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0  Preface 
 
 
Is there some action a government in India could take that would lead the Indian 

Economy to grow like Indonesia’s or Egypt’s? If so, what exactly? If not, what is it 

about the “nature of India” that makes it so? The consequences for human welfare 

involved in questions like these are simply staggering: Once one starts to think about 

them, it is hard to think about anything else. 

-Robert E. Lucas, Jr. (1988, p.5) 

 

Even if the recent growth experience suggests rephrasing the initial question to 

“What action did the Indian government take to transform the Indian economy into 

one of the fastest growing of the world?”, the famous quote of Nobel laureate Robert 

E. Lucas is still as influential as it was 20 years ago. The fascination about economic 

growth emanates from the enormous implications that persistent differences in 

growth rates have for the prosperity of nations. Due to compounding effects even 

small differences in growth rates over longer periods of time have significant conse-

quences on relative living standards. For instance, over the period 1870-1970 the 

average yearly growth rate of the Great Britain was 1.2 percent while that of Japan 

was 2.6 percent. In 1870 Japan’s GDP per capita was less than one fourth of that of 

the leading industrialized country of that time. However, the cumulative effect of the 

relatively small growth advantage of Japan over Great Britain, led to a complete 

evaporation of the income gap by 1970.1 But even during the recent decades we have 

observed substantial changes in the income relations. According to the latest version 

of the Penn World Tables the distribution of average yearly growth rates over the 

period 1960-2000 ranges from -1 percent for Madagascar to 6.3 percent  for Taiwan. 

If not for missing data, the spread of growth rates would probably be even larger. 

Still, these differences had substantial implication for the standards of living. While 

Taiwan could increase its GDP per capita from $1443 in 1960 by a factor of 13 to 

$19,183 in 2000, Madagascar lowered its GDP per capita by a factor of 0.77 from 

                                                 
1 The historical data are taken from the website of Agnus Maddison and can be downloaded at 
http://www.ggdc.net/maddison/. 
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$1267 in 1960 to $822 in 2000.2 The experience of Taiwan and Madagascar can be 

seen as representative for a range of countries in East Asia and Sub-Saharan Africa, 

respectively. While East Asian countries started only slightly above African coun-

tries in the income distribution in 1960, many economies in East Asia managed to 

advance into the middle or even highest income group by 2000. In contrast, growth 

in Africa stagnated and these countries ended up by far the poorest in 2000. These 

stylized facts emphasize that to comprehend why countries differ dramatically in 

their prosperity, it is crucial to understand the determinants of long-term growth. “If 

we can learn about government policy options that have even small effects on long-

term growth rates, we can contribute much (…) to the improvements of standards of 

living” (Barro and Sala-i-Martin, 2004, p.6). 

This dissertation consists of three self-contained empirical essays. Each of the 

essays tries to make a moderate contribution to the understanding of the determinants 

of growth differences across countries. Chapter 1 focuses on the identification of 

growth determinants in high-income (OECD) countries, to understand the structures 

that drive the riches in industrialized countries that developing countries try to emu-

late.3 Chapter 2 investigates the role of financial integration as a development strat-

egy. It assesses under which conditions developing countries can expect to benefit 

from liberalizing their capital account. Chapter 3 analyzes the sources of Germany’s 

departure from the technology frontier during the period 1991-2004. It employs a 

newly created industry-level database for Germany (see Röhn, Eicher and Strobel, 

2007) to study the diverging labor productivity trends between Germany and the 

US.4  

The underlying empirical framework in chapters 1 and 2 is the canonical cross 

country growth regression, which has become the workhorse for analyzing growth 

determinants following the influential contributions by Kormendi and Meguire 

(1985) and Barro (1991). In a pioneering study, Mankiw, Romer and Weil (1992) 

show how the neoclassical growth model of Solow (1956) can be transformed into a 

regression equation that is linear in observable variables. Their analysis uniquely 

                                                 
2 These income data are PPP adjusted in constant 2000 US Dollar from the Penn World Tables 6.2. 
3 This chapter is joined work with Theo Eicher and Chris Papageorgiou. See also Eicher, Papageor-
giou, Röhn (2007).  
4 This chapter is joint work with Theo Eicher. See also Eicher, Röhn (2007).  
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shows how far even the neoclassical model can go in explaining heterogeneous 

growth experiences through differences in initial income, the population growth rate 

and the savings rates for (physical and human) capital. Inspired by the emergence of 

endogenous growth theories, many cross country regression studies have extended 

the Mankiw et al. framework by adding regressors that represent variables lying out-

side of Solow’s original model to further our understanding of growth rate differ-

ences.5 The distinction between the Solow variables and additional regressors is es-

sential in understanding the modern empirical growth literature. While most empiri-

cal studies include the Solow variables along with growth determinants of interest, 

the choice of the usually small set of control variables varies greatly. This practice 

has generated a cornucopia of significant growth determinant and has led to skepti-

cism about the robustness of these growth determinants as well as about cross coun-

try growth regressions in general.  

Chapter 1 and 2 address this critique by explicitly accounting for model uncer-

tainty using Bayesian Model Averaging (BMA) techniques. In general, model uncer-

tainty acknowledges that in economic theory competing theories or models exist to 

explain the same phenomenon without consensus about the “correct” model. While 

the issue of model uncertainty is not unique to growth research it appears particularly 

troublesome for at least two reasons: First, as Brock and Durlauf (2001) argue mod-

ern growth theories are fundamentally open-ended, in that one growth theory does 

not logically preclude another. Moreover, the emergence of endogenous growth 

models has led to an abundance of plausible growth theories and an even greater 

number of variables to proxy for different aspects of these theories.6 Second, the 

number of observations is typically small (usually less than 100 in a cross country 

study). This renders standard practices to empirically distinguish between the rele-

vance of particular regressors, such as estimating the saturated model, impossible due 

to the lack of sufficient degrees of freedom. The array of possible growth determi-

nants together with the limited number of observations has led researcher to empha-

size a single or a small set of models and carry out inference as if this model repre-
                                                 
5 These additional variables can be understood as allowing for heterogeneity in either the steady state 
growth rate or the initial level of technology which Mankiw et al. (1992) treat as constant (see Dur-
lauf, Johnson and Termple, 2005). 
6 Durlauf, Johnson and Temple (2005) count over 145 different growth regressors that have been 
found to be statistically significant in at least one study corresponding to 43 distinct growth theories.  
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sented the “true” data generating process. However, this practice understates the un-

certainty that surrounds the validity of that model and led to the problem that differ-

ent studies have drawn different conclusions depending for instance on the choice of 

control variables. In response, Bayesian Model Averaging (BMA) techniques, which 

treat the “true” growth model as an unknown, have been advocated. These tech-

niques make probability statements about model parameters accounting for the prob-

ability that each model in a candidate model space is the correct one. They therefore 

incorporate the variance component associated the uncertainty about the correct 

model.7  

 Chapter 1 addresses in addition to model uncertainty a further important prob-

lem of cross sectional growth regression: parameter heterogeneity. The assumption 

of parameter homogeneity across countries has been criticized repeatedly (e.g. Tem-

ple 2000), since the assumption seems especially inappropriate when analyzing such 

heterogeneous and complex objects as countries (Brock and Durlauf, 2001). In Har-

berger’s (1987, p. 256) famous words: “What do Thailand, the Dominican Republic, 

Zimbabwe, Greece, and Bolivia have in common that merits their being put in the 

same regression analysis?” In contrast to much of the previous literature that has fo-

cused on low income countries, chapter 1 studies the growth determinants of high-

income (OECD) countries, to understand the driving forces behind sustained eco-

nomic success. Since the simultaneous consideration of model uncertainty and pa-

rameter heterogeneity increases the number of candidate regressors beyond the proc-

essing capacity of ordinary BMA algorithms, the chapter introduces a modification 

of BMA called Iterative Bayesian Model Averaging (IBMA) to the growth literature.  

The results of chapter 1 highlight different dimensions of parameter heteroge-

neity. First, while a large number of growth determinants are identified for the global 

sample, only a handful of these variables are also important for the Non-OECD sam-

ple. This result is surprising, given that the large number of Non-OECD countries 

were thought to provide most of the explanatory power of the global sample. Second, 

in Non-OECD countries a new set of regressors become highly effective. Third, and 

                                                 
7 See Draper (1995) for a general discussion of model uncertainty, and Fernadez, Ley and Steel (2001) 
and Sala-i-Martin, Doppelhofer and Miller (2004) for pioneering applications of BMA in the growth 
context.  
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most devastatingly, the long list of variables included in the popular dataset em-

ployed, does not contain regressors that begin to satisfactorily explain the key growth 

determinants of high income countries. Thus, the chapter concludes that the results of 

the global sample have been debunked as artifacts of the combination of two hetero-

geneous subsamples, and policy recommendations should no longer be framed within 

the global framework.  

A general similarity between high-income countries is their integration into 

global financial markets. To analyze whether financial integration constitutes a 

promising development strategy for developing countries, chapter 2 investigates the 

impact of financial openness on growth. While models based on competitive and 

efficient markets predict that financial openness should foster economic growth, the 

counter-argument stresses that in the presence of market distortions financial liber-

alization may lead to welfare reductions (see e.g. Bhagwati, 1998; and Stiglitz, 

2000). This objection implies that the impact of financial openness on growth might 

be contingent on initial conditions, introducing threshold effects into the empirical 

link. Chapter 2 tests the robustness of the impact of financial openness on growth 

against a broad set of alternative growth determinants and allows for thresholds ef-

fects in the estimation strategy. It takes an agnostic view on thresholds and investi-

gates a broad set of supportive initial conditions. The estimation approach allows to 

explicitly account for uncertainty about the nature of the threshold and therefore 

permits to assess the relative empirical support for different thresholds. 

The results in chapter 2 provide substantial evidence of threshold effects in the 

link between financial openness and growth. In addition, the findings also reveal that 

the composition of flows matters for the growth outcome. The chapter finds that 

openness towards debt flows can lead to growth reductions in countries lacking basic 

supportive conditions. In contrast, FDI inflows generate growth benefits contingent 

on supportive country characteristics. A further important finding is that after explic-

itly taking into account threshold uncertainty, the number of effective thresholds is 

significantly reduced and institutional variables emerge as the only relevant class. In 

particular, the results suggest that corruption is the crucial threshold for beneficial 

FDI inflows, while a combination of both political and property rights institutions 
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avert the risks of debt flows. These findings indicate that sound institutions constitute 

the crucial precondition for countries contemplating opening their capital account.  

In contrast to the first two chapters, chapter 3 analyzes the growth experience 

of two particular countries over the period 1991-2004: Germany and the US. While 

the US experienced two successive labor productivity surges post 1995 and post 

2000, Germany’s productivity declined dramatically during the same period, signal-

ing a departure from the technological frontier. To analyze the sources of the German 

productivity demise, a newly created database is used that allows for detailed indus-

try-level comparisons with the US. Since a broad consensus has formed that the first 

productivity surge in the US is related to Information and Communication Technol-

ogy (ICT), the essay pays special attention to the role of ICT in Germany.8 The chap-

ter employs the growth accounting framework pioneered by Jorgenson and Griliches 

(1967), which has been extensively employed in productivity analyses. The growth 

accounting methodology is especially suited since it allows tracing back aggregate 

productivity trends to detailed industries in a consistent framework. Further, it en-

ables to analyze the three main channels through which ICT might impact growth: 

through increased ICT investment, technological progress in ICT producing indus-

tries, and spillovers from the use of ICT.    

The results in chapter 3 reveal that ICT investment in Germany was deeply 

lacking behind the US in the mid nineties. While the transition to the new economy 

mitigated the German productivity slowdown, it could not reverse it. Slowing Non-

ICT investment along with strong total factor productivity (TFP) declines in a few 

large industries were mainly responsible for the first productivity slowdown. After 

2000, it is found that a recovery in Non-ICT investment was offset by a widespread 

collapse in German TFP growth. Over half of the German industries, accounting for 

almost 50% of German aggregate output, experienced negative TFP growth. This 

second major difference between the US and German industry performance explains 

Germany’s secular departure from the technological frontier.  

 

                                                 
8 See Jorgenson and Stiroh (2000), Oliner and Sichel (2000) for seminal contributions on the role of 
ICT for the US productivity surge in the mid nineties. Recently, Oliner, Sichel, Stiroh (2007) have 
confirmed these early conclusion taking into account several revisions of the official statistics.  
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1.1 Introduction 

Over the last two decades there has been a massive effort to use cross-country 

datasets to identify key determinants of economic growth. Much of this empirical 

investigation has been based on the implicit assumption of homogeneity across coun-

tries, which led to a search for global determinants of growth. However, the assump-

tion of homogeneity in cross-country growth regressions has been criticized repeat-

edly (see e.g. Temple, 2000; and Durlauf, Johnson and Temple, 2005). In general, 

this objection applies to any socioeconomic dataset but the assumption of a common 

underlying data generating process seems particularly inappropriate when analyzing 

such complex entities as countries (Brock and Durlauf, 2001). 

The mounting evidence against “country homogeneity” has given rise to a lit-

erature investigating growth patterns in groups of countries that share common char-

acteristics. This branch of research focuses either on particular variables (e.g., initial 

GDP) or particular regions (Africa, Latin America) that distinguish subsamples.9 In 

this paper we revisit the issue of country heterogeneity but from a perspective that 

has been largely ignored by the empirical growth literature. We focus on identifying 

growth determinants in high-income (OECD) countries, to understand the structures 

that drive the riches in industrialized countries that developing nations attempt to 

emulate. In essence, our goal is to understand the driving forces behind sustained 

economic success, with the assumption that such successful growth paths are deter-

mined by a unique set of variables. Eicher and Leukert (2006) previously explored 

parameter heterogeneity among OECD and Non-OECD countries, but did not ac-

count for model uncertainty or a large number of potential regressors. 

Our estimation approach includes both parameter heterogeneity, to allow coun-

tries to represent diverse objects, and model uncertainty, to account for the fact that 

economists do not know the single “true” growth model.  More specifically, we util-

ize Bayesian Model Averaging (BMA) to address model uncertainty and expand the 

methodology to integrate structures that allow for the examination of parameter het-

erogeneity. Simultaneous consideration of model uncertainty and parameter hetero-

                                                 
9 See e.g. Easterly and Levine (1997), Brock and Durlauf (2001) and Masanjala and Papageorgiou 
(2007a, b).  
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geneity has previously been computationally prohibitive, as it exceeded the computa-

tional limits of existing model averaging algorithms. This is due to the large numbers 

of candidate regressors that emerge from the long list of potential growth regressors 

and relevant interaction terms that are required to test for parameter heterogeneity. 

To resolve the computation limitations we employ an innovative modification of 

BMA called Iterative Bayesian Model Averaging (IBMA) developed by Yeung, 

Baumgarner and Raftery (2005) for genomics applications. The key intuition of 

IBMA is that it applies traditional BMA iteratively on a reduced set of variables. 

Each iteration contains a set of variables that is sufficiently small to be processed by 

existing algorithms. Iterations continue until the complete set of candidate regressors 

has been processed at least once. 

We obtain three key results that highlight different dimensions of country het-

erogeneity. First, of the large number of regressors that are effective in the global 

sample, only about half are also effective in the Non-OECD sample. This is surpris-

ing, since the large number of countries in the Non-OECD sample were thought to be 

providing most of the explanatory power for the global results. Secondly, our analy-

sis shows that in Non-OECD countries new regressors become highly effective that 

were ineffective in the global sample.  Many of these newly effective variables are 

highly intuitive, for example the primary export share, black market premium, aver-

age population age. Third, the OECD subsample shares few regressors with the 

global sample (6 out of 20); this leads us to conclude that the particular dataset does 

not contain the variables that identify determinants of growth of the fortunate in the 

past 30 years. There are also stark difference between OECD and the Non-OECD 

sample where only half of the variables overlap.   

The rest of the chapter is organized as follows. Section 1.2 presents a summary 

of BMA and IBMA methodologies used in our econometric estimation. Section 1.3 

discusses the cross-country dataset used, and presents the benchmark regression 

specification based on which we perform IBMA. This section also presents and ex-

amines the estimation results. Section 1.4 presents robustness analyses of our results 

to alternative modifications of the sampler used by IBMA. Section 1.5 concludes and 

offers directions for future research. 
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1.2 Estimation Methodology 

The basic idea behind model averaging is to estimate the distribution of un-

known parameters of interest across different models. The fundamental principle of 

model averaging is to treat models and related parameters as unobservable, and to 

estimate their distributions based on the observable data. In contrast to classical esti-

mation, model averaging copes with model uncertainty by allowing for all possible 

models to be considered, which consequently reduces the biases of parameters.  

 Leamer (1978) first emphasized that the uncertainty inherent in competing 

theories should be accounted for in the empirical strategy. Levine and Renelt (1992) 

examine the robustness of cross-country growth determinants using Leamer’s (1983) 

extreme bounds analysis. They show that the conclusions as to which regressors rep-

resent robust growth determinants depends on the researcher’s test criteria. Extreme 

bound analysis has since been shown to be excessively strict, selecting too few “ef-

fective” regressors (see Sala-i-Martin, 1997, for a criticism of this approach relevant 

to growth regressions).   

 An additional drawback of extreme bound analysis has been the absence of a 

formal structure to manage the large number of possible models. Levine and Renelt 

(1992) choose to reduce the set of models to be examined by always including Initial 

Income, Investment Rates, Secondary School Enrollment Rate, and Population 

Growth Rate in each regression. Sala-i-Martin (1997) used the same method, but he 

chose to always retain Initial Income, Investment Rates and Life Expectancy. Fixing 

the number of regressors that must appear in each regression has a direct effect on 

the size of the estimated coefficients (see Leon-Gonzalez and Montolio, 2003) and it 

limits the number of models that are explored. 

 Since the first approaches to model uncertainty, a consensus has formed to ap-

ply Bayesian techniques to account for model uncertainty (see e.g. Fernandez, Ley 

and Steel 2001a, b; Brock and Durlauf, 2001; Sala-i-Martin, Doppelhofer and Miller 

2004; and Masanjala and Papageorgiou, 2007a, b). Model averaging strategies asks 

the researcher to specify candidate regressors that are clearly linked to distinct and 

specific theories. Bayesian Model Averaging then allows for any subset of regressors 

to appear in a given model. This technique was first developed by Moulton (1991), 
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and Palm and Zellner (1992), but computational issues initially hampered its imple-

mentation.10 Since our methodology is based on BMA, we provide a brief overview 

of the method. 

1.2.1 Bayesian Model Averaging 

Bayesian Model Averaging (BMA) accounts for model uncertainty by averag-

ing over all possible models, where each model’s weight is given by its posterior 

model probability. The statistical foundation for BMA is documented extensively in 

excellent introductions by Raftery (1995) and Hoeting et al. (1999). Raftery (1995) 

and Raftery, Madigan and Hoeting (1997), followed by many others, have shown 

that BMA provides improved out-of-sample predictive performance compared to 

predictions that are conditioned on any one model. 

 We restrict ourselves to highlighting the crucial intuition behind the method-

ology and then provide an explanation of the specific approach that we implemented 

together with the methodological innovations. In typical cross-country growth re-

gressions, model uncertainty arises due to the fact that the researchers must choose 

between regressors that are associated with competing theories. With k possible vari-

ables in a linear regression model, BMA potentially considers the entire model space 

of k2  regression models. The posterior probability that BMA assigns is simply the 

conditional probability after all relevant data has been taken into account. Posterior 

probabilities are calculated using Bayes' theorem, utilizing the researcher-specified 

prior probability and the likelihood function.  

 Formally, consider n independent replications from a linear regression model 

where the dependent variable is per capita GDP growth, y, is regressed on an inter-

cept, α , and candidate regressors chosen from a set of k variables in a design matrix 

Z of dimension kn× . Assume that the rank of the matrix of regressors is 

( ) 1: += kZr nι , where nι  is an n-dimensional vector of ones. Further define β  as the 

full k-dimensional vector of regression coefficients.  Now suppose we have an jkn×  

                                                 
10 For further discussions on BMA and its potential uses see Draper (1995), Raftery, Madigan and 
Hoeting (1997) and Hoeting et al. (1999).  
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submatrix of variables in Z denoted by .jZ  Then denote by jM  the model with re-

gressors grouped in ,jZ  such that  

    ,σεβαι ++= jjn Zy      (1) 

where jβ  jkℜ∈  ( )kk j ≤≤0  groups regression coefficients corresponding to the 

submatrix jZ . The exclusion of any given regressor in a particular model implies 

that the corresponding element in β  is zero. +ℜ∈σ  is a scale parameter and ε  fol-

lows an n-dimensional normal distribution with zero mean and identity covariance 

matrix.  

 Since Bayesian Model Averaging allows for any subset of variables in Z to 

appear in any model jM , thus there are k2  possible sampling models. BMA speci-

fies that the posterior inclusion probability of any given parameter of interest is the 

weighted posterior distribution of that quantity under each of the models.  The spe-

cific weights are provided by each model’s posterior model probability. The poste-

rior inclusion probability can then be expressed as the weighted sum of the posterior 

probabilities of all models that contain the regressor of interest 
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The posterior model probability itself is given by  
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where )( jy Ml , is the marginal likelihood of model jM  that is given by  

 σβασαβσασβα dddMppMypMl jjjjjjy ),,|(),(),,,|()( ∫= .  (4) 

The sampled model corresponding to equation (1) is given by 

),,,|( jj Myp σβα , and the priors for the intercept and the regressors are ),( σαp  

and ),,|( jj Mp σαβ , respectively. We will define the priors below. 
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 The implementation of Bayesian Model Averaging is subject to three chal-

lenges. First, the number of models that must be estimated increases with the number 

of regressors at the rate of k2 . As a result, the number of summation entries in equa-

tions (2)-(3) can be enormous; a primary aim of BMA research has been to obtain 

efficient samplers that avoid exhaustive sampling. Such intensive calculations 

quickly become infeasible as 30 candidate variables imply over 1 billion candidate 

models. Second, the computation and evaluation of the integrals implicit in equation 

(4) may be difficult because they may not exist in closed form. In that case numerical 

solutions of the integral can further burden estimation efficiency. Third, the choice of 

the prior distribution specification is always contentious in Bayesian analysis. BMA 

requires the specification of two types of priors: a) prior model probabilities, 

( )KMp , and b) prior parameter distribution ( )KK Mp ,θ .   

 With respect to the prior model probabilities we follow the common practice 

in the literature and assume a uniform distribution over the model space, which ex-

presses each model as equally likely. It follows that the prior model probability is 2-k, 

which renders the prior probability of including any given candidate regressor equal 

to 0.5 (see e.g., Raftery et al., 1997; and Fernandez, Ley and Steel, 2001a, b).11  

 The decision on the prior structure for the individual regressors is a poten-

tially divisive issue. BMA requires the researcher to inject priors into the analysis, 

however these prior can be so diffuse that clear parallels to frequentist inference can 

be established. Extensive work has been conducted on the appropriate prior structure 

to obtain either data dependent priors (Raftery, Madigan and Hoeting, 1997), “auto-

matic” priors (Fernandez, Ley and Steel, 2001b), or the Unit Information Prior (UIP). 

Eicher, Papageorgiou and Raftery (2007) systematically study the effects of model 

and regressor priors on predictive performance within a BMA framework to high-

light the importance of a prior benchmark. Their software allows researchers to iden-

tify the appropriate prior structure for a given dataset. 

                                                 
11 Mitchell and Beauchamp (1988) discuss the possibility of alternative model weights and Sala-i-
Martin, Doppelhofer and Miller (2004) argue forcefully in favor of greater weights on smaller models. 
Brock, Durlauf and West (2003) suggest a tree structure to take into account similarities among re-
gressors. 
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In our choice regarding the priors on the parameters space we follow Raftery 

(1995) and impose the diffuse UIP. The UIP can be derived from frequentist statisti-

cal principles (Kass and Wasserman 1995), and it is seen as a conservative prior that 

is sufficiently spread out over the relevant parameter values and reasonably flat over 

the area where the likelihood is substantial. Specifically, it is a multivariate normal 

prior with mean at the maximum likelihood estimate and variance equal to the ex-

pected information matrix for one observation (Raftery, 1999). It is also a special 

case of the preferred Fernandez, Ley and Steel (2001b) priors and it is closely related 

to the prior structure in Sala-i-Martin, Doppelhofer and Miller (2004). The advantage 

of the UIP is that it allows for a simple approximation of the marginal likelihood 

with the Bayesian Information Criterion (BIC). The BIC approximation is viewed as 

conservative fitness measure to evaluate model performance. If anything, BIC is bi-

ased against finding an effect of a given regressor (i.e. it favors the null hypothesis 

β=0).12   

 The one crucial departure from previous applications of model averaging in 

economics is our sampling and estimation methodology. Fernandez, Ley and Steel 

(2001a,b) use the Markov Chain Monte Carlo Model Composition (MC3) sampling 

algorithm developed by Madigan and York (1995) to search the model space, while 

Sala-i-Martin, Doppelhofer and Miller (2004) use a “stratified” Coinflip sampler. 

