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SYNOPSIS 
 

 

Embryonic stem (ES) cell biology has become a very interesting field for scientific 

research in recent years. This is not only due to the meanwhile relatively easy 

propagation of stem cells in culture, but mainly to their very specific features, which 

offer a wide variety of research perspectives and future therapeutic approaches. 

ES cells are undifferentiated, pluripotent cells, meaning that an individual cell has the 

capability to differentiate into all cell types of a mammalian body. The possibility to 

differentiate ES cells in vitro into specific lineages provides an opportunity to follow up 

differentiation processes and reveal factors involved in the generation of specific 

progenitors or committed cell types. With human ES cells, there is a strong effort to use 

this knowledge for cell replacement therapies to repair damaged organs or as vehicle 

for drug delivery to specific sites within the body. In addition, such studies can provide 

further understanding of embryogenesis without the use of transgenic animals. 

The pluripotency of stem cells depends on their ability to self-renew. Self-renewal is the 

ability to proliferate via symmetrical cell divisions without differentiation, therefore 

ensuring identical pluripotent progeny. 

Another specific feature of ES cells is their rapid proliferation rate together with unusual 

cell cycle kinetics, which is speculated to be as well related to self-renewal and the 

maintenance of pluripotency (Burdon et al., 2002; Niwa, 2007). In culture, ES cells show 

an unlimited proliferation potential although they are derived without addition of any 

immortalizing agent (Suda et al., 1987). Moreover, ES cells do not undergo 

senescence, do not show contact inhibition, and can grow without the addition of serum, 

properties also typical of tumor cells. When introduced into somatic tissues, ES cells 

show indeed tumorigenic potential, which might interfere with their usage for therapeutic 

purposes (Takahashi et al., 2003a). Studying the unusual proliferation properties of ES 

cells is therefore an important issue that might also advance our understanding of 

transformed cells and of the self-renewal process. 

 

Proliferation is a coordinated process between cell growth and cell division. This tight 

balance is necessary to prevent cells from premature division. In ES cells, which lack 

some of the usual control points during the cell cycle, not much is known about a 

possible coordination between these processes. One important regulator of cell growth 

is ribosome biogenesis, which has recently been linked to cell cycle pro gression. As a 
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factor, involved in both processes, the PeBoW-complex has been identified. The 

components of the PeBoW-complex, Pes1, Bop1 and WDR12 have been shown to be 

necessary for maturation of the large ribosomal subunit and for cell proliferation in 

mature cell systems. Disruptions in ribosome synthesis, following depletion of the 

PeBoW-complex, are proposed to be transmitted to the cell cycle machinery via a p53- 

dependent checkpoint response (Holzel et al., 2005; Pestov et al., 2001). During this 

work it was investigated whether Pes1, Bop1 and WDR12 have an effect on 

proliferation of embryonic stem cells and how ribosome biogenesis and proliferation are 

coordinated in stem cells. 
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1 INTRODUCTION   
 

 

1.1 Mouse embryonic stem cells  
 

The hallmark of stem cells, embryonic or adult, is their capacity for self-renewal on one 

hand and differentiation on the other hand. Embryonic stem cells are pluripotent and 

represent the origin of all tissues of the mammalian body. Pluripotency is generally 

defined as the ability to give rise to derivatives of all three germ layers and germ cells; 

that is, essentially all cell types, found in an adult organism (Boiani and Scholer, 2005; 

Solter, 2006). In contrast, adult stem cells are further developed and therefore 

considered as multipotent. They can give rise only to a restricted number of specific cell 

types within the body, e.g., hematopoietic stem cells can differentiate into the different 

types of blood cells. Adult stem cells play an important function within the body for 

replacement of aging or damaged tissues. But not for all tissues exist adult stem cells 

that can renew them after injury. Therefore, research on embryonic stem cells is 

expected to provide a promising tool for regenerative medicine. 

During early embryonic development, the totipotent zygote develops via blastomeres 

into the morula, a stage of about 100 cells at day 2-3 post fertilization. The morula 

gradually reorganizes and expands to give rise to the blastula. At this stage, 

differentiation events partition the embryo into the outer trophectoderm, which will later 

form the placenta, and the inner cell mass (ICM), the embryonic component. With 

further development of the mouse, the ICM gives rise to two distinct lineages: the 

extraembryonic (or primitive) endoderm, which will form extraembryonic tissues, and the 

epiblast, which gives rise to the embryo proper (via primitive ectoderm) (Niwa, 2007).  

Mouse embryonic stem cells are isolated from the inner cell mass (ICM) of the 

blastocyst from 3-4 day old preimplantation embryos (Evans and Kaufman, 1981; 

Martin, 1981). Under addition of the cytokine LIF (leukemia inhibitory factor), mouse ES 

cells can be propagated in culture unlimited, without loosing their self-renewal 

properties. LIF can be provided by secretion from feeder cells or, alternatively, it can be 

added as a recombinant protein into the medium, bypassing the need for feeder cells 

(Smith et al., 1988; Williams et al., 1988). Withdrawal of LIF from cultivation medium 

leads to differentiation of ES cells in vitro. When ES cells are reintroduced into a 

blastocyst, they can contribute to all cells of the embryo proper.  
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In principal, ES cells represent an in vitro counterpart of a cell population from the early 

embryo, the ICM. Nevertheless, the cell population of the ICM exists only for a limited 

time and then differentiates into the fetus and finally the adult organism. It is presumed 

that ES cells are a transient population that can be maintained practically indefinitely in 

vitro through selection and adaptation to the culture environment (Buehr and Smith, 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Isolation, cultivation and differentiation of mouse embryonic stem cells. During early 
embryonic development, the fertilized, totipotent oocyte develops via the morula and blastocyst 
stages into the fetus. During the early blastomere stages all cells are totipotent, while the blastocyst 
contains pluripotent cells (the inner cell mass - ICM) and surrounding trophectoderm. Pluripotent 
embryonic stem cells are isolated from the ICM of a blastocyst. Under addition of leukemia inhibitory 
factor (LIF), mouse ES cells can be cultured in vitro unlimited without loosing their self-renewal 
properties. In the absence of LIF, they can differentiate into specific cell types like blood cells, nerve 
cells etc. (Figure was obtained and modified from http://www.biokurs.de/skripten/bs11-76.htm) 
 

 

1.1.1 Self-renewal of mouse embryonic stem cells 

 

Self-renewal describes the capacity of ES cells to divide without differentiation, so that 

they remain pluripotent. A variety of pathways are involved in this process. One 

important factor for the maintenance of pluripotency of mouse ES cell lines in vitro is the 

leukemia inhibitory factor (LIF), which belongs to the interleukin-6 cytokine family. LIF 
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signals through a heterodimeric receptor complex, consisting of gp130 and LIF receptor 

(LIFR). By binding of LIF, this complex activates associated JAK kinases (Janus 

associated tyrosine kinases), which phosphorylate gp130 and LIFR on tyrosine 

residues. This in turn leads to recruitment and tyrosine phosphorylation of STATs 

(signal transducer and activator of transcription), predominantly STAT3, by JAKs. 

Phosphorylation leads to dimerization and translocation of STAT3 dimers into the 

nucleus, where they control transcription of genes regulating self-renewal. STAT3 

activation is essential and sufficient to maintain pluripotency (Matsuda et al., 1999; Niwa 

et al., 1998). Recently, c-Myc has been identified as one of the major targets of STAT3, 

involved in self-renewal. Sustained c-Myc activity could maintain ES cell self-renewal in 

the absence of LIF, while overexpression of a dominant negative mutant promoted 

differentiation (Cartwright et al., 2005). 

Additionally to STAT3, LIF induces other signaling proteins including PI3K 

(phosphoinositide 3-kinase), Src family tyrosine kinases, and ERKs (extracellular signal-

regulated kinases) via the MAPK (mitogen-activated protein kinase) pathway (Anneren 

et al., 2004; Burdon et al., 1999). Src and PI3K activation have been reported to support 

self-renewal. Inhibition of PI3K with specific inhibitors led to a differentiated morphology 

and reduced basal and LIF-stimulated phosphorylation of protein kinase B (PKB or Akt), 

glycogen synthase 3 (GSK-3) α/β and ribosomal S6 proteins and elevated LIF induced 

ERK activity (Paling et al., 2004). Furthermore, a myristoylated, active form of Akt 

maintained the undifferentiated phenotype of mouse ES cells without the addition of 

LIF. This was independent of the Wnt/β-catenin pathway, supporting the role for 

PI3K/Akt signaling in self-renewal (Watanabe et al., 2006). In contrast, activation of 

ERKs leads to differentiation. Apparently, the balance between LIF induced STAT3 plus 

the other pro self-renewal pathways and ERK signaling is important for the decision of 

self-renewal versus differentiation (Burdon et al., 2002). SOCS3 (suppressor of cytokine 

signaling) is also involved in the regulation of self-renewal. Its expression is stimulated 

by LIF. Overexpression of SOCS3 inhibits the JAK/STAT pathway, thereby regulating 

LIF signaling in a negative feedback loop. Low expression amounts instead attenuate 

Shp2-dependent MAPK signaling (Duval et al., 2000; Schmitz et al., 2000). 

For efficient self-renewal, LIF signaling needs to collaborate with other factors usually 

present in the serum added to the culture medium. For example, bone morphogenetic 

factors (Bmps) have been shown to work in collaboration with LIF. Bmp2 and Bmp4 

promote self-renewal in the presence of LIF via upregulation of Ids (inhibitors of 
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differentiation), which suppress genes involved in neuronal development, and via 

inhibition the p38 and ERK MAP-Kinase activities (Qi et al., 2004; Ying et al., 2003).  

Moreover, a range of transcription factors, the most intensively studied being Nanog, 

Sox2 and Oct4, play an important function (Chambers et al., 2003; Mitsui et al., 2003; 

Pesce and Scholer, 2001). They seem to build a self-organizing network that prevents 

differentiation and promotes self-renewal and might also be involved in epigenetic 

processes, which are important for pluripotency (Niwa, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Schematic model of the main pathways involved in self-renewal of mouse 
embryonic stem cells. A detailed description is given in chapter 1.2.1.  
 

 

The canonical Wnt pathway seems to have a major function in self-renewal of mouse 

and of human ES cells, where LIF signaling does not play a role. Wnt factors act 

through their receptors called Frizzled, leading to stabilization of β-catenin via blocking 

of glycogen synthase kinase-3β (GSK-3β). Activation of the Wnt signaling by BIO, a 

pharmacological inhibitor of GSK-3, maintained an undifferentiated phenotype in mouse 

and human ES cells and sustained the expression of transcription factors like Oct4 and 

Nanog, involved in the maintenance of pluripotency (Sato et al., 2004). Recently, it has 

been shown that activation of the Wnt pathway also upregulates the mRNA of STAT3, 

suggesting a synergistic effect with LIF signaling (Hao et al., 2006). Moreover, as Wnt 
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signaling has been reported to activate transcription of c-Myc in certain cell-types and c-

Myc has been shown to be a target of STAT3, it was supposed that LIF- and Wnt 

signaling may converge on c-Myc as a common target to promote self-renewal 

(Cartwright et al., 2005). Recent data suggest though that in human ES cells sustained 

activation of c-Myc rather leads to apoptosis and differentiation (Sumi et al., 2007).  

High telomerase activity is another feature of ES cells, which is related to self-renewal 

and indefinite replication. Telomerase is a ribonucleoprotein that is involved in 

maintaining telomere length by adding telomere repeats to the chromosome ends. This 

plays an important role in chromosome integrity and replicative lifespan (Armstrong et 

al., 2000; Thomson et al., 1998). Interestingly, the promoter of the catalytic subunit of 

telomerase (TERT) contains c-Myc binding sites, further approving a role for c-Myc in 

self-renewal.  

In addition, the high proliferation rate and the specific features of the cell cycle of ES 

cells (see 1.3.2) are also presumed to be involved in the maintenance of pluripotency 

(Burdon et al., 2002; Niwa, 2007). Interestingly, pathways like PI3K signaling show an 

overlapping function for both processes. 

Finally, the chromatin state and epigenetic modifications play an important role in ES 

cell pluripotency in determining gene activity. The chromatin of ES cells is different from 

somatic cells, including nuclear architecture, chromatin structure and dynamics, and 

histone modifications. The chromatin of ES cells displays for instance characteristics of 

loosely euchromatin, such as an abundance of acetylated histone modifications (Boyer 

et al., 2006; Meshorer and Misteli, 2006). 

Interestingly, recent data indicate that somatic cells can be reprogrammed in vitro into a 

pluripotent, ES cell-like state (Takahashi and Yamanaka, 2006; Wernig et al., 2007). 

Reprogramming of fibroblast could be induced by ectopic expression of the transcription 

factors Oct4, Sox2, c-Myc and Klf4. DNA methylation, gene expression and chromatin 

state of the induced, reprogrammed cells was similar to those of ES cells (Wernig et al., 

2007). 

 

 

1.1.2 Differentiation of mouse embryonic stem cells 

 

When cultured without addition of LIF, ES cells differentiate spontaneously. On non-

adhesive substrates they form spheroid cell aggregates, termed embryoid bodies (EBs) 

because of their resemblance to post-implantation embryos (Doetschman et al., 1985; 
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Leahy et al., 1999). The differentiation processes within EBs strongly resemble the 

processes taking place in a post-implantation embryo, leading to differentiation via 

derivatives of the three germlayers of ecto-, endo-, and mesoderm into more mature 

progenitors and committed cell types like cardiomyocytes, endothelial cells, neuronal 

cells and others. Although multiple cell types form within the EBs, the differentiation 

appears to be largely unpatterned compared to the precise organization within the early 

embryo (O'Shea, 2004).  

In principle, ES cells are also able to differentiate as a monolayer, but the three-

dimensional structure of EBs has the advantage to enhance cell-cell interactions, which 

may be required for certain developmental programs (Keller, 2005). To favor 

differentiation of distinct lineages, a variety of different protocols with specific 

supplements have been established that allow differentiation into almost any cell type. 

Moreover, ES cells are relatively easily amenable to genetic alterations. Thus, in vitro 

differentiation of ES cells via EB formation provides a tool to study certain aspects of 

mouse embryogenesis more rapidly and without the generation of knockout mice. 

In the pluripotent state, ES cells show rapid proliferation rates due to unusual cell cycle 

properties with short gap phases and with most cells being in the S-phase (see 

chapter 1.3.2). When ES cells start to differentiate, the G1-phase becomes longer and 

proliferation slows down (White et al., 2005). This goes along with changes in the cell 

cycle machinery, which is adapting to the “normal” state, known from mature cells. 

 

 

1.2 Proliferation and cell cycle 
 

Cell proliferation requires a tight coordination between cell growth and cell division to 

prevent cells from premature division and loss of size (Polymenis and Schmidt, 1999; 

Thomas, 2000). Coordination of these processes takes place primarily during the cell 

cycle, which the cells pass during their proliferative stage. The cell cycle can be divided 

into four different phases. The G1- (gap1) phase is characterized by high biosynthesis 

and cell growth, during the S- (synthesis) phase DNA replication takes place, in G2- 

(gap2) phase the cell continues to grow and gets ready for mitosis and during the M- 

(mitosis) phase the cell divides, leading to transmission of the genetic information from 

one cell-generation to the next. Transition of cells through the cell cycle is driven by 

subsequent activation of distinct cyclin-dependent kinases (Cdks). The activity of Cdks 

is regulated via binding of cyclins and by their phosphorylation state. Each cell cycle 
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phase is characterized by the expression of distinct cyclins, which in turn activate the 

respective Cdks (Obaya and Sedivy, 2002). An overview about the cyclin/Cdk 

complexes, which are active during the different cell cycle phases, is given in table 1. 

Several checkpoints during the cell cycle (G1-, G2- and M-checkpoint) assure 

coordination and completion of the processes important to each phase. One important 

checkpoint, regulating the coordination between cell growth and cell division in mature, 

mammalian cells, is the G1- or G1/S-phase checkpoint. 

 
 

Cell cycle phase Cyclins Respective Cdks 

G1-phase cyclin D1, D2, D3 Cdk4, 6 

G1/S-phase cyclin E Cdk2 

S-phase cyclin A Cdk2 

G2-phase cyclin A Cdk1 

M-phase cyclin B Cdk1 

 
Table 1: Overview about the cyclin/Cdk complexes, which are active during distinct cell cycle 
phases in mammalian cells. 
 

 

1.2.1 Cell cycle and G1/S-phase checkpoint of mature cells 

 

During early G1-phase the decision is made whether a cell will proliferate and activate 

the cell cycle or whether it will exit the cycle and go into a quiescent state, the G0-

phase. To enter the cell cycle, the availability of mitogenic stimuli from the environment 

is essential and the cell has to pass the restriction point to be able to enter S-phase.  

Mitogenic signaling in early G1-phase usually leads - depending on the cell type - to 

activation of the MAPK pathway and c-Myc and finally to expression of D-type cyclins 

(D1, D2, D3) and Cdk4 and Cdk6 (Aktas et al., 1997; Bouchard et al., 1999; Ekholm 

and Reed, 2000; Lavoie et al., 1996; Perez-Roger et al., 1999). Subsequent association 

of cyclin D with Cdk4 and Cdk6 leads to phosphorylation and activation of the Cdks, 

which in turn phosphorylate the retinoblastoma protein (Rb) (Bates et al., 1994; Kato et 

al., 1993). Rb can be called the gatekeeper of cell cycle. It belongs, together with its 

relatives p107 and p130, to the so called pocket proteins, whose functions show partial 

redundancy. Their phosphorylation state plays an essential role for the transition from 

G1- to S-phase by sequestering the E2F family of transcription factors, which are 

required for the expression of S-phase entry genes. Hypo-phosphorylated Rb blocks 



Introduction 

10 

E2F and therefore S-phase entry in quiescent cells and early G1-phase. During G1-

phase Rb is partially phosphorylated by cyclinD/Cdk4 and cyclinD/Cdk6 complexes, 

which leads to a partial release of E2F, sufficient to activate transcription of its target 

genes cyclin E and cdc25a. The phosphatase cdc25a removes inhibitory phosphates 

from Cdk2 and the resulting cyclinE/Cdk2 complex then completes Rb phosphorylation, 

leading to full release of E2F, expression of its target genes and therefore entry into S-

phase (Harbour and Dean, 2000; Helin et al., 1993; Weinberg, 1995). In parallel, the 

cyclinE/Cdk2 complex is involved in S-phase progression by regulation of factors 

involved in DNA replication like histone biosynthesis (Zhao et al., 2000). The point 

where Cdk2 is elevating its own activity in a positive feedback loop via Rb is called the 

restriction point. At this “stage of no return” the cell has to fully complete the cycle, 

independent of mitogenic signals (Blagosklonny and Pardee, 2002). In parallel to the 

Rb/E2F pathway, c-Myc also has a function in passing the restriction point by regulating 

the expression of cyclinE and cdc25a (Bartek and Lukas, 2001; Santoni-Rugiu et al., 

2000). 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3: Schematic model of the G1/S-phase checkpoint in mature mammalian cells. Rb is 
called the gatekeeper of the cell cycle. In the active (hypo-phosphorylated) state Rb blocks the 
transition of cells from G1-phase into S-phase by binding the E2F family of transcription factors, 
which are essential for S-phase entry. In case of mitogenic stimulation cyclinD/Cdk4 and 
cyclinD/Cdk6 complexes are activated, which leads to partial phosphorylation of Rb and thus to 
partial release of E2F and transcription of their target genes, one of which is cyclin E. This leads to 
activation of cyclinE/Cdk2 complexes, which further phosphorylate and inactivate Rb, leading to full 
release of E2F transcription factors, transcription of their target genes and entry into S-phase. On the 
other hand, cellular stress can inhibit transition of cells into S-phase by blocking cyclinE/Cdk2 activity 
via the Cdk-inhibitor p21, which is regulated by the tumor suppressor p53. Alternatively, p53 can 
induce apoptosis. 
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In contrast to mitogenic signals, which lead to S-phase entry and proliferation, cellular 

stresses are involved negatively in the regulation of G1/S-phase transition. Cellular 

stress like DNA damage usually leads to induction of the tumor suppressor p53, which 

activates expression of the Cdk-inhibitor p21, which in turn targets Cdk2 and Cdk4/6 

(Harper et al., 1995; Vogelstein et al., 2000). Inhibition of the kinase activities prevents 

phosphorylation of Rb and therefore arrests the cells in G1-phase. In addition to a G1-

arrest, p53 can also mediate apoptosis. The decision between the two processes is 

dependent on the overall condition of the cell, e.g., extreme DNA damage, which cannot 

be repaired during a prolonged G1-phase, would favor the apoptotic pathway. 

In addition to p21, other CDK inhibitors can regulate cell cycle progression. Two main 

families are known. The Cip/Kip family includes p21WAF1/CIP1, p27KIP1 and p57KIP2, which 

inhibit mainly cyclin E- and cyclin A-dependent Cdk2 activities. The INK4 family includes 

p16INK4a, p15INK4b, p18INK4c and p19ARF/INK4d, which inhibit the catalytic subunits of Cdk4 

and Cdk6. p19ARF/INK4d is involved in the regulation of the tumor suppressor p53 by 

binding to Mdm2, thereby blocking p53 degradation (Sherr and Roberts, 1999). 

 

 

1.2.2 Cell cycle of mouse embryonic stem cells 

 

Compared to mature cells, where cell cycle progression and proliferation relies on the 

balance between mitogenic signals and growth inhibitory signals, cell cycle progression 

of ES cells seems to rely more on intrinsic factors. 

One of the most striking difference between the cell cycle of ES cells and mature cells is 

that the control mechanisms for the G1/S-phase checkpoint are strongly reduced or 

absent in mouse ES cells. This goes in line with the majority of cells being in S-phase 

and a very short G1-phase of roughly 1.5 hours, which can explain the high proliferation 

potential (Savatier et al., 1994). Doubling time of mouse ES cell lines has been 

described to be around 10-15 hours. Although the pocket proteins Rb and p107 are 

expressed in ES cells, they are present almost exclusively in the inactive, hyper-

phosphorylated form and cyclinE/Cdk2 and cyclinA/Cdk2 kinase complexes seem to be 

constitutively active throughout the cycle, suggesting that the cell cycle is constitutively 

primed for S-phase entry and DNA replication (Savatier et al., 1994; Stead et al., 2002; 

White et al., 2005). In addition to cyclinE/Cdk2, which was supposed to be the main 

player in Rb phosphorylation, recently cyclinD3/Cdk6 complexes were shown to be 

robustly involved in the phosphorylation of Rb (Faast et al., 2004). Instead, 
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cyclinD/Cdk4 kinase activity is almost undetectable and seems to be dispensable for 

phosphorylation and inactivation of Rb. Despite the active cyclinD/Cdk6 complex, ES 

cells do not respond with growth arrest to overexpression of the inhibitor p16, usually 

targeting cyclinD/Cdk4/6 complexes (Faast et al., 2004; Savatier et al., 1996). 

