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A. INRODUCTION 

 

1. General characteristics of Yersinia species 

The genus Yersinia is composed of Gram-negative coccobacilli belonging to the family of 

Enterobacteriaceae. Members of the Yersinia genus are facultative non-sporulating anaerobes 

with optimal growth at 27-30 °C. According to biochemical and metabolic characteristics, DNA-

DNA hybridization, and 16S rRNA sequencing results, the genus Yersinia comprises 11 different 

species. The G+C content of the DNA of the genus is 46 to 50 mol% (Bercovier and Mollaret, 

1984). DNA hybridization studies revealed more than 90% intra- and interspecies relatedness 

between Y. pestis and Y. pseudotuberculosis and 20 to 55% between Y. pseudotuberculosis and the 

other Yersinia species (Perry and Fetherston, 1997). It was found that the 16S rDNA sequence of 

Y. pseudotuberculosis is identical to that of Y. pestis (Trebesius et al., 1998). 

Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica are pathogens for humans and other 

mammals, birds. Y. ruckeri is known as a fish pathogen (Bottone, 1997). Y. pestis, the bacterial 

agent of bubonic plague, has been responsible for devastating epidemics throughout human 

history. This pathogen persists among certain wild rodent populations in many parts of the world 

(except Australia) and is transmitted by the bite of infected fleas. The blockage of the 

proventriculae of fleas by Y. pestis forces infected fleas to bite and subsequently regurgitate the 

infected blood meal into the bite site of a new host. The subsequent bacteremia in rodents 

completes the rodent-flea-rodent cycle which is essential for Y. pestis spread. The ecology, 

pathogenicity, and host range of Y. pseudotuberculosis and Y. enterocolitica differ fundamentally 

from those of Y. pestis. Both species are transmitted perorally by contaminated food or drinking 

water and subsequently invade Peyer's patches of the small bowel and multiply extracellularly. In 

the murine infection model bacteria disseminate to mesenteric lymph nodes and occasionally via 

the bloodstream to the spleen, liver, and lungs, causing septicemic plague-like infections. 

Normally, infections with Y. enterocolitica or Y. pseudotuberculosis (yersiniosis) are self-limiting 

and benign. Y. pseudotuberculosis is widely distributed in nature in aquatic and animal reservoirs 

(rodents, cattle, swine, deer, and birds). Although the three pathogenic Yersinia species differ 

greatly in their lifestyle, they have evolved common strategies of pathogenesis, e.g., tropism for 

lymphatic tissue and extracellular multiplication. Yersiniae carry multiple sets of diverse 

pathogenicity- and transmission-related genes localized on the chromosome and on plasmids 

(Finlay and Falkow, 1997; Hinnebusch, 1997). There are several genes for cell adhesion (inv, ail, 
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myfA, psa, and yadA), invasion (invA), evasion of the host immune response (virulence plasmid 

pYV, shared by all three Yersinia species), and plague pathogenesis and transmission (hms, pla, 

ymt, and caf).  

The high-pathogenicity group of Yersinia species, which are highly pathogenic for mice 

carries genes for the biosynthesis and uptake of the ferric iron-chelating substance (siderophore) 

yersiniabactin, located on a specific genomic element, so called “High Pathogenicity Island” 

(HPI) (Rakin et al., 1999b).  

 

2. The concept of “Pathogenicity Island” (PAI) 

The concept of PAI was founded in the late 1980s by Jörg Hacker and colleagues in Werner 

Goebel’s group at the University of Würzburg, Germany, who were investigating the genetic basis 

of virulence of uropathogenic (UPEC) E. coli strains 536 and J96 (Hacker et al., 1990; Knapp et 

al., 1986). The group observed a genetic linkage of determinants encoding P fimbriae, P-related 

fimbriae, and hemolysins in these strains and could also detect a codeletion of these linked genes 

(Hacker et al., 1990).  

PAIs could be characterized by the following features: 

- Their G+C content usually differs from that of the bacterial core chromosome and PAIs-

sequences also show a different codon usage. It is considered that the horizontally acquired PAI 

still has the base composition of the donor species (Dobrindt et al., 2004). 

- PAI carry one or more virulence genes; genomic elements with characteristics similar to PAI but 

lacking virulence genes are referred to as genomic islands. Accordingly to their function they can 

be denoted e.g. fitness islands, or metabolic islands. 

- PAIs are present mostly in the genomes of pathogenic bacteria but absent from the genomes of a 

non-pathogenic representative of the same species or a closely related species. Nevertheless, HPI 

could be detected in some facultative-pathogenic E. coli strains (Karch et al., 1999; Schubert et 

al., 2000). 

- PAIs occupy relatively large genomic regions. The majority of PAI are in the range of 10 to 200 

kb. 

- PAIs are frequently located adjacent to tRNA genes. The frequent insertion at tRNA loci may be 

explained by the observation that genes encoding tRNAs are highly conserved between various 

bacterial species. tRNA genes may represent specific anchor points for the integration of foreign 

DNA (Williams, 2002). 
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- PAIs are often flanked by direct repeats (DR). DR are defined as DNA sequences of 16 to 20 bp 

(up to 130 bp) with a perfect or nearly perfect sequence repetition. DR act as recognition 

sequences for enzymes involved in excision of mobile genetic elements, thus contributing to the 

instability of a PAI flanked by DR. PAI often carry cryptic or even functional mobility genes such 

as integrases or transposases. Integrases, which may have been derived from lysogenic 

bacteriophages, mediate the integration of the phage genome into the genome of the host bacteria, 

as well as the excision needed to enter a lytic cycle. Such genes are still functional in certain PAIs, 

and the encoded proteins can mediate the excision of the PAI and its loss. Other PAIs contain 

genes that are similar to integrase and resolvase genes of transposons. PAI can also represent 

integrated plasmids, conjugative transposons, bacteriophages or parts of these elements (Hacker et 

al., 1997). 

- PAIs often are unstable and delete with distinct frequencies. Virulence functions encoded by 

certain PAIs are lost with a frequency that is higher than the normal rate of mutation. Several 

characteristic elements, such as integrases, transposases, and IS elements, have been identified that 

contribute to mobilization and as well as to PAIs instability. 

- PAIs often represent mosaic-like structures rather than homogeneous segments of horizontally 

acquired DNA. Some PAIs represent an insertion of a single genetic element. Others show a more 

complex structure, since elements of different origin are present. During evolution, several genetic 

elements have been acquired independently at different time points and from different hosts. 

However, these DNA acquisitions integrated at the same position into the chromosome of the 

recipient bacterial cell. This will result in the accumulation of horizontally acquired elements at a 

certain location of the chromosome, and the same target structures (e.g. tRNA genes).  

 

3. PAIs, as a particular case of “Genomic Islands” (GEIs) 

Although the concept of PAIs was first established in pathogenic bacteria, the comparison of 

DNA sequences from different microorganisms, including the increasing number of complete 

bacterial genome sequences, has revealed that regions with features that are characteristic of PAIs 

can also be found in many non-pathogenic bacteria. Owing to the occurrence of PAIs in 

phylogenetically unrelated organisms and the different functions that they encode depending on 

the ecological context, it has become clear that these genetic structures are of more general 

relevance than was initially anticipated. Therefore, the designation “pathogenicity islands” has 

been extended to “genomic islands” (GEIs), which can encode a wide range of functions. 
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Depending on the functions they encode and the advantages they confer relative to the specific 

lifestyle of a bacterium, GEIs can be called pathogenicity, symbiosis, fitness, metabolic or 

resistance islands (Hacker and Carniel, 2001; Hentschel and Hacker, 2001). Furthermore, the 

presence of identical genes in pathogenic and non-pathogenic variants of one species — for 

example, in extraintestinal pathogenic and commensal E. coli — implies that some of these 

encoded functions contribute to general adaptability, fitness and competitiveness, rather than to 

particular virulence traits (Dobrindt et al., 2003). 

 

4. Evolution of genomic islands 

According to modern evolutional theory, increased fitness results from progressive 

evolution. Bacterial fitness can be characterized as deriving from properties that enhance the 

survival and transmission of an organism in a specific niche (Preston et al., 1998). Therefore, 

main evolutionary advantage of GEIs is that large numbers of genes (entire operons that confer 

new traits) can be horizontally transferred into the genome of the recipient, resulting in marked 

phenotypical changes of the recipient. GEIs might provide a selective advantage under specific 

growth conditions as they can enhance adaptability and competitiveness within a niche. The 

biggest evolutionary advantage of GEIs is probably the maintenance of genetic flexibility and the 

ability of GEIs to transfer large numbers of genes, which allows for more successful adaptation 

and increased fitness in a specific ecological niche. 

The acquisition of foreign genetic elements is frequently counterbalanced by the loss of 

native genes. In some cases, this loss of function could be a selective advantage, for example, the 

complete genome sequences of obligate intracellular pathogens or symbionts show genome 

reduction (Moran, 2002). This emphasizes the similar mechanisms of genome optimization by 

gene loss and horizontal gene transfer in pathogens and symbionts, and highlights the fact that the 

optimization of ‘en bloc’ gene acquisition and gene loss shapes the architecture of the bacterial 

genome.  

Little is known about the origin of GEIs, but it has been speculated that they might have 

been derived from integrating plasmids or phages that have lost the genes that are required for 

replication and self-transfer in exchange for a more stable association and inheritance with the 

host chromosome. Some GEIs exhibit features of integrative and conjugative elements (ICEs). 

These elements include conjugative transposons, integrative plasmids and other elements that are 

excised to form a circular molecule, which is then transferred by conjugation and integrated into 
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the host genome by site-specific recombination. GEIs might evolve from mobile genetic elements, 

such as bacteriophages or plasmids that can be transferred even between unrelated 

microorganisms (Burrus et al., 2002). Following acquisition by horizontal gene transfer, 

chromosomal integration by site-specific recombination and positive selection, a mobile genetic 

element might develop into a GEI due to genetic rearrangements, or gene loss or acquisition. The 

inactivation or deletion of origins of plasmid replication, or genes that are involved in the 

mobilization and transfer of plasmids or bacteriophages leads to immobilization of GEIs. 

However, the presence of a functional integrase gene seems to be a typical characteristic of many 

islands, thereby allowing insertion and excision of this type of element (Schmidt and Hensel, 

2004). 

GEIs might evolve further by consecutive recombination events that result in gains or losses 

of genetic information. In this way, features of mobile genetic elements could also be regained, 

resulting in chromosomal excision of the island and enabling its transfer to another recipient. 

There is an increasing number of examples of genetic determinants from non-pathogenic and 

environmental bacteria that can be located on extrachromosomal replicons (plasmids or phages) or 

in the chromosome as part of GEIs. The presence of these determinants in such elements in 

closely related microorganisms reflects their mobility. This shows that extrachromosomal 

replicons are frequently able to integrate into and excise from chromosomes, thereby supporting 

the hypothesis of GEI evolution from mobile genetic elements that are able to integrate into 

chromosomes.  

The self-transmissible megaplasmid pHG1 of Ralstonia eutropha H16 consists of clusters of 

functionally related genes that are flanked by complete or partial mobile genetic elements. These 

clusters contain genes that are required for lithoautotrophy, denitrification, mineralization of 

aromatic compounds and iron uptake, as well as for type IVand RP4-like sex pili. The large 

number of pHG1 genes that encode transposases and integrases/recombinases indicates the high 

recombinational activity of this plasmid, which is likely to have resulted in the accumulation of 

diverse traits, thereby broadening the metabolic capacity of the recipient (Schwartz et al., 2003). 

The structure of pHG1 shows that the genetic information coding for several different traits, which 

might also be chromosomally encoded in other organisms, has been ‘collected’ and that different 

mobile and accessory genetic elements have been involved in the evolution of this megaplasmid. 

Insertion of this plasmid into a chromosome could easily lead to the evolution of a GEI. Site-

specific recombination with a chromosomal tRNA gene is not only a typical feature of GEIs, but 
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also of many lysogenic bacteriophages and has been described for a large conjugative resistance 

plasmid of Haemophilus influenzae (Dimopoulou et al., 1997).  

The presence of conjugative plasmids in several thermophilic archaea and their ability to 

insert into the host genome using a plasmid-encoded integrase has been described (Stedman et al., 

2000). A similar plasmid has been inserted into the genome of the thermoacidophilic crenarchaeon 

Sulfolobus tokodaii strain 7, which has subsequently been assimilated by rearrangements and gene 

duplication so that the structural features of the ancestral plasmid have been lost (Kawarabayasi et 

al., 2001). This shows that a mobile genetic element can become part of the chromosome and can 

develop into a GEI by consecutive genetic rearrangements, gene duplication and insertion of 

genes. If DNA regions, such as integrases or repeat structures that are required for mobility of the 

element are deleted or destroyed, the mobile element becomes stably inserted into the 

chromosome. The increasing use of various comparative genomic approaches and genome 

sequence data provides evidence that these types of mechanisms contribute to general genetic 

flexibility in bacterial pathogens, symbionts (Dobrindt et al., 2002; Ochman and Moran, 2001) 

and environmental microorganisms. 

 

5. GEIs strategies for lateral transfer 

Horizontal gene transfer, the intraspecies and interspecies exchange of genetic information, 

plays an important role in the evolution of bacteria. Three major mechanisms, transformation, 

transduction, and conjugation, provide bacterial populations with access to a "horizontal gene 

pool," enabling them to rapidly respond to environmental challenges. Theoretically, genomic 

islands could utilize all mentioned above strategies for lateral transfer, but the exact way of 

transfer determined only for single representatives of this group of mobile elements.  

Genomic islands with ICEs features excise by site-specific recombination and are transferred 

to the new host by conjugation (Burrus et al., 2002). The best characterized members of this group 

are the SXT island of Vibrio cholerae (Beaber et al., 2002) and the R391 island of Providencia 

rettgeri (Boltner et al., 2002). Both code for a nearly identical phage-like integrase, which 

mediates site-specific integration into the 5’ end of the prfC gene of the Escherichia coli 

chromosome (Hochhut and Waldor, 1999). Comparative analysis of these elements revealed a 

conserved backbone that contains regions that are dedicated to the integration, transmission and 

regulation of these elements, and additional variable regions that are unique to specific elements. 
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A phage-mediated transfer of a GEI between bacterial isolates has only been reported for the 

Gram-negative bacterium V. cholerae and the Gram-positive bacterium S. aureus (O'Shea and 

Boyd, 2002; Ruzin et al., 2001). In both cases the mechanism of transfer involved horizontal gene 

transfer and recombination mediated via a bacteriophage. In S. aureus the 15.2-kb SaPI1, which 

encodes the toxic shock syndrome toxin, requires a helper bacteriophage 80α to excise and 

replicate and is transduced to recipient strains at very high frequencies. However, it is uncertain 

whether the 15.2-kb SaPI1 entirely conforms to the definition of a PAI and may represent a 

defective phage. Indeed, it is possible that SaPI1 and the helper phage are genetically related and 

as suggested SaPI1 requires a helper phage similar to the P2/P4 interaction (Ruzin et al., 2001). 

The Vibrio pathogenicity island (VPI) has been shown to be transferable between O:1 serogroup 

strains, the predominant cause of epidemic cholera, via a generalized transducing phage CP-T1 

(O'Shea and Boyd, 2002).  

In spite of increasing number of described GEIs, the mechanism of transfer of most of them 

remains unclear.  

 

6. Structure and function of the HPI 

The discovery of the Yersinia HPI traces back to reports on siderophore production and iron-

regulated proteins (Irp) associated exclusively with mouse-lethal strains of human pathogenic 

Yersinia species (Carniel et al., 1987; Heesemann, 1987). The first sequenced iron-regulated gene 

of Y. enterocolitica (irp2 gene) indicated that the predicted irp2-encoding protein might be 

involved in siderophore biosynthesis (de Almeida et al., 1993; Guilvout et al., 1993). The next 

characterized iron-regulated gene of Y. enterocolitica was the fyuA gene encoding for an outer 

membrane protein of 71.3 kDa (denoted FyuA for ferric-yersiniabactin [Fe-Ybt] uptake). The 

FyuA protein acts as a receptor for Ybt uptake and is involved in pesticin sensitivity and mouse 

virulence (Heesemann et al., 1993; Rakin et al., 1994). 

By further sequence comparisons of the fyuA genes of yersiniae two distinct evolutionary 

lineages of the HPI could be established, namely the Y. pestis/Y. pseudotuberculosis (HPIYps) and 

the Y. enterocolitica 1B (HPIYen) lineage (Rakin et al., 1995). The HPI of the two evolutionary 

lineages differ considerably in size, with 44.3 kb for the HPIYen and 36.5 kb for the HPIYps (Fig. 

1). The size of the integrated HPI can be delineated by two short 18-bp direct repeats that 

represent the core part (‘‘O’’) of the hybrid attachment sites attL and attR formed as a result of the 

site-specific recombination of the HPI with the bacterial attB (asn tRNA gene) recognition site 
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HPIYps  

HPIYen  

attR 

attR 

attL 

attL 

Fig. 1. Comparison of the high-pathogenicity islands of Y. enterocolitica and Y. 
pseudotuberculosis / Y. pestis evolutionary lineages  
Yersiniabactin biosynthesis core genes are designated with thin arrows. The variable AT-rich part 
is designated with black arrows. Integrase genes (int) are shown with gray arrows. 

 (Rakin et al., 2001). The difference in the size of the HPI resides in the presence of the variable AT-

rich part (Fig. 1) that is completely different in both HPI lineages and greatly enlarges the HPIYen 

by acquisition of multiple IS elements (Bach et al., 1999; Rakin et al., 1999a). 

Strikingly, the HPIYen is restricted to Y. enterocolitica biotype 1B strains (serotypes O:8, 

O:13, O:20 and O:21) which are typical North American isolates. It is worth mentioning that the 

HPIYps has also suffered a large deletion of the AT-rich part of the island in Y. pseudotuberculosis 

serotype O:3 strains (Buchrieser et al., 1998a; Rakin et al., 1995). The HPIYps of the Y. pestis/Y. 

pseudotuberculosis lineage might be accepted as an archetype HPI because it contains the 

complete set of genes necessary for production and transport of yersiniabactin (Ybt gene cluster or 

HPI core) and for mobility of the island (integration/excision module). 

 

6.1 Yersiniabactin core 

Yersiniae carrying the HPI secrete the low-molecular weight siderophore yersiniabactin 

(Ybt), which consists of catecholate, thiazoline, and thiazolidine residues and depicts high 

similarity to the siderophore pyochelin produced by P. aeruginosa (Cox et al., 1981; Haag et al., 

1993). The genes encoding Ybt biosynthesis, transport and the transcriptional regulator are 

clustered within the functional core of the island (Carniel, 2001; Rakin et al., 1999b). Six genes 

(designated irp1 – irp5, irp9 in Y. enterocolitica, and irp1-2, ybtU, ybtT, ybtE, ybtS in Y. pestis and 

Y. pseudotuberculosis) are supposed to be involved in Ybt synthesis (Fig. 1). FyuA (Psn in Y. 

pestis) is the outer membrane receptor of the Fe-Ybt, and Irp6 and Irp7 (YbtQ and YbtP in Y. 
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pestis) are responsible for the inward Fe-Ybt transport across the cytoplasmic membrane. No 

periplasmic-binding protein has been defined for the Fe- Ybt import system so far. The expression 

of the biosynthetic and transport genes is repressed by iron and the ferric uptake regulator Fur, and 

is transcriptionally activated by the AraC-type transcriptional activator YbtA which also represses 

its own transcription (Anisimov et al., 2005; Fetherston et al., 1996). The function of the Irp8 

protein (YbtX in Y. pestis) has not yet been established (Brem et al., 2001). Ybt is synthesized by 

a mixed non-ribosomal peptide synthesis (NRPS)/polyketide (PK) strategy that follows modular 

assembly of the siderophore from salicylate, a residue from malonyl coenzyme A, three cysteine 

molecules and three methyl groups (Gehring et al., 1998). Irp9/YbtS, the first gene in the Ybt 

biosynthesis gene cluster, directly converts chorismate into salicylate, the precursor of Ybt 

(Pelludat et al., 2003). This contrasts to salicylate synthesis in Pseudomonas, where two enzymes, 

namely isochorismate synthase and isochorismate pyruvate-lyase, are involved and both are 

required to complement an irp9 mutant in Yersinia. Irp5/YbtE salicyl-AMP ligase transfers the 

activated salicylate to HMWP2 (encoded by irp2). HMWP2 possesses six predicted NRPS do- 

mains involved in initial cyclization and condensation reactions. Irp3/ YbtU reduces the internal 

thiazoline ring to a thiozolidine structure while the first five domains of HMWP1 switch from 

NRPS-type assembly line molecules to a PK-strategy. Irp4/YbtT contains a thioesterase domain to 

remove aberrant structures from the enzymatic complex and, displays an editing function together 

with terminal HMWP1 domains. Generally, NRPS/PK synthetases are activated by 

phosphopantetheinylation mediated by P-pant transferase. 

