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Der Ursprung und die Evolution des Kosmos haben sich der Struktur der groß-skaligen
Materieverteilung im Universums aufgeprägt, welche wir mittels unseren astronomischen Him-
melsdurchmusterungen in der Galaxienverteilung wahrnehmen können. In den letzten Jahren
haben sich Galaxienssurveys mit Rotverschiebungsbestimmung zu einem exzellenten Zugang
zu der kosmischen Materiestruktur entwickelt. Diese Surveys sind komplementär zu anderen
Informationsquellen wie dem kosmischen Mikrowellenhintergrund, da sie Einblick in andere
Epochen der kosmischen Geschichte gewähren. Sie zeigen die Epochen nach der Reionisation
des Universums, in der erstmals leuchtkräftige Objekte auftauchten, etwa ab einem Zeitpunkt
vor zwölf Milliarden Jahren bis heute. Da das Universum etwa dreizehn Milliarden Jahre alt
ist, erlauben Galaxiensurveys prinzipiell immense kosmische Zeiträume zu überblicken, auch
wenn die Teleskopsensitivitäten oft nicht ausreichen dieentferntesten Lichtquellen des Univer-
sums tatsächlich auch zu detektieren. Daher sind Galaxiensurveys extrem interessant für Stu-
dien der kosmischen Entwicklung. Die Observablen, wie Galaxienpositionen, -eigenschaften
und -rotverschiebung, liefern nur eine unvollständige Repräsentation der Strukturen im Uni-
versum, nicht nur aufgrund der Messunsicherheiten und Beschränkungen, sondern auch wegen
systematischen Unsicherheiten, wie dem so genanntenGalaxienbias. Die Galaxien zeichnen
das zugrunde liegende kontinuierliche Materiefeld nur partiell nach aufgrund ihrer diskreten
Verteilung im Kosmos. Weiterhin haben Galaxienkataloge viele Komplikationen, teilweise
physikalisch begründet wie bereits erwähnt, teilweise aber aufgrund der Natur der Beobach-
tungen. Das Problem das zugrunde liegende Materiefeld zu rekonstruieren um damit kosmol-
ogische Studien zu betreiben bedarf daher eines statistischen Zugangs.

Diese Promotionsschrift beschreibt ein kosmisches Karthographieprojekt. Die notwendi-
gen wahrscheilichkeitstheoretischen Konzepte, der mathematische Rahmen, und die nume-
rischen Algorithmen werden ausgiebig untersucht. Auf dieser Basis wird ein Bayesian software-
tool entwickelt. Der resultierende ARGO-code erlaubt die charakteristischen Merkmale der
groß-skaligen Strukturen mit noch nie dagewesener Präzision und Flexibilität zu bestimmen.
Dies erreicht man durch die gemeinsame Bestimmung der groß-skaligen Dichte zusammen mit
einer Anzahl an Parameter, wie dem kosmischen Fluß, den kleinskaligen Eigenbewegungen
der Galaxien und dem Leistungsspektrum, anhand der Information, die von den gemessenen
Galaxienverteilungen stammt. Der ARGO-code kann dabei viele Beobachtungsproblemen be-
handeln, wie die Masken des Surveys, die Galaxien Selektionsverfahren, Verwischungseffekte
und Rauschen, dank einem Operator basierten Formalismus, daß für diese Zwecke ausgear-
beitet wurde. Dank der erreichten Effizienz, kann ARGO die Anwendung iterativer Markov
Chain Monte Carlo basierten Sampling-Verfahren angehen. Dies wird letzlich eine volle Be-
schreibung der Materieverteilung erlauben mit all ihren relevanten Parametern, wie Geschwin-
digkeiten, Leistungsspektren,Galaxienbias, usw., inklusiv deren Unsicherheiten. Einige An-
wendungen in denen solche Techniken verwendet werden, sindhier demonstriert. Ein Sam-
pling Algorithmus wird erfolgreich angewendet für die Korrektur der Rotverschiebungseffekte,
die besonders stark im nicht-linearen Bereich der Strukturentstehung auftauchen und den so-
genanntenGottesfingererzeugen. Letzlich wird auch ein Gibbs-Sampling Algorithmus gezeigt
für die Bestimmung des Leistungsspektrums und einige vorläufige Ergebnisse werden präsen-
tiert in denen die richtige Form und Amplitude des Leistungsspektrums ausschließlich aus den
Daten rekonstruiert wird.





The cosmic origin and evolution is encoded in the large-scale matter distribution observed
in astronomical surveys. Galaxy redshift surveys have become in the recent years one of the
best probes for cosmic large-scale structures. They are complementary to other information
sources like the cosmic microwave background, since they trace a different epoch of the Uni-
verse, the time after reionization at which the Universe became transparent, covering about the
last twelve billion years. Regarding that the Universe is about thirteen billion years old, galaxy
surveys cover a huge range of time, even if the sensitivity limitations of the detectors do not
permit to reach the furthermost sources in the transparent Universe. This makes galaxy surveys
extremely interesting for cosmological evolution studies. The observables, galaxy position in
the sky, galaxy magnitude and redshift, however, give an incomplete representation of the real
structures in the Universe, not only due to the limitations and uncertainties in the measure-
ments, but also due to their biased nature. They trace the underlying continuous dark matter
field only partially being a discrete sample of the luminous baryonic distribution. In addition,
galaxy catalogues are plagued by many complications. Some have a physical foundation, as
mentioned before, others are due to the observation process. The problem of reconstructing the
underlying density field, which permits to make cosmological studies, thus requires a statistical
approach.

This thesis describes a cosmic cartography project. The necessary concepts, mathematical
frame-work, and numerical algorithms are thoroughly analyzed. On that basis a Bayesian soft-
ware tool is implemented. The resulting ARGO-code allows to investigate the characteristics
of the large-scale cosmological structure with unprecedented accuracy and flexibility. This is
achieved by jointly estimating the large-scale density along with a variety of other parameters
—such as the cosmic flow, the small-scale peculiar velocity field, and the power-spectrum—
from the information provided by galaxy redshift surveys. Furthermore, ARGO is capable of
dealing with many observational issues like mask-effects,galaxy selection criteria, blurring and
noise in a very efficient implementation of an operator basedformalism which was carefully
derived for this purpose. Thanks to the achieved high efficiency of ARGO the application of
iterative sampling algorithms based on Markov Chain Monte Carlo is now possible. This will
ultimately lead to a full description of the matter distribution with all its relevant parameters
like velocities, power spectra, galaxy bias, etc., including the associated uncertainties. Some
applications are shown, in which such techniques are used. Arejection sampling scheme is
successfully applied to correct for the observational redshift-distortions effect which is espe-
cially severe in regimes of non-linear structure formation, causing the so-calledfinger-of-god
effect. Also a Gibbs-sampling algorithm for power-spectrum determination is presented and
some preliminary results are shown in which the correct level and shape of the power-spectrum
is recovered solely from the data.

We present in an additional appendix the gravitational collapse and subsequent neutrino-
driven explosion of the low-mass end of stars that undergo core-collapse Supernovae. We
obtain results which are for the first time compatible with the Crab Nebula.

The Bayesian frame-work and numerical development presented in this thesis are partially
included in a submitted publication (Kitaura & Enßlin, 2007). The applications on synthetic
galaxy catalogues are new (see chapter5). All the numerical calculations and figures presented
in this thesis have been done by the author.
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Chapter1
Introduction

天地に

気結びなして

中に立ち

心構えは

山彦の道

Ametsuchi ni Being between sky and earth
kimusubi nashite unifying with them

naka ni tachi in the calmness
kokoro gamae wa the state of my heart feels like

yamabiko no michi following the path of the resounding mountain echo

Morihei Ueshiba

A ccording to our current picture of cosmogenesis, the galaxies, galaxy clusters, galaxy
filaments, and giant voids forming the cosmic large-scale structure (LSS) are products of

gravitational instability, which pulls increasingly morematter onto the tiny primordial seed
density fluctuations generated at the very first epoch of inflation. The shape and size of the
cosmic matter distribution reflects the initial conditionsset during or shortly after Big Bang, as
well as the interplay of the gravitational self-attractionof matter and the diluting action of the
Hubble expansion of cosmic space. Valuable information about the properties and the origin
of the cosmic inventory are encoded in the LSS, however, on small-scales, that information is
being erased through dynamical non-linear processes.

Our goal is to extract as much of this information as possiblefrom astronomical measure-
ments, which introduce uncertainties and, consequently, degeneracies. Therefore, we have to
adapt an information-theoretical approach to solve the reconstruction problem of cosmogra-
phy. The Bayesian framework turns out to be the most general approach as we will discuss
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1. INTRODUCTION

later. In this thesis we present the novel ARGO1-software package, which reconstructs the
three-dimensional density field from the information provided by galaxy surveys with differ-
ent Bayesian and inverse methods. Here we focus our study on understanding the Bayesian
theoretical background and the required algorithmic aspects. Further extensions of the code in
which the power-spectrum and the peculiar velocities can bejointly sampled are presented and
tested on mock galaxy catalogues. Some of the preliminary results are presented and future
development is outlined.

The large number of telescopes performing galaxy surveys with increasing depth, sky cov-
erage, and accuracy in position and distance (or redshift) determination provide us with superb
data on the cosmic matter distribution at an exponentially increasing rate. One problem is
that the discrete objects these instruments reveal to us, the galaxies, are the result of a com-
plex non-linear evolution of cosmic matter combined with complicated astrophysical processes
such as star formation. A translation of the galaxy data intothe much better understood large-
scale dark matter (DM) distribution, which would be much easier to analyze for imprints of
cosmologically interesting effects, is far from trivial. The discrete nature of galaxies intro-
duces certain noise, usually modeled by shot noise. Moreover, the partially understood galaxy-
formation process inserts systematic uncertainties. In addition, the limited volume of surveys
adds complications beyond the problems of galaxy-distancedetermination being contaminated
by observational and velocity redshift-distortions. All these complications have to be dealt
with simultaneously and in a controlled fashion. Since it cannot be assumed that the correct
or optimal values for the various degrees of freedom of the problem (bias factors, redshift-
corrections, etc.) will be guessed a priory, repeated and iterative data analysis is mandatory in
order to achieve a high-fidelity and well-understood cosmicmap. For example, a correction of
redshift-distortions of the galaxies requires the gravitational potential generated by the matter
distribution to be reconstructed.

Repeated generation of cosmic matter maps increases the urge to face another challenge,
the scaling of the performance of the underlying map-generation algorithms with the data size.
Since the matter-density information displayed at a location on a map may depend on all input
data (galaxy positions), any algorithm optimized to information theory scales super-linear2.
With increasing survey sizes, increasing requirements forspatial resolution and volume cover-
age, and the need to frequently re-iterate the map-generation step, the algorithm has to scale
closely to linear with data size, otherwise its applicationis strongly limited. Former applica-
tions in cosmography suffered from such inconvenient performance-scaling, and an effort has
to be made to develop simultaneously high-performance and accurate methods.

The work presented in this thesis developes the general methodology of Bayesian recon-
struction of the cosmic matter distribution, based on the invaluable pioneering work of many
other scientists, which will be discussed below, and extends this work to a series of new appli-
cations. Existing and novel map making algorithms are summarized in terms of a classification
of their Bayesian likelihood and prior functions. The implementation, optimization, and com-
parison of various numerical schemes are addressed in detail. This provides a starting point

1Algorithm for theReconstruction ofGalaxy-tracedOver-densities
2A map of galaxy counts can be generated by an algorithm with linear scaling to data size however, it is not an

optimal representation of the underlying matter field.
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1.1 Classes of uncertainty

for a correct information-theory approach to cosmography.Many additional problems, not ad-
dressed in this thesis, such as the galaxy bias, will also have to be solved before accurate maps
of the dark matter distribution in our still mysterious Universe can be generated.

Such an undertaking would be highly rewarded in the short andlong run. An accurate map
of the cosmic matter distribution would be valuable for a manifold of direct scientific applica-
tions. These range from structure-formation analysis, to cosmological parameter estimation via
power-spectrum measurements, dark energy studies, galaxy-cluster identification and galaxy-
bias studies. Accurate cosmic maps would help to determine weak signals associated with the
large-scale structure such as the integrated Sachs-Wolf (ISW) effect, or the extended Sunyaev-
Zel’dovich (SZ) effect, the detection of which relies on theconstruction of optimal statistical
filters for these signals.

Finally, one could argue that mapping the distribution of matter in the Universe represents
a response to mankind’s curiosity in its aim to discoverterra incognitaand find an orientation
in space and time on cosmological scales and, therefore, should be a goal in itself.

In the remainder of this introduction we give the sources of uncertainties, we present an
overview of existent and new Bayesian reconstruction methods, subsequently we briefly de-
scribe the algorithmic development presented in this thesis, then we summarize non-Bayesian
methods and time-reversal reconstruction methods, and in the final part we give a more detailed
overview of the structure of this thesis.

1.1 Classes of uncertainty

Several classes of uncertainties related to the density-field reconstruction from galaxy surveys
demand a statistical approach. Some of the uncertainties are intrinsic to the nature of the under-
lying signal (the dark matter). Other uncertainties are intrinsic to the nature of the observable
(the galaxies). And finally there are uncertainties due to degeneracies which appear through
the observation and data mining process.

1. Intrinsic stochastic character: cosmic variance

In cosmology it is generally assumed that the structure of the Universe comes from some
infinitesimal quantum fluctuations which were frozen out andstretched by an inflation-
ary phase (seeAlbrecht & Steinhardt, 1982; Bardeenet al., 1983; Guth, 1981; Guth & Pi,
1982; Hawking, 1982; Linde, 1982; Starobinsky, 1982), and later amplified by gravita-
tional instability. According to this picture, the seed fluctuations would have an intrinsic
stochastic character and are mainly Gaussian distributed.However, the mechanisms that
stretch the quantum fluctuations may also introduce deviations from Gaussianity which
would then be imprinted in the seed fluctuations. In general all the moments of the
initial fluctuations have to be considered〈δn

DM〉. Nevertheless, most of the inflation-
ary scenarios predict the density field to be very closely Gaussian distributed and it is
generally sufficient to take the second order moment, the two-point correlation func-
tion, or the power-spectrum in Fourier-space. We will discuss below how to determine
the power-spectrum and techniques to disentangle intrinsic non-Gaussianities within a
Bayesian framework. Note, that there are alternative models to inflation in which e.g. the
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Figure 1.1: Hierarchical Bayes model
for a galaxy distribution in redshift space
δz

g is represented here in a directed acyclic
graph (DAG). The cosmological param-
eterspcosm govern the rest of the vari-
ables. The initial density field coming from
e.g. inflationary scenarios can be statisti-
cally described by all its moments〈δn

DM〉.
Here the power spectrum is usually taken,
since the intitial perturbations are well de-
scribed by a Gaussian realization of the
initial seed fluctuations. The further evo-
lution is described by nearly deterministic
processes (given by structure and galaxy
formation), which determine the later-time
dark matter distributionδDM with its pe-
culiar velocity fieldv and the bias func-
tion b that relates the galaxy distribution
to the dark matter density field. The dark
matter distributionδDM with the bias pro-
duces the galaxy distribution in real space
δr

g. The peculiar velocitiesv related to the
density field through the continuity equa-
tion introduce the redshift distortion inδr

g

finally leading to the galaxy distribution in
redshift spaceδz

g.

seed fluctuations are identified with the topological defects that remain as relics of high-
energy phase transitions (Kibble, 1976). Accurate reconstructions of the LSS could help
to discriminate between the different models.

We review in detail the schemes that allow one to sample the cosmic variance, and
present some preliminary results in chapter (5), in which the correct power-spectrum
level and shape is extracted from the data.

2. Physical uncertainties: galaxy bias

The galaxy formation process is a complicated, non-linear and (probably) non-local pro-
cess. It is known that on large scales the galaxy power-spectrum fits well to the expected
DM spectrum predicted from cosmic microwave background (CMB) observations, if
some bias factorb between the amplitude of the galaxy and DM fluctuations is assumed.
Detailed studies show that the bias factor is not universal,but depends on galaxy type,
galaxy formation time, redshift, etc. (see e.g.Cooray & Sheth, 2002, and references
therein). For the purpose of reconstructing the underlyingdensity field, linear biases can
easily be tackled within the linear data model described below by including its effects
in a selection function. Nevertheless, more complex biaseshave to be further investi-
gated in a Bayesian framework. Physical processes, which are not perfectly understood
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1.1 Classes of uncertainty

within galaxy formation may be treated in a statistical way,encoding the ignorance about
certain physical processes in probability distribution functions. Several works study
the stochastic non-linear galaxy biasing (see for exampleDekel & Lahav, 1999; Pen,
1998; Tegmark & Bromley, 1999). Some of these models could be implemented in the
Bayesian reconstruction process. This issue is out of scopein this thesis, but should be
further investigated in this frame-work.

3. Physical/observational uncertainties: redshift-distortions

The peculiar motion of galaxies with respect to the Hubble flow of the Universe:v, intro-
duces uncertainties in their redshift measurement, the so-called redshift-distortions (see
e.g.Hamilton, 1998, for an introduction to this problem). The measured galaxy over-
densities are thus said not to be in real-spaceδr

g, but in redshift-spaceδz
g. In the linear

regime, where galaxies fall into the potential wells of large scale structures, redshift-
distortions cause a squashing of the linear over-densitiesin radial direction. However,
in the non-linear regime, galaxies (e.g. in a galaxy cluster) tend to behave like particles
in a gas with randomized motions inside the clusters where the potentials are very high.
This produces the so-calledfinger-of-godeffect, a dispersion along the line of sight.
The correction of these distortions is not trivial, since the process of structure formation
partially erases the information about the initial fluctuations after entering the non-linear
regime. Consequently, determining the real position of galaxies poses a degenerate prob-
lem, which has in general many possible solutions. Many efforts have been made to cor-
rect for these distortions: in the linear regime these efforts start with Kaiser’s pioneering
work (seeKaiser, 1987) and are followed by the linear redshift-distortions operator (for
a detailed derivation seeHamilton, 1998). In the non-linear regime, these efforts include
a velocity dispersion factor (thedispersion-model) corresponding to an exponential pair-
wise velocity distribution function with no mean streaming(seeBallinger et al., 1996).
Scoccimarro(2004) presents an exact relationship between real-space and redshift-space
two-point statistics through the pairwise velocity distribution function including all non-
linearities. More complex methods of correcting for redshift-distortions were classified
by Schmoldtet al. (1999) into iterative methods, which uses the redshift-space density
to calculate a peculiar velocity field, and then iterativelycorrects the density field dis-
tortions (Kaiser & Stebbins, 1991; Yahil et al., 1991) and more recentlyPercival(2005).
The other class decomposes the redshift-space density in radial and angular basis func-
tions from which the radial redshift-distortion is corrected (see e.g.Nusser & Davis,
1994; Schmoldtet al., 1999). Below, we propose a Bayesian method to correct for the
linear and non-linear redshift-distortions in a statistical way (see section2.6) and present
some applications in chapter (5).

4. Observational uncertainties: measurements

The action of measurement introduces uncertainties, either due to the instruments, e.g. blur-
ring by the telescope, or due to the observational strategy,which is included in the noise
term, the selection function, and the mask effects (seeZaroubiet al., 1995, for a pio-
neering work in the LSS field). Ignoring selection functions, windowing, or blurring will
lead to strongly biased reconstructions, which are far fromthe real signal, and thus allow
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only very limited interpretation of the true physical picture. A numerical implementation
of these effects is presented in chapter (sec:operators). The influence of these effects will
then be analyzed separately and tested with our code. The results are presented in chap-
ter (4). Though Argo demonstrates its capability to handle these uncertainties, further
work is required in order to apply it to real data. Particularexpressions for the selection
function according to the redshift survey under study, as well, as masks, etc., have to be
implemented.

5. Mathematical/numerical representation uncertainties: aliasing effects

Some uncertainties are not intrinsic to the observable, butoriginate from the mathe-
matical representation one chooses. Treating galaxies as counts in cells or with other
mass-assignment scheme will smear out the information about their measured position
for which one has to correct (see sections3.3.2and5.1.3) in order to derive other quan-
tities, like the power-spectrum (see section5.3.2). The selected data mining schemes
can also introduce errors in the reconstruction process, which may be fatal. In particular,
using a grid in a box to represent a galaxy survey, introducesempty regions even if the
survey covers the whole sky due to the radial limit of the survey. Packing a sphere in a
box leaves almost have of the volume empty. We discuss this issue in section (5.3.1) and
show its importance for determining the bulk flow. In section(5.3.2), we propose some
solutions to this problem based on sampling a fluctuating field in the unobserved regions.

From all the points mentioned above we conclude, that extracting the underlying dark matter
density field from the luminous matter distribution given bygalaxy redshift surveys poses a
classical signal reconstruction problem. A Bayesian network depicting the relation of these
uncertainties is shown in fig. (1.1).

1.2 Bayesian reconstruction methods

Any Bayesian statistical approach requires the definition of a likelihood and a prior. The former
is the probability distribution function describing the process generating the observational data.
It can be interpreted as a distance measure of the observed data to the underlying signal, as we
will discuss below. The prior stands for the distribution function modeling our prior knowledge
on the signal to be recovered. Mathematically it can be shownthat it regularizes the estima-
tor in the presence of noise (see section2.5.1). Two kinds of priors have to be distinguished,
informative priors, in which the previous physical knowledge about the signal is encoded, and
non-informative priors, which try to give objective estimators for the underlying signal based on
purely information-theoretical arguments. Here, three non-informative priors are considered:
flat priors (see section2.5.5) with a constant probability distribution function (PDF),entropic
priors based on Shannon’s notion of information (see section 2.5.9), and Jeffrey’s prior based
on invariant statistical structures under transformationof variables (see section2.5.8). Finally,
a maximization or sampling of the posterior distribution, which is proportional to the product
of the likelihood and the prior, has to be done to complete theBayesian estimation. The max-
imization of the posterior is called the maximum a posteriori method (MAP). The maximum
likelihood (ML) and maximum entropy method (MEM) are particular cases of the MAP with
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1.2 Bayesian reconstruction methods

flat priors and entropic priors, respectively. Complex posterior distribution functions may be
sampled iteratively from conditional PDFs in a Markov ChainMonte Carlo fashion (MCMC),
see section2.6. We show how different choices for these distribution functions together with
the estimation procedure lead to different reconstructionalgorithms, which consequently have
distinct application fields (see table2.1). A review of existing methods is presented and new
applications for the large-scale structure reconstruction, which naturally emerge within the
Bayesian formalism, are developed.

In this work we consider Poissonian and Gaussian likelihoods for the galaxy distribution.
The former has been previously considered in image restoration especially for deconvolution
purposes (seeLucy, 1974; Richardson, 1972). For example, the Richardson-Lucy algorithm
can be derived as the ML of a Poissonian likelihood (seeShepp & Vardi, 1982, and appendix
A.6). Here an image can be regarded as photon counts in cells represented by a Poissonian
distribution. However, one should notice that this likelihood does not represent the galaxy-
formation process. From a pure image reconstruction perspective, it can still be interesting
for LSS estimations, because it naturally represents the discrete nature of a galaxy distribu-
tion. The Gaussian likelihood allows the incorporation of arbitrary noise structures through the
variance. The CMB map-making algorithms, which aim to convert time-ordered data received
from satellites into a map of the CMB signal on the sky as a projection on the sphere, usually
use this likelihood. In this case, the ML leads to the simple COBE-filter first derived byJanssen
& Gulkis (1992). Nevertheless, the complex scanning strategies and foreground removal can
add unlimited complexity to these algorithms (e.g.Doré et al., 2001; Keihänenet al., 2005;
Natoli et al., 2001; Stomporet al., 2002; Yvon & Mayet, 2005).

For the LSS the Gaussian prior arises as the natural informative prior due to the arguments
discussed above. We propose a novel algorithm: GAPMAP, which maximizes the posterior
with a Gaussian prior and a Poissonian likelihood (see section 2.5.4and appendixA.5). In
contrast, the Gaussian likelihood with the Gaussian prior leads to the well-known Wiener-
filter, which has been used for the LSS reconstruction (seeErdoğduet al., 2004, 2006; Fisher
et al., 1994, 1995; Hoffman, 1994; Lahav, 1994; Lahavet al., 1994; Schmoldtet al., 1999;
Websteret al., 1997; Zaroubiet al., 1995, 1999) and for CMB-mapping (see e.g.Bunnet al.,
1994; Tegmark, 1997). It is also known to give optimal results in terms of yielding the least
square error, see the pioneering work ofRybicki & Press(1992) andZaroubiet al. (1995). We
present in this thesis a fast Wiener-filter extra-regularized with Krylov methods as we will see
below.

Intrinsic primordial non-Gaussianities can be imprinted in the seed fluctuations depending
on the particular theory responsible for the amplification of the fluctuations coming from the
early Universe. To find such deviations, non-informative priors, which give non-linear esti-
mates for the underlying signal are required. Entropic priors are well suited here, and have
been previously applied for CMB studies. We extend this workfor LSS reconstructions and
develop the corresponding maximum entropy method for Gaussian and Poissonian likelihoods
(see section2.5.9and appendixA.10).

Sampling methods have the advantage of determining the shape of distributions and, thus,
leading to a natural estimate of the uncertainty of the estimator. Moreover, the mean can be
calculated easily from the sample and is known to give more accurate results than the maximum
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1. INTRODUCTION

in the case of asymmetric PDFs (see e.g.Tanner, 1996).
As an example,Hobson & McLachlan(2003) proposed a SZ-cluster detection algorithm

using the Metropolis-Hasting algorithm method based on a Poissonian prior distribution, which
is designed to find discrete objects. RecentlySutton & Wandelt(2006) developed a reconstruc-
tion method for radio-astronomy that samples from the multiplicity function (see eq.2.32).
Alternative approaches to the maximum likelihood for CMB-mapping algorithms try to jointly
reconstruct the CMB-map with its power-spectrum using Gibbs-sampling techniques (Eriksen
et al., 2007; O’Dwyer et al., 2004; Wandeltet al., 2004). This approach is especially efficient
with respect to other MCMC methods because the transition probability matrix moves the sys-
tem in each step of the chain. For this special case the importance ratio is always one (see
e.g.Neal, 1993). This MCMC method requires, however, the complete knowledge of the full
conditional PDFs in order to sample from them. Note, that theGaussian prior for the signal
simultaneously represents the likelihood for the power-spectrum given the signal, which in this
case is an inverse Gamma function for the power-spectrum (see section5.3.2). This distribution
naturally samples the power-spectrum, which strongly deviates from Gaussianity.

With the aim of estimating the power-spectrum in an objective way, non-informative priors
are used. Usually a flat prior is taken for the power-spectrum. Alternatively, Jeffrey’s prior,
for which we give a derivation based on Fisher information (see appendixA.9), can be used.
Alternatively, an entropic prior could also be taken.

Other attempts have been made to estimate the power-spectrum from the LSS based on
the distribution of galaxies. A modified Gaussian PDF with a log-normal mean has been used
in this approach (seePercival, 2005). The same kind of concept, using a modified Gaussian
distribution to sample deviations from Gaussianity, has been applied to SZ-cluster detection by
Pierpaoli & Anthoine(2005).

In this thesis we propose to apply a Gibbs-sampling algorithm to jointly sample the un-
derlying three-dimensional density field with the power-spectrum and the peculiar velocities,
which can be used to correct for the redshift-distortions (see chapter5). Note, that the pecu-
liar velocities can also be used to trace the initial densityfluctuations back in time as we will
discuss below.

1.3 Algorithmic development

In this thesis we focus our work on the numerical optimization of inverse techniques to show
that a joint estimation of the LSS matter density field and itsparameters is feasible (see sections
3 & 4).

The calculation of the reconstructions, either through maximization or through sampling,
requires the inversion of certain matrices. For the Wiener-filter, for instance, the reconstruction
problem consists in one of its steps on the inversion of the correlation matrix of the data. The
methods used in this field so far calculated this matrix and inverted it mainly using the Singular
Value Decomposition algorithm that scales asO(n3) for an×n matrix (see e.g.Zaroubiet al.,
1995). However, this approach seems to be hopeless in light of theoverwhelming amounts of
data coming from different surveys and the possibility of combining them. We made special
effort to implement an algorithm in which the involved matrices would not need to be stored
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1.4 Non-Bayesian reconstruction methods

taking advantage of an operator formalism, which we worked out here for different recon-
struction methods (see table3.2 and section3.3). Such a formalism also allows fast iterative
numerical methods that speed the inverse step up to a scalingof O(n log2 n) thus reducing
the main operations to fast Fourier transforms (FFTs). Someof these numerical schemes have
been used in CMB-mapping algorithms, but were lacking a detailed comparison of the effi-
ciency of the different methods. Such a comparison is presented here. We derive the different
inverse methods in a unified way starting with a Bayesian motivation for iterative schemes (see
appendixB.2) and following with a general formulation of the asymptoticregularization from
which the Jacobi, the Steepest Descent, and the Krylov methods are derived. Moreover, non-
linear inverse methods are discussed, like the Newton-Raphson, the Lanweber-Fridman and the
non-linear Krylov methods. Preconditioning (see appendixB.3) was taken into account in all
the derivations and the importance of such a treatment is tested in section (4) (see fig.4.3). In
addition, a previously not discussed Krylov method is derived (see formula3.37, section3 and
appendixB.1) and its superior efficiency is demonstrated (see section4).

1.4 Non-Bayesian reconstruction methods

Let us mention here that there are alternative reconstruction methods which recover the under-
lying density field based on the observed radial peculiar velocity of galaxies, such as the widely
known POTENT-code (Bertschinger & Dekel, 1989, 1991; Bertschingeret al., 1990). Kaiser
& Stebbins(1991) propose a maximum probability technique to reconstruct the density field
from peculiar velocities.

Other works are focused on reconstructing the peculiar velocities from density fields (see
e.g. Branchini & Plionis, 1996; Branchini et al., 1996; Kudlicki et al., 2000; Mohayaee &
Tully, 2005; Mohayaeeet al., 2004). For a review see (Zaroubi, 2002a) and references therein.

In addition, several reconstruction techniques, which we do not discuss here are based on
geometrical arguments. These techniques include Voronoi tesselations (see e.g.Doroshkevich
et al., 1997; Ebeling & Wiedenmann, 1993; Icke & van de Weygaert, 1991; Kim et al., 2000;
Meurs & Wilkinson, 1999; Panko & Flin, 2004; Ramellaet al., 2001; Zaninetti, 1995, 2006),
Delaunay tesselations (see e.g.Bernardeau & van de Weygaert, 1996; Schaap & van de Wey-
gaert, 2000; van de Weygaert & Schaap, 2001), friends-of-friendsalgorithms (see e.g.Botzler
et al., 2004) or cloud-in-cell interpolation schemes (see e.g.Gottlöberet al., 2002).

A widely known reconstruction method in various fields is thePixon method (see e.g.
Puetter & Pina, 1993). Unlike Bayesian methods, this method does not assign explicit prior
probabilities to image models. Instead, it restricts them by seeking minimum complexity. The
Pixon method minimizes complexity by smoothing the image model locally as much as the
data allow, thus reducing the number of independent patches, or Pixon elements, in the image.
For a recent application in astrophysics see e.g.Eke(2001).

1.5 Time-reversal reconstruction of the initial density field

The reconstruction of the initial density fluctuations is closely related to the reconstruction of
the large-scale density field at the observed epoch focused on in this thesis. However, we be-
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lieve that fruitful contributions to the field of initial density fluctuations, could be extracted
from the work presented here. An accurate over-density fieldat the observed epoch and the
information about the peculiar velocities could be useful to perform such a time reversal recon-
struction. Let us thus briefly review the reconstruction schemes developed in this neighboring
area of cosmology.

The initial density field is of major interest because it represents the origin of the Universe
and many theories can be tested with such information. As a direct application, constrained
N-body simulations can be done by taking the reconstructed field as the initial conditions to
study structure formation by later comparing the results with the observations (see e.g.Bistolas
& Hoffman, 1998; Ganon & Hoffman, 1993; Mathiset al., 2002; Sheth, 1995).

As we have discussed above, the large-scale structure contains information about the seed
perturbations and its dynamical evolution is well approximated in the linear regime. Following
this idea,Weinberg(1992) proposes to reconstruct the seed fluctuations through the Gaussian-
ization of the observed density field, based on the approximation that the rank order of the
initial density field smoothed over scales of a few Mpc is preserved under non-linear gravita-
tional evolution and further assuming the initial field to beGaussian distributed. This method
can be regarded as an Eulerian Gaussian mapping scheme.

Other methods run gravity backward in time taking the position and peculiar velocities of
objects at a certain redshift. Here, different schemes havebeen proposed: a huge class relies
on Lagrangian dynamical schemes; another class is based on the minimal action principle; and
another class is based on optimal mass transportation schemes have been applied for the initial
density field reconstruction.

Lagrangian dynamical schemes mainly use the Zel’dovich approximation (Zel’Dovich,
1970) in which the comoving trajectories of the particles are straight lines. In this formal-
ism, the variable under consideration is the displacement of a particle. Several reconstruction
schemes are based on this approximation, including the Zel’dovich-Bernoulli equation derived
by Nusseret al.(1991), the Zel’dovich-continuity equation presented inGramann(1993) or the
path interchange Zel’dovich approximation scheme (PIZA) used byCroft & Gaztanaga(1997),
among others (see for exampleDekel et al., 1990; Narayanan & Weinberg, 1998; Nusser &
Dekel, 1992; Valentineet al., 2000). Several of these methods are compared inNarayanan &
Croft (1999). More recently, it was proposed to determine the inverse Lagrangian map (defined
as the transformation of the present (Eulerian) positions to the respective initial (Lagrangian)
positions) by minimizing a quadratic cost-function, whichsearches the optimal mass-transport
solution of the Monge-Amp̀ere-Kantorovich problem (Brenieret al., 2003; Frischet al., 2002;
Mohayaeeet al., 2003, 2006)

The minimal action principle method was pioneered byPeebles(1989, 1990). One of
its first applications was presented inShayaet al. (1995). Here the gravitational instability
problem is treated as a two-point boundary problem and the trajectories of the mass particles are
solved by minimizing the action integral. This method was extended byGoldberg(2001a,b);
Goldberg & Spergel(2000a,b).
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1.6 Structure formation

1.6 Structure formation

Here we present a brief introduction to structure formationon large scales. The presented
equations are mainly based on the books byPeebles(1980) andPeacock(1999).

The structure formation of the Universe is governed by an interplay of many coupled physi-
cal processes. However, one can establish delimited regimes and neglect many of the processes,
depending on which physical effects are the object of study.In general the physical state of
a statistical ensemble of particles is described by the particle distribution functionf(r,p, t) in
phase space (positionr, and momentump, time t) and its evolution is given by the Boltzmann
equation

∂

∂t
f +

∂r

∂t
∇rf +

∂p

∂t
∇pf =

(
df

dt

)coll.

. (1.1)

The term in the rhs is only present when particles collide, which happens whenever baryons
get involved. This is the case for self-interacting cosmic rays, cosmic rays or photon radiation
interacting with molecular clouds, or neutrinos depositing energy in the stellar plasma trigger-
ing Supernova explosions (see appendix of supernova work).On large scales the gravitational
clustering is believed to be dominated by collision-less dark matter, which permits us to neglect
the collision term and write (Vlasov’s equation)

∂

∂t
f +

1

m
p∇rf −m∇rΦ∇pf = 0, (1.2)

where the potential is given by Poisson’s equation

∇2
rΦ(r, t) = 4πGm

∫

dp f(r,p, t), (1.3)

with the density defined asρ(r, t) ≡ m
∫

dp f(r,p, t) and the streaming velocity asv(r, t) ≡
∫

dp (p/m)f(r,p, t)/
∫

dp f(r,p, t). The Newtonian approach assumes that the gravitational
perturbations are much smaller than the scale of the system given by the cosmological horizon:
dH = c/H0, with c being the speed of light, andH0 the Hubble constant at present day. This
system has theoretically a well defined solution. However, finding such a solution turns out to
be in general very difficult. A wide extended alternative approach consists in performing N-
body simulations in which the phase space density is sampledby a large number of particles.
Another approach models the Universe as an ideal fluid assuming that the mean free path of
matter is short. This is the picture of the homogeneous Universe which is valid on large scales.
The evolution of this (non-relativistic) fluid is given by the equations of fluid dynamics, the
continuity equation, the Euler equation, and Poisson’s equation1

∂ρ

∂t
+∇r(ρv) = 0, (1.4)

∂v

∂t
+ (v · ∇r)v = −∇p

ρ
−∇rΦ, (1.5)

∇2
rΦ = 4πGρ. (1.6)

1For an example with coupled fluid-radiation dynamics see appendix of supernova work.
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Note, that the pressure term in the Euler-energy equation isusually neglected when studying
the dark matter evolution. Allowing for small departures from homogeneity we define

ρ(x, t) = ρ0(t) + δρ(x, t), (1.7)

v(x, t) = v0(t) + δv(x, t), (1.8)

p(x, t) = p0(t) + δp(x, t), (1.9)

Φ(x, t) = Φ0(t) + δΦ(x, t). (1.10)

The resulting linear order equations are describing the evolution of density fluctuations in an
expanding Universe governed by gravity

dδ

dt
+∇rδv = 0, (1.11)

dδv

dt
+ (δv · ∇r)v0 = −∇δp

ρ0
−∇rδΦ, (1.12)

∇2
rδΦ = 4πGρ0δ, (1.13)

where we introduced the convective time derivative:d/dt ≡ ∂/∂t + v · ∇ and the fractional
density perturbation:δ ≡ δρ/ρ0.

