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Der Ursprung und die Evolution des Kosmos haben sich dekibiraer grd-skaligen
Materieverteilung im Universums aufgepragt, welche wiitels unseren astronomischen Him-
melsdurchmusterungen in der Galaxienverteilung wahreehkdnnen. In den letzten Jahren
haben sich Galaxienssurveys mit Rotverschiebungsbesimgrau einem exzellenten Zugang
zu der kosmischen Materiestruktur entwickelt. Diese Sgs\snd komplementar zu anderen
Informationsquellen wie dem kosmischen Mikrowellenhigtand, da sie Einblick in andere
Epochen der kosmischen Geschichte gewahren. Sie zeig&tpdchen nach der Reionisation
des Universums, in der erstmals leuchtkraftige Objekfeaaahten, etwa ab einem Zeitpunkt
vor zwolf Milliarden Jahren bis heute. Da das Universumeetikeizehn Milliarden Jahre alt
ist, erlauben Galaxiensurveys prinzipiell immense koshesZeitraume zu Uberblicken, auch
wenn die Teleskopsensitivitaten oft nicht ausreicheredigerntesten Lichtquellen des Univer-
sums tatsachlich auch zu detektieren. Daher sind Galsuiieays extrem interessant fur Stu-
dien der kosmischen Entwicklung. Die Observablen, wie @afgositionen, -eigenschaften
und -rotverschiebung, liefern nur eine unvollstandiggmsentation der Strukturen im Uni-
versum, nicht nur aufgrund der Messunsicherheiten undtBaskungen, sondern auch wegen
systematischen Unsicherheiten, wie dem so genarBtdaxienbias Die Galaxien zeichnen
das zugrunde liegende kontinuierliche Materiefeld nutigihmach aufgrund ihrer diskreten
Verteilung im Kosmos. Weiterhin haben GalaxienkataloggevKomplikationen, teilweise
physikalisch begrindet wie bereits erwahnt, teilweiseraufgrund der Natur der Beobach-
tungen. Das Problem das zugrunde liegende Materiefeldkansgruieren um damit kosmol-
ogische Studien zu betreiben bedarf daher eines statististugangs.

Diese Promotionsschrift beschreibt ein kosmisches Kgrthieprojekt. Die notwendi-
gen wahrscheilichkeitstheoretischen Konzepte, der makische Rahmen, und die nume-
rischen Algorithmen werden ausgiebig untersucht. Aufeli®asis wird ein Bayesian software-
tool entwickelt. Der resultierende REGo-code erlaubt die charakteristischen Merkmale der
groB3-skaligen Strukturen mit noch nie dagewesener PrazismohRiexibilitat zu bestimmen.
Dies erreicht man durch die gemeinsame Bestimmung dérgkaligen Dichte zusammen mit
einer Anzahl an Parameter, wie dem kosmischer,Flien kleinskaligen Eigenbewegungen
der Galaxien und dem Leistungsspektrum, anhand der Inf@malie von den gemessenen
Galaxienverteilungen stammt. DelRr&0-code kann dabei viele Beobachtungsproblemen be-
handeln, wie die Masken des Surveys, die Galaxien Selektgsfahren, Verwischungseffekte
und Rauschen, dank einem Operator basierten Formalisrafigiiddiese Zwecke ausgear-
beitet wurde. Dank der erreichten Effizienz, kanr@©o die Anwendung iterativer Markov
Chain Monte Carlo basierten Sampling-Verfahren angehaes Wird letzlich eine volle Be-
schreibung der Materieverteilung erlauben mit all inrdevanten Parametern, wie Geschwin-
digkeiten, Leistungsspektre@alaxienbias usw., inklusiv deren Unsicherheiten. Einige An-
wendungen in denen solche Techniken verwendet werdenhgnadlemonstriert. Ein Sam-
pling Algorithmus wird erfolgreich angewendet fur die Kektur der Rotverschiebungseffekte,
die besonders stark im nicht-linearen Bereich der Strektistehung auftauchen und den so-
genannterGottesfingeerzeugen. Letzlich wird auch ein Gibbs-Sampling Algoritiengezeigt
fur die Bestimmung des Leistungsspektrums und einigeaufige Ergebnisse werden prasen-
tiert in denen die richtige Form und Amplitude des Leistuspgktrums ausschiiéch aus den
Daten rekonstruiert wird.






The cosmic origin and evolution is encoded in the largeesoatter distribution observed
in astronomical surveys. Galaxy redshift surveys have iecm the recent years one of the
best probes for cosmic large-scale structures. They arg@leomentary to other information
sources like the cosmic microwave background, since ttameta different epoch of the Uni-
verse, the time after reionization at which the Universeabee transparent, covering about the
last twelve billion years. Regarding that the Universe isutlthirteen billion years old, galaxy
surveys cover a huge range of time, even if the sensitivitytditions of the detectors do not
permit to reach the furthermost sources in the transpareiveltse. This makes galaxy surveys
extremely interesting for cosmological evolution studi&be observables, galaxy position in
the sky, galaxy magnitude and redshift, however, give aonmmuiete representation of the real
structures in the Universe, not only due to the limitations ancertainties in the measure-
ments, but also due to their biased nature. They trace therlyimy continuous dark matter
field only partially being a discrete sample of the luminoasybnic distribution. In addition,
galaxy catalogues are plagued by many complications. S@we & physical foundation, as
mentioned before, others are due to the observation prothsgroblem of reconstructing the
underlying density field, which permits to make cosmologstadies, thus requires a statistical
approach.

This thesis describes a cosmic cartography project. Thessacy concepts, mathematical
frame-work, and numerical algorithms are thoroughly aredy On that basis a Bayesian soft-
ware tool is implemented. The resultingrR&0o-code allows to investigate the characteristics
of the large-scale cosmological structure with unprectteaccuracy and flexibility. This is
achieved by jointly estimating the large-scale densityglwith a variety of other parameters
—such as the cosmic flow, the small-scale peculiar veloogyl fiand the power-spectrum—
from the information provided by galaxy redshift surveysirthermore, RGo is capable of
dealing with many observational issues like mask-effegztaxy selection criteria, blurring and
noise in a very efficient implementation of an operator bdsetalism which was carefully
derived for this purpose. Thanks to the achieved high effayieof ARGO the application of
iterative sampling algorithms based on Markov Chain Moraelcis now possible. This will
ultimately lead to a full description of the matter distriloen with all its relevant parameters
like velocities, power spectra, galaxy bias, etc., inaligdihe associated uncertainties. Some
applications are shown, in which such techniques are userkje&tion sampling scheme is
successfully applied to correct for the observational mégtdistortions effect which is espe-
cially severe in regimes of non-linear structure formaticausing the so-callefinger-of-god
effect. Also a Gibbs-sampling algorithm for power-spegtrdetermination is presented and
some preliminary results are shown in which the correctl land shape of the power-spectrum
is recovered solely from the data.

We present in an additional appendix the gravitationalapsé and subsequent neutrino-
driven explosion of the low-mass end of stars that underge-collapse Supernovae. We
obtain results which are for the first time compatible wite @rab Nebula.

The Bayesian frame-work and numerical development predentthis thesis are partially
included in a submitted publicatioifaura & Enlin, 2007). The applications on synthetic
galaxy catalogues are new (see chapjeAll the numerical calculations and figures presented
in this thesis have been done by the author.
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Chapter

Introduction

KHiC
SHECELT
s
IOV Z 1
(LZ DiE
Ametsuchi ni Being between sky and earth
kimusubi nashite unifying with them
naka ni tachi in the calmness
kokoro gamae wa the state of my heart feels like
yamabiko no michi following the path of the resounding mawnecho

Morihei Ueshiba

A ccording to our current picture of cosmogenesis, the gesaxgalaxy clusters, galaxy
filaments, and giant voids forming the cosmic large-scalgcsire (LSS) are products of
gravitational instability, which pulls increasingly moneatter onto the tiny primordial seed
density fluctuations generated at the very first epoch oftiofla The shape and size of the
cosmic matter distribution reflects the initial conditiet during or shortly after Big Bang, as
well as the interplay of the gravitational self-attractiwinmatter and the diluting action of the
Hubble expansion of cosmic space. Valuable informatioruabiwe properties and the origin
of the cosmic inventory are encoded in the LSS, however, allsuales, that information is
being erased through dynamical non-linear processes.

Our goal is to extract as much of this information as posditdm astronomical measure-
ments, which introduce uncertainties and, consequendlyekeracies. Therefore, we have to
adapt an information-theoretical approach to solve thensituction problem of cosmogra-
phy. The Bayesian framework turns out to be the most genembach as we will discuss
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1. INTRODUCTION

later. In this thesis we present the novek@o!-software package, which reconstructs the
three-dimensional density field from the information pdmd by galaxy surveys with differ-
ent Bayesian and inverse methods. Here we focus our studyaderstanding the Bayesian
theoretical background and the required algorithmic aspé&wrther extensions of the code in
which the power-spectrum and the peculiar velocities cgoibdly sampled are presented and
tested on mock galaxy catalogues. Some of the preliminayltseare presented and future
development is outlined.

The large number of telescopes performing galaxy survetlsinéreasing depth, sky cov-
erage, and accuracy in position and distance (or redsleiférohination provide us with superb
data on the cosmic matter distribution at an exponentiaityeasing rate. One problem is
that the discrete objects these instruments reveal to egjalaxies, are the result of a com-
plex non-linear evolution of cosmic matter combined witingicated astrophysical processes
such as star formation. A translation of the galaxy datatimomuch better understood large-
scale dark matter (DM) distribution, which would be muchieato analyze for imprints of
cosmologically interesting effects, is far from trivial.h& discrete nature of galaxies intro-
duces certain noise, usually modeled by shot noise. Morgtiheepartially understood galaxy-
formation process inserts systematic uncertainties. ditiad, the limited volume of surveys
adds complications beyond the problems of galaxy-distdetermination being contaminated
by observational and velocity redshift-distortions. Aiese complications have to be dealt
with simultaneously and in a controlled fashion. Since ireat be assumed that the correct
or optimal values for the various degrees of freedom of tlublem (bias factors, redshift-
corrections, etc.) will be guessed a priory, repeated amdtive data analysis is mandatory in
order to achieve a high-fidelity and well-understood cosmé&p. For example, a correction of
redshift-distortions of the galaxies requires the grawiteal potential generated by the matter
distribution to be reconstructed.

Repeated generation of cosmic matter maps increases tadgaifgce another challenge,
the scaling of the performance of the underlying map-gédiweralgorithms with the data size.
Since the matter-density information displayed at a lotatin a map may depend on all input
data (galaxy positions), any algorithm optimized to infation theory scales super-linéar
With increasing survey sizes, increasing requirementsgatial resolution and volume cover-
age, and the need to frequently re-iterate the map-geoerstep, the algorithm has to scale
closely to linear with data size, otherwise its applicatisstrongly limited. Former applica-
tions in cosmography suffered from such inconvenient perémce-scaling, and an effort has
to be made to develop simultaneously high-performance ecgrate methods.

