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1. Introduction 

1.1. Gene therapy 
Gene therapy is aimed to provide novel genetic information to specific cells of a 

patient and promises revolutionary advances in the prevention, treatment or cure of 

many human diseases. It was first introduced by Friedman and Roblin [1] in 1972 and 

was originally aimed to correct genetic disorders. For this purpose, therapeutic 

nucleic acids have to be delivered into the target cells to turn on or restore a certain 

gene function (‘gain of function’). However, the field of gene therapy has been much 

broadened in its scope. Antisense oligonucleotides (AS-ON) [2], ribozymes [3] or 

small interfering RNA (siRNA) [4] used for suppression of specific gene functions 

(‘loss of function’) have emerged as potential therapeutic agents. Many inherited and 

acquired diseases based on single genetic defects like Cystic Fibrosis or SCID 

(severe combined immunodeficiency disorder) and more complex disorders like 

vascular or infectious diseases are amendable for gene therapy as well as DNA 

vaccination. Most of all, cancer gene therapy has emerged as a promising field of 

interest since cancer is in many cases a genetic disease with genetic aberrations and 

subsequent gene defects. Actually, most of the clinical trials are directed to cancer 

gene therapy, highlighting out the potential of the treatment for this disease. 

However, a therapeutic benefit in larger numbers of patients was so far not obtained. 

The major challenges are still the improvement of efficiency, specificity and safety of 

the existing gene delivery systems (gene vectors). 

However, since the first clinical success in the treatment of the monogenetic disease 

SCID has already been achieved [5], it becomes clear that gene therapy has the 

potential to become the foundation for a whole new class of therapeutic applications. 

1.2. Gene vectors: general requirements 
Like all medicines, nucleic acid (NA) based therapeutics should be in general highly 

specific, highly effective and well tolerated. However, unlike normal drugs, NA’s have 

unfavorable physical properties: they are large, hydrophilic and negatively charged. 

In addition, very effective defense mechanisms have been developed by the human 

body to recognize and degrade foreign NA’s. During the past, several tools, namely 

gene vectors, have been developed to ensure the stability of the delivered NA of 
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interest and protect it from degradation by serum nucleases. However, once applied 

via the bloodstream, vectors are threatened to be eliminated due to unspecific 

binding to blood components and/ or subsequent elimination by the reticulo 

endothelial system (RES). Delivery of the vector to the desired target is of crucial 

impact, as interaction with non-target tissues could trigger undesired and potentially 

toxic side-effects, leading to reduced circulation times and targeting ability (Figure 1). 

Once the vector has reached the target site, access can be limited by restricted 

diffusion within the target tissues [6] and unspecific binding to components of the 

extra cellular matrix. Depending on the type of the tumor, the influence of the extra 

cellular matrix on mobility of the vector can vary significantly. After successful 

internalization into the target cell, intracellular barriers (e.g. release of the vector out 

of the endosome into the cytoplasm, nuclear trafficking, nuclear entry and vector 

unpacking) are presenting major challenges. 
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Fig. 1. Extracellular barriers for systemically applied gene delivery systems: gene vectors [1] 
can interact with blood components like blood cells [2] or plasma proteins [3], resulting in the 
formation of aggregates. They can clog blood capillaries leading to embolism or be cleared by 
the RES resulting in inefficient gene delivery. Incomplete or leaky vasculature can facilitate 
extravasations of the vector to the target tissue [4]. Once reached the target tissue, diffusion of 
the vector may be limited; interactions with the extra cellular matrix proteins can lead to 
binding, aggregation or dissociation of the gene vector [5] 
 
 
Once being expressed, suboptimal or instable expression of the transgene can be 

caused by silencing of the gene [7], loss of gene or of transfected cells. Risk of 
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random, unspecific integration into the host genome might switch on oncogenes [8]., 

It is also of great importance that the gene transfer affects exclusively the somatic 

cell line of the patient and not the germ line. Once the vectors have delivered their 

therapeutic NA, they should be biodegradable and/ or easily being eliminated and not 

accumulate in any organ.  

For successful gene therapies, development and choice of appropriate vectors for 

gene delivery will be a major challenge in future works since all of these aspects 

have to be taken into consideration. In the last three decades, a number of delivery 

methods have been developed which can be split in two separate “worlds”, namely 

into the field of viral and non-viral vectors. The majority of clinical approaches so far 

have employed retroviral or adenoviral vectors [9].  For a review on viral gene 

therapy see reference [10].  

However, non-viral vectors are becoming more and more attractive as gene vectors 

since they offer some attractive characteristics ([11], [12]). They are more flexible 

regarding the type and size of delivered NA: a broad range from small siRNA up to 

large artificial chromosomes can be used. Furthermore, they offer easy synthesis and 

low production costs. It is described that non-viral vectors show lower 

immunogenicity than viral vectors since they can be generated either protein free or 

by using nonimmunogenic human or humanized proteins [13]. On the other side, 

many cationic carrier molecules utilized for non-viral NA condensation are far from 

being non-toxic. However, the major bottleneck of synthetic viruses is their limited 

efficacy compared to viral vectors which consequently requires the application of 

large amounts of DNA. Actually, this weakness is presenting an important opportunity 

since the chemical synthesis of non-viral vectors allows various modifications and 

easy manipulations. They can be engineered to introduce cell-specific binding thus 

delivering specifity which is a key issue for improved cancer therapy. Among the non-

viral vectors so called ‘polyplexes’ have emerged as potent in vitro transfection 

agencies (for review see [14], [15], [16], [17],[18]). They are based on the 

condensation of negatively charged DNA by electrostatic interactions with 

polycationic compounds into compact particles. If polyplexes will be one day able to 

metamorphose into potent NA therapeutics for human applications will be dependent 

on their future development. For this aim, improvement of their efficacy, safety and 

specificity for in vivo applications are vital preconditions. Therefore, future 

development of NA delivery systems may overcome the historically founded 
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separation in viral and non-viral research fields: Viral vectors can be chemically 

modified to reduce immunogenicity and improve specificity while synthetic systems 

may be engineered to mimic the dynamic cell entry and cell trafficking processes of 

viruses and metamorphose into efficient “synthetic virus” delivery systems for human 

applications.  

1.3. Gene transfer mediated by PEI polyplexes  
Among the known polymeric carriers tested, polyethylenimine (PEI) has been 

evaluated with regard to its efficacy as a versatile, inexpensive and useful 

transfection system ([19], [20]) reaching in vitro gene delivery efficiencies similar to 

viral vectors [21]. It has been proposed that the high gene transfer efficiency of PEI is 

due to its capacity to facilitate endosomal release ([22], [23]). This hypothesis is 

based on the chemical structure of PEI: only every third nitrogen atom is protonable 

at physiological pH, hence the remaining amino groups can act like a proton-sponge 

inside the endosomes, leading to osmotic swelling followed by breaking up of the 

endosomal membrane [24]. Direct interaction of positively charged DNA particles with 

the negatively charged inner endosome membrane surface may also play a 

significant role in membrane disruption ([25], [26], [27]). PEI polymers can be 

synthesized in a linear and a branched topology (LPEI and BPEI) [28] and are 

available in a broad range of molecular weights. Most successful and widely studied 

polymers are LPEI with a molecular weight of 22kDa and BPEI with 25kDa.  

Due to its high charge density of protonable amine functions, PEI is ideal to 

condense NAs into complex particles [29]. The size of the PEI/DNA polyplexes is 

strongly dependent on the present salt concentration and the molar ratio of PEI 

nitrogen to DNA phosphate (N/P ratio) groups ([30], [31]). For efficient complexation, 

an excess amount of PEI is required, leading to a net positive surface charge and 

leaving a considerable amount of PEI free in solution ([32], [33]). Unfortunately, these 

higher N/P ratios (≥ 5) leave a narrow window between transfection efficiency and 

severe toxicity ([34], [35]) strongly restricting the in vivo application of crude PEI/DNA 

polyplexes. However, irrespective of the conditions used, LPEI/ DNA complexes are 

generally considered as a “golden standard” for in vitro gene delivery since they 

exhibit an improved cell viability and increased transfection efficiency compared to 

BPEI complexes [36]. 
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1.3.1. Modifications of PEI polyplexes 
In the last decade, it became clear that any polyplex with “static” properties will have 

strong difficulties to successfully overcome all biological delivery steps, especially for 

systemic delivery. Figure 2 shows the most crucial barriers influencing the extra- and 

intracellular fate of the polyplexes. Future polyplexes will have to sense their 

physiological environment and undergo programmed changes upon the changes in 

the delivery pathways. 

Fortunately, the amino groups of the PEI polymers offer a very attractive platform for 

easy chemical modification making the incorporation of functional domains possible.  
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Non target tissues/ organs 

Target cells/ tissue
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Plasma membrane

Endosome

Cytoplasmic compounds
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Fig. 2. Extra- and intracellular pathways for gene delivery 
 
Since PEI/DNA polyplexes are favorable for in vitro gene transfer efficiency but 

problematic for systematic application many attempts have been made to improve 

extra- and intracellular delivery characteristics of these vectors.  

A common approach to prevent non-specific trapping and to reduce toxicity of the 

vectors is masking the surface charges with hydrophilic polymers like polyethylene 

glycol (PEG) or the serum protein transferrin [37]. PEGylation can either be done 

prior to complex formation (“prePEGylation”) ([38], [39]) or after complex formation 
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(“postPEGylation”) ([40], [41]). Pegylation of polyplexes has been shown to prevent 

their aggregation as well as aggregation with blood components, to lower toxicity, 

and to significantly prolong circulation time ([40], [42], [35]). Unfortunately, as 

shielding improves polyplex properties for systemic application, at the same time 

gene delivery turned out to be less efficient, probably due to reduced cell surface 

interactions ([35], [38], [41], [43]). Additionally, differences in the mode of 

internalization, endosomal entrapment and intracellular trafficking account for this 

effect ([44], [45]). Therefore, different methods for triggered deshielding of the PEG 

chains have been established leading to a stable PEG coat during extracellular 

transport possible and triggered intercellular release of the PEG shield. They all take 

advantage of changes in physiological parameters within the cell like pH, redox 

potential or enzyme concentration. Many of them exhibit very interesting and 

promising results, highlighting the importance of labile PEGylation strategies for non-

viral gene delivery systems (see [46] for a recent review).  

To increase specificity of polyplexes, the concept of targeted delivery was developed. 

ion of polyplexes to the target cell, particles are taken up by 

The covalent attachment of targeting ligands to PEI polyplexes introduced cell 

specificity and partly restored transfection efficiency of stable shielded particles thus 

presenting a very attractive concept. These targeting molecules recognize specific 

cell surface receptors thus directing the polyplex to the specific tissue. Numerous 

ligands such as small chemical compounds, peptide ligands, vitamins, 

carbohydrates, growth factors, antibodies and others have been investigated (for 

review see [47] and [48]). To date, transferrin-mediated uptake of polyplexes is one 

of the best-studied targeting systems. The serum protein transferrin thereby 

presented not only the targeting domain but also led to an efficient shielding of the 

polyplex ([49], [37]).   

After cellular associat

endocytosis. Irrespective of the mechanism of cellular uptake, after internalization 

complexes are mainly found in intracellular vesicles such as endosomes, as 

evidenced by fluorescence microscopy [50]. Subsequent release of the particles into 

the cytoplasm is crucial for efficient gene delivery since endosomal acidification (from 

pH ~ 7 to pH ~ 4.5 found in lysosomes), is associated with degradation of the 

complexes. PEI polyplexes and free PEI have considerable endosomolytic properties 

as explained by the proton sponge hypothesis. However, this is apparently not 

efficient to release the major part of the complexes into the cytoplasm. Endosomal 
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release is still one of the major bottlenecks for efficient gene transfer, especially with 

small PEI polyplexes at low concentrations [30] or purified polyplexes [33]. 

Approaches to improve endosomal release include endosomolytic agents like 

chloroquine (see [51] for a review), synthetic virus derived fusion peptides ([52], [53]) 

and membrane destabilizing peptides like the bee venom derived melittin ([50], [54]). 

Another interesting approach to achieve endosomal release is the photochemical 

ations 

.3.2. Tumor targeting of PEI polyplexes 
ents a very attractive and advantageous 

intracellular release technology (PCI) which is based on the accumulation of 

photosensitizing compounds in endosomal membranes. Light induces break-down of 

the endosomal membrane leading to release of trapped molecules ([55], [56]). 

The schematic “artificial virus” in Figure 3 presents the most important modific

made in the development of “smarter” PEI polyplexes. Of course, many other 

additional functional changes in for more dynamic and “virus-like” polyplexes will be 

engineered in future work. 

 

Affinity ligands peptides, growth factors,
antibodies, vitamins,..

PEG: polyethylene glycol

Core: PEI/DNA Affinity ligand

Hydrophilic coating (PEG)

Endosomolytic melittin, influenza peptide, ..
domain:

 
Fig 3: Important modifications of PEI polyplexes 
 

1
Treatment of cancer using gene therapy pres

strategy since a relatively short expression of the therapeutic protein might be 

already sufficient to eradicate the tumor. Several therapeutic concepts can be utilized 

(see [57] for a recent review): Introduced therapeutic genes might lead to a direct 

killing of the tumor cells through local expression of a specific enzyme which converts 

an inactive prodrug into the active compound directly at the tumor site (“Gene 

directed enzyme prodrug therapy, GDEPT”, [58]). Expression of highly potent 

cytokines can be used for local killing of the tumor cells (e.g. [59], [60]). Other 

strategies interfere with tumor associated processes like metastasis or 

neoangiogenesis. Bacterial plasmid DNA containing unmethylated CpG sequences 
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can act like a vaccination and stimulates the expression of anti-tumor active 

cytokines such as interferon-γ or IL-2 [61].  

A major challenge for PEI-based polyplexes is the efficient and specific targeting of 

the desired NAs to the tumor cells. A recent review on targeted delivery of NAs is 

given in [62]. A few tumor types are amenable for direct application and some PEI 

polyplexes have been successfully investigated for the intratumoral delivery of 

therapeutic NAs ([63], [64]). Nevertheless, targeting tumors via the intravenous route 

opens the possibility to reach and attack multiple spread metastatic tumor nodules. 

Metastases with a diameter ≥ 2mm depend on the constant supply of nutrients and 

oxygen via the blood stream and therefore induce the formation of new blood 

vessels. This abnormal neovascularisation leads to an imperfect and leaky tumor 

vasculature combined with an inadequate lymphatic drainage. Therefore, permeation 

and retention of nanoparticles via leaky tumor vasculatures with passive 

accumulation of polyplexes at the tumor site can take place. This passive targeting 

strategy first described by Maeda et al [65] is called the “enhanced permeability and 

retention (EPR) effect”. To take advantage of this effect, macromolecules have to 

exceed a molecular weight of 50kDa to avoid renal clearance. Additionally, in order to 

increase the possibility of the particles to extravasate at the tumor site [40] they have 

to be long circulating in the blood stream (which is realised by the hydropholic 

surface modification e.g. with PEG chains). However, the most attractive and 

successful way for directing NAs to the tumor tissue is active targeting. This 

approach can be realised by coupling targeting ligands to PEI polyplexes as 

described in 1.3.1. Since tumor cells are fast dividing cells, they typically over-

express specific surface bound receptors like the growth factor receptors EGFR or 

HER-2 ([66], [67]). Incorporation of EGF into PEI polyplexes led to high reporter gene 

expression in hepatocellular carcinoma bearing SCID mice. Expression was 

predominantly found in the tumor with levels up to 100 fold higher than in the liver, 

which was the highest major expressing organ [68]. Another very successful 

approach was reported by Shir at al. [64]: Polyplexes containing EGF as targeting 

ligand and incorporation of double-stranded RNA polyIC led to complete regression 

of EGFR over expressing glioblastoma in mice.  

Endothelial cells of the tumor vasculature also over express specific surface 

receptors like integrins making the neoangiogenic blood vessel a promising target 

([69], [70]). Recently, RGD-PEG-PEI polyplexes delivering antiangiogenic siRNA 
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have been successfully tested for systemic applications exhibiting significant 

inhibition of neuroblastoma growth in mice [71]. Another interesting study was the 

inactivation of the vascular endothelial growth factor (VEGF) (which is an 

endogenous mediator for tumor angiogenesis) through RGD-PEG-PEI mediated 

delivery of its corresponding soluble receptor resulting in tumor growth inhibition [72].  

A successful approach in active tumor targeting of non-viral delivery systems is the 

utilisation of the serum protein transferrin (Tf) for targeting Tf-receptors which are 

over expressed on fast growing cells due to their high demand of iron [73]. Since Tf is 

a large (≥80 kDa), hydrophilic plasma protein [37], it ideally combines an intrinsic 

stealth effect with targeting towards transferrin receptor expressing cells. Tail vain 

injection of Tf shielded and targeted polyplexes demonstrated excellent potential for 

in vivo applications: the biodistribution pattern was shifted from lung and liver to a 

100 fold higher transgene expression in distant grown neuroblastoma tumors ([37], 

[40], [39]). High specificity of Tf targeted vectors (with and without additional PEG 

shield) could be confirmed by luciferase imaging in living mice [74]. Within the tumor, 

transgene expression was associated mainly within tumor cells next to tissue 

structures resembling primitive blood vessels. Expression levels varied between 

different tumors, due to deviant tumor vascularisation, necrotic tissue inside the 

tumors and infiltration by macrophages [75], leading to DNA degradation within the 

Kupffer cells of the liver [37]. A successful therapeutic approach performed by 

Kircheis et al. [59] presents the repeated administration of Tf polyplexes encoding 

tumor necrosis factor alpha (TNF-α) into tumor bearing mice. Inhibition of tumor 

growth and induction of tumor necrosis was observed whereas no systemic TNF-

related toxicity occurred, emphasising the high tumor specificity of this vector system.  

