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Summary 
For many decades now, the image of the Archaeologist has changed from a simple 

treasure hunter to a discoverer and surveyor of complex cultural relics. The necessity 

of the long-term conservation and museum presentation for archaeological relics 

from less precious materials such as earth, wood, textiles etc is now a central topic in 

soil archaeology for the protection of the environment. 

The Protection of historic monuments, as an idea to conserve the cultural heritage of 

humankind, has since been spread across the whole world. In many parts of 

America, Africa and in Asia a significant part of the Architectural sites are built 

out of soil, therefore, the conservation of soil as a building material is 

becoming more and more important. The science of conservation has only 

made a few small steps to the systematic analyse to this preservation 

problem. 

With the Analyse of the deterioration of the soil structures in the terracotta 

museum of Lintong and the development and systematic examination of 

specific treatments, this work should contribute to solve this problem. 

 
Aims of this work: 

1. The analysis of the stamped soil in the museum of the Terracotta army. 

Material properties, their change in the hygroscopic and the super 

hygroscopic humid range. 

2. The examination and development of specific conservation treatments for the 

stabilisation of the surface of soil structures, in the halls of Lintong museum.  

The augmentation of resistance against mechanical and climatic stress in the 

hygroscopic humid environment is at the forefront. 

3. The examination of the influence of the conservation methods on the material 

properties of the original stamped soil of Lintong. Thereby an attempt is made 

to transfer the methods of stone conservation onto the building material soil. 

4. The validation of the possible stress requirements with a computer supported 

modelling of the moisture transport in the soil. 

5. The evaluation of the methods used, for their protection qualities against 

mechanical and climatic surface stress. Their compatibility to the untreated 

substrate, especially in consideration of the condition in the pit of the 

Terracotta army. 
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To 1  The soil of the stamped clay walls in the Terracotta army museum is, due to the 

grain fraction of the carbonate component, classified as “Loess” or clay loess. 

Sedimentary evidence shows a clear connection to local standing, in early and 

middle Pleistocene loesses of the Wuheng and lower Lishi formations. 

The analysed material shows, that at the erection of the clay walls, these loesses 

from the museum surroundings had been used without any organic or inorganic 

additions at water content under the material specific plastic limit. 

From the mechanical characteristics, the ground of the stamped earth has to be 

classified as normal active, little plasticized clay. The clay fraction is dominated 

mainly by layer silicates off the Illite-Muskovite-row and chlorite. 

Despite the soil not having a considerable amount of swellable clay minerals, the 

hygroscopic swelling reaches up to 2mm/m. With the submergence of the material 

under water, it dissolves immediately. In the hygroscopic moisture environment, the 

swelling of the soil structure results from inter crystalline swelling mechanism 

between the clay minerals that sit between the grain contacts of the grain supported 

silt structure. The tests showed, that the structural conditions are additional to the 

mineral components an important criterion to the hydroscopic contraction of the soil. 

Therefore, it could be problematic to rely on material analysis of soil from recreated 

samples.  

 

To 2 The damage assessment in the pits of the terracotta army suggests that the 

conservation treatments on the surface of the soil in the excavations aim to reduce 

the hydroscopic swelling and to improve the resistance against mechanical abrasion. 

For the reduction of the hydroscopic swelling in connection with this work, for the first 

time bi-functional cationic tensides have been used on the material, soil. The 

formulas of these tensides, as they are used for comparable purposes in stone 

conservation, could be improved in their concentration, molecular size, and reaction 

residues and adapted to the requirements of soil. Additionally the use of consolidates 

on the base of monomer ethyl silicate ester could be tested. Both methods as well as 

their combination did not show any negative effects on the visual appearance of the 

surfaces. 

 

To 3 The test series for the analyse of the effect of the described treatments on the 

soil, was carried out on untouched original material. For the first time in the 

conservation science of clay building materials, the low destructive analytic for small 

samples of the stone conservation, was transferred to the material soil. The complete 



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 8

recording of all relevant hydrous and physical parameters on the original material and 

the treated original material is unprecedented in the conservation of soil. This was, 

until now, mostly restricted to the methods on large sample material soil mechanical 

methods. 

   The gathered data from the ultrasonic measuring, bending strength test, 

measurement of the vapour diffusion resistance etc, allow the evaluation of the 

material due to its susceptibility for long-term deterioration processes. 

 

To 4 Based on the rich data material from the test series, it was possible to evaluate 

the damaging potential of the climatic changes of the soil surfaces in the pits of the 
terracotta army with and without conservation treatment. With the help of a Wufi-2D 

Modelling of the hygroscopic water transport in the surface near zones of treated and 

untreated soil the depth effect of the climatic fluctuations during a daily, monthly and 

yearly cycle could be adjusted. Therefore, the tested treatment methods does not 

interfere the humidity content of the soil. With the simulated depth effect of the 

climatic fluctuations the tension potential of the hygric expansion in the critical 

transition zone between the untreated and the treated material can be evaluated. The 

result for the treated types was that a minimum penetration of two to three 

centimetres is necessary. 

 

To 5 The test of the treatment possibilities showed that treating with the swelling 

reducers have a slight, but positive influence on the mechanical properties and on 

the abrasion resistance of the soil. The treatment achieves a reduction of a 

hygroscopic swelling of more than 50% and therefore it can reduce, to a high extent, 

the damaging potential of the fluctuations in the hygroscopic climate. The tensides 

have an input only on the micropores of the soil. They prevent the elutriation of the 

soil when water is infiltrated and therefore can be used for the protection of the 

surface with direct contact with water.  This treatment, however, reduces the drying 

process of the soil, consequently the application outside has to be proven. For the 

requirements in the pits of the terracotta army, the treatment seems to be 

appropriate. 

The consolidation reduces parts of the capillary porosity; therefore, it changes the 

vapour diffusion resistance and the capillary water adsorption of the soil.  The 

hygroscopic conditions in the pits of the terracotta army (without fluid water access) 

results in no corrosion relevant disadvantages. 

Concerning the effect of the consolidation, the treatment is very successful. The 

structural stabilisation of the pore space is strong enough to ensure form stability of 
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small format column samples submerged in water for several days. The stabilisation 

and the abrasion resistance should be more than enough for the mechanical surface 

stress in the museum halls of Lintong. From the conservation view, the consolidation 

has one effect that questions the long-term effect of this treatment. As an effect of the 

consolidation, the swelling inside the humidity range increases to 30 to 80%. This 

means that for the application in the museum halls, the higher stability of the 

consolidated surfaces reacts contrary to an extra inner tension potential that can 

cause in long-term damages. 

When treated with this combination, the effects of the swelling reduction and the 

consolidation overlap. Consequently, the treated samples are mechanically 

consolidated, but the hygroscopic tension potential is on the same level as the 

untreated soil. If an irreversible consolidation on the surface of the excavations in the 

museum of the terracotta army is required, the method of the combined treatment 

seems to be encouraging due to the effect and long-term stability. 
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1       Introduction 
In March 1974, the first fragments of the over 2200-year-old terracotta army of the 

first emperor of China; Qin Shishuangdi (259-210 B.C.) were discovered at the 

digging of a well near the small city of Lintong. The army was probably set up to 

protect the nearby grave of the emperor (see imag.2). Their discovery was an 

archaeological sensation, because the Chinese history writer Siam Qian in his 

detailed report on the emperors grave (Nienhauser, 1994) does not mention it. 

Before their accidental discovery, neither archaeologists nor historians had 

contemplated their existence. Even today, the excavations at the subterranean 

erected clay army are still 

ongoing.      The archaeologist 

prognosis is that there are over 

7000 terracotta soldiers. At 

present approximately 1000 

figures have been excavated, 

restored and displayed in situ 

(see imag.1). Since 1979 the pits 

of the terracotta army have been 

open for the general public. 

 

Image 1  In situ erected Terracotta soldiers in pit 1 
(Image: museum of the terracotta army)  
 

The Terracotta army is, togester with the Great wall and the Emperor’s palace in 

Beijing, one of the most important and well-known cultural heritage sites in China. 

Every year 1.5 million people visit the Terracotta museum. The burial site of Qin 

shihuang was listed in1987 as a world heritage site by UNESCO. All findings of this 

area are of the artistic and historic highest value.  

 

1.1    Antique soil structures in the excavation of the Terracotta army 
The architecture of the Terracotta army: 

The Terracotta army is one of many similar built subterranean sites belonging to the 

Emperors mausoleum (called “Qin Ling”) (see appendix 7.1). The clay figures were 

erected, divided into three separate pits, in subterranean corridors, that have brick 

tile floors. Thick walls of stamped clay (Chinese “hangtu”) divide the corridors. This 

carried a roof construction with a solid beam layer, then covered with straw mats and 
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lastly covered with a layer of soil. To reduce the weight of the roof on the walls of the 

corridors further carrying beams were built in (see Imag.3). 

The technique of stamped clay walls is still widely used in China. For the erecting of 

these walls, moist clay is compressed into wooden shuttering.  This shuttering is 

gradually made higher, so that the wall grows every step one clay layer higher (see 

Imag.4). Occasional the prints of the shuttering boards can still be seen. The height 

of one of these layers was as a result about 8-10cm. In between, the layers there had 

no built in supporting materials. Mainly in Europe weaved mats, twigs, lime and other 

stabilising additions were often used between the layers of the stamped clay walls 

(Houben, 1994). The clay also does not contain any added extras such as straw or 

hemp to improve the structure.  

 

Imag.2 The army in the pits one to 
four (pit 4 containing no soldiers) is 
situated outside the main burial area. 
The earth pyramid (A) over the grave 
of the Emperor and parts of the walls 
of the burial (B and C) are today 
decidedly visible (image out of Roger, 
2000). A detailed plan of the burial 
area is shown in the appendix 7.1. 
 

 
 
 
 
Imag.3 Reconstruction of pit building, using pit 1 as an example (image taken from (Brinker, 
1980). Before the erection of the stamped clay walls, the pits were dug down to the floor level 
of the figures. Further cross sections see appendix 7.1. 
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Imag.4 Technique of the stamped clay walls in 
old China. The wooden shuttering is held 
togester with round timbers and wickerwork. At 
the bottom, it is stabilised to prevent slipping.  
 

 

 

 
 

History of the decay: 

Only few years after finishing, a rebel army plundered the Terracotta figures. Parts of 

the pits were burnt out, roof beams collapsed and corridors fell down. Charcoaled 

wood, red-burnt soil and terracotta show now the devastation. In the subsequent 

years, the moist beam layer bends from 50 to 100cm over the brick floor that is under 

the pressure from the overlaying soil. The Terracotta figures underneath fell down 

and fractured into pieces. The remaining hollow spaces in the corridors filled with 

sand and slime because of several floods. Now, in the area of the mausoleum, up to 

seven sedimentations of flooding can be detected in the excavations. (Work report, 

2000). 