Generally, the Cdk inhibitors p16, p21 and p27 are absent in ES cells (Fujii-Yamamoto 

et al., 2005; Savatier et al., 1996; Stead et al., 2002). Moreover, cell cycle progression 

of mouse ES cells is independent of persistent serum stimulation and of the Ras/ERK 

pathway (Jirmanova et al., 2002; Schratt et al., 2001). 

Instead, PI3K-dependent signaling plays an important function for the progression of 

mouse ES cells through G1-phase as well as for inhibition of differentiation (Jirmanova 

et al., 2002; Paling et al., 2004). Inhibition of PI3K activity by the inhibitor LY294002 led 

to an accumulation of cells in G1-phase and deletion of Pten, a negative regulator of 

PI3K, increased proliferation and viability of mouse ES cells (Sun et al., 1999). PI3K 

activity is also independent of serum stimulation, but relies on LIF stimulation. In 

addition, a stem cell specific member of the Ras family, termed Eras, which is 

constitutively active, has been shown to activate PI3K signaling (Takahashi et al., 

2003a).  Eras-null cells show impaired proliferation as well as reduced tumorigenicity 

when introduced into somatic tissues. As Eras cannot bind Raf it does not stimulate the 

MAPK pathway. Furthermore, the protein Tcl1 can increase the activity of Akt by 

forming a complex with the latter. Tcl1 could be linked to proliferation and self-renewal 

(Ivanova et al., 2006; Matoba et al., 2006).  

Interestingly, the G1/S-phase checkpoint seems to be also impaired after stress. At 

least DNA damage after irradiation seems not to induce a G1-arrest, although abundant 

quantities of p53 are synthesized (Aladjem et al., 1998; Hong and Stambrook, 2004). 

Instead, cells accumulated in S- and G2/M-phase and showed elevated apoptosis. An 

induced G1-arrest by overexpression of Chk2 kinase, whose function was shown to be 

impaired in ES cells, could protect ES cells from apoptosis. This indicates that the lack 

of a G1-checkpoint after DNA damage may favor apoptosis, thereby ensuring genome 

integrity of the ES cell population (Hong et al., 2007). Moreover, no elevated p21 levels 

were detected probably due to predominantly cytoplasmic localization of p53. Data with 

p53 deficient cells indicate a transient, p53-independent arrest in S-phase after UV 

treatment (Prost et al., 1998) and also p53-independent apoptosis was reported 

(Aladjem et al., 1998) 
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1.3 Nucleolus and cell cycle control 
 

The nucleolus, a specialized compartment within the nucleus, is another important 

factor for regulation of cell proliferation. As the site of ribosome biogenesis, the 

nucleolus has long been known to be involved in the translation capacity of a cell and 

therefore in cell growth. More recently, it has been revealed that the nucleolus is also 

directly involved in cell cycle progression. In fact, it can be considered as a major link 

between cell growth and cell division (see chapter 1.4.2). 

 

 

1.3.1 Ribosome biogenesis in mammalian cells 

 

Ribosome biogenesis is a highly complex, well-coordinated, evolutionary conserved 

process that takes place in the nucleoli (Fromont-Racine et al., 2003). Ribosomes of 

mammalian cells consist of a large 60S subunit and a smaller 40S subunit, which are 

comprised of RNA and ribosomal proteins. During ribosome synthesis, the tandem-like 

repeats of rDNA, present within the nucleolus, are transcribed by RNA Polymerase I 

(Pol I) into a large precursor ribosomal RNA (47S pre-rRNA). This polycistronic 

precursor contains the mature 18S, 5.8S and 28S rRNAs interspersed with the non-

coding internal transcribed sequences ITS1 and ITS2 and is flanked 5' and 3' by 

external transcribed spacers (ETS). The 18S rRNA will be the rRNA component of the 

40S subunit, while the 5.8S and 28S rRNAs will constitute the RNA component of the 

60S subunit, together with the 5S RNA, which is transcribed independently by RNA 

Polymerase III (Pol III). In addition, up to 80 ribosomal proteins have been identified so 

far that assemble together with the rRNAs to form the mature ribosomes (Eichler and 

Craig, 1994; Fatica and Tollervey, 2002; Warner, 1999). After transcription, the large 

precursor rRNA is rapidly assembled with ribosomal proteins, nonribosomal proteins 

and small nucleolar RNAs (snoRNAs) into a 90S pre-ribonucleoprotein particle (90S 

pre-RNP), followed by massive modification of the precursor rRNA by pseudouridylation 

and methylation. For further maturation, the primary transcript is processed via exo- and 

endonucleolytic ribonucleases to the mature rRNAs (Eichler and Craig, 1994; Venema 

and Tollervey, 1999). After cleavage within the ITS1, the 90S precursor splits into the 

pre-40S and pre-60S particles, which further mature into the 40S and 60S subunits. In 

yeast, where ribosome biogenesis is better understood than in mammals, over 150 

nonribosomal proteins and about the same amount of snoRNAs have been revealed to 
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be part of these precursor rRNPs and are putatively involved in ribosome biogenesis 

(Fatica and Tollervey, 2002; Fromont-Racine et al., 2003; Tschochner and Hurt, 2003). 

In higher eukaryotes, much less is known about the ribosome synthesis machinery. But 

proteomic analyses of the human nucleolus in the recent years suggest that many of 

the components have been evolutionary conserved (Andersen et al., 2002; Leung et al., 

2006; Scherl et al., 2002; Takahashi et al., 2003b). The general steps involved in the 

processing of rRNAs in vertebrates are comparable to those in yeast, however, as the 

ETS and ITS sequences diverge greatly between different eukaryotes, the endo- and 

exonucleolytic cleavage of the precursor rRNA can vary according to the species, cell 

type or physiological state (Eichler and Craig, 1994; Hadjiolova et al., 1993). In general, 

the processing events occur from the 5' to the 3' of the nascent transcript (Strezoska et 

al., 2000). 

Processing of the preribosomal transcripts into the mature rRNAs and assembly of the 

rRNPs mainly takes place inside the different regions of the nucleolus and later steps in 

the nucleus. Only addition of the last ribosomal proteins, a final processing step of the 

18S rRNA and the final assembly of the two subunits is completed in the cytoplasm, 

where the mature ribosomes then fulfill their function of mRNA translation (Rouquette et 

al., 2005). 

 

Ribosome biogenesis places a major energy and biosynthetic demand upon cells, 

accounting for up to 80% of the energy consumption of a proliferating cell (Thomas, 

2000; Warner, 1999). Therefore, it requires precise regulation and coordination with cell 

cycle progression. In fact, ribosome biogenesis is cell cycle controlled. It is sensitive to 

nutrient and growth factor signaling and inhibited upon stress signals (Mayer et al., 

2005; Mayer and Grummt, 2005; Mayer et al., 2004; Sirri et al., 2002; Voit et al., 1999). 

On the other hand, proper ribosome biogenesis is essential to keep p53 levels down 

and thereby ensure proliferation (see chapter 1.4.2). In this light it is not surprising that 

deregulation of ribosome biogenesis plays a role in cancer (Ruggero and Pandolfi, 

2003). 

 

 

1.3.2 Link of nucleolar disruptions and cell cycle progression 

 

The view of the nucleolus as a mere ribosome producing factory has recently been 

challenged as it became obvious that it is involved in many more processes than just 
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ribosome synthesis (Olson et al., 2000). For example, it has been suggested that the 

nucleolus is involved in the maturation of other ribonucleoprotein particles like the signal 

recognition particle and telomerase (Mitchell et al., 1999; Politz et al., 2000). In addition, 

the nucleolus can participate in export or processing of some mRNAs and tRNAs 

(Bertrand et al., 1998; Schneiter et al., 1995). Most intriguingly, a function of the 

nucleolus in cell cycle regulation via the tumor suppressor p53 has been described 

(Olson, 2004; Rubbi and Milner, 2003). p53 is a key regulator of the cell cycle that 

activates cell cycle arrest and apoptosis during cellular stress. During normal growth, 

p53 is targeted for degradation by Mdm2, an E3 ubiquitin ligase, and exported to the 

cytoplasm where it is degraded by the proteasome. Additionally, Mdm2 can bind p53, 

thereby repressing its transcriptional activity in the nucleus (Haupt et al., 1997; Kubbutat 

et al., 1997; Oliner et al., 1993). This keeps p53 levels low and cells proliferate. 

On the other hand, disturbances in ribosome biogenesis, which is highly sensitive to a 

lot of cellular stresses, have been shown to lead to an induction of p53, which triggers 

cell cycle arrest or apoptosis. Several mechanisms have been proposed about how this 

induction of p53 is mediated. First, impaired ribosome biogenesis can decrease the 

demand of ribosomal proteins and can therefore lead to accumulation of free ribosomal 

proteins such as L5, L11 or L23, which can bind and inactivate Mdm2 resulting in 

stabilization and accumulation of p53 (Dai and Lu, 2004; Dai et al., 2004; Jin et al., 

2004; Lohrum et al., 2003; Zhang et al., 2003). Another hypothesis takes into account 

that cytoplasmic p53 has been detected covalently linked to the 5.8S rRNA of a subset 

of ribosomes, suggesting that the export of p53 into the cytoplasm may depend on the 

export of intact ribosomal subunits (Fontoura et al., 1997; Sherr and Weber, 2000). 
 

The model of a crosstalk between ribosome biogenesis and cell cycle via p53 has been 

expanded by Rubbi and Milner. They propose that p53 induction after different cellular 

stresses is generally coupled to disruptions within the nucleolus (Rubbi and Milner, 

2003). They could demonstrate by micropore UV irradiation that DNA damage only 

leads to a p53 response, if the nucleolar structure is also affected. In addition, they 

linked a range of different agents inducing p53 stabilization to disruptions in the 

nucleolus, including DNA damaging agents, anticancer drugs, inhibitors of RNA 

synthesis and general stress signals like hypoxia or heat shock. These findings suggest 

that the nucleolus might function as a universal stress sensor, the disruption of which 

leads to a rapid p53-mediated checkpoint response, regulating cell cycle progression. 
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The direct crosstalk between ribosome biogenesis and cell cycle by activation of a 

critical checkpoint is one possibility for a cell to coordinate division with growth. Another 

possibility is to measure the translation capacity of a cell. Such mechanisms are known 

in yeast and drosophila (Polymenis and Schmidt, 1997; Polymenis and Schmidt, 1999; 

Thomas, 2000). In yeast, cell size is a critical parameter for the cell to pass the 

restriction point (start). To do so, the cells need a sufficient amount of the G1-Cyclin 

Cln3. As the Cln3 mRNA contains a second ORF, upstream of the Cln3 ORF, 

ribosomes bind with less efficiency to the Cln3 ORF. To reach an efficient translation of 

Cln3 mRNA, the cell has to grow first and produce enough ribosomes to translate also 

the Cln3 ORF with high efficiency to produce enough protein to finally pass the 

restriction point. So the translation efficiency of Cln3 is used as a reference for cell cycle 

regulation (Polymenis and Schmidt, 1997). 

 

In ES cells, not much is known so far about the mechanisms correlating cell growth with 

cell division. ES cells show novel regulatory pathways for proliferation, lack the normal 

G1/S-phase checkpoint and have probably an impaired p53 pathway (see chapter 

1.3.2). First experimental evidence that the nucleolus and ribosome synthesis are also 

involved in the regulation of stem cell proliferation is given by studies with the nucleolar 

protein Nucleostemin, a putative GTPase involved in p53 regulation. Depletion or 

overexpression of Nucleostemin reduced the proliferation rate of neuronal stem cells 

and of mutant blastocysts (Beekman et al., 2006; Tsai and McKay, 2002). Moreover, 

depletion of Bysl (bystin-like) a protein involved in maturation of the small ribosomal 

subunit showed impaired proliferation of embryonic stem cells (Adachi et al., 2007). 

Nevertheless, little is known about the underlying mechanisms coordinating the two 

processes. 

 

 

1.4 The PeBoW-complex 
 

The PeBoW-complex is one factor involved in the p53-mediated checkpoint response 

between nucleolus and cell cycle in mature cell systems. It has recently been 

characterized in mammalian cell lines and consists of the proteins Pes1 (pescadillo) 

Bop1 (block of proliferation) and WDR12 (WD-repeat protein) (Holzel et al., 2005; 

Rohrmoser et al., 2007). The PeBoW-complex is located within the nucleoli and it is 

involved in ribosome biogenesis, namely in the maturation of the large 60S ribosomal 
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subunit. Knockdowns of its components Pes1, Bop1 or WDR12, by expression of 

dominant negative mutants or siRNA technology, block processing of the 36/32S 

precursor rRNA into the mature 28S rRNA and 5.8S rRNA and subsequently the 

maturation of the large ribosomal subunit. Maturation of the small subunit is not affected 

(Grimm et al., 2006; Holzel et al., 2005; Strezoska et al., 2000; Strezoska et al., 2002). 

In addition, an induction of p53 could be examined, followed by a strong cell cycle arrest 

in G1-phase and an impaired proliferation rate (Grimm et al., 2006; Holzel et al., 2005; 

Pestov et al., 2001). All three proteins are upregulated by the transcription factor and 

proto-oncogene c-Myc and incorporation of the single proteins into the PeBoW-complex 

as well as nucleolar localization seem to be prerequisites for their function ((Grimm et 

al., 2006; Holzel et al., 2005; Lapik et al., 2004; Rohrmoser et al., 2007). 

The structure and function of the PeBoW-complex appears to be conserved throughout 

evolution. In yeast, a potential homolog of the PeBoW-complex has been identified, 

which is similarly involved in ribosome biogenesis and cell cycle progression. It consists 

of the proteins Nop7 (or Yph1), Erb1 and Ytm1, whose homology with the mammalian 

Pes1, Bop1 and WDR12 averages more than 40% (Du and Stillman, 2002; Miles et al., 

2005; Oeffinger et al., 2002). Similar to mammalian cells, depletion of the proteins leads 

to impaired maturation of the large ribosomal subunit (Miles et al., 2005). 

In addition to its role in ribosome biogenesis, the PeBoW-complex has been linked to 

other processes. In yeast, all three proteins have been identified as part of a bigger 

complex. Besides 66S ribosomal proteins and preribosomal particle proteins, this 

complex contained ORC and MCM proteins as well as checkpoint- and cell cycle 

regulatory proteins, indicating a role in replication and cell cycle control. For Nop7, the 

yeast homolog of Pes1, a direct involvement in replication could be proven, as its 

depletion led to an arrest of cells in G1- or G2-phase with no cells in S-phase. This 

effect was independent of impaired ribosome biogenesis (Du and Stillman, 2002). 

Moreover, the PeBoW-complex was linked to a function in mitosis as inactivation of 

Pes1 and Bop1 in human cell lines leads to abnormal mitoses with altered 

chromosomal segregation followed by chromosomal instability (CIN) (Killian et al., 

2004). As CIN is a hallmark of many tumors, this might indicate a role of the PeBoW-

complex in tumorigenesis and indeed increased expression of Bop1 could be detected 

frequently in colorectal cancers. Furthermore, overexpression of Bop1 increased the 

percentage of multipolar spindles (Killian et al., 2006). Interestingly, overexpression of 

Pes1 was reported to be involved in the transformation, but not immortalization, of 

mouse and human fibroblasts as shown by colony formation in soft agar (Maiorana et 
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al., 2004). Also, malignant human astrocytomas showed dramatically elevated levels of 

Pes1, strengthening its role for oncogenic transformation and tumor progression. 

Evidence for a function of the proteins during embryogenesis is given by Pes1, which 

was first identified as pescadillo in the zebrafish, where it has an essential function for 

normal embryonic development (Allende et al., 1996). Lerch-Gaggl et al. report a similar 

effect in the mouse. Pes1-depleted embryos arrest at the morula stage of development, 

fail to develop nucleoli and do not accumulate ribosomes (Lerch-Gaggl et al., 2002). 

 

 

1.4.1 Pes1 

 

A single gene located on chromosome 11 in the mouse genome encodes for murine 

Pes1, a protein of 584 amino acids and a theoretical size of 67.8 kDa, which is highly 

evolutionary conserved and shows a homology of 89% to human Pes1 (Haque et al., 

2000). The protein contains a highly conserved N-terminal pescadillo-like protein 

domain (NPLP-domain), a BRCT (BRCA1 C-terminal) domain in the middle of the 

protein and three nuclear localization sites (NLS). In addition, the C-terminus of Pes1 

contains two acidic stretches of amino acids, six bipartite NLS, plus a consensus site for 

SUMOylation (KΨXE) (Grimm et al., 2006; Haque et al., 2000; Holzel et al., 2007; 

Kinoshita et al., 2001). C- and N-terminal truncation mutants plus several transposon-

derived mutants of Pes1 displayed a dominant negative phenotype, blocking the 

processing of 36/32S rRNA into mature 28S and 5.8S rRNA and inhibited cell 

proliferation via a p53-mediated mechanism (Grimm et al., 2006; Lapik et al., 2004). 

Further, the BRCT domain of Pes1 has been elucidated to be crucial for its nucleolar 

localization and its function in rRNA processing. BRCT domains facilitate protein-protein 

interactions and are often found in factors, involved in DNA repair pathways (Holzel et 

al., 2007). 

 

 

1.4.2 Bop1  

 

Bop1 (block of proliferation) is an evolutionary conserved gene that encodes a protein 

of 732 amino acids with a molecular weight of 83 kDa in the mouse. Bop1 contains 

seven WD40 repeats, which are often involved in the formation of multiprotein 

complexes as well as two PEST sequences, one at the N-terminus and one in the 
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middle of the protein. PEST sequences are often associated with short-lived regulatory 

proteins, indicating a regulatory function for Bop1 (Strezoska et al., 2000; Strezoska et 

al., 2002). Deletion mutagenesis revealed two dominant negative mutants with an N- or 

C-terminal deletion, whose phenotype involved a reversible block of proliferation by a 

G1-arrest and an inhibition of pre-rRNA processing. In mouse cells, the processing of 

the 36S and 32S rRNA was inhibited, leading to impaired maturation of the 28S and 

5.8S rRNA (Pestov et al., 2001; Strezoska et al., 2002). 

 

 

1.4.3 WDR12 

 

Wdr12 corresponds to a single-copy gene in the mouse genome on chromosome 1, 

encoding a protein of 423 amino acids with a theoretical molecular weight of 47.3 kDa. 

The WDR12 (WD repeat) protein contains seven WD40 units and a nuclear localization 

signal located between the WD domains three and four. At its N-terminus it contains a 

Notchless-like domain (Nle). It is supposed that the 7 WD40 repeats form a "β-propeller" 

structure, likewise it has been extensively analyzed in the β-subunits of heterotrimeric 

G-proteins. Like most WD repeat proteins, WDR12 shows no enzymatic activity, but the 

propeller structure of the WD40 repeats could play a role for protein-protein interactions. 

Generally, WD repeat proteins are viewed as regulatory components within higher order 

complexes, which matches the participation of human WDR12 into the PeBoW-complex 

(Holzel et al., 2005; Nal et al., 2002). 

Deletion of the Nle domain of WDR12 has been shown to induce a dominant negative 

phenotype. Expression of the mutant in human cells impairs the maturation of 28S 

rRNA and induces a reversible arrest in G1-phase (Holzel et al., 2005). 
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1.5 Aim of the project 
 

Cell proliferation is a process where cell growth and cell division have to be tightly 

coordinated. The nucleolus, as the site of ribosome synthesis, plays an important 

function in cell growth. Nucleolar disruptions directly signal to the cell cycle machinery 

and inhibit cell cycle progression. One factor involved in proper nucleolar function is the 

PeBoW-complex and its single components Pes1, Bop1 and WDR12. The PeBoW-

complex has been shown to play a crucial role in ribosome biogenesis as well as cell 

cycle progression in several cancer cell lines. Knockdowns of its components impair 

ribosome biogenesis and induce a p53-dependent checkpoint activation, finally leading 

to a reversible block of proliferation. 

Proliferation of embryonic stem (ES) cells is, in comparison to mature cells, very rapid 

with a quite distinct cell cycle distribution. Their G1-phase is very short and lacks the 

regulatory mechanisms usually active during G1-phase in other cell types (G1/S-phase 

checkpoint). ES cells can reenter the S-phase almost directly after mitosis, which is at 

least one important factor for their rapid proliferation. First evidence for the fact that a 

proper nucleolar function might be related to proliferation of ES cells comes from 

studies on Nucleostemin, another nucleolar protein, the knockdown of which leads to 

impaired proliferation rates of stem cells (Tsai and McKay, 2002).  