MC3 is a technique that allows for sampling of complex high dimensional distribu-

tions as it simulates a random walk across the search space to converge at a station-

ary posterior distribution. The MC3 distribution of the sampled draws depends on the 

last value drawn. In contrast, the stratified Coinflip sampler samples one set of re-

gressions using the prior probability sampling weights and then uses the approximate 

posterior inclusion probabilities calculated from those regressions for the subsequent 

sampling probabilities.  

 Given that MC3’s computational limit was no more than 60 candidate regres-

sors,13 the Coinflip sampler had the advantage of handling more candidate regres-

                                                 
12 See e.g. Raftery (1995). For a more detailed discussion of the UIP and BIC, see Raftery (1999) and 
the discussion in Hoeting et al. (1999).  
13 At least until very recently. We have just discovered that the work of Ley and Steel (2007) extends 
the computational bound of MC3 to 104 regressors.  We discuss this development in the end of this 
section. 
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sors. However, the larger the search space the more difficult was for Coinflip sam-

pler to converge. For example, in some BMA experiments we run with more than 70 

candidate regressors there was no (or unacceptably slow) converge simply because 

the number of models becomes too large.  

 Our method follows Raftery (1995) who established that the UIP allows for a 

Laplace approximation of the marginal likelihood and thus renders a search across 

the entire model space obsolete. To further simplify the computational demands 

Raftery (1995) suggest the Leaps And Bounds All Subsets Regression Algorithm of 

Furnival and Wilson (1974) to reduce the candidate model space further.14 The Leaps 

algorithm performs an exhaustive search for the best subsets of candidate variables 

for predicting the dependent variable in linear regression; it returns a specified num-

ber of best models for each model size.15 Generally, the qualitative differences based 

on the different samplers are small but not negligible. Computationally, the Leaps 

sampler is by far the most efficient. This efficiency is crucial to handle the large 

number of models as we tackle model uncertainty and parameter heterogeneity by 

interacting the global variables with regional dummies, which substantially increases 

the size of candidate regressors.   

1.2.2 Iterative Bayesian Model Averaging 

The computational limit of the Raftery (1995) BMA algorithm (bicreg) is 54 

candidate regressors. To address parameter heterogeneity, the interaction of regres-

sors increases the domain of regressors from 41 to a possible 82, which implies 4 

septillion (100 billion x 4 trillion) models. In addition, the simple act of interacting 

variables in a small dataset may lead the number of regressors to exceed the number 

of observation, such that the design matrix is no longer of full column rank.  

 To overcome these problems we introduce the Iterative BMA (IBMA) algo-

rithm to economics that was initially proposed for a genome application by Yeung, 

Baumgarner and Raftery (2005). Specifically, they introduced IBMA to select a 

small number of relevant genes for accurate medical diagnoses from a pool of about 

5000(!) genes. Our application is simpler. After interacting our 41 regressors with an 

                                                 
14 See e.g. Raftery (1995) and Volinsky et al. (1997). 
15Software to implement the Raftery method has been freely available since 1994 at Statlib 
(http://lib.stat.cmu.edu). 
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OECD treatment dummy and eliminating interaction terms that are perfectly collin-

ear or have less than 2 observations, this leaves us with 77 candidate regressors (see 

the data discussion below).   

The key intuition of IBMA is that it applies traditional BMA iteratively on a 

reduced set of variables, z, which is small enough to be processed by traditional 

BMA. We define z as the regressor window. For our application we choose a default 

size z = 41 and check for robustness below. After sorting the candidate regressors by 

their bivariate correlations with the dependent variable, they are added to the regres-

sor window. After the first z regressors have been processed by the first BMA run, q 

variables whose posterior probabilities do not exceed a predetermined inclusion 

threshold (1 percent by default) are removed from the regressor window and q un-

processed candidate regressors are added. BMA is then applied again until all regres-

sors have been considered. 

 There are some caveats that must be highlighted as the set of candidate re-

gressors expands. One limiting factor for IBMA is related to the regressor window 

size. While models of size n are theoretically possible, IBMA cannot evaluate poste-

riors for models that exceed size z. Hence the procedure cannot lay claim to having 

examined the entire model space – which introduces possible inaccuracies if high 

quality models happen to be larger than z. In our robustness section we find that 

variations in z in IBMA do not alter our qualitative results in the growth dataset.  

 Although we provided this caveat, we can offer evidence that any concerns 

that z may not cover the relevant model size are unlikely to be applicable in cross-

country growth regressions. Sala-i-Martin (1997) and Sala-i-Martin, Doppelhofer 

and Miller (2004) argue forcefully that the expected model size should not exceed 7 

regressors. Prior work by Levine and Renelt (1992), Sala-i-Martin (1997), FLS and 

Sala-i-Martin, Doppelhofer and Miller (2004) never generated models with more 

than 18 potentially relevant regressors. Hence it is unlikely that high quality models 

in cross-country growth regressions contain more than 48 regressors.   

 New work by Ley and Steel (2007) extends MC3 to potentially handle up to 

104 regressors without the iterating procedure employed in our algorithm. The ad-

vantage being that the entire model space, including models up to 104 regressors can 
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actually be considered. This also implies that the prior model size increases to per-

haps an implausibly large number of regressor, however. It remains to be seen how 

accurate and time intensive the new MC3 method generates convergence. Previous 

work using MCMC methods, particularly in applications with growth datasets, re-

vealed that increasing the number of regressors (which of course increases the model 

space exponentially) resulted in considerable increase in computation time. Alterna-

tively, IBMA is not limited to the number of candidate regressors and processes the 

data with stunning efficiency. It also allows the researcher to avoid having the prior 

model size increase linearly with the number of candidate regressors. Further re-

search is necessary to examine how the three existing approaches to considering 

large model spaces (IBMA, modified MC3 and BACE) compete in terms of effi-

ciency and predictive performance. The unique advantage of IBMA over the other 

two approaches, at least to date, is that it is capable of considering applications like 

ours where the number of observations happens to be less than the number of poten-

tial regressors. 

1.3 Estimation 

1.3.1 The Data 

For our analysis we adopt the FLS dataset. It is comprised of 41 variables and 

72 countries of which 23 are OECD countries. In addition, we add a dummy variable 

to identify OECD countries. The dataset is a subset of the Sala-i-Martin (1997) data-

set; it includes all variables that have previously been flagged as robustly related to 

growth and that do not entail a loss of observations. We choose the FLS dataset for 

several reasons. First, the dataset contains variables that proxy for a broad set of 

competing growth theories, such as human capital, institutional quality, religion, eco-

nomic policy and geography. Hence, the dataset reflects the theory uncertainty inher-

ent in growth econometrics that has been highlighted by Brock and Durlauf (2001). 

Second, the majority of the variables are measured at the beginning of the period or 

as close as possible to it, which reduces possible endogeneity problems that can po-

tentially impact cross-country growth regression analyses. Finally, by choosing the 

same dataset as FLS we have a natural benchmark and reference point for our analy-

sis.  
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 Table 1.A1 in the appendix provides summary statistics for the global, 

OECD, and Non-OECD samples. The high income OECD countries grew on average 

almost twice as fast as the rest of the world over the period 1960-1992 (3 percent 

versus 1.7 percent). A first look at the data reveals some major initial advantages 

OECD countries possessed over the rest of the world. In 1960, initial GDP was about 

four times greater, life expectancy was 16 years greater and primary schooling was 

28 percent higher in the OECD sample as compared to the Non-OECD sample. 

OECD economies also had effectively better institutions scoring higher on civil liber-

ties, the rule of law and political rights16, while ethnolinguistic fractionalization was 

twice as high in Non-OECD countries. 

1.3.2 Model Specification 

To examine the possibility of parameter heterogeneity, we examine whether 

the data generating process for the global sample is different from the data generating 

process of the OECD sample.17 To model parameter heterogeneity we follow the 

approach suggested by Brock and Durlauf (2001) and Brock, Durlauf and West 

(2003) and treat parameter heterogeneity as a variable inclusion problem. It follows 

then that we can understand parameter heterogeneity as a special case of model un-

certainty. We therefore modify the global equation in (1) and estimate the standard 

interaction model in empirical work of the following form: 

    ,,2,1 σεββαι +++= jjjjn XIZy    (5) 

where I is an indicator variable that equals 1 if the country is an OECD member and 

0 otherwise. Z is the kn×  matrix of the regressors and X is a sub-matrix of Z that 

excludes all variables that are either perfectly collinear in the OECD sample18 or not 

relevant for the OECD sample due to negligible sub-sample variation.19 In our case 

                                                 
16 Note that Civil Liberties and Political Rights are measured “backwards,” i.e. larger values imply 
fewer civil liberties and political rights. 
17 Theoretical underpinnings for parameter heterogeneity are based on thresholds as in Azariadis and 
Drazen (1990), or on fully specified models of nonlinearities as in Galor and Weil (2000), Lucas 
(2002) and Galor and Moav (2002). 
18 The presence of multicollinearity exacerbates the problem of distinguishing between interaction 
terms that represent parameter heterogeneity and terms that are simply highly correlated with impor-
tant interactions. This problem is neither unique to our issue at hand (OECD interaction), or IBMA.  
19 Excluded interactions are: Africa dummy, French Colony dummy, Fraction Hindu, Latin American 
dummy, Spanish Colony dummy, Fraction Confucian and Fraction Buddha. 
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with OECD interactions, the resulting model features 77 candidate regressors and 72 

observations, which renders traditional BMA infeasible and leads us to implement 

the IBMA algorithm discussed above. The direct merit of the interaction model com-

pared to subsample regressions is that the full information from the entire dataset is 

used to derive results. 

 Regression equation (5) can be interpreted as providing estimates for the con-

trol group, i1β , which is in our case the sample of Non-OECD countries. It also pro-

vides the marginal effect experienced by the treatment group, i2β , which are the 

OECD countries in our case. The actual impact of the X regressors for which we 

want to establish parameter heterogeneity can then be obtained by comparing the 

Non-OECD effect given by the posterior means of i1β  with the effect in OECD 

countries that is given by the composite means of iii 21
~ βββ += .20  Note that the 

definition of the composite iβ
~ carries an important implication: If the Non-OECD 

effect, i,1β , is observed to be significantly different from zero and the OECD effect is 

found to be insignificant, it implies either that the marginal estimate of the treatment 

group, i2β , is estimated with great noise (e.g., with a high variance) to wash out any 

significance of the composite, or that the treatment effect is indeed quite tightly esti-

mated, but of the opposite sign as, i1β , rendering the composite iβ
~  close to zero. 

 At this point it is important that the basic iterative routine suggested by Ye-

ung et al. (2005) must be modified to assure that, i1β  and i2β  can appear in the same 

regression. Two cases are possible. In the first case, i1β  is included in a regressor 

window but the interaction is not (perhaps because its initial bivariate correlation was 

low).  The rotation of each variable that is not in the initial regressor window does 

assure that i1β  and i2β are in the final regressor window if they are both significant. 

In the second case, the initial regressor window includes i2β  but not i1β , and the 

interaction alone is not significant. In this case the interaction will be rotated out of 

the regressor window and i2β  will never have the chance to actually interact with 

                                                 
20 The composite variance is given by ( ) ( ) ( ) ( )iiiii 2121 ,cov2varvar~var βββββ ++= . 
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i1β . This case requires a modification of the Yeung et al. (2005) procedure. In par-

ticular, we allow for two rotations in our version of IBMA. The first rotation (as sug-

gested by Yeung et al. 2005) assures that all regressors that were not included in the 

initial regressor window will have a chance to be considered. The second rotation 

iterates all regressors that have been discarded from regressor windows in the first 

rotation (to make room for new regressors) once more through the window. This 

assures that even in the second case, an initially discarded interaction term will have 

the opportunity to eventually rejoin the global variable in a regressor window, if sig-

nificant.21  

 Further considerations to assure that variables have been given due chance to 

exhibit their true interaction significance in IBMA led us to examine the final regres-

sor window to see how many global terms were observed without interaction terms. 

As a robustness exercise, we executed final iterations that added interaction terms to 

match all significant global regressors whose interaction terms did not appear in the 

final regressor window. 22 

Our empirical strategy is to start by establishing the global BMA benchmark in 

Table 1.1. Here we initially examine the potential effectiveness of variables without 

any interactions specified in equation (5). Then we examine potential evidence for 

parameter heterogeneity. Finally we will examine robustness and compare different 

regressor window sizes in IBMA where we iterate until all covariates have been 

processed and the interaction terms are all included in the last iteration.  

1.3.3 Results 

Table 1.1 presents our baseline results applying IBMA to examine model un-

certainty and parameter heterogeneity in the FLS dataset. In particular, Table 1.1 

presents the coefficient posterior means, posterior standard deviation and the ratio of 

the absolute value of the former to the later, for the Global and Interaction specifica-

                                                 
21 The Yeung et al. (2005) algorithm also suffers from the fact that it guarantees that the covariate 
with the lowest bivariate correlation is included in the final regressor window and hence in the final 
result. By adding regressors in the second rotation in inverse bivariate correlation order, we also im-
prove on this design flaw. 
22 In additional robustness analysis, we also added one global regressor that was associated with one 
highly significant interaction term (Standard Deviation of the Black Market Premium) into the regres-
sor window. This variable was found to be important for OECD but not robust across different win-
dows considered. Our remaining results were unaffected. 
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tions. The value of the absolute value of the posterior mean to standard deviation 

ratio (post. mean/sd) is used as a measure for identifying variable effectiveness in our 

growth regression exercises. While the analysis of posterior inclusion probability 

speaks only to the probability of a candidate repressor’s inclusion in the most effec-

tive models, we chose to emphasize the post. mean/sd ratio to better tie economic 

and statistical significance. Raftery (1995) suggested that for a variable to be consid-

ered as effective the posterior inclusion probability must exceed 50 percent; which is 

roughly equivalent of requiring a ratio of mean/sd = 1, which implies in frequentist 

statistics that the regressors improves the power of the regression. Hence, while 

Raftery’s (1995) interpretation for BMA would imply a threshold value of the 

mean/sd ratio of about 1, we decided to be more stringent and set the threshold value 

equal to 1.3, which is roughly equivalent to a 90 percent confidence interval in fre-

quentist hypothesis testing. We recognize that there is no consensus in the BMA lit-

erature about this threshold, but argue that our main results hold when this threshold 

is adjusted upwards or downwards.  

The results for the interaction model are obtained by using IBMA with a re-

gressor window of size z = 41. The choice of the regressor window size is natural in 

that it is directly comparable to the specification used to establish the benchmark 

results for the global sample. In Section 4 we report robustness results that vary z. 

 The dependent variable is growth 1960-1992 and the first column of Table 1.1 

features all regressors that were found to be effective (post. mean/sd > 1.3) in the 

global, OECD, or the Non-OECD samples.23 Columns 2 and 3 report the coefficients 

for the global sample. For this sample no interaction terms are employed, hence the 

number of regressors is only 41, which allows the use of standard BMA algorithms. 

Of the 41 regressors considered, Table 1.1 reports only the relevant 31 regressors 

with post. mean/sd > 1.3 to save space. All regressors excluded from the tables are 

ineffective in the global sample, in all subsample analyses, and in all robustness 

specifications.   

 

                                                 
23 Posterior coefficient estimates in bold font represent those variables that pass the effectiveness 
threshold (post. mean/sd > 1.3). 
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Table 1.1: Effective Growth Determinants in Global and Interaction Models 

 Global Interaction 

 Posterior 
mean 

Posterior 
s.d. 

Posterior 
mean/s.d. 

ratio 

Posterior 
mean 

Posterior 
s.d. 

Posterior 
mean/s.d. 

ratio 
Intercept 0.076 0.017 4.385 0.038 0.017 2.234 
OECD  0.036 0.018 2.014 
GDP60 -0.018 0.002 8.122  
     Non-OECD  -0.013 0.002 5.717 
     OECD  -0.013 0.002 5.483 
LifeExp60 0.001 0.000 4.829  
     Non-OECD  0.001 0.000 7.616 
     OECD  0.001 0.000 7.094 
EQINV 0.148 0.036 4.145  
     Non-OECD  0.156 0.033 4.786 
     OECD  0.156 0.033 4.752 
Mining 0.033 0.012 2.823  
     Non-OECD  0.046 0.010 4.44 
     OECD  0.046 0.011 4.357 
OutOrient -0.003 0.002 1.644  
     Non-OECD  -0.003 0.002 1.358 
     OECD  -0.003 0.002 1.38 
LatAmDum -0.013 0.005 2.756  
     Non-OECD  -0.016 0.003 4.539 
HighEd60 -0.121 0.029 4.093  
     Non-OECD  -0.192 0.044 4.375 
     OECD  -0.012 0.029 0.424 
SubSahAfricaDum -0.022 0.004 5.143  
     Non-OECD  -0.014 0.003 4.073 
EthnoFrac 0.015 0.004 3.775  
     Non-OECD  0.020 0.005 3.64 
     OECD  0.006 0.006 0.897 
HinduFrac -0.108 0.020 5.349  
     Non-OECD  -0.016 0.019 0.856 
Lforce60 0.000 0.000 4.924  
     Non-OECD  0.000 0.000 0.607 
SpainDum 0.014 0.005 2.799  
     Non-OECD  NA NA NA 
FrenchDum 0.011 0.004 2.71  
     Non-OECD  0.002 0.003 0.882 
NonEqInv 0.031 0.021 1.474  
     Non-OECD  0.012 0.016 0.753 
     OECD  0.011 0.017 0.665 
ConfuciousFrac 0.074 0.010 7.225  
     Non-OECD  NA NA NA 
EngLangFrac -0.007 0.004 1.507  
     Non-OECD  0.000 0.001 0.144 
PrimaryEd60 0.020 0.009 2.268  
     Non-OECD  NA NA NA 
Civlibb -0.002 0.001 2.038  
     Non-OECD  NA NA NA 
BritDum 0.007 0.003 2.394  
     Non-OECD  NA NA NA 
RuleLaw 0.013 0.004 3.35  
     Non-OECD  0.002 0.004 0.47 
     OECD  -0.016 0.011 1.453 
BlackMktPrem -0.004 0.004 1.216  
     Non-OECD  -0.012 0.002 5.042 
     OECD  -0.012 0.002 5 
EconOrg 0.000 0.001 0.567  
     Non-OECD  0.003 0.001 4.235 
      OECD  0.003 0.001 3.927 
PrimExp70 0.000 0.001 0.097  
     Non-OECD  -0.020 0.004 5.014 
      OECD  -0.017 0.006 2.93 
CathFrac 0.000 0.001 0.208  
     Non-OECD  0.013 0.004 3.295 
     OECD  0.013 0.004 3.296 
AvgPopAge 0.000 0.000 0.208  
     Non-OECD  0.000 0.000 2.982 
     OECD  0.000 0.000 0.067 
ProtFrac -0.001 0.003 0.224  
     Non-OECD  -0.021 0.010 2.083 
     OECD  0.004 0.005 0.723 
BuddhaFrac 0.003 0.004 0.611  
     Non-OECD  0.018 0.005 3.968 
OthFracLang 0.000 0.001 0.108  
     Non-OECD  0.013 0.003 3.99 
     OECD  -0.005 0.004 1.193 
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 In the case of the global sample (columns 2, 3) no interaction terms are in-

cluded, which implicitly assumes the absence of parameter heterogeneity. Here we 

replicate the results of the previous literature that assumes that OECD and Non-

OECD countries are considered to have identical determinants of their growth per-

formance, and that the magnitude of these determinants is also unchanged across 

subsamples. We find that in the global sample, 20 of the 41 candidate variables are 

effective to growth. The number and the type of regressors that we identify as effec-

tive is in line with the findings of the previous literature. For example, Equipment 

Investment, Dummies relating to the colonial history, Initial GDP, and specific coun-

try characteristics matter to growth as in Sala-i-Martin, Doppelhofer and Miller 

(2004); and FLS. 

 In columns 4 and 5 of Table 1.1 we report the results generated by allowing 

for the possibility of parameter heterogeneity related to the OECD group of coun-

tries. The subsample results are classified into seven subsets. First we have 5 vari-

ables that are effective in the global sample and in both the OECD and Non-OECD 

countries. These variables are Initial GDP, Initial Life Expectancy, Equity Invest-

ment, Mining and Outward orientation. This is the extent to which global, OECD and 

Non-OECD results agree. Second we find a set of 4 variables that are effective in 

both the global and Non-OECD samples, but are ineffective in the OECD sample. 

Variables in this set are Initial Higher Education, Ethnolinguistic Fragmentation, 

Sub-Saharan Africa, and the Latin Dummy. None of these variables have an impact 

in OECD countries. Two of these variables, the Sub-Saharan and Latin American 

Dummy, are simply irrelevant for OECD countries. For the other two the marginal 

contribution, 2β , in the interaction regression is highly significant and of the oppo-

site sign as 1β , which renders the composite coefficient that indicates the OECD 

effect, β~ , ineffective.  

 The third subset of results summarized in columns 4 and 5 of Table 1.1 is a 

relatively large set of 10 variables that are highly effective in the global sample, but 

once we allow for parameter heterogeneity neither the OECD nor the Non-OECD 

samples can claim these variables as growth determinants. Indeed in the interaction 

IBMA runs several of these variables do not pass the 1 percent posterior probability 
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threshold and are not even included in the final regressor window that identifies the 

41 top regressors. These cases are indicated with “NA.”  

 The fourth category consists of only one variable, Rule of Law, which is ef-

fective in the global and OECD samples but ineffective in the Non-OECD sample. 

The fifth category consists of 4 variables that are not effective in the global sample 

but highly effective in both the OECD and Non-OECD subsamples. The Fraction of 

Catholics and the Degree of Capitalism (EconOrg) both have a positive effect in the 

OECD and Non-OECD sample while the Black Market Premium and Primary Ex-

ports have a negative effect on growth in OECD and Non-OECD countries.   

 The sixth category consists of 4 variables that are ineffective in the global 

sample, but effective only in Non-OECD countries. This result confirms that adding 

high-income countries to the global mix may drown out important effects in the de-

veloping country’s subsample. The Average Population Age, the Fraction Protestant, 

Buddha and the Fraction of the Foreign Speaking Population are highly effective in 

Non-OECD countries but not in the global or OECD samples. Parameter heterogene-

ity thus uncovers not only crucial information as to what are not important growth 

determinants in advanced countries, but also new and important growth determinants 

in Non-OECD countries. Note that three of the variables that share importance in 

Non-OECD countries indicate a higher coefficient for the Non-OECD sample com-

pared to the global sample. For two of these variables, Fraction Protestant and the 

Fraction of the Foreign Speaking Population, the impact in OECD countries is even 

opposite albeit ineffective. This is additional evidence that the inclusion of OECD 

countries in the sample drives down the growth impact of a variable for developing 

countries and may render it ineffective in the global sample. The seventh category 

consists of all variables that are ineffective in either the global, OECD or Non-OECD 

countries.    

1.4 Robustness 

The key innovation of IBMA is to apply the existing BMA structure iteratively 

to a computationally feasible subset of models, which we call the regressor window, 

z. In this section we examine the sensitivity of this novel aspect of IBMA analysis, as 

we vary the size of the regressor window. As indicated above, the previous growth 
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literature established that between 4 and at most 18 variables matter in growth re-

gressions, hence it would be surprising to obtain evidence from different window 

sizes that contradict our previous results. However, larger window sizes allow for 

more possible combinations of variables, some of which may not be able to attain the 

explanatory power unless they are placed in the models with a large number of re-

gressors, yet others might not attain our threshold level of effectiveness unless they 

are jointly paired. The importance of such jointness has been emphasized by Doppel-

hofer and Weeks (2007) and Ley and Steel (2007). Table 1.2 reports the results for 

the global and the interacted sample from successively increasing the regressor win-

dow size. The practical computational limit is reached at a window size of z = 48.  

To present the results most efficiently we have combined two columns in Table 

1.1 to one individual column per window size that reports the global, OECD, and 

Non-OECD estimates for each relevant variable. Note that the Global estimate is 

only provided as a reference; it does not change throughout since the models for all 

41 variables can be examined in BMA. Only the interaction that separates OECD and 

Non-OECD increases the number of regressors from 41 to 77, requiring the applica-

tion of IBMA. Overall Table 1.2 documents robust results, but there are important 

changes that we discuss in detail. 

Moving from z = 41 to z = 45 generates only a few differences in the results. 

For OECD countries we now find Mining to be ineffective while Non-Equipment 

Investment becomes effective. Additionally, we now find the Average Population 

Age, Fraction Protestant and the share of the Workforce to Total Population to be 

highly effective for OECD countries. For Non-OECD countries there are only two 

changes among the 41 growth determinants. The two additional variables that now 

register as marginally effective for Non-OECD Countries are Non-Equipment In-

vestment and the Fraction Hindu, but otherwise there is no difference in the results. 

Most convincing perhaps is that the coefficient estimates are just about unchanged.  

