Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Polyfunctionalizations of N-Heterocycles via Chemo- and Regioselective Metalations

von

Nadège Boudet

aus

Toulouse, Frankreich

München 2007

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Paul Knochel betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, und ohne unerlaubte Hilfe erarbeitet.

München, am 29.11.07

Nadège Boudet

Dissertation eingereicht am 29.11.2007

- 1. Gutachter: Prof. Dr. Paul Knochel
- 2. Gutachter: Prof. Dr. Thomas Carell

Mündliche Prüfung am 10.01.2008

This work was carried out from December 2004 to September 2006 under the guidance of Prof. Knochel at the Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität, Munich.

I would like to thank Prof. Dr. Paul Knochel, for giving me the opportunity of doing my Ph.D. in his group, for his support and for his guidance in the course of my scientific research.

I am also very grateful to Prof. Dr. Thomas Carell for agreeing to be my "Zweitgutachter", as well as Prof. Dr. K. Karaghiosoff, Prof. Dr. M. Heuschmann, Prof. Dr. H. R. Pfaendler, and Prof. Dr. H. Langhals for the interest shown in this manuscript by accepting to be referees.

I would like to thank Sanofi-Aventis for financial support.

I thank Guillaume Dunet and Dr. Andrei Gavryushin for the careful correction of this manuscript.

I thank all past and present co-workers I have met in the Knochel's group for their kindness and their help. Special thanks to all my labmates (lab 2.012) for the happiest time we spent together and the nice international atmosphere!

I would like to thank Dr. Shohei Sase, Vladimir Malakhov and Dr. Srinivas R. Dubbaka for fruitful collaborations in the fields of zinc chemistry and amination chemistry. A special thank to Jennifer R. Lachs for her contribution to this work.

I would also like to thank Vladimir Malakov, Beatrix Cammelade, Simon Matthe, and Yulia Tsvik for their help in organizing everyday life in the lab, as well as the analytical team of the LMU for their invaluable help.

Special thank to Christiane Kofink for her friendship, her great support and all nice moments shared together out the lab, in conferences or in many others events.

Very special thank to my family and to Armin for their love and endless support as well as my friends for their visits throughout this time.

Parts of this Ph. D. thesis have been published:

1) Nadège Boudet, Srinivas Reddy Dubbaka and Paul Knochel. "Amination of DNA and RNA units via Cuprated Pyrimidine and Purine Intermediates". *Org. Lett.* 2007, *submitted*.

2) Nadège Boudet, Jennifer R. Lachs and Paul Knochel. "Multiple Regioselective Functionalization of Quinolines *via* Magnesiations". *Org. Lett.* 2007, *9*, 5525-5528.

3) **Nadège Boudet**, Shohei Sase, Pradipta Sinha, Ching-Yuan Liu, Arkady Krasovskiy, and Paul Knochel. "Directed Ortho Insertion (DoI): a New Approach to Functionalized Aryl and Heteroaryl Zinc Reagents". *J. Am. Chem. Soc.* **2007**, *129*, 12358-12359.

4) Darunee Soorukram, **Nadège Boudet**, Vladimir Malakhov and Paul Knochel. "Preparation of Polyfunctionalized 2,6-Dimethoxypyrimidine Derivatives *via* Chemo- and Regioselective Direct Zinc Insertion". *Synthesis* **2007**, *24*, 3915-3922.

5) Nadège Boudet and Paul Knochel. "Chemo- and Regio-selective Functionalization of Uracil Derivatives. Application to the Synthesis of Oxipurinol and Emivirine". *Org. Lett.* 2006, *8*, 3737-3740.

A mes parents

Table of Contents

Table of Contents

Abbreviations

A. G	Seneral Introduction	1
1.	Overview	2
2.	Direct Preparation and Use of Organomagnesiated Aryl and Heteroa	ıryl
	Compounds	4
2.1.	Introduction	4
2.2.	Direct oxidative addition of magnesium to organic halides	5
2.3.	The halogen/magnesium exchange reaction	6
2.4.	Metalation reactions with magnesium amide bases	. 12
2.5.	Recent applications of Grignard reagent for a C-N bond formation	. 15
3.	Direct Preparation and Use of Zincated Aryl and Heteroaryl Compounds	. 19
3.1	Introduction	. 19
3.2	The direct insertion of zinc metal into aryl and heteroaryl halides	. 20
3.3	The iodine/zinc exchange reaction	. 23
4.	Objectives	. 25

B. R	lesults a	and Discussion	27
1.	Funct	ionalizations of Quinoline Moieties <i>via</i> Chemo- and Regioselecti	ve
	Magn	esiations	28
1.1.	Introd	uction	28
1.2.	Functi	onalization of quinolines using selective Br/Mg exchange reactions	29
	1.2.1	Functionalization of quinolines using halogen/metal exchanges	29
	1.2.2	Regioselective Br/Mg exchange on di- and tribrominated quinolines	30
	1.2.3	Successive regioselective Br/Mg exchanges on 2,3,4-tribromoquinoline (37d)	36
1.3	Functi	onalization of quinolines using a combination of selective magnesiations	37
	1.3.1.	Metalations of quinolines using lithium amide bases	37
	1.3.2.	Magnesiations of quinolines using deprotonations and Br/Mg exchanges	38
	1.3.3.	An application to the synthesis of the NK3 receptor antagonist talnetant	40

2.	Funct	ionalizations of Protected Uracils via Chemo- and Regioselective
	Magn	esiations
2.1.	Introd	uction
2.2.	Cheme	o and regioselective Br/Mg exchanges on protected uracils
	2.2.1.	Functionalization of protected uracils using halogen/metal exchange
	2.2.2.	Chemoselective Br/Mg exchange on 5-bromo-4-chloro-2,6-dimethoxy-
		pyrimidine (69a)
	2.2.3.	Application to the synthesis of annelated heterocycles and the xanthine oxidase
		inhibitor oxypurinol
	2.2.4.	Regioselective Br/Mg exchange on 4,5-dibromo-2,6-dimethoxypyrimidine (69b)
	2.2.5.	Successive Br/Mg exchanges on 4,5-dibromo-2,6-dimethoxypyrimidine (69b)
		and his application the synthesis of the anti-HIV drug emivirine
2.3.	Direct	magnesiation of protected uracils
	2.3.1.	Deprotonation of 2,4-dimethoxypyrimidine (83a) using lithium amide bases 52
	2.3.2.	Deprotonation of 2,4-dimethoxypyrimidine (83a) using TMPMgCl·LiCl (18a) 52
	2.3.3.	Deprotonation of 6-functionalized 2,4-dimethoxypyrimidine using
		TMPMgCl·LiCl (18a)
3.	Amina	ation of DNA and RNA Units via Cuprated Pyrimidine and Purine
	Intern	nediates
3.1.	Introd	uction
3.2.	Select	ive aminations of pyrimidine derivatives
	3.2.1	Preliminary studies
	3.2.2	Synthesis of aminated uracil and thymine
	3.2.3	Selective aminations of functionalized pyrimidines
3.3.	Select	ive aminations of purine derivatives
	3.3.1	Introduction
	3.3.2	Selective C8 and C2-aminations of purine derivatives
	3.3.3	Selective C6-amination of purines derivatives. An access to adenine, adenosine
		units and to the CDK inhibitor purvalanol A
4.	Direct	Chemo- and Regioselective Zinc Insertions into Polyhalogenated Aryl and
	N-Het	eroaryl Compounds
4.1	Introd	uction
4.2	DoI: a	new access to functionalized arylzinc reagents

	4.2.1 Successive regioselective zinc insertion into triiodobenzoate and a proposed
	mechanism
	4.2.2 Regioselective zinc insertions into diiodo-and dibromo-aryl compounds
4.3	DoI: a new access to N-heteroaryl functionalized zinc reagents71
5.	Summary and Outlook74
5.1	Functionalizations of Quinoline Moieties via Chemo- and Regioselective Magnesiations
5.2	Functionalizations of Protected Uracils via Chemo- and Regioselective Magnesiations
5.3	Amination of DNA and RNA units via cuprated pyrimidine and purine intermediates. 76
5.4	Direct chemo- and regioselective zinc insertions into polyhalogenated N-heteroaryl
	compounds77

C.	Experimental Section
1.	General Considerations
2.	Functionalizations of Quinoline Moieties via Chemo- and Regioselective
	Magnesiations
2.1	General procedure for the Br/Mg exchange reaction using <i>i</i> -PrMgCl·LiCl (13) or
	MesMgBr·LiCl (39d) as magnesiation reagent (GP1)
2.2	General procedure for the deprotonation using TMPMg·LiCl (18a) (GP2)
2.3	General procedure for the reaction with acyl chlorides (GP3)
2.4	Starting material synthesis
2.5	Preparation of polyfunctionalized quinolines
3.	Functionalizations of Protected Uracils via Chemo- and Regioselective
	Magnesiations
3.1	General procedure for the Br/Mg exchange reaction on 4-halogeno-2,6-
	dimethoxypyrimidines 69a and 69b (GP4) 106
3.2	General procedure for the Br/Mg exchange reaction on 5-functionalized-2,6-
	dimethoxypyrimidines (GP5)
3.3	General procedure for the direct magnesiation of 2,4-dimethoxypyrimidine derivatives
	using TMPMg·LiCl (GP6)107
3.4	Starting material synthesis
35	Preparation of polyfunctionalized 2.4-dimethoxypyrimidines

4.	Amination of DNA and RNA Units via Cuprated Pyrimidines and Purines
	Intermediates
4.1	General procedure for the amination via magnesiation using Br/Mg exchange reaction
	(GP7)
4.2	General procedure for the amination via magnesiation using TMPMg·LiCl (GP8) 136
4.3	Typical procedure (TP1): Preparation of the N-lithium morpholide (96b) 137
4.4	Typical procedure (TP2): Preparation of the lithium silinamide 96c 137
4.5	Starting material synthesis
4.6	Preparation of aminated pyrimidines143
4.7	Preparation of aminated purines
5.	Direct Chemo- and Regioselective Zinc Insertions into Polyhalogenated N-
	Heteroaryl Compounds
5.1	General procedure for the zinc insertion into polyiodo- and polybromo-heteroaryls
	compounds (GP9)
5.2	Starting material synthesis
5.3	Preparation of halogenated functionalized N-heterocycles via direct zinc insertion 165
D.	Appendix
1.	Curriculum vitae

ABBREVIATIONS

Ac	acetyl
acac	acetyl acetonate
AcOH	acetic acid
aq	aqueous
Ar	aryl
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
br.	broad
BSA	N,O-bis(trimethylsilyl)acetamide
CDI	1,1'-carbonyldiimidazole
CDK	cyclin-dependent kinase
CH_2Cl_2	dichloromethane
Су	cyclohexyl
d	double
dba	trans,trans-dibenzylideneacetone
DMA	dimethylacetal
DMF	<i>N</i> , <i>N</i> -dimethylformamide
DMGs	directing metalation groups
DMPU	1,3-dimethyl-3,4,5,6-tetrahydro-2(1 <i>H</i>)pyrimidinone
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DoI	directed ortho insertion
Eq.	equation
equiv	equivalent
EI	electron-impact
Et	ethyl
FG	functional group
GC	gas chromatography
GP	general procedure
h	hour
HIV	human immunodeficiency virus
HRMS	high resolution mass spectroscopy
Im-H	imidazole
<i>i</i> -Pr	isopropyl
IR	infra-red
J	coupling constant (NMR)
LDA	lithium diisopropylamide
LG	leaving group
LUMO	lowest unoccupied molecular orbital
Μ	molarity
m	meta

m	multiplet
Me	methyl
Mes	mesityl
Met	metal
min	minute
mol.	mole
mp.	melting point
MS	mass spectroscopy
NK3	neurokinin-3
NMP	N-methyl-2-pyrrolidinone
NMR	nuclear magnetic resonance
NNRTIs	nonnucleoside reverse transcriptase inhibitor
0	ortho
р	para
PEG	polyethylene glycol
pent	pentyl
PG	protecting group
Ph	phenyl
q	quartet
RNA	ribonucleic acid
rt	room temperature
S	singlet
t	triplet
<i>t</i> -Bu	<i>tert</i> -butyl
TBAF	tetrabutylammonium fluoride
TBS	tert-butyldimethylsilyl
Tf	triflate
TFA	trifluoroacetic acid
tfp	tri-(2-furyl)phosphine
THF	tetrahydrofuran
TLC	thin layer chromatography
TMAU	(6-([3,4-trimethylene]-anilino)uracil)
TMEDA	N, N, N', N'-tetramethylethylenediamine
TMS	trimethylsilyl
TMP	2,2,6,6-tetramethylpiperidyl
TP	typical procedure
Ts	4-toluenesulfonyl

A: General Introduction

1. Overview

Polysubstituted heterocycles belong to the most important organic compounds both in view of their mere production quantity and of their economic importance. The methods for their synthesis form the bedrock of modern medicinal chemical and pharmaceutical research. For instance, N-heterocyclic organic compounds are extensively applied to modify the reactivity profile of antitumor compounds. Pyrroles, pyrimidines, indoles, quinolines, and purines are the heterocycles known to show interesting cytotoxicity profiles.

The search for a new drug often begins with the identification of a particular class of heterocycles having a potential for the desired biological activity. The second step is the functionalization of this class of heterocycle in order to obtain several candidates. The synthetic approaches towards polyfunctionalized heterocycles can be crudely divided into two categories. The first approach aims at the construction of a heterocyclic core after the substituents have been installed and functionalized. As an illustration of this approach, a transition-metal catalyzed Biginelli heterocyclization reaction for the synthesis of monastrol,¹ a potentially important chemotherapeutic for cancer, is shown in Scheme 1.

Scheme 1: The modern variant of Biginelli reaction for the synthesis of monastrol (1).

The second approach is based on a preformed heterocycle to which different substituents are attached in successive order. This approach is more flexible concerning the choice of the substituents and gives an easy access to various analogs. It may include traditional aromatic substitution chemistry, directed metalation methods, halogen-metal exchange reactions as well as cross-coupling reactions. The methods used should be reliable in terms of reactivity, functional tolerance and selectivity. To address these requirements, the organometallic

¹ (a) Dondoni, A.; Massi, A.; Sabbatini, S. *Tetrahedron Lett.* **2002**, *43*, 5913.

chemistry proved to be an excellent tool with a broad applicability.² Over the years, organometallic compounds, especially Grignard, copper and zinc reagents, facilitated the development of an arsenal of synthetic methods for efficient and selective reactions and have found numerous applications in industrial processes. In order to perform efficient C-C and C-N bond formations in heterocycle chemistry, there is still a need of new organometallic methods and reagents, which have to be chemo- and regioselective and as inexpensive and environmentally friendly as possible.

² For general review, see: (a) Knochel, P.; Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F in *Handbook of Functionalized Organometallics*; Knochel, P., Ed.; Wiley-VCH, Weinheim **2005**: 251; (b) Knochel, P.; Millot, P.; Rodriguez, A. L.; Tucker, C. E. in *Organic reactions*; Overman, L. E., Ed.; Wiley & Sons Inc., New York, **2001**.

2. Direct Preparation and Use of Organomagnesiated Aryl and Heteroaryl Compounds

2.1. Introduction

Since their first preparation in ethereal solution in 1901 by Victor Grignard, ³ organomagnesium reagents have obtained a key role in organic synthesis. Their easy synthesis, good stability and their excellent reactivity make Grignard reagents one of the most powerful tools for carbon-carbon formation used in industry⁴ and academic laboratories. As an example, the Grignard reaction, using phenyl magnesium bromide, is a key step of the industrial production of *Tamoxifen* (**2**), ⁵ currently the world's largest selling drug for breast cancer (Scheme 2).

Scheme 2: Key step of the total synthesis of the drug Z-Tamoxifen (2)

Furthermore, organomagnesium reagents are also useful reactants for C-N bond formation⁶ leading to polyfunctionalized amines, useful for pharmaceutical applications. Finally, transmetalations to more chemoselective organometallic species such as zinc, copper,⁷ or titanium, allow additional fine-tuning of their reactivity pattern.

³ Grignard, V. Ann. Chim. 1901, 24, 433.

⁴ Bush, F. R.; De Antonis, D. M. Grignard Reagents- New Developments; Richey, H. G., Jr., Ed.; Wiley, New York, **2000**, pp.165-183.

⁵ (a) Harper, M. J. K.; Walpole, A. L. *Nature* **1966**, *212*, 87; (b) Bedford, G. R.; Richardson, D. N. *Nature* **1966**, *212*,733; for a review of the pharmacology, see: (c) Heel, R. C.; Brogdon, R. N.; Speight, T. M.; Avery, G. S. *Drugs* **1978**, *16*, 1; (d) Harper, M. J. K.; Richardson, D. N.; Walpole, A. L.GB1013907, **1965**, Imperial Chemical Industries, Ltd.; (e) Robertson, D. W.; Katzenellenbogen, J. A. *J. Org. Chem.* **1982**, *47*, 2387; (f) McCague, R. *J. Chem. Soc., Perkin Trans. 1* **1987**, 1011.

⁶ For a review on recent amination procedures see: Kienle, M.; Dubbaka, S. R.; Brade, K.; Knochel. *Eur. J. Org. Chem.* **2007**, *25*, 4166.

⁷ Lipshutz B. H.; Sengupta S. Org. Reactions **1992**, 41, 135.

2.2. Direct oxidative addition of magnesium to organic halides

The most common used method for the preparation of Grignard reagents is the direct oxidative addition of magnesium metal to organic halides in an aprotic solvent like THF or diethyl ether (Scheme 3, Eq. 1).

Scheme 3: Synthesis of Grignard reagents by oxidative addition (Eq. 1) and Schlenk-equilibrium (Eq. 2).

The detailed mechanism of this reaction is still not clear, although a radical pathway is generally accepted.⁸ In solution, a Grignard reagent (RMgX) is in equilibrium with R₂Mg and MgX₂ (Schlenk equilibrium, Scheme 3, Eq. 2), depending on temperature, solvent and the anion $X^{-,9}$ Usually, magnesium metal is covered with an 'oxide layer' which mainly consists of Mg(OH)₂.¹⁰ Thus, in order to shorten the induction period and obtain a better reproducibility of the reaction, the activation of the magnesium surface with reagents like 1,2-dibromoethane prior to reaction is normally desired.¹¹ For the synthesis of functionalized Grignard reagents bearing sensitive functional groups, highly reactive *Rieke* magnesium (Mg*)¹² can be used (Scheme 4). The direct trapping of Grignard reagent with an electrophile (Barbier-reaction)¹³ can sometimes be used to overcome the stability problems.

⁹ Schlenk, W.; Schlenk Jr., W. Chem. Ber. 1929, 62, 920.

⁸ (a) Walborsky, H. M. Acc. Chem. Res. 1990, 23, 286; (b) Garst, J. F. Acc. Chem. Res. 1991, 24, 95; (c) Rogers, H. R.; Hill, C. L.; Fujuwara, Y.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 217; (d) Garst, J. F.; Ungvary, F. Grignard Reagents (Ed.: H. G. Richey, Jr.), Wiley, Chichester, 2000, 185; (e) Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances, Prentice-Hall, New York, 1954; (f) Hamdouchi, C.; Walborsky, H. M. Handbook of Grignard-Reagents (Eds: Silverman, G. S.; Rakita, P. E.), Marcel Dekker, New York, 1995, 145; (g) Oshima, K. Main Group Metals in Organic Synthesis (Eds.: Yamamoto, H.; Oshima, K.), Wiley-VCH, Weinheim, 2004.

¹⁰ Garst, J. F.; Seriaga, M. P. Coord. Chem. Rev. 2004, 248, 623.

¹¹ For relevant parameters controlling Grignard reagent formation, see: Lindsell, W. E. *Comprehensive Organometallic Chemistry I* (Eds. G. Wilkinson, F. G. S. Stone and G. E. Ebel), Vol. 1, Chap. 3, Pergamon Press, Oxford, **1982**, pp. 155-252 and references therein.

¹² (a) Rieke, R. D.; Hanson, M. V. *Tetrahedron* 1997, 53, 1925; (b) Rieke, R. D. *Aldrichim. Acta* 2000, 33, 52;
(c) Rieke, R. D.; Sell, M. S.; Klein, W. R.; Chen, T.-A.; Brown, J. D.; Hansen, M. U. *Active Metals. Preparation, Characterization, Application*, Fürstner, A. (Ed.), Wiley-VCH, Weinheim (Germany), 1996, p.1.

¹³ Blomberg, C. *The Barbier Reaction and Related One-Step Processes* Springer, Berlin, Heidelberg, New York, **1993**.

Scheme 4: Preparation of functionalized Grignard reagents using *Rieke*-magnesium (Mg*).

Interestingly, low reactive aryl chlorides can be converted to the corresponding organomagnesium species through transition metal catalysis using 2 mol% $FeCl_2$ (Scheme 5).¹⁴

Scheme 5: Direct oxidative insertion of activated magnesium into aryl chloride.

2.3. The halogen/magnesium exchange reaction

The direct oxidative addition of magnesium has been used successfully for the preparation of organomagnesium compounds. However, the use of magnesium metal leads also to the reduction of electrophilic functional groups and involves exothermic reactions, which are not easy to control during industrial processes.⁴ These limitations can be considerably reduced by using a halogen/magnesium exchange reaction. The first example was briefly reported in 1931 by *Prévost*. ¹⁵ The reaction of cinnamyl bromide (**3**) with EtMgBr furnished cinnamylmagnesium bromide **4** in a low yield. *Urion* reported the preparation of cyclohexylmagnesium bromide **5** in a similar way (Scheme 6).¹⁶

¹⁴ Bogdanović, B.; Schwickardi, M. Angew. Chem. Int. Ed. 2000, 39, 4610.

¹⁵ Prévost, C. Bull. Soc. Chim. Fr. 1931, 49, 1372.

¹⁶ Urion, E. Comp. Rend. Acad. Sci. Paris 1934, 198, 1244.

Scheme 6: First examples of a Br/Mg exchange.

The halogen/magnesium exchange is a reaction favoring the formation of the more stable organomagnesium compound (sp > $sp^2(vinyl) > sp^2(aryl) > sp^3(prim.) > sp^3(sec.)$). The mechanism of the exchange reaction is not yet fully clarified,^{17a,b,c} but calculations show that it proceeds via a concerted 4-centered mechanism,^{17d} in contrast to the halogen-lithium exchange that goes via the formation of a halogenate complex. In 1971, Tamborski showed that not only the electronic properties of the organic molecule play an important role in the formation-rate of the new Grignard reagent, but also the nature of the halogen atom.¹⁸ The reactivity order (I > Br > Cl >> F) is influenced by the carbon-halogen bond strength and by the electronegativity and polarizability of the halide. In recent years, the halogen/magnesium exchange has been found to be the method of choice for the preparation of new polyfunctionalized organomagnesium reagents of considerable synthetic utility.¹⁹ The reactivity of organomagnesium reagents is strongly dependent of the temperature: only reactive electrophiles such as aldehydes and most ketones react rapidly at temperature below 0 °C. Thus, performing the halogen/magnesium exchange at temperatures below 0 °C has the potential for the preparation of magnesiated reagents that bear reactive functional groups. In 1998, *Knochel* showed excellent functional group tolerance during a low-temperature I/Mg exchange reaction used for the preparation of functionalized aromatic Grignard reagents (Scheme 7, **6a** and **6b**). 20

¹⁷ (a) Bailey W. F.; Patricia, J. J. J. Organomet. Chem. **1988**, 352, 1; (b) Reich, H. J.; Phillips, N. H.; Reich, I. L. J. Am. Chem. Soc. **1985**, 107, 4101; (c) Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. **1986**, 108, 2449; (d) Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem., Int. Ed. **2006**, 45, 159.

¹⁸ Tamborski, C.; Moore, G. J. J. Organomet. Chem. **1971**, 26, 153.

¹⁹ For a review on functionalized organomagnesium reagents see: Knochel, P.; Dohle, W.; Gommermann, N.;

Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.

²⁰ (a) Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem. **1998**, 110, 1801; Angew. Chem. Int. Ed. **1998**, 37, 1701; (b) Varchi, G.; Jensen, A. E.; Dohle, W.; Ricci, A.; Knochel, P. Synlett **2001**, 477.

Scheme 7: Functionalized arylmagnesium halides of type 6 prepared via an I/Mg exchange.

Scheme 8: I/Mg exchange using for the synthesis of functionalized heterocycles.

Many applications¹⁹ have confirmed that the halogen/magnesium exchange proceeds under mild conditions and that various sensitive functional groups such as esters (6c,²¹ Scheme 8), nitriles (6d), ²² iodides, imines, or even nitro group (6e) ²³ are tolerated during the organomagnesium reagent formation. One interesting example is the preparation of the

²¹ Staubitz, A.; Dohle, W.; Knochel, P. *Synthesis* 2003, 223.
²² Varchi, G.; Kofink, C.; Lindsay, D. M.; Ricci, A.; Knochel, P. *Chem. Commun.* 2003, 396.

²³ Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 1610.

functionalized α,β -unsaturated lactam **7** (Scheme 8).²⁴ The halogen/magnesium exchange is an attractive method for the generation of stable functionalized heteroarylmagnesium compounds. A variety of functionalized heteroarylmagnesium compounds bearing electronwithdrawing groups can be readily prepared by using I/Mg or Br/Mg exchange between -30 °C and -20 °C within few hours.²⁵ The electronic density of the heterocycle influences the halogen/magnesium-exchange rate: electron-poor heterocycles react faster and electronwithdrawing substituents strongly accelerate the exchange rate. Likewise, heteroaryl iodide such as 2-chloro-4-iodopyridine (**8a**)²⁶ or protected iodouracils (**8b**),²⁷ react very fast with *i*-PrMgBr in THF giving the corresponding magnesium compounds in high yields (Scheme 8).

Polyhalogenated substrates usually undergo a single halogen-magnesium exchange (Schemes 9 and 10). After the first magnesiation, the electron density of the heterocycle increases and the subsequent second exchange reaction proceeds much slower. This very general behavior allows a high chemoselectivity for the Br/Mg exchange reaction of polyhalogenated compounds. Chelating groups, such as an ester or an ether, strongly influence the regioselectivity of the exchange reaction, as demonstrated by the reaction of *i*-PrMgBr with the tribromoimidazole **9** and the dibromothiazole **10** (Scheme 9).²⁸ Chemo and regio-selective Br/Mg exchange have also been observed in the dihalogenated thiophenes **11** and **12**, using EtMgBr at 25 °C (Scheme 10).²⁹

Scheme 9: Regioselective Br/Mg exchanges induced by chelating effect

²⁴ Dohle, W. PhD thesis, LMU München, **2002**.

²⁵ For review concerning the halogen/magnesium exchange on heterocycles, see: Hiriyakkanavar, I.; Baron, O.; Wagner, A. J.; Knochel, P. *Chem. comm.* **2006**, 583.

²⁶ (a) Marzi, E.; Bigi, A.; Schlosser, M. *Eur. J. Org. Chem.* **2001**, *7*, 1371; (b) Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Queguiner, G. J. Org. Chem. **1993**, *58*, 7832.

²⁷ Abarbri, M.; Knochel, P. Synlett **1999**, 1577.

²⁸ (a) Lipshutz, B. H.; Hagen, W. Tetrahedron Lett. **1992**, *33*, 5865; (b) Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F. ; Röttlander, M. ; Knochel, P. J. Org. Chem. **2000**, *65*, 4618.

²⁹ Christophersen, C.; Begtrup, M.; Ebdrup, S.; Petersen H.; Vedsø, P. J. Org. Chem. 2003, 68, 9513.

Scheme 10: Regioselective I/Mg and Br/Mg exchange on dihalogenated thiophenes.

Inactived aryl bromides do not react with *i*-PrMgBr at a sufficient rate even at 25 °C. In some cases, the use of trialkylmagnesiate reagents (R_3MgLi) according to the work of *Oshima* allowed the magnesiation of less active system, such as 3-bromobenzonitrile.³⁰ However, a catalyzed version of the Br/Mg exchange, recently developed by *Knochel*, using 1 equivalent of LiCl, significantly broadered the range of suitable substrates for this process.³¹ The mixed organometallic *i*PrMgCl·LiCl (**13**), allowed a fast Br/Mg exchange leading to the desired Grignard reagents of type **14** in high yields under mild conditions (Scheme 11).

Scheme 11: LiCl-mediated Br/Mg exchange reaction of brominated aryls and heteroaryls.^{31, 32}

³⁰ (a) Oshima, K. J. Organomet. Chem. 1999, 575, 1; (b) Kitagawa, K.; Inoue, A.; Shinokubo, H.; Oshima, K. Angew. Chem. 2000, 112, 2594; Angew. Chem. Int. Ed. Engl. 2000, 39, 2481; (c) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333; (d) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601; (e) Yousef, R.I.; Rüffer, T.; Schmidt, H.; Steinborn, D. J. Organomet. Chem. 2002, 655, 111.

³¹ Krasovskiy, A.; Knochel, P. Angew. Chem. 2004, 116, 3369; Angew. Chem. Int. Ed. 2004, 43, 3333.

³² Ren, H.; Knochel, P. Chem. Commun. 2006, 726.

The necessity to use the stoichiometric complex **13**, leads to the postulate that the addition of LiCl breaks the aggregates of *i*-PrMgCl producing a highly reactive Grignard reagent (Scheme 12). *Knochel* has presented model calculations to correlate the structure of magnesium reagents with their reactivity in Br/Mg exchange reaction in the presence of LiCl.^{17d}

Scheme 12: Catalysis of the Br/Mg-exchange reaction with LiCl.

Using this catalyzed version of the Br/Mg exchange reaction, *Knochel* and *Mayr*³³ have recently reported the use of 3,3',5,5'-tetra-*tert*-butyldiphenoquinone (**15**, Scheme 13) as an electron acceptor to allow the simple preparation of functionalized biaryls, diynes and dienes through coupling reactions of organomagnesiated reagents which are complexed with LiCl. As an example, the 5-bromopyridin-3-ylmagnesium chloride (**14e**) was coupled using **15** to lead to the corresponding bipyridine (**16**) in 80% yield (Scheme 13).

Scheme 13: Coupling of the organomagnesium reagent 14e.

As an extension of the LiCl-mediated Br/Mg exchange reaction, the synthesis of the new Grignard reagent *i*-Pr₂Mg·LiCl $(17)^{17d}$ offered a new class of highly reactive exchange reagents. Using additives such as dioxane to shift the Schlenk equilibria, the reaction of 17 on electron rich aryl bromides undergo a fast conversion as shown in Scheme 14.

³³ Krasovskiy, A.; Tishkov, A.; del Amo, V.; Mayr, H.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 5010.

Scheme 14: Preparation of *i*-Pr₂Mg·LiCl (17) and his reaction on 4-bromoanisole.

2.4. Metalation reactions with magnesium amide bases

The preparation of aryl and heteroaryl organometallics via directed metalations has found many applications in recent years, especially via the directed *ortho*-lithiation using lithium bases such as *sec*-BuLi or lithium 2,2,6,6-tetramethylpiperidide (TMPLi).³⁴ However, the use of lithium bases is often complicated by the undesired side reactions due to high reactivity of the products and therefore the low tolerance towards sensitive functional groups. These limitations reduce the scope of useful directing group. Magnesium amides of type R₂NMgCl, R₂NMgR or (R₂N)₂Mg, were developed as metalating reagents ³⁵ to overcome these limitations, but their low kinetic basicity and low solubility have hampered more general applications. Nevertheless, interesting examples of the metalation of N-heterocyclic

³⁴ (a) Schlosser, M. Angew. Chem. 2005, 117, 380; Angew. Chem. Int. Ed. 2005, 44, 376; (b) Turck, A.; Plé, N., Mongin, F.; Quéguiner, G. Tetrahedron 2001, 57, 4489 (c) Schlosser, M. Eur. J. Org. Chem. 2001, 21, 3975; (d) Hodgson, D. M.; Bray, C. D.; Kindon, N. D. Org. Lett. 2005, 7, 2305; (e) Plaquevent, J.-C.; Perrard, T. ; Cahard, D. Chem. Eur. J. 2002, 8, 3300; (f) Chang, C.-C.; Ameerunisha, M. S. Coord. Chem. Rev. 1999, 189, 199; (g) Clayden, J. Organolithiums: Selectivity for Synthesis (Hrsg.: J. E. Baldwin, R. M. Williams), Elsevier, 2002; (h) "The Preparation of Organolithium Reagents and Intermediates": Leroux, F., Schlosser, M.; Zohar, E.; Marek, I. Chemistry of Organolithium Compounds (Hrsg.: Z. Rappoport, Marek, I.), Wiley, New York, 2004, Chapt.1, S. 435; (i) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. 2004, 116, 2256; Angew. Chem. Int. Ed. 2004, 43, 2206; (j) Queguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heterocycl. Chem. 1991, 52, 187; (k) Veith, M.; Wieczorek, S.; Fries, K.; Huch, V. Z. Anorg. Allg. Chem. 2000, 626, 1237.

³⁵ (a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem. Int. Ed. 2007, 46, 3802; (b) Henderson, K. W.; Kerr, W. J. Chem. Eur. J. 2001, 7, 3430; (c) Hauser, C. R.; Walker, H. G. J. Am. Chem. Soc. 1947, 69, 295; (d) Kobayashi, K.; Kitamura, T.; Nakahashi, R.; Shimizu, A.; Yoneda, K.; Konishi, H. Heterocycles 2000, 53, 1021; (e) Westerhausen, M. Dalton Trans. 2006, 4768. (f) Zhang M.-X.; Eaton, P. E. Angew. Chem. Int. Ed. 2002, 41, 2169; (g) Kondo, Y.; Akihiro Y.; Sakamoto, T. J. Chem. Soc., Perkin Trans.1996, 1, 2331; (h) Eaton, P. E.; Lee, C. H.; Xiong, Y. J. Am. Chem. Soc.1989, 111, 8016; (i) Eaton, P. E.; Zhang, M.-X.; Komiya C.-G. N.; Yang, Steele, I.; Gilardi, R. Synlett. 2003, 1275; (j) Eaton, P. E.; Martin, R. M. J. Org. Chem. 1988, 53, 2728; (k) Shilai, M.; Kondo, Y.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1. 2001, 442.

compounds, using excess (2-3 equiv) of Hauser bases (R_2NMgCl), showed selective deprotonations tolerating an ester function (Scheme 15).³⁶

Scheme 15: Selective magnesiation of N-heterocycles.

Recently, a major improvement of this chemistry was achieved in our group when *Krasovskiy*, *Krasovskaya* and *Knochel* discovered the mixed Mg/Li-bases of type $R_2NMgCl\cdotLiCl$ (**18a** and **18b**, Scheme 16).³⁷ This new generation of bases possesses an excellent kinetic basicity, a very good solubility and excellent thermal stability allowing their long term storage in THF solution. TMPMgCl·LiCl (**18a**) used in nearly stoichiometric amounts permits the magnesiation of various aromatics and heteroaromatics with excellent regioselectivity at practical temperatures (Scheme 17).

Scheme 16: Preparation of Mg/Li amide bases of type R₂NMgCl·LiCl.

³⁶ (a) Kondo, Y.; Yoshida, A.; Sakamoto, T. *J. Chem. Soc., Perkin Trans. 1* **1996**, 2331; (b) Dinsmore, A.; Billing, D. G.; Mandy, K. ; Michael, J. P.; Mogano, D.; Patil, S. *Org. Lett.* **2004**, *6*, 293.

³⁷ Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. **2006**, 118, 3024; Angew. Chem. Int. Ed. **2006**, 45, 2958.

Scheme 17: Direct magnesiation of functionalized aryls and heteroaryls using 18a.^{37,38}

The successive direct magnesiations of highly functionalized aromatics bearing an ester, a nitrile or a ketone has been achieved using TMPMgCl·LiCl (**18a**, Scheme 18).³⁹ After quenching with electrophiles, highly functionalized and polysubstituted benzenes were obtained (Scheme 18).

Scheme 18: Successive magnesiations of 3-chlorobenzoate.

³⁸ Kienle, M.; Dubbaka, S. R.; del Amo, V.; Knochel, P. Synthesis 2007, 1272.

³⁹ Lin, W.; Baron, O. Org. Lett. **2006**, *8*, 5673.

After the discovery of TMPMgCl·LiCl (**18a**), the chemistry of the corresponding magnesium bisamides complexed with lithium chloride, TMP₂Mg·2LiCl (**19**), was further developed by *Clososki, Rohbogner* and *Knochel.*⁴⁰ This new class of bases displays a superior metalation power allowing the magnesiation of various polyfunctional aromatic or heteroaromatic reagents bearing functional groups such as an ester, a nitrile or a ketone. The efficiency of TMP₂Mg·2LiCl (**19**) was demonstrated by the *ortho*-deprotonation of dimethyl-1,3-benzodioxan-4-one (**20**, Scheme 19) which led after the Negishi cross-coupling and hydrogenation, followed by the cleavage of the dioxanone, to 6-hexylsalicylic acid (**21**), a natural product found in essential oil of *Pelargonium sidoides* DC.

Scheme 19: Preparation of 6-hexylsalicylic acid (21) via the regioselective deprotonation using TMP_2Mg ·2LiCl (19).

2.5. Recent applications of Grignard reagents for a C-N bond formation

Functionalized aromatic and heteroaromatic amines are important building blocks for the synthesis of pharmaceuticals.⁴¹ Beside, the transition metal-catalyzed amination protocols⁶ using palladium, copper or nickel, the reaction of aromatic nitro compounds with Grignard reagents have proven to be a versatile alternative for the synthesis of functionalized

⁴⁰ Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem. **2007**, 119, 7825; Angew. Chem. Int. Ed. **2007**, 46, 1.

⁴¹ Czarnik, A. W. Acc. Chem. Res. **1996**, 29, 112 and references cited therein.

diarylamines.⁴² In this reaction the aromatic organometallic species acts as a nucleophile, while the nitroarene plays the role of an electrophile. Even heterocycles bearing a nitro group can be transformed successfully to the corresponding heterocyclic amines (Scheme 20). Alternatively, arylazo tosylates can be used in such electrophilic amination reactions (Scheme 21).⁴³

Scheme 20: Electrophilic amination using a nitroarene and a Grignard reagent.

Scheme 21: Electrophilic amination using an aryzalo tosylate and a Grignard reagent.

The oxidative amination reaction of amidocuprates is a further complement to transition metal-catalyzed and electrophilic amination reactions. Previous studies by *H. Yamamoto*, *K. Maruoka*⁴⁴ and *A. Ricci*⁴⁵ focused on the oxidative coupling of lithium amidocuprates, leading to amines by molecular oxygen. Since the use of gaseous oxygen is not convenient for large-scale industrial reactions, *del Amo*, *Dubbaka*, *Krasovskiy* and *Knochel* developed a

⁴² (a) Sapountzis, I.; Knochel, P. J. Am. Chem. Soc. **2002**, 124, 9390; (b) Ono, A.; Sasaki, H.; Yaginuma, F. Chem. Ind. (London) **1983**, 480.

⁴³ (a) Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 897; (b) Sinha, P.; Knochel, P. Synlett 2006, 3304.

⁴⁴ Yamamoto, H.; Maruoka, K. J. Org. Chem. 1980, 45, 2739.

⁴⁵ (a) Casarini, A.; Dembech, P.; Lazzari, D.; Marini, E.; Reginato, G.; Ricci, A.; Seconi, G. J. Org. Chem. 1993, 58, 5620; (b) Alberti, A.; Canè, F.; Dembech, P.; Lazzari, D.; Ricci, A.; Seconi, G. J. Org. Chem. 1996, 61, 1677; (c) Canè, F.; Brancaleoni, D.; Dembech, P.; Ricci, A.; Seconi, G. Synthesis 1997, 545; (d) Bernardi, P.; Dembech, P.; Fabbri, G.; Ricci, A.; Seconi, G. J. Org. Chem. 1999, 64, 641.

preparation of amines via the oxidative coupling of polyfunctional aryl and heteroaryl amidocuprates mediated by solid tetrachlorobenzoquinone (chloranil (**22**), Scheme 22).^{38, 46} The transmetalation of Grignard reagent **23** with CuCl·2LiCl,⁴⁷ soluble in THF, provided the copper reagent **24**, which after treatment with a lithium amide resulted in the lithium amidocuprate of type **25**. This intermediate could be oxidized with chloranil (**22**) affording desired amines **26** (Scheme 22).

Scheme 22: Preparation of amines of type 26 via an oxidative coupling of amidocuprates using chloranil (22).

This method is well-suited for the preparation of primary, secondary and tertiary aromatic and heterocyclic amines. It tolerates a broad range of functional groups such an ester, a cyanide, a halide, and is not hampered by steric hindrance (Schemes 23 and 24). Using LiHMDS as lithium amide, a primary arylamine could be prepared as shown by the synthesis of the aminated isophtalic diester **26b** (Scheme 24).

⁴⁶ del Amo, V.; Dubbaka, S. R.; Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 7838.

 $^{^{47}}$ (Et₂NCH₂CH₂)₂O was added to CuCN·2LiCl. This additive was found to improve the yield of the amination reaction.

Scheme 23: Preparation of the sterically hindered tertiary amine 26a through an oxidative amination with TMP-Li using chloranil (22).

Scheme 24: Preparation of the primary arylamine 26b through an oxidative amination with the cuprated polyfunctional aryl derivative 24b and LiHMDS using chloranil (22).

3. Direct Preparation and Use of Organozincated Aryl and Heteroaryl Compounds.

3.1 Introduction

Organozinc reagents are known for more than 150 years, since the preparation of diethylzinc by *Frankland* in 1849 in Marburg (Germany).⁴⁸ These organometallic reagents were used to form new carbon-carbon bonds until *Grignard* ³ discovered in 1900 a convenient preparation of organomagnesium compounds. Over the years, some reactions were conventionally performed with zinc organometallics such as the Reformatsky reaction⁴⁹ or the Simmons-Smith cyclopropanation.⁵⁰ The intermediate organometallics (zinc enolate and zinc carbenoid) were more easy to handle and more selective than the corresponding magnesium species. In 1943, *Hunsdiecker* has shown that organozinc reagents bearing a long carbon chains terminated by an ester function can be prepared, ⁵¹ but it was only recently that *Knochel* has demonstrated the synthetic potential of these reagents.⁵² Organozinc compounds are prone to undergo a broad range of transmetalations. This is due to the presence of empty low-lying *p*-orbitals which readily interact with the *d*-orbitals of many transition metal salts, leading to highly reactive intermediates such as organocopper⁵³ or palladium compounds⁵⁴ (Scheme 25).

Scheme 25: Transmetalation of organozincs reagents

Moreover, the highly covalent character of the carbon-zinc bond makes organozinc species stable at the temperatures where the corresponding organomagnesiums and organolithiums

⁴⁸ Frankland, E. *Liebigs Ann. Chem.* **1849**, *71*, 171 and 173.

⁴⁹ (a) Reformatsky, S. Chem. Ber. **1887**, 20, 1210; **1895**, 28, 2842; (b) Fürstner, A. Angew. Chem. Int. Ed. **1993**, 32, 164.

⁵⁰ Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. **1958**, 80, 5323; (b) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. **2003**, 125, 2341.

⁵¹ Hunsdiecker, H.; Erlbach, H., Vogt, E. **1942**, German patent 722467; *Chem. Abstr.* **1943**, *37*, 5080.

⁵² (a) Knochel, P.; Singer, R. D. *Chem. Rev.* **1993**, *93*, 2117; (b) Knochel, P.; Almena, J.; Jones, P. *Tetrahedron* **1998**, *54*, 8275.

⁵³ (a) Knochel, P. Synlett 1995, 393; (b) Knochel, P.; Vettel, S.; Eisenberg, C. Applied Organomet. Chem. 1995, 9, 175; (c) Knochel, P.; Jones, P. Organozinc reagents. A Practical Approach, Oxford University Press, 1999; (d) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org. React. 2001, 58, 417; (e) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 4415.

⁵⁴ (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. **1980**, 102, 3298; (b) Kobayashi, M.; Negishi, E. J. Org. Chem. **1980**, 45, 5223. (c) Negishi, E. Acc. Chem. Res. **1982**, 15, 340.

undergo decomposition. Such combination of the high tolerance toward functionalities, facile transmetalation to many transition metal complexes and an excellent stability makes organozincs extremely valuable reagents for organic synthesis. The reactivity of organozinc halides strongly depends on the electronegativity of the carbon attached to zinc (alkynyl < alkyl < alkenyl \leq aryl \leq benzyl< allyl). A stabilization of the negative carbanionic charge by inductive or mesomeric effects leads to a more ionic carbon-zinc bond and to a higher reactivity. The direct preparation of organozinc compounds can be achieved by an insertion of zinc dust into organic halides or by an I/Zn exchange of iodinated alkyl and aryl substrates.

3.2 The direct insertion of zinc metal into aryl and heteroaryl halides

The oxidative addition of zinc dust into organic halides is an usual method for the preparation of functionalized organozinc halides, especially iodides (**28**, Scheme 26). This method of preparation tolerates several functionalities and is sensitive to the reaction conditions (solvent, concentration, and temperature), the nature of the halide and the method of zinc activation (Scheme 26).

Scheme 26: Direct insertion of zinc into functionalized organic halides.

