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Zusammenfassung

Im ersten Teil der vorliegenden Arbeit untersuchen wir die Präparation
einer einzelnen Mode des quantisierten Strahlungsfeldes in einen beliebi-
gen Quantenzustand durch resonante Wechselwirkung mit einer Reihe
von Zwei-Niveau-Atomen. Die Präparation erfolgt durch Wahl eines
geeigneten (im allgemeinen verschränkten) Anfangszustands der Atome,
und benötigt weder eine Messung des atomaren Endzustands, noch eine
Kontrolle der Atom-Feld-Wechselwirkung. Dieses Verfahren ist auch
bei gemischten Anfangszuständen des Feldes anwendbar. Wir erläutern,
wie man den optimalen atomaren Anfangszustand auffinden kann,
welcher den gewünschten Feldzustand mit maximaler Güte erzeugt,
und zeigen durch numerische Berechnungen die Umsetzbarkeit unseres
Präparationsverfahrens.

Im zweiten Teil demonstrieren wir die rauschinduzierte Kontrolle von
Quantensprüngen in einem fundamentalen offenen Quantensystem.
Neben der Wechselwirkung mit einem Fluss aufeinanderfolgender Zwei-
Niveau-Atome ist das Feld hierbei auch an eine thermische Umgebung
gekoppelt. Bei bestimmter Wahl der experimentellen Parameter wird
das Photonenfeld bistabil und vollzieht Quantensprünge zwischen zwei
metastabilen Zuständen. In der Gegenwart eines schwachen, periodi-
schen Signals (d.h. einer Modulation des Anfangszustandes der den
Resonator durchquerenden Zwei-Niveau-Atome) wird die beste Synchro-
nisierung der Quantensprünge mit diesem Signal bei einer optimalen,
nichtverschwindenden Temperatur der Umgebung erzielt. Dieser Ef-
fekt der stochastischen Resonanz ist in verschiedenen Komponenten des
Blochvektors nach Austritt der Atome aus dem Resonator beobachtbar.

Der dritte Teil behandelt ein spezielles Problem in der Charakterisierung
von Verschränkung zwischen zwei quantenmechanischen Zwei-Niveau-
Systemen. Wir betrachten die optimale Zerlegung eines Zustands zweier
Qubits in einen verschränkten und einen separablen Anteil, wobei das
Gewicht von letzterem maximiert wird, und leiten notwendige und hin-
reichende Bedingungen für die Optimalität der Zerlegung her.





Abstract

In the first part of this thesis, we examine the preparation of a single-
mode radiation field in arbitrary pure quantum states via resonant inter-
action with a sequence of two-level atoms. The preparation is achieved
by choosing an appropriate (in general entangled) initial state of the
atomic sequence, and does neither require a final state measurement of
the atoms, nor a control of the atom-field interaction. Furthermore, the
method is applicable also when starting from mixed initial field states.
We show how to determine the optimal initial atomic state which pre-
pares the desired field state with the maximum fidelity, and prove the
feasibility of our state preparation method by numerical calculations.

In the second part, we demonstrate the noise-induced control of quantum
jumps in a fundamental open quantum system. Here, in addition to the
subsequent interaction with a flux of two-level atoms, the quantized field
is also coupled to a thermal environment. Under certain experimental
conditions, the photon field exhibits a bistable behavior, with quantum
jumps between two metastable states. In the presence of a small peri-
odic signal (i.e., a modulation of the initial state of the two-level atoms
crossing the single-mode resonator), the best synchronization of these
quantum jumps with the signal is achieved at an optimal, nonvanishing
temperature of the environment. This stochastic resonance effect can
be observed in different components of the atomic Bloch vector on exit
from the cavity.

The third part treats a specific problem concerning the characterization
of entanglement between two quantum mechanical two-level systems.
We consider the optimal decomposition of a two-qubit state into an en-
tangled and a separable part, with maximal weight of the latter, and
derive necessary and sufficient conditions for the optimality of the de-
composition.
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Chapter 1

Introduction

1.1 Background and formulation of the problem

In the last few years, much progress has been achieved in controlling individual
quantum systems. Since the beginning of the eighties, it is possible to perform
experiments with single trapped atoms [1, 2, 3, 4, 5, 6], and recently the abil-
ity to transport single atoms over macroscopic distances has been demonstrated
[7, 8]. Also the control of the internal quantum state of atoms or molecules is - to
some extent - within the realm of current experimental techniques. In principle,
this can be done by applying external classical fields, for example appropriately
tailored sequences of laser pulses, such that the unitary evolution induced by
the corresponding time-dependent Hamilton operator transfers the system from
a well defined initial state to the desired target state [9, 10, 11, 12, 13]. Al-
though, under very general conditions, mathematics ensures the existence of
a suitable control field [14, 15], there are still enormous practical difficulties,
especially for systems with many degrees of freedom (e.g., molecules consisting
of more than two atoms): already the numerical computation of the solution
may be intractable, let alone the experimental realization of the required control
field, which usually needs a a very complicated spectral and temporal structure.
Nevertheless, some success has been achieved: for example, coherent population
transfer between different rotational levels of simple molecules [16], or between
magnetic atomic sublevels [17] was demonstrated, coherent superpositions of
atomic Rydberg states of a single electron can be produced in the laboratory
[18, 19, 20], and the branching ratio of different products of chemical reactions
can be controlled by an appropriate laser pulse [21].

However, a complete quantum state control, i.e., the ability to perform
arbitrary unitary operations (as would be required, e.g., for quantum computing
[22, 23]), is only possible for relatively simple systems. The most fundamental
example is a two-level atom, where arbitrary rotations of the Bloch vector can
be achieved by a classical electromagnetic field in resonance with the energy
difference between the two atomic levels (e.g., chapter 15.3 in [24]). Another
fundamental quantum system is the quantized harmonic oscillator, which is
realized experimentally as the radiation field in a single-mode cavity. In analogy
to the above mentioned examples of controlling atoms or molecules, we could try
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2 Chapter 1. Introduction

to manipulate the quantum state of the photon field by coupling to a classical
dipole. However, using the results of [14, 15], one easily verifies that in this
case the specific commutation relations between the photon annihilation and
creation operators a and a† prevent the preparation of arbitrary field states.∗

The situation might improve if we let the photon field interact with another
quantum system, for example with atoms, instead of a classical control system.
Here, a fundamental difficulty arises, since the target and control system may
(and in general will) become entangled with each other during their interaction.
In the presence of entanglement, no well defined pure quantum states can be
attributed to any of the two subsystems, what obviously prevents our purpose
to prepare the photon field in an arbitrary pure quantum state. A possible
way to circumvent this dilemma is to perform a measurement on the atoms,
thereby projecting also the photon field onto a pure state [25, 26, 27]. Naturally,
since the result of the measurement is not certain, the state preparation can
then only succeed with a finite probability. Hence, if we want to achieve a
deterministic state preparation, we have to look for a way to avoid the final
atom-field entanglement. One possibility is to design an appropriate time-
dependent cavity QED interaction which leads finally to an unentangled state
of field and the control system, with the field in the desired target state [28,
29, 30, 31]. In spirit, the latter idea is similar to the method of semiclassical
control mentioned above: the evolution of the atom-field system is controlled
by the application of classical external fields which influence either directly the
internal state of the atom, or the atom-field coupling strength.

An alternative idea is to use a simple, time-independent atom-field inter-
action, and to perform the control by choosing an appropriate initial state of
the control system. This method requires the ability to prepare the control
system in the appropriate initial state, which finally leads to the desired field
state. A priori, it is not certain whether a suitable initial state of the control
system exists. Indeed, if the Hilbert space of the control system is of finite
dimension M2, the following simple argument suggests a negative answer: let
us assume that we want to prepare an arbitrary field state |χ〉 in a photon field
subspace of finite dimension M1, starting from a well defined initial state |χ0〉
(e.g., the cavity vacuum). Then, the Hilbert space of all possible initial states
|χ0〉⊗ |ψ0〉 of the atoms-field system is of dimension M2, and likewise the space
of the corresponding final states |Ψ〉 = U |χ0〉 ⊗ |ψ0〉, after the unitary interac-
tion U . On the other hand, the space of the desired final states |χ〉 ⊗ |ψ〉 (with
arbitrary final atomic state |ψ〉) is also of dimension M2. Since, typically, two
M2 dimensional subspaces of a M1 ×M2 dimensional space do not intersect (if
M1 > 2), we do not expect that we can prepare arbitrary field states by using a
finite dimensional control system. We may ask, however, if we can come close
to the desired field state if we choose M2 large enough.

This idea will be followed in the first part of this thesis. Here, we choose an

∗The set of all unitary evolutions induced by a Hamiltonian of the form
H = ω a†a + d(t) (a + a†) [where the scalar function d(t) represents an arbitrarily time-
dependent classical dipole] is the (four-dimensional) Lie group generated by the observables
a†a, a + a†, i(a − a†), and �, which is but a subset of all unitary evolutions in the infinite-
dimensional Hilbert space of the harmonic oscillator.
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atoms-field interaction as simple as possible: the control system consists of a
sequence of N two-level atoms that resonantly interact with the quantized field
mode one after the other (each atom with the same time-of-flight through the
cavity). We assume that we are able to prepare our control system in arbitrary
states, possibly also including entanglement between the N atoms. Now, the
question is: for an arbitrary desired target field state |χ〉, does there exist an
initial state of the N atoms, such that after the atoms have crossed the cavity,
the field is in the state |χ〉? As discussed above, we can expect a positive answer
only in the limit N → ∞ of infinitely many atoms interacting with the cavity
field. Indeed, we will show that, in this limit, the asymptotic completeness [32]
of the atoms-field interaction ensures the existence of such a state. Thereby, we
are able to control the quantum state of the field, provided that we can control
the state of the atoms, even without accessing the interaction Hamiltonian. In
a similar vein, it was shown recently [33] that, given a fixed Hamiltonian acting
on the joint Hilbert space of a quantum system and its controller, under certain
conditions quantum operations such as state preparations, measurements and
unitary implementations on the system can be performed by quantum opera-
tions on the controller only.

Furthermore, the asymptotic completeness also predicts that, again in the
limit N → ∞, the required initial atomic state is independent of the initial field
state, i.e., the field can be prepared in the desired final state without knowing
its initial state. In this case, the information about the initial field state is
completely transferred to the exiting atoms. Note that the independence from
the initial field state can only be achieved when using a quantum control system:
a Hamiltonian evolution of the target system alone, as induced by a classical
controller (in the absence of dissipation), will always retain the dependence on
the initial state (i.e., initially orthogonal states will be mapped on orthogonal
final states).

In the realistic case of a finite number N of atoms, however, the asymptotic
completeness is not precisely realized. Then, the state preparation is not pos-
sible with perfect fidelity, and the optimal initial atomic state, which achieves
the maximum fidelity, not only depends on the desired target state, but also
on the initial field state. Nevertheless, as we will show, quite good results can
be achieved with a not too large number of atoms: starting from the vacuum
as initial field state, a fidelity of more than 99% can be achieved for the prepa-
ration of arbitrary field states including at most n photons by using N = 2n
atoms. Moreover, when increasing N , the fidelity reaches the ideal value 1 ex-
ponentially fast. In general, the number of atoms required for a given level of
fidelity depends linearly on the maximum photon number of the target state.
Hence, since the atomic Hilbert space is 2N -dimensional, the dimension of the
control system scales exponentially with the dimension of the target system.
This is the price we have to pay in order to avoid the entanglement between
atoms and field without controlling the interaction Hamiltonian.

Note that the preparation of the photon field in arbitrary pure quantum
states requires the absence of any source of noise acting on the cavity field, which
would reduce the purity of the field state. Hence, the influence of the dissipation
induced by the coupling of the field to the cavity walls, or of other sources of
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noise, such as fluctuations of the time-of-flight of the individual atoms through
the cavity, should be kept as low as possible. For the same reason, we have
to avoid any entanglement between the field and the exiting atoms: otherwise,
a measurement on the exiting atoms and the associated state reduction of the
atoms-field system would also constitute an unpredictable, random influence on
the photon field (commonly termed ‘measurement noise’).

If we do not aim at a perfect quantum state control, however, some noise can
also be helpful. The second part of this thesis is devoted to such a case. Here,
we consider a modification of the above setup for the state preparation, which is
experimentally more practical, but holds some inherent sources of noise: instead
of a fixed finite number N of atoms, which must be entangled before the atoms-
field interaction, in order to avoid finally the entanglement with the field, we
have a steady flux of atoms, all entering the cavity in the same initial single-
atom state. On exit from the cavity, the final state of each atom is measured,
with the resulting measurement noise for the photon field, as discussed above.
The other sources of noise are the dissipation due to the coupling of the field
to the cavity walls (which can be neglected only for a small number of atoms
interacting with the cavity field), and the random arrival times of the atoms.

The interplay between the interaction of the cavity field with the atoms on
one hand (resulting in a positive energy transfer to the photon field, since the
atoms enter the cavity mainly in the upper state), and with the heat bath on
the other hand (resulting in a negative energy transfer), leads to a stationary
state of the photon field far from thermal equilibrium. Under certain condi-
tions, the stationary state may consist of two metastable states. Then, the
photon field exhibits a bistable behavior, with transitions between those two
states at random times. Since the time interval needed for one such transi-
tion is very short compared to the average residence times in the two states,
and the transitions are - at least partly - triggered by the quantum mechanical
measurement process on the exiting atoms, they have been termed ‘quantum
jumps’ [34], although they do not occur instantaneously (as the quantum jumps
between atomic energy eigenstates postulated by Bohr [35], and experimentally
observed, e.g., in [3, 4, 5]), but rather involve several subsequent atomic de-
tection events. The average residence times in the two metastable states may
be controlled by experimentally accessible parameters, for example by chang-
ing the temperature of the heat bath or the initial state in which the two-level
atoms enter the cavity. Nevertheless, each individual quantum jump occurs at
a random, unpredictable time. The regularity of the quantum jumps may be
enhanced, however, by a small external signal, for example a periodic modula-
tion of the complex amplitudes a(t) and b(t) which define the initial state of an
atom entering the cavity at time t. If we now vary the strength of the noise by
increasing the temperature of the heat bath, we observe the optimal synchro-
nization of the quantum jumps with the small periodic signal (which in itself
is not strong enough to drive the system deterministically from one metastable
state to the other) at a finite, nonvanishing temperature. Thereby, an improved
control over the quantum jumps of the photon field can be achieved by adding
some noise to the system.

This cooperative effect between noise and a small periodic signal is known as
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stochastic resonance [36, 37], and has been extensively studied in many physical,
biological, and chemical systems [38-50]. Also the quantum regime has been
addressed [51-56], which provides additional transitions mechanisms between
the two metastable states, such as quantum tunneling, or - as in our exam-
ple - the noise associated with the quantum mechanical measurement process.
Furthermore, quantum mechanics allows us to prepare the atoms in coherent
superpositions of the upper and lower state before they enter the cavity, and
also to measure them in different final states after exit from the cavity. We
are therefore especially interested to investigate the influence of an injected or
measured atomic coherence on the stochastic resonance effect.

The third part of the thesis, finally, is devoted to the description of entan-
glement in bipartite mixed quantum systems. Apart from the fact that entan-
glement plays an important role in the two above quantum control schemes, as
discussed above, this third part has no direct connection to the first two parts.
Specifically, we consider the optimal decomposition of an entangled two-qubit
state of full rank into a sum of an entangled and a mixed state, with maxi-
mal weight of the latter, and prove sufficient and necessary conditions for the
optimality of the decomposition.

1.2 Structure of the thesis

The thesis is divided into three parts. In part I, we study the preparation of
quantum states of the photon field using a sequence of two-level atoms.

To start with, chapter 2 introduces the atoms-field interaction (according
to the Jaynes-Cummings model) which will be used throughout the whole thesis,
and discusses its relevant properties for the state preparation.

In chapter 3, we show that the interaction fulfills the property of asymp-
totic completeness, and how this property enables us - in the limit of infinitely
many atoms - to prepare the photon field in arbitrary quantum states, irrespec-
tive of the initial field state.

With a finite number of atoms, however, only a finite fidelity of the state
preparation can be achieved. Chapter 4 shows how to calculate the optimal
initial atomic state which reaches the maximum fidelity. The time-reversal
symmetry of the atoms-field interaction supplies us with an estimation of the
optimal atomic state and the number of atoms needed to reach a given level of
fidelity.

In chapter 5, the feasibility of our state preparation method is demon-
strated by numerical calculations. Considering both the vacuum and mixed
states as initial field states and various different final field states, we test the
validity of the above estimation, and examine some properties of the required
initial atomic states. Furthermore, we also study the convergence of our state
preparation scheme towards the limit of asymptotic completeness.

Chapter 6 examines the stability of our state preparation method against
various sources of noise. In particular, it is shown that the effect of cavity
dissipation cannot be diminished by choosing a different initial atomic state.

Part II is devoted to the control of quantum jumps in an open quantum
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system. In contrast to the first part, here noise plays an essential role and
actually may help us to control the state of the photon field.

In chapter 7, we introduce the coherently pumped micromaser, which is a
modification of the setup used in part I for the state preparation. We derive
the master equation describing the dynamics of the photon field. Under certain
conditions, the stationary state of the photon field is a mixture of two well-
separated metastable states.

As demonstrated in chapter 8, this leads to a bistable behavior of the pho-
ton field in a single realization of the maser dynamics, if the final state of the
exiting atoms is measured. We show how to determine the rates of the quan-
tum jumps of the photon field between the two metastable states, and discuss
the influence of an injected atomic coherence, and of different measurement
schemes.

In chapter 9, we feed a small periodic signal into the maser by modulation
of the initial atomic state. According to the mechanism of stochastic resonance,
we demonstrate the best synchronization of the quantum jumps with this signal
at an optimal nonvanishing temperature of the environment. This effect can
be observed in different components of the atomic Bloch vector of the exiting
atoms.

Finally, part III is devoted to the characterization of entangled states.
After giving a brief introduction to the quantitative description of entanglement,
we present and prove new results on the best separable approximation of an
arbitrary entangled two-qubit state of full rank.

Chapter 11 concludes the thesis, and briefly addresses some open ques-
tions.



Part I

Quantum State Preparation
via Asymptotic Completeness
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Chapter 2

Atom-field interaction

The first part of this thesis treats the preparation of arbitrary quantum states of
a single mode electromagnetic field via interaction with a sequence of two-level
atoms. As described in the introduction, we want to achieve the preparation
only by the right choice of the (possibly entangled) initial state of the atoms,
without performing any final state measurement on the atoms, nor controlling
the interaction Hamiltonian between atoms and field.

Consequently, we choose the atoms-field interaction as simple as possible:
the atoms cross the cavity, which confines the photon field, one after the other,
and the interaction of each single atom with the photon field is given by the
same unitary operator. As for the latter, we consider a resonant interaction
according to the Jaynes-Cummings model [57, 58], which can be regarded as
the simplest model of the interaction a single atom and the quantized radiation
field.

The thereby defined atoms-field interaction describes the physical system
which will be studied throughout the first two parts of this thesis. Its most
important properties are summarized in this chapter, with emphasis put on the
aspects relevant for the state preparation.

2.1 Single atom

As the basic element of our atoms-field interaction, let us first examine the
interaction of the field with a single atom. We assume that the atom interacts
with the field resonantly: the energy difference between the two atomic energy
eigenstates equals the energy of a single photon of the cavity mode, or, in other
terms, a single quantum in the excitation of the harmonic oscillator represented
by the quantized field mode. Then, each atom can exchange at most one photon
with the field, and, according to the Jaynes-Cummings model [57, 58], the
interaction is described by the following unitary operator (in the rotating wave

9
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approximation, see, e.g., chapter 14.1 in [59]):∗

U = e−iφ(a†σ+aσ†). (2.1)

Here, a, a† are the photon annihilation/creation operators, and σ = |d〉〈u|,
σ† = |u〉〈d| the ladder operators for the two-level atom, with upper and lower
level |u〉 and |d〉, respectively. The parameter φ = gtint is the vacuum Rabi
angle, where tint denotes the time-of-flight of the atom through the cavity, and
g quantifies the strength of the atom-field coupling.

If the cavity is initially in a number state |n〉, and the atom enters the cavity
in either |u〉 or |d〉, then the interaction has the following effect:

U |n〉 ⊗ |u〉 = cos(φ
√

n + 1) |n〉 ⊗ |u〉 − i sin(φ
√

n + 1) |n + 1〉 ⊗ |d〉, (2.2)
U |n〉 ⊗ |d〉 = cos(φ

√
n) |n〉 ⊗ |d〉 − i sin(φ

√
n) |n − 1〉 ⊗ |u〉. (2.3)

Since the states |n〉 ⊗ |u〉 and |n〉 ⊗ |d〉, n = 0, 1, 2, . . ., form a complete basis
of the Hilbert space of field and atom, Eqs. (2.2,2.3) give the complete solu-
tion of the Jaynes-Cummings interaction. Its properties have been thoroughly
investigated, among them the so-called ‘Cummings collapse’ [58, 60, 61] and
‘revivals’ [62]. As being relevant for the state preparation, let us mention here
the following particular features of the Jaynes-Cummings dynamics:

• Rabi oscillations: during the interaction, atom and field oscillate between
the states |n〉 ⊗ |u〉 and |n + 1〉 ⊗ |d〉, with the Rabi frequency Ωn =
g
√

n + 1. (An example is shown in Fig. 2.1a, see below.) Consequently,
the probability that an atom entering the cavity (with n photons inside)
in the state |u〉 (or |d〉) emits (or absorbs) a photon in the cavity, is given
by |Bn+1|2 = sin2(φ

√
n + 1) (or by |Bn|2).

• Trapping states: if φ fulfills a |nt〉-trapping state condition [63, 64], i.e.,
φ = kπ/

√
nt + 1, with k ∈ Z, then |Bnt+1|2 = 0, that is, there is no way

of transferring any photon number population from nt to nt + 1, or vice
versa. Hence, if we want to prepare field states including photon numbers
higher than n, we must avoid |nt〉-trapping states with nt ≤ n through a
proper choice of the vacuum Rabi angle φ.

• Conservation of H0: the Jaynes-Cummings interaction Hamiltonian Hint

∝ aσ†+a†σ commutes with the free Hamiltonian H0 ∝ a†a+σ†σ of atom
and field (see also footnote ∗). Consequently, an eigenstate of H0 will
remain an eigenstate of H0 during the interaction (2.1). As we will see
later (chapter 4 and 5), this property simplifies the theoretical treatment
of the preparation of photon number states (i.e., eigenstates of the photon
number a†a).

∗For simplicity, we do not explicitly take into account the free evolution of atom and field.
In the case of resonance between atom and field, the free Hamiltonian H0 = �ω(a†a + σ†σ)
commutes with the interaction Hamiltonian Hint = �g(a†σ + aσ†). Consequently, the free
evolution causes only additional phase factors (of the same frequency ω for both atom and
field) which are independent of the interaction.
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Figure 2.1: Entropy of entanglement E [see Eq. (2.8)] between the field and
a single atom (solid line) and upper state population of the atom (dotted
line) during the Jaynes-Cummings interaction (2.1). The initial states of
field and atom are: (a) the 2-photon state, |χ0〉 = |2〉, and the atom in the
lower state, |ψ0〉 = |d〉, and (b) the coherent state |χ0〉 = |α〉, α = 1, and
|ψ0〉 = i 0.480 |u〉 + 0.877 |d〉. Fig. 2.1(a) demonstrates the Rabi oscillations
between the states |2〉⊗|d〉 and |1〉⊗|u〉 of field and atom, whereas the dynamics
is more complicated in (b). Notice that atom and field hardly entangle in (b),
for φ < 1.

• Obviously, atom and field are in general entangled after the interaction.
As pointed out in the introduction, this is a major problem for the prepa-
ration of pure field states. Although, in exceptional cases, atom and field
can finally be again in a product state (e.g., if the field starts in a number
state |n〉, the atom in state |u〉, and φ = (k+1/2)π/

√
n + 1, k ∈ Z, corre-

sponding to a full Rabi cycle; see also [65] for other, nontrivial examples),
this is certainly not the case for arbitrary field states and a fixed vacuum
Rabi angle φ. However, as we will see later, the situation changes if we
consider the interaction with several atoms.

Two examples

In order to illustrate the points listed above, we present two examples in Fig. 2.1.
We plotted the entanglement between atom and field and the upper state popu-
lation of the atom during the Jaynes-Cummings interaction (2.1), as a function
of the vacuum Rabi angle φ = g tint. As a quantitative measure of the atom-field
entanglement, we use the entropy of entanglement [66], see Eq. (2.8) below. The
first case (a), where the initial states of field and atom are the 2-photon Fock
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state, |χ0〉 = |2〉, and the atom’s lower state, |ψ0〉 = |d〉, respectively, demon-
strates the Rabi oscillation between the states |2, d〉 and |1, u〉, i.e., between
vanishing and maximal upper state population of the atom. The values of φ
(parameterized by the coupling constant g and/or the interaction time tint) with
vanishing upper state population fulfill the |2〉-trapping state condition. Since
the atom is then described by the pure state |d〉, also the entanglement between
atom and field vanishes at those points, and likewise if the upper state popu-
lation equals 1. In contrast, field and atom are maximally entangled whenever
upper and lower state are equally populated.

In Fig. 2.1(b), the field is initially in a coherent state |χ0〉 = |α〉 [67] with
mean photon number |α|2 = 1, and the atom in the state |ψ0〉 = i 0.480 |u〉 +
0.877 |d〉. (The reason for this special choice of the atomic initial state will be
clarified further down in this section.) Since the field state |α〉 is a coherent
superposition of different photon number states, and since the frequency of the
Rabi oscillations depends on the photon number, the dynamics is now described
by the corresponding superposition of Rabi cycles with different frequencies,
what leads to a more complicated behavior than in Fig. 2.1(a). Remarkably,
atom and field hardly entangle for not too large vacuum Rabi angles φ < 1.
Furthermore, we have found that, in this regime, the consequently almost pure
field state (remember that we assume the absence of noise or environment cou-
pling in this chapter) is in fact, like the initial field state, also almost a coherent
state |α′〉 (i.e., its expectation value with respect to |α′〉 is almost 1). Due to
energy conservation, its mean photon number |α′|2 can be deduced from the
atom’s upper state population. As we have confirmed by some numerical tests,
this seems to be a general property of the Jaynes-Cummings interaction: if the
field is initially in a coherent state, one always finds an initial atomic state (like
the state |ψ0〉 in Fig. 2.1b), such that the field will stay very close to a coherent
state |α(t)〉 during the atom-field interaction, if φ is not too large. The smaller
the amplitude |α|2 of the initial state, the longer is the time during which a
large overlap of the field state with a coherent state can be maintained. In
chapter 5.2 we will see that this property of the Jaynes-Cummings interaction
allows an efficient preparation of coherent states.

In order to avoid confusion, let us mention here also the following semiclas-
sical limit of the Jaynes-Cummings interaction. Also there, for initial coherent
field states |α〉 with large |α|2, and the initial atomic states (|u〉 ± |d〉)/

√
2 (if

α is real), atom and field also hardly entangle during the interaction [68]. In
contrast to the situation illustrated in Fig. 2.1(b), for a classical field the dis-
entanglement is preserved also at long interaction times, and the field does not
stay in a coherent state, but rather becomes squeezed in a way which leaves
the mean photon number constant. Consequently, also the atom’s upper state
population remains constant. (Only the phase of the atomic state rotates with
frequency g/2|α| [68]).
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2.2 Sequence of N atoms

Since a single atom can at most exchange one photon with the photon field, we
need obviously more than one atom in order to prepare the field in an arbitrary
state. We assume that the atoms cross the cavity one after the other, so that at
most one atom is present in the cavity at any time. For simplicity, the time of
flight tint through the cavity is taken to be constant for each individual atom.
Under these circumstances, the total interaction UN of the field with a sequence
of N atoms is a product of identical single-atom interactions:†

UN = U (N)U (N−1) . . .U (1), (2.4)

where U (i) denotes the interaction of the field with the i-th atom as given by
Eq. (2.1). The above interaction is very similar to the one of the micromaser
[69]. However, only the case where the incoming atoms enter the cavity in a
product of single-atom states has so far been experimentally realized, whereas
we will consider entangled initial atomic states in the following. Furthermore,
the standard theoretical description of the micromaser [70] deals with a steady
flux of atoms through the cavity. Then, the dissipation of the cavity field cannot
be neglected - in contrast to the above case of a finite number N of atoms, where
the total interaction time is very much shorter than the cavity decay time (if
N is not too large), see chapter 6.1. In the presence of dissipation, the maser
dynamics is described by a master equation rather than a unitary interaction
like Eq. (2.4). The standard treatment of the micromaser will become relevant
in the second part of the thesis, see chapter 7.

The above unitary operator UN maps the initial state of field and atoms (i.e.,
the state just before the first atom enters the cavity) onto their final state (i.e.,
just after the last atom has left the cavity). We assume that the cavity field is
initially not entangled with the atoms, the latter being prepared in a pure state
|ψ0〉, which - as already mentioned above - may exhibit entanglement between
different atoms. For simplicity, let us first assume that also the field starts in
some pure initial state |χ0〉, e.g., the cavity vacuum. (Later, the requirement
of a pure field state will be dropped: the state preparation is possible also for
mixed initial field states.) Then, application of the interaction operator UN ,

UN |χ0〉 ⊗ |ψ0〉 = |Ψ〉, (2.5)

yields the final state |Ψ〉, which - typically - will be an entangled state. We
come back to this point below.

Due to the structure of UN as a product of single-atom operators, the prop-
erties of the Jaynes-Cummings interaction with a single atom, discussed in the
previous section, remain valid in the case of N atoms. In particular, if φ fulfills
a trapping state condition, we cannot circumvent the barrier at the correspond-
ing photon number nt by choosing a suitably entangled state of the N atoms:

†The free evolution of atoms and field between subsequent atoms need not explicitly be
taken into account, compare the footnote on page 10. Since dissipation is neglected, the arrival
times of the individual atoms are therefore irrelevant (as long as there is at most one atom
present in the cavity at the same time).
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the transition from nt to nt +1 photons is equally forbidden for each individual
atom (since φ is constant), and, due to the linearity of quantum mechanics,
entangling the atoms cannot help us to cross the barrier (since, obviously, any
entangled state can be written as a superposition of product states).

Also the conservation of the free Hamiltonian H0 = a†a+
∑

i σ†
i σi (in units

of ω) still applies, i.e., an eigenstate of H0 will remain an eigenstate of H0 after
the atoms-field interaction. The atomic part

∑
i σ†

i σi of H0 counts the number
of atoms in the upper state |u〉 and will therefore be called ‘atomic excitation
number’. From the conservation of H0, it follows that, if the field is initially
in a number state |n〉 and the atoms in a state |ψ〉 with excitation number k,
the final atomic state obtained by projecting the field onto the number state
|n′〉 after the interaction UN also has a well defined excitation number, namely
k′ = k + n − n′, i.e.:

if
N∑

i=1

σ†
i σi|ψ〉 = k|ψ〉, and |ψ′〉 = 〈n′|UN |n, ψ〉,

then
N∑

i=1

σ†
i σi|ψ′〉 = (k + n − n′) |ψ′〉. (2.6)

In the following, we will refer to Eq. (2.6) as ‘excitation number conservation’,
or simply ‘energy conservation’.

However, for N > 1, all considerations about the final atom-field entangle-
ment are complicated by the fact that the atoms may initially be entangled
between themselves. As soon as the first atom interacts with the cavity field,
the field will then be entangled also with the other atoms, already before they
have entered the cavity. Hence, by choosing an appropriately entangled initial
atomic state, we are able to influence the final entanglement of |Ψ〉 between field
and atoms, and maybe even achieve an unentangled final state. The question
is: given any desired field state |χ〉 (which may be an arbitrary quantum state
of the harmonic oscillator), is it possible, by choosing an appropriate initial
atomic state |ψ0〉, to generate an unentangled final state

|Ψ〉 = |χ〉 ⊗ |ψ〉 ? (2.7)

As we will see below, this is indeed possible, if we admit an infinite number
N of atoms interacting with the cavity field. Moreover, in this limit, the re-
quired initial atomic state |ψ0〉 is independent of the initial field state |χ0〉. The
mathematical reason behind the ability to prepare arbitrary field states, inde-
pendently of |χ0〉, is the property of asymptotic completeness, which we will
explain in the next chapter.

Before that, however, we want to close this chapter with some technical
remarks about the quantitative description of entanglement.

2.2.1 Entanglement between field and atoms

At first, we will define the measure of the entanglement between field and atoms
which we have used in Fig. 2.1 (for a single atom, N = 1). Here, we are dealing
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with a bipartite quantum system, consisting of the photon field on the one hand
and of the atoms on the other hand. To simplify matters, we will consider only
pure states of the atoms-field system. (The entanglement properties of mixed
states will be discussed in part III, for the simplest case of a system composed of
two two-level systems.) This is the case if field and atoms are initially in a pure
state, since we assume a unitary evolution (2.4) of atoms and field (without
coupling to an environment). For pure states of bipartite quantum systems,
however, there exists a unique measure of entanglement [71, 72], namely the
entropy of entanglement [66]. It is given in terms of the atoms’ reduced state ρ,
i.e., the state which is obtained if we look at the atoms alone and average over
the field by taking the partial trace. [Equivalently, we could also consider the
reduced field state by tracing over the atoms, without modifying the following
Eq. (2.8).] Then, the entropy of entanglement is defined as the von-Neumann
entropy S of the reduced state:

E = S(ρ) = − Tr{ρ log2N (ρ)}. (2.8)

The basis 2N of the logarithm is required to normalize the maximum value
Smax = 1 of the entropy, which is assumed if ρ is proportional to the identity
in the 2N -dimensional atomic space (the so-called ‘maximally mixed’ state). In
the general case of a M1 ×M2-dimensional quantum system, the logarithm has
to be taken with respect to the basis M1 if M1 ≤ M2, or M2 otherwise. (In our
present case, the field is infinite-dimensional, i.e., M1 = ∞, whereas M2 = 2N .)

The interpretation of the measure (2.8) is as follows: since the state of
the total system is completely known (as a pure state), any loss of knowledge
about the states of the subsystems (as quantified, e.g., by the von-Neumann
entropy) must be due to quantum correlations, or entanglement, between the
two subsystems.

2.2.2 Entanglement between the atoms

Remember that, since we want to prepare the field in a pure state, the entan-
glement between field and atoms should finally vanish. As discussed above, we
need (in general) an entangled initial atomic state for this purpose. In chap-
ter 5.2, we will examine some entanglement properties of the required atomic
states. The quantitative description of the entanglement between the atoms,
however, is complicated by the fact that we are dealing with a many-particle
system. Even for pure states, a unique way of quantifying entanglement by
a single number between many particles does not exist [73, 74, 75, 76, 77].
For example, we can look at the degree of entanglement between the first and
second atom, or between the third and fourth atom, which may be very differ-
ent. Hence, one scalar quantity is not sufficient for a complete characterization
of many-particle entanglement. At present, it is still unclear (to our knowl-
edge) how many independent quantities (i.e., invariants under local‡ unitary
transformations [78]) would be needed. However, we do not intend to go into
further details of this complicated issue, but rather look for a simple way to

‡Here, ‘local’ means: acting only on one single particle.
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find out whether some entanglement between the N atoms injected into the
cavity is present. For this purpose, we consider the reduced density matrix of
each individual atom

ρi = trj �=i(|ψ0〉〈ψ0|), i = 1, . . . , N. (2.9)

Here, the partial trace is taken over all the other atoms, j �= i. According to
Eq. (2.8), the entropy of ρi quantifies how much the i-th atom is entangled with
the other ones. Instead of the entropy, however, we prefer to use the largest
eigenvalue pi ≥ 1

2 of ρi, which is a monotonously decreasing function of the von-
Neumann entropy [i.e., S(ρi) = −pi log(pi)− (1−pi) log(1−pi)]§, and therefore
also provides a good measure of entanglement. The reason for this choice is the
following additional property of pi: it gives an upper bound for the overlap of
|ψ0〉 with any product state of the N atoms, as can be easily seen as follows:

|〈ψ0|ψ(1), . . . , ψ(N)〉|2 ≤
∑

kj=u,d

j �=i

|〈ψ0|k1, . . . , ki−1, ψ
(i), ki+1, . . . , kN〉|2 =

= 〈ψ(i)|ρi|ψ(i)〉 ≤ pi. (2.10)

Here, the sum is over a complete basis of the remaining atoms, j �= i, which
is nothing else than the partial trace in Eq. (2.9). Since Eq. (2.10) is valid for
each i, the smallest one of the pi’s gives us the tightest upper bound (among
the different pi’s) for the overlap with a product state. Conversely, if all the
pi’s are close to 1, then the state |ψ0〉 is close to a product state.¶ Let us note,
however, that the N quantities pi do not completely describe the entanglement
properties of |ψ0〉. For example, the two states(

|u〉 ⊗ |u〉 ⊗ . . .⊗ |u〉︸ ︷︷ ︸
N

+ |d〉 ⊗ |d〉 ⊗ . . .⊗ |d〉︸ ︷︷ ︸
N

)
/
√

2 (2.11)

(sometimes called a ‘N-particle cat state’) and

1√
2

(
|u〉 ⊗ |u〉 + |d〉 ⊗ |d〉

)
⊗ . . .⊗ 1√

2

(
|u〉 ⊗ |u〉+ |d〉 ⊗ |d〉

)
(2.12)

are not distinguished by the pi’s. Although in both cases pi = 1/2 for each
i, i.e., each atom is maximally entangled with the other ones, in the second
state (2.12), which is a product of two-particle states, the atom is entangled
only with one neighboring atom, whereas the first case (2.11) exhibits true
N -particle entanglement.

§Proof: dS/dpi = − log(pi) + log(1 − pi) < 0 for pi > 1
2

(which is always the case in a
two-level system).

¶We believe that also a lower bound for the maximum overlap of |ψ0〉 with a product state
in terms of the pi’s can be derived, e.g., something like |〈ψ0|ψ(1), . . . , ψ(N)〉|2 ≥ p1 . . . pN , or
≥
P

i pi − (N − 1), but so far could not demonstrate it explicitly.



Chapter 3

Asymptotic completeness

In this chapter, we define the concept of asymptotic completeness [32, 79],
and show that the atoms-field interaction introduced in the previous chapter,
Eqs. (2.1, 2.4), fulfills this property. As we will see, this allows - in the limit
N → ∞ of infinitely many atoms interacting with the field - to prepare the
field in an arbitrary desired quantum state |χ〉, i.e., the field-atoms system in
a factoring state |χ〉 ⊗ |ψ〉. Moreover, in this limit, the required initial atomic
state |ψ0〉 does not depend on the initial state of the field.

Originally, asymptotic completeness is an important concept in scattering
theory, where it is required for defining the central object of interest, the scat-
tering transformation. As we will try to explain in the following chapter 3.1,
also our atoms-field interaction, Eqs. (2.1,2.4), can be, in some sense, viewed
as a scattering process. This will serve as a motivation for the definition of
asymptotic completeness of quantum Markov chains in chapter 3.2, where also
its consequences for the state preparation will be examined.

Tt

Ω+

T
(0)
t

Ω−

ρ−T
(0)
t

ρ+

St → −∞

t → ∞

ρ

Figure 3.1: A scattering process is called asymptotically complete, if every state
which is asymptotically free in the distant past (t → −∞), will again be as-
ymptotically free in the distant future (t → ∞) [79].
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3.1 Scattering theory and quantum Markov chains

We start by giving a very brief summary of the basic concepts in scattering
theory, following the introductory chapter of [79]. Generally, the purpose of
scattering theory is to establish a relation between certain states of interacting
systems, namely those which are asymptotically free in the distant past or
future. An essential prerequisite is the existence and uniqueness of scattering
states, which allow the definition of the Møller operators Ω± as follows: if Tt

denotes the time evolution in the presence of the interaction, and T
(0)
t the free

evolution, then Ω± = limt→∓∞ T−tT
(0)
t . Those operators map the incoming (or

outgoing) free states ρ− (or ρ+) onto the corresponding interacting scattering
states ρ = Ω+ρ− (or ρ = Ω−ρ+, respectively). The next step would be to
obtain the scattering transformation S = (Ω−)−1Ω+, which maps the incoming
onto the outgoing free states, see Fig. 3.1. Obviously, this is only possible (as
a bijective transformation) if the range of Ω+ equals the range of Ω−. This
property is called ‘weak asymptotic completeness’.∗ In other words, asymptotic
completeness requires that every state which is asymptotically free in the distant
past, will again be asymptotically free in the distant future.

The above construction of the scattering transformation is quite general
and applies both for classical and quantum systems. In [32], the authors make
a further step, and introduce concepts known from scattering theory into the
theory of quantum Markov chains. In general, a quantum Markov chain can
roughly be described as follows (see, e.g., [80] for more details): a quantum
system A interacts subsequently with an infinite sequence of identical other
quantum systems C, as visualized by the following picture:

. . . ⊗ C ⊗

A
⊗
C

U
⊗ C ⊗ . . .

−−−−−−−−→
S

The shift operator S moves the sequence one step to the right so that the next
C may interact with A via the unitary interaction operator U . Obviously, the
atoms-field interaction (2.4) described in the previous chapter is very similar to
the above picture of a quantum Markov chain: here, A represents the quantized
field mode, whereas the C’s are the two-level atoms. In order to complete the
agreement, we have to clarify the role of the shift operator in Eq. (2.4): if U
denotes the interaction (2.1) with a fixed single atom (formally the ‘zero-th’
atom), then the interaction with the i-th atom reads U (i) = S−iUSi. Con-
sequently, the interaction operator UN = U (N) . . .U (1), Eq. (2.4), can also be
written as

UN = S−N(US)N . (3.1)

Hence, the definition of UN implies that after the interaction (US)N with N
atoms, the whole atomic sequence is shifted back again via S−N to its original

∗The property ‘asymptotic completeness’ additionally requires that the range of Ω+ (or
Ω−) covers all states of the interacting system which do not remain bound.
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position. This may remind us of the definition of the Møller operators, as will
be further discussed below.

The name ‘Markov chain’ can be justified as follows: for any chain of the
above described form, the time evolution of the field fulfills the Markov prop-
erty, i.e., its state at all future times can be calculated if we only know its
present state at time t. Reversely, every Markovian evolution of the field can
be represented by a quantum Markov chain. (A stationary Markov process,
which is invariant under arbitrary time shifts, is obtained if all atoms enter the
cavity in the same initial state.)

We are now ready to apply the concepts of scattering theory outlined above
to our quantum Markov chain. Here, the number N of atoms having crossed the
cavity takes the role of the time t, whereas the free evolution corresponds to the
shift S. Hence, the evolution of the interacting system reads TN = (US)N , and
the free evolution T

(0)
N = SN . Now, one might think of defining the Møller oper-

ators in the same way as above: Ω+ = limN→−∞ T−NT
(0)
N = limN→−∞(UN )−1,

according to Eq. (3.1), and likewise Ω− = limN→∞(UN)−1. However, these ex-
pressions are mathematically not well defined.† The situation changes if we
switch into the Heisenberg picture, where the operators acting on atoms and
field evolve in time. Then, the evolution U †

NOUN of an arbitrary operator O
can be properly defined also in the limit N → ∞ [81]. In analogy to the above
notion of asymptotic completeness, saying that every scattering state will be
asymptotically free for t → ∞, the authors of [32] introduced the following de-
finition: the atoms-field interaction is asymptotically complete if - in the limit
N → ∞ of infinitely many atoms interacting with the photon field - every op-
erator evolves ‘freely’, i.e., such as if there was no interaction between atoms
and field. This is the case if the operator U †

NOUN restricted onto the field and
the incoming atoms (i.e., those which have not yet interacted with the field)‡

approaches the identity operator if N → ∞ (since then, due to U †�U = �,
the interaction of all the following incoming atoms with the field will have no
effect). Due to the property of any operator O acting on an infinite tensor prod-
uct, namely that O may differ from the identity only on finitely many atoms†,
this is again the case if only any field operator O = A⊗� turns into an operator
acting only on the outgoing atoms. Thereby, we have arrived at the following

†Operators on an infinite tensor product C ⊗ C ⊗ . . . can only be properly defined if we
require that every operator can be arbitrarily well approximated by an operator which differs
from the identity only on finitely many C’s [81]. Since U �= � acting on C, this is obviously
not fulfilled by objects like limN→±∞ UN or limN→±∞(UN )−1.

‡Note that, when changing from the Schrödinger to the Heisenberg picture, the role
of incoming and outgoing atoms is exchanged: when evaluating the operator U†

NOUN

= U (1)† . . . U (N)†OU (N) . . . U (1) after interaction with N atoms, see Eq. (2.4), we first have
to apply the interaction U (N) with the last atom onto the operator O. In this sense, time is
reversed in the Heisenberg picture.
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3.2 Definition of asymptotic completeness

Asymptotic completeness is a property of the asymptotic behavior of the atoms-
field interaction in the limit of infinitely many atoms. It is defined as follows:§

Every observable A of the photon field develops (in the
Heisenberg picture) into an observable MA of the atoms:

lim
N→∞

U †
N(A ⊗ �)UN = �⊗ MA. (3.2)

Here, UN denotes the unitary interaction of the field with N subsequent
atoms, see Eq. (2.4). In particular, asymptotic completeness is fulfilled by
the Jaynes-Cummings interaction (2.2,2.3) - at least if the vacuum Rabi angle
φ (which, remember!, is assumed to be constant for each single atom) does
not fulfill a trapping state condition. (Otherwise, asymptotic completeness is
still valid if the Hilbert space of the photon field is restricted to a subspace
without trapping states.) Before demonstrating this, however, let us give a
physical interpretation of the above equation, and discuss some of its general
implications.