In an expanding Universe it is convenient to introduce the comoving coordinatesx: r(t) =
a(t)x(t), with the proper timet, anda(t) being the scale factor, describing the general expan-
sion of the Universe. Then the velocity can be written as

v = ṙ = ȧx+ aẋ, (1.14)

whereδv ≡ aẋ ≡ au is called the peculiar velocity. Translating the spatial derivatives into
comoving coordinates,e.g by replacing:∇r = 1/a∇x, we obtain the following linearized
equations for conservation of mass and momentum as experienced by an observer moving with
the Hubble flow

δ̇ = −∇x · u, (1.15)

u+ 2
ȧ

a
u = −∇xδp

ρ0
− ∇xδΦ

a2
. (1.16)

Let us now express the density field in a Fourier expansion

δ̂(k, a) =

∫

dx exp(ik · x)δ(x, a). (1.17)

We can then combine eqs. (1.15) and (1.16) by eliminatingu to the following equation

¨̂
δ + 2

ȧ

a
˙̂
δ = δ̂

(

4πGρ0 −
c2sk

2

a2

)

, (1.18)

where the sound speed:c2s ≡ ∂p/∂ρ was introduced to close the system. This equation has in
general, two solutions: a decaying modeD−(z) and a growing modeD+(z). The latter being
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the only relevant one for structure formation. We thereforecan express the evolution of density
perturbations as

δ̂(k, z) =
D+(z)

D+(z0)
δ̂(k, z0), (1.19)

with D+(z) being the growth factor at redshiftz = 1/a(t)− 1 (z0 : z = 0). For particular ex-
pressions of the growth factor under different cosmologiessee e.g.Peacock(1999). As already
discussed in section (1.1), the initial fluctuations accord to a Gaussian random field to great
accuracy. This also applies to the large-scale structure, which in linear approximation, only
modifies the amplitude of the initial perturbations. The field is then completely specified by
the power-spectrumP (k, z) under the assumption of a statistically isotropic and homogeneous
density field:

〈δ̂(k, z)δ̂(k′, z)〉 = (2π)3δD(k − k′)P (k, z). (1.20)

We will use different expressions for the power-spectrum. Alinear power-spectrum as given
by Peacock & Dodds(1994), and a non-linear power-spectrum that describes also the effects of
virialized structures, given bySmithet al. (2003). The growth of density fluctuations happens
via self-gravitation, which is reduced by radiation pressure and small-scale fluctuations are
dissipated by free streaming. The cumulative effects are described by the so-called transfer
function

T (k) ≡ δ̂(k, z0)

δ̂(k, z)D+(z)
. (1.21)

Accurate results require solving the Boltzmann equation ofthe coupled plasma of matter and
relativistic particles (seeSeljak & Zaldarriaga, 1996, for a numerical solution). There exist
several fitting formulae. In this work we use the BBKS (seeBardeenet al., 1986) and theBond
& Efstathiou(1984) transfer-functions. The time evolution of the power-spectrum is then given
by

P (k, z) = P0(k)T
2(k)

D+(z)

D+(z0)
, (1.22)

with P0(k) being the initial power-spectrum.
Note, that the theory presented in this section is only validin the linear and quasi-linear

regime of structure formation. However, the problems that appear in the matter reconstruc-
tion from galaxy redshift surveys requires a deep study of non-linear effects. In this thesis we
present a Bayesian frame-work, which can deal separately with the different uncertainties pre-
sented above, and find statistical solutions to the complex system described at the beginning of
this section. For further details see chapter (5).

1.7 Structure of the thesis

This thesis is structured as follows: in chapter (2) we state the problem of signal reconstruc-
tion, then we define the data model. Subsequently, we introduce a general statistical perspective
within a Bayesian framework from which different solutionsto the reconstruction problem are
presented, including Wiener-filtering, the COBE-filter, a novel GAPMAP algorithm with a
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Poissonian likelihood and a Gaussian prior, Jeffrey’s prior and the Maximum Entropy method
(MEM). Markov Chain Monte Carlo methods (MCMC) that sample the global probability
distribution function of the signal and all underlying parameters are presented as the ideal ap-
proach to achieve a full Bayesian solution of the reconstruction problem. In the numerical
method chapter (3), different iterative inverse schemes which have been implemented in ARGO

are presented, including a very efficient novel scheme. The operator formalism is worked out
for four novel algorithms in large-scale structure reconstruction. The efficiency of the differ-
ent inverse schemes is tested with the Wiener-filter under different reconstruction cases with
synthetic data, including structured noise, blurring, selection function effects, and windowing
in chapter (4). Finally, we apply in chapter (5) some of the methods developed in this the-
sis to reconstructions of the LSS based on mock galaxy redshift surveys. In this last chapter,
we discuss the physical and statistical problems, study thequality and efficiency of the recon-
structions, and present novel methods for redshift-distortions corrections and power-spectrum
estimation. Particular detailed derivations are presented in the appendix.
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Chapter2
Bayesian approach to signal
reconstruction

In nature you can find all future styles.

Auguste Rodin

T he reconstruction of a signal (here: DM distribution) givena set of measurements (here:
galaxy catalogues) is usually a highly degenerate problem,as we have discussed above,

where the signal is under-sampled and modified by systematicand intrinsic errors due to the
nature of the observable. This is indeed the situation that we are facing, since most of the
galaxy redshift surveys have partial sky coverage and the discrete nature of galaxies introduces
shot noise.

An expression for the data as a function of the real signal hasto be modeled in a first step.
The reconstruction problem is classically seen as the inverse of this functional dependence. The
solution to this problem is far from being trivial and essential issues, like solution existence,
solution uniqueness, and instability of the solving process, have to be considered. Regarding
the solution existence, there will be no model that exactly fits the data, since the mathematical
model of the physics of the system is approximate and the datacontain noise. That forces
us to look for optimal solutions, rather than exact solutions. We will have to deal especially
with the last two points mentioned above, uniqueness and stability, because an infinite set of
possible solutions can fit the data and because of the ill-conditioned character of the system we
are treating. A regularization method that stabilizes the inverse process by imposing additional
constraints will be required. We show below how the Bayesianframework permits us to do a
regularization in anaturalway and furthermore to jointly estimate the signal and its parameters.
The calculation of the Bayesian estimators will require extra-regularization techniques, which
will be presented in section (3). We will start posing the inverse problem by defining the model
of the data.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

2.1 Data model

The galaxy formation process is known to be a complicated, non-linear and probably non-local
process, as mentioned in the introduction. Thus, attempts to invert the galaxy distribution into
the original DM distribution suppose a great challenge. It is known that, given some bias factor
between the amplitude of the galaxy and the DM fluctuations, the galaxy power-spectrum on
large scales fits well to the expected DM spectrum predicted from CMB observations. Detailed
studies reveal that the bias factor is not universal, but depends on galaxy type, galaxy formation
time, redshift, etc. The data model connecting the signal (DM distribution) to our observable
(galaxy counts) is in consequence complex, non-linear and non-local. The main goal of this
thesis is to develop a Bayesian frame-work that permits one to split the dependencies into
separated problems, which can then be jointly tackled with physical and statistical techniques.
Such an example is given in chapter (5), where the non-linear structure formation effects are
solved by performing a sampling procedure based on a physical model. In principle, also the
bias of the galaxies can be sampled in this way (see discussion in the introduction). However,
this is out of the scope of this thesis.

Here we present a linear data model which, however, can easily be extended to a simple
non-linear data model by a non-linear weighting scheme (e.g. by weighting the galaxies ac-
cording to their apparent luminosity). Nevertheless, manyof the uncertainties we are facing,
such as the convolution effects due to the blurring of a telescope, the pixelization scheme, the
mask effects due to the observation strategy, or the selection effects due to the limited sensi-
tivity of the detectors, can be described with a linear model. This linear model will contain
non-linear information in the noise term as will be shown in section (5.1.3).

2.1.1 Linear data model

The general linear reconstruction problem formally can be written as the inverse problem of
recovering the signals from the observationsd related in the following way

d(x) =

∫

dyR(x,y)sǫ(y), (2.1)

whereR represents the kernel of the Fredholm integral equation of the first kind defined by
(2.1), with noise on the signals being expressed by the superscriptǫ. Discretizing eq. (2.1) and
assuming additive noise, we can formulate the signal degradation model by

d = Rs+ ǫ. (2.2)

where them × 1 vectord represents the data points resulting from the measurements(here:
galaxy counts), the statistical noise and the underlying signal are am × 1 vector ǫ, and a
n× 1 vectors respectively. The object that operates on the signal isR am× n matrix which
commonly describes blurring effects caused by the atmosphere, the point-spread function (PSF)
of the telescope or the response function of the detectors ofthe instrument.

Let us denote the physical observation process encoded in theR-matrix asRP. We are
interested in the selection function of the surveyfS with the corresponding masksfM, which
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2.1 Data model

can also be included inR. One has to be careful with the data model defined in eq.2.2. As
several authors point out, there is a correlation between the underlying signals and the level
of shot noise produced by the discrete distribution of galaxies (see e.g.Seljak, 1998). Since,
by definition, additive noise assumes no correlation with the signal –otherwise we would have
signal content in the noise – we define the effective noiseǫ as the product of a structure function
fSF, which could be correlated with the signal, with a random noise component (ǫN) that is
uncorrelated with the signal. Given the above definitions, the effective noiseǫ is uncorrelated
with the signal. We may then rewrite eq. (2.2) in continuous representation as

d(x) =

∫

dyRP(x,y)fS(y)fM(y)s(y) + fSF(s(x))ǫN(x), (2.3)

whereR(x,y) = RP(x,y)fS(y)fM(y) and ǫ(x) = fSF(s(x))ǫN(x). In practice, we will
assume white noise (i.e. constant noise in Fourier space),ǫN = ǫWN. However, none of the
presented techniques in this thesis depend on this simplification. Some of the previous studies
of large-scale structure reconstruction also included theinverse of the linear redshift-distortions
operator as a matrix multiplyingR (see e.g.Lahav et al., 1994). Such an operator cannot
easily be found for the non-linear regime. Earlier works tryto correct the non-linear redshift-
distortions with an additional factor in the power-spectrum analogous to Kaiser’s factor (see
Ballinger et al., 1996; Erdoğduet al., 2004; Kaiser, 1987). Here, we propose a Bayesian
solution to the signal reconstruction problem as it will be discussed later.

In most cases, the signal will be strongly under-constrained due to under-sampling, i.e.n≫
m, which is nearly unavoidable due to partial sky coverage of surveys. The linear equation
(eq. 2.2) to be inverted is a rank-deficient system. Such systems are characterized by non-
uniqueness, since the matrixR has a nontrivial null space. By superposition, any linear com-
bination of the null space models (modelss0 that satisfyRs0 = 0) can be added to a particular
solution leading to infinite solutions. Consequently, we cannot discriminate between situations
where the solution is truly zero (see for exampleAsteret al., 2005). As is well known, a direct
inversion of eq. (2.2) (R−1d) will amplify the statistical noise and lead to an unstable solution
(see e.g.Zaroubiet al., 1995). Instead, a regularization method, which often follows several
steps, has to be applied . The first step consists of finding an expression for an estimator of the
signals that approximately satisfies the data model (eq.2.2) and copes with the noise. Further
regularization methods are usually required in a second step to actually calculate the estimator.
This happens whenever some ill-posed linear or non-linear operators have to be inverted. We
shall distinguish between noise regularization and inverse regularization according to the first
and the second step, respectively. AsZaroubiet al. (1995) pointed out, using a mean variance
estimator alone does not completely solve the inverse problem. Therefore, they proposed the
singular value decomposition algorithm (SVD) to extra-regularize these problems. However,
this method requires one to calculate the correlation matrix of the data implying a slow al-
gorithm, scaling asO(n3), and needs large storage facilities. We will show that a Bayesian
approach is anatural regularizer for the noise, which then can be regularized further for the
inverse purpose with efficient methods that scale asO(n log2 n) (see section3). Let us address
the problem of signal reconstruction from a statistical inference perspective.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

2.2 Inversion via statistical estimator

In parametric modeling it is assumed that observational data have been generated by random
processes with probability density distributions, depending on the model parameters (see for
exampleRobert, 2001). Statistical analysis in this context is essentially an inverse method,
which aims at retrieving the causes (here reduced to the parameters of the probabilistic gener-
ating mechanism) from the effects (here summarized by the observations).

Traditionally, one tries to find a way where the available information is optimally used and
a unique estimator is selected from an infinite set of solutions. One of the classical approaches
consists of minimizing the variance of the residuals, whichis the variance of the discrepancy
between the estimator and the set of possible realizations consistent with the data (seeRybicki
& Press, 1992). This conjecture is reasonable because the least deviation from the set oftrue
signals is searched. The estimator obtained in this way is called the least squares quadratic
(LSQ) estimator. However, a transparent statement of the statistical assumptions is missing
in this method, contrary to the Bayesian approach used in this work as will be shown below.
Moreover, Bayesian statistics allows sampling the PDF of the system under consideration in
a natural way. Strictly speaking, one does not look for a unique estimator in this framework.
Nevertheless, a summary of the PDF can be given by the mean of the sample (see section2.6).

The most general approach to determine an estimator, however, should be based on the
global (joint) PDF over all relevant quantities, like the signal s and all model parametersp,
without neglecting any possible dependences. Let us assumethatP (s,p | d), the joint PDF of
the system under consideration, depends on the signals and a series of additional parameters
p, given the observationsd. One solution would then be to calculate the expectation of the
signal over the joint PDF space

Ejoint(s) ≡
∫

dsdp
[

P (s,p | d) s
]

≡ 〈s〉(s,p|d), (2.4)

where we have introduced the ensemble average〈〉(s,p|d) with the subscript representing the

PDF over which the integral is doneP (s,p | d) → (s,p | d)1. Expression (2.4) can con-
sequently be read as the ensemble average over all possible signals and parameters. The joint
PDF is unfortunately quite hard to calculate directly, and the integral in eq. (2.4) is computa-
tionally too expensive for realistic cases as it involves many parameters and a large amount of
data. To disentangle the uncertainties in parameter and signal spaces, let us apply the product
rule of statistics2 to eq. (2.4)

Ejoint(s) =

∫

dpP (p | d)
[∫

ds
[

P (s | p,d) s
]]

= Ep

[

Es (s | p,d) | d
]

= 〈〈s〉(s|p,d)〉(p|d). (2.5)

1Sometimes, however, the ensemble angles will denote the estimator of some signal or parameter in a more
general sense, like the maximum likelihood or the maximum a posteriori (see sections2.4 and2.5, respectively).
Note that a bracket formalism could be introduced at this point, in which eq. (2.4) would be represented in the
following way: (s|s|p, d).

2P (s,p | d) = P (s | p,d)P (p | d)
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2.3 Bayesian approach

This means that the expectation of the signals corresponds to the average of the conditional
mean ofs over the marginal distribution ofp (see for exampleGelmanet al., 2004), where the
conditional mean is given by

Econd(s) = Es(s | p,d) =

∫

ds
[

P (s | p,d) s
]

= 〈s〉(s|p,d). (2.6)

Traditionally, the conditional PDF has been used to determine the estimator of the signal as-
suming that all the parameters are known (e.g.Zaroubiet al., 1995).

As the reconstruction step of the density field is computationally expensive, a joint estima-
tion of the parameters is out of scope. Therefore, the reduced approach of basing the estimators
on conditional PDFs provides a computationally more feasible way to tackle problems of this
kind. In particular, we will demonstrate that an operator formalism allows efficient sampling
of the conditional PDFs, enabling us to sample the joint PDF in a Bayesian framework.

2.3 Bayesian approach

Given a data model, one can usually find an expression for the sampling distribution, i.e. the
probability of obtaining the data given the signal and some additional parametersp, P (d |
s,p). This is much less difficult than a direct calculation of the posteriorP (s | d,p). We
need an expression which relates both the sampling and the posterior distribution given by
Bayes theorem. The derivation of Bayes theorem is straightforward from the joint PDF of the
signal and the data, using the product rule and the fact that the joint PDF is invariant under
permutations of its arguments1. Bayes theorem can be expressed by the following equation

P (s | d,p, I) =
P (d | s,p, I)P (s | p, I)

P (d | p, I) , (2.7)

whereP (s | p, I) represents the prior knowledge about the signal, as it models the signal
before any observations occur. The PDF given byP (d | p, I) stands for the so-called evidence
that is treated as the normalization of the posterior

P (d | p, I) =

∫

dsP (d | s,p, I)P (s | p, I). (2.8)

It is worth mentioning that all the probabilities are conditional to the underlying physical pic-
ture, or prior informationI. This has to be explicitly considered in case of model comparisons.
In the following sections, we will present the steps for completing a Bayesian analysis, starting
with the likelihood, then discussing the importance of the prior, and finishing with sampling
through the joint signal and parameter space. Note that different choices for these three com-
ponents (likelihood, prior, and sampling) lead to different classes of reconstruction algorithms.

1

P (s,d,p, I) = P (s | d,p, I)P (d | p, I) =

P (d, s,p, I) = P (d | s,p, I)P (s | p, I)
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

An overview of the different reconstruction scheme implementations based on this classifica-
tion can be found in table (2.1).

2.4 The likelihood

The likelihood function is formally any function of the parametersθ proportional to the sample
density

L(θ | d) ∝ P (d | θ). (2.9)

Many inference approaches are based on the likelihood function, justified by the likelihood
principle, which states that the information obtained by anobservationd aboutθ is entirely
contained in the likelihood functionL(θ | d). To be specific, ifd1 andd2 are two observations
depending on the same parameterθ such that there exists a constantc satisfyingL1(θ | d1) =
cL2(θ | d2) for everyθ, d1 andd2 then bring the same information aboutθ and must hence
lead to identical inferences.

Maximum likelihood (ML) methods, for example, rely on the likelihood principle with an
estimator of the parameters given by

〈θ〉ML = arg supθ L(θ | d), (2.10)

i.e., the value ofθ that maximizes the probability density atd. Bayesian methods take also
advantage of the likelihood principle incorporating the decision-related requirement of the in-
ferential problem through the definition of a prior distribution (see section2.5). The definition
of the likelihood is the first step in a Bayesian framework to determine the posterior distribu-
tion (see eq.2.7). In using galaxy redshift surveys to trace the matter distribution, we have to
deal with the discrete nature of the data sample. Thus the likelihood may be derived here for
Poissonian statistics.

2.4.1 Poissonian likelihood

The likelihood of our galaxy distribution may be approximately represented by a Poissonian
distribution (the real statistics should describe the muchmore complex galaxy formation pro-
cess). Under the assumption of independent and identicallydistributed (iid) observations, this
yields

L(s | d,p) ∝ P (d | s,p) =
m∏

i=1

exp
(
−

[
(Rs′)i + ci

]) [(Rs′)i + ci]
(d′i+ci)

(d′i + ci)!
,

whered′i are the galaxy counts per celli and the real, positive signal of the expectation value
of the number of galaxies is given bys′i = ng(1 + bsi), with si = δρi = ρi−ρ

ρ the DM
over-density, our target signal. The quantityng stands for the mean number of galaxies,ρ
represents the mean density andb the bias factor. All these quantities are redshift-dependent.
The additional parametersp in this case would be represented by some backgroundci and
would enter into the operatorR that modifies the signals.
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2.5 The prior

For a similar application in astronomy seeLahav & Gull (1989) and Robinson(1991).
If d′i is not converted to an integer, a Gamma function may be used instead of the factorial,
(d′i + ci)!→ Γ(d′i + ci + 1).

2.4.2 Gaussian likelihood

When the number of counts is large the Poisson distribution can be approximated by the normal
distribution. In that case, the likelihood can be given by a Gaussian distributed noise

L(s | d,p) ∝ P (d | s,p) =
1

[(2π)mdet(N )]1/2
exp

(

−1

2
ǫ†N−1ǫ

)

∝ exp

[

−1

2
χ2(s)

]

, (2.11)

whereN = 〈ǫǫ†〉(ǫ|p) is the covariance matrix of the noiseǫ ≡ d−Rs, and

χ2(s) = (d−Rs)†N−1(d−Rs). (2.12)

The parametersp determine the structure of the noiseǫ (and therefore the structure of the
covariance matrixN ), and also enter into the operatorR. We give different expressions for
the noise covariance matrixN in section (3.3).

Note thatχ2 coincides with the square of the Mahalanobis distance1 betweend andRs,
and also coincides with the squaredN−1-norm of the error

χ2(s) = D2
Mah(d,Rs)N−1 = ||ǫ||2

N−1 . (2.13)

In this case, the ML will correspond to the least squares of the error. It will minimize theχ2(s)
and hence minimize the Mahalanobis distance between the data and the noise-free data model.
Therefore, the ML is equivalent to searching the estimator that fits the data better without
constraining the model for the signal. Let us study the priorthat precisely sets constraints on
the signals.

2.5 The prior

A second step in Bayesian analysis is to specify the prior distribution for the signal, which con-
tains the prior knowledge about the signal before the measurements were carried out. For little
informative data it can strongly affect the posterior distribution and thus modify any inference
based on it. For this reason, frequentists criticize Bayesian methods as being subjective. Other
definitions of probability, like the frequentist, however,can be shown in most of the situations
to be particular cases of the Bayesian approach (see e.g.Tanner, 1996), implying the use of an
implicit prior. The advantage of defining the prior knowledge about the system under consider-
ation is that the interpretation of the results is straightforward, especially because assumptions

1We introduce here a generalized definition of the Mahalanobis distance as:D2
Mah(x,y)M = (x −

y)†M (x− y), with x andy being two vectors in theN -dimensional space andM aN ×N matrix.
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Classification of reconstruction methods
Non-informative priors Informative priors (MAP)

Prior Flat (ML ) Entropic (MEM ) Gaussian Poissonian
Likelihood
Gaussian WIENER (Tikhonov, Ridge)
–Radio Sutton & Wandelt(2006)#

–CMB COBE:Janssen & Gulkis(1992) Maisingeret al. (1997) Bunn & Sugiyama(1995) Hobson & McLachlan(2003)#

Tegmark (1997,1997b) Hobsonet al. (1998) Tegmark (1997,1997b)
ROMA: Natoli et al. (2001)

MAPCUMBA: Doréet al. (2001)
MAXIMA: Stomporet al. (2002)
MAGIC#: Wandeltet al. (2004) MAGIC#: Wandeltet al. (2004)
MIRAGE: Yvon & Mayet (2005) O’Dwyer et al. (2004)#

MADAM: Keihänenet al. (2005) Eriksenet al. (2007)#

Larsonet al. (2007)#

–LSS Fisheret al. (1994)
Hoffman(1994)

Lahavet al. (1994), Lahav(1994)
Zaroubiet al. (1995)
Fisheret al. (1995)

Websteret al. (1997)
Zaroubiet al. (1999)

Schmoldtet al. (1999)
Erdoğduet al. (2004,2006)

ARGO: MEMG∗ ARGO: WIENER∗∗#

(section2.5.9, appendixA.10) (sections2.5.3, 2.6, 4, appendixA.2)
Poissonian Richardson(1972) ARGO: MEMP∗ ARGO: GAPMAP∗

Lucy (1974) (section2.5.9, appendixA.10) (section2.5.4, appendixA.5)
Inverse Gamma

–CMB MAGIC#: Wandeltet al. (2004)
O’Dwyer et al. (2004)#

Larsonet al. (2007)#

Eriksenet al. (2007)#

–LSS ARGO∗#

(section5.3.2)
Modified Gaussian

–CMB Pierpaoli & Anthoine(2005)#

–LSS Percival(2005)#
∗developed and presented in this thesis;∗∗developed, tested and presented in this thesis;#able to sample PDFs
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2.5 The prior

Table 2.1:In the previous page the classification of reconstruction methods in astrophysics based on
the prior (columns) and likelihood (rows) is shown. Note that most of the reconstruction algorithms in
other research areas, such as tomography, where Tikhonov-regularization is widely used, or the algebraic
reconstruction technique (ART), which is based on the asymptotic regularization, fall into the class of
Wiener-filtering schemes as we show in section (2.5.1) and appendixB.2. The differences in the ML
CMB-map-making algorithms reside mainly in the modeling ofthe complex noise structure that arises
due to the scanning strategies of the satellites and in the various foreground removal methods. The LSS
Wiener-filtering methods on the other hand present improvements in the redshift distortions treatment,
or are based on the different input data, either galaxy-positions or peculiar velocities. The discrete object
detection (Hobson & McLachlan, 2003) algorithm was developed to find Sunyaev-Zeldovich clusters.
This is also the case for the modified Gaussian by Pierpaoli etal. (2005). The reconstruction of the
power-spectrum is also listed here. In CMB the joint map and power-spectrum estimation is done by
MAGIC. Percival(2005) samples the power-spectrum with a modified Gaussian likelihood given by
a log-normal mean. We propose to follow the steps done in CMB and sample the density field and
the power-spectrum jointly (see section5.3.2). This thesis covers three new areas in LSS (GAPMAP,
MEMG, MEMP) and presents four novel algorithms with which reconstructions can be done very fast.
We have left out the reconstruction methods that are focusedon the cosmological initial conditions,
since they address a different problem and, in general, cannot be classified in terms of the PDFs listed
in this table. Neither can other reconstruction algorithmsbased on geometrical arguments, like Voronoi,
Delaunay tessellations,friends-of-friendsschemes orcloud-in-cellinterpolation schemes, be classified
here.

flowing into the inference procedure are clearly stated. Once the prior is defined, we can obtain
the maximum a posteriori (MAP) estimator, by maximizing theposterior distribution, which is
proportional to the likelihood multiplied by the prior,

〈θ〉MAP = arg supθ P (θ | d). (2.14)

Note that there is a crucial difference to the maximum likelihood estimator (eq.2.10) due to
the incorporation of the prior information.

2.5.1 Bayes and regularization methods: the prior as a regularizer

Looking at thelog-probabilities, we see that the MAP estimator maximizes thefollowing quan-
tity using Bayes theorem (logP (θ | d) ∝ log(P (d | θ)P (θ)))

Q = logP (d | θ) + logP (θ). (2.15)

If we assume that the error is Gaussian distributed, (which is a fair assumption if there is no
prior information about the noise), and we parameterize theprior of the parameter, say the
signals, we can rewrite eq. (2.15) as (2Q→ Q)

Q = −χ2(s) + αfp(s), (2.16)

where we absorbed the factor2 in the Lagrangian multiplierα, andfp represents the penalty
function that obliges the estimator to fulfill some constraint on the parameters, to the detriment
of theχ2(s) that strongly relies on the data. If we further assume thatN−1 = I (say we have

33



2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

white noise), the Mahalanobis distance reduces to the Euclidean distance
(D2

Mah(d,Rs)|
N−1

=I
= D2

Euc(d,Rs)), and the quantity one wants to minimize reads

||ǫ||2 + αfp(s), (2.17)

where we have absorbed the minus sign inα. Expression (2.17) is equivalent to least squares
with a regularization term, and belongs to Ridge-regression problems (Hoerl, 1962; Hoerl &
Kennard, 1970). Assuming that the penalty function takes the following form fp(s) = ||s||2,
we can write expression (2.17) as

||ǫ||2 + α||s||2, (2.18)

which then becomes the Tikhonov regularization method (Tikhonov, 1963). The parameter
α is called the regularization parameter. These methods leadto linear filters and are essen-
tially identical to Wiener-filtering (Foster, 1961), which will be presented in the next section.
Note that Tikhonov regularization is equivalent to MAP of a Gaussian likelihood with noise
covariance matrixN = I and Gaussian prior, with signal covariance matrixS = α−1I. Nev-
ertheless, the penalty functionfp in general can be a non-linear function of the parameter to
be estimated (say the signals) leading to non-linear estimators. We will introduce MEM as
such an example. Tikhonov regularization can also be generalized to non-linear problems by
introducing a non-linear kernel operatorR(s).

Summarizing the exposed theory of signal reconstruction, we might interpret the likelihood
as some distance measure between the data and the noise-freemodel of the data, and the prior
as some constraint that tightens the estimator to the model of the signal. We have shown
here that the classical methods of signal reconstruction, like the Tikhonov regularization, are
particular cases of the Bayesian approach. The inclusion ofa prior can be regarded as anatural
regularization, in the sense that the regularization term is provided by a (physical) model of the
truesignal. In appendixB.2, we discuss the relation between other regularization methods and
the Bayesian approach. In the following sections we introduce different priors that are relevant
for large-scale structure reconstruction and are implemented in ARGO.

2.5.2 Gaussian prior

The distribution of the primordial density field should be very close to Gaussianity according
to most of the inflationary scenarios (Albrecht & Steinhardt, 1982; Guth, 1981; Linde, 1982).
In fact, the measurements of the CMB show very small deviations from Gaussianity (see e.g.
Komatsuet al., 2003). Non-Gaussianities in the matter distribution arose mainly from non-
linear gravitational collapse. The non-linear regime of structure formation is responsible for
the strong radial redshift-distortions, thefinger-of-godeffect, limiting the accuracy of recon-
structions. Previous attempts to correct for these distortions have modified the power-spectrum
by introducing a Lorentzian factor (see e.g.Ballinger et al., 1996; Erdoğduet al., 2004). In
section (2.6) we propose an alternative way to do this in a Bayesian framework, where peculiar
velocities are sampled together with the three dimensionalmap of the matter distribution. For
the underlying DM density fluctuation we will assume a Gaussian prior. This is a crude approx-
imation for the density field at the present epoch of the Universe, especially on small-scales. It
is, however, a valid description on large-scales and allowsto incorporate non-linear corrections
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2.5 The prior

in a MCMC fashion, as will be discussed in section (2.6). FollowingBardeenet al. (1986) we
may thus write the PDF of the signal as a multivariate Gaussian distribution

P (s | p) =
1

[(2π)ndet(S)]1/2
exp

(

−1

2
s†S−1s

)

, (2.19)

with S being the covariance matrix of the signal (S = S(p) = 〈ss†〉(s|p)). This formula
emphasizes the high dimensional character of the problem (ndimensions of the signal recon-
struction, with n being typically between103 and109).

2.5.3 Gaussian prior and Gaussian likelihood: the Wiener-filter

The Gaussian prior together with the Gaussian likelihood lead to the Wiener-filter, completing
the square for the signal in the exponent of the posterior distribution (seeZaroubiet al. (1995)
and appendixA.1),

P (s | d,p) ∝ exp

(

−1

2

[

s†S−1s+ (d−Rs)†N−1(d−Rs)
])

∝ exp

(

−1

2

[

(s− 〈s〉WF)†(σWF
2)−1(s− 〈s〉WF)

])

, (2.20)

where the Wiener-filter used to calculate the estimator fromthe data〈s〉WF = FWFd is given
by

FWF = (S−1 +R†N−1R)−1R†N−1, (2.21)

and the corresponding covariance is

σ2
WF = 〈rr†〉WF = (S−1 +R†N−1R)−1, (2.22)

with r = s − 〈s〉WF being the residual. The Wiener-filter can also be obtained asthe LSQ
estimator1 (for an explicit derivation seeZaroubiet al., 1995, and appendixA.2) leading to
the following expression

〈s〉WF = 〈s〉LSQ = 〈sd†〉〈dd†〉−1d, (2.23)

where the correlation matrix of the signal and the data (〈sd†〉) is multiplied by the inverse
of the autocorrelation matrix of the data (〈dd†〉−1). Given that the signal and the noise are
uncorrelated (〈sǫ†〉 = 0), the correlation matrix of the signal and the data reduces to: 〈sd†〉 =
SR†. Thus, eq. (2.23) can be reformulated as

FWF = SR†(RSR† +N )−1. (2.24)

We show in appendix (A.3) that both expressions for the Wiener-filter (eqs.2.21and2.24) are
equivalent. From now on, we will call eq. (2.24) the direct representation of the Wiener-filter,
and eq. (2.21) the inverse representation of the Wiener-filter.

1Note that in this case, the least squares are referred to the residualsr, i.e. the difference between the real signal
s and the estimated signal〈s〉LSQ: ||r||2 = ||s − 〈s〉LSQ||

2, where the prior ons is given in a more implicit way
by assuming a linear relation between the estimator and the data and statistical homogeneity.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

The following notation can be introduced for the posterior PDF

P (s | d,p) ∝ G(s − 〈s〉WF,σ
2
WF), (2.25)

i.e. given a datasetd derived from a Gaussian process, the possible signals are Gaussian dis-
tributed around the Wiener-filter reconstruction〈s〉WF with a covarianceσ2

WF. The parameters
p enter the operatorR, including also the cosmological parameters that determine the signal
covariance matrixS. We will discuss in section (2.6) how to sampleS and to determine cos-
mological parameters.

A remarkable characteristic of the Wiener-filter is that it suppresses the signal in the pres-
ence of a high noise level resulting in the null estimator andgives just the deblurred data when
noise is negligible. In this sense it is a biased estimator, since its covariance matrix has less
power than the original one. Some attempts have been made to derive an equivalent unbiased
estimator (seeZaroubi, 2002b). However, one might be especially interested in obtaininga
conservative estimator. Sampling the joint PDF will fill themissing modes (see e.g.Wandelt
et al., 2004) and in this way complete the signal in regions where it is under-sampled or the sig-
nal to noise ratio is low. It is interesting to note that the Wiener Filter coincides with the MAP
estimator in the case of a Gaussian prior ons and a Gaussian likelihood (〈s〉WF = 〈s〉MAP).
Performing the integral of the conditional PDF (see eq.2.6) one obtains the same estimator
again, thus〈s〉WF = 〈s〉(s|d,p). This is a very important result, since it permits one to sample
the conditional PDF. We propose to exploit this property forthe joint estimation of the signal
and its power-spectrum as is done in the CMB (seeWandeltet al. (2004) and section5.3.2).

2.5.4 Gaussian prior and Poissonian likelihood: the GAPMAPestimator

The Gaussian likelihood constitutes a valid approximationwhen the Poissonian character of the
distribution is appropriately modeled in the noise correlation matrixN . However, one would
rather describe a discrete sampling process like a galaxy survey with a Poissonian likelihood.
Unfortunately, there is no filter available for such a case. Thus, we present a novel iterative
equation for the MAP estimator with a Gaussian prior and a Poissonian likelihood, which we
call GAPMAP (see appendixA.5 for a derivation)

sj+1 = SR†bng

(

−~1 + diag
(

Rng(~1 + bsj) + c
)−1

(d′ + c)

)

. (2.26)

2.5.5 Flat prior

With the aim of deriving objective posterior distributions, non-informative prior distributions
are introduced. A non-informative prior would suggest thatany value is reasonable. Flat
priors where the probability distribution is assumed to be constantP (s) = const are thus
very often applied. Note, however, that these are improper priors, since the integral of these
distributions diverges to infinity. In this case, the posterior is proportional to the likelihood.
The maximum likelihood solution coincides in this way with the MAP estimator assuming a
flat prior (〈s〉ML = 〈s〉MAP|flat).
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2.5 The prior

2.5.6 Flat prior and Gaussian likelihood: the COBE-filter

In CMB map-making algorithms it is common to use the so-called COBE-filter (seeJanssen
& Gulkis, 1992; Tegmark, 1997), which can easily be derived by maximizing the likelihood
given in eq. (2.11)

FCOBE = (R†N−1R)−1R†N−1. (2.27)

This filter has the property that among all unbiased linear estimators (with a noise of zero
mean), it leads to the minimum variance (Natoli et al., 2001). Here unbiased means that the
statistical mean of the estimator is equal to thetruesignal. This is, however, only fulfilled when
the inverse ofR†N−1R exists (see appendixA.7). The covariance for the COBE-filter can
found to be

σ2
COBE = 〈rr†〉COBE = (R†N−1R)−1. (2.28)

Note that, in general, the following relation holds:σ2
WF ≤ σ2

COBE, as a comparison to
eq. (2.22) shows.

Tegmark(1997) claims that several linear filters like the COBE or the Wiener-filter con-
serve information by comparing the Fisher information matrix corresponding to the filtered
signal to the one of the un-filtered time ordered data. This property apparently permits one
to perform cosmological parameter estimation from the reconstructed signal after filtering the
data. However, linear filters conserve information only if they are invertible, which is not pro-
vided for realistic cases as we show in appendixA.8. A consistent estimation of cosmological
parameters has to be done in a full Bayesian framework by estimating the joint PDF of the
signal and the parameters, as we will see in section (2.6) (Wandeltet al., 2004).

2.5.7 Flat prior and Poissonian likelihood: the Richardson-Lucy algorithm

A widely used deblurring algorithm in astronomy and medicaltomography is the Richardson-
Lucy algorithm (Lucy, 1974; Richardson, 1972), which was shown to be the maximum likeli-
hood solution with a Poissonian likelihood byShepp & Vardi(1982). We show the derivation
in appendixA.6, as a simplified case with respect to eq. (2.26). The Richardson-Lucy algo-
rithm cannot prevent serious noise amplifications in the restoration process (see e.g.Carasso,
1999). This is a natural consequence when a prior that regularizes the solution is missing. A
toy application is presented in fig. (4.5).

2.5.8 Jeffrey’s prior

Other non-informative priors have been suggested based on invariant statistical structures under
transformation of variables in a Bayesian formalism. Considering a one-to-one transformation
in the one-dimensional case of the parameter:φ = f(θ), the equivalence between the respective
prior densities is expressed by

P (φ) = P (θ)

∣
∣
∣
∣

dθ

dφ

∣
∣
∣
∣
= P (θ)

∣
∣f ′(θ)

∣
∣−1

. (2.29)
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

This relation is satisfied by Jeffrey’s priorP (θ) ∝ [J(θ)]1/2, whereJ(θ) is the Fisher informa-
tion1

J(θ) ≡ 〈
(
∂ logP (d|θ)

∂θ

)2

〉(d|θ) = −〈∂
2 logP (d|θ)

∂θ2
〉(d|θ), (2.30)

and where we have assumed the following regularity condition
∫

dd ∂2

∂θ2P (d | θ) = 0. Relation

(2.29) can be proved easily by doing the evaluationJ(φ) = −〈∂2 log P (d|φ)
∂φ2 〉(d|θ) = J(θ)

∣
∣
∣
dθ
dφ

∣
∣
∣

2

(see e.g.Gelmanet al., 2004). Note, however, that in the multidimensional case, Jeffrey’s prior
may lead to incoherences or even paradoxes (see e.g.Berger & Bernardo, 1992; Robert, 2001).
Jeffrey’s prior is applied adequately, when not even the order of magnitude of the parameter to
be estimated is known a priori. We derive Jeffrey’s ignorance prior for the 3-D power-spectrum
(S = diag(PS(k)))1 in appendixA.9 (see section5.3.2for an application of this prior).