As magnesium, zinc slowly oxidizes in air and is covered by an oxide layer. An efficient activation procedure consists of treating zinc with 1,2-dibromoethane in THF (reflux, 1-2 min), followed by the addition of TMSCl (1-2 mol%; reflux, 1 min).^{2a, 52a, 53d} *Rieke* zinc

 $(Zn^*)^{55}$ prepared by the reduction of zinc chloride with lithium naphthalenide in THF, offers a second alternative to obtain highly reactive zinc. Over the last 20 years, using these two methods, a wide range of functionalized organozinc iodides was obtained including functionalized alkyl, allylic or benzylic compounds.² For instance, using activated zinc dust in THF, *Knochel* described the successful insertion into a non protected 3-(2-iodoethyl)indole,⁵⁶ functionalized benzylic⁵⁷ and alkenyl⁵⁸ iodides and, interestingly, into an iodinated nucleoside⁵⁹ (**28a-d**, Scheme 26). In general, the zinc insertion into a *sp*² C-I(Br) bond is more difficult than into a *sp*³ C-I(Br) bond and requires either the use of polar solvents⁶⁰ or the use of *Rieke* zinc (Zn*). *Knochel* described the insertion into a 5-iodouridine derivative **28e** using activated zinc in the presence of DMA (Scheme 27). *Fürstner, Singer* and *Knochel* showed direct insertion into a reactive aryl bromide such as *p*-bromobenzonitrile⁶¹ using Zn* (**28f**, Scheme 27).

Scheme 27: Zinc insertion into sp^2 C-iodine bond.

⁵⁵ (a) *Organozinc Reagents*, Editors: P. Knochel, P. Jones, Oxford University Press, New York, **1999**; (b) Rieke, R. D.; Li, P. T.; Burns, T. P.; Uhm, S. T. *J. Org. Chem.* **1981**, *46*, 4323; (c) Arnold, R. T.; Kulenovic, S. T.; *Synth. Commun.* **1977**, *7*, 223.

⁵⁶ Knoess, H. P.; Furlong, M. T.; Rozema, M. J.; Knochel, P. J. Org. Chem. **1991**, 56, 5974.

⁵⁷ Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.

⁵⁸ Knochel, P.; Rao, C. J. *Tetrahedron* **1993**, *49*, 29.

⁵⁹ (a) Stevenson, T. M.; Prasad, A. S. B.; Citineni, J. R.; Knochel, P. *Tetrahedron Lett.* **1996**, *37*, 8375; (b) Prasad, A. S. B.; Stevenson, T. M.; Citineni, J. R.; Nyzam, V.; Knochel, P. *Tetrahedron* **1997**, *53*, 7237.

⁶⁰ (a) Tagaki, K.; Hayama, N.; Inokawa, S. Bull. Chem. Soc. Jpn. 1980, 53, 3691; (b) Tagaki, K. Chem. Lett. 1993, 469; (c) Tagaki, K.; Shimoishi, Y.; Sasaki, K. Chem. Lett. 1994, 2055; (d) Majid, T. N.; Knochel, P. Tetrahedron Lett. 1990, 31, 4413.

⁶¹ Fürstner, A.; Singer, R.; Knochel, P. Tetrahedron Lett. 1994, 35, 1047.

Since the activity of Rieke Zn decreases with time, a new practical zinc insertion procedure was invented by *Krasovskiy, Malakhov, Gavryushin* and *Knochel* in 2006.⁶² They found that the addition of LiCl during the insertion of zinc dust into organic bromides or iodides leads to a spectacular rate increase as shown by the example of *ortho*-trifluoromethylphenyl iodide (**29a**) providing the corresponding organozinc iodide at 25 °C (**30a**, Scheme 28). This method allows a simple, high-yielding preparation of a broad range of functionalized aryl and heteroarylzinc reagents such as the zincated diester **30b** and the furylzinc reagent **30c** (Scheme 29).

Scheme 28: The effect of LiCl on the zinc insertion into *ortho*-trifluoromethylphenyl iodide (29a).

Scheme 29: Direct zinc insertion in the presence of LiCl into aromatic and heterocyclic bromides.

⁶² Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; P. Knochel. Angew. Chem. Int. Ed. 2006, 45, 6040.

3.3 The iodine/zinc exchange reaction

The halide/zinc exchange allows the preparation of diorganozincs, which are more reactive than organozinc halides and are extensively used in asymmetric synthesis.^{52a,63} The I/Zn exchange reaction is a practical way for preparing polyfunctional diorganozincs (FG–R)₂Zn.⁶⁴ A wide range of polyfunctional primary alkyl iodides undergo this exchange if treated neat with diethyl zinc in the presence of a catalytic amount of copper(I) iodide or copper(I) cyanide (Scheme 30).⁶⁵ This reaction can also be catalyzed by Pd-complexes.⁶⁶

FG-I
$$Et_2Zn (1.5 equiv)$$

FG-I $(FG-R)_2Zn$
Cul cat. (0.3 mol%)

Scheme 30: Copper-catalyzed I/Zn exchange.

This method provides a general access to functionalized dialkylzincs but fails in the case of aromatic iodides. For performing an I/Zn exchange on aryl iodides, *Knochel* showed in 2004^{67} that the addition of catalytic amounts of Li(acac) to an aryl iodide and *i*-Pr₂Zn allows the I/Zn exchange with the formation of Ar₂Zn and *i*-PrI. The "ate" intermediate **31** (Scheme 31) is similar to the one during the Br/Mg exchange catalyzed by LiCl.^{17d, 31} This method affords an easy synthesis of functionalized diarylzinc derivative such as **32** bearing an aldehyde function (Scheme 32).

⁶³ Soai, K.; Niwa, S. Chem. Rev. **1992**, 92, 833.

⁶⁴ Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Lett.* **1966**, 3353.

⁶⁵ (a) Rozema, M. J.; Achyutha Rao, S.; Knochel, P. J. Org. Chem. **1992**, 57, 1956; (b) Rozema, M. J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P. Tetrahedron Lett. **1993**, *34*, 3115.

⁶⁶ Stadtmüller, H.; Lentz, R.; Tucker, C. E.; Stüdemann, T.; Dörner, W.; Knochel, P. J. Am. Chem. Soc. **1993**, *115*, 7027.

⁶⁷ Kneisel, F. F; Dochnahl, M.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 1017.

Scheme 32. Functionalized diarylzinc bearing an aldehyde function.

4. Objectives

We plan in this work to apply the newly developed preparations of organomagnesium and zinc reagents for the synthesis of various N-heterocyclic magnesium and zinc intermediates. Our aim was to perform successive selective functionalizations of N-heterocycles, and apply our methodology for the synthesis of biologically active compounds.

In a first project, our research was mainly focused on the functionalizations of quinolines, protected uracils, and purines, which are the classes of N-heterocycles where metalation and subsequent functionalization are still unexplored.

More precisely, our objectives were:

• The magnesiations and functionalizations of quinoline cores by the combination of selective Br/Mg exchanges as well as direct deprotonations (Scheme 33).

FG= -Br, -COOR, COR, -CN, -CHOHR, -OR, -NR₂, -SR, -Ar

Scheme 33: Multiple regioselective functionalizations of quinolines via magnesiations.

• The selective magnesiation of 2,4-dimethoxypyrimidine as a synthetic route to polyfunctionalized protected uracils (Scheme 34).

Scheme 34: Chemo- and regio-selective functionalization of uracil derivatives.
• The aminations of DNA and RNA units such as protected uracils, pyrimidines and purines, via selective magnesiations and cupration followed by the addition of lithium amides and the oxidative coupling with chloranil (Scheme 35).

Scheme 35: Amination of DNA and RNA units via cuprated purine and pyrimidine derivatives.

In the second project, it was planned to study the insertion of zinc dust in the presence of LiCl into polyhalogenated aryls and N-heterocycles, in order to access new zincated aromatic and heterocyclic compounds (Scheme 36).

Scheme 36: LiCl-mediated regioselective zinc insertion of aryl and heteroaryl compounds.

B: Results and Discussion

1. Functionalizations of Quinoline Moieties *via* Chemo- and Regioselective Magnesiations.

1.1 Introduction

The functionalization of quinoline and its derivatives is a matter of great interest, since the basic structure of many antimalarial drugs is derived from quinine **33a** (Scheme 37). Quinine is the active ingredient of the bark of Cinchona tree, which has been used against malaria since the early 17^{th} century. In 1820, quinine (**33a**) was isolated and replaced the crude bark for the treatment of malaria. It was of the first pure chemical compounds used as a drug. In the next century, various antimalarial drugs have been developed, including chloroquine **33b** and mefloquine **33c** (Scheme 37).⁶⁸

33a: quinine

33b: chloroquine

33c: mefloquine

Scheme 37: Quinine derived antimalarial drugs.

There is still an urgent need for the rapid development of an effective, safe and affordable chemotherapeutics against malaria in which the functionalization of quinoline and its derivatives would play an important role. Nowadays, the quinoline moiety is not only present as a substructure of the drugs for treatment of parasitic infections, but is also present in antitumor agents such as irinotecan (33d),⁶⁹ in P-selectin antagonists like luotonin A (33e),⁷⁰ or in potential NK3 receptor antagonists such as talnetant $(33f)^{71}$ (Scheme 38).⁷²

⁶⁸ Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. Angew. Chem. Int. Ed. 2003, 42, 5274.

⁶⁹ Duffour, J.; Gourgou, S.; Desseigne, F.; Debrigode, C.; Mineur, L.; Pinguet, F.; Poujol, S.; Chalbos, P.; Bressole, F.; Ychou, M. *Cancer Chemotherapy and Pharmacology*. **2007**, *60*, 283.

⁷⁰ (a) Wang, H.; Ganesan, A. *Tetrahedron Lett.* **1998**, *39*, 9097; (b) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. **2007**, *72*, 6270.

⁷¹ Elliott, J. M.; Carling, R. W.; Chambers, M.; Chicchi, G. G.; Hutson, P. H.; Jones, A. B.; MacLeod, A.; Marwood, R.; Meneses-Lorente, G.; Mezzogori, E.; Murray, F.; Rigby, M.; Royo, I.; Russell, M. G. N.; Sohal, B.; Tsao, K. L.; Williams, B. *Bioorg. Med. Chem Lett.* **2006**, *16*, 5748.

⁷² Kaila, N.; Janz, K.; Debernardo, S.; Bedard, P. W.; Camphausen, R., T.; Tam, S.; Tsao, D. H. H.; Keith, J. C.; Nickerson-Nutter, C.; Shiling, A.; Young-Sciame, R.; Wang, Q. J. Med. Chem. **2007**, *50*, 21.

Scheme 38: Drugs containing the quinoline skeleton.

1.2 Functionalization of quinolines using selective Br/Mg exchange reactions

1.2.1 Functionalization of quinolines using halogen/metal exchanges

 $Quéguiner^{73}$ has studied an exchange on 3-bromoquinoline (**34**) with reagents such as *i*-PrMgCl, *t*-BuMgCl, *i*-Pr₂Mg and *i*-PrTMPMg, but the corresponding 3-quinolylmagnesium derivatives could not be obtained. Due to the low LUMO energy, quinoline is prone to a nucleophilic attack, and the addition of a Grignard reagent to the quinoline ring was favoured

Scheme 39: Functionalization *via* lithium tri(quinolyl)magnesates shown for 3-bromoquinoline (34).

over the exchange reaction. *Quéguiner* could overcome these problems by treating the monobrominated quinoline **34** with Bu_3MgLi in THF at -10 °C to generate the corresponding lithium tri(quinolyl)magnesates **35** (Scheme 39). The resulting organomagnesium derivative

⁷³ Dumouchel, S.; Mongin, F.; Trécourt, F.; Quéguiner, G. *Tetrahedron Lett.*, **2003**, 44, 2033.

was quenched with various electrophiles, furnishing monofunctionalized quinolines of type **36**. Using the same method, the functionalizations at C4 and C2 positions were also studied by this group, providing monofunctionalized quinolines in moderate yields.⁷³ *Comins* achieved the functionalization at the C4-position by a regioselective Br/Li exchange reaction of 2,4-dibromoquinoline (**37a**).⁷⁴ When **37a** is treated with *n*-BuLi at -78 °C only the 4-lithiated species is observed (Scheme 40).

Scheme 40: Regioselective bromine/lithium exchange on 2,4-dibromoquinoline (37a).

1.2.2 Regioselective Br/Mg exchange on di- and tribrominated quinolines

The Br/Mg exchange reactions using *i*-PrMgCl·LiCl (**13**) allows an efficient functionalization of brominated substrates,³¹ so we focused first our attention on the regioselectivity of the Br/Mg exchange on the polybrominated quinolines of type **37** (Scheme 41). A similar study was performed by *Quéguiner* in 2000 on polybrominated pyridines and the obtained regioselectivity using *i*-PrMgCl was C3>C4>>C2.^{75, 76} We have tested several magnesiation reagents on quinolines of type **37** in order to obtain a complete regioselective exchange. Thus, starting from 2,4-dibromoquinoline (**37a**)⁷⁷, the addition of *i*-PrMgCl·LiCl (**13**; 1.1 equiv, -78 °C, 2 h) gave quantitatively⁷⁸ and regioselectively⁷⁹ the corresponding 4-magnesiated 2-bromoquinoline (**38a**, Scheme 42). Similarly, the reaction of 2,3-dibromoquinoline (**37b**) with *i*-PrMgCl·LiCl (**13**;1.1 equiv, -50 °C, 2 h, Scheme 42) provided the corresponding 3-magnesiated 2-bromoquinoline (**38b**, Scheme 42).

⁷⁴ D. L. Comins, J. M. Nolan, I. D. Bori, *Tetrahedron Lett.* **2005**, *46*, 6697.

⁷⁵ Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. Tetrahedron 2000, 56, 1349.

⁷⁶ Mallet, M.; Quéguiner, G. *Tetrahedron* **1986**, *42*, 2253.

⁷⁷ Osborne, A. G.; Buley, J. M.; Clarke, H.; Dakin, R. C. H.; Price, P. I. *J. Chem. Soc., Perkin Trans. 1.* **1993**, *22*, 2747.

 $^{^{78}}$ The completion of the Br/Mg exchange reaction was checked by GC analysis of reaction of aliquots quenched with saturated NH₄Cl (aqueous).

⁷⁹ The regioselectivity of the Br/Mg exchange reaction was checked by ¹H NMR of the crude product quenched with saturated NH_4Cl (aqueous).

Scheme 41: Polybrominated quinolines of type 37 as substrates for the regioselective Br/Mg exchange reactions.

Scheme 42: Regioselective Br/Mg exchanges on 2,4- and 2,3-dibromoquinolines (37a and 37b).

In contrast, the reactions of 3,4-dibromoquinoline (37c) or 2,3,4-tribromoquinoline (37d) with *i*-PrMgCl·LiCl (13) were not selective, giving a regioisomeric mixture (C3 and C4 positions) of Grignard reagents. Moreover, as the main side reaction, the addition of the Grignard at the C2 position was observed. Related selectivity problems have been observed with dibromopyridines. ^{59, 60} Starting from 3,4-dibromoquinoline (37c), more sterically hindered magnesiation reagents were tried such as sec-BuMgCl·LiCl (39a, Scheme 43), PhMgCl·LiCl 1-naphtylmagnesium chloride (39c), MesMgBr·LiBr (39d), 1.3.5-(**39b**). and triisopropylphenylmagnesium bromide (39e) (Scheme 44 and Table 1). The regioselectivity and the conversion of the reaction between 37c and the Grignard reagents 39a-d were checked by ¹H NMR of the crude product, obtained after quenching the reaction mixture with allyl bromide (1.5 equiv) in the presence of catalytic amount of CuCN·2LiCl (cat.)⁵⁷ (Scheme 44). Unfortunately, the lack of reactivity of the Grignard reagents **39a-d** led to long time reactions and a moderate selectivity (mixture of isomers C3 (40a) and C4 (40b), entries 1-6,

Table 1). The best regioselectivity (C3/C4, 6.5:1) was obtained with MesMgBr·LiBr (**39d**, entry 5).

Scheme 43: Sterically hindered Grignard reagents.

Scheme 44: Br/Mg exchange on 37c.

Table 1:	: Br/Mg	exchange of	n 3,4-dibro	moquinoline	(37c)
----------	---------	-------------	-------------	-------------	----------------

entry	Grignard reagent	T/t	conv.	isomer 40a : isomer 40b ^a
1	<i>i</i> -PrMgCl·LiCl	-78/2	98	1.6 : 1
2	sec-BuMgCl·LiCl(39a)	-78 / 3	91	3.3 : 1
3	PhMgCl·LiCl(39b)	0 / 12	90	1.2 : 1
4	$C_{10}H_7MgCl\cdot LiCl(39c)$	0 / 24	56	2.5 : 1
5	MesMgBr·LiBr (39d)	0 / 24	95	6.5 : 1
6	C ₁₅ H ₂₃ MgCl·LiCl (39e)	0-25 / 30	85	6:1
7	$Mes_2Mg \cdot 2LiBr(39f)$	-10/3	95	19:1
8	Mes ₂ Mg·2LiBr (39f)	-10 / 6	96	>19 :1
	+ TMEDA (1.1 equiv)			

^a The regioselectivity and the conversion were checked by ¹H NMR of the crude product obtained after quenching the reaction mixture with allyl bromide (1. 5 equiv) in presence of cat. amount of CuCN-2LiCl (cat.)

To overcome this problem, we have performed the synthesis of the corresponding dimesitylmagnesium-2LiBr complex **39f** (Mes₂Mg·2LiBr, Scheme 45). Diaryl or dialkyl Grignard are more reactive than their corresponding mono Grignard species.^{17d} Starting from commercially available mesityl bromide (**41**), the addition of *t*-BuLi (1.95 equiv, Et₂O, - 78 °C) provided the corresponding lithiated compound **42** in quantitative yield, which after evaporation of the solvent reacted with one equivalent of MesMgBr to furnish Mes₂Mg·2LiBr (**39f**). The use of this new diaryl Grignard was found to be more effective, and a 19 : 1 mixture of the isomers C3 (**40a**)/C4 (**40b**) was obtained at -10 °C after 3 h (entry 7).⁸⁰ We have improved the regioselectivity by adding 1.1 equiv of TMEDA. This led to the complex **39f**·TMEDA of reduced reactivity, and furnished selectively the C3-magnesiated quinoline (entry 8, Table 1 and Scheme 46).

Scheme 45: Preparation of the diaryl Grignard reagent Mes₂Mg·2LiBr (39f)

Scheme 46: Regioselective Br/Mg exchanges on 3,4-di- and 2,3,4-tri-bromoquinolines (37c and 37d).

 $^{^{80}}$ 1.1 equivalent of Mes₂Mg·2LiBr (**39f**) was necessary to obtain a complete conversion of the 3,4-dibromoquinoline.

Concerning the Br/Mg exchange on 2,3,4-tribromoquinoline (37d), the reaction of MesMgBr·LiCl (**39d** (1.1 equiv), -10 °C, 3 h) led to a completely regioselective magnesiation at C3 position providing the corresponding intermediate 38d (Scheme 46). Compared to 3,4dibromoquinoline, the presence of the bromine at C2 position increases the reactivity of the C3 position for the Br/Mg exchange, and MesMgBr·LiCl appeared to be sufficiently selective. The Grignard compounds **38a-d** (Schemes 42 and 46) were trapped with various electrophiles as shown in Scheme 47 and Table 2. Thus, the Grignard intermediate 38a afforded after quenching with PhSO₂SPh⁸¹ or tosyl cyanide the corresponding phenylsulfanyl quinoline (43a, 91%) or 4-cyano-2-bromoquinoline (43b, 85%) (entries 1 and 2). The transmetalation of the C4-magnesiated 2-bromoquinoline **38a** using CuCl·2LiCl (1.2 equiv, -50 °C, 1 h) followed by the addition of LiHMDS (2 equiv, -60 °C, 1 h) provided the corresponding amidocuprate which was oxidized using chloranil (1.2 equiv, -78 °C, 12 h)⁴⁶ and then deprotected with TBAF (2.0 equiv, 25 °C, 15 min) leading to the 4-amino-2-bromoquinoline (43c, entry 3) in 75% yield. The C3-magnesiated 2-bromoquinoline 38b was quenched with tosyl cyanide or propionaldehyde and gave 3-cyano-2-bromoquinoline (43d, 84%) or the corresponding alcohol (43e, 76%) (entries 4 and 5 of Table 2). The C3-magnesiated 4bromoquinoline (38c) provided after trapping with PhSO₂SMe⁸² the thioether 43f (entry 6, 79% yield). Interestingly, the diarylmagnesium reagent 38c underwent after transmetalation with ZnCl₂ a Pd-catalyzed Negishi cross-coupling⁵⁴ with 4-iodobenzonitrile, and furnished the coupling product (43g) in 71% yield (entry 7). The reaction with C4-magnesiated 2,3dibromoquinoline (38d) and tosyl cyanide afforded the corresponding quinoline 43h (88%, entry 8). The Grignard intermediate **38d** was also quenched with ethyl cyanoformate giving the quinoline ester 43i (90%, entry 9).

Scheme 47: Functionalization of the magnesiated quinolines of type 38a-d.

⁸¹ Fujiki, K.; Tanifuji, N.; Sasaki, Y.; Yokoyama, T. Synthesis 2002, 343.

⁸² Stoll, A. H.; Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 606.

entry	magnesium species of type 38 ^a	electrophile	product of type 43	yield (%) ^b
	MgX N Br 38a		E N Br	
1	38a	PhSO ₂ SPh	43a: E=SPh	91
2	38 a	TsCN	43b : E=CN	85
3	38 a	LiHMDS; chloranil	43c : E=NH ₂	75 ^c
	MgX N Br 38b		E N Br	
4	38b	TsCN	43d : E=CN	84
5	38b Br MgAr N 38c ^d	C₂H₅CHO	43e : E=CH(OH)C ₂ H ₅ Br E	76
6	38c ^d	PhSO ₂ SMe	43f : E= SMe	79
7	$38c^{d}$ $Fr MgX$ $K Br$ Rr $38d$	NC	43g: E= Br Fr Fr Fr Fr Fr Fr Fr F	71 ^{e,f}
8	38d	TsCN	43h : E=CN	88
9	38d	NC-CO ₂ Et	43i : E=CO ₂ Et	90

Table 2: Bromoquinolines of type 43 obtained by the reaction of brominated quinolines with an exchange Grignard reagent and an electrophile

^aX = Cl·LiCl or Br·LiCl . ^b Isolated yield of analytically pure product. ^cReaction performed after transmetalation with CuCl·2LiCl (1.2 equiv). ^d Ar = Mes·2LiBr. ^eReaction performed after transmetalation with ZnCl₂. ^f 2 mol% of Pd(dba)₂ and 4 mol% of P-(*o*-furyl)₃ were added.

1.2.3 Successive regioselective Br/Mg exchanges on 2,3,4-tribromoquinoline (37d) Remarkably, multiple selective exchanges can also be performed starting with the tribromoquinoline 37d. Thus, the reaction of MesMgBr·LiCl (39e, 1.1 equiv, -10 °C, 3 h) with 37d provided after quenching with benzyl bromide the corresponding benzylated quinoline 43j in 89% yield (Scheme 48). This product 43j underwent a second Br/Mg exchange reaction using 13 (1.1 equiv, -50 °C, 12 h) and led after quenching with PhSO₂SMe

Scheme 48: Successive regioselective Br/Mg exchange reactions at the C3, C4 and C2 positions.

to 3,4-difunctionalized-2-bromoquinoline **44** in 87% yield. The third Br/Mg exchange was performed on **44** using Mes₂Mg·2LiBr (**39f**, 1.2 equiv, 0 °C, 12 h) and a copper-catalyzed allylation with ethyl (2-bromomethyl)acrylate⁸³ afforded the highly functionalized quinoline **45** in 70% yield. This last exchange reaction completed the sequence of successive functionalization at C4, C3 and C2 positions.

⁸³ Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220.

1.3 Functionalization of quinolines using a combination of selective magnesiations

1.3.1 Metalations of quinolines using lithium amide bases

Strong bases like lithium amide reagents (LDA) can be used for the *ortho*-directed lithiation of 2-bromoquinoline.⁸⁴ *Schlosser* studied the "regioflexibility"⁸⁵ in the functionalization of polyhalogenated quinolines using LDA or LiTMP. As an example, the sequential treatment of 4-bromo-2-(trifluoromethyl)quinoline (**46**) with LDA and carbon dioxide provided the quinoline 3-carboxylic acid **47** in 88% yield (Scheme 49).

Scheme 49: C3 lithiation of 4-bromo-2-(trifluoromethyl)quinoline.

Quéguiner described the functionalization of the 4-position of 3-fluoroquinoline (**48**, Scheme 50) achieved by an intricate sequence of deprotonation reactions with LDA at -78 °C. The first deprotonation is followed by the trapping with iodine and leads to 3-fluoro-4-iodoquinoline (**49**) which can be then deprotonated in the 2-position and quenched with electrophiles, leading to 4-substituted dihalogenated quinoline derivatives **50** via a "halogen-dance" rearrangement (Scheme 50).⁸⁶

Scheme 50: Functionalization of the 4-position of 48 via two deprotonations and a halogendance.

⁸⁴ Comins, D. L.; Hong, H.; Saha, J. K.; Jianhua, G. J. Org. Chem. **1994**, 59, 5120.

⁸⁵ (a) Marull , M. ; Schlosser, M. Eur. J. Org. Chem. 2004, 1008; (b) Marull , M. ; Schlosser, M. Eur. J. Org. Chem. 2003, 8, 1576.

⁸⁶ a) Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.; Quéquiner, G. *Tetrahedron Lett.* **1998**, *39*, 6465; b) Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.; Quéquiner, G. *Tetrahedron* **1999**, *55*, 12149.

1.3.2 Magnesiations of quinolines using deprotonations and Br/Mg exchanges Recently, our group developed the new mixed Mg/Li amide bases TMPMgCl·LiCl $(18a)^{37}$ and TMP₂Mg·2LiCl $(19)^{40}$ which allowed the direct magnesiation of some heteroaryl compounds such as 3-bromoquinoline (34) leading to the 2-functionalized quinoline 51 (Scheme 51).³⁷

Scheme 51: Direct C2-magnestion of 3-bromoquinoline (34).

We focused our attention on the direct magnesiation of quinolines using TMPMgCl·LiCl (**18a**), and TMP₂Mg·2LiCl (**19**), which further enhanced both the scope of regioselective magnesiations as well as the tolerance toward sensitive functional groups, such as ketones or esters. Using the combination of this metalation reaction with the regioselective Br/Mg exchange on polybrominated quinolines, we may thus choose different pathways for polyfunctionalization and obtain a complete "regioflexibility".

Scheme 52: Successive regioselective magnesiations at the C2, C3 and C4 positions.

Thus, a successive magnesiations in position C2, C3 and C4 could be achieved. Commercially available 3-bromoquinoline (**34**, Scheme 52) underwent a C2-deprotonation using TMPMgCl·LiCl (**18a**, 1.1 equiv, -20 °C, 2 h) and was quenched with 1,2-dibromo-1,1,2,2-

tetrachloroethane giving the 2,3-dibromoquinoline **37a** in 65% yield. The treatment of **37a** with *i*PrMgCl·LiCl (**13**), provided after the reaction with ethyl cyanoformate 2-bromoquinoline-3-carboxylic acid ethyl ester (**43k**) in 92% yield. Addition of TMPMgCl·LiCl (**18a**) to **43k** gave regioselectively the C4-magnesiated intermediate under mild conditions (0 °C, 3 h). Then, a smooth carboxylation in the presence of CuCN·2LiCl led to the quinoline **52** in 84% yield. Thus, the sequence of functionalization C2-C3-C4 was accomplished (Scheme 52).

The pertinent combination of Br/Mg exchanges and direct metalations allowed a regioselective functionalization of up to three new positions of the 2,4-dibromoquinoline (**37a**). Performing a Br/Mg exchange on **37a** with *i*-PrMgCl·LiCl (**13**, -78 °C, 2 h, Scheme 53) led after the reaction with ethyl cyanoformate, to the quinoline **43l** in 92% yield. Then, the regioselective deprotonation of **43l** at the C3-position using **18a** (-10 °C, 3 h) followed by a copper-mediated acylation⁵⁷ using pivaloyl chloride gave the quinoline derivative **53** in 81% yield. Remarkably, a second regioselective deprotonation on the quinoline **53** was performed at the position C8 (N-coordination), using the magnesium bisamide TMP₂Mg·2LiCl ^{40, 87} under mild conditions (0 °C, 20 h). After the transmetalation with ZnCl₂, the Pd-catalyzed Negishi cross-coupling with ethyl 4-iodobenzoate furnished the highly functionalized quinoline **54** in 71% yield (Scheme 53).

Scheme 53: Successive regioselective magnesiations at the C4, C3 and C8 positions.

⁸⁷ TMPMgCl·LiCl (18a) was found to be ineffective for this metalation.

1.3.3 An application to the synthesis of the NK3 receptor antagonist talnetant (33f) As an application of our methodology, the total synthesis of talnetant (33f) was performed (Scheme 54). Talnetant is a neurokinin-3 receptor antagonist, it is under development by GlaxoSmithKline for the potential treatment of several disorders, including urinary incontinence, irritable bowel syndrome and schizophrenia.

Scheme 54: Successive regioselective functionalizations of quinolines at the C4, C3 and C2 positions.

The treatment of 4-carbethoxy-2-bromoquinoline (**431**) with TMPMgCl·LiCl (**18a**, -10 °C, 3 h), followed by quenching with ethyl pinacol borate⁸⁸ (1.5 equiv, -10 °C to 25 °C, 12 h) and acidic workup (1.2 equiv HCl in Et₂O)⁸⁹ furnished the corresponding pinacol boronic ester **55** in 71% yield (Scheme 54). Its Pd(0)-catalyzed cross-coupling with PhZnCl gave the corresponding functionalized boronic ester **56** in 76% yield. A basic oxidation using LiOH (6 equiv) and 30% aq H₂O₂ (3 equiv) in MeOH (25 °C, 15 h) afforded the acid **57** in 89% yield. Treatment⁹⁰ of **57** with NEt₃ (25 °C, 30 min), CDI (1.1 equiv, 50 °C, 5 h) and (*S*)-1-phenyl-propylamine (1.1 equiv, 50 °C to 25 °C, 12 h) in acetonitrile gave talnetant (**33f**) in 84% yield. By this method, we obtained a new sequence of functionalization, C4-C3-C2, and have found an alternative method to the Pfitzinger synthesis, the common method to obtain

⁸⁸ Ethyl pinacol borate was preferentially used instead of commercially isopropyl pinacol borate because of a transesterification side reaction.

⁸⁹ Brown, H. C.; Bhat, N. G.; Srebnik, M. *Tet. Lett.* **1988**, *29*, 2631.

⁹⁰ Labaw, C. S.; Liu, P. PCT Int. Appl. **2007**, WO 2007016609.

quinoline salicylic acid series used as clinical candidate for P-selectin antagonists (Scheme 55).^{91,92}

Scheme 55: Pfitzinger reaction used for the synthesis of quinoline salicylic acid.

⁹¹ Pfitzinger, W. J. Prakt. Chem. 1886, 33, 100.

⁹² Kaila, N.; Janz, K.; Huang, A.; Moretto, A.; DeBernardo, S.; Bedard, P. W.; Tam, S.; Clerin, V.; Keith, J. C. Jr.; Tsao, D. H. H.; Sushkova, N.; Shaw, G. D.; Camphausen, R. T.; Schaub, R. G.; Wang, Q. J. Med. Chem. **2007**, *50*, 21.

2. Functionalizations of Protected Uracils via Chemo- and Regioselective Magnesiations

2.1. Introduction

Uracil derivatives are present among the natural products, like the marine alkaloid rigidin 58^{93} (Scheme 56), are mainly privileged structures in drug discovery⁹⁴ and display a broad spectrum of biological activities. For example, 5-fluorouracil (59)⁹⁵ is an important anticancer agent. Oxypurinol (60),⁹⁶ is a xanthine oxidase inhibitor, the active metabolite of the drug allopurinol. In recent years, several pathways were developed for the synthesis of analogues of emivirine (61), belonging to non-nucleoside reverse transcriptase inhibitors (NNRTIs)⁹⁷ that targets the retrovirus HIV-1 (Scheme 56).

Scheme 56: Uracil derivatives as pharmacological agents.

⁹³ (a) Sakamoto, T.; Kondo, Y.; Sato, S.; Yamanaka, H. J. Chem. Soc., Perkin Trans. 1. 1996, 5, 459; (b) Lagoja, I. M. Chemistry & Biodiversity 2005, 2, 1.

⁹⁴ Newkome, G. R.; Pandler, W. W.; Contemporary Heterocyclic Chemistry, Wiley, New York, 1982.

⁹⁵ Cai, T. B.; Tang, X.; Nagorski, J.; Brauschweiger, P. G.; Wang, P. G. Bioorganic & Medicinal Chemistry 2003, 11, 4971.

⁹⁶ Nagamatsu, T.; Fujita, T.; Endo, K. *J. Chem. Soc., Perkin Trans. 1.* **2000**, 33. Allopurinol is a well known drug clinically used for the treatment of gout and hyperuricemia. Oxypurinol is currently being developed by Cardiome Pharma for the treatment of allopurinol-intolerant hyperuricaemia (gout) and is in phase III trials for the treatment of congestive heart failure.

⁹⁷ (a) Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Inouye, N.; Baba, M.; Shigeta, S.; Walker, R. T.; De Clercq, E.; Miyasaka, T. J. Med. Chem. **1995**, 38, 2860; (b) Pedersen, O. S.; Pedersen, E. B. Antiviral Chem. Chemother. **1999**, 10, 2860.

2.2. Chemo and regioselective Br/Mg exchanges on protected uracils

2.2.1. Functionalization of protected uracils using halogen/metal exchange

The functionalization of uracil derivatives at C4 or C5 generally requires the protection of the carbonyl groups.⁹⁸ Two ways of the amide group protection are often used. The N-alkylation (as with the uracil **62**) protected the nitrogens with benzyl or methyl groups, or the O-alkylation protected the oxygens such as in the 2,4-dialkylpyrimidine derivatives **63** and **64** (Scheme 57).

Scheme 57: Halogen/metal exchange on protected uracils.

⁹⁸ For a recent functionalization of unprotected uracil, see: Kopp, F.; Knochel, P. Org. Lett. 2007, 9, 1639.

Knochel described the I/Mg exchange on the protected uracil 62 which led to compound 65 after quenching with tosyl cyanide (Scheme 57, Eq. 1).⁹⁹ The harsh conditions for deprotection have limited the use of this route. 2,4-Dialkoxypyrimidine was first used as a starting material for the preparation of protected uracil by *Binkley* in 1963,¹⁰⁰ which described the Br/Li exchange on 5-bromo-diethoxypyrimidine (63) using *n*-BuLi. After quenching with benzaldehyde, the corresponding product **66** was obtained in high yield (Scheme 57, Eq. 2). Later, Br/Mg exchanges were studied by Yokohama on 5-bromo-2,4-di-t-butoxypyrimidine (64) using *n*-BuMgCl under ultrasonic irradiation to perform the synthesis of nucleoside derivatives (67, Eq. 3)¹⁰¹ or using EtMgCl in the presence of a large excess of starting material (Eq. 4) to synthesize the alcohol uracil derivative 68.¹⁰² Interestingly, the corresponding product 68 was easily deprotected using conc. HCl affording the uracil 68a in 96% yield. These methods allowed the preparation of various uracil derivatives but required low temperatures, activation and non-stoichiometric conditions, precluding the presence of sensitive functional groups. Recently, we have found a LiCl-catalyzed Br/Mg exchange reaction using *i*-PrMgCl·LiCl (13).³¹ This reagent considerably accelerates the Br/Mg exchange reaction on aryl and heteroaryl bromides. We focused our studies on the general preparation of uracils, functionalized at C4 and C5 positions, starting from readily available protected uracils, which easily undergo deprotection. We chose 5-bromo-4-chloro-2,6dimethoxypyrimidine (69a, Scheme 58) and 4,5-dibromo-2,6-dimethoxypyrimidine (69b) as starting materials, prepared respectively by bromination¹⁰³ of commercially available 4chloro-dimethoxypyrimidine (70a), and readily available 4-bromo-dimethoxypyrimidine (**70b**).¹⁰⁴

 $\begin{array}{cccc} OMe & Br_2 & OMe \\ & & & \\ N & & \\ X & N & OMe \end{array} \xrightarrow{\begin{subarray}{c} Br_2 \\ \hline MeOH/H_2O \\ \hline 5 \ h,rt \end{array} \xrightarrow{\begin{subarray}{c} OMe \\ \hline Br & & \\ X & N & OMe \end{array} \xrightarrow{\begin{subarray}{c} OMe \\ \hline S & & \\ X & & \\ \hline N & & \\ \hline OMe \\ \hline S & & \\ N & & \\ \hline OMe \\ \hline S & & \\ N & & \\ \hline OMe \\ \hline S & & \\ N & & \\ \hline OMe \\ \hline S & & \\ S & & \\ \hline S & & \\ \hline OMe \\ \hline S & & \\$

Scheme 58: Preparation of starting materials 69a and 69b.

⁹⁹ Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Rottländer, M.; Knochel, P. J. Org. Chem. 2000, 65, 4618.

¹⁰⁰ Rajkumar, T. V.; Binkley, S. B. J. Med. Chem. **1963**, *6*, 550.

¹⁰¹ Momotake, A.; Mito, J.; Yamaguchi, K.; Togo, H.; Yokohama, M. J. Org. Chem. **1998**, 63, 7207.

¹⁰² Shimura, A.; Momotake, A.; Togo, H.; Yokoyama, M. Synthesis **1999**, 495.

¹⁰³ Okafor, C. J. Org. Chem. **1973**, 38, 4386.

¹⁰⁴ 4-Bromo-2,6-dimethoxypyrimidine (**70b**) was prepared following the literature procedure: White, J. D.; Hansen, J. D. *J. Org. Chem.* **2005**, *70*, 1963.

2.2.2. Chemoselective Br/Mg exchange on 5-bromo-4-chloro-2,6-dimethoxypyrimidine

The addition of *i*-PrMgCl·LiCl (**13**) to 5-bromo-4-chloro-2,6-dimethoxypyrimidine (**69a**) at 25 °C in THF furnished within 15 min quantitatively¹⁰⁵ the magnesiated N-heterocycle **71** (Scheme 59, Table 3). This magnesium reagent reacts with a wide range of electrophiles providing new 5-functionalized 4-chloro-2,6-dimethoxypyrimidines of type **72a-g** in high yields (Scheme 59, Table 3). Thus, the addition of benzaldehyde or 2-methoxy-benzaldehyde

Scheme 59: Chemoselective functionalizations of 5-bromo-4-chloro-2,6-dimethoxy-pyrimidine (69a) at C5 position.

to the magnesiated species **71** led to the corresponding alcohols **72a** and **72b** respectively in 91 and 83% yield (entries 1 and 2 of Table 3). The reaction with acid chlorides like PhCOCl or a carbamoyl chloride provided the ketone **72c** in 86% yield and the amide **72d** in 85% yield (entries 3-4). Treatment of the magnesiated derivative **71** with TsCN afforded the heterocyclic nitrile **72e** in 89% yield (entry 5). The introduction of an ester group was best performed by the reaction with NC-CO₂Et leading to the ester **72f** in 87% yield (entry 6). The reaction with an activated bromide like benzyl bromide provided the expected product **72g** in 75% yield (entry 7).

 $^{^{105}}$ The completion of Br-Mg exchange was checked by GC analysis of reaction aliquots quenched with saturated NH₄Cl (aq.).

entry	Grignard reagent ^a	electrophile	product of type 72	yield (%) ^b
		PhCHO	OH OCH ₃ N CI N OCH ₃	
1	71		72a	91
		MeO OHC	CH ₃ O OH OCH ₃ N CI N OCH ₃	
2	71		72b	83
		PhCOCI		
3	71		72c	86
4	71		72d	85
		TsCN		
5	71		72e	89
		NC-CO ₂ Et	Eto CI N OCH ₃ N OCH ₃	
6	71		72f	87
		PhCH₂Br	OCH ₃ N CI N OCH ₃	
7	71		72g	75

 Table 3: Products of type 72

 a X = Cl·LiCl. ^b Isolated yield of analytically pure product.

2.2.3. Application to the synthesis of annelated heterocycles and the xanthine oxidase inhibitor oxypurinol.

The pyrimidine **72c** can be easily converted into annelated heterocycles. Thus, the reaction between the chloroketone **72c** and hydroxylamine hydrochloride in a 1:1 mixture of H₂O/MeOH gave within 4 h the desired product **73** in 83% yield (Scheme 60). Interestingly, the addition of methyl mercaptoacetate to **72c** in the presence of triethylamine¹⁰⁶ provided the bicyclic S,N-heterocycle **74** in 69% yield (Scheme 60).

Scheme 60: Synthesis of annelated heterocycles starting from the acyluracil derivative (72c).

As an application, we also used an intramolecular cyclization to prepare the drug oxypurinol **60** (Scheme 61). Thus, the reaction of pyrimidine **69a** with *i*-PrMgCl·LiCl (**13** (1.05 equiv), 25 °C, 15 min) followed by the reaction with N-formylmorpholine provided the aldehyde **72h** in 83% yield. Treatment of **72h** with an excess of hydrazine monohydrate ¹⁰⁷ led to pyrazolopyrimidine **75** in 91% yield (80 °C, 0.5 h). Deprotection using conc. HCl led to oxypurinol (**60**) in 81% yield.

¹⁰⁶ Rahman, L. K. A.; Scrowston, R. M. J. Chem. Soc., Perkin Trans. 1. **1984**, *3*, 385.

¹⁰⁷ Nagamatsu, T.; Fujita, T.; Endo, K. J. Chem. Soc., Perkin Trans. 1. 2000, 33.

2.2.4. Regioselective Br/Mg exchange on 4,5-dibromo-2,6-dimethoxypyrimidine (69b).

The Br/Mg exchange on 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**), using *i*-PrMgCl·LiCl (**13** (1.05 equiv), 25 °C, 15 min) occurred regioselectively at C5, providing the corresponding magnesium species **76** (Scheme 62, Table 4). The reaction of **76** with various electrophiles gave the expected products **77i-m** in 70-91% yield (Table 4). The silylation and the direct allylation of the magnesium derivative **76** can be accomplished respectively with TMSCl and allyl bromide, leading to pyrimidines **77i** and **77j** in 91% yield (entries 1-2 of Table 4). Trapping the magnesium species **76** with ethyl cyanoformate, benzaldehyde or 4-morpholine-carbonyl chloride furnished the corresponding functionalized products **77k-m** in 70-95% yields (entries 3-5).

Scheme 62: Regioselective functionalizations of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) at C5 position.

entry	Grignard reagent ^a	electrophile	product of type 72	yield (%) ^b
	OCH ₃ XMg Br N OCH ₃	TMSCI	OCH ₃ Me ₃ Si N Br N OCH ₃	
1	76		77a	91
		allyl bromide	OCH ₃ N Br N OCH ₃	
2	76		77b	91
		NC-CO₂Et	EtO Br N OCH ₃ N OCH ₃	
3	76		77c	81
		PhCHO	OH OCH ₃ N Br N OCH ₃	
4	76		77d	95
			O OCH ₃ N N Br N OCH ₃	
5	76	-	77e	70

 Table 4: Products of type 77

^a $X = Cl \cdot LiCl$. ^b Isolated yield of analytically pure product.

2.2.5. Successive Br/Mg exchanges on 4,5-dibromo-2,6-dimethoxypyrimidine (69b) and his application the synthesis of the anti-HIV drug emivirine.

A successive introduction of two different electrophiles in positions C4 and C5 of 4,5dibromo-2,6-dimethoxypyrimidine (**69b**) can be performed. Thus, the reaction of 4-bromo-2,6-dimethoxy-5-(trimethylsilyl)pyrimidine (**77d**) with *i*-PrMgCl·LiCl (**13** (1.1 equiv), -15 °C, 12 h) furnished the corresponding Grignard reagent, which could be trapped with allyl bromide to give the expected product **78** in 81% yield (Scheme 63). Interestingly, difunctionalizations with two successive Br/Mg-exchange reactions using a "one-pot" procedure could also be performed. Thus, by using successively *c*-HexCHO and N- morpholinecarbonyl chloride as electrophiles, the desired product **79a** was obtained in 69% overall yield. Similarly, by using allyl bromide and MeI, the 4,5-disubstituted pyrimidine **79b** was prepared in 81% yield (Scheme 64).

Scheme 63: Br/Mg exchange of 4-bromo-5-(trimethylsilyl)-2,6-dimethoxypyrimidine (77a).

Scheme 64: Difunctionalizations of 4,5-dibromo-2,6-dimethoxypyrimidine via successive "one-pot" Br/Mg exchange reactions.

To illustrate the versatility of this method, a synthesis of the anti-HIV drug emivirine (**61**) was performed (Scheme 65). Treatment of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) with *i*-PrMgCl·LiCl (**13**) followed by the reaction with acetone in the presence of a solution of LaCl₃·2LiCl in THF,¹⁰⁸ led to the corresponding alcohol (**77f**) in 87% yield. This compound was partly reduced using triethylsilane and trifluoroacetic acid.¹⁰⁹ A mixture of the expected 4-bromo-5-isopropyl-2,6-dimethoxypyrimidine (**80**) and the corresponding unsaturated

¹⁰⁸ Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 497.