1.3.3. Biocompatibility of PEI and PEI polyplexes  
The use of standard PEI/ DNA polyplexes for systemic applications is strongly limited 

since pronounced toxicity with massive damages in lung and liver tissues occurs 

([20], [34], [40]).  Acute toxicity is manly attributed to i) the positive surface charge of 

the cationic carrier and ii) the amount of free PEI being not involved in DNA 

complexation. In general, positively charged particles (free PEI as well as PEI 

polyplexes) bind to plasma proteins [40] and activate the complement system [76] 

triggering immune defense mechanisms. Binding to negatively charged membranes 

can mediate erythrocyte aggregation, leading to occlusion of lung capillaries followed 
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by lung embolism ([77], [40]). Opsonisation of the particles with serum proteins leads 

to macrophage-induced elimination and relocation of the polyplex to the liver.  

Given in a sufficient large bolus, systemically delivered small LPEI/DNA polyplexes 

result in high gene expression in the lung and lower gene expression in other organs 

(liver, heart, spleen and kidneys) ([78], [79]). These particles are supposed to rapidly 

cross endothelial cells of the lung capillaries [80]. In contrast, BPEI-based polyplexes 

are less efficient while being often more toxic ([31], [81]) than LPEI particles. The 

biophysical reason for this differing behavior is still not completely clarified.  

Masking the positive surface charge by PEGylation reduces systemic toxicity [40] but 

does not completely eliminate it [35]. Additionally, gene transfer efficiency of the 

polyplexes is in general strongly reduced which is currently partly compensated 

through the delivery of large amounts or multiple administrations of vectors modified 

with targeting ligands like Tf or EGF. However, application of high dosages and/ or 

repeated administrations of PEI polyplexes concomitantly increase the amount of free 

PEI being simultaneously applied: one of the most striking features of PEI based 

polyplexes is that they have to be mixed with an excess amount of polymer for 

successful gene delivery. This protocol generates 60 – 80% PEI remaining in a free 

form. Unfortunately, unbound PEI mainly attributes in a dose-dependent manner to 

significant cell toxicity ([32], [33], [82], [83]). In vitro, PEI induces membrane damage 

and initiates apoptosis in clinically relevant cell lines ([81], [84]). In vivo, massive 

damage in lung and liver occurred in mice models ([34], [35], [81],). Godbey and co-

workers classified PEI-mediated toxicity into an immediate toxicity, associated with 

free PEI and a delayed form, connected with cellular processing of PEI/DNA 

complexes [82]. PEI may also be involved in the transport of DNA into the nucleus 

since naked DNA is not able to enter the nucleus efficiently [85]. Another indication 

that PEI/DNA complexes enter the nucleus intact is that PEI and DNA co-localize 

within the nucleus [86]. This drives the question of the effect of unbound polymer on 

the cells after nuclear entry since it might interact with host DNA or RNA [87]. In 

addition to acute toxicity, the long term fate of the polymeric carrier in the host has to 

be taken into consideration [88]. PEI is a nondegradable polymer and cannot be 

metabolized. Those molecules mostly tend to accumulate in the liver or the kidney 

leading to uncontrollable long-term toxicity [89]. Taken together, toxicity and side 

effects of the gene carrier have to be minimized. One reasonable approach is the 

synthesis of novel biodegradable polymers with the specific goal of improved 
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biocompatibilities while maintaining high transfection efficiency (for example see [90-

93]; [94]). An alternative and additional approach is the development of efficient 

methods to purify a broad range of polyplexes from unbound polycations such as 

PEI. The first published approach for the purification of PEI particles ([95], [96]) was 

based on ultra filtration. Subsequently, an approach based on size exclusion 

chromatography (SEC) was developed which was more effective in complete 

separation of unbound polymer [33]. Purified polyplexes exhibited a greatly improved 

toxicity profile in vitro and in vivo ([33], [96]) 

Besides the improvement of biocompatibility, an excess charge of polycation is 

disadvantageous for any post-grafting strategy (for example postPEGylation) since 

the grafting molecule not only binds to complexed but also to unbound PEI. It may 

even prove inhibitory effects in combined post-grafting strategy, for example in a 

postPEGylation and a posttargeting approach. Additionally, excess free ligand-PEG-

PEI conjugates might compete with the polyplexes for receptor binding. 

In summary, further development of purification methods for polyplexes would be 

advantageous for the given reasons. 

1.4. Aims of the thesis 
Regarding future developments, one has to get straight that purification of polyplexes 

is a vital precondition for reasonable systemic gene transfer based on synthetic 

carriers.  

Therefore, one major focus was the upscale of existing SEC-based method for 

effective polyplex purification in order to evaluate purified, targeted and shielded PEI- 

polyplexes for their tumor targeting efficiency and biocompatibility. Since these small, 

PEGylated particles might not be very efficient in gene delivery, additional 

endosomolytic domains should be incorporated into the polyplex in order to increase 

transfection potency.  

The applied SEC method for purification of PEI polyplexes is limited to particles with 

a size below 200 nm since bigger particles get stuck within the gel beads. However, 

effective gene carriers that are promising in vivo candidates might possess sizes 

above 200 nm. It is also unclear if gel filtration can remove an excess of larger PEI 

conjugates containing targeting ligands or shielding molecules. However, at the 

target site, unbound targeting conjugate could lead to competition with the targeted 

polyplex for receptor binding resulting in reduced gene delivery. Additionally, a 
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formulation of well-defined composition is necessary for the practical administration 

and development of polyplex gene carriers as a potential future pharmaceutical 

product.  

Therefore, the aim of this work was the development of a novel purification method 

which should be suitable for a broad range of polyplexes exhibiting virus-like 

dimensions with up to a few hundred nanometres.  Additionally, the approach should 

be capable of removing unbound polymer as well as free PEI-conjugates like PEG-

PEI or Tf-PEG-PEI. Medium-sized Tf-shielded and targeted polyplexes which have 

been previously shown to exhibit high transfection efficiency should be purified and 

systemically applied in tumor bearing mice in order to analyse transfection efficiency 

and biocompatibility. 
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2. Materials and methods 

2.1. Chemicals and reagents 
LPEI (linear PEI, 22kDa) was synthesized by acid-catalysed deprotection of poly(2-

ethyl-2-oxazoline) (50 kDa, Aldrich) in analogous form as described in [28]. It is also 

commercially available from Polyplus (Straßbourg, France). BPEI (branched PEI) 

with an average molecular weight of 25 kDa was obtained from Sigma-Aldrich 

(Munich, Germany). PEI was used as a 1-10 mg/ml stock solution neutralized with 

HCl. PEG20-BPEI (with a molar ratio of 20 kDa PEG to branched 25 kDa PEI of 2:1) 

and PEG20-LPEI (with a molar ratio of 20 kDa PEG to linear 22 kDa of 0.9:1) 

conjugates, and Tf-PEG-BPEI conjugates linked with a heterobifunctional 3.4 kDa 

PEG derivative were synthesized and purified as previously described in [39]. Tf-

BPEI conjugate (with a molar ratio of one transferrin molecule linked to PEI) was 

synthesized as described [37]. Plasmid pCMVLuc (Photinus pyralis luciferase under 

control of the CMV enhancer/promoter) [97] was produced by Plasmid Factory 

(Bielefeld, Germany). FluorolinkTM Cy5 monofunctional dye was purchased from 

Amersham Biosciences (Freiburg, Germany). Melittin-BPEI conjugates (N-mel, C-mel 

and analogs CMA-3 and NMA-3) were synthesized as described in [54], [98], [93]. All 

other chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany). 

2.2. Covalent labeling of PEI and PEI-conjugates 
LPEI and BPEI: One vial of Fluorolink TM Cy5 monofunctional dye was dissolved in 

100 µl DMSO (Cy5 stock solution). 1 mg of PEI diluted in water (910 µl with a 

concentration of 1.10 mg/ml for LPEI and 925 µl with a concentration of 1.08 mg/ml 

for BPEI, respectively) was covalently labeled with 10 µl of Cy5 stock solution for 

LPEI, respectively 25 µl Cy5 stock solution for BPEI, to give a final volume of 1 ml.  

Tf-PEG-BPEI and Tf-BPEI: 0.5 mg of Tf-PEG-BPEI respectively Tf-BPEI conjugate 

diluted in water was mixed with each 25 µl Cy5 stock solution to give a final volume 

of 500 µl.  

PEG20-LPEI and PEG20-BPEI: 0.5 mg of PEG20-LPEI respectively PEG20-BPEI 

conjugate diluted in water was each mixed with 25 µl Cy5 stock solution to give a 

final volume of 500 µl.  
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475 µl of Tf- and PEG- conjugates with a concentration based on PEI content of 1.05 

mg/ml was used. Reaction mixtures were left at room temperature in the dark for at 

least 2h. Unreacted dye was removed by size exclusion chromatography using a 

Sephadex G25 column (Pharmacia Biotech, Sweden) equilibrated in 75 mM NaCl, 10 

mM HEPES, pH 7.4. Cy5 content was measured by absorption at 650 nm; PEI 

content was estimated by TNBS Assay as described in [99]. 

The molar ratios of BPEI / Cy5 and LPEI / Cy5 were 1 / 0.7, respectively 1 / 0.5; for 

Tf-PEG-PEI / Cy5 and Tf-BPEI / Cy5 1 / 1.8, respectively 1 / 1.4; for PEG20-BPEI / 

Cy5 a ratio of 1 / 1.5 and for PEG-LPEI/ Cy5 a ratio of 1 / 0.8 calculated. 

2.3. Quantification of BPEI and LPEI  
2.3.1. TNBS assay 
Concentration of PEI and PEI conjugates was measured by trinitrobenzenesulfonic 

acid (TNBS) assay as described in [99]. Standard PEI solutions with a known amount 

of polymer and test solutions containing either BPEI, LPEI or their respective 

conjugates were serially diluted in duplicates with 0.1 M sodium tetraborate to give a 

final volume of 100 µl using a 96 well plate, resulting in PEI concentrations of 10 to 

50 µg/ml o 20 to 100 µg/ml for BPEI or LPEI, respectively. 2.5 µl of TNBS (75 nmol) 

diluted in water was added to each well. Since TNBS reacts with primary amino 

groups of PEI to form colored trinitrophenylated derivatives, the reaction is faster for 

BPEI and slower for LPEI. After a reaction time of 5 minutes for BPEI respectively 30 

minutes for LPEI carried out at room temperature, absorption was measured at 405 

nm using a microplate reader (Spectrafluor Plus, Tecan Austria GmbH, Grödig, 

Austria) and a reference wavelength of 630 nm. 

2.3.2. Copper complex assay 
Quantification of PEI and PEI-linkers was also performed by a copper complex assay 

described in [100]: 50 µl of Copper-(II)-sulfate dissolved in 0.1 M sodium acetate 

(0.23 mg/ml), pH 5.4 were mixed with 50 µl of standard PEI samples with known 

polymer content or test solutions of BPEI and LPEI containing 10 to 80 µg/ml PEI 

diluted in water. The resulting Cu(II)/PEI complexes were quantified by measuring the 

absorbance at 285 nm using a Cary 3 Bio spectrophotometer (Varian, Mulgrave, 

Australia).  
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2.4. Calculation of N/P ratios in purified polyplex 
formulations 
For naked PEI/ DNA particles polymer content was determined unless indicated 

otherwise by TNBS assay or copper complex assay. For the latter, the concentration 

of PEI in the presence of DNA was calculated by the following equation: 

 

C PEI = (A tot – A DNA) / ε Cu(II)/PEI * b 

A tot :  absorbance at 285 nm of Cu(II)/PEI in the presence of DNA 

A DNA :  absorbance at 285 nm of the PEI polyplex 

ε Cu(II)/PEI : molar absorptivity of Cu(II)/PEI at 285 nm (ε Cu(II)/BPEI = 4.85 x 105; 

ε Cu(II)/LPEI = 6.31 x 105) 

b:  fixed optical path length (cm) 

 
Since the Cu(II)/PEI complex is measured at 285 nm (A tot), absorption substantially 

overlaps with the absorption of DNA (ADNA ) present in the solution. Hence absorption 

of the polyplex at 285 nm must be separately analysed and subtracted from the total 

absorption (A tot). 

For the analysis of multi-functional polyplexes quantification of PEI content either by 

TNBS or copper complex assay was possible but turned out to be unsteady, 

especially in the presence of amine-containing buffers (e.g. TBE).  Hence, for exact 

and reproducible determination of N/P ratios in more complex DNA formulations 

containing well-defined mixtures of polymers and conjugates, a fluorescence-based 

assay for PEI and PEI conjugates was developed and used if indicated. For this 

purpose, PEI and PEI-conjugates were labeled with Cy5 dye as described in 2.2 and 

inserted into the polyplex formulations by replacing 5 % – 20 % of non-labeled 

material by labeled material. Fluorescence intensity was measured using a Varian 

Eclipse Fluorimeter (excitation wavelength 649 nm; emission wavelength 670 nm). 

Since labeling of PEI and PEI conjugates with Cy5 dye was performed at a low ratio 

of dye to polymer (for every Cy5-conjugate described in 2.2 no more than an average 

of 2 molecules Cy5 label per molecule PEI or PEI-conjugate), no influence on DNA-

binding and polyplex formation occured.  

DNA amount was quantified by measuring the absorbance at 260 nm, using a 

Genesys 10-S spectrophotometer (Thermo Spectronic, Rochester, USA). For exact 
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calculation of N/P ratios, a non-purified control polyplex generated at N/P 6 with 

known DNA and polymer content was always used as a standard. 

2.5. Polyplex formation and composition 
Plasmid DNA was condensed with PEI and PEI conjugates at a molar ratio of PEI 

nitrogen to DNA phosphate (N/P ratio) of 6 unless otherwise indicated. 

All DNA polyplexes were prepared at final DNA concentrations of 20, 50,100, 200 or 

400 µg/ ml. For naked LPEI and BPEI polyplexes, indicated amounts of plasmid DNA 

and PEI were diluted separately in HEPES-buffered glucose (HBG, 5% (w/w) 

glucose, 20 mM HEPES, pH 7.4) unless indicated else. PEGylated and targeted 

polyplexes were prepared by first diluting and mixing targeting ligand (Tf-PEG-BPEI), 

shielding domain (PEG-PEI conjugates) and PEI at given ratios (mol% PEI) in HBG 

or in 5 mM NaCl, 20 mM HEPES, pH 7.4 for electrophoresis experiments. The 

solution was rapidly mixed with plasmid DNA (diluted in HBG, respectively in 5 mM 

NaCl, 20 mM HEPES, pH 7.4).  

To enable shielding and targeting of polyplexes, PEI was partially replaced by PEG-

PEI (and Tf-PEG-BPEI) or Tf-BPEI. The amount of PEG-shield varied within the 

experiments between 10 % – 50 %. Assembly of 10 % targeting ligand for PEGylated 

particles remained constant, while PEI content diversified between 50 % and 80 %, 

depending on the amount of shielding domain used. 

When non-PEGylated but shielded particles with receptor-mediated uptake capability 

were required, a mixture of 25 % Tf-BPEI and 75 % PEI was prepared prior to 

addition to the  DNA solution (see [37]). In order to generate larger particles, Tf-BPEI 

conjugate, PEI as well as plasmid DNA were diluted in 0.5 HBS, pH 7.4 (10 mM 

HEPES, 2. 5 % (w/w) glucose, 75 mM NaCl).  

All indicated ratios (mol %) given above are based on the PEI content of the different 

components. After mixing, polyplexes were allowed to stand for at least 20 minutes at 

room temperature prior to use. 

For detailed composition of all different polyplex formations, tables showing the 

correct contents and allotments of polymer and polymer conjugates in the 

formulations with a reference to the used nomenclature for the respective polyplex 

are given in the individual chapters.  
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2.6. Measurement of particle size and zeta potential 
Particle size of DNA complexes was measured by laser-light scattering using a 

Malvern Zetasizer 3000HS (Malvern Instruments, Worcestershire, UK). For particle 

sizing complexes were measured at a final DNA concentration of 10 µg/ml (total 

volume 1 ml). For estimation of the surface charge, transfection complexes were 

diluted 5 - fold in 1 mM NaCl to give a final DNA concentration of 2 µg/ml and the  

ξ potential was measured as described in [39]. 

2.7. Purification of polyplexes 
2.7.1. Cation exchange chromatography 
Cation exchange chromatography for in vitro experiments was performed with a self 

made free flow column: glass wool was plugged as filter substance into a standard-

sized Pasteur pipette. Column material (CM Sepharose® FF, GE Healthcare, 

Munich, Germany) diluted 1:1 in water was filled into the glass pipette to give a final 

bed volume of approximately 1.2 ml and the column equilibrated with 20 mM HEPES, 

1.25 M NaCl, pH 7.4. PEGylated polyplexes with a minimum of 20 % PEG-BPEI 

shielding and a DNA concentration of 100 µg/ml containing up to 60 µg plasmid were 

loaded onto the column. Fractions of 200 – 300 µl were collected. After elution of 

shielded polyplexes between 1 M and 1.25 M NaCl, the salt gradient was elevated to 

3 M NaCl to elute PEI and PEI conjugates. Fractions containing the major amount of 

DNA were pooled and additionally analyzed for their DNA and polymer content as 

described above. 