The work presented in this thesis developes the generalogelttyy of Bayesian recon-
struction of the cosmic matter distribution, based on tivaluable pioneering work of many
other scientists, which will be discussed below, and exdehi$ work to a series of new appli-
cations. Existing and novel map making algorithms are sunzexin terms of a classification
of their Bayesian likelihood and prior functions. The implentation, optimization, and com-
parison of various numerical schemes are addressed irl. dé€tas provides a starting point

Algorithm for theReconstruction oalaxy-traceddver-densities
2A map of galaxy counts can be generated by an algorithm wigkali scaling to data size however, it is not an
optimal representation of the underlying matter field.

12



1.1 Classes of uncertainty

for a correct information-theory approach to cosmographgny additional problems, not ad-
dressed in this thesis, such as the galaxy bias, will alse twke solved before accurate maps
of the dark matter distribution in our still mysterious Usige can be generated.

Such an undertaking would be highly rewarded in the shori@mgirun. An accurate map
of the cosmic matter distribution would be valuable for a iftad of direct scientific applica-
tions. These range from structure-formation analysispsmmlogical parameter estimation via
power-spectrum measurements, dark energy studies, gellaster identification and galaxy-
bias studies. Accurate cosmic maps would help to determeskwignals associated with the
large-scale structure such as the integrated Sachs-VEM/) effect, or the extended Sunyaev-
Zel'dovich (SZ) effect, the detection of which relies on t@nstruction of optimal statistical
filters for these signals.

Finally, one could argue that mapping the distribution otterain the Universe represents
a response to mankind’s curiosity in its aim to discaegra incognitaand find an orientation
in space and time on cosmological scales and, thereforaldshe a goal in itself.

In the remainder of this introduction we give the sources rofestainties, we present an
overview of existent and new Bayesian reconstruction ntstheubsequently we briefly de-
scribe the algorithmic development presented in this shélsen we summarize non-Bayesian
methods and time-reversal reconstruction methods, ameifirtal part we give a more detailed
overview of the structure of this thesis.

1.1 Classes of uncertainty

Several classes of uncertainties related to the densltysfieonstruction from galaxy surveys
demand a statistical approach. Some of the uncertaingastainsic to the nature of the under-
lying signal (the dark matter). Other uncertainties arérisic to the nature of the observable
(the galaxies). And finally there are uncertainties due tgederacies which appear through
the observation and data mining process.

1. Intrinsic stochastic character: cosmic variance

In cosmology it is generally assumed that the structureetihiverse comes from some
infinitesimal quantum fluctuations which were frozen out atrédtched by an inflation-
ary phase (se@lbrecht & Steinhardt1982 Bardeeret al, 1983 Guth, 1981 Guth & Pij,
1982 Hawking 1982 Linde, 1982 Starobinsky 1982, and later amplified by gravita-
tional instability. According to this picture, the seed flumtions would have an intrinsic
stochastic character and are mainly Gaussian distribtitediever, the mechanisms that
stretch the quantum fluctuations may also introduce deviatfrom Gaussianity which
would then be imprinted in the seed fluctuations. In genediadha moments of the
initial fluctuations have to be considergdp),;). Nevertheless, most of the inflation-
ary scenarios predict the density field to be very closelysSian distributed and it is
generally sufficient to take the second order moment, thepwint correlation func-
tion, or the power-spectrum in Fourier-space. We will descbelow how to determine
the power-spectrum and techniques to disentangle intrimsn-Gaussianities within a
Bayesian framework. Note, that there are alternative nsadehflation in which e.g. the

13



1. INTRODUCTION

Figure 1.1: Hierarchical Bayes model
for a galaxy distribution in redshift space
d, is represented here in a directed acyclic
graph (DAG). The cosmological param-
etersp..., govern the rest of the vari-
ables. The initial density field coming from
e.g. inflationary scenarios can be statisti-
cally described by all its moment{épy;)-
Here the power spectrum is usually taken,
since the intitial perturbations are well de-
scribed by a Gaussian realization of the
initial seed fluctuations. The further evo-
lution is described by nearly deterministic
processes (given by structure and galaxy
formation), which determine the later-time
dark matter distributiodpy; with its pe-
culiar velocity fieldv and the bias func-
tion b that relates the galaxy distribution
to the dark matter density field. The dark
matter distributiordpy; with the bias pro-
duces the galaxy distribution in real space
d,. The peculiar velocities related to the
density field through the continuity equa-
tion introduce the redshift distortion i,
finally leading to the galaxy distribution in
redshift spacé;.

/ =d

0o 3

A
@

seed fluctuations are identified with the topological deféicat remain as relics of high-
energy phase transitionkipble, 1976. Accurate reconstructions of the LSS could help
to discriminate between the different models.

We review in detail the schemes that allow one to sample tlsenmovariance, and
present some preliminary results in chapt®), {n which the correct power-spectrum
level and shape is extracted from the data.

2. Physical uncertainties: galaxy bias

The galaxy formation process is a complicated, non-linedr(probably) non-local pro-
cess. Itis known that on large scales the galaxy power+spadits well to the expected
DM spectrum predicted from cosmic microwave background B}Mbservations, if
some bias factob between the amplitude of the galaxy and DM fluctuations isragsl.
Detailed studies show that the bias factor is not univetsal depends on galaxy type,
galaxy formation time, redshift, etc. (see e@poray & Sheth2002 and references
therein). For the purpose of reconstructing the underldiagsity field, linear biases can
easily be tackled within the linear data model describedvddy including its effects
in a selection function. Nevertheless, more complex biksee to be further investi-
gated in a Bayesian framework. Physical processes, wh&harperfectly understood

14



1.1 Classes of uncertainty

within galaxy formation may be treated in a statistical wengoding the ignorance about
certain physical processes in probability distributiomdions. Several works study
the stochastic non-linear galaxy biasing (see for exarbgkel & Lahay 1999 Pen
1998 Tegmark & Bromley 1999. Some of these models could be implemented in the
Bayesian reconstruction process. This issue is out of sicoghés thesis, but should be
further investigated in this frame-work.

. Physical/observational uncertainties: redshift-distotions

The peculiar motion of galaxies with respect to the Hubble tbthe Universew, intro-
duces uncertainties in their redshift measurement, theaed redshift-distortions (see
e.g.Hamilton 1998 for an introduction to this problem). The measured galaxero
densities are thus said not to be in real-spé{gebut in redshift-spacé;. In the linear
regime, where galaxies fall into the potential wells of &agrale structures, redshift-
distortions cause a squashing of the linear over-densitieadial direction. However,
in the non-linear regime, galaxies (e.g. in a galaxy clygtad to behave like particles
in a gas with randomized motions inside the clusters whexethentials are very high.
This produces the so-calldithger-of-godeffect, a dispersion along the line of sight.
The correction of these distortions is not trivial, since ginocess of structure formation
partially erases the information about the initial fluctoas after entering the non-linear
regime. Consequently, determining the real position ciixjak poses a degenerate prob-
lem, which has in general many possible solutions. Manyrifttave been made to cor-
rect for these distortions: in the linear regime these tdfstart with Kaiser’s pioneering
work (seeKaiser, 1987 and are followed by the linear redshift-distortions operéfor

a detailed derivation sdg¢amilton 1998. In the non-linear regime, these efforts include
a velocity dispersion factor (thdispersioamodel) corresponding to an exponential pair-
wise velocity distribution function with no mean streami@@geBallingeret al.,, 1996.
Scoccimarrq2004) presents an exact relationship between real-space asitiftespace
two-point statistics through the pairwise velocity distiion function including all non-
linearities. More complex methods of correcting for redtsthistortions were classified
by Schmoldtet al. (1999 into iterative methods, which uses the redshift-spacesitien
to calculate a peculiar velocity field, and then iterativetyrects the density field dis-
tortions Kaiser & Stebbins1991 Yabhil et al., 1991) and more recentlPercival(2005.
The other class decomposes the redshift-space densitdial eamd angular basis func-
tions from which the radial redshift-distortion is corredt(see e.gNusser & Davis
1994 Schmoldtet al,, 1999. Below, we propose a Bayesian method to correct for the
linear and non-linear redshift-distortions in a statetivay (see sectio.6) and present
some applications in chaptes)(

. Observational uncertainties: measurements

The action of measurement introduces uncertainties, reitresto the instruments, e.g. blur-
ring by the telescope, or due to the observational strategigh is included in the noise
term, the selection function, and the mask effects Ea®ubiet al, 1995 for a pio-
neering work in the LSS field). Ignoring selection functiowsndowing, or blurring will
lead to strongly biased reconstructions, which are far filoereal signal, and thus allow
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only very limited interpretation of the true physical picuA numerical implementation
of these effects is presented in chapter (sec:operatdng)influence of these effects will
then be analyzed separately and tested with our code. Thksrase presented in chap-
ter @). Though Argo demonstrates its capability to handle theseeainties, further
work is required in order to apply it to real data. Particidapressions for the selection
function according to the redshift survey under study, alb as masks, etc., have to be
implemented.

5. Mathematical/numerical representation uncertainties: diasing effects

Some uncertainties are not intrinsic to the observable,obginate from the mathe-
matical representation one chooses. Treating galaxieswgscin cells or with other
mass-assignment scheme will smear out the informationtaheir measured position
for which one has to correct (see secti@3.2and5.1.3 in order to derive other quan-
tities, like the power-spectrum (see sect®3.2. The selected data mining schemes
can also introduce errors in the reconstruction procesghwhay be fatal. In particular,
using a grid in a box to represent a galaxy survey, introdeoesty regions even if the
survey covers the whole sky due to the radial limit of the syrWwacking a sphere in a
box leaves almost have of the volume empty. We discuss #ug i sectiong.3.1) and
show its importance for determining the bulk flow. In sect{érB.2, we propose some
solutions to this problem based on sampling a fluctuating frethe unobserved regions.

From all the points mentioned above we conclude, that extigaithe underlying dark matter

density field from the luminous matter distribution given dlaxy redshift surveys poses a
classical signal reconstruction problem. A Bayesian ngtveepicting the relation of these

uncertainties is shown in figl(l).

