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1. ABSTRACT 

One function of the auditory system is sound localization. However, when a 

sound is produced in a reverberant environment, it propagates in multiple 

directions and is subsequently reflected from nearby surfaces, potentially 

compromising accurate localization. Therefore, repeated wave fronts of the same 

sound are suppressed by the auditory system, an effect termed precedence 

effect (Blauert, 1997; Litovsky et al., 1999). Several lines of evidence suggest that 

this effect is mediated by persistent inhibition (PI) in the dorsal nucleus of the 

lateral lemniscus (DNLL) (Yang and Pollak, 1994; Burger and Pollak, 2001; 

Pollak et al., 2003); however, the underlying neural mechanism remains 

unknown.  

One possibility suggests that the PI might be the result of network properties 

within the auditory nuclei (Kelly and Kidd, 2000). In this scenario, auditory cells in 

some nucleus yet to be determined would fire for a prolonged period of time after 

the offset of the stimulus, providing neural inhibition to the DNLL. But this has not 

been observed. Alternatively, synaptic or membrane properties in the DNLL might 

cause the PI.   

The results described here provide strong evidence of the role of the DNLL in 

echo suppression. Furthermore, the interplay of two synaptic mechanisms is 

suggested as the cellular mechanisms underlying PI. On one hand, spillover of 

GABA is described as the mechanisms responsible for extending the inhibitory 

signal after one pulse stimulation. Spillover of the transmitter might also be 

involved in amplifying the inhibition as large amounts of neurotransmitter seem to 

be released as response to stimulation trains. On the other hand, the results 
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described here suggest an additional mechanism that is also involved: 

asynchronous release of the neurotransmitter. This modality has an important 

role in prolonging the decay of synaptic inhibition in DNLL neurons after high 

activity levels induced by trains of high frequency stimulation to their input fibers.  

Interestingly, both mechanisms occur at physiological temperature in vitro, 

suggesting that these pre- and post-synaptic mechanisms for generating long 

lasting inhibition may also occur in vivo. Together these two mechanisms seem to 

be crucial to allow the inferior colliculus (IC) to detect trailing sounds in echoic 

environments. 

 

Part of the results presented in chapters 4.1, 4.2.1 and 4.2.2 has been published 

in Pecka et al., JNeurosci. 27 (7), 1782-90 (2007).  
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2. INTRODUCTION 

Every action of an animal depends on the reception and correct interpretation of 

the information coming from its surroundings. Sensory organs provide the 

nervous system with the ability to sense dynamic changes occurring in their 

environment. In particular, the processing of auditory information is extremely 

relevant for an animal to detect and identify the location of a sound. The ability to 

determine whether a sound originates from one side or the other allows the 

animal to localize a possible prey or predator and thus, may also determine its 

survival.  

 

2.1 Sound localization in the mammalian brain 

The binaural localization of a sound source relies on the comparison of auditory 

inputs arriving at the two ears. Two sounds can be discriminated from another by 

the different physical parameters that characterize them, based on the sound 

pressure, spectrum and phase. Moreover, the task of localizing a sound source 

can be accomplished by means of these characteristics. Two major binaural cues 

for localizing acoustic stimuli in the horizontal plane have been proposed based 

on the differences perceived by the two ears: the interaural time differences 

(ITDs) and the interaural intensity differences (IIDs) (Thompson, 1882; Rayleigh, 

1907).    

The ITDs are the differences in the arrival time of a sound at the two ears and are 

the main cue for localizing low frequency sounds (Rayleigh, 1907). A sound 
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traveling from its source will reach first the ear of the listener that is on the 

hemisphere closer to the source and only after traveling a certain distance it will 

reach the other ear. The magnitude of the ITD depends on the separation 

distance between the two ears of the listener (Heffner and Heffner, 1992; Erulkar, 

1972).  

The IIDs are differences in the sound pressure level (SPL) at the two ears and 

provide the major cue for localizing high frequency sounds (Rayleigh, 1877; 

Erulkar, 1972). The generation of IIDs is related to the loss of energy by the 

sound wave as it propagates from the source to the detection organ. The head of 

the animal reduces the intensity of the sound even further (acoustic shadow). 

Therefore, the difference on the intensity at which the sound reaches both ears 

can bring information about the location of a sound source.  

The neuronal circuitry underlying ITDs and IIDs are essentially different, involving 

different nuclei in the auditory brainstem. The two pathways originate in the 

superior olivary complex (SOC) and their properties depend on the specific 

connections they receive from the cochlear nucleus (CN). ITDs are first 

processed by neurons in the medial superior olive (MSO) (Moushegian et al., 

1964; Goldberg and Brown, 1968; Watanabe et al., 1968; Grothe and Park, 1998; 

Brand et al., 2002), whereas IIDs are encoded by neurons in the lateral superior 

olive (LSO) (Boudreau and Tsuchitani, 1968; Caird and Klinke, 1983; Cant and 

Casseday, 1986; Moore and Caspary 1983; Sanes and Rubel, 1988).  

It has been shown that most of the neurons exhibiting sensitivity to IIDs are those 

that receive excitatory inputs from one ear and inhibitory inputs from the other 
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one, the so called excitatory/inhibitory (EI) neurons (Rose et al., 1966; Goldberg 

and Brown, 1969).  

The LSO receives excitatory inputs from the ipsilateral anteroventral cochlear 

nucleus (AVCN) and glycinergic inhibitory inputs from the ipsilateral medial 

nucleus of the trapezoid body (MNTB) (Moore and Caspary, 1983; Tsuchitani, 

1988a,b; Sanes and Rubel, 1988; Covey et al., 1991) which receives strong 

excitatory inputs from the contralateral AVCN (Fig. 2.1; Glendenning et al., 1985; 

Cant and Casseday, 1986). Accordingly, most studies in the LSO have found that 

the majority of its neurons are EI neurons (Park et al., 1996, Joris and Yin, 1998) 

and code IIDs by subtracting the activity of the inhibitory input from the excitatory 

one.  

The LSO projects bilaterally to the dorsal nucleus of the lateral lemniscus (DNLL) 

and the inferior colliculus (IC) (Henkel and Brunso-Bechtold, 1993; Kelly et al., 

1998) and transfers the IID sensitivity to these two nuclei.  

 

2.2 Binaural processing in the DNLL  

The lateral lemniscus consists of three nuclei: the DNLL, the intermediate 

nucleus of the lateral lemniscus (INLL) and the ventral nucleus of the lateral 

lemniscus (VNLL). Even though, it has often been regarded a relay station for the 

information transferred from the CN and the SOC to the IC, recent studies have 

shown that significant auditory processing occurs in this structure. In particular, 

the contribution of the DNLL to binaural processing has been extensively 
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examined. Several studies have shown that most of its neurons are sensitive to 

binaural stimulation.  

The DNLL receives excitatory inputs from the ipsilateral MSO and the 

contralateral LSO as well as inhibitory inputs from the ipsilateral LSO (glycinergic) 

and the contralateral DNLL (GABAergic) (Fig. 2.1; Glendenning et al., 1981; 

Oliver, 2000; Shneiderman et al., 1988; Adams, 1979; Brunso-Bechtold et al., 

1981; Kudo, 1981).  

 

 

 

 

 

 

 

 

 

 

Due to the inputs that DNLL neurons receive they can exhibit sensitivity to both 

IIDs and ITDs (Brugge et al., 1970; Fitzpatrick and Kuwada, 2001; Kelly et al., 

 

Fig. 2.1. The DNLL circuitry.  
DNLL neurons receive excitatory input from the contralateral LSO and two inhibitory 
inputs driven by ipsilateral sound stimulation, one from the ipsilateral LSO 
(glycinergic) and one from the contralateral DNLL (GABAergic). DNLL sends 
projections to its contralateral counterpart and to the IC in both sides. LSO neurons 
are excited by ipsilateral sounds via the AVCN and inhibited via a glycinergic 
projection of the contralateral MNTB. (From Pecka et al. 2007) 
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1998, Kuwada et al., 2005; Markovitz and Pollak, 1994). In particular, this 

nucleus contains a large amount of EI cells a condition that favors the processing 

of IID (Brugge et al., 1970; Kelly et al., 1998; Yang et al., 1996; Markovitz and 

Pollak, 1994). The processing of these binaural cues in the DNLL of bats has 

been shown to be more complex than in the LSO. This complexity arises as a 

result of the binaural projections that this nucleus receives from the LSO in 

addition to the inhibitory projection from its contralateral counterpart.  

Different types of neurons have been identified in the DNLL based on their 

morphology and physiology in the rat (Bajo et al., 1993; Wu and Kelly, 1995; 

Tanaka et al., 1985), mouse (Iwahori, 1986), cat (Adams 1979, Shneiderman et 

al. 1988) and the brig brown bat (Covey, 1993). It has been observed in different 

species that DNLL neurons exhibit a frequency distribution that represents the 

entire audiogram of an animal (Markovitz and Pollak, 1993; Covey, 1993; Burger 

and Pollak, 2001; Bajo et al., 1998; Bajo et al., 1999). A heterogeneous 

population of neurons has been described in relation to their physiological 

properties and their responses to auditory stimulation. In general, two main 

response categories have been identified within the nucleus: onset neurons, 

responding only at the beginning of the signal, and sustained neurons, 

responding throughout the duration of the stimulus (Markowitz and Pollak, 1993; 

Siveke et al., 2006; Yang and Pollak, 1997; Brugge et al., 1970; Kelly et al., 

1998).  

Anatomical data showed that the vast majority of DNLL neurons is GABA or GAD 

immunopositive (Adams and Mugnaini, 1984; Moore and Moore, 1987) and is 

thought to provide a strong inhibition to its targets, mainly the IC and the 
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contralateral DNLL (Oliver and Shneiderman, 1989; Shneiderman and Oliver, 

1989; Adams, 1979; Bajo et al., 1993; Kudo, 1981; Henkel et al., 2003; Merchán 

et al., 1994). The role of this GABAergic inhibition has been studied in both the 

DNLL (Yang and Pollak, 1994, Burger and Pollak, 2001) and the IC (Li and Kelly, 

1992; Kidd and Kelly, 1996; Bauer et al., 2000). Kidd and Kelly (1997) have 

shown that injections of kynurenic acid, a non-specific glutamate receptor 

blocker, into the DNLL block the inhibition in the contralateral nucleus at least 

partially. Moreover, the reversible inactivation of the DNLL showed that some EI 

cells in the IC exhibited properties that were not present before suppressing the 

inhibitory source (Burger and Pollak, 2001), revealing an important role of the 

GABAergic inhibition in the IC. 

 

2.3 The precedence effect and echo suppression 

The precedence effect (PE), also known as the law of the first wave-front or the 

Haas effect, is a perceptual phenomenon that is thought to enhance our ability to 

localize sounds in a reverberant environment. The PE is experienced when two 

sounds are presented from different locations with a brief delay between them (in 

the range of 2 to 10-20 ms). If the delay is short enough (<2 ms), instead of 

localizing each sound at its respective position, the listener perceives one “fused” 

sound and localizes it at a virtual location which is dominated by the leading 

source. If the two sounds are separated by >10-20 ms, exceeding the “echo 

threshold”, they are perceived as independent entities and both sounds can be 

localized (Fig. 2.2; Blauert, 1997; Litovsky et al., 1999; Yin 1994). 
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The echo suppression is the range of interstimulus delays (ISDs) at which the PE 

is active and only one sound is localized. Echo suppression is a prerequisite for 

localizing a sound source in natural environments, but it can break down 

depending on the behavioral context. The range of ISDs at which echo 

suppression breaks down and the lagging sound is localized at its respective 

position is called echo threshold (Litovsky & Yin, 1998).  
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Fig. 2.2. The precedence effect.  
A cat is positioned midway between two speakers that are located at 0° elevation and -t45” 
azimuth. Two clicks, one from each speaker, are delivered with variable interclick delay. By 
convention negative interclick delays correspond to delays of the click to speaker A in the 
contralateral sound field. In the lower panel, the perceived location of the clicks, as derived from 
results of psychophysical experiments in humans. Three time periods have been identified: 
summing localization, precedence effect, and interclick delays greater than echo threshold 
(from Yin 1994). 
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The precedence effect has been already described in psychoacoustical 

experiments in rats, barn owls and bats (Litovsky and Yin, 1998; Keller and 

Takahashi, 1996; Kelly, 1974; Litovsky et al., 1999; Fitzpatrick et al., 1995). 

However, most of the studies addressing the issue have focused on low 

frequency sensitive cells of the IC (Yin, 1994; Fitzpatrik et al., 1995; Litovski and 

Delgutte, 2002; Tollin et al., 2004) which are mostly EE neurons and involve a 

different pathway in the binaural circuitry.  

The mechanisms that produce the PE are thought to be responsible for 

enhancing the ability to localize sounds in reverberant environments (Pollak et al., 

2002; Pollak, 1997). Although the physiological bases for the PE have been 

studied, little is known about how these sounds are localized. The innervation 

from the contralateral DNLL to the IC has been suggested to contribute to the 

precedence effect in bats (Pollak et al., 2002). It has been shown in bats that 

DNLL neurons exhibit a specific response feature when stimulated with IIDs that 

favor the inhibitory ear. Such stimuli can persistently suppress the neuron’s 

response to trailing sounds for tens of milliseconds (Yang and Pollak, 1994). 

Pollak and his colleagues proposed that this suppression is mediated by a 

persistent inhibition (PI) driven by the contralateral DNLL and that it might be 

relevant in echo suppression (Yang and Pollak, 1994; Burger and Pollak, 2001). 

It has been suggested that the DNLL may mediate the change in responsiveness 

to trailing sounds in IC neurons. During the period of PI in the DNLL, some IC 

neurons are deprived of their strong inhibitory innervation and therefore, can 

respond to auditory stimulation. This is an important feature because IC cells are 

then able to process signals coming from moving sound sources or those 
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generated by echoes (Pollak et al., 2002; Burger et al., 2001; Yang et al., 1994). 

This observation suggests that the circuitry involving the DNLL may contribute to 

the precedence effect.  

It has been speculated that the kinetics of glutamate receptors in the LSO may 

account for the long lasting inhibition observed in DNLL (Kelly and Kidd, 2000). 

This would imply the presence of persistently active neurons in the LSO and 

therefore in the contralateral DNLL. However, no persistent firing has been 

observed (Covey, 1993; Bajo et al., 1998; Siveke et al., 2006). Another possibility 

is that this long lasting inhibition may be generated by the intrinsic properties of 

neurons in the DNLL. 

  

2.4 Synaptic transmission  

The response pattern of auditory neurons and all neurons in general, is the result 

of several characteristics both morphological and physiological. The number and 

location of the synapses and the dynamics of the transmitter release may 

determine the amplitude and the kinetics of the postsynaptic response, together 

with the intrinsic properties of the neurotransmitter receptors and the type of ion 

channels that are present in the postsynaptic cell.  

The major inhibitory neurotransmitters in the central nervous system and, in 

particular, the auditory brainstem, are GABA and glycine. Among other 

differences, in the auditory system the inhibition generated by these two 

transmitters can be distinguished by the duration of the inhibitory postsynaptic 

potentials (IPSPs) that they evoke. Glycinergic inhibition has been shown to be of 
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short duration, whereas GABAergic inhibition often exhibits a slower decay time 

(Magnusson et al., 2005, Smith et al., 2000).  

Most of the inhibitory neurons in the brain release GABA, which can bind to two 

classes of receptors, the ionotropic receptors (GABAA and GABAC receptors) and 

the G-protein-linked metabotropic GABAB receptors. GABAA receptors are 

associated with chloride conductances (Allen et al., 1977) (fast 

neurotransmission), whereas activation of GABAB receptors is mainly associated 

to potassium conductances which activate G protein-regulated inwardly rectifying 

K+  channels (GIRK channels) (Gähwiler and Brown, 1985; Newberry and Nicoll, 

1985).  

GABAA receptors are known to be pentameric assemblies of multiple subunits 

(α1-6, ß1-4, γ1-3, δ, ε, ρ and π1-3) (Whiting et al., 1999; Barnard et al., 1998) that are 

closely related genetically, as GABA can bind to any of them (Olsen and Tobin, 

1990). This multiplicity of subunits confers the potential of a large diversity of 

receptors with different affinities for GABA and desensitization rates (for review 

see Smith and Simpson, 2003). Some GABAA receptors that exhibit a high affinity 

for GABA are also characterized by a slow desensitization (Banks and Pearce, 

2000). Moreover, the location of the receptors can also be determined by the 

presence or absence of certain subunits in the pentamer. For example, it has 

been shown that the expression of the δ subunit in cerebellar granule cells results 

in the expression of the receptor in the perisynaptic membrane (Nusser et al., 

1998; Wei et al., 2003).    
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Synaptic transmission is initiated in a presynaptic neuron when it releases 

vesicles containing the neurotransmitter into the synaptic cleft. The release of 

neurotransmitter is coupled to the entrance of calcium through voltage gated 

channels (del Castillo and Katz, 1954; Llinás, 1982). In most synapses, calcium 

enters through P/Q-(CaV2.1) or N-type Ca
2+ channels (CaV2.2) whereas the R-

(CaV2.3) and L-type Ca
2+ channels (CaV1 series) are rarely involved in vesicle 

release (Llinás, 1982).  

This Ca2+-triggered release of the transmitter can be achieved through two 

modes: fast synchronous release and slower asynchronous release (del Castillo 

and Katz, 1954; Dodge and Rahamimoff, 1967; Barret and Stevens, 1972; 

Schneggenburger and Neher, 2005; Meinrenken et al., 2003; Atluri and Regehr, 

1998; Lu and Trussell, 2000). In most synapses, when action potentials (APs) fire 

at low frequency, most release is synchronous. On the other hand, when APs fire 

at high frequency, the release of transmitter becomes largely asynchronous (Lu 

and Trussell, 2000; Jensen et al., 2000; Maximov and Südhof, 2005).  

Synchronous release is triggered by brief localized Ca2+ signals induced by APs, 

while asynchronous release is due to increased residual calcium in the 

presynaptic terminal (Lu and Trussell, 2000; Llinás et al., 1995; Atluri and 

Regher, 1998). Südhof and collaborators (2007) recently showed that 

synchronous and asynchronous release act on the same vesicle pools but that 

they are caused by different mechanisms involving different calcium sensors.  