We have to keep in mind that, in the Heisenberg picture, the state vectors
are constant, i.e., all expectation values are taken with respect to the initial
state of atoms and field. Now, according to Eq. (3.2), the expectation value of
any photon field observable A, after interaction with N → ∞ atoms, is given
by the expectation value of the atomic operator MA with respect to the initial
atomic state, irrespective of the initial field state. Hence, we may reformulate
the property of asymptotic completeness equivalently to Eq. (3.2) as follows:

(a) The field loses the memory about its initial state after
the interaction with infinitely many atoms.

Furthermore, if we take into account that the evolution of atoms and field is
unitary, we can draw the following conclusion from Eq. (3.2):

(b) Any field state |χ〉 can be prepared by choosing an ap-
propriate initial atomic state |ψ0〉.

In order to derive property (b), we consider A = |χ〉〈χ|, the projector on the
desired field state |χ〉. Then, after a unitary evolution, which does not change

§In order to specify the operator norm in which (3.2) holds, a more precise definition is
as follows [32]: there exist strictly positive states ρf and ρa for the field and a single atom,
respectively, (e.g., thermal equilibrium corresponding to nonzero temperature) such that for
every field observable A there exists an atomic observable MA such that the expectation value
of (U†

N (A⊗�)UN −�⊗MA)2 (where the square is needed to make the operator positive) with
respect to the state ρ = ρF ⊗ ρa ⊗ ρa ⊗ . . . (with infinitely many atoms, all in the same state
ρa) vanishes in the limit N → ∞. (Here, N only defines the number of atoms interacting with
the cavity field, whereas MA and ρ are independent of N , i.e., they refer to the total infinite
sequence of atoms, including also the atoms which have not yet interacted with the field for a
given N .) As a consequence, the expectation values of the two operators on the left and right
hand side of Eq. (3.2) with respect to any state which differs from ρ only on the field and on
finitely many atoms, are equal in the limit N → ∞ [81]. Thereby, e.g., the case that infinitely
many atoms enter the cavity in the upper state, which may lead to a divergent field state, is
excluded.
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the spectrum of an operator, also M|χ〉〈χ| is a projector, in the infinite dimen-
sional atomic Hilbert space. If we now choose any state |ψ0〉 from the range of
M|χ〉〈χ| as initial atomic state, the expectation value of |χ〉〈χ| after the atoms-
field interaction (evaluated with respect to |χ0〉 ⊗ |ψ0〉), i.e., the probability of
finding the field finally in the desired state |χ〉, is 1. In the Schrödinger picture,
this reads:

lim
N→∞

UN |χ0〉 ⊗ |ψ0〉 = |χ〉 ⊗ |ψχ0〉, ∀|χ0〉. (3.3)

Obviously, the final state exhibits no entanglement of the field with the atoms.
Furthermore, as a consequence of the above property (a), the desired field state
|χ〉 is created irrespective of the initial field state |χ0〉. Consequently, asymptotic
completeness enables us to prepare an arbitrary field state without knowing its
initial state. In the following, we will call this property, which combines the
two above properties (a) and (b), ‘universal preparability’.

Equivalence of asymptotic completeness and universal prepara-
bility

Above, we have argued that asymptotic completeness, Eq. (3.2), implies univer-
sal preparability. Although it is not immediately obvious, it can be shown [82]
that also the reverse is true: the fact that any field state can be prepared by
choosing an appropriate initial atomic state, independently of the initial field
state (= universal preparability), implies that also for (almost) all other atomic
initial states the field finally does not depend on its initial state (= asymptotic
completeness). Hence, asymptotic completeness and universal preparability are
in fact equivalent.

This equivalence is also useful if we want to check whether a given atoms-
field interaction fulfills the property of asymptotic completeness. Following this
idea, we will give in the next section sufficient conditions for asymptotic com-
pleteness which have a simple physical meaning. Apart from enabling us to
verify immediately this property in the case of the Jaynes-Cummings interac-
tion, this will also illustrate that asymptotic completeness is not only a specific
property of the Jaynes-Cummings interaction, but is actually valid for more
general realizations of quantum Markov chains. For example, within our gen-
eral setting of atoms interacting with a quantized field, we can certainly relax
the condition of resonance between atoms and field (as long as transfer of energy
between atoms and field is possible), or the two-level structure of the atoms,
etc.

3.3 Sufficient conditions for asymptotic complete-
ness

The following two conditions are sufficient for asymptotic completeness:

(i) existence of a unique pure invariant state: there exists a single-atom
state |ψ̃〉 such that the cavity field, while interacting with an infinite
sequence |ψ̃〉 ⊗ |ψ̃〉 ⊗ . . . of such identically prepared atoms, converges
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into a uniquely determined pure invariant state |χ̃〉, independently of the
initial field state. (Then, the field state |χ̃〉 obviously has to be invariant
under the interaction with a single atom in the initial state |ψ̃〉.)

(ii) time reversal symmetry: if the field state |χ2〉 can be prepared from the
initial state |χ1〉, then also vice versa |χ1〉 from |χ2〉.

Before demonstrating how these two conditions enable us to prepare an arbi-
trary field state |χ〉, starting from an unknown initial state (what, as mentioned
above, is equivalent to asymptotic completeness), let us at first verify that the
Jaynes-Cummings interaction fulfills both conditions.

3.3.1 Invariant states of the Jaynes-Cummings model

As for condition (i), an infinite sequence |d〉 ⊗ |d〉 ⊗ . . . of atoms in the ground
state |d〉 absorbs all photons from the cavity field, which consequently ends up
in the vacuum state |0〉. Strictly speaking, this is only true in the absence of
trapping states, i.e., if the transition probability |Bn|2 = sin2(φ

√
n) from n to

n − 1 photons (see chapter 2.1) is larger than zero for all photon numbers n.
Otherwise, the vacuum as unique invariant state can be restored by restricting
the Hilbert space of the photon field to a subspace without trapping states
(i.e., considering only field states with maximum photon number below the
first trapping state).

Although the existence of one unique pure invariant state is already sufficient
in order to fulfill property (i), we want to note here that the vacuum is not the
only one: in fact, for each atomic state |ψ̃〉 = a|u〉 + b|d〉 with |a|2 < |b|2, the
infinite sequence |ψ̃〉 ⊗ |ψ̃〉 ⊗ . . . will finally force the field to converge into the
pure state |χ̃〉 whose photon number amplitudes dn = 〈n|χ̃〉 are defined by the
following recursion relation (in the absence of trapping states):

dn = i
a

b
cot(φ

√
n/2) dn−1, n ≥ 1, (3.4)

where d0 is determined by normalization. These states are known in the lit-
erature as ‘cotangent states’ [83, 84]. The condition |a|2 < |b|2 is required to
guarantee the normalizability of the thereby defined state [81]. (In other words:
if the atoms enter the cavity mainly in the upper state, the field state diverges
for N → ∞, unless stopped by a trapping state.) This condition can be dropped
in the presence of an odd trapping state, i.e., φ = kπ/

√
nt + 1 with odd k (and

corresponding restriction of the photon field Hilbert space to photon numbers
not larger than nt). Then, for an arbitrary atomic state (i.e., also |a|2 ≥ |b|2),
the field converges into the above cotangent state, whereas in the case of an
even trapping state (i.e., with even k) a mixed stationary field state will be
reached [83] (apart from the trivial cases |ψ̃〉 = |d〉 or |ψ̃〉 = |u〉, where the sta-
tionary states are |0〉 and |nt〉, respectively). Note that, in the limit φ → 0, we
can replace the cotangent in Eq. (3.4) by the inverse 2/(φ

√
n) of its argument.

Then, the cotangent state reduces to a coherent state |α〉 =
∑

n αn|n〉/
√

n!
(modulo normalization), with α = 2ia/bφ.
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3.3.2 Time-reversal symmetry of the Jaynes-Cummings model

As for condition (ii) above, the interaction (2.4) fulfills the following time re-
versal symmetry:

U−1
N = (�⊗ TN)−1UN(� ⊗ TN), (3.5)

where the atomic time reversal operator TN is defined as follows: after reversing
the order of the N atoms, it performs a phase shift |d〉 → −|d〉 on each single
atom [the latter amounts to a multiplication of the atomic ladder operators
σ, σ† by a factor of −1, which yields the inverse of the single-atom interaction
(2.1)]:

TN |iN . . . i1〉 = −1i1+...+iN |i1 . . . iN〉. (3.6)

Here, each ij, j = 1, . . . , N , is either 0 or 1, corresponding to the j-th atom in
the upper or lower state |u〉 or |d〉, respectively.

Eq. (3.5) implies the desired time reversal property (ii): if

UN |χ1〉 ⊗ |ψ1〉 = |χ2〉 ⊗ |ψ2〉, (3.7)

i.e., |χ2〉 can be prepared from |χ1〉, it follows by application of Eq. (3.5) that

UN |χ2〉 ⊗ TN |ψ2〉 = |χ1〉 ⊗ TN |ψ1〉, (3.8)

i.e., |χ1〉 can be prepared from |χ2〉.

3.3.3 A preparation scheme based on the sufficient conditions

It is easy to see how the above two conditions enable us to prepare an arbitrary
field state |χ〉, starting from an unknown initial state (and, as mentioned above,
the ability to do this is equivalent to asymptotic completeness): first, we prepare
the field in the invariant state |χ̃〉, making use of condition (i). Then, we exploit
the time-reversal condition (ii), which enables us to generate the desired field
state |χ〉 from |χ̃〉 (since the reverse process is possible according to condition
(i)). Thereby, we have found one possible preparation scheme. Evidently, it
consists of two steps: the first step is needed to purify the field (i.e., to remove
the dependence on the initial field state), while the actual preparation of |χ〉
takes place in the second step.

Note, however, that the above scheme requires an infinite number of atoms
for an exact state preparation. In the more realistic case of finite N , the prepa-
ration is only possible with limited accuracy, as quantified by the fidelity of
the state preparation, see Eq. (4.1) in the following chapter. Hence, we should
ask whether the procedure described above is also the most efficient one, which
maximizes the fidelity for a given number of atoms. In fact, using the above
scheme with a given number N of atoms, we would have to divide the N atoms
into two subsequences |ψ(1,2)

0 〉 of length N1 and N2 = N − N1 for the first and
second step of the preparation, respectively. In particular, the initial atomic
state would be a product state of the form |ψ0〉 = |ψ(2)

0 〉 ⊗ |ψ(1)
0 〉. Since, in

principle, arbitrarily entangled atomic states are allowed, we should not expect
that such a product state will give the optimal result. For example, the optimal
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initial state could be a superposition of states with different lengths N1,2 of the
purification and preparation steps. Moreover, we cannot a priori exclude the
existence of other preparation strategies which do not distinguish at all between
purification and preparation (even not in the limit N → ∞). Finally, for a finite
number N of atoms, also the independence of the final field state from its initial
state will not be precisely realized. Therefore, the optimal preparation strategy
for finite N could also depend on the initial field state.

As the above discussion reveals, the state preparation with a finite number
N of atoms - the natural scenario for any physical implementation of asymptotic
completeness in the laboratory - bears some additional complications compared
to the idealized case N → ∞. In particular, the following questions arise:

• What is the highest possible fidelity of the state preparation, and how
fast do we reach the ideal value 1 predicted by asymptotic completeness,
when increasing the number N of atoms?

• Which initial atomic state do we have to choose in order to reach the
maximum fidelity?

• How do maximum fidelity and optimal initial atomic state depend on the
initial field state?

We will turn to these questions in the following two chapters, where we examine
the state preparation through a finite number N of atoms.



Chapter 4

State preparation with a finite
number of atoms

As demonstrated in the previous chapter, in the limit of infinitely many atoms,
the asymptotic completeness of the atoms-field interaction ensures the existence
of an appropriate initial atomic state which prepares the field in an arbitrary
desired state. In a real laboratory experiment, however, we only have finitely
many atoms at our disposal. The main limitation on the number N of atoms
is imposed by the necessity to generate the required entangled initial atomic
state in the 2N -dimensional atomic Hilbert space. Hence, the crucial question
is whether the state preparation is - at least approximately - also possible by
using a not too large finite number of atoms. In other words: how fast is the
limit of asymptotic completeness reached if we increase the number N of atoms?

As a first step to answer this question, we will show in this chapter how to
determine the optimal initial atomic state which prepares the desired field state
with the highest possible accuracy, given a finite number N of atoms. Whereas
the optimal atomic state |ψ(opt)

0 〉 can always be found by a numerical diagonal-
ization of a 2N × 2N matrix, we will also derive a general analytical estimation
of |ψ(opt)

0 〉, based on the time-reversal symmetry of the Jaynes-Cummings in-
teraction, which we expect to achieve almost the optimum result of the state
preparation. (The validity of this conjecture will be tested numerically in chap-
ter 5.1.) Furthermore, for the case of the vacuum as the initial field state, this
estimation allows us to draw some conclusions about the convergence to the
limit of asymptotic completeness, and the number N of atoms needed to reach
a given level of fidelity.

4.1 Maximum fidelity and optimal atomic state

To start with, we need a quantitative measure for the quality of the state
preparation. For this purpose, the simplest choice is the fidelity F with respect
to |χ〉, defined as the expectation value of the projector |χ〉〈χ| ⊗ � onto the
desired field state |χ〉, that is, the probability to find the field in the desired

25
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state when performing a measurement.∗

Given the initial field state ρ0 (which may be a mixed state), and the atomic
initial state |ψ0〉, the fidelity after the atoms-field interaction reads:

F = Tr
{
(ρ0 ⊗ |ψ0〉〈ψ0|) U †

N (|χ〉〈χ| ⊗ �)UN

}
. (4.1)

In order to find the optimal |ψ0〉, which prepares the desired target state |χ〉
with the maximum fidelity, starting from a given initial field state ρ0, we split
the trace in Eq. (4.1) into the partial traces tra and trf over the atoms and
the field, respectively. Doing so, the trace over the atomic subspace yields the
expectation value

F = 〈ψ0|M (ρ0)|ψ0〉 (4.2)

of the following (hermitian) atomic operator

M (ρ0) = trf

{
(ρ0 ⊗ �) U

†
N(|χ〉〈χ| ⊗ �)UN

}
. (4.3)

Hence, M (ρ0) contains the complete information on the fidelity of the state
preparation for an arbitrary atomic initial state |ψ0〉. An efficient method to
calculate the operator M (ρ0), making use of the product structure of the inter-
action UN , see Eq. (2.4), is described in appendix A.

From the asymptotic completeness, Eq. (3.2), we know that, in the limit
N → ∞, the operator M (ρ0) loses the dependence on the initial field state ρ0

and, according to Eq. (3.2), converges to a projection M|χ〉〈χ| onto the atomic
space. The corresponding range of atomic states is infinitely dimensional, since
also the projection onto the desired field state |χ〉〈χ| ⊗ � on the left hand side
of Eq. (3.2) has this property (due to the identity on the atomic space), and the
spectrum is unchanged by the unitary atoms-field interaction. Consequently,
we can expect that - also in the case of finite N - there will be more than one
atomic initial state preparing the desired field state |χ〉 with high fidelity.

At first, however, we will concentrate on the optimal initial atomic state
which yields the maximum fidelity. (Other initial atomic states will be examined
in chapter 5.4.3.) From Eq. (4.2), it follows that:

∗Throughout this thesis, we will consider only pure target field states |χ〉. The preparation
of mixed field states is fundamentally different, since atoms and field need not finally be in a
product state. (The desired mixed field state could also be obtained as a pure entangled state
of field and atoms.) Note, however, that if we can prepare pure states, mixed field states ρ can
be prepared by decomposing them into pure states, i.e., ρ =

P
i pi|χi〉〈χi|, and choosing as

initial atomic state the corresponding mixture of atomic states for the preparation of the |χi〉’s.
However, the problem of the optimal preparation of ρ (with respect to some measure of fidelity
for mixed states, see below) remains unsolved: firstly, a given state ρ can be decomposed in
many different ways, and, secondly, the optimal initial atomic state need not necessarily be a
mixture of the above described form. (Instead, the desired mixed final field state could also
be obtained from a pure initial atomic state, if atoms and field are finally in an entangled
state). Finally, it is unclear how to define the fidelity with respect to a mixed state: there
exist several ways of quantifying the deviation of the final field state ρ′ from the desired state
ρ. Common examples are: the Hilbert-Schmidt metric DHS(ρ, ρ′) =

p
tr[(ρ − ρ′)2] [85], the

Bures metric DB(ρ, ρ′) =
p

2(1 − tr[(ρ1/2ρ′ρ1/2)1/2]) [86], and the quantum relative entropies
S(ρ||ρ′) = tr(ρ lnρ − ρ lnρ′) or S(ρ′||ρ) [87].
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The maximum fidelity Fmax is the largest eigenvalue of
M (ρ0), and the optimal initial atomic state |ψ(opt)

0 〉 is the
corresponding eigenvector.

This allows to calculate numerically the optimal initial atomic state and the
corresponding maximum fidelity for any initial and final field states and a given
number N of atoms - at least if N is not too large.† Before turning to numerical
calculations in chapter 5, however, we will try to derive some general properties
of our preparation scheme. In particular, for the case of the vacuum as initial
field state, we will derive an analytical lower bound for the maximum fidelity,
which can be evaluated also for very large numbers N of atoms, and will give us
some insight into the asymptotic behavior N → ∞. For this purpose, we will
make use of the time-reversal symmetry of the atoms-field interaction, Eq. (3.5).

Time-reversal property of the maximum fidelity

In order to find out how the time-reversal symmetry is reflected by the maximum
fidelity, in the case that the field is initially in a pure state, ρ0 = |χ0〉〈χ0|, we
rewrite the fidelity with respect to |χ〉 in a way where the initial and final states
appear more symmetrically:

F = max
|ψ〉

|〈χ, ψ|UN |χ0, ψ0〉|2 . (4.4)

In the following, we will refer to the state |ψ〉 where the maximum in Eq. (4.4) is
assumed as the ‘final atomic state’. It is uniquely determined by the projection
of the (entangled) total final state |Ψ〉 = UN |χ0, ψ0〉 onto the target field state,
which leaves the atoms in the pure state

|ψ〉 = 〈χ|UN |χ0, ψ0〉/
√

F . (4.5)

The factor
√

F , which is needed to normalize the state, equals the success
probability of the projection onto the desired field state |χ〉, that is, the fidelity
of the state preparation. Obviously, the overlap of |Ψ〉 with any other final
state |χ, ψ′〉, ψ �= ψ′ is then strictly smaller than F (unless, of course, F = 0,
where no final atomic state is defined). Now, the maximum fidelity is obtained
by maximizing also over the initial atomic states:

Fmax = max
|ψ〉,|ψ0〉

|〈χ, ψ|UN |χ0, ψ0〉|2 . (4.6)

Taking into account the time-reversal symmetry of UN , see Eq. (3.5), it is
obvious from Eq. (4.6) that:‡

†Note that the dimension 2N of the atomic Hilbert space increases exponentially fast with
N , finally exceeding the available computational resources. E.g., for N = 15, the storage of
the hermitian matrix M (ρ0) takes about 10 GB RAM. Even with the currently largest parallel
machines, it would not be possible to get much higher than N � 20.

‡More generally, not only Fmax, but the whole spectra of the two operators M |χ0〉〈χ0| (for

the preparation of |χ〉 out of |χ0〉) and M
|χ〉〈χ|
0 (vice versa) are identical at any given N . This

time-reversal property of M |χ0〉〈χ0| is proven in appendix A.
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The maximum fidelity for the preparation of |χ〉 out of the
initial state |χ0〉 equals the maximum fidelity for the reverse
process of preparing |χ0〉 out of |χ〉.

We have already come across the corresponding statement for Fmax = 1, in
chapter 3.3: the time-reversal symmetry expressed thereby was the second suf-
ficient condition (ii) for asymptotic completeness.

4.2 Initial field state: vacuum

Furthermore, the reader may remember from chapter 3.3 that the time-reversal
property provided us with an explicit scheme for the preparation of |χ〉, which
relied on the fact that the vacuum state can always be generated by sufficiently
many ground state atoms. Let us therefore first examine the case ρ0 = |0〉〈0|,
i.e., the field is initially in the vacuum state. Following the scheme of chapter 3.3
(the purification step is obviously not needed), we obtain the required initial
atomic state from the time-reversed process of generating the vacuum from |χ〉
by injecting all atoms in the ground state. Consequently, we proceed as follows:
starting from the initial state |χ〉 ⊗ |d . . .d〉, we apply the inverse interaction
and project the resulting (entangled) final state onto the field vacuum:

|ψ′
0〉 = 〈0|U †

N |χ, d . . .d〉/
√

F ′ (4.7)

= TN 〈0|UN |χ, d . . .d〉/
√

F ′. (4.8)

Here, we have used the time-reversal symmetry (3.5), and the fact that the
atomic time reversal operator TN leaves the state |d . . .d〉 unchanged (apart
from a possible minus sign, which is irrelevant, since any state vector can be
multiplied by an arbitrary phase factor). The normalization factor is given by

F ′ = 〈χ, d . . .d|UN(|0〉〈0| ⊗ �)U †
N |χ, d . . .d〉 (4.9)

= |〈0, ψ′
0|U

†
N |χ, d . . .d〉|2 (4.10)

Here, Eq. (4.10) follows from Eq. (4.9) by definition of |ψ′
0〉, Eq. (4.7). The

physical interpretation of F ′ is as follows: it equals the probability of finding the
cavity in the vacuum state, after the field - initially in state |χ〉 - has interacted
with N ground state atoms. The state |ψ′

0〉 then is the time-reversed atomic
final state, as obvious from Eq. (4.8).

Since F ′ equals the overlap of the final state |Ψ〉 = UN |0, ψ′
0〉 with |χ, d . . .d〉,

see Eq. (4.10), it gives a lower bound for the fidelity F of the state preparation
with |ψ′

0〉 as initial atomic state, see Eq. (4.4). One might think that, due to
the time reversal symmetry, F should be in fact equal to F ′. This is true if and
only if the final atomic state |ψ〉 = 〈χ|UN |0, ψ′

0〉/
√

F is again equal to |d . . .d〉.
Hence, the condition for F = F ′ reads

|d . . .d〉 != |ψ〉 = 〈χ|UN |0, ψ′
0〉/

√
F (4.11)

= 〈χ|UN (|0〉〈0| ⊗ �) U
†
N |χ, d . . .d〉/

√
FF ′ (4.12)

=
1√
FF ′

M
|χ〉〈χ|
0 |d . . .d〉. (4.13)
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Here, we have used the definition of |ψ′
0〉, Eq. (4.7), in the second line, and

the definition of M
|χ〉〈χ|
0 [like Eq. (4.3), but for the preparation of the vacuum

starting from the initial state |χ〉], together with the time reversal symmetry,
Eq. (3.5), in the third line. Hence, F = F ′ if and only if |d . . .d〉 is an eigenstate
of M

|χ〉〈χ|
0 .§ Due to the time-reversal property of M |χ0〉〈χ0|, see appendix A, this

is again the case if and only if |ψ′
0〉 is an eigenstate of M |χ0〉〈χ0| with eigenvalue

F ′.¶

Note that if |χ〉 = |n〉 is a number state, |ψ′
0〉 must be an eigenvector of

M |0〉〈0| with F = F ′, since |ψ〉 = |d . . .d〉 follows from the excitation number
conservation, see Eq. (2.6). However, even if |ψ′

0〉 is an eigenvector of M |0〉〈0|,
the eigenvalue F need not necessarily be the largest eigenvalue Fmax. In any
case, the fidelity F is a lower bound to the maximum fidelity:

F ′ ≤ F ≤ Fmax. (4.14)

4.2.1 Conjecture

According to Eqs. (4.10) and (4.6), equality in (4.14), i.e., F ′ = Fmax, is equiv-
alent to the following statement:

The optimal way of generating the field state |χ〉, starting
from the vacuum, is such that the final atomic state is the
ground state |d . . .d〉.

By virtue of the time reversal property of the maximum fidelity (see end of
chapter 4.1), this is again equivalent to:

The optimal way of generating the vacuum, starting from
the initial field state |χ〉, is to inject all atoms in the ground
state.

Intuitively, this statement seems to be very convincing: if all atoms are injected
in their ground state they can absorb the maximum amount of energy from the
field. Nevertheless, the reader should be warned that, as our numerical results
in chapter 5.1 will show, the above conjecture is in general not fulfilled, although
it gives a good approximation in most cases.

Since F ′ refers to a definite final atomic state |d . . .d〉, it is easier to calculate
than the fidelity F , where no assumption is made about the final atomic state.
(Even harder is the calculation of the maximum fidelity Fmax, where both initial
and final atomic state are unknown.) In fact, we will now derive a simple
formula for F ′.

A simple formula for the lower bound F ′

First, let us consider the case |χ〉 = |n〉, where |n〉 is the number state with
n photons. As already stated above, F ′ equals the probability of finding the

§The eigenvalue then has to be F ′.
¶Here, we have to include explicitly the condition that the eigenvalue is F ′, since the

mere fact that |ψ′
0〉 is an eigenstate of M |χ0〉〈χ0|, with arbitrary eigenvalue F ≥ F ′, does not

guarantee the corresponding final atomic state to be |d . . . d〉.
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cavity in the vacuum state, after the field - initially in state |n〉 - has interacted
with N ground state atoms. Hence, if we assume that we measure the final
state |u〉 or |d〉 of each single atom after the interaction, then F ′ equals the
probability of detecting n out of the N atoms in the upper state |u〉 (thereby
absorbing all n photons from the cavity). However, according to the Jaynes-
Cummings model, see chapter 2.1, the probability of detecting a single atom in
|u〉 after interaction with initially m photons in the cavity is given by Pu(m) =
sin2(φ

√
m), and similarly Pd(m) = cos2(φ

√
m). Consequently, summing over

all the
(N

n

)
different possibilities to detect n out of the N atoms in the upper

state (and the remaining N − n ones in the lower state), we obtain

F ′(n) =
n∏

j=1

Pu(j)
∑

k0,...,kn≥0
k0+...+kn=N−n

n∏
i=0

[Pd(i)]ki . (4.15)

In the sum, ki denotes the number of |d〉-detections between the i-th and (i+1)-
th |u〉-detection, i.e., the index i counts the number of absorbed photons. Using
the lemma from Appendix B, we can transform the sum over the n+1 variables
ki into a sum over only one variable k. Inserting the above expressions for Pu

and Pd yields

F ′(n) = 1 −
n∑

k=1

cos2N(φ
√

k)
n∏

i=1
i�=k

sin2(φ
√

i)
sin2(φ

√
i) − sin2(φ

√
k)

. (4.16)

It is evident that F ′(n) → 1 when N → ∞, if all the factors cos2(φ
√

k), k =
1, . . . , n, are smaller than 1, or - in other words - if there are no trapping states.
Furthermore, the appearance of N in the exponent points at an exponentially
fast convergence in the limit N → ∞, i.e., 1 − F ∝ 10−|λ|N , where the rate λ
of the convergence is given by the logarithm of the largest one of these cosine
factors.‖

Next, we consider an arbitrary target field state |χ〉 =
∑

n cn|n〉. Note
that, in general, if we can prepare various field states (e.g., number states) with
high fidelity, this does not mean that we can also prepare any superposition
of those states with equal accuracy, since the corresponding final atomic states
may be different. However, such a conclusion is allowed for the lower bound
F ′, which always refers to the same atomic final state |d . . .d〉. Indeed, if we
insert |χ〉 =

∑
n cn|n〉 and 〈χ| =

∑
m c∗m〈m| into Eq. (4.9), we make the

following observation: all cross terms with n �= m vanish, since projecting the
state U †|m, d . . .d〉 onto the field vacuum yields (due to the excitation number
conservation, see chapter 2.2) an atomic state with excitation number m (i.e.,
m atoms in the upper state), which is orthogonal to any state with excitation
number n. Hence, we have

F ′ =
∑
n

|cn|2F ′(n). (4.17)

‖In the following, we will always use the logarithm with respect to the basis 10.
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Again, it is obvious that F ′ → 1 for N → ∞, since this is true for each F ′(n). In
contrast to the behavior of each single F ′(n), however, the overall convergence
need not necessarily be exponentially fast if the sum contains infinitely many
terms, as it is the case, e.g., for coherent states. On the other hand, in the
case of a finite sum n ≤ M , again the largest one of the factors cos2(φ

√
k),

k = 1, . . . , M , will determine the rate of convergence in the asymptotic limit.
In chapter 5.1, we present numerical results which compare Fmax with the

lower bound F ′. We will see that if the desired field state is a number state,
F ′ = Fmax is valid exactly (at least in the optimal regime of the vacuum Rabi
angle), whereas it still gives a good approximation for a general target field state.
Furthermore, as we will show in chapter 5.4.1, the convergence of Fmax → 1
follows the behavior of F ′ described above.

Estimation of the fidelity F achieved with |ψ′
0〉

Having at hand a simple formula for the lower bound F ′, Eqs. (4.16,4.17), the
next step would be to derive a similar formula for the fidelity F , Eq. (4.2),
which is achieved with the initial atomic state |ψ′

0〉, Eq. (4.7). This would be
useful for testing the validity of the conjecture Fmax = F ′, which necessarily
implies F ′ = F , see Eq. (4.14). As already mentioned above, F is more difficult
to calculate than F ′, since the final atomic state is unknown. However, we know
that for the preparation of number states |n〉 out of the vacuum through the
initial atomic state |ψ′

0〉, Eq. (4.7), with N ≥ n, the final atomic state is always
|ψ〉 = |d . . .d〉 [due to the atomic excitation number conservation, Eq. (2.6)],
and consequently F = F ′. Using this fact, we may try to calculate F for an
arbitrary target state.

If we denote the initial atomic state |ψ′
0〉 for the preparation of the number

state |n〉 according to Eq. (4.7) by |ψ(n)
0 〉, we have:

UN |0, ψ
(n)
0 〉 =

√
F ′(n) |n, d . . .d〉 +

√
1 − F ′(n)

∑
m

m<n

d(n)
m |m, ψ(n)

m 〉. (4.18)

This defines the final atomic states |ψ(n)
m 〉 belonging to the undesired final pho-

ton numbers m �= n. The corresponding coefficients fulfill the normalization
condition

∑
m |d(n)

m |2 = 1. Note that photon numbers larger than n do not
occur in the final state, since the state |ψ(n)

0 〉 has excitation number n. For the
same reason, each state |ψ(n)

m 〉 has excitation number n − m.
Let us now consider an arbitrary target state |χ〉 =

∑
n cn|n〉. According to

Eq. (4.7), the state
√

F ′|ψ′
0〉 is linear in |χ〉; hence we may write

|ψ′
0〉 =

∑
n

cn

√
F ′(n)√
F ′

|ψ(n)
0 〉. (4.19)

According to Eq. (4.18), this leads to the following final atomic state (obtained
by projecting the total final state UN |0, ψ′

0〉 onto the target field state):

|ψ〉 =
∑

n

|cn|2
F ′(n)√

F ′
|d . . .d〉 +
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+
∑
m<n

√
F ′(n)

√
1 − F ′(n)√
F ′

c∗mcn d(n)
m |ψ(n)

m 〉. (4.20)

Here, we have not yet normalized |ψ〉. In fact, the norm of the state (4.20) is
just the probability that the projection onto the desired field state succeeds,
or - in other words - the fidelity F which we want to calculate. Obviously,
the calculation of the norm would be very much simplified if the states |d . . .d〉
and |ψ(n)

m 〉 were all orthogonal to each other. Note that, as mentioned above,
each state |ψ(n)

m 〉 has a well defined excitation number n − m and is therefore
orthogonal to |d . . .d〉 and to each |ψ(n′)

m′ 〉 with n′−m′ �= n−m. However, states
having the same excitation number may in principle interfere with each other.
Depending on the phases of the photon number amplitudes cn, the interference
may be for each excitation number destructive or constructive.

In order to obtain an estimation, we have to make some simplifying assump-
tions: firstly, we assume that the phases of cn are randomly chosen, such that
the interference is expected to vanish. This approximation applies at least for
the average of F over all states with the same photon number distribution |cn|2.
Secondly, we assume that the coefficients d

(n)
m are approximately equally dis-

tributed in m, i.e., d
(n)
m = 1/

√
n. As evident from the sum over m in Eq. (4.20),

the exact distribution of the d
(n)
m ’s only plays an important role if the photon

number distribution |cm|2 of the target field state strongly fluctuates. (For such
target field states, the following estimation has to be handled with care.) With
these assumptions, we arrive at:

F � F ′ +
∑
m<n

F ′(n)(1− F ′(n))
n F ′ |cn|2|cm|2 (4.21)

� F ′ +
∑
n

|cn|2
1 − F ′(n)

n

∑
m

m<n

|cm|2. (4.22)

The second line is valid if the terms F ′(n) are very close to 1. We will come back
to this estimation later in chapter 5.1, where we will compare the deviation of
F from F ′ for different target field states.

4.2.2 Optimal choice of the vacuum Rabi angle

At first, however, let us return to the expressions (4.16) and (4.17) for the lower
bound F ′, which we have already used to infer on the convergence behavior of
F ′ in the limit N → ∞. As we have seen, for the preparation of a target state
including a finite number n of photons, the convergence will be exponentially
fast, with the convergence rate λ given by the logarithm of the largest one of
the factors cos2(φ

√
m), m = 1, . . .n.

The rate of convergence obviously depends on the vacuum Rabi angle φ,
which is the only experimental parameter of our atoms-field interaction (2.1,2.4).
In order to achieve a convergence as fast as possible, we will now try to find the
optimal value of φ. For this purpose, we have to maximize the smallest one of
the transition probabilities |Bm|2 = 1 − cos2(φ

√
m). As an example, the case
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Figure 4.1: Transition probabilities |Bm|2 = sin2(φ
√

m) between m and m − 1
photons for m = 1, . . . , 20. Obviously, the optimal value φ

(20)
opt = 0.574 (filled

circles), which maximizes the minimum of the transition probabilities, fulfills
the condition |B1|2 = |B20|2 (marked by the horizontal dashed line). Then,
increasing φ would decrease |B20|2, whereas a smaller φ would lead to a smaller
value of |B1|2. As an example, the open circles represent a too large value of the
vacuum Rabi angle (φ = 0.6), where the minimum of the transition probabilities
is smaller than in the optimal case.

n = 20 is shown in Fig. 4.1. From this figure, it is evident that the optimal
value φ

(n)
opt can in general be found as follows: it is the smallest positive φ which

fulfills the condition sin2(φ) = sin2(φ
√

n). ∗∗ The solution is given by

φ
(n)
opt =

π

1 +
√

n
. (4.23)

As we will verify by numerical calculations in chapter 5.1 (Figs. 5.1 and 5.2),
the above expression (4.23) gives a quite good approximation to the optimal
value of φ - especially in the asymptotic regime of very high fidelities.

The case is more complicated if the target field state contains arbitrarily
large photon numbers, such as, e.g., the coherent states. If we want to apply
the above scheme, we have to introduce a cut-off at some photon number n,
and then choose φ according to Eq. (4.23). The cut-off would depend on our
desired level of fidelity (or the level of fidelity which can be reached with the
given number N of atoms): for a very precise state preparation, we have to
take into account also very high photon numbers, and, according to Eq. (4.23),

∗∗This is the optimal solution if we restrict ourselves to not too large values of φ. Mathe-
matically, it is possible to choose φ such that all transition probabilities are arbitrarily close
to 1. We will not consider such cases, since such values of φ would be unreasonably large,
corresponding to an extremely long time-of-flight tint = φ/g of the atoms through the cav-
ity. This would lead to larger fluctuations of φ as a result of a finite velocity spread of the
atoms (compare chapter 6.2), and the cavity dissipation could no longer be neglected (compare
chapter 6.1), neither the finite radiative lifetime of the atoms.
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Figure 4.2: Minimum number of atoms N needed to prepare the number
state |n〉 out of the cavity field vacuum |0〉 with fidelity F ′(n) ≥ 1 − ε,
ε = 10−1, 10−2, 10−3, 10−4 (from bottom to top). For each n, the optimal value
of the vacuum Rabi angle φ was chosen [approximately given by the estimation
(4.23)]. To prepare |n〉 with uncertainty ε < 10−2 (ε < 10−4), N � 2n (N � 3n)
atoms suffice.

choose a lower value of φ. Hence, the optimal value of φ depends more strongly
on the number N of atoms than in the above case of finite photon numbers.

4.2.3 How many atoms are needed?

As we have now an idea how to choose the vacuum Rabi angle φ, Eq. (4.23), and
the initial atomic state, Eq. (4.7), the question remains: how many atoms do we
need in order to reach a given level of fidelity? Fig. 4.2 shows the answer. Here,
we plotted the minimum number N of atoms needed to achieve F ′(n) ≥ 1 − ε,
with ε = 10−1, 10−2, 10−3, 10−4, as a function of the target photon number n.
Note that, since F ′(i) < F ′(j) for i > j, F ′(n) is a lower bound for the fidelity
of preparing any field state including photon numbers not higher than n, see
Eq. (4.17). From Fig. 4.2, we see that the required number of atoms grows
approximately linearly with the photon number n: about 2n (or 3n) atoms are
sufficient for F ≥ 99% (or F ≥ 99.99%), if the vacuum Rabi angle φ is chosen
properly (see chapter 4.2.2). The linear behavior of N reveals a scale invariance
of the fidelity F ′(n): if we multiply the target photon number n and the number
N of atoms by the same factor, and scale the vacuum Rabi angle according to
Eq. (4.23), then F ′(n) remains unchanged.

We have to keep in mind, however, that F ′, Eq. (4.9), is only a lower bound
for the maximum fidelity Fmax, and therefore Fig. 4.2 might considerably over-
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estimate the number of atoms which would be needed if we used the optimal
initial atomic state instead of |ψ′

0〉. In chapter 5.1, however, we will give nu-
merical evidence that this is not the case. In particular, for the preparation of
number states (in the optimal regime of φ), the conjecture Fmax = F ′ will be
found to be valid exactly.

4.3 Arbitrary initial field state

Let us now consider the case of an arbitrary initial field state ρ0. We know
already that in the limit of asymptotic completeness, the final field state is
independent of the initial field state. As already mentioned in chapter 3, this
allows - in the limit N → ∞ - the preparation of |χ〉 for an arbitrary initial
state ρ0, which may also be a mixed field state.

For a finite number N of atoms, however, the limit of asymptotic com-
pleteness is not precisely realized, and the optimal initial atomic state for the
preparation of |χ〉 depends also on the initial field state ρ0. Note that we can
in general not exploit the time-reversal symmetry of the atoms-field interaction
in order to obtain an estimation of the optimal initial atomic state, as we could
for the vacuum |0〉 as initial field state, see chapter 4.2. Nevertheless, we may
try - as a first guess - to use the same initial atomic state |ψ′

0〉, Eq. (4.7), which
we found in chapter 4.2 for the vacuum as initial field state, also when starting
from other initial field states. (From the asymptotic completeness property, we
know that the state |ψ′

0〉 will do at least in the limit N → ∞.)
Based on the sufficient conditions for asymptotic completeness, we have

proposed another recipe in chapter 3.3.3: first, inject a sufficient number N1 of
ground state atoms into the cavity in order to prepare the vacuum (‘purifica-
tion’). With the remaining N2 = N − N1 atoms, continue as described above,
choosing the state |ψ′

0〉 by inserting N2 instead of N in Eq. (4.7).
However, these two strategies do not contradict each other. We have already

mentioned in chapter 3.3.3 the problem how to choose N1 and N2. We will now
argue that, in fact, we may expect good results with the preparation step alone,
i.e., N1 = 0. The reason is as follows: the state |ψ′

0〉 is obtained by injecting
N2 ground state atoms into the cavity with initial state |χ〉, see Eq. (4.8).
However, if F ′(χ) is very close to 1 (otherwise, we cannot hope to achieve a
good fidelity, and we have to increase N ), the field will almost have reached the
vacuum, already before the last atom has arrived. Hence, the last few atoms
leave the cavity in the ground state. After time reversal TN , this means that
the first atoms of |ψ′

0〉 enter the cavity in the ground state, which is just what
we need for an efficient purification.

At present, we are not able to prove rigorously that the state |ψ′
0〉, Eq.

(4.7), in general yields a higher fidelity than injecting the first few atoms in the
ground state, and then choosing the state |ψ′

0〉 only for the remaining atoms.
However, our numerical calculations in chapter 5.3 indicate that this is indeed
the case.





Chapter 5

Numerical results

Using the methods described in the previous chapter, we are now able to inves-
tigate numerically the feasibility of our state preparation technique for various
target field states |χ〉.

At first, we will assume, as already in chapter 4, that the cavity is initially
in the vacuum state. In this case, the time reversal argument gave us an explicit
expression for the initial atomic state |ψ′

0〉, Eq. (4.7), and an analytical lower
bound F ′ for the maximum fidelity Fmax, see Eqs. (4.16,4.17). From the latter,
we could derive an estimation for the optimal choice of the vacuum Rabi angle,
Eq. (4.23), and for the number N of atoms needed in order to achieve a given
level of fidelity. However, it remains to be shown that the maximum fidelity does
not considerably exceed the lower bound F ′. This will be done in chapter 5.1,
where we test our conjecture Fmax � F ′ for various kinds of target states.

Experimentally, the most difficult task is to generate the initial atomic states
needed for the state preparation. In chapter 5.2, we will examine some prop-
erties of those states. Whereas, in general, the optimal initial states exhibit
entanglement between different atoms, we will see that the states required for
the preparation of coherent field states can well be approximated by product
states of the N atoms.

From the property of asymptotic completeness (see chapter 3), we know
that the state preparation is also possible when starting from mixed initial field
states. Although the optimal initial atomic state in general differs from the case
resulting with the field initially in the vacuum, we may expect, as argued in
chapter 3.3 and 4.3, that the state |ψ′

0〉, Eq. (4.7), achieves almost the maximum
fidelity. The validity of this conjecture will be tested in chapter 5.3.

Furthermore, we also have to examine the convergence to the limit of asymp-
totic completeness when increasing the number of atoms (chapter 5.4). Here,
the central question with respect to the state preparation is the convergence
behavior of the maximum fidelity. Remember that expressions (4.16) and (4.17)
for the lower bound F ′ (when starting from the vacuum as initial field state)
predict an exponentially fast convergence towards the ideal value 1, if the target
field state has a finite maximum photon number. In chapter 5.4.1, we will test
whether also the maximum fidelity follows this behavior, and how the initial
field state influences the convergence rate. The convergence behavior of the

37
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optimal initial atomic state will be studied in chapter 5.4.2.
Apart from the ability to prepare arbitrary field states |χ〉 by using the

optimal initial atomic state, however, asymptotic completeness, Eq. (3.2), also
implies that there exist other initial atomic states which prepare |χ〉 with high
fidelity. Furthermore, in the limit N → ∞, the final field state should be
independent of its initial state for any arbitrary initial atomic state (i.e., not
necessarily one which prepares |χ〉 with high fidelity). We will examine these
consequences of Eq. (3.2) in chapters 5.4.3 and 5.4.4.

5.1 Test of the conjecture

At first, let us test our conjecture that, if the field initially starts in the vacuum
state, the maximum fidelity is equal to the lower bound F ′, Eqs. (4.16,4.17).
If so, the state |ψ′

0〉, Eq. (4.7), gives the optimal initial atomic state for the
preparation of |χ〉, or - equivalently - |d . . .d〉 the optimal final atomic state (or
- again equivalently, due to the time reversal symmetry - |d . . .d〉 the optimal
initial state for the preparation of the vacuum starting from |χ〉).

5.1.1 Number states

We begin with number states, |χ〉 = |n〉 (also called ‘Fock states’), and the
field initially in the vacuum state. The number states have a property which
simplifies the theoretical treatment of their preparation compared to other field
states: as already alluded to in chapter 2.2, and elaborated in appendix A, the
optimal initial atomic state for the preparation of number states always has a
well defined excitation number k (i.e., k atoms in the upper state), compare
Eq. (2.6). Obviously, k must be at least as large as n, and the difference
k − n is the excitation number of the final atomic state. Furthermore, as
already mentioned in chapter 4.2, the state |ψ′

0〉, see Eq. (4.7), is an eigenstate of
M (ρ0), Eq. (4.3), with eigenvalue F ′, Eq. (4.16) (which would be the maximum
eigenvalue according to the conjecture), and therefore the fidelity F achieved
by the initial atomic state |ψ′

0〉 equals F ′, compare Eq. (4.2). Now, the solid
line in Fig. 5.1 shows the maximum fidelity Fmax for the preparation of the first
five number states |n〉, n = 1, . . . , 5, with N = 10 atoms, compared to the lower
bound F ′ = F (dotted line), as a function of the vacuum Rabi angle φ. The
fidelity is plotted on a logarithmic scale, i.e., f = − log(1−F ). In the following
we will always use this logarithmic scale, since we are especially interested in
the regime of very high fidelities.

