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SUMMARY 
Chromosome segregation in mitosis requires the formation of a bipolar mitotic spindle 

with stably attached chromosomes. Key structural components involved in this process 

are microtubules (MTs), kinetochores (KTs) and centrosomes. KTs, proteinaceous 

structures associated with centromere DNA, form the attachment sites for the spindle 

MTs on the chromosomes. Centrosomes direct the formation of the bipolar spindle. Once 

all the chromosomes are attached to the bipolar spindle, the connection between the sister 

chromatids is severed by the cysteine protease separase and the sister chromatids 

segregate to opposite poles. Separase also promotes centriole disengagement during exit 

from mitosis, a mechanism that limits centriole duplication to once in every cell cycle 

(Tsou and Stearns, 2006a; Tsou and Stearns, 2006c; Wong and Stearns, 2003).    

Here we analyse the function of the spindle- and KT associated protein astrin, 

which is required for progression through mitosis (Chang et al., 2001; Gruber et al., 2002; 

Mack and Compton, 2001). The first part of the work concerns initial characterization of 

astrin’s localization, regulation and interaction partners. Immunofluorescence analysis 

revealed that astrin localizes preferentially to KTs of aligned chromosomes and that this 

localization depends on stable KT-MT interactions. Nocodazole release experiments 

showed that astrin is highly phosphorylated during mitosis, suggesting that astrin’s 

function is regulated by phosphorylation. By two approaches, bi-dependency analysis and 

immuno-precipitation, the mitotic motor protein CENP-E, the phosphatase hCdc14A and 

the mitotic kinase Plk1 were identified as three interesting candidates for being 

interactors of astrin. The second part of the work concerns the functional analysis of 

astrin during mitosis. We demonstrate that in the absence of astrin KT-MT attachments 

are impaired resulting in a spindle checkpoint arrest. Moreover, depletion of astrin results 

in cells with multipolar spindles and separated sister chromatids, consistent with untimely 

separase activation. Supporting this idea, astrin depleted cells contain active separase, and 

double depletion of astrin and separase suppresses the premature sister chromatid 

separation and centriole disengagement in these cells. We suggest that astrin contributes 

to the regulatory network that controls separase activity.  
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INTRODUCTION 

1. The cell cycle and M phase 

The cell is the basic metabolically functional unit of life. Cells multiply via the cell cycle, 

a sequence of events resulting in the replication of the genome and segregation of the 

replicated chromosomes into the two nascent daughter cells. 

1.1. General overview of the cell cycle 

The cell cycle consists of two major stages, interphase and M phase (M stands for 

mitotic) (Mitchison, 1971). Interphase is the period between two successive cell divisions 

consisting of three distinct stages: S phase (S stands for synthesis) and the so called gap 

phases, G1 and G2. In S phase, the DNA is replicated and centrosomes are duplicated. 

During the gap phases cells grow and progression to the next cell cycle stage is controlled 

by a variety of intracellular and extracellular signals. G1 takes place before S phase and 

G2 before M phase. Cells that have temporarily or reversibly stopped dividing enter a 

state of quiescence called G0 (G zero). M phase is composed of two tightly coupled 

processes: nuclear division (mitosis) in which the cell's chromosomes are segregated, and 

cell division (cytokinesis), in which the cell's cytoplasm divides forming two distinct 

daughter cells. 
 

 
Figure 1. The cell cycle of eukaryotic cells. Interphase consists of S phase, G1 and G2. M phase is 
composed of nuclear division (mitosis) and cell division (cytokinesis). Illustration adapted from (Alberts, 
2002). 
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1.2. The different stages of M phase 

Mitosis has been studied since the early 1880s. Walther Flemming (1843-1905) originally 

coined the term mitosis from the Greek word for thread, reflecting the shape of mitotic 

chromosomes. He developed new methods for staining a fibrous scaffold in the nucleus, 

which was therefore named Chromatin (‘stainable material’). Flemming’s studies 

(Flemming, 1882) became the foundation for all further research into mitosis (Figure 2). 
 

 
Figure 2. Illustration from Zellsubstanz, Kern und Zelltheilung by Walter Flemming (Flemming, 
1882). Drawing of salamander cells, stained with hämatoxylin. Illustration adapted from (Paweletz, 2001) 
 

Today mitosis is divided up into five discrete stages according to the morphology of the 

cell, prophase, prometaphase, metaphase, anaphase and telophase (Figure 3). In prophase 

the chromatin condenses and the chromosomes with the two sister chromatids and the 

central centromere, a heterochromatic DNA region at which the sister chromatids are 

held together, are apparent through a microscope. The two centrosomes, consisting of one 

centriole pair each, separate and migrate to opposite sides of the nucleus. Each 

centrosome starts to nucleate a radial MT array (aster); the bipolar mitotic spindle will 

form between them. The next stage, prometaphase, begins with nuclear envelope 

breakdown and is defined by the search-and-capture behaviour of MTs as the KTs are 

attached to the mitotic spindle (Figure 3). KTs are protein complexes at the centromere of 

a chromosome. The attached chromosomes are moved to the central region of the cell in a 

process called congression. Once all KTs are completely attached to the bipolar spindle 

and have migrated to its central region (metaphase plate), the cell is defined as being in 

metaphase. The bipolar mitotic spindle consists of different kinds of MTs, the KT MTs, 

which are attached to the KT, the astral MTs, which link the spindle poles to the cell 

cortex and the interpolar MTs that overlap in an anti-parallel fashion at the cell equator. 



 4

Metaphase ends with the rapid and almost synchronous separation of the cohesion links 

between sister chromatids, which then begin to segregate to opposite poles of the spindle 

by shortening of the KT MTs in anaphase A, followed by elongation of the spindle in 

anaphase B. Mitosis is completed in telophase, when each set of sister chromatids has 

reached opposite spindle poles, the chromatids begin to decondense and the nuclear 

envelope reforms. The mitotic spindle is disassembled. During anaphase and telophase an 

actomyosin-based contractile ring is formed and the cell itself begins to divide 

(cytokinesis). Finally, abscission takes place resulting in two genetically identical 

daughter cells with one set of chromosomes and a single centrosome. 
 

 
Figure 3. The different stages of M phase. The figure summarizes the stages of M phase. The 
immunofluorescence pictures illustrate HeLa cells in different cell cycle stages. The mitotic spindle is 
shown in green (α-tubulin), the spindle poles (γ-tubulin) in orange and DNA in blue (DAPI staining). The 
picture was kindly provided by P. Meraldi. 

 

2. Principles of mitotic regulation 

The major regulatory mechanisms controlling mitotic progression are protein 

phosphorylation and proteolysis. Phosphorylation is a reversible protein modification, 
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which is ideal for the control of reversible mitotic processes such as spindle assembly. 

Proteolysis is an irreversible mechanism which gives the cell cycle directionality. Both 

mechanisms are linked since the proteolytic machinery is controlled by phosphorylation, 

whereas several mitotic kinases are downregulated by degradation (Nigg, 2001; Pines, 

2006). The serine/threonine kinase Cdk1 is the key mitotic kinase working in concert 

with additional protein kinases such as members of the Polo, the Aurora and NIMA 

(never in mitosis A) families (Nigg, 2001).  

2.1. Cell cycle regulation 

To ensure that each newly formed daughter cell receives a complete genome progression 

through the cell cycle is controlled by a series of biochemical switches that trigger the 

events of the cell cycle in the correct sequence. The central components of the cell cycle 

control system are the cyclin-dependent protein kinases (Cdks), which are controlled by 

transient associations with cyclin regulatory subunits, phosphorylation and inhibitory 

proteins. Concentrations of Cdks are constant throughout the cell cycle and their 

activities depend primarily on the changing levels of the associated cyclins. Based on the 

timing of expression and their function, the cyclins can be divided into four classes, G1 

cyclins, G1/S cyclins, S cyclins and M cyclins. G1 cyclins (D-type cyclins in vertebrates) 

bind and activate Cdk4 and Cdk6, which stimulate the entry into a new cell cycle in 

response to external factors. G1/S cyclins (cyclin E in vertebrates) activate Cdk2 and 

trigger G1/S transition; their concentrations peak in late G1. S cyclins (cyclin A in 

vertebrates) bind Cdk2 and Cdk1 and are necessary for DNA synthesis; their 

concentrations rise and remain high during S phase, G2 and early mitosis. Cdk1 in 

association with the M cyclin, cyclin B1, is the key regulator of both mitotic entry and 

progression through mitosis (Murray, 2004). 

2.2. The key mitotic kinase Cdk1 

Genetic studies in budding yeast and fission yeast provided the first indication that a 

network of genes regulates the onset of mitosis; core to this network was the 

Saccharomyces cerevisiae Cdc28p/ Shizosaccharomyces pombe Cdc2p (renamed Cdk1) 

protein kinase activated by the Cdc25p phosphatase and inhibited by the Wee1p protein 

kinase (Hartwell and Smith, 1985; Nurse, 1990). Since then further studies made the 
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regulation of Cdk1 and its function in mitosis fairly well understood (Doree and Hunt, 

2002; Ferrari, 2006). The activation of Cdk1 at the G2/M transition depends on the 

dephosphorylation of two neighbouring residues in the ATP-binding site (threonine 14 

and tyrosine 15) by the dual-specificity phosphatase Cdc25C (Izumi and Maller, 1993; 

Krek and Nigg, 1991). At G2/M transition the activity of Cdc25C towards Cdk1 exceeds 

that one of the opposing kinases Wee1 and Myt1 (Nigg, 2001). Wee1 and Myt1 are part 

of the machinery that detects completion of DNA synthesis and successful repair of 

damaged DNA (Ferrari, 2006). Cdk1 enhances its own activity by a variety of positive 

feedback loops. Cdk1 phosphorylates and thus stimulates its activator Cdc25C 

(Hoffmann et al., 1993) and inactivates Wee1 by phosphorylation (Watanabe et al., 

2004). Cdk1 may also promote its own activation by stimulating Polo-like kinase 1 (Plk1) 

activity, which further stimulates Cdc25C by phosphorylation (Kumagai and Dunphy, 

1996; Strausfeld et al., 1994). Activated Cdk1/cyclin B1 fulfils different functions during 

mitosis (Figure 4) by phosphorylating various substrates. For instance Cdk1 is involved 

in chromosome condensation by phosphorylating condensins (Kimura et al., 1998), in 

nuclear envelope break down by phosphorylation of lamins (Peter et al., 1991). It 

contributes to centrosome separation and assembly of the mitotic spindle by 

phosphorylating MT associated proteins and the kinesin-related motor protein Eg5 

(Blangy et al., 1995). Furthermore, Cdk1/cylin B1 contributes to the regulation of the 

anaphase-promoting complex/cyclosome (APC/C) (Sudakin et al., 1995; Zachariae et al., 

1998), a multisubunit E3 ubiquitin ligase that catalyzes the attachment of multiubiquitin 

chains to mitotic regulators such as the inhibitors of anaphase onset and cyclins, thus 

promoting their degradation by the 26S proteasome and mitotic exit (Peters, 2002). Upon 

APC/C mediated cyclin B1 destruction, Cdk1 is inactivated and cells exit mitosis. 
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Figure 4. Overview of Cdk1 functions and its regulation. Mitotic entry results from the activation of 
Cdk1/cyclin complexes. Factors that activate and inhibit Cdk1 function are illustrated. Cdk1/cyclin 
functions in various processes during mitosis. Upon cyclin destruction Cdk1 gets inactivated and cells exit 
mitosis. Checkpoints that can delay entry into mitosis (DNA structure checkpoints) or anaphase onset 
(spindle assembly checkpoint) are shown. Illustration adapted from (Nigg, 2001). 

 

2.3. The mitotic kinase Plk1 

The first member of the Polo family, a conserved subfamily of serine/threonine protein 

kinases, was identified in Drosophila (Sunkel and Glover, 1988).  Subsequently, four Plk 

family members have been identified in humans, Plk1, Plk2, Plk3 and Plk4 (Sak) (Barr et 

al., 2004; Glover et al., 1998), with Plk1 being the best studied member. Plk1 is 

characterized by an N-terminal kinase domain and two structurally homologous polo-

boxes, named Polo-box domain (PBD), at the C-terminus (Elia et al., 2003b; Leung et al., 

2002) (Figure 5A). The PBD has different established functions, it acts as an 

autoinhibitory domain (Mundt et al., 1997), whose inhibitory role is relieved through 

phosphorylation at the T-loop site T210 (Jang et al., 2002), it is required for Plk1’s 

subcellular localization (Figure 5B) and its targeting to substrates (Hanisch et al., 2006; 

Lee et al., 1998; Reynolds and Ohkura, 2003). The latter two functions are mediated by 

the phosphopeptide-binding domain of the PBD, which binds with maximal affinity to 

phosphorylated residues containing the consensus sequence S-pS/pTP/X (Elia et al., 



 8

2003a). Binding of the PBD to the docking proteins results in a relief of autoinhibition by 

the PBD and an increased activity of Plk1, which phosphorylates either the docking 

protein or other downstream targets (Elia et al., 2003a; Elia et al., 2003b; Lowery et al., 

2005). The docking sites are generated by serine/threonine kinases (priming-kinases). In 

the early stages of mitosis, Cdk1 creates theses docking sites (Elia et al., 2003a; Elia et 

al., 2003b), whereas in anaphase Plk1 self-primes its docking sites on proteins required 

for cytokinesis (Neef et al., 2007; Neef et al., 2003). Plk1 localizes to different mitotic 

structures, the centrosomes, spindle poles, and KTs in prophase and metaphase, the 

central spindle in anaphase and the midbody during cytokinesis (Figure 5B).  
 

 

 
Figure 5. Targeting to docking proteins and localization of Plk1. (A) Model of polo-box domain 
mediated targeting of Plk1 to prephosphorylated docking proteins resulting in an increase of Plk1 activity. 
Moreover, Plk1 activity is stimulated upon phosphorylation by an upstream kinase. (B) Immuno-
fluorescence images illustrating the localization of Plk1 during the cell cycle. Plk1 (in red, arrows) localizes 
to the centrosomes, spindle poles, and KTs in prophase and metaphase, the central spindle and the midbody 
upon anaphase. Illustrations adapted from (Barr et al., 2004). 
 

Consistent with the dynamic localization of Plk1 in mitosis, it has been shown that Plk1 

has various functions during mitotic progression (Figure 6). As mentioned previously 

Plk1 has been implicated in the activation of Cdk1/cyclin B1 at mitotic entry 

(Toyoshima-Morimoto et al., 2002; Toyoshima-Morimoto et al., 2001; Watanabe et al., 
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2004), centrosome maturation and bipolar spindle formation (Lane and Nigg, 1996; 

Sumara et al., 2004; van Vugt and Medema, 2004). Plk1 also assists sister chromatid 

resolution by removing cohesion from chromosome arms in early prophase and 

prometaphase (Hauf et al., 2005; Sumara et al., 2002). However it seems not to be 

essential for sister chromatid separation, since even in Plk1-depleted cells chromosomes 

are still able to separate by cleavage when forced to enter anaphase (Gimenez-Abian et 

al., 2004). Moreover, Plk1 is involved in the recruitment of spindle assembly checkpoint 

(SAC) proteins at the KT (Ahonen et al., 2005; Kang et al., 2006; Wong and Fang, 2006). 

A recent study revealed that tension sensitive Plk1 phosphorylation on BubR1 regulates 

the stability of KT-MT interactions (Elowe et al., 2007). Besides, Plk1 is involved in late 

mitotic events and cytokinesis (Lindon and Pines, 2004; Neef et al., 2003; Petronczki et 

al., 2007; Santamaria et al., 2007; Seong et al., 2002; Zhou et al., 2003). Recently it has 

been proposed that late mitotic Plk1 activity promotes recruitment of Ect2 to the central 

spindle, triggering the initiation of cytokinesis and contributing to cleavage plane 

specification (Brennan et al., 2007; Burkard et al., 2007; Petronczki et al., 2007). Ect2, a 

Rho guanine nucleotide exchange factor (GEF), plays a role in the processes which 

specify the cleavage plane (Chalamalasetty et al., 2006; Yuce et al., 2005). Taken 

together, Plk1 is involved in multiple steps during mitosis, but still there are numerous 

open questions concerning Plk1’s function in the orchestration of cell division.   



 10

 
Figure 6. Overview of the various functions of Plk1 in the cell cycle. Illustration adapted from (Barr et 
al., 2004). 

 

2.4. Mitotic phosphatases 

Besides kinases also phosphatases play an important role in the regulation of mitosis, by 

reversing protein phosphorylations. Recent studies revealed how the dual specificity 

protein phosphatases Cdc14 and Cdc25 and the protein serine/threonine phosphatases 

PP2A and PP1 contribute to mitotic regulation. PP2A is involved in the control of sister 

chromatid cohesion. It protects centromeric cohesin by dephosphorylation of the cohesin 

complex subunit SA2, and thus counteracts Plk1-dependent phosphorylation of cohesin 

(for further details see introduction, chapter 3.2) (Kitajima et al., 2006; McGuinness et 

al., 2005; Riedel et al., 2006; Tang et al., 2006; Watanabe and Kitajima, 2005). 

Moreover, budding yeast PP2A has been implicated to play a role in the regulation of 

mitotic exit (Wang and Ng, 2006). PP1 has been suggested to play a role in chromosome 

segregation in budding yeast (Pinsky et al., 2006) and to contribute to centrosome 

structure in mammalian cells (Meraldi and Nigg, 2001). 

As mentioned in chapter 2.2, Cdc25 is involved in the regulation of early mitotic 

events (Hoffmann et al., 1993; Hofmann et al., 1998). In contrast to that, Cdc14 is 
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involved in the regulation of late mitotic events. Budding yeast Cdc14p plays a key role 

in mitotic exit by dephosphorylating Cdk targets (Bardin and Amon, 2001; Jaspersen et 

al., 1998; Visintin et al., 1998). Mammalian cells express two homologs of Cdc14, 

termed hCdc14A and hCdc14B, which are both functional homologs of yeast Cdc14 

(Vazquez-Novelle et al., 2005). The functions of the human paralogs hCdc14A and B are 

not well understood. HCdc14A has been implicated in the centrosome duplication cycle, 

the regulation of chromosome segregation, anaphase and cytokinesis (Kaiser et al., 2002; 

Mailand et al., 2002). 

3. Mitotic structures and spindle assembly 

Mitosis involves a complex self organization process that drives the transient assembly of 

dynamic MTs into a bipolar spindle around the chromosomes to segregate them to the 

daughter cells. Centrosomes and KTs are key structural components involved in this 

process.  

3.1. The centrosome  

Centrosomes are MT organizing centres (MTOC) of animal cells (Bornens, 2002; 

Doxsey, 2001; Lange, 2002). They influence all MT dependent processes, including 

organelle transport, cell shape, polarity and motility (Meraldi and Nigg, 2002). In mitosis, 

centrosomes contribute to the formation of the bipolar spindle and might also be involved 

in cytokinesis (Gromley et al., 2003; Piel et al., 2001). The mammalian centrosome 

comprises a pair of orthogonally arranged barrel shaped centrioles surrounded by the 

fibrous pericentriolar matrix (PCM), an electron dense structure (Doxsey, 2001) (Figure 

7). The PCM is the site of MT nucleation and it provides docking sites for numerous 

proteins involved in this process, chiefly members of the γ-tubulin ring complex (γTuRC) 

(Moritz et al., 1995; Zheng et al., 1995). The PCM acts primarily as the MTOC, which 

nucleates the interphase microtubular array and essentially all the spindle MTs during 

mitosis (Euteneuer and McIntosh, 1981). 
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Figure 7. Structure of the centrosome. Illustration of the centrosome, showing that one centrosome 
consists of two centrioles (maternal and daughter centriole). The centrosome is surrounded by the 
pericentriolar matrix (PCM).  Illustration adapted from (Doxsey, 2001). 
 

Like chromosomes, centrosomes duplicate precisely once every cell cycle (Figure 8) 

(Nigg, 2002). The fidelity and correct timing of centrosome duplication is essential for 

ensuring that this process is effectively coupled to cell cycle progression and DNA 

replication (Hinchcliffe and Sluder, 2001). G1 cells contain a single centrosome, which 

acts as the sole MTOC by nucleating MTs. The centrosome duplicates during S phase, 

when new centrioles form adjoining to each of the two pre-existing ones. Hence in G2 the 

cell contains two centrosomes, each consisting of two closely associated (engaged) 

centrioles. The two centrosomes remain tightly associated until entry into mitosis, when 

centriole separation takes place, which involves the activation of several kinases, including 

Nek2, Cdk1, Aurora A and Plk1 (Berdnik and Knoblich, 2002; Blangy et al., 1995; Fry et 

al., 1998; Glover et al., 1995; Golsteyn et al., 1995; Hannak et al., 2001; Lane and Nigg, 

1996; Sawin and Mitchison, 1995). In addition to these proteins, also the phosphatase 

Cdc14A may be involved in centrosome separation (Mailand et al., 2002). Upon entry 

into mitosis each centrosome nucleates MTs and acts as a MTOC so that two prominent 

mitotic asters are generated forming the bipolar MT array. During exit from M phase the 

two centrioles present within each centrosome disengage, in response to the activation of 

the protease separase (Tsou and Stearns, 2006a). This has led to an appealing model 

according to which centriole disengagement constitutes a licensing mechanism for 
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ensuring that centrioles duplicate only once in every cell cycle (Tsou and Stearns, 2006a; 

Tsou and Stearns, 2006c; Wong and Stearns, 2003).  