Asynchronous release of transmitter after high frequency activity has been 

described in glutamatergic (Goda and Stevens, 1994; Atluri and Regehr, 1998; 
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Diamond and Jahr 1995) as well as in GABAergic synapses (Lu and Trussell, 

2000; Heft and Jonas, 2005). At the auditory Calyx of Held synapse, 

asynchronous release of glutamate has been observed in immature animals 

(Chuhma et al., 2001; Awatramani et al., 2005; Sun et al., 2007; Scheuss et al., 

2007). Nevertheless, during development the calcium dynamics in the calyx 

changes (along with the buffering capacities and the expression of some Ca2+ 

binding proteins (Lohmann and Friauf, 1996)), leading to an important decrease 

in the decay time constant of the excitatory postsynaptic currents (EPSCs) after a 

stimulation train (Chuhma et al., 2001). This reduction of the asynchronous 

release component during maturation is an important step to ensure precise 

transmission of the auditory signal.  

In addition to a good control of the release machinery to maintain faithful 

neurotransmission, a quick transmitter clearance is also important to ensure 

synaptic independence, and thus a thight information transfer.  

During intense synaptic activity large amounts of neurotransmitter are being 

released and this can induce the transmitter to spill out of the synaptic cleft. 

Spillover of the transmitter can activate not only extrasynaptic receptors but also 

receptors located further away from the release site, generating crosstalk 

between synapses (Semyanov et al., 2003; Isaacson et al., 1993; Scanziani, 

2000). Even though spillover can reduce synaptic independence, it has also been 

shown that it might be important for amplifying the signal (Trussell et al., 1993; 

DiGregorio et al., 2002) and ensuring transmission reliability (Takahashi et al., 

1995; Barbour et al., 1994; Roepstorff and Lambert, 1994).  
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Neurotransmitter spillover has been described both at GABAergic (Semyanov et 

al., 2003; Isaacson et al., 1993; Overstreet and Westbrook, 2003; Alle and 

Geiger, 2007) and glutamatergic (Mitchel and Silver, 2000; Scanziani, 2000; Vogt 

and Nicoll, 1999) synapses. In the cerebellum mossy fiber synapses (Mitchel and 

Silver, 2000) as well as in pyramidal neurons of the CA3 of the hippocampus 

(Scanziani, 2000; Vogt and Nicoll, 1999) the degree of glutamate spillover was 

found to be dependent on the frequency and duration of stimulation of the input 

fibers. This suggests that during intense activity more neurotransmitter is 

released, permitting the activation of receptors located extrasynaptically and 

possibly receptors at neighboring synapses as well.  

 

2.5 The Mongolian gerbil as an animal model 

The Mongolian gerbil (Meriones unguiculatus) was chosen for this study because 

it has a well developed brainstem auditory nuclei and they posses a broad 

hearing range. Even though they are specialized in low frequency hearing, they 

also hear well in the high frequency range up to 60 kHz (Ryan, 1976). Moreover, 

humans and gerbils exhibit quite similar audiograms and have the lowest auditory 

thresholds (at 2 to 5 kHz) (Ryan 1976). 

The gerbil has served as a good experimental model for both anatomical 

(Roberts and Ribak, 1987; Kapfer et al., 2002) and physiological (Siveke et al., 

2006; Brand et al. 2002; Heffner and Heffner, 1988, Ryan, 1976; Grothe and 

Sanes, 1994) studies.  
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2.6 Scope of the study 

The physiological circuitry by which the echoes can be suppressed is not fully 

understood, but current experimental results suggest a significant role of the 

DNLL. This nucleus is mainly populated by inhibitory neurons (Adams and 

Mugnaini, 1984; Moore and Moore, 1987), with some of them showing EI 

response properties (Kelly et al., 1998; Covey, 1993; Siveke et al., 2006). 

Moreover, DNLL neurons exhibit a particular feature which is the ability to remain 

inhibited for a period of time that outlasts the duration of the auditory stimulus. 

This persistent inhibition has been shown to enhance the ability of IC cells to 

perceive trailing sounds, suggesting its role in echo suppression (Yang and 

Pollak, 1994; Burger and Pollak, 2001; Pollak et al., 2003). 

The aim of this study is to provide information that would help to identify the 

neural mechanisms responsible for mediating the suppressive effects observed in 

the DNLL. In particular, the questions that will be addressed are: 

I. Does the DNLL of the gerbil exhibit the long lasting inhibition that has been 

described in bats? PI in the DNLL has been suggested to play an important role 

for the suppression of echoes in bats (Pollak, 1997) and thus this nucleus might 

have a key role in precedence. Determining the presence of PI in the DNLL of the 

gerbil might suggest that it is a common feature in mammals.  

II. What is the source of this long lasting inhibition? It has been suggested that 

persistent inhibition is derived from the opposite DNLL through the Commissure 

of Probst (Yang and Pollak 1998). On the other hand, another hypothesis 

suggests that network properties might underlie the observed long lasting 
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inhibition (Kelly and Kidd, 2000). Even though no persistently firing neurons have 

been observed in vivo, the effect of anesthetics in suppressing the response can 

not be ruled out. Therefore, an in vitro approach would help us to understand if 

this feature (PI) is the result of network properties or if it is due to synaptic or 

cellular properties of DNLL neurons. 

III. What are the mechanisms that underlie PI? The mechanisms that promote 

this long lasting inhibition in an otherwise temporally very precise binaural circuit 

are unknown. Thus, the third aim of this study is to identify the presynaptic and/or 

postsynaptic neuronal properties that underlie persistent inhibition in the DNLL. 
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3. MATERIALS AND METHODS 

 

Animals were maintained in a 12 hr light/dark schedule with food and water ad 

libitum. All efforts were made to minimize animal suffering and to reduce the 

number of animals used. All experiments were performed according to the 

German Tierschutzgesetz (AZ 211-2531-40/01). 

 

3.1 In vivo recordings 

3.1.1 Animal preparation 

Four Mongolian gerbils (Meriones unguiculatus) of two to three months of age 

were anaesthetized by an initial intraperitoneal injection (0.5 ml per 100 g body 

weight) of a physiological NaCl solution containing ketamine (20%) and xylacine 

(2%), with supplementary doses of 0.05 ml of the same mixture given 

subcutaneously every 30 minutes through out the experiment. The body 

temperature was maintained constant at 37-39 °C by using a thermostatically 

controlled heating blanket. After recordings (10-12 hours) animals were sacrificed 

without awakening by injection of 0.2 ml T61 (BGA-Reg No T331, Intervet, 

Germany).   

 

3.1.2 Stereotatic procedure  

The skin and tissue covering the upper part of the skull were dissected and 

removed. In order to fix the head of the animal to the stereotaxic frame, a metal 

rod was mounted on the skull rostral to Bregma using an UV-sensitive dental 
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material (Charisma, Heraeus Kulzer, Germany). The rod was used to 

reproducibly secure the head of the animal in a custom made stereotaxic device 

during recordings. The animal was then transferred to a sound attenuated 

chamber mounted in the stereotaxic instrument (Schuller et al., 1986). Its position 

in the chamber was standardized by stereotatic landmarks on the surface of the 

skull (intersections of the bregmoid and lamboid sutures with the sagittal suture in 

horizontal alignment). For electrode penetrations to the DNLL, a small craniotomy 

(approximately 1 mm2) was performed on the left side of the skull, 0.7 cm caudal 

and 2 cm lateral to Bregma following the stereotaxic coordinates (Loskota et al., 

1974). The duramatter was then removed and ringer solution was frequently 

applied to the opening to prevent dehydration of the brain.  

 

3.1.3 Recording procedure 

Single units were recorded extracellularly using glass electrodes (Harvard 

Instruments, USA) pulled in a custom-made puller and filled with 1M NaCl with 

resistances between 5-10 MΩ. The recording electrode was advanced under 

remote control, using a motorized micromanipulator (Digimatic, Mitutoyo, Neuss, 

Germany) and a piezodrive (Inchworm controller 8200, EXFO Burleigh Products 

Group Inc., USA). Spikes were recorded via an electrometer (npi electronics, 

Germany), a noise eliminator (Humbug, Quest Scientific, Canada) removing 

residual line noise picked up by the electrode, a band-pass filter (VBF/3, Kemo, 

Italy) and an additional amplifier (Toellner 7607, Germany) and fed into a 

computer via an A/D converter (RP2-1, TDT). Signals were displayed through the 

Brainware application (Brainware, Jan Schnupp, TDT).  
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3.1.4 Acoustic stimuli 

Acoustic stimuli were digitally generated at a sampling rate of 50 kHz by TDT 

System III (Tucker Davis Technologies, USA), converted to analogue signals 

(DA3-2/RP2-1, TDT), attenuated (PA5, TDT) and delivered to the ear-phone 

tubes (EC1, Tucker Davis Technologies, USA). Stimuli were delivered via 

customized commercial software (Brainware – for sensory Electrophysiology, 

Version 7.0.2 with support for TDT System, Jan Schnupp, Department of 

Physiology University of Oxford, UK).  

 The standard setting for the stimulus was duration of 200 ms plus squared-

cosine rise-fall times of 5 ms, presented at a repetition rate of 4 Hz. For all 

recordings, the presentation of the stimulus was randomized.  

To search for acoustic responses, uncorrelated noise bursts were delivered 

monaurally favoring the excitatory ear (contralateral to the recording site). When 

a neuron was found, its best frequency (BF) and absolute threshold were 

determined using binaurally identical sinus tone stimulation (ITD/IID=0). The 

frequency that elicited responses at the lowest sound intensity was defined as BF 

and the lowest sound intensity that evoked a noticeable response at the neuron’s 

BF was defined as threshold. Additionally, monoaural and binaural pure tones 

were presented to determine the binaural properties of the neurons. These 

properties were determined online by audio-visual inspection and confirmed 

afterwards by offline analysis of the response areas for the frequencies and 

intensities used. These parameters were used to set stimulus parameters 

subsequently controlled by the computer.  
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The IID sensitivity was evaluated by stimulating binaurally, holding the intensity at 

the excitatory ear constant at 20 dB above threshold while varying the sound 

level at the inhibitory ear in 10 dB steps between 10 dB below and 50 dB above 

threshold. The resulting IIDs of -30 dB (negative IIDs indicate higher intensities at 

the inhibitory ear) to +30 dB were presented for 5 to 7 different frequencies 

centered on the BF. 

To test an IID-sensitive neuron for PI, a steady response was evoked by 

presenting a tone burst (200 ms at BF) at 20 dB above threshold on the 

excitatory ear. Additionally, shorter tone bursts (20 ms at BF) were presented with 

several different intensities (from 30 dB below (-30 dB) to 30 dB above (+30 dB) 

threshold) on the inhibitory ear midway through the excitatory stimulus. Stimuli 

were cos2-function gated with rise-fall times of 5 ms for the contralateral and 2 ms 

for the ipsilateral side (if not stated otherwise). A DNLL neuron was defined as 

persistently inhibited if the duration of total suppression of responses to 

contralateral stimulation exceeded ipsilateral stimulus duration by at least 5 ms.  

 

3.1.5 Data analysis 

All quantifications in this study are based on offline analysis. Brainware was used 

to calculate firing frequencies and spikes timing and all data was then transferred 

to Excel MS Excel 2004 (Microsoft, USA) to calculate averages. All errors are 

expressed as standard error of the mean (SEM).   

Neurons were defined as IID-sensitive when ipsilateral (inhibitory) stimulation 

reduced the maximal response elicited by contralateral (excitatory) stimulation by 

more than 50%. The IID of maximal inhibition was defined as the smallest IID 
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(lowest intensity at the inhibitory ear) that caused the maximal suppression of the 

response to contralateral stimulation.  

The duration of PI was evaluated from peristimulus-time histograms of 1 ms bin 

width. The period of inhibition measured was the interval between the last 

discharge evoked by the excitatory stimulation right before the inhibitory stimulus 

was presented and the next discharge after the inhibitory stimulus ended. The 

period of inhibition that occurred during the inhibitory stimulation and the period of 

inhibition that outlasted the inhibitory stimulation were measured. From the 

duration of the total evoked response, the portion corresponding to the duration 

of the inhibitory stimulus (20 ms) was subtracted. The period of the inhibition 

remaining after this subtraction was defined as the persistent inhibition. 

 

3.1.6 Histology  

After some recording sessions, current induced lesions using metal 5 MΩ 

electrodes (2 nA for 80-120 seconds) were made to mark the position of the last 

recording site. Animals were deeply anesthetized with 0.1ml chloral hydrate 5% 

every 10 g animal mass and then perfused. The perfusion through the aorta was 

reached by opening the chest cavity after removal of skin and muscles. A needle 

was inserted through the left side of the heart and the atrium was cut, allowing 

the flow of a heparinized Ringer solution through out the whole animal’s body. 

When the blood was washed out, 2% PFA was perfused until the tail of the 

animal hardened. 
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The heads of these animals were dissected out and then fixed in 4 % PFA for 

24 hours. The brains were then removed and transferred successively  to 

sucrose 20 % until they sank and then sucrose 30 % before they were sliced in 

a cryostat in 40 µm thickness slices and Nissl-stained by standard methods 

(see appendix).  
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3.2 In vitro recordings 

3.2.1 Brain slice preparation 

14 to 19 days-old Mongolian gerbils were anesthetized by isoflurane inhalation 

(Isofluran Curamed, Curamed Pharma, Karlsruhe, Germany) and decapitated. 

The head was immediately immersed in an ice-cold slicing solution (see Table 

2.1) carbogen saturated (5% CO2, 95% O2). The low calcium concentration (0.1 

mM) and the low temperature were chosen to minimize metabolic processes. The 

brain was then dissected out and with an angle of ~30° the caudal part containing 

DNLL was cut out (Fig. 2.1). The cerebellum was then removed and the stack of 

isolated tissue containing most of the brainstem was fixed with superglue to the 

plate of the vibratome chamber (VT1000S, Leica, Nussloch, Germany).  

 

      

Fig. 3.2.1 Schematic illustration of the location of the DNLL in the mammalian brain.  
Schematic representation of slice preparation. A) Sagital plane of the whole brain 2 cm lateral to 
midline. B) Illustration of DNLL containing stack after a 30° angle posterior cut. C) Illustration of 
a typical slice containing DNLL. The DNLL is marked in red in all figures as well as the 
stimulation artefact placed in the Commissure of Probst in C). Note that the figures are schemes 
of the rat brain taken from The Rat Brain Atlas (Paxinos and Watson, 1998).  

 

 

The tissue was then bathed with ice-cold slicing solution (Table 2.1) and the 

duramater was removed from the brainstem with forceps to facilitate slicing. The 

A B C 
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plate was then placed in the vibratome and 200 µm thick slices were cut. DNLL 

was contained in two to three of the slices per animal. Each slice was 

transferred to an incubation chamber containing extracellular solution (recording 

solution, Table 3.2.1), bubbled with 5% CO2-95% O2 and incubated for at least 

30 minutes at 37°C. After incubation, slices were kept at room temperature until 

they were transferred to the recording chamber.  

 

 

   

  

 

 

 

 

 

 

 

 

 

 
Table 3.2.1 Extracellular solutions for slicing and recording 
DNLL. 

 

Two different internal solutions were used depending on whereas voltage or 

current clamp experiments were conducted (Table 3.2.2). For voltage clamp 

EXTRACELLULAR SOLUTIONS (in mM) 

 SLICING RECORDING 

NaCl 125 125 

KCl 2.5 2.5 

MgCl 1 1 

CaCl2 0.1 2 

glucose 25 25 

NaH2PO4 1.25 1.25 

NaHCO3 25 25 

ascorbic acid 0.4 0.4 

myo-inositol 3 3 

pyruvic acid 2 2 
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recordings, 5 mM QX314 (lidocaine N-ethyl bromide, Alomone Labs, Jerusalem, 

Israel) was added to 1 ml CsCl internal solution prior each experiment to prevent 

sodium currents.  

For some experiments, Alexa 568 or Alexa 468 (Invitrogen) was used in the 

internal solution to better visualize the morphology of the recorded cells.  

 

Table 3.2.2 Internal solutions for voltage and current clamp recordings. 

 

The pH was adjusted to 7.25 with 1 M KOH for the K-gluconate based solution 

and to 7.3 with 1 M CsOH for the Cs containing solution. The osmolarity was 

adjusted to 280-290 mOsm.  

During experiments, excitatory inputs were abolished by application of the 

glutamate receptor blockers DNQX and dAP-V to prevent NMDA and non-NMDA 

INTERNAL SOLUTIONS (in mM) 

VOLTAGE CLAMP CURRENT CLAMP 

CsCl 140 K-Gluconate 125 

HEPES 10 HEPES 10 

EGTA 10 EGTA 1 

NaCl 2 KCl 5 

CaCl2 1 Na2-ATP 2 

Mg-ATP 2 Mg-ATP 2 

Na2-GTP 0.3 Na2-GTP 0.3 

   Na-phosphocreatine 10 
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receptor activation respectively or Kynurenic Acid as a general excitatory blocker. 

Strychnine was added to the bath to prevent glycinergic currents and SR95531 

was used to block GABaergic IPSCs in some experiments.  

 

 
  
  
  
   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.2.3 Drugs and concentrations used during the experiments.  

 

All drugs were dissolved in water or DMSO (final concentration <0.01%) and 

prepared in advance. Stock solutions were kept frozen until the moment of use, 

except for Kynurenic acid which was dissolved directly before the experiment. 

Compounds were purchased as detailed in Table 3.2.3.  

 

DRUG FINAL CONC. COMPANY 

SR95531 20 µM / 50 nM Tocris Biosc. 

Strychnine 500 nM Sigma 

Kynurenic acid 5 mM Sigma 

d-AP-V 50 µM Tocris Biosc. 

DNQX (in DMSO) 20 µM Tocris Biosc. 

TPMPA 200 µM / 100 µM Tocris Biosc. 

alexa 488 50 µM Molecular Probes 

alexa 568 50 µM Molecular Probes 

EGTA-AM 100 µM Molecular Probes 

NO711 10 µM Sigma  

NNC711 2 µM Tocris Biosc.  