 As we increased the size of the regressors window past z = 45, we find 

slightly augmented results. For the computationally most demanding run, z = 48, we 

find that a greater number of variables matter in both the global and the Non-OECD 

sample.  
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Table 1.2: Robustness Using Different Window Sizes in IBMA 

 Regressor Window Size 41 Regressor Window Size 45 Regressor Window Size 47 Regressor Window Size 48 
 Post. mean Post. s.d. Post. mean Post. s.d. Post. mean Post. s.d. Post. mean Post. s.d. 
Intercept 0.038 0.017 0.038 0.017 0.071 0.014 0.070 0.015 
OECD 0.036 0.018 0.035 0.021 0.077 0.026 0.059 0.027 
GDP60 -0.018 0.002 -0.018 0.002 -0.018 0.002 -0.018 0.002 
Non-OECD -0.013 0.002 -0.012 0.002 -0.015 0.002 -0.015 0.002 
OECD -0.013 0.002 -0.013 0.002 -0.015 0.002 -0.014 0.002 
LifeExp60 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
Non-OECD 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
OECD 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 
EQINV 0.148 0.036 0.148 0.036 0.148 0.036 0.148 0.036 
Non-OECD 0.156 0.033 0.156 0.033 0.179 0.032 0.181 0.034 
OECD 0.156 0.033 0.156 0.033 0.052 0.046 0.091 0.063 
Mining 0.033 0.012 0.033 0.012 0.033 0.012 0.033 0.012 
Non-OECD 0.046 0.010 0.041 0.011 0.029 0.009 0.027 0.010 
OECD 0.046 0.011 0.036 0.028 0.032 0.020 -0.016 0.067 
OutOrient -0.003 0.002 -0.003 0.002 -0.003 0.002 -0.003 0.002 
Non-OECD -0.003 0.002 -0.003 0.002 -0.002 0.001 -0.003 0.001 
OECD -0.003 0.002 -0.003 0.002 -0.002 0.002 -0.003 0.002 
LatAmDum -0.013 0.005 -0.013 0.005 -0.013 0.005 -0.013 0.005 
Non-OECD -0.016 0.003 -0.016 0.004 -0.011 0.003 -0.013 0.003 
HighEd60 -0.121 0.029 -0.121 0.029 -0.121 0.029 -0.121 0.029 
Non-OECD -0.192 0.044 -0.200 0.047 -0.111 0.032 -0.120 0.029 
OECD -0.012 0.029 -0.025 0.033 0.038 0.028 -0.119 0.030 
SubSahAfrica -0.022 0.004 -0.022 0.004 -0.022 0.004 -0.022 0.004 
Non-OECD -0.014 0.003 -0.016 0.004 -0.016 0.002 -0.017 0.003 
EthnoFrac 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004 
Non-OECD 0.02 0.005 0.021 0.005 0.017 0.004 0.017 0.004 
OECD 0.006 0.006 -0.002 0.006 -0.003 0.005 0.000 0.006 
HinduFrac -0.108 0.020 -0.108 0.020 -0.108 0.020 -0.108 0.020 
Non-OECD -0.016 0.019 -0.031 0.020 -0.083 0.019 -0.068 0.013 
Lforce60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Non-OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
OECD NA NA NA NA 0.000 0.000 0.000 0.000 
SpainDum 0.014 0.005 0.014 0.005 0.014 0.005 0.014 0.005 
Non-OECD NA NA NA NA 0.010 0.003 0.009 0.003 
FrenchDum 0.011 0.004 0.011 0.004 0.011 0.004 0.011 0.004 
Non-OECD 0.002 0.003 0.002 0.002 0.007 0.003 0.005 0.002 
NonEqInv 0.031 0.021 0.031 0.021 0.031 0.021 0.031 0.021 
Non-OECD 0.012 0.016 0.027 0.017 0.054 0.014 0.054 0.014 
OECD 0.011 0.017 0.027 0.017 -0.016 0.025 -0.050 0.029 
EngLangFrac -0.007 0.004 -0.007 0.004 -0.007 0.004 -0.007 0.004 
Non-OECD 0.000 0.001 NA NA -0.018 0.006 -0.010 0.004 
OECD NA NA NA NA -0.001 0.004 NA NA 
Civlibb -0.002 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.001 
Non-OECD NA NA NA NA 0.000 0.001 NA NA 
OECD NA NA NA NA 0.008 0.004 NA NA 
BritDum 0.007 0.003 0.007 0.003 0.007 0.003 0.007 0.003 
Non-OECD NA NA NA NA 0.003 0.003 0.000 0.001 
OECD NA NA NA NA NA NA 0.017 0.004 
RuleLaw 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004 
Non-OECD 0.002 0.004 0.006 0.005 NA NA NA NA 
OECD -0.016 0.011 -0.037 0.013 NA NA NA NA 
BlkMktPrem -0.004 0.004 -0.004 0.004 -0.004 0.004 -0.004 0.004 
Non-OECD -0.012 0.002 -0.011 0.002 -0.005 0.002 -0.006 0.002 
OECD -0.012 0.002 0.027 0.008 0.005 0.011 0.027 0.007 
EconOrg 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD 0.003 0.001 0.003 0.001 0.002 0.001 0.002 0.000 
OECD 0.003 0.001 0.003 0.001 0.002 0.001 0.002 0.001 
PrimExp70 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD -0.02 0.004 -0.021 0.004 -0.020 0.003 -0.021 0.003 
OECD -0.017 0.006 -0.021 0.004 -0.020 0.003 -0.021 0.003 
CathFrac 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD 0.013 0.004 0.013 0.004 NA NA NA NA 
OECD 0.013 0.004 0.013 0.004 NA NA NA NA 
AvgPopAge 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Non-OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ProtFrac -0.001 0.003 -0.001 0.003 -0.001 0.003 -0.001 0.003 
Non-OECD -0.021 0.010 -0.021 0.008 -0.003 0.004 -0.001 0.004 
OECD 0.004 0.005 0.009 0.005 -0.004 0.004 0.001 0.003 
BuddhaFrac 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 
Non-OECD 0.018 0.005 0.018 0.005 0.019 0.004 0.015 0.004 
OthFracLang 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD 0.013 0.003 0.012 0.003 0.010 0.002 0.010 0.003 
OECD -0.005 0.004 0.000 0.004 -0.004 0.004 -0.005 0.003 
PropRights 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD NA NA NA NA -0.002 0.001 -0.002 0.001 
OECD NA NA NA NA -0.003 0.004 -0.002 0.001 
WarDum 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 
Non-OECD NA NA NA NA -0.004 0.001 -0.003 0.002 
OECD NA NA NA NA -0.003 0.002 0.000 0.005 
Worker/Pop 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Non-OECD NA NA 0.000 0.001 NA NA 0.000 0.000 
OECD NA NA -0.036 0.009 NA NA -0.037 0.014 
Note: Posterior coefficient estimates in bold font represent variables that pass our effectiveness threshold (post. mean/sd > 1.3).
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Allowing for a larger window size increased the explanatory power for the 

Non-OECD determinants initial Labor Force, the Hindu Dummy, the Spanish 

Dummy, the French Dummy, and Non-Equipment Investment; every one of these 

variables was initially effective in the global sample, but ineffective in either sub-

sample. In addition, the War Dummy and Property Rights are now also effective for 

Non-OECD, although they are not effective for the global sample. Two variables, the 

Fraction Catholic and Protestant now become ineffective. For OECD countries there 

are also a number of changes as 8 additional variables are added to the list of effec-

tive variables while 3 (Mining, Rule of Law and Fraction Catholic) are dropped from 

this list. On balance, however, the picture is unchanged as the evidence for parameter 

heterogeneity is overwhelming.   

 The clear break that signifies a large increase in the variables that are effec-

tive is at z=45.  After z = 45 (see example for z = 47) the results are all closer to z = 

48 than to z = 41, i.e. an effectively larger number of variables matters for growth in 

OECD and Non-OECD countries. However, we cannot identify a single variable that 

remains uniquely effective for OECD countries across the different window sizes. 

This is perhaps yet again more evidence that this dataset does not contain variables 

that are the unique growth determinants in this subset of countries.  

 The conclusions that can be reached from our robustness exercise are two-

fold. First, most of our important benchmark results are quite robust to changes in the 

size of the regressor window. We caution though that these results have also revealed 

some fragility inherent in the regressor window approach inherent in the IBMA 

methodology. This should be kept in mind when one assigns particular interpretation 

to certain variables. Scrutinizing the causes for possible fragility of IBMA is beyond 

of the scope of this paper but we judge this as an important area for future research.    

1.5 Discussion 

In general our results suggest that the important determinants of long-term 

growth in Non-OECD countries overlap only to some degree with the factors identi-

fied with the global samples. For OECD countries this overlap is even smaller. In 

addition, allowing for parameter heterogeneity unveiled a large number of new vari-
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ables that matter to only Non-OECD countries. However, allowing for parameter 

heterogeneity did not allow us to gain any meaningful insights into unique factors 

that determine growth in OECD countries.  

 We provide a Summary Table 1.3 to collect the results. Overall we find that a 

number of purported growth determinants in the global sample are not effective for 

Non-OECD countries, and that most established growth determinants do not show 

explanatory power for OECD countries. Even for Non-OECD countries, 11 of the 

original 20 effective variables are no longer effective. Instead, an entirely new set of 

variables matters in Non-OECD Countries, where 8 variables that were ineffective in 

the global sample are now shown to matter. While it is surprising to see some of the 

key variables in the global sample, such as Civil Liberties, Fraction Confucius, and 

Primary Education, loose their significance, the newly effective variables are all very 

much in line with established key indicators of growth in developing nations, such as 

the Degree of Capitalism, Primary Exports Share, and the Black Market Premium.   

 For the OECD the results are even more stunning. Of all the original 20 effec-

tive variables in the global sample only 6 survive as effective. The only variables 

added as effective for OECD countries by allowing for parameter heterogeneity are 

the Fraction of Population that is Catholic, Primary Exports, the Degree of Capital-

ism, and the Black Market Premium. The evidence for parameter heterogeneity is 

therefore overwhelming. Most variables in the global dataset do not matter for 

OECD countries, and half of the variables that matter for Non-OECD countries also 

do not matter for OECD countries. Note that this implies (as per our discussion in 

section 1.3.2) that the OECD treatment effect is highly significant and of the opposite 

sign as the Non-OECD effect to render the composite coefficient for the OECD, β~ , 

insignificant.  

 The combined analysis of parameter heterogeneity and model uncertainty has 

lead not only to quantitative differences regarding the effect of growth determinants 

across subsamples, but it also generated important new qualitative implications. To 

our surprise the quantitative (economic) differences between subsamples were mini-

mal, because so few regressors are common across subsamples.  
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Table 1.3: Summary of Effective Growth Determinants 
BMA 

,σεβαι ++= jjn Zy  

IBMA with Interactions 

,,2,1 σεββαι +++= jjjjn XIZy  

 

Global Sample 

Effective Variables 

Non-OECD 

Effective Variables 

OECD 

Effective Variables 

 
 

BritDum 
Civlibb 
ConfuciousFrac 
EngLangFrac 
PrimaryEd60 
NonEqInv 
FrenchDum 
Lforce60 
HinduFrac 
SpainDum 
LatAmDum 
FracEthno 
SubSahAfricaDum 
HighEd60 
EQInvest 
LifeExp60 
OutOrient 
Mining 
GDP60 
RuleLaw 
CathDum 
PrimExp70 
BlackMktPrem 
EconOrg 
BuddhaDum 
AvgPopAge 
OthFracLang 
ProtFrac  

Posterior 
mean 

Post.  
s.d. 

  

0.007 0.003 
-0.002 0.001 
0.074 0.010 
-0.007 0.004 
0.02 0.009 
0.031 0.021 
0.011 0.004 
0.000 0.000 
-0.108 0.020 
0.014 0.005 
-0.013 0.005 
0.015 0.004 
-0.022 0.004 
-0.121 0.029 
0.148 0.036 
0.001 0.000 
-0.003 0.002 
0.033 0.012 
-0.018 0.002 
0.013 0.004  

Posterior 
mean 

Post. 
s.d. 

  

  
  
  
  
  
  
  
  
  
  

-0.016 0.003 
0.020 0.005 
-0.014 0.003 
-0.192 0.044 
0.156 0.033 
0.001 0.000 
-0.003 0.002 
0.046 0.010 
-0.013 0.002 

  
0.013 0.004 
-0.020 0.004 
-0.012 0.002 
0.003 0.001 
0.018 0.005 
0.000 0.000 
0.013 0.003 
-0.021 0.010  

Posterior 
mean 

Post. 
s.d. 

  

  
  
  
  
  
  
  
  
  
  
  
  
  
  

0.156 0.033 
0.001 0.000 
-0.003 0.002 
0.046 0.011 
-0.013 0.002 
-0.016 0.011 
0.013 0.004 
-0.017 0.006 
-0.012 0.002 
0.003 0.001 

  
  
  
   

Note: Column 4 reports composite means and the associated composite standards deviations. All variables that do not meet our 
effectiveness threshold (post. mean/sd <1.3) are not reported to save space. 
 

Qualitatively we find not only that regressors may have opposite impacts in the 

different subsamples, indeed an entirely different set of regressors matters in the 

global, Non-OECD and OECD samples. While the relevant regressors for the global 

and Non-OECD sample can be recovered, the dataset does not contain the regressors 

necessary to explain the OECD growth performance.This is doubly tragic. First, pol-

icy recommendations to lower income countries can no longer be framed within the 

context that improvements in any of the variables in the dataset will actually lead to 
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better growth outcomes. Hence we have no guidance as to what drives growth in 

high income countries. But even more disturbing, the growth performance in OECD 

countries was on average twice as high as in the Non-OECD samples, hence neither 

the determinants of the higher income levels, nor the higher income growth rates can 

be recovered given the current dataset. Two avenues can be explored to reconcile 

these findings. First we can collect data that has been linked specifically to growth in 

OECD countries (for example on regulation, see Nicoletti and Scarpetta et al. 2003). 

However, hopes of expanding such a dataset to the global sample are perhaps unreal-

istic. Second, the notion of one size fits all – or that one theory or one approach to 

growth can address the growth determinants in disparate subsamples – might be too 

optimistic.  

1.6 Conclusion 

This paper extends the literature on country heterogeneity in two dimensions. 

First, a new model averaging method called Iterative Bayesian Model Averaging 

(IBMA) is used to handle the exhaustive computation required when we simultane-

ously consider model uncertainty and parameter heterogeneity in our estimation. 

Second, instead of investigating the sources of growth (or lack of it) in low-income 

countries, we take a fresh look at what determines growth performance in the high-

income OECD countries.   

 Our analysis suggests that IBMA is a powerful technique that makes it possi-

ble for researchers to consider a very large number of potential regressors. Our appli-

cation of IBMA to growth empirics allows us to examine parameter heterogeneity 

and model uncertainty simultaneously in all regressor candidates. It reveals that a 

large number of regressors is highly effective for Non-OECD countries, but irrele-

vant for both, OECD countries and the global sample. Perhaps most surprising was 

our finding that the long list of growth determinants included in popular cross-

country datasets does not contain variables that begin to identify the key determi-

nants of growth in advanced countries. “Global” results that have been taken to rep-

resent some average coefficient estimate for all countries are now shown to provide 

little information about the growth determinants in two key subsamples. The Global 

results have been debunked as artefacts of the combination of two heterogeneous 
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subsamples, and no longer as an expected impact that can identify effective growth 

determinants. 
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Appendix Chapter 1 

Table 1.A1: Descriptive Statistics 
 Global OECD Non-OECD 

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
Absolute Latitude 25.733 17.250 45.126 10.461 16.630 11.189 
Age 23.708 37.307 39.043 41.877 16.510 33.006 
Area (Scale Effect) 972.917 2051.976 1467.130 3036.055 740.939 1353.317 
Black Market Premium 0.157 0.291 0.059 0.196 0.203 0.318 
British Colony 0.319 0.470 0.174 0.388 0.388 0.492 
Civil Liberties 3.466 1.712 1.758 1.148 4.268 1.295 
Equipment Invest. 0.044 0.035 0.072 0.024 0.031 0.031 
Ethnolinguistic Fractionalization 0.371 0.296 0.217 0.211 0.443 0.304 
Fraction Catholic 0.422 0.397 0.427 0.392 0.420 0.403 
Fraction of Buddhist 0.056 0.184 0.045 0.183 0.061 0.186 
Fraction of Confucian 0.019 0.087 0.026 0.125 0.016 0.064 
Fraction of Foreign Speaking Pop.  0.374 0.422 0.308 0.420 0.406 0.424 
Fraction of Hindu 0.018 0.101 0.000 0.000 0.027 0.122 
Fraction of Jews 0.013 0.097 0.002 0.005 0.018 0.117 
Fraction of Mining to GDP 0.045 0.077 0.017 0.018 0.058 0.090 
Fraction of Muslim 0.148 0.295 0.044 0.208 0.196 0.318 
Fraction of Pop. speaking English 0.076 0.239 0.181 0.357 0.026 0.136 
Fraction of Protestants 0.173 0.252 0.323 0.357 0.103 0.139 
Fraction of years open 0.439 0.355 0.737 0.203 0.299 0.325 
French Colony 0.125 0.333 0.000 0.000 0.184 0.391 
GDP per capita 1960 (log) 7.492 0.885 8.399 0.622 7.066 0.633 
Growth Rate of Population 0.020 0.010 0.009 0.007 0.026 0.006 
Higher Education Enrolment, 1960 0.043 0.052 0.087 0.061 0.023 0.030 
Latin American Dummy 0.278 0.451 0.043 0.209 0.388 0.492 
Life Expectancy, 1960 56.581 11.448 67.948 5.986 51.245 9.298 
Non-Equipment Invest. 0.149 0.055 0.183 0.037 0.134 0.055 
Outward Orientation 0.389 0.491 0.435 0.507 0.367 0.487 
Per Capita GDP Growth 1960-1992 0.021 0.018 0.030 0.011 0.017 0.019 
Political Rights 3.451 1.896 1.589 0.993 4.324 1.558 
Pop.60* Worker 60 (Scale Effect) 9305.375 24906.050 12814.540 16980.030 7658.217 27869.810 
Primary Exports, 1970 0.673 0.299 0.379 0.230 0.811 0.217 
Primary School Enrolment, 1960 0.795 0.246 0.971 0.066 0.713 0.256 
Public Education Share 0.025 0.009 0.029 0.010 0.022 0.008 
Ratio of Worker to Pop (log) -0.954 0.189 -0.885 0.132 -0.986 0.204 
Real Exchange Rate Distortion 121.708 41.001 105.783 16.605 129.184 46.709 
Revolutions and Coups 0.182 0.238 0.071 0.122 0.235 0.261 
Rule of Law 0.551 0.335 0.899 0.179 0.388 0.258 
Spanish Colony 0.222 0.419 0.043 0.209 0.306 0.466 
Standard Deviation of BMP 45.596 95.802 3.190 7.512 65.500 110.832 
Sub-Saharan African Dummy 0.208 0.409 0.000 0.000 0.306 0.466 
Type of Econ. Organization 3.542 1.266 4.217 0.736 3.224 1.343 
War Dummy 0.403 0.494 0.130 0.344 0.531 0.504 
Number of obs. 72  23  49  

Note: For Civil Liberties and Political Rights higher values imply lower civil liberties and political rights. 
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2.1 Introduction 

Financial globalization is probably one of today’s most controversially debated 

policy fields. While there are strong theoretical arguments in favor of free interna-

tional capital flows – such as efficient global allocation of savings into their most 

productive uses, risk diversification leading to lower cost of capital (Henry, 2000) 

and/or production specialization (Obstfeld, 1994; Acemoglu and Zilibotti, 1997), and 

the potential of technology spillovers – the recent episodes of financial crises have 

cast doubt over these theoretical predictions. One important argument against growth 

benefits of financial integration stems from the theory of second best, which states 

that removing one distortion does not need to be welfare improving in the presence 

of other distortions (Lipsey and Lancaster, 1956). This objection, which has been 

emphasized in the context of financial globalization by Bhagwati (1998) and Stiglitz 

(2000), has important implications for developing countries that consider liberalizing 

their capital account. It postulates that financial openness may only be growth bene-

ficial if certain supportive conditions are in place or thresholds overcome. Thus, the 

identification of relevant thresholds and the investigation of the relative importance 

of different thresholds are of crucial policy relevance.  

While a growing body of literature investigates the relevance of particular 

thresholds, comprehensive analyzes of this topic are still scarce (Kose et al., 2006).24 

In this paper we offer an integrated framework to revisit the empirical relevance and 

robustness of threshold effects in the nexus between financial openness and growth. 

We take an agnostic view on the nature of the threshold and systematically examine 

all potential threshold theories that have been proposed in the literature in a common 

empirical framework. This comprehensive analysis further allows us to assess the 

relative importance of different thresholds. An important methodological innovation 

in our empirical strategy is the use of Bayesian Model Averaging (BMA) techniques 

to appropriately address the issue of model uncertainty.25 In general, model uncer-

tainty acknowledges that in economic theory competing theories or models exist to 
                                                 
24 A notable exception is Edison et al. (2002).  
25 To our knowledge the only study accounting for model uncertainty in the financial openness litera-
ture is Durham (2004), who uses Leamer’s (1983) extreme bound analysis. However, as discussed 
below extreme bound analysis has been criticized as not being soundly based on statistical and deci-
sion theoretic foundations. 
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explain the same phenomenon. In our context, model uncertainty arises due to uncer-

tainty about the specification of the “true” growth model. In particular, the researcher 

investigating the link between financial openness and growth faces uncertainty about 

the control variables to include given the plethora of proposed growth determinants, 

about how the financial openness variable should enter the growth regression (linear 

vs. nonlinear), and about the specific threshold variable that might induce the nonlin-

earity.  

Despite the large number of studies investigating the relationship between fi-

nancial integration and growth, the empirical evidence remains inconclusive.26 In the 

most comprehensive survey of this literature to date, Kose et al. (2006) state as one 

reason for the ambiguous evidence that studies differ in the set of included alterna-

tive growth determinants (see also Edison et al., 2004). This highlights the issue of 

model uncertainty and points to the fundamental problem of theory open-endedness 

in modern growth research (Brock and Durlauf, 2001). Theory open-endedness refers 

to the dilemma that the validity of a particular growth theory does not per se preclude 

the relevance of another theory. But even if researchers agree upon the relevant theo-

ries, there is still considerable uncertainty about which proxies to include in the 

growth regression.27 Thus, given the limited number of observations, the researcher 

faces substantial uncertainty about the exact specification of the growth regression 

with respect to the control variables. By using model averaging, we are able to ad-

dress the problems associated with the common practice of ad hoc specifications of 

the growth model and test the robustness of our claims against a broad set of alterna-

tive growth determinants.  

A further important difference among studies, according to Kose et al. (2006), 

concerns the question of whether the effect of financial openness is homogeneous 

across countries. This question relates to the existence of threshold effects or more 

fundamentally parameter heterogeneity. A broad range of threshold variables have 

been proposed in the literature. These variables can be categorized into the following 

threshold theories: (i) initial development or income (e.g. Edwards, 2001); (ii) insti-

                                                 
26 For the most prominent examples in favour and against growth enhancing effects of financial open-
ness see Quinn (1997) and Rodrik (1998), respectively.   
27 Durlauf, Johnson and Temple (2005) report, that more than 140 regressors have been identified as 
growth determinants corresponding to about 43 different growth theories. 
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tutional quality (e.g. Durham, 2004; Bekaert, Harvey and Lundblad, 2005); (iii) do-

mestic financial development (e.g. Aoki, Benigno and Kiyotaki, 2006; Alfaro, 

Chanda, Kalemli-Ozcan and Sayek, 2004); (iv) human capital (Borensztein, De 

Gregorgio and Lee, 1998); (v) macroeconomic stability (e.g. Eichengreen, 2000; 

Arteta, Eichengreen and Wyplosz, 2003) or more specifically trade openness (e.g. 

Brecher and Diaz-Alejandro, 1977; Balasubramanyam, Salisu and Sapsford, 1996) 

and finally (vi) ethno-linguistic heterogeneity (Chanda, 2005). While studies allow-

ing for the effect to vary across countries depending on initial conditions are in gen-

eral more supportive of beneficial growth effects, considerable uncertainty about the 

existence of thresholds still remains (see e.g. Edison et al. 2002; Kraay, 1998). Our 

estimation approach enables us to address the uncertainty about thresholds or pa-

rameter heterogeneity. We do so by allowing the effect of financial openness to vary 

according to all threshold theories listed above.  

As Kose et al. (2006) point out, a limitation of the existing studies on threshold 

effects is that they identify only the importance of one specific dimension without 

investigating the relative importance of different thresholds. This shortcoming is es-

pecially severe since the empirical relevance of one threshold has no bearing on the 

relevance of another. The importance, for instance, of an institutional threshold does 

not rule out the role of human capital as an important precondition. Without control-

ling for other potential thresholds, the finding of an important threshold might just be 

a manifestation of a misspecification due to omitted variables. We are able to appro-

priately address this issue by controlling for several thresholds simultaneously in our 

model averaging procedure. Thus we explicitly account for uncertainty about the 

“true” threshold model. By making probability statements about threshold parame-

ters that account for the probability that each model in the space of potential models 

is the correct one, our procedure also allows to shed light on the question of the rela-

tive importance of different thresholds.  

Our main results can be summarized as follows: First, in general we do not find 

a robust relationship between financial openness and growth in a simple linear speci-

fication. Second, once we allow the effect to vary depending on different country 

characteristics, however, our results provide strong evidence that financial openness 

indeed influences growth. Third, our results highlight the need to differentiate be-
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tween different types of investment flows. We show that debt flows can actually re-

tard growth while Foreign Direct Investment (FDI) inflows exert a robust positive 

impact in countries with favorable initial conditions. Fourth, after explicitly taking 

into account uncertainty with respect to different thresholds, we find exclusively in-

stitutional variables as effective thresholds. Most importantly, we uncover strongest 

evidence that the stock of FDI inflows is positively correlated with long term growth 

in countries characterized by sufficiently low levels of corruption.  