2.7.2. Ultra filtration 
For separating unbound PEI, Vivaspin6 ultra filtration devices with a 100 kDa cut-off 

(Sartorius AG, Göttingen, Germany) were used (see also [95], [96]). Increasing 

amounts of polyplex dilutions (50 µg/ml DNA) either generated in HBG or 0.5 HBS 

were centrifuged five times at 3000 g at 4°C for 3 minutes using a Heraeus Megafuge 

1.0R. Prior to use, ultra filtration devices were washed with the respective buffer. 

Between centrifugation steps, polyplex solutions were re-diluted to their original 

volumes and briefly mixed by up- and down pipetting in order to minimize adsorption 

of particles on the membrane surface. The filtrate and supernatant were determined 

for their PEI and DNA content as described above. 
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2.7.3. Size exclusion chromatography (SEC) 
Size exclusion chromatography for in vitro experiments was performed with a self 

made free flow column: A standard-sized Pasteur pipette was plugged with glass 

wool and column material (Sephacryl® S 200 HR, molecular weight exclusion limit 

250 kDa for globular proteins; Pharmacia Biotech, Uppsala, Sweden) diluted 1:1 in 

water was filled into the glass pipette to give a final bed volume of 1.2 ml. After 

equilibration with HBG (pH 7.4), column material was preconditioned with a single 

dose of 400 µg PEI to reduce unspecific adsorption of polyplexes (see [33]) and 

subsequently washed with HBG. A minimum amount of 400 µl polyplex with a DNA 

concentration of 100 µg/ml was loaded onto the column. Fractions of 200-300 µl were 

collected.  

For in vivo applications gel filtration was scaled up using an ÄKTA basic system (GE 

Healthcare, Freiburg, Germany) equipped with a HR 10/10 column packed with 

Sephacryl® S-200 HR, equilibrated with HBG and preconditioned with 10 mg PEI. 

Volumes of 5 ml with up to 400 µg/ml DNA were loaded onto the column. SEC was 

performed at a flow rate of 0.5 ml/ min; fractions of 0.3 ml were collected. Elution of 

DNA-polyplexes was monitored at 254 nm. 

For both variations of SEC, fractions containing the major amount of DNA were 

pooled and additionally analyzed for their DNA and polymer content as described 

above. 

2.7.4. Electrophoresis (EPH) 

2.7.4.1. Standard electrophoresis 

A 2% agarose gel was prepared by dissolving 0.6 g agarose (Sigma-Aldrich, 

Taufkirchen, Germany) in 40 ml TBE buffer [(trizma base 10.8 g, boric acid 5.5 g, 

disodium EDTA 0.75 g (all Sigma-Aldrich, Taufkirchen, Germany) ad 1000 ml 

Millipore water] ) and boiling everything up to 100° C. After cooling down to about 70 

°C the agarose gel was casted in the electrophoresis unit. A 1 ml volume plastic 

syringe was cut three times breadthways to obtain the middle piece giving an open 

cuvette with a volume of 400µl, serving as the sample compartment. A needle with a 

syringe was pricked at both ends of the cuvette (syringe 1 and 2 in Figure 14) to be 

able to inject a sample with the first syringe (injection device, syringe 1) and to 

remove it with the second syringe (removal device, syringe 2). This construct was 

carefully placed in the agarose gel which had a temperature of about 40°C. The open 
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sides of the sample compartment were directed to the electrodes (see Figure 14). 

Since the agarose gel was almost hardened, it was ensured that the sample 

compartment was completely enclosed by the gel but that the latter did not enter into 

it. Sample preparations containing PEI only or polyplexes were loaded into the 

sample compartment via the first syringe. Electrophoresis was performed for 60 

minutes at 50 V in TBE Subsequently, the sample was extracted via the second 

syringe and analyzed for PEI respectively DNA content.  

2.7.4.2. ElectroPrep® System 

Electrophoresis was performed using AmiKa´s ElectroPrepTM System (available from 

Harvard Apparatus, Göttingen, Germany). A 1.5 ml Teflon chamber was used as 

sample compartment. Polycarbonate membranes on each side of the teflon chamber 

(pore size 0.05 µm) were equilibrated in buffer solution (5 mM NaCl, 20 mM HEPES, 

pH 7.4) prior to use. To minimize membrane fouling of free polycations, 0.5 ml – 1.0 

ml of a 3 % agarose layer was optionally added on the inner side of the membrane, 

thus reducing the volume of the sample compartment to 0.5 ml – 1.0 ml. Free PEI 

and various polyplex formulations containing 5 – 20 % of Cy5-labeled PEI 

respectively conjugate with DNA concentrations between 100 – 400 µg/ml were 

loaded into the sample unit. PEI molecule was labeled with only 1 – 2 molecules of 

fluorescent dye per 22 kDa or 25 kDa polymer molecule to avoid any difference with 

regard to DNA binding of labeled and non-labeled polymers.Electrophoresis was 

performed in 5 mM NaCl/ 20 mM HEPES, pH 7.4 with a constant voltage of 200 V 

and 10 mA current over a 20 minute time period if not indicated otherwise. After 

electrophoresis, samples were collected and DNA respectively PEI and PEI-

conjugate concentration was measured. For reporter gene expression and viability 

measurements, polyplexes were further diluted to a DNA concentration of 20 µg/ml. 

For in vivo application of purified particles, glucose was added to give a final 

concentration of 5 % (w/v).  

2.8. Cell culture 
Cell culture media Dulbecco’s modified eagle medium 1 g/l glucose (DMEM) was 

obtained from Invitrogen GmbH (Karlsruhe, Germany). 500 ml DMEM was 

supplemented with 10 % heat-inactivated fetal bovine serum (FBS, Invitrogen, 

Karlsruhe, Germany) and contained 1.6 mM L-alanyl-L-glutamine (Biochrom, Berlin, 
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Germany) and 1 mM sodium pyruvate (Biochrom, Berlin, Germany). All cultured cells 

were grown at 37°C in 5 % CO2 humidified atmosphere.  

For reporter gene expression and viability measurements, cells were seeded in 96 

well plates at a density of 104 cells in 200 µl medium per well 24 hours prior to 

transfection. During transfection and for the following incubation time until analysis, 

100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen GmbH) were added to the 

medium.  

2.9. Luciferase reporter gene expression 
Transfection complexes with indicated amounts of DNA (pCMVLuc) were added to 

the cells in 100 µl fresh culture medium containing 10 % FBS. Complex containing 

medium was removed 4 hours after transfection and 100µl of fresh medium were 

added. 24 h after transfection, cells were washed once with phosphate-buffered 

saline (PBS) and lyzed with 50 µl of reporter lysis buffer (Promega, Mannheim, 

Germany). Detection of luciferase activity was carried out as described by Ogris et al. 

[50]; Measurements were performed in a luminometer (Lumat LB9507, Berthold, Bad 

Wildbad, Germany). Values are given as relative light units (RLU) per 10000 seeded 

cells as mean +/- standard deviation of at least triplicates. Two ng of recombinant 

luciferase (Promega, Mannheim) correspond to 107 light units. 

2.10. Metabolic activity of transfected cells 
Cells were grown (96 well plate) and treated with different amounts of DNA-

polyplexes as described above. Metabolic activity was determined using a 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay: to each 

well 10 µl of a 5 mg/ml MTT solution in sterile PBS was added by following incubation 

at 37°C. After 2 hours, medium was removed and the samples were frozen at -80° C 

for at least 1 h. 100 µl DMSO was added and samples were incubated at 37°C for at 

least 30 min under constant shaking. Optical absorbance was measured at 590 nm 

(reference wavelength 630 nm) using a micro plate reader (Spectrafluor Plus, Tecan 

Austria GmbH, Grödig, Austria) and cell viability was expressed as percentage 

relative to untreated control cells. 
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2.11. Ultra concentration of purified polyplexes for in vivo 
applications 
Purified particles were concentrated through Vivaspin20 ultra filtration devices 

(Sartorius AG, Göttingen, Germany) for three times at 3000 g at 4°C using a Heraeus 

Megafuge 1.0R. Prior to use, ultra filtration devices were washed with the respective 

buffer. Between centrifugation steps, the sample was mixed by up- and down 

pipetting to minimize adsorption of particles on the membrane surface. Polyplexes 

with a concentration of 400-800 µg/ml DNA were obtained. 

2.12. In vivo gene transfer 
Male and female A/J mice (8 weeks old), purchased from Harlan Winkelmann 

(Borchen, Germany) were injected subcutaneously with 1 x 106 Neuro2A cells. After 

14 days, when tumors had reached approximately 7 – 9 mm in size, transfection 

polyplexes were applied. Unless indicated otherwise, polyplexes containing 50 µg or 

100 µg  pCMVLuc per 20 g body weight at a concentration of 200 µg/ml or 400 µg/ml 

DNA respectively, were injected into the tail vein. Animals were sacrificed 24 h 

respectively 48 h after application, indicated tissues were resected and stored at -

80°C. Tissues were homogenized in Lysis Buffer (Promega, Mannheim) using an 

IKA-Ultra-Turrax and subsequently centrifuged at 4000 g, 4°C for 15 minutes to 

separate insoluble cell components. Luciferase activity was determined as described 

above. All animal procedures were approved and controlled by the local ethics 

committee and carried out according to the guidelines of the German law of 

protection of animal life.   

2.13. Blood sample analysis  
To circumvent aggregation of blood samples, syringes were pre-drawn with 200µl 

heparin. Immediately after sacrificing the animals, blood samples were collected by 

heart puncture. For the determination of various blood enzymes samples were 

allowed to clot at 37 °C for 4 h, overnight at 4 °C, then centrifuged at 3000 g for 20 

min at 4 °C and the supernatants were collected for serum analysis and stored at      

- 80°C until they were further analysed. Enzymes were quantified by the Institut für 

klinische Chemie at the Universitätsklinikum Großhadern. Alkaline and aspartate 

aminotransaminases (AST, ALT) as well as alkaline phosphatase (AP) were 

measured using a kinetic UV test from Olympus (Olympus Life and Material Science, 
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Hamburg, Germany). Glutamate Dehydrogenase (GDPH) in plasma was analyzed 

using a kinetic UV test from Hitado (Hitado Diagnostic Systems, Möhnesee Delecke, 

Germany). 

2.14. Histological examination 
A small piece of liver and lung of each sacrificed animal was fixed for 24 h in formalin 

solution (4% paraformaldehyde in PBS). After washing the organs for 1 hour in 

running water, they were embedded in paraffin. Sections of 5µm thickness were cut 

and stained with hematoxilyn and eosin for histopathological examination.  

2.15. Statistics 
Where indicated, one-way analysis of variance (ANOVA) was conducted. A p value 

of less than 0.05 was considered to be significant. Duncan test was used as a post-

hoc method. As a statistical software package, WinSTAT® 2003 for Excel (R. Fitch 

Software) was used. 
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3. Results 

3.1. Cation exchange chromatography 
The idea of purifying polyplexes by cation exchange is based on the concept that 

unbound PEI and PEI-conjugates are retained by carboxymethyl groups of the 

sepharose column material while efficiently shielded particles should pass the column 

without being retarded.  

At the beginning, LPEI polyplexes were generated with 20 % PEG-LPEI shielding 

domain at N/P 6 in 20 mM HEPES/ 75 mM NaCl, pH 7.4 and loaded onto the column. 

These particles exhibited a size around 140 nm bearing a zeta potential of 2.6 mV 

(Table 1). Rather unexpected, the polyplexes were retarded within the given salt 

concentration and pH of the elution buffer (20 mM HEPES/ 75mM NaCl, pH 7.4); 

elution of the particles was not possible until a high salt concentration of 1.25 M NaCl 

was used. Increasing the salt concentration up to 3 M NaCl led to elution of PEI and  
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Fig. 4. Purification of shielded LPEI polyplexes by cation exchange chromatography. 20 % 
(w/w) PEG-LPEI containing complexes (A) were eluted at a salt concentration of 1.25 M. 
Increasing the shielding domain to 25 % PEG-LPEI (B) slightly reduced the salt concentration 
required for elution to  1M NaCl. Unbound PEI was washed from the column material with 3 M 
NaCl .  

PEI conjugates (Figure 4A). Increasing the amount of shielding conjugate to 25% 

resulted in small particles with a surface charge of 1.8 mV (Table1). Still, elution of 

complexes needed a salt concentration of 1M (Figure 4B). Both formulations 

exhibited an increased size after cation exchange purification due to the high salt 

concentration of 1.25 respectively 1 M NaCl in which the particles were measured. 

Zeta potentials did not change significantly; N/P ratios could be reduced to 2.5 for 20 

% PEGylation and 2.8 for 25 % PEG-LPEI, respectively. Cation exchange purification 
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with 50 % PEG-LPEI conjugate was performed to determine if these particles would 

posses enough shielding to pass the column material without being retained. Still, 

gene carriers had to be eluted with 1 M NaCl (data not shown). Beyond, the 

formulation seemed to be sheared apart as the strongly negative zeta potential of -22 

mV indicated (Table 1). 

Polyplex
Cation
exchange

80% LPEI
20% PEG-LPEI

-
+

75% LPEI
25% PEG-LPEI

-
+

50% LPEI
50% PEG-LPEI

-
+

Size (nm) Zeta (mV)

140.3 +/- 28.8
327.3 +/- 18.6

+2.6 +/- 1.6
+3.9 +/- 2.7

117.5 +/- 28.1
320.1 +/- 73.1

+1.8 +/- 1.6
-2.6  +/- 7.3

396.1 +/- 105.9
1462  +/- 376.1

+ 2.5 +/- 1.6
-22.5 +/- 12.5

 
Table 1: Biophysical properties of PEGylated LPEI polyplexes after purification by cation 
exchange chromatography                                         
                              

3.2. Ultra filtration  
Table 2 gives an overview about the polyplex formulations evaluated in the following 

chapter and the nomenclature used. 

Polycation formulation (%) Nomenclature

LPEI 100 LPEI/ DNA

Tf-PEG-BPEI/ PEG-LPEI/ LPEI 10/ 20/ 70 Tf/ PEG/ LPEI

Tf-BPEI/ LPEI Tf/ LPEI

N/P
Ratios

6.0

0.6/ 1.2/ 4.2

1.5/ 4.5

BPEI 100 BPEI/ DNA6.0

Tf-PEG-BPEI/ PEG-LPEI/ BPEI 10/ 10/ 80 Tf/ PEG/ BPEI0.6/ 0.6/ 4.8
25/ 75

Tf-BPEI/ LPEI Tf/ LPEI1.5/ 4.525/ 75

 
Table 2: PEI formulations and nomenclature used in chapter 3.2 and 3.5 
 

3.2.1. Efficiency of PEI separation 
Different gene transfer formulations based on LPEI (see Table 2) generated at N/P 6 

were ultra filtrated in a Vivaspin6 concentrator with increasing amounts of DNA (12.5 

µg – 62.5 µg) respectively LPEI. The following small and large sized DNA 

formulations were compared: Naked LPEI/ DNA polyplexes mixed in HBG, resulting 

in the formation of 130 – 150 nm sized particles (see also [30] and [31]); shielded 
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PEGylated and Tf-targeted LPEI complexes (Tf/ PEG/ LPEI), also mixed in HBG 

generating gene carriers with sizes in the same range; Tf-shielded LPEI polyplexes 

(Tf/ LPEI) generated in 0.5 HBS, pH 7.4 resulted in big particles with a mean 

diameter between 1-2 µm, similar as previously described in [37]). In every polyplex 

formulation 5 % of the total LPEI content was replaced by 5 % Cy5-labeled LPEI. 

This allowed i) an easy and reproducible quantitative determination of the polymer in 

the filtrate and ii) the exact calculation of the N/P ratios after ultra filtration in the 

supernatant.  