At some values of the vacuum Rabi angle, we observe zeros of the fidelity
in Fig. 5.1. These can be easily explained: as discussed in chapter 2, if φ
fulfills an |m〉-trapping state condition with m < n, i.e., at φ = π/

√
m + 1

and integer multiples thereof, the photon number can never exceed m, and the
fidelity with respect to |n〉 has to vanish. These values of φ are marked by
the vertical dashed lines in Fig. 5.1. For higher target photon numbers n, the
net of zeros becomes denser, and, consequently, the optimal value of φ, which
maximizes the fidelity of the state preparation, should be found below the first
relevant trapping state. Remember that we have already derived a more precise
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Figure 5.1: Maximum fidelity Fmax (solid line) and lower bound F ′, Eq. (4.16),
(dotted line), for the preparation of the cavity field states |χ〉 = |n〉, n = 1 . . . , 5,
with a sequence of N = 10 atoms injected into the resonator, as a function
of the vacuum Rabi angle φ. The initial field state is the vacuum |0〉. The
vertical dashed lines denote the zeros of the fidelity due to |m〉-trapping states
with m < n, i.e., at φ = π/

√
m + 1 and integer multiples thereof. The fairly

good agreement of Fmax with F ′ (note the logarithmic scale!) shows that our
conjecture ‘the optimal final atomic state is |d . . .d〉’ is valid for most values
of φ - in particular also for the optimum regime below the first trapping state
of the field. Deviations of Fmax from F ′ are observed (in most cases) at |n〉-
trapping states (small tick marks). The arrows denote the estimation (4.23) of
the optimal vacuum Rabi angle, see chapter 4.2.2.
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estimation of the optimal φ in chapter 4.2.2. The values predicted by Eq. (4.23)
are marked by the little arrows in Fig. 5.1, and, indeed, they give a quite good
approximation to the real optimal φ. For larger photon numbers, the agreement
is not as good as for smaller ones. This is not surprising: the estimation (4.23)
was based on the asymptotic behavior of F ′, and hence should be better if the
fidelity is very close to 1.

Let us now compare the maximum fidelity Fmax (solid line) and the lower
bound F ′ (dotted line). Indeed, for most values of the vacuum Rabi angle, F ′

is equal to Fmax, in particular also in the above mentioned optimal regime of φ.
Hence, for Fock state preparation, our conjecture ‘the optimal final atomic state
is |d . . .d〉’ is valid in most cases. However, some deviations can be observed in
the vicinity of trapping states. In fact, if φ is chosen such that the desired target
field state |n〉 is a trapping state, we immediately find an alternative procedure
of preparing |n〉, namely injecting all atoms in the upper state |u . . .u〉. Since the
atoms can then only emit photons into the field, the trapping state condition
ensures that - in the limit N → ∞ - the field converges into the state |n〉.
The thereby achieved fidelity can be calculated in a very similar way as F ′ in
chapter 4.2. Indeed, we find the very same expression (4.15) as for the fidelity
F ′ according to the scheme given by the conjecture. However, the observed
deviations of Fmax from F ′ show that in the vicinity of such trapping states
neither of those two strategies is the optimal one.

An exception is the case n = 1: we have found (see appendix A) that at
odd 1-photon trapping states [i.e., φ = (2k + 1)π/

√
2, k ∈ Z], the atoms-field

interaction fulfills a particular symmetry, which leads to a highly degenerate
M |0〉〈0|, with only two eigenvalues Fmax and Fmin, both 2N−1-fold degenerate.
Furthermore, for |χ0〉 = |0〉 and |χ〉 = |1〉, the smaller eigenvalue Fmin obviously
has to be zero. (If we inject all atoms in the ground state, the field will remain in
the vacuum state.) Since we know that - for the preparation of number states -
F ′ is an eigenvalue of M |0〉〈0|, and F ′ = 1−cos2N (φ) > 0 according to Eq. (4.16),
it follows that Fmax = F ′. Consequently, we do not observe any deviation of
Fmax from F ′ at the odd 1-photon trapping states (at φ = π/

√
2 = 2.22 and

φ = 3π/
√

2 = 6.66) in Fig. 5.1. However, at other values of φ, deviations of
Fmax from F ′ can be found also in the case n = 1, namely near the |2〉-trapping
states.∗ This indicates that, in these cases, also the 2-photon state is populated
during the optimal preparation process. In contrast, for those values of φ where
the conjecture Fmax = F ′ is fulfilled, the photon field never populates higher
photon numbers than the target photon number n (since, as mentioned above,
the initial atomic state |ψ′

0〉 has excitation number n).

5.1.2 Phase states

The situation changes if the desired field state is a superposition of number
states. Then, the state |ψ′

0〉, Eq. (4.7), is in general not an eigenstate of M (ρ0)

(unlike the situation for the number states, see above), which implies that the

∗Also at the even |1〉 trapping state, i.e., φ =
√

2π, the maximum fidelity Fmax differs from
F ′. However, since already F ′ is extremely large in this case (f ′ = − log(1 − F ′) � 12), the
deviation is not visible on the scale of Fig. 5.1.
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Figure 5.2: Maximum fidelity Fmax (solid line), fidelity F achieved with |ψ′
0〉,

Eq. (4.7) (dotted), and F ′, Eq. (4.17), (dashed), for the preparation of the phase
states |χn〉 =

∑n
i=0 |i〉/

√
n + 1 of the cavity field, truncated at n = 1, . . .5, with

N = 10 atoms injected into the resonator. The initial field state is the vacuum
|0〉. The agreement of Fmax with F ′ is fairly good, on the logarithmic scale.
The |m〉-trapping states with m < n are denoted by the vertical dashed lines.

fidelity F achieved with |ψ′
0〉 as initial atomic state is strictly smaller than

the maximum fidelity, and strictly larger than the lower bound F ′, i.e., F ′ <
F < Fmax. As an example, we consider the truncated phase states |χn〉 =∑n

i=0 |i〉/
√

n + 1. In some sense, those states are the complement of the number
states examined above: whereas the latter possess a well defined field intensity
(given by the photon number), but with completely undetermined phase, the
truncated phase state |χn〉 has a uniform photon number distribution (in the
finite dimensional space of at most n photons), and is as close as possible to a
state with a well defined phase [88].

The numerical results (Fmax, F and F ′ as a function of φ) for the phase
states as target states are shown in Fig. 5.2. Comparing with Fig. 5.1, we see
that the maximum fidelity (solid line) is higher for the phase states than for the
corresponding number states, especially for the higher photon numbers. The
reason is obvious: the phase states are easier to prepare since not the whole
field population has to be transferred to the maximum photon number. Fur-
thermore, the fidelity for the preparation of the phase states does not exhibit
any zeros since the target state has a nonvanishing overlap with the vacuum (in
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Figure 5.3: Maximum fidelity Fmax (solid line), fidelity F achieved with |ψ′
0〉

(dotted), Eq. (4.7), and F ′ (dashed), Eq. (4.17), for the preparation of the
state |χ〉 = (|0〉+ |1〉 + eiθ|2〉)/

√
3, with N = 10, as a function of the phase θ.

We chose three different vacuum Rabi angles: (b) the optimal value φ
(2)
opt = 1.3

(compare Fig. 5.2 and chapter 4.2.2), (a) φ = 1.0, and (c) φ = 1.6. The initial
field state is the vacuum |0〉. Whereas in (b) and (c) the maximum fidelity for
the preparation of (|0〉 + |1〉−|2〉)/

√
3 (i.e., θ = π) is slightly higher than the

one of (|0〉+ |1〉+|2〉)/
√

3 (i.e., θ = 0), the opposite is true for the lowest value
φ = 1.0 of the vacuum Rabi angle in (a).

contrast to the number states, where zeros are observed at trapping states, see
the vertical dashed lines in Fig. 5.1). Apart from that, however, the behavior of
Fmax is in both cases quite similar, which indicates that the fidelity is predom-
inantly determined by the maximum photon number of the target field state.
In particular, the optimal values of φ, estimated by the small arrows according
to Eq. (4.23), are almost the same as in Fig. 5.1.

In contrast to Fig. 5.1, however, Fig. 5.2 shows small deviations (on a loga-
rithmic scale) of the lower bound F ′ from the maximum fidelity Fmax (dashed
vs. solid line), even in those regions where no deviations are present for the
number states. Nevertheless, we find that - in the optimal regime of φ below the
first trapping state - the initial atomic state |ψ′

0〉 from Eq. (4.7) gives nearly the
optimum result, i.e., F � Fmax (dotted vs. solid line). In contrast, for higher
values of the vacuum Rabi angle, F is closer to F ′ than to Fmax.
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Varying the phases of the coherent superposition

Since, in general, Fmax > F ′, whereas Fmax = F ′ in the case of number states
(at least if φ is not close to a trapping state), the fidelity for the preparation of
a coherent superposition of number states is higher than the correspondingly
weighted sum of fidelities for the preparation of the various number states, see
Eq. (4.17). Hence, we may expect that the maximum fidelity not only depends
on the photon number populations |〈n|χ〉|2 of the target field state, but also on
the phases of the photon number amplitudes. An example is shown in Fig. (5.3).
Here, we varied the phase of the 2-photon amplitude of the truncated phase state
|χ2〉, i.e., we considered target states of the form |χθ〉 = (|0〉+ |1〉+ eiθ|2〉)/

√
3.

[Note that any state eiθ0 |0〉 + eiθ1 |1〉 + eiθ2 |2〉 can be written in this form by
(i) multiplication with a global phase, and (ii) multiplication of the n-photon
amplitude, n = 0, 1, 2, with a relative phase einθ̃. This leaves the Jaynes-
Cummings interaction (2.1) invariant, if, simultaneously, the atomic states are
transformed according to |d〉 → e−iθ̃|d〉.] As can be seen in Fig. 5.3, the influence
of the phase θ depends on the vacuum Rabi angle: whereas for the two higher
values φ = 1.3 (b) and 1.6 (c), the maximum fidelity Fmax of the preparation of
(|0〉+ |1〉 − |2〉)/

√
3 is higher than the one of (|0〉+ |1〉+ |2〉)/

√
3, the opposite

is true for φ = 1.0 (a). In the latter case, the fidelity F achieved by |ψ′
0〉 is

very close to Fmax, while it is closer to F ′ for the highest value of φ. We have
checked that the mean value of F (averaged over a uniform distribution of the
phase θ) agrees exactly with the estimation (4.21). This is not surprising if
we look at the two assumptions made in the derivation of Eq. (4.21): (i) the
interference between the different final atomic states in Eq. (4.20) is cancelled
by the phase average, and (ii) the distribution of the coefficients d

(n)
m , m < n is

irrelevant if the photon number distribution |cm|2 of the target state is constant.
As for point (i), the fact that F is almost independent of θ in (c) shows that
the different final atomic states are (almost) orthogonal to each other in this
case.

Note, however, the small scale of the fidelity axis in Fig. 5.3: the variation
of Fmax is not larger than about 10% on the logarithmic scale. This underlines
the approximate validity of the conjecture Fmax � F ′ for states with arbitrarily
chosen phases. Below, we will give evidence that this is not only true in the
example of Fig. 5.3, but also for states with an arbitrarily chosen photon number
distribution (in a finite dimensional photon subspace).

5.1.3 Coherent states

Next, let us consider coherent states |α〉 = exp(−|α|2/2)
∑

n αn|n〉/
√

n! [67], see
Fig. 5.4. These states are as as close as possible to classical field states, which
have both a definite intensity and phase. Since they exhibit a nonvanishing
population also of high photon numbers, they are more difficult to prepare
than number states with the same mean photon number. Furthermore, the
discrepancies between Fmax, F and F ′ are larger than for the phase states.
The larger difference between F and F ′ is also predicted by the estimation
of F , Eq. (4.22): according to this equation, a large population |cn|2 of high
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Figure 5.4: Maximum fidelity Fmax (solid line), fidelity F achieved with |ψ′
0〉

(dotted), Eq. (4.7), and F ′ (dashed), Eq. (4.17), for the preparation of the
coherent field states |χ〉 = |α〉 with mean photon numbers |α|2 = 1, 2, . . . , 5
(a-e), upon injection of a sequence of N = 10 atoms into the resonator, as a
function of the vacuum Rabi angle φ. The initial field state is the vacuum |0〉.
Although the difference of Fmax and F ′ is larger than for the number and phase
states (Figs. 5.1 and 5.2), the state |ψ′

0〉 (dotted line), Eq. (4.7), achieves the
maximum fidelity (solid line) with quite good approximation.

photon numbers n, where the term (1−F ′(n))/n is larger than for low photon
numbers (since the fidelity F ′(n) decreases with increasing photon number n),
is necessary to obtain a large difference F − F ′. On the other hand, on the
logarithmic scale of Fig. 5.4, the difference between F and F ′ is not given by
F − F ′ but rather by f − f ′ = − log(1 − F ) + log(1 − F ′). On the logarithmic
sale, however, even a small linear difference F − F ′ will appear very large if
the fidelity F ′ is close to 1, which requires a large population of low photon
numbers, see Eq. (4.17). As a compromise, a huge difference between F and F ′

on the logarithmic scale is obtained for small but nonvanishing populations of
high photon numbers, as it is the case for the coherent states. Note that the
largest deviations between F and F ′ are observed for low vacuum Rabi angles
(i.e., short interaction times). This is also predicted by Eq. (4.21): for larger
φ, the fidelity F ′(n) for higher photon numbers n will be extremely low, due to
the presence of trapping states (see the vertical dashed lines in Fig. 5.1). Then,
the approximation which leads from Eq. (4.21) to (4.22), namely that all the
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terms F ′(n) are close to 1, is not valid, and the presence of those terms F ′(n)
in Eq. (4.21) reduces the difference between F − F ′.

In the regime of small vacuum Rabi angles, also the difference of the max-
imum fidelity Fmax as compared to F and F ′ is quite large, especially for the
states with small α. For example, for α = 1 and φ = 0.35, the maximum fidelity
Fmax is more than three orders of magnitude larger than the lower bound F ′.
Using the time reversal argument, we conclude that in those cases there exist
much more efficient ways of creating the vacuum starting from a coherent state
|α〉 than injecting all atoms in the ground state (which would yield fidelity F ′).
This case will be examined in more detail in chapter 5.2, see Fig. 5.10. In the
optimum regime of the vacuum Rabi angle, however (where Fmax assumes its
maximum), the fidelity F (dotted line) achieved with the atomic state |ψ′

0〉,
Eq. (4.7), is not very far from the maximum fidelity [on the logarithmic scale,
the relative difference (fmax − f)/fmax varies from about 10% to 20%].

5.1.4 Randomly chosen target states

Above, we have tested the validity of our conjecture Fmax � F ′ for three differ-
ent kinds of target states: photon number states, truncated phase states, and
coherent states. We want to stress, however, that our state preparation scheme
not only works for specific target states familiar from standard texts on quan-
tum optics, but for arbitrary ones. To demonstrate this, we will now consider
randomly chosen field states. In order to define a proper measure used for the
random choice of a target state, we will restrict ourselves to a finite dimen-
sional subspace of target states, namely those with maximum photon number
not higher than M . Now, for pure states in a finite dimensional Hilbert space,
the natural uniform measure is given by the Haar measure (which is the only
measure invariant under arbitrary unitary operations). For the generation of a
random state |χ〉 according to this measure, we use the Hurwitz parameteriza-
tion [89, 90]:

|χ〉 =
M∑

n=0

eiφn cos(θn)
M∏

m=n+1

sin(θm) |n〉. (5.1)

(For n = M , the product
∏M

M+1 in the above equation is defined as 1.) Here,
φ0 = θ0 = 0, whereas for n > 0, the φn’s are chosen according to a uniform dis-
tribution in [0, 2π], and θn = arcsin(ξ1/2n

n ), with the ξn’s uniformly distributed
in [0, 1].†

Fig. 5.5 shows the result of our numerical calculations, for field states with
up to M = 4 photons. According to Eq. (5.1), we drew 10 000 random states.
For each state, we calculated the maximum fidelity Fmax and the lower bound
F ′, using N = 8 atoms, and the vacuum Rabi angle φ

(4)
opt = 1.05 [according

to the estimation (4.23) of the optimal φ, see chapter 4.2.2]. In order to test
the validity of the conjecture, we determined the relative difference ∆frel of
fmax = − log(1 − Fmax) and f ′ = − log(1 − F ′) on the logarithmic scale, i.e.,

†In general, 2M real parameters are needed to specify a state: 2M+2 for the M+1 complex
amplitudes, minus 1 due to normalization, minus 1 due to the irrelevant global phase.
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∆frel = (fmax−f ′)/fmax, and plotted it as a function of the maximum fidelity in
Fig. 5.5(b). For comparison, also the photon number states |n〉, the truncated
phase states |χn〉, the truncated coherent states (see caption of Fig. 5.5), and
the state |χ̃4〉 = (|0〉+ |1〉−|2〉+ |3〉+ |4〉)/

√
5 are shown. As already mentioned

above, for the preparation of number states, the conjecture Fmax = F ′ is exactly
valid (if φ is not close to a trapping state), which implies ∆frel = 0. Further-
more, the number states seem to be the only states with this property: only for
very few of the 10 000 random states shown in Fig. 5.5(b), the deviation ∆frel

is close to zero, and we have checked that all these states are close to number
states (i.e., the population of one photon number strongly prevails). On the
other hand, for the whole random ensemble, the difference ∆frel almost never
exceeds 15%, whereas the mean value of ∆frel is about 7%. This confirms the
approximate validity of the conjecture Fmax � F ′ in the general case.

In order to interpret the structure in the distribution observed in Fig. 5.5(b),
we first want to note the following: of all states in the subspace with up to 4
photons, the 4-photon number state is most difficult to prepare, i.e., its max-
imum fidelity is the smallest one. [However, note that with N = 8 atoms, we
can still achieve a fidelity of more than 99%, i.e. fmax = f ′(4) = 2.25 on the
logarithmic scale.] The fidelities for the other photon number states, n < 4, are
more than one order of magnitude higher. Hence, in the expression (4.17) of
the lower bound F ′, mainly the 4-photon term contributes to the sum, and we
obtain the following estimation

f ′ = − log

(
4∑

i=0

|ci|2(1 − F ′(i))

)
� f ′(4) + log(|c4|2), (5.2)

which is valid if the population |c4|2 of the 4-photon state is not too small
(i.e., larger than 10−f ′(4)+f ′(3) = 0.06, such that the term i = 4 prevails in the
above sum over i), or - equivalently - if f ′ > f ′(3). According to Eq. (5.2),
the fidelity f ′ (and, hence, approximately also fmax) is basically determined
by the 4-photon population of the target state. In particular, for all states
with fmax

>
∼ f ′(3) = 3.5, the 4-photon population |c4|2 is very small, while

|c4|2 approaches the value 1 if fmax decreases from f ′(3) to f ′(4). In the latter
regime, we observe in Fig. 5.5(b) a relatively narrow distribution of ∆frel, which
is confined between a quite well defined lower and upper bound, respectively.
Since ∆frel quantifies the difference between the maximum fidelity fmax and
the lower bound f ′, this means that not only the lower bound f ′ is almost
completely determined by |c4|2, as we know from (5.2), but also fmax does
not strongly vary for different target states with constant |c4|2. In particular,
the phases of the target state’s photon number amplitudes do not have a very
large influence (which is also consistent with our previous results from Fig. 5.3.)
As an example, we plotted in Fig. 5.5(b) the truncated phase state |χ4〉 and
the corresponding manifold of states with uniform photon number distribution.
Here, the deviations ∆frel form an almost straight line between the truncated
phase state |χ4〉 and the state |χ̃4〉, which has a negative 2-photon amplitude.
It is easy to see why the manifold corresponds to a one dimensional and almost
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Figure 5.5: (a) Distribution D(fmax) of the maximum fidelity (on a logarithmic
scale), for the preparation of 10 000 randomly chosen target field states, accord-
ing to Eq. (5.1), with up to M = 4 photons. The number of atoms is N = 8,
and the vacuum Rabi angle φ

(4)
opt = 1.05, according to the estimation (4.23).

(b) Relative difference ∆frel = (fmax − f ′)/fmax of the maximum fidelity Fmax

and F ′ (on the logarithmic scale), for the same 10 000 random target states as
in (a), plotted as a function of the maximum fidelity. Each dot corresponds to
one state. For comparison, also the photon number states |n〉, the truncated
phase states |χn〉, and the state |χ̃4〉 = (|0〉+ |1〉−|2〉+ |3〉+ |4〉)/

√
5 are shown.

Furthermore, the dashed line displays the manifold of the truncated coherent
states (i.e., the states obtained by projection of the coherent states |α〉 onto the
photon subspace with up to 4 photons), whereas the line connecting the two
states |χ4〉 and |χ̃4〉 represents the manifold of all states with uniform photon
number distribution. In the regime fmax < f ′(3), we observe a relatively narrow
distribution of the difference ∆frel, confined between an upper and lower bound
(the latter being quite well reproduced by the truncated coherent states).
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straight line: since for all states with uniform photon number distribution, the
lower bound f ′ is the same, the difference ∆frel only depends on fmax, i.e.,
∆frel = 1−f ′/fmax, which is close to a straight line if fmax varies only within a
small range. What we cannot explain, however, is why the states |χ4〉 and |χ̃4〉
are the end points of this line. [Compare also the case M = 2 in Fig. 5.3(b),
where - at the optimal value of φ - the maximum fidelity is smallest for the
state |χ2〉.] Remarkably, the state |χ4〉 is very close to the lower bound of
the distribution, which is also quite well reproduced by the manifold of the
truncated coherent states (see caption of Fig. 5.5). However, this does not
remain true if we consider other values of the maximum photon number M , see
Fig. 5.6, where the case M = 5 is shown.

The situation changes, however, if the 4-photon amplitude is so small that
Eq. (5.2) is not a good approximation. This happens for states with fidelity
larger than the fidelity f ′(3) of the 3-photon state. [From the distribution
of fmax in Fig. 5.5(a), we see that about one third of all states fulfills this
condition.] Then, fmax and f ′ are no longer mainly determined by |c4|2, and
the deviation ∆frel may take a larger range of values, in particular also very
small values close to the photon number states, n < 4. Nevertheless, as evident
from Fig. 5.5(b), such exceptions are very rare, and most states follow the above
typical behavior observed in the regime fmax < f ′(3).

Finally, let us stress that the above interpretations of Fig. 5.5 do not only
hold in the case of M = 4, but seem to be of general validity. We have checked
that for M = 2, 3, and 5 (choosing in each case the optimal vacuum Rabi angle,
see chapter 4.2.2) the whole picture is very similar (higher photon numbers are
presently not accessible to numerical calculations of a large ensemble of states,
since the required number of atoms in order to achieve high fidelities would be
too large), see Fig. 5.6. This reminds us of the scale invariance of the fidelity
F ′(n) observed in Fig. 4.2.

Note, however, that the situation is different for the preparation of the co-
herent states |α〉. These are not contained in a subspace with a finite number
of photons, but have nonvanishing population also at very high photon num-
bers. Since, as we have seen above, in the finite-dimensional case the fidelity
predominantly depends on the population of the highest photon number, we
expect that also the coherent state’s small population of high photon numbers
is important for the state preparation (as already discusses in chapter 5.1.3,
too). This agrees with the fact that the maximum fidelity (on the logarithmic
scale) for the coherent states is quite different from the fidelity for the truncated
coherent states shown in Fig. 5.5. From Fig. 5.4, we know that the deviations
from the conjecture Fmax � F ′ are considerably larger than in the finite dimen-
sional case. (In the optimal regime of φ, the difference ∆frel varies from about
20%, for |α|2 = 1, to about 40%, for |α|2 = 5, and is approximately constant
when changing the number of atoms, compare also Fig. 5.13b.)



5.1 Test of the Conjecture 49

2 3 4 5

fmax = −log(1−Fmax)

0

0.05

0.1

0.15

∆frel

0

0.5

1
D(fmax)

|5> |4> |3> |2> |1>

|χ5>

|χ5>

|χ4>

|χ3>

~

f’(5) f’(4)

Figure 5.6: Same as Fig. 5.5, for the preparation of 10 000 randomly chosen
target states with maximum photon number M = 5, using N = 10 atoms,
and the optimal vacuum Rabi angle φ

(5)
opt = 0.97. The distributions of the

maximum fidelity fmax, and of its deviation ∆frel from the lower bound f ′,
are very similar to the case M = 4 and N = 8 depicted in Fig. 5.5. This
demonstrates the scale invariance of the maximum fidelity (see also Fig. 4.2),
which remains approximately constant, if the number of atoms is scaled linearly
with the maximum photon number of the target state, and the optimum value
of the vacuum Rabi angle is chosen, see Eq. (4.23). In contrast to the case
M = 4, Fig. 5.5, the truncated coherent states (dashed line) do not reproduce
the lower bound of the distribution, and the phase state |χ5〉 does not exactly
define the lower edge of the manifold of the states with uniform photon number
distribution. Its upper edge is given by the state |χ̃5〉 = (|0〉+ |1〉+ |2〉 − |3〉+
|4〉+ |5〉)/

√
6.
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In summary, the conjecture Fmax = F ′ is valid exactly only for number
states, if the vacuum Rabi angle is not close to a trapping state condition,
whereas for other states it still gives a good approximation in most cases. Hence,
we get a quite good approximation to the optimal strategy (which yields the
maximum fidelity) for preparing an arbitrary field state |χ〉 from the vacuum
|0〉, simply by using the time reversal symmetry (3.5), and the fact that the
vacuum can always be prepared by a sequence of ground state atoms. In par-
ticular, the conclusions in chapter 4.2 about the convergence of the fidelity, the
optimal choice of the vacuum Rabi angle, see Eq. (4.2.2), and the number of
atoms needed for the preparation of |n〉, see Fig. 4.2, which were based on the
analytical expressions for the lower bound F ′, Eqs. (4.16,4.17), can be expected
to remain valid also for the maximum fidelity. Note, however, that we consid-
ered only a fixed number of atoms, namely N = 10. Therefore, it remains to
be shown that the conjecture Fmax � F ′ is also valid for other values of N .
This will be done in chapter 5.4.1, where we will examine the convergence of
the maximum fidelity in the limit N → ∞.

However, we observe larger deviations from the conjecture Fmax � F ′ for
coherent states and small values of the vacuum Rabi angle. This case will be
examined in more detail in the following chapter 5.2.

5.2 Properties of the optimal atomic states

As the above results, in particular Fig. 4.2, show, we can achieve quite high
fidelities of the state preparation by using a relatively small number of atoms.
The required initial atomic state can either be chosen according to the conjec-
ture, Eq. (4.7), which gives in many cases a very good approximation, or - for
not too large numbers N of atoms - be calculated numerically, as described in
Appendix A.

Nevertheless, the experimental preparation of this (in general entangled)
atomic state is a formidable task. Recently, experimental entanglement between
four trapped ions has been reported in [91], and a procedure which successfully
entangled two atoms and a single-photon cavity mode, but - in principle - can
also operate on larger numbers of particles, is described in [92]. However, e.g.,
for N = 10 atoms, the atomic Hilbert space has a dimension of 210, which
means that about 2000 real parameters have to be controlled. The same fact
would also make a complete description of the atomic states very lengthy.

However, to get a at least a rough idea, we investigate a few properties of the
optimal initial atomic states in the following. For simplicity, we will concentrate
on the single-particle properties, which are described by the reduced density
matrices ρi of the individual atoms, see Eq. (2.9). From ρi, we can extract the
ground state population of the i-th atom:

p
(d)
i = 〈d|ρi|d〉. (5.3)

Furthermore, as discussed at the end of chapter 2, the largest eigenvalue pi of
ρi tells us how much the i-th atom is entangled with the other ones (remember:
pi = 1/2 indicates maximal, and pi = 1 no entanglement).
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5.2.1 Number states

Fig. 5.7 shows the above properties of the optimal initial atomic state, for
the preparation of the number states |n〉 with N = 10 atoms, starting from
the vacuum as initial field state. On the left, the eigenvalues pi are plotted,
whereas the right hand side shows the population of the lower state p

(d)
i for

each single atom. In fact, the left and right hand side are here very closely
related: remember that the optimal initial atomic state for the preparation of
number states always has a well defined excitation number (see chapter 2.2 and
appendix A). As a consequence [which can be easily deduced from Eq. (2.9)], the
reduced state ρi is diagonal in the {|u〉, |d〉} basis, and the largest eigenvalue
pi is given by pi = max{p(d)

i , 1 − p
(d)
i } (i.e., the left hand side of Fig. 5.7 is

obtained from the right one by reflecting all p
(d)
i ’s smaller than 1/2 at the axis

p
(d)
i = 1/2). In other words: each atom is as much entangled with the other

ones as it can be, given the value of its ground state population. (Obviously,
the largest eigenvalue p of a 2 × 2 density matrix ρ cannot be smaller than its
ground or upper state population, p(d) or 1 − p(d).)

For each field state |n〉, the optimal value of the vacuum Rabi angle φ was
chosen (see chapter 4.2.2). As shown above, in this case the optimal initial
atomic state is given by |ψ′

0〉, Eq. (4.7), where the first few atoms enter the
cavity mainly in the ground state |d〉. The one-photon state |1〉 is a special case,
since for φ = π/2 (i.e., half a vacuum Rabi cycle), the preparation succeeds with
perfect fidelity if the first N − 1 atoms enter the cavity in the ground and the
last one in the excited state. For higher number states |n〉, n > 1, the initial
atomic state exhibits entanglement between different atoms. As can be seen in
Fig. 5.7, the (N − n)-th atom is most strongly entangled with the other ones.
Consequently, the ground state population of this atom is closest to 1/2. For the
subsequent atoms, the ground state population further decreases, until it almost
reaches zero about halfway between the (N −n)-th and the last atom. We have
checked that, at this point, most of the photon field population is concentrated
at intermediate photon numbers m, where the transition probability |Bm|2 is
close to 1 (compare Fig. 4.1). Consequently, the injection of an atom close
to the upper state (i.e., with almost vanishing ground state population) can
provide a very efficient transport of the photon number distribution towards
higher values. However, at the end of the sequence, the initial atomic ground
state population increases again.

5.2.2 Phase states

The case of truncated phase states (see chapter 5.1) as target states is illus-
trated in Fig. 5.8. Here, the optimal initial atomic state is not exactly equal,
but very close to the state |ψ′

0〉, Eq. (4.7), which agrees with the observation
in Fig. 5.2 that the fidelity achieved with |ψ′

0〉 almost reaches the maximum
fidelity. In fact, on the scale of Fig. 5.8, the difference between both results
would be indistinguishable. Consequently, since the state

√
F ′|ψ′

0〉 is linear in
|χ〉 =

∑
i |i〉/

√
n + 1, see Eq. (4.7), the initial atomic state |ψ′

0〉 is given by
the corresponding superposition of initial states |ψ′(i)

0 〉 for the preparation of
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Figure 5.7: Optimal initial atomic state for the preparation of the number states
|n〉, n = 1, . . . , 5 (top to bottom), starting from the vacuum as initial field state
with N = 10 atoms. The left column shows the amount of entanglement of
the i-th atom with the other ones [i.e., the largest eigenvalue pi of the reduced
density matrix ρi, see Eq. (2.9), where pi = 1/2 indicates maximal and pi = 1
no entanglement]. Moreover, the horizontal dashed lines indicate the maximum
overlap of the atomic states with a product state of the N atoms, which is
bounded from above by the smallest pi, compare Eq. (2.10). (In the case n = 5,
the maximum overlap is 42%.) The right column shows the population p

(d)
i

of the ground state. For each value of n, the optimal vacuum Rabi angle was
chosen [approximately given by the estimation (4.1)]: φ = 1.57, 1.30, 1.13, 1.02,
and 0.93 (from n = 1 to n = 5). For n > 1, the (N−n)-th atom is most strongly
entangled with the other ones.
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Figure 5.8: Optimal initial atomic state for the preparation of the phase states
|χn〉, truncated at n = 1, . . .5 (from top to bottom), starting from the vacuum
as initial field state with N = 10 atoms. As in Fig. 5.7, the ground state
population of the i-th atom (right hand side) and its entanglement with the
other ones (left hand side) are shown. For each value of n, the optimal vacuum
Rabi angle was chosen (the same as in Fig. 5.7). The ground state population
p
(d)
i monotonically decreases from the first to the last atom. The horizontal

dashed lines indicate the maximum overlap of the atomic states with a product
state of the N atoms, which is higher than in the corresponding case of a number
state, compare Fig. 5.7.

the number states |i〉 = |0〉, |1〉, . . . , |n〉. (Note, however, that the |ψ′(i)
0 〉’s are

not identical to the states depicted in Fig. 5.7 for i < n, since for the latter
the value of the vacuum Rabi angle has been optimized for each individual i.)
In particular, the ground state population of each atom in |ψ′

0〉 is determined
by the sum of the ground state populations of the |ψ′(i)

0 〉’s (as can be easily
deduced from the fact that the |ψ′(i)

0 〉’s have different excitation numbers i, see
chapter 2.2 and appendix A). Consequently, as in the case of number states,
the first few atoms enter the cavity mainly in the ground state. For the subse-
quently injected atoms, the ground state population monotonically decreases,
as evident from Fig. 5.8.

The entanglement properties, however, cannot be so easily inferred from
the number state case. Since the initial atomic state |ψ′

0〉 does not have a
well defined excitation number, unlike the case of number states, the largest
eigenvalue pi of the reduced density matrix is not given in terms of the ground
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state population. As can be seen from the left hand side of Fig. 5.8, also pi

monotonically decreases, so that the last atom is most strongly entangled with
the other ones. Remember that the smallest pi gives an upper bound for the
overlap of the atomic state with a product state, see Eq. (2.10). In order to
test how tight this upper bound is, we have calculated the maximum overlap
with a product state numerically, by optimization over the set of all product
states, and plotted the results as horizontal dashed lines. As can be seen (also
in Figs. 5.7 and 5.9), the approximation is quite good especially for large values
of the maximum overlap. If we compare Figs. 5.8 and 5.7, we see that the
initial atomic state for the preparation of phase states has a larger overlap with
a product state than in the corresponding case of preparing a number state.

5.2.3 Coherent states

Fig. 5.9 shows the same characteristic quantities of the initial atomic state for
the preparation of coherent states |α〉. Note that, since a classical field is always
in a coherent state, these can be easily prepared by coupling the cavity to a
classical field source, and turning the intensity low enough. Therefore, we may
ask whether this property is somehow reflected also in our preparation scheme,
and, as we will see below, this indeed is the case.

In Fig. 5.9, the optimal state |ψ〉 is compared with the state |ψ′
0〉, Eq. (4.7).

The ground state population of each atom monotonically decreases, in the op-
timal case almost linearly. Remarkably, both states exhibit much less entan-
glement than above for the preparation of number states and also the phase
states (note the different scales!), especially the optimal state. Hence, coher-
ent states are easier to prepare in the sense that a rather high fidelity can be
achieved by using a product state of the N injected atoms. In fact, the prod-
uct state |ψ(1), . . . , ψ(N)〉, where each |ψ(i)〉 is the eigenvector of the reduced
state ρi corresponding to the largest eigenvalue pi, has a large overlap with the
optimal atomic state: it almost reaches the numerically evaluated maximum
overlap with a product state, which is marked by the horizontal dashed lines.
Consequently, the fidelity achieved with this product state is approximately as
high as the maximum fidelity multiplied by the value of the horizontal dashed
line [compare Eq. (6.14), which gives a lower bound for the fidelity achieved by
atomic states deviating from the optimal one], i.e., it varies from about 99% for
|α|2 = 1, to 87% for |α|2 = 5.

Preparation of coherent states using atomic product states

We have checked that, if the optimal initial atomic state is close to a product
state, also the final atomic state (or, equivalently, the optimal initial state for the
reverse process of preparing the vacuum, starting from a coherent state |α〉) has
this property. As an example, we show in Fig. 5.10 the initial and final atomic
states for the preparation of the coherent state α = 1, starting from the vacuum
as initial field state, and again with N = 10 atoms. Here, we chose a smaller
vacuum Rabi angle than before in Fig. 5.9, namely φ = 0.35, in order to examine
the large deviation of Fmax = 99.986% from F ′ = 74.2% observed in Fig. 5.4(a)
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Figure 5.9: Optimal initial atomic state for the preparation of the coherent
states |α〉 with mean photon numbers |α|2 = 1, . . . , 5 (from top to bottom).
The state preparation through injection of N = 10 atoms starts with the field
initially in the vacuum state. As in Figs. 5.7 and 5.8, the ground state popu-
lation of the i-th atom (right hand side) and its entanglement with the other
ones (left hand side) are shown. The solid symbols represent the optimal initial
atomic state which is compared to the state |ψ′

0〉 (open symbols), Eq. (4.7). The
optimal values of the vacuum Rabi angles (compare Fig. 5.4) are chosen, i.e.,
φ = 0.95, 0.85, 0.76, 0.69, and 0.68 (from |α|2 = 1 to |α|2 = 5). The horizontal
dashed lines indicate the maximum overlap of the optimal atomic states with
a product state of the N atoms. Note the small scale on the pi-axis (left hand
side): the initial atomic state for the preparation of coherent states is almost a
product state.
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Figure 5.10: Optimal initial atomic state |ψ0〉 (top) for the preparation of the
coherent state |α〉 with mean photon number |α|2 = 1, starting from the vacuum
as initial field state, with N = 10 atoms. Also the corresponding final atomic
state |ψ〉, Eq. (4.5) is shown (bottom). As in Figs. 5.7-5.9, we plotted the ground
state population of the i-th atom (right hand side) and its entanglement with
the other ones (left hand side). The solid symbols represent the optimal initial
atomic state (whose maximum overlap with a product state is again indicated
by the horizontal dashed line), whereas the open symbols characterize the state
|ψ′

0〉, for comparison. By definition of |ψ′
0〉, Eq. (4.7), the corresponding final

atomic state is |ψ′〉 = |d . . .d〉. All states are very well approximated by product
states (note the fine scale on the pi axis!). The vacuum Rabi angle is φ = 0.35
- the point where a large deviation of Fmax = 99.986% from the lower bound
F ′ = 74.2% is observed in Fig. 5.4(a). Using the time-reversal argument, we
conclude that, when starting from the coherent state α = 1, the cavity vacuum
can be much more efficiently prepared than by injecting all atoms in the ground
state (which would yield fidelity F ′), namely by using as initial atomic state
the time-reversed final state TN |ψ〉 [where TN essentially reverses the order of
the atoms, compare Eq. (3.5)], thereby obtaining the maximum fidelity Fmax.

at φ = 0.35. As can be seen, both the initial and final atomic state can be very
well approximated by a product state of the N atoms. Hence, when preparing
coherent field states, each single atom enters and leaves the cavity almost in a
pure state. Consequently, each atom is disentangled from the cavity field both
before and after the interaction, which implies that also the cavity field remains
almost in a pure state after the interaction with each individual atom [since the
unitary interaction (2.1) maps pure states of the atom-field system again onto
pure states]. Furthermore, those intermediary field states are also coherent
states, i.e., the cavity field climbs up on a ladder of coherent states. This is due
to the property of the Jaynes-Cummings interaction described at the end of
chapter 2.1. As we have seen there, with an appropriately chosen initial single-
atom state, a coherent state can be transferred again to a coherent state with
high fidelity and almost no entanglement with the atom. Note however, that,
for a given φ, the remaining entanglement cannot be made arbitrarily small
[compare Fig. 2.1(b), where for φ < 1 the entanglement vanishes nearly, but
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not completely.] Hence, even in the limit N → ∞, a coherent state cannot be
prepared exactly by a product of single-atom states. Only in the limit φ → 0 (of
course to be taken after the limit N → ∞), a fidelity of 100% can be achieved.
This agrees with the findings of [83]: for small vacuum Rabi angles, the cavity
field will approach a coherent state |α〉 when pumped with a flux of atoms which
are all prepared in the same state a|u〉−ib|d〉, with a/b = φα/2. As discussed in
chapter 3.3.1, the cavity field then converges to the cotangent state, Eq. (3.4),
which reduces to the coherent state |α〉, in the limit φ → 0.

While, having this in mind, it is not surprising that coherent states can be
prepared by a product of single-atom states, it is not so obvious that, as our
numerical results demonstrate, this is really very close to the optimal strategy
(which yields the highest fidelity), where also entangled initial atomic states are
allowed.

5.3 Mixed initial field states

So far in this chapter, we have always assumed the vacuum as the initial field
state. However, we know from the property of asymptotic completeness that
- in the limit N → ∞ - the initial atomic state for the preparation of the
desired target state |χ〉 does not depend on the initial field state (‘universal
preparability’, compare chapter 3.2). Therefore, the state preparation is also
possible is we do not know the initial field state, or if we have only incomplete
knowledge about its initial state as described by a mixed density matrix ρ0. [A
mixed density matrix has a positive von-Neumann entropy S(ρ0) > 0, compare
Eq. (2.8), which quantifies our lack of knowledge about the state.] Since, finally,
the field will be in the desired state |χ〉, this means that the information about
the initial state of the field (which cannot be lost during a unitary interaction)
must be present in the final state of the atoms. Hence, our preparation scheme
can be used not only to prepare arbitrary field states by the right choice of
the initial atomic state (thereby transferring information from the atoms to the
field), but also to transfer information from the field to the atoms.

In chapter 3.3, we have already described a possible strategy for the state
preparation starting from an arbitrary initial state: first, we inject a sufficient
number of ground state atoms in order to produce the cavity vacuum, then
we proceed as described above. Since a sequence of ground state atoms (of, in
principle, arbitrary length) can be easily generated experimentally, this method
is also quite practical, although it is not necessarily the most efficient one (with
respect to the total number of atoms needed for the preparation). However,
if we are interested in the above mentioned aspect of information transfer, we
would like to distribute the information about the initial field state on as few
atoms as possible, in order to simplify a further processing of the information.
Therefore, the question arises: what is the optimal strategy for the state prepa-
ration starting from mixed initial field states, which maximizes the fidelity for
a given total number of atoms?

In principle, for a finite number of atoms, the optimal initial atomic state
|ψ(opt)

0 〉 is not independent from the initial field state ρ0, since the operator
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Figure 5.11: Maximum fidelity Fmax (solid line) and fidelity F achieved with
|ψ′

0〉 (dashed), Eq. (4.7), for the preparation of the number states |χ〉 = |n〉,
n = 0, 1, 2, . . . , 4 (top to bottom), with a sequence of N = 10 atoms injected into
the resonator, as a function of the vacuum Rabi angle φ. The initial field states
are ρ0 =

∑3
i=0 |i〉〈i|/4 (left, a-e), and the thermal equilibrium state with mean

photon number nb = 1 (right, f-j). The arrows denote the optimal vacuum Rabi
angle with the vacuum as initial field state [approximately given by Eq. (4.23),
compare Fig. 5.1]. The state |ψ′

0〉, Eq. (4.7), (which is the optimal atomic state
when starting from the vacuum, see chapter 5.1), almost perfectly reaches the
maximum fidelity also in the case of mixed initial field states.

M (ρ0), Eq. (4.3), which is needed for the calculation of |ψ(opt)
0 〉, explicitly de-

pends on ρ0. As argued in chapter 4.3, however, we may expect that, in fact,
the optimal initial atomic state for the vacuum as initial field state gives a good
approximation to the optimum result also when starting from different initial
field states. In the following, we will test whether this expectation is justified.

An example is shown in Fig. 5.11. Here, we prepare the photon number
states |0〉, . . . , |4〉 with N = 10 atoms. In contrast to Fig. 5.1, we consider
also the vacuum as the target state. The initial field states are the maximally
mixed state with up to 3 photons (left, a-e), and the thermal equilibrium state
(right, f-j) with mean photon number nb = 1 (which, in the microwave regime,
corresponds to a temperature of about 1 K). The fidelity F achieved with the
state |ψ′

0〉 (dashed line), Eq. (4.7), agrees very well with the maximum fidelity
(solid line). Close to the maxima of Fmax and F , the agreement is exact in
the two cases (a) and (f) of the vacuum as initial field state, whereas only
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tiny deviations are observed in the other cases. This proves that, indeed, the
state |ψ′

0〉 gives almost exactly the optimum result of the state preparation,
also when starting from mixed initial field states. If the target field state is the
vacuum, then |ψ′

0〉 = |d . . .d〉, according to Eq. (4.7). It is not surprising that
the state |d . . .d〉 is the optimal state to prepare the vacuum, since we have
already verified this property in the case of number states as initial field states
(using the time-reversal argument), and since both initial field states considered
in Fig. 5.11 are mixtures of number states.

Furthermore, we marked in Fig. 5.11 the values of the vacuum Rabi angles
which maximize the fidelity when starting with the vacuum as initial field state
[approximately given by Eq. (4.23)]. Obviously, they do not always agree with
the optimum values for mixed initial field states: with ρ0 =

∑3
i=0 |i〉〈i|/4 (left,

a-e), a good agreement is observed only for n = 3 and n = 4 (d and e), whereas
for n < 3 the optimal φ approximately equals the one for n = 3. This agrees
with our previous findings that the optimal vacuum Rabi angle depends on the
relevant subspace of the photon field, such as to maximize the smallest one
of the transition probabilities |Bn|2 = sin2(φ

√
n) in this subspace (compare

chapter 4.2.2). Remember that the first atoms of the state |ψ′
0〉 enter the cavity

almost in the ground state (compare Fig. 5.7). Therefore, the mean photon
number of the cavity field at first decreases, before it increases again to reach
the desired field state |χ〉. Hence, the relevant subspace of the photon field
is given by the maximum photon number either of the initial or of the target
field state. In the example of Fig. 5.11, since the field initially contains up to
3 photons, the optimal φ is approximately constant for n ≤ 3, whereas the
4-photon state comes into play in the case n = 4 (e). On the other hand, in the
case of the thermal initial state, a close inspection of the right half of Fig. 5.11
(f-j) reveals that the optimal φ slightly increases with increasing n: for n = 0
(f), we have φopt = 0.84. According to Eq. (4.23), this corresponds to a relevant
field subspace of up to 7 photons (which, with nb = 1, contains 99.6% of the
thermal initial population), whereas φopt = 0.98 for n = 4 (j), corresponding
to up to 5 photons (thermal population: 98.4%). This behavior is again in
accordance with the considerations in chapter 4.2.2: since the fidelity of the
state preparation decreases with increasing n, the thermal initial population of
higher photon numbers can be neglected for larger n, which leads to a smaller
relevant field subspace.