1.2 Bayesian reconstruction methods

Any Bayesian statistical approach requires the definitianlixelihood and a prior. The former
is the probability distribution function describing theopess generating the observational data.
It can be interpreted as a distance measure of the obserteetbdae underlying signal, as we
will discuss below. The prior stands for the distributiomdtion modeling our prior knowledge
on the signal to be recovered. Mathematically it can be shibanhit regularizes the estima-
tor in the presence of noise (see sect®B.]). Two kinds of priors have to be distinguished,
informative priors, in which the previous physical knowgedabout the signal is encoded, and
non-informative priors, which try to give objective estitos for the underlying signal based on
purely information-theoretical arguments. Here, three-imformative priors are considered:
flat priors (see sectioB.5.5 with a constant probability distribution function (PDERtropic
priors based on Shannon’s notion of information (see se@ib.9, and Jeffrey’s prior based
on invariant statistical structures under transformatibwariables (see sectidh5.§. Finally,

a maximization or sampling of the posterior distributiomhigh is proportional to the product
of the likelihood and the prior, has to be done to completeBigesian estimation. The max-
imization of the posterior is called the maximum a postémoethod (MAP). The maximum
likelihood (ML) and maximum entropy method (MEM) are pautar cases of the MAP with
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1.2 Bayesian reconstruction methods

flat priors and entropic priors, respectively. Complex poet distribution functions may be
sampled iteratively from conditional PDFs in a Markov Chiiante Carlo fashion (MCMC),
see sectior2.6. We show how different choices for these distribution fimts together with
the estimation procedure lead to different reconstructigorithms, which consequently have
distinct application fields (see tab®1). A review of existing methods is presented and new
applications for the large-scale structure reconstragtishich naturally emerge within the
Bayesian formalism, are developed.

In this work we consider Poissonian and Gaussian likelisdod the galaxy distribution.
The former has been previously considered in image re&iaraspecially for deconvolution
purposes (sekucy, 1974 Richardson1972. For example, the Richardson-Lucy algorithm
can be derived as the ML of a Poissonian likelihood Shkepp & Vardj 1982 and appendix
A.6). Here an image can be regarded as photon counts in cellssesied by a Poissonian
distribution. However, one should notice that this likelildl does not represent the galaxy-
formation process. From a pure image reconstruction petigpe it can still be interesting
for LSS estimations, because it naturally represents theretie nature of a galaxy distribu-
tion. The Gaussian likelihood allows the incorporation iifiaary noise structures through the
variance. The CMB map-making algorithms, which aim to coniime-ordered data received
from satellites into a map of the CMB signal on the sky as agat@n on the sphere, usually
use this likelihood. In this case, the ML leads to the simpBBE-filter first derived bylanssen
& Gulkis (1992. Nevertheless, the complex scanning strategies andrfored removal can
add unlimited complexity to these algorithms (eDpré et al,, 2001 Keihanenet al.,, 2005
Natoli et al,, 2001, Stomporet al., 2002 Yvon & Mayet, 2005.

For the LSS the Gaussian prior arises as the natural inforen@aitior due to the arguments
discussed above. We propose a novel algorithm: GAPMAP, lwhiaximizes the posterior
with a Gaussian prior and a Poissonian likelihood (see @e@tis.4and appendiXA.5). In
contrast, the Gaussian likelihood with the Gaussian peads to the well-known Wiener-
filter, which has been used for the LSS reconstruction Esdegduet al., 2004 2006 Fisher
et al, 1994 1995 Hoffman 1994 Lahay, 1994 Lahavet al, 1994 Schmoldtet al, 1999
Websteret al., 1997 Zaroubiet al,, 1995 1999 and for CMB-mapping (see e.Bunnet al,,
1994 Tegmark 1997. It is also known to give optimal results in terms of yielglithe least
square error, see the pioneering workRybicki & Press(1992 andZaroubiet al. (1995. We
present in this thesis a fast Wiener-filter extra-reguéatiwith Krylov methods as we will see
below.

Intrinsic primordial non-Gaussianities can be imprintedhe seed fluctuations depending
on the particular theory responsible for the amplificatiéihe fluctuations coming from the
early Universe. To find such deviations, non-informativeoys; which give non-linear esti-
mates for the underlying signal are required. Entropicrprare well suited here, and have
been previously applied for CMB studies. We extend this wWorkLSS reconstructions and
develop the corresponding maximum entropy method for Gaissd Poissonian likelihoods
(see sectiorz.5.9and appendipA.10).

Sampling methods have the advantage of determining theesifagistributions and, thus,
leading to a natural estimate of the uncertainty of the egbm Moreover, the mean can be
calculated easily from the sample and is known to give mocarate results than the maximum
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1. INTRODUCTION

in the case of asymmetric PDFs (see &anner 1996.

As an exampleHobson & McLachlan(2003 proposed a SZ-cluster detection algorithm
using the Metropolis-Hasting algorithm method based onissBaian prior distribution, which
is designed to find discrete objects. Recefiljiton & Wandel(2006 developed a reconstruc-
tion method for radio-astronomy that samples from the mlidity function (see eq2.32.
Alternative approaches to the maximum likelihood for CMByping algorithms try to jointly
reconstruct the CMB-map with its power-spectrum using Gishmpling techniquegfiksen
et al, 2007 O’Dwyer et al,, 2004 Wandeltet al., 2004. This approach is especially efficient
with respect to other MCMC methods because the transitiobgtility matrix moves the sys-
tem in each step of the chain. For this special case the impmetratio is always one (see
e.g.Neal 1993. This MCMC method requires, however, the complete knoggedf the full
conditional PDFs in order to sample from them. Note, that@aeissian prior for the signal
simultaneously represents the likelihood for the poweespim given the signal, which in this
case is an inverse Gamma function for the power-spectruesgseiorb.3.2. This distribution
naturally samples the power-spectrum, which stronglyategifrom Gaussianity.

With the aim of estimating the power-spectrum in an objectiray, non-informative priors
are used. Usually a flat prior is taken for the power-spectréiternatively, Jeffrey’s prior,
for which we give a derivation based on Fisher informaticge(appendiA.9), can be used.
Alternatively, an entropic prior could also be taken.

Other attempts have been made to estimate the power-gpefistn the LSS based on
the distribution of galaxies. A modified Gaussian PDF witbbghormal mean has been used
in this approach (seBercival 2005. The same kind of concept, using a modified Gaussian
distribution to sample deviations from Gaussianity, haanlegpplied to SZ-cluster detection by
Pierpaoli & Anthoine(2005.

In this thesis we propose to apply a Gibbs-sampling algworitb jointly sample the un-
derlying three-dimensional density field with the poweespum and the peculiar velocities,
which can be used to correct for the redshift-distortioree (shapteb). Note, that the pecu-
liar velocities can also be used to trace the initial deniitytuations back in time as we will
discuss below.

1.3 Algorithmic development

In this thesis we focus our work on the numerical optimizatid inverse techniques to show
that a joint estimation of the LSS matter density field angdtsameters is feasible (see sections
3& 4).

The calculation of the reconstructions, either through im&ation or through sampling,
requires the inversion of certain matrices. For the Widilter, for instance, the reconstruction
problem consists in one of its steps on the inversion of tleetadion matrix of the data. The
methods used in this field so far calculated this matrix améried it mainly using the Singular
Value Decomposition algorithm that scaless.*) for an x n matrix (see e.gZaroubiet al,,
1995. However, this approach seems to be hopeless in light adteevhelming amounts of
data coming from different surveys and the possibility afnbming them. We made special
effort to implement an algorithm in which the involved me#$ would not need to be stored
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1.4 Non-Bayesian reconstruction methods

taking advantage of an operator formalism, which we workethere for different recon-
struction methods (see tale2 and sectior8.3). Such a formalism also allows fast iterative
numerical methods that speed the inverse step up to a se#lifgn log, n) thus reducing
the main operations to fast Fourier transforms (FFTs). Soitieese numerical schemes have
been used in CMB-mapping algorithms, but were lacking ailéetaomparison of the effi-
ciency of the different methods. Such a comparison is pteddmere. We derive the different
inverse methods in a unified way starting with a Bayesianvatdn for iterative schemes (see
appendixB.2) and following with a general formulation of the asymptatgularization from
which the Jacobi, the Steepest Descent, and the Krylov rdstae derived. Moreover, non-
linear inverse methods are discussed, like the Newton-taplthe Lanweber-Fridman and the
non-linear Krylov methods. Preconditioning (see appeiBIB) was taken into account in all
the derivations and the importance of such a treatmenttisdés section4) (see fig.4.3). In
addition, a previously not discussed Krylov method is datiysee formul®.37, section3 and
appendixB.1) and its superior efficiency is demonstrated (see sedjion

1.4 Non-Bayesian reconstruction methods

Let us mention here that there are alternative reconsbructiethods which recover the under-
lying density field based on the observed radial peculiaycil of galaxies, such as the widely
known POTENT-codeRertschinger & Dekel1989 1991, Bertschingeret al, 1990. Kaiser
& Stebbins(1991) propose a maximum probability technique to reconstruetdidnsity field
from peculiar velocities.

Other works are focused on reconstructing the peculiarciteds from density fields (see
e.g. Branchini & Plionis 1996 Branchiniet al, 1996 Kudlicki et al, 2000 Mohayaee &
Tully, 2005 Mohayaeeet al., 2004). For a review seedaroubi 20023 and references therein.

In addition, several reconstruction techniques, which weaot discuss here are based on
geometrical arguments. These techniques include Voressetations (see egoroshkevich
et al, 1997 Ebeling & Wiedenmann1993 Icke & van de Weygaertl991 Kim et al., 200Q
Meurs & Wilkinson 1999 Panko & Flin 2004 Ramellaet al,, 2001 Zaninettji 1995 2006,
Delaunay tesselations (see eBgrnardeau & van de Weygaet996 Schaap & van de Wey-
gaert 2000 van de Weygaert & Schaap00J), friends-of-friendsalgorithms (see e.@otzler
et al,, 2004 or cloud-in-cellinterpolation schemes (see eGpttloberet al., 2002).

A widely known reconstruction method in various fields is #i&on method (see e.g.
Puetter & Pina1993. Unlike Bayesian methods, this method does not assignogxptior
probabilities to image models. Instead, it restricts thgnsdeking minimum complexity. The
Pixon method minimizes complexity by smoothing the imagelehdocally as much as the
data allow, thus reducing the number of independent patdnd%xon elements, in the image.
For a recent application in astrophysics see kg (2001).

1.5 Time-reversal reconstruction of the initial density fied

The reconstruction of the initial density fluctuations issgly related to the reconstruction of
the large-scale density field at the observed epoch focuseéd this thesis. However, we be-
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lieve that fruitful contributions to the field of initial deity fluctuations, could be extracted
from the work presented here. An accurate over-density &eltie observed epoch and the
information about the peculiar velocities could be usafypérform such a time reversal recon-
struction. Let us thus briefly review the reconstructionesobs developed in this neighboring
area of cosmology.

The initial density field is of major interest because it esgants the origin of the Universe
and many theories can be tested with such information. Asextdapplication, constrained
N-body simulations can be done by taking the reconstructdd &is the initial conditions to
study structure formation by later comparing the resulth wie observations (see eRjstolas
& Hoffman, 1998 Ganon & Hoffman 1993 Mathiset al,, 2002 Sheth 1995.