CdCl2 10 µM Sigma 
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3.2.2 Whole cell recordings 

Slices were fixed to a slice-chamber with an inner volume of about 1.5 ml with a 

custom made grid, made of stretched nylon strings glued onto a “U” shaped 

platinum wire. The slice was continuously perfused with a flow rate of about 1-1.5 

ml/min through a gravity-fed perfusion system. A complete exchange of the 

extracellular solution was accomplished within two to three minutes. The bath 

was kept at 37 °C and the temperature was monitored through out the 

experiment with a dual automatic temperature controller (Warner Instruments 

Corporation, Hamdem, CT, USA). 

DNLL neurons were visually identified through a Zeiss Axioskop 2 FS microscope 

equipped with DIC and dot contrast optics and a 40x water-immersion objective 

(Zeiss, Germany). 

The recording electrode was advanced with a Luigs & Neumann SM-5 

micromanipulator (Germany). 

Whole cell recordings were made with an EPC 10 double amplifier (HEKA 

Instruments, Germany). Signals were filtered at 5 - 10 kHz and subsequently 

digitized at 20 - 100 kHz using Patchmaster Version 2.02 software (HEKA 

Instruments, Germany). Uncompensated series resistance was between 5.5 and 

15 MΩ and were compensated between 50 and 80 % with a lag time of 10 

microseconds. Potential changes in series resistance were monitored throughout 

the recordings and data collection was discontinued whenever the residual 

uncompensated series resistance was larger than 4 MΩ.  
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Patch pipettes were pulled from 1.5 mm borosilicate glass (Harvard Instruments, 

United Kingdom) using a Sutter P-97 electrode puller (Sutter Instruments, USA) 

or a DMZ Universal Puller (Zeitz Instruments, Germany). 

After some recordings, slices were then kept in 4% PFA overnight and then 

washed in PBS. The slices were mounted with Vector-Shield medium and 

maximal projections of the Alexa-stained neurons were obtained with a Leica 

TCS SP confocal microscope (25x 0.75 n.a.). 

 

3.2.3 Stimulation of synaptic inputs 

Synaptic currents were elicited by stimulation of the Commissure of Probst with a 

5 MΩ bipolar stimulation electrode (matrix electrodes with 270 µm distance, 

Frederic Haer Company, USA). Stimuli were 100 microsecond long square 

pulses of 5 to 100 Volts delivered with a STG 2004 computer controlled 4-

channel stimulator (Multichannel Systems, Germany) and a stimulation isolation 

unit (Iso-flex, AMPI, Israel). 

 

3.2.4 Data analysis 

All voltage clamp data were analyzed in IGOR 5 (Wavemetrics, USA). Different 

macros were used to detect amplitudes, measure IPSC kinetics and for analyzing 

miniature IPSCs (see Appendix). Decay times were measured as from the 10% 

of the peak of the IPSCs and they were fitted with a single exponential function. 

Rise times were measured between the 20% and the 80% of the rising phase of 

the IPSCs.  



 Materials and Methods 
_____________________________________________________________________ 

 

33 

Current clamp data was converted from ASCII to “abf” format through a custom 

made program in PEARL (see Appendix). These data was then analyzed in 

Clampfit (version 9.0.1.07, Axon Instruments Inc).  

All data was then transferred to MS Excel 2004 (Microsoft, USA) for calculation of 

averages and statistics.  

 

3.2.5 Statistical analysis  

All errors are reported as the standard error of the mean (SEM). Statistical 

significance was tested with a student’s paired T-test, unless otherwise noted.   
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3.3 Appendix 

3.3.1 Histology 

3.3.1.1. Ringer solution containing heparin (for animal perfusion) 

- 0.9% NaCl (4.5 g) 

- 0.02% heparin  

- 0.02% lidocain 

- 500 ml PBS 0.1mol (pH7.4) 

 

3.3.1.2. Nissl staining 

- 2x 2 min EtOH 100% 

- 1x 2 min EtOH 70% 

- 1x 2 min EtOH 50& 

- 1x 5-7 min Cresil Violet 

- 3x 1min H2O dest. 

- 1x 2 min EtOH 70% 

- 1x 2 min EtOH 96% 

- 1x 2 min EtOH 96% + Acetic acid 

- 1x 2 min EtOH 100% 

- 3x 2 min xilol 

- mount 

 

 

 



 Materials and Methods - Appendix 
_____________________________________________________________________ 

 

35 

3.3.2 Data analysis 

3.3.2.1. Convert.pl 

Custom made program in PEARL for converting ASCI files into Clampfit 

readable files “abf”, by Jochen Hermann 

my $flag = 0; 
my $block = 0; 
my @line_numbers; 
my @times; 
my @values = ( [ ] ); 
my $n = 0; 
my $m = 0; 
open DATA, $ARGV[0] or die "can't open file $!"; 
foreach my $line (<DATA>) { 
 if ($flag && $block == 0 && $line ne "\n") { 
  @line_numbers = ($line =~ /[0-9eE\+\-\.]{1,}/g); 
  push(@times, $line_numbers[1]); 
  push(@{$values[$block]}, $line_numbers[4]); 
 } 
 if ($flag && $block > 0 && $line ne "\n") { 
  @line_numbers = ($line =~ /[0-9eE\+\-\.]{1,}/g); 
  push(@{$values[$block]}, $line_numbers[4]); 
 } 
 if ($line =~ /"Index"/ && !$flag) { $flag = 1; } 
 if ($line eq "\n") { 
  $flag = 0; 
  $block++; 
  push(@values, [ ]); 
 } 
} 
open OUTPUT, "> ".substr($ARGV[0], 0, length($ARGV[0])-3)."atf" or die; 
print OUTPUT "ATF\t1.0\n"; 
print OUTPUT "8\t".@values."\n"; 
print OUTPUT "\"AcquisitionMode=Episodic Stimulation\"\n"; 
print OUTPUT "\"Comment=\"\n"; 
print OUTPUT "\"YTop=200\"\n"; 
print OUTPUT "\"YBottom=-200\"\n"; 
print OUTPUT "\"SyncTimeUnits=12.5\"\n"; 
#print OUTPUT "\"SweepStartTimesMS=\"\n"; 
print OUTPUT "\"SignalsExported=IN_CC\"\n"; 
print OUTPUT "\"Signals=\"\t"; 
for ($n=0; $n < @values; $n++) { 
 print OUTPUT "\"IN_CC\" "; 
} 
print OUTPUT "\n\"Time (s)\"\t"; 
for ($n=1; $n <= @values; $n++) { 
 print OUTPUT "\"Trace #".$n." (mV)\" "; 
} 
print OUTPUT "\n"; 
for ($n=0; $n < @times; $n++) { 
 print OUTPUT $times[$n]; 
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 for($m=0; $m < @values-1; $m++) { 
  print OUTPUT "\t".$values[$m][$n] * 1e3; 
 } 
 print OUTPUT "\n"; 
} 
close(DATA); 
close(OUTPUT); 

 

3.3.2.2. Last peak 

 For analyzing IPSCs amplitudes and kinetics for the last peak of a train with 

IGOR, by Felix Felmy 

Macro Table_()  � makes table 
  
Make/N=40/D Amp_A, TToPeak_A, monoTauA, dbl1TauA, dbl2TauA, H_width, I_Charge,   
VoltMake/N=40/T SweepNum, Obs  
Edit SweepNum, Amp_A,  TToPeak_A, monoTauA, dbl1TauA, dbl2TauA, H_width, I_Charge, 
Volt, Obs 
 
end 
========================================================================
=======================  
 
Macro IPSC_1PHz(wIPost, wIPostCorr, wIPostInt, wIPSC, RunNum) � A macro to analyse rise 
time, peak, and rate of rise 
  
String wIPost="W270307_c3_1P_1_17_1_1"  � defines wave to analyze 
String wIPostCorr="cW270307_c3_1P_1_17_1_1"  
String wIPostInt="iW270307_c3_1P_1_17_1_1" 
String wIPSC="W270307_c3_1P_1_17_1_1" 
Variable RunNum    
silent(1)           
  
 
Duplicate/O $wIPost, $wIPostCorr   � duplicates waves to display 
 display $wIPost 
 ModifyGraph rgb($wIPost)=(0,0,0) 
 SetAxis left -10e-10,1e-10  
 ShowInfo 
  
  
 WaveStats/Q/R=(0.4,0.5) $wIPost   � defines baseline 
 $wIPost-=V_Avg    � introduces leak-correction in original 
trace 
 Duplicate/O $wIPost, $wIPostInt 
 Integrate $wIPostInt    � integrates leak corrected wave 
 $wIPostInt = $wIPostInt*(-1)   �inverts sign of the integration 
 AppendToGraph/L=int $wIPostInt   � appends integrated wave to graph 
   
 Variable AmpTime, background, TrueAmp, Amp  � defines variables 
 WaveStats/Q/R=(0.5,2) $wIPostInt 
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 I_Charge[RunNum] = V_max 
 WaveStats/Q/R=[9920,9930] $wIPSC       
 background = V_avg   
 WaveStats/Q/R=[9970,12500] $wIPost  � determines FIRST peak amp and 
time to peak 
 Amp=V_min 
 TrueAmp=Amp-background 
 Amp_A[RunNum]=TrueAmp 
 Amptime = V_minloc 
 TToPeak_A[RunNum]=(V_minloc - 0.497)*1000     
 
 Tag/C/N=text1/A=LB $wIPost,  Amptime,"peak" �  shows you where the peak is in the 
graph 
 
 Variable Fitstart_X, Fitstart_Y, F_start   � defines variables   
 Fitstart_X = V_minloc 
 Fitstart_Y = Amp*0.95 
 FindLevel/Q/R=(Fitstart_X,1) $wIPost, Fitstart_Y  � finds value at 80% rise of 
peak amp F_start = V_levelX  
 CurveFit/Q dblexp $wIPost[x2pnt($wIPost,F_start),16000] /D  � fits double 
exponential 
 dbl1TauA [RunNum] = (1/W_coef[2])*1000 // time in ms 
 dbl2TauA [RunNum] = (1/W_coef[4])*1000 // time in ms 
  
 CurveFit/Q exp_Xoffset $wIPost[x2pnt($wIPost,F_start),16000] /D   � fits mono 
exponential 
 monoTauA [RunNum] = (W_coef[2])*1000  // time in ms 
  
   
 Variable Half_Y, Half_X    � defines Variables  
 Half_Y = Amp_A[RunNum] / 2 
 FindLevel/Q/R=(Fitstart_X,1) $wIPost, Half_Y � finds value for 80% rise of peak 
amp 
 Half_X = V_levelX 
 H_width [RunNum]  = (Half_X - 0.497)*1000 � determines Half width from stimulus  
onset  
   

End 

 

3.3.2.3. All peaks 

For analyzing IPSCs amplitudes and time to peak of all peaks on a train with 

IGOR, by Felix Felmy  

Macro Tr10Hz_2P(wIPSC) (i.e. for a 2 pulse train at 10 Hz) 
 
 String wIPSC = "W060307_c2_10Hz_1_2_1_1"  � wave name 
 silent(1) 
 Make/N=20/D/O wName    � makes table 
 Variable background, Amp,TrueAmp, TtP � defines variables 
 // first peak 

WaveStats/Q/R=[11880,11890] $wIPSC   � defines baseline   
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 background = V_avg 
 WaveStats/Q/R=[11980,13900] $wIPSC  � finds peak     
 Amp = V_min 
 TrueAmp = Amp – background    � defines real peak by subtracting 
baseline 
 wName [0] = TrueAmp 
 TtP= (V_minloc - 0.595)*1000    � finds time to peak 
 wTiming[0]=TtP 
 // second peak 
 WaveStats/Q/R=[13880,13890] $wIPSC       
 background = V_avg 
 WaveStats/Q/R=[13980,15900] $wIPSC       
 Amp = V_min 
 TrueAmp = Amp - background 
 wName [1] = TrueAmp 
 TtP= (V_minloc-0.695)*1000 
 wTiming[1]=TtP 
 
 // Edit wName 
 wName*=-1      � inverts sign of peak amplitude 
 End       � ends macro 

 

3.3.2.4. bpc_Mini.xop 

For analyzing mIPSCs with IGOR, gift by Holger Taschenberger 
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4. RESULTS  

4.1 Binaural response properties of DNLL neurons 

In vivo experiments were designed in order to determine whether EI neurons the 

DNLL of the gerbil exhibit the persistent inhibition (PI) as shown in bats.  

 A total of 13 neurons were recorded in the left DNLL, exhibiting best frequencies 

(BF) ranging from 2.7 to 18 kHz. All neurons responded to monoaural tones (20 

dB above threshold) presented at the right (excitatory) ear with a sustained firing 

of spikes (average firing rate 66.5 ± 20.9 Hz) that lasted as long as the stimulus 

was presented. When these neurons received binaural stimulation, the evoked 

responses were progressively diminished as the stimulus intensity at the left ear 

was increased. Thus, these neurons were considered IID sensitive. Eight of the 

13 neurons recorded exhibited this feature (Fig. 4.1A); the other 5 neurons were 

excited monoaurally. Figure 4.1B shows a representative IID curve for a neuron 

at its best frequency (BF). The dashed line represents the 50% reduction on the 

firing rate that for this particular neuron was at an IID of 22.4 dB. On average, this 

reduction was at an IID of 8.82 ± 2.56 dB (n=8), ranging from 1.65 to 22.4 dB.  

Persistent inhibition (PI) was evaluated in all 8 IID-sensitive neurons by driving 

the cells with a 200 ms tone burst at the BF of the neuron presented to the 

excitatory ear while simultaneously presenting a 20 ms tone burst at the inhibitory 

ear, in the middle of the excitatory stimulus. The intensity of the excitatory 

stimulus was kept constant (at 20 dB above threshold) while varying the intensity 

at the inhibitory ear from 20 dB below (+20 dB) to 20 dB above (-20 dB) the 

intensity at the excitatory ear. Figure 4.1C shows the post-stimulus histogram  
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Fig. 4.1. PI evoked in vivo by ipsilateral stimulation. A) Response type distribution for high 
frequency neurons in DNLL. B) Response function of an IID sensitive neuron. C) Persistent 
inhibition evoked by ipsilateral stimulation. Peri-stimulus-time histograms (bin size 1 ms) 
showing the responses of a DNLL neuron to 200 ms contralateral pure tone stimulation (at 
BF= 18 kHz, 20 dB above threshold, black bar) plus a short, 20 ms long ipsilateral tone burst 
(at BF, gray bar) starting 90 ms after contralateral stimulation. The tone intensity at the 
ipsilateral ear was varied in 10 dB steps to create IIDs between +20dB (sound louder at the 
contralateral ear) and -20dB (louder at the ipsilateral ear). D) Quantitative analysis of PI 
evoked with the protocol showed in C for 7 neurons. E) Nissl-stained slice containing DNLL. 
The arrow head indicates the place of the last extracellular recording site (IC: inferior colliculus, 
DNLL: dorsal nucleus of the lateral lemniscus, ll: lateral lemniscus.  
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(PSTH) for a representative neuron. Seven of these cells exhibited PI as a 

progressive suppression on the spike firing as the intensity at the right ear was 

increased. The period of inhibition was calculated as the interval between the last 

discharge evoked by the excitatory stimulation and the first discharge after the 

inhibitory stimulus had terminated.   

For the neuron in Figure 4.1C, the maximal duration of suppression observed 

was 21 ms (bottom, IID=-20 dB). On average, the maximum PI duration at the 

most negative IID was 44.1 ± 4.6 ms, with values ranging from 29.6 to 62.1 ms 

(Fig. 4.1D, n=7).  

Thus, these results suggest that binaural sounds that favor the inhibitory ear 

(negative IIDs) can create PI in the DNLL of the gerbil, suppressing the 

contralateral excitation for several tens of milliseconds.   

Figure 4.1E shows a Nissl-stained section containing the DNLL in which the 

current-induced lesion made at the last recording site for a given experiment can 

be observed. The DNLL was visually identified as the nucleus sitting between the 

fibers of the lateral lemniscus (ll) and the Commissure of Probst. Typically, the 

lesion was observed as a small hole in the tissue (arrow head) 
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4.2 In vitro physiology 

4.2.1 The contralateral DNLL provides the long lasting GABAergic 

inhibition  

PI was then evaluated in vitro through stimulation of input fibers (the Commissure 

of Probst) to determine the source of this long lasting inhibition.  

At least two different types of neurons were visually identified in the DNLL slices 

which also showed a different physiology. They exhibited a different firing pattern 

in response to supra-threshold depolarization (Fig. 4.2 A and B). Typically, one 

type had an elongated shape and fired action potentials (APs) as long as the 

depolarizing current was injected whereas the other type were smaller and 

rounded and fired only one AP (some neurons up to 3 AP). For simplification, the 

first type of neurons will be referred to as sustained type and the second type, as 

onset neurons. Differences were also observed between their voltage responses 

to hyperpolarizing constant current injections. The characteristic sag in the 

voltage observed for sustained cells (black filled circle in Fig. 4.2A) was nearly 

absent in onset neurons (black filled circle in Fig. 4.2B) which appeared to have 

higher leak conductance. A representative example of the sustained type 

morphology is depicted in Fig. 4.2G. These cells present an elongated somatic 

area and bipolar arrange of its processes. 

 Figure 4.2C illustrates the membrane potential as a function of the current 

injection for both types of cells (sustained neurons in black (n=6) and onset 

neurons in red (n=4) at the beginning of the current step (filled circle) and at the 
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end of it (open circles). To test the effectiveness and duration of inhibition on the 

firing rate the sustained type is needed  

Neurons were driven to fire AP by continuous current injections of 100 to 200 pA 

(Fig. 4.2D, top panel). Midway to these current injections, the fibers in the 

Commissure of Probst were electrically stimulated with a train of 3 pulses at a 

frequency of 500 Hz (Fig. 4.2D, middle panel). This elicited a suppression of the 

spikes that lasted, on average, 55.6 ± 9.4 ms (n=11). The mean firing frequency 

of these cells was 43.2 ± 10.3 Hz, resulting in interspike intervals of ~39 ms. The 

effective PI was in the range of 12 ms. When trains of a larger number of pulses 

were applied, the effective PI increased.  A 10-pulse train elicited a PI of 19.2 ± 

6.7 ms (n=8), whereas after stimulating with 20 pulses a PI of 31.9 ± 16.5 ms 

(n=5) was observed.  The application of 20 µM of the GABAA receptor blocker (2-

(3-carboxyl)-3-amino-6-(4-methoxyphenyl)-pyridazinium bromide (SR95531)) 

caused the elimination of this PI (Fig. 4.2 D, lower panel) in a 77.5 ± 8.8% (n=5), 

indicating that all of the inhibition was transmitted by GABAA synaptic current. 