¹⁰⁹ Albert, J. S.; Aharony, D.; Andisik, D.; Barthlow, H.; Bernstein, P. R.; Bialecki, R. A.; Dedinas, R.; Dembofsky, B. T.; Hill, D.; Kirkland, K.; Koether, G. M.; Kosmider, B. J.; Ohnmacht, C.; Palmer, W.; Potts, W.; Rumsey, W.; Shen, L.; Shenvi, A.; Sherwood, S.; Warwick, P. J.; Russell, K. J. Med. Chem. **2002**, 45, 3972.

product was obtained¹¹⁰. The product mixture was directly hydrogenated using PtO_2^{111} (1 bar, 30 min) to obtain **80** in 91% yield. The second Br/Mg exchange was performed at 25 °C within 5 h, followed by the benzyl bromide addition, leading to the 4,5-dialkylated-2,6-dimethoxypyrimidine species (**81**) (20 h, 25 °C, 87%). An acidic hydrolysis in aqueous MeOH gave the corresponding uracil **82** in 92% yield after the recrystallization. Compound **82** was transiently silylated using BSA in MeCN and then N-alkylated ¹¹² with diethoxymethane to furnish 6-benzyl-1-(ethoxymethyl)-5-isopropyluracil (**61**, emivirine) in 90% yield (Scheme 65).

Scheme 65: Synthesis of the anti-HIV drug emivirine (61).

¹¹⁰ A mixture of 17% of **80** and 83% of the corresponding dehydrated product was obtained by ¹H NMR analysis of the crude product.

¹¹¹ Tilley, J. W.; LeMahieu, R. A.; Carson, M.; Kierstead, R. W. J. Med. Chem. 1980, 23, 92.

¹¹² Therkelsen, F. D.; Hansen, A-L. L.; Pedersen, E. B.; Nielsen, C. Org. Biomol. Chem. 2003, 1, 2908.

2.3. Direct magnesiation of protected uracils

2.3 Deprotonation of 2,4-dimethoxypyrimidine (83a) using lithium amide bases

Using the amide base TMPMgCl·LiCl (**18a**),³⁷ we have investigated the deprotonation of commercially available 2,4-dimethoxypyrimidine (**83a**, Scheme 66). Our aim was to access regioselectively polyfunctionalized protected uracils. *J. Yamamoto* described the use of strong bases such as the lithium amide TMPLi which led to the *ortho*-directed lithiation of 2,4-dimethoxypyrimidine (**83a**) in order to obtain the 5-functionalized 2,4-dimethoxypyrimidine **84** (Scheme 66). ¹¹³ The chelating effect of the methoxy group in the intermediate **85** led to the thermodynamically most stable metal species.¹¹⁴ With the use of lithium reagents, the range of potential electrophiles was strongly limited, and the 5-functionalized 2,4-dimethoxypyrimidines were obtained in moderate to low yields (4-65%). Very low yields were obtained using LDA, with recovery of the starting material.¹¹³

Scheme 66: Ortho-directed lithiation of 2,6-dimethoxypyrimidine.

2.3.1 Deprotonation of 2,4-dimethoxypyrimidine using TMPMgCl·LiCl (18a)

Surprisingly, through the treatment of commercially available 2,4-dimethoxypyrimidine (**83a**) with TMPMgCl·LiCl (**18a**) at -40 °C we easily got an access to the 6-magnesiated 2,4-dimethoxypyrimidine (**86**). Trapping of the resulting Grignard reagent **86** with benzaldehyde furnished the corresponding alcohol **87a** in 88 % yield (Scheme 67a). By the comparison of ¹H NMR¹¹⁵ of the products **87a** and **84** (synthesized by *Yamamoto* using TMPLi (Scheme 66), we could show that we obtained the kinetic product, C6-isomer product (**87a**) and not the C5 product (**84**). Starting from **83a**, the reaction with TMPMgCl·LiCl at various temperatures such as -20 °C, 0 °C or 25 °C, and the quenching with several electrophiles, led to a regioisomeric C6/C5 mixture.

¹¹³ (a) Wada, A.; Yamamoto, J.; Kanatomo, S. *Heterocycles* **1987**, *3*, 585; (b) Wada, A.; Yamamoto, J.; Hamoaka, Y.; Ohki, S.; Nagai, S.; Kanamoto, S. J. Heterocycl. Chem. **1990**, *27*, 1831.

¹¹⁴ Turck, A.; Plè, N.; Quéguiner, G. Heterocycles 1994, 3, 2149.

¹¹⁵ 1H-NMR (CDCl₃): $\hat{84}$: $\delta = 8.16$ ppm (s, 1H at C6 position); 87a: $\delta = 6.21$ ppm (s, 1H at C5 position).

Scheme 67a: First regioselective 6-functionalization of 2,4-dimethoxypyrimidine (83a).

Remarkably, the reaction of 2,4-dimethoxypyrimidine (**83a**), in presence of TMSCl (1.5 equiv) in THF at -100°C (Barbier conditions reaction), with TMPLi (1.0 M in Et₂O) led after 0.5 h to a regioisomeric mixtures of the corresponding products $C6/C5 = 15:1^{116}$ (Scheme 67b). This result proved that using TMPLi a kinetic deprotonation of 2,4-dimethoxypyrimidine (**83a**) is also possible to occur at C6 position, but at lower temperature compared with TMPMgCl·LiCl.

Scheme 67b: Deprotonation of 2,4-dimethoxypyrimidine (83a) at C6 position using TMPLi under Barbier conditions.

Keeping carefully the temperature at -40 °C during the deprotonation, we could quench the C6-magnesiated 2,4-dimethoxypyrimidine (**86**, Scheme 67) at low temperature with several electrophiles, obtaining the C6-functionalized protected uracils of type **87** (Scheme 68, Table 5, entries 1-4). Thus, the reaction of the Grignard intermediate **86** with iodine produced the 4-iodo-2,6-dimethoxypyrimidine (**87b**) in 87% yield (entry 1). A transmetalation of **86** with 1.1 equiv of CuCN·2LiCl and the treatment with pivaloyl chloride furnished the protected uracil

¹¹⁶ The regioselectivity of the reaction was obtained by GC-MS analysis of the crude mixture obtained after quenching the reaction with NH_4Cl and extracting with Et_2O .

87c in 72% yield (entry 2). Starting from the Grignard intermediate **86** and using transmetalation with $ZnCl_2$ (1 M in THF, 1.1 equiv, 25 °C, 15 min) and the Pd-Negishi cross-coupling with ethyl 4-iodobenzoate we obtained the arylpyrimidine **87d** in 75% yield (entry 3). An ester function was also implemented on **83a** using ethyl cyanoformate, and ester derivative **87e** was prepared in 71% yield (entry 4).

Scheme 68: C6-functionalization of 2,4-dimethoxypyrimidine (83a) using TMPMgCl·LiCl (18a).

entry	reagent	(°C); [T]	magnesium reagent	electro- phile	product, yield (%) ^a
		-40;		l ₂	
1	83a	[12]	86		87b : 87
2	83a	-40; [12]	86	<i>t-</i> BuCOCI	$ \begin{array}{c} $
3	83a	-40; [12]	86	CO ₂ Et	EtO ₂ C $\mathbf{87d}: 75^{[e,d]}$
4	83a	-40; [12]	86	NC-CO₂Et	$EtO_2C \xrightarrow{N} OCH_3$ EtO_2C \xrightarrow{N} OCH_3 87e : 71

Table 5: Products	of type	87	and	89 .
-------------------	---------	----	-----	-------------

^[a] Isolated yield of analytically pure product; ^[b] Catalytic amount of CuCN·2LiCl was added; ^[c] 1 equiv. of CuCN·2LiCl was added; ^[d] The Grignard was transmetalated with 1.2 equiv. of ZnCl₂ in THF ^[e] 1 mol % of Pd(Ph₃P)₄ was added. ^[f] This reaction was made starting from **83a** in a "one pot" procedure.

2.3.2 Deprotonation of 6-functionalized 2,4-dimethoxypyrimidine using TMPMgCl·LiCl (18a)

Scheme 69: Functionalization of compounds of type 87 using TMPMgCl·LiCl (18a).

Interestingly, contrary to the regioselectivity C5>C4, obtained on 4,5-dibromo-2,6dimethoxypyrimidine (**69b**) in the Br/Mg exchange reaction (Scheme 64), the direct deprotonation of 2,4-dimethoxypyrimidine (**83a**) with TMPMgCl·LiCl allowed us to introduce successively functional groups first at C6 and then at C5 positions (Scheme 69, Table 5, entries 5-7). The "one pot" successive diiodination of **83a** was performed using TMPMgCl·LiCl (-40 °C, 12 h) and iodine (1.2 equiv, -30 °C, 2 h) and provided the 4,5diiodo-2,6-dimethoxypyrimidine (**89a**) (87% yield, entry 6). Starting from **87b**, the reaction with TMPMgCl·LiCl (0 °C, 1 h) followed by a copper(I)-catalyzed acylation with 4fluorobenzoyl chloride led to the ketone derivative **89b** (84%, entry 7). Moreover, the use of this mixed Mg/Li amide base enhanced the tolerance toward sensitive functional groups such as an ester (entry 7). Thus, the reaction of TMPMgCl·LiCl (1.1 equiv, -40 °C, 2 h) on the protected uracil ester **87e** led to the C5-magnesiated intermediate **88b**, which after a transmetalation with CuCN·2LiCl was quenched with benzoyl chloride and afforded the highly functionalized pyrimidine **89c** in 78% yield (entry 7).

The use of TMPMgCl·LiCl (**18a**) allowed us the direct functionalization of commercially available 4-chloro-2,6-dimethoxypyrimidine (**70a**). We used this substrate for the synthesis of the pyrrolopyrimidine **90**, a known precursor of the marine alkaloid rigidin (**58**, Scheme 70). ¹¹⁷ Thus, the addition of TMPMgCl·LiCl (**16**, 25 °C, 1 h) to 4-chloro-2,6-dimethoxypyrimidine (**70a**) gave after transmetalation with ZnCl₂, and the Pd-catalyzed coupling with iodoethynyl-trimethylsilane,¹¹⁸ the corresponding cross-coupling product **91** in 79% yield (Scheme 70). A one-pot amination and deprotection of **91** using NH₃ in MeOH furnished the 6-amino-2,4-dimethoxypyrimidine (**92**) in 31% yield. This product was then successfully cyclized using the conditions developed by *Knochel*¹¹⁹ to the pyrrolopyrimidine **90** in yield 81 % yield.

Scheme 70: Synthesis of the precursor 90 for the synthesis of rigidin (58).

¹¹⁷ Sakamoto, T.; Kondo, Y.; Sato, S.; Yamanaka, H. J. Chem. Soc., Perkin Trans. 1. **1996**, 5, 459. (b) Lagoja, I. M. Chemistry & Biodiversity **2005**, 2, 1.

¹¹⁸ For the preparation of iodoethynyl-trimethyl-silane, see: Al-Hassan, M. I. *J. Organomet. Chem.* **1989**, *372*, 183. This reagent was distilled and stored under argon at -4 °C.

¹¹⁹ Rodriguez, A. L.; Dohle, W.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 2488.

3. Amination of DNA and RNA Units via Cuprated Pyrimidines and Purines Intermediates

3.1. Introduction

The chemical modification of DNA and RNA nucleotides **93a-e** (Scheme 71) is an important synthetic task, since modified DNA and RNA bases have interesting pharmaceutical properties and are important for the investigations of biochemical pathways.¹²⁰ Organocopper intermediates, due to their exceptional functional group tolerance, would be ideal reagents for DNA and RNA modification.^{121, 122}

Scheme 71: DNA and RNA bases of type 93.

Recently, we have reported an efficient oxidative amination procedure of lithium amidocuprates using chloranil.^{46a} We have applied this method to the amination of various pyrimidine and purine derivatives.

¹²⁰ For recent advance in DNA modifications: (a) Leumann, C. J. *Bioorg. Med. Chem.* **2002**, *10*, 841; (b) Burley, G. A.; Gierlich, J.; Mofid, M. R.; Nir, H.; Tal, S.; Eichen, Y.; Carell, T. *J. Am. Chem. Soc.* **2006**, *128*, 1398; (c) Wilson, J. N.; Kool, E. T. *Org. Biomol. Chem.* **2006**, *4*, 4265; (c) Matsuda, S.; Fillo, J. D.; Henry, A. A.; Rai, P.; Wilkens, S. J.; Dwyer, T. J.; Geierstanger, B. H.; Wemmer, D. E.; Schultz, P. G.; Spraggon, G.; Romesberg, F. E. *J. Am. Chem. Soc.* **2007**, *129*, 10466; (d) McCulloch, S. D.; Kokoska, R. J.; Masutani, C.; Iwai, S.; Hanaoka, F.; Kunkel, T. A. *Nature.* **2004**, *428*, 97.

¹²¹ (a) Yang, X.; Althammer, A.; Knochel, P. *Org. Lett.* **2004**, *6*, 1665. (b) Yang, X.; Knochel, P. *Synthesis* **2006**, *15*, 2618; (c) Piazza, C.; Knochel, P. *Angew. Chem. Int. Ed.* **2002**, *41*, 3263.

¹²² For a recent contribution in organocopper chemistry: (a) Deutsch, C.; Lipshutz, B. H.; Krause, N. Angew. Chem. Int. Ed. 2007, 46, 1650; (b) Krause, N.; Morita, N. Application of Copper, Silver and Gold in Preparative Organic Chemistry in: "Comprehensive Organometallic Chemistry III" (Crabtree, R. H.; Mingos, D. M. P. Eds.), Elsevier, Oxford. 2007, 9, 501-586. (c) Lipshutz, B. H.; Taft, B. R. Angew. Chem. Int. Ed. 2006, 45, 8235; (d) Geurts, K.; Fletcher, S. P.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 15572; (e) Lopez, F.; Harutyunyan, S. R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. Angew. Chem. Int. Ed. 2005, 44, 2752; (f) Palais, L.; Mikhel, I. S.; Bournaud, C.; Micouin, L.; Falciola, C. A.; Vuagnoux-d'Augustin, M.; Rosset, S.; Bernardinelli, G.; Alexakis, A. Angew. Chem. Int. Ed. 2007, 46, 7462; (g) Sulzer-Mosse, S.; Tissot, M.; Alexakis, A. Org. Lett. 2007, 9, 3749; (h) Isobe, H.; Cho, K.; Solin, N.; Werz, D. B.; Seeberger, P. H.; Nakamura, E. Org. Lett. 2007, 9, 4611.

3.2. Selective aminations of pyrimidine derivatives

3.2.1 Preliminary studies

Thus, in preliminary experiments, we magnesiated the 5-alkynyl pyrimidine **94** with TMPMgCl·LiCl (**18a**, THF, -10 °C, 3 h)³⁷ and performed transmetalation to the copper derivative **95** using CuCl·2LiCl (Et₃N, -50 °C, 45 min)¹²³ (Scheme 72). After the additions of LiHMDS (**96a**, 2 equiv, -60 °C, 1 h) and chloranil (**22**, 1.2 equiv, -78 °C, 12 h), followed by a deprotection using TBAF (25 °C, 2 h), the desired 2,4-dimethoxypyrimidine **92** was obtained in 71% yield. Compared with the previous method for the synthesis of the compound **90** (Scheme 70), this method afforded a better overall yield of compound **92** under milder conditions.

Scheme 72: Synthesis of 92, a precursor for the synthesis of rigidin (58).

3.2.2 Synthesis of aminated uracil and thymine

We have examined the reaction scope of this oxidative amination. By using the regioselective C6-magnesiation of the 2,4-dimethoxypyrimidine **83a** (TMPMgCl·LiCl (1.1 equiv), -40 °C, 12 h) followed by the transmetalation (CuCl·2LiCl) to the corresponding copper derivative (**97a**), we could obtained after the successive additions of N-lithiomorpholine **96b** and chloranil the expected aminated product **98a** in 76 % yield (Scheme 73). Similarly, starting from the 5-methyl-2,4-dimethoxypyrimidine (**83b**), the direct magnesiation using TMPMgCl·LiCl (1.1 equiv, -5 °C, 3 h) led after transmetalation with CuCl·2LiCl to the cuprated protected thymine **97b** (Scheme 73). The successive additions of **96b** (2 equiv, -60 °C, 0.7 h) and chloranil (1.2 equiv, -78 °C, 12 h) furnished the corresponding aminated pyrimidine **98b** in 72% yield. The treatment of the functionalized pyrimidines **98a-b** under

 $^{^{123}}$ 1.2 equivalents of Et₃N improved the yield of the amination reaction.

acidic conditions provided the 6-N-morpholino-uracil (**99a**) and 6-N-morpholino-thymine (**99b**) in excellent yields (91-96%; Scheme 73).

Scheme 73: Amination of 2,4-dimethoxypyrimidine (**83a**) and 5-methyl-2,4-dimethoxypyrimidine (**83b**). An access to 6-aminated uracil and thymine.

3.2.3 Selective aminations of functionalized pyrimidines

We have applied this method to the amination of several functionalized protected uracils and halogenated pyrimidines (Table 6). Thus, the reaction of the copper derivative **97a** with LiHMDS (**96a**) furnished after the addition of chloranil and a deprotection using TBAF 6amino-2,4-dimethoxypyrimidine **98c** (81%, entry 1 of Table 6). Similarly, starting from **97a**, the additions of the lithiated N-TBS aniline derivative (**96c**) and chloranil gave the TBSprotected 6-aminated pyrimidine **98d** (76%, entry 2), a derivative of the antibacterial TMAU, developed by Bayer AG.¹²⁴ The cuprated pyrimidine **97b** reacted with the sterically hindered TMP-Li (**96d**, -50 °C, 1 h) providing after the treatment with chloranil the thymine **98e** in 70% yield (entry 3). Starting from 5-bromo-2,4-dimethoxypyrimidine, a Br/Mg exchange using *i*-PrMgCl·LiCl (1.1 equiv, -20 °C, 2 h)³¹ followed by a transmetalation with CuCl·2LiCl gave the C5-cuprated 2,4-dimethoxypyrimidine **97c**. The addition of LiHMDS (**96a**) followed by chloranil, furnished the 5-amino-2,4-dimethoxypyrimidine (**98f**) after N-desilylation (79%, entry 4). Similarly, the N-TBS pyrimidine derivative **98g** was obtained (68% yield, entry 5).

¹²⁴ Kuhl, A.; Svenstrup, N.; Ladel, C.; Otteneder, M.; Binas, A.; Schiffer, G.; Brands, M.; Lampe, T.; Ziegelbauer, K.; Ruebsamen-Waigmann, H.; Haebich, D.; Ehlert, K. *Antimicrob. Agents Chemother.* **2005**, *49*, 987.

entry	copper reagent	lithium amide	product	yield [%] ^[a]
	OMe N Cu N OMe	LiHMDS		
1	97 a ^[b]	96a	98c	81
		Li _N TBS	OMe N TBS N OMe	
2	97 a ^[b]	96c	98d	76
3	$ \begin{array}{c} $	N-Li 96d	$ \begin{array}{c} $	70
	N OMe	LiHMDS	N OMe	
4	97c ¹⁰	96a Li TBS MeO OMe OMe	98f OMe MeO OMe OMe TBS N N N OMe	79
5	97c ^[b]	96e	98g	68
б	OMe Cu I N OMe N OMe	LiHMDS 96a	$(TMS)_2N$ N N OMe N OMe N OMe $98h$	65
0	Jiu	70a	7011	05

 Table 6: Amination of cuprated pyrimidines derivatives of type 97.

^[a] Isolated yield of analytically pure product. ^[b]1.2 equiv of $(Et_2NCH_2CH_2)_2O$ was added. ^[c]1.2 equiv of Et_3N was added.

Commercially available 4-chloro-2,6-dimethoxypyrimidine (**70a**) and readily prepared 4iodo-2,6-dimethoxypyrimidine (**87b**) could be deprotonated at C5 position using TMPMgCl·LiCl (**18a**, 1.1 equiv, 0-25 °C, 1 h) and transmetalated using CuCl·2LiCl (1.2 equiv, -50 °C, 0.7 h) affording the corresponding organocoppers **97d-e**. Their reaction with LiHMDS (**96a**) or N-lithium amide **96f**, in the presence of chloranil, provided 5-amino-2,4dimethoxypyrimidine derivatives (**98h-i**, 65-78%, entries 6-7) and 5-amino-6-chloro-2,4dimethoxypyrimidine (**98j**, 60%, entry 8), after deprotection using TBAF. Similarly, the polyfunctionalized cuprated pyrimidines **97f-g** were oxidatively aminated by the secondary lithium amides **96b** and **96f** giving the bromo-aminated pyrimidines (**98k-l**, 66-70%, entries 9-10).
3.3 Selective aminations of purine derivatives

3.3.1 Introduction

Purines are ubiquitous molecules that exist at relatively high (millimolar) concentrations in living organisms. More than 10% of the proteins encoded by the yeast genome evidently depend on a purine-containing ligand for their function. Purines libraries might be expected to have a high probability of yielding bioactive compounds. It seemed likely that structural variation at the 2, 6, 8, or 9 positions might impact specificity towards a variety of target proteins.¹²⁵ Several candidates, containing purine skeleton, include amines as substituents and are DNA analogs,¹²⁰ such as purvalanol A (**100**),^{125a, 126} a CDK inhibitor, and cladribine (**101**),¹²⁷ a drug commercialized to treat hairy cell leukemia (Scheme 74).

Scheme 74: Drugs containing purine skeleton.

The amination of purines in positions 8 and 2 are especially troublesome¹²⁸ and involve harsh reaction conditions for the substitution (Scheme 75)¹²⁹ or cross-coupling.¹³⁰ Therefore, we have developed a selective cupration of purines (via magnesium intermediates) and subsequent oxidative Cu-mediated amination.

¹²⁵ (a) Chang, Y.-T.; Gray, N. S.; Rosania, G. R.; Sutherlin, D. P.; Kwon, S.; Norman, T. C.; Sarohia, R.; Leost, M.; Meijer, L.; Shultz. P. G. *Chem. Biol.* **1999**, *6*, 361; (b) For a review on the synthesis of C-substituted purines using organometallic intermediates, see: M. Hocek. *Eur. J. Org. Chem.* **2003**, 245.
¹²⁶ For a preparation of purvalanol A: Taddei, D.; Slawin, A. M. Z.; Woollins, J. D. *Eur. J. Org. Chem.* **2005**, *5*,

¹²⁶ For a preparation of purvalanol A: Taddei, D.; Slawin, A. M. Z.; Woollins, J. D. *Eur. J. Org. Chem.* **2005**, *5*, 939.

¹²⁷ (a) Cottam, H. B.; Carson, D. A. *Drug Discovery Research.* **2007**, 393; (b) Janeba, Z.; Francom, P.; Robins M. J. *J. Org. Chem.* **2003**, *68*, 989.

¹²⁸ For a recent method of C8-arylamino substitution on purines see: (a) Bookser, B. C.; Matelich, M. C.; Ollis, K., Ugarkar, B. G. *J. Med. Chem.* **2005**, *48*, 3389.

¹²⁹ (a) A. Kurimito, T. Ogino, S. Ichii, Y. Isobe, M. Tobe, H. Ogita, H. Takaku, H. Sajiki, K. Hirota, H. Kawakami. *Bioorg. Med. Chem.* **2003**, *11*, 5501; (b) de Ligt, R. A. F.; van der Klein, P. A. M.; Frijtag Drabbe Künzel, J. K.; Lorenzen, A.; El Maate, F. A.; Fujikawa, S.; van Westhoven, R.; van den Hoven, T.; Brussee, J.; IJzerman, Ad. P. *Bioorg. Med. Chem.* **2004**, *12*, 139.

¹³⁰ Dai, Q.; Ran, C.; Harvey, R. G. Org. Lett. 2005, 7, 999.

(+31% N⁶-dealklylation product)

Scheme 75: Aminations of purines in positions 8 and 2.

3.3.2 Selective C8 and C2-aminations of purine derivatives

We have first concentrated our efforts on the aminations of positions 8 and 2 starting from readily available purines. Thus, a selective magnesiation in position 8 could be achieved by the reaction of the halogenated purine **102** and **103** (Scheme 76) with TMPMgCl·LiCl (**18a**) under convenient reaction conditions (THF, -10 °C, 2-3 h) giving after Cu-transmetalation the 8-cuprated purines **104** and **105**, which by oxidative amination with lithium N-morpholide (**96b**) or Et₂NLi (**96g**) provided the expected 8-aminated purines (**106** and **107**) in 63-66% yield (Scheme 76).

Scheme 76: Amination at C8 position of protected purines 102 and 103.

Using *Dvořák*'s conditions¹³¹ for the selective magnesiation in position 2 of the iodopurine **108** and a copper transmetalation (CuCl·2LiCl, Et₃N, -80 °C, 1.5 h) we obtained after the addition of the amide **96b** the amidocuprate **109**. Its treatment with chloranil (-78 °C, 2 h), gave the desired 2-aminated purine **110** in 69% yield (Scheme 77).

Scheme 77: Amination at C2 position of protected purine 108.

¹³¹ Tobrman, T.; Dvořák. D. Org. Lett. **2006**, *8*, 1291.

3.3.3 Selective C6-amination of purines derivatives. An access to adenine, adenosine units and to the CDK inhibitor purvalanol A.

The mild amination conditions tolerated the presence of a protected ribose unit. Thus, the 6iodopurine nucleoside **111** was successively magnesiated (*i*PrMgCl·LiCl (**13**), -50 °C, 3 h),¹³² and finally aminated via the Cu intermediate **112** with the lithiated N-methylpiperazide (**96f**), furnishing the adenosine derivatives **113** (70%, Scheme 78).

Scheme 78: Synthesis of an adenosine derivative.

Similarly, adenine analogs were prepared via this oxidative amination. The magnesiation of the iodopurine **114**, transmetalation to **115** provided after an oxidative amination with LiHMDS (**96a**) and chloranil the adenine **116** in 76% yield (Scheme 79). This encouraging result led us to apply the new amination procedure to the synthesis of the CDK inhibitor purvalanol A (**100**).¹²⁶ Thus, the amination of the 6-cuprated purine **115** with the lithiated N-TBS-aniline derivative (**96h**) gave the expected adenine derivative **117** in 71% yield. We have completed the synthesis by the reaction of **117** in a sealed tube with D-valinol in the presence of *Hunig*'s base in *n*-butanol (150 °C, 2 h), and obtained purvalanol A (**100**) in 65% yield (Scheme 79).

¹³² For the magnesiation of 6-purine nucleoside see: Tobrman, T.; Dvořák. D. Org. Lett. 2003, 5, 4289.

Scheme 79: Amination at C6 position of the iodopurine 114. Application of to the synthesis of adenine derivative (116) and purvalanol A (100).

4. Direct Chemo- and Regioselective Zinc Insertions into Polyhalogenated Aryl and N-Heteroaryl Compounds.

4.1. Introduction

The preparation of polyfunctional organozincs is an important synthetic task since they are versatile organometallic reagents.^{2,52} Recently, we have found that the addition of LiCl to zinc powder considerably facilitates its insertion into various aryl and heteroaryl iodides and bromides.⁶² It is well known, that metalation-directing groups (DMGs) are essential for the regioselective functionalization of aromatics and heterocycles with Li- or Mg-bases.¹³³ DMGs have also been used to perform regioselective halogen/metal exchanges^{19, 134} and metalations^{34b, 35a, 37, 135} but rarely direct metal insertion. By the best of our knowledge, the only selective metal insertions described in the literature were made by *Rieke* (Scheme 80).¹³⁶ These two examples showed a regiocontrol of the zinc and the magnesium insertions using bulky alkyl groups as directing groups. Rieke zinc (Zn*) underwent a direct oxidative addition to the C-Br bond primarly at the 5-position of **118** at -78 °C (Scheme 80).¹³⁶

Scheme 80: Regioselective zinc and magnesium insertions.

¹³³ (a) Anctil, E. J.-G.; Snieckus, V. J. Organomet. Chem. 2002, 653, 150. (b) Snieckus, V. Chem. Rev. 1990, 90, 879. (c) Wagner, F. F.; Comins, D. L. Eur. J. Org. Chem. 2006, 3562. (d) Katritzky, A. R.; Xu, Y.-J.; Jain, R. J. Org. Chem. 2002, 67, 8234.

¹³⁴ (a) Rieke, R. D. Science **1989**, 246, 1260. (b) Wu, X.; Rieke, R. D. J. Org. Chem. **1995**, 60, 6658.

¹³⁵ (a) Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376.

¹³⁶ (a) For a regioselective Zn/Br-insertion, see: Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. (b) For a regioselective Mg/Br insertion, see: Lee, J.-S.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. 2000, 65, 5428.

Rieke demonstrated that highly reactive magnesium displayed unusual selectivity in the insertion into bulky ester **119**. He postulated that the sterically hindered ester prevented the coordination of the ester to the magnesium surface and led to the corresponding *para*-product (**120**, Scheme 80) after quenching with benzaldehyde.^{136b}

We decided to focus our attention on the regioselectivity of the zinc insertion in the presence of LiCl into poly-iodo and -bromo aryls and N-heteroaryls of type **121** (Scheme 81). We studied the control of the insertion by DoMGs (Directing *ortho*-Metalation Groups) such as an ester or a tosylate, or by the presence of an appropriate heteroatom which should lead selectively to zincated intermediates of type **122** (Scheme 81).

Scheme 81: LiCl-mediated regioselective zinc insertion of aryls and heteroaryl compound of type 121.

4.2. DoI (Directed ortho-Insertion): a new access to aryl functionalized zinc reagents

4.2.1 Successive zinc insertion into triiodobenzoate and a proposed mechanism

We first studied the triiodobenzoate $121a^{137}$ and showed that it reacted readily with zinc dust⁷ (1.15 equiv) and LiCl (1.15 equiv) in THF at 0 °C, furnishing after 0.5 h the *ortho*-zincated intermediate 122a (Scheme 82). After the addition of CuCN·2LiCl (20 mol%), a smooth benzoylation with PhCOCl provided the aromatic ketoester 123a in 79% yield (Eq. 1). Interestingly, the diiodide 123a further underwent a selective zinc insertion giving the polyfunctional zinc reagent 122b which after transmetalation with CuCN·2LiCl reacted with 3-iodocyclohexenone affording the substitution product 123b in 73% yield (Eq. 2). In the absence of LiCl no zinc insertion was observed and higher reaction temperature led to unselective reactions. The origin of this unprecedented regioselectivity for a direct metal insertion is certainly due to the presence of an *ortho*-directing group. LiCl may chelate to this directing group and to the *ortho*-iodide, leading after an electron transfer from the zinc surface, the intermediate radical anion 124 (Scheme 82). The departure of the radical •ZnI

¹³⁷ This example was studied by the co-authors (Sase, S. and Sinha, P.) of the publication: *J. Am. Chem. Soc.* **2007**, *129*, 12358.

(facilitated by the presence of LiCl) provides the radical **125**, which gives after the recombination with •ZnI the zinc reagent **122a**. This directing effect explains also the regioselectivity of the second zinc insertion leading to the zinc reagent **122b**.

Scheme 82: Regioselective and successive zinc insertions to the triiodobenzoate 121a.

4.2.2 Regioselective zinc insertions into diiodo-and dibromo-aryl compounds

We have found that other chelating groups such as an aryl sulfonate,¹³⁸ an acetate, or a triazene,¹³⁹ display the similar directing abilities. Thus, the 3,5-diiodobenzonitrile **121c** reacts regioselectively with zinc dust in the presence of LiCl (1.15 equiv) at 0 °C, furnishing the *ortho*-zincated product **122c** (Table 7). After a copper(I)-catalyzed allylation, the aryl iodide **123c** was obtained in 82% yield (entry 1). Similarly, the diiodobenzoate **121d** underwent a selective zinc insertion providing the arylzinc **122d**, which after a reaction with ethyl (2-bromomethyl)acrylate⁸³ gave the polyfunctional diester **123d** in 85 % yield (entry 2). The dibromoarene **121e**, bearing an acetate as DoI group, is sufficiently reactive toward a zinc insertion and afforded the desired zinc reagent **122e** (entry 3; 50 °C, 20 h). In the absence of LiCl, only starting material decomposition is observed. The zinc reagent **122e** underwent a

¹³⁸ (a) Sapountzis, I.; Lin, W.; Fischer, M.; Knochel, P. Angew. Chem. Int. Ed. **2004**, 43, 4364. (b) Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. **2004**, 44, 4258.

¹³⁹ (a) Liu, C. J.; Knochel, P. Org. Lett. **2005**, 7, 2543. (b) Saeki, T.; Son, E.-C.; Tamao, K. Org. Lett. **2004**, 6, 617.

Pd-catalyzed Negishi cross-coupling reaction⁵⁴ with methyl 4-iodobenzoate furnishing the biphenyl **123e** in 73 % yield.

entry	aryl halide	zinc reagent ^a (conditions)	electrophile	product of type 123 , yield $(\%)^b$
1	$R^{1} \qquad \qquad I$ I I I I I I I I I	OTs R^1 Znl I $(0 ^{\circ}C, 12 h)$ $122c: R^1 = CN$	CH ₂ =CH- CH ₂ Br	$R^{1} + R^{2}$ $R^{2} + R^{2}$
2	121d : $R^1 = CO_2Et$	(0 °C, 12 h) 122d : $R^1 = CO_2Et$	CO ₂ Et Br	123d : $R^1 = CO_2Et$, $R^2 = CH_2C(CO_2Et)CH_2$, 85^c
3	OAc Br 121e	OAc ZnBr Br 122e (50 °C, 20 h)	CO ₂ Et	$\begin{array}{c} I \\ \hline \\ OAc \\ 123e: 73^{e} \end{array}$
4	N N Br Br Br	$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	I CO ₂ Et	$ \begin{array}{c} $
4	121f	122f (50 °C, 20 h)		123f : 76°

 Table 7: Preparation and reaction of aryl functionalized zinc reagents of type 122^{.140}

 $a X = I \cdot LiCl$ or Br·LiCl ^b Isolated yield of analytically pure product. ^c Catalytic amount of CuCN·2LiCl was added. ^d 1 equiv of CuCN·2LiCl was added. ^e 1 mol % of Pd(Ph₃P)₄ was added.

Remarkably, the mild conditions of the lithium chloride-mediated zinc insertion tolerate also a triazene moiety which is an important synthetic equivalent of a diazonium function.¹⁴¹ Thus, the readily available tribromoaryltriazene 121^{142} was converted with Zn/LiCl (2 equiv) to the zinc reagent 122f (50 °C, 20 h) and provided after the Negishi cross-coupling reaction with

¹⁴⁰ These products were prepared by the co-authors (Sase, S.; Sinha, P.; Liu, C;-Y.) of the publication: *J. Am. Chem. Soc.* **2007**, *129*, 12358.

¹⁴¹ Bräse, S. Acc. Chem. Res. 2004, 37, 805.

¹⁴² For the preparation of tribromoaryltriazene 1h, see: Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue, T. Y.; Natarajan, S.; Chu, X. J.; Bräse, S.; Rübsam, F. *Chem. Eur. J.* 1999, *5*, 2584.

methyl 2-iodobenzoate the polyfunctionalized dibromoaryltriazene **123f** in 76 % yield (entry 4).

4.3. DoI (Directed *ortho*-Insertion): a new access to N-heteroaryl functionalized zinc reagents

We have examinated the scope of this regioselective insertion on various N-heterocycles. Interestingly, various di- or tri- iodo- or bromo-pyridines 121g-i bearing a sulfonate functionality¹³⁸ could be chemo- and regioselectively converted to the *ortho*-zincated pyridylsulfonates 122g-i (Table 8). Their copper(I)-catalyzed allylation or benzoylation afforded the polyfunctional pyridines 123g-i in 80-83 % yield (Table 8, entries 1-3). Interestingly, the carbamate group¹⁴³ smoothly directed the zinc insertion of the diiodopyridine **121***j* with complete regioselectively leading to the zinc derivative 122j (entry 4). After allylation, the polyfunctional pyridine 123j was obtained in 83% yield. Various other diiodo- N-heterocyclic compounds such as the 4,5-diiodoimidazole¹⁴⁴ **121k** and the 2,3-diiodoindole **121l** were converted at 50 °C within 2 h to the zinc reagents 122k and 122l (entries 5 and 6). In the presence of CuCN·2LiCl,⁵⁷ the addition of allyl bromide and benzoyl chloride led to the corresponding allylated iodoimidazole (123k) and the indole derivative 123l in 80-83% yield (entries 5 and 6). A tosylate is also an excellent DoI group. Thus, the 5,7-diiodoquinoline 121m inserts selectively zinc in the presence of LiCl at 25 °C and led, after transmetalation with CuCN-2LiCl and quenching with pivaloyl chloride to the polyfunctional quinoline 123m in 78% yield (entry 7). The mild conditions of the Zn/LiCl insertion allow performing regioselective zinc insertion on heterocycles, having well differentiated reactivity sites. Thus, 2,5-dibromothiazole¹⁴⁵ 121n underwent a selective zincation at 25 °C and gave the heteroarylzinc bromide 122n (entry 8). The Pd-catalyzed Negishi cross-coupling with 2iodobenzaldehyde furnished the corresponding aldehyde 123n in 85 % yield. A selective zinc insertion occured with the tribromopyrimidine 1210 at 25 °C within 4 h, leading to the zincated dibromopyrimidine 1220 (entry 9). Addition of ethyl (2-bromomethyl)acrylate⁸³ in the presence of catalytic amount of CuCN·2LiCl led to the substituted dibromopyrimidine 1230 in 63% yield. The zinc insertion into the 4,5-diiodo- and 4,5-dibromo-2,6dimethoxypyrimidine (89a and 69b) was found to be regioselective. Thus, treatment of 4,5diiodo-2,6-dimethoxy-pyrimidine (89a) with Zn/LiCl (1.5 equiv, 50 °C, 3 h, entry 10) resulted

¹⁴³ Kauch, M.; Snieckus, V.; Hoppe, D. J. Org. Chem. 2005, 70, 7149.

¹⁴⁴ (a) For the preparation of 4,5-diiodo-2-methyl-1H-imidazole, see: Bell, A.S.; Campbell, S. F.; Morris, D. S.; Roberts, D. A.; Stefaniak, M. H. *J. Med. Chem.* **1989**, *32*, 1552. (b) Lipshutz, B. H.; Hagen, W. *Tetrahedron Lett.* **1992**, *33*, 5865.

¹⁴⁵ Delgado, O.; Heckmann, G.; Mueller, H. M.; Bach, T. J. Org. Chem. **2006**, 71, 4599.

only in the insertion into the C–I bond at position 5 to give the zinc reagent **122p**. Treatment of **122p** with benzoyl chloride in the presence of CuCN·2LiCl (0.5 equiv) provided the product **123p** in 83% yield. A regioselective zinc insertion at position C5 into 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) was also achieved under mild reaction conditions (12 h, 25 °C, entry 11). The corresponding zinc reagent **122q** reacted in the Negishi cross-coupling with 4-iodobenzonitrile to give the polyfunctional 4-bromo-2,6-dimethoxypyrimidine **123q** in 86% yield.

Table 8: Preparations and reactions of unsaturated organozinc reagents of type 121 leading toproducts of type 122.

entry	aryl halide	zinc reagent (conditions)	electrophile	product of type 123 , yield $(\%)^b$
	I OSO ₂ Ar	ZnX OSO ₂ Ar	Br	OSO ₂ Ar
1^{f}	121g	122g (0 °C, 2.5 h)		123g : 83 ^c
	I OSO ₂ Ar	ZnX OSO ₂ Ar	CO ₂ Et Br	CO ₂ Et OSO ₂ Ar
2^{f}	121h	122h (0j °C, 2.5 h)		123h : 80 ^c
	Br N OTs	Br N OTs	PhCOCI	Br N OTs
3	121i	122i (25 °C, 20 h)		123i : 81 ^d
	$(Pri)_2N \rightarrow O$	(Pri) ₂ N O N ZnI	CH ₂ =CH- CH ₂ Br	
4	121i	122i (25 °C, 5 h)		123 j: 83 ^c

^{*a*} X = I·LiCl or Br·LiCl ^{*b*} Isolated yield of analytically pure product. ^{*c*} Catalytic amount of CuCN·2LiCl was added. ^{*d*} 1 equiv of CuCN·2LiCl was added. ^{*e*} 1 mol % of Pd(Ph₃P)₄ was added. ^{*f*} Ar = 4-ClC₆H₄. ^{*g*} 0.5 equiv of CuCN·2LiCl was added. ^{*h*} Pd(dba)₂ (5 mol%) and P(o-furyl)₃ (10 mol%) were added.

5. Summary and Outlook

5.1. Functionalizations of Quinoline Moieties *via* Chemo- and Regioselective Magnesiations.

In summary, we have described various versatile regioselective functionalizations of quinolines *via* chemo- and regioselective magnesiation reactions using appropriate Mg-reagents such as *i*-PrMgCl·LiCl, MesMgBr·LiCl, Mes₂Mg·2LiBr, TMPMgCl·LiCl, and TMP₂Mg·2LiCl (Scheme 83). Several sensitive functionalities such as an ester and a ketone were tolerated. This approach opened a new route for the direct preparation of drug analogs, containing the quinoline skeleton. An application to the total synthesis of the biologically active compound talnetant was performed (6 steps, 28%).

Scheme 83: Sequences of selective functionalizations of quinoline cores.

An extension of this study would be the regioselective magnesiation of quinolines at C5, C6 and C7 positions inducing by DoM groups, and the regioselective functionalizations of isoquinoline moiety.

5.2. Functionalizations of Protected Uracils *via* Chemo- and Regioselective Magnesiations.

We have developed a chemo- and regioselective functionalization method of uracils *via* successive Br/Mg-exchanges using *i*-PrMgCl·LiCl (13). We applied this method to the synthesis of biologically active uracils like oxypurinol (60) and emivirine (61) and opened a new route to synthesis of their analogs (Scheme 84).

Scheme 84: Polyfunctionalization of protected uracils via Br/Mg exchange.

By using the mixed Mg/Li amide base TMPMgCl·LiCl (**18a**), the successive direct deprotonations and functionalizations at 6-position (**87**) and 5-position (**89**) of 2,4-dimethoxypyrimidine (**83a**) has been achieved, opening a novel route for the synthesis of 5,6-difunctionalized protected uracils (Scheme 85).

Scheme 85: Polyfunctionalization of protected uracils via direct magnesiation using 18a.

5.3. Amination of DNA and RNA units via cuprated pyrimidines and purines

Recently, we have found a new amination procedure via the oxidative coupling of aryl and heteroaryl amidocuprates using chloranil. We have achieved using this method, the preparation of primary, secondary and tertiary amino-pyrimidines and purines (Scheme 86). We believe that this method gives an alternative to common amination procedures, usually involving harsh reactions conditions. This practical amination protocol led to aminated pyrimidine (**981**) and uracil derivatives (**98f**), 6-aminated thymine (**99b**), adenine and adenosine derivatives (**100**, **111**) and to challenging C2 and C8 aminated purines **110** and **107**.

Scheme 86: Aminated DNA and RNA units via an oxidative coupling method.

As this method tolerates the ribose unit, it may have a real potential for preparing DNA and RNA nucleoside analogs. Moreover, one extension of this method could be the use of lithiated diprotected amino-alcohols. Amino-alcohols, as amines, are present in several drug candidates and are often implemented under harsh conditions (cf the synthesis of purvalanol A with D-valinol).

5.4. Direct chemo- and regioselective zinc insertions into polyhalogenated N-heteroaryl compounds

We have demonstrated that in the presence of LiCl, a regioselective insertion of zinc powder occurred into various poly- iodo- and bromo- aryls and heteroaryls. This exceptional regioselectivity was obtained starting from substrates bearing various "ortho-directing group" possessing chelating properties such as an ester, a ketone, an aryl sulfonate, an acetate, a triazene or a carbamate, or/and the presence of an appropriate heteroatom in the case of polyhalogenated heterocycles. By this new concept DoI (Directed ortho-Insertion), we have prepared a wide range of polyfunctional N-heterocyclic zinc reagents of type 122 (Scheme 87).

122p

Scheme 87: Regioselective zinc insertion into polyhalogenated N-heteroaryl compounds.

•

C: Experimental Section

1. General Considerations

All reactions were carried out with magnetic stirring and, if air or moisture sensitive, in flame-dried glassware under argon. Syringes were used to transfer reagents, and solvents were purged with argon prior to use.

Solvents

Solvents were dried according to standard methods by distillation from drying agents as stated below and were stored under argon.

CH₂Cl₂ and toluene were predried over CaCl_{2(s)} and distilled from CaH_{2(s)}.

Diethyl ether and **THF** were continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen.

Dimethylformamide (**DMF**) was heated to reflux for 14 h over $CaH_{2(s)}$ and distilled from $CaH_{2(s)}$.

Ethanol was treated with phthalic anhydride (25g/L) and sodium, heated to reflux for 6 h and distilled.

Methanol was treated with magnesium turnings (20g/L) and sodium, heated to reflux for 6 h and distilled.

Triethylamine was dried over KOH_(s) and distilled from KOH_(s).

Reagents: Metal salts solution

CuCN-2LiCl solution (1.0 M/THF) was prepared by drying CuCN (869 mg, 10 mmol) and LiCl (848 mg, 20 mmol) in a Schlenk flask under vacuum for 5 h at 140 °C. After cooling to 25 °C, dry THF (10 mL) was added and stirred continuously until the salts were dissolved.