As we have discussed above, the large-scale structureirittéormation about the seed
perturbations and its dynamical evolution is well appraxied in the linear regime. Following
this idea,Weinberg(1992 proposes to reconstruct the seed fluctuations through slussan-
ization of the observed density field, based on the apprdiemahat the rank order of the
initial density field smoothed over scales of a few Mpc is presd under non-linear gravita-
tional evolution and further assuming the initial field to®aussian distributed. This method
can be regarded as an Eulerian Gaussian mapping scheme.

Other methods run gravity backward in time taking the positand peculiar velocities of
objects at a certain redshift. Here, different schemes baea proposed: a huge class relies
on Lagrangian dynamical schemes; another class is basée omnimal action principle; and
another class is based on optimal mass transportation sshieawe been applied for the initial
density field reconstruction.

Lagrangian dynamical schemes mainly use the Zel'dovichreqmation ¢el’'Dovich,
1970 in which the comoving trajectories of the particles araigtnt lines. In this formal-
ism, the variable under consideration is the displacemiatparticle. Several reconstruction
schemes are based on this approximation, including the@ath-Bernoulli equation derived
by Nusseret al. (1997), the Zel'dovich-continuity equation presented3namann(1993 or the
path interchange Zel'dovich approximation scheme (P1Z#9dubyCroft & Gaztanag1997),
among others (see for examlekel et al, 1990 Narayanan & Weinbergl998 Nusser &
Dekel 1992 Valentineet al., 2000. Several of these methods are compareNanayanan &
Croft (1999. More recently, it was proposed to determine the inverggdmsgian map (defined
as the transformation of the present (Eulerian) positionthé respective initial (Lagrangian)
positions) by minimizing a quadratic cost-function, whidarches the optimal mass-transport
solution of the Monge-Amgre-Kantorovich problemBrenieret al., 2003 Frischet al., 2002
Mohayaeeet al,, 2003 2006

The minimal action principle method was pioneered RBebleg(1989 1990. One of
its first applications was presented $fthayaet al. (1995. Here the gravitational instability
problem is treated as a two-point boundary problem and #jedtories of the mass particles are
solved by minimizing the action integral. This method wateaged byGoldberg(2001ab);
Goldberg & Sperge(2000ab).
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1.6 Structure formation

1.6 Structure formation

Here we present a brief introduction to structure formationlarge scales. The presented
eqguations are mainly based on the book$kgbleg1980 andPeacock1999.

The structure formation of the Universe is governed by agrptay of many coupled physi-
cal processes. However, one can establish delimited regimaneglect many of the processes,
depending on which physical effects are the object of stuidygeneral the physical state of
a statistical ensemble of particles is described by thegadistribution functionf (r,p, t) in
phase space (positian and momentunp, timet) and its evolution is given by the Boltzmann
equation

op

—f —Vrf +

coll.
df > : (1.1)

a0 vpl = (dt

The term in the rhs is only present when partlcles collideictvinappens whenever baryons
get involved. This is the case for self-interacting cosnaigsy cosmic rays or photon radiation
interacting with molecular clouds, or neutrinos depogitamergy in the stellar plasma trigger-
ing Supernova explosions (see appendix of supernova work)arge scales the gravitational
clustering is believed to be dominated by collision-leskdaatter, which permits us to neglect
the collision term and write (Vlasov’s equation)

0 1
af + Epv'rf — mVTCDfo = 0, (12)

where the potential is given by Poisson’s equation
V30(r,6) = 4rGm [ dp f(r.p.1), (1.3)

with the density defined agr,¢) = m [ dp f(r, p,t) and the streaming velocity agr, t) =
Jdp(p/m)f(r.p,t)/ [ dp f(r,p,t). The Newtonian approach assumes that the gravitational
perturbations are much smaller than the scale of the sysiem [y the cosmological horizon:
dy = ¢/Hy, with ¢ being the speed of light, and, the Hubble constant at present day. This
system has theoretically a well defined solution. Howevedifig such a solution turns out to
be in general very difficult. A wide extended alternative r@agh consists in performing N-
body simulations in which the phase space density is saniledlarge number of particles.
Another approach models the Universe as an ideal fluid asguthat the mean free path of
matter is short. This is the picture of the homogeneous Wsevehich is valid on large scales.
The evolution of this (non-relativistic) fluid is given byetequations of fluid dynamics, the
continuity equation, the Euler equation, and Poisson'aitgot

dp

- = 1.4
BN +VT(P'U) 0, (1.4)
ov Vv

=+ (0 Vr)o = —TP — Vi d, (1.5)
V4d = 47Gp. (1.6)

For an example with coupled fluid-radiation dynamics seengix of supernova work.
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Note, that the pressure term in the Euler-energy equatiosually neglected when studying
the dark matter evolution. Allowing for small departuresnirhomogeneity we define

p(z,t) = polt) +dp(z,1), (1.7
v(xz,t) = wo(t)+dv(z,t), (1.8)
plx,t) = po(t) +dp(x,t), (1.9)
O(x,t) = Do(t) + 0P(x,t). (1.10)

The resulting linear order equations are describing théugea of density fluctuations in an
expanding Universe governed by gravity

do

s Vydv =0, (1.11)

dov + (v - Vp)vg = _Vop Vd®, (1.12)
dt Po

V2.6® = 471G pod, (1.13)

where we introduced the convective time derivatid¢dt = 9/0t + v - V and the fractional
density perturbationd = ép/po.

In an expanding Universe it is convenient to introduce the@ang coordinateg: »(t) =
a(t)x(t), with the proper time, anda(t) being the scale factor, describing the general expan-
sion of the Universe. Then the velocity can be written as

v =7 = ax + ax, (1.14)

wheredv = ax = au is called the peculiar velocity. Translating the spatiafivdgives into
comoving coordinates,e.g by replacing:» = 1/aVg, we obtain the following linearized
equations for conservation of mass and momentum as expeddiy an observer moving with
the Hubble flow

b = —Vg-u, (1.15)
ut2% = _vmép_vqu (1.16)
a £0 a

Let us now express the density field in a Fourier expansion
S(k,a) = /dm exp(ik - x)o(x,a). (1.17)

We can then combine eqd..15 and (.16 by eliminatingu to the following equation

(1.18)

c2k:2>

54— 295 = 3(47er0 -—
a a

where the sound speedt = dp/dp was introduced to close the system. This equation has in
general, two solutions: a decaying mabe (z) and a growing mod® (z). The latter being
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the only relevant one for structure formation. We therefme express the evolution of density
perturbations as

5k, 2) = 2 (3 ), (1.19)

with D, (z) being the growth factor at redshift= 1/a(t) — 1 (2 : z = 0). For particular ex-
pressions of the growth factor under different cosmologese.gPeacock1999. As already
discussed in sectiorlL(1), the initial fluctuations accord to a Gaussian random fieldreat
accuracy. This also applies to the large-scale structunéchnin linear approximation, only
modifies the amplitude of the initial perturbations. Thedied then completely specified by
the power-spectrun®(k, z) under the assumption of a statistically isotropic and hagnegus
density field:

~

(6(k,2)0(K',2)) = (27)36p(k — k') P(k, 2). (1.20)

We will use different expressions for the power-spectrumlindar power-spectrum as given
by Peacock & Dodd$§1994), and a non-linear power-spectrum that describes alsdféne®of
virialized structures, given bgmithet al. (2003. The growth of density fluctuations happens
via self-gravitation, which is reduced by radiation pressand small-scale fluctuations are
dissipated by free streaming. The cumulative effects aseridmd by the so-called transfer
function

Tk = k) (1.21)
5(k,2)Dy(2)
Accurate results require solving the Boltzmann equatiothefcoupled plasma of matter and
relativistic particles (se&eljak & Zaldarriagal1996 for a numerical solution). There exist
several fitting formulae. In this work we use the BBKS (Begdeeret al., 1986 and theBond

& Efstathiou(1984) transfer-functions. The time evolution of the power-gpgu is then given
by
P(k,z) = Po(k)T2(k)M (1.22)

with Py (k) being the initial power-spectrum.

Note, that the theory presented in this section is only vialithe linear and quasi-linear
regime of structure formation. However, the problems thggear in the matter reconstruc-
tion from galaxy redshift surveys requires a deep study oflimeear effects. In this thesis we
present a Bayesian frame-work, which can deal separatéytiag different uncertainties pre-
sented above, and find statistical solutions to the complstes) described at the beginning of
this section. For further details see chap&r (

1.7 Structure of the thesis

This thesis is structured as follows: in chapt®y We state the problem of signal reconstruc-
tion, then we define the data model. Subsequently, we int@dweneral statistical perspective
within a Bayesian framework from which different soluticisthe reconstruction problem are
presented, including Wiener-filtering, the COBE-filter, avel GAPMAP algorithm with a
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Poissonian likelihood and a Gaussian prior, Jeffrey'srmind the Maximum Entropy method
(MEM). Markov Chain Monte Carlo methods (MCMC) that samphe tglobal probability
distribution function of the signal and all underlying paeters are presented as the ideal ap-
proach to achieve a full Bayesian solution of the reconstincgproblem. In the numerical
method chapterd), different iterative inverse schemes which have beenémphted in KGO
are presented, including a very efficient novel scheme. Peeator formalism is worked out
for four novel algorithms in large-scale structure recanrgdton. The efficiency of the differ-
ent inverse schemes is tested with the Wiener-filter undésrdint reconstruction cases with
synthetic data, including structured noise, blurringesgbn function effects, and windowing
in chapter 4). Finally, we apply in chaptersj some of the methods developed in this the-
sis to reconstructions of the LSS based on mock galaxy redshiveys. In this last chapter,
we discuss the physical and statistical problems, studguladéity and efficiency of the recon-
structions, and present novel methods for redshift-distas corrections and power-spectrum
estimation. Particular detailed derivations are preskeiméhe appendix.
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Chapter

Bayesian approach to signal
reconstruction

In nature you can find all future styles.

Auguste Rodin

T he reconstruction of a signal (here: DM distribution) gigeeet of measurements (here:

galaxy catalogues) is usually a highly degenerate probésmwe have discussed above,
where the signal is under-sampled and modified by systeraatidntrinsic errors due to the
nature of the observable. This is indeed the situation treaewe facing, since most of the
galaxy redshift surveys have partial sky coverage and s@ete nature of galaxies introduces
shot noise.