Fig. 5.12 shows another example, for the preparation of coherent states.
Here, we compare the maximum fidelity with the fidelities achieved by the
optimal initial atomic state |ψ(vac)

0 〉 when starting from the vacuum (dotted line)
and by the state |ψ′

0〉 (dashed line). Since, unlike for the preparation of number
states, the state |ψ′

0〉 does not yield the optimal fidelity when starting from the
vacuum (see Fig. 5.4), it is not surprising that it neither does when starting from
a mixed state, as proven by the fact that the dotted line is not identical to the
solid one in Fig. 5.11. In most cases, |ψ(vac)

0 〉 also gives a higher fidelity than |ψ′
0〉

for mixed states [apart from the exception in Fig. 5.12(b) around φ � 1.2, see
below]. However, the maximum fidelity is not as well reproduced as in the case
of targeted number states, see Fig. 5.11, where Fmax can hardly be distinguished
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Figure 5.12: Same as Fig. 5.11, for the preparation of the coherent states |α〉
with mean photon numbers |α|2 = 0, 1, 2, . . . , 4 (top to bottom). The dotted
lines display the fidelity achieved by the optimal initial atomic state |ψ(vac)

0 〉 in
the case of the vacuum as initial field state, compare Fig. 5.9). Although the
state |ψ(vac)

0 〉 does not reproduce the maximum fidelity as well as in the case of
number states (Fig. 5.11), it still gives a quite good approximation, especially
for the thermal initial states (right).

from the fidelity achieved with |ψ(vac)
0 〉 = |ψ′

0〉. This can be understood if we
consider the properties of the initial atomic states |ψ(vac)

0 〉 examined in Figs. 5.7
and 5.9 (solid symbols): for the number states, the ground state population of
the first few atoms is higher, which leads to a more efficient purification of the
field (as discussed in chapter 4.3) than for the coherent states. Consequently,
in the latter case, the ground state population of the first few atoms has to be
slightly increased in order to reach the maximum fidelity Fmax. The difference
between Fmax and the fidelity reached by |ψ(vac)

0 〉 is most clearly pronounced
in Fig. 5.11(b), for the coherent state with the smallest mean photon number
|α|2 = 1, around φ � 1.2. The reason is the high maximum fidelity of the state
preparation in this case, which almost reaches 99.99%. In order to achieve
such a high fidelity, the purification of the initially mixed state has to be very
efficient, and therefore the lower ground state population of the first few atoms
of the state |ψ(vac)

0 〉 has a larger impact.
Furthermore, Fig. 5.12 again displays the shift of the optimal vacuum Rabi

angle induced by changing the initial field state from the vacuum to a mixed
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state. In the case ρ0 =
∑3

i=0 |i〉〈i|/4 (left, a-e), the optimal φ is always larger
than for the vacuum. This is due to the fact that the purification of ρ into
the vacuum is most efficient at a larger value of φ, see (a). With the thermal
initial state (right), the optimal φ is shifted to a lower value in case (b), and
reversely in the other cases. Here, we cannot give a simple interpretation of this
behavior, since both, initial and final state, exhibit a nonvanishing population
of higher photon numbers.

In summary, we have given numerical evidence that the optimal initial
atomic state for the preparation of the field state |χ〉 starting from the vac-
uum as initial field state gives nearly the optimal result also when starting from
mixed initial field states. The optimal value of the vacuum Rabi angle φ, how-
ever, may significantly differ in both cases. As demonstrated in chapter 5.2,
the optimal atomic state has the property that, for large N , the ground state
population of the first few atoms is close to 1. Hence, the mean photon number
in the cavity during the preparation process at first decreases almost to zero,
and later increases again to reach the desired final state. This is similar to the
simple picture outlined in chapter 3.3.3, according to which the preparation
takes place in two steps: purification followed by preparation. However, the
optimal strategy does not strictly follow this simple picture, as the first atoms
do not enter the cavity precisely in the ground state. Furthermore, we have
checked that the photon field does not exactly pass through the vacuum state
during the preparation process, i.e., the population of the vacuum never reaches
a value comparable to the final target state fidelity. As a typical example, in the
situation of Fig. 5.11(e) (target state |4〉), for the optimal value of φ = 1.00, the
maximum vacuum population of 92.3%, reached after the fourth atom passing
through the cavity, is much smaller (on the logarithmic scale) than the final
fidelity of 99.1%. Note that, if we injected the first four atoms precisely in the
ground state, the vacuum population after the fourth atom would be higher (i.e.,
96.7%), but the final fidelity (when choosing the optimal initial state for the
remaining 6 atoms) would be considerably lower, namely F = 94.3%. Hence,
although the general idea ‘first prepare the vacuum’ is roughly realized by the
optimal strategy, we cannot give a really convincing argument why the optimal
initial atomic state when starting from the vacuum as initial field state is so well
adapted also to mixed initial field states, as our numerical calculations show.

5.4 Reaching the limit of asymptotic completeness

Up to now, we have used in all our numerical examples a constant number
of atoms, N = 10. In this chapter, we will study the properties of our state
preparation scheme as a function of N , in order to see how fast the limit N → ∞
of asymptotic completeness will be reached.

5.4.1 Convergence of the fidelity

At first, let us examine the convergence of the maximum fidelity towards the
ideal value 1, which is predicted by asymptotic completeness in the limit N →
∞.
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Initial field state: vacuum

Remember that, in the case of the vacuum as initial field state, we have derived
explicit expressions for the lower bound F ′, Eqs. (4.16,4.17), which exhibit an
exponentially fast convergence of the fidelity with respect to target field states
including at most a finite number n of photons. More precisely, for the optimal
value (4.23) of the vacuum Rabi angle, the rate λ of the convergence (defined
by 1 − F ∝ 10−|λ|N) equals

λ = log
(

cos2
(

π

1 +
√

n

))
. (5.4)

On the other hand, for field states with nonvanishing population also at infi-
nitely large photon numbers, such as the coherent states, we do not expect an
exponential convergence, since with increasing fidelity of the state preparation,
the higher photon numbers of the target states must be taken into account. This
introduces new transition probabilities |Bn|2, thereby potentially decreasing the
convergence rate (which is given by the smallest |Bn|2.)

Does the same also apply to the maximum fidelity? [Since, in general,
Fmax ≥ F ′, see Eq. (4.14), the convergence of Fmax cannot be slower.] The
results of chapter 5.1 suggest a positive answer: as shown there, the lower
bound F ′ is in most cases quite close to Fmax (especially in the here considered
optimal regime of φ). However, since we examined only the case of N = 10
atoms in chapter 5.1, we still have to verify that the conjecture Fmax � F ′

remains valid also for other values of N .
For this purpose, we show in Fig. 5.13 the maximum fidelity for the prepa-

ration of the photon number state |5〉, of the phase state |χ5〉, truncated at
n = 5, and of the coherent state |α〉 with mean photon number |α|2 = 4, as
a function of N . For comparison, we also plotted the lower bound F ′ (solid
lines), the fidelity F achieved by the initial state |ψ′

0〉 (dashed lines), Eq. (4.7),
and the convergence rate λ as predicted above (dotted lines, only the slope is
relevant).

Firstly, the conclusions of chapter 5.1, for N = 10 and within the optimal
regime of φ, are equally confirmed for other values of N : when preparing number
states Fmax = F = F ′, while in the case of phase states Fmax is almost equal
to F , and slightly larger than F ′. Furthermore, the difference between Fmax

and F ′ in Fig. 5.13(a) (open circles and solid line) appears to be approximately
constant (on the logarithmic scale) for N >

∼ 10. For coherent states as target
states, Fig. 5.13(b), larger deviations of Fmax, F , and F ′ are observed.

Secondly, the convergence of the fidelity with increasing N follows the be-
havior predicted above: it is exponentially fast in Fig. 5.13(a), where the photon
number of the target field states does not exceed 5, and the corresponding con-
vergence rate agrees with the rate λ, Eq. (5.4). In the case of the coherent
state, Fig. 5.13(b), after attaining a maximum at N � 7, the rate of conver-
gence slightly decreases again with increasing N . Although for the higher values
of N (i.e., N ≥ 12), the convergence rate appears to be constant, we expect
that it further decreases for N > 15. We have checked that this is the case for
the lower bound F ′, which - in contrast to Fmax - can be calculated also for very
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Figure 5.13: Convergence of the maximum fidelity Fmax for the preparation of
(a) the 5-photon state |χ〉 = |5〉 (filled circles) and the truncated phase state
|χ〉 =

∑5
i=0 |i〉/

√
6 (open circles) of the cavity field, and of (b) the coherent

state |α〉 with mean photon number |α|2 = 4 (filled circles), as a function of
the number N of atoms injected into the resonator. Vacuum Rabi angle: (a)
φ

(5)
opt = 0.97, according to the estimation (4.23), with n = 5 (for the number

and phase state), and (b) φ = 0.69 (optimal choice for the coherent state, see
Fig. 5.4d). Initial field state: the vacuum |0〉. In the first two cases (a), Fmax

approaches the ideal value 1 exponentially fast. For comparison, also the lower
bound F ′ (solid lines) and the fidelity F achieved by the state |ψ′

0〉, Eq. (4.7)
(dashed lines) are plotted, as well as the predicted convergence rate λ, Eq. (5.4)
(dotted lines).

large N using Eq. (4.16). In order to test whether also Fmax follows this behav-
ior, we can examine the preparation of a coherent state with a smaller mean
photon number, where less atoms are required to reach the same fidelity. Such
an example is shown in Fig. 5.14(b) (filled circles). Here, the decrease of the
convergence rate is slightly more pronounced than for |α|2 = 1 in Fig. 5.13(b).

Mixed initial field states

Next, we want to see how the initial field state influences the convergence of
the maximum fidelity. For this purpose, we examine mixed initial field states
in Fig. 5.14. The target states are the 2-photon number state (a and c), and
the coherent state |α〉 with mean photon number |α|2 = 1 (b and d), whereas
the initial field states are the maximally mixed states including up to n pho-
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Figure 5.14: Maximum fidelity Fmax for the preparation of the 2-photon state
|χ〉 = |2〉 (upper half, a and c), and of the coherent state |α〉 with mean photon
number |α|2 = 1 (lower half, b and d), as a function of the number N of
atoms injected into the resonator, for different initial field states: the vacuum
(filled circles), the maximally mixed states ρ0 =

∑n
i=0 |i〉〈i|/(n + 1), truncated

at n = 1, 2 and 3 (open symbols in the left column, a and b), and thermal
initial field states with mean photon numbers nb = 0.25, 0.5, 0.75, and 1 (open
symbols in the right column, c and d). The vacuum Rabi angle is (a): φ =
1.3 [according to the estimation (4.23) with n = 2], (b) and (d): φ = 0.95
(optimal for N = 10 and the vacuum as initial field state, see Fig. 5.4a), and
(c): φ = 0.94 (optimal for N = 10 and the thermal initial state with nb = 1,
see Fig. 5.11h). The dotted lines display an estimation of the convergence rate,
given by the smallest transition probability in the relevant photon field subspace
(compare chapter 4.2.2), namely λ = log(cos2(1.3)) and log(cos2(1.3

√
3)) in

case (a), and λ = log(cos2(0.94)) in case (c). The convergence to Fmax = 1 is
exponentially fast if both, initial and final field state, possess a finite maximum
photon number.
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tons, i.e., ρ0 =
∑n

i=0(|i〉〈i|)/(n + 1), with n = 1, 2, 3 (a and b), and thermal
initial states with mean photon numbers nb = 0.25, 0.5, 0.75, and 1 (b and d).
For comparison, also the maximum fidelity with the vacuum as initial state is
marked by the filled circles. In order to reach the asymptotic regime of very
high fidelities also for mixed initial field states, we chose target field states with
a lower mean photon number than in Fig. 5.13. (For comparison, the fidelity
for target states with higher mean photon numbers, using N = 10 atoms, can
be read from Figs. 5.11 and 5.12.)

In Fig. 5.14(a), exponential convergence is also observed for the mixed initial
field states. This is due to the fact that both initial and final field states possess
a finite maximum photon number. Furthermore, as discussed in chapter 4.2.2,
the convergence rate is given by the smallest of the transition probabilities
|Bn|2 = sin2(φ

√
n) in the relevant photon field subspace. Hence, we have λ =

log(cos2(1.3)) = −1.15, for maximum photon numbers of the initial field state
below 3, while the convergence rate is smaller, i.e., λ = log(cos2(1.3

√
3)) =

−0.40, for the maximally mixed state truncated at n = 3. This is not surprising,
since the vacuum Rabi angle was chosen according to Eq. (4.23) with n = 2, and
thereby optimized for initial and final field states including at most 2 photons.
[If we optimized φ for maximum photon number n = 3, i.e., φ

(3)
opt = 1.15,

according to Eq. (4.23) with n = 3, we would obtain the same convergence rate
in all the four cases of Fig. 5.14(a), namely λ = log(cos2(1.15)) = −0.78.]

Fig. 5.14(c) shows the maximum fidelity for the preparation of the same
target state |2〉, but starting from thermal initial states. Here, we chose a
different vacuum Rabi angle than in (a), namely φ = 0.94, which is better
suited for thermal initial field states, see Fig. 5.11(h). Not surprisingly, the
maximum fidelity when starting from the vacuum (filled circles) increases ex-
ponentially fast, with the convergence rate λ = log(cos2(0.94)) [since sin2(0.94)
is the smallest relevant transition probability, see chapter 4.2.2], whereas in
the case of thermal initial field states the convergence rate deviates from this
prediction at high fidelities, where the initial state’s population of the larger
photon numbers becomes relevant.

Finally, Figs. 5.14(b) and (d) display the preparation of the coherent state
|α〉 with mean photon number |α|2 = 1. Here, we chose in both cases the
vacuum Rabi angle φ = 0.95, which is the optimal one for N = 10 atoms,
starting from the vacuum (see Fig. 5.4a), and also nearly optimal for the mixed
initial field states (see Fig. 5.11b and g). It is evident that, at larger numbers
of atoms - and consequently higher fidelities - the preparation is more difficult
with thermal states rather than truncated maximally mixed states as initial
states. This is again due to the initial state’s nonvanishing population of high
photon numbers.

In summary, the convergence of the maximum fidelity with increasing num-
ber N of atoms is exponentially fast, if both initial and final field state possess
a finite maximum photon number.
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5.4.2 Convergence of the optimal initial atomic state

In chapter 5.4.1, we have examined the convergence of the fidelity towards 1
as a function of the N . Now, we want to see how the corresponding optimal
initial atomic states change with N , and what happens when we approach the
limit N → ∞. Thereby, we will obtain a more detailed picture of the limit of
asymptotic completeness than by only looking at the maximum fidelity.

As we have seen in chapter 5.2, in many cases the state |ψ′
0〉, Eq. (4.7),

gives a good approximation for the optimal initial atomic state. Furthermore,
we may use the explicit expression, Eq. (4.7), in order to study the behavior
of |ψ′

0〉 as a function of N . In order to distinguish the states |ψ′
0〉 for different

N ’s, we write |ψ′(N)
0 〉. Then, we can try to establish a relation between |ψ′(N)

0 〉
and the state |ψ′(N−1)

0 〉 for N − 1 atoms.
Starting from the definition of |ψ′(N)

0 〉, Eq. (4.7), we have:√
F ′(N) |ψ′(N)

0 〉 = 〈0|U †
N |χ, d . . .d〉

= 〈0|U †
1U †

N−1|χ, d . . .d〉, (5.5)

where U †
1 operates on the first atom [but is applied after U †

N−1, since the dagger
reverses the order of the N atoms in Eq. (2.4)], and U †

N−1 on the remaining
N − 1 atoms. The latter operation results in a final state of the field and the
last N − 1 atoms which we write as follows:

U †
N−1|χ, d . . .d︸ ︷︷ ︸

N−1

〉 =
∞∑

n=0

√
F

′(N−1)
n |n, ψ′(N−1)

n 〉. (5.6)

This equation defines the atomic state |ψ′(N−1)
n 〉 obtained when projecting the

final state U †
N−1|χ, d . . .d〉 onto the field state |n〉. For n = 0, this is the state

|ψ′(N−1)
0 〉 given by Eq. (4.7). The coefficients F

′(N−1)
n are required to normalize

the states |ψ′(N−1)
n 〉, and give the fidelity of the state (5.6) with respect to

the photon number state |n〉. Hence, they fulfill the normalization condition∑
n F

′(N−1)
n = 1, and, for n = 0, the fidelity F

′(N−1)
0 = F ′(N−1) is identical to

the lower bound F ′ as defined by Eq. (4.9).
Next, following Eq. (5.5), we calculate the operation of U †

1 on the first
atom, which is in state |d〉, and on the field, which is entangled with the last
N − 1 atoms, as a consequence of Eq. (5.6). [Since the dagger transforms −i

in Eq. (2.1) into +i, the operation of U
†
1 is similar to Eq. (2.3), but with +i

instead of −i.] After projecting onto the field vacuum, we obtain:√
F ′(N) |ψ′(N)

0 〉 =
√

F ′(N−1) |ψ′(N−1)
0 , d〉 + i sin(φ)

√
F

′(N−1)
1 |ψ′(N−1)

1 , u〉.
(5.7)

Since F ′(N−1) is very close to 1 for large N , and consequently F
′(N−1)
1 almost

zero, the main contribution to the state |ψ′(N)
0 〉 consists of the state |ψ′(N−1)

0 〉
for the last N −1 atoms, which is supplemented by the first atom in the ground
state. As a consequence, for large N , the first few atoms enter the cavity almost
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Figure 5.15: Optimal initial atomic state for the preparation of the (randomly
chosen) state |χ〉 = (0.34− 0.36i)|0〉+(−0.14− 0.31i)|1〉+(−0.02+0.28i)|2〉+
(−0.16+0.004i)|3〉+0.29|4〉, with N = 6, . . .10 atoms (top to bottom), starting
from the vacuum as initial field state. The symbols (connected by the solid
lines) represent the optimal initial atomic state which is almost identical to
the state |ψ′

0〉 (dotted lines), Eq. (4.7). As in Figs. 5.7-5.10, the ground state
population of the i-th atom (right hand side) and its entanglement with the
other ones (left hand side) are shown (remember: pi = 1/2 indicates maximal
and pi = 1 no entanglement). Vacuum Rabi angle: φ

(4)
opt = 1.05, according to

the estimation (4.23), with n = 4. When increasing N , the first atoms enter
the cavity almost exactly in the ground state, whereas the last atoms remain
essentially unchanged. Note that the logarithmic fidelity increases from f = 2.5
at N = 6 to f = 4.6 at N = 10, whereas it would remain constant if the first
atoms entered the cavity precisely in the ground state.



68 Chapter 5. Numerical Results

5 10
i

0.7

0.8

0.9

1

pi

(d)

0.995

1

pi

1

N=8

N=13

N=8

N=13

a)

b)

Figure 5.16: Optimal initial atomic state for the preparation of the coherent
state |α〉 with mean photon number |α|2 = 1, with N = 8, 9, . . . , 13 atoms, start-
ing from the vacuum as initial field state. As in Figs. 5.7-5.15, the ground state
population of the i-th atom (bottom) and its entanglement with the other ones
(top) are shown for the optimal vacuum Rabi angle φ = 0.95. The convergence
behavior deviates from the one of |ψ′

0〉 depicted in Fig. 5.15: when increasing
N , the ground state population of the last atom considerably changes, whereas
the first atom approaches the ground state only very slowly.

exactly in the ground state, as we already argued in chapter 4.3. This is also
confirmed by Fig. 5.7 for smaller photon numbers (where N = 10 is a ‘large’
number of atoms). This behavior holds for any value of φ (except for trapping
state conditions). If φ is not close to its optimal value, however, we need a
higher number N of atoms to reach a value of F ′(N−1) close to 1.

Note that if the first atom would enter the cavity exactly in the ground state,
the maximum fidelity for N atoms would obviously be the same as for N − 1
atoms (since the first atom in the ground state does not have any effect on the
field vacuum). Hence, it is the tiny part of the optimal atomic state (5.7) with
the first atom in the upper state, which is responsible for the increase of the
maximum fidelity.

Since the state |ψ′
0〉 is equal to the optimal initial atomic state |ψ(opt)〉 for the

preparation of number states, and at least gives a good approximation in most
other cases, we expect that the above conclusions are also valid for the optimal
atomic state: at large N , the main contribution to |ψ(opt)〉 should be the first
atom in the ground state and the optimal state for N−1 atoms. Fig. 5.15 shows
an example, which, indeed, confirms this prediction. In order to emphasize
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that this rule not only holds for special field states such as number states or
the truncated phase states, we have randomly chosen a target field state |χ〉
including up to 4 photons according to Eq. (5.1), see caption of Fig. 5.15.‡

Since, indeed, the optimal atomic state is almost identical to the state |ψ′
0〉

(solid and dotted lines in Fig. 5.15), its convergence for N → ∞ follows the
above predicted behavior.

Is this also the case if the optimal atomic state deviates more strongly from
|ψ′

0〉, as, e.g., for the coherent states? Fig. 5.16 shows the answer. As already
observed in Fig. 5.9 for N = 10, the ground state population of the first few
atoms is not as high as for the state |ψ′

0〉. Although the ground state population
p
(d)
1 of the first atom slightly increases with increasing N , see Fig. 5.16(b), it is

unclear whether it will converge to 1 in the limit N → ∞. Instead, it is rather
the ground state population of the last atoms, which is influenced most strongly
by the number N of atoms - in contrast to the behavior of the state |ψ′

0〉, where
the state of the last atoms is almost unchanged when increasing N [see the
above discussion of Eq. (5.7) and Fig. 5.15]. In all cases, the state remains
quite close to a product state (note the scale of Fig. 5.16a). Furthermore, the
smallest one of the eigenvalues pi of the reduced density matrix [which gives an
upper bound for the overlap with a product state, see Eq. (2.10)] is always the
last one, i = N . Based on the range of N = 8, . . . , 13 covered in Fig. 5.16, we
cannot draw precise conclusions about the limit N → ∞ of the overlap with a
product state: although, from N = 8 to N = 11, the smallest eigenvalue pN

increases, indicating an increasing overlap with a product state, this trend is
not continued for larger values of N .

5.4.3 Other initial atomic states than the optimal one

So far, we have concentrated on the maximum fidelity of the state preparation.
We have seen that the optimal initial atomic state, which prepares the desired
field state |χ〉 with the maximum fidelity when starting from the vacuum as
initial field state, is also able to prepare |χ〉 when starting from a mixed initial
field state (and even achieves almost the maximum fidelity).

However, as discussed in chapter 3.2, the property of asymptotic complete-
ness not only implies that there exists one atomic state which prepares the
desired field state independently of the initial field state, but also that for all
other initial atomic states the final field state will be independent of its initial
state. In particular, as already argued on p. 26, we expect that among the other
atomic states, there are some which also prepare the desired field state with
high fidelity. How many such states are there? A simple answer to this question
exists only in the limit N → ∞, and if the photon field is of finite dimension
n (i.e., in the case of a |n − 1〉-trapping state). Then, the dimension of the
atomic ‘high-fidelity subspace’ equals a fraction of 1/n of the dimension 2N of
the total atomic space [since the same ratio describes the degeneracies of the

‡In order to compare the state |χ〉 with the other randomly chosen states in Fig. 5.5, we
note that, using N = 8 atoms, the preparation of |χ〉 succeeds with a maximum logarithmic
fidelity of fmax = 3.6, with a relative deviation ∆frel = 8.3% from the lower bound f ′, i.e. |χ〉
lies almost exactly in the center of Fig. 5.5(b).
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Figure 5.17: Fraction d(F ) of eigenvalues of M |0〉〈0| larger than F , for the
preparation of the 2-photon number state, with N = 7, 9, 11, and 13 atoms.
Vacuum Rabi angle: φ

(2)
opt = 1.3. For each N , the symbols mark the four

largest eigenvalues. The first few eigenvalues approach F = 1 exponentially fast,
whereas the main part of the spectrum [with − log(1−F ) <

∼ 3, or d(F ) >
∼ 10%]

is approximately constant. In all four cases, the fraction of eigenvalues very
close to zero is about 70%.

two eigenvalues 0 and 1 of the one-dimensional projection onto the desired field
state, which are preserved under the unitary evolution of Eq. (3.2)]. However,
even apart from the fact that the photon field is in general infinite-dimensional,
we cannot make a similar prediction in the case of a finite number of N , since
we do not know how fast the limit of asymptotic completeness is reached.

To examine this question, we show in Fig. 5.17 the distribution of the eigen-
values F of M |0〉〈0| for the preparation of the 2-photon number state, with
different numbers of atoms, from N = 7 to N = 13. Remember that the fi-
delity achieved with an atomic initial state |ψ0〉 is given by F = 〈ψ0|M |0〉〈0||ψ0〉,
Eq. (4.2). Hence, the dimension D(F ) of the subspace of atomic states which
achieve a fidelity larger than F equals the number of eigenvalues larger than
F . To compare cases of different N , we divide this quantity by the total di-
mension: d(F ) = D(F )/2N . Furthermore, we choose a double logarithmic plot
in order to emphasize the regime of very high fidelities, i.e., we plot log(d) as
a function of − log(1 − F ). In such a plot, the largest few eigenvalues can be
clearly identified (see the symbols in Fig. 5.17), since the step size on the d-axis
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Figure 5.18: Eigenvectors of M |0〉〈0| (target state |χ〉 = |2〉), belonging to the five
largest eigenvalues (top to bottom), for N = 11, 12, and 13 atoms injected into
the cavity, and otherwise the same parameters as in Fig. 5.17. The ground state
population of the i-th atom is shown (which also determines their amount of
entanglement with the other atoms, since the target state |χ〉 is a number state,
see chapter 5.2). The correspondence between the eigenvectors for different N ’s
is clearly visible.

from the i-th eigenvalue (where i = 1 denotes the largest eigenvalue) to the
next smallest one monotonically decreases with i. Moreover, for a fixed i, the
logarithmic d-axis measures the number N of atoms on a linear scale (since the
fraction of eigenvalues not smaller than the i-th largest one equals d = i/2N).
As evident from Fig. 5.17, not only the largest eigenvalue, but also the next few
ones increase exponentially with N , with approximately the same rate as the
largest one. Moreover, a one-to-one correspondence between those eigenvalues
can be established in the sense that the eigenvectors evolve smoothly when in-
creasing N . For the first five eigenvalues, this is displayed in Fig. 5.18, where
the transition from N = 11 to N = 13 is shown. The second eigenvector shows
a similar behavior as the largest one, with very high ground state population of
the first few atoms. For smaller eigenvalues than the ones depicted in Fig. 5.18,
however, the one-to-one correspondence between the eigenvectors belonging to
different N ’s will break down: it can certainly not hold for all eigenvalues, since
the total number 2N of eigenvalues depends on N .

Furthermore, it can be seen from Fig. 5.17 that in all the four illustrated
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Figure 5.19: Fraction d(F ) of the eigenvalues of M |0〉〈0| larger than F , for the
preparation of the coherent state |χ〉 = |α〉 with mean photon number |α|2 = 1,
for N = 8, 9, 12 and 13 atoms. Vacuum Rabi angle: φ = 0.95. A plateau
structure is observed (whose origin is not understood), indicating a clustering
of eigenvalues at certain accumulation points, which are marked by the little
arrows in the top (dotted for even, and solid for odd N ). As in Fig. 5.17, the
convergence of the spectrum of M |0〉〈0| to the limiting case, where almost all
eigenvalues should be very close to either 0 or 1, cannot be inferred from the
behavior for small values of N ≤ 13.

cases the percentage of eigenvalues larger than 0.99 is about 10%, and about
70% of the eigenvalues are very close to zero (as indicated by the fact that
the graphs seem to intersect the d-axis at about 0.3 = 1 − 0.7). Also the
intermediate distribution of the remaining 20% of the eigenvalues is almost
independent of N . On the other hand, asymptotic completeness implies that
in the limit N → ∞, (almost) all eigenvalues have to be equal to either 0 or 1.
Hence, we conclude that it takes many more than 13 atoms to reach this limit.
For smaller N , the total distribution of eigenvalues hardly changes with N , and
only in the logarithmic plot we see the convergence of the largest eigenvalues
towards the ideal value 1.

To test whether such interpretation of Fig. 5.17 is generally valid, we show
another example in Fig. 5.19, where the target field state is the coherent state
|α〉, with mean photon number |α|2 = 1. As in the previous example, the
first four eigenvalues are marked by symbols, and they converge to 1 approxi-
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Figure 5.20: Eigenvectors of M |0〉〈0| (target state: |α〉, α = 1), belonging to
the five largest eigenvalues (top to bottom), for N = 11, 12, and 13 atoms
injected into the cavity, and otherwise the same parameters as Fig. 5.19. The
filled circles show the ground state population of the i-th atom, and the open
diamonds the amount of entanglement with the other atoms (see chapter 5.2).
The correspondence between the eigenvectors for different N ’s is clearly visible.

mately as fast as the largest one. Again, the corresponding eigenvectors evolve
smoothly when increasing N , see Fig. 5.20. Remarkably, the structure of the
eigenvectors seems to get more complicated with decreasing magnitude of the
eigenvalue. This tendency can also be observed in Fig. 5.18.

However, returning to the distribution of eigenvalues, Fig. 5.19, we observe
a plateau structure which is not present in Fig. 5.17: at some points, the density
of eigenvalues is very high, as indicated by a sudden decrease of the function
d. Furthermore, the position of those accumulation points, which we have
marked by small arrows in the top of Fig. 5.19, depends on whether N is even
or odd (solid or dotted arrows). We have found empirically that at the i-th
accumulation point Fi (counted from the right, i.e., i = 0 corresponds to the
largest eigenvalue), the number of eigenvalues larger than Fi approximately
equals

(
N
i

)
, i = 0, . . . , N/2 or N/2 − 1 (for even or odd N ). With larger N ,

however, this structure appears to be smoothed out.

At present, we do not have an explanation for this behavior. The plateau
structure seems to be of rather generic origin: e.g., for the preparation of the
2-photon state and a smaller vacuum Rabi angle φ = 0.8 than in Fig. 5.17, we
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Figure 5.21: Deviation ∆ (log. scale) of M |0〉〈0| from M (ρ0), as defined by
Eq. (5.8), for the same parameters as in Fig. 5.14 [preparation of |χ〉 = |2〉 (a,c)
and |χ〉 = |α〉, α = 1 (b,d), starting from thermal (a,b) and truncated maxi-
mally mixed (c,d) initial field states]. The convergence towards ∆ = 0, which
quantifies the independence of the final from the initial field state, as predicted
by asymptotic completeness, Eq. (3.2), is much slower than the convergence
of the maximum fidelities (Figs. 5.13 and 5.14), i.e., the largest eigenvalues of
M |0〉〈0| and M (ρ0). In (a) and (c), a non-monotonic behavior of unknown origin
is observed.

observe a similar structure. The reason for its absence in Fig. 5.17 may be that
the two relevant transition probabilities |B1|2 and |B2|2 are identical if φ = 1.3.

Nevertheless, one of the above conclusions from Fig. 5.17 remains valid:
the convergence of the total spectrum of M |0〉〈0| (i.e., also of those eigenvalues
which are neither very close to 0 nor to 1) cannot be observed in Fig. 5.19. For
example, in the regime around F = 0.9 [i.e., − log(1−F ) = 1], the distribution
of the spectrum depends on whether N is even or odd, but otherwise does not
drastically change with increasing N . Hence, it takes many more than 13 atoms
to come close to the limit N → ∞ of asymptotic completeness in Eq. (3.2).

5.4.4 Independence from the initial field state

Nevertheless, one might argue that, from a physical point of view, the limit
N → ∞ in Eq. (3.2) is not so important, as long as we are able to prepare
the desired field state with high fidelity. As discussed in chapter 3.2, however,
asymptotic completeness is more than the ability to prepare a given field state.
It also implies independence of the final field state from the initial field state.
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We have already examined this aspect in chapter 5.3. There, we always used
the optimal initial atomic state and studied how the maximum fidelity of the
state preparation starting from mixed initial field states converges to the ideal
value 1. According to Eq. (3.2), the independence of the final from the initial
field state should also hold for all other initial atomic states.

In order to verify this aspect of the asymptotic completeness numerically,
we quantify the difference ∆ between M |0〉〈0| and M (ρ0) by the Hilbert-Schmidt
norm [85]:

∆2 = Tr
{(

M (ρ0) − M |0〉〈0|
)2

}
/2N , (5.8)

i.e., ∆2 is the average over the square of all eigenvalues of M (ρ0) − M |0〉〈0|. In
order to compensate for the increasing number of eigenvalues, the normaliza-
tion factor 2N is required. Asymptotic completeness is fulfilled if and only if
∆ → 0 with N → ∞, for all final and initial field states. Indeed, Fig. 5.21 con-
firms this prediction in all the four cases (for the two target states |2〉 and |α〉,
α = 1, starting from thermal and truncated maximally mixed initial states).
Furthermore, the convergence is again exponentially fast. Note, however, that
the range of the log(∆)-axis corresponds to only one order of magnitude. Hence,
the convergence is much slower than for the maximum fidelity (Figs. 5.13 and
5.14). Furthermore, the rate of convergence does not depend mainly on the
target and initial field states, but rather on the vacuum Rabi angle, which is
almost the same in the three cases (b), (c), and (d). For the preparation of
number states (a and c), in some cases a zig-zag structure is observed, which
indicates a dependence of ∆ on whether N is even or odd. This feature is not
yet understood.

In summary, although universal preparability is equivalent to asymptotic
completeness in the limit N → ∞, the first property is reached much faster
than the second.





Chapter 6

The influence of noise

Whereas we have so far assumed idealized experimental conditions, in a real
laboratory we have to deal with various noise sources: the initial atomic state
cannot be prepared with perfect fidelity, the vacuum Rabi angle is not precisely
the same for all atoms (e.g., due to a finite velocity spread of the atomic beam),
and the photon field decays during the interaction with the cavity walls. In this
chapter, we will examine the influence of those noise sources upon the fidelity
of the state preparation.

6.1 Cavity dissipation

Since, under realistic experimental conditions, the cavity field is not perfectly
isolated from its environment, the field decays due to the interaction with the
cavity walls. This decay can be treated using standard techniques (see, e.g.,
chapter 15.1 in [59]): the environment is treated as a heat bath at temperature
T , which has no memory (Markov approximation). Furthermore, the coupling
between cavity field and heat bath is assumed to be weak, and mediated by
the photon annihilation and creation operators a and a†. Under these general
conditions, one arrives at the following master equation of the damped harmonic
oscillator:

ρ̇ =
γ

2
(nb + 1) (2aρa† − a†aρ − ρa†a) +

γ

2
nb (2a†ρa− aa†ρ − ρaa†). (6.1)

Here, γ is the decay rate of the cavity, and nb the mean photon number at
thermal equilibrium. The latter is connected to the temperature T of the heat
bath via the familiar Boltzmann factor, i.e.,

nb =
(
e�ω/kT − 1

)−1
. (6.2)

In the laboratory, temperatures of about T � 0.3 K can be realized, corre-
sponding to nb � 0.03 in the microwave regime (ω � 20 GHz). Furthermore,
with the high quality microwave cavities presently at use in the laboratory [93],
average photon lifetimes as high as γ−1 = 0.2 s can be reached. On the other
hand, the interaction times tint of a single atom with the field are of the order of
microseconds, and assuming a coupling constant of Ω � 40 kHz [93], a vacuum

77
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Rabi angle of φ = Ωtint � 1 is realized with tint � 25 µs, which is about 4 or-
ders of magnitudes smaller than the cavity decay rate γ−1. Hence, it is a good
approximation to neglect the decay during the atom-field interaction, which is
therefore still described by Eq. (2.1). Only during the intervals between two
successive atoms will we account for the decay via Eq. (6.1). For simplicity, we
assume that those intervals are of constant length tp. We do not expect that
fluctuations of tp significantly change the results presented below.∗

In general, any interaction of the field with the environment will reduce
the purity of the field state, and therefore also reduce the fidelity of the state
preparation. The question is: can we do something against it by choosing a
different initial atomic state? For example, this could be an atomic state with
higher excitation number, compare Eq. (2.6), in order to compensate for the
expected photon losses. Our numerical calculations (see below) give a negative
answer: the optimal initial atomic state is nearly the same with or without
dissipation. In order to explain this result, we will first examine how the decay
alone affects the cavity field, without any atoms passing through the cavity.

6.1.1 Decay of the fidelity of a field state

If the cavity field is initially in the state ρ = |χ〉〈χ|, the fidelity with respect to
|χ〉 will decrease as a consequence of Eq. (6.1). In order to find out how fast,
we will restrict ourselves to short times, i.e., tγ � 1. As mentioned above, this
may still be very much longer than the interaction time of a single atom with
the cavity, and comparable to the total time T = (N − 1)tp of the preparation
process. The fidelity at time t then reads F (t) = 1 + 〈χ|ρ̇|χ〉 t, at first order in
γt. Insertion of Eq. (6.1) for ρ̇ yields:

∆F = F (t) − 1 = −γt
[
(2nb + 1)

(
〈χ|a†a|χ〉 − |〈χ|a|χ〉|2

)
+ nb

]
= −γt

[
(2nb + 1)

(
〈χ|a† (�− |χ〉〈χ|) a|χ〉

)
︸ ︷︷ ︸

0≤...≤〈χ|a†a|χ〉

+nb

]
. (6.3)

Let us first discuss the case nb = 0 of zero temperature. Then, Eq. (6.3) says
that the decrease of the fidelity is given by γt multiplied with the norm of the
projection of the state a|χ〉 onto the subspace orthogonal to |χ〉 (which, due
to 0 ≤ � − |χ〉〈χ| ≤ �, is bounded between 0 and the mean photon number of
|χ〉). Therefore, ∆F = 0 if and only if |χ〉 is an eigenstate of a, i.e., a coherent
state, since only then a|χ〉 does not overlap any state orthogonal to |χ〉. So, at
zero temperature, coherent states do not decay at all, at first order in γt. In
fact, it is not difficult to verify that, according to Eq. (6.1), a coherent state
will always remain a coherent state, with an exponentially decaying amplitude

α(t) = e−
γ
2
t α(0), (nb = 0). (6.4)

∗As we will see below, for small values of γtp, the decrease ∆F of the fidelity will essentially
be proportional to the total time T � Ntp, for which the cavity field is exposed to the damping.
Hence, if T fluctuates, the expectation value of ∆F is proportional to the mean value of T .
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Only at the second order in γt does this lead to a finite decrease of the fidelity,

∆F = −γ2t2|α|2/4, (nb = 0). (6.5)

On the other hand, for a number state |χ〉 = |n〉, the state a|n〉 =
√

n|n−1〉 is
orthogonal to |n〉, and the under-braced term in Eq. (6.3) assumes its maximum
value, namely the mean photon number 〈n〉 = n of |χ〉. Consequently, we obtain

∆F = −γtn, (nb = 0). (6.6)

Hence, number states are much more sensitive with respect to cavity decay than
coherent states. Furthermore, it is clear that states with higher mean photon
numbers decay faster, since then the absorption of a photon by the heat bath is
more likely. [As can be derived from Eq. (6.1), if the cavity contains n photons,
the probability of the heat bath absorbing one photon is proportional to n, see
also the term proportional to γ in Eq. (C.9).]

In the case nb > 0 of nonzero temperature, also a coherent state |α〉 will
turn into a mixed state (since then, the heat bath can also emit photons into the
cavity via a†, and a†|α〉 is not proportional to |α〉). Consequently, also coherent
states will then decay linearly in γt. From Eq. (6.3), we can derive the following
generalization of the above expressions (6.5,6.6) for nonzero temperature:

∆F = −γt nb, (6.7)

for the decay of a coherent state, independently of its mean photon number
|α2|, and

∆F = −γt [(2nb + 1)n + nb], (6.8)

for a number state |n〉. As obvious from Eq. (6.3), the fact that the coherent
states are most stable with respect to the cavity decay among all field states,
remains valid also for nb > 0 (since, as argued above, the under-braced term
vanishes only for coherent states).

In order to achieve a higher fidelity of the field state with respect to |χ〉 after
the decay, one might have the idea to start with another initial field state |χ′〉.
Although the initial fidelity is then smaller than 1, i.e., F ′(0) = |〈χ|χ′〉|2, it may
be possible to reduce the decrease ∆F ′ of the fidelity induced by the decay, or
maybe even reverse the sign of ∆F ′, such that in total F ′(t) = F ′(0) + ∆F ′ is
larger than F (t) = 1 + ∆F . For very small values of γt, however, this does not
work, as we see with the following simple argument: similarly to Eq. (6.3), ∆F ′

is given by

∆F ′ = − γt

(
1
2

(
〈χ|a†a|χ′〉〈χ′|χ〉 + c.c.

)
−

∣∣〈χ|a|χ′〉
∣∣2) . (6.9)

Although we assumed here nb = 0, for simplicity, the following argument is
also valid for nb > 0. In fact, we need Eq. (6.9) only in order to verify that
∆F ′/(γt) is continuous in χ′, i.e., ∆F ′/(γt) → ∆F/(γt) if χ′ → χ. (Obviously,
this remains true for nb > 0.) Now, for very small values of γt, we have to
choose χ′ very close to χ, i.e., χ′ → χ if γt → 0 (otherwise, F ′(0) = |〈χ|χ′〉|2
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cannot be larger than 1 + ∆F − ∆F ′, since both ∆F ′ and ∆F are small, i.e.,
∆F ′, ∆F → 0 if γt → 0). Since ∆F ′/(γt) is continuous in χ′, according to
Eq. (6.9), this implies that ∆F ′/(γt) → ∆F/(γt) if γt → 0, or - in other words
- that the difference between ∆F ′ and ∆F is of second order in γt. Hence, the
decrease of the fidelity at first order in γt, as given by Eq. (6.3), cannot be
reduced.

The above argumentation does not apply in the case of zero temperature
and a coherent state |χ〉 = |α〉, where ∆F = 0 at first order in γt, and the
second order is relevant, see Eq. (6.5). In this case, it follows from Eq. (6.4)
that we can actually achieve F ′(t) = 1 if we choose the initial state |χ′〉 = |α′〉
with α′ = α e

γ
2
t. Note, however, that, |α′〉 is only very slightly different from

|α〉, i.e., |〈α′|α〉|2 = 1 at first order in γt.
Hence, our conclusion is the following:

In order to maintain the highest possible fidelity with respect
to a given state |χ〉 after exposing the cavity field to the decay
for a short time t, we have to choose the same |χ〉 as initial
field state.

In particular, it does not help anything to choose, for example, an initial state
with a higher mean photon number (apart from a tiny improvement in the case
of zero temperature and a coherent state |α〉, as discussed above). Even if the
mean photon number after the decay is the same as the one of the target state
|χ〉, this does not imply a large overlap with |χ〉, since the decay results in
general in a mixed field state.

6.1.2 Influence of the decay upon the state preparation

Naturally, the situation is much more complicated if we consider the influence
of the decay on the preparation of field states. Here, also in the absence of
dissipation, the state of the cavity is not constant in time, since it evolves from
the initial state ρ0 to the target state |χ〉, due to the interaction with the atomic
sequence. Furthermore, during the interaction the field is also entangled with
the atoms. Due to these complications, the influence of the dissipation cannot
be estimated as clearly as above. Nevertheless, the above considerations suggest
the conclusion that the best way to achieve a high fidelity in the presence of
dissipation is to do the same as in the absence of dissipation. In particular, it
is apparently not a good strategy to choose the initial atomic state such that it
would prepare a different field state |χ′〉 without dissipation, and to hope that
the latter brings |χ′〉 closer to |χ〉.

As we know from chapter 5.4.3, there exist more than one atomic states
which prepare |χ〉 with high fidelity. These may be affected differently by the
dissipation. However, there are good reasons for the assumption that the opti-
mal initial atomic state will remain optimal also in the presence of dissipation:
we have seen in chapter 5.2 that the optimal state has (in most cases) the prop-
erty that the first atoms enter the cavity almost in the ground state. If the field
is initially in the vacuum state, it will therefore at first remain very close to the
vacuum where it is insensitive to the cavity decay. On the other hand, if the
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field is initially in a mixed state, the purpose of the first few atoms is to bring
the field closer to the vacuum, and this is actually supported by the dissipation,
at least at low temperatures, such that the vacuum population (1+nb)−1 of the
thermal equilibrium state is not smaller than the maximum vacuum population
of the field during the preparation process (compare chapter 5.3). Only for
the preparation of coherent states starting from the vacuum, we have stated
a somewhat different behavior of the optimal atomic state, see Fig. 5.16. As
discussed in chapter 5.2, however, in this case the cavity field is always very
close to a coherent state during the whole preparation process, i.e., it climbs up
on a ladder of coherent states. Since these are quite insensitive to the cavity
decay (see chapter 6.1.1), this preparation strategy should remain the optimal
one also in the presence of dissipation.

Hence, we come to the remarkable conclusion that the optimal strategy to
prepare a field state in the absence of dissipation is such that if we include dissi-
pation its influence will be minimal. However, the above reasoning is based on
rather qualitative arguments, and, in particular, we have not taken into account
the possibility of an interplay between the dissipation and the interaction with
the two-level atoms.