Simulation of phase-locked excitation was mimicked by injecting current pulses 

for 0.5 ms at 100 Hz. The amount of current injected (never exceeded 2 nA) was 

adjusted in order to elicit one spike per pulse (Fig 4.2E, top panel). The 

stimulation of the Commissure (3 pulses at 500 Hz) lead to a suppression of 2 

spikes (Fig. 4.2E, lower panel). Consequently, the PI lasted for ~ 14 ms after the 

stimulus termination (n=6). On average, PI was calculated to last for 19.4 ± 3.2 

ms at the 90% of recovery. Under the same conditions, a train stimulation of 10 

pulses elicited an inhibition of 20.7 ± 7.8 ms (n=4). On the other hand, a 20 

pulses train led to PI of 26.5 ± 10.4 ms (n=4) (Fig. 4.2F). 
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These results suggest that PI in the DNLL of the gerbil might be due to cellular 

properties rather than to network properties as the long lasting inhibition could be 

elicited by commissural stimulation. 

Fig. 4.2. PI evoked in vitro by stimulation of the Commissure of Probst. A) Sustained type response of a 
DNLL neuron to different current injections. B) Onset type response of a DNLL neuron to different current 
injections. C) Membrane potential as a function of the current injection for sustained (black) and onset (red) 
neurons. Filled circles represent the potential at the initiation of the current step whereas open circles indicate 
the recorded potential at the end of the current injection.  D) Overlay of 10 traces of current clamp recording 
from a DNLL neuron. Spikes were elicited via a continuous current injection of 200 pA for 1000 ms (top, black 
line). The commissure of Probst was stimulated with a short train of 3 pulses at 500 Hz (top, red line) to elicit 
the GABAergic inhibitory input from the contralateral DNLL. E) Simulation of sound evoked excitatory inputs 
through brief repetitive injections of current (top, black line), which in each case elicited an action potential in 
the neuron The injected current was 1-2 nA for 0.5 ms, followed by a 9.5 ms long pause, entraining the 
neuron at 100 Hz. The commissure was stimulated with the same protocol used in D (top, red line), leading to 
action potential suppression. F) Firing probability of 6 neurons before and after the recruitment of the 
GABAergic inhibition. Open circles: Control without fiber stimulation showing the high spiking fidelity of the 
neurons, blue circles: after a 3-pulses stimulation, black circles: after a 20-pulses stimulation. G) Maximal 
projection of a representative Alexa 468 filled sustained type neuron exhibiting an elongated soma 
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4.2.2 The decay time constant of GABAergic IPSCs can explain the 

PI found in vivo and in vitro 

If PI is due to GABAergic synaptic inhibition, then the kinetics of the inhibitory 

postsynaptic currents (IPSCs) should resemble the time course of PI at a cellular 

level. Therefore, voltage clamp recordings were performed and the decay times 

of the GABAergic IPSCs were measured. 

GABAergic IPSCs were elicited by stimulating the Commissure of Probst with a 

train of 3 pulses at 500 Hz at 10-20 volts above threshold. The amplitude of the 

IPSC depicted in Fig. 4.3 A was 1.96 nA (black trace) and its decay time was 15 

ms. The application of 2-(3-Carboxypropyl)-3-amino-6-(4 methoxyphenyl)-

pyridazinium bromide (SR95531) led to a reduction of the IPSC amplitudes of 

96.3 ± 1.7% (n=5, Fig 4.3A, red trace and Fig. 4.3B). On average, IPSC 

amplitude was 0.76 ± 0.32 nA (Fig. 4.3B).  

No significant differences between the different groups of animal ages tested 

were found on IPSCs amplitudes and decay time constants for stimulation of the 

fibers with one pulse at 60 volts (p>0.05, paired t-test). Decay time values were 

26.4 ± 1.8 ms, 29.5 ± 2.0 ms, 22.6 ± 2.2 ms and 27.7 ms at postnatal day 14 

(n=10), 15 (n=14), 16 (n=5) and 17 (n=1) respectively (Fig. 4.3C).   

The reversal potential of the evoked IPSCs for the neuron depicted in Fig. 4.3D 

was found to be between 0 and +10 mV. The calculated reversal potential with 

the Nernst equation was estimated to be +2 mV, whereas the potential at which 

the measured currents reversed was ~ +10 mV on average (Fig 4.3E, n=6).  
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These results indicate that in gerbils PI can be achieved by stimulation of the 

Commissure of Probst and that it is mediated by GABAA receptors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 The stimulation strength increase in the IPSC kinetics suggest 

a possible role of spillover in DNLL long lasting inhibition 

In order to investigate the possible pre- and post-synaptic mechanisms 

underlying this long lasting inhibition, further voltage clamp experiments were 

performed. If the prolonged currents are due to spillover of the neurotransmitter, 
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Fig. 4.3. Decay time of evoked IPSCs in vitro mimics PI in vivo. A) Voltage clamp 
recordings from a DNLL neuron showing inhibitory postsynaptic currents in response to the 
same 3-pulses fiber stimulation described above. Fiber stimulation  
recruited an IPSC of ~2 nA. SR95531 effectively blocked the evoked IPSCs. Solid black and 
red lines: average of 10 traces. B) Average IPSCs evoked and current elimination after 
application of SR95531 (black bars). Single cell responses are shown in red. C) Postnatal 
day dependency of evoked IPSCs decay time. D) Response of a representative neuron to 
fiber stimulation at different holding potentials. E) Average response to different holding 
potentials, showing a reversal potential around 0 mV. 
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then the IPSCs kinetics should become slower as the stimulus strength 

increases. At larger stimulation intensities more fibers are likely to be recruited. 

Thus, more GABA would be released into the cleft and receptors located further 

away from the release sites might be activated 

This hypothesis was tested by stimulating the fibers with a 2 pulse protocol at a 

frequency of 10 Hz and different voltage strengths ranging from 0 to 100 volts in 

5 volts steps (Fig 4.4A). In general, the step like increase of the IPSC amplitudes 

was masked, exhibiting a nearly linear increase in most of the cells tested (n=9). 

The inset shows the dependence of the amplitude on the stimulation strength for 

the first and the second peak (open and filled circles respectively) for this 

particular cell. In this case, the amplitudes ranged from ~ 30 to ~ 950 pA and the 

threshold for eliciting an IPSC was found to be at 10 volts.  

On average, this threshold was at 20 volts, with 1st peak amplitudes of 110 ± 28 

pA and 2nd peak amplitudes of 150 ± 42 pA. At 100 volts, the maximal strength 

tested, IPSC amplitudes were 770 ± 170 pA and 820 ± 180 pA, respectively. 

When the paired pulses were applied at different frequencies, the same 

stimulation strength dependency was met. At threshold, IPSC amplitudes were 

124 ± 55 pA and 148 ± 70 pA for the 1st and 2nd peak at 20 Hz (n=9) and 150 ± 

69 pA and 120 ± 48 pA at 100 Hz (n=6). At the maximal stimulation, these values 

were 850 ± 17 pA and 890 ± 28 pA at 20 Hz and 480 ± 30 pA and 490 ± 36 pA at 

100 Hz, for the 1st and the 2nd peak in that order.  
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This linear increase was also observed after stimulating with a single pulse, 

leading to amplitudes of 145 ± 49 pA at threshold and 830 ± 120 pA at 100 volts 

(n=9).  

The paired pulse ratio showed no obvious facilitation or depression of the 2nd 

peak at the 3 frequencies and all different voltages tested, showing values of 1.3 

± 0.4, 1.2 ± 0.1 and 1.2± 0.2 at 10 Hz stimulation frequency at threshold, 60 and 

100 volts, respectively (p> 0.05). Similar values were calculated at 20 Hz 

stimulation frequency (1.4 ± 0.2, 1.0 ± 0.4 and 1.3 ± 0.3) and at 100 Hz (1.3 ± 0.6, 

1.7 ± 0.6 and 1.3 ± 0.5).   

Figure 4.4B illustrates the stimulation strength dependency of the charge 

considered as the integral of the area below the IPSCs. Both single and double 

pulse stimulation (at 10 and 20 Hz) showed a linear rise over the voltage range. 

The increase reached through the 2 pulses protocol doubles the one with the 

single stimulation, for which values range from 53 ± 16 pC to 380 ± 53 pC (at 

threshold and 100 volts, in that order) in contrast to the 92 ± 30 pC to 780 ± 135 

pC range for the 10 Hz, 102 ± 28 pC to 908 ± 175 pC for the 20 Hz condition and 

148 ± 91 pC and 1.03 ± 0.35 nC at 100 Hz.  

The half width and decay time also showed a clear dependence on the 

stimulation strength in all conditions tested (1 pulse and 2 pulses at the different 

frequencies tested). In figure 4.4C the average for both kinetic properties at the 

10 Hz state is depicted, in which the values for the decay time constant ranged 

from 29.7 ± 10.7 ms and 34.5 ± 2.6 ms for the 1st peak at threshold and maximal 

stimulation strength respectively. Similarly, the values for the second peak were 



Results 
_____________________________________________________________________ 

49 

28.8 ± 5.6 ms and 43.8 ± 2.1 ms (lower panel). These values did not differ much 

from those calculated for the second peak after a 20 Hz stimulation (28.8 ± 9.5 

ms at threshold and 46.8 ± 3.3 ms at 100 volts) or after a 100 Hz stimulation 

(33.8 ± 4.5 ms and 44.2 ± 4.1 ms at minimal and maximal stimulation 

correspondingly).  
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Fig. 4.4. GABAergic IPSCs kinetics dependency on stimulation strength.  
A) Representative example of evoked GABAergic IPSCs after a 10Hz paired stimulation. Each of the 
superimposed traces corresponds to a 5 volt increase, ranging from 0 to 100 volts. Inset: IPSCs amplitudes 
increase gradually with the voltage strength. B) Integral of the charge as a function of the stimulus strength 
after 1 and 2 pulses stimulation at different frequencies. C) Half width (top panel) and decay time (lower 
panel) of the 2nd IPSC of a pair depend on the stimulation strength. D) Rise time and Rise time (top panel) 
and time to peak (lower panel) show no dependency on the stimulus intensity. Open circles: 1st IPSC, filled 
circles: 2nd IPSC, red dashed lines: linear fit. E) mIPSCs recording for the cell depicted in A. Inset: 
distribution for the cell depicted in A). Typical GABAergic mIPSC recorded in the DNLL. Red line shows the 
exponential fit. F) Amplitudes distribution of the mIPSCs for the cell depicted in A. The red line shows the 
Gaussian fit for the distribution (see text for value of the mean).  
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Also, after a single pulse protocol, these values were 28.7 ± 3.8 ms and 37.8 ± 

2.1 ms. Overall, there is an effective increase in the decay time of ~ 5 ms and ~ 

15 ms at 10 Hz for each peak and ~ 18 ms and ~ 10 ms at 20 and 100 Hz 

respectively. 

In the same way, the half width of the second peak ranged between 15.8 ± 2.9 

ms and 29.6 ± 1.7 ms at 10 Hz (Fig. 4.4C, top panel). When stimulating at 20 Hz, 

these values were 19.9 ± 5.5 ms and 46.8 ± 2.4 ms, whereas at 100 Hz they 

were 21.4 ± 6.0 ms and 30.9 ± 3.2 ms. The single pulse stimulation showed 

results ranging from 21.9 ± 2.5 ms and 30.5 ± 1.5 ms.  

Rise time and time to peak did not change over the range of stimulation strength 

evaluated, exhibiting values of 1 ± 0.2 ms and 1.3 ± 0.2 ms for the rise time of the 

1st and 2nd peak, and 2.5 ± 0.4 ms and 2.3 ± 0.4 ms for the time to peak at 60 

volts, correspondingly (Fig. 4.4D, top and lower panels). This was also observed 

for the one pulse condition as well as for all evaluated frequencies. This 

observation suggests that the slow decays are not due to the interaction of inputs 

with different latencies.  

In Fig. 4.4E an example of the recorded mIPSCs is depicted. The inset zooms in 

on a typical GABAergic mIPSC of DNLL neuron, with a decay value of ~ 16 ms 

(exponential fit in red). Figure 4.4F illustrates the amplitude distribution for the 

miniature IPSC (mIPSC) for the same cell depicted in Fig. 4.4A (bin size of 5 pA). 

For the example depicted, 56 minis were found with amplitude values that ranged 

from 12.1 pA to 120 pA. The median value of the amplitude distribution was 

29.86 pA (Gaussian fit in Fig 4.4F). On average, from a total of 3271 mIPSCs out 
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of 30 neurons, the amplitude ranged from 4.6 pA to 363 pA and the mean decay 

time was 19.5 ± 0.8 ms.  

The dependency of the decay time constants on the stimulus strength suggest 

that spillover of GABA onto nearby synapses and/or extrasynaptic receptors 

might be involved in prolonging the inhibitory signal. Higher stimulation intensities 

seem to recruit more fibers generating GABA pooling and slowing down the 

decay time of the IPSCs. Since the rise time of the evoked currents did not 

change, these results suggest that activation of neighboring synapses might be 

occurring.  

4.2.4 Pre-synaptic mechanisms might be involved in extending 

synaptic inhibition in DNLL neurons 

Another possibility that might explain the long lasting inhibition observed in DNLL 

neurons relates to presynaptic mechanisms. A build-up of calcium in the 

presynaptic terminal might be achieved after repetitive stimulation of the fibers, 

leading to asynchronous release of the neurotransmitter and therefore, to a 

prolonged inhibitory signal. To test this hypothesis, IPSCs were recorded in 

response to stimulation trains of 2, 10 and 20 pulses were done at different 

frequencies.  

Figure 4.5A illustrates a representative example of evoked IPSCs after 

stimulating the fibers at 60 volts with a 10-pulse train at different frequencies for a 

given cell. The top panel shows the superimposed traces of the evoked response 

after a 10 Hz train; the middle panel exhibits the response to 100 Hz whereas in 

the lower panel the response to 500 Hz stimulation is depicted. Note the 
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asynchronous release evoked at higher frequencies (indicated in the figure with 

stars). In particular, at 100 Hz this asynchronous release component seemed to 

induce to a prolongation of the IPSCs decay time.   

The depression curves constructed for 10 pulse trains show no difference 

between the amplitudes of evoked IPSCs at 10 or 20 Hz (Fig. 4.5B, n=7). The 

depression reached at the last pulse was in both cases ~ 30% of the initial 

amplitude. On the other hand, at 50 Hz the amplitude of the second peak of the 

train exhibited a reduction of ~ 20% and at the end of the train of about 70%. In 

this case, depression was ~ 50% already after the 5th pulse. At higher 

frequencies a more significant depression was achieved earlier in the train. 

Typically, at 100 Hz the reduction was ~ 50% at the 2nd pulse of the train, 

reaching values of ~ 90% at the last peak evoked whereas trains of 200 Hz led to 

a reduction of ~ 95% for the last IPSC, being ~ 70% of the depression found at 

the 2nd peak.  

Summarizing these findings, in Figure 4.5C the steady state of depression is 

plotted as a function of the train frequency. To construct this curve, the average 

of the last 3 points on the depression curve of each frequency was taken.  

The decay time constant of the last peak of the same trains as in Fig. 4.5 was 

found to be frequency and pulse number dependent (Fig. 4.6A). For instance, 

with trains consisting of only 2 pulses (n=7) the decay constant was 21.17 ± 1.8 

ms at 10 Hz, 24.6 ± 2.73 ms at 20 Hz, 30.7 ± 2.99 ms at 50 Hz, 31.83 ± 2.58 ms 

at 100 Hz, 31.24 ± 3.17 ms at 200 Hz and 30.28 ± 3.13 at 500 Hz. The kinetics of 

the last IPSC was also increasing while increasing the frequency after trains of 10  
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or 20 pulses (n=7). Higher values for the decay time constant were found at 100 

Hz after stimulation with 10 or 20 pulses compared with those recorded at all 

other frequencies. Typically, with 10 pulses decays were 84.52 ± 7.1 ms whereas 

with 20 the values were 120.4 ± 11.6 ms. Nevertheless, long lasting decays were 

also found at 50 Hz and 200 Hz, being 72.05 ± 9.8 ms and 103.92 ± 12.6 ms at 

50 Hz and 69.84 ± 6.8 ms and 99.44 ± 7.9 ms at 200 Hz, for the 10-and 20-pulse 

trains respectively. At 500 Hz these values were 50.74 ± 5.49 ms and 68.18 ± 
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Fig. 4.5. Depression curves of GABAergic IPSCs after a stimulation train 
Superimposed traces of GABAergic IPSCs after a 10-pulses stimulation at different 
frequencies for a given cell. Artifacts were deleted for better visualization. Grey arrows 
show the last stimulation artifact. Stars indicate non phasic events.B) Depression 
curve of evoked IPSCs after a 10-pulses train at 10, 100 and 500 Hz. C) Steady-state 
depression as a function of the stimulation frequency.   
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10.93 ms. Long trains at low frequencies, gave decays of 27.14 ± 2.78 ms and 

28.05 ± 2.78 ms at 10 Hz and 35.09 ± 4.7 ms and 48.68 ± 4.37 ms at 20 Hz, for 

10 and 20 pulses trains correspondingly. In all cases, within one stimulus 

frequency the kinetics became slower as the number of pulses increased. The 

same trend was observed for the half width of the IPSCs (Fig. 4.6B). At 10 Hz the 

half width of the last peak of the train was 16.88 ± 1.27 ms, 19.47 ± 1.22 ms and 

20.54 ± 1.15 ms for a 2-, 10- and 20-pulses train respectively. The corresponding 

recorded values after a 20 Hz stimulation were 19.73 ± 1.83 ms, 23.89 ± 2.97 ms 

and 25.47 ± 1.16 ms.  