The remainder of this chapter is organized as follows: the next section lays out 

the problem of model uncertainty in detail and presents the estimation approach to 

address the issue. Section 2.3 describes the data and Section 2.4 presents the results. 

The final section concludes.  

2.2 Model Uncertainty and Estimation Approach 

2.2.1 Model Specification and Uncertainty 

Starting point of our estimation approach is the classical cross country growth 

regression due to Barro (1991), which is of the following form:  

    εβα ++= Sy                            (1) 

y  is a vector of country average per capita growth rates, S  is a n x m matrix of 

growth determinants, and ε  is vector of classical error terms, i.e. the errors are as-

sumed to be normally distributed and have zero mean and constant variance σ . Ac-

cording to Brock and Durlauf (2001), the fundamental problem with growth regres-

sions is to determine what variables are to be included in S . Given that growth theo-

ries are inherently open-ended, i.e. the validity of one theory does not imply the fal-

sity of another, the researcher has to make a choice as to which growth theories to 

include. But even if there is agreement on the set of theories, there is still uncertainty 

about which proxies to include for a given growth theory. The problem is especially 

severe, since standard remedies such as estimating the full model is not feasible in 

the cross country growth context, given the limited number of countries and the large 

number of potential regressors (well over 140 according to Durlauf, Johnson and 

Temple, 2005). Therefore, the researcher has to make a choice about which variables 
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to include and the incertitude associated with this selection process is known as 

model uncertainty.   

Testing the growth impact of financial openness is further hampered by the un-

certainty about the existence of threshold effects which introduce parameter hetero-

geneity into the regression equation (1). The theoretical literature is typically silent 

on how to exactly empirically specify parameter heterogeneity. A standard approach 

to allow for parameter heterogeneity is to introduce interaction effects between a 

financial openness measure and a measure that is assumed to be the relevant thresh-

old variable. Following Brock and Durlauf (2001), and Brock, Durlauf and West 

(2003) heterogeneity uncertainty can then be treated as a variable inclusion problem. 

Thus, we can consider parameter heterogeneity as a special case of model uncer-

tainty. In the following we are considering two different interaction models that we 

are going to estimate. 

 Our first approach to address threshold effects is to include a continuous inter-

action between our measure of financial openness and a third variable. Thus, we 

augment the standard cross country growth regression in the following way:  

   εβββα ++++= zfifiSy FIFI *21 ,     (2) 

where fi  is a measure of financial integration, S  is again a n x m matrix of alterna-

tive growth determinants which act as control variables,  and z  is a possible thresh-

old variable. In our case z  is chosen out of the set of S  for which this might be sug-

gested by theory. The partial effect of financial integration on growth is then given 

by the estimate of the composite term zFIFI 21 ββ + .28 Thus, the partial effect varies 

continuously over different levels of the threshold variable. The threshold value can 

then easily be calculated as 
2

1

FI

FIz
β
β

−= . 

In addition, we estimate a second specification that also allows for heterogene-

ity of the financial openness parameter across countries. In this specification the ef-

fect of financial openness is assumed to vary across sub-groups of countries, how-

ever, the effect is constant within subgroups. Hence, this second specification pre-

                                                 
28 It follows then that the variance is given by ),(2)()( 212

2
1 FIFIFIFI zCovVarzVar ββββ ++ . 
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sumes that multiple regimes exist that are characterized by specific initial conditions. 

This approach is motivated by the theoretical growth literature that documents the 

existence of multiple steady states, and hence multiple growth regimes (e.g. Azari-

adis and Drazen, 1990). Empirical evidence was first provided by Durlauf and John-

son (1995). Our approach, however, is simpler in the sense that we only allow the 

effect of our regressors of interest, the financial openness measures, to vary across 

regimes. This assures comparability of the results to the first specification. Hence, we 

estimate the following regression model: 

   εβββα ++++= IfifiSy FIFI *21 ,     (3) 

where I  is an indicator function that equals 1 if zz >  and z  is again a variable out 

of the set of potential threshold theories. For example, if we consider initial income 

as the relevant threshold variable, this specification implies that the partial effect of 

financial openness on growth is given by 1FIβ  for low income countries and by the 

composite 21 FIFI ββ +  for the subgroup of high-income countries.29 The coefficient 

estimate of the interaction between the financial openness measure and the regime 

dummy, 2FIβ , represents the differential impact across regimes. One drawback of 

this approach is that theory provides no guidance as to what the appropriate threshold 

values z  are. Thus, we exogenously divide the sample at two points: the 25% and 

the 75% quartiles. An advantage over the first approach is, however, that the con-

struction of dummies mitigates the potential problem of measurement error in the 

continuous thresholds variables.  

An additional source of uncertainty relates to the fact that there is no consensus 

as to which the relevant threshold variable z  may be. As pointed out above a number 

of threshold variables have been proposed in the literature which can be broadly or-

ganized into the following theories: (i) initial development or income; (ii) institu-

tional quality; (iii) domestic financial development; (iv) human capital; (v) macro-

economic stability and (vi) ethno-linguistic heterogeneity. And again, each theory is 

associated with a number of variables proxying for different aspects of that theory. 

                                                 
29 The variance of the composite effect is given by ),(2)()( 221 FIFIFIFI CovVarVar ββββ ++ . 
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As a consequence the number potential models increases even further and the issue 

of model uncertainty is aggravated. 

  Against the background of model uncertainty, the common approach in the fi-

nancial openness literature to base interference on one or a few specifications seems 

difficult to justify. First the selection of the reported specifications can be criticized 

as arbitrary. Second and more importantly, the uncertainty in the selection process is 

not accounted for and thus underestimated (see Draper, 1995). As a consequence, 

neglecting model uncertainty potentially renders coefficient estimates “fragile” (e.g. 

Levine and Renelt, 1992; Brock and Durlauf, 2001). The fragility of coefficient esti-

mates is important, since findings on the relationship between financial openness and 

growth that do not explicitly account for model uncertainty, may be non-robust.  

Since the first approaches to model uncertainty pioneered by Leamer (1978), a 

consensus has formed to apply Bayesian Model Averaging (BMA) techniques to 

account for model uncertainty. BMA has been successfully applied in the context of 

linear cross country growth regressions (e.g. Fernandez, Ley and Steel, 2001a, b; 

Sala-i-Martin, Doppelhofer and Miller, 2004), as well as growth regressions that ac-

count for parameter heterogeneity (e.g. Masanjala and Papageorgiou, 2007; Eicher, 

Papageorgiou and Röhn, 2007) or threshold effects (Crespo Cuaresma and Doppel-

hofer, 2007). Note however, that despite the large number of growth determinants 

considered, none of the existing BMA studies has included a proxy for financial 

openness. 

2.2.2 Bayesian Model Averaging 

In this section we briefly explain the crucial intuition behind our BMA estima-

tion methodology. For more extensive introductions the interested reader is referred 

to Raftery (1995), Raftery, Madigan and Hoeting (1997) or Hoeting et al. (1999).30 

An advantage of Bayesian Model Averaging over other approaches to deal with 

model uncertainty, such as extreme bounds analysis (Leamer, 1983, Levine and 

Renelt, 1992), is that BMA is soundly based on statistical theory with all results di-

rectly following from elementary probability theory, notably the definition of condi-

tional probability, Bayes’ theorem and the law of total probability. Intuitively: BMA 

                                                 
30 For a more general introduction to Bayesian econometrics see e.g. Koop (2003). 
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asks the researcher to specify candidate regressors that are clearly linked to distinct 

theories. Bayesian Model Averaging then allows for any subset of regressors to ap-

pear in a given model. Given the data, BMA first estimates a posterior distribution of 

each regressor coefficient for every model that includes the regressor. It then com-

bines all posterior distributions into a weighted average posterior distribution, with 

weights given by the posterior model probabilities. 

 For notational convenience we integrate the matrix S  from above, the meas-

ure of financial openness and the interaction terms as either specified according to 

equation (2) or (3) into a comprehensive kn×  matrix X . Then, consider a regres-

sion model, where the dependent variable per capita GDP growth, y, is regressed on 

an intercept, α , and candidate regressors chosen from a set of k variables in the de-

sign matrix X of dimension kn× . Further define β  as the full k-dimensional vector 

of regression coefficients. Now suppose we have an jkn×  submatrix of variables in 

X  denoted by jX . Then denote by jM  the model with regressors grouped in jX , 

such that  

    ,εβα ++= jjXy      (4) 

where jβ  jkℜ∈  ( )kk j ≤≤0  groups regression coefficients corresponding to the 

submatrix jX . The exclusion of any given regressor in a particular model implies 

that the corresponding element in β  is zero. Note that equation (4) incorporates pa-

rameter heterogeneity in our model averaging approach, since interactions with a 

measure of financial openness are part of the set of regressors k. 

 Since Bayesian Model Averaging allows for any subset of variables in X to 

appear in any model jM , there are k2  possible sampling models. BMA specifies 

that the posterior distribution of the slope coefficients β  is the weighted posterior 

distribution under each of the models, ),|( jMyP β , with the weights given by each 

model’s posterior model probability )|( yMP j . The posterior distribution given the 

data can then be expressed as  
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Equation (5) is the fundamental equation of BMA. It states that the posterior 

distribution of the quantity of interest is only conditional on the data and not on a 

particular model. Inference based on the posterior distribution incorporates informa-

tion across all possible models. The posterior model probability itself is given by  

   
)(

)(
)|(

1

2

hy
h

jy
j

Ml

Ml
yMP k

=
∑

= ,     (6) 

where )( jy Ml , is the marginal (or integrated) likelihood of model jM .31 Thus, the 

posterior model probability can be viewed as a measure of the relative data fit.  

To investigate the role of thresholds in the link between financial openness and 

growth our estimation strategy proceeds in two steps. We begin by estimating equa-

tion (4) by only including one possible threshold variable at a time in the design ma-

trix X . This approach assures comparability with previous approaches that have 

only investigated the importance of thresholds in one dimension. Nevertheless, this 

approach already allows us to examine the robustness of previous results by explic-

itly accounting for model uncertainty with respect to the inclusion of competing 

growth theories. Thus, in contrast to previous studies our results are not conditional 

on one particular model. A further advantage of only including one threshold vari-

able at a time is that it allows for easy computation and interpretation of the compos-

ite effects. In a second step, we then extend the model space to include several 

thresholds. This approach explicitly addresses model uncertainty with regard to the 

threshold variables. It also allows us to directly assess the relative empirical impor-

tance of the different thresholds suggested in the literature.  

                                                 
31 Note that equation (6) assumes a uniform prior over the model space, which is standard in the litera-
ture (see e.g. Fernadez, Ley and Steel 2001a, b). Computation of the marginal likelihood also requires 
the choice of parameter priors. Here we follow Raftery (1995) and Hoeting et al. (1999) and assume 
the diffuse Unit Information Prior (UIP) which allows for a simple approximation of the marginal 
likelihood with the Bayesian Information Criterion (BIC). In a recent paper Eicher, Papageorgiou and 
Raftery (2007) demonstrate that even though the choice of the appropriate prior structure crucially 
depends on the particular dataset considered, the UIP together with the uniform model prior is gener-
ally superior in terms of predictive performance to a range of alternative priors suggested in the 
growth context. 
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2.3 Data 

2.3.1 Measures of Financial Openness 

Our measures of financial openness are constructed from the recently updated 

and revised dataset of Lane and Milesi-Ferretti (2006), who create stocks of gross 

foreign liabilities and assets disaggregated into FDI, portfolio equity, debt, deriva-

tives and official reserves. To measure the degree of financial integration, these 

stocks are expressed as ratios to GDP. Since different types of flows are usually as-

sociated with different growth effects (e.g. Reisen and Soto, 2001), an advantage of 

this dataset is therefore, that it allows to look at different types of flows in a common 

framework. We prefer these quantity based de facto measures of financial integration 

over widely used de jure measures based on the IMF’s Annual Report on Exchange 

Arrangements and Exchange Restrictions (AREAER), since de jure measures do not 

capture the degree of enforcement of capital controls and, thus, do not always reflect 

the actual degree of integration of economies into global capital markets (see Kose et 

al., 2006). Further, Aizenman and Noy (2006) report that de jure restrictions on the 

capital account have no impact on de facto financial integration, and Magud and 

Reinhard (2006) conclude that controls on inflows do not reduce the volume of net 

flows.32 The advantage of the stock measure over flow data is that stock data are less 

volatile and by construction as accumulated flows incorporate historic information 

about the financial integration of a country. Moreover, as Kose et al. (2006) point 

out, by accounting for valuation effects stock measures are also more appropriate to 

measure risk sharing motives.  

One drawback of de facto measures is that they are likely to be endogenous in 

growth regressions. We believe that stock measures are less affected than flow meas-

ures. However, to further mitigate the possible endogeneity problem we focus exclu-

sively on beginning of the period values. As pointed out above, by construction as 

accumulated flows the stock measures incorporate a historic dimension, which addi-

tionally alleviates the endogeneity problem.  

                                                 
32 For an extensive survey of the different measures of capital account restrictions see also Edison et 
al. (2004). 
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2.3.2 Other Data 

We employ a cross sectional dataset for 72 countries with average real per cap-

ita GDP growth over the period 1980-2000 as the dependent variable. With regard to 

other growth determinants, as discussed above, our aim is to test the robustness of 

financial openness against the broad spectrum of competing growth theories. Thus, to 

account for theory uncertainty, we nest the theory of financial openness within a lar-

ger model space that accounts for recent fundamental as well as more proximate 

growth theories. A well known problem in growth regression is the endogeneity of 

regressors. We try to limit endogeneity by measuring the great majority of explana-

tory variables before or at the beginning of the period under investigation. In the fol-

lowing we briefly describe the included growth theories. A detailed description of the 

variables as well as the sources can be found in Table 2.A1 in the appendix.  

To reflect the ongoing debate over the primacy of institutions (e.g. Hall and 

Jones, 1999; Acemoglu et al., 2001, 2002, 2005; Rodrik, Subramanian, and Trebbi, 

2002) versus geography (e.g. Sachs, 2003) as the fundamental causes of growth, we 

include political and economic institutions on the one hand and variables that proxy 

for a country’s climate and initial endowments on the other hand. The importance of 

ethno-linguistic fractionalization has been shown for example by Easterly and Le-

vine (1997) and more recently by Alesina et al. (2003) and thus we add regressors 

that portray a county’s level of fractionalization. Additionally, to represent more 

proximate growth theories, we incorporate the variables from the canonical Solow 

framework; human capital measures, which figured prominently in the augmented 

Solow Model (e.g. Mankiw, Romer and Weil, 1992) and endogenous growth theories 

(e.g. Lucas, 1988); and a proxy for domestic financial development (Levine, 2005). 

Even though some authors argue that macroeconomic policies are simply symptoms 

of deeper institutional causes (e.g. Acemoglu et al., 2003), we follow the standard 

practice in the empirical growth literature and include a so-called policy conditioning 

set. Finally, as a separate theory we also consider regional heterogeneity.33 

 

                                                 
33 In this set we also include the fraction confucious, which has been found as one of the most robust 
growth determinants in the BMA exercises of Fernandez, Ley and Steel (2001a) and Sala-i-Martin, 
Doppelhofer and Miller (2004). 
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2.4 Results 

2.4.1 Benchmark Linear Specification 

As a benchmark, we first consider possible linear effects of financial openness 

on growth, i.e. we do not allow for any threshold effects. Table 2.1 displays the re-

sults. In the first panel of Table 2.1 we employ the broadest measures of financial 

openness, Total, which covers the stock of all external assets and liabilities as a frac-

tion of GDP. In the second and third panel of Table 2.1 we disaggregate Total into its 

most important components: the stock of equity assets and liabilities, Equity Total, 

and the stock of debt assets and liabilities, Debt Total. Finally, in the fourth and fifth 

panel we focus on accumulated equity inflows (liabilities) disaggregated into FDI 

liabilities and portfolio equity liabilities. These equity inflows are usually associated 

with the greatest growth benefits (e.g. Soto and Reisen, 2001). The first and second 

column of each panel shows the posterior mean and standard deviation, respectively. 

The third column displays the ratio of the posterior mean to the posterior standard 

deviation in absolute terms. This ratio is used as a measure to identify effective 

growth determinants. While posterior inclusion probabilities capture the probability 

of a regressor’s inclusion in the most effective models, we focus here on the posterior 

mean and standard deviation (mean/sd) ratio to better tie economic and statistic sig-

nificance.34 Following Eicher, Papageorgiou and Röhn (2007) we set the threshold 

value equal to 1.3, which is roughly equivalent to a 90% confidence interval in fre-

quentist hypothesis testing.35 We recognize that there is no consensus in the BMA 

literature about this cut-off point, however, our results are robust to reasonable ad-

justments. 

Turning to the results of Table 2.1, we in general do not find any evidence of a 

robust linear relationship between financial openness and growth, with 4 out of the 5 

measures having a posterior mean/sd ratio close to zero. The only exception is FDI  

 

                                                 
34 A decision theoretic foundation for this ratio is given by Brock and Durlauf (2001).  
35 Raftery (1995) suggested that for a variable to be considered as effective the posterior inclusion 
probability must exceed 50 percent; which is roughly equivalent of requiring a ratio of mean/sd = 1, 
which implies in frequentist statistics that the regressors improves the power of the regression.  Along 
with Eicher, Papageorgiou and Röhn (2007) we decided to be more stringent and set the threshold 
value equal to 1.3. 
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Table 2.1: Linear Effects of Financial Openness on Growth 
 (1) (2) (3) (4) (5) 

Variable 
Post 
mean 

Post 
s.d. 

Post 
mean/
sd 
ratio 

Post 
mean 

Post 
s.d. 

Post 
mean/
sd 
ratio 

Post 
mean 

Post 
s.d. 

Post 
mean/
sd 
ratio 

Post 
mean 

Post 
s.d. 

Post 
mean/
sd 
ratio 

Post 
mean 

Post 
s.d. 

Post 
mean/
sd 
ratio 

Intercept -3.46 4.79 0.72 -3.46 4.79 0.72 -3.46 4.79 0.72 1.49 6.14 0.24 -3.45 4.78 0.72 
lngdp -1.86 0.51 3.67 -1.86 0.51 3.66 -1.86 0.51 3.67 -1.69 0.49 3.44 -1.86 0.51 3.67 
lnpopgr -4.19 1.95 2.15 -4.19 1.95 2.15 -4.19 1.95 2.15 -3.45 2.08 1.66 -4.19 1.94 2.15 
life 0.16 0.05 3.16 0.16 0.05 3.15 0.16 0.05 3.16 0.10 0.07 1.38 0.16 0.05 3.16 
confuc 6.88 3.15 2.19 6.88 3.15 2.18 6.88 3.15 2.19 6.67 2.97 2.25 6.88 3.15 2.19 
mining 5.64 2.78 2.03 5.64 2.78 2.03 5.64 2.78 2.03 1.63 2.98 0.55 5.65 2.77 2.04 
sub -1.45 0.90 1.61 -1.45 0.90 1.61 -1.45 0.90 1.61 -1.65 0.83 1.98 -1.45 0.90 1.61 
primenrol -0.02 0.01 1.33 -0.02 0.01 1.33 -0.02 0.01 1.33 0.00 0.01 0.47 -0.02 0.01 1.32 
east 0.71 0.89 0.79 0.71 0.89 0.79 0.71 0.89 0.79 1.59 1.00 1.59 0.71 0.89 0.79 
kgatrstr -0.21 0.55 0.39 -0.21 0.55 0.39 -0.21 0.55 0.39 -1.27 0.92 1.37 -0.22 0.55 0.39 
corr 0.22 0.22 1.00 0.22 0.22 1.00 0.22 0.22 1.00 0.19 0.21 0.91 0.22 0.22 1.00 
language 0.65 0.89 0.73 0.65 0.89 0.73 0.65 0.89 0.73 0.57 0.83 0.69 0.66 0.90 0.73 
bureau 0.10 0.20 0.51 0.10 0.20 0.51 0.10 0.20 0.51 0.06 0.16 0.39 0.10 0.20 0.50 
openk 0.00 0.00 0.47 0.00 0.00 0.47 0.00 0.00 0.47 0.00 0.00 0.18 0.00 0.00 0.47 
pr -0.04 0.10 0.40 -0.04 0.10 0.40 -0.04 0.10 0.40 -0.22 0.17 1.29 -0.04 0.10 0.40 
laam -0.11 0.37 0.31 -0.11 0.37 0.31 -0.11 0.37 0.31 -0.06 0.28 0.20 -0.11 0.37 0.31 
lnki -0.13 0.43 0.30 -0.13 0.43 0.30 -0.13 0.43 0.30 -0.30 0.60 0.50 -0.13 0.44 0.31 
ethnic -0.15 0.55 0.28 -0.15 0.56 0.28 -0.15 0.55 0.28 -0.08 0.42 0.19 -0.15 0.55 0.28 
ecorg 0.01 0.06 0.21 0.01 0.06 0.21 0.01 0.06 0.21 0.00 0.01 0.03 0.01 0.05 0.20 
invprof 0.01 0.05 0.21 0.01 0.05 0.21 0.01 0.05 0.21 0.04 0.10 0.43 0.01 0.05 0.21 
secenrol 0.00 0.01 0.21 0.00 0.01 0.21 0.00 0.01 0.21 0.00 0.01 0.42 0.00 0.01 0.21 
tertenrol 0.00 0.00 0.11 0.00 0.00 0.11 0.00 0.00 0.11 -0.01 0.02 0.36 0.00 0.00 0.11 
govcons 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.01 0.10 0.00 0.00 0.05 
cl 0.00 0.02 0.05 0.00 0.02 0.05 0.00 0.02 0.05 0.00 0.00 0.01 0.00 0.02 0.05 
inflation 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.05 0.00 0.00 0.11 0.00 0.00 0.06 
oecd 0.00 0.03 0.03 0.00 0.03 0.03 0.00 0.03 0.03 -0.04 0.22 0.17 0.00 0.03 0.02 
lcr100km 0.00 0.03 0.02 0.00 0.03 0.02 0.00 0.03 0.02 -0.03 0.21 0.15 0.00 0.02 0.02 
law 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.02 
priexp 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.05 0.03 0.00 0.00 0.00 
privo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
religion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 
lnbmp 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 
yrsopen 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.03 0.02 0.00 0.01 0.00 
                
total 0.00 0.00 0.00             
equitytotal    0.00 0.05 0.02          
debttotal       0.00 0.00 0.00       
fdiliab          2.88 2.09 1.38    
portliab             -0.08 1.35 0.06 

No of obs. 72 72 72 72 72 
Notes: Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3) 

 

liabilities for which we find weakly positive evidence, with a posterior mean/sd ratio 

of 1.38 slightly exceeding our effectiveness threshold. These results, however, are 

not surprising given the difficulties of the previous literature to establish uncondi-

tional effect even without explicitly accounting for model uncertainty with respect to 

alternative growth determinants. Yet, the findings could arise due to a misspecifica-

tion of the empirical model. In fact, as described in detail above, it is reasonable to 

assume that the effects of financial openness are contingent on supportive initial 

conditions, which introduce thresholds or more generally parameter heterogeneity 
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into the financial integration growth nexus. This is what we are going to investigate 

in more detail in the next sections. 

With respect to the other regressors, our results are broadly in line with the ex-

isting literature on robust growth determinants (see e.g. Fernandez, Ley and Steel, 

2001a; and Sala-i-Martin, Doppelhofer Miller, 2004). More specifically, we find that 

the Solow variables initial GDP and the population growth rate, as well as life expec-

tancy, the fraction confucious and the sub Saharan Africa dummy are effective 

growth determinants across all specifications with the expected signs. In the case of 

FDI this list is slightly augmented. Additionally, the East Asia dummy and a variable 

relating to geography - the fraction of land in tropical and subtropical area – emerge 

as effective growth determinant. Both of these variables were also flagged as robust 

growth regressors in Sala-i-Martin, Doppelhofer and Miller (2004). 

2.4.2 Continuous Interaction Approach 

As a first approach to account for possible threshold effects we estimate equa-

tion (2) using our BMA methodology. As described above this approach allows the 

partial effect of financial openness to vary continuously with the level of some 

threshold variable. To give a first overview of the results, Figure 2.1 plots the poste-

rior mean/standard deviation ratios of the interaction terms for each of the potential 

threshold variables with our financial openness measures.36 A posterior 

mean/standard deviation ratio of an interaction term above 1.3 indicates evidence of 

parameter heterogeneity. An important observation from Figure 2.1 is that we only 

find support for parameter heterogeneity for the case of FDI liabilities. For all other 

measures none of the interaction term’s posterior mean/sd ratio exceeds 1.3. While 

these results are important in their own right, since they suggest that for the case of 

FDI the linear model is misspecified, they do not yet inform us about potential 

thresholds. To investigate thresholds, we need to focus on the composite effects. This 

is what we turn to next.  