Calculation of the maximum fidelity

Therefore, we will resort to numerical calculations in order to determine the
influence of the cavity decay on the state preparation more precisely. For this
purpose, since the atomic operator M (ρ0) needed for the calculation of the
fidelity and of the atomic initial state (see chapter 4.1) is derived from the
projector onto the desired field state propagated in the Heisenberg picture,
we have to translate Eq. (6.1), which operates on the field states (i.e., in the
Schrödinger picture), into the Heisenberg picture. The expectation value tr(ρA)
is not affected by a change of the picture, and therefore the corresponding time
evolution of a field operator A in the presence of dissipation can be easily derived
from the condition tr(ρ̇A) = tr(ρȦ). Using the cyclic permutation property of
the trace, we obtain the dual equation:

Ȧ =
γ

2
(nb+1) (2a†Aa−Aa†a−a†aA) +

γ

2
nb (2aAa†−Aaa†−aa†A). (6.10)

For t → ∞, A(t) approaches a multiple c� of the identity operator, with c
the expectation value of A(0) in thermal equilibrium. For finite t, the solution
of the linear equation (6.10) can be formally written as A(t) = eĽtA(0), with
the linear ‘superoperator’ Ľ.† Hence, in order to account for the damping, we
have to apply the superoperator eĽtp between two successive atoms (remember
that the damping is neglected during the atom-field interaction). In analogy to
Eq. (A.9), the matrix elements of M (ρ0) are then given by

〈i1 . . . iN |M (ρ0)|j1 . . . jN〉 = tr
{
ρ0 Ti1j1e

ĽtpTi2j2 . . . eĽtpTiN jN
(|χ〉〈χ|)

}
. (6.11)

As in chapter 4.1, the largest eigenvalue of M (ρ0) gives the maximum fidelity of
the state preparation, and the corresponding eigenvector is the optimal initial

†The solution can be found in analytical form in [94].
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atomic state. However, our conclusion at the end of that chapter, based on the
time-reversal symmetry of the Jaynes-Cummings interaction, is now invalid,
since the dissipation destroys the time-reversal symmetry.

Results

Using this approach, we can calculate the maximum fidelity and the optimal
initial atomic state in the presence of dissipation. As predicted above, we will
find - in all cases - that the fidelity achieved with the optimal initial atomic
state in the absence of dissipation is almost identical to the maximum fidelity
which we can reach for nonvanishing coupling to the environment.

As an example, Fig. 6.1 shows the maximum fidelity for the preparation (a)
of the number state |5〉, of the truncated phase state |χ5〉, and (b) of the coherent
states |α〉, with |α|2 = 1 and |α|2 = 2, as a function of the number N of atoms
injected into the resonator, in the presence of dissipation. In order to analyze
the influence of a finite temperature, we compared the experimentally realistic
value nb = 0.03 (i.e., T = 0.3 K) with the case of zero temperature nb = 0
and a higher temperature nb = 0.2 (i.e., T = 0.6 K). For the time interval
between two successive atoms, we chose tp = 10−3γ−1, which, as mentioned
above, is still ten times longer than the interaction of a single atom with the
cavity field.‡ For comparison, also the maximum fidelity in the absence of
dissipation is plotted (dashed line). Note that, in all cases, the fidelity achieved
with the optimal initial atomic state for the dissipation free case (solid line) can
hardly be distinguished from the maximum fidelity (symbols). This confirms
our above conjecture that the dissipation does not influence the optimal initial
atomic state. [An exception is the case |α|2 = 1 at zero temperature. Here,
the fidelity can be slightly improved by choosing a different initial atomic state
than in the dissipation free case. This can be understood by the fact that, at
nb = 0, coherent states decay again into coherent states, see Eq. (6.4).]

In Fig. 6.1(a), a saturation of the maximum fidelity is observed. This is not
surprising: in these cases, the optimal atomic state is very close to the state |ψ′

0〉,
Eq. (4.7). As shown in chapter 5.2, with increasing N , the first atoms enter the
cavity almost in the ground state (and the cavity field remains in the almost
dissipation-free vacuum state), while the state of the last atoms is basically
unchanged. Hence, the effect of the dissipation is approximately the same for
different N , and the maximum fidelity will be reduced by a constant amount
∆F . The saturation then sets in as soon as the deviation of the fidelity without
dissipation from 1 is much smaller than the dissipation-induced decrease ∆F .
Furthermore, we see that the decrease ∆F of the fidelity does not depend
very strongly on the temperature (however, note the logarithmic scale!), in the
regime nb ≤ 0.2: in the case of the number state |χ〉 = |5〉, we observe ∆F =
1.3%, 1.4%, and 1.9% for nb = 0, 0.03, and 0.2, respectively, whereas in the case
of the phase state |χ〉 = |χ5〉, ∆F = 0.15%, 0.17%, and 0.25%. In all cases, this

‡Therefore, the effect of the cavity dissipation could be further reduced if it were possible
to control the arrival times of the individual atoms such that they pass through the cavity
immediately one after the other. Recent progress [7, 8] in the experimental manipulation of
single atoms suggests that such control is within reach.
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Figure 6.1: Maximum fidelity Fmax in the presence of dissipation (γtp = 10−3)
for the preparation (out of the vacuum) (a) of the 5-photon state |χ〉 = |5〉 (filled
circles) and of the phase state |χ5〉, truncated at n = 5 (open circles), and (b)
of the coherent states |α〉, with |α|2 = 1 (open circles), and |α|2 = 2 (filled
circles), as a function of the number N of atoms injected into the resonator.
Three different values for the temperature of the heat bath are chosen: nb = 0
(i.e., T = 0 K) (symbols), nb = 0.03 (i.e., T = 0.3 K) (dotted lines), and
nb = 0.2 (i.e., T = 0.6 K) (dash-dotted lines). For each target state, the optimal
vacuum Rabi angle was chosen, i.e., φ

(5)
opt = 0.97 for the number and phase state

(a), and φ = 0.95 and 0.85 for the coherent states (b). For comparison, also
the maximum fidelity without dissipation (dashed line) is shown. In the case
nb = 0, we plotted also the fidelity achieved with the optimal initial atomic
state for the state preparation in the dissipation-free case (solid line), which
can be distinguished from the maximum fidelity (symbols) only for |α|2 = 1
and N ≥ 9 in (b), where the fidelity is extremely high. (In the cases nb = 0.03
and nb = 0.2, we would not see any difference at all.) This shows that the
presence of dissipation has almost no influence on the optimal initial atomic
state. In most cases - except for the preparation of coherent states (b) at zero
temperature - we observe a saturation of the maximum fidelity induced by the
dissipation.
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corresponds to the decrease of the fidelity as predicted by Eq. (6.3), if the target
state |χ〉 is exposed to the decay for a time t � 2.7 tp. Not surprisingly, this is
smaller than the total preparation time T = (N − 1)tp: since the mean photon
number in the cavity field increases from zero to 〈n〉 = 〈χ|a†a|χ〉 during the
preparation process, the cavity field decays, on average, slower than |χ〉. Indeed,
the ratio t/T = 2.7/(N − 1) roughly equals the average photon number of
the cavity field during the whole preparation process (for large enough N , i.e.,
in the saturated regime), in units of the target state’s mean photon number.
We have checked that for number states and phase states with other maximum
photon numbers n, this ratio scales linearly with n, as expected from the fact
that the number of atoms needed for the state preparation also scales linearly
with n (see Fig. 4.2).

The impact of dissipation on the preparation of coherent states is much
weaker, see Fig. 6.1(b), especially for zero temperature. Taking into account
that, during the preparation of a coherent state, the cavity field always re-
mains approximately in a coherent state (compare chapter 5.2), this agrees
with Eq. (6.5), stating that, at nb = 0, coherent states decay only at second
order in γt. Consequently, for nb = 0, dissipation becomes non-negligible only
at fidelities for which the deviation from 1 is comparable to the second order
(γ Ntp)2 � 10−4 (for N � 10), in agreement with Fig. 6.1(b).

On the other hand, for nb > 0, also the coherent states decay linearly in
γt. Consequently, also in these cases, we observe a saturation of the fidelity.
For nb = 0.2, the fidelity decrease ∆F is of comparable magnitude in both
cases |α|2 = 1 and 2 (and the same is expected also for nb = 0.03, where for
|α|2 = 2 the saturation will occur at higher values of N ). This is consistent
with Eq. (6.7), where the decrease of the fidelity is also independent of |α|2.
According to this equation, the observed values of ∆F = 2.5 × 10−5 and 1.5 ×
10−4, for nb = 0.03 and 0.2, respectively, correspond to the decrease of the
fidelity when exposing a coherent state - irrespective of its mean photon number
|α|2 - to the cavity decay for a time of t � 0.8 tp. Again, this is much smaller
than the total preparation time T = (N − 1)tp. In contrast to the above case
(a), however, this difference cannot be explained by the evolution of the photon
field state during the preparation process, since - as already mentioned - the
dissipation-induced decrease of the fidelity with respect to a coherent state |α〉
does not depend on |α|2, see Eq. (6.7). Hence, the only possible explanation is
that the dissipation is suppressed by the interaction with the atoms.

In fact, this effect can already be demonstrated by the following simple
example: we consider the preparation of the coherent state α′ = 1 starting
from another coherent state α =

√
0.85 as initial state, using a single atom,

with vacuum Rabi angle φ = 0.95. This corresponds to a typical single step
on the ladder during the preparation of coherent states (compare chapter 5.2).
Without dissipation, the maximum fidelity (using the optimal initial atomic
state |ψ〉 = 0.82|u〉 − i0.57|d〉) would be F

(n.d.)
max = 99.25%. On the other hand,

if the cavity field is exposed to the cavity decay, for a time tp = 10−3γ−1 at
temperature nb = 0.2, before the atom arrives, the initial state is turned into a
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mixed state ρ0, which, according to Eq. (6.1), is given by (for γtp � 1):

ρ0 = |α〉〈α| + γtp

{[
(nb + 1)|α|2 − nb

]
|α〉〈α| + nb a†|α〉〈α|a

−(2nb + 1)
[
α a†|α〉〈α| + α∗ |α〉〈α|a

]}
. (6.12)

Now, starting from ρ0 as initial field state, the maximum fidelity for the prepa-
ration of |α′〉 (using the same initial state as above) is Fmax = 99.30%, which
is higher than F

(n.d.)
max = 99.25% in the dissipation-free case.

This example shows that, in order to estimate the effect of the cavity dissi-
pation on the preparation of coherent states, we have to take into account the
interplay between the dissipation and the interaction with the two-level atoms,
which may actually diminish the influence of the dissipation. A similar effect,
however, was not observed during the preparation of other field states (e.g., of
number or phase states).

6.2 Imperfect initial atomic state

Next, let us consider the impact of an imperfect initial atomic state. For this
purpose, we assume that the initial atomic state is given by a mixed state
ρa, instead of the optimal initial atomic state. Then, the fidelity of the state
preparation is given by F = tr{ρaM

(ρ0)}, which is the obvious generalization
of Eq. (4.2) to mixed atomic states. If the fidelity of ρa with respect to the
optimal state |ψ(opt)

0 〉 is

Fa = 〈ψ(opt)
0 |ρa|ψ(opt)

0 〉, (6.13)

we obtain a lower bound for the fidelity of the state preparation as follows:

F = tr
{

ρa M (ρ0)
}

=

=
2N∑
i=1

〈ψi|ρa|ψi〉 〈ψi|M (ρ0)|ψi〉 ≥

≥ 〈ψ(opt)
0 |ρa|ψ(opt)

0 〉 〈ψ(opt)
0 |M (ρ0)|ψ(opt)

0 〉 =
= Fa Fmax, (6.14)

where {|ψi〉} is a basis of eigenstates of M (ρ0) (including |ψ(opt)
0 〉). Since this

is only a lower bound, we might considerably underestimate the fidelity. As
evident from the second line, this would be the case if the fidelity of ρa with
respect to atomic states |ψi〉 orthogonal to |ψ(opt)

0 〉, which also achieve a high
fidelity Fi = 〈ψi|M (ρ0)|ψi〉, compare Eq. (4.2), was non-negligible. However,
we know from chapter 5.4.3 that most eigenvalues of M (ρ0) are much smaller
than 1, and therefore the above lower bound can be expected to give a good
approximation.

Hence, fluctuations of the initial atomic state do not have a very dramatic
influence: the fidelity of the state preparation is at least as high as the maximum
fidelity multiplied by the initial fidelity of the atomic state.
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Figure 6.2: Decrease ∆F of the maximum fidelity, due to fluctuation ∆φ/〈φ〉 =
1% (filled circles) and 2% (open circles) of the vacuum Rabi angle, preparing
(a) number states |n〉 and (b) coherent states |α〉, with mean photon number
〈n〉 (= n or |α|2). The number of injected atoms is N = 10. Mean values of φ
as in Figs. 5.7 and 5.9. For ∆φ/〈φ〉 = 1%, the decrease of the fidelity is reduced
by a factor 4 as compared to ∆φ/〈φ〉 = 2%. The preparation of coherent states
is more stable with respect to fluctuations of φ than the preparation of number
states (note the different scales of the ∆F axis!).

6.3 Fluctuations of the vacuum Rabi angle

Besides the noise sources arising from the cavity dissipation and the initial
atomic state, also the interaction between atom and field may be imperfect, e.g.,
due to a finite time-of-flight spreading of the incoming atomic beam, which leads
to fluctuations ∆φ of the vacuum Rabi angle φ. However, if the fluctuations
are small enough, there will be no serious problems - at least if the mean value
〈φ〉 of φ is known: the expected fidelity, using the optimal initial atomic state
for 〈φ〉, changes only at second order in ∆φ, since all terms linear in ∆φ cancel
when averaging over the fluctuations. §

This expectation is confirmed by our numerical calculations, see Fig. 6.2.
Here, we assumed that φ fluctuates independently for each atom (according to
a Gaussian distribution) with standard deviation ∆φ. Then, for the numerical
evaluation of Eq. (A.9), we have to replace the operators Tij by their average
over φ. The target field states are, again, (a) number states, and (b) coherent

§Even if the change ∆F of the fidelity induced by a small deviation ∆φ is proportional to
∆φ, the expected fidelity (averaging over ∆φ) does not change at first order in ∆φ, since the
expectation value of ∆φ is by definition zero.
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Figure 6.3: Decrease ∆F of the maximum fidelity due to fluctuations of the
vacuum Rabi angle, ∆φ/〈φ〉 = 1%, as a function of the number N of atoms,
when preparing (a) number states |n〉, n = 1, . . .5 and (b) coherent states |α〉,
|α|2 = 1, . . .5. Mean values of φ as in Fig. 6.2. While ∆F is constant for large
N in the case of number states (a), the behavior is more complicated in the case
of coherent states (b), where a maximum of ∆F as a function of N is observed.

states with mean photon numbers 〈n〉 = 1, . . . , 5. For the strength of the
fluctuations, we chose ∆φ/〈φ〉 = 1% and 2%, which is experimentally realistic
[93]. For the mean value 〈φ〉, we chose in each case the optimal value of the
vacuum Rabi angle (i.e., the same values as in Figs. 5.7 and 5.9).

The largest influence of ∆φ is observed for the 5-photon number state, where
the fidelity decreases by 0.0015 and 0.006, respectively. As predicted above, ∆F
is quadratic in ∆φ: the decrease of the fidelity is always four times larger for
∆φ/〈φ〉 = 2% than for ∆φ/〈φ〉 = 1%.

In general, the preparation of states with smaller photon numbers is less
sensitive to fluctuations of φ. At first, one might try to explain this by the
fact that the Rabi angle of the atom-field interaction increases with increasing
photon number like φ

√
n + 1, see chapter 2.1, leading to a larger impact of

a small change of φ if the photon number is larger. This effect, however, is
counterbalanced by our choice 〈φ〉 � π/(1 +

√
n) of the mean value of φ in the

optimal regime, see Eq. (4.23). Instead, the reason is as follows: as we have seen
in chapter 5.2, the optimal initial atomic state is in most cases approximately
(and in the case of number states exactly) given by the state |ψ′

0〉, Eq. (4.7).
Now, as evident from Fig. 5.7 and 5.8, this state has the property that, for the
preparation of states with smaller mean photon number, more of the first few
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atoms enter the cavity almost in the ground state, and the field remains longer
very close to the vacuum, independently of the exact value of φ. Furthermore, if
we increase the number N of atoms, we will [for large enough N , i.e., N >

∼ 2n,
where the fidelity F ′(n) is close to 1, compare Fig. 4.2] essentially only add
ground state atoms to the initial state, compare Fig. 5.16. Therefore, we expect
that (again for large enough N ), the fidelity decrease ∆F due to the fluctuations
of φ should not depend on N . This expectation is confirmed by Fig. 6.3(a),
where we plotted the fidelity decrease for number states as a function of N .

It is also evident from Figs. 6.3(a) and 6.2(a) that ∆F (in the saturated
regime) depends linearly on the photon number n. This agrees with the fact
that the number of atoms needed for the preparation of |n〉 also scales linearly
with n, see Fig. 4.2. In total, we can extract from Fig. 6.3(a) or 6.2(a) that
the decrease of the fidelity for the state preparation of number states |n〉 due
to fluctuations of the vacuum Rabi angle (around the optimal mean value) is
given by

∆F � 3n (∆φ/〈φ〉)2. (6.15)

The situation is different for the preparation of coherent states, where the
optimal initial atomic state deviates from the state |ψ′

0〉, see Fig. 5.9. Here,
we observe a non-monotonic behavior of ∆F as a function of the mean photon
number 〈n〉. In order to explain this, let us look at the N -dependence of
∆F in Fig. 6.3(b). In contrast to the case of number states, Fig. 6.3(a), we
observe a maximum of ∆F as a function of N . The reason of the decrease of
∆F for large N can be traced back to the property of coherent states as the
eigenstates of the photon annihilation operator, which - as we will explain in
more detail below - leads to a stabilization against the fluctuations of φ during
the interaction with a single atom, if the cavity field is in a coherent state.
Now, as we have discussed in chapter 5.2, during the preparation of coherent
states, the cavity field climbs up on a ladder of coherent states, and is therefore
relatively insensitive to fluctuations of φ. However, this is only true if if the
number of atoms is large enough, since for too small values of N , which are
not sufficient to reach the final coherent state with high fidelity, the cavity
field will not always remain in a coherent state. This leads to the maximum
observed in Fig. 6.3(b). Obviously, the position of the maxima depends on
the mean photon number: for smaller |α|2, less atoms are required in order to
achieve a high fidelity. Note, that, in the case |α|2 = 1, we observe a second
maximum at N = 8, whose origin we cannot explain. At larger values of N
than shown in Fig. 6.3, the second maximum may be present also in the other
cases |α|2 > 1. Anyway, it is obvious from Fig. 6.3 that - for a fixed value of N
(and so for N = 10 in Fig. 6.2) - the decrease ∆F of the fidelity is in general
not a monotonous function of |α|2.

Why coherent states are less sensitive to fluctuations of φ

Furthermore, we conclude from Figs. 6.2 and 6.3 that - as already mentioned
above - the preparation of coherent states is significantly more robust with
respect to fluctuations of φ as compared to the preparation of number states
(note the different scales!). In order to understand this, we consider a single step
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in the preparation of coherent states (compare chapter 5.2). Here, the cavity
field is approximately transferred from a coherent state |α1〉 to another coherent
state |α2〉, by the interaction with a single two-level atom, which initially was
prepared in |ψ1〉, and leaves the cavity in the state |ψ2〉. Hence, we may write

U |α1〉 ⊗ |ψ1〉 � |α2〉 ⊗ |ψ2〉, (6.16)

where U is the interaction with a single atom, Eq. (2.1). Now, if we consider a
small deviation ∆φ of the vacuum Rabi angle from its mean value, we have a
slightly modified interaction operator U ′, and Eq. (6.16) changes into

U ′|α1〉 ⊗ |ψ1〉 =
(
�− i∆φ(a†σ + aσ†)

)
U |α1〉 ⊗ |ψ1〉

�
(
�− i∆φ(a†σ + aσ†)

)
|α2〉 ⊗ |ψ2〉, (6.17)

where we have expanded U ′ at first order in ∆φ. Next, we note that the
ground state population of the final state |ψ2〉 is quite close to 1, since the
conjecture ‘the optimal final atomic state is |d . . .d〉’ (compare chapter 4.2) is
approximately also valid for the preparation of coherent states (see, e.g., the
comparison between the optimal initial atomic state and |ψ′

0〉 in Fig. 5.9). Since
σ|d〉 = 0, we therefore neglect the term a†σ in Eq. (6.17). On the other hand,
the term aσ† leaves the cavity field in the same state |α2〉 (which is an eigenstate
of a). Thereby, we arrive at

U ′|α1〉 ⊗ |ψ1〉 � |α2〉 ⊗ (� − iα2∆φ σ†)|ψ2〉. (6.18)

Here, we see that ∆φ mainly influences the final atomic state, but not the field
state, what explains the robustness of the preparation of coherent states against
fluctuations of the vacuum Rabi angle.

Summary

In summary, we investigated the impact of three different sources of noise on the
state preparation. Under the influence of cavity dissipation and fluctuations of
the vacuum Rabi angle, the preparation of coherent states is found to be more
robust than the preparation of number states. Together with the fact that
coherent states can be prepared by atomic product states (see chapter 5.2),
this underlines their special role as the most ‘classical’ states.

Furthermore, we have seen that the effect of cavity dissipation cannot be
reduced by a different choice of the initial atomic state. Nevertheless, quite
high fidelities of the state preparation can be achieved also in the presence
of dissipation, since the time-of-flight of the atoms through the cavity can be
chosen very short compared to the cavity decay times which are nowadays
achieved. This allows to complete the state preparation in a time span much
shorter than the cavity decay time. Then, the quantitative influence of the
dissipation can be estimated as follows: with increasing number of atoms N , the
fidelity converges to a value 1−∆F strictly smaller than 1. The corresponding
fidelity decrease ∆F is roughly the same as if the target field state was exposed
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to the cavity dissipation for a time of t � ntp/2, where tp is the time interval
between two subsequent atoms, and n the maximum photon number of the
target state. Only for the preparation of coherent states, an interplay between
dissipation and coherent atom-field interaction was observed, the latter reducing
the effect of the former.

Also small fluctuations ∆φ of the vacuum Rabi angle are not very critical,
since the corresponding fidelity decrease ∆F is proportional to the square of the
relative time-of-flight spread ∆φ/〈φ〉, compare Eq. (6.15). Experimentally, the
latter can be kept as low as approximately 1%. From a theoretical point of view,
also an imperfect atomic initial state does not have a very dramatic influence:
the fidelity of the state preparation is at least as high as the fidelity achieved
with the ideal atomic state multiplied by the fidelity of the imperfect atomic
state. We have to keep in mind, however, that the generation of entangled
atomic states with high fidelity is in itself a difficult experimental task.
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Chapter 7

The coherently pumped
micromaser

In the first part of this thesis, we have studied the preparation of field states
via interaction with a sequence of two-level atoms. Since the field is prepared
in a pure quantum state, this corresponds to a perfect control of the field state.
As we have seen in the previous chapter, any kind of noise in general reduces
the fidelity of the state preparation. Hence, the influence of the noise should
be kept as low as possible. In particular, we have to choose an entangled initial
atomic state, in order to avoid finally any entanglement of the exiting atoms
with the cavity field. The latter would result in a mixed instead of the desired
pure state of the cavity field.

However, the generation of the required entangled initial atomic state is
a very difficult task. Experimentally, it is much more practical to consider a
steady flux of atoms, originating, e.g., from a thermal source, which arrive at
the cavity at random times, and are all prepared in the same initial single-atom
state. The realization of this experimental setup is known as the micromaser
[69, 95, 96]. In contrast to the deterministic state preparation outlined in the
first part, a random influence on the photon field is now inevitable: firstly, the
entanglement between atom and field leads to measurement noise acting on the
photon field when detecting the final state of the exiting atoms. Secondly, we
have to take into account cavity dissipation (see chapter 6.1), which can be
neglected only for a small number of atoms interacting with the cavity field.
Finally, also the random arrival times of the atoms constitute a source of noise.

It is obvious that the presence of noise now prevents a perfect quantum
control of the cavity field. Nevertheless, the noise may also play a constructive
role in controlling the photon field in a statistical sense, as we will see in the
present second part of this thesis.

In the following two chapters, we examine the maser dynamics resulting from
the interplay of the above noise sources and the coherent atom-field interaction.
Under certain experimental conditions, we will observe a bistable behavior,
where the photon field exhibits quantum jumps between two metastable states,
which can be monitored by measurement of the exiting atoms. The positive
influence of the noise then will be demonstrated in chapter 9: in the presence
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Figure 7.1: Schematic experimental setup of the micromaser

of a small external periodic signal, we can achieve the best synchronization
of the quantum jumps with the periodic signal at an optimal, nonvanishing
temperature of the environment. Our especial interest will be devoted to the
influence of an injected or measured atomic coherence on this synchronization
effect.

7.1 Experimental setup

Fig. 7.1 schematically shows a typical experimental setup [97] which realizes the
coherently pumped micromaser. The atoms are emitted by a thermal source
(i.e., with thermal velocity distribution) at random, uncorrelated times.

Then, each atom having passed the velocity filter is prepared by a pump
laser and a subsequent classical microwave pulse (MW1) in an initial state
which is, in general, a superposition of the two energy eigenstates |u〉 and
|d〉, see chapter 7.2.1. Inside the cavity, the atom resonantly interacts with the
cavity field mode according to the Jaynes-Cummings Hamiltonian. As discussed
in chapter 2.1, field and atom perform Rabi oscillations and may exchange a
single photon. Finally, the atom is detected in either of the states |u〉 or |d〉
via field ionization. By applying a second classical microwave pulse (MW2) on
each atom just before detection, we can vary the basis in which the atom is
detected and thereby read out either the population of the levels |u〉 and |d〉 or
the coherence between them, see chapter 7.2.2.

In addition to the interaction with the atoms, the radiation field is also
coupled to its environment, which is supposed to be in thermal equilibrium, at
very low temperatures T <

∼ 1 K. This corresponds to an average thermal photon
number of less than 1 (in the microwave regime, ω � 20 GHz), see Eq. (6.2).
Furthermore, the cavity decay rate γ is much smaller than the atomic flux r
(defined as the average number of atoms crossing the maser cavity per time
unit), so that, before the field has time to relax into thermal equilibrium, the
next atom arrives in the cavity. Under these circumstances, the photon field
will finally reach a stationary state ρ(ss) far from thermal equilibrium. However,
before we turn to the quantitative description of the photon field dynamics in
chapter 7.3, let us first describe in more detail the role of the two classical
microwave fields MW1 and MW2, which control the preparation and detection
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of the atoms.

7.2 Preparation and detection of the atoms

The frequency of these classical fields equals the one of the quantized cavity
mode, i.e., they are in resonance with the atomic transition between the two
levels |u〉 and |d〉. By varying the amplitude and phase of such a pulse, any
unitary transformation in the two dimensional atomic Hilbert space can be
performed (see, e.g., chapter 15.3 in [24]).

7.2.1 Coherent and incoherent pumping

In this way, we can use the first microwave field MW1 to prepare each atom in
a coherent superposition

|ψ〉 = a|u〉 − ib|d〉, (7.1)

where a, b ∈ R, and |a|2 + |b|2 = 1. The reason for this particular choice of the
phases (which, anyway, implies no loss of generality) will become clear later: as
we will see in chapter 7.3, due to the phase coherence between the photon field
and the incoming atoms, the density operator ρ of the field will then have only
real matrix elements (in the photon number representation). If amplitude and
phase of the microwave pulse remain constant, such that all atoms enter the
cavity in the same state |ψ〉 given by Eq. (7.1), with constant coefficients a and
b, we speak of ‘coherent pumping’. The corresponding initial atomic density
matrix reads:

τ = |ψ〉〈ψ| =
(

|a|2 ic
−ic |b|2

)
, (7.2)

with the initial atomic coherence c = ab ∈ R. In order to ensure a positive
energy transfer to the cavity (which may counterbalance the photon losses due
to damping), we choose |a|2 > |b|2.

On the other hand, if the phase of the microwave pulse fluctuates randomly
between subsequent atoms, the atoms enter the cavity in an incoherent super-
position of |u〉 and |d〉 (‘incoherent pumping’). In this case, the initial atomic
state τ is described by a diagonal density matrix, with vanishing coherence
c = 0 in Eq. (7.2). Since in the following we will be especially interested in the
role of the initial atomic coherence c, we will often compare the corresponding
cases of coherent and incoherent pumping.

7.2.2 Final state detection

The final state detection is controlled by the second microwave pulse MW2,
which is considered as a part of the measurement device. We require the phases
of MW2 and MW1 to be the same, as would be the case, e.g., if the two pulses
originate from the same source. This is necessary in order to preserve the phase
coherence between the incoming atoms and the field, see chapter 7.3.

In the following, we will express the final state of the exiting atoms in terms
of the Bloch vector 〈�σ〉, i.e., the expectation values of the Pauli matrices σx, σy,
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and σz. The basis is chosen such that σz|u〉 = |u〉 and σz|d〉 = −|d〉. Conse-
quently, a measurement of σz or σy with result ‘+1’ or ‘-1’ would correspond
to a detection in the following final state:

+1 -1

σz |u〉 |d〉

σy (|u〉+ i|d〉)/
√

2 (|u〉 − i|d〉)/
√

2

Whereas the measurement of σz depends on the population of the two levels
|u〉 and |d〉, the y component σy measures the coherence between them. A
measurement of σx is excluded by our requirement that the phases of MW1 and
MW2 should be the same. [The phase of MW1 is chosen such that 〈ψ|σx|ψ〉 = 0,
as a consequence of Eq. (7.1), with a, b ∈ R, and if the phase of MW2 is the
same, also the detected final state has a vanishing x component.]

Since we cannot perform direct measurements on the photon field, the
atomic detections are used to gain information about it. By measuring differ-
ent components of the atomic Bloch vector, we will probe different properties
of the photon field. In fact, the atomic Bloch vector 〈�σ〉 on exit from the cavity
depends on the photon field through:

〈�σ〉 = Tr
{
(� ⊗ �σ)U(ρ⊗ τ)U †

}
, (7.3)

with ρ the state of the photon field just before the atom arrives, τ the initial
state of the atom according to Eq. (7.2), and U the atom-field interaction,
Eqs. (2.2,2.3). Provided that c ∈ R and the matrix elements ρn,m are all real
(which, as discussed above, is guaranteed if we do not measure σx), the various
components of 〈�σ〉 are given by:

〈σx〉 = 0, (7.4)

〈σy〉 =
∞∑

n=0

− 2c AnAn+1 ρn,n

+ 2 (|b|2 AnBn+1 − |a|2 An+2Bn+1) ρn+1,n

+ 2c Bn+2Bn+1 ρn+2,n, (7.5)

〈σz〉 =
∞∑

n=0

(2|a|2 A2
n+1 + 2|b|2 B2

n − 1) ρn,n

− 4c An+1Bn+1 ρn+1,n, (7.6)

with the coefficients

An = cos(φ
√

n), Bn = sin(φ
√

n), (7.7)

which reflect the Rabi dynamics of the atom-field interaction. In the case
of incoherent pumping (c = 0), it is obvious from Eqs. (7.5,7.6) that 〈σz〉
only depends on the main diagonal ρn,n of the photon field, whereas 〈σy〉 is
completely determined by the first off-diagonal ρn,n+1. In the case of coherent
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pumping, however, 〈σz〉 and 〈σy〉 depend both on the main and the first off-
diagonal, and 〈σy〉 additionally on the second off-diagonal.

Each measurement of an atom is accompanied by the usual quantum me-
chanical state reduction. Importantly, as a consequence of the entanglement
between atom and field (compare chapter 2.1), also the photon field is af-
fected by the state reduction. For example, if the density matrix of the field is
given by ρ before the atom arrives, the new photon field ρ′ reads, according to
Eqs. (2.2,2.3):

1 + 〈σz〉
2

ρ′n,m = |a|2 An+1Am+1 ρn,m − c Bn+1Am+1 ρn+1,m

− c An+1Bm+1 ρn,m+1 + |b|2 Bn+1Bm+1 ρn+1,m+1, (7.8)

after detection of the atom in |u〉 (i.e., σz = +1), and

1− 〈σz〉
2

ρ′n,m = |b|2 AnAm ρn,m + c BnAm ρn−1,m

+ c AnBm ρn,m−1 + |a|2 BnBm ρn−1,m−1, (7.9)

after a detection |d〉 (i.e., σz = −1). The expressions for the measurement of
σy are more complicated, since both, initial and final atomic state, are super-
positions of |u〉 and |d〉:

1 ± 〈σy〉
2

ρ′n,m =
1
2
×

×
[(
|a|2An+1Am+1 + |b|2AnAm ± cAn+1Am ∓ cAnAm+1

)
ρn,m

+ |b|2Bn+1Bm+1 ρn+1,m+1 + |a|2BnBm ρn−1,m−1

+
(
−cBn+1Am+1 ± |b|2Bn+1Am

)
ρn+1,m

+
(
−cAn+1Bm+1 ± |b|2AnBm+1

)
ρn,m+1

+
(
cBnAm ∓ |a|2BnAm+1

)
ρn−1,m +

(
cAnBm ∓ |a|2An+1Bm

)
ρn,m−1

± cBn+1Bm ρn+1,m−1 ± cBnBm+1 ρn−1,m+1

]
, (7.10)

after a detection in (|u〉 ± i|d〉)/
√

2 (i.e., σy = +1 or σy = −1, respectively).
Here, the prefactors (1 ± 〈σz,y〉)/2 are the probabilities of the corresponding
measurement results, which are needed to normalize the state, and are given
by Eqs. (7.5, 7.6). Obviously, if all matrix elements ρn,m are real, this is also
the case after a measurement of σz or σy, as claimed above. Furthermore, it is
evident from the above equations that the final state detection of the atoms does
not only yield information about the photon field, but also plays an active role
in its dynamics, mediated by the atom-field entanglement. This will be relevant
in the following chapter, where the dynamics of the photon field conditioned on
a measured sequence of atomic detection results will be studied.

7.3 Dynamics of the photon field

At first, however, we want to examine the average behavior of the photon field.
Here, we are interested in the photon field alone, without looking at the heat
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bath or the atoms exiting the cavity, i.e., we trace over all atoms that have
crossed the cavity, and over the heat bath.

7.3.1 Master equation

Under these conditions, the time evolution of the photon field density matrix
is described by a master equation of the general form

ρ̇ = ρ̇ |at + ρ̇ |env , (7.11)

where ρ̇ |at and ρ̇ |env distinguish the influence of the atomic beam and the
environment, respectively.

As for the atomic part ρ̇ |at, let us first examine the influence of a single
atom onto the cavity field. If the photon field is given by a density matrix ρ
just before an atom in the initial state τ , see Eq. (7.2), arrives, the resulting
photon field ρ′ after the atom has left the cavity is obtained by applying the
atoms-field interaction U , Eq. (2.1), and then tracing over the atom:

ρ′ = tra{Uρ⊗ τU †}. (7.12)

In the following, we assume that the duration tint of the atom-field interaction
is much shorter than all other relevant time scales, i.e., the passage of a single
atom is treated as an instantaneous kick on the photon field. Consequently, the
master equation (7.11) is valid only on time scales much longer than tint.

Suppose now that the photon field at time t is described by a density matrix
ρ(t). Since the atoms arrive at random, uncorrelated times with average rate r,
the probability that one atom arrives during the time interval [t, t+ ∆t] equals
r∆t, whereas with probability 1 − r∆t nothing happens.∗ Then, according to
Eq. (7.12), the photon field at time t + ∆t reads:

ρ(t + ∆t) = r∆t ρ′ + (1 − r∆t) ρ. (7.13)

With ∆t → 0, and inserting the interaction U , Eq. (2.1), into ρ′, Eq. (7.12), we
arrive at the following expression for the atomic part of the master equation (in
the photon number representation):

ρ̇n,m |at = r [|a|2An+1Am+1 + b|2AnAm − 1] ρn,m

+ r|a|2BnBm ρn−1,m−1 + r|b|2Bn+1Bm+1 ρn+1,m+1

+ irc An+1Bm+1 ρn,m+1 − irc∗ Bn+1Am+1 ρn+1,m

− irc BnAm ρn−1,m + irc∗ AnBm ρn,m−1, (7.14)

with the coefficients An and Bn given by Eq. (7.7).
For the damping part, we assume the standard master equation for the

damped harmonic oscillator, see Eq. (6.1) (translated into the photon number
representation):

ρ̇n,m |env = −γ

2
[nb(n + m + 2) + (nb + 1)(n + m)] ρn,m

+ γ nb

√
n
√

m ρn−1,m−1

+ γ (nb + 1)
√

n + 1
√

m + 1 ρn+1,m+1, (7.15)
∗Two-atom events can be neglected in the limit ∆t → 0.
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where, as in Eq. (6.1), γ denotes the cavity decay rate, and nb the mean number
of photons in thermal equilibrium.

Evidently, the damping equation (7.15) does not couple different diagonals
of the density matrix (i.e., elements ρn,n+k and ρm,m+l with k �= l). Only the
last four terms in the atomic equation (7.14) couple neighboring diagonals of
ρ, via terms proportional to the initial atomic coherence c. They describe the
transfer of atomic coherence to the cavity field [98]: due to these terms, non-
diagonal elements ρn,m, n �= m, of the photon field will appear, even if the
photon field initially exhibits no such coherences (e.g., in thermal equilibrium).
Note that, according to Eq. (7.14), all elements ρn,n+k on the same diagonal k
will acquire the same phase factor. Furthermore, the phase difference between
neighboring diagonals is given by the phase of the atomic coherence ic (which,
in turn, depends on the phase of the first microwave field MW1). With our
choice ic ∈ R, see Eqs. (7.1,7.2), all matrix elements ρn,m will stay real under
the temporal evolution (7.11). This fact expresses the phase coherence between
atoms and field.

On the other hand, in the case of incoherent pumping (c = 0), the non-
diagonal elements of the photon field density matrix will not be populated, or
will be damped away, if coherences are present in the initial field state.

7.3.2 Stationary state

For t → ∞, each solution of (7.11) will approach a stationary state ρ(ss), char-
acterized by a dynamical equilibrium, where photon losses due to the damping
of the field are counterbalanced by photon gains due to the pumping by the
atoms. The stationary state is uniquely determined, i.e., independent of the
initial field state (in the absence of trapping states). This behavior reminds
us of asymptotic completeness (chapter 3.2), where the cavity field finally also
loses the memory of its initial state. Due to the presence of the heat bath,
however, which leads to a non-unitary evolution of the atoms-field system, we
now cannot draw the conclusion that we are able to prepare the cavity field in
arbitrary states, as we could in chapter 3.2 (compare also chapter 6.1, where
the influence of the heat bath on the state preparation is discussed).

Instead, as shown in [70], for |a|2 = 1 (i.e., if the atoms enter the cavity in
the upper state |u〉) the steady state is essentially determined (for a fixed tem-
perature T of the heat bath) by a single experimental parameter, namely the
so-called ‘pump parameter’ θ = φ

√
Nex, where Nex = rγ−1 is the atomic flux

in units of the cavity decay rate γ. More precisely, if the vacuum Rabi angle
φ and the atomic flux r are varied such that θ remains constant, the photon
number populations 〈n|ρ(ss)|n〉 (i.e., the diagonal elements of ρ(ss)) are almost
unaffected, apart from the fact that the photon number n has to be scaled
according to ν = n/Nex (i.e., increasing the atomic flux increases the mean
photon number of the steady state). If the atoms enter the cavity partly in the
lower state |d〉, i.e., |a|2 < 1 (but mainly in the upper state, i.e., |a|2 > 1/2, in
order to ensure a positive energy transfer to the cavity), we have found numer-
ically (both for coherent and incoherent pumping) that the photon statistics
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still roughly depends on a single parameter, the generalized pump parameter

θ = φ
√

Nex, with Nex = (2|a|2 − 1) rγ−1, (7.16)

and the corresponding scaling behavior ν = n/Nex of the photon number n
is the same as above. Hence, increasing the lower state population of the
incoming atoms has approximately the same effect as decreasing the atomic
flux r. Furthermore, the steady state photon statistics are quite similar for
coherent and incoherent pumping. Only for coherent pumping, however, the
steady state will exhibit coherences between different photon numbers, i.e.,
non-diagonal elements in the photon number representation, see below.

Now, for certain values of the experimental parameters, namely if θ is
roughly an integer multiple of 2π [70, 34] (and the temperature T is not too
high [99]), the stationary photon number distribution p

(ss)
n = ρ

(ss)
n,n displays two

maxima as a function of n, corresponding to the bistable operation mode of
the micromaser. The origin of the bistability can be traced back to the Rabi
dynamics during the atom-field interaction: since the frequency of the Rabi os-
cillations depends on the photon number n, see Eqs. (2.2,2.3), the probability
that an atom leaves the cavity in its lower state (and therefore emits a photon
into the cavity) shows an oscillatory behavior as a function of n. Hence, there
may exist several equilibrium points, where the photon gain rate due to the
pumping with the atom equals the photon loss rate due to the coupling to the
cavity walls (which depends linearly on n, for low temperatures nb � n).

An example of such a double-peaked stationary state is shown in Fig. 7.2,
obtained by numerical diagonalization of the master equation (7.11).† We chose
ω = 21.5 GHz, γ−1 = 0.06 s, r = 40γ, tint = 2.9 × 10−5 s and φ = 1.1,
typical values in state of the art experiments [34]. (These values are used in
all numerical examples given in Part II.) The two peaks in Fig. 7.2, which we
denote ρ(1) and ρ(2), located around n1 = 4 and n2 = 21, represent the two
metastable states of the photon field. They are defined by the two (normalized)
subdomains of ρ

(ss)
n,m with n, m < n3 or n, m > n3, respectively, where the cut

is performed at the local minimum n3 = 10 of p
(ss)
n between its two maxima.

Note that there exist coherences between different photon numbers n and m,
if both are associated with either ρ(1) or ρ(2), but practically none between
photon numbers of the macroscopically distinct metastable states. This is not
surprising, as a single atom can only couple neighboring photon states (through
emission or absorption of a photon), and the damping of the coherences ρn,m

between macroscopically distinct photon numbers n and m is too strong (i.e.,
much faster than the time needed for at least |n − m| atoms to build up such
a coherence). The lack of coherence between ρ(1) and ρ(2) is already a hint
that, on long time scales, the dynamics of the photon field may be described in
terms of transition rates between the two metastable states ρ(1) and ρ(2), see
chapter 8.

The inset of Fig. 7.2 compares the case of coherent and incoherent pumping
(on a logarithmic scale). The bistability is present in both cases, but for inco-

†An analytical expression of the stationary state exists for incoherent pumping, see Eq.
(8.1).
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Figure 7.2: Stationary state of the photon field density matrix ρ
(ss)
n,m, with two

metastable states ρ(1) (left peak) and ρ(2) (right peak). Nonvanishing coher-
ences between different photon numbers n and m only exist if both, n and m,
belong to either ρ(1) or ρ(2). Initial atomic superposition, Eq. (7.1): a =

√
0.9,

b =
√

0.1 (coherent pumping), temperature T = 0.5 K. The inset shows the
photon number distribution pn = ρn,n, and compares it to the case of incoher-
ent pumping (|a|2 = 0.9, c = 0). Field frequency ω = 21.5 GHz, decay rate
γ−1 = 0.06 s, atomic flux r = 40γ, and vacuum Rabi angle φ = 1.1.

herent pumping the minimum between the two maxima is less pronounced. As
we will see in chapter 8.2, this leads to enhanced transition rates between the
two metastable states, for incoherent pumping.





Chapter 8

Bistability of the maser
dynamics

In the previous section, we have seen that - under certain conditions - the
stationary state of the photon field exhibits two well separated maxima. How-
ever, the stationary solution of the master equation implies an average over all
possible atomic detection results, whereas in an experiment we are confronted
with a single sequence of detections. What can we say about the correspond-
ing dynamics of the photon field, conditioned on such an observed sequence of
measurement results?

A double-peaked stationary state as in Fig. 7.2 suggests the conclusion that
in a single realization the maser dynamics is bistable. Then, the photon field
would at each time be localized around either one of the two maxima ρ1 or ρ2,
and perform transitions between these two metastable states at random times.
This would also be consistent with the observed lack of coherence between ρ1

and ρ2 in the stationary state. However, such a conclusion is not stringent:
a priori, there is no reason why the photon field could not be double-peaked
also in a single realization. Furthermore, as already mentioned at the end
of chapter 7.2.2, the dynamics of the photon field in a single realization also
depends on the applied measurement scheme.

8.1 Quantum jumps of the maser field

In order to answer these questions, we will resort to numerical simulations of
single realizations of the maser dynamics. Obviously, the stochastic influences
arising from the random arrival times of the atoms and the atomic detections
have to be simulated by producing random numbers on the computer. For our
numerical studies, we used an efficient quantum trajectory method [100, 101,
102, 103], which is described in detail in appendix C.