Obviously, the general P-pant transferase of the Ybt system (YbtD), is located outside the 

HPI (Bobrov et al., 2002). Phosphopantetheinylation of a peptidyl carrier protein domain of 

HMWP1 was also demonstrated in vitro using a heterologous EntD from E. coli (Gehring et al., 

1998). Thus, synthesis of the Ybt by the HPI-encoded genes and Ybt-mediated iron acquisition is 

tightly linked to the biochemistry of the bacterial cell. It could also be demonstrated by GFP-

reporter technology in a mouse model that Ybt production is high in Yersinia-infected spleen and 

Peyer’s patches, but low in the lumen of small intestine of infected mice (Jacobi et al., 2001). 
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6.2 Mobility of the Yersinia HPI 

Most PAIs are only ‘‘ghosts’’ of their former selves still loaded with remnants of the 

delivery genes. At least in Y. pseudotuberculosis serotype O:1, the HPIYPS can occupy any of the 

three asn tRNA genes suggesting its functional mobility (Buchrieser et al., 1998). In contrast to Y. 

pseudotuberculosis, the HPI is ‘‘frozen’’ in a single asn tRNA locus in Y. pestis and Y. 

enterocolitica biotype 1B. Whole genome sequencing discovered a second, truncated copy of the 

HPI in Y. pestis (Deng et al., 2002; Parkhill et al., 2001). This HPI-2 is not co-linear with the HPI-

1, it is not associated with any tRNA loci, and contains only some but not all genes necessary for 

Ybt production. The genes ybtP, ybtQ, ybtX, ybtS corresponding to genes irp6-9, ybtU (irp3) and a 

large portion of irp2 with several internal stop codons followed by an IS100 element reside on 

HPI-2. Presence of IS100 favours its possible role in duplication of the HPI and secondary 

rearrangements in HPI-2. HPI-2 is absent from Y. pseudotuberculosis (Hinchliffe et al., 2003). 

The functionality of the remaining genes of the HPI-2 remains to be proven.  

The HPI-integrase, a unidirectional site-specific recombinase is the main part of the genetic 

dissemination machinery encoded by the island (Rakin et al., 2001). Moreover, because the HPI 

lacks replication functions it has to rescue itself by integration into the genome of the host cell. 

The integration is mediated by the HPI integrase that interacts with two pairs of short DNA 

sequences on recombining DNA molecules, attP and attB. One, attP (designated attP (POP’) by 

analogy to well-studied phage attachment sites involved in site-specific recombination), resides on 

the island and another, attB (BOB’, chromosomal recognition site) (Fig. 2) is represented by 

several asn tRNA gene copies on the bacterial genome. As a result of recombination between attP 

and attB sequences, the HPI is physically integrated into the bacterial chromosome between two 

new hybrid sites, attL (BOP’) and attR (POB’), that are chimeras composed of two halves of the 

attP and attB sequences, respectively. The expression of the HPI recombinase is differently 

regulated depending on its free, circularized state or its integrated state (Rakin et al., 2001). The 

promoter of the HPI-integrase, Pint, is located within the attP site. A bacterial asn tRNA promoter 

replaces Pint as a result of the HPI integration (promoter swapping) (Fig. 2). The island in its 

integrated form is inherited by the host as a part of its genome. As HPI-carrying pathogens benefit 

from Ybt production during host infection, there is a selection for genetic stabilization of the 

integrated form of HPI. This is not only achieved by replacement of the Pint promoter, but also by 

deletions of the int gene or the attR site (Karch et al., 1999; Rakin et al., 1999a; Schubert et al., 

1999). To be transferred to new hosts, the HPI must be properly excised from its integration site 
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Fig. 2. Site-specific integration of the HPI into the asn-tDNA target on the chromosome.  
Promoters of the asn-tRNA and int genes are shown as Pasn and Pint, respectively. “T” - rho-
independent terminator structure of asn-tDNA. The 17 bp consensus core (yellow, “O”) is
bordered by arm-like sequences (P and P’) in the attP site and also presented in the attB site
(BOB’). Integrase gene (int) designated by red arrow. 
on the bacterial chromosome being a reverse event to integration. However, integration and 

excision do not involve the same pair of reacting sequences and proteins. The directionality of 

site-specific recombination is controlled by the identity of the recombining sites and different 

proteins that mediate the two reactions. In case of prototype temperate bacteriophages, integration 

(attB x attP) requires the product of the gene int, the integrase, and the integration host factor IHF, 

while the excision (attL x attR) requires the product of an additional gene xis, an excisionase (also 

designated recombination directionality factor, RDF). Thus Int (and probably integration host 

factor IHF) is required for both reactions, while Xis (excisionase) plays an important role in 

controlling the direction of recombination. The HPI seems to utilize a selfish recombination 

module of the phage P4-like mobile group of elements for its dissemination. The HPI-integrase is 

a tyrosine recombinase homologous to the phage P4-like group of integrases. Also, site-specificity 
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of the integration mechanism of the HPI and implication of the tRNA loci as recognition sites lead 

to the conclusion that the HPI backbone “arrived in Yersinia via a bacteriophage” (Carniel, 1999). 

However, there is no evidence for this suggestion, e.g. there are no ‘‘phage-associated’’ genes 

besides those with similarity to recombination enzymes. It is of note that genes encoding phage-

like recombination enzymes are present not only on temperate phages, but also on other mobile 

elements, e.g. conjugative transposons as well as ICEs (Burrus et al., 2002). To become a phage-

like mobile structure, the HPI sequence, which is highly degenerated if compared even to a 

satellite phage, must contain at least sequences necessary for its packaging to be recognized by a 

helper phage. Also, no specialized transducing phage has been assigned to the HPI. Generalized 

transduction cannot be ruled out, but the efficiency could not be expected to be high, due to the 

fact that the complete HPI including its attL and attR sites must be packaged and this structure 

must recircularize in the recipient cell to become recombinogenic. Parts of the island can be 

occasionally transferred by general transducing phages, but they have to recombine with 

complementary regions on the recipient chromosome. However, IS elements present on the island 

can supply regions of homology for such homologous recombination with the recipient genome. 

By definition, the HPIs of both evolutionary lineages in yersiniae are non-replicative, non-self-

transmissible structural and genetic entities carrying fitness-associated genes and utilizing a site-

specific mechanism of integration into conserved target sites (Rakin et al., 1999b). Thus, the 

mechanism of HPI dissemination is completely obscure. An enlarged form of the E. coli HPI 

described recently in E. coli ECOR31 carries the complete HPIYps and a truncated 35 kb transfer 

region of a conjugative plasmid (Schubert et al., 2004). The HPIECOR31 can be considered as an 

integrative and conjugative element (ICE) (Burrus et al., 2002). However, the HPI-ICE is 

restricted to a single E. coli strain and does not contain all the genes necessary for its self-

transmission. Thus HPIECOR31 could not be considered as a parental form of the HPI responsible 

for its wide dissemination. 

On the other hand, certain transmissible plasmids (episomes) are able to integrate into the 

bacterial chromosome and “pick up” chromosomal sequences in course of incorrect excision 

(Jaoua et al., 1990; Rigby and Fraser, 1989). Such “substituted” plasmids could carry small RNA 

genes that frequently serve as targets for integration of pathogenicity islands and other integrative 

elements (Williams, 2002). For example, pHCM2 plasmid from Salmonella enterica contains the 

putative asn tRNA gene (Kidgell et al., 2002). 
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7. Aims of this research study 

 

The aim of this research study was to characterize mechanisms and structures responsible for 

mobility and dissemination of Yersinia pestis High Pathogenicity Island.  

The main goals of this project are: 

• to discover the key elements, involved in mobility of Y. pestis HPI and responsible for its wide 

dissemination in Enterobacteriaceae; 

• to define DNA/protein interactions of integrase, excisionase and attachment sites inside 

integrative complex; 

• to develop a model of the HPIYps transmission, thus to explain how the island is transferred 

from one bacterial host to another and uncover the possible mechanisms involved in its 

transmission. 
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B. MATERIALS AND METHODS  

  

1. Material  

1.1 Equipment  

Centrifuge  Sigma, Deisenhofen 1K1S, Table-centrifuge  

3K30 with Rotor Nos. 12156 and 19776  

Electrophoresis apparatus for SDS-

PAGE  

Bio-Rad, München Mini-Protean -II Cell and Western 

Blot Apparatus  

Electroporation-apparatus  Bio-Rad, München, Gene Pulser, II  

Pulse Controller II  

FACSscan (Flow Cytometer) Becton Dickinson, Heidelberg 

French Press  French Pressure Cell 40K SLM Aminco  

HPLC system SMART system, Pharmacia Biotech 

Hybridization oven  Personal Hyb. Stratagene, Amsterdam  

Incubator  Heraeus, Hanau Typ B20  

Light Cycler Light Cycler PCR and detection system, Roche 

Diagnostics 

Luminometer MicroLumat Plus LB96V Luminometer, Berthold 

Technologies 

PCR-Cycler  PE Applied Biosystems, Weiterstadt Gene Amp 2400  

pH Meter  Mettler, Toledo 320 pH Meter  

Photometer  Pharmacia, Biotech Ultrospec 2000  

Pipettes  Eppendorf, Hamburg Research P10-P1000  

Phosphorimager Pharmacia LKB ImageMaster DTS 

Sequencer  PE Applied Biosystems, Weiterstadt ABI 377 DNA 

Sequencer  

Shaking incubator  Braun, Melsungen Certomat BS-1  

Sterile bank  Heraeus, Hanau Herasafe HS12  

Transilluminator  Heralab, Wiesloch, UVT-20M/W  

Video-equipment  Sigma, Deisenhofen, EASY (Enhanced Analysis System)  
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Vacuum blot  Pharmacia,-LKB, Uppsala, LKB 2016 Vacu Gene
R
-

Chamber  

Scale  Sartorius, Göttingen Model R 160P and Pt 1200  

 

  

1.2 Other materials  

Plastic and related articles were purchased from the following firms: Nunc, Roskilde, DK; 

Sartorius, Göttingen; Falco/Becton Dickinson, Heidelberg; B. Braun, Melsungen; Eppendorf, 

Hamburg; Greiner, Nürtingen and Schleicher & Schüll, Dassel.Nylon membranes (Zeta Probe GT) 

were purchased from Biorad and Nitrocellulose membranes (Whatman-paper) from Schleicher & 

Schüll.  

  

1.3 Chemicals and Enzymes  

All chemicals and antibiotics were supplied by Merck (Darmstadt), Biochrom (Berlin), 

Roche (Mannheim) and Sigma (Deisenhofen). Media plates were supplied by Difco (Detroit, 

Michigan, USA) and enzymes were obtained from MBI Fermentas (St. Leon-Roth), Roche 

(Mannheim), and Gibco (Eggenstein).  

  

2. Bacteria, Plasmids and Primers  

2.1 Bacterial strains and plasmids (Table 1) 
Strain / plasmid  Relevant Characteristics  References or 

source 

Srains     

E. coli     

BL21 (DE3) F
-
 ompT hsdS(rB

- mB
-) gal λ (DE3) Stratagene 

CC118λpir ∆(ara-leu) araD ∆lacX74 galE galK phoA20 thi-I rpsE rpoB 
argE(Am) recA1; lysogenized with λpir 
 

(Herrero et al., 

1990) 

CFT073 Clinical isolate of uropathogenic E. coli (Welch et al., 

2002) 

DH5α endA1 hsdR17(rk-mk+)supE44 thi-1 recA1 gyrA relA1 ∆(lacZYA-
argF) U169 (φ80lacZ∆M15) 
 

(Hanahan, 1983) 
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JM109  { recA1 endA1 gyrA96 thi hsdR17(r
k
-, m

k
+) supE44 relA1 ∆(lac-

proAB) [F' traD36 proAB lacI
q
Z∆M15]}  

(Yanisch-Perron 

et al., 1985) 

JM109 Nal
r

The spontaneous Nal
R
 mutant of E. coli strain JM109  MvP strain 

collection 

HB101 SupE44 hsdS20(rB
- mB

-) recA13 ara-14 proA2 lacY1 galK2 rpsL20 

xyl-5 mtl-1 

(Bolivar and 

Backman, 1979) 

S17-1 λpir pir+ tra+

 
(Simon et al., 

1983) 

Y. enterocolitica     

WA-C   Plasmidless derivative of strain WA-314, serotype O:8  (Heesemann et 

al., 1984) 

WA-C hsmYI, hsrYI hsmYI, hsrYI this study 

WA-CS irp1::Kanr irp1-mutant of WA-CS, Nalr, Smr, Kanr

 
(Pelludat et al., 

2002) 

Y. pestis   

KUMA BG M R. R. Brubaker 

Y. pseudotuberculosis   

YPS06 Clinical isolate MvP strain 

collection 

YPS06 xis YPS06 with inactivated HPI excisionase gene this study 

Plasmids     

pCR2.1-TOPO  Topo cloning vector Invitrogen 

pCR2.1-TOPO/yenI 
 

pCR2.1-TOPO with yenI ORF this study 

pCJ Luc pCJFY-L derivate containing promoterless luciferase gene (Jacobi et al., 

2001) 

pCJ PintB-Luc pCJFY-L derivate containing intB promoter - luciferase fusion this study 

pCJ Porf1-Luc pCJFY-L derivate containing orf1 promoter - luciferase fusion this study 

pCJ Porf2-Luc pCJFY-L derivate containing putative orf2 promoter – luciferase 

fusion 

this study 

pCP20 Plasmid with thermo-inducible FLP recombinase (Datsenko and 

Wanner, 2000) 

pET-3C Expression vector Invitrogen 

pET-3C xis Excisionase expression vector this study 

pGEX-4T-3int Integrase expression vector this study 
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pQE-30int Integrase expression vector this study 

pET-3C int Integrase expression vector this study 

pET-3C hsmYI Plasmid for expression of restriction-deficient Yen I protein this study 

pIE928 Plasmid with streptothricine resistance gene sat3  (Jelenska et al., 

2000) 

pMOSBlue  Cloning vector Ap
r Amersham 

RP4  The conjugative plasmid  (Kim et al., 

1993) 

RP4 attB HPI-“trapping” construct this study 

pKD46  Plasmid carrying red recombinase system genes  (Datsenko and 

Wanner, 2000) 

pKD3  Plasmid carrying Cm
r
 gene was used as a source of Cm

r
 cassete  (Datsenko and 

Wanner, 2000) 

pKD4 Plasmid carrying Km
r
 gene was used as a source of Km

r
 cassete  (Datsenko and 

Wanner, 2000) 

pKR528 attP-intB cloned in suicide vector pKAS32, Apr (Rakin et al., 

2001) 

pKR529 Suicide plasmid carrying the attP (POP´) part and the functional 

integrase of Y. pestis KUMA, Kmr, Apr

(Rakin et al., 

2001) 

pKR529 orf1-5r pKR529 with orf1-5 of the variable part of the Yps-HPI this study 

pKR531 pKR528 with inactivated integrase gene MvP collection 

pKR600 Plasmid harbouring the asn tRNA gene (Rakin et al., 

2001) 

pGP1-2 vector with T7 RNA polymerase gene (Tabor and 

Richardson, 

1985) 

pSAK2 
 

Recombinant plasmid carrying a 5039 bp DNA fragment with yenI 

from Y. enterocolitica 8081 isolate  

V.L. Miller 

 

  

2.2 List of primers (Table 2) 

Primer  5’-…..-3’ sequence  Description  

T7 (forward)  TAATACGACTCACTATAGGGA  amplifies the insert within the MCS 

of pMOSBlue vector  
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U19 (reverse)  GTTTTCCCAGTCACGACGT  amplifies the insert within the MCS 

of pMOSBlue vector  

rms_for ATGTTAGAAGAAGTTGATGAAATCCGAGTC start of yenI gene  

rms_rev TTAGTTATGTGGACCTAAGAACCTGTCG end of yenI gene 

asnT167 CCCCAGAACTTTTTGCTCCT forward primer for asnT tRNA gene 

asnW761 GTCGGGTTGTAGTCGGTTATG forward primer for asnW tRNA gene 

asnU211 ACAACCTGGCGTAAAGCAGAG forward primer for asnU tRNA gene 

asnV251 AGTGCCGCCATTACTTACAAC forward primer for asnV tRNA gene 

c15-205 TACAGGCAGGTTCCCGATGAC in intHPI gene reverse 

ORF2F Nde CGCCATATGACATCTTATCAGTTACTAC start of xisHPI  gene with NdeI site 

ORF2R Bam CGGGATCCCATCATCTTCTCCTCATTGCG end of xisHPI  gene with BamHI site 

attB128 TTGGATCCGATGCGCCCCGTTCACAC start of attB 

attB320 AAAAGCTTGGAGAGGAAGGGTGCTGTTGA end of attB 

attP72 CGCAACTATTGGTGGTCATTA start of HPI attP  

attP72 Hind TTCGGCCGCGCAACTATTGGTGGTCATTA start of HPI attP with HindIII site 

attP298 Bam TTGGATCCGAACTAACCTGACCCCAGAT in attP, reverse, with BamHI site 

attR241 AGCGGCCGCTTTGCGTCGGTAAGGGACATA end of HPI attP, reverse 

FyuAF GACCGTTATCGCCATTCTG fyuA promoter forward 

FyuAR CCGTGTCATTTTCATTGTTG fyuA promoter reverse 

exc1000R AATAGACCGATAGTAGGATGTTGCCACTCAAGG in excisionase reverse 

exc914 CCGTTATAGTGACCCATGTTGAC in excisionase reverse 

exc941 TGCTTCCGTTATAGTGACCCA in excisionase reverse 

exc1010 TGGCAACATCCTACTATCGGTCTA in excisionase forward 

exc1025 ATCGGTCTATTTCCAGTCTCCT in excisionase forward 

exc1135R-P Pho-CCATAAATAAAACCGTCCCTGT in excisionase reverse 

orf1P Hind AAAAGCTTCCCCATAGGCCTGTACATGT in orf1 promoter, with HindIII site 

orf1P Bam TTGGATCCATCTCCTTCTACACAACAATTC in orf1 promoter, with BamHI site 

orf2P Hind AAAAGCTTGCTGAAACACTGAAAAATGCG in orf2 promoter, with HindIII site 

orf2P Bam AACCATGGATCCTCCTGTGACTGAAATAA in orf2 promoter, with BamHI site 

HPI174 CAGGGCCTATTTTTATTGAAC annealing in excisionase 

HPI878 GGGGGCAAGAAAAACTAACC annealing in orf1 

Int_rev15 CGTGAGAATCGGAGACTTTAAAGG forward for HPI attP 

cftattp501 AACGAGTACAGATTGTAGATGTACG reverse for Ecoc54N attP 

cftattp601 GAACCATCACCATAATTTTTAGTGTC reverse for Ecoc54N attP 

Intcft698_rev AAAGACATGTCTGTTCAGACGGGC reverse for Ecoc54N integrase 

Int_cft1087 GGTATCGTCCAGATCCGATTTCTGAA reverse for Ecoc54N integrase 
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attR248 TTGGCTCCTCTGACTGG amplifies within attP  

CoreD GATCCCAGTCAGAGGAGCCAA amplifies within attP  

attP135 TTAGCCAGTTGCTGGCAGAGGC amplifies within attP  

attP247 AAGAGTTTTCACACTAACCTGT amplifies within attP  

HPI 1220 TTTGTTTTATGGCTTTGGTAG amplifies within HPI AT-rich region 

fyu18 AGGCGACTGAACGGATGAACA in fyuA gene, forward 

aph_wild_for GTGAACGATATTGATCGAGAAGAGC for RP4 aph gene, forward 

sat3_seq AGATGACCAATTCACGCATTGA for sat3 gene, reverse 

IS131 GCTACTCATTCCCTGCTTGTG in IS131 of HPI, forvard 

RP_mut_for GCAGCCGCTGCCGTGCCCGAGAGCATGGCGGCT

CACGTGATGGGATACGATGCGCCCCGTTCAC 

for PCR-directed mutagenesis 

RP_mut_rev GCAGCTTGCGCCTATCCGGATCGGCAATGCCAT

ATTGCGCAA CAAGCCACTCATTCATAACTCC 

for PCR-directed mutagenesis 

HPI_ins2 TTTGAGTAGTGTACCTGAGTGATATTTGTGTTAT

GTATGCATTGATTGCAGTGTAGGCTGGAGCTGC

TTC 

for PCR-directed mutagenesis 

HPI_ins2_rev TCAACTCAAAACAATTTCGAAAACTCAAAGATT

TCATCGGCAAAAACAGCATATGAATATCCTCCT

TA 

for PCR-directed mutagenesis 

 

  

All the primers used in this work were supplied by Metabion (Martinsried). They were supplied in 

either a 100 pmol/µl solution or lyophilized. Lyophilized primers were dissolved in distilled, 

sterile water to a 100 pmol/µl end concentration. Table 2 gives a list of the primers used in this 

work.  