CuCl·2LiCl solution (1.0 M in THF): A dry and argon-flushed 50 mL Schlenk-flask, equipped with a magnetic stirrer and a glass stopper, was charged with LiCl (1.7 g, 40 mmol) and heated up to 130 °C under high vacuum for 1 h. After cooling to 25 °C under argon, CuCl (1.98 g, 20 mmol, 99.5% Cu) was added under inert atmosphere inside a glove-box. The Schlenk-flask was further heated to 130 °C for 5 h under high vacuum, cooled to 25 °C, charged with freshly distilled THF (20 mL) under argon flush and wrapped with an aluminium foil to protect it from light. The mixture was vigorously stirred until all solid goes in solution (ca. 6 h.). The reagent CuCl·2LiCl (1 M in THF) appears as a colourless or slightly yellow solution.

ZnBr₂ solution (1.0 M/THF) was prepared by drying ZnBr₂ (33.78 g, 150 mmol) under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (150 mmol) was added and stirred continuously until the salts were dissolved.

ZnCl₂ solution (1.0 M/THF) was prepared by drying $ZnCl_2$ (20.45 g, 150 mmol) under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (150 mmol) was added and stirred continuously until the salts were dissolved.

LaCl₃·2LiCl solution in THF (0.33 M) was prepared following the literature.¹⁰⁸

Lithiated reagents

n-Butyllithium was used as a 1.5 M solution in hexane purchased by Chemetall.*t*-Butyllithium was used as a 1.5 M solution in pentane purchased by Chemetall.Methyllithium was used as a 1.7 M solution in Et₂O purchased by Chemetall.

Magnesiated reagents

i-**PrMgCl**: A dry three-necked flask equipped with an argon inlet, a dropping funnel and a thermometer was charged with magnesium turnings (110 mmol). A small amount of THF was added to cover the magnesium, and a solution of isopropyl chloride (100 mmol) in THF (50 mL) was added dropwise, keeping the temperature of the mixture below 30 °C (water bath). After the addition was complete, the reaction mixture was stirred for 12 h at 25 °C. The grey solution of *i*-PrMgCl was cannulated to another flask under argon and removed in this way from excess of magnesium. A yield of ca. 95-98 % of *i*-PrMgCl was obtained and the *i*-PrMgCl-solution was titrated prior to use according to reported literature.¹⁴⁶

PhMgCl was used as a 2.0 M solution in THF purchased by Chemetall.

i-PrMgCl·LiCl (13): A dry three-necked flask equipped with an argon inlet, a dropping funnel and a thermometer was charged with magnesium turnings (110 mmol) and anhydrous LiCl (100 mmol). A small amount of THF was added to cover the magnesium, and a solution of isopropyl chloride (100 mmol) in THF (50 mL) was added dropwise, keeping the

¹⁴⁶ (a) H. S. Lin, L. Paquette, *Synth. Commun.* **1994**, *24*, 2503; (b) A. Krasovskiy, P. Knochel, *Synthesis* **2006**, *5*, 890.

temperature of the mixture below 30 °C (water bath). After the addition was complete, the reaction mixture was stirred for 12 h at 25 °C. The grey solution of *i*-PrMgCl·LiCl was cannulated to another flask under argon and removed in this way from excess of magnesium. A yield of ca. 95-98 % of *i*-PrMgCl·LiCl was obtained and the *i*-PrMgCl·LiCl-solution was titrated prior to use according to reported literature.¹⁴⁶

s-BuMgBr·LiCl (39a), PhMgBr·LiCl (39b), 1-naphtylmagensium chloride (39c), MesMgBr·LiCl (39d), and 1,3,5-triisopropylphenylmagnesium bromide (39e), were prepared according to the procedure of *i*-PrMgCl·LiCl (13) from the corresponding bromides.

Mes₂Mg·2LiBr (39f): A solution of *t*-BuLi in pentane (190 mmol, 1.70 M) was added dropwise at -78 °C to a solution of mesitylbromide (100 mmol) in Et₂O (25 mL) for 15 min. The resulting mixture was first warmed to -20 °C, and stirred for 1 h, and then warmed to 25 °C. The solvents were evaporated under vacuum for 1 h. To the obtained lithium salt, a solution of MesMgBr¹⁴⁷ in THF (105 mmol, 0.65 M) was added at -50 °C and stirred for 1 h. Thereafter, the mixture is allowed to warm to 25 °C and stirred for 12 h. A clear solution of Mes₂Mg·LiBr is obtained and the concentration (0.61 M of [Mg] in THF) was checked by titration of iodine (1mmol).

TMPMgCl·LiCl (18a): A dry and nitrogen-flushed 250 mL Schlenk flask, equipped with a magnetic stirrer and a septum, was charged with freshly titrated *i*-PrMgCl·LiCl(100 mL, 1.2 M in THF, 120 mmol). 2,2,6,6-Tetramethylpiperidine (TMPH) (19.8 g, 126 mmol, 1.05 equiv.) was added dropwise at 25 °C. The reaction mixture was stirred at 25 °C until gas evolution was completed (ca. 24 h).³⁷ The concentration of the solution of TMPMgCl·LiCl was titrated by using benzoic acid in dry THF and 4-(phenylazo)diphenylamine as an indicator.

TMP₂Mg·2LiCl (19): was prepared according to the known procedure.⁴⁰

¹⁴⁷ This reagent was directly used from commercial sources such as Aldrich.

Other reagents

The following reagents were prepared according to literature procedures: Palladium(II)bis(dibenzylidenacetone), ¹⁴⁸ tri-(2-furyl)phosphine ¹⁴⁹, ethyl 2-(bromomethyl)acrylate, ⁸³ *S*-phenyl benzenesulfonothioate⁸¹ and *S*-phenyl benzenesulfonothioate. ⁸²

Chromatography

Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO_2 (Merck 60, F-254). The spots were visualized by UV light and/or by staining of the TLC plate with the solution bellow followed, if necessary, by heating with a heat gun:

- KMnO₄ (0.3 g), K₂CO₃ (20 g), KOH (0.3 g) in water (300 mL)
- Neat iodine absorbed on silica gel
- Phosphormolybdic acid (5.0 g), Ce(SO₄)₂ (2.0 g), conc. H₂SO₄(12.0 mL) in water (230 mL).

Flash column chromatography was performed using SiO_2 60 (0.04-0.063 mm, 230-400 mesh ASTM) from Merck or aluminium oxide 90 active neutral (0.063-0.200 mm, 70-230 mesh ASTM), grade III,¹⁵⁰ from Merck.

Preparative TLC were performed using PSC-Plates 20 x 20 cm, Kieselgel 60 F_{254} , 2 mm, from Merck.

The diameters of the columns and the amount of silicagel were calculated according to the recommendation of W. C. Still.¹⁵¹

Analytical Data

NMR-spectra were recorded on *Bruker* ARX 200, AC 300, WH 400 or AMX 600 instruments. Chemical shifts are reported as δ -values in ppm relative to the deuterated solvent peak: CDCl₃ (δ 3 H = 7.25; δ C (ppm) = 77.0), DMSO-d₆ (δ 6 H = 2.49; δ C(ppm) = 39.5).

¹⁴⁸ Y. Takahashi, T. Ito, S. Sakai, *Chem. Comm.* **1970**, 1065.

¹⁴⁹ D. W. Allen, B. G. Hutley, M. T. J. Mellor, J. Chem. Soc. Perkin Trans. II 1972, 63.

¹⁵⁰ Brockmann, H.; Schodder, H. Ber. Deut. Chem. Ges. **1941**, 74, 73.

¹⁵¹ W. C. Still, M. Khan, A. Mitra, J. Org. Chem. **1978**, 43, 2923.

For the characterization of the observed signal multiplicities, the following abbreviations were used: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), td (doublet of triplets), quint (quintet), sext (sextet), sept (septet), br (broad). If not otherwise noted, the coupling constants given are (CH)- coupling constants.

Melting points are uncorrected and were measured on a Büchi B.540 apparatus.

Infrared spectra were recorded from 4000-400 cm⁻¹ on a *Nicolet* 510 FT-IR or a *Perkin-Elmer* 281 IR spectrometer. Samples were measured either as film between potassium bromide plates (film), as potassium bromide tablets (KBr), or neat (*Smiths Detection* DuraSampl *IR* II Diamond ATR).

The absorption bands are reported in wavenumbers (cm⁻¹). For the band characterization, the following abbreviations were used: br (broad), vs (very strong), s (strong), m (medium), w (weak).

Gas chromatography (GC) was performed with machines of the types *Hewlett-Packard* 6890 or 5890 Series II, using a column of the type HP 5 (*Hewlett-Packard*, 5% phenylmethylpolysiloxane; length: 10 m, diameter: 0.25 mm; film thickness: 0.25 μ m). The detection was accomplished using a flame ionization detector. Depending on the retention time of the substrate, decane or tetradecane were used as internal standards.

Mass Spectra were recorded on a *Finnigan* MAT 95Q or *Finnigan* MAT90 instrument for electron impact ionization (EI). High resolution mass spectra (HRMS) were recorded on the same instrument.

For the combination of gas chromatography with mass spectroscopic detection, a GC-MS of the type *Hewlett-Packard* 6890 / MSD 5793 networking was used (column: HP 5-MS, *Hewlett-Packard*; 5% phenylmethylpolysiloxane; length: 15 m, diameter 0.25 mm; film thickness: 0.25μ m).

2. Functionalizations of Quinoline Moieties *via* Chemo- and Regioselective Magnesiations

2.1. <u>General procedure for the Br/Mg exchange reaction using *i*-PrMgCl·LiCl (13) or MesMgBr·LiCl (39d) as magnesiation reagent (GP1).</u>

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with the quinoline derivative (1 equiv) dissolved in dry THF (1.0 M solution). The magnesiation reagent *i*-PrMgCl·LiCl (13) or MesMgBr·LiCl (39d) (1.1 equiv) was added slowly, dropwise, at appropriate temperature (as stated in the experiment). The reaction mixture was stirred at the same temperature, and the completion of the Br/Mg exchange was checked by GC-analysis using decane as internal standard or by TLC. The freshly prepared magnesium reagent was cooled to the corresponding temperature or used at 25 °C and the corresponding electrophile (1.1-1.5 equiv) or its solution in THF was added. The mixture was stirred for a time depending on the reactivity of the electrophile. The consumption of the magnesium reagent was checked by GC-analysis, using decane as internal standard. After the reaction was completed, sat. NH₄Cl solution was added, the mixture was extracted three times with Et₂O or EtOAc and dried over anhydrous Na₂SO₄. The solvent was evaporated and the product was purified by *flash*-chromatography (SiO₂).

2.2. General procedure for the deprotonation using TMPMg·LiCl (18a) as magnesiation reagent (GP2).

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with the quinoline derivative (1 equiv) dissolved in dry THF (1.0 M solution) and 1.1 equivalents of TMPMg·LiCl (**18a**) were added dropwise at the given temperature. The reaction mixture was stirred at the same temperature, and the completion of the deprotonation was checked by GC-analysis of reaction aliquots quenched with iodine using decane as internal standard. The freshly prepared magnesium reagent was cooled to the corresponding temperature or used at 25 °C and the corresponding electrophile (1.2 equiv) or its solution in THF was added. The mixture was stirred for a time depending on the reactivity of the electrophile. The consumption of the magnesium reagent was checked by GC-analysis, using decane as internal standard. After the reaction was completed, sat. NH₄Cl solution was added, the mixture was extracted three times with Et₂O or EtOAc and dried over anhydrous Na₂SO₄. The solvent was evaporated and the product was purified by *flash*-chromatography (SiO₂).

2.3. General procedure for the reaction with acyl chlorides (GP 3)

According to **GP1** or **GP2**, the freshly prepared magnesium reagent was cooled to $-40 \,^{\circ}$ C, and CuCN·2LiCl⁵⁷ (1 equiv, 1.00 M in THF) was added and stirred for 30 min. Thereafter, acyl chloride (1.5 equiv) was added at $-40 \,^{\circ}$ C, and the reaction mixture was warmed to 25 $\,^{\circ}$ C and stirred for the appropriate time. The reaction mixture was quenched with sat. aq. NH₄Cl solution or NH₄OH (2M aq.) extracted with Et₂O or EtOAc and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated *in vacuum*. Purification by *flash*-chromatography furnished the desired product.

2.4 Starting material synthesis

Synthesis of 2,4-dibromoquinoline (37a)⁷⁷

A mixture of commercially available quinoline-2,4-diol (4.835 g, 30 mmol) and phosphorus oxybromide (34 g,120 mmol) was refluxed for 5 h in dry toluene (300 mL). After cooling in an ice bath, the reaction mixture was hydrolyzed carefully by addition of ice (200 mL) and neutralized using a 6N solution of sodium hydroxide. The insoluble product was collected by filtration, washed with water (3 x 100 mL) and dried under vacuum. 2,4-dibromoquinoline (**37a**) was obtained as a pale yellow solid (6.4 g, 75%).

mp.: 93.8-95.0 °C.

IR (**ATR**): v (cm⁻¹) = 3088 (s), 3060 (vs), 1652 (s), 1562 (s), 1552 (s), 1486 (s), 1452 (m), 1390 (s), 1262 (m), 1140 (s), 1086 (m), 844 (m), 808 (m), 756 (s), 680 (m).

¹**H-NMR (DMSO-d₆, 300 MHz)**: δ (ppm) = 8.17 (s, 1 H), 8.12 (d, ³*J* = 7.8 Hz, 1 H), 7.99 (d, ³*J* = 8.2 Hz, 1 H), 7.89 (m, 1 H), 7.79 (m, 1 H).

¹³**C-NMR (DMSO-d₆, 75 MHz**): δ (ppm) = 148.6, 141.2, 135.6, 132.7, 129.7, 129.4, 129.3, 127.3, 126.8.

MS (EI, 70 eV): *m/z* (%) = 288 (41), 287 (10), 286 (100), 284 (46), 207 (67), 205 (76), 126 (60).

HRMS (EI) (C₉H₅Br₂N): calculated [M]⁺: 284.8789 found: 284.8762

Synthesis of 2,3-dibromoquinoline (37b)¹⁵²

Prepared according to **GP2** from 3-bromoquinoline (**34**) (1.24 g, 6 mmol, 1 equiv), TMPMgCl·LiCl (**18a**) [reaction condition: -20 °C for 2 h], and 1,2-dibromo-1,1,2,2tetrachloroethane (2.14 g, 6.6 mmol, in 6 mL of THF) [reaction condition: -20 °C to 25 °C for 12 h]. Purification by *flash*-chromatography (SiO₂, pentane/ether = 19:1) afforded 2,3dibromoquinoline (**37b**, 1.11 g, 65%) as a white solid.

mp.: 110.2-112.0 °C.

IR (**ATR**): $v (cm^{-1}) = 3046$ (s), 1614 (m), 1572 (m), 1558 (m), 1546 (s), 1484 (s), 1360 (s), 1318 (s), 1292 (m), 1200 (m), 1150 (m), 1132 (m), 1110 (vs), 950 (s), 916 (s), 772 (s), 746 (vs), 662 (m), 626 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.36 (s, 1 H), 8.01 (d, ³J = 8.8 Hz, 1 H), 7.76 – 7.71 (m, 2 H), 7.58 (t, ³J = 7.5 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 146.7, 142.8, 140.4, 130.8, 130.8, 128.6, 128.0, 126.7, 119.7.

MS (**EI**, **70** eV): m/z (%) = 288 (31) [M⁺, ⁸¹Br], 286 (100) [M⁺, ⁸¹Br, ⁷⁹Br], 284 (37) [M⁺, ⁷⁹Br], 207 (68), 205 (56), 127 (73), 74 (11).

HRMS (EI) $(C_9H_5^{79}Br_2N)$: calculated $[M]^+$: 284.8789 found: 284.8765

Synthesis of 3,4-dibromoquinoline (37c)

To a stirred solution of 4-quinolinol (2.08 g, 14.3 mmol, 1.0 equiv) in glacial acetic acid (40 mL), bromine (0.81 mL, 1.1 equiv) was slowly added. The mixture was refluxed for 24 h, cooled to 25 °C and the 3-bromo-4-quinolinol hydrobromide was collected by filtration, washed with water and dried *in vacuum*. 3-bromo-4-quinolinol (3.01 g, 94%) was obtained as a colourless solid.

¹⁵² Steck, E. A.; Hallock, L. L.; Holland, A. J. J. Am. Chem. Soc. **1946**, 68, 1241.

mp.: 81.8-83.6 °C.

IR (**ATR**): v (cm⁻¹) = 3050 (m), 2968 (m), 2894 (s), 2860 (s), 2792 (s), 1626 (m), 1580 (m), 1552 (vs), 1504 (vs), 1470 (vs), 1440 (s), 1386 (m), 1354 (s), 1298 (m), 1188 (s), 1136 (m), 836 (m), 754 (m), 744 (m), 688 (m), 600 (m).

¹**H-NMR (DMSO-d₆, 400 MHz)**: δ (ppm) = 12.24 (s, 1 H), 8.44 (s, 1 H), 8.11 (d, ³J = 8.0 Hz, 1 H), 7.68 – 7.63 (m, 1 H), 7.57 (d, ³J = 8.2 Hz, 1 H), 7.36 (t, ³J = 7.4 Hz, 1 H).

¹³**C-NMR (DMSO-d₆, 100 MHz**): δ (ppm) = 149.1, 134.4, 127.9, 127.7, 126.5, 126.5, 125.1, 122.7, 105.0.

MS (EI, 70 eV): m/z (%) = 224 (98) [M⁺, ⁸¹Br], 222 (100) [M⁺, ⁷⁹Br], 144 (11), 116 (27), 115 (12), 104 (17), 89 (14).

HRMS (EI) (C_9H_6BrNO): calculated [M]⁺: 222.9633 found: 222.9636

A mixture of 3-bromo-4-quinolinol (3.01 g, 13.4 mmol, 1.0 equiv) and phosphorous tribromide (12 mL) was refluxed for 5 h. After cooling the reaction mixture was hydrolyzed by pouring onto crushed ice (100 mL) and the resulting aq. suspension made strongly alkaline with a solution of sodium hydroxide (32 %). The insoluble product was collected by filtration, washed with water, and dried *in vacuum*. 3,4-dibromoquinoline was afforded (**37c**) (3.11 g, 76%) as a colourless solid.

mp.: 236.9-239.9 °C.

IR (**ATR**): v (cm⁻¹) = 3108 (s), 3062 (s), 2924 (s), 1818 (m), 1552 (s), 1484 (vs), 1340 (s), 1246 (m), 1166 (m), 1106 (m), 964 (m), 848 (m), 808 (m), 750 (s), 662 (m), 628 (w), 594 (w). **¹H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.89 (s, 1 H), 8.21 (d, ³J = 8.4 Hz, 1 H), 8.07 (d, ³J = 8.4 Hz, 1 H), 7.75 (t, ³J = 7.5 Hz, 1 H), 7.64 (t, ³J = 7.7 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 151.3, 146.7, 135.2, 130.3, 129.9, 129.1, 128.9, 127.4, 121.3.

MS (EI, 70 eV): m/z (%) = 288 (54) [M⁺, ⁸¹Br], 287 (13), 286 (100) [M⁺, ⁸¹Br, ⁷⁹Br], 284 (63) [M⁺, ⁷⁹Br], 207 (26), 205 (23), 180 (12), 127 (29), 100 (14).

HRMS (EI) ($C_9H_5Br_2N$): calculated [M]⁺: 284.8789 found: 284.8769

Synthesis of 2,3,4-tribromoquinoline (37d)

Prepared according to **GP2** from 3,4-dibromoquinoline (**37c**) (288 mg, 1.0 mmol, 1.0 equiv), TMPMgCl·LiCl (**18a**) [reaction condition: -78 °C for 2 h], and 1,2-dibromo-1,1,2,2tetrachloroethane in THF (310 mg, 1.3 mmol, 1.3 equiv) [reaction condition: -78 °C to 25 °C for 12 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 8:2) afforded 2,3,4-tribromoquinoline (**37d**) (280 mg, 76 %) as a colourless solid.

mp.: 132.6-134.2 °C.

IR (**ATR**): v (cm⁻¹) = 2358 (m), 2338 (w), 1552 (s), 1484 (m), 1452 (m), 1354 (m), 1338 (s), 1326 (m), 1290 (m), 1246 (m), 1166 (m), 1140 (w), 1106 (s), 964 (m), 910 (w), 848 (m), 808 (m), 752 (s), 662 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.20 (d, ³J = 8.4 Hz, 1 H), 8.03 (d, ³J = 8.4 Hz, 1 H), 7.78 (t, ³J = 7.6 Hz, 1 H), 7.68 (t, ³J = 7.7 Hz, 1 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 146.6, 142.8, 137.5, 131.5, 129.5, 129.4, 128.4, 128.2, 124.2.

MS (**EI**, **70** eV): m/z (%) = 368 (29) [M⁺, ⁸¹Br], 366 (97) [M⁺, ⁸¹Br, ⁸¹Br, ⁷⁹Br], 364 (100) [M⁺, ⁷⁹Br, ⁷⁹Br, ⁸¹Br], 362 (31) [M⁺, ⁷⁹Br], 287 (26), 285 (56), 283 (27), 206 (47), 204 (46), 126 (19), 100 (10), 99 (12).

HRMS (EI) (C₉H₄Br₃N): calculated: 362.7894 found: 362.7887

Synthesis of 2-ethoxy-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (ethyl pinacol borate)

Boric acid (1.24 g, 20 mmol, 1 equiv), dry ethanol (4.40 g, 95.4 mmol, 4.77 equiv), and pinacol (2.36 g, 20 mmol, 1 equiv) were mixed in 15 mL of dry benzene. After stirring 30 min at 25 °C, the ethanol/water/benzene ternary azeotrope was distilled off for 10 h, and most of the residual benzene was removed *in vacuum* at 30 °C. The crude product was distilled (32 °C, 7 mbar) to give the title compound as a colourless liquid (V= 1.5 mL, 41%) containing no traces of benzene.

¹**H-NMR** (CDCl₃, 200MHz): δ (ppm) = 3.84 (q, J = 7.1 Hz, 2H), 1.20 (s, 12H and t "overlapped", 3H).

2.5 <u>Preparation of polyfunctionalized quinolines</u>

Synthesis of 2-bromo-4-phenylsulfanyl-quinoline (43a)

Prepared according to **GP1** from 2,4-dibromoquinoline (**37a**) in THF (287 mg, 1.0 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -78 °C for 2 h], and benzenethiosulfonic acid *S*-phenyl ester⁸¹ (300 mg, 1.2 mmol, 1.2 equiv) [reaction condition: -50 °C to 25 °C for 12 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 4:1) afforded 2-bromo-4-phenylsulfanyl-quinoline (**43a**) (286 mg, 91%) as a yellow solid.

mp.: 89.0-91.7 °C.

IR (ATR): ν (cm⁻¹) = 3056 (w), 3044 (w), 1956 (w), 1724 (w), 1544 (m), 1488 (m), 1440 (m), 1384 (m), 1252 (m), 1140 (s), 1100 (m), 976 (m), 852 (m), 824 (s), 780 (m), 752 (vs), 688 (s).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.17 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.74 (td, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 1.5 Hz, 1H), 7.63-7.49 (m, 6H), 6.77 (s, 1H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 151.8, 147.6, 141.5, 135.5, 135.5, 130.9, 130.3, 130.3, 129.1, 128.2, 126.9, 124.6, 123.5, 120.8.

MS (**EI**, **70** eV): m/z (%) = 316 (81) [M⁺, ⁸¹Br], 314 (81) [M⁺, ⁷⁹Br], 236 (100), 208 (11), 204(13), 190 (10), 166 (20), 159 (10), 127 (18), 117 (14), 108 (30), 104 (14), 101(14), 77 (17), 75 (21), 68 (15), 65 (26), 51 (28).

HRMS (EI) ($C_{15}H_{10}BrNS$): calculated for $[M+H]^+$ 315.9791 found: 315.9796

Synthesis of 2-bromoquinoline-4-carbonitrile (43b)

Prepared according to **GP1** from 2,4-dibromoquinoline (**37a**) in THF (1 mL) (287 mg, 1.0 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -78 °C for 2 h], and tosyl cyanide

(220 mg, 1.2 mmol, 1.2 equiv) [reaction condition: -50 °C for 30 min and warmed to 25 °C for 6 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 2:3) afforded 2-bromoquinoline-4-carbonitrile (**43b**) (196 mg, 85%) as a colourless solid. **mp**.: 153.0-155.5 °C.

IR (**ATR**): $v (cm^{-1}) = 3055 (w)$, 2235 (w), 1571 (w), 1539 (m), 1495 (w), 1408 (w), 1279 (m), 1223 (w), 1146 (m), 1088 (s), 891 (m), 866 (s), 853 (m), 762 (s).

¹**H-NMR** (**CDCl₃, 300 MHz**): δ (ppm) = 8.15 (t, *J* = 8.8 Hz, 2H), 7.88 (td, *J* = 8.4 Hz, *J* = 1.3 Hz, 1H), 7.85 (s, 1H), 7.78 (td, *J* = 8.2 Hz, *J* = 1.3 Hz, 1H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 148.4, 140.1, 132.3, 129.5, 129.5, 129.4, 125.1, 124.6, 120.8, 114.2.

MS (EI, 70 eV): *m/z* (%) = 233 (71) [M⁺, ⁸¹Br], 231 (74) [M⁺, ⁷⁹Br], 152 (100), 125 (14), 99 (2), 76 (1).

HRMS (EI) $(C_{10}H_5BrN_2)$: calculated $[M]^+$: 231.9636 found: 231.9614

Synthesis of 2-bromoquinolin-4-ylamine (43c)

Prepared according to **GP1** from 2,4-dibromoquinoline (**37a**) in THF (1 mL) (287 mg, 1.0 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -78 °C for 2 h]. To the freshly prepared magnesium reagent, CuCl·2LiCl (1.2 mL, 1.0 M in THF, 1.2 mmol) was added dropwise at -50 °C under argon and the mixture was stirred for 1 h. To the formed aryl copper reagent, commercially available LiHMDS (1M in THF/ethylbenzene) (2 mL, 2 mmol, 2 equiv) was added dropwise and the mixture was further stirred for 1 h at -60 °C. The reaction mixture was cooled to -78 °C, then a solution of chloranil (**22**, 298 mg, 1.2 mmol) in dry THF (7 mL) was added slowly over a period of 1 h at -78 °C. The reaction mixture. The resulting mixture was then filtered through celite and the residue washed with Et₂O (ca. 100 mL). The organic phase was washed with 2 x 10 mL portions of aqueous NH₄OH (2.0 M) and extracted with Et₂O. The combined organic layers were dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude material obtained was redissolved in THF (3 mL) before TBAF (1.0 m in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C

for 15 min, poured over EtOAc (10 mL) and washed with deionised water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by *flash*-chromatography (SiO₂, pentane/ether = 9:1 with 0.5 % NEt₃) afforded 2-bromoquinolin-4-ylamine (**43c**) (166 mg, 75%) as a pale yellowish solid.

mp.: 191.9-193.3 °C.

IR (**ATR**): v (cm⁻¹) = 3456 (m), 3310 (m), 3195 (br), 2923 (w), 1685 (s), 1574 (s), 1549 (s), 1511 (s), 1439 (s), 1351 (m), 1322 (m), 1143 (m), 1106 (m), 907 (s), 816 (m), 808 (m), 752 (s).

¹**H-NMR (DMSO-d₆, 400 MHz)**: δ (ppm) = 8.13 (d, J = 9.1 Hz, 1H), 7.68-7.61 (m, 2H), 7.45-7.41 (m, 1H), 7.14 (s, 2H), 6.64 (s, 1H).

¹³**C-NMR (DMSO-d₆, 100 MHz**): δ (ppm) = 153.7, 148.4, 142.2, 130.2, 127.8, 124.4, 122.6, 117.8, 104.1.

MS (EI, 70 eV): *m/z* (%) = 223 (73) [M⁺, ⁸¹Br], 221 (82) [M⁺, ⁷⁹Br], 143 (47), 116 (100), 115 (12), 89 (22), 76 (5), 63 (5), 50 (5).

HRMS (EI) (C₉H₇⁷⁹BrN₂): calculated [M]⁺: 221.9793 found: 221.9786

Synthesis of 2-bromo-3-cyanoquinoline (43d)

Prepared according to **GP1** from 2,3-dibromoquinoline (**37b**) (1.23 g, 4.3 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -50 °C for 2 h], and tosyl cyanide (1.02 g, 5.6 mmol, 1.3 equiv) [reaction condition: -50 °C to 25 °C for 12 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 2-bromo-3-cyanoquinoline (**43d**) (837 mg, 84 %) as a colourless solid.

mp.: 176.6-177.4 °C.

IR (**ATR**): v (cm⁻¹) = 3052 (s), 2230 (m), 1612 (m), 1576 (s), 1556 (s), 1486 (s), 1456 (m), 1392 (m), 1370 (s), 1358 (m), 1334 (m), 1132 (s), 1020 (vs), 1010 (s), 970 (m), 936 (s), 774 (m), 760 (vs), 678 (m).

¹**H-NMR (CDCl₃, 600 MHz)**: δ (ppm) = 8.50 (s, 1H), 8.10 (d, ³J = 8.60 Hz, 1 H), 7.93-7.88 (m, 2 H), 7.72-7.70 (m, 1 H).

¹³**C-NMR (CDCl₃, 150 MHz)**: δ (ppm) = 149.1, 144.5, 139.7, 134.1, 129.3, 129.0, 128.4, 125.5, 116.4, 111.1.

MS (EI, 70 eV): m/z (%) = 233 (47) [M⁺, ⁸¹Br], 231 (50) [M⁺, ⁷⁹Br], 153 (10), 152 (100), 125 (21).

HRMS (EI) $(C_{10}H_5BrN_2)$: calculated $[M]^+$: 231.9636 found: 231.9640

Synthesis of 1-(2-bromo-quinolin-3-yl)-propan-1-ol (43e)

Prepared according to **GP1** from 2,3-dibromoquinoline (**37b**) (287 mg, 1.0 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -50 °C for 2 h], and propionaldehyde (70 mg, 1.2 mmol, 1.2 equiv) [reaction condition: -50 °C to 25 °C for 12 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 1-(2-bromo-quinolin-3-yl)-propan-1-ol (**43e**) (202 mg, 76%) as a colourless solid.

mp.: 85.5-86.7 °C.

IR (**ATR**): v (cm⁻¹) = 3273 (s), 2964 (w), 2928 (w), 1587 (m), 1489 (m), 1330 (s), 1172 (m), 1128 (m), 1101 (s), 1019 (m), 1008 (m), 976 (s), 776 (s), 750 (s).

¹**H-NMR** (**CDCl₃, 300 MHz**): δ (ppm) = 8.21 (s, 1H), 7.95 (d, 7.9 Hz, 1H), 7.72 (d, 7.9 Hz, 1H), 7.64 (td, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.1$ Hz, 1 H), 7.50 (td, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.3$ Hz, 1 H), 5.07-5.03 (dd, J = 3.8 Hz, J = 8.0 Hz, 1H), 2.98 (s, 1H), 1.98-1.97 (m, 1H), 1.77-1.62 (m, 1H), 1.03 (t, J = 7.5 Hz, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 193.5, 147.4, 141.9, 138.2, 135.3, 130.1, 128.0, 127.7, 127.4, 73.1, 30.7, 10.0.

MS (EI, 70 eV): m/z (%) = 267 (8) [M⁺, ⁸¹Br], 265 (8) [M⁺, ⁷⁹Br], 238 (97), 236 (100), 156 (62), 128 (61), 101 (15), 77 (4).

HRMS (EI) ($C_{12}H_{12}BrNO$): calculated [M]⁺: 265.0102 found: 265.0103

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with Mes₂Mg·2LiBr (**39f**) (1.80 mL, 1.1 mmol, 1.1 equiv, 0.62M of [Mg] in THF) and TMEDA (0.18 mL, 1.1 mmol, 1.1 equiv) and stirred at -10 °C for 10 min. Thereafter, a solution of 3,4-dibromoquinoline (**37c**) (287 mg, 1.0 mmol, 1.0 equiv) in dry THF (1 mL) was added slowly, dropwise, at -10 °C and stirred for 6 h. The completion of the Br/Mg exchange was checked by GC-analysis using decane as internal standard. To the freshly prepared red magnesium reagent was added benzenethiosulfonic acid *S*-methyl ester⁸² (244 mg, 1.3 mmol, 1.3 equiv) at -10 °C and the mixture was then stirred and warmed to 25 °C for 6 h. After the reaction was completed, sat. NH₄Cl solution was added and the mixture was extracted three times with CH₂Cl₂. The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by *flash*-chromatography (SiO₂, pentane/ether = 1:1) afforded 4-bromo-3-methylsulfanylquinoline (**43f**) (199 mg, 79%) as a colourless solid. **mp**: 108.0-109.2 °C.

IR (**ATR**): v (cm⁻¹) = 2921 (w), 1612 (w), 1545 (m), 1483 (s), 1473 (s), 1432 (m), 1331 (s), 1320 (s), 1253 (m), 1163 (m), 1111 (s), 952 (m), 931 (m), 871 (m), 810 (s), 750 (s), 667 (s).

¹**H-NMR** (**CDCl₃, 300 MHz**): δ (ppm) = 8.69 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.71-7.59 (m, 2H), 2.56 (s, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 147.1, 146.2, 133.7, 132.3, 129.7, 129.2, 128.4, 127.8, 126.1, 16.3.

MS (EI, 70 eV): m/z (%) = 254 (100) [M⁺, ⁸¹Br], 252 (98) [M⁺, ⁷⁹Br], 239 (10), 237 (9), 173 (10), 159 (34), 132 (8), 87 (7).

HRMS (EI) ($C_{10}H_8BrNS$): calculated [M]⁺: 252.9561 found: 252.9540

Synthesis of 4-(4-bromoquinolin-3-yl)-benzonitrile (43g)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with Mes₂Mg·2LiBr (**39f**) (1.80 mL, 1.1 mmol, 1.8 mL, 1.1 equiv, 0.62M of [Mg] in THF) and TMEDA (0.18 mL, 1.1 mmol, 1.1 equiv) and stirred at -10 °C for 10 min. Thereafter, a solution of 3,4-dibromoquinoline (37c) (287 mg, 1.0 mmol, 1.0 equiv) in dry THF (1 mL) was added slowly dropwise at -10 °C and stirred for 6 h. The completion of the Br/Mg exchange was checked by GC-analysis using decane as internal standard. The corresponding freshly prepared red magnesium reagent was transmetalated with ZnCl₂ (1.1 mL, 1.1 equiv, 1 M in dry THF) and the mixture was warmed to 25 °C for 1 h. 4-Iodobenzonitrile (297 mg, 1.3 mmol, 1.3 equiv) was then added neat to the reaction mixture. A flame-dried round bottom flask was charged with Pd(dba)₂ (30 mg, 5 mol%), P(o-furyl)₃ (24 mg, 10 mol%) and THF (1 mL). The mixture was stirred at 25 °C for 10 min, and then transferred to the reaction flask which was charged with the organozinc solution. The resulting mixture was stirred 12 h at 25 °C, quenched with sat. aq. NH₄Cl and extracted three times with AcOEt. The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by *flash*-chromatography (SiO₂, pentane/ether = 1:1) afforded 4-(4-bromoquinolin-3-yl)-benzonitrile (43g) (219 mg, 71%) as a colourless solid. **mp**.: 160.0-162.7 °C.

IR (**ATR**): v (cm⁻¹) = 2978 (w), 2230 (w), 1724 (m), 1690 (w), 1603 (w), 1548 (m), 1476 (s), 1337 (m), 1077 (m), 1022 (w), 958 (w), 871 (w), 839 (s), 759 (s), 671 (s).

¹**H-NMR** (**CDCl₃**, **300 MHz**): δ (ppm) = 8.71 (s, 1H), 8.32 (d, *J* = 7.9 Hz, 1H), 8.16 (d, 7.9 Hz, 1H), 7.84-7.60 (m, 6H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 149.9, 148.1, 142.8, 134.3, 133.6, 132.2 (2carbons), 130.7 (2 carbons), 129.8, 128.7, 127.5 (2carbons), 118.4, 112.4.

MS (EI, 70 eV): *m/z* (%) = 309 (100) [M⁺, ⁸¹Br], 307 (94) [M⁺, ⁷⁹Br], 230 (17), 229 (86), 228 (14), 201 (38), 175 (22), 114 (14), 101 (16), 88 (5), 75 (4).

HRMS (EI) $(C_{16}H_9^{81}BrN_2)$: calculated $[M]^+$: 309.9949 found: 309.9911

Synthesis of 2,4-dibromo-quinoline-3-carbonitrile (43h)

Prepared according to **GP1** from 2,3,4-tribromoquinoline (**37d**) in THF (1 mL) (365 mg, 1.0 mmol, 1.0 equiv), MesMgBr·LiCl (**39d**) [reaction condition: -10 °C for 3 h], and tosyl cyanide (220 mg, 1.2 mmol, 1.2 equiv) [reaction condition: -50 °C for 30 min and warmed to 25 °C for 6 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 9:1) afforded 2,4-dibromoquinoline-3-carbonitrile (**43h**) (274 mg, 88%) as colourless needles (recrystallization ether/AcOEt 1:1).

mp.: 207.1-208.1 °C.

IR (**ATR**): v (cm⁻¹) = 3059 (w), 3038 (w), 2226 (w), 1544 (m), 1474 (m), 1376 (w), 1354 (w), 1298 (m), 1203 (w), 1136 (w), 1033 (m), 912 (m), 871 (m), 757 (s), 731 (s).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.22 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.93 (t, J = 8.2 Hz, 1H), 7.78 (t, J = 8.2 Hz, 1H).

¹³C-NMR (CDCl₃, 75MHz): δ (ppm) = 148.3, 141.7, 139.3, 134.3, 129.8, 129.5, 128.1, 125.8, 115.6, 114.4.

MS (EI, 70 eV): *m/z* (%) = 313 (28), 311 (57), 309 (28), 232 (50), 230 (48), 152 (100), 125 (15), 99 (30), 75 (19), 51 (11).

HRMS (EI) $(C_{10}H_4Br_2N_2)$: calculated $[M+H]^+$ 310.8820 found: 310.8818

Synthesis of 2,4-dibromo-quinoline-3-carboxylic acid ethyl ester (43i)

Prepared according to **GP1** from 2,3,4-tribromoquinoline (**37d**) in THF (1 mL) (365 mg, 1.0 mmol, 1.0 equiv), MesMgBr·LiCl (**39d**) [reaction condition: $-10 \,^{\circ}$ C for 3 h], and ethyl cyanoformate (119 mg, 1.2 mmol, 1.2 equiv) [reaction condition: $-50 \,^{\circ}$ C for 30 min and warmed to 25 $\,^{\circ}$ C for 6 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 9:1) afforded 2,4-dibromo-quinoline-3-carboxylic acid ethyl ester (**43i**) (320 mg, 90%) as a colourless solid.

mp.: 109.8-111.8 °C.

IR (**ATR**): v (cm⁻¹) = 2983 (w), 1731 (s), 1692 (w), 1552 (s), 1476 (m), 1377 (m), 1354 (m), 1319 (m), 1295 (m), 1243 (m), 1230 (s), 1179 (s), 1130 (m), 1018 (m), 919 (m), 857 (w), 808 (m), 746 (s), 679 (s).

¹**H-NMR** (**CDCl₃, 300 MHz**): δ (ppm) = 8.19 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.80 (td, J = 7.1 Hz, J = 1.5 Hz, 1H), 7.69 (td, J = 7.2 Hz, J = 1.5 Hz, 1H), 4.53 (q, J = 7.3 Hz, 2H), 1.46 (t, J = 7.3 Hz, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 165.1, 147.9, 136.2, 132.5, 132.2, 132.1, 129.1, 129.0, 127.3, 126.1, 62.9, 14.0.

MS (EI, 70 eV): *m/z* (%) = 317 (80), 236 (100), 204 (13), 190 (10), 165 (19), 127 (18), 117 (14), 109 (14), 77 (17), 75 (20), 65 826), 51 (28).

HRMS (EI) $(C_{12}H_9Br_2NO_2)$: calculated $[M+H]^+$ 357.9079 found: 357.9078

Synthesis of 3-benzyl-2,4-dibromoquinoline (43j)

Prepared according to **GP1** from 2,3,4-tribromoquinoline (**37d**) (1.82 g, 5.0 mmol, 1.0 equiv) dissolved in dry THF (5 mL), MesMgBr·LiCl (**39d**) [reaction condition: -10 °C for 3 h], and benzyl bromide (1.19 g, 1.4 mmol, 1.4 equiv) [reaction condition: -50 °C for 30 min and warmed to 25 °C for 10 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 3:2) afforded 3-benzyl-2,4-dibromoquinoline (**43j**) (1.67 mg, 89%) as a colourless solid.

mp.: 99.2-100.6 °C.

IR (**ATR**): v (cm⁻¹) = 3028 (w), 2924 (w), 1600 (w), 1552 (s), 1491 (w), 1475 (s), 1451 (m), 1354 (m), 1299 (m), 1135 (m), 1027 (m), 1016 (m), 908 (m), 879 (m), 762 (s), 722 (s), 693 (s).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.22 (d, J = 8.8 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.74 (td, J = 7.1 Hz, J = 1.5 Hz, 1H), 7.66 (td, J = 7.0 Hz, J = 1.5 Hz, 1H), 7.30-7.17 (m, 5H), 4.65 (s, 2H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 147.2, 144.6, 137.2, 137.0, 134.5, 130.7, 128.9, 128.5, 128.5, 128.4, 128.3, 128.3, 127.6, 127.5, 126.5, 42.1.

MS (EI, 70 eV): *m/z* (%) = 376 (14), 295 (10), 217 (37), 216 (100), 215 (11), 189 (12), 140 (7), 107 (14), 94 (10), 63 (7), 51 (7).

HRMS (EI) $(C_{16}H_{11}Br_2N)$: calculated $[M+H]^+$: 375.9337 found: 375.9333

Prepared according to **GP1** from 2,3-dibromoquinoline (**37b**) (1.15 g, 4.0 mmol, 1.0 equiv), *i*-PrMgCl·LiCl (**13**) [reaction condition: -50 °C for 2 h], and ethyl cyanoformate (475 mg, 4.8 mmol, 1.2 equiv) [reaction condition: -50 °C to 25 °C for 5 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 2-bromoquinoline-3carboxylic acid ethyl ester (**43k**) (1.03 g, 92 %) as a colourless solid.

mp.: 104.1-107.2 °C.

IR (**ATR**): v (cm⁻¹) = 3056 (w), 2980 (w), 2928 (w), 1724 (s), 1480 (m), 1388 (m), 1368 (m), 1268 (m), 1264 (m), 1244 (s), 1228 (s), 1196 (s), 1124 (s), 1112 (s), 1028 (s), 996 (s), 936 (s), 876 (s), 816 (m), 780 (vs), 752 (vs).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.55 (s, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.81 (td, J = 7.1 Hz, J = 1.5 Hz ,1H), 7.62 (td, J = 8.1 Hz, J = 1.1 Hz ,1H), 4.47 (q, J = 7.3 Hz, 2H), 1.45 (t, J = 7.3 Hz, 3H).

¹³**C-NMR (CDCl₃, 75 MHz)**: δ (ppm) = 165.1, 148.8, 140.4, 138.5, 132.4, 128.6, 128.4, 127.9, 126.9, 25.9, 62.2, 14.2.

MS (EI, 70 eV): *m/z* (%) = 281 (12), 279 (13), 278 (100), 252 (24), 250 (25), 235 (73), 233 (74), 207 (17), 205 (17), 172 (20), 128 (12).

HRMS (EI) (C₁₂H₁₀BrNO₂): calculated [M]⁺: 278.9895 found: 278.9956

Synthesis of ethyl 2-bromoquinoline-4-carboxylate (431)

Prepared according to **GP1** from 2,4-dibromoquinoline (**37a**) (8 mmol, 2.3 g, 1.0 equiv) dissolved in THF (10 mL), *i*-PrMgCl·LiCl (**13**) [reaction condition: -78 °C for 2 h], and ethyl cyanoformate (9.6 mmol, 950 mg, 1.2 equiv) [reaction condition: -78 °C to 25 °C for 12 h].
The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 4:1) afforded ethyl 2-bromoquinoline-4-carboxylate (**43**I) (2.06 g, 92%) as a colourless solid. **mp**.: 74.3-76.9 °C.

IR (**ATR**): v (cm⁻¹) = 3102 (s), 2992 (s), 1724 (s), 1550 (vs), 1480 (s), 1454 (m), 1440 (m), 1338 (m), 1264 (s), 1238 (s), 1196 (m), 1146 (s), 1100 (s), 1028 (m), 894 (m), 798 (s), 774 (s), 750 (s), 662 (m), 594 (w).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.71 (d, ³J = 8.4 Hz, 1 H), 8.07 (d, ³J = 8.4 Hz, 1 H), 8.00 (s, 1 H), 7.77 (td, ³J = 7.1 Hz, ⁴J = 1.3 Hz ,1 H), 7.65 (td, ³J = 7.1 Hz, ⁴J = 1.3 Hz ,1 H), 4.50 (q, ³J = 7.2 Hz, 2 H), 1.47 (t, ³J = 7.1 Hz, 3 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 164.7, 149.5, 141.0, 137.5, 130.8, 129.2, 128.4, 126.9, 125.8, 124.1, 62.3, 14.2.