 
History of the excavation and present condition: 

First test excavations started on the east side of pit 1 in the year of the discovery 

1974, at that time in open air. After a couple of test diggings, in 1979, a closed hall 

construction was made out of steel and metal plate to cover pit 1. From then on, the 

hall is open daily for the general public. To this present time, it protects the 

excavation against rain, but does not give sufficient protection against climatic 

changes, entry of dust or other environmental influences. These are the stated 

requirements for archaeological protection buildings in TEUTONICO (2001). Within 

this period since 1979 large parts of the pit 1 had been excavated up to the roof 

beams, but had been refilled. The easterly part has been fully excavated. The roof 

beams have been completely removed and the restored figures are re erected in 

their old positions (image 1). At the Western ends of the pit, vast excavations until 

recently were in progress (see appendix 7.1). Now the excavations of the pit 1 are 

inactive. 
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In pit 2 extensive excavations were started 1994 after the museums building 

protection was finished over the 

area of the dig. With this massive 

construction, the protection of pit 2 

is able to guard the excavation 

against rain, sunlight, climatic 

changes and dust. However, for 

years the advantages of this 

building (due to dust and climatic 

change) are more or less annulled 

with the daily use of an unfiltered 

ventilation system (Utz, 2001b). 

 

 
Image 5 Uncovering of the roof beams in pit 2  
(Image: museum of the terracotta army, 1997) 
 

Between 1994 and 1997 the whole of pit 2 had been excavated up to the level of the 

roof beams (see image 5). Excavations down to the floor level of the corridors are 

concentrated up until now to the sectors T15 up to T21 (see appendix 7.1). After a 

two year excavation break around the year 2000, in 2001 excavations started again 

in sector T21 (G18-G20). 

A detailed list of the history of the excavation; please find in appendix 7.2. The 

excavation activity in the pits 1 and 2 was limited in the last 15years, because the 

conservation methods for the findings, especially for the polychromy of the terracotta 

figure were still in development. 

The soil bridges became smaller and wider in the 2000 years under the pressure of 

the overlying soil. On their rounded surfaces, prints of the roof beams had been 

preserved (see Image 6. appendix 7.1).  The standing height at the excavation of the 

Inner walls is 1.2 – 1.5m. The high amount of water during the floods, while the 

corridors had been partially flooded, probably enabled a plasticized deforming of the 

walls. Surprisingly the steep flanks of the walls were preserved. Collapsed inner walls 

were only rarely found. 

The climatic situation in the building shelters of the pit 1 and 2 are discussed in 

UTZ (2001B). It can be summarized as follows: 
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The outside temperature can reach, in Lintong, values from +45° C to –10°C. The 

summers are hot, so that in the July month the average measurement is around 

25°C. The winter month are cold and with low precipitation and often very dry (see 

appendix 7.7).  

In the building shelter 2, the walls can buffer the changes of outside temperature, 

therefore only few frosts occur (but only when the ventilation system is not switched 

on). In the building shelter 1 however, the inside temperature follows approximately 

the outside temperature.   

At new excavations, a lot of water is evaporating from the moist soil surfaces. Near 

the ground, there is a relative humidity of between 70% and 95%. This caused at the 

large excavation in pit 2 (1994-1997) immense problems with mould. However, the 

mould growth disappears after a year, because of the quick drying out of the soil, 

after the excavations are finished (Warscheid, 2001). 

With the drying out during the last years also in pit 2 the measurements of the 

relative humidity are gradually approaching the monthly average values of the 

outside temperature. The fluctuations of the relative humidity during the day are 

buffered near to the ground, because of the high adsorptive reactivity of the dried out 

soil. 

 

1.2 Damages and their causes of the historic soil structures. 

The soil bridges with the print of the roof beams have, as evidence for the pit 

architecture, high conservation value. On the surface of the soil there are preserved 

prints of organic material (such as reed mats, straw mats, wooden chariots and 

wooden crossbows etc.) the material evidence itself has decayed away centuries ago 

(see image 8). In addition, the roof beams do not exist any more in wood, but the soil 

that has replaced the wood recreates their structure. As these surface structures of 

the soil are mostly the only evidence of the above-mentioned materials and things, 

they should also be preserved. 

Due to the soil structures in the pits of the Terracotta army, there are two damages, 

these differ in scale as in the cause of the damage: 

A: Tearing apart of large correlated soil structure during drying out  
B:  Loss of material on the surface of the earth structures 
 
To A: Drying out and shrinkage cracks 
The drying out of the soil structures in the pits starts with the building of the shelters. 

In correlation to the sorption isotherms, the surface of the soil is not able to keep 
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more than 6 weight percentages without direct water input, even at constant relative 

humidity of over 90% (see Chapter. 4.3.3; appendix 7.6). If they dig, just to the roof 

beams, as they have done in pit 2, then within the first two years after the end of the 

excavation, a distinctive crack system, with parallel cracks along the parting and the 

edges of the soil bridges, appears. The distance between the parallel cracks is 1 and 

1.5meters. In addition, cracks arise that cross this dominant system at an acute and 

right angles. The first cracks always occur there, were the soil dries out the fastest. 

The parting areas are predestined, because they are furthest away from the ground 

water. This means they contain less water at their excavation and are better 

ventilated by the atmospheric air, than the valleys between the soil bridges (see: 

Image 5). 

When the soil bridges are revealed completely, then the partings, which are 

ventilated on both sides, dry out fastest. Consequently, dangerous flank parallel 
cracks develop (image 6), these cracks with the help of the gravitational traction on 

other parts of the soil bridges can also slip off (image 6). 

Large cracks with a width of more than 1cm have largely damaged the uncovered 

soil bridges in pit1. Additional to this there is the danger that the flanks falling down 

and damage the re- erected terracotta figures (see image 6). In general, it is not 

possible to prevent the drying of the soil and the therefore developing shrinking 

cracks. For securing the soil bridges in the pits, a suitable anchor system was 

introduced in recent years with inlaid sand anchors (Miculitsch, 1996), (Utz, 2003b). 

  

The drying out of the soil is dangerous for the polychromy of the terracotta figures 

that remain in the soil. The undercoat lacquer of the figure paint is detaching from the 

terracotta at relative humidity under 94% (Thieme, 1993). If the shrinking cracks 

reach the terracotta fragments and dries out the soil, where they are imbedded, 

under water content under 6%, the paint could be already damaged before the 

excavation. Therefore, it was important to find out how quick and up to which depth in 

the excavation the soil dries out and if the obvious damages of pit 1, will be repeated 

in the later opened, moister pit 2. 

The important factor for the moisture content of the soil at the excavation and for the 

speed and depth effect of the following drying out is the distance of the excavation 

horizon to the surface of the ground water. In the first month after the excavation, 

additionally the relative humidity influences the development of the damages. 

Uncovered surfaces dry out in the dry winter month much quicker than in summer. 

The long-term drying progresses are influenced from the yearly average value of the 

relative humidity, which is in the surrounding of Xián around 75% (appendix 7.7). 
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Under the floor tiles in the corridors of the pits there is down to the groundwater 

homogenize non-layered loess. Inside the area of the museum buildings, the 

difference of the height of the surface of the groundwater is even less than the 

normal yearly fluctuations of 20-25%. The average distance from the floor tiles to the 

groundwater is 10m. Pit 2 lies a little lower. The level of the floor tiles rises in pit 2 

from Northwest to Southwest, therefore the distances of the floor tiles to the 

groundwater varies in pit 2 between four meters in Northeast corner and six meters in 

the Southwest corner (Utz, 2001c). 

In spring, 1999 and autumn 2000 the distribution of the moisture in the ground was 

measured with drilling soundings at two soil bridges and in the well drain of pit 2 (see 

appendix 7.3). The development of the drying out was modelled for these three 

positions, for the next 25years after the excavation, with the computer programme 

“Wufi-2D” (see image7 and appendix moisture distribution). For the outside climate, 

the average monthly values of Xi’an were used. Details to the “Wufi 2D modelling 

program please find in chapter 4.4, and the input data for the drying out model in 

appendix 7.7. 

 

 
Image 6 left: Dried out soil bridge in pit 1. At the shrinking cracks near the edges, the flanks 
of the soil bridge seem to slip down. In addition, the soil bridges, together with the shoulders 
and heads of the Terracotta soldiers are covered with a grey dust layer. 
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Image 7 right: “Wufi-2D modelling of the drying out of the soil in pit 2 at the position of the 
well drain. The modelling was created with the average monthly climate values of Xi’an (see 
appendix 7.7). The curves of the moisture between 3 and 6 years match to the results of the 
sounding results of the well drain from the years 1999 and 2000 (see appendix 7.3). 
 

The first results of the models match in the dry range excellently with the condition 

measurements of the soundings of the ground in 1999 and 2000. At the digging 

depth over 4m and in the area of the capillary water seam there are deviations 

between the model and the measurements. This is caused by the transformed 

porosity through the pressure of the overlap and the rising water saturation (see 

image 7 and appendix 7.3). 

Starting from the condition, in 2000, the soundings of the ground and models give the 

following drying out prognosis for the drying out of pit 1and 2: 

• Due to the level of the excavation in 2000, the development of the drying out 

cracks have finished 

• In pit 1 the polychromy of the terracotta fragments, with less than 90cm 

complete soil coverage, are in danger. 

• The drying out of pit 2 will continue in the next years at a lesser rate. 

• In the NE-corner of pit 2, the drying out cracks will spread out up to 1m under 

the layer of beams, in the southwest part, up to 1.4meters. 

• For a secure storage of the polychrome terracotta in pit 2, a complete cover 

with soil of up to 0.5m is necessary. 

• At further excavations the drying out development has to be recalculated 

• The dangerous crack formation at the sides of the uncovered soil bridges will 

develop in pit 2 similar to pit 1, because the drying out of the flanks is not 

slowed down sufficiently by the higher moisture in the core of the profile of the 

bridges. 

• The uncovering of the moist soil bridges in pit 2, one example is the soil 

bridge in sector T21 where samples have been taken, gives expectations of 

stronger damages by cracks as in pit1. Due to the high moisture content in 

the core of the bridges, at the drying out of the flanks, very steep moisture 

gradients are formed. The tensions between the dried out surface and the 

moist core, due to the shrinking, will be stronger than at the excavation in pit1. 