After ultra filtration, a clear correlation between resulting N/P ratios of filtrated 

particles and the amount of DNA respectively polymer present in the non-filtrated 

complexes was observed. For low amounts of plasmid (12.5 µg DNA), N/P ratios of 

all filtrated polyplexes observed decreased after five centrifugation circles to values 

between 2.5 and 2.8 (see Table 3).  

polyplex
formulation
N/P before purifiation

LPEI

Tf/ PEG/ LPEI

Tf/ LPEI

amount DNA present in the polyplex
12.5µg

6

37.5µg

6

62.5µg

6

2.50 3.38 4.79
2.70 3.84 4.45
2.78 4.19 5.09

  
 
Table 3. N/P ratios of ultra filtrated complexes in dependency of applied DNA amount. Filtration 
was performed with Vivaspin6 100000 for 5 cycles at 3000 g each lasting 3 minutes. 
Efficiency of purification decreases with increasing amount of DNA respectively polymer 
applied. Values are based on calculations for LPEI only 
 
Increasing the amount of DNA and LPEI present as polyplex in the ultrafiltration 

device resulted in less pronounced decreases in N/P ratios after ultra filtration 

(between 3.4 and 4.2 for 37.5 µg DNA). In line, at the highest DNA amount of 50 µg, 

efficiency of purification was rather low (N/P ratios of filtrated particles between 4.8 

and 5.1). Comparable results were obtained with BPEI-based complexes (data not 

shown). N/P ratios of filtrated polyplexes could not be significantly decreased by 

additional centrifugation steps but resulted in lower polyplex recovery and sometimes 

even membrane fracture. In general, particle yield determined as DNA recovery in 

the supernatant was similar for all formulations and for every dosages applied and 

varied between 65 % and 80 %. Biophysical properties of polyplexes like size and 

zeta potential did not change significantly after ultra filtration (data not shown). In 
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order to verify incomplete removal of LPEI for large amounts of polyplexes applied, 

the ultra filtrated PEGylated and targeted polyplex formulation as shown in Table 3 

(containing 37.5 µg DNA) was gel filtrated in a subsequent step via an S-200 SEC 

setup. The elution profile revealed a second peak, marking free LPEI which was 

obviously not completely removed by ultra filtration (Figure 5). 
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Fig. 5. Size exclusion chromatography after ultra filtration of 30 µg DNA containing Tf/ PEG/ 
LPEI N/P 6 polyplexes. The second peak of the SEC elution profile indicates the presence of 
free PEI thus demonstrating incomplete removal of unbound LPEI by ultra filtration  
 
Efficiency of purification by ultra filtration was obviously correlated with the amount of 

polymer applied. For a detailed analysis of LPEI during and after ultra filtration, the 

permeation of 10 µg LPEI (containing 9.5 µg LPEI and 0.5 µg Cy5-LPEI) through the 

membrane of the Vivaspin6 concentrator was determined. The amount of polymer in 

the supernatant and in the filtrate was estimated by measuring the Cy5-fluorescence 

intensity of labeled PEI (Figure 6). Additional application of 10 µg PEI revealed that 

after five centrifugation rounds less than 10 % of PEI could be recovered in the 

supernatant (indicating an efficient separation of at least 10 µg non-bound LPEI in 

complex formulations). However, only 22 % of PEI was found in the filtrate. Hence, 

more than 70 % of polymer could not be detected and stuck most likely to the filter 

material.  
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Fig. 6. LPEI content found in the supernatant and filtrate as a function of centrifugation cycles.  
 
The amount of PEI which could not be detected slightly increased with the number of 

centrifugation cycles. After 13 centrifugation cycles, more than 89 % of PEI were 

removed from the supernatant, but only 25 % of polymer could be recovered in the 

filtrate. This implies that a high proportion of LPEI might irreversibly stick on the filter 

membrane leading to membrane blocking and therefore causing inefficient 

separation of polyplex and free PEI. 

 

3.2.2. Gene expression and toxicity profiles of ultra filtrated complexes 
Since it was demonstrated that polyplexes with up to 10 µg DNA can efficiently be 

purified by ultra filtration, gene transfer efficiencies and cytotoxicity of different LPEI- 

and BPEI-based crude and ultra filtrated polyplex formulations were evaluated on 

Neuro2A cells. All particles were generated at N/P ratio of 6.  
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Fig. 7. Reporter gene expression and metabolic activity of PEI polyplexes in Neuro2A tumor 
cells. LPEI (A) and BPEI (B) polyplexes with increasing concentrations of DNA were applied. 
Polyplexes at N/P 6 with a maximum amount of 10 µg DNA were ultra filtrated (+UF) and 
compared to non-filtrated complexes (-UF) at N/P 6. Polyplexes were mixed in HBG. Luciferase 
activity (left side) is given in RLU per 10000 cells, metabolic activity (right side) is displayed as 
% of untransfected control cells. Mean values +SD of triplicates are shown.  
 
First, naked PEI/ DNA gene carriers were investigated (Figure 7). As expected, LPEI/ 

DNA and BPEI/DNA polyplexes were up to 30-fold less efficient in transfection at low 

DNA concentration (0.5 µg/ml DNA for LPEI and 2 µg/ml DNA for BPEI). At a DNA 

concentration of 4 µg/ml, LPEI polyplexes showed equivalent transfection efficiency 

as particles containing free PEI (Figure 7A). For BPEI complexes, differences in 

transfection efficiency decreased at the highest DNA concentration of 8 µg/ml (Figure 

7B). In general, differences between purified and non-purified gene carriers with 

regard to transfection levels were more pronounced for BPEI than for LPEI. 
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In order to evaluate the effect of ultra filtration on toxicity, metabolic activity of cells 

was determined 24h after transfection by measuring intracellular ATP levels. LPEI 

polyplexes containing free PEI exhibited high toxicity above 2 µg/ml DNA with only  

40 % – 50 % vital cells whereas metabolic activity of cells treated with purified LPEI 

complexes could be maintained at 80 % compared to control cells (Figure 7A). In 

contrast to pronounced variations in transfection efficiencies, differences in metabolic 

activity of purified and non-purified BPEI polyplexes were less distinct. Nevertheless, 

at 2 and 4µg/ml DNA, purified complexes demonstrated 10 % – 15 % higher 

metabolic activity compared to polyplexes containing free BPEI (Figure 7B). 

As demonstrated, ultra filtration allows purification of large particles (which is not 

possible for the method based on SEC). Therefore, transferrin-shielded BPEI and 

LPEI particles, generated in 0.5 HBS resulting in large gene carriers with diameters 

between 500 – 1500 nm were purified by ultra filtration. In vitro transfection potency 

and toxicity profile was evaluated and compared to the non-purified versions (Figure 

8). 
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Fig. 8. Reporter gene expression and metabolic activity of Tf/ PEI polyplexes on Neuro2A cells. 
Transfection was carried out with Tf/ LPEI (A) and Tf/ BPEI (B) polyplexes with increasing 
concentrations of DNA. Polyplexes mixed in 0.5 HBS at N/P 6 with a maximum amount of 10 µg 
DNA were ultra filtrated (+UF) and compared to non-filtrated complexes (-UF) at N/P 6. 
Luciferase activity (left side) is given in RLU per 10000 cells, metabolic activity (right side) is 
displayed as % of untransfected control cells. Mean values +SD of triplicates are shown.  
 
In line with the results obtained for naked PEI polyplexes, purified Tf/ LPEI polyplexes 

showed reduced transfection efficiency in comparison to non-purified ones at low 

DNA concentrations (0.5 and 1 µg/ml). In contrast, at higher DNA concentrations (≥ 2 

µg/ml) purified Tf/ LPEI polyplexes exposed equivalent or even higher transfection 

efficiencies than polyplexes containing free PEI.  

Again, transfection efficiency of Tf/ BPEI complexes was reduced for all DNA 

concentrations tested in comparison to non-purified polyplexes. However, this 

difference was decreasing with increasing DNA concentrations. 

Toxicity profiles of purified Tf/ LPEI and Tf/ BPEI polyplexes were similar to the 

corresponding naked LPEI and BPEI particles: Again, the advantage of purification 
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was more pronounced for Tf/ LPEI gene carriers showing clearly reduced toxicity at 

higher DNA dosages in comparison to non-purified particles [at 2 µg/ml DNA 80 % 

metabolic activity for purified Tf/ LPEI polyplexes and 50 % metabolic activity for non-

purified control complexes (see Figure 8A)]. However, for Tf/ BPEI no differences in 

metabolic activity for purified and non-purified complexes were observed. In general, 

BPEI polyplexes exhibited less toxicity than the corresponding LPEI formulations 

(Figure 8B).  

3.3. SEC of shielded and targeted melittin-based 
polyplexes 
3.3.1. Stable insertion of melittin 
In order to enhance endosomal release of polyplexes into the cytosol, three different 

membrane-active melittin-PEI analogs previously described in [98] and [93] were 

incorporated into targeted and shielded complexes. For evaluation of their impact on 

gene transfer efficiency as well as on toxicity, these novel polyplex formulations were 

compared to standard shielded and targeted LPEI- and BPEI-based polyplexes. For 

detailed composition of particles and their nomenclature used, see Table 4. 

 

Polycation formulation (%) Nomenclature

Tf-PEG-BPEI/ PEG-LPEI/ LPEI 10/ 10/ 80 Tf/ PEG/ LPEI
Tf-PEG-BPEI/ PEG-BPEI/ BPEI 10/ 10/ 80 Tf/ PEG/ BPEI
Tf-PEG-BPEI/ PEG-BPEI/ N-mel-BPEI- 10/ 10/ 80 Tf/ PEG/ N-mel
Tf-PEG-BPEI/ PEG-BPEI/ NMA-3-BPEI- 10/ 10/ 80 Tf/ PEG/ NMA-3
Tf-PEG-BPEI/ PEG-BPEI/ CMA-3-BPEI 10/ 10/ 80 Tf/ PEG/ CMA-3

N/P
Ratios

0.6/ 0.6/ 4.8
0.6/ 0.6/ 4.8

0.6/ 0.6/ 4.8
0.6/ 0.6/ 4.8

0.6/ 0.6/ 4.8

Polycation formulation (%) Nomenclature

Tf-PEG-BPEI/ PEG-LPEI/ LPEI 10/ 10/ 80 Tf/ PEG/ LPEI
Tf-PEG-BPEI/ PEG-BPEI/ BPEI 10/ 10/ 80 Tf/ PEG/ BPEI
Tf-PEG-BPEI/ PEG-BPEI/ N-mel-BPEI- 10/ 10/ 80 Tf/ PEG/ N-mel
Tf-PEG-BPEI/ PEG-BPEI/ NMA-3-BPEI- 10/ 10/ 80 Tf/ PEG/ NMA-3
Tf-PEG-BPEI/ PEG-BPEI/ CMA-3-BPEI 10/ 10/ 80 Tf/ PEG/ CMA-3

N/P
Ratios

0.6/ 0.6/ 4.8
0.6/ 0.6/ 4.8

0.6/ 0.6/ 4.8
0.6/ 0.6/ 4.8

0.6/ 0.6/ 4.8

 
Table 4. PEI formulations and nomenclature used in chapter 3.3 
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The first key question was to elucidate, if the endosomolytic domain would be still 

active in the polyplex after removal of free melittin-PEI conjugates by size exclusion 

chromatography. Therefore, CMA-3-BPEI was fluorescently labeled with Cy5 dye and 

gel filtration was performed as describes in [98]. Incorporation of melittin-PEI 

conjugate into polyplexes was demonstrated (Figure 9) as upon SEC, 45 - 50 % of 

the melittin-PEI was recovered within the complexes, a result comparable to pure PEI 

polyplexes [33].  
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Fig. 9. Size exclusion chromatography of Tf/ PEG/ CMA3 polyplexes demonstrates stable 
insertion of CMA3-BPEI into the gene carrier  
 

3.3.2. Biophysical characterization  
For determination of biophysical properties, all polyplexes were generated in HBG. 

Both purified and non-purified polyplexes were further diluted in 0.5 HBS. As 

expected, particle size and zeta potential did not change significantly after 

purification. Quantification of separated PEI revealed that gel filtration removed 50 – 

60 % of free PEI resulting in N/P ratios between 2.5 and 3.1 (see Table 5).  
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Polyplex formulation SEC Size (nm) Zeta potential
(mV)

Tf/ PEG/ LPEI -
+

165.1 +/- 26.6
150.6 +/- 14.9

2.2 +/- 1.6
2.1 +/- 2.2

Tf/ PEG/ BPEI -
+

158.9 +/- 19.6 
114.7 +/- 15.2

2.3 +/- 0.6
2.2 +/- 1.6

Tf/ PEG/ N-mel -
+

149.0 +/- 23.1
155.3 +/- 18.8

2.2 +/- 1.6
2.6 +/- 1.8

Tf/ PEG/ CMA-3 -
+

142.1 +/- 17.2
150.1 +/- 15.1

3.1 +/- 2.3
2.9 +/- 0.8

Tf/ PEG/ NMA-3 -
+

126.4 +/- 11.7
138.8 +/- 19.0

2.3 +/- 1.6
3.1 +/- 1.6

removed
PEI

60%

48%

52%

57%

45%

 
Table 5. Biophysical properties of polyplexes before and after SEC purification 
 

3.3.3. Reporter gene expression and toxicity profiles 
All polyplex formulations were prepared in HBG and increasing DNA concentrations 

of 1 – 4 µg/ml were added to the cells. Purification was performed by SEC. 

At the lowest DNA concentration of 1 µg/ml (Figure 10A), both standard polyplexes 

(Tf/ PEG/LPEI and Tf/ PEG/ BPEI) exhibited the lowest transfection efficiency with 

purified versions, resulting in negligible reporter gene expression. In contrast, non-

purified melittin-containing polyplexes possessed improved transfection properties 

with Tf/ PEG/ CMA-3 and Tf/ PEG/ NMA-3 derivatives being the most potent ones, 

exhibiting a 10-fold enhancement in expression level in comparison to LPEI and 

BPEI containing particles. In line, purified melittin containing polyplexes led to an 

enhancement in expression levels when compared to the standard complexes: N-Mel 

and the NMA-3 derivative induced an approximately a 5-fold higher gene expression 

level than purified LPEI containing gene carriers. Purified CMA-3 polyplexes 

exhibited the highest transfection efficiency with more than 10-fold increase towards 

the LPEI-based complex also maintaining the same expression level as non-purified 

Tf/ PEG/ CMA-3 formulation containing free CMA-3.  

Increasing the DNA concentration to 2 µg/ml led to a general enhancement in gene 

expression level. Differences in efficiency between the three non-purified melittin-

containing particles and the non-purified standard Tf/ PEG/LPEI and Tf/ PEG/ BPEI 

complexes are still quite pronounced with a 10 fold increase in comparison to LPEI 

and a 15 fold increase towards BPEI containing gene carriers (Figure 10B). At this 

DNA concentration, all melittin-containing crude non-purified polyplexes exhibited the 

same expression level of approximately 2 x 105 RLU. In line, all three purified 
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counterparts were showing similar gene transfer efficiencies with expression levels 

ranging 3 - 4 times lower than the respective non-purified ones. On the other hand, 

those purified melittin-containing particles still exhibited a 3 – 4 fold enhancement in 

transfection efficiency in comparison to polyplexes containing unmodified L- or BPEI. 

At the highest DNA amount applied (4 µg/ml, Figure 10C), all purified formulations 

exhibited similar expression efficiencies with values between 2 x 106 RLU and 4 x 106 

RLU and reached expression levels in the range of non-purified Tf/ PEG/ CMA-3 and 

Tf/ PEG/ NMA-3 polyplexes. 

24 hours after transfection, metabolic activity of transfected cells was analyzed in 

order to evaluate toxicity profiles of purified and non-purified complexes. In general, 

neither purified nor non-purified polyplexes caused severe signs of toxicity (Figure 

10A - C, left panels). At the high concentration of 4µg/ml DNA metabolic activity of 

cells treated with non-purified Tf/ PEG/ CMA-3- and Tf/ PEG/ NMA-3 was reduced to 

75% in comparison to control cells. However, purification of these polyplex 

formulations could clearly improve the toxicity profile. 
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Fig. 10. Reporter gene expression and metabolic activity of Neuro2A cells transfected with 
various Tf-targeted and PEGylated polyplexes mixed in HBG. Transfection was carried out with 
increasing concentrations of DNA polyplexes (1 µg/ml DNA [A], 2 µg/ml DNA [B] and 4 µg/ml 
[C]). Luciferase activity (left side) is given in RLU per 10000 cells, metabolic activity (right side) 
is displayed as % of untransfected control cells. ‘+SEC’: purification of complexes by SEC; ‘-
SEC’: non-purified control complexes. All complexes included 10% (w/w) Tf-PEG-BPEI and 10% 
(w/w) PEG-PEI. The X-axis displays the different PEI cores of compared polyplexes. Mean 
values +SD of triplicates are shown.  
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3.3.4. Up-scaling of SEC and combination with ultra filtration for in vivo   
applications 
Generation of polyplexes, SEC and up concentration of gene carriers were performed 

under sterile conditions. Up to 5 ml of DNA polyplexes with a concentration of 200 

µg/ml were loaded onto the column. Particles were eluted in HBG. Polyplex recovery 

and detection of BPEI and LPEI was performed as described in Materials and 

Methods. As shown in Figure 11, up-scaling still enabled a clear separation of DNA 

polyplex and free PEI. Polyplex recoveries between 60 and 70 % corresponding to 

600 – 700 µg DNA per run were detected. During SEC a dilution of particles 

occurred. Therefore, an additional concentration step was necessary: gel filtrated 

complexes were transferred to Vivaspin20 concentrator (100000 kDa cut-off) tubes 

which were centrifuged 3 times at 3000 g at 4°. Thus, an up concentration to 200 – 

400 µg/ml DNA was achieved. Ultra concentration of gene carriers did not lead to 

significant changes in zeta potential; only slight increases in particle size (mean 

diameters around 180 nm) were detected (data not shown). 
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Fig. 11. Up-scaling of SEC based purification of Tf/ PEG/ BPEI polyplex. Elution profile of DNA 
and BPEI after purification of 5 ml Tf/ PEG/BPEI mixed at N/P 6 in HBG containing 200 µg/ml 
DNA. 
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3.3.5. In vivo administration of gel filtrated polyplexes 

3.3.5.1. Low dosage administration 

Systemic delivery of purified versus non-purified polyplexes in an in vivo model of A/J 

mice bearing subcutaneously grown Neuro2A tumors was evaluated due to previous 

encouraging findings [33] and the in vitro data described above. Non-purified 

polyplex formulations given in Table 5 with a standard DNA amount of 50µg per 

mouse (n = 4) were injected. Mice receiving the non-purified Tf/ PEG/ BPEI and Tf/ 

PEG/ LPEI formulations did not show any signs of toxicity. In contrast, all four mice 

obtaining the non-purified Tf/ PEG/ CMA-3 formulation suffered from severe signs of 

toxicity and died within 5 – 10 minutes after injection. The same could be observed 

with 2 mice receiving the full dosage (50 µg) of Tf/ PEG/ NMA-3: both exhibited signs 

of shock, reduced activity, ruffled fur accompanied with convulsions, leading to death 

within 30 minutes after application. In order to have at least the remaining two mice 

surviving the Tf/ PEG/ NMA-3 application, we decided to inject only half of the 

dosage (25 µg). Both of them showed again signs of toxicity which emerged to be 

reversible as the mice survived the treatment. Application of non-purified Tf/ PEG/ N-

mel did not lead to acute toxicity within the first two hours after application; however, 

all four mice died within the next 20 hours. Examining the bodies of all dead mice 

revealed large bleedings in the intestines (mainly bowel). The liver had a sponge-like 

look with lamella-like structures and macroscopically visible bleedings. 