Figure 2.2 plots the composite mean estimates – the partial effect of FDI on 

growth - along with 1.3 standard deviation bands as a function of each of the 7  

                                                 
36 Henceforth we will not report results for Total anymore, but focus on the more disaggregated meas-
ures instead.  



Chapter 2 – Financial Openness and Thresholds Revisited 53 

 

Figure 2.1: Posterior Mean/Standard Deviation Ratio of Interaction Terms – 
Continuous Interaction Approach 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

variables, for which we found evidence for parameter heterogeneity above. Table 

2.A2 in the appendix presents the detailed results for these BMA runs. Inspection of 

the composite means reveals some interesting observations. When FDI is interacted 

with bureaucratic efficiency, corruption, economic organization and law&order, we 

find that the composite effect is positive over the entire range of observations. Fur-

ther, in all of these cases the composite means are 1.3 standard deviations above 

zero, i.e. the composites pass our effectiveness threshold, for at least 90% of the ob-

servations in our sample. Thus, these findings suggest, that while these four variables 

exhibit an important quantitative impact on the marginal effect of FDI on growth, 

they do not suggest a qualitatively differential impact across countries.     

The composite effect is also positive over the entire range of observations of 

the variable years open. However, FDI is only effective for about 70% of the coun-

tries in our sample characterized by high values in the trade openness measure. 

Moreover, when we focus on the composite effect of FDI as functions of investment 

profile or ethnic fractionalization, we observe that the composite effect can in fact 

turn negative. In particular, the composite effect turns negative for values in the in-

vestment profile indicator of below 3 (corresponding to the level of Chile), and for  
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Figure 2.2: Estimated Composite Effects of FDI Liabilities over the Observed 
Range of Threshold Variables 

          
        
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: The black line represents the composite coefficient estimate, and the grey lines the 1.3 standard deviation bands. 
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values above 0.77 (corresponding to the level of South Africa) in the index of ethnic 

heterogeneity. Further, our estimates of the standard deviation imply that FDI consti-

tutes an effective growth determinant for only 64% of the countries in our sample 

that feature low levels of ethnic heterogeneity (values below 0.56). The same is true 

for 75% of the countries in our sample characterized by high values in the investment 

profile indicator (values above 4.75). Hence, in addition to introducing parameter 

heterogeneity, we also find that these variables have significant qualitative implica-

tions, acting as thresholds in the link between FDI and growth. 

In this section we have investigated one specific form of nonlinearity between 

financial openness and growth. The results in this section already revealed some evi-

dence for thresholds for the case of FDI. In the next section we will investigate an 

alternative empirical specification of nonlinearities and will find that the evidence of 

thresholds is reinforced and even more striking.    

2.4.3 Regime Approach 

In this section, we turn to the results of our second estimation approach. Thus, 

we estimate equation (3) using BMA. As described in the methodology section, for 

each of the possible threshold variables we introduce two dummy variables that 

equal one if the observation is above the 25% quartile or the 75% quartile, respec-

tively.37 Figures 2.3a-d provide an overview of the results. The figures display the 

posterior mean/sd ratios of the interactions between the regime dummy and our 

measures of financial openness. A posterior mean/sd ratio above 1.3 indicates evi-

dence that the effect of financial openness varies effectively across regimes.  

Compared to our first approach, the Figures 2.3a-d indicate even stronger evi-

dence of parameter heterogeneity. Most importantly, in contrast to the results of the 

continuous interaction approach, we now also find support for parameter heterogene-

ity for Debt Total and Equity Total. The results for FDI are augmented compared to 

the continuous interaction case. In particular, similar to the continuous case we find 

effective interactions with corruption, investment profile, bureaucratic efficiency and 

years open. However, we additionally discover parameter heterogeneity with respect  

                                                 
37 We also experimented with splitting the sample at the median, and the results were qualitatively 
very similar. However, we found a smaller number of effective thresholds.  
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Figure 2.3: Posterior Mean/Standard Deviation Ratio of Interaction Terms 
– Regime Approach 

           
           a) Debt Total              b) Equity Total 
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to initial income, financial intermediation, civil liberties and secondary enrolment. 

Again, we do not find any evidence of parameter heterogeneity for portfolio liabili-

ties. To investigate if the strong evidence for parameter heterogeneity translates into 

a qualitatively different impact of financial openness across regimes we now turn to 

the partial effects. 

Tables 2.2a-c report the coefficient posterior means and standard deviations for 

the different regimes. The detailed results of the BMA runs can be found in the ap-

pendix Tables 2.A3a-c. Table 2.2a reveals that the impact of debt flows as measured 
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by Debt Total can actually harm the growth process under unfavorable initial condi-

tions.38 In particular, we find that the effect of Debt Total is negative for regimes 

characterized by low institutional quality (civil liberties, political rights, and invest-

ment profile) and low initial income as well as high black market premiums and high 

levels of fractionalization. When we compare the economic impact of Debt Total on 

growth across regimes, given by the posterior mean, we find that the negative impact 

of debt flows is strongest in countries characterized by low levels of civil liberties.39  

In sharp contrast, once we focus on equity flows as measured by Equity Total 

in Table 2.2b, we find a positive and effective impact in countries characterized by 

low levels of corruption.40 Surprisingly, we also find a positive effect of Equity Total 

for countries with initially low levels of secondary enrolment rates. This result sug-

gests that human capital and financial openness are substitutes rather than comple-

ments in the development process and contrasts the results of Borenzstein et al. 

(1998). 

Most striking are the results for FDI liabilities displayed in Table 2.2c. We find 

that FDI is an effective growth determinant under a broad set of different initial con-

ditions. In particular, we find similar to the results for Equity Total that FDI exhibits 

a positive impact in sub-samples characterized by low corruption and low levels of 

secondary enrolment. Additionally, the impact of FDI is positive for countries char-

acterized by high levels of bureaucratic efficiency, investment profile, initial income, 

trade openness and financial development. Comparing the posterior means across 

regimes, we find the strongest impact of FDI in countries with sufficiently low levels 

of corruption.  

Summarizing the results so far, we have shown that once we allow the effect of 

financial openness to vary depending on different country characteristics, measures 

of financial openness are robust growth determinants even after controlling for model 

uncertainty with regard to alternative growth determinants. Additionally, our results 

highlight the importance of differentiating between different types of flows. Our  

                                                 
38 A further disaggregation of Debt Total into its components debt liabilities and debt assets did not 
lead to any additional insights.  
39 Note that civil liberties and political rights are measured “backwards”, i.e. high values of cl and pr 
imply lower levels of civil liberties and political rights, respectively.  
40 Note that low levels of corruption are indicated by high values in the ICRG corruption index. 
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Table 2.2: Partial Effects – Regime Approach 
 

a) Debt Total 
Threshold Variable Post mean Post s.d. 
CL   
Lowest 75% 0.000 0.003 
Highest 25% -4.142 0.772 
LnGDP   
Lowest 25% -2.170 0.977 
Highest 75% 0.030 0.129 
Language   
Lowest 75% 0.000 0.000 
Highest 25% -1.628 0.905 
Inv Prof   
Lowest 25% -1.357 0.725 
Highest 75% 0.046 0.116 
PR   
Lowest 75% 0.000 0.000 
Highest 25% -1.262 0.634 
BMP   
Lowest 75% 0.000 0.001 
Highest 25% -1.010 0.723 

   
b) Equity Total 

Threshold Variable Post mean Post s.d. 
Corr   
Lowest 25% -0.095 0.494 
Highest 75% 4.968 1.424 
Sec Enrol   
Lowest 25% 5.374 3.839 
Highest 75% 0.120 0.980 

 
c) FDI Liabilities 

Threshold Variable Post mean Post s.d. 
Corr   
Lowest 25% 0.000 0.019 
Highest 75% 7.851 1.494 
Inv Prof   
Lowest 25% 0.001 0.068 
Highest 75% 4.587 1.252 
Yrsopen   
Lowest 25% 0.104 0.747 
Highest 75% 4.750 1.286 
LnGDP   
Lowest 25% -0.408 1.710 
Highest 75% 4.724 1.219 
Bureau   
Lowest 25% 0.394 1.267 
Highest 75% 4.620 1.461 
Privo   
Lowest 75% 0.981 1.735 
Highest 25% 5.945 2.864 
CL   
Lowest 75% 3.639 2.045 
Highest 25% -3.370 4.766 
SecEnroll   
Lowest 25% 6.498 3.170 
Highest 75% 1.784 1.756 
EcOrg   
Lowest 25% 1.204 1.951 
Highest 75% 3.387 1.742 

 
Notes: Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3). Estimates for 
“Highest” group  are the composite mean and standard deviation. 
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findings suggest that debt flows can actually retard growth under a broad set of unfa-

vorable initial conditions. In contrast, equity flows and especially FDI inflows were 

shown to be robust positive growth determinant. These results are in sharp contrast to 

Edison et al. (2002), who investigate a broad range of supportive initial conditions 

but do not discover any threshold effects. The main differences between their study 

and ours are twofold. First we include a broader set of countries (72 vs. 57). Second, 

Edison et al.’s interaction specifications are conditional on one specific set of control 

variables which seems arbitrary in the light of model uncertainty. In contrast, our 

results are not conditional on one particular model, but incorporate information from 

a broad range of potential growth models.  

So far we have only allowed one threshold variable to enter the growth regres-

sion at a time. This means that, we have only investigated parts of the whole model 

space. However, the finding of one effective threshold might just be a manifestation 

of a misspecification due to the omission of other potentially relevant thresholds. In 

fact, this section identified a broad range of effective thresholds. In the next section 

we fill this gap and explicitly account for threshold uncertainty.  

2.4.4 Accounting for Threshold Uncertainty 

The previous results already shed light on the question about the relative im-

portance of different thresholds by testing their robustness against a broad set of al-

ternative linear growth models. However, we have not explicitly accounted for 

threshold uncertainty. In this section we address this issue directly by extending the 

set of possible regressors to include all interactions found to be effective in the pre-

vious section. As a result, our model space is now significantly increased and con-

tains a variety of threshold models. The Bayesian framework is then especially suited 

to address the question about the relative importance of thresholds since, given the 

data, it provides a probability distribution over the space of all models including dif-

ferent threshold models. The posterior parameter distributions, in turn, take into ac-

count the probability that each of these models is the correct one.         

 

 

 



Chapter 2 – Financial Openness and Thresholds Revisited 60 

 

Table 2.3: Accounting for Threshold Uncertainty 
 

     a) Debt Total      b) FDI Liabilities 
Variable Posterior 

mean 
Posterior 

s.d. 
Intercept 6.88 2.84 
confuc 9.44 1.78 
lngdp -1.45 0.34 
corr 0.44 0.14 
sub -1.52 0.47 
mining 6.30 1.62 
laam -1.30 0.36 
life 0.07 0.04 
yrsopen 1.42 0.56 
law -0.09 0.14 
cl 0.26 0.14 
ethnic -0.70 0.77 
govcons 0.00 0.01 
lnbmp -0.02 0.10 
lnpopgr -0.24 0.77 
pr 0.01 0.06 
oecd -0.06 0.25 
primenrol 0.00 0.00 
ecorg 0.02 0.07 
openk 0.00 0.00 
tertenrol 0.00 0.01 
invprof 0.00 0.02 
kgatrstr 0.00 0.06 
inflation 0.00 0.00 
privo 0.04 0.23 
east 0.00 0.03 
lnki 0.00 0.02 
language 0.00 0.00 
bureau 0.00 0.02 
religion 0.00 0.00 
lcr100km 0.01 0.10 
secenrol 0.00 0.00 
priexp 0.00 0.00 

   
debttotal -1.37 0.47 
cl75_debttotal -4.25 0.63 
invprof25_debttotal 1.49 0.46 
lnbmp75_debttotal -0.04 0.20 
pr75_debttotal 0.01 0.11 
language75_debttotal 0.00 0.07 
lngdp25_debttotal -0.01 0.08 

No. of observations 72 
 
 
 
 
Notes: Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3) 

 

We focus on the regime approach in this section since it yielded the richest set 

of different threshold effects. We also focus on FDI liabilities as well as Debt Total, 

since these measures revealed the greatest evidence of thresholds uncertainty. For 

computational reasons we only include those interactions that have been found effec-

tive in the previous section. The results displayed in Tables 2.3a, b show a clear pic-

ture. After controlling for model uncertainty with respect to different initial condi-

tions the number of effective interactions terms is significantly reduced. Specifically, 

Variable Posterior 
mean 

Posterior 
s.d. 

Intercept -4.04 3.82 
lngdp -1.58 0.45 
confuc 6.95 2.20 
lnpopgr -4.68 1.71 
sub -1.78 0.64 
life 0.10 0.05 
laam -0.65 0.59 
primenrol -0.01 0.01 
east 0.33 0.60 
language 0.34 0.66 
corr 0.07 0.15 
invprof 0.02 0.06 
privo 0.06 0.29 
pr 0.00 0.03 
lnki -0.01 0.11 
ethnic -0.01 0.15 
secenrol 0.00 0.00 
kgatrstr -0.01 0.11 
law 0.00 0.02 
openk 0.00 0.00 
lcr100km 0.00 0.06 
cl 0.00 0.01 
tertenrol 0.00 0.00 
govcons 0.00 0.00 
ecorg 0.00 0.01 
religion 0.00 0.00 
oecd 0.00 0.01 
bureau 0.00 0.00 
inflation 0.00 0.00 
lnbmp 0.00 0.00 
mining 0.00 0.00 
priexp 0.00 0.00 
yrsopen 0.00 0.00 

   
fdiliab 0.00 0.21 
corr25_fdiliab 7.15 2.88 
lngdp25_fdiliab 0.92 2.98 
secenrol25_fdiliab -0.81 2.41 
privo75_fdiliab 0.60 1.91 
cl75_fdiliab -0.41 1.64 
bureau25_fdiliab -0.13 0.70 
invprof25_fdi 0.17 0.86 
ecorg25_fdiliab -0.22 1.34 
yrsopen25_fdiliab 0.02 0.27 

No of observations 72 
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for the case of Debt Total the only thresholds with a posterior mean/sd ratio greater 

1.3 are a measure of political institutions (civil liberties) and property rights (invest-

ment profile). For FDI liabilities the only effective threshold is corruption. This find-

ing is especially remarkable since we tested this threshold against 8 alternative 

thresholds, covering initial GDP, trade openness, financial intermediation, human 

capital and other institutional variables. Taken together, the results of Tables 2.3a 

and b reveal that the data clearly favors institutional thresholds over other potential 

thresholds. 

The results of this section have several significant implications. Our findings 

highlight the importance to account for model uncertainty with respect to different 

thresholds. While we found a large number of threshold variables effective in the 

previous section, this section shows that once we explicitly take into account thresh-

old uncertainty this number is significantly reduced. Thus, we conclude that studies 

that only investigate the importance of one specific threshold without taking into 

account other equally well justified thresholds, reach conclusions that underestimate 

the uncertainty surrounding the model selection. Further, while a large body of litera-

ture address the direct effects of institutions on long term growth, our results empha-

size the view that an important channel through which institutions might effect 

growth is by influencing the growth impact of external capital flows.  

To offer some possible interpretations of our results, our finding that debt 

flows are associated with decreased growth in countries lacking sound political insti-

tutions and property rights can be interpreted in line with the theoretical model of 

Bussiere, Fratzscher and Koeniger (2006). Their model predicts that the debt struc-

ture is tilted towards short term debt in countries facing uncertainty about investment 

returns. Dependency on short term debt, in turn, is typically associated with a higher 

probability of financial crisis (e.g. Chang and Velasco, 2000). Further, several stud-

ies suggest that the level of corruption is negatively correlated with the level of FDI 

inflows (e.g. Egger and Winner, 2006; Wei 2000a, b). Additionally, our results lend 

support to the view that the level of corruption might also impact the quality of FDI. 

For instance, Smarzynska and Wei (2000) show, using firm level data, that techno-

logical more advanced firms are discouraged to form joint ventures in a highly cor-

rupt host country.  
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2.5 Conclusions 

The fact that most highly developed countries are closely integrated into the 

global financial markets together with strong theoretical predictions that financial 

openness creates welfare benefits, has for a long time led to the presumption that 

developing countries should embrace financial globalization. However, the recent 

experiences of financial crises together with the inconclusiveness of empirical work 

have cast doubt over these predictions. Recent research has offered a promising route 

to reconcile these findings. It stresses that premature opening of the capital account 

in the absence of some basic supporting conditions can delay growth benefits. In this 

paper we have provided a comprehensive analysis of threshold effects investigating a 

broad range of potential supportive conditions. A key methodological innovation was 

the use of Bayesian Model Averaging techniques to appropriately account for model 

uncertainty that has plagued much of the growth research but has been neglected by 

the financial openness literature.  

Our results provided substantial evidence of the relevance of threshold effects. 

Once we allowed the marginal effect of our measures of financial openness to vary 

across countries depending on specific country conditions, we found that financial 

integration indeed constitutes a robust growth determinant for sub-groups of coun-

tries. Our results, however, also highlighted the differential impact of different types 

of flows. We found that debt flows are negatively correlated with long term growth 

in countries with unfavorable initial conditions, while especially FDI is associated 

with positive growth in countries meeting certain supportive conditions. Important 

was also our finding that once we explicitly account for uncertainty about the nature 

of the threshold, the number of effective thresholds was significantly reduced and we 

found exclusively institutional thresholds to matter. Specifically, our results suggest 

that corruption is the crucial threshold for FDI inflows while a combination of both 

strong political institutions and property rights are necessary to avert the risks of debt 

flows. Although, more theoretical work along with evidence from micro-level studies 

is warranted to better understand the exact channels through which institutions affect 

the growth outcomes of financial integration, our results clearly indicate a policy 

priority for improving institutions to both benefit from financial integration and avert 

the possible risks. 
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Appendix Chapter 2 

Table 2.A1: Variable Definitions 
Theory Variable 

Name 
Description Source 

Dependent Variable grgdpch Average growth rate of real GDP per capita 
over the period 1980-2000 

Penn World Tables 
(PWT) 6.2 

lngdp Logarithm of real GDP p.c. in 1980 PWT 6.2 

lnki Log of average investment share in real GDP 
over period 1980-2000 PWT 6.2 Solow 

lnpopgr Log of average population growth rates +0.05 
over period 1980-2000  PWT 6.2 

life Life expectancy at birth in 1980 World Development 
Indicators (WDI) 

primenrol Primary gross enrolment rate, 1980 World Bank/Unesco 
secenrol Secondary gross enrolment rate, 1980 World Bank/Unesco 

Human Capital 

tertenrol Tertiary gross enrolment rate, 1980 World Bank/Unesco 
cl Civil liberties, 1980 Freedom House 
pr Political rights, 1980 Freedom House Political Institutions 
ecorg Degree of capitalism index Hall and Jones (1999) 
corr Corruption, average 1984-86 ICRG 
law Law&Order, average 1984-86 ICRG 
bureau Bureaucratic quality, avg. 1984-86 ICRG Economic  

Institutions 
invprof 

Investment profile (avg. of 3 subcomponents: 
risk of contract viability/expropriation, profit 
repatriation and payment delays), avg. 84-86 

ICRG 

kgatrstr % land area in Koeppen-Geiger tropics and 
subtropics 

Center for International 
Development (CID) 

lcr100km % land area within 100 km of ice-free coast  ibid 
mining Fraction of mining in GDP  Hall and Jones (1999) 

Geography and 
Endowments 

priexp Fraction of primary exports in total exports in 
1970 

Sachs and War-
ner(1995) 

ethnic Prob. that 2 randomly selected people belong 
to different ethnic groups Alesina et al. (2003) 

language Prob. that 2 randomly selected people belong 
to different linguistic groups Alesina et al. (2003) Fractionalization 

religion Prob. that 2 randomly selected people belong 
to different religious groups Alesina et al. (2003) 

openk Exports plus imports / GDP, avg. 80-85 PWT 6.2 

yrsopen Number of years open between 1959-1994 Sachs and War-
ner(1995) 

inflation Inflation, CPI, average 1980-85 WDI 

lnbmp ln(1+average black market premium over 
period 1980-85) 

Global Development 
Network Growth Data-
base (GDNGD) 

Macro Policies 

govcons Avg. government consumption expenditure as 
% GDP over period 1980-85 WDI 

east East and southeast asia dummy GDNGD 
laam Latin america dummy GDNGD 
sub Sub saharan africa dummy GDNGD 
oecd Dummy for OECD countries OECD 

Regional  
Heterogeneity 

confuc Fraction of population confucian Barro (1999)  
Domestic Financial 

Development privo Private credit by deposit money banks and 
other financial institutions / GDP, avg. 80-85 

Beck, Demirgüç-Kunt 
and  Levine (2000) 

Total Total assets and liabilities / GDP, avg. 80-85 Lane and Milesi-
Ferretti (2006) 

Equity Total Portfolio equity and FDI assets and liabilities 
/ GDP, avg. 80-85 ibid 

Debt Total Debt assets and liabilities / GDP, avg. 80-85 ibid 
FDIliab FDI liabilities / GDP, avg. 80-85 ibid 

Financial Openness 

Portliab Portfolio equity liabilities / GDP, avg. 80-85 ibid 
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Table 2.A2: BMA Results - Continuous Interactions Approach 
 (1) (2) (3) (4) (5) (6) (7) 

Variable a) b) a) b) a) b) a) b) a) b) a) b) a) b) 

Intercept -0.74 4.65 1.37 4.84 1.82 5.36 1.13 5.21 1.24 4.60 0.71 4.92 -1.38 5.41 
lngdp -1.78 0.48 -1.61 0.46 -1.59 0.49 -1.71 0.50 -1.75 0.45 -1.22 0.64 -1.45 0.59 
lnpopgr -3.93 1.73 -4.01 1.82 -3.41 2.06 -3.73 1.98 -4.18 1.67 -3.55 2.14 -3.72 1.92 
confuc 6.30 2.87 5.95 2.81 6.58 2.93 6.51 2.90 6.66 2.64 6.48 2.95 6.83 3.07 
sub -1.57 0.81 -1.69 0.78 -1.66 0.79 -1.69 0.78 -2.03 0.65 -1.50 0.76 -1.59 0.85 
east 1.13 0.91 1.55 0.87 1.63 0.90 1.47 0.96 1.39 0.98 0.89 1.00 1.41 0.95 
life 0.11 0.05 0.07 0.06 0.08 0.06 0.09 0.06 0.07 0.06 0.03 0.06 0.07 0.06 
corr 0.19 0.20 0.02 0.07 0.19 0.20 0.19 0.21 0.28 0.20 0.11 0.18 0.32 0.21 
kgatrstr -0.56 0.71 -1.31 0.71 -1.35 0.77 -1.13 0.83 -0.86 0.86 -0.76 0.86 -0.63 0.83 
pr -0.06 0.12 -0.22 0.15 -0.22 0.15 -0.17 0.16 -0.13 0.15 -0.16 0.17 -0.11 0.16 
language 0.33 0.67 0.15 0.47 0.50 0.78 0.45 0.76 0.27 0.60 0.22 0.58 0.91 0.96 
secenrol 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 
mining 0.00 0.09 0.00 0.00 0.26 1.35 0.26 1.36 0.03 0.41 0.28 1.34 0.93 2.27 
laam -0.05 0.24 -0.13 0.41 -0.09 0.35 -0.11 0.39 -0.03 0.19 -0.30 0.62 -0.14 0.41 
invprof 0.03 0.08 0.07 0.11 0.04 0.10 0.03 0.08 0.00 0.02 0.10 0.14 0.03 0.08 
lnki -0.10 0.36 -0.19 0.47 -0.28 0.58 -0.30 0.59 -0.27 0.57 -0.13 0.43 -0.14 0.43 
primenrol -0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 
lcr100km -0.01 0.09 -0.01 0.09 -0.02 0.18 -0.02 0.15 -0.02 0.16 -0.01 0.14 -0.04 0.23 
tertenrol 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 
oecd 0.00 0.04 -0.06 0.26 -0.05 0.25 -0.02 0.14 -0.02 0.13 -0.13 0.40 -0.02 0.17 
bureau 0.00 0.01 0.03 0.11 0.01 0.07 0.03 0.12 0.03 0.11 0.05 0.15 0.01 0.07 
openk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
inflation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
cl 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.04 
ethnic -0.21 0.63 -0.06 0.38 -0.07 0.42 -0.09 0.47 -0.14 0.49 -0.48 0.97 -0.01 0.13 
govcons 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
priexp 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.04 0.00 0.02 0.00 0.03 0.00 0.08 
privo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.00 0.00 0.00 0.00 
religion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
law 0.00 0.01 0.00 0.00 0.00 0.01 -0.03 0.10 0.00 0.01 0.00 0.00 0.00 0.00 
lnbmp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
ecorg 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 
yrsopen 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 -0.02 0.19 0.00 0.01 
               
fdiliab 0.07 0.55 0.03 0.81 0.35 1.20 0.40 1.28 -3.96 4.96 0.73 1.64 8.09 3.95 
bureau_fdi 1.79 0.54             
corr_fdi   1.37 0.45           
ecorg_fdi     0.81 0.41         
law_fdi       0.95 0.50       
invprof_fdi         1.31 0.75     
yrsopen_fdi           7.25 4.41   
ethnic_fdi             -10.48 7.57 
No. of obs. 72 72 72 72 72 72 72 