Deregulation of centrosome duplication results in cells with multiple centrosomes 

and the assembly of multipolar spindles leading to chromosome instability (Brinkley, 

2001; Nigg, 2002). In fact, cells from many tumors are known to exhibit extra copies of 

centrosomes (Carroll et al., 1999; Lingle et al., 1998; Pihan et al., 1998), indicating an 

underlying deregulation of centrosome structure, segregation, disengagement or 

duplication.  
 

 
Figure 8. The centrosome cycle. Illustration showing the different stages during the centrosome cycle. 
Note centriole disorientation is also named centriole disengagement. Illustration adapted from (Nigg, 
2002). 
 

At least four mechanisms exist that allow cells to acquire additional centrosomes: 

deregulation of centrosome duplication, de novo formation of centrioles, cell fusion or 

cytokinesis failure (Goepfert, 2004).  

Centriole duplication may be deregulated by defects in the mechanism that 

ensures duplication is restricted to once per cell cycle (Tsou and Stearns, 2006a; Wong 

and Stearns, 2003). This has been observed in some transformed cell lines, such as 
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Chinese Hamster Ovary (CHO) cells, when centrosome duplication was dissociated from 

cycles of DNA synthesis and mitotic division by arresting cells at the G1/S boundary of 

the cell cycle using either hydroxyurea or aphidicolin. These cells underwent multiple 

rounds of centrosome replication during a prolonged S phase  (Balczon et al., 1995). 

Centriole overduplication can also be induced by overexpression of human Sas-6 or Plk4, 

the key regulator of centriole duplication (Habedanck et al., 2005; Leidel et al., 2005). 

Additional MTOCs may be obtained by de novo formation of centrioles, a mechanism 

normally suppressed by pre-existing centrioles (Khodjakov et al., 2000), splitting of 

existing centriole pairs, thereby generating two centrosomes consisting of one single 

centriole and PCM (Hut et al., 2003; Keryer et al., 1984; Sluder and Rieder, 1985) or by 

overexpressing PCM components that lead to the formation of acentriolar centrosome 

fragments with MT nucleating abilities. All these mechanisms result in the formation of 

diploid cells with supernumerary centrosomes.  

Moreover failure of cytokinesis results in excess centrosome numbers, which will 

lead to centrosome amplification and polyploidy and has been shown to result in 

tumorigenesis (Fujiwara et al., 2005). Apart from numerical aberrations structural 

changes of the centrosome through deregulated gene expression of centrosomal proteins 

or altered posttranslational modifications, such as aberrant phosphorylation may stimulate 

or suppress MT nucleation (Casenghi et al., 2003; Lingle and Salisbury, 2001). Loss of 

MT anchoring proteins, such as TOGp, which functions primarily to maintain the 

integrity of centrosomes and the spindle poles during mitosis, results in fragmentation of 

the centrosome and multipolarity (Cassimeris and Morabito, 2004; Holmfeldt et al., 

2004). Taken together, these data indicate that centrosome duplication and centrosome 

structure have to be tightly regulated for ensuring correct function of this organelle 

during the cell cycle. 

3.2. The kinetochore and sister chromatid cohesion 

KTs are specialized protein complexes, which are located on opposite sides of the 

centromere region and function as major sites of MT chromosome attachment (Brinkley 

and Stubblefield, 1966; Jokelainen, 1967). Electron microscopy analysis reveals that the 

vertebrate KT is composed of several distinct layers (McEwen et al., 1998), the inner 
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plate, the interzone, the outer plate and the fibrous corona (Figure 9) (Rieder and Salmon, 

1998). The inner plate exists as a discrete heterochromatin domain throughout the cell 

cycle and is essential for KT assembly. It is formed on highly repetitive α-satellite 

sequences and characterized by the incorporation of the centromere specific histone H3 

variant centromeric protein A (CENP-A) (Palmer et al., 1991; Sullivan et al., 1994). 

CENP-A is the earliest protein during KT assembly and required for the recruitment of 

most known KT components (Howman et al., 2000). It has been shown that, together 

with CENP-A, six inner plate KT proteins assemble hierarchically and co-dependently, 

CENP-A, Mis12, CENP-C, CENP-H and CENP-I (Figure 9) (Amor et al., 2004). Recent 

studies revealed that there are additional inner plate KT proteins involved in this 

assembly pathway, e.g. CENP-M, CENP-N, CENP-T (Foltz et al., 2006). The protein 

composition of the interzone is not known (Chan et al., 2005). The outer plate and its 

associated fibrous corona assembles and functions only during mitosis. It is a 

proteinaceous structure with very dynamic components, which regulates MT attachments 

and dynamics and is involved in checkpoint signalling. It comprises structural 

components, such as the Hec1/Ndc80 complex (Ciferri et al., 2005; DeLuca et al., 2005), 

checkpoint proteins (e.g. Mad1, Mad2, BubR1) (Musacchio and Hardwick, 2002) that 

monitor the integrity of KT-MT attachments (see 4.1, introduction), non-motor MT 

associated proteins (MAPs), such as CLASPs, CLIP-170, EB1 (Dujardin et al., 1998; 

Maiato et al., 2003; Pereira et al., 2006; Tirnauer et al., 2002) and MT dependent motor 

proteins as CENP-E and dynein (Steuer et al., 1990; Yao et al., 1997; Yen et al., 1992). 

The centromeric heterochromatin, the region between two sister KTs, contains the 

proteins of the chromosomal passenger complex (CPC) (Vagnarelli and Earnshaw, 2004) 

and the depolymerase MCAK (Kline-Smith et al., 2004), which are involved in the 

correction of improper MT attachments (Andrews et al., 2004).  
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Figure 9. Illustrations showing the structure of the vertebrate KT. (A) Illustration adapted from 
(Rieder and Salmon, 1998). (B) Simplified model of the 3D organization of the human centromere. 
Illustration adapted from (Amor et al., 2004). 
 

Sister chromatids are tightly interlinked by the evolutionary conserved cohesin complex 

(Figure 9) of four core subunits: the kleisin family protein SCC1; two subunits of the 

structural maintenance of chromosomes (SMC) family Smc1 and Smc3; and an accessory 

subunit Scc3, which has two orthologs in mammals called SA1 and SA2. The cohesin 

complex has been proposed to form a ring structure that encircles sister chromatids 

(Hirano, 2005; Nasmyth and Haering, 2005). Sister chromatid cohesion is established 

during S phase, maintained through metaphase (Guacci et al., 1994; Uhlmann and 

Nasmyth, 1998), when it allows each sister pair to be attached to the spindle with a 

bipolar orientation, and then dissolved at anaphase onset to enable sister chromatids to 

segregate. The dissolution of cohesin during mitosis happens in two steps, most of the 

cohesin dissociates from the chromosome arms before metaphase, in a process called 

“prophase pathway”. Plk1 phosphorylation of the SA2 subunit triggers the dissociation of 

cohesin from chromosome arms (Hauf et al., 2005; Sumara et al., 2002). Aurora B kinase 

may contribute to this process (Hauf et al., 2005). Moreover, the protein Wapl was 

recently identified as an essential component of the cohesion removal pathway that 

operates during prophase (Gandhi et al., 2006; Kueng et al., 2006). 
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The dissociated cohesin is not cleaved, but instead relocates to chromatin in telophase to 

function in the next cell cycle.  

A small fraction of cohesin is maintained at the centromeric region until anaphase 

onset. This centromeric cohesin is protected from the prophase pathway by the 

centromeric protein Shugoshin (Sgo) and a specific subtype of serine/threonine 

phosphatase 2A (PP2A) associating with Shugoshin. PP2A protects centromeric cohesin 

by dephosphorylation of SA2, and thus counteracts Plk1-dependent phosphorylation of 

cohesin. This prevents dissociation of cohesin from the centromeres (Kitajima et al., 

2006; McGuinness et al., 2005; Riedel et al., 2006; Tang et al., 2006; Watanabe and 

Kitajima, 2005). However Shugoshin may have another unidentified activity that protects 

cohesin at the centromere independently of PP2A (Kitajima et al., 2006). Upon anaphase 

onset the Scc1 subunit of the residual centromeric cohesin is cleaved by the cysteine 

protease separase, leading to sister chromatid separation (Hauf et al., 2001)  

3.3. Mitotic spindle assembly 

The basic structural components of the mitotic spindle are MTs, polar dynamic fibres that 

polymerize from tubulin subunits (Desai and Mitchison, 1997), as well as hundreds of 

other proteins that function together to orchestrate chromosome segregation. The mitotic 

spindle starts forming during prophase when the two radial MT arrays nucleated at the 

centrosome migrate apart to form the bipolar spindle, a movement which involves the 

motor protein Eg5 (Blangy et al., 1995). These MT arrays will finally form an antiparallel 

array of MTs with their minus ends anchored at the spindle poles and their plus ends 

projecting towards the chromosomes (Figure 10). This polar lattice serves as a track for 

MT based motor proteins of the dynein and kinesin superfamily, which use ATP 

hydrolysis to generate movement, alter MT dynamics and function in spindle 

organization (Hirokawa et al., 1998; Kim and Endow, 2000; Sharp et al., 2000). 

Spindle MTs are highly dynamic structures with a half-life of 60-90 seconds, this 

characteristic known as dynamic instability is fundamental to mitotic spindle structure 

and regulation (Joshi, 1998; Mitchison and Kirschner, 1984; Saxton et al., 1984). The 

dynamic instability of MTs was the prerequisite for the “search and capture” model of 

how KTs acquire MTs during mitosis (Mitchison and Kirschner, 1984). This model 
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describes the in vitro and in vivo behaviour of MTs wherein MT plus ends undergo 

dynamic instability, with stochastic switching from growth to shortening (‘catastrophe’), 

and from shortening to growth (‘rescue’). Thus the plus ends of MTs nucleated at the 

centrosomes grow, shrink and regrow, randomly (Figure 10). Contact of these ‘searching’ 

MTs with a KT results in ‘capture’ of a chromosome and stabilization of MTs, whereas 

those that fail to capture KTs depolymerize (Hayden et al., 1990). Once this association is 

established, the KT is rapidly transported poleward along the MT lattice (Rieder and 

Alexander, 1990), by a mechanism that is not dependent on MT depolymerization, but 

most likely accomplished by the minus-end directed motor activity of dynein (Sharp et 

al., 2000). The attached KT can now capture the sides or plus-ends of additional MTs. As 

a result, the KT establishes a relatively stable connection to the pole. This monooriented 

chromosome is pushed away form the spindle pole to the cell equator by MT dependent 

polar ejection forces (PEFs). PEFs are postulated to be caused by plus-end-directed MT 

based motor proteins on the chromosome arms, named chromokinesins, and the 

elongation of spindle MTs (Brouhard and Hunt, 2005; Mazumdar and Misteli, 2005).  

Moreover, the protein kinase Aurora B is involved in the destabilization of mono-

attached MTs, which results in a stabilization of only bipolar attachments (Andrews et al., 

2004; Hauf et al., 2003; Tanaka et al., 2002).  

Once both sister KTs of a chromosome are attached to MTs from opposite poles 

(bipolar attachment), the newly bioriented chromosome will congress, i.e. progressively 

move, to the spindle equator (Figure 10A). Thus it is assumed that chromosome 

congression requires the prior connection to the opposite poles of the bipolar spindle. 

However, recently it has been shown that chromosomes near the poles can congress to 

the metaphase plate before becoming bioriented, by attaching to and sliding along the MT 

fibre of another already aligned chromosome [Figure 9C (4)]. This congression 

mechanism is dependent on the KT-associated, plus end–directed MT motor CENP-E 

(kinesin-7) (Kapoor et al., 2006).   

However, the ‘search and capture’ model does not coincide with mathematical 

modelling of KT capture, which predicted that several hours would elapse before each of 

92 KTs in a human cell had captured MTs (Wollman et al., 2005). Furthermore, mitotic 

spindles assemble independently of centrosomes, when centrosomes are removed from 



 19

mitotic cells by laser ablation or from interphase cells with a microneedle (Hinchcliffe et 

al., 2001; Khodjakov et al., 2000). These observations indicated that beyond the search 

and capture model based on the intrinsic behaviour of centrosome-nucleated MTs 

alternative and/or supplementary spindle assembly mechanisms exist. Spindle assembly 

experiments with Xenopus egg extract revealed that spindles can form in the absence of 

KTs, or even chromosomes, by addition of DNA coated beads to Xenopus egg extract 

(Heald et al., 1996). It was shown that this is caused by the presence of Ran-GTP, which 

promotes MT nucleation and stabilization (Carazo-Salas et al., 1999; Wilde et al., 2001) 

and is present in a concentration gradient around mitotic chromosomes (Kalab et al., 

2002). The gradient is established by the chromatin-bound Ran-GTP exchange factor 

RCC1 (Carazo-Salas et al., 1999) and has been proposed to contribute to spindle 

formation through two mechanisms. The first involves direct stimulation of MT 

nucleation by chromatin (Heald et al., 1996; Karsenti and Vernos, 2001); the second acts 

by creating a local concentration of MT stabilizing factors around the chromosomes to 

promote the capture of astral MTs (Bastiaens et al., 2006). Ran-GTP-dependent spindle 

assembly has so far been demonstrated primarily in extracts of Xenopus eggs, and it 

remains unclear whether it is the predominant mechanism by which chromosomes 

stimulate spindle assembly in all cells. Other mechanisms clearly exist. As mentioned 

earlier, the action of MT based motor proteins of the dynein and kinesin families promote 

spindle assembly and bipolarity. For instance the plus-end directed motor CENP-E, the 

minus-end directed motor protein dynein and the chromokinesin KIF4A contribute to 

spindle assembly (Kapoor et al., 2006; Mazumdar et al., 2004; Merdes et al., 2000). Thus 

many factors important for mitotic spindle assembly and function exist and still some 

basic principles will be uncovered by future research. 
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Figure 10. The process of mitotic spindle formation. (A) Immunofluorescence pictures of newt lung 
cells. MTs are shown in green and DNA in blue. The centrosomes with the two MT arrays of astral (left) 
and metaphase spindle (right) are illustrated. (B) Original search-and-capture models of chromosome 
congression. (1) Successive capture events of MTs on sister KTs (2) lead to bi-orientation and congression 
(2). (C) Additional mechanisms of spindle assembly. (3) KT-fibres nucleated at KTs via a Ran-GTP 
gradient (blue) elongate toward the periphery and capture astral MTs. (4) Chromosomes attached to only 
one pole use K-fibres of already bi-oriented chromosomes. This results in congression before bi-orientation 
(4). Illustration adapted from (O'Connell and Khodjakov, 2007) 

 

4. The spindle checkpoint and anaphase entry 

The events of early mitosis, spindle assembly and chromosome congression, bring the 

cell to metaphase. The progression through the metaphase-to-anaphase transition is 

restrained by the spindle assembly checkpoint (SAC) until all sister-chromatids have 

undergone proper bipolar attachment to the spindle. As soon as this prerequisite is 

satisfied anaphase onset begins with the simultaneous cohesin cleavage by separase and 

separation of all sister chromatids. 
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4.1. The spindle assembly checkpoint  

The SAC plays a key role in ensuring the fidelity of chromosome segregation. It monitors 

bipolar attachment of sister chromatids and tension that is exerted at KTs upon bipolar 

attachment, it delays mitotic progression until all chromosomes have become bi-oriented 

on the metaphase plate and thus prevents premature sister chromatid separation. The first 

components of the SAC were identified by two genetic screens in Saccharomyces 

cerevisiae, including the MAD (mitotic-arrest deficient) genes Mad1, Mad2 and Mad3 

(BubR1 in humans) and the Bub (budding uninhibited by benzimidazole) gene Bub1. 

Mad and Bub mutant strains of S. cerevisiae failed to properly arrest their cell cycles at 

mitosis in response to spindle poisons (Hoyt et al., 1991; Li and Murray, 1991). These 

genes are conserved in all eukaryotes and their products are components of the SAC.  

The SAC targets the APC/C co-factor Cdc20 and thereby blocks its function as 

APC/C activator (Hwang et al., 1998; Kim et al., 1998; Peters, 2006). The precise in vivo 

form of the APC/CCdc20 inhibitor is still an issue of debate but the mitotic checkpoint 

complex (MCC) that contains three SAC proteins, Mad2, BubR1/Mad3 and Bub3, as 

well as Cdc20 has emerged in recent years as a possible SAC effector (Fang et al., 1998; 

Hardwick et al., 2000; Morrow et al., 2005; Sudakin et al., 2001). The MCC inhibits the 

capability of APC/CCdc20 to ubiquitinate securin, the inhibitory subunit of separase, (see 

also chapter 4.2 of introduction), and cyclin B1, the activatory subunit of Cdk1, and 

thereby prevents their degradation by the 26S proteasome and mitotic exit (Peters, 2002; 

Peters, 2006) (Figure 11). Besides the MCC, additional components of the SAC exist. 

Among them are the Aurora B, Bub1 and the Mps1 kinases, which are involved in 

amplifying the SAC signal and might stimulate directly the formation of the MCC, but 

the mechanistic details are still unclear (Abrieu et al., 2001; Hauf et al., 2003; Kallio et 

al., 2002b; Morrow et al., 2005; Tang et al., 2004). The Ndc80/Hec1 complex is required 

for Mad1 and Mad2 binding to KTs and thus for sustaining the checkpoint (DeLuca et al., 

2003). Additional proteins that are involved in SAC signalling are p31comet, which 

antagonizes the function of Mad2 (Xia et al., 2004), and the motor proteins dynein and 

CENP-E (Chan et al., 1999; Howell et al., 2001; Mao et al., 2005). It has been 

demonstrated that the dynein-dynactin complex transports the Mad1, Mad2 and other 

proteins away from the KT to the poles upon the attachment of MTs and thus is involved 
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in checkpoint silencing (Howell et al., 2001; Wojcik et al., 2001). CENP-E has been 

implicated in checkpoint signalling through binding to the mitotic checkpoint kinase 

BubR1 and monitoring KT-MT interactions. This makes CENP-E a possible candidate 

for being a link between attachment and SAC signalling (Chan et al., 1999; Jablonski et 

al., 1998; Yao et al., 2000). 
 

 
Figure 11. The SAC and the cell cycle. Illustration adapted from (Musacchio and Salmon, 2007). 
 

During prometaphase, Cdc20 and all SAC proteins are bound to unattached KTs 

(Cleveland et al., 2003; Maiato et al., 2004) and then released upon bipolar attachment, 

suggesting that they are directly involved in the generation of a signal that blocks 

anaphase onset, the ‘wait anaphase’ signal (Chen et al., 1998; Chen et al., 1996; Taylor et 

al., 1998; Taylor and McKeon, 1997). In fact, it was shown that a single unattached KT 
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acts as source of a diffusible signal that is sufficient to block anaphase onset (Rieder et 

al., 1995). Fluorescence recovery after photobleaching (FRAP) demonstrated that Bub1, 

Mad1 and one pool of Mad2 are stable KT components unlike BubR1, Bub3, Cdc20 and 

a second pool of Mad2, which are proteins with fast turnover at KTs (Howell et al., 2000; 

Howell et al., 2004; Kallio et al., 2002a; Shah et al., 2004). These observations suggest 

that there is a stable catalytic platform at the KT that senses lack of MT attachment and 

activates Mad2, Bub3 and BubR1 to form the MCC with Cdc20.  

Two related but distinct models of Mad1-assisted activation of Mad2, the ‘two-

state Mad2’ and the ‘Mad2 template’ models have been proposed (De Antoni et al., 2005; 

Luo et al., 2004; Yu, 2006). These models describe the essential role of Mad1 in 

promoting binding of Mad2 to Cdc20, not involving BubR1 and Bub3. They depict the 

Mad1-assisted activation of Mad2, but still there are numerous open questions. Is the 

interaction between Mad2 and Cdc20 alone sufficient to explain how the SAC keeps the 

APC/C inactive? How does the MCC form and how does it bind and inhibit APC/C? 

How do other checkpoint proteins fit into this model?  Thus many aspects of the model 

require further investigation. 

