (w), 810 (s), 764 (s), 749 (m), 705 (vs), 660 (w), 615 (w) cm⁻¹.

HR-LC-ESI-MS: RT 0.53-1.43 min., berechnet für $C_{44}H_{47}N_6$ 659.3862 [2M⁺+H], gefunden 659.3823, berechnet für $C_{22}H_{24}N_3$ 330.1970 [M⁺+H] gefunden 330.1940.

(rac)-2,3-Diphenyl-3,4-dihydro-2H-pyrido[3,4-b]pyrazin-1-yl)-ethanon (137)

In einen 100 ml Schlenk-Kolben löste man 0.50 g (1.74 mmol) **135** in 10 ml absolutem Pyridin und tropfte dann mittels einer Spritze 1.22 ml (17.4 mmol) Acetylchlorid ein. Man ließ 12 h bei Raumtemperatur rühren und gab anschliessend 10 ml Wasser unter Eiskühlung hinzu. Nach überführen in ein Scheidetrichter trennte man die organische Phase ab und destillierte das Pyridin im Vakuum ab. Das braune Rohprodukt wurde durch Flashchromatographie (CHCl₃/Isohexan/NEt₃, 10:1:1) gereinigt. Ausbeute 0.525 g (91 %) **137** als weißes Pulver.

 $\boldsymbol{R}_{f} = (CHCl_{3}/Isohexan/NEt_{3}, 10:1:1)$

¹**H-NMR:(150 MHz, CDCl₃):** δ = 2.32 (s, 2H, *H*₃C-CO-N), 4.49 (s, 1H, N-*H*), 4.78 (d, ³*J* = 4.2 Hz, 1H, H-3), 5.49 (bs, 1H, H-2), 6.66 (m, 2H, *Phenyl-H*), 7.03 (m, 4H, *Phenyl-H*), 7.21 (m, 4H, *Phenyl-H*), 7.83 (bs, 1H, H-8), 8.02 (d, ³*J* = 6 Hz, 1H, H-7), 8.15 (s, 1H, H-5).

¹³C-NMR (100 MHz, CDCl₃): δ = 24.5 (N-CO-*C*H₃), 58.2 (C-3), 60.5 (C-2), 116.9 (C-8), 127.7-128.7 (*Phenyl*-C), 132.9 (C_q, C-8a), 135.6 (C_q, C-4a), 137.9 (C-5), 140.6 (C-7), 170.3 (C_q, C=O).

IR (ATR): $\tilde{v} = 3252$ (b, w), 3063 (w), 1660 (s), 1572 (s), 1491 (m), 1149 (m), 1383 (s), 1316 (w), 1252 (m), 1197 (w), 1119 (w), 1075 (w), 1031 (w), 819 (m), 751 (s), 696 (vs).

HRMS (EI): berechnet für $C_{21}H_{19}N_{3}O$ 329.1528 [M⁺], gefunden 329.1534.

(rac)-2,3-Diphenyl-3,4-dihydro-1*H*-pyrido[3,4-b]pyrazin-4-carbaldehyd (141)

Verbindung **141** wurde als Hauptprodukt einer reduktiven Alkylierung mit Benzaldehyd isoliert.

In einen 25 ml Rundkolben löst man 0.40 g (1.39 mmol) **135** in 0.52 ml Ameisensäure und gab 1.25 ml frisch destilliertes Benzaldehyd hinzu. Die Reaktionsmischung erhitzte man für 48 h auf 120 °C. Nach dem Abkühlen brachte man die Reaktionslösung unter Eiskühlung auf pH 12 und extrahiert dreimal mit 50 ml Dichlormethan. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel (CHCl₃/Isohexan/NEt₃, 10:2:1) gereinigt. Die Ausbeute beträgt 360 mg (82%) von **141** als schwach gelben Pulvers.

 $R_f = 0.24$ (CHCl₃/Isohexan/NEt₃, 10:2:1)

¹**H-NMR (600 MHz, CDCl₃):** δ = 4.77 (d, ³*J* = 4.2 Hz, 1H, H-3), 5.11 (s, 1H, N-*H*), 5.86 (d, ³*J* = 4.2 Hz, 1H, H-2), 6.71 (d, ³*J* = 5.4 Hz, 1H, H-8), 6.73 (s, 2H, *Phenyl-H*), 6.97-7.23 (m, 8H, *Phenyl-H*), 8.17 (d, ³*J* = 5.4 Hz, 1H, H-7), 8.34 (s, 1H, H-5), 8.84 (s, 1H, -CHO).

¹³C-NMR (150 MHz, CDCl₃): δ = 54.5 (C-3), 57.8 (C-2), 109.4 (C-8), 120.9 (C_q, C-4a), 127.6 (*Phenyl-C*), 127.7 (C_q, *Phenyl-C*), 128.1 (*Phenyl-C*), 128.2 (C_q, *Phenyl-C*), 128.6-128.8 (*Phenyl-C*), 137.6 (C-5), 142.3 (C-8a), 146.5 (C-6), 159.4 (C=O).

IR (ATR): $\tilde{v} = 3281$ (w), 3034 (w), 1735 (m), 1642 (vs), 1600 (s), 1584 (m), 1520 (m), 1497 (m), 1452 (m), 1372 (m), 1339 (s), 1312 (w), 1248 (vs), 1174 (m), 1157 (m), 1128 (m), 1074 (m), 1031 (m), 1017 (w), 934 (w), 897 (w), 851 (w), 833 (m), 744 (m), 696 (s) cm⁻¹.

HR-LC-ESI-MS: RT 0.84-1.78 min, berechnet für $C_{40}H_{35}N_6O_2$ [2M+H⁺] 631.2821, gefunden 631.2817; berechnet für $C_{20}H_{18}ON_3$ [M+H⁺] 316.1444, gefunden 316.1437.

8.2.2 Arbeitsvorschriften zur Synthese der Octahydro[3,4-b]chinoxaline

6,7,8,9-Tetrahydropyrido[3,4-b]chinoxalin (43)

Zu einer Suspension von 1.56 g (13.9 mmol) 3,4-Diaminopyridin **122** in 50 ml Ethanol gab man (1.52 g, 13.93 mmol) 1,2-Cyclohexandion **127**. Anschliessend erhitzte man die Reaktionsmischung 5 h auf 70 °C Ölbadtemperatur, kühlte danach auf Raumtemperatur ab und destillierte danach das Lösungsmittel unter verminderten Druck ab. Das erhaltene Rohprodukt wurde durch Flashchromatopraphie mit Ethylacetat als Eluent gereinigt. Man erhielt 2.32 g (90 %) **43** als farblosen Feststoff, der im Kühlschrank aufbewahrt und nach 1-2 Tagen weiterverarbeitet wurden sollte. Durch Stehenlassen an Luft im Sonnenlicht verfärbte sich der Feststoff nach grau-grün.

 $R_f = 0.25$ (EtOAc/Hexan, 20:1).

¹**H-NMR (200 MHz, CDCl₃):** $\delta = 2.05$ (m, 4H, H-7,8), 3.18 (m, 4H, H-6,9), 7.79 (d, ³J = 5.8 Hz, 1H, H-4), 8.72 (d, ³J = 5.8 Hz, 1H, H-3), 9.38 (s, 1H, H-1).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 22.8$ (CH₂, C-7,8), 33.7 (CH₂, C-6,9), 121.2 (CH), 136.9 (C_q), 144.1 (C_q), 146.8 (CH), 153.9 (CH), 156.8 (C_q) 159.9 (C_q).

GC-MS(EI): RT 8.44 min, *m/z* (%) = 186 (11), 185 (M⁺,100), 184 (39), 183 (3), 182 (3), 171 (2), 170 (21), 169 (4), 158 (2), 157 (5), 156 (5) 131 (2), 104 (2), 103 (4), 78 (3), 76 (4), 67 (2), 64 (2), 51 (2), 50 (6).

IR (KBr): $\tilde{v} = 3435$ (vs), 2947 (s), 2864 (m), 1594 (s), 1557 (w), 1461 (w), 1421 (m), 1385 (s), 1365 (w), 1330 (w), 1297 (m), 1211 (m), 1140 (w), 979 (m), 949 (w), 901 (m), 849 (m), 679 (w), 629 (w), 570 (w), 412 (w) cm⁻¹.

HRMS (EI): berechnet für C₁₁H₁₁N₃ 185.0953 [M⁺], gefunden: 185.0935.

5,5a,6,7,8,9,9a,10-Octahydropyrido[3,4-b]chinoxalin (128c, 128t)

In einem 250 ml Rundkolben mit aufgesetztem Blasenzähler gab man 4.00 g (21.6 mmol) **43** und 50 ml trockenes Ethanol. Nach der Zugabe von 4.00 g (105.7 mmol) NaBH₄ rührte man die Reaktionsmischung 72 h bei Raumtemperatur. Die Reaktionslösung goß man anschliessend auf 25 ml Eiswasser und extrahierte anschliessend die Reaktionsmischung dreimal mit 30 ml Dichlormethan. Die kombinierten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das erhaltene Rohprodukt wurde durch Flashchromatographie an basischem Aluminiumoxid gereinigt (EtOAc/EtOH, 5:1). Ausbeute 79 % (3.2 g) **128c** und **128t** als weißer Schaum.

 $R_f = 0.30$ (EtOAc/EtOH, 5:1).

¹**H-NMR (300 MHz, CDCl₃):** δ = 1.24-1.93 (m, 8H, H-6-9), 2.79-3.58 (m, 3H, H-5a, 9a, N-H), 4.05 (s, 1H, N-H), 6.29-6.33 (m, 1H), 7.68-7.72 (m, 2H).

¹³C-NMR (75 MHz, CDCl₃): δ = 22.3, 22.5, 24.5, 24.6 (CH₂, C-7,8), 30.7, 31.1, 31.6, 31.9 (CH₂, C-6,9), 49.5, 50.5 (CH, C-5a, 9a), 55.0, 55.7 (CH, C-5a, 9a), 108.0, 108.1 (CH, C-4), 129.0, 130.3 (C_q, C-4a), 135.3, 135.6 (CH, C-1), 139.4, 141.1 (CH, C-3), 140.6, 141.6 (C_q, C-10a).

GC-MS (EI): RT (min) (9.94), *m/z* (%) = 190 (12), 189 (M⁺, 94), 188 (11), 160 (10), 159 (4), 158 (4), 147.3 (17), 146 (100), 134 (11), 133 (26), 132 (15), 120 (12), 93 (4), 78 (4), 41 (3); RT (9.88), *m/z* (%) 190 (13), 189 (M⁺, 93), 188 (9), 160 (10), 159 (3), 158 (4), 147 (18), 146 (100), 134 (14), 133 (27), 132 (20), 120 (13), 119 (3), 93 (4), 78 (4).

IR (**KBr**) $\tilde{v} = 3389$ (m), 3224 (m), 3008 (sh), 2931 (s), 2855 (m), 2299 (w), 1597 (vs), 1524 (vs), 1478 (w), 1457 (w), 1445 (w), 1404 (w), 1364 (m), 1329 (w), 1294 (m), 1272 (m), 1241 (w), 1208 (w), 1177 (w), 1088 (w), 1052 (w), 1004 (w), 964 (w), 941 (w), 905 (w), 886 (w), 812 (m), 731 (m), 644 (w), 597 (w), 573 (w), 551 (w), 447 (w) cm⁻¹.

HRMS (EI): berechnet C₁₁H₁₅N₃ 189.1266 [M⁺], gefunden 185.1261.

(rac)-5,5a,6,7,8,9a,10-Octahydropyrido[3,4-b]chinoxalin (128c)

Vorschrift 1:

In einem 250 ml Schlenk-Kolben gab man 43 (6.13 g, 33.0 mmol) und 100 ml THF. Man kühlte die Lösung auf -40 °C und gab 3.09 g (81.4 mmol, 2.5 Äg.) LiAlH₄ in kleinen Portionen hinzu. Die Reaktionsmischung wurde auf Raumtemperatur erwärmt und 32 h gerührt. Anschliessend goß man auf Eiswasser und stellte die Wasserphase mit ges. K₂CO₃-Lsg. auf einen pH-Wert von 12 ein. Der anorganische Feststoff wurde abgesaugt und zweimal mit 40 ml DCM gewaschen. Die Mutterlauge wurde 8 h mit 250 ml DCM in einem Flüssig/Flüssig-Extraktor extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel verminderten Druck abdestillert. unter Flashchromatographie (EtOAc/MeOH/NEt₃, 10:1:1) des erhaltenen Rohprodukts lieferte 5.63 g (29.7 mmol, 90%) 128c als farblosen Feststoff.

Vorschrift 2:

In einen 100 ml Schlenk-Kolben gab man 43 (1.00 g, 5.39 mmol) und 0.40 g (10.5 mmol) NaBH₄. Nach der Zugabe von 30 ml THF kühlte man die Reaktionsmischung auf 0 °C ab, gab 20 ml frische BH₃-THF-Lösung (1 M in THF, 20.0 mmol) hinzu und rührt für 30 min bei dieser Temperatur. Während der Zugabe des Boranetherat-Komplexes färbte sich die Reaktionsmischung dunkelrot. Die Reaktionslösung wurde anschliessend für 16 h auf 40 °C erhitzt, und danach auf 0 °C abgekühlt und 5.4 ml 2-Aminoethanol zugegeben. Nachdem man 1 h bei Raumtemperatur gerührt hatte, gab man 20 ml Wasser hinzu und extrahierte die Reaktionslösung dreimal mit 50 ml Dichlormethan. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestillert. Das erhaltene Rohprodukt wurde an Silicagel gereinigt (EtOAc/MeOH/NEt₃, 10:2:1). Die Fraktionen mit einem R_f von 0.78 und 0.36 getrennt gesammelt. Die Fraktion mit einem R_f von 0.78 in 20 ml 2N HCl gelöst und zweimal mit 20 ml Dichlormethan extrahiert. Die saure wässrige Phase wurde mit gesättigter K₂CO₃ Lösung auf pH 12 eingestellt und mit Dichlormethan extrahiert (3 mal 50 ml). Die vereinigten organischen Phasen der letzten Extraktion wurden über Na₂SO₄ getrocknet und das Lösungsmittel bei vermindertem Druck abdestillert. Man erhielt so einen weiteren Teil des gewünschten Produkts 128c. Die Ausbeute betrug 0.75 g (74%, 3.96 mmol) 128c als farbloser Schaum.

 $R_f = 0.36$ (EtOAc/MeOH/NEt₃, 10:1:1).

¹**H-NMR (300 MHz, CDCl₃):** δ = 1.32-1.40 (m, 3H), 1.56-1.75 (m, 5H), 3.41 (m, 1H), 3.46 (s, 1H, N-H), 3.51 (m, 1H), 4.20 (s, 1H, N-H), 6.29 (d, 1H, ³*J* = 5.4 Hz, H-4), 7.65 (d, 1H, ³*J* = 5.4 Hz, H-3), 7.68 (s, 1H, H-1).

¹³C-NMR (75 MHz, CDCl₃): δ = 22.0, 22.2 (C-7,8), 30.4, 30.8 (CH₂, C-6,9), 49.2 (CH, C-5a), 50.1 (CH, C-9a), 107.7 (C-4), 128.8 (Cq, C-10a), 134.8 (C-3), 139.2 (Cq, C-4a) 140.7 (C-4).

GC-MS (EI): RT 10.06 min, *m/z* (%) = 190 (13), 189 (M⁺, 99), 188 (9), 187 (3), 185 (10), 184 (4), 170 (4), 160 (10), 159 (3), 158 (5), 148 (2) 147 (16), 146 (100), 145 (2), 134 (13), 133 (17), 132 (15), 120 (10), 119 (3), 105 (2) 94 (3), 93 (2), 78 (3), 66 (2), 40 (2).

IR (ATR): $\tilde{v} = 3220$ (s), 2927 (s), 2852 (s), 2354 (m), 1725 (w), 1595 (vs), 1523 (vs), 1456 (w), 1443 (m), 1403 (w), 1362 (s), 1294 (s), 1269 (s), 1240 (m), 1206 (s), 1175 (s), 1087 (m), 1052 (m), 1003 (m), 938 (m), 884 (m) 810 (vs) 725 (m) cm⁻¹.

HRMS (EI): berechnet für $C_{11}H_{15}N_3$ 189.1266 [M⁺], gefunden: 189.1259.

(rac)-1-(10-Acetyl-6,7,8,9,9a,10-hexahydro-5aH-pyrido[3,4-b]chinoxalin-5-yl)-ethanon

(46)

In einemn 250 ml Rundkolben löste man **128c** (1.20 g, 6.34 mmol) in 40 ml Pyridin und erhitzte auf 100 °C Ölbadtemperatur. Anschliessend tropfte man 30 ml (32.3 g, 317 mmol, $\rho = 1.082$ g/ml) Acetanhydrid hinzu und hielt die Reaktionstemperatur 24 h bei 100 °C. Durch DC-Kontrolle auf basischem Aluminiumoxid (EtOAC/MeOH, 10:1) konnte die Reaktion verfolgt werden. Nach dem Abkühlen auf Raumtemperatur wurde das Lösungsmittel im Vakuum abdestilliert und das erhaltene Rohprodukt durch Flashchromatographie auf basischem Aluminiumoxid (EtOAc/MeOH, 10:1) gereinigt. Man erhielt **46** als einen dunkelgelben Feststoff (1.42 g, 5.22 mmol, 83 %).

 $R_f = 0.45$ (EtOAc/MeOH, 10:1).

¹**H-NMR (400 MHz, CDCl₃):** δ = 1.34 (m, 4H), 1.60 (d, 4H), 2.23 (s, 3H, *H*₃C-CO-N), 2.27 (s, 3H, *H*₃C-CO-N), 4.74 (m, 1H), 4.85 (m, 1H), 7.25 (d, ³*J* = 5.6 Hz, 1H, H-4), 8.41 (d, ³*J* = 5.6 Hz, H-3), 8.49 (s, 1H, H-1).

¹³C-NMR (75 MHz, CDCl₃): δ = 21.7, 21.9 (C-7,8), 23.1, 23.6 (H₃C-CO-N), 28.4, 28.5 (C-6,9), 55.2, 56.0 (CH, C-5a, 9a), 119.6 (C-4), 130.8 (Cq, C-10a), 141.6 (Cq, C-4a), 147.1, 147.2 (C-1, C-3) 169.1, 169.2 (C=O).

GC-MS (EI): RT 10.45 min, *m/z* (%) = 274 (13), 273 (M⁺, 58), 232 (15), 231 (100), 230 (42), 216 (5), 214 (5), 213 (5), 203 (3), 202 (4), 190 (13), 189 (84), 188 (45), 173 (5), 172 (6), 160 (7), 159 (5), 158 (5), 147 (8), 146 (40) 134 (6), 133 (13), 132 (15), 120 (7), 43 (9).

IR (ATR): $\tilde{v} = 2940$ (m), 1660 (vs), 1587 (m), 1559 (w), 1498 (s), 1448 (w), 1427 (w), 1388 (m), 1353 (w), 1337 (m), 1289 (s), 1270 (s), 1248 (s), 1248 (m), 1220 (w), 1183 (w), 1102 (w), 1036 (m), 978 (m), 857 (w), 839 (w) 777 (w) cm⁻¹

HRMS (EI): berechnet für $C_{11}H_{15}N_3$ 273.1477 [M⁺], gefunden: 273.1482.

Zu einer Suspension von 0.77 g (5.80 mmol) AlCl₃ in 30 ml MTBE gab man 1.32 g (9.35 mmol) LiAlH₄ in kleinen Portionen, ließ 45 min bei Raumtemperatur Rühren und kühlte anschliessend auf 0 °C ab. Nach beendeter Zugabe und weiterem Rühren für 15 min gab man **46** (0.64 g, 2.23 mmol) hinzu und ließ 1 h bei 0 °C rühren. Anschliessend wurde für 8 h unter Rückfluss erhitzt und nach Abkühlen auf Raumtemperatur auf Eiswasser gegossen. Der anorganische Niederschlag wurde abgesaugt und zweimal mit je 30 ml DCM gewaschen. Die Wasserphase wurde auf pH 12 eingestellt und dreimal mit je 40 ml DCM extrahiert. Die kombinierten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das erhaltene Rohprodukt wurde durch Flashchromatographie an Kieselgel (EtOAc/MeOH/NEt₃, 10:2:1) und an basischem Aluminiumoxid (EtOAc/MeOH, 10:1) gereinigt. Man erhielt 0.30 g (1.22 mmol, 55 %) **97** als schwach gelben Feststoff.

 $R_f = 0.32$ (basischem Aluminiumoxid, EtOAc/MeOH, 10:1).

¹**H-NMR (400 MHz, CDCl₃):** δ = 1.11, 1.13 (t, ³*J* = 7.2 Hz, *H*₃C-CH₂-N-5, ³*J* = 7.2 Hz, *H*₃C-CH₂-N-10, 6-H), 1.37 (m, 2H, H-7,8), 1.56 (m, ³*J*_{aa} = 6.8 Hz, ³*J*_{ee} = 3.2 Hz, 4H, H-6, H-9, H-7, H-8), 1.76 (m, ³*J*_{ae} = 3.2 Hz, 1H, H-9), 1.89 (m, ³*J*_{ae} = 3.2 Hz, 1H), 3.18 (dq, ³*J* = 7.2 Hz, ²*J* = 14.4 Hz, 2-H, H₃C-C*H*_{*AB*}-N-5, H₃C-C*H*_{*AB*}-N-10), 3.23 (ddd, ³*J*_{ae} = 2.8 Hz, ³*J*_{ae} = 3.2 Hz, H-1, H-9a), 3.43 (dq, ³*J* = 7.2 Hz, ²*J* = 14.4 Hz, H-6, H-9, H-10, 6.33 (d, ³*J* = 5.6 Hz, 1H, H-4), 7.67 (s, 1H, H-1), 7.72 (d, 1H, H-3).

¹³C-NMR (100 MHz, CDCl₃): δ = 10.8 (H₃C-CH₂-N-5), 11.8 (H₃C-CH₂-N-10), 21.7 (C-7), 22.9 (C-8), 27.3 (C-6), 27.8 (C-9), 40.4 (H₃C-CH₂-N-5), 41.7 (H₃C-CH₂-N-10), 52.8 (C-9a), 56.4 (C-5a), 104.3 (C-4), 130.6 (C-10a, C-1), 139.4 (C-3), 141.2 (C-4a).

GC-MS (EI): RT 10.58 min, m/z (%) = 246 (18), 245 (M⁺, 100), 231 (9), 230 (57), 217 (7), 216 (44), 207 (6), 186 (7), 174 (15), 162 (6), 160 (16), 158 (6), 148 (12), 146 (6), 132 (8).

IR (ATR): $\tilde{v} = 3436$ (s), 2970 (m), 2860 (vs), 2860 (s), 1628 (w), 1576 (vs), 1513 (vs), 1473 (w), 1447 (m), 1348 (s), 1317 (w), 1267 (s), 1211 (s), 1167 (w), 1125 (w), 1107 (w), 1077 (w), 1059 (w), 1040 (w), 920 (w), 798 (s) 777 (m), 746 (m) cm⁻¹.

HRMS (EI): berechnet für $C_{15}H_{23}N_3$ 245.1892 [M⁺], gefunden: 245.1889.

(rac)-1-(6,7,8,9,9a,10-Hexahydro-5aH-pyrido[3,4-b]chinoxalin-5-yl)-ethanon (129)

In einem 100 ml Schlenk-Kolben gab man **128c** (1.00 g, 5.28 mmol), 20 ml DCM, 2.20 ml (15.84 mmol) NEt₃ und 5 mol% PPY (39 mg, 0.264 mmol). Anschliessend gab man 0.54 ml (5.81 mmol) Acetanhydrid hinzu und rührte die Reaktionsmischung für 30 min. Man stoppte die Reaktion durch Zugabe von 2 ml MeOH und rührte für weitere 10 min. Man destillierte das Lösungsmittel bei verminderten Druck ab und reinigte das erhaltene Rohprodukt durch Flashchromatographie (EtOAc/MeOH/NEt₃, 10:1:1). Man erhielt 1 g (4.31 mmol, 82 %) **129**

als weißes Produkt, dass Verunreinigungen von PPY enthielt. **129** wurde ohne weitere Aufreinigung weiterverwendet.

 $R_f = 0.44$ (EtOAc/NEt₃/MeOH, 10:1:1).

¹**H-NMR (300 MHz, CDCl₃):** δ = 1.44 (m, 5H), 1.76 (m, 3H), 2.29 (s, 3H, *H*₃C-CO-N), 3.59 (m, 1H), 4.07 (m, 1H), 7.08 (bs, 1H, H-4), 7.85 (d, ³*J*= 5.4 Hz, 1H, H-3), 7.98 (s, H-1, H-1).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 18.5$ (CH₂), 23.5 (H₃C-CO-N), 24.8, 25.4 (CH₂), 31.08 (CH₂), 48.9 (C-9a), 118.1 (C_q, C-4a), 127.9 (C_q, C-10a), 132.2 (C-4), 136.6 (C-1), 138.0 (C-3), 169.0 (C=O).

HRMS (EI): berechnet für C₁₃H₁₇N₃O 231.1372 [M⁺], gefunden: 231.1368.

(rac)-5-Ethyl-5,5a,6,7,8,9a,10-octahydro-pyrido[3,4-b]chinoxalin (130)

Vorschrift 1:

Man suspendierte in 30 ml THF 619 mg AlCl₃ (4.64 mmol) und ließ 45 min bei Raumtemperatur rühren. Anschliessend kühlte man auf 0 °C und gab 0.300 g (7.91 mmol) LiAlH₄ in kleinen Portionen hinzu. Nach weiterem Rühren von 15 min wurde Verbindung **129** (0.832 g, 3.59 mmol) zugegeben und 1 h bei 0 °C gerührt. Anschliessend wurde für 8 h auf Rückfluss erhitzt und nach dem Abkühlen der Reaktionsmischung auf Eiswasser gegossen. Der anorganische Niederschlag wurde abfiltriert und zweimal mit 30 ml Dichlormethan gewaschen. Die Mutterlauge würde auf pH 12 gebracht und dreimal mit 40 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel gereinigt (EtOAc/NEt₃, 10:1). Man erhielt 0.430 g (1.98 mmol, 55 %) **130** als weissen Schaum.

Vorschrift 2:

In einem 100 ml Rundkolben gab man 400 mg (2.1 mmol) **128c**, 15 ml Methanol und 4.5 ml Acetaldehyd (112.2 mmol, 53 eq; $\rho = 0.782$ bei 4°C). Zu der Reaktionslösung gab man anschliessend 530 mg (8.4 mmol) NaBH₃CN und rührte die Reaktionsmischung 5 h bei Raumtemperatur. Anschliessend destillierte man das Lösungsmittel ab und chromatographierte das Rohprodukt an Kieselgel (EtOAc/NEt₃, 10:1). Ausbeute 325 mg (81 %) **130** als weisser Schaum.

 $R_f = 0.24$ (EtOAc/NEt₃, 10:1).

¹**H-NMR:(300 MHz, CDCl₃):** $\delta = 1.06$ (t, ³J = 7.2 Hz, 3H, H_3 C-CH2-N-5), 1.25 (m, 2H), 1.54 (m, 5H), 1.78 (m, 1H), 3.20 (m, 4H), 3.79 (s, 1H, N-H), 6.21 (d, ³J = 5.7 Hz, 1H, H-4), 7.57 (s, H-1, H-1), 7.65 (d, ³J = 5.7 Hz, 1H, H-3).

¹³C-NMR (75 MHz, CDCl₃): δ = 12.1 (H₃C-CH₂-N-5), 19.3 (C-7), 24.8 (C-8), 26.8 (C-6), 30.9 (C-9), 42.8 (H₃C-CH₂-N-5), 47.8 (C-5a), 58.4 (C-9a), 103.9 (C-4), 129.8 (C_q, C-10a), 133.4 (C-1), 138.4 (C_q, C-10a), 140.9 (C-3).

GC-MS (EI): RT 10.58 min, m/z (%) = 218 (17), 217 (M⁺, 100), 216 (7), 215 (7), 213 (5), 203 (5), 202 (51), 186 (17), 185 (5), 174 (12), 162 (6), 161 (8), 160 (9), 158 (7), 148 (5); 148 (5), 146 (16), 145 (7), 134 (8), 133 (9), 132 (25), 120 (14), 78 (4).

IR (ATR): $\tilde{v} = 3212$ (m), 3093 (w), 2971 (w), 2928 (s), 2851 (s), 1589 (s), 1560 (m), 1505 (vs), 1470 (w), 1442 (m), 1419 (m), 1363 (s), 1280 (vs), 1244 (s), 1210 (m), 1194 (s), 1177 (m), 1108 (m), 1072 (m), 1039 (m), 1007 (w) 968 (w), 897 (w), 886 (w), 740 (m) cm⁻¹.

HRMS (EI): berechnet für C₁₃H₁₉N₃ 217.1579 [M⁺], gefunden 215.1573.

(131)

In einen 100 ml Schlenk-Kolben gab man **130** (0.25 g, 1.15 mmol) und 10 ml THF. Die Lösung wurde auf -78 °C gekühlt und 0.51 ml *n*-BuLi (1.27 mmol, 1.1 eq; 2.5 M in Hexan) zugegeben und die Reaktionslösung 30 min ohne Kühlung gerührt. Nach 30 min wurde die Reaktionslösung erneut auf -78 °C gekühlt und 0.09 ml (0.10 g, 1.40 mmol, $\rho = 1.1051$ g/ml) Acetylchlorid zugegeben. Das Kältebad wurde entfernt und 1 h ohne Kühlung gerührt. Anschliessend wurde die Reaktion mit 4 ml Wasser gestoppt und dreimal mit je 20 ml DCM extrahiert. Die kombinierten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Das Rohprodukt wurde an Kieselgel (EtOAc/MeOH, 8:2) gereinigt und man erhielt 48 mg (0.18 mmol, 16 %) **131** als farblosen Feststoff.

 $R_f = 0.16$ (EtOAc/MeOH, 10:1).

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.19$ (t, ³J = 7.2 Hz, 3H, H_3 C-CH₂-N-5), 1.24 (m, 2H), 1.45 (m, 2H), 1.58 (m, 2H), 1.74 (m, 1H), 2.18 (m, 1H), 3.34 (m, ²J = 14.4 Hz, ³J = 7.2 Hz, 1H, H₃C-CH_{AB}-N-5), 3.53 (m, 1H, C-H), 3.57 (m, ²J = 15.2 Hz, ³J = 7.2 Hz, 1H, H₃C-CH_{AB}-N-5), 4.90 (bs, 1H, C-H), 6.62 (d, ³J = 5.6 Hz, 1H, H-4), 8.12 (s, 1H, H-1), 8.08 (d, ³J = 5.6 Hz, 1H, H-3).

¹³C-NMR (100 MHz, CDCl₃): δ = 12.4 (H₃*C*-CH₂-N-5), 18.9 (C-7), 22.8 (H₃*C*-CO-N-10), 24.7 (C-8), 25.8 (C-6), 28.5 (C-9), 40.0 (H₃C-*C*H₂-N-5), 48.7 (C-9a), 53.7 (C-5a), (C-4), 106.4 (C-4), 120.1 (C_q, C-10a), 145.1, 145.2 (C_q, C-1, C-4a), 147.1 (C-3), 167.1 (C=O).

GC-MS (EI): RT 10.39 min, *m/z* (%) = 260 (11), 259 (M⁺, 100), 230 (8), 218 (9), 217 (79), 216 (40), 203 (4), 202 (23), 203 (3), 202 (23), 201 (4), 189 (6), 188 (31), 187 (4), 186 (3), 174 (11), 162 (4), 161 (6), 160 (5), 158 (4), 148 (5), 146 (6), 136 (3), 132 (4), 131 (12), 120 (6), 43 (3)

IR (ATR): $\tilde{v} = 3398$ (s), 2933 (s), 2863 (m), 1731 (m), 1637 (vs), 1595 (vs), 1512 (s), 1546 (w), 1449 (m), 1397 (s), 1365 (s), 1334 (m), 1285 (s), 1239 (m), 1198 (m), 1168 (vs), 1123 (w), 1067 (w), 1068 (w), 1016 (w), 802 (vs), 718 (w), 668 (m).

HRMS (EI): berechnet für $C_{15}H_{21}N_{3}O$ 259.1685 [M⁺], gefunden 259.1687.

8.2.3 Synthese der (4-Pyridyl)guanidin-Derivate

N-(Pyridin-4-yl)pivalinsäureamid (143)

In einem ausgeheizten Schlenk-Kolben wurden in 140 ml trockenem Dichlormethan 4.50 g (47.9 mmol) 4-Aminopyridin (**104**) gelöst und 6.29 g (62.2 mmol, 8.64 ml) Triethylamin zugegeben. Unter Eiskühlung tropfte man eine Lösung aus 6.04 g (50.0 mmol, 6.16 ml) Pivalinsäurechlorid in 20 ml Dichlormethan über 2 h hinzu. Die Reaktionslösung wurde bei Raumtemperatur über Nacht (12 h) gerührt. Nach Verdünnung mit Dichlormethan wurde mit gesättigter Natriumhydrogencarbonatlösung 2 mal gewaschen und die organische Phase über Natriumsulfat getrocknet. Nach Entfernen des Lösungsmittels erhielt man 8.3 g (46.6 mmol, 97 %) **143** als weissen Feststoff.

¹**H-NMR (200 -MHz, CDCl₃):** $\delta = 1.32$ (s, 9H, H-3', 4', 5'), 7.53 (d, ³*J* = 6.4 Hz, 2H, H-3,5), 7.55 (br, 1H, NH), 8.47 (d, ³*J*=6.4 Hz, 2H, H-2,6) ppm

Die ¹H-NMR-Daten von **143** stimmen mit der Literatur beschriebenen überein.^[56]

N-(3-Methylpyridin-4-yl)pivalsäureamid (144)

Verbindung **143** (8.9 g, 50 mmol) wurde in einem Dreihalskolben mit Tropftrichter und Stickstoffhahn in absolutem THF (200 ml) unter Stickstoffatmosphäre gelöst und anschliessend auf -78 °C gekühlt. *n*-Butyllithium (50 ml, 125 mmol, 2.5 eq, 2.5 M in Hexan) wurde langsam über den Tropftrichter zugetropft (Reaktionsgemisch bis Ende der Zugabe auf -78 °C gehalten). Dabei bildete sich zu Beginn der Reaktion ein farbloser Niederschlag in der gelben Lösung, der sich nach 3-stündigem Rühren bei 0 °C wieder auflöste. Anschliessend wurde wieder auf -78 °C abgekühlt und langsam Iodmethan (3.45 ml, 55 mmol, $\rho = 2.26$ g/ml) zugetropft. Man liess das Reaktionsgemisch über Nacht auf Raumtemperatur erwärmen. Die klare orange Lösung wurde langsam auf Wasser (200 ml) gegeben, dreimal mit Ether (jeweils 50 ml) extrahiert, die vereinigten organischen Phasen wurden mit gesättigter Natriumchlorid-Lösung gewaschen (70 ml) und über Magnesiumsulfat getrocknet. Man erhielt nach Abdestillation unter verminderten Druck ein gelbes Öl (Rohausbeute 9.53 g). Dieses wurde an Kieselgel gereinigt (Aceton/Isohexan, 3:5). Ausbeute: 7.49 g (72 %) **144** als schwach gelbes Öl.

 $R_f = 0.29$ (Aceton/Isohexan, 3/5)

¹**H-NMR (200 MHz, CDCl₃):** $\delta = 1.33$ (s, 9H, *t*-butyl-), 2.22 (s, 3H, 7-CH₃), 7.46 (s, 1H, NH), 8.04 (d, ${}^{3}J = 6.0$ Hz, 1H, H-5), 8.29 (s, 1H, H-2), 8.32 (d, ${}^{3}J = 6.0$ Hz, 1H, H-6).

Die ¹H-NMR-Daten von **144** stimmen mit der Literatur beschriebenen überein.^[56]

N-(3-Hexylpyridin-4-yl)pivalinsäureamid (146)

2.98 g (16.0 mmol) **143** wurden unter Stickstoff in 80 ml THF gelöst, auf -78 °C gekühlt und 12.8 ml *n*-Butyllithium (2.5M in Hexan, 32 mmol) in 0.5 h langsam zugetropft. Man rührte 1 h bei -78 °C, entfernte anschliessend die Kühlung und ließ die Lösung auf 0 °C mittels eines Eisbades aufwärmen. Man rührte die nun farblos-braune Suspension weitere 4 h bei 0 °C. Anschließend wurde die Suspension wurde erneut auf -78 °C gekühlt, 1.91 g (16 mmol, 2.25 ml) absolutes Hexylbromid wurden auf einmal zu gegeben. Man erwärmte die Reaktionslösung erneut durch ein Eisbad auf 0°C. Anschließend entfernte man das Eisbad und ließ 8 h bei Raumtemperatur rühren. Die klare schwach gelbe Reaktionsmischung wurde in einen Scheidetrichter transferiert und mit 10 ml ges. NaHCO₃ gewaschen. Man trennte die organische Phase ab und extrahierte zweimal die wässrige Phase mit je 10 ml Dichlormethan. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert, das unter verminderten Lösungsmittel abdestilliert und das gelbe Rohprodukt an Kieselgel chromatographiert (EtOAc/Isohexan, 10/2). Man erhielt 2.21 g (5.95 mmol, 45 %) **146** als schwach gelbes Öl.

 $R_f = 0.28$ (EtOAc/Isohexan, 10/2).

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.82$ (t, ³J = 7.2 Hz, 3H, H-12), 1.26 (s, 9H, *t*-butyl-), 1.27 (m, 6H, H-9,10,11), 1.52 (t, ³J = 7.2 Hz, 2H, H-8), 2.51 (t, ³J = 7.2 Hz, 2H, H-7), 7.51 (s, 1 H, NH), 8.09 (d, ³J = 6.0 Hz, 1 H, H-5), 8.29 (s, 1H, H-2), 8.30 (d, ³J = 6.0 Hz, 1H, H-6).

¹³C-NMR (150 MHz, CDCl₃): δ = 14.1 (C-12), 27.6 (C-3', C-4', C-5'), 29.3 (C-7), 29.5 (C-8), 22.7, 29.0, 31.7 (C-9, C-10, C-11), 114.7 (C-5), 125.4 (C_q, C-3), 143.0 (C_q, C-4), 149.0 (C-6), 150.7 (C-2), 176.9 (C_q, C=O).

IR (ATR) $\tilde{v} = 3309 \text{ (w)}$, 2956 (w), 2927 (m), 2858 (w), 1662 (m), 1576 (s), 1500 (vs), 1458 (sh, s), 1410 (m), 1566 (m), 1294 (m), 1224 (w), 1294 (m), 1192 (m), 1145 (m), 1059 (w), 1026 (w), 923 (w), 834 (m), 753 (w), 723 (w) cm⁻¹. **GC-MS (EI)** RT 9.30 min, *m/z* (%) = 263 (7), 262 (M⁺, 34), 219 (12), 206 (8), 205 (51), 192 (14), 177 (6), 135 (14), 133 (5), 121 (11), 108 (13), 107 (20), 85 (9), 57 (100), 41 (16).

HRMS (EI): berechnet für $C_{16}H_{26}N_2O$: 262.2045 [M⁺], gefunden 262.2032.

3-Hexylpyridin-4-amin (148)

1.55 g (5.90 mmol) **146** wurden in 25 ml 6 N HCl gelöst und 16 h unter Rückfluss erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde die Reaktionslösung auf einen pH von über 13 eingestellt und mit Dichlormethan dreimal extrahiert. Nach dem Abdestillieren des organischen Lösungsmittels erhielt man 1.02 g (5.72 mmol, 99%) **148** als gelbbraunes Pulver.

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.85$ (t, ³J = 7.2 Hz, 3H, H-12), 1.33-1.26 (m, 6H, H-9-11), 1.55 (quin, ³J = 7.8 Hz, 2H, H-8), 2.42 (t, ³J = 7.8 Hz, 2H, H-7), 4.21 (s, 1H, -NH₂), 6.46 (d, ³J = 5.4 Hz, 1H, H-5), 8.04 (d, ³J = 5.4 Hz, 1H, H-6), 8.05 (s, 1H, H-2).

¹³C-NMR (150 MHz, CDCl₃): δ = 150.9 (C_q, C-4), 150.1 (C-2), 148.3 (C-6), 121.4 (C_q, C-3), 109.8 (C-5), 31.9, 29.4, 22.8 (C-9, C-10, C-11), 28.7 (C-8), 28.4 (C-7), 14.2 (C-12).

IR (ATR) $\tilde{v} = 3473$ (w), 3398 (w), 3123 (m), 2954 (m), 2923 (s), 1654 (s), 1560 (vs), 1565 (sh,m), 1501 (s), 1467 (m), 1434 (m), 1378 (w), 1335 (m), 1307 (w), 1290 (w), 1272 (w), 1229 (w), 1185 (s), 1050 (m), 1028 (w), 868 (m), 829 (s) cm⁻¹.

GC-MS (EI): RT 9.30 min, m/z (%) = 179 (2), 178 (M⁺,12), 149 (2), 136 (2), 135 (4), 122 (2), 121 (11), 119 (2), 108 (13), 107 (100), 95 (3), 94 (2), 80 (5), 53 (3), 41 (2).

HRMS (EI): berechnet für $C_{11}H_{18}N_2$ 178.1470 [M⁺], gefunden 178.1446.

3-Methylpyridin-4-amin (147)

1.01 g (5.31 mmol) von 144 wurden in 20 ml 6 N Salzsäure gelöst und 21 h auf 80° C erhitzt. Nach dem Abkühlen auf Raumtemperatur wurde die Reaktionslösung auf einen pH von über 13 eingestellt und mit Dichlormethan dreimal extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet. Man erhielt nach Entfernen des Lösungsmittels 0.5 g (4.6 mmol, 86%) 147 als braunes Pulver.

 $R_f = 0.70$ (basisches Aluminiumoxid, MeOH/EtOAc, 1/3)

¹**H-NMR (200 MHz, CDCl₃):** δ = 2.10 (s, 3H, H-7), 4.13 (s, 2H, -NH₂), 6.49 (d, ³*J* = 5.4 Hz, 1 H, H-5), 8.10 (s, 1H, H-2), 8.10 (d, ³*J* = 5.4 Hz, 1 H, H-6).

Die ¹H-NMR-Daten von **147** stimmen mit der Literatur beschrieben überein.^[56]

(Chlor-dimethylamino-methylen)-dimethylammoniumchlorid (149)

1,1,3,3-Tetramethylthioharnstoff (13.22 g, 100 mmol) wurde in einem ausgeheizten Dreihalskolben mit Stickstoffhahn, Septum und Rückflusskühler in trockenem Toluol (250 ml) gelöst und anschliessend auf 80 °C erwärmt. Nach der langsamen Zugabe von Oxalylchlorid (11 ml, 120 mmol) wurde 4 h unter Rückfluß erhitzte. Dabei fiel nach etwa einer Stunde ein farbloser Niederschlag aus und die gelbe Lösung färbte sich braun. Nach Entfernen des Lösungsmittels mit Hilfe einer Schutzgasfritte erhielt man **149** als einen hellbraunen, stark hygroskopischen Feststoff (11.9 g, 69.6 mmol, 70%). **149** sollte sofort weiter umgesetzt werden.

¹**H-NMR (200 MHz, CDCl₃):** δ = 3.61 (s, 12H, H-4,5) ppm.