MS (**EI**, **70** eV): m/z (%) = 281 (16), 280 (96) [M⁺, ⁷⁹Br], 279 (15), 278 (100) [M⁺, ⁸¹Br], 251 (11), 236 (29), 234 (29), 207 (23), 205 (22), 200 (40), 172 (29), 128 (35), 126 (42), 116 (12), 101 (19), 75 (12).

HRMS (EI) ($C_{12}H_{10}BrNO_2$): calculated [M]⁺: 278.9895 found: 278.9903

Synthesis of 3-benzyl-2-bromo-4-methylsulfanylquinoline (44)

Prepared according to **GP1** from 3-benzyl-2,4-dibromoquinoline (**43j**) (1.13 g, 3.0 mmol, 1.0 equiv) dissolved in THF (3 mL), *i*PrMgCl·LiCl (**13**) [reaction condition: -50 °C for 12 h], and benzenethiosulfonic acid *S*-methyl ester (675 mg, 3.6 mmol, 1.2 equiv) [reaction condition: - 50 °C to 25 °C for 12 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether) afforded 3-benzyl-2-bromo-4-methylsulfanylquinoline (**44**) (897 mg, 87%) as a colourless oil.

IR (**ATR**): v (cm⁻¹) = 3028 (w), 2924 (vw), 1708 (vs), 1476 (m), 1356 (s), 1220 (s), 1136 (m), 1028 (s), 916 (m), 884 (m), 764 (s), 744 (m), 724 (s), 712 (m).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.51 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.8 Hz, 1H), 7.78-7.66 (m, 2H), 7.31-7.16 (m, 5H), 4.82 (s, 2H), 2.28 (s, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 147.6, 147.0, 145.6, 138.8, 138.4, 130.1, 130.1, 129.4, 129.4, 128.8, 128.4, 127.9, 126.6, 126.2, 40.3, 20.0.

MS (**EI**, **70** eV): m/z (%) = 345 (100) [M⁺, ⁸¹Br], 343 (94) [M⁺, ⁷⁹Br], 329 (5), 327 (6), 264 (31), 217 (24), 216 (88), 189 (5), 91 (4).

HRMS (EI) ($C_{17}H_{14}BrNS$): calculated [M]⁺: 343.0030 found: 343.0016

Synthesis of 2-(3-benzyl-4-methylsulfanylquinolin-2-ylmethyl)-acrylic acid ethyl ester (45)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with Mes₂Mg·LiBr (**39f**) (1.1 mmol, 1.1 equiv, 0.62M of [Mg] in THF) and stirred at 0 °C for 10 min. Therefore, a solution of 3-benzyl-2-bromo-4-methylsulfanyl-quinoline (**44**) (1 mmol, 344 mg, 1.0 equiv) dissolved in THF (1 mL) was added slowly, dropwise, at 0 °C and stirred for 12 h. The completion of the Br/Mg exchange was checked by GC-analysis using decane as internal standard. Ethyl (2-bromomethyl)acrylate⁸³ was then added to the mixture at -20 °C, followed by 2 drops of CuCN-2LiCl (cat., 1M in THF) and the reaction mixture was warmed to 25 °C over 12 h. Sat. NH₄Cl solution was added and the mixture was extracted three times with EtOAc. The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 2-(3-benzyl-4-methylsulfanyl-quinolin-2-ylmethyl)-acrylic acid ethyl ester (**45**) (263 mg, 70%) as a colourless oil.

IR (**ATR**): ν (cm⁻¹) = 3060 (w), 2984 (w), 1716 (vs), 1636 (m), 1604 (w), 1556 (m), 1480 (w), 1380 (m), 1308 (m), 1264 (m), 1176 (m), 1124 (m), 976 (w), 952 (w), 820 (w), 746 (m).

¹**H-NMR** (**CDCl**₃, **600 MHz**): δ (ppm) = 8.52 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.70-7.63 (m, 2H), 7.07-7.02 (m, 3H), 6.85-6.83 (m, 2H), 6.25 (d, J = 1.8 Hz, 1H), 5.87 (d, J = 1.8 Hz, 1H), 4.19 (q, J = 7.3 Hz, 2H), 4.03 (s, 2H), 2.22 (s, 3H), 1.28 (t, J = 7.3 Hz, 3H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 166.7, 158.8, 146.6, 145.4, 140.0, 138.0, 137.4, 130.4, 129.2, 129.1, 129.0, 129.0, 127.8, 127.8, 127.6, 126.2, 125.7, 125.7, 60.6, 54.5, 37.2, 19.6, 14.2.

MS (EI, 70 eV): m/z (%) = 324 (1), 308 (5), 254 (28), 240 (100), 193 (15), 68 (11). **HRMS (EI)** (C₂₃H₂₃NO₂³²S): calculated [M]⁺: 377.1449 found: 377.1444

Prepared according to **GP2** and **GP3** from 2-bromoquinoline-3-carboxylic acid ethyl ester (**43k**) (560 mg, 2.0 mmol, 1.0 equiv), TMPMgCl·LiCl (**18a**) [reaction condition: $0 \,^{\circ}$ C for 3 h], CuCN·2LiCl [reaction condition: $-40 \,^{\circ}$ C for 10 min], and pivaloyl chloride (240 mg, 2.2 mmol, 1.2 equiv) [reaction condition: $-40 \,^{\circ}$ C to 25 $\,^{\circ}$ C for 6 h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded ethyl 2-bromo-4-pivaloylquinoline-3-carboxylate (**52**) (612 mg, 84 %) as a colourless solid.

mp.: 120.2 - 121.9 °C.

IR (**ATR**): ν (cm⁻¹) = 2976 (w), 1725 (vs), 1691 (s), 1558 (m), 1267 (m), 1231 (s), 1182 (s), 1152 (m), 1086 (m), 1012 (m), 977 (m), 771 (s), 756 (m).

¹**H-NMR** (**CDCl₃, 300 MHz**): δ (ppm) = 8.08 (d, J = 8.4 Hz, 1H), 7.80 (td, J = 6.2 Hz, J = 1.9 Hz, 1H), 7.64-7.55 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.26 (s, 9H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 211.4, 165.6, 149.3, 148.2, 137.7, 132.1, 129.3, 128.2, 126.1, 124.3, 122.4, 62.9, 45.3, 27.7, 27.7, 27.7, 13.9.

MS (EI, 70 eV): *m*/*z* (%) = 320 (4), 318 (4), 309 (40), 308 (29), 307 (41), 280 (98), 278 (100), 208 (9), 198 (12), 154 (22), 126 (8), 57 (7).

HRMS (EI) ($C_{17}H_{18}BrNO_4$): calculated $[M+H]^+$ 364.0549 found: 364.0540

Synthesis of ethyl 2-bromo-3-pivaloylquinoline-4-carboxylate (53)

Prepared according to **GP2** and **GP3** from ethyl 2-bromoquinoline-4-carboxylate (**431**) (1.59 g, 5.7 mmol, 1.0 equiv) dissolved in dry THF (5 mL), TMPMgCl·LiCl (**18a**) [reaction condition: -10 °C for 3 h], CuCN·2LiCl [reaction condition: -40 °C for 30 min], and pivaloyl chloride (748 mg, 6.8 mmol, 1.2 equiv) [reaction condition: -40 °C warmed to 25 °C for 12

h]. The crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 8:2) afforded ethyl 2-bromo-3-pivaloylquinoline-4-carboxylate (**53**) (1.67 g, 81%) as a colourless crystalline solid.

mp.: 70.8-72.0 °C.

IR (**ATR**): v (cm⁻¹) = 2976 (m), 1724 (vs), 1690 (s), 1552 (s), 1482 (m), 1456 (m), 1270 (m), 1220 (vs), 1186 (m), 1142 (m), 1078 (s), 1014 (m), 978 (m), 890 (m), 762 (s), 682 (w), 580 (w).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.08 (d, ${}^{3}J$ = 8.4 Hz, 1 H), 7.98 (d, ${}^{3}J$ = 8.4 Hz, 1 H), 7.80 (t, ${}^{3}J$ = 7.1 Hz, 1H), 7.65 (t, ${}^{3}J$ = 7.1 Hz, 1H), 4.46 (q, ${}^{3}J$ = 7.1 Hz, 2H), 1.41 (t, ${}^{3}J$ = 7.1 Hz, 3 H), 1.33 (s, 9 H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 210.0, 165.4, 147.9, 137.0, 136.2, 134.6, 131.4, 129.0, 128.7, 125.5, 122.6, 63.0, 45.4, 28.2, 28.2, 28.2, 14.0.

MS (EI, 70 eV): *m/z* (%) = 364 [M⁺] not found, 308 (37), 307 (16), 306 (47), 305 (11), 280 (13), 279 (98), 278 (14), 277 (100), 153 (18).

HRMS (EI) ($C_{17}H_{18}BrNO_3$): calculated $[M+H]^+$ 364.0549 found: 364.0573

Synthesis of 2-bromo-3-pivaloyl-8-(4-ethoxycarbonyl-phenyl)-quinoline-4-carboxylic acid ethyl ester (54)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with ethyl 2-bromo-3-pivaloylquinoline-4-carboxylate (**53**) (365 mg, 1 mmol, 1.0 equiv) dissolved in dry THF (1 mL). TMP₂Mg·2LiCl (**19**, 2 mL, 1.1 mmol, 0.55 M in THF) was added dropwise to the mixture at 0 °C and the resulting mixture was stirred at this temperature for 20 h. The freshly prepared magnesium reagent was then transmetalated with ZnCl₂ (1.1 mL, 1.1 equiv, 1 M in dry THF) at 0 °C and the mixture was warmed to 25 °C for 1 h. 4-Iodo-benzoic acid ethyl ester (358 mg, 1.3 mmol, 1.3 equiv) was added to the reaction mixture at 25 °C. A flame-dried round bottom flask was charged with Pd(dba)₂ (30 mg, 5 mol%), P(*o*-furyl)₃ (24 mg, 10 mol%) and THF (1 mL). The mixture was stirred at 25 °C for

10 min then transferred to the reaction flask which was charged with the organozinc solution. The resulting mixture was stirred and refluxed for 4 h, quenched with sat. aq. NH₄Cl and extracted three times with AcOEt. The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 2-bromo-3-(2,2-dimethyl-propionyl)-8-(4-ethoxycarbonyl-phenyl)-quinoline-4-carboxylic acid ethyl ester (**54**) (363 mg, 71%) as a colourless solid. **mp**.: 126.0 - 129.1 °C.

IR (**ATR**): v (cm⁻¹) =2968 (w), 2908 (w), 1732 (s), 1718 (vs), 1556 (s), 1478 (m), 1459 (m), 1364 (m), 1275 (s), 1235 (vs), 1177 (s), 1082 (s), 991 (s), 894 (m), 767 (vs), 699 (m).

¹**H-NMR (CDCl₃, 600 MHz)**: δ (ppm) = 8.16 (d, ${}^{3}J$ = 8.3 Hz, 2H), 7.98 (d, ${}^{3}J$ = 8.3 Hz, 1H), 7.85 (d, ${}^{3}J$ = 7.3 Hz, 1H), 7.76-7.71 (m, 3H), 4.48 (q, ${}^{3}J$ = 7.2 Hz, 2H), 4.42 (q, ${}^{3}J$ = 7.2 Hz, 2H), 1.45-1.41 (m, 6H), 1.33 (s, 9H).

¹³C-NMR (CDCl₃, **150** MHz): δ (ppm) = 210.1, 166.6, 165.5, 145.2, 142.4, 139.3, 137.4, 135.8, 134.7, 132.0, 130.7 (2carbons), 129.7, 129.2 (2 carbons), 128.4, 125.5, 123.1, 63.1, 61.0, 45.3, 28.2 (2 carbons), 14.4, 14.0.

HRMS (ESI) ($C_{26}H_{26}BrNO_5$): calculated [M+H]⁺ 512.1070 found: 512.1062

Synthesis of 2-bromo-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-quinoline-4carboxylic acid ethyl ester (55).

According to **GP2** from ethyl 2-bromoquinoline-4-carboxylate (**431**) (1.39 g, 5.0 mmol, 1.0 equiv) dissolved in dry THF (5 mL), TMPMgCl·LiCl (**18a**) [reaction condition: -10 °C for 3 h]. To the corresponding obtained 2-bromo-3-magnesiated-4-carboethoxyquinoline was added at -10 °C freshly prepared ethyl pinacol borate (1.03 g, 6 mmol, 1.2 equiv) and the resulting mixture was stirred and warmed to 25 °C for 12 h. The reaction mixture was cooled to -50 °C after which anhydrous HCl (3 mL, 6 mmol, 1.2 equiv, 2M in Et₂O) was added. The cooling bath was removed and the reaction mixture was allowed to warm to 25 °C. After removal of the precipitated MgCl by filtration and removal of the volatiles under reduced pressure, the crude residue was purified by *flash*-chromatography (SiO₂, pentane/ether = 9:1) afforded 2-

bromo-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-quinoline-4-carboxylic acid ethyl ester (55) (1.44 g, 71%) as a colourless solid. mp.: 85.9-88.6 °C.

IR (**ATR**): v (cm⁻¹) = 2996 (w), 2976 (w), 1692 (m), 1552 (m), 1368 (m), 1312 (m), 1291 (s), 1235 (s), 1140 (s), 1119 (s), 1016 (m), 850 (m), 771 (s). ¹**H-NMR (CDCl₃, 600 MHz)**: δ (ppm) = 8.30 (d, ³*J* = 7.3 Hz, 1H), 8.05 (d, ³*J* = 7.3 Hz, 1H), 7.74 (t, ³*J* = 7.0 Hz, 1H), 4.55 (q, ³*J* = 7.3 Hz, 2H), 1.48 (t, ³*J* = 7.1 Hz, 3H), 1.45 (s, 12H). ¹³**C-NMR (CDCl₃, 150 MHz)**: δ (ppm) = 167.9, 149.3, 144.0, 143.7, 131.0, 129.1, 128.0, 125.6, 122.9, 85.0 (2 carbons), 62.8, 25.1 (4C), 14.3. [C from C-B bond, not visible]. **MS (EI, 70 eV)**: *m/z* (%) = 390 (13), 347 (67), 317 (100), 277 (69), 233 (21), 154 (25), 127 (21), 43 (32).

HRMS (EI) $(C_{18}H_{21}B^{79}BrNO_4)$: calculated $[M]^+$: 405.0747 found: 405.0746

Synthesis of 2-phenyl-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-quinoline-4carboxylic acid ethyl ester (56)

To a solution of commercially available phenyl magnesium chloride in THF (1.51 mL, 2.2 mmol, 1.45 M in THF) at 0 °C was added dropwise ZnCl_2 (2.1 mL, 2.2 mmol, 1.1 equiv, 1.0 M in THF). After 30 min of stirring, a solution of the boronic ester **55** (812 mg, 2 mmol, 1.0 equiv) in dry THF (1 mL) was added dropwise, followed by the addition of 5 mol% of Pd(Ph₃)₄. The resulting mixture was stirred at 25 °C for 1 h and then quenched with sat. aq. NH₄Cl and extracted three times with AcOEt. The solvent was evaporated and the product was purified by *flash*-chromatography (SiO₂, pentane/ether = 7:3) afforded 2-phenyl-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-quinoline-4-carboxylic acid ethyl ester (**56**) (612 mg, 76%) as a colourless solid.

mp.: 237.5-239.9 °C.

IR (**ATR**): ν (cm⁻¹) = 2981 (m), 2928 (w), 1694 (vs), 1665 (m), 1560 (m), 1373 (s), 1323 (vs), 1252 (m), 1220 (m), 1139 (vs), 1096 (vs), 1039 (m), 854 (w), 773 (m), 702 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.27 (d, ${}^{3}J$ = 7.9 Hz, 1H), 8.20 (d, ${}^{3}J$ = 8.1 Hz, 1H), 7.78-7.69 (m, 3H), 7.59 (t, ${}^{3}J$ = 8.1 Hz, 1H), 7.48-7.42 (m, 3H), 4.58 (q, ${}^{3}J$ = 7.1 Hz, 2H), 1.51 (t, ${}^{3}J$ = 8.1 Hz, 3H), 1.18 (s, 12H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 168.9, 162.2, 148.4, 143.2, 142.1, 130.2, 130.1, 129.3 (2 carbons), 128.6, 128.1 (2 carbons), 127.4, 125.0, 122.4, 84.4 (2 carbons), 62.4, 25.0 (4C), 14.4. [C from C-B bond, not visible].

HRMS (ESI) ($C_{24}H_{26}BNO_4$): calculated $[M+H]^+$: 404.2034 found: 404.2025

Synthesis of 3-hydroxy-2-phenyl-quinoline-4-carboxylic acid (57)

To a heterogeneous solution of 2-phenyl-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)quinoline-4-carboxylic acid ethyl ester (**56**) (806 mg, 1.2 mmol, 1. equiv) in MeOH (2 mL) at 25 °C, was added neat LiOH (172 mg, 6 equiv) and aq. solution of H_2O_2 (0.45 mL, 3 equiv, 32% in water). The resulting mixture became rapidly yellow and heterogeneous and was stirred at 25 °C for 15 h. A precipitate was obtained and was filtrated and dried over vacuum. The crude residue was purified by *flash*-chromatography (SiO₂, EtOAc/CH₃CN/MeOH/H₂O, 7:1:0.25:0.25 with 0.5% NEt₃) giving the corresponding ammonium salt which was dissolved in CH₃CN/H₂O 1:1 and then acidified with HCl conc. to obtain a pH of 2. A precipitate was collected by filtration and dried over vacuum. A yellow fluffy solid is obtained (**57**, 283 mg, 89%).

mp.: 183.0-185.9 °C.

IR (**ATR**): v (cm⁻¹) = 3395 (mbroad), 2923 (w), 2596 (mbroad), 1632 (m), 1527 (m), 1500 (m), 1400 (s), 1322 (s), 1241 (s), 1160 (m), 1027 (m), 877 (m), 755 (s), 696 (s).

¹**H-NMR (DMSO-d₆, 400 MHz)**: δ (ppm) = 8.76 (d, J = 7.8 Hz, 1H), 8.04-7.99 (m, 1H), 7.66-7.58 (m, 3H), 7.56-7.51 (m, 5H).

¹³C-NMR (DMSO-d₆, 100 MHz): δ (ppm) = 171.0, 153.8, 151.5, 139.7, 135.7, 129.7 (2 carbons), 129.5, 128.4, 127.9 (2 carbons), 126.5, 125.3, 124.6 (2 carbons), 155.4.

MS (EI, 70 eV): *m/z* (%) = 265 [M⁺] (50), 247 (39), 218 (100), 190 (31), 165 (18), 105 (23), 76 (15), 44 (22).

HRMS (EI) ($C_{16}H_{11}NO_3$): calculated [M]⁺: 265.0739 found: 265.0729

Synthesis of 3-hydroxy-2-phenyl-quinoline-4-carboxylic acid (1-phenyl-propyl)-amide (talnetant, 33f).

This compound was prepared following the literature procedure starting from 57.⁹⁰ A pale yellow solid is obtained (33f, 84%).

mp.: 125.1- 126.2 °C

IR (**ATR**): ν (cm⁻¹) = 3266 (wbroad), 3058 (wbroad), 2931 (w), 1646 (s), 1629 (s), 1532 (s), 1492 (m), 1312 (m), 1236 (m), 1198 (m), 1146 (m), 760 (s), 695 (s).

¹**H-NMR (DMSO-d₆, 400 MHz)**: δ (ppm) = 9.78 (s, 1H), 9.12 (d, J = 8.2 Hz, 1H), 7.98-7.94 (m, 3H), 7.69-7.43 (m, 8H), 7.38-7.34 (m, 2H), 7.28-7.25 (m, 1H), 5.08-5.02 (q, J = 7.0 Hz, 1H), 1.87-1.74 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

¹³C-NMR (DMSO-d₆, 100MHz): δ (ppm) = 164.6, 152.3, 144.5, 143.4, 142.3, 137.8, 129.4 (2 carbons), 129.0, 128.7 (2 carbons), 128.1 (2 carbons), 127.9, 126.9, 126.7 (5 carbons), 125.4, 123.6, 54.8, 29.2, 11.1.

HRMS (ESI) ($C_{25}H_{22}N_2O_2$): calculated $[M+H]^+$: 383.1760 found: 383.1756

3. Functionalizations of Protected Uracils *via* Chemo- and Regioselective Magnesiations.

3.1 <u>General procedure for the Br/Mg exchange reaction on 4-halogeno-2,6-</u> <u>dimethoxypyrimidines 69a and 69b (GP4):</u>

A dry and argon flushed 10 mL flask, equipped with a magnetic stirring bar and a septum, was charged with the 5-bromo-4-halogeno-2,6-dimethoxypyrimidine **69a** or **69b** (1mmol, 1 equiv) dissolved in dry THF (1.0 M). *i*-PrMgCl·LiCl (**13**, 1 mL, 1.05 M in THF, 1.05 equiv) was added slowly at 25 °C and the resulting mixture was stirred for 15 min to complete the bromine-magnesium exchange (checked by GC-MS analysis of reaction aliquots). The freshly prepared magnesium reagent was cooled to the corresponding temperature or used at 25 °C and the resulting mixture was added. The mixture was stirred for time depending of the reactivity of the electrophile. The consumption of the magnesium reagent was completed, sat. NH₄Cl solution (10 mL) was added and the mixture was extracted with Et₂O or AcOEt (3 × 5 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. The product was purified by flash chromatography (SiO₂).

3.2 <u>General procedure for the Br/Mg exchange reaction on 5-functionalized-2,6-</u> <u>dimethoxypyrimidines (GP5):</u>

A dry and argon flushed 10 mL flask, equipped with a magnetic stirring bar and a septum, was charged with the halogenated 2,6-dimethoxypyrimidine (1 equiv) dissolved in dry THF (1.0 M). *i*-PrMgCl·LiCl (**13**, 1.05-1.1 equiv) was added slowly, dropwise, at appropriate temperature (as stated in the experiment). The reaction mixture was stirred at the same or plus 5°C temperature, and the completion of the Br/Mg exchange was checked by GC-analysis using tetradecane as internal standard or by TLC. The freshly prepared magnesium reagent was cooled to the corresponding temperature or used at 25 °C and the corresponding electrophile (1.1-1.5 equiv.) was added. The mixture was stirred for time depending of the reactivity of the electrophile. The consumption of the magnesium reagent was checked by GC-analysis, using tetradecane as internal standard. After the reaction was completed, sat. NH₄Cl solution (10 mL) was added and the mixture was extracted with Et₂O or AcOEt (3 × 5 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. The product was purified by flash chromatography (SiO₂).

3.3 <u>General procedure for the direct magnesiation of 2,4-dimethoxypyrimidine</u> <u>derivatives using TMPMg·LiCl (18a) (GP6).</u>

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with the 2,6-dimethoxypyrimidine derivative (1 mmol, 1 equiv) dissolved in dry THF (1.0 M solution) and TMPMg·LiCl (**18a**, 1.1 mmol, 1.1 equiv) were added dropwise at the given temperature. The reaction mixture was stirred at the same temperature, and the completion of the deprotonation was checked by GC-analysis of reaction aliquots quenched with iodine using decane as internal standard. The freshly prepared magnesium reagent was cooled to the corresponding temperature or used at 25 °C and the corresponding electrophile (1.2 equiv) or its solution in THF was added. The mixture was stirred for a time depending on the reactivity of the electrophile. The consumption of the magnesium reagent was checked by GC-analysis, using decane as internal standard. After the reaction was completed, sat. NH₄Cl (10 mL) solution was added and the mixture was extracted with Et₂O or EtOAc (3 x 5 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. The product was purified by *flash*-chromatography (SiO₂).

3.4 Starting material synthesis

Synthesis of 5-bromo-4-chloro-2,6-dimethoxypyrimidine (69a)

This compound was prepared starting from 4-chloro-2,6-dimethoxypyrimidine (70a) according to the literature procedure.¹⁰³ The analytic data correspond to the analytic data from the literature. The product 69a was obtained as a white solid.

mp.: 98.7-99.7 °C.

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 4.05 (s, 3H), 3.99 (s, 3H).

¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 168.3, 162.8, 160.4, 97.1, 55.8.

MS (EI, 70 ev): *m*/*z* (%) = 254 (100), 253 (77), 252 (75), 251 (58), 239 (27), 224 (92), 221 (70), 209 (37), 143 (42).

HRMS (EI) $C_6H_6BrClN_2O_2$: calculated [M⁺]: 251.9301

found: 251.9284.

Synthesis of 4-bromo-2,6-dimethoxypyrimidine (70b)

4-bromo-2,6-dimethoxypyrimidine (**70b**) was prepared starting from barbituric acid in two steps in 85% yield, according to the literature procedure.¹⁰⁴ The analytic data correspond to the analytic data from the literature. The product was obtained as a white solid.

mp.: 90.9-92.0 °C.

IR (**KBr**): 1589 (m), 1550 (s), 1463 (s), 1363 (m), 1199 (m), 819 (s).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 6.52 (s, 1H), 3.93 (s, 3H), 3.89 (s, 3H).

¹³**C-NMR (CDCl₃, 75 MHz)**: δ (ppm) = 172.1, 164.9, 152.4, 105.4, 55.8, 54.8.

MS (EI, 70 ev): *m*/*z* (%) = 220 (79), 219 (67), 218 (78), 217 (75), 190 (90), 188 (100), 175 (37), 109 (51), 82 (65).

HRMS (EI) $C_6H_7BrN_2O_2$: calculated [M⁺]: 217.9691 found: 217.9692.

Synthesis of 4,5-dibromo-2,6-dimethoxypyrimidine (69b)

This compound (**69b**) was prepared with the same procedure for the synthesis of 5-bromo-4chloro-2,6-dimethoxypyrimidine (**69a**), starting from 4-bromo-2,6-dimethoxypyrimidine (**70b**). 5,4-dibromo-2,6-dimethoxypyrimidine (**69b**) was isolated as a white solid in 96% yield.

mp.: 117.6-118.0 °C **IR** (**KBr**): 2957 (w), 1526 (s), 1455 (m), 1343 (s), 1311 (m), 1008 (s). ¹**H-NMR** (**CDCl₃, 400 MHz**): δ (ppm) = 4.05 (s, 3H), 3.99 (s, 3H). ¹³**C-NMR** (**CDCl₃, 100 MHz**): δ (ppm) = 167.7, 162.54, 153.74, 100.8, 55.8 (2 carbons). **MS (EI, 70 ev)**: m/z (%) = 300 (46), 299 (47), 298 (100), 297 (71), 296 (48), 295 (31), 283 (20), 270 (31), 268 (64), 266 (30), 189 (19), 187 (21). **HRMS (EI)** C₆H₆Br₂N₂O₂: calculated [M⁺]: 295.8796 found: 295.8799.

3.5 Preparation of polyfunctionalized 2,4-dimethoxypyrimidines

Synthesis of 1*H*-pyrazolo[3,4-d]pyrimidine-4,6(5*H*,7*H*)-dione, oxypurinol (60)

A mixture of 4,6-dimethoxy-1*H*-pyrazolo[3,4-d]pyrimidine (**75**) (0.54 g, 3 mmol) with concentrated hydrochloric acid (30 mL) was heated under reflux for 2 h. After the reaction was complete, the solution was treated with activated charcoal and evaporated under reduced pressure. The residue was recrystallized from water affording **60** (1.60 g, 81%) as a white solid.

mp.: > 300 °C.

IR (**KBr**): 3268 (m), 3124 (w), 3028 (m), 2804 (w), 1709(s), 1677 (s), 1616 (m), 1419 (m), 1244 (m), 1169 (s), 1025 (m), 810 (m), 748 (s), 700 (s).

¹**H-NMR (DMSO, 300 MHz**): δ (ppm) = 13.27 (s, 1H), 11.30 (s, 1H), 10.63 (s, 1H), 8.33 (s, 1H).

¹³C-NMR (DMSO, **75** MHz): δ (ppm) = 159.6, 151.6, 150.8, 128.9, 100.2.

MS (EI, 70 ev): *m*/*z* (%) = 152.0 (100), 109.0 (92), 52.0 (31), 44.0 (14).

HRMS (EI) $C_5H_4N_4O_2$: calculated [M⁺]: 152.0334 found: 152.0324.

Synthesis of (4-chloro-2,6-dimethoxypyrimidin-5-yl)(phenyl)methanol (72a)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (254 mg, 1 mmol, 1.0 equiv) in dry THF (1 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), benzaldehyde (117 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [5 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 3:2) afforded **72a** (255 mg, 91%) as a white solid.

mp.: 90,1-91,4 °C.

IR (**KBr**): 3412 (s), 2955 (w), 1583 (s), 1553 (s), 1464 (m), 1375(s), 1242 (m), 1032 (s).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 7.33-7.24 (m, 5H), 6.21 (d, *J* = 11 Hz, 1H), 4.01 (s, 3H), 3.96 (s, 3H), 3.41 (d, *J* = 11 Hz, 1H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 169.7, 163.2, 159.4, 141.7, 128.3 (2 carbons), 127.4, 125.3 (2 carbons), 114.0, 70.0, 55.4, 55.0.

MS (EI, 70 ev): *m/z* (%) = 282 (15), 280 (44), 262 (20), 205 (29), 203 (100), 105 (10), 77 (12).

HRMS (EI) $C_{13}H_{13}CIN_2O_3$: calculated [M⁺]: 280.0615 found: 280.0612.

Synthesis of (4-chloro-2,6-dimethoxypyrimidin-5-yl)(2-methoxyphenyl)methanol (72b)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (254 mg, 1 mmol, 1.0 equiv) in dry THF (1 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), 2-methoxybenzaldehyde (150 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [10 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 3:2) afforded **72b** (258 mg, 83%) as a white solid. **mp**.: 106.0-107.3 °C **IR (KBr)**: 3472 (s), 3003 (m), 2963 (w), 1553 (s), 1455 (m), 1375 (s), 1241 (m), 1206 (m), 1021 (s).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 7.34 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 8.8 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H), 3.79 (s, 3H), 3.33 (d, J = 8.8 Hz, 1H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 170.1, 163.1, 156.8 (2 carbons), 129.4, 128.9, 127.1, 120.2, 113.5, 110.6, 66.7, 55.5, 55.5, 55.0.

MS (EI, 70 ev): m/z (%) = 312 (22), 311 (15), 310 (58), 294 (38), 293 (23), 292 (100), 257 (57), 242 (12), 205 (13), 203 (51), 201 (53), 175 (29), 135 (16), 109 (17), 108 (19), 77 (10). **HRMS (EI)** C₁₄H₁₅ClN₂O₄: calculated [M⁺]: 310.0720 found: 310.0733.

Synthesis of (4-chloro-2,6-dimethoxypyrimidin-5-yl)(phenyl)methanone (72c)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (254 mg, 1 mmol, 1 equiv) in dry THF (1 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), benzoyl chloride (154 mg, 1.1mmol, 1.1 equiv). Reaction conditions [3 h, -20 °C to 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 3:2) afforded **72c** (231 mg, 86%) as a white solid.

mp.: 116.0-117.3 °C.

IR (**KBr**): 3436 (m), 3000 (w), 2952 (w), 1676 (s), 1589 (s), 1485 (s), 1485 (m), 1389 (s), 1200 (s), 1027 (m), 921 (m).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 7.83 (d, J = 8.5 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 4.07 (s, 3H), 3.94 (s, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 190.7, 169.5, 164.3, 158.1, 136.2, 134.2, 129.4 (2 carbons), 128.8 (2 carbons), 112.8, 55.7, 55.1.

MS (**EI**, **70** ev): m/z (%) = 280 (17), 278 (47), 203 (34), 201 (100), 105 (30), 77 (17), 76 (11). **HRMS** (**EI**) C₁₃H₁₁ClN₂O₃: calculated [M⁺]: 278.0458 found: 278.0441.

Synthesis of (4-chloro-2,6-dimethoxypyrimidin-5-yl)(morpholino)methanone (72d)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (254 mg, 1 mmol, 1 equiv) in dry THF (1 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), 4-morpholinecarbonyl chloride (165 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [15 h, -20 °C to 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 2:3) afforded **72d** (244 mg, 85%) as a white solid.

mp.: 109.9-111.3 °C.

IR (**KBr**): 2960 (w), 2862 (w), 1634 (m), 1580 (s), 1534 (s), 1494 (m), 1370 (s), 1357 (m), 1275 (m), 1235 (s), 1111 (s), 1009 (s).

¹**H-NMR (DMSO, 400 MHz)**: δ (ppm) = 4.01 (2 singulets, 6H), 3.86-3.61 (3 multiplets, 6H), 3.28 (m, 2H).

¹³**C-NMR (DMSO, 100 MHz**): δ (ppm) = 168.5, 164.1, 162.0, 157.9, 109.4, 66.7, 66.6, 55.6, 55.2, 46.9, 42.2.

MS (EI, 70 ev): *m*/*z* (%) = 287.0 (9), 252.1 (11), 203.0 (28), 201.0 (100), 75.9 (11).

HRMS (EI) $C_{11}H_{14}CIN_3O_4$: calculated [M⁺]: 287.0673 found: 287.0664.

Synthesis of 4-chloro-2,6-dimethoxypyrimidine-5-carbonitrile (72e)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (254 mg, 1 mmol, 1 equiv) in dry THF (1 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), *p*-toluenesulfonyl cyanide (200 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [12 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 1:4) afforded **72e** (178 mg, 89%) as a white solid. **mp**.: 123.3-124.8 °C. **IR (KBr)**: 3021 (w), 2947 (w), 2233 (m), 1586 (m), 1529 (s), 1474 (m), 1378 (m), 1218 (m), 1071 (m), 1018 (s).

¹**H-NMR (CDCl₃, 400 MHz)**: δ (ppm) = 4.11 (s, 3H), 4.07 (s, 3H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 172.2, 165.1, 164.9, 117.7, 89.7, 56.4, 55.6.

MS (EI, 70 ev): *m*/*z* (%) = 201 (25), 199 (71), 198 (32), 171 (33), 169 (100), 154 (32), 106 (19), 70 (11).

HRMS (EI) $C_7H_6ClN_3O_2$: calculated [M⁺]: 199.0149 found: 199.0131.

Synthesis of ethyl 4-chloro-2,6-dimethoxypyrimidine-5-carboxylate (72f)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (381 mg, 1.5 mmol, 1 equiv) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.58 mmol, 1.05 equiv), ethyl cyanoformate (164 mg, 1.1 equiv). Reaction conditions [8 h, -20 °C to 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 4:1) afforded **72f** (322 mg, 87%) as a yellow oil.

IR (film): 2957 (w), 1731 (s), 1585 (s), 1540 (s), 1488 (m), 1376 (m), 1218 (m), 1071 (m), 1018 (s).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 4.40 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 6H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR (CDCl₃, 100 MHz)**: δ (ppm) = 169.2, 163.9, 163.4, 158.9, 108.7, 62.1, 55.7, 55.2, 14.0.

MS (EI, 70 ev): *m/z* (%) = 246 (15), 218 (13), 203 (30), 201 (100), 174 (13), 76 (14).

HRMS (EI) $C_9H_{11}ClN_2O_4$: calculated [M⁺]: 246.0407 found: 246.0388.

Synthesis of 5-benzyl-4-chloro-2,6-dimethoxypyrimidine (72g)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (381 mg, 1.5 mmol, 1 equiv) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.58 mmol, 1.05 equiv), benzylbromide (360 mg, 2.1 mmol, 1.4 equiv). Reaction conditions [4 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 1:4) afforded **72g** (300 mg, 75%) as a colourless oil.

IR (film): 3028 (w), 2950 (w), 1586 (m), 1541 (s), 1453 (m), 1369 (s), 1213 (m), 1078 (m), 1026 (s).

¹**H-NMR** (**CDCl₃, 400 MHz**): δ (ppm) = 7.14 (m, 5H), 3.90-3.91 (m, 8H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 170.2, 162.6, 160.2, 138.6, 128.3 (3 carbons), 126.3 (2 carbons), 112.0, 55.1, 54.8, 31.2.

MS (EI, 70 ev): *m/z* (%) = 266 (31), 264 (100), 249 (33), 234 (19), 173 (17), 156 (10), 91 (18), 77 (8).

HRMS (EI) $C_{13}H_{13}ClN_2O_2$: calculated [M⁺]: 264.0666 found: 264.0639.

Synthesis of 4-chloro-2,6-dimethoxypyrimidine-5-carbaldehyde (72h)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69a**) (1.27 g, 5 mmol, 1 equiv) in dry THF (5 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 5.25 mmol, 1.05 equiv), 4-formylmorpholine (0.635 g, 1.1 equiv). Reaction conditions [4 h, -35 °C]. The mixture was quenched with a mixture of a solution of acetic acid in water (\approx 1M; 3 mL) and saturated aqueous NH₄Cl solution (15 mL). The aqueous phase was extracted with ether (3 × 20 mL). The organic fractions were dried (Na₂SO₄) and concentrated *in vacuum*. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 3:2) afforded **72h** (840 mg, 83%) as a white solid.

mp.: 97.8-99.1°C.

IR (KBr): 3008 (w), 2956 (w), 2882 (w), 2797 (w), 1686 (s), 1528 (s), 1449 (s), 1356 (s), 1324 (s), 1205 (m), 1014 (m), 789 (s).

¹**H-NMR (CDCl₃, 600 MHz)**: δ (ppm) = 10.30 (s, 1H), 4.12 (s, 3H), 4.08 (s, 3H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 169.6, 167.2, 164.3, 160.2, 106.9, 55.8, 55.5.

MS (EI, 70 ev): m/z (%) = 203 (40), 202 (76), 201 (100), 185 (22), 174 (17), 172 (43), 155 (17), 129 (10), 76 (23), 70 (10). **HRMS (EI)** C₇H₇ClN₂O₃: calculated [M⁺]: 202.0145 found: 202.0126.

Synthesis of 4,6-dimethoxy-3-phenylisoxazolo[5,4-d]pyrimidine (73)

To a stirring solution of 4-chloro-2,6-dimethoxypyrimidin-5-yl)(phenyl)methanone (**72c**) (1.39 mg, 5 mmol) in EtOH 50% (100 mL) at 25 °C was added hydroxylamine hydrochloride (1.04 g, 15 mmol) and sodium acetate (1.25 g, 15 mmol). The mixture was refluxing during 4 h. The product was collected by filtration and washed two times with H₂O (10 mL). Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 3:2) afforded **73** (1.88 g, 83%) as a white solid.

mp.: 210.1-211.9 °C.

IR (KBr): 3017 (w), 2951 (w), 1615 (s), 1539 (s), 1441 (s), 1385 (m), 1318 (s), 1138 (m).

¹**H-NMR (DMSO, 400 MHz)**: δ (ppm) = 8.20 (m, 2H), 7.60 (m, 3H), 4.14 (s, 3H), 4.00 (s, 3H).

¹³C-NMR (DMSO, 100 MHz): δ (ppm) = 166.8, 167.6, 166.8, 132.2, 132.2, 129.2 (2 carbons), 128.3 (2 carbons), 126.0, 96.3, 55.4, 55.1.

MS (EI, 70 ev): *m/z* (%) = 257.1 (100), 227.1 (57), 212.1 (36), 105.0 (65), 91.0 (8), 77.0 (41), 70.0 (12), 51.0 (11).

HRMS (EI) $C_{13}H_{11}N_3O_3$: calculated [M⁺]: 257.0800 found: 257.0807.

Synthesis of methyl 2,4-dimethoxy-5-phenylthieno[2,3-d]pyrimidine-6-carboxylate (74)

Triethylamine (0.4 g, 4 mmol) was added dropwise to a mixture of 4-chloro-2,6dimethoxypyrimidin-5-yl)(phenyl)methanone (**72c**) (0.55 g, 2 mmol) and methyl mercaptoacetate (0.31 g, 2.6 mmol) in EtOH (10 mL). The reaction mixture was heated at reflux until the starting ketone **72c** disappeared according to gas chromatography (12 h). After cooling to 25 °C, the precipitate was filtered off and recrystallized in EtOH 95% affording **74** (456 mg, 69%) as a white powder.

mp.: 193.3-194.3 ° C.

IR (KBr): 3012 (w), 2951 (w), 1716 (s), 1577 (m), 1541 (s), 1473 (m), 1249 (s), 1168 (m), 1027 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 7.40 (m, 3H), 7.38 (m, 2H), 4.08 (s, 3H), 3.79 (s, 3H), 3.72 (s, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 170.2, 167.2, 163.8, 162.2, 142.1, 134.9, 129.0 (2 carbons), 127.8, 127.2 (2 carbons), 122.5, 114.9, 55.3, 54.1, 52.2.

MS (EI, 70 ev): *m*/*z* (%) = 331 (16), 330 (100), 329 (15), 300 (11), 299 (26), 284 (11), 251 (7), 227 (8), 199 (7), 171 (6), 127 (8).

HRMS (EI) $C_{16}H_{14}N_2O_4S$: calculated [M⁺]: 330.0674 found: 330.0660.

Synthesis of 4,6-dimethoxy-1H-pyrazolo[3,4-d]pyrimidine (75)

To a stirring solution of 4-chloro-2,6-dimethoxypyrimidine-5-carbaldehyde (**72h**) (1.01 mg, 5 mmol) in EtOH (80 mL) at 25 °C was added hydrazine monohydrate (0.9 g, 15 mmol). The mixture was refluxing during 30 min. After cooling to 25 °C, the precipitate was filtered off and recrystallized in EtOH 95% affording **75** (823 mg, 91%) as a white powder.

mp.: > 300 °C.

IR (KBr): 3252 (w), 2955 (w), 1608 (s), 1583 (m), 1503 (m), 1386 (m), 1320 (w), 1153 (m), 1081 (w), 942 (s), 788 (s).

¹**H-NMR (DMSO, 300 MHz)**: δ (ppm) = 8.05 (s, 1H), 4.04 (s, 3H), 3.93 (s, 3H).

¹³**C-NMR (DMSO, 75 MHz**): δ (ppm) = 164.4, 163.9, 157.8, 97.8, 88.2, 54.5, 53.9.

MS (EI, 70 ev): *m/z* (%) = 180 (100), 179 (66), 165 (12), 150 (36), 135 (67), 109 (13), 70 (11).

HRMS (EI) $C_7H_8N_4O_4$: calculated [M⁺]: 180.0647 found: 180.0643.

Synthesis of 4-bromo-2,6-dimethoxy-5-(trimethylsilyl)pyrimidine (77a)

Prepared according to **GP4** starting from a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (596 mg, 2 mmol, 1 equiv) in dry THF (3 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 2.1 mmol, 1.05 equiv), trimethylsilyl chloride (240 mg, 2.2 mmol, 1.1 equiv). Reaction conditions [24 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 4:1) afforded **77a** (529 mg, 91%) as a white solid.

mp.: 71.1-72.2 °C.

IR (KBr): 2955 (w), 2899 (w), 1556 (m), 1524 (s), 1450 (m), 1344 (s), 1278 (m), 1114 (m), 1015 (m), 839 (s).

¹**H-NMR** (**CDCl₃, 400 MHz**): δ (ppm) = 3.98 (s, 3H), 3.92 (s, 3H), 0.37 (s, 9H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 175. 5, 164.4, 159.9, 111.8, 55.0, 54.1, 1.2 (3 carbons).

MS (EI, 70 ev): *m*/*z* (%) = 292 (10), 290 (10), 277 (100), 275 (99), 247 (81), 220 (30), 194 (13), 137 (33), 72 (38).

HRMS (EI) $C_9H_{15}BrN_2O_2Si$: calculated [M⁺]: 290.0086 found: 290.0062.

Prepared according to **GP4** starting from a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (596 mg, 2 mmol, 1 equiv) in dry THF (3 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 2.1 mmol, 1.05 equiv), allyl bromide (266 mg, 2.2 mmol, 1.1 equiv). Reaction conditions [2 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 9:1) afforded **77b** (528 mg, 91%) as a colourless oil.

IR (**film**): 3081 (w), 2957 (w), 1639 (w), 1586 (m), 1542 (s), 1459 (m), 1370 (s), 1223 (m), 1079 (m), 1026 (s).

¹**H-NMR** (**CDCl₃, 400 MHz**): δ (ppm) = 5.82 (m, 1H), 5.02 (2 dd, ${}^{3}J_{trans}$ = 13.2 Hz, J_{gem} and ${}^{3}J_{cis}$ = 1.7 Hz, 2H), 3.98 (s, 3H), 3.97 (s, 3H), 3.35 (dt, ${}^{3}J$ = 6.1 Hz, ${}^{4}J$ = 1.5 Hz).

¹³**C-NMR (CDCl₃, 100 MHz**): δ (ppm) = 170.1, 162.6, 160.0, 133.4, 115.9, 110.7, 55.1, 54.8, 29.6.

MS (EI, 70 ev): *m*/*z* (%) = 260 (98), 258 (100), 245 (23), 243 (22), 231 (41), 179 (25), 163 (14).

HRMS (EI) $C_9H_{11}BrN_2O_2$: calculated [M⁺]: 258.0004 found: 258.0023.