This effect could be reduced if you wait as long as possible with the 

uncovering of the soil bridges. Then the drying out border is able to spread 

deeper downwards and subsequently the shrinking gradients at the flanks of 

the soil bridges will be less after their uncovering.  
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To B: Loss of material at the surface of the soil structures 
The surface of the inner walls with the prints of the laid on beams are well preserved 

at the excavation. Straight after the uncovering, additionally, the imprints of the straw 

mats and wooden chariots and relicts of pigment from the figures can be clearly 

seen, (see image 8). 

Small dimension shrinking cracks: 

The development of small-dimensioned shrinking cracks in the upper centimetres of 

the soil take place shortly in the first weeks after the uncovering (see: drying out 

modelling in appendix 7.3). The surfaces were dissected by the shrinking cracks in 

decimetre areas. Between the cracks, there remain dried out fields, where no new 

shrinking cracks develop, unless the archaeologists water them again. Then the 

shrinking process is repeated and new crack structures arise (sometimes the soil 

imprints were moistened to close the shrinking cracks and improve the colour 

impression, for taking images.  

It is possible to delay the shrinking process and the division of the surfaces with a 

temporary covering of plastic foil. With this method a larger scale crack pattern 

occurs, because the drying out gradients to the soil below is getting smaller. The 

faster the surface dries out, the smaller dimensioned surface cracks arise and 

therefore the damage due to the shrinking is much higher at the preserved imprints in 

the soil. 

How as already mentioned at the soil bridges, the shrinking cannot be prevented, 

even under optimised climatic conditions (Miculitsch, 1996).  Normally the shrinking 

during the drying out of the surface structures is a singular damage phenomenon. It 

is finished after the drying out to about 4-5 Vol.-% water content and then does not 

cause any area loss of material. 

 

Loss of the surface: 

Surface pulverisation  

In Image 8 it clearly shown that years after the uncovering at the surface of the soil, 

there is serious, area loss of material. The upper grain layers are loosened from the 

support and disperse like dust. Through this process, in the last decades, most of the 

preserved prints in the soil in pit 1 are forever lost. This damage is described as 

“pulverising surfaces”. 
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Image 8 
At the surface of the soil, many important archaeological findings are preserved (image: 
museum of the Terracotta army). 
Above: Prints of the wheels of the wooden chariots (left: shortly after the excavation, right: 
after several years exposure), bottom line of the image is approximately 1.8m. 
Below left: At the excavation of the Terracotta figures, the paintlayer is detached from the 
terracotta remains in the soil. Bottom line of the image is approximately 0.4m. 
Below right: Imprint of a reed mat at the surface of a soil bridge. Bottom line of the image is 
approximately 0.1m. 
 

Scaling: 

Of Secondary importance, you can also see the problem of scaling of the surface. 

This can be seen clearly in image 8 (below left) small scales with a width of 0.2-1cm 

are detached from the subsoil. 

 

Theories for the cause of these losses of surface: 

The causes for the pulverisation and scaling of the Terracotta army have been 

discussed in the past. Today some of them could be disqualified due to more detailed 

observations, test trials and a wide knowledge of the used material: 

• Frost as a reason for the loss of surface by scaling 

The stamped clay of Linton is not at all safe against frost (see chapter 2.2).  

However, frost is only able to rupture the pore space structure of the soil when it is 
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near the water saturation point. After the erection of the museum buildings, the soil in 

the pits was too dry to be damaged by frost, which is perfectly possible in winter. 

Some of the damages of the surface in the Eastern part of pit 1, which had been 

excavated in the 70´s under open air, are probably caused by frost. The watering of 

the surface on a large scale, as it was done during the excavations to reduce the 

generation of dust, theoretically could also cause frost damage. However, there are 

no excavations in winter; therefore, this theory can be eliminated. 

• Scaling through watering and compressing of the surface 

The before mentioned watering of the surfaces during the excavation, causes 

additional strong swelling movements and encourages the development of cracks. At 

the same time, the excavation workers had used the soil bridges as walkways. 

Together with the water input, the inner structure of the upper soil layer can be 

irreversible compressed trough the pressure of the feet. If the change of the surface 

near the inner structure is so big, that their physical properties differentiate clearly 

from the support, the compressed surfaces can detach in a climate change. With the 

growing diligence of the excavation team, this damage should now never occur. It is 

also possible that through the frequent watering and drying out, the water-soluble 

compounds concentrate at the surface compress and become brittle, so as to peel off 

in scales. 

• Change of climate as a reason for the pulverisation of the surfaces. 

The change of climate in the museums halls has similar values and frequency to the 

outside climate. They are not at all near the so called “museum climate” that 

demands constant values of 20o C with 55%relative humidity. The hygroscopic 

humidity expansion of the stamped soil in Lintong surpasses with 2mm/m of the 

hygroscopic expansion of sandstones by storage in water (Hilbert, 1995). For some 

sandstone, it is stated, that cycle of watering weakens the bindings (Wendler, 

1996b). It seems obvious, that expansion movements caused by climate, leads to the 

detachment of upper grain layers of the soil. The possible mechanism for the 

damaging influence of humidity changes on objects made of soil and clay are 

discussed in Müller (2002). With dust traps, which had been fixed at the vertical soil 

walls in pit1 and pit 2, to measure the quantity of the dust on the surface, could not 

so far verify the theory of damage through climate change. On 14 test fields in 3 

years, non-grain has been detached from the surface. But nevertheless hygroscopic 

expansion cannot be excluded as a reason of the loosening of the surface. 
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• Mechanical  stress 

Beautiful imprints in the surface are more often dusted than other soil structures. 

With the use of brushes and vacuums, material losses at the upper grain layers 

cannot be avoided (see image 9, right image). It is interesting, that the 

overhanging flanks of old soil bridges in pit1 , that are sheltered against dust, 

with already strong “weathered” surfaces, look as though they are freshly 

uncovered. At these flanks there cannot be seen any material losses. These 

observations in the pits of the Terracotta army lead to the conclusion, that the 

main cause for the loss of the surface of the soil structures is mechanical stress 

(brushing, walking, etc…). Probably also crawling and drilling insects have an 

“input” to this form of the damage (see image 9, left image). 

• Dust 

The dust deposits in the pits of the Terracotta army are enormous (see image 6). 

The theory, that the dust arrives from the pulverised surfaces of the excavations 

could be disproved with the analyse of the dust on the Terracotta figures. The 

dust in the pits contains great amounts of soot particles and gypsum, that not of 

origin from the pit (see appendix 7.5). Just the comparison of the colour of the 

dust and the grounded stamped soil proves, that at least 80% of the dust in the 

pits is of meteoric origin (see image 9, middle picture). The dust burden is not an 

immediate problem for the soil surfaces. However, because the dust has to be 

removed continuously from sensitive surfaces, for the visitors, these surfaces 

suffer from mechanical stress. Therefore, dust is one of the main causes for the 

loss of the soil structures in the museum of the Terracotta army. 
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Image 9: causes of damages additional to the climatic stress: 
Left: digging and drilling insects have an impact of the damage of the surfaces 
Middle: Comparison of the colour of the dust of the stamped soil (left) with the “meteoric 
dust”, that had been deposit in pit one on the surface of the soil and the figures (sample is 
taken from the shoulder of an Terracotta soldier) 
 Right: foot prints and brush strokes on an uncovered soil bridge. 

 
Conclusion: 

The reasons for the loss of the surface of the soil structures in the museum of the 

Terracotta army are various. Improving the building of the museums halls could 

advance the climatic stress and the dust deposit in the pits. The main cause for the 

loss of the surfaces is based in the extreme mechanical and climatic sensitivity of the 

material, soil. It cannot withstand the stress caused by a museum use. Therefore 

refilling of excavated sites to shelter the soil structures is often carried out with 

success (Chiari, 2000b), (Goodman, 2002). This possibility is ruled out at the pits of 

the Terracotta army. 

 

The following work will analyse and find possibilities to improve the resistance of the 

soil surfaces against mechanical and climatic stress. The main interest is thereby not 

the use on a large scale, but the conservation treatment of small, especially 

important structures. 
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1.3. Aim of this thesis 
The examinations shown in this work have the following points as an aim.  

 

1. Analyse of the stamped soil in the museum of the Terracotta army due to 

their material properties and their changes in the hygroscopic and hyper 

hygroscopic range. 

2. Analyse and development of specific conservation treatments for the 

stabilisation of the surface of the soil structures in the museum halls of 

Lintong. The improvement of the resistance against mechanical and 

climatic stress in the hygroscopic humidify are of main interest. 

3. Analyse of the influence of the conservation methods on the material 

properties of the original stamped soil of Lintong. Thereby the test is 

made to transfer methods of the stone conservation onto the building 

material soil. 

4. Evaluation of possible stress requirements with computer based 

modelling of the moisture transport in the soil. 

5. Evaluation of the methods, in relation to their protective properties against 

mechanical and climatic surface stress and their compatibility with the 

untreated substrate - with special care to the situation in the pits of the 

Terracotta army. 

 

2 Material analyses of the ancient stamped soil of Lintong 

2.1     The raw material loess (Chapter deleted!) 

2.1.1 Loess, clastic sediment of special kind (Chapter deleted!) 

2.1.2 History of the formation of the Chinese loess- plateaus (Chapter 
deleted)  

2.2  Soil mechanical properties 
The basic physical data of the stamped soil of Lintong has been measured at the 

Institute for soil mechanics and rock mechanics at the University of Karlsruhe. Four 

samples (M1-M4) from different inner walls of pit 2 have been sent to the institute. 

The measurement data are documented in MICULITSCH (1996). Further important 

material data please find in chapter 4.3 

 

2.2.1 Mesh analyse/ sedimentation analyse  
The process and devices for the measurement of the distribution of the grain sizes of 

granular soil are fixed in DIN 18123 (1983). Binding soil with clay and silt are 

elutriated after the drying, weighing and washed through a sieve with the width of the 
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mesh being 0.063mm. The remaining contents of the sieve is dried again and sieved. 

The distribution of the grain sizes from this sieving is measured by sedimentation 

analyse with the Aerometer method after CASAGRANDE (1934). The method is 

based on the principal, that different size of grains sink down in the elutriation at 

different speeds. The “Stokesche” law describes this correlation from grain size, 

density and sinking speed for spherical volumes in a fluid. Therefore, this method 

does not give a division in grain sizes, but of “equivalent grain diameter” in spherical 

form (Prinz, 1991). To avoid coagulation (flaking) the dispersion material Sodium 

pyro phosphate (Na4P2O7 * 10 H2O) is added to the suspension. The distribution of 

the stamped soil of Lintong was measured with the sieve analyse and sedimentation 

analyse. The results are shown in a sum curve diagram in image 10. 