An expression for the data as a function of the real signatdvae modeled in a first step.
The reconstruction problem is classically seen as thegemvefrthis functional dependence. The
solution to this problem is far from being trivial and essanissues, like solution existence,
solution uniqueness, and instability of the solving precémve to be considered. Regarding
the solution existence, there will be no model that exact¥ytfie data, since the mathematical
model of the physics of the system is approximate and the dattain noise. That forces
us to look for optimal solutions, rather than exact solwiolVe will have to deal especially
with the last two points mentioned above, uniqueness afuigtabecause an infinite set of
possible solutions can fit the data and because of the itlitoned character of the system we
are treating. A regularization method that stabilizes tiverise process by imposing additional
constraints will be required. We show below how the Bayefiamework permits us to do a
regularization in aaturalway and furthermore to jointly estimate the signal and itapeeters.
The calculation of the Bayesian estimators will requireaxegularization techniques, which
will be presented in sectiorB). We will start posing the inverse problem by defining the elod
of the data.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

2.1 Data model

The galaxy formation process is known to be a complicated:lim@ar and probably non-local
process, as mentioned in the introduction. Thus, atterngts/ért the galaxy distribution into
the original DM distribution suppose a great challenges kriown that, given some bias factor
between the amplitude of the galaxy and the DM fluctuatiams,galaxy power-spectrum on
large scales fits well to the expected DM spectrum predictad CMB observations. Detailed
studies reveal that the bias factor is not universal, buédég on galaxy type, galaxy formation
time, redshift, etc. The data model connecting the signd (Istribution) to our observable
(galaxy counts) is in consequence complex, non-linear amdiocal. The main goal of this
thesis is to develop a Bayesian frame-work that permits ongplit the dependencies into
separated problems, which can then be jointly tackled whtysjzal and statistical techniques.
Such an example is given in chapté&y,(where the non-linear structure formation effects are
solved by performing a sampling procedure based on a physiedel. In principle, also the
bias of the galaxies can be sampled in this way (see discussibe introduction). However,
this is out of the scope of this thesis.

Here we present a linear data model which, however, canydasiextended to a simple
non-linear data model by a non-linear weighting scheme {®/gveighting the galaxies ac-
cording to their apparent luminosity). Nevertheless, mainghe uncertainties we are facing,
such as the convolution effects due to the blurring of a teles, the pixelization scheme, the
mask effects due to the observation strategy, or the saefeeffects due to the limited sensi-
tivity of the detectors, can be described with a linear mod#iis linear model will contain
non-linear information in the noise term as will be showneot®n 6.1.3.

2.1.1 Linear data model

The general linear reconstruction problem formally can loiétem as the inverse problem of
recovering the signal from the observationd related in the following way

d(x) = /dyR(m, y)s (y), (2.1)

where R represents the kernel of the Fredholm integral equatiomefitst kind defined by
(2.1), with noise on the signal being expressed by the superscepbiscretizing eq.2.1) and
assuming additive noise, we can formulate the signal degiamdmodel by

d= Rs+e. (2.2)

where them x 1 vectord represents the data points resulting from the measurer(iesns:
galaxy counts), the statistical noise and the underlyigmadi are am x 1 vectore, and a
n x 1 vectors respectively. The object that operates on the sign& &m x n matrix which
commonly describes blurring effects caused by the atmaespties point-spread function (PSF)
of the telescope or the response function of the detectdiseahstrument.

Let us denote the physical observation process encodec iRtimatrix asRp. We are
interested in the selection function of the surygywith the corresponding mask,, which
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2.1 Data model

can also be included iR. One has to be careful with the data model defined ir2e?). As
several authors point out, there is a correlation betweerutierlying signak and the level
of shot noise produced by the discrete distribution of gaksee e.gSeljak 1998. Since,
by definition, additive noise assumes no correlation withdignal —otherwise we would have
signal content in the noise — we define the effective nemethe product of a structure function
fsr, which could be correlated with the signal, with a randomsaaiomponente(;) that is
uncorrelated with the signal. Given the above definitiohs,dffective noise is uncorrelated
with the signal. We may then rewrite e@.2) in continuous representation as

d(x) = /dyRP(wyy)fs(y)fM(y)S(y)+fSF(8(93))6N(93)7 (2.3)

whereR(x,y) = Rp(z,y)fs(y)fm(y) ande(x) = fsp(s(x))ex(x). In practice, we will
assume white noise (i.e. constant noise in Fourier spage} ewn. However, none of the
presented techniques in this thesis depend on this singhidic Some of the previous studies
of large-scale structure reconstruction also includednVerse of the linear redshift-distortions
operator as a matrix multiplyind? (see e.gLahavet al, 1994. Such an operator cannot
easily be found for the non-linear regime. Earlier workstargorrect the non-linear redshift-
distortions with an additional factor in the power-spegtranalogous to Kaiser’s factor (see
Ballinger et al,, 1996 Erdogduet al, 2004 Kaiser, 1987. Here, we propose a Bayesian
solution to the signal reconstruction problem as it will liscdssed later.

In most cases, the signal will be strongly under-constchthee to under-sampling, i.e.>>
m, which is nearly unavoidable due to partial sky coverageunfeys. The linear equation
(eq. 2.2) to be inverted is a rank-deficient system. Such systemshamcterized by non-
unigueness, since the mati has a nontrivial null space. By superposition, any linean<o
bination of the null space models (modelsthat satisfyRs; = 0) can be added to a particular
solution leading to infinite solutions. Consequently, werga discriminate between situations
where the solution is truly zero (see for exampkgeret al., 2009. As is well known, a direct
inversion of eq.2.2) (R~'d) will amplify the statistical noise and lead to an unstalakison
(see e.gZaroubiet al, 1995. Instead, a regularization method, which often followgesal
steps, has to be applied . The first step consists of findingression for an estimator of the
signals that approximately satisfies the data model @8) and copes with the noise. Further
regularization methods are usually required in a secormitetactually calculate the estimator.
This happens whenever some ill-posed linear or non-linparators have to be inverted. We
shall distinguish between noise regularization and ireveegularization according to the first
and the second step, respectively. Zegoubiet al. (1995 pointed out, using a mean variance
estimator alone does not completely solve the inverse gnoblTherefore, they proposed the
singular value decomposition algorithm (SVD) to extraulegze these problems. However,
this method requires one to calculate the correlation maifrithe data implying a slow al-
gorithm, scaling a®)(n?), and needs large storage facilities. We will show that a Biaye
approach is aatural regularizer for the noise, which then can be regularizethéurfor the
inverse purpose with efficient methods that scalé @slog, n) (see sectior3). Let us address
the problem of signal reconstruction from a statisticaéiefice perspective.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

2.2 Inversion via statistical estimator

In parametric modeling it is assumed that observationa tatve been generated by random
processes with probability density distributions, depegadn the model parameters (see for
exampleRobert 200]). Statistical analysis in this context is essentially areise method,
which aims at retrieving the causes (here reduced to thendeas of the probabilistic gener-
ating mechanism) from the effects (here summarized by teerghtions).

Traditionally, one tries to find a way where the availableimiation is optimally used and
a unique estimator is selected from an infinite set of sahsti@ne of the classical approaches
consists of minimizing the variance of the residuals, whgthe variance of the discrepancy
between the estimator and the set of possible realizatiomsistent with the data (sé¥ybicki
& Press 1992. This conjecture is reasonable because the least deviation the set otrue
signals is searched. The estimator obtained in this wayliedcthe least squares quadratic
(LSQ) estimator. However, a transparent statement of #iésstal assumptions is missing
in this method, contrary to the Bayesian approach used $wibrk as will be shown below.
Moreover, Bayesian statistics allows sampling the PDF efdysstem under consideration in
a natural way. Strictly speaking, one does not look for a waigstimator in this framework.
Nevertheless, a summary of the PDF can be given by the meae shinple (see secti@b).

The most general approach to determine an estimator, howswveuld be based on the
global (joint) PDF over all relevant quantities, like thg@rsal s and all model parameteys,
without neglecting any possible dependences. Let us asthan@(s, p | d), the joint PDF of
the system under consideration, depends on the sigaatl a series of additional parameters
p, given the observationd. One solution would then be to calculate the expectatiorhef t
signal over the joint PDF space

Ejoint(s) = /ds dp {P(s,p | d) s} = <3>(s,p\d)7 (2.4)

where we have introduced the ensemble avel(aggep| d) with the subscript representing the

PDF over which the integral is don@(s,p | d) — (s,p | d)!. ExpressionZ.4) can con-
sequently be read as the ensemble average over all posgibédssand parameters. The joint
PDF is unfortunately quite hard to calculate directly, amel integral in eq.4.4) is computa-
tionally too expensive for realistic cases as it involvesinparameters and a large amount of
data. To disentangle the uncertainties in parameter andlsspaces, let us apply the product
rule of statisticé to eq. @.4)

Bns) = [aprold) | [as [Pls | pa) ]

~ Ep|Bs(s|p.d) | d| = (8) (s 1p.d) pidy (2.5)

1Sometimes, however, the ensemble angles will denote tivaatst of some signal or parameter in a more
general sense, like the maximum likelihood or the maximunosteriori (see sectiord.4 and2.5, respectively).
Note that a bracket formalism could be introduced at thisipon which eq. 2.4) would be represented in the
following way: (s|s|p, d).

P(s,p|d)=P(s|p,d)P(p| d)
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2.3 Bayesian approach

This means that the expectation of the signa&lorresponds to the average of the conditional
mean ofs over the marginal distribution gf (see for exampl&elmanet al., 2004, where the
conditional mean is given by

Eeona(s) = Es(s | p,d) = /ds P(s | p.d)s| = () s pa) (2.6)

Traditionally, the conditional PDF has been used to deteentine estimator of the signal as-
suming that all the parameters are known (&groubiet al,, 1995.

As the reconstruction step of the density field is computatiy expensive, a joint estima-
tion of the parameters is out of scope. Therefore, the retapproach of basing the estimators
on conditional PDFs provides a computationally more fdasiay to tackle problems of this
kind. In particular, we will demonstrate that an operatanfalism allows efficient sampling
of the conditional PDFs, enabling us to sample the joint PD& Bayesian framework.

2.3 Bayesian approach

Given a data model, one can usually find an expression foraimpling distribution, i.e. the
probability of obtaining the data given the signal and somiditeonal parameterp, P(d |

s,p). This is much less difficult than a direct calculation of thesterior P(s | d,p). We

need an expression which relates both the sampling and @terwy distribution given by
Bayes theorem. The derivation of Bayes theorem is straighisird from the joint PDF of the
signal and the data, using the product rule and the fact ltteajoint PDF is invariant under
permutations of its argumentsBayes theorem can be expressed by the following equation

d|s,p I)P(s|pI)
P(d|p,I) ’

P
P(S | d,p, I) = ( (27)
where P(s | p,I) represents the prior knowledge about the signal, as it rsaihel signal
before any observations occur. The PDF giverigd | p, I) stands for the so-called evidence
that is treated as the normalization of the posterior

Pd|p.1) = / ds P(d| s.p, 1)P(s | p,I). (2.8)

It is worth mentioning that all the probabilities are coiatial to the underlying physical pic-
ture, or prior informatiory. This has to be explicitly considered in case of model comspas.