The goal of this work was to investigate the expression and potential complex formation 

of the proteins Pes1, Bop1 and WDR12 in mouse ES cells and to assess whether their 

function in ribosome biogenesis is related to proliferation of ES cells. Based on the 

different cell cycle kinetics of ES cells, which are missing some of the usual control-

points, one main question was to test if inhibition of ribosome biogenesis would be able 

to activate a p53-dependent checkpoint response in ES cells, as it has been shown in 

mature cell lines. A knockdown of Pes1, Bop1 and WDR12 via small interfering RNAs 

served as the major technical feature to investigate the function of those three proteins 

in ES cells. Furthermore, a possible checkpoint response was investigated by 

addressing the protein levels of the tumor suppressor p53 and the phosphorylation state 

of its indirect target Rb (retinoblastoma gene product). As cell system, the germline 

competent mouse ES cell line CGR8 was used, which can be cultured without the use 

of feeder cells in the presence of recombinant LIF. 
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2 MATERIAL 
 

 

2.1 Cell lines 
 
CGR8  mouse ES cell line obtained from J. Heschelers Lab, Cologne  

 Originally generated from Austin G. Smith, European Collection of Cell 

Cultures (ECACC) Cat. No. 95011018 

 

NIH3T3  mouse fibroblast cell line 

 
 

2.2 Media and supplements for cell culture 
 
DMEM (4500mg/ml glucose; contains    Invitrogen 

L-glutamine and pyruvate) 

DMEM (phosphate-free)     Invitrogen 

GMEM       Sigma 

IMDM        Invitrogen 

Optimem1       Invitrogen 

Cryoconservation medium for CGR8 cells:  

10% DMSO (Roth), 90%FBS (PAA Laboratories) 

 

100 x L-glutamine (200mM)     Invitrogen 

100 x MEM (non essential amino acids)   Invitrogen 

100x Penicilline/Streptomycine    Invitrogen 

FBS        PAA Laboratories 

FBS dialysed (phosphate free)     Invitrogen  

Gelatine from porcine skin, type A    Sigma 

LIF-ESGRO       Chemicon 

ß-mercaptoethanol      Sigma 

Trypsin/EDTA      Invitrogen 

 

Lipofectamine 2000      Invitrogen 

Oligofectamine      Invitrogen 

Polyethylenimine      Sigma 
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2.3 siRNA-oligonucleotides 
 

 sense (5’-3’) antisene (5’-3’) 

murine Pes1-1  
(3’ UTR) 

CAACGCAGUUCUUAAUCCAtt UGGAUUAAGAACUGCGUUGtt 

murine Pes1-2  
(3’ UTR) 

GCAGUAUGCUUGUCCAAUUtt AAUUGGACAAGCAUACUGCtt 

murine Pes1-3 
(ORF 1645) 

CUAAGCGCUUGGCCAUCAUtt AUGAUGGCCAAGCGCUUAGtt 

murine Bop1-1 
(ORF 768) 

GAAGGUGUCUCGAAUGGUAtt UACCAUUCGAGACACCUUCtt 

murine Bop1-2 
(ORF 1350) 

GAAGACUGUACAUGUUGGAtt UCCAACAUGUACAGUCUUCtt 

murine WDR12-1 
(3’ UTR) 

UGUCCUUCGUGCUUAUAAAtt UUUAUAAGCACGAAGGACAtt 

murine WDR12-2 
(3’ UTR) 

GCAUACAACUAACCUGUAAtt UUACAGGUUAGUUGUAUGCtt 

murine WDR12-3 
(5’ UTR) 

GAUUACGAAUCUAGAUAGAtt UCUAUCUAGAUUCGUAAUCtt 

murine WDR12-4 
(3’ UTR) 

AUCAUAGCACACACUUAUAtt UAUAAGUGUGUGCUAUGAUtt 

control  
(Luciferase)  

UUCUCCGAACGUGUCACGUtt ACGUGACACGUUCGGAGAAtt 

 

 

2.4 Antibodies 
 

2.4.1 Primary antibodies 

 

 description source WB IF 

α-Pes1 Ab-1; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

 Ab-3; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

α-Bop1 Ab-1; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

 Ab-2; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

 rat monoclonal, clone 1B5 E. Kremmer, GSF 1:10 1:10 

 rat monoclonal, clone 5F4 E. Kremmer, GSF 1:10 1:10 

 rat monoclonal, clone 8G10 E. Kremmer, GSF 1:10 1:10 

 rat monoclonal, clone 1A11 E. Kremmer, GSF 1:10 1:10 

α-WDR12 Ab-3; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

 Ab-4; guinea pig polyclonal Charles River Lab. 1:15000 1:500 

 rat monoclonal, clone 6A2 E. Kremmer, GSF 1:10 1:10 
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α-WDR12 rat monoclonal, clone 6B8 E. Kremmer, GSF 1:10 1:10 

 rat monoclonal, clone 8D2 E. Kremmer, GSF 1:10 1:10 

α-ß-actin mouse monoclonal, clone AC-15 Sigma 1:20000 - 

α-p21 rabbit polyclonal  (C-19) Santa Cruz 1:1000 - 

α-p53 rabbit polyclonal (FL-393) Santa Cruz 1:500 - 

α-p53 mouse monoclonal (PAb 122) Dianova - 1:100 

α-PARP rabbit polyclonal (SA-253) Biomol 1:1000 - 

α-Rb mouse monoclonal, clone G3-245 BD Pharmingen 1:500 - 

α-α-tubulin mouse monoclonal, clone DM1A Sigma 1:30000 - 

 

 

2.4.2 Secondary antibodies 

 

α-guinea-pig (HRP), donkey  Dianova Western blot 1:2500, 1:5000 

α-mouse (HRP), goat  Promega Western blot 1:2500, 1:5000 

α-rabbit (HRP), goat   Promega Western blot 1:2500, 1:5000 

α-rat (HRP), goat    Dianova  Western blot 1:2500, 1:5000 

α-guinea-pig (Cy3), goat  Dianova  Immunofluorescence 1:300 

α-mouse (Cy3), goat   Dianova Immunofluorescence 1:300 

α-rat (Cy3), goat   Dianova Immunofluorescence 1:300 

 

 

2.5 Primer  
 

 forward (5’-3’) reverse (5’-3’) 

Aldolase GGTCACAGCACTTCGTCGCACAG TCCTTGACAAGCGAGGCTGTTGGC 

Flk1 AGACATTGACATGCACAGTCTACGC GCTTGGATGACCAGCGTACTTACAG 

KLF4 TCCTTTCCTGCCAGACCAGATGC TGCCCTGTGTGTTTGCGGTAGTG 

Nanog GTTGAAGACTAGCAATGGTCTGATT GTTGCGTAAGTCTCATATTTCACCT 

Oct4 TATTGAGTATTCCCAACGAGAAGAG GAACAAAATGATGAGTGACAGACAG 

Sox2 AAGGGGAGAGATTTTCAAAGAGATA TCATAAAAGTTTTCTAGTCGGCATC 

T-bra GCTAGATACTAACAACTCCATTTTC GGTGCTATATATTGCCTTTATTATG 
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2.6 Markers (protein and DNA) 
 

1kb DNA ladder      Invitrogen 

Full range rainbow molecular weight marker Amersham Biosciences 

Pre-stained SDS molecular weight marker  Sigma  

 

 

2.7 Kits 
 

Alkaline Phosphatase Detection Kit Chemicon 

EndoFree Plasmid Maxi Kit Qiagen 

FITC BrdU Flow Kit BD Biosciences 

LightCyclerR FastStart DNA Master SYBR Green I  Roche 

QIAprep Spin Miniprep Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

RNeasy RNA Isolation Kit (Mini/Midi) Qiagen 

 

 

2.8 Disposables 
 

Bacteriological plates  Greiner 

Cell culture freezing vials Nunc 

Cell culture plastic pipettes (5-, 10-, 25ml) Costar; Falcon 

Cell culture plastic pipettes (50ml) Falcon 

Cell culture plates (6-, 10cm ) Nunc 

Cell culture plates (6-, 24-, 48-, 96-well) Falcon 

Cell scraper Sarstedt 

Centrifuge tubes (polypropylene ; 15-, 50ml) Falcon 

Combitips (1ml) Eppendorf 

Cover slips Menzel-glasses 

Eppendorf tubes (1,5-, 2ml) Eppendorf 

FACS (1,4ml U-tube) Micronic 

Filter (PES, 0,2µm) Nalgene 

Filter (for syringe; 0,2µm) Sartorius 

HyperfilmTM MP (autoradiography film) GE Healthcare 
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HyperfilmTM ECL (chemiluminescence film) GE Healthcare 

LightCycler capillaries Roche 

Nitrocellulose membrane (Hybond ECL)  Amersham Biosciences 

Pipette tips  TipOne, Molecular Bio Products 

Qiashredder columns Qiagen 

Saran wrap Toppits 

Spectrophotometer plastic cuvettes (UVette) Eppendorf 

µ-slideVI-ibidi Ibidi 

Whatman - blotting paper Schleicher and Schuell 

8-chamber slides Nunc 

 

 

2.9 Chemicals, Reagents and Enzymes  
 

Acrylamide/Bisacrylamide (Rotiphorese Gel 30) Roth 

Agarose Invitrogen 

Ammonium peroxide sulfate (APS) Roth 

Annexin V-FITC BD Biosciences 

Bradford Bio-Rad  

Bromphenol blue Sigma 

BSA  Roth 

DAPI  Sigma 

DEPC  Sigma 

DMSO Roth 

dNTPs Promega 

ECL-Western blotting detection reagents GE-Healthcare 

EDTA Merck 

Ethanol Merck 

Ethidiumbromide Sigma 

Formamide Sigma 

Formaldehyde solution 37% Merck 

Gelatine Sigma 

GIEMSA Merck 

Glycerol Roth 

Glycine Merck 
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Isopropanol Merck 

LIF-ESGRO Chemicon 

Lipofectamine 2000 Invitrogen 

ß-mercaptoethanol Sigma 

Methanol Merck 

Milkpowder Roth 

MLV Reverse transcriptase Invitrogen 

MOPS Roche 

Mounting medium Dako  

Oligonucleotides  Metabion 

Oligo(dT)15 Primer Promega 

Oligofectamine Invitrogen 

Paraformaldehyde Sigma 

Polyethylenimine Sigma 

PonceauS Sigma 
32 P-orthophosphate  GE Healthcare 

Protease inhibitor (complete EDTA free) Roche 

Propidium iodide Sigma 

Restriction enzymes New England  

RNase A Roche 

RNasin ribonuclease inhibitor Promega 

SDS Roth 

TEMED Roth 

Tris Merck 

TritonX-100 Sigma 

Trypsin/EDTA Invitrogen 

Trypan blue Gibco, Invitrogen 

Tween-20 Roth 

 

Standard chemicals, which are not mentioned in the list, were obtained from Merck, 

Sigma or Roth. 
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3 METHODS 
 

 

3.1 Cell Culture 
 

3.1.1 Culture conditions of CGR8 cells 

 

CGR8 cells were cultured in GMEM under addition of LIF in an incubator with 37°C, 5% 

CO2 and a water saturated atmosphere. Plates were coated with 0.2% gelatine prior to 

plating of cells. Splitting of cells was performed by trypsinization to detach cells from the 

plate. First, cells were washed once with 6-10ml PBS (10cm-plate), then 2ml of 

1 x Trypsin-EDTA were added and cells were incubated at 37°C for 5 minutes. The 

enzymatic reaction was stopped by addition of 8ml culture medium. Between 0.5-2ml of 

the suspension were seeded to a new gelatine-coated 10cm plate containing 10ml of 

fresh medium.  

Alternatively, the cell suspension was centrifuged at 1000rpm for 5 minutes. After 

removal of the supernatant the pellet was resuspended in fresh medium or used for 

other assays. 

 
GMEM:  445ml GMEM; 50ml FBS; 5ml 200mM L-glutamine; 250µl 0.1M ß-mercaptoethanol; 

50µl LIF (106 U/ml) 

 

PBS:   2g KCl; 2g KH2PO4; 80g NaCl; 14.3g Na2HPO4x2H2O; H2O ad 10l  

 

 

3.1.2 Culture conditions of NIH3T3 cells 

 

NIH3T3 cells were cultured in DMEM in an incubator with 37°C, 5% CO2 and a water 

saturated atmosphere. Coating of plates with gelatine was not necessary. Splitting of 

cells was performed by trypsinization as described for CGR8 cells.  

 
DMEM:  442,5ml DMEM (with glucose, L-glutamine, pyruvate); 50ml FBS; 5ml 200mM 

L-glutamine; 2.5ml 100 x penicilline/streptomycine 
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3.1.3 Differentiation of CGR8 cells 

 

For differentiation of CGR8 cells according to the “hanging drop” protocol, about 70-

80% confluent cells were trypsinized, counted and harvested by centrifugation. The 

pellet was resuspended in differentiation medium to prepare a suspension with 1 x 106 

cells/ml. This suspension was diluted to 1:40 to obtain 2.4 x 104 cells/ml. About 60-70 

drops of 20µl (500 cells) were placed into the lid of a 10cm bacteriological plate. The lid 

was then placed on a plate filled with 7ml PBS and the drops were incubated at 37°C, 

5% CO2 as “hanging drops” for 2 days. Due to the hanging state, the cells accumulate 

at the bottom of the drop and form spheroid cell aggregates - embryoid bodies (EBs). 

After 2 days, the EBs were transferred to 10cm bacteriological dishes containing 10ml 

of differentiation medium (about 200 EBs/10cm plate). Medium was changed every 

48 hours.  

 
Differentiation medium:  390ml IMDM; 100ml FBS; 5ml 200mM L-glutamine; 5ml 100x MEM; 

500µl 0.1M ß-mercaptoethanol 

 

 

3.1.4 Freezing of CGR8 cells in liquid nitrogen  

 

For long term storage CGR8 cells were frozen in liquid nitrogen. 10cm-plates with cells 

at about 80% confluency were trypsinized, harvested by centrifugation at 1000rpm and 

the pellets were dissolved in 1ml ice-cold cryoconservation medium, transferred into 

cryovials and frozen at -80°C. After 2-5 days the cells were transferred into liquid 

nitrogen. 

 
Cryoconservation medium:  10% DMSO; 90%FBS 

 

 

3.1.5 Transient transfection of CGR8 cells 

 

For transient expression of genes like eGFP, expression plasmids were transfected into 

the cells using Lipofectamine 2000. Cells at about 80% confluency were pre-incubated 

with Optimem for 30 minutes. During this time the transfection mix was prepared. 16µg 

plasmid and 32µl Lipofectamine 2000 were diluted in 1ml Optimem, respectively. After 

incubation of 5 minutes at room temperature both vials were mixed and incubated for 
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another 25 minutes at room temperature to form complexes. After removal of Optimem 

the transfection mix was added to the cells and incubated for 4-6 hours. Then it was 

replaced by culture medium. Cells were assayed the following day or later. 

 

 

3.1.6 Transfection of CGR8 cells with siRNA 

 

Transfection of cells with siRNA was usually performed twice. The day before the first 

transfection about 1.5 x 105 CGR8 cells were seeded in 6-wells. The following day the 

siRNA transfection mix was prepared: 10µl Lipofectamine 2000 were diluted in 150µl 

Optimem and incubated for 5 minutes at room temperature. Then, 150µl Optimem, 

containing 10µl of annealed siRNA (20µM), were added, mixed carefully and incubated 

for 15 minutes at room temperature. During this time cells were pre-incubated with 

1.5ml Optimem. After removal, 600µl Optimem were added per 6-well followed by 

addition of the 300µl of transfection mix. After incubation of the cells for 5-6 hours, the 

transfection mix was replaced by normal medium. The following day, the same 

procedure was repeated with the variation that incubation with the transfection mix took 

place overnight. 2.5ml of normal medium were added though after 5-6 hours of 

incubation. 

 

 

3.1.7 Transfection of NIH3T3 cells with siRNA 

 

For transfection with siRNA, NIH3T3 cells were seeded at a density of about 6 x 104 

cells per 6-well. The following day the transfection mix was prepared using 

polyethylenimine as transfection reagent. 10µl of annealed siRNA (20µM) were added 

to 250µl of Optimem containing 12µl of polyethylenimine and incubated for 15 minutes 

at room temperature. Then, the transfection mix was added directly to a 6-well 

containing 2.5ml medium. After incubation for 5-6 hours the transfection mix was 

replaced by standard cell culture medium. The following day the procedure was 

repeated.  

Alternatively, Oligofectamine was used as transfection reagent. In that case preparation 

of the transfection mix was performed as described for Lipofectamine 2000 in 

chapter 3.1.6. 
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3.1.8 Annealing of siRNA 

 

RNA oligonucleotides were obtained from Curevac GmbH and dissolved at a 

concentration of 100µM in RNase free water and stored at -20°C. For annealing of 

siRNAs, 200µl of sense and antisense oligonucleotides (100µM) were mixed with 200µl 

of annealing buffer respectively and were then pooled. After addition of another 200µl of 

annealing buffer the final concentration of the siRNA duplex was 20µM. The samples 

were now aliquoted a 100µl and incubated for 1 minute at 90°C in a thermomixer 

(Eppendorf). Subsequently, the thermomixer was turned out and samples were slowly 

cooled down for 30-45 minutes until they reached a temperature of about 50°C. Then 

the thermomixer was switched on again to 12°C and samples were further cooled down 

to 12°C. Annealed siRNA was stored at -20°C or -80°C. 

 
Annealing buffer:  30mM HEPES-KOH, pH 7.4; 100mM KCl; 2mM MgCl2; 50mM NH4Ac 

 

 

3.1.9 Counting of cells 

 

After trypsinization of adherent cells, their concentration can be determined in a 

Neubauer-counting chamber. Therefore, 10µl of cell solution were added to the 

chamber and 4 x 16 squares were counted per sample. The respective mean value 

times 104 corresponds to the amount of cells per 1ml medium. If dead cells should be 

excluded, cells were stained prior to counting with trypan blue solution (1:1). Living cells 

with an intact membrane exclude the pigment, while it is up-taken by dead cells. Thus, 

dead cells with a porous membrane can be distinguished by their blue color.  

 

 

3.2 Protein Analyses 
 

3.2.1 Generation of antibodies 

 

3.2.1.1 Generation of polyclonal antibodies 

 

Polyclonal antibodies against murine Pes1, Bop1 and WDR12 were generated by 

immunizing guinea pigs with a mixture of the following two peptides per protein. 
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Pes1: LEKKKYERGSATNYITRNKARKKL (aa 4-27) and KRKAHDDAVRSEKKAKRT 

RPV (aa 564-584) 

Bop1: GKPHMSPASLPGKRRLEPDQELQIQ (aa 6-30) and SQEHTQVLLHQVSRRR 

SQSPFRRS HG (aa 541-566) 

WDR12: MAQLQARFYSENKKYAV (aa 1-17) and DWTDTGLLLSGGADNKLYSYSYS 

PTTS (aa 393-418) 

Peptides were synthesized by H. Rackwitz, Peptide Specialty Laboratories GmbH, 

Heidelberg. Guinea pigs of the lineage DH were immunized via 4 injections at 2-week 

intervals using CFA (1st injection) and IFA (2nd injection onwards) as adjuvant. Dosage 

was 0,24mg peptide per animal. Final bleeding was performed 8 weeks after the first 

immunization (Charles River Laboratories GmbH, Sulzfeld). Two sera were raised per 

protein, designated Pes1-Ab1 and -Ab3, Bop1-Ab1 and -Ab2 and WDR12-Ab3 and 

-Ab4. 

 

 

3.2.1.2 Generation of monoclonal antibodies 

 

Monoclonal antibodies against murine Bop1 and WDR12 were generated using the 

following peptides, coupled to ovalbumine or KLH. Peptides were synthesized by H. 

Rackwitz, Peptide Specialty Laboratories GmbH, Heidelberg. 

Bop1: GKPHMSPASLPGKRRLEPDQELQIQ (aa 6-30) and SQEHTQVLLHQVSRRR 

SQSPFRRS HG (aa 541-566) 

WDR12: MAQLQARFYSENKKYAV (aa 1-17) and DWTDTGLLLSGGADNKLYSYSYS 

PTTS (aa 393-418) 

About 50µg of the peptides coupled to KLH (or ovalbumine) were injected both 

intraperitoneally and subcutaneously into Lou/C rats using CPG2006 and incomplete 

Freund’s (TIB MOLBIOL) as adjuvant. After a 6-week interval, a final boost was given 

intraperitoneally and subcutaneously. 3 days later, the rat immune spleen cells were 

fused with the myeloma cell line P3X63-Ag8.653, according to standard procedures. 

Hybridoma supernatants were tested in a solid phase immunoassay. The plates were 

coated overnight with the peptides coupled to ovalbumine (or KLH). After blocking with 

non-fat milk, the hybridoma supernatants were incubated. Bound rat antibodies were 

detected with a cocktail of biotinylated mouse mAbs against the rat IgG heavy chains, 

thus avoiding IgM mAbs. The biotinylated mAbs were visualized with peroxidase-

labeled avidin (Vector) and o-phenylendiamine as chromogen in the peroxidase 
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reaction. The hybridomas designated Bop1-1B5, -5F4, -8G10, -1A11 (Bop1 aa 6-30) 

and WDR12-6A2 (WDR12 aa 1-17), WDR12-6B8 and -8D2 (WDR12 aa 393-418) were 

stably subcloned and used for further analysis. The immunoglobulin isotypes were 

determined using mAbs against the rat IgG heavy chains and light chains. Bop1-5F4 

antibody has the IgG subclass IgG2c, WDR12-8D2 the subclass IgG2b. All other 

antibodies have the subclass IgG2a. 

 

 

3.2.2 Western Blot Analysis 

 

3.2.2.1 Preparation of protein extracts under denaturing conditions for SDS-

PAGE 

For the analysis of total cellular proteins by Western blotting, cells were trypsinized, 

harvested by centrifugation and lysed in 1x Laemmli buffer or, alternatively, they were 

washed with PBS and lysed directly on the plate in 1x Laemmli buffer and harvested 

using a cell scraper. One confluent 6-well was lysed in about 150-200µl of buffer. 

Samples were sonicated with 10 pulses, boiled for 5 minutes at 95°C and stored at 

-20°C. 10-20µl of the lysates were loaded on a gel. 

 
1x Laemmli buffer:  50mM Tris/HCl pH 7.0; 20% glycerol; 2% SDS; 5% ß-mercaptoethanol; 

0.02% bromphenol blue 

 

 

3.2.2.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and blotting of 

proteins 

For separation of proteins by SDS-polyacrylamide gel electrophoresis, 8%, 10% or 12% 

polyacrylamide gels with 2mm thickness were used, depending on the size of the 

analyzed proteins. After loading of the lysates the gels were run at 30mA per gel in 1x 

SDS running buffer. Pre-stained markers were run simultaneously on the gel to 

estimate the molecular weight. Proteins separated by SDS-PAGE were transferred to a 

nitrocellulose membrane via wet blotting in 1x transfer buffer at 450mA and 4°C for 

1 hour. Beforehand, all components were soaked in transfer buffer and the blotting 

sandwich was built the following: sponge, Whatman paper, membrane, gel, Whatman 

paper, sponge. To control an optimal transfer of the proteins after blotting and to verify 

equal loading, the membranes were stained for 1 minute in Ponceau S solution and 

destained with H2O or TBST.  
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Stacking gel (10ml):  5,5ml H2O; 1.7ml 30% acrylamide mix (Rotiphorese Gel 30); 2.5ml 

1M Tris/HCl pH 6.8; 0.1ml 10% SDS; 0.1ml 10% APS; 10µl TEMED 

 

Resolving gel 10% (20ml):  5.4ml H2O; 6.7ml 30% acrylamide mix (Rotiphorese Gel 30); 7.5ml 

1M Tris/HCl pH 8.8; 0.2ml 10% SDS; 0.2ml 10% APS; 8µl TEMED 

 

10 x SDS running buffer:  30.2g Tris-base; 144g glycine; 50ml 20%- SDS; H2O ad 1l 

 

10 x Transfer buffer:   30.2g Tris-base; 144g glycine; 10% methanol; H2O ad 1l 

 

 

3.2.2.3 Hybridization with antibodies 

 

After blotting of the proteins (3.2.2.2), the membranes were blocked for at least 30 

minutes in TBST containing 5% non-fat milk powder. Incubation with the primary 

antibody, which was diluted in TBST/5%milk, was performed at 4°C overnight. 

Subsequently, the membranes were rinsed twice with water and washed three times for 

5 minutes in TBST, followed by incubation with the secondary antibody, diluted in 

TBST/5%milk 1:2500 to 1:5000. After 2 hours of incubation at room temperature, the 

membranes were washed three times for 5 minutes in TBST and were rinsed five times 

shortly with water. To detect protein bands, the blots were incubated for 1 minute with 

ECL-detection solution, followed by exposure to chemiluminescence films. 