Notes: a) Posterior mean; b) Posterior standard deviation. 
Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3). 
Only those results are reported for which the interaction term exceeds the effectiveness threshold. 
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Table 2.A3: BMA Results – Regime Approach 

 
a) Debt Total 

 (1) (2) (3) (4) (5) (6) 
Variable a) b) a) b) a) b) a) b) a) b) a) b) 

Intercept 5.31 2.64 0.18 4.79 -1.92 4.93 -1.83 4.61 -2.64 4.63 -1.76 4.85 
lngdp -1.57 0.36 -2.35 0.52 -1.55 0.51 -1.75 0.56 -1.85 0.44 -1.89 0.49 
lnpopgr -0.05 0.38 -4.42 1.73 -3.31 2.09 -3.72 1.99 -4.70 1.67 -3.68 1.88 
life 0.11 0.03 0.14 0.05 0.14 0.06 0.13 0.06 0.14 0.05 0.17 0.05 
confuc 10.80 1.89 6.41 3.05 5.00 3.53 7.12 2.55 5.83 2.65 7.15 2.66 
sub -1.64 0.50 -0.97 0.91 -0.30 0.68 -1.45 0.77 -1.34 0.72 -1.26 0.84 
mining 4.67 1.92 3.52 2.98 1.86 2.84 4.95 2.86 6.36 2.21 6.21 2.39 
corr 0.52 0.13 0.25 0.22 0.03 0.11 0.22 0.23 0.05 0.14 0.25 0.21 
east 0.01 0.12 0.68 0.86 1.63 0.81 0.32 0.64 0.95 0.90 0.60 0.80 
primenrol 0.00 0.00 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.02 0.01 -0.02 0.01 
laam -1.30 0.39 -0.16 0.43 -0.14 0.42 -0.12 0.39 -0.07 0.31 -0.03 0.21 
openk 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
language 0.02 0.16 0.80 0.94 0.75 0.95 0.38 0.70 0.09 0.39 0.25 0.60 
kgatrstr -0.01 0.08 -0.69 0.76 -0.61 0.77 -0.07 0.28 -0.39 0.65 -0.05 0.29 
bureau 0.00 0.00 0.02 0.09 0.14 0.21 0.17 0.25 0.10 0.18 0.04 0.13 
cl 0.23 0.16 -0.01 0.04 -0.05 0.12 0.00 0.00 0.00 0.03 0.00 0.03 
ecorg 0.01 0.03 0.02 0.07 0.00 0.03 0.03 0.08 0.08 0.14 0.01 0.04 
ethnic -0.12 0.40 -0.01 0.15 -0.15 0.57 -0.04 0.31 -0.04 0.28 -0.02 0.23 
govcons 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01 
inflation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
invprof 0.02 0.06 0.07 0.12 0.01 0.05 0.00 0.03 0.00 0.04 0.00 0.03 
law -0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
lcr100km 0.00 0.03 0.01 0.13 0.00 0.00 0.00 0.04 0.01 0.09 0.00 0.02 
lnbmp -0.02 0.11 0.00 0.06 -0.02 0.14 -0.01 0.08 0.00 0.03 0.00 0.00 
lnki 0.00 0.04 -0.03 0.20 -0.12 0.40 -0.04 0.25 -0.15 0.43 -0.11 0.38 
oecd 0.00 0.01 -0.02 0.16 0.00 0.01 0.00 0.07 -0.07 0.32 0.00 0.05 
privo 0.15 0.44 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
pr 0.00 0.03 -0.10 0.14 -0.06 0.12 0.00 0.02 -0.06 0.12 -0.05 0.10 
priexp 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
religion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 
secenrol 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
tertenrol 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
yrsopen 0.32 0.52 0.00 0.00 0.00 0.01 0.04 0.23 0.17 0.47 0.03 0.20 
             
debttotal 0.00 0.00 -2.17 0.98 0.00 0.00 0.00 0.00 -1.36 0.73 0.00 0.00 
cl75_debttotal -4.14 0.72           
lngdp25_debttotal   2.20 0.99         
language75_debttotal     -1.63 0.91       
pr75_debttotal       -1.26 0.63     
invprof25_debttotal         1.40 0.73   
lnbmp75_debttotal           -1.01 0.72 
No. of obs. 72 72 72 72 72 72 

        Notes: a) Posterior mean; b) Posterior standard deviation.  
        Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3). 
        Only those results are reported for which the interaction term exceeds the effectiveness threshold. 
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b) Equity Total 
 (1) (2) 

Variable a) b) a) b) 

Intercept -2.50 4.27 -3.25 4.85 
lngdp -1.70 0.44 -1.90 0.47 
lnpopgr -4.31 1.90 -4.12 2.02 
life 0.11 0.05 0.14 0.05 
confuc 6.52 2.52 6.87 2.78 
sub -1.54 0.68 -1.95 0.88 
corr 0.01 0.05 0.34 0.21 
primenrol -0.01 0.01 -0.01 0.01 
east 0.50 0.73 0.61 0.82 
mining 0.50 1.49 1.58 2.91 
language 0.01 0.11 0.79 0.90 
laam -0.42 0.59 -0.28 0.54 
bureau 0.02 0.08 0.04 0.14 
cl 0.00 0.00 0.00 0.01 
ecorg 0.00 0.01 0.00 0.03 
ethnic -0.02 0.22 -0.07 0.37 
govcons 0.00 0.00 0.00 0.01 
inflation 0.00 0.00 0.00 0.00 
invprof 0.03 0.08 0.00 0.00 
kgatrstr -0.08 0.30 -0.15 0.43 
law 0.00 0.00 -0.01 0.05 
lcr100km 0.00 0.06 0.00 0.05 
lnbmp 0.00 0.00 0.00 0.00 
lnki -0.01 0.13 -0.06 0.30 
oecd 0.00 0.03 -0.01 0.12 
openk 0.00 0.00 0.00 0.00 
privo 0.00 0.00 0.02 0.16 
pr -0.02 0.07 -0.01 0.06 
priexp 0.00 0.00 0.00 0.01 
religion 0.00 0.00 0.00 0.00 
secenrol 0.00 0.01 0.00 0.00 
tertenrol 0.00 0.00 0.00 0.01 
yrsopen 0.00 0.00 0.00 0.00 
     
eqtotal -0.10 0.49 5.37 3.84 
corr25_eqtotal 5.06 1.45   
secenrol25_eqtotal   -5.25 3.82 
No. of obs. 72  72 

      Notes: a) Posterior mean; b) Posterior standard deviation. 
      Entries in boldface represent those variables that pass the  
      effectiveness threshold (post. mean/sd >1.3). Only those  
      results are reported for which the interaction term exceeds 
      the effectiveness threshold. 
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c) FDI Liabilities 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Variable (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

Intercept -4.20 3.90 2.92 4.66 2.73 4.78 3.98 5.04 0.49 4.91 -1.54 5.28 2.32 5.44 -0.99 5.32 
lngdp -1.53 0.39 -1.77 0.46 -1.24 0.56 -1.80 0.45 -1.74 0.50 -1.69 0.48 -1.38 0.59 -1.85 0.47 
lnpopgr -4.66 1.72 -3.98 1.75 -3.32 2.10 -3.42 1.89 -3.39 1.93 -4.55 1.75 -2.16 2.26 -3.73 2.09 
life 0.10 0.05 0.07 0.06 0.01 0.03 0.07 0.06 0.10 0.05 0.10 0.07 0.08 0.07 0.12 0.05 
confuc 6.87 2.22 6.01 2.87 6.22 2.77 6.60 2.82 6.97 2.87 7.12 2.61 7.42 2.84 6.98 2.69 
sub -1.73 0.63 -1.83 0.67 -1.87 0.64 -1.67 0.74 -1.77 0.83 -1.47 0.73 -1.76 0.80 -2.07 0.80 
corr 0.03 0.09 0.13 0.18 0.13 0.19 0.23 0.20 0.33 0.20 0.09 0.16 0.40 0.23 0.35 0.20 
east 0.41 0.66 1.76 0.80 1.14 0.93 1.85 0.73 1.03 0.98 0.96 0.98 0.95 1.04 0.98 0.99 
kgatrstr -0.02 0.18 -1.50 0.64 -1.00 0.80 -1.69 0.57 -0.66 0.79 -0.77 0.88 -0.66 0.83 -0.56 0.81 
pr -0.01 0.04 -0.25 0.15 -0.23 0.17 -0.27 0.12 -0.07 0.13 -0.20 0.17 -0.07 0.13 -0.07 0.14 
language 0.23 0.55 0.24 0.56 0.10 0.39 0.70 0.85 1.02 0.98 0.24 0.59 1.09 1.00 0.76 0.88 
laam -0.65 0.59 -0.06 0.30 -0.52 0.79 -0.02 0.18 -0.03 0.18 -0.07 0.29 1.10 2.50 -0.33 0.58 
bureau 0.00 0.03 0.12 0.21 0.03 0.11 0.02 0.08 0.00 0.03 0.03 0.11 0.02 0.09 0.02 0.09 
cl 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.02 
ecorg 0.00 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
ethnic 0.00 0.02 -0.04 0.29 -0.12 0.50 -0.11 0.46 -0.56 0.99 -0.04 0.31 -0.68 1.09 -0.05 0.32 
govcons 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.03 0.00 0.02 
inflation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
invprof 0.02 0.07 0.00 0.02 0.12 0.14 0.10 0.13 0.03 0.08 0.07 0.12 0.03 0.08 0.01 0.05 
law 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 -0.38 0.62 0.00 0.04 
lcr100km -0.01 0.10 -0.03 0.21 0.00 0.07 -0.01 0.11 -0.02 0.15 -0.01 0.10 -0.01 0.06 -0.02 0.14 
lnbmp 0.00 0.00 0.03 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.21 0.00 0.05 
lnki -0.04 0.21 -0.30 0.58 -0.08 0.31 -0.31 0.58 -0.15 0.44 -0.19 0.49 0.00 0.00 -0.18 0.48 
mining 0.00 0.00 0.12 0.77 0.00 0.00 0.01 0.22 0.09 0.73 2.98 3.31 -0.17 0.47 0.57 1.92 
oecd 0.00 0.00 -0.07 0.31 -0.18 0.45 -0.04 0.21 0.00 0.07 -0.02 0.15 -0.03 0.20 -0.01 0.13 
openk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
privo 0.06 0.31 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 
priexp 0.00 0.00 0.00 0.01 0.00 0.05 0.00 0.08 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.03 
primenrol -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 0.00 0.01 0.00 0.01 
religion 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.00 0.00 0.00 0.00 
secenrol 0.00 0.00 0.00 0.01 0.00 0.01 -0.01 0.01 0.00 0.01 -0.01 0.01 0.00 0.01 0.00 0.01 
tertenrol 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 -0.01 0.02 0.00 0.01 
yrsopen 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.03 0.03 0.19 0.00 0.00 0.06 0.28 0.00 0.00 
                 
fdiliab 0.00 0.02 0.00 0.07 0.10 0.75 -0.41 1.71 0.39 1.27 0.98 1.73 3.64 2.05 6.50 3.17 
corr25_fdiliab 7.85 1.49               
invprof25_fdiliab   4.59 1.26             
yrsopen25_fdiliab     4.65 1.50           
lngdp25_fdiliab       5.13 2.04         
bureau25_fdiliab         4.23 1.96       
privo75_fdiliab           4.96 3.02     
cl75_fdiliab             -7.01 5.15   
secenrol25_fdiliab               -4.71 3.46 

No. of obs. 72 72 72 72 72 72 72 72 
Notes: a) Posterior mean; b) Posterior standard deviation. 
Entries in boldface represent those variables that pass the effectiveness threshold (post. mean/sd >1.3). 
Only those results are reported for which the interaction term exceeds the effectiveness threshold. 



Chapter 2 – Financial Openness and Thresholds Revisited 68 

 

References Chapter 2 

Acemoglu, D., S. Johnson and J. Robinson (2001), “The Colonial Origins of Com-
parative Development: An Empirical Investigation,” American Economic Re-
view, 91, 1369-1401. 

Acemoglu, D., S. Johnson and J. Robinson (2002), “Reversal of Fortune: Geography 
and Institutions in the Making of the Modern World Income Distribution,” 
Quarterly Journal of Economics, 117, 1231-1294. 

Acemoglu, D., S. Johnson and J. Robinson (2005), “Institutions as the Fundamental 
Cause of Long-Run Growth,” in P. Aghion and S.N. Durlauf (eds.),  Handbook 
of Economic Growth, North Holland, Amsterdam. 

Acemoglu, D., S. Johnson, J. A. Robinson and Y. Thaicharoen (2003), “Institutional 
Causes, Macroeconomic Symptoms: Volatility, Crises and Growth,” Journal of 
Monetary Economics, 50, 49-123. 

Acemoglu, D. and F. Zilibrotti (1997), “Was Prometheus Unbound by Chance? Risk, 
Diversification, and Growth,” Journal of Political Economy, 105, 709-751. 

Aizenman, J., and I. Noy (2006), “Links Between Trade and Finance—A Disaggre-
gated Analysis,” in Sebastian Edwards and Márcio G. P. Garcia (eds.), 
Strengthening Global Financial Markets, (Inter-American Seminar on Eco-
nomics), The University of Chicago Press. 

Alesina, A., A. Devleeschauwer, W. Easterly, S. Kurlat and R. Wacziarg (2003), 
“Fractionalization,” Journal of Economic Growth, 8, 155-194. 

Alfaro, L., A. Chanda, S. Kalemli-Ozcan and S. Sayek (2004), “FDI and Economic 
Growth: The Role of Local Financial Markets,” Journal of International Eco-
nomics, 64, 89–112. 

Aoki, K., Gianluca B. and N. Kiyotaki (2005), “Adjusting to Capital Account Liber-
alization,” mimeo London School of Economics. 

Arteta, C., B. Eichengreen, and C. Wyplosz (2003), “When Does Capital Account 
Liberalization Help More than It Hurts?,” in Elhanan Helpman and Efraim 
Sadka (eds.), Economic Policy in the International Economy: Essays in Honor 
of Assaf Razin, Cambridge University Press, Cambridge. 

Azariadis, C. and A. Drazen (1990), “Threshold Externalities in Economic Devel-
opment,” Quarterly Journal of Economics, 105, 501-526.  

Balasubramanyam, V.N., M. Salisu and D. Sapsford (1996), “Foreign Direct Invest-
ment and Growth in EP and IS Countries,” Economic Journal, 106, 92–105  

Bhagwati, J. (1990), “The Capital Myth,” Foreign Affairs, 77, 7-12.  



Chapter 2 – Financial Openness and Thresholds Revisited 69 

 

Barro, R. (1991), “Economic Growth in a Cross Section of Countries,” Quarterly 
Journal of Economics, 106, 407-443.  

Barro, R.J. (1999), “Determinants of Democracy,” Journal of Political Economy, 
107, 158-183. 

Beck, T., A. Demirgüc-Kunt, and R. Levine (2000), “A New DataBase on Financial 
Development and Structure,” World Bank Economic Review, 14, 597-605. 

Bekaert, G., C. R. Harvey and Christian Lundblad (2005), “Does Financial Liberali-
zation Spur Growth?,” Journal of Financial Economics, 77, 3–55. 

Borensztein, E., J. De Gregorio and J.-W. Lee (1998), “How Does Foreign Direct 
Investment Affect Growth?,” Journal of International Economics, 45, 115–35. 

Brecher, R. and C. Diaz-Alejandro (1977), “Tariffs, Foreign Capital and Immiseriz-
ing Growth,” Journal of International Economics, 7, 17-322. 

Brock, W. and S. Durlauf (2001), “Growth Empirics and Reality,” The World Bank 
Economic Review, 15, 229-272. 

Brock, W., S. N. Durlauf and K. West (2003), “Policy Evaluation in Uncertain Eco-
nomic Environments,” Brooking Papers on Economic Activity, 1, 235-322. 

Bussiere, M., M. Fratzscher and W. Koeniger (2006), „Uncertainty and Debt-
Maturity in Emerging Markets,“ The B.E. Journals in Macroeconomics, 6, Ar-
ticle 5. 

Chanda, A. (2005), “The Influence of Capital Controls on Long Run Growth: Where 
and How Much?,” Journal of Development Economics, 77, 441–66. 

Chang, R. and A. Velasco (2000), “Banks, Debt Maturity and Financial Crisis,” 
Journal of International Economics, 51, 169-194. 

Crespo Cuaresma, J. and G. Doppelhofer (2007), “Nonlinearities in Cross-Country 
Growth Regressions: A Bayesian Averaging of Thresholds (BAT) approach,” 
Journal of Macroeconomics, 29, 541-554.  

Draper, D. (1995), “Assessment and Propagation of Model Uncertainty,” Journal of 
the Royal Statistical Society, B 57, 45-70.  

Durham, J. B. (2004), “Absorptive Capacity and the Effects of Foreign Direct In-
vestment and Equity Foreign Portfolio Investment on Economic Growth,” 
European Economic Review, 48, 285–306. 

Durlauf, S. N. and P. Johnson (1995), “Multiple Regimes and Cross Country Growth 
Behavior,” Journal of Applied Econometrics, 10, 365-384.  



Chapter 2 – Financial Openness and Thresholds Revisited 70 

 

Durlauf, S. N., P. Johnson and J. Temple (2005), “Growth Econometrics,” in P. 
Aghion and S.N. Durlauf (eds.), Handbook of Economic Growth, North Hol-
land, Amsterdam. 

Easterly, W. and R. Levine (1997), ”Africa’s Growth Tragedy: Policies and Ethnic 
Division,” Quarterly Journal of Economics, 112, 1203-1250. 

Edison H.J., R. Levine, L. Ricci and T. Slok (2002), “International Financial Integra-
tion and Economic Growth,” Journal of International Money and Finance, 21, 
749-776. 

Edison H.J., M.W. Klein, L. Ricci and T. Slok (2004), “Capital Account Liberaliza-
tion and Economic Performance: Survey and Synthesis,” IMF Staff Papers 51. 

Edwards, S. (2001), “Capital Mobility and Economic Performance: Are Emerging 
Economies Different?,” in H. Siebert (ed.), The World’s New Financial Land-
scape: Challenges for Economic Policy, Springer. 

Egger, P. and H. Winner (2006), “How Corruption Influences FDI: A Panel Data 
Study,” Economic Development and Cultural Change, 54, 459-486. 

Eichengreen, B. J. (2000), “Taming Capital Flows,” World Development, 28, 1105–
1116. 

Eicher, T.S., C. Papageorgiou and A.E. Raftery (2007), “Determining Growth De-
terminants: Default Priors and Predictive Performance in Bayesian Model Av-
eraging,” mimeo University of Washington.    

Eicher, T., C. Papageorgiou and O. Röhn (2007), “Unraveling the Fortunes of the 
Fortunate: An Iterative Bayesian Model Averaging (IBMA) Approach,” Jour-
nal of Macroeconomics, 29, 494-514.  

Fernandez, C., E. Ley and Steel, M., (2001a), “Model Uncertainty in Cross-Country 
Growth Regressions,” Journal of Applied Econometrics, 16, 563-576. 

Fernandez C., E. Ley and M. Steel (2001b), “Benchmark Priors for Bayesian Model 
 Averaging,” Journal of Econometrics, 100, 381-427. 

Hall, R.E. and C.I. Jones (1999), “Why Do Some Countries Produce So Much More 
Output per Worker than Others?,” Quarterly Journal of Economics, 114, 83-
116. 

Henry, P. (2000), “Stock Market Liberalization, Economic Reform, and Emerging 
Market Equity Prices,” Journal of Finance, 55, 529-564. 

Hoeting, J., D. Madigan, A.E. Raftery and C. Volinsky (1999), “Bayesian Model 
Averaging: A Tutorial,” (with discussion), Statistical Science, 14, 382-401.  

Koop, G. (2003), Bayesian Econometrics, John Wiley and Sons, New York, NY. 



Chapter 2 – Financial Openness and Thresholds Revisited 71 

 

Kose, M. A., E. Prasad, K. Rogoff and S.J. Wei (2006), “Financial Globalization: A 
Reappraisal,” IMF Working Paper 06/189. 

Kraay, A. (1998), “In Search of the Macroeconomic Effects of Capital Account Lib-
eralization,” unpublished manuscript, World Bank.  

Lane, P. R. and G. M. Milesi-Ferretti (2006), “The External Wealth of Nations Mark 
II: Revised and Extended Estimates of Foreign Assets and Liabilities, 1970–
2004,” IMF Working Paper 06/69. 

Leamer, E.E. (1978), Specification Searches, Wiley, New York, NY. 

Leamer, E.E. (1983), “Let's Take the Con Out of Econometrics, American Economic 
Review, 73, 31-43. 

Levine, R. (2005), “Finance and Growth,” in P. Aghion and S.N. Durlauf (eds.), 
Handbook of Economic Growth, North Holland, Amsterdam. 

Levine, R. and D. Renelt (1992), “A Sensitivity Analysis of Cross-Country Growth 
 Regressions,” American Economic Review, 82, 942-963. 

Lipsey R.G. and K. Lancaster (1956), “The General Theory of the Second Best,” 
Review of Economic Studies, 24, 11-32. 

Lucas, R.E. (1988), “On the Mechanics of Economic Development,” Journal of 
Monetary Economics, 22, 3-42. 

Magud, N., and C. Reinhart (2006), “Capital Controls: An Evaluation,” forthcoming 
in Sebastian Edwards (ed.), Capital Controls and Capital Flows in Emerging 
Economies: Policies, Practices, and Consequences, Chicago University Press, 
Chicago.   

Mankiw, N.G., D. Romer and D.N. Weil (1992), “A Contribution to the Empirics of 
Economic Growth,” Quarterly Journal of Economics, 107, 407-437. 

Masanjala, W.H. and C. Papageorgiou (2007), “Initial Conditions and Post-War 
Growth in sub-Saharan Africa,” mimeo Louisiana State University. 

Obstfeld, M. (1994), “Risk-Taking, Global Diversification, and Growth,” American 
Economic Review, 84, 1310-1329.  

Quinn, D (1997), “The Correlates of Change in International Financial Regulation,” 
American Political Science Review, 91, 531-551. 

Raftery, A.E. (1995), “Bayesian Model Selection for Social Research,” Sociological 
Methodology, 25, 111-163. 

Raftery, A.E., D. Madigan and J.A. Hoeting (1997), “Bayesian Model Averaging for 
Linear Regression Models,” Journal of the American Statistical Association, 
92, 179-191 



Chapter 2 – Financial Openness and Thresholds Revisited 72 

 

Reisen, H. and M. Soto (2001), “Which Types of Capital Inflows Foster Developing-
Country Growth?,” International Finance, 4, 1-14. 

Rodrik, D. (1998), “Who Needs Capital-Account Convertability,“ in Stanley Fischer 
et al. (eds.), Should the IMF Pursue Capital-Account Convertibility? Essays in 
International Finance, No.207, International Finance Section, Department of 
Economics, Princeton University. 

Rodrik, D., A. Subramanian and F. Trebbi (2004), “Institutions Rule: The Primacy of 
Institutions Over Geography and Integration in Economic Development,” 
Journal of Economic Growth, 9, 131-165. 

Sachs, J.D. (2003), “Institutions Don’t Rule: Direct Effect of Geography on per cap-
ita Income,” NBER working paper 9490. 

Sachs, J.D. and A. Warner (1995), “Natural Resource Abundance and Economic 
Growth,” NBER working paper 5398. 

Sala-i-Martin, X., G. Doppelhofer and R. Miller (2004), “Determinants of Long-
Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Ap-
proach,” American Economic Review, 94, 813-835. 

Smarzynska, B. and S.-W. Wei (2000), “Corruption and Composition of Foreign 
Direct Investment: Firm-Level Evidence,” NBER working paper 7969. 

Stiglitz, J. E. (2000), “Capital Market Liberalization, Economic Growth, and Insta-
bility,” World Development, 28, 1075-1086.  

Wei, S.-J. (2000a), “How Taxing is Corruption on International Investors?,” Review 
of Economics and Statistics, 82, 1-11.  

Wei, S.-J. (2000b), “Local Corruption and Global Capital Flows,” Brookings Papers 
on Economic Activity, 303-354.  

 
 



 

 

 
 
 
 
 

3  Sources of the German Productivity Demise 
 Tracing the Effects of Industry-Level ICT Investment 
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3.1 Introduction 

US Labor productivity growth increased remarkably after 1995 and accelerated 

again after 2000. Stiroh (2006) highlights these dual productivity surges which have 

been extensively analyzed in Jorgenson, Ho, Samuels and Stiroh (2006). In sharp 

contrast, we show that German labor productivity growth experienced two successive 

productivity decelerations in the same time periods. Figure 3.1a plots labor produc-

tivity growth from 1991 to 2004 and highlights how US productivity growth out-

paced Germany’s. While average labor productivity (ALP) growth slowed from 2.4 

percent to 2.0 percent in Germany after 1995, it surged from 1.5 percent to 2.5 per-

cent in the US. The productivity gap widened further when US productivity growth 

rose again by 0.8 percent after 2000, whereas Germany’s dropped another 0.7 per-

cent. The divergence is not an artifact of the choice of trend breaks. Figure 3.1b plots 

the US and German productivity trends to document the secular divergence. Not only 

is Germany’s absolute decline worrisome, but its decline relative to the US also sig-

nals a departure from the technology frontier.  