The most important, soil physical and sedimentary data, deriving from the grain 

curve, are listed in table 1: 

The grain curves of the samples M1-M3 run very similar. With about 80% silt, about 

10% clay and 10% fine sand; this grain size distribution corresponds with the 

standards for loess. With over 50% weight percentage and a loess typical grain size 

of a maximum between 10 and 60µm, is characteristic. Small deviations inside the silt 

fraction are reflected in the grain characteristics, which show the percentage of parts 

of the single fractions, rounded to ten percent (see table 1). The soil of this sample 

has to be called after DIN 4022, T1 as “silt light clay, light fine sandy”. 

The sample M4 differs by a higher percentage in the clay fraction. In contrary to the 

other samples that can be described as loess M4 is better described as loess clay.  

The bending of the grain curves shows the regularity and irregularity of the soils that 

is important for different soil properties, e.g. the compressibility of soil (Prinz, 1991). 

In numbers it is expressed in the distortion number U (U= d60/d10). Thereby d60 and 

d10 are the grain sizes in mm; at the point, the sum curve cuts the 60% or 10% line. 

After DIN 18196 (1988) the soil with the distortion number larger than 6 is classified 

as “irregular”. 
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Grain curve - DIN 18123 

Grain diameter in mm 
Image 10: Grain curves of four soil samples of the stamped clay walls. The grain size 
distribution of this soil is characteristic for less (M1-3) and/or loess clay (M4). The part of the 
silt fraction is 65%-95%. The characteristic grain size maximum between 10µm and 50µm is 
characteristic for loess sediments 
 
 Soil mechanical characteristics after  

DIN4022T1 (1987) 
 Sedimentary petrographic 

characteristics 
(Visher, 1969) 

 Grain 
characteristic 

number 

Kind of soil U= 
d60/d10 

 median (mm) 
(Q2) 

So = 
(Q3/Q1)0,5 

M1 1.142.110 Silt, light clayey, light 
sandy  (U, t’, s’) 

13  0,015 2,6 

M2 1.134.100 Silt, light clayey, light 
sandy  (U, t’, s’) 

13  0,015 2,4 

M3 1.143.100 Silt, light clayey, light 
sandy  (U, t’, s’) 

13  0,015 2,3 

M4 2.223.100 Silt, light clayey, light 
sandy  (U, t’, s’) 

~ 20  0,012 4 

Table 1:  Mechanical properties from the mesh and sedimentation analyse of the 
samples M1-M4. U: Distortion number: So: Sorting coefficient  

 

Due to DIN 1896, the loesses of the excavation of Lintong belong in the group of the 

binding soils that divide themselves by a high water binding ability from the more 

coarse-grained, non-binding soils. The transition from the non –binding to the binding 

soil is in the middle silt area. In this grain fraction there arises a strong force of 

attraction between the grains, although this whole silt fraction is still quartz and rock 

fragments and not reloaded layer silicates (Prinz, 1991). 

The binding soil belongs to the kind of soils that are difficult to compress. The ability 

to compress depends a lot on the water content.  Thereby the irregular types are 

Ton Schluffkorn
GrobMittelFein

Sandkorn
Fein Mittel Grob

Kieskorn
GrobMittelFein St

Körnungslinie - DIN 18 123

0,001 0,01 0,1 1 10 100

100

90

80

70

60

50

40

30

20

10

0

M
as

se
na

nt
ei

l a
 m

it 
K

or
nd

ur
ch

m
es

se
r <

 d
 in

 %
 d

er
 G

es
am

tm
as

se

Korndurchmesser in mm

d10

d
60

M1

M2

M3

M4

Q3

Q2

Q1



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 26

better than the regular ones (Prinz, 1991). Soils, such as the soil from Lintong with U 

> 12 are classified are irregular, compressible and difficult to dissolve. 

Different parameters out of the grain distribution (form of the sum curve, position and 

amount of the maxima in the frequency of the distribution curve etc.) are used as 

indicators for the sedimentation conditions of clastic slack sediments (Reineck, 

1980). For a simple correlation of the samples of Lintong with the loess- stratigraphy 

after Liu (1966) (see: Fehler! Verweisquelle konnte nicht gefunden werden.), as 

well the median of the sum curves (Q2), that was used by Liu,  as the sorting 

coefficient “So” for the samples M1-M4 have been calculated and filled in the 

stratigraphy in Fehler! Verweisquelle konnte nicht gefunden werden. So= 

(Q3/Q1)0,5 ;  Q1 (mm) is read thereby  at the 25%-marking and Q3 at the 75% marking 

of the sum curve (see image 10). The clay and fine silt components are diminish in 

the younger loesses of the Lishih- and Malan- series. Through this the average 

median of the grain curve from under 0,015mm in the Wucheng – loesses raises to 

0.03mm in the loesses of the upper Lishih. At the same time raises the sorting grade 

of the loesses. The sum curves of the middle and late Pleistocene loess is steeper, 

the sorting coefficient diminishes from 4 to 2. According to the Median and the sorting 

coefficient, the samples M1-M3 are the most similar to the samples of the lower 

Lishih. The sample M4 better corresponds in the grain size distribution to the 

Wucheng loess out of the early Pleistocene (see: Fehler! Verweisquelle konnte 
nicht gefunden werden.) 
It is uncertain that, if at the erection of the Terracotta army the inferior sorted older 

loess sediments had been used by accident or in particular, because of their better 

properties for the clay building. 

 

2.2.2 limits of consistency after Atterberg, grain density and carbonate 
content 

For binding soils, the state of condition is changing with the water content. At higher 

water content, they are liquid. If water is extracted from the soil, they transform 

gradually in ductile (mushy, soft, stiff), half-solid and finally solid state of condition 

(see image 11). The water contents of the consistency transition are in direct 

connection with the grain size distribution and the mineral components of the soil. 

Especially the proportion of fine silt, clay and the quality and quantity of the clay 

minerals have a great impact on the position of the consistency transitions. Their 

classifications are fixed from ATTERBERG (1911). The consistency transitions 

shrinking limit (wS), coasting limit (wP) and fluid limit (wL) are defined as 

Atterberg consistency boundaries (see image 26). Their specifications are in mass 
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percentage water content. The plasticized limit and fluid limit are the most important 

basic data for the classification of the plastic malleable conduct of binding soil. The 

difference between the fluid boundary and plasticized boundary is the plasticity 

number IP (IP = wL – wP). The plasticity number is measurement for the moisture 

expansion and the plasticity of a binding soil. 

The soil mechanical definition, if it is silt of clay results after DIN 1896 (1988) and the 

plasticity diagram from Casagrande (see Image 12). 

 

The activity number IA  gives the relation between the plasticity and the content of 

clay (IA =  IP / mass.-%< 0.002mm). It is a measurement for the activity and the 

loading potential of the clay minerals. Soil with an IA under 1.25 are classified as 

normal active. While soils with activity numbers over 1.25 are swell able clay 

minerals has to be anticipated (see image 13) (Soos, 1980). 

The limits of the consistency for the soil of Lintong (fluid boundary, plasticity 

boundary and shrinking boundary) are determined according to the guidelines in 

(DIN1812T1, 1976) and (DIN 18122T2, 1987). 

Grain density ρs – Also called specific weight or absolute density-  is defined as the 

correlation between the anhydrous mass (mass of the single components  ms) of soil 

sample to the volume of the compact mass ( volume of the single components Vs : ρs 

= ms/Vs). The grain density depends mainly on the mineralogical compounds of the 

soil. The mass of the single components  ms t was gathered by weighing the dried 

sample. The volume of the single components Vs was determined with the capillary 

pycnometer after (DIN18124, 1989). 

The lime content is the part of Ca carbonate and magnesium carbonate in weight 

percentage, relating to the dry mass of the soil. The lime content of the soil samples 

M1-M4 was determined by gas volumetric after (DIN18129, 1990). 

The results of the examinations to the consistency boundaries, grain density and to 

the lime content of the samples M1-M4 are listed in table2. The mechanical 

classifications of the soil in Lintong please find in image 11 to image 13. 
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Sample number  
Characteristic number: 
 M1 M2 M3 M4 

Grain density (g/cm³) 2,74 2,63 2,7 2,7 
Lime content (Gew. -%) 9,7 7,5 11,6 9,2 
Clay content (Gew. -%) 12 11 13 25 
     
Shrinking limit wS (Gew. -%) 5 5 - - 
Plasticity limit wP (Gew. -%) 19,4 19,0 20,8 18,9 
Fluid limit wL (Gew. -%) 31,8 31,7 31,8 31,7 
     
Plasticity number IP (%) 12,4 12,7 11 12,8 
Activity number IA  1,03 1,15 0,85 0,5 
 

Table 2: Soil mechanical characteristics of the four samples from the stamped soil of 
Lintong (measuring data out of MICULITSCH (1996). 

 
The lime content of the samples is at the lower limit of the usual data in the loess 

plateau that are numbered from DERBYSHIRE (1982A) with 8-28%. Addition of lime 

for stabilisation, that is common at the erecting of stamped soil walls, can therefore 

be eliminated. The middle grain density between 2.63 and 2.74/cm3 and the 

component clay also correspond to the specifications in DERBYSHIRE (1982A). 
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Image 11:  Diagram of the 
averaged consistency 
boundaries of the stamped soil 
of Linton, at the so-called 
consistency bar of 
ATTERBERG. Assuming 
constant consistency boundaries 
in the soil profile over the 
humidity distribution, it is 
possible to read the condition of 
the soil in the unsaturated zone 
between the ground water 
surface and the excavation level 
(measuring data from the 
sounding in the well in pit 2, in 
October 2000). 
 
 
 
Image 12: Position of the 
stamped soil of Lintong in the 
plasticity diagram after 
CASAGRANDE. After soil 
mechanical definition, all soils 
over the A-line are defined as 
clay. The distinguishing in light, 
middle or very ductile is 
orientated at the liquid limit. 
Therefore, the samples of the 
stamped soil are classified as 
light ductile clay (TL). 
 

 
 
 
 
 
Image 13: The activity number 
IA of the stamped soil samples, 
visualized as the relation 
between the plasticity number IP 

and the clay content from the 
sedimentation analyse. The 
content of clay in the soil is 
classified as normal active or 
inactive. Swellable clay 
minerals are not to be expected.  
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From the comparison of the parameter in table 1: and table 2: together with the 

bibliographical references over the loesses of the region of Xi’an, it is obvious that at 

the erection of the stamped clay wall in the pits of the Terracotta army, they made 

use of loess from the surroundings without the addition of any aggregates. 