Examples of thereby obtained single realizations of the maser dynamics are
shown in Fig. 8.1. Here, the cases of coherent and incoherent pumping are
compared for two different measurement schemes of the exiting atoms (in z
and y direction) with the same parameters as in Fig. 7.2. Figs. 8.1(a-c) clearly
display a bistable behavior: the measured component 〈σz,y〉 of the atomic Bloch
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Figure 8.1: Single realizations of the maser dynamics, for the same parameters
as in Fig. 7.2. Left column (a and b): coherent pumping. Right column (c
and d): incoherent pumping. Upper half (a and c): measurement of the z
component σz of the atomic Bloch vector 〈�σ〉, i.e., detection of the exiting
atoms in |u〉 or |d〉. Lower half (b and d): measurement of σy, i.e., detection
in (|u〉 − i|d〉)/

√
2 or (|u〉 + i|d〉)/

√
2. In all four cases, 〈σz,y〉 is obtained by

averaging the atomic detection events over time intervals of length ∆t = 1 s
(ca. 700 detection events, for r = 40γ−1 = 667 s−1). With coherent pumping,
the bistability of the maser dynamics can be monitored both in the z and the
y component of 〈�σ〉. The transition rates between the metastable states are
faster for incoherent than for coherent pumping, see also the inset of Fig. 7.2.

vector jumps between two metastable states 〈σz,y〉(1) and 〈σz,y〉(2). In the case of
coherent pumping, Figs. 8.1(a,b), the bistability is observed both in the atomic
population 〈σz〉 and in the coherence 〈σy〉, whereas for incoherent pumping,
the quantum jumps can be seen in the population, Fig. 8.1(c), but not in the
atomic coherence, Fig. 8.1(d).

Since the probability of detecting an atom in a definite final state depends
on the photon field the atom encounters in the cavity, see Eqs. (7.4-7.6), these
jumps are a signature of underlying jumps of the photon field. The observed val-
ues of 〈σi〉(1,2) confirm our above conjecture that the corresponding metastable
states of the photon field are given by the two peaks ρ(1) and ρ(2) of the station-
ary state. Indeed, with the parameters of Fig. 8.1, inserting ρ(1,2) into Eqs. (7.4-
7.6) yields 〈σz〉(1) = 0.61, 〈σz〉(2) = −0.21, 〈σy〉(1) = 0.74 and 〈σy〉(2) = 0.87, for
coherent pumping, and 〈σz〉(1) = 0.54, 〈σz〉(2) = −0.28 for incoherent pumping.
These values are marked by the dotted lines in Figs. 8.1(a-c), and agree with
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the numerical simulation.
The separation of time scales is obvious: The average residence times in the

two metastable states 1 and 2 (several seconds) are much longer than all other
time scales in the micromaser, in particular the intrastate fluctuations, and the
time needed for transitions between 1 and 2. Indeed, the latter do not occur
instantaneously, but consist of several ‘microscopic’ quantum jumps caused both
by atomic detection events and exchange of photons with the heat bath (see
also appendix C). Typically, such a transition needs a time comparable to the
cavity decay time γ−1 = 0.06 s. In the following, we will focus on long time
scales, where, with good approximation, the dynamics of the photon field can
be described in terms of a two-state model: At (almost) any time, the photon
field is concentrated around either one of the two maxima ρ(1,2) of the steady
state distribution, see Fig. 7.2. Between these two metastable states, transitions
occur with rates W1 (from 1 to 2) and W2 (from 2 to 1), see chapter 8.2.

Clearly, such a simple two-state model can only be approximately valid: in
exceptional cases, e.g., during the transitions between the metastable states,
a perfect distinction between state 1 and 2 is not always possible. Indeed, we
have observed that, when measuring in y direction, situations where the photon
field shows nonvanishing population at both maxima n1 and n2 are slightly
more frequent than when measuring in z direction. The reason for this is the
smaller separation between the two metastable states of 〈σy〉 as compared to
those of 〈σz〉, see Figs. 8.1a,b. Hence, a measurement of σy does not as clearly
distinguish between states 1 and 2 as a measurement of σz. In other words,
a measurement of σz and the resulting state reduction of the photon field,
Eqs. (7.8,7.9), leads to a clearer preference of either state 1 or 2.

In the case of incoherent pumping, the bistability cannot be observed in the
expectation value 〈σy〉 of the atomic coherence of the exiting atoms (Fig. 8.1d).
Nevertheless, we have checked that also in this case (i.e., measuring 〈σy〉) the
evolution of the photon field conditioned on the observed atomic detection se-
quence shows the above described bistable behavior. Hence, the information
whether the photon field is in state 1 or 2 must be present in the atomic detec-
tion sequence. Since the expectation value of 〈σy〉 does obviously not distinguish
between state 1 and 2, the information must be contained in statistical quanti-
ties which include correlations between different atomic detection events. As a
simple example, we can look at the mean number 〈NS〉 of successive detector
clicks of the same kind (σy = +1 or σy = −1) [104]. For the parameters of
Fig. 8.1(d), the exact formula given in [105] yields 〈NS〉(1) = 2.42 if the photon
field is in state 1, and 〈NS〉(2) = 2.67 in state 2.∗

8.2 Transition rates

In the last section we have seen that the maser dynamics can be approximated
by a two-state model [56, 99]. At each time, the maser field is either in state 1
or 2, and transitions between them occur at random times. Thereby, the maser

∗Of course, a direct calculation of the photon field conditioned on the atomic measurement
result discriminates the two states much more efficiently than 〈NS〉.
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dynamics is on long time scales completely described by the two transition rates
W1 (from 1 to 2) and W2 (vice versa).

8.2.1 Incoherent pumping

First, we consider the case of incoherent pumping, where each atom enters the
cavity either in the state |u〉 (with probability |a|2) or |d〉 (with probability |b|2),
without any coherence between them. Furthermore, we assume that also the
final state detection measures the atom in one of those two states (i.e., mea-
surement of σz). In this case, the dynamics of the photon field can be described
as a jump process between neighboring photon numbers, see appendix C, with
the ‘microscopic’ transition probabilities t±n from n to n+1 or n−1 photons, re-
spectively, given by Eqs. (C.8,C.9). The average of one single realization of this
jump process over a sufficiently long time approaches the following distribution
(chapter 7.1 in [106]):

p(ss)
n = p

(ss)
0

n∏
k=1

t+k−1

t−k
, (8.1)

where p
(ss)
0 is determined by normalization. This distribution is identical to

the stationary state of the ensemble average (chapter 7.3.2), i.e., ergodicity is
fulfilled. A double-peaked stationary distribution, with two maxima at n1 and
n2 (see inset of Fig. 7.2), occurs if t+n and t−n as a function of n intersect (at
least) three times: at n1 and n2 (stable equilibrium), and at the minimum n3

(unstable equilibrium). In this case, the photon number will be found almost
always near one of the two maxima at n1 or n2, and transitions between these
metastable states occur. The transition rates of these ‘macroscopic’ jumps of
the photon field can be expressed in terms of the rates for the microscopic jumps
(chapter 7.4 in [106]):

W−1
1 =

n2−1∑
n=n1

[p(ss)
n t+n ]

−1
n∑

m=0

p(ss)
m , (8.2)

W−1
2 =

n2∑
n=n1+1

[p(ss)
n t+n ]

−1
∞∑

m=n

p(ss)
m , (8.3)

where p
(ss)
n is given by Eq. (8.1).

8.2.2 Coherent pumping

In the case of coherent pumping, the quantum trajectory of the photon field
is much more complicated, and simple expressions for the transition rates do
not exist. In order to calculate the transition rates in this case, let us first look
at the dynamics of the two-state model. On average, the probabilities p1 and
p2 = 1 − p1 of state 1 and 2, respectively, fulfill the following rate equation:(

ṗ1

ṗ2

)
=

(
−W1 W2

W1 −W2

)(
p1

p2

)
. (8.4)
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The solution is easily obtained by diagonalizing the above 2× 2-matrix, which
has two real eigenvalues λ0 = 0 and λ1 = −W1 − W2. The eigenvector corre-
sponding to λ0 = 0 gives the stationary state

p
(ss)
1 =

W2

W1 + W2
, p

(ss)
2 =

W1

W1 + W2
, (8.5)

and |λ1| = W1 + W2 defines the relaxation rate towards the stationary state.
The above equation (8.4) describes the ensemble-averaged dynamics of the

two-state model (i.e., averaged over all possible jump sequences), in the same
way as the master equation (7.11) describes the ensemble-averaged dynamics
of the whole photon field. In general, the master equation does not describe
all properties of a single realization of the dynamics. Nevertheless, under the
assumption that the two-state approximation is valid on long time scales (as
we have verified in the previous section), it should be possible to extract the
transition rates W1 and W2 between the two metastable states from the master
equation in a similar way as from the solution of Eq. (8.4). For this purpose,
we write Eq. (7.11) in the form

ρ̇ = Mρ, (8.6)

where the ‘superoperator’ M (i.e., an operator which acts in the space of density
operators ρ) is given by Eqs. (7.14,7.15). Next, we solve the eigenvalue problem

Mρ(i) = λiρ
(i). (8.7)

One eigenvalue is λ0 = 0, and the corresponding eigenvector ρ(0) is the station-
ary state ρ(0) = ρ(ss). In the bistable regime, ρ(ss) exhibits two peaks, and in
analogy to Eq. (8.5) the ratio of their weights S1,2 gives the inverse ratio of the
two transition rates:

W1

W2
=

S2

S1
, (8.8)

with the weights defined as

S1 =
n3−1∑
n=0

ρ(ss)
n,n, and S2 =

∞∑
n=n3+1

ρ(ss)
n,n. (8.9)

Here, n3 denotes the local minimum of the steady state distribution p
(ss)
n , see the

inset of Fig. 7.2. The remaining (in general complex) eigenvalues λi determine
the various time scales of the maser dynamics. Assuming that on long time
scales the dynamics follows a two-state model, we expect that one of the re-
maining eigenvalues, e.g., λ1, has a much smaller absolute value than all others,
which then defines the sum of the two transition rates:

|λ1| = W1 + W2, (8.10)

Thereby, the transition rates W1 and W2 are given in terms of the stationary
state ρ(ss) and the smallest nonvanishing eigenvalue λ1 of the master equation,
according to Eqs. (8.8) and (8.10).
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Figure 8.2: Absolute values |λi| of the 20 smallest (nonzero) eigenvalues of the
master equation (7.11), as a function of temperature T , for the same parameters
as Figs. 7.2 and 8.1 (coherent pumping). The separation of time scales is clearly
visible. The smallest nonvanishing eigenvalue |λ1| gives the sum of the transition
rates W1 + W2.

With the same parameters as employed for Figs. 7.2 and 8.1 (coherent pump-
ing), Fig. 8.2 shows the 20 smallest nonzero eigenvalues of Eq. (8.7), as a func-
tion of the temperature T . Indeed, the above considerations are confirmed:
one of the eigenvalues is much smaller than the others. Not surprisingly, |λ1|
increases with increasing temperature T : the higher the temperature, the more
frequent are the transitions between the two states. The other eigenvalues - that
set the time scale for the intrastate dynamics - are less sensitive with respect
to changes of the temperature.

The validity of Eq. (8.10) is confirmed by Fig. 8.3, which shows the average
residence times W−1

1,2 , as calculated from Eqs. (8.8) and (8.10). They agree very
well with the residence times as directly determined from single realizations of
the maser dynamics (such as in Fig. 8.1). For this purpose, we evaluate the
jumps of the photon field by following the time evolution of the mean photon
number 〈n〉: whenever 〈n〉 is smaller (or larger) than the equilibrium value
〈n〉(1,2) = tr{a†aρ(1,2)} corresponding to state 1 (or 2), the photon field is
defined to be in state 1 (or 2). If 〈n〉 is between these values, the state of the
photon field is unchanged.

A close inspection of Fig. 8.3 reveals a small difference of the transition
rates when changing the measurement scheme: the transitions are slightly faster
(about 1%) when measuring in y direction. This is consistent with the observa-
tion that in a single realization a double-peaked photon field occurs more often
when measuring in y direction. Hence, the two-state approximation (i.e., the
photon field is at each time either in state 1 or in state 2) is not as precisely
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Figure 8.3: Average residence times W−1
1,2 in the two metastable states of the

photon field, as a function of the temperature T , for coherent pumping. W−1
1

is the graph that depends more strongly on T . Parameters as in Fig. 8.2.
The solid lines show 〈W1,2〉 as determined from the master equation, with Eqs.
(8.8, 8.10), whereas the symbols are obtained from single realizations, with
measurement of σz (filled) and σy (open). At T = 0.5 K, the residence times in
state 1 and 2 are equal, W−1

1 = W−1
2 = 54 s.

fulfilled as when measuring in z direction, which explains the small difference.
As obvious from Fig. 8.3, the temperature dependences of the two transition

rates W1,2 are distinct: the rate W1 from state 1 (with the smaller mean photon
number) to state 2 (with the larger mean photon number) is more sensitive to
changes in T . This is so because the probability of absorbing a thermal photon
(and thereby enhancing transitions from 2 to 1) is proportional to nb + 1, see
Eq. (C.9), whereas the probability of emitting a thermal photon (enhancing
transitions from 1 to 2) is proportional to nb (and thereby approaches zero at
T → 0), see Eq. (C.8). As a consequence, the two rates intersect at T � 0.5 K.

Fig. 8.4 shows the average residence times for incoherent pumping. The
results from the master equation, Eqs. (8.8,8.10), agree quite well with the
mean passage times, Eqs. (8.2,8.3). The small deviations show the limitations
of the two-state model, which cannot be valid exactly. As already obvious from
Fig. 8.1(c), the transition rates for incoherent pumping are faster than for co-
herent pumping. This fact also reflects itself in the stationary state (inset of
Fig. 7.2), where the population at the minimum between the two maxima is
higher for incoherent pumping. Intuitively, the increase of the transition rates
can be understood as a consequence of the additional noise source, i.e., the fluc-
tuations of the phase of the initial atomic state. Comparing the transition rates
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Figure 8.4: Average residence times W−1
1,2 in the two metastable states of the

photon field, as a function of the temperature T , for incoherent pumping (|a|2 =
0.9) and otherwise the same parameters as in Figs. 7.2-8.3. W−1

1 is the graph
that depends more strongly on T . The solid lines show the results of Eqs. (8.8,
8.10), whereas the dashed lines show the mean passage times between n1 and
n2, Eqs. (8.2,8.3). For incoherent pumping, the transition rates (especially W2)
are faster than in the corresponding case of coherent pumping (Fig. 8.3).

in the case of coherent (Fig. 8.3) and incoherent pumping (Fig. 8.4), we observe
that the rate W2, from state 2 to 1, is more strongly affected by the atomic
phase fluctuations than W1 (compare Figs. 8.3 and 8.4). Consequently, for in-
coherent pumping, the intersection W2 = W1 occurs at a higher temperature
T � 0.85 K.

The strong sensitivity of W2 with respect to fluctuations of the initial atomic
phase is consistent with the following property of the rates t±n of the microscopic
jumps n → n ± 1 of the photon field in the case of incoherent pumping, see
Eqs. (C.8,C.9): The term sin2(φ

√
n) (responsible for the measurement noise,

i.e., the random influence on the photon field induced by the interaction with
the atoms and their subsequent detection) is small (close to 0) in the regime
between n1 and n3 (important for transitions 1 → 2), while it is large (close
to 1) between n3 and n2 (important for transitions 2 → 1).† In other words,
if the photon number is between n1 and n3, the atom is probably detected in
the same state as its initial state (either |u〉 or |d〉 in the case of incoherent
pumping), corresponding to a full cycle of the Rabi dynamics, whereas in the
regime between n3 and n2, an emission or absorption of a cavity photon by

†This behavior of the term sin2(φ
√

n) follows from the fact that t+n and t−n intersect at n1,
n2, and n3.
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Figure 8.5: Average residence times W−1
1 (solid lines) and W−1

2 (dashed lines)
in the two metastable states of the photon field, as a function of the initial
atomic state, Eq. (7.1), for three different temperatures T = 0.5 K, T = 1 K,
and T = 1.5 K (from top to bottom). Parameters as in Figs. 7.2-8.3 (coherent
pumping). The two transition rates W1,2 evolve differently with the initial
atomic state (W−1

1 decreases and W−1
2 increases with increasing |a|2), except for

the vicinity of |a|2 = 1 (where the limit of incoherent pumping is approached).

the atom is very likely. Hence, the measurement noise depends more strongly
on whether the atom actually enters the cavity in the upper state (|a|2 = 1,
|b|2 = 0) or in the lower state (|a|2 = 0, |b|2 = 1) if the photon field is in the
regime corresponding to a transition from 2 to 1.

Finally, Fig. 8.5 shows the average residence times W−1
1,2 as a function of

the initial atomic state, Eq. (7.1). As can be seen, the residence times depend
roughly exponentially on |a|2. While the residence times in state 1 decrease
with increasing |a|2, the residence times in state 2 show the opposite behavior.
Only for |a|2 very close to 1 the residence times in state 2 slightly decrease.
We have not yet found a convincing explanation of this small decrease. [It may
have to do with the fact that the atomic coherence |c| =

√
|a|2(1− |a|2), which

tends to stabilize the metastable states, goes to zero for |a|2 → 1.]
Let us stress here that the noise sources, which activate the quantum jumps

of the maser field, and thereby determine the transition rates W1,2, are of
genuine quantum origin: they arise mainly from the entanglement of the photon
field with the strongly coupled two-level atoms crossing the cavity, and with the
heat bath. Hence, the measurement of the exiting atoms and the corresponding
quantum mechanical state reduction (‘measurement noise’) directly influences
the photon field, and plays a crucial role for the transitions between the two
metastable states. Also the thermal fluctuations are partly of quantum origin,
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due to the entanglement with the heat bath. This leads to nonvanishing thermal
fluctuations also at vanishing temperature: at T = 0 K, the photon field can still
spontaneously emit photons into the heat bath at random times, due to the term
nb + 1 in the master equation (7.11). On the other hand, the random atomic
arrival times and the incomplete knowledge of the heat bath (as characterized
by the temperature T ) are rather classical noise sources.



Chapter 9

Stochastic resonance

In the previous section, we have investigated the maser dynamics in the bistable
regime. On long time scales, the dynamics is completely described in terms of
transition rates between the two metastable states ρ(1,2). As described in chap-
ter 7.3.2, these states arise from the interplay between the coherent pumping
by the atoms and the dissipation arising from the thermal cavity walls. Ob-
viously, in contrast to part I, where we chose entangled initial atomic states
and neglected the cavity dissipation, we cannot perfectly control the quantum
state of the photon field. Instead, the states ρ(1,2) are determined by only
a few experimental parameters, namely essentially by the pump parameter θ,
Eq. (7.16), (which should be chosen close to 2π in order to stay in the bistable
regime), and the initial atomic coherence c, compare Eq. (7.2), which controls
the magnitude of the coherences between different photon numbers within the
metastable state ρ(1) or ρ(2), see Fig. 7.2. In particular, due to the presence of
noise, these states are mixed rather than pure quantum states, corresponding
to an average over the intrastate fluctuations on short time scales.

However, what can we say about the time when the next transition to the
other metastable state occurs? Although the average time scale of these jumps
can be controlled by varying the temperature of the heat bath (see Fig. 8.3)
and the initial atomic state (see Fig. 8.5), the individual jumps occur at unpre-
dictable times (see Fig. 8.1). The situation changes if we feed a periodic signal
into the maser, e.g., a small modulation of the initial atomic state (‘small’ in
the sense that it preserves the bistability of the maser dynamics and does not
deterministically enforce transitions between the two states). Then, due to the
ensuing modulation of the transition rates, the jumps are more likely at certain
times than at others. In order to achieve a synchronization of the quantum
jumps with the external signal, we exploit in this chapter the general mech-
anism of stochastic resonance [36, 39, 40], which predicts a cooperative effect
between noise and a small periodic signal in bistable systems at some optimal,
nonvanishing level of the noise strength. Thereby, adding noise to the system
allows us an efficient control of the quantum jumps of the maser field.

On the other hand, the noise arising from the coupling of a quantum system
to an environment also induces decoherence: any generic quantum state will
rapidly decohere into a mixture of certain preferred states (the so-called ‘pointer
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states’) which are most stable with respect to environment-induced decoherence
[107]. The most fundamental example is the spin-boson system [108], i.e., a two-
state system coupled to a bath of harmonic oscillators. For most parameters
(except low temperatures and weak coupling), incoherent tunneling between
the ‘left’ and ‘right’ state (which are defined by the coupling to the bath)
prevails over the coherent dynamics. Correspondingly, in the driven spin-boson
system, no signatures of quantum stochastic resonance can be observed in the
coherence between those states [53, 54]. In our case, this apparent dilemma
is circumvented by inducing the metastability of the two-level atoms not via
direct coupling to an environment, but rather by its coherent interaction with
the bistable maser field, which - in turn - is coupled to a thermal bath. As shown
in the previous chapter, the jumps of the maser field can then be monitored
by measuring different components of the atomic Bloch vector. Consequently,
we expect that the stochastic resonance effect can be read out not only in the
populations but also the coherences of the exiting two-level atoms.∗

9.1 Modulation of the initial atomic state

We want to synchronize the quantum jumps with a weak periodic signal, which
we inscribe into the maser dynamics by modulation of the amplitudes of the
initial coherent superposition of the atoms injected into the cavity:

a(t) = [0.9 + 0.05 sin(ωst)]1/2, (9.1)
b(t) = [0.1− 0.05 sin(ωst)]1/2. (9.2)

For the modulation period, we choose ts = 2π/ωs = 100 s. (Then, the most
favorable scenario for stochastic resonance will be realized by the same exper-
imental parameters as in the numerical examples from the previous chapters.)
According to Eq. (7.1), each atom enters the cavity in the state |ψ〉(t) = a(t) |u〉
−ib(t) |d〉, depending on its arrival time t. As described in chapter 7.2.1,
Eqs. (9.1,9.2) can be realized by intensity modulation of the classical microwave
field MW1 (see Fig. 7.1). The above modulation of the initial atomic state
leads to a modulation of the two transition rates W1,2 with opposite phase, see
Fig. 8.5: Increasing |a| enhances transitions from state 1 to 2, whereas tran-
sitions from 2 to 1 are suppressed. On the other hand, the average transition
rates can be varied by changing the temperature T of the heat bath, compare
Fig. 8.3, thereby changing the strength of the noise in the maser. We expect
a cooperative effect between signal and noise if the sum of the average resi-
dence times in the two metastable states roughly equals the modulation period
[37]. Furthermore, it is intuitively clear (and discussed in more detail in [99]),
that both average residence times should approximately be equal (i.e., half a

∗Also with respect to any other basis than the energy eigenstates |u〉 and |d〉, the coherences
(i.e., the nondiagonal elements of the density matrix) of the exiting atoms do not vanish. This
follows from the fact that the two Bloch vectors 〈	σ〉1,2 of the exiting atoms corresponding to
state 1 and state 2 are not parallel (since 〈σz〉1 and 〈σz〉2 are of opposite sign, whereas 〈σy〉1,2

are both positive, see Fig. 8.1).
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Figure 9.1: Single realizations of the maser dynamics: Time evolution of 〈σz〉,
for three different temperatures T = 0.3 K, 0.5 K, and 0.9 K (from top to
bottom). The initial coherent atomic superposition is modulated according to
Eqs. (9.1,9.2), with modulation period ts = 100 s. Remaining parameters as
in Figs. 7.2-8.5. Stochastic resonance is observed in 〈σz〉: The noise-induced
synchronization of the quantum jumps is poor for the lowest temperature (rare
quantum jumps), optimal for the intermediate temperature (almost regular
quantum jumps), and again poor for the highest temperature (too frequent
quantum jumps).

modulation period), in order to achieve a good synchronization. With the pa-
rameters of Figs. 7.2-8.3, and the modulation period ts = 100 s, this is the case
for T � 0.5 K.†

9.2 Optimal synchronization of the quantum jumps

Numerical simulations of the maser dynamics are illustrated in Fig. 9.1, for three
different temperatures, by the detection signal of the exiting atoms in the state
|u〉 or |d〉. The presence of the periodic signal given by Eqs. (9.1,9.2) is clearly
visible in Fig. 9.1, since the modulation of the initial atomic state influences not
only the transition rates, but also the two metastable states themselves. Here,
the states ρ(1,2)(t) at time t can be obtained from the corresponding time-
independent stationary state (adiabatic approximation): since the intrastate

†The modulation of a and b, Eqs. (9.1,9.2), leads to average residence times only slightly
different from the unmodulated case of Fig. 8.3.
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Figure 9.2: Same as Fig. 9.1, but for measurement of 〈σy〉 of the exiting atoms.
The optimal synchronization of the quantum jumps at an optimal, nonvanishing
temperature is also observed in the atomic coherence 〈σy〉, at T = 0.5 K, though
strongly masked by the intrastate modulation (dotted lines) in state 1.

relaxation time (of the order of γ−1 = 0.06 s) is much smaller than the modu-
lation period (ts = 100 s), the two states ρ(1,2)(t) follow the modulation almost
instantaneously. The ensuing modulations of the metastable equilibrium values
〈σz〉(1,2)(t), as defined by Eq. (7.6), are plotted as dotted lines in Fig. 9.1, and
are well reproduced by the numerical simulation.

Indeed, Fig. 9.1 clearly demonstrates the stochastic resonance. The best
synchronization of the quantum jumps of the maser field with the periodic
signal is observed for the intermediate temperature T = 0.5 K. In most cases,
the maser field jumps from one state to the other and back again once during
a modulation period. In contrast, for the lower temperature, T = 0.3 K, the
quantum jumps are too rare compared to the signal period ts. Especially the
average residence time in state 1 (with the smaller mean photon number) is
much longer than ts = 100 s (compare also Fig. 8.3), and it is not possible
to predict after how many signal periods the next jump will occur. On the
other hand, if the temperature is too high, T = 0.9 K, the quantum jumps
are too frequent, so that signal and noise lose the cooperativity observed for
T = 0.5 K. Hence, the best control over the quantum jumps is achieved at a
finite, nonvanishing temperature of the environment.

From Fig. (8.1), we know that (in the case of coherent pumping) the Bloch
vector of the exiting atoms is not oriented solely along the z axis, but has
a nonvanishing y component, too, which also distinguishes between the two
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Figure 9.3: Illustration of Eq. (9.3): filtering out the intrastate modulation.

metastable states 1 and 2. [Remember that the x component vanishes due
to our choice of the phase of the initial state (7.1).] Furthermore, as shown in
Fig. 8.3, the transition rates between the two metastable states of the maser field
are almost unaffected by a change of the measurement scheme. Therefore, we
expect that the stochastic resonance effect can also be observed when detecting
the atomic coherence 〈σy〉 instead of the population 〈σz〉. This is confirmed by
Fig. 9.2, where the optimal synchronization of the quantum jumps occurs at the
same temperature T � 0.5 K as in Fig. 9.1. As already discussed in chapter 8,
the amplitude of the jumps of 〈σy〉 is smaller than that of 〈σz〉. In fact, it is not
very much larger than the intrastate modulation of 〈σy〉 in state 1, but large
enough to discriminate the two states during the entire modulation period.

Thereby, we have demonstrated stochastic resonance by a visual inspection
of a sequence of quantum jumps in Figs. 9.1 and 9.2. Of course, we also would
like to describe the effect in a quantitative way.

9.3 Quantitative analysis of the synchronization ef-
fect

For this purpose, for example the Fourier transform of the graphs shown in
Figs. 9.1 and 9.2 could be appropriate. In the thereby obtained power spectrum,
we would expect a strong peak at the signal frequency in the case of nearly
periodic quantum jumps. However, also the intrastate modulation (dotted lines)
contributes to the power spectrum of 〈σz〉, and especially of 〈σy〉, obscuring the
contribution of the jumps between the metastable states.

We therefore subject 〈σz,y〉 to an affine transformation in order to filter out
the intrastate modulation, see Fig. 9.3:

〈σz,y〉′ = m(t)〈σz,y〉 + c(t). (9.3)

In (9.3), m(t) and c(t) are chosen such that 〈σz,y〉′(1,2) do not depend on
time, and equal the average of 〈σz,y〉(1,2)(t) over one modulation period. Again,
〈σz,y〉(1,2)(t) are defined by inserting the time-dependent metastable state ρ(1,2)

of the photon field into Eqs. (7.4-7.6), respectively (dotted lines in Figs. 9.1
and 9.2). Now, the power spectrum of our output variable x(t) = 〈σz,y〉′(t) is
obtained by Fourier transformation:

P (ω) =
∣∣∣∣∫ tmax

0
dt x(t) eiωt

∣∣∣∣2 /tmax. (9.4)
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Generally, P (ω) is a sum of two parts, P (ω) = PN (ω) +PS(ω), where the noise
background PN (ω) has an approximately Lorentzian shape [42], whereas the
signal part PS(ω) consists of sharp peaks at the signal frequency ωs, and integer
multiples thereof. The main signal peak at ωs quantifies the response of the
system to the small periodic modulation. In the case of stochastic resonance,
the response is maximized at a definite nonvanishing noise level [36].‡ In other
words, the strength of the signal peak exhibits a maximum as a function of the
temperature of the environment.

9.3.1 First harmonic - the stochastic resonance peak

The strength of the signal peak is given by the output signal power S [37],which
is defined as the area under the signal peak at ω = ωs:

S =
∫ ωs+∆ω/2

ωs−∆ω/2
dω PS(ω). (9.5)

∆ω must be larger than the width of the peak, which gets smaller for higher
integration time tmax, whereas its area S is independent of tmax.

An equivalent definition of S makes use of the asymptotic periodic response
〈x(t)〉as. The subscript ‘as’ stands for the asymptotic limit t → ∞ [where x(t)
is independent of the initial condition x(0), but still depends on time, due to
the driving], and the brackets denote an average over all noise realizations. The
strength S of the output signal is defined as the amplitude (or first harmonic)
of 〈x(t)〉as:

S =
2π

ts2

∣∣∣∣∫ ts

0
dt 〈x(t)〉as eiωst

∣∣∣∣2 . (9.6)

In the case of a simple two-state model, where the dynamics of x(t) can be
described in terms of transition rates W1,2 between two different values x1 and
x2, the output signal power only depends on the separation between the two
states (i.e., S is proportional to |x1 − x2|2) and the time-dependent transition
rates W1,2(t), see [51]. According to chapter 8, we expect such a two-state
model to be a good approximation for the bistable micromaser, provided the
average residence times W−1

1,2 and the modulation period ts are sufficiently long.
From 〈σz〉′ and 〈σy〉′ we now extract the output signal power S, as a function

of the temperature T of the environment. The results are shown in Fig. 9.4.
The diamonds are obtained, according to Eq. (9.5), from single realizations of
〈σz,y〉′(t) (integration time tmax = 37500 s, corresponding to 25 million atomic
detection events), whereas the solid lines show the result of Eq. (9.6), obtained
numerically from the asymptotic solution ρas(t) of the master equation (7.11),
together with Eqs. (7.4-7.6), and (9.3). Clearly, in both cases S assumes a

‡Often, the signal-to-noise ratio, i.e., the strength S of the signal peak divided by the noise
background at the signal frequency, is used instead of the signal S alone as a quantitative
measure of stochastic resonance [37, 42]. Furthermore, stochastic resonance can also be ana-
lyzed via the residence time distributions in the two metastable states [37, 42, 56]. (Note that
these measures need not always give the same answer concerning the occurrence of stochastic
resonance [37].)
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Figure 9.4: Output signal power S of (a) the z-, and of (b) the y-component
〈σz,y〉′ of the modified atomic Bloch vector, Eq. (9.3), vs. temperature T , in
response to a weak periodic modulation of the coherent atomic superposition,
Eqs. (9.1, 9.2), at period ts = 100 s. Remaining parameters as in Figs. 9.1
and 9.2. Both when measuring the atomic population σz and the coherence σy,
stochastic resonance is observed: at an optimal temperature of T � 0.6 K, the
output signal power exhibits a maximum.

maximum at about T = 0.6 K, and noise-induced signal enhancement is ob-
served. The cause of the similar temperature dependence of S(T ) in both
cases is the weak dependence of the transition rates between the metastable
states on the applied measurement scheme. Closer inspection of Fig. 9.4 re-
veals, however, some differences: when measuring σz, the signal power is about
30 times stronger than in the other two cases, and the decrease of S with in-
creasing temperature is faster as compared to the measurement of σy. Since
in a two-state system, the power spectrum is proportional to the square of the
amplitude of the jumps, these features are simply explained by the dependence
of |〈σz,y〉′(2) − 〈σz,y〉′(1)| on T , which either slightly increases with T (σy), or
is approximately constant (σz) [as can be confirmed by a careful inspection of
the intrastate modulation of 〈σz,y〉(1,2) in Figs. 9.1 and 9.2 (dotted lines), whose
mean value defines 〈σz,y〉′(1,2)) ]. Finally, the dashed lines in Fig. 9.4 (hardly
discernible) show the results for the two-state model [51], with the transition
rates from chapter 8.2, Eqs. (8.8,8.10). The very good agreement with the exact
solution (solid lines) stresses the validity of the two-state model.
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Figure 9.5: Second and third harmonic S2 (a,b) and S3 (c,d) of the output
signal of 〈σz〉′ (a,c) and 〈σy〉′ (b,d), for two different signal periods ts = 100 s
(solid lines) and ts = 1000 s (dashed lines). Otherwise, the same parameters
as in Fig. 9.4 have been chosen. For the long modulation period ts = 1000 s,
a noise-induced suppression of S2 by approximately two orders of magnitude is
observed at T = 0.49 K, and of S3 at T = 0.32 K and T = 0.85 K. This agrees
with the general theory of [109], which predicts a suppression of the second
harmonic if the two unmodulated transition rates W1,2 (see Fig. 8.3) are equal,
and of the third harmonic if their ratio equals (

√
3 + 1)/(

√
3 − 1) � 3.7 or

(
√

3− 1)/(
√

3 + 1) � 0.27.

Let us note that the signal-to-noise ratio of 〈σz,y〉′ (which is often used for
a quantitative analysis of stochastic resonance instead of the signal S alone,
see the footnote on p. 118) does not show a maximum as a function of T ,
but rather monotonically increases. This can be traced back to an untypical
behavior of the modulated transition rates W1,2(t), the modulation amplitudes
of which increase with increasing temperature T (instead of being approximately
constant, as in standard examples of stochastic resonance) [56]. On the other
hand, the analysis of the residence-time distributions does exhibit signatures
of stochastic resonance, and the optimal temperature approximately coincides
with the position of the maximum in the signal S [56].

9.3.2 Suppression of higher harmonics

Besides the main signal peak, the power spectra of 〈σz,y〉(t) also exhibit higher
harmonics, i.e., peaks at integer multiples of the signal frequency. The gener-
ation of higher harmonics of the input signal is a general property of period-
ically driven, nonlinear systems [110]. In the language of signal processing, it
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amounts to a distortion of the transmitted signal (in addition to the presence of
a noise background in the output). In this section, we want to see whether also
the higher harmonics can be controlled by varying the noise level, as we have
demonstrated it for the first harmonic, employing the stochastic resonance.

Alike the first harmonic S of the output signal, Eq. (9.5), the strength
Sj of the higher harmonics is defined as the area under the j-th signal peak
of the power spectrum P (ω), i.e., by Eq. (9.5) [or, equivalently, Eq. (9.6)]
with ωs replaced by j × ωs. According to the general theory in [109], we ex-
pect the appearance of so called noise-induced resonances [47], which manifest
themselves in a strong suppression of higher harmonics at certain values of the
noise level and large signal periods ts. More precisely, suppressions of the j-th
harmonic should occur at zeros of the (j + 1)-th cumulant§ of the undriven
process. In a two-state system, this is the case for j = 2 if the two (unmodu-
lated) transition rates W1,2 are equal, and for j = 3 if their ratio is given by
(
√

3 + 1)/(
√

3 − 1) � 3.7 (or its inverse) [109]. The case j = 2 can be un-
derstood by a symmetry argument due to which all even harmonics (j = 2n,
n ∈ N) are completely suppressed if the two transition rates are modulated
symmetrically, i.e., W1(t) = W2(t+ ts/2) [37]. (No such simple argument exists
- to our knowledge - for j = 3.)

The above expectations are confirmed by Fig. 9.5: for the large modulation
period ts = 1000 s, the second and third harmonic of 〈σz〉′ and 〈σy〉′ (obtained
from the asymptotic solution of the master equation) show noise-induced sup-
pressions at those temperatures where the transition rates (see Fig. 8.3) fulfill
the above conditions. Again, the effect is present both in the atomic popula-
tion 〈σz〉′ (left column) and coherence 〈σy〉′ (right column), and the temperature
dependence is in both cases very similar, as predicted by the two-state model.

Incoherent pumping

Finally, Fig. 9.6 shows the output signal power S and its harmonics S2 and S3

for incoherent pumping, with |a|2 modulated according to Eq. (9.1). Only the
z component of 〈�σ〉′ is plotted, since, in the case of incoherent pumping, no
signal can be observed in the atomic coherences 〈σx,y〉 (see Fig. 8.1d). Because
of the higher transition rates for incoherent pumping (compare chapter 8.2), the
maximum of S is attained at a higher temperature (T = 0.7 K) than for coherent
pumping (T = 0.6 K). Again, for large modulation periods, noise-induced
suppressions of S2 and S3 occur at temperatures where the above-mentioned
conditions for the transition rates are fulfilled (compare with Fig. 8.4). Due to
the shift of the intersection between the two rates (compare Figs. 8.3 and 8.4),
a suppression of S3 occurs at only one temperature T = 0.5 K, where W2/W1 �
3.7, for incoherent pumping (and the experimental parameters from Fig. 9.6),
whereas two such resonances are observed for coherent pumping (Fig. 9.5), at
T = 0.32 K, where W2/W1 � 3.7, and at T = 0.85 K, where W2/W1 � 0.27.

§The cumulants of a random process x(t) are given in terms of the momenta 〈xn〉 (where the
bracket denotes an average over long times). Explicitly, the first four cumulants K1, . . . K4

read as follows: K1 = 〈x〉, K2 = 〈x2〉 − 〈x〉2, K3 = 〈x3〉 − 3〈x2〉〈x〉 + 2〈x〉3, and K4 =
〈x4〉 − 4〈x3〉〈x〉 − 3〈x2〉2 + 12〈x2〉〈x〉2 − 6〈x〉4.
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Figure 9.6: (a) Output signal power S of 〈σz〉′, (b) its second and (c) third
harmonic, S2 and S3, in response to a weak periodic modulation of |a|2 (inco-
herent pumping) according to Eq. (9.1), with two different modulation periods
ts = 100 s (solid lines) and ts = 1000 s (dashed lines). S exhibits a stochastic
resonance maximum at T = 0.7 K. Noise-induced suppressions of the har-
monics S2 and S3 are observed at T = 0.87 K and T = 0.5 K, respectively,
in accordance with the general theory of [109]. Remaining parameters as in
Figs. 9.4,9.5.
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In both schemes of quantum state control discussed in the previous two
parts of this thesis, entanglement between atoms and a single mode quantized
electromagnetic field fundamentally affected - and even controlled - the time
evolution of the atoms-field system. This is only one example of the important
role entanglement plays in the dynamics of interacting quantum systems. Nev-
ertheless, a satisfactory theoretical description of this phenomenon has not yet
been achieved. To give an example, although several proposals for quantita-
tive measures of entanglement are on the market, they do not always provide
the same answer to the question which among two given states exhibits ‘more’
entanglement.

Therefore, in the last part of this thesis, we focus on entanglement, and
present a new result on quantifying entanglement in the simplest possible case of
two interacting two-level systems, commonly known as qubits, living on a four-
dimensional Hilbert space. Whereas this result has no immediate connection
to the results of part I and II, it conveys an idea of the intrinsic algebraic
structures generating the dynamics of multipartite quantum systems, which we
have already encountered.

To be specific, an interesting description of entanglement was recently achie-
ved by defining the best separable approximation of a given mixed state. In the
simplest case of a 2× 2 dimensional quantum system, it consists of a decompo-
sition of the state into a sum of a pure, entangled, and a mixed, separable one,
with maximal weight of the latter. Here, we will formulate and prove neces-
sary and sufficient conditions fulfilled by this optimal decomposition, which, in
particular, allow its construction for an arbitrary given entangled state of full
rank, in a purely algebraic way.

Before presenting our own results, however, let us warm up by briefly intro-
ducing some important concepts used for the characterization of mixed state
entanglement.

10.1 Entanglement measures

Given a pure state of a bipartite quantum system living on a Hilbert space
H = HA ⊗HB, its entanglement E(Ψ) can be uniquely quantified by the von-
Neumann entropy of the reduced density matrix, as described in chapter 2.2.1.
In particular, a pure state |Ψ〉 is not entangled if and only if it can be writ-
ten as a product of two states of the subsystems A and B, respectively, i.e.,
|Ψ〉 = |ψ〉A ⊗ |ψ〉B.

Now, one might think that it should be easy to generalize this entanglement
measure also to mixed states, making use of the fact that any mixed state ρ
can be decomposed in terms of pure states:

ρ =
∑

i

pi |Ψi〉〈Ψi|, pi ≥ 0,
∑

i

pi = 1. (10.7)

According to Eq. (10.7), the state ρ can be interpreted as a mixture, where
|Ψi〉 occurs with probability pi. Hence, the entanglement of ρ should be the
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corresponding average
E(ρ) =

∑
i

pi E(Ψi) (10.8)

over the pure states. The problem is that the decomposition (10.7) of a given
mixed state ρ is not unique. As an example, the state ρ = 1

2 |00〉〈00| + 1
2 |11〉〈11|,

which is a mixture of the two product states |00〉 and |11〉, and therefore E(ρ) =
0, can also be written as ρ = 1

2 |00 + 11〉〈00 + 11| + 1
2 |00 − 11〉〈00 − 11|,

i.e., as a mixture of two maximally entangled states |00 + 11〉 and |00 − 11〉∗,
which yields E(ρ) = 1. [In this simple example, both decompositions consist
of eigenvectors of ρ. Also for a non-degenerate ρ, however, the decomposition
(10.7) is not unique, since the |Ψi〉’s need in general not be eigenvectors of ρ,
i.e., they need not be orthogonal.] In order to obtain a well-defined measure
of entanglement, we can look for the optimal decomposition of ρ, which yields
the smallest average entanglement (10.8). The latter is known as entanglement
of formation EF [111]. Apart from this rather abstract definition, EF can also
be interpreted in a more intuitive way: it is closely connected to the maximal
number N of qubit pairs in the given state ρ, which can be produced by local
operations (possibly with classical communication between the two parties†),
if the two parties A and B initially share a given number M of maximally
entangled qubit pairs (and the remaining N − M qubit pairs are initially in a
product state).‡ Furthermore, it has been shown that EF is a ‘good’ measure of
entanglement, i.e., it is invariant under unitary local operations U⊗V , and non-
increasing under arbitrary local operations,† which are obvious requirements
that any measure of entanglement should fulfill [112]. In particular, EF (ρ) = 0
if and only if ρ can be expressed as a mixture of product states:

ρ =
∑

i

piρ
A
i ⊗ ρB

i , pi ≥ 0,
∑

i

pi = 1, (10.9)

where ρA
i , ρB

i are legitimate (i.e., hermitian and positive definite) density ma-
trices of the subsystems. Such states ρ are called separable [114]. They exhibit
only classical correlations between A and B, since, starting from a product state
|ψ〉A ⊗ |ψ〉B (which does not contain any correlation), they can be generated

∗Here, the states |00± 11〉 are defined to be correctly normalized, i.e. |00± 11〉 := (|00〉 ±
|11〉)/

√
2.

† By ‘local operation’, we mean a quantum operation acting on the two parties A and B
separately, but possibly exhibiting classical correlations. Any such operation may be written
as follows [112]:

ρ →
X

i

Ai ⊗ Bi ρ A†
i ⊗ B†

i ,

where
P

i A†
iAi ⊗ B†

i Bi = �.
‡More precisely, the asymptotic ratio M/N (in the limit M, N → ∞) is given by [113]

E′
F := lim

n→∞

1

n
EF (ρ ⊗ . . . ⊗ ρ� �z �

n copies

).

(It is commonly believed, but not yet proved, that E′
F = EF , i.e., EF fulfills the property of

additivity).
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by a local operation, which transforms |ψ〉A into ρA
i and |ψ〉B into ρB

i with
probability pi. (Here, both parties A and B have to use the same randomly
chosen i. This obviously requires communication between the two parties, what
in general leads to correlations.)

Note that, in the general case of a M1 × M2 dimensional quantum system,
there is no general prescription how to find out whether a given ρ is separable
or not. As observed in [115], however, a simple necessary condition for the
separability of ρ is that its partial transpose, defined as

ρτB :=
∑

i

piρ
A
i ⊗ (ρB

i )τ , (10.10)

is positive definite, i.e., is also a legitimate density matrix for the composite
system. [Here, we define the operation of partial transposition by Eq. (10.10)
also in the case of an arbitrary, not necessarily separable state, when ρA

i and
ρB

i do not need to be positive or/and the pi are not all positive - such a de-
composition obviously exists for an arbitrary ρ]. Therefore, any state ρ with
negative partial transpose has to be entangled. Note, however, that there exist
also entangled states with positive partial transpose [116].

Only for low dimensional (2 × 2 and 2 × 3) systems, the above condition
is also sufficient [116]. Therefore, we can easily check whether a two-qubit
state ρ is separable or not, by simply calculating the smallest eigenvalue of its
partial transpose. In fact, for two qubits, also the degree of entanglement, as
quantified by the entanglement of formation, can be determined analytically.
For this purpose, the concurrence c(ρ) was introduced in [117], defined as

c(ρ) = max{0, c1 − c2 − c3 − c4}, (10.11)

where c1 ≥ c2 ≥ c3 ≥ c4 are the square roots of the (real and positive) eigen-
values of the matrix

X := Σρ∗Σρ, Σ = σ2 ⊗ σ2, σ2 :=
[

0 −i
i 0

]
, (10.12)

and ρ∗ denotes the complex conjugation of ρ. The entanglement of formation
of ρ is then given by [117]

EF (ρ) = h

(
1 +

√
1 − c2(ρ)
2

)
; (10.13)

h(x) = −x log2 x − (1 − x) log2(1 − x). (10.14)

Note that EF is a strictly monotonous function of c(ρ) (compare footnote § on
p. 16), which maps the interval [0, 1] onto [0, 1]. Hence, the concurrence c(ρ) is
also a good measure of entanglement.