¹H-NMR-Daten von **149** stimmen mit der Literatur überein.^[84]

2-Chlor-1,3-dimethyl-4,5-dihydro-3H-imidazolium-chlorid (150)

1,3–Dimethyl-imidazolidin-2-on (5.19 ml, 48.0 mmol, $\rho = 1.055$ g/ml) wurde in einem Dreihalskolben mit Stickstoffhahn, Rückflußkühler und Septum in trockenem Tetrachlormethan (30 ml) gelöst. Anschließend wurde innerhalb von 20 min. bei Raumtemperatur unter rühren über eine Spritze Oxalylchlorid (4.32 ml, 57.6 mmol) zur Lösung zugeführt. Das Reaktionsgemisch wurde über Nacht bei 60 °C unter Rückfluss gekocht. Dabei fiel nach einer Stunde bereits ein Feststoff aus. Nach Entfernung des Lösungsmittels mittels einer Schutzgasfritte, wurde noch einmal mit trocknem Tetrachlormethan gewaschen. Man erhielt (6.10 g, 36.1 mmol, 75 %) **150** als bräunlichen Feststoff. **150** sollte aufgrund seiner stark hygroskopischen Eigenschaften sofort weiter umgesetzt werden.

¹**H-NMR (200 MHz, CDCl₃):** δ = 3.34 (s, 6H, H-6,7), 4.37 (s, 4H, H-4,5).

¹H-NMR-Daten von **150** stimmen mit der Literatur überein.^[58]

1,1,3,3-Tetramethyl-2-(3-methylpyridin-4-yl)guanidin (88)

3-Methyl-pyridin-4-yl-amin (147) (0.75 g, 6.93 mmol) und 149 (1.18 g, 6.93 mmol) wurden in einem ausgeheizten Dreihalskolben mit Stickstoffhahn, Septum und Blasenzähler im Stickstoffstrom eingewogen und anschliessend in 20 ml Dichlormethan gelöst. Über eine Spritze wurde die Hünigs Base (2.1 eq, 2.48 ml, 14.5 mmol, $\rho = 0.757$ g/ml) langsam unter Rühren zugegeben. Dabei färbte sich die Lösung tief rot. Die Reaktionsmischung wurde über

^[84] W. Kantlehner, U. Greiner, *Synthesis*, **1979**, 5, 746.

72 h bei Raumtemperatur gerührt. Die Lösung wurde auf 1N HCl gegeben und dreimal mit Chloroform extrahiert. Die organischen Phasen wurden verworfen und die Wasserphase mit 2N NaOH auf einen pH größer 11 gebracht. Die wässrige Phase wurde dreimal mit Dichlormethan (jeweils 50 ml) ausgeschüttelt, die organische Phase über Natriumsulfat getrocknet und anschliessend das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch zweimalige Flashchromatochraphie an Kieselgel (CHCl₃/MeOH/NEt₃, 20:1:2) und basischem Aluminiumoxid (EtOAc/MeOH, 20:1) gereinigt. Ausbeute 140 mg (0.66 mmol, 9.5%) **88** als schwach gelber kristalliner Feststoff.

 $R_f = 0.95$ (Kieselgel, CHCl₃/MeOH/NEt₃, 20:1:2); $R_f = 0.40$ (basischem Aluminiumoxid, EtOAc/MeOH, 20:1)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 2.07$ (s, 3H, Ar-CH₃), 2.69 (s, 12H, N-CH₃), 6.33 (d, ³J = 5.6 Hz, 1H, 5-H), 8.12 (d, ³J = 5.6 Hz, 1H, 6-H), 8.16 (s, 1H, H-2).

¹³C-NMR (100 MHz, CDCl₃): $\delta = 15.2$ (Ar-CH₃), 39.5 (N-CH₃), 115.9 (C-5), 124.7 (C-3), 147.7 (C-2), 150.6 (C-6), 157.6 (C_q, C-4), 160.1 (C_q, Ar-N=C(NMe₂)₂).

IR (ATR): $\tilde{v} = 3014$ (w), 2980 (w), 2941 (m), 2876 (w), 1595 (sh), 1549 (vs, sh), 1510 (vs), 1483 (vs), 1462 (vs), 1402 (vs), 1381 (vs), 1349 (s, sh), 1305 (w), 1281 (w), 1244 (w), 1229 (m), 1190 (m), 1166 (w), 1143 (vs), 1109 (w), 1068 (m), 1055 (m), 1024 (s), 989 (s), 922 (m), 868 (m), 841 (vs), 788 (m), 771 (m), 743 (m), 695 (m) cm⁻¹.

GC-MS(EI) RT 8.15 min, m/z (%) = 207.3 (10), 206.2 (M⁺, 62), 205.2 (19), 192.2 (10), 191.2 (100), 162.1 (54), 148.1 (17), 135.1 (33), 119.1 (89), 100.1 (13).

HRMS(EI): berechnet für $C_{11}H_{18}N_4$ 206.1531 [M⁺], gefunden 206.1533.

3-Methyl-N-(1,3-dimethylimidazolidin-2-yliden)pyridin-4-amin (95)

147 (1.00 g, 9.42 mmol) und Hünigs Base (2.1 Äq., 3.38 ml, 19.7 mmol) wurden in Dichlormethan (20 ml) gelöst. Zu dieser Lösung wurde **150** (1.59 g, 8.43 mmol) gegeben und 72 h gerührt. Dabei färbte sich die klare braune Lösung mit der Zeit rot. Das Reaktionsgemisch wurde in 5%ige HCl gegossen (100 ml), mit Dichlormethan (3x50 ml) extrahiert und die organische Phase verworfen. Die wässrige Phase wurde mittels 2 N NaOH auf pH 12 gebracht und erneut mit Dichlormethan (3x50 ml) extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet und das Lösungsmittel unter verminderten Druck abdestillert. Das erhaltene Rohprodukt wurde durch Flashchromatographie an Kieselgel (CHCl₃/MeOH/NEt₃, 40:1:2) und basischem Aluminiumoxid (EtOAc/MeOH, 20:1) gereinigt. Die Ausbeute beträgt 340 mg (1.66 mmol, 18%) **95** als weisser kristalliner Feststoff.

 $R_f = 0.85$ (Kieselgel, CHCl₃/MeOH/NEt₃, 40:1:2), $R_f = 0.40$ (basischem Aluminiumoxid, EtOAc/ MeOH, 20:1).

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 2.10$ (s, 3H, CH₃), 2.63 (s, 6H, N-CH₃), 3.32 (s, 4H, H-4',5'), 6.64 (d, ${}^{3}J = 5.4$ Hz, 1H, H-5), 8.13 (d, ${}^{3}J = 5.4$ Hz, 1H, H-6), 8.17 (s, 1H, H-2).

¹³C-NMR (75 MHz, CDCl₃): δ = 15.8 (Ar-CH₃), 35.2 (N-CH₃), 48.7 (C-4',C-5'), 117.2 (C-5), 125.8 (C-3), 147.9 (C-6), 150.8 (C-2), 155.8 (C_q, C-2'), 156.5 (C_q, C-4).

IR (ATR): $\tilde{v} = 2941$ (m), 2856 (m), 1624 (s), 1573 (s), 1534 (m), 1486 (s), 1440 (s), 1416 (s), 1391 (vs), 1324 (w), 1307 (w), 1279 (s), 1235 (s), 1187 (s), 1124 (m), 1073 (w), 1052 (w), 1034 (s), 989 (m), 970 (m), 953 (w), 921 (w), 884 (s), 805 (s), 791 (m), 764 (m), 728 (m), 690 (m) cm⁻¹.

GC-MS (EI) RT 8.77 min, *m/z* (%) = 205.2 (13), 204.2 (M⁺ 100), 203.2 (52.5), 190.2 (10), 189.2 (79), 188.2 (4), 175.2 (3), 161.2 (6), 160.2 (5), 148.2 (6), 147.2 (4), 146.2 (8), 133.2 (4), 132.2 (8), 119.2 (9), 107.2 (5), 98.2 (18), 92.1 (4), 69.1 (10), 65.1 (6), 57.1 (4), 56.1 (6), 44.1 (6), 43.1 (4), 42.0 (13).

HRMS (EI): berechnet für C₁₁H₁₆N₄ 204.1350 [M⁺], gefunden 204.1359

3-Hexyl-*N*-(1,3-dimethylimidazolidin-2-yliden)pyridin-4-amin (98)

3-Hexyl-pyridin-4-ylamin (148) (1.48 g, 8.31 mmol) und 150 (4 Äq., 5.6 g, 33 mmol) wurden im Stickstoffstrom in einen ausgeheizten Dreihalskolben mit Septum und Stickstoffhahn eingewogen und in 40 ml Dichlormethan gelöst. Nach langsamer Zugabe von Hünigs Base (2.1 eq., 2.97 ml, 17.45 mmol) mittels einer Spritze wurde das Reaktionsgemisch 4 h gerührt. Die rote Lösung wurde in 5% HCl gegossen und mit Dichlormethan (3x50 ml) extrahiert. Die organische Phase wurden verworfen und die wässrige Phase mit 2N NaOH auf einen pH von über 11 gebracht. Anschließend wurde dreimal mit Dichlormethan (je 70 ml) extrahiert, die vereinigten organischen Phasen über Natriumsulfat getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Flashchromatographie an basischem Aluminiumoxid gereinigt (EtOAc/MeOH, 25:1; EtOAc/MeOH, 10:1). Die Ausbeute betrug 500 mg, 1.82 mmol, 22%) **98** als farbloses Öl, das im Gefrierschrank fest wurde.

 $R_f = 0.80$ (basischem Aluminiumoxid, EtOAc/MeOH, 25:1).

¹**H-NMR (600 MHz, CDCl₃):** $\delta = 0.80$ (t, ³J = 7.8 Hz, 3H, H-12), 1.27-1.20 (m, 6H, H-9,10,11), 1.51 (quin, ³J= 7.2 Hz, 2H, H-8), 2.46 (t, ³J = 7.2 Hz, 2H, H-7), 2.56 (s, 6H, N-CH₃), 3.24 (s, 4H, H-4',5'), 6.54 (d, ³J = 5.4 Hz, 1H, H-5), 8.03 (d, ³J = 5.4 Hz, 1H, H-6), 8.08 (s, 1H, H-2).

¹³C-NMR (150 MHz, CDCl₃): $\delta = 14.3$ (C-12), 29.1 (C-7), 29.6 (C-8), 31.9, 29.4, 22.8 (C-9, C-10, C-11), 34.9 (N-CH₃), 48.5 (C-4', C-5'), 117.0 (C-5), 129.9 (C_q, C-3), 147.4 (C-6), 150.2 (C-2), 155.8 (C_q, C-2'), 155.9 (C_q, C-4).

IR (ATR): $\tilde{v} = 2921$ (m), 2850 (m), 1630 (s), 1572 (vs), 1537 (s), 1481 (m), 1440 (m), 1414 (m), 1395 (m), 1280 (m), 1236 (m), 1185 (s), 1074 (w), 1032 (m), 970 (m), 894 (m), 832 (m), 723 (w), 697 (m), 654 (m) cm⁻¹.

GC-MS(EI) RT 10.44 min, *m/z* (%) = 276.3 (8), 275.3 (47), 274.3 (61), 273.3 (21), 259.3 (6), 245.3 (11), 232.2 (13), 231.2 (79), 218.2 (18), 217.2 (100), 205 (8), 204 (73), 203 (67), 202 (5), 201 (7), 190 (10), 189 (81), 188.2 (8), 187.2 (10), 174.2 (7), 160.1 (6), 98.1 (14), 58.1 (7), 56.1 (7), 42 (6).

HRMS(EI): berechnet für $C_{16}H_{26}N_4$ 274.2157 [M⁺], gefunden 274.2159.

N-(1,3-Dimethylimidazolidin-2-yliden)pyridin-4-amin (151)^[61]

1.70 g (15 mmol) 1,3-Dimethyl-imidazolidin-2-on wurden in 10 ml Tetrachlorkohlenstoff gelöst und 2.2 g (17 mmol, 1.5 ml) Oxalylchlorid zugegeben. Die Reaktionslösung wurde über 16 h auf 70 °C erhitzte und nach dem Abkühlen über Schutzgasfritte abfiltriert. Der filtrierte Feststoff wurde mit Tetrachlorkohlenstoff gewaschen und in einen Schlenk-Kolben überführt, anschliessend in 30 ml Dichlormethan aufgenommen und 2.5 g (19 mmol, 3.3 ml) Hünigs Base zugegeben. Nach 20 Minuten gab man 1.41 g (15.0 mmol) 4-Aminopyridin hinzu. Die Lösung wurde bei Raumtemperatur 12 h gerührt und auf Kieselgel mit (CHCl₃/MeOH/NEt₃, 40:1:2) chromatographiert. Man erhielt 0.5 g (2.6 mmol, 18 %) **151** als ein klares Öl, das im Kühlschrank fest wurde.

 $R_f = 0.7$ (CHCl₃/MeOH/NEt₃, 40:1:2).

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 2.65$ (s, 6H, N-CH₃), 3.33 (s, 4H, H-4^{\,5[\]}), 6.60 (d, ³*J*=6.3 Hz, 2H, H-5, H-3), 8.20 (d, ³*J*=6.3 Hz, 2H, H-6, H-2).

¹³C-NMR (75 MHz, CDCl₃): δ = 35.3 (N-CH₃), 48.5 (C-4^{\cord{*}}, C-5^{\cord{*}}), 117.7 (C-3, C-5), 149.9 (C-2, C-6), 157.7 (C_q, C-2^{\cord{*}}, C-4).

IR (ATR): $\tilde{v} = 2941$ (m, CH₃), 2857 (m, CH₂), 1619 (s, C=N), 1569 (s), 1485 (s), 1443 (s), 1413 (s), 1391 (s), 1324 (m), 1277 (s), 1211 (s), 1069 (m), 1031 (s), 986 (s), 967 (s), 877 (m), 838 (s), 755 (s), 731 (s), 699 (s), 650 (s) cm⁻¹

GC-MS(EI): RT 1.22 min, *m/z* (%) 191 (11), 190 (94), 189 (100), 162 (6), 161 (9), 134 (14), 98 (14), 78 (10), 69 (13), 57 (7), 56 (6), 51 (9), 44 (6), 43 (7), 42 (16).

15.05 g (70.0 mmol) (S)-N-Carboxytertbutyloxyprolin wurden unter Schlenkbedingungen in 60 ml Dichlormethan gelöst und 7.30 g (72.2 mmol, 10.0 ml) Triethylamin zugegeben. Unter Eiskühlung tropft man 9.57 g (70.4 mmol, 9.13 ml) Chlorameisensäureisobutylester zu, wobei sich ein farbloser Niederschlag bildet. Nach 10 min wurden 7.50 g (70.0 mmol, 7.65 ml) Benzylamin zugegeben und die Eiskühlung entfernt. Mittels Blasenzähler kontrolliert man die CO₂-Entwicklung, welche nach 1 h kaum mehr zu erkennen ist. Der vollständige Umsatz der Reaktion kann durch DC-Kontrolle überprüft wurden. (Isohexan/EtOAc/NEt₃, 4:4:1, $R_f = 0.7$). Nach beendeter Reaktion wurde die Reaktionslösung in einen Scheidetrichter überführt und mit 5% iger Na₂CO₃ gewaschen. Anschliessend wurde die organische Phase über Na₂SO₄ getrocknet und des Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde ohne weitere Aufreinigung weiter verwendet. Die Ausbeute betrug 21.2 g (99%, 69.7 mmol) eines weissen Feststoffs.

$$R_f = 0.7$$
 (Isohexan/EtOAc/NEt₃, 4:4:1).

¹**H-NMR (400 MHz, [D₆]-DMSO):** $\delta = 1.33$ (s, 9H, -C(CH₃)₃), 1.79 (m, 3H, H-4, H-3), 2.09 (s, 1H, H-4), 3.12 (s, 1H, HN^+ -BOC), 3.34 (m, 2H, H-2), 4.24 (m, 3H, Ph-CH₂, H-5), 7.27-7.18 (m, 5H, *phenyl*-H), 8.11 (s, 1H, CON*H*).

IR (ATR): $\tilde{v} = 3312$ (m, br, NH), 2977 (m, Ph-H), 2872 (m, Ph-H), 1681 (s, C=O), 1652 (s, C=O / NH), 1527 (m), 1392 (s), 1370 (m), 1247 (m), 1127 (m), 1016 (s), 920 (w), 871 (s), 798 (s), 766 (m), 723 (m), 692 (m), 652 (m) cm⁻¹.

¹H-NMR-Daten stimmen mit der Literatur überein.^[85]

21.2 g (69.7 mmol) *(S)*-2-Benzylcarbamoyl-pyrrolidin-1-carbonsäure-*tert*-butylester wurden in einem 250 ml Kolben in 50 ml Dichlormethan gelöst und 20 ml Trifluoressigsäure zugegeben. Mittels Blasenzähler wurde die CO₂-Entwicklung beobachtet. Nach 1 h wurde die Reaktion mittels DC kontrolliert, (Isohexan/EtOAc/NEt₃, 4:4:1, $R_f = 0.5$) und nach vollständiger Umsetzung das Lösungsmittel im Vakuum abdestilliert. Nach dem Trocknen im Ölpumpenvakuum erhielt man 14.2 g (69.6 mmol) Rohprodukt welches ohne weitere Reiniugung umgesetzt wurde.

¹**H-NMR (400 MHz, CDCl₃):** δ = 1.71 (m, 2H, H-3), 1.91 (m, 1H, H-4), 2.13 (m, 1H, H-4), 2.76 (s, 1H, NH), 2.88 (m, 1H, H-2), 3.00 (m, 1H, H-2), 3.78 (m, 1H, H-5), 4.39 (d, 2H, -Ph-CH₂), 7.30 (m, 5H, -phenyl), 8.07 (s, 1H, NH).

¹³C-NMR (100 MHz, CDCl₃): δ = 26.4 (C-3), 30.9 (C-4), 42.8 (C-8), 47.4 (C-2), 60.8 (C-5), 128.0 (m, Ph), 139.3 (s, Ph), 174.9 (CONH).

IR (ATR): $\tilde{v} = 3190$ (m), 3061 (m), 2832 (m, $R_2NH_2^+$), 2714 (m, $R_2NH_2^+$), 2547 (m, $R_2NH_2^+$), 1670 (s, C=O), 1587 (m, Ph), 1563 (m, NH), 1383 (m), 1303 (m), 1263 (m), 1231

^[85] D. Gryko, R. Lipiński, Eur. J. Org. Chem. 2006, 3864.

(m), 1078 (w), 1050 (w), 1003 (w), 943 (w), 925 (w), 910 (w), 803 (m), 772 (w), 755 (s), 730 (m), 696 (s), 620 (m) cm⁻¹.

GC-MS (EI) RT 8.96 min, m/z (%) = 205.3 (1), 106.2 (3), 92.2 (1), 91.2 (12), 77.2 (1), 70.2 (100), 69.2 (1), 68.2 (4), 65.1 (2), 51.1 (1), 43.1 (1), 41.0 (3), 41.0 (1).

(S)-Phenyl-N-((pyrrolidin-2-yl)methyl)methanamin^[61]

1.56 g (11.7 mmol) Aluminiumchlorid wurde unter Eiskühlung in 40 ml Tetrahydrofuran gelöst. Nach 0.5 h Rühren bei Raumtemperatur gab man 0.89 g (23.4 mmol) LiAlH₄ zu. Die Suspension wurde 0.5 h gerührt und 2.00 g (9.80 mmol) *(S)-N*-Benzylpyrrolidin-2-carboxamid zugegeben. Die Eiskühlung wurde entfernt und die Lösung 12 h unter Rückfluss erhitzt. Man ließ die Lösung abkühlen und gab die Ethersuspension langsam auf rührendes Eiswasser, welches mit Natriumhydroxid auf pH 12 eingestellt wurde. Man filterte den Niederschlag ab, separiert die organische Phase, und extrahiert mit Dichlormethan die basische Wasserphase. Der anorganische Niederschlag wurde mit Dichlormethan gewaschen. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Man erhielt 1.90 g (100 %, 10.0 mmol) eines fast farblosen Öls.

¹**H-NMR (600 MHz, CDCl₃):** *δ* = 1.60 (m, 2H, H-3), 1.84 (m, 1H, H-4), 2.04 (m, 1H, H-4), 2.82 (m, 4H, H-6, H-2), 3.66 (m, 1H, H-5), 4.32 (m, 2H, Ph-C*H*₂), 7.19 (m, 5H, *phenyl-H*), 7.97 (s, 1H, NH-7).

¹³C-NMR (150 MHz, CDCl₃): δ= 26.4 (C-3), 31.0 (C-4), 43.0 (C-8), 47.4 (C-6, C-2), 60.7 (C-5), 128.0 (*phenyl*-C), 138.9 (*phenyl*-C).

IR (ATR): $\tilde{v} = 3189$ (w, Ph-H), 3062 (w, Ph-H), 2961 (w), 2833 (w, R₂N⁺H₂), 2714 (w, R₂N⁺H₂), 2638 (w, R₂N⁺H₂), 1671 (s), 1565 (m, NH), 1492 (w), 1453 (w), 1384 (w), 1343 (w), 1303 (w), 1263 (m), 1233 (m), 1079 (w), 755 (m), 732 (m, Ph), 696 (s, Ph), 672 (m, Ph) cm⁻¹.

HR-LC-ESI-MS: berechnet für $C_{12}H_{19}N_2$ [M+H⁺] 191.1543, gefunden 191.1546.

(S)-2-Benzyl-hexahydro-1*H*-pyrrolo[1,2-*c*]imidazol-3-thion (152)^[61]

1.30 g (6.84 mmol) (S)-Phenyl-N-((pyrrolidin-2-yl)methyl)methanamin wurden in Dichlormethan unter Stickstoff gelöst und 1.45 g (14.3 mmol) Triethylamin zugegeben. Die Lösung wurde mit Eiswasser gekühlt und 0.86 g (7.48 mmol) Thiophosgen langsam zugegeben. Die Lösung färbte sich rot. Die Reaktionslösung wurde auf Raumtemperatur gebracht und weitere 2 h gerührt. Die Lösung färbt sich gelb. An der Vakuumpumpe wurden flüchtige Bestandteile entfernt und die Reaktionslösung über Kieselgel (Isohexan/EtOAc, 2:1) chromatographiert. Man erhielt 0.50 g (2.15 mmol, 31%) **152** als einen schwach gelben Feststoff der sich in Methanol oder in 10% Chloroform in Methanol umkristallisieren lässt.

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 1.31$ (m, 1H, H-7) 1.90 (m, 3H, H-6, H-7), 3.33 (m, 2H, H-1, H-5), 3.59 (m, 1H, H-5), 3.86 (m, 1H, H-7a), 4.05 (m, 1H, H-1), 4.78 (m, 2H, Ph-CH₂), 7.24 (m, 5H, *phenyl*-H).

¹³C-NMR (100 MHz, CDCl₃): δ = 186.6 (C=S), 136.8 (*phenyl-C*), 127.9 (*phenyl-C*), 59.8 (C-7a), 51.3 (C-5), 51.2 (Ph-CH₂), 48.6 (C-1), 31.0 (C-7), 24.8 (C-6).

IR (ATR): $\tilde{v} = 2954$ (m), 2931 (m), 2891 (m), 2867 (m), 1659 (m), 1603 (w), 1491 (s), 1452 (s), 1385 (s), 1357 (m), 1302 (s), 1266 (s), 1226 (s), 1199 (s), 1099 (m), 1078 (m), 909 (m), 875 (m), 674 (m), 699 (s), 649 (s) cm⁻¹.

GC-MS (EI) RT 10.29 min m/z (%) = 234 (5), 233 (94), 232 (100), 231 (17), 199 (10), 154 (3), 148 (3), 147 (5), 140 (20), 130 (12), 104 (7), 96 (3), 91 (3), 90 (35), 88 (3), 84 (10), 82 (6), 77 (3), 72 (5), 70 (4), 69 (7), 68 (3), 65 (9), 55 (5), 41 (11).

HRMS (EI): berechnet für $C_{13}H_{16}N_2S$ [M⁺] 232.1034, gefunden 232.1023.

(S)-N-(2-benzyl-hexahydro-1*H*-pyrrolo[1,2-*c*]imidazol-3-yliden)-3-methylpyridin-4-amin (142)^[61]

0.75 g (3.23 mmol) **152** wurden unter Schlenkbedingungen in 20 ml Tetrachlorkohlenstoff gelösst und 0.52 g (4.10 mmol) Oxalylchlorid zugegeben. Die Lösung färbt sich gelb. Man rührt 12 h bei 60 °C, wobei sich ein schwarzbraunes Öl auf dem Lösungsmittel bildet. Man entfernt das Lösungsmittel und das verbleibende Oxalylchlorid im Ölpumpenvakuum, bis nur noch das dunkelbraunes Öl vorhanden ist und lässt abkühlen. Der hygroskopische Feststoff wurde in 30 ml Dichlormethan gelöst und mit 0.87 g (6.71 mmol, 1.15 ml) Hünigs Base versetzt. Zu der braunen Lösung wurden 0.38 g (3.52 mmol) **147** gegeben und über 12 h gerührt. Nach zweifacher Säulenchromatographie an Kieselgel (CHCl₃/CH₃OH/Et₃N, 20:1:2 und CHCl₃/Isohexan/Et₃N, 4:4:1) erhielt man 600 mg (21%) **142** als einen schwach gelben Feststoff.

 $R_f = 0.85$ (CHCl₃/CH₃OH/Et₃N, 20:1:2) und 0.50 (CHCl₃/Isohexan/Et₃N, 4:4:1)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 1.30$ (m, 1H, H-7), 1.62 (m, 1H, H-6), 1.72 (m, 1H, H-6), 1.85 (m, 1H, H-7), 2.05 (s, 3H, 3'-Methyl), 2.68 (m, 2H, H-5), 3.09 (m, 1H, H-1), 3.37 (m, 1H, H-1), 3.73 (m, 1H, H-7a), 4.43 (m, 2H, Ph-CH₂), 6.70 (d, ³*J* = 5.2 Hz, 1H, H-5'), 7.21 (m, 5H, phenyl), 8.00 (d, ³*J* = 5.2 Hz, 1H, H-6'), 8.04 (s, H1, H-1').

¹³C-NMR (100 MHz, CDCl₃): $\delta = 15.5$ (C-3', CH₃), 26.6 (C-6), 32.0 (C-7), 49.2 (benzyl-CH₂), 49.6 (C-5), 49.7 (C-1), 59.4 (C-7a), 116.9 (C-5'), 126.7 (C-4'), 128.2 (m, phenyl), 137.2 (phenyl), 147.8 (C-6), 150.7 (C-2'), 156.9 (C-3'), 158.1 (N₂C=N).

IR (ATR): $\tilde{v} = 3060$ (w, Ph), 3027 (w, Ph), 2964 (w), 2940 (w), 1619 (s, C=N), 1566 (s), 1539 (m), 1440 (m), 1276 (m), 1188 (m), 1125 (w), 1092 (w), 1075 (w), 1058 (w), 980 (w), 878 (m), 837 (m), 792 (w), 736 (w), 700 (m) cm⁻¹.

MS (EI) m/z (%) = 307.2 (11), 306.2 (M⁺, 50), 305.2 (38), 292.1 (20), 291.1 (100), 222.0 (4), 215.1 (4), 201.0 (4), 187.0 (9), 148.0 (5), 134.0 (7), 131.9 (7), 130.9 (11), 118.9 (13), 117.9 (4), 116.9 (5), 104.0 (4), 93 (5), 92.0 (9), 91.0 (38), 84 (6), 70.0 (8), 65.0 (11), 41 (7)

HRMS(EI): berechnet für $C_{19}H_{22}N_4$ 306.1844 [M⁺], gefunden 306.1848.

8.2.4 Versuchsvorschriften zur Synthese von 6,6-TCAP (41) und 4-Aminopyridin-Derivaten

Alle in diesem Kapitel beschrieben Verbindungen wurden bereits von *Yamanaka et al.*^[32], *Hamada et al.*^[33a,b], *Paudler et al.*^[33c] und *Heinrich*^[34] beschrieben. Es handelt sich bei den nachfolgenden Vorschriften um modifizierte Versuchsdurchführungen. Die gemessenen ¹H- und ¹³C- NMR-Daten stimmen mit denen in der oben genannten Literatur überein.

In einen 1000 ml Dreihalskolben mit Rückflusskühler und Magnetrührer gab man frische rauchende Schwefelsäure (20% freies SO₃, 50 ml, 648 mmol) und 18.4 ml destilliertes Nitrobenzol (178 mmol). Man erhitzte die Reaktionsmischung für 8 h auf 70 °C und kühlt anschließend auf Raumtemperatur ab. Die Reaktionsmischung wurde in einem Eisbad gekühlt und dabei 19.9 ml Glycerin (272 mmol) und 7.5 g 4-Aminopyridin (**104**) (80 mmol) zugegeben. Anschließend entfernte man die Eiskühlung und gab 40 ml demin. Wasser hinzu. Man rührte bis man eine homogene Reaktionsmischung erhielt. (Gegebenenfalls wurde die Reaktionsapparatur mit der Hand geschwenkt und zwischendurch mit Eis gekühlt).

Anschließend erhitzte man für 5 h auf 130 °C Ölbadtemperatur und kühlt danach auf Raumtemperatur ab. Die Reaktionsmischung wurde mit NaOH unter Eiskühlung (ca. 400 ml, 20%) auf ein pH-Wert von 12 eingestellt. Der ausgefallene Feststoffs wurde abgesaugt und mit 250 ml CHCl₃ gewaschen. Die wässrige Phase wurde dreimal mit insgesamt 750 ml CHCl₃ ausgeschüttelt und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Das Lösungsmittel wurde verminderten Druck abdestilliert und das erhaltene Rohprodukt **101** ohne weitere Reinigung verwendet. Ausbeute: 5.10 g (49 %) eines braunes Öls, das im Kühlschrank fest wird.

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 7.52$ (dd, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 4.3$ Hz, 1H, H-3), 7.91 (d, ${}^{3}J = 6.0$ Hz, 1H, H-8), 8.28 (ddd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.8$ Hz, ${}^{4}J = 0.9$ Hz, 1H, H-4), 8.75 (d, ${}^{3}J = 6.0$ Hz, 1H, H-7), 9.08 (dd, ${}^{3}J = 4.3$ Hz, ${}^{4}J = 1.8$ Hz, 1H, H-2), 9.27 (d, ${}^{4}J = 0.9$ Hz, 1H, H-5).

¹³C-NMR (75 MHz, CDCl₃): δ = 122.1 (CH), 122.5 (CH), 123.6 (C_q), 135.6 (CH), 146.9 (CH), 150.4 (C_q), 152.9 (CH), 154.8 (CH).

8-Brom-1,6-napthyridin (102)

In einen 250 ml Dreihalskolben mit Rückflusskühler und Tropftrichter gab man 1.92 g, (14.8 mmol) 1,6-Napthyridin (**101**) und 100 ml Eisessig. Zu der erhaltenen Reaktionslösung tropfte man innerhalb 30 min 0.86 ml Brom (16.3 mmol) hinzu und erhitzte für 12 h auf 80 °C. Anschließend destillierte man die Essigsäure im Vakuum in einen 250 ml Kolben mit 50 ml Natriumthiosulfat-Lösung. Der verbleibende Rückstand wurde mit gesättigter auf 0 °C gekühlter K₂CO₃-Lsg. (50 ml) aufgenommen und dreimal mit 100 ml CHCl₃ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das Rohprodukt wurde durch Chromatographie an Kieselgel (CHCl₃/MeOH, 30:1) gereinigt. Die Ausbeute betrug 1.60 g (52 %) **102** als brauner Feststoff.

 $R_f = 0.52$ (CHCl₃/MeOH, 20:1).

¹**H-NMR (300 MHz, CDCl₃):** δ = 7.61 (dd, ³*J* = 8.3 Hz, ³*J* = 4.3 Hz, 1H, H-3), 8.31 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.8 Hz, 1H, H-4), 8.99 (s, 1H, H-5), 9.17 (s, 1H, H-7), 9.21 (dd, ³*J* = 4.3 Hz, ⁴*J* = 1.8 Hz, 1H, H-2).

¹³C-NMR (75 MHz, CDCl₃): δ = 121.3 (C_q), 123.4 (CH), 124.9 (C_q), 136.1 (CH), 147.8 (C_q), 148.5 (CH), 152.1 (CH), 155.5 (CH).

Als Nebenprodukte ließen sich folgende bromierte 1,6-Naphthyridine charakterisieren:

2-Brom-1,6-naphthyridin (105)

2-Brom-1,6-naphthyridin (105) ließ sich in 13%iger Ausbeute isolieren.

 $R_f = 0.46$ (CHCl₃/MeOH, 20:1).

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 7.87$ (d, ³J = 6.0 Hz, 1H, H-8), 8.41 (dd, ³J = 3.2 Hz, ⁴J = 0.8 Hz, 1H, H-4), 8.77 (d, ³J = 6.0 Hz, 1H, H-7), 9.05 (d, ³J = 3.2 Hz, 1H, H-3), 9.19 (d, ⁴J = 0.8 Hz, H-5).

¹³C-NMR (100 MHz, CDCl₃): $\delta = 118.3 (C_q), 122.0 (C-8), 124.3 (C_q), 136.9 (C-4), 147.2 (C-7), 148.5 (C_q), 151.9 (C-3), 156.1 (C-5).$

HRMS (EI): berechnet für $C_8H_5BrN_2$ [M⁺] 207.9636, gefunden 207.9642.

4,8-Dibrom-1,6-naphthyridin (106)

4,8-Dibrom-1,6-naphthyridin (106) ließ sich in 25% iger Ausbeute isolieren.

 $R_f = 0.81$ (CHCl₃/MeOH, 20:1).

¹**H-NMR (300 MHz, CDCl₃):** δ = 8.46 (d, ³*J* = 2.4 Hz, 1H, H-3), 9.00 (s, 1H, H-5), 9.12 (s, 1H, H-7), 9.17 (d, ³*J* = 2.4 Hz, 1H, H-2).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 119.80 (C_q), 121.4 (C_q), 125.6 (C_q), 137.5 (C-H), 146.2 (C_q), 149.2 (C-H), 151.3 (C-H), 156.9 (C-H).$

HRMS (EI): berechnet für $C_8H_4^{79}Br_2N_2$ [M⁺] 285.8741, gefunden 285.8713.

(E)-3-(1,6-Naphthyridin-8-yl)acrylsäureethylester (103)

In einem 100 ml versiegelbaren Schlenkrohr mit gab man $Pd(OAc)_2$ (30 mg, 0.11 mmol, 2.6 mol%), Tris-*ortho*-tolylphosphin (80.9 mg, 0.27 mmol), NEt₃ (0.88 ml, 6.29 mmol), Ethylacrylat (1.75 ml, 16.0 mmol), **102** (1.98 g, 9.47 mmol) und 6 ml trockenes Acetonitril. Anschließend wurde die Reaktionsmischung für 16 h auf 120 °C Ölbadtemperatur erhitzt, danach wurde auf Raumtemperatur abgekühlt, mit 10 ml Wasser verdünnt und dreimal mit je 35 ml CHCl₃ extrahiert. Die vereinigten organischen Phasen wurden dreimal mit 2N HCl (75 ml) gewaschen und die wässrige Phase mit gesättigter K₂CO₃-Lösung auf ein pH-Wert von 12 eingestellt. Man extrahierte die wässrige Phase mit Dichlormethan (4x35 ml), trocknete die vereinigten organischen Phasen über Na₂SO₄ und destillierte das Lösungsmittel

ab. Das erhaltene Rohprodukt wurde durch Flashchromatographie an Kieselgel (10% Isohexan in EtOAc) gereinigt. Man erhielt **103** als einen leicht gelben Feststoff (1.83 g, 85%).

 $R_f = 0.63$ (10% Isohexan in EtOAc).

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.34$ (t, ³J = 7.1 Hz, 3H, -CH₂-CH₃), 4.28 (q, ³J = 7.1 Hz, 2H, -CH₂-CH₃), 7.08 (d, ³J = 16.3 Hz, 1H, H-2`), 7.56 (dd, ³J = 8.3 Hz, ³J = 4.2 Hz, 1H, H-3), 8.30 (dd, ³J = 8.3 Hz, ⁴J = 1.8 Hz, 1H, H-4), 8.53 (dd, ³J = 16.3 Hz, ⁴J = 0.6 Hz, 1H, H-1`), 8.92 (s, 1H, H-7), 9.12 (dd, ³J = 4.2 Hz, ⁴J = 1.8 Hz, 1H, H-2), 9.22 (s, 1H, H-5).

¹³C-NMR (75 MHz, CDCl₃): δ = 14.3 (CH₃), 60.6 (CH₂), 122.9 (CH), 123.0 (CH), 123.2 (C_q), 126.8 (C_q), 135.9 (CH), 138.0 (CH), 146.1 (CH),148.3 (Cq), 154.0 (CH), 154.6 (CH), 166.7 (Cq).

4,5,9,10-Tetrahydro-8*H*-pyrido[3,2,1-*ij*][1,6]naphthyridin-6-on (48)

In einem 250 ml Dreihalskolben mit Übergang mit Hahn, angeschlossen an einen Dreiwegehahn und Magnetrührer gab man **103** (4.12 g, 18 mmol) in trockenen Ethanol (120 ml) und Pd auf Aktivkohle (10% Pd, 992 mg) zu. Man spülte die Reaktionsapparatur 10 min mit Stickstoff und spülte dann mit Wasserstoff. Anschliessend wurde die Reaktionsapparatur geschlossen und bei Raumtemperatur gerührt. Nach ca. 10 min entnahm man eine kleine Probe und kontrollierte den Reaktionsfortschritt durch ¹H-NMR-Spektroskopie. Man wiederholte bis ein kompletter Umsatz durch ¹H-NMR-Spektroskopie beobachtet wurde. Anschließend filtrierte man die Reaktionslösung über Celite ab. Nach Abdestillieren des Lösungsmittels chromatographierte man das Rohprodukt an Kieselgel (CHCl₃/MeOH, 40:1, 5% NEt₃). Ausbeute 2.97 g (87%) **48** als farbloser Feststoff.

 $R_f = 0.30$ ((CHCl₃/MeOH, 40:1, 5% NEt₃).

¹**H-NMR (300 MHz, CDCl₃):** δ = 1.88-1.96 (m, 2H, H-9), 2.62-2.67 (m, 2H, H-10), 2.72 (t, ³*J* = 6.2 Hz, 2H, H-4), 2.83-2.88 (m, 2H, H-8), 3.81-3.83 (t, 2H, ³*J* = 6.2 Hz, H-5), 8.12 (s, 1H, H-1), 8.14 (s,1H, H-2).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 20.6$ (CH₂), 21.8 (CH₂), 23.9 (CH₂), 30.9 (CH₂), 40.8 (CH₂), 119.0 (C_q), 119.4 (C_q), 142.8 (C_q), 146.2 (CH), 148.8 (CH), 169.2 (C_q).

5,6,9,10-Tetrahydro-4*H*,8*H*-pyrido[3,2,1-*ij*][1,6]naphthyridin (TCAP) (41)

In einem 250 ml Schlenk-Kolben mit Magnetrührer und Rückflusskühler löst man 5.33 g AlCl₃ (39 mmol) in 120 ml THF. Anschließend gab man unter Eiskühlung 4.55 g LiAlH₄ (120 mmol) portionsweise hinzu und lässt 10 min rühren. Danach gab man **48** (2.97 g, 120 mmol) in 50 ml THF gelöst hinzu und destilliert 20 h unter Rückfluss. Anschließend lässt man auf Raumtemperatur abkühlen und gießt auf Eiswasser. Man stellt mit ges. K₂CO₃-Lsg (ca. 30 ml) einen pH-Wert von 12 ein und filtriert den anorganischen Niederschlag ab. Man wäscht den Niederschlag mit 100 ml DCM und extrahiert die Mutterlauge dreimal mit je 30 ml DCM. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, abfiltriert und das Lösungsmittel unter verminderten Druck abdestilliert und das erhaltene Rohprodukt wurde an Kieselgel (CHCl₃/MeOH, 10:1, 2.5% NEt₃) chromatographiert. Ausbeute 2.05 g (74%) **41** als einen farblosen Feststoff.

 $R_f = 0.60$ (CHCl₃/MeOH, 10:1, 2.5% NEt₃).

¹**H-NMR (300 MHz, CDCl₃):** δ = 1.89-1.95 (m, 4H, 6-H, H-5, H-9), 2.62 (t, ³*J* = 6.3 Hz, 4H, 5-H, H-4, H-10), 3.25 (t, ³*J* = 5.7 Hz, 4H, H-6, H-8), 7.72 (s, 2H, 2-H, Ar-H).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 20.6$ (C-6), 24.08 (C-5), 49.2 (C-7), 115.3 (C-3), 143.6 (C-2), 148.6 (C-4).

In einen 250 ml Rundkolben gab man 10.0 g (106 mmol) 4-Aminopyridin (**104**) und 60 ml (275 mmol) frisch destilliertes Ethylacrylat. Man erhitzte 24 h auf 130 °C und destillierte danach unter vermindertem Druck überschüssiges Ethylacrylat ab. Den Rückstand nahm man in 25 ml Toluol auf und ließ vorsichtig unter Eiskühlung so *n*-Hexan einfliessen, dass ein Zweiphasen-System entstand. Anschliessend lagerte man den Rundkolben verschlossen für 24 h im Eisschrank bei -20 °C und saugte danach die ausgefallenen Kristalle ab. Man wusch mit ca. 10 ml Toluol. Anschließend destillierte man erneut Toluol und *n*-Hexan ab. Nahm erneunt in Toluol auf und wiederholt den Kristallisationsvorgang erneut. Die Ausbeute betrug 13.30 g (53%) **115** als farbloser Feststoff.

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.27$ (t, ³J = 7.2 Hz, 6H, -CH₂-CH₃), 2.61 (t, ³J = 6.9 Hz, 4H, H-3,3`), 3.71 (t, ³J = 6.9 Hz, 4H, H-2,2`), 4.15 (q, ³J = 7.2 Hz, 4H, -CH₂-CH₃), 6.53 (d, ³J = 6.6 Hz, 2H, H-3``, H-5``), 8.26 (d, ³J = 6.6 Hz, H-2``, H-6``).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 14.5$ (-CH₂-CH₃), 32.5 (C-2,2^{\colored}), 46.2 (C-3,3^{\colored}), 61.3 (-CH₂-CH₃), 107.1 (C-3^{\colored}, C-5^{\colored}), 150.7 (C-2^{\colored}, C-6^{\colored}), 152.0 (C_q, C-4^{\colored}), 171.9 (C=O).

IR(KBr): $\tilde{v} = 3439$ (w), 2975 (w), 1727 (vs, C=O), 1597 (s), 1519 (m), 1463 (w), 1407 (sh), 1393 (sh), 1380 (m), 1323 (m), 1237 (w), 1216 (w), 1193 (s), 1155 (m), 1111 (w), 1095 (w), 1058 (w), 1034 (w), 1012 (m), 988 (m), 856 (w), 823 (m), 791 (w), 551 (w), 525 (w) cm⁻¹

GC-MS (EI): RT 10.28 min m/z (%) = 296.3 (1), 295.3 (6), 294.3 (M⁺, 25), 250.2 (1), 249.2 (4), 209.2 (1), 208.2 (12), 207.2 (100), 194.1 (1), 193.1 (7), 179.1 (1), 166.1 (1), 165.1 (8), 147.0 (1), 137.0 (1), 135.1 (1), 133.0 (2), 121.0 (1), 119.0 (1), 107.0 (1), 106.0 (2), 105.0 (3), 101.0 (2), 78.0 (1), 73.0 (2), 59.1 (2).