Since toxicity was too pronounced with the CMA-3 core particles, the purified version 

was not further evaluated in vivo. All other groups (containing the LPEI, BPEI, NMA-3 

and N-mel core) were purified by gel filtration and subsequently ultra concentrated. 

Application of 50 µg DNA per mouse demonstrated good biocompatibility of purified 

polyplexes. No mice did suffer from any signs of toxicity.  

The remaining mice surviving the treatment with non-purified polyplexes (each four 

mice in the Tf/ PEG/ LPEI, the Tf/ PEG/ BPEI and the Tf/ PEG/ NMA-3 group) and all 

animals receiving purified particles were sacrificed 24 hours after application and 

organs were analysed for reporter gene expression (Figure 12A-D). In general, 

detected luciferase signal was rather low for all formulations with or without 

purification and exceeded hardly background levels of 103 – 104 light units (LU) per 

organ, so that only slight propositions about tendencies can be made. Expression 

levels of mice receiving purified as well as non-purified Tf/ PEG/ LPEI formulations 

(Figure 12A) were the lowest with expression levels under 104 LU, even lower than 
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the animals injected with Tf/ PEG/ BPEI. The non-purified version of the latter 

showed the highest gene expression in the tumor, followed by the liver whereas the 

purified BPEI core formulations exhibited very low expression values mostly found in 

the tumor and the lung (Figure 12B). 25 µg of Tf/ PEG/ NMA-3 containing free NMA-

3-BPEI per animal did not lead to a reasonable reporter gene expression in any 

organ. The double amount of 50 µg purified Tf/ PEG/ NMA-3 led to a gene 

expression signal mainly found in the tumor and lung with values around 1.5 x 104 

LU (Figure 12C). Gene expression of purified Tf/ PEG/ N-mel was mainly found in the 

lung (1.5 x 105 LU); tumor expression was detectable but rather low (Figure 12D) 

and comparable to the one found with purified BPEI core complexes (approximately 4 

x 103 LU). 
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Fig. 12. Transgene expression in vivo after systemic delivery of polyplexes into A/J mice 
bearing subcutaneous Neuro2A tumours. Tf/ PEG/ LPEI (A), Tf/ PEG/BPEI (B), Tf/ PEG/ NMA-3 
(C) and Tf/ PEG/ N-mel (D) complexes with a final concentration of 200 µg/ml DNA (50 µg per 20 
g bodyweight) were injected into the tail vain. Luciferase expression was measured 24h after 
application and is expressed as total luciferase activity per organ. Note that all mice receiving 
50 µg of non-purified Tf/ PEG/ D-mel died due to high toxicity; only 25 µg of non-purified TF/ 
PEG/ NMA-3 polyplexes were applied.  
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3.3.5.2. High dosage administration 

Systemic administration of small and shielded complexes did not result in remarkable 

gene expression but purification of the formulations resulted in nontoxic polyplexes 

as no signs of toxicity occurred. Therefore, another in vivo series in male A/J mice 

was added with the application of the double amount of DNA (100 µg per 20 g body 

weight; n = 6). To maintain an injection volume of 250 µl per 20 mg bodyweight, the 

polyplexes had to be generated at an increased DNA concentration of 400 µg/ml. 

Due to high toxicity of non-purified NMA-3 containing particles, only purified and non-

purified Tf/ PEG/ BPEI polyplexes and purified Tf/ PEG/ NMA-3 complexes were 

included in the high dosage in vivo series. Since application of Tf/ PEG/ N-mel did not 

lead to any advantage in comparison to the BPEI or the NMA-3 containing gene 

carriers, this formulation was excluded from further evaluation. Tf/ PEG/ LPEI 

polyplexes exhibited no significant expression levels as well and revealed to be 

unstable at DNA concentrations above 250 µg/ml DNA, forming big aggregates.  

Therefore, this polyplex formulation was not further examined during the following in 

vivo series. Polyplex formulations at this high DNA concentration were increased in 

size (190 +/- 87.6 nm for BPEI and 179.1 +/- 65.3 nm for N-mel core polyplexes) and 

possessed slightly higher zeta potentials (+7.8 mV for BPEI and +7.5 mV for N-mel 

core polyplexes). 

Again, all purified polyplex formulations, including the ones containing melittin-

conjugate, were well tolerated by the animals. In contrast, administration of 100 µg 

non-purified Tf/ PEG/ BPEI resulted in significant toxicity with three mice out of six 

dying within 30 minutes. They all showed the same signs of shock as described in 

3.3.5.1. Livers and the small intestines of the dead mice showed strong bleedings; 

furthermore spleens were black-colored.  

24 hours after application of polyplex formulations, surviving mice were sacrificed and 

organs analyzed for luciferase expression. Gene expression levels of delivered non-

purified Tf/ PEG/ BPEI formulations were quite high. However, biodistribution pattern 

was unfavorable: indeed highest luciferase expression (2 x 105) was found in the 

tumor (Figure 13A) but expression levels in the liver were quite high (6 x 104 LU) 

followed by lung expression. 
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Strikingly, purified Tf/ PEG/ BPEI complexes (Figure 13B) exhibited tumor expression 

levels even higher (3 x 105) than that of the non-purified particles whereas liver 

expression was on a background level. Comparable high expression in the lung 

implicates that the polyplexes are not completely shielded at the high DNA 

concentration of 400 µg/ml DNA. This was confirmed by zeta potential 

measurements. Purified Tf/ PEG/ NMA-3 polyplexes (Figure 13C) exhibited also 

highest expression in the tumor tissue with values about 1.2 x 105 LU being slightly 

lower than the values obtained for the BPEI containing polyplexes. Again, lung 

expression reached high levels implicating only partial shielding of polyplexes.  
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Fig. 13. In vivo gene transfer after systemic delivery of polyplexes into A/J mice bearing 
subcutaneous Neuro2A tumours. Tf/ PEG/ BPEI (A and B) and Tf/ PEG/ NMA-3 (C) complexes 
with a final concentration of 400 µg/ml DNA (100 µg per 20 g bodyweight) were injected into the 
tail vain. luciferase expression was measured 24h after application and is expressed as total 
luciferase activity per organ.  
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3.4. Electrophoresis (EPH) 
3.4.1. Standard agarose gel electrophoresis demonstrates proof of concept 
Inspired by the so called agarose gel retardation assay performed to determine 

complex formation of DNA polyplexes in an agarose gel, a setup was developed to 

separate polyplexes from unbound PEI (see Figure 14).  

+ -

3% agarose gel

syringe 1
(injector)

syringe 2
(removal device)

polyplex

free polymer

cuvette
(with two open sides)

Fig. 14. Setup for purification of complexes by electrophoresis (originally developed by Michael 
Günther from our research group). Non-purified sample is injected with syringe 1 into a cuvette 
bedded into an agarose gel. The cuvette contained two open sides next to the electrodes. 
Separation of free polycation is realized by the application of an electric field, hence resulting 
in targeted movement of charged molecules like PEI to the electrodes in dependency of their 
size. Purified polyplex can be removed from the cuvette with syringe 2.   

 

Monitoring the fluorescence labeled BPEI revealed that the polymer was moving fast 

in the applied electric field and migrated into the agarose gel (data not shown). 

Hence, 400 µl of polyplex dilution (generated at N/P 6 in HBG consisting of 10 % Tf-

PEG-BPEI/ 10 % PEG-BPEI and 80 % BPEI) with a DNA concentration of 100 µg/ml  

were injected. Electrophoresis was performed at 50 V for 1 h. Samples were 

removed and immediately analyzed for DNA and BPEI content. N/P ratios of purified 

polyplexes were reduced to 2.5 +/- 0.36, corresponding to a total removal of 58 % 

polymer. Since the running buffer used (TBE) contained amino-groups which could 

possibly react either in the TNBS assay as well as in the copper sulfate assay, 

complete separation of BPEI was controlled by a following SEC analysis of the 

purified polyplex (see Figure15). Analysis of the fractions for BPEI revealed that no 
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detectable free BPEI could be measured since a second peak indicating BPEI in the 

elution profile did not occur (which was the case for a non-purified control complex 

mixed at N/P 6).  
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no electrophoresis

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2
elution volume (ml)

µg
/m

l B
PE

I

.5

 
Fig. 15. Detection of BPEI after size exclusion chromatography of Tf/ PEG/ BPEI polyplexes. 
Complexes were mixed at N/P 6. Purification of polyplexes was performed by electrophoresis 
with one part of the particles. SEC was performed for both formulations in HBG. For purified 
polyplexes (‘with electrophoresis’) all detectable BPEI was recovered within the void fraction 
containing the polyplex. In contrast, non-purified complexes (‘no electrophoresis’) showed two 
PEI peaks, the second marking unbound BPEI.  For purified polyplexes, double amount of DNA 
was gel filtrated to improve the detection of BPEI. 
 

3.4.2. Electro dialysis with ElectroPrep® System 
Indeed, classic gel electrophoresis experiments demonstrated proof of concept, but 

the setup and the whole procedure was not easy to handle. However, Amika´s 

Elektro Prep® system (see Figure 16) proofed to have an easier handling and 

exhibits a combination of dialysis and targeted movement of charged particles 

underlying a certain electric field. 
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+

membranes

agarose layer sample compartment
(containing complex dilution)

teflon
chamber

buffer 
solution

separating plate

 
Fig. 16. Setup of Electro Prep® device used for electrophoresis of polyplexes. Polymer or 
complex dilution is placed in an inert Teflon chamber, fixed within a plastic plate. Two 
membranes are separating the sample compartment from dialysis buffer filling the Electro 
Prep® chamber. For improved removal of polycations, an additional agarose layer is applied on 
one side of the chamber. Pointed arrow inside the Teflon chamber indicates direction of 
targeted removal of free polymer. 
 

3.4.2.1. Parameters for efficient and gentle purification 

3.4.2.1.1. Buffer and current 

The ElectroPrep® System (Figure 16) could be in principle run with a standard TRIS/ 

glycine puffer used for electrophoresis. Amine-containing buffers were 

disadvantageous for the following quantification of PEI; hence amine-free buffers 

were desirable. Since PBS is forming large aggregates with PEI due to the 

phosphate groups (data not shown), phosphate was replaced by HEPES. Starting 

from 75 mM NaCl and 20 mM HEPES, salt content could be reduced to 5 mM NaCl/ 

20 mM HEPES. As expected, resulting current flow in the system was proportional to 

the conductance of the used buffer. Therefore, a clear correlation between the 

current necessary for purification of polyplexes and the changes in polyplex size after 

electrophoresis could be observed as demonstrated in Figure 17: for 80 mA, the size 

of PEGylated PBEI polyplexes was more than doubled. For 50 mA and 30 mA, 

polyplexes still grew in size, whereas for 10 mA current no significant change in 

diameter of PEGylated particles could be observed. Similar results were obtained for 
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5 mM NaCl/ 20 mM HEPES as electrophoresis buffer. Since low salt content is a vital 

precondition for stable non- or only partially shielded polyplex formulations, further 

development of electro elution with the ElectroPrep® System was carried out using 5 

mM NaCl/ 20 mM HEPES, pH 7.4.  

 

ig. 17. Changes in sizes of polyplexes (20% PEG-BPEI/ 80% BPEI) after electrophoresis with 

3.4.2.1.2. Insertion of an agarose layer enhances elution efficiency 

y5-BPEI, 90 % 
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different currents. Elution was carried out in 75mM NaCl/ 20mM Hepes pH 7.4 over a 30 minutes 
time periode with 0.05µm polycarbonate membranes. Only polyplexes underlying an electric 
field of 10mA did not grow in size significantly.  
 

For evaluation of elution efficiency of PEI, 200 µg of BPEI (10 % C

BPEI) diluted in 5 mM NaCl/ 20 mM HEPES, pH 7.4 were placed in a 1.5 ml Teflon

chamber enclosed by two polycarbonate membranes attached to each side of the 

sample compartment (see Figure 16). Sample was electrolysed for 10, 20 and 30 

minutes and the amount of remaining BPEI in the sample compartment quantified 

indicated time points. Indicated amounts of BPEI in Figure 1 were determined based 

on copper complex assay and fluorescence analysis of Cy5-PEI. Calculated values 

did not differ significantly (data not shown). After 10 minutes, not more than a 25 % 

reduction of total polymer content could be observed (see standard setup, Figure 18

Even at the 30 minutes time point, electro elution was far not completed with 20% 

PEI remaining, which was at least partially attributed to fouling of BPEI onto the 

membrane surface. To minimize sticking of polymer to the membrane a layer of 

agarose was placed directly onto the membrane inside the sample chamber 

orientated towards the cathode. Electrophoresis could be performed maintain

same conditions as developed for the standard setup (200 V, 10 mA in 5 mM NaCl/ 

20 mM HEPES, pH 7.4). We observed a dramatic increase in elution efficiency with 
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90 % removal of BPEI after 10 minutes and separation of 98 % polymer within 30 

minutes. Similar results were found for LPEI (data not shown). Hence, for realisatio

of efficient electrophoresis, an additional agarose layer containing a volume between 

0.5 – 1.0 ml was attached for all other experiments. 

n 

 
time. Polymer was diluted in dialysis 

uffer (5 mM NaCl/ 20 mM HEPES, pH 7.4) and applied on a 1.5 ml Teflon chamber with a 

.4.2.2. Application of electro dialysis-based purification 

of polyplexes 

emove free PEI 

100100

Fig. 18. Rem
b

oval of 200 µg BPEI by electro dialysis over 

standard setup (squares) or containing an additional agarose layer (triangles). BPEI content 
was determined based on copper complex assay and fluorescence analysis of Cy5-BPEI (see 
Materials and Methods) 
 

3

3.4.2.2.1. Time dependent removal of polymer and recovery 

To check whether a 10 minute electrophoresis would be sufficient to r

from a polyplex formulation, the same time-course experiment was repeated with 

polyplexes. A polyplex formulation (N/P 6) consisting of 60 % LPEI,  10 % Cy5-LPEI 

(to monitor LPEI removal), 20 % PEG20-LPEI and 10 % Tf-PEG-BPEI (N/P ratio 4.2/ 

1.2/ 0.6) in 5 mM NaCl/ 20 mM HEPES pH 7.4, to obtain a final DNA concentration of 

100 µg/ml was used (Figure 19). Separation of free PEI in PEI-based polyplexes was 

determined as decrease of the N/P ratios calculated at the indicated time points 

(calculations for the N/P ratios were based on the LPEI content as described in 

Materials and Methods). After 10 minutes, the initial N/P ratio of 4.2 decreased to N/P 

2.2. A 20 minutes electrophoresis run could further reduce the N/P ratio to 1.7. 

Further increasing the electrophoresis time did not result in significant decrease of 

the N/P ratio, but in a high loss of recovered particles (polyplex yield decreased from 

68 % after 20 minutes to 47% at 30 minutes). 
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Fig. 19. Reduction of molar ratios of PEI nitrogen to DNA phosphate (N/P ratios) and polyplex 
recovery in dependency of dialysis time. PEI22/ PEG20-PEI22/ Tf-PEG-PEI25 complexes 
containing 100 µg/ml DNA (N/P = 4.2/ 1.2/ 0.6) were electrolysed in 5 mM NaCl/ 20 mM HEPES, 
pH 7.4 (see Materials and Methods). Removal of free polycation was calculated at the indicated 
time points for LPEI. Corresponding N/P ratios are shown as bars (left y-achsis); polyplex 
recovery in % is displayed as lines (right y-axis).  
 
This was probably due to the migration of polyplexes into the agarose gel layer. 

Therefore, all further experiments were carried out with a 20 minute electrophoresis 

time, leading to efficient removal of polymer, concomitantly receiving good yields of 

purified gene carrier. 
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3.4.2.2.2. Influence of electrophoresis on biophysical parameters of polyplexes 

Polyplex
formulation

Electro-
phoresis

Size (nm) Zetapotential
(mV) 

LPEI -
+

150 +/- 17
992 +/-268

26.3 +/- 5.3

BPEI -
+

135 +/- 12
182 +/- 30

28.8 +/- 4.6
21.8 +/- 2.0

Tf/PEG/LPEI -
+

168 +/- 18
173 +/- 20

3.1 +/- 1.0
2.5 +/- 0.35

Tf/PEG/BPEI -
+

156 +/- 29
171 +/- 36

2.6 +/- 0.5
2.2 +/- 1.1

Tf/LPEI -
+

1-2 µm
1-2 µm

6.5 +/- 0.6
4.1 +/- 1.6

Tf/BPEI -
+

436 +/- 24
481 +/- 84

12.4 +/- 2.3
9.2 +/- 3.2

n.d.

 
Table 6. Biophysical properties of polyplexes after electrophoresis. Complexes were prepared 
at N/P 6 with a DNA  concentration of 100 µg/ml. 
 