2.5.9 Entropic prior and Maximum Entropy method

Another approach searches the least informative model compatible with the data using a prior
based on Boltzmann’s definition of entropySE 2 (or equivalently, Shannon’s notion of infor-
mation, seeShannon, 1948),

P (s | p) = exp(αSE), (2.31)

and maximizing the resulting posterior distribution, beingα some constant, ands the so-called
hidden image (or signal). This inference procedure is called the Maximum Entropy method
(MEM) (Frieden, 1972; Gull, 1989; Gull & Daniell, 1978; Hobsonet al., 1998; Jaynes, 1963,
1968; Maisingeret al., 1997; Skilling, 1989). For a review seeNarayan & Nityananda(1986).
From now on we will represent the underlying signal bys in the framework of MEM. The
MEM can be considered as MAP estimation with an entropic prior.

The particular expression for the entropy depends on the statistical formulation of the non-
informative prior. Let us think of a positive signal as a gridwith q cells, with each celli
having a certain intensity valuesi, i = 1, . . . , q, with an uncertainty on each value given by
±α−1. Then we define some discretequantani on each cell related to the intensity through
the uncertainty:ni = αsi. The signal can be guessed by distributing theni quantasin the grid.
In this way, the image is modeled in this way analogously to the energy configuration space of
a thermo-dynamical system. If we further demand each cell tobe iid, the number of ways this
object can occur is given by the multiplicity

W =
Nq!

n1!n2! . . . nq!
, (2.32)

1The generalization to the multidimensional case leads to the following matrix form: J ij(θ) ≡

〈 ∂ log P (d|θ)

∂θi

∂ log P (d|θ)

∂θj

〉
(d|θ)

(see appendixA.8).
1Here the autocorrelation matrixS is represented in k-space. We will discuss this in further detail in section

(3.3).
2Not to be confused by the signal autocorrelationS.
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2.5 The prior

with Nq being the total amount ofquantasto be distributed in all cells (Nq =
∑

i ni). The
probability of any particular result is then given by the multinomial distribution

P (s′ | p) = Wq−Nq . (2.33)

Sutton & Wandelt(2006) propose to sample from the multiplicity function directlyto perform
reconstructions in radioastronomy. By using Stirling’s formula for the factorials (n! ∼ nne−n)
we can write

logP (s′ | p) = −α
∑

i

s′i log s
′
i + const. (2.34)

Comparing this expression with eq. (2.31), we recover Shannon’s definition of entropy (SE
+ =

∑

i s
′
i log s

′
i)

3. The expression that is commonly used for the entropy is a generalization of
Shannon’s formula by Skilling that can be derived based onlyon consistency arguments within
probabilistic information theory for positive and additive distributions (PADs) (Skilling, 1989).

This generalization implies the definition of a Lebesgue measure (m) for the integral of
some function of the hidden image to represent the entropy

SE
+(s′ | p) =

∑

i

[

s′i −mi − s′i log
(
s′i/mi

) ]

, (2.35)

here in its discretized form. Skilling’s expression for theentropy can also be derived by con-
sidering ateam of monkeysthrowing balls atq cells at random with Poissonian expectationµi:
P (n|µ) =

∏

i µ
ni
i e

−µi/ni!, whereni = αsi andµ = αmi (Skilling, 1989). For a review on
further expressions for the entropy seeMolina et al. (2001).

The global maximum ofSE over s in the absence of further constraints is found to be
s′ = m. Consequently,m can also be thought of as a prior model for the image. However,
this expression for the entropy will allow reconstructing positive signals only.Zaroubiet al.
(1995) propose to defines′ = ρ andm = ρ0, to avoid the possibility of having a negative
distribution fors.

According toGull & Skilling (1990) the MEM can be extended to reconstruct distributions,
which can be either positive or negative, as in the case of density fluctuations. Such distribu-
tions can be described as the difference between two subsidiary positive distributions (PADs)

s = u− v, (2.36)

relative to a common modelm 1

SE
±(u,v | p) =

∑

i

[

ui − 2mi − ui log(ui/mi)
]

+
∑

i

[

vi − 2mi − vi log(vi/mi)
]

. (2.37)

One can see from eq. (2.36) that∂SE
±/∂u = −∂SE

±/∂v, hence yielding

uv = m2. (2.38)

3The “+” symbol inSE
+ denotes that the definition is only valid for positive signalss′.

1The “±” symbol inSE
± denotes that the definition is valid for positive and negative signalss.
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

From the relations given by eqs. (2.36) and (2.38), it is easy to derive

u =
1

2
(w + s), (2.39)

v =
1

2
(w − s), (2.40)

with wi = (s2i + 4m2
i )

1/2. Using these expressions, the total entropy can be rewritten as

SE
±(s | p) =

∑

i

[

wi − 2mi − si log
(

(wi + si)/2mi

)]

. (2.41)

The Maximum Entropy method gives a non-linear estimator of the underlying signal that one
wants to reconstruct. This method is especially interesting to study deviations from Gaussianity
(Hobsonet al., 1998; Maisingeret al., 1997). It is equivalent to maximizeχ2 with a Lagrangian
multiplier, which includes a penalty function given by the entropy. Maximum Entropy in this
context searches the hidden image that adds the least additional information to the data.

The quantity we need to maximize is given by

QE(s | p) = αSE(s | p) + log L(s | d,p), (2.42)

where thelog L is given by eq. (2.12) or eq. (A.29). The equation we want to solve is

∇QE(s | p) = 0. (2.43)

In section (3.2), different iterative algorithms to solve this non-linearproblem will be dis-
cussed. The required expressions for the gradient ofQE and its curvature for positive and
positive/negative expressions of the entropy (eqs.2.35 and2.41) and for both Gaussian and
Poissonian likelihoods are presented in appendixA.10.

Note that in the limit of low density fluctuations, i.e. in thelinear regime, the expression
of the entropy reduces to the quadratic entropy (eventuallywith an offset of the origin ofs),
SE(s | p) ≃ −∑

i s
2
i /2mi. This expression is very similar to a Gaussian prior for the signal

with a variance given bym. In that case Maximum Entropy leads to the Wiener-filter.

2.6 Markov Chain Monte Carlo: sampling the joint PDF

The drawback of the maximization methods hitherto mentioned, is that they find a unique
estimator that is most probably subject to the chosen valuesfor the required parameters. As
already mentioned, the complete characterization of a system is contained in the joint PDF in
the product space of possible signals and parameters. Thus,it would be desirable to sample
from this PDF to find the region of highest confidence for our estimator. This is possible using
Markov Chain Monte Carlo (MCMC). The importance of samplingfrom the joint PDF and the
viability of doing that with MCMCs has already been discussed in other contexts in astronomy
(Hobson & McLachlan, 2003; Jewell et al., 2004; Wandeltet al., 2004). With the MCMC
method, the whole system can be moved in its configuration space by updating all variables
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2.6 Markov Chain Monte Carlo: sampling the joint PDF

successively in a Monte Carlo fashion, until the system relaxes (burns-in) and reaches the
highest density region.

The expectation of thei-th parameter (θi) can be calculated by the so-called ergodic aver-
age, which is given by the mean of the sample

〈θi〉(θ|d) ≃
1

Nb

Nb−1
∑

t=0

θi
t, (2.44)

with Nb being the size of the sample drawn once the Markov Chain hasburned-in. In general,
the mean estimator is more reliable than the maximum of the distribution, especially in cases
with deviations from Gaussianity (see e.g.Gelmanet al., 2004). The MCMC method permits
one to approximately solve the integral in eq. (2.4) through expression (2.44).

2.6.1 Gibbs sampling

The most straightforward MCMC method is the Gibbs sampler (Geman & Geman, 1984),
also known as theheatbathalgorithm. The Gibbs algorithm samples from the joint PDF by
repeatedly replacing each component with a value drawn fromits distribution conditional on
the current values of all other components. This process canbe seen as a Markov Chain with
transition probabilitiesπk for k = 1, ..., n,

πk(θ,θ
′) = P (θ′k | {θi : i 6= k}) ·

∏

i6=k

δK(θi, θ
′
i), (2.45)

where{θi : i 6= k} = (θ1, ..., θk−1, θk+1, ..., θn) (see e.g.Neal, 1993) andδK is the Kroenecker

delta-function. The Gibbs sampler starts with some initialvaluesθ(0) = (θ
(0)
1 , ..., θ

(0)
n ) and

obtains new updatesθ(j) = (θ
(j)
1 , ..., θ

(j)
n ) from the previous stepθ(j−1) through successive

generation of values

θ
(j)
1 ∼ P (θ1 | {θ(j−1)

i : i 6= 1})
θ
(j)
2 ∼ P (θ2 | θ(j)

1 , {θ(j−1)
i : i > 2})

...

θ(j)
n ∼ P (θn | {θ(j)

i : i 6= n}) (2.46)

In this way a random walk on the vectorθ is performed by making subsequent steps in low-
dimensional subspaces, which span the full product space. This is similar to individual col-
lisions of particles in a mechanical system that drives a many-body system to an equilibrium
distribution for all degrees of freedom. We are especially interested in this sampling method
because of its efficiency that permits us to tackle large dimensional problems in contrast to
other algorithms, which include acceptance and rejection rules. SeeWandeltet al. (2004) for
applications in CMB-mapping and power-spectrum estimation. However, in the case where the
particular distribution function is unknown or cannot be explicitely expressed rejection sam-
pling methods will be necessary (see section5.3.1), like the Metropolis-Hastings algorithm
(Hastings, 1970; Metropoliset al., 1953).
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2. BAYESIAN APPROACH TO SIGNAL RECONSTRUCTION

The MCMC method can be applied to perform simultaneously thereconstruction of the
density field and the estimation of other parameters, such asthe power-spectrum, the peculiar
velocities, the bias, or the comological parameters (see fig. 1.1). We present in chapter (5) two
novel applications of this method to power-spectrum estimation and redshift-distortion correc-
tions, which can also be used in a joint algorithm. Note, thata higher degree of complexity
can be achieved in the schemes we present in chapter (5) by going beyond linear perturbation
theory or considering higher moments of the density field.
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Chapter3
Numerical method

El modo de dar una vez en el clavo es dar cien veces en la herradura.

Miguel de Unamuno

I n order to efficiently sample the joint PDF, as it is required in MCMC methods (see section
2.6), fast inverse algorithms need to be considered to regularize the solution. General itera-

tive inverse methods scale asO(n3) since they imply matrix multiplications of an× n matrix
in an iterative fashion (at mostn-steps until convergence). This makes the study of the joint
PDFs as presented in section (2.6), at a first glance, un-feasible. However, a proper formu-
lation of the problem in an operator formalism allows treating the matrices as operators that
have to be neither calculated nor stored. Within this operator formalism, the inversion methods
we present here sped up to a scaling ofO(n log2 n). We start with a general formulation of
iterative methods and subsequently present the different schemes that we have implemented
in ARGO. Since a preconditioning treatment can dramatically enhance the performance of it-
erative schemes (see our numerical experiments in section4), we pay special attention to this
point in the derivation of the different schemes.

3.1 Iterative inverse and regularization methods: a unifiedformu-
lation of different linear methods

Let us consider a regionD in then-dimensional Euclidean spaceEn and denoteL2(D) the
Hilbert space of all complex measurable square integrable functions

∫

D dnz|g|2(z) <∞ with
inner product1

〈g|s〉 =

∫

D
dnzg(z)s(z), (3.1)

and norm ofg ∈ L2(D)
||g|| = 〈g|g〉1/2. (3.2)

1Here a Dirac type notation is introduced. It should not be confused with the ensemble average notation, which
does not have a balk in-between.
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Let Ψ be a subspace of the Hilbert spaceL2(D) with the conditions that every elementψ ∈ Ψ
must satisfy being smoothness, limit behavior at the boundary D, etc. Let us now consider the
linear operatorA, defined on the linear manifoldΨ, and suppose thatA is a positive definite,
i.e. 〈Aψ|ψ〉 ≥ 0 1 for all ψ ∈ Ψ. The kind of inverse problem we are interested in belongs to
the stationary problems of the form

Aψ = f , (3.3)

since, for example, for the COBE-filter we have to invertA〈s〉COBE = R†N−1d, with
ψ = 〈s〉COBE,A = R†N−1R andf = R†N−1d, and for the Wiener-filtering we have
ψ = (SR†)−1〈s〉WF, A = (R†SR + N ) andf = d. Eq. (3.3) has the same structure as
eq. (2.2), but without a noise term. Hence, a regularization method is again required.

3.1.1 Minimization of the quadratic form

Another way of approaching the linear inverse problem is theminimization of a quadratic form
given by

QA(ψ) =
1

2
〈Aψ|ψ〉 − 〈f |ψ〉+ c. (3.4)

The gradient ofQA leads to

dQA
dψ

(ψ) ≡ Q′
A(ψ) = Aψ − f , (3.5)

assuming that the operatorA is self-adjoint. Setting the gradient to zero, one obtains eq. (3.3).
The surface defined by a quadratic form with a positive definite matrixA is shaped like a
paraboloid bowl (see e.g.Shewchuk, 1994). This ensures the existence of a unique minimum
or, equivalently, the convergence of appropriate algorithms.

3.1.2 Solution of the non-stationary problem: asymptotic regularization

Here, a unified framework for the regularization methods that we have implemented in ARGO

is given based on the asymptotic regularization. Nevertheless, an original Bayesian motivation
to the asymptotic solution is presented in appendixB.2.

The stationary problem (eq.3.3) can be replaced by a non-stationary equation, which re-
laxes to the equilibrium solution

∂ψ

∂t
+Aψ = f . (3.6)

We seek solutions of the form
ψ =

∑

l

ψlul, (3.7)

with a spectrum for the operatorA
Aul = λlul. (3.8)

1This expression can be written in matrix notation asψ†Aψ ≥ 0, whereψ† is the conjugate and transpose of
the vectorψ.
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Expandingf in this basis, yields
f =

∑

l

flul. (3.9)

Then we get the following relations for the Fourier coefficients in the stationary case

λlψl = fl, (3.10)

and for the non-stationary case

∂ψl(t)

∂t
+ λlψl(t) = fl, ψl(0) = 0, (3.11)

which lead to the following solutions

ψ =
∑

l

fl

λl
ul, (3.12)

and

ψ(t) =
∑

l

fl

λl
(1− e−λlt)ul, (3.13)

for the stationary and non-stationary cases, respectively. Since the spectrum of a positive defi-
nite operatorA is real,λl > 0, it follows thatlimt→∞ψ|non−stationary = ψ|stationary.

The non-stationary problem can be solved using difference methods with respect to t

ψj+1 = ψj + τ jM j(f −Aψj), (3.14)

with {M j} being a set of non-singular matrices1 and{τj} being a sequence of real parameters.
Here we concentrate on a constant, self-adjoint matrixM . Let us rewrite eq. (3.14) as

ψj+1 = ψj + τ jMξj , (3.15)

with the residuals given by
ξj = f −Aψj. (3.16)

The error vectors are defined as
ηj = ψj −ψ∗, (3.17)

whereψ∗ = A−1f is the exact solution. The matrixM and the real number{τj} are chosen
to speed up the convergence.M usually represents the preconditioning of eq. (3.14) andτj
can be interpreted as the time step (see appendixB.3), and is also called relaxation parame-
ter. Here truncation regularization occurs by quitting theiteration loop. Some stopping rules
are therefore required. In the case where no noise regularization was conducted in the first
step, they crucially define the noise regularization. In theother cases, they mostly determine
algorithmic performance and accuracy. At this point we are interested in the regularization
for the inverse purpose, since we have already found expressions which regularize the noise

1We implicitly generalized eq. (3.6) to∂ψ(t)/∂t = M (t)(f −Aψ), where the auxiliary matrixM is chosen
to speed up convergence.
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(e.g. Wiener-filter, or MEM). However, the results presented in section4 show that in some
cases truncation leads to better results (see discussion insection4.2.6). In the following sec-
tions, we will show how different iterative schemes are based on the general formula given
by eq. (3.14). It is worth mentioning that other methods that we do not discuss in this thesis,
like the algebraic reconstrcution technique (ART, seeGordon, 1974), can also be expressed
through this formula.

3.1.3 Jacobi method

The Jacobi iteration method splits the operatorA in two matrices

A = D +B, (3.18)

whereD contains the diagonal elements ofA andB contains the off-diagonal elements. From
eq. (3.3) one follows

ψ = D−1(f −Bψ). (3.19)

SubstitutingB byA−D one gets the following iteration scheme

ψj+1 = ψj +D−1(f −Aψj). (3.20)

The Jacobi method turns out to be a particular case of the iteration scheme given by eq. (3.14)
with a preconditioning matrix given byM =D−1 and τ j = 1. This method can, must be
optimized by increasing the timestepτ j by a certain percentage if the solution converges and
decreasing the timestep if the solution diverges. An optimal timestep is hard to find, because
the spectrum of the operatorA has to be known (see appendixB.3).

3.1.4 Steepest Descent method

The steepest descent method searches the minimum of the quadratic form by choosing the
direction in whichQA decreases most rapidly. This direction is given by the residual

−Q′
A(ψj) = f −Aψj = ξj . (3.21)

The form of the iteration scheme is thus given by eq. (3.15), with the length of the step in
the direction of the residual given byτ j . Steepest descent looks for the optimal length which
minimizes the quadratic form with respect toτ j

0 =
dQA
dτ j

(ψj+1) = 〈Q′
A(ψj+1)|dψ

j+1

dτ j
〉 = 〈ξj+1|Mξj〉. (3.22)

This implies that subsequent searching directions must be orthogonal (sayM = I). Starting
from this condition it is straightforward to derive the expression forτ j . It is only necessary to
use the definition of residual forξj+1 and substituteψj+1 from eq. (3.15).

τ j =
〈ξj |Mξj〉

〈AMξj |Mξj〉
. (3.23)
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3.1 Iterative inverse and regularization methods

Nl 〈ξj+1|Mξj+1〉 〈ξj+1|M∆ξ〉 〈∆ξ|M∆ξ〉 −〈Mξj+1|Mµj〉A
Dm −〈ξj |Mξj〉

〈ξj |Mξj〉 FR PR N3/D1 —
〈µj |Mξj〉 N1/D2 N2/D2 N3/D2 —

−〈ξj |M∆ξ〉 N1/D3 N2/D3 N3/D3 —
−〈µj |M∆ξ〉 N1/D4 HS N3/D4 —
−(〈∆ξ|M∆ξ〉 N1/D5 N2/D5 N3/D5 —

−〈ξj+1|Mξj+1〉)

〈Mµj |Mµj〉A — — — EXP

Table 3.1: Formulae for theβ-factor: βj+1

lm = Nl

Dm
, where we have used the following definition:

∆ξ ≡ ξj+1 − ξj . Three of the methods are discussed in the literature:FR (Fletcher-Reeves),PR
(Polak-Ribìere, andHS (Hestenes-Stiefels). The rest of the formulae are derived in this thesis using
equivalence relations derived in appendicesB.1.1-B.1.3. TheFR and thePR methods are tested against
theEXP algorithm in section (4).

Both the calculation of the factorsτ j and the residualsξj imply applying the operatorA, each
time on different vectors. It is possible, however, to reduce the operation ofA to the same
vector for every iteration, but the residuals, must be calculated in a different way. Multiplying
both sides of eq. (3.15) by−A and addingf , one obtains the following relation for the residuals

ξj+1 = ξj − τ jAMξj. (3.24)

Notice that the vectorAMξj already appears in the expression forτ j , and consequently saves
one operation. However, expression (3.16) has to be periodically used with the feedback ofψj,
to avoid the accumulation of floating-point roundoff error.The disadvantage of this method is
that it ends up searching repeatedly in the same direction. This is especially severe when the
quadratic form is highly deformed, which occurs when the matrix A deviates from the unity
matrix. We will see, however, that steepest descent competes with any other method when the
preconditioning is effective, and thus the stretched shapeof the quadratic form is brought close
to a spherical symmetric shape. Preconditioning should notimply too many operations; that
is the reason why the inverse of the matrix, which contains only the diagonal elements ofA,
is usually taken for preconditioning. This will work especially fine when the operatorA is
diagonally dominant, which in our case occurs when nearly full-sky data are available.

3.1.5 Krylov methods: Conjugate Gradients

To make the iteration scheme more efficient, Conjugate Gradients proposes to search each time
in a different direction. This is achieved by imposingA-orthogonality to two different (i 6= j)
searching vectorsµi andµj

〈µj |µi〉A ≡ 〈Aµj|µi〉 = 0, (3.25)

which are then said to be conjugated. In the preconditioned case, the searching vectors are
multiplied byM so that the conjugacy has to be formulated in the following way:
〈Mµj|Mµi〉A = 0 (for i 6= j).
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The iteration scheme is given by substituting the residualsin eq. (3.15) by the new searching
vectors{µj}

ψj+1 = ψj + τ jMµj . (3.26)

By subtractingψ∗ we obtain an equation for the errors,

ηj+1 = ηj + τ jMµj. (3.27)

Taking into account the relation between the residuals and the errors

ξj+1 = −Aηj+1, (3.28)

we can derive the recurrent formula for the residuals

ξj+1 = −A(ηj + τ jMµj) = ξj − τ jAMµj. (3.29)

Here again, expression (3.16) has to be used periodically with the feedback ofψj to avoid
the accumulation of floating-point roundoff error. The optimal length of the step is found by
minimizing the quadratic form

0 =
dQA
dτ j

(ψj+1) = −〈ξj+1|Mµj〉 = 〈ηj+1|Mµj〉A. (3.30)

Substituting expression (3.27) in (3.30) we then obtain

τ j = − 〈ηj|Mµj〉A
〈Mµj |Mµj〉A

=
〈ξj |Mµj〉

〈Mµj |Mµj〉A
. (3.31)

It can be shown that this formula is equivalent to the following expression

τ j =
〈ξj |Mξj〉

〈Mµj|Mµj〉A
, (3.32)

using〈ξj|Mµj〉 = 〈ξj|Mξj〉 (see appendixB.1).
To generateA-orthogonal searching vectors one could think of Gram-Schmidt-conjugation

µj = ξj +

j−1
∑

k=0

βjkµk. (3.33)

Here it was assumed that the residuals{ξj} form a set of linearly independent vectors (see
appendixB.1). The expression for the factorsβjk can be derived by callingA-orthogonality
in eq. (3.33)

〈Mµj|Mµi〉A = 〈Mξj |Mµi〉A +

j−1
∑

k=0

βjk〈Mµk|Mµi〉A

0 = 〈Mξj |Mµi〉A + βji〈Mµi|Mµi〉A. (3.34)
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3.1 Iterative inverse and regularization methods

One obtains the following formula for the factors

βji = −〈Mξj|Mµi〉A
〈Mµi|Mµi〉A

, (3.35)

wherei < j according to eq. (3.33)1.
This method seems to require too much memory, as apparently all previous searching vec-

tors must be stored to calculate the new one. However, only one β-factor remains in the sum
in eq. (3.33), as we show in appendixB.1.3. Hence, Gram-Schmidt orthogonalization can be
simplified to the following expression

µj+1 = ξj+1 + βj+1µj, (3.36)

where

βj+1
EXP ≡ βj+1 ≡ βj+1 j = −〈Mξj+1|Mµj〉A

〈Mµj |Mµj〉A
, (3.37)

with EXP meaning expensive, since the nominator ofβ apparently requires an extraA oper-
ation. This additional operation can be saved by taking the vectorAMµj from τ j or with
alternative methods (see appendixB.1), like the Fletcher-Reeves method (Fletcher & Reeves,
1964)

βj+1
FR =

〈ξj+1|Mξj+1〉
〈ξj|Mξj〉

, (3.38)

the Polak-Ribìere formula (Polak & Ribìere 1969)

βj+1
PR =

〈ξj+1|M (ξj+1 − ξj)〉
〈ξj|Mξj〉

, (3.39)

or the Hestenes-Stiefel expression (Hestenes & Stiefel, 1952)

βj+1
HS = −〈ξ

j+1|M(ξj+1 − ξj)〉
〈µj|M (ξj+1 − ξj)〉

. (3.40)

However,βEXP turns out to be a very efficient scheme, which behaves far morestably than
the rest (see section4). Since theβ-formulae (eq.3.37-3.40) are mathematically equivalent,
one could think of combining them in a single scheme finding numerically different solutions.
However, this kind of hybrid scheme remains to be thouroughly studied.

Formula (3.36) shows that new searching vectors are built from a linear combination of the
current residual and the previous searching vector. Since the subsequent residuals are given
by the linear combination of the previous residual and theA-operator applied to the searching
vector, the manifold where the solution is being searched isspanned by the residuals and the
so-called Krylov space. The latter is built by applying theA operator to the basis vector
successively. In this manifold, curved quadratic forms appear to be spherical and thus the

1Note that the sign ofβ depends on the definition of the Gram-Schmidt conjugation. An alternative definition
with the negation of the residuals would cancel the minus sign in eq. (3.35). The sign ofβ can be regarded as a free
parameter.
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searching process becomes more effective. It is possible toderive the Conjugate Gradients
method by minimizing theA-norm of the error:min||η||A (see e.g.Marchuk, 1982). In this
sense an optimal solution to the inverse problem can be foundeven if no unique solution exists.
Conjugate Gradients works, even if the operatorA is not a positive definite (for a discussion
see e.g.Shewchuk, 1994). It can easily be shown that Conjugate Gradients convergesat most
in n-steps, withn being the number of pixels/vector columns (see e.g.Shewchuk, 1994).

3.2 Non-linear inverse methods

Non-linear inverse methods are especially required in reconstruction algorithms that do not
assume a Gaussian distribution. The iterative method givenin eq. (2.26), which makes use of
a Poissonian likelihood, can alternatively be solved with the methods presented in this section.
The same applies to the MEM, where zeros of the non-linear eq.(2.43) have to be found.

The generalization of the regularization methods to non-linear inverse problems is possible
with methods like Tikhonov regularization as mentioned in section (2.5) or like asymptotic reg-
ularization as will be shown below (a relation between both methods is shown in appendixB.2).
However, the proofs of the convergence properties are different since the spectral theoretical
foundation is missing here. We refer the reader to e.g.O’Sullivan (1990).

Let us generalize eq. (3.3) to non-linear equations of the form

A(ψ) = f , (3.41)

withA being a non-linear operator, and solve the non-linear and non-stationary equation given
by

∂ψ

∂t
+A(ψ) = f , (3.42)

with the forward Euler method. Discretizing the solution yields

ψj+1 = ψj + τ jT (ψj)(f −A(ψj)), (3.43)

with T being also a non-linear operator, typically given by∇A† or ∇A−1, though more
complicated expressions exist (see the Levenberg-Marquardt method or the regularized Gauss-
Newton method,Hanke 1997or Bakushinskii 1992andBlaschkeet al.1997, respectively).

3.2.1 Newton-Raphson method

One of the most extended non-linear inverse methods is the so-called Newton-Raphson method
(for an application in MEMs seeHobsonet al., 1998; Maisingeret al., 1997), which can easily
be derived by doing a Taylor expansion of the function under study and truncating it at the first
order

ψj+1 = ψj + (∇A(ψj))−1(f −A(ψj)). (3.44)

This method requires the inverse of the gradient ofA, which for the cases we are interested
in is the inverse of a Hessian matrix. Recalling the problem of finding extrema of a function
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3.2 Non-linear inverse methods

as presented in section (3.1.1) and taking into account eq. (3.21), the previous equation can be
rewritten as

ψj+1 = ψj − (∇∇QA(ψj))−1∇QA(ψj), (3.45)

where∇∇QA ≡ ∂QA/∂ψ
l∂ψm is the Hessian matrix ofQA. For a direct derivation of

this equation, we require a Taylor expansion until the second order ofQA, which is where the
non-linearity arises. The MEM can be solved (eq.2.43) with expression (3.45) by doing the
substitutions:QA → QE andψj → sj . Here the quantityQE is implicitly approximated by
its quadratic expansionQA. Calculating the inverse of the Hessian(∇∇QA(ψj))−1 implies
solving a linear ill-posed problem in each iteration of the scheme (3.45). Some solutions have
been found to regularize this scheme, like the Levenberg-Marquardt method (seeHanke, 1997)
or the regularized Gauss-Newton method (see e.g.Bakushinskii, 1992; Blaschkeet al., 1997).

3.2.2 Landweber-Fridman method

Alternative algorithms to the above mentioned Newton-Raphson class of methods do not need
to invert the Hessian matrix and can thus simultaneously speed up and stabilize the inversion
process. The Landweber-Fridman algorithm belongs to the class of methods based on steepest
descent

ψj+1 = ψj + (∇A(ψj))†(f −A(ψj)). (3.46)

Making the same substitutions as for eq. (3.45), we obtain

ψj+1 = ψj − (∇∇QA(ψj))†∇QA(ψj). (3.47)

Here just the adjoint of the Hessian must be taken(∇∇QA(ψj))†. For a convergence analysis
of this method seeHankeet al. (1995).

3.2.3 Non-linear Krylov methods

Another class of methods that do not require one to invert theHessian matrix are the Krylov-
based methods, which we have exposed in the previous section. The difference with respect to
the linear case mainly resides in the calculation of the residualsξj and the step sizeτ j. The
residuals are updated now by the negation of the gradient of the quadratic form that approxi-
mates the function under considerationξj = −∇QA(ψj) (see eq.3.21). The step size is given
by

τ j = − 〈∇QA(ψj)|Mµj〉
〈Mµj|Mµj〉

∇∇QA(ψj
)

. (3.48)

The derivation of this expression (see appendixB.1.4) is based on the second order Taylor
expansion ofQA. That is why Krylov algorithms which use this formula are called Newton-
Krylov methods. There are alternative expressions for the time stepτ j where the Hessian
is approximated and does not need to be explicitly calculated, like those using a secant ap-
proximation. For various implementations of non-linear Krylov methods see, for example,
Shewchuk(1994).
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R R† S S−1 S−1/2 N N−1 SR† R†N−1 R†N−1/2 R†N−1R RSR†

C X X X
W X X X X # X# X X# X X# X# X

GM X X X X
MG X X X X X
MP X X

# additional operators required for sampling processes (seeeq.5.22)

Table 3.2: Operators in columns needed for the different estimators inrows, the COBE-filter (2.27), the
Wiener-filter (2.24), the GAPMAP estimator (2.26), and the MEMs (sections2.5.9& 3.2, and appendix
A.10). Note that the trivial diagonal matrices have been left outof this table. The first two estimators are
linear estimators, whereas the rest are non-linear. MEMG and MEMP stand for the Maximum Entropy
method with a Gaussian likelihood and with a Poissonian likelihood, respectively. Note that some of
the operators have to be further inverted either directly, like (R†NR)−1 for the COBE-filter, or in
combination with other operators, like(RSR† +N )−1 for the Wiener-filter. The methods presented
in section (3) show how to do this implicitly by applying the operators in an iterative fashion.

3.3 Operator formalism

The iterative methods presented so far require an operator formalism to become efficient. In this
formalism, matrices should be represented in such a way thattheir action can be expressed as
simple operations, like sums and multiplications. In orderto achieve this, one has to carefully
choose the adequate representation, in which the individual matrix components are diagonal,
though the whole matrix may not be. In this section, we present the different operators under
consideration (see table3.2) in k-space and real-space and discuss their optimal representation.
In this way, we can take advantage of the fast Fourier-transform methods (FFTs) that scale as
n log2 n, with n being the length of the arrays, and which ultimately determine the speed of the
algorithm.

3.3.1 Fourier-transform definitions and dimensionality ofthe problem

Let us introduce the following definitions of theND-dimensional forward and inverse Fourier-
transforms

x̂(k) ≡ FT
[
x(r)

]
≡

∫

dNDr exp(ik · r)x(r), (3.49)

and

x(r) ≡ IFT
[
x̂(k)

]
≡

∫
dNDk

(2π)ND
exp(−ik · r)x̂(k), (3.50)

respectively.
In general, the reconstruction problem has three spatial dimensions (ND = 3), with the

corresponding discrete array lengths for the real-space and k-space vectors given byr =
(rx, ry, rz) andk = (kx, ky, kz). Each component has the following range:rx = Lx

nx
[0, nx −

1], ry =
Ly

ny
[0, ny − 1], rz = Lz

nz
[0, nz − 1] andkx = 2π

Lx
[0, nx − 1], ky = 2π

Ly
[0, ny − 1], kz =

2π
Lz

[0, nz − 1], where the volume of the Universe under consideration is given byV = Lx ×
Ly × Lz in [(Mpc/h)3], and the box containing that volume is divided inton = nx × ny × nz
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cells, withn being the length of the arrayx. In the following, we will treat the operators as
being continuous. However, the discrete implementation can be derived in a straightforward
way (for a discussion on the relation between discrete and continuous representations seeMar-
tel, 2005). Note that the methods presented here can be applied in arbitrary dimensions. The
number of dimensionsND is thus kept as a free parameter.

In our convention, vectors defined in real-space have plain notation (x) and in k-space
they are denoted with hats (x̂). Matrices, however, have two hats in k-space. We represent
convolutions with circles “◦” and multiplications with dots “·”. Due to the convolution theorem,
where convolutions are shown to be multiplications in the counter space, we can either omit
hats if they are present or include them if they are not, and replace circles with dots and vice
versa “· ↔ ◦” to change from one representation to the other. All the numerical iterative
inversion schemes (see section3) of the different reconstruction algorithms (section2) require
only a small number of basic operators, listed in table (3.2). To show how the operators listed
in table (3.2) can efficiently be applied we derive their action on an arbitrary vector.

3.3.2 Data model: the response operator

Let us first remember the data model given in eq. (2.3), and suppose that the operatorRP is
given by a convolution in real-space with some blurring function fB

d(r) ≡
∫

dNDr′ fB(r − r′)fS(r
′)fM(r′)s(r′) + fSF(r)ǫN(r). (3.54)

The operatorR acting on an arbitrary vector{x} is thus given by

R{x}(r) ≡
∫

dNDr′ fB(r − r′)fS(r′)fM(r′){x(r′)}. (3.55)

The selection function and the masks should conveniently bemultiplied in real-space to save
convolutions

fSM(r) ≡ fS(r)fM(r). (3.56)

Accordingly, the same operation as in eq. (3.55) leads to

ˆ̂
R{x̂}(k) = f̂B(k)

∫
dNDq

(2π)ND
f̂SM(k − q){x̂(q)}

︸ ︷︷ ︸

f̂SM◦{x̂}
︸ ︷︷ ︸

(3.57)

f̂B ·
[
f̂SM ◦ {x̂}

]
,

in k-space. Here we have introduced the operator notation inwhich the equations have to be
read from right to left. The braces show the sequence in whichthe subsequent operations have
to be performed in the algorithm. The analogous operation for the adjointR† can be derived
from the definition of the response operator in real space (see eq.3.55) leading to

R†{x}(r) = fS(r)fM(r)

∫

dNDr′ fB(r′ − r){x(r′)}. (3.58)
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ˆ̂
RSR

†{x̂}(k) =

Z
dNDk′

(2π)ND

〈α̂(k)α̂(k′)〉(s,ǫ|p){x̂(k
′)}

= f̂B(k)

Z
dNDq

(2π)ND

f̂SM(k − q)

Z
dNDq′

(2π)ND

PS(q′)(2π)NDδD(q − q′)

Z
dNDk′

(2π)ND

f̂SM(k′ − q′)f̂B(k′){x̂(k′)}

= f̂B(k)

Z
dNDq

(2π)ND

f̂SM(k − q)PS(q)

Z
dNDk′

(2π)ND

f̂SM(k′ − q)f̂B(k′) · {x̂(k′)}

= f̂B(k)

Z
dNDq

(2π)ND

f̂SM(k − q)PS(q)

Z
dNDk′

(2π)ND

f̂SM(q − k′) f̂B(k′) · {x̂(k′)}
| {z }

f̂B·{x̂}
| {z }

f̂SM◦
ˆ
f̂B·{x̂}

˜

| {z }

PS·
ˆ
f̂SM◦

ˆ
f̂B·{x̂}

˜˜

| {z }

f̂SM◦
ˆ
PS·

ˆ
f̂SM◦

ˆ
f̂B·{x̂}

˜˜˜

| {z }

f̂B ·
ˆ
f̂SM ◦

ˆ
PS ·

ˆ
f̂SM ◦

ˆ
f̂B · {x̂}

˜˜˜˜

(3.51)

ˆ̂
R

†
N

−1
N R{x̂}(k)

=
`
f̂B(k)

Z
dNDq

(2π)ND

f̂SM(k − q)
´†

Z
dNDq′

(2π)ND

PN
−1(q′)(2π)NDδD(q − q′)f̂B(q′)

Z
dNDk′

(2π)ND

f̂SM(q′ − k′){x̂(k′)}

=

Z
dNDq

(2π)ND

f̂SM(k − q)f̂B(q)

Z
dNDq′

(2π)ND

PN
−1(q′)(2π)NDδD(q − q′)f̂B(q′)

Z
dNDk′

(2π)ND

f̂SM(q′ − k′){x̂(k′)}

=

Z
dNDq

(2π)ND

f̂SM(k − q) f̂B(q)PN
−1(q) f̂B(q)

Z
dNDk′

(2π)ND

f̂SM(q − k′){x̂(k′)}

| {z }

fSM◦{x̂}
| {z }

f̂B·
ˆ
fSM◦{x̂}

˜

| {z }

PN
−1·

ˆ
f̂B·

ˆ
fSM◦{x̂}

˜˜

| {z }

f̂B·
ˆ
PN

−1·
ˆ
f̂B·

ˆ
f̂SM◦{x̂}

˜˜˜

| {z }

f̂SM◦
ˆ
f̂B·

ˆ
PN

−1·
ˆ
f̂B·

ˆ
f̂SM◦{x̂}

˜˜˜˜

(3.52)

ˆ̂
R

†
N

−1
WNR{x̂}(k)

=

Z
dNDq

(2π)ND

f̂SM(k − q) f̂B(q)

Z
dNDq′

(2π)ND

NWN
−1(q − q′) f̂B(q′)

Z
dNDk′

(2π)ND

f̂SM(q′ − k′){x̂(k′)}

| {z }

fSM◦{x̂}
| {z }

f̂B·
ˆ
fSM◦{x̂}

˜

| {z }

NWN
−1◦

ˆ
f̂B·

ˆ
fSM◦{x̂}

˜˜

| {z }

f̂B·
ˆ
NWN

−1◦
ˆ
f̂B·

ˆ
f̂SM◦{x̂}

˜˜˜

| {z }

f̂SM◦
ˆ
f̂B·

ˆ
NWN

−1◦
ˆ
f̂B·

ˆ
f̂SM◦{x̂}

˜˜˜˜

(3.53)

54



3.3 Operator formalism

Table 3.3:In the previous page the action on an arbitrary vectorx̂ of the most complex operators that appear in
table (3.2) is shown. The upper one is required for Wiener-filtering andrepresents the signal term in the covariance
matrix of the data. The middle and lower ones stand for the inverse of the ML variance (eq.2.28) and are required
for the COBE-filter, the MEMG and for sampling purposes with the Wiener-filter. The equations have to be read
from right to left. The braces show the order in which the operations have to be done from top to bottom. One has
to be very careful with the correct conjugation of the different functions. Note that, contrary to naiv expectations,
the conjugation of the first selection function̂fSM to be applied in the upper operation disappears.