 
10 x TBS:   100mM Tris; 1.4M NaCl 

1 x TBST:   1 x TBS; 0.1% Tween-20 

 

 

3.2.2.4 Stripping of membranes 

 

To detect additional proteins on a membrane, which was already used for hybridization, 

the bound antibodies were removed by shaking the membrane in stripping buffer at 

55°C for 15 minutes. Subsequently, the membrane was washed twice for 10 minutes in 

TBST at room temperature, blocked 30 minutes in blocking buffer, followed by 

hybridization with the new antibodies.  

 
Stripping buffer:  100mM ß-mercaptoethanol; 2% SDS; 62.5mM Tris/HCl pH 6.7 
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3.2.3 Native Gels  

 

3.2.3.1 Preparation of protein extracts under native conditions 

 

Cells from three 10cm-plates were trypsinized, harvested by centrifugation, washed 

twice in PBS and resuspended in 200µl lysis buffer. Subsequently, cells were vortexed 

for 5 seconds, incubated on ice for 20-30 minutes with sporadic vortexing, vortexed 

again for 5 seconds and centrifuged at 16400rpm, 4°C for 10 minutes. The 

supernatants were used directly for analyses on native gels. 

 
Lysis buffer:  50mM Tris/HCl, pH 8.8; 1% NP-40; 150mM NaCl; 1 x protease 

inhibitor; 1 x phosphatase inhibitors 

 

Protease inhibitor (50x):  1 tablet complete EDTA-free protease inhibitor cocktail (Roche) in 

1ml H2O (1:50) 

Phosphatase inhibitors:  100mM sodium orthovanadate  1:100 

    1M Na-tartrate   1:500 

    100mM Na2MoO4  1:100 

 

    

3.2.3.2 Native gel electrophoresis  

 

Native gel run and blotting was performed at 4°C with all materials pre-cooled. The 

lysates (3.2.3.1) were mixed 1:1 with 2x sample buffer and loaded to one-phase 

acrylamide gels (15µl for detection of Pes1, Bop1, WDR12 and 6.5µl for detection of 

Tubulin). Gels were run at 85V until the samples had entered the gels and then at 100V. 

After separation, proteins were transferred to a nitrocellulose membrane via wet blotting 

at 450mA for 1.5 hours in blotting buffer. Hybridization with antibodies was performed 

as described in chapter 3.2.2.3. 

 
2 x sample buffer:    125mM Tris/HCl pH 6.8; 30% glycine; 0.02% bromphenol blue 

 

1 x Running/blotting buffer:  14.4g glycine; 3.02g Tris-base; H2O ad 1l 

 

Acrylamide gel (10ml):  3.88ml H2O; 2.16ml acrylamide mix (Rotiphorese Gel 30); 3.75ml 1M 

Tris/HCl pH 8.8; 0.1ml 10% APS; 8µl TEMED  
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3.2.4 Immunofluorescence 

 

Immunofluorescence with CGR8 cells was performed in ibidi µ-slides VI, which were 

pre-coated with 0.2% gelatine. NIH3T3 cells were analyzed in 8-chamber slides from 

Nunc. After the respective treatment of the cells they were washed in PBS and fixed for 

10 minutes in ice-cold methanol (alternatively for 2 minutes in 1:1 methanol/aceton). 

Subsequently, they were air-dried and rehydrated with PBS for 5 minutes. After blocking 

for at least 30 minutes in PBS/10% FBS they were incubated with the primary 

antibodies overnight at 4°C. Antibodies were diluted in PBS/1.5%FBS. The following 

day, the cells were washed three times for 3 minutes in PBS/0.04%triton and incubated 

for 1 hour at room temperature with Cy3-labeled secondary antibodies (1:300 in 

PBS/1.5%FBS). After three washes with PBS/0.04%triton cells were stained with DAPI 

(1:10000 of 5mg/ml) to counterstain the nuclei. After another wash, the chambers from 

the 8-chmaber slides were removed and cells were covered with coverslips and 

mounting medium; cells in the µ-slides could be analyzed directly under a fluorescence 

microscope. Digital images were aquired using the Openlab acquisition software 

(Improvision) and a microscope model Axiovert 200M (Zeiss) with 10x, 20x and 100x 

objectives connected to a 5-charge-coupled device camera model ORCA-479 

(Hamamatsu). 

 

 

3.3 RNA Analyses 
 

3.3.1 Isolation of total RNA 

 

Total RNA was isolated from cells using the Qiagen RNeasy® Kit according to the 

manufacturers instructions. Cells were lysed in 300-500µl RLT lysis buffer, depending 

on their density. DNA digestion with the RNase-Free DNase Set (Qiagen) was included 

to avoid contamination with genomic DNA. Finally, RNA was eluted with 30-50µl of 

RNase-free water and stored at -80°C. Concentrations of RNA were determined using 

an Eppendorf spectrophotometer. 
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3.3.2 Reverse transcription (RT) of RNA into cDNA 

 

For quantitative PCR analysis the RNA had to be transcribed into cDNA. Therefore 3µg 

(or 1µg) of RNA were diluted in autoclaved ddH2O to a final volume of 15µl. After 

addition of 3.75µl of oligo(dT)15 primer (17µM) the samples were incubated at 65°C for 5 

minutes to denature secondary structures of RNA and allow the primers to bind to the 

polyA-tails of mRNA molecules. Afterwards 11.25µl of RT-Mix were added and the 

reaction was performed for 55 minutes at 37°C, followed by inactivation of the enzyme 

for 5 minutes at 95°C. Finally, 270µl (or 90µl) of autoclaved ddH2O were added to dilute 

the samples. 

 
RT-Mix: 

4.5µl NX-buffer (0.4M KCl; 0.1M Tris/HCl pH 8.4; 20mM MgCl2; 2% Tween-20) 

3.0µl ß-mercaptoethanol (0.1M) 

1.5µl dNTPs (20mM/dNTP) 

0.75µl RNasin (40U/µl) 

1.5µl Mo-MLV reverse transcriptase (200U/µl) 

 

 

3.3.3 Quantitative real-time PCR analysis 

 

To monitor relative gene expression levels, quantitative real-time PCR (polymerase 

chain reaction) was performed with the Light-Cycler method from Roche. Amplification 

of a defined sequence of the target cDNA is monitored in this system by addition of 

SYBR Green, a fluorescent dye, which enhances its fluorescence 100 times upon 

intercalation into double-stranded DNA. Thus, the fluorescence is proportional to the 

amount of amplified DNA. It is measured after each PCR cycle (real-time). The CP- 

(crossing point) value, which is determined by the Light-Cycler program, represents the 

cycle of the PCR when the fluorescence of the samples becomes detectable compared 

to the background levels. This is depending on the amount of target cDNA. Together 

with a standard curve, which determines the efficiency of the respective PCR reaction, 

the CP-value can be used to quantify the relative amount of cDNA. For the generation 

of a standard curve, samples of a previous PCR reaction with the same 

oligonucleotides were serially diluted to 10-5, 10-7 and 10-9 and ran in the Light-Cycler. 

For quantification of future reactions, the dilution 10-5 was included in those as 

reference (calibrator). The calculation of the standard curves as well as quantification of 
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the samples was performed by the Light-Cycler program. To account for irregularities 

within cDNA transcription, the determined concentrations of all samples were 

normalized to the concentrations of the housekeeping gene Aldolase. As the cDNA, 

which served as template for the PCR reaction, was transcribed reversely from mRNA, 

the results finally reflect the relative amount of mRNA copies in the cells at the time of 

lysis normalized to the levels of Aldolase. 

Specificity of the used primers was analyzed by melting curves, determining the melting 

peak of their products. Their sequences are depicted in chapter 2.6. 

 
PCR Mix: 

5.2µl H2O 

0.8µl MgCl2  

1µl oligonucleotide-pair (5pmol/µl each) 

1µl Roche mix 

2µl cDNA (diluted 1:10 in H2O) 

 

Program for amplification: 

Activation/denaturation:  95°C; 10min 

Amplification:   95°C; 1sec 

(50 cycles)  65°C; 10sec  

    72°C; 12sec 

Melting curve:  70°C; 10sec and in 0.1°C steps to 97°C 

Cooling down:  40°C; 10sec 

 

 

3.3.4 In vivo labeling of RNA with 32P-orthophosphate 

 

For metabolic labeling of rRNA, CGR8 or NIH3T3 cells were pre-incubated in 

phosphate-free DMEM with 10% dialysed FBS for 30 minutes. Then the starvation 

medium was replaced by 1ml/6-well phosphate-free DMEM/10%dialysed FBS 

containing 15µCi 32P-orthophosphate. After 1 hour the radioactive medium was 

removed and cells were incubated in standard medium with 10% FBS for 3-4 hours, 

followed by isolation of total RNA with the Qiagen RNeasy Kit according to the 

manufacturers instructions. 1.2µg of total RNA in 15µl loading buffer were denatured at 

55°C for 15 minutes and separated on 1% agarose-formaldehyde gels (100V, 

approximately 5 hours). After electrophoresis, gels were photographed under UV light to 

visualize ethidiumbromide-stained RNA. Then the gels were dried at 80°C under 
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vacuum suction on a Whatman-paper. Dried gels were exposed to X-ray films and 

rRNA was visualized by autoradiography. 

 
1% formaldehyde gel:  4g agarose; H20 ad 300ml; boil and allow to cool to 65°C before 

adding 40ml 10x MOPS and 67ml formaldehyde (37%). 

 

10 x MOPS:    200mM MOPS; 50mM Na-acetat; 1mM EDTA; pH 7.0 with NaOH 

 

Running buffer:   1x MOPS 

 

2 x RNA loading buffer (10ml):  5ml formamide; 1.5ml formaldehyde (37%); 1ml 10x MOPS; 1ml 

bromphenol blue; 10µl ethidiumbromide; 1.5ml H20 

 

 

3.4 Cell Proliferation and Apoptosis 
 

3.4.1 Proliferation assay - cell count 

 

CGR8 cells were plated at a density of 1.5x105 cells per 6-well and transfected twice 

with the respective siRNAs at the following two days. 6 days after the first siRNA 

transfection, cell numbers were determined in a Neubauer chamber. At day 3 (or 4) 

after the first transfection, cells were passaged the following way: control siRNA-

transfected cells were split 1:10, while cells transfected with siRNAs against Pes1 or 

Bop1 were split 1:5 to 1:7.5 depending on their density. This was done to ensure 

comparable amounts of cells per 6-well after plating. The cell numbers, determined at 

day 6, were multiplied with the respective dilution factors.  

NIH3T3 cells were plated at a density of 6 x 104 per 6-well. Transfection, splitting and 

cell counts were performed in a similar manner as in CGR8 cells. Trypan blue staining 

was used to exclude dead cells. 

 

 

3.4.2 Proliferation assay - GIEMSA staining 

 

Cells were plated at a density of 1.5x105 per 6-well and incubated with or without 5FU 

(10µM or 20µM) for 48 hours. After washing with PBS, the cells were fixed with 

methanol (-20°C) for 10 minutes, dried in the airflow of the hood for 2-5 minutes and 



Methods 

39 

stained with GIEMSA solution (1:20) for 30 minutes. Subsequently, the cells were 

washed by dipping the 6-well plate carefully, to not dislodge cells, 4-6 times into a bowl 

with ddH2O. After drying, the 6-wells were scanned with an Epson scanner.  

 

 

3.4.3 Cell cycle analysis with propidium iodide (PI) staining 

 

To analyze the DNA content of the cells by propidium iodide staining, cells from 1-3 

6-wells were washed with PBS, trypsinized and harvested by centrifugation at 1000rpm 

for 5 minutes. For fixation, cells were resuspended in 1ml of cold 80% ethanol and 

incubated for 1 hour on ice. Cells were then washed once with PBS and resuspended in 

1ml PBS, containing 50µg propidium iodide, 5µl RNase A (10units, Roche) and 2µl 

EDTA (0.5M). After 30 minutes incubation in the dark and at room temperature, for 

digestion of RNA, cells were subjected to flow cytometry in a FACScan (Becton 

Dickinson) to analyze cell cycle distribution within the population. 100000 cells were 

aquired per sample and analyzed with CellQuest software (Becton Dickinson). Cell 

debris was excluded by gating cells on a dot blot with forward and sideward scatter.  

 

 

3.4.4 Cell cycle analysis with bromodeoxyuridine (BrdU) labeling 

 

The FITC BrdU Flow Kit from BD Biosciences was used to analyze BrdU labeled cells. 

BrdU is a thymidine analogue, which is incorporated into newly synthesized DNA and 

thus labels cells in S-phase. Cells were labeled in 6-well plates with 10µM BrdU in cell 

culture medium for 30 minutes. Then, cells were washed twice with PBS, trypsinized 

and 106 cells per sample were fixed and permeabilized in 100µl of BD Cytofix/Cytoperm 

buffer for 30 minutes on ice. After addition of 1ml 1x BD Perm/Wash buffer and 

centrifugation for 5 minutes at 1200rpm the cell pellet was resuspended in 100µl of BD 

Cytperm Plus buffer and incubated for 10 minutes on ice. Following a washing step as 

described above, cells were refixed with 100µl BD Cytofix/Cytoperm buffer for 5min on 

ice. After another washing step, cells were treated for 1 hour at 37°C with 30µg DNase 

per sample to expose incorporated BrdU. After washing the cells again with 1ml 1x BD 

Perm/Wash buffer, they were stained for 20 minutes at room temperature with FITC-

conjugated anti-BrdU antibody, diluted 1:50 in 1x BD Perm/Wash buffer. 25µl of 

antibody dilution were added per sample. After another washing step, the cell pellets 
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were resuspended in 10µl 7-AAD solution to stain the total DNA content of the cells. 

Then, 0.5ml PBS was added to each sample and the stained cells were analyzed in a 

FACS Calibur flow cytometer (Becton Dickinson). 30000 cells per sample were aquired 

at a rate of no more than 400 events/second. Cell Quest software (Becton Dickinson) 

was used for analysis. For setup compensation, the following controls were included: 

1) unlabeled cells with BrdU antibody; 2) labeled cells with BrdU antibody; 3) unlabeled 

cells with 7-AAD; 4) labeled cells with BrdU antibody and 7-AAD. 

 

 

3.4.5 Annexin V staining 

 

Annexin V staining was used to determine the amount of apoptotic cells. Cells were 

harvested by trypsinization, washed twice with PBS and resuspended in 1x Annexin V-

binding buffer at a concentration of ∼1x106 cells/ml. Then 100µl of the cell suspension 

(1x105 cells) were stained by addition of 5µl Annexin V-FITC (BD Biosciences) and 2µl 

propidium iodide (50µg/ml stock) to distinguish between apoptotic and necrotic cells. 

After incubation for 15 minutes in the dark and at room temperature, 400µl 1x Annexin 

V-binding buffer were added and cells were analyzed by flow cytometry using a 

FACScan and CellQuest analysis software (Becton Dickinson). For setup 

compensation, the following controls were included: 1) unstained cells, 2) cells stained 

with Annexin V-FITC alone, 3) cells stained with PI alone. To exclude cell debris, cells 

were gated on a forward and sideward scatter dot blot. 

 
1x Annexin V-binding buffer:  10mM HEPES/NaOH pH7.4; 140mM NaCl; 2.5mM CaCl2  
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4 RESULTS 
 

 

4.1 Expression, localization and complex formation of Pes1, Bop1 and 
WDR12 in mouse embryonic stem cells  

  
4.1.1 Generation of antibodies for the detection of murine Pes1, Bop1 and 

WDR12 

 

The mammalian proteins Pes1, Bop1 and WDR12 have been shown to be involved in 

ribosome synthesis and proliferation of several cancer cell lines. In this work, the 

function of Pes1, Bop1 and WDR12 in mouse embryonic stem cells (ES cells) was 

investigated. As a model, the germline-competent mouse ES cell line CGR8 was 

chosen, which can grow without feeder layers on gelatinized plates in the presence of 

LIF. This property makes culturing conditions easier and eliminates background signals, 

derived from feeder cells. CGR8 cells were originally derived by Austin G. Smith from a 

male day 3.5 blastocyst-stage embryo of the mouse strain 129ola. The morphological 

phenotype of the cells is described as small and tightly packed cells in a singular 

cellular layer (ECACC, UK; http://www.ecacc.org.uk/). 

As former investigations in our lab about Pes1, Bop1 and WDR12 have been performed 

exclusively in human cell lines, it was necessary to produce several tools like antibodies 

and siRNAs for a proper investigation of the murine proteins. Therefore, as first step, 

polyclonal and monoclonal antibodies for all three murine proteins were generated. For 

the generation of polyclonal antibodies directed against murine Pes1, two guinea pigs 

were immunized with a mixture of an N-terminal and a C-terminal peptide of Pes1. 

Thereby, two antibodies, designated αPes1-Ab1 and αPes1-Ab3 were raised. The 

polyclonal antibodies αBop1-Ab1 and αBop1-Ab2 against murine Bop1 and αWDR12-

Ab3 and αWDR12-Ab4 against murine WDR12 were raised by immunizing guinea pigs 

with a mixture of an N- and a C-terminal peptide of Bop1 or WDR12, respectively. All 

antibodies were tested by Western blot analysis on total cell lysates of the mouse ES 

cell line CGR8 and of the mouse cell line NIH3T3, which are fibroblast-like cells. Pes1, 

Bop1 and WDR12 are expressed at high levels in CGR8 cells as well as in NIH3T3 cells 

(Fig.4). All polyclonal antibodies showed a specific staining with both cell lysates, 

detecting strong bands at the expected positions (Fig.4A-C, lanes 1-4, respectively). 
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Only αWDR12-Ab3 showed additionally a strong unspecific band with a slightly higher 

molecular weight (Fig. 4B, lanes 1/2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Analysis of Pes1, Bop1 and WDR12 with newly generated antibodies in CGR8 and 
NIH3T3 cells. The indicated polyclonal and monoclonal antibodies against Bop1 (A), WDR12 (B) 
and Pes1 (C) were tested by Western blot analysis on total cell lysates. C: CGR8; N: NIH3T3.  
 

 

Monoclonal antibodies against murine Pes1, Bop1 and WDR12 were raised in rats. For 

immunization, the same N- or C-terminal peptides were used as for the generation of 

the polyclonal antibodies. Four functional monoclonal antibodies against the N-terminus 

of Bop1 were generated (αBop1-1B5, αBop1-5F4, αBop1-8G10, αBop1-1A11), (Fig.4A, 
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lanes 5-12), but none against the C-terminal part. For WDR12, one antibody was raised 

against the N-terminus (αWDR12-6A2), (Fig.4B, lanes 5/6) and two against the C-

terminal part (αWDR12-6B8 and αWDR12-8D2), (Fig.4B, lanes 7-10). No functional 

monoclonal antibody was raised against Pes1. All monoclonal antibodies showed a very 

high specificity. The fact that the different polyclonal and monoclonal antibodies 

identified proteins of the same size at the expected positions, further underscores the 

specificity of the new antibodies. Western blot analyses of Bop1 showed a double band 

with all tested antibodies (Fig.4A). This might be due to post-translational modifications 

of Bop1 or to alternative splice variants. Alternatively, the lower band might represent a 

degradation product.  

As the polyclonal antibodies showed very good intensities on the Western blots, they 

were used for most of the experiments described below. Unless otherwise stated, 

αPes1-Ab3 was used for detection of Pes1, αBop1-Ab1 for Bop1 and αWDR12-Ab4 for 

detection of WDR12. 

 

 

4.1.2 Nucleolar localization of Pes1, Bop1 and WDR12 in CGR8 and NIH3T3 cells  

 

Pes1, Bop1 and WDR12 are expressed at high levels in the embryonic stem cell line 

CGR8. To get information about the cellular localization of the proteins in ES cells, 

indirect immunofluorescence analyses were performed. The results showed a 

predominantly nucleolar localization of all three proteins in CGR8 cells as well as a 

weak staining of the nucleoplasm (Fig.5A). The staining of WDR12 showed the 

strongest signal outside the nucleoli with additional staining in the cytoplasm. Whether 

this is due to unspecific binding of the antibody or whether WDR12 is localized 

additionally in the cytoplasm remains to be elucidated.  

In mouse NIH3T3 cells the localization of Pes1, Bop1 and WDR12 was also mainly 

nucleolar with a weak nucleoplasmic staining (Fig.5B).  
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Figure 5: Nucleolar localization of murine Pes1, Bop1 and WDR12. CGR8 (A) and NIH3T3 cells 
(B) were fixed with methanol and stained with the polyclonal antibodies αPes1-Ab3, αBop1-Ab1 and 
αWDR12-Ab4. Antigen-antibody complexes were then detected with Cy3-conjugated anti-guinea pig 
antibodies and visualized by fluorescence microscopy. Nuclei were counterstained with DAPI. 
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4.1.3 Stable complex formation of murine Pes1, Bop1 and WDR12  

 

Recent work in our laboratory has shown that Pes1, Bop1 and WDR12 form a stable 

complex in human U2OS and H1299 cells, termed PeBoW-complex (Holzel et al., 2005, 

Rohrmoser et al., 2007). To examine whether Pes1, Bop1 and WDR12 also assemble 

to a complex in mouse cells and especially in embryonic stem cells, native gel 

electrophoresis was performed with protein extracts of CGR8 and NIH3T3 cells. Cells 

were lysed using stringent, non-denaturing conditions, followed by the separation of 

stable core complexes on a polyacrylamide gel. Separation of protein complexes is 

dependent on their size, shape and charge. Subsequent immunoblot analysis of Pes1, 

Bop1 and WDR12 showed a single band with all 3 antibodies at the same position in 

the native gel, representing the PeBoW-complex (Fig.6, lanes 2-4 and 6-8). However, it 

cannot be excluded that the complex contains additional proteins. Immunoblot analysis 

of WDR12 showed in addition a faster migrating band, indicating probably free, non-

incorporated protein. This band was detected in CGR8 and NIH3T3 cells (Fig.6, lane 4 

and 8) and may indicate an additional function of WDR12 besides its integration into the 

PeBoW-complex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Murine Pes1, Bop1 and WDR12 form a complex. Total cell lysates of CGR8 and NIH3T3 
cells were separated by native gel electrophoresis. Pes1 (polyclonal Ab3), Bop1 (polyclonal Ab1), 
WDR12 (polyclonal Ab4) and α-tubulin were visualized by immunoblotting. Free proteins and 
complexes, containing the respective factors, are indicated. 
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4.1.4 Knockdown of murine Pes1, Bop1 and WDR12 by siRNA technology 

 
The method of small interfering RNA (siRNA) knockdowns was chosen to investigate 

the function of Pes1, Bop1 and WDR12 in embryonic stem cells. Different siRNA 

sequences for the three genes have been designed and were evaluated in CGR8 cells. 