Synthesis of ethyl 4-bromo-2,6-dimethoxypyrimidine-5-carboxylate (77c)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69b**) (298 mg, 1.0 mmol, 1 equiv) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), ethyl cyanoformate (164 mg, 1.1 equiv). Reaction conditions [12 h, -20 to 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 4:1) afforded **77c** (236 mg, 81%) as a white solid. **mp**.: 42.5-43.8 °C. **IR** (**KBr**): 2983 (w), 2960 (w), 1725 (s), 1570 (s), 1529 (s), 1491 (m), 1358 (m), 1265 (s), 1229 (s), 1048 (m), 1013 (s).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 4.38 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 6H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³**C-NMR (CDCl₃, 100 MHz**): δ (ppm) = 166.5, 164.0, 163.6, 149.9, 112.0, 62.2, 55.7, 55.1, 14.0.

MS (EI, 70 ev): *m/z* (%) = 292 (18), 290 (19), 247 (96), 245 (100), 218 (18), 151 (8), 122 (19), 70 (11).

HRMS (EI) $C_9H_{11}BrN_2O_4$: calculated [M⁺]: 289.9902 found: 289.9902.

Synthesis of (4-bromo-2,6-dimethoxypyrimidin-5-yl)(phenyl)methanol (77d)

Prepared according to **GP4** starting from a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (298 mg, 1.0 mmol, 1 equiv) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), benzaldehyde (117 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [4 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 3:2) afforded **77d** (308 mg, 95%) as a white solid.

mp.: 108.9-111.2°C.

IR (**KBr**): 3337 (s), 2953 (w), 2923 (w), 1572 (w), 1543 (s), 1488 (m), 1448 (m), 1368 (s), 1212 (m), 1016 (s).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 7.3 (m, 5H), 6.19 (d, *J* = 11.1 Hz, 1H), 4.01 (s, 3H), 3.93 (s, 3H), 3.41 (d, *J* = 11.1 Hz, 1H).

¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 168.9, 162.9, 152.5, 141.7, 128.3 (2 carbons), 127.5, 125.3 (2 carbons), 116.6, 72.13, 55.4, 54.9.

MS (EI, 70 ev): *m*/*z* (%) = 326 (41), 324 (33), 308 (18), 306 (18), 249 (67), 247 (100), 227 (32), 105 (17), 77 (22).

HRMS (EI) $C_{13}H_{13}BrN_2O_3$: calculated [M⁺]: 324.0110 found: 324.0092.

Synthesis of (4-bromo-2,6-dimethoxypyrimidin-5-yl)(morpholino)methanone (77e)

Prepared according to **GP4** starting from a solution of 5-bromo-4-chloro-2,6dimethoxypyrimidine (**69b**) (298 mg, 1 mmol, 1 equiv) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), 4-morpholinecarbonyl chloride (165 mg, 1.1 mmol, 1.1 equiv). Reaction conditions [12 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*pentane/diethyl ether = 2:3) afforded **77e** (210 mg, 70%) as a white solid.

mp: 112.0-113.6 °C.

IR (KBr): 2960 (w), 2862 (w), 1634 (m), 1580 (s), 1534 (s), 1494 (m), 1370 (s), 1357 (m), 1275 (m), 1235 (s), 1111 (s), 1009 (s).

¹**H-NMR (DMSO, 400 MHz)**: δ (ppm) = 3.95 (s, 3H), 3.94 (s, 3H), 3.57 (m, 6H), 3.27 (m, 2H).

¹³**C-NMR (DMSO, 100 MHz**): δ (ppm) = 167.2, 163.1, 161.6, 148.6, 112.5, 66.7, 66.2, 55.3, 54.9, 46.3, 41.6.

MS (EI, 70 ev): *m/z* (%) = 333 (8), 331 (9), 252 (30), 247 (98), 245 (100), 167 (12), 122 (11), 120 (11), 70 (6).

HRMS (EI) $C_{11}H_{14}BrN_3O_4$: calculated [M⁺]: 331.0168 found: 331.0177.

Synthesis of 2-(4-bromo-2,6-dimethoxypyrimidin-5-yl)propan-2-ol (77f)

In a flame dried, argon-flushed 50 mL Schlenk-flask equipped with a septum and a magnetic stirring bar was placed LaCl₃·2LiCl in THF (0.33 M; 30 mL, 10.00 mmol, 1.00 equiv). Dried acetone (580 mg, 10.0 mmol) was added and the resulting mixture was stirred for 2 h at 25 °C. A second dry and argon flushed 25 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (2.98 g, 10 mmol) in dry THF (10 mL). *i*-PrMgCl·LiCl (**13**, 1.0 M/THF, 10.5 mmol, 1.05 equiv) was

added very slowly (within 5 min) at 25 °C and the resulting mixture was stirred for 15 min to complete the bromine-magnesium exchange (checked by GC-MS analysis of reaction aliquots) and obtain the Grignard reagent **76**. To the mixture of acetone with LaCl₃·2LiCl in THF cooled to 0 °C, was added dropwise the solution of the Grignard reagent **76**. The resulting mixture was allowed to stir at the same temperature for 4 h and was quenched with sat. aq. NH₄Cl (20 mL) and water (20 mL) was added. The aqueous layer was extracted with ethyl acetate (4 × 30 mL), the combined extracts were dried (Na₂SO₄) and evaporated *in vacuum*. The crude residue was purified by flash column chromatography (SiO₂, *n*-pentane/diethyl ether = 4:1) afforded **77f** (2.40 g, 81%) as a colourless oil.

IR (film): 3563 (m), 2950 (w), 1562 (m), 1527 (s), 1481 (m), 1383 (m), 1352 (m), 1215 (m), 1013 (s).

¹**H-NMR (CDCl₃, 400 MHz)**: δ (ppm) = 4.03 (s, 3H), 3.97 (s, 3H), 3.95 (s, 3H), 1.70 (s, 6H). ¹³**C-NMR (CDCl₃, 150 MHz)**: δ (ppm) = 168.9, 161.2, 149.0, 120.7, 72.4, 55.2, 55.0, 30.2 (2 carbons).

MS (EI, 70 ev): m/z (%) = 279 (3), 277 (3), 263 (100), 261 (97), 245 (29), 221 (5), 167 (7). **HRMS (EI)** C₉H₁₃BrN₂O₃: calculated [M+H]⁺: 277.0110 found: 277.0200.

Synthesis of 4-allyl-2,6-dimethoxy-5-(trimethylsilyl)pyrimidine (78)

Prepared according to **GP5** starting from a solution of 4-bromo-2,6-dimethoxy-5-(trimethylsilyl)pyrimidine (**77a**) (291 mg, 1.0 mmol) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 1.05 mmol, 1.05 equiv), reaction conditions [-15 °C, 12 h]. Allyl bromide (145 mg, 1.2 mmol, 1.2 equiv), reaction conditions [-15 °C, 30 min]. CuCN·2LiCl (cat. (3 drops), 1M in THF), reaction conditions [-15 to 25 °C, 6 h]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 3:2) afforded **78** (204mg, 81%) as a colourless oil.

IR (film): 3081 (w), 2980 (w), 2960 (w), 2870 (w), 1638 (w), 1571 (s), 1457 (m), 1370 (s), 1362 (s), 1210 (m), 1084 (w).

¹**H-NMR** (**CDCl**₃, **600 MHz**): δ (ppm) = 6.03 (m, 0.8H), 5.08 (dd, J = 9.5 Hz, 0.8H), 5.02 (dd, J = 17.1 Hz, 0.8H), 3.96–3.93 (2s, 6H), 3.47 (d, J = 6.2 Hz, 2H), 0.31 (s, 9H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 176.0, 175.3, 135.8, 116.2, 107.0, 54.3, 53.4, 42.07, 29.7, 1.41 (3 carbons from TMS group). MS (EI, 70 ev): m/z (%) = 253 (11), 252 (56), 251 (100), 237 (19), 207 (23), 89 (25). HRMS (EI) C₁₂H₂₀N₂O₂Si: calculated [M⁺]: 252.1294 found: 252.1266.

Synthesis of (5-(cyclohexyl(hydroxy)methyl)-2,6-dimethoxypyrimidin-4-yl)(morpholino)methanone (79a)

A dry and argon flushed 10 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (596 mg, 2 mmol, 1 equiv) in dry THF (3 mL). *i*-PrMgCl·LiCl (**13**, 1.0 M/THF, 2.1 mmol, 1.05 equiv) was added very slowly (within 5 min) at 25 °C and the resulting mixture was stirred for 15 min to complete the bromine-magnesium exchange (checked by GC-MS analysis of reaction aliquots). Cyclohexanecarboxaldehyde (266 mg, 2.2 mmol, 1.2 equiv) was added at 25 °C and the mixture was stirred at 25 °C for12 h. *i*-PrMgCl·LiCl (**13**, 1.0 M/THF, 2.0 mmol, 1.5 equiv) was added at 25 °C to the mixture which was stirred for 24 h to complete the second bromine-magnesium exchange (checked by GC-MS analysis of reaction aliquots). 4-morpholinecarbonyl chloride (597 mg, 2 equiv) was added and the resulting mixture was stirred at 25 °C for 12 h. Then, the mixture was quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with ethyl acetate (3×10 mL). The organic fractions were dried (Na₂SO₄) and concentrated *in vacuum*. Purification by flash chromatography (SiO₂, diethyl ether) afforded **79a** (503 mg, 69) as a colourless oil.

IR (film): 2924 (m), 2852 (m), 1700 (s), 1599 (m), 1567 (m), 1399 (m), 1218 (s), 1069 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.09 (s, 1H), 5.64 (d, *J* = 6.7 Hz), 3.99 (s, 3H), 3.97 (s, 3H), 1.88-0.88 (m, 11H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 168.3, 164.6, 156.2, 154.6, 114.1, 74.0, 66.6 (3 carbons), 54.0, 44.1, 42.1, 28.8, 28.4.

MS (**EI**, **70** ev): m/z (%) = 365 (1), 282 (2), 235 (24), 153 (100), 114 (12), 70 (6). **HRMS** (**EI**) C₁₈H₂₇N₃O₅: calculated [M⁺]: 365.1951 found: 365.1935.

Synthesis of 5-allyl-2,4-dimethoxy-6-methylpyrimidine (79b)

A dry and argon flushed 10 mL flask, equipped with a magnetic stirrer and a septum, was charged with a solution of 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (596 mg, 2 mmol, 1 equiv) in dry THF (3 mL). *i*-PrMgCl-LiCl (**13**, 1.0 M/THF, 2.1 mmol, 1.05 equiv) was added very slowly (within 5 min) at 25 °C and the resulting mixture was stirred for 15 min to complete the bromine-magnesium exchange (checked by GC-MS analysis of reaction aliquots). Allyl bromide (266 mg, 2.2 mmol, 1.1 equiv) was added dropwise. The mixture was stirred at 25 °C for 2 h. Then, the mixture was cooled down to -5 °C and *i*-PrMgCl-LiCl (**13**, 1.0 M/THF, 3.0 mmol, 1.5 equiv) was added slowly. After 8 h, the Br/Mg-exchange was complete (checked by GC-MS analysis of reaction aliquots) and methylene iodide (850 mg, 3 equiv) was added to the mixture at -5 °C following by the addition of 3 drops of CuCN·2LiCl (cat., 1M in THF). The mixture was warmed up to 25 °C for 4 h and quenched with saturated aqueous NH₄Cl solution. The aqueous phase was extracted with ethyl acetate (3 × 10 mL). The organic fractions were dried (Na₂SO₄) and concentrated *in vacuum*. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 4:1) afforded **79b** (408 mg, 81%) as a colourless oil.

IR (film): 2980 (w), 2955 (w), 2871 (w), 1638 (w), 1571 (s), 1457 (m), 1369 (s), 1358 (s), 1203 (m), 1090 (w).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 5.8 (m, 1H), 4.97 (dq, J = 10.2 Hz, 1H), 4.90 (dq, J = 17.1 Hz, 1H), 3.94 (s, 6H), 3.25 (dt, J = 5.9 Hz, 2H), 2.33 (s, 3H).

¹³**C-NMR (CDCl₃, 100 MHz**): δ (ppm) = 169.3, 166.6, 163.0, 134.7, 114.9, 109.7, 54.3, 53.9, 28.7, 21.2.

MS (EI, 70 ev): *m*/*z* (%) = 196 (45), 194 (100), 193 (49), 179 (28), 164 (29), 138 (11), 122 (5), 94 (6), 56 (21).

HRMS (EI) $C_{10}H_{14}N_2O_2$: calculated [M⁺]: 194.1055 found: 194.1036.

Synthesis of 4-bromo-5-isopropyl-2,6-dimethoxypyrimidine (80)

To an ice-cooled, rapidly stirred slurry of **77f** (1.38 g, 5mmol) dissolved in dry dichloromethane (20 mL) and triethylsilane (1.74 g, 3 equiv) was slowly added trifluoroacetic acid (1.99 g, 3.5 equiv). When the addition was complete, the mixture was warmed to 25 °C and stirred overnight (12 h). At the end of this period, the mixture was poured into 30 mL of saturated NaHCO₃ and extracted with dichloromethane (3×20 mL). Extracts were combined, dried over Na₂SO₄, filtered, and concentrated under reduced pressure at 40 °C (oil bath) to give 1.28 g (95 %) of colourless oil. The product was identified as a mixture of 4-bromo-5-isopropyl-2,6-dimethoxypyrimidine **77f** (17%) and the corresponding unsaturated product (83%) (4-bromo-2,6-dimethoxy-5-(prop-1-en-2-yl)pyrimidine). The mixture was used for the next step without purification.

¹**H-NMR** (**CDCl₃, 200 MHz**): δ (ppm) = 5.34 (s, 1.0H), 4.95 (t, 1.0H), 3.95 (m, 7.1H), 3.40 (q, 0.37H), 1.96 (m, 3.03H) *, 1.26-1.23 (d, 1.17H)*.

unsaturated product from 80

*These integrations give respectively the yield of **80** (17%) and the corresponding unsaturated product (83%)

The mixture (1.27 g) is directly used and solved in dry ethanol (10 mL). Platinium oxide (87 mg) is added to the solution and the resulting mixture is stirred at atmospheric pressure in a hydrogen atmosphere for 30 min. The catalyst was removed by filtration and the filtrate was concentrated *in vacuum*. The crude residue was purified by flash column chromatography (SiO₂, *n*-pentane/diethyl ether = 4:1) afforded **80** (1.17 g, 91%) as a colourless oil.

IR (film): 2986 (w), 2959 (w), 2874 (w), 1575 (m), 1534 (s), 1451 (m), 1362 (s), 1215 (m), 1017 (s).

¹**H-NMR (CDCl₃, 400 MHz)**: δ (ppm) = 3.98 (s, 3H), 3.95 (s, 3H), 3.39 (sept, ³*J* = 7.1 Hz), 1.24 (d, ³*J* = 7.0 Hz, 6H).

¹³**C-NMR (CDCl₃, 150 MHz**): δ (ppm) = 169.5, 161.7, 152.2, 120.2, 55.1, 54.3, 30.5, 19.7 (2 carbons).

MS (EI, 70 ev): *m/z* (%) = 262 (13), 260 (13), 247 (95), 245 (100), 165 (8), 151 (6).

HRMS (EI) $C_9H_{13}BrN_2O_2$: calculated [M⁺]: 260.0160 found: 260.0171.

Synthesis of 4-benzyl-5-isopropyl-2,6-dimethoxypyrimidine (81)

Preparing according to **GP5** starting from a solution of 4-bromo-5-isopropyl-2,6dimethoxypyrimidine (**80**) (783 mg, 3.0 mmol) in dry THF (2 mL), *i*-PrMgCl·LiCl (1.0 M/THF, 3.15 mmol, 1.05 equiv), reaction conditions [5 h, 25 °C]. Benzyl bromide (1.03 g, 6 mmol, 2 equiv) followed by two drops of CuCN·2LiCl (1 M in THF), reaction conditions [20 h, 25 °C]. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 1:1) afforded **81** (709 mg, 87%) as a pale yellow oil.

¹**H-NMR (CDCl₃, 400 MHz)**: δ (ppm) = 7.22 (m, 5H), 4.06 (s, 2H), 3.95 (2 singulets, 6H), 3.16 (sept, ³*J* = 7.0 Hz, 1H), 1.11 (d, ³*J* = 7.0 Hz, 6H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 170.2, 166.3, 162.5, 138.8, 128.5 (2 carbons), 128.3 (2 carbons), 126.2, 117.8, 54.3, 53.4, 41.4, 26.7, 20.1 (2 carbons).

MS (EI, 70 ev): *m*/*z* (%) = 272 (80), 271 (100), 257 (93), 244 (29), 243 (23), 241 (16), 227 (10), 167 (14), 91 (14).

IR (film): 2956 (w), 2872 (w), 1562 (s), 1475 (w), 1451 (m), 1366 (s), 1217 (m), 1035 (w). HRMS (EI) $C_{16}H_{20}N_2O_{2:}$ calculated [M⁺]: 272.1525 found: 272.1534. Synthesis of 6-benzyl-5-isopropylpyrimidine-2,4(1*H*,3*H*)-dione (82)

A solution of 4-benzyl-5-isopropyl-2,6-dimethoxypyrimidine (**81**) (0.544 g, 2mmol) in MeOH (10 mL) with concentrated hydrochloric acid (30 mL) was heated under reflux for 4 h. After the reaction was complete, the solution was treated with activated charcoal and evaporated under reduced pressure. The residue was recrystallized from MeOH/ H_2O (4:1) to afford **82** (450 mg, 92%) as a white solid.

mp.: 103.1.-104.2.

IR (KBr): 2957 (w), 2869 (w), 1724 (s), 1640 (S), 1461 (m), 1411 (w), 1358 (w), 1193 (w).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 8.18 (s, 1H), 7.94 (s, 1H), 7.38-7.29 (m, 3H), 7.19 (dd, 2H), 3.82 (s, 2H), 3.03 (septuplet, ³*J* = 7.0 Hz, 1H), 1.30 (d, ³*J* = 7.0 Hz, 6H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 163.7, 150.8, 148.3, 137.0, 128.5 (2 carbons), 127.9 (2 carbons), 126.5, 113.8, 35.1, 26.3, 20.0 (2 carbons).

MS (EI, 70 ev): *m*/*z* (%) = 244 (72), 230 (17), 215 (5), 229 (100), 186 (14), 153 (7), 91 (17), 69 (7).

HRMS (EI) C₁₄H₁₆N₂O₂: calculated [M⁺]: 244.1212 found: 244.1225.

Synthesis of 6-benzyl-1-(ethoxymethyl)-5-isopropylpyrimidine-2,4(1H,3H)-dione, emivirine (61)

6-Benzyl-5-isopropylpyrimidine-2,4(1H,3H)-dione (**82**) (366 mg, 1.5 mmol) was suspended in dry acetonitrile (10 mL) under nitrogen and BSA (1.33 ml, 5.2 mmol) was added. The reaction mixture was stirred for 10 min at 25 °C and then cooled to -45 °C. Diethoxymethane

(218 mg, 3 mmol) in dry acetonitrile (1 mL) and TMS-triflate (350 mg, 1.6 mmol) in dry acetonitrile (1 mL) were added to the reaction mixture, which was slowly warmed to 25 °C for 3.5 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (10 mL) followed by evaporation under reduced pressure. Water (20 mL) was added followed by the extraction with diethyl acetate (3 \times 20 mL). The combined organic phases were dried and evaporated under reduce pressure. Purification by recristallization from EtOH/ H₂O (4:1) to afford **61** (407 mg, 90%) as a white solid.

mp.: 109.1-110.7 °C.

IR (**KBr**): 3188 (w), 2968 (w), 1710 (s), 1673 (s), 1445 (m), 1100 (m), 1025 (m), 719 (m).

¹**H-NMR** (**CDCl**₃, **400 MHz**): δ (ppm) = 9.2 (s, 1H), 7.34-7.27 (m, 3H), 7.11-7.12 (m, 2H), 5.12 (s, 2H), 4.18 (s, 2H), 3.62 (q, ³*J* = 6.9 Hz, 2H), 2.86 (septuplet, ³*J* = 6.9 Hz, 1H), 1.28 (d, ³*J* = 6.9 Hz, 6H), 1.18 (t, *J* = 6.9 Hz, 3H).

¹³C-NMR (CDCl₃, **150** MHz): δ (ppm) = 162.3, 151.9, 148.6, 135.3, 129.2, 127.2 (3 carbons), 127.2, 119.7, 72.9, 65.0, 33.4, 28.3, 20.4 (2 carbons), 15.0.

MS (EI, 70 ev): *m*/*z* (%) = 303 (19), 302 (60), 287 (16), 273 (39), 257 (100), 241 (80), 229 (64), 135 (34), 91 (21), 59 (29).

HRMS (EI) $C_{17}H_{22}N_2O_3$: calculated [M⁺]: 302.1630 found:[M⁺]: 302.1641.

Synthesis of 4-iodo-2,6-dimethoxypyrimidine (87b)

Prepared according to **GP6** starting from a solution of 2,4-dimethoxypyrimidine (**83a**) (10.0 mmol, 1.40 g, 1.0 equiv) dissolved in dry THF (5 mL), TMPMgCl·LiCl (11.0 mmol, 1.12 M, 9.8 mL, 1.1 equiv), reaction conditions [-40 °C, 12 h]. Iodine (11.0 mmol, 2.80 g, 1.1 equiv), reaction conditions [-30 °C, 1 h]. The reaction mixture was quenched with sat. aq. Na₂S₂O₃ solution at 0 °C, extracted with EtOAc (3 x 50 ml). Purification by flash chromatography (SiO₂, CH₂Cl₂) afforded **87b** (3.78 g, 87 %) as a colourless solid. **mp**.: 100.5-101.9 °C.

IR (film): $v (cm^{-1}) = 3108$ (m), 3020 (m), 2956 (m), 1542 (vs), 1458 (vs), 1392 (m), 1360 (vs), 1336 (s), 1232 (s), 1198 (s), 1116 (m), 1088 (s), 1006 (m), 972 (s), 926 (m), 830 (m), 808 (m), 776 (m).

¹H NMR (300 MHz, CDCl₃): δ (ppm): δ = 6.85 (s, 1 H), 3.96 (s, 3 H), 3.92 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm): δ = 170.6, 163.6, 127.8, 112.5, 55.3, 54.1.

MS (EI, 70 eV): m/z (%) = 265 (100) [M⁺], 264 (26), 235 (23), 139 (19), 124 (10), 82 (9).

HRMS C₆H₇IN₂O₂: calculated [M⁺]: 265.9552 found.265.9560

Synthesis of 1-(2,6-dimethoxypyrimidin-4-yl)-2,2-dimethylpropan-1-one (87c)

Prepared according to **GP6** starting from a solution of 2,4-dimethoxypyrimidine (**83a**) (5.0 mmol, 700 mg, 1.0 equiv) dissolved in dry THF (2.5 mL), TMPMgCl·LiCl (5.5 mmol, 1.12 M, 4.9 mL, 1.1 equiv), reaction conditions [-40 °C, 12 h]. Transmetalation with CuCN·2LiCl (5 mL, 1 equiv, 1.00 M in THF), reaction conditions [-40 °C, 15 min]. Pivaloyl chloride (900 mg, 1.5 equiv), reaction conditions [-40 °C, 5 h]. Purification by flash chromatography (SiO₂, *n*-pentane/ethyl acetate = 9:1) afforded **87c** (806 mg, 72%) as a colourless solid. **mp**.: 67.8-69.0 °C.

IR (film): $v (cm^{-1}) = 2962$ (w), 1689 (m), 1578 (s), 1560 (s), 1476 (s), 1459 (s), 1372 (s), 1344 (s), 1253 (w), 1196 (m), 1096 (m), 1030 (m), 978 (s), 939 (s), 857 (m), 772 (m), 679 (w).

¹H NMR (**300** MHz, CDCl₃) δ (ppm): 6.76 (s, 1H), 4.01 (s, 3H), 3.97 (s, 3H), 1.39 (s, 9H).

¹³C NMR (**75 MHz, CDCl₃**) δ (ppm): 205.1, 172.7, 164.7, 163.4, 101.1, 55.1, 54.2, 44.0, 26.9 (3 carbons).

MS (EI, 70 eV): m/z (%) = 224.1 [M⁺] (7), 209.0 (7), 140.0 (100), 82.0 (9), 57.0 (23), 41.1 (18).

HRMS $C_{11}H_{16}N_2O_3$: calculated [M⁺]: 224.1161 found. 224.1142

Synthesis of ethyl 4-(2,6-dimethoxypyrimidin-4-yl)benzoate (87d)

Prepared according to **GP6** starting from a solution of 2,4-dimethoxypyrimidine (**83a**) (5.0 mmol, 700 mg, 1.0 equiv) dissolved in dry THF (2.5 mL), TMPMgCl·LiCl (5.5 mmol, 1.12 M, 4.9 mL, 1.1 equiv), reaction conditions [-40 °C, 12 h]. Transmetalation with ZnCl₂ (5 mL, 1 equiv, 1.00 M in THF), reaction conditions [-40 to 25 °C, 30 min]. Ethyl iodobenzoate (1.93 mg, 7 mmol, 1.4 equiv). In another flame-dried round bottom flask, Pd(dba)₂ (135 mg, 5 mol%) and P(*o*-furyl)₃ (110 mg, 10 mol%) were dissolved in dry THF (2 mL) and stirred for 5 min. The resulting solution was then transferred to the zinc reagent flask, reaction conditions [reflux, 4 h]. Purification by flash chromatography (SiO₂, *n*-pentane/ethyl acetate = 3:2) afforded **87d** (1.080 g, 75%) as a colourless solid.

 $mp. = 116.0-118.2 \ ^{\circ}C$

IR (neat): $v (cm^{-1}) = 1714 (m)$, 1597 (m), 1578 (m), 1559 (s), 1467 (m), 1350 (s), 1274 (s), 1217 (m), 1104 (s), 1013 (m), 825 (s), 771 (s), 703 (s).

¹**H** NMR (CDCl₃, 300 MHz): δ (ppm) = 8.11 (m, 4H), 6.82 (s, 1H), 4.41 (q, *J* = 7.50 Hz, 2H), 4.09 (s, 3H), 4.02 (s, 3H), 1.41 (t, *J* = 7.05, 3H).

¹³C NMR (CDCl₃, **75** MHz): δ (ppm) = 172.7, 166.1, 165.6, 164.8, 140.7, 132.2, 129.9 (2 carbons), 126.9 (2 carbons), 98.0, 61.2, 54.9, 54.1, 14.3 ppm.

MS (EI, 70 eV): m/z (%) = 288 (M⁺, 100), 258 (49), 243 (30), 143 (10), 99 (10).

HRMS (EI) $C_{15}H_{16}N_2O_4$ calculated [M⁺]: 288.1110 found: 288.1097.

Synthesis of ethyl 2,6-dimethoxypyrimidine-4-carboxylate (87e)

Prepared according to **GP6** starting from a solution of 2,4-dimethoxypyrimidine (**83a**) (5.0 mmol, 700 mg, 1.0 equiv) dissolved in dry THF (2.5 mL), TMPMgCl·LiCl (5.5 mmol, 1.12

M, 4.9 mL, 1.1 equiv), reaction conditions [-40 °C, 12 h]. Ethyl cyanoformate (10 mmol, 990 mg, 2.0 equiv), reaction conditions [-60 °C, 10 h]. Purification by flash chromatography (SiO₂, *n*-pentane/ethyl acetate = 4:1) afforded **87e** (752 mg, 71%) as a colourless solid. **mp**.: 67.2-68.9 °C

IR (**ATR**): 3104 (w), 2988 (w), 2956 (w), 2940 (w), 2868 (w), 1720 (m), 1600 (s), 1564 (s), 1484 (s), 1404 (s), 1352 (vs), 1264 (s), 1200 (s), 1100 (s), 1028 (vs), 880 (s), 776 (vs).

¹**H NMR** (**300 MHz, CDCl₃**): δ (ppm): 7.03 (s, 1H), 4.44-4.37 (q, 2H, *J* = 7.0 Hz), 4.04 (s, 3H), 4.00 (s, 3 H), 1.41-1.37 (t, 3H, *J* = 7.0 Hz).

¹³C NMR (**75 MHz, CDCl₃**): δ (ppm): 172.8, 165.9, 163.9, 157.2, 103.1, 62.2, 55.1, 54.1, 14.1.

MS (**EI**, **70** eV): *m/z* (%) = 212 (21) [M⁺], 211 (10), 182 (15), 167 (11), 140 (100), 139 (13), 125 (31), 82 (9).

HRMS (EI) C₉H₁₂N₂O₄: calculated [M⁺]: 212.0797 found: 212.0794

Synthesis of 4,5-diiodo-2,6-dimethoxypyrimidine (89a)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with TMPMgCl·LiCl (**18a**, 11.0 mmol, 1.12 M, 9.8 mL, 1.1 equiv) and 2,4-dimethoxypyrimidine (**83a**) (10.0 mmol, 1.40 g, 1.0 equiv) dissolved in dry THF (10 mL) was added dropwise at -40 °C. The reaction mixture was stirred for 12 h at this temperature and the completion of the deprotonation was checked by GC-analysis of reaction aliquots quenched with iodine using decane as internal standard. Iodine (11.0 mmol, 2.80 g, 1.2 equiv) was added and the reaction mixture was stirred for 2 h at -30 °C. The mixture was warmed to -30 °C and TMPMgCl·LiCl (**18a**, 15.0 mmol, 1.12 M, 13.4 mL, 1.5 equiv) was added dropwise. The mixture was warmed to 0 °C and stirred for 2 h. Iodine (20 mmol, 5.14 g, 2 equiv) was added at 25 °C and the mixture was stirred for 3 h. The reaction mixture was quenched with sat. aq. Na₂S₂O₃ (60 mL) solution at 0 °C, extracted with EtOAc (3 x 50 ml), the organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuum*.

Purification by flash chromatography (SiO₂, CH₂Cl₂) afforded **89a** (3.74 g, 87%) as a colourless solid.

mp.: 144.1-145.4 °C.

IR (**ATR**): v (cm⁻¹) = 2996 (m), 2948 (m), 2864 (m), 1516 (vs), 1476 (s), 1450 (s), 1376 (s), 1336 (s), 1292 (s), 1222 (m), 1196 (s), 1102 (m), 1020 (m), 996 (s), 930 (m), 806 (m), 772 (m).

¹**H-NMR (CDCl₃, 300 MHz)**: δ (ppm) = 3.98 (s, 3 H), 3.96 (s, 3 H).

¹³**C-NMR (CDCl₃, 75 MHz)**: δ (ppm) = 168.9, 163.6, 141.8, 84.1, 55.8, 55.6

MS (EI, 70 eV): m/z (%) = 391 (100) [M⁺], 390 (23), 361 (16), 249 (20), 192 (10).

HRMS (EI) $(C_6H_6I_2N_2O_2)$: calculated $[M^+]$: 391.8519 found: 391.8498

Synthesis of (4-fluorophenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl)methanone (89b)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with TMPMgCl·LiCl (**18a**, 1.1 mmol, 1.16 M, 0.96 mL, 1.1 equiv) and 4-iodo-2,6-dimethoxypyrimidine (**87b**) (1.0 mmol, 266 mg, 1.0 equiv) dissolved in dry THF (1.0 mL) was added dropwise at 0 °C. The reaction mixture was stirred for 1 h at this temperature and the completion of the deprotonation was checked by GC-analysis of reaction aliquots quenched with iodine using decane as internal standard. CuCN·2LiCl (1 mL, 1 equiv, 1.00 M in THF) was added at -20 °C and stirred for 15 min. Thereafter, 4-fluorobenzoyl chloride (190 mg, 1.2 mmol, 1.2 equiv) was added at -20 °C, and the reaction mixture was warmed to 25 °C for 5 h. The resulting mixture was quenched with sat. aq. NH₄Cl solution, extracted with EtOAc (3 x 10 ml), the organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuum*. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether, 1:1) afforded **89b** (325 mg, 84%) as a colourless solid.

mp. = 151.9-157.1 °C

IR (neat): $v (cm^{-1}) = 1669 (m), 1595 (m), 1566 (s), 1525 (s), 1506 (m), 1475 (m), 1455 (m), 1381 (s), 1364 (s), 1312 (s), 1255 (s), 1245 (s), 1225 (s), 1158 (s), 1076 (s), 1015 (s), 920 (s).$

¹**H NMR (CDCl₃, 300 MHz)**: δ (ppm) = 7.83-7.77 (m, 2H), 7.12-7.05 (m, 2H), 3.98 (s, 3H), 3.83 (s, 3H) ppm.

¹³C NMR (CDCl₃, **75** MHz): δ (ppm) = 191.4, 168.1, 167.2, 164.7, 163.5, 132.5, 132.1, 126.6, 120.1, 116.3, 116.1, 55.7, 54.8 ppm.

MS (EI, 70 eV), *m/z* (%): 388 (M⁺, 66), 358 (5), 293 (31), 261 (10), 136 (25), 123 (100), 95 (80), 75 (24).

HRMS (EI) $C_{13}H_{10}FIN_2O_3$: calculated [M⁺]:387.9720 found: 387.9722.

Synthesis of ethyl 5-benzoyl-2,6-dimethoxypyrimidine-4-carboxylate (89c)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with TMPMgCl·LiCl (**18a**, 1.1 mmol, 1.16 M, 0.96 mL, 1.1 equiv) and ethyl 2,6dimethoxypyrimidine-4-carboxylate (**87e**) (1.0 mmol, 212 mg, 1.0 equiv) dissolved in dry THF (1.0 mL) was added dropwise at -40 °C. The reaction mixture was stirred for 2 h at this temperature and the completion of the deprotonation was checked by GC-analysis of reaction aliquots quenched with iodine using decane as internal standard. CuCN·2LiCl (1 mL, 1 equiv, 1.00 M in THF) was added at -40 °C and stirred for 1 h. Thereafter, benzoyl chloride (210 mg, 1.5 mmol, 1.5 equiv) was added at -40 °C, and the reaction mixture was warmed to 25 °C for 12 h. The resulting mixture was quenched with sat. aq. NH₄Cl solution, extracted with EtOAc (3 x 10 ml), the organic layer was washed with brine, dried over Na₂SO₄ and concentrated *in vacuum*. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether, 1:1) afforded **89c** (246 mg, 78%) as a colourless solid.

mp. = 98.4-100.4 °C

IR (neat): $v (cm^{-1}) = 3067$ (w), 2962 (w), 2925 (w), 1727 (s), 1668 (s), 1571 (s), 1556 (s), 1463 (m), 1447 (m), 1380 (s),1254 (s), 1229 (s), 1176 (m), 1082 (s), 1035 (s), 929 (m), 903 (s), 776 (s), 691 (s).

¹**H NMR (CDCl₃, 300 MHz**): δ (ppm) = 7.80-7.77 (m, 2H), 7.60-7.54 (m, 1H), 7.47-7.41 (m, 2H), 4.21-4.13 (q, 2H, *J* = 7.3 Hz), 4.11 (s, 3H),3.95 (s, 3H), 1.11-1.06 (t, 3H, *J* = 7.1 Hz).

¹³C NMR (CDCl₃, **75** MHz): δ (ppm) = 192.0, 169.9, 165.2, 163.3, 155.3, 137.0, 133.6, 128.9, 128.9, 128.7, 128.7, 116.1, 62.6, 55.5, 55.0, 13.5. MS (EI, **70** eV): m/z (%): 316 (M⁺, 45), 272 (67), 243 (55), 239 (54), 215 (19), 211 (27), 186 (12), 167 (62), 139 (24), 118 (12), 109 (12), 105 (100), 82 (17), 77 (83), 51 (14). HRMS (EI): C₁₆H₁₆N₂O₅ calculated [M⁺]: 316.1059 found: 316.1036.

Synthesis of 2,4-dimethoxy-7H-pyrrolo[2,3-d]pyrimidine (90)

To a stirred solution of KH (126 mg, 3 mmol, 3 equiv) in NMP (6 mL), was added at 25 °C, a solution of **92** (179 mg, 1 mmol, 1 equiv) in NMP (2 mL). The resulting mixture was vigorously stirred at 60 °C for 8 h and quenched with water (2 mL). The aqueous layer was extracted CH₂Cl₂ (3 x 80 mL) and Et₂O (2 x 50 mL) and the combined organic layer were washed with brine (2 x 80 mL) and dried (MgSO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, *n*-pentane/Et₂O = 9:1) afforded **90** (144 mg, 81%) as a colorless solid.

mp.: 202.4-204.8 °C.

IR (Diamond ATR): $v (cm^{-1}) = 3212 (m), 3156 (m), 3004 (m), 2944 (m), 1604 (s), 1584 (s), 1472 (s), 1404 (s), 1316 (s), 1216 (s), 1192 (s), 1152 (s), 1088 (vs), 1076 (vs), 1052 (s), 944 (s), 896 (s), 744 (vs), 724 (s).$

¹**H** NMR (400 MHz, DMSO-d₆): δ (ppm) = 11.71 (s, 1H), 7.08 (dd, *Jcis* = 3.0 Hz, 1H), 6.34 (dd, *Jcis* = 3.0 Hz, 1H), 3.97 (s, 3H), 3.87 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 163.4, 161.1, 153.7, 121.8, 99.6, 98.1, 54.0, 53.2.

MS (70 eV, EI): m/z (%) = 179 (100) [M]⁺, 150 (15), 134 (21), 108 (5), 78 (5).

HRMS (EI) $C_8H_9N_3O_2$: calculated [M]⁺: 179.0695 found: 179.0690.

A dry and argon flushed 50 mL flask, equipped with a magnetic stirring bar and a septum, was charged with a solution of commercially available 4-chloro-2,6-dimethoxypyrimidine (70a) (6.16 g, 28 mmol, 1.4 equiv) in dry THF (15 mL). TMPMgCl·LiCl (18a, 27.5 mL, 1.09 M in THF, 30 mmol, 1.5 equiv) was added dropwise at 25 °C. The reaction mixture was stirred at this same temperature for 1 h. The completion of the metalation was checked by GC-analysis. At -20 °C, ZnCl₂ (30 mL, 1 m in THF, 1.5 equiv) was then added to the freshly prepared magnesium reagent and allowed to warm to 25 °C for 1 h. Iodoethynyl-trimethylsilane⁴ (3.1 mL, 20 mmol, 1 equiv) was added to the reaction mixture at 25 °C. A round bottom flask was charged with Pd(dba)₂ (230 mg, 2 mol%), P(o-furyl)₃ (185 mg, 4 mol%) and THF (5 mL). The mixture was stirred at 25 °C for 10 min then transferred to the reaction flask which was charged with the organozinc solution. The resulting mixture was stirred 2 h at 40 °C, cooled to 25 °C, and quenched with sat. NH₄Cl solution (40 mL). The aqueous layer was extracted with AcOEt (3 x 40 mL). The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuum. The solvent was evaporated and the product was purified by flash chromatography (SiO₂, *n*-pentane/Et₂O =7:3). 4-Chloro-2,6-dimethoxy-5trimethylsilanyl-ethynyl-pyrimidine (91) was afforded (3.31 g, 64 %) as a pale yellowish solid.

mp.: 62.4-64.2 °C.

IR (Diamond ATR): v (cm⁻¹) = 3024 (vw), 2957 (w), 2156 (m), 1584 (m), 1528 (s), 1473 (s), 1456 (s), 1379 (s), 1328 (s), 1247 (s), 1215 (m), 1184 (m), 1084 (s), 1028 (s), 944 (m), 840 (vs), 788 (s), 758 (s), 639 (m).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 4.03 (s, 3H), 3.99 (s, 3H), 0.26 (s, 9H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 171.7, 163.1, 162.3, 106.0, 99.1, 94.1, 55.6, 55.3, -0.2 (3 CH₃ of TMS group).

MS (70 eV, EI): m/z (%) = 245 (21), 236 (34) [M]⁺, 221 (100), 191 (28), 71 (10), 57 (13). HRMS (EI) C₁₁H₁₆N₂O₂Si: calculated [M]⁺: 236.0981 found: 236.0977.

Synthesis of 5-ethynyl-2,6-dimethoxy-pyrimidin-4-ylamine (92) starting from 91

A solution of **91** (135 mg, 0.5 mmol) dissolved in NH₃ sat. in MeOH (3 mL, 3 M in MeOH, 6 equiv) was introduced in a 25cm³ autoclave and was heated 2 days at 90 °C. The consumption of the starting material was checked by TLC. The solvent was evaporated under vacuum. The crude oily residue was purified by flash chromatography (SiO₂) using pentane/Et₂O (95:5, with NEt₃ 0.5 %). A colourless solid was obtained (56 mg, 31%) afforded to 5-ethynyl-2,6-dimethoxy-pyrimidin-4-ylamine (**92**). Analytic data matched data from the preparation of **9a** starting from **6a**.

mp.: 166.5-168.4 °C.

IR (Diamond ATR): v (cm⁻¹) = 2956 (w), 2900 (w), 2153 (w), 1568 (m), 1535 (s), 1364 (vs), 1247 (s), 1109 (s), 1086 (s), 837 (broad vs), 680 (m).

¹**H** NMR (400 MHz, DMSO-d₆): δ (ppm) = 6.86 (broad s, NH₂), 4.33 (s, 1H), 3.83 (s, 3H), 3.79 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 171.1, 166.7, 163.2, 89.0, 76.2, 75.1, 54.0, 53.6. MS (70 eV, EI): *m*/*z* (%) = 179 (79) [M]⁺, 149 (26), 121 (23), 111 (35), 97 (51), 83 (50), 71 (74), 57 (100), 43 (75).

HRMS (EI) $C_8H_9N_3O_2$: calculated [M]⁺: 179.0695 found: 179.0699.

4. Amination of DNA and RNA units via cuprated pyrimidines and purines intermediates.

4.1 <u>General procedure for the amination via magnesiation using Br/Mg exchange</u> reaction (GP7):

A dry and argon-flushed 50 mL flask, equipped with a magnetic stirrer and a septum, was charged with the aromatic or heteroaromatic halide (1.0 mmol) in THF (1 mL). i-PrMgCl·LiCl (13) or *i*-PrMgCl (Solution in THF, 1.1 equiv) was added dropwise and stirred at the indicated temperature for the indicated time [reaction conditions: temperature, time] to afford the corresponding Grignard reagent. The completion of the halogen/Mg-exchange was checked by GC analysis of reaction aliquots quenched with sat. aqueous NH₄Cl solution using decane as internal standard. This reagent was added dropwise to a solution of CuCl·2LiCl (1.0 m in THF; 1.2 mL, 1.2 mmol, 1.2 equiv) and the indicated ligand (bis[2-(N,Ndimethylamino)ethyl] ether (192 mg, 1.2 mmol, 1.2 equiv), or NEt₃ (121 mg, 1.2 mmol, 1.2 equiv) at -50 °C and the mixture was stirred for 0.7 h leading to the cuprated reagent. To the so formed aryl copper reagent, the indicated lithium amide (2.0 mmol, 2 equiv) was added dropwise and the mixture was further stirred for 1 h at -60 °C. The reaction mixture was cooled to -78 °C, then chloranil (22, 298 mg, 1.2 mmol), in dry THF (7 mL), was added slowly over a period of 1 h. The reaction mixture was stirred for 12 h. Diethyl ether (10 mL) was added to the crude reaction mixture and it was filtered through Celite, washed with Et₂O thoroughly, and the liquors washed with 2 x 10 mL portions of NH₄OH (aq., 2.0 m) and extracted with Et₂O. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuum*. The crude residue was purified by column chromatography (SiO₂ or Al₂O₃ neutral deactivated) or by preparative TLC (SiO_2).

4.2 General procedure for the amination via magnesiation using TMPMg·LiCl (GP8):

A dry and argon-flushed 50 mL flask, equipped with a magnetic stirrer and a septum, was charged with the aromatic or heteroaromatic halide (1.0 mmol) in THF (1 mL). TMPMgCl·LiCl (**18a**, solution in THF, 1.1 equiv) was added dropwise and stirred at the indicated temperature for the indicated time [reaction conditions: temperature, time] to afford the corresponding Grignard reagent. The completion of the metalation was checked by GC analysis of reaction aliquots quenched iodine using decane as internal standard. This reagent was added dropwise to a solution of CuCl·2LiCl (1.0 m in THF; 1.2 mL, 1.2 mmol, 1.2 equiv) and the indicated ligand (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (192 mg, 1.2 mmol, 1.2

equiv), or NEt₃ (121 mg, 1.2 mmol, 1.2 equiv) at -50 °C and the mixture was stirred for 0.7 h leading to the cuprated reagent. To the so formed aryl copper reagent, the indicated lithium amide (2.0 mmol, 2 equiv) was added dropwise and the mixture was further stirred for 1 h at - 60 °C. The reaction mixture was cooled to -78 °C, then chloranil (**22**, 298 mg, 1.2 mmol), in dry THF (7 mL), was added slowly over a period of 1 h. The reaction mixture was stirred for 12 h. Diethyl ether (10 mL) was added to the crude reaction mixture and it was filtered through *Celite*, washed with Et₂O thoroughly, and the liquors washed with 2 x 10 mL portions of NH₄OH (aq., 2.0 m) and extracted with Et₂O. The combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuum*. The crude residue was purified by column chromatography (SiO₂ or Al₂O₃ neutral deactivated) or by preparative TLC (SiO₂).

4.3 <u>Typical procedure (TP1)</u>: Preparation of the *N*-lithium morpholide (96b).