After DIN 18196 the stamped soil of Lintong, is soil mechanically classified, as light 

ductile clay (TL) (Image 12). The activity of the clay fraction is “normal active” or 

“inactive” (image 13) it seems to contain no swellable clay minerals. But the material 

has to be catalogued due to the classification as TL in the German technical 

regulations for street construction, as frost sensitive (ZTVE-StB76, 1976) 

 

2.2.3 Shrinkage 
The shrinkage, by the drying out of water saturated binding soil, is carried out mainly 

in the following two steps. As long as the soil is in a two-phase system of mineral 

particles and water, the volume of the soil diminishes at the same amount as the 

water. Thereby, the water particles are moving towards each other, and increasingly 

overlap the enclosed water layers and/or grain contact points develop. This linear 

shrinking process is called “Normal shrinkage”. After TARIQ (1993 B) the Normal 

shrinkage ends after it falls below the plasticity limit of the so-called “swelling limit” 

(MS) (see image 14). At further water reduction the resistance of the particles rises. 

The particles are still enclosed by water (“diffuse layer”) (see Chapter 3.1). Air 

penetrates in the large pores and the soil seems lighter. Beneath the swelling limit 

one talks of “Rest shrinkage”. The volume of the water in the soil is now further 

reduced than further compacting of the primary particles (Scheffer, 1998) can alter it. 

The further water reduction after the so called. “Air entry point” is already in the range 

of the adsorption isotherm (see Chapter 4.3.3). The water menisci are secluding 

themselves in more and smaller capillaries; the diffuse layers dwindle. The negative 

pressure in the remaining water and its contracting strength on the mineral particles 

thereby the more, the specific surface of the soil particles rises is higher (Scheffer, 

1998). The characteristics and the limits of the two shrinking steps are influenced by 

the mineral composition and by the history of the load of the soil (Tariq, 1993a). 

Therefore, they have to be found out for every soil independently. Since drying out 

soil reacts in the range of normal shrinkage, yet ductile and the particles can still 

orientate themselves, the soil reacts on the loss of volume with one-dimensional 

pressure orientated shrinking- “soil setting”. Not until the rest shrinking, shrinking 

cracks are developed. 
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The critical points during the drying out of the stamped soil derives from the shrinking 

curve in image 14.These critical water contents from the shrinking curve are 

important hints for the evaluation of the situation in the pits (see Chapter 1.2). 

For example from the diminishing of the water content in the soil of pit 2 (0-2m 

racking (see image 11) between the bending of the curve (about 16 mass % water 

content in 2m depth) and the dried out surface due to the linear normal shrinkage 

results in an average subsidence of 6 to 8cm. The vertical drying out cracks should 

not be expanding further in the soil than the swelling limit of 11 mass % water content 

(see image 14). This means in October 2000 a maximum expansion of the drying out 

cracks up to one meter below the surface (see image 11). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image 14: Shrinking curves of two stamped soil samples after the measurement results of 
Miculitsch (1996). Marked are the critical points after the drying out model of TARIQ, AND 
DURNFORD (1993  A,B)    SL: shrinkage limit (wS,), AE: air entry point, MS: swelling limit 
(Tariq, 1993a), (Tariq, 1993b). The tests had been carried out at the cuboids of 4x4x5cm. At 
every moisture step, the regular water distribution was waited for. 
 

2.3 Mineralogical composition and structure properties 

2.3.1 XRD Analyses at the bedding preparations and texture preparations.  
The sand grains of the stamped soil of Lintong had been analysed under the incident 

light microscope. There is predominately quartz. Additional acid, alkaline intrusive 

and carbonate concretions are obvious. Gradually larger light mica, hornblende and 

pyroxene can be identified. 

The mineral phases of the complete clay fraction(< 2µm) and of the clay fraction  

under 0.63 µm grain size have been analysed separately with a diffractor meter from 

the Company Siemens Type PW 1800, with  CuKα X-ray at an detecting rate of 1.5° 

2θ/min. The clay fraction under 0.63 µm is measured separately, because of the 

largely missing quartz, feldspar, etc in the middle clay area and fine clay field. This 
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eases the evidence of small amounts of swellable clay minerals (e.g. smectite and 

vermiculite (Tributh, 1979), (Heim, 1990). The often coexistence of chlorite and 

Kaolinite in loess sediments makes it necessary for additional heating of the 

preparation at  the use of the diffractometer analyses, because of the overlapping of 

the 002-reflex of chlorite with the 001 reflex of Kaolinite (Ruhe, 1982), (Bailey, 1988). 

That is why at the middle and fine clay fraction (< 0.63µm) a sample has to be heated 

up to 450°C for 15 minutes, a secondly for two hours at 600°C. 

Swellable clay mineral components shall be identified with the glycerine- swelling 

samples. The settings up of the swelling samples have been done from the 

guidelines of HEIM (1990).    

In the diffractometer diagram of the complete clay fraction, the stratum silicates of the 

muscovite –illite row and chlorite are dominant over quartz, feldspar and calcite (see 

image 15). 

The analyses of the different samples in the middle and fine clay fraction are 

compared in image 16. The contingent of quartz and feldspar are in the clay fraction 

just barely there. Crystalline calcite does not show up any more. In comparison to the 

complete clay fraction (image 15), the relation between the chlorite to the muscovite 

illite row diminish. Swellable three stratum silicates (smectite, montmorillonite and 

vermiculite) and Kaolinite are detectable. 

 

 

 

Image15: Diffractogram 
of the structure samples 
of the complete clay 
fraction (<2µm)   of the 
sample S002 quartz (Q) 
and feldspar (Fsp.) out 
of the rough clay 
fraction are clearly 
detectable. The 001 
reflexion of the chlorite 
emerges noticeably. 
Illite-muscovite- row 
(I/M); chlorite (Chl). 
 

 

This set of minerals in the silt fraction and clay fraction of the stamped soil is often in 

the loess plateau- but there also exists many kinds of analyses, in which smectite, 

montmorillonites and Kaolinite as important components of the clay fraction could be 

detect (Derbyshire, 1982b), (Derbyshire, 1982a). Chlorite can be often found in 

loesses. Especially the larger aggregates has to be seen mostly as pedogene new 
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sprouts out of amphibole, biotite, or similar (ground chlorites) (Heim, 1990), 

(Scheffer, 1998). 

 

In contrary to the complete 
clay fraction (see image 15) 
the reflexion bands of Q.; 
Fsp: and calcite are widely 
gone. The 001- reflex of 
swellable three stratum 
minerals (~ 12-20 Å) is 
missing. The structure 
density d0 14.1-14.5 Å (001 
reflex of the chlorite) is 
weaker, but still clearly seen. 

 
In the swelling sample, there 
is no clear reflex of widened 
structure units with d > 15Å 
in evidence. At veritable 
contents of smectite, 
montmorillonite or 
vermiculite many reflex ions 
between 2° and 5° 2θ are to 
be expected  
(Heim, 1990) 

 
The starting of the 
dehydrating of the 
independent octahedron 
layers in the chlorite leads to 
the distribution of the 002 
reflex. At mixtures with the 
Kaolinite that is stable up to 
over 500°C, two maxima 
would be visible at the 
tempering (Bailey, 1954), 
(Biscaye, 1964). 

 
At temperatures, over 600°C 
from the chlorites only 
remains the 14Å-Reflex 
(Bailey, 1988). 
In addition, the 10Å –
structure units of the K+-fixed 
three-stratum minerals are 
remaining. 
 

Image 16 Diffractograms of different texture samples of the middle and fine fraction (< 0, 
63µm) of a soil sample. It dominates the non-swellable three stratum minerals of the illite- 
muscovite – row (I/M) and the non-swellable chlorites (Chl.), quartz (Q.) and feldspars are in 
the range of the detection limit. Swellable clay minerals (QTM) are not visible. 
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2.3.2. Thin section microscopy at undisturbed soil samples. 
To produce thin sections with 30µm layer thickness out of undisturbed clay samples 

a previous consolidation with synthetic resin is essential. For the examination at the 

sections colourless and stained consolidates have been used. The staining should 

help the visualisation of the porosity. However, due to the low viscosity of the 

consolidation material, this effect was only at large capillary pores successful. 

Additional the staining disturbs the natural colours in transmitted light and the 

pleochronism of the clay mineral phases.  

The thin section pictures in image 17 and image 19 are giving information about the 

main structure characteristics of the stamped soil of Lintong. The structure is none 

layered and none textured. In the microscopic and in the macroscopic view it has to 

be seen as coherent structure (Scheffer, 1998). It consists out of a brown yellow silt 

matrix, in which- uniformly distributed- angular fine sand grains swims (image 17 and 

image 18). Matrix supported clay structures, especially with a high clay content are 

by far more ductile, but less stable under pressure as grain supported. They achieve, 

due to the supporting effect of the grain contact in the fine sand area, higher 

compressive resistances (Müller, 2002). In the fine sand component, quartz 

dominates over stone fragments, calcite and feldspar. Additionally in the middle and 

rough silt of the matrix (0.0063-0.063 mm), none rounded quartz and rounded at the 

edges quartzes, that are typical for loess stand out. Significantly, there are often 

etched (solved) carbonate clasts. The rate of the layer silicates (muscovite, chlorite 

and weathered biotite) dominates the picture, due to the high interference colours of 

these minerals. At a closer look, it is possible to estimate the proportion of quartz in 

the middle and rough silt area at a minimum of 60%. Red and black hydroxides and 

oxides (Goethite, hematite) are filling the pores gussets or attached at larger layer 

minerals (see image 18). Higher proportions of iron hydroxides also lead to a 

macroscopic darkening of the colour impression. In contrast to that, zones with 

microcrystalline carbonate separations; that are often found in the surrounding of 

larger pore structures, change the colour impression into a light yellow beige (see 

image 19). 

The real inter crystalline matrix porosity between the mineral phases is difficult to 

resolve in the microscope and cannot be seen in the images. Clearly visible are the 

spherical large pores (10-200µm) that had been created by water inclusion during the 

compacting of the stamped soil at the erection of the clay walls. These pores are 

often lenticular squeezed; due to the pressure during the packing d clay, walls (see 

Image 18). Round sections of the pores give the conclusion of root channels. The 

microbiological decomposition of the organic filling and precipitations out of the soil 
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solution could be the reason for the often seen carbonating at the walls of the pores. 