In k-space it yields
ˆ̂
R

†

{x̂}(k) = f̂SM ◦
[
f̂B · {x̂}

]
(k). (3.59)

Note, that this expression can be naturally obtained by calculating the signal term of the data-
autocorrelation matrix (see the upper operator in fig.3.3). In section (4.2.4) we will consider
a Gaussian smoothing of the signal, as could happen through an observational process, where
we test the deconvolution with our scheme. However, the blurring function that we will con-
sider in the rest of our work is given by the mass assignment function, or pixel window, which
describes the effect of representing point sources (such asgalaxies) on a grid. The most pop-
ular assignment functions are the nearest grid point (NGP),the clouds-in-cell (CIC), and the
triangular-shaped cloud functions (TSC). For these schemes, we have (seeHockney & East-
wood, 1981)

f̂B(k) =
[sin (πkx/2kNyx) sin (πky/2kNyy) sin (πkz/2kNyz)

(πkx/2kNyx)(πky/2kNyy)(πkz/2kNyz)

]p
, (3.60)

with p = 1 for NGP,p = 2 for CIC, andp = 3 for TSC, and where the Nyquist frequences are
given bykNyx = π/dLx, kNyy = π/dLy, andkNyz = π/dLz. We use in our work the NGP-
and the CIC-scheme implemented byJasche(2007).

3.3.3 Covariance matrix of the data

The data model consists of two terms

α(r) =

∫

dNDr′ fB(r − r′)fSM(r′)s(r′), (3.61)

and
ǫ(r) = fSF(r)ǫN(r). (3.62)

The same quantities in k-space are given by

α̂(k) = f̂B(k)

∫
dNDq

(2π)ND
f̂SM(k − q)ŝ(q), (3.63)

and

ǫ̂(k) =

∫
dNDq

(2π)ND
f̂SF(k − q)ǫ̂N(q). (3.64)
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Consequently, the covariance matrix of the data is given by the following sum

〈d̂(k)d̂(k′)〉(s,ǫ|p) = 〈α̂(k)α̂(k′)〉(s,ǫ|p) + 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p), (3.65)

where we have assumed that the noise is uncorrelated to the signal, which is consistent with
our data model. Even though the structure function may be correlated with the signal

〈ŝ(k)f̂SF(k′)〉(s,fSF|p) 6= 0, the random noise part is not〈ŝ(k)ǫ̂N(k′)〉(s,ǫ|p) = 0. We will
calculate the different terms of the data covariance matrixand other related operators in the
next sections.

3.3.4 Covariance matrix of the data: the signal term

Here it becomes necessary to choose the Fourier representation, since it is there that the signal-
autocorrelation matrix appears to be diagonal in the form ofa power spectrum (eq.3.66).
Taking into account statistical homogeneity for the signals

〈ŝ(k)ŝ(k′)〉(s|p) = (2π)NDδD(k − k′)PS(k′), (3.66)

with δD being the Dirac-delta function, we can derive the expression for the signal covariance
matrix term

ˆ̂
RSR†(k,k′) = 〈α̂(k)α̂(k′)〉(s|p)

= f̂B(k)

∫
dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(k′ − q)f̂B(k′)

= f̂B(k)

∫
dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(q − k′)f̂B(k′),

For its action on a vector (see fig.3.3), we get

ˆ̂
RSR†{x̂}(k) = f̂B ·

[
f̂SM ◦

[
PS ·

[
f̂SM ◦

[
f̂B · {x̂}

]]]]
(k), (3.67)

and consequently

ˆ̂
SR†{x̂}(k) =

∫
dNDk′

(2π)ND
〈ŝ(k)d̂(k′)〉(s|p){x̂(k′)}

= PS(k)

∫
dNDk′

(2π)ND
f̂SM(k − k′) f̂B(k′) · {x̂(k′)}

︸ ︷︷ ︸

f̂B·{x̂}
︸ ︷︷ ︸

f̂SM◦
[
f̂B·{x̂}

]

︸ ︷︷ ︸

PS ·
[
f̂SM ◦

[
f̂B · {x̂}

]]
. (3.68)

The inverse of the signal-autocorrelation matrix can be solved trivially in Fourier-space:
ˆ̂
S−1 = diag(PS(k)−1). Hence, the inverse square root yieldsˆ̂

S−1/2 = diag(PS(k)−1/2).
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3.3.5 Covariance matrix of the data: the noise term

We assume, analogous to the case of the signal, statistical homogeneity forǫN

〈ǫ̂N(k)ǫ̂N(k′)〉(ǫ|p) = (2π)NDδD(k − k′)PN(k′), (3.69)

and then derive the expression for the noise covariance matrix

ˆ̂
N(k,k′) = 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p)

=

∫
dNDq

(2π)ND
f̂SF(k − q)PN(q)f̂SF(q − k′). (3.70)

Its action on a vector yields

ˆ̂
N{x̂}(k) =

∫
dNDk′

(2π)ND
〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p){x̂(k′)}

=

∫
dNDq

(2π)ND
f̂SF(k − q)PN(q)

∫
dNDk′

(2π)ND
f̂SF(q − k′){x̂(k′)}

︸ ︷︷ ︸

f̂SF◦{x̂}
︸ ︷︷ ︸

PN·
[
f̂SF◦{x̂}

]

︸ ︷︷ ︸

f̂SF ◦
[
PN ·

[
f̂SF ◦ {x̂}

]]
, (3.71)

In the case where there is no structure function, the noise autocorrelation reduces to

ˆ̂
NN(k,k′) = (2π)NDδD(k − k′)PN(k′). (3.72)

Then, its action is given by
ˆ̂
NN{x̂}(k) = PN · {x̂}(k). (3.73)

The corresponding inverse operation is

ˆ̂
N−1

N {x̂}(k) = PN
−1 · {x̂}(k). (3.74)

Consequently, we obtain (see fig.3.3)

ˆ̂
R†N−1

N R{x̂}(k) = f̂SM ◦
[
f̂B ·

[
PN

−1 ·
[
f̂B ·

[
f̂SM ◦ {x̂}

]]]]
(k), (3.75)

and
ˆ̂

R†N−1
N {x}(k) = f̂SF ◦

[
f̂B ·

[
PN

−1 · {x̂}
]]

(k). (3.76)

The inverse square root ofˆ̂NN can now be calculated and leads to

ˆ̂
N

−1/2
N (k) = diag(PN

−1/2(k)). (3.77)
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The operation
ˆ̂

R†N
−1/2
N {x̂} can then be obtained by doing the following substitutionˆ̂

N−1
N →

ˆ̂
N

−1/2
N in eq. (3.76)

ˆ̂
R†N

−1/2
N {x}(k) = f̂B ·

[
f̂SF ◦

[
PN

−1/2 · {x̂}
]]

(k). (3.78)

We are especially interested in the case of white noise (PN = PWN = const) with a structure
function (given by the Poissonian shot noise)

ˆ̂
NWN(k,k′) = PWN

∫
dNDq

(2π)ND
f̂SF(k − q)f̂SF(k′ − q). (3.79)

The corresponding action yields

ˆ̂
NWN{x̂}(k) = PWN

∫
dNDq

(2π)ND
f̂SF(k − q)

∫
dNDk′

(2π)ND
f̂SF(q − k′){x̂(k′)}

︸ ︷︷ ︸

f̂SF◦{x̂}
︸ ︷︷ ︸

f̂SF◦
[
f̂SF◦{x̂}

]

︸ ︷︷ ︸

.

PWN ·
[
f̂SF ◦

[
f̂SF ◦ {x̂}

]]
= PWN ·

[
f̂2
SF ◦ {x̂}

]
(3.80)

It can be seen from this equation, that the preferential representation now is in real-space, where
N is diagonal

NWN(r, r′) = δD(r − r′)CWNf
2
SF(r′), (3.81)

with CWN = IFT
[
PWN

]
being a constant. The inverse operation yields

N−1
WN{x}(r) = (CWNf

2
SF)−1 · {x}(r). (3.82)

Hence, the inverse square root yields

N
−1/2
WN (r), r′ = δD(r − r′)CWN

−1/2f−1
SF (r), (3.83)

and its action in k-space reads

ˆ̂
N

−1/2
WN {x̂}(k) = PWN

−1/2 ·
[
f̂−1
SF ◦ {x̂}

]
(k). (3.84)

ˆ̂
R†N−1

WNR{x̂}(k) = f̂SF ◦
[
f̂B ·

[ ˆ̂
N−1

WN ◦
[
f̂B ·

[
f̂SF ◦ {x̂}

]]]]
(k), (3.85)

and consequently

ˆ̂
R†N−1

WN{x̂}(k) = f̂SF ◦
[
f̂B ·

[ ˆ̂
N−1

WN ◦ {x̂}
]]

(k). (3.86)

To calculate
ˆ̂

R†N
−1/2
WN {x̂} one has to do the following substitutionˆ̂N−1

WN →
ˆ̂
N

−1/2
WN in

eq. (3.86)
ˆ̂

R†N
−1/2
WN {x̂}(k) = f̂SF ◦

[
f̂B ·

[ ˆ̂
N

−1/2
WN ◦ {x̂}

]]
(k). (3.87)
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3.3 Operator formalism

In summary, we showed that the action of the different operators on a vector required for the
different reconstruction estimators (see table3.2) can be calculated in a straightforward way,
as an ordered series of products and convolutions. Note thatwhenever we need to perform a
convolution, we change to the counter space representationwith FFTs and do multiplications1

there.

1In order to avoid aliasing effects one has to adequately perform zero-padding(see e.g.Presset al., 1992).
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Chapter4
Efficiency and quality validation of the
inverse methods with the Wiener-filter

Qué es la vida? Un frenesı́.
Qué es la vida? Una ilusión,
una sombra, una ficción.
Y el mayor bien es pequeño,
que toda la vida es suẽno,
y los suẽnos, suẽnos son.

Calderón de la Barca, La vida es sueño

I n this section the Wiener-filter implemented in ARGO is tested with the different linear in-
verse algorithms presented in the section of numerical methods (3) under several conditions

determined by structured noise, blurring, selection function effects and windowing.
The inverse methods that we test here are the Jacobi (J), the Steepest Descent (SD), and

several Krylov methods, like the Fletcher-Reeves (FR), the Polak-Ribìere (PR), and the EXP
Conjugate Gradients method (see section3.1.5and appendixB.1.3). This scheme has not been
previously discussed in the literature and turns out to be very efficient as will be discussed be-
low. Many other Krylov methods (see table3.1) can be built from simple equivalence relations,
as we show in appendixB.1. However, only the methods mentioned above are taken into ac-
count here, as we consider them to be sufficiently representative. The extra-regularization we
propose with these Krylov methods converts the Wiener-filtering in a hybrid Tikhonov-Krylov
space regularization method. In addition, we also test the Wiener-filter that uses hermitian re-
dundancy as derived in appendixA.2. We call the Wiener-filter defined by the mapping equa-
tion (A.12) the conjugated Wiener-filter (CJ), whereas the Wiener-filter defined by eq. (A.14)
has no extra suffix.

With the aim of having full control over the synthetic data, we generate Gaussian random
fields1 with thePeacock & Dodds(1994) formula for the power spectrum. The resultingreal

1 We use GARFIELDS:GAussianRandomFIELDS , a program we developed to generate Gaussian random
fields from a given power spectrum. The method can be found in detail inMartel (2005).
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4. EFFICIENCY AND QUALITY VALIDATION OF THE INVERSE METHODS

Figure 4.1:1D Reconstruction with structured noise & window: The left plot shows the reconstruc-
tion of a one-dimensional noisy signal. The red curve is thetrue underlying signal. The yellow lines
represent the measured data in each grid cell. The data are windowed by a function given by the black
line. A random noise with a structure function that increases with the distance with respect to the origin
has been added to thetrue signal. The green and the blue lines show different reconstructions. In the
blue case the windowing is formally treated, whereas in the green case the unseen region is modeled by
a mean signal, which is zero in this case. We see that the unsampled region is estimated by the blue
curve better than by the green curve, where the edge effects were neglected. The proper treatment of
edge-effects gives even better results in the sampled regions close to the the borders of the unsampled
regions. This improvement can clearly be seen in fig. (4.8). Poisson noise:In the right plot, two sam-
pling processes are underlying the yellow signal. First theGaussian random field that generates the red
signal, which is then Poisson sampled leading to the yellow data. Again, the blue and the green curves
represent the reconstructions with and without proper window treatment, respectively.

density field is denoted byδreal ≡ δρ, and the reconstruction byδrec ≡ ψ. The signals are
discretized and arranged as vectors given by[k + nz × (j + ny × i)], wherei ∈ [0, nx − 1],
j ∈ [0, ny − 1], andk ∈ [0, nz − 1]. The algorithmic part of the reconstruction methods shown
in section (3) does not change with the dimensionality, but solely the length of the vectors
given byn = nx × ny × nz change and thus also the dimension of the involved matrices.
The formulation of the matrices is explained in detail in section (3.3). The Fourier transforms
must be accordingly called with the dimensions under consideration, which occurs in ARGOby
switching between the different FFTs given by FFTW1. In addition, the power spectrum that is
used for the reconstruction has to be set up with the corresponding length and the data have to
be correctly rearranged to their original dimensions ([i][j][k] ← [k + nz × (j + ny × i)]) after
their manipulation.

1FFTW is a C subroutine library for computing fast discrete Fourier transforms in one or more dimensions of
arbitrary input size and of both real and complex data: http://www.fftw.org/
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4.1 One-dimensional example

4.1 One-dimensional example

We can see in fig. (4.1) an example of a Gaussian realization in one-dimension (redcurve) that
can represent a time-line. A structured noise that increases with the distance (fSF(r) ∝ r) and
with a random noise component (ǫWN = G(0, 1)1) was added to the signal. Finally a region
was excluded simulating windowing effects. The resulting curve was taken as the input signal
(yellow curve). The reconstruction given by ARGO is in blue and green, where the boundary
effects were considered in the first case, but not in the second. There the signal was assumed
to be zero in the UN-sampled region. We can see that the blue curve better resembles thereal
signal guided by the trend at the boundary. This effect is much larger in multiple dimensions
as is shown in fig. (4.8). In the right plot in fig. (4.1), two sampling processes are underlying
the yellow signal. First, the Gaussian random field that generates the red signal, which is then
Poisson sampled thus leading to the yellow data. Again the blue and the green curves represent
the reconstructions with and without proper window treatment, respectively. In this case, the
blue curve also approaches thetrue signal better.

4.2 Multi-dimensional test cases

ARGO has been implemented such that the global dimensionND (see section3.3.1), and even
the length in each dimension (nx, ny, nz), can be chosen arbitrarily. Our tests in one-, two- and
three dimensions show that the results do not differ qualitatively. The convergence behavior
changes with the length of the arrays (n = nx × ny × nz) asn log2 n fully determined by the
FFTs, as we showed in section (3). For the demonstration cases in this thesis, we have selected
the two-dimensional tests with128 × 128 = 16384 pixels. However, three dimensional tests
were also carried out leading to the same conclusions.

4.2.1 Qualitative and quantitative measurement of the quality of the reconstruc-
tion

To give a quantitative measurement of the quality of the reconstructions, we define the correla-
tion coefficientr between the reconstructed and the real density field by

r ≡
∑n

i δρiψi
√

∑n
i δ

2
ρi

√
∑n

j ψ
2
j

. (4.1)

This statistical quantity is not very sensitive to the overall distribution and yields good values
(close to unity) in some cases even with poor reconstructions (see figure4.7). The pixel to
pixel plot of thereal density field against the reconstruction is highly informative because the
scatter in the alignment of the pixels around the line of perfect correlation (45◦ slope) gives a
qualitative goodness of the reconstruction. In general, the quality of the recovered density map
is better represented by the Euclidean distance between thereal and the reconstructed signals.
The ensemble average of this quantity can also be regarded asan action or loss function that

1G(0, 1): zero mean and variance 1.

63
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a b

c d

Figure 4.2:Structured noise treatment: The upper left picture shows the real signal. The upper right
picture is the input signal, where some random noise that increases radially was added. Note that the
scale of the colourbar changes from a maximum overdensity of20 to 70. The lower left picturec shows
the reconstruction. The reconstructions using different numerical methods implemented in ARGO are
indistinguishable. In the lower right imaged, the real density field is plotted against the reconstructed
density field pixel by pixel without any smoothing. The numerical performance of this reconstrcution
case is shown in the next figure.
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4.2 Multi-dimensional test cases

a b

c d

e f

Figure 4.3:Numerical performance with and without preconditioning: Here the convergence be-
haviour and the goodness of the reconstructions using different inversion algorithms can be seen. The
pictures on the left show the methods using preconditioning, whereas the pictures on the right do not
use preconditioning. The upper plots show the squared Euclidean distance between succesive recon-
structions. The plots in the middle show the normalized Euclidean distance between the different recon-
structions and the true signal. The lower plots show the evolution of the statistical correlation coefficient
between reconstruction and signal. We see from panelc and panele that after less than 10 iterations
the reconstructions do not significantly improve with most of the inversion algorithms. The different
inversion algorithms used are: Jacobi (J), Steepest Descent (SD), Conjugate Gradients (CG), Fletcher
Reeves (FR), and Polak Riviere (PR). We also tested a more expensive variant that uses one additional
operation of the involved matrix (EXP) and one other variant(CJ), where a degree of freedom in the
mapping equation for the Wiener-filter is used.
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4. EFFICIENCY AND QUALITY VALIDATION OF THE INVERSE METHODS

leads to the Wiener-filter through minimization (see appendix A.2). Here we introduce the
volume-averaged squared Euclidean distance1

D2
Eucl(ψ, δρ) ≡

1

V

∫

dNDr
[

ψ(r)− δρ(r)
]2
, (4.2)

with V = Lx × Ly × Lz. We further normalize the Euclidean distance through the following
definition

D
2
Eucl(ψ, δρ) ≡

D2
Eucl(ψ, δρ)

D2
Eucl(ψ0, δρ)

, (4.3)

whereψ0 is the zero vector. We define the convergence tolerance criterion based on the squared
Euclidean distance between subsequent reconstructions

tolj+1
crit ≡ D2

Eucl(ψ
j+1, ψj). (4.4)

We prefer this criterion with respect to the squared residuals ||ξ||2 (see eq.3.16) because all
the tests show that no further statistical quality improvement in the reconstructions is reached
after tolj+1

crit , as can be inferred from the correlation coefficientsr and the normalized squared
Euclidean distancesD2

Eucl(ψ, δρ).

4.2.2 Numerical performance with and without preconditioning

Here we analyze the convergence behavior of the different inverse schemes with and without
preconditioning. We start by considering a Gaussian randomfield with some structured noise
that increases radially and is modulated by a random noise component. As a preconditioning
expression, the diagonal part of the data covariance matrixis chosen, which is given by the sum
of

ˆ̂
RSR†(k,k) = f̂B(k)

∫
dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(q − k)f̂B(k)

= PB(k)

∫
dNDq

(2π)ND
PSM(k − q)PS(q)

︸ ︷︷ ︸

(4.5)

PB ·
[
PSM ◦ PS

]
,

and

ˆ̂
N(k,k) =

∫
dNDq

(2π)ND
f̂SF(k − q)PN(q)f̂SF(q − k)

=

∫
dNDq

(2π)ND
PSF(k − q)PN (q)

︸ ︷︷ ︸

(4.6)

PSF ◦ PN,

where we have used the following definitions:PB ≡ ||f̂B||2, PSM ≡ ||f̂SM||2 andPSF ≡
||f̂SF||2. We can thus calculate the preconditioning matrixM required for the different schemes

1Note thatD2
Eucl(ψ, δρ) = 1

V
D2

Eucl(ψ, δρ).
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(section3) by just inverting each diagonal component. The results summarized in fig. (4.3)
show important differences between the reconstructions done with (on the left side) and with-
out (on the right side) preconditioning. Some of the methodsjust speed up, like the various
EXP methods or the SD scheme. Others, however, are stabilized and manage to converge to
the solution only after preconditioning, like the J, the FR and the CPR methods. Without pre-
conditioning, the latter converges extremely quickly to a wrong solution. This is due to the
fact that we did not impose the following stabilization:βPR = max(βPR, 0) in this calcula-
tion (seeShewchuk, 1994, for a discussion). However, our tests show that upon imposing this
stabilization the PR-method becomes significantly slower than the rest. On the other hand, the
EXP-Krylov methods behave most stably and converge very quickly. In the preconditioned
case, we see that all methods converge to the same statistical result, as we can infer from the
correlation coefficientr andD2

Eucl(ψ, δρ), except for the PR scheme that yields slightly less
optimal results (see the green line in comparison to the restin panelc). We have tested pre-
conditioning in the rest of the examples and could confirm theresults presented in this section.
Preconditioning turns out to be necessary to achieve fast algorithms.

4.2.3 Poissonian distribution

In this study case, we investigate the reconstruction of a Gaussian field based on a Poissonian
distribution. This model is far from reality, where much more complex processes are known to
occur (see discussion in section2.1.1). However, we can model a non-Gaussian process in this
way and test how good the Wiener-filter reconstruction worksunder such circumstances. Here
the assumed data model does not coincide with the one that hasgenerated the data. However,
the Poissonian noise can be modeled in the noise matrix of theWiener-filtering through the
structure functionfS.

The results presented in fig. (4.4) show very good agreement between the reconstruction
and thereal underlying density field (compare panelsa andc). The convergence behaviour
and statistical goodness is plotted in the left side of fig. (4.6), panelsa, c ande. There we can
see that the FR and PR methods do not converge rapidly (see yellow and green curves in panel
a). On the contrary, the J, SD, and EXP schemes are very efficient (panelc) and lead to very
similar results (panelsc ande).

4.2.4 Blurring effects: deconvolution

In this numerical experiment we tested the blurring effectsby convolving the density field with
a Gaussian. The result is shown in fig. (4.5), panelb. We see how the small structures are
smoothed out and only the larger ones prevail. Some noise with a structure function was added
to the signal. However, the noise was kept low with the aim of investigating primarily the
blurring effect. The results of the reconstruction that considers only the noise does not change
much with respect to the input signal, as can be expected. However, the extra-regularized
Wiener-filtering deblurs the image applying eqs. (3.67) and (3.68), and yields the figure shown
in panelc. We see how much of the small scale structure is restored and the peaks become
enhanced. The correlation between this reconstruction andthe original signal (panele) is
significantly better than for the case where the blurring is ignored (panelf). We can see in
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a b

c d

Figure 4.4:Poissonian noise:Here two stochastic processes are underlying the input signal. First the
Gaussian random field that generates the signal in panela, which is then Poisson sampled leading to the
signal in panelb. The reconstruction in panelc is shown to be in good agreement with the underlying
signal. The pixel values are correctly distributed as can beseen in paneld.
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4.2 Multi-dimensional test cases

a b

c d

e f

Figure 4.5:Blurring treatment: Here the signal (panela) was convolved with a gaussian modeling
blurring effects, as shown in panelb. Some low noise with a structure function was added. Panelc
shows the deblurred result. Paneld takes only the noise into account. We see in panelf the correlation
between the input signal and thetrue signal, because the noise is negligible. The correlation coefficient
is thus very high, however, the alignment of the pixels in theplot is not correct. Overdensities and un-
derdensities tend to be underestimated, which is consistent with the blurring effect. The reconstruction
given in panelecorrects this effect and consequently a higher correlationcoefficient is achieved.

69

ThesisFigs/phiReal_2DPT1.eps
ThesisFigs/phi0_2DBPT1.eps
ThesisFigs/rec_WF.eps
ThesisFigs/rec_cgFRexpignW_2DBPT1.eps
ThesisFigs/./stat_WF.eps
ThesisFigs/stat_cgFRexpignW_2DBPT1.eps
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a b

c d

e f

Figure 4.6: Poissonian noise and numerical performance (panels a, c, e): Here the convergence
behaviour and quality of the reconstruction is comparable for the J, SD, EXP methods. The FR and
PR schemes do not present a fast convergence (panela). Nevertheless, the FR scheme (yellow curve)
seems to lead to the correct solution (panelsc ande). The PR formula, on the contrary, stagnates at
reconstructions that have much lower quality compared to the rest of the schemes.Blurring treatment
and numerical performance (panels b, d, f): In this study case, the EXP algorithm seems to work
better than the rest of the schemes. Although the PR formula converges very rapidly (green curve in
panelb), it leads to a lower quality reconstruction (panelsd andf). The FR scheme converges to the same
solution as the J, SD, and EXP algorithms, however, with a slower convergence (yellow curve in panel
b). The J and SD methods have an overall good behaviour in this case, but still converge significantly
slower than the EXP scheme (their convergence is identical black and red curves are overplotted). The
reconstruction considering just the noise is very poor, because the noise is negligible in this case (pink
curves).
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4.2 Multi-dimensional test cases

a b

c d

e f

Figure 4.7: Selection function treatment: Here selection function effects were simulated with a
function that takes values between zero and one, decreasingexponentially in radial direction. The
contours show different values of this function. Panela shows the real density field. Panelb shows
the input data, where the true signal was multiplied in real space with the selection function and a
radially increasing noise was added. The reconstruction and its correlation with the true signal are
represented in panelc ande, respectively. The reconstruction ignoring selection effects by taking only
the noise into account leads to panelsd andf. The reconstruction given in paneld is very conservative
and smooths the overdensities out due to noise supression. This leads to a high correlation coefficient,
though the individual pixels are clearly not correctly aligned (panelf). Panelc, on the contrary, shows
more structures that are enhanced due to consideration of the selection function effects. This correctly
distributes the pixels, as can be seen in panele. The correlation coefficient seems to be significantly
better than in panelf, however, a better measure of the overall quality of the reconstruction can be seen
in next figure.
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a b

c d

e f

Figure 4.8: Windowing treatment: Here the edge effects are shown in two dimensions. The true
signal was multiplied by a windowing function that is one in the observed region (Ω) and zero in the
unknown region (̄Ω). The sampled regions are given by the vertical stripes. In addition, a radially
increasing noise was added (see panelb). Panelc shows the reconstruction handling the edge effects.
Paneld represents the result taking only the noise into account. Wesee in panelc how the information
is propagated into the unsampled regions leading to a closerresemblance of the real signal, whereas
the noise is just suppressed in paneld. Panelse andf show the correlation coefficients for the whole
reconstructed region, split into the sampled (black dots) and the unsampled regions (red dots). Note that
the red dots are strongly aligned around the zero value in panel f, whereas they are correctly spread in
panele, statistically representing the information propagationprocess mentioned above.
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4.2 Multi-dimensional test cases

a b

c d

e f

Figure 4.9:Selection function treatment and numerical performance (panels a, c, e):The same
color coding is used as in fig. (4.3) panela, except for additional curve (represented in pink) that in-
dicates the reconstruction in which the selection effects are ignored. Panela shows the squared Eu-
clideanstatistical correlation r is also much better for the case where the selection effects are properly
treated (panele). One concludes from the three plots, that the SD and EXP methods (red, blue and
violet curves) clearly converge faster to a more or equally optimal solution in comparison with the rest
of the methods. The J scheme shows a significantly slower convergence (black curve in panela). The
PR algorithm stagnates at poorer reconstructions as can be seen from panelc ande.
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Figure 4.9:Windowing treatment and numerical performance (panels b, d, f): In this case, the PR
shows extremely good results: fast convergence (panelb) and a high correlation coeficient (paneld).
However, the Euclidean distance is slightly bigger than forthe rest of the methods, except for the pink
curve (ignoring windowing effects). The FR method is disastrous in this study case and diverges from
the solution as can be seen in panelf. The J, SD, and EXP methods show good and stable results. The
J and SD algorithms give extremely similar results. Although their convergence behaviour is similar to
the EXP schemes, the latter give slightly better results: smaller values for the Euclidean distance and
higher values for the correlation coefficient (violet curves in panelsd andf, respectively).

fig. (4.6) that the deconvolution algorithm is very fast for all the methods except for the FR-
scheme. The PR-method is the fastest, but it leads to slightly worse results (see the green curve
in panelsc ande). The EXP turns out to be more efficient than the J and SD methods in this
case.

4.2.5 Selection function effects

For this case we use a modified data model in which the selection function also affects the noise

d = fS · (s+ fSF · ǫWN), (4.7)

with fS ∈ [0, 1], simulating the fading strength of the signal with increasing distance. The
results are plotted in fig. (4.7), where the structure of the signal can be seen to become indis-
tinguishable in radial direction (see panelb). Taking only the noise into account leads to very
poor reconstructions (see paneld). On the contrary, by also considering the selection function
effects, the structures are resolved even at contours whereonly 10 % of the signal plus noise
is left (see panelc). As can be appreciated in panelse and f there is an improvement in the
correlation between thereal density field and the reconstructed signal. Panele shows a higher
correlation coefficient, but the quality enhancement of thereconstruction can be seen better
in the distribution of the density values for each pixel. Howthe points are correctly spread
along the diagonal line can be verified there. The longer Euclidean distance to thereal density
field shows the quantitative difference very clearly, by just comparing the pink curve with the
rest (fig.4.9 and panelc). It is worth mentioning that although the PR test seems to give a
comparable result to the calculation that ignores the selection function. The final correlation
coefficient in panele shows that the reconstructions actually strongly differ and panelc shows
that the quality of the recovered signal is notably better for the former experiment.

In addition, we tested the same selection function affecting only the underlying signal with
a model given by

d = fS · s+ fSF · ǫWN, (4.8)

and obtained the same qualitative results.

4.2.6 Windowing effects

In this section we investigate the mask effects that introduce coupling between different modes
in Fourier-space so that the data covariance matrix is no longer diagonal. The input signal is
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4.2 Multi-dimensional test cases

given in panelb of fig. (4.8). The noisy signal from panelb in fig. (4.2) was cut in stripes to
simulateobservedregions. We compare two reconstructions here, the first one ignores win-
dowing effects given in paneld and a second reconstruction employs the proper treatment of
the boundary throughfM in the algorithm (see eqs.3.67and3.68). The statistical correlation
is given in panelse and f, respectively. Our experiments show better results not only for the
latter reconstruction in the un-sampled region (Ω), represented by the red dots in panelse and
f in fig. (4.8), but also in the sampled regions (Ω). The global correlationr is significantly im-
proved. Whereas the distribution of the black dots, the values of the densities in theobserved
regions, does not apparently change, the distribution of the un-sampled red dots clearly does.
These are distributed around the zero value for the case where windowing is ignored because
a zero signal is assumed by ARGO in the Ω region. In contrast we see that the red dots are
distributed along the diagonal line when edge effects are considered. This is equivalent to a
propagation of the information to the un-sampled regions orthe appropriate interpolation and
extrapolation of signals. Looking at the numerical performance in fig. (4.6) reveals that most of
the methods behave very similarly, except for the PR and FR schemes that deviate from the rest.
The former converges rapidly to a good solution that has a higher correlation (see green curve
in panelf), but a slightly worse Euclidean distance to thetruesignal. The FR on the other hand
converges extremely slowly. The correlation coefficient isat a stage where it becomes dramati-
cally worse (see yellow curve in panelf). The smaller Euclidean distance is no measure for the
quality in this case because these low values can be achievedwhen the reconstruction is very
conservative (closer to zero) and has no structure. Notice how many schemes start with better
values for that distance measure (see paneld). The EXP methods converge faster and the CJ
version leads to even slightly better results (see violet curve in panelsd andf).

It is also worth mentioning that the best reconstructions interms of high correlation co-
efficients and low Euclidean distances to the underlying signal are achieved only after three
iterations for the J, SD, and EXP methods, prior to numericalconvergence. We furthermore
tested ARGO under extreme noise conditions in which the inversion diverges and produces
density values that approach infinity. At early iterations,extremely good reconstructions were
produced. These examples underline the regularization character of the inversion schemes un-
der consideration in this thesis. However, for the cases we are interested in, where the noise
is mainly determined by the discrete sampling of galaxies, no additional stopping rules are
required and the inversion algorithms can be run until full convergence.
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Chapter5
Bayesian reconstructions from galaxy
redshift surveys

Was ist geschehen, mit mir? Warum bin ichüber Nacht in ein Insekt verwandelt?

Franz Kafka, Die Verwandlung

I n this chapter we investigate the Bayesian reconstruction of the matter distribution from a
galaxy redshift survey. We show that the methodology presented in the previous sections

permits us to perform very fast high-resolved reconstructions of the density field, and conse-
quently to sample the joint space spanned by the signal and its parameters, such as the velocity
field and the power-spectrum.

A proper reconstruction turns out to require a global and simultaneous treatment of differ-
ent effects due to structure formation —such as linear structure formation and virialization—
together with the observational and sampling uncertainties. However, corrections of the struc-
ture formation velocity distortions are done very approximately, if at all (see section5.2.3).
In order to overcome such limitations, we suggest a novel rejection-sampling method to cor-
rect for linear as well as non-linear velocity distortion based on physical-statistical models (see
section5.3.1).

Furthermore, a Bayesian reconstruction builds on a known matter power-spectrum. How-
ever, the power-spectrum itself should be determined from the data. We approach this via a
novel Gibbs-sampling algorithm for the power-spectrum determination and sampling in three
dimensions. This method was proposed byKitaura & Enßlin (2007) and developed in collab-
oration with Jens Jasche, who implemented the power-spectrum sampling module, Benjamin
Wandelt, Jeremy Blaizot, and Torsten Enßlin (see section5.3.2).

The chapter is divided in three sections. In the first sectionwe define the physical and
statistical problem and motivate the Bayesian approach. Inthe second section we describe
single Bayesian reconstruction steps. In the last section we present novel Bayesian sampling
schemes in the large-scale structure reconstruction field.
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5. BAYESIAN RECONSTRUCTIONS FROM GALAXY REDSHIFT SURVEYS

5.1 Physical and statistical problem

Let us motivate the algorithmic development we present in this chapter by first defining the
physical and observational system and then analyze the statistical nature of the problem. We
start presenting the redshift-distortions problem, then we discuss the statistical character of the
signal and finally we develop the noise model with a Poissonian likelihood.

5.1.1 Redshift-distortions

The measured redshift of a galaxy, or its so-called recession velocity can be expressed by Hub-
ble’s law, that describes the bulk flow of the Universe. However, the peculiar velocity of the
galaxies along the line-of-sight introduces so-called redshift-distortions. This has to be consid-
ered while translating redshifts into positions using Hubble’s law. Hence, a galaxy’s redshift-
distance or redshift-space positioncz (conveniently expressed in velocity units) is given by its
true distance or real-space positionr = H0d plus its peculiar velocityv along the line-of-sight
in directionr̂

cz = H0d+ r̂ · v. (5.1)

Using a notation withc ≡ 1 and definingvr ≡ r̂ · v we can rewrite last equation as

z = r + vr. (5.2)

For low over-densities, linear theory gives good estimatesof the peculiar velocity

vLT = −β∇∇−2δρ, (5.3)

where∇−2 is the inverse Laplacian1. For high over-densities, the structures tend to be virial-
ized. This means that the galaxies will behave like a Boltzmann gas, introducing dispersions in
redshift-space along the line-of-sight, the so-calledfinger-of-godeffect. It is obvious from this,
that a proper reconstruction of the density field depends on the knowledge of the velocity field,
and vice-versa, the velocity field will be determined by the density field. Though the physical
system of a matter distribution interacting gravitationally has a well defined theoretical solution
that can in principle be found by solving Vlasov’s equation,the observational process destroys
uniqueness. After shell-crossing the relationship between the real-position and the redshift-
position stops being unique. A statistical approach is thusvery appropriate in this case. Within
a Bayesian framework the joint probability distribution ofthe density field and the velocity
field compatible with the redshift observations can be found.

5.1.2 Statistical variance

Finding the joint distribution requires sampling the density field also. One needs to know the
uncertainty in the reconstruction for that purpose. There are many sources of uncertainty as we
discussed in the introduction.

1One has to take care here with the mass-assignment function chosen, since this will change the expression of
the Laplacian.
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5.1 Physical and statistical problem

Some observational effects, such as the selection functionand the mask are very relevant
(see section4.2.5and4.2.6). We will ignore, however, these effects in most of the studies in
this chapter. Nevertheless, we present various methods to include these effects in the generation
of the fluctuating term corresponding to the reconstruction(see section5.3.2).

In addition, the galaxy bias needs to be treated. We will alsoignore this problem, for the
moment, and assume a bias of one. The bias parameter, however, could be introduced as part
of the sampling scheme analogous to the power-spectrum (seethe hierarchical Bayes model
1.1).

Another source of uncertainty comes from the cosmic variance which is usually described
by the second moment of the density field distribution, the power-spectrum. The power-
spectrum can be partially extracted from the data in a Gibbs-sampling scheme as we describe
in section (5.3.2). However, the modes that are not contained in the data will have to be drawn
from a prior probability distribution. Or in other words, only modes contained in the data can
be used for the reconstruction. The statitics determined bythese modes, however, permits one
to reconstruct regions that are not covered by the observed data.