In a dry and argon flushed *Schlenk*-flask equipped with a magnetic stirrer and a septum, morpholine (174 mg, 2 mmol) was dissolved in 4 mL of dry THF. *n*-BuLi (2 mmol, solution in hexane) was added dropwise at -40 $^{\circ}$ C and stirred for 30 min and then 5 min at 20 $^{\circ}$ C.

4.4 <u>Typical procedure (TP2): Preparation of the lithium silinamide 96c.</u>

In a dry and argon flushed *Schlenk*-flask equipped with a magnetic stirrer and a septum, 5aminoindane (266 mg, 2 mmol) was dissolved in dry THF (1 mL) and cooled to -50 °C. MeLi (1.70 M in Et₂O; 1.21 mL, 2.05 mmol) was added dropwise and the mixture was stirred for 10 min. Then, TBDMSCl (315 mg, 2.1 mmol), dissolved in dry THF (1 mL), was added dropwise. The reaction mixture was allowed to reach 25 °C and was further stirred for 30 min. The solvent and volatiles were removed under high vacuum for 1 h. The residue was redissolved in dry THF (1 mL) and was again cooled to -50 °C. MeLi (1.70 M in Et₂O; 1.21 mL, 2.05 mmol) was added dropwise and the mixture was stirred for 10 min, affording the lithium silanamide **8c**.

4.5 Starting material synthesis

Synthesis of 2,4-dimethoxy-5-bromo-pyrimidine (starting material of compounds 83b and 94)

Commercially available 2,4-dimethoxpyrimidine (**83a**) (4.20 g, 30 mmol, 1.0 equiv) was slurried with NaHCO₃ (4.0 g) in 90 mL of 50% aq. MeOH. Bromine (8.63 g, 2.70 mL, 1.8 equiv) was added dropwise with an efficient stirring over a period of 1 h. After 30 min of bromine addition, an additional 7.0 g of sodium bicarbonate was added and the mixture was stirred at 25 °C for a total of 2 h. The white precipitated obtained was collected by filtration, washed with MeOH (1 x 20 mL) and water (2 x 30 mL). The obtained solid was dried under reduced pressure. 2,4-Dimethoxy-5-bromopyrimidine was afforded as colourless crystalline plates (5.51 g, 84%).

mp.: 68.0-69.2 °C.

IR (**ATR**): v (cm⁻¹) = 3024 (m), 2958 (m), 1556 (vs), 1486 (m), 1442 (m), 1394 (s), 1366 (s), 14 (m), 1272 (m), 1232 (m), 1192 (m), 1094 (s), 1032 (m), 1000 (s), 974 (m), 932 (m), 0 (m), 762 (m), 662 (w).

¹**H-NMR (CDCl₃, 600 MHz)**: δ (ppm) = 8.29 (s, 1 H), 4.04 (s, 3 H), 3.97 (s, 3 H).

¹³C-NMR (CDCl₃, 150 MHz): δ (ppm) = 166.8, 164.3, 159.2, 96.1, 55.3, 54.9.

MS (**EI**, **70** eV): m/z (%) = 219 (100) [M⁺, ⁸¹Br], 219 (65), 218 (79), 217 (78) [M⁺], 204 (34), 202 (27), 190 (20), 189 (76), 188 (24), 187 (81), 174 (28), 172 (25), 109 (16), 82 (11), 69 (12).

HRMS (EI) $C_6H_7^{79}BrN_2O_2$: calculated [M⁺, ⁸¹Br]: 217.9691 found: 219.9650

A dry and argon flushed 50 mL flask, equipped with a magnetic stirring bar and a septum, was charged with a solution of 5-bromo-4-chloro-2,6-dimethoxypyrimidine (6.57 g, 37 mmol, 1.4 equiv) in dry THF (25 mL). *i*-PrMgCl·LiCl (13, 38 mL, 1.05 M in THF, 40 mmol, 1.5 equiv) was added dropwise at -20 °C. The reaction mixture was stirred at this temperature for 2 h. The completion of the Br/Mg exchange was checked by GC-analysis of quenching reaction aliquots. At 25 °C, ZnCl₂ (30 mL, 1 m in THF, 1.5 equiv) was then added to the freshly prepared magnesium reagent and stirred for 1 h. Iodoethynyl-trimethylsilane¹¹⁸ (4.2 mL, 27 mmol, 1 equiv) was added to the reaction mixture at 25 °C. A round bottom flask was charged with Pd(dba)₂ (342 mg, 2 mol%), P(o-furyl)₃ (280 mg, 4 mol%) and THF (6 mL). The mixture was stirred at 25 °C for 10 min then transferred to the reaction flask which was charged with the organozinc solution. The resulting mixture was stirred 12 h at 25 °C, and quenched with sat. NH₄Cl solution (60 mL). The aqueous layer was extracted with AcOEt (3 x 60 mL). The combined organic extracts were dried with Na₂SO₄ and concentrated in *vacuum*. Purification by flash chromatography (SiO₂, *n*-pentane/AcOEt = 95:5) afforded 2,6dimethoxy-5-trimethylsilanylethynyl-pyrimidine (94) (5.54 g, 76 %) as a colourless solid. **mp**.: 51.5-53.0 °C.

IR (Diamond ATR): v (cm⁻¹) = 2956 (m), 2160 (m), 1600 (m), 1544 (s), 1472 (s), 1380 (s), 1248 (s), 1215 (m), 1183 (m), 1083 (m), 1030 (s), 943 (w), 829 (vs), 787 (s), 759 (s).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.31 (s, 1H), 4.02 (s, 3H), 3.98 (s, 3H), 0.24 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.7, 164.0, 162.0, 101.2, 100.0, 96.1, 55.1, 54.5, -0.1(3 CH₃ of TMS group).

MS (**70** eV, EI): m/z (%) = 270 (27) [M]⁺, 255 (100), 240 (59), 225 (15), 168 (6), 43 (9). **HRMS** (EI) C₁₁H₁₅ClN₂O₂Si: calculated [M]⁺: 270.0591 found: 270.0581.

Synthesis of 2,4-dimethoxy-5-methyl-pyrimidine (83b)

A dry and argon flushed flask, equipped with a magnetic stirring bar and a septum, was charged with 5-bromo-2,6-dimethoxypyrimidine (2.74 g, 12.5 mmol, 1 equiv.) dissolved in dry THF (10 mL). *i*-PrMgCl·LiCl (**13**, 11 mL, 1.25 M in THF, 1.1 equiv) was added dropwise at -20°C. CuCN·2LiCl⁵⁷ (12.5 mL, 1.0 m in THF, 1.0 equiv) was added dropwise to the corresponding Grignard reagent at -30 °C and the mixture was stirred for 30 min. Methyl iodide (2.3 g, 1.3 equiv) was added dropwise and the reaction mixture allowed to warm to 25 °C and stirred for 12 h. The reaction was quenched with sat aq. NH₄Cl (20 mL) and extracted with EtOAc (5x 20 ml). The combined organic layers were dried (MgSO₄), filtered, and concentrated under reduced pressure. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 9:1) afforded **83b** (1.69 g, 88%) as a colourless crystalline solid. **mp**.: 61.9-63.2 °C.

IR (Diamond ATR): $v (cm^{-1}) = 3020 (w)$, 2952 (w), 1604 (s), 1572 (s), 1464 (s), 1444 (vs), 1388 (vs), 1348 (s), 1288 (s), 1200 (vs), 1068 (s), 1016 (vs), 1004 (vs), 784 (vs). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.90 (s, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 1.97 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 169.5, 163.9, 156.7, 110.9, 54.4, 53.6, 11.7. MS (70 eV, EI): m/z (%) = 154 (100)[M⁺], 139 (32), 124 (59), 109 (24), 96 (6), 82 (5). HRMS (EI) C₇H₁₀N₂O_{2:} calculated [M]⁺: 154.0742 found: 154.0747.

Synthesis of 5-bromo-2-iodo-pyrimidine

This compound was prepared following the literature procedure.¹⁵³

Synthesis of 9-benzyl-6-chloro-9H-purine (102)

¹⁵³ F. Lutz, T. Kawasaki, K., Soai. *Tetrahedron Asymmetry* **2006**, *17*, 486.

This compound was prepared from commercially available 6-chloropurine using the literature procedure.¹⁵⁴ The analytic data were found to match literature data.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.76 (s, 1H), 8.10 (s, 1H), 7.39-7.27 (m, 5H), 5.44 (s, 2H).

Synthesis of 6-iodo-9-methyl-9H-purine (103)

This compound was prepared from 6-iodopurine¹⁵⁵ by the method used for the preparation of 6-chloro-9-methyl-9H-purine.¹⁵⁶

6-Iodo-9-methyl-9H-purine **103** was afforded as a pale yellowish solid in 55% yield. **mp**.: 210.0-212.2 °C.

IR (Diamond ATR): $v (cm^{-1}) = 3064$ (w), 2952 (w), 1668 (w), 1552 (s), 1436 (s), 1388 (m), 1324 (s), 1228 (s), 1132 (s), 904 (s), 836 (s), 732 (s), 636 (vs).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.59 (s, 1H), 8.59 (s, 1H), 3.81 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 151.6, 148.3, 147.0, 137.8, 122.2, 30.0.

MS (**70** eV, EI): *m/z* (%) = 260 (100), 133 (44), 16 (17), 79 (24), 52 (9).

HRMS (EI) $C_6H_5IN_4$: calculated [M]⁺: 259.9559 found: 259.9563.

Synthesis of 6-chloro-2-iodo-9-isopropyl-9H-purine (108)

This compound was prepared following the literature procedure.¹⁵⁷

¹⁵⁴ Kanie, K.; Mizuno, K.; Kuroboshi, M.; Hiyama, T. Bull. Chem. Soc. Jpn. **1998**, *71*, 1973.

¹⁵⁵ 6-Iodopurine was prepared according to literature procedure: Elion, G. B.; Hitchings, G. H. J. Am. Chem. Soc. **1956**,78,3508.

¹⁵⁶ K. Bok Young, A. Joong Bok, L. Hong Woo, K. Sung Kwon, L. Jung Hwa,; S. Jae Soo, A. Soon Kil, H. Chung Il, Y. Seung Soo. *Eur. J. Med. Chem.* **2004**, *39*, 433.

Synthesis of 9-(2,2-dimethyl-6-trityloxymethyl-tetrahydro-furo[3,4 d][1,3]dioxol-4-yl)-6iodo-9H-purine (111)

This compound was prepared following the literature procedure.¹⁵⁸

Synthesis of 2-chloro-6-iodo-9-isopropyl-9H-purine (114)

This compound was prepared from 2-chloro-6-iodo-9H-purine¹⁵⁵by the Mitsonobu reaction procedure described in the literature.¹⁵⁹ Purification by flash chromatography (SiO₂, *n*-pentane/acetonitrile = 1:1) afforded **114** (8.55 g, 83%) as a colorless solid.

mp.: 148.8-151.5 °C.

IR (**Diamond ATR**): v (cm⁻¹) = 3112 (w), 2980 (w), 2936 (w), 1572 (m), 1560 (w), 1540 (s), 1352 (s), 1208 (s), 1148 (s), 1136 (s), 936 (s), 836 (vs), 764 (s), 636 (s).

¹**H NMR (400 MHz, DMSO-d**₆): δ (ppm) = 8.79 (s, 1H), 4.77 (sept, J = 6.9 Hz), 1.53 (d, J = 6.9 Hz, 6H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 150.4, 148.8, 145.7, 138.0, 123.4, 47.8, 21.7, 21.7.

MS (70 eV, EI): m/z (%) = 324 (25) [³⁷Cl], 322 (100) [³⁵Cl], 279 (32), 195 (10), 159 (13), 153 (17), 134 (7).

HRMS (EI) $C_8H_8^{35}Cl^{127}IN_4$: calculated [M]⁺: 321.9482 found: 321.9486.

¹⁵⁷ M. Legraverend, O. Ludwig, E. Bisagni, S. Leclerc, L. Meijer, N. Giocanti, R. Sadri, V. Favaudon. *Bioorg. Med. Chem.* **1999**, *7*, 1281.

¹⁵⁸ M. Hocek, A. Holy. *Collect.Czech. Chem. Commun.* **1999**, *64*, 229.

¹⁵⁹ A. Toyota, N. Katagari, C. Kanebo. Synth. Commun. 1993, 23, 1295.

4.6 Preparation of aminated pyrimidines

Synthesis of 5-ethynyl-2,6-dimethoxy-pyrimidin-4-ylamine (92) starting from 94

According to **GP8**, starting from **94** (236 mg, 1 mmol, 1 equiv) dissolved in 1 mL dry THF; TMPMg·LiCl (0.91 mL, 1.1 equiv, 1.20 M in THF)[reaction conditions: -10 °C, 3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **95**; LiHMDS (2 mL, 2 mmol, 1 M in THF/Ethylbenzene); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. The crude material obtained was redissolved in THF (3 mL) before TBAF (1.0 m in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C for 2 h, poured over EtOAc (10 mL) and washed with deionised water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 9:1) afforded **92** (127 mg, 71 %) as a colourless solid. The analytical data matched the data for the preparation of **92** starting from **91**.

Synthesis of 4-(2,6-dimethoxy-pyrimidin-4-yl)-morpholine (98a)

Prepared according to **GP8** from 2,4-dimethoxypyrimidine (**83a**) (280 mg, 2 mmol, 1 equiv), and TMPMgCl·LiCl (1.8 mL, 1.23 M in THF, 1.1 equiv) [reaction conditions: -40 °C, 12 h]; CuCl·2LiCl (2.4 mL, 1.2 equiv) and *bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (284 mg, 2.4 mmol, 1.2 equiv) to afford the corresponding cuprated reagent **97a**; *N*-lithium morpholide (**96b**, 4 mmol, 2 equiv); chloranil (595 mg, 1.2 equiv) in 14 mL of THF. Purification by flash chromatography (SiO₂, pentane/ Et₂O = 4:1) afforded **98a** (341 mg, 76%) as a grey solid.

mp.: 93.9-95.7 °C.

IR (**Diamond ATR**): v (cm⁻¹) = 2984 (w), 2972 (w), 2940 (w), 2876 (w), 1596 (vs), 1568 (vs), 1460 (s), 1368 (vs), 1264 (s), 1220 (s), 1200 (vs), 1100 (vs), 1036 (vs), 1000 (s), 868 (s), 788 (vs).

¹**H** NMR (**300** MHz, CDCl₃): δ (ppm) = 5.46 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.73 (t, *J* = 4.5 Hz, 4H), 3.53 (t, *J* = 5.0 Hz, 4H).

¹³C NMR (**75 MHz, CDCl**₃): δ (ppm) = 172.5, 165.3, 164.8, 79.2, 66.4, 66.4, 54.2, 53.6, 44.6, 44.6.

MS (70 eV, EI): *m*/*z* (%) = 225 (66) [M]⁺, 194 (84), 180 (51), 168 (100), 140 (49), 125 (23), 86 (7), 82 (8).

HRMS (EI): C₁₀H₁₅N₃O: calculated [M]⁺: 225.1113, found: 225.1101.

Synthesis of 4-(2,6-dimethoxy-5-methyl-pyrimidin-4-yl)-morpholine (98b)

Prepared according to **GP8** from 2,4-dimethoxy-5-methyl-pyrimidine **83b** (175 mg, 1.0 mmol) in dry THF (0.5 mL), and TMPMgCl·LiCl (1.20 m in THF; 0.92 mL, 1.1 mmol) [reaction conditions: $-5 \,^{\circ}$ C, 3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97b**; *N*-lithium morpholide (**96b**) (2 mmol, preparation described in **TP1**); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, pentane/Et₂O = 9:1) afforded **98b** (171 mg, 72 %) as a colourless oil.

IR (Diamond ATR): $v (cm^{-1}) = 2956$ (w), 2924 (w), 2852 (w), 1584 (s), 1564 (vs), 1456 (s), 1372 (vs), 1360 (vs), 1260 (m), 1212 (s), 1188 (m), 1148 (s), 1112 (s), 1084 (m), 1044 (s), 988 (m), 860 (w), 792 (m).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 3.92 (s, 3H), 3.89 (s, 3H), 3.77 (t, *J* = 4.7 Hz, 4H), 3.31 (t, *J* = 4.8 Hz, 4H), 1.95 (s, 3H).

¹³C NMR (**75 MHz, CDCl₃**): δ (ppm) = 170.3, 167.3, 162.2, 95.3, 66.8, 66.8, 54.1, 53.9, 49.0, 49.0, 11.1.

HRMS (ESI) $C_{11}H_{17}N_3O_3$: calculated [M]⁺: 239.1270,

found: 239.1235.

Synthesis of 6-morpholin-4-yl-1H-pyrimidine-2,4-dione (99a)

A solution of 4-(2,6-dimethoxy-pyrimidin-4-yl)-morpholine (**98a**, 113 mg, 0.5 mmol) in acetyl chloride (1 mL) was stirred at reflux overnight in the presence of a few drops of water. The reagent was removed under vacuum. Methanol (3 x 15 mL) was added and distilled off. The residue was dissolved in 2-propanol/methanol (3:2) at reflux, and the solution was then cooled and the precipitate collected by filtration. The solid was dissolved in deionised water, and the clear solution was lyophilized to result in a white solid, which was dried under vacuum to afford **99a** (88 mg, 91%).

mp.: 290-300 °C (decomposed).

IR (**Diamond ATR**): v (cm⁻¹) = 3160 (m), 3080 (w), 3020 (w), 2920 (w), 2872 (w), 1708 (m), 1628 (s), 1596 (s), 1444 (s), 1376 (s), 1240 (s), 1112 (s), 1012 (s), 884 (s), 820 (s), 732 (m), 700 (vs), 600 (vs).

¹**H NMR (400 MHz, DMSO-d₆)**: δ (ppm) = 9.76 (broads, 2H), 4.56 (s, 1H), 3.59 (t, *J* = 4.7 Hz, 4H), 3.21 (t, *J* = 4.7 Hz, 4H)

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 165.1, 159.8, 154.4, 76.5, 65.8, 65.8, 45.7, 45.7. MS (70 eV, EI): *m/z* (%) = 197 (100) [M]⁺, 182 (31), 167 (21), 153 (17), 140 (41), 97 (18), 68 (78), 56 (12).

HRMS (ESI) $C_8H_{11}N_3O_3$ calculated [M]⁺:197.0800 found: 197.0796.

Synthesis of 5-methyl-6-morpholin-4-yl-1H-pyrimidine-2,4-dione (99b)

A solution of 4-(2,6-dimethoxy-5-methyl-pyrimidin-4-yl)-morpholine (**98b**, 119 mg, 0.5 mmol) in acetyl chloride (1 mL) was stirred at reflux overnight in the presence of a few drops of water. The reagent was removed under vacuum. Methanol (3 x 15 mL) was added and distilled off. The residue was dissolved in 2-propanol/methanol (3:2) at reflux. The solution was then cooled and the precipitate collected by filtration. The solid was dissolved in deionised water, and the clear solution was lyophilized to result in a white solid, which was dried under vacuum to afford **99b** (106 mg, 96%).

mp.: 230-240 °C (decomposed).

IR (Diamond ATR): $v (cm^{-1}) = 3140$ (broad w), 3040 (broad m), 2964 (m), 2860 (m), 2804 (m), 1700 (s), 1628 (s), 1588 (vs), 1500 (s), 1408 (s), 1360 (s), 1196 (s), 1108 (s), 1024 (s), 864 (s), 780 (s), 756 (s).

¹**H** NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.71 (broad s, 2H), 3.62 (t, *J* = 4.1 Hz, 4H), 3.09 (t, *J* = 4.1 Hz, 4H), 1.71 (s, 3H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 165.5, 153.5, 150.7, 92.2, 66.2, 66.2, 48.2, 10.3. MS (70 eV, EI): *m*/*z* (%) = 211 (29) [M]⁺, 166 (16), 142 (79), 126 (15), 99 (25), 86 (21), 56 (100), 44 (65).

HRMS (ESI) $C_9H_{13}N_3O_2$: calculated [M]⁺: 211.0957 found: 211.0954.

Synthesis of 2,6-dimethoxypyrimidin-4-ylamine (98c)

Prepared according to **GP8** from 2,4-dimethoxypyrimidine (**83a**)(140 mg, 1 mmol, 1 equiv); TMPMgCl·LiCl (0.9 mL, 1.23 M in THF, 1.1 equiv)[reaction conditions: -40 °C, 12 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (192 mg, 1.2 mmol, 1.2 equiv) to afford the corresponding cuprated reagent **97a**; LiHMDS (**96a**, 2 mL, 2.0 mmol, 1 M in THF/Ethylbenzene); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. For the workup of this reaction, the organic layer was only washed one time with brine (50 mL). The crude material obtained was redissolved in THF (3 mL) before TBAF (1.0 M in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C for 10 min, poured over EtOAc (10 mL) and washed with deionised water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by flash chromatography (Al₂O₃, CH₂Cl₂/MeOH 4%) afforded **98c** (125 mg, 81%) as a colourless solid.

mp.: 150.9-153.7 °C.

IR (Diamond ATR): v (cm⁻¹) = 3452 (m), 3140 8m), 2952 (w), 1640 (s), 1572 (vs), 1452 (s), 1352 (s), 1204 (vs), 1048 (s), 956 (s).

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 6.58 (broad s, NH₂), 5.36 (s, 1H), 3.74 (s, 3H), 3.73 (s, 3H).
¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 171.0, 166.0, 164.9, 79.1, 53.5, 53.0.

MS (70 eV, EI): m/z (%) = 155 (100) [M]⁺, 152 (68), 125 (18), 110 (11), 67 (6).

HRMS (EI) $C_6H_9N_3O_2$: calculated [M]⁺: 155.0695 found: 155.0667.

Synthesis of (*tert*-butyl-dimethyl-silanyl)-(2,6-dimethoxy-pyrimidin-4-yl)-indan-5-ylamine (98d)

Prepared according to **GP8** from 2,4-dimethoxypyrimidine (**83a**)(140 mg, 1 mmol, 1 equiv), and TMPMgClLiCl (0.89 mL, 1.23 M in THF, 1.1 equiv)[reaction conditions: -40 °C, 12 h]; CuCl·2LiCl (2.4 mL, 1.2 equiv) and (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97a**; lithium-(*t*-butyl-dimethyl-silanyl)-indan-5-yl-amine **96c** (2.0 mmol, preparation described in **TP2**); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 95:5) afforded **98d** (296 mg, 76%) as a pale yellowish solid.

mp.: 90.0-92.4 °C (brown).

IR (Diamond ATR): v (cm⁻¹) = 2956 (w), 2928 (w), 2892 (w), 2856 (w), 1584 (s), 1552 (vs), 1440 (s), 1352 (vs), 1256 (s), 1196 (vs), 1172 (s), 1064 (s), 976 (m), 836 (s), 800 (vs), 780 (s), 680 (s), 672 (s).

¹**H NMR** (**600 MHz**, **CDCl**₃): δ (ppm) = 7.18 (d, *J* = 7.7 Hz, 1H), 6.88 (s, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 4.86 (s, 1H), 3.97 (s, 3H), 3.78 (s, 3H), 2.89 (q, *J* = 7.9 Hz, 4H), 2.09 (q, *J* = 7.5 Hz, 2H), 1.03 (s, 9H), 0.15 (s, 6H).

¹³C NMR (150 MHz, CDCl₃): δ (ppm) = 171.5, 170.6, 164.3, 145.8, 124.6, 141.4, 127.5, 125.6, 125.1, 83.6, 54.6, 53.3, 32.8, 32.4, 23.4 (2 carbons from Si-(*t*-Bu) group), 25.8, 20.0, - 1.6 (2 carbons from SiMe₂ group).

MS (70 eV, EI): *m/z* (%) = 385 (7) [M]⁺, 370 (5), 328 (100), 189 (3), 164 (4), 115 (2), 89 (3), 73 (2), 59 (2).

HRMS (EI) $C_{21}H_{31}N_3O_2Si$: calculated [M]⁺: 385.2186 found: 385.2161.

Synthesis of 2,4-dimethoxy-5-methyl-6-(2,2,6,6-tetramethyl-piperidin-1-yl)-pyrimidine (98e)

Prepared according to **GP8** from 2,4-dimethoxy-5-methyl-pyrimidine (**83b**) (175 mg, 1.0 mmol, 1 equiv) in dry THF (0.5 mL), and TMPMgCl·LiCl (1.20 m in THF; 0.92 mL, 1.1 mmol) [reaction conditions: -5 °C, 3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97b**; TMPLi (**96d**) (2 mmol in Et₂O, prepared according to the literature ¹⁶⁰); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 9:1) afforded **98e** (205 mg, 70%) as a colourless solid.

mp.: 77.5-78.7 °C

IR (Diamond ATR) 2980 (m), 2920 (s), 2872 (m), 2840 (m), 1560 (s), 1476 (m), 1448 (s), 1372 (vs), 1356 (vs), 1200 (s), 1132 (s), 1076 (s), 1044 (s), 776 (s), 696 (m).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 3.94 (s, 3H), 3.92 (s, 3H), 2.05 (s, 3H), 1.98-1.57 (m, 6H), 1.40 (s, 6H), 0.74 (s, 6H).

¹³C NMR (**75 MHz, CDCl₃**): δ (ppm) = 171.2, 166.7, 161.9, 111.9, 55.0, 55.0, 54.2, 53.9, 41.2, 41.2, 31.5, 31.5, 24.9, 24.9, 18.3, 11.9.

¹⁶⁰ Salman, H.; .Abraham, Y.; Tal, S.; Meltzman, S.; Kapon, M.; Tessler, N., Speiser, S.; Eichen, Y. *Eur. J. Org. Chem.* **2005**, 2207.

HRMS (ESI) $C_{16}H_{27}N_3O_2$: calculated $[M+H]^+$: 294.2182 found: 294.2176.

Synthesis of 2,4-dimethoxypyrimidin-5-ylamine (98f)

Prepared according to **GP7** from 5-bromo-2,4-dimethoxypyrimidine (214 mg, 1 mmol, 1 equiv), and *i*-PrMgCl·LiCl (1.17M in THF, 0.94 mL, 1.1 equiv)[reaction conditions: - 20°C, 2 h]; CuCl·2LiCl (2.4 mL, 1.2 equiv) and (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97c**; LiHMDS (**96a**, 2 mL, 2.0 mmol 1 M in THF/Ethylbenzene); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. For the workup of this reaction, the organic layer was only washed one time with water (50 mL). The crude material obtained was redissolved in THF (3 mL) before TBAF (1.0 m in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C for 10 min, poured over EtOAc (10 mL) and washed with deionised water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by flash chromatography (Al₂O₃, CH₂Cl₂/MeOH 3%) afforded **98f** (122 mg, 79%) as a colourless solid.

mp.: 76.9-77.9 °C.

IR (Diamond ATR): v (cm⁻¹) = 3404 (m), 3320 (m), 2960 (w), 1580 (s), 1484 (s), 1456 (s), 1416 (s), 1376 (vs), 1284 (s), 1240 (s), 1200 (s), 1072 (s), 1016 (s), 936 (m), 904 (m), 776 (m), 648 (s).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 7.72 (s, 1H), 4.02 (s, 3H), 3.91 (s, 3H), 3.21 (broad s, NH₂).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 161.0, 158.2, 140.0, 123.6, 54.6, 54.1.

MS (70 eV, EI): *m/z* (%) = 155 (100) [M]⁺, 140 (14), 126 (25), 110 (7), 83 (7), 70 (6), 58 (5), 55 (6), 42 (7).

HRMS (EI): *m*/*z* calc. for [C₆H₉N₃O₂] 155.0695, found: 155.0694.

Synthesis of (*tert*-Butyl-dimethyl-silanyl)-(2,4-dimethoxy-pyrimidin-5-yl)-(3,4,5trimethoxy-phenyl)-amine (98g)

Prepared according to **GP7** from 5-bromo-2,4-dimethoxypyrimidine (214 mg, 1 mmol, 1 equiv), and *i*-PrMgCl·LiCl (1.17M in THF, 0.94 mL, 1.1 equiv)[reaction conditions: - 20°C, 2 h]; CuCl·2LiCl (2.4 mL, 1.2 equiv) and *bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97c**; N-lithium-(tert-butyl-dimethyl-silanyl)-(3,4,5-trimethoxy-phenyl)-amide (**96e**, 2 mmol, 2 equiv; prepared according to **TP2** from 3,4,5-trimethoxyphenylamine); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 9:1) afforded **98g** (mg, 68%) as a yellow oil.

IR (**Diamond ATR**): $v (cm^{-1}) = 2956$ (w), 2932 (w), 2856 (w), 1588 (m), 1556 (m), 1504 (m), 1460 (s), 1396 (s), 1376 (vs), 1280 (m), 1232 (s), 1184 (m), 1124 (s), 1076 (s), 1012 (s), 932 (m), 804 (s).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.07 (s, 1H), 6.13 (s, 2H), 3.97 (s, 3H), 3.91 (s, 3H), 3.75 (s, 3H), 3.73 (s, 6H), 0.92 (s, 9H), 0.14 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 168.8, 162.5, 158.6, 152.9, 152.9, 145.2, 133.2, 124.0, 100.5, 100.5, 60.9, 55.9, 55.9, 54.9, 53.9, 27.4 (2 carbons from Si-(*t*-Bu) group), 20.1, - 2.6 (2 carbons from SiMe₂ group).

MS (**70** eV, EI): *m/z* (%) = 435 (54) [M]⁺, 378 (58), 363 (100), 348 (47), 332 (7), 318 (8), 233 (3), 181 (4), 167 (3), 89 (17), 73 (29).

HRMS (EI) $C_{21}H_{33}N_3O_5Si$: calculated [M]⁺: 435.2189 found: 435.2170.

Synthesis of 5-(1,1,1,3,3,3-hexamethyl-disilazan-2-yl)-4-iodo-2,6-dimethoxy-pyrimidine (98h)

Prepared according to **GP8** from 4-iodo-2,6-dimethoxypyrimidine (**87b**) (1.33 g, 5 mmol, 1 equiv), and TMPMgCl·LiCl (1.16 M in THF, 4.75 mL, 1.1 equiv)[reaction conditions: -0 °C, 1 h]; CuCl·2LiCl (6.0 mL, 1.2 equiv) and NEt₃ (605 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97d**; and LiHMDS (**96a**, 10 mL, 10.0 mmol, 1 M in THF/Ethylbenzene); chloranil (1.47 g, 1.2 equiv) in 35 mL of THF. Purification by flash chromatography (Al₂O₃, *n*-pentane/ Et₂O = 9:1) afforded **98h** (276 mg, 65%) as a pale yellowish solid.

mp.: 85.1-87.2 °C.

IR (Diamond ATR): $v (cm^{-1}) = 2956$ (w), 2900 (w), 1560 (m), 1520 (s), 1456 (s), 1364 (s), 1304 (s), 1252 (s), 1180 (s), 1080 (s), 1020 8s), 896 (vs), 836 (vs), 816 (vs), 804 (vs), 780 (vs).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 3.94 (s, 3H), 3.90 (s, 3H), 0.12 (s, 9H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 166.6, 159.3, 137.8, 128.8, 55.2, 54.1, 2.3 (6C from two TMS group).

HRMS (ESI) $C_{12}H_{24}IN_3O_2Si_2$: calculated [M-H]⁺: 426.0531 found: 426.0521.

Synthesis of 4-chloro-2,6-dimethoxy-5-(4-methyl-piperazin-1-yl)-pyrimidine (98i)

Prepared according to **GP8** from commercially available 4-chloro-2,6-dimethoxy pyrimidine (**70a**) (175 mg, 1.0 mmol) in dry THF (0.5 mL), and TMPMgCl·LiCl (1.20 m in THF; 0.92 mL, 1.1 mmol) [reaction conditions: 25 °C, 1 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97e**; *N*-lithium piperazide (**96f**, prepared according to **TP2** starting from N-methyl piperazine); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, CH₂Cl₂/MeOH; 95:5) afforded **98i** (213 mg, 78%) as a white crystalline solid.

mp.: 72.2-74.3 °C.

IR (**Diamond ATR**): v (cm⁻¹) = 2931, 2840, 2792, 1586, 1533, 1459, 1452, 1385, 1334, 1283, 1240, 1218, 1187, 1180, 1089, 1023, 1009, 943, 859, 786, 739, 635.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 3.93 (s, 3H, OMe), 3.91 (s, 3H, OMe), 2.99 (br.s, 4H), 2.47 (br.s, 4H), 2.29 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃): δ (ppm) = 169.3, 160.3, 159.1, 123.5, 55.7, 55.2, 54.2, 49.5, 46.3.

MS (70 eV, EI): *m/z* (%) = 272 [M]⁺ (100), 237 (20), 209 (12), 200 (17), 202 (14), 201 (15), 194 (9), 187 (20), 71 (34), 70 (11), 43 (20).

HRMS (EI) $C_{11}H_{17}O_2N_4^{35}Cl$: calculated [M]⁺: 272.1040, found: 272.1039.

Synthesis of 4-chloro-2,6-dimethoxypyrimidin-5-amine (98j)

Prepared according to **GP8** from commercially available 4-chloro-2,6-dimethoxy pyrimidine (**70a**) (175 mg, 1.0 mmol) in dry THF (0.5 mL), and TMPMgCl·LiCl (1.20 m in THF; 0.92 mL, 1.1 mmol) [reaction conditions: 25 °C, 1 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97e**; LiHMDS (**96a**, 2.0 mmol); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. The crude residue was dissolved in Et₂O (3 mL) before TBAF (1.0 m in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C for 10 min, poured over EtOAc (10 mL) washed with water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by flash chromatography (SiO₂, *n*-pentane/EtOAc; 8:2; 0.5 mol% NEt₃) afforded **98j** (114 mg, 60%) as a light brown solid.

mp.: 76.0–77.5 °C.

IR (**Diamond ATR**): v (cm⁻¹) = 3452, 3360, 2955, 1560, 1470, 1405, 1382, 1247, 1192, 1123, 1083, 1028, 941, 769.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 4.03 (s, 3H, OMe), 3.91 (s, 3H, OMe), 3.62 (br.s, 2H, NH₂).

¹³C NMR (150 MHz, CDCl₃): δ (ppm) = 160.0, 156.1, 145.5, 120.3, 55.0, 54.8.

MS (70 eV, EI): *m/z* (%) = 189 [M]⁺ (100), 174 (13), 160 (20), 159 (22), 124 (7), 104 (10), 70 (10), 58 (7), 53 (9), 42 (10).

HRMS (EI) $C_6H_8O_2N_3^{35}$ Cl: calculated [M]⁺:189.0305 found: 189.0314.

Prepared according to **GP7** from 5-bromo-2-iodo-pyrimidine (284 mg, 1.0 mmol, 1 equiv) in dry THF (3.0 mL), and *i*-PrMgCl (0.92 mL, 1.20 m in THF, 1.1 mmol) [reaction conditions: - 80 °C, 0.5 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv), [reaction conditions: -80 °C, 1.5 h], to afford the corresponding cuprated reagent **97f**; *N*-lithium morpholine (**96b**, 2.0 mmol, preparation described in **TP1**), [reaction conditions: -80 °C, 1.5 h]; chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, *n*-pentane/CH₂Cl₂ = 6:1) afforded **98k** (170 mg, 70%) as colourless needles. **mp**.: 125.0-127.7 °C.

IR (**Diamond ATR**): v (cm⁻¹) = 2960 (m), 2924 (m), 2868 (m), 1576 (s), 1496 (vs), 1452 (vs), 1356 (s), 1304 (s), 1248 (vs), 1112 (vs), 952 (vs), 848 (s), 788 (s).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.29 (s, 2H), 3.78-3.71 (m, 8H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 159.9, 157.9, 157.9, 106.2, 66.7, 66.7, 44.4, 44.4.

MS (**70** eV, EI): *m/z* (%) = 245 (81)[M]⁺, 243 (79), 228 (23), 214 (89), 212 (73), 200 (24), 188 (49), 186 (51), 160 (100), 158 (90), 107 (6), 79 (11), 53 (7).

HRMS (EI) $C_8H_{10}^{81}$ BrN₃O: calculated [M]⁺: 245.0001, found: 244.9971.

Synthesis of 5-bromo-4-(4-methyl-piperazin-1-yl)-pyrimidine (98l)

Prepared according to **GP8** from commercially available 5-bromopyrimidine (160 mg, 1.0 mmol) in dry THF (1.0 mL), and TMPMgCl·LiCl (1.31 m in THF; 0.92 mL, 1.2 mmol) [reaction conditions: -55 to -40 °C, 2 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **97g**; *N*-lithium 4-methylpiperazide

(96f, prepared according **TP1** starting from N-methylpiperazine); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, CH₂Cl₂/MeOH = 98:2) afforded 98l (169 mg, 66%) as pale yellowish oil.

IR (Diamond ATR): v (cm⁻¹) = 2936 (w), 2848 (w), 2796 (m), 1564 (vs), 1516 (m), 1444 (s), 1360 (m), 1252 (m), 1140 (s), 1008 (s), 956 (m), 764 (w).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.56 (s, 1H), 8.41 (s, 1H), 3.76 (t, *J* = 4.7 Hz, 4H), 2.58 (t, *J* = 4.9 Hz, 4H), 2.37 (s, 3H).

¹³C NMR (**75 MHz, CDCl**₃): δ (ppm) = 161.0, 159.6, 156.0, 104.7, 54.6, 54.6, 47.2, 47.2, 45.8.

MS (70 eV, EI): *m/z* (%) = 258 (12), 256 (14), 201 (10), 199 (15), 199 (10), 188 (35), 186 (37), 160 (18), 158 (20), 83 (72), 70 (100).

HRMS (EI) $C_9H_{13}^{79}BrN_4$: calculated [M]⁺:256.0324 found: 256.0303.

4.7 Preparation of aminated purine

Synthesis of 9-benzyl-6-chloro-8-morpholin-4-yl-9H-purine (106)

Prepared according to **GP8** from 9-benzyl-6-chloro-9H-purine (**102**) (248 mg, 1 mmol, 1 equiv), and TMPMgCl·LiCl (0.89 ml,1.23 M in THF, 1.1 equiv)[reaction conditions: -10 °C, 3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) to afford the corresponding cuprated reagent **104**; *N*-lithium morpholine (**96b**, 2.0 mmol); chloranil (298 mg, 1.2 equiv) in 7 mL of THF, [reaction conditions: -78 to 50 °C, 12 h]. For the workup of this reaction, the organic layer was only washed one time with brine (50 mL). Purification by flash chromatography (SiO₂, *n*-pentane/AcOEt = 1:1 with 0.5% NEt₃) afforded **106** (207 mg, 63%) as colourless oil.

IR (Diamond ATR): v (cm⁻¹) = 2964 (w), 2920 (w), 2856 (w), 1596 (vs), 1572 (m), 1532 (s), 1452 (m), 1380 (m), 1344 (m), 1264 (m), 1152 (m), 1116 (m), 920 (m), 732 (m).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.55 (s, 1H), 7.37-7.30 (m, 3H), 7.16-7.14 (m, 2H), 5.35 (s, 2H), 3.72 (t, *J* = 4.5 Hz, 4H), 3.37 (t, *J* = 4.9 Hz, 4H).

¹³C NMR (**75 MHz, CDCl**₃): δ (ppm) = 158.1, 154.4, 150.2, 145.8, 134.9, 130.5, 129.1, 129.1, 128.2, 126.4, 126.4, 66.1, 66.1, 49.7, 49.7, 47.5.

MS (70 eV, EI): *m/z* (%) = 329 (15) [M⁺], 301 (11), 272 (29), 238 (10), 111 (12), 97 (20), 91 (100), 83 (20), 69 826), 57 (32), 38 (21).

HRMS (EI) $C_{16}H_{16}$ ClN₅O: calculated [M]⁺: 329.1043 found: 329.1024.

Synthesis of diethyl-(6-iodo-9-methyl-9H-purin-8-yl)-amine (107)

Prepared according to **GP8** from 6-Iodo-9-methyl-9H-purine (**103**) (370 mg, 1.4 mmol, 1 equiv), and TMPMgClLiCl (1.25 ml,1.23 M in THF, 1.1 equiv)[reaction conditions: -10 °C, 2 h]; CuCl·2LiCl (1.7 mL, 1.2 equiv) and NEt₃ (170 mg, 1.2 equiv) to afford the corresponding cuprated reagent **105**; *N*-lithium diethylamide (**96g**, 2.8 mmol, 2 equiv, prepared according to **TP1** starting from dried diethyl amine); chloranil (417 mg, 1.2 equiv) in 10 mL of THF, [reaction conditions: -78 to 50 °C, 12 h]. Purification by preparative TLC (SiO₂, dichloromethane/Et₂O = 5:5 with 0.5% NEt₃) afforded **107** (219 mg, 66%) as colourless oil.

IR (**Diamond ATR**): v (cm⁻¹) = 2936 (m), 2868 (w), 1592 (vs), 1536 (vs), 1476 (s), 1372 (s), 1324 (vs), 1252 (s), 1132 (s), 1068 (s), 1016 (s), 896 (s), 844 (vs), 784 (s), 704 (vs).

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.35 (s, 1H), 3.67 (s, 3H), 3.52 (q, *J* = 7.1 Hz, 4H), 1.26 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR (75 MHz, CDCl₃)**: δ (ppm) = 157.7, 150.7, 149.1, 138.2, 113.5, 44.9, 44.9, 30.8, 13.4, 13.4.

MS (70 eV, EI): *m/z* (%) = 331 (60), 303 (33), 288 (100), 42 (7).

HRMS (EI) $C_{10}H_4IN_4$: calculated [M]⁺: 331.0294 found: 331.0286.

Synthesis of 6-chloro-9-isopropyl-2-morpholin-4-yl-9H-purine (110)

Prepared according to **GP7** from 6-chloro-2-iodo-9-isopropyl-9*H*-purine (**108**) (322 mg, 1.0 mmol) in dry THF (5.0 mL), and *i*-PrMgCl (0.92 mL, 1.20 m in THF, 1.1 mmol) [reaction conditions: -80 °C, 30 min]; The reaction mixture is added to CuCl·2LiCl (1.2 mL, 1.2 equiv) and NEt₃ (121 mg, 1.2 equiv) added at -80 °C and stirred for 1.5 h *N*-lithium morpholine (**96b**, 2.0 mmol, preparation described in **TP1**) is added at -80 °C and stirred for 2 h to afford the corresponding amidocuprated reagent **109**; chloranil (298 mg, 1.2 equiv) in 7 mL of THF, [reaction conditions: -78 °C, 2 h]. Purification by flash chromatography (SiO₂, *n*-pentane/Et₂O = 3:2) afforded **110** (170 mg, 69%) as colourless solid.

mp.: 155.4-157.3 °C (red).

IR (Diamond ATR): ν (cm⁻¹) = 3096 (w), 2968 (w), 2924 (w), 2872 (w), 2852 (w), 1612 (m), 1552 (s), 1528 (vs), 1440 (s), 1352 (s), 1224 (s), 1104 (vs), 932 (vs), 848 (s), 780 (s), 652 (s).

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 7.78 (s, 1H), 4.68 (sept, *J* = 6.8 Hz, 1H), 3.85-3.74 (m, 8H), 1.56 (d, *J* = 6.9 Hz, 6H).

¹³**C NMR (75 MHz, CDCl₃)**: δ (ppm) = 158.1, 153.3, 150.8, 139.8, 124.8, 66.7, 66.7, 47.2, 45.0, 45.0, 22.3, 22.3.

MS (70 eV, EI): *m/z* (%) = 281 (81), 252 (31), 250 (100), 236 (21), 224 (50), 196 (44), 181 (32), 154 (25), 119 (16).

HRMS (EI) $C_{12}H_{16}CIN_5O$: calculated [M]⁺: 281.1043 found: 281.1036.

Synthesis of 9-(2,2-dimethyl-6-trityloxymethyl-tetrahydro-furo[3,4-d] [1,3]dioxol-4-yl)-6-(4-methyl-piperazin-1-yl)-9H-purine (113)

Prepared according to **GP7** from 6-chloro-2-iodo-9-isopropyl-9*H*-purine (**111**) (330 mg, 0.5 mmol) in dry THF (1.0 mL), and *i*-PrMgCl (0.46 mL, 1.20 m in THF, 0.55 mmol) [reaction conditions: -50 °C, 3 h]; CuCl·2LiCl (0.6 mL, 1.2 equiv) and NEt₃ (61 mg, 1.2 equiv), to afford the corresponding cuprated reagent **112**; *N*-lithium 4-methylpiperazide (**96f**, 1.0 mmol, prepared according to **TP1** starting from N-methyl piperazine); chloranil (148 mg, 1.2 equiv) in 4 mL of THF. Purification by flash chromatography (SiO₂, chloroform/acetonitrile = 9:1) afforded **113** (221 mg, 70%) as pale yellowish crystalline oil.

mp.: 95.1-100.5 °C (black, decomposed).

IR (Diamond ATR): $v (cm^{-1}) = 2936 (m)$, 2868 (m), 2792 (m), 1584 (vs), 1476 (s), 1448 (s), 1380 (s), 1288 (s), 1248 (s), 1208 (s), 1072 (vs), 1004 (s), 872 (s), 764 (s), 748 (s), 700 (vs), 632 (vs).