  

3. Culture media, Antibiotics, Strain Cultivation and Storage  

3.1 Culture media  

Liquid media were sterilized by autoclaving (121 °C at 1 bar for 20 min). For solid agar, 15 

g agar per liter of liquid media was used.  
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Luria-Bertani (LB) Medium  Trypton                         10 g  

Yeast powder extract    5 g  

NaCl                              5 g  

H
2
O

dest
 to                      1 L  

pH set to 7.4 - 7.6 with NaOH  

 Minimal medium (M9)   Na
2
HPO

4
                      6 g  

KH
2
PO

4
                        3 g  

NaCl                               0.5 g  

NH
4
Cl                            1 g  

Water to                         1 L  

pH adjusted to 7.4,  

autoclaved and cooled  

Nutrient Broth (NB) Medium Nutrient Broth                 8 g 

NaCl                                5 g 

Water to                          1 L  

 

NBD Medium NB-Medium with 200 µM dipyridyl  
(in 70 % EtOH) 
(Dipyridyl functions as an intracellular
complexer of Fe2+) 
 

CAS-Agar Chromazurol S                    60.5 mg 

1mM FeCl3 *6H2O            10 ml 

HDTMA                             72,9 mg 

10X MM9 salts                 100 ml 

Agar                                    15 g 

PIPES                                 30.4 g 

10X LB medium                30 ml 

20% Glucose                      10 ml 

1M MgSO4                          2 ml 

1M Na2SO4                         2 ml 

0,1M CaCl2                         1 ml 
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Water to                          1 L 

  

Further media components  

  

  

20% Glucose  

1M CaCl
2

 

 

3.2 Antibiotics  

Name and concentration of antibiotics employed in this research are listed in table 3. 

Sterilization of all antibiotics was by filtration with 0.22 µm filters.  

Table 3. List of Antibiotics  

Antibiotic  Abbreviation  Dissolved in  End-concentration (µg/ml)  

Ampicillin  Amp  H
2
O

dest
100 (E. coli)  

400 (Yersinia)  

Kanamycin  Km  H
2
O

dest
50  

Nalidixic acid  Nal  0.5 N NaOH  100  

Chloramphenicol  Cm  70 % C
2
H

5
OH 30  

Streptomycin  Sm  H
2
O

dest
100  

Streptothricine St H
2
O

dest
100 

Tetracycline  Tet  70 % C
2
H

5
OH 15  

 

  

3.3 Cultivation and long term storage of bacteria  

Bacteria were cultivated either on agar plates or in liquid medium by incubation on a shaker 

as follows:  

- Yersinia: 200 rpm at 27°C  

- E. coli: 200 rpm at 37°C. For long term storage, bacteria were suspended in LB-Medium 

fortified with 10% Glycerol and frozen at -80°C. Table 1 presents a summary of the strains and 

plasmids used in this study.  
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4. Molecular genetic methods  

  

4.1 Isolation of chromosomal DNA with  Qiagen Genomic-tip 100/G 

The Qiagen Genomic-tip 100/G kit was routinely used for small scale isolation of 

chromosomal DNA (up to 100 µg). The isolation procedure was as recommended by the kit’s 

manufacturer.   

 

4.2 Isolation of plasmid DNA  

  

4.2.1 Plasmid isolation with QIAprep Spin Miniprep kit (Qiagen)  

The QIAprep Spin Miniprep kit was routinely used for small scale isolation of plasmid DNA 

(up to 20 µg). The principle behind it is based on alkaline lysis, coupled with anion-exchange 

chromatography. The isolation procedure was as recommended by the kit’s manufacturer.   

  

4.2.2 Plasmid isolation with Nucleobond AX100 Kit (Machery-Nagel)  

The Nucleobond AX100 Kit was used for the isolation of high quality DNA in high 

concentration (up to 100 µg). The principle of DNA isolation is also based on alkaline lysis of 

cells, followed by purification of nucleic acids on the basis of anion-exchange chromatography. 

The isolation procedure was as recommended by the kit’s manufacturer.  

  

4.3 Purification DNA and determination of DNA concentration and purity  

  

4.3.1 Phenol extraction and ethanol precipitation of DNA  

Phenol extraction was carried out to remove contaminating proteins from a DNA preparation.  

Procedure  

• The DNA solution was mixed with an equal volume of TE - saturated 

phenol/chloroform/isoamyl alcohol (25:24:1) in a microcentrifuge tube and the mixture vortexed 

for 30 sec.  

•  The mixture was centrifuged at 14,000 rpm for 5 min at RT to separate the sample into phases.  

• The upper aqueous layer was then removed into a clean tube, carefully avoiding denatured 

proteins found at the aqueous / phenol interface. This upper phase was then mixed with an equal 

volume of the phenol / chloroform / isoamyl alcohol solution mentioned above, the mixture 
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vortexed and centrifuged (14,000 rpm for 5 min). This step was repeated 2-3 times, and the DNA 

precipitated from the upper aqueous phase through ethanol precipitation.  

Ethanol precipitation  

This was carried out to remove contaminating salts from a DNA preparation or to concentrate a 

DNA preparation.  

Procedure  

• The DNA solution was mixed with 1/10 volume of 3 M sodium acetate and 3 volumes of 

ethanol.  

• The mixture was incubated at -20°C for 30 min.  

• The mixture was centrifuged at 14,000 rpm for 15 min at 4°C.  

• The supernatant was removed and the DNA pellet was washed with 70% ethanol and centrifuged 

at 14,000 rpm for 5 min at 4°C.  

• The pellet was air-dried and the DNA resuspended in water and stored at -20°C.  

  

4.3.2 Determination of DNA concentration and purity  

Nucleic acids have a maximum light absorption at 260nm wavelength. The isolated DNA 

was diluted with distilled water (1:100) and the absorbance at 260nm (A260) against H
2
O

bidest
 

measured spectrophotometrically. The calculation of the DNA concentration was based on the 

following formula:   

A260 = 1   50 µg/ml for dsDNA 

A260 = 1   33 µg/ml for ssDNA 

For determination of DNA purity, the A2

- absorbance at 280nm). An A260/A280 < 1

protein or aromatic substances such as

contamination with RNA (LAB FAQs, R

  

4.4 Polymerase Chain Reaction (Saiki e

The polymerase chain reaction (P

particular DNA region by mimicking th

three steps are involved in a standard PC

of the template DNA molecules into s

primers to bind to complementary sites o

 

 =̂
 =̂
60/A280 coefficient was photometrically determined (A280 

.8 indicated contamination of the DNA preparation with 

 phenol, while an A260/A280 > 2.0 indicated possible 

oche).  

t al., 1988) 

CR) permits the selective in vitro amplification of a 

e phenomenon of in vivo DNA replication. Typically, 

R reaction: denaturation, which achieves the dissociation 

ingle strands; annealing, which allows single stranded 

n the template DNA; and lastly elongation which allows 
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for extension of the DNA strands, due to the effect of the thermostable DNA polymerase. As 

template DNA, either plasmid, cosmid or chromosomal DNA was utilized at a diluted 

concentration, or cooked cells were employed. Where cooked cells were used as source of 

template DNA, the procedure was as follows:  

• A bacterial colony was isolated, suspended in 50 µl H2Obidest, boiled for 5 min and centrifuged 

(14,000 rpm for 1 min).  

• The supernatant containing released DNA template was then utilized in the PCR reaction.  

For a typical 50 µl reaction volume, the following components were pipetted into a PCR  

test-tube:  

Reaction components  Template DNA  

Primer 1 (100 pmol/µl)  

Primer 2 (100 pmol/µl)  

dATP, dCTP, dGTP, dTTP, 2mM 

10 x Taq-Reaction buffer  

Taq-polymerase (5 U/µl)  

H2O  

0,1-100 ng 

0.2 µl  

0.2 µl  

5 µl  

5 µl  

0.2 µl  

ad to 50 µl 

Cycling parameters  Denaturation 94°C  

Denaturation* 94°C  

Annealing* x°C  

Elongation* 72°C  

Final extension 72°C  

3 min  

30 sec  

30 sec  

y min  

3 min  

 

* 30 - 35 cycles  
x: Annealing temperature dependent on the Tm (melting temperature) of primers  
y: Elongation is typically 1 min pro kb of amplified DNA  
 

A negative control with water as template DNA was always included in the reactions and 5 µl of 

the finished PCR product was checked on an agarose gel before purification with the Qiagen PCR 

purification kit.  

 
 4.4.1. Nested PCR screening for genomic islands excision 

The same amount of genomic DNA (100ng) of E. coli CFT073 and  E. coli JM109 (as a 

control) were amplified by first PCR using primer pair Int_cft1087/cftattp501. One microliter 
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from first-round reaction was used as template for second round PCR using primer pair 

Intcft698_rev/cftattp601 (Table 2). 

 

4.4.2. Real Time PCR and quantification of attP-targets 

The Light Cycler PCR and detection system (Roche Diagnostics, Mannheim, Germany) was 

used for amplification and online quantification. Int_rev15/attP72 and Intcft698_rev/cftattp601 

primer pairs were used for amplification of the restored HPI-attP and Ecoc54N-attP, respectively 

(Table 2). For the amplification of chromosomal markers, primers coreD and Int_rev15 were used 

(Table 2). For amplification detection, the Light Cycler DNA FastStart Master Hybridisation 

Probes Kit (Roche Diagnostics) was used as described by the manufacturer. Following 

hybridization probes were used: attP_hyb1 (5’-CCC ATA TGT CCC TTA CCG ACG CAA A-

Fluo-3’) and attP_hyb2 (5’-LCRed-640-TCC GCA CCC TCA AGC CTT CTG ATA AA-Pho-3’) 

for HPI-attP; attPcft_hyb1 (5’-CCA TAT GTC CCT TAA CGA CGC AAA-Fluo-3’) and 

attPcft_hyb2 (5’-LCRed-640-TCC GTA GTC TCA AGC CCA CTG ATA AA-Pho-3’) for 

Ecoc54N-attP (Metabion GmbH, Martinsried, Germany). Quantification was performed by online 

monitoring of the crossing points. The number of cycles of the log-linear phase was plotted 

against the logarithm of concentration of the template DNA. External standardization was 

performed using pKR528 plasmid, containing the HPI-attP-site. Statistical analysis and data 

processing was done using RelQuant 1.01 relative quantification software.  

 

 
4.5 Agarose gel electrophoresis  

The agarose gel was prepared by mixing an appropriate proportion of agarose (to a final 

concentration of 0.7 - 2% depending on the MW of the sample DNA) with 1 x TAE buffer, the 

mixture cooked and after cooling poured into precast agarose gel chambers. The DNA was then 

mixed with loading buffer, loaded onto spurs on the gel and electrophoretically separated by 

voltage application utilizing the 1 x TAE solution as the running buffer. Following the 

electrophoretic run, gels were stained in ethidium bromide solution and the DNA visualized under 

ultraviolet radiation.  
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Solutions:  

1x TAE buffer  

  

  

  

40mM Tris / HCl, pH = 8.2  

20mM Acetic acid  

2mM EDTA, pH 7.6  

  

10 x Loading buffer for agarose gels 

  

0.25% (w/v) Bromophenol blue  

10% (v/v) Glycerol   

  

Agarose gel  

  

Ethidium bromide staining solution: 

  

0.7% - 2% Agarose in 1 x TAE  

  

1 µg Ethidium bromide pro ml H
2
O  

 

4.6 Enzymatic modification of DNA  

  

4.6.1 Restriction digestion of DNA  

Chromosomal or plasmid DNA samples were routinely subjected to restriction digestions. 

For a restriction endonuclease reaction, the following components were mixed together and 

incubated at the appropriate temperature (usually 37°C for most enzymes):  

DNA  

10 x Reaction buffer
x

Enzyme  

H
2
O   

x µl  

1 µl  

2 - 3 units / µg DNA 

to 10 µl*  

 

* For higher DNA concentrations, the reaction and volume were scaled up linearly.  
x: Choice of reaction buffer depended on the type of enzyme employed.  
  

Because all reaction enzymes are supplied in 50% glycerol, which can exert an inhibitory effect on 

digestion efficiency, care was taken that the glycerol concentration did not exceed 5% final 

digestion volume. Enzyme inactivation was either through heat treatment at 65°C for 20 min (Lab 

FAQs, Roche).  
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4.6.2 Dephosphorylation of DNA  

This procedure removes the phosphate ends arising after digestion of a vector/plasmid DNA 

with restriction endonucleases, thus preventing dimerization or self-religation of vector or plasmid 

DNA. The vector DNA is then free to ligate with an insert DNA of choice. Shrimp alkaline 

phosphatase (SAP from Roche, Mannheim) was employed and the reaction proceeded at 37°C for 

30 minutes, followed by heat inactivation at 70°C for 20 min.  

  

4.6.3 Ligation of DNA molecules  

Ligation of linear DNA molecules was with the enzyme T4 DNA ligase (Gibco, 

Eggenstein). Typically, a 1:5 vector to insert ratio was utilized for all ligations and the reaction 

proceeded at 16°C overnight.  

  

4.7 DNA sequencing  

DNA Sequencing was done by the dideoxy-chain terminating method on an automated ABI 

Prism DNA Sequencer. The ensuing chromatograms were processed with Chromas software and 

BLASTN and BLASTX programs provided by NCBI (National Center for Biotechnology 

Information) and TIGR (The Institute for Genomic Research), and also the Y. pestis and Y. 

enterocolitica gene banks from Sanger Center were employed for in-depth homology searches.  

  

4.8 RNA analysis 

 
4.8.1 RNA isolation 

Precautionary steps 

Due to high degradation potential of RNA, the following precautions were strictly followed: 

Special set of pipettes and tips (10, 100 and 1000 µl) exclusively set aside for RNA work; all 

solutions were prepared with water treated with diethylpyrocarbonate (DEPC), a strong RNAse 

inhibitor; RNA isolation procedures were rapidly carried out to prevent premature degradation of 

the RNA template. RNA samples were usually treated with DNase (see below) to remove 

contaminating DNA before use in reverse transcription assays. 

Isolation of RNA 

RNA isolation was carried out with the TRIZOL Reagent (a monophasic solution of phenol 
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and guanidine isothiocyanate) from Gibco as follows: Bacterial cells were pelleted and 

homogenized in 1 ml of TRIZOL reagent. The mixture was incubated at RT for 5 min to achieve 

complete dissociation of nucleoprotein complexes. 0.2 ml of chloroform was added and the tubes 

were vigorously shaken by hand for 15 secs and incubated at RT for 3 min. Samples were 

centrifuged at 12,000 x g for 15 min at 4 °C. Following centrifugation, the mixture separated into 

a lower red, phenol-chloroform phase, an interphase, and a colorless upper aqueous phase. RNA 

remains exclusively in the aqueous phase, which is about 60 % of the volume of the TRIZOL 

reagent used for homogenization. The aqueous upper phase was then transferred to a fresh tube 

and the RNA precipitated by mixing with 0.5 ml isopropyl alcohol. The sample was incubated at 

RT for 10 min and centrifuged at 12,000 x g for 10 minutes at 4 °C. The RNA precipitate, often 

invisible before precipitation, forms a gel-like pellet. The supernatant was discarded and the RNA 

washed once with 1 ml 75 % EtOH and centrifuged at 7,500 x g for 5 min at 4 °C. The RNA was 

then air-dried and dissolved in RNase-free water. 

 

4.8.2 DNase reaction 

This was essential to remove DNA contaminants from the RNA preparation. 

Procedure 

Reaction components : 

RNA (up to 1 µg)      x µl 

DNase incubation buffer                1 µl 

DNase       1 u 

Incubation:  

RNase free water      ad 10 µl 

15 min at RT 

Reaction stop: 

25 mM EDTA (pH 8)  1 µl 

10 min heat treatment at 65 °C 

 

4.8.3 Reverse Transcription 

Reverse transcription is an enzyme-catalyzed synthesis of cDNA from an RNA matrix in the 

presence of a gene specific primer and dNTPs. The SuperscriptTM II RNase H- .Reverse 

Transcriptase (Gibco, Eggenstein) was used in all reverse transcription analyses as described 

 



B. MATERIALS AND METHODS   29

below. To check whether orf1 and orf2 are located in the same operon, the generated cDNA was 

employed as a template for PCR using primers HPI878 (annealing in orf1) and HPI174 (annealing 

in orf2). As a negative control reaction, RNA sample without reverse transcriptase was also 

always included to exclude the possibility of false positive reactions due to DNA 

contamination. 

 

4.8.4. Mapping the start of orf1 transcription 

The determination of the 5´terminus of orf1 was performed by the RACE method (Tillett et 

al., 2000). Total RNA of E. coli DH5α asnT::pKR529orf1-2 was isolated using the “High pure 

isolation kit” from Roche Diagnostics GmbH. Phosphorylated primer exc1135R-P was used in 

RT-PCR that was accomplished with Superscript III RNase H- Reverse Transcriptase from 

Invitrogen (Karlsruhe, Germany). The resulting cDNA was self-ligated with T4-RNA-ligase from 

Roche Diagnostics GmbH. For amplification of the transcript, 3 rounds of semi-nested PCRs were 

performed using exc1010/exc1003R primers for the first PCR, exc1025/exc941 primers for the 

second nested PCR and exc1025/exc914 primers for the third semi-nested PCR. The resulting 

PCR product was sequenced from both sites using the same primers as for the third PCR. 