(See image 19). 
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Image 17 
Thin section image; X-pole 
filter; the image base line is 
approximately 2.7mm. The 
structure is matrix supported. 
Edge rounded, square and 
components out of quartz, 
feldspar, carbonate and stone 
fragments of the fine sand 
fraction are swimming 
togester with larger mica in a 
yellow red silt matrix. A 
rectangular section of the 
matrix is shown in detail in 
image   
 
 
 
 
Image 18 
Thin section image; detail out 
of image 17, X-pole filter, the 
image base line is 
approximately 1 mm. The 
matrix has no poled texture. 
Spherical rough pores (10-
200µm), that are deriving 
from water inclusions, during 
the compacting of the 
stamped soil, appear black in 
the image. The red staining is 
due to the needle and 
foliaceaous iron oxides and 
iron hydroxides. 
 
 
 
 
 
 
Image 19 
Thin section image; X-pole 
filter, the image base line is 
approximately 1. 3 mm. 
Areas with a high content of 
carbonate (mostly calcite) 
appear due to the high 
refraction yellow beige. The 
section shows the carbonated 
edge zone of a root channel. 
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2.3.3 Kryo-SEM images at undisturbed samples  
Raster scanning microscopic analyses can be used effectively for the qualitative 

evaluation of the corn structure in the silt and rough clay area. Further, the use of a 

Kryo table enables one to visualize the reaction of the structure with moisture. The 

results of the structural changes due to swellings in wetted samples are explained in 

chapter 3.4. The examinations have been carried out at the material testing institute 

in Bremen on a Hitachi S4000 Kryo table. They are focussed on fresh fraction 

surfaces at undisturbed stamped soil samples at three different moisture levels.   

• Dried samples: 48h drying at 60°C, cooling in the exsiccator over a drying 

agent, Kryo-preparation in melting nitrogen, freeze fracture. 

• Normal climate: conditioning of small samples (approx. 2cm³) over 48h at 

65% relative humidity.    

• Plasticity limit: (images of this step in chapter 3.4). Moistening of a sample 

with 18 mass % water deionised, 24h storage- rapped in PE plastic film (for 

the even distribution of the moisture in the sample). Kryo-preparation in 

melting nitrogen, freeze fracture. 

 

The observations from the thin section microscopy to the composition of the soil are 

confirmed by the SEM-examination. Larger fine sand gains are floating in a compact 

matrix out of spherical and platy silt components (see image 20). The matrix consists 

mostly out of angled and at the edges rounded quartz, feldspar and mica that build 

up a grain-supported structure with a high porosity between the grains (image 21 and 

image 22). This inter granulated matrix pores consist of spherical pores with good 

cross-linking. The pores diameter is up to 15µm. 

Singularly, there are also accretion (coagulates) out of clay, fine silt in silt grain size 

(image 22). The pore sizes inside these accretions are in the scope of 0.1-1µm. Clay 

and fine silt create, in addition, storage pads between the grain contacts of the silts or 

garland like connection structures (Image 21). At the grain contacts of the silt matrix  

dominate “edge to face“ and  “edge to edge“-contacts.  

The texture and the matrix can be called as non-directional and spherical porous. 

Due to the relatively small content of clay, the structure is all together very “clean” 

and open. However, all the silt components are covered with a fine clay layer (image 

23). The clay minerals are lying mostly in “face to face” contact to each other and 

give, due to the surface of the components, a laminated scaly texture. The thickness 

of the layer of the coatings varies, it is mostly under one Micrometer (see image 23 
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and image 24). In this surface layer, that continues also between the contact points 

(mostly thickened), the main part of the clay minerals of the micro porosity seems to 

be concentrated. (see chapter 4.3.3). 

The coatings of the silt grains are typical for Aeolian sedimentary loesses (Smalley 

I.J., 1973). At fluviatile coatings, it is often washed off. The accretion out of clay and 

fine silt are also an indication against a fluviatile sedimentation of the raw material 

(Derbyshire,1982b). 

The Matrix structure of the stamped soil of Lintong matches the description of 

DERBYSHIRE (1982B) of the microstructure of Aeolian Malan- and Wucheng loesses 

out of the east of von Xi’an positioned Meng Xiang. 

An open, non-textured matrix structure with existing accretion (coagulates) and 

missing clay minerals, (how they deposit themselves in the recent water menisci 

during the drying out of the pore gussets of the dispersion) indicates a low water 

content of the raw material  during the building of the stamped earth wall 

(Houben,1994). The water content during the compacting at the building of the 

stamped soil wall has an strong influence of the building structure of the dry clay. The 

structure of the stamped soil of Lintong indicate for a low water content during the 

building, was in the range of the wPL or lower (wPr = optimal  

Water content out of the proctor curve ~ 14 mass -% for the stamped soil of Lintong), 

but in any case beneath the coasting limit (about 18 mass-%)  
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Image 20:  
Kryo-SEM image (secondary electronic image) of a stamped soil sample with “norm 
climate”. Conditioning: Overview image over the structure of the stamped soil. One fine grain 
content (yellow) floats in a undirected silt matrix (Blue). Singular larger stratum silicates can 
be seen in a typical chart house structure and larger Oxalate – tubes (green). 
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Image 21: 
Kryo-SEM image (secondary electronic image) of the matrix of a dried stamped soil sample. 
The structure building silt grains have a diameter of  
5 – 25µm. Spherical quartz and platy shaped stratum silicates are square-edged or slightly 
rounded at the edges. The texture of the components stands out due to its missing orientation 
and space creating “edge to face“ and “edge to edge“ contacts. The grains are mostly only 
over clay bridges adnated. These loose structures creates a lot of space for the inter particle 
matrix porosity with a pore diameters of up to 15µm (see.: chapter Fehler! Verweisquelle 
konnte nicht gefunden werden.). In the detailed enlargements, you can see that the fine silt- 
and clay fraction accumulates its own aggregates (coagulate) (above) or attaches to the 
surfaces of the larger grains (below). 
 

 

Image 22: 
Kryo-SEM image 
(reflective electronic 
image) from the matrix 
of a dried out stamped 
soil sample. The 
structure is denser 
packed as in image 21. 
Large pores are often 
filled with coagulates of 
spherical fine silt and 
rough clay particles (e.g. 
quartz) (small frame). 
The inter crystalline 
porosity between these 
particles are in the area 
of 0.1 to 1µm pore 
diameter (see. chapter 
4.3.3) 
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Image 23: 
Surface of a quartz grain 
in the secondary 
electronic image- Detail 
out of image 22 (darker 
edge frame). The 
surfaces of the silt 
grains are coated with 
several stratum clay 
minerals. Inside these 
“coatings” lie 
intercrystalline porosity 
with pore diameters of 
max. 0.01µm. 
 

 

Image 24: 
Kryo-SEM image at 
normal climate 
(secondary electronic 
image). The oxalate tube 
in the front and the pearl 
necklet shaped structure 
in the background of the 
picture are selected 
examples of a lot of 
evidences from former 
and recent 
microbiological growth 
in the pore space of the 
stamped soil. The tube 
is lying on  “felt” out of 
clay minerals. 
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2.3.4 Determination of the CEC and the exchangeable cations 
At the negative loaded layer surfaces of the clay minerals, cations attach. This 

applies also to the outside surfaces as for the inner layers. At the surfaces and at the 

expandable interlayer they can be exchanged easily with other ions with equivalent 

loadings (Heim, 1990). The respective concentrations of the different cations at the 

loaded elementary layers of the clay minerals are subject to the concentration in the 

surrounding Electrolyte.  More important is their specific bond strength (assembly 

strength), because the cations are differing in their built-in strength, due to their 

relation between the valence and atomic size, this attaching is selective. 

Inside the periodical system, the assembly strength increases with the increasing 

valence from left to right and inside the same group from top to bottom with the 

increasing radius of the “bare”, non hydrated atoms. Out of these the lyotropic series 

results, in this the cations are sorted due to their assembly strength. Lyotropic series 

after HEIM (1990), the assembly strength increases from left to right: 

Li+ < Na+ < K+ < Mg2+ < Ca2+ < Sr2+ < Ba2+ < Al3+  

The cationic- exchange capacity (CEC) of a soil is the sum of the exchangeable 

cations, specified in mval/100g. 

For the cationic exchange capacity, not only the swellable three stratum minerals 

with their expandable Z layers contribute but also the surfaces of the clay minerals 

with their permanent charge. 

The CEC is a value for the activity and quality of the clay minerals in the soil. It is an 

important parameter for the biological-chemical reactivity of the soil (nutrient 

adsorption capacity, heavy metal binding, etc.) and for the soil mechanical attitude 

(swelling ability, thixotropy, plasticity, strength, etc). It depends on the pH value and 

is refers to the mineral soil to a neutral milieu (pH 7 or 8.2). 

The maximal possible CEC is at carbonate containing soils with a ph 7-8 the actual is 

the same as the effective CEC. In acid milieu, the actual CEC measured in the real 

pH value of the soil, stays behind the potential CEC at pH7 (Schwertmann, 1984). 

The determination of the CEC was carried out with the barium chloride method after 

Mehlich, as recommended in (DIN19684, 1977) for mineral soil. Five grams of an air 

dried soil sample are extracted four times with a ph 8.1 buffered loading solution out 

of Triäthanolamin and barium chloride. Thereby exchangeable soil cations are 

exchanged with   Ba2+-Ions. The exchanged soil cations in the solution are measured 

quantitatively with the atomic adsorption spectrometer (AAS). 

Afterwards the exchanged Ba2+-Ions in the soil material are exchanged back with 

Ca2+-ions with potassium chromate solution and precipitated with barium chromate. 
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The precipitated amount on changed and re changed barium is measured in the 

solution colorimetric. 

From the amount of the bariums per 100g soil and the equivalent weight of barium, 

the cations exchange capacity of the soil is calculated.  

Following the guidelines in KRETZSCHMAR (1984), this method was carried out at 

three samples on the stamped soil of Lintong. The results are summarized in image 

25. In AAS, the content of sodium, potassium, magnesium, calcium, iron and 

aluminium was measured. 

 

Image 25: 
The exchangeable 
cations with the total 
values and the 
potential cation 
exchange capacity in 
the three soil samples 
of the stamped soil in 
Lintong. At sample 
S008, the exchanged 
Ca2+-Ions were not 
measured. Iron and 
aluminium, at all 
samples, were under 
the detection limit. 

 

At the clay minerals in 100g stamped soil are 7 - 12mg Na+-, 12-15mg Ca2+-, 30 -

45mg Mg2+- and 500-600mg Ca2+-Ions attached and exchangeable. At lime 

containing soils, it is possible that- in the case of sample SIR (1) - the sum of the 

exchanged cations is over the loading equivalent of the CEC because at the loading 

procedure, lime is dissolved and enlarges the Ca2+ part. Aside from this, the vast 

accordance of the loading equivalent in the CEC with the sum of the exchanged 

cations, shows that the most important cations had been detected and that these are 

really derive from the agglomeration places of the clay minerals and not from soluble 

salts. 