The siRNAs were directed either against the open reading frames (ORF) or the 

untranslated regions (UTR) of the respective mRNAs. As control served a siRNA 

sequence directed against the Luciferase gene. The protocol for the knockdown and 

subsequent analysis of the cells was optimized in a way that cells were seeded at low 

density, followed by transfection of siRNA in duplicate at day 0 and day 1. Analysis of 

the cells was then performed between day 2 and day 7, depending on the assays 

(Fig.7A). Evaluation of several siRNA sequences revealed two functional siRNAs 

against Pes1 and Bop1, respectively (Fig.7B/C). Unfortunately, none out of four tested 

sequences showed a significant knockdown of WDR12 (Fig.7D). Therefore, functional 

analyses of the proteins in further experiments were limited to Pes1 and Bop1. As the 

second functional siRNA against Pes1 (siRNA 3) was evaluated at a later time point, it 

could not be included in all experiments. As siRNAs often induce off-target effects, it 

was generally tried to use two different siRNAs per target gene. In case of similar 

phenotypes, this strongly reduces the possibility that the detected effects might be 

unspecific. The knockdown efficiencies were varying between different siRNA species, 

with the siRNAs No.1 against Pes1 and Bop1 giving a better knockdown than the 

siRNAs No.2 or No.3 (Fig.7B/C, lanes 3/4, respectively). This tendency was 

reproducible, but nevertheless there were variations between different experiments. 

Transfection of CGR8 cells with an eGFP expression plasmid showed that about 70% 

of the cells can be transfected with Lipofectamine 2000 (Fig.7E). Varying intensities of 

eGFP expression within different cells showed that transfection efficiency differs 

between single cells. In addition eGFP expression may be also depending on the 

overall condition of the respective cells. 

Knockdowns of the proteins also supplied further proof for the specificity of the 

antibodies against Pes1 and Bop1. The fact that both bands of Bop1, detected by 

Western blot analysis, were diminished after siRNA transfection suggests that both 

bands are specific for Bop1. 
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Figure 7: Validation of functional siRNAs for Pes1 and Bop1 but not WDR12. (A) Time schedule 
of the transfection protocol for siRNA knockdowns. (B, C, D) CGR8 cells were transfected twice with 
the indicated siRNAs using Lipofectamine 2000 as transfection reagent. Two days after the last 
transfection (day 3), cells were monitored for protein levels of Pes1 (polyclonal Ab3), Bop1 
(polyclonal Ab1) and WDR12 (polyclonal Ab4) by Western blot analysis. Mock treated cells were 
incubated with Lipofectamine 2000. Control siRNA was directed against Luciferase. α-tubulin served 
as loading control. (E) eGFP expression visualized by fluorescence microscopy after transfection of 
CGR8 cells with an eGFP expression plasmid.  
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4.1.5 Interdependency of murine Pes1 and Bop1 protein levels  

 

Stability of human Pes1, Bop1 and WDR12 proteins has been shown to be strongly 

dependent on incorporation into the PeBoW-complex (Rohrmoser et al., 2007). In line 

with these results, siRNA knockdown experiments showed a strong interdependency of 

the murine proteins in CGR8 and NIH3T3 cells. Both cell lines were transfected twice 

with siRNAs against Pes1, Bop1 and WDR12 (according to Fig.7A). Western blot 

analyses at day 3 showed that depletion of Bop1 also decreases protein levels of Pes1 

and vice versa (Fig.8, lanes 2-4 and 8-10). The effect of Pes1 depletion on Bop1 protein 

levels was stronger though. Interestingly, no clear effect of Pes1 or Bop1 knockdown on 

the WDR12 protein levels was detectable. This result might be related to the strong 

intensity of the faster migrating band on the native gels, representing most likely free 

monomers of WDR12. This further substantiates the hypothesis of an additional 

function of free WDR12 in mouse cells, independent of its function related to the 

PeBoW-complex. siRNAs against WDR12, which were shown before not to exert a 

knockdown of WDR12, served as additional controls and did not show significant 

effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Interdependency of murine Pes1 and Bop1 protein levels. CGR8 (A) and NIH3T3 cells 
(B) were transfected twice with the indicated siRNAs. At day 3, protein levels of Pes1, Bop1 and 
WDR12 were monitored by Western blot analysis. Control siRNA was directed against Luciferase. 
α-tubulin served as loading control.  
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4.2 A role for Pes1 and Bop1 in rRNA processing and proliferation of 

mouse ES cells  

 
4.2.1 Impaired maturation of the 28S rRNA and accumulation of the 36S pre-

rRNA upon knockdown of Pes1 and Bop1  

 

Based on the reported function of the PeBoW-complex for ribosome biogenesis, we 

aimed to investigate whether a knockdown of Pes1 and Bop1 would affect rRNA 

processing in ES cells. Therefore, maturation of nascent rRNA was analyzed by 

metabolic labeling of RNA with 32P-orthophosphate. To compare the effects to non-ES 

cells, the experiment was performed in parallel in mouse NIH3T3 cells. Both cell lines 

were transfected twice with the respective siRNAs against Pes1, Bop1 and with the 

control siRNA against Luciferase. Two siRNAs directed against WDR12, which were 

shown before to have no significant effect on the protein level of WDR12, were included 

as additional controls in CGR8 cells. Two days after the last transfection, the cells were 

starved for 30 minutes in phosphate free medium and then RNA was pulse-labeled for 

1 hour by addition of 32P-orthophosphate-containing medium. After a chase time of 

3-4 hours with normal medium, total RNA was isolated and separated on an agarose-

formaldehyde gel. Exposure of the dried gel to an X-ray film led to visualization of 

labeled, i.e., de novo synthesized and processed ribosomal RNA. Ethidiumbromide 

staining of total RNA served as loading control. In both cell lines, Pes1- and Bop1-

depleted cells showed a reduction of the 28S rRNA levels in comparison to cells treated 

with control siRNA. In contrast, the amount of the 36S rRNA was increased in the Pes1- 

or Bop1-depleted cells. The amount of 32S rRNA showed no significant changes, nor 

did the 45/47S precursor. Also, the amount of 18S rRNA was not changed (Fig.9A). A 

similar effect was observed at day 2 and day 4, shown at the example of Bop1-depleted 

CGR8 cells (Fig.9B). The observed effects were comparable between CGR8 and 

NIH3T3 cells with a slightly stronger decrease of the 28S rRNA in NIH3T3 cells. The 

intensities of the observed effects were comparable to the knockdown efficiencies, 

achieved with the respective siRNAs (compare to Fig.8). Namely, the effect observed 

on 28S rRNA was stronger after depletion of Bop1 with siRNA-1 than with siRNA-2. In 

cells transfected with siRNAs against WDR12, only a marginal effect was observed.  
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Figure 9: Knockdown of Pes1 or Bop1 inhibits the processing of the 36S and 32S precursors 
into the 28S rRNA. (A) CGR8 and NIH3T3 cells, transfected twice with the indicated siRNAs, were 
starved for 30 minutes in phosphate-free medium at day 3 (see Fig. 4A). Subsequently, they were 
pulse-labeled for 1 hour with 32P-orthophosphate. After a chase time of 3-4 hours in regular medium, 
RNA was isolated, resolved on a 1% formaldehyde gel and visualized by autoradiography. Labeled 
rRNAs are indicated. Whole RNA staining with ethidiumbromide served as loading control. (B, C) 
CGR8 cells were treated as described in A, except that the pulse-labeling was performed at day 2 
and day 4. (D) Model of rRNA processing in mammalian cells. Numbers indicate the cleavage sites 
within the rRNA. Bars indicate the stages, where knockdowns of Pes1 and Bop1 block processing. 
ETS: external transcribed spacers; ITS: internal transcribed spacers. 
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The results imply an essential function for Pes1 and Bop1 during rRNA processing of 

ES cells. As maturation of the 18S rRNA was not affected, Pes1 and Bop1 seem to be 

involved in the production of the large 60S ribosomal subunit only, whose maturation is 

dependent on sufficiently processed 28S rRNA. The results further suggest a function 

for Bop1 and Pes1 during processing of the 36S- into the 32S precursor rRNA and for 

processing of the 32S precursor rRNA into the mature 28S rRNA. A proposed model for 

the role of Pes1 and Bop1 in rRNA maturation is shown in figure 9C.  

 

 

4.2.2 Retarded proliferation of CGR8 and NIH3T3 cells after Pes1 and Bop1 

knockdowns 

 

Proliferation of ES cells is very rapid and their cell cycle has distinct features from that 

of adult cells lacking some of the usual control mechanisms. We were interested to 

assess the function of the PeBoW-complex for ES cell proliferation under these different 

conditions. CGR8 and NIH3T3 cells were seeded at low density and transfected twice 

with the respective siRNAs against Pes1, Bop1 and WDR12 or with a control siRNA 

directed against Luciferase. To monitor the proliferation rate, cell numbers were 

determined in triplicate at day 6 (compare to Fig.7A). Knockdown efficiencies were 

verified by Western blot analysis two days after the second siRNA transfection 

(Fig.10A-D right panel). Proliferation rates of both, ES cells and NIH3T3 cells, were 

strongly impaired after knockdowns of Pes1 and Bop1 (Fig.10A-D, left panel). Cell 

numbers were reduced to 35% compared to the control in CGR8 cells and to 25% in 

NIH3T3 cells. Again, the knockdown efficiencies correlated directly with the negative 

effect on proliferation. Knockdowns of WDR12 were again not successful, although a 

weak reduction of protein could be observed by siRNAs-1 and -2. Additionally, no 

significant effect was observed on proliferation, except for cells treated with siRNA-2. 

Those were reduced to 75% compared to cells, treated with control siRNA (Fig.10C). 

This effect might be related to the weak decrease in WDR12 protein levels. Control 

siRNA led to a weak reduction of proliferation compared to mock-treated cells, which 

might be related to siRNA uptake in general. 

In summary, Pes1 and Bop1 seem to be essential factors for the high proliferation rate 

of ES cells. Moreover, the correlation between the degree of impairment on rRNA 

processing and proliferation, depending on the respective siRNAs, might be indicative 

of a link between the two processes.  
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Figure 10: Knockdowns of Pes1 and Bop1 negatively affect proliferation. (A, B, C) CGR8 cells 
were transfected twice with the indicated siRNAs. At day 6 cell numbers were determined in a 
Neubauer chamber. Relative cell numbers are shown in a histogram compared to control siRNA-
transfected cells, which were set to 100%. Mock cells were treated with Lipofectamine 2000. Error 
bars indicate the SD. Protein levels of Pes1, Bop1 and WDR12 were analyzed by Western blot 
analysis. Lysates were made at day 3. (D) NIH3T3 cells were treated as described in A and 
presented as relative cell numbers compared to control siRNA-treated cells, which were set to 100%. 
Lysates for the corresponding Western blot analyses were made at day 3. 
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4.3 Expression of Pes1, Bop1 and WDR12 during differentiation and a 

possible role for self-renewal of ES cells 
 

Much evidence points towards the notion that the high proliferation rate of ES cells is a 

property linked to their self-renewal capacity. As Pes1 and Bop1 seem to be essential 

factors for the proliferation of ES cells, the question arose whether Pes1 and Bop1 

might have a function in the maintenance of pluripotency. Moreover, we were interested 

in the expression of Pes1, Bop1 and WDR2 during differentiation of ES cells, as cell 

cycle kinetics change and proliferation slows down during this process.  

 

 

4.3.1 Downregulation of Pes1, Bop1 and WDR12 during differentiation   

 

To investigate the expression of Pes1, Bop1 and WDR12 during differentiation, CGR8 

cells were allowed to differentiate using the “hanging drop” protocol (Fig.11). For this 

procedure, undifferentiated CGR8 cells were trypsinized and transferred into medium 

without LIF. From this cell suspension, drops containing 500 cells were placed into the 

lid of bacteriological plates and kept upside down in an incubator for two days. During 

this time the cells start to form spheroid cell aggregates, also called embryoid bodies 

(EBs). At day 2, the EBs were harvested and further cultivated for 2-12 days in 

suspension. Alternatively, EBs can be transferred at day 4 or 6 to gelatinized 24-well 

plates for further cultivation. The differentiation process within EBs strongly reflects the 

differentiation processes taking place in a proper embryo. Cells differentiate via 

derivatives of the 3 germlayers of ectoderm, endoderm and mesoderm into lineage 

specific progenitors and finally into differentiated cells. The advantage of the “hanging 

drop” method is that the individual EBs develop similar in size and differentiate in a 

synchronous manner (Wobus et al., 1991). 

To assess differentiation of CGR8 cells, EBs were harvested every second day, 

followed by RNA and protein isolation. One method to monitor the differentiation 

process is to investigate the expression of certain marker genes by real-time PCR. 

Therefore, RNA was transcribed into cDNA and analyzed for the expression of specific 

differentiation- and pluripotency-markers. The markers Oct4, Nanog, Sox2 and KLF4, 

which are indicative of pluripotency, were downregulated during the differentiation 

process, while Flk1, an early mesodermal marker, was upregulated, starting to express 

at day 4 (Fig.12A). T-bra, a gastrulation and early mesodermal marker, was induced at 
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day 4. Thus, the observed regulation of these markers confirmed differentiation of the 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 11: Differentiation of mouse ES cells by the “hanging drop” method. Undifferentiated 
CGR8 cells with 70-80% confluency were trypsinized, washed with PBS and resuspended in 
differentiation medium at a final concentration of 2.4 x 104 cells/ml. About 70 drops (20µl each) 
containing 500 cells were placed into the lid of a 10cm plate and incubated upside down for 2 days at 
37°C, which leads to formation of embryoid bodies (EBs). At day 2, the EBs were transferred into 
bacteriological plates containing 10ml of differentiation medium and expanded there for at least two 
days. Then they were either plated into gelatine-coated 24-well plates or further expanded in the 
bacteriological plates for several more days. Medium was exchanged every second day. The cells 
within the EBs differentiated into ectodermal, endodermal and mesodermal cells. 
 
 
Expression of Pes1, Bop1 and WDR12 was analyzed by Western blot analysis. The 

levels of all three proteins were downregulated at day 6 of differentiation (Fig.9B). Since 

ES cells start to adapt to a regulatory cell cycle during differentiation (White et al., 

2005), expression and phosphorylation of Rb was determined. Rb switched from its 

mainly hyper-phosphorylated, inactive form, present in undifferentiated cells, to the 

hypo-phosphorylated, active form at day 6 of differentiation (Fig.9B), indicating a 

change towards a regulated Rb-E2F pathway at this stage of differentiation. 

Interestingly, at day 2 of differentiation a significant induction of the overall amount of 

Rb could be detected, mainly of the inactive form. A similar effect on Rb was detected 

after depletion of Pes1 and Bop1 in CGR8 cells (see Fig. 16A). This might suggest that 

depletion of Pes1 and Bop1 cause certain changes in ES cells, which could reflect a 

very early differentiation process. 
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Figure 12: Pes1, Bop1 and WDR12 are downregulated during differentiation and Rb is hypo-
phosphorylated. (A) Relative mRNA levels of the indicated genes during differentiation of CGR8 
cells, measured by Light-Cycler analysis. Values were normalized to Aldolase. (B) Western blots 
monitoring expression of Pes1, Bop1, WDR12 and Rb during CGR8 cell differentiation. pRb: hypo-
phosphorylated Rb; ppRb: hyper-phosphorylated Rb. 
 

 

4.3.2 Expression of pluripotency markers in CGR8 cells after depletion of Bop1 

or Pes1  

 

The proposed link between proliferation and self-renewal of ES cells together with the 

above described results prompted us to assess whether the PeBoW-complex might be 

involved in the maintenance of pluripotency and/or whether depletion of Bop1 or Pes1 

might induce an early differentiation process in ES cells.  
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Figure 13: Expression of pluripotency markers after depletion of Pes1 or Bop1. (A) Alkaline 
phosphatase staining of CGR8 cell colonies. Cells were transfected twice with the indicated siRNA 
and plated one day after the second transfection to 6-well plates, followed by PFA fixation and AP-
staining 5 days later. (B) A higher magnification of the images shown in A. (C) Cells were treated as 
in A but cultured without addition of LIF. (D) Relative mRNA levels from the indicated genes. CGR8 
cells were transfected twice with the indicated siRNAs, RNA was isolated at day 3 and day 7, 
transcribed to cDNA and analyzed by Light-Cycler analysis. Values were normalized to Aldolase. 
Mean values of two independent experiments are shown. 
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One characteristic marker for the undifferentiated state of stem cells is high expression 

of alkaline phosphatase (AP). To examine AP expression, siRNA transfected cells were 

seeded at very low densities into 6-well plates and cultured for 5 days with or without 

addition of LIF to form colonies. Then, cells were analyzed for alkaline phosphatase 

activity by addition of a substrate, which is transformed by the enzyme into a colored 

dye. All colonies from control and Pes1- or Bop1-depleted cells that were cultured under 

addition of LIF stained positive for alkaline phosphatase activity, reflecting the 

undifferentiated state of the cells. The morphology of the colonies was small with tightly 

packed cells. Fewer colonies were present in the wells containing Pes1- or Bop1-

depleted cells (Fig.13A, B). Cells that were cultured without addition of LIF formed much 

larger and more widespread colonies. Only about 50% of the cells stained positive for 

AP, usually the ones in the centre of a colony. Moreover, AP staining was less intense 

(Fig.13C). Wells with Pes1- and Bop1-depleted cells contained less cells, but no 

significant change in the morphology of the colonies nor in the intensity of AP staining 

was observed. This indicates that the early differentiation of Pes1- and Bop1-depleted 

cells is not disturbed.  

In a next step, the mRNA levels of the pluripotency-markers Nanog, Sox2 and KLF4 

were investigated. For this test, CGR8 cells were transfected twice with Bop1 and 

control siRNAs, followed by RNA isolation at day 3 and day 7 and Light-Cycler analysis. 

None of the three examined markers showed a significant downregulation in Bop1-

depleted cells compared to cells transfected with control siRNA (Fig.13D). Although 

some variations in expression levels were observed, those were less than the 

differences between the controls at day 3 and 7 and therefore probably not significant. 

A corresponding downregulation of the same markers at day 2 of differentiation is 

shown in figure 12A. These first results argue against a change of the cells towards 

early differentiation upon depletion of Bop1.  

 

 
4.3.3 Expression and phosphorylation of Rb during differentiation of Bop1-

depleted CGR8 cells  

 

Another assumption was that depletion of Pes1 or Bop1 might make CGR8 cells more 

prone to differentiation if exposed to a differentiation stimulus. This was investigated 

indirectly by examining the expression and phosphorylation levels of Rb, which were 

shown to be regulated during differentiation (compare to Fig.9). Bop1 and control siRNA 

transfected cells were differentiated one day after the second siRNA transfection via the 
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“hanging drop” protocol. Lysates of each day of differentiation were analyzed by 

Western blot for the expression and phosphorylation of Rb. The Rb pattern showed no 

change between Bop1 siRNA-treated and control siRNA-treated cells (Fig.14). In all 

samples an increase of the overall level of Rb levels was detected at day 1 and day 2 of 

differentiation and the switch to a predominant expression of the active, hypo-

phosphorylated form took place at day 6. Indirectly, this first result points against a 

favored or faster differentiation of CGR8 cells after Bop1 depletion. However, to clearly 

argue against favored differentiation, bona-fide differentiation markers should be 

investigated in addition. Moreover, it has to be considered that the knockdown of Bop1 

by siRNA technology is only transient. But as differentiation is a process over several 

days, a stable and also a more profound knockdown might be important for detectable 

effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Expression and phosphorylation of Rb is not changed during differentiation of 
Bop1 depleted CGR8 cells. Cells were transfected twice with the indicated siRNAs and 
differentiated according to the “hanging drop” protocol, one day after the second siRNA transfection. 
Total cell lysates from day 1-4, 6 and 8 of differentiation were analyzed by Western blotting. pRb: 
hypo-phosphorylated Rb; ppRb: hyper-phosphorylated Rb. 



Results 

59 

4.4 Cross talk between ribosome biogenesis and proliferation of ES 

cells 
 

4.4.1 Induction of the tumor suppressor p53 in CGR8 cells upon Pes1 and Bop1 

depletion 

 

There is strong evidence that nucleolar stress is related to cell proliferation. As we 

observed defects in ES cell proliferation as well as in rRNA maturation upon depletion 

of Pes1 and Bop1, we aimed to investigate a link of the two processes in ES cells. One 

important factor involved in a lot of cellular stresses is the transcription factor and tumor 

suppressor p53. In mature cells, p53 is induced upon inhibition of ribosome biogenesis 

and exerts a cell cycle arrest in G1-phase. In ES cells, the function of p53 is not clear. 

Inactivity of p53 and inability of the cells to undergo a G1-arrest was reported for 

example after DNA damage (Hong et al., 2004). To examine whether impaired 

ribosome biogenesis can activate a p53-dependent checkpoint in ES cells, the protein 

levels of p53 were analyzed by Western blot analysis after Pes1 and Bop1 knockdowns. 

The amount of p53 was highly induced in Pes1- and Bop1-depleted cells compared to 

control siRNA-treated cells (Fig.15). Again the intensity of p53 induction was in 

correlation with the knockdown efficiencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: The tumor suppressor p53 is induced in CGR8 cells after depletion of Pes1 and 
Bop1. CGR8 cells were transfected twice with the indicated siRNAs. p53 protein levels were 
monitored by Western blot analysis at day 3. Pes1 (polyclonal Ab3) and Bop1 (polyclonal Ab1) are 
shown to monitor knockdown efficiency. α-tubulin served as loading control. 
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4.4.2 Investigation of apoptosis after Pes1 and Bop1 knockdown 

 

Apoptosis and cell cycle arrest are two main pathways, which are regulated by p53. To 

assess whether one of the two mechanisms is activated by the p53 induction after 

depletion of Pes1 and Bop1, apoptosis and cell cycle distribution of CGR8 cells were 

analyzed. Apoptosis was investigated via annexin V staining and PARP cleavage. 

 

 

4.4.2.1 Analysis of apoptosis by annexin V staining 

 

First, the amount of apoptotic cells was examined via annexin V staining. Apoptosis or 

programmed cell death is an active process, which involves a variety of morphological 

changes like loss of membrane asymmetry, cell shrinkage and DNA fragmentation. 

Early features of cells, undergoing apoptosis, are changes in the plasma membrane 

including exposure of the phospholipid phosphatidylserine (PS) to the outer leaflet of 

the membrane. In viable cells, PS is located only on the cytoplasmic surface of the 

membrane. Annexin V is a phospholipid binding protein with high affinity to PS and can 

be used therefore for the detection of apoptotic cells, which expose PS. Positive stained 

cells can be counted by FACS analysis. In addition, cells were stained with propidium 

iodide (PI), which served to distinguish viable from dead cells. Dead cells are 

permeable for PI due to disruptions in their membrane, while viable cells can exclude 

PI. Cells that are negative for annexin V and PI staining represent viable cells; double 

positive cells represent dead cells that may have died by apoptosis or necrosis. 