Biophysical properties of different polyplexes before and after electrophoresis were 

determined (Table 6). To secure the analysis of a broad range of complex 

formulations, naked positively charged PEI particles were compared to surface 

shielded and targeted gene carriers, all based on LPEI or BPEI. LPEI and BPEI 

polyplexes were mixed in HBG, resulting in the formation of 130 – 150 nm particles 

(see also [30] und[31]). Electro elution resulted in aggregation of LPEI/ DNA particles 

which might be due to the electrophoretic stress combined with the salt content of the 

electrophoresis buffer (5 mM NaCl/ 20 mM HEPES pH 7.4). In contrast,  BPEI based 

polyplexes did not aggregate in salt containing media (see [31]) and therefore 

exhibited a stable size after purification in NaCl containing buffer. PEG shielded and 

targeted LPEI respectively BPEI polyplexes were mixed in 5 mM NaCl/ 20 mM 

HEPES pH 7.4 resulting in gene carriers with sizes in the range of 150 – 170 nm.  Tf-

shielded Tf-BPEI/PEI polyplexes generated in 0.5 x HBS (20 mM HEPES, 75 mM 

NaCl, 2.5 % glucose w/v) exhibited a particle size of 1-2 µm (for Tf/ LPEI) 

respectively 400 – 600 nm (for Tf/ BPEI), similar as observed recently [37].  After 

electrophoresis no significant changes in size were observed for all shielded and 

targeted formulations. The zeta potential, reflecting the surface charge of polyplexes 

did not change significantly for any formulation. 
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3.4.2.2.3. In vitro reporter gene expression and toxicity of purified polyplexes 

In order to evaluate gene transfer properties and cellular toxicity, biophysical 

properties of shielded and targeted polyplex formulations were characterized (Table 

6), and in vitro transfections were carried out on Neuro2A neuroblastoma cells. Non-

purified polyplexes generated at N/P of 6 or 2.5 were compared to polyplexes purified 

by electrophoresis. For all three transfection experiments shown in Figure 20, purified 

gene carriers were considerably less efficient at low DNA concentrations (≤ 2 µg/ml) 

compared to non-purified polyplexes mixed at N/P 6. These differences were most 

pronounced for Tf/LPEI polyplexes (350 fold difference at 1 µg/ml DNA; Figure 20B 

left), whereas for Tf/BPEI respectively Tf/ PEG/ LPEI polyplexes only a 10-fold 

difference in gene transfer efficiency was observed (Figures 20A and 20C, left). 

However, at higher DNA concentrations [≥ 2 µg/DNA (Figure 20A, left) and ≥ 4µg/ml 

DNA (Figure 20B and 20C, left)], purified formulations displayed equivalent or even 

slightly higher gene delivery capacity than the non-purified polyplexes generated at 

an N/P ratio of 6. In all transfections shown and for every DNA concentration applied, 

non-purified particles generated at the low N/P ratio of 2.5 exhibited by far the lowest 

gene transfer efficiency. 

In addition, the effect of purification on polyplex mediated toxicity was evaluated as 

relative metabolic activity, determined 24 hours after transfection by a standard 

colorimetric MTT assay (Figure 20, right panels). Except for the PEGylated 

formulation (Figure 4A, right), up to a concentration of 2 µg/ml DNA no difference 

between purified and non-purified particles was observed. DNA concentrations ≥ 4 

µg per ml resulted in more pronounced differences. At 8 µg/ml DNA, highest toxicity 

was observed for all non-purified polyplexes generated at N/P of 6. The lowest value 

of 25 % metabolic activity was observed for the PEGylated, non-purified polyplex 

formulation, followed by 32 % viable cells for the Tf/ LPEI N/P 6 group (Figure 20A 

and 20, right). However, toxicity of corresponding purified polyplexes was significantly 

(p < 0.001) reduced. Lowest toxicity with a metabolic activity of 68 % at 8 µg/ml DNA 

was shown for purified Tf/ BPEI particles. 
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Fig. 20. Gene transfection efficiency and metabolic activity of purified and non purified 
complexes. Neuro 2A cells were transfected with Tf/ PEG/ LPEI (A), Tf / LPEI (B) and Tf / 
BPEI(C) polyplexes with increasing concentrations of DNA as described in Materials and 
Methods. Purification was performed by electrophoresis. Luciferase expression of transfection 
complexes is displayed on the left, corresponding metabolic activity is displayed on the right 
graph.‘- EPH, N/P 6’: non purified polyplexes at N/P 6; ‘+ EPH’: purified complexes; ‘- EPH, N/P 
2.5’: non purified complexes at N/P 2.5. Shown are mean values of triplicates + SD. 
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3.5. Comparison of purification methods: electrophoresis 
(EPH) versus size exclusion chromatography (SEC) 
In this chapter, the two most efficient and easiest methods to purify polyplexes were 

compared side by side. A compilation of polyplex formulations and the respective 

nomenclature used is given in Table 2, chapter 3.2 

3.5.1. Composition of polyplexes after purification 
For exact calculation of the N/P ratio after purification, which should not only be 

based on PEI content but also on the amount of the individual conjugates, PEI’s and 

all conjugates were individually fluorescently labelled with Cy5. SEC respectively 

electrophoresis was performed as described. For every single run, only one of the 

DNA-binding partners was exchanged by the corresponding Cy5-labeled material. 

For instance, to determine the change of N/P ratio of PEG20-BPEI after purification, 

the polyplex was formed with 80 % BPEI, 10 % PEG20-BPEI-Cy5 and 10 % Tf-PEG-

PEI (N/P ratio of 4.8/ 0.6/ 0.6).  

For both purification methods, SEC and electrophoresis, the amount of PEI removed 

was similar (around 60 %, see Table 7), whereas big differences could be observed 

with PEI-conjugates: no significant separation of PEG-PEI conjugate was obtained by 

gel filtration. N/P ratios changed from 1.2 to 1.13 for PEG20-LPEI respectively from 

0.6 to 0.59 for PEG20-BPEI. In contrast, efficient removal of free PEG-conjugates 

was achieved by electrophoresis: the N/P ratio decreased from 1.2 to 0.48 for 

PEG20-LPEI (equivalent to 60 % removal of total conjugate) and to 0.3 for PEG20-

BPEI (50 % removal of total conjugate). The same tendency could be observed with 

Tf-PEG-BPEI: for both formulations, the targeting conjugate was only partially 

removed by SEC (initial N/P ratio of 0.6 was decreased to 0.52 for LPEI based 

polyplexes and to 0.42 for BPEI based polyplexes). Electrophoresis resulted in N/P 

reduction to 0.43 for LPEI based, and to 0.26 for BPEI based polyplexes (28 %, 

respectively 56 % removal of conjugate). 

Another drawback of SEC based purification of polyplex formulations is that particles 

>200 nm cannot be purified as they are too big to pass in between the gel matrix of 

the column [33]. In contrast, by using the novel electrophoresis method, free LPEI 

and BPEI as well as unbound Tf-BPEI conjugate could be purified from the 

respective medium-sized polyplexes (see bottom rows in Table 7). Resulting N/P 

ratios after purification were ranging between 2.8 and 3.1.  
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SEC
(N/P)

Elpho
(N/P)

6 2.5*

BPEI 6 2.8*

4.2
1.2
0.6

4.8
0.6
0.6

Tf-BPEI
4.5
1.5

BPEI
Tf-BPEI

4.5
1.5

Polyplex
formulation

non-purified
(N/P)

LPEI 2.62 +/- 0.13

2.56 +/- 0.13

LPEI
PEG20-LPEI

1.57 +/- 0.10

0.52 +/- 0.01

1.64 +/- 0.12
0.48 +/- 0.05 
0.43 +/- 0.00

BPEI
PEG20-BPEI
Tf-PEG-BPEI

1.79 +/- 0.22
0.59 +/- 0.04 
0.42 +/- 0.07 

1.79 +/- 0.24
0.30 +/- 0.03 
0.26 +/- 0.06 

LPEI 1.82 +/- 0.18
1.25 +/- 0.17

1.85 +/- 0.13
0.90 +/- 0.12

Tf-PEG-BPEI
1.13 +/- 0.06 

 
Table 7. N/P ratios of different complex formulations before and after purification, comparison 
of particle composition after size exclusion chromatography (SEC) versus electrophoresis  
 

3.5.2. Gene transfection and toxicity in vitro  
To evaluate if the differences in complex composition of SEC- or EPH-purified 

polyplexes play a role for in vitro transfection efficiency and cell viability, Neuro2A 

cells were transfected with increasing amounts of SEC-purified and EPH-purified Tf/ 

PEG/ LPEI polyplexes. Figure 21 demonstrates that no obvious differences between 

polyplexe purified by the two distinct methods can be seen.  
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Fig. 21. Gene transfection efficiency and metabolic activity of purified and non-purified 
complexes. Neuro 2A cells were transfected with Tf/ PEG/ LPEI polyplexes with increasing 
amounts of DNA as described in Materials and Methods. Purification was performed by EPH 
and SEC. Luciferase expression of transfection complexes is displayed on the left, 
corresponding metabolic activity is displayed on the right graph. Mean values of triplicates + 
SD are shown. 
 

3.5.3. Systemic application of purified PEI-based polyplexes 
Finally, the key question was whether EPH-purified particles would retain their 

transfection efficiency for tumors after systemic application in vivo and whether they 

would show an improved toxicity profile. The transfection efficiency of small (200  

nm), Tf targeted and PEG shielded polyplexes (mixed in 5 mM NaCl/ 20 mM HEPES) 

was compared with Tf targeted and shielded polyplex formulations (approx 500 nm in 

size, generated in 0.5 x HBS). Another approach was to analyse whether both 

methods for purification of small sized particles (SEC versus EPH) were comparable 

concerning in vivo gene expression levels. To obtain polyplexes with DNA 

concentrations of 400 µg/ml, an additional ultraconcentration step was performed 

after purification. Ultraconcentration did not lead to significant changes in biophysical 

properties. Mean diameters of ultraconcentrated gene carriers were only slightly 

increased, the zeta potential was unaltered (data not shown).  

 

3.5.3.1. Purification significantly improves biocompatibility in vivo 

To emphasize possible toxicity, polyplexes were injected at a high dose of 100 µg 

plasmid DNA per 20 g mouse into the tail vain of male A/J mice bearing 

subcutaneously grown Neuro2A tumors. 
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3.5.3.1.1. General observations 

A significant difference in acute toxicity was observed shortly after application of non-

purified and purified polyplexes. All mice receiving non-purified Tf/ PEG/ BPEI 

particles showed distinct signs of toxicity, finally leading to death of five out of six 

mice at 1 - 2 hours after i.v. application. Similar observations were made with non-

purified Tf/ BPEI polyplexes: 3 out of 6 mice died within 2 hours after i.v. 

administration. Organs of these mice were resected immediately after death. 

Macroscopic tissue damage (haemorrhages) was observed in liver, spleen and small 

intestine, similar as described in 3.3.5. 

In contrast, all mice receiving purified polyplex formulations did survive the 

application up to the defined end point of the experiment (48h after polyplex 

injection). With the exception of two animals exhibiting reduced activity after i.v. 

administration, mice did not show any signs of toxicity. A loss of body weight 48 

hours after application was observed for all groups. However, this effect was more 

pronounced for of animals obtaining non-purified polyplex formulations (16 % for the 

one surviving mouse receiving Tf/ PEG/ BPEI/ DNA and 8 +/- 2 % for the animals 

receiving Tf/ BPEI polyplexes) than obtaining purified particles (Tf/ PEG/ BPEI/ DNA: 

7 +/- 2 % body weight loss for purification by SEC respectively 9 +/- 1 % for 

purification by electrophoresis; 4 +/- 4 % weight loss for purified Tf/ BPEI polyplexes). 

3.5.3.1.2. Plasma analysis 

Plasma analysis of the mouse surviving the non-purified Tf/ PEG/ BPEI application 

revealed elevated levels of the enzyme alkaline aminotransaminases (ALT) and 

glutamate dehydrogenase (GLDH). In contrast, ALT and GLDH plasma levels of 

animals receiving purified Tf/ PEG/ BPEI were found to be at control level (Figure 22 

A and B). Similar results were obtained for aspartate aminotransaminase (AST) (data 

not shown).  
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Fig. 22. ALT and GLDH plasma levels of mice treated with non-purified and EPH- or SEC-based 
purified Tf/ PEG/ BPEI polyplexes (100 µg DNA per 20 g bodyweight). Control: mice injected 
with equal volumes of buffer. 
 
Application of non-purified Tf/ BPEI polyplexes resulted in only slightly increased ALT 

and GLDH levels in comparison to mice receiving purified Tf/ BPEI complexes. In 

contrast, AST levels of both purified and non-purified Tf/ BPEI groups were found to 

be on the same level (Figure 22). 
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Fig. 23. ALT and GLDH plasma levels of mice treated with non-purified or purified Tf/ BPEI 
polyplexes (100 µg DNA per 20 g bodyweight). Control: mice injected with an equal volume of 
buffer. 
 
AP levels of all non-purified and all purified groups were found to be at a normal 

level. 
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3.5.3.1.3. Histology of liver sections 

Most pronounced liver tissue changes were detected in the mouse surviving the 

application of non-purified Tf/ PEG/ BEI polyplexes. Besides haemorrhages broad 

areas containing necrotic tissue were visible (see Figure 24A). Necrotic tissue 

appears as merged bright areas without detectable cell morphology. In contrast, mice 

receiving purified Tf/ PEG/ BPEI polyplexes did neither show signs of necrosis nor 

strong haemorrhages (Figure 24B, purification by SEC and Figure 24C, purification 

by EPH).  

A

B

C
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Fig 24. Liver sections of mice obtaining 100 µg DNA per 20 g bodyweight 48h after systemic 
application; eosin/ haematoxilyn staining; left 100-fold magnification; right 200-fold 
magnification. A: non-purified Tf/ PEG/ BPEI; B: SEC-based purification of Tf/ PEG/ BPEI; C: 
EPH-based purification of Tf/ PEG/ BPEI; D: non-purified Tf/ BPEI; E: EPH-based purification of 
Tf/ BPEI; F: no treatment 
 
Mice surviving the application of non-purified Tf/ BPEI polyplexes did not suffer from 

pronounced liver damages as the animals obtaining the non-purified Tf/ PEG/ BPEI 

formulation. Still, in three out of four mice necrotic areas (Figure 24D) as well as 

broad haemorrhages were visible. Livers of mice receiving purified Tf/ BPEI 

polyplexes did not show significant tissue changes (Figure 24E). Liver sections of 

mice receiving only buffer served as control (Figure 24F)  
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3.5.3.2. Reporter gene expression of purified and non-purified complexes in vivo 

Although both non-purified formulations exhibited similar high toxicity, non-purified Tf/ 

BPEI polyplexes (Figure 25D) showed a more tumor-targeted gene expression 

profile. Only moderate luciferase gene expression was found in the liver, whereas the 

highest expression was detected in the tumor. However, expression level in the lung 

was almost equal to tumor expression level, leading to an unfavourable tumor/ lung 

ratio hardly higher than one.  In contrast, purified Tf/ BPEI polyplexes (Figure 25E) 

clearly targeted gene expression to the tumor with a 5-fold increase of gene 

expression level compared to the corresponding non-purified particles was 

demonstrated. Lung expression level did not increase simultaneously, leading to a 

favourable tumor/ lung ratio of five. Liver values of luciferase expression of mice 

receiving purified Tf/ BPEI polyplexes were reduced to background levels.  
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Fig. 25. In vivo gene transfer after systemic delivery of polyplexes into A/J mice bearing 
subcutaneous Neuro2A tumours. Different transfection complexes (see 5A – E) with a final 
concentration of 400 µg/ml DNA (100 µg per 20 g body weight) were injected into the tail vain. 
Luciferase expression was measured 48 h after application and is expressed as total luciferase 
activity per organ.  
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4. Discussion 

4.1. Development of purification methods for safer non 
viral gene delivery 
Polyethylenimine (PEI) introduced for gene transfer by the group of Jean-Paul Behr 

[19] is one of the most widely studied and successful polymers used for gene delivery 

in vitro and in vivo. However, high transfection efficiency is correlating with high 

toxicity, limiting the use of PEI polyplexes in vivo. As toxicity is considerably attributed 

to free PEI [33], efficient purification methods for polyplexes are desirable, especially 

for systemic applications. Beside the removal of free unmodified polycation, also 

separation of unbound functional polycation-conjugates such as shielding- or 

targeting conjugates should be warranted. As several efficient gene carriers based 

on PEI possess sizes between 0.3 and 1 µm ([39], [59], [68]) a novel purification 

approach should be suitable for particles of a broader size range. 

4.1.1. Cation exchange chromatography 
The purification method described in chapter 3.1. is based on the following concept: 

Highly positively charged polymers and conjugates should be retained by the 

carboxymethylgroups of the column material whereas particles exhibiting a neutral 

surface charge should pass the column unhindered (see Figure 26).  
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Fig. 26: Purification of polyplexes by cation exchange chromatography 
 
Synthesis of PEI conjugates as described e.g. in [39] demonstrated that these 

copolymers can be separated by cation exchange chromatography from an excess of 

uncharged material as the polycationic part of the conjugate is kept back by the 

negatively charged groups of the column material. PEI conjugates were not eluted 

until a high salt concentration between 2.2 and 3 M NaCl was reached.  

A preliminary experiment performed with PEI and PEI conjugates demonstrated 

retention of the polymer and copolymers for the weak cation exchange material (CM 

Sepharose) used (data not shown).  