 

 

 

 

 

 

 

 

 

 

 

 

As well as for the decay time constant, with higher stimulation frequencies these 

values were significantly increased, being 23.89 ± 2.86 ms, 39.77 ms ± 4.09 ms 
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Fig. 4.6. Frequency dependency 
of GABAergic IPSCs after a 
stimulation train  
A) Decay time and B) half width of 
the last peak of a train as a 
function of the stimulation 
frequency and pulse number. C) 
Integral of the full charge evoked 
during the stimulation train as a 
function of the stimulation 
frequency and pulse number.  
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at 100 Hz and 24.68 ± 2.51, 45.89 ± 5.49 and 65.16 ± 9.99 ms after 2-, 10- and 

20-pulses trains correspondingly. At 500 Hz the half width of the last IPSC peak 

shortened compared to the other high frequencies used, exhibiting values of 27.5 

± 3.67 ms, 33.78 ± 3.79 ms and 47.82 ± 8.04 ms.  

The full charge carried by the IPSCs was evaluated after train stimulations (Fig. 

4.6C). The integral of the area of the elicited currents, considered as the area 

between the stimulation artifact and the following 1.5 second did not differ much 

as a function of the frequencies evaluated but did so as function of the number of 

pulses tested. On average, double pulse stimulation exhibited the following 

values: 46.4 ± 7.2 pC at 10 Hz, 49.2 ± 8.5 pC at 20 Hz, 48.2 ± 10 pC at 50 Hz, 

52.6 ± 11 pC at 100 Hz, 44.7 ± 11 pC at 200 Hz and 40.2 ± 8.5 pC at 500 Hz. 

Values were ~ 5 fold increased when stimulation was with trains of 10 pulses. In 

this case, the charge was 229.2 ± 38.8 pC at 10 Hz, 227 ± 54.2 pC at 20 Hz, 

273.9 ± 74.9 pC at 50 Hz, 269.3 ± 83.1 pC at 100 Hz, 191 ± 67.9 pC at 200 Hz 

and 114 ± 39.2 pC at 500 Hz. Again, an increase in the charge was found when 

the amount of pulses was increased. Typically, with trains of 20 pulses, the 

charge showed values that double those found after a 10-pulses train. The 

average values calculated were 478 ± 120.4 pC at 10 Hz, 433.9 ± 119.3 pC at 20 

Hz, 503.3 ± 152.8 pC at 50 Hz, 476.8 ± 170.3 pC at 100 Hz, 335 ± 124.7 pC at 

200 Hz and 190.7 ± 74 pC at 500 Hz.  

In general, high frequency trains induced a prolongation of the synaptic inhibition 

onto DNLL neurons, suggesting that asynchronous release might be involved. 

Moreover, preliminary data showed that application of 100 µM of EGTA-AM, the 

ester form of EGTA, a slow calcium buffer, reduces IPSCs kinetics after high 
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frequency trains (data not shown), suggesting that a build up of calcium in the 

presynaptic terminal might play a role in the extended inhibitory signal.   

 

4.2.5 The application of a low affinity GABAA receptor antagonist 

suggest the involvement of extrasynaptic receptors in prolonging 

synaptic inhibition in DNLL 

Since spillover currents are generated by low neurotransmitter concentrations, 

they would be more sensitive to a low affinity antagonist. Therefore, if PI in DNLL 

neurons is due to spillover of GABA, as suggested by the dependency of the 

IPSCs kinetics on the stimulation strength, the application of a weak antagonist 

should have a more prominent effect on those receptors that are located further 

away from the release site, for instance, extrasynaptic receptors, and leaving the 

phasic response mostly unchanged. Thus, the application of a low affinity 

antagonist would reduce the IPSCs kinetics. 

To study this hypothesis, the effect of 100 µM 1,2,5,6-Tetrahydropyridin-4-yl) 

methylphosphinic acid hydrate (TPMPA), a weak GABAA receptor antagonist, 

was evaluated after a 60 volts stimulation train at 500 Hz (n=4). Figure 4.7A 

illustrates superimposed IPSCs before and after the application of the drug and 

its normalized traces (inset) after a 500 Hz stimulus train at 60 volts (n=4). The 

reduction on the last IPSC peak amplitude ranged from 8.8 % to 67.3%. On 

average, the reduction was 42.31 ± 12.31 % from the initial peak (Fig. 4.7B). 

Although the decay time constant was also reduced showing an average τ 
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difference of 5.10 ± 0.73 ms, with values ranging from 3.31 ms to 6.29 ms (Fig. 

4.7C), these differences were not significant. 

 

 

 

 

 

 

 

In order to achieve a larger amplitude reduction and possibly a larger and more 

consistent reduction in the decay time constants, 200 µM of TPMPA was applied 

to the bath.  

Figure 4.8A illustrates the time course of the change on IPSCs amplitudes (top 

panel) and decay time constants (lower panel) during the wash-in of 200 µM 

TPMPA while stimulating the fibers with a single pulse at 60 volts. Both 

amplitudes and kinetics show a clear reduction. The IPSC amplitudes decreased 

already one minute after the drug was on the bath and it reached a plateau after 

2 minutes, whereas the decrease in the decay time constant was observable 

after 2 minutes whereas the plateau was reached 1 minute later.  
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Fig. 4.7. Effect of 100 µM TPMPA on the IPSCs kinetics 
A) GABAergic IPSCs recorded under control (black trace) and after 100 µM TPMPA (red trace). 
Inset: normalized traces. B and C) Effect of TPMPA on IPSCs peak amplitude (B) and decay 
time (C). CBlack square: average, open squares: single cells.  
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The normalized traces of evoked IPSCs after a 100 Hz stimulus train and at 60 

volts under control and TPMPA conditions are depicted in Fig. 4.8B. The 

amplitude exhibited a reduction of ~ 83% (not shown). The decay time decreased 

from 50.42 ms in control to 18.36 ms during drug application.  

Also TPMPA rescued the IPSCs from depression by releasing the receptors from 

saturation after a 100 Hz train at 60 volts as seen in Fig. 4.8C. The steady state 

depression was 15.97 ± 2.98 % for control and 66.07 ± 26.28 % when TPMPA 

was bathed (Fig. 4.8D, student t-test, p<0.05, n=10). 

The IPSCs amplitude reduction was evaluated at 3 different stimulation strengths: 

30, 60 and 90 volts (Fig. 4.8E). The reduction found for the last peak of the train 

at each condition was 21.16 ± 20.98 %, 38.92 ± 18.3 % and 40.65 ± 12.28 % in 

that order (filled circles, lower panel). In particular, the average amplitudes were 

130 ± 35.6 pA and 120 ± 54.52 pA at 30 volts, 466.3 ± 113.2 pA and 245 ± 83.15 

pA at 60 volts and 890 ± 225 pA and 480.3 ± 109.17 pA at 90 volts in control and 

TPMPA conditions respectively (top panel, student t-test, p<0.05 at 90 volts, 

n=8). On the other hand, the effective reduction on the 1st peak of the train was 

larger in all cases, being the values 19.9 ± 27.26 %, 69.18 ± 7.51 % and 60.16 ± 

7.73 % for 30, 60 and 90 volts correspondingly (lower panel, open circles, n=8, 

10 and 12 respectively).  

The decay time constants calculated for the last IPSC on the train were also 

significantly reduced at 90 volts as well as at 60 volts, exhibiting the following 

values: 81.71 ± 16.74 ms and 63.14 ± 13.33 ms at 60 volts and 94.79 ± 13.8 ms 

and 79.8 ± 9.25 ms at 90 volts in control and in TPMPA respectively (Fig. 4.8F,  



Results 
_____________________________________________________________________ 

59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control
TPMPA

norm. IPSC

50 ms

1.0

0.5

0.0

n
o
rm
. 
IP
S
C
 (
%
)

1050
pulse number

1.0

0.5

0.0
no
rm
. 
IP
S
C
 (
%
)

c T

-400

-200

0IP
S
C
 (
p
A
)

1050
time (min)

20

0

τ 
(m
s)

200 µM TPMPA

100

50

0

τ 
(m
s)

100500
stim. strength (v)

20

0

τ c
tr
l -
 τ
T
P
M
P
A

control
TPMPA-1.0

-0.5

0.0IP
S
C
 (
n
A
)

100500
stim. strength (v)

50

0IP
S
C
 r
ed
.

(%
)

control
TPMPA

first
last

A B

C D

E F

 

Fig. 4.8. Effect of 200 µM TPMPA on the kinetics of the last IPSC after stimulation train. 
A) Time course of the effect of 200 µM TPMPA on the IPSC peak amplitude (top panel) and 
decay time (lower panel). B) Normalized IPSCs after a 10-pulses train at 100 Hz and 60 volts 
for a representative neuron. C) IPSCs depression curve after a 10-pulses train at 100 Hz 
under control (black) and TPMPA (red) conditions. D) Effect of TPMPA on the steady state 
depression of curves plotted on (C) for control (c) and after TPMPA (T). E)  Top panel: peak 
amplitude of the last IPSC of a train for control (black) and after TPMPA (red) at 3 voltages 
tested (30, 60 and 90 V). Lower panel: percent of IPSC reduction after TPMPA for the 1st 
(open circles) and the last peak  (filled circles) of a train at the 3 voltages tested. F)  Top 
panel: effect of TPMPA on the decay time of the last IPSC of a train (black: control, red: after 
TPMPA). Lower panel: effective reduction of the decay time after TPMPA.  
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top panel; student t-test, p<0.05, n=8). The effective reduction found was ~ 18 ms 

at 60 volts and ~ 15 ms at 90 volts (lower panel). In contrast, at 30 volts the 

differences between control and TPMPA on the IPSCs kinetics were not 

significant. In particular, the values were 37.03 ± 6.79 ms and 43.89 ± 9.64 ms for 

control and drug respectively.  IPSCs amplitudes at 10 Hz and 500 Hz exhibited a 

significant reduction when stimulated at 60 or 90 volts. In particular, at 10 Hz the 

reduction was found to be 42.58 ± 21.15 % and 52.21 ± 13.08 % whereas at 500 

Hz these values were 41.95 ± 12.65 % and 45.09 ± 15.06 % (student t-test, 

p>0.05). On the other hand, even though no significant changes were observed 

on the decay time constants, at 500 Hz time there was a reduction of ~ 5 ms 

when stimulation strength was 90 volts (not shown).  

The effect of TPMPA on the IPSCs kinetics was also assessed after a single 

pulse stimulation of the fibers. In Figure 4.9A, the IPSCs before and after the 

wash-in of the drug for a representative cell is depicted. In this particular case, 

the initial amplitude was 415.5 pA whereas the amplitude after the drug took 

effect was 99.7 pA. The inset shows the normalized IPSCs of the same cell in 

which it is noticeable a reduction on the decay time constant of the evoked 

current after application of TPMPA. The values for the decay were 13.2 ms under 

control conditions and 10.6 ms after the drug application, leading to a reduction of 

~ 3 ms.  

The mean amplitude found after single stimulation at 60 volts was 524.35 ± 90.7 

pA for control and 316.3 ± 95.32 pA under TPMPA conditions (Fig. 4.9B, student 

t-test p<0.01). On average, the reduction of the initial amplitude after single pulse 

simulation at 60 volts was 45.29 ± 11.37 %.  



Results 
_____________________________________________________________________ 

61 

All cells tested exhibited this reduction in the amplitude except for one (n=9). 

Interestingly, only this cell showed no decrease in the decay time constant in 

contrast to all other 8 neurons (Fig. 4.9C). On average, the decay time was found 

to be 30.45 ± 2.28 ms in control condition and 25.6 ± 2.46 ms after the drug 

application (student t-test p<0.05) and the mean reduction at this voltage was 

5.02 ± 1.96 ms.   

Figure 4.9D illustrates the values of IPSCs amplitudes (top panel) and decay time 

constants (lower panel) under control and TPMPA conditions obtained at the 3 

different voltages tested (30, 60 and 90 volts). At 30 volts neither the amplitude 
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kinetics of a single evoked IPSC.  
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nor the decay time showed significant changes exhibiting an average peak 

amplitude of 187.7 ± 60.88 pA and 106.53 ± 19.35 pA and decay times of 23.11 ± 

4.7 ms and 22.9 ± 1.07 ms under control and TPMPA conditions respectively. On 

the other hand, at 90 volts the IPSC amplitude decreased from 710.25 ± 179 pA 

in control to 447.7 ± 142.72 pA in TPMPA (student t-test p<0.05), representing a 

reduction of 31.13 ± 12.98 %. Also a significant decrease in the IPSC kinetic was 

found at this stimulation strength, with values of 38.18 ± 3.82 ms and 29.49 ± 

3.29 ms respectively (student t-test p<0.05), leading to an effective reduction of 

8.84 ± 4.11 ms. 

Neither the amplitudes nor the decay times of the mIPSCs were changed after 

bath application of TPMPA (data not shown). 

To confirm that the results obtained after application of TPMPA were not a merely 

effect of a lower occupancy of the receptors but due to the intrinsic effects of a 

low affinity antagonist, a high affinity GABAA antagonist, SR95531, was used at a 

concentration such to induce a partial reduction on the IPSCs amplitude and its 

effect on the IPSCs kinetics was evaluated.  

The drug was initially tested at a concentration of 200 nM, but since the recorded 

IPSCs were fully blocked at this concentration (n=2), further experiments were 

carried on with a concentration of 50 nM.  In the example plotted in Fig. 4.10A, 

the evoked IPSC was reduced from 2.63 nA to 532.3 pA. The inset of this figure 

shows the normalized traces. In general, at this concentration only ~ 30 % of the 

peak amplitude was reduced (n=3). In addition, these data were pooled with that 

one obtained after application of 20 µM of SR95531 (a concentration at which a 
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full blockade is reached, as shown above) when the reduction on the evoked 

currents was not larger than 50 % (n=5) since no significant differences were 

found between the two groups. On average, the amplitude reduction was 34.09 ± 

16.48 % (Fig. 4.10B, n=8). 

The kinetics showed no significant differences between control and drug 

conditions. In particular, the mean decay time constant under control condition 

was 16.72 ± 1.5 ms whereas after application of the antagonist this value was 19.32 ± 

2.7 ms (Fig. 4.10C).  

Taken together, the results described above suggest that spillover contributes to 

the long lasting inhibition observed. 

 

 

 

 

 

 

 

 4.2.6 Blocking GABA clearance prolonged the IPSC kinetics 

To investigate the contribution of neurotransmitter transporters to GABA 

clearance, the effect of a selective GABA uptake blocker was tested. If transmitter 
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Fig. 4.10.Effect of a low concentration of a high affinity GABAA antagonist on the IPSCs 
kinetics. 
A) Single pulse evoked IPSCs before (black) and after (red) washing in 50 µM SR95531 for a 
representative neuron. Inset: normalized traces. B) Percent of reduction induced by the GABAA 
receptor blocker. C) Effect of 50 µM SR95531 on IPSCs decay time. 
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spillover contributes to the extended kinetics in DNLL neurons, then diminishing 

GABA clearance by blocking GAT-1, a GABA transporter, with 10 µM 1-[2-

[[(Diphenylmethylene)-imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridine-carboxylic-

acid hydrochloride (NO711) should prolong IPSC decay.  

Figure 4.11A illustrates the response to a 60 volts single pulse before and after 

the application of the drug for a given cell. In this particular case, the amplitude 

decreased from 2.47 nA in control condition to 451.16 pA after NO711 was 

washed in. On the other hand, the decay time constants were 16.47 ms and 

22.43 ms respectively. Surprisingly, IPSCs amplitudes diminished at all voltages 

tested, as shown in Figure 4.11B. Average amplitudes significantly decreased 

from 672.1 ± 74.83 pA at 30 volts (n=2), from 1.55 nA ± 343.6 pA to 442.84 pA ± 

87.68 pA at 60 volts (n=5) and from 2.4 nA ± 251.5 pA to 839 ± 53.1 pA at 90 

volts (n=3) (student t-test, p<0.05). As expected, the decay time constants were 

increased from 14.26 ± 4.04 ms to 25.42 ± 11.07 at 30 volts, from 17.83 ± 2.84 

ms to 23.86 ± 1.8 ms at 60 volts and from 22.75 ± 4.5 ms to 23.99 ± 3.18 ms at 

90 volts (student t-test, p<0.05 at 60 volts).  
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Fig. 4.11. Effect of NO711 on the IPSCs kinetics 
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It could be possible that at this concentration NO711 induces receptor saturation 

and this could explain the observed reduction on the IPSCs amplitudes. 

Therefore, a lower concentration of the drug was tested. In this case, 2 µM of 

NNC711 (the same type of compound as NO711 but from Tocris Bioscience) was 

assessed.  

The application of NNC711 induced to an increase of the decay time of single–

pulse evoked IPSC after being bathed for 10 minutes, reaching a plateau 2.5 

minutes later (Fig. 4.12A, lower panel). On the other hand, the blocker had a 

minimal effect on the IPSC amplitude (top panel). In the example depicted in 

Figure 4.12B, the IPSCs amplitude increased from 1.63 nA to 1.94 nA after 

application of NNC711 while stimulating the fibers with a single pulse at 60 volts. 

Nevertheless, the decay time constant exhibited an increase of ~ 6 ms, being in 

control 17.46 ms and 23.25 ms with the blocker. The inset illustrates the 

normalized traces for this representative cell.  

In general, the amplitude of single evoked IPSCs showed no significant 

differences between the two conditions, being the values of the change 17.06 ± 

45.3 % at 30 volts, 10.71 ± 8.67 % at 60 volts and 7.77 ± 12.5 % at 90 volts (Fig. 

4.12C, top panel). In contrast, the decay time was increased by 6.76 ± 3.56 ms, 

7.13 ± 1.59 ms and 7.61 ± 1.48 ms at 30, 60 and 90 volts respectively (Fig. 

3.12C, lower panel, p<0.05 at 30 and p<0.01 at 60 and 90 volts, n=9).  