The positive control (cells treated with Actinomycin D) showed a more than 3-fold 

increase in annexin V positive cells as well as annexin V and PI double positive cells 

(Fig.16A,B). In contrast, Pes1- and Bop1-depleted cells showed no clear increase of 

annexin V positive or annexin V and PI double positive cells compared to cells treated 

with control siRNA. Annexin V staining was measured at day 3 and day 5 post siRNA 

transfections. A very weak increase of apoptotic cells could be detected for Bop1-

depleted cells at day 3 and for Pes1 siRNA3-treated cells (Fig.16A,B). Surprisingly, the 

controls also showed quite strong variations in the amount of dead cells. One 

explanation might be the use of different batches of cells for the experiments with Pes1 

depletion compared to the experiments after Bop1 depletion, which were performed 

independently. The increase in dead cells at day 5 might be related to passaging of 

cells at day 3/4. 
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Figure 16: Analysis of cell death after Pes1 and Bop1 depletion. CGR8 cells, transfected twice 
with the indicated siRNAs, were stained with annexin V and propidium iodide (PI) and analyzed by 
FACS. Actinomycin D treated cells (overnight with 20nM) served as positive control. (A) Dot blots of 
annexin V/PI stained cells at day 3. (B) Results from day 3 and day 5 shown as diagram with LR 
representing the percentage of annexin V positive cells and UR representing annexin V and PI 
double positive cells. LR: lower right quadrant, UR: upper right quadrant from the respective dot 
blots. 
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4.4.2.2 Analysis of PARP cleavage to examine apoptosis 

 

To verify the absence of a detectable effect on apoptosis, indicated by Annexin V 

staining, another assay was performed, investigating the cleavage of poly(ADP-ribose)-

polymerase (PARP). PARP is involved in DNA damage and repair mechanisms. During 

apoptosis PARP is cleaved by the protease caspase-3 from the native 116kDa protein 

into an 85kDA and a 24kDa fragment. 

Consistent with the negative results from the annexin V staining, no increase in the 

cleaved 85kDa form of PARP was observed compared to control siRNA-treated cells 

after Pes1 or Bop1 knockdowns (Fig.17, lanes 1-6). Actinomycin D treated cells showed 

an induction of the 85kDA form, which served as positive control (Fig.17, lanes 7-8). A 

small amount of the 85kDA form could be detected in all transfected cells. Most likely, 

this is due to a certain amount of apoptosis induced by the transfection stress. 

 

 

 

 

 

 

 

 
 
Figure 17: PARP cleavage into the 85kDa fragment is not enhanced upon depletion of Pes1 
and Bop1. CGR8 cells were transfected twice with the indicated siRNAs, harvested at day 3 
including supernatants, followed by Western blot analysis for detection of PARP. Untreated cells 
were included as negative control, Actinomycin D treated cells (20nM overnight) as positive control. 
An unspecific band served as loading control. 
 

 

4.4.3 Cell-cycle distribution of CGR8 cells after Pes1 and Bop1 depletion 

 

Next, the cell cycle profile of embryonic stem cells was investigated after depletion of 

Pes1 and Bop1. CGR8 cells were transfected twice with the respective siRNAs and 

labeled for 30 minutes with 10µM bromodeoxyuridine (BrdU) at day 3 (compare Fig.7A). 

BrdU is a thymidine analogue, which is incorporated into newly synthesized DNA. 

Incorporated BrdU was then stained with an anti-BrdU antibody and positive cells were 

counted by FACS analysis. In parallel, cells were stained with 7-AAD (7-amino 
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actinomycin D) to measure the DNA content. 7-AAD intercalates into DNA and can be 

used in place of PI. Its advantage over PI is a minimal spectral overlap with PE and 

FITC. Pes1- and Bop1-depleted cells showed a slight decrease of cells in S-phase 

compared to control siRNA-treated cells (Fig.18). In turn, there was a slight increase of 

cells in G1-phase. BrdU labeling at day 4 showed similar results (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18: Cell cycle profiles of Pes1 and Bop1 depleted cells, measured by BrdU staining. 
CGR8 cells were transfected twice with the indicated siRNAs. At day 3, proliferating cells were 
labeled for 30 minutes with 10µM BrdU, fixed, stained with an anti-BrdU antibody and PI and 
analyzed by FACS analysis. (A) Representative dot blots and histograms of BrdU- and PI-labeled 
cells with the indicated knockdowns. Cells with a DNA content between 2N and 4N are shown. (B) 
Diagram of the percentage of cells in G1/G0-, S-, and G2/M-phase. Mean values of two independent 
experiments are shown. Values were calculated using Cell Quest software. (C) Respective 
knockdown efficiencies. 
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4.4.4 Induction of the retinoblastoma tumor suppressor gene product Rb in 

CGR8 cells after depletion of Pes1 and Bop1 

 

To further elucidate a putative p53-mediated response mechanism, phosphorylation of 

the tumor suppressor Rb was investigated, which is one main factor involved in cell 

cycle arrest. After cellular stress, Rb is usually activated via the p53-p21 pathway. 

CGR8 and NIH3T3 cells were transfected twice with siRNAs against Pes1, Bop1 and 

control siRNA. Two days after the second transfection, cells were harvested and Rb 

was monitored by Western blot analysis. After depletion of Pes1 and Bop1, a strong 

increase in the overall amount of Rb was observed in both cell lines. In CGR8 cells, the 

main increase was interestingly in the hyper-phosphorylated, inactive form of Rb 

(Fig.19A). In addition, a slight increase in the hypo-phosphorylated, active form was 

visible, which is involved in the regulation of the cell cycle and a G1-checkpoint. The 

weak increase of cells in G1- and the corresponding decrease of cells in S-phase upon 

depletion of Pes1 and Bop1 (compare Fig.18) might be correlated with this slight 

increase of hypo-phosphorylated Rb. The role of the induction of hyper-phosphorylated 

Rb remains to be elucidated.  

In contrast to ES cells, an induction of hypo-phosphorylated, active Rb was observed in 

NIH3T3 cells after depletion of Pes1 and Bop1, but no increase in hyper-

phosphorylated, inactive Rb (Fig.19B). This indicates a functional checkpoint response 

in those cells, leading to an Rb-mediated arrest of cells in G1-phase. 

 

 

4.4.5 The cell cycle inhibitor p21 is undetectable in CGR8 cells after depletion of 

Pes1 or Bop1 

 

To further examine the role of the p53 induction after Pes1 and Bop1 depletion in CGR8 

cells, samples of the lysates shown in figure 16A were examined for the Cdk-inhibitor 

p21. As a direct target gene of p53, p21 can serve to measure the transcriptional 

activity of p53. On the respective Western blot p21 was hardly detectable even after 

prolonged exposure times. In Actinomycin D treated NIH3T3 cells, which served as 

positive control, a strong band could be detected at the expected position of the blot 

(Fig.19C) even though NIH3T3 cells expressed much lower levels of p53 than CGR8 

cells. These data indicate that p53 might not be fully active in CGR8 cells despite its 

strong induction. To investigate p53 transcriptional activity in more detail, mRNA levels 



Results 

65 

of p21 should also be examined. Additionally, other mechanisms like promoter silencing 

or proteasomal degradation of p21 might be explanations why the protein levels of p21 

are not induced. Overall, the data support the notion that the p53-p21 pathway, which 

usually leads to a G1-arrest in mature cells, might not be functional in CGR8 cells after 

depletion of Pes1 or Bop1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Regulation of Rb, p21 and p53 after Pes1 and Bop1 knockdowns. CGR8 (A) and 
NIH3T3 cells (B), transfected twice with the indicated siRNAs, were harvested at day 3 and 
expression of Rb was detected by Western blot analysis. Detection of Pes1 and Bop1 confirmed 
functional knockdowns and α-tubulin verified equal loading. (C) The samples from A were monitored 
for p21 and p53 expression. NIH3T3 cells, treated overnight with 20nM of Actinomycin D, served as 
positive control. pRb: hypo-phosphorylated Rb; ppRb: hyper-phosphorylated Rb. 
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4.5 Use of 5-fluorouracil as potent inhibitor of ribosome biogenesis to 

investigate a possible checkpoint activation in mouse ES cells 
 
Throughout the experiments it was observed that siRNA technology does not work as 

efficiently in ES cells as in other cell types. Based on the number of GFP-positive cells 

after transfection with an appropriate expression vector, we estimate that about 70% of 

the cells can be reached by transfection (Fig.7E). Moreover, since ES cells proliferate 

very rapidly, siRNA effects would be more transient than in other cells because siRNAs 

will be quickly diluted out and normally proliferating cells will rapidly overgrow 

transfected, arrested cells. To overcome these limitations, we studied the effects of a 

strong nucleolar stress on ES cells to independently assess a possible link between 

ribosome biogenesis and proliferation in ES cells. To this end, we used the 

chemotherapeutic agent 5-Fluorouracil (5FU), which is a cytotoxic drug used for the 

treatment of a variety of solid tumors. Its anti-tumor effect is, at least in part, due to the 

induction of a p53-dependent cell cycle arrest and apoptosis. At low concentrations 

(10µM-100µM) 5FU was shown to activate p53 by inhibition of rRNA processing and 

induction of ribosomal stress, while higher concentrations (100µM-500µM) lead to DNA 

damage and phosphorylation of p53 at serine 15, possibly due to ATM activation 

(Gilkes et al., 2006). 
 

 

4.5.1 Block of rRNA processing and inhibition of CGR8 cell proliferation upon 

5FU-treatment 

 

Treatment of CGR8 cells with 10µM and 20µM of 5FU for 22 hours resulted in a major 

inhibition of rRNA processing analyzed by in vivo labeling of newly synthesized rRNA 

with radioactive 32P-orthophosphate. Both concentrations of 5FU blocked the maturation 

of 18S as well as 28S rRNA completely (Fig.20). Moreover, already the maturation of 

the 36S and 32S rRNA intermediates was strongly reduced. Instead, a slight increase of 

the 45/47S precursor was detected.  
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Figure 20: 5FU treatment blocks rRNA processing. CGR8 cells were treated overnight with 10µM 
and 20µM 5FU, with DMSO (4µl/ml medium) or left untreated. After starvation for 30 minutes in 
phosphate-free medium cells were pulse-labeled for 1 hour with 32P-orthophosphate, followed by a 
chase of 3-4 hours. Equal amounts of isolated RNA were resolved on a 1% formaldehyde gel and 
visualized by autoradiography. Labeled rRNAs are indicated. As loading control, whole RNA was 
stained with ethidiumbromide.   
 

 

Cell proliferation of CGR8 and NIH3T3 cells was strongly reduced after 5FU treatment, 

as shown by GIEMSA staining of cells after fixation with methanol (Fig.21). Staining of 

control and DMSO-treated cells was much more intensive due to more cells per 6-well 

plate. Inhibition of cell proliferation was comparable between CGR8 and NIH3T3 cells. 

 

 

 

 

 

 

 

 

 
 

Figure 21: 5FU inhibits cell proliferation. CGR8 and NIH3T3 cells were seeded at equal densities 
in 6 well plates and treated for 48 hours with 10µM and 20µM 5FU, DMSO (4µl/ml medium) or left 
untreated. To estimate the amount of cells per well, cells were fixed with methanol and stained with 
GIEMSA. 
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4.5.2 Strong induction of p53 and Rb but not p21 upon treatment of CGR8 cells 

with 5FU 

 

Treatment of CGR8 cells with 5FU resulted in a strong induction of p53 protein levels. 

Levels of p21 proteins were only marginally induced, with the bands detectable only 

after an exposure time of 30 minutes or longer (Fig.22 lanes 1-4). Moreover, 5FU-

treated CGR8 cells showed an extensive induction of total Rb protein levels with the 

main increase in the hyper-phosphorylated, inactive form of Rb (ppRb). Conversely, 

only a weak induction of hypo-phosphorylated, active Rb (pRb) was observed (Fig.22, 

lanes 1-4). The overall ratio between ppRb:pRb was unchanged. The fact that the ratio 

was not changed towards active pRb is in line with the impaired induction of p21 that 

usually inhibits the activities of cyclin/Cdk complexes, which are involved in Rb 

phosphorylation. Overall, much higher amounts of total Rb seem to be present in CGR8 

cells compared to NIH3T3 cells in opposite to the p21 levels, which are undetectable in 

CGR8 control cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 22: Regulation of Rb, p21 and p53 after 5FU treatment of CGR8 and NIH3T3 cells. CGR8 
and NIH3T3 cells were treated with 10µM and 20µM 5FU or DMSO (4µl/ml medium) for 22 hours or 
left untreated. Total cell lysates were monitored by Western blot analysis for protein levels of p53, 
p21 and Rb. α-tubulin served as loading control. pRb: hypo-phosphorylated Rb; ppRb: hyper-
phosphorylated Rb. 
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In contrast to ES cells, p21 was highly induced in NIH3T3 cells upon 5FU treatment. In 

line with this finding, NIH3T3 cells showed an increase in active pRb but not inactive 

ppRb, compared to an equal, weak expression of pRb and ppRb in untreated and 

DMSO treated cells. Interestingly, only a very weak induction of p53 was detected 

(Fig.22, lanes 5-8). Hence, it seems that additional factors might be involved in the 

induction of p21 in NIH3T3 cells. 

 

 

4.5.3  Nuclear localization of induced p53  

 

As p53 induction in CGR8 cells after 5FU treatment did not lead to the expected robust 

induction of p21 or to strong hypo-phosphorylation of Rb, the localization of p53 was 

investigated. Published data indicated cytoplasmic localization and therefore 

transcriptionally inactive p53 after cellular stresses like DNA damage (Aladjem et al., 

1998; Hong and Stambrook, 2004). Indirect immunofluorescence analysis confirmed an 

upregulation of p53 protein levels in CGR8 cells and showed also a weak induction in 

NIH3T3 cells after treatment with 10µM and 20µM of 5FU. The overall expression of 

p53 in 5FU-treated and non-treated cells was much stronger in CGR8 cells than in 

NIH3T3 cells (Fig.23A,B). In both cell lines localization of p53 was mainly nuclear. 

Therefore, the cellular localization cannot explain the lack of p21 upregulation, 

suggesting a different deficit in inductive mechanisms. 

 

 

4.5.4 Accumulation of CGR8 cells in S-phase after incubation with 5FU 

 

Next, the cell cycle profiles of CGR8 and NIH3T3 cells after 5FU treatment were 

monitored. Cells were incubated for 22h and 46h with or without 5FU, followed by FACS 

analysis of PI stained cells. NIH3T3 cells accumulated in G1- and S-phase with an 

increase of cells in G1-phase after 22h and 46h of 5FU treatment (Fig.24A). The 

amount of cells in G2/M-phase was reduced. In contrast, CGR8 cells showed an 

accumulation of cells in S-phase after 46h of 5FU treatment. After 22h an accumulation 

at the G1/S-phase boarder was detected (Fig.24B). As the discrimination between G1- 

and S-phase was difficult in CGR8 cells after PI-staining, due to the high percentage of 

ES cells in S-phase, the experiment was repeated with BrdU-labeling. BrdU is 

incorporated into newly synthesized DNA and therefore marks cells within the S-phase. 
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Figure 23: Nuclear localization of p53 in CGR8 and NIH3T3 cells after 5FU treatment. CGR8 (A) 
and NIH3T3 cells (B) were treated with 10µM and 20µM 5FU or DMSO (4µl/ml medium) for 22 hours 
or left untreated. Next, cells were fixed with methanol (CGR8 cells) or methanol/aceton (NIH3T3 
cells) and analyzed by indirect immunofluorescence for p53. Nuclei were counterstained with DAPI. 
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Figure 24: Cell cycle profiles of 5FU-treated CGR8 and NIH3T3 cells analyzed by PI staining. 
NIH3T3 and CGR8 cells were incubated with 10µM and 20µM of 5FU or DMSO (4µl/ml medium) for 
22 hours and 46 hours, respectively, or left untreated. After fixation with EtOH, the DNA content of 
the cells was evaluated with PI staining and FACS analysis. (A) Histograms of cell cycle profiles of 
NIH3T3 cells and quantitative evaluations, indicating the percentage of cells in G1/G0-, S- and G2/M-
phase. Cells with DNA content between 2N and 4N are shown (B) As described in A but for CGR8 
cells. Calculations were performed using the program Cell Quest. 
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Figure 25: Cell cycle profiles of 5FU-treated CGR8 cells analyzed by BrdU labeling. CGR8 cells 
were incubated with 10µM 5FU and DMSO (4µl/ml medium) as control for 24 hours and 48 hours, 
respectively. Cells were labeled for 30 minutes with 10µM BrdU, fixed, stained with an anti-BrdU 
antibody and 7-AAD and analyzed by FACS analysis. (A) Dot blots and respective histograms of 
BrdU and 7-AAD labelled cells with a DNA content between 2N and 4N (B) Quantitative evaluation 
representing the percentage of cells in G1/G0-, S- and G2/M-phase. Calculations were performed 
with Cell Quest. 
 
 
BrdU-positive cells can be subsequently detected by antibody staining and measured 

by FACS analysis. BrdU-labeling showed an accumulation of CGR8 cells in early S-

phase after 24h of 5FU treatment (Fig.25). Cells in G1- and G2/M-phase were reduced 

according to this assay. After 48h, the majority of cells were in S-phase, but the 

intensity of the BrdU incorporation was reduced compared to control cells. 

Nevertheless, the cellular DNA content increased since the measurement after 24h of 

5FU treatment. Hence, it seems that replication still took place, as the large majority of 

cells showed BrdU-incorporation, but it appears to have been hindered. In summary, 

these results support the hypothesis of an impaired p53-p21-Rb pathway in CGR8 cells, 

as was already indicated by the depletion studies with Pes1 and Bop1. Upon 5FU 

treatment, this is additionally reflected by a missing - or at least poorly established and 

only transient - G1-arrest. 
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5 DISCUSSION 
 

 

For efficient proliferation, cells have to coordinate the increase in cell mass with cell 

division. Deregulation of the two processes is involved in a variety of pathological 

conditions like cancer, developmental defects and metabolic disorders. The molecular 

mechanisms controlling the coordination of both processes are still at the onset of 

investigation. Nevertheless, mutual regulations between cell cycle progression (i.e., cell 

division) and ribosome biogenesis (one major factor of cell growth) have been 

described. Embryonic stem (ES) cells display very rapid proliferation, which is slowed 

down during differentiation. Their high proliferation potential is coupled to an unusual 

cell cycle, which lacks a regulated G1/S-phase transition. These specific features are 

strongly suggested to be involved in the maintenance of the self-renewal properties of 

ES cells. In culture, ES cells show an unlimited proliferation potential without being 

immortalized. Moreover, similar to tumor cells, they do not undergo senescence, do not 

show contact inhibition and can grow without serum. Hence, understanding proliferation 

of ES cells will also further shed light on mechanisms involved in self-renewal and 

improve our knowledge about transformed cells. 

During this work, the expression, complex formation and function of the proteins Pes1, 

Bop1 and WDR12, which were shown to play a role in ribosome biogenesis and 

proliferation of mature cells, were examined in ES cells. Thereby, it was aimed to 

investigate the relation of ribosome biogenesis with proliferation, self-renewal and 

differentiation of ES cells.  

 

 

5.1 Nucleolar localization and complex formation as essential factors 
for functionality of Pes1, Bop1 and WDR12  

 

At the initial stages of this work, the expression and physical interaction of murine Pes1, 

Bop1 and WDR12 were investigated in the ES cell line CGR8 and the mouse fibroblast 

cell line NIH3T3. Localization of the proteins was predominantly nucleolar in both cell 

types. In line with this finding, a function of the proteins for rRNA processing during 

ribosome biogenesis was confirmed (see chapter 5.2). Murine Pes1, Bop1 and WDR12 

were shown by native gel electrophoresis to form a stable complex, including all three 
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proteins. Taking a look at the protein structure of Pes1, Bop1 and WDR12 reveals that 

all three proteins contain protein-protein interaction domains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26: Schematic overview of the protein structures of Pes1, Bop1 and WDR12 and of the 
PeBoW complex. Pes1 contains a highly conserved N-terminal pescadillo-like domain (NPLP-
domain), a BRCT (BRCA1 C-terminal) domain, often involved in protein-protein interactions, and 
three classical nuclear localization signals (NLS). The C-terminus forms a “coiled coil” structure and 
contains two acidic stretches of amino acids, a consensus site for sumoylation (KΨXE) and six 
bipartite NLS. Bop1 contains two PEST sequences, which are often associated with short-lived, 
regulatory proteins, and seven WD40 domains, usually involved in the formation of multiprotein 
complexes. WDR12 contains a Notchless-like (Nle) domain at the N-terminus, a NLS and seven 
WD40 units, which are supposed to form a β-propeller structure. Bop1 is proposed to constitute the 
core component of the PeBoW-complex, interacting directly with Pes1 and WDR12, which itself 
interact only indirectly with each other via Bop1. 
 

 

Pes1 contains a BRCT domain, which is known to facilitate phosphorylation-dependent 

protein-protein interactions. Bop1 and WDR12 contain several WD40 repeats 

respectively, which were also reported to be involved in protein-protein interactions and 

in the formation of multiprotein complexes. Mutations in the WD40 domains of human 

WDR12 and the BRCT domain of human Pes1 caused aberrant cytoplasmic and 

nucleoplasmic localization and instability of the proteins, thereby arguing for a defect in 

complex formation upon loss of those domains (Grimm et al., 2006; Haque et al., 2000; 

Holzel et al., 2007; Holzel et al., 2005; Strezoska et al., 2000; Strezoska et al., 2002). 

Hence, the structural properties of the proteins are in support of the detected complex 
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formation. Further, our results are in consistency with the described complex formation 

of the human homologues of Pes1, Bop1 and WDR12 (Holzel et al., 2005; Rohrmoser 

et al., 2007). Whether the complex, detected by native gel electrophoresis, contains 

additional proteins cannot be excluded, but the fact that stringent conditions for the 

identification of stable core complexes were used for cell lysis would argue against 

additional components, which would be expected to bind less stringently. In yeast, a 

potential homologue of the PeBoW-complex was shown to constitute the core of a 

bigger complex, involving a variety of other factors, the majority of which is related to 

ribosome biogenesis, replication and cell cycle regulation (Du and Stillman, 2002; Miles 

et al., 2005). In mammals such a complex could not be detected so far. However, our 

data do not exclude this possibility as other proteins may bind in vivo, but less 

stringently or under specific circumstances. 