HRMS (EI): berechnet für $C_{15}H_{22}N_2O_4$ [M⁺] 254.1580, gefunden 254.1588.

4-[(3-Hydroxy-3-methyl-butyl)pyridin-4-yl-amino]-2-methyl-butan-2-ol (114)

In einem 500 ml Dreihalskolben mit Tropftrichter und Rückflusskühler gab man 3.03 g (0.25 mol) Magnesium und überschichtet dieses mit 50 ml trockenen Diethylether. Man tropft etwa 5 ml einer Lösung von 35.4 g (15.6 ml, 0.25 mol) Methyliodid in 30 ml Diethylether hinzu und gab gegebenenfalls ein Iodkristall hinzu. Anschliessend rührte man kräftig durch und wartete das Starten der Reaktion ab. Nach Beginnen der Reaktion, erkennbar durch Trübung des Ethers, tropfte man die restliche Methyliodid-Lösung so zu, dass der Ether gelinde siedete. Nach beendeter Zugabe erhitzte man noch 3 h unter Rückfluss, ließ auf Raumtemperatur abkühlen und tropft dann unter Eiskühlung eine Lösung von 7.35 g (25 mmol) von 115 in 30 ml Diethylether hinzu. Nach beendeter Zugabe entfernte man das Eisbad und erhitzte die Reaktionmischung für 3 h unter Rückfluss. Anschließend ließ man abkühlen, goß die Reaktionslösung langsam in 250 ml eiskalte gesättigte wässrige NH₄Cl-Lösung und brachte den pH-Wert der Mutterlauge mit 33%iger wässriger NaOH auf 12. Anschließend filtrierte den anorganischen Feststoffs ab wusch diesen mit 50 ml Dichlormethan und trennte die organische Phase ab. Die wässrige Phase wurde noch dreimal mit 50 ml Dichlormethan extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und das Lösungsmittel unter verminderten Druck abdestilliert. Das gelbe Rohprodukt wurde durch Flashchromatographie an basischem Aluminiumoxid (CHCl₃/MeOH, 50:3) gereinigt. Ausbeute 4.72 g (71%) 114 als ein farbloser Schaum.

 $R_f = 0.16$ (basischem Aluminiumoxid, CHCl₃/MeOH, 50:3)

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.16$ (s, 12H, -C(OH)(CH₃)₂), 1.62 (t, ³J = 8.1 Hz, 4H, N-CH₂-CH₂-), 3.33 (t, ³J = 8.1 Hz, 4H, N-CH₂-), 4.85 (br, 2H, -OH), 6.38 (d, ³J = 6.3 Hz, 2H, H-3, H-5), 7.91 (d, ³J = 6.3 Hz, 2H, H-2, H-6).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 29.7$ (-C(OH)(CH₃)₂), 40.0 (N-CH₂-CH₂-), 45.9 (N-CH₂-), 69.2 (C_q, -*C*(OH)(CH₃)₂), 106.6 (C-3,C-5), 148.9 (C-2,C-6), 152.8 (C_q, C-4).

IR (ATR): $\tilde{v} = 3372$ (w), 3095 (w), 2968 (s), 2937 (m), 2837 (w), 1599 (vs), 1522 (s), 1473 (m), 1464 (m), 1445 (w), 1412 (s), 1372 (s), 1309 (w), 1292 (w), 1270 (w), 1237 (m), 1219 (m), 1190 (s), 1167 (s), 1105 (m), 1064 (w), 1053 (w), 1028 (w), 1010 (s), 990 (m), 965 (w), 935 (s), 907 (m), 825 (m), 811 (m), 800 (vs), 760 (s), 660 (m) cm⁻¹.

HR-LC-ESI-MS: berechnet für $C_{15}H_{27}N_2O_2$ [M+H⁺] 267.2067, gefunden 267.2064, berechnet für $C_{30}H_{53}N_4O_4$ [2M+H⁺] 533.4061, gefunden 533.4052.

N,N-Bis(3-methylbuten-2-yl)pyridin-4-amin (113)

Verbindung (117) wurde als Hauptprodukt aus folgendem Versuch erhalten:

In einem 100 ml Dreihalskolben mit Gaseinleitung und Rückflusskühler mit aufgesetzten Blasenzähler gab man unter Argonatmosphäre 0.32 g (1.20 mmol) von Verbindung **114** und 6.09 g (4.12 ml, 48 mmol) Oxalylchlorid. Man rührte die Reaktionslösung für 1 h bei Raumtemperatur und erhitzte anschließend für eine weitere Stunde unter Rückfluss. Anschließend ließ man im leichten Argonstrom abkühlen und entfernte im Ölpumpenvakuum über zwei zusätzliche Kühlfallen das überschüssige Oxalylchlorid. Anschließend nahm man den Rückstand in 50 ml trockenem Toluol auf und ließ 1 h lang Argon durch das Lösungsmittel strömen (entfernen von gelöstem Sauerstoff). Danach dunkelte man den Abzug ab, schaltet gegebenenfalls Licht im Labor aus, kühlt die Reaktionsmischung auf 0 °C ab und gab im Argongegenstrom Barton-Salz (358 mg, 2.4 mmol) hinzu. Man lies 1 h im Dunkeln rühren, gab dann eine Spatelspitze AIBN hinzu, entfernt die Alufolie, schaltet das Licht wieder an und erhitzte für zwei weitere Stunde zum Rückfluss. Anschließend entfernt man das Lösungsmittel verminderten Druck und destillierte den Rückstand mit einer Kugelrohr-Destillationsapparatur bei 170°C und 0.1 mbar. Verbindung **113** konnte in 34%iger (0.94 g) Ausbeute isoliert wurden.

¹**H-NMR (200MHz, CDCl₃):** $\delta = 1.73$ (s, 6H, CH₃), 3.87 (d, ³J=6.2 Hz, 2H, CH₂) 5.15 (t, ³J = 6.2 Hz, 2H, C-*H* (Olefin)), 6.45 (d, ³J=6.2 Hz, 2H, H-3, H-5), 8.17 (d, ³J=6.2 Hz, 2H, H-2, H-6).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 18.1$ (CH₃), 25.9 (CH₃), 47.5 (CH₂), 107.1 (CH, Olefin), 120.4 (C-3, C-5), 135.4 (C_q, C=C(CH₃)₂), 150.1 (C-2, C-6), 153.0 (C_q, C-4).

GC-MS (EI) RT 9.10 min, m/z (%) = 231.3 (16), 230.3 (68), 187.2 (20), 162.2 (66), 161.2 (52), 159.2 (37), 147.2 (91), 120.2 (14), 107.1 (35), 105.1 (26), 94.1 (73), 79.1 (13), 69.1 (100), 41.0 (65).

8.2.5 Arbeitsvorschriften zur Synthese der Triarylamine

N,N-Dimethyl-benzol-1,4-diamin (153)

Zur Darstellung von **153** wurden 2.11 g (9.0 mmol) *N*,*N*-Dimethyl-*p*-phenylendiaminsulfat in 5 ml Wasser gelöst und unter Rühren mit 0.95 g (9.0 mmol) Natriumcarbonat versetzt. Nach beendeter Gasentwicklung wurde die rosa gefärbte wässrige Phase solange mit Dichlormethan extrahiert, bis die Färbung gänzlich verschwunden war. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, filtriert und unter verminderten Druck abdestilliert. Man erhielt so 1.20 g (8.8 mmol, 98%) **153** als dunkelviolett gefärbtes Öl.

 $R_f = 0.29$ (CHCl₃/MeOH, 20:1).

¹**H-NMR (CDCl₃, 200 MHz):** δ = 2.83 (s, 6H, CH₃), 3.33 (s, 2H, NH₂) 6.68 (m, 4H, H2,6, H3,5) ppm.

Die ¹H NMR-Daten stimmen mit denen in der Literatur überein.^[86]

^[86] SDBSWeb: <u>http://www.aist.go.jp/RIODB/SDBS/</u> (National Institute of Advanced Industrial Science and Technology, 23.05.07)

N,N-Dimethyl-N',N'-di-pyridin-4-yl-benzen-1,4-diamin (155)

Zur Darstellung von **155** wurden 120 mg (0.88 mmol) *N*,*N*-Dimethyl-benzol-1,4-diamin (**153**), 0.344 g (1.77 mmol) 4-Brompyridiniumhydrochlorid (**154**), 296 mg (3.08 mmol) Natrium-*tert*-butylat, sowie 20 mg (2.5 mol%) Pd₂(dba)₃ und 25 mg (5 mol%) dppf in 5 ml absoluten Toluol weitest gehend gelöst. Unter Stickstoffatmosphäre und ständigem Rühren wurde die Reaktionsmischung für 11 h unter Luftkühlung auf 90 °C erhitzte. Danach ließ man auf Raumtemperatur abkühlen, gab 2 ml Wasser zu und extrahierte das Produkt mit Dichlormethan. Die gelblich gefärbte organische Phase wurde mit Natriumsulfat getrocknet, filtriert und unter verminderten Druck durch Einleiten von Stickstoff bei 30°C abdestilliert. Das so erhaltene Rohprodukt wurde durch Säulenchromatographie an Kieselgel (CHCl₃/MeOH, 20:1) gereinigt. Ausbeute 140 mg (0.48 mmol, 55 %) **155** eines ockerfarbenes Produkt, das sich an Luft innerhalb weniger Minuten bräunlich verfärbt.

 $R_f = 0.15$ (Chloroform/Methanol: 20:1).

¹**H-NMR (CDCl₃, 400 MHz):** $\delta = 2.99$ (s, 6H, CH₃), 6.72 (d, ³J = 9.0 Hz, 2H, H-3), 6.93 (d, ³J = 4.8 Hz, 4H, H-3`), 7.01 (d, ³J = 9.0 Hz, 2H, H-2), 8.35 (d, ³J = 4.8 Hz, 4H, H-2`).

¹³C-NMR ([D]₆-Benzol, 100 MHz): $\delta = 39.9 (CH_3)$, 113.6 (C-3), 115.8 (C-3`),129.1 (C-2), 132.9 (C_q, C-4), 149.4 (C_q, C-1), 151.1 (C-2`), 152.3 (C_q, C-4`).

GC-MS (EI) m/z (%) = 291.2 (19) [M+H⁺], 290.2 (100) [M⁺], 289.2 (12), 276.2 (6), 275.2 (25), 274.2 (8), 212.2 (9), 196.2 (6), 168.1 (12), 145.2 (2) [M²⁺], 78.1 (6), 51.0 (6).

IR (ATR): $\tilde{v} = 3043$ (w), 2962 (m), 2906 (w), 2797 (w), 2462 (w), 1937 (w), 1608 (m), 1597 (m), 1573 (m), 1560 (m), 1541 (m), 1517 (m), 1487 (m), 1441 (w), 1424 (w), 1361 (w), 1339 (m), 1304 (m), 1284 (w), 1259 (s), 1215 (m), 1166 (w), 1085 (m), 1057 (m), 1015 (s), 990 (s), 942 (m), 922 (m), 843 (m), 848 (w), 794 (s), 723 (m), 689 (m), 676 (m) cm⁻¹.

HRMS (EI): berechnet für $C_{18}H_{18}N_4$ 290.1531 [M⁺] gefunden 290.1515 [M⁺]; berechnet für $C_{18}H_{18}N_4$ 145.0760 [M²⁺] gefunden 145.0750.

4-(Pyrrolidinyl)-phenylamin (157)

In einen 50 ml Schlenk-Kolben wurden 1.032 mg (6 mmol) 4-Bromo-phenylamin (156), 512 mg (7.2 mmol) Pyrrolidin und 2.01 g (12 mmol) Cäsiumhydroxidmonohydrat und 10 ml absolutes DMSO vorgelegt. Nach Zugabe von 55 mg (1 mol%) Pd₂(dba)₃ und 67 mg (2 mol%) dppf wurde auf 120 °C unter Stickstoffatmosphäre für 2 h erhitzt. Danach ließ man auf Raumtemperatur abkühlen und gab die Reaktionsmischung auf Eiswasser. Nach Zugabe von 30 ml gesättigter Ammoniumchloridlösung wurde dreimal mit je 50 ml Diethylether extrahiert. Die Phasen vereinigten organischen wurden mit gesättigter Ammoniumchloridlösung gewaschen und über Natriumsulfat getrocknet. Anschliessend wurde unter verminderten Druck unter Einleiten von Stickstoff abdestilliert, wobei ein rötlich gelbes Öl verbleibt. Das Rohprodukt wurde durch zweimalige Säulenchromatographie an Kieselgel (DCM/MeOH, 40:1) und (EtOAc/Isohexan, 5:1) gereinigt. Man erhielt 383 mg (2.36 mmol, 39 %) 157 als bläulich schwarzes Öl. Das Produkt zersetzte sich selbst bei 4 °C und unter Stickstoffatmosphäre in kurzer Zeit und wurde sofort weiter verarbeitet.

 $R_f = 0.24$ (DCM/MeOH, 40:1), 0.36 (EtOAc/Isohxan, 5:1).

¹**H-NMR (CDCl₃, 300 MHz):** $\delta = 1.97$ (t, ³*J*=6.5 Hz, 4H, H-3`), 3.21 (t, ³*J*=6.5 Hz, 4H, H-2`), 3.27 (s, 2H, NH₂), 6.48 (d, ³*J*=8.8 Hz, 2H, H-3), 6.68 (d, ³*J*=8.8 Hz, 2H, H-2).

¹³C-NMR (CDCl₃, 75 MHz): $\delta = 24.2$ (C-3[`]), 47.3 (C-2[`]), 112.0 (C-3), 116.1 (C-2), 135.0 (C-4), 141.4 (C-1).

MS (DEP/EI) *m/z* (%) = 163.1 (11), [M+H⁺], 162.1 (96) [M⁺], 161.1 (100) [M-H⁺], 134.1 (8), 133.1 (10), 120.1 (11), 119.1 (29), 106.1 (21), 97.1 (10), 92.1 (16), 85.1 (11), 83.1 (12), 81.1 (37) [M]2+, 71.1 (14), 69.1 (14), 65.0 (14), 57.1 (21), 55.1 (15), 43.0 (14), 41.0 (11).

HRMS (EI) berechnet für $C_{10}H_{14}N_2$ 162.1157 [M⁺], gefunden 162.1157.

Di-pyridin-4-yl-(4-pyrrolidin-1-yl-phenyl)-amin (158)

Zur Darstellung von **158** wurden 282 mg (1.74 mmol) 4-Pyrrolidin-1-yl-phenylamin (**157**), 676 mg (3.48 mmol) 4-Brompyridiniumhydrochlorid (**154**), 585 mg (6.09 mmol) Natrium*tert*-butylat, sowie 40 mg (2.5 mol%) Pd₂(dba)₃ und 48 mg (5 mol%) dppf in 5 ml Toluol weitest möglich gelöst. Als Antioxidanz wurde zusätzlich 20 mg BHT (2,6-Di*tert*-butyl-4-methylphenol) hinzugegeben. Die Reaktionsmischung wurde auf 90 °C erwärmt und für 19 h bei dieser Temperatur gehalten. Danach ließ man auf Raumtemperatur abkühlen, gab 2 ml Wasser hinzu und extrahiert mit Dichlormethan und zwar so lange bis die gelbliche Färbung der organischen Phase verschwand. Nach dem Trocknen mit Natriumsulfat wurde unter verminderten Druck unter Einleiten von Stickstoff bei 30 °C abdestilliert, wobei ein rötlich, braunes, zähflüssiges Öl verbleibt. Das Rohprodukt wurde durch zweimalige Flashchromatographie an Kieselgel gereinigt (DCM/MeOH, 20:1; EtOAc/MeOH, 2:1). Man erhielt 162 mg (0.51 mmol, 29%) **158** als eine hellgelbe Substanz die sich an der Luft innerhalb weniger Minuten bräunlich verfärbte.

 $R_f = 0.59$ (Dichlormethan/Methanol, 20:1), 0.38 (Ethylacetat/Methanol, 2:1).

¹**H-NMR (CDCl₃, 300 MHz):** $\delta = 1.96$ (t, ³*J*=6.6 Hz, 4H, H-3``), 3.25(t, ³*J*=6.6 Hz, 4H, H-2``) 6.51 (d, ³*J*=9.0 Hz, 2H, H-3), 6.87 (d, ³*J*=4.8 Hz, 4H, H-3`), 6.91 (d, ³*J*=9.0 Hz, 2H, H-2), 8.28 (d, ³*J*=4.8 Hz, 4H, H-2`).

¹³C-NMR (C₆D₆, 75 MHz): $\delta = 25.9$ (C-3^{``}), 48.1 (C-2^{``}), 113.1 (C-3), 115.9 (C-3[`]), 129.6 (C-2), 131.6 (C_q, C-4), 147.4 (C_q, C-1), 150.9 (C-2[']), 152.3 (C_q, C-4[']).

MS (DEP/EI) m/z (%) = 317.3 (17) [M+H⁺], 316.3 (100) [M⁺], 315.2 (30) [M-H⁺], 260.2 (4), 168.1 (5), 158.1 (3) [M²⁺].

IR (ATR): $\tilde{v} = 3039$ (w), 2974 (w), 2894 (w), 2838 (w), 1734 (w), 1609 (m), 1573 (s), 1542 (w), 1517 (s), 1480 (s), 1424 (w), 1379 (m), 1338 (m), 1306 (m), 1282 (m), 1241 (w), 1214 (m), 1173 (w), 1157 (w), 989 (m), 965 (w), 917 (w), 866 (w), 812 (m), 734 (w), 725 (w) cm⁻¹

HRMS(EI): berechnet für $C_{20}H_{20}N_4$ 316.1688 [M⁺] gefunden: 316.1663.

N,*N*-Dimethyl-*N'*-pyridin-2-yl-benzen-1,4-diamin (160)

Zur Darstellung von **160** wurden in einem Schlenk-Kolben 879 mg (6.45 mmol) *N*,*N*-Dimethylphenylendiamin (**153**) 917 mg (5.81 mmol) 2-Bromo-pyridin (**159**), 744 mg (7.74 mmol) Natrium-*tert*-butylat, sowie 134 mg (2.3 mol%) Pd₂(dba)₃ und 162 mg (4.5 mol%) dppf in 10 ml Toluol weitestgehend gelöst. Als Antioxidanz wurden zusätzlich 20 mg BHT (2,6-Di-*tert*-butyl-4-methylphenol) hinzugegeben. Die Reaktionsmischung wurde für 6 h auf 90 °C erhitzt. Nach Abkühlen auf Raumtemperatur wurde 2 ml Wasser hinzugegeben und mit Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und unter verminderten Druck unter Einleiten eines schwachen Stickstoffstroms bei 30 °C abdestilliert. Das so erhaltene Rohprodukt wurde durch Flashchromatographie an Kieselgel gereinigt (EtOAc/Isohexan, 2:3). Man erhielt 900 mg (66%) **160** als einen ockerfarbenen Feststoff, der sich innerhalb weniger Minuten unter gräulich brauner Färbung an Luft zersetzte.

 $R_f = 0.29$ (EtOAc/Isohexan, 2:3).

¹**H-NMR (CDCl₃, 200 MHz):** $\delta = 2.94$ (s, 6H, *CH*₃), 6.48 (s, 1H, *N-H*), 6.65 – 6.59 (m, 2H, Hd, H-3`, H-5`), 6.75 (d, ³*J* = 9.2 Hz, 2H, H-2), 7.17 (d, ³*J* = 9.2 Hz, 2H, H-3), 7.39 (t, ³*J* = 7.8 Hz, 1H, H-4`), 8.13 (d, ³*J* = 6.0 Hz, 1H, H-2`).

¹³C-NMR (CDCl₃, 100 MHz): $\delta = 41.2$ (CH₃), 107.0 (C-5[`]), 113.8 (C-2), 114.0 (C-3[`]), 125.2 (C-3), 129.8 (C_q, C10), 137.8 (C-4[`]), 148.4 (C_q, C9), 148.5 (C-2[`]), 158.3 (C_q, C-6[`]).

MS (DEP/EI) m/z (%) = 214.2 (17) [M+H]⁺, 213.2 (100) [M]⁺, 212.2 (62) [M-H]⁺, 199.2 (9), 198.2 (44), 197.2 (7), 196.2 (19), 183.1 (5), 171.2 (10), 169.1 (16), 168.1 (11), 135.2 (6), 106.6 (4) [M]²⁺, 105.6 (10), 78.1 (9).

IR (ATR) $\tilde{v} = 3180$ (m), 3139 (m), 3041 (m), 2999 (m), 2797 (m), 1882 (w), 1601 (s), 1581 (m), 1515 (s), 1481 (w), 1438 (s), 1332 (m), 1288 (m), 1248 (m), 1221 (m), 1182 (m), 1165 (w), 1152 (m), 1116 (w), 1102 (w), 1059 (m), 989 (m), 943 (w), 890 (w), 803 (w), 772 (m), 686 (w) cm⁻¹.

HRMS(EI): berechnet für $C_{13}H_{15}N_3$ 213.1266 [M⁺], gefunden 213.1273.

N,N-Dimethyl-N'-pyridin-2-yl-N'-pyridin-4-yl-benzen-1,4-diamin (75)

Zur Darstellung von **75** wurden in einem ausgeheizten Schlenk-Kolben 300 mg (1.41 mmol) **160**, 330 mg (1.70 mmol) 4-Brompyridiniumhydrochlorid (**154**), 299 mg (3.11 mmol) Natrium-*tert*-butylat, sowie 41 mg (2.5 mol%) Pd(PPh₃)₄ und 39 mg (5 mol%) dppf weitest gehend in 10 ml Toluol gelöst. Als Antioxidanz wurde zusätzlich 20 mg BHT (2,6-Di-*tert*-butyl-4-methylphenol) hinzugegeben. Die Reaktionsmischung wurde auf 90°C erwärmt und für 19 h bei dieser Temperatur gehalten. Danach lässt man auf Raumtemperatur abkühlen, gab 2 ml Wasser hinzu und extrahierte mit Dichlormethan. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und unter verminderten Druck durch Einleiten eines schwachen Stickstoffstrom bei 30 °C abdestilliert. Das Rohprodukt wurde durch Säulenchromatographie an Kieselgel (EtOAc/MeOH, 10:1) gereinigt. Man erhielt 242 mg (0.83 mmol, 52%) **75** als ein hellbeigen Feststoff der sich an Luft rötlich braun färbt.

 $R_f = 0.21$ (Ethylacetat/Methanol: 10/1).

¹**H-NMR (CDCl₃, 400 MHz):** $\delta = 2.95$ (s, 6H, CH₃), 6.68 (d, ³J = 9.2 Hz, 2H, H-2), 6.71 (d, 1H, ³J = 8 Hz, H-3`), 6.84 (dd, 8 Hz, ³J = 8 Hz, ³J=4.8 Hz, H-5`), 6.91 (d, ³J = 5.6 Hz, 2H, H-3``), 7.00 (d, ³J = 9.2 Hz, 2H, H-3), 7.45 (t, 1H, ³J = 8 Hz, H-4`), 8.23 (d, 2H, ³J = 5.6 Hz, H-2``), 8.26 (d, 1H, ³J = 4.8 Hz, H-6`).

¹³C-NMR (CDCl₃, 100 MHz): δ =158.1 (C10), 152.8 (C11), 150.2 (C5), 149.6 (C12), 148.2 (C1), 138.0 (C3), 132.7 (C13),129.5 (C7), 118.3 (C4), 116.6 (C2), 115.1 (C6), 113.8 (C8), 40.8 (C9).

MS(DEP/EI) m/z (%) = 291.2 (18) [M+H]⁺, 290.2 (100) [M⁺], 289.1 (85) [M-H⁺], 175.1 (13), 274.1 (6), 273.1 (17), 246.1 (6), 212.1 (4), 196.1 (7), 168.1 (8), 145.1 (6) [M²⁺], 144.1 (M-H²⁺], 78.0 (5).

IR(ATR): $\tilde{v} = 3011 \text{ (w)}$, 2896 (w), 1696 (m), 1576 (s), 1547 (w), 1518 (m), 1496 (m), 1464 (s), 1426 (s), 1362 (w), 1343 (w), 1323 (s), 1297 (m), 1266 (w), 1167 (w), 1148 (w), 1065 (w), 988 (m), 948 (w), 920 (w), 814 (m), 782 (m), 761 (w), 740 (w), 702 (w) cm⁻¹.

HRMS(EI): berechnet für C₁₈H₁₈N₄ 290.1531 [M⁺], gefunden: 290.1507.

8.2.6 Arbeitsvorschriften zur Synthese von Estern

Allgemeine Versuchsvorschrift zur Synthese von Estern über gemischte Anhydride der *tert*-Butylhydrogencarbonate (AAV1).

In einen 20 ml Schlenk-Kolben gab man 1 eq. (falls nicht anders beschrieben) Säure, 1.1 eq. *tert*-Butanol, 2 ml Dichlormethan, 2 eq. NEt₃ und 5 mol% PPY. Die Reaktionsmischung wurde auf -20 °C abgekühlt und anschließend 1.3 eq. geschmolzener Pyrokohlensäuredi-*tert*-butylester (Boc₂O, **173**) mittels einer Spritze zugegeben. Man lässt 2 min bei -20 °C rühren und entfernt anschließend das Kältebad und lässt die Reaktionsmischung auf Raumtemperatur aufwärmen.

Isobuttersäure-tert-butylester (180)

Die Reaktion wurde wie in **AVV1** beschrieben mit 10 mmol Isobuttersäure durchgeführt und 6 h bei Raumtemperatur gerührt. Anschließend wurde die Reaktionslösung in einen Scheidetrichter transferiert mit 10 ml Dichlormethan verdünnt und mit 10 ml 2N HCl, 10 ml gesättigter wässriger NaHCO₃-Lösung und 10 ml Wasser gewaschen. Die organische Phase wurde über Na₂SO₄ getrocknet und anschließend über eine kurze Vigreuxkolonne fraktioniert destilliert. Der Ester destillierte bei einer Temperatur von 41 °C und 26 mbar über. Die Ausbeute betrug 1.07 g (75 %) **180** als farblose Flüssigkeit.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 1.09$ (d, 6H, ³J = 6.9 Hz, CH(CH₃)₂), 1.42 (s, 9H, C(CH₃)₃), 2.38 (sep., 1H, ³J=6.9 Hz, CH(CH₃)₂) ppm.

¹³C-NMR (75 MHz, CDCl₃): $\delta = 19.1 (CH(CH_3)_2), 28.1 (C(CH_3)_3), 35.0 (CH(CH_3)_2), 79.7 (C(CH_3)_3), 176.7 (-COO^tBu).$

IR (ATR): $\tilde{v} = 2974$ (m), 2934 (w), 1729 (C=O, vs), 1469 (m), 1385 (m), 1366 (s), 1216 (m), 1148 (vs), 1097 (w), 1073 (m), 934 (w), 849 (m), 754 (vs), 667 (m), 618 (m) cm⁻¹.

Das gemessene ¹³C NMR stimmt mit dem in der Literatur überein.^[87]

1-Phenylcyclohexylcarbonsäure-tert-butylester (188)

Die Reaktion wurde wie unter AVV1 beschrieben mit 5 mmol 1-Phenylcyclohexylcarbonsäure (187) durchgeführt. Nach 24 h Rühren bei Raumtemperatur wurde die Reaktionsmischung mit 10 ml Dichlormethan verdünnt, das Lösungsmittel unter verminderten

^[87] F. Orsini, F. Pelizzoni, G. Ricca, *Tetrahedron*, **1984**, *40*, 2781.
Druck abdestilliert und das gewünschte Produkt **188** durch Flashchromatografie an Kieselgel (10% EtOAc in Isohexan) isoliert. Ausbeute: 1.15 g (89%) eines weissen Feststoffs.

 $R_f = 0.75$ (10% EtOAc in Isohexan).

¹H-NMR (400 MHz, CD₂Cl₂): $\delta = 1.27 - 2.24$ (m, 16H), 2.28 (m, 4H), 7.23 (m, 5H).

¹³C-NMR (100 MHz, CD₂Cl₂): $\delta = 23.6$ (C-3, C-5), 25.7 (C-4), 27.9 (-C(*C*H₃)₃), 34.3 (C-2, C-6), 52.4 (C_q, C-1), 81.0 (-*C*(CH₃)₃), 126.4, 127.4, 128.9 (*C*-H, Phenyl) 142.3 (C_q, Phenyl), 170.4 (C=O).

MS (EI): *m/z* (%) = 247 (1), 187 (2), 186 (2), 160 (11), 159 (100), 158 (11), 142 (1), 130 (2), 129 (2), 128 (1), 117 (4), 115 (2), 104 (1), 102 (1), 91 (2), 90 (29), 82 (1), 81 (4), 76 (1), 66 (2), 57 (12).

IR (ATR): $\tilde{v} = 3057$ (w), 2934 (m), 2854 (w), 1796 (s, C=O), 1733 (m), 1599 (w), 1582 (w), 1496 (w), 1452 (m), 1446 (m), 1369 (w), 1294 (m), 1165 (m), 1048 (vs), 1027 (vs), 1012 (vs), 940 (s), 940 (m), 931 (m), 839 (m), 762 (w), 721 (s), 693 (s), 635 (m) cm⁻¹.

HR-MS(EI): berechnet für $C_{17}H_{24}O_2$ 260.1776 [M⁺], gefunden 260.1788.

HR-LC-ESI-MS: RT 0.79-1.74, calcd. for $C_{34}H_{48}O_4$ 520.3553 [M+M⁺], found 520.3812, calcd. for $C_{51}H_{74}O_7$ 798.5429 [2M+M⁺], found 798.4731.

Die Reaktion wurde wie unter AVV1 beschrieben mit 5 mmol (S)-1-((benzyloxy)carbonyl)pyrrolidin-2-carbonsäure (185), aber ohne die Zugabe von 2 ml Dichlormethan durchgeführt. Die Reaktion wurde 5 h bei Raumtempeartur gerührt, anschließend mit 10 ml Dichlormethan verdünnt und in einen Scheidetrichter transferiert. Die organische Phase wurde mit 10 ml 2N HCl und 10 ml gesättigter wässriger NaHCO₃-Lösung gewaschen. Man trocknete anschliessend über MgSO₄ und destillierte das Lösungsmittel unter verminderten Druck ab. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel gereinigt (EtOAc/Isohexan, 3:10). Ausbeute 1.29 g (4.22 mmol, 85 %) **186** als weisser Feststoff.

 $R_f = 0.53$ (EtOAc/Isohexane, 3/10).

 $\alpha_{\rm D}^{23} = -52.7^{\circ}(30 \text{ mg/ml}, \text{EtOH}).$

¹H-NMR (300 MHz, CDCl₃): δ = 1.35, 1.41, 1.45 (s, 18H, -C(CH₃)₃), 1.76-1.86 (m, 3H, H-4, H-3), 2.11 (m, 1H, H-3), 3.28-3.47 (m, 2H, H-5), 4.10 (m, 1H, H-2).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 24.0 (CH_2)$, 28.16 (-C(CH₃)), 30.6 (CH₂), 46.9 (CH₂), 60.0 (C-H), 67.1 (CH₂, Ph-CH₂), 81.4 (C_q, -C(CH₃)), 128.0 (m, *phenyl*), 128.6 (m, *phenyl*), 136.9 (C_q, *phenyl*), 154.6 (C_q, N-COOBz), 172.1 (C_q, -COO^tBu).

IR (ATR): $\tilde{v} = 2976$ (w), 2877 (w), 2198 (w), 2042 (w) 1729 (s), 1696 (vs, C=O), 1482 (w), 1456 (w), 1414 (m), 1356 (m), 1343(s), 1310 (m), 1279 (m), 1243 (w), 1223 (m), 1172 (m), 1153 (s), 1117 (s), 1026 (w), 986 (w), 965 (w), 944 (w), 919 (w), 848 (s), 771 (s), 750 (s), 694 (s), 618 (w), 607 (w) cm⁻¹.

MS (DEP/EI): *m/z* (%) = 305.3 (M⁺, 1), 249.2 (5), 232.2 (1), 205.2 (6), 204.2 (44), 161.2 (5), 160.2 (46), 114.1 (3), 92.1 (7), 91.1 (100), 65.1 (4), 41 (3).

HR-MS (EI): berechnet für $C_{17}H_{23}NO_4$ [M⁺], 305.1627, gefunden 305.1616.

Das gemessene ¹H-NMR als auch der optische Drehwinkel stimmen mit dem in der Literatur publizierten Spektrum bzw. Drehwert überein.^[81]

(S)-tert-Butylbenzyl-pyrrolidine-1,2-dicarboxylat (189)

In 100 ml Zweihalskolben (5 mmol) einem gab man 1.076 g (S)-1-((tertbutoxy)carbonyl)pyrrolidin-2-carbonsäure (183), 1.39 ml (10 mmol, $\rho = 0.726$ g/ml) Triethylamin, 0.57 ml (5.5 mmol, $\rho = 1.044$ g/ml) Benzylalkohol (193) und 5 mol% trockenes Pyridin. Anschließend kühlte man die Reaktionslösung auf -20 °C ab und gab 1.39 ml (6.5 mmol) Pyrokohlensäuredi-tert-butylester (Boc₂O, 173) mittels einer Spritze zu. Man ließ nach beendeter Zugabe 2 min bei -20 °C rühren und erwärmte anschließend auf Raumtemperatur. Die Reaktion wurde 4 h bei Raumtemperatur gerührt, anschließend wurde mit 10 ml Dichlormethan verdünnt und in einen Scheidetrichter transferiert. Die organische Phase wurde mit 10 ml 2N HCl und 10 ml gesättigter wässriger NaHCO₃-Lösung gewaschen. Die Dichlormethanphase wurde über MgSO₄ getrocknet, abfiltriert und das Lösungsmittel unter verminderten Druck abdestiliert. Das klare Öl mit wenig Eluent (10 % Isohexan in EtOAc) aufgenommen und durch einen Glasfiltertiegel mit Kieselgel gefiltert. Mit ca. 30 ml Eluent nachgespült, das Eluat wurde unter verminderten Druck abdestilliert und nach trocknem im Hochvakuum wurde 84 % (1.07 g, 4.19 mmol) von 189 als klares Öl erhalten.

 $\alpha_{\rm D}^{25} = -82.4 \,^{\circ} \, {\rm c1}, \, {\rm H}_2{\rm O}$

¹H-NMR (300 MHz, CDCl₃): δ = 7.32 (m, 5H, *Phenyl*-H), 5.43 (m, 2-H, CH₂), 4.29 (m, 1H, -O₂C-CH-), 3.48 (m, 2H, N-CH₂-), 1.42-1.32 (drei s, 9H, *t*-Bu).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 23.0 \text{ (m, } t\text{-Bu)}, 46.5 \text{ (CH}_2), 59.4 \text{ (CH)}, 66.2 \text{ (CH}_2)$ 68.9 (CH₂), 82.4 (C_q), 128.5 (m, Phenyl-C), 136.1 (C_q, Phenyl-C), 154.0 (m, C_q, C=O).

HRMS(EI): berechnet für $C_{17}H_{23}NO_4 [M^+] 305.1627$, gefunden 305.1645.

Das gemessene ¹H-NMR als auch der optische Drehwinkel stimmen mit dem in der Literatur publizierten Spektrum bzw. Drehwert überein.^[83]

(S)-Di-tert-butyl pyrrolidine-1,2-dicarboxylat (184)

Die Reaktion wurde wie unter **AVV1** beschrieben mit 5 mmol (*S*)-1-((*tert*butoxy)carbonyl)pyrrolidin-2-carbonsäure (**183**), aber ohne die Zugabe von 2 ml Dichlormethan durchgeführt. Die Reaktion wurde 2 h bei Raumtempeartur gerührt, anschließend mit 10 ml Dichlormethan verdünnt und in einen Scheidetrichter transferiert. Die organische Phase wurde mit 20 ml 2N HCl und 20 ml gesättigter wässriger NaHCO₃-Lösung gewaschen. Die Dichlormethanphase über MgSO₄ getrocknet, filtriert und das Lösungsmittel unter verminderten Druck abdestiliert. Flashchromatographie des Rohprodukts an Kieselgel (10% EtOAc in Isohexan) liefert 1.18 g (93%) **184** als ein klares Öl.

 $R_f = 0.56$ (10% EtOAc in Isohexan, Anfärben mit Dragendorff-Munier).

 $\alpha_{\rm D}^{23} = -50.8^{\circ}(10 \text{ mg/ml}, \text{CHCl}_3).$

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.35$, 1.38 (s, 18H, -C(CH₃)₃), 1.81 (m, 4H, CH₂-CH₂), 3.55 (m, 2H, N-CH₂), 4.22 (m, 1H, N-CH), 5.12 (m, 2H, Phenyl-CH₂-), 7.35 (m, 5H, Phenyl).

¹³C-NMR (75 MHz, CDCl₃): δ = 23.5, 24.3 (C-4), 28.1 (-C(CH₃)₃), 28.6 (-C(CH₃)₃), 31.0(C-3), 46.4, 46.6 (C-5), 59.8 (C-2), 79.5, 79.7, 80.9 (C_q, -C(CH₃)), 154.1, 154.5 (C_q, N-COO^tBu), 172.7, 172.4 (C_q, -COO^tBu).

IR (NaCl): $\tilde{v} = 3679$ (w), 3370 (w), 2977 (vs), 2881 (vs) 2455 (w), 1742 (vs, C=O), 1702 (vs), 1543 (sh), 1478 (s), 1455 (s), 1394 (s), 1291 (s), 1222 (s), 1152 (s), 1088 (s), 1031 (w), 980 (m), 943 (s), 919 (m), 854 (m), 840 (s), 758 (s), 666 (s) cm⁻¹.

GC-MS (EI): RT 7.71-8.68 min, *m/z* (%), 272.4 (1), 271.3 (4), 215.2 (2), 171.2 (5), 170.2 (64), 160.2 (2), 143.2 (1), 142.2 (21), 115.1 (10), 114.1 (67), 71.1 (6), 70.1 (87), 58.1 (5), 57.1 (100), 56.1 (9), 55.0 (4), 44.0 (7), 43.0 (5), 42.0 (6), 40.9 (42).

HRMS(EI): berechnet für $C_{11}H_{25}NO_4$ [M⁺] 271.1784, gefunden 271.1793.

Das gemessene ¹H- und ¹³C-NMR als auch der optische Drehwinkel stimmen mit dem in der Literatur publizierten Spektren bzw. Drehwert überein.^[81]

ortho-Fluorbenzoesäurebenzylester (191)

In einem 100 ml Zweihalskolben gab man 700 mg (5 mmol) o-Fluorbenzoesäure (**190**), 1.39 ml (10 mmol, $\rho = 0.726$ g/ml) Triethylamin, 0.57 ml (5.5 mmol, $\rho = 1.044$ g/ml) Benzylalkohol (**193**) und 5 mol% trockenes Pyridin. Anschließend kühlt man die Reaktionslösung auf -20 °C ab und gab 1.39 ml (6.5 mmol) Pyrokohlensäuredi-*tert*-butylester (BOC₂O, **173**) mittels einer Spritze zu. Man lässt nach beendeter Zugabe 2 min bei -20 °C rühren und erwärmt anschließend auf Raumtemperatur. Die Reaktion wurde 3 h bei Raumtemperatur gerührt, anschließend wurde mit 10 ml Dichlormethan verdünnt und in einen Scheidetrichter transferiert. Die organische Phase wurde mit 10 ml 2N HCl und 10 ml gesättigter wässriger NaHCO₃-Lösung gewaschen. Die Dichlormethanphase über MgSO₄ getrocknet, filtriert und das Lösungsmittel unter verminderten Druck abdestiliert. Das Rohprodukt wurde durch Flashchromatographie an Kieselgel (10% EtOAc in Isohexan) gereinigt. Ausbeute 805 mg (70%) **191** als klaren Öls.

 $R_f = 0.38 (10\% \text{ EtOAc in Isohexan})$

¹H-NMR (400 MHz, [D₆]-Benzol): δ = 5.11 (s, 2H, Ph-CH₂-), 6.61 (m, 2H, H-3, H-4), 6.81 (m, 1H, H-5), 6.99-7.20 (m, 5H, *phenyl*), 7.79 (m, 1H, H-6).

¹³C-NMR (100 MHz, [D₆]-Benzol): $\delta = 66.7$ (Phenyl-CH₂), 116.7 (C-3), 123.8 (C-4), 127.6, 127.7, 127.8, 128.2 (m, *Phenyl*), 132.3 (C-6), 134.2 (C-5), 160.8 (C_q, *C*-F), 163.8 (C_q, - COOCH₂Ph).

IR (ATR): $\tilde{v} = 3281$ (w), 3034 (w), 1713 (s), 1642 (s), 1600 (w), 1520 (m), 1496 (m), 1452 (m), 1412 (w), 1375 (m), 1338 (s), 1294 (m), 1247 (vs), 1189 (m), 1175 (m), 1127 (w), 1072 (m), 1031 (w), 1017 (w), 934 (m), 897 (m), 881 (m), 832 (w), 770 (w), 753 (m), 711 (sh), 697 (vs), 653 (w) cm⁻¹.

MS (DEP/EI): m/z (%) = 231.2 (2), 230.2 (M⁺,15), 208.2 (8), 153.1 (20), 152.1 (17), 151.1 (14), 146.2 (9), 141.1 (16), 123.1 (38), 108.1 (34), 107.1 (30), 95.1 (9), 92.1 (6), 91.1 (65), 90.1 (11), 79.1 (50), 77.1 (31), 75.0 (8), 65.0 (16), 57 (100), 56 (34), 51 (17), 44.0 (29), 41 (46).

HRMS (EI): berechnet für $C_{13}H_1FO_2$ [M⁺] 230.0743, gefunden 230.0732.

Als Nebenprodukte konnte eine 1:2 Mischung aus *ortho*-Fluorbenzoesäure-*tert*-butylester und *tert*-Butylbenzylcarbonat (195) in einer Menge von 600 mg isoliert worden. Dies entspricht einer Ausbeute von 20% von *ortho*-Fluorbenzoesäure-*tert*-butylester.

195

 $R_f = 0.63$ (10% EtOAc in Isohexan)

Charakterisierung von ortho-Fluorbenzoesäure-tert-butylester:

¹H-NMR (400 MHz, [D₆]-Benzol): $\delta = 1.39$ (s, 9H, -C(CH₃)₃), 6.64 (m, 2H, H-3, H-4), 6.80 (m, 1H, H-5), 7.82 (m, 1H, H-6).

¹³C-NMR (100 MHz, [D₆]-Benzol): $\delta = 27.9$ (-C(CH₃)₃), 81.1 (C_q, -C(CH₃)₃), 116.7 (C-3), 123.6 (C-4), 132.1 (C-6), 133.6 (C-5), 160.7 (C_q, C-F), 163.2 (C_q, -COO^tBu).

HRMS (EI): berechnet für $C_{11}H_{13}FO_2$ [M⁺] 196.0900, gefunden 196.0881.

Charakterisierung für 195:

¹**H-NMR (400 MHz, [D₆]-Benzol):** $\delta = 1.26$ (s, 9H, -C(CH₃)₃), 4.90 (s, 2H, Ph-CH₂), 6.94-7.14 (m, 5H, *phenyl*).

¹³C-NMR (100 MHz, [D₆]-Benzol): $\delta = 27.5$ (-C(*C*H₃)₃), 68.4 (Ph-*C*H₂), 81.9 (C_q, -*C*(CH₃)₃), 127.6, 127.8, 128.2, 128.4 (*phenyl*), 153.9 (C_q, Carbonat).

HRMS (EI): berechnet für $C_{12}H_{16}O_3$ [M⁺] 208.1099, gefunden 208.1076.