The mass-assignment schemes used to interpolate the discrete sample of galaxies on a
grid also introduces aliasing effects in the reconstructions that can become very important in
iterative schemes like the ones we propose here. For this reason we have to carefully investigate
them. As we already showed in section (4.2.4), blurring effects are well treated in ARGO. We
include the blurring effects due to the pixel window in the response function (see section3.3.2).
This is only considered in the signal term (see section3.3.4), but not in the noise term so far
(see section3.3.5). The latter is usually introduced arbitrarily, without clearly motivating its
origin. Here, we make the effort to include this explicitely.

For the case of a distribution of galaxies, it is usually assumed that there is shot noise. Many
of the derivations are based on Peebles approach of introducing a hyper-fine grid in which only
one or zero galaxies are left in each cell, hiding the underlying implicit assumption of a galaxy
formation model given by the Poisssonian distribution (seee.g.Jing(2005) and appendixC.21).
This is certainly a strong, but common simplification in matter reconstructions. It is also a
frequently and successfully used in power-spectrum estimation because more complex models,
like the halo-model (see e.g.Cooray & Sheth, 2002) mainly affect the small scales (. 2 Mpc/h).
Such small scales are, for now, out of scope in this work.

In the next section we discuss the noise model required for a Bayesian reconstruction under
the simple assumption of a Poissonian distribution making special effort in establishing the link
to the mass-assignment problem.

5.1.3 Model assumptions for the shot noise of the galaxy distribution

The matter density is assumed to be fixed and known, and not subject to statistical uncertainties,
since we are interested in reconstructing a single realization and sample the cosmic variance
by performing many reconstructions. Note, that two essential sampling processes underly a
galaxy distribution. The first is due to the variance of the gravitational field and the second
is due to the discrete sampling process on top of that field (see appendixC.21 for a relation
between both sampling process). Let us focus here on the latter process. Given the matter
density, we further assume a Poissonian process to approximately describe galaxy formation.
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The number of galaxiesng within a Volume∆V around positionr is then distributed as

P (ng(r)|λ(r)) =
λ(r)ng(r)

ng(r)!
exp(−λ(r)), (5.4)

where the expected number of galaxy counts is given by the Poissonian ensemble average:
λ(r) = 〈ng(r)〉ng (see eq.C.1 in appendixC.1) and is directly related to the expected galaxy
density at that position:〈ng(r)〉ng ≡ ∆V ρg(r) (with ∆V being a small volume).

The matter density is assumed to be known and not subject to a statistical distribution func-
tion for the calculation of the noise term, since we are interested in single reconstruction steps
which will simulate cosmic variance by a data augmentation procedure (see section5.3.2). We
link this formalism to the theoretical ensemble averaged noise expression in appendix (C.21).

In addition, we have to consider the gridding of the discretegalaxy sample that permits
us to use FFTs to compute other quantities like the density field, the gravitational potential,
or the velocity field. The process of putting the galaxies on aregular grid is equivalent to a
convolution in real-space followed by a grid-point selection step. The noise covariance-matrix
that we derive under these considerations can be written as (see appendixC.2)

N (r1, r2) =
1

n2 Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)〈ng(r
′
1)〉ng , (5.5)

with W being the gridding-kernel1, andΠ(r) ≡ ∑

n∈Z
δD(r − n) with H being the grid-

spacing.
The noise term in the data model (eq.2.2) that can be deduced from the noise covariance

matrix is given by

ǫ(r) =
1

n
Π

( r

H

)
∫

dr′W (r − r′)
√

〈ng(r′)〉ng χ(r′), (5.6)

with χ(r) being a stochastic white noise field with the following properties: 〈χ(r)〉 = 0
and 〈χ(r)χ(r′)〉 = δD(r − r′). Note, that the noise has the form that we introduced in
section (2.1.1) with a structure function multiplied by a random white noise term: ǫ(r) =
fSF(r)ǫWN(r), but additionally introduces the convolution produced by the grid-sorting scheme.

This modifies the noise term in the Wiener-filter (see section2.5.3) and has not been taken
into account in previous works. Our tests show that the pixelization scheme has an important
effect on small scales when performing power-spectrum sampling (see section5.3.2). Since,
for now, we are focusing on different effects, we consider a simplified noise covariance-matrix
of the form:N = diag(〈ng〉/ng

2). Note, however, that the blurring effects of the pixelization
are taken into account in the signal term, as we already showed in section (3.3). They are very
critical, and need to be treated especially when dealing with low-resolution grids.

The noise covariance expression requires an estimate for the expected number of galaxies
λg = 〈ng

g〉, which so far we had assumed to be known. However, all we know with certainty
is the number of galaxies observed. To guessλg, we propose to assume a flat prior for it and
apply Bayes theorem (see appendixC.3) leading to:〈λg

g〉 = ng
g + 1. This result is reasonable,

1Expressions for the different gridding kernels in Fourier-space are given in section (3.3).
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5.2 Single Bayesian-reconstruction step

grid FFT-grid n resolution time

32 64 ∼ 3 · 104 ∼ 12.8 Mpc/h ∼ 30 s
64 128 ∼ 3 · 105 ∼ 6.4 Mpc/h ∼ 1.5 min
128 256 ∼ 2 · 106 ∼ 3.2 Mpc/h ∼ 20 min
256 512 ∼ 2 · 107 ∼ 1.6 Mpc/h ∼ 1.5 hr

Table 5.1: Computing time for different resolutions. The physical boxis on a grid with a number
of cells in each side given by the first column. Zero-padding is performed to avoid aliasing effects.
The FFTs work thus on a larger grid given in the second column.The dimension of the problem is
given by the number of cellsn in the third column. The matrices to be inverted are:n × n large. The
corresponding resolution is given in the fourth column witha comoving box side-length of 410 Mpc/h.
Finally, the computing time is given in the fifth column, which will vary depending on the structure of
the mask. However, in cases when large regions were cut out, the convergence behavior did not change
much, being less than two times slower in our worst test-case. The convergence criterion was defined
by the square of the residualsξ and had to fulfill:|ξ|2 ≡∑

i∈pix |ξi|2 < 10−7.

because it implies non-zero noise even in cells with no single galaxy count (ng = 0), which
could have resulted by chance or due to the limited observational sensitivity from an otherwise
positive λg

g. Thus, there is no need to assume artificial noise in those empty cells, which
we would otherwise have to introduce to ensure numerical stability. Our noise expression
N = diag((ng

g + 1)/ng
2) is therefore naturally derived from the assumption of a Poissonian

model for the galaxy distribution.

5.2 Single Bayesian-reconstruction step

Here we investigate the quality and the efficiency of single reconstruction steps. We start
presenting the mock galaxy survey that we use as input data and give a brief description
of the assumed cosmology. Finally, we present results for reconstructions assuming a lin-
ear power-spectrum and reconstructions with a non-linear power-spectrum and an effective
redshift-distortions treatment as is done in the literature.

5.2.1 Setup: input data and input cosmology

For our reconstruction studies we use the mock galaxy redshift catalogue provided byBlaizot
(2007) that resembles the SDSS-survey1 in many respects (selection function, sensitivity, etc.),
however, the mock catalogue covers the whole sky (seeBlaizot et al., 2005, for a description
of the method). This catalogue is extracted from the Millenium simulation (seeSpringelet al.,
2005). In this way a direct comparison to thetrueunderlying dark matter distribution is possible
(see figs.5.3 and5.11). Though the synthetic catalogue has been built on the interpolation of
different snapshots for different redshift bins, we consider only the snapshot at redshift zero
and the corresponding power-spectrum. This can be done due to the small redshift volume we

1Sloan Digital Sky Survey: www.sdss.org

81



5. BAYESIAN RECONSTRUCTIONS FROM GALAXY REDSHIFT SURVEYS

Figure 5.1:Projection of the 3D reconstructions with and without redshift-distortions treatment. On
the left the reconstruction with a linear power spectrum is shown. On the right the reconstruction with a
non-linear power-spectrum and an effective redshift-distortions treatment is represented.

use in this study. However, the redshift variation of the power-spectrum needs to be taken into
account in studies with wide redshift ranges. This is the case for deep redshift surveys.

Here we take all the galaxies (744912 objects equally weighted) inside a sphere of a redshift
z ≤ 0.05 with their positions indicated by rectascension, declination and redshift. The box we
consider has thus about 410 Mpc/h comoving length in each coordinate assuming a Hubble
constant ofH0 = 73 km/Mpc/s in concordance with the Millenium run. The galaxies are then
distributed onto a grid with the CIC-scheme (see section3.3.2). We use two kind of power-
spectra in our studies: either thePeacock & Dodds(1994) linear power spectrum and the BBKS
transfer-function (seeBardeenet al., 1986) or theBond & Efstathiou(1984) transfer-function
with the non-linearSmith et al. (2003) power-spectrum. The latter contains a quasi-linear
term and a halo model term that reproduce very nicely the non-linear structure formationbump
in the power-spectrum (see fig.5.11). The cosmological parameters chosen are:Ωm = 0.3,
ΩΛ = 0.7, Γ = 0.21, σ8 = 0.9, βp = 1.5, andns = 1.0.

5.2.2 Wiener-reconstruction with a linear power-spectrum

We start with a Wiener-reconstruction using the linear power-spectrum given byPeacock &
Dodds(1994) and the BBKS transfer-function (seeBardeenet al., 1986). This power-spectrum
is used in the expression for the Wiener-filter that we recallhere

〈s〉WF = 〈sd†〉〈dd†〉−1d, (5.7)

see section (2.5.3).
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5.2 Single Bayesian-reconstruction step

a b

c d

e f

Figure 5.2: Slices through the reconstruction with and without effective redshift distortions treatment.
On the lhs the reconstruction taking a linear power-spectrum without any redshift-distortions treatment
is represented for the slices through the2563 box beginning from the top: 100 (panela), 128 (panelc)
and 180 (panele), corresponding to slices at∼ −45 Mpc/h,∼ 0 Mpc/h, and∼ 80 Mpc/h in z-direction.
On the rhs the reconstruction with an effective redshift-distortions correction treatment are shown for
the same slices (panelsb, d, andf). The slices have a thickness of about 1.6 Mpc/h.
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5. BAYESIAN RECONSTRUCTIONS FROM GALAXY REDSHIFT SURVEYS
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Figure 5.3: Measured power-spectrum from the linear reconstruction. The error bars indicate the
power-spectrum measured from the Millenium run at redshiftzero (seeSpringelet al., 2005). The dark
line represents the predicted power-spectrum at redshift zero from linear theory. The dashed line shows
the power-spectrum measured from a reconstruction plus data augmentation step (see section5.3.2)
which themselves used a linear power-spectrum assumption.The volume of the reconstruction was
normalized to the volume of the millenium run for a better comparison.

We perform reconstructions with grids of different resolutions and cell numbers (see table
5.1). For the case of a grid with2563 cells, which implies a resolution of∼ 1.6 Mpc/h side-
length, the matrix we have to invert has a size of∼ 107 × 107. Our Krylov-scheme permits
us to perform such an inversion with a single processor in about 1.5 hours, requiring a RAM
memory of only∼ 32 Mb due to the developed operator formalism, which does not express
the matrices in an explicit way as described in section (3.3). Note, that former works, based
on a singular value decomposition matrix inversion scheme were limited to∼ 104 cells, while
using days/weeks of super-computing facilities.

The resulting over-density distribution can be seen in figs.(5.1) and (5.2). The measured
power-spectrum from the reconstruction is plotted in fig. (5.3) (dashed line) and shows a re-
markably good agreement with the linear theory prediction (black line), but does not follow the
non-linearbump.

The projected three-dimensional distribution represented in the left panel of fig. (5.1) clearly
shows an elongation of the structures along the line-of-sight due to the virialization of struc-
tures. Nevertheless, another imperceptible effect to the eye is present, which acts on large
scales. It is a slight radial compression of extended structures due to the large-scale galaxy
motions caused by the linear regime of structure formation in which the galaxies tend to fall
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5.2 Single Bayesian-reconstruction step

towards deeper gravitational potentials.
Before we introduce our new frame-work of redshift-distortions correction via Bayesian

sampling, let us discuss in the next section how to effectively treat these effects as it is done so
far as described in the literature of Wiener-reconstructions (see table2.1).

5.2.3 Effective redshift-distortions treatment

The Wiener-filter can be expressed in such a way that it also transforms the data from redshift-
space into the reconstructed signal in real-space. The corresponding expression given by
Zaroubiet al. (1995) is

〈s(r)〉WF = 〈s(r)d†(z)〉〈d(z)d†(z)〉−1d(z). (5.8)

The non-linear power spectrum in redshift-space can be expressed as the non-linear power-
spectrum in real-space multiplied by some correction factors that depend on the modek and
the directionµ = cos(k · r)

P z
NL(k, µ) = P r

NL(k, µ)K(µ)D(k, µ), (5.9)

beingK(µ) = (1+βµ2)2 the so-called linear Kaiser-factor andD(k, µ) = 1/1+(k2σ2
pµ

2)/2
the non-linear Lorentzian factor. The redshift-distortion parameter is defined here as:β ≡
Ω0.6

m /b1, where we usedΩm = 0.3, b = 1.0 and the dispersionσp = 506 km/s/H0 according to
Hawkinset al. (2003). The linear Kaiser-factor can be derived from linear perturbation theory
(Kaiser, 1987). The Lorentzian factor is the Fourier-transform of the exponential distribution
for the velocities and was introduced byBallingeret al. (1996). Erdoğduet al. (2004) suggest
taking the angular-averaged correlation matrices in eq. (5.8) (see sectionD.1).

Our results after applying this estimation procedure with the non-linearSmithet al. (2003)
and theBond & Efstathiou(1984) transfer-function are represented on the right-hand-side (rhs)
of figs. (5.1) and (5.2). The reconstructed density fields turn out to be strongly smoothed. The
Lorentzian factor that appears twice —in the data autocorrelation matrix and in the signal to
data correlation matrix— damps the power at scales:k . 0.3 h Mpc−1 (see fig. 11 inErdoğdu
et al., 2004). The approximation of averaging over all angles and assuming the same dispersion
velocity for all clusters is obviously very crude. However,this treatment tells us at which scales
the non-linear effects become negligible. The method itself does not correct the effects caused
by the non-linear redshift-distortions. A closer comparison of the reconstruction with and
without the effective redshift-distortions treatment shows the degree of information that is lost.
The plots in the left-hand-side (lhs) of fig. (5.2) clearly show the filamentary structure, whereas
they appear to be completely washed out in the plots on the rhs, due to the effective correction.

A Bayesian approach finding a solution to this problem demands a joint estimation of the
density field and the peculiar velocity field. This will be discussed in the next section.

1β is in general the linear growth rate at the present day (f0) divided by the bias factorb: β ≡ f0/b.
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Figure 5.4: Geometric illustration of the
redshift distortion and the velocity sam-
pling scheme. Each galaxy is treated inde-
pendently along its line-of-sight, sampling
the velocity for different guess positions.

5.3 Bayesian-sampling methods

In this section, we describe methods to sample the joint space of the signal and its parame-
ters with MCMC techniques. In particular, we develop methods to sample the density field
together with the velocity field and the density field together with the power-spectrum. Some
preliminary results are shown in which the redshift-distortions are corrected by sampling of
the velocity field. In these tests the density field is corrected iteratively by sampling new guess
positions for the real-space distribution. In the final section of this chapter we present the
different methods used to sample the signal, even with non-Gaussian distributions, together
with its power-spectrum in a Gibbs-sampling process. We show the first successful results us-
ing ARGO-code together with the inverse-Gamma function sampling module implemented by
Jasche(2007). The obtained results are very promising and show the overall validity of the
Bayesian approach, but should be regarded more qualitatively rather than quantitatively, and
should be further analyzed in future works.

5.3.1 Joint signal and peculiar velocities estimation:
redshift-distortions correction

We propose to sample the peculiar velocities in a MCMC fashion (see section2.6), analogous
to the case of the power-spectrum (seeWandeltet al. (2004) and section5.3.2). We draw
realizations of the matter field given the data, a power-spectrum and assumed galaxy peculiar
velocities

s(j+1) ∼ P (s | v(j),S,d). (5.10)

The velocities are subsequently sampled too:

v(j+1) ∼ P (v | s(j+1)). (5.11)

In each step where we sample the peculiar velocity, the redshift-distortion can be corrected
using eq. (5.1)

r(j+1) = z − v(j+1)
r (5.12)
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a b

c d

Figure 5.5: Slices through the reconstruction with the projected linear vector field. The effect of the
empty corners can be seen here. Slices through the643 box beginning from the top: 20 (panela), 25
(panelb), 32(panelc), and 45(paneld) corresponding to slices at∼ −77 Mpc/h,∼ −45 Mpc/h,∼ 0
Mpc/h, and∼ 80 Mpc/h in z-direction. The slices have a thickness of about 6.4 Mpc/h.
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a b

c d

Figure 5.6: Slices through the reconstruction with the projected linear vector field. The periodic
boundary condition can be seen here. Slices through the643 box beginning from the top: 20 (panela),
25 (panelb), 32(panelc), and 45(paneld) corresponding to slices at∼ −41 Mpc/h,∼ −24 Mpc/h,∼ 0
Mpc/h, and∼ 45 Mpc/h in z-direction. The slices have a thickness of about 3.4 Mpc/h.

88

ThesisFigs/SDSS_64_VEL__020.eps
ThesisFigs/SDSS_64_VEL__025.eps
ThesisFigs/SDSS_64_VEL__032.eps
ThesisFigs/SDSS_64_VEL__045.eps


5.3 Bayesian-sampling methods

Figure 5.7:Velocity dispersion in the SDSS mock halos for cells with a given overdensity containing
more than 200 particles (top) and for more than 1000 particles (bottom) of the Millenium simulation
at different resolutions. The velocity dispersion-density correlation visible in this plot is used for the
correction of the finger-of-god effect.
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We propose to sample the peculiar velocities from a PDF with amean〈v〉M given by the linear
theoryvLT and a velocity dispersionσv depending on the local value of the over-density,

P (v | s(j)) ∝ G
(

v − 〈v〉M(s(j)), σ2
v(s(j))

)

, (5.13)

where we take a Gaussian distribution in our studies, but this could be extended to other PDFs.
We use a power-law to sample the dispersion velocity taken from simulations as described in
the next section.

Velocity dispersion as a function of the over-density

In order to study the physical relationship between the density field and the velocity dispersion
we look at correlations in numerical simulations. Figure (5.7) shows the velocity dispersion in
the SDSS mock halos for cells with a given DM over-density from the Millenium run. The over-
density in the cells was calculated by the CIC mass-assignment scheme for the DM particles
(see panel a in fig.5.7). Only cells with more than 200 particles where chosen in theupper
panel. The velocity dispersion distribution after convolving the density field with a Gaussian
of: 1.25 Mpc/h (G125), 2.5 Mpc/h (G25), and 5 Mpc/h (G5) are also plotted. This shows
that the non-linear velocity sampling must be calibrated indifferently depending on the chosen
resolution; it obviously gets worse with lower resolution.Our queries in the GAVO virtual
observatory1 showed that the nature of the velocity dispersion is bimodal. Looking for the
relationship by taking cells with more than 1000 particles (see lower panel) shows a strong
power-law behavior with a slope in the logarithmic plot of∼ 0.4 and describes the internal
structure of halos with many galaxies. The slope is close to the theoretically expected value of
0.5 that is derived by solving for the velocity assuming the virial theorem relation. The weaker
slope is consistent with the fact that the cosmic structuresare in general not fully virialized.

The other distribution shows a constant relation for the velocity dispersion at any value for
the over-density. This describes halos with just one very massive galaxy. Here, the internal
dispersion of the halos does not make sense, but rather the dispersion of the halos themselves.
We will assume that these halos move with a velocity dispersion given by the power-law of the
more populated halos. In conclusion, we have found a power-law that describes the internal
structure of halos with many galaxies.

We use this relationship to sample all the galaxies in high-density regions in each iteration.
The bulk flow motion should also be corrected with linear theory. However, the current status
of our investigation does not permit us to include these corrections due to several problems
that we discuss below. Solutions to these problems are outlined, which require calibration with
mock galaxy catalogues. An alternative detailed-balance rejection sampling algorithm was
developed in collaboration withEnßlin (2007) and is presented in appendix (D.2). We also
present some successful reconstructions in which the non-linear effects were corrected by a
velocity sampling scheme described below.

1www.g-vo.org

90



5.3 Bayesian-sampling methods

a b

c d

e f

Figure 5.8: Joint signal and velocity reconstruction. We show here the successive projections of the
3D reconstructions for the full-sky SDSS-mock galaxy catalogue with redshift-distortions correction.
The peculiar velocities of each galaxy are sampled in each iteration. Panela shows the first iteration,
and panelsb, c, d, e, andf after 5, 10, 15, 20, and 30 iterations, respectively.
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Figure 5.9: Projected 3D reconstructions.Top: reconstruction of the density field for the galaxy
distribution in real-space without redshift distortions.Middle: reconstruction based on the simulated
observed galaxy redshift distribution without correctingfor the distortions.Bottom: Statistically cor-
rected redshift distribution with velocity sampling after30 iterations. At the bottom on the right we
signalize in a scheme some of the most prominent feautures inthe reconstructions: fourfinger-of-gods
and agreat wall.
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Figure 5.10:Slice through the middle of the reconstructed sphere for a galaxy distribution, which was
given in real-space on the left side and for a reconstructionbased on a redshift distribution with our
redshift-distortions correction sampling scheme on the right side. The slices have a thickness of about
3.2 Mpc/h.

Velocity sampling tests

Let us start with the velocity field in the linear regime. We show in figure (5.5) different slices of
a reconstruction with a643 box using the same input data as in the rest of the tests. Over-plotted
are the linear velocity fields represented by white arrows. The cosmic flow clearly shows the
conglomeration of structures at the right positions when compared to the color-coded over-
density. However, it also shows two artificial effects. The first consists in an overestimation
of the velocities (by inspection of the values) at high-density regions. This problem can be
solved by convolving the reconstructed density field until maximal over-density values of∼ 1.
Another approach is to damp the linear velocity term with increasing over-densities. All these
methods require further investigation and calibration with numerical simulations. The second
artificial effect that we can see in fig. (5.5) is caused by embedding the sphere in a box. The
unobserved regions (in the corners of the box) act as empty spaces from which virtual matter
flows towards the observed region (see arrows). One way to solve this problem consists of
reducing the sample until it fits in a box (see fig.5.6). This brute force method, however,
has the drawback of throwing information away. Moreover, itdoes not solve the periodic
boundary condition which is assumed when using FFTs. One wayout of this problem is to
sample the cosmic variance in the observed and unobserved regions as we show in the next
section with power spectrum estimation. We find our tests, inagreement withEriksenet al.
(2004), —for applications in CMB reconstructions— that the cosmic variance is very low in
the observed patches (due to missing information) and increases to the large-scale structure
fluctuations in the unobserved regions, where basically no information is available. These
fluctuating structures compensate the empty spaces and converge statistically to the correct
distributions (see section5.3.2).

Let us ignore the velocity distortions in the linear regime and try to solve the elongation
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Figure 5.11:Measured power-spectrum from the non-linear reconstruction with data-augmentation.
The error bars indicate the power-spectrum measured from the Millenium run at redshift zero (see
Springelet al., 2005). The dark line represents the predicted power-spectrum atredshift zero from
linear theory. The dashed line shows the power-spectrum of the reconstructed density field, where the
reconstruction and augmentation steps were done assuming anon-linear power-spectrum. The volume
of the reconstruction was normalized to the volume of the millenium run for a better comparison.

of structures along the line-of-sight. We describe now a partial treatment of the redshift-
distortions that affects only structures in high-density regions, which we define as those regions
with δ > 1.In our first reconstruction we ignore any correction for thegalaxy positions. The
following procedure is then iterated until convergence.

The over-density at each galaxy position is interpolated from the reconstruction at the pre-
vious iteration. If the over-density is lower than one we skip to the next galaxy, otherwise we
proceed. The measured radial positionz for the galaxy is taken and its surrounding space is sub-
divided in cells along the line-of-sight, which are taken asguess positions (see fig.5.4). Then
the over-density at each guess position is interpolated from the reconstruction at the previous
iteration. The non-linear contribution is now sampled witha dispersion according to the local
over-density for each guess position (see previous section). The velocity is projected along the
line-of-sight leading tovr. This is done for all guesses. Finally, the best guess which mini-
mizes(rguess + vguess

r )− z is taken as true and the new position is evaluatedrj+1 = z− vguess
r .

If the new position falls outside the region determined by the cluster then the step is rejected
and the whole procedure is repeated again. Note, that the region of the cluster is updated in
each iteration. We performed several tests with different definitions of the cluster extension. In
the first test, we defined the cluster radius, as the radius given in transversal direction. In the
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second test, we defined the cluster extension by looking at the cells in which the over-density
is above some threshold. The second definition turned out to be more stable. However, more
tests are planned, in which gradients of the density field will eventually be used to determine
the cluster region. Once all the galaxies have gone through this scheme, the next reconstruction
is performed.

Projections of the reconstructions at different iterations are shown in fig. (5.8). One can see
how the elongated structures collapse with the successive reconstructions. Fig. (5.9) shows
a comparison between the reconstruction with the galaxy distribution in real-space and in
redshift-space. We identify four clearly elongated clusters: two are close to the equator on
the lhs of the projection of the sphere and the other two are located close to the polar axis in
the northern hemisphere (see scheme in fig.5.9). Our algorithm manages to collapse those
structures in reasonable agreement with the real-space distribution. Also thegreat wallequiv-
alent in this mock data-set becomes sharp. Fig. (5.10) shows a slice through the middle of
the reconstructed sphere for the galaxy distribution in real-space and in redshift-space with our
redshift-distortions correction scheme. The anisotropicfeatures have disappeared with respect
to the plot in fig. (5.2). Some of the elongated clusters have collapsed and others have been di-
vided into several clusters. Finally, the reconstructionsusing the non-linearSmithet al. (2003)
power-spectrum show extremely good agreement with the Millenium simulation. Even the first
acoustic oscillation peak seems to be resolved. However, one should be careful with these re-
sults and sample over the power-spectra to give error estimates. A novel method to sample the
joint distribution of the density field and the power-spectrum for the LSS has been developed in
collaboration with Jens Jasche, Benjamin Wandelt, Jeremy Blaizot, and Torsten Enßlin. Below
we present the basic Gibbs-sampling scheme and some preliminary results.

5.3.2 Joint signal and power-spectrum estimation: sampling the cosmic variance
with data augmentation

Now, we want to sample from the joint PDF of the density signals and its power-spectrum
P (s,S|d). The following Gibbs-sampling process is iterated until the chainburns-in

s(j+1) ∼ P (s | S(j),d), (5.14)

S(j+1) ∼ P (S | s(j+1)). (5.15)

The DM signal is sampled with the following PDF (see section2.5.2)

P (s | S(j),d) ∝ G
(

s− FWF(S(j))d,σ2
WF(S(j))

)

. (5.16)

The Wiener reconstruction is known to give a biased estimator, which attenuates the power
especially for the modes where the noise becomes important,as discussed in section (2.5.3).
This filtering effect has to be compensated by adding a fluctuating term with statistics according
to the correct covariance (seeWandeltet al., 2004)

s(j) = 〈s(j)〉WF + y(j)
σWF

. (5.17)
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Figure 5.12: Joint signal and power-spectrum reconstruction. We show here the succesive recon-
structions of the full-sky SDSS-mock galaxy catalogue. Starting with the first Gibbs-sampling iteration
(panela). Also plotted are the iterations: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 30 in panelsb, c, d, e, f, g, h,
i, j , k, andl, respectively. These reconstructions correspond to the power-spectra shown in fig. (5.13).
The slices have a thickness of about 6.4 Mpc/h.
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Figure 5.13: Succesive power-spectra for different Gibbs-sampling iterations corresponding to the
reconstructions shown in fig. (5.12). The first power-spectrum was assumed to be underestimatedby
5 orders of magnitude on purpose, to demonstrate the robust convergence process. The power-spectra
grow first at low k-modes and then succesively at higher modes.

To generate the data augmentationy(j)
σWF one has to solve the following set of equations (see

Eriksenet al., 2007)

y(j)
σWF

=
(

(S(j))−1 +R†N−1R
)−1(

(S(j))−1/2xG1 +R†N−1/2xG2

)

, (5.18)

wherexG1 andxG2 are two independent Gaussian variates. One can show by direct calculation

that y(j)
σWF has a covariance given byσ2

WF. To stabilize the inversionEriksenet al. (2007)
suggest using the following expression derived from the previous one by factorizing the square-
root of the power-spectrum

y(j)
σWF

=(S(j))1/2
(

1 + (S(j))1/2R†N−1R(S(j))1/2
)−1(

xG1 + (S(j))1/2R†N−1/2xG2

)

.

(5.19)
Accordingly, the reconstruction step can be done by solvingthe following set of equations
based on the inverse representation of the Wiener-filter (eq2.21)

s
(j)
WF =(S(j))1/2

(

1 + (S(j))1/2R†N−1R(S(j))1/2
)−1

(S(j))1/2R†N−1d. (5.20)

This allows to perform the inversion for the fluctuating termand for the reconstruction in one
step. An alternative way, permits us to use the direct representation of the Wiener-filter1 by

1Note, that the direct representation for the covariance (eq. A.20) is not appropriate, due to the inverse of the
response operator (see appendixA.3).
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generating the fluctuations with a constrained realization(seeBertschinger, 1987; Ganon &
Hoffman, 1993; Hoffman & Ribak, 1991)

y(j)
σWF

= s̃(j) − FWFd̃
(j)
, (5.21)

using two auxiliary Gaussian random fieldss̃ andǫ̃ with zero mean and correlation〈s̃s̃†〉 = S

and〈ǫ̃ǫ̃†〉 = N respectively. Further we set̃d = Rs̃+ ǫ̃. This method has the advantage that
non-linear reconstructions can be obtained with N-body simulations1 (seeBistolas & Hoffman,
1998). It can be shown that the term in eq. (5.21) has the appropriate Wiener covariance (see
appendixA.4). Each reconstruction step can then be done in one step with the direct Wiener
representation by solving the following equations

s(j) = s̃(j) + FWF(d− d̃(j)
). (5.22)

The power-spectrum can be sampled by an inverse gamma function, which we derive here
for the case of the 3D power-spectrum (seeWandeltet al., 2004, for the analogous CMB case)

P (S | s) ∝ P (S)P (s | S). (5.23)

Assuming a Gaussian signals (see eq.2.19) this yields

P (PS(k) | s(j)) ∝ P (PS(k))
∏

k

1
√

PS(k)
exp

(

−|s
(j)(k)|2

2PS(k)

)

, (5.24)

with S = diag(PS(k)). The priorP (PS(k)) can be chosen to be flat (P (PS(k)) = const)
or instead Jeffrey’s prior can be used (P (PS(k)) ∝ PS(k)−1), see section (2.5.8) and ap-
pendix A.9. Note, that the likelihood for the power-spectrum given by eq. (5.24) is clearly
non-Gaussian.

Power-spectrum sampling tests

We performed tests varying the initial power-spectrum. Theconvergence to the right level of
the power-spectrum occurs very rapidly whether the power spectrum is overestimated, under-
estimated, or the assumed shape is completely wrong. The Gibbs-sampling process is shown
in the figs. (5.12) and (5.13) with the iterative sampled signal (density-field) and parameter
(power-spectrum), respectively. We show in fig. (5.12) a sequence of slices through the mid-
dle of the reconstructions with a643 grid assuming a five orders of magnitude underestimated
initial power-spectrum. The first reconstruction gives almost zero signal. The signal starts to
appear first smoothed out and then successively more resolved. This can be clearly seen in
the power-spectra, which gain power first at the low modes andthen successively at higher
modes (see fig.5.13). It is also interesting to observe the fluctuating background due to the
data augmentation for undetermined signal modes in contrast to the constant features that we
can compare with the reconstructions in previous sections.

1Note, however, that a Gaussian constrained realization is good enough for power-spectrum estimation espe-
cially when one is interested in the traces of the linear regime, like the baryon acoustic oscillations, or the grav-
itational potential for the ISW-effect. Sampling with constrained N-body reconstructions requires a much deeper
development, since the whole cosmological parameter spacehas to be scanned.
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Chapter6
Summary and outlook

Summary and conclusions

This thesis described a cosmic cartography project. The problem of reconstructing the cos-
mic matter field from galaxy catalogues was addressed. The necessary concepts, mathematical
frame-work, and numerical algorithms were thoroughly analyzed. On that basis a Bayesian
software tool was implemented. The resulting ARGO-code allows to investigate the character-
istics of the large-scale cosmological structure within the Bayesian methodology with unprece-
dented fidelity and flexibility. This is achieved by jointly estimating the large-scale density
along with a variety of other parameters —such as the cosmic flow, the small-scale peculiar
velocity field, and the matter power-spectrum— from the information provided by galaxy red-
shift surveys. Furthermore, ARGO is capable of dealing with many observational issues like
mask-effects, galaxy selection criteria, blurring and noise in a very efficient implementation of
an operator based formalism which was carefully derived forthat purpose.

The problem of reconstructing the underlying density field requires a statistical approach
due to a series of uncertainties, as described in section (1.1). Some of these uncertainties are
intrinsic to the nature of the underlying signal (the dark matter) and have a stochastic charac-
ter, and can be subsumed under the term cosmic variance. Other uncertainties are intrinsic to
the nature of the observables. In our case a discrete sample of galaxies leads to uncertainties
as for instance the shot noise, the imperfectly known galaxy-bias and the redshift-distortions.
Additionally, uncertainties can arise due to the observation process, such as windowing, galaxy
criteria selection and blurring effects. Moreover, the mathematical and numerical representa-
tion of the data and the reconstructed signal introduces uncertainties that have to be considered,
too. All these uncertainties together produce degeneracies between potential reconstructions
and therefore require regularization techniques, which should converge to an optimal solution.
We discuss the different Bayesian approaches specified by different alternatives for the likeli-
hood and the prior, and see hownatural regularizations can be performed by the prior-choice
(see section2.5). Moreover, we see how the definition of particular likelihoods and priors de-
fine classes of algorithms, each applying to a different problem approach (see table2.1). Thus,
the general Bayesian frame-work adapted here permits one toinvent optimized methods for
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different situations and to develop more accurate reconstruction algorithms.

Here, we develop new algorithms which account for the discrete nature of a galaxy distri-
bution by taking a Poissonian likelihood. This is done for the case of a Gaussian prior leading
to the GAPMAP estimator (see section2.5.4and appendixA.5) and for the case of an entropic
prior where one gets a maximum entropy estimator (see section 2.5.9and appendixA.10). The
Maximum Entropy method is based on a non-informative prior,which does not assume a par-
ticular pattern for the underlying signal. This can be interesting when searching for intrinsic
deviations from Gaussianity (see section2.5.9and references therein). We also address the
possibility of extending such work to determine cosmological parameters and the bias between
galaxies and dark matter.

Such goals require a large number of repeated reconstructions, which can only be achieved
with highly efficient inverse algorithms. We develop here the necessary numerical schemes in a
preconditioned way for linear and non-linear inverse problems (see section3 and appendixB.1
& B.3). A novel Krylov formula (see section3.1.5and appendixB.1) turns out to be superior
in terms of performance and fidelity, as we show in section (4). Such iterative schemes acquire
their real power only in an operator formalism, which we derive in detail for different Bayesian
priors and likelihoods (see section3.3).

For the case of a Gaussian prior describing the large-scale structures and a Gaussian like-
lihood with a Poissonian noise covariance matrix representing the galaxy sample, we derive
novel algorithms for a joint estimation of the density field,its power-spectrum, and the pecu-
liar velocities of the galaxies (see chapter5).

Thanks to the achieved high efficiency of ARGO the application of iterative sampling al-
gorithms based on Markov Chain Monte Carlo is possible now. This will ultimately lead to a
full description of the matter distribution with all its relevant parameters like velocities, power
spectra, galaxy bias, etc., including the associated uncertainties. Some applications are shown,
in which such techniques are used. A rejection sampling scheme is successfully applied to
correct for the observational redshift-distortions effect, which is especially severe in regimes
of non-linear structure formation, causing the so-calledfinger-of-godeffect. Also a Gibbs-
sampling algorithm for power-spectrum determination is presented and some preliminary re-
sults are shown in which the correct level and shape of the power-spectrum is recovered solely
from the data.

We conclude that ARGO is capable of performing fast three-dimensional reconstructions
of the large-scale structure scaling asn log2 n (with n being the total number of grid cells)
taking into account a wide variety of the observational and data processing issues. This opens
new horizons of possibilities in the field of large-scale structure reconstruction, such as joint
parameter and signal estimation, as we could show for some relevant test cases for astronomy.
Still, different problems, such as galaxy-bias studies, have to be further analyzed. However, we
are confident that the Bayesian perspective elaborated in this thesis can tackle these problems.
We hope to have laid the fundament to a precision reconstruction analysis of the large-scale
structure. There will be a large number of scientific applications benefiting from this.
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Outlook

It is our goal to apply such techniques to reconstruct the underlying density field, the power-
spectrum and the peculiar velocities from real galaxy catalogues. This resulting information
can be used for a cosmological parameter estimation and for acharacterization of the actual
large-scale structure.

Parameter estimation

A major goal is to exploit the Bayesian framework and to use ARGO’s capability to perform fast
and low-cost reconstructions to estimate in a Markov Chain Monte Carlo fashion astrophysical
quantities and cosmological parameters, the most important being:

• Power-spectrum of the matter field: We intend to apply the Gibbs-sampling technique
presented in this thesis to study the baryon acoustic oscillations that are imprinted in the
large-scale structure. Due to the efficiency of ARGO we expect to reach higher accuracy
than previous measurements and better error estimates. Thenovel velocity sampling
scheme should improve the estimates on smaller scales.