IPSCs evoked after a 10-pulses stimulation train exhibited no significant 

differences on the depression curves after application of NNC711 either at 10 or 

100 HZ as shown in Figure 4.12D. The achieved steady states after 60 volts 
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stimulation were 69.2 ± 6.9 % and 71.8 ± 6.7 % at 10 Hz and 26.29 ± 5.98 % and 

16.11 ± 1.8 % at 100 Hz for control and NNC711, in that order (n=6 at 10 Hz, n=7 

at 100 Hz).  
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Fig. 4.12. Low concentrations of 
NNC711 prolongs IPSCs kinetics 
A) Time course of the effect of 200 µM 
TPMPA on the IPSC peak amplitude 
(top panel) and decay time (lower 
panel). B) Recorded IPSCs after single 
pulse stimulation on a representative 
neuron before (black) and after (red) 
NNC711 application. Inset: normalized 
traces. C) Top panel: effect of NNC711 
on IPSCs amplitude. Lower panel: 
effective increase on IPSCs decay time 

after application of NNC711. D) Depression curves after a 10-pulses train at 10 Hz 
(circles) and 100 Hz (triangles) before (black) and after (red) application of NNC711. 
E) Effective increase on IPSCs decay time of the last peak of a 10-pulses train at 10 
Hz (circles) and 100 Hz (triangles).  
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Figure 4.12E shows the effective change in the decay time constants for 10 Hz 

and 100 Hz at the three voltages tested. At the 10 Hz the increase on τ was 2.33 

± 2.4 ms at 30 volts, 9.56 ± 4 ms at 60 volts (n=7) and 9.1 ± 4.39 ms at 90 volts 

(n=5). Similarly, at 100 Hz the observed increase was 11.58 ± 6.84 ms, 37.03 

±17.88 ms (n=6) and 30.68 ± 7.7 ms (n=4) at 30, 60 and 90 volts respectively 

(student t-test, p<0.05 at 60 and 90 volts at 10 and 100 Hz). 

At 500 Hz decay time constants also exhibited a significant increase after 

application of NNC711. Typically, this increase was 5.39 ± 2.02 ms at 30 volts, 

17.91 ± 6.11 ms (n=6) at 60 volts and 12.69 ± 4.76 (n=4) at 90 volts (student t- 

test, p<0.05). 

The sensitivity of mIPSC to transport block was also evaluated by measuring its 

decay time constants. No significant differences were found on the kinetics of the 

mIPSCs between the two conditions for the two cells tested (one after NO711 

application and the other one under the effect of NNC711). On average, the 

decay time of the mIPSCs was 13.5 ± 0.2 ms under control conditions whereas 

after the drug application this value was 15.9 ± 0.5 ms (not shown).  

NNC711 induced, as expected, a prolongation of IPSC decay time at high 

stimulus voltages, suggesting not only that GABA clearance is an important 

mechanism to limit long lasting IPSCs but more importantly, that synaptic 

crosstalk plays a substantial role in extending synaptic inhibition in the DNLL.  
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4.2.7 Reducing release probability decreased the IPSCs kinetics 

Reducing release probability would not only reduce the number of released 

vesicles per site but also the number of active sites, thus spillover would also be 

reduced, as fewer ligand molecules are available to diffuse to extrasynaptic 

receptors.  

This hypothesis was tested by changing the extracellular Ca2+ / Mg2+ ratio to 1 

mM Ca2+ / 2 mM Mg2+. The lower calcium concentration induced to a decrease in 

the IPSCs amplitude as illustrated in Figure 4.13A. In this particular case, the 

amplitude of evoked IPSCs after single pulse stimulation at 60 volts was 397.81 

pA in control conditions which was reduced to 315.31 pA after the calcium 

exchange. The decay time constant was also reduced from 25.14 ms to 14.17 

ms.  

In general, IPSCs evoked after one stimulation pulse were reduced from 1.18 ± 

0.30 nA to 512.76 ± 69.9 pA at 60 volts and from 1.43 ± 0.22 nA to 977.14 ± 80.9 

pA at 90 volts (Fig. 4.13B, student t-test, p<0.05 at 60 and 90 volts (n=6)). On the 

other hand, at 30 volts (n=5) the average amplitudes were 183.22 ± 45.82 pA in 

control and 228.79 ± 86.04 pA at low calcium.  

On average, the decay time constants were 13.78 ± 1.25 ms and 13.85 ± 1.75 

ms at 30 volts, 17.27 ± 1.58 ms and 15.1 ± 1.42 ms at 60 volts and 19.34 ± 1.42 

ms and 16.75 ± 1.18 ms at 90 volts, in control and low calcium concentration 

respectively (Fig. 4.13C; student t-test, p<0.05 for 60 and 90 volts). 

Figure 4.13D shows the percentage of reduction on the decay time constants 

after stimulation trains of different frequencies at 90 volts. These values were 
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19.02 ± 4.9 % at 10 Hz, 27.69 ± 5.96 % at 100 Hz and 21.55 ± 3.72 % at 500 Hz 

(n=6, student t-test, p<0.05). Even though differences in the kinetics were found 

at all three frequencies evaluated, no changes on the amplitudes of the last IPSC 

evoked from a train were observed.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

At lower stimulation intensities no significant differences between control and 

treatment were found on the kinetics or on the IPSCs amplitudes.  

In order to induce a larger reduction on IPSCs amplitudes, a lower calcium 

concentration was tested.  
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Fig. 4.13. Reducing the extracellular calcium reduces the IPSCs kinetics. 
A) Recorded IPSCs after a single pulse stimulation before (black) and after (red) 
application of 1 mM Calcium. B) Effect of reducing extracellular calcium concentration on 
IPSCs amplitude. C) Effect on IPSCs decay time after reducing calcium in the bath. 
Black circles: control, red circles: in 1 mM calcium (B and C). D) Effective reduction on 
the IPSCs decay time as a function of the stimulation frequency of a train.  
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Lowering the calcium concentration to 0.5 mM led to a reduction in the IPSCs 

amplitude and decay time constants of evoked IPSCs. Figure 4.14A shows the 

time course of the effect produced by the calcium concentration exchange on the 

amplitude and kinetics of an IPSC after single pulse stimulation at 60 volts. The 

amplitude started to decrease ~ 3 minutes after starting the solution exchange 

and it reached a plateau after ~ 8 minutes. Figure 4.14B illustrates the normalized 

traces of the recorded IPSCs under control and low calcium concentrations when 

stimulated with a single pulse at 60 volts, exhibiting decay time constants of 

13.06 ms and 7.92 ms in each condition respectively.  

On average, IPSC amplitudes decreased from 1.26 ± 0.24 nA to 193.02 ± 24.8 

pA (n=7) when the calcium in the bath was reduced (Fig. 3.14C). The percentage 

of amplitude reduction was found to be 63.69 ± 11.84 % at 30 volts (n=5), 81.85 ± 

3.36 % at 60 volts (n=7) and 83.05 ± 2.77 % at 90 volts (n=7) (Fig. 4.14D, top 

panel; student t-test, p<0.05 at 60 and 90 volts). Similarly, the amount of 

reduction on the IPSCs decay time was found to be 2.74 ± 2.38 ms, 4.12 ± 1.55 

ms and 5.92 ± 1.12 ms at 30, 60 and 90 volts correspondingly (Fig. 4.14D, lower 

panel; student t-test, p<0.05).  

Lowering the concentration of the extracellular calcium had an important effect on 

the depression curves, as observed in Figure 4.14E. The steady state reached at 

60 volts after a 10-pulse stimulation at 100 Hz was 9.45 ± 3.19 % in control and 

77.36 ± 16.65 % at 0.5 mM calcium (n=5). A similar observation was made at the 

other voltages tested as well as for the 10 Hz trains. In particular at this 

frequency, at 60 volts the depression at the steady state was 59.96 ±  15 % and 
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93.84 ± 17.68 % with 10 Hz trains in control and at lower calcium concentration 

(n=4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In Fig. 4.14F the differences in decay time constants before and after the 

concentration exchange for two voltages tested (60 and 90 volts) at 10 and 100 

Hz is illustrated. On average, at 10 Hz the kinetics were 4.79 ± 2.17 ms and 6.82 

± 1.06 ms faster when stimulating at 60 and 90 volts respectively. In the same 

way, at 100 Hz these values were 11.7 ± 4.02 ms and 18.43 ms. At 500 Hz the 
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Fig. 4.14. The reduction on extracelluar calcium reduces GABA spillover 
A) Time course of the IPSC amplitude (top panel) and decay time (lower panel) reduction after 
application of 0.5 mM calcium. B) Normalized IPSC traces before (black) and after (red) wash in of 0.5 
mM calcium. C) Average (black squares) and single cells (red open circles) IPSC reduction after 
application of a low calcium extracellular solution. D) Effective IPSC amplitude (top panel) and decay 
time (lower panel) reduction in 0.5 mM calcium over the voltage range tested. E) Depression curves 
for 10-pulses trains at 100 Hz before (black circles) and after (red circles) application of 0.5 mM 
calcium. F) Effective IPSC reduction after a 10-pulses train at 10 Hz (triangles) and 100 Hz (circles) at 
3 voltages tested after reducing calcium concentration in the medium.  
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decay time constants were decreased 14.82 ± 4.69 ms at 60 volts and 12.08 ± 

3.35 ms at 90 volts.  

The blockade of specific calcium channels would also lead to a reduction in 

release probability. This was assessed by applying 10 µM of cadmium which 

blocks high voltage activated (HVA) channels. In the example represented in 

Figure 4.15A, the amplitude started to diminish after ~ 5 minutes of bath 

application of CdCl2, reaching a plateau ~ 2 minutes later. In this particular case, 

IPSCs decreased from 470.31 pA to 113.14 pA (Fig. 4.15 B). On the other hand, 

the kinetics started experiencing a slight decrease from 19.41 to 17.67 ms (Fig. 

4.15B) after ~ 7 minutes (Fig. 4.15A). In general, the average IPSCs’ amplitude 

recorded under the same conditions (1 pulse at 60 volts) was reduced from 1.32 

± 0.37 nA to 308 ± 66.04 pA (Fig. 4.15C, student t-test, p<0.05, n=11) and decay 

time constants was decreased from 23.87 ± 2.18 ms to 21.81 ± 1.84 ms (Fig. 

4.15D, student t-test, p<0.05, n=11). At 30 volts both amplitude and decay time 

constant showed a significant reduction, from 1.22 ± 0.58 nA to 250 ± 58.15 pA 

and from 21.86 ± 2.76 ms to 19.37 ± 2.32 ms (student t-test, p<0.05, n=7). Also 

the decrease in the amplitude was significant when stimulating at 90 volts (2.04 ± 

0.48 nA in control and 706.9 ± 144.4 pA in cadmium, student t-test p<0.05, n=8), 

but decay time constants showed no significant differences (27.92 ± 3.09 ms in 

control and 25.63 ± 2.05 ms ms).  

Moreover, the depression curves for a 10-pulse stimulation train were also 

affected by the application of the salt, showing a smaller depression of IPSCs 

amplitude over the train than under control conditions. Figure 4.15E shows the 

average depression curves for a train of 100 Hz at 60 volts. On average, the 
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steady state was 15.62 ± 4.83 % in control, in contrast to 41.98 ± 8.98 % when 

cadmium was bath applied (Fig. 4.15 F, student t-test, p<0.05, n= 7).  
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The application of cadmium led to a significant diminution on the amplitude of the 

last peak of a stimulation train at 60 volts in all frequencies tested, being at 10 Hz 

61.4 ± 7.99 % (n=7), at 100 Hz 33.34 ± 15.97 % (n=7) and at 500 Hz 48.69 ± 

14.12 % (data not shown, student t-test, p<0.05, n=5). On the other hand, the 

decay time constants showed significant differences only at 100 Hz, with values 

of 90.2 ± 7.92 ms and 79.04 ± 8.6 ms at 60 (n=7) and 97.23 ± 12.65 ms and 87.6 

± 11.2 ms at 90 volts (n=5) in control and with cadmium, respectively (Fig. 4.15F, 

student t-test, p<0.05). 

Low calcium concentrations reduced IPSCs amplitudes and decays by reducing 

the amount of active sites and/or the number of vesicles being released. 

Therefore, the total amount of GABA in the synaptic cleft was decreased, 

inducing a reduction of crosstalk between synapses.  

The different results observed after application of cadmium in comparison to 

those obtained after lowering calcium concentration might suggest the 

involvement of not only HVA types but also intermediate and low voltage 

activated channels.  

 

 

4.2.8 Glycinergic inputs onto DNLL neurons 

DNLL neurons receive not only GABA- but also glycinergic inputs. The 

characteristics of glycinergic IPSC kinetics and its contribution to persistent 

inhibition were assessed.  

Figure 4.16A illustrates the time course of the change in amplitude (top panel) 

and decay time constant (lower panel) for a representative cell after single-pulse 
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evoked IPSCs during the bath application of SR95531 to an extracellular solution 

lacking strychnine. The mixed GABA- and glycinergic IPSCs had an initial 

amplitude of ~ 1 nA which started to decrease 1 minute after the GABAA receptor 

blocker was applied and reached a plateau 1 minute later. The decay time 

constant was initially ~ 24 ms, reaching a plateau 2 minutes after washing in 

SR95531 with a value of ~ 8 ms. The representative recorded traces from before 

and after the application of the drug are shown in Figure 4.16B for this given cell. 

The decay time differences in these two conditions are better visualized in the 

normalized traces that are depicted as an inset in this figure. On average, at 60 

volts the reduction on the IPSCs amplitude was 68.44 ± 8.34 % and 58.22 ± 8.41 

% on the IPSCs kinetics (Fig. 4.16C, n=8). 

Even though the average IPSC amplitudes is not a realistic measure as values 

such as the amplitudes have a large variability from cell to cell, the averages 

depicted in Fig. 4.16D are to illustrate the independence of glycinergic IPSC with 

the stimulation strength, in contrast to GABAergic IPSCs. The mixed current 

exhibited a slight voltage dependent increase on the IPSCs amplitude as shown 

in Figure 4.16D, whereas the currents recorded after SR95531 took effect were 

typically independent (n=8). Similarly, the decay time constant also showed a 

positive voltage dependence while the pure glycinergic IPSCs had no 

dependency on the stimulation strength (Fig. 4.16E, n=8).  

Figure 4.16F illustrates an example of a typical sustained type cell showing a 

bipolar distribution of its processes and a fuseiform soma, recovered after 

recording mixed and isolated glycinergic IPSCs.   
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The voltage dependence response of isolated glycinergic IPSCs was tested by 

stimulating the fibers with a 2 pulse protocol at a frequency of 10 Hz and different 

voltage strengths ranging from 0 to 100 in 5 volts steps (Fig 4.17A). The IPSCs 

amplitudes showed a step like increase with the increase on the stimulation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strength as shown for the representative neuron depicted in the inset of Figure 

4.17A. Each step observed in the recorded IPSCs represents the recruitment of 

an additional connected fiber. In particular, the threshold for this cell was found to 

be at 20 volts with an IPSC amplitude of ~ 30 pA while its maximum was found to 
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Fig. 4.16. DNLL neurons receive both GABA- and glycinergic inputs. 
A) Time course of the change in mixed Glycinergic and GABAergic IPSCs amplitude (top panel) and decay 
time (lower panel) before and during application of SR95531. B) Recorded mixed (black trace) and pure 
glycinergic (red trace) IPCSs for a representative neuron. Inset: normalized traces. C) Effective reduction 
on IPSCs amplitude and decay time after application of SR95331. D) Voltage dependency of the peak 
amplitude of mixed (black circles) and pure glycinergic (red circles) IPSCs. E) Mixed (black circles) and 
glycinergic (red circles) IPSCs decay time as a function of the stimulus strength. F) Maximal projection of a 
representative DNLL neuron after recording glycinergic IPSCs with Alexa 468 containing internal solution.  



Results 
_____________________________________________________________________ 

77 

be ~ 1 nA. On average, the threshold was ~ 30 volts; however, the threshold for 

two cells was ~ 60 volts.  

In general, glycinergic IPSCs exhibited a step like increase of the amplitude, with 

some cells exhibiting only 1 or 2 steps. In this representative example, 2 steps 

were apparent (inset). When 500 nM strychnine was applied to the bath the 

IPSCs were blocked by 82.98 ± 5.34 % (n=3, Fig. 4.17B).  

The paired pulse ratio showed no obvious facilitation or depression of the 2nd 

peak at 10 Hz and at the different voltages tested, showing values of 1.1 ± 0.3, 

0.8 ± 0.2 and 0.9 ± 0.2 at 10 Hz at threshold, 60 and 100 volts, respectively 

(p<0.05).  

The decay time constants of the first (filled circles) and second (open circles) of 

evoked glycinergic IPSCs showed no voltage dependency, exhibiting values ~ 10 

ms (n=6 for 2-pulses trains and n=7 for single pulses, Fig. 4.17C, lower panel) in 

both cases. The same results can be observed when stimulating at 20 and 100 

Hz or with a single pulse (data not shown). The rise time (top panel) was also 

independent of the stimulation strength with values of ~ 0.6 ms.  

As for the decay time constant, the half width did not showed a dependency on 

the stimulation strength at none of the frequencies tested (10, 20 and 100 Hz) as 

well as for the single pulse stimulation. As an example, Figure 4.17D illustrates 

the half width as a function of the stimulation intensity for a paired pulse at 10 Hz. 

Typically, the half width was ~ 10 ms through all the voltage range evaluated.  
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In Figure 4.17E the voltage dependency of the charge after a single pulse 

stimulation (open circles) and a 2-pulses train at 10 Hz IPSCs is depicted. For 

single pulses the charge seemed to remain unchanged along the voltage range 

tested. In particular, at 60 volts the charge was 6.5 ±1.7 pC. Paired pulses 

stimulations at 10, 20 and 100 Hz at 60 volts led to an apparent step-like increase 

over the stimulation strength evaluated with values of 14.8 ± 7.92 pC, 12.61 ± 

8.21 pC and 8.93 ± 6.8 pC respectively.  

Figure 4.17F shows a representative example of the glycinergic mIPSCs 

recorded for the same cell depicted in A. The frequency distribution of the 

amplitudes for the miniature IPSC (mIPSC) for the cell in Figure 4.17A is depicted 

in Figure 4.17F (lower panel). For the illustrated example 100 mIPSCs were 

found with amplitude values ranging from 8.3 pA to 115.9 pA and a median value 

for the amplitudes distribution of 24.10 pA (gaussean fit in Fig. 4.17F, lower panel 

in red). On average, from a total of 147 mIPSCs out of 5 neurons, amplitudes 

ranged from 10.3 pA to 237 pA and with a average decay time of 10.96 ± 0.84 ms 

and a rise time was ~ 1 ms (Fig. 4.17F, top panel inset).  