4.2. Separase and anaphase entry  

As described previously (introduction, chapter 4.1) entry into anaphase depends on all 

chromosomes being attached in a bipolar manner. Once this is achieved, sister chromatid 

separation is triggered by separase, a cysteine endopeptidase, which cleaves the cohesin 

subunit kleisin Scc1/Rad21 (see also introduction, chapter 3.2) (Uhlmann et al., 2000; 

Waizenegger et al., 2000). Separase is inhibited by its chaperone securin, which prevents 

access of substrates to the active site of separase (Waizenegger et al., 2002). In vertebrate 

cells separase activity is also suppressed by Cdk1/cyclin B1 mediated phosphorylation on 

serine 1126 followed by binding of cyclin B1 (Ciosk et al., 1998; Gorr et al., 2005; 

Holland and Taylor, 2006). Cdk1/cyclin B1 and securin bind separase in a mutually 

exclusive manner, which indicates that these two mechanisms may play redundant roles 

in inhibiting separase during mitosis (Gorr et al., 2005; Holland and Taylor, 2006).  

Destruction of both securin and cyclin B1 after ubiquitinylation by APC/C (see also 

introduction, chapter 2.2 and 4.1) results in the activation of the protease activity of 
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separase.  In humans active separase undergoes self-cleavage, resulting in a 65 kDa C-

terminal fragment (Papi et al., 2005; Waizenegger et al., 2002). Self-cleavage of separase 

in anaphase of the previous cell cycle is supposed to effect mitotic entry and progression 

through early mitosis (Papi et al., 2005). Furthermore, it was shown that upon 

degradation of securin in anaphase, vertebrate separase can act as a direct inhibitor of 

Cdk1. This implies that separase could assist the APC/C in inactivating Cdk1 and 

promoting mitotic exit (Gorr et al., 2005).  In line with that, S. cerevisiae separase has a 

well established role in mitotic exit that does not depend on protease activity (Stegmeier 

et al., 2002). Taken together, the protease activity of separase is essential for sister 

chromatid cohesion and anaphase onset. Moreover, recent discoveries indicated that 

human separase has additional functions, for instance, it is involved in centrosome 

disengagement (introduction, chapter 3.1) (Gorr et al., 2005; Tsou and Stearns, 2006c). 

However, further functions of separase and the mechanisms of separase activation and 

regulation remain to be established. 

AIM OF THE WORK 
The MT associated protein (MAP) astrin was identified in the course of a mass 

spectrometry-based analysis of proteins associated with MTs in a mammalian mitotic 

extract. Except for a large predicted coiled-coil domain in its C-terminal region it lacks 

any known functional motifs (Mack and Compton, 2001). It has been indicated that astrin 

is required for spindle organization and mitotic progression, since astrin depletion results 

in highly disordered spindles and mitotic arrest (Gruber et al., 2002; Mack and Compton, 

2001). Despite these initial reports, very little was known about astrin’s function during 

mitosis. Therefore, the aim of this study was to characterize the requirements for astrin’s 

KT and spindle localization, to identify interaction partners and to reveal the function of 

human astrin in mammalian cells. 
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RESULTS  

1. Initial characterization of astrin 

Astrin has previously been described as a spindle-associated protein involved in mitotic 

progression (Chang et al., 2001; Gruber et al., 2002; Mack and Compton, 2001).  To 

explore the role of astrin during mitosis, a polyclonal rabbit antibody was raised against 

astrin. After having established its specificity, the anti-astrin antibody was used for the 

characterization of astrin. 

1.1. Astrin is a mitotic spindle and outer kinetochore protein 

To analyse astrin a polyclonal rabbit antibody was raised against the N-terminus (aa 1-

481) and affinity purified. Moreover an affinity purified antibody raised against the C-

terminus (aa 1014-1193) was used (a kind gift from Ulrike Grüneberg). Both purified 

antibodies show the same results in Western blot (Figure 13A and B) and 

immunofluorescence and are specific for astrin. As shown in Figure 13F the affinity-

purified antibodies recognized a double band of ca. 135/120 kDa on Western blots of 

whole HeLa cell lysates, which disappeared upon siRNA-mediated depletion of astrin 

(Figure 12A, B and C). In line with that, immunofluorescence analysis demonstrated that 

the staining obtained with the anti-astrin antibody disappeared upon RNAi mediated 

depletion of astrin (Figure 13B).  

In order to confirm that both bands recognized by the antibodies in Western blot 

are astrin, mass spectrometric (MS) analysis was performed (by Roman Körner and 

Xiumin Li) on astrin immunoprecipitations (IPs). HeLa cells were synchronized in 

mitosis by release from an aphidicolin block into nocodazole. The cells were harvested 

by mitotic shake off and released for 30 min in order to rebuild the mitotic spindle. Astrin 

was immunoprecipitated (IPed) from the mitotic extracts with anti-astrin antibodies and 

protein G beads and loaded on a gradient NuPAGE gel. Distinct bands specific for astrin 

(Figure 12D) were cut from the gel, in-gel digested with trypsin and analysed by MS. 

Besides the two astrin bands, additional bands were apparent in the astrin IP (Figure 

12D). These could be candidate interactors but they could not yet be identified by MS 

analysis. IPed astrin revealed that the upper band corresponds to full-length astrin, 
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whereas the lower band lacks approximately 200 amino acids of the N-terminus, 

presumably due to either internal initiation or post-translational proteolytic processing 

(see Figure 12E and F for peptide coverage of slow and fast migrating band). Since our 

data indicate that the smaller of the two isoforms lacks approximately 200 amino acids of 

the N-terminus, which contains many potential serine or threonine phosphorylation sites, 

functional differences between the two isoforms might be expected. The nature of these 

and the question of how the smaller of the two astrin isoforms is generated require further 

investigation. 
 

Figure 12. Initial characterization of astrin. (A and B) Antibodies raised against the N-terminus (aa 1-481) 
or the C-terminus (aa 1014-1193), respectively, were tested in Western blot analysis on whole cell lysates. 
(A) The antibody raised against the N-terminus recognized two bands of ca. 135/120 kDa (left lane), there 
was no signal detected for the preimmune serum. (B) The antibody raised against the C-terminus recognized 
two bands of ca. 135/120 kDa, there was no signal detected for the preimmune serum. (A and B) Both 
antibodies show the same result in Western blot analysis. (C) Whole cell lysates were prepared form HeLa 
cells depleted of astrin or control (Gl2). Equal amounts of cell lysates were separated by SDS-PAGE and 
probed after Western blotting with the indicated antibodies. (D) HeLa cells were synchronized by a 
sequential aphidicolin/nocodazole block release protocol. Cells were released from nocodazole for 30 min 
until the majority had reached metaphase before being lysed. Mitotic lysates were incubated with protein G 
beads and either with anti-astrin antibody or preimmune-sera as control. The beads of the respective IPs were 
loaded on a NuPAGE gradient gel, which was stained with Coomassie Blue, and indicated protein bands 
were cut out, followed by MS analysis. (E and F) Peptide coverage of the (E) slow-migrating and the (F) 
faster-migrating form of astrin. Peptides identified by mass spectrometry are indicated in red. 



 27

Immunofluorescence analysis of astrin localization throughout the cell cycle revealed 

centrosome localization in prophase and prominent spindle pole staining upon spindle 

formation. Astrin localized to KTs in prometaphase, leading to strong KT and reduced 

spindle staining in metaphase. This was retained into early anaphase, with a small pool of 

the protein transferring to the central spindle area. In telophase, the KT staining was lost 

and astrin concentrated in the spindle midzone (Figure 13A). The localization observed 

with the rabbit anti-astrin antibody was confirmed by transient transfection of Myc-astrin 

(Figure 13C). Taken together, these data show that astrin is a mitotic spindle and KT 

associated protein, confirming earlier reports (Gruber et al., 2002; Mack and Compton, 

2001).  

 
Figure 13. Antibody characterization and localization of astrin. (A) HeLa cells in different stages of the 
cell cycle were fixed and stained with antibodies against astrin (red) and tubulin (green). (B) Cell were 
depleted of astrin or Gl2 (control), cells were fixed after 48 h and stained with antibodies against astrin 
(red) and Hec1 (green) (C) Myc-astrin was transiently transfected into HeLa cells, after 30 h the cells were 
fixed and stained with antibodies against Hec1 (green), an outer KT protein, and Myc (red). (A, B, C) DNA 
(blue) was stained with DAPI. Bar, 10 µm. 
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For a closer analysis of astrin’s localization, a co-staining with either centrosomal or KT 

markers was performed. During prophase and prometaphase a centrosomal pool of astrin 

was diffusely localized to the pericentriolar material and MTs emanating from the 

centrosome, overlapping with but distinct from the areas stained by antibodies against 

Polo like kinase 1 (Plk1), γ-tubulin and centrin (Figure 14A). A second chromosome-

associated pool of astrin partially overlapped with the outer KT components Hec1 and 

CENP-E and the MT tip-binding protein EB1, but was discrete from other KT proteins 

such as Plk1, and the centromeric markers Aurora B and CENP-A (Figure 14B). This 

second pool of astrin is therefore most likely associated with the outer KT. The dual 

localization of astrin to both centrosomes and the KTs indicates that astrin is required for 

spindle formation and chromosome segregation. 
 

Figure 14. Astrin is an outer KT protein and localizes diffusely to the centrosome. (A) Pro- and prometaphase 
HeLa cells were stained with antibodies against astrin and centrin, Plk1 or γ-tubulin. Indicated centrosomes are 
shown enlarged on the right side. Bar, 10 µm. (B) Metaphase HeLa cells were processed for immunofluorescence 
using antibodies against astrin and Aurora B, CENP-A, Plk1, CENP-E, Hec1 or EB1. The indicated KTs are 
shown enlarged in the right hand corners of the images. Bar, 10 µm. 
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1.2. The kinetochore localization of astrin depends on stable MT-KT interactions 

It was observed previously that astrin only binds to aligned chromosomes (Mack and 

Compton, 2001). To further explore these published data we analysed the factors that are 

required for astrin’s localization to the outer KT. As a first approach,  Hec1, an outer KT 

protein required for stable MT-KT interactions (DeLuca et al., 2005; Liu et al., 2007), 

was depleted by siRNA. The depletion of Hec1 resulted in the loss of astrin from the KTs 

but not the spindle (Figure 15). In contrast to that, the depletion of Bub1, another outer 

KT protein (Jablonski et al., 1998), did not influence astrin’s localization. This result 

suggests that astrin is either directly recruited by Hec1, or that the transport of astrin from 

the spindle onto the KT requires stable MT-KT connections.  
 

 
Figure 15. Astrin is lost from the KT after depletion of Hec1. (A) Cells were depleted of Hec1, required 
for stable MT-KT interactions, fixed and stained with antibodies against Hec1 (green) and astrin (red). (B) 
As control cells were depleted of Bub1, fixed and stained with antibodies against astrin (green) and CREST 
(red). (A and B) DNA was stained with DAPI. Bar, 10 µm. 
 

To test the role of MT stability and dynamics in astrin localization we used different 

drugs that act on MTs and MT associated motors. In order to analyse whether the 

transport of astrin from the spindle onto the KT requires stable MT-KT interactions, we 

used nocodazole, a MT depolymerising drug. MT disassembly induced by nocodazole 

abolished KT, mitotic spindle and pole localization of astrin, and recovery of MTs 

following washout quickly re-established their localization (Figure 16A). Moreover, the 

addition of the MT stabilizing drug taxol impaired astrin’s localization to KTs (Figure 

16B). In the case of monastrol, an inhibitor of the kinesin related motor Eg5 (Mayer et 

al., 1999), which induces the formation of monopolar spindles, astrin is concentrated at 

the pole and only some KTs are positive for astrin. This result further supports the idea 
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that astrin localizes only to fully attached and aligned chromosomes of a bipolar spindle. 

Consistent with this, it was observed that in cells treated with noscapine, a chemical 

compound which interferes with MT dynamics and induces chromosome misalignment 

(Ye et al., 1998; Zhou et al., 2002), only aligned chromosomes stained positive for astrin 

(Figure 16C), confirming a previous report (Mack and Compton, 2001). Furthermore, 

costaining of astrin and pBubR1, a phosphospecific antibody which only recognizes 

BubR1 at chromatids that lack tension (Elowe et al., 2007), revealed that astrin does not 

localize to such chromatids but instead only binds to chromatids that do not show 

pBubR1 staining (Figure 16D). Taken together these data show that astrin requires intact 

MTs to localize to KTs and is thus not a constitutive KT component. It associates with 

KTs of only those sister chromatids that are aligned at the metaphase plate and under 

tension. Thus it would be attractive to speculate that astrin could contribute to generate a 

signal for the metaphase to anaphase transition.  
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Figure 16. Astrin’s localization to the KT is dependent on stable MT-KT interactions. (A) HeLa cells 
were treated with nocodazole for 14 h and released for the indicated periods, fixed and stained with 
antibodies against astrin and α−tubulin. (B) HeLa cells were treated with Taxol, Monastrol or DMSO 
(control) for 12 h, fixed and stained for the indicated proteins. (C) Noscapine treated cells (14 h) were fixed 
and stained with antibodies against astrin, α-tubulin and CREST. The inset highlights an unaligned 
chromosome that lacks astrin. (D) Cells were treated as in (C) and stained with antibodies against astrin 
(green) and pBubR1 (red). (C and D) Note astrin localizes only to aligned chromosomes. (A-D) DNA was 
stained with DAPI. Bar, 10 µm. 
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1.3. Astrin does not bind directly to microtubules 

The nocodazole release experiment suggests (Figure 16A) that astrin is transported from 

the spindle pole to the KT and that its localization on these structures is dependent on 

MTs. To analyse a potential physical interaction between astrin and MTs in vitro, we 

tested whether astrin co-pellets with taxol-stabilized MTs (Gaglio et al., 1995). The assay 

was performed with bacterially expressed astrin (full-length) or MPP1, a plus-end-

directed kinesin-related motor protein, which exhibits MT binding in vitro (Abaza et al., 

2003) as positive control (a kind gift from Stefan Hümmer). The recombinant proteins 

were incubated with taxol stabilized MTs or buffer (control) and the protein samples 

were centrifuged through a glycerol cushion. The pellet fractions and the supernatants 

were recovered and analysed by Western blotting. Astrin did not co-pellet with MTs in 

contrast to MPP1, which associated with the MT pellet fraction (Figure 17A and B). 
 

 
Figure 17. MT co-sedimentation assay. Bacterially expressed astrin (A) or MPP1 (B) were incubated 
with taxol stabilized MTs (5mM final concentration) or with buffer (control) for 15 minutes at 25° C. The 
protein solution was centrifuged through a glycerol cushion (20 min, 55.000 rpm, 25° C). Pellet and 
supernatant were recovered, loaded on a SDS-PAGE gel and probed after Western blotting with the 
indicated antibodies. To detect MPP1 an antibody against the His-tag was used. 
 

This result indicates that astrin does not bind directly to MTs, suggesting that either an 

unknown linker protein or specific modifications of astrin are needed for astrin’s 

localization to MTs. To test the latter hypothesis, MT co-sedimentation assays were 

performed with mitotic and interphase extracts (Mishima et al., 2002) instead of purified 

proteins. Interphase extracts were used because astrin does not bind to MTs in interphase 

(see immunofluorescence in Figure 13). Astrin of the mitotic samples should possess 

these specific modifications necessary for MT binding. However, Figure 18 shows that 
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astrin from mitotic cell extract did not co-pellet with MTs in contrast to the control 

protein PRC1, a MT binding protein (Mollinari et al., 2002). These data imply that an 

unknown linker protein or a motor protein is required to localize astrin to MTs.  
 

 
 

Figure 18.  MT co-sedimentation assay. Metaphase (A) or interphase extracts (B) were incubated with 
taxol stabilized MTs (5mM final concentration) or with buffer (control) for 15 minutes at 25° C. The 
protein solution was centrifuged through a glycerol cushion (20 min, 55.000 rpm, 25° C). Pellet and 
supernatant were recovered, loaded on a SDS-PAGE gel and probed after Western blotting with the 
indicated antibodies. PRC1 was used as a positive control. 

 

1.4. Search for motor proteins that localize astrin to the spindle or kinetochore 

In the nocodazole release experiment astrin was first observed at the spindle poles and 

subsequently, as the spindle reformed it became more evident at the spindle and at the 

attached KTs (Figure 16A). This redistribution could be the consequence of an active 

motor-dependent transport from the poles to the KTs along MTs. Obvious candidate 

proteins for carrying astrin are plus-end directed motors like Kif18, Eg5 and CENP-E 

(Blangy et al., 1995; Mayr et al., 2007; Wood et al., 1997). Their influence on astrin 

localization was tested by RNAi depletion assays (Blangy et al., 1995; Mayr et al., 2007; 

Wood et al., 1997). MCAK was included as a control, since it is not motile but instead 

depolymerizes MTs (Desai et al., 1999; Hunter et al., 2003). As expected, siRNA 

mediated MCAK depletion did not impair astrin’s localization (Figure 19A). Cells 

depleted of Kif18, a motile MT depolymerase (Mayr et al., 2007), showed diffuse astrin 
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staining at the KT compared to control cells (Figure 19B). This is most likely an indirect 

effect, since Kif18 depletion results in impaired MT dynamics and spindle morphology. 

However, we cannot exclude a direct role for Kif18 in localizing astrin. As shown in 

chapter 1.2 the inactivation of the motor activity of Eg5 by monastrol leads to the 

concentration of astrin at the pole, which is most likely also an indirect effect, since 

chromosomes are not aligned and not under tension in this situation. Depletion of CENP-

E, a motor protein that transports cargo toward the MT plus ends and is concentrated at 

KTs during prometaphase (Wood et al., 1997; Yao et al., 1997), results in a mitotic arrest 

and congression defects (McEwen et al., 2001; Schaar et al., 1997). As shown in Figure 

19C astrin was lost from the KTs in cells depleted of CENP-E, whereas spindle pole and 

spindle staining were not influenced. These results suggest either that astrin’s localization 

to the KT depends directly on CENP-E or that the observed phenotype is indirect, since 

astrin’s localization to the KT is dependent on stable MT-KT interactions, which are 

impaired in cells depleted of CENP-E (Yao et al., 1997).  

One caveat of the siRNA based assays was that all of the motor proteins analysed 

either alter MT-KT interactions and/or spindle formation. Therefore it is difficult to 

decide whether effects on astrin localization are direct or indirect. In summary, our 

results indicate that among the tested plus-end directed motor proteins CENP-E is the 

most promising candidate responsible for astrin’s localization to the KT, since in contrast 

to Kif18 RNAi or Eg5 motor activity inhibition, astrin was completely lost from the KT 

in cells depleted of CENP-E. In line with this we observed physical interaction between 

astrin and CENP-E (results, chapter 2.2).  
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Figure 19. Astrin’s localization to the KT is lost after CENP-E depletion. Cells were depleted of the 
plus end directed motor proteins (A) MCAK, (B) Kif18 or (C) CENP-E, fixed with (A) MeOH or (B and C) 
PTEMF, and stained with antibodies against astrin (red) and tubulin (green). DNA was stained with DAPI 
(blue). Bar, 10 µm.  

 

2. Search for astrin interactors 

Since astrin is a KT and mitotic spindle associated protein, plausible interactors might 

themselves localize to these structures. Two different approaches were considered to 

identify binding partners of astrin: yeast-two hybrid analysis and RNAi-based bi-

dependency analysis. Since all astrin constructs of suitable length for yeast-two hybrid 

screens were autoactivatory in preliminary yeast-two hybrid experiments (Figure 20), we 

concentrated on the second approach. 
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Figure 20.  Full-length astrin, an N-terminal (aa 1-481) and a C-terminal (aa 482-1193) fragment of 
astrin cloned into the bait vector pFBT9 are all auto-activatory. Auto-activation was tested with the 
full-length, N-terminus (1-481), C-terminus (482-1193) and very C-terminus (1014-1193) of astrin, cloned 
into pFBT9, expressing as a binding domain fusion, along with the empty pAct2 vector, expressing the 
activating domain. Auto-activation was reflected by growth on selective medium (QDO, right panels). For 
control, growth on non-selective plates is also shown (SC-LW, left panels). Only the very small C-terminal 
fragment (1014-1193) is not auto-activatory but was considered to be too small for an yeast-two hybrid 
screen. 

 

2.1. Bi-dependency analysis 

As a second approach to finding interaction partners siRNA based bi-dependency 

analyses were performed. To reveal which proteins might be required for the localization 

of astrin to the KT and the spindle-pole, several KT and spindle-pole associated proteins 

were depleted by siRNA. Moreover it was tested, which proteins are affected by the loss 

of astrin. A summary of the results is given in Figure 21. Of all proteins tested, the 

depletion of the outer KT proteins CENP-E (Figure 19C and Figure 21I), Hec1 (Figure 

15 and Figure 21) and Plk1 (Figure 21H) clearly reduced the concentration of astrin at the 

KT. Since Hec1 is necessary for stable KT-MT interactions it is difficult to decide 

whether the loss of astrin from the KT in Hec1 depleted cells is a direct or indirect effect. 