Now, is the problem of quantifying two-qubit entanglement solved by Eqs.
(10.11-10.14)? This is not the case: there exist also other good measures of
entanglement, which are - unlike the concurrence - not equivalent to the entan-
glement of formation, in the sense that they give a different ordering of mixed
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states with respect to their amount of entanglement. A simple example is the
negativity of EN(ρ) [118],

EN(ρ) = 2 |min{0, λτB
1 , λτB

2 , λτB
3 , λτB

4 }|, (10.15)

where λτB
i are the eigenvalues of the partial transpose ρτB . The non-equivalence

of EF and EN was demonstrated in [119, 120]. This shows that - even in
the simplest case of two qubits - the properties of entanglement are not yet
completely understood.§

10.2 Optimal Lewenstein-Sanpera decomposition

A better insight into the properties of an entangled state ρ may possibly be ob-
tained by studying particular decompositions of ρ. For example, as described
above, the entanglement of formation is given by a decomposition into pure
states, which minimizes the average entanglement over the pure states, see
Eq. (10.8). Another way of decomposing a mixed quantum state ρ in a way
which is determined by its entanglement properties was recently introduced in
[122]. Here, the authors considered decompositions of ρ into a sum of an entan-
gled and a separable state, i.e., ρ = (1−λ) ρe + λ ρs. The decomposition with
the largest weight λ of the separable part is the optimal Lewenstein-Sanpera de-
composition, which they proved to be uniquely determined. According to its
definition, all the non-separability properties of ρ are concentrated in the en-
tangled part ρe, whose weight is as small as possible. The separable part of this
decomposition is called the best separable approximation (BSA) of ρ,¶ and its
weight λ the separability. Furthermore, in the case of a two-qubit state, which
we will restrict to in the following, it can be shown [122] that the entangled part
ρe of the optimal Lewenstein-Sanpera decomposition is always a pure state,‖

i.e.,
ρ = (1− λ) |ψ〉 〈ψ| + λρs. (10.16)

We will call any such decomposition of ρ as a sum of a pure entangled and a
mixed separable state, a Lewenstein-Sanpera decomposition (LSD). For a given
ρ, there exists in general a continuum of different LSD’s [123], one of them
(with the largest λ) the optimal LSD.

Now, how can we find the optimal LSD for a given ρ ? At first sight, this
might not appear to be a very difficult task, since the decomposition is already

§For higher-dimensional quantum systems, additional difficulties arise, which have to to
with the existence of entangled states with positive partial transpose, and with the phenom-
enon of ‘bound entanglement’[121], i.e., non-separable states which can not be transformed
by local operations into a maximally entangled state.

¶Note, however, that ρs does in general not minimize the distance of ρ to the set of separable
states, as quantified, e.g., by the Hilbert-Schmidt metric, or other measures, compare the
footnote ∗ on p. 26.

‖This is due to the fact that any two-dimensional subspace of a 2 × 2 system, and hence
also the range of a non-pure state ρe, contains a product vector |e, f〉. Then, a small amount
ε|e, f〉〈e, f | of this vector can be subtracted from ρe (with ε small enough, such that ρe remains
positive) and added to ρs (which remains separable, since |e, f〉 is a product state), thereby
obtaining a new decomposition with larger weight of the separable part.
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determined by a single state vector |ψ〉, and one real parameter λ. Nevertheless,
only a numerical method for constructing the optimal LSD in 2×2 systems was
proposed in the original paper [122], and some analytical results for special cases
were found in [123]. Here, we show how to find the optimal LSD of an arbitrary
2 × 2 state ρ in a purely algebraic way, without employing any maximization
or optimization procedure. As a byproduct, we prove that, in the case that
the BSA ρs of ρ is of rank 4, the weight 1 − λ of the pure state in the optimal
LSD equals the concurrence of ρ, see Eq. (10.11). Furthermore, the pure part
is maximally entangled in this case (the last fact was proven by other means in
[124]).

The situation is more complicated if the BSA ρs is not of full rank. As
we will see, for rank(ρ) = 4 but rank(ρs) < 4, the components of the BSA are
determined by a set of two nonlinear equations which can be solved numerically.
In this case, there is no simple relation between the concurrence of the state
and the weight of the entangled part, as we were able to prove for rank(ρs) = 4.

We will now formulate the main results of this chapter, which are summa-
rized by the following two Theorems.

Theorem 1.

Let ρ be an entangled state with rank(ρ) = 4. Then,
ρ = (1 − λ) |ψ〉 〈ψ| + λρs is the optimal Lewenstein-Sanpera
decomposition if and only if:

rank(ρτB
s ) = 3, i.e., ∃|φ〉 ρτB

s |φ〉 = 0, and either

(i) rank(ρs) = 4, and ∃α>0 |φ〉〈φ|τB |ψ〉 = − α |ψ〉, or

(ii) rank(ρs) = 3, i.e., ∃|φ̃〉 ρs|φ̃〉 = 0, and

∃α,ν≥0

[
ν|φ̃〉〈φ̃| + |φ〉〈φ|τB

]
|ψ〉 = − α |ψ〉.

According to Lemma 2 of appendix D, |ψ〉 is maximally entangled in case (i).∗∗

The first condition, which demands that the partial transpose of the BSA
ρs be of rank 3, simply states that ρs lies on the boundary between the set
of separable and the set of entangled states (which have a negative partial
transpose, see chapter 10.1), i.e., ρs is a ‘barely separable state’ [125]. The
two conditions (i) and (ii) describe the relation between the entangled and the
separable part of the optimal decomposition. Remarkably, the only relevant
properties of ρs are the vectors |φ〉, and possibly |φ̃〉, in the kernels of ρτB

s and
ρs.

Theorem 1 allows us to check immediately whether a given decomposition
of ρ is the optimal one. Reversely, it also simplifies the construction of the
BSA for a given ρ. Indeed, case (i), i.e., any BSA with rank 4, can be solved
explicitly, according to the following

∗∗We believe that also in case (ii), the pure state |ψ〉 may be maximally entangled, but have
not yet found an explicit example.
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Theorem 2.

If the BSA ρs of ρ has full rank [i.e., in the case (i) of Theorem
1], the vector |φ〉 in the (one-dimensional, see Theorem 1) kernel
of ρτB

s is an eigenvector of

Y = Σ ρτA Σ ρτB , (10.17)

belonging to the smallest eigenvalue γ of Y . The weight 1 − λ of
the entangled part in the optimal decomposition is given by 1−λ =
2
√

γ = c(ρ), where c(ρ) is the concurrence of ρ.

The above Theorem 2 allows us to check whether a given ρ has a BSA ρs of
full rank, i.e., whether it fulfills the first case (i) of Theorem 1. In this case,
the optimal LSD is given analytically through Theorem 2 and Theorem 1(i)
(see the ‘recipe for constructing the optimal LSD’ below). As a general rule of
thumb, we have found that the BSA ρs is of rank 4, if ρ is close to a separable
state (i.e., if its separability λ is large), whereas rank(ρs) < 4 if ρ is close to a
non-maximally entangled pure state.

Recipe for constructing the optimal Lewenstein-Sanpera decom-
position

Before we present the proofs of Theorem 1 and 2 in chapters 10.4 and 10.5,
we want to demonstrate how to use the above results in order to construct the
BSA for a given entangled ρ of rank 4:

• First, calculate the smallest eigenvalue γ and the corresponding eigenvec-
tor |φ〉 of the 4 × 4 matrix Y , given by Eq. (10.17). (The eigenvalue γ is
not degenerate, see Lemma 7 in appendix D.)

• Then, calculate ρs = ρ/λ − (1 − λ)|ψ〉〈ψ|/λ, according to Eq. (10.16),
where λ = 1 − 2

√
γ is obtained from Theorem 2, and |ψ〉 from Theorem

1(i), as the eigenvector of |φ〉〈φ|τB with negative eigenvalue.

– If ρs is positive and separable, it is the BSA, according to Theorem
1(i). (It is not necessary to check ρτB

s |φ〉 = 0, since this follows from
the construction of |φ〉, see Lemma 7 and Lemmata 3-5, appendix D)

– If not, this proves that the first case (i) of Theorem 1 is not fulfilled.
Consequently, the BSA has rank 3, and we obtain the following set
of equations from Theorem 1(ii):[

ρ|φ̃〉〈φ̃|ρ
]τB

|φ〉 = 〈φ̃|ρ|φ̃〉 ρτB |φ〉, (10.18)

ν′|φ̃〉 + |φ〉〈φ|τBρ|φ̃〉 = −α ρ|φ̃〉. (10.19)

Here, we used |ψ〉 = ρ|φ̃〉, and (1− λ)−1 = 〈φ̃|ρ|φ̃〉, see Eqs. (10.38)
and (10.39) below, and defined ν′ = ν〈φ̃|ρ|φ̃〉. These equations have
to be solved numerically for |φ̃〉, |φ〉, α, and ν′. Possibly, there exist
several solutions, but only one (due to the uniqueness of the optimal
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LSD) with α, ν′ ≥ 0 and yielding a positive and separable state ρs

via Eq. (10.16). This solution gives the optimal LSD, according to
Theorem 1(ii).

Thereby, we have found the optimal Lewenstein-Sanpera decomposition of ρ in
a purely algebraic way, without employing any maximization or optimization
procedure.

However, we have only decomposed states of full rank, so far. Can we
also use the above method to find the optimal LSD for states of lower rank?
[Here, rank(ρ) = 3 is of particular interest, since rank(ρ) = 2 has already been
solved analytically [123].] First, we note that any state ρ of lower rank can be
obtained as a limit from the full-rank case. To demonstrate this explicitly, we
define ρε := (1− ε)ρ+ ε�/4 (where � is the 4×4 identity operator). Obviously,
rank(ρε) = 4, for ε > 0, and ρ = limε→0 ρε. Since the optimal decomposition
of ρε varies continously with ε (this follows from the uniqueness of the optimal
LSD), we obtain the optimal LSD of ρ in the limit ε → 0. Hence, it should be
possible to generalize Theorem 1 to the case of lower rank. If we consider the
second condition (ii) of Theorem 1, however, we cannot exclude the possibility
that the parameter ν goes to infinity in the limit ε → 0. (This might even be
the generic behavior in this case.) Then, the condition (ii) would reduce to
〈φ̃|ψ〉 = 0 (implying that |φ̃〉 is in the kernel of ρ), what does not help us to find
the optimal LSD of ρ directly, without using the limiting procedure described
above. Therefore, although the lower-rank case may be treated numerically as
a limit of the full-rank case, an analytic solution would still be desirable, also
in order to understand the behavior of the optimal LSD for states of rank 4
which are close to states of lower rank (in particular, to answer the question if
ν remains bounded or not).

10.3 Does the optimal LSD yield a measure of en-
tanglement?

Furthermore, Theorem 2 provides a connection between the BSA and the con-
currence of ρ, which was originally [126] introduced as an auxiliary quantity
in order to calculate the entanglement of formation EF [111]. Apart from the
explicit formula (10.11), the concurrence of a mixed state is defined (similarly
to EF ) as the minimum of the average concurrence 〈c〉 =

∑
i pic(ψi) over all

decompositions ρ =
∑

i pi|ψi〉〈ψi| of ρ into pure states. After decomposing
ρs into product states, also the optimal LSD, Eq. (10.16), defines a particular
decomposition, and it follows that

c(ρ) ≤ (1− λ) c(ψ). (10.20)

Since c(ψ) ≤ 1, this inequality implies c(ρ) + λ ≤ 1, which has already been
conjectured in [125]. According to Theorem 2, equality in Eq. (10.20) holds if
the BSA of ρ has full rank [in this case, c(ρ) = 1 − λ and c(ψ) = 1]. In other
words: the decomposition (10.16) is also optimal in the sense that it minimizes
the average concurrence.
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One might assume that this is true in general, i.e., also in the second case
(ii) of Theorem 1, where the BSA ρs is not of full rank. Indeed, there exist
examples where the inequality (10.20) is saturated also in this case, e.g., the
generalized Werner states ρ = x|φ〉〈φ| + (1 − x)�/4, with |φ〉 not maximally
entangled. (The optimal decomposition of these states is given in [123].) In
general, however, we have found that the equality in (10.20) does not always
hold. Nevertheless, we believe that the right-hand side of (10.20), i.e.,

ELS(ρ) := (1 − λ)c(ψ) (10.21)

is also a good measure of entanglement.
In order to establish the quantity ELS, Eq. (10.21), which is obtained from

the optimal LSD, as a good measure of entanglement, we have to show the
following [112]:

(i) it vanishes if and only if ρ is separable,

(ii) it is invariant under local unitary operations, and

(iii) its expectation value is non-increasing under general local operations.

The first two conditions are obviously fulfilled. In order to verify the third
one, let us consider an arbitrary local operation, see footnote † on p. 126, which
transforms ρ = (1−λ) |ψ〉 〈ψ|+λρs (optimal LSD) into ρi = Ai⊗BiρA†

i⊗B†
i /pi,

with probability pi. Then, we have the following LSD

ρi = (1 − λ)|ψi〉〈ψi|/pi + λρsi/pi, (10.22)

of ρi, with |ψi〉 = Ai ⊗ Bi|ψ〉, and ρsi = Ai ⊗ BiρsA
†
i ⊗ B†

i .

• First, let us assume that (10.22) is the optimal LSD of ρi. Then, according
to Eq. (10.21), ELS(ρi) = (1 − λ)|ψi|c(ψi)/pi (where |ψi| = 〈ψi|ψi〉 is the
norm of |ψi〉), and the expectation value of ELS equals

〈ELS〉 =
∑

i

pi ELS(ρi) = (1 − λ)
∑

i

c(ψi)|ψi|, (10.23)

which is not larger than ELS(ρ) = (1− λ)c(ψ), since the concurrence is a
good entanglement measure [and hence its expectation value

∑
i c(ψi)|ψi|

is not larger than c(ψ)].

• However, what happens if (10.22) is not the optimal LSD? Then, we have
to show that (1−λ)|ψi|c(ψi)/pi ≥ ELS(ρi). Note that, if the BSA of ρi is of
rank 4, i.e., Theorem 1(i), then ELS(ρi) = c(ρi), and (1−λ)|ψi|c(ψi)/pi ≥
ELS(ρi) follows by the same argument as Eq. (10.20). It remains to be
shown that the same is also true in the case rank(ρi) = 3. For this
purpose, it would be sufficient to prove that, among all possible LSD’s of
ρ, not only the quantity 1 − λ is minimal in the optimal LSD (according
to its definition), but also (1−λ) c(ψ). So far, we have not yet completed
the proof of this conjecture.
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Therefore, we cannot say with certainty that ELS is non-increasing under local
transformation, as it is required by a good measure of entanglement. Note that,
if this were the case, then c(ρ) and ELS provide two non-equivalent measures of
entanglement, i.e., there exists a pair of states such that the two measures would
give contradictory results concerning the question which state exhibits more en-
tanglement.†† Presently, we do not have a simple explanation or interpretation
of this fact, which deserves further investigations.

10.4 Proof of Theorem 1

Let Eq. (10.16) be the optimal LSD of the entangled state ρ. The idea of
the following proof is to examine an infinitesimal neighborhood of the optimal
decomposition. For this purpose, we note that the maximality condition for λ
and the uniqueness of the BSA [122] imply [123]:

(a) the state ρs + ε|ψ〉〈ψ| is non-separable for ε > 0, and

(b) the state ρ − (1 − λ)|ψ′〉〈ψ′| is either non-separable or non-positive for
each |ψ′〉 �= |ψ〉.

In order to simplify the notation, we define µ = 1 − λ.
According to the Peres-Horodecki criterion of separability [115, 116] (that

the separable states are those with non-negative partial transpose, see chap-
ter 10.1), condition (a) implies:

∀ε>0∃|φε〉 〈φε| ρτB
s + ε |ψ〉 〈ψ|τB |φε〉 < 0. (10.24)

On the other hand, since ρs is separable, the same criterion establishes the
positivity of ρτB

s . Thus, from (10.24) and the continuity argument, there is
such φ that

ρτB
s |φ〉 = 0. (10.25)

Since we assumed rank(ρ) = 4 and the rank of a projection is one, the rank of
ρs must be at least three. Then rank(ρτB

s ) = 3, as a consequence of Lemma
1, appendix D. Thereby, we have shown that the BSA ρs is barely separable
(which has already been found in [125]).

Now we exploit condition (b). Let us consider a different decomposition
of ρ, where the pure part slightly differs from the one of the optimal LSD,
Eq. (10.16):

ρ = µ
∣∣ψ′〉 〈ψ′∣∣ + λ ρ′s, (10.26)

with ∣∣ψ′〉 =
|ψ〉 + ε |∆ψ〉√

1 + ε2
, (10.27)

††This follows from the fact that, for each value of the concurrence c, we can find a state
ρ where the equality in Eq. (10.20) is fulfilled [namely any state ρ with BSA of rank 4, and
1− λ = c; the construction of such a state is possible according to Theorem 1(i)], whereas, as
stated above, there are also some cases where the equality is not fulfilled.
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where 〈∆ψ|∆ψ〉 = 1 and 〈ψ |∆ψ〉 = 0. (Obviously, any pure state can be
written in this form.) Since the optimal LSD is unique, the state ρ′s defined by
Eq. (10.26) cannot be positive and separable (for ε �= 0).

In the following, we will consider |ψ′〉 to be infinitesimally close to |ψ〉, and
therefore expand ρ′s to the first two orders in ε:

λρ′s = λρs − µ
(
ε |ψ〉 〈∆ψ|+ ε |∆ψ〉 〈ψ|+ ε2|∆ψ〉〈∆ψ| − ε2|ψ〉〈ψ|

)
. (10.28)

In fact, at first we will only need the first order in ε. (The second order terms
will be relevant later, when proving the second case and the reverse direction
of Theorem 1.)

Next, we consider separately two cases of different ranks of ρs, which will
lead us to the two cases (i) and (ii) of Theorem 1.

(i) First case: rank(ρs) = 4

Then, for ε sufficiently small, ρ′s is positive definite for each |∆ψ〉. Ac-
cording to the optimality condition (b) above, ρ′s must be non-separable,
i.e., there exists |φ′〉 such that 〈φ′| ρ′τB

s |φ′〉 < 0.

Since ρτB
s has rank 3, |φ′〉 has to be close to |φ〉, i.e.,∣∣φ′〉 = |φ〉 + |∆φ〉 , (10.29)

with |∆φ〉 → 0 if ε → 0. Now from (10.25) we obtain, at first order in ε:

〈∆φ| λρτB
s |∆φ〉 − µε〈φ| [|ψ〉 〈∆ψ|+ |∆ψ〉 〈ψ|]τB |φ〉 ≤ 0. (10.30)

But ρs is, by assumption, separable - consequently ρτB
s is positive definite

〈∆φ|λρτB
s |∆φ〉 ≥ 0, (10.31)

and (10.30) implies

〈φ| [|ψ〉 〈∆ψ|+ |∆ψ〉 〈ψ|]τB |φ〉 ≥ 0, (10.32)

which can be equivalently written as

Tr
{[

|ψ〉 〈∆ψ|+ |∆ψ〉 〈ψ|
]τB

|φ〉 〈φ|
}
≥ 0. (10.33)

For arbitrary operators A and B, we have TrAτBB = TrABτB , thus, from
(10.33), we obtain

Tr
{[

|ψ〉 〈∆ψ|+ |∆ψ〉 〈ψ|
]
|φ〉 〈φ|τB

}
≥ 0. (10.34)

This, however, is equivalent to

〈∆ψ| |φ〉 〈φ|τB |ψ〉+ 〈ψ| |φ〉 〈φ|τB |∆ψ〉 ≥ 0. (10.35)

Since (10.35) is linear in |∆ψ〉, changing |∆ψ〉 into − |∆ψ〉 reverses the
inequality, hence in fact it must be that

〈∆ψ| |φ〉 〈φ|τB |ψ〉 = 0. (10.36)
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The above equality must be fulfilled by all |∆ψ〉 ⊥ |ψ〉. This is possible
only if |ψ〉 is an eigenvector of A = |φ〉 〈φ|τB .∗ To arrive at the first case (i)
of Theorem 1, it remains to be shown that the sign of the corresponding
eigenvalue α is negative. This, however, follows from the limit ε → 0 of
Eq. (10.24),

〈φ| |ψ〉〈ψ|τB |φ〉 ≤ 0, (10.37)

after using again the identity TrAτBB = TrABτB . Furthermore, α cannot
be zero - otherwise (according to Lemma 2, appendix D), |φ〉 would be
a separable, i.e., a product state: |φ〉 = |e, f〉, and since ρτB

s |e, f〉 = 0,
see (10.25), we have ρs|e, f∗〉 = 0, cf. Eq. (D.3), which contradicts the
assumption rank(ρs) = 4. From Lemma 2, appendix D, we infer that
|ψ〉 is maximally entangled. This provides an alternative proof of the fact
(proved in [124]) that, if ρ and ρs are of maximal rank, then |ψ〉 in (10.16)
is maximally entangled.

(ii) Second case: rank(ρs) < 4

We assumed that ρ has rank 4, so rank(ρs) = 3 (since ρs is obtained from
ρ by subtracting a state of rank 1). From Lemma 1 in [122], we know
that, if we subtract (1−λ)|ψ〉〈ψ| from ρ [which gives ρs, see Eq. (10.16)],
we obtain a non-negative operator of rank 3 if and only if

1 − λ =
1

〈ψ|ρ−1|ψ〉. (10.38)

Furthermore, it is easy to check that the kernel of ρs is given by

|φ̃〉 = ρ−1|ψ〉, (10.39)

i.e., ρs|φ̃〉 = 0. Since rank(ρs) = 3, the separable part ρ′s, Eq. (10.28), of
the infinitesimally changed decomposition (10.26) is positive definite if

〈φ̃| (ε|ψ〉〈∆ψ|+ ε|∆ψ〉〈ψ|+ ε2|∆ψ〉〈∆ψ| − ε2|ψ〉〈ψ|) |φ̃〉 < 0. (10.40)

– Obviously, this condition is fulfilled if |∆ψ〉 ⊥ |φ̃〉. [〈ψ|φ̃〉 �= 0 follows
from Eq. (10.38).] Hence, as in case (i), all such |∆ψ〉 must fulfill
Eq. (10.36). This is equivalent to

(1− |ψ〉〈ψ| − |ψ̃〉〈ψ̃|) |φ〉〈φ|τB |ψ〉 = 0, (10.41)

where |ψ̃〉 is defined such that |ψ̃〉 ⊥ |ψ〉, and |ψ̃〉 and |ψ〉 span the
same two-dimensional subspace as |φ̃〉 and |ψ〉. (We assume that
ψ �= φ̃; otherwise, ρ′s is positive for all |∆ψ〉, and we get the same
result as in the first case, which, below, will turn out to be a special
case of the result in the second case.)

∗Note that, although τB and |φ〉 depend on the local basis of HB, the operator A is basis-
independent, i.e., transforms in the usual way, Eq. (D.1), under local unitary transformations.
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– But what happens if |∆ψ〉 = |ψ̃〉 ? Then, it is always possible to mul-
tiply |∆ψ〉 by a phase factor such that ρ′s is positive, see Eq. (10.40),
at first order in ε. This leads us, as in case (i), to Eq. (10.35). It
follows that

−ν 〈ψ̃|φ̃〉〈φ̃|ψ〉 = 〈ψ̃| |φ〉〈φ|τB |ψ〉, (10.42)

with a non-negative, real parameter ν. Otherwise, |∆ψ〉 could be
multiplied by a phase factor such that Eq. (10.40) is fulfilled and Eq.
(10.35) not. [Note that 〈ψ̃|φ̃〉〈φ̃|ψ〉 �= 0, since 〈ψ|φ̃〉 �= 0 follows from
Eq. (10.38), and 〈ψ̃|φ̃〉 �= 0 from the construction of ψ̃.]

The two conditions Eqs. (10.42,10.41) are equivalent to the following con-
dition: |ψ〉 is an eigenvector of the operator

A = ν|φ̃〉〈φ̃| + |φ〉〈φ|τB . (10.43)

To complete the first part of the proof of Theorem 1, we will now show
that the corresponding eigenvalue α cannot be positive.

As a consequence of Lemma 2, appendix D, A has at least three non-
negative eigenvalues. However, there is also at least one non-positive
eigenvalue. This follows from the existence of a product vector |e, f〉 in
the range of ρs such that |e, f∗〉 is in the range of ρτB

s , as shown in [124],
which implies 〈e, f |A|e, f〉 = 0, cf. Eq. (D.3). Furthermore, A cannot have
more than one zero eigenvalue: otherwise, |φ〉 would have to be a product
vector (see Lemma 2, appendix D), and |φ̃〉 would be the corresponding
partially transposed product vector. Hence, |φ̃〉〈φ̃| and |φ〉〈φ|τB would be
identical and proportional to A, and |ψ〉, as an entangled eigenvector of A,
would have to be perpendicular to |φ̃〉, i.e., rank(ρ) = 3, which contradicts
the assumption rank(ρ) = 4.

The above considerations about the spectrum of A are useful for the
following reason: let us assume that there exists an entangled state ρ′ with
α′ < 0, which has the property that ρ(x) = xρ+(1−x)ρ′ is entangled for all
x ∈ [0, 1]. (ρ′ may be a state with BSA of rank 4, for which we have already
shown above that α′ < 0.) Now, the optimal decomposition (10.16) - in
particular the eigenvalue α(x) - changes smoothly when varying x from
0 to 1 (this follows from the uniqueness of the optimal decomposition).
Since, as shown above, A (having one non-positive and three non-negative
eigenvalues) cannot have two zero eigenvalues, a crossing of eigenvalues
at zero is not possible, and α = α(1) ≤ 0 follows from α′ = α(0) < 0.

It remains to be shown that a state ρ′ with the above properties exists. For
this purpose, we consider the Werner states ρ′ = y|ψ′〉〈ψ′| + 1−y

4 �, with
maximally entangled |ψ′〉. For these states, it has been shown in [123]
that the pure state in the optimal decomposition equals |ψ′〉 and λ′ =
3(1−y)/2. It follows that rank(ρ′s) = 4, and α′ < 0, as shown above (first
case). Now, we choose |ψ′〉 as the eigenvector of |χ〉〈χ|τB with negative
eigenvalue (such an eigenvalue exists according to Lemma 2, appendix D),
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where |χ〉 is an entangled pure state with 〈χ|ρτB |χ〉 < 0 (exists, since ρ
is entangled). Using 〈ψ′| |χ〉〈χ|τB |ψ′〉 = 〈χ| |ψ′〉〈ψ′|τB |χ〉, it follows
that 〈χ|(ρ′)τB |χ〉 < 0 for large enough y, hence also 〈χ|ρ(x)τB|χ〉 < 0 for
x ∈ [0, 1], i.e. ρ(x) is entangled for all x ∈ [0, 1].

Finally, we will prove the reverse direction of Theorem 1, i.e., that both cases
(i) and (ii) are also sufficient for the optimality of the decomposition (10.16).
For this purpose, let us assume that there exists another decomposition with
larger λ. Then, because of the convexity of the set of separable states, such
a decomposition with larger λ also exists in the infinitesimal neighborhood of
{λ, |ψ〉}. Hence, for each (infinitesimally small) ε > 0, there exists λ′ = λ + ∆λ
(with ∆λ > 0, and ∆λ → 0 if ε → 0) and |∆ψ〉 ⊥ |ψ〉 such that

λ′ρ′s = λρs + ∆λ|ψ〉〈ψ| − (1 − λ′)
[
ε |ψ〉 〈∆ψ| + ε |∆ψ〉 〈ψ|

+ ε2 |∆ψ〉〈∆ψ| − ε2 |ψ〉〈ψ|
]

(10.44)

is separable. Now, let us assume that there exists |φ〉 with ρτB
s |φ〉 = 0, and

either condition (i) or (ii) from Theorem (i) is fulfilled. In the following, we will
show that both (i) or (ii) lead to a contradiction, since they imply that ρs is
either non-positive or non-separable.

(i) implies

〈∆ψ| |φ〉〈φ|τB |ψ〉 = 0,

〈ψ| |φ〉〈φ|τB |ψ〉 < 0, and
〈∆ψ| |φ〉〈φ|τB |∆ψ〉 > 0. (10.45)

The third inequality follows from the spectrum of |φ〉〈φ|τB , see Lemma 2,
appendix D. Insertion into Eq. (10.44) immediately yields

〈φ|ρ′τB
s |φ〉 < 0, (10.46)

i.e., ρs is non-separable.

(ii) implies

〈ψ| |φ〉〈φ|τB |ψ〉 = α − ν〈ψ|φ̃〉〈φ̃|ψ〉, and
〈∆ψ| |φ〉〈φ|τB |ψ〉 = −ν 〈∆ψ|φ̃〉〈φ̃|ψ〉. (10.47)

Insertion into Eq. (10.44) yields:

〈φ|ρ′τB
s |φ〉 = ∆λ α + (1− λ′)ε2(α − β) − ν〈φ̃|ρ′s|φ̃〉, (10.48)

where β = 〈∆ψ|A|∆ψ〉. Since α ≤ 0 and α < β (remember that A =
ν|φ̃〉〈φ̃|+|φ〉〈φ|τB has three non-negative eigenvalues, and at most one zero
eigenvalue, which, due to α ≤ 0, implies that α is strictly the smallest
eigenvalue of A), it follows that ρ′s is either non-positive or non-separable.
�
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10.5 Proof of Theorem 2

Let us assume that Eq. (10.16) is the optimal LSD of the entangled state ρ,
with ρs of rank 4. According to Theorem 1 (and Lemma 2, appendix D), we
know that |ψ〉 is maximally entangled, i.e., c(ψ) = 1, see Eq. (D.5). Hence, we
can use Lemma 3, appendix D, to write

λρτB
s = ρτB − µ |ψ〉〈ψ|τB = ρτB − µ

(
1
2
�− |ψ̃〉〈ψ̃|

)
, (10.49)

where |ψ̃〉 is defined by

|ψ〉〈ψ|τB |ψ̃〉 = − 1
2
|ψ̃〉. (10.50)

Consequently, for an arbitrary |φ′〉,

0 ≤ λ 〈φ′|ρτB
s |φ′〉 = 〈φ′|ρτB |φ′〉 + µ|〈φ′|ψ̃〉|2 − µ

2
. (10.51)

For |φ′〉 = |φ〉, the above equation, due to (10.25), reads

0 = 〈φ|ρτB |φ〉 + µ|〈φ|ψ̃〉|2 − µ

2
. (10.52)

Observe now that because of Theorem 1(i) and (10.50), we can apply Lemma 5,
appendix D, concluding that |φ〉 and |ψ̃〉 have a common Schmidt basis, hence,
according to Lemma 4, appendix D, we can rewrite (10.52) as

0 = 〈φ|ρτB |φ〉 +
µ

2
c(φ). (10.53)

Using the results of the same Lemma, we can estimate the last two terms on
the right-hand side of (10.51) by µc(φ′)/2:

0 ≤ 〈φ′|ρτB |φ′〉 +
µ

2
c(φ′). (10.54)

In order to simplify the equations below, let us make the following observa-
tion. Both, equation (10.53) and inequality (10.54), are bilinear in |φ〉, if only
we calculate the concurrence according to (D.5), regardless of the normalization
of |ψ〉. Obviously, such a quantity is not bounded from above, but this will not
play any role in the following. The final formula will involve only normalized
vectors.

Substituting |φ′〉 = |φ〉+ε|∆φ〉 (with arbitrary ε and |∆φ〉) into (10.54) and
using (10.53), we obtain, at the lowest order in ε,

0 ≤ ε

(
〈∆φ|ρτB |φ〉+ 〈φ|ρτB |∆φ〉+

µ

2
dc(φ + ε∆φ)

dε

∣∣∣∣
ε=0

)
. (10.55)

From the definition of concurrence, Eq. (D.5), we obtain, at first order in ε,

c(φ + ε∆φ) = c(φ) + ε 〈∆φ|Σ|φ∗〉 + ε 〈φ∗|Σ|∆φ〉, (10.56)
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after adjusting the phase of |φ〉 to make 〈φ|Σ|φ∗〉 real and positive and using
〈∆φ|Σ|φ∗〉 = 〈φ|Σ|∆φ∗〉 = 〈∆φ∗|Σ|φ〉∗ = 〈φ∗|Σ|∆φ〉∗, which is a consequence
of Σ = Σ† = Σ∗. Thus, we can rewrite (10.55) as

〈∆φ|ρτB|φ〉 + 〈φ|ρτB |∆φ〉 +
µ

2

(
〈∆φ|Σ|φ∗〉 + 〈φ∗|Σ|∆φ〉

)
≥ 0, (10.57)

which is valid for an arbitrary |∆φ〉. Again, considering (10.57) for |∆φ〉 and
−|∆φ〉, we conclude that, in fact, (10.57) is an equality

〈∆φ|Ψ〉 + 〈Ψ|∆φ〉 = 0, (10.58)

where
|Ψ〉 = ρτB |φ〉 +

µ

2
Σ|φ∗〉. (10.59)

Since |∆φ〉 is arbitrary, we have |Ψ〉 = 0, and, consequently,

ρτB |φ〉 = − µ

2
Σ|φ∗〉. (10.60)

Short manipulations, using Σ2 = 1, allow to rewrite (10.60) as an eigenvalue
equation

Σ (ρτB)∗ Σ ρτB |φ〉 =
µ2

4
|φ〉. (10.61)

In Lemma 6, appendix D, we show that the smallest eigenvalue γ of Y =
Σ(ρτB)∗ΣρτB is given by γ = c2(ρ)/4, where c(ρ) is the concurrence of ρ. Fur-
thermore, it follows from Lemma 7, appendix D, that µ2/4 is the smallest
eigenvalue of Y , since 〈φ|ρτB |φ〉 < 0 according to Eq. (10.60). �





Chapter 11

Conclusion

In the first part of this thesis, we have shown that arbitrary quantum states of
the electromagnetic field in a single mode cavity can be prepared by interaction
with a sequence of two-level atoms. In contrast to other preparation schemes,
we do not require a final state measurement of the atoms, which would lead to a
finite success probability of the state preparation. Furthermore, we use a simple
time-independent atom-field interaction (according to the Jaynes-Cummings
model), and need not be able to control the interaction Hamiltonian. Instead,
the state preparation is achieved solely by choosing an appropriate initial atomic
state, which may (and in general must) also exhibit entanglement between the
atoms. Fortunately, it turns out that our preparation scheme exhibits a rapid
(and often exponential) convergence into the target state, as a function of the
number N of atoms injected in the cavity. This convergence property is of
crucial importance for any experimental realization, since it not only relaxes
the burden to entangle an arbitrary number of two-level-atoms injected into
the cavity, but also allows to establish a viable compromise between optimizing
the target state fidelity and minimizing the influence of uncontrollable noise
sources.

In general, the highest fidelities with respect to the desired final field state,
for a given number of atoms, are reached if we start from the vacuum as initial
field state. Then, an appropriate initial atomic state can be obtained (analyt-
ically) from a time-reversal argument, using the fact that, starting from the
desired field state as initial state, the cavity vacuum can be prepared by in-
jecting all atoms in their ground state. In fact, for the preparation of photon
number states, this argument yields the optimal initial atomic state, which -
under the Jaynes-Cummings interaction - generates the target field state with
maximal fidelity, whereas the same argument still leads to high fidelities close
to the optimal in most other cases. The largest deviations from optimality are
were observed when the time reversal argument is employed for the preparation
of coherent states of the cavity field. Here, the optimal initial atomic state is
found to be almost a product state of the individual atoms.

As already alluded to, the preparation of pure field states requires a good
isolation from the environment, in order to keep the influence of noise as low as
possible. In contrast, the second part of this thesis demonstrated a constructive
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effect of noise on the control of a fundamental open (i.e., noisy) quantum system,
the cavity field of the coherently pumped micromaser. Here, the noise arises
from the coupling of the field to a thermal environment (even at zero tempera-
ture) and from the atom-field entanglement, which entails a random influence
on the photon field if the final state of the exiting atom is measured (‘mea-
surement noise’). Due to the influence of these quantum mechanical sources of
noise, the cavity field exhibits quantum jumps between two metastable mixed
equilibrium states. We demonstrated how to determine the corresponding tran-
sition rates, and have seen that an injected atomic coherence reduces the rates
of the jumps, whereas a change of the measurement scheme hardly affects the
transition rates.

Furthermore, we showed that the quantum jumps of the maser field can be
synchronized with an externally applied weak periodic signal (i.e., a modulation
of the initial atomic state), at an optimal nonvanishing temperature of the
environment. This effect can be read out in an arbitrary component of the
Bloch vector of the two-level atoms which pump the maser cavity, particularly in
the atomic coherence. It is a clear signature of stochastic resonance in an open,
driven quantum system, and well-predicted by the two-state model of the maser
dynamics. The latter point agrees with the findings in the driven spin-boson
system [51, 53, 54], where quantum stochastic resonance is found in parameter
regions where incoherent tunneling prevails over the coherent dynamics. Hence,
it seems that - also in the quantum case - the basic mechanism (though not
always the exact quantitative behavior, see [53, 54]) of stochastic resonance can
always be understood in terms of a simple two-state model (with quantum noise-
activated transition rates), in accordance with the intuitive classical picture of
stochastic resonance.

In the above, rather complementary approaches to quantum state control,
entanglement plays an important role: for the deterministic preparation of pure
fields states, an appropriately entangled atomic initial state has to chosen, in
order to avoid any final entanglement between the atoms and the field (and,
hence, to avoid measurement noise), and for the control scheme exploiting sto-
chastic resonance, the atom-field entanglement is at the origin of one of the
noise sources activating the quantum jumps of the maser field.

However, a complete, general characterization of entanglement, in particu-
lar a unique, quantitative measure, has not been formulated yet, even not in
the simplest case of a system composed of two qubits. As a particular way of
describing the entanglement properties of a two-qubit state, we examined the
best separable approximation of an entangled bipartite quantum state, which
is obtained by the optimal decomposition of the state into a sum of an entan-
gled and a separable state, with maximal weight of the latter one. We proved
sufficient and necessary conditions for the optimality of the decomposition. In
particular, these results allow an efficient construction of the best separable ap-
proximation, for any given entangled two-qubit state of full rank. Furthermore,
we conjectured that the optimal decomposition yields a quantitative measure
of entanglement.
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Perspectives

In the present thesis, the interaction of a single-mode quantized radiation field
with a sequence of entangled two-level atoms was examined for the first time.
The reason why a possible entanglement of the initial atomic state has so far
been neglected in the literature is probably the difficulty of generating such
states experimentally. Whilst recent experimental progress in the laboratory
suggests that such a perspective becomes nonetheless more and more realistic,
the scenario developed in this thesis can also be turned upside-down: some of
our ideas may in fact also be useful in order to produce many-particle entan-
glement. Given the ability to prepare certain classes field states (by a method
which does not require many-particle entanglement), we can produce a vari-
ety of entangled atomic states, for example by injecting a sequence of ground
state atoms into the cavity.∗ This calls for a systematic examination of the N -
atoms entangled states thereby obtainable from atomic states which are easier
to prepare (e.g., product states).

Throughout the thesis, we have concentrated mainly on the optimal initial
atomic state which prepares the desired field state with the maximum fidelity for
a given number of atoms. However, there exist also other atomic states which
achieve a high fidelity (see chapter 5.4.3). Among them may also be states
which do not require entanglement between all N atoms, but may be written
as a product of M -atom states, with a small M < N . Since the difficulty of
generating such a state experimentally is mainly determined by the number M
of atoms which have to entangled (and not by the total number of atoms N ),
we would like to know how the set of field states which can be prepared with
high fidelity by using M -atom entanglement (but admitting large values of N )
grows when increasing M . Among these field states, we expect to find some
‘M -invariant’ states, i.e., states that remain unchanged when interacting with
an appropriately chosen M -atom state |ψ0〉. Due to the property of asymptotic
completeness, the field will - independently of its initial state - approach the
invariant state when pumped by a steady flux |ψ0〉⊗|ψ0〉⊗ . . . of those M -atom
states. As an example, any photon number state |n〉 can be obtained by using
only two-particle entanglement [127]. Apart from this example, however, the
M -invariant field states are so far completely unexplored (except for M = 1,
see chapter 3.3.1).

Furthermore, as we have demonstrated, our state preparation scheme is also
applicable when starting from mixed initial field states. In this case, since the
information about the initial field state cannot be lost during the unitary atoms-
field interaction, it has to be transferred to the final atomic state. At the same
time, the final field state is completely determined by the initial atomic state.
Hence, quantum state preparation implies some sort of quantum information
transfer, which can and should be studied from an information theoretical point
of view.

As for stochastic resonance, we can easily predict that this robust phenom-

∗These states would be of the form TN |ψ′
0〉, with |ψ′

0〉 given by Eq. (4.7). Some of their
properties were examined in chapter 5.2. (Note that the time-reversal operator TN , Eq. (3.5),
reverses the order of the N atoms.)
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enon has a wide range of potential applications in various quantum optical sys-
tems which exhibit bistability and/or quantum jumps, in the presence of noise.
Given recent progress in the manipulation of single atoms or ions confined to
traps or periodic potentials, quantum jumps between electronic sublevels of
the trapped atom/ion, or between different lattice sites may be controlled by
stochastic resonance.



Appendix A

Some properties of M (ρ0)

In this appendix, we show how to calculate the atomic operator M (ρ0), Eq. (4.3),
which is needed to compute the maximum fidelity and the corresponding opti-
mal initial atomic state, see chapter 4.1.

We start with the simplest case N = 1, where the field interacts with a
single atom. With respect to the atomic basis |1〉 = |u〉 and |2〉 = |d〉, the
interaction operator U reads as follows:

U =
(

U11 U12

U21 U22

)
. (A.1)

According to the Jaynes-Cummings model, Eq. (2.1), the field operators Uij

are given by

U11 = cos(φ
√

aa†), U12 = −ia
sin(φ

√
a†a)√

a†a
, (A.2)

U21 = −ia†
sin(φ

√
aa†)√

aa†
, U22 = cos(φ

√
a†a). (A.3)

Now, the field operator A⊗� after the atom-field interaction (in the Heisenberg
picture) reads:

U †(A ⊗ �)U =
(

T11(A) T12(A)
T21(A) T22(A)

)
, (A.4)

where the field superoperators Tij are defined by

T11(A) = U †
11AU11 + U †

21AU21 (A.5)

T12(A) = U †
11AU12 + U †

21AU22 (A.6)

T21(A) = U †
12AU11 + U †

22AU21 (A.7)

T22(A) = U †
12AU12 + U †

22AU22. (A.8)

The generalization to N > 1 is straightforward, and from Eq. (4.3) we obtain
the following matrix elements:

〈i1 . . . iN |M (ρ0)|j1 . . . jN 〉 = tr{ρ0 Ti1j1 . . .TiN jN
(|χ〉〈χ|)}. (A.9)
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Figure A.1: Self-similar structure of the operator M (ρ0) for the preparation of
the 2-photon state |χ〉 = |2〉, starting from the vacuum ρ0 = |0〉〈0| as initial
state, choosing the optimal vacuum Rabi angle φ = 1.3, with N = 10 atoms.
All matrix elements 〈i|M (ρ0)|j〉 > 10−3 are marked by a dot. Here, the atomic
basis state |i〉 represents the state |i1 . . . i10〉 according to i =

∑
k 210−kik (binary

representation), i.e., the finest scales correspond to the last atoms.

Here, the indices ik, jk refer to the k-th atom that crosses the cavity. According
to Eq. (A.9), for each set of indices i1j1, . . . , injn, the corresponding photon field
state Ti1j1 . . . TiN jN

(|χ〉〈χ|) has to be calculated. Asymptotic completeness is
fulfilled if all those states approach a multiple of the identity operator (since only
then the trace in Eq. (A.9) is independent of ρ0). Note that T11� = T22� = �,
whereas T12� = T21� = 0. Hence, if asymptotic completeness was precisely
realized already with N atoms, then the matrix MN+1 for N + 1 atoms would

be MN+1 =
(

MN 0
0 MN

)
. In other words: the state of the first atom would

not matter at all, since the photon field would already be completely determined
by the last N atoms. In our case of the Jaynes-Cummings interaction, however,
the asymptotic completeness is never precisely realized with a finite number of
atoms (even if we restrict ourselves to a finite dimensional photon field space
by setting an appropriate trapping state). Then, the operation of T12 or T21

(onto a photon field state then not precisely a multiple of �) typically leads
to smaller matrix elements than the operation of T11 or T22. This entails a
self-similar structure of the operator M (ρ0) as depicted in Fig. A.1.

As for the calculation on a computer, the most efficient way to determine
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M (ρ0) is to use a recursive procedure, where the photon field states for N atoms
are directly calculated from the ones for N − 1 atoms, starting with the state
|χ〉〈χ| for N = 0.