 
 

4.9 Bacterial transformation  

Bacterial cells were made electrocompetent using standard procedures, and then transformed 

with plasmid/cosmid DNA as described below.  

  

4.9.1 Production of electrocompetent cells  

A modified protocol from Hanahan (Hanahan and Meselson, 1983) was employed. The 

procedure was carried out in the cold and under sterile conditions.  

Procedure  

50 ml LB medium was inoculated with an overnight culture of the bacterium (E. coli or Yersinia) 

and incubated with vigorous shaking at 27°C/37°C until an OD
600

 of 0.5 - 0.6 was achieved.  

• The cells were chilled on ice for 10 - 15 min and transferred to 50-ml falcon tubes.  

•  Cells were then centrifuged at 4000 rpm for 25 min at 4°C.  

• The supernatant was decanted and cells resuspended in 50 ml of sterile ice-cold water (sterile), 

mixed well and centrifuged under the same conditions as above.  
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• The above wash step was repeated, following which cells were washed with 50 ml ice-cold 10% 

glycerol (centrifuged in the cold at 4000 rpm for 25 min).  

• The glycerol solution was decanted and the cell volume estimated and cells resuspended in an 

equal volume of ice-cold glycerol.  

• Cells were then aliquoted in 50 µl volumes and stored at -80°C until required.  

 

4.9.2 Transformation procedure  

Electroporation with high voltage was achieved with the Gene Pulser II from Bio-Rad. The 

principle relies on the fact that short electrical impulses directed at bacterial cells generate pores in 

the cell membrane that facilitates entry of foreign or exogenous DNA into the cell (Dower et al., 

1988). The settings employed were 25 µF capacitance at 2.5 kV and 200 ohms. After 

electroporation transformed cells were mixed with 1 ml LB medium and incubated at 27°C/37°C 

with shaking for 50 min. Bacterial cells were then plated out in 100 - 200 µl aliquots on LB-agar 

plates containing the required antibiotics for selection of recombinants.  

  

 

4.9.3 Preparation of X-gal/IPTG LB-agar plates for blue-white screening of recombinants  

• For one plate 35 µl of 50 mg/ml X-gal and 20 µl of 100 mM IPTG were added to 30 ml LB-agar 

with an appropriate antibiotic.  

• The medium was dropped on plates.  

• The plates were left to soak for at least 30 min prior to plating.  

• 10 - 50 µl of each transformant was then spread on the LB agar X-gal/IPTG plates.  

Inverted plates were incubated overnight at 37°C.  

 
4.10 Conjugation (Achtman et al., 1978) 

Bacterial conjugation is the transfer of genetic material between donor end recipient 

bacterial cells through cell-to-cell contact. For this purpose, 1 ml of the overnight culture of the 

recipient strain and 1 ml of the early-log phase culture of the donor strain were centrifuged, 

washed and resuspended in isotonic NaCl solution. The mating mixture was collected on a 

membrane filter (pore size, 0.22 µm). The membrane was transferred on a LB agar plate and 

incubated at 37°C for 5 h. Next, the cells were resuspended in 1 ml of isotonic NaCl solution and 

plated on selective plates. 
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5. Enzyme activity assays 

5.1 Luciferase assay 

The intB promoter and the putative promoters of orf1 and orf2 were amplified from Y.  

pestis KUMA chromosomal DNA by PCR using primers attP72 Hind and attP298 Bam for intB, 

orf1P Hind and orf1P Bam for orf1 and orf2P Hind and orf2P Bam for orf2, introducing Bam HI 

and Hind III restriction sites (Table 2). The PCR products were digested with Bam HI and Hind III 

and ligated into vector pCJFY5Luc (Jacobi et al., 2001) substituting fyuA promoter for intB, orf1 

or orf2 promoters. To obtain a promoterless luciferase gene, the fyuA-promoter of pCJFY5Luc 

was eliminated by BamHI/Hind III digestion followed by filling-in the overhanging ends with 

Klenow enzyme and self-ligation of the construct. Electrocompetent E. coli DH5α was 

transformed by these plasmids. 

The resulting transformants were grown at 37 °C in LB medium (supplemented with 20 

µg/ml chloramphenicol) to an A600 nm of 1.0. One milliliter of each cell culture was centrifuged 

(5 minutes, 2000 g) and the pellets were lysed with luciferase lysis buffer according to 

manufacturer’s instructions (Roche, Germany). Luciferase activity was measured using the 

MicroLumat Plus LB96V Luminometer (Berthold Technologies, Germany) as previously 

described (Jacobi et al., 2001). 

 

5.2 Quantification of GFP fluorescence for GFP-reporter studies with iron-regulated 

promoters 

A Becton Dickinson flow cytometer equipped with an argon 488-nm laser was used for 

determination of GFP fluorescence of single bacterial cells. In vitro iron-derepressed recombinant 

yersiniae (grown in NBD broth) were diluted as required, and the bacteria were detected by side 

scatter. The average intensity of fluorescence was determined. The scale was logarithmic, and 

fluorescence data and scatter data were collected for 10,000 and 50,000 events (Jacobi et al., 

2001).  

 
6. In vitro DNA-binding assays 
 
6.1 Electrophoretic Mobility Shift Assay (EMSA) 
 

The ability of recombinant excisionase XisHPI or integrase IntHPI to bind DNA was evaluated 

by electrophoretic mobility shift assays using 32P-end labeled probes generated by PCR. The 
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213bp attB site was amplified from pKR600 (Rakin et al., 2001) using attB128 and attB320 and 

280bp HPI-attP site, from pKR528 using attP72 and attR241 primers. The fragments of HPI-attP 

was amplified as follows: Frag1 from pKR528 using attP72 and attR248 primers; Frag2 from 

pKR528 using CoreD and attR241 primers; Frag3 from pKR528 using attP135 and attR241 

primers; Frag4 from pKR528 using attP72 and attP247 primers. The Ecoc54N-attP site was 

amplified using cftattp601 and attR241 primers. A non-specific competitive 176bp DNA probe 

was generated from genomic DNA of Y. enterocolitica O: 8 using primers FyuAF and FyuAR 

(Table 2). Approximately 50 fmol of the probe was incubated at 28°C with varying amounts of 

Xis-HPI, as appropriate, in 10 µl binding buffer containing 20 mM Hepes, pH 7,6, 1 mM EDTA, 

10 mM (NH4)2SO4, 1 mM DTT, Tween 20 0,2% (w/v), 30 mM KCl and 250 ng/µl Poly [d(I-C)], 

Poly [d(A-T)] each. After 1 h, the samples were applied to a 5% acrylamide gel (acrylamide/bis-

acrylamide 29:1) gel in 0,25X TBE buffer and electrophoresed at 10 V/cm. Gels were dried and 

analysed by phosphorimaging. 

 

6.2 DNase I footprinting assay 

FAM-labeled attP DNA probe was generated by PCR using attP72 and FAM-attR241 

primer pair. 0.1 pM of FAM-labeled attP DNA was added to different amounts of protein, diluted 

in reaction buffer (20 mM Hepes, pH 7.6, 10 mM (NH4)2SO4, 1 mM DTT, Tween 20 0.2% (w/v), 

30 mM KCl and 250 ng/µl Poly [d(I-C)], Poly [d(A-T)]) and incubated for 30 minutes at room 

temperature in a reaction volume of 10 µl. Then, 10 mU of DNase I (Roche) was added and the 

reaction was stopped after 3 min by addition of an equal volume of phenol. Electrophoresis and 

gel scan was performed using the ABI 377 DNA sequencer (ABI Prism, Perkin-Elmer, Boston, 

U.S.A). 

 
7. Protein biochemical studies  

  

7.1 Sodium-dodecyl-sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Principle  

In SDS polyacrylamide gel electrophoresis, proteins are separated as they migrate through a 

gel on the basis of their molecular weights. SDS is an anionic detergent that denatures proteins. 

The SDS also disrupts hydrogen bonds, blocks hydrophobic interactions, and substantially unfolds 

the protein molecules by eliminating the tertiary and secondary structures. Two types of buffer 
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systems are used in protein gel electrophoresis: continuous and discontinuous. In the 

discontinuous system employed in this work, a non-restrictive large-pore gel called a stacking gel 

is layered on top of a separating (resolving gel). The buffer composition for the two gel layers 

differs which in turn differs from the composition of the electrophoresis buffer. At the onset of an 

electrophoretic separation, the proteins migrate first through the stacking gel and then into the 

separating gel, where separation takes place. With the aid of a protein marker applied alongside 

the protein samples of interest, the MW of the proteins applied on the gel can be estimated. The 

following is the pipetting scheme applied for the preparation of two 11% acrylamide SDS-gels:  

Separating gel  Stacking gel  

2.15 ml H
2
O  

3.75 ml 1 M Tris/HCl (pH 8.8)  

3.7 ml Protogel  

0.2 ml SDS (10%)  

40 µl APS (10%)  

200 µl TEMED (10%)  

3.19 ml H
2
O  

0.83 ml 0.75 M Tris/HCl (pH 6.8) 

0.7 ml Protogel  

0.1 ml SDS (10%)  

40 µl APS (10%)  

200 µl TEMED (10%)  

10x Electrophoresis buffer    

Tris                                                                30.2 g  

Glycine                                                         142.6 g  

H2O                                                              ad 1 liter 

  

4x SDS-loading buffer (pH 6.8)    

Tris                                                                0.4 g  

SDS                                                               1.2 g  

Glycerol                                                         7.5 ml  

ß-Mercaptoethanol                                         2.5 ml  

Bromophenol blue (2% solution)                   0.5 ml  

H
2
O                                                                ad 50 ml 

  

Coomasie dye solution    

0.125% Coomasie Brilliant blue (Serva)       250 mg  

  

  

Destaining solution    
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Methanol                                                         250 ml  

Glacial acetic acid                                           350 ml  

H
2
O                                                              ad 5 liter  

  

 

  

The electrophoresis system from Bio-Rad was employed in this work and the assembly of glass 

plates and spacers for the production of the gels was according to manufacturer’s instructions. For 

the SDS-gel run, the probes to be analyzed were mixed with the SDS-loading gel buffer and 

heated briefly at 95°C for 5 - 10 min and then applied on the gels. Electrophoresis proceeded at an 

applied voltage of 200 V (or at 20 mA) for 1 - 2 hr.  

  

 

7.2 Cultivation and induction of bacteria  

E. coli BL21(DE3) carrying the expression vector was cultivated at 37°C overnight in LB 

medium fortified with ampicillin. The culture was diluted 1:100 in LB-medium (containing 

ampicillin) and incubated at 37°C with shaking till an OD
600

 of 0.6 - 0.8 was achieved. The cells 

were then induced with 0.3 mM IPTG, incubated further at 16°C for 32 hr. The cells were then 

pelleted by centrifugation at 6000 rpm for 20 min at 4°C, and the pellet resuspended in PBS 

(containing 1 mM PMSF, 1 mM DTT for protein stabilization). For release of the soluble protein 

fractions from the cell, the bacterial suspension from above was subjected to French Press with the 

French Pressure Cell at 1000 psi (repeated four times).  

 

7.3 Purification of the 6xHis fusion protein  

The soluble fractions with the 6xHis fusion protein from bacterial lysates were rapidly 

purified with Ni-NTA Purification System (Invitrogen, USA). The principle is based on the strong 

affinity of the polyhistidine (6xHis) peptide to nickel-charged agarose resins which it binds 

specifically; allowing other proteins to flow though the column packed with the agarose beads. 

Through several wash steps, the unspecific bound proteins are washed through the column and the 

6xHis-tagged protein is eluted under mild conditions with an elution buffer.  
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Procedure  

Cell debris was dissolved in loading buffer (6 M Urea, 40 mM imidasole, 20 mM Tris - HCl, 

pH 8.0) and applied on a 3-ml Ni-NTA column (Bio-Rad) equilibrated with the same buffer. After 

loading, the column was washed with 10 bed volumes of loading buffer. 6xHis-fusion protein was 

produced by elution from the column under denaturating conditions (6 M Urea, 200 mM imidasole 

20 mM Tris - HCl, pH 8.0). Eluted protein was collected in 0.4 ml portion and frozen at -30°C. 

Protein sample was analyzed by SDS-PAGE and Western-blot with AP Ni – NTA conjugate 

(Qiagen).  

 

7.4 The Glutathione-S-transferase Gene Fusion System (Pharmacia Biotech) 

The GST gene fusion system is an integrated system for the expression, purification and 

detection of fusion proteins produced in E. coli. The pGEX plasmids supplied with the system are 

designed for inducible, high-level intracellular expression of genes or gene fragments as fusions 

with Schistosoma japonicum GST. GST occurs naturally as a 26kDa protein that can be expressed 

in E. coli with full enzymatic activity. Fusion proteins are easily purified from bacterial lysates by 

affinity chromatography using Glutathine Sepharose 4B contained in the purification module. In 

this study, a GST-Int fusion was constructed (using the pGEX-4T-3 vector) to facilitate the 

purification of the Int protein. 

 

7.4.1 Purification of the GST-fusion protein 

The soluble fractions with the GST fusion protein from bacterial lysates were rapidly 

purified with Glutathone-Sepharose 4B (Pharmacia Biotech). The principle is based on the strong 

affinity of the GST protein for Glutathione to which it binds specifically, allowing other proteins 

to flow though the column packed with the sepharose beads. Through several wash steps with 

PBS, the unspecific bound proteins are washed through the column and the GST fusion protein 

eluted under mild conditions with an elution buffer containing reduced glutathione (0.5 M NaCl, 

0.1 M Tris/HCl pH 8.0, and 0.02 M GSH -reduced glutathione). 

 

8. Bioinformatics   

Bioinformatic tools were powerfully utilized for sequence analysis, alignments and 

similarity searches. The two primary databanks that were extensively utilized were Genbank and 

EMBL (European Molecular Biology Laboratory).  
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Primary databanks  

1. The Genbank in the USA is under the patronage of the National Center for Biotechnology 

(NCBI) and is an official Sequence data bank which contains more than 3 millions protein and 

nucleotide sequences. All sequences are identified or tagged with a unique accession number. A 

Genbank sequence is usually divided into two parts:  

• the Annotation which contains a precise and detailed information about the sequence and  

• the Sequence itself. The ENTREZ search machine is coupled with the Genbank and allows a 

specific search based on an accession number, organism, gene, protein or author.  

 

2. The EMBL nucleotide sequence database is the European equivalent of the Genbank and 

utilizes the SRS (sequence retrieval system), a search machine similar to the ENTREZ for 

specialized searches of the database and many other databanks over the web interface.  

3. The Islander Database of Genomic Islands (www.indiana.edu/~islander/) is a comprehensive 

online database containing genomic islands discovered in completely sequenced bacterial 

genomes. 

  

BLAST  

In addition to the text-based SRS and ENTREZ search engines described above, the BLAST 

search was also extensively utilized. The BLAST (basic local alignment search tool) search 

enables comparison of a particular sequence of interest with available databanks, leading to 

identification of similar sequences or relationships with previously described gene families. The 

following BLAST programs were employed in this work:  

• BLASTN: compares a nucleic acid query sequence with nucleic acid databanks directly  

• BLASTX: compares a translated nucleotide sequence with protein sequence databanks  

• TBLASTX: compares a translated nucleotide sequence with a database of translated nucleotide 

sequences  

• BLASTP: compares a protein query with a protein database.  

 

The BLAST program provided by NCBI (http://www.ncbi.nlm.nih.gov/BLAST/) and 

BLAST2 (http://www.ch.embnet.org/software/BottomBLAST.html?) maintained by the Swiss 

Institute of Bioinformatics were extensively used for sequence analysis.  

 

http://www.indiana.edu/~islander/
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FASTA: A very common format for sequence data is derived from conventions of FASTA, a 

program for FAST Alignment by W. R. Pearson. Many of the programs used in this work 

employed the FASTA format for reading sequences or for reporting results.  

  

Sequence alignment: This is the assignment of residue-residue correspondences. Examples 

included:  

• a Global match: all of one sequence was aligned with all of another  

• a Local match: a region in one sequence was matched with a region of another  

• a Multiple alignment: a mutual alignment of many sequences.  

 

Neural Network Promoter Prediction version 2.2 (NNPP2.2): This is a promoter analysis tool, 

located at the Berkeley Drosophila Genome Project (BDGP), http://www.fruitfly.org/seq_tools/ 

promoter.html.  

 

 

 

http://www.fruitfly.org/seq_tools/ promoter.html
http://www.fruitfly.org/seq_tools/ promoter.html
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C. RESULTS 

 
1. Characterisation of the HPI integrase, as a DNA-binding trans-acting protein  

 

1.2 Construction of recombinant integrase expression vectors

Native purified protein was required for investigation of the HPI integrase DNA-binding 

ability. Previous work of Wojciak et al. describes the importance of the N-terminal domain of 

the lambda integrase and loss of its activity in the case of N-terminal fusions. Therefore  

three different expression vectors for recombinant integrase purification were constructed.  

Two of them are N-terminal gene fusion vectors: pGEX-4T-3int and pQE-30int.  

Like other GST gene fusion vectors, pGEX-4T-3 carries the gene for Glutathione S-

transferase (GST) under control of the tac promoter for chemically inducible (with IPTG) high 

level expression. It also carries an internal lac Iq gene compatible for use in any E. coli strain. 

Utilizing the BamHI and NotI recognition sites present on the MCS of pGEX-4T-3, the int gene 

was introduced into the vector generating plasmid pGEX-4T-3int) so that an N-terminal GST-Int 

fusion was achieved (Fig. 3). 

 

Ptac
GST

bla

lacIq

pBR322 ori

pGEX-4T-3int

intHPI

BamHI

NotI

 
Fig. 3: Vector map of pGEX-4T-3int 

The intHPI gene is depicted by the orange 
arrow. Beta-lactamase gene is represented 
with a green arrow. pBR322 replication 
origin appears as black, and lacIq repressor 
is shown grey. The GST polypeptide is 
depicted as a crossed bar and Ptac promoter 
as a thin arrow. Cloning sites are marked on 
the map. 

 

 

 

For construction of pQE-30int expression vector int gene was introduced  into pQE-30 

plasmid by BamHI and HindIII recognition sites, thus providing  an N-terminal 6xHis-fusion, 

which facilitates binding to Ni-NTA (Fig. 4). The tag-less expression plasmid pET-3cint was 

constructed by cloning of int gene in a common expression vector pET-3c by NdeI and BamHI 

restriction sites (Fig. 5). 
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pQE-30int

T7

ColE1 oribla

intHPI6xHis

BamHI

HindIII

Fig. 4: Vector map of pQE-30int 

The intHPI gene is depicted by the orange arrow. 
Beta-lactamase gene is represented with a 
green arrow. Col E1 replication origin appears 
as black. The 6xHis polypeptide is depicted as 
a blue bar and T7 promoter as a thin arrow. 
Cloning sites are marked on the map.  

All expression vectors were proven by sequencing and introduced into the E. coli 

expression strain BL21 (DE3). Expression was induced with IPTG. The induced cultures 

presented with a strong 48 kDa band in the case of  pQE-30int and pET3cint expression vectors 

and 74 kDa band (comprising 26 kDa of GST and 48 kDa from the Int) in the case of  pGEX-

4T-3int vector. 