3-Nitrobenzoesäure-benzylester (194)

In einem 100 ml Zweihalskolben gab man 835 mg (5 mmol) *m*-Nitrobenzoesäure, 1.39 ml (10 mmol, $\rho = 0.726$ g/ml) Triethylamin, 0.57 ml (5.5 mmol, $\rho = 1.044$ g/ml) Benzylalkohol und 5mol% trockenes Pyridin. Anschließend kühlte man die Reaktionslösung auf -20 °C ab und gab 1.39 ml (6.5 mmol) Pyrokohlensäuredi-tert-butylester (Boc₂O) mittels einer Spritze zu. Man ließ nach beendeter Zugabe 2 min bei -20 °C rühren und erwärmte anschließend auf Raumtemperatur. Die Reaktion wurde 4 h bei Raumtemperatur gerührt, anschließend wurde mit 10 ml Dichlormethan verdünnt und in einen Scheidetrichter transferiert. Die organische Phase wurde mit 10 ml 2N HCl und 10 ml gesättigter wässriger NaHCO₃-Lösung gewaschen. Die Dichlormethanphase über MgSO4 getrocknet, filtriert und das Lösungsmittel unter Druck abdestiliert. durch verminderten Das erhaltene Rohprodukt wurde Flashchromatographie an Kieselgel (Isohexan/EtOAc, 9:1) gereinigt. Ausbeute 84 % (1.07 g, 4.19 mmol) **194** als ein klares Öl.

 $R_f = 0.32$ (Isohexan/EtOAc, 9:1)

¹**H-NMR** (200 MHz, CDCl₃): $\delta = 5.41$ (s, 2H, Ph-CH₂-), 7.35-7.45 (m, 5H, Phenyl-H), 7.63 (t, ${}^{3}J = 8$ Hz, 1H, 5-H), 8.37 (m, 2H, 4,6-H), 8.87 (s, 1H, 2H).

¹³C-NMR (75 MHz, CDCl₃): $\delta = 67.8 (CH_2)$, 124.8 (C-2), 127.7 (C-4), 128.7-128.9 (m, Phenyl-C), 129.9 (m, Phenyl-C), 132.1 (C_q), 148.5 (m, C_q), 164.5 (C=O).

HRMS (EI): berechnet für C₁₄H₁₁NO₂ [M⁺] 257.0688, gefunden 257.0690.

Adamantancarbonsäureanhydrid (197)

Die Reaktion wurde wie unter **AVV1** beschrieben mit 5 mmol Adamantancarbonsäure (**196**) durchgeführt. Nach 12 h Rühren bei Raumtemperatur wurde die Reaktionsmischung mit 10 ml Dichlormethan verdünnt, das Lösungsmittel unter verminderten Druck abdestilliert und das Produkt **197** durch Flashchromatografie an Kieselgel (20% EtOAc in Isohexan) gereinigt. Ausbeute 1.28 g (50%) eines weissen Feststoffs. In einer weiteren Fraktion wurde Di*-tert*-butylcarbonat (**182**) in einer Ausbeute von 29 % isoliert.

¹**H-NMR (200 MHz, CDCl₃):** $\delta = 1.74$ (m, 12H), 1.91 (m, 12H), 5.68 (m, 6H).

IR (ATR): $\tilde{v} = 2904$ (m), 2852 (w), 1802 (m), 1734 (s), 1452 (w), 1368 (m), 1289 (m), 1255 (m), 1139 (s), 992 (s), 969 (s), 934 (m), 844 (m), 732 (w).

¹H-NMR und IR-Daten stimmen mit der Literatur überein.^[88]

Di-tert-butylcarbonat (182)

 \times

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 1.40$ (s, 18H).

¹³C-NMR (75 MHz,CDCl₃): δ = 28.4 (CH₃), 86.5 (C_q, C(CH₃)), 55.5 (C=O).

^[88] D. Plusquellec, F. Roulleau, M. Lefeuvre, E. Brown, *Tetrahedron*, **1988**, 44, 2471.

Isobuttersäure-1-ethinylcyclohexylester (167)

In einen 50 ml Schlenk-Kolben gab man 500 mg (4.0 mmol) 1-Ethinylcyclohexanol (**21**), 10 ml trockenes Dichlormethan, 0.75 ml (4.5 mmol, $\rho = 0.954$ g/ml) trockenes Isobuttersäureanhydrid, 0.63 ml (4.5 mmol, ρ =0.726 g/ml) NEt₃ und 59 mg (0.4 mmol) PPY. Man lässt 20 h bei 40 °C rühren und stoppt die Reaktion anschließend durch Zugabe von 2 ml Methanol. Anschließend destillierte man das Lösungsmittel unter verminderten Druck ab und chromatographierte das Rohprodukt an Kieselgel (EtOAc/Isohexan, 1:1). Die Ausbeute beträgt 699 mg (90 %) von **167** als ein klares Öl.

 $R_f = 0.70$ (EtOAc/Isohexan, 1:1, Anfärben mit *p*-Anisaldehyd-Lsg.).

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 1.14$ (d, ³J = 6.9 Hz, 6H, -CH(CH₃)₂), 1.42 (m, 2H), 1.58 (m, 4H), 1.91 (m, 2H), 2.04 (m, 2H), 2.49 (sep., ³J = 6.9 Hz, 1H, -CH(CH₃)₂), 2.54 (s, 1H, -C=C-H).

¹³C-NMR (75 MHz,CDCl₃): $\delta = 18.9$ (-CH(CH₃)₂), 22.4 (CH₂), 25.2 (CH₂), 34.6 (-CH(CH₃)₂, 36.9 (CH₂), 73.8 (-C=C-H), 74.5 (C_q), 84.0 (C_q), 175.2 (C=O).

IR (ATR): $\tilde{v} = 3272$ (w), 2936 (s), 1730 (vs), 1604 (m), 1524 (w), 1469 (w), 1447 (w), 1386 (w), 1349 (w), 1292 (w), 1241 (w), 1188 (s), 1149 (vs), 1137 (vs), 1106 (w), 1062 (m), 1022 (m), 950 (m), 928 (m), 897 (m), 844 (m), 827 (w), 754 (w), 657 (m), 620 (m) cm⁻¹.

GC-MS (EI) RT 5.32 min, m/z (%) = 194.2 (M⁺, 1), 151.2 (7), 124.2 (28), 109.1 (9), 107.2 (26), 106.2 (37), 105.2 (13), 91.1 (29), 81.1 (9), 80.1 (7), 79.1 (37), 78.1 (8), 71.1 (100), 67.1 (22), 43.0 (86), 40.9 (12).

9. Umsatzverfolgung

9.1 Allgemeine Arbeitsmethoden

Deutoriochloroform, Triethylamin und Hünigs Base wurden vor der Verwendung frisch unter Stickstoffatmosphäre von Calciumhydrid destilliert.

¹H-NMR-Spektren der Kinetikmessung wurden mit dem Programm VNMR 4.3 Rev. G0194 ausgewertet. Integrale der relevanten Peaks wurden automatisch mit einem selbst geschriebenen Unterprogramm ausgewertet. Die Subroutine wurde mit MAGICAL[™] II-Programming geschrieben.

intmod = 'partial'
Si = 1
REPEAT
ds(Si)
cz
Sheight=0
Sc=0
peak:Sheight,cr
integ(cr-8,cr+8):Sc
write ('file','daten',Sc)
Si = \$i + 1
UNTIL \$i > arraydim

9.2 Allgemeine Durchführung zu den Reaktivitätsexperimenten

Alle kinetischen Messungen wurden bei konstanter Temperatur bei 23 °C für Reaktion A und 40 °C für Reaktion B auf einem Varian Mercury 200 Spektrometer aufgenommen. In drei trockenen 5 ml Messkolben wurden folgende Masslösungen in deuterierten Chloroform hergestellt.

A: 1.2 M Acetanhydrid-Lösung.

B: 0.6 M Ethinylcyclohexanol-Lösung und 1.8 M Triethylamin- oder Hünig-Basen-Lösung.C: 0.06 M Katalysatorlösung.

9.2.1 Probenvorbereitung und Umsatzverfolgung mit Acetanhydrid (A)

In einem NMR-Rörchen wurden jeweils 200 µl der oben genannten Masslösungen mittels einer Eppendorf-Pipette pipettiert. Die Reaktionsmischung wurde vermischt, das NMR-Röhrchen abgeschmolzen unter Stickstoffatmosphäre abgeschmolzen und so schnell wie möglich in das NMR-Spektrometer eingeführt. Die Reaktion wurde durch Aufnahmen von NMR-Spektren in einem definierten Zeitinterwall bis zum 100%igen Umsatz verfolgt.

9.2.2 Probenvorbereitung und Umsatzverfolgung für Isobuttersäureanhydrid (B)

Durchführung wie unter Reaktion A beschrieben nur, dass das NMR-Röhrchen, um ein verdampfen des Lösungsmittels zu verhindern, mit einem Brenner abgeschmolzen worden ist.

9.3 Messung der Halbwertszeiten der Veresterung von Boc₂O aktivierten Carbonsäuren

In einen 10 ml Schlenk-Kolben wurden 1 Äq. (5.0 mmol) Säure, 0.5 ml (1.1 Äq.) *tert*-BuOH (**178**), 0.427 ml (1 Äq. 5 mmol) trockenes 1,4-Dioxan (**179**), 2 Äq. NEt₃ und 0.05 Äq. des gewünschten Katalysators gegeben. Die Reaktionsmischung wurde bis zur Homogenität gerührt, auf -20 °C gekühlt und dann mit 1.3 Äq. geschmolzenem Boc₂O (**173**) versetzt. Die Reaktionsmischung wurde für 2 Min. bei gleicher Temperatur gerührt und dann mit Hilfe einen thermostatisierten Ethanolbads auf die Reaktionstemperatur von 23 °C gebracht. Dieser Moment markierte den Nullpunkt der Reaktionszeit-Messung. In definierten Intervallen wurden mit einer Spritze Proben von 0.05 ml aus der Reaktionslösung entfernt, durch Zugabe von 0.5 ml trockenem, deuteriertem Lösungsmittel verdünnt und im NMR-Spektrometer vermessen. Der Umsatz wurde durch Vergleich der Intensität des *tert*-Butyl-Signals des jeweiligen Esters mit dem des internen Standards Dioxan (**179**) bei 3.68 ppm entsprechend Gleichung (**28**) verfolgt. Die entsprechenden Datenpunkte wurden durch eine Exponentialfunktion (**Gl. 24**) oder eine sigmamoidale Funktion (**Gl. 30**) gefittet. Die Halbwertszeit wurde aus der gefittet Funktion von 0 bis 50 % berechnet.

$$Umsatz = t_a \left(\frac{1}{1 + \left(\exp \frac{(-t - t_0)}{k} \right)^c} \right) + const.$$
 (32)

Dabei sind t_a , t_0 , k, c und *const*. Konstanten die gefittet wurden. T ist die Zeit. Die gefitteten Konstansten besitzen keine physikalische Bedeutung.

9.4 Fitten der Edukte, Intermediate und Produkte der Veresterung von Isobuttersäure (177) mit *tert*-Butanol (178)

Zum fitten der Umsatzprofile von Isobuttersäure (177) und Isobuttersäure-*tert*butylester (180) wurde eine exponentielle Funktion verwendet. Zum Fitten des symmetrischen- bzw. gemischeten Anhydrid (166, 181) Umsatzprofils wurde eine Peak-Funktion (Gl. 31) verwendet. Diese beschreibt das Umsatzprofil am sinnvollsten.

$$Umsatz = t_a \left(\exp\left(-\frac{(t-t_0)}{k}\right) \right) \cdot \left(\left(\left(\frac{(t-t_0)}{k}\right) + d - 1 \right) / (d-1) \right)^{d-1} + const.$$
(33)

Dabei sind ta, t_0 , k, d und const. Konstanten die gefittet wurden. *T* ist die Zeit. Die gefitteten Konstansten besitzen keine physikalische Bedeutung.

9.5 Umsatzgrafiken

9.5.1 Umsatzgrafiken aus der NMR-Testreaktion

Nachfolgend sind die Umsatzgrafiken der Veresterung von Alkohol 21 mit Acetanhydrid (2) und Isobuttersäureanhydrid (166) wiedergegeben.

Abb. 54: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator und Acetanhydrid (2).

Abb. 55: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator und Acetanhydrid (2).

Abb. 56: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator mit Hünig-Base als Auxiliarbase und Acetanhydrid (2).

Abb. 57: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator 131 und Acetanhydrid (2).

Abb. 58: Dargestellt ist die Zunahme des Esters 22 mit der Zeit bis 70 % Umsatz in Gegenwart von 10 mol% Katalysator 130 und Acetanhydrid (2). Zum besseren Fitten der Exponentialfunktion (Gl. 24) wurden zu stark abweichende Datenpunkte eliminiert.

Abb. 59: Dargestellt ist die Zunahme des Esters 167 mit der Zeit in Gegenwart von 10 mol% Katalysator und Isobuttersäureanhydrid (166).

Abb. 60: Dargestellt ist die Zunahme des Esters 167 mit der Zeit bis 58 % Umsatz in Gegenwart von 10 mol% Katalysator 130 und Isobuttersäureanhydrid (166).

Abb. 61: Dargestellt ist die Zunahme des Esters 167 mit der Zeit in Gegenwart von 10 mol% Katalysator mit Hünig-Base als Auxiliarbase und Isobuttersäureanhydrid (166).

Abb. 62: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator und Acetanhydrid (2).

Abb. 63: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator 35 und Acetanhydrid (2).

Abb. 64: Dargestellt ist die Zunahme des Esters 22 mit der Zeit in Gegenwart von 10 mol% Katalysator mit Hünig-Base als Auxiliarbase und Acetanhydrid (2).

9.5.2 Umsatzgrafiken aus der Veresterung von Boc₂O aktivierten Carbonsäuren

Abb. 65: Dargestellt ist die Zunahme des Esters 186 in Gegenwart von 5 mol% PPY (33), 2 Äq. NEt₃ und 1.3 Äq. Boc₂O.

Abb. 66: Dargestellt ist die Zunahme des Esters 188 in Gegenwart von 5 mol% Katalysator (97) ● und 5 mol% PPY (33) ▲, 2 Äq. NEt₃ und 1.3 Äq. Boc₂O.

9.6 Integraltabellen

Nachfolgend ist die Integraltabelle für die Veresterung von 1-Ethinylcyclohexanol (21) mit Acetanhydrid (2) und 10 mol% DMAP (1) abgebildet.

Tabelle 21: Abgebildet sind die mit dem Programmpaket VNMR berechneten Integrale für Acetanhydrid (2), Ester (22) und Triethylammoniumacetat (161). Spalte A entspricht der Summe aus 2 und 22, Spalte B der Summe aus Spalte A und 161 und Spalte C entspricht Spalte B dividiert durch 4. Der Umsatz berechnet sich aus 22 dividiert durch Spalte C multipliziert mit 100%.

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	%
7.73	23.9619	0.9637	2.6128	24.9256	27.5383	6.8846	13.9972
15.47	23.5073	1.2364	2.8841	24.7437	27.6278	6.9069	17.9010
23.20	23.0198	1.4692	3.0954	24.4891	27.5845	6.8961	21.3054
30.93	22.6426	1.6963	3.2807	24.3389	27.6196	6.9049	24.5671
38.67	22.2554	1.9330	3.5196	24.1885	27.7080	6.9270	27.9059
46.40	21.8690	2.1329	3.6983	24.0019	27.7002	6.9251	30.7996
54.13	21.5179	2.3354	3.8767	23.8533	27.7300	6.9325	33.6880
61.87	21.1562	2.5266	4.0326	23.6829	27.7155	6.9289	36.4651
69.60	20.8164	2.6761	4.1589	23.4925	27.6514	6.9129	38.7121
77.33	20.5287	2.8433	4.3321	23.3720	27.7041	6.9260	41.0525
85.07	20.1654	2.9544	4.4755	23.1198	27.5953	6.8988	42.8252
92.80	19.8896	3.1520	4.6214	23.0416	27.6630	6.9158	45.5771
100.53	19.6512	3.2151	4.6990	22.8663	27.5653	6.8913	46.6543
108.27	19.4348	3.3801	4.8450	22.8149	27.6599	6.9150	48.8807
116.00	19.1861	3.5171	4.9314	22.7032	27.6346	6.9086	50.9091
123.73	18.9599	3.6110	5.0495	22.5709	27.6204	6.9051	52.2952
131.47	18.7263	3.7537	5.1324	22.4800	27.6124	6.9031	54.3765
139.20	18.5544	3.8300	5.2646	22.3844	27.6489	6.9122	55.4086
146.93	18.2792	3.9441	5.3276	22.2233	27.5509	6.8877	57.2625
154.67	18.1455	4.0640	5.4321	22.2095	27.6415	6.9104	58.8101

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	%
162.40	17.9462	4.1522	5.4947	22.0984	27.5930	6.8983	60.1917
170.13	17.7615	4.3005	5.5887	22.0621	27.6508	6.9127	62.2120
177.87	17.6137	4.2947	5.6716	21.9084	27.5800	6.8950	62.2869
185.60	17.5177	4.4044	5.7499	21.9221	27.6720	6.9180	63.6651
193.33	17.3461	4.4848	5.8336	21.8308	27.6644	6.9161	64.8451
201.07	17.1962	4.5763	5.8752	21.7725	27.6477	6.9119	66.2091
208.80	17.0468	4.6566	5.9541	21.7034	27.6575	6.9144	67.3460
216.53	16.9329	4.7135	6.0155	21.6464	27.6619	6.9155	68.1581
224.27	16.8209	4.7903	6.0834	21.6112	27.6946	6.9236	69.1875
232.00	16.7192	4.8824	6.1151	21.6016	27.7167	6.9292	70.4617
239.73	16.6066	4.9268	6.1901	21.5334	27.7236	6.9309	71.0848
247.47	16.4678	4.9677	6.2635	21.4355	27.6989	6.9247	71.7380
255.20	16.3851	5.0636	6.3154	21.4487	27.7641	6.9410	72.9516
262.93	16.3121	5.0736	6.3833	21.3857	27.7690	6.9423	73.0831
270.67	16.2607	5.1285	6.4418	21.3892	27.8310	6.9578	73.7095
278.40	16.1991	5.2460	6.4817	21.4452	27.9268	6.9817	75.1398
286.13	16.1398	5.3431	6.5242	21.4830	28.0071	7.0018	76.3110
293.87	16.0364	5.2846	6.6061	21.3210	27.9270	6.9818	75.6917
301.60	15.9707	5.3539	6.6354	21.3247	27.9600	6.9900	76.5939
309.33	15.8785	5.5245	6.6876	21.4030	28.0907	7.0227	78.6670
317.07	15.8327	5.5205	6.7415	21.3532	28.0947	7.0237	78.5982
324.80	15.7523	5.5103	6.8120	21.2626	28.0745	7.0186	78.5093
332.53	15.7176	5.5635	6.8298	21.2811	28.1109	7.0277	79.1654
340.27	15.6640	5.6379	6.8540	21.3020	28.1560	7.0390	80.0959
348.00	15.5940	5.7096	6.9121	21.3036	28.2157	7.0539	80.9418
355.73	15.5186	5.7330	6.9711	21.2516	28.2227	7.0557	81.2542
363.47	15.4740	5.6880	6.9747	21.1620	28.1367	7.0342	80.8625
371.20	15.4218	5.7483	6.9870	21.1701	28.1571	7.0393	81.6600
378.93	15.3092	5.8692	7.0013	21.1784	28.1798	7.0449	83.3105
386.67	15.3250	5.8922	7.0559	21.2172	28.2731	7.0683	83.3618
394.40	15.2179	5.9478	7.1066	21.1657	28.2723	7.0681	84.1504

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ 2/4	%
402.13	15.1711	5.9175	7.1428	21.0886	28.2314	7.0579	83.8430
409.87	15.1819	5.9322	7.1496	21.1141	28.2636	7.0659	83.9553
417.60	15.0506	6.0357	7.1542	21.0864	28.2406	7.0602	85.4903
425.33	15.0431	6.0649	7.2212	21.1079	28.3291	7.0823	85.6345
433.07	15.0078	6.1095	7.2414	21.1173	28.3587	7.0897	86.1748
440.80	14.9406	6.0459	7.2806	20.9866	28.2671	7.0668	85.5541
448.53	14.8633	6.1331	7.2531	20.9964	28.2495	7.0624	86.8417
456.27	14.8481	6.1136	7.2901	20.9616	28.2518	7.0629	86.5584
464.00	14.8064	6.1877	7.2978	20.9941	28.2919	7.0730	87.4836
471.73	14.7647	6.2501	7.3492	21.0147	28.3639	7.0910	88.1408
479.47	14.7057	6.2315	7.3593	20.9372	28.2965	7.0741	88.0879
487.20	14.6801	6.2150	7.3803	20.8951	28.2754	7.0689	87.9210
494.93	14.6320	6.2333	7.3888	20.8653	28.2541	7.0635	88.2461
502.67	14.6394	6.2730	7.3717	20.9124	28.2841	7.0710	88.7145
510.40	14.5887	6.3496	7.4446	20.9383	28.3829	7.0957	89.4851
518.13	14.5181	6.3733	7.4544	20.8914	28.3458	7.0864	89.9368
525.87	14.5081	6.4135	7.4670	20.9216	28.3885	7.0971	90.3675
533.60	14.4468	6.3560	7.5173	20.8028	28.3200	7.0800	89.7736
541.33	14.4188	6.3980	7.5117	20.8167	28.3285	7.0821	90.3397
549.07	14.4596	6.4275	7.5372	20.8871	28.4243	7.1061	90.4508
556.80	14.4271	6.4396	7.5311	20.8668	28.3979	7.0995	90.7061
564.53	14.3542	6.4885	7.5525	20.8427	28.3952	7.0988	91.4030
572.27	14.3209	6.5351	7.5561	20.8560	28.4121	7.1030	92.0042
580.00	14.3125	6.4836	7.6019	20.7961	28.3980	7.0995	91.3247
587.73	14.2534	6.5380	7.5614	20.7914	28.3528	7.0882	92.2382
595.47	14.2730	6.5132	7.6223	20.7862	28.4085	7.1021	91.7076
603.20	14.2364	6.5407	7.6034	20.7771	28.3805	7.0951	92.1864
610.93	14.1931	6.5721	7.6214	20.7652	28.3866	7.0967	92.6082
618.67	14.1655	6.5912	7.6459	20.7567	28.4027	7.1007	92.8255
626.40	14.1107	6.6605	7.6327	20.7712	28.4039	7.1010	93.7970
634.13	14.0813	6.6356	7.6925	20.7169	28.4094	7.1024	93.4277

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	%
641.87	14.0421	6.6258	7.6977	20.6679	28.3656	7.0914	93.4341
649.60	14.0737	6.6759	7.6804	20.7496	28.4300	7.1075	93.9272
657.33	14.0204	6.6491	7.7215	20.6694	28.3909	7.0977	93.6788
665.07	14.0361	6.6968	7.6793	20.7329	28.4122	7.1031	94.2806
672.80	14.0180	6.6723	7.7134	20.6903	28.4037	7.1009	93.9640
680.53	13.9687	6.7211	7.7096	20.6898	28.3994	7.0999	94.6653
688.27	13.9565	6.7858	7.7106	20.7422	28.4528	7.1132	95.3964
696.00	13.9373	6.7723	7.7356	20.7096	28.4452	7.1113	95.2334
703.73	13.9052	6.7918	7.7735	20.6970	28.4705	7.1176	95.4229
711.47	13.8475	6.7953	7.7639	20.6429	28.4067	7.1017	95.6861
719.20	13.8569	6.7901	7.7457	20.6470	28.3927	7.0982	95.6598
726.93	13.8541	6.7373	7.8075	20.5913	28.3988	7.0997	94.8949
734.67	13.8036	6.7554	7.8009	20.5590	28.3598	7.0900	95.2815
742.40	13.8286	6.7902	7.8031	20.6188	28.4219	7.1055	95.5632
750.13	13.8310	6.7944	7.7764	20.6254	28.4018	7.1004	95.6900
757.87	13.7970	6.8065	7.8082	20.6035	28.4116	7.1029	95.8266
765.60	13.7836	6.8749	7.8229	20.6586	28.4815	7.1204	96.5531
773.33	13.7697	6.8525	7.8371	20.6222	28.4593	7.1148	96.3126
781.07	13.7453	6.8485	7.8185	20.5938	28.4123	7.1031	96.4155
788.80	13.7309	6.9012	7.8490	20.6321	28.4811	7.1203	96.9234
796.53	13.7420	6.8867	7.8387	20.6287	28.4674	7.1168	96.7660
804.27	13.6741	6.8982	7.8489	20.5723	28.4212	7.1053	97.0856
812.00	13.6986	6.8713	7.8317	20.5699	28.4016	7.1004	96.7738
819.73	13.6685	6.8788	7.8468	20.5473	28.3941	7.0985	96.9044
827.47	13.6767	6.9203	7.8280	20.5970	28.4249	7.1062	97.3829
835.20	13.6613	6.9255	7.8310	20.5868	28.4178	7.1044	97.4818
842.93	13.6496	6.9174	7.8709	20.5670	28.4379	7.1095	97.2978
850.67	13.6964	6.9258	7.8673	20.6223	28.4895	7.1224	97.2405
858.40	13.6372	6.9707	7.8406	20.6079	28.4485	7.1121	98.0120
866.13	13.6314	6.9379	7.8983	20.5693	28.4676	7.1169	97.4851
873.87	13.6571	6.9488	7.8846	20.6059	28.4905	7.1226	97.5593

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ 2/4	%
881.60	13.6382	6.9460	7.8795	20.5842	28.4638	7.1159	97.6121
889.33	13.6115	6.9796	7.8705	20.5911	28.4616	7.1154	98.0917
897.07	13.5704	6.9790	7.8876	20.5494	28.4370	7.1093	98.1682
904.80	13.4834	7.0124	7.8732	20.4957	28.3690	7.0923	98.8735
912.53	13.4991	6.9524	7.9215	20.4516	28.3730	7.0933	98.0144
920.27	13.5480	6.9605	7.8906	20.5085	28.3991	7.0998	98.0377
928.00	13.4798	6.9888	7.9118	20.4685	28.3804	7.0951	98.5018
935.73	13.4349	6.9567	7.9109	20.3917	28.3026	7.0756	98.3194
943.47	13.5288	7.0088	7.9057	20.5376	28.4433	7.1108	98.5658
951.20	13.4422	6.9669	7.9023	20.4091	28.3113	7.0778	98.4326
958.93	13.4956	6.9535	7.9077	20.4491	28.3567	7.0892	98.0858
966.67	13.4825	6.9422	7.9053	20.4247	28.3301	7.0825	98.0188
974.40	13.4400	6.9900	7.8952	20.4301	28.3253	7.0813	98.7107
982.13	13.4843	7.0240	7.9078	20.5082	28.4161	7.1040	98.8731
989.87	13.4568	6.9930	7.8937	20.4498	28.3435	7.0859	98.6892
997.60	13.4092	7.0383	7.9138	20.4475	28.3612	7.0903	99.2664
1005.33	13.4050	7.0442	7.9024	20.4493	28.3517	7.0879	99.3835
1013.07	13.4345	7.0512	7.9226	20.4857	28.4083	7.1021	99.2831
1020.80	13.3482	7.0548	7.9253	20.4030	28.3283	7.0821	99.6150
1028.53	13.3635	7.0757	7.9622	20.4393	28.4015	7.1004	99.6528
1036.27	13.3753	7.0864	7.8817	20.4616	28.3434	7.0858	100.0074
1044.00	13.3774	7.0738	7.9334	20.4512	28.3846	7.0961	99.6855
1051.73	13.3307	7.0875	7.9289	20.4182	28.3471	7.0868	100.0106
1059.47	13.2931	7.0364	7.9192	20.3295	28.2486	7.0622	99.6347
1067.20	13.3024	7.0121	7.9647	20.3144	28.2791	7.0698	99.1840
1074.93	13.2894	7.0276	7.9084	20.3171	28.2254	7.0564	99.5928
1082.67	13.2790	7.0239	7.9210	20.3029	28.2239	7.0560	99.5457
1090.40	13.2326	7.0504	7.9024	20.2830	28.1854	7.0463	100.0574
1098.13	13.2417	6.9962	7.9215	20.2379	28.1594	7.0399	99.3802
1105.87	13.2345	6.9920	7.9213	20.2265	28.1478	7.0370	99.3614
1113.60	13.2327	7.0157	7.8980	20.2484	28.1464	7.0366	99.7030

Fortsetzung Tabelle 21:

				Α	В	С	Umsatz /
Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	%
1121.33	13.1781	7.0449	7.8959	20.2230	28.1189	7.0297	100.2163
1129.07	13.1712	7.0456	7.9193	20.2168	28.1360	7.0340	100.1641

 Tabelle 22: Abgebildet sind die mit dem Programmpaket VNMR berechneten Integrale f
 ür Acetanhydrid (2), Ester (22) und Triethylammoniumacetat (161) f
 ür die Veresterung von Alkohol (21) in Gegenwart von 10 mol% Katalysator (99).

Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt₃Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	Umsatz / %
2.07	17.9599	1.5627	3.1159	19.5227	22.6386	5.6596	27.6117
4.13	17.1420	1.8974	3.0674	19.0393	22.1266	5.5317	34.3001
6.20	16.4948	2.1914	3.0248	18.6861	22.1068	5.5267	39.6506
8.27	15.8578	2.4461	3.3632	18.3039	22.1055	5.5264	44.2625
10.33	15.3706	2.6559	3.6447	18.0265	22.0511	5.5128	48.1775
12.40	14.8898	2.8384	3.8914	17.7281	22.0478	5.5120	51.4952
14.47	14.5233	3.0347	4.1097	17.5580	22.0256	5.5064	55.1118
16.53	14.1757	3.2062	4.3524	17.3819	22.0238	5.5060	58.2311
18.60	13.7662	3.3283	4.5579	17.0944	22.0153	5.5038	60.4715
20.67	13.5189	3.4682	4.7822	16.9871	22.0126	5.5031	63.0227
22.73	13.2341	3.6228	4.9199	16.8568	22.0073	5.5018	65.8463
24.80	13.0164	3.6920	5.0801	16.7084	22.0057	5.5014	67.1098
26.87	12.7452	3.8138	5.2361	16.5590	22.0004	5.5001	69.3412
28.93	12.5354	3.8696	5.3895	16.4050	21.9902	5.4976	70.3878
31.00	12.2946	4.0047	5.5411	16.2992	21.9842	5.4960	72.8645
33.07	12.0196	4.0485	5.5747	16.0682	21.9811	5.4953	73.6725
35.13	11.9477	4.1541	5.7037	16.1017	21.9644	5.4911	75.6512
37.20	11.7929	4.2082	5.8720	16.0012	21.9639	5.4910	76.6387
39.27	11.5778	4.2588	5.9810	15.8365	21.9635	5.4909	77.5608
41.33	11.4767	4.3573	6.0671	15.8340	21.9562	5.4890	79.3812

Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	Umsatz / %
43.40	11.3290	4.4250	6.0886	15.7540	21.9542	5.4885	80.6217
45.47	11.2208	4.4330	6.1993	15.6537	21.9482	5.4870	80.7897
47.53	11.1079	4.5029	6.2936	15.6108	21.9409	5.4852	82.0912
49.60	10.9987	4.5835	6.3813	15.5822	21.9358	5.4840	83.5806
51.67	10.9018	4.6098	6.4941	15.5116	21.9314	5.4828	84.0770
53.73	10.7897	4.6333	6.5410	15.4230	21.9304	5.4826	84.5088
55.80	10.6722	4.6657	6.5508	15.3379	21.9139	5.4785	85.1641
57.87	10.6129	4.7554	6.6828	15.3683	21.9104	5.4776	86.8150
59.93	10.5433	4.7844	6.7200	15.3278	21.9093	5.4773	87.3494
62.00	10.3284	4.7640	6.7196	15.0924	21.9044	5.4761	86.9956
64.07	10.3000	4.8082	6.7864	15.1082	21.9010	5.4753	87.8159
66.13	10.3037	4.8576	6.8289	15.1613	21.8966	5.4742	88.7371
68.20	10.2445	4.9306	6.9304	15.1751	21.8945	5.4736	90.0786
70.27	10.1266	4.9999	7.0001	15.1265	21.8917	5.4729	91.3578
72.33	10.0085	4.9723	7.0318	14.9808	21.8887	5.4722	90.8650
74.40	9.9768	5.0141	7.0328	14.9910	21.8865	5.4716	91.6390
76.47	9.9844	4.9559	7.0854	14.9403	21.8782	5.4696	90.6086
78.53	9.8177	4.9762	7.1155	14.7938	21.8732	5.4683	90.9999
80.60	9.8124	5.0435	7.1445	14.8559	21.8719	5.4680	92.2373
82.67	9.6575	5.0596	7.1934	14.7171	21.8687	5.4672	92.5444
84.73	9.6972	5.1308	7.1282	14.8279	21.8669	5.4667	93.8540
86.80	9.6209	5.1475	7.2389	14.7684	21.8662	5.4666	94.1641
88.87	9.5774	5.1405	7.2974	14.7179	21.8659	5.4665	94.0376
90.93	9.5023	5.1565	7.3254	14.6588	21.8608	5.4652	94.3519
93.00	9.4722	5.1667	7.3422	14.6389	21.8542	5.4636	94.5673
95.07	9.3941	5.1578	7.3346	14.5519	21.8531	5.4633	94.4089
97.13	9.3953	5.1819	7.3872	14.5771	21.8521	5.4630	94.8533
99.20	9.3158	5.1974	7.4006	14.5133	21.8474	5.4618	95.1592
101.27	9.2492	5.2287	7.4187	14.4779	21.8456	5.4614	95.7391

Fortsetzung Tabelle 22:

Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (161 +Σ1)	Σ2/4	Umsatz / %
103.33	9.1928	5.2281	7.4400	14.4209	21.8436	5.4609	95.7361
105.40	9.1909	5.2630	7.4124	14.4539	21.8426	5.4606	96.3798
107.47	9.1343	5.3032	7.4542	14.4375	21.8417	5.4604	97.1205
109.53	9.1488	5.3164	7.4706	14.4652	21.8415	5.4604	97.3635
111.60	9.0863	5.3084	7.5367	14.3947	21.8403	5.4601	97.2212
113.67	9.0572	5.3191	7.5540	14.3763	21.8275	5.4569	97.4751
115.73	8.9547	5.3165	7.5946	14.2712	21.8235	5.4559	97.4452
117.80	8.9629	5.3101	7.5360	14.2730	21.8175	5.4544	97.3540
119.87	8.9270	5.3139	7.6373	14.2409	21.8120	5.4530	97.4499
121.93	8.9007	5.3233	7.6303	14.2240	21.8090	5.4522	97.6347
124.00	8.8791	5.3165	7.6480	14.1956	21.8057	5.4514	97.5249
126.07	8.8599	5.3425	7.6497	14.2024	21.8056	5.4514	98.0026
128.13	8.8731	5.3684	7.6001	14.2414	21.8054	5.4514	98.4773
130.20	8.8140	5.3529	7.6032	14.1669	21.7952	5.4488	98.2399
132.27	8.8036	5.3769	7.6882	14.1805	21.7945	5.4486	98.6838
134.33	8.7910	5.3770	7.6149	14.1680	21.7885	5.4471	98.7126
136.40	8.7216	5.4029	7.7030	14.1245	21.7829	5.4457	99.2138
138.47	8.6560	5.4133	7.6946	14.0693	21.7817	5.4454	99.4092
140.53	8.6510	5.4329	7.7617	14.0839	21.7767	5.4442	99.7932
142.60	8.7008	5.4603	7.7871	14.1611	21.7731	5.4433	100.3135
144.67	8.6579	5.4649	7.8314	14.1228	21.7702	5.4425	100.4114
146.73	8.6616	5.4656	7.8137	14.1272	21.7694	5.4423	100.4279
148.80	8.5612	5.4665	7.8139	14.0278	21.7638	5.4410	100.4699
150.87	8.5356	5.4498	7.7962	13.9855	21.7350	5.4338	100.2959
152.93	8.5631	5.4755	7.8333	14.0386	21.7343	5.4336	100.7718
155.00	8.5212	5.4477	7.8785	13.9689	21.7332	5.4333	100.2643
157.07	8.5348	5.4465	7.8856	13.9813	21.7157	5.4289	100.3236
159.13	8.5367	5.4421	7.8269	13.9788	21.7109	5.4277	100.2648
161.20	8.5056	5.4696	7.8483	13.9753	21.6712	5.4178	100.9569
163.27	8.4340	5.4496	7.8496	13.8837	21.6677	5.4169	100.6042

Fortsetzung Tabelle 22:

Zeit / min	Acetanhydrid (2)	Ester (22)	HNEt ₃ Ac (161)	Σ1 (2+22)	Σ2 (60 +Σ1)	Σ2/4	Umsatz / %
165.33	8.4181	5.4700	7.8850	13.8881	21.6671	5.4168	100.9819
167.40	8.3825	5.4485	7.8360	13.8310	21.6670	5.4168	100.5869
169.47	8.4172	5.4646	7.8532	13.8818	21.6523	5.4131	100.9517
171.53	8.3915	5.4383	7.8859	13.8297	21.6428	5.4107	100.5092
173.60	8.3849	5.4736	7.9472	13.8584	21.6195	5.4049	101.2706

Fortsetzung Tabelle 22:

Tabelle 23: Abgebildet sind die mit dem Programmpaket VNMR berechneten Integrale für Isobuttersäureanhydrid (166) und Dioxan (179) für die Veresterung von Alkohol (21)in Gegenwart von 10 mol% DMAP. In Spalte A ist das vollständie Integral des Dubletts von Isobuttersäure berechnet, Spalte B wird das Dioxanintegral auf ein Proton normiert,in Spalte C wird das Isobuttersäureintegral auf ein Proton normiert, in Spalte D wird der Konzentrationsunterschied von Dioxan zu Isobuttersäureanhydrid berücksichtigt.