Recent results in our lab revealed that complex formation of human Pes1, Bop1 and 

WDR12 is an important parameter in the stability and functionality of the proteins. It 

seems that Bop1 is the core component of the complex, interacting directly with Pes1 

and WDR12, while Pes1 and WDR12 interact indirectly with each other via Bop1. Free 

proteins seem to be highly unstable (Rohrmoser et al., 2007). The results obtained 

during this work further strengthen this notion since they show a similar behavior of the 

murine proteins, as no free Pes1 or Bop1 proteins were observed by native gel 

electrophoresis. Only murine WDR12 showed a substantial amount of free protein, 

indicating an additional function of WDR12, independent of incorporation into the 

PeBoW-complex. This was not observed at such intensities in human cell lines. Further, 

interdependency of the protein levels of murine Pes1 and Bop1 was observed. 

Depletion of Pes1 by siRNA technology also reduced protein levels of Bop1 and vice 

versa, indicating instability of free proteins. The effect of Pes1 depletion on the 

reduction of Bop1 was stronger, suggesting that non-incorporated Bop1 is the most 

instable one of the three proteins in free form. In accordance with this observation, 

Bop1 contains two PEST motifs, a domain, which is often found in short-lived proteins 

with a regulatory function (see Fig.26). Integration of Pes1 into the PeBoW-complex 

may mask these domains, thereby increasing the stability of the protein. Further, in 

human cells, instability of the free proteins was shown to be independent of 

transcriptional regulation, which argues for a regulation by protein destabilization and 

induced turnover (Rohrmoser et al., 2007). 

In contrast to the interdependency of murine Pes1 and Bop1, there was hardly an effect 

on the levels of murine WDR12 after depletion of Pes1 or Bop1. This observation is in 
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line with the high amounts of free protein detected by native gel electrophoresis and 

further strengthens the hypothesis of an additional function of murine WDR12. A 

biological function of WDR12 independent of ribosome biogenesis and proliferation has 

not yet been elucidated. Ubiquitous expression of its mRNA during embryogenesis may 

indicate an additional function during development. Moreover, large amounts of mRNA 

were found in the thymus and testis of adult mice. An interaction with Notch1-IC, 

revealed by GST-pulldown experiments, further indicates a role in early T-cell 

differentiation (Nal et al., 2002). Indirect immunofluorescence analysis during this work 

gave evidence for a weak cytoplasmic localization of WDR12 in CGR8 cells compared 

to NIH3T3 cells. This may suggest an additional role for WDR12 in early embryonic 

development.  

Complex formation of Pes1, Bop1 and WDR12 seems to be not only a prerequisite for 

their stability, but also for nucleolar localization and incorporation into preribosomal 

complexes and hence for their function. Experiments with several mutants of Pes1 or 

WDR12 had revealed that all dominant negative mutants integrated into the complex 

and located within the nucleoli. They are supposed to achieve a dominant negative 

phenotype by building dead end complexes. Overexpression studies have further 

revealed that human Bop1 needs the help of Pes1 for translocation into the nucleolus, 

while WDR12 is suggested to assemble within the nucleolus with Pes1 and Bop1 to the 

PeBoW complex (Grimm et al., 2006; Holzel et al., 2005; Lapik et al., 2004; Rohrmoser 

et al., 2007). 

In summary, the results obtained in this work present for the first time experimental 

evidence for the formation of a stable complex of Pes1, Bop1 and WDR12 in mouse 

cells and embryonic stem cells. Unlike the situation in human cells, a large amount of 

free WDR12 was present. Generally, the data strongly indicate a similar complex 

assembly in mouse and in human cells, with Bop1 constituting the core component. As 

Bop1 protein seems to be highly instable in its free form, the regulation of Bop1 may 

provide a good target for the fine-tuning of the activity of the PeBoW-complex. In 

addition to the regulation of mRNA levels of Pes1, Bop1 and WDR12 by c-Myc, this 

may account for a second regulatory mechanism linking complex stability and activity to 

the rate of ribosome biogenesis. A possible additional function for WDR12 needs further 

investigation. Except for a weak cytoplasmic staining of WDR12 in CGR8 cells, no 

differences were observed regarding stability, localization and complex formation of 

Pes1, Bop1 and WDR12 between ES cells (CGR8) and the fibroblast mouse cell line 

NIH3T3. 
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5.2 Function of Pes1, Bop1 and WDR12 in ES cells and the relation to 

self-renewal and differentiation 
 

5.2.1 Role of Pes1 for nucleologenesis and ribosome biogenesis during early 

embryonic development 

 

Ribosome biogenesis plays an important part already during the early onset of 

embryonic development. Maternally inherited ribosomes are exhausted during the first 

three cleavages of the zygote and the first rDNA transcription is proposed to take place 

between the 2-4-cell stage of mouse development. An increase in ribosome biogenesis 

was observed at the 6-8-cell stage of the embryo (Geuskens and Alexandre, 1984; 

Hillman and Tasca, 1969; Hyttel et al., 2000; Kopecny et al., 1995). This is again 

accelerated during gastrulation, associated with a huge increase in proliferation. Mean 

generation times as short as 4.4h are estimated in the epiblast at this stage (Snow, 

1977; Hogan et al., 1994). In parallel, the nucleolus develops from nucleolar precursor 

bodies, which start to assemble from the 2-cell stage onwards. The typical nucleolar 

architecture with a central fibrillar component, containing proteins involved in rDNA 

transcription, a dense fibrillar component, containing newly synthesized rRNA, and a 

granular component, consisting of preribosomal particles, starts to be visible by electron 

microscopy between the 8-cell and the blastula stage.  

Studies with Pes1 knockout mice revealed an arrest of the preimplantation embryos at 

the morula stage, showed impaired formation of nucleoli, and an inhibited accumulation 

of ribosomes, indicating a function for Pes1 in nucleologenesis and ribosome 

biogenesis (Lerch-Gaggl et al., 2002). The complex formation of Pes1, Bop1 and 

WDR12, which was validated during this work in ES cells, suggests a comparable 

function for Bop1 and WDR12 during early embryonic development and hence an 

essential role for proliferation and survival of the embryo. Recently, also other nucleolar 

proteins were shown to be essential factors for proliferation and embryonic 

development. For instance, embryos depleted for the nucleolar proteins SURF6 or Bysl, 

both involved in the maturation of the small 40S ribosomal subunits, arrest at the 8-cell 

morula stage or just before blastocyst formation (Adachi et al., 2007; Romanova et al., 

2006). Furthermore, Nucleostemin deficient embryos died around embryonic day 4. 

Nucleostemin is a putative GTPase expressed in the nucleoli with a predicted function 

in ribosome biogenesis (Beekman et al., 2006).  
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5.2.2 Function of Pes1, Bop1 and WDR12 for rRNA maturation and proliferation 

of ES cells 

 

During this work, the functions of Pes1, Bop1 and WDR12 were examined in an ES cell 

line in vitro. High expression levels of the proteins Pes1, Bop1 and WDR12 were 

detected in the mouse embryonic stem cell line CGR8, which were strongly reduced 

during differentiation of the cells. In accordance with the nucleolar localization of the 

proteins, a function for Pes1 and Bop1 during ribosome biogenesis was confirmed in ES 

cells. WDR12 could not be investigated due to non-functional siRNAs. The observed 

incorporation of WDR12 (at least partially) into PeBoW-complexes indicates a similar 

function for WDR12. Pes1 and Bop1 were shown to be involved in the maturation of the 

large 60S ribosomal subunit of ES cells. Their depletion led to an impaired maturation of 

the 28S rRNA, while the 18S rRNA, which is part of the small 40S subunit, was not 

affected. Mechanistically, Pes1 and Bop1 seem to be involved in processing events of 

the internal transcribed spacers 1 and 2 as an increase in 36S rRNA and a decrease in 

maturation of 28S rRNA was observed. These results are comparable to effects 

detected in the mouse cell line NIH3T3, which was investigated in parallel, and also to 

previous data obtained in other mature mammalian cell lines (Grimm et al., 2006; Holzel 

et al., 2005; Lapik et al., 2004; Strezoska et al., 2002). Thereby, our data support the 

view of an evolutionary conserved function of Pes1, Bop1 and WDR12 in ribosome 

biogenesis. In addition, a function of Bop1 and Pes1 for 5.8S rRNA maturation and 

processing of the 3’ETS was described in mature cell lines (Lapik et al., 2004; 

Strezoska et al., 2002). These steps were not investigated in this work, but are likely to 

be processed in a similar way in ES cells. 

In addition to the effect on rRNA processing, proliferation of ES cells was hindered upon 

depletion of Pes1 and Bop1. The consistent outcomes between depletion levels and 

either rRNA processing or proliferation rates strongly imply a close link of both 

processes in ES cells, as documented in other cell types. Whether there exists a direct 

crosstalk between ribosome biogenesis and cell cycle control or whether impaired 

proliferation may just be an effect of a depleted ribosome pool is discussed in 

chapter 5.3. 
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5.2.3 Regulation of Pes1, Bop1 and WDR12 during differentiation 

 

The rapid proliferation of ES cells is associated with an unusual cell cycle distribution, 

with the majority of cells detected in S-phase cells and only a short G1-phase. 

Concordant with this, Cdks show constitutive activity throughout the cycle, except for 

the mitotic kinase Cdk1/cyclinB1. Moreover, although the pocket proteins Rb and its 

close homolog p107 are expressed in ES cells, they are constitutively phosphorylated 

and therefore inactivated during the cell cycle, probably due to the cell cycle-

independent activities of the Cdk2- and Cdk6/cyclin complexes. This leads in turn to a 

constant activity of the transcription factor E2F and allows direct S-phase entry without 

the control mechanism usually known as G1/S-phase checkpoint (Savatier et al., 1994; 

Stead et al., 2002). During in vitro differentiation of ES cells, their proliferation slows 

down and the length of the G1-phase increases substantially (White et al., 2005). At the 

molecular level, this is associated with the establishment of cell cycle regulated Cdk2 

activity and the activation of a functional Rb-E2F pathway. Transcription of cyclin E and 

cyclin A is downregulated and their levels become periodically regulated during the 

cycle. Moreover the Cdk-inhibitors p21 and p27 are upregulated, which may also be 

important for the loss of Cdk2 activity during differentiation. 

These changes within the cell cycle control-mechanisms at the beginning of 

differentiation, together with slower proliferation, argue for a lower rate of ribosome 

biogenesis to adjust the supply of ribosomes to the actual demand. In accordance with 

this hypothesis, protein levels of Pes1, Bop1 and WDR12 strongly decreased during 

differentiation from day 6 onwards. Interestingly, the phosphorylation pattern of Rb also 

showed a switch at the same day to the predominant presence of its active, hypo-

phosphorylated form. Thus, the time, when the cell starts to activate a functional Rb-

E2F pathway and thereby also an active G1/S-phase checkpoint, seems to be 

correlated with a reduced rate of ribosome biogenesis. According to the mRNA levels of 

the gastrulation marker T-bra, which showed specific upregulation at day 3-4 of 

differentiation, day 6 corresponds to an early differentiation stage post gastrulation. 

Moreover, at this time, the investigated pluripotency-markers Oct4, Nanog, Sox2 and 

KLF4 were almost undetectable, while upregulation of Flk1 indicates differentiation of 

early mesodermal cells. Whether the changes within the cell cycle are a prerequisite for 

reduced ribosome biogenesis or vice versa remains to be elucidated. In mature cells, 

ribosome biogenesis is cell cycle controlled and sensitive to nutrient and growth factor 

signaling. The formation and maintenance of functional nucleoli during interphase is 



Discussion 

80 

dependent on Cdk activities (Sirri et al., 2002) and rRNA synthesis largely relies on the 

availability of nutrients and growth factors. Deprivation of the latter or extra- and 

intracellular stresses can lead to downregulation of rRNA synthesis by inhibition of 

Polymerase I (Pol I) via inactivation of the regulatory factor TIF-IA, which abrogates the 

formation of the transcription-initiation complex (Mayer et al., 2005; Mayer et al., 2004). 

Furthermore, G1-phase specific Cdk/cyclin complexes are involved in the 

phosphorylation and activation of the upstream binding factor (UBF), an activator of 

RNA Pol I (Voit et al., 1999). On the other hand, functional ribosome biogenesis is 

essential to keep levels of the tumor suppressor p53 down, thereby ensuring 

proliferation. Disruptions in the structure or function of the nucleolus can inhibit the cell 

cycle - for example by inducing p53 (Pestov et al., 2001; Rubbi and Milner, 2003). Thus, 

mutual regulations of both processes might be another reason behind the changes 

occurring during early differentiation of ES cells.  

Surprisingly, during the first two days of differentiation, an increase in the overall 

amount of Rb was observed, which was reduced again at day 3 of differentiation. 

Nevertheless, the ratio between active and inactive Rb (hypo-phosphorylated Rb to 

hyper-phosphorylated Rb) was not changed. The function of this increase remains so 

far elusive. Active Rb plays also a role for the differentiation of distinct lineages, for 

instance myogenesis, cardiogenesis or adipogenesis, where it is involved as a 

coregulator of transcription factors like MyoD, myogenin or C/EBP (Chen et al., 1996; 

Gu et al., 1993). Thus, the cells might induce total Rb levels to be prepared for further 

differentiation, to switch rapidly to the active form. The downregulation of total Rb levels 

at day 3 of differentiation argues against this assumption though. Another hypothesis 

might be that the cells slightly reduce their proliferation due to the small increase in the 

active form of Rb. In addition to its negative regulation of G1/S-phase transition, active 

Rb can also negatively regulate polymerase I transcription and thereby also regulates 

rRNA transcription. A slight reduction in proliferation might be important for an initial 

step in differentiation. It was hypothesized that the constitutive transit through G1-phase 

could constrain the temporal opportunity for chromatin remodeling or the establishment 

of heritable transcription programs (Burdon et al., 2002). Generally, the gastrulation 

phase of embryonic development is characterized by an increase in cell proliferation. 

During in vitro differentiation a decrease in Rb levels was observed at day 3/4, together 

with induction of the gastrulation marker T-bra, indicating accelerated proliferation of 

differentiating ES cells at this time. Interestingly, an auto-regulation of the Rb gene 

expression is described. The promoter of the Rb gene is transactivated by the 
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transcription factor E2F-1. This leads to an increase in Rb protein, which in its active 

form binds and inhibits the E2F-1 transcription factor and thereby its own expression 

(Shan et al., 1994). Thus, the weak increase in active Rb at day 1 and 2 of 

differentiation might be involved in the decrease at day 3/4. 

Triple knockouts of the three related pocket proteins Rb, p107 and p130 in ES cells do 

not compromise ES cell proliferation, but impair their differentiation capacity in 

teratocarcinomas (Dannenberg et al., 2000; Sage et al., 2000). In contrast, triple 

knockout mouse embryonic fibroblasts (TKO MEFs) were insensitive to senescence 

inducing signals, had an increased proliferation rate and failed to arrest in G1-phase at 

confluency (Sage et al., 2000). This behavior is reminiscent of ES cells. Mice deficient 

for Rb are non-viable and show defects in neurogenesis and hematopoesis. Although 

the pocket proteins seems to have no function for proliferation of ES cells, Rb and p107 

are still expressed, but present mainly in their inactive form. This was hypothesized to 

render ES cells susceptible for a fast switch to differentiation (Burdon et al., 2002). 

Alternatively, one may hypothesize that a rapid activation of Rb might be involved in cell 

cycle arrest after distinct cellular stresses. This was not confirmed during this work (see 

below). Nevertheless, nucleolar stress induced total levels of Rb in a similar manner as 

during early differentiation.  

 

 

5.2.4 The PeBoW-complex and self-renewal 

 

The maintenance of pluripotency during self-renewal of ES cells is proposed to be 

dependent on the prevention of differentiation and the promotion of proliferation (Niwa, 

2007). Evidence for this assumption is given by certain factors and pathways, which 

have an overlapping function in both processes. One important pathway involved in 

proliferation, survival and self-renewal of ES cells is PI3K signaling. Inhibition of PI3K 

and Akt, a downstream effector of PI3K, induces differentiation in the presence of LIF, 

whereas artificial activation of Akt is sufficient to maintain self-renewal in the absence of 

LIF (Paling et al., 2004; Watanabe et al., 2006). Blocking of PTEN, an inhibitor of PI3K-

signaling leads to enhanced proliferation and viability (Sun et al., 1999). PI3K is 

activated by LIF and additionally by two endogenous modulators, which are specifically 

expressed in ES cells. These are Eras, a constitutively active form of the Ras-family, 

and Tcl, which augments Akt by forming a complex with it (Takahashi et al., 2003a; 

Takahashi et al., 2005). Generally, PI3K signaling is implicated in many cellular 
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processes including metabolism, cell cycle progression, survival, migration and 

adhesion. In ES cells, it was reported to play a role in cell cycle progression by 

regulating cyclin D, and in the phosphorylation of ribosomal S6 proteins, which implies a 

role in ribosome biogenesis (Jirmanova et al., 2002; Paling et al., 2004). Hence, PI3K 

signaling may link the short cell cycle of ES cells with self-renewal.  

As Pes1, Bop1 and WDR12 seem to be essential factors for the high proliferation of ES 

cells, the question arises whether the PeBoW-complex might also be involved in the 

maintenance of pluripotency. One could envision that the PeBoW-complex may be 

indirectly linked to the maintenance of pluripotency by regulating proliferation via 

ribosome biogenesis. The expression of Pes1, Bop1 and WDR12 is regulated by the 

proto-oncogene c-Myc (Holzel et al., 2005). The transcription factor c-Myc is known as 

a major coordinator of many cellular processes including ribosome biogenesis and cell 

cycle progression. Recently, c-Myc was shown to be a major factor involved in the 

maintenance of pluripotency, acting downstream of LIF and Stat3 and probably 

downstream of the Wnt signaling pathway (Cartwright et al., 2005). Those are the major 

pathways involved in self-renewal of ES cells in vitro and c-Myc was proposed to 

support self-renewal by inhibition of differentiation. The function of c-Myc as 

transcription factor involves chromatin remodeling and modification processes. 

Overexpression of c-Myc, together with Oct4, Sox2 and KLF4, was crucial for 

de-differentiation of somatic cells into ES-like cells, including remodeling of the 

chromatin to an ES cell-like state (Wernig et al., 2007). This indicates that the role of c-

Myc for self-renewal may include the maintenance of an ES cell chromatin status. By 

activating the expression of Pes1, Bop1 and WDR12 in ES cells, c-Myc might indirectly 

coordinate proliferation with the repression of differentiation, thereby linking both 

processes. In accordance with the function of c-Myc for self-renewal, high levels of 

c-Myc are present in ES cells, but are rapidly downregulated at the beginning 

differentiation within 36h following LIF withdrawal (Cartwright et al., 2005). mRNA levels 

of c-myc decrease rapidly and the protein becomes phosphorylated on threonine 58, 

triggering its GSK3β-dependent degradation. Inactivation of c-myc transcriptional 

regulators, and activation of pathways required for its degradation are proposed to 

define a point of no return, where cells become committed to differentiate. 

Although Pes1 and Bop1 were shown during the course of this work to be essential for 

proliferation of ES cells, first results argue against induction of differentiation after their 

depletion and thus against a role for the maintenance of pluripotency. The transcription 

factors and pluripotency genes Nanog, KLF4 and Sox2 were not significantly 
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downregulated after depletion of Bop1 compared to control cells. Moreover, alkaline 

phosphatase staining and morphology of the colonies did not change significantly, 

indicating that the majority of the cells remained in the undifferentiated state with no 

increase in differentiating colonies. This may suggest that inhibition of ribosome 

biogenesis and proliferation alone do not lead to differentiation. Alternatively, the effect 

achieved on rRNA maturation by depletion of Pes1 or Bop1 might not be strong enough 

to overcome self-renewal. Interestingly, after depletion of the protein Bysl in ES cells, 

which is involved in maturation of the 40S ribosomal subunit, there was also no change 

in the expression of pluripotency markers observed (Adachi et al., 2007). Moreover, it 

was mentioned that inhibition of mTOR inhibited proliferation of ES cells, but did not 

induce differentiation (Watanabe et al., 2006). mTOR is a critical downstream effector 

for the PI3K/Akt signaling pathway with a major function in the regulation of ribosome 

biogenesis. Further experiments are necessary, however, to clarify if the regulation of 

ribosome biogenesis plays a role in self-renewal. 

 

 

5.3 Crosstalk between ribosome biogenesis and cell cycle machinery 
in mouse embryonic stem cells 

 

As indicated before, ribosome biogenesis is an important factor for cell growth needed 

to supply the components for the translational machinery. Doubling of this machinery is 

essential for continuous proliferation to ensure equilibrium between growth and division. 

Increasing evidence points towards mutual regulations of both processes. In mature 

cells, impaired ribosome biogenesis was, for instance, shown to activate a p53-

dependent checkpoint via upregulation of the Cdk-inhibitor p21, which in turn inhibits 

Cdk/cyclin complex activities, which leads to activation (hypo-phosphorylation) of Rb 

and thereby to an arrest of cells in G1-phase (Grimm et al., 2006; Holzel et al., 2005; 

Pestov et al., 2001). Based on the different cell cycle kinetics of ES cells, which do not 

show a G1/S-phase checkpoint during normal proliferation, we were interested to ask 

whether ribosomal stress may activate such a checkpoint in ES cells, thereby linking 

ribosome biogenesis actively with cell cycle progression. After a block of ribosome 

biogenesis, one can generally envisage two scenarios. Either the cells actively adapt to 

the situation by stopping or slowing down their division rate. This can be regulated, for 

instance, due to checkpoint mechanisms, which function as sensor for ribosomal stress, 

as it was indicated for the p53-dependent activation of the G1/S-phase checkpoint. 
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Alternatively, if these mechanisms are not functional, division of the cells will continue 

initially unaltered until the progressive depletion of ribosomes upon each cell division no 

longer allows further proliferation.  

To address the question whether ribosomal stress might induce a p53-dependent 

checkpoint in ES cells, knockdowns of Pes1 and Bop1 were used to inhibit rRNA 

maturation without a genotoxic effect. During the experiments, it turned out that the 

effects observed after Pes1 and Bop1 depletion were not as strong as expected, 

showing a reduction of nascent 28S rRNA levels up to about 50%, but no complete 

block of maturation. This might be explained by the transient transfection of siRNAs and 

therefore a transient knockdown. Transfection with an eGFP-reporter plasmid indicated 

a transfection efficiency of about 70%. This means that at least 30% of the cells might 

not be reached by transfection and will continue to proliferate normally. Thereby, they 

might rapidly overgrow transfected, growth-retarded cells. The chemotherapeutical 

agent 5-Fluorouracil (5FU) was included in the experiments to induce a more potent 

inhibition of ribosome biogenesis. 5FU was reported to mainly inhibit ribosome 

biogenesis if applied at low concentrations (Gilkes et al., 2006). Nevertheless, 5FU is a 

pleiotropic factor whose function is not fully understood and high concentrations of 5FU 

also exert an inhibitory effect on DNA metabolism. 