 

 

 

 

 

 

T7

ColE1

 

ori

 

 

intHPI

pET3cint

bla
BamHI

NdeI

Fig. 5: Vector map of pET3cint 

The intHPI gene is depicted by the orange 
arrow. Beta-lactamase gene is represented 
with a green arrow. Col E1 replication origin 
appears as black. The T7 promoter as a thin 
arrow. Cloning sites are marked on the map. 

 

1.3 Integrase activity assay 

While only cis-activity of the HPI integrase protein was shown in the earlier study (Rakin 

et al, 2001), we here have developed an assay for trans-activity testing of different integrase 

derivatives. 

The cells of each strain with different integrase expression vectors were grown in LB 

medium to an A600 nm of 0.4, IPTG-induced and harvested at A600 nm of 0.8. Such cells were 

subsequently used for the preparation of electrocompetent cells. 
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Each strain expressing integrase  was electroporated with 100 ng of pKR531 suicide 

plasmid (Fig. 6), a pKR528 derivative (Rakin et al, 2001), containing reconstituted attP site of 

HPI, as well as inactivated gene of integrase. The described element, being assisted by trans-

acting functional integrase protein, could only integrate into the BL21(DE3) chromosome. 

Otherwise pKR531 would be eliminated.  

 

 

 

 

 

 

 

 

 

bla

rpsL

attP

R6K

intHPI∆

aph

pKR531

ClaI

PstI

Fig. 6: Vector map of pKR531 

The truncated intHPI∆ gene is depicted by the 
interrupted orange arrow. Beta-lactamase gene 
is represented with a green arrow. R6K 
replication origin appears as black, and rpsL 
gene is shown grey. The attP site is depicted 
as a crossed bar and kanamycin resistance 
gene as a blue arrow. Cloning sites are marked 
on the map.  

After electroporation BL21(DE3) cells were plated on LB agar supplemented with 

kanamycin and resistant clones were counted. Only one strain with pET-3cint construct showed 

stable efficiency of transformation by pKR531 plasmid (Table 4). This indicates, that even 6 

additional N-terminal histidine residues in the case of 6xHis-Int fusion lead to the crucial loss 

of integrase activity. 

T
c

 

c

lo
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able 4: Transformation efficiency of different integrase-producing strains by pKR531 
onstruct 

Strain PFU 

E. coli BL21(DE3)[pGEX-4T-3int] 0 
E. coli BL21(DE3)[pQE-30int] 0 
E. coli BL21(DE3)[pET-3cint] 2.3Χ102
The specificity of int-mediated integration of pKR531 plasmid in E. coli BL21(DE3) 

hromosome was proven by PCR. To detect integrants and determine the exact chromosomal 

cation of the integrative module, four direct asn primers (asnT167, asnW761, asnU211 and 

snV251, Table 2, Fig. 5) were used in the PCR, together with the reverse C15-205 primer  
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Fig. 7: E. coli cluster of asn genes and PCR-analysis of integration sites 
The black arrows depict the position of the primers. The solid black line with orange arrows 
denotes the fragment of E. coli chromosome with asn tRNA genes. Criss-crossed lines with 
vector map denotes one of the four possible pKR531 integration sites. DNA-bands on the 
agarose gel are asn tRNA/pKR531 integrant-specific PCR-fragments.     

asnU asnTasnV asnW 

asnT167 asnW761 asnU211 asnV251
c15-205

 bla

rpsL

attP

R6K

aph

pKR531
intHPI∆

asnV asnUasnWasnT 

(located in the first half of the inactivated integrase gene). All tested clones showed site-specific 

chromosomal integration of the pKR531 construct (Fig. 7), it means that E. coli 

BL21(DE3)[pET-3cint] strain produces active HPI integrase, and can be used for isolation of 

recombinant protein protein. 

 

1.4 Purification of recombinant IntHPI  

The BL21(DE3)[pET-3cint] strain was used for purification of integrase protein. Cells 

were grown in LB medium with glucose (supplemented with  carbenicillin) at 37 °C to 

logarithmic phase and induced with IPTG for 5 h. Cells were lysed by several French press 

passages and clear cell lysate containing IntHPI was applied onto heparin-sepharose affinity 

column (with high affinity to DNA-binding proteins) and eluted with with a gradient to 1 M KCl 

(Fig.8).   
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63.8 kDa 
80.9 kDa 

49.5 kDa 
 

IntHPI
37.4 kDa  

26.0 kDa  
19.6 kDa 

 

1   2   3    4   5    6   7    8    9   10  11 12  13  14 15  

Fig. 8: Coomassie-stained SDS-PAGE of protein fractions after elution by salt gradient 
from heparin-sepharose affinity column 
Lane 1: protein molecular weight marker. Lanes 2-15: protein fractions. 
Relevant protein marker sizes are indicated on the left with arrows. The stained IntHPI protein 
band is indicated on the right with arrow. 

 

 

 

After the first step, fractions 2-8 were mixed and applied onto size-exclusion chromatography 

column. The most pure fraction (Fig. 9, lane 3) was used for the next experiments. Protein purity  

was evaluated  visually and comprised 99% (SDS-gel estimated).  

 

1     2      3  

80.9 kDa 
63.8 kDa 
49.5 kDa 

Fig. 9: SDS-PAGE of purified IntHPI p
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coli BL21(DE3)[pET-3cint] cell lysate; 
lane 3: purified IntHPI protein.  
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the left with arrows. 

n 

37.4 kDa 

26.0 kDa 

19.6 kDa 

 



C. RESULTS   43
 
 

1.5 Integrase/attP electrophoretic mobility shift assay 

To promote its integrase activity, IntHPI must possess DNA-binding ability, i.e. it must 

bind and interact with attP attachment site, involved in site-specific recombination of the HPI. 

The ability of recombinant IntHPI to bind DNA was evaluated by electrophoretic mobility shift 

assay using 32P-end labelled DNA probes generated by PCR. The 358bp fragment containing 

HPI attP was efficiently bound by the IntHPI protein (Fig. 10). In the case of higher protein 

concentration we were able to observe two mobility shift bands per lane. It suggests HPI 

integrase binding to the attP site as a dimer or that attP contains two IntHPI -binding sites. 

IntHPI - +      IntHPI concentration        - 

Bound DNA 
Unbound DNA 

1        2       3        4        5         6        7 

Fig. 10: Mobility of IntHPI /attP complexes in native 5% PAGE 

Lane 1: labelled DNA without IntHPI protein; lanes 2-7: 30, 10, 5, 2, 1 and 0,5 pMol IntHPI 
protein respectively. 

 

1.6 IHF/attP electrophoretic mobility shift assay 

Sequence analysis of HPI attP showed presence of a DNA sequence with high similarity 

to integration host factor (IHF) binding site (Rakin et al, 2001). Possible influence of IHF could 

be uncovered using IHF/attP electrophoretic mobility shift assay. Pure E. coli IHF protein was 

supplied by Steven Goodman (University of Southern California, Los Angeles, USA) and 

prepared by the protocol of Nash (Nash and Robertson, 1981). As expected, IHF efficiently 

binds attP site of HPI. It also bind cooperatively, as we could observe an additional band with 

lower mobility at higher protein concentration (Fig. 11). It seems like IHF plays role in 

recombination of HPI. It has been shown previously that IHF creates bends in lambda attP DNA 

to help attP condense into a compact structure that is activated for recombination (Robertson 

and Nash, 1988). 
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+         IHF concentration       - 

Bound DNA 

Unbound DNA 

1     2      3      4     5      6      7      8      9 

Fig. 11: Mobility of IHF/attP complexes in native 5% PAGE 
 
Lanes 1-8: 30, 15, 10, 5, 3, 1, 0.5, and 0.1 pMol IHF respectively; lane 9: labelled DNA 
without IHF protein. 

  

 

2. Recombination Directionality Factor of the HPIYps

 

2.1. Bioinformatic analysis of AT-rich region of HPI, defining of the putative excisionase of 

the HPIYps

The HPI has a mosaic structure and consists of two defined parts, the yersiniabactin “core” 

and the variable AT-rich part that differs in two evolutionary lineages, HPIYen and HPIYps. It is 

significant, that the recombinase and AT-rich ORFs sequences showed markedly different codon 

biases. The recombinase gene has an average G+C content (52% G+C overall and 56% G+C at 

3rd base positions), while the AT-rich ORFs have a low G+C content (43% overall and 42% at 

3rd base positions). By comparing the two AT-rich variable parts of the high-pathogenicity 

island of Y. pestis / Y. pseudotuberculosis with that of Y. enterocolitica two HPIYps ORFs with 

potential HTH DNA binding motifs, orf2 and orf5, were selected as possible candidates for the 

role of an excisionase (Fig. 12). Both ORFs were aligned with a group of recombination 

directionality factors (RDFs) of Gram-negative bacteria (Fig. 13). It turned out that orf2 is 50% 

similar and 35.1% identical to the phage P4 Vis excisionase (Y9K_BPP4, Fig. 13) belonging to 

the L5-pSAM2-SLP1 family of putative RDFs (Lewis and Hatfull, 2001). In contrast, another 

ORF with a putative DNA-binding domain, orf5, had no obvious similarity to RDFs but contains a 

Zink fingers domain that is more typical for transcriptional regulators. The putative excisionase 

Orf2 consists of 61 aa, has a molecular mass of 7200 and is predicted to have a basic pI of 9.69. 
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HPIYps

HPIYps

HPIYen

attR 

attR 

attL 

attL 

Fig. 12: Physical map of HPIYen and HPIYps evolutionary lineages (a); AT-rich part of 
HPIYps (b). 

1 7410 20 30 40 50 60(1)
--------SAVRILRLPAVIQKTGMARATIYDWLNPKSPRYDATFPKKRMLGVKSVGWIEAEIDEWLSQR----ALPA_ECOLI (1)
-------ITQERFLRVPEVMHLCGLSRSTIYELIRKG------EFPPGVSLGGKNVAWLHSEVTAWMAGRIA--(1)Q38413_BPP4
-------ITQERFLRVPEVMHLCGLSRSTIYELIRKG------EFPPGVSLGGKNVAWLHSEVTAWMAGRIAGRY9K_BPP4 (1)
-----------RLIRFREVLTMTGLSRSSLYRFIEEN------QFPPQVQLGGRAVAWVEGEYQEWIAGRITNRQ9KR38_VIBCH (1)
-----------RFLKLKEVMEKTALSRSAIYRKMNDG------EFPQSVSLGERAIAWVESEWDEWMDFCLKQRQ9KR58_VIBCH (1)
-----------RFLRLKDVMSLTGLGRSTIYKFMADET-----DFPKSVPLGGRAVAWVESEIEEWMESRLSMRQ9KUL8_VIBCH (1)
-------MTSYQLLRLRQVEQKTGLKRSQIYLYMKEG------AFPRSIKIGPASVAWLESEIDEWINKKLSDRTranslation of Exc (1)
-----------RILRLEEVEAKSGFKRAHIYMLMKKR------QFPQALLRGVRAVGWDSIEIDQWIAERVNNRQ9PCJ3_XYLFA (1)
VPDEIDRDQAFNERCLEALIEQSRLRPTPTPSLQHCRFCG--KAIPEKRRQ-TLPGVTTCTDCQSILEKRRR--(1)
           R LRL EVM  TGLSRSTIY  M      FP  V LG RAVAWLESEIDEWMA RI R

Translation of AT_orf5
Consensus (1)

     transl.orf5 
Consensus 

ALPA_ECOLI 
Q38413_BPP4 

Y9K_BPP4 
Q9KR38_VIBCH 
Q9KR58_VIBCH 
Q9KUL8_VIBCH 

  transl.orf2 
Q9PCJ3_XYLF

Fig. 13: Comparison of orf2 and orf5 with other potential excisionases of E. coli 
(ALPA_ECOLI), bacteriophage P4 (Q38413_BPP4, Y9K_BPP4), Vibrio cholera 
(Q9KR38_VIBCH, Q9KR58_VIBCH, Q9KUL8_VIBCH), Xylella fastidiosa 
(Q9PCJ3_XYLFA). 
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2.2 Promoters of orf1 and orf2  

Orf2 located 139 bp downstream of the orf1 stop codon. We were not able to identify the 

position of the orf2 promoter using available computational programs aimed to localize 

prokaryotic promoters (Neural Network Promoter Prediction 2.2). Also our attempts to localize 

the orf2 promoter using RACE and primer extension methods failed. The reason for this might 

be a low activity of the possible orf2 promoter, if at all present. To prove this we fused the 

regions located 141-bp upstream of the orf1 translation start and the region between the end of 

orf1 and the start of orf2 to a luciferase gene reporter. The fusions showed different activities, 

with orf1 promoter having at least 2,75x higher activity than the putative orf2 promoter. In 

contrast, the intHPI promoter of the recombinase gene has a much higher activity (77 times higher 

than the orf2 promoter). For comparison, asnT tRNA gene promoter showed nearly the same 

activity with orf1 promoter (only 1,1x times higher).   

By RT-PCR with primers HPI 878 (annealing in orf1) and HPI 174 (annealing in orf2) we 

proved that orf1 and orf2 are transcribed as one mRNA and the orf1 promoter might also control 

the activity of the orf2 gene. Thus we mapped the promoter of orf1 in HPIYps. The 

transcriptional start of the orf1 promoter mapped by RACE resides 79 bp upstream of the 

translational start of orf1 (Fig. 14). 

AATAGTCACCCCATAGGCCTGTACATGTTCACTCAGAAATATACATCCTTTTCTCTG 
 
TCATAAACCCTCTGATTAATCATAAATAAATACTTGTGACACCAATCTTTTTCCTT 
 
AACGGAACGAATTGTTGTGTAGAAGGAGATAATATTATG... 

 

+1 -10 

5 

 

GTCACAGGAG

...CCAGCTTTCTCTCAGGCTTCCACTGTGTTTTTTTATTCTCCGGCCACCGTTTATTTC
 
A GATATATG 

 SD

B 

A 
-3

SD

Fig. 14: Predicted promoter structure (-35, -10 elements and +1 transcriptional start) 
and ribosome binding sites (SD) of orf1 (a) and orf2 (xisHPI) (b). 
 

 

  

 



C. RESULTS   47
 
 

2.3 Construction of orf2 mutant  

We proposed that orf2 gene might encode a putative excisionase protein essential for 

efficient HPI excision. To prove this we inactivated this gene by the method of one-step 

inactivation of chromosomal genes was applied (Datsenko and Wanner, 2000). A plasmid pKD3 

was used as a template for generation of PCR fragment containing chloramphenicol resistance 

cassette flanked by FRT-sites and 50-nt homology arms for orf2 gene (Fig. 15). For this primer 

pair Exc_rev/ Exc_for were employed (Table 2). Y. pseudotuberculosis YPS06 cells harboring 

pKD46 plasmid were grown in the presence of arabinose to induce Red recombinase. Such 

competent cells were transformed by the purified PCR product. Recombinant clones were 

selected on LB agar plates containing chloramphenicol. Replacement of orf2 by 

chloromphenicol resistance cassette was confirmed by PCR and sequencing. The resistance 

cassette was removed using thermoinducible FLP recombinase on pCP20 plasmid. The resulting 

strain was designated YPS06 xis. 

template 

      homology arm 

chromosome 

homology arm 

PCR fragment 

r 

r 

r 

c. 

b. 

a. 

   primer primer 

Fig. 15: Construction of the orf2-deficient mutant by one-step gene inactivation. 

a. Preparation of PCR product containing chloramphenicol resistance gene (Cmr), FRT 
recombination sites and 50 bp homology regions for homological recombination. 
b. Red recombinase-mediated homological recombination. 
c. Removing of resistance cassette by FRT-recombination sites mediated by FLP 
recombinase. 
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2.4 Effect of orf2 on excision of HPI in Y. pseudotuberculosis YPS06 and YPS06 xis strains 

To prove that orf2 has an excisionase activity, we compared HPI excision rates in Y. 

pseudotuberculosis YPS06 wild type and YPS06 xis strains. To determine the efficiency of 

excision we quantified attP-targets in both strains by Real Time PCR. For quantification of the 

attP DNA, pKR528 plasmid (Table 1) was serially diluted (ranging from 2x109 to 2x100 

copies) and amplified by the LightCycler (Fig. 16).  

Total DNA isolated from YPS06 and YPS06 xis was analysed in several dilutions. The 

concentration of attP, or, correspondingly, the circular form of the excised island, was 

approximately eightfold higher in the wild type strain, than in its isogenic xisHPI mutant (Fig. 

17). This implies a direct role of orf2 in excisive recombination of the HPI. Orf2 was therefore 

denoted as XisHPI for HPI excisionase. 1µg of Y. pseudotuberculosis YPS06 wild type genomic 

DNA contains 150-200 copies of the excised island. The same amount of chromosomal DNA of 

YPS06 contains 1,4x108 copies of a single-copy chromosomal marker attL. That corresponds to 

1,4x108 cells excising 150-200 HPI copies. The frequency of excision of the HPI can be 

estimated 10-6. Inactivation of the xisHPI gene reduced this frequency approximately eightfold, 

to 10-7.  

B. 

A. 

Fig. 16: Amplification of the serially diluted plasmid pKR528 for external 
standardization (a) and Linear regression of the LightCycler assay (b). 
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4b 
5a 

5b 
4a 

3a,b 

2a,b 

1a,b 

6a,b 

Fig. 17: Real Time PCR quantification of the circular form of the HPI.  

1-3: control reaction for the chromosomal marker attL - 1µg, 100ng and 10ng of the 
chromosomal DNA, respectively.  
4-6: specific reactions for the attP site - 1µg, 100ng and 10ng of chromosomal DNA, 
respectively. 
 a- YPS06 wild type, b- YPS06 xis. 
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2.5 Construction of recombinant excisionase expression vector. 

The excisionase gene xisHPI, was amplified from Y. pestis KUMA chromosomal DNA by 

PCR using primers ORF2F Nde and ORF2R Bam (Table 2), introducing NdeI and BamHI 

restriction sites. The PCR-product was cloned into vector pMosBlue using the pMosBlue blunt 

ended cloning kit (Amersham International, Little Chalfont, U.K.). The resulting plasmid was 
 

T7

ColE1

 

ori

 

  Fig. 18: Vector map of pET3cxis 

The xisHPI gene is depicted by the orange 
arrow. Beta-lactamase gene is represented 
with a green arrow. Col E1 replication origin 
appears as black. The T7 promoter as a thin 
arrow. Cloning sites are marked on the map. 

 

 

 

 

digested with NdeI and BamHI and the insert was cloned into expression vector pET-3c to 

generate plasmid pET-3cxis (Fig. 18). Expression vector was proved by sequencing and 

introduced into the E. coli expression strain BL21 (DE3). 