Moreover, astrin depletion resulted in a loss of CENP-E and its interaction partner 

CENP-F (Chan et al., 1998) from the KT (Figure 21 G and H), of hCdc14A from the 
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spindle poles (Figure 21A and I) and of Plk1 from both the KT and the centrosomes 

(Figure 21C and I). The spindle pole levels of Aurora A and its MT associated interaction 

partner TPX2 (Eyers and Maller, 2004; Kufer et al., 2002) were also reduced (Figure 

21I), but this could be a consequence of the absence of Plk1 at the centrosomes. The 

observed mutual dependency between astrin and both the mitotic kinase Plk1 and the 

plus-end directed motor CENP-E suggests that these proteins could physically interact 

with astrin. Likewise, the mitotic phosphatase hCdc14A is affected by the loss of astrin 

and Ulrike Grüneberg found astrin as an interacting protein in a yeast-two hybrid screen 

with hCdc14A as bait (personal communication). Therefore its relation to astrin was also 

further analysed (see below, chapter 3.4). Taken together, the bi-dependency analysis 

allowed the identification of CENP-E, hCdc14A and Plk1 as three interesting candidates 

for being interactors of astrin. Below we explore the possible physiological relevance of 

these proteins for the function of astrin (chapters 2.2 and 3).  
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Figure 21. Astrin KT localization requires Hec1, CENP-E and Plk1. Astrin depletion results in a loss 
of CENP-E and CENP-F from the KT, of hCdc14 from the spindle pole and of Plk1 from the KT and 
centrosome. (A and B) HeLa cells were treated with control, astrin or hCdc14A specific siRNA oligos, 
fixed and stained with antibodies against α-tubulin (green), (A) cdc14 (red) or (B) astrin (red). (C and D) 
HeLa cells were treated with control, astrin or Plk1 specific siRNA oligos, fixed and stained with 
antibodies against astrin (red) and Plk1 (green) (E and F) HeLa cells were treated with control, astrin or 
CENP-F specific siRNA oligos, fixed and stained with antibodies against astrin (red) and CENP-F (green). 
(G) HeLa cells were treated with control or astrin specific siRNA oligos, fixed and stained with antibodies 
against astrin (red) and CENP-E. (A-F) DNA was stained with DAPI. Bar, 10 µm. (H) HeLa cells were 
depleted of various KT and spindle-pole components and the effects on astrin localization were analysed. 
The results are shown in the table. (I) HeLa cells were treated with control or astrin specific siRNA oligos, 
fixed and then the localization of KT and spindle-pole components was analysed. The table summarizes the 
observed effects. 
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2.2. Characterization of the relationship between CENP-E and astrin 

As a first approach to explore the relationship between astrin and CENP-E in more detail, 

an endogenous astrin IP from mitotic cells was performed. For this experiment cells were 

synchronized with noscapine in order to trap them in a metaphase like state but maintain 

the MT network (Ye et al., 1998). CENP-E was not efficiently co-precipitated with 

endogenous astrin under these conditions (Figure 22A). It is possible that the relation 

between astrin and CENP-E is either indirect or very weak. It could also be that the 

antibody-astrin interaction sterically prevented the interaction of astrin with CENP-E. 

Overexpression of a Myc-tagged astrin followed by an IP using the rabbit anti-Myc 

antibody should, however, bypass this possible interference. For this purpose, Hek293T 

cells were transfected with either Myc-astrin or the empty Myc-plasmid as control. After 

precipitation with anti-Myc-antibodies, endogenous CENP-E but not the outer KT protein 

Hec1 was co-immunoprecipitated (co-IPed) with astrin (Figure 22B). In summary, these 

results and the bi-dependency of astrin and CENP-E in localization to the KT indicate 

that astrin and CENP-E interact. However, since CENP-E does not co-IP with 

endogenous astrin it is still possible that the association between astrin and CENP-E is 

either weak or requires an unknown interaction partner.  

 
Figure 22. CENP-E co-IPs with over-expressed but not endogenous astrin. (A) IPs with either astrin or 
control IgG were performed from mitotic lysates. Inputs, supernatants (Sup.) and IPs were loaded onto a 
SDS-gel, followed by Western blot analysis using the indicated antibodies. Endogenous astrin IPed 
efficiently (upper panel), but CENP-E did not co-IP. *Asterisk indicates an unspecific band; however, this 
could also be a phosphorylated form of CENP-E. (B) Hec293T cells were transfected with Myc-astrin or 
the empty Myc-vector as control for 40 h. Cells were treated with noscapine for the last 16 h. Extracts were 
used for Myc-IP. Inputs, supernatants (Sup.) and IPs were separated by SDS-PAGE, followed by Western 
blot analysis with anti-Myc-antibodies. The input, the Myc-IP and the Myc-astrin IP were also loaded onto 
a SDS-PAGE, followed by Western blot analysis with the indicated antibodies. CENP-E but not Hec1 co-
precipitates with Myc-astrin.  
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3. Analysis of astrin phosphorylation and functional insight into Plk1 

astrin interaction 

The mitotic kinase Plk1 was identified as a possible candidate protein for an astrin 

interactor in the bi-dependency analysis (chapter 2.1, Figure 21). Since astrin localizes to 

the same structures to which Plk1 is targeted in the course of mitosis, KTs, centrosome 

and midzone (Barr et al., 2004), it is likely that Plk1 and astrin influence each other. Thus 

the functional relationship between astrin and Plk1 was further analysed.  

Plks are characterized by a C-terminal noncatalytic region containing two tandem 

Polo boxes, termed the Polo-box domain (PBD), which targets the substrate in a 

phospho-dependent manner (Elia et al., 2003b). It has been suggested that these priming 

sites are most likely created by Cdk1/cyclin B1 (Elia et al., 2003b). Thus it was also 

investigated if astrin is phosphorylated during mitosis and if it is a substrate of 

Cdk1/cyclin B1. 

3.1. Astrin is highly phosphorylated in mitosis 

In order to analyse if astrin is mitotically phosphorylated, cell extracts were prepared 

from cells either arrested in G1 by double thymidine block, or in a prometaphase-like 

state by release from a thymidine block into nocodazole. Western blotting of these 

extracts with anti-astrin antibodies revealed that both forms of astrin (see chapter 1) are 

highly upshifted in prometaphase compared to the two distinct bands in G1 (Figure 23A). 

The upshift could be reversed by treatment with alkaline phosphatase indicating that it is 

caused by phosphorylation rather than by any other post-translational modification 

(Figure 23B). To analyse the phosphorylation pattern of astrin more precisely, Western 

blot analysis was performed on HeLa cell lysates, which were released from a nocodazole 

block and harvested at different time points (the samples were a kind gift from Herman 

Sillje). The Western blot analysis revealed that astrin is expressed at near constant levels 

throughout the cell cycle. Astrin was highly phosphorylated in nocodazole arrested cells 

and then dephosphorylated concomitantly with cyclin B1 degradation, suggesting that the 

key mitotic kinase Cdk1/cyclin B1 might be responsible for phosphorylating astrin 

(Figure 23C). To test this, we examined whether a recombinant MBP-tagged N-terminal 

fragment of astrin (aa 1-481), which is rich in serine and threonine residues (Gruber et al., 
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2002), could act as a substrate of Cdk1/cyclin B1 (Upstate) in an in vitro kinase assay. As 

positive control Histone H1 (H1), as negative control MBP and a recombinant His-tagged 

C-terminal fragment of astrin (aa 1014-1193) (a kind gift from Ulrike Grüneberg) were 

used. The autoradiogram (32P) showed that astrin is phosphorylated in vitro by 

Cdk1/cyclin B1 (Figure 23D), confirming published data (Chang et al., 2001). These 

results indicate that astrin’s function in mitosis might be regulated by phosphorylation. 

Cdk1/cyclin B1 might be the main kinase phosphorylating astrin and could therefore 

create Plk1 docking sites on astrin.  
 

 
Figure 23. Phosphorylation of astrin. (A) Cell extracts were prepared from HeLa cells synchronized in 
G1 or M phase by drug treatment. (B) The upshifted astrin forms are sensitive to alkaline phosphatase 
treatment. IPed astrin of HeLa lysates from nocodazole arrested cells was either incubated with alkaline 
phosphatase (AP) or left untreated (control) for 1 h at 30°C. Equal amounts of cell lysates were separated 
by SDS-PAGE and probed after Western blotting with the indicated antibodies. (C) HeLa cells were 
synchronized by a sequential aphidicolin/nocodazole block release protocol. After nocodazole release 
samples were taken every 20 min. Equal amounts of cell extracts were separated by SDS-PAGE and probed 
after Western blotting with the indicated antibodies. (D) An in vitro kinase assay with MBP-astrin (aa 1-
481) was performed, Histone H1 (H1) was used as positive controls, MBP and His-astrin (aa 1014-1193) as 
negative control, since there are no SP/TP sites in the very C-terminus of astrin. Panel shows the 
autoradiogram (32P). Equal amounts of protein (300 ng of recombinant astrin) were loaded. 
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3.2. Plk1 interacts with astrin via its polo-box binding domain  

The observed mutual dependency between astrin and Plk1 (see chapter 2.1, Figure 21) 

suggests that these proteins physically interact. In order to test this possibility astrin was 

precipitated from mitotic cell extracts with anti-astrin antibodies, using rabbit IgG as  

control. Under these conditions Plk1, but not the outer KT protein Hec1 or the spindle 

pole associated motor protein Eg5 (Sawin et al., 1992), was efficiently co-precipitated 

with endogenous astrin (Figure 24A). As mentioned previously it has been suggested that 

the Plk1 priming sites are most likely created by Cdk1/cyclin B1 (Elia et al., 2003b). To 

test this possibility with regard to astrin, which is an in vitro substrate of Cdk1/cyclin B1, 

full-length GFP-astrin (which expresses better than Myc-astrin) was expressed in 

Hek293T cells and half of the cells were treated with nocodazole prior to harvest in order 

to increase the mitotic index and Cdk1 activity in these extracts. After precipitation with 

anti-GFP antibodies endogenous Plk1 and also CENP-E (as shown before with Myc-

astrin, see chapter 2.2, Figure 22), but not the control proteins γ-tubulin or Hec1, could be 

detected in the IPs (Figure 24B). The interaction between astrin and Plk1 was markedly 

increased by the presence of nocodazole, probably due to a combination of increased 

Plk1 levels in the cell lysate and enhanced Cdk1 phosphorylation of astrin. 
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Figure 24.  Plk1 interacts biochemically with astrin. (A) HeLa cells were pre-synchronized with 
aphidicolin, released and then arrested in mitosis with noscapine. IPs with either astrin or control IgG were 
performed from mitotic lysates. Inputs, supernatants (Sup.) and immune complexes (IP) were loaded onto a 
SDS gel, followed by Western blot analysis using the indicated antibodies. (B) Hec293T cells were 
transfected with GFP-astrin or the empty GFP-vector as control for 40 h. Cells were treated with 
nocodazole for the last 16 h. Extracts were used for GFP-IP. Input and IPs were separated by SDS-PAGE, 
followed by Western blot analysis with the indicated antibodies. 
 

To further examine whether Plk1 interacts with astrin via its PBD IPs of endogenous 

astrin were overlayed with GST-PBD (a kind gift from Rüdiger Neef). GST-PBD bound 

efficiently to precipitated astrin but not to control precipitates (Figure 25A) and 

consistent with a requirement for phosphorylation it bound only to the upshifted species 

of astrin. In line with this, astrin precipitated with PBD-pull-downs from cells stably 

expressing wild type PBD (PBD-wt) but not from cells stably expressing a mutated PBD 

(PBD-AA), lacking residues critical for phospho-peptide binding (Hanisch et al., 2006) 

(Figure 25B). The samples were a kind gift from Anja Hanisch. Taken together the 

results demonstrate that the interaction between astrin and Plk1 is mediated via the PBD.  
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Figure 25. Plk1 interacts with astrin via its PBD. (A) HeLa cells were pre-synchronized with 
aphidicolin, released and then arrested in mitosis with noscapine. IPs were performed using affinity-
purified anti-astrin antibodies. IPs obtained were overlayed with GST-PBD, and GST-PBD-binding was 
visualized with antibodies against GST. Note that only the slower migrating forms of astrin bound GST-
PBD in this assay. (B) Myc-IPs from HeLa cells stably expressing Myc-PBD-wt or Myc-PBD-AA carrying 
mutations in residues critical for phosphopeptide binding (H538A, K504A) (Hanisch et al., 2006) were 
analysed for the presence of astrin, Hec1 and CENP-F.  

 

3.3. The interaction of astrin and Plk1 is dependent on the Cdk1 phosphorylation 

site at Thr 111 

As the optimal phosphopeptide binding motif for PBD docking the amino acid sequence 

S-[pS/pT]-P/X was identified (Elia et al., 2003b). Analysis of the astrin amino acid 

sequence revealed three potential PBD docking sites conforming to this consensus motif 

(SS65/66 = PBD1; ST110/111 = PBD2; ST936/937 = PBD3). In order to examine which 

of these three sites mediates the binding to the PBD the putative phosphorylated residue 

of all three sites and the preceeding serine were simultaneously mutated to alanine. All 

Myc-astrin PBD mutants (Myc-astrin PBD1AA, PBD2AA, PBD1/2AA and PBD3AA) 

still localized like the wild type when transiently expressed in HeLa cells suggesting that 

the mutations did not introduce any severe structural changes into the proteins (Figure 

26). 
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Figure 26. Transiently transfected Myc-astrin PBD mutants show normal localization. Myc-astrin 
wild type and PBD mutants were transiently transfected into HeLa cells. After 30 h the cells were fixed and 
stained with antibodies against tubulin (green) and Myc (red). DNA (blue) was stained with DAPI. Bar, 10 
µm. Differences in intensity are most likely due to differences in expression levels. 
 

Pull-down experiments precipitating the Myc-wt-astrin or the Myc-astrin mutants 

overexpressed in 293T cells demonstrated that Plk1 binding to astrin was reduced by 

approximately 50% when SS65/66 was mutated (Myc-astrin PBD1AA) and completely 

abolished after mutation of ST110/111 (Myc-astrin PBD2AA) or mutation of both sites 

(Myc-astrin PBD1/2AA) (Figure 27). No effect on Plk1 binding was observed with the 

Myc-astrin PBD3 mutant (Figure 27). Interestingly, the bands for the precipitated Myc-

astrin PBD2AA and the Myc-astrin PBD1/2AA mutants were clearly less upshifted than 

the bands of the wild type Myc-astrin, the Myc-astrin PBD1AA and Myc-astrin PBD3AA 

mutants (Figure 27), suggesting that Thr111 is the main phosphorylation-site responsible 

for the mitotic upshift in astrin. Collectively, these results demonstrate that astrin 

interacts directly with Plk1 and that this interaction is dependent on the presence of the 

Cdk1 phosphorylation site at Thr 111 (PBD2) and, to a minor extent, on the presence of 

the Cdk1 phosphorylation site at Ser 66 (PBD1). 
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Figure 27. The direct interaction of Plk1 and astrin is dependent on the presence of the Cdk1 
phosphorylation site at Thr 111 (PBD2). Myc, Myc-astrin wt and PBD mutants were expressed in 293T 
cells for 40 h. The cells were treated with nocodazole for the last 16 h and Myc-tagged proteins were 
precipitated. The IPs were analysed for the presence of the Myc-tagged proteins and co-precipitating Plk1 
and Eg5 as control. Western blotting of the lysates with anti-Plk1 antibodies show equal loading. Note that 
the mutation of the putative PBD-binding site 2 (Myc-astrinPBD2AA) leads to altered running behaviour 
of the overexpressed protein in comparison to the control and the other two PBD mutants. 
 

After having demonstrated that Plk1 binds to astrin it was obvious to ask whether astrin is 

a substrate of Plk1. In a first approach we tested whether astrin’s localization was 

influenced in cells treated with the Plk1 kinase activity inhibitor TAL (Santamaria et al., 

2007) or whether astrin’s mitotic upshift was impaired in cells depleted of Plk1. 

Immunofluorescence analysis of cells treated with TAL for various time periods revealed 

that astrin’s localization to the KT, the mitotic spindle and the spindle pole was only 

slightly affected. Since Plk1 kinase activity is required for the stabilization of MT-KT 

interactions, this is most likely an indirect effect (Santamaria et al., 2007). Moreover, 

Western blot analysis revealed that the mitotic upshift in cells depleted of Pk1 was only 

impaired to a limited extent, compared to mitotically arrested control cells. Taken 

together, these results demonstrate that the loss of Plk1 kinase activity only mildly 

influences astrin’s localization. This indicates either that Plk1 does not phosphorylate its 

binding partner astrin but instead an unknown interactor of astrin, or that the Plk1 

phosphorylation of astrin is not involved in astrin’s localization. The slight influence on 

astrin’s mitotic upshift could either be due to the fact that Plk1 does not phosphorylate 

astrin or that its phosphorylation is only partly responsible for the mitotic upshift, which 

might be caused mainly by Cdk1.  
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Figure 28. Inhibition of Plk1 kinase activity only slightly influenced astrin’s localization and astrin’s 
mitotic upshift  in cells depleted of Plk1 is only slightly impaired. (A) Asynchronous cells were treated 
with Plk1 inhibitor (TAL) for various time periods, then fixed and stained with antibodies against astrin 
(red) and α- tubulin (green). DNA was stained with DAPI. Bar, 10 µm. (B) Cells were either depleted of 
Plk1 by siRNA or treated with control (Gl2) oligos. 12 h prior to mitotic shake off control cells were 
treated with nocodazole to mitotically arrest them. Then cells were harvested by mitotic shake off and 
lysed. The cell lysates were analysed be Western blotting with the indicated antibodies.  
 

To analyse when in mitosis astrin is phosphorylated on the PBD-binding site Thr111, a 

polyclonal antibody (p-astrin) directed against a peptide encompassing pThr111 was 

generated. The Western blot analysis of mitotic control and astrin depleted samples 

revealed that the p-astrin antibody recognized a band with an apparent molecular weight 

of ca. 140 kDa, which disappeared upon siRNA-mediated depletion of astrin (Figure 

29A). Consistent results were obtained by immunofluorescence analysis. Whereas control 

cells exhibited strong KT and spindle pole staining with the anti-p-astrin antibody, cells 
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depleted of astrin showed no staining. By Western blotting on mitotic or interphase 

lysates, the p-astrin antibody only recognized a band in mitotic but not interphase 

samples (Figure 29B, left panel). Anti-p-astrin reactivity to this band was lost upon 

phosphatase treatment, confirming its specificity for phosphorylated astrin (Figure 29C, 

upper panel). Reprobing the membrane with anti-astrin antibody demonstrated that the 

band recognized by the p-astrin antibody corresponds exactly to the slowly migrating, 

phosphorylated form of astrin (Figure 29C, upper and lower panel). It should be noted 

also that the phosphospecific astrin antibody recognizes only the full-length form of 

astrin, since the smaller form lacks approximately 200 aa at the N-terminus and thus also 

Thr111 (Figure 12). Having established the specificity of the anti-p-astrin antibody, it 

was used to track the timing of astrin phosphorylation on the PBD-binding site. Analysis 

of asynchronously growing HeLa cells by immunofluorescence microscopy revealed that 

Thr111 phosphorylation was observed mainly in metaphase, when the cells showed 

strong KT and spindle pole staining. Phosphorylation was gradually lost in anaphase and 

no telophase cells were found to stain positive with the anti-p-astrin antibody (Figure 

29E). Taken together, these results show that phosphorylation of astrin on Thr111 occurs 

predominantly during metaphase. The data showing that astrin and Plk1 interact directly 

via the PBD consensus motif centred on Thr111 and that phosphorylation of this residue 

occurs predominantly at metaphase are a good basis for future studies of the function of 

the interaction between Plk1 and astrin.  
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Figure 29. Thr111 is phosphorylated mainly in metaphase. (A) Mitotic cell lysates were prepared form 
HeLa cells depleted of astrin or control (Gl2). (B) Cell extracts were prepared from HeLa cells 
synchronized in G1 or M phase by drug treatment. (A and B) Equal amounts of cell lysates were separated 
by SDS-PAGE and probed after Western blotting with the indicated antibodies. (C) Mitotic extracts of 
synchronized cells either incubated with Calf Intestinal Phosphatase (CIP) (lane 1 and 2)  or left untreated 
(lane 3 and 4) for 1 h at 30°C with (lane 1 and 3) or without (lane 2 and 4) phosphatase inhibitor (Phos-
Inhibitor). Note that the phosphatase inhibitor was not absolutely efficient, because astrin in the first lane 
(treated with CIP and phosphatase inhibitor) is a little bit down-shifted compared to the samples that were 
not treated with CIP (lanes 3 and 4). Equal amounts of cell lysates were separated by SDS-PAGE and 
probed after Western blotting with the anti-astrin antibody (upper panel). The same blot was reblotted with 
anti-astrin antibodies (lower panel), which also shows equal loading. (D) HeLa cells were treated with 
control or astrin specific siRNA oligos, fixed and stained with antibodies against α-tubulin (green) and p-
astrin (pThr111) (red). (E) Asynchronous HeLa cells were fixed and stained with rat-anti-p-astrin antibody 
(green) and rabbit-anti-p-astrin antibody (red). (D and E) DNA was stained with DAPI. Bar, 10 µm. 
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3.4. Initial analysis of the relationship between hCdc14A and astrin  

Budding yeast Cdc14p is a serine-threonine phosphatase that was identified as a essential 

protein for antagonizing Cdk activity and inducing mitotic exit (Bardin and Amon, 2001; 

Jaspersen et al., 1998; Visintin et al., 1998). Mammalian cells express two homologs of 

Cdc14, termed hCdc14A and hCdc14B, which are both functional homologs of yeast 

Cdc14 (Vazquez-Novelle et al., 2005). Recent evidence points to isoforms-specific roles 

in centrosome separation/maturation and spindle stability, with the possibility of 

additional roles in mitotic exit and cytokinesis (Trinkle-Mulcahy and Lamond, 2006). 