 We analyze the sources of Germany’s productivity demise using a new data-

base that allows industry-level comparisons with the US. The novelty of the Röhn et 

al. (2007) ifo industry growth accounting database is its detailed information on 12 

investment assets for 52 German industries, a level of detail not provided by official 

German statistics. Röhn et al. derive the database from the ifo investment database 

(Investorenrechung) which gathers investment micro data on over 100 assets for 52 

German industries and aggregates them to 12 major industry investments (see Röhn 

et al., 2007, for details). Röhn et al. (2007) calculate capital stocks and services, 

which then allows for the first analysis of productivity and Information and Commu-

nication Technology (ICT) contributions to aggregate German productivity at the 52-

industries level.  

 A broad consensus attributes the first productivity surge in the US to ICT in-

vestment, much of it originating in ICT-Intensive industries.41 US productivity 

growth was positively affected by ICT capital deepening, technological 

                                                 
41 Jorgenson and Stiroh (2000), Oliner and Sichel (2000), Stiroh (2002), Jorgenson, Ho and Stiroh 
(2005a). 
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Figure 3.1: Labor Productivity Growth: U.S. vs. Germany 
 

a) Period average labor productivity growth b) 4-quarter labor productivity growth  
             
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sources: US is Nonfarm Business Sector (US Bureau of Labor Statistics), Germany: Total Economy (DeStatis). 
 

advancements in ICT-Producing industries, and productivity gains in ICT-Using in-

dustries; we investigate whether these dynamics can also be observed in German 

industries. To date, the evidence on the industry-level sources of Germany’s produc-

tivity decline is scarce, especially for the post 2000 slowdown. As Figure 3.1a sug-

gests, however, this second productivity decline was even more pronounced than the 

first. Therefore, we pay special attention to the sources of both productivity slow-

downs and dissect the German productivity demise into its proximate causes. We 

also identify the specific industries that represented the largest drag on German pro-

ductivity and those whose performance mitigated the aggregate productivity slow-

downs.  

 Our results show that while the first productivity surge in the US was driven 

by ICT, the post 1995 productivity decline in Germany was driven by a collapse in 

both the Non-ICT capital deepening and the Non-ICT industries’ total factor produc-

tivity (TFP) growth. German ICT-Intensive industries’ ICT investment and TFP 

surged 1995-2000, but not to the extent observed in the US. ICT capital deepening in 

Germany was only one third of the level reached in the US. Therefore, the emergent 

German information sector was not sufficiently strong to offset productivity losses in 

other industries.  
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 The second productivity surge in the US after 2000 was not solely driven by 

ICT. Instead, ICT capital deepening and ICT-Producing industries’ TFP growth de-

clined and TFP growth in Non-ICT-Producing industries became the primary driving 

force.42 The same decline in ICT capital deepening and TFP growth can be observed 

in Germany after 2000. However, the decisive difference between the US and Ger-

many’s productivity performance was that productivity in Non-ICT-Producing indus-

tries did not pick up, but instead collapsed in Germany. 28 out of 52 industries ac-

counting for almost 50 percent of aggregate value added experienced negative TFP 

growth post 2000. 

 The remarkable impact of ICT investment on growth and productivity in the 

US has spurred interest in uncovering the effects of ICT across countries. Colecchia 

and Schreyer (2002) collect ICT investment data from national sources for nine 

OECD countries to find that their ICT investment contribution to growth was consid-

erably smaller than in the US. Focusing on the European slowdown in the mid nine-

ties, Timmer, Ypma and van Ark (2003) emphasize that slower ICT capital deepen-

ing and TFP growth in ICT-Producing industries were only one part of the story. 

Declining rates of Non-ICT capital deepening and flat TFP growth in most other in-

dustries were equally important in explaining the diverging productivity trends be-

tween the U.S and Europe. Several studies use industry-level data to suggest that 

most of the difference in ALP growth between the US and Europe, Canada, Japan, 

and Germany can be traced back to a few ICT-intensive service industries, especially 

trade and finance.43 These industries are also thought to be largely responsible for the 

higher rates of ICT capital deepening and TFP growth outside ICT production in the 

US (see Inklaar, O’Mahony and Timmer, 2005).  

 Our data shows that only six German industries, with 12 percent of total value 

added, saw labor productivity increases post 1995 and post 2000. The largest rise 

occurred in Wholesale Trade and Construction. More than twice as many industries 

(13 industries), with almost twice the share in total value added (21 percent), experi-

enced successive declines, however, featuring prominently Machinery and the 

                                                 
42 See Stiroh and Botsch (2007), Jorgenson, Ho and Stiroh (2006), van Ark and Inklaar (2005) and 
Jorgenson, Ho, Samuels and Stiroh (2006). 
43  See van Ark, Inklaar and McGuckin (2003a, b) and van Ark, and Inklaar (2003). 
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Chemicals manufacturing. Most remarkable, however, is our finding that the number 

of industries that contribute negatively to German labor productivity has been in-

creasing over time. Between 1991 and 1995, fourteen industries contributed nega-

tively; after 2000, however, over 40 percent of German industries (21 of the 52 in-

dustries) constituted a drag on the nation’s aggregate labor productivity.  

3.2 Data 

To base our analysis on consistent data, we focus exclusively on Unified Ger-

many (post 1990). For our industry-level analysis, we collect data on value added, 

investment, capital stocks and services, and quality adjusted labor hours for 52 Ger-

man industries and 12 different assets from 1991 to 2003. For a detailed description 

of the data we refer the interested reader to Tables A1 and A2 in Röhn et al. (2007). 

The 52 industries span the entire German economy (with the exception of household 

services which constituted only a 0.3 percent value added share in 2004). The Ger-

man Statistical Office (DeStatis) provides value added, labor hours, and labor com-

pensation by industry.44 Estimates of labor quality growth are taken from the Gron-

ingen Growth Accounting Database (Inklaar, O’Mahony and Timmer, 2005).45  

 The ifo industry growth accounting database (Röhn et al., 2007) is our source 

for capital data. It provides industry-level time series on 13 different investments, 

capital stocks and capital services for West Germany for the period 1970-1990 in the 

older WZ79 classification of DeStatis. From 1991 to 2003 Röhn et al. provide 12 

different investments, capital stocks and capital services for Unified Germany at the 

two digit industry-level NACE classification using the ownership concept. The ifo 

industry growth accounting database has three unique features. First, it provides in-

formation on an unusually large number of capital stocks and capital services at the 

industry level. Second, the industry-level assets include three different ICT assets 

(computer and office equipment, communication equipment and software), which are 

of particular interest to understand the productivity performance of industries in the 

                                                 
44 DeStatis provides labor hours for 14 broad industries only; to obtain estimates for our set of indus-
tries, we multiplied the DeStatis hours/worker ratios by workers in each sub-sector.  
45 Inklaar et al. (2005) provide labor quality until 2000. We use 1980-2000 data to extrapolate labor 
quality to 2003 using an AR process with optimal lag length (using the AIC, Final Prediction Error, 
Hannan-Quinn and Schwarz criterion) for each industry to match the post 2000 aggregate labor qual-
ity growth provided by Schwerdt and Turunen (2007). 
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past decade. Third, the detailed disaggregation of the different asset types and mar-

ginal productivities (measured as user costs) allows us to construct the most accurate 

measures of ICT and Non-ICT capital services.  

 To deflate ICT assets into constant-quality units, Röhn et al. (2007) employ 

the deflators for computer and office equipment, communication equipment and soft-

ware developed by Timmer, Ypma and van Ark (2003) and Schreyer (2002). These 

deflators are based on US hedonic price indices and are adjusted for differences in 

general inflation levels between Germany and the US. For other assets the DeStatis 

deflators are applied. We obtain measures for ICT and Non-ICT capital services by 

using Tornqvist aggregation with user costs of capital as flexible weights. 

 The ifo industry growth accounting database allows us to separate industries 

into ICT-Producing, ICT-Using, and Non-ICT (or “Other”) industries. A broad US 

literature has established categories for ICT-Intensive and Non-ICT-Intensive indus-

tries by using the shares of ICT capital in total capital services.46 To further differen-

tiate ICT-Intensive industries into ICT-Using and ICT-Producing, the literature fol-

lows the lead of the US Bureau of Economic Analysis ICT-Producing industry defi-

nition. ICT-Using industries constitute the residual group.   

 Subsequent papers that examine the effects of ICT-Intensive industries in the 

EU or other countries customarily adopt US definitions (e.g. van Ark, Inklaar, 

McGuckin, 2003a, b; O’Mahony and van Ark, 2003). That is, if an industry is ICT-

Using by US standards, it is also assumed to be ICT-Using in the comparison coun-

try. This does not take into account that the same industries in other countries may 

have very different ICT intensities. In addition, exact correspondences between US 

and other nations’ industry classifications may not exist. The ifo industry growth 

accounting database contains unique ICT investment and capital stock data that al-

lows us to develop an ICT industry classification scheme which uses the definitions 

introduced by the previous literature, but employs German data to draw distinctions. 

Therefore, we provide the first German industry-based categorization of industries 

into ICT-Intensive and Non-ICT-Intensive. We use Stiroh’s (2002, 2006) definition 

for ICT-Intensive industries (those whose ICT shares exceed the median). To sepa-
                                                 
46 See, for example, Stiroh (2002, 2006), Jorgenson, Ho, Stiroh (2005b), Bailey and Lawrence (2001), 
and Triplett and Bosworth (2004). 
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rate ICT-Producing industries from ICT-Intensive industries, we adopt the DeStatis 

(2006) definition and classify the following industries as ICT-Producing: Office Ma-

chinery and Computers (NACE 30); Radio, TV and Communication Equipment 

(NACE 32); Instruments (NACE 33); Communication Services (NACE 64) and 

Computer and Related Services (NACE 72).47  

 A similar productivity database exists at the Groningen Growth and Devel-

opment Centre, which focuses on international productivity comparisons. Differ-

ences between the ifo industry growth accounting database and the Groningen In-

dustry Growth Accounting Database are fourfold. First, Groningen reports 26 indus-

tries, while Röhn et al. (2007) report data for 52 industries. Second, ICT assets are 

said to include computers and peripherals, software and communication equipment. 

Röhn et al include office equipment in ICT assets, since office equipment and com-

puters cannot be separated at the German industry-level. A third difference arises in 

the asset class entitled “buildings and structures.” Our data includes residential and 

non-residential buildings and structures while Groningen includes only non-

residential buildings and structures. A breakdown into residential and non-residential 

buildings on the industry-level is not provided by DeStatis.  

 Finally, and perhaps most importantly, since German software investments 

are not reported by DeStatis, the Groningen database assumes that a fixed fraction of 

intangible assets is software. Groningen then generates German industry-level soft-

ware investment by using a ratio of software to IT-equipment investment that was 

obtained from an average of French, Dutch and US data.  Instead, the ifo productivity 

database obtains data on software investment shares in total intangible assets, and 

industry-level software investment from a study (Herrmann and Müller, 1997) and 

surveys conducted by the ifo Investment Survey.48 As detailed in Hermann and Mül-

ler (1997) the software estimates are based on specific questions that solicited infor-

mation on industry level investment in purchased and own account software in 1995, 

1998, 1999 and 2000.  
                                                 
47 For a full list of our ICT-classification scheme for the 52 industries, compare Table 3.A1 in the 
appendix.  
48 The ifo Investment Survey follows the EU guidelines for harmonized business surveys and contains 
70,000 German firms, 5000 of which are surveyed for each sample period. It is established as an ex-
cellent leading indicator of German investment; it is also incorporated in a number of other leading 
indicators, most prominently the European Commission’s Economic Indicators of the Euro Zone.  
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3.3 Deriving Industry Contributions to Labor Productivity Growth 

3.3.1 Methodology 

As outlined in the introduction, the German productivity demise exists not only 

in absolute terms as labor productivity has been declining secularly over the past 

decade, but also in relative terms as productivity has been falling even further behind 

the industry-leading US. In order to uncover the sources of Germany’s aggregate 

productivity demise, we seek to trace the aggregate origins to differences in US-

German industry-level labor productivity. In this section we outline a methodology 

that “preserves the underlying industry detail yet maintains conclusions consistent 

with the aggregate results without arbitrary and inappropriate aggregation assump-

tions” (Jorgenson, Ho, Samuels and Stiroh, 2006, p.1).  

 To quantify the industry contributions to aggregate productivity, we apply the 

aggregation over industries method developed by Jorgenson, Gallop and Fraumeni 

(1987).49 Industry-level gross output growth can be decomposed into input and TFP 

contributions according to   

iiiXiiL
NON
i

NON
iK

IT
i

IT
iKi TFPXLKKY +Δ+Δ+Δ+Δ=Δ lnlnlnlnln ,,,, νννν , (1) 

where for industry i, iY  is gross output, IT
iK  are ICT capital services, NON

iK  are Non-

ICT capital services, iL  represents labor services and iX  are intermediate inputs. 

The ν ’s are the two period-average nominal input shares. Labor services are defined 

as ij
j

iji HL ,, lnln Δ=Δ ∑ω , where ijH ,  are hours worked of labor (skill) type j in 

industry i and ij ,ω  is the two period average compensation share of labor type j in 

total labor compensation of industry i.   

To relate industry gross output to value added we rewrite equation (1) as  

    iiXiiVi XVY Δ+Δ=Δ ,, lnln νν ,   (2) 

                                                 
49 For recent industry studies applying this method, see, for example, Jorgenson, Ho and Stiroh 
(2005a), Jorgenson, Ho, Samuels and Stiroh (2006) and Inklaar, O’Mahony and Timmer (2005). 
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where iV  is value added and iV ,ν is the nominal share of value added in gross output 

of industry i. Combining equations (1) and (2), allows us to write industry value 

added growth as  

   i
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Defining aggregate output as the weighted average of industry value added, 

∑ Δ≡Δ
i

ii VwV lnln  (where iw  is the average share of industry value added in ag-

gregate value added) and combining this expression with equation (3), we obtain 
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where ( ) iVii vTFPw ,lnΔ  represents the “Domar-weighted” industry-level TFP 

growth with  “Domar-weights” being the quotient of the share of industry value 

added in aggregate value added, and the share of industry value added in industry 

gross output.  

 We are specifically interested in the industry contributions to ALP, which is 

conventionally defined as HVALP lnlnln Δ−Δ=Δ , where VlnΔ  is the Tornqvist 

index of weighted industry value added defined in equation (4) and H  is the un-

weighted sum of industry hours iH . iH  is in turn the unweighted sum of hours 

worked over different labor types ∑=
j

iji HH , . Following Stiroh (2002) ALP can 

then be decomposed as: 

 H

i
ii

i i
iiii RALPwHHwALPwALP ∑∑ ∑ +Δ=⎟

⎠

⎞
⎜
⎝

⎛
Δ−Δ+Δ=Δ lnlnlnlnln  (5) 

The first term on the right hand side represents direct industry contributions to ALP 

growth and HR  reflects the reallocation of hours.50 Defining IT
iklnΔ , NON

iklnΔ , and 

                                                 
50 The contribution of an industry to aggregate reallocation of hours is approximately the growth in 
total hours worked and the difference between the two-period average industry value-added share and 
the two-period average employment share. Thus, the contribution is positive if an industry with an 
ALP level above (below) the aggregate average level experiences positive (negative) growth in hours. 
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iqlnΔ  as ICT capital deepening, Non-ICT capital deepening and labor quality 

growth, (4) and (5) yield51 
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The APL decomposition in (6) has the advantage that input contributions or TFP 

contributions to APL from any industry subset simply equal the (weighted) sum of 

contributions from all industries in the subset.  

3.3.2 Growth Accounting Results 

We begin our analysis with the standard decomposition of APL growth into 

five main contributions from 1) ICT capital deepening, 2) Non-ICT deepening, 3) 

labor quality growth, 4) TFP growth, and 5) the reallocation of hours. This decompo-

sition follows the “bottom-up” approach outlined in the previous section (equation 

6). Table 3.1 displays the results for the three sample periods (1991-1995, 1995-

2000, 2000-2003) as well as the differences in contributions between the two break 

points (1995, 2000).52 

 The first three rows decompose labor productivity growth into value added 

growth and labor hour growth. The decomposition highlights the strong, negative 

drag on German growth from the secular decline in hours worked. The main culprits 

are German unification, systemic high unemployment, reductions in work weeks, and 

earnings inequality (see Bell and Freeman, 2001). Annual output growth rates for the 

total economy would have been approximately one percent higher, had working 

hours not dropped so dramatically. The phenomenon is well known and documented 

as a key factor that has been driving a wedge between US and German output growth 

(see e.g. Blanchard 2004).  

The following rows of Table 3.1 dissect labor productivity into the contribu-

tions from capital deepening, TFP growth, labor quality, and hours reallocation. 

 

                                                 
51 The growth rate of labor quality is defined as : 

∑ Δ−Δ=Δ−Δ=Δ
j iijijiii HHHLq lnlnlnlnln ,,ω   

52 To compare our results to the US we choose time periods that coincide best with Stiroh (2006). 
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Table 3.1: Sources of German Labor Productivity Growth, 1991-2003 

 
1991-
1995 

1995-
2000 

2000-
2003 

1995-2000 
Less 

1991-1995 

2000-2003 
Less 

1995-2000 
Total Economy Labor Productivity Growth 2.31 2.04  1.57 -0.27 -0.47 
    Aggregate Value Added Growth    1.38    2.01    0.43    0.63   -1.58 
    Aggregate Hours Growth   -0.93   -0.03   -1.14    0.90   -1.11 
      
Contributions to Labor Productivity:      
   1) Capital Deepening (Total) 1.02 0.88  1.14 -0.14  0.26 
       1.1) of which ICT capital deepening    0.23   0.33    0.29    0.10   -0.04 
            1.1.1)Generated in ICT-Prod.  industries      0.07      0.05      0.06     -0.02      0.01 
            1.1.2) Generated in ICT-Using industries      0.12      0.21      0.13      0.09     -0.08 
            1.1.3) Generated in Non-ICT industries      0.04      0.07      0.10      0.03      0.03 
       1.2) of which Non-ICT capital deepening    0.79    0.55    0.85   -0.24    0.30 
            1.2.1) Generated in ICT-Prod.  industries      0.10      0.04      0.03     -0.06     -0.01 
            1.2.1) Generated in ICT-Using industries      0.39      0.20      0.27     -0.19      0.07 
            1.2.3) Generated in Non-ICT industries      0.30      0.31      0.55      0.01      0.24 
   2) Total Factor Productivity Growth (Total) 0.35 0.47 -0.01  0.12 -0.48 
            2.1) Generated in ICT-Prod.  industries      0.07      0.27      0.17      0.20     -0.10 
            2.2) Generated in ICT-Using industries     -0.03      0.37      0.13      0.40     -0.24 
            2.3) Generated in Non-ICT industries      0.31     -0.17     -0.31     -0.48     -0.14 
   3) Labor Quality Growth 0.27 0.13  0.23 -0.14  0.10 
   4) Hours Reallocation 0.67 0.56  0.21 -0.11 -0.35 

Notes: All figures are average annual percentages. The contributions of inputs are growth rates multiplied by average input 
shares. TFP refers to Domar-weighted TFP. ICT-Producing industries defined according to DeStatis (2006). ICT-Using industries 
are Non-ICT Producing industries whose ICT capital share exceeded the median in 1995. Data source: Röhn et al. (2007) and 
authors’ calculations.  

 

Capital deepening contributes by far the greatest share to German average la-

bor productivity in all periods, highlighting the crucial role of investment for labor 

productivity. The decomposition of capital deepening into ICT and Non-ICT capital 

deepening provides further information. The gap between the ICT and Non-ICT 

capital contributions narrowed substantially in 1995-2000. ICT capital deepening 

contributed about 20 percent to total economy capital deepening in each period, ex-

cept between 1995 and 2000 when its contribution doubled to almost 40 percent. It is 

interesting to see that ICT-Using industries were the driving force behind the capital 

dynamics between 1991-1995 and 1995-2000, when ICT-capital deepening surged 

and Non-ICT capital deepening declined. Jorgenson, Ho and Stiroh (2005a) point out 

that the substitution from Non-ICT capital to ICT capital was simply a reaction to 

sharp declines in ICT prices during that period. In Germany, however, the surge in 

ICT investment could not offset the sharp decline in Non-ICT capital investment 

leading to an overall decline in capital deepening.  

Nevertheless, one might easily conclude that the increases in ICT capital deep-

ening represent evidence of healthy ICT investment levels in Germany that facili-
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tated the structural transformation towards the information economy. Comparisons 

with US ICT investment reveal, however, a remarkable German deficit. Jorgenson, 

Ho, Samuels and Stiroh (2006, Table3) report only slightly higher labor productivity 

growth in the US as compared to Germany during 1995-2000 (2.13 percent com-

pared to Germany’s 2.04 percent) and even lower Non-ICT capital deepening contri-

butions (0.41 percent vs. 0.55 in Germany). However, US ICT capital deepening 

significantly outpaced ICT capital deepening in Germany, being three times higher in 

the US than in Germany. 

The increase in German ICT capital deepening was accompanied by a surge in 

ICT-Intensive industries’ TFP growth. Almost one third of all German labor produc-

tivity growth from 1995 to 2000 is attributable to efficiency improvements in ICT-

Intensive industries. In particular, the contribution from ICT-Producing industries’ 

TFP to labor productivity quadrupled after 1995. This observation is especially strik-

ing given the small size of this sector (about 5 percent of aggregate value added) and 

suggests extraordinary efficiency gains from ICT production in Germany. At the 

same time, however, TFP contributions from Non-ICT industries collapsed post 

1995, resulting in a negative contribution from this set of industries.  

Nevertheless, the positive impact of ICT capital deepening and ICT-Intensive 

industries’ TFP contributions prevented a steeper decline in German labor productiv-

ity growth than the observed -0.27 percent reduction from 1991-1995 to 1995-2000. 

At the same time, however, productivity increased in the US. Not only was German 

ICT capital deepening significantly lower than in the US, but the decline in Non-ICT 

capital deepening and the collapse in Non-ICT industries’ productivity were also 

accompanied by reductions in the contributions of labor quality and reallocations of 

hours. 

The second labor productivity slowdown post 2000 was driven by different, if 

not opposing, factors. Table 3.1 shows that German ICT capital deepening and ICT-

Producing industries’ TFP growth declined by about 25 percent. Most important was, 

however, the change in productivity growth of Non-ICT-Producing industries. TFP 

contributions from ICT-Using industries weakened significantly, and the contribu-

tions of Non-ICT industries to APL continued to decline even further to -0.31. For 
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the economy as a whole, this led to a dramatic collapse in TFP contributions from 

0.47 percent in 1995-2000 to -0.01 percent in 2000-2003.  

 In the US, the 1995-2000 surge in ICT investment was followed by a surge in 

the contribution of Non-ICT production TFP to productivity. Van Ark and Inklaar 

(2005), for example, report contributions of Non-ICT-Production TFP of 1.4 percent 

(a sharp 1 percentage point acceleration compared to the 1995-2000 level). One pos-

sible explanation may be that this represented the diffusion of ICT investment to the 

rest of the US economy. In sharp contrast, German Non-ICT-Producing industry TFP 

growth declined so dramatically that it registered a negative contribution to labor 

productivity post 2000. It was a broad resurgence of Non-ICT capital deepening that 

mitigated the second German productivity reduction. This resurgence was largely 

carried by increased contributions from ICT-Using and especially Non-ICT indus-

tries.   

In summary, a key source of the first productivity decline was insufficient ICT 

capital deepening relative to the US levels. German ICT capital deepening was insuf-

ficient to offset the decline in Non-ICT capital deepening which was associated with 

a sharp drop in Non-ICT industries’ TFP growth. The origin of the second reduction 

in German labor productivity was the insufficient diffusion of ICT investment to 

Non-ICT-Producing industries. The dramatic decline in German TFP growth raises 

serious questions about a departure from the technology frontier. In the next section 

we take a closer look at the productivity contributions of each of the 52 industries 

and present head to head industry comparisons with the US.  

3.4 The Evolution of ICT Industries in Germany and the US 

3.4.1 German Labor Productivity Contributions by Industry 

In this section we identify the exact industries that drove Germany’s productiv-

ity performance. Figure 3.2a-c are modified Harberger (1998) diagrams that display 

each industry’s contribution to cumulative value added on the horizontal axis, while 

the vertical axis plots the contributions to cumulative total industry labor productivity 
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growth.53 Industries with positive slopes contribute to labor productivity and those 

along the negatively sloped part of the curve generated a drag on productivity 

growth. How important a given industry’s contribution (or drag) is depends on the 

horizontal distance between points.  

 Figure 3.2a-c highlights the heterogeneity of labor productivity contributions 

across industries and time. Surprising is the large and increasing numbers of indus-

tries that contributed negatively to German labor productivity. For example, from 

1991-1995, fourteen industries contributed negatively, but by 2000-2003 over 40 

percent of German industries (21 of the 52) reduced the nations overall labor produc-

tivity. Even more striking is the large share of total value added comprised by firms 

that had negative labor productivity growth. Industries that constituted between 40 

percent (1991-1995) and 25 percent (1995-2000) to German value added output con-

tributed negatively to productivity growth. Only half (26 of the 52) industries con-

tributed consistently positively to German labor productivity from 1991 to 2003. 