Figure 4.18A illustrates superimposed traces of evoked glycinergic IPSCs after 

stimulating the fibers of the Commissure at 60 volts with a 10-pulses train at 

different frequencies for a given cell. The top panel shows the superimposed 

traces of the evoked response after a 10 Hz train; the middle panel exhibits the 

response to 100 Hz whereas in the lower panel the response to 500 Hz 

stimulation is depicted.  
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Fig. 4.17. Dependency of glycinergic IPSCs kinetics on stimulation strength. 
A) Glycinergic IPSCs recording after 10 Hz paired stimulation at different stimulus 
strength for a given cell. Inset: IPSC amplitudes as a function of the stimulus strength. 
Black circles: 1st peak, open circles: 2nd peak. B) IPSC amplitude reduction after 
application of 500 nM Strychnine. C) Voltage dependency of Glycinergic IPSCs half 
width (top panel) and decay time (lower panel). D) Rise time (top panel) and time to peak 
(lower panel) as a function of the stimulus intensity. E) Voltage dependency of the 
integral of the charge after single (open circle) and 2-pulses stimulation at 10 Hz (black 
circles). F) Top panel mIPSCs recorded from the same cell depicted in A. Inset: 
representative glycinergic mIPSC. The red line represents the exponential fit. Lower 
panel, mIPSC amplitude distribution for the cell depicted in A. 
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The depression curves constructed for 10 pulses trains show no main differences 

between the amplitudes of evoked IPSCs at 10 (Fig. 4.18B, n=6) or 20 Hz (not 

shown). The calculated steady state reached (average for the last 3 peaks) in 

both cases did not differ from the initial amplitude. On the other hand, at higher 

frequencies a more significant depression was achieved earlier in the train.  

Typically, at 100 Hz the reduction found at the steady state was ~ 40 %, reaching 

50 % at the 5th pulse. Trains of 200 Hz led to a steady state reduction of ~ 18 %, 

being ~ 60 % of the depression found at the 2nd peak. The steady state of 

depression is depicted in Figure 4.18C, summarizing the results described above. 

The decay time constants as a function of the stimulation frequency are depicted 

in Figure 4.18D. In general, when the trains consisted of 2 pulses, the decay 

times were ~ 10 ms at all frequencies tested (the minimal value was found to be 

10.89 ± 0.85 ms at 10 Hz, whereas the maximal was 14.14 ± 0.81 ms at 200 Hz).  

In contrast, when the stimulation trains consisted of larger amount of pulses (10 

or 20) differences were observed between low (10 and 20 Hz) and high 

frequencies (100, 200 and 500 Hz), even though these differences were only 

significant when comparing 10 and 20 Hz with 100 Hz (student t-test, p<0.05; the 

lack of significance at 200 and 500 Hz might be due to the lesser amount of data 

points (n=4)).  

Within one frequency, the differences in decay time constants resulting after 

stimulation trains of 2, 10 or 20 pulses were not significant except at 100 Hz 

(student t-test, p<0.05). In particular at this frequency, the decay time constants 
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were 13.34 ± 0.8 ms, 25.3 ± 4.2 and 42.7 ± 5.87 ms after a 2-, 10- and 20-pulse 

train respectively. 
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Fig. 4.18: Frequency dependency of glycinergic IPSCs 
A) Overlay of 3 traces of recorded IPSCs after 10-pulses trains at 10 Hz (top panel), 
100 Hz (middle panel) and 500 Hz (lower panel) at 60 volts. B) Depression curve for 3 
different frequencies tested. C) Steady state depression for all the frequencies tested. 
D) Frequency dependency of IPSCs decay time (top panel) and half width (lower 
panel) for stimulation trains of different number of pulses. E) Frequency dependency of 
the full charge after trains of different number of pulses.  
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The half width of the last pulse of the train showed the same trend as for the 

decay time constants (Fig. 4.18E). In particular, the calculated half width showed 

no differences when stimulating at low frequencies with different number of 

pulses, presenting values ~ 12 and 13 ms at 10 Hz and ~ 12 and 15 ms at 20 Hz 

for 2 and 20 pulses respectively. At higher frequencies (100, 200 and 500 Hz), 

differences were found when stimulating with 20 pulses, even though these 

values did not differ between the frequencies. Typically, with 2 pulses the elicited 

half width was 17.1 ± 1.93 ms at 100 Hz, 14.42 ± 0.63 ms at 200 Hz and 18.6 ± 

3.7 at 500 Hz. On the other hand, these values were ~ 18 ms after 10 pulses and 

~ 25 ms after 20 pulses for the 3 frequencies.  

On average, the effective charge carried by the evoked IPSCs was evaluated 

after the different stimulation trains tested (Fig. 4.18F). The integral of the area of 

the elicited currents showed no main differences as a function of the frequencies 

evaluated but as function of the number of pulses tested as seen for the 

GABAergic IPSCs. For instance, with trains of 2 pulses, the charge ranged 

between 9.95 ± 3.86 pC at 10 Hz and 14.06 ± 5.47 pC at 200 Hz whereas after a 

10-pulse train valueswere ~ 2 to 4 times larger, ranging between 27.11 ± 11.6 pC 

at 500 Hz and 48.8 ± 15.63 pC at 20 Hz. The effective charge found after 20-

pulses trains doubled that one found at 10 pulses, with values ranging from 39.19 

± 21.76 pC at 500 Hz to 89.5 ± 28.02 pC at 20 Hz.  
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5. DISCUSSION 

 

In this study, the cellular mechanisms underlying persistent inhibition in the DNLL 

were studied. As a first approach, the presence of long lasting spike suppression 

in the Mongolian gerbil was assessed in vivo. This long lasting inhibition was then 

further investigated in acute brain slices both in current and voltage clamp 

conditions, determining its GABAergic nature and identifying the contralateral 

nucleus as its source. Moreover, spillover onto extrasynaptic receptors, and 

possibly onto neighboring synapses as well, was found to explain, at least 

partially, the extended time course of the IPSCs. Additionally, asynchronous 

release of the neurotransmitter also played a substantial role in prolonging 

synaptic inhibition in response to high frequency stimulation trains. Thus, pre- and 

post-synaptic factors were found to be the mechanisms contributing to PI in the 

DNLL of the Mongolian gerbil.  

 

5.1 Persistent inhibition in the DNLL of the Mongolian gerbil 

In general, the DNLL neurons present a BF distribution representing the entire 

audiogram of an animal as it has been shown for different species (Markovitz and 

Pollak, 1993; Covey, 1993; Burger and Pollak, 2001; Bajo et al., 1998; Aitkin et 

al., 1970). This work focused on high frequency EI neurons as these cues are 

processed through the IID circuitry. The DNLL posses a considerable number of 

EI cells in other animals (rats: Bajo et al., 1998; Kelly et al., 1998; and bats: 

Covey, 1993; Markovitz and Pollak, 1994), therefore it is not surprising that more 
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than half of the encountered neurons were excited by the contralateral side and 

inhibited by ipsilateral stimulation.  

The results obtained in the present study not only confirm the existence of PI in 

the Mongolian gerbil as it was described by other members of the lab (T. Zahn 

(PhD thesis dissertation, 2003) and M. Pecka (Diploma thesis dissertation, 

2004)), but also offer a more accurate value of the effective duration of spike 

suppression. Zahn and Pecka conducted experiments in which they assessed 

the presence of PI by using a 3-pulses protocol with a first binaural tone favoring 

the inhibitory ear and two trailing sounds delivered only to the excitatory ear, as 

first described by Yang and Pollak (1994). With this approach, the elicited spike 

suppression was quantified as the minimal interpulse separation between the first 

and the subsequent stimulation pulse at which DNLL neurons were able to fire 

action potentials. Since the interpulse intervals were predefined, their measure of 

PI might have not been an accurate estimate.  

In contrast, and similarly to what other authors have done (Yang and Pollak, 

1994b), the stimulation protocol used in this study allowed a more precise 

measure of the duration of PI as the excitatory sound stimulation was presented 

for a prolonged duration (200 ms) and therefore the effective suppression evoked 

by stimulation of the inhibitory ear could be calculated.   

The results presented here show that binaural sounds with negative IIDs 

suppress action potential firing induced by contralateral excitation in the DNLL of 

the gerbil. As in bats (Pollak, 1997; Yang and Pollak, 1994; Burger and Pollak, 
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2001), this suppression can last for several tens of milliseconds beyond the end 

of the inhibitory signal (Pecka et al., 2007).   

Moreover, the finding that PI is also present in the Mongolian Gerbil contributes 

the hypothesis that it might be a common feature in mammals.  

 

5.2 DNLL cell types and their physiological properties in vitro 

A multiplicity of neuronal types has been recognized in DNLL based on their 

somatic and dendritic morphology in the rat (Bajo et al. 1993, Wu and Kelly, 

1995; Tanaka et al., 1985), mouse (Iwahori, 1986), cat (Adams, 1979; 

Shneiderman et al., 1988) and big brown bat (Covey, 1993) using retrograde 

labeling, Golgi inmunogold or Nissl staining techniques. Accordingly, the data 

presented here revealed that at least two types of morphologically distinct 

neurons, elongated and rounded, can be found in DNLL of the gerbil. These cells 

also exhibited different physiological characteristics, with essential differences not 

only in their firing properties but also in their response to hyperpolarizing current 

injections. This is in line with what it has being described for DNLL cells recorded 

in vivo, where sustained and onset neurons were identified on the basis of their 

firing properties in response to auditory stimulation (Siveke et al., 2006; Bajo et 

al., 1998; Yang et al., 1996; Kelly et al., 1998).  

However, Wu and Kelly (1995a,b) argue that despite the morphological diversity, 

biocytin-labeled neurons were indistinguishable based on their physiological 

properties using intracellular recordings. Nevertheless, some degree of 

divergence in the firing properties can be observed among the cells they 
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recorded from, with some neurons exhibiting only few spikes (in some cases only 

one or two spikes) in response to suprathreshold current injections and some 

others showing a “chopper-like” response. On the other hand, Wu and colleagues 

(Wu and Kelly, 1995a,b; Fu et al., 1997) found that many DNLL neurons often 

exhibit a slowly developing sag in the membrane potential during hyperpolarizing 

current injections as shown here for neurons with sustained firing. Furthermore, 

they suggest that this hyperpolarizing sag corresponds to an inward rectifying 

current, IH, which might enhance the extent of excitation on these cells, thereby 

making the DNLL a powerful inhibitory source (Fu et al., 1997). Presumably, most 

neurons that Wu and colleagues recorded from were sustained type cells. 

Together, this might suggest that these two physiological characteristics 

(persistent firing and IH currents) might be intrinsic properties of a specific type of 

DNLL neuron (sustained type).   

On the other hand, the results presented here together with other morphological 

and in vivo evidences (Iwahori, 1986; Adams, 1979; Shneiderman et al., 1988; 

Siveke et al., 2006; Bajo et al., 1998; Yang et al., 1996) suggest that at least two 

types of neurons with particular cellular characteristics are present in the DNLL. 

The discrepancy between Wu’s work and the data presented here may arise from 

the different species used. Wu and colleagues studied the physiological 

properties of DNLL neurons in rats which are specialized for high frequency 

hearing and thus, may present anatomical and/or physiological differences.  It 

should also be considered that both studies were conducted with different 

technical approaches as they performed intracellular recordings with sharp 

electrodes whereas this work has been done in whole cell patch-clamp 
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configuration and that the recording solutions used were also different. It can also 

not be ruled out that differences might be due to a differential sampling of 

neurons within the DNLL.  

More work would be necessary to clearly determine the relationship between the 

morphology and the in vitro physiology of the different cell types among the DNLL 

and to determine their specific contribution to the sound localization pathways. 

 

5.3 The source of PI in the DNLL 

Several anatomical studies have revealed that most DNLL neurons are 

GABAergic (Adams and Mugnaini, 1984; Glendenning and Baker, 1988; 

Shneiderman et al., 1988; Vater et al., 1992). Most of these GABAergic neurons 

give rise to a prominent projection to the contralateral DNLL through the 

commissure of Probst (Adams, 1979; Bajo et al., 1993; Ito et al., 1989; Kudo, 

1981; Merchán et al., 1994; Oliver and Shneiderman, 1989; Iwahori, 1986).  

The contribution of this GABAergic inhibition to binaural processing has been 

examined both in the DNLL (Yang and Pollak, 1994; Burger and Pollak, 2001) 

and the IC (Li and Kelly, 1992; Kidd and Kelly, 1996; Moore et al., 1998; Bauer et 

al., 2000). Moreover, it has been shown that local injections of kynurenic acid, an 

excitatory amino-acid antagonist, into the DNLL partially releases the neurons in 

the opposite DNLL from binaural suppression (Kidd and Kelly, 1996), suggesting 

that the source of inhibition is the contralateral nucleus. In addition, Pollak and 

colleagues found that the inhibition evoked by ipsilateral stimulation is potent and 

prevents DNLL neurons from responding to contralateral signals for a period of 
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time following the inhibitory signal (Yang and Pollak, 1994, 1998; Burger and 

Pollak, 2001). Moreover, the reversible inactivation of the DNLL revealed the role 

of its GABAergic inhibition in processing multiple sounds in the IC of the bats 

(Burger and Pollak, 2001), suggesting that the DNLL might contribute to the 

precedence effect.  

Kelly and Kidd (2000) proposed that PI might be mediated by persistently active 

neurons in the opposite DNLL. However, no extended firing among DNLL 

neurons has been observed (Covey, 1993; Bajo et al., 1998; Siveke et al.. 2006). 

The results presented here show that the stimulation of the commissure of Probst 

is sufficient to suppress spike firing, discarding the hypothesis centered on 

persistently active LSO neurons that, in turn, induce DNLL cells to exert an 

extended inhibition to its contralateral counterpart (Kelly and Kidd. 2000).  

Moreover, the kinetics of the evoked GABAergic IPSCs described here 

resembled the time course of PI observed during auditory stimulation. The 

stimulation of the Commissure of Probst generated IPSCs with slow kinetics that 

could explain the observations found in vivo, implying that intrinsic properties are 

underlying this inhibition. Similarly, Chen et al. (1999) described comparable 

values for the half duration of the inhibitory postsynaptic potentials (IPSPs) 

evoked after commissural stimulation in rats of 10-16 days of age which were 

dependent on the stimulation strength as well as on the number of pulses.  

So far, the results presented here imply that PI might be generated by intrinsic 

properties at the level of synaptic information transfer of principal neurons in the 

DNLL rather than by network properties. Moreover, the evidence provided 
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suggests that the inhibition is mediated by GABAA receptors and that the source 

of this inhibition is the contralateral nucleus. 

 

5.4 Spillover prolongs synaptic inhibition in the DNLL 

GABA escaping the synaptic cleft can reach receptors located extrasynaptically 

or on neighboring synaptic terminals (Semyanov et al., 2003,; Isaacson et al., 

1993; Mitchell and Silver, 2000; Scanziani, 2000). The amount of GABA that a 

given receptor will be exposed to will depend on its location relative to the release 

site, diffusional barriers and the proximity of the neurotransmitter transporters 

(Overstreet et al., 2000; Barbour and Häusser, 1997; Kullman, 2000). The 

release of multiple vesicles at one single release site or the evoked release from 

several terminals promotes GABA spillover and activation of both synaptic and 

extrasynaptic receptos. Thus, during intense synaptic activity the extracellular 

concentration of GABA rises, increasing spillover. This phenomenon has been 

described in the hippocampus (Isaacson et al., 1993;Scanziani, 2000; Overstreet 

and Westbrook, 2003; Alle and Geiger, 2007; Semyanov et al., 2003) and 

cerebellum (Rossi and Hamann, 1998; Mitchell and Silver, 2000b). 

Moreover, some morphological characteristics of the synapses are thought to 

favor neurotransmitter diffusion to neighboring synapses, as for example closely 

packed synapses. In the mossy fiber-unipolar brush cell synapse, several release 

sites are clustered within < 1µM and they exhibit long lasting synaptic currents 

(Rossi et al.1995, Slater et al. 1997). These anatomical properties facilitate the 
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activation of receptors that are not located at the postsynaptic density, hence 

reducing synaptic independence.  

There is evidence suggesting that DNLL morphology might be a good substrate 

for transmitter spillover, as several authors have described that GABAergic 

synapses are densely distributed on both the soma and dendrites of DNLL 

neurons (Iwahori, 1986; Adams and Mugnaini, 1984; Oliver and Shneiderman, 

1989). In addition to this morphological aspect of the DNLL, the physiological 

data described in here support the hypothesis that transmitter spillover might be 

occurring and, thus, prolonging synaptic inhibition.  

 The dependency of the decay time constants of the evoked IPSCs on the 

stimulation strength suggest not only that more fibers might be recruited at higher 

intensities, but also that the released neurotransmitter might spill out from the 

synaptic cleft and activate receptors in neighboring synapses. The linearity of the 

amplitude increase as a function of the stimulus intensity is in line with this 

hypothesis. Even though at higher stimulation strength more fibers might be 

recruited, no shift in the IPSC latencies was observed and therefore, the 

recruitment of out of phase inputs cannot explain the slower kinetics.  

Furthermore, the kinetics of the evoked GABAergic currents in the DNLL was not 

only extended with the strength of the stimulation after single pulse and trains, but 

they also exhibited frequency dependence. Although this observation could also 

imply the involvement of an asynchronous release component (explained later), 

this is in agreement with what it has been described in other synapses in which 

spillover is present. Mitchel and Silver (2000a) found that the degree of glutamate 
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spillover onto inhibitory synaptic terminals in the cerebellum was dependent on 

the frequency and duration of stimulation of the mossy fibers. This is expectable 

as more GABA is release during intense activity and therefore, more 

neurotransmitter would spill out and reach the extrasynaptic space and possibly 

neighboring synapses as well. Similar observations have been made in pyramidal 

neurons of the CA3 region in the hippocampus where glutamate spillover can be 

induced by brief tetanic stimulation of the mossy fiber input (Scanziani, 2000; 

Vogt and Nicoll, 1999). 

Although transmitter spillover seems to contribute to the extended inhibition in the 

DNLL, we cannot rule out the possibility that calcium in the presynaptic terminal 

would build up after high frequency trains. Therefore, asynchronous release of 

GABA might also be contributing to extending the inhibition in the DNLL under 

conditions of intense synaptic activity. Even though asynchronous release seems 

to occur in this preparation after brief tetanic stimulation, it is unlikely that 

asynchronous release could contribute to the extended decay time constants of 

single evoked IPSCs since the delayed release of vesicles requires residual 

calcium accumulation that could only be reached after a minimum of 10 

stimulation pulses (Lu and Trussell, 2000; Jensen et al., 2000). The contribution 

of this release modality will be discussed below.  