Astrin was identified as an interactor of hCdc14A in our laboratory (Ulrike Grüneberg, 

unpublished). These data were confirmed with a direct yeast-two hybrid analysis. 

HCdc14A, but not hCdc14B, interacts specifically with the C-terminus of astrin (aa 1014-

1193) (Figure 30A and B). To further analyse the interaction of hCdc14A and astrin, IP 

experiments were performed. On the one hand endogenous astrin was immuno-

precipitated from mitotic cells, arrested with noscapine. On the other hand Hek293T cells 

were transfected with either Myc-astrin or the empty Myc-plasmid as control and astrin 

was pulled down with anti-Myc antibodies. HCdc14A did not co-IP with endogenous 

astrin, but with overexpressed-astrin (Figure 30C and D). This result indicates that the 

interaction between hCdc14A and astrin is either very weak or indirect, or that the 

antibody interferes with the interaction. As shown above, astrin is highly phosphorylated 

during mitosis and dephosphorylated concomitantly with cyclin B1 degradation, 

suggesting that the key mitotic kinase Cdk1/cyclin B1 phosphorylates astrin. Since it has 

been suggested that Cdc14A reverses the modifications introduced by Cdks hCdc14 

could be the phosphatase that dephosphorylates astrin when cells exit mitosis.  
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Figure 30. HCdc14A interacts with the C-terminus of astrin and co-IPs with over-expressed but not 
endogenous astrin. (A and B) Direct yeast-two hybrid analysis with either hCdc14A (A) or hCdc14B (B), 
cloned into pAct2 and a C-terminal fragment of astrin (aa 1014-1193) cloned into pFBT9. Interaction was 
reflected by growth on selective medium (QDO, right panels). For control, growth on non-selective plates 
is also shown (SC-LW, left panels). (C) IPs with either astrin or control IgG were performed from mitotic 
lysates. Inputs, supernatants (Sup.) and immune complexes (IP) were loaded onto a SDS gel, followed by 
Western blot analysis using the indicated antibodies. HCdc14 does not co-IP with endogenous astrin. (D) 
Hec293T cells were transfected with Myc-astrin or the empty Myc-vector as control for 40 h. Cells were 
treated with noscapine for the last 16 h. Extracts were used for Myc-IP. Input and IPs were separated by 
SDS-PAGE, followed by Western blot analysis with the indicated antibodies. HCdc14A does co-precipitate 
with Myc-astrin. 
 

In budding yeast it has been shown that Cdc14 regulates the yeast INCENP-Aurora B 

complex, Sli15-Ipl1 (Pereira and Schiebel, 2003). Sli15 is partially dephosphorylated 

during anaphase in a Cdc14-dependent manner and human INCENP can also be 

dephosphorylated by human Cdc14A (Gruneberg et al., 2004). To test whether hCdc14 

dephosphorylates astrin, a phosphatase assay with recombinant hCdc14A and hCdc14A 

phosphatase dead (hCdc14A PD) was performed, INCENP was used as a positive control 

substrate. The enzymes were a kind gift from Ulrike Grüneberg. For the phosphatase 

assay INCENP and astrin were IPed from mitotically arrested cells with either antibodies 

against Aurora B, the interaction partner of INCENP, or against astrin, respectively, and 

protein G-Sepharose beads. The IPed proteins coupled to protein G-Sepharose were 
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resuspended in 1x phosphatase buffer, aliquoted and treated with different amounts of 

recombinant hCdc14A (wt: 50 and 500 ng, PD: 500 ng). For control, aliquots were either 

left untreated for 30 min at 30°C (control 1) or left on ice (control 2). Equal amounts of 

protein were separated by SDS-PAGE. Western blot analysis revealed that the mitotically 

phosphorylated astrin was dephosphorylated by hCdc14A (Figure 31B) but not as 

efficiently as the positive control INCENP (Figure 31A). After separating the proteins on 

a 6 % gel, the down shift of astrin was more obvious (Figure 31 B, lane 4). However, 

compared to the Western blot analysis shown above for the Alkaline Phosphatase 

treatment (Figure 23B), astrin is not completely dephosphorylated. These results indicate 

that hCdc14A only dephosphorylates specific phosphorylation sites on astrin and that 

there might be another phosphatase besides hCdc14A which dephosphorylates astrin. In 

summary, hCdc14A is an attractive candidate for a regulator of astrin function.  
 

 
Figure 31. Astrin is dephosphorylated by hCdc14A. (A and B) For the phosphatase assay mitotically 
phosphorylated INCENP or astrin was IPed from mitotic lysates with either anti-Aurora B (to IP INCENP) 
or anti-astrin antibodies and Protein G-Sepharose. The protein-coupled beads were resuspended in 1x 
phosphatase buffer, aliquoted and treated with different amounts of recombinant hCdc14A wt (*50 ng, 
**500ng) or hCdc14A PD (500ng) or left untreated for 30 min at 30°C (control 1) or on ice (control 2).  
The phosphatase reaction was stopped by addition of sample buffer followed by boiling. Equal protein 
amounts were loaded on and separated by SDS-PAGE, followed by Western blot analysis with the 
indicated antibodies. 
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4. Astrin acts at different steps in cell division 

The dual localization of astrin to both centrosomes and KTs (Figure 13) and its possible 

interaction with the KT associated motor CENP-E, the mitotic phosphatase hCdc14A and 

the mitotic kinase Plk1 indicates that it may act at different steps in cell division. To 

analyse astrin’s role in mitosis, loss-of-function experiments were performed.   

4.1. Depletion of astrin results in an increase in mitotic index and cell death by 

apoptosis  

To study the functional consequences of astrin depletion, HeLa cells were treated with 

astrin siRNA and examined by immunofluorescence microscopy 48 h later. Analysis of 

the resulting mitotic cells revealed that most of the cells were multipolar and showed 

disorganized DNA (Figure 32A). To test whether the siRNA phenotype was specific we 

used two approaches, antibody microinjection and siRNA rescue experiments. For 

microinjection experiments purified astrin antibodies, or rabbit IgG as a control, were 

microinjected into the cytoplasm of HeLa cells. 24 h after injection cells were fixed, co-

stained with secondary anti-rabbit antibodies to visualize injected cells, and with anti-α-

tubulin antibodies to monitor the mitotic spindle (Figure 32B). Cells injected with anti-

astrin antibodies displayed multipolar spindles with disorganized DNA, whereas control 

injection of purified rabbit IgG did not give any obvious phenotypes (Figure 32B). For 

rescue experiments the siRNA-resistant Myc-astrin plasmid or the empty Myc-vector as a 

control were transfected 24 h prior to the transfection of siRNA duplexes targeting astrin. 

The cells were fixed and analysed 42 h later. The defects caused by siRNA mediated 

depletion of astrin were efficiently rescued by Myc-astrin. Taken together, these data 

show that the siRNA based phenotype is specific to astrin. The loss of astrin results in 

multipolarity and disordered DNA, indicating that the loss of astrin’s function interferes 

with centrosome integrity and chromosome congression. 
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Figure 32. Astrin depletion results in multipolarity and uncongressed chromosomes. (A) HeLa cells 
were treated with control or astrin siRNA oligos, fixed after 48 h and stained for astrin and α-tubulin. (B) 
Interphase HeLa cells were injected with purified rabbit anti-astrin antibodies or control rabbit IgG, fixed 
after 24 h and stained with antibodies against tubulin (green) and secondary anti-rabbit antibodies (red). (C) 
HeLa cells were transfected with Myc-astrin constructs, containing five silent mutations in the sequence 
targeted by the astrin siRNA oligo, 24 h prior to transfection with astrin siRNA oligos, and stained with 
CREST antiserum (red) and antibodies against Myc (green). (A,B and C) DNA was stained with DAPI 
(blue). Bar, 10 µm. (D) The percentage of transfected and untransfected cells displaying the astrin depletion 
phenotype was scored in two independent experiments.  
 

Closer analysis of the siRNA phenotype by a time course (cells were examined after 24, 

36 and 48 h) revealed that the depletion of astrin resulted in an increase in mitotic index 

and in multipolarity. Concomitantly, increased cell death by apoptosis was observed 

(Figure 33) as described previously (Gruber et al., 2002). Taken together, these results 

demonstrate that astrin is essential for progression through mitosis, confirming a previous 

report (Gruber et al., 2002).  
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Figure 33. Astrin depletion by siRNA results in an increase in mitotic index, multipolarity and 
apoptosis. SiRNA treated cells were fixed and analysed after 24, 36 and 48 h. (A) The percentage of 
mitotic cells with multipolar spindles, (B) the mitotic index, (C) and the percentage of apoptotic cells were 
scored in control and astrin depleted HeLa cells. The graphs represent triplicate experiments. For each time 
point 200 cells were counted. 

 

4.2. Astrin is required for efficient chromosome alignment and spindle pole integrity 

To investigate the mitotic phenotype in more detail, time-lapse video microscopy was 

performed on HeLa cells that stably express a histone H2B-GFP fusion protein (Figure 

34). These experiments showed that astrin depleted cells exhibited a profound 

chromosome alignment defect (Figure 34). They required significantly more time to 

assemble a metaphase plate than control cells (63.9 +/- 28.5 mins in comparison to 27.0 

+/- 8.0 mins) (Figure 34) and 60% of the cells never accomplished full alignment of all 

the chromosomes (Figure 34). Once metaphase chromosome alignment was achieved, 

chromosomes were lost again from this structure (Figure 34, t = 104’ and t = 160’) and 

cells remained arrested in a metaphase-like state for prolonged periods of time, up to 10 

h, and eventually died by apoptosis. While most astrin depleted cells (8/9) initially 

formed a bipolar spindle, after several hours of mitotic arrest (194.4 +/- 46.5 min) 
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bipolarity was lost, and a multipolar spindle was formed (Figure 34, t = 252’). In the one 

remaining case, a multipolar spindle was formed immediately without a preceding period 

of bipolarity. Together, these data suggest that astrin has functions at both spindle poles 

and KTs, and that the lack of astrin leads to a prolonged mitotic arrest.  
 

 
Figure 34. Live cell imaging reveals astrin depletion results in chromosome congression defects and 
multipolarity. (A) Stills of representative movies of control and astrin depleted cells. Bar, 10 µm. Time is 
indicated in mins. All astrin depleted cells analysed (n=10) exhibited delayed chromosome congression 
(compare t = 24’ in control and astrin siRNA cells) and unstable metaphase plates. Note unaligned 
chromosomes in astrin siRNA at t = 104’ and t = 160’ (arrowheads). The depicted astrin depleted cell is 
initially bipolar but forms a multipolar spindle (asterisks indicate spindle poles) during the mitotic arrest. 
(B) Control or astrin depleted HeLa cells expressing histone-H2B-GFP were followed by live cell analysis. 
The time required for chromosome congression was plotted.  

 

4.3. Astrin depleted cells are spindle checkpoint arrested 

The observed mitotic arrest in cells depleted of astrin suggests that the SAC is activated 

and cannot be satisfied. Consistent with this idea, cells lacking astrin displayed Mad2 and 

strongly BubR1-positive KTs (Figure 35). As the KT association of BubR1 and Mad2 

usually (albeit not invariably; (Martin-Lluesma et al., 2002) correlate with an active SAC, 

this observation indicates that astrin depleted cells failed to turn off the SAC. Indeed, the 
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mitotic arrest induced by astrin depletion could readily be overcome by co-depletion of 

Mad2, or treatment of astrin depleted cells with Aurora B inhibitor ZM447493 

confirming its dependency on the SAC (Figure 35).  
 

 
Figure 35. Astrin depleted cells are spindle checkpoint arrested. (A and B) Control or astrin depleted 
HeLa cells were stained with antibodies against α-tubulin (green) and either Mad2 or BubR1 (red). (C) 
HeLa cells were transfected with astrin siRNA and 16 h later with Mad2 or control siRNA oligos for an 
additional 24 h. The mitotic index was scored. (D) Control and astrin depleted cells were treated with 
DMSO or 10 µM ZM447493 for 3 h, and the mitotic index was scored. 
  

Consistent with the previous results, extracts prepared from astrin depleted cells had 

levels of cyclin B1, securin and phospho-histone H3(Ser10) comparable to control 

nocodazole arrested cells (Figure 36 C). Cells lacking astrin stained brightly for cyclin B1 

and securin (Figure 36 A and B). To analyse the securin staining in astrin depleted and 

control cells more precisely, the levels of securin staining were measured in four 

independent experiments using ImageJ software. The mean pixel intensities of astrin 

depleted and control cells were similar (Figure 36 D). Taken together, these data further 

confirm that cells lacking astrin are SAC arrested. 
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Figure 36. Securin and cyclin B1 are stable in cells lacking astrin. (A and B) Control or astrin depleted 
HeLa cells were stained with antibodies against CREST (red) and either cyclin B1 or securin (green), 
respectively. DNA was visualized with DAPI. Bar, 10 µm. (C) Lysates of mitotic control and astrin 
depleted HeLa cells harvested by mitotic shake-off were immunoblotted with antibodies against the 
indicated proteins. The two astrin bands appear as one because of a higher percentage SDS gel used. (D) 
The levels of securin staining in control or astrin depleted mitotic cells were measured in four independent 
experiments using ImageJ software, analysing 15-20 cells of each kind per experiment. 

 

4.4. Cells lacking astrin have unstable microtubule kinetochore interactions 

The persistent activation of the SAC (chapter 4.3), together with the chromosome 

congression defect (Figure 32), suggested that MT-KT interactions are impaired in cells 

lacking astrin. To test this idea, cells were analysed after cold treatment (Rieder, 1981) or 

pre-extracted prior to fixation to differentially preserve KT fibres (Holt et al., 2005). 

Under both conditions, astrin depleted cells displayed many unattached KTs and fewer 

stable KT-MTs than control cells, although the phenotype was not as drastic as the one 

observed in Hec1 depleted cells (Figure 3A and B) (DeLuca et al., 2002). The KTs that 

were MT associated often appeared to be attached laterally rather than end-on in cells 

lacking astrin (Figure 37B, lower panel, insets).  
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Figure 37. MT-KT interactions are unstable. (A) HeLa control cells and astrin or Hec1 depleted cells 
were incubated on ice for 20 minutes prior to fixation. Cold-stable K-fibre MTs were revealed by KT 
staining with CREST serum and antibodies against α-tubulin. The indicated areas are shown blown-up in 
the bottom panel. Note the presence of unattached KTs in astrin depleted cells. Bars, 10 µm in top panel, 1 
µm in bottom panel. (B) Control or astrin depleted HeLa cells were pre-extracted prior to fixation and MT-
KT interactions were visualized as above. Bar, 10 µm. 
 

As shown above in chapter 2.1 the core KT protein Hec1 and the spindle checkpoint 

kinase Bub1 were unaffected (Figure 21), the KT-resident motor protein CENP-E (Yen et 

al., 1992) and its interaction partner CENP-F (Chan et al., 1998) were delocalized from 

the KT in the absence of astrin (Figure 21). These data suggest that the presence of astrin 

is required for the KT recruitment or maintenance of CENP-E and CENP-F. Moreover, it 

has been suggested that Plk1 is required for stabilization of MT-KT attachments (Elowe 

et al., 2007; Lenart et al., 2007; Matsumura et al., 2007). This, in combination with the 

lack of CENP-E, CENP-F and astrin itself, may cause unstable MT-KT interactions, 

unaligned chromosomes and persistent activation of the SAC. However, these finding do 

not explain why multipolar spindles are formed in cells lacking astrin. 

5. Astrin is required for maintenance of centrosome integrity and sister 

chromatid cohesion 

To analyse the molecular basis of the multipolar spindle phenotype in more detail, the 

localization of centrin, a marker for individual centrioles (Paoletti et al., 1996) was 

investigated in astrin depleted cells. Multipolar spindles can arise by a number of 

different routes that can be distinguished by the number of centrioles found at the 

individual poles. Failure of cytokinesis will lead to multiple spindle poles with two 
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centrin-positive centrioles at each pole. Aberrant centriole disengagement, in contrast, 

will cause the formation of multipolar spindles with single centrioles at individual spindle 

poles (Keryer et al., 1984; Sluder and Rieder, 1985). A further possible cause for the loss 

of spindle bipolarity is the loss of MT anchoring at the centrosome as observed, for 

instance, upon TOGp depletion (Cassimeris and Morabito, 2004; Holmfeldt et al., 2004). 

5.1. The absence of astrin results in centriole disengagement 

In contrast to the bipolar spindles of control cells, which displayed two centrin dots at 

each pole, the multipolar spindles in cells lacking astrin often displayed single centrin 

dots at each pole (Figure 38A). For a further, quantitative comparison the number of 

centrin dots per pole in multipolar cells depleted of Aurora B, known to be required for 

correct chromosome segregation and progression through cytokinesis (Honda et al., 

2003), or TOGp, a protein important for maintaining intact spindle poles (Cassimeris and 

Morabito, 2004; Gergely et al., 2003; Holmfeldt et al., 2004) was evaluated (Figure 38C). 

This approach revealed that 79.2% of multipolar spindles in Aurora B depleted cells 

displayed two centrin-positive dots per pole (Figure 38B and C), consistent with the idea 

that these spindles had arisen from a previous cytokinesis failure. Multipolar spindles in 

TOGp depleted cells often showed poles with no centrin staining in addition to two 

“normal” poles with two centrin dots, and therefore contained the highest number of 

acentriolar poles (43.9%, Figure 38B and C). Strikingly, and in contrast to both Aurora B 

and TOGp depletion, in astrin depleted cells 55.4% of poles had single centrioles 

suggestive of aberrant centriole disengagement (Figure 38C). In line with these data, 

Aurora B and astrin depleted cells generally displayed pericentrin staining at all poles of 

multipolar spindles, whereas TOGp depleted cells often possessed multipolar spindles 

with only two pericentrin-positive poles, confirming published results (Holmfeldt et al., 

2004) (Figure 38D). Taken together, these results suggest that the formation of multipolar 

spindles upon astrin depletion is mainly caused by an untimely loss of the connection 

between the two centrioles of each centrosome. 
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Figure 38.  Astrin depletion causes loss of centriole cohesion. (A) Control or astrin depleted cells were 
stained with antibodies against centrin (red) and α-tubulin (green). DNA was visualized with DAPI (blue). 
Individual centrosomes are shown enlarged on the right hand side. (B) HeLa cells depleted of Aurora B or 
TOGp were stained as in (A). (C) Quantitative analysis of the centriole number at the poles of multipolar 
spindles in cells depleted of astrin, Aurora B or TOGp. The number of poles containing no, one, or two 
centrin stainings was plotted as a percentage of the total number of poles. The cells were analysed double 
blind by three different researchers. The graphs represent triplicate experiments of at least cells, each. Bars, 
10 µm. (D) Astrin, Aurora B and TOGp depleted cells were stained with antibodies against pericentrin 
(red) and α-tubulin (green). The arrowhead indicates an acentriolar spindle pole in the TOGp depleted cell. 
Bar, 10 µm. 

 

5.2. Sister chromatid cohesion is prematurely lost in astrin depleted cells  

In normal cells, the connection between the two centrioles is lost at the end of mitosis or 

early G1 phase, when the two centrioles are disengaged. It has recently been 

demonstrated that this disengagement of the two centrioles is dependent on the activity of 

separase (Tsou and Stearns, 2006b), a protease that also controls cohesion cleavage 

between sister chromatids (Uhlmann et al., 2000). One possible explanation for the 

formation of multipolar spindles in cells depleted of astrin could therefore be an 

inefficient inhibition of separase during the checkpoint arrest, leading to premature 

disengagement of the centrioles. In this case one would predict that cohesion between 

sister chromatids would also be affected. Consistent with this idea, immunofluorescence 
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analysis of cells or single chromosomes showed that the chromosomes of mitotically 

arrested astrin depleted cells displayed single dots of CREST staining, indicative of 

separated sister chromatids, in comparison to paired dots in metaphase control cells 

(Figure 39A and B). Furthermore 65.0% of mitotic chromosomes in chromosome spreads 

prepared from astrin depleted cells displayed separated sister chromatids, compared to 

less than 1.0% of control cell spreads, 97.7% of chromosome spreads of Sgo1 depleted 

cells, known to display loss of sister chromatid cohesion (McGuinness et al., 2005), and 

9.3% of spreads of CENP-E depleted cells (Tanudji et al., 2004) (Figure 39C and D). 