In the following sections, we will present the steps for céetipg a Bayesian analysis, starting
with the likelihood, then discussing the importance of thierp and finishing with sampling
through the joint signal and parameter space. Note thadrdiit choices for these three com-
ponents (likelihood, prior, and sampling) lead to diffarelasses of reconstruction algorithms.

1

P(s,d,p,I) = P(s|d,p,[)P(d|p,I)=
P(d,s,p,I) = P(d|s,p,I)P(s|p,I)
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

An overview of the different reconstruction scheme implatagons based on this classifica-
tion can be found in table2(1).

2.4 The likelihood

The likelihood function is formally any function of the panatersd proportional to the sample
density
L(O]d)x P(d]|0). (2.9)

Many inference approaches are based on the likelihood iimgustified by the likelihood
principle, which states that the information obtained byoaservationd abouté is entirely
contained in the likelihood functiof (€ | d). To be specific, itl; andds are two observations
depending on the same parametesuch that there exists a constargatisfyingl, (6 | d;) =
cLo(0 | do) for everyd, d; andd, then bring the same information abauand must hence
lead to identical inferences.

Maximum likelihood (ML) methods, for example, rely on thkdiihood principle with an
estimator of the parameters given by

(0)ni1, = argsupg L£(0 | d), (2.10)

i.e., the value o that maximizes the probability density dt Bayesian methods take also
advantage of the likelihood principle incorporating theid®n-related requirement of the in-
ferential problem through the definition of a prior disttilom (see sectio2.5). The definition
of the likelihood is the first step in a Bayesian framework ¢ébetimine the posterior distribu-
tion (see eg2.7). In using galaxy redshift surveys to trace the matter ithstion, we have to
deal with the discrete nature of the data sample. Thus teéHdod may be derived here for
Poissonian statistics.

2.4.1 Poissonian likelihood

The likelihood of our galaxy distribution may be approxielgtrepresented by a Poissonian
distribution (the real statistics should describe the mmacine complex galaxy formation pro-
cess). Under the assumption of independent and identidetsibuted {id) observations, this
yields

[(Rs'); + ¢;](it+ed)
(d; + CZ)' ’

L(s|d,p) x P(d|s,p) = Hexp (— [(Rs")i + ci])
i=1

whered, are the galaxy counts per ceéland the real, positive signal of the expectation value
of the number of galaxies is given by = 75(1 + bs;), with s; = 0,; = pi? the DM
over-density, our target signal. The quantity stands for the mean number of galaxigs,
represents the mean density dnihe bias factor. All these quantities are redshift-depatde
The additional parametegs in this case would be represented by some backgreyrahd
would enter into the operatdR that modifies the signal.
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2.5 The prior

For a similar application in astronomy seahav & Gull (1989 and Robinson(1991).
If d; is not converted to an integer, a Gamma function may be ustdaid of the factorial,
(d +e))! = T(d, + ¢+ 1).

2.4.2 Gaussian likelihood

When the number of counts is large the Poisson distributorbe approximated by the normal
distribution. In that case, the likelihood can be given byaa€sian distributed noise

L(s|d,p) x P(d]|s,p) [(27r)md§t(N)]1/2 exp (—%GTN_16>
X exp [—%XQ(S)] , (2.11)

whereN = <eeT>(€‘p) is the covariance matrix of the noise= d — Rs, and
x(s) = (d — Rs)ITN~!(d — Rs). (2.12)

The parameterg determine the structure of the noisgand therefore the structure of the
covariance matrixV), and also enter into the operat®. We give different expressions for
the noise covariance matri¥ in section 8.3).

Note thaty? coincides with the square of the Mahalanobis disthnetweend and Rs,
and also coincides with the squar®d—!-norm of the error

X*(8) = Dijan(d, Rs) pp-1 = [[el[ -1 (2.13)

In this case, the ML will correspond to the least squaresegtinor. It will minimize thex?(s)
and hence minimize the Mahalanobis distance between theaddtthe noise-free data model.
Therefore, the ML is equivalent to searching the estimdtat fits the data better without
constraining the model for the signal. Let us study the pfiat precisely sets constraints on
the signals.

2.5 The prior

A second step in Bayesian analysis is to specify the pridrildigion for the signal, which con-
tains the prior knowledge about the signal before the measemts were carried out. For little
informative data it can strongly affect the posterior dgttion and thus modify any inference
based on it. For this reason, frequentists criticize Bayesiethods as being subjective. Other
definitions of probability, like the frequentist, howevean be shown in most of the situations
to be particular cases of the Bayesian approach (se@anger 1996, implying the use of an
implicit prior. The advantage of defining the prior knowledgpout the system under consider-
ation is that the interpretation of the results is straigtwird, especially because assumptions

"We introduce here a generalized definition of the Mahalanal$tance as:D?wah(m,y)M = (¢ —
y) M (x — y), with z andy being two vectors in théV-dimensional space all a N x N matrix.
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Classification of reconstruction methods
Non-informative priors

Informative priors (MAP)

Prior Flat (ML) Entropic (MEM ) Gaussian Poissonian
Likelihood
Gaussian WIENER (Tikhonov, Ridge)
—Radio Sutton & Wandel{2006*
-CMB COBE:Janssen & Gulki$1992 Maisingeret al. (1997 Bunn & Sugiyamg1995 Hobson & McLachlar(2003%
Tegmark (1997,1997b) Hobsonet al. (1998 Tegmark (1997,1997b)
ROMA: Natoli et al. (2001
MAPCUMBA: Doréet al. (2001
MAXIMA: Stomporet al. (2002
MAGIC#: Wandeltet al. (2004 MAGIC#: Wandeltet al. (2004
MIRAGE: Yvon & Mayet (2005 O’Dwyer et al. (2004 %
MADAM: Keihaneret al. (2005 Eriksenet al. (2007 %
Larsonet al. (2007#
-LSS Fisheret al. (1994
Hoffman (1994
Lahavet al. (1994, Lahav(1999
Zaroubiet al. (1995
Fisheret al. (1995
Websteret al. (1997
Zaroubiet al. (1999
Schmoldtet al. (1999
Erdogduet al. (2004,2006)
ARGO: MEMG* ARGO: WIENER"*#
(section2.5.9 appendixA.10) (section2.5.3 2.6, 4, appendixA.2)
Poissonian Richardsorn(1972 ARGO: MEMP* ARGO: GAPMAP*
Lucy (19749 (section2.5.9 appendixA.10) (section2.5.4 appendixA.5)

Inverse Gamma
-CMB

-LSS

MAGIC#: Wandeltet al. (2004
O’Dwyer et al. (20047
Larsonet al. (2007#
Eriksenet al. (2007 %
ARGO*#
(section5.3.2

Modified Gaussian
-CMB
-LSS

Pierpaoli & Anthoine(2005%
Percival(2005%

*developed and presented in this the&lsteveloped, tested and presented in this th&s]e to sample PDFs
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2.5 The prior

Table 2.1:In the previous page the classification of reconstructiothous in astrophysics based on
the prior (columns) and likelihood (rows) is shown. Notettmast of the reconstruction algorithms in
otherresearch areas, such as tomography, where Tikh@gaNarization is widely used, or the algebraic
reconstruction technique (ART), which is based on the asgtitpregularization, fall into the class of
Wiener-filtering schemes as we show in sectigrb(l) and appendiB.2. The differences in the ML
CMB-map-making algorithms reside mainly in the modelingref complex noise structure that arises
due to the scanning strategies of the satellites and in theusforeground removal methods. The LSS
Wiener-filtering methods on the other hand present impr@remin the redshift distortions treatment,
or are based on the different input data, either galaxytiposior peculiar velocities. The discrete object
detection Hobson & McLachlan2003 algorithm was developed to find Sunyaev-Zeldovich clsster
This is also the case for the modified Gaussian by Pierpaali. 2005). The reconstruction of the
power-spectrum is also listed here. In CMB the joint map aodey-spectrum estimation is done by
MAGIC. Percival(2009 samples the power-spectrum with a modified Gaussian tikeli given by

a log-normal mean. We propose to follow the steps done in CMd@ sample the density field and
the power-spectrum jointly (see sectibr8.2. This thesis covers three new areas in LSS (GAPMAP,
MEMG, MEMP) and presents four novel algorithms with whichaastructions can be done very fast.
We have left out the reconstruction methods that are focosetihe cosmological initial conditions,
since they address a different problem and, in general,atdenclassified in terms of the PDFs listed
in this table. Neither can other reconstruction algoritirased on geometrical arguments, like Voronoi,
Delaunay tessellation&jends-of-friendschemes ocloud-in-cellinterpolation schemes, be classified
here.

flowing into the inference procedure are clearly stated.eQhe prior is defined, we can obtain
the maximum a posteriori (MAP) estimator, by maximizing gussterior distribution, which is
proportional to the likelihood multiplied by the prior,

(@)map = argsupg P(6 | d). (2.14)
Note that there is a crucial difference to the maximum likatid estimator (ecR.10 due to
the incorporation of the prior information.
2.5.1 Bayes and regularization methods: the prior as a regarizer

Looking at thdlog-probabilities, we see that the MAP estimator maximizegahewing quan-
tity using Bayes theorenidg P(0 | d) « log(P(d | 8)P(8)))

Q = log P(d | 6) +log P(8). (2.15)

If we assume that the error is Gaussian distributed, (whsch fair assumption if there is no
prior information about the noise), and we parameterizepti@r of the parameter, say the
signals, we can rewrite eq2(15 as Q — Q)

Q= —x*(s) + afy(s), (2.16)

where we absorbed the factdin the Lagrangian multipliet, and f,, represents the penalty
function that obliges the estimator to fulfill some consttain the parametey, to the detriment
of the x?(s) that strongly relies on the data. If we further assume Mat' = I (say we have

33



2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

white noise), the Mahalanobis distance reduces to the d&auii distance
(Ditan(d; Rs)| -1 = Df,.(d, Rs)), and the quantity one wants to minimize reads

llel|> + afy(s), (2.17)

where we have absorbed the minus sigavirExpressionZ.17) is equivalent to least squares
with a regularization term, and belongs to Ridge-regrespimblems Koerl, 1962 Hoerl &
Kennard 1970. Assuming that the penalty function takes the followingniof,,(s) = ||s||?,
we can write expressior2(17) as

el + alls|f?, (2.18)

which then becomes the Tikhonov regularization methGi&hpnov, 1963. The parameter

« is called the regularization parameter. These methodstteéidear filters and are essen-
tially identical to Wiener-filtering Foster 1961), which will be presented in the next section.
Note that Tikhonov regularization is equivalent to MAP of auSsian likelihood with noise
covariance matri¥N = I and Gaussian prior, with signal covariance maffix= a~'I. Nev-
ertheless, the penalty functiofy in general can be a non-linear function of the parameter to
be estimated (say the signg) leading to non-linear estimators. We will introduce MEM as
such an example. Tikhonov regularization can also be gkrexao non-linear problems by
introducing a non-linear kernel operatBYs).