 

2.6 Excisionase protein expression and purification 

The orf2 gene encoding excisionase was overexpressed in E.coli BL21 (DE3) containing 

pET-3cxis. Cells were grown in LB medium with glucose (supplemented with  carbenicillin) at 

37 °C to logarithmic phase and induced with IPTG for 5 h. Cells were lysed by several French 

press passages. For isolation of excisionase standard scheme for DNA-binding 

XisHPI

pET3cxis

bla
BamHI

NdeI

8,4 kDa 

37,4 kDa 

14,9 kDa 

19,6 kDa 

63,8 kDa 

XisHPI

1      2     3     4      5       6      7 
Fig. 19: Purification of excisionase. Protein fractions after elution by salt gradient from 
heparin-sepharose affinity column  

Lane 1: Molecular weight marker; lane 2: uninduced cells; lane 3: induced cells; lanes 4-7: 
protein fractions. Relevant protein marker sizes are indicated on the left with arrows. The 
stained XisHPI protein band indicated on the right with arrow. 
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63,8 kDa 

37,4 kDa 

19,6 kDa 

14,9 kDa 

8,4 kDa 

1    2     3      4      5      6     7      8      9     10 

 

Fig. 20: Purification of excisionase. Protein fractions after size-exclusion chromatography  
Lane 1: Molecular weight marker; lane 2: protein sample before gel-filtration; lanes 3-10: 
different through-fractions of the sample. Relevant protein marker sizes are indicated on the left
with arrows. 

 proteins purification was applied. Cleared lysate was loaded onto a heparin column using a 

SMART system (Pharmacia Biotech) and proteins were eluted with a salt gradient. Fractions 

containing the excisionase protein (Fig. 19) (elution at approximately 0.7 M NaCl) were pooled 

and concentrated. Concentrated protein sample after heparin-sepharose column was gel-filtrated 

on a Superdex 75 HR 10/30 column and the purity of collected fractions were analyzed by SDS-

PAGE (Fig. 20). The most pure fractions (Fig. 20, lanes 5-8) were used for next experiments. 

Protein purity was estimated by SDS-gel visual overview and comprised 99%.  

 

2.7 Excisionase-DNA binding experiments  

To promote its excisionase activity XisHPI should possess DNA binding ability, that is to 

bind and interact with the attachment sites involved in site-specific recombination of the HPI. 

Indeed, the XisHPI amino acid sequence contains predicted H-T-H DNA binding motive. To test 

its DNA binding ability, we performed an electrophoretic mobility shift assay using a purified 

recombinant excisionase and DNA fragments containing attP and attB regions, labelled with 

32P. The fragment containing attP was efficiently bound by the XisHPI protein. In contrast, 

XisHPI did not specifically change the mobility of the attB-carrying fragment (Fig. 19).  

To prove specificity of protein-DNA binding, the same EMSA experiments were 

conducted, but with 100-fold excess of the nonspecific competitor DNA. For this purpose a non-

specific competitive 176 bp DNA probe was generated from genomic DNA of Y. enterocolitica 

O: 8 using primers FyuAF and FyuAR (Table 2). Addition of the nonspecific competitor DNA 

(up to 1:100 excess) did not alter the excisionase-attP specific binding (Fig. 20). 
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Fig. 21: Comparative electrophoretic mobility shift assay (EMSA) of the excisionase
with (A) attP and (B) attB DNA fragments.  

Digits below the gels represent the quantity of the applied Xis protein; (--), probe without 
addition of protein. 

 

 

 

 

1      2      3       4       5       6      7 

Xis [nM]          --    4000    400     80     4000   400     80 
 

Fig. 22: EMSA assay of the excisionase with attP DNA fragment without (lanes 2-4) 
and with (lanes 5-7) addition of 100X-excess of non-specific competitor. 

Digits below the gel represent the quantity of the applied Xis protein; (--), probe without 
addition of protein. 
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To localize the binding regions, we performed EMSA of XisHPI with overlapping fragments of 

attP site, labeled with fluorescent dye FAM. The purified excisionase demonstrated efficient 

binding with all fragments besides one, representing the left part of attP (Fig. 23). 

1     2     3    4     5    6    7     8 

A. B. 

DR2

DR3

DR1
DR1

DR1
DR1

DR2

-10

-35

core

Frag1
Frag2
Frag3

Frag4
Frag5
Frag6

P O P’

+   --    +    --    +    --    +    -- 

Fig. 23: a. EMSA of the excisionase protein (8 µM) with different fragments of HPI-
attP; b. A diagram of HPI-attP site (POP’) 
Lanes 1,2: Frag1; lanes 3,4: Frag. 2; lanes 5,6: Frag. 3; lanes 7,8: Frag. 4. 
(+) - probe with addition of protein, (--) - probe without addition of protein.  
DRs – direct repeats, -35; -10 – promoter regions of intHPI. 

 

To delimit XisHPI binding sites, we performed DNase I protection experiments with FAM-

labeled attP DNA fragment of HPIYps and recombinant XisHPI protein (see Materials and 

Methods, p. 32). Footprinting analysis proved the presence of one protected region extending 

between the core and the DR3 direct repeat in the right part of the attP (Fig. 24). Thus, XisHPI 

recognizes the right moiety of the attP site that is presented in the recombinant attL site in the 

integrated form of the HPI and serves as a recognition site for the excisive recombination. 
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Fig. 24: DNase I footprinting of attP-XisHPI complexes and schematic structure of the 
attP-site 
Lanes 1-4: 8, 0.8, 0.08, and 0 µM excisionase protein, respectively; lane 5: DNA molecular 
weight marker. Protected region is shown with vertical black line on the left. 
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3. Evolution of recombination apparatus of GEIs integrated in asn tRNA genes 

 

3.1 Comparison of HPI with E. coli Ecoc54N GEI 

The HPI is known to integrate into asn tRNA genes by means of a site-specific 

recombinase or integrase, IntHPI (Rakin et al., 2001). The search for other genomic islands that 

utilize the same recombination target within the Genomic Islands Database 

(www.indiana.edu/~islander/) revealed a new uncharacterised genomic island Ecoc54N in the 

genome sequence of the uropathogenic E. coli CFT073 (Welch et al., 2002). It seems like that 

Ecoc54N also recognizes asn tRNA gene for integration (asnW tDNA). The comparison of 

Ecoc54N and HPIYps uncovered surprising homology of their recombination apparatus (Fig. 25). 

The recombinase genes have 80% homology at nucleotide level and 83% homology in amino 

acids. Also sequences of the attachment sites show 90% similarity (Fig. 26). Besides 

recombinase gene and attachment sites, Ecoc54N carries a cluster of putative polyketide 

synthesis genes with no similarity to the HPI core part. Thus the homology between these two 

islands is restricted only to sequences involved in recombination. Although some of the HPI 

“core” genes also encode polyketide synthases, they demonstrate no obvious similarity to the 

sequences found on Ecoc54N. Also no genes potentially involved in replication or transfer could 

be recognized on Ecoc54N. 

Ecoc54N island

HPIYps
36521 bp

6500 13000 19500 26000 32500

5850052000 45500 3900032500260001950013000 6500 

irp2 
 
 
XisHPIint attL attR

int attRattL 

irp1

59926 bp

Fig. 25: Comparison of two asn tRNA gene-recognizing genomic islands: HPIYps and 
Ecoc54N 

Open reading frames are depicted by the grey arrows. Homology regions are shown with
the red lines. The depiction of both islands is proportional to genetic distance indi-
cated by scale (in bp). 
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HPI-attP 

Ecoc54N-attP 

HPI-attP 

Ecoc54N-attP 

HPI-attP 

Ecoc54N-attP 

HPI-attP 

Ecoc54N-attP 

HPI-attP 

Ecoc54N-attP 

Fig. 26: Alignment of HPI and Ecoc54N attachment sites 

Structural elements of attachment sites depicted with squares. 

 

 

 

3.2 Recombinase of Ecoc54N island is active and able to promote excision 

We have tested Ecoc54N island for excision with the same approach applied for HPI. To 

detect this we tested the total DNA from E. coli CFT073 for the presence of the circular form of 

the island by nested PCR with primers Int_cft1087/ cftattp501 (1st PCR) and 

Intcft698_rev/cftattp601 (2nd PCR) (Table 2, Fig. 27a). Indeed the 890 bp PCR product (Fig. 

27b) contained the restored attP site of the Ecoc54N island that was proved by sequencing. PCR 

for the restored attB site yielded the product of the expected size. These data favor the presence 

of a functional recombinase in Ecoc54N island and demonstrate that Ecoc54N also appeared to 

be a mobile genomic island. However, no potential excisionase gene can be detected in 

Ecoc54N. 
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attL attR 
int 

Fig. 27: Nested-PCR amplification of Ecoc54N attP 
recombination site and attP-integrase containing fragment  
 
A. Ecoc54N island and positions of primers for nested PCR.  
B. Agarose gel electrophoresis of nested-PCR products, arrow 
indicates the length of amplified 2nd PCR product. Lane 1: 1st 
PCR of Ecoc54N attP fragment; lane 2: 2nd PCR of Ecoc54N  
attP fragment; lane 3: DNA molecular weight marker. 
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1  2  3 

B. 890 bp 
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 3.3 XisHPI does not assist the Ecoc54N excision 

To test whether XisHPI excisionase can assist excision of asn-tRNA-related island, 

Ecoc54N, we cotransformed E. coli CFT073 strain with pET-3C xis and pGP1-2 plasmids 

(Table 1). After induction of the excisionase, we purified the total DNA from CFT073 and 

CFT073 [pET-3C xis /pGP1-2] strains. Quantification of attP-targets in wild type CFT073 

compared to CFT073 [pET-3C xis /pGP1-2] was performed by Real Time PCR. Total DNA was 

analysed in several dilutions. However, we detected no differences in attP concentration or, 

correspondingly, in the excised circular form of the Ecoc54N island in both strains (Fig. 28). 

Thus, XisHPI did not effect the excisive recombination of the Ecoc54N island. 

5a,b 

4a,b 

3a,b 

2a,b 

1a,b 

Fig. 28: Real Time PCR quantification of the circular form of the Ecoc54N  

1-3: control reaction for the chromosomal marker attL - 1µg, 100ng and 10ng of the 
chromosomal DNA, respectively. 
 4-5: specific reactions for the attP site - 1µg and 100ng of chromosomal DNA, respectively. 
a- CFT073 wild type, b- CFT073 [pET-3C xis /pGP1-2]. 

 

3.4 XisHPI did not bind to Ecoc54N attP recombination site 

The reconstructed Ecoc54N attP site showed 90% similarity with HPI attP. To examine the 

possibility of the recombinant XisHPI excisionase to bind to Ecoc54N attP site, we carried out 

electrophoretic mobility shift assay with FAM-labelled Ecoc54N attP-bearing PCR fragment. 

However, even with high concentration of the excisionase (4µM) we detected no visible 
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fragment mobility shift on the gel (Fig. 27). Failure of XisHPI to bind to Ecoc54N attP site is 

possibly due to nucleotide substitutions in attP site (Fig. 24) that might explain XisHPI inability 

to assist excisive recombination of Ecoc54N. 

 

4. Mechanisms of GEIs dissemination 

We propose a mechanism of lateral transfer of GEIs, incapable for self-dissemination (like 

HPIYps) based on site-specific recombination of the excised island with the attB-presenting 

conjugative shuttle plasmid. The resulting cointegrate can be transferred by conjugation to a new 

host. This hypothesis was proven using RP4 - a wide host range IncP1 conjugative plasmid 

 

4.1 Construction of the shuttle plasmid 

The RP4 plasmid presenting attB attachment site (asn tRNA gene) suitable for HPI 

“trapping” was constructed in two steps (Fig. 30).  Firstly, the asn tRNA gene was combined 

with the sat3 streptothricine resistance marker to facilitate insertion of asn tDNA into RP4 

plasmid. To do this, plasmids pKR600 and pIE928 were digested with BamHI and equimolar 

amounts of linearized plasmids were ligated. The resulting product of the ligation reaction 

served as template for PCR amplification with primers RP_mut_for and RP_mut_rev (Table 2). 

The resulting PCR product contains the sat3 gene from pIE928 plasmid, the asn tRNA gene 

from pKR600 plasmid and 50bp-homology arms to the aph gene. A promiscuous plasmid RP4 

Fig. 29: EMSA of the XisHPI excisionase with (A) HPI-attP and (B) Ecoc54N-attP DNA 
fragments  
Digits below the gels represent the quantity (nM) of the applied XisHPI protein;  
(--) - probe without addition of protein (control). 

B. A. 

Xis [nM]            --      4000       400      80 Xis [nM]            --      4000      400     80 
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(IncP1) with a wide host range was selected as a trapping vehicle for Yersinia HPI. The 

kanamycin resistance gene of RP4 was substituted by this sat3-asn tRNA gene cassette by Red 

recombination. Recombinant clones were selected on LB agar containing streptothricine (50 

µg/ml). Insertion of the asnT RNA gene was confirmed by PCR and sequencing. The resulting 

plasmid was designated as RP4’ asn. We suppose that such transmissive attB-presenting plasmid 

(a “shuttle”) can be used for “trapping” and subsequent transfer of any functional integrative 

genetic element that recognizes asn tRNA gene as an attachment site.  

 

 

tra2

tra1

KanR

ApR

TetRRP4a 

Homology arms to 
Rthe Kan  gene 

 
 

attB sat3 

b 

Fig. 30: Constructing of the RP4’ asn “trapping” plasmid. 
R gene homology arms.  

 Red 
a. Amplification of attB/sat3 PCR product with addition of Kan
b Introduction of attB/sat3gene fusion in RP4 plasmid with the help of lambda
recombinase system

 

4.2 Trapping of the “mini-island” 

4’asn trapping plasmid to capture integrative elements, we 

tested

conjugation. To estimate the efficiency of RP4’asn-mediated mobilization of the “mini”-HPI,  

To prove the ability of the RP

 RP4’asn for its ability to recombine with pKR549 orf1-5r plasmid. The latter suicidal 

construct contains the integrative module of the high-pathogenicity island (Rakin et al., 2001) 

with addition of the entire gene cluster from the AT-rich region of the HPI carrying the 

excisionase (Lesic et al., 2004) (Fig. 31). Thus, this suicide plasmid might be considered as a 

free circular (or excised) form of the HPI lacking its core part that is responsible for the 

yersiniabactin biosynthesis. E. coli JM109 strain was transformed with pKR549 orf1-5r plasmid 

and clones with plasmid integrated into the asnT tRNA gene were selected. The RP4’asn 

construct was subsequently transferred into JM109 asnT::pKR549 orf1-5r integrant by 
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we carried out conjugation between RP4’asn-bearing JM109 asnT::pKR549 orf1-5r strain as a 

donor and HB101 as a recipient. Transconjugants were selected on two different selective 

media. The first one was supplemented with streptomycin, tetracycline and chloramphenicol, to 

select for mobilization of the pKR549 orf1-5r by RP4’asn, while the second one lacks 

chloramphenicol to estimate the transfer rate of the shuttle plasmid alone. We also transferred 

original RP4 (without asn tRNA gene) plasmid into JM109 asnT::pKR549 orf1-5r integrant. 

RP4-bearing JM109 asnT::pKR549 orf1-5r strain was used as a negative control in “mini-

island” trapping experiments. RP4’asn was efficiently transferred with 3.2X10-1 per donor CFU 

frequency whereas the integrated pKR549 orf1-5r was mobilized by RP4’asn with a frequency 

of 2.6X10-7 to 5.8X10-8 per donor CFU. In contrast, in negative control experiments efficiency 

of RP4 transfer was the same as for RP4’asn, but RP4 failed to mobilize the integrated pKR549 

orf1-5r plasmid (no Cmr clones). Transconjugant clones resistant to Sm, Tc and Cm were 

examined for the presence of the cointegrate of RP4’asn with pRK549 orf1-5r by PCR with 

aph_wild_for and c15-205 primers (Table 2). All 20 tested clones were positive and thus contain 

the recombinant plasmid.  

pKR549 orf1-5r
10863 bp

aph

rpsL

bla

int

orf2
orf3

orf5

orf1

orf4

orf1*

Kpn I (1668)

Not I (1732)

Xba I (10)

cat

pKR549 orf1-5r
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bla
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orf2
orf3

orf5

orf1

orf4

orf1*

Kpn I (1668)Kpn I (1668)

Not I (1732)Not I (1732)

Xba I (10)

 

cat

 

Fig. 31: Plasmid map of the suicide “mini-

island” construct pKR549 orf1-5r. 

 

 

d conjugation with donor obtained from different growth phases (log- 

and s

In order to investigate whether the growth conditions of the donor affect “mini-HPI” 

excision, we also performe

tationary phases), but detected no effect on mobilization efficiency. Reducing the 

temperature to 26°C also did not increase, or even slightly decreased the frequency of 

cointegrate transfer. 
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4.3 Horizontal transfer of the whole HPIYps

In previous experiments we demonstrated relatively high level of excision of the HPI in Y. 

pseudotuberculosis YPS06 strain. This strain carrying the HPI in asn3 tRNA gene (for better 

comparison we use designations of the asn tRNA genes proposed by B. Lesic et al. (Lesic et al., 

2004)) was selected for HPI “trapping” experiments.  

 

4.3.1 Introduction of resistance marker in to HPIYps  

To facilitate selection of the mobilized integrative element, the HPI was labeled with a 

selective marker. For introduction of a Cmr cassette a non-coding promotorless region of the HPI 

between fyuA and orf1 in YPS06 was selected (Fig. 32). The modified method of one-step 

inactivation of chromosomal genes was applied (Datsenko and Wanner, 2000). A plasmid pKD3 

was used as a template for generation of PCR fragment containing chloramphenicol resistance 

cassette flanked by FRT-sites and 50-nt homology arms for non-coding region of the HPI 

between fyuA and orf1. For this primer pair HPI_ins2 and HPI_ins2_rev were employed (Table 

2). Y. pseudotuberculosis YPS06 cells harboring pKD46 plasmid were grown in the presence of 

arabinose to induce Red recombinase. These competent cells were transformed by the purified 

PCR product carrying the Cmr cassette. 

Fig. 32: Labelling of Yps HPI by a resistance marker 
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 Recombinant clones were selected on LB agar containing chloramphenicol. PCR with primers 

HPI 1220 and fyu18 (Table 2) confirmed insertion of the chloramphenicol resistance cassette. 

The resulting strain was designated YPS06 HPI Cmr. 

 

4.3.2 Conjugative transfer of the HPIYps

The RP4’asn plasmid was subsequently transferred into YPS06 HPI Cmr strain by 

conjugation and YPS06 HPI Cmr (RP4’asn) strain was used as donor for further conjugation 

with HB101 recipient. The frequency of HPI Cmr marker transfer was 1.8x10-8 per donor CFU. 

The size of the plasmid DNA isolated from Cmr transconjugants was analyzed by the standard 

method of Kado and Liu (Kado and Liu, 1981). The plasmid DNA isolated from Sm/Tc/Cm-

resistant clones was significantly larger than the original RP4’asn plasmid (Fig. 33). Hence one 

can assume that this larger plasmid represents a cointegrate of RP4’asn with the mobilized HPI 

Cmr pathogenicity island. The accuracy of the HPI Cmr integration into asn tRNA gene of 

RP4’asn and preservation of the recombination attachment sites was proven by PCR with 

aph_wild_for/c15-205 and sat3_seq/IS131 primer pairs (Table 2) and subsequent sequencing of 

the PCR products (Fig. 34). Presence of the intact attL and attR recombination sites confirmed 

the precise character of the site-specific recombinbation. 

 

 

 

RP4’asn::HPI Cmr  
RP4’asn  

Fig. 33: Comparison of electrophoretic mobility in agarose gel of RP4’asn trapping 
plasmid with RP4’asn::HPI Cmr cointegrate 
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   A. 
   1 GTGCGGATTT TTGCGTCGGT AAGGGACATA TGGGGGTCAC TCCATTATCG 
  51 AACTAACCTG ACCCCAGATT TGACCACCAA TTTTTCCCGA TGCGTAGGGT 
 101 AAAATCAAAA TGCACCGAGA AGAGTTTTCA CACTAACCTG TTGAATCAAC 
 151 ATCAGATAAA GATTCGCAAG GATGCATGAA AACAGAAAAT TGGCTCCTCT 
 201 GACTGGACTC GAACCAGTGA CATACGGATT AACAGTCCGC CGTTCTACCG 
 251 ACTGAACTAC AGAGGAATCG CGTGAACGGG GCGCATCGTA TCCCATCACG 
 301 TGAGCCGCC 

 
 

   B. 
 