	Isobuttersäureanhydrid	Α		В	С	D	Umsatz
Zeit / min	(166)	(166)*2	Dioxan	Dioxan*(1/8)	(166)*(1/12)	Dioxan*4	Ester (167)
7.0667	17.3850	34.7700	6.1172	0.7647	2.8975	3.0586	10.5349
14.1333	17.2028	34.4055	6.2253	0.7782	2.8671	3.1126	15.7748
21.2000	17.1739	34.3478	6.1918	0.7740	2.8623	3.0959	15.0895
28.2667	16.9279	33.8558	6.1961	0.7745	2.8213	3.0981	17.8648
35.3333	16.8110	33.6220	6.2196	0.7775	2.8018	3.1098	19.8074
42.4000	16.6174	33.2349	6.1483	0.7685	2.7696	3.0742	19.8151
49.4667	16.4096	32.8191	6.2002	0.7750	2.7349	3.1001	23.5598
56.5333	16.2406	32.4813	6.1250	0.7656	2.7068	3.0625	23.2298
63.6000	16.1451	32.2902	6.1089	0.7636	2.6909	3.0545	23.8078
70.6667	16.0080	32.0160	6.1581	0.7698	2.6680	3.0791	26.7001
77.7333	15.9562	31.9125	6.1644	0.7705	2.6594	3.0822	27.4356
84.8000	15.7766	31.5531	6.0672	0.7584	2.6294	3.0336	26.6457
91.8667	15.6841	31.3682	6.1185	0.7648	2.6140	3.0593	29.1087
98.9333	15.5438	31.0876	6.1864	0.7733	2.5906	3.0932	32.4942
106.0000	15.4741	30.9482	6.1187	0.7648	2.5790	3.0593	31.4004
113.0667	15.3114	30.6227	6.1056	0.7632	2.5519	3.0528	32.8148
120.1333	15.2174	30.4349	6.2078	0.7760	2.5362	3.1039	36.5782
127.2000	15.1593	30.3185	6.2948	0.7869	2.5265	3.1474	39.4515

Fortsetzung Tal	belle 23:						
	Isobuttersäureanhydrid	Α		В	С	D	Umsatz
Zeit / min	(166)	(166)*2	Dioxan	Dioxan*(1/8)	(166)*(1/12)	Dioxan*4	Ester (167)
134.2667	15.0654	30.1309	6.0821	0.7603	2.5109	3.0410	34.8649
141.3333	14.8995	29.7991	6.1114	0.7639	2.4833	3.0557	37.4667
148.4000	14.7449	29.4897	6.1529	0.7691	2.4575	3.0765	40.2405
155.4667	14.7578	29.5156	6.1651	0.7706	2.4596	3.0825	40.4150
162.5333	14.5899	29.1798	6.0684	0.7585	2.4317	3.0342	39.7158
169.6000	14.5242	29.0483	6.0732	0.7592	2.4207	3.0366	40.5648
176.6667	14.4438	28.8877	6.1127	0.7641	2.4073	3.0564	42.4719
183.7333	14.3374	28.6749	6.1640	0.7705	2.3896	3.0820	44.9345
190.8000	14.4034	28.8068	6.1654	0.7707	2.4006	3.0827	44.2554
197.8667	14.2400	28.4799	6.1178	0.7647	2.3733	3.0589	44.8250
204.9333	14.1772	28.3543	6.1897	0.7737	2.3629	3.0948	47.3032
212.0000	14.0586	28.1171	6.2233	0.7779	2.3431	3.1117	49.3989
219.0667	14.1493	28.2986	6.3036	0.7880	2.3582	3.1518	50.3572
226.1333	13.9614	27.9229	6.2139	0.7767	2.3269	3.1070	50.2140
233.2000	13.9830	27.9660	6.1910	0.7739	2.3305	3.0955	49.4268
240.2667	13.7498	27.4996	6.1531	0.7691	2.2916	3.0766	51.0262
247.3333	13.6787	27.3574	6.1587	0.7698	2.2798	3.0793	51.9302
254.4000	13.6284	27.2568	6.1865	0.7733	2.2714	3.0933	53.1390
261.4667	13.5023	27.0046	6.1361	0.7670	2.2504	3.0680	53.3014
268.5333	13.4504	26.9008	6.1150	0.7644	2.2417	3.0575	53.3613
275.6000	13.4062	26.8125	6.1716	0.7715	2.2344	3.0858	55.1843
282.6667	13.3942	26.7885	6.1905	0.7738	2.2324	3.0953	55.7551
289.7333	13.2885	26.5770	6.2051	0.7756	2.2148	3.1026	57.2307
296.8000	13.2341	26.4682	6.2628	0.7829	2.2057	3.1314	59.1256
303.8667	13.2131	26.4263	6.2333	0.7792	2.2022	3.1167	58.6830
310.9333	13.0963	26.1926	6.1631	0.7704	2.1827	3.0815	58.3360
318.0000	13.0718	26.1436	6.1813	0.7727	2.1786	3.0906	59.0169
325.0667	12.9045	25.8091	6.2131	0.7766	2.1508	3.1065	61.5334
332.1333	12.8748	25.7495	6.1933	0.7742	2.1458	3.0966	61.4116
339.2000	12.7871	25.5742	6.1495	0.7687	2.1312	3.0748	61.3758
346.2667	12.6934	25.3868	6.1506	0.7688	2.1156	3.0753	62.4165

Fortsetzung Tabelle 23:							
	Isobuttersäureanhydrid	Α		В	С	D	Umsatz
Zeit / min	(166)	(166)*2	Dioxan	Dioxan*(1/8)	(166)*(1/12)	Dioxan*4	Ester (167)
353.3333	12.6221	25.2442	6.1087	0.7636	2.1037	3.0544	62.2509
360.4000	12.5789	25.1579	6.1301	0.7663	2.0965	3.0651	63.2007
367.4667	12.5720	25.1439	6.1310	0.7664	2.0953	3.0655	63.2963
374.5333	12.4358	24.8716	6.1829	0.7729	2.0726	3.0915	65.9128
381.6000	12.4737	24.9473	6.1890	0.7736	2.0789	3.0945	65.6357
388.6667	12.3607	24.7213	6.2081	0.7760	2.0601	3.1041	67.2636
395.7333	12.2500	24.4999	6.2090	0.7761	2.0417	3.1045	68.4717
402.8000	12.2461	24.4921	6.1593	0.7699	2.0410	3.0796	67.4515
409.8667	12.1334	24.2668	6.0959	0.7620	2.0222	3.0480	67.3062
416.9333	12.0242	24.0484	6.0954	0.7619	2.0040	3.0477	68.4878
424.0000	12.0146	24.0292	6.1163	0.7645	2.0024	3.0582	69.0430
431.0667	11.9168	23.8337	6.1098	0.7637	1.9861	3.0549	69.9708
438.1333	11.8265	23.6529	6.1010	0.7626	1.9711	3.0505	70.7706
445.2000	11.7817	23.5635	6.1155	0.7644	1.9636	3.0578	71.5649
452.2667	11.7679	23.5359	6.1152	0.7644	1.9613	3.0576	71.7092
459.3333	11.6479	23.2958	6.0707	0.7588	1.9413	3.0353	72.0860
466.4000	11.6016	23.2032	6.0621	0.7578	1.9336	3.0310	72.4133
473.4667	11.6166	23.2332	6.0957	0.7620	1.9361	3.0478	72.9522
480.5333	11.5472	23.0944	6.1604	0.7701	1.9245	3.0802	75.0391
487.6000	11.4916	22.9831	6.1430	0.7679	1.9153	3.0715	75.2874
494.6667	11.4419	22.8839	6.1419	0.7677	1.9070	3.0709	75.8042
501.7333	11.4003	22.8006	6.1189	0.7649	1.9001	3.0595	75.7916
508.8000	11.2250	22.4499	6.0940	0.7618	1.8708	3.0470	77.2014
515.8667	11.1944	22.3888	6.0950	0.7619	1.8657	3.0475	77.5571
522.9333	11.1085	22.2171	6.0371	0.7546	1.8514	3.0185	77.3296
530.0000	11.1090	22.2181	6.0029	0.7504	1.8515	3.0015	76.6267
537.0667	11.0302	22.0604	5.9443	0.7430	1.8384	2.9722	76.2943
544.1333	10.9488	21.8976	5.8747	0.7343	1.8248	2.9374	75.7519
551.2000	10.8858	21.7716	5.9069	0.7384	1.8143	2.9535	77.1406
558.2667	10.8460	21.6920	5.9762	0.7470	1.8077	2.9881	79.0087
565.3333	10.8324	21.6648	6.0432	0.7554	1.8054	3.0216	80.5003

#
Fortsetzung Tal	belle 23:						
	Isobuttersäureanhydrid	Α		В	С	D	Umsatz
Zeit / min	(166)	(166)*2	Dioxan	Dioxan*(1/8)	(166)*(1/12)	Dioxan*4	Ester (167)
572.4000	10.7686	21.5372	6.1023	0.7628	1.7948	3.0512	82.3554
579.4667	10.6612	21.3223	6.1341	0.7668	1.7769	3.0671	84.1331
586.5333	10.6257	21.2514	6.1106	0.7638	1.7710	3.0553	84.0743
593.6000	10.6397	21.2794	6.0715	0.7589	1.7733	3.0357	83.1732
600.6667	10.5691	21.1382	6.0197	0.7525	1.7615	3.0099	82.9502
607.7333	10.5125	21.0251	5.9398	0.7425	1.7521	2.9699	82.0097
614.8000	10.4319	20.8638	5.9473	0.7434	1.7387	2.9736	83.0621
621.8667	10.4202	20.8405	5.8632	0.7329	1.7367	2.9316	81.5174
628.9333	10.3850	20.7699	5.8896	0.7362	1.7308	2.9448	82.4493
636.0000	10.3739	20.7478	5.9244	0.7405	1.7290	2.9622	83.2625
643.0667	10.3244	20.6489	6.0205	0.7526	1.7207	3.0102	85.6743
650.1333	10.2891	20.5782	6.0511	0.7564	1.7149	3.0256	86.6423
657.2000	10.2525	20.5049	6.0803	0.7600	1.7087	3.0402	87.5884
664.2667	10.2525	20.5049	6.0500	0.7563	1.7087	3.0250	87.0259
671.3333	10.2218	20.4435	6.0158	0.7520	1.7036	3.0079	86.7231
678.4000	10.1481	20.2962	5.9976	0.7497	1.6914	2.9988	87.1989
685.4667	10.1786	20.3572	6.0202	0.7525	1.6964	3.0101	87.2847
692.5333	10.1701	20.3401	5.9978	0.7497	1.6950	2.9989	86.9586
699.6000	10.1291	20.2583	5.9706	0.7463	1.6882	2.9853	86.8990
706.6667	10.1046	20.2092	5.9614	0.7452	1.6841	2.9807	86.9990
713.7333	10.0537	20.1074	5.9287	0.7411	1.6756	2.9644	86.9490
720.8000	10.0558	20.1116	5.9115	0.7389	1.6760	2.9558	86.5963
727.8667	9.9746	19.9491	5.9211	0.7401	1.6624	2.9605	87.6942
734.9333	9.9256	19.8513	5.9434	0.7429	1.6543	2.9717	88.6653
742.0000	9.8964	19.7929	5.9834	0.7479	1.6494	2.9917	89.7339
749.0667	9.8966	19.7932	6.0273	0.7534	1.6494	3.0137	90.5360
756.1333	9.8285	19.6569	6.0320	0.7540	1.6381	3.0160	91.3749
763.2000	9.8660	19.7320	6.0391	0.7549	1.6443	3.0195	91.0866
770.2667	9.7953	19.5905	6.0867	0.7608	1.6325	3.0434	92.7140
777.3333	9.8424	19.6849	6.0864	0.7608	1.6404	3.0432	92.1921
784.4000	9.7545	19.5090	6.0310	0.7539	1.6258	3.0155	92.1741

	Isobuttersäureanhydrid	Α		В	С	D	Umsatz
Zeit / min	(166)	(166)*2	Dioxan	Dioxan*(1/8)	(166)*(1/12)	Dioxan*4	Ester (167)
791.4667	9.7217	19.4434	5.9899	0.7487	1.6203	2.9949	91.7984
798.5333	9.6913	19.3826	5.9119	0.7390	1.6152	2.9560	90.7145
805.6000	9.6263	19.2526	5.9251	0.7406	1.6044	2.9625	91.6886
812.6667	9.6455	19.2909	5.8910	0.7364	1.6076	2.9455	90.8459
819.7333	9.5741	19.1481	5.8775	0.7347	1.5957	2.9388	91.4043
826.8000	9.5484	19.0968	5.8832	0.7354	1.5914	2.9416	91.8000
833.8667	9.5402	19.0803	5.9454	0.7432	1.5900	2.9727	93.0244
840.9333	9.5327	19.0654	6.0135	0.7517	1.5888	3.0067	94.3185
848.0000	9.5426	19.0853	6.0324	0.7541	1.5904	3.0162	94.5409
855.0667	9.4495	18.8990	6.0513	0.7564	1.5749	3.0256	95.8948
862.1333	9.4324	18.8649	6.0606	0.7576	1.5721	3.0303	96.2436
869.2000	9.4210	18.8421	6.0222	0.7528	1.5702	3.0111	95.7080
876.2667	9.3631	18.7263	6.0060	0.7508	1.5605	3.0030	96.0693
883.3333	9.3677	18.7355	5.9690	0.7461	1.5613	2.9845	95.3737
890.4000	9.3043	18.6086	5.9517	0.7440	1.5507	2.9758	95.7792
897.4667	9.2883	18.5766	5.9677	0.7460	1.5481	2.9838	96.2371
904.5333	9.2549	18.5098	5.8796	0.7350	1.5425	2.9398	95.0615
911.6000	9.0583	18.1166	5.9562	0.7445	1.5097	2.9781	98.6121
918.6667	9.0809	18.1618	5.9715	0.7464	1.5135	2.9858	98.6198
925.7333	9.0947	18.1895	5.9711	0.7464	1.5158	2.9855	98.4577
932.8000	9.0491	18.0983	5.9966	0.7496	1.5082	2.9983	99.3976
946.9333	9.0044	18.0089	5.9807	0.7476	1.5007	2.9903	99.6274
954.0000	8.9791	17.9581	5.9488	0.7436	1.4965	2.9744	99.3742
961.0667	8.8934	17.7868	5.9565	0.7446	1.4822	2.9782	100.4618

Fortsetzung Tabelle 23:

Tabelle 24: Abgebildet sind die mit dem Programmpaket VNMR berechneten Integrale für Isobuttersäureanhydrid (166) und Dioxan (179) für die Veresterung von Alkohol (21) in Gegenwart von 10 mol% Katalysator 99 und Hünigs Base als Auxiliarbase. In Spalte A ist das Integral des Dubletts von Isobuttersäure auf 1 Proton normiert und Spalte B wird das Dioxanintegral auf ein Proton normiert.

	Isobuttersäureanhydrid	Α		В	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
2.07	15.1747	2.5291	6.2463	3.1232	38.0405
4.13	14.9564	2.4927	6.1904	3.0952	38.9281
6.20	14.8010	2.4668	6.1905	3.0952	40.6043
8.27	14.5350	2.4225	6.0682	3.0341	40.3160
10.33	14.3383	2.3897	6.0688	3.0344	42.4925
12.40	14.0709	2.3452	5.9557	2.9778	42.4932
14.47	14.0030	2.3338	5.9507	2.9753	43.1207
16.53	13.8986	2.3164	5.9583	2.9792	44.4904
18.60	13.7949	2.2992	5.9522	2.9761	45.4918
20.67	13.6245	2.2708	5.8741	2.9370	45.3708
22.73	13.4908	2.2485	5.8815	2.9408	47.0826
24.80	13.3390	2.2232	5.8810	2.9405	48.7886
26.87	13.2640	2.2107	5.8554	2.9277	48.9839
28.93	13.1943	2.1990	5.8399	2.9199	49.3775
31.00	13.0197	2.1700	5.8173	2.9086	50.7925
33.07	12.9773	2.1629	5.8272	2.9136	51.5315
35.13	12.8842	2.1474	5.8112	2.9056	52.1914
37.20	12.8253	2.1376	5.8146	2.9073	52.9538
39.27	12.7149	2.1191	5.8489	2.9244	55.0734
41.33	12.6620	2.1103	5.8166	2.9083	54.8737
43.40	12.5606	2.0934	5.8438	2.9219	56.7075
45.47	12.4710	2.0785	5.8424	2.9212	57.6965
47.53	12.3646	2.0608	5.8407	2.9204	58.8696
49.60	12.3958	2.0660	5.8779	2.9389	59.4069
51.67	12.3305	2.0551	5.8162	2.9081	58.6660
53.73	12.1871	2.0312	5.8391	2.9196	60.8570
55.80	12.1037	2.0173	5.8772	2.9386	62.7056

I of tsetzung	Isobuttersäureanhydrid	Α		В	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	 Dioxan*(4/8)	Umsatz / %
57.87	12.0268	2.0045	5.8316	2.9158	62.5112
59.93	11.9876	1.9979	5.8640	2.9320	63.7155
62.00	11.8861	1.9810	5.8328	2.9164	64.1458
64.07	11.9212	1.9869	5.8558	2.9279	64.2798
66.13	11.8187	1.9698	5.8844	2.9422	66.1004
68.20	11.6971	1.9495	5.8350	2.9175	66.3569
70.27	11.6888	1.9481	5.8597	2.9299	67.0162
72.33	11.5971	1.9329	5.8447	2.9224	67.7204
74.40	11.5759	1.9293	5.8538	2.9269	68.1660
76.47	11.5106	1.9184	5.8810	2.9405	69.5157
78.53	11.4148	1.9025	5.8238	2.9119	69.3323
80.60	11.3942	1.8990	5.8593	2.9297	70.3583
82.67	11.2955	1.8826	5.8469	2.9234	71.2083
84.73	11.2601	1.8767	5.8369	2.9184	71.3909
86.80	11.3049	1.8842	5.8920	2.9460	72.0872
88.87	11.2157	1.8693	5.8226	2.9113	71.5838
90.93	11.0945	1.8491	5.8511	2.9255	73.5904
93.00	11.1192	1.8532	5.8597	2.9299	73.4957
95.07	11.0428	1.8405	5.8289	2.9144	73.7000
97.13	11.0032	1.8339	5.8815	2.9408	75.2795
99.20	10.9764	1.8294	5.8337	2.9169	74.5641
101.27	10.9532	1.8255	5.8537	2.9269	75.2568
103.33	10.9099	1.8183	5.8505	2.9253	75.6813
105.40	10.8049	1.8008	5.8133	2.9066	76.0891
107.47	10.8363	1.8060	5.8555	2.9278	76.6258
109.53	10.7446	1.7908	5.8305	2.9153	77.1454
111.60	10.7300	1.7883	5.8371	2.9186	77.4510
113.67	10.6971	1.7829	5.8781	2.9391	78.6792
115.73	10.6402	1.7734	5.8102	2.9051	77.9126
117.80	10.5063	1.7511	5.8449	2.9224	80.1643

rortsetzung	Isobuttorsäuroaphydrid	۸		P	
7eit / min	(166)	A 166*(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
119.87	10 5670	1 7612	5 8343	2 9172	79 2554
121.93	10 5079	1 7513	5 8139	2 9069	79 5084
124.00	10 4902	1 7484	5.8626	2.9009	80 7101
126.07	10.4525	1 7421	5 8244	2.9313	80 3588
128.13	10 4057	1 7343	5 8399	2.9199	81 2113
130.20	10 3810	1 7302	5 8509	2 9254	81 7156
132.27	10.3557	1.7259	5.8061	2.9030	81.0942
134.33	10.3227	1.7205	5.8685	2.9342	82.7317
136.40	10.2562	1.7094	5.8173	2.9086	82.4631
138.47	10.2077	1.7013	5.8282	2.9141	83.2382
140.53	10.2369	1.7062	5.8585	2,9293	83,5095
142.60	10.1361	1.6894	5.8081	2,9040	83.6549
144.67	10.1557	1.6926	5.8383	2.9192	84.0342
146.73	10.1207	1.6868	5.8371	2.9185	84.4092
148.80	10.0524	1.6754	5.8095	2.9047	84.6440
150.87	10.0850	1.6808	5.8487	2.9244	85.0462
152.93	10.0257	1.6710	5.7924	2.8962	84.6107
155.00	9.9969	1.6662	5.8151	2.9075	85.3913
157.07	10.0000	1.6667	5.8428	2.9214	85.8990
159.13	9.9108	1.6518	5.7951	2.8975	85.9861
161.20	9.9556	1.6593	5.8433	2.9217	86.4162
163.27	9.8789	1.6465	5.8101	2.9050	86.6463
165.33	9.8644	1.6441	5.8011	2.9006	86.6383
167.40	9.9103	1.6517	5.8589	2.9295	87.2341
169.47	9.8477	1.6413	5.7911	2.8956	86.6341
171.53	9.8256	1.6376	5.8011	2.9006	87.0834
173.60	9.7770	1.6295	5.8344	2.9172	88.2823
175.67	9.7325	1.6221	5.7870	2.8935	87.8802
177.73	9.7100	1.6183	5.8243	2.9121	88.8560
179.80	9.7805	1.6301	5.8059	2.9030	87.6952

Fortsetzung	Tabelle 24:				
	Isobuttersäureanhydrid	Α		В	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
181.87	9.6821	1.6137	5.8063	2.9031	88.8325
183.93	9.6619	1.6103	5.8314	2.9157	89.5414
186.00	9.6363	1.6060	5.7839	2.8919	88.9300
188.07	9.5747	1.5958	5.8143	2.9071	90.2160
190.13	9.5781	1.5963	5.7782	2.8891	89.4916
192.20	9.6094	1.6016	5.7622	2.8811	88.8228
194.27	9.4958	1.5826	5.8239	2.9119	91.3005
196.33	9.4766	1.5794	5.7632	2.8816	90.3784
198.40	9.5669	1.5945	5.7917	2.8958	89.8774
200.47	9.5272	1.5879	5.8036	2.9018	90.5584
202.53	9.4672	1.5779	5.7723	2.8861	90.6596
204.60	9.4308	1.5718	5.8186	2.9093	91.9470
206.67	9.4060	1.5677	5.7640	2.8820	91.2108
208.73	9.4031	1.5672	5.7917	2.8959	91.7637
210.80	9.3322	1.5554	5.7917	2.8959	92.5810
212.87	9.3804	1.5634	5.7669	2.8835	91.5617
214.93	9.2977	1.5496	5.8154	2.9077	93.4121
217.00	9.3397	1.5566	5.7492	2.8746	91.6989
219.07	9.2977	1.5496	5.7673	2.8837	92.5246
221.13	9.2823	1.5471	5.7933	2.8967	93.1836
223.20	9.2364	1.5394	5.7568	2.8784	93.0388
225.27	9.1963	1.5327	5.7858	2.8929	94.0356
227.33	9.2162	1.5360	5.7808	2.8904	93.7151
229.40	9.1767	1.5295	5.7696	2.8848	93.9648
231.47	9.1752	1.5292	5.8068	2.9034	94.6612
233.53	9.1485	1.5248	5.7535	2.8768	93.9952
235.60	9.1376	1.5229	5.7797	2.8899	94.6021
237.67	9.1162	1.5194	5.7665	2.8833	94.6079
239.73	9.1149	1.5192	5.7543	2.8772	94.3998
241.80	9.0884	1.5147	5.8197	2.9098	95.8892

Fortsetzung	Tabelle 24:				
	Isobuttersäureanhydrid	Α		В	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
243.87	9.0665	1.5111	5.7334	2.8667	94.5766
245.93	9.0065	1.5011	5.7570	2.8785	95.7032
248.00	9.0720	1.5120	5.7557	2.8779	94.9214
250.07	9.0251	1.5042	5.7310	2.8655	95.0136
252.13	9.0419	1.5070	5.7775	2.8888	95.6663
254.20	8.9872	1.4979	5.7455	2.8728	95.7198
256.27	8.9811	1.4968	5.7530	2.8765	95.9259
258.33	8.9442	1.4907	5.7970	2.8985	97.1400
260.40	8.9466	1.4911	5.7455	2.8728	96.1908
262.47	8.9343	1.4891	5.7870	2.8935	97.0750
264.53	8.8989	1.4832	5.7532	2.8766	96.8814
266.60	8.9452	1.4909	5.7537	2.8769	96.3545
268.67	8.9162	1.4860	5.7968	2.8984	97.4579
270.73	8.8033	1.4672	5.7282	2.8641	97.5451
272.80	8.8814	1.4802	5.7527	2.8764	97.0755
274.87	8.9407	1.4901	5.7607	2.8803	96.5322
276.93	8.8629	1.4772	5.7304	2.8652	96.8897
279.00	8.8343	1.4724	5.7802	2.8901	98.1090
281.07	8.7477	1.4580	5.7033	2.8517	97.7469
283.13	8.7918	1.4653	5.7283	2.8642	97.6804
285.20	8.8010	1.4668	5.7446	2.8723	97.8637
287.27	8.7428	1.4571	5.7236	2.8618	98.1659
289.33	8.8129	1.4688	5.7772	2.8886	98.3026
291.40	8.7300	1.4550	5.7316	2.8658	98.4567
293.47	8.7574	1.4596	5.7444	2.8722	98.3658
295.53	8.7045	1.4508	5.7586	2.8793	99.2277
297.60	8.6963	1.4494	5.7280	2.8640	98.7872
299.67	8.6763	1.4461	5.7837	2.8919	99.9909
301.73	8.7043	1.4507	5.7401	2.8701	98.9061
303.80	8.6410	1.4402	5.7348	2.8674	99.5486

Fortsetzung	Isobuttersäureanbydrid	Δ		B	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
305.87	8.6705	1.4451	5.7875	2.8937	100.1238
307.93	8,6081	1.4347	5,7034	2.8517	99.3801
310.00	8.6336	1.4389	5.7454	2.8727	99.8203
312.07	8.5879	1.4313	5.7223	2.8611	99.9480
314.13	8.5979	1.4330	5.7127	2.8563	99.6628
316.20	8.6192	1.4365	5.7571	2.8786	100.1906
318.27	8.5863	1.4311	5.6975	2.8487	99.5306
320.33	8.5098	1.4183	5.7175	2.8588	100.7744
322.40	8.6224	1.4371	5.7226	2.8613	99.5519
324.47	8.5380	1.4230	5.7005	2.8502	100.1486
326.53	8.5210	1.4202	5.7481	2.8740	101.1719
328.60	8.5690	1.4282	5.7206	2.8603	100.1390
330.67	8.5462	1.4244	5.7292	2.8646	100.5545
332.73	8.4904	1.4151	5.7445	2.8722	101.4654
334.80	8.4409	1.4068	5.7134	2.8567	101.5068
336.87	8.5093	1.4182	5.7584	2.8792	101.4854
338.93	8.4512	1.4085	5.7201	2.8600	101.5021
341.00	8.4746	1.4124	5.7237	2.8619	101.2931
343.07	8.4487	1.4081	5.7617	2.8809	102.2436
345.13	8.4527	1.4088	5.6963	2.8481	101.0727
347.20	8.3806	1.3968	5.7525	2.8763	102.8769
349.27	8.3953	1.3992	5.6899	2.8449	101.6349
351.33	8.4154	1.4026	5.7114	2.8557	101.7713
353.40	8.4341	1.4057	5.7549	2.8775	102.2972
355.47	8.3375	1.3896	5.6765	2.8383	102.0825
357.53	8.3996	1.3999	5.7270	2.8635	102.2229
359.60	8.4142	1.4024	5.7052	2.8526	101.6778
361.67	8.3587	1.3931	5.6829	2.8415	101.9431
363.73	8.3648	1.3941	5.7393	2.8697	102.8366
365.80	8.2947	1.3825	5.6712	2.8356	102.4928

	Isobuttersäureanhydrid	Α		В	
Zeit / min	(166)	166 *(2/12)	Dioxan (22)	Dioxan*(4/8)	Umsatz / %
367.87	8.3183	1.3864	5.6924	2.8462	102.5793
369.93	8.3990	1.3998	5.7253	2.8627	102.2008
372.00	8.3217	1.3870	5.6965	2.8483	102.6112
374.07	8.3226	1.3871	5.7274	2.8637	103.1253
376.13	8.3153	1.3859	5.7029	2.8514	102.7938
378.20	8.2630	1.3772	5.7049	2.8525	103.4399
380.27	8.3109	1.3852	5.7382	2.8691	103.4437
382.33	8.3163	1.3861	5.7070	2.8535	102.8531
384.40	8.2488	1.3748	5.7421	2.8711	104.2302
386.47	8.2488	1.3748	5.7049	2.8524	103.6056
388.53	8.3087	1.3848	5.6940	2.8470	102.7200
390.60	8.2328	1.3721	5.7357	2.8679	104.3091
392.67	8.2228	1.3705	5.6753	2.8376	103.4073
394.73	8.2723	1.3787	5.7217	2.8609	103.6152
396.80	8.2163	1.3694	5.7014	2.8507	103.9273
398.87	8.2101	1.3684	5.6778	2.8389	103.5997
400.93	8.2084	1.3681	5.7401	2.8701	104.6665
403.00	8.2471	1.3745	5.6528	2.8264	102.7373
405.07	8.2141	1.3690	5.6885	2.8442	103.7346
407.13	8.1663	1.3611	5.7207	2.8604	104.8332
409.20	8.1427	1.3571	5.6625	2.8313	104.1333
411.27	8.1667	1.3611	5.7119	2.8559	104.6816
413.33	8.2015	1.3669	5.6686	2.8343	103.5449

10. Kristallographischer Anhang

Kristallstruktur von Verbindung 41:

Datensatz: kn267; CCDC 633500; Summenformel: $C_{11}H_{14}N_2$; M=174.24; 200K; Strahlung Mo-K_a; λ =0.71073 Å; gemessene Indizes -20 \leq 20, -11 \leq 11, -20 \leq 20; monoklin; Raumgruppe P21/c; a = 15.5054(4) Å, α = 90°; b = 8.6662(3) Å, β = 119.5883(15)°; c = 15.5732(3) Å, γ = 90°; Volumen 1819.73(9) Å³; Z = 8; ρ = 1.272 g/cm³; Absorbtionskoeffizient μ = 0.077 mm⁻¹; F(000) 752; Kristallabmessungen 0.04 x 0.12 x 0.15 mm, 7975 gesammlte, Reflexe, 4165 unabhängige Reflexe, [R(int) = 0.031]; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.5, 27.5; F² = 1.020; [I > 2.0 σ (I)] 2834; R(int) 0.031; Verfeinerte Parameter R = 0.0436, wR2 = 0.1190; Restelektronendichte min = -0.17, max = 0.20 ϵ Å³.

Tabelle	25: Atomkoordinaten	und äquivalente	isotrope	Auslenkungsparameter	$(A^2 \cdot 10^3)$ vo	n
41. U(ec) ist definiert als ein D	rittel der Spur des	s orthogo	nalen Uij-Tensors.		

				U(ag)
Atom	X	$\frac{\mathbf{y}}{0.002(4(14))}$	<u>Z</u>	$\frac{U(eq)}{0.0222(4)}$
IN I	0.90950(8)	0.08364(14)	0.82311(8)	0.0323(4)
N2	1.16859(9)	0.30199(16)	1.03807(9)	0.0432(4)
C1	0.91602(11)	0.03108(18)	0.75859(11)	0.0353(5)
C2	0.98972(12)	0.0205(2)	0.72702(11)	0.0398(5)
C3	1.09138(12)	0.0395(2)	0.81734(12)	0.0392(5)
C4	1.08567(10)	0.13526(17)	0.89518(10)	0.0313(4)
C5	1.16720(11)	0.21336(19)	0.96679(11)	0.0391(5)
C6	1.08202(11)	0.31276(18)	1.03708(10)	0.0376(5)
C7	0.99449(10)	0.24216(16)	0.97013(9)	0.0300(4)
C8	0.90049(11)	0.2632(2)	0.97502(11)	0.0359(5)
C9	0.81002(11)	0.23508(19)	0.87433(11)	0.0379(5)
C10	0.82155(10)	0.08234(18)	0.83421(11)	0.0351(5)
C11	0.99544(9)	0.15057(15)	0.89570(9)	0.0276(4)
N3	0.59626(8)	0.08631(14)	0.41455(8)	0.0326(4)
N4	0.34226(9)	0.32041(15)	0.37636(9)	0.0388(4)
C12	0.68323(10)	0.07468(18)	0.51263(10)	0.0346(4)
C13	0.69807(11)	0.22423(19)	0.56847(11)	0.0366(5)
C14	0.60756(11)	0.2562(2)	0.57954(10)	0.0361(5)
C15	0.51382(10)	0.24514(16)	0.48048(10)	0.0299(4)
C16	0.42827(11)	0.32095(18)	0.46230(11)	0.0365(5)
C17	0.34294(10)	0.23626(17)	0.30445(11)	0.0336(4)
C18	0.42266(9)	0.15268(16)	0.31257(10)	0.0291(4)
C19	0.41607(11)	0.06152(18)	0.22701(10)	0.0336(4)
C20	0.51796(11)	0.04089(19)	0.23751(11)	0.0357(5)
C21	0.58916(11)	0.02065(18)	0.33954(11)	0.0354(5)
C22	0.51226(9)	0.15832(15)	0.40336(9)	0.0271(4)

Tabelle 26: Bindungslängen in 41 in Å

Bindung	Abstand	Bindung	Abstand
N1-C1	1.452(2)	C8-H81	1.047(17)
N1-C10	1.457(2)	C8-H82	0.978(17)
N1-C11	1.3793(18)	C9-H92	0.988(19)
N2-C5	1.341(2)	C9-H91	1.041(17)
N2-C6	1.338(2)	C10-H102	1.013(15)
N3-C21	1.452(2)	C10-H101	1.025(16)
N3-C22	1.376(2)	C12-C13	1.514(2)
N3-C12	1.4586(18)	C13-C14	1.521(3)
N4-C17	1.341(2)	C14-C15	1.512(2)
N4-C16	1.344(2)	C15-C16	1.379(2)
C1-C2	1.517(3)	C15-C22	1.4073(19)
C2-C3	1.517(2)	C17-C18	1.384(2)
C3-C4	1.507(2)	C18-C19	1.508(2)
C4-C5	1.381(2)	C18-C22	1.4113(19)
C4-C11	1.409(2)	C19-C20	1.516(3)
C6-C7	1.381(2)	C20-C21	1.515(2)

C7-C11	1.4109(19)	C12-H121	1.030(17)
C7-C8	1.508(3)	C12-H122	1.038(19)
C8-C9	1.521(2)	C13-H131	1.029(16)
C9-C10	1.512(2)	C13-H132	1.025(16)
C1-H11	0.981(17)	C14-H141	1.025(17)
C1-H12	1.008(17)	C14-H142	0.979(16)
C2-H22	1.006(16)	C16-H16	1.028(17)
C2-H21	1.021(16)	C17-H17	0.981(15)
C3-H32	1.003(17)	C19-H191	1.017(18)
C3-H31	0.99(2)	C19-H192	1.015(17)
С5-Н5	0.965(19)	C20-H201	1.016(16)
С6-Н6	1.024(16)	C20-H202	1.000(17)

Tabelle 27: Bindungswinkel in °

Win	kel	Winkel		
C1-N1-C10	117.77(13)	H11-C1-H12	108.4(13)	
C1-N1-C11	119.07(13)	C2-C1-H12	111.6(11)	
C10-N1-C11	119.22(12)	С3-С2-Н22	109.5(10)	
C5-N2-C6	115.11(14)	C3-C2-H21	111.3(10)	
C21-N3-C22	119.78(12)	C1-C2-H21	109.1(11)	
C12-N3-C21	117.51(13)	H21-C2-H22	105.3(13)	
C12-N3-C22	119.47(12)	C1-C2-H22	111.9(10)	
C16-N4-C17	114.86(15)	C2-C3-H31	111.8(9)	
N1-C1-C2	110.08(13)	С2-С3-Н32	107.9(10)	
C1-C2-C3	109.61(13)	C4-C3-H31	109.0(9)	
C2-C3-C4	111.02(16)	C4-C3-H32	109.7(10)	
C3-C4-C5	121.69(16)	H31-C3-H32	107.2(15)	
C3-C4-C11	120.61(14)	С4-С5-Н5	118.0(9)	
C5-C4-C11	117.69(14)	N2-C5-H5	116.3(9)	
N2-C5-C4	125.67(17)	N2-C6-H6	116.4(10)	
N2-C6-C7	125.75(14)	С7-С6-Н6	117.8(10)	
C6-C7-C11	117.69(15)	H81-C8-H82	106.0(13)	
C8-C7-C11	120.80(13)	С7-С8-Н81	108.9(11)	
C6-C7-C8	121.51(13)	С7-С8-Н82	110.2(11)	
C7-C8-C9	110.55(13)	C9-C8-H81	110.2(10)	
C8-C9-C10	109.23(14)	С9-С8-Н82	110.9(10)	
N1-C10-C9	110.55(13)	С8-С9-Н92	110.0(9)	
N1-C11-C4	121.05(12)	С10-С9-Н91	107.5(10)	
N1-C11-C7	120.81(14)	C8-C9-H91	111.4(10)	
C4-C11-C7	118.08(13)	С10-С9-Н92	109.6(10)	
N1-C1-H12	106.5(10)	H91-C9-H92	109.2(15)	
C2-C1-H11	109.8(11)	H101-C10-H102	105.7(13)	
N1-C1-H11	110.4(9)	C9-C10-H101	110.7(9)	

Kristallstruktur von Verbindung 140:

Datensatz: kn372; CCDC 622355; Summenformel: $C_{22}H_{23}N_3$; M=329.43; 200K; Strahlung Mo-K_a; λ =0.71073 Å; gemessene Indizes -26 ≤ 26, -10 ≤ 10, -25 ≤ 25; monoklin; Raumgruppe P21/c; a = 21.4840(5) Å, α = 90°; b = 8.2478(2) Å, β = 103.4627(12)°; c = 20.8943(4) Å, γ = 90°; Volumen 3600.65(14) Å³; Z = 8; ρ = 1.215 g/cm³; Absorbtionskoeffizient μ = 0.072 mm⁻¹; F(000) 1408; Kristallabmessungen 0.04 x 0.08 x 0.26 mm, 13475 gesammlte, Reflexe, 7056 unabhängige Reflexe, [R(int) = 0.034]; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.1, 26.0; F² = 1.010; [I > 2.0 σ(I)] 4900; R(int) 0.034; Verfeinerte Parameter R = 0.0426, wR2 = 0.1140; Restelektronendichte min = -0.20, max = 0.15 eÅ³.

Tabelle 28: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2 \cdot 10^3$) von **140**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Atom	X	У	Z	U(eq)
N1	0.50211(7)	0.82864(18)	0.60645(7)	0.0504(5)
N2	0.60373(6)	0.47359(17)	0.59011(7)	0.0437(5)
N3	0.51396(6)	0.33215(17)	0.65213(7)	0.0445(4)
C1	0.54778(8)	0.7321(2)	0.59278(8)	0.0444(5)
C2	0.55383(7)	0.56658(19)	0.60522(7)	0.0383(5)
C3	0.50873(7)	0.49266(19)	0.63569(7)	0.0372(5)
C4	0.45995(8)	0.5917(2)	0.64777(8)	0.0430(5)
C5	0.45912(8)	0.7541(2)	0.63290(8)	0.0483(6)

C6	0.63366(10)	0.5480(2)	0.54094(11)	0.0641(8)
C7	0.58742(7)	0.3011(2)	0.57893(8)	0.0407(5)
C8	0.56544(7)	0.2319(2)	0.63858(8)	0.0390(5)
C9	0.47281(7)	0.2564(2)	0.69002(8)	0.0462(6)
C10	0.41071(9)	0.1986(3)	0.64730(11)	0.0663(7)
C11	0.64240(7)	0.2017(2)	0.56593(7)	0.0395(5)
C12	0.70544(8)	0.2291(2)	0.59934(8)	0.0477(6)
C13	0.75455(8)	0.1333(2)	0.58762(9)	0.0513(6)
C14	0.74131(8)	0.0079(2)	0.54328(8)	0.0498(6)
C15	0.67903(8)	-0.0206(2)	0.50995(8)	0.0499(6)
C16	0.62976(8)	0.0755(2)	0.52092(8)	0.0442(5)
C17	0.61873(7)	0.2073(2)	0.70011(8)	0.0402(5)
C18	0.64211(8)	0.3341(2)	0.74215(8)	0.0497(6)
C19	0.69081(9)	0.3079(3)	0.79750(9)	0.0593(7)
C20	0.71647(9)	0.1563(3)	0.81148(9)	0.0637(8)
C21	0.69337(9)	0.0285(3)	0.77006(10)	0.0628(7)
C22	0.64456(8)	0.0540(2)	0.71492(9)	0.0513(6)
N4	0.99463(7)	0.07009(17)	0.60756(7)	0.0482(5)
N5	0.90063(6)	0.29399(16)	0.54000(6)	0.0373(4)
N6	0.99190(6)	0.42951(16)	0.64689(6)	0.0394(4)
C23	0.95166(8)	0.0319(2)	0.57088(8)	0.0438(5)
C24	0.94782(7)	0.19684(19)	0.58082(7)	0.0355(5)
C25	0.99306(7)	0.26688(19)	0.63432(7)	0.0340(5)
C26	1.03835(7)	0.1615(2)	0.67160(7)	0.0398(5)
C27	1.03682(8)	-0.0010(2)	0.65654(8)	0.0445(6)
C28	0.87485(8)	0.2239(2)	0.47472(8)	0.0487(6)
C29	0.91916(7)	0.46579(19)	0.53923(7)	0.0366(5)
C30	0.94074(7)	0.53165(19)	0.61013(7)	0.0365(5)
C31	1.03603(7)	0.5037(2)	0.70323(8)	0.0420(5)
C32	1.10021(8)	0.5462(2)	0.68952(9)	0.0526(6)
C33	0.86681(7)	0.56866(19)	0.49729(7)	0.0360(5)
C34	0.80224(7)	0.5424(2)	0.49480(7)	0.0400(5)
C35	0.75584(8)	0.6332(2)	0.45294(8)	0.0439(6)
C36	0.77286(8)	0.7538(2)	0.41447(8)	0.0449(6)
C37	0.83661(8)	0.7841(2)	0.41795(8)	0.0453(6)
C38	0.88323(8)	0.6916(2)	0.45904(8)	0.0413(5)
C39	0.88702(7)	0.55504(19)	0.64576(7)	0.0356(5)
C40	0.86683(7)	0.4294(2)	0.68017(7)	0.0401(5)
C41	0.81811(8)	0.4538(2)	0.71276(8)	0.0461(6)
C42	0.78923(8)	0.6033(2)	0.71115(8)	0.0509(6)
C43	0.80911(8)	0.7296(2)	0.67722(8)	0.0507(6)
C44	0.85799(8)	0.7056(2)	0.64528(8)	0.0439(5)

Tabelle 29: Bindungslängen in 141 in Å

Bindung	Abstand	Bindung	Abstand
N1-C1	1.345(2)	C14-C15	1.377(2)
N1-C5	1.332(2)	C15-C16	1.384(2)
N2-C2	1.412(2)	C17-C18	1.383(2)
N2-C6	1.467(3)	C17-C22	1.387(2)

1.471(2)	C18-C19	1.384(3)
1.366(2)	C19-C20	1.370(3)
1.460(2)	C20-C21	1.381(3)
1.458(2)	C21-C22	1.382(3)
1.327(2)	C1-H1	0.9506
1.348(2)	C4-H4	0.9498
1.473(2)	С5-Н5	0.9509
1.466(2)	C6-H6A	0.9794
1.412(2)	C6-H6B	0.9797
1.368(2)	C6-H6C	0.9794
1.454(2)	С7-Н7	1.0004
1.463(2)	C8-H8	0.9991
1.390(2)	С9-Н9А	0.9909
1.415(2)	C9-H9B	0.9903
1.397(2)	C10-H10A	0.9808
1.374(2)	C10-H10B	0.9798
1.513(2)	C10-H10C	0.9805
1.541(2)	C12-H12	0.9505
1.523(2)	C13-H13	0.9501
1.500(3)	C14-H14	0.9503
1.390(2)	C15-H15	0.9503
1.387(2)	C16-H16	0.9502
1.385(2)	C18-H18	0.9496
1.373(2)	C19-H19	0.9505
0.9505	C23-H23	0.9493
0.9497	C26-H26	0.9501
0.9507	C27-H27	0.9499
1.382(2)	C28-H28A	0.9788
1.422(2)	C28-H28B	0.9796
1.399(2)	C28-H28C	0.9805
1.375(2)	С29-Н29	1.0008
1.544(2)	C30-H30	1.0003
1.515(2)	C31-H31A	0.9906
1.524(2)	C31-H31B	0.9897
1.513(2)	C32-H32A	0.9806
1.393(2)	C32-H32B	0.9804
1.387(2)	C32-H32C	0.9791
1.383(2)	C34-H34	0.9506
1.381(2)	С35-Н35	0.9496
1.377(2)	C36-H36	0.9492
1.386(2)	С37-Н37	0.9501
1.387(2)	C38-H38	0.95
1.389(2)	C40-H40	0.9501
1.390(2)	C41-H41	0.9493
1.377(2)	C42-H42	0.9502
1.382(2)	C43-H43	0.95
1.383(2)	C44-H44	0.9497
	1.471(2) 1.366(2) 1.460(2) 1.458(2) 1.327(2) 1.348(2) 1.473(2) 1.466(2) 1.412(2) 1.368(2) 1.454(2) 1.463(2) 1.390(2) 1.415(2) 1.397(2) 1.374(2) 1.513(2) 1.523(2) 1.387(2) 1.387(2) 1.385(2) 1.373(2) 0.9505 0.9497 0.9505 0.9497 0.9505 0.9497 0.9505 0.9497 0.9505 0.9497 0.9505 0.9497 0.9505 0.9497 0.9507 1.382(2) 1.375(2) 1.524(2) 1.515(2) 1.524(2) 1.387(2) 1.383(2) 1.387(2) 1.382(2) 1.383(2) 1.382(2) 1.383(2)	1.471(2) $C18-C19$ $1.366(2)$ $C19-C20$ $1.460(2)$ $C20-C21$ $1.458(2)$ $C21-C22$ $1.327(2)$ $C1-H1$ $1.348(2)$ $C4-H4$ $1.473(2)$ $C5-H5$ $1.466(2)$ $C6-H6A$ $1.412(2)$ $C6-H6B$ $1.368(2)$ $C6-H6C$ $1.454(2)$ $C7-H7$ $1.463(2)$ $C8-H8$ $1.390(2)$ $C9-H9A$ $1.415(2)$ $C9-H9B$ $1.397(2)$ $C10-H10A$ $1.374(2)$ $C10-H10B$ $1.513(2)$ $C10-H10C$ $1.541(2)$ $C12-H12$ $1.523(2)$ $C13-H13$ $1.500(3)$ $C14-H14$ $1.390(2)$ $C15-H15$ $1.387(2)$ $C16-H16$ $1.385(2)$ $C18-H18$ $1.373(2)$ $C19-H19$ 0.9505 $C23-H23$ 0.9497 $C26-H26$ 0.9507 $C27-H27$ $1.382(2)$ $C28-H28A$ $1.422(2)$ $C28-H28A$ $1.422(2)$ $C28-H28A$ $1.422(2)$ $C28-H28A$ $1.399(2)$ $C28-H28C$ $1.375(2)$ $C29-H29$ $1.544(2)$ $C30-H30$ $1.515(2)$ $C31-H31A$ $1.524(2)$ $C32-H32A$ $1.383(2)$ $C34-H34$ $1.387(2)$ $C32-H32B$ $1.387(2)$ $C32-H32C$ $1.386(2)$ $C37-H37$ $1.387(2)$ $C36-H36$ $1.389(2)$ $C40-H40$ $1.390(2)$ $C41-H41$ $1.377(2)$ $C42-H42$ $1.382(2)$