According to SCHEFFER (1998) this cation layer of the soil minerals is typical for soils 

from farmland in a humid moderate climate. According to this Ca2+ predominates, as 

long as the pH is more than 5 (the pH from the stamped soil is between 6.7 and 7.0). 

Then follows Mg2+. The amount of K+- is mostly under 10%, the amount of Na+-

mostly under 1%, because Na+ is weakly bonded. 

In addition, the cation exchange capacity of the stamped soil goes with 20-

30mval/100g soil according to the normal values of mineral soil. These vary 
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depending on the amount and quality of the clay minerals between 15 and 

50mval/100g in the soil (Kretzschmar, 1984). Rich in humus upper soils can achieve 

higher exchange capacities. In table 3: there are listed the CEC values of the most 

important clay mineral groups 

 

Kaolinite Chlorite Allophane Illite Smectite Vermiculite original soil 
components 

3-15 10-40 10-50 20-50 70-130 150-200 200-300 

Tab. 1: Table 3: cation exchange capacity at pH7 in mval/100g after HEIM (1990) and 
KRETZSCHMAR (1984) 

 
 

 

3. Interaction between the solid phase, air and water in the soil 
Soil is a material, which is composed from different components and different phase 

conditions. It consists of a gas phase (air), liquid phase (water) and solid (mineral 

and organic components). The phase and the most important material technical 

properties of the soil are dominated, especially at binding soils with a high content of 

silt and clay, from the interaction between water and the solid phase. Thereby the 

clay minerals with the clay and fine silt fraction are of special importance. 

 

3.1 Types of bonded water in mineral soil 
Water that infiltrates into the soil or that is bonded by the soil can be divided into 

different “kinds of water”, owing to the type of binding at the solid. The forms of the 

binding with their properties are explained in image 26 and table 4. Which of the kind 

of bindings dominates, and therefore determines the consistency phase, depends on 

the complete water content of the soil and is also primarily on the proportion and 

quality of its clay minerals. 
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Image 26 left:  Binding forms of the water at mineral soil components.  
Right: Simplified picture of the phases of the soil and their transmissions, after HOUBEN 
(1994).The bonded water and the adsorbed water are summarised in the hatched areas. 
 

Differing water  
terms: 
 

Description and properties 

Free water Free water, is pore water in large pores (> 1mm) that moves freely in 
the pore space, following the laws of the hydro static pressure. In 
nature, it appears at free water saturation in the area of the ground 
water or at open rain. It leads to the dispersion of the clay mineral 
structure without any pressure from the surrounding. When this sample 
is taken out of the water, the free water is seeping due to gravitation out 
of the sample. 

Pore water/ 
Capillary water 

The pore water accumulates between (but not at) the clay particles. In 
the capillary pores, (0.1-1000µm pore diameter), due to the tension at 
the borders between air, water and solid wetting angles are created that 
lead to the formation of menisci between the mineral particles. 
The water menisci of the pore water have under pore pressure a 
cohesive impact onto the pore structure. The pore water is isotropic. It 
does not differ in density and concentration of electrolytes from the free 
water. Its movements are not controlled by the isostatic pressure, but 
from the capillary strength. Especially small pore radiuses are being 
filled with water already in the hygroscopic range are over 50% relative 
humidity due to the capillary condensation (see Chapter 4.3.3). Pore 
water can be removed by long drying at room climate or at oven drying 
at 50°C. 

Mineralkorn
Kristallwasser
Adsorbtionswasser
Gebundenes Wasser (diffuse Schicht)

Porenwasser  (Kapillarwasser))

Freies Wasser

Suspension

flüssig

bildsam
breiig
weich
steif

fest
schrumpft
nicht

Fließgrenze wL

Ausrollgrenze wP

Schrumpfgrenze wS
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Bonded water/ 
Diffuse layer 

The diffuse layer is a coating water film around the clay minerals, in that 
the loading potential between the loaded adsorbed water and the 
surrounding, non-loaded electrolyte is slowly degraded. The smaller the 
distance of the water molecules and the cations of the diffuse layer to 
the intra crystalline water, the more oriented, compact and denser they 
are supported and the higher are the cation concentration. The 
thickness of the defuse layer depends of the loading of the clay minerals 
and from the electrolyte concentration in the pore solutions. The ductile 
property of clay containing sediments is often explained on the strong 
formation of this diffuse layer. The bonded water is able to evaporate at 
room temperature. 

Adsorbed water/ 
intra crystalline 
water 

In moveable water dipole and cations, that are accumulating at the 
negative loaded tetrahedron layers (between the inner layers and at the 
surfaces). In the interlayer up to four layers of water can be 
accumulated(~10Å , depending of the cationic  assignment .This loading 
bonded water has to be seen as an undirected, compact hardly 
immoveable layer (Star layer), that acts more like a solid (Pimentel, 
1996). The intra crystalline water is being adsorbed in the hygroscopic 
humidity. Evaporation at temperatures between 100 and 200 °C. is 
reversible  
 

Crystal water/ 
structural water 

Not water in the main sense, but hydroxyl groups, which are tightly built-
in in the crystal grid of the minerals. In clay minerals, the crystal water is 
situated in the simple octahedron layers and in the additional 
octahedron layers of the four stratum chlorites. Only at temperatures 
more than 550°C (additional O-layer at the chlorides), the crystal water 
can be removed. The grid structure of the clay minerals is irreversibly 
changed. 

Table 4: Different kind of water at clay minerals (after (Heim, 1990), (Houben, 1994), 
(Scheffer, 1998) and (Pimentel, 1996). 
 

3.2  Swelling in clayey structures 

The properties of the above-mentioned types of waters implicate three different 

working swelling mechanisms. The swelling mechanisms are called intra crystalline 

swelling, osmotic swelling and mechanical swelling and deploy their effect with 

increasing water supply, in this order (ISRM, 1994), (Einstein, 1993). 

 

Inter crystalline swelling: 

The inter crystalline swelling relies on the hydration of exchangeable cations in the 

intermediate layer of swellable three stratum minerals and on the outside surface of 

the clay minerals. The impact of the hydration energy is spatially limited to the 

thickness of one elementary layer (~10 Å).Thereby maximal four water layers can be 

attached,  depending on the cationic loading (adsorbed water/ inter crystalline 
water). This is at the hydration of an intermediate layer equal to the doubling of the 

mineral volume (Heim, 1990). The agglomeration is adsorptive in the hygroscopic 

humid area (table 5). Depending on the cationic loading of the elementary layers at 

the inter crystalline swelling pressure between 200 to 400N/mm² can arise (Van 

Olpen, 1963).  
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cation 32%  
rel.humidity. 

52% 
 rel. humidity  

79%  
rel. humidity 

water 

K+ 11,9 11,9 12,1 non determined 
Na+ 12,5 12,5 14,8 non determined 
Ca2+ 15,2 15,1 15,5 19,0 
Mg2+ 15,1 15,1 15,2 19,5 
Table: 5: widening of an montmorillonite in Å, at different intermediate cations and relative 
               humidity (Mac Ewan, 1984) 
 

Osmotic Swelling: 

During the further filling of the pore spaces, the diffuse double layer agglomerates 

around the clay minerals, there, the electrical potential between the surfaces of the 

hydrate coating of the adsorbed water and the pore solution diminish. With the help 

of diffusion actions, the added pore water attaches into the diffuse layer. This  

agglomeration procedure tries to adjust the ion concentration of the diffuse layers to 

the concentration of the pore water (osmotic equilibrium). At diffuse double layers 

between two clay mineral surfaces or in the widened intermediate layer of sodium – 

montmorillonites the osmotic swelling leads to the swelling of the mineral surfaces. 

The degree of the osmotic swelling depends on the specific surface loading and the 

cations in the diffuse layers, mostly on the ion concentration in the pore water (Heim, 

1990). In contrary to demineralised water the osmotic swelling of water with high 

Electrolyte concentrations is reduced up to a tenth (Pimentel, 1996).The swelling 

pressure at the osmotic swelling is much smaller, than the one caused by inter 

crystalline swelling. They are in the range of 3N/mm² (Madsen, 1988). 

 

Mechanical swelling: 

The reason for the change of the content of free water is mainly of mechanical 

nature. The water agglomeration with increasing volume is favoured by the isostatic 

pressure from outside and it is called therefore mechanical swelling. It becomes e.g. 

operative at the storage of a soil sample under water. After Pimentel (1996) the 

swelling pressure of this swelling is ten cubing lower than at the osmotic swelling. 

 

3.3. The structural preservation effect of the water in binding soil 

Binding soil has in dry or dried condition a solid structure. This divides them clearly 

from the other rough grain kinds of soil such as sand or flint. The cohesive interaction 

in dry silt or clay is explained with the attractive force between the loaded (clay) 

mineral surfaces that become operative at proximity less than 1.5mm (Scheffer, 

1998). To this count: the Van-der Waalsche-forces between atoms and molecules, 
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Coulombsche forces between the positive and negative surface loadings and bridge 

bindings over chain molecules. 

 

Water access leads primarily to the softening and dissolving of the soil structure. 

Considering overall, the impact of water on the structure of binding soils is 

ambivalent, because, depending on the kind of water on one hand, it pushes the 

mineral structure apart (intra crystalline swelling. Osmotic swelling, mechanical 

swelling and dispersion) on the other hand keeps it also together (cohesive binding of 

the pore water in negative pressure). Therefore, the structure of clayey silt resists 

due to its large inner surface with the accordant capillary water content, much higher 

water contents then silty sand. In principle the cohesive and loosening mode of 

action due to the water content, replace each other successively. In different size 

pores, they also can exist in parallel. 

 

Important transitions in the cohesive mode of action of water: 

The first transition is in the hygroscopic humidity over 50% relative humidity, when 

over capillary condensation more and more pore water is available. The pore water 

eliminate the strong electrical bindings between the minerals, consisting of 

intersections of  inter crystalline water, or diffuse double layers and replaces it by less 

strong mechanical bindings of the surface tension. The gradually change of the 

binding quality, that starts here, can be seen as a first transition from a brittle to a 

ductile behaviour. It happens togester with an erratic reduction of the cohesiveness 

(see image 70 and image 72) and increases with the rising water content to the 

plasticity limit, at that the material, after the definition, reacts ductile. The second 

transition is between the plasticity limit and the fluid limit. The negative pressure of 

the capillary water gradually diminishes with further water supply.  