   1 ACAGACCTTT ATTATAAATA ATATAATAAC TTTCTTTATT TTCAATAAGT 
  51 TTTAAAAAAT AAATCATAGC AATGCCATGA AAAATACCAT GCTCAGAAAA 
 101 GGCTTAACAA TATTTTGAAA AATTGCCTAC TGAGCGCTGC CGCACAGCTC 
 151 CATAGGCCGC TTTCCTGGCT TTGCTTCCAG ATGTATGCTC TTCTGCTCCT 
 201 GCAGGCATGC AAGCTTGGAG AGGAAGGGTG CTGTTGAGCC GCTGAGACTA 
 251 GACGTAGATA AGCGAGGAGA GTAACTCAGT GATAGAAAAG CAAAAATCCC 
 301 GCTTAGTTTC CTAAACGGGA TTTTCTAAAT TTGGCTCCTC TGACTGGGAT 
 351 CGCCTTTGCC AGCAACTGGC TAATAATTAA GCTAAACCTG AATTGTATTT 
 401 CTGTCAAGAC CACCATAATG ACCACCAATA GTTGCGGGTT GCATAAATCT 

 
Fig. 34: DNA sequences of the attL (A.) and attR (B.) attachments sites of the 
RP4’asn::HPI Cmr cointegrate plasmid 

The intact core-sites are highlighted in bold italics. 
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4.4 Reconstruction of CAS-phenotype in Y. enterocolitica WA-TH− strain 

To prove that the mobilized HPI retains all the core genes responsible for yersiniabactin 

production, we transferred the RP4’asn::HPI Cmr cointegrate into the HPI-cured Y. 

enterocolitica WA-TH− strain (Pelludat et al., 2002). Transconjugants of WA-TH− obtained the 

ability to synthesize the yersiniabactin (CAS-positive phenotype, Fig. 35a) after acquisition of 

RP4’asn::HPI Cmr cointegrate. To prove the identity of yersiniabactin production by 

transconjugants, we tested their ability to feed Y. enterocolitica irp1, fyuA-gfp tester strain 

unable to synthesize yersiniabactin that contains a GFP reporter fused to the yersiniabactin 

receptor FyuA (Brem et al., 2001). The supernatants of both E. coli HB101 RP4’asn::HPI and Y. 

enterocolitica WA-TH− RP4’asn::HPI transconjugants contained the siderophore utilized by the 

FyuA receptor (Fig. 35b). Thus the complete functional HPI could be trapped by RP4 attB-

presenting shuttle plasmid. 
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Fig. 35: Detection of yersiniabactin production by CAS-agar assay (A) and Fe-
Ybt/fyuA-gfp reporter assay (B) 

A culture spot of Y. enterocolitica WATH- (1) and its RP4’asn::HPI Cmr -bearing derivative 
(2).  

GFP fluorescence (arbitrary units) of Y. enterocolitica WA-CS irp1::Kanr (pCJFY5G3) 
reporter strain grown in NBD medium supplemented with culture supernatants from tested 
strains. 

 



C. RESULTS   66
 
4.5 Cointegrate instability and HPI reintegration 

RP4’asn::HPI Cmr turned out to be relatively stable. However, the cointegrate might 

dissociate into RP4’asn plasmid and non-replicating HPI Cmr that has to rescue itself by 

reintegration into any non-occupied asn tRNA target gene. For example, the transposition of the 

HPI into the chromosomal asnW RNA gene (detected by PCR with c15-205/W761 primers) 

occurred by propagation of HB101 (RP4’asn::HPI Cmr) under standard conditions (LB, 37°C, 

18 hours). To isolate individual integrants with the HPI Cmr inserted into chromosomal asn 

tRNA targets, we performed enrichment of chloramphenicol resistant and tetracycline sensitive 

clones by cultivation of the HB101 (RP4’asn::HPI Cmr) with the plasmid-curing agent 

plumbagin (Bharathi and Polasa, 1991). Selected clones were analyzed by PCR with c15-205 

primer for the HPI integrase gene and primers T167, U211, V251 and W761 (Table 2, Fig. 5) for 

asnT, asnU, asnV and asnW tRNA genes, respectively, to prove chromosomal localization of the 

HPI. By this approach we were able to select 24 clones with HPI integrated in asnW, 11 clones - 

with HPI in asnU and 9 clones - with HPI in asnV (out of 44 analyzed). We were unable to 

select individual clones with HPI insertions in asnT locus, although PCR with the total cell 

lysate was positive with c15-205/T167 primer pair (Table 2) after plasmid curing.  

 

4.6 Efficiency of cointegrate transfer in Y. enterecolitica WA-C wild strain 

The RP4’asn::HPI Cmr  cointegrate were tested for the efficiency of conjugative transfer to 

the Y. enterocolitica O:8, strain WA-C. Conjugation was carried out with E. coli HB101 

(RP4’asn::HPI Cmr) and two different recipient strains: Y. enterocolitica O:8 WA-C and E. coli 

JM109. The transconjugants were selected on nalidixic acid (marker for the both Y. 

enterocolitica and E. coli JM109 strains), tetracycline and chloramphenicol (cointegrate 
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Fig. 36: Efficiency of RP4’asn::HPI Cmr cointegrate transfer to the Y. enterocolitica 
O:8 WA-C (left bar) and E. coli JM109 (right bar).  
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selective markers). The frequency of RP4’asn::HPI Cmr transfer was calculated as a qantity of 

resistant colonies (NalR, CmR, TcR) per donor CFU. The E. coli JM109 strain was shown to 

accept the cointegrate more efficiently than Y. enterocolitica WA-C strain (Fig. 36). According 

to our data the Y. enterocolitica WA-C strain may posess a powerfull restriction system.  

 

5. Factors reducing the freqency of the lateral gene transfer 

 

5.1 Determination of nucleotide sequence of the new restriction-modification (RM) system 

YenI 

The frequency of conjugative transfer of RP4’asn::HPI Cmr cointegrate to Y. enterocolitica 

WA-C strain was significantly reduced. This character can be ascribed to restriction-

modification (RM) system in Y. enterocolitica WA-C. For sequencing of the latter the pSAK2 

recombinant plasmid was applied (a kind gift of Virginia L. Miller), which carried 5039-bp 

DNA fragment with an yenI locus from Y. enterocolitica 8081 isolate. The sequence was 

deposited at the GenBank under the accession number AJ414030. The partial sequencing of the 

homologous ORFs from Y. enterocolitica WA-C showed complete sequence identity. Figure 37 

represents the organization of the yenI sequence and harbouring regions. DNA sequence analysis 

identified a single 2481 bp open reading frame that encodes 826 aa large polypeptide. 

We analysed sequences neighbouring the yenI gene and found a copy of IS1222 insertion 

sequence 667 bp upstream of the start codon of yenI. Multiple copies of IS1222 are present in 

the genome of Y. enterocolitica 1B. Also a 60-bp sequence with extremely high similarity (91-

88%) to phage PhiR73 and P4 phage sequences is located 562-bp upstream of the ATG start 

codon of yenI, between yenI and IS1222. Moreover, the G+C content of the yenI gene turned out 

to be atypically low for Y. enterocolitica, 37,8 G+C% in contrast to 46 G+C% of the yersiniae 

house-keeping genes.   

Fig. 37: Organization of the YenI restriction-modification system.
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5.2 Bioinformatic analysis of the yenI locus and comparison with other known restriction-

modification systems 

A resulted sequence was subjected to homology search in the NCBI databank. Analysis 

revealed two highly similar RM systems from PstI-isoschizomeric group, namely PstI and BsuI. 

The first one, PstI, is composed of two convergently transcribed genes, hsmPI and hsrPI, 

encoding PstI methyltransferase (MTase) and endonuclease (ENase), while BsuI has an operon 

of two genes, hsmBI and hsrBI, transcribed in tandem. In contrast, YenI RM system has one 

large ORF showing homology both to MTase and ENase of BsuI and PstI in its N- and C-

termini, respectively (Fig. 38). Thus, the YenI polypeptide shares two alternative functions, 

restriciton and modification. The N-terminal part of the YenI has 45% and 40% identity (61% 

and 58% positives) to PstI MTase and BsuI MTase, respectively, while the C-terminal part 

depicts 55% and 45% identity (76% and 59% postitives) to ENases of both isoschizogenic 

enzymes. Restriction endonucleases usually do not have extensive homology at amino acid 

sequence level, even when they recognize the same DNA sequence. PstI/BsuI /YenI isospecific 

group is one of the rare exceptions showing a high degree of homology. 

Fig. 38: Comparison of the three PstI isoschizomeric restriction-modification systems 

hsm - methylase (Mtase) and hsr - endonuclease (ENase) encoding genes, respectively. 

 

 

5.3 Construction of YenI expression plasmid 

Y. enterocolitica 0:8, strain WA-C was used for the isolation of the functional yenI gene. 

The restriction-modification gene was amplified from chromosomal DNA of WA-C by PCR 

using primers RMS Nde and RMS Bam (Table 2), introducing NdeI and BamHI restriction sites  
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Fig. 39: Vector map of pET3crms 

The yenI gene is depicted by the orange 
arrow. Beta-lactamase gene is represented 
with a green arrow. Col E1 replication origin 
appears as black. The T7 promoter as a thin 
arrow. Cloning sites are marked on the map. 

at the ends of the product. After partial hydrolysis of the PCR product by NdeI endonuclease, 

the full-length (2481 bp) DNA fragment was isolated from the gele and ligated into Nde I - Bam 

HI linearized expression vector pET-3c. The resulted plasmid was named pET-3crms (Fig. 39). 

Expression vector was proved by sequencing and introduced into the E. coli expression strain 

BL21 (DE3). 

 

5.4 Construction of endonuclease-deficient yenI ORF 

To create a restriction-deficient yenI mutant we deleted a NdeI - NdeI fragment inside yenI 

ORF, encoding the endonuclease activity of YenI (Fig. 40). For that, a PCR product containing 

full-length yenI ORF was digested by Nde I endonuclease, the resulted fragments mixture were 

Fig. 40: Construction of hsrYI deletion mutant of YenI restriction-modification 
system 
 The hsm and hsr parts of the yenI ORF are designated with gray and black colors, 
respectively.    
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ligated and used as a template for PCR amplification with RMS Nde and RMS Bam primers 

(Table 2). The products of the amplification were separated by agarose gel-electrophoresis and a 

product with approximate molecular mass of 2kb was isolated from the gel and cloned into 

pET3c plasmid. Sequencing proved the deletion of a NdeI - NdeI fragment inside yenI ORF. The 

resulted ORF was named yenI∆hsrYI and plasmid was named pET-3crms∆. Expression vector 

was introduced into the E. coli expression strain BL21 (DE3). 

 

5.5 Expression of yenI and yenI∆hsrY 

The yenI and yenI∆hsrYI genes were overexpressed in E.coli BL21 (DE3) containing pET-

3crms.and pET-3crms∆, respectively. Cells were grown in LB medium with glucose 

(supplemented with  carbenicillin) at 37 °C to early logarithmic phase and induced with IPTG 

for 5 h. A band with the molecular mass of 93 kDa corresponding a full-lenght Yen I protein 

appeared on SDS-PAGE, as well as a band with the predicted reduced molecular mass of 78 kDa 

corresponding to a truncated YenI recombinant protein (Fig. 41).  

Fig. 41: Recombinant YenI protein (lane 1) and endonuclease-deficient 
derivative YenIx (lane 2) after SDS-PAGE separation of E. coli producer 
strains cell lysate. Lane 3: protein molecular weight marker. Relevant protein 
marker sizes are indicated on the left with arrows. 

5.6 Construction of Yen I endonuclease-deficient mutant 

The modified method of one-step inactivation of chromosomal genes was applied (Fig. 

42). The yenI ORF was cloned in pCR2.1-TOPO vector resulting pCR2.1-TOPO/yenI construct. 

Subsequently, pCR2.1-TOPO/yenI plasmid was digested by ClaI endonuclease and blunt ended. 

The linear vector was ligated with Kanr cassette-bearing PCR fragment amplified from pKD4  
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Fig. 42: Schematic presentation of construction of the yenI-deficient mutant by 
one-step gene inactivation 
a. Digestion of pCR2.1-TOPO/yenI plasmid by ClaI cutting sites. 
b. Insertion of the Kanr cassette from pKD4 plasmid. 
c. Preparation of PCR product with particular homology arms. 
d. Red recombinase-mediated homologous recombination. 
e. Removing of resistance cassette by FRT-recombination sites. 
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plasmid using standard primers (Datsenko and Wanner, 2000). Resulting plasmid was used for 

PCR amplification of a fragment, carrying Kanr cassette and flanked by yenI homology arms 

with rms_for and rms_rev primers (Table 2). The purified PCR product was transformed into Y. 

enterocolitica WA-C cells harbouring pKD46 and grown in the presence of arabinose to induce 

the Red recombinase. Recombinant clones were selected by plating on LB-agar containing 

kanamycin (25 µg ml-1) and confirmed by PCR. The resistance cassette was removed using 

thermoinducible FLP recombinase on pCP20 plasmid. The resulting strain harbouring a deletion 

in yenI gene was proved by PCR and sequencing and named WA-C hsmYI, hsrYI.  

 

5.7 Methylation activity of YenI∆hsrYI protein 

An E. coli strain BL21 (DE3) containing pET-3crms∆ and producing truncated restriction-

deficient YenI protein was tested for its ability to methylate the single PstI site in the pET3c 

plasmid. To determine the methylation efficiency, methylated and non-methylated pET3c 
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Fig. 43: Efficiency of electroporation (cfu/µg DNA) of non- MYenI methylated and 
MYenI methylated plasmid DNA 
Y. enterocolitica WA-C wild type strain (A) and WA-C hsrYI, hsmYI mutant (B). 
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plasmids were electroporated in to Y. enterocolitica O:8 WAC wild type and its restriction 

deficient derivative WA-C hsmYI, hsrYI, in which the complete yenI ORF was deleted, as 

described above.  

Electroporation of non-MYenI methylated plasmid DNA into wild type strain showed a 

dramatic reduction of transformants (5 cfu/µg) in comparison with MYenI methylated plasmid 

DNA (7x103 cfu/µg). Similarly, the elimination of YenI restriction activity increases 

electroporation efficiency by at least 1000-fold (Fig. 43). Thus, both approaches namely, 

inactivation of endonuclease activity in recipient and YenI methylation in a donor strain might 

be applied to increase the efficiency of  genetic transfer to Y. enterocolitica biotype 1B. 

 

5.8 Efficiency of RP4’asn::HPI Cmr cointegrate transfer in Y. enterecolitica WA-C and 

WA-C hsrYI, hsmYI mutant 

To prove that YenI restriction-modification system was the factor reducing RP4’asn::HPI 

Cmr conjugative transfer to Y. enterecolitica WA-C, we carried out conjugation experiments 

with E. coli HB 101 (RP4’asn::HPI Cmr) as a donor strain and two different Y. enterocolitica 

O:8 recipients: WA-C and WA-C hsrYI, hsmYI. The transconjugants were selected on nalidixic 

acid (marker for the both recipient strains), tetracycline and chloramphenicol (cointegrate 

selective markers). The frequency of RP4’asn::HPI Cmr transfer was calculated as a proportion 

of resistant colonies (NalR, CmR, TcR) per donor CFU. As expected, the yenI mutant strain 

acquired the cointegrate more efficiently (6.4x103 cfu) than Y. enterocolitica WA-C strain 

(1.5x103 cfu) (Fig. 44). Thus, we can conclude that RM systems play reductive role in 

dissemination of genomic islands. 
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D. DISCUSSION 

 

1. Key elements, involved in mobility of Y. pestis HPI  

Genomic islands (and pathogenicity islands, PAIs, as part of this group of mobile elements) 

are, in contrast to temperate phages and plasmids, non-self replicating, non-transmissive genetic 

elements that utilize element-encoded highly efficient site-specific mechanism of recombination 

to rescue themselves. PAIs carry a recombinogenic module consisting of recombinase genes 

(encoding integrase and excisionase) and are flanked by two recombination sites, attL and attR. 

In addition to recombinase module, PAIs contain an insert of different size encoding various 

virulence-associated traits.  

The high-pathogenicity island (HPI) of Yersinia contains two main parts, the “core” and the 

variable AT-rich part. The “core” contains a functional cluster of genes coding for biosynthesis, 

transport and regulation of the siderophore yersiniabactin, and a recombinogenic module 

consisting of the recombinase gene (or integrase intHPI) and two hybrid recombination attL and 

attR sites recognized in excisive recombination. HPI integrase plays the main role in both 

integration and excision of the island. To promote its function IntHPI binds as a dimer to attP site, 

like in the case of lambda integrase (Wojciak et al., 2002). Another factor - IHF also efficiently 

binds attP site of HPI and might play role in recombination of HPI. It has been shown previously 

that IHF creates bends in lambda attP DNA so as to help attP condense into a compact structure 

that is activated for recombination (Robertson and Nash, 1988). To assist excision the HPI 

contains an excisionase that plays an architectural role in the reversion of integrative site-specific 

recombination. Such a recombination directionality factor is represented by XisHPI 

(corresponding to Orf43 of the Y. pestis KIM pgm-locus and YPO1904 of Y. pestis CO92 

complete sequence; (Deng et al., 2002; Parkhill et al., 2001) and Hex in Y. pseudotuberculosis; 

(Lesic et al., 2004) which is encoded in the variable AT-rich part of the island distinct from the 

location of the HPI-integrase (Fig. 12). In contrast to the clustering of integrase and excisionase 

genes in λ-like mobile elements, the xisHPI gene is separated from its corresponding P4 phage-

like integrase gene by a large insert of the yersiniabactin gene cluster.  

Interestingly, the variable AT-rich part of the HPI differs markedly in two evolutionary 

lineages, Y. enterocolitica (HPIYen) and Y. pestis / Y. pseudotuberculosis (HPIYps). And only the 

AT-rich part of the HPIYps group carries the excisionase gene. Also only the HPIYps is widely 

distributed among Enterobacteriaceae, especially in extraintestinal pathogenic isolates of E. coli 

(ExPEC) (Schubert et al., 2000; Karch et al., 1999). However, the AT-rich variable part is 

deleted in most E. coli apart from E. coli ECOR31 that contains the ICE form of the HPI 
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(Schubert et al., 2004a). This might indicate the loss of the AT-rich part in E. coli, but also the 

possibility that this part of the island has not yet been acquired by the HPIYps in E. coli. Absence 

of the right recombination site, attR, in E. coli makes it difficult to speculate further on any of 

these possibilities. Thus the excision of the E. coli HPI integrated into the asnT site might be 

abolished by deletion of the sequences encoding the excisionase as well as attR recombination 

site. In contrast, in Y. enterocolitica the HPIYen was rendered incapable of excision by another 

mechanism, namely by inactivation of the integrase gene, although this mechanism was also 

described for certain E. coli strains (Karch et al., 1999). The previous proposal that the HPIYen is 

immobile in Y. enterocolitica 8081 (Carniel et al., 1996) due to deletion of the recombination site 

seems to be wrong, because the 18-bp “core” fragment as well as the complete attR site is 

revealed in the genome sequence of Y. enterocolitica strain 8081 (genome sequence on the 

Sanger site http://www.sanger.ac.uk). 