In some cases, the calculation is simplified by the following property of
M (ρ0): if the target field state is a photon number state, |χ〉 = |n〉, and the initial
field state is diagonal in the photon number representation, ρ0 =

∑
m pm|m〉〈m|,

then all matrix elements 〈ψ1|M (ρ0)|ψ2〉 between two atomic energy eigenstates
|ψ1〉 and |ψ2〉 with different energy vanish identically, i.e., all eigenvectors of
M (ρ0) must have a well defined energy (or, in other units, a well defined exci-
tation number, i.e., number of atoms in the upper state). This property can be
deduced from Eq. (4.3), making use of the energy conservation, Eq. (2.6).

Nevertheless, for a large number of atoms (e.g., N ≥ 10), the calculation
and diagonalization of M (ρ0) is computationally quite expensive, due to the
high dimension of 2N × 2N . Then, it may be more efficient to use the following
iterative procedure in order to find the largest eigenvalue, especially if the initial
field state ρ0 is a pure state: starting with an arbitrary initial guess |ψ0〉 (e.g.,
the state |ψ′

0〉 from chapter 4.2), we calculate iteratively

|ψi+1〉 ∝ M (ρ0)|ψi〉 =
∑
n

pn〈χn|U †
N(|χ〉〈χ| ⊗ �)UN |χn, ψi〉, (A.10)

where
∑

n pn|χn〉〈χn| = ρ0 is a decomposition of the initial field state into
pure states. (The sign ∝ instead of = means that the state |ψi+1〉 has to be
normalized, since M (ρ0) is not unitary.) With i → ∞, the state |ψi〉 converges
to the desired eigenvector |ψ(opt)

0 〉, unless |ψ0〉 was chosen orthogonal to |ψ(opt)
0 〉.

The reason for the potentially better efficiency of the iterative procedure is that
we are dealing with vectors of dimension M ×2N , with M the cutoff dimension
of the photon field, instead of a matrix of dimension 2N × 2N . Furthermore,
the operation of UN onto a pure state is a product of single-atom operations,
see Eq. (2.4), and therefore easy to compute. If the fidelity is very close to 1,
however, those advantages of the iterative method may be compensated by the
fact that in this case the convergence can be very slow (since then also the next
largest eigenvalues are very close to 1, i.e., almost identical to the largest one).

Note that if ρ0 = |χ0〉〈χ0| is a pure state, Eq. (A.10) can be read as follows:
we take an arbitrary atomic state, calculate the atoms-field interaction, project
onto the final field state, calculate the reverse interaction and project again onto
the initial field state. According to Eq. (A.10), we thereby obtain an atomic
state which prepares the final field state with higher fidelity, unless the initial
atomic state is an eigenvector of M |χ0〉〈χ0|, when the above operation does not
change anything. The latter point can be extended to the following

Lemma (Time reversal property of M |χ0〉〈χ0|).

The spectrum of M |χ0〉〈χ0| for the preparation of the field state |χ〉, starting
from the initial state |χ0〉, is the same as the spectrum of M

|χ〉〈χ|
0 for the

preparation of |χ0〉, starting from |χ〉. The corresponding eigenvectors are
connected as follows: if |ψ0〉 is an eigenvector of M |χ0〉〈χ0| with eigenvalue
F , then the time-reversed final atomic state |ψ̃〉 = TN〈χ|UN |χ0, ψ0〉/

√
F ,

compare Eq. (4.5), is an eigenvector of M
|χ〉〈χ|
0 with the same eigenvalue.
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Proof. Since |ψ0〉 is an eigenvector of M |χ0〉〈χ0|, we may write:

〈χ0|U †
N(|χ〉〈χ| ⊗ �)UN |χ0, ψ0〉 = F |ψ0〉. (A.11)

Inserting the definition of |ψ̃〉 yields:

〈χ0|U †
NTN |χ, ψ̃〉 =

√
F |ψ0〉. (A.12)

Surely, this equation remains valid if we add the field state |χ0〉 to both sides,
and apply the operation TNUN :

TNUN(|χ0〉〈χ0| ⊗ �)U †
NTN |χ, ψ̃〉 =

√
F TNUN |χ0, ψ0〉. (A.13)

Finally, by projection onto the field state |χ〉, and taking into account the time
reversal symmetry (3.5), we obtain the operator M

|χ〉〈χ|
0 on the left-hand side,

and the state |ψ̃〉 on the right-hand side:

M
|χ〉〈χ|
0 |ψ̃〉 = F |ψ̃〉. � (A.14)

Hence, the eigenstates of M |χ0〉〈χ0| fulfill the time-reversal property in the fol-
lowing sense: the preparation of |χ〉 out of |χ0〉 by the initial atomic state |ψ0〉
yields the same fidelity as the preparation of |χ0〉 out of |χ〉 by the corresponding
time-reversed atomic final state. On the other hand, if |ψ0〉 is not an eigenstate
of M |χ0〉〈χ0|, the latter fidelity is strictly larger than the first one. An example
is the relation between the fidelity F achieved by the state |ψ′

0〉, Eq. (4.7), and
the lower bound F ′, see chapter 4.2: in general, F ≥ F ′, and the equality holds
only if |d . . .d〉 is an eigenstate of M

|χ〉〈χ|
0 (and then, also |ψ′

0〉 is an eigenstate
of M |0〉〈0|, according to the above lemma).

One photon trapping state

As discussed in chapter 2, if the vacuum Rabi angle fulfills the 1 photon trap-
ping condition, i.e., φ = kπ/

√
2, k ∈ Z, no photon number population can be

transferred from 1 to 2, or vice versa. Hence, if the field is initially, e.g., in the
vacuum state, it will always remain in the two dimensional subspace spanned
by |0〉 and |1〉. We have found (compare chapter 5.1) that - in the case of an
odd trapping state, i.e., φ = (2k +1)π/

√
2, k ∈ Z - for any final and initial field

states |χ〉 and ρ0, and any number N of atoms, the operator M (ρ0) is highly
degenerate, with only two eigenvalues, both of them 2N−1 fold degenerate.

Most probably, the degeneracy M (ρ0) can be traced back to the following
symmetry of the Jaynes-Cummings interaction U2, Eq. (2.4), with two atoms.
We have found that, in the case of an odd 1 photon trapping state, the inter-
action operator U2 is unchanged if we apply transformations A and B on the
initial and final atomic states, respectively:

B U2 A = U2. (A.15)
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Here, the atomic operators A and B are most conveniently defined in the fol-
lowing two bases:

|ψ1〉 = |uu〉, |ψ2〉 =
|ud〉 + cos(φ) |du〉√

1 + cos2(φ)
,

|ψ3〉 =
− cos(φ) |ud〉 + |du〉√

1 + cos2(φ)
, |ψ4〉 = |dd〉, (A.16)

for the initial atomic states, and

|ψ̃1〉 = |uu〉, |ψ̃2〉 =
cos(φ) |ud〉 + |du〉√

1 + cos2(φ)
,

|ψ̃3〉 =
−|ud〉 + cos(φ) |du〉√

1 + cos2(φ)
, |ψ̃4〉 = |dd〉, (A.17)

for the final states, respectively. Then, the operator A is defined by

A |ψ1〉 = |ψ1〉, A |ψ2〉 = − |ψ2〉,
A |ψ3〉 = |ψ3〉, A |ψ4〉 = − |ψ4〉, (A.18)

and likewise

B |ψ̃1〉 = |ψ̃1〉, B |ψ̃2〉 = − |ψ̃2〉,
B |ψ̃3〉 = |ψ̃3〉, B |ψ̃4〉 = − |ψ̃4〉. (A.19)

Then, Eq. (A.15) can be easily verified by an explicit calculation. Now, from
Eq. (A.15) and the definition of M (ρ0), Eq. (4.3), it follows that A commutes
with M (ρ0):

A−1M (ρ0)A = M (ρ0). (A.20)

Let us now consider the case of N atoms. We denote the operator which acts
as A on the i-th and (i + 1)-th atom, and as the identity on the other atoms,
by Ai. Then, due to the product structure of UN , Eq. (2.4), the operator
M (ρ0) commutes with all the operators Ai, i = 1, . . . , N − 1. Hence, if |ψ〉
is an eigenvector of M (ρ0) with eigenvalue F , also Ai|ψ〉 is an eigenvector of
M (ρ0) with the same eigenvalue. What remains to be shown in order to prove
that the eigenvalues of M (ρ0) are (at least) 2N−1 fold degenerate, is that the
smallest atomic subspace which is invariant under all the transformations Ai,
i = 1, . . .N − 1, is of dimension 2N−1. (We have not yet completed this part of
the proof.)
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A small combinatorial lemma

Lemma: Given N, n ∈ N, and n mutually different nonzero complex numbers
A1, A2, . . . , An, we have the following formula:∑

k1,...,kn≥0
k1+...+kn=N

n∏
i=1

(Ai)ki =
n∑

k=1

(Ak)N+n−1
n∏

i=1
i�=k

1
Ak − Ai

. (B.1)

Proof: In order to get rid of the constraint
∑

i ki = N in the sum over k1, . . .kn,
we introduce an auxiliary variable x, and using

1
N !

dN

dxN
xm|x=0 = δN ;m, (B.2)

we obtain

∑
k1,...,kn≥0

k1+...+kn=N

n∏
i=1

(Ai)ki =
1

N !
dN

dxN

∞∑
k1,...kn=0

n∏
i=1

(xAi)ki

∣∣∣∣∣∣
x=0

=
1

N !
dN

dxN

n∏
i=1

1
1 − xAi

∣∣∣∣∣
x=0

. (B.3)

In the second line, we have applied the formula for the geometric series. For
the evaluation of the N -fold derivative, we use Cauchy’s formula:

1
N !

dN

dxN

n∏
i=1

1
1 − xAi

∣∣∣∣∣
x=0

=
1

2πi

∮
γ1

dz
1

zN+1

n∏
i=1

1
1− zAi

. (B.4)

Here, γ1 is a closed contour around z = 0. Since the integrand approaches zero
faster than 1/|z| with |z| → ∞, we may add the contour γ2 to γ1 (see Fig. B.1).
Then, the area enclosed by γ2 and γ1 contains n simple poles at zk = 1/Ak,
k = 1, . . .n, and the residual theorem yields:

1
2πi

∮
γ1,γ2

dz
1

zN+1

n∏
i=1

1
1 − zAi

= −
n∑

k=1

(Ak)N+1 1
−Ak

∏
i�=k

1
1 − Ai

Ak

. (B.5)

The minus sign in front of the sum originates from the orientation of γ2. Di-
viding each factor of the product over i by Ak leads us to Eq. (B.1) �

151



152 Appendix B. A Small Combinatorial Lemma

Im z

1

γ
1

γ
2

1/A

1/Ak

1/A2

Re z

Figure B.1: Adding the contour γ2 transforms the (N + 1)-fold pole at z = 0
into n simple poles at zk = 1/Ak, k = 1, . . .n.



Appendix C

Quantum trajectories

In this appendix, we describe a numerical procedure to obtain a single realiza-
tion of the micromaser dynamics. We employ a quantum trajectory method
[100, 101, 102, 103], where not only arrival times and detection results for sub-
sequent atoms are determined by drawing random numbers, but also the cavity
damping is treated as a stochastic process. In this way, the dynamics of the
photon field can be efficiently described as a stochastic evolution of a pure field
state.

We proceed as follows:

(i) The initial state of the field, at time t0 = 0, is the vacuum |χ(0)〉 = |0〉.

(ii) Determine the arrival time t1 of the next atom by drawing a random num-
ber α ∈ [0, 1] (uniformly distributed): t1 = − ln(α)/r + t0. In the case of
incoherent pumping, the initial atomic state |ψ〉 = |u〉 (with probability
|a|2) or |ψ〉 = |d〉 (with probability 1−|a|2) is determined by an additional
random number.

(iii) Determine the state |χ(t1)〉 of the photon field, after damping of the field
during the time interval [t0, t1] (see below).

(iv) Calculate the probability of detecting the atom in the final state σz = +1
(or σy = +1, depending on the chosen measurement scheme, see chap-
ter 7.2.2), after interaction with the cavity field |χ(t1)〉, according to
Eqs. (2.2,2.3). Whether the atom is detected in σz,y = +1 or σz,y = −1
is determined by another random number.

(v) Perform the corresponding quantum mechanical state reduction, which
yields the new field state |χ(t1)′〉 after the detection.

Steps (ii)-(v) are repeated until all atoms have crossed the cavity. Note that the
chosen measurement scheme explicitly enters in the last two steps, (iv) and (v),
whereas it plays no role in the ensemble average over all quantum trajectories,
as given by the master equation (7.11).

We still have to explain the damping step (iii). To obtain a single realization
of the damping process, we use the following model for the heat bath: it consists
of an additional ‘thermal’ atomic beam, which interacts with the photon field
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in the same way as the strongly coupled atomic beam, but with very small
vacuum Rabi angle φth [97]. The atoms of this thermal beam enter the cavity
either in the upper or lower state |u〉 or |d〉, with the ratio of the corresponding
rates ru and rd given by the thermal Boltzmann factor ru/rd = nb/(nb + 1),
and are measured in either |u〉 or |d〉 after interaction with the cavity field. The
weak coupling approximation is obtained by taking the limit φth → 0. Since,
in this limit, the probability that a thermal atom emits or absorbs a photon
from the cavity vanishes like sin2(φth

√
n + 1) ∝ φ2

th, we must at the same time
increase the thermal atomic flux rth, such that rthφ

2
th remains finite. Then,

the above model yields the standard master equation (7.15) for the damped
harmonic oscillator, with the decay rate γ = rthφ

2
th/(2nb + 1).

In principle, we could simulate the weakly interacting atoms, which model
the heat bath, in the same way as the strongly coupled atoms, following the
above steps (ii), (iv), and (v). However, this would be very inefficient, since
in the weak-coupling limit (φth → 0, rth → ∞, rthφ

2
th = const.) the flux rth of

the thermal atoms becomes infinitely large. Instead, we will use a more elegant
method, where the limit φth → 0 can be performed exactly. Only one random
number is needed to determine the time of the next absorption or emission of a
thermal photon, and the photon field evolves smoothly (though non-unitarily)
during time intervals without emission or absorption [102, 128].

Suppose the field at time t0 is given by the coefficients dn(t0) (normalized,
i.e.,

∑
n |dn(t0)|2 = 1). Obviously, in the weak coupling limit φth → 0, almost

all of the thermal atoms are detected in the same state as they enter the cavity,
i.e., an absorption or emission of a thermal photon is very unlikely. According
to Eqs. (2.2,2.3), if during the time interval [t0, t] no absorption or emission
takes place, the field at time t reads:

dn(t) = dn(t0) cosNu(φth

√
n + 1) cosNd(φth

√
n), (C.1)

where Nu = γnb(t − t0)/φ2
th is the number of atoms that enter the cavity in

the upper state |u〉 during [t0, t], and likewise Nd = γ(nb + 1)(t − t0)/φ2
th the

number of atoms in |d〉.∗ The norm N (t) =
∑

n |dn(t)|2 gives the probability
that no absorption or emission takes place.

The limit φth → 0 of Eq. (C.1) is given by:

dn(t) = dn(t0) e−
γ
2
[nb(n+1)+(nb+1)n](t−t0), (C.2)

and, consequently:

N (t) =
∞∑

n=0

|dn(t0)|2 e−γ[nb(n+1)+(nb+1)n](t−t0). (C.3)

With help of Eq. (C.3), the time t∗ of the next absorption or emission of
a thermal photon is obtained by drawing a (uniformly distributed) random
number α ∈ [0, 1], and solving α = N (t∗) for t∗. If t∗ is larger than the
arrival time t1 of the next strongly coupled atom, as determined in step (ii),

∗The fluctuations of Nu,d due to the random arrival times of the atoms (Poisson distribu-
tion) can be neglected in the weak coupling limit φth → 0 (Nu,d → ∞).
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no absorption or emission takes place during step (iii), and the field state at
time t1 is given by |χ(t1)〉 =

∑
n dn(t1)|n〉/

√
N (t), according to Eqs. (C.2,C.3).

If t∗ < t1, an emission or absorption takes place during step (iii). Whether
emission or absorption is determined in the following way: the probability of
emission at time t∗ is the product of the probability that a |u〉-atom arrives
at time t∗, which is proportional to ru, and the probability that the |u〉-atom
is detected in |d〉. The probability of absorption is obtained in a similar way.
Consequently, the probability ratio of emission over absorption is:

Pem

Pabs
= lim

φth→0

ru

rd

∑
n |dn−1(t∗)|2 sin2(φth

√
n)∑

n |dn+1(t∗)|2 sin2(φth

√
n + 1)

=
∑

n |dn(t∗)|2 nb(n + 1)∑
n |dn(t∗)|2 (nb + 1)n

. (C.4)

Now, we draw another random number α ∈ [0, 1]. If α/(1− α) < Pem/Pabs, an
emission takes place, and otherwise an absorption. Finally, according to Eqs.
(2.2,2.3) with φth → 0, the new photon field at time t∗ is given by

dn
′(t∗) = −i

√
n dn−1(t∗) (emission), (C.5)

dn
′(t∗) = −i

√
n + 1 dn+1(t∗) (absorption). (C.6)

After normalization of the dn
′, the above steps are repeated: The time t∗ of

the next emission or absorption is determined via Eq. (C.3), etc., until t∗ > t1,
what completes step (iii).

The ensemble of quantum trajectories [100, 101, 102, 103] obtained in this
way depends on our specific model for the heat bath, and there exist many
other ways of ‘unraveling’ the damping master equation (e.g., choosing another
measurement scheme on the heat bath). In this sense, the physical meaning of
such trajectories is somewhat unclear. At least, however, they can be regarded
as a useful tool for an efficient simulation of a single sequence of atomic detection
events. The statistics of the latter are not affected by how we simulate single
realizations of the thermal damping process, as long as their ensemble average
is given by the same master equation.

Incoherent pumping

In the case of incoherent pumping, the above described ensemble of quantum
trajectories reduces to a jump process between neighboring photon number
states. Here, each atom enters the cavity either in the state |u〉 (with probability
|α|2) or |d〉 (with probability |β|2). Furthermore, we assume that also the final
state detection measures the atom in one of those two states (i.e., measurement
of σz). Hence, if the cavity field is in a photon number state |n〉 just before
an atom arrives, it will still have a definite photon number after detection of
the atom: obviously, the photon number is unchanged if the atom is detected
in the same state as its initial state, and otherwise it changes by +1 (initial
atomic state: |u〉, detected final state: |d〉) or −1 (initial state: |d〉, final state:
|u〉). The same holds for the damping process, too (modeled as incoherent
pumping with a weakly interacting thermal atomic beam, see above): neither
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Eq. (C.2) nor Eqs. (C.5,C.6) create any coherences between different photon
number states. Therefore (since also the initial field state |0〉 has a definite
photon number), the quantum trajectory of the photon field is described simply
by a jump process between neighboring photon number states. If the transition
probabilities from n to n + 1 or n − 1 photons are denoted by t+n and t−n ,
respectively, such a jump process leads to the following time evolution for the
occupation probability pn = 〈n|ρ|n〉 of the n-photon state:

ṗn = − (t+n + t−n ) pn + t+n−1 pn−1 + t−n+1 pn+1. (C.7)

By comparison with the master equation (7.11) (for incoherent pumping, c = 0),
we obtain:

t+n = r |a|2 sin2(φ
√

n + 1) + γ nb(n + 1), (C.8)
t−n = r |b|2 sin2(φ

√
n) + γ (nb + 1)n. (C.9)

In the bistable regime of the maser dynamics (see chapter 8), the ‘macroscopic’
transition rates between the metastable states 1 and 2 can be expressed in
terms of the above ‘microscopic’ rates, see Eqs. (8.2,8.3). In the general case
of coherent pumping, however, the quantum trajectory of the photon field is
much more complicated, and simple expressions for the transition rates do not
exist.
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Two-qubit lemmata

In this appendix we formulate and prove several Lemmata used in part III for
the proofs of the main results on the optimal Lewenstein-Sanpera decomposi-
tion, Theorems 1 and 2. Lemmata 1-5 show some more general properties of
mixed states of 2×2 systems, whereas Lemmata 5 and 6 are mainly devoted to
a technical lemma, concerning the calculation of the concurrence, Eq. (10.11).

Partial transposition

We start by examining the transformation behavior of the partial transpose of ρ
under local unitary transformations [which differs from the behavior of ρ, since
the result of partial transposition, Eq. (10.10), depends on the basis in subspace
HB .] If we change the bases of HA and HB by a local transformation U ⊗ V ,
i.e., by unitary rotations U and V in the spaces HA and HB , respectively, the
matrix ρ will be transformed according to

ρ′ = U ⊗ V ρ(U ⊗ V )† =
k∑
i

pi UρA
i U † ⊗ V ρB

i V †. (D.1)

On the other hand, the partial transposition, Eq. (10.10), gives

ρ′τB =
k∑
i

pi UρA
i U † ⊗ (V ρB

i V †)τ = U ⊗ V ∗ρτB(U ⊗ V ∗)†, (D.2)

where the star denotes the complex conjugation. From (D.2), it follows that the
spectrum of ρτB is independent of the basis in which the partial transposition
is performed.

Observe also the following form of the definition of partial transposition

〈e, f |ρ|e, f〉 = 〈e, f∗|ρτB |e, f∗〉, (D.3)

where |e, f〉 denotes the product vector |e〉 ⊗ |f〉.

Concurrence of a pure state

By a straightforward calculation, it is easy to verify that the concurrence,
Eq. (10.11), of a pure state,

|ψ〉 = a1|00〉+ a2|01〉+ a3|10〉+ a4|11〉 = [a1, a2, a3, a4]τ , (D.4)
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equals
c(ψ) = 2|a1a4 − a2a3| = |〈ψ|Σ|ψ∗〉|, (D.5)

with Σ given by Eq. (10.12). Due to the normalization condition 1 = 〈ψ|ψ〉 =
|a1|2 + |a2|2 + |a3|2 + |a4|2, we have 0 ≤ c(ψ) ≤ 1. The maximum c(ψ) = 1 is
attained for the states called maximally entangled. The degree of entanglement
(i.e., the concurrence) is invariant under local unitary transformations (i.e.,
transformations of the form U ⊗ V ).

By local transformation, a pure state can be brought to its Schmidt form
|ψ〉 = λ1|e1〉 ⊗ |f1〉 + λ2|e2〉 ⊗ |f2〉, where {|e1〉, |e2〉} and {|f1〉, |f2〉} are ap-
propriately chosen orthonormal bases in HA and HB. In these bases thus
ψ = [λ1, 0, 0, λ2]τ , and it is easy to show that the most general form of a
maximally entangled state in the original bases reads

|ψ〉 = a1|00〉+a2|01〉∓(a∗2|10〉−a∗1|11〉) =


a1

a2

∓a∗2
±a∗1

 , |a1|2+|a2|2 =
1
2
. (D.6)

Lemma 1.
Let ρs be a two qubit density matrix.
If rank(ρτB

s ) ≤ 2, then rank(ρs) = rank(ρτB
s ).

Proof: Since every two-dimensional subspace contains a product vector [122],
also the kernel of ρτB

s must do so, i.e. ρτB
s |e, f〉 = 0. It follows that ρs|e, f∗〉 = 0.

Indeed, from (D.3) we have 〈e, f∗|ρ|e, f∗〉 = 〈e, f |ρτB|e, f〉 = 0, and since ρs as
a density matrix is positive definite, ρ|e, f∗〉 = 0. By local unitary transforma-
tions in both subspaces we can choose |e, f∗〉 = |0, 0〉 = |e, f〉. The equations
ρ|0, 0〉 = 0 and ρτB |0, 0〉 = 0, together with hermiticity of both matrices, leave
only six nonvanishing elements in each of them, and by inspection one checks
that their characteristic polynomials (hence also the spectra) are identical.

Lemma 2.
For an arbitrary |φ〉, the matrix |φ〉〈φ|τB has eigenvalues

− c

2
,

c

2
,

1 −
√

1 − c2

2
,

1 +
√

1− c2

2
, (D.7)

where c = c(φ) is the concurrence of |φ〉, Eq. (D.5). If c > 0, the eigenvector
belonging to the negative eigenvalue is maximally entangled.

Proof: The first part of the Lemma is proven by an explicit calculation. In
order to prove the second statement, let L = U ⊗ V be a local transformation,
and |φ′〉 = L|φ〉. Then, according to Eq. (D.2),

|φ′〉〈φ′|τB = L′ |φ〉〈φ|τB L′†, (D.8)

where L′ = U ⊗ V ∗. Observe that L′ is a local transformation, hence it does
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not influence the concurrence of vectors. Now,

|φ〉〈φ|τB|ψ〉 = − c(φ)
2

|ψ〉 ⇔ |φ′〉〈φ′|τB |ψ′〉 = − c(φ)
2

|ψ′〉, (D.9)

where |ψ′〉 = L′|ψ〉. Let us now choose L such that it brings |φ〉 to its Schmidt
basis:

|φ′〉 = L|φ〉 =


λ1

0
0
λ2

 . (D.10)

It is now straightforward to show that |ψ′〉 in (D.10) has the form

|ψ′〉 =
1√
2

eiδ


0
1
−1
0

 , (D.11)

hence |ψ′〉 is maximally entangled and the same is true about |ψ〉, which is
obtained from |ψ′〉 by a local transformation L′.

(Similar versions of Lemma 1 and Lemma 2 can also be found in [129].)

Lemma 3.
If |ψ〉 is maximally entangled, then

|ψ〉〈ψ|τB =
1
2
� − |ψ̃〉〈ψ̃|, (D.12)

where � is the 4×4 identity operator, and |ψ̃〉 is the eigenvector of |ψ〉〈ψ|τB

with the negative eigenvalue, i.e.,

|ψ〉〈ψ|τB|ψ̃〉 = − 1
2
|ψ̃〉. (D.13)

According to Lemma 2, |ψ̃〉 is maximally entangled.

Proof: Since |ψ〉〈ψ|τB is Hermitian, it has, in addition to |ψ4〉 := |ψ̃〉, three
other orthogonal eigenvectors |ψi〉, i = 1, 2, 3, fulfilling, according to Lemma 2

|ψ〉〈ψ|τB|ψi〉 =
1
2
|ψi〉, i = 1, 2, 3. (D.14)

Using (D.14) and (D.13), together with the orthonormality of the eigenvectors,
〈ψi|ψj〉 = δij , i = 1, 2, 3, 4, one sees that the actions of both sides of (D.12)
give the same results on the complete orthonormal set |ψi〉, i = 1, 2, 3, 4, which
establishes (D.12) as a matrix equation.
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Lemma 4.
For arbitrary |φ〉,

max
m.e.

|〈φ|ψ〉|2 =
1
2

+
1
2

c(φ), (D.15)

where the maximum is taken over all maximally entangled |ψ〉. The maxi-
mum is attained only if |ψ〉 and |φ〉 have a common Schmidt basis.

Proof: By a local unitary transformation (which does not change neither
|〈φ|ψ〉|2 nor the entanglements of |φ〉 and |ψ〉), we can bring |φ〉 to its Schmidt
basis:

|φ〉 =


λ1

0
0
λ2

 , λi ≥ 0, λ2
1 + λ2

2 = 1. (D.16)

Using the general form (D.6) of a maximally entangled state, we conclude that,
in the new basis,

|〈φ|ψ〉|2 = |a1λ1 ± a1λ2|2 (D.17)
≤ |a1|2 (λ1 + λ2)

2 = |a1|2 (1 + 2λ1λ2) = |a1|2[1 + c(φ)],

and the maximum is attained only if |a1|2 is maximal, i.e., |a1|2 = 1/2 and
a2 = 0, which completes the proof.

Lemma 5.
Let |φ〉 be an entangled state, and |ψ〉 the eigenvector of |φ〉〈φ|τB with the
negative eigenvalue, i.e.,

|φ〉〈φ|τB |ψ〉 = − c(φ)
2

|ψ〉. (D.18)

Then, |φ〉 and |ψ̃〉 have a common Schmidt basis, where |ψ̃〉 is the eigen-
vector of |ψ〉〈ψ|τB with the negative eigenvalue, i.e.

|ψ〉〈ψ|τB|ψ̃〉 = − 1
2
|ψ̃〉. (D.19)

Proof: From (D.18), we have

−c(φ)
2

= 〈ψ| |φ〉〈φ|τB |ψ〉 = Tr (|φ〉〈φ|τB |ψ〉〈ψ|) (D.20)

= Tr (|φ〉〈φ| |ψ〉〈ψ|τB) = 〈φ| |ψ〉〈ψ|τB |φ〉. (D.21)

From Lemma 2, we know that |ψ〉 is maximally entangled. Thus, according to
Lemma 3, in the last term we can substitute |ψ〉〈ψ|τB by 1

2� − |ψ̃〉〈ψ̃|, conse-
quently:

〈φ|ψ̃〉〈ψ̃|φ〉 =
1
2

+
c(φ)
2

. (D.22)
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Hence, due to Lemma 4, |φ〉 and the maximally entangled |ψ̃〉 have a common
Schmidt basis.

Lemma 6.
If ρ is an entangled state, i.e., its concurrence c(ρ) is positive, then c2(ρ)/4
equals the smallest eigenvalue of Y = Σ (ρτB)∗ Σ ρτB.

Proof: If d2
1/4, . . . , d2

4/4 are the eigenvalues of Y = Σ (ρτB)∗ Σ ρτB , and
c2
1 ≥ . . . ≥ c2

4 the (real and positive, see [117]) eigenvalues of X = Σ ρ∗ Σ ρ,
see Eq. (10.12), the following relation holds:

d2
1 = (c1 + c2 + c3 − c4)2, (D.23)

d2
2 = (c1 + c2 − c3 + c4)2, (D.24)

d2
3 = (c1 − c2 + c3 + c4)2, (D.25)

d2
4 = (−c1 + c2 + c3 + c4)2. (D.26)

Indeed, invoking the anticommutation relations for Pauli matrices, we check
that, for an arbitrary local transformation L = U ⊗ V , U, V ∈ SU(2),

L∗ = Σ L Σ. (D.27)

We can thus use local transformations to bring ρ in X = Σ ρ∗ Σ ρ and
Y = Σ (ρτB)∗ Σ ρτB to a relatively simple form. An arbitrary hermitian ρ can
be decomposed as

ρ =
1
4
� +

∑
k

(
a′kσk ⊗ �2 + b′k�2 ⊗ σk

)
+

∑
nm

Cnmσm ⊗ σn, (D.28)

with real a′k, b′k, and Cmn. By local transformations, we can bring the 3 × 3
matrix C to diagonal form with non-negative diagonal elements µ1, µ2, and µ3

[130, 131]. The desired transformation changes a′k and b′k to some other real ak

and bk, hence finally

ρ =
�

4
+


a3 + b3 + µ3 b1 − ib2 a1 − ia2 µ1 − µ2

b1 + ib2 a3 − b3 − µ3 µ1 + µ2 a1 − ia2

a1 + ia2 µ1 + µ2 −a3 + b3 − µ3 b1 − ib2

µ1 − µ2 a1 + ia2 b1 + ib2 −a3 − b3 + µ3

 .

(D.29)
Somewhat tedious, but straightforward calculations show that

TrY = TrX (D.30)
TrY 2 = TrX2 − δ2 (D.31)
TrY 3 = TrX3 − δ3 (D.32)
TrY 4 = TrX4 − δ4 (D.33)

where

δ2 = 6d +
3
2

TrX2 − 3
4

(TrX)2, (D.34)
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δ3 =
5
4

δ2 TrX, (D.35)

δ4 =
7
12

δ2

(
2TrX2 + (TrX)2 − δ2

)
, (D.36)

d2 = detX. (D.37)

On the other hand, as (this time rather short) calculations show, the same
relations hold for two diagonal matrices

X ′ = diag(c2
1, c

2
2, c

2
3, c

2
4), Y ′ = diag(d2

1, d
2
2, d

2
3, d

2
4)/4, (D.38)

where

d2
1 = (c1 + c2 + c3 − c4)2, (D.39)

d2
2 = (c1 + c2 − c3 + c4)2, (D.40)

d2
3 = (c1 − c2 + c3 + c4)2, (D.41)

d2
4 = (−c1 + c2 + c3 + c4)2, (D.42)

if we choose d = +(detX)1/2, or

d2
1 = (−c1 + c2 + c3 − c4)2, (D.43)

d2
2 = (−c1 + c2 − c3 + c4)2, (D.44)

d2
3 = (−c1 − c2 + c3 + c4)2, (D.45)

d2
4 = (c1 + c2 + c3 + c4)2, (D.46)

if d = −(detX)1/2. Since there is a one-to-one correspondence between the set
of eigenvalues of a n-dimensional matrix and the traces of its first n powers, the
relation between the eigenvalues c2

i of X and the eigenvalues d2
i /4 of Y must

be given by (D.39-D.42) or (D.43-D.46). The second case, d < 0, is excluded,
due to the positivity of ρ. Indeed, one checks that:

d =
1
6

δ2 − 1
4

TrX2 +
1
8

(TrX)2 = det(ρ) ≥ 0. (D.47)

The first equality in (D.47) follows from (D.34), whereas the second is estab-
lished by an explicit calculation, using (D.29) and the definition of X in terms
of ρ.

Thus, the eigenvalues d2
1, . . . , d

2
4, Eqs. (D.39-D.42), of 4Y are real and posi-

tive, and the smallest eigenvalue d2
4 equals c(ρ)2, see Eq. (10.11).

Lemma 7.
If rank(ρ) ≥ 3, where ρ is an entangled state, the smallest eigenvalue of
Y = Σ (ρτB)∗ Σ ρτB is non-degenerate. If |φ4〉 denotes the corresponding
eigenvector, and |φi〉, i = 1, 2, 3, the other three eigenvectors, the following
holds:

〈φ4|ρτB |φ4〉 = −1
2

c(ρ) c(φ4), (D.48)

〈φi|ρτB |φi〉 ≥ 0, i = 1, 2, 3. (D.49)
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Proof: Let d2
1/4 ≥ . . . ≥ d2

4/4 denote the (real and positive, see Lemma 6)
eigenvalues of Y , and c2

1 ≥ . . . ≥ c2
4 the eigenvalues of X = Σρ∗Σρ. According

to Lemma 6, the relation between di and ci is given by Eqs. (D.39-D.42), in par-
ticular d4 = c(ρ). From c(ρ) > 0 and the definition of concurrence, Eq. (10.11),
it follows that c1 > c2. Now, if rank(ρ) ≥ 3, it is easy to show that c2 > 0 [since
rank(Σ) = 4 and therefore rank(X) ≥ 2], and then Eqs. (D.41,D.42) imply
d4 < d3. Hence, d2

4/4 is a non-degenerate eigenvalue.
By splitting the eigenvalue equation Y |φi〉 = 1

4d2
i |φi〉 (with real di) into its

real and imaginary part, one can derive that |φi〉 fulfills

Σ ρτB |φi〉 =
1
2

eiχi di |φ∗
i 〉, (D.50)

where eiχi is a phase factor. Using Σ2 = 1, Eq. (D.5), and the hermiticity of
ρτB , we conclude that

〈φi|ρτB |φi〉 = ± 1
2
dic(φi). (D.51)

In order to complete the proof of Lemma 7, it remains to be shown that the sign
on the right hand side must be negative for i = 4 and non-negative for i = 1, 2, 3.
Due to continuity, it is sufficient to consider the case rank(ρ) = 4. Then,
|φi〉 cannot be a product vector [since inserting |φi〉 = |e, f〉 into Eq. (D.51)
would imply 〈e, f∗|ρ|e, f∗〉 = 0, compare Eq. (D.3)], i.e., the right hand side of
Eq. (D.51) cannot be zero. [di > 0 follows from d4 = c(ρ) > 0.] Now, if ρ is
infinitesimally close to an entangled pure state, ρ → |ψ〉〈ψ|, it is easy to check
that, indeed, Eq. (D.51) is valid with the minus sign for i = 4, and the plus sign
for i = 1, 2, 3. (For |ψ〉 = [λ1, 0, 0, λ2]τ , one finds that |φ1,2〉 = [λ2, 0, 0,±λ1]τ ,
|φ3〉 = [0, 1, 1, 0]τ/

√
2, and |φ4〉 = [0, 1,−1, 0]τ/

√
2.) Next, we consider the

one-parameter family ρ(λ′) = µ′|ψ〉〈ψ|+ λ′ρs, with µ′ = 1 − λ′ and λ′ ∈ [0, λ],
where ρs is the BSA of ρ = ρ(λ). Since ρτB

s is positive, 〈χ|ρτB |χ〉 < 0 implies
〈χ|ρ(λ′)τB |χ〉 < 0, hence c(ρ(λ′)) > 0 for all λ′ ∈ [0, λ]. Finally, continuity
implies that the sign of the right hand side of Eq. (D.51) does not change when
increasing λ′ from 0 to λ.
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[32] B. Kümmerer and H. Maassen, A Scattering Theory for Markov Chains,
Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3, 161 (2000).

[33] D. Janzig, F. Armknecht, R. Zeier, and T. Beth, Quantum Control without
Access to the Controlling Interaction, Phys. Rev. A 65, 022104 (2002).

[34] O. Benson, G. Raithel, and H. Walther, Quantum Jumps of the Micro-
maser Field: Dynamic Behavior Close to Phase Transition Points, Phys.
Rev. Lett. 72, 3506 (1994).

[35] N. Bohr, On the Constitution of Atoms and Molecules, Philosophical Mag-
azine 26, 1 (1913).

[36] R. Benzi, A. Sutera, and A. Vulpiani, The Mechanism of Stochastic Res-
onance, J. Phys. A 14, L453 (1981).

[37] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic Res-
onance, Rev. Mod. Phys. 70, 223 (1998).

[38] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A Theory of Stochastic
Resonance in Climatic Change, SIAM J. Appl. Math. 43, 565 (1983).

[39] J.-P. Eckmann and L. Thomas, Remarks on Stochastic Resonance, J.
Phys. A 15, L261 (1982).

[40] S. Fauve and F. Heslot, Stochastic Resonance in a Bistable System, Phys.
Lett. A 97, 5 (1983).

[41] G. Vemuri and R. Roy, Stochastic Resonance in a Bistable Ring Laser,
Phys. Rev. A 39, 4668 (1988).

[42] B. McNamara and K. Wiesenfeld, Theory of Stochastic Resonance, Phys.
Rev. A 39, 4854 (1989).

[43] L. Gammaitoni, F. Marchesoni, M. Martinelli, L. Pardi, and S. San-
tucci, Stochastic Resonance in Bistable Systems, Phys. Rev. Lett. 62,
349 (1989).

[44] R. Fox and Y. Lu, Analytic and Numerical Study of Stochastic Resonance,
Phys Rev. E 48, 3390 (1993).

[45] R. N. Mantegna and B. Spagnolo, Stochastic Resonance in a Tunnel
Diode, Phys. Rev. E 49, R1792 (1993).



168 Bibliography

[46] J. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, Noise Enhancement
of Information Transfer in Crayfish Mechanoreceptors by Stochastic Res-
onance, Nature 365, 337 (1993).

[47] R. Bartussek and P. Hänggi, Stochastic Resonance in Optical Bistable
Systems, Phys. Rev. E 49, 3930 (1994).

[48] K. Wiesenfeld and F. Moss, Stochastic Resonance and the Benefits of
Noise: From Ice Ages to Crayfish and SQUIDs, Nature 373, 33 (1995).

[49] A. Bulsara and L. Gammaitoni, Tuning in to Noise, Physics Today 49,
39 (March 1996).

[50] P. Jung and K. Wiesenfeld, Too Quiet to Hear a Whisper, Nature 385,
291 (1997).
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[90] K. Życzkowski and H.-J. Sommers, Induced Measures in the Space of
Mixed Quantum States, J. Phys. A 34, 7111 (2001).

[91] C. Sackett, D. Kielpinski, B. King, C. Langer, V. Meyer, C. Myatt, M.
Rowe, Q. Turchette, W. Itano, D. Wineland, and I. Monroe, Experimental
Entanglement of Four Particles, Nature 404, 256 (2000).

[92] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. Rai-
mond, and S. Haroche, Step-by-Step Engineered Multiparticle Entangle-
ment, Science 288, 2024 (2000).

[93] M. Weidinger, B. Varcoe, R. Heerlein, and H. Walther, Trapping States
in the Micromaser, Phys. Rev. Lett. 82, 3795 (1999).

[94] H.-J. Briegel and B.-G. Englert, Quantum Optical Master Equations: The
Use of Damping Bases, Phys. Rev. A 47, 3311 (1993).

[95] H.-J. Briegel, B.-G. Englert, N. Sterpi, and H. Walther, One-Atom Maser:
Statistics of Detector Clicks, Phys. Rev. A 49, 2962 (1994).



Bibliography 171

[96] G. Raithel, C. Wagner, H. Walther, L. Narducci, and M. Scully, in Cav-
ity Quantum Electrodynamics, edited by P. Berman (Academic Press,
Boston, 1994).

[97] B.-G. Englert, Elements of Micromaser Physics, quant-ph/0203052
(1994).

[98] J. Krause, M. O. Scully, and H. Walther, Quantum Theory of the Mi-
cromaser: Symmetry Breaking via Off-Diagonal Atomic Injection, Phys.
Rev. A 34, 2032 (1986).

[99] T. Wellens, Stochastische Resonanz im Mikromaser, diploma thesis (LMU
Munich, 1998).

[100] P. Meystre and E. Wright, Measurement-Induced Dynamics of a Micro-
maser, Phys. Rev. A 37, 2524 (1988).

[101] J. Dalibard, Y. Castin, and K. Mølmer, Wave-Function Approach to Dis-
sipative Dynamics in Quantum Optics, Phys. Rev. Lett. 68, 580 (1992).

[102] R. Dum, P. Zoller, and H. Ritsch, Monte-Carlo Simulation of the Atomic
Master Equation for Spontaneous Emission, Phys. Rev. A 46, 4382
(1992).

[103] H. Carmichael, An Open Systems Approach to Quantum Optics (Springer,
Berlin, 1993).

[104] C. Wagner, R. Brecha, A. Schenzle, and H. Walther, Phase Diffusion,
Entangled States, and Quantum Measurements in the Micromaser, Phys.
Rev. A 47, 5068 (1993).

[105] B.-G. Englert, T. Gantsog, A. Schenzle, C. Wagner, and H. Walther,
One-Atom Maser: Phase-Sensitive Measurements, Phys. Rev. A 53, 4386
(1996).

[106] C. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer Verlag,
Berlin, 1983).

[107] J. P. Paz, S. Habib, and W. H. Zurek, Reduction of the Wave Packet:
Preferred Observable and Decoherence Time Scale, Phys. Rev. D 47, 488
(1993).

[108] A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and W. Zw-
erger, Dynamics of the Dissipative Two-State System, Rev. Mod. Phys.
59, 1 (1987).

[109] P. Jung and P. Talkner, Suppression of Higher Harmonics at Noise-
Induced Resonances, Phys. Rev. E 51, 2640 (1995).

[110] M. Grifoni and P. Hänggi, Driven Quantum Tunneling, Phys. Rep. 304,
229 (1997).



172 Bibliography

[111] C. H. Bennet, D. P. DiVincenzo, J. Smolin, and W. K. Wootters, Mixed-
State Entanglement and Quantum Error Correction, Phys. Rev. A 54,
3824 (1996).

[112] V. Vedral and M. B. Plenio, Entanglement Measures and Purification
Procedures, Phys. Rev. A 57, 1619 (1998).

[113] P. Hayden, M. Horodecki, and B. Terhal, The Asymptotic Entanglement
Cost of Preparing a Quantum State, J. Phys. A 34, 6891 (2001).

[114] R. Werner, Quantum States with Einstein-Podolsky-Rosen Correlations
Admitting a Hidden-Variable Model, Phys. Rev. A 40, 4277 (1989).

[115] A. Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett.
77, 1413 (1996).

[116] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of Mixed
States: Necessary and Sufficient Conditions, Phys. Lett. A 223, 1 (1996).

[117] W. Wootters, Entanglement of Formation of an Arbitrary State of Two
Qubits, Phys. Rev. Lett. 80, 2245 (2998).

[118] G. Vidal and R. Werner, A Computable Measure of Entanglement, Phys.
Rev. A 65, 032314 (2002).

[119] J. Eisert and M. Plenio, A Comparison of Entanglement Measures, J.
Mod. Opt. 46, 145 (1999).

[120] F. Verstraete, K. Audenaert, J. Dehaene, and B. de Moor, A Comparison
of the Entanglement Measures Negativity and Concurrence, J. Phys. A
34, 10327 (2001).

[121] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-State Entanglement
and Distillation: Is There a ‘Bound’ Entanglement in Nature?, Phys. Rev.
Lett. 80, 5239 (1998).

[122] M. Lewenstein, , and A. Sanpera, Separability and Entanglement of Com-
posite Quantum Systems, Phys. Rev. Lett. 80, 2261 (1998).

[123] B.-G. Englert and N. Metwally, Separability of Entangled Q-bit Pairs, J.
Mod. Opt. 47, 2221 (2000).

[124] S. Karnas and M. Lewenstein, Separable Approximations of Density Ma-
trices of Composite Quantum Systems, J. Phys. A 34, 6919 (2001).

[125] B.-G. Englert and N. Metwally, Remarks on 2-Q-Bit States, Appl. Phys.
B - Lasers O 72, 35 (2001).

[126] S. Hill and W. Wootters, Entanglement of a Pair of Quantum Bits, Phys.
Rev. Lett. 78, 5022 (1997).



Bibliography 173

[127] T. Wellens, A. Buchleitner, B. Kümmerer, and H. Maassen, Quantum
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