This loss of cohesion was not caused by lack of the centromeric protectors Sgo1 or the 

associated B56-containing subtype of PP2A phosphatase (Kitajima et al., 2006; 

McGuinness et al., 2005) (Figure 39E and F).  
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Figure 39. Astrin depletion causes loss of centriole cohesion. (A) Control and astrin depleted HeLa cells 
were fixed and stained with CREST serum (red) and with antibodies against Hec1 (green). DNA was 
stained with DAPI (blue). The indicated areas are shown enlarged in the bottom panel. Bar, 1 µm. Note that 
in astrin depleted cells single Hec1-CREST pairs are observed. (B) Chromosome spreads of mitotically 
arrested control or astrin depleted cells were stained with CREST serum. Bar, 1µm. (C) Chromosome 
spreads were prepared from mitotic HeLa cells depleted of Gl2 (control), CENP-E (both 48 h RNAi), Sgo1 
and astrin (both 40 h RNAi). Representative pictures of each sample are shown. (D) Quantitation of the 
chromosome spreads shown in (E). Each bar represents triplicate experiments. 100 cells of each sample 
were counted per experiment. (E and F) Control and astrin depleted HeLa cells were fixed and stained with 
CREST serum and antibodies against (E) astrin and Sgo1 or (F) PP2A-B56 (green) and CREST (red). Bar, 
10 µm. 
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To investigate the chromosome cohesion defect in more detail, time-lapse video 

microscopy was performed on astrin depleted cells expressing YFP-tagged CENP-A. 

This revealed that these cells established and maintained cohesion normally in early 

mitosis through to the formation of (imperfect) metaphase plates but lost cohesion during 

subsequent mitotic arrest, on average 89.6 +/- 42.3 mins (n = 10) after forming a 

metaphase(like) plate (Figure 40). In summary, the data obtained from imaging histone 

H2B-GFP (Figure 34) or CENP-A-YFP (Figure 40) expressing astrin depleted cells 

indicate that loss of sister chromatid cohesion precedes loss of centrosome integrity in 

these cells but that both events occur after the formation of an imperfect metaphase plate. 
 

 
Figure 40. CENP-A-YFP expressing astrin depleted cells indicate that loss of sister chromatid 
cohesion precedes loss of centrosome integrity. Control or astrin depleted HeLa CENP-A-YFP cells were 
followed through mitosis by live cell imaging. Time is indicated in min. Like control cells, astrin depleted 
cells formed a metaphase (like) plate with well-cohesed sister chromatids (visible as paired YFP-CENP-A 
dots, see t = 0). During the ensuing mitotic arrest astrin depleted cells lost sister chromatid cohesion visible 
as single YFP-CENP-A dots), on average 896 +/- 42.3 mins (n = 10) after reaching a metaphase (like) state 
(see lower panel 72 and 76 mins). 
 

To clearly demonstrate that loss of sister chromatid cohesion and centrioles 

disengagement were specific for cells depleted of astrin, we compared astrin depleted 

cells to pre-synchronized and then nocodazole arrested cells and additionally also to 

CENP-E depleted cells. Both treatments resulted in a mitotic arrest of at least 10 h, 

similar to what is observed upon astrin depletion (Yao et al., 2000). Nevertheless, the 

amount of multipolar cells observed under these conditions was far less than in astrin 

depleted cells (23.0 +/- 2.0% and 12.8 +/- 3.7%, respectively, compared to 67.3 +/-21%). 

Furthermore, closer analysis of the multipolar cells formed under these conditions 

demonstrated that in nocodazole arrested and released cells a high proportion of 

multipolar cells contained acentriolar poles, suggesting loss of MT anchoring, and that 
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CENP-E depleted multipolar cells mostly displayed two centrioles per poles, which is 

indicative of failed cell division and re-entry into the cell cycle. Both situations are 

therefore clearly distinct from the multipolar cells observed in astrin depleted cells, in 

which the majority of poles possess only one centriole, suggesting premature centriole 

disengagement. Moreover, and again different from astrin depleted cells, neither CENP-E 

depleted nor nocodazole arrested cells displayed any significant loss of sister chromatid 

cohesion. In summary, the data presented here confirm that astrin depletion causes unique 

defects (67.3 +/- 2.1% multipolar mitotic cells, 65.0 +/- 2.6 % separated sister 

chromatids) that cannot be phenocopied by forcing cells into extended mitotic arrest by 

other means. 

 

Table 1. Analysis of centrosome integrity and sister chromatid cohesion in spindle  
               checkpoint – arrested cells 
 
Treatment 

 
Separated 
chromatids 

 
Mitotic index 

 
Multipolar/ 
mitotic cells A 

 
Poles with a single 
centriole B 

 
Astrin siRNA C 

 
65.0 +/- 2.6 % 

 
16.2 +/- 2.0 % 

 
67.3 +/- 2.1% 

 
55.4 +/- 13.9 % 

 
CENP-E siRNA 

 
9.3 +/- 1.2 % 

 
26.3 +/- 3.2 % 

 
12.8 +/- 3.7 % 

 
16.3 +/- 4.8 % 

 
Nocodazole (16h) D 

 
0.3 +/- 0.6% 

 
52.7 +/- 2.9 % 

 
23.0 +/- 2.0 % 

 
28.7 +/- 10.2 % 

 

A: Mitotic cells = 100 % 

B: Percentage of poles with a single centriole relative to all poles in multipolar spindles 

C: Live cell imaging shows that mitotic arrest lasts for approximately 10 h before apoptosis occurs. 

D: Cells were synchronized with aphidicolin for 16 h, released for 6 h and then blocked in mitosis for 16 h 

by adding nocodazole. For immunofluorescence analysis of mitotically arrested cells, the cells were 

released into fresh medium for 40 min in order to allow formation of a mitotic spindle. 

 

5.3. Separase is prematurely activated in cells depleted of astrin 

The separation of the sister chromatids in cells lacking astrin would be consistent with 

premature activation of separase. This hypothesis was tested by exploiting the fact that 

active separase undergoes self-cleavage, resulting in a 65 kDa C-terminal fragment 

(Waizenegger et al., 2002). Extracts prepared from mitotically arrested, or mitotically 

arrested and released cells, were used to create situations in which separase was either 
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inactive (mitotic arrest) or active (release from mitotic arrest). Immunoblotting revealed 

the presence of a C-terminal cleavage product only in the control cells that had been 

released from the mitotic block (Figure 42, compare lanes 1 and 2). Significantly, in 

extracts prepared from astrin depleted cells the C-terminal separase cleavage product was 

present at ca. 30% of the level observed in the released control cells (Figure 42, lane 3). 

These data suggest that a fraction of separase is active in mitotic astrin depleted cells. 
 

 
Figure 41. Separase is prematurely activated in cells depleted of astrin. (A) Extracts prepared from 
nocodazole arrested HeLa control cells (lane 1); control cells that had been released from a nocodazole 
block for 100 mins (lane 2) or astrin depleted cells harvested by mitotic shake-off (lane 3) were 
immunoblotted with mouse anti-C-separase antibodies and mouse-anti-lamin A as a loading control. The 
blot shown is a representative example of five independent experiments.  
 

To directly test the involvement of separase in the astrin phenotype, cells were 

simultaneously depleted of astrin and separase. Immunofluorescence and Western blot 

analysis showed that both proteins could be efficiently depleted, either singly or together 

(Figure 42A and B). Cells lacking both separase and astrin displayed a similarly elevated 

mitotic index in comparison to cells depleted only of astrin (15.5 +/- 3.7% in the double 

depletion in comparison to 16.2 +/- 3.0% in astrin depletion) (Figure 42C). However, in 

contrast to astrin depletion alone, cultures depleted of both astrin and separase contained 

significantly fewer cells with multipolar spindles (16.9 +/- 6.0% in the double depletion 

versus 68.8 +/- 11.5% in the astrin RNAi) (Figure 42D). Importantly, chromosome 

spreads of these cultures showed that sister chromatid cohesion was restored in cells in 

which both astrin and separase expression had been repressed (Figure 42E). In contrast, 

no effect on the TOGp phenotype was observed upon the additional depletion of 
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separase. The depletion of TOGp and separase resulted in a similar mitotic index 

compared to cells depleted only of TOGp (20.8 +/- 1.1% in the double depletion in 

comparison to 22.0 +/- 3.7% in TOGp depletion) and the percentage of multipolar 

spindles was similar in both cases (45.5 +/- 11.3% in the double depletion in comparison 

to 40.5 +/- 3.7% in TOGp depletion). Taken together, these data show that both the 

aberrant centriole disengagement and the premature loss of sister chromatid cohesion 

observed in astrin depleted cells involve separase. 
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Figure 42. Separase-dependent formation of multipolar spindles and loss of sister chromatid cohesion 
in cells depleted of astrin. (A) HeLa cells were depleted of astrin and separase individually, or together 
(for 48 hours). Extracts from these and control cells were blotted for astrin and separase, and tubulin as a 
loading control. Note that astrin depleted cells (lane 3) contain more separase than asynchronous (lane 1), 
but similar amounts to nocodazole arrested control cells (lane 2), because of the elevated mitotic index. (B) 
Cells treated as in (A) were stained with antibodies against astrin (red) and α-tubulin (green). 
Representative images of each cell population are shown. Bar, 10 µm. (C), (D) and (E) Quantitation of the 
mitotic index, percentage of multipolar of mitotic cells and degree of sister chromatid separation observed 
in astrin-, separase- or double depleted cells and control cells. 
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DISCUSSION 
During mitosis one cell is divided into two genetically identical daughter cells. To ensure 

equal segregation of chromosomes into the two daughter cells, progression through 

mitosis has to be tightly regulated. Here the functional analysis of the mitotic spindle and 

KT associated protein astrin is described. Astrin was originally identified in a mass 

spectrometric analysis of proteins associated with mitotic MTs and it has been indicated 

that astrin is required for progression through mitosis (Gruber et al., 2002; Mack and 

Compton, 2001). 

1. Two isoforms of astrin were identified 

Mass spectrometry based characterization of IPed astrin revealed two forms of astrin, 

which differ in size. The smaller of the two isoforms lacks approximately 200 amino 

acids of the N-terminus (aa 1-481), which is rich in potential serine and threonine 

phosphorylation sites. It has also been shown that astrin is highly phosphorylated in 

mitosis (Figure 23A, B and C) and that astrin is an in vitro substrate of Cdk1 (Figure 23D 

and Chang et al., 2001). These data indicate that astrin’s function is regulated by 

phosphorylation. Since the smaller form of astrin lacks a part of the N-terminus, there 

could be functional differences between the two isoforms of astrin, which needs further 

investigation. 

2. Analysis of factors that influence astrin’s localization  

Since astrin localizes to the mitotic spindle and spindle poles, MT binding assays were 

performed to test whether astrin directly binds to MTs. Our results showed that astrin 

does not co-pellet with MTs, suggesting that modifications, e.g. phosphorylation or 

binding to an interactor are responsible for astrin’s association with MTs. Since neither 

treatment with the Cdk1 inhibitor roscovitin (data not shown) nor with the Plk1 inhibitor 

TAL (Santamaria et al., 2007) (Figure 28) influences astrin’s localization to MTs, it is 

very unlikely that this association is regulated by phosphorylation. We therefore favour 

the hypothesis that a so far unknown interactor is responsible for astrin’s localization to 

MTs.  
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Release from nocodazole reestablished astrin’s localization simultaneously with the 

recovery of MTs. Astrin was first observed at the poles and subsequently, as the mitotic 

spindle reformed, it became more and more apparent at the KTs (Figure 16A). This 

redistribution could be the consequence of astrin’s transport from the pole to the KT by a 

plus-end directed MT motor protein, such as Kif18, CENP-E or Eg5 (Blangy et al., 1995; 

Mayer et al., 1999; Mayr et al., 2007; Yao et al., 1997). In contrast to both Kif18 

depletion and Eg5 inhibition, depletion of CENP-E results in a complete loss of astrin 

from the KT. Since astrin’s localization to the KT depends on stable MT-KT interactions, 

which are impaired in cells depleted of CENP-E, it is possible that the observed effect on 

astrin localization is indirect. However, the overlap of astrin and CENP-E at the KT 

(Figure 14), the bi-dependency of astrin and CENP-E in localization to the KT and the 

fact that they biochemically interact, strongly suggest that astrin’s localization to the KT 

is directly dependent on CENP-E.  

However, CENP-E did not influence astrin’s localization to the spindle or the 

spindle pole, which suggests that CENP-E is not the plus-end directed motor responsible 

for astrin’s transport from the pole to the KT. In fact, none of the proteins we depleted so 

far impaired astrin’s localization to these structures. Thus further studies are required to 

identify the motor protein that transports astrin from the spindle pole along the mitotic 

spindle to the KT. A possible approach to identify this motor could be the optimisation of 

astrin IP followed by mass spectrometric analysis. 

3. Bi-dependency analysis revealed Plk1 as an astrin interactor 

The siRNA based bi-dependency analysis revealed that astrin is lost from the KT in cells 

depleted of Plk1 while spindle staining of astrin was not influenced (Figure 21D and H). 

Vice versa, depletion of astrin resulted in complete delocalization of Plk1; it was lost 

from the KT and the centrosome (Figure 21C and I). Since astrin and Plk1 localize to the 

same structures during mitosis: KTs, centrosome and midzone (Barr et al., 2004), it is 

likely that Plk1 and astrin influence each other. Indeed, we have shown that astrin 

interacts directly with Plk1 in a PBD dependent manner. However, so far we have been 

unable to demonstrate unequivocally that astrin is a Plk1 substrate. 
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Recent studies indicated that Plk1 is involved in checkpoint signalling by generating the 

3F3/2 phospho-epitopes, which are involved in tension-sensing by being only present at 

unattached or unaligned KTs and released as soon as tension is established between the 

sister chromatids (Ahonen et al., 2005; Wong and Fang, 2006). It has been suggested that 

Plk1 phosphorylation of SAC components is involved in proper MT-KT attachments 

(Elowe et al., 2007). In line with that it has been shown that Plk1 is involved in the 

stabilization of MT-KT interactions and chromosome congression (Elowe et al., 2007; 

Hanisch et al., 2006). However it is still not known how Plk1 contributes to chromosome 

congression. Plk1 is delocalized in cells depleted of astrin and chromosome congression 

as well as MT-KT interactions are impaired in these cells, suggesting that the loss of Plk1 

contributes to this phenotype. Moreover it is tempting to speculate that astrin is part of a 

protein complex at the outer KT, which is involved in chromosome congression and MT-

KT interactions. Plk1 could regulate this complex by phosphorylation.  

Plk1 and astrin do not co-localize at the outer-KT (Figure 14), indicating that it is 

unlikely that astrin is a structural binding partner of Plk1 at the KT. Nevertheless,  Plk1 

might regulate astrin by phosphorylating a specific pool of astrin at the KT. Alternatively, 

since both proteins show overlapping localization to the spindle pole, it might be the case 

that the interaction of astrin and Plk1 takes place at the spindle pole.  

The serine-threonine phosphatases hCdc14A, which we identified here as a 

potential astrin interactor also localizes to the spindle pole. HCdc14A counteracts Cdk1 

activity (Visintin et al., 1998). Thus it could be speculated that hCdc14A 

dephosphorylates Thr111 and thereby regulates the binding of Plk1 to astrin. However, 

because the functions of hCdc14 in mitosis are not well understood, it is difficult to 

speculate about how hCdc14 regulates astrin’s function in mitosis (Kaiser et al., 2002; 

Mailand et al., 2002).  

4. Astrin is an outer KT protein which localizes to aligned chromosomes 

and is involved in the stabilization of MT-KT interactions 

Immunofluorescence analysis of astrin’s localization showed a centrosomal pool of astrin 

and an outer-KT-associated pool (Figure 14). The dual localizations of astrin together 

with depletion studies by siRNA indicate that astrin is involved in proper spindle 
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formation and chromosome segregation (Figure 14 and Figure 32). Moreover, live-cell 

imaging studies of cells depleted of astrin demonstrated that the absence of astrin resulted 

in a chromosome alignment defect. Once chromosome alignment was achieved, 

chromosomes were lost again from this structure. Thus depletion of astrin leads to an 

arrest in a metaphase-like state characterized by increasing loss of chromosomes and a 

persistent activation of the SAC. Taken together, these data indicate that astrin is required 

for the maintenance of chromosomes in a fully aligned metaphase plate. Our results 

concerning astrin’s localization to the KT demonstrated that astrin’s association with the 

outer KT requires intact KT-MT attachments. Thus it is plausible that after being 

recruited to KTs astrin is involved in the stabilization and maintenance of attachments. 

Furthermore, we found that depleting astrin by siRNA resulted in many 

unattached KTs and fewer stable KT-MTs than in control cells. Moreover, in cells 

depleted of astrin CENP-E, its interaction partner CENP-F and Plk1, which are all 

involved in stabilization of MT-KT interactions and chromosome congression (Chan et 

al., 1998; Elowe et al., 2007; Kapoor et al., 2006; Yen et al., 1991), were lost from KTs 

(Figure 21). This, in combination with the lack of astrin itself, may cause unstable MT-

KT interactions, chromosome congression defects and a persistent activation of the SAC. 

Since bi-dependency analysis and IPs suggest that Plk1 and CENP-E are astrin 

interactors, it is tempting to speculate that astrin is part of a complex with other proteins 

of the outer KT, such as CENP-E and possibly also CENP-F and other so far not 

identified proteins. This complex could be regulated by phosphorylation by Cdk1 and 

Plk1 (which binds astrin and might phosphorylate other binding partners) and by 

dephosphorylation of Cdc14A and possibly other mitotic phosphatases, such as PP2A or 

PP1. This complex could be involved in stabilization of MT-KT interactions and 

chromosome congression (see model Figure 43).  

5. Astrin as a potential regulator of the metaphase to anaphase 

transition 

Live cell imaging studies of cells depleted of astrin demonstrated that in the absence of 

astrin early mitotic events, besides chromosome congression, were not impaired (Figure 

34 and Figure 40). Cells depleted of astrin arrested in a metaphase like state and did not 
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exit mitosis. Interestingly, astrin associated with KTs of only those sister chromatids that 

were aligned at the metaphase plate of the bipolar spindle and under tension. Hence, in 

metaphase, when all KTs are attached to the bipolar spindle and under tension, they were 

also positive for astrin. At this timepoint the spindle assembly checkpoint is satisfied and 

cells enter into anaphase. Thus it is tempting to speculate that astrin is an important signal 

for the metaphase to anaphase transition. The metaphase arrest together with the 

involvement of astrin in the regulation of separase, which becomes active as soon as the 

spindle assembly checkpoint is satisfied and cells enter into anaphase, further supports 

the idea that astrin is involved in the regulation of the metaphase to anaphase transition. 

However, astrin is clearly not a component of the spindle assembly checkpoint pathway, 

since the depletion of astrin results in an activation of the spindle assembly checkpoint. In 

contrast to components of the spindle assembly checkpoint (e.g. BubR1 and Mad2), 

which localize to unattached KTs and are released upon bipolar attachment (Cleveland et 

al., 2003; Maiato et al., 2004), astrin behaves just the opposite. On the basis of these 

results, one could speculate that astrin senses bipolar attachment of sister chromatids. 

Thus, like CENP-E or together with CENP-E astrin could be involved in the coupling of 

MT attachments and the SAC (Yao et al., 2000) (see model Figure 43).  
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Figure 43. Illustration of astrin’s localization during mitosis. Astrin associates with the spindle pole upon 
spindle formation and localizes only to KTs that are attached to the bipolar spindle and under tension. Our data 
suggest that astrin contributes to the regulation of the metaphase to anaphase transition. Moreover, astrin might be 
part of an outer KT complex together with CENP-E, CENP-F and other so far not identified proteins, which 
contributes to the stabilization of MT-KT interactions and to chromosome congression. Moreover, our data 
suggest that astrin contributes to the regulation of the metaphase to anaphase transition. 
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6. Astrin contributes to the tight regulation of separase activity 

The cleavage of sister chromatid cohesion by separase is subject to multiple layers of 

control, involving the regulation of the enzymatic activity of separase by cyclin B1 and 

securin, both targets of the spindle assembly checkpoint (Ciosk et al., 1998; Gorr et al., 

2005; Holland and Taylor, 2006; Waizenegger et al., 2002). This surveillance mechanism 

prevents premature chromosome segregation by delaying sister chromatid separation 

until all chromosomes have achieved attachment to the bipolar spindle (Musacchio and 

Salmon, 2007). The SAC targets Cdc20, the activatory subunit of the APC/C, an E3 

ubiquitin ligase, which polyubiquitinates securin, the inhibitory subunit of separase and 

cyclin B1, the activatory subunit of Cdk1, and thereby initiates their destruction by the 

26S proteasome (Peters, 2006). As soon as the SAC is satisfied the APC/C is activated 

and thereby separase inhibition by securin and cyclin B1 is released. Active separase 

cleaves sister chromatid cohesion, chromosomes segregate and cells exit mitosis. During 

exit from mitosis the activity of separase is also involved in centrioles disengagement, a 

mechanism, which license the centrosome duplication to one per cell cycle (Tsou and 

Stearns, 2006c).  