Top contributors to total industry labor productivity growth in all periods are 

the Communications and Wholesale Trade industries, whereas Other Business Ser-

vices exerted a strong drag on German labor productivity growth throughout.54 No-

table are also the performances of the Office Machinery & Computers industry as 

well as Financial Intermediation, which made strong contributions in the second pe-

riod, but declined post 2000. In contrast, Real Estate and Motor Vehicles were 

among the weakest performers during 1995-2000 but posted strong productivity 

gains after 2000. In particular, the Real Estate sector made by far the largest contri-

bution during the last period, adding 0.51 percent to APL growth.  

 

 

 

                                                 
53 A complete listing of each industry’s contribution to aggregate ALP growth is provided in Table 
3.A1. 
54 Other Business Services comprise such diverse services as legal, accounting, book keeping and 
auditing services; tax consultancy; market research and public opinion polling; business and manage-
ment consultancy; holdings; architectural and engineering activities and related technical consultancy; 
technical testing and analysis; advertising; labor recruitment and provision of personnel; investigation 
and security activities, industrial cleaning as well as miscellaneous business activities not otherwise 
mentioned.  
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Figure 3.2: Industry ALP and TFP Contributions 
 

   a) ALP, 1991-1995      d) TFP, 1991-1995 
        

 
 
 
 
 
 
 
 
 
 
 
 

 
 
   b) ALP, 1995-2000     e) TFP, 1995-2000 
  
 
     

 
 
 
 
 
 
 
 
 
 
 

 
   c) ALP, 2000-2003     f) TFP, 2000-2003 
         

   
 
 
 
 
 
 
 
 
 
 
 
 

Data source: DeStatis, Röhn et al. (2007), and authors’ calculations. 
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  Instead of examining the within period contributions of industries, we are, of 

course, especially interested in uncovering the drivers of the two-stage German pro-

ductivity demise. Therefore, we examine the changes in productivity contributions 

over time. Table 3.2 identifies those industries that contributed directly to the decline 

in productivity observed after 1995 and 2000. Only three industries with value added 

shares greater than one percent saw consecutive increases in their contributions to 

labor productivity (Construction, Vehicle Sales and Repair, and Wholesale Trade). In 

contrast, the number of industries with secularly declining contributions to labor pro-

ductivity is large: thirteen industries with a cumulative share of German value added 

of over 20 percent are lead by Public Administration, Machinery, and Chemicals.  

 Just about half of the industries (24 out of 52) contributed negatively to labor 

productivity during the first slowdown. Even more worrisome, the second slowdown 

was driven by an even larger number of 35 declining industries. Table 3.2 tallies the 

performance across periods and shows that the majority of industries, however, (33 

out of 52, constituting 67 percent of value added) experienced a reversal of their pro-

ductivity fortunes between 1991 and 2003. Real Estate, Other Business Services and 

Motor Vehicles drove much of the slowdown post 1995, but all three industries re-

versed their performances and contributed strongly to productivity post 2000. Note 

however, that we know from Figure 3.2c that the absolute productivity contribution 

from Other Business Services was negative, hence this industry contributed only by 

reducing its drag on productivity. In contrast, Financial Intermediation and Retail 

Trade were among the largest positive contributors post 1995, who then had strongly 

negative contributions to labor productivity post 2000. Real Estate and Other Busi-

ness Services are classified as Non-ICT-Using industries, whereas Financial Inter-

mediation and Retail Trade are ICT-Using. This helps us pinpoint the industries that 

are largely responsible for the underlying dynamics of the first and second productiv-

ity declines.  
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Table 3.2: Changes in Industry Contributions to Labor Productivity 

 VA (%) 

1st  
Change 

< 0 

2nd 
Change  

> 0  VA (%) 

1st 
Change  

> 0 

2nd 
Change 

 > 0 

Real Estate 11.87 -0.07 0.58 Wholesale Trade 4.83 0.10 0.01 
Other Business Services 8.73 -0.29 0.26 Construction 4.46 0.10 0.08 
Health & Social Work 7.19 -0.02 0.01 Sale/Repair vehicles 1.85 0.05 0.05 
Motor Vehicles 3.21 -0.14 0.32 Sewage Refuse Disp. 0.64 0.01 0.01 
Auxiliaries Transport 1.51 -0.02 0.01 Coke, Petroleum,  0.28 0.04 0.01 
Plastic & Rubber 1.08 -0.01 0.01 Water Transport 0.23 0.01 0.01 
Aux. Fin/Insur. Interm. 0.53 0.00 0.01     
Radio, TV, Comm. Equip. 0.52 -0.01 0.03     
Textiles 0.26 -0.01 0.00     
Energy Mining & Quarrying 0.09 -0.06 0.01     
Leather 0.06 -0.01 0.00     

Count 11   Count 6   
Sum 35.03 -0.63 1.25 Sum 12.28 0.31 0.16 
        

 VA (%) 

1st 
Change 

< 0 

2nd 
Change  

< 0  VA (%) 

1st 
Change 

> 0 

2nd 
Change  

< 0 

Pub. Adm., Def, Social Sec. 6.21 -0.10 -0.07 Education 4.58 0.00 -0.10 
Machinery 3.33 -0.09 -0.04 Retail Trade 4.22 0.05 -0.02 
Chemicals 2.27 -0.07 -0.01 Fin. Intermediation 3.34 0.12 -0.15 
Communications 2.09 -0.01 -0.02 Fab. Metal Products 1.99 0.05 -0.05 
Land Transport 1.54 -0.09 -0.08 Food & Tabacco 1.96 0.03 -0.05 
Other services 1.41 -0.03 -0.00 Rec., Cultural, Sports 1.93 0.02 -0.06 
Basic Metals 0.89 -0.04 -0.02 Rental & Leas. Serv. 1.82 0.02 -0.05 
Organizations, nec 0.86 0.00 -0.01 Electricity, Gas  1.63 0.08 -0.14 
Insurance 0.73 -0.11 -0.11 Hotels & Restaurants 1.59 0.02 -0.03 
Non-Metallic Min. Prod. 0.72 -0.03 0.00 Computer Services.  1.58 0.04 -0.04 
Wood Products 0.36 -0.01 -0.01 Electr. Apparatus nec 1.56 0.04 -0.11 
Air Transport 0.28 -0.02 -0.04 Agric., Forestry, Fish. 1.12 0.02 -0.03 
Mining/Quarry, ex. Energy 0.12 -0.01 -0.02 Publishing, Printing 1.08 0.04 -0.09 
    Instruments 0.90 0.03 -0.04 
    Furn. /Misc. Manuf.  0.55 0.03 -0.02 
    Paper, Pulp 0.53 0.02 -0.03 
    Other Transp. Equip. 0.49 0.07 -0.02 
    R&D 0.38 0.01 -0.04 
    Water supply 0.29 0.01 -0.00 
    Office Mach & Comp. 0.18 0.05 -0.03 
    Apparel 0.14 0.00 -0.00 
    Recycling 0.05 0.00 -0.00 

Count 13   Count 22   
Sum 20.79 -0.62 -0.43 Sum 31.89 0.79 -1.10 

Notes: VA is the value added share of an industry in 2003. 1st Change is the difference of an industry ALP contribution be-
tween 1991-1995 and 1995-2000. 2nd Change is the 1995-2000 and 2000-2003 difference.  Source: DeStatis and Röhn et al. 
(2007). 

 

 We can now utilize the data in Stiroh (2006) to highlight the source of the di-

verging labor productivity experience with head to head US/German industry com-

parisons.55 Figure 3.3a, b displays industry contributions to the two labor productiv-

ity slowdowns (surges) in Germany (US). It is immediately apparent from Figure 

3.3a that most of the US/German differences between the first two periods can be 
                                                 
55 US and German industry classifications differ, requiring us to merge 51 German and 60 US indus-
tries into 37 industries that represent a consistent harmonization. The German Public Administration, 
Defense and Social Security sector is excluded since US data focuses on the private sector. The peri-
ods under consideration differ slightly: Stiroh’s first period begins 1988 and his last period ends 2004.  
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traced to a few ICT-Intensive industries. Computer & Electronics Equipment, 

Wholesale Trade, and Retail Trade made positive contributions in both countries, but 

the gains were two to three times greater in the US. Further, Finance & Insurance 

contributed substantially to the first productivity surge in the US while its contribu-

tion in Germany was close to zero. Most striking is the divergence in the Other Busi-

ness Services, which was a major contributor of the productivity surge in the US 

while it exerted the largest drag on German productivity growth. It is surprising that 

key industries which have traditionally been beacons of German productivity – Ma-

chinery and Motor Vehicles – also contributed significantly to the productivity slow-

down while they added to the productivity surge in the US.  

 Turning to the industry origins of the diverging productivity trends post 2000 

in Figure 3.3b, we make two important observations. First, a completely different set 

of industries explains the widening productivity gap. For example, we find the larg-

est differences in US/German productivity arise in Computer Services, Telecommu-

nication, Utilities, and Food & Tobacco. Note that all of these industries had actually 

mitigated the productivity divergence in US and German productivity post 1995. 

Second, a larger number of German industries is responsible for the prolonged diver-

gence in US versus German productivity. During the first productivity divergence 

post 1995, 22 industries contributed to the divergence while this number increased to 

27 industries post 2000. This constitutes a worrisome implication: the post 2000 pro-

ductivity (decline) surge in the US (Germany) is driven by larger group of industries 

than the first divergence in the late 1990s. 

 Our US-German comparisons share similarities with the US-EU comparisons 

of van Ark and Inklaar (2005). In their study, similar industries contributed to the 

US-EU divergence (especially Trade and Finance) post 1995, which may indicate 

that the US pulled away from all of Europe, and not only from Germany. Novel are 

our results that the origins of this divergence changed dramatically post 2000. 
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Figure 3.3: Industry Contributions to Change in Labor Productivity 
 

a) Post 1995 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

b) Post 2000 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Stiroh (2006), DeStatis, Röhn et al. (2007), and authors’ calculations. 
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3.4.2 German TFP Contributions by Industry 

Figure 3.2d-f plots the modified Harberger (1998) diagram for the individual 

industry TFP growth contributions for the three periods 1991-1995, 1995-2000 and 

2000-2003. The vertical axis displays the cumulative industry contributions to aggre-

gate TFP growth, while the horizontal axis plots the cumulative industry output share 

in total value added (Domar-weights). The heterogeneity of TFP growth contribu-

tions among industries is striking. The curves are surprisingly steep indicating a bi-

furcated economy with either strong productivity gains or sharp productivity losses. 

Most importantly, the share of industries that contribute negatively over time is in-

creasing dramatically. This is especially apparent if we compare the 1995-2000 and 

2000-2003 periods in Figure 3.2e, f. In 1995-2000, 17 industries experienced nega-

tive TFP growth rates, featuring large contractions in Other Business Services, Motor 

Vehicles and the Insurance industry. In 2000-2003, in contrast, 28 industries ac-

counting for almost 50 percent of aggregate value added showed negative TFP 

growth.  

 Comparing the first two periods in Figure 3.2d, e, it is striking that Wholesale 

Trade and Financial Intermediation (both ICT-Using) increased their TFP contribu-

tions substantially between the two periods. The same is true for Office Machinery & 

Computers and Communications (both ICT-Producing). Of these industries only 

Wholesale Trade managed to increase its TFP growth contribution further post 2000 

when TFP growth in Communication and Office Machinery & Computer slowed, 

and Financial Intermediation TFP turned negative. Contributions from the Insurance, 

Machinery and the Government sector steadily declined over the three periods, point-

ing to severe problems within these industries. These industries started with positive 

TFP growth but showed negative TFP growth post 2000.56  

3.5 ICT and Productivity 

So far we have focused on the industry productivity contributions to aggregate 

labor productivity. In this section, we investigate formally whether industries that 

invested heavily in ICT can be shown to exhibit significantly higher productivity 

growth rates. Table 3.1 seems to imply a strong relationship between the two, at least 
                                                 
56 A summary of each industry’s TFP contribution is provided in Table 3.A1. 
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for the period 1995-2000, when ICT-Intensive industries saw strong TFP increases at 

the time during which they also experienced a surge in ICT capital deepening. To 

identify the link between ICT intensity and productivity, we follow the methodology 

of Stiroh (2006) and apply a difference-in-difference estimator to compare industry 

productivity pre and post our 1995 and 2000 break years. 

 tiTTTTti ICTPostICTPostprod ,, *ln εδγβα +∗+∗+∗+=Δ ,   (7) 

where the change in the log of labor productivity in industry i at time t is given by 

tiprod ,lnΔ  and PostT is a dummy identifying observations after a given break year 

T.  ICTT is a dummy for ICT-Intensive industries at time T. Our measure of produc-

tivity is labor productivity measured as value added per hour worked.57 

 The interpretation of the coefficients in equation (7) is that β  represents the 

acceleration in ALP growth for our control group (Non-ICT industries) after a break 

year. Relative ALP growth rates of ICT-Intensive industries prior to the break year 

are given by γ , and δ  indicates the ALP acceleration of ICT-Intensive relative to 

Non-ICT-Intensive industries after the break year. We estimate (7) using OLS, where 

we allow the error term ti,ε  to be correlated within industries over time (see Stiroh, 

2006). Table 3.3 reports the estimation results with value added labor productivity 

growth as the dependent variable. The first column includes only the post 1995 

dummy and shows that on average all industries saw a 0.4 percent deceleration of 

labor productivity growth post 1995. It is not surprising that the coefficient is not 

significant since we have not accounted for the opposite experiences of ICT and 

Non-ICT Industries documented extensively above.  

 The second column displays results for the complete specification in equation 

(7). Post 1995 Non-ICT Industries saw a statistically significant 2 percent decelera-

tion of their labor productivity growth, while ICT-Intensive industries experienced a 

statistically significant 3.1 percent higher acceleration. This result is consistent with 

our summary statistics above, where we find that the first productivity slowdown is 

caused by a deceleration of productivity in Non-ICT Industries that was mitigated by  

                                                 
57 Industry TFP as the dependent variable generates qualitatively similar results. We drop an extreme 
outlier in all specifications: the Petroleum and Coke industry, which constitutes 0.3 percent of German 
value added. It reports labor productivity swings of over 100 percent.  
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Table 3.3: Labor Productivity Accelerations 1991-2003 

 
Dependent variable: Average Labor Productivity Growth 

(value added) 
       

Dummy_Post1995 
-0.39 
(0.84) 

-1.97** 
(0.89) 

-1.97**
(0.89)    

Dummy_ICT1995  
-0.83 
(1.15) 

-1.60 
(1.10)    

Post1995*ICT1995  
3.09* 
(1.62) 

1.89 
(1.52)    

       

Dummy_Post2000    
-1.99***

(0.74) 
-2.26** 
(0.94) 

-2.26** 
(0.94) 

Dummy_ICT2000     
0.79 

(1.36) 
-0.63 
(1.02) 

Post2000*ICT2000     
0.53 

(1.47) 
-0.22 
(1.59) 

Drop ICT-Producing Industries   yes   yes 
No. Obs 612 612 552 612 612 552 
No. Industries 51 51 46 51 51 46 
R2 0.00 0.01 0.01 0.01 0.01 0.01 
Notes: Robust standard errors that allow for correlation within industries over time in parentheses. ***, **, * indicate 1 
percent, 5 percent, 10 percent significance levels. Source: Röhn et al. (2007) and authors’ calculations. 

 
ICT-Intensive industries. Going one step further, we drop ICT-Producing industries 

from the sample and examine only ICT-Using and Non-ICT-Using industries. In this 

case the positive impact of ICT is smaller (1.9 percent) and statistically insignificant. 

These findings are also consistent with our above results where most of the ICT-

productivity contributions resulted in ICT-Producing industries.  

 The last three columns replicate the same analysis for the second productivity 

slowdown. The break year is now set to 2000 and industries are classified as ICT-

Intensive based on their ICT-capital share in 2000. Now the picture changes as Non-

ICT-Intensive industries again saw a significant labor productivity deceleration (2.3 

percent). However, ICT-Intensive industries did not experience significantly higher 

productivity growth. Moreover, if we drop ICT-Producing industries from the sam-

ple, labor productivity growth for ICT-Using industries decelerated even faster (0.2 

percent) – albeit not significantly – than in Non-ICT-Industries. This confirms our 

earlier finding that ICT-Using industries were a drag on German productivity growth 

due to their TFP growth declines post 2000. 

 In sum, we find strong evidence that ICT-Intensive industries had signifi-

cantly higher labor productivity growth than the Non-ICT Industries post 1995. 
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These gains originated, however, largely in the small category of ICT-Producing 

industries. The productivity advantage of ICT-Intensive industries was, however, 

only transitory. For the post 2000 period, ICT-Intensive industries did not experience 

higher productivity growth compared to Non-ICT industries. If anything, our results 

suggest that productivity growth in ICT-Using industries decelerated even stronger 

than in Non-ICT industries post 2000. 

3.6 Summary and Conclusions 

Labor productivity has experienced two surges in the United States, one around 

1995 and the other post 2000. In contrast, Germany experienced two successive pro-

ductivity reductions in the same time periods. We employ industry-level data from 

the ifo industry growth accounting database (Röhn et al., 2007) to analyze the 

sources of Germany’s productivity demise. We compare our results to the US per-

formance to identify the drivers of Germany’s departure from the technology fron-

tier.  

 The disaggregation to the 52 industry-level allows us to identify clear but dis-

tinct sources of the two German productivity declines. The post 1995 slowdown was 

characterized by a surge in productivity gains in the ICT-Intensive industries, espe-

cially in the ICT-Producing industries. The origin of this productivity surge was the 

substitution of investment from Non-ICT-capital to ICT-capital. Compared to the 

US, however, German productivity gains in these ICT-Intensive industries were 

small (particularly Trade, Finance and ICT-manufacturing). Our estimates identify 

that the source of the weak productivity gains rests in the lackluster performance of 

German ICT-Using industries. Ultimately the productivity gains in ICT-Intensive 

industries were too small to offset large productivity reductions in Non-ICT indus-

tries.  

 The sources of the second productivity slowdown were different. The positive 

impact of ICT-Intensive industries vanished after 2000, as these industries’ ICT capi-

tal deepening and TFP growth decelerated significantly. Non-ICT productivity never 

recovered, however. We can only surmise that ICT diffusion was significantly 

smaller in Germany than in the US. The resurgence of Non-ICT capital deepening 

was too small to prevent a second aggregate productivity decline.  
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 Comparing the sources of the second productivity decline in Germany post 

2000 to the first post 1995, we make two especially worrisome observations. First, 

the number of industries experiencing negative TFP growth increased dramatically 

after 2000. 28 out of 52 industries accounting for almost 50 percent of aggregate 

value added showed negative total factor productivity growth. Second, a larger num-

ber of German industries was responsible for the prolonged divergence in US versus 

German productivity. During the first productivity divergence post 1995, 22 indus-

tries contributed to the divergence while this number increased to 27 industries post 

2000. 
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Appendix Chapter 3 

Table 3.A1: Value-Added Share and ALP, TFP Contributions by Industry 
ALP Contributions TFP Contributions 

Industry VA share 
2003 1991-

1995 
1995-
2000 

2000-
2003 

1991-
1995 

1995-
2000 

2000-
2003 

Communications a) 2.1 0.19 0.18 0.15 0.05 0.13 0.11 
Computer & Related Services a) 1.6 -0.01 0.03 -0.01 -0.03 0.00 -0.05 
Instruments a) 0.9 0.01 0.05 0.01 0.00 0.04 0.00 
Radio, TV & Comm. Equipment a) 0.5 0.05 0.04 0.07 0.03 0.03 0.05 
Office Machinery & Computers a) 0.2 0.04 0.09 0.06 0.02 0.09 0.06 
Health, Social Work b) 7.2 0.18 0.17 0.18 0.14 0.11 0.13 
Wholesale Trade b) 4.8 0.12 0.22 0.23 0.05 0.16 0.18 
Construction b) 4.3 -0.10 0.00 0.08 -0.13 -0.01 0.07 
Retail Trade b) 4.2 0.00 0.05 0.03 -0.05 0.02 0.01 
Financial Intermediation b) 3.5 0.06 0.18 0.04 0.01 0.12 -0.01 
Machinery b) 3.3 0.15 0.06 0.02 0.08 0.04 -0.02 
Motor Vehicles d) 3.3 0.05 -0.09 0.23 0.00 -0.10 0.18 
Sale, Repair Motor vehicles b) 1.8 -0.04 0.01 0.06 -0.06 0.00 0.05 
Rental. Leasing Services b) 1.9 0.03 0.05 0.00 -0.05 -0.03 -0.08 
Rec., Cultural, & Sports Activities b) 1.9 -0.01 0.02 -0.04 -0.04 0.00 -0.07 
Electrical Apparatus n.e.c. b) 1.6 0.04 0.08 -0.03 0.00 0.06 -0.05 
Other Services b) 1.4 0.02 -0.01 -0.01 0.00 -0.02 -0.02 
Rubber, Plastic b) 1.1 0.03 0.02 0.03 0.02 0.02 0.02 
Publishing, Printing b) 1.0 0.01 0.05 -0.04 -0.01 0.03 -0.06 
Organizations, n.e.cb) 0.9 0.01 0.01 0.01 0.01 0.01 0.00 
Insurance b) 0.8 0.04 -0.08 -0.19 0.02 -0.09 -0.20 
Other Transport Equipment b) 0.5 -0.01 0.05 0.03 -0.02 0.05 0.02 
Aux. Fin. & Ins. Intermediation b) 0.5 -0.01 -0.02 0.00 -0.02 -0.02 0.00 
Research & Development b) 0.4 0.01 0.02 -0.02 0.01 0.02 -0.02 
Water Transport b) 0.2 0.02 0.03 0.04 0.01 0.02 0.02 
Recycling b) 0.0 0.00 0.00 0.00 0.00 0.00 0.00 
Real Estate c) 11.7 0.00 -0.07 0.51 0.17 -0.03 0.14 
Other Business Services e) 8.8 -0.10 -0.39 -0.13 -0.09 -0.45 -0.17 
Pub. Admin., Defense, Soc. Security c) 6.2 0.20 0.11 0.03 0.09 0.02 -0.05 
Education c) 4.6 0.01 0.02 -0.09 -0.01 0.00 -0.11 
Chemicals c) 2.3 0.18 0.11 0.10 0.13 0.07 0.08 
Fabricated Metal Products c) 2.0 0.02 0.07 0.01 -0.01 0.05 0.00 
Food, Tobacco c) 2.0 -0.02 0.01 -0.04 -0.06 0.02 -0.04 
Electricity, Gas c) 1.7 0.09 0.17 0.03 0.01 0.09 0.01 
Hotels, Restaurants c) 1.6 -0.03 -0.01 -0.03 -0.04 -0.01 -0.04 
Land Transport c) 1.5 0.11 0.02 -0.06 0.06 -0.02 -0.08 
Auxiliary Transport Activities c) 1.5 0.05 0.03 0.04 0.03 0.02 0.01 
Agriculture, Forestry, Fishing c) 1.1 0.06 0.07 0.05 0.02 0.05 0.03 
Basic Metals c) 0.9 0.09 0.04 0.03 0.06 0.04 0.02 
Non-Metallic Mineral Products c) 0.7 0.06 0.02 0.02 0.04 0.01 0.01 
Sewage & Refuse Disposal c) 0.6 -0.03 -0.03 -0.02 -0.07 -0.07 -0.04 
Furniture & Misc. Manufacturing c) 0.5 -0.01 0.02 -0.01 -0.03 0.01 -0.02 
Paper, Pulp c) 0.5 0.00 0.03 0.00 -0.01 0.02 -0.01 
Wood Products c) 0.4 0.02 0.02 0.01 0.02 0.01 0.00 
Textiles c) 0.3 0.02 0.01 0.01 0.01 0.01 0.00 
Coke, Petroleum, Nuclear Fuels c) 0.3 -0.06 -0.02 -0.01 -0.07 -0.02 0.00 
Water Supply c) 0.3 0.01 0.01 0.01 -0.01 0.00 0.00 
Air Transport c) 0.3 0.04 0.02 -0.02 0.03 0.01 -0.03 
Energy Mining & Quarrying c) 0.1 0.04 -0.02 -0.01 0.02 -0.02 -0.01 
Mining & Quarrying, exc. Energy c) 0.1 0.02 0.00 -0.01 0.01 0.00 -0.01 
Apparel c) 0.1 0.01 0.01 0.01 0.01 0.01 0.01 
Leather c) 0.0 0.01 0.00 0.00 0.00 0.00 0.00 

a) ICT-Producing Industry, b) ICT-Using Industry 1995 and 2000, c) Non-ICT-Intensive Industry d) ICT-Using Industry in 1995, e) ICT-
Using Industry in 2000. Notes: Average annual percentages. ALP contributions are labor productivity growth rates multiplied by average 
value added shares. Contributions of TFP are industry TFP growth rates multiplied by industry output share in aggregate value added 
(Domar-weight). ICT-Using are Non-ICT-Producing industries whose ICT capital share exceeds the median. ICT-Producing industries are 
defined according to DeStatis (2006).  
Data source: Röhn et al. (2007) and authors calculations. 
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