Summarizing the exposed theory of signal reconstructi@might interpret the likelihood
as some distance measure between the data and the noiseefilekof the data, and the prior
as some constraint that tightens the estimator to the mddeleosignal. We have shown
here that the classical methods of signal reconstructike,the Tikhonov regularization, are
particular cases of the Bayesian approach. The inclusiarpabr can be regarded asatural
regularization, in the sense that the regularization terpravided by a (physical) model of the
true signal. In appendiB.2, we discuss the relation between other regularization oustiand
the Bayesian approach. In the following sections we intcediifferent priors that are relevant
for large-scale structure reconstruction and are impléetkeim ARGO.

2.5.2 Gaussian prior

The distribution of the primordial density field should beywelose to Gaussianity according
to most of the inflationary scenario8lbrecht & Steinhardt1982 Guth 1981 Linde, 1982.

In fact, the measurements of the CMB show very small deviatioom Gaussianity (see e.g.
Komatsuet al, 2003. Non-Gaussianities in the matter distribution arose igaiom non-
linear gravitational collapse. The non-linear regime oficiure formation is responsible for
the strong radial redshift-distortions, tfiager-of-godeffect, limiting the accuracy of recon-
structions. Previous attempts to correct for these disttsthave modified the power-spectrum
by introducing a Lorentzian factor (see eRallinger et al, 1996 Erdogduet al, 2004. In
section R.6) we propose an alternative way to do this in a Bayesian frasriewvhere peculiar
velocities are sampled together with the three dimensioregd of the matter distribution. For
the underlying DM density fluctuation we will assume a Gaarsgirior. This is a crude approx-
imation for the density field at the present epoch of the Usegeespecially on small-scales. It
is, however, a valid description on large-scales and altoviiscorporate non-linear corrections
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2.5 The prior

in a MCMC fashion, as will be discussed in secti@ig. Following Bardeeret al. (1986 we
may thus write the PDF of the signal as a multivariate Gangdistribution

e 19) = e (3457). 219

with S being the covariance matrix of the signdl € S(p) = <ssT>(3‘p)). This formula
emphasizes the high dimensional character of the probledin{ansions of the signal recon-
struction, with n being typically betweer)? and10).

2.5.3 Gaussian prior and Gaussian likelihood: the Wiener-fier

The Gaussian prior together with the Gaussian likelihoad ke the Wiener-filter, completing
the square for the signal in the exponent of the posteridriloigion (seeZaroubiet al. (1995
and appendiA.1),

P(s|d,p) o« exp <—% [STS_IS +(d— Rs)IN~Y(d - Rs)})

X exp (-% [(s —(shwr) (owr?) "H(s — <s>WF)D . (2.20)

where the Wiener-filter used to calculate the estimator floendatals)wr = F'wrd is given
by
Fyr=(S'+R N 'R RN (2.21)
and the corresponding covariance is
otve = (rrl)wr = (ST + RINT'R) ™, (2.22)

with » = s — (s)wr being the residual. The Wiener-filter can also be obtaineth@ad. SQ
estimator! (for an explicit derivation seZaroubiet al, 1995 and appendix.2) leading to
the following expression

<3>WF = <3>LSQ = <SdT><ddT>_1d, (223)

where the correlation matrix of the signal and the da&db) is multiplied by the inverse
of the autocorrelation matrix of the datadg’)~'). Given that the signal and the noise are
uncorrelated (se’) = 0), the correlation matrix of the signal and the data reduseésd’) =
SR'. Thus, eq.2.23 can be reformulated as

Fwr = SR'(RSR' + N)~L. (2.24)

We show in appendixA.3) that both expressions for the Wiener-filter (eg21and2.24 are
equivalent. From now on, we will call eq2.24) the direct representation of the Wiener-filter,
and eq. 2.2]) the inverse representation of the Wiener-filter.

INote that in this case, the least squares are referred tesiuals, i.e. the difference between the real signal
s and the estimated signé)rsq: ||7]|* = ||s — (s)Lsql|?, where the prior o is given in a more implicit way
by assuming a linear relation between the estimator anddatseahd statistical homogeneity.

35



2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

The following notation can be introduced for the posteribHP
P(s | d,p) x G(s — (s)wr, oiyp), (2.25)

i.e. given a datasef derived from a Gaussian process, the possible signals argstaa dis-
tributed around the Wiener-filter reconstructignwr with a covariancer%w. The parameters
p enter the operataR, including also the cosmological parameters that detezrthie signal
covariance matrixs. We will discuss in section2(6) how to sampleS and to determine cos-
mological parameters.

A remarkable characteristic of the Wiener-filter is thatupgresses the signal in the pres-
ence of a high noise level resulting in the null estimator ginds just the deblurred data when
noise is negligible. In this sense it is a biased estimatocesits covariance matrix has less
power than the original one. Some attempts have been madgite @n equivalent unbiased
estimator (se&aroubj 20020). However, one might be especially interested in obtairang
conservative estimator. Sampling the joint PDF will fill tméssing modes (see e §/andelt
etal, 2009 and in this way complete the signal in regions where it isssrgampled or the sig-
nal to noise ratio is low. It is interesting to note that theeWér Filter coincides with the MAP
estimator in the case of a Gaussian priorsoand a Gaussian likelihood{)wr = (s)map)-
Performing the integral of the conditional PDF (see 2&) one obtains the same estimator
again, thugs)wr = <3>(s|d,p)- This is a very important result, since it permits one to s@mp
the conditional PDF. We propose to exploit this propertytfa joint estimation of the signal
and its power-spectrum as is done in the CMB (@fmdeltet al. (2004 and sectiorb.3.9.

2.5.4 Gaussian prior and Poissonian likelihood: the GAPMARestimator

The Gaussian likelihood constitutes a valid approximatuben the Poissonian character of the
distribution is appropriately modeled in the noise cotietamatrix IN. However, one would
rather describe a discrete sampling process like a galaxgypwith a Poissonian likelihood.
Unfortunately, there is no filter available for such a casbusl we present a novel iterative
equation for the MAP estimator with a Gaussian prior and a$wiian likelihood, which we
call GAPMAP (see appendi&.5 for a derivation)

. R N . -1
s’ = SRbmg <—1 + diag (Rn_g(l +bs?) + c) (d + c)> . (2.26)

2.5.5 Flat prior

With the aim of deriving objective posterior distributionson-informative prior distributions
are introduced. A non-informative prior would suggest thay value is reasonable. Flat
priors where the probability distribution is assumed to bastantP(s) = const are thus
very often applied. Note, however, that these are impropersy since the integral of these
distributions diverges to infinity. In this case, the posters proportional to the likelihood.
The maximum likelihood solution coincides in this way witietMAP estimator assuming a

flat prior ((s)avr = (8)MAP|fat)-
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2.5 The prior

2.5.6 Flat prior and Gaussian likelihood: the COBE-filter

In CMB map-making algorithms it is common to use the so-callOBE-filter (seelanssen
& Gulkis, 1992 Tegmark 1997, which can easily be derived by maximizing the likelihood
givenineq. 2.1])

Fcope = (RIN7'R)'RTNL. (2.27)

This filter has the property that among all unbiased lineéimegors (with a noise of zero
mean), it leads to the minimum variandgatoli et al, 2001). Here unbiased means that the
statistical mean of the estimator is equal tottiue signal. This is, however, only fulfilled when
the inverse ofR' N ! R exists (see appendiX.7). The covariance for the COBE-filter can
found to be

oiopr = (rrM)cope = (RINT'R) L. (2.28)

Note that, in general, the following relation holds?;. < oZ,pg, as a comparison to
eg. .22 shows.

Tegmark(1997 claims that several linear filters like the COBE or the Wiefileer con-
serve information by comparing the Fisher information imatorresponding to the filtered
signal to the one of the un-filtered time ordered data. Thigp@rty apparently permits one
to perform cosmological parameter estimation from themstacted signal after filtering the
data. However, linear filters conserve information onhh#y are invertible, which is not pro-
vided for realistic cases as we show in apperli@. A consistent estimation of cosmological
parameters has to be done in a full Bayesian framework bynastig the joint PDF of the
signal and the parameters, as we will see in sec06) (Wandeltet al., 2004).

2.5.7 Flat prior and Poissonian likelihood: the RichardsonLucy algorithm

A widely used deblurring algorithm in astronomy and medtoahography is the Richardson-
Lucy algorithm Cucy, 1974 Richardson1972, which was shown to be the maximum likeli-
hood solution with a Poissonian likelihood Bhepp & Vardi(1982. We show the derivation
in appendixA.6, as a simplified case with respect to €2.20. The Richardson-Lucy algo-
rithm cannot prevent serious noise amplifications in theoraton process (see e Qarassp
1999. This is a natural consequence when a prior that regukattze solution is missing. A
toy application is presented in figd.p).

2.5.8 Jeffrey’s prior

Other non-informative priors have been suggested basewariant statistical structures under
transformation of variables in a Bayesian formalism. Co@sng a one-to-one transformation
in the one-dimensional case of the parameter: f(#), the equivalence between the respective
prior densities is expressed by

a9\ _
do| ~

1

P($) =P<9>' PO) |70)[ (2.29)
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

This relation is satisfied by Jeffrey’s priét(d) o [.J(8)]'/2, where.J(6) is the Fisher informa-

tion!
dlog P(d|0)\? 9% log P(d|6
J(0) = <<%) )(dl) = %%)(w)’ (2.30)
and where we have assumed the following regularity corrdy“lddg—;P(d | §) = 0. Relation
2
(2.29 can be proved easily by doing the evaluatiff@) = —<%+¢{W>(d|9) =J(0) ‘g—g‘

(see e.gGelmanet al,, 2004. Note, however, that in the multidimensional case, Jgrgrior
may lead to incoherences or even paradoxes (seBexger & Bernardp1992 Robert 2001).
Jeffrey’s prior is applied adequately, when not even thewoofl magnitude of the parameter to
be estimated is known a priori. We derive Jeffrey’s ignoeapaor for the 3-D power-spectrum
(S = diag(Ps(k)))* in appendixA.9 (see sectio.3.2for an application of this prior).

2.5.9 Entropic prior and Maximum Entropy method

Another approach searches the least informative model abiig with the data using a prior
based on Boltzmann’s definition of entroBy 2 (or equivalently, Shannon’s notion of infor-
mation, seeShannon1948,

P(s | p) = exp(asS™), (2.31)

and maximizing the resulting posterior distribution, lgeinsome constant, angithe so-called
hidden image (or signal). This inference procedure is dale Maximum Entropy method
(MEM) (Frieden 1972 Gull, 1989 Gull & Daniell, 1978 Hobsonet al., 1998 Jaynes1963
1968 Maisingeret al., 1997 Skilling, 1989. For a review sedlarayan & Nityanand§1986.
From now on we will represent the underlying signal &yn the framework of MEM. The
MEM can be considered as MAP estimation with an entropicrprio

The particular expression for the entropy depends on thistatal formulation of the non-
informative prior. Let us think of a positive signal as a gwith ¢ cells, with each celk
having a certain intensity valug, i = 1,...,q, with an uncertainty on each value given by
+a~1. Then we define some discreteantan; on each cell related to the intensity through
the uncertaintyn; = as;. The signal can be guessed by distributingrthguantasin the grid.
In this way, the image is modeled in this way analogously &ethergy configuration space of
a thermo-dynamical system. If we further demand each céléia, the number of ways this
object can occur is given by the multiplicity

Ng!
wWw=—"2 (2.32)
nilna! ... ng!