Tabelle 30: Bindungswinkel in °

Valenzwinkel		Valenzwinkel		
C1-N1-C5	115 18(15)	C7-C8-C17	114 85(13)	
C2-N2-C6	114 11(13)	N3-C9-C10	112 39(15)	
C2-N2-C7	$113\ 30(13)$	C7-C11-C12	122.12(14)	
C6-N2-C7	114 86(13)	C7-C11-C16	119 38(14)	
C3-N3-C8	121.66(13) 121.45(13)	C12-C11-C16	118 47(15)	
$C_3 N_3 C_9$	121.13(13) 121.82(13)	C11-C12-C13	120.78(15)	
C8-N3-C9	11643(13)	C12-C13-C14	120.15(16)	
C23-N4-C27	115.43(13) 115.13(14)	C13-C14-C15	120.13(10) 119.60(16)	
C24-N5-C28	113.13(14) 113.62(13)	C14-C15-C16	120.61(15)	
C24-N5-C29	113.02(13) 113.24(12)	C11-C16-C15	120.01(15) 120.39(16)	
C24-N5-C29	113.24(12) 114 44(12)	C8-C17-C18	120.39(10) 121.73(15)	
C25-N6-C31	114.44(12) 121.82(13)	$C_{18}C_{17}C_{22}$	121.73(15) 118.72(15)	
$C_{20}-N_{6}-C_{31}$	121.02(13) 116.83(12)	$C_{10} - C_{17} - C_{22}$	110.72(15) 110.54(15)	
$C_{25} N_{6} C_{20}$	110.03(12) 120.70(12)	C17 C18 C19	117.34(13) 120.32(17)	
$\frac{C23-N0-C30}{N1}$	120.79(12) 125.65(16)	C17-C10-C19	120.32(17) 120.50(10)	
N1-C1-C2 N2-C2-C1	123.03(10) 122.20(14)	$C_{10} C_{20} C_{21}$	120.39(19) 110.67(18)	
N2-C2-C1	122.30(14) 120.00(14)	C19-C20-C21 C20, C21, C22	119.07(18) 110.0(2)	
$\begin{array}{c} \text{N2-C2-C3} \\ \text{C1 C2 C3} \end{array}$	120.09(14) 117 50(14)	C_{20} - C_{21} - C_{22}	119.9(2) 120.77(17)	
N3 C3 C4	117.39(14) 122.85(14)	N1 C1 H1	120.77(17)	
N3 C3 C2	122.83(14) 120.39(14)	$C^2 C^1 H^1$	117.19	
$\frac{1}{100} \frac{1}{100} \frac{1}$	120.39(14) 116 76(14)	C_2 - C_1 - H_1	117.17	
C_2 - C_3 - C_4	110.70(14) 110.00(16)	C5 C4 H4	120	
CJ-C4-CJ	119.99(10) 124.75(16)	C4 C5 H5	120.01	
N1-C5-C4	124.73(10) 112.67(13)	N1-C5-H5	117.57	
N2-C7-C8	112.07(13) 109.65(13)	Н6А_С6-Н6С	100.46	
C8-C7-C11	109.03(13) 110.08(13)	N2-C6-H6A	109.40	
N3-C8-C7	109.60(13)	N2-C6-H6B	109.3	
N3-C8-C17	109.00(13) 111.48(13)	N2-C6-H6C	109.45	
H6A-C6-H6B	109.48	C15-C16-H16	119.83	
H6R-C6-H6C	109.40	C19-C18-H18	119.85	
N2-C7-H7	108.08	C17-C18-H18	119.87	
C8-C7-H7	108.06	C18-C19-H19	119.07	
C11-C7-H7	108.16	C20-C19-H19	119.71	
N3-C8-H8	106.85	C19-C20-H20	120.17	
С7-С8-Н8	106.78	C21-C20-H20	120.16	
C17-C8-H8	106.83	C20-C21-H21	120.01	
N3-C9-H9B	109.16	C22-C21-H21	120.07	
C10-C9-H9A	109.12	C17-C22-H22	119.62	
N3-C9-H9A	109.16	C21-C22-H22	119.61	
H9A-C9-H9B	107 79	N4-C23-C24	125 86(15)	
C10-C9-H9B	109.11	N5-C24-C23	121.83(14)	
H10A-C10-H10B	109.44	N5-C24-C25	120.49(14)	
C9-C10-H10C	109.49	C23-C24-C25	117.67(14)	
C9-C10-H10A	109.5	N6-C25-C24	120.63(14)	
C9-C10-H10B	109.5	N6-C25-C26	122.94(14)	
H10A-C10-H10C	109.43	C24-C25-C26	116.42(14)	
H10B-C10-H10C	109.49	C25-C26-C27	120.11(14)	

C11-C12-H12	119.55	N4-C27-C26	124.78(15)
С13-С12-Н12	119.67	N5-C29-C30	110.45(12)
С12-С13-Н13	119.92	N5-C29-C33	112.28(12)
C14-C13-H13	119.93	C30-C29-C33	112.00(13)
C13-C14-H14	120.24	N6-C30-C29	108.91(12)
C15-C14-H14	120.16	N6-C30-C39	112.36(12)
C16-C15-H15	119.67	C29-C30-C39	114.88(12)
C14-C15-H15	119.72	N6-C31-C32	113.14(13)
C11-C16-H16	119.78	C29-C33-C34	122.24(14)
C29-C33-C38	119.27(14)	С30-С29-Н29	107.29
C34-C33-C38	118.49(14)	С33-С29-Н29	107.28
C33-C34-C35	120.28(15)	N6-C30-H30	106.75
C34-C35-C36	120.57(16)	С29-С30-Н30	106.68
C35-C36-C37	119.66(16)	С39-С30-Н30	106.77
C36-C37-C38	119.93(15)	N6-C31-H31A	108.94
C33-C38-C37	121.02(16)	N6-C31-H31B	108.99
C30-C39-C40	121.49(14)	C32-C31-H31A	109.01
C30-C39-C44	119.97(14)	C32-C31-H31B	108.89
C40-C39-C44	118.53(14)	H31A-C31-H31B	107.72
C39-C40-C41	120.52(15)	C31-C32-H32A	109.48
C40-C41-C42	120.27(15)	С31-С32-Н32В	109.49
C41-C42-C43	119.73(16)	C31-C32-H32C	109.42
C42-C43-C44	119.96(16)	H32A-C32-H32B	109.45
C39-C44-C43	120.97(15)	H32A-C32-H32C	109.47
N4-C23-H23	117.09	H32B-C32-H32C	109.5
С24-С23-Н23	117.05	C33-C34-H34	119.87
С25-С26-Н26	119.9	C35-C34-H34	119.85
С27-С26-Н26	119.98	С34-С35-Н35	119.71
N4-C27-H27	117.62	С36-С35-Н35	119.71
С26-С27-Н27	117.6	С35-С36-Н36	120.18
N5-C28-H28A	109.44	С37-С36-Н36	120.16
N5-C28-H28B	109.53	С36-С37-Н37	120.01
N5-C28-H28C	109.41	С38-С37-Н37	120.06
H28A-C28-H28B	109.47	C33-C38-H38	119.52
H28A-C28-H28C	109.48	С37-С38-Н38	119.46
H28B-C28-H28C	109.49	С39-С40-Н40	119.72
N5-C29-H29	107.25	C41-C40-H40	119.76
C40-C41-H41	119.82	C42-C43-H43	120.04
C42-C41-H41	119.91	C44-C43-H43	120
C41-C42-H42	120.14	C39-C44-H44	119.52
C43-C42-H42	120.13	C43-C44-H44	119.51

Kristallstruktur von Verbindung 46:

Datensatz: ln065; CCDC 636918; Summenformel: $C_{15}H_{19}N_3O_2$; M=273.33; 200K; Strahlung Mo-K_a; λ =0.71073 Å; gemessene Indizes -11 \leq 11, -12 \leq 12, -17 \leq 17; monoklin; Raumgruppe P21/c; a = 6.1080(1) Å, α = 90°; b = 24.1531(4) Å, β = 99.0848(11)°; c = 9.2534(2) Å, γ = 90°; Volumen 1348.00(4) Å³; Z = 4; ρ = 1.347 g/cm³; Absorbtionskoeffizient μ = 0.091 mm⁻¹; F(000) 584; Kristallabmessungen 0.14 x 0.18 x 0.19 mm, 6039 gesammlte, Reflexe, 3084 unabhängige Reflexe, [R(int) = 0.016]; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.4, 27.1; F² = 1.050; [I > 2.0 σ (I)] 2498; R(int) 0.016; Verfeinerte Parameter R = 0.0387, wR2 = 0.0973; Restelektronendichte min = -0.19, max = 0.22 eÅ³.

Tabelle 31: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($\text{Å}^2 \cdot 10^3$) von **46**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen Uij-Tensors.

X	У	Z	U(eq)
0.22140(17)	-0.00001(4)	0.85696(11)	0.0395(3)
0.32905(16)	0.19284(4)	0.54144(11)	0.0368(3)
0.01351(18)	0.07723(4)	0.82809(11)	0.0256(3)
0.04936(16)	0.16821(4)	0.66048(11)	0.0232(3)
0.29043(19)	0.17715(5)	1.02454(12)	0.0307(3)
0.1662(2)	0.04349(5)	0.90887(14)	0.0275(4)
0.2622(3)	0.06200(7)	1.06074(16)	0.0356(4)
	x 0.22140(17) 0.32905(16) 0.01351(18) 0.04936(16) 0.29043(19) 0.1662(2) 0.2622(3)	xy0.22140(17)-0.00001(4)0.32905(16)0.19284(4)0.01351(18)0.07723(4)0.04936(16)0.16821(4)0.29043(19)0.17715(5)0.1662(2)0.04349(5)0.2622(3)0.06200(7)	xyz0.22140(17)-0.00001(4)0.85696(11)0.32905(16)0.19284(4)0.54144(11)0.01351(18)0.07723(4)0.82809(11)0.04936(16)0.16821(4)0.66048(11)0.29043(19)0.17715(5)1.02454(12)0.1662(2)0.04349(5)0.90887(14)0.2622(3)0.06200(7)1.06074(16)

C3	0.2077(2)	0.20592(5)	0.62878(13)	0.0259(3)
C4	0.2290(2)	0.26165(6)	0.70122(17)	0.0324(4)
C5	-0.0547(2)	0.06845(5)	0.66958(13)	0.0252(3)
C6	0.0605(2)	0.11268(5)	0.58987(14)	0.0253(3)
C7	-0.0326(2)	0.11379(6)	0.42566(14)	0.0305(4)
C8	-0.2844(2)	0.11459(6)	0.39376(15)	0.0324(4)
C9	-0.3787(2)	0.06502(6)	0.46409(14)	0.0306(4)
C10	-0.3072(2)	0.06687(6)	0.62949(14)	0.0283(4)
C11	-0.1884(2)	0.13089(5)	0.99022(14)	0.0269(4)
C12	0.07169(19)	0.12775(5)	0.87347(13)	0.0227(3)
C13	0.06490(19)	0.17357(5)	0.78197(12)	0.0219(3)
C14	-0.1800(2)	0.22062(5)	0.81332(13)	0.0249(3)
C15	-0.2855(2)	0.22062(5)	0.93486(14)	0.0268(3)

Tabelle 32: Bindungslängen in Å

Dindura	Abstand	Dinduna	Abstand
Bindung	Abstand	Bindung	Abstand
O1-C1	1.2245(16)	C14-C15	1.3817(17)
O2-C3	1.2213(16)	C2-H21	0.954(18)
N1-C1	1.3684(16)	C2-H22	0.990(19)
N1-C5	1.4754(16)	C2-H23	0.99(2)
N1-C12	1.4160(16)	C4-H41	0.982(18)
N2-C3	1.3930(16)	C4-H42	0.983(17)
N2-C6	1.4982(16)	C4-H43	1.006(18)
N2-C13	1.4196(15)	C5-H5	0.989(14)
N3-C11	1.3417(17)	C6-H6	1.001(13)
N3-C15	1.3416(17)	C7-H71	0.990(17)
C1-C2	1.503(2)	C7-H72	1.007(17)
C3-C4	1.5002(19)	C8-H81	0.992(16)
C5-C6	1.5311(17)	C8-H82	0.993(17)
C5-C10	1.5287(18)	C9-H91	0.997(17)
C6-C7	1.5363(18)	С9-Н92	1.004(18)
C7-C8	1.5197(18)	C10-H101	1.011(14)
C8-C9	1.519(2)	C10-H102	0.982(17)
C9-C10	1.5245(18)	C11-H11	0.978(15)
C11-C12	1.3872(17)	C14-H14	0.992(15)
C12-C13	1.3980(17)	C15-H15	0.935(17)
C13-C14	1.3908(17)		

Tabelle 33: Bindungswinkel in °.

Valenzw	Valenzwinkel		inkel
C1-N1-C5	121.24(10)	N2-C13-C14	124.58(11)
C1-N1-C12	127.01(10)	C12-C13-C14	117.14(11)
C5-N1-C12	111.06(9)	C13-C14-C15	119.07(11)
C3-N2-C6	114.37(10)	N3-C15-C14	124.22(11)
C3-N2-C13	123.48(10)	C1-C2-H21	108.2(10)
C6-N2-C13	119.27(10)	C1-C2-H22	112.5(10)

C11-N3-C15	116.66(11)	С1-С2-Н23	111.5(12)
01-C1-N1	120.19(12)	H21-C2-H22	110.5(15)
O1-C1-C2	122.08(12)	H21-C2-H23	107.7(16)
N1-C1-C2	117.73(11)	H22-C2-H23	106.4(15)
O2-C3-N2	118.97(11)	C3-C4-H41	108.0(10)
O2-C3-C4	120.59(11)	C3-C4-H42	112.8(10)
N2-C3-C4	120.44(11)	C3-C4-H43	110.3(10)
N1-C5-C6	107.43(10)	H41-C4-H42	110.2(14)
N1-C5-C10	111.13(10)	H41-C4-H43	108.1(14)
C6-C5-C10	115.04(10)	H42-C4-H43	107.4(14)
N2-C6-C5	111.01(10)	N1-C5-H5	107.2(8)
N2-C6-C7	112.37(10)	С6-С5-Н5	107.6(8)
C5-C6-C7	111.23(10)	С10-С5-Н5	108.1(7)
C6-C7-C8	113.42(11)	N2-C6-H6	105.3(8)
C7-C8-C9	110.33(11)	С5-С6-Н6	107.8(8)
C8-C9-C10	109.82(11)	С7-С6-Н6	108.8(8)
C5-C10-C9	111.25(10)	C6-C7-H71	108.3(9)
N3-C11-C12	123.02(11)	С6-С7-Н72	106.9(9)
N1-C12-C11	122.42(11)	C8-C7-H71	113.0(10)
N1-C12-C13	117.07(10)	С8-С7-Н72	108.1(10)
C11-C12-C13	119.76(11)	H71-C7-H72	106.7(14)
N2-C13-C12	118.21(10)	C7-C8-H81	110.6(8)
С7-С8-Н82	109.5(11)	C5-C10-H102	107.5(11)
C9-C8-H81	108.2(8)	C9-C10-H101	108.4(8)
С9-С8-Н82	111.8(10)	C9-C10-H102	111.8(9)
H81-C8-H82	106.3(13)	H101-C10-H102	108.6(13)
C8-C9-H91	109.3(10)	N3-C11-H11	118.0(8)
С8-С9-Н92	111.1(9)	C12-C11-H11	119.0(8)
С10-С9-Н91	110.3(9)	C13-C14-H14	121.7(8)
С10-С9-Н92	108.7(9)	C15-C14-H14	119.2(8)
Н91-С9-Н92	107.5(13)	N3-C15-H15	115.2(10)
C5-C10-H101	109.2(7)	C14-C15-H15	120.5(10)

Kristallstruktur von Verbindung 97:

Datensatz: ln125; CCDC 641485; Summenformel: $C_{15}H_{23}N_3$; M=245.36; 200K; Strahlung Mo-K_a; λ =0.71073 Å; gemessene Indizes -10 \leq 10, -19 \leq 19, -17 \leq 17; monoklin; Raumgruppe P21/c; a = 9.6690(5) Å, α = 90°; b = 17.5646(11) Å, β = 95.057(3)°; c = 16.1174(8) Å, γ = 90°; Volumen 2726.6(3) Å³; Z = 8; ρ = 1.195 g/cm³; Absorbtionskoeffizient μ = 0.072 mm⁻¹; F(000) 1072; Kristallabmessungen 0.09 x 0.09 x 0.17 mm, 7384 gesammlte, Reflexe, 3784 unabhängige Reflexe, [R(int) = 0.042]; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 3.4, 27.1; F² = 1.050; [I > 2.0 σ (I)] 2427; R(int) 0.042; Verfeinerte Parameter R = 0.0520, wR2 = 0.1395; Restelektronendichte min = -0.21, max = 0.26 eÅ³.

Tabelle 34: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2 \cdot 10^3$) von **97**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Atom	X	У	Z	U(eq)
N1	0.7763(2)	0.00514(12)	0.79239(12)	0.0408(8)
N2	0.8955(2)	0.09733(12)	0.68696(12)	0.0393(7)
N3	0.8673(2)	0.07588(14)	0.55381(14)	0.0507(9)
C1	0.8074(2)	0.02869(15)	0.71532(15)	0.0365(9)
C2	0.8655(2)	0.02297(15)	0.65978(15)	0.0355(9)
C3	0.8903(3)	0.00437(16)	0.58207(16)	0.0445(10)
C4	0.8145(3)	0.12277(17)	0.60735(18)	0.0496(10)
C5	0.7845(3)	0.10311(15)	0.68620(17)	0.0448(10)

C6	0.8046(3)	0.07322(16)	0.81948(15)	0.0442(10)
C7	0.7976(3)	0.12666(15)	0.74428(16)	0.0429(9)
C8	0.8276(3)	0.20781(16)	0.77400(17)	0.0527(10)
C9	0.9630(3)	0.21595(18)	0.82723(19)	0.0668(12)
C10	0.9680(4)	0.16304(18)	0.90125(19)	0.0774(14)
C11	0.9408(3)	0.08131(17)	0.87319(17)	0.0577(11)
C12	0.7153(3)	0.05683(16)	0.84964(16)	0.0482(10)
C13	0.8168(3)	0.11098(17)	0.89658(18)	0.0598(11)
C14	0.9430(3)	0.15014(16)	0.62514(16)	0.0500(10)
C15	0.8317(3)	0.17936(17)	0.56041(17)	0.0615(11)
N4	0.3313(2)	0.12238(11)	0.70330(12)	0.0384(7)
N5	0.34222(19)	0.01551(12)	0.79311(11)	0.0375(7)
N6	0.4477(3)	0.12308(17)	0.96041(15)	0.0681(11)
C16	0.3698(3)	0.12283(15)	0.78688(15)	0.0382(9)
C17	0.3726(2)	0.05385(15)	0.83356(15)	0.0382(9)
C18	0.4097(3)	0.05900(17)	0.91887(15)	0.0502(11)
C19	0.4458(3)	0.18643(19)	0.91545(18)	0.0654(14)
C20	0.4079(3)	0.18879(16)	0.83131(17)	0.0525(11)
C21	0.3176(2)	0.04977(14)	0.66002(15)	0.0374(9)
C22	0.2528(2)	0.00909(14)	0.71454(14)	0.0375(8)
C23	0.2362(3)	0.08423(15)	0.66755(17)	0.0472(10)
C24	0.3714(3)	0.11371(16)	0.63829(17)	0.0489(10)
C25	0.4370(3)	0.05407(16)	0.58571(16)	0.0494(10)
C26	0.4554(2)	0.02104(16)	0.63187(15)	0.0428(9)
C27	0.3224(3)	0.19243(15)	0.65515(16)	0.0457(10)
C28	0.4595(3)	0.22499(17)	0.63230(18)	0.0569(11)
C29	0.3270(3)	0.08344(15)	0.84446(16)	0.0465(10)
C30	0.1898(3)	0.08753(18)	0.8847(2)	0.0664(12)

Tabelle 35: Bindungsabstände in Å.

Bindung	Abstand	Bindung	Abstand
N1-C1	1.368(3)	С3-Н3	0.9504
N1-C6	1.462(3)	C4-H4	0.9501
N1-C12	1.456(3)	C5-H5	0.9499
N2-C2	1.400(3)	C6-H6	0.9998
N2-C7	1.473(3)	C7-H7	1.0004
N2-C14	1.465(3)	C8-H8B	0.9896
N3-C3	1.348(4)	C8-H8A	0.9908
N3-C4	1.327(4)	С9-Н9А	0.9901
N4-C27	1.453(3)	C9-H9B	0.9895
N4-C16	1.366(3)	C10-H10A	0.9905
N4-C21	1.454(3)	C10-H10B	0.99
N5-C17	1.401(3)	C11-H11A	0.9906
N5-C22	1.473(3)	C11-H11B	0.9902
N5-C29	1.467(3)	C12-H12A	0.9895
N6-C18	1.344(4)	C12-H12B	0.9895
N6-C19	1.327(4)	C13-H13B	0.9797
C1-C2	1.424(3)	C13-H13C	0.9805
C1-C5	1.400(4)	C13-H13A	0.9797

C2-C3	1.382(4)	C14-H14A	0.9905
C4-C5	1.372(4)	C14-H14B	0.9893
C6-C7	1.530(4)	C15-H15B	0.9801
C6-C11	1.518(4)	C15-H15C	0.9798
C7-C8	1.523(4)	C15-H15A	0.9802
C8-C9	1.507(4)	C16-C17	1.425(4)
C9-C10	1.510(4)	C16-C20	1.394(4)
C10-C11	1.521(4)	C17-C18	1.393(3)
C12-C13	1.520(4)	C19-C20	1.374(4)
C14-C15	1.521(4)	C21-C22	1.527(3)
C21-C26	1.530(3)	C24-H24B	0.9907
C22-C23	1.523(4)	C25-H25A	0.9902
C23-C24	1.519(4)	C25-H25B	0.9907
C24-C25	1.521(4)	C26-H26A	0.9894
C25-C26	1.517(4)	C26-H26B	0.9889
C27-C28	1.519(4)	C27-H27A	0.991
C29-C30	1.529(4)	C27-H27B	0.99
C18-H18	0.9509	C28-H28A	0.9794
C19-H19	0.95	C28-H28B	0.9809
C20-H20	0.9502	C28-H28C	0.98
C21-H21	0.9999	C29-H29A	0.9895
C22-H22	0.9997	C29-H29B	0.9906
C23-H23A	0.9893	C30-H30A	0.9809
С23-Н23В	0.9894	C30-H30B	0.9797
C24-H24A	0.9902	C30-H30C	0.98

Tabelle 36: Bindungswinkel in °.

Valenzwi	nkel	Valenzwir	ıkel
C1-N1-C6	120.4(2)	C6-C7-C8	109.3(2)
C1-N1-C12	121.4(2)	C7-C8-C9	113.5(2)
C6-N1-C12	118.2(2)	C8-C9-C10	110.9(3)
C2-N2-C7	113.31(19)	C9-C10-C11	110.7(2)
C2-N2-C14	116.5(2)	C6-C11-C10	112.1(3)
C7-N2-C14	117.6(2)	N1-C12-C13	115.2(2)
C3-N3-C4	114.8(2)	N2-C14-C15	115.8(2)
C21-N4-C27	119.20(19)	N3-C3-H3	116.8
C16-N4-C21	118.9(2)	С2-С3-Н3	116.8
C16-N4-C27	121.3(2)	N3-C4-H4	117.58
C17-N5-C29	118.18(19)	С5-С4-Н4	117.62
C17-N5-C22	114.62(19)	C1-C5-H5	119.83
C22-N5-C29	117.82(19)	С4-С5-Н5	119.82
C18-N6-C19	116.1(2)	N1-C6-H6	107.17
C2-C1-C5	116.3(2)	С7-С6-Н6	107.26
N1-C1-C2	120.6(2)	C11-C6-H6	107.21
N1-C1-C5	123.1(2)	С6-С7-Н7	108.63
N2-C2-C3	124.1(2)	N2-C7-H7	108.64
N2-C2-C1	118.7(2)	С8-С7-Н7	108.7
C1-C2-C3	117.2(2)	С9-С8-Н8В	108.86
N3-C3-C2	126.4(2)	С7-С8-Н8А	108.87

N3-C4-C5	124.8(3)	C7-C8-H8B	108.89
C1-C5-C4	120.4(3)	C9-C8-H8A	108.86
N1-C6-C7	110.3(2)	H8A-C8-H8B	107.66
N1-C6-C11	112.9(2)	C8-C9-H9A	109.49
C7-C6-C11	111.7(2)	C8-C9-H9B	109.47
N2-C7-C6	107.2(2)	С10-С9-Н9А	109.47
N2-C7-C8	114.2(2)	C10-C9-H9B	109.44
Н9А-С9-Н9В	108	C14-C15-H15B	109.45
C9-C10-H10A	109.5	C14-C15-H15C	109.44
C11-C10-H10A	109.54	H15A-C15-H15B	109.56
C11-C10-H10B	109.48	H15A-C15-H15C	109.53
C9-C10-H10B	109.5	H15B-C15-H15C	109.45
H10A-C10-H10B	108.08	N4-C16-C17	120.4(2)
C10-C11-H11B	109.22	N4-C16-C20	123.2(2)
H11A-C11-H11B	107.9	C17-C16-C20	116.3(2)
C6-C11-H11A	109.17	N5-C17-C16	120.0(2)
C6-C11-H11B	109.19	N5-C17-C18	122.8(2)
C10-C11-H11A	109.14	C16-C17-C18	117.2(2)
N1-C12-H12A	108.49	N6-C18-C17	125.5(3)
N1-C12-H12B	108.47	N6-C19-C20	123.6(3)
C13-C12-H12A	108.49	C16-C20-C19	121.1(3)
C13-C12-H12B	108.49	N4-C21-C22	110.03(19)
H12A-C12-H12B	107.43	N4-C21-C26	112.74(18)
С12-С13-Н13А	109.46	C22-C21-C26	111.1(2)
C12-C13-H13B	109.5	N5-C22-C21	107.88(17)
H13A-C13-H13C	109.49	N5-C22-C23	112.9(2)
С12-С13-Н13С	109.43	C21-C22-C23	109.34(19)
H13A-C13-H13B	109.46	C22-C23-C24	113.2(2)
H13B-C13-H13C	109.5	C23-C24-C25	110.5(2)
C15-C14-H14B	108.35	C24-C25-C26	111.2(2)
N2-C14-H14A	108.35	C21-C26-C25	111.4(2)
N2-C14-H14B	108.35	N4-C27-C28	115.9(2)
C15-C14-H14A	108.3	N5-C29-C30	114.3(2)
H14A-C14-H14B	107.4	N6-C18-H18	117.21
C14-C15-H15A	109.41	C17-C18-H18	117.24
N6-C19-H19	118.15	C21-C26-H26B	109.35
C20-C19-H19	118.21	C25-C26-H26A	109.34
С16-С20-Н20	119.42	C25-C26-H26B	109.36
С19-С20-Н20	119.43	H26A-C26-H26B	108.04
N4-C21-H21	107.62	N4-C27-H27A	108.29
C22-C21-H21	107.58	N4-C27-H27B	108.27
C26-C21-H21	107.58	C28-C27-H27A	108.32
N5-C22-H22	108.85	С28-С27-Н27В	108.34
С21-С22-Н22	108.9	H27A-C27-H27B	107.44
С23-С22-Н22	108.89	C27-C28-H28A	109.49
С22-С23-Н23А	108.95	C27-C28-H28B	109.48
С22-С23-Н23В	108.97	C27-C28-H28C	109.42
С24-С23-Н23А	108.93	H28A-C28-H28B	109.45
С24-С23-Н23В	108.92	H28A-C28-H28C	109.48
H23A-C23-H23B	107.75	H28B-C28-H28C	109.51
C23-C24-H24A	109.57	N5-C29-H29A	108.63

C23-C24-H24B	109.55	N5-C29-H29B	108.67
C25-C24-H24A	109.51	С30-С29-Н29А	108.73
C25-C24-H24B	109.51	С30-С29-Н29В	108.71
H24A-C24-H24B	108.13	H29A-C29-H29B	107.6
С24-С25-Н25А	109.4	C29-C30-H30A	109.49
С24-С25-Н25В	109.41	C29-C30-H30B	109.52
C26-C25-H25A	109.35	С29-С30-Н30С	109.52
С26-С25-Н25В	109.38	H30A-C30-H30B	109.41
H25A-C25-H25B	107.99	H30A-C30-H30C	109.4
C21-C26-H26A	109.32	H30B-C30-H30C	109.48

Kristallstruktur von Verbindung 137:

Datensatz: bx162; Summenformel: $C_{42.50}H_{39}Cl_3N_6O_2$; M=772.15; 200K; Strahlung Mo-K_{α}; λ =0.71073 Å; gemessene Indizes -8 \leq 13, -12 \leq 13, -17 \leq 18; triklin; Raum-gruppe P-1; a = 11.467(2) Å, α = 88.46(3)°; b = 11.468(2) Å, β = 89.87(3)°; c = 15.207 Å, γ = 70.80(3)°; Volumen 1887.81(60) Å³; Z = 2; ρ = 1.358 g/cm³; Absorbtionskoeffizient μ = 0.289 mm⁻¹; F(000) 806; Kristallabmessungen 0.09 x 0.09 x 0.17 mm, 6521 gesammlte, Reflexe, 2056 unabhängige Reflexe, [R(int) = 0.042]; Strukturlösung SHELXS-97, Strukturverfeinerung SHELXL-97; Theta_{min}-Theta_{max} 4.36, 25.0; F² = 1.070; [I > 2.0 σ (l)] 2427; R(int) 0.042; Verfeinerte Parameter R = 0.1142, wR2 = 0.2283; Restelektronendichte min = -0.391, max = 0.264 eÅ³.

Tabelle 37: Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($Å^2 \cdot 10^3$) von **137**. U(eq) ist definiert als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

Atom	X	У	Z	U(eq)
01	0.0982(5)	0.5259(5)	0.8157(4)	0.0531(16)
N1	0.0701(6)	0.6410(7)	1.1241(5)	0.0505(19)
N2	0.1424(5)	0.5958(5)	0.9472(5)	0.0406(17)
N3	-0.2339(6)	0.7729(6)	1.0154(6)	0.054(2)
C1	-0.1449(7)	0.7296(7)	1.0762(6)	0.047(2)
C2	-0.0175(7)	0.6720(6)	1.0560(6)	0.044(2)
C3	0.0146(7)	0.6575(6)	0.9679(6)	0.039(2)
C4	-0.0785(7)	0.7105(7)	0.9055(6)	0.050(2)
C5	-0.1971(8)	0.7621(8)	0.9305(7)	0.059(3)
C6	0.1916(7)	0.5546(7)	1.1013(6)	0.047(2)
C7	0.2344(7)	0.5910(7)	1.0173(6)	0.041(2)
C8	0.1755(9)	0.5353(8)	0.8690(6)	0.052(2)
C9	0.3136(7)	0.4782(9)	0.8510(6)	0.065(3)
C10	0.2820(7)	0.5462(7)	1.1764(5)	0.042(2)
C11	0.3733(7)	0.4338(8)	1.1970(6)	0.052(2)
C12	0.4584(8)	0.4253(11)	1.2650(7)	0.071(3)
C13	0.454(1)	0.5272(14)	1.3086(8)	0.084(3)
C14	0.3697(10)	0.6376(11)	1.2898(6)	0.071(3)
C15	0.2831(8)	0.6466(9)	1.2239(6)	0.058(2)
C16	0.2719(6)	0.7076(6)	1.0134(5)	0.0347(18)
C17	0.3949(7)	0.6980(7)	1.0041(6)	0.057(3)
C18	0.4311(8)	0.7998(8)	1.0033(7)	0.071(3)
C19	0.3450(8)	0.9168(8)	1.0082(7)	0.067(3)
C20	0.2248(7)	0.9278(7)	1.0182(6)	0.051(2)
C21	0.1842(7)	0.8254(7)	1.0194(6)	0.049(2)
O2	0.0295(5)	0.5970(5)	0.3169(4)	0.0518(15)
N4	0.2753(7)	0.2639(7)	0.5358(7)	0.050(2)
N5	0.1445(6)	0.5694(6)	0.6282(5)	0.043(2)
N6	0.0972(6)	0.6404(6)	0.4480(4)	0.043(2)
C22	0.2314(7)	0.3571(7)	0.5896(6)	0.050(2)
C23	0.1726(7)	0.4831(7)	0.5642(6)	0.060(3)

C24	0.1602(7)	0.5111(7)	0.4756(6)	0.0347(18)	
C25	0.2095(6)	0.4202(7)	0.4130(6)	0.050(2	
C26	0.2650(7)	0.2984(8)	0.4491(8)	0.060(3)	
C27	0.0556(6)	0.6900(7)	0.6048(5)	0.0347(18)	
C28	0.0927(7)	0.7330(7)	0.5120(5)	0.0379(19)	
C29	0.0371(8)	0.6715(8)	0.3683(6)	0.049(2)	
C30	-0.0204(9)	0.8084(8)	0.3458(6)	0.063(3)	
C31	0.0468(7)	0.7806(7)	0.6759(6)	0.045(2)	
C32	0.1486(8)	0.7814(8)	0.7248(5)	0.048(2)	
C33	0.1382(9)	0.8655(8)	0.7893(6)	0.058(2)	
C34	0.0233(10)	0.9526(8)	0.8055(6)	0.066(3)	
C35	-0.0771(10)	0.9544(9)	0.7567(7)	0.069(3)	
C36	-0.0664(7)	0.8711(7)	0.6895(6)	0.046(2)	
C37	0.2069(7)	0.7707(7)	0.5135(5)	0.0396(19)	
C38	0.3262(6)	0.6859(6)	0.5162(5)	0.039(2)	
C39	0.4281(7)	0.7247(7)	0.5152(6)	0.050(2)	
C40	0.4130(8)	0.8509(8)	0.5131(6)	0.054(2)	
C41	0.2940(8)	0.9375(8)	0.5093(7)	0.065(3)	
C42	0.1937(8)	0.8939(7)	0.5121(7)	0.063(3)	
C43	0.559(2)	-0.077(2)	0.2910(18)	0.195(15)	
Cl1A	0.4530(19)	0.1048(18)	0.2685(13)	0.080(7)	
Cl1B	0.505(3)	-0.162(2)	0.2389(19)	0.138(11)	
Cl1C	0.6656(19)	-0.058(3)	0.2281(17)	0.102(8)	
Cl2A	0.563(2)	-0.1603(16)	0.2125(12)	0.126(6)	
Cl2B	0.4127(10)	0.0594(13)	0.2856(7)	0.065(4)	
Cl2C	0.6612(16)	-0.001(2)	0.2648(15)	0.149(8)	
Cl3A	0.455(3)	0.081(3)	0.202(2)	0.138(12)	
Cl3B	0.381(2)	-0.001(2)	0.249(2)	0.115(10)	
Cl3C	0.6174(17)	-0.1047(17)	0.1968(13)	0.068(7)	
Cl4A	0.3959(18)	0.004(2)	0.2990(16)	0.032(7)	
Cl4B	0.653(4)	-0.123(4)	0.260(4)	0.110(16)	
Cl4C	0.523(3)	0.115(3)	0.235(2)	0.089(13)	

Tabelle 38: Bindungsabstände in 139 in Å.

Bindung	Abstand	Bindung	Abstand
O1—C8	1.235(21)	C31—C36	1.389(30)
N1C2	1.399(27)	C32—C33	1.372(25)
N1-C6	1.467(31)	С32—Н32	0.950(21)
N1—H43	0.915(92)	C33—C34	1.393(31)
N2—C8	1.382(24)	С33—Н33	0.950(17)
N2—C3	1.441(25)	C34—C35	1.365(25)
N2C7	1.489(25)	С34—Н34	0.950(17)
N3—C1	1.338(28)	C35—C36	1.395(25)
N3—C5	1.354(19)	С35—Н35	0.950(21)
C1—C2	1.428(24)	С36—Н36	0.950(16)
C1—H1	0.950(12)	C37—C42	1.370(12)
C2—C3	1.388(17)	C37—C38	1.394(29)
C3—C4	1.399(30)	C38—C39	1.380(16)
C4—C5	1.351(24)	C38—H38	0.950(8)
C4—H4	0.950(11)	C39—C40	1.399(13)
	. ,		

С5—Н5	0.950(21)	С39—Н39	0.95(2)
C6—C7	1.466(22)	C40—C41	1.399(30)
C6—C10	1.524(26)	C40—H40	0.950(13)
С6—Н6	1.00(1)	C41 - C42	1 397(19)
C7 - C16	1 533(16)	C41 - H41	0.95(1)
C7 U7	1.000(22)	$C_{41} = 1141$ $C_{42} = 142$	0.95(1)
C^{2}	1.000(22) 1.520(24)	C42 - 1142	0.93(2)
C_{8}	1.529(24)	C43 - C14B	1.140(54)
С9—Н9А	0.980(16)	C43—C12A	1.540(39)
С9—Н9В	0.980(16)	C43—Cl1B	1.550(46)
С9—Н9С	0.979(13)	C43—Cl3C	1.575(39)
C10-C15	1.379(22)	C43—C11C	1.617(43)
C10-C11	1.396(31)	C43—Cl2C	1.715(40)
C11 - C12	1 403(26)	C43 - C14A	1 799(39)
C11_H11	0.950(16)	C_{13} C_{12B}	1.799(39) 1.880(45)
C11 III1 C12 C12	1.246(26)	C43 $C12D$	1.000(+3)
C12-C13	1.340(20)	C43 - C13D	2.055(43)
CI2—HI2	0.951(22)	C43—CIIA	2.059(46)
C13—C14	1.340(32)	C43—CI3A	2.234(60)
С13—Н13	0.949(19)	C43—Cl4C	2.246(49)
C14—C15	1.390(26)	C43—H45	1.105(184)
C14—H14	0.950(17)	Cl1A—Cl2B	0.838(30)
C15—H15	0.950(21)	Cl1A—Cl4C	0.987(44)
C16-C17	1.385(12)	C11A - C13A	1.053(38)
C16 $C21$	1.300(12) 1.300(20)	$C_{11}A$ $C_{12}A$	1.055(30) 1.565(30)
C10-C21	1.399(29) 1.261(17)	CIIA - CI4A	1.303(39) 1.700(40)
CI/-CI8	1.301(17)	CITA—CI3B	1.709(40)
CI/—HI/	0.95(2)	CITA—CI2C	2.296(44)
C18—C19	1.384(29)	CI1B—CI2A	0.782(42)
C18—H18	0.949(10)	Cl1B—Cl3C	1.742(46)
C19—C20	1.351(14)	Cl1B—Cl4B	1.922(64)
С19—Н19	0.950(13)	Cl1B—Cl3B	1.934(49)
C_{20} C_{21}	1.398(17)	C11B - C14A	2132(53)
$C_{20} = U_{21}$	0.95(2)	C11C - C12C	0.860(41)
C_{20} -1120	0.93(2)	C11C - C12C	0.000(41)
C_{21} — Π_{21}	0.930(9)	CIIC - CI4B	0.929(03)
02-029	1.19/(20)		1.014(41)
N4—C22	1.325(27)	CIIC—CI2A	1.934(46)
N4—C26	1.36(2)	Cl1C—Cl4C	2.121(58)
N5—C23	1.368(26)	Cl1C—Cl3A	2.443(59)
N5-C27	1.458(31)	Cl2A—Cl3C	1.051(35)
N5—H44	0.806(95)	Cl2A—Cl4B	1.442(62)
N6-C29	1.375(24)	C12A - C13B	2354(57)
N6 C28	1.373(21) 1.448(24)	C12R $C13D$	0.745(30)
N6 C24	1.440(24) 1.470(27)	C12D - C14A	1.052(24)
N0-C24	1.4/0(27)	CI2B-CI3B	1.055(54)
C22—C23	1.422(26)	CI2B—CI3A	1.404(37)
C22—H22	0.950(11)	Cl2B—Cl4C	1.760(46)
C23—C24	1.373(16)	Cl2C—Cl4B	1.437(55)
C24—C25	1.406(29)	Cl2C—Cl4C	1.752(50)
C25—C26	1.426(28)	Cl2C—Cl3C	1.788(40)
C25—H25	0.951(11)	C12C - C13A	2 426(54)
C26_H26	0.950(21)	Cl2CH45	1.641(182)
C20 $I120C27$ $C21$	1.500(21)	C12C $T145$	1.041(102) 1.106(55)
$C_2/-C_3$	1.500(20) 1.505(21)	$CI_{2A} = CI_{4C}$	1.100(33) 1.(12(51))
C2/-C28	1.385(21)	CI3A—CI3B	1.013(31)
C2/—H2/	1.000(9)	CI3A—CI4A	1.932(50)
C28—C37	1.508(17)	Cl3A—Cl3C	2.326(58)
C28—H28	1.000(23)	Cl3B—Cl4A	0.787(39)
C29—C30	1.519(25)	Cl3B—Cl4C	2.424(54)
C30—H30A	0.979(17)	Cl3C—Cl4B	1.034(63)
	(+ /)		
C30—H30B	0.980(13)	Cl3C—Cl4C	2.478(52)
	··· ·· · · · · · · · · · · · · · · · ·		()

С30—Н30С	0.980(16)	Cl4A—Cl4C	2.416(56)
C31—C32	1.388(23)	Cl4B—H45	1.551(184)

Tabelle 39: Bindungswinkel in °.