The question was, (i) if the surface of PEGylated polyplexes exhibiting a zeta 

potential between 2 – 3 mV would be neutral enough to pass the cation exchange 

column without retention and if so, (ii) which amount of PEG-shielding would be 

sufficient for a proper shielding of the strongly positively charged core of the particles. 

Yet, shielding of polyplexes with 20 - 25 % PEG-PEI conjugate was apparently not 

enough for unhindered passing of the particles through the column material. Indeed, 

polyplexes were retained by the carboxymethyl groups and were not eluted until a 

minimum salt concentration of 1 M NaCl. Increasing the shielding amount in order to 
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further mask the positive surface charges resulted in instable particles which were 

sheared apart during cation exchange chromatography.  

Nevertheless, LPEI based particles with a shielding content of 20 - 25 % PEG-LPEI 

could be purified from free LPEI since their N/P ratio decreased to 2.5 – 3. Particles 

were still shielded after purification (neutral zeta potential, see Table 1), but due to 

the high salt content, polyplexes doubled in their diameter. Size stayed stable for at 

least 4 more hours, afterwards a tendency in aggregation was observed. However, 

for cell culture experiments further removal of the salt content (for example via 

dialysis or ultra filtration) is necessary. Since an additional step would make this 

purification method too complicated, wasting time and material, several efforts were 

made to reduce the salt concentration necessary for elution of the particles. 

Neither conditioning of the column with a starting salt concentration higher than 75 

mM NaCl nor impregnation of the column material with free PEI in order to reduce 

unspecific interactions (as performed for SEC) did lead to a significant decrease of 

required salt concentration. Another approach to reduce the salt concentration was 

the deployment of MgCl2 as elution buffer: since Mg2+ is a stronger cation as Na+, the 

polyplex should theoretically be eluted at lower MgCl2 concentrations. Actually, a 

polyplex consisting of 20 % PEG-BPEI and 80 % BPEI could be eluted at 0.4 M 

MgCl2. However, analysis of the fractions revealed that only DNA was eluted at this 

MgCl2 concentration but almost none of the polycations. This is most probably due to 

the fact that Mg2+ is able to complex DNA and therefore elutes the plasmid from the 

column.  

Taken together, the PEG-shielding of the polyplexes does lead to an average neutral 

surface charge, but obviously particles are still too positively charged to freely pass 

the column material. The positive core may still be influencing the particle 

environment despite PEG-shield, and/ or single PEI chains being not completely 

complexed with DNA may form loops which stick out on the polyplex surface, 

therefore being able to interact with the column material. The required high salt 

concentrations for elution of purified particles as well as the finding that only small 

and tightly condensed particles were able to pass the column without being sheared 

apart were the main problems which occurred. Due to these findings, cation 

exchange chromatography was not further evaluated with regard to the biologic 

activity of purified vectors and their gene delivery potency. 
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4.1.2. Ultra filtration enables purification of various formulations but is limited 
to the polyplex amount  
Ultra filtration is an easy and fast method to separate small and large molecules 

through several connected centrifugation steps. The ultra filtration device is divided 

by a membrane with a suitable molecular cut off. Since centrifugation leads to quick 

separation of small molecules passing through the filter pores and big particles 

staying in the supernatant, ultra filtration would be a very attractive and elegant 

method for the purification of polyplexes: while separating free polymer, the vector 

system can simultaneously be concentrated, representing a main advantage for 

further in vivo applications. Actually, the first published approaches for the purification 

of PEI particles ([40], [95], [96]) were based on ultra filtration. For reasonable PEI-

mediated gene transfer in vivo, polyplexes have to fulfil multiple tasks. To meet all 

requirements, additional functional domains are conjugated to PEI leading to polyplex 

formulations composed of polymer and one or several PEI-bound conjugates. 

Regarding a potential systemic administration, this thesis focuses on the purification 

of more multifunctional PEI-based vectors, and therefore stands out from the already 

published data. Several formulations were selected for biophysical and biological 

evaluation after ultra filtration: i) Tf/ PEG/ LPEI and Tf/ PEG/ BPEI polyplexes which 

are rather small particles with 150 – 170 nm in diameter shielded with PEG-PEI 

conjugate and targeted by Tf-PEG-PEI conjugates [39], and ii) Tf/ LPEI respectively 

Tf/ BPEI polyplexes being shielded and simultaneously targeted by incorporating a 

high percentage of Tf directly linked to BPEI  (25% of total PEI in the formulation), 

leading to polyplexes of up to 1 µm in size [37], and iii) simple PEI/ DNA polyplexes 

as ‘golden standard’. 

Ultra filtration as performed in this thesis demonstrated that it is in principle possible 

to purify a broad range of polyplexes, regardless of size and surface charge. The 

apprehension that big or non-shielded particles would predominantly adsorb on the 

filter did not come true since polyplex recovery was around the same (70-80 %) for all 

formulations tested. However, complete removal of polymer was only assured when 

small amounts of polyplexes were applied (Table 3). Using Vivaspin6 devices, 

efficient removal of  55 – 60 % PEI from non-purified polyplexes (50 µg/ml DNA, N/P 

6) was at least possible up to the amount of 12.5 µg DNA resulting in purified 

polyplex formulations with N/P ratios between 2.5 and 2.8. At higher DNA 

respectively PEI amounts, separation of unbound polymer got more and more 

inefficient: 30 – 40 % removal of PEI at 37.5 µg DNA and only 15 – 25 % removal of 
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polymer for polyplexes containing 62.5 µg DNA. Within the polyplex formulations the 

contingent of separated PEI was similar for all three different DNA amounts tested. In 

line with previous reports, ultra filtration did not significantly change biophysical 

properties [[95], [96], [40]].  

Monitoring the permeability of the membrane for PEI revealed that a large fraction of 

polymer is not recovered neither within the supernatant nor the filtrate and will 

accordingly stick on the filter membrane (Figure 6). Consequently, it is most likely 

that above a certain amount of PEI, the membrane gets completely blocked and 

simply looses its filtration function. Hence, above this PEI threshold, removal of free 

polycation can not proceed anymore whereas under the threshold complete 

separation is possible. The same conclusion can be drawn for PEI conjugates like Tf-

PEI or PEG-PEI which only partially pass the Viviaspin membranes (data not shown). 

These findings are in line with previous ultra filtration-based PEI/DNA polyplex 

purifications which also suffered from incompleteness of polymer separation [32]. 

Membrane blocking due to a too large portion of polycation could likewise be the 

reason for the presented results.  

Nevertheless, purification of polyplexes proofed to be efficient for DNA amounts up to 

12.5 µg. Since this is still a sufficient portion for standard cell transfections, several in 

vitro experiments were performed testing ultra filtration based purification as proof of 

principle with respect to gene transfer capabilities and toxicity. Naked purified PEI/ 

DNA vectors as golden standard and big-sized, shielded particles (Tf/ LPEI and Tf/ 

BPEI) were analysed in order to emphasize the possible purification of 

nanostructures with sizes above 300nm not given by the SEC method published by 

Boeckle et al [33]. 

Transfection efficiencies of purified simple LPEI/ DNA polyplexes were reduced up to 

40-fold in comparison to particles containing free LPEI (Figure 7). However, at high 

DNA concentrations, purified complexes displayed equal transfection levels. 

However, purified BPEI/DNA complexes exhibited in general lower transfection 

capabilities than non-purified BPEI/DNA particles for every DNA concentration 

observed. The effect of purification on cell viability is more pronounced for LPEI/DNA 

particles, which show a greatly improved toxicity profile in comparison to non purified 

LPEI/DNA vectors. Naked BPEI/ DNA particles are in general more toxic with no big 

differences between purified and non-purified polyplexes. This is in line with the SEC 

results previously obtained by Boeckle et al. [33], but differs with the results 
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presented by Erbacher et al [96]. A possible explanation for this discrepancy may be 

the high N/P ratios of particles used in the latter work [32]. 

Transfection with purified Tf/ PEI polyplexes was overall sufficient and similar effects 

could be observed as with naked PEI/DNA vectors: initial lower transfection efficiency 

of purified Tf/ LPEI complexes at low DNA concentrations was restored at higher 

DNA concentrations with up to 5-fold higher gene expression of purified vectors, 

whereas purified BPEI-containing Tf-complexes did not reach transfection levels of 

the formulations containing free polymer for any of the tested DNA concentrations. In 

line, purified Tf/ LPEI particles exhibit an improved toxicity profile.  

Taken together, proof of principle for ultra-filtration based purification could be shown 

as well as the purification of large particles which was up to now not demonstrated 

before. Small amounts of PEI can be efficiently removed from polyplexes. In vitro 

studies, which do not require large amounts of gene vectors, can in principle be 

performed like the evaluation of transfection efficiencies, differences in cell 

association and uptake or differing intracellular behaviour of purified polyplexes. After 

each ultra filtration cycle, particles were concentrated 2 - 3 fold, a nice feature for in 

vivo applications. However, since this work demonstrates that ultra filtration is limited 

due to blocking of PEI on the membrane, the method will not play an important role 

for the purification of PEI-based polyplexes for in vivo application. 

4.1.3. SEC: modification of polyplexes with endosomolytic functions for virus-
like gene delivery  
A successful purification method for PEI/DNA polyplexes by size exclusion 

chromatography with a removal of 50-60 % of the total PEI amount was developed by 

Boeckle et al [33]. Preliminary in vivo data of intravenously applied purified PEI/DNA 

particles indicated lower toxicity of purified vectors, but also a general lower reporter 

gene expression in all major organs [33].   

Additionally to the described approach, this work focuses on the purification of 

shielded and Tf-targeted gene vectors with the specific aim of intravenous 

applications of purified polyplexes in tumor bearing mice. Tf-targeted L- and BPEI 

polyplexes with a sufficient amount of PEG-shield generate small particles exhibiting 

a neutral surface charge. Unfortunately at the same time coating of the positive 

charge with PEG improves properties of vectors for systemic applications, they 

display comparably low cell transfection activity [[38],[101],[43]], even with the 

additional integration of targeting ligands [[102], [103]]. Beneath reduced interaction 
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with cell surfaces [40], a major bottleneck seems to be endosomal escape of the 

PEGylated PEI polyplexes [104]. Hence, regarding the development of successful 

non viral vectors for in vivo applications, the membrane active peptide melittin, which 

is known to efficiently trigger endosomal release, was additionally inserted into the 

polyplexes. Boeckle et al (S. Boeckle PhD thesis, Boeckle 2005) described in detail 

the bee-venom-derived melittin and its analogues. N-Mel-BPEI, (with melittin 

covalently linked to BPEI at the N-terminus) as well as CMA-3-BPEI and NMA-3-

BPEI (with the melittin derivative coupled to BPEI via the C-terminus respectively the 

N-terminus of the peptide) have previously been shown to be promising gene 

transfection vectors ([54],[98],[93]). However, the improvement in gene transfection 

efficiency is again paired with pronounced toxicity. Therefore, these melittin 

conjugates were incorporated into PEGylated and Tf-targeted polyplexes (N/P ratio of 

Tf/ PEG/Melittin-BPEI: 0.6/ 0.6/ 4.8) which were finally purified by SEC to improve the 

toxicity profile by removing unbound melittin-BPEI conjugates from the polyplex 

formulation.  

For the most promising new melittin conjugates which are all coupled to BPEI, a 

direct comparison of melittin-core complexes to B- and LPEI polyplexes was 

performed in order to figure out the most successful purified, shielded and targeted 

small-sized gene delivery system regarding in vitro transfection efficiency and 

toxicity. The “winners” of the in vitro group should later be systemically applied in 

tumor bearing mice. 

First of all, incorporation of melittin-conjugate into the polyplex formulations after 

purification was demonstrated (Figure 9): 50 – 55 % of the melittin-containing BPEI 

conjugate could be removed by size exclusion, according to 45 – 50 % of the 

conjugate being incorporated within the polyplexes.  

Transfection experiments in Tf-receptor rich Neuro2A cells demonstrated the 

following: Firstly, at low DNA concentrations the most potent non purified polyplex 

formulations are in fact melittin-containing vectors (Figure 10A and B) whereas at 

higher DNA concentration (Figure 10C), LPEI displays equal transfection efficiency. 

Secondly, purified melittin-containing polyplexes exhibited again the highest 

transfection efficiency at low DNA concentration. However at high DNA 

concentration, transfection efficiency of both L- and BPEI was quite elevated and had 

the same expression level like melittin-containing gene carriers (Figure 10C). 

Concerning cell toxicity, all purified gene carriers did not show any significant 
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difference from untreated control cells 24 hours after transfection. Likewise, a 

difference in cell viability among the five different groups could hardly be observed.  

Significant differences in transfection efficiency within the five groups could only be 

shown for low DNA concentrations indicating the melittin-analogs as most promising 

gene delivery vectors. However, at high DNA concentration of 4 µg/ml, all different 

purified polyplex formulations exhibited similar luciferase expression levels. Therefore 

all five groups with and without purification were included in a following in vivo study. 

4.1.4. Electrophoresis allows efficient purification for polyplexes in a broader 
size range and exact determination of polyplex composition  
The electrophoretic method as developed in chapter 3.4. is based on the following 

concept: highly positively charged polymers and conjugates with a high charge/ 

molecular weight ratio should move rapidly towards the cathode in a time period 

where particles exhibiting a far lower charge/ weight ratio hardly migrate.  

At first, this was verified by standard agarose gel electrophoresis experiments 

performed with Tf/ PEG/ BPEI polyplexes which revealed that unbound PEI moves 

fast in the applied electric field and can be separated from rather immobile 

polyplexes. Completeness of separation was verified through a downstream gel 

filtration step (Figure 15). The appearance of a single peak in the void fraction of the 

SEC elution profile confirmed that no cationic carriers (PEI and PEI-conjugates) were 

detectable within the polyplex. 

For preparative separations a commercially available electro dialysis device (see 

Figure 16) was adapted.  Besides, polyplexes are too big to pass the membranes of 

the sample compartment, whereas polymers and conjugates are able to pass. 

Therefore a membrane with a 50 nm cut-off was chosen. Electrophoresis performed 

at currents above 30 mA induced growing of particles (Figure 17). This was most 

probably due to the strong electric field which sheared apart the polycations and the 

DNA. Since a gentle electrophoretic purification without changing biophysical 

properties of polyplexes is strongly desirable, a low current of 10 mA was employed 

for all relevant experiments. To hinder possible salt-induced aggregations of 

polyplexes, a buffer with a minimum salt amount of 20 mM HEPES and 5 mM NaCl 

was used. For reducing unspecific adsorption of polymer, a membrane consisting of 

polycarbonate was selected. Nevertheless, especially with higher amounts of PEI 

applied, a reduced PEI elution by time was observed (Figure 18). This was mainly 

due to sticking of polymer onto the membrane since we observed a blue coloration 
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attributed to Cy5-labeled PEI on the membrane surface. This was not surprising, 

since the ultra filtration experiments performed in this thesis and previous work [[33], 

[32]] describes the high affinity of PEI to adhering onto many kinds of surfaces like 

filters and membranes. According to the standard gel electrophoresis experiments 

performed, an agarose layer was put inside the Teflon chamber, placed between the 

sample solution and the membrane. As expected, removal of PEI was strongly 

improved with more than 98% of PEI being removed from the chamber after 30 

minutes (Figure 18).  

With the electrophoresis setup described in 3.4.2, we were able to efficiently purify a 

broad range of PEI-based polyplexes independent of their size and surface charge: 

naked, positively charged PEI/ DNA complexes, small shielded and targeted 

complexes (Tf/ PEG/ PEI) as well as big-sized vectors (Tf/ PEI), with the two latter 

being the more attractive formulations for future in vivo applications. Purification was 

complete after a 20 minutes electrophoresis run while achieving high polyplex 

recoveries (Figure 19). With the exception of plain LPEI-polyplexes, biophysical 

properties did not change significantly (Table 6). This is consistent with previous 

findings that non-shielded LPEI are very sensitive to aggregation [31], a property 

which gets intensified after polyplex purification [33]. 

In general, 60% of the total amount of PEI for particles initially generated at an N/P of 

6 could be removed by electrophoresis which is in good agreement with previous 

reports [[33]; [32]; [98]]. For LPEI and PEGylated polyplex formulations, total N/P 

ratios found after electrophoresis ranged from 2.4 – 2.6. N/P ratios of particles 

shielded by Tf-BPEI were only slightly higher after purification with values ranging 

from 2.8 – 3.1 (Table 2) and were very similar to the values obtained for ultra 

filtration-based purification of marginal DNA-amounts (Table 3).  

Importantly, electrophoresis of polyplexes allowed removing not only unmodified free 

PEI but also unbound PEI-conjugates (which was not able for SEC). This method 

therefore generates well-defined, purified particles which are regarded to be crucial 

for any future development as a pharmaceutical product. The data also provide 

information on the composition of polyplexes and final percentages of LPEI and BPEI 

polymers respectively conjugates therein. Table 7 shows that polyplexes composed 

of BPEI-based conjugates (Tf-PEG-BPEI and Tf-BPEI) and LPEI as well, LPEI was 

removed to a higher extent then BPEI-conjugates during purification. For instance, 

Tf-BPEI/ LPEI polyplexes mixed at a percentage ratio of 25/ 75 (at N/P 6) upon 
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purification by electrophoresis display average incorporation of 41% Tf-BPEI and only 

59% LPEI (values calculated from N/P ratios in Table 7). Tf-BPEI/ BPEI particles also 

mixed at a 25/ 75 ratio with DNA, exhibit actually a differing 33% (for Tf-BPEI) and 

66% (for BPEI) distribution in respect to DNA binding. This is in agreement for 

example with FRET experiments made by Ithaka et al [105] where a lower DNA 

binding affinity for DNA of LPEI compared to BPEI was observed.  