¹**H NMR** (**400 MHz**, **DMSO-d**₆): δ (ppm) = 8.51 (s, 1H), 8.30 (s, 1H), 7.49-7.38 (m, 15H), 6.45 (d, J = 1.5 Hz, 1H), 6.64 (dd, J = 6.3 Hz, J = 1.5 Hz, 1H), 5.18-5.16 (m, 1H), 4.55-4.52 (m, 1H), 4.44 (broad s, 3H), 3.43-3.28 (m, 2H), 2.73-2.70 (m, 8H), 1.73 (s, 3H), 1.50 (s, 3H). ¹³**C NMR** (**100 MHz**, **DMSO-d**₆): δ (ppm) = 153.1, 151.7, 149.7, 143.4, 139.1, 128.0, 128.0, 128.0, 128.0, 128.0, 127.7, 127.7, 127.7, 127.7, 127.7, 127.7, 126.9, 126.9, 126.9, 119.6, 113.2, 89.3, 86.0, 85.7, 83.2, 81.4, 64.0, 64.0, 54.3, 54.3, 54.3, 45.3, 26.9, 25.2. **HRMS** (**ESI**) C₃₇H₄₀N₆O₄: calculated [M]⁺: 633.3190 found: 633.3186

Synthesis of 2-chloro-9-isopropyl-9H-purin-6-ylamine (116)

Prepared according to **GP7** from 2-Chloro-6-iodo-9-isopropyl-9H-purine (**114**) (322 mg, 1.0 mmol, 1 equiv) in dry THF (1.0 mL), and *i*-PrMgCl·LiCl (0.89 mL, 1.23 M in THF, 1.1 mmol) [reaction conditions: -60 °C, 0.3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (192 mg, 1.2 mmol, 1.2 equiv), [reaction conditions: -60 °C, 1 h], to afford the corresponding cuprated reagent **115**; LiHMDS (**96a**, 1 M in THF/Ethylbenzene, 2 mL, 2.0 mmol) ; chloranil (298 mg, 1.2 equiv) in 7 mL of THF. Purification by flash chromatography (SiO₂, dichloromethane/methanol = 95:5) afforded **116** (160 mg, 76%) as a pale yellowish solid.

mp.: 253.5-254.9 °C (black).

IR (Diamond ATR): v (cm⁻¹) = 3312 (m), 3140 (m), 2976 (w), 2936 (w), 1652 (s), 1596 (s), 1568 (s), 1464 (m), 1348 (s), 1304 (s), 1248 (s), 1216 (s), 1196 (s), 1020 (s), 928 (s), 788 (s), 680 (vs).

¹**H NMR (400 MHz, DMSO-d**₆): δ (ppm) = 8.24 (s, 1H), 7.69 (broad s, NH2), 4.64 (sept, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 156.7, 152.6, 150.0, 139.3, 118.0, 46.6, 22.0, 22.0.

MS (70 eV, EI): *m/z* (%) = 211 (68) [M]⁺, 196 (17), 171 (100), 134 (24), 108 (44), 80 (8), 53 (10), 41 (14).

HRMS (EI) $C_8H_{10}^{35}$ ClN₅: calculated [M]⁺: 211.0625 found: 211.0648.

Synthesis of (2-Chloro-9-isopropyl-9H-purin-6-yl)-(3-chloro-phenyl)-amine (117)

Prepared according to **GP7** from 2-chloro-6-iodo-9-isopropyl-9H-purine (**114**) (322 mg, 1.0 mmol, 1 equiv) in dry THF (1.0 mL), and *i*-PrMgCl·LiCl (0.92 mL, 1.20 M in THF, 1.1 mmol) [reaction conditions: -60 °C, 0.3 h]; CuCl·2LiCl (1.2 mL, 1.2 equiv) and (*bis*[2-(*N*,*N*-dimethylamino)ethyl] ether (192 mg, 1.2 mmol, 1.2 equiv), [reaction conditions: -60 °C, 1 h], to afford the corresponding cuprated reagent **115**; N-lithium (*tert*-butyl-dimethyl-silanyl)-(3-chloro-phenyl)-amide (**96h**, 2.0 mmol, prepared according to **TP2** starting from freshly distilled 3-chloro-phenylamine); chloranil (298 mg, 1.2 equiv) in 7 mL of THF. The crude residue was dissolved in Et₂O (3 mL) before TBAF (1.0 m in THF) (2 mL, 2 mmol) was added in one portion and the mixture was stirred at 25 °C for 10 min, poured over EtOAc (10 mL) washed with water (3 x 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated in vacuum. Purification by flash chromatography (SiO₂, dichloromethane/methanol = 95:5) afforded **117** (228 mg, 71%) as yellow solid.

mp.: 131.3-132.3 °C

IR (**Diamond ATR**): v (cm⁻¹) = 3240 (w), 2980 (w), 2920 (w), 2870 (w), 1624 (vs), 1570 (vs), 1446 (s), 1423 (m), 1319 (m), 1218 (m), 1194 (m), 1076 (w), 1024 (s), 939 (m), 895 (m), 880 (s), 772 (s).

¹**H** NMR (400 MHz, CDCl₃): δ (ppm) = 8.55 (s, 1H), 8.12 (s, 1H), 7.93 (t, J = 2.0 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.30 (t, J = 8.1 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 4.90 (sept, J = 6.8 Hz, 1H), 1.64 (d, J = 6.7 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃): δ (ppm) = 153.7, 152.0, 150.5, 139.3, 138.7, 134.7, 130.1, 123.8, 120.0, 119.5, 118.1, 47.3, 22.8, 22.8.

MS (**70** eV, EI): *m*/*z* (%) = 321 (100) [M]⁺, 278 (67), 244 (87), 209 (9), 111 (10).

HRMS (EI) $C_{14}H_{13}^{35}Cl_2N_5$: calculated [M]⁺: 321.0548 found: 321.0537.

Synthesis of 2-[6-(3-chloro-phenylamino)-9-isopropyl-9H-purin-2-ylamino]-3-methylbutan-1-ol, purvalanol A (100)

To a solution of (2-chloro-9-isopropyl-9H-purin-6-yl)-(3-chloro-phenyl)-amine (**117**) (140 mg, 0.43 mmol, 1 equiv) in *n*-butanol (1 mL) was added *Hunig*'s base (75 μ L, 1 equiv) and D-valinol (220 mg, 5 equiv). The resulting solution was heated in a sealed tube at 150 °C for 12 h. Following cooling down and evaporation to dryness, the resulting oil was purified by flash chromatography (SiO₂, dichloromethane/methanol = 97:3) afforded **100** (108 mg, 65 %) as a colourless solid.

mp.: 158.0-159.5 °C

IR (Diamond ATR): ν (cm⁻¹) = 3320 (w), 3240 (w), 2938 (m), 2924 (w), 2868 (w), 1636 (s), 1576 (vs), 1472 (vs), 1452 (s), 1408 (s), 1360 (s), 1308 (s), 1244 (s), 1152 (m), 1096 (s), 1068 (s), 1008 (vs), 876 (m), 848 (s), 768 (s), 700 (s), 636 (vs).

¹**H NMR** (**300 MHz**, **CDCl**₃): δ (ppm) = 7.99 (broad s, 1H), 7.96 (broad s, 1H), 7.58 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 8.1 Hz, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 5.16 (d, *J* = 5.8 Hz, 1H), 4.55 (sept, *J* = 6.8 Hz, 1H), 4.00-3.88 (m, 2H), 3.77-3.71 (m, 1H), 2.01 (m, 1H), 1.47 (dd, *J* = 6.1 Hz, *J* = 4.7 Hz, 6H), 1.03 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 159.5, 151.8, 151.8, 140.3, 135.1, 134.3, 129.7, 122.7, 119.7, 117.7, 114.8, 65.2, 59.7, 46.8, 30.1, 22.5, 22.4, 19.5, 19.0.

HRMS (ESI) $C_{19}H_{26}O^{35}ClN_6$: calculated $[M+H]^+$: 389.1857 found: 389.1852.

5. Direct chemo- and regioselective zinc insertions into polyhalogenated N-heteroaryl compounds

5.1 <u>General procedure for the zinc insertion into polyiodo- and polybromo-heteroaryls</u> <u>compounds (GP9):</u>

Anhydrous LiCl was placed in an Ar-flushed flask and dried additionally 10-20 min at 150-170 °C on high vacuum (1 mbar) or 2-3 min at 450 °C. Zinc powder was added under Ar, and heterogeneous mixture of Zn and LiCl was dried again 10-20 min at 150-170 °C on high vacuum (1 mbar). Afterwards flask was evacuated and refilled with argon three times. After the addition of THF, Zn was activated by treatment first with 1,2-dibromoethane (5 mol%) and then with chlorotrimethylsilane (2 mol%).^{53d,62} The substrate was added neat or dissolved in THF at the temperature T_1 . The completion of the insertion reaction was checked by GC analysis of reaction aliquots quenched with a solution of NH₄Cl in water (the conversion was more than 90 %). The organozinc solution in THF was carefully removed from the rest of zinc powder using syringe and was transferred to the new dry and Ar-flushed flask. The electrophile or its solution in THF was added at the temperature T₂. After the completion of the reaction (checked by GC analysis of reaction aliquots quenched with sat. aqueous NH₄Cl solution) the reaction mixture was quenched with sat. aqueous NH₄Cl (10 mL) solution. The aqueous layer was extracted with ethyl acetate or diethyl ether (3 x 10 mL). The combined organic extracts were dried with Na₂SO₄ and concentrated in vacuum. The crude residue was purified by flash column chromatography on silica gel.

5.2 Starting material synthesis

Synthesis of 4-chlorobenzenesulfonic acid 2-chloro-4,6-diiodo(pyridin-3-yl) ester (121g)

This material was prepared over two steps from commercially available 2-chloro-3-hydroxypyridine according to the procedure reported by Knochel et al.¹⁶¹

¹⁶¹ Lin, W.; Ling, C.; Knochel, P. Tetrahedron 2007, 63, 2787.

To a solution of 3-hydroxypyridine (9.5 g, 100 mmol) and Na₂CO₃ (45.6 g, 430 mmol) in water was added iodine (76.2 g, 300 mmol) with stirring at 25 °C. After 24 h, the solid is filtered off and dried to give 2,4,6-triiodo-pyridin-3-ol as a yellow solid. A dry 250 mL round-bottomed flask, equipped with a magnetic stirrer and a septum, was charge with a solution of 2,4,6-triiodo-pyridin-3-ol in dry CH₂Cl₂ (100 mL). After cooling to 0 °C, Et₃N (18.8 mL, 135 mmol) was added, and then 4-chloro-benzenesulfonyl chloride (23.5 g, 108 mmol) was added portionwise. After the addition was completed, the reaction mixture was stirred at 25 °C overnight. This mixture was diluted with CH₂Cl₂ (100 mL). Saturated aqueous NH₄Cl solution (100 mL) was then added, and the resulting mixture was extracted with CH₂Cl₂ (2 × 100 mL). The organic extracts were dried over anhydrous Na₂SO₄, and concentrated. Purification by flash chromatography (SiO₂, *n*-pentane/ether = 40:1) afforded **121h** (37.5 g, 58 %; overall yield of two steps) as a yellow solid.

mp.: 154.4-154.8 °C.

IR (**KBr**): v (cm⁻¹) = 3078 (m), 1584 (m), 1511 (m), 1497 (s), 1474 (m), 1374 (vs), 1287 (s), 1182 (s), 1166 (m), 1083 (m), 1011 (w).

¹**H-NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 8.09 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H).

¹³**C-NMR** (**CDCl**₃, **75 MHz**): δ (ppm) = 150.8, 144.6, 142.1, 135.9, 134.4, 129.9, 113.1, 113.0, 103.0;

MS (**70** eV, EI): *m/z* (%): 646 (100, M⁺), 518 (12), 471 (25), 344 (28), 253 (21), 189 (15), 175 (79), 127 (11), 111 (26).

HRMS (EI) $C_{11}H_5ClI_3NO_3S$: calculated [M]⁺: 646.6813 found: 646.6824.

Synthesis of *p*-toluenesulfonic acid 3,5-dibromo(pyridin-2-yl) ester (121i)

Br Br N OTs This material was prepared from commercially available 3,5-dibromo-2-hydroxypyridine according to the procedure reported by Knochel et al.¹⁶²

Synthesis of diisopropylcarbamic acid 2,6-diiodo(pyridin-3-yl) ester (121j)

This material was prepared from commercially available 3-hydroxy-2,6-diiodopyridine according to the procedure from the literature.¹⁶³

Synthesis of 4,5-diiodo-2-methyl-1-(p-toluenesulfonyl)-1H-imidazole (121k)

To a mixture of 4,5-diiodo-2-methyl-1*H*-imidazol¹⁴⁴ (10.0 g, 30 mmol) and *p*-toluenesulfonyl chloride (5.9 g, 31 mmol) in acetone (50 mL) at 25 °C was added Et₃N (90 mmol), and the resulting mixture was stirred at 25 °C for 12 h. The solvent was removed under vacuum, and the residue was purified by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 2/1) afforded **121k** (13.7 g, 94 %) as a light yellow solid

mp.:119.3-121.4 °C

IR (film): $v (cm^{-1}) = 2950$ (w), 1593 (w), 1520 (m), 1385 (s), 1371 (s), 1280 (m), 1158 (s), 1093 (s), 995 (w), 814 (w), 665 (m), 578 (m).

¹**H** NMR (CDCl₃, 300 MHz): δ (ppm) = 7.86 (d, ³*J*(H,H) = 8.3 Hz, 2H), 7.37 (d, ³*J*(H,H) = 8.5 Hz, 2H), 2.78 (s, 3H), 2.45 (s, 3H).

¹³C NMR (CDCl₃, **75** MHz): δ (ppm) = 152.1, 146.7, 134.4, 130.2, 130.2, 128.0, 128.0, 127.9, 76.8, 21.8, 18.2.

MS (EI, 70 eV): m/z (%) = 487 (100), 154 (75), 90 (71), 65 (11).

HRMS (EI) $C_{11}H_{10}N_2O_2I_2$: calculated [M]⁺: 487.8552 found: 487.8551.

¹⁶² Ren, H.; Knochel, P. Chem. Commun. 2006, 7, 726.

¹⁶³ Mongin, F.; Trecourt, F.; Gervais, B.; Mongin, O.; Queguiner, G. J. Org. Chem. **2002**, 67, 3272.

Synthesis of 2,3-diiodo-1-(p-toluenesulfonyl)-1H-indole (1211)

This material was prepared from commercially available 1H-indole according to the procedure from the literature.¹⁶⁴

Synthesis of *p*-toluenesulfonic acid 5,7-diiodoquinolin-8-yl ester (121m)

This material was prepared from commercially available 5,7-diiodo-8-quinolinol according to the procedure from the literature.¹⁶⁵

Synthesis of 2,4-dibromothiazole (121n)

This material was prepared from commercially available 2,4-thiazolidinedione according to the procedure from the literature.¹⁶⁶

Synthesis of 2,4,6-tribromopyrimidine (1210)

¹⁶⁴ (a) Witulski, B.; Buschmann, N.; Bergsträsser, U. Tetrahedron 2000, 56, 8473; (b) Saulnier, M. G., Gribble, G. W. J. Org. Chem. **1982**, 47, 757. ¹⁶⁵ Baron, O.; Knochel, P. Angew. Chem. Int. Ed. **2005**, 44, 3133.

¹⁶⁶ Ross, N. T.; Jagoe, G. T. Zhengxiang, G. *Tetrahedron Lett.* **1991**, *32*, 4263.

This material was prepared from commercially available barbituric acid according to the procedure from the literature.¹⁰⁴

5.3 Preparation of halogenated functionalized N-heterocycles via direct zinc insertion

Synthesis of 4-chlorobenzenesulfonic acid 2-chloro-4-(2-cyclohexen-1-yl)- 6iodo(pyridin-3-yl) ester (123g)

Prepared according to **GP9** from 4-chlorobenzenesulfonic acid 2-chloro-4,6-diiodo(pyridin-3-yl) ester^[2] (**121g**) (1.112 g, 2 mmol), LiCl (172 mg, 4 mmol), zinc dust (260 mg, 4 mmol, 2.0 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion conditions*: 0 °C, 2.5 h; *reaction with electrophile*: transmetalation with CuCN·2LiCl (5 mol%) at -20 °C, followed by addition of 3-bromocyclohex-1-ene (2.3 mmol) at T₂ = -20 °C. The reaction mixture was allowed to warm gradually to 25 °C and stirred for 4 h. Purification by flash chromatography (SiO₂, *n*-pentane/ethyl acetate = 98:2) afforded **123g** (846 mg, 83%) as white solid.

mp.: 183.2-184.3 °C.

IR (): $v (cm^{-1}) = 2934$ (w), 2910 (w), 1565 (m), 1403 (w), 1371 (s), 1335 (m), 1313 (w), 1187 (s), 1147 (s), 1084 (m), 865 (w), 773 (s), 708 (m).

¹**H-NMR** (**CDCl**₃, **300 MHz**) δ (ppm) = 7.97 (d, ³*J*(H,H) = 7.9 Hz, 2H), 7.60 (d, ³*J*(H,H) = 7.3 Hz, 3H), 6.02 (m, 1H), 5.54 (dd, ³*J*(H,H) = 10.1 Hz, ⁴*J*(H,H) = 2.0 Hz, 1H), 3.89 (m, 1H), 2.14 (m, 3H), 1.75-1.39 (m, 3H).

¹³C-NMR (CDCl₃, **75** MHz) δ (ppm) = 154.6, 144.7, 141.8, 141.7, 134.9, 134.8, 130.9, 129.9, 129.8, 129.8, 129.7, 126.5, 111.9, 36.0, 30.5, 24.6, 20.8.

MS (**70** eV, EI) *m*/*z* (%) = 511 (16), 509 (22), 336 (34), 335 (40), 334 (100), 333 (48), 292 (34), 207 (36), 175 (17), 115 (13), 111 (23), 77 (10).

HRMS (EI) $C_{17}H_{14}Cl_2INO_3S$: calculated [M⁺]: 508.9116 found: 508.9130.

Synthesis of 2-{3-[(4-chlorobenzenesulfonyl)oxy]-2,6-diiodo(pyridin-4-yl)}methylacrylic acid ethyl ester (123h)

Prepared according to **GP9** from 4-chlorobenzenesulfonic acid 2,4,6-triiodopyridin-3-yl ester **121h** (647 mg, 1 mmol), LiCl (86 mg, 2 mmol), zinc dust (130 mg, 2 mmol, 2.0 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion conditions*: 0 °C, 3 h; *reaction with electrophile*: 2-bromomethyl acrylate (232 mg, 1.2 mmol) was added followed by the addition of CuCN·2LiCl(one drop of 1.0 M solution in THF, ca. 0.02 mmol, ca. 0.4 mol%) at -30 °C. The reaction mixture was afterwards warmed to 25 °C for 1h. Purification by flash chromatography (SiO₂, *n*-pentane/ether = 4:1) afforded **123h** (482 mg, 80%) as colourless liquid.

IR (**Diamond ATR**): v (cm⁻¹) = 3092 (w), 2979 (w), 1709 (vs), 1632 (w), 1554 (m), 1516 (m), 1388 (vs), 1316 (s), 1237 (m), 1189 (s), 1134 (s), 1083 (s), 1014 (m), 955 (w).

¹**H-NMR (CDCl3, 300 MHz)**: δ (ppm) = 7.96 (d, ${}^{3}J(H,H) = 8.8$ Hz, 2H), 7.58 (d, ${}^{3}J(H,H) = 8.8$ Hz, 2H), 7.47 (s, 1H), 6.40 (s, 1H), 5.74 (s, 1H), 4.14 (q, ${}^{3}J(H,H) = 7.1$ Hz, 2H), 3.77 (s, 2H), 1.22 (t, ${}^{3}J(H,H) = 7.1$ Hz, 3H).

¹³**C-NMR (CDCl₃, 75 MHz)**: δ (ppm) = 165.6, 147.8, 145.9, 142.0, 136.2, 135.8, 135.1, 130.3, 129.8, 129.4, 114.3, 113.2, 61.2, 33.4, 14.1.

MS (70 eV, EI): *m*/*z* (%) = 633 (62) [M]⁺, 458 (54), 441 (63), 413 (100), 331 (84), 286 (49), 259 (30), 204 (35), 175 (43), 159 (27), 127 (43), 111 (45).

HRMS (EI) $C_{17}H_{14}ClI_2NO_5S$: calculated [M]⁺: 632.8371 found: 632.8374.

Synthesis of *p*-toluenesulfonic acid 3-benzoyl-5-bromo(pyridin-2-yl) ester (123i)

Prepared according to **GP9** from *p*-toluenesulfonic acid 3,5-dibromo(pyridin-2-yl) ester **121i** (1.63 g, 4 mmol), LiCl (258 mg, 6 mmol), zinc dust (390 mg, 6 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion condition*: 25 °C, 12 h; *reaction with electrophile*: transmetalation with CuCN·2LiCl (1 equiv.) 10 min at 0°C, followed by addition of benzoyl chloride at $T_2 = -78$ °C. The reaction mixture was stirred afterwards for 1 h at -78 °C and warmed to 25 °C for 3 h. Purification by flash chromatography (SiO₂, *n*-pentane/ ether = 1:1) afforded **123i** (1.40 g, 81%) as a white solid. **mp**.: 102.5-103.1 °C.

IR (**KBr**): v (cm⁻¹) = 3060 (m), 1659 (vs), 1598 (s), 1572 (s), 1382 (vs), 1173 (vs), 689 (vs).

¹**H** NMR (CDCl₃, 300 MHz) δ (ppm) = 8.43 (d, ⁴*J*(H,H) = 2.7 Hz, 1H), 7.94 (d, ⁴*J*(H,H) = 2.7 Hz, 1H), 7.54-7.71 (m, 5H), 7.43 (d, ³*J*(H,H) = 8.0 Hz, 2H), 7.20 (d, ³*J*(H,H) = 8.0 Hz, 2H), 2.35 (s, 3H).

¹³**C-NMR** (**CDCl3, 75 MHz**) δ (ppm) =190.5, 152.4, 150.5, 145.4, 142.2, 135.6, 134.0, 133.1, 129.7, 129.4, 128.5, 128.3, 127.5, 117.9, 21.5.

MS (70 eV, EI) m/z (%) = 369 (M⁺ (⁸¹Br)-C₅H₄, 13), 367 (M⁺ (⁷⁹Br)-C₅H₄, 13), 340 (14), 288(31), 155 (22), 91 (100).

HRMS (EI) $C_{19}H_{15}BrNO_4S$: calculated $[M+H]^+$: 431.9900 found: 431.9923.

Synthesis of diisopropylcarbamic acid 2-allyl-6-iodo(pyridin-3-yl) ester (123j)

Prepared according to **GP9** from diisopropylcarbamic acid 2,6-diiodo(pyridin-3-yl) ester **121j** (948 mg, 2 mmol), LiCl (129 mg, 3 mmol), zinc dust (216 mg, 3 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion conditions*: 25

°C, 5 h; *reaction with electrophile*: allyl bromide (1.3 equiv) was added, followed by the addition of one drop of CuCN·2LiCl (a 1.0 M solution in THF was used, ca. 0.02 mmol, ca. 0.5 mol %) at -20° C. The crude residue was purified by column chromatography (SiO₂, *n*-pentane/ ether = 3:2) afforded **123j** (645 mg, 83%) as colourless oil.

IR (**KBr**): ν (cm⁻¹) = 2970 (w), 1717 (s), 1575 (w), 1422 (s), 1314 (s), 1242 (s), 1172 (m), 1242 (m), 1153 (m), 1041 (w), 980 (w), 861 (w).

¹**H** NMR (CDCl₃, 300 MHz): δ (ppm) = 7.55 (d, ${}^{3}J$ (H,H)*J* = 8.3 Hz, 1H), 7.08 (d, ${}^{3}J$ (H,H) = 8.3 Hz, 1 H), 6.04-5.91 (m, 1H), 5.09 (m, 1H), 5.05 (dd, ${}^{3}J$ (H,H) = 7.4 Hz, ${}^{2}J$ (H,H) = 1.5 Hz, 1H), 4.10 (broad m, 1H), 3.93 (broad m, 1H), 3.15 (m, 2H), 1.30 (d, ${}^{3}J$ (H,H) = 6.8 Hz, 12H). ¹³C-NMR (CDCl₃, 75 MHz): δ (ppm) = 154.9, 152.1, 146.4, 134.1, 133.2, 132.5, 116.6, 111.5, 46.8, 46.8, 37.5, 21.4, 20.4. MS (70 eV, EI): m/z (%)= 387.3 (M⁺), 259.5 (16), 127.9 (100), 69.9 (3), 42.9 (41).

HRMS (EI) $C_{15}H_{21}IN_2O_4$: calculated [M]⁺: 388.0648 found: 388.0638.

Synthesis of 5-allyl-4-iodo-2-methyl-1-(*p*-toluenesulfonyl)-1*H*-imidazole (123k)

Prepared according to **GP9** from 4,5-diiodo-2-methyl-1*H*-imidazole **121k** (1.95 g, 4 mmol), LiCl (258 mg, 6 mmol), zinc dust (390 mg, 6 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion condition*: 50 °C, 1 h; *reaction with electrophile*: allyl bromide (1.1 equiv) was added, followed by the addition of one drop of CuCN·2LiCl (a 1.0 M solution in THF was used, ca. 0.02 mmol, ca. 0.5 mol %) at -20 °C. The crude residue was purified by column chromatography (SiO₂, *n*-pentane/ ether = 3:2) afforded **123k** (1.28 g, 80 %) as white needles.

mp.: 126.5-127.5 °C

IR (**KBr**): v (cm⁻¹) = 3080 (w), 3018 (w), 2982 (w), 1642 (w), 1593 (w), 1524 (m), 1389 (m), 1373 (s), 1292 (s), 1193 (s), 1166 (s), 1114 (s), 1085 (m), 993 (m), 903 (m), 818 (w), 670 (m), 580 (m).

¹**H NMR** (**CDCl**₃, **300 MHz**): δ (ppm) = 7.96 (d, ${}^{3}J(H,H) = 8.4$ Hz, 2H), 7.34 (d, ${}^{3}J(H,H) = 8.0$ Hz, 2H), 5.80 (m, 1H), 5.06 (m, 1H), 5.02 (dd, ${}^{3}J(H,H) = 5.7$ Hz and ${}^{2}J(H,H) = 1.4$ Hz, 1H), 3.59 (d, ${}^{3}J(H,H) = 5.9$ Hz, 2H), 2.58 (s, 3H), 2.45 (s, 3H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 148.5, 146.2, 135.4, 133.4, 132.3, 130.3, 130.3, 127.2, 127.2, 116.9, 88.0, 30.7, 21.7, 16.9.

MS (**70** eV, EI): *m*/*z* (%) = 401.9 (M, 100), 246.9 (24), 154.9 (64), 119.9 (10), 94.0 (12), 90.9 (89), 65.0 (13).

HRMS (EI) $C_{14}H_{15}IN_2O_2S$: calculated [M⁺]: 401.9894 found: 401.9894.

Synthesis of (1-benzenesulfonyl-3-iodo-1*H*-indol-2-yl) phenyl ketone (123l)

Prepared according to **GP9** from 2,3-diiodo-1-benzenesulfonyl-1*H*-indole (**121l**) (2.03 g, 4 mmol), LiCl (258 mg, 6 mmol), zinc dust (390 mg, 6 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion condition*: 50 °C, 2 h; *reaction with electrophile*: transmetalation with CuCN·2LiCl (1 equiv.) 10 min at 0°C, followed by addition of benzoyl chloride at $T_2 = -78$ °C. The reaction mixture was stirred afterwards for 1 h at -78 °C and warmed to 25 °C for 3 h. Purification by flash chromatography (SiO₂, *n*-pentane/ether = 1:1) afforded **123l** (1.63 g, 83%) as a white solid. **mp**.: 144.9-147.0 °C

IR (**KBr**): $v (cm^{-1}) = 3067 (w)$, 1671 (m), 1595 (w), 1446 (m), 1372 (s), 1250 (m), 1174 (s), 1148 (s), 1186 (m), 1052 (w), 951 (m), 732 (s), 720 (m), 681 (m).

¹**H NMR (CDCl₃, 300 MHz)**: δ (ppm) = 8.08-7.92 (m, 5H), 7.73-7.35 (m, 9H).

¹³C-NMR (CDCl₃, **75** MHz): δ (ppm) = 189.1, 137.5, 136.9, 136.7, 135.3, 134.3, 134.0, 131.8, 130.0, 129.2, 128.8, 127.5, 127.2, 124.9, 122.9, 114.5, 72.6.

MS (70 eV, EI) *m/z* (%) = 488.9 (M, 100), 345.9(64), 218.9 (80), 190.9 (31), 105.0 (11), 77.0 (33).

HRMS (EI) $C_{21}H_{14}INO_3S$: calculated [M⁺]: 486.9739 found: 486.9721.
Synthesis of *p*-toluenesulfonic acid 7-(2,2-dimethylpropionyl)-5-iodo(quinolin-8-yl) ester (123m)

Prepared according to **GP9** from *p*-toluenesulfonic acid 5,7-diiodo(quinolin-8-yl) ester **121m** (1.10 g, 2 mmol), LiCl (172 mg, 3 mmol), zinc dust (260 mg, 3 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion conditions*: 25 °C, 24 h (**Note**: organozinc reagent has brown colour); *reaction with electrophile*: transmetalation with CuCN·2LiCl (1 equiv.) 10 min at 0°C, followed by addition of pivaloyl chloride at $T_2 = -50$ °C. The reaction mixture was stirred afterwards for 1 h at -50 °C and warmed to 25 °C for 6 h. Purification by flash chromatography (SiO₂, *n*-pentane/ dichloromethane = 1:1) afforded *p*-toluenesulfonic acid 7-(2,2-dimethylpropionyl)-5-iodo(quinolin-8-yl) ester **123m** (78%) as a pale yellow solid.

mp.: 119.5-124.0 °C.

IR (**KBr**): ν (cm⁻¹) = 2968 (w), 1997 (s), 1477 (w), 1451 (w), 1372 (s), 1341 (m), 1206 (m), 1177 (s), 1085 (s), 999 (m), 806 (m), 779 (s), 742 (s), 688 (m), 671 (s).

¹**H** NMR (CDCl₃, 400 MHz): δ (ppm) = 8.87 (dd, ³*J*(H,H) = 4.1 Hz, ³*J*(H,H) = 1.5 Hz, 1H), 8.34 (dd, ³*J*(H,H) = 8.5 Hz, ⁴*J*(H,H) = 1.5 Hz, 1H), 7.90 (d, ³*J*(H,H) = 8.3 Hz, 2H), 7.84 (s, 1H), 7.53 (dd, ³*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 4.1 Hz, 1H), 7.43 (d, ³*J*(H,H) = 8.4 Hz, 2H), 2.46 (s, 3H), 1.12 (s, 9H).

¹³**C-NMR (CDCl₃, 100 MHz**): δ (ppm) = 208.4, 151.8., 145.1, 142.4, 142.3, 140.2, 136.0, 134.3, 133.8, 131.2, 129.3, 128.8, 123.9, 96.3, 45.4, 26.7, 21.7.

MS (70 eV, EI): *m*/*z* (%) = 451.9 ((M⁺-*t*Bu); 100), 445.5 (47), 383.5 (21), 352.4 (12), 297.2 (73), 270.7 (23), 155.0 (51), 91.0 (37).

HRMS (EI) $C_{21}H_{20}INO_4S$: calculated [M⁺]: 509.0158 found: 509.0164

Synthesis of 2-(2-bromothiazol-4-yl)benzaldehyde (123n)

Prepared according to **GP9** from 2,4-dibromothiazole **121n** (486 mg, 2 mmol), LiCl (172 mg, 3 mmol), zinc dust (260 mg, 3 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion conditions*: 25 °C, 0.5 h; *reaction with electrophile*: tetrakis(triphenylphosphine)palladium (104 mg, 0.09 mmol) was added at 25 °C followed by addition of 2-iodobenzaldehyde (925 mg, 4 mmol) and the mixture was heated at 50 °C for 20 h. Purification by flash chromatography (SiO₂, *n*-pentane/diethyl ether = 1:1) afforded 2-(2-bromothiazol-4-yl)benzaldehyde **123n** (455 mg, 85 %) as a colourless solid.

mp.: 121.1-123.5 °C.

IR (**KBr**): ν (cm⁻¹) = 3033 (w), 2790 (m), 2994 (w) 2741 (w), 1740 (s), 1452 (s), 1386 (m), 1233 (m), 1016 (s), 740 (m).

¹**H** NMR (CDCl₃, 400 MHz): δ (ppm) = 10.31 (s, 1H), 8.09 (s, 1H), 7.90 (dd, ${}^{3}J$ (H,H) = 7.8 Hz, ${}^{4}J$ (H,H) = 1.5 Hz, 1H), 7.87 (dd, ${}^{3}J$ (H,H) = 7.8 Hz, ${}^{4}J$ (H,H) = 1.5 Hz, 1H), 7.80 (td, ${}^{3}J$ (H,H) = 7.4 Hz, ${}^{4}J$ (H,H) = 1.1 Hz, 1H), 7.71 (tdd, ${}^{3}J$ (H,H) = 7.6 Hz, ${}^{4}J$ (H,H) = 1.2 Hz, 1H). ¹³C-NMR (CDCl₃, 100 MHz): δ (ppm) = 191.2, 165.7, 134.1, 133.9, 133.4, 130.7, 130.1, 128.2, 124.9, 120.8. MS (70 eV, EI): m/z (%) = 268 (100), 266 (99), 192 (12), 105 (48), 77 (21), 51 (9).

HRMS (EI) $C_{10}H_6BrNOS$: calculated [M⁺]: 266.9353 found: 266.9359.

Synthesis of [2-(2,6-dibromopyrimidin-4-yl)methyl]acrylic acid ethyl ester (1230)

Prepared according to **GP9** from 2,4,6-tribromopyrimidine **1210** (628 mg, 2 mmol), LiCl (172 mg, 3 mmol), zinc dust (260 mg, 3 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%).*Insertion condition*: 25 °C, 4 h (**Note**: organozinc reagent has brown colour); *reaction with electrophile*: ethyl (2-bromomethyl)acrylate (1.3 equiv) was added, followed by the addition of one drop of CuCN·2LiCl (a 1.0 M solution in THF was used, ca. 0.02 mmol, ca. 0.4 mol %) at -78° C. The reaction mixture was stirred afterwards for 2 h and warmed up to 25 °C for 4 h. Purification by flash chromatography (SiO₂, dichloromethane) afforded 2-[(2,6-dibromo-pyrimidin-4-yl)methyl]acrylic acid ethyl ester **1230** (438 mg, 63%) as a colorless oil.

IR (film): ν (cm⁻¹) = 2980 (w), 1711 (s), 1544 (s), 1510 (s), 1288 (w), 1223 (m), 1117 (w), 778 (m).

¹**H** NMR (CDCl₃, 400 MHz): δ (ppm) = 7.41 (s, 1H), 6.41 (s, 1H), 5.80 (s, 1H), 4.18 (q, ³J(H,H) = 7.0 Hz, 2H), 3.72 (s, 2H), 1.20 (t, ³J(H,H) = 7.0 Hz, 3H)

¹³**C-NMR (CDCl₃, 75 MHz**): δ (ppm) = 171.6, 165.8, 153.1, 151.4, 135.4, 129.5, 123.5, 61.2, 39.2, 14.1.

MS (EI, 70 ev): *m/z* (%) = 349.9 (M⁺, 6), 320.8 (68), 304.9 (22), 276.9 (100), 195.7 (20), 43.8 (17).

HRMS (EI) $C_{10}H_{10}Br_2N_2O_2$: calculated [M⁺]: 347.9109 found: 347.9100.

Synthesis of biphenyl-4-yl-(4-iodo-2,6-dimethoxy-pyrimidin-5-yl)methanone (123p)

Prepared according to **GP9** from 4,5-diiodo-2,6-dimethoxypyrimidine (**89a**) (266 mg, 1 mmol), LiCl (86 mg, 1.5 mmol), zinc dust (130 mg, 1.5 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion condition*: 50 °C, 3 h; *reaction with electrophile*: transmetalation with CuCN·2LiCl (0.5 equiv.) 10 min at 0°C, followed by addition of biphenyl-4-carbonyl chloride (260 mg, 1.3 equiv, 1.2 mmol) at $T_2 = -$ 30 °C. The reaction mixture was stirred afterwards for 1 h at -30 °C and slowly warmed to 25 °C for 14 h. Purification by flash chromatography (SiO₂, pentane/ Et₂O = 1:1) afforded **123p** (333 mg, 83%) as a white solid.

mp.:152.3-154.7 °C

IR (**KBr**): ν (cm⁻¹) =1664 (m), 1600 (m), 1570 (s), 1526 (s), 1460 (m), 1384 (s), 1369 (s), 1311 (s), 1261 (s), 1200 (m), 1075 (s), 1008 (s), 916 (s).

¹**H** NMR (CDCl₃, 600 MHz): δ (ppm) = 7.85 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 7.1 Hz, 2H), 7.42-7.37 (m, 2H), 7.36-7.31 (m, 1H), 3.99 (s, 3H), 3.84 (s, 3H).

¹³C NMR (CDCl₃, 150 MHz): δ (ppm) = 190.2, 165.0, 161.1, 144.6, 137.3, 131.9, 128.0 (2 carbons), 126.7 (2 carbons), 126.1, 125.2 (2 carbons), 125.0 (2 carbons), 124.3, 118.9, 53.3, 52.5.

MS (EI, 70 eV): m/z (%) = 446 (M⁺, 100), 345 (15), 293 (37), 181 (49), 152 (31). HRMS (EI) C₁₉H₁₅IN₂O₃: calculated [M⁺]: 446.0127 found: 446.0109.

Prepared according to **GP9** from 4,5-dibromo-2,6-dimethoxypyrimidine (**69b**) (253 mg, 0.85 mmol), LiCl (72 mg, 1.5 mmol), zinc dust (110 mg, 1.5 mmol, 1.5 equiv, <10 micron, 98+%, Aldrich), BrCH₂CH₂Br (5 mol%), Me₃SiCl (2 mol%). *Insertion condition*: 25 °C, 12 h; *reaction with electrophile*: In a flame-dried round bottom flask was charged with Pd(dba)₂ (24 mg, 5 mol%), P(*o*-furyl)₃ (20 mg, 10 mol%) and THF (1 mL). The mixture was stirred at 25 °C for 10 min then transferred to the reaction flask which was charged with organozinc solution **122q**. 4-Iodobenzonitrile (234 mg, 1.2 equiv, 1.02 mmol). The reaction mixture was refluxed for 2 h. Purification by flash chromatography (SiO₂, pentane/ Et₂O = 3:2) afforded **123q** (234 mg, 86%) as a white solid.

mp.: 149.1-150.6 °C

IR (**KBr**): v (cm⁻¹) = 2228 (w), 1587 (m), 1531 (m), 1460 (m), 1376 (s), 1324 (m), 1196 (m), 1094 (m), 1019 (m), 992 (m), 936 (m), 832 (m), 790 (m), 741 (m).

¹**H** NMR (CDCl₃, 300 MHz): δ (ppm) = 7.70 (d, *J*= 8.6 Hz, 2H), 7.40 (d, *J*= 8.6 Hz, 2H), 4.04 (s, 1H), 3.92 (s, 1H).

¹³C NMR (CDCl₃, **75** MHz): δ (ppm) = 168.6, 163.4, 152.3, 138.4, 132.0, 131.3, 118.6, 115.6, 112.1, 104.7, 55.6, 55.1.

MS (EI, 70 eV): *m/z* (%): 321 (M⁺, 100), 304 (12), 289 (28), 240 (18), 225 (24), 210 (29), 189 (23), 168 (16), 140 (38).

HRMS (EI): $C_{13}H_{10}N_3^{81}Br$: calculated [M⁺]: 318.9936 found: 320.9911.

D: Appendix

1. Curriculum Vitae

Name: Nadège Boudet Date of Birth: May, 18th 1981 Nationality: French Place of birth: Toulouse Marital Status: Single Mother language: French. Other language: English, Spanish, German.

Dec. 2004-Nov. 2007	Ludwig-Maximilians-Universität Department Chemistry and Biochemistr Ph.D. under the supervision of Prof. Dr. P.	ry aul Knochel	Munich, Germany
Sept. 2003-Sept. 2004	National Polytechnic Institute of Chemistry (INP, ENSIACET) Master Degree in Chemistry (DEA) with high honours <u>Theme</u> : "Reactivity of Natural Resources".		Toulouse, France
Sept. 2001-Sept. 2004	National Polytechnic Institute of Chemistry (INP, ENSIACET, Ecole Nationale Supérieure des Ingénieurs en Technologiques, département CHIMIE) "Diplôme d' Ingénieur Chimiste"		Toulouse, France Arts Chimiques et
Sept. 1999- June. 2001	Technological Institute, University P. Sabatier HND in Chemistry Technology "Diplôme de technicien chimiste s		Toulouse, France
Sept. 1998-Sept. 1999	Lycée F. Mitterand Baccalaureate Degree Scientific, obtained with high honours		Moissac, France
Languages	French : Native speaking. English : Speaking and writing fluently.	Spanish : Basic proficie German : Basic proficie	ency.

Research and work experience

Since Dec. 2004	Ludwig-Maximilians-Universität Department Chemistry and Biochemistry Ph.D. under the supervision of Prof. Dr. Paul Knochel <u>Topic</u> : Polyfunctionalizations of N-Heterocycles via chemo metalations. Application to the synthesis of biologically active con Teaching assistant in the organic chemistry practical courses students; Supervising of bachelor students; Education of a Assistant for 2 years.	Munich, Germany and regioselective npounds. for undergraduates Chemical Technical
2004 (6 months)	Sanofi-Aventis Research Chemical Development Laboratory (Supervisor Dr. F. Brion) Master Degree work <u>Topic</u> : Cross-coupling reactions by organometallic catalysis on he	Toulouse, France terocycles.
2003 (3 months)	D. R. T. ("Resin and Terpene Derivatives") R&D Laboratory Training research work on Terpene Chemistry <u>Topic:</u> Synthesis of isobornyl acetate with ions exchange resins	Castets, France
2002 (1 month)	Sanofi-Synthélabo Industry Training technician work <u>Topic</u> : Industrial synthesis of Cordarone®.	Aramon, France

2001 (3 months)	Scientific National Research Center (CNRS)	Toulouse, France
	Laboratory of "Synthesis and Physic-chemistry of Molecul	es with Biological Interest"
	Topic: Synthesis of a new polyaminocarboxylic ligand as f	luorescent marker cell.

Personal interests

Piano Rowing, Canoe-Kayak, Hiking.

Publications

- 1) Nadège Boudet, Srinivas Reddy Dubbaka and Paul Knochel. "Amination of DNA and RNA units via Cuprated Pyrimidine and Purine Intermediates". *Org. Lett.* 2007, *submitted*.
- 2) Nadège Boudet, Jennifer R. Lachs and Paul Knochel. "Multiple Regioselective Functionalization of Quinolines *via* Magnesiations". *Org. Lett.* 2007, *9*, 5525-5528.
- Nadège Boudet, Shohei Sase, Pradipta Sinha, Ching-Yuan Liu, Arkady Krasovskiy, and Paul Knochel. "Directed Ortho Insertion (DoI): a New Approach to Functionalized Aryl and Heteroaryl Zinc Reagents". J. Am. Chem. Soc. 2007, 129, 12358-12359.
- Darunee Soorukram, Nadège Boudet, Vladimir Malakhov and Paul Knochel. "Preparation of Polyfunctionalized 2,6-Dimethoxypyrimidine Derivatives *via* Chemo- and Regioselective Direct Zinc Insertion". *Synthesis*, 2007, PSP, 24, 3915-3922.
- 5) Nadège Boudet and Paul Knochel. "Chemo- and Regio-selective Functionalization of Uracil Derivatives. Application to the Synthesis of Oxipurinol and Emivirine". *Org. Lett.* **2006**. *8*, 3737-3741.

Posters and oral communications

- 1) **Nadège Boudet** and Paul Knochel." Chemo- and Regioselective Metalations on N-Heterocycles. Application to the Synthesis of Biologically Active Compounds" (Oral communication). **Sanofi-Aventis**, Mannheim, Germany, July, **2007**.
- Nadège Boudet and Paul Knochel. "Synthesis of Functionalized Pyrimidine using a Selective Br/Mg Exchange Reaction: An Access to Uracil Derivatives" (Poster). 1st European Chemistry Congress, Budapest, Hungary. August, 2006.
- Nadège Boudet and Paul Knochel. "Synthesis of Functionalized Pyrimidine using a Selective Br/Mg Exchange Reaction: An Access to Uracil Derivatives" (Poster). 3rd Industrie Tag, Munich, Germany, October, 2006.
- 4) Nadège Boudet and Paul Knochel. "Synthesis of Functionalized Pyrimidine using a Selective Br/Mg Exchange Reaction: An Access to Uracil Derivatives" (Oral communication). Work shop: Graduiertenkolleg 1038 "Catalysts and Catalytic Reactions for Organic Synthesis", Freiburg, Germany, 24th-25th, March 2006.
- 5) Nadège Boudet and Paul Knochel, "Regioselective Functionalization of Quinolines via Bromine/Magnesium Exchange Reaction" (Poster). (Sanofi-Aventis [i]lab award 2005). 13th IUPAC International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-13), Geneva, Switzerland, 17th-21st, July 2005.

München, den 29.11.2007