Spillover currents are generated by low concentrations of neurotransmitter, 

therefore this component of the synaptic currents is more sensitive to low affinity 

antagonists (Diamond, 2001; Carter and Regehr, 2000; Overstreet and 

Westbrook, 2003; Szapiro and Barbour, 2007). It has been shown that the 

application of TPMPA, a low affinity GABAA competitor (Jones et al., 2001; 
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Barberis et al., 2005; Szabadics et al., 2007), decreases the time constants of the 

IPSCs suggesting that receptors located further away from the release site might 

be affected in a more prominent manner than those sitting directly at the 

postsynaptic site (Szabadics et al., 2007). In agreement with the literature, the 

results described here indicate that after application of TPMPA, the GABAergic 

IPSCs had faster kinetics than under control conditions. Moreover, the application 

of a lower concentration of TPMPA (100 µM) induced almost the same reduction 

on the kinetics of the IPSCs whereas the amplitudes where less reduced 

compared to higher concentrations of TPMPA. Since there is a concentration 

gradient of GABA, (higher at the release site and lower at extrasynaptic areas), 

TPMPA would have a larger effect further away from the active synapse, 

indicating that the neurotransmitter spillover might be one of the possible 

mechanisms extending synaptic inhibition in the DNLL. In contrast, the 

application of a full antagonist of GABAA (SR95531) at a concentration that 

induced only a partial block of the evoked currents elicited no dramatic change in 

the kinetics of the IPSCs. Together, these data suggest that the prolongation of 

synaptic inhibition in the DNLL is, at least partially, induced by low concentrations 

of GABA that spills out of the synaptic cleft. 

Previous studies have shown that lowering release probability reduces the level 

of interaction of transmitter released from neighboring release sites and that this 

can accelerate the decay of synaptic currents at GABAergic (Roepstorff and 

Lambert, 1994; Overstreet and Westbrook, 2003) and glutamatergic (Trussell et 

al., 1993; Otis and Trussell, 1996; Silver et al., 1996; Diamond and Jahr, 1995; 

Isaacson and Walmsley, 1995; DiGregorio et al., 2002) synapses.  
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Reducing release probability by lowering the external calcium concentration to 

0.5 mM  prevented the prolongation of synaptic inhibition in DNLL neurons, 

suggesting that pooling of transmitter released from multiple sites was required to 

reach sufficient concentrations for receptor activation (Arnth-Jensen et al., 2002; 

Overstreet and Westbrook, 2003). 

Furthermore, when the extracellular concentration of calcium was 1 mM the 

kinetics of the IPSCs resembled the one observed at 0.5 mM, whereas the 

amplitudes were reduced to a lesser extent. The reduction in vesicle release 

reduced the overall concentration of GABA in the synaptic cleft and, therefore, 

diminished the receptor activation, with a larger effect observed at the 

extrasynaptic sites due to the neurotransmitter concentration gradient. These 

results indicate that the reduction on release probability induced a reduction of 

synaptic crosstalk.  

Most of the presynaptic entry of calcium that triggers neurotransmitter release is 

thought to occur through high voltage-activated (HVA) channels (Llinás, 1982). 

These HVA channels exhibit a high sensitivity to block by Cd2+ (Randall and 

Tsien, 1995). Accordingly, the bath application of cadmium induced a reduction of 

the IPSCs decay, even though it was to a lesser extent than when reducing the 

calcium concentration extracellularly. This could suggest that other channel types 

might also be involved in transmitter release in the DNLL. It has been shown that 

in the giant mossy fiber synapse in the CA3 region of the hippocampus the R-

type calcium channel (CaV 2.3) is excluded from the active zones but present 

outside them. This type of channel is less effective in releasing neurotransmitter 

than the N- and P/Q-types (HVA channels), but is effective in generating effects 
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that are dependent on the total calcium influx (Dietrich et al., 2003). Whether 

types other than the HVA receptors are also involved in the release machinery in 

the DNLL remains unknown and should be investigated by application of specific 

channel blockers.  

Transmitter uptake by transporters is one of the limiting factors for synaptic 

spillover. In general, a fast clearance of the neurotransmitter from the synaptic 

cleft promotes synapse specificity by limiting spillover between release sites. One 

plausible explanation for crosstalk between neighboring synapses is saturation of 

the buffering capacity of the neurotransmitter uptakers in order to accumulate 

GABA extrasynaptically (Scanziani, 2000). Therefore, enhancing spillover by 

blocking the uptake would slow down the kinetics of synaptic currents (Hartzell et 

al., 1975). In general, as a result of inhibiting transmitter uptake, the role for 

transmitter clearance in preventing crosstalk can be unmasked (Isaacson et al., 

1993; Overstreet and Westbrook, 2003; Alle and Geiger, 2007; Mitchell and 

Silver, 2000; Szapiro and Barbour, 2007).  

Interestingly, in the DNLL spillover could be observed even without inhibiting 

GABA clearance. In the DNLL, the saturation of the transporters was evident 

even with no uptake blockers in the bath. This suggests two possibilities: the 

transporters might be present in low concentrations and/or GABA is released in 

large quantities after high activity levels.  

Blocking GAT-1 activity by application of NNC711 resulted in the prolongation of 

synaptic inhibition whereas the decay time of the mIPSCs, which reflects the 

spontaneous release of a single vesicle at one release site, was unchanged. This 
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indicates that transporters do not influence synaptic responses at individual 

release sites (Isaacson et al., 1993; Overstreet and Westbrook, 2003). 

Furthermore, the sensitivity to transport block seems to require that multiple sites 

are releasing GABA simultaneously.  

In the DNLL high frequency stimulation of the Commissure of Probst seemed not 

to have induced receptor desensitization, as it is often observed when large 

amounts of neurotransmitter are being released (Pugh and Raman, 2005; Bianchi 

and Macdonald, 2002), even after transport block. This observation could 

suggests that the GABAA receptors present in these neurons not only have a high 

affinity for the transmitter, as they can be activated by low concentrations, but 

also that specific subunits of these receptors might be present which desensitize 

at a slow rate. However, further experiments designed to block receptor 

desensitization should be carried out to confirm this hypothesis.  

A variety of GABAA receptors are thought to be activated by ambient GABA in 

different neuronal populations (Nusser and Mody, 2002; Overstreet and 

Westrbrook, 2001; Stell and Mody, 2002). The detection of these low GABA 

concentrations in the extracellular space that persist in the presence of GABA 

uptakers might involve high affinity receptors that are not sensible to 

desensitization (Rossi and Hamann, 1998). The entering of GABAA receptors into 

a desensitization state is an important feature for shaping the time course of the 

inhibition (Jones and Westbrook, 1995; Haas and Macdonald, 1999).  

As suggested above, it could be proposed that low concentrations of GABA are 

acting on high affinity receptors in DNLL principal neurons. Nevertheless, it is 
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noticeable the effect of the low affinity antagonist (TPMPA) in reducing the IPSCs 

decay. Thus, it can not be ruled out that large amounts of transmitter are being 

released, regardless of the affinity of the GABAA receptors.  

Together with the receptors affinity for the neurotransmitter and the extent of their 

desensitization (Stell and Mody, 2002; Mtchedlishvili and Kapur, 2006), their 

different location in relation to the release site is an important feature that 

differentiates receptors mediating phasic and tonic activation. Some 

extrasynaptic GABAergic receptors, with high affinity for GABA, are also 

characterized by slow desensitization (Banks and Pearce, 2000). It has been 

shown that the α6 and δ subunits confer on cerebellar granule cells an 

extraordinarily high affinity for GABA and a robustness against desensitization 

(Rossi and Hamann, 1998; Saxena and Macdonald, 1996). Moreover, the 

presence of the δ subunit results in the expression of the receptor in the 

extrasynaptic or presynaptic membrane (Nusser et al., 1998; Wei et al., 2003). 

The expression profile of GABAA receptor subunits in the DNLL is not yet known 

and, therefore, we cannot speculate as to whether the presence of a certain 

receptor subtype might be responsible for the sensitivity to GABA. For instance, 

the receptor localization and clustering as well as specific properties of the 

transmitter transporters might also contribute to the generation of spillover and 

the detection of low concentrations of GABA.  

Further studies focusing on establishing the precise identity and localization of 

these molecules in DNLL sustained-type neurons will help to understand the 

mechanisms responsible for mediating spillover currents in this nucleus. 
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5.5 Asynchronous release in DNLL principal neurons 

contributes to PI at high frequency activity levels 

The entry of Ca2+ into the presynaptic terminal triggers and modulates 

neurotransmitter release. The buildup of Ca2+ that may occur during high 

frequency activity can generate the asynchronous release of the transmitter 

(Barret and Stevens, 1972; Goda and Stevens, 1994; Lu and Trussell, 2000). 

This type of release has been described both in glutamatergic (Goda and 

Stevens, 1994; Atluri and Regehr, 1998; Diamond and Jahr, 1995; Otsu et al., 

2004) and GABAergic (Lu and Trussell, 2000; Hefft and Jonas, 2005) synapses. 

In the auditory system, asynchronous release has been described in the nucleus 

magnocellularis of the chick (Lu and Trussell, 2000), where asynchronous 

release is involved in high frequency synaptic transmission.  

In the DNLL, the contribution of asynchronous release to the prolongation of 

synaptic inhibition was observed after stimulation of the Commissure of Probst 

with high frequency trains. This release component, measured as the decay time 

of the evoked IPSCs, was dependent on the number of pulses composing the 

train. It has been shown that the delayed release of vesicles requires the 

accumulation of residual calcium in the presynaptic terminal and that this 

accumulation can be reached after a minimum of 10 pulses (Lu and Trussell, 

2000; Jensen et al., 2000). The reduction in the extracellular calcium 

concentration induced not only a robust depression on the IPSCs amplitudes but 

also a significant reduction on the decay time of the last IPSC evoked after a 

stimulus train. These results suggest that asynchronous release contributes to 

the overall decay of synaptic inhibition in the DNLL.  
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Moreover, the depression of synchronous release after high frequency 

stimulation was coupled to the appearance of asynchronous release, as 

suggested by the increase on the decay time of the last IPSC of a train and the 

lack of change of the integral of the overall charge. This coupling between 

depression of synchronous release and generation of asynchronous release has 

been observed in other synapses (del Castillo and Katz, 1954; Lu and Trussell, 

2000; Otsu et al., 2004).  

The coupling between synaptic vesicles and calcium channels determines the 

extent of synchrony of transmitter release. A measure of how tight the calcium 

sensor and the calcium source are coupled can be achieved by using calcium 

chelators (Hefft and Jonas, 2005; Adler et al., 1991). Preliminary experiments 

showed that bath application of EGTA-AM, a low calcium buffer, prevented 

asynchronous release of GABA in the DNLL. This suggests that a long lasting 

presynaptic calcium transient may drive the non-phasic release in these neurons, 

thus the coupling between the calcium sensor and its source might not be tight. In 

other words, sensor and source might be located further away from each other.  

The degree of asynchronous release may be limited by the decay of the calcium 

transient in the presynaptic terminal. A slow calcium decay would imply the 

presence a buffer with a high affinity for calcium which is less efficient in 

facilitating release and therefore, permitting the delayed release of the transmitter 

(Goda and Stevens, 1994).  

Asynchronous release in sustained neurons in the DNLL may be the result of the 

interplay of different mechanisms. In general, the proximity of the vesicles to the 



Discussion 
_____________________________________________________________________ 
 

99 

calcium source together with the affinity of the calcium sensor may play a key role 

for releasing neurotransmitter in a non-phasic fashion (Südhof, 2002; Hui et al., 

2005). Candidate molecules for the calcium sensor that could generate 

asynchronous release are high affinity synaptotagmins, such as synaptotagmin 5, 

6, 7, 9 and 10 (Südhof, 2002; Hui et al., 2005) that could sense low calcium 

concentrations such as those that can trigger delayed release.  

It has been shown that the calcium sensors for synchronous and asynchronous 

release operate in an independent manner (Lu and Trussell, 2000; Otsu et al., 

2004; Sun et al., 2007). Synaptotagmin 1, present in both excitatory and 

inhibitory cortical neurons can trigger synchronous release independently of 

asynchronous release (Maximov and Südhof, 2005; Nishiki and Augustine, 

2004). Moreover, a recent study on the Calyx of Held synapse by Südhof and 

collaborators (Sun et al., 2007) demonstrated that synchronous and 

asynchronous release act on the same vesicle pools but through different 

pathways involving different types of Synaptotagmins. Nevertheless, the 

molecular identity of the calcium sensors in the DNLL is yet to be investigated. 

 

5.6 Glycinergic inputs onto DNLL neurons 

Several anatomical and physiological studies have shown that DNLL neurons 

also receive glycinergic inputs from the ipsilateral LSO (Glendenning et al., 1992; 

Yang and Pollak, 1994; Shneiderman et al., 1999). Moreover, it has been 

reported that not all DNLL cells are equally innervated by the glycinergic 

projection of the ipsilateral LSO (Shneiderman et al., 1999). This may explain 
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why in this study only few glycinergic input fibers were recruited during 

stimulation. The results described here imply that at least a subset of DNLL 

neurons receive both GABAergic and glycinergic inputs. Whether all cells within 

the nucleus co-express both types of receptors remains unknown.  

Interestingly, in the DNLL of the gerbil glycinergic IPSCs exhibit faster kinetics 

than GABAergic currents. This is in agreement with previous studies, where they 

showed in vivo that glycinergic inhibition in the DNLL has shorter latency and 

shorter duration than that elicited by the GABAergic inputs (Yang and Pollak, 

1994a; Yang and Pollak, 1994b; Wu and Kelly, 1995). 

As has already been suggested by Pollak and his colleagues, glycinergic input 

seems not to play a major role in PI as it does not contribute significantly to the 

extended synaptic inhibition (Yang and Pollak, 1994a). The results presented 

here where GABAergic and glycinergic IPSCs were recorded simultaneously 

confirmed that the contribution of the latter to the overall kinetics is minimal with 

respect to PI.   
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6. CONCLUSIONS 

 

The mechanisms that produce precedence are thought to be responsible for 

enhancing the ability to localize sounds in echoic environments. Previous studies 

on PE have been mainly focused on physiological mechanisms in the IC of 

rabbits and cats (Yin, 1994; Fitzpatrick et al., 1995; Litovski and Delgutte, 2002; 

Tollin et al., 2004). Moreover, Pollak and colleagues suggested that the circuitry 

linking the DNLL with the IC in bats is important for processing signals which 

generate IIDs that change over time, as those that can be generated by multiple 

sources that emanate from different locations (Pollak et al., 2002; Burger et al., 

2001; Yang et al., 1994; Yang et al., 1998). They proposed that during the period 

of PI in the DNLL, EI cells in the IC may be temporarily released from inhibition, 

allowing these cells to respond to trailing sounds. However, the mechanisms 

generating PI in DNLL neurons remained unclear until now.  

The work presented here provides strong evidence for the role of the DNLL in 

echo suppression. These results indicate that PI is due to intrinsic characteristics 

of DNLL neurons and explores the mechanisms underlying it.  

Summarizing, the three main findings of this work are: 

1. in vivo data provides evidences of PI in the gerbil, suggesting that this 

might be a common feature in mammals. 

2. in vitro data unveils the cellular nature of PI, discarding hypotheses that 

suggest a network based long lasting inhibition. 
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3. Moreover, in vitro data provides information about the mechanisms 

underlying PI, suggesting that pre- and postsynaptic cellular properties 

are involved in the prolongation of synaptic inhibition in the DNLL.  

 

Synaptic transmission relies on the interplay of many tightly regulated processes 

that together determine the timing, magnitude and kinetics of the postsynaptic 

responses. Thus, spillover of neurotransmitter could reduce synaptic 

transmission reliability by reducing synaptic independence. However, the effect of 

spillover does not seem to be disadvantageous at all synapses. Spillover has 

been proven to be important for amplification, increasing the postsynaptic 

response in the avian endbulb of Held (Trussell et al., 1993) and the cerebellar 

mossy fiber-granule cell synapse (DiGregorio et al., 2002).  

In the DNLL, spillover and asynchronous release of GABA are important to 

prolong synaptic inhibition. Both cellular mechanisms have proven to occur at 

physiological temperature in vitro, suggesting that these pre- and post-synaptic 

mechanisms for generating long lasting inhibition may also occur in the brain in 

vivo. Moreover, spillover seems to be of extreme relevance for activating distant 

or extrasynaptic receptors hence, extending the transmission of information 

between neurons without an extra cost to the release machinery.  

It has been shown that the innervation of the DNLL to the IC has a significant role 

in binaural processing since it creates new properties in EI neurons in the IC that 

are not present in the LSO or the DNLL. One of these properties is the change in 

the responsiveness of IC neurons to binaural stimuli. This appears to be an 
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important mechanism to enhance the ability of an animal to localize a sound 

source in an echoic environment (Yang and Pollak, 1994). 

GABA spillover in the DNLL, together with asynchronous release, may ensure the 

faithful localization of a sound source in a reverberant environment by, on one 

hand, prolonging the inhibition at a level of a single cell and, on the other hand, 

regulating the number of neurons that will remain inhibited. The signal dispersion 

provided by GABA spillover releases more IC neurons from inhibition and 

therefore, makes it able to respond to sounds coming from different areas in 

space.   
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LIST OF ABBREVIATIONS 

 

AP   action potential 

AVCN   anteroventral cochlear nucleus  

BF   best frequency  

CN   cochlear nucleus 

DNLL   dorsal nucleus of the lateral lemniscus 

EE   excitatory/excitatory  

EI   excitatory/inhibitory 

EPSC   excitatory post-synaptic currents 

GABA   gamma-aminobutiric acid 

IC   inferior colliculus 

IID   interaural intensity differences 

INLL   intermediate nucleus of the lateral lemniscus 

IPSC   inhibitory post-synaptic currents 

IPSP   inhibitory post-synaptic potentials 

ISD   interstimulus delay 

ITD   interaural time difference 

LSO   lateral superior olive 

mIPSC  miniature inhibitory post-synaptic currents 

MNTB   medial nucleus of the trapezoid body 

MSO   medial superior olive 

nMag   nucleus magnoceullaris  

PE   precedence effect 

PI    persistent inhibition 

SOC   superior olive complex 

SPL   sound pressure level 

VNLL   ventral nucleus of the lateral lemniscus
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