Crucially, SEC-based purification did not separate unbound PEI conjugates as 

Table7 demonstrates and therefore results in small differences in complex 

formulation. An important question was therefore, if removal of unbound targeting 

ligands (possible only for EPH) would lead to improved transfection efficiency since 

free Tf-conjugates might compete with polyplexes incorporating Tf for the 

corresponding receptors on the target cell. However, in vitro transfection experiments 

performed with Tf/ PEG/ LPEI polyplexes (Figure 21) revealed no difference in gene 

delivery efficiency of electrophoretic-based and gel filtration based purified 

complexes.  

For the exclusive evaluation of transfection capability of electrophoretically purified 

polyplexes, we compared Tf-targeted DNA polyplexes with and without PEG 

conjugates (A: Tf/ PEG/ LPEI; B: Tf/ LPEI and C: Tf/ BPEI) as the most promising 

candidates for safe and efficient gene transfer. Purified formulations were compared 

to non purified particles generated at N/P 6. To underline the importance of 

generating particles with an excess amount of polymer and its impact for gene 

transfer also non purified polyplexes mixed at a low N/P ratio of 2.5 were used.  In 

vitro transfection with purified polyplexes was overall efficient with a slightly improved 

toxicity profile compared to non purified formulations at N/P 6. Especially at high DNA 

concentrations, purified gene carriers exhibited equivalent transfection efficiencies. In 

contrast, all particles generated at N/P 2.5 displayed significantly less gene transfer 

capability. This may be due to the fact that particles generated at low N/P ratios 

mainly form loose, non compacted aggregates [30] which are close to electro 

neutrality.  

Taken together, purification of particles by electrophoresis fulfils several crucial 

requirements: i) the method is quick and easy to perform, ii) biophysical properties of 

virus-like particles are not changed, iii) removal of PEI can be performed 

independently of the polyplex size and iv) unbound PEI-conjugates can be 
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separated. Since purified particles maintain their transfection ability in vitro, the last, 

most crucial question remains: their effectiveness in systemic applications.   

4.2. Purified, highly concentrated shielded and targeted 
polyplex formulations: significance for in vivo applications  
In vitro, purification of PEI-based polyplexes proved to be important not only due to 

the improved toxicity profile of the polyplexes but also for mechanistic studies 

concerning the role of free polycations during extra- and intracellular processing 

steps [[33], [32], [106]]. However, the basic impact of purification lies in the 

improvement of systemic application of gene vectors with respect to biocompatibility 

and toxicity of complexes. Regarding future developments of non-viral gene transfer 

mediated by polyplexes, one has to get straight that purification of the carrier systems 

is a vital precondition for reasonable gene therapies. Since the first published results 

describing the in vivo application of purified PEI/DNA polyplexes have been very 

promising [[96], [33]] a crucial aim of the thesis was the i.v. injection of purified, 

shielded and targeted gene carriers into tumor-bearing mice and investigation of their 

transfection efficiency and biocompatibility. 

4.2.1. Incorporation of melittin does not improve transfection efficiency  
Unfortunately, application of 50 µg DNA per 20 g bodyweight led to an overall low 

gene expression both for SEC-based purified and for non-purified polyplex 

formulations (Figure 12). Highest tumor expression of purified complexes was found 

for Tf/ PEG/ BPEI and Tf/ PEG/ NMA-3 vectors. This result clearly demonstrated, that 

despite targeting ligand small and PEGylated particles are mainly inefficient in vivo 

gene vectors and purification does not contribute to an increase of transfection 

efficiency. We considered two general possibilities to enhance the gene transfer 

capabilities of these vectors: Firstly, application of a higher amount of DNA, and 

secondly, increasing the size of the gene carriers to the range of 500 – 1000 µm in 

order to exploit the enhanced permeability and retention (EPR) effect of circulating 

particles, also termed as ‘passive targeting’ strategy [65]. Indeed, increasing the 

polyplex size through adoption of high salt concentration or freeze-thaw cycles 

concomitantly maintaining the required low polydispersity proved to be not easy. On 

the other hand, purified polyplexes were all well tolerated (which was not the case for 

non-purified particles). Therefore we decided to simply double the amount of applied 

DNA to 100 µg DNA per 20 g bodyweight. To keep the injection volume small the 
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polyplexes were concentrated to 400 µg DNA per ml. This time, analysis of reporter 

gene resulted in higher gene expression: in the case of Tf/ PEG/ NMA-3 polyplexes 

an almost 10-fold and for Tf/ PEG/ BPEI polyplexes more than 50-fold enhancement 

in transfection efficiency compared to the low dosage administration was detected 

(Figure 13). Unfortunately, incorporation of NMA-3-BPEI into the particles did not 

lead to an improvement of transfection capabilities since tumor expression levels 

were even slightly lower than those of standard Tf/ PEG/ BPEI complexes. However, 

the in vitro data at the DNA concentration of 4 µg/ml performed in chapter 3.3.3 

(Figure 10C) already gives a first hint for the only modest performance of melittin-

containing polyplexes: no clear predominance of these vectors at high DNA 

concentrations could be demonstrated.  

4.2.2. Purification leads to significant improvement of biocompatibility while 
maintaining high transfection efficiency 
Indeed, delivery of both purified and non-purified targeted and shielded polyplexes 

with a DNA amount of 50 µg as described in 4.2.1. did not lead to significant gene 

expression. On the other hand, it already turned out that purification contributes to 

reduced in vivo toxicity: a full 50 µg dose of any melittin-containing polyplex was 

highly toxic since none of the animals survived the application. In sharp contrast, the 

analogous gel filtrated melittin-polyplexes were well tolerated in the systemic 

application, even at a high dosage of 100 µg DNA per 20 g body weight. For the 

same amount of DNA, a high toxicity for non-purified Tf/ PEG/ BPEI formulations was 

observed (Figure 25A and 25D) with only one out of six animals surviving the Tf/ 

PEG/ BPEI administration and 50 % of the animals surviving the Tf/ BPEI delivery.  

Death of mice treated with non-purified particles seems to be correlated with liver 

failure as strong bleedings in the liver tissue were visible. Livers of mice surviving the 

non purified formulations showed bleedings within the sinusoids and large areas of 

necrosis (Figure 24). Also, especially in the case of non-purified Tf/ PEG/ BPEI 

polyplexes, ALT and GLDPH liver enzyme level was elevated, indicating liver 

damages. Additionally, for the small PEGylated BPEI formulation a comparably high 

amount of luciferase expression was found in the liver (Figure 13A and 25A). 

Since purification of small polyplexes is possible with SEC and with EPH, a 

comparison regarding in vivo transgene expression profile and expression levels was 

meaningful. The in vivo data demonstrated that both methods of purification led to 

well tolerated gene carriers upon systemic application. This confirms that the major in 
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vivo toxicity of PEI-based polyplexes mixed at high N/P ratios correlates with 

unbound polymer. Comparably high lung accumulation of purified and non-purified 

polyplexes is most probably due to incomplete shielding of particles (for both 

formulations zeta potential of concentrated particles was 6 – 8mV). 

Notably, high dosage of non-purified Tf/ PEG/ LPEI polyplexes did not lead to severe 

toxicities. On the other hand, in vivo transfection level of these vectors im the tumor 

tissue was lower than the ones obtained with Tf/ PEG/ BPEI polyplexes (data not 

shown), which was surprising and in clear contrast to the most in vitro data. However, 

reasons for that remain speculative.  

Most interesting, highest tumor expression was found for purified BPEI gene carriers; 

up to 5-fold increase in gene expression levels in comparison to non-purified 

polyplexes was observed. Apparently free PEI does not contribute to tumor gene 

expression as the polycation is quickly cleared by the RES before reaching tumor 

tissue. An even increased tumor expression with Tf targeted polyplexes was not 

expected and reasons for it remain speculative. Possibly free PEI, which may 

aggregate with erythrocytes [[33], [40]] and may activate lung endothelium [34], 

enhances entrapment and subsequent uptake of polyplexes in the small capillaries 

mainly of the lung [[20], [34]]. This might lead to a reduced systemic circulation of 

polyplexes into the tumor. Conversely, removal of free PEI would enhance delivery 

into the tumor. Such a hypothesis however remains to be tested by polyplex 

distribution studies. 

 The in vivo study described in chapter 3.5.3. verified that both methods 

(electrophoresis as well as gel filtration) are resulting in similar gene expression 

patterns and levels, despite differences in polyplex composition of purified particles 

(Table 2).  

Nevertheless, the electrophoresis based method also allowed the purification of 

polyplex formulations >250 nm in size. Hence, purified Tf/ BPEI polyplexes (400 - 

600 nm) were included in the in vivo series. Since those vectors were as efficient in 

tumor expression level as small sized Tf/ PEG/ BPEI particles, the enhanced 

retention and permeation (EPR) effect as mentioned in 4.1.3. apparently did not play 

a significant role for a further enhancement of tumor gene delivery.  

Still, this method can also be potentially utilized for a size-independent purification of 

other cationic DNA carriers consisting of tailor made, “smart” polymers. The 

electrophoretic method developed in this thesis may therefore present an important 
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contribution for the development of effective and safer non-viral vectors for systemic 

applications. Taken together, efficient gene expression of purified shielded and 

targeted PEI polyplexes is possible but requires a threshold amount of delivered 

DNA. However, the high amount of gene vector did not lead to significant toxicities.  
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5. Summary 
Recently, two different methods based on ultra filtration and SEC describing the 

purification of plain PEI/DNA polyplexes were published with promising in vitro data. 

Also provided preliminary in vivo applications of these particles demonstrated an 

improved toxicity profile clearly indicating the impact of generating well defined, 

purified gene carriers. However, up to now, not much attention was drawn to the in 

vivo application neither of purified shielded and targeted polyplexes nor at the exact 

composition of these multi-functional vectors after their purification. This thesis 

focuses on the evaluation of already existing approaches and the development of 

alternative purification methods regarding their efficiency to remove both unbound 

PEI and PEI-conjugates. Additionally, a size-independent purification should be 

warranted and a scale up of the established methods should allow purification of 

large polyplex amounts to analyze gene transfer and biocompatibility after systemic 

application in tumor-bearing mice.   

A first purification approach based on cation exchange chromatography 

demonstrated proof of principle. Small PEGylated complexes could be efficiently 

removed from unbound polymer. However, despite a neutral zeta potential the 

particles exhibited a strong affinity to the negatively charged carboxymethyl groups of 

the column material. Therefore, a high salt concentration with a minimum amount of 1 

M NaCl was necessary to elute the complex. Although the purified polyplex seemed 

to be stable at the high salt content for a certain time, a required additional dialysis 

step in order to reduce the salt content was considered to be time- and material 

wasting. Thus, further evaluation regarding in vitro transfection experiments were not 

carried out. 

An already published method based on ultra filtration was successfully augmented on 

the purification of both small and big sized, shielded as well as targeted complexes. 

Purification by ultra filtration proofed to be a very quick, easy and efficient method to 

remove PEI and PEI conjugates beneath a certain amount of polyplex. Exceeding 

this borderline, purification turned out to be inefficient, which was also the outcome of 

the first already published ultra filtration approach. Stagnating of PEI removal is most 

probably due to blocked membrane. Therefore, only a few in vitro transfection 

experiments were carried out. It was demonstrated that also big-sized polyplexes can 
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be purified and still maintain their transfection efficiency at high DNA concentrations 

while exhibiting an improved toxicity profile.  

Up to now, the only efficient and complete removal of PEI in PEI/DNA polyplexes was 

demonstrated with SEC. This thesis describes the purification of Tf-targeted and 

PEG-shielded L- and BPEI polyplexes, which were optionally tuned with melittin-

containing PEI as endosomolytic functions in order to create a more virus-like 

particle. The approach was scaled up and combined with a downstream ultra 

concentration step to produce a large amount of highly concentrated, purified and 

stable gene vectors. Being systemically applied, these formulations exhibited a high 

tumor expression level. However, melittin-containing complex formulations did not 

exhibit an increase in transfection efficiency compared to non-modified Tf/ PEG/ 

BPEI polyplexes. But for the first time it could be demonstrated that purified Tf/ PEG/ 

BPEI polyplexes show high tumor expression level and are well tolerated.  

The purification approach based on electrophoresis combines the most crucial 

advantages. Since it allows complete separation of PEI and PEI conjugates, also a 

clear determination of the polyplex composition is possible. With suitable conditions 

applied, electrophoresis does not change biophysical properties of shielded 

polyplexes and most importantly, complexes of larger size ranges can be purified. 

Crucially, electrophoresis-based purified polyplexes were still effective in vitro as well 

as in vivo. Distant tumors were targeted with equal or higher transfection efficiencies 

than obtained with the respective non-purified particles. Purified polyplexes were well 

tolerated in systemic applications even at high DNA dosages.  
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6. Appendix 

6.1. Abbreviations 
ALT     alkaline aminotransaminase 

AP     alkaline phosphatase 

AST     aspartate aminotransaminase 

BPEI     branched PEI of 25 kDa 

CMA-3-BPEI    PEI covalently attached to the C-terminus of a  

     melittin analog 

CMV     cytomegalovirus 

DMEM    Dulbecco´s Modified Eagle´s Medium 

DNA     deoxyribonucleic acid 

EGF     epidermal growth factor 

EGFR     epidermal growth factor receptor 

EPH     electrophoresis 

EPR     enhanced permeation and retention effect 

GLDH     glutamate dehydogenase 

FBS     fetal bovine serum 

HBG     HEPES-buffered glucose 

0.5 HBS    HEPES-buffered glucose and HEPES-buffered 

     saline 1/1 (v/v) 

HBS     HEPES-buffered saline 

HEPES    N-(2-hydroxyethyl)piperazine-N`-2(-ethanesulfonic 

     acid) 

IL-2     interleukin-2 

LPEI     linear PEI of 22 kDa 

LU     light units 

MTT     methylthiazoltetrazolium salt 

NA     nucleic acid 
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NMA-3-BPEI    BPEI covalently attached to the N-terminus of a 

     melittin analog 

N-mel-BPEI    BPEI covalently attached to the N terminus of  

     melittin 

N/P ratio    molar ratios of PEI nitrogen to DNA phosphate 

PBS     phosphate-buffered saline 

pCMVLuc    plasmid encoding luciferase under control of the 

     CMV promoter/ enhancer 

PEG     polyethylene glycol 

PEG-BPEI    PEG of 20kDa covalently attached to BPEI of  

     25kDa 

PEG-LPEI    PEG of 20kDa covalently attached to LPEI of  

     22kDa  

RES     reticulo endothelial system 

RGD     synthetic peptide, containing arginine-glycine- 

     aspartate as sequence motif 

RLU     relative light units 

RNA      riboxy nucleic acid 

SD     standard deviation 

SEC     size exclusion chromatography 

siRNA     small interfering RNA 

Tf     transferrin 

Tf-BPEI    transferrin covalently attached to BPEI of 25kDa 

Tf-PEG-BPEI   transferrin covalently linked to BPEI of 25kDa via a 

     heterobifunctional 3.4 kDa PEG spacer  

UF     ultra filtration 

v     volume 

w     weight 
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6.2. Publications 
6.2.1. Original papers   
Walker, G.F., Fella, C., Pelisek, J., Fahrmeir, J., Boeckle, S.,Ogris, M. and Wagner, 

E. (2005)  

“Toward Synthetic Viruses: Endosomal Triggered Deshielding of Targeted       

Polyplexes Greatly Enhances Gene Transfer In Vitro and In Vivo” 

Mol Ther 2005; 11(3):418-425 

 

Boeckle, S., Fahrmeir, J., Roedl, W., Ogris, M. and Wagner, E. (2006)  

“Melittin Analogs With High Lytic Activity At Endosomal pH Enhance Transfection 

With Purified Targeted PEI Polyplexes” 

J Control Release 2006; 112(2):240-248      

   

Fahrmeir, J., Guenther, M., Wagner, E., Ogris, M. 

“Electrophoretic Purification Of Tumor Targeted PEI Polyplexes Reduces Toxic Side 

Effects In vivo”, submitted                           

                     

6.2.2. Book chapter 
Fahrmeir, J. and Ogris, M. (2006) 

“Transferrin Receptor Mediated Delivery of Protein and Peptide Drugs Into Tumors 

For Cancer Treatments” in “Delivery Of Protein And Peptide Drugs In Cancer”, 

Imperial College Press, Edt V.P. Torchlin 

 

6.2.3. Poster presentations  
Walker, G.F., Fella, C., Fahrmeir, J. and Wagner, E.  

“Bio-reversible PostPEGylation of targeted polyplexes enhances gene transfer in 

vitro” 

European Society Of Gene Therapy, Annual Meeting, Prague, Chech Republic 

Fahrmeir, J., Bogomilova, A., Russ, V., Koseva, N., Ogris, M. Troev, K. and Wagner, 

E. (2006) 

“Novel gene carriers based on polyphosporamides”             
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Controlled Release Society, Annual Meeting, Vienna, Austria 

 

6.2.4. Oral presentation 
Fahrmeir, J., Kloeckner, J. (2005)  

“Development of novel nonviral vectors for tumor-targeted gene delivery – towards an 

‘artificial virus’  

Scientific colloquium, Bulgarian academy of Science, Sofia, Bulgaria 
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