Valenzwinkel		Valenzwinkel		
C2—N1—C6	115.41(68)	C43—Cl1B—Cl4B	36.39(185)	
C2—N1—H43	123.71(571)	Cl3C—Cl1B—Cl4B	32.31(169)	
C6—N1—H43	112.62(552)	Cl2A—Cl1B—Cl3B	113.17(289)	
C8—N2—C3	120.93(68)	C43—Cl1B—Cl3B	70.47(155)	
C8—N2—C7	122.22(72)	Cl3C—Cl1B—Cl3B	94.58(170)	
C3—N2—C7	116.60(62)	Cl4B—Cl1B—Cl3B	100.85(207)	
C1—N3—C5	116.22(87)	Cl2A—Cl1B—Cl4A	117.56(285)	
N3—C1—C2	123.88(75)	C43—Cl1B—Cl4A	55.85(129)	
N3—C1—H1	118.08(89)	Cl3C—Cl1B—Cl4A	96.53(159)	
C2—C1—H1	118.04(82)	Cl4B—Cl1B—Cl4A	90.98(192)	
C3—C2—N1	122.74(81)	Cl3B—Cl1B—Cl4A	21.63(92)	
C3—C2—C1	117.64(76)	Cl2C—Cl1C—Cl4B	106.80(449)	
N1—C2—C1	119.45(73)	Cl2C—Cl1C—Cl3C	145.07(372)	
C2—C3—C4	117.41(82)	Cl4B—Cl1C—Cl3C	64.12(345)	
C2—C3—N2	117.88(72)	Cl2C—Cl1C—C43	81.49(244)	
C4—C3—N2	124.59(70)	Cl4B—Cl1C—C43	43.52(343)	
C5—C4—C3	120.69(79)	Cl3C—Cl1C—C43	69.25(199)	
C5—C4—H4	119.65(89)	Cl2C—Cl1C—Cl2A	131.26(292)	
C3—C4—H4	119.66(87)	Cl4B—Cl1C—Cl2A	45.39(315)	
C4—C5—N3	123.83(90)	Cl3C—Cl1C—Cl2A	20.94(151)	
C4—C5—H5	118.11(91)	C43—Cl1C—Cl2A	50.44(132)	
N3—C5—H5	118.06(100)	Cl2C—Cl1C—Cl4C	53.56(239)	
N1—C6—C7	110.98(71)	Cl4B—Cl1C—Cl4C	115.99(376)	
N1-C6-C10	109.20(67)	Cl3C—Cl1C—Cl4C	98.19(252)	
C7—C6—C10	112.34(73)	C43—Cl1C—Cl4C	72.47(171)	
N1—C6—H6	108.02(68)	Cl2A—Cl1C—Cl4C	98.14(173)	
С7—С6—Н6	108.10(71)	Cl2C—Cl1C—Cl3A	78.73(233)	
С10—С6—Н6	108.05(72)	Cl4B—Cl1C—Cl3A	102.45(360)	
C6—C7—N2	109.23(73)	Cl3C—Cl1C—Cl3A	71.31(203)	
C6—C7—C16	118.48(68)	C43—Cl1C—Cl3A	62.96(148)	
N2-C7-C16	110.85(63)	Cl2A—Cl1C—Cl3A	72.96(147)	
С6—С7—Н7	105.78(75)	Cl4C—Cl1C—Cl3A	26.89(126)	
N2—C7—H7	105.85(68)	Cl1B—Cl2A—Cl3C	143.29(368)	
С16—С7—Н7	105.74(64)	Cl1B—Cl2A—Cl4B	116.38(386)	
O1—C8—N2	122.28(81)	Cl3C—Cl2A—Cl4B	45.74(231)	
O1—C8—C9	120.70(88)	Cl1B—Cl2A—C43	76.04(253)	
N2—C8—C9	117.02(77)	Cl3C—Cl2A—C43	72.09(169)	
С8—С9—Н9А	109.44(79)	Cl4B—Cl2A—C43	44.79(232)	

С8—С9—Н9В	109.53(79)	Cl1B—Cl2A—Cl1C	129.48(321)
Н9А—С9—Н9В	109.38(87)	Cl3C—Cl2A—Cl1C	20.16(146)
С8—С9—Н9С	109.47(81)	Cl4B—Cl2A—Cl1C	27.29(209)
Н9А—С9—Н9С	109.47(89)	C43—Cl2A—Cl1C	54.05(138)
Н9В—С9—Н9С	109.53(91)	Cl1B—Cl2A—Cl3B	49.06(254)
C15—C10—C11	116.78(76)	Cl3C—Cl2A—Cl3B	97.72(183)
C15—C10—C6	123.32(74)	Cl4B—Cl2A—Cl3B	100.27(223)
C11—C10—C6	119.82(72)	C43—Cl2A—Cl3B	58.63(123)
C10—C11—C12	120.39(83)	Cl1C—Cl2A—Cl3B	93.14(136)
C10—C11—H11	119.85(83)	Cl4A—Cl2B—Cl1A	162.13(289)
C12—C11—H11	119.76(90)	Cl4A—Cl2B—Cl3B	48.29(220)
C13—C12—C11	119.56(100)	Cl1A—Cl2B—Cl3B	128.93(239)
C13—C12—H12	120 23(124)	Cl4A— $Cl2B$ — $Cl3A$	125 18(255)
C11—C12—H12	120 21(101)	Cl1A— $Cl2B$ — $Cl3A$	48 29(203)
C14—C13—C12	122 11(133)	C13B— $C12B$ — $C13A$	80 66(222)
C14—C13—H13	118 88(126)	Cl4A— $Cl2B$ — $Cl4C$	146 39(243)
C12—C13—H13	119.01(123)	Cl1A— $Cl2B$ — $Cl4C$	16 69(191)
C13 - C14 - C15	118 84(104)	C13B-C12B-C14C	116 73(196)
C13—C14—H14	120 63(124)	C13A - C12B - C14C	38 92(174)
C15—C14—H14	120.03(121)	Cl4A— $Cl2B$ — $C43$	72, 28(205)
C10-C15-C14	122.28(87)	C11A - C12B - C43	89 99(189)
C10—C15—H15	122.20(07) 118.83(92)	C13B-C12B-C43	82 67(159)
C14—C15—H15	118 89(96)	C13A - C12B - C43	84 39(171)
C17 - C16 - C21	118 40(69)	Clac - Clab -	76 13(145)
C17 - C16 - C7	120 16(67)	$C_{11}C_{-}C_{12}C_{-}C_{14}B$	38 25(288)
$C_{1}^{21} - C_{16}^{16} - C_{7}^{7}$	120.10(07) 121.44(62)	C11C - C12C - C43	68 80(234)
C_{18} C_{17} C_{16}	121.44(02) 121.33(78)	C1/4B - C1/2C - C/3	41.22(204)
C18_C17_H17	121.33(78) 110.27(77)	$C_{14}D - C_{12}C - C_{4}J$	$103\ 20(279)$
C16 C17 H17	119.27(77) 110.41(78)	CIAB = CI2C = CI4C	103.20(277) 112.82(245)
C10-C17-C18 C10	119.41(78) 120.7(8)	CI4D - CI2C - CI4C	80.75(168)
C17 - C18 - U19	120.7(8) 110 70(01)	C43 - C12C - C14C	18.05(215)
C1/-C10 -1110	119.70(91)	CI1C - CI2C - CI3C	16.93(213) 25.22(100)
$C_{19} - C_{10} - C_{18}$	119.00(91) 118.70(85)	C14D - C12C - C13C	53.32(199) 53.30(120)
$C_{20} = C_{19} = C_{18}$	110.70(03) 120.62(02)	C43 - C12C - C13C	33.39(120)
$C_{20} - C_{19} - H_{19}$	120.02(92)	Clac -	00.02(130)
C18—C19—H19	120.08(80) 122.12(80)	CI1C - CI2C - CI1A	102.51(245)
C19 - C20 - C21	122.13(80) 118.90(82)	C_{14B} — C_{12C} — C_{11A}	97.32(218) 59.68(116)
$C_{1} = C_{2} = C_{1} = C_{2} = C_{2$	118.90(32) 118.97(74)	C_{43} $C_{12}C_{-}C_{11}A$	23 69(128)
C20-C21-C16	118.64(68)	Cl3C—Cl2C—Cl1A	84.39(117)
C20—C21—H21	120.68(81)	Cl1C—Cl2C—Cl3A	80.94(229)
C16—C21—H21	120.68(78)	Cl4B—Cl2C—Cl3A	88.85(232)
C22—N4—C26	113.93(94)	C43—Cl2C—Cl3A	62.54(134)
C23—N5—C27	116.73(64)	Cl4C—Cl2C—Cl3A	24.57(142)
C23—N5—H44	117.98(662)	Cl3C—Cl2C—Cl3A	64.94(120)
$C_2/-N_5-H_{44}$	110.18(686)	CIIA—CI2C—CI3A	25.57(102)
U29-INO-U28	121.43(00)	CHC - CH2C - H43	97.7(01)

C29—N6—C24	121.81(67)	Cl4B—Cl2C—H45	60.09(559)
C28—N6—C24	116.55(61)	C43—Cl2C—H45	38.36(580)
N4—C22—C23	126.14(73)	Cl4C—Cl2C—H45	98.00(554)
N4—C22—H22	116.91(91)	Cl3C—Cl2C—H45	87.64(564)
С23—С22—Н22	116.94(80)	Cl1A—Cl2C—H45	74.58(580)
N5-C23-C24	124 16(82)	Cl3A - Cl2C - H45	90.87(590)
N5-C23-C22	118 40(69)	CI1A - CI3A - CI4C	54 34(260)
C24-C23-C22	117 05(76)	Cl1A— $Cl3A$ — $Cl2B$	36 47(154)
C_{23} C_{24} C_{25}	121 34(83)	Cl4C— $Cl3A$ — $Cl2B$	88 19(280)
C_{23} C_{24} N6	117.87(71)	Cl1A - Cl3A - Cl3B	76 58(252)
$C_{25} - C_{24} - N_{6}$	120 75(67)	Cl4C— $Cl3A$ — $Cl3B$	125 04(339)
$C_{24} - C_{25} - C_{26}$	11462(71)	Cl_{2B} Cl_{3A} Cl_{3B}	40 11(140)
C24 - C25 - H25	122.73(87)	Cl1A - Cl3A - Cl4A	53 95(191)
C26-C25-H25	122.75(87)	Cl4C— $Cl3A$ — $Cl4A$	101 89(288)
N4-C26-C25	126 77(90)	C12B $C13A$ $C14A$	18 38(97)
N4-C26-H26	120.77(90) 116 69(111)	C13B $C13A$ $C14A$	2352(122)
C25-C26-H26	116 53(81)	C11A - C13A - C43	66 69(206)
N5-C27-C31	110.55(01) 111.14(63)	C14C $C13A$ $C43$	76 33(244)
N5 - C27 - C28	108.26(61)	C12B $C13A$ $C43$	56 89(138)
C_{31} C_{27} C_{28}	113 58(65)	C12B = C13A = C43	61.37(150)
N5_C27_H27	107.91(65)	CI3D - CI3A - C43	50.54(123)
$N_{3} = C_{27} = H_{27}$	107.91(03) 107.82(67)	$Cl_{4A} - Cl_{3A} - Cl_{3C}$	10358(241)
$C_{21} - C_{27} - H_{27}$	107.82(07) 107.95(65)	CIAC CI3A CI3C	105.38(241) 84 40(255)
$N_{6} C_{28} C_{37}$	107.93(03) 113 72(66)	C12B $C13A$ $C13C$	04.49(233) 06.24(181)
N6 C28 C27	113.72(00) 100.27(60)	C12D $C13A$ $C13C$	90.24(101) 84.67(171)
10-020-027	109.27(00) 114.47(65)	CI3D— $CI3A$ — $CI3C$	84.07(171) 85 $41(148)$
$C_{3}/=C_{20}=C_{2}/C_{2}$	114.47(03) 106.22(65)	C_{14A} C_{13A} C_{13C}	40.26(02)
10-23-1128 C37-C28-H28	106.23(03) 106.23(71)	C_{43} C_{13A} C_{13C}	70.30(92)
C27_C28_H28	106.25(71) 106.26(64)	C14C $C13A$ $C12C$	41.19(227)
02-029-0120	100.20(04) 123.47(82)	C12B $C12A$ $C12C$	$\frac{41.17(227)}{86.22(180)}$
02 - 02 - 030	129.47(02) 119.66(77)	C12B = C13A = C12C	$104\ 03(197)$
N6-C29-C30	119.00(77) 116.87(75)	Clab =	88 70(159)
C_{29} C_{30} H_{30A}	10951(77)	C43 - C13A - C12C	42.95(103)
$C_{29} - C_{30} - H_{30R}$	109.51(77) 109.47(82)	$C_{13}C_{-}C_{13}A_{-}C_{12}C_{-}C_{13}A_{$	44 14(91)
$H_{30A} - C_{30} - H_{30B}$	109.49(96)	C11A - C13A - C11C	87 66(238)
C29_C30_H30C	109.49(90) 109.44(79)	Clac -	60.09(246)
$H_{30A} - C_{30} - H_{30C}$	109.11(7) 109.44(87)	C12B $C13A$ $C11C$	9443(187)
H30R C30 H30C	109.11(07) 109.48(100)	$Cl_{2B} = Cl_{3A} = Cl_{1C}$	98 85(193)
C_{32} C_{31} C_{36}	119 12(79)	Cl4A— $Cl3A$ — $Cl1C$	90.66(161)
$C_{32} = C_{31} = C_{27}$	122 48(75)	C43— $C13A$ — $C11C$	40 14(107)
C_{36} C_{31} C_{27}	122.40(73) 118 3(7)	$C_{13}C_{}C_{13}A_{}C_{11}C_{}C_{13}A_{}C_{11}C_{}C_{13}A_{}C_{11}C_{-$	$24 \ 40(89)$
C_{33} C_{32} C_{31} C_{31}	121 36(81)	C12C $-C13A$ $-C11C$	20.33(82)
C33 - C32 - H32	121.50(01) 119 42(84)	Cl2e Cl3R Cl3e Cl2e Cl3R Cl2e Cl3R Cl2e Cl3e Cl3e Cl3e Cl3e Cl2e Cl3e Cl2e Cl3e Cl2e Cl3e Cl2e Cl3e Cl2e Cl3e Cl3e Cl2e Cl3e Cl3e Cl3e Cl3e Cl3e Cl3e Cl3e Cl3	44 97(218)
C31 - C32 - H32	119.42(04)	Cl4A $Cl3B$ $Cl2D$	101.65(309)
C32 - C33 - C34	119 29(82)	C12B $C13B$ $C13A$	59 23(184)
C32—C33—H33	120 31(91)	Cl4A— $Cl3B$ — $Cl1A$	66 03(233)
C34—C33—H33	120 40(102)	Cl2B— $Cl3B$ — $Cl1A$	22 43(117)
C35-C34-C33	119 94(101)	Cl3A - Cl3B - Cl1A	36 81(152)
C35—C34—H34	120 03(98)	Cl4A— $Cl3B$ — $Cl1B$	93.47(258)
C33—C34—H34	120.03(88)	C 2B-C 3B-C 1B	112.31(189)
C34—C35—C36	120.99(95)	Cl3A—Cl3B—Cl1B	98.60(178)

C34–	-C35-	–H35	119.53(112)	Cl1A—Cl3B—Cl1B	108.79(148)
C36–	-C35-	–H35	119.48(96)	Cl4A—Cl3B—C43	61.65(240)
C31-	-C36-	-C35	119.12(78)	Cl2B—Cl3B—C43	66.44(152)
C31-	-C36-	–H36	120.49(81)	Cl3A—Cl3B—C43	74.54(172)
C35–	-C36-	-H36	120.39(89)	Cl1A—Cl3B—C43	66.05(126)
C42–	-C37-	-C38	117.98(69)	Cl1B—Cl3B—C43	45.88(117)
C42-	-C37-	-C28	118.93(73)	Cl4A—Cl3B—Cl2A	98.32(256)
C38–	-C37-	-C28	123.09(73)	Cl2B—Cl3B—Cl2A	103.87(170)
C39–	-C38-	-C37	121.07(71)	Cl3A—Cl3B—Cl2A	80.88(157)
C39–	-C38-	-H38	119 45(69)	Cl1A— $Cl3B$ — $Cl2A$	95 04(127)
C37-	-C38-	-H38	119 48(66)	Cl1B— $Cl3B$ — $Cl2A$	17 77(87)
C38–	-C39-	-C40	120.21(74)	C43—Cl3B—Cl2A	40.26(93)
C38–	-C39-	-H39	119.85(80)	Cl4A—Cl3B—Cl4C	80.11(246)
C40-	-C39-	-H39	119 94(77)	Cl_{2B} Cl_{3B} Cl_{4C}	4044(141)
C41–	-C40-	-C39	119.58(78)	C13A - C13B - C14C	21.95(152)
C41–	-C40-	_H40	120 21(94)	Cl1A - Cl3B - Cl4C	19.26(114)
C39–	-C40-	_H40	120.21(91) 120.21(87)	C11B— $C13B$ — $C14C$	95 77(143)
C42-	-C41-	-C40	118 12(87)	C43— $C13B$ — $C14C$	59 76(123)
C42-	-C41-	-H41	120 97(87)	C12A— $C13B$ — $C14C$	79 82(118)
C40-	-C41-	_H41	120.91(86)	Cl1C— $Cl3C$ — $Cl4B$	53 94(341)
C37-	-C42-	-C41	122.94(79)	Cl1C— $Cl3C$ — $Cl2A$	138 90(278)
C37 -	-C42-	_H42	118 53(76)	Cl4B— $Cl3C$ — $Cl2A$	87 52(319)
C41–	-C42-	-H42	118.53(92)	C11C - C13C - C43	73 74(209)
Cl4B-	-C43-	-C12A	63.05(292)	C14B— $C13C$ — $C43$	46 29(359)
Cl4B-	-C43-	-C11B	89.86(306)	Cl2A— $Cl3C$ — $C43$	68 48(173)
C 2A-	-C43-	-Cl1B	29 30(126)	$C_{11}C_{-}C_{13}C_{-}C_{11}B$	128 76(239)
Cl4B-	-C43-	-C13C	40.96(290)	Cl4B— $Cl3C$ — $Cl1B$	83 46(316)
Cl2A-	-C43-	-Cl3C	39.43(114)	Cl2A—Cl3C—Cl1B	15.56(159)
Cl1B-	-C43-	-Cl3C	67.74(158)	C43—Cl3C—Cl1B	55.44(151)
Cl4B-	-C43-	-Cl1C	34.13(280)	Cl1C—Cl3C—Cl2C	15.98(175)
Cl2A-	-C43-	-Cl1C	75.51(161)	Cl4B—Cl3C—Cl2C	53.44(318)
Cl1B-	-C43-	-Cl1C	104.51(204)	Cl2A—Cl3C—Cl2C	129.08(198)
Cl3C-	-C43-	-Cl1C	37.01(128)	C43—Cl3C—Cl2C	60.94(135)
Cl4B-	-C43-	-Cl2C	56.15(274)	Cl1B—Cl3C—Cl2C	116.29(155)
Cl2A-	-C43-	-Cl2C	104.90(168)	Cl1C—Cl3C—Cl3A	84.30(223)
Cl1B-	-C43-	-Cl2C	133.27(196)	Cl4B—Cl3C—Cl3A	106.08(291)
Cl3C-	-C43-	-Cl2C	65.66(136)	Cl2A—Cl3C—Cl3A	94.99(173)
Cl1C-	-C43-	-Cl2C	29.71(120)	C43—Cl3C—Cl3A	66.69(132)
Cl4B-	-C43-	-Cl4A	159.46(314)	Cl1B—Cl3C—Cl3A	81.72(138)
Cl2A-	-C43-	-Cl4A	101.33(164)	Cl2C—Cl3C—Cl3A	70.91(124)
Cl1B-	-C43-	-Cl4A	78.69(170)	Cl1C—Cl3C—Cl4C	57.91(210)
Cl3C-	-C43-	-Cl4A	118.50(177)	Cl4B—Cl3C—Cl4C	88.64(278)
Cl1C-	-C43-	-Cl4A	132.86(188)	Cl2A—Cl3C—Cl4C	114.44(176)
Cl2C-	-C43-	-Cl4A	121.52(168)	C43—Cl3C—Cl4C	62.75(126)
Cl4B-	-C43-	-Cl2B	145.49(295)	Cl1B—Cl3C—Cl4C	99.24(134)
Cl2A-	-C43-	-Cl2B	109.49(148)	Cl2C—Cl3C—Cl4C	45.0(11)
Cl1B-	-C43-	-Cl2B	94.52(147)	Cl3A—Cl3C—Cl4C	26.39(113)
Cl3C-	-C43-	-Cl2B	110.50(152)	Cl2B—Cl4A—Cl3B	86.74(296)
Cl1C-	-C43-	-Cl2B	112.42(166)	Cl2B—Cl4A—Cl1A	9.46(155)
Cl2C-	-C43-	-Cl2B	98.29(140)	Cl3B—Cl4A—Cl1A	86.59(254)
Cl4A-	-C43-	-Cl2B	23.24(85)	Cl2B—Cl4A—C43	84.48(213)

C14B-C43-C13B	137 03(301)	C13B-C14A-C43	95 71(265)
Cl_{2A} Cl_{3} Cl_{3B}	81 11(147)	Cl1A - Cl4A - C43	75 10(144)
C11B-C43-C13B	63 64(163)	Cl_{2B} Cl_{4A} Cl_{3A}	36 44(185)
$C_{13}C_{-C_{43}}C_{13}B$	96 20(158)	C13B $C14A$ $C13A$	54 83(271)
C11C - C43 - C13B	117 39(173)	$C11 \Delta - C14 \Delta - C13 \Delta$	37.05(271) 32.96(132)
C12C $C43$ $C13B$	117.37(173) 118.24(150)	C_{1111} C_{1411} C_{1311}	73.45(156)
C12C - C43 - C13D	110.24(139) 22.65(101)	C_{12} C_{14} C_{14} C_{11} C_{11}	11404(222)
C12P $C43$ $C12P$	22.03(101) 20.80(85)	C12D— $C14A$ — $C11D$	64.00(242)
Cl2D— $C43$ — $Cl3D$	30.09(03) 124.22(270)	CI3D - CI4A - CI1D	105 64(147)
C14D - C43 - C11A	124.22(279) 112 92(149)	C11A - C14A - C11D	103.04(147)
C12A - C43 - C11A	113.82(148) 100.71(152)	C_{43} — C_{14A} — C_{11D}	43.40(114) 82.00(148)
C11D - C43 - C11A	109.71(132) 08.40(142)	C13A - C14A - C11D	83.00(148) 23.78(177)
CI3C - C43 - CI1A	96.40(142)	C12D— $C14A$ — $C14C$	23.70(177)
C11C - C43 - C11A	90.12(104)	CI3D - CI4A - CI4C	81.10(232) 14.72(116)
C12C - C43 - C11A	(4.33(127))	C11A - C14A - C14C	(2, 20(122))
C14A - C43 - C11A	47.26(105)	C43 - CI4A - CI4C	62.39(132)
CI2B-C43-CIIA	24.03(75)	CI3A - CI4A - CI4C	26.62(129)
CI3B-C43-CIIA	49.35(102)	CIIB—CI4A—CI4C	90.96(134)
CI4B—C43—CI3A	107.36(288)	CIIC—CI4B—CI3C	61.94(363)
CI2A—C43—CI3A	86.47(141)	CIIC—CI4B—C43	102.35(493)
CIIB—C43—CI3A	89.03(158)	Cl3C—Cl4B—C43	92.75(474)
Cl3C—C43—Cl3A	72.95(135)	Cl1C—Cl4B—Cl2C	34.95(262)
Cl1C—C43—Cl3A	76.9(16)	Cl3C—Cl4B—Cl2C	91.24(364)
Cl2C—C43—Cl3A	74.51(144)	C43—Cl4B—Cl2C	82.63(315)
Cl4A—C43—Cl3A	56.01(131)	Cl1C—Cl4B—Cl2A	107.32(422)
Cl2B—C43—Cl3A	38.72(104)	Cl3C—Cl4B—Cl2A	46.74(242)
Cl3B—C43—Cl3A	44.09(119)	C43—Cl4B—Cl2A	72.15(317)
Cl1A—C43—Cl3A	28.01(105)	Cl2C—Cl4B—Cl2A	127.62(351)
Cl4B—C43—Cl4C	98.32(273)	Cl1C—Cl4B—Cl1B	118.77(417)
Cl2A—C43—Cl4C	106.64(152)	Cl3C—Cl4B—Cl1B	64.22(281)
Cl1B—C43—Cl4C	116.52(167)	C43—Cl4B—Cl1B	53.76(251)
Cl3C—C43—Cl4C	78.68(136)	Cl2C—Cl4B—Cl1B	125.85(309)
Cl1C—C43—Cl4C	64.18(152)	Cl2A—Cl4B—Cl1B	21.37(153)
Cl2C—C43—Cl4C	50.34(126)	Cl1C—Cl4B—H45	100.82(764)
Cl4A—C43—Cl4C	72.39(138)	Cl3C—Cl4B—H45	132.67(849)
Cl2B—C43—Cl4C	49.52(109)	C43—Cl4B—H45	45.37(653)
Cl3B—C43—Cl4C	68.76(128)	Cl2C—Cl4B—H45	66.49(592)
Cl1A—C43—Cl4C	26.04(103)	Cl2A—Cl4B—H45	115.51(719)
Cl3A—C43—Cl4C	28.59(119)	Cl1B—Cl4B—H45	94.73(669)
Cl4B—C43—H45	87.37(908)	Cl1A—Cl4C—Cl3A	60.06(283)
Cl2A—C43—H45	145.92(911)	Cl1A—Cl4C—Cl2C	110.79(304)
Cl1B—C43—H45	150.02(900)	Cl3A—Cl4C—Cl2C	114.24(313)
Cl3C—C43—H45	123.97(956)	Cl1A—Cl4C—Cl2B	14.12(163)
Cl1C—C43—H45	89.56(912)	Cl3A—Cl4C—Cl2B	52.89(236)
Cl2C—C43—H45	67.15(848)	Cl2C—Cl4C—Cl2B	101.60(198)
Cl4A—C43—H45	111.03(870)	Cl1A—Cl4C—Cl1C	109.47(282)
Cl2B—C43—H45	104.51(816)	Cl3A—Cl4C—Cl1C	93.02(278)
Cl3B—C43—H45	132.55(908)	Cl2C—Cl4C—Cl1C	23.25(113)
Cl1A—C43—H45	96.35(767)	Cl2B— $Cl4C$ — $Cl1C$	96.73(175)
Cl3A—C43—H45	120.24(885)	Cl1A-Cl4C-C43	66.29(216)
Cl4C—C43—H45	93.41(777)	Cl3A - Cl4C - C43	75.08(244)
Cl_{2B} Cl_{1A} Cl_{4C}	149.19(342)	C 2C-C 4C-C43	48.91(122)

Cl2B—Cl1A—Cl3A	95.24(271)	Cl2B—Cl4C—C43	54.35(115)
Cl4C—Cl1A—Cl3A	65.60(284)	Cl1C—Cl4C—C43	43.35(121)
Cl2B—Cl1A—Cl4A	8.41(137)	Cl1A—Cl4C—Cl3B	34.83(201)
Cl4C—Cl1A—Cl4A	141.50(288)	Cl3A—Cl4C—Cl3B	33.01(226)
Cl3A—Cl1A—Cl4A	93.10(245)	Cl2C—Cl4C—Cl3B	99.76(179)
Cl2B—Cl1A—Cl3B	28.64(148)	Cl2B—Cl4C—Cl3B	22.83(86)
Cl4C—Cl1A—Cl3B	125.92(284)	Cl1C—Cl4C—Cl3B	86.71(153)
Cl3A—Cl1A—Cl3B	66.62(230)	C43—Cl4C—Cl3B	51.48(110)
Cl4A—Cl1A—Cl3B	27.38(116)	Cl1A—Cl4C—Cl4A	23.77(188)
Cl2B—Cl1A—C43	65.98(167)	Cl3A—Cl4C—Cl4A	51.49(238)
Cl4C—Cl1A—C43	87.67(237)	Cl2C—Cl4C—Cl4A	93.38(172)
Cl3A—Cl1A—C43	85.30(225)	Cl2B—Cl4C—Cl4A	9.83(75)
Cl4A—Cl1A—C43	57.64(121)	Cl1C—Cl4C—Cl4A	87.07(151)
Cl3B—Cl1A—C43	64.59(119)	C43—Cl4C—Cl4A	45.22(104)
Cl2B—Cl1A—Cl2C	111.86(209)	Cl3B—Cl4C—Cl4A	18.72(80)
Cl4C—Cl1A—Cl2C	45.51(234)	Cl1A—Cl4C—Cl3C	96.50(246)
Cl3A—Cl1A—Cl2C	84.13(235)	Cl3A—Cl4C—Cl3C	69.12(235)
Cl4A—Cl1A—Cl2C	103.59(146)	Cl2C—Cl4C—Cl3C	46.18(112)
Cl3B—Cl1A—Cl2C	106.21(143)	Cl2B—Cl4C—Cl3C	82.45(139)
C43—Cl1A—Cl2C	46.00(95)	Cl1C—Cl4C—Cl3C	23.90(102)
Cl2A—Cl1B—C43	74.66(257)	C43—Cl4C—Cl3C	38.57(87)
Cl2A—Cl1B—Cl3C	21.15(227)	Cl3B—Cl4C—Cl3C	66.96(113)
C43—Cl1B—Cl3C	56.83(148)	Cl4A—Cl4C—Cl3C	72.74(116)
Cl2A—Cl1B—Cl4B	42.25(294)		

11. "In-Silico"-Benchmark

11.1 Energien

Nachfolgend sind alle totalen Energien auf B3LYP/6-31G(d)-Niveau, H (298)-Werte B3LYP/6-31G(d)-Niveau, Single-point Energien B3LYP/6-311+G(d,p)-Niveau, H (298)-Werte auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau, hier als "H(298)sp" bezeichnet, Boltzmannfaktoren w_i, sowie die mit **Gleichung 9** berechnete über alle Konformere gemittelte Energie auf $\langle H (298) \rangle$ auf B3LYP/6-311+G(d,p)//B3LYP/6-31G(d)-Niveau wieder gegeben. Die in der ersten Spalte genannte Nummer bezeichnet den Laborjournalcode. Die Outputdatei befindet sich im Verzeichnis der fettgeschriebenen Nummer unter dem Namen des Laborjournalcodes auf /scr3/iheld/DMAP/.

Tabelle 40:

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
91						-749.51099
IH01041e	-749.70354	-749.89096	-749.31851	-749.50594	0.00062	
IH01041m	-749.69997	-749.89253	-749.31523	-749.50779	0.00443	
IH01041t	-749.69982	-749.89241	-749.31552	-749.50811	0.00625	
IH01041p	-749.70008	-749.89242	-749.31617	-749.50851	0.00957	
IH01041I	-749.70070	-749.89335	-749.31594	-749.50859	0.01040	
IH01041o	-749.70097	-749.89348	-749.31638	-749.50889	0.01430	
IH01041r	-749.70133	-749.89406	-749.31635	-749.50907	0.01733	
IH01041c	-749.70171	-749.89455	-749.31665	-749.50950	0.02711	
IH01041q	-749.70171	-749.89454	-749.31667	-749.50950	0.02719	
IH01041a	-749.70170	-749.89455	-749.31668	-749.50952	0.02781	
IH01041h	-749.70302	-749.89556	-749.31778	-749.51033	0.06522	
IH01041s	-749.70354	-749.89610	-749.31852	-749.51107	0.14421	
IH01041d	-749.70383	-749.89644	-749.31876	-749.51137	0.19742	
IH01041b	-749.70383	-749.89644	-749.31876	-749.51138	0.19825	
IH01041g	-749.70302	-749.89610	-749.31852	-749.51159	0.24988	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
91ac						-902.55422
IH01041ac4	-902.76231	-902.99160	-902.32221	-902.55150	0.00811	
IH01041ac12	-902.76285	-902.99211	-902.32269	-902.55195	0.01304	
IH01041ac8	-902.76228	-902.99161	-902.32301	-902.55234	0.01980	
IH01041ac19	-902.76337	-902.99239	-902.32334	-902.55237	0.02034	
IH01041ac25	-902.76427	-902.99334	-902.32386	-902.55292	0.03652	
IH01041ac4	-902.76398	-902.99342	-902.32379	-902.55323	0.05090	
IH01041ac9	-902.76398	-902.99347	-902.32379	-902.55328	0.05360	
IH01041ac14	-902.76398	-902.99347	-902.32379	-902.55328	0.05370	
IH01041ac15	-902.76487	-902.99386	-902.32450	-902.55349	0.06707	
IH01041ac18	-902.76468	-902.99396	-902.32454	-902.55382	0.09489	
IH01041ac22	-902.76568	-902.99502	-902.32519	-902.55453	0.20241	
IH01041ac17	-902.76620	-902.99545	-902.32587	-902.55513	0.37962	
97						-749.5126624
IH01042a	-749.70625	-749.89863	-749.32111	-749.51349	0.18783	
IH01042a	-749.70530	-749.89791	-749.32041	-749.51301	0.11350	
IH01042tc	-749.70551	-749.89801	-749.32038	-749.51288	0.09809	
IH01042tf	-749.70502	-749.89773	-749.32008	-749.51279	0.08955	
IH01042g	-749.70309	-749.89547	-749.32035	-749.51273	0.08392	
IH01042j	-749.70554	-749.89784	-749.32034	-749.51264	0.07639	
IH01042d	-749.70556	-749.89784	-749.32035	-749.51263	0.07562	
IH01042v	-749.70398	-749.89673	-749.31954	-749.51229	0.05264	
IH01042te	-749.70495	-749.89724	-749.31983	-749.51213	0.04445	
IH01042o	-749.70425	-749.89665	-749.31945	-749.51185	0.03321	
IH01042e	-749.70425	-749.89658	-749.31944	-749.51178	0.03058	
IH01042bb	-749.70387	-749.89666	-749.31889	-749.51168	0.02778	
IH01042ti	-749.70418	-749.89697	-749.31878	-749.51158	0.02478	
IH01042tk	-749.70394	-749.89635	-749.31913	-749.51154	0.02373	
IH01042c	-749.70396	-749.89648	-749.31883	-749.51135	0.01953	
IH01042h	-749.70398	-749.89669	-749.31858	-749.51129	0.01838	
97ac						-902.5578814
IH01042ac5	-902.76694	-902.99624	-902.32927	-902.55858	0.35421	
Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
--------------	---------------------------------	------------------------------------	----------------------------	-----------------------	---------	---------------
97ac						
IH01042ac9	-902.76945	-902.99873	-902.32927	-902.55855	0.34622	
IH01042ac10	-902.76560	-902.99473	-902.32785	-902.55698	0.06546	
IH01042ac20	-902.76786	-902.99706	-902.32765	-902.55685	0.05709	
IH01042tcac1	-902.76721	-902.99677	-902.32712	-902.55668	0.04745	
IH01042ac7	-902.76732	-902.99665	-902.32721	-902.55654	0.04109	
IH01042tiac1	-902.76643	-902.99615	-902.32605	-902.55577	0.01820	
IH01042teac2	-902.76662	-902.99569	-902.32647	-902.55555	0.01442	
IH01042tfac2	-902.76597	-902.99528	-902.32597	-902.55528	0.01079	
IH01042ac17	-902.76643	-902.99535	-902.32629	-902.55520	0.00994	
IH01042tcac2	-902.76591	-902.99518	-902.32586	-902.55512	0.00913	
IH01042ac14	-902.76541	-902.99473	-902.32536	-902.55468	0.00572	
IH01042teac1	-902.76523	-902.99432	-902.32549	-902.55458	0.00513	
IH01042tiac2	-902.76528	-902.99481	-902.32489	-902.55442	0.00432	
IH01042tfac1	-902.76473	-902.99408	-902.32473	-902.55407	0.00300	
IH01042ac3	-902.76694	-902.99638	-902.32434	-902.55379	0.00222	
IH01042ac22	-902.76427	-902.99384	-902.32403	-902.55360	0.00182	
IH01042ac6	-902.76803	-902.99700	-902.32434	-902.55332	0.00135	
IH01042ac15	-902.76412	-902.99312	-902.32413	-902.55314	0.00111	
IH01042tkac1	-902.76373	-902.99280	-902.32380	-902.55286	0.00083	
IH01042ac23	-902.76295	-902.99203	-902.32269	-902.55178	0.00026	
IH01042ac4	-902.76560	-902.99456	-902.32270	-902.55166	0.00023	
72						-784.2943105
IH01039	-784.41342	-784.61987	-784.07626	-784.28271	0.00000	
IH01039d	-784.41586	-784.62248	-784.07925	-784.28588	0.00007	
IH01039cf	-784.41727	-784.62359	-784.08050	-784.28683	0.00018	
IH01039ca	-784.42270	-784.62818	-784.08607	-784.29155	0.02689	
IH01039ce	-784.42424	-784.63031	-784.08762	-784.29370	0.26189	
IH01039ct	-784.42424	-784.63031	-784.08857	-784.29464	0.71096	
72ac						-937.33033
IH01039ac122	-937.46594	-937.70845	-937.07497	-937.31748	0.00000	
IH01039fac2	-937.47311	-937.71300	-937.07902	-937.31891	0.00001	
IH01039bac1	-937.46780	-937.70989	-937.07686	-937.31896	0.00001	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
72ac						
IH01039eac1	-937.46786	-937.71085	-937.07646	-937.31945	0.00001	
IH01039bac2	-937.46889	-937.71113	-937.07785	-937.32009	0.00002	
IH01039ac4	-937.47217	-937.71155	-937.08083	-937.32022	0.00002	
IH01039cac2	-937.46921	-937.71156	-937.07809	-937.32044	0.00003	
IH01039ac182	-937.46596	-937.71155	-937.07497	-937.32056	0.00003	
IH01039bac1	-937.47042	-937.71300	-937.07902	-937.32161	0.00009	
IH01039ac8	-937.46921	-937.71300	-937.07809	-937.32188	0.00012	
IH01039ac3	-937.46469	-937.71300	-937.07379	-937.32210	0.00016	
IH01039aac2	-937.47311	-937.71432	-937.08160	-937.32281	0.00033	
IH01039ac10	-937.47217	-937.71432	-937.08083	-937.32298	0.00040	
IH01039dac2	-937.47311	-937.71516	-937.08160	-937.32365	0.00081	
IH01039dac1	-937.47311	-937.71557	-937.08160	-937.32406	0.00125	
IH01039aac1	-937.47042	-937.71299	-937.07902	-937.32418	0.00140	
IH01039ac162	-937.46469	-937.71432	-937.07497	-937.32459	0.00218	
IH01039fac1	-937.46679	-937.71557	-937.08160	-937.33037	0.99315	
60						-784.29619
IH01044tb	-784.41615	-784.62226	-784.07942	-784.28553	0.00001	
IH01044tc	-784.41862	-784.62397	-784.08220	-784.28755	0.00008	
IH01044ta	-784.42161	-784.62750	-784.08507	-784.29096	0.00290	
IH01044d	-784.42340	-784.62924	-784.08672	-784.29255	0.01559	
IH01044f2	-784.42344	-784.62932	-784.08695	-784.29283	0.02086	
IH01044s	-784.42347	-784.62937	-784.08698	-784.29288	0.02209	
IH01044q	-784.42670	-784.63296	-784.09017	-784.29642	0.93847	
60ac						-937.32075
IH01044bac7	-937.45651	-937.69866	-937.06546	-937.30761	0.00000	
IH01044bac1	-937.45885	-937.70055	-937.06763	-937.30933	0.00000	
IH01044taaac1	-937.45824	-937.70017	-937.06753	-937.30947	0.00000	
IH01044bac6	-937.45779	-937.70011	-937.06764	-937.30996	0.00001	
IH01044tcac1	-937.46026	-937.70230	-937.06973	-937.31177	0.00004	
IH01044bac2	-937.46116	-937.70306	-937.07078	-937.31267	0.00010	
IH01044tcac2	-937.46147	-937.70374	-937.07092	-937.31319	0.00018	
IH01044tbac2	-937.46221	-937.70425	-937.07153	-937.31357	0.00027	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
60ac						
IH01044taaac2	-937.45727	-937.69903	-937.07333	-937.31509	0.00135	
IH01044tbac1	-937.46409	-937.70632	-937.07333	-937.31557	0.00222	
IH01044gac1	-937.46497	-937.70690	-937.07398	-937.31590	0.00318	
IH01044gac2	-937.46631	-937.70842	-937.07517	-937.31728	0.01368	
IH01044aac1	-937.46833	-937.70989	-937.07726	-937.31882	0.06968	
IH01044cac1	-937.46833	-937.70989	-937.07726	-937.31882	0.06994	
IH01044jac1	-937.47067	-937.71236	-937.07949	-937.32117	0.83935	
47						-741.67372
IH01049b	-741.71659	-741.91833	-741.46585	-741.66758	0.00056	
IH01049c	-741.71991	-741.92238	-741.46911	-741.67159	0.03938	
IH01049a	-741.72062	-741.92275	-741.46987	-741.67200	0.06086	
IH01049	-741.72169	-741.92428	-741.47092	-741.67351	0.30317	
IH01049e	-741.72315	-741.92512	-741.47219	-741.67415	0.59603	
47ac						-894.68897
IH01049dac1	-894.74337	-894.98076	-894.43882	-894.67621	0.00000	
IH01049dac2	-894.74470	-894.98254	-894.44015	-894.67799	0.00001	
IH01049cac1	-894.74503	-894.98256	-894.44050	-894.67803	0.00001	
IH01049bac2	-894.75878	-894.99566	-894.44284	-894.67971	0.00004	
IH01049cac2	-894.74739	-894.98505	-894.44284	-894.68049	0.00009	
47ac						
IH01049eac2	-894.75060	-894.98772	-894.44600	-894.68312	0.00141	
IH01049aac1	-894.74041	-894.97819	-894.44665	-894.68443	0.00561	
IH01049eac1	-894.75273	-894.99001	-894.44807	-894.68535	0.01492	
IH01049aac2	-894.75440	-894.99160	-894.44958	-894.68678	0.06770	
IH01049bac1	-894.75710	-894.99406	-894.45227	-894.68923	0.91022	
46						-897.66512
IH01047a	-897.76458	-898.00340	-897.41617	-897.65499	0.00002	
IH01047c	-897.76378	-898.00407	-897.41569	-897.65598	0.00006	
IH01047b	-897.76378	-898.00407	-897.41569	-897.65598	0.00006	
IH01047e	-897.76483	-898.00412	-897.41672	-897.65600	0.00006	
IH01047f	-897.76814	-898.00876	-897.42008	-897.66070	0.00878	
IH01047d	-897.77297	-898.01318	-897.42494	-897.66516	0.99102	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
46ac						-1050.67940
IH01047eac1	-1050.79178	-1051.06739	-1050.39006	-1050.66568	0.00000	
IH01047eac2	-1050.79251	-1051.06825	-1050.39074	-1050.66648	0.00000	
IH01047dac1	-1050.79450	-1051.07032	-1050.39284	-1050.66867	0.00000	
IH01047dac2	-1050.79564	-1051.07168	-1050.39395	-1050.66999	0.00002	
IH01047aac1	-1050.79753	-1051.07268	-1050.39555	-1050.67070	0.00004	
IH01047aac2	-1050.79965	-1051.07470	-1050.39765	-1050.67270	0.00032	
IH01047fac2	-1050.80110	-1051.07724	-1050.39919	-1050.67533	0.00519	
IH01047fac1	-1050.80327	-1051.07927	-1050.40137	-1050.67736	0.04460	
IH01047bac2	-1050.80476	-1051.08018	-1050.40274	-1050.67816	0.10412	
IH01047cac2	-1050.80476	-1051.08058	-1050.40274	-1050.67856	0.15832	
IH01047bac1	-1050.80646	-1051.08202	-1050.40438	-1050.67994	0.68739	
51						-784.292239
IH01046e	-784.412441	-784.618426	-784.076120	-784.282105	0.00002	
IH01046b	-784.417403	-784.623643	-784.080747	-784.286986	0.00271	
IH01046d	-784.420076	-784.625635	-784.083941	-784.289499	0.03884	
IH01046a	-784.420076	-784.625633	-784.083945	-784.289501	0.03893	
IH01046c	-784.423078	-784.629148	-784.086416	-784.292487	0.91949	
51ac						-937.31454
IH01046bac2	-937.46393	-937.70586	-937.07296	-937.31490	0.87559	
IH01046bac1	-937.46185	-937.70362	-937.07099	-937.31275	0.09033	
IH01046cac2	-937.45975	-937.70155	-937.06901	-937.31081	0.01151	
IH01046ac2	-937.45818	-937.70072	-937.06771	-937.31025	0.00638	
IH01046dac1	-937.45819	-937.70070	-937.06771	-937.31022	0.00618	
IH01046ac1	-937.45827	-937.70075	-937.06753	-937.31001	0.00494	
IH01046cac1	-937.45872	-937.70042	-937.06803	-937.30973	0.00366	
IH01046dac2	-937.45688	-937.69909	-937.06642	-937.30862	0.00114	
IH01046eac2	-937.45588	-937.69749	-937.06505	-937.30666	0.00014	
IH01046eac1	-937.45808	-937.69749	-937.06716	-937.30656	0.00013	
64						-784.294696
IH01045r	-784.415362	-784.621605	-784.078901	-784.285144	0.000023	
IH01045h	-784.418387	-784.624808	-784.081767	-784.288189	0.000587	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
64						
IH01045a	-784.424465	-784.630216	-784.088091	-784.293841	0.233668	
IH01045n	-784.425441	-784.631697	-784.088705	-784.294962	0.765721	
64ac						-937.322640
IH01045bac3	-937.451100	-937.693136	-937.060055	-937.302091	0.000000	
IH01045bac4	-937.452118	-937.694269	-937.061016	-937.303167	0.000000	
IH01045bac1	-937.453204	-937.695166	-937.061974	-937.303936	0.000000	
IH01045bac2	-937.455319	-937.697488	-937.064022	-937.306190	0.000000	
IH01045nac1	-937.465296	-937.707575	-937.074408	-937.316686	0.000488	
IH01045nac2	-937.466354	-937.708464	-937.075425	-937.317535	0.001199	
IH01045aac1	-937.468367	-937.710431	-937.077406	-937.319469	0.009307	
IH01045aac2	-937.469040	-937.711255	-937.078040	-937.320255	0.021385	
IH01045hac2	-937.469358	-937.711674	-937.078236	-937.320552	0.029288	
IH01045rac2	-937.469463	-937.711433	-937.080596	-937.322566	0.247306	
IH01045rac1	-937.471928	-937.714136	-937.080596	-937.322804	0.318035	
IH01045hac1	-937.472117	-937.714206	-937.080865	-937.322954	0.372992	
82						-976.96870
IH01050	-977.12264	-977.36768	-976.72366	-976.96870	1.00000	
82ac						-1130.00978
IH01050ac2	-1130.18209	-1130.46264	-1129.72828	-1130.00883	0.21753	
IH01050ac1	-1130.18305	-1130.46383	-1129.72926	-1130.01004	0.78247	
81						-593.52295
IH01051j	-593.65283	-593.65284	-593.36619	-593.36620	0.00000	
IH01051I	-593.65146	-593.80689	-593.36350	-593.51893	0.00292	
IH01051i	-593.65283	-593.80815	-593.36525	-593.52056	0.01639	
IH01051k	-593.65388	-593.80889	-593.36614	-593.52115	0.03062	
IH01051h	-593.65416	-593.80955	-593.36656	-593.52195	0.07123	
IH01051a	-593.65455	-593.80980	-593.36698	-593.52223	0.09532	
IH01051f	-593.65527	-593.81022	-593.36770	-593.52264	0.14829	
IH01051c	-593.65563	-593.81052	-593.36810	-593.52299	0.21427	
IH01051e	-593.65653	-593.81120	-593.36896	-593.52363	0.42096	
81						-746.56365
IH01051lac2	-746.70990	-746.90142	-746.36701	-746.55853	0.00045	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
81						
IH01051iac1	-746.71007	-746.90145	-746.36727	-746.55865	0.00051	
IH01051jac1	-746.71007	-746.90145	-746.36727	-746.55865	0.00051	
IH01051kac2	-746.71104	-746.90226	-746.36833	-746.55955	0.00134	
IH01051lac1	-746.71112	-746.90272	-746.36818	-746.55977	0.00168	
IH01051iac2	-746.71143	-746.90305	-746.36869	-746.56031	0.00299	
IH01051jac2	-746.71143	-746.90310	-746.36869	-746.56036	0.00312	
IH01051kac1	-746.71246	-746.90388	-746.36968	-746.56110	0.00686	
IH01051fac2	-746.71303	-746.90426	-746.37043	-746.56166	0.01248	
IH01051bac2	-746.71303	-746.90441	-746.37043	-746.56182	0.01465	
IH01051gac2	-746.71331	-746.90489	-746.37054	-746.56211	0.02007	
IH01051aac1	-746.71321	-746.90468	-746.37066	-746.56213	0.02041	
IH01051eac2	-746.71406	-746.90519	-746.37143	-746.56256	0.03231	
IH01051dac2	-746.71423	-746.90548	-746.37165	-746.56290	0.04643	
IH01051cac2	-746.71423	-746.90548	-746.37167	-746.56292	0.04742	
IH01051bac1	-746.71437	-746.90590	-746.37181	-746.56335	0.07408	
IH01051fac1	-746.71437	-746.90602	-746.37181	-746.56346	0.08402	
IH01051gac1	-746.71444	-746.90622	-746.37175	-746.56353	0.09037	
IH01051aac2	-746.71451	-746.90613	-746.37195	-746.56356	0.09314	
IH01051eac1	-746.71542	-746.90693	-746.37283	-746.56434	0.21258	
IH01051dac1	-746.71556	-746.90699	-746.37301	-746.56443	0.23456	
65						-628.307973
IH01053a	-628.36562	-628.53382	-628.12668	-628.29488	0.00000	
IH01053d	-628.37420	-628.54243	-628.13487	-628.30310	0.00537	
IH01053c	-628.37420	-628.54243	-628.13487	-628.30310	0.00537	
IH01053b	-628.37886	-628.54739	-628.13949	-628.30803	0.98927	
65ac						-781.3372504
IH01053dac2	-781.427455	-781.6314221	-781.133501	-781.33747	0.92839	
IH01053dac1	-781.4246856	-781.6286963	-781.130865	-781.33488	0.05960	
IH01053bac2	-781.421029	-781.625532	-781.128272	-781.33278	0.00644	
IH01053cac1	-781.421029	-781.625532	-781.127327	-781.33183	0.00237	
IH01053aac2	-781.4210292	-781.6255	-781.127326	-781.33180	0.00229	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
65ac						
IH01053bac1	-781.4199862	-781.6241982	-781.126133	-781.33034	0.00049	
IH01053cac2	-781.4198619	-781.6239416	-781.126133	-781.33021	0.00043	
IH01053aac1	-781.4113071	-781.6155748	-781.117569	-781.32184	0.00000	
64						-784.294696
IH01045r	-784.415362	-784.621605	-784.078901	-784.285144	0.000023	
IH01045h	-784.418387	-784.624808	-784.081767	-784.288189	0.000587	
IH01045a	-784.424465	-784.630216	-784.088091	-784.293841	0.233668	
IH01045n	-784.425441	-784.631697	-784.088705	-784.294962	0.765721	
64ac						-937.322640
IH01045bac3	-937.451100	-937.693136	-937.060055	-937.302091	0.000000	
IH01045bac4	-937.452118	-937.694269	-937.061016	-937.303167	0.000000	
IH01045bac1	-937.453204	-937.695166	-937.061974	-937.303936	0.000000	
IH01045bac2	-937.455319	-937.697488	-937.064022	-937.306190	0.000000	
IH01045nac1	-937.465296	-937.707575	-937.074408	-937.316686	0.000488	
IH01045nac2	-937.466354	-937.708464	-937.075425	-937.317535	0.001199	
IH01045aac1	-937.468367	-937.710431	-937.077406	-937.319469	0.009307	
IH01045aac2	-937.469040	-937.711255	-937.078040	-937.320255	0.021385	
IH01045hac2	-937.469358	-937.711674	-937.078236	-937.320552	0.029288	
IH01045rac2	-937.469463	-937.711433	-937.080596	-937.322566	0.247306	
IH01045rac1	-937.471928	-937.714136	-937.080596	-937.322804	0.318035	
IH01045hac1	-937.472117	-937.714206	-937.080865	-937.322954	0.372992	
45						-897.66140
IH01010aa	-897.75848	-897.99874	-897.41062	-897.65088	0.00001	
IH01010cc	-897.76473	-898.00502	-897.41668	-897.65698	0.00635	
IH01010dd	-897.76770	-898.00752	-897.41984	-897.65966	0.10805	
IH01010bb	-897.77003	-898.00950	-897.42217	-897.66164	0.88559	
45ac						-1050.67293
IH01010bbac1	-1050.79115	-1051.06653	-1050.38958	-1050.66496	0.00007	
IH01010bbac2	-1050.79153	-1051.06706	-1050.38999	-1050.66552	0.00012	
IH01010ccac2	-1050.79562	-1051.07146	-1050.39375	-1050.66958	0.00882	
IH01010ddac1	-1050.79641	-1051.07175	-1050.39488	-1050.67022	0.01723	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
45ac						
IH01010ddac2	-1050.79785	-1051.07338	-1050.39624	-1050.67177	0.08965	
IH01010ccac1	-1050.79815	-1051.07386	-1050.39614	-1050.67185	0.09724	
IH01010aaac2	-1050.79878	-1051.07449	-1050.39680	-1050.67251	0.19616	
IH01010aaac1	-1050.80010	-1051.07561	-1050.39804	-1050.67355	0.59070	
1						-382.18776
DMAP	-382.25730	-382.35998	-382.08509	-382.18776	1.00000	
1ac						-535.21572
DMAPac	-535.30396	-535.44270	-535.07698	-535.21572	1.00000	
33						-459.59434
PPY	-459.68429	-459.80421	-459.47442	-459.59434	1.00000	
33ac						-612.62651
PPYac	-612.73512	-612.89118	-612.47045	-612.62651	1.00000	
41						-537.00706
TCAP	-537.12050	-537.25468	-536.87311	-537.00729	0.67796	
TCAPb	-537.11986	-537.25395	-536.87250	-537.00658	0.32204	
41ac						-690.045226
TCAPac1	-690.17599	-690.34715	-689.87354	-690.04469	0.30654	
TCAPac2	-690.17677	-690.34786	-689.87438	-690.04546	0.69346	
76						-514.933595
IH01011	-515.026872	-515.161220	-514.799247	-514.933595	1.000000	
76ac						-667.970277
IH01011ac1	-668.083591	-668.252852	-667.801008	-667.970268	0.504587	
IH01011ac2	-668.082395	-668.252882	-667.799798	-667.970286	0.495413	
86						-670.924366
IH01014	-671.077580	-671.249588	-670.752358	-670.924366	1.000000	
86ac						-823.966483
IH01014ac1	-824.137189	-824.345556	-823.756990	-823.965357	0.187326	
IH01014ac2	-824.138421	-824.346969	-823.758194	-823.966742	0.812674	
83						-670.92212
IH01010	-671.07500	-671.24715	-670.74996	-670.92212	1.00000	
83ac						-823.96373
IH01010ac1	-824.13472	-824.34315	-823.75454	-823.96298	0.25572	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
83ac						
IH01010ac2	-824.13580	-824.34417	-823.75562	-823.96399	0.74428	
40						-248.25691
Py	-248.28497	-248.35116	-248.19072	-248.25691	1.00000	
40ac						-401.25360
Pyac	-401.29954	-401.40197	-401.15117	-401.25360	1.00000	
98						-844.167245
IH01060c	-844.377094	-843.947066	-844.598297	-844.168269	0.397392	
IH01060i	-844.377086	-843.946039	-844.598327	-844.167280	0.139374	
IH01060a	-844.377086	-843.946039	-844.598327	-844.167280	0.139374	
IH01060e	-844.375078	-843.945107	-844.596428	-844.166457	0.058271	
IH01060h	-844.376216	-843.945201	-844.597385	-844.166370	0.053163	
IH01060n	-844.376051	-843.945012	-844.597152	-844.166114	0.040525	
IH01060j	-844.375572	-843.944529	-844.596933	-844.165889	0.031957	
IH01060f	-844.375703	-843.944665	-844.596923	-844.165885	0.031802	
IH01060k	-844.375338	-843.944350	-844.596692	-844.165704	0.026263	
IH01060I	-844.375340	-843.944293	-844.596615	-844.165568	0.022749	
IH01060d	-844.375469	-843.944244	-844.596784	-844.165558	0.022503	
IH01060g	-844.375357	-843.944153	-844.596731	-844.165527	0.021783	
IH01060b	-844.374593	-843.943745	-844.595821	-844.164974	0.012115	
IH01060m	-844.373263	-843.942380	-844.594449	-844.163566	0.002728	
98ac						-997.213501
IH01060aac2	-997.4432102	-996.95732	-997.7005921	-997.214702	0.4089423	
IH01060lac1	-997.4420236	-996.955962	-997.6993767	-997.213315	0.0941254	
IH01060aac1	-997.4414322	-996.955583	-997.6990436	-997.213194	0.0828357	
IH01060hac2	-997.4402495	-996.95528	-997.6977472	-997.212778	0.0532828	
IH01060hac1	-997.4411992	-996.955288	-997.6986257	-997.212715	0.0498321	
IH01060lac2	-997.4412324	-996.955226	-997.6986939	-997.212688	0.0484258	
IH01060kac1	-997.4412362	-996.955162	-997.698746	-997.212672	0.04762453	
IH01060kac2	-997.4410361	-996.955018	-997.6985396	-997.212522	0.04062067	
IH01060jac1	-997.440936	-996.954837	-997.6984374	-997.212338	0.03345543	
IH01060fac1	-997.4398935	-996.954737	-997.6974373	-997.212281	0.0314755	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
98ac						
IH01060eac1	-997.4406823	-996.954698	-997.6981997	-997.212215	0.02937210	
IH01060jac2	-997.440823	-996.954712	-997.6983253	-997.212214	0.02933641	
IH01060fac2	-997.4406934	-996.95466	-997.6981516	-997.212118	0.026495615	
IH01060eac2	-997.4398394	-996.9539	-997.6974639	-997.211524	0.01412919	
IH01060bac1	-997.439262	-996.953397	-997.6966586	-997.210794	0.006515735	
IH01060mac1	-997.4377903	-996.951832	-997.6951303	-997.209172	0.001169657	
IH01060mac2	-997.4377903	-996.951832	-997.6951303	-997.209172	0.001169655	
IH01060iac1	-997.4363556	-996.951324	-997.6937156	-997.208684	0.000697557	
IH01060cac2	-997.4365417	-996.950626	-997.6936557	-997.207740	0.000256687	
IH01060iac2	-997.4356769	-996.949689	-997.6929119	-997.206924	0.000108153	
IH01060nac1	-997.4343592	-996.948508	-997.6920463	-997.206195	4.99778E-05	
IH01060dac2	-997.4341193	-996.948087	-997.6915386	-997.205506	2.40968E-05	
IH01060gac2	-997.4339911	-996.947979	-997.6914285	-997.205416	2.19096E-05	
IH01060nac2	-997.433613	-996.947693	-997.6910762	-997.205156	1.66313E-05	
IH01060dac1	-997.4332999	-996.94726	-997.6905386	-997.204499	8.28889E-06	
IH01060gac1	-997.4331711	-996.947175	-997.6904145	-997.204418	7.61325E-06	
61						-497.682750
IH01001	-497.768011	-497.896867	-497.553893	-497.682750		
61ac						-650.708171
AC1	-650.808669	-650.973034	-650.539497	-650.703862	0.009857	
AC2	-650.813250	-650.977341	-650.544123	-650.708214	0.990143	
67						-459.552434
IH01002	-459.642009	-459.760522	-459.433921	-459.552434		
67ac						-612.583414
AC1	-612.691909	-612.846069	-612.428931	-612.583091	0.368093	
AC2	-612.692132	-612.846432	-612.429302	-612.583602	0.631907	
55						-458.304578
IH01003	-458.368963	-458.487608	-458.185933	-458.304578		
55ac						-611.324541
AC1	-611.408326	-611.562071	-611.170968	-611.324713	0.616428	
AC2	-611.407914	-611.561669	-611.170510	-611.324265	0.383572	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
63						-497.682242
IH01004	-497.767757	-497.896464	-497.553535	-497.682242		
63ac						-650.709671
AC1	-650.815100	-650.979137	-650.545788	-650.709825	0.941366	
AC2	-650.812069	-650.976483	-650.542790	-650.707204	0.058634	
35						-609.572173
IH01008	-609.682714	-609.845803	-609.409084	-609.572173		
35ac						-762.611999
AC1	-762.742090	-762.941034	-762.413312	-762.612256	0.740732	
AC2	-762.741158	-762.940106	-762.412316	-762.611265	0.259268	
59						-1120.902560
IH01009	-1121.026525	-1121.234350	-1120.694735	-1120.902560		
59ac						-1273.926248
AC1	-1274.069387	-1274.313033	-1273.682603	-1273.926248		
27						-1075.467804
IH010161b	-1075.637098	-1075.915399	-1075.190127	-1075.468428	0.733271	
IH010161c	-1075.634004	-1075.912646	-1075.187070	-1075.465711	0.041272	
IH010164b	-1075.633901	-1075.912859	-1075.186939	-1075.465897	0.050247	
IH010164c	-1075.633147	-1075.912130	-1075.186145	-1075.465128	0.022260	
IH010165b	-1075.635177	-1075.913706	-1075.188122	-1075.466651	0.111679	
IH010165c	-1075.634004	-1075.912646	-1075.187070	-1075.465711	0.041272	
85						-694.181176
IH01019	-694.369972	-694.546041	-694.004632	-694.180701	0.322383	
IH010191	-694.370846	-694.546750	-694.005498	-694.181402	0.677617	
85ac						-847.223162
AC1	-847.429724	-847.642844	-847.009406	-847.222526	0.281566	
AC2	-847.430650	-847.643681	-847.010380	-847.223411	0.718434	
78						-535.806206
IH01027	-535.8901494	-536.0260865	-535.670269	-535.806206		
78						-688.843596
ac1	-688.9479773	-689.1201658	-688.671669	-688.843857	0.764484	
ac2	-688.9468988	-689.1190836	-688.670561	-688.842746	0.235516	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
53						-922.767136
IH01027b	-922.9435008	-923.1708855	-922.539751	-922.767136		
53ac						-1075.802651
ac1	-1075.999118	-1076.261567	-1075.540264	-1075.802713	0.849457	
ac2	-1075.997652	-1076.261072	-1075.538881	-1075.802301	0.150543	
73						-647.696166
IH01008c	-647.80952	-647.9771384	-647.528548	-647.696166		
73ac						-800.735349
ac1	-800.8663715	-801.0699026	-800.53043	-800.733961	0.150543	
ac2	-800.8679176	-801.0715523	-800.53196	-800.735595	0.849457	
88						-648.870640
IH01008d	-649.0015344	-649.1737773	-648.698397	-648.870640	1.000000	
IH01008db	-648.9985483	-649.1709294	-648.645359	-648.817740	0.000000	
88ac						-801.913231
AC1	-802.062706	-802.2711052	-801.704398	-801.912797	0.327657	
AC2	-802.063512	-802.2718179	-801.705165	-801.913471	0.668811	
AC3	-802.0580988	-802.2665265	-801.699801	-801.908229	0.003878	
AC4	-802.0572328	-802.2655365	-801.698965	-801.907269	0.001403	
42						-401.885314
Isochinolin	-401.9290867	-402.0290481	-401.785353	-401.885314		
42ac						-554.892959
AC1	-554.9553832	-555.0911928	-554.75741	-554.893220	0.757936	
AC2	-554.9543084	-555.0901244	-554.756326	-554.892142	0.242064	
52						-379.822871
IH01033	-379.8495523	-379.9478992	-379.724524	-379.822871		
52ac						-532.841635
ac1	-532.8827798	-533.0158722	-532.70324	-532.836332	0.003554	
ac2	-532.8882555	-533.021189	-532.70872	-532.841653	0.996446	
90						-513.748558
IH01033b	-513.816455	-513.9513056	-513.613707	-513.748558		
90ac						-666.791273
ac1	-666.872404	-667.0417726	-666.61461	-666.783979	0.000439	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
90ac						
ac2	-666.8795654	-667.049058	-666.621784	-666.791277	0.999561	
49						-398.255165
IH01034	-398.3089401	-398.4155352	-398.14857	-398.255165		
49ac						-551.271794
ac1	-551.3428017	-551.485805	-551.129053	-551.272056	0.788667	
ac2	-551.341602	-551.4844919	-551.127923	-551.270813	0.211333	
100						-1495.801745
IH01026	-1495.989149	-1496.302448	-1495.48871	-1495.802009	0.758064	
IH01026b	-1495.988591	-1496.301649	-1495.487872	-1495.800929	0.241644	
IH01026test3	-1495.981166	-1496.294617	-1495.48062	-1495.794070	0.000169	
IH01026test4	-1495.981131	-1496.294469	-1495.480437	-1495.793775	0.000124	
100ac						-1648.857206
IH01026ac1	-1649.064116	-1649.412668	-1648.508622	-1648.857174	0.138331	
IH01026ac2	-1649.063368	-1649.412045	-1648.507933	-1648.856610	0.270249	
IH01026bac1	-1649.064787	-1649.413556	-1648.509364	-1648.858133	0.097828	
IH01026bac2	-1649.065428	-1649.41381	-1648.509988	-1648.858370	0.491015	
IH01026test3ac1	-1649.058414	-1649.407268	-1648.503018	-1648.851872	0.000503	
IH01026test3ac2	-1649.058427	-1649.407279	-1648.503089	-1648.851941	0.000542	
IH01026test4ac1	-1649.058148	-1649.407269	-1648.503001	-1648.852122	0.000656	
IH01026test4ac2	-1649.059031	-1649.407804	-1648.503621	-1648.852394	0.000875	
69						-841.883509
IH01021	-841.981127	-842.1819382	-841.682698	-841.883509		
69ac						-994.915621
Ac1	-995.0328769	-995.2687851	-994.679713	-994.915621		
95						-647.697871
IH01008ffsp	-647.8084646	-647.9773064	-647.52944	-647.698282	0.720889	
IH01008f3	-647.8104193	-647.9790578	-647.52841	-647.697049	0.195227	
IH01008f4	-647.8094481	-647.978131	-647.527568	-647.696251	0.083885	
95ac						-800.74284
IH01008f3ac1	-800.8737115	-801.0783133	-800.538498	-800.743100	0.684561	
IH01008f3ac2	-800.8744614	-801.0790144	-800.537799	-800.742352	0.310008	
IH01008f4ac1	-800.8688324	-801.07334	-800.53378	-800.738288	0.004186	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
95ac		·				
IH01008f4ac2	-800.8695999	-801.0742459	-800.532497	-800.737143	0.001245	
48						-611.089389
IH01043	-611.1508493	-611.3080293	-610.924864	-611.082044	0.000417	
IH01043b	-611.1606981	-611.3185721	-610.931518	-611.089392	0.999583	
48ac						-764.105198
IH01043ac1	-764.1942825	-764.3883695	-763.910894	-764.104981	0.203949	
IH01043ac2	-764.1941951	-764.3882724	-763.910815	-764.104892	0.185642	
IH01043bac1	-764.1945201	-764.388731	-763.911217	-764.105428	0.327372	
IH01043bac2	-764.1946482	-764.3885997	-763.911339	-764.105290	0.283037	
IH01043ac1	-764.1942825	-764.3883695	-763.910894	-764.104981	0.203949	
93						-647.676548
IH01022	-647.7936551	-647.9598899	-647.510554	-647.676789	0.858406	
IH010221	-647.7922781	-647.9579274	-647.509438	-647.675087	0.141594	
93ac						-800.721975
IH01022ac1	-800.8577888	-801.0603043	-800.519552	-800.722067	0.278066	
IH01022ac2	-800.8577887	-801.0603016	-800.519556	-800.722069	0.278503	
IH010221ac1	-800.8581283	-801.0605197	-800.519552	-800.721943	0.243825	
IH010221ac2	-800.8523809	-801.0545794	-800.519556	-800.721754	0.199607	
84						-592.342824
IH01022b	-592.4570146	-592.6072279	-592.191744	-592.341957	0.232184	
IH01022b1	-592.4582532	-592.6083327	-592.193007	-592.343086	0.767816	
84ac						-745.384719
IH01022bac1	-745.5177634	-745.704492	-745.197417	-745.384146	0.153557	
IH01022bac2	-745.5185886	-745.7054337	-745.198222	-745.385067	0.407523	
IH01022b1ac1	-745.5184444	-745.7052406	-745.198056	-745.384852	0.324564	
IH01022b1ac2	-745.517556	-745.7042313	-745.197192	-745.383867	0.114357	
96						-1354.251789
IH010182	-1354.457148	-1354.718345	-1353.990679	-1354.251876	0.975332	
IH010183	-1354.453959	-1353.987399	-1354.714955	-1354.248395	0.024423	
IH010184	-1354.449706	-1354.710598	-1353.983156	-1354.244048	0.000245	
96ac						-1507.296790

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
96ac						
IH010182ac1	-1507.521082	-1507.818347	-1506.999529	-1507.296794	0.476396	
IH010182ac2	-1507.521082	-1507.818422	-1506.999527	-1507.296867	0.514284	
IH010183ac1	-1507.517506	-1506.995870	-1507.814180	-1507.292543	0.005278	
IH010183ac2	-1507.516879	-1506.995385	-1507.813701	-1507.292207	0.003697	
IH010184ac1	-1507.514771	-1506.993270	-1507.810815	-1507.289314	0.000173	
IH010184ac2	-1507.514771	-1506.993271	-1507.810815	-1507.289315	0.000173	
75						-837.061574
IH01063	-837.1317904	-837.3507427	-836.842622	-837.061574		
75ac						-990.098206
IH01063ac1	-990.1874514	-990.4417397	-989.84377	0.431817	0.431817	
IH01063ac2	-990.1877989	-990.4420414	-989.844075	0.568183	0.568183	
99						-1338.7310000
IH01066	-1338.731000080	-1339.00640211	-1338.348733	-1338.7310000		
99ac						-1491.677283
IH01066ac1	-1491.804013340	-1492.11452966	-1491.366996	-1491.677512	0.6818317	
IH01066ac2	-1491.803227170	-1492.11381787	-1491.366202	-1491.676793	0.3181682	
89						-1077.634091
a2_cs_1b_b3	-1077.8386728	-1078.105155	-1077.359698	-1077.626181	0.0000777	
a2_cs_1b2_b3	-1077.8411087	-1078.108176	-1077.362167	-1077.629235	0.0019754	
a2_cs_1b3_b3	-1077.8380479	-1078.104849	-1077.359171	-1077.625973	0.0000623	
a2_cs_2_b3	-1077.8464739	-1078.113457	-1077.367818	-1077.634801	0.7178587	
a2_cs_2b_b3	-1077.8448579	-1078.111833	-1077.366113	-1077.633088	0.1169937	
a2_cs_2c_b3	-1077.8437001	-1078.110567	-1077.364649	-1077.631517	0.0221425	
a2_cs_3_b3	-1077.8368914	-1078.103731	-1077.358199	-1077.625039	0.0000232	
a2_cs_3b_b3	-1077.8400844	-1078.107193	-1077.361210	-1077.628319	0.0007488	
a2_cs_4neu_b3	-1077.8431026	-1078.109972	-1077.364385	-1077.631255	0.0167757	
a2_cs_4c_b3	-1077.8421637	-1078.108759	-1077.363099	-1077.629695	0.0032153	
a2_cs_5_b3	-1077.8431609	-1078.110426	-1077.364331	-1077.631597	0.0241016	
a2_c1_2aa_b3	-1077.8412693	-1077.362490	-1078.108112	-1077.629334	0.0021925	
a2_c1_2b_b3	-1077.8442803	-1077.365437	-1078.111406	-1077.632563	0.0670564	
a2_c1_2c_b3	-1077.8411732	-1077.362178	-1078.107977	-1077.628983	0.0015119	
a2_c1_2d_b3	-1077.8431740	-1077.364311	-1078.110348	-1077.631486	0.0214218	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
89						
a2_c1_2e_b3	-1077.8402607	-1077.361306	-1078.107007	-1077.628053	0.0006449	
a2_c1_2ff_b3	-1077.8400079	-1077.361298	-1078.106888	-1077.628178	0.0015613	
a2_c1_2g_b3	-1077.84111890	-1078.10807294	-1077.362059	-1077.629013	0.0015613	
a2_c1_2h_b3	-1077.83857328	-1078.10433064	-1077.359419	-1077.625176	0.0000268	
a2_c1_2ii_b3	-1077.83798673	-1078.10465986	-1077.359042	-1077.625715	0.0000474	
89ac						-1230.676823
B2_cs_1bz_b3	-1230.89688723	-1231.2001227	-1230.362736	-1230.665972	0.0000014	
B2_cs_1b2x_b3	-1230.89961862	-1231.2031223	-1230.365727	-1230.669231	0.0000445	
B2_cs_1b2y_b3	-1230.90056485	-1231.2039445	-1230.366632	-1230.670012	0.0001019	
B2_cs_1b3x_b3	-1230.89843563	-1231.2014001	-1230.364642	-1230.667607	0.0000079	
B2_cs_1b3y_b3	-1230.90160429	-1231.2042429	-1230.367596	-1230.670235	0.0001290	
B2_cs_2z_b3	-1230.90477994	-1231.2082832	-1230.371113	-1230.674616	0.0133751	
B2_cs_2bx_b3	-1230.90557790	-1231.2091514	-1230.371759	-1230.675333	0.0285582	
B2_cs_2by_b3	-1230.90799392	-1231.2110337	-1230.374073	-1230.677113	0.1882145	
B2_cs_4cy_b3	-1230.90357510	-1231.2067014	-1230.369527	-1230.672653	0.0016724	
B2_cs_5z_b3	-1230.90350468	-1231.2072901	-1230.369727	-1230.673512	0.0041546	
B2_c1_2aax_b3	-1230.90585418	-1231.2087396	-1230.371963	-1230.674849	0.0171038	
B2_c1_2aay_b3	-1230.90380112	-1231.2067939	-1230.370138	-1230.673131	0.0027732	
B2_c1_2bx_b3	-1230.90500015	-1231.2085411	-1230.371232	-1230.674773	0.0157899	
B2_c1_2by_b3	-1230.90510111	-1231.2086819	-1230.371304	-1230.674885	0.0177746	
B2_c1_2cx_b3	-1230.90098409	-1231.2042594	-1230.367253	-1230.670528	0.0001761	
B2_c1_2cy_b3	-1230.90203921	-1231.2051946	-1230.368048	-1230.671203	0.0003600	
B2_c1_2dx_b3	-1230.90814864	-1231.2112712	-1230.374313	-1230.677436	0.2649319	
B2_c1_2dy_b3	-1230.90582369	-1231.2094744	-1230.372086	-1230.675737	0.0438211	
B2_c1_2ex_b3	-1230.90173570	-1231.2052300	-1230.367830	-1230.671324	0.0004092	
B2_c1_2ey_b3	-1230.90494762	-1231.2076850	-1230.370823	-1230.673560	0.0043712	
B2_c1_2ffx_b3	-1230.90642959	-1231.2093945	-1230.372649	-1230.675614	0.0384749	
B2_c1_2ffy_b3	-1230.90678501	-1231.2093762	-1230.372960	-1230.675551	0.0360036	
B2_c1_2gx_b3	-1230.90279694	-1231.2063733	-1230.368706	-1230.672282	0.0011290	
B2_c1_2gy_b3	-1230.90266375	-1231.2061888	-1230.368623	-1230.672148	0.0009793	
B2_c1_2hx_b3	-1230.89964032	-1231.2019431	-1230.365442	-1230.667745	0.0000092	
B2_c1_2hy_b3	-1230.90041340	-1231.2027241	-1230.366160	-1230.668471	0.0000199	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
89ac						
B2_c1_2iix_b3	-1230.90134488	-1231.2042188	-1230.367519	-1230.670393	0.0001526	
B2_c1_2iiy_b3	-1230.903512020	-1230.369574	-1231.20629152	-1230.672354	0.001217	
94						-1077.633133
a2_c2_1b2_b3 *	-1077.8395839	-1078.106603	-1077.360818	-1077.627837	0.000748	
a2_c2_1c_b3 *	-1077.8359153	-1078.102523	-1077.356626	-1077.623234	0.000005	
a2_c2_1c2_b3	-1077.8364248	-1078.103155	-1077.357525	-1077.624256	0.000016	
a2_c2_1c3_b3	-1077.8395017	-1078.106448	-1077.360533	-1077.627480	0.000512	
a2_c2_1d_b3 *	-1077.8426914	-1078.109982	-1077.363872	-1077.631164	0.025375	
a2_c2_3_b3	-1077.8365283	-1078.103275	-1077.357736	-1077.624483	0.000021	
a2_c2_2ia_b3	-1077.8446630	-1078.111656	-1077.365945	-1077.632939	0.166325	
a2_c2_2ib_b3 *	-1077.8458073	-1078.112777	-1077.366977	-1077.633948	0.484260	
a2_c2_2ic_b3	-1077.8427182	-1078.109543	-1077.363611	-1077.630436	0.011741	
a2_c2_2b_b3 *	-1077.8392546	-1078.106032	-1077.360005	-1077.626783	0.000245	
a2_c2_2c_b3	-1077.8416194	-1078.108471	-1077.362662	-1077.629515	0.004424	
a2_c2_2d_b3 *	-1077.8433514	-1078.110354	-1077.364678	-1077.631681	0.043906	
a2_c1_1a_b3	-1077.8447580	-1078.111919	-1077.365958	-1077.633119	0.201350	
a2_c1_1a2_b3	-1077.8417644	-1078.108858	-1077.362741	-1077.629835	0.006210	
a2_c1_1b_b3	-1077.8399283	-1078.106804	-1077.361274	-1077.628150	0.001042	
a2_c1_1b2_b3	-1077.8389346	-1078.105759	-1077.359955	-1077.626779	0.000244	
a2_c1_1b3_b3	-1077.8417980	-1078.108688	-1077.363034	-1077.629924	0.000388	
a2_c1_1c_b3	-1077.8395602	-1078.106336	-1077.360442	-1077.627218	0.011507	
a2_c1_1c2_b3	-1077.8425365	-1078.109407	-1077.363546	-1077.630417	0.011507	
a2_c1_1c3_b3	-1077.8407006	-1078.107516	-1077.361862	-1077.628678	0.001823	
a2_c1_1d_b3	-1077.8429502	-1078.110071	-1077.364147	-1077.631268	0.028339	
94ac						-1230.677655
B2_c2_1b2x_b3	-1230.90531083	-1230.371620	-1231.2082986	-1230.674608	0.0090048	
B2_c2_1b2y_b3	-1230.90338560	-1230.369680	-1231.2065567	-1230.672851	0.0014009	
B2_c2_1czb_b3	-1230.89815442	-1230.363945	-1231.2005331	-1230.666324	0.0000013	
B2_c2_1c2x_b3	-1230.89926058	-1230.365523	-1231.2022248	-1230.668487	0.0000137	
B2_c2_1c2y_b3	-1230.90213779	-1230.368254	-1231.2047395	-1230.670856	0.0001692	
B2_c2_1c3x_b3	-1230.90063974	-1230.366742	-1231.2040606	-1230.670163	0.0000812	
B2_c2_1c3y_b3	-1230.90171134	-1230.367711	-1231.2050467	-1230.671046	0.0002071	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
94ac		-				
B2_c2_1dz_b3	-1230.90466278	-1230.370940	-1231.2083698	-1230.674647	0.0093872	
B2_c2_3z_b3	-1230.904033190	-1231.20651942	-1230.370241	-1230.672727	0.00122868	
B2_c2_2iax_b3	-1230.908487040	-1231.21143561	-1230.374668	-1230.677617	0.21802358	
B2_c2_2iay_b3	-1230.906088210	-1231.20956644	-1230.372394	-1230.675872	0.03436520	
B2_c2_2ibz_b3	-1230.905445610	-1231.20884507	-1230.371620	-1230.675019	0.01392677	
B2_c2_2icx_b3	-1230.903041350	-1231.20641125	-1230.369083	-1230.672453	0.00091886	
B2_c2_2icy_b3	-1230.903031070	-1231.20637366	-1230.369043	-1230.672386	0.00085563	
B2_c2_2bz_b3	-1230.900526180	-1231.20405194	-1230.366449	-1230.669975	0.00006658	
B2_c2_2cx_b3	-1230.903825820	-1231.20728256	-1230.369852	-1230.673309	0.00227473	
B2_c2_2cy_b3	-1230.906242530	-1231.20919579	-1230.372207	-1230.675160	0.01616655	
B2_c2_2dz_b3	-1230.909188150	-1231.21232331	-1230.375385	-1230.678520	0.56773905	
B2_c1_1ax_b3	-1230.904273930	-1231.20795429	-1230.370449	-1230.674129	0.00542513	
B2_c1_1ay_b3	-1230.904151120	-1231.20779666	-1230.370386	-1230.674032	0.00489118	
B2_c1_1a2x_b3	-1230.902027680	-1231.20580970	-1230.367954	-1230.671736	0.00043002	
B2_c1_1a2y_b3	-1230.901900940	-1231.20565861	-1230.367920	-1230.671678	0.00040425	
B2_c1_1bx_b3	-1230.906046680	-1231.20864492	-1230.372142	-1230.674740	0.01036123	
B2_c1_1by_b3	-1230.905681980	-1231.20866903	-1230.371870	-1230.674857	0.01172581	
B2_c1_1b2x_b3	-1230.902687180	-1231.20577972	-1230.368658	-1230.671751	0.00043669	
B2_c1_1b2y_b3	-1230.900675770	-1231.20389749	-1230.366751	-1230.669973	0.00006643	
B2_c1_1b3x_b3	-1230.905066710	-1231.20799190	-1230.371200	-1230.674125	0.00540123	
B2_c1_1b3y_b3	-1230.902928430	-1231.20601108	-1230.369214	-1230.672297	0.00077871	
B2_c1_1cx_b3	-1230.897966190	-1231.20140480	-1230.363907	-1230.667346	0.00000411	
B2_c1_1cy_b3	-1230.898926800	-1231.20226006	-1230.364725	-1230.668058	0.0000874	
B2_c1_1c2x_b3	-1230.900353070	-1231.20370002	-1230.366491	-1230.669838	0.00005760	
B2_c1_1c2y_b3	-1230.901233070	-1231.20443017	-1230.367198	-1230.670395	0.00010391	
B2_c1_1c3x_b3	-1230.901091170	-1231.20445667	-1230.367171	-1230.670537	0.00012070	
B2_c1_1c3y_b3	-1230.904508740	-1231.20726834	-1230.370426	-1230.673186	0.00199658	
B2_c1_1dx_b3	-1230.904983010	-1231.20872073	-1230.371145	-1230.674883	0.01204900	
B2_c1_1dy_b3	-1230.907282970	-1231.21043565	-1230.373390	-1230.676543	0.06990711	
80						-615.594895
A3_c2_1_b3	-615.745219330	-615.438461	-615.90027860	-615.59352027	0.09884419	
A3_c2_2i_b3	-615.746647684	-615.439956	-615.90182261	-615.59513093	0.48154960	

Konformer	E _{tot} B3LYP/6-31G(d)	E _{sp} B3LYP/6-311+G(d,p)	H ₂₉₈ /6-31G(d)	"H ₂₉₈ SP"	Wi	<h298></h298>
80						
A3_c1_1_b3	-615.746592555	-615.439826	-615.90168780	-615.59492125	0.41960621	
80ac						-768.635185
B3_c2_1_b3	-768.805294720	-768.99734403	-768.443563	-768.63561231	0.46558780	
B3_c2_2i_b3	-768.804694299	-768.99684095	-768.442998	-768.63514465	0.25592070	
B3_c1_1a_b3	-768.804164509	-768.99631365	-768.442354	-768.63450314	0.12938078	
B3_c1_1b_b3	-768.804180163	-768.99635575	-768.442488	-768.63466358	0.14911072	
79						-615.440393
A3_cs_1_b3	-615.747490901	-615.90257366	-615.440808	-615.59589076	0.75633040	
A3_cs_2_b3	-615.745658749	-615.90073629	-615.438871	-615.59394854	0.09720859	
A3_c1_2_b3	-615.745904574	-615.90100740	-615.439258	-615.59436083	0.14646101	
79ac						-768.635122
B3_cs_1_b3	-768.804118002	-768.99632592	-768.442398	-768.63460592	0.14244171	
B3_cs_2_b3	-768.804209713	-768.99632688	-768.442410	-768.63452716	0.14426371	
B3_c1_2a_b3	-768.804939686	-768.99703259	-768.443290	-768.63538291	0.35343649	
B3_c1_2b_b3	-768.805045247	-768.99711854	-768.443273	-768.63534629	0.35985809	

Abkürzungsverzeichnis

AIBN	Azobisisobutyronitril
B3LYP	Beckes dreifach parametrisiertes Austauschfunktional in Kombination mit dem
	Korrelationsfunktional von Lee, Yang und Parr
BHT	2,6-Di- <i>tert</i> -butyl-4-methylphenol
Boc ₂ O	Pyrokohlensäure-di-tert-butylester (tert-Butyl-dicarbonat)
Ce	Katalytische Effizienz
DABCO	1,2-Diazabicyclo[2.2.2]oktan
DC	Dünnschichtchromatographie
DCM	Dichlormethan
DMAc	Dimethylacetamid
DMAP	4-(Dimethylamino)pyridin
DMF	Dimethylformamid
DMPU	N,N-Dimethylpropylenharnstoff
DMSO	Dimethylsulfoxid
DPPF	1,1'-Bis(diphenylphosphino)ferrocen
EtOAc	Ethylacetat
HMBC	hetero nuclear multiple bond correlation
IBCF	Isobutylchloroformat
IR	Infrarotspektroskopie
J	Kopplungskonstante [Hz]
MeCN	Acetonitril
МеОН	Methanol
min	Minute
MS	Massenspektrometrie
NEt ₃	Triethylamin
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser and exchange spectroscopy
OPLS-AA	optimized potentials for liquid simulations – all atoms- force field
$Pd_2(dba)_3$	Tris(dibenzylidenaceton)-dipalladium (0)
PPY	(4-Pyrrolidino)pyridin
РТОС	pyridinethioneoxycarbonyl-ester
Red-Al [®]	Natrium-bis-(2-methoxy)-aluminiumhydrid

R_f	relative to front
RMS	root mean squared
RT	Raumtemperatur
$\tau_{1/2}$	Halbwertszeit
THF	Tetrahydrofuran
TFA	Trifluoressigsäure
TMGP	Tetramethylguanidinpyridin
Ζ	Benzyloxycarbonylschutzgruppe

Lebenslauf

Vorname:	Ingmar Einar
Name:	Held
Geburtsdatum:	07.10. 1977
Geburtsort:	Bückeburg, Niedersachsen

Schul- und Berufsausbildung:

1984-1988	Grundschule Nienstädt, Samtgemeinde Nienstädt, Niedersachsen
1988-1990	Orientierungsstufe Helpsen
1990-1994	Realschule Helpsen
1994-1997	Kollegschule Minden-Lübbecke
06/1997	Abschluß: staatl. geprüfter Chemisch-technischer-Assistent mit
	Fachhochschulreife.

Studium:

04/1998-04/2003	Chemiestudium an der Universität-Siegen
04/2003-10/2003	Diplomarbeit an der Universität Siegen über das Thema "Über die
	Redoxreversibilität von 8a,10a-Diazonia-phenanthrolin und Diquat"
	unter der Anleitung von Prof. Dr. M. Schmittel
10/2003	Diplom

Promotion:

03/2004 bis 07/2007 Anfertigung der Dissertation über "Allgemeine und spezielle Beiträge zur nucleophilen Acyl-Transferkatalyse im Arbeitskreis von Prof. Dr. H. Zipse

Berufslaufbahn:

10/2001-04/2003	Studentische Hilfskraftstelle als Tutor für Organische Chemie im
	Grundstudium
03/2003-07/2007	Wiss. Mitarbeiter am Department Chemie und Biochemie der Ludwigs-
	Maximilians-Universität München

Ehrenamtl. Tatigkeiten:

07/2001-04/2003	Vorsitzender des Fachschaftsrates. Studentisches Mitglied im
	Fachbereichsrat und Prüfungsausschuss.

Auszeichnungen:

1997	Umweltpreis der Ostwestfälischen Wirtschaft für die Studie:
	Langzeituntersuchung der Bastau auf Ammonium- und Nitratgehalt.
2000	Studienpreis des Alumniclubs der Universität Siegen für
	überdurchscnittliche Leistungen im Vordiplom.

Posterbeiträge:

1. "Design and synthesis and studies of 2,3-disubstituted pyrazinium tetrafluoroboratestowards redox modulated surfactants", 6. Internationales Symposium der Volkswagen-Stiftung zur Intra- and Intermolekularen Elektronen Transfer, 29.10. bis 01.11.2003, P59

2. "*Rational design of highly reactive 4-DMAP Derivatives*", Industrietage des Department Chemie und Biochemie, München, Aug. **2004**.

3. "*Rational design of highly reactive 4-DMAP Derivatives*", DFG-Antragskolloquium, Bonn, Dez. **2004**.

4. "Design of 4-DMAP derivatives of enhanced efficiency", Hochschullehrer Informationstage der BASF, Ludwigshafen, Sep. 2005.

5. "*Theoretical Benchmarking DMAP derivatives and their acetyl intermediates*", DFG-Statusreport, MPI Mülheim, 9-10. Feb. **2006**.

6. "Development of new highly reactive nucleophilic catalysts based on the 4-DMAP motif", 1st European Chemistry Conference, Budapest, 29-31nd Aug. **2006**. Budapest, 29.08 bis 31.08.**2006**, C-PO-61

7. "Development of new highly reactive nucleophilic catalysts based on the 4-DMAP motif", Industrietage des Department Chemie und Biochemie, München, Sept. **2006**.

Konferenzberichte:

45. Tutzing-Symposium "Organokatalyse", Nachrichten aus der Chemie 2006, 54, 12, 1243.

Vorträge:

Nucleophilic Catalysis in Acyl-Transfer Reactions, GdCh-Kolloquium, LMU-München, 29.01.2007.