• Cosmological parameters: These can be sampled together with the power-spectrum or
directly extracted from the power-spectrum with fitting formula. The matter contentΩm

can be derived by comparison of the redshift-space distribution and the real-space distri-
bution, which can be obtained with ARGO. Matter reconstructions at different redshifs
can be used to study the clustering evolution of structures,which depend on the expan-
sion of the Universe, thus constraining dark energy.

Characterization of the large-scale structure

Another very important task is to characterize the large-scale structure. This can help in the
understanding of structure formation and gain insight of the physical processes involved. For
that purpose a series of projects can be done with ARGO:

• Templates made from the matter reconstructions can be used to study large-scale correla-
tions with the cosmic microwave background and study weak signals that range from the
Integrated Sachs-Wolfe effect, over the Sunyaev-Zel’Dovich effect in the diffused gas, to
metal absorption lines. Predicted lensing distributions based on a reconstruction, can be
used to delense the cosmic microwave background and therebyincrease the sensibility
for B-mode detection of upcoming cosmic microwave background experiments.

• An interesting further application would be to constrain the bias between luminous and
dark matter using reconstructions made by ARGO and correlating them with simulations
and reconstructions of the matter distribution coming fromother fields. Weak lensing is
especially suited for such a study, because it directly traces the dark matter distribution.

• Topological studies could be made from the reconstructed data, leading to a geometrical
characterization of the actual large-scale structure.
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6. SUMMARY AND OUTLOOK

• The reconstructed structures of a galaxy catalogue can be followed back in time with
various methods, like those based on the Zel’Dovich approximation. These early matter
density fluctuations can be used as initial conditions for a N-body simulation. The results
of such a constrained simulation have a wide application in structure formation theory.

• The methods developed in this thesis could also be applied tostudy other areas in astro-
physics, in which optimal inverse methods are required and where low signal-to-noise
ratios demand good error estimates to quantify any results derived from the data. These
fields range from weak lensing, over lyman-alpha forest, to the 21 cm line.

In summary, the methods developed in this thesis will allow us to extract a plenitude of
information from present and upcoming redshift surveys. This will be a step forward in our
detailed understanding of the physical processes leading to a universe filled with structures as
we observe today. In this spirit, ARGOwill lead us to new horizons to conquerterra incognita.
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AppendixA
Bayesian estimators

A.1 The Wiener-filter as a Bayesian estimator

Let us recall eq. (2.20) which comes from Bayes theorem assuming a Gaussian prior and a
Gaussian likelihood

P (s | d,p) ∝ exp

(

−1

2

[

s†S−1s+ (d−Rs)†N−1(d−Rs)
])

. (A.1)

If we just look at the log-posterior distribution we have

logP (s | d,p) ∝ s†S−1s+ (d−Rs)†N−1(d−Rs) (A.2)

= s†S−1s+ s†R†N−1Rs− s†R†N−1d− d†N−1Rs+ d†N−1d.

We can combine the first two terms to one term:s†(σ2
WF)−1s, with (σ2

WF)−1 ≡ (S−1 +
R†N−1R). Since we want to obtain a log-posterior of the form

logP (s | d,p) ∝ (s− 〈s〉WF)†(σWF
2)−1(s− 〈s〉WF), (A.3)

with 〈s〉WF = FWFd, we can identify the third and the fourth term of eq. (A.3) with the
corresponding terms in eq. (A.3)

−s†R†N−1d = −s†(σ2
WF)−1FWFd, (A.4)

and
−d†N−1Rs = −d†F †

WF(σ2
WF)−1s, (A.5)

respectively. The remaining term depends only on the data and is thus factorized in the posterior
distribution function as part of the evidence. From both eq.(A.4) and eq. (A.5) we conclude
that the Wiener-filter has the form

FWF = σ2
WFR

†N−1 = (S−1 +R†N−1R)−1R†N−1. (A.6)

This is the natural Bayesian representation in contrast to expression (2.24), which is the out-
come of a LSQ approach (see appendixA.2). It can be shown that both expressions for the
Wiener-filter are mathematically equivalent (see appendixA.3).
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A. BAYESIAN ESTIMATORS

A.2 The mapping equation for the Wiener-filter in k-space

Following the concept of minimum variance (e.g.Rybicki & Press, 1992; Zaroubiet al., 1995),
we define an action given by the normalized volume integral ofthe square of the difference
between the reconstruction (ψ) and the ensemble of different possible realizations of thedensity
field (s = δρ)

A = 〈 1
V

∫

dNDr
[

ψ(r)− s(r)
]2
〉(s,ǫ|p). (A.7)

From the statistical point of view, the actionA is the loss function that has to be minimized.
Note that this action can be expressed as the ensemble average of the squared Euclidean dis-
tance between the real density fields and the reconstructionψ

A =
1

V
〈D2

Eucl(ψ, s)〉(s,ǫ|p). (A.8)

Transforming expression (A.7) into Fourier space yields

A =
1

V

∫
dNDk

(2π)ND

[

〈ψ̂(k)ψ̂(k)〉(s,ǫ|p) + 〈ŝ(k)ŝ(k)〉(s,ǫ|p) − 〈ψ̂(k)ŝ(k)〉(s,ǫ|p)

− 〈ŝ(k)ψ̂(k)〉(s,ǫ|p)

]

. (A.9)

Assuming a linear relation between the reconstructionψ and the datad

ψ̂(k) =

∫
dNDk′

(2π)ND

ˆ̂
FWF(k,k′)d̂(k′), (A.10)

and statistical homogeneity (〈ŝ(k)ŝ(k′)〉(s,ǫ|p) = (2π)NDδD(k − k′)PS(k′)), yields

A =
1

V

∫
dNDk

(2π)ND

∫
dNDk′

(2π)ND

[
ˆ̂
FWF(k,k′)

∫
dNDq

(2π)ND

ˆ̂
FWF(k,q)〈d̂(k′)d̂(q)〉(s,ǫ|p)

+(2π)NDδD(k − k′)〈ŝ(k′)ŝ(k′)〉(s,ǫ|p) − ˆ̂
FWF(k,k′)〈d̂(k′)ŝ(k)〉(s,ǫ|p)

− ˆ̂
FWF(k,k′)〈ŝ(k)d̂(k′)〉(s,ǫ|p)

]

. (A.11)

Now the action is minimized with respect to the linear operator, δA

δ
ˆ̂
FWF

= 0, to obtain the fol-

lowing mapping equation

∫
dNDq

(2π)ND

ˆ̂
FWF(k,q)〈d̂(q)d̂(k′)〉(s,ǫ|p) = 〈ŝ(k)d̂(k′)〉(s,ǫ|p). (A.12)

The Wiener Filter can be thus expressed as the correlation matrix between the signal and the
data multiplied by inverse of the autocorrelation matrix ofthe data (seeZaroubiet al., 1995)

FWF = 〈sd†〉〈dd†〉−1. (A.13)
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A.3 Direct and inverse representations for the Wiener-filter

Note that eq. (A.12) allows us to substitutek′ by −k′, which is equivalent to the conjugation
of d̂(k′) due to the hermitian redundancy of real numbers

∫
dNDq

(2π)ND

ˆ̂
F ′

WF(k,q)〈d̂(q)d̂(k′)〉(s,ǫ|p) = 〈ŝ(k)d̂(k′)〉(s,ǫ|p). (A.14)

The linear operator one obtains in this way is different, butfulfills the same requirements. We
compare both cases in section (4). Let us see how one would apply such a filter. The covariance
matrix of the data is given by

〈d̂(k)d̂(k′)〉(s,ǫ|p) = 〈α̂(k)α̂(k′)〉(s,ǫ|p) + 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p), (A.15)

and its action on some vector by

∫
dNDk′

(2π)ND
〈α̂(k)α̂(k′)〉(s,ǫ|p){x̂(k′)} = f̂B ·

[
f̂SM ◦

[
PS ·

[
f̂SM ◦

[
f̂B · {x̂}

]]]]
(k),

(A.16)
and ∫

dNDk′

(2π)ND
〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p){x̂(k′)} = f̂SF ◦

[
PN ·

[
f̂SF ◦ {x̂}

]]
(k). (A.17)

The correlation matrix between the data and the signal applied to that vector yields

∫
dNDk′

(2π)ND
〈ŝ(k)d̂(k′)〉(s,ǫ|p){x̂(k′)} = PS ·

[
f̂SM ◦

[
f̂B · {x̂}

]]
(k). (A.18)

We see that the difference with respect to the operations derived in section (3.3) resides in the
conjugation of certain functions.

A.3 Direct and inverse representations for the Wiener-filter

Here we show the equivalence between the direct and the inverse representations for the Wiener-
filter (see section2.5.3). In a first approach, we start assuming that the inverse of the response
operator exists (R−1). Then after some operations the equivalence can be shown for both the
Wiener-filter

FWF = (S−1 +R†N−1R)−1R†N−1,

= (S−1(R)−1N +R†)−1,

= SR†(RSR† +N )−1, (A.19)

and the covariance

σ2
WF = (S−1 +R†N−1R)−1,

= SR†(R +RSR†N−1R)−1,

= SR†(RSR† +N)−1N (R†)−1. (A.20)
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A. BAYESIAN ESTIMATORS

Note that the covariance given by eq. (A.20) has limited practical use, since it requires the
inverse of the response operatorR, which is in general a singular matrix. To find a direct
representation for the covariance one has to introduce the concept of constrained realizations
(see section5.3.2 and appendixA.4). In order to find a general proof for the equivalence
between the direct and the inverse representation of the Wiener-filter, we have to look at the
residuals

σ2
WF = 〈rr†〉 = 〈(s− FWFd)(s − FWFd)†〉

= S − SR†FWF
† − FWFRS + FWF(RSR† +N )FWF

†, (A.21)

where we have done the substitution:d = Rs+ ǫ and〈sǫ†〉 = 0. The first two terms lead to
the Wiener covariance, as we show here

S − SR†FWF
† = (S(σ2

WF)−1 − SR†FWF
†(σWF

2)−1)σ2
WF

=
(
S(S−1 +R†N−1R)− SR†N−1R

)
σ2

WF

= σ2
WF, (A.22)

where we have used the inverse relation obtained in section (A.1): FWF = σ2
WFR

†N−1.
Consequently, the last two terms of eq. (A.21) have to cancel out

0 = −FWFRS + FWF(RSR† +N )FWF
†

0 = FWF(−RS + (RSR† +N )FWF
†). (A.23)

Now we take the transpose and conjugate of the last equation and factorize the data correlation
matrix out (which is always invertible, since the noise covariance matrix is invertible)

0 = (FWF − SR†(RSR† +N )−1)(RSR† +N )F †
WF. (A.24)

The last equation motivates the direct representation of the Wiener-filter without performing
least squares, i.e. without demanding the Filter to be optimal (∂σ2

WF/∂FWF = 0), which is
already imposing some regularity condition onFWF. Note that we also obtain the trivial zero
solution (FWF = 0), which is equivalent toR = 0 or N = ∞ with covarianceσ2 = S.
Since the direct and the inverse representation have the same null-spaces eq. (A.24) already
proves the equivalence between the direct and the inverse representations for the Wiener-filter.
Nevertheless, let us directly test this equivalence

SR†(RSR† +N )−1 ?
= σ2

WFR
†N−1

SR† ?
= σ2

WFR
†N−1(RSR† +N )

RS
?
= (RSR† +N )N−1Rσ2

WF

RS
?
= RSR†N−1Rσ2

WF +Rσ2
WF

RS(σ2
WF)−1 ?

= RSR†N−1R+R

RS(S−1 +R†N−1R)
?
= RSR†N−1R+R

R+RSR†N−1R
?
= RSR†N−1R+R. (A.25)
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A.4 Covariance of a constrained realization

Since the left-hand-side is equal to the right-hand-side both representations are equivalent.
Note that we did not assume the response operator to be invertible. We solely demanded that
the inverse of the signal and of the noise covariance matrices can be built (∃S−1 and∃N−1).
This implies that the covariance matrix and the inverse of the data autocorrelation matrix exist
(∃(S−1 +R†N−1R)−1 and∃(RSR† +N )−1), as we required in our proof.

A.4 Covariance of a constrained realization

Following Bistolas & Hoffman(1998); Ganon & Hoffman(1993); Hoffman & Ribak(1991)
we can generate a synthetic realization with

y = s̃− FWFd̃, (A.26)

If the following relations hold1: 〈s̃s̃†〉 = S, 〈ǫ̃ǫ̃†〉 = N and〈s̃ǫ̃†〉 = 0 then we obtain

〈yy†〉 = 〈(s̃− FWFd̃)(s̃− FWFd̃)†〉
= S − SR†FWF

† − FWFRS + FWF(RSR† +N)FWF
† (A.27)

We can identify these terms with eq. (A.21). Thus, following relation is fulfilled

〈yy†〉 = 〈rr†〉 = σ2
WF. (A.28)

A.5 GAPMAP: MAP with a Gaussian prior and a Poissonian like-
lihood

RememberP (s | d,p) ∝ L(d | s,p)P (s | p) to be extremized. First we write the log-likelihood
taking the logarithm of eq. (2.11)

log L(s | d,p) =
∑

i

[

− (Rs′)i − ci+(d′i+ci) log
(

(Rs′)i+ci

)

−log
(

(d′i+ci)!
)]

. (A.29)

Then we differentiate with respect to the signal to yield

∂ log L(s | d,p)
∂sk

=
∑

i

[

Rikbng

(

− 1 + (
∑

j

Rijs
′
j + ci)

−1(d′i + ci)
)]

.

The same exercise for the Gaussian prior leads to

∂ logP (s | p)
∂sk

= −
∑

j

S−1
kj sj. (A.30)

Now we demand0 = ∂ logP (s | d,p)/∂sk to get an equation for the MAP estimator. After
applyingS to the equation we obtain

∑

i

∑

l

[

SklRilbng

(

− 1 +
( ∑

m

Rimng(1 + bsj
m) + ci

)−1
(d′i + ci)

)]

− sj
k = 0. (A.31)

1Note that the realization does not need to be Gaussian distributed, but just fulfill these requirements.
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Adding the indexj + 1 andj to s on lhs and rhs respectively, an iteration scheme is formed

sj+1
k =

∑

i

∑

l

[

SklRilbng

(

− 1 +
(∑

m

Rimng(1 + bsj
m) + ci

)−1
(d′i + ci)

)]

. (A.32)

Let us simplify this algorithm for positive signalss′ in matrix notation

s′j+1 = s′2SR†
[

−~1 + diag(Rs′j + c)−1(d′ + c)
]

+ s′, (A.33)

where we made following substitutionsb → 1 andng → s′, with s′ being the average of the
positive signal.

A.6 Poissonian maximum likelihood

The context in which the Richardson-Lucy algorithm is applied has positive intensity signals
and the kernelR in eq. (2.1) is understood as a blurring function that can be expressed math-
ematically as a convolution with thetrue signal s. We will further assume no background
(c = 0) so that the log-likelihood of eq. (2.11) can be written as

log L(s′ | d′,p) =
∑

i

[

− (Rs′)i + d′i log(Rs′)i − log(d′i!)
]

, (A.34)

differentiating with respect to the signal yields

0 =
∂ log L(s′ | d′,p)

∂s′k
=

∑

i

[

Rik

(

− 1 + (Rs′)−1
i d′i

)]

. (A.35)

We can multiply this equation with the signals′ and make an iterative method which coincides
with Richardson-Lucy algorithm

s′j+1 = diag
(

R†diag(Rs′j)−1d′
)

s′j , (A.36)

withR†~1 = ~1 due to the convolution operation.

A.7 COBE-filter

We briefly show here that the COBE-filter is an unbiased estimator only and only if the response
matrix is invertible.

〈〈s〉COBE〉(d|s,p) = 〈(R†N−1R)−1R†N−1d〉(d|s,p)

= (R†N−1R)−1R†N−1〈Rs+ ǫ〉(d|s,p)

= (R†N−1R)−1R†N−1Rs

= s, if R is invertible. (A.37)
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A.8 Linear filters need to be invertible to conserve information

A.8 Linear filters need to be invertible to conserve information

The Fisher information matrixJ for a Gaussian distribution1 with zero mean and covariance
matrixC calculated byVogeley & Szalay(1996) has the form

J ij =
1

2
tr (GiGj) , (A.38)

with
Gi = C−1C ,i, (A.39)

where the comma notationC ,i stands for the derivative with respect to the parameterθi:
dC/dθi. Following Tegmark(1997), we calculate the Fisher information matrixJ for the
filtered and un-filtered signal. Let us assume a linear filterL, which provides us with an esti-
mator of the signal

〈s〉L ≡ Ld. (A.40)

The correlation matrix of the estimator yields

Cest = 〈〈s〉L〈s〉†L〉(s,ǫ|p) = L†
(

RSR† +N
)

L. (A.41)

We get then

Cest
,i = L†

(

RS,iR
†
)

L, (A.42)

Gest
i = L̃

(

RSR† +N
)−1

L̃
†
L†

(

RS,iR
†
)

L, (A.43)

where we have denoted the approximate inverse ofL asL̃. Doing the same for the data yields

Cdata = 〈dd†〉(s,ǫ|p) =
(

RSR† +N
)

, (A.44)

Cdata
,i = RS,iR

†, (A.45)

Gdata
i =

(

RSR† +N
)−1 (

RS,iR
†
)

. (A.46)

If we now insert expression (A.43) in the Fisher matrix (A.38), we get

Jest
ij =

1

2
tr

(
Gest

i G
est
j

)

=
1

2
tr

(

L̃Cdata−1L̃
†
L†Cdata

,i LL̃Cdata−1L̃
†
L†Cdata

,j L
)

. (A.47)

In general, this will differ from the Fisher matrix of the data. If we assume, however, that the
linear operator is invertible (∃L−1), then eq. (A.47) reduces to

J est
ij =

1

2
tr

(

L−1Gdata
i Gdata

j L
)

. (A.48)

1Here a Gaussian likelihood is assumed, but the result does not rely on the Gaussianity of the data (see e.g.
Seljak, 1998).
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Invoking that the trace of a product of matrices is invariantunder cyclic permutations, we see
that

J est
ij =

1

2
tr

(

Gdata
i Gdata

j

)

= Jdata
ij . (A.49)

This shows the result that any linear invertible filter conserves information, regardless of the
parameters that one wants to estimate. However, one should be careful with this statement be-
cause linear filters are, in general, not invertible unless the data and signal space have the same
dimension, the noise is non-zero for any frequency, and theR- andS-matrices are invertible.
Usually the data and signal space will differ and theR-matrix will not be exactly invertible.

A.9 Jeffrey’s prior for the 3-dimensional power spectrum

Let us start by assuming a Gaussian likelihood1

P (s | PS(k)) ∝
∏

k

1
√

PS(k)
exp

(

− |s(k)|2
2PS(k)

)

. (A.50)

The log-likelihood is then given by

log
(

P (s | PS(k))
)

∝
∑

k

[

log
(

PS(k)
)

+
|s(k)|2
PS(k)

]

. (A.51)

We now need the second derivatives of the log-likelihood with respect to the parameterPS

∂2

∂PS(k)2
log

(

P (s | PS(k))
)

∝
[

− 1

P 2
S (k)

+
2| s(k)|2
P 3

S (k)

]

. (A.52)

The next step consists of calculating the Fisher information by performing the integral
∫

dsP (s | PS(k)) on the above quantity, which is equivalent to performing thefollowing en-
semble average (see section2.2)

J(PS(k)) = 〈 ∂2

∂PS(k)2
log

(

P (s | PS(k))
)

〉(s|p) ∝
1

P 2
S (k)

, (A.53)

where we have taken into account thatPS(k) = 〈|s(k)|2〉(s|p). Finally the square-root of the
Fisher information leads to Jeffrey’s prior

P (PS(k)) =
√

J(PS(k)) ∝ PS(k)−1. (A.54)

Following Wandelt et al. (2004) we can argue in a more intuitive way thatP (PS(k)) ∝
PS(k)−1 is a solution to a measure invariant under scale transformations of the form
P (PS(k))dPS(k) = P (αPS(k))αdPS(k) (here we have generalized this result to the 3-
dimensional power spectrum).

1Note that the likelihood forPS(k) is the prior fors.
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A.10 MEM with Gaussian and Poissonian likelihoods

A.10 MEM with Gaussian and Poissonian likelihoods

The quantity to maximize is given by

QE(s | p) = αSE(s | p) + log L(s | d,p). (A.55)

After some calculations we see that the gradient of the entropy for PADs is

∇SE
+(s′ | p)i = − log

(
s′i
mi

)

, (A.56)

and for positive and negative distributions

∇SE
±(s | p)i = − log

(
wi + si

mi

)

. (A.57)

We took into account that∂wi/∂sj = si/wiδij . It is then more straightforward to calculate the
SE curvature for PADs

∇∇SE
+(s′ | p) = −diag(s′)−1, (A.58)

and for positive and negative distributions,

∇∇SE
±(s | p) = −diag(w)−1. (A.59)

Analogously, we calculate the gradient of thelog L(s | d) for the Gaussian case valid for
positive (s′) and positive and negative signals (s±)

∇ log LG(s | d,p)i = −1

2
∇χ2(s)i = −

(

R†N−1(Rs− d)
)

i
, (A.60)

and the corresponding curvature

∇∇ log LG(s | d,p) = −1

2
∇∇χ2(s) = −R†N−1R. (A.61)

The Poissonian case leads to

∇ log LP(s | d,p)i = bng

∑

k

[

Rki

(

− 1 + (
∑

j

Rkjs
′
j + ck)

−1(d′k + ck)
)]

= bng

[

R†
(

−~1 + diag
(

(Rs′) + c
)−1

(d′ + c)
)]

i
,

and

∇∇ log LP(s | d,p)ij = −b2ng
2
∑

k

[

Rki(
∑

l

Rkls
′
l + ck)

−2Rkj(d
′
k + ck)

]

= −b2ng
2
[

R†
(

diag
(

(Rs′) + c
)−2

R†(d′ + c)
)]

ij
.

Note that when dealing with over-density fields one should dothe following substitution:s′i =
ng(1 + bsi) in the last two expressions.
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Summing up, we have the following gradient ofQE for PADs

∇QE
+(s′ | p)i = −α log

(
s′i
mi

)

+∇ log L(s′ | d,p)i, (A.62)

and for positive and negative distributions

∇QE
±(s | p)i = −α log

(
wi − si

mi

)

+∇ log L(s | d,p)i, (A.63)

and the corresponding curvatures

∇∇QE
+(s′ | p) = −αdiag(s′)−1 +∇∇ log L(s′ | d,p), (A.64)

∇∇QE
±(s | p) = −αdiag(w)−1 +∇∇ log L(s | d,p). (A.65)

The corresponding likelihood (Gaussian or Poissonian) hasto be inserted in each of the expres-
sions for the gradient or curvature ofQE. For the choice of an optimal regularization constant
α see e.g.Maisingeret al. (1997) andHobsonet al. (1998).
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AppendixB
Inverse and regularization methods

B.1 Krylov methods: Conjugate Gradients

B.1.1 Orthogonality between the residuals and the searching vectors

Eq. (3.30) tells us that each error vectorηj+1 isA-orthogonal to the previous searching vector
Mµj . Since all different searching vectorsMµi areA-orthogonal to each other by construc-
tion, and the error vectors are given by the linear combination of the previous error vector
and the previous searching vector (eq. (3.27)), it follows that each error vectorηj+1 is A-
orthogonal to all previous searching vectorsµi, i.e. for i ≤ j,

〈ηj+1|Mµi〉A = 0. (B.1)

Using eq. (3.28) we can write eq. (B.1) as

〈ξj+1|Mµi〉 = 0, (B.2)

beingi ≤ j.
Applying the inner product between the searching vectorsMµi and the recurrent formula

for the residuals (eq.3.29), we get

〈ξj+1|Mµi〉 = 〈ξj |Mµi〉 − τ j〈Mµj|Mµi〉A. (B.3)

For i 6= j this equation reduces to

〈ξj+1|Mµi〉 = 〈ξj|Mµi〉. (B.4)

From eq. (B.2) and eq. (B.4) we conclude that fori < j,

〈ξj|Mµi〉 = 0. (B.5)
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B.1.2 The set of residuals as a basis of linearly independentvectors

Taking the Gram-Schmidt orthogonalization scheme (eq.3.33) and multiplying it with the
residuals, we obtain

〈ξi|Mµj〉 = 〈ξi|Mξj〉+
j−1
∑

k=0

βkj〈ξi|Mµk〉. (B.6)

Using the result obtained in the appendixB.1.1(eq.B.5), one shows the orthogonality (strictly
orthogonal, ifM = I) between any different residuals (fori 6= j)1

〈ξi|Mξj〉 = 0. (B.7)

For i = j by combining (B.5) and (B.6) we get the relation we used in equation (3.32)

〈ξi|Mµi〉 = 〈ξi|Mξi〉. (B.8)

B.1.3 Formulae for theβ-factor

From the scalar product between eq. (3.29) and the residualξi

〈ξj+1|Mξi〉 = 〈ξj |Mξi〉 − τ j〈Mµj |Mξi〉A, (B.9)

it is clear that theβ-factors are all zero except for one. Notice that the denominator inβ, given
by 〈Mµj|Mξi〉A cancels out if neitheri = j + 1 nor i = j. The latter is excluded according
to the definition ofβ (see eqs.3.33and3.35). Gram-Schmidt orthogonalization thus simplifies
to eq. (3.36), with

βj+1
EXP = −〈Mξj+1|Mµj〉A

〈Mµj |Mµj〉A
. (B.10)

Other expressions for this factor can be derived by replacing i = j + 1 in eq. (B.9)

〈Mµj|Mξj+1〉A = − 1

τ j
〈ξj+1|Mξj+1〉. (B.11)

Substituting this expression in eq. (3.35) and using the formula forτ j (eq.3.32) one obtains
the Fletcher-Reeves equation

βj+1
FR =

〈ξj+1|Mξj+1〉
〈ξj|Mξj〉

. (B.12)

Polak-Ribìeres formula can now be obtained trivially by taking expression (B.7) into account.
Let us do an invariant operation by adding−〈ξj+1|Mξj〉 to the nominator in Fletcher-Reeves
formula

〈ξj+1|Mξj+1〉 − 〈ξj+1|Mξj〉 = 〈ξj+1|M(ξj+1 − ξj)〉, (B.13)

1This result is at first glance only valid fori < j. However, with the additional requirement that the matrixM
be self-adjoint, the generalization toi 6= j is trivial.
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which immediately leads to Polak-Ribières expression

βj+1
PR =

〈ξj+1|M (ξj+1 − ξj)〉
〈ξj|Mξj〉

. (B.14)

In order to get Hestenes-Stiefels formula one has to consider eqs. (B.8) and (B.5) in the de-
nominator ofβPR

〈ξj |Mξj〉 = 〈µj|Mξj〉 − 〈µj |Mξj+1〉 = 〈µj |M(ξj − ξj+1)〉, (B.15)

resulting in the following expression

βj+1
HS = −〈ξ

j+1|M(ξj+1 − ξj)〉
〈µj|M (ξj+1 − ξj)〉

. (B.16)

Due to the relations derived in this appendix other equivalent formulae forβ (summarized in
table3.1) can be found, which differ in their numerical behavior. Note that from the 16 possible
schemes presented here, only 3 are discussed in the literature.

B.1.4 Preconditioned non-linear time step

The function under consideration is expanded until the second order aroundτ jMµj according
to eq. (3.26)

QA(ψj + τ jMµj) ≃ QA(ψj) + τ j〈∇QA(ψj)|Mµj〉+ τ j2

2
〈Mµj |Mµj〉

∇∇QA(ψ
j
)
.

(B.17)
Then the derivative with respect to the searching vector is done to find the extremum

d

dτ j
QA(ψj + τ jMµj) ≃ 〈∇QA(ψj)|Mµj〉+ τ j〈Mµj |Mµj〉

∇∇QA(ψ
j
)
. (B.18)

By setting this equation to zero, one finds an expression for the time step

τ j = − 〈∇QA(ψj)|Mµj〉
〈Mµj|Mµj〉

∇∇QA(ψj
)

. (B.19)

Note that the last equation can be rewritten using relation (B.8) as

τ j = − 〈∇QA(ψj)|M∇QA(ψj)〉
〈Mµj |Mµj〉

∇∇QA(ψ
j
)

. (B.20)
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B.2 Bayes, Tikhonov, asymptotic regularization and learning algo-
rithms

We want to solve eq. (3.3) from a Bayesian perspective. Let us assume a Gaussian likelihood
with covarianceI

L(ψ | f ,p) = G(f −Aψ, I), (B.21)

which is a fair assumption in the absence of noise (eq. (3.3) is equivalent to eq. (2.2) with-
out noise,ǫ = 0). Let us further assume a Gaussian prior around a prior solution ψ∗ with

covarianceτM̃
−1

P (ψ | p) = G(ψ −ψ∗, τM̃
−1

). (B.22)

We can now calculate the MAP which coincides in this case withthe mean of the posterior. Let
us look at the quantity given by thelog-posterior PDF

||f −Aψ||2 + τ ||ψ −ψ∗||2
M̃

, (B.23)

which is a generalization of Tikhonov regularization. Minimizing the negativelog-posterior
yields the following equation for the Bayesian estimator〈ψ〉B

A†(A〈ψ〉B − f) + τ−1M̃(〈ψ〉B −ψ∗) = 0. (B.24)

If we now chooseM̃ = A†M−1 (M is an invertible matrix) we get

A†
(
M−1(ψ∗ − 〈ψ〉B) + τ(f −A〈ψ〉B)

)
= 0, (B.25)

This equation will be fulfilled if the following equality holds

〈ψ〉B = ψ∗ + τM (f −A〈ψ〉B). (B.26)

The estimator〈ψ〉B for the solution to the inverse problem (eq. (3.3)) is expressed in eq. (B.26)
as the prior solutionψ∗ plus a correction term given by the residualf −A〈ψ〉B. Since only
the residual based on the prior solution is known, the following substitution must be done on
the right-hand-side (rhs)〈ψ〉B → ψ∗ leading to

〈ψ〉B ≃ ψ∗ + τM(f −Aψ∗). (B.27)

This can be interpreted as an iterative scheme, in which the estimator is the updatej + 1
(〈ψ〉B → ψj+1 on the left-hand-side (lhs)) of the estimator at the previous stepj (ψ∗ → ψj

on the rhs)
ψj+1 = ψj + τM(f −Aψj). (B.28)

In this way, we have found the general iterative method (eq.3.14) derived with the asymptotic
regularization in section (3.1.2). From the Bayesian point of view, this scheme could be inter-
preted as a learning algorithm, in which the estimator of thesolution to the inverse problem
is calculated from the prior solution and becomes itself theprior solution for the subsequent
iteration.
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B.3 Preconditioning

B.3 Preconditioning

We can enhance the convergence of the iteration methods by multiplying the matrix we want
to invert by another matrix that is close to its inverse

MAψ = Mf , (B.29)

withM ∼ A−1. Let us show this by deriving eq. (3.14) in a different way. We can invertMA

using the Neumann expansion for the inverse of an operator

ψ = (MA)−1Mf =
∞∑

i=0

(I −MA)iMf . (B.30)

This iteration scheme will converge if||I −MA|| < 1. Let us introduce the following nota-
tion

ψ ≡
∞∑

i=0

ψ[i], (B.31)

ψj ≡
j

∑

i=0

ψ[i], (B.32)

with
ψ[i] ≡ (I −MA)iMf . (B.33)

It follows that
ψ[i+ 1] = (I −MA)ψ[i], (B.34)

and summing overi we get

j
∑

i=0

ψ[i+ 1] =

j
∑

i=0

ψ[i]−
j

∑

i=0

MAψ[i]. (B.35)

Manipulating the indices, we see that

j
∑

i=0

ψ[i+ 1] =

j+1
∑

i=0

ψ[i]−ψ[0]. (B.36)

Combining the last two equations we obtain eq. (3.14)1

ψj+1 = ψj +M(f −Aψj), (B.37)

with
ψ[0] = ψ0 = Mf . (B.38)

The meaning of the preconditioning matrixM is clear when we look at eq. (B.30). There it
can be seen that a much more rapid convergence is obtained if(I −MA) is close to zero, that
is if M is close to the inverse ofA.

1The iteration time stepτ has been absorbed here in the matrixM .
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AppendixC
Poissonian distributions

C.1 Properties of Poissonian distributions

We derive here some of the properties for Poissonian distributionsP (n|λ) = λne−λ/n! that
we use in chapter (5).

• Mean for the Poissonian distribution

〈n〉n =

∞∑

n=0

nP (n|λ) =

∞∑

n=0

λn−1e−λ

(n− 1)!
λ = λ. (C.1)

• Variance for the Poissonian distribution

〈n2〉n =

∞∑

n=0

n2P (n|λ) =

∞∑

n=0

(n− 1 + 1)
λn−1e−λ

(n− 1)!
λ = λ(λ+ 1)

〈(n− 〈n〉n)2〉n = 〈n2〉n − 〈n〉2n = λ(λ+ 1)− λ2 = λ = 〈n〉n
〈n2〉n = 〈n2〉n − 〈n〉2n + 〈n〉2n = 〈n〉n + 〈n〉2n. (C.2)

• Flat prior assumption with a Poissonian likelihood

Bayes theorem states

P (λ|n) =
P (n|λ)P (λ)

P (n)
. (C.3)

The flat prior is defined as:P (λ) = c, with c being a constant. The evidence is then
given by

P (n) =

∫ ∞

0
dλP (n|λ)c = c, (C.4)

since ∫ ∞

0
dλP (n|λ) =

∫ ∞

0
dλ

λne−λ

(n)!
=

Γ(n+ 1)

n!
= 1. (C.5)
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Consequently, we obtain
P (λ|n) = P (n|λ). (C.6)

• Estimator for the mean under a flat prior assumption
∫ ∞

0
dλλP (λ|n) =

∫ ∞

0
dλ

λn+1e−λ

(n+ 1)!
(n+ 1) = n+ 1. (C.7)

• Variance for the mean under a flat prior assumption

〈(λ− 〈λ〉λ)2〉λ = 〈λ2〉λ − 〈λ〉2λ

〈λ2〉λ =

∫ ∞

0
dλλ2 e−λλn

n!
=

∫ ∞

0
dλ

e−λλn+2

(n+ 2)!
(n+ 2)(n+ 1) = (n + 2)(n + 1)

〈λ2〉λ − 〈λ〉2λ = (n+ 1)(n + 2− (n+ 1)) = n+ 1. (C.8)

C.2 Noise covariance-matrix for a Poissonian distributionon a grid

The convolution produced by gridding the galaxy field is given by the following transformation

n′g(rg) =

∫

dr′W (rg − r′)ng(r
′). (C.9)

The number density valuesn′g should only be evaluated on the grid positionsrg
1. In order

to have a representation of the grid into continuous space wedefine according toHockney &
Eastwood(1981)

ñg(r) ≡ Π
( r

H

)
∫

dr′W (r − r′)ng(r
′), (C.10)

with Π(r) =
∑

n∈Z
δD(r −n) andH being the grid-spacing.

The expected number of galaxies on the grid is given by

〈ñg(r)〉ng = ∆V Π
( r

H

)
∫

dr′W (r − r′) ρg(r
′) = ∆V ρ̃g(r). (C.11)

Let us now use the property for Poissonian likelihoods:〈n2
g〉ng = 〈ng〉2ng

+ 〈ng〉ng to find an
expression for the noise covariance-matrix (see eq.C.2 in appendixC.1). Using this property
we can write

〈ng(r)ng(r
′)〉ng = ∆V 2ρg(r)ρg(r

′) + ∆V ρg(r
′)δKr,r′ . (C.12)

Using definition (C.10) we obtain

〈ñg(r1)ñg(r2)〉ng (C.13)

= Π
(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2)〈ng(r
′
1)ng(r

′
2)〉ng

= ∆V 2 ρ̃g(r1)ρ̃g(r2) + ∆V Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)ρg(r
′
1)

= 〈ñg(r1)〉ng〈ñg(r2)〉ng + Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)〈ng(r
′
1)〉ng .

1We noteW ≥ 0 and
R

drW (r) = 1.
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Accordingly, we can define the (relative) noise covariance-matrix as

N (r1, r2) ≡
1

n2 (〈ñg(r1)ñg(r2)〉ng − 〈ñg(r1)〉ng〈ñg(r2)〉ng)

=
1

n2 Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)〈ng(r
′
1)〉ng , (C.14)

where we have normalized the result, dividing byn2, in order to express the result for galaxy
over-densities instead for counts.

We conclude from this calculation that the gridding Kernel has to be taken into account,
similarly to the shot noise term found byJing (2005). In appendix (C.21) we work out the
relation between both noise expressions.