At the same time, the amount of free water increases. With the elimination of the 

cohesive water menisci, the mineral particles float apart and finally disperse in the 

surrounding free water. 

 

3.4. The function of the clay minerals in the soil structure of the stamped 
clay of Lintong 

 

In the structure of the stamped soil of Lintong, the clay minerals lay as thin coatings 

on the surfaces of the silt grains (see chapter 2.3.3). 

Only closely fitted on one side of the structure supporting silt grains, the main part of 

the clay minerals has no influence on the stability and the swelling property of the 
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complete structure. In the case of the swelling of the clay coating, the clay minerals 

can spread themselves unhindered in the open pore space and doesn’t put any 

pressure on the structure of the silt matrix. However, the same clay coatings can get 

swelling active, when they are covered with a rigid silica gel film from a silica gel 

consolidation (see. problematic of the swelling at a silica gel treatment in chapter 

4.3.5). Clay minerals and fine silt also lie, as a coating or in form of larger coagulates, 

between the structure building silt grains. In dry condition, they act as a binding 

media that binds the silt grains tightly together. Due to the strong electrical bonding 

forces at their mineral surfaces, the clays contribute at the grain contacts of the silts 

to the mechanical strength of the complete structure. 

The same clay structures in the grain that make contact between the silt grains are 

also responsible for the swelling of the soil in the hygroscopic humidity. Although the 

clay content of the soil is not especially high and there are no nameable parts of 

swellable clay minerals with voluminous, inter crystalline swelling (see Chapter 2.2.2, 

2.3.1 and 2.3.4), the stamped soil of Lintong reaches a hygroscopic expansion in the 

hygroscopic humidity of 2mm/m (see chapter 4.3.5). The water storage in the 

hygroscopic range is limited to the pore radius under 0.01µm, as it occurs in the 

stamped soil only in the clays and fine silts (see Chapter 4.3.3 and 2.3.3). The 

hygroscopic swelling of the earth can be traced back only on the intercrystalline and 

osmotic swelling processes on the surfaces of the overlaying clay minerals. Up to 

50% relative humidity hydrations processes at the cations of the clay mineral 

surfaces are dominant (intercrystalline swelling). At rising humidity (50%-98% relative 

humidity ), when the capillary condensation in the micro porosity between the clay 

mineral surfaces supplies more water, diffuse layers are built-in between the clay 

minerals. They enlarge due to the osmotic pressure and make the single minerals 

disks swell out. As this swelling mechanism of the stamped soil of Lintong takes 

place between all grain contacts of the silt matrix, the resulting swelling and the loss 

of strength of the whole structure is relatively high. The positioning of the clay mineral 

packages in the structure plays an important role. 

Therefore, the swelling in the hygroscopic range is, at compressed samples with the 

same composition that had been produced in the range of the liquid limit, 50% 

reduced (see chapter 4.1.3). A changed structure could be the reason for the 

reduced expansion of these samples. In water overspill, the clay packages wash off 

the silt grains. At the compacting with high water content, less coagulates are 

formed, as in general acknowledged (Houben, 1994). Probably at this form of 

production, the clay minerals attach more in the pore space and less in the grain 

gussets of the matrix structure. The reaction of soil structures to the fluctuations of 
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the humidity, especially in the hydroscopic humidity, is therefore not only limited to 

the amount and quality of the clay minerals. The positioning of the clay mineral 

packages in the structure of the soil is also an important influential factor for the 

material behaviour of the soil. It is for every soil material different and therefore 

should be considered in connection with conservation analyses of soil structures.  

 

The water reposition in the hygroscopic humidity could not be visualized with the 

Kryo-SEM images (chapter 2.3.3). Only at a further state of capillary filling with water 

contents in the range of the plasticity limit, it was possible to visualize the structural 

destroying effect of the water in the pore structure of the stamped soil (see Image 27 

to image 30). 

 

 

 

 

 

 

Image 27 Kryo-SEM 
image (secondary 
electronic image) of a 
stamped soil sample with 
about 18 mass % water 
content. Small swelling 
cracks grow to a new 
capillary pore system 
togester. Compact matrix 
areas (higher fine silt or 
clay parts?) can still 
sustain their structural 
conditions (left above), 
while others have already 
lost completely their 
structure and have 
dissolved in the free pore 
water (right above). 
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Image. 28  Kryo-
SEM image 
(secondary electronic 
image) of a stamped 
soil sample with 
approx 18 mass % 
water content. The 
fine pore system is 
bonded together from 
surface potency and 
capillary potency 
(right above) and 
coagulates (middle) 
are floating in the free 
water of new swelling 
pores. 
 

 

 
Image. 29 Kryo-SEM 
image (secondary 
electronic image) of a 
stamped soil sample 
with about 18 mass % 
water content. The 
swelling opens the 
structure and creates 
new pore systems. 
The clay fraction is 
loosening from the 
silt aggregates and 
disperses into the 
widened pore spaces. 
 
 
 
 
 
Image 30 Kryo-SEM 
image (secondary 
electronic image) of a 
stamped soil sample 
with about 18 mass % 
water content. The 
clay grain coatings 
are obviously 
swollen. They often 
are separate by a 
complete layer from 
the silt components 
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4 Impact of chemical swelling reducers and SE stone consolidant on 

the stamped soil in the excavation of Lintong 
4.1  Swelling reducers  

 

Since the beginning of the 90’S of the last century the impact of swelling reducing 

substances for the reduction of the hygric swelling of clay containing natural stone 

was analysed (Snethlage, 1991b), (Hilbert,1995). In the centre of these works had 

been cationic, bifunctional tensides, also carbon chains, that attach with their positive 

loaded ammonium double ends (R-NH3
+) to the negative loaded intercrystalline basic 

areas of the swellable clay minerals (Snethlage, 1991b). Ammonium ions are 

especially suitable for the substitution of exchangeable cations, because out of steric 

reasons similar strong bindings can be built up similar to the potassium ion to the 

tetrahedron layers of the clay minerals (see K+ -fixation und lyotrophen row) (Lagaly, 

1969), (Snethlage, 1991b), (Heim, 1990), (Corti, 1999). The use of the exchangeable 

cations at the Z-layers of clay minerals with the help of n-alkyl ammonium 

(CnH2n+1NH3) + is used, also, at the production of swelling preparations (Heim, 1990). 

In the application on clayey natural stone the swelling reducing impact of the bi 

functional tensides results from the displacement of the exchangeable cations 

through an ammonium group at the end of the tensides. Consequently, less hydrate 

able cations as the elicitor of the osmotic swelling in the intermediate layers are 

available (Heim, 1990). Also two opposite layers loading centre, that stick with the 

help of ionic binding at the coupling ends of the Tensides, were held together with an 

aligning alkyl group. 

The tenside 1.4– Butyl diammonium chloride (short BDAC) (0.2 Mol/l H2O) dissolved 

in water turned out as a suitable material for stone conservation in the context with 

the work of Snethlage and Wendler. Since then it is distributed by the company 

“Remmers” under the name “Antihygro“and is used in many cases in the field of 

natural stone conservation (Wendler, 1996b). Its mode of action is demonstrated as a 

schematic in image 31. To date, there are no examinations to the impact of these 

Tensides on clayey soil or adobe.  
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Structural fomula of  Buthyldiammoniumchloride 

 
 

T

TO

T

TO

T

TO

Z

Z

 
Three-layer clay mineral with K+ fixed 
Intermediate layer and swellable intermediate  
layers (assignment with hydrated, 
exchangeable Mg2+, Ca2+,Na+ -Ions 
 
 

Coupling of the negative loaded tetrahedron 
layers over cationic, bifunctional Tensides. 
Migration of the exchanged cations and the 
chloride ions in the pore solution 

Image 31:  Mode of operation of the cationic, bi functional tenside, Butyl diammonium   
  Chloride (active agent in “Antihydro”) in a watery solution (illustration after (Keßler, 
2000)). 
 

4.1.1 Preliminary examinations of the impact of the off the shelf swelling 
reducer at the stamped soil of Lintong (chapter deleted) 

 

Conclusion of the preliminary examinations 

The treatment of the soil with the cationic bifunctional tenside 1.4 Butyl diammonium 

chlorides, used in the stone conservation, leads to an explicit reduction of the 

swelling rates in the hygroscopic field. 

As shown by SNETHLAGE and WENDLER (1991), the swelling reduction can be 

improved with an increasing dose, until a material specific quantitative threshold 

value. Thereby, due to the effect of darkening, several treatments with a lower 

tenside concentration has to be preferred, rather than a singular treatment with a 

high concentration. The quantitative threshold value has been determined empirical 

by these tests at Sander sandstone. Without doubt, with this quantitative threshold 

value, the loading equivalent of the amount of tenside, has reached the CEC of the 

sandstone. The maximal effect of the bifunctional Tensides is reached  when all the 

possible loading positions, the one of the exchangeable cations, are clogged. 
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The inner surface and therefore the CEC of the stamped soil of Lintong is a lot higher 

than the one of the Sander sandstone. In contrary to the measured 20 – 30 

mval/100g in the soil is the cation exchange capacity (CEC) of the Sander sand 

stone between 4 and 12 mval/100g (Wendler, 1988). 

Out of this reasoning, in the soil, a higher amount of tenside is necessary to reach 

the maximal swelling reduction. A higher treatment dose and in combination with the 

aversion of the material against too high water contents (fluid limit), requires for the 

application, a higher concentration of tenside in the treatment agent then it is reset at 

the “Antihygro”. 

This high concentration of the Butyl diammonium causes a significant darkening of 

the material. In addition, the treated samples have an unpleasant smell. Both effects 

are, from conservation view, not suitable.  

A further negative effect of the described tenside treatment is the strong adsorption 

of the treated sample that leads with several days’ storage under 100% humidity to a 

transgression of the ductile limit. This can be probably ascribed to the chlorite entry 

during the treatment and the associated creation of hygroscopic salts such as CaCl2 

and MgCl2. 

 

4.1.2 Modification of the chemical swelling reducers 

The preliminary trials have shown that the treatments with bifunctional cationic 

tensides, as used in stone conservation, are capable of reducing the hygric swelling 

considerably. 

Starting from the formula from the stone conservation – 0.2 mol/l 1.4 Butyl diam-

monium chlorides- for the application at the soil from Lintong. The following 

modifications are necessary. 

 

Concentration 

Augmenting the active agent concentration for the reduction of the amount of solution 

in the application. 

Anion 

Exchange of the chloride-ions by anions that does not form hygroscopic salts in the 

pore solution. 

Length of molecules 

Adaptation of the alkyl group length at the inner and inter crystalline intermediate 