We were not able to detect a functional promoter in the intergenic region between orf1 and 

xisHPI. However, the orf1 promoter seems also to be a promoter for xisHPI because both genes are 

transcribed as one mRNA molecule. On the other hand, orf1 promoter has also a much lower 

activity when compared to the integrase promoter. This fits well with the proposal on cooperative 

activities of both enzymes, integrase and excisionase, necessary for excisive recombination. If 

the excisionase gene has a low activity promoter, then an excess of the integrase will be obtained 

and the integrative recombination will exceed the excisive one. Decreased expression of the 

integrase (that might be effect of stress or other environmental factors) results in an increased 

rate of excision and correspondingly survival of the egoistic element, the HPI. However by an 

extremely low activity of the integrase, the excision is blocked due to the fact that integrase as a 

recombinase plays the main role in both processes. 

We have reconstructed a minimal recombinogenic part of the HPI to follow the 

recombination activity of the complete island using the integrative module (consisting of intHPI 

and reconstituted attP site) by addition of the xisHPI gene coding for the excisionase. Such a 

minimal recombinogenic module of the island was able to integrate into any unoccupied asn 

tRNA gene on the chromosome of E. coli although with a diminished frequency when compared 

to the integrative module lacking the xis gene (Antonenka et al., 2006). This might be explained 

as a result of XisHPI activity that reduced the integration rate of the recombinogenic module by 

increasing its excision or by direct competition with the integrase activity. Another ORF inside 

the HPI with DNA-binding ability, ORF5, did not influence excisive but perhaps might have 

effected the integrative recombination. 

 

http://www.sanger.ac.uk/
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In this study we have demonstrated the high affinity of binding of the recombinant XisHPI to 

the attP, but not to the attB recombination site (Fig. 21). This is in good agreement with the 

architectural role of the excisionase – to recognize the recombinant att sites in order to bring 

them together to the access of the recombination enzyme – the integrase. As it was shown in 

DNAseI footprinting experiments, XisHPI recognized the part of an attP site between the core and 

the DR3 repeat (Fig. 24). Particularly this region becomes a part of the recombinant attL site as a 

result of HPI integration in the host chromosome. This implies that the HPI excisionase acts 

asymmetrically by binding efficiently to attL recombination site to facilitate excisive 

recombination promoted by the IntHPI. A similar manner of preferential binding of the 

excisionase to the attL was also demonstrated for phage λ (Cho et al., 2002), which is in good 

agreement with our results. 

The second asn tRNA gene-targeted genomic island, Ecoc54N, was defined by the 

bioinformatic approach (www.indiana.edu/~islander/ ). It is supposed to carry the genes involved 

in polyketide synthase synthesis. According to our data Ecoc54N also contains a functional 

recombinase with high homology to IntHPI that recognizes asnW tRNA gene as its corresponding 

target and carries complete attL and attR attachment sequences (Antonenka et al., 2006). This 

enables us to take an insight into the evolution of the recombination systems having the same 

recognition pattern. However, no open reading frame with similarity to known excisionases 

could be defined within the island. Thus, in contrast to HPIYps, Ecoc54N does not contain the 

directionality factor that might assist the recombinase to accomplish the excisive recombination 

necessary for further dissemination of the island. This supplies us with the opportunity to access 

the effect of the HPI excisionase in another closely related recombination system. Nevertheless, 

the XisHPI was not promiscuous enough to support the excisive recombination by the “non-

cognate” Ecoc54N recombinase (Fig. 28).  

Moreover, we could show the effect of XisHPI on excision of the HPI to be insignificant in 

Y. pseudotuberculosis. Only an eightfold increase was detected by Real Time PCR (Fig. 17) and 

5 to 6-fold increase was documented by mobilization of the integrated mini-derivatives of the 

HPI carrying or lacking the excisionase by the RP4 attB trapping plasmid (Antonenka et al., 

2006). Analysis of the AT content and codon usage pointed out at possible different origin and 

independent acquisition of the recombinase and excisionase genes of the mosaic HPI. Thus one 

can speculate that the AT-rich part of the HPI with the excisionase has been acquired by the HPI 

by horizontal gene transfer at a different time and source than the recombinase. Perhaps the fine-

tuning of the acquired excisionase to its “cognate” recombinase and recognition site could 

explain its minute effect on the excisive recombination.  

http://www.indiana.edu/~islander/
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Nevertheless, the ability of both islands to excise with low but detectable rates even in the 

absence of the excisionase emphasizes the supplementary role of the promiscuous directionality 

factor in excision of the island. The main role in this process plays the recombinase responsible 

for both types of recombination, integrative and excisive. However, acquisition of an additional 

factor that could increase the excision rate might be advantageous for the successful 

dissemination of the genomic island. 

 

2. The model of the HPIYps dissemination 

The fate of the excised non-replicating HPI depends on its ability to recombine with the 

available free recognition site in the genome of the bacterial cell. If such attB recombination site 

is present on a conjugative plasmid the HPI becomes a part of the transmissive cointegrate and 

could be passively mobilized to a new recipient within the host range of the shuttle plasmid. 

However, the ongoing activity of the element-encoded recombinase may result in resolution of 

the cointegrate with liberation of a free form of the HPI able to re-occupy any available 

attachment site in the genome of the new host. The transconjugant, in its turn, might serve as a 

secondary donor and accordingly maintain the circulation of the non-transmissive island. 

According to our hypothesis there are three main requirements for the “shuttle”-mediated 

mobilization of the integrative elements (IEs): presence of a functional recombinase on the 

integrative element (integrase and directionality factor that increases the excision rate), non-

interrupted sequences involved in site-specific recombination of the IE (element-encoded attP 

and bacterial attB), and acquisition of a shuttle attB-presenting conjugative episome (Antonenka 

et al., 2005). Most site-specific systems are rather independent from host cell enzymatic 

machinery and thus element-encoded functions are mainly responsible for the fate of the 

integrated element. 

However, the activity of the HPI recombinase and consequently transposition of the HPI to 

new locations in the host chromosome is controlled by the mechanism of “promoter swapping”.  

In the integrated state the HPI recombinase gene is subjected to regulation of the asn tRNA gene 

promoter that is substituted by the reconstituted promoter in the attP site in a free from of the 

island (Rakin et al., 2001). Thus, the activity of the HPI recombinase in the cointegrate is 

regulated by a weak asn tRNA gene promoter controlled by the bacterial cell. This low activity 

of the recombinase protects the cointegrate from dissociation. After resolution of the cointegrate 

the recombination attP site is reconstituted and the recombinase gene becomes subjected to a 

much stronger promoter (p.46). Such swapping upregulates the activity of the recombinase and 
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increases probability to rescue the non-replicating island in any free recognition site in the 

chromosome of the host. Thus the bacterial cell may influence acquisition / loss of the HPI by 

mechanism of the promoter swapping. 

We were not able to collect individual clones with the HPI integrated in asnT tRNA gene 

although such insertions were detected in total cell lysates by PCR. This might be explained by 

possible disadvantages of such integration. The HPI, except for the ICE HPIECOR31, is integrated 

into the asnT tRNA gene in E. coli. However, the recombination apparatus of the HPI is 

inactivated in these integrants either by deletions in the recombinase gene or attachment sites 

(Karch et al., 1999; Schubert et al., 1999) making the further transposition of the HPI impossible. 

The recombinase gene is also inactive in all Y. enterocolitica 1B isolates (Rakin et al., 1999). 

However the integrative module of the HPI demonstrated no preference for integration in all four 

available attachment sites in E. coli (Rakin et al., 2001). Thus the HPI could integrate in any free 

recognition site, but its association with the asnT tRNA gene seems to be somehow unstable. 

Inactivation of the recombinase or attachments sites could stabilize insertion of the HPI. 

Plasmids, able to recombine with the chromosome (episomes) can also mobilize the 

neighboring DNA sequences as a result of incorrect excision (Fig. 45). Such substituted episomes 

carrying parts of the host bacterial chromosome are described in literature (also those isolated 

from pathogenic bacteria) (Holloway and Low, 1987). These episomes „loaded“ with the 
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recognition site for the integrative elements might serve as potential carriers of the integrated 

lements including genomic or pathogenicity islands. RP4 is a wide host range IncP1 plasmid 

hat is able to integrate into the chromosome of the host and form RP4-primed derivatives 

arrying various chromosomal markers including the targets for the site-specific recombination 

f the IEs. We have remodeled this process of incorrect excision of the RP4 plasmid by 

ntroducing attB site for Yersinia HPI (the asn tRNA gene) in vitro and produced a conjugative 

ehicle as shuttle for targeting the HPI (Fig. 46). Conjugative plasmids of other  incompatibility 

roups able to integrate in the chromosome can also be good candidates as “shuttles” for IEs.  

The HPI belongs to most active integrative elements known today. It is widely 

isseminated in Enterobacteriaceae. However, the mechanism of its circulation is completely 

bscure. A phage-based mode of the HPI distribution might be proposed due to the presence of 

he phage-like sequences in the HPI (P4 phage-like recombinase, directionality factor and att-
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sites with certain similarity to P4 phage attachment sites) (Buchrieser et al., 1998; Lesic et al., 

2004). However, such resemblance of the HPI genes to phage P4 ones might reflect the 

evolutionary linkage of all recombination structures involved in site-specific recombination, 

rather than their particular phage origin. Large size of most islands excludes efficient 

transduction by most phages especially by a satellite P4 phage. Thus, a shuttle plasmid-mediated 

mechanism of the HPI dissemination seems more probable although does not rule out other 

possibilities. Existence of the HPI with the remnants of a conjugative plasmid, ICE HPIECOR31, 

also speaks in favor of this mechanism (Schubert et al., 2004b). However, in contrast to the 

predominant non-conjugative form of the HPI, HPIECOR31, is restricted to a single E. coli isolate 

(Schubert et al., 2004a). 

Taken together, the attB-presenting conjugative plasmids can serve as shuttle vectors for 

integrative elements including the pathogenicity islands. Such plasmids loaded with the 

recombination target for PAIs can be readily generated in vivo as a result of incorrect excision. 

Minimal dependence of site-specific recombination on the host cell greatly facilitates plasmid-

mediated trapping of non-replicating group of the integrative elements. 

 

3. Restriction–modification systems as lateral gene transfer reducing factors. 

Unlike eukaryotes, which evolve principally through the modification of existing genetic 

information, bacteria have obtained a significant proportion of their genetic diversity through the 

acquisition of sequences from distantly related organisms. Horizontal gene transfer produces 

extremely dynamic genomes in which substantial amounts of DNA are introduced into and 

deleted from the chromosome. Genomic islands are important but not the only contributors to 

this process. The main barrier for a wide dissemination of GEIs and other mobile genetic 

elements are host restriction–modification systems. RM systems are composed of genes that 

encode a restriction enzyme and a modification methylase. They are often linked with mobile 

genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely 

related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile 

elements and cause genome rearrangements (Kobayashi, 2001; Naderer et al., 2002). The newly 

characterized YenI RM system in Y. enterocolitica O:8, biotype 1B is not exception of the rule. 

We analysed sequences neighbouring the yenI gene and found a copy of IS1222 insertion 

sequence 667 bp upstream of the start codon of yenI (Fig. 37). Multiple copies of IS1222 are 

present in the genome of Y. enterocolitica 1B, one of them a part of the high pathogenicity island 

of Yersinia. Also a 60-bp sequence with extremely high similarity (91-88%) to phage PhiR73 and 

P4 phage sequences is located 562-bp upstream of the ATG start codon of yenI, between yenI 
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and IS1222. Moreover, the G+C content of the yenI gene turned out to be atypically low for Y. 

enterocolitica, 37,8 G+C% in contrast to 46 G+C% of the yersiniae house-keeping genes. The 

presence of mobile genetic element in the vicinity of the yenI gene and atypical G+C content 

speak in favour of a horizontal acquisition of the yenI gene by biotype 1B Yersinia 

enterocolitica. 

The organisation of the YenI shown to be atypical in other means. It contrasts to the other 

two characterized RM systems of the PstI group of the isoschyzomers, PstI and BsuI. Both of 

them consists of two ORFs, encoding MTase and Enase (Smith et al., 1976; Xu et al., 1992). In 

contrast, YenI RM system has one ORF showing homology both to MTase and Enase (Fig. 38). 

Thus, the YenI polypeptide shares two different functions, restriciton and modification. The N-

terminal part of the YenI ORF has 45% and 40% identity (61% and 58% positives) to PstI MTase 

and BsuI MTase, respectively, while the C-terminal part depicts 55% and 45% identity (76% and 

59% postitives) to ENases of both isoschyzogenic enzymes. A specific recognition sequence, 

typical to the type II RM systems and single peptide organization, typical to type IV RM 

systems, make YenI unique among known restriction-modification systems (Antonenko et al., 

2003). 

Inactivation of YenI restriction-modification system resulted Y. enterocolitica WA-C hsrYI, 

hsmYI strain with high potential of foreign DNA acquisition. Our data shows increasing of 

transformation efficiency in such strain by at least 1000-fold in comparison with wild strain. 

Similarly, in vivo MYenI-methylated plasmid transforms Y. enterocolitica WA-C with high rates 

(Fig. 43). Also the frequency of conjugative transfer of HPI-loaded trapping plasmid in Y. 

enterocolitica WA-C hsrYI, hsmYI was as high as that in restriction-deficient E. coli laboratory 

strains (Fig. 36, 44). Thus, both approaches namely, inactivation of endonuclease activity in 

recipient and YenI methylation in a donor strain might be applied to increase the efficiency of 

genetic transfer to Y. enterocolitica WA-C. 
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E. SUMMARY 

 

The high-pathogenicity island encodes a highly efficient yersiniabactin system of iron 

acquisition responsible for mouse lethality in Yersinia. Although the HPI is widely disseminated 

among Enterobacteriaceae it lacks functions necessary for its replication and transmission. 

Therefore the mechanism of its horizontal transfer and circulation is completely obscure. On the 

other hand, the HPI is a genetically active island in the bacterial cell. It encodes a functional 

recombinase and is able to transpose to new targets on the chromosome. Here we report on a 

possible mechanism of the HPI dissemination based on site-specific recombination of the excised 

HPI with the attB-presenting (asn tRNA gene) RP4 promiscuous conjugative shuttle plasmid. 

The resulting cointegrate can be transferred by conjugation to a new host, where it dissociates, 

and the released HPI integrates into any unoccupied asn tRNA gene target in the genome. This 

mechanism has been proven with complete HPI labeled with an antibiotic resistance marker. 

After acquisition of the mobilized complete form of the HPI, the ability of the HPI-cured Y. 

enterocolitica WATH- strain to produce yersiniabactin has been restored. Such „trapping“ of 

pathogenicity islands and subsequent shuffling to new hosts by a conjugative replicon carrying a 

suitable attB site could be applied to other functional integrative elements and explain wide 

dissemination of PAIs. 

 
Another genomic island Ecoc54N targets the same asn tRNA genes to integrate into the 

bacterial chromosome. Ecoc54N island encodes a polyketide synthase with an unknown function 

in the uropathogenic E. coli CFT073 strain. A recombinase orthologue with high similarity to 

intHPI that promotes site-specific recombination (both integrative and excisive) with its 

corresponding attachment targets is also present in Ecoc54N. In addition, the HPIYps of the Y. 

pestis / Y. pseudotuberculosis evolutionary lineage encodes the excisionase (recombination 

directionality factor, XisHPI) that facilitates excision of the island. However, no sequence 

resembling excisionase gene could be found in Ecoc54N. The rate of the HPIYps excision 

estimated by Real Time PCR was 10-6 in Y. pseudotuberculosis. The presence of the excisionase 

increased the efficiency of the excisive recombination only 8-fold. However, the introduction of 

the xisHPI in E. coli CFT073 did not influence the excision of Ecoc54N. The XisHPI is encoded by 

the variable AT-rich part of the HPIYps and substantially differs from its cognate recombinase in 

A+T content and codon usage. Also the XisHPI – protected region, defined in HPI attachment site, 

has suffered several nucleotide substitutions in Ecoc54N that could influence interaction with the 

excisionase. We propose that the pathogenicity islands targeting asn tRNA genes (PAIsasn tRNA) 

might have acquired recombinase and excisionase (HPI) genes independently and sequentially. 
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Genetic manipulations with enteropathogenic Yersinia enterocolitica O:8 are complicated 

by the presence of an efficient PstI-like YenI restriction-modification (RM) system. We have 

characterised the YenI RM system in Y. enterocolitica O:8, biotype 1B. A 5039-bp DNA  

fragment of  the pSAK2 recombinant plasmid carrying the yenI locus was used to determine the 

nucleotide sequence. DNA sequence analysis identified a single 2481 bp open reading frame that 

encodes an 826 aa large polypeptide having an apparent molecular mass of 93 kDa. The N-

terminal part of the YenI ORF has 45% and 40% identity to PstI and BsuI methyltransferases 

(MTases), respectively; while the C-terminal part depicts 55% and 45% identity  to 

endonucleases (ENases) of both isoschyzomeric enzymes. The yenI gene has been shown to 

encode a single polypeptide of expected molecular mass. A specific recognition sequence, typical 

to the type II RM systems and single peptide organization, typical to type IV RM systems, make 

YenI  unique among known restriction-modification systems. We have constructed a truncated 

recombinant variant of YenI enzyme, which conserved only MTase activity, that can be applied 

to YenI methylation of the DNA to be transformed into Yersinia enterocolitica O:8 biotype 1B. 
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G. ABBREVIATIONS 

 

dest  distilled water  
Amp  Ampicillin  
AP  Alkaline Phosphatase  
APS  Ammonium persulphate  
ATP  Adenosine Triphosphate  
bp  base pair  
CFU Colony forming unit 
Cm  Chloramphenicol  
DEPC  Diethylpyrocarbonate  
DNA  Deoxyribonucleic acid  
dNTP  deoxynucleoside triphosphate (dATP, dCTP, dGTP, dTTP)  
dsDNA  double stranded DNA  
EDTA  Ethylenediamine triacetic acid  
e.g.  for example  
EtOH  Ethanol  
FACS Fluorescence activated cell sorter 
Fig.  Figure  
GEI genomic island 
GFP Green fluorescent protein 
hr  hour  
Hepes N-2-hydroxyethyl piperazine- N’-2-ethane sulfonic acid 
HPI  High pathogenicity island  
IHF integration host factor 
ICE integrative and conjugative element 
IPTG  Isopropyl ß-D-thiogalactopyranoside  
kb  kilobase  
Kan  Kanamycin  
kDa  kilo Dalton  
LB  Luria Bertani  
Luc Luciferase 
µ  micro  
m  milli  
M  molar  
MCS  multiple cloning site  
min  minute  
n  nano  
Nal  Nalidixic acid  
OD  optical density  
PAGE  Polyacrylamide gel electrophoresis  
PAI Pathogenicity island 
PCR  Polymerase chain reaction  
RDF Recombination directionality factor 
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RNA  Ribonucleic acid  
rRNA Ribosomal RNA 
tRNA Transport RNA 
RNase  Ribonuclease  
rpm  revolutions per minute  
RT  Room temperature  
RT  Reverse Transcriptase / Reverse transcription  
SDS  Sodium dodecyl sulphate  
sec  seconds  
ssDNA  single stranded DNA  
St Streptothricine 
Tab.  Table  
TAE  Tris-Acetate-EDTA  
TEMED  N,N,N’,N’-tetramethyl-ethylenediamine  
Tet  Tetracycline  
TRIS  Tris-(hydroxymethyl)-ammonium methane  
V  Volt  
Vol.  Volume  
wt  wild type  
X-gal  5-bromo-4-chloro-3-indolyl-ß-galactoside  
 
Nucleic acids  
A: Adenine  
C: Cytosine  

 G: Guanine  
T: Thymine  
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