C.3 Model for the expected number count of galaxies

The formula that we have derived for the noise covariance in the previous section requires
an estimate forλg ≡ 〈ng

g〉ng . We suggest here to take the estimate ofλg conditioned on the
observations, which is then given by (see eq.C.7 in appendixC.1)

〈λg〉λ =

∫ ∞

0
dλg λgP (λg|ng) = ng

g + 1, (C.15)

where we have assumed a flat prior (see eq.C.6 in appendixC.1) and the number of galaxy
counts in the cell is given byng

g. Note that the error onλg is precisely (see eq.C.8in appendix
C.1)

〈(λg − 〈λg〉λ)2〉λ = ng
g + 1. (C.16)

C.4 Power-spectrum with a Poissonian galaxy model on a grid

We develop here the relation between the Poissonian noise covariance-matrix and thetrue
power-spectrum. The essence of this relation lies on the additional ensemble average one
has to introduce for the cosmic variance of the underlying density field. In the linear bias
model one assumes that the expected number of galaxies within a volume element∆V is
related to the dark matter density field by〈ng(r)〉ng = ∆V ρg(r) = ng(1 + bδ(r)), where
in general one has to take into account a redshift dependence: ng = ng(z) and b = b(z).
Note, that for the actual observed galaxy distribution we can therefore introduce withδg = bδ:
ng(r) = ng(1+δg(r)). Substituting these relations in eq. (C.13) and performing the ensemble
average over the different density field realizations we findfor the lhs of eq. (C.13)

〈〈ñg(r1)ñg(r2)〉ng〉δ

= 〈〈Π
(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2)ng(1 + δg(r1))ng(1 + δg(r2))〉ng〉δ

= n2
gΠ

(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2) + n2
g〈〈δ̃g(r1)δ̃g(r2)〉ng〉δ, (C.17)
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with the definitionδ̃g(r) ≡ Π
( r

H

) ∫
dr′W (r − r′)δg(r′), and for the rhs of eq. (C.13)

∆V 2〈ρ̃g(r1)ρ̃g(r2)〉δ + ∆V 〈Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)ρg(r
′
1)〉δ

= ∆V 2Π
(r1

H

)
Π

(r2

H

)
〈
∫

dr′1W (r1 − r′1)ρg(r
′
1)

∫

dr′2W (r2 − r′2)ρg(r
′
2)〉δ

+〈Π
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1)ng(1 + bδ(r1))〉δ

= n2
gΠ

(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2)

+n2
gb

2Π
(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2)〈δ(r′1)δ(r′2)〉δ

+ngΠ
(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1). (C.18)

Combining the last two equations (eqns.C.17andC.18) we obtain

〈〈δ̃g(r1)δ̃g(r2)〉ng〉δ = b2Π
(r1

H

)
Π

(r2

H

)
∫

dr′1

∫

dr′2W (r1 − r′1)W (r2 − r′2)〈δ(r′1)δ(r′2)〉δ

+
V

N
Π

(r1

H

)
Π

(r2

H

)
∫

dr′1W (r1 − r′1)W (r2 − r′1), (C.19)

beingng ≡ N/V . If we take the Fourier transform of this expression using

Π
(
k) =

1

V

∫

dr eik·r Π
( r

H

)
=

∑

n∈Z

δKk,2diag(kNy)n (C.20)

with k′ = k + 2diag(kNy)n andkNy = [kNyx, kNyy, kNyz ] the Nyquist frequencies inx, y
andz direction, we get

〈〈δ̃g(k1)δ̃g(k2)〉ng〉δ =
∑

n1,n2

[

|W (k′1)|2b2P (k′1)δ
K

k′
1,k′

2

+
1

N
|W (k′1)|2δKk′

1,k′
2

]

. (C.21)

Fork1 = k2 we have

〈〈|δ̃g(k)|2〉ng〉δ =
∑

n

[

|W (k′)|2b2P (k′) +
1

N
|W (k′)|2

]

. (C.22)

The formula we have obtained here is deduced inJing (2005) with minor changes. Let
us point them out. Since we have made the difference between the galaxy over-densityδg
and the underlying over-densityδ, we obtain a squared bias factor. Then we have made the
generalization to a box with different side-lengths in eachdirection leading to three different
Nyquist frequencies for each direction. Finally, we have clarified the underlying statistical
model for this formula. This is composed by two ensemble averages: a Poissonian process
for the galaxies, and a statistical homogeneous process forthe underlying density field. We
have distinguished between them through the notation in theensemble average:〈〉ng or 〈〉δ.
We confirm that the approach by Peebles of introducing a gridding step on a hyperfine grid
in which either zero or one galaxy is found —this approach is chosen also byJing (2005)—
implicitly assumes a Poissonian likelihood for galaxy formation.
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AppendixD
Redshift-distortions treatment

D.1 Angular-averaged redshift-space real-space transformation

Let us start recalling the formula given byZaroubiet al. (1995) to transforms the data from
redshift-space into the reconstructed signal in real-space

〈s(r)〉WF = 〈s(r)d†(z)〉〈d(z)d†(z)〉−1d(z). (D.1)

The non-linear power spectrum in redshift-space is then expressed by

P z
NL(k, µ) = P r

NL(k, µ)K(µ)D(k, µ), (D.2)

see section (5.2.3). Erdoğduet al. (2004) suggest to take the angular-average of eq. (D.2)
defined as

P z
NL(k) = P r

NL(k)KD(k), (D.3)

with KD(k) = 1
2

∫ 1
−1 dµK(µ)D(k, µ). They find

KD(k) =
4(σ2

pk
2 − β)β

σ4
pk

4
+

2β2

3σ2
pk

2
+

√
2(k2σ2

p − 2β)2arctan(kσp/
√

2)

k5σ5
p

. (D.4)

Accordingly, they define the correlation matrix of the signal and the data in their respective
spaces as

〈s(r)d†(z)〉 = P r
NL(k, µ)

√

K(µ)
√

D(k, µ). (D.5)

This matrix is then approximated by the following angular averaged expression

〈s(r)d†(z)〉 ≈ P r
NL(k)KD(k), (D.6)

whereKD(k) = 1
2

∫ 1
−1 dµ

√

K(µ)
√

D(k, µ) is found to be

KD(k) =
1

2k2σ2
p

ln
[
k2σ2

p

(
1 +

√

1 + 1/k2σ2
p

)]
+

β

k2σ2
p

√

1 + k2σ2
p +

β

k3σ3
p

arcsinh(k2σ2
p).

(D.7)
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D.2 Detailed-balance velocity rejection-sampling

We present here a velocity Bayesian-sampling algorithm based on a detailed balance rejection-
sampling scheme. We recall the expected galaxy density in real-space:ρg(r) = ρg(1 + bδ(r)).

Let us define the probability to find a galaxy, which is locatedat r, at redshiftz = r + vr

with a Gaussian likelihood:P (z|r) = G(z − r − vr(r), σv(r)). Further we assume that the
prior for a galaxy to be positioned atr is: P (r) ∝ ρg(r) ∝ 1 + bδ(r). Consequently, the
posterior of a galaxy observed atz according to Bayes theorem is given by

P (r|z) =
P (z|r)P (r)

P (z)
, (D.8)

and the posterior ratio of two possible locationsr1 andr2 of a galaxy with redshiftz reads

P (r1|z)
P (r2|z)

=
P (z|r1)P (r1)

P (z|r2)P (r2)
=
G(z − r1 − vr(r1), σv(r1))(1 + bδ(r1))

G(z − r2 − vr(r2), σv(r2))(1 + bδ(r2))
. (D.9)

We can now define a procedure for the position sampling. A galaxy with redshiftz is assumed
at stepj to be located atr = rj. We pick a new trial positionr′ ∼ G(rj−r′, σs(r

j)) and accept
r′ asrj+1 with probabilityPaccept(r → r′) so thatP (r → r′) = G(r − r′, σs(r))Paccept(r →
r′). We have introduced the sampling dispersionσs, which is different from the physical de-
termined dispersionσv and in contrast to it can be chosen freely, but should be tunedtowards
efficient sampling (over-relaxation). In order to find out the acceptance scheme we demand
detailed balance

P (r|z)P (r → r′) = P (r′|z)P (r′ → r). (D.10)

Assuming this we find for the following probability ratio

Paccept(r → r′)

Paccept(r′ → r)
=

G(r′ − r, σs(r
′))P (r′|z)

G(r − r′, σs(r))P (r|z)

=
G(r′ − r, σs(r

′))G(z − r′ − vr(r
′), σv(r

′))ρg(r
′)

G(r − r′, σs(r))G(z − r − vr(r), σv(r))ρg(r)
. (D.11)

Defining a probability function given by

f(r → r′) ≡ G(r − r′, σv(r
′))G(z − r′ − vr(r

′), σv(r
′))ρg(r

′), (D.12)

we deduce the following acceptance criterion from eq. (D.11)

Paccept(r → r′) =

{

1 : f(r → r′) > f(r′ → r)
f(r→r′)
f(r′→r) : otherwise

. (D.13)

If the trial positionr′ is accepted with this rejection rule then detailed balance is fulfilled and the
distribution of accepted galaxy positions converges versus the position of the galaxy position
given the measured redshift information (P (r|z)).

Note that although Gaussians are used here, other distribution functions could be assumed
without any change of the structure of the formalism.
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cosmic peculiar velocities from the mildly non-linear density field. MNRAS, 316, 464–472.

LAHAV , O. (1994). Wiener Reconstruction of All-Sky Spherical Harmonic Maps of the Large-
Scale Structure. In C. Balkowski & R.C. Kraan-Korteweg, eds., ASP Conf. Ser. 67: Unveiling
Large-Scale Structures Behind the Milky Way, 171–+.

LAHAV , O. & GULL , S.F. (1989). Distances to clusters of galaxies by Maximum Entropy
method.MNRAS, 240, 753–763.

LAHAV , O., FISHER, K.B., HOFFMAN, Y., SCHARF, C.A. & ZAROUBI, S. (1994). Wiener
Reconstruction of All-Sky Galaxy Surveys in Spherical Harmonics.ApJ, 423, L93+.

LARSON, D.L., ERIKSEN, H.K., WANDELT, B.D., GÓRSKI, K.M., HUEY, G., JEWELL,
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We present results of simulations of stellar collapse and explosions in spherical symmetry
and in two spatial dimensions for progenitor stars in the 8–10M⊙ range with an O-Ne-Mg core.
The simulations were continued until nearly one second after core bounce and were performed
with the PROMETHEUS/VERTEX code and its extension to the multi-dimensional version of
the code (MUDBATH) with a variable Eddington factor solver for the neutrino transport, in-
cluding a state-of-the-art treatment of neutrino-matter interactions. Particular effort was made
to implement nuclear burning and electron capture rates with sufficient accuracy to ensure a
smooth continuation, without transients, from the progenitor evolution to core collapse. Using
two different nuclear equations of state (EoSs), a soft version of the Lattimer & Swesty EoS
and the significantly stiffer Wolff & Hillebrandt EoS, we found no prompt explosions, but in-
stead delayed explosions, powered by neutrino heating and the neutrino-driven baryonic wind
which sets in about 200 ms after bounce. The models eject little nickel (< 0.015M⊙), explode
with an energy of& 0.1× 1051 erg, and leave behind neutron stars (NSs) with a baryonic mass
near1.36M⊙. Different from previous models of such explosions, the ejecta during the first
second have a proton-to-baryon ratio ofYe & 0.46, which suggests a chemical composition that
is not in conflict with galactic abundances. No low-entropy matter withYe ≪ 0.5 is ejected.
This excludes such explosions as sites of a low-entropy r-process. The convective behaviour
above the proto-neutron star found in our 2D simulation, slightly enhances the explosion en-
ergy remaining at the same order of magnitude. This result stays in contrast to previous work,
in which convection was treated approximately and leads to significantly more energetic ex-
plosions. We do not find a coupling between the convection below the neutrino-sphere and the
shock expansion, as is observed for more massive stars, which develop low-mode instabilities.
The low explosion energy and nucleosynthetic implicationsare compatible with the observed
properties of the Crab supernova, and the small nickel mass supports the possibility that our
models explain some subluminous Type II-P supernovae.

The following supernova part contains material produced bythe author that has been par-
tially published in Janka, Marek & Kitaura (2007), Kitaura,Janka & Hillebrandt (2006), Janka,
Buras, Kitaura et al. (2005), Janka, Buras, Kitaura et al. (2004) and Kitaura (2003). All the
computer simulations and figures presented here have been made by the author.
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Chapter1
Introduction

We came from the stars so they say, now it’s time to go back.

Jerome, Gattaca

1.1 The Crab Nebula and the low mass end of core-collapse super-
novae

W hen Chinese and Arab astronomers watched the sky in the spring of the year 1054 A.D.,
they discovered a new star in the constellation of Taurus. According to their historical

records, the ”guest star” became brighter during several weeks and could be observed by July
for 23 days even in the daytime. It remained visible to the naked eye for about two years.

Now we know that they observed the birth of the Crab Nebula by agigantic supernova
explosion. After millions of years of quiet evolution, a massive star had exhausted its supply of
nuclear fuel, whose burning had provided the energy and pressure to stabilize the star against
the pull of its own gravity. When the nuclear flame in its center died, the stellar core collapsed
within fractions of a second to a neutron star, a compact object with more mass than the Sun
but a diameter of only 20 kilometers. This neutron star is visible as the famous pulsar in the
Crab Nebula, which sends periodic pulses of radiation as it spins around its axis 33 times per
second.

Most of the star, however, was ejected in a violent explosionwith an energy roughly equal
to what the Sun has radiated in 5 billion years of its life. Thehot stellar debris flashed up as
the new star reported by the Chinese and Arab astronomers, and is nowadays visible as the
filamentary gas cloud of the Crab Nebula measuring six light-years across and still expanding
with a velocity of 1500 kilometers per second. It contains not only the chemical elements
which the star has built up in a sequence of nuclear burning stages — first fusing hydrogen to
helium, then helium to carbon, and then carbon to neon, magnesium, and oxygen — but also
material like radioactive nickel, which was freshly assembled during the explosion. The helium
richness of the nebula and the low abundances of carbon and oxygen were interpreted as hints
that the exploding star had a mass of only about 8 to 10 solar masses, just sufficient to end its
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life as a supernova.
But how did the star blow up? What was the reason why the star was disrupted? Neutrinos

reveal to be the driving force behind the explosion. These elementary particles are produced
in huge numbers in the very hot and extremely dense interior of the newly formed neutron
star, mainly by reactions of electrons and positrons with protons and neutrons, the constituents
of atomic nuclei. Having made their way to the surface of the neutron star, most of these
neutrinos stream off and carry away more than 99 percent of the energy liberated during the
neutron star formation. Less than one percent of the neutrinos, however, is captured in the
stellar gas surrounding the neutron star before being able to escape. The energy transfer by
these neutrinos heats the gas and makes it boiling like the fluid in a pressure cooker. The
rising pressure finally accelerates the overlying stellar material and leads to the outburst of the
supernova.

Although this theory for the onset of the explosion is 25 years old, proving its viability with
detailed computer models turned out to be extremely difficult. Now at least for stars near the
lower end of the mass range of supernova progenitors the models lend support to the theoretical
idea as we show in this work. The new exploding models agree nicely with observations that the
energy of the Crab explosion was only about one tenth of that of a typical supernova. Different
from previous simulations they also predict only small amounts of ejected carbon, oxygen,
and nickel. Moreover, the strong enrichment of the chemicalcomposition of the remnant with
exotic elements is absent and thus a conflict of the older models with the observed abundances
of rare elements in the Milky Way Galaxy. Since the disruptedstar had a rather low mass
and the explosion was sub-energetic with little productionof radioactive material, other Crab-
like supernovae must be expected to be fairly dim and therefore difficult to discover at great
distances, although they could account for one third of all supernovae.

1.2 Motivation and previous work

Recent observations of subluminous Type II-P supernovae (SNe) like 2005cs, 2003gd, 1999br
and 1997D, have renewed attention to stars near the lower endof the mass range of core-
collapse SN progenitors, i.e. to stars with about 8–10M⊙, which develop O-Ne-Mg cores. A
possible link between both has been suggested because of thelow 56Ni and16O ejecta masses
and low progenitor luminosities (e.g., Chugai & Utrobin 2000, Hendry et al. 2005). However,
due to many uncertainties this connection is far from being clear (e.g., Pastorello et al. 2004,
2005; Hamuy 2003; Zampieri et al. 2003, and refs. therein). Also the Crab Nebula’s progenitor
was proposed to be in this mass window (Gott et al. 1970, Arnett 1975, Woosley et al. 1980,
Hillebrandt 1982). The observed composition of the Crab remnant (small C and O abundances,
He overabundance) was interpreted as a strong indication that the Crab Nebula comes from a
collapsing and exploding progenitor with an O-Ne-Mg core (Davidson et al. 1982, Nomoto et
al. 1982, Nomoto 1983).

Moreover, these stars were considered as possible sites fora low entropy r-process (for
example, Hillebrandt 1978, Wheeler et al. 1997, Sumiyoshi et al. 2001, Wanajo et al. 2003)
based on the assumption that they explode by the prompt bounce-shock mechanism, which
Hillebrandt et al. (1984) found to work in a numerical simulation, taking Nomoto’s O-Ne-Mg
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core model (Nomoto 1984, 1987). Such explosions are characterized by the direct propagation
of the shock out of the core, the formation of a mass cut, and the continuous acceleration of the
material outside of the mass cut to high velocities. They areexpected to eject relatively large
amounts of neutron-rich matter with lowYe (∼0.2) and low entropies (∼ 10kB per nucleon).
However, several groups could not confirm the viability of the prompt explosion mechanism
(Burrows & Lattimer 1985, Baron et al. 1987, Mayle & Wilson 1988). Mayle & Wilson (1988)
continued their simulations in the post-bounce phase for a longer time and obtained instead a
so-called neutrino-driven, delayed explosion (Bethe & Wilson 1985) with a low production of
56Ni (approximately 0.002M⊙) in agreement with subluminous Type II-P SNe as mentioned
above, but with a vast overproduction of neutron-rich material (at least 0.02M⊙ of ejecta with
Ye . 0.41). The latter finding is inconsistent with the chemical composition of our galaxy,
which allows for no more than 10−3 M⊙ of material withYe < 0.42 being ejected per SN
(Hartmann et al. 1985). Moreover, the explosion energies ofboth studies, around2 × 1051erg
in Hillebrandt et al.’s (1984) model and between 0.6 and 1.2×1051erg in Mayle & Wilson’s
(1988) simulations, would be inconsistent with the long plateau phase of the above mentioned
subluminous SNe, if their H-envelope masses were. 8M⊙.

It was suggested that the reason for the discrepant results in the SN simulations of O-Ne-
Mg cores (prompt explosions, delayed explosions, no explosions) could be explained by the
different nuclear EoSs used by the groups (Fryer et al. 1999). Having in mind that the different
approximations in the neutrino transport in previous calculations introduced additional uncer-
tainties, we revisit this topic with a state-of-the-art neutrino transport treatment together with a
careful description of weak interactions and including relevant nuclear burning reactions. We
additionally make a comparison of collapse and post-bouncecalculations with different nuclear
EoSs.

Finally, our 2D calculation permits us to investigate the role of convection in the proto-
neutron star and in the region between the gain-radius and the shock, where the neutrino energy
is deposited and study its effect on the explosion energy.
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Chapter2
Numerical techniques and input physics

2.1 Hydrodynamics-Boltzmann code

The transport of neutrinos and antineutrinos of all flavors is done with the energy-dependent
solver for the coupled set of moments equations and Boltzmann equation called VERTEX. It
is described in detail in Rampp & Janka (2002). For the two-dimensional simulation we use
the MUDBATH code described in Buras et al. (2005, 2006). The equations ofhydrodynamics
are integrated with the Newtonian finite-volume code PROMETHEUS, which uses a third-order,
time-explicit Godunov scheme. This code is a direct implementation of the Piecewise Parabolic
Method (PPM), based on a Riemann solver. General relativistic gravity is taken into account
approximately by an “effective relativistic potential” according to Marek et al. (2005). Grav-
itational redshift and time dilation effects are included in the neutrino transport (see Rampp
& Janka 2002). In appendix A we recall the basic equations as described in Rampp & Janka
(2002) and in appendix B we present a corrected description of the iteration procedure with a
revised flow-chart of the VERTEX-code with respect to Kitaura (2003).

2.2 Microphysics and nuclear burning

The code is augmented with improved microphysics as described in Buras et al. (2005). It
includes also the improved treatment of electron captures on a large variety of nuclei in nuclear
statistical equilibrium (NSE), based on shell model Monte Carlo calculations, as described by
Langanke et al. (2003). In addition, electron captures on certain important nuclei in the non-
NSE regime, in particular20Ne and24Mg, are implemented according to Takahara et al. (1989)
(see appendixC).

A simplified treatment of nuclear burning accounts for the main reactions of seven sym-
metric nuclei (He, C, O, Ne, Mg, Si, Ni). Details about the implemented microphysics are de-
scribed in appendix (D). The nuclear burning reactions considered by Hillebrandtet al. (1984)
(12C+12C, 16O+16O, 12C+16O) are all included, taking into account different reaction chan-
nels.
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Figure 2.1:Panelsa b show the evolution of the collapsing mass shell trajectories in a temperature-
density diagram during the collapse and postbounce phase for our 1D simulations with the L&S and
W&H EoSs. We see that the trajectories converge to a high density region with also high temperatures,
where the proto-neutron star is forming. The dark region stands for the high-density nuclear EoS, the
bright-grey region represents the low-density region, andthe white region is the low-temperature region.

2.3 The equations of state

To describe matter in NSE, we use two different nuclear EoSs in separate simulations, the
Wolff & Hillebrandt (W&H) EoS (Hillebrandt et al. 1984), which is based on Hartree Fock
calculations, and the Lattimer & Swesty (L&S) EoS (1991), which is a finite-temperature com-
pressible liquid-drop model and has a compressibility modulus of 180 MeV.

This permits us to compare our models with those of Hillebrandt et al. (1984), in which
the Wolff and Hillebrandt EoS was used and which produced prompt explosions. The low-
temperature and low-density EoS outside of the NSE regime isdescribed by an ideal gas of
nuclei and nucleons, electrons, positrons, and photons (Janka 1999). Figure2.1 shows the
evolution of the collapsing mass shell trajectories in a temperature-density diagram during
the collapse and postbounce phase for our 1D simulations with the L&S and W&H EoSs.
The trajectories show a smooth behavior in the region interfaces. This permits us to switch
between NSE and non-NSE in a density- and temperature-dependent manner. Coulomb lattice
corrections in the low-density EoS were not included in order to accomplish better agreement
with Nomoto’s initial data which were obtained with a different equation of state.

2.4 The initial data

The initial model is the same as the one used in previous SN calculations of O-Ne-Mg cores by
Hillebrandt et al. (1984) and Mayle & Wilson (1988). It is a 2.2 M⊙ He core that corresponds
to a progenitor with a main sequence mass of∼8.8M⊙ (Nomoto 1984, 1987). Figure (2.2)
shows the profile of the progenitor. Prior to collapse it has an O-Ne-Mg core with∼1.3M⊙,
surrounded by a C-O shell of about0.08M⊙. We take, however, the initial data at a time when
the central density is∼4×1010 g/cm3 and only∼0.1 solar masses at the center of the core have
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2.4 The initial data

Figure 2.2:The core profile corresponding to a 8.8 solar mass progenitortaken as initial model for
our calculations. We extended the profile to an outer radius of 105 km assuming a power-law for the
temperature profile and hydrostatical equilibrium at the H-He outer atmosphere. The temperature, the
entropy, the density, the electron fraction and the bindingenergy at the onset of gravitational collapse
are plotted against the stellar mass in the upper panel and against the stellar radius in the lower one.
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2. NUMERICAL TECHNIQUES AND INPUT PHYSICS

Figure 2.3:Composition of the O/Ne/Mg core plus the C/O layer interior to the helium burning shell
at the time whereρc = 4.425 · 1010 g cm−3. The fraction of the average heavy nucleus representing the
neutron rich species is given by< X >. The initial electron fractionYe is also represented.

reached nuclear statistical equilibrium (NSE). This is earlier than the starting configuration
taken by other groups, where the core had already a central density of ∼3×1011 g/cm3 and
where around 0.3 solar masses were in NSE. Our earlier initial model allows us to trace the
evolution of the core towards collapse. The initial composition of the O-Ne-Mg core can be
seen in fig. (2.3).

We added a helium atmosphere of about 10−4M⊙ around the O-Ne-Mg and C-O core,
so that we could move the outer boundary of our Eulerian grid from the core radius of about
1100 km to 100 000 km. For the He-shell profile we adopted a power-law like behavior of the
temperature (T ∝ r−1) from a 10.2M⊙ progenitor of A. Heger (private communication), and
constructed the density profile by assuming hydrostatic equilibrium, a mass fraction of 100%
He, and using the EoS for the low-density regime. We employ inour simulations a very fine
mesh in order to resolve the steep density gradient at the outer boundary of the C-O layer, with
1600 nonequidistant zones for the hydrodynamics part. The neutrino transport is done with
235 nonequidistant radial zones.
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Chapter3
Results

3.1 Core-collapse

Our results show a very smooth transition from the precedingprogenitor evolution to core-
collapse. Since O-Ne-Mg cores are gravitationally less bound than more massive stellar pro-
genitors and can release more energy due to nuclear burning,a temperature- and density-
dependent treatment of all relevant nuclear burning reactions had to be included, combined
with a detailed description of the important electron capture rates. Only that ensured that
the progenitor evolution continued towards gravitationalcollapse without numerical transients.
We could therefore confirm that the neutrinos produced by electron captures carry away effi-
ciently the energy that is released by nuclear burning (Miyaji et al. 1980, Miyaji & Nomoto
1987, Hashimoto & Nomoto 1993). A cruder burning treatment,or omission of the improved
electron capture rates on nuclei, can have the consequence that the core expands instead of col-
lapsing to a NS, as we verified in test calculations. fig. (3.1) shows how the mass shells in the
inner region during the first milliseconds start contracting towards the center. The collapse of
the core proceeds to higher central densities and when the density of nuclear matter is reached,
the EoS “stiffens”, and the inner homologous core bounces.

3.2 Shock formation and post-bounce evolution

3.2.1 Prompt-shock

The supersonically falling outer layers collide with this central core and a hydrodynamic shock
is formed as can be seen in fig. (3.1), where this discontinuity in the fluid flow becomes visible
by sharp kinks of the mass shell trajectories. This happens after 59 ms of collapse for the cal-
culation with the W&H EoS and after 78 ms in the calculation with the softer L&S EoS. The
shock formation radius is at 1.40×106 cm, corresponding to an enclosed mass of0.475M⊙

in the former case, and at 1.15×106 cm with an enclosed mass of0.425M⊙ in the second
model. This so-called prompt bounce shock produces initially positive velocities in the post-
shock matter. However, the energy of the shock is insufficient to cause a prompt explosion, and
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L&S

W&H

Figure 3.1:Mass trajectories for the simulations with the L&S EoS and the W&H EoS as a function
of post-bounce time (tpb). Also plotted: shock position (thick solid line starting at time zero and rising
to the upper right corner), gain radius (thin dashed line), and neutrinospheres (νe: thick solid; ν̄e: thick
dashed;νµ, ν̄µ, ντ , ν̄τ : thick dash-dotted). In addition, the composition interfaces are plotted with
different bold, labelled lines: the inner boundaries of theO-Ne-Mg layer at∼0.77M⊙, of the C-O layer
at∼1.26M⊙, and of the He layer at 1.3769M⊙. The two dotted lines represent the mass shells where
the mass spacing between the plotted trajectories changes.An equidistant spacing of5 × 10−2M⊙ was
chosen up to1.3579M⊙, between that value and1.3765M⊙ it was1.3 × 10−3M⊙, and8 × 10−5M⊙

outside.
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3.2 Shock formation and post-bounce evolution

Figure 3.2:Left: Velocity profiles vs. enclosed mass at different times for the model with the W&H
EoS. Times are normalized to core bounce.Right: Velocity profiles as functions of radius for dif-
ferent post-bounce times for the simulation with the W&H EoS. The insert shows the velocity profile
vs. enclosed mass at the end of our simulation.

the photodisintegration of nuclei consumes such amounts ofenergy that the shock is quickly
damped and that within only∼1.2 ms after shock formation the velocities are negative every-
where (see fig. (3.2) for the case of the W&H EoS). Therefore, the prompt shock mechanism
fails, independent of the employed nuclear EoS.

3.2.2 Explosion-mechanism

The subsequent expansion of the shock is supported by a combination of different effects.
Initially very high mass accretion rates cause the materialto pile up between neutrinosphere and
shock as it is also observed in the early post-bounce accretion phase of more massive progenitor
stars (see, for example, Buras et al. 2005). Second, the rapid decrease of the mass accretion
rate contributes to ensure ongoing expansion (see right plot in fig. 3.4), because even for quasi-
stationary conditions the accretion shock adjusts to a larger radius for smaller mass accretion
rates. Finally, as soon as the shock reaches the outer edge ofthe C-O shell, a very steep density
decline leads to an outward acceleration of the shock. The last two aspects are linked to the
specific structure of O-Ne-Mg cores and discriminate SN progenitors with such cores from
more massive stars. However, despite the shock expansion the material behind the shock has
initially still negative velocities and is accreted onto the forming NS (figs.3.1,3.2). Note that
when the matter right behind the shock starts to expand with the shock, the gas accreted by the
shock is gravitationally bound and remains so in passing through the shock. However,pdV
work excerted from below and to a minor extent energy input byneutrino heating can convert
the accretion into an explosion, accelerating a tiny amountof matter (≪ 10−3 M⊙) to move
outward with the shock.

While the shock reaches larger radii, the temperature and density behind the shock de-
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Figure 3.3:Four snapshots of the explosion of an 8–10M⊙ star in a two-dimensional (2D) simulation,
which was performed in a±45◦ wedge around the equatorial plane, using periodic boundarycondi-
tions. Time is normalized to bounce. The color coding represents the entropy per nucleon with black
corresponding to values of<∼ 7kB, red to 10–15kB, orange to 15–20kB, and white to about 25kB. The
supernova shock is visible as sharp red/black discontinuity at about 210 km in the upper left panel, while
it is already far outside the displayed region at all other times (the corresponding shock radii are roughly
900 km, 5600 km, and 15000 km).

crease. High-energy electron neutrinos and antineutrinos, which stream off from their neutri-
nospheres (represented by the thick solid, dashed, and dash-dotted lines in fig. (3.1)) begin to
deposit energy behind the shock mainly by absorption on nucleons. This leads to the formation
of a “gain radius” (thin dashed line in fig. (3.1)) which separates a layer of neutrino cooling
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3.2 Shock formation and post-bounce evolution

Figure 3.4: Left: Explosion energy as a function of time for the 2D simulation of the left figure
compared to two runs in spherical symmetry (1D) with a soft (“L&S”) and a stiff (“W&H”) nuclear
equation of state. The steep increase of the explosion energy in the 1D models after about 150 ms is
caused by the onset of the expansion of neutrino-heated matter away from the gain radius. Convective
overturn leads to more efficient neutrino heating of a largermass and to an earlier rise of the explosion
energy in the 2D simulation. The energy is defined as the volume integral of the total gas energy (internal
plus kinetic plus gravitational) in regions where the latter is positive.Right: The mass accretion rate of
the collapsing ONeMg core at a function of time after bounce,measured just outside of the supernova
shock.

around the neutrinosphere from the energy “gain layer” behind the shock (Bethe & Wilson
1985). The neutrino emission evolution can be nicely seen inthe luminosty plots shown in
fig. (3.6). Four phases characterise the evolution: the collapse phase, in which neutrinos are
trapped, the prompt burst of electron neutrinos, the accretion phase, and finally the explosion
phase, which we explain below.

About 80 ms after bounce for the L&S EoS and about 60 ms for the W&H EoS, the neutrino
heating timescale, defined by the total energy in the gain layer divided by the neutrino heating
rate in that region, gets smaller than the advection timescale (see fig.3.5). The latter is given as
the time the accreted matter needs for being advected from the shock to the gain radius. Since
the increasing shock radius leads to smaller and smaller postshock velocities, the duration of the
deposition of energy via neutrino absorption in the shockedmatter increases. The continuous
input of energy raises the total energy of the gain layer to a value near zero within roughly 100
ms, unbinding the matter in the gravitational field of the forming NS. The fluid velocity in the
layer close to the gain radius therefore starts to become positive (see fig. (3.1) and the right plot
in fig. (3.2)) and the explosion energy shows a rapid increase (left plotin fig. 3.4).

The cooling region then becomes more and more narrow as the gain radius retreats towards
the neutrinosphere, so that neutrinos diffusing out of the contracting protoneutron star begin to
heat the layers right above the neutrinosphere. Gas is thus ablated from the NS surface, and the
so-called neutrino-driven wind phase sets in att & 200 ms after bounce. Several of the mass
shells depicted in fig. (3.1) clearly show this process.

At this time the energy in the expanding postshock matter hasincreased to about0.1×1051
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3. RESULTS

Figure 3.5:Neutrino heating and advection timescales for the L&S and for the W&H EoS. The physical
time is not normalized to bounce, but starts with the onset ofcollapse, where the simulation was initiated.

erg, rising further due to the power input by the neutrino-driven wind. We extrapolate that the
final energy of the explosion will be slightly larger than0.1× 1051 erg for the calculation with
the W&H EoS and might be about 50% higher in case of the L&S EoS.This is roughly a
factor of 10 lower than the canonical SN value, in contrast tothe findings in previous explosion
models of O-Ne-Mg cores (Hillebrandt et al. 1984, Mayle & Wilson 1988).

At the end of our simulation the mass cut, and therefore the baryon mass of the protoneutron
star, is around 1.360M⊙ for the W&S EoS (fig.3.1) and about1.365 M⊙ for the L&S EoS
(see figure3.8). The NS mass will only slightly decrease further because ofthe ongoing mass
loss in the neutrino-driven wind. The mass of the ejecta liestherefore between 0.014 and
0.017M⊙. The ejected gas has an electron fraction,Ye, between 0.46 and 0.53 and entropy
values between 10 and 40kB per nucleon for both EoSs (see fig. (3.7) for the case with the
W&H EoS). Since only about one third of the ejected matter hasa Ye value very close to 0.5,
the mass of ejected56Ni is certainly smaller than∼0.015M⊙. TheYe values in our models
are higher than those in previous simulations of SNe from O-Ne-Mg cores (Mayle & Wilson
1988). This points to important differences in the neutrinotreatment. Spectral Boltzmann
transport calculations have recently found early ejecta with Ye around 0.5 and higher also in
(artificial) explosions of more massive progenitors (Buraset al. 2005, Fröhlich et al. 2005).
The reason for this difference compared to the older models is a refined description of neutrino
spectra formation and in particular of charged-current neutrino-nucleon interactions, including
the weak magnetism corrections that were pointed out to be relevant by Horowitz (2002).

3.3 Multi-dimensional effects

Multi-dimensional effects are not crucial for obtaining neutrino-driven explosions of progeni-
tors with the structure of the considered∼ 9M⊙ model. Nevertheless, a simulation performed
in two dimensions (2D; i.e., assuming axial symmetry) showsthat convective overturn in the
neutrino-heated layer between the gain radius (at 90 km) andthe shock becomes strong about
80 ms after bounce and has fully developed 20 ms later (see fig.3.3, upper panels of left plot). It
carries cooler matter in narrow downdrafts from larger distances to locations closer to the gain
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Figure 3.6:Neutrino luminosities for the L&S (left) and for the W&H (right) EoSs for an observer
at rest at 400 km. The solid line is for electron neutrinos (νe), the dashed line is for the electron
antineutrinos (νe) and the dotted line is for the rest of flavours,µ andτ neutrinos and antineutrinos. In
the lower panel, the average energies of the emitted neutrinos are plotted.

radius, where the gas is exposed to more efficient neutrino heating. Therefore a larger gas mass
absorbs energy from neutrinos before it accelerates outward in rising high-entropy plumes.
This leads to a considerably higher energy of the explosion than in the corresponding 1D sim-
ulations (left plot in fig.3.4), but has essentially no effect on the propagation of the supernova
shock during this phase, because the shock is already far outside of the convective region. Af-
ter about 150 ms of post-bounce evolution the radial propagation of the neutrino-heated layers
has become so fast that the mixing motions freeze out and the corresponding fluid pattern with
characteristic Rayleigh-Taylor mushrooms expands self-similarly with high velocity (fig.3.3,
lower panels). The 2D simulation also shows that convectioninside the nascent neutron star
does not lead to any significant increase of the neutrino luminosities and thus of the neutrino
heating behind the shock. In agreement with recent simulations with spectral neutrino transport
(Bruenn et al 2007) we also observe convective-like fluid motions below the neutrino-sphere
confined to a layer between 10 and 30 km (see figs.3.9and 3.10). This convection is initiated
promptly after bounce (around 8 ms post-bounce time) and fades away within less than 15 ms.
Mezzacappa et al (2007) also report about this Ledoux convection and claim that it is driven by
the negative entropy gradient left behind by the weakening post-bounce shock. Around 50 ms
after bounce the convective behavior is reinitiated below the neutrinosphere and stays until the
end of our simulation (∼250 ms). Figure (3.9) shows the four stages: the upper-left pannel for
both plots shows a rather spherical symmetric pattern, where convection is just about to start
4 ms after bounce. The upper-right pannels show the strongest convective features in the first
convective phase at around 10 ms. The lower-right pannels show the behavior in the interval
between 20 ms and 50 ms (the snapshot is taken at 48 ms), where convection is suppressed.
Finally, the lower left pannels show the typical pattern when convection has restarted (the snap-
shots are taken at 150 ms). We have depicted in fig. (3.10) the typical cycle of a bubble which
is transported by convection in an outflow till the turn-overradius is reached and falls back in
a downflow. This process occurs within less than 10 ms.
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Figure 3.7:Profiles of the electron fractionYe and entropys as functions of enclosed mass at the end
of our simulation with the W&H EoS.

a b

c d

Figure 3.8:Neutron star mass (panelsa andb) and neutron star radius (panelsc andd) for the L&S
and for the W&H EoSs respectively. Here the layer with a density of 1011 g/cc was followed in time.
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3.3 Multi-dimensional effects

Figure 3.9:Neutron star convection at different post-bounce times represented by the electron fraction
in the left plot and by the velocity modulus in the right plot.The snapshots are taken at 4 ms (upper-left),
at 10 ms (upper-right), at 48 ms (lower-left), and at 150 ms (lower-right).

The enhanced explosion energy is merely a consequence of theconvective activity behind
the supernova shock. This is clearly different from the simulations by Mayle & Wilson (1988),
who obtained models with larger explosion energy by assuming that the neutrino luminosities
were boosted by neutron-finger convection below the neutrinosphere.