 

 

5.3.1 Effects of ribosomal stress (5FU) in the mature mouse cell line NIH3T3 

 

To investigate checkpoint activation upon 5FU in a mature cell line, NIH3T3 fibroblasts 

were used. Treatment with 5FU resulted in an accumulation of cells in the G1- and S-

phase, with an increase of cells in G1-phase. The entry of cells into the G2/M-phase 

seemed to be blocked, as the amount of cells with a DNA content of 2N was reduced. 

Protein levels of the Cdk-inhibitor p21 were strongly induced as well as the hypo-

phosphorylated, active form of Rb. This gives strong evidence that p21 inhibits the 

activity of Cdk2/cyclinE complexes, which in turn leads to reduced Rb phosphorylation 

and thus to an increase in active, hypo-phosphorylated Rb. As active Rb binds the 

family of E2F transcription factors, which play a crucial role in progression of cells from 

G1-phase into S-phase, the observed increase in active Rb is most likely the 

responsible factor for the accumulation of cells in G1-phase. In addition, p21 induction 

might also account for the accumulation of cells in S-phase and the decrease of cells in 

G2/M-phase, since p21 can inhibit S-phase progression by binding to PCNA, a subunit 
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of the DNA polymerase δ (Flores-Rozas et al., 1994; Waga et al., 1994). Alternatively, 

other mechanisms could be involved in the decrease of cells in G2/M-phase. Strikingly, 

the levels of p53 showed only a very weak induction, mainly observed by 

immunofluorescence. This may give evidence for a defect in the p53 gene in those 

cells. However, only a weak induction of p53 protein was reported also after disruption 

of ribosome biogenesis with a dominant negative mutant of Bop1 in another NIH3T3 cell 

line. Nevertheless, in this study a p53-dependent induction of p21 as well as G1-arrest 

was confirmed according to p53 inhibitor studies, which attenuated the observed effects 

(Pestov, et al., 2001). So the weak induction of p53 may be responsible at least for part 

of the p21 induction. Alternatively, p53-independent mechanisms for the induction of 

p21 are reported in literature (Aliouat-Denis et al., 2005; Huang et al., 2006; Kim et al., 

2000; Macleod et al., 1995; Serfas et al., 1997; Zeng and el-Deiry, 1996). Mice, 

deficient for p53, are viable, but are predisposed to a variety of tumors by 6 months of 

age (Donehower et al., 1992), whereas mice lacking p21 are defective in G1-checkpoint 

control, but they undergo normal development (Deng et al., 1995).  

Overall, the observed results reflect the notion that ribosomal stress can activate a 

checkpoint, which involves p53, p21 and subsequent activation of Rb, which finally 

leads to an arrest of cells in the G1-phase. 

 

 

5.3.2 Effects of ribosomal stress in ES cells 

 

5.3.2.1 Effects on p53, p21 and Rb upon 5FU and depletion of Pes1 and Bop1 
 

A massive increase of p53 protein was observed in ES cells upon knockdown of Pes1 

or Bop1 and after 5FU treatment. Although p53 was localized in the nucleus, no 

induction of its target gene p21 was observed. In contrast, the overall amount of Rb was 

highly increased, but the ratio between hyper-phosphorylated and hypo-phosphorylated 

Rb did not change towards the active form. This implies that the activities of Rb-kinases 

are not inhibited, due to the fact that no p21 inhibitor is expressed. Hence, the p53-p21-

Rb pathway seems to be inoperative in ES cells after inhibition of ribosome biogenesis. 

These data are in line with publications, showing that Rb is constantly inactive (hyper-

phosphorylated) during normal proliferation of ES cells and that neither contact 

inhibition nor serum deprivation appear to affect proliferation (Savatier et al., 1994; 

Schratt et al., 2001). Moreover, inability of p53 to induce p21 was reported after DNA 

damage. Several DNA damaging agents as well as nucleotide depletion induced p53 
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levels but did not lead to an induction of p21. This was explained by an inefficient 

translocation of p53 into the nucleus, which showed predominantly cytoplasmic 

localization. ES cells were shown to rather undergo apoptosis and accumulate in S- and 

G2/M-phase instead of arresting at G1-phase upon DNA damage (Aladjem et al., 1998; 

Hong et al., 2006; Hong et al., 2007; Hong and Stambrook, 2004). In that context, it was 

supposed that a missing G1-arrest might favor apoptosis, thereby ensuring genome 

stability of the ES cell population. During this work, no major increase in apoptosis was 

observed upon ribosomal stress. Moreover, p53 was located mainly in the nucleus, 

indicating other reasons for the deficit in p21 induction. One explanation might be that 

p53 is not transcriptionally active despite its nuclear localization. However, recent data 

indicate upregulation of numerous p53 target genes after cisplatin treatment of ES cells 

(Kruse et al., 2007). Another alternative for the lack of p21 induction might be that p21 

is transactivated by p53 in ES cells, but the protein is rapidly degraded. The very weak 

levels of p21, which could be detected in 5FU-treated cells compared to control cells, 

may favor this hypothesis. Moreover Malashicheva et al. reported increased p21 protein 

levels upon treatment of ES cells with gamma-irradiation, adriamycin and nocodazol 

after the addition of the proteasome inhibitor lactacystin (Malashicheva et al., 2002). A 

third explanation might be inaccessibility of the p21 gene promoter.  For instance, c-Myc 

was reported to be involved in the methylation of the p21 gene promoter. Together with 

the DNA binding factor Miz-1, it targets the methyltransferase Dnmt3a selectively to the 

promoter of p21 (Brenner et al., 2005). As c-Myc is highly expressed in ES cells this 

could be another possibility. Overall, the observed deficit in p21 induction does not 

exclude the possibility that p53 might fulfill other functions upon ribosomal stress. 
 

In mature cells, induction of p53 upon nucleolar stress is a common feature, which is 

described in several cases to be regulated by free ribosomal proteins. Such a 

mechanism is also described for 5FU. Inhibition of rRNA biogenesis by low 

concentrations of 5FU leads to a deficit of mature rRNAs and thereby to an excess and 

release of free ribosomal proteins, like L5, L11 and L23 (Sun et al., 2007). Those were 

detected to interact with Mdm2, an E3 ubiquitin ligase, which usually binds and targets 

p53 for degradation. Binding of the ribosomal proteins to Mdm2 inhibits the 

ubiquitylation of p53 by Mdm2, leading to stabilization and activation of p53. As we 

could observe reduced levels of mature rRNA species after Pes1 and Bop1 depletion, 

as well as after 5FU treatment, a similar mechanism for p53 induction seems likely in 

ES cells. Alternatively, the so-called “riding the ribosome” model has been proposed as 

another possibility for p53 stabilization in response to ribosomal stress. This model 
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postulates an export of p53-Mdm2 complexes into the cytoplasm via association with 

pre-ribosomal particles. During functional ribosome biogenesis, a high amount of pre-

ribosomal particles is transported into the cytoplasm for their final maturation into 

ribosomes. Therefore, the cell has enough capacity to cotransport p53 into the 

cytoplasm, where it is degraded, and keeps the p53 level low. During disturbed 

ribosome biogenesis, maturation and export of pre-ribosomal particles are diminished 

and therefore also the export of p53, which accumulates in the nucleus (Sherr and 

Weber, 2000). Evidence for this model is given by the observations that p53 

accumulated in the nucleus after inhibition of nuclear export. Moreover, p53 was found 

to covalently bind to the 5.8S RNA, and p53-Mdm2 complexes were detected together 

with the ribosomal proteins L5 and L11 (Fontoura et al., 1997; Marechal et al., 1994). 

Generally, Mdm2 is expressed in mouse ES cells (Ginis et al., 2004) and seems to be 

an important negative regulator of p53. Mdm2 null mice die during early embryonic 

development before day 5.5 and consist only of few cells. This phenotype was rescued 

by additional deletion of p53 (Jones et al., 1995; Montes de Oca Luna et al., 1995). 
 

The reason for the increase in total Rb protein levels upon nucleolar stress remains so 

far elusive, especially as most of the protein remained still in the inactive form and no 

robust G1-arrest was observed (see below). Interestingly, Mdm2 was reported to have a 

function for Rb ubiquitylation and degradation (Miwa et al., 2006; Uchida et al., 2005) 

As we suppose that Mdm2 is inactivated upon 5FU treatment and upon depletion of 

Pes1 or Bop1, due to free ribosomal proteins, this inactivation might also lead to 

stabilization and induction of Rb protein levels. One might speculate that induction of 

total Rb levels is a mechanism to also increase the levels of the hypo-phosphorylated, 

active form, without changes in the activity of Cdks. Cdk2/cyclinE and Cdk6/cyclinD 

activities seem to be the main factors for Rb phosphorylation in ES cells (Faast et al., 

2004). Their activities were not examined during this work, but due to the strong inactive 

(hyper-phosphorylated) fraction of Rb a decrease of their activities seems unlikely.  

 

 

5.3.2.2 Opposing effects on cell cycle distribution of ES cells upon 5FU 

treatment and depletion of Pes1 and Bop1 
 

Effects upon 5FU treatment: 

Although similar effects were observed on p53, p21 and Rb in ES cells upon 5FU 

treatment and depletion of Pes1 and Bop1, opposing effects were detected on the cell 
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cycle distribution. Upon 5FU treatment the majority of CGR8 cells accumulated in S-

phase and no stable G1-arrest was observed. The amount of cells in G2/M-phase was 

reduced and thus the entry into G2/M-phase seemed to be blocked, similar as observed 

in NIH3T3 cells. Whether the accumulation of cells in S-phase is dependent on the 

observed induction of p53 needs further investigation, for example, in a p53 knockout 

ES cell line. In the literature both, p53-dependent and -independent mechanisms for an 

S-phase arrest have been reported, usually after DNA damage (Agarwal et al., 1998; 

Prost et al., 1998; Toyoshima et al., 2005). Interestingly, overexpression of the 

nucleolar protein ARF, which usually stabilizes p53 by binding to Mdm2, can exert a 

delay in S-phase progression, especially if the function of p53 is comprised (Yarbrough 

et al., 2002). Although 5FU was shown to mainly affect RNA-metabolism at low 

concentrations, an additional effect on DNA can not be excluded, especially after longer 

exposure times. Moreover, the relative doses reported to induce certain effects vary 

between different cell types.  
 

Effects upon depletion of Pes1 or Bop1: 

In contrast to an accumulation of cells in S-phase upon 5FU, a weak decrease of cells 

in S-phase and a weak increase in G1-phase was observed upon depletion of Pes1 and 

Bop1. As the p53-p21 pathway seems to not be involved, the underlying mechanisms of 

this effect cannot be fully explained, but the effect might be linked to the slight increase 

in hypo-phosphorylated, active Rb, which was observed together with the increase in 

total Rb levels. For Nop7p, the potential homolog of Pes1 in yeast, a function during 

DNA replication was reported. Nop7p depletion led to an arrest of cells in G1- or G2-

phase, with no cells in S-phase, even if ribosome biogenesis was not impaired (Du and 

Stillman, 2002). In addition, Nop7p was identified as part of a complex, which contained 

also MCM and ORC proteins. One might also hypothesize a function for murine Pes1 

during DNA replication. This in turn might be involved in the weak accumulation of cells 

in G1-phase.  

Generally, the effects observed on cell cycle distribution upon depletion of Pes1 and 

Bop1 seem rather weak to explain the reduced proliferation of the cells. Moreover, no 

strong effect on apoptosis was detected. This suggests the involvement of additional 

mechanisms. In addition to a prolonged G1-phase, cells might perform an overall 

delayed cell cycle progression. For instance, inhibition of Cdk2 kinase activity with a 

specific biochemical inhibitor was reported previously to increase the generation time of 

ES cells without exhibiting a change in cell cycle distribution and without an extension of 

G1-phase (Stead et al., 2002). This indicates that cell division rates are not necessarily 
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coupled to the cell cycle structure and implies a role for Cdk2 in transition through all 

phases of the cycle and not only for the transit from G1- to S-phase (Stead et al., 2002). 

During this work, Cdk activities were not determined as an inhibition seemed unlikely 

due to the strong increase in hyper-phosphorylated Rb and as no induction of p21 was 

observed. Nevertheless, it cannot be completely excluded.  

Another explanation for reduced proliferation and overall slower cell cycle progression 

might be a decreased amount of ribosomes. However, in mature cells no impaired 

translation efficiency was observed after a knockdown of Bop1 (Pestov et al., 2001). In 

addition, other publications reported retarded proliferation, but cells still increased their 

size after impaired ribosome biogenesis (Volarevic et al., 2000). This effect is most 

likely related to a slower G1/S-phase transition, achieved by the reported G1-arrest 

after ribosomal stress, which provides more time for protein synthesis. In contrast, data 

in Rb- and p53-deficient SAOS-2 cells show inability of those cells to arrest in G1- and 

G2-phase after transient ribosomal stress and indicate unchanged cell division. After 

prolonged inhibition of ribosome biogenesis this leads to inhibition of cell proliferation 

due to increased cell death, which was elicited by an insufficient ribosome content 

(Montanaro et al., 2007). In ES cells, Rb was only weakly activated upon nucleolar 

stress and no robust arrest in any cell cycle phase was observed upon depletion of 

Pes1 or Bop1. Thus, a decrease in the ribosome pool due to initially unchanged 

proliferation, which leads to a progressive reduction of the ribosomal content after each 

cell division, cannot be excluded. Pes1 depleted embryos, which arrest at the morula 

stage, showed a strong decrease in ribosomes, but in addition their nucleoli had not 

differentiated normally (Lerch-Gaggl et al., 2002). In our study, a decrease of ribosomes 

as main reason for the impaired proliferation seems unlikely due to the incomplete block 

of rRNA maturation upon Pes1 and Bop1 depletion, which decreased the amount of 

nascent 28S rRNA only to about 50%. Moreover, the lack of major cell death, together 

with the accumulation of cells in S-phase upon 5FU treatment, rather implies that ES 

cells employ active mechanisms to coordinate their cell cycle progression with ribosome 

biogenesis. 
 

5FU versus depletion of Pes1 and Bop1: 

The different effects observed on cell cycle distribution upon 5FU and depletion of Pes1 

or Bop1 might be related to the different intensities of both effectors on ribosome 

biogenesis, with 5FU inducing a much more potent and extensive block (including 18S, 

28S rRNA and some pre rRNAs) as depletion of Pes1 or Bop1, which reduced more 

specifically the maturation of nascent 28S rRNA and those only to about 50%. In 
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addition the pleiotropic function of 5FU, but also additional functions of the PeBoW- 

complex like its indicated function in replication could be involved. In contrast to the 

PeBoW-complex, which is involved mainly in processing steps of the ITS 2, 5FU 

achieves its effects by conversion into 5-fluorouridine-triphosphate, which incorporates 

into rRNA and thereby inhibits processing of rRNA (Sun et al., 2007). In addition 5FU 

can interfere with other RNA species and its conversion into 5-fluoro-dUMP and 5-

flouro-dUTP suppresses DNA synthesis and repair, thereby leading to DNA damage. 

Finally, it has to be considered that mature NIH3T3 cells treated with 5FU also exhibited 

a block in G2/M-phase entry and despite their arrest in G1-phase showed no decrease 

of cells in S-phase. Thus, the accumulation of ES cells in the S-phase upon 5FU 

treatment is not necessarily an ES cell specific response. However, similar upon 5FU 

treatment and depletion of Pes1 or Bop1, no robust G1-arrest was induced in ES cells. 

This seems to be related to the impeded induction of p21. 

 

 

5.3.3 Conclusions 

 

In summary, a function of the PeBoW-complex in ribosome biogenesis of ES cells, and 

a relation to proliferation could be confirmed during this work. Different to mature cells, 

the coordination of ribosome biogenesis with the cell cycle machinery is not regulated 

via the p53-p21-Rb pathway. Nevertheless, the obtained results suggest that ES cells 

employ other mechanisms to coordinate ribosome biogenesis with proliferation. The 

precise nature of these mechanisms needs further investigation. One important 

experiment could be the use of p53-deficient cells, to examine whether p53 is involved 

in such mechanisms, as indicated by its strong induction.  Further, the use of other 

inhibiting agents for ribosome biogenesis like Actinomycin D could be important to rule 

out additional side effects of the used effectors.  

In addition to revealing the coordination of ribosome biogenesis with proliferation of ES 

cells, the question whether ribosome biogenesis is linked to the maintenance of 

pluripotency or whether a defect in ribosome biogenesis just leads to retarded 

proliferation without an effect on pluripotency or differentiation will be of outstanding 

importance in understanding how proliferation and self-renewal are regulated in ES 

cells. 
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6 SUMMARY 
 

The hallmark of embryonic stem (ES) cells is their ability for self-renewal (capability of 

unlimited cell division without the loss of pluripotency) as well as for differentiation into 

all cell types of the adult organism. One factor supposed to be involved in self-renewal 

is the rapid proliferation rate of ES cells, which is coupled to an unusual cell cycle 

distribution with the majority of cells in S-phase and a very short G1-phase. This is 

linked to the lack of a functional G1/S-phase checkpoint, which allows the cells to enter 

the S-phase almost directly after mitosis. Generally, cells have to closely coordinate 

growth and cell cycle progression during proliferation to prevent premature division. 

One important factor for cell growth is ribosome biogenesis. In mature cells, disruptions 

in ribosome biogenesis are directly linked to the cell cycle machinery by a p53-

dependent activation of the G1/S-phase checkpoint, leading to an arrest of cells in G1-

phase. 

During this work, the function of the proteins Pes1, Bop1 and WDR12, which were 

shown previously to be involved in ribosome biogenesis of mature cell lines, was 

investigated in mouse ES cells. Moreover, a putative crosstalk between ribosome 

biogenesis and proliferation of ES cells was assessed. A high expression of Pes1, Bop1 

and WDR12 was observed in ES cells, which strongly decreased during in vitro 

differentiation. Localization of the proteins was predominantly nucleolar and the 

formation of a stable complex (PeBoW-complex), including all three proteins, was 

experimentally validated in mature mouse cells as well as in mouse ES cells. The 

function and stability of the proteins seems to be dependent on incorporation into the 

PeBOW-complex, as protein levels were interdependent on each other and no free, 

non-incorporated proteins were observed, except for WDR12. According to their 

nucleolar localization, depletion of Pes1 and Bop1 were shown to inhibit maturation of 

the 28S rRNA and thereby the large 60S ribosomal subunit. Further, impaired 

proliferation of ES cells was observed. Thus, the PeBoW-complex seems to be an 

essential factor for the rapid proliferation of ES cells and might therefore also be 

involved in self-renewal. However, first results suggest that the complex is not directly 

involved in the maintenance of pluripotency. No changes in the expression levels of 

pluripotency-genes like Nanog, KLF4 and Sox2 were observed. Moreover, alkaline 

phosphatase activity was equally detectable after depletion of Pes1 or Bop1 and no 

morphological changes within the ES cell colonies were observed. 
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Impaired ribosome biogenesis is known to activate a p53-dependent checkpoint in 

mature cell lines, which leads to an arrest of cells in G1-phase. Treatment of mouse 

NIH3T3 cells with 5FU, a potent inhibitor of rRNA maturation, confirmed an activation of 

this checkpoint, leading to weak induction of the tumor suppressor p53, induction of the 

Cdk-inhibitor p21, an increase in active, hypo-phosphorylated Rb, and to accumulation 

of cells in the G1- and S-phase with an increase of cells in G1-phase. In contrast, ES 

cells showed strong induction of p53, but no induction of its target gene p21. The overall 

levels of Rb were strongly induced, but the ratio between inactive, hyper-

phosphorylated Rb and active, hypo-phosphorylated Rb was not changed towards the 

active form. These results were observed upon 5FU treatment and upon depletion of 

Pes1 or Bop1. Hence, ribosomal stress does not lead to checkpoint activation via the 

p53-p21-Rb pathway in ES cells. Moreover, no robust accumulation of cells in G1-

phase was observed. 5FU treated ES cells showed an accumulation of cells in S-phase 

instead. Whether this effect is regulated by the induced p53 needs further investigation. 

Overall, the results suggest that ES cells use different mechanisms as mature cells to 

coordinate their proliferation rate with ribosome biogenesis.  
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8 ABBREVIATIONS 
 
 
α anti / alpha 
β-ME β-mercaptoethanol 
µg microgram 
µl microliter 
µM micromolar 
A adenosine 
aa amino acid 
Ab antibody 
AP alkaline phosphatase 
APS ammonium persulfate 
bp base pair 
BrdU bromodeoxyuridine 
BSA bovine serum albumine 
C cytosine 
C- carboxy- 
Cdk cyclin-dependent kinase 
cDNA complementary DNA 
d day(s) 
DAPI 4,6-Diamino-2-phenylindol 
DEPC diethylpyrocarbonate 
DMSO dimethylsulfoxide 
DNA 2’-deoxyribonucleic acid 
dNTP 3’-deoxyribobucleoside-5’-triphosphate 
dpc days post coitum 
EB embryoid body 
EDTA ethylenediamine tetra-acetic acid 
e.g. for example 
EGFP enhanced green fluorescent protein 
ES cells embryonic stem cells 
EtOH ethanol 
ETS external transcribed spacer 
FACS fluorescence activated cell sorting 
FBS fetal bovine serum 
FITC fluoresceinisothiocyanat 
G guanidine 
GFP green fluorescent protein 
h human, hour(s) 
HRP horseradish peroxidase 
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ICM inner cell mass 
ITS internal transcribed spacer 
kb kilo base pairs 
kD kilo Dalton 
LIF leukemia inhibitory factor 
m murine 
MAPK mitogen activated protein kinase 
MEK mitogen activated kinase kinase 
MEM non-essential amino acids 
min minute(s) 
mM millimolar 
monocl. monoclonal 
MOPS 3-(N-morpholino) propansulfonic acid 
myc myeloblastom 
N- amino- 
nM nanomolar 
PBS Phosphate –buffered saline 
PCR polymerase chain reaction 
PI propidium iodide 
PI3K phosphatidylinositol-3-kinase 
polycl. polyclonal 
pRb hypo-phosphorylated Rb 
ppRb hyper-phosphorylated Rb 
Rb Retinoblastoma gene product 
RNA ribonucleic acid 
RNase ribonuclease 
rpm rounds per minute 
rRNA ribosomal RNA 
RT room temperature / reverse transcription 
SD standard deviation 
SDS-PAGE sodiumdodecylsulfate-polyacrylamide gel electrophoresis 
sec second(s) 
siRNA small interfering RNA 
STAT signal transducer and activator of transcription 
T thymine 
TBS tris-buffered saline 
TE tris-chloride/EDTA (10:1) 
TEMED N,N,N’,N’-tetramethylethylendiamine 
TRIS tris-(hydroymethyl)-ammoniummethan 
U units 
UV ultraviolet 
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