'The generalization to the multidimensional case leads ® fillowing matrix form: J;;(0) =

dlog P(d|0) 810g P(d]0) :
( 0. 20, ><d\0) (see appendiA.8).

"Here the autocorrelation matri& is represented in k-space. We will discuss this in furtheaitln section
(3.3.

%Not to be confused by the signal autocorrelatin
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with IV, being the total amount ajuantasto be distributed in all cellsN, = >, n;). The
probability of any particular result is then given by the tmdmial distribution

P(s' | p) = Wq . (2.33)

Sutton & Wandel{2006 propose to sample from the multiplicity function directtyperform
reconstructions in radioastronomy. By using Stirling’snfala for the factorialsi{! ~ n™e™")
we can write
log P(s' | p) = —« Z s; log s; + const. (2.34)

Comparing this expression with e@.81), we recover Shannon’s definition of entrog/{ =
>, silog st)3. The expression that is commonly used for the entropy is @rgéimation of
Shannon’s formula by Skilling that can be derived based onlgonsistency arguments within
probabilistic information theory for positive and addéidistributions (PADs)Skilling, 1989.

This generalization implies the definition of a Lebesgue snea (n) for the integral of
some function of the hidden image to represent the entropy

SE(s' | p) =Y [s; — m; — s} log (s} /m;) ] (2.35)

i

here in its discretized form. Skilling’s expression for #@ropy can also be derived by con-
sidering ateam of monkeythrowing balls ay cells at random with Poissonian expectatign
P(nlp) =1, e i /n;!, wheren; = as; and . = am; (Skilling, 1989. For a review on
further expressions for the entropy ddelina et al. (2001).

The global maximum of5® over s in the absence of further constraints is found to be
s’ = m. Consequentlym can also be thought of as a prior model for the image. However,
this expression for the entropy will allow reconstructingsjive signals only.Zaroubiet al.
(1995 propose to defing’ = p andm = p,, to avoid the possibility of having a negative
distribution fors.

According toGull & Skilling (1990 the MEM can be extended to reconstruct distributions,
which can be either positive or negative, as in the case digefuctuations. Such distribu-
tions can be described as the difference between two sabgigositive distributions (PADS)

s=u—wv, (2.36)

relative to a common modeh 1

2

SE(u,v | p) =Y |ui = 2mi — uslog(ui /mi)| + 3 [v: = 2mi = vilog(vi/my)|. (2.37)

One can see from e @6 thatd Sk /ou = —aSE /ov, hence yielding

uv = m?. (2.38)

3The “+” symbol inS¥ denotes that the definition is only valid for positive signsl
The “+” symbol in ST denotes that the definition is valid for positive and negasignalss.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

From the relations given by eq®2.86 and @.38), it is easy to derive

w— %('w +s), (2.39)
1
v = §(w —8), (2.40)

with w; = (s + 4m?)/2. Using these expressions, the total entropy can be rewitte

SE(s|p) = Z {wi —2m; — s;log ((wl + SZ)/le)] (2.42)

7

The Maximum Entropy method gives a non-linear estimatohefunderlying signal that one
wants to reconstruct. This method is especially interggtirstudy deviations from Gaussianity
(Hobsoret al, 1998 Maisingeret al,, 1997. Itis equivalent to maximizg? with a Lagrangian
multiplier, which includes a penalty function given by th&repy. Maximum Entropy in this
context searches the hidden image that adds the leastosddlithformation to the data.

The quantity we need to maximize is given by

Q"(s | p) = aS"(s | p) +logL(s | d.p). (2.42)
where thdog L is given by eq.2.12) or eq. A.29). The equation we want to solve is
VQ¥(s | p) =0. (2.43)

In section 8.2), different iterative algorithms to solve this non-linganoblem will be dis-
cussed. The required expressions for the gradie@'ofand its curvature for positive and
positive/negative expressions of the entropy (&335and2.4]) and for both Gaussian and
Poissonian likelihoods are presented in appeAdiO.

Note that in the limit of low density fluctuations, i.e. in theear regime, the expression
of the entropy reduces to the quadratic entropy (eventwally an offset of the origin o),
SE(s | p) =~ -, s2/2m;. This expression is very similar to a Gaussian prior for iigea
with a variance given byn. In that case Maximum Entropy leads to the Wiener-filter.

2.6 Markov Chain Monte Carlo: sampling the joint PDF

The drawback of the maximization methods hitherto mentone that they find a unique
estimator that is most probably subject to the chosen vdbrethe required parameters. As
already mentioned, the complete characterization of &syst contained in the joint PDF in
the product space of possible signals and parameters. Thwsuld be desirable to sample
from this PDF to find the region of highest confidence for otinestor. This is possible using
Markov Chain Monte Carlo (MCMC). The importance of samplfrgm the joint PDF and the
viability of doing that with MCMCs has already been discukseother contexts in astronomy
(Hobson & McLachlan2003 Jewellet al., 2004 Wandeltet al, 2004. With the MCMC
method, the whole system can be moved in its configurationesps updating all variables
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2.6 Markov Chain Monte Carlo: sampling the joint PDF

successively in a Monte Carlo fashion, until the systemxesdapurns-in and reaches the
highest density region.

The expectation of théth parameterd;) can be calculated by the so-called ergodic aver-
age, which is given by the mean of the sample

Ny—1

1
0:)0d) = o > o6, (2.44)
t=0

with IV}, being the size of the sample drawn once the Markov Chairbtiased-in In general,
the mean estimator is more reliable than the maximum of tseilolition, especially in cases
with deviations from Gaussianity (see eGelmanet al., 2004. The MCMC method permits
one to approximately solve the integral in eg.4j through expressior2(44).

2.6.1 Gibbs sampling

The most straightforward MCMC method is the Gibbs samp&enjan & Gemanl1984,
also known as théeatbathalgorithm. The Gibbs algorithm samples from the joint PDF by
repeatedly replacing each component with a value drawn ftemistribution conditional on
the current values of all other components. This procesdeaeen as a Markov Chain with
transition probabilitiesr, for k =1, ..., n,

m(0,0') = P(0; | {0; : i # k}) - [ ox(6:,05), (2.45)
i#k
where{6; : i #k} = (01, ...,0_1,0k+1, ..., 0,) (See e.gNeal 1993 andox is the Kroenecker
delta-function. The Gibbs sampler starts with some initibies©) = (9§0), ...,9&0)) and

obtains new update8® = (01, ... 0%} from the previous ste@" 1) through successive

generation of values

of) ~ PO {0 i 1))
05 ~ P07 (07" i > 2p)

09 ~ P(6,] {0 i #n}) (2.46)

In this way a random walk on the vect@ris performed by making subsequent steps in low-
dimensional subspaces, which span the full product spabées i§ similar to individual col-
lisions of particles in a mechanical system that drives ayatsdy system to an equilibrium
distribution for all degrees of freedom. We are especiaitgriested in this sampling method
because of its efficiency that permits us to tackle large dsiomal problems in contrast to
other algorithms, which include acceptance and rejectibesr SeaVandeltet al. (2004 for
applications in CMB-mapping and power-spectrum estinmatidowever, in the case where the
particular distribution function is unknown or cannot belisitely expressed rejection sam-
pling methods will be necessary (see secttn8.]), like the Metropolis-Hastings algorithm
(Hastings 1970 Metropoliset al, 1953.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

The MCMC method can be applied to perform simultaneouslyréoenstruction of the
density field and the estimation of other parameters, sutheagower-spectrum, the peculiar
velocities, the bias, or the comological parameters (seé fliy We present in chapteb) two
novel applications of this method to power-spectrum edtonaand redshift-distortion correc-
tions, which can also be used in a joint algorithm. Note, thaigher degree of complexity
can be achieved in the schemes we present in chagtey (Qoing beyond linear perturbation
theory or considering higher moments of the density field.
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Chapter

Numerical method

El modo de dar una vez en el clavo es dar cien veces en la heaadu
Miguel de Unamuno

I n order to efficiently sample the joint PDF, as it is requinedMCMC methods (see section
2.6), fast inverse algorithms need to be considered to regeldhie solution. General itera-
tive inverse methods scale @¢n?) since they imply matrix multiplications ofa x n matrix

in an iterative fashion (at most-steps until convergence). This makes the study of the joint
PDFs as presented in sectiah ), at a first glance, un-feasible. However, a proper formu-
lation of the problem in an operator formalism allows tnegtthe matrices as operators that
have to be neither calculated nor stored. Within this opefarmalism, the inversion methods
we present here sped up to a scalingdg¢h log, n). We start with a general formulation of
iterative methods and subsequently present the diffexd@nses that we have implemented
in ARGO. Since a preconditioning treatment can dramatically eoédhe performance of it-
erative schemes (see our numerical experiments in sefjome pay special attention to this
point in the derivation of the different schemes.

3.1 lterative inverse and regularization methods: a unifiedormu-
lation of different linear methods

Let us consider a regiof in the n-dimensional Euclidean spadg, and denotel»(D) the
Hilbert space of all complex measurable square integraipletions [, d"z|g|*(z) < oo with
inner product

lgls) = [ zglEs(e). (3.1)
and norm ofg € Ly(D)
llgl| = (glg)*/>. (3.2)

Here a Dirac type notation is introduced. It should not befused with the ensemble average notation, which
does not have a balk in-between.
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3. NUMERICAL METHOD

Let ¥ be a subspace of the Hilbert spatg D) with the conditions that every elemegpite ¥
must satisfy being smoothness, limit behavior at the bogynfla etc. Let us now consider the
linear operatorA, defined on the linear manifoldt, and suppose thad is a positive definite,
i.e. (A|vp) > 01 forallp € W. The kind of inverse problem we are interested in belongs to
the stationary problems of the form

Ay = f, (3.3)
since, for example, for the COBE-filter we have to invdrts) .opp = RN ~'d, with
Y = (8)copm A = RIN"'Randf = R'N~'d, and for the Wiener-filtering we have
¥ = (SR "Ys)yp, A = (RTSR+ N) and f = d. Eq. @.3 has the same structure as
eg. @.2), but without a noise term. Hence, a regularization metsabain required.

3.1.1 Minimization of the quadratic form