The rapid outward acceleration also has the consequence that the convective pattern never
develops dominant power on the largest scales. The expansion of the gain layer happens so
quickly that the convective plumes have no time to merge to structures with lateral wave-
lengths of more than about 45◦. Since the shock radius grows continuously with time, also the
SASI (stationary accretion shock instability) has no possibility to grow (for more details, see
Blondin et al 2003, Scheck et al 2007). Such a situation disfavors the development of a large
global asymmetry of the small amount of material that is accelerated during the early stages
of the explosion. Therefore the pulsar kick velocities mustbe expected to remain rather small
(roughly <∼100 km/s) in case of the O-Ne-Mg core collapse events.
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a b

c d

e f

Figure 3.10:Neutron star convection represented by the velocity modulus for 6 snapshots starting at
100 ms post-bounce time with each subsequent snapshot takenwith an interval of 1 ms. The±45◦

wedge around the equatorial plane has been reproduced in each of the 4 quadrants for visualization
purpose.
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Chapter4
Conclusions

Our 1D and 2D simulations of SN explosions from the collapse of O-Ne-Mg cores suggest
that such SNe are powered by neutrino heating and by the neutrino-driven wind of the newly
formed NS, similar to what Woosley & Baron (1992) found in case of the accretion-induced
collapse of white dwarfs to NSs. Such events have a low explosion energy (∼ 0.1×1051 erg)
and produce little56Ni (. 10−2 M⊙). Most of the ejecta expand initially with velocities of
2–4×104 km s−1, a small fraction has nearly105 km s−1. This is significantly faster than in
SNe of more massive progenitors. Of course, sweeping up the matter of the stellar mantle
and envelope, the shock will decelerate, and the ejecta velocities after shock breakout from
the stellar surface will be correspondingly lower. During the first second of the explosion, the
ejected matter has0.46 . Ye . 0.53 and modest entropies (10 . s/(kB/by) . 40). Such
conditions exclude that r-process elements are formed in this matter during this early phase of
the explosion of O-Ne-Mg cores:Ye is too large for the “classical” low-entropy r-process and
s is too low for high-entropy r-processing. The ejecta in our models, however, do not show
the vast overproduction of some very neutron-rich, rare isotopes like87Kr, which was made
in low-Ye material (Ye . 0.44) in previous simulations (Mayle & Wilson 1988), and which
was interpreted as a severe constraint to the rate of such events. Our models yield considerably
less energetic explosions than previous simulations and show other significant differences in
the dynamics and explosion characteristics. These are probably mainly linked to the improved
treatment of neutrino transport and neutrino-matter interactions.

The small explosion energy obtained in our simulations is more consistent than previous
explosion models of O-Ne-Mg cores with the low present expansion velocities (∼ 1500 km s−1)
of the filaments of the Crab remnant of SN 1054 (Davidson & Fesen 1985), corresponding to
a low kinetic energy of 0.6–1.5×1050 erg for an ejecta mass of4.6 ± 1.8M⊙ in ionized and
neutral gas (Fesen et al. 1997). The energy could be even somewhat larger if there were several
solar masses of material in an undetected, extended halo.

While our simulations are spherically symmetric, we do not expect any qualitative changes
in the multi-dimensional case, and probably only a modest increase of the explosion energy.
Since very fast outflow develops on a relatively short timescale after core bounce, nonradial
hydrodynamic instabilities are unlikely to have time to merge and grow to very large structures
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or global asymmetry before the anisotropic pattern freezesout in the accelerating expansion
(Scheck et al. 2006, in preparation). Therefore the recoil velocity of the NS due to anisotropic
mass ejection should remain fairly small (see Scheck et al. 2004), in agreement with specula-
tions by Podsiadlowski et al. (2004). Corresponding 2D simulations are in progress.

Our models have also an important bearing on the nuclear EoS constraints deduced by
Podsiadlowski et al. (2005) from the low-mass Pulsar B of thedouble pulsar J0737-3039,
which has a gravitational mass ofMG = 1.249 ± 0.001M⊙. Provided the progenitor model
we use is valid, the mass loss of the collapsing O-Ne-Mg core during the explosion leaves
the neutron star with a baryonic mass ofM0 = 1.36 ± 0.002M⊙. The error range accounts
approximately for variations associated with the employedEoS and the wind ablation after
our simulations are terminated. Our value implies a systematic left shift and reduction of the
“acceptance rectangle” in fig. (3) of Podsiadlowski et al. (2005). Combined with the recent
measurement of a pulsar of 2.1±0.2M⊙ in PSR J0751+1807 (Nice et al. 2005), which is the
largest well determined NS mass so far, this lends viabilityonly to a limited number of NS EoSs
which allow for a sufficiently large maximum mass and whoseMG/M0-curves pass through
the acceptance rectangle.

Based on our findings one might speculate that (B-) stars around 9M⊙ are also the pro-
genitors of some of the subluminous Type II-P supernovae mentioned in the introduction. In
fact, their peculiarities would be explained in a very natural way. The low peak luminosity and
extended plateau phase could result from the combination ofa low hydrogen envelope mass
(≃ 6M⊙) with low expansion velocities (. 3000 km/s). The small mass of radioactive56Ni
would explain the low tail-luminosity of these objects. An alternative interpretation of sublu-
minous Type II-P supernovae is the explosion of rather massive stars with extended envelopes,
but otherwise more “normal” explosion energies. This connection is supported by the long du-
ration of the plateau phase of many of these events (cf. Pastorello et al. 2004, and refs. therein).
Provided the observations cover the full duration of the plateau, SN 1997D and 2003gd may
still be viable cases for explosions of stars with main sequence masses around 9M⊙ (Hendry et
al. 2005). There is a clear difference between such stars andmore massive supernova progen-
itors. The former eject very little amounts (some10−3 M⊙ ?) of oxygen only, like SN 1997D
(Chugai & Utrobin 2000), whereas the latter produce up to a solar mass or more. Therefore
one might be able to distinguish between the two scenarios onthe basis of observations by
measuring the oxygen lines in the late nebular spectra.
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AppendixA
The equations of neutrino
hydrodynamics

The simulation of the dynamics of stellar core-collapse andsupernova explosion requires the
description of the evolution of the coupled physical systemthat contains “neutrinos” and stellar
plasma or “fluid”.

“Fluid” is called a system of particles that admits a hydrodynamical description. For this
it is necessary that the mean free path between interactionsof those particles is very small
compared to the scales of macroscopic variations in the system. It has to be also fulfilled,
that the forces between particles saturate or are of “short range”, because otherwise collective
effects must be taken into account. Formally, the energy perparticle has to remain constant
with the number of particles going towards infinite. Gravityand electromagnetic forces which
both scale as∼ r−1, are non-saturating forces. Hence, gravity must be included in the hydro-
dynamic equations as a macroscopic external force. Electromagnetic forces however saturate
in electrically neutral systems due to screening. The stellar fluid can be assumed to contain
nucleons and nuclei, charged leptons and photons, since mean free paths of these particles are
determined by electromagnetic and strong interactions andare thus very short. These particles
are therefore in thermodynamic equilibrium unless nuclearreactions play a role.

For densitiesρ ≤ 1012 g cm−3, the mean free paths of neutrinos are comparable to the
radius of the core, so that neutrinos are not in equilibrium with the stellar plasma and also
the condition for a hydrodynamical description is not fulfilled. Neutrinos have to be treated
separately by solving transport equations, because weak interactions cannot establish equilib-
rium. Since a star has regions which are opaque, semitransparent or transparent for neutrinos,
the neutrino transport can neither be described by a diffusion equation nor by simply using
source terms that account for local sinks of energy and lepton number. An accurate treatment
of neutrino transport by solving the Boltzmann equation in connection with hydrodynamical
simulations has only been achieved recently (see Mezzacappa et al. 2001, Rampp 2000, Rampp
& Janka 2000, 2002, Thomson, Burrows & Pinto 2003).
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A.1 Hydrodynamics

Fluid elements are considered to contain a number of particles that is sufficiently large to in-
troduce mean quantities on a macroscopic scale like a mean mass density, mean momentum
density, mean internal energy density etc. These mean quantities are treated as continuous
functions of the space coordinates, without referring explicitly to the physical state of indi-
vidual particles which constitute the fluid elements. The properties of a fluid element are de-
scribed mathematically by moments of a particle distribution function over momentum space.
It is therefore possible to derive the equations of hydrodynamics from statistical mechanics
by constructing moments of the Boltzmann equation over momentum space and truncating the
system on a certain level (see e.g. Mihalas & Mihalas 1984,§30.) For a classical derivation
based on conservation laws see e.g. Landau & Lifschitz (1991).

For an ideal fluid characterized by the mass densityρ, the Cartesian components of the ve-
locity vector(v1, v2, v3)

T , the specific energy densityε = e + 1
2v2 and the gas pressurep, the

Eulerian, nonrelativistic equations of hydrodynamics in Cartesian coordinates read with sum
over i implied (see e.g. Rampp & Janka 2002):

∂tρ + ∂i(ρvi) = 0 , (A.1)

∂t(ρvk) + ∂i(ρvivk + δikp) = −ρ∂kΦ
Newt + QMk , (A.2)

∂t(ρε) + ∂i({ρε + p}vi) = −ρvi∂iΦ
Newt + QE + viQMi , (A.3)

whereΦNewt denotes the Newtonian gravitational potential of the fluid,which can be de-
termined from the Poisson equation

∂i∂
iΦNewt = 4πGρ , (A.4)

whereG is Newton’s constant.QM andQE are the neutrino source terms for momentum
transfer and energy exchange, respectively,δik is the Kronecker symbol, and∂i := ∂/∂xi is
an abbreviation for the partial derivative with respect to the coordinatexi. In order to describe
the evolution of the chemical composition of the (electrically neutral) fluid, the hydrodynamic
equations are supplemented by a continuity equation for theelectron fractionYe (number den-
sity of electrons minus positrons divided by the number density of baryons),

∂t(ρYe) + ∂i(ρYevi) = QN , (A.5)

where the source termQN describes the change of the net electron number density (i.e. the
density of electrons minus that of positrons) due to emission and absorption of electron-flavour
neutrinos. Unless nuclear statistical equilibrium (NSE) holds, an equation like (A.5) has to be
solved for the mass fractionXk of each of theNnuc nuclear species. In NSEXk = Xk(ρ, T, Ye)
is determined by the Saha equations.

An equation of state is invoked in order to express the pressure as a function of the inde-
pendent thermodynamical variables, i.e.,p = p(ρ, T, Ye), if NSE holds,

or p = p(ρ, T, Ye, {Xk}k=1...NNuc
) otherwise.
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A.2 Neutrino transport

A.2.1 Boltzmann equation

The physical state of a statistical ensemble of particles with given statistics (bosons, fermions)
is described by the particle distribution functionf(t,r,p) in phase space.

Theng/h3 · f(t,r,p)d3rd3p is the number of particles occupying the phase-space volume
d3rd3p at(r,p), g denotes the statistical weight of the particles; e.g.g = 1 for Dirac neutrinos,
g=2 for photons;h = 2π~ is Planck’s constant. The temporal evolution of the distribution
function is governed by the Boltzmann equation

∂

∂t
f +

∂r

∂t
∇rf +

∂p

∂t
∇pf =

(

df

dt

)coll.

. (A.6)

Eq.A.6 assumes flat spacetime (Minkowski) and thus disregards general relativistic effects.
Particles with vanishing rest mass, usually referred to as “radiation” in the classical sense, then
move along straight rays with the speed of light, hence dr/dt = nc ≡ p/|p| c. If, in addition,
no external forces are present (ṗ ≡ 0), eq. (A.6) simplifies to (ignoring for the moment, e.g. ef-
fects due to motion of the medium that carries the target particles for radiation or neutrino
interactions):

1

c

∂

∂t
f + n∇rf = B . (A.7)

The Boltzmann eq. (A.7) is a hyperbolic partial differential equation. In particular, for a
given source term B, eq. (A.7) is a linear advection equation with characteristic speedc: Along
a line element of length∆s = n∆r and within the time interval∆t = ∆s/c , the change
of the distribution function of particles entering at one end (s,t) and emerging at the other end
(s + ∆s, t + ∆t) results as given by the collision termB. Introducing the “emissivity”̃η and
the opacityχ, which is the inverse of the mean free path, the collision term can be written as
(scattering processes can be considered as absorptions with subsequent emissions)

B :=
1

c

(

df

dt

)coll.

≡ η̃ − χf . (A.8)

Introducing the monochromatic specific intensity

I :=
( ǫ

hc

)3
c · f , (A.9)

and the emissivity

η :=
( ǫ

hc

)3
c · η̃ , (A.10)

the Boltzmann equation (A.7) reads

1

c

∂

∂t
I + n∇rI = C ≡ η − χI , (A.11)
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whereǫ is the energy of the neutrinos. Rewriting the momentum-space part of a phase-
space volume element as (dΩ denotes the solid angle element)

d3p = ǫ2/c3dǫdΩ , (A.12)

the quantitiesI(t,r, ǫ,n)dΩdǫ nr/|r|dAdt andǫ−1I(t,r, ǫ,n)dΩdǫnr/|r|dAdt can be in-
terpreted as the amount of energy and particle number, respectively, which during the time dt
is carried by radiation within the frequency intervalh−1[ǫ, ǫ+dǫ] through the surface element
dA (with the outwardly directed normalr/|r|) into the solid angle dΩ about the directionn.
The source termC := (ǫ/hc)3c · B ≡ η − χI is interpreted as the amount of radiation energy
in a unit frequency interval contained within the unit solidangle around the directionn that is
exchanged with a material element of unit volume per unit time interval.

A.2.2 Angular moments

The angular moments of the monochromatic specific intensityare defined as the following
integrals over all angular directions

J(t, r, ǫ) :=
1

4π

∫

dΩ I(t, r, ǫ,n) =
c

4π
E(t, r, ǫ), (A.13)

Hi(t, r, ǫ) :=
1

4π

∫

dΩ niI(t, r, ǫ,n) =
1

4π
Fi(t, r, ǫ), (A.14)

Kij(t, r, ǫ) :=
1

4π

∫

dΩ ninjI(t, r, ǫ,n) =
c

4π
Pij(t, r, ǫ), (A.15)

... ,

whereE(t, r, ǫ) denotes the (monochromatic) neutrino energy-density,F the density of
the (monochromatic) energy flux (the momentum density is given by1/c2F ), andPij are the
components of the stress tensor P. Moments of higher order donot admit an immediate physical
interpretation.

A.2.3 Moment equations

Forming angular moments of the Boltzmann equation (A.11) one obtains the hierarchical set
of monochromatic moment equations:

1

c

∂

∂t
J + ∇ · H = C(0) (0th-order moment equation), (A.16)

1

c

∂

∂t
H + ∇ · K = C(1) (1st-order moment equation), (A.17)

...

with the corresponding source terms being defined as
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A.3 Neutrino hydrodynamics

C(0)(t, r, ǫ) :=
1

4π

∫

dΩ C(t, r, ǫ,n), (A.18)

C(1)(t, r, ǫ) :=
1

4π

∫

dΩ nC(t, r, ǫ,n), (A.19)

...

The angular moments admit a very straightforward physical interpretation up to second
order, the angular moment equations up to first order. It is usual to truncate the infinite system
of moment equations (A.16, A.17, ...) at a certain level for solving the equations. This is done
at the first order in the moment equations, i.e. at the level ofthe neutrino momentum equation.

In order to further reduce the dimensionality of the radiative transfer problem we assume
spherical symmetry, i.e. that the spatial variation of all quantities can be described by only
one coordinate, i.e. the radiusr. In this case, it can be shown that in addition to this spatial
coordinater, the timet and the frequencyh−1ǫ, the specific intensity depends only on one
angular coordinateΘ. In spherical coordinatesΘ is measured as the angle between the radial
directionr (with r :=|r|) and the direction of propagationn of the neutrinos:

µ := cos Θ :=
r · n

r
. (A.20)

Spherical symmetry furthermore implies that the energy fluxpoints into the radial direction

F = 4π
r

r
H , (A.21)

and that only relevant quantity of the stress tensor is the 33-component, which is identified with
the scalar “radiation pressure”

P =
4π

c
K33 ≡

4π

c
K . (A.22)

A.3 Neutrino hydrodynamics

The system of eqs. (A.16-A.17) is coupled to the evolution equations of the fluid (eqs.A.1-
A.3 and A.5), since the source terms appearing on the rhs. of the monochromatic moment
equations (A.16, A.17) are defined as the rate of net-energy and net-momentum exchange (per
unit frequency interval and unit volume) between the fluid and neutrinos. By conservation of
total energy (i.e. energy of the fluid plus neutrinos) and momentum (i.e. momentum of the fluid
plus neutrinos), the fluid’s energy density and momentum density has to change by exactly the
opposite amount of the changes of the quantities for neutrinos. Summing over all frequencies
the source terms therefore are

QE = −4π

∫ ∞

0
dǫ C(0)(ǫ) , (A.23)
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A. NEUTRINO HYDRODYNAMICS

QM = −
4π

c

∫ ∞

0
dǫ C(1)(ǫ) . (A.24)

Due to the total electron-lepton number conservation thereis an additional continuity equa-
tion for the number density of electrons minus positrons in the fluid plus the number density of
electron neutrinos minus electron antineutrinos. Thus, the net source term (electron neutrinos
minus electron antineutrinos) that enters the continuity equation for the net electron number
(electrons minus positrons, eq.A.5) must read:

QN = −4πmB

∫ ∞

0
dǫ C

(0)(ǫ) , (A.25)

wheremB denotes the baryonic mass, andC(0)(ǫ) := ǫ−1C(0)(ǫ).
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AppendixB
Numerical implementation

An operator splitting approach (see e.g. LeVeque 1998) is applied in order to decouple the
neutrino hydrodynamics into a hydrodynamics part and a neutrino transport part. This allows
one to solve independently in subsequent (“fractional”) steps the equations of neutrino hydro-
dynamics.

The Newtonian finite volume code PROMETHEUS (PROgram for Multi dimensional
Eulerian ThermonuclearHydrodynamics withExplicit Upwind Second order Differencing)
developed by Bruce Fryxell and Ewald Müller is used for the integration of the equations of
hydrodynamics (Fryxell, Müller, & Arnett 1989). PROMETHEUS is a direct Eulerian, time
explicit implementation of the Piecewise Parabolic Method(PPM) of Colella & Woodward
(1984), which is a second-order Godunov scheme (see e.g. Godunov 1999) employing a Rie-
mann solver, i.e. PPM achieves second order accuracy in space and time for the homogeneous
equations of hydrodynamics. One of the numerous advantagesGodunov schemes have is that
they account for the nature of the equations of hydrodynamics being conservation laws for
mass, momentum and energy. By employing Riemann-solvers, the hyperbolic character of the
equations is explicitly taken into account. Such kinds of schemes are particularly well suited
to follow discontinuities in the fluid flow like shocks or composition interfaces.

The version of PROMETHEUS used here was provided by Keil (1997). It offers an optional
generalization of the Newtonian gravitational potential that includes general relativistic correc-
tions. The hydrodynamics code was considerably updated andaugmented by K.Kifonidis who
added a simplified version of the “Consistent Multifluid Advection”-method (CMA) proposed
by Plewa & Müller (1999) which ensures the accurate advection of individual chemical com-
ponents of the fluid.

The neutrino transport is done with the Boltzmann solver scheme described in much detail
by Rampp & Janka (2002). The integro-differential character of the Boltzmann equation is
tamed by applying a so-called variable Eddington factor method. The moments of the neutrino
distribution function and the energy and lepton number exchange with the stellar medium are
determined by iteratively solving the zeroth and first ordermoment equations in combination
with a model Boltzmann equation. Interaction kernels on rhs. of Boltzmann equations can
be wined in terms of momentsJ,H, .... The latter is discretized on a grid of tangent rays.
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B. NUMERICAL IMPLEMENTATION

The variable Eddington factor is determined from the solution of the Boltzmann equation and
the system of Boltzmann equation and its moment equations isiterated until convergence is
achieved. The neutrino transport contains gravitational redshift and time dilation, but ignores
the difference between coordinate radius and proper radius. This simplification is necessary for
coupling the transport code to the basically Newtonian hydrodynamics. These approximations
are reasonably good as long as there are only moderate deviations (∼10-20%) of the metric
coefficients from unity and the infall velocities do not reach more than 10-20% of the speed of
light (Janka, Buras & Rampp 2002, Liebendörfer, Rampp, Janka, Mezzacappa 2003).

The operator-splitting structure of the code is represented in fig. B.1.3with each important
step numbered and explained in the next section.

B.1 Iteration procedure

Since the neutrino transport part is solved with an implicitmethod and the hydrodynamics part
is handled with an explicit scheme they have different numerical requirements. The hydro-
dynamics part is in general more restrictive concerning thetimestep length due to the CFL
condition (eq.B.2), while the neutrino part is computationally much more expensive. This is
the reason why a transport step is divided into a number of hydrodynamics substeps (Nn

Hyd).
Moreover the hydrodynamics part and the transport part workon different spatial grids, so that
a conservative mapping procedure (the energy density,e, the density,ρ, momentum and lepton
number have to be conserved quantities) between both grids is employed when quantities that
are defined on one grid are required on the other.

B.1.1 Hydrodynamics

One hydrodynamics step is calculated as follows. The initial hydrodynamical state is the one
at the old time level(ρn, en, Y n

e , vn) (H1). First the PPM algorithm computes a solution of
the hydrodynamics equation laws (eqs.A.1-A.3) together with the continuity equations forYe

and the nuclear composition (eq.A.5) (H2,H3). With the updated density the Poisson equation
(H4) is solved to calculate the gravitational potential (H5). The neutrino source terms (QE,
QN, QM) together with the gravitational source term (gravitational potentialΦ) (H6) are then
applied to the total energy equation (eq.A.3) and the momentum equation (eq.A.2). The effects
of the neutrino source terms are taken into account by using the source term of the old timestep.
The neutrino pressureQM for example is taken into account in each individual hydrodynamic
substep in the following way:[ρv]n+ε = Qn

M·∆tHyd. The effects of the source terms for energy
and lepton number are treated in an analogous way. Finally, the nuclear effects, i.e. burning,
are computed (H8). NSE is evaluated automatically wheneverEoS is called. This completes
the hydrodynamic substepn + ε, ε ∈ [1/Nn

Hyd, 2/Nn
Hyd, ..., Nn

Hyd/Nn
Hyd] with the size∆tnHyd.

Since the PPM algorithm uses an explicit integration the time step is limited by the CFL-
condition (Courant-Friedrichs-Lewy condition)

∆t ≤ ∆tCFL ≡ mini
∆ri

csi + |vi|
, (B.1)
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B.1 Iteration procedure

where∆ri is the grid spacing,cs,i is the local sound speed and|vi| is the flow velocity of zone
i. This ensures that information is able to travel not more than one zone within a single time
step (see e.g. Müller 1998). By performing a total ofNn

Hyd substeps the hydrodynamical state
is evolved from the time leveltn to the new transport time leveltn+1 given by

tn+1 = tn + ∆tn = tn + ∆tnHyd · Nn
Hyd , (B.2)

whereNn
Hyd ∈ IN is determined by the condition∆tn ≤ ∆tmax

Tr (Def. see Sect. 4.1.2).

This leads to a partially updated hydrodynamical state(ρn+1, ẽn+1, Ỹ n+1
e , ṽn+1) (H10) which

includes the effects due to hydrodynamical fluid motions andthe acceleration by gravitational
forces, neutrino momentum transfer, neutrino energy and lepton number source terms. How-
ever, neutrino effects are only taken into account in an “explicit” way up to this point. Since
we want “implicit” corrections the state variables are thenmapped onto the transport grid and
the quantitiese, Ye andv denoted with “ ˜ ” have to be updated using the solution of the current
transport timestep (see coupling neutrinos with hydrodynamics).

B.1.2 Neutrinos

The maximum size of the transport time step∆tmax
Tr is chosen so that the local hydrodynamical

and neutrino variables change within chosen limits during the timestep.
The transport part starts with guess values forJ , H, J, H, e, Ye andv (T1). The thermo-

dynamic state is determined by the quantitiese, Ye and the densityρ. The EoS then gives the
temperature, chemical potentials, pressure, and NSE composition. These, together withJ and
H are used to evaluate the rhs. of the Boltzmann equation (T3) with the neutrino rates (T2).
First the Legendre coefficients associated with an expansion of the collision integral as needed
for non-isoenergetic scattering and pair processes are calculated from the corresponding rates
(initial rates,T2). In the subsequent iterations only the absorption opacitiesκa∗ (T5) as needed
for neutrino absorption and emission are calculated from the rates (T4) (Bruenn 1985 and Mez-
zacappa & Bruenn 1993). Now the formal solution of the Boltzmann equation can be computed
(T6) in which the emissivities and the opacities are assumedto be known (for a detailed expla-
nation see Rampp & Janka 2002). The Eddington factors (T7) that can be obtained from the
formal solution are then fed into the system of moment equations which are solved together
with the source term equations (T8) to obtain improved values forJ , H, e andYe (T9).

The source-term equations, i.e. the evolution equations for the electron fraction and internal
energy of the stellar medium in response to neutrino absorption and emission, are given by

δ

δt
e = −

4π

ρ

∫ ∞

0
dǫ

∑

ν∈{νe,ν̄e,...}

C(0)
ν (ǫ) (B.3)

δ

δt
Ye = −

4πmB

ρ

∫ ∞

0
dǫ

(

C
(0)
νe

(ǫ) − C
(0)
ν̄e

(ǫ)
)

. (B.4)

The notationδ/δt indicates that for exmaple eq. (A.5) is split into the equations∂t(ρYe) +
r−2∂r(r

2ρYev) = 0 andδtYe = QN/ρ.
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B. NUMERICAL IMPLEMENTATION

The iteration procedure between T4 and T9 is continued untilnumerical convergence is
achieved. Until this time the neutrino number densityJ and the flux densityH are convention-
ally replaced byǫ−1J andǫ−1H. With the Eddington factors being known from the described
iteration procedure, the complete system of source-term and moment equations for neutrino
energy and number (T10) is solved (once) in order to accomplish lepton number conservation.
In this stepJ andH are treated as additional variables (T11). This yields the neutrino source
terms (T12).

B.1.3 Coupling neutrino transport with hydrodynamics

We map the source terms from the transport grid to the hydrodynamics grid by a conservative
procedure and then update the electron number density and the total energy density on the
hydrodynamics grid (H11) according to

[ρε]n+1 = ρn+1ε̃n+1 + (Qn+1
E + vn+1Qn+1

M ) · ∆tn , (B.5)

[ρYe]
n+1 = ρn+1Ỹ n+1

e + Qn+1
N · ∆tn . (B.6)

Eqs. (B.5) and (B.6) express the effective influence of the source termsQE +vQM over the
time of a transport step, but in fact we apply the corresponding sources (as given at the old time
level) during each substep of the hydrodynamics. The quantities ẽn+1 andỸ n+1

e as needed for
the transport part of the code, are recovered a posteriori bysubtracting the accumulated effects
of the neutrino sources again. The momentum equation of the stellar fluid is treated in a similar
way. Accounting for the momentum transfer (acceleration) by neutrinos after each individual
hydrodynamics substep (by using the old momentum source term Qn

M), however, is of crucial
importance here. The fluid velocitỹvn+1 used in the transport step includes the effects due to
the acceleration by neutrinos.

After the transport time step has been completed, the new neutrino stressQn+1
M is used for

correctingṽn+1 to give the new velocityvn+1 at the time leveltn+1:

[ρv]n+1 = ρn+1ṽn+1 + (Qn+1
M − Qn

M) · ∆tn . (B.7)

The final output (H12) contains the coupled hydrodynamics-transport effects after one step.
The whole process shown in fig. (B.1.3) is then iterated to follow the systems time evolution.
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Figure B.1: Simplified flowchart of the code representing the evolution from the time leveltn to the
new time leveltn+1. The code is basically divided into two parts according to anoperator-splitting
approach: the hydrodynamics part (left hand side) and the neutrino transport part (right hand side).
Both parts are coupled so that the interaction of the neutrinos with matter is taken into account in each
hydrodynamics substep using the source terms of the previous timestep and correcting their influence
with the current transport timestep once at the end. The quantities on the left hand side are defined on
the hydro-grid, whereas the ones on the right hand side are defined on the transport-grid. The tables for
the EoS for different regimes are used throughout the code toderive other quantities that are required
(e.g. the temperature and pressure are given through the EoSenteringρ, e andYe plus composition in
non-NSE ).
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AppendixC
Electron capture rates and neutrino loss
rates

The degenerate core of a progenitor with about 9 solar massesgrows initially through hydrogen
and helium double-shell burning. When the mass interior to the helium burningshell, i.e. the
O/Ne/Mg core plus a C/O layer, reaches 1.38M⊙, the central density reaches 4 x109 g cm−3,
for which the Fermi energy of degenerate electrons exceeds the threshold for the electron cap-
ture, 24Mg(e−, ν)24Na (see Miyaji, Nomoto, Yokoi, 1980; Nomoto, 1987; Miyaji, Nomoto,
1987):

24Mg + e− → ν +24 Na . (C.1)

At first an electron is captured to form the isomeric state of24Na, which decays to its ground
state by emitting gamma-rays withEγ = 0.2 MeV. Electron capture processes according to
24Na(e−, ν)24Ne and20Ne(e−, ν)20F(e−, ν)20O begin whenρc exceeds 5 x109 and 9 x109 g
cm−3, respectively:

24Na + e− → ν +24 Ne , (C.2)

20Ne + e− → ν +20 F , (C.3)

20F + e− → ν +20 O . (C.4)

As Ye decreases, the value of the Chandrasekhar mass is reduced, and thus the core con-
traction is accelerated. The rapid contraction of the core ignites the oxygen deflagration at a
stage with central densityρc > 1010 g cm−3, and the material undergoes transformation into
nuclear statistical equilibrium (NSE) at the oxygen deflagration front. The collapse of the core
is accelerated owing to the rapid electron capture onto NSE elements. The oxygen deflagration
front advances in mass to increase the mass of the NSE core. The calculations done by Nomoto
for this work were stopped atρc = 4.425 · 1010 g cm−3.
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C. ELECTRON CAPTURES

For the further evolution of the core (collapse, and post-bounce phase) we implemented the
rates provided by Takahara et al. (1989), who used improved shell model calculations.

We assumed that the composition of20Ne and24Mg does not change, but took into account
in each iteration the electron fraction decrease accordingto

dYe = −
∑

j

λec
j

Xj

Aj
dt , (C.5)

and the energy loss by

de = −
∑

j

〈Eν〉j
Xj

mu
dt , (C.6)

with the corresponding electron capture rates (λe) and neutrino loss rates (〈Eν〉) for the species
j (20Ne or 24Mg) with their corresponding mass fraction (X) and atomic mass number (A) and
mu the atomic mass unit.
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AppendixD
Nuclear burning description

Here we present a simplified nuclear reaction network carrying seven symmetric elements (He,
C, O, Ne, Mg, Si, Ni), that accomplishes charge and mass conservation. However, the effects
of burning reactions involving free neutrons, free protonsand neutron poor or ionized nuclei
are also taken into account, with the aim to give a reallysticdescription of the energy transfor-
mation due to nuclear burning (see the main nuclear reactions section). The complete reaction
network would give a detailed description of the quantitative evolution of the nuclear species,
which is not attempted here.

D.1 Basic equations

The nuclear abundancesYi = ni/(ρ NA) (whereni are the number densities of the species
i, ρ is the density, andNA is the Avogadro number) in an astrophysical plasma can change
basically due to three categories of reaction mechanisms: single, double and triple particle
reactions. The reaction network is described by the following set of differential equations

d

dt
Yi =

∑

j

N i
jλjYj +

∑

j,k

N i
j,k ρ NA < σv >j,k YjYk

+
∑

j,k,l

N i
j,k,l ρ2 N2

A < σv >j,k,l YjYkYl , (D.1)

where the first term represents the single particle reactions, i.e. decays, photodisintegrations,
electron and positron captures and neutrino induced reactions, and the second and the third
term, two and three particles reactions, respectively. Theindividual N i coefficients are given
by: N i

j = ±Ni, N i
j,k = ±Ni/(Nj !Nk!) andN i

j,k,l = ±Ni/(Nj !Nk!Nl!), whereNi is an abso-
lute number indicating how many particles i are created (+) or destroyed (-) in a reaction, and
Ni! prevents double counting for reactions involving identical particles. The single interaction
rate is represented byλ, whereas the two and three particles reactions rates are represented
by NA < σv >. An accurate description of the time evolution of nuclear abundances would
require solving the full set of equations at once implicitly. Since we are only interested in
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D. NUCLEAR BURNING DESCRIPTION

Figure D.1:Relevant burning rates for an intermediate density of5 × 108 g/cc defined asτi = |Yi

Ẏi

|

for the fuelYi, assuming 100 % fuel mass fraction or 50 % mass fraction for the case of two particle
reactions with different fuels (see Thielemann et al. 1998). For the plot on the right the effective burning
rate was computed as the sum of the burning rates for the different channels (see sectionD.2).

the energy changes, it is sufficient to take the main reactions and solve each corresponding
equation separately in an explicit scheme. This also allowsfor a low computational cost.

The single particle reactions of the form:

Ya → Yb + Yc + . . . , (D.2)

can be solved trivially. The corresponding differential equation:

dYa/dt = −λ1 Ya , (D.3)

with λ1 ≡ λ, can be integrated formally:

Yaf = Yai exp {−λ1 ∆t} , (D.4)

with ∆t ≡ tf − ti.
The two particles reactions we have to deal with are of two types, those with only one fuel:

Ya + Ya → Yb + Yc , (D.5)

and those with two fuels:
Yd + Ye → Yf + Yg . (D.6)

It is possible to solve both cases analytically. The first oneleads to a single differential equation:

dYa/dt = −λ2 Y 2
a , (D.7)

with λ2 ≡ N i
j,kρ NA < σv >j,k, which solution is simply:

Yaf = Yai/(1 + Yaiλ2 ∆t) . (D.8)
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D.1 Basic equations

The mass fractions (X = A Y , with A the atomic number) for the different species change as
follow:

Xaf = Xai/(1 + λ2 ∆t Xai/Aa) , (D.9)

Xbf = Xbi +
1

2
∆XaAb/Aa , (D.10)

and

Xcf = Xci +
1

2
∆XaAc/Aa , (D.11)

with ∆Xa ≡ Xai − Xaf . The reaction with two fuels (D.20) gives a set of two differential
equations:

dYd/dt = −λ2 YdYe , (D.12)

and
dYe/dt = −λ2 YdYe . (D.13)

In order to solve this set exactly we have to take into accounta second set of equations that
states number conservation, i.e. :−dYd/dt = −dYe/dt = dYf/dt = dYg/dt. We can define
the quantity:z = Yd + Ye and obtain then a single differential equation,

d2z/dt2 = −λ2 z dz/dt , which solution is given by : (D.14)

zf = zi/(1 + ziλ2 ∆t/2) . (D.15)

The mass fractions are then:

Xdf = Xdi −
1

2
∆z Ad , (D.16)

Xef = Xei −
1

2
∆z Ae , (D.17)

Xff = Xfi +
1

2
∆z Af , (D.18)

and

Xgf = Xgi +
1

2
∆z Ag . (D.19)

One can see that the solutions accomplish mass conservation(
∑

X = 1), by recalling2Aa =
Ab + Ac andAd + Ae = Af + Ag.

Let us also consider the triple reaction for the case of only one fuel:

Ya + Ya + Ya → Yb . (D.20)

We get the following differential equation:

dYa/dt = −λ3 Y 3
a , (D.21)
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with λ3 ≡ N i
j,k,l ρ2 N2

A < σv >j,k and which solution is simply:

Yaf = Yai/
√

(1 + Y 2
aiλ3 ∆t) . (D.22)

The mass fractions for the fuel and the product are given by:

Xaf = Xai/
√

(1 + λ3 ∆t X2
ai/A

2
a) , (D.23)

Xbf = Xbi +
1

3
∆XaAb/Aa . (D.24)

One can see that mass conservation is fulfilled by recalling that3Aa = Ab.

D.2 The main nuclear reactions

The initial composition is assumed to consist of 5 symmetricnuclei (He, C, O, Ne, Mg). All
of them undergo a series of reaction chains producing in an intermediate step mainly silicon
(28Si,29Si, 30Si) and sulphur (31S,32S) (see, for example, Chieffi et al 1998 and fig.D.2 ).
These heavier nuclei continue burning until iron group elements are produced. In this last step
the reactions occur so rapidly at high temperatures, that explosive burning can be assumed,
i.e. a transformation of the composition, which is instantaneous on the hydrodynamical relevant
timescales. We take the symmetric element28Si as the representative nucleus before explosive
burning sets in, and assume the transition from28Si to 56Ni to take place at a temperature of
T = 4.5 × 109 K. The main goal of the treatment of nuclear burning described here, is to give
an adequate approximation for the reaction steps which ultimately lead to the formation of iron
group elements.
Oxygen burning has three channels that give silicon, sulphur and phosphor. The latter only
needs a proton capture to convert to silicon or sulphur. Since we just want to consider28Si,
we take only the channel involving this nucleus, but with an effective rate given by the sum of
all the rates for the different channels. We do the same for the reaction involving carbon and
neon. For the rest of reactions with carbon we take only the channel involvingαs and use the
corresponding effective rate. However, the products now, represented by neon and magnesium,
are lighter than the nuclei at which we expect explosiv burning. Reactions withα particles will
lead to silicon.
Neon and magnesium burning depend crucially on the presenceof α particles. Neon nuclei
can captureα particles to produce magnesium. Magnesium on the other handcan react with
α particles to give silicon. Therefore the mass fraction ofαs plays an important role in the
whole burning process, having a great influence on the globalburning timescale. However, the
proportion ofαs is negligible inside the stellar core. The dissociation processes produceαs,
but are clearly slower than oxygen and carbon burning in the whole density range of interest,
except for neon dissociation, that is comparable to oxygen burning. Since neon dissociation
produces also oxygen, it is the oxygen burning rate which will determine the timescale at which
all neon is transformed to silicon. The speed could be enhanced under the presence of carbon.
However, since the mass fraction of oxygen dominates in the interior of the core over that of
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Figure D.2:Relevant nuclear burning reactions that take place in the collapse and explosion of an O-
Ne-Mg core. Panela shows the different channels for the reactions:12C+12 C, 12C+16 O, 12C+20 Ne,
and16O +16 O. Panelb shows the reactions involving alpha particles.

carbon, we take the burning rate for oxygen to describe neon burning and magnesium burning,
each as a two particle reaction with one fuel. In the outer atmosphere, where helium dominates
completely the composition, trippleα burning becomes important. It is the fastest reaction we
consider at low temperatures (see fig.D.1). The reactions are computed in the right order in
each hydrodynamcal timestep according to their rates.
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