Our experiments demonstrated that cells depleted of astrin arrest in mitosis due to 

an activation of the SAC. In line with that, securin and cyclin B1 are stable and 

unattached KTs are positive for the checkpoint proteins BubR1 and Mad2. In contrast to 

expectation however, the loss of astrin leads to a premature activation of ca. 30% of 

separase, resulting in the loss of sister chromatid cohesion and centriole disengagement. 

Live cell imaging of histone H2B-GFP and CENP-A-YFP (Figure 34 and Figure 40) 

expressing cells showed that astrin depleted cells were bipolar in early stages of mitosis 

and reached prometaphase with unseparated sister chromatids to allow the formation of 

imperfect metaphase plate. In addition, the data also show that loss of sister chromatid 

cohesion and of centrosome engagement occur after the formation of an imperfect 

metaphase plate. Taken together, our observations clearly indicate that a subpopulation of 

separase can be activated even though the general mitotic arrest of the cells is maintained. 

It has been suggested that cells, which cannot satisfy the SAC and arrest in mitosis for 

prolonged periods of time escape mitosis (Rieder and Maiato, 2004). However, the 

mechanisms that lead to this escape are not known, but clearly must include Cdk1 
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inactivation. Cells depleted of astrin exhibit premature separase activity but the APC/C is 

still inhibited, since securin and cyclin B1 are stable (Figure 36).  

By comparing the effects of astrin depletion with the phenotype observed in consequence 

of prolonged mitotic arrest induced by either nocodazole treatment or depletion of CENP-

E, we demonstrated that astrin depleted cells display a unique phenotype that is not 

caused by an extended mitotic arrest. However, it is very unlikely that astrin acts directly 

as an inhibitor of separase, since separase was not detected in astrin IPs and subsequent 

mass spectrometry analysis. Moreover, only ca. 30% of separase was active in cells 

depleted of astrin; if astrin was a novel inhibitor of separase one would have expected a 

nearly complete activation of separase after loss of astrin. 

There are two possible scenarios, outlined below, to explain our findings. One model 

would evoke localized APC/C and separase activation in the absence of astrin, whereas 

the other model would posit a direct regulation of separase (or its regulators) by astrin. 

Model A: As mentioned previously, the activity of the APC/C, which depends on 

co-activators, such as Cdc20 and Cdh1, is essential for mitotic exit (Peters, 2006). 

APC/CCdc20 is already active during prophase, after the phosphorylation of some of its 

subunits by Cdk1 and Plk1 (Golan et al., 2002; Kraft et al., 2003; Kramer et al., 2000). Its 

ability to ubiquitinate securin and cyclin B1 is blocked by the SAC in a substrate specific 

manner. However, a few substrates, notably Nek2A or cyclin A, are destroyed in early 

mitosis in an APC/CCdc20 dependent manner (den Elzen and Pines, 2001; Geley et al., 

2001; Hames et al., 2001). Since Cdk1 phosphorylation of Cdh1 restrains its interaction 

with the APC, APC/CCdh1 does not become active until Cdk1 activity decreases due to 

APC/CCdc20 mediated destruction of cyclin B1 and phosphates are removed by protein 

phosphatases such as Cdc14 (Kramer et al., 2000; Visintin et al., 1998; Yamaguchi et al., 

2000; Zachariae et al., 1998). Recently it has been suggested that anaphase entry is also 

controlled by a balance in the ubiquitination of substrates by the APC/C on the one hand 

and the deubiquitination by UPS44 on the other hand (Stegmeier et al., 2007). However, 

it is still unclear how the balance between ubiquitination and deubiquitination is 

controlled and how this influences the transition from the inhibited to the active APC/C 

upon bipolar attachment. One possibility could be the phosphorylation dependent 

activation of USP44 by mitotic kinases, thus its deubiquitination activity would be high 
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during mitosis and low when cells exit mitosis (Stegmeier et al., 2007). In addition it has 

been suggested that the APC/C and the degradation of its substrates is regulated spatially, 

since it has been shown that the APC/C is recruited to unattached KTs (Acquaviva et al., 

2004; Wakefield et al., 2000). Since we demonstrated that astrin localizes to various 

structures during mitosis and interacts with the mitotic kinase Plk1 and the mitotic 

phosphatase hCdc14A, it is tempting to speculate that the loss of astrin might affect the 

phosphorylation state and/or the localization of the APC/C. This may result in the 

activation of a pool of separase.  

Model B: Separase activity is controlled by different mechanisms. As mentioned 

before, it has been shown that securin inhibits separase activity (Waizenegger et al., 

2002). Due to the fact that securin knockout mice only showed slight phenotypes (Mei et 

al., 2001), it was presumed that additional mechanisms exist. One of them is the binding 

of cyclin B1 upon previous phosphorylation of separase by Cdk1/cyclin B1 (Ciosk et al., 

1998; Gorr et al., 2005; Holland and Taylor, 2006). Moreover, it has been shown that the 

effects of non-degradable cyclin B1 are dose-dependent (Hagting et al., 2002; Stemmann 

et al., 2001; Wolf et al., 2006). It has been demonstrated that sister chromatid separation 

is only inhibited by high expression levels of non-degradable cyclin B1, whereas levels, 

which are approximately as high as endogenous cyclin B1, result in a anaphase-like arrest 

and sister chromatid separation (Wolf et al., 2006). In the latter case endogenous securin 

and cyclin B1 are degraded, which indicates that the APC/C is active. In contrast, Chang 

and co-workers suggested that already a low level of non-degradable cyclin B1 blocks 

anaphase onset (Chang et al., 2003). These controversial data demonstrate that the exact 

function of cyclin B1 in maintaining sister chromatid cohesion is still controversial 

(Chang et al., 2003; Wolf et al., 2006). Our results suggest that additional layers of 

separase control exist. 

Recently it has been shown that besides Cdk1 phosphorylation also binding of the 

phosphatase PP2A is involved in the regulation of separase activity (Holland et al., 2007; 

Holland and Taylor, 2006). Moreover it has been proposed that PP2A is involved in the 

regulation of securin degradation, which is triggered by phosphorylation  (Gil-Bernabe et 

al., 2006). Since it has been indicated that securin and separase are subject to 

phosphorylation dependent control, it is possible that the loss of astrin, which interacts 
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with mitotic kinases and at least one phosphatase, results in an impaired balance between 

phosphorylation and dephosphorylation. Initial studies concerning the contribution of 

hCdc14A to the astrin RNAi phenotype, revealed that cells depleted of hCdc14A arrest in 

mitosis, display bipolar spindles, uncongressed chromosomes and premature loss of sister 

chromatid cohesion (Ulrike Grüneberg, unpublished data). Hence our data indicate that 

astrin and hCdc14A interact and there are some similarities between the astrin and 

hCdc14 RNAi phenotype. Thus it might be that the phenotype observed upon astrin 

depletion is linked to the one observed upon loss of hCdc14A phosphatase activity. 

However, the function of hCdc14A during mitosis is still unclear. Thus additional studies 

are required to reveal hCdc14A’s function during mitosis and its possible contribution to 

separase activity control. 

To understand the mechanisms of astrin’s role in the regulation of separase 

activity, two aspects will be important to explore. In the first place, additional 

mechanisms of separase activity regulation have to be revealed. Secondly, it will be 

essential to elucidate the functional relationship between astrin and hCdc14A on the one 

hand and to identify other astrin interacting proteins, which may contribute to the 

regulation of separase activity, on the other hand.  
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MATERIAL AND METHODS 

1. Cloning procedures 

All cloning procedures were carried out according to standard techniques as described in 

Molecular Cloning, A Laboratory Manual, 2nd edition, Sambrook, J., Fritsch, E.F., 

Maniatis, T., Cold Spring Harbor Laboratory Press, 1989 and Current Protocols in 

Molecular Biology, Wiley, 1999. Restriction enzyme reactions were performed as 

specified by the suppliers (NEB, Ipswich, MA) and ligation reactions were done using T4 

DNA Ligase (Roche Diagnostics, Indianapolis, IN) or a Rapid Ligation Kit (Roche). 

Extraction of DNA from agarose gels and preparation of plasmid DNA were performed 

using kits from Qiagen (Hilden, Germany) according to the manufacturer’s instructions. 

For PCR reactions, Pfu DNA polymerase was used as recommended by the manufacturer 

(Stratagene) and reactions were carried out in a RoboCycler Gradient 96 (Stratagene, La 

Jolla, CA). PCR products were checked by sequencing at Medigenomix (Martinsried, 

Germany) or by an in-house sequencing service. 

 Astrin was amplified by Dr. Ulrike Grüneberg from a human testis cDNA 

(CLONTECH Laboratories, Inc.) library using a two-round nested PCR strategy. For the 

first round, the following primer pair was used: 5’-GAGACGTGATAGGCCT 

GCCTTCTGGTTGAAG-3’ (forward) and 5’-GAGGTGAAGCAGATTCTGGCTTTCA 

GTTTC-3’ (reverse). In the second round XhoI and KpnI sites on either sites of the 

coding sequence were introduced by using the primers 5’-GAGGTGAAGCAGA TTC 

TGGCTTTCAGTTTC-3’ (forward, XhoI) and 5’-GGCCTCGAGTTAGCTCAGAAA 

TTCCAGCAATCCCTGT AG-3’ (reverse, KpnI). The resulting PCR product was TA-

cloned into pCRII-TOPO (Invitrogen, Carlsbad, CA). This construct (UG59) was 

sequenced and found to match the published astrin sequence except for 7 amino acid 

changes. These could all be found in the EST database. The astrin-TOPO construct was 

the source for further PCR-mediated subcloning of astrin or astrin fragments (for further 

constructs see Table 1). 

Astrin full-length was cloned in-frame by PCR in either pEGFP-C3 (Clontech 

Mountain View, CA) by using primers 5’-GGCCTCGAGATGTGGCGAGTGAAAAAA 
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CTGAGCCTCAGC-3’ and 5’-GGCCTCGAGTTAGCTCAGAAA TTCCAGCAATCCC 

TGTAG-3’. Astrin was excised from UG59 with KpnI and XhoI and cloned into 

pcDNA3.1 (+) (KpnI/XhoI) or in a pcDNA3.1 (KpnI/XhoI) vector encoding an N-

terminal 3xMyc-tag (Invitrogen). 

The RNAi resistant Myc-tagged astrin constructs in the pcDNA3.1.-3xMycA 

vector were generated by introducing six silent point mutations in the RNAi targeting 

sequence using primers 5’-GAGTCGGTCCCGACAgttaACtGAaAAACTCACAGTC 

AAG-3’ and 5’-CTTGACTGTGAGTTTtTCaGTtaacTGTCGGGACCGACTC-3’. The 

Myc-tagged astrin (SS65/66AA) mutants, the Myc-tagged astrin (ST110/111AA) mutants 

and the Myc-tagged astrin (ST936/937AA) mutants were made by site-directed 

mutagenesis using the following primers, respectively: 5’-GAAGGCAGCAACAACG 

CAGCTCCAGTGGATTTTGTA-3’ and 5’-TACAAAATCCACTGGAGCTGCGTTGT 

TGCTGCCTTC-3’, 5’-ATTCCCCAAATTAGCGCTGCTCCTAAAACGTCTGAG-3’ 

and 5’-CTCAGACGTTTTAGGAGCAGCGCTAATTTGGGGAAT-3’, 5’-GATGAAG 

AGCCAGAAGCAGCTCCTGTGCCCTTGCTT-3’ and 5’-AAGCAAGGGCACAGGA 

GCTGCTTCTGGCTCTTCATC-3’. The astrin fullength constructs were cloned in-frame 

by PCR in the pFBT9 vector, a version of pGBT9 modified to encode kanamycin 

resistance (Clontech Laboratories, Inc.; a kind gift from F. Barr) by using the primers 5’-

GGCCTCGAGGGATGTGGCGAGTGAAAAAACTGAGCCTCAGC-3’ and 5’-GGCC 

TCGAGTTAGCTCAGAAATTCCAGCAATCCCTGTAG-3’. The C-terminal astrin 

fragment spanning residues 482-1193 was cloned in-frame by PCR into either pFBT9 

(Clontech) or pACT2 (Clontech) by using the primers 5’-GCCCTCGAGGGATGAA 

TAAACTTCAGCATCTTAAGGAG -3’ and 5’-GCCCTCGAGTTAGCTCAGAAAT 

TCCAGCAATCCCT-3’. The C-terminal astrin fragment spanning residues 482-1193 

was cloned in-frame by PCR either into pEGFP-C2 (Clontech) or pcDNA3.1-3xMycA 

(Invitrogen) by using either the primers 5’-GCCCTCGAGGATGAAACTTCAGCA 

TCTTAAGGAGAGC-3’ and 5’-GCCCTCGAGTTAGCTCAGAAATTCCAGCAAT 

CCCT-3’ or the primers  5’-GCCGGTACCTATGAAACTTCAGCATCTTAAGGAG 

AGC-3’ and 5’-GGCCTCGAGTTAGCTCAGAAATTCCAGCAATCCC-3’. The N-

terminal astrin fragment spanning residues 1-481 was cloned in-frame by PCR either into 

pEGFP-C2 (Clontech), pcDNA3.1-3xMycA (Invitrogen), pFBT9 (Clontech) or pACT2 
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(Clontech) by using the primers 5’-GCCGGATCCTTATGTGGCGAGTGA 

AAAAACTGAGCC-3’ and 5’-GGCCTCGAGTTAAGTTATCCCACTGTGAGATGTG 

TC-3’. For gene-fusion with hexa-histidine tag (His-tag) or MBP-tag this N-terminal 

astrin was cloned into the pQE vector (QIAGEN) or pMaLtFN (modified from pMAL-

c2x, NEB). 

2. Expression and purification of recombinant proteins 

For production of recombinant His-tagged astrin (fullength) the plasmids UG61 (a kind 

gift from Ulrike Grüneberg) were transformed into E. coli (strain JM109-RIL), grown 

over night at 37°C under ampicillin selection and diluted 1:5 with fresh medium the next 

morning. The culture was grown until late log-phase (OD 600 of 0.5-08), when 

expression of the recombinant protein was induced with 0.1 mM IPTG at 18°C over 

night. Cells were pelleted the next morning by centrifugation and lysed in buffer [20 mM 

TrisHCl (pH 7.5), 300 mM NaCl, 1.5% N-laurosylsarcosin, 1% Triton X-100, 5 mM 

Imidazole, protease inhibitor tablets (-EDTA) (Roche), 1 mM Pefabloc, 0.5 mg/ml 

lysozyme (in 50 mM Tris-Cl, pH 8.0) and 0.1 mg/ml DNAse1] and incubated with Ni-

NTA agarose (Qiagen) for 90 min at 4°C on a roller to allow binding of the expressed 

protein. After several washing steps with lysis buffer, wash buffer 1 [20 mM TrisHCl (pH 

7.5), 300 mM NaCl, 0.5% Triton X-100, 20 mM Imidazole] and wash buffer 2 [20mM 

TrisHCl (pH 7.5), 300 mM NaCl, 0.1% TritonX-100, 20 mM Imidazole]. His-tagged 

astrin was eluted by incubating beads in elution buffer (20 mM Tris-HCl (pH 7.5), 300 

mM NaCl and 200 mM Imidazole). Purified astrin was dialyzed over night at 4°C with 

20 mM TrisHCl (pH 7.5) and 300 mM NaCl and then frozen as aliquots at -80°C. 

3. Antibody production 

In order to produce astrin specific antibodies, the astrin fragment spanning residues 1-481 

cloned in pQE was expressed as a poly-histidine-tagged fusion protein in E. coli (strain 

JM109-RIL) and purified over a Ni2+-column under denaturing conditions. Following 

further purification on a preparative 15 % SDS-PAGE gel. 200-250 µg of purified antigen 

was injected every four weeks, to a total of six injections, with Freund’s adjuvant into 

New Zealand white rabbits (Charles River Laboratories, Romans, France) or into rats (in-
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house animal facility, MPI of Biochemistry, Martinsried, Germany). The obtained sera 

from the rabbits were affinity purified using Activated Immunoaffinity Support (Biorad), 

which was coated with the respective MBP-tagged antigen according to the manufactors 

protocol. The obtained sera of the rats were used without purification. 

In order to produce a phosphospecific astrin antibody against the Threonine 110 

site, the following peptide H-CQISST(PO3H2)PKTS-OH was synthesized (Core facility, 

Martinsried, Germany), coupled to KLH (Pierce) according to the manufactors protocol. 

The coupling efficiency was tested by using Ellman’s reagent. The immunization was 

performed as described above. The obtained sera were purified in two steps; firstly total 

IgG was isolated by using Protein A Sepharose (GE Healthcare, Uppsala, Sweden), 

secondly the isolated total IgG was affinity purified by using Sulfo-Link coupling gel 

(Pierce) according to the manufactors protocol. 

4. Cell culture, synchronization and drug treatment 

HeLa S3, HeLa H2B-GFP, HeLa CENP-A-YFP and HEK293T cells were cultured at 

37°C in a 5% CO2 atmosphere in Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 10% heat-inactivated fetal calf serum and penicillin-streptomycin 

(100 IU/ml and 100 µg/ml, respectively, Gibco-BRL, Karlsruhe, Germany). For 

synchronization in G1/S phase HeLa S3 cells were treated for 14 h with 1.6 µg/ml 

aphidicolin (Sigma, A-6781). These cells were released for 12 h in fresh prewarmed 

medium, treated again with 1.6 µg/ml aphidicolin for 14 h and collected. For G2/M 

synchronization HeLa S3 cells were treated with aphidicolin as described above, released 

in prewarmed medium for 6 h, then 100 ng/ml nocodazole was added and culturing was 

continued for additional 14 h. Mitotic cells were collected by mitotic shake off. To 

prepare HeLa S3 cells for nocodazole release experiment, cells were treated as above. 

The cells were washed twice with PBS and incubated in fresh prewarmed medium after 

mitotic shake off. Cell samples were taken after various time points. In order to block 

HeLa S3 cells efficiently in mitosis without subsequent release final concentrations of 10 

µM taxol (MT stabilization drug), 150 µM monastrol (Eg5 inhibitor) and 25 µM 

noscapine were added to the medium for 14 h, respectively. In order to block Aurora B or 

Plk1 kinase activity or proteasomal degradation, cells were incubated for 1 h with 10 µM 
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ZM44743 (Aurora-B kinase inhibitor), for various time intervals with TAL (Plk1 

inhibitor), or for 3 h with MG132 (Proteasome inhibitor).  

5. Transient transfection and siRNA-mediated protein depletion 

Plasmid transfections in HeLa S3 cells and transfection of HEK293T cells were 

performed using Fugene6 reagent (Roche Diagnostics, Mannheim, Germany) or TransIT-

LT1 transfection reagent (Mirus Bio, Madison,Wi) according to the manufacturers’ 

protocol. SiRNA duplexes were transfected using Oligofectamine (Invitrogen) according 

to the manufacturer’s protocol. The sequences of the siRNA duplexes (Qiagen) used in 

this study are listed in  

Table 2. For rescue experiments the siRNA-resistant Myc-astrin plasmid (or the empty 

Myc-vector as a control) was transfected 24 h prior to the transfection of siRNA duplexes 

targeting astrin. The cells were fixed and analyzed 42 h later. 

6. Microinjection 

Purified anti-N-terminal and anti-C-terminal astrin antibody or control rabbit IgG was 

concentrated to 2 mg/ml using Ultrafree-0.5 centrifugal filters (Amicon Bioseparation, 

Millipore, Schwalbach, Germany), followed by centrifugation at 55,000 rpm for 30 

minutes at 4°C in a TLA-55 rotor and an Optima ultracentrifuge (Beckman, Krefeld, 

Germany). For microinjection experiments HeLa S3 cells were seeded onto coverslips, 

arrested in G1/S phase for 14 h and then released into fresh prewarmed medium. After 2 

h of release antibodies were injected into the cell cytoplasm using 0.5µm Femtotips glass 

needles with a micromanipulator 5171 coupled to a FemtoJet/InjectMan microinjection 

apparatus (Eppendorf, Hamburg, Germany). 24 h after microinjection cells were 

analyzed. 

7. Cold treatment and K-fiber analysis 

Cold treatment was performed in order to depolymerize preferentially unattached MTs in 

mitotic HeLa S3 cells. Medium was replaced by ice-cold medium, followed by placing 

the dishes on ice for 30 min before fixation. For the analysis of KT fibers cells were 
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washed twice in PBS and permeabilized for 90 seconds with PBS plus 0.1% Triton X-

100 prior to fixation. 

8. Mitotic chromosome spreads 

HeLa S3 cells were treated with the respective siRNA oligo for the time determined for 

depletion of the targeted protein. Mitotic cells were collected by mitotic shake off, 

centrifuged for 4 min at 1000 rpm and resuspended in 40% DMEM culture medium 

(diluted with deionised water). The cells were allowed to swell at RT for 5 min before 

spinning and resuspending them in fixation solution (3:1 methanol: acetic acid). The 

fixed cells were incubated at 4°C for at least 20 min, washed twice with the fixation 

solution and diluted with fixation solution to 1x106 cells/ml. 10 µl of each cell solution 

were dropped on an ice cold cover slip, which had been moistened before by breathing on 

to it. After drying of the cover slip on a wet Kleenex tissue over a 60°C heating block, 

spreads were stained for 5 min with 0.4 µg/ml DAPI and mounted. In order to perform 

chromosome spreads for immunostaining, mitotic cells were collected by shaking-off, 

centrifuged for 4 min at 1000 rpm and washed twice with 1x PBS. The cells were 

incubated in a hypotonic buffer [30 mM Tris (pH 8.0), 50 mM Sucrose, 17 mM Sodium 

citrate] for 8 minutes in order to swell, before spinning and resuspending them in 100 

mM sucrose [in 10 mM TrisHCl (pH 8.0)] to a final concentration of 1x106 cells/ml. 10 

µl of the cell solution was dropped on a coverslips, which had been dipped in fixative 

solution [1% formaldehyde, 5mM Sodium borate (pH 9.2), 0.15% Triton X-100]. The 

coverslips were firstly dried in a humid chamber for 15 min at RT and secondly dried on 

a wet Kleenex tissue over a 37°C heating block, washed twice with PBS and processed 

for immunofluorescence microscopy. 

9. Microtubule co-sedimentation assays 

For the preparation of cell extracts suitable for MT co-sedimentation assays, HeLa S3 

cells were arrested in metaphase or interphase by synchronization. Cells were lysed in 

ice-cold BRB80 (80 mM K Pipes, 1 mM MgCl2, 1mM EGTA (pH 6.8) with 0.1% Triton 

X-100 (Mishima et al., 2002). The lysates were clarified by centrifugation at 10,000 x g 

for 15 min. The resulting supernatant was centrifuged at 25,000 x g for 20 min at 4°C in a 
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TLA-55 rotor and an Optima ultracentrifuge (Beckman, Krefeld, Germany). The lysates 

were frozen at -80°C. Prior to the MT co-sedimentation assay metaphase extracts, 

interphase extracts and bacterially expressed proteins were centrifuged at 100,000 g for 1 

h at 4°C. The supernatants were incubated with taxol stabilized MTs (5mM final 

concentration) for 15 minutes at 25° C. The protein solution was centrifuged through a 

glycerol cushion at 55,000 rpm for 20 min at 25° C in a TLA-55 rotor and an Optima 

ultracentrifuge (Beckman, Krefeld, Germany). The original protein samples, the 

supernatant and the pellet fraction were resuspended with sample buffer and analyzed by 

immunoblotting. 

10. Image acquisition and time-lapse microscopy 

Cells were grown on coverslips and either fixed in paraformaldehyde at RT for 20 min 

followed by 10 min treatment with Quenching solution (50 mM NH4Cl in PBS) and 

permeabilisation with 0.1 % Triton X-100, or in –20°C methanol for 4 min at 4°C or in 

PTEMF buffer (20 mM PIPES, pH 6.8, 4 % formaldehyde, 0.2 % Triton X-100, 10 mM 

EGTA, 1 mM MgCl2) for 12 min at RT. After PTEMF fixation cells were incubated for 

30 min at RT in blocking solution (PBS, 2% BSA, 0.1% Triton X-100). All antibody 

incubations were carried out for 1 h at RT in a humidified chamber, followed by three 

washes in PBS. Primary antibodies used in this study are listed in Table 3 with the 

respective dilutions for immunofluorescence indicated. Secondary antibodies were with 

Alexa-Fluor-488-(green) and Alexa-Fluor-555-(red) conjugated, donkey anti-mouse, anti-

rabbit or anti-sheep IgGs, respectively, Alexa-Fluor-647-(far red) conjugated anti-rabbit 

IgGs (1:1000, Molecular Probes, Eugene, OR) or Cy2- and Cy3-conjugated donkey anti-

human IgGs (1:1000, Jackson Immunoreasearch, West Grove, PA). DNA was stained 

with 2 µg/ml DAPI. Cover slips were mounted in phenylenediamine in 90% glycerol. IF 

microscopy was performed using a Zeiss Axioplan II microscope (Zeiss, Jena, Germany) 

with Apochromat 40x and 63x oil immersion objectives, respectively. Photographs were 

taken using a Micromax CCD camera (model CCD-1300-Y, Princeton Instruments, 

Trenton, NJ) and Metaview software (Visitron Systems GmbH, Puchheim, Germany). 

For high-resolution images and for time-lapse microscopy of HeLa H2B-GFP a 

Deltavision microscope on an Olympus IX71 (Deltavision; Applied Precision, Issaquah, 
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WA), equipped with Plan Apo 40x/0.95 and Plan Apo 60x/1.4 and Uplan Apo 100x/1.35 

oil immersion objectives (Olympus) and a photometrics CoolSnap HQ camera 

(Photometrics), was used for collecting 0,15 µm-distanced optical sections in the z-axis. 

HeLa CENP-A-YFP cells were filmed on the same system at intervals of 4 mins, imaging 

7 focal planes 2 µm apart, with an exposure of 0.8 sec, 100% ND. Images at single focal 

planes were processed with a deconvolution algorithm, and optical sections were 

projected into one picture using Softworx software (Applied Precision). Images were 

processed using Adobe Photoshop 7.0 and then sized and placed in figures using Adobe 

Illustrator CS (Adobe Systems, San Jose, CA). 

11. Cell extracts and immunoprecipitation  

In order to prepare whole cell lysate HeLa S3 cells of one 2 cm plate were harvested, 

washed three times in ice-cold PBS and lysed in SDS sample buffer. For mitotic lysates, 

mitotic HeLa S3 cells were collected by shake off, washed three times in ice-cold PBS 

and lysed in Lysis buffer [20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 40 mM β-

glycerolphosphate, 10 mM NaF, 0,3 mM Na-vanadate, 1mM EDTA, 1% [vol/vol] 

IGEPAL, 0.1% [vol/vol] deoxycholate, 2mM Pefabloc, 100 nM okadaic acid and 

protease inhibitor cocktail without EDTA (Roche Diagnostics)]. For the analysis of 

separase activity N-ethyl maleimide (2.5 mM final concentration, Sigma) was added to 

the lysis buffer. Protein concentrations in the cleared lysates were determined using the 

Dc protein assay (Bio-Rad Laboratories, Hercules, CA). 

Endogenous astrin was IPed from HeLa S3 cells on 15-cm-diameter dishes 

presynchronized with aphidicolin and arrested for 14 h with noscapine. Cells were 

obtained by mitotic shake off, washed three times with ice cold PBS and lysed in lysis 

buffer. The cleared lysates were incubated with protein G-Sepharose beads (Pierce 

Biotechnology, Rockford, IL) and affinity purified antibody or the corresponding IgGs as 

control for 2h at 4°C on a rotating wheel. The immune-complexes bound to the beads 

were washed twice with IP buffer, once with wash buffer (20mM Tris-HCl, pH 7.5, 150 

mM NaCl, 40 mM β-glycerolphosphate, 10mM NaF, 0.3 mM Na-vanadate, 1mM EDTA 

and 0.1% [vol/vol] IGEPAL) and then boiled in SDS sample buffer. For pull-down 

experiments HEK293T cells on 15 cm diameter dishes were transfected with 8 µg of the 
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required plasmid DNA and 24 µl Fugene-6 (Roche Diagnostics) according to the 

manufacture’s instructions. After 40 h, cells were harvested, washed three times in ice-

cold PBS and lysed in IP buffer (20mM Tris-HCl, pH 7.5, 150 NaCl, 1% [vol/vol] 

IGEPAL, 2mM Pefabloc, and protease inhibitor cocktail without EDTA). The lysates 

were incubated with protein G-Sepharose beads (Pierce) and tagged, transiently 

expressed proteins were precipitated using either antibodies against GFP or Myc. Beads 

were washed once with IP buffer and twice with IP buffer containing 0.1% [vol/vol] 

IGEPAL and then boiled in SDS sample buffer. 

12. Immunoblotting and Far Western analysis 

For Western blot analysis equal protein amounts of each sample were loaded on SDS-

PAGE gels and separated. The proteins were transferred to nitrocellulose membranes 

(Schleicher & Schuell, Keene, NH) using a Hoefer semi-dry blotting apparatus 

(Amersham Biosciences, Little Chalfont, UK) and completed transfer was assayed by 

staining membrane bound proteins with Ponceau-red. For Western blot analysis 

membranes were incubated for 1 h at RT in blocking buffer (5% skimmed-milk powder 

in PBS, 0.1% Tween-20), probed with primary antibodies (name and dilution listed in 

Table 3) in blocking buffer for 1 h at RT or over night at 4°C or and detected by HRP-

conjugated goat anti-mouse and anti-rabbit (1:10000, Pierce Biotechnology, Rockford, 

IL) and donkey anti-sheep IgGs (1:10000, Jackson Immunoresearch). Bound antibodies 

were detected by ECL (Pierce). Farwestern blots were performed in TBS-T (50 mM Tris-

HCl, pH 7.4, 137 mM NaCl, 0.1% Tween 20) supplemented with 5% skim-milk powder. 

The blots were probed with 1µg/ml GST-PBD for 6 h at 4°C. Bound GST-PBD was 

detected using affinity-purified rabbit anti-GST antibody.  

13. In vitro kinase assay 

For in vitro kinase assays, MBP-tagged and His-tagged proteins were incubated with 

Cdk1/cyclin B1 (Upstate, Charlottesville, VA) in BRB80 buffer (80 mM Pipes, pH 6.8, 1 

mM MgCl2, 1 mM EGTA) with 10µM DTT. Kinase reactions were carried out at 30°C 

for 30 min in this buffer supplemented with 10 µM ATP and 2 µCi [γ-32P] ATP 

(Amersham Corp.). Reactions were stopped by the addition of SDS sample buffer and 
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heating at 95°C for 5 min. Protein samples were separated by SDS–PAGE followed by 

Coomassie Blue staining. The gels were dried on filter paper and 32P incorporation was 

visualized by autoradiography. 

14. Phosphatase assay 

For the phosphatase assays either cell extracts or IP was performed from prometaphase 

arrested cells (as described above). The IPed proteins coupled to protein G-Sepharose 

(GE Healthcare) were washed twice with Lysis buffer (see chapter 11) and one time with 

phosphatase buffer (Roche Diagnostics). The beads were then resuspended in 1x 

phosphatase buffer, either treated with 20 U Alkaline Phosphatase (Roche Diagnostics), 

or recombinant hCdc14A (wt or PD) (a kind gift from Ulrike Grüneberg) or left untreated 

for 30 min at 30°C. To obtain cell extracts, prometaphase cells were lysed with Lysis 

buffer (see chapter 11) either in the presence or in the absence of phosphatase inhibitors 

for 15 minutes on ice, pelleted and the supernatants of the lysates were treated with Calf 

Intestinal Phosphatase (CIP, 1:50 final concentration in lysate, Roche) or left untreated 

for 1 h at 30°C. The phosphatase reaction was stopped by addition of sample buffer 

followed by boiling. Equal protein amounts were loaded and separated on a SDS-PAGE 

gel followed by Western blot analysis. 

15. In vitro coupled transcription translation 

Proteins were produced by in vitro coupled transcription translation (IVT) in the presence 

of 35S-methionine using the TNT T7 Quick Coupled Transcription/Translation System 

(Promega, Madison, WI).  

16. Yeast-two hybrid analysis 

Different astrin fragments were cloned in frame into the two-hybrid prey vector pACT2 

(Clontech Laboratories, Inc.) or the bait vector pFBT9 (a version of pGBT9 modified to 

encode kanamycin resistance; Clontech Laboratories, Inc.; a kind gift from F. Barr). The 

pFBT9 constructs were cotransformed with the empty pAct2 plasmid into the yeast strain 

PJ69-4A. In order to test for direct interactions, they were first plated onto non-selective 

medium lacking leucine and tryptophane (SC-LW), and then streaked out onto both non-
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selective (SC-LW) and selective medium lacking leucine, tryptophane, histidine and 

adenine (QDO). Different pFBT9 and pACT2 constructs were used for a direct yeast-two 

hybrid analysis, by co-transfecting one pFBT9 construct with one pACT2 construct and 

tested for interaction as described above. 

17. Chemicals and growth media 

All chemicals were bought from Fluka, Sigma Aldrich Chemical Company (Buchs, 

Switzerland), Merck (Darmstadt, Germany) or Roth (Karlsruhe, Germany), unless 

otherwise stated. Components of growth media for E.coli or yeast were from Difco 

Laboratories or Merck.  
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APPENDIX 

1. Table 1: Plasmids 

List of plasmids: Several plasmids used were generated by Ulrike Grüneberg (UG). 

Plasmid Gene Insert Vector Tag 

KE3 Astrin Full-length; wt pEGFP-C3 GFP 

KE6 Astrin Aa 1-481; wt pMaLtFN GST 

KE7 Astrin Aa 1-481; wt pQE-32 MBP 

KE8 Astrin Aa 1-481; wt pEGFP-C2 GFP 

KE9 Astrin Aa 1-481; wt pcDNA3.1-3xMycA Myc 

KE10 Astrin Aa 1-481; wt pFBT9 BD 

KE11 Astrin Full-length; wt pcDNA3.1 (+)  

KE14 Astrin Aa 482-1193; wt pEGFP-C2 GFP 

KE15 Astrin Aa 482-1193; wt pcDNA3.1-3xMycA Myc 

KE23 Astrin Full-length; wt pFBT9 BD 

KE25 Astrin Aa 482-1193; wt pFBT9 BD 

KE36 Astrin Aa 1014-1193; wt pFBT9 BD 

KE41 Astrin Aa 1-481; wt pAct2 AD 

KE43 Astrin Aa 482-1193; wt pAct2 AD 

KE52 Astrin Full-length; RNAi mutant pcDNA3.1-3xMycA Myc 

KE53 Astrin Full-length; SS65/66AA pcDNA3.1-3xMycA Myc 

KE54 Astrin Full-length; ST110/111AA pcDNA3.1-3xMycA Myc 

KE55 Astrin Full-length; SS65/66AA-
ST110/111AAA 

pcDNA3.1-3xMycA Myc 

KE56 Astrin Full-length; ST936/937AA pcDNA3.1-3xMycA Myc 

UG19 Cdc14A Full-length, wt pFBT9 BD 

UG30 Cdc14B Full-length, wt pACT2 AD 



 91

UG31 Cdc14B Full-length, wt pFBT9 BD 

UG32 Cdc14A Full-length, wt pACT2 AD 

UG59 Astrin Full-length; wt pCRII-TOPO  

UG61 Astrin Full-length; wt pQE81L His 

UG60 Astrin Full-length; wt pCDNA3.1.-3xMycA Myc 

UG62 Astrin  Aa1014-1193 pCRII-TOPO  

 

2. Table 2: SiRNA oligos 

List of siRNA oligos used in this study, together with the respective references of the 
published sequences. 
 

Targeted gene siRNA oligo sequence Reference 

Aurora B 5’-GGTGATGGAGAATAGCAGT-3’ (Honda et al., 2003) 

Astrin 5’-TCCCGACAACTCACAGAGAAA-3’  

Bub1 5’- TAGGCTAATTGTACTGCTC-3’  

Cdc14 5’- AGGGACATTGATAGCCTGTTA-3’  

CENP-E 5’-ACTCTTACTGCTCTCCAGTTT-3’ (Stucke et al., 2004) 

CENP-F 5’-AAGAGATGCTAATAGCAGT-3’ (Holt et al., 2005) 

Eg5 5’-CTGGATCGTAAGAAGGCAG-3’  

Gl2 5’-CGTACGCGGAATACTTCGA-3’ (Elbashir et al., 2001) 

Hec1 5’-GTTCAAAAGCTGGATGATC-3’ (Stucke et al., 2004) 

Kif18 
 
5’-AACCAACAACAGTGCCATAAA-3’ (Mayr et al., 2007) 

Mad2 5’-GAGTCGGGACCACAGTTT-3’ (Stucke et al., 2004) 

MCAK 5’-GCTATCTGCTGGCTCTAAA-3’  

Plk1 5’-CGAGCTGCTTAATGACGAG-3’ (Kraft et al., 2003) 

Separase 5’-AAGCTTGTGATGCCATCCTG-3’  

Sgo1 5’-CAGTAGAACCTGCTCAGAA-3’ (McGuinness et al., 2005) 

TOGp 5’-TGTCTTACTGGCCTGGCTG-3’ (Holmfeldt et al., 2004)  
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3. Table 3: Antibodies 

List of antibodies used for IF or Western blot analysis in this study 

Antigen Species MW (kDa) Company Dilution IF Dilution WB 

Astrin Rabbit 134 In-house 1:1000 1:200 

Astrin Rat 134 In-house 1:1000  

Aurora-A Mouse 45 BD Biosciences 
Pharmingen 

1:1000  

Aurora-B Mouse 41 BD Transduction 
Laboratories 

1:500 1:250 

Bub1 Mouse 130 In-house 1:5  

BubR1 Mouse 120 In-house 1:10  

Cdc14A Rabbit 60 In-house 1:1000 1:1000 

Cdc14A Mouse 60 Santa Cruz  1:1000 

CENP-A Mouse 17 MBL 1:2500  

CENP-E Mouse 310 Abcam 1:200  

CENP-E Rabbit 310 Gift from T.Yen 1:1000 1:1000 

CENP-F Mouse 400 BD Transduction 
Laboratories 

1:1000  

Centrin Goat 20 In-house 1:250  

Cyclin B1 Mouse 60 Upstate 1:1000 1:1000 

CREST Human  Immunovision 1:5000  

EB1 Mouse 30 BD Transduction 
Laboratories 

1:200  

Eg5 Rabbit 97 In-house  1:1000 

Eg5 Mouse 97 BD Biosciences 
Pharmingen 

1:1000  

GST Rabbit  Gift from U. Grüneberg  1µg/ml 

Hec1 Mouse 75 Abcam 1:1000 1:1000 

His Mouse  In-house  undiluted 
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INCENP Rabbit 120 In-house 1:1000 1:500 

LaminA Mouse 75 In-house  1:10 

Mad2 Rabbit 27 Bethyl 1:1000  

MCAK Rabbit 75 In-house 1:2000  

Myc Rabbit  Gramsch Laboratories 1:2500 1:2500 

Myc/9E10 Mouse  In-house 1:10 1:10 

NuMA Mouse 200 Calbiochem 1:1000  

Pericentrin Rabbit 220 Abcam 1:1000  

Plk1 Mouse 66 In-house 1:10 1:10 

PP2A B56 Mouse 60 Zymed 1:1000  

PRC1 Rabbit 71 In-house  1:1000 

Securin Mouse 23 Abcam 1:500 1:500 

Separase Rabbit 220 Novus Biologicals  1:500 

Sgo1 Mouse 72 Abnova 1:1000  

TOGp Rabbit 212 Gift from Dr. X. Yan 1:500  

Tpx2 Mouse 100 Gift from O.Gruss 1:10  

α-Tubulin Mouse 55 Sigma 1:1000 1:1000 

γ-Tubulin Mouse 50 Sigma 1:1000  
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4. Abbreviations 

All units are abbreviated according to the International Unit System.  

AA: amino acid  

AD: activation domain 

ATP: adenosine 5`-triphosphate  

BD: binding domain 

BSA: bovine serum albumin 

DAPI: 4’,6-diamidino-2-phenylindole  

DTT: dithiothreitol  

ECL: enhanced chemiluminescence  

EDTA: ethylenedinitrilotetraacetic acid  

EGTA: ethylene-gycol-tetraacetic acid 

E.coli: Escherichia coli 

FCS: fetal calf serum  

GFP: green fluorescent protein  

GST: glutathione S-transferase  

HCl: hydrochloric acid  

IF: Immunofluorescence 

IgG: Immunglobulin G 

IP: immunoprecipitation  

IPTG: isopropyl-beta-D-thiogalactopyranoside 

kDa: kilo Dalton 

KD: kinase dead 

KT: KT 

MBP: maltose binding protein  

MS: mass spectrometry  

MW: molecular weight 

MT: microtubule 

OD: optical density 

PBD: Polo-box domain  

PBS: phosphate-buffered saline  
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PCR: polymerase chain reaction   

PIPES: 1,4-Piperazinediethanesulfonic acid  

PTEMF: Pipes, Triton X-100, EGTA, MgCl2, Formaldehyde  

RNA: ribonucleic acid  

RT: room temperature 

SAC: spindle assembly checkpoint  

SDS-PAGE: sodium dodecylsulfate polyacrylamid gelelectrophoresis  

siRNA: small interference ribonucleic acid  

T111: threonine at position 111  

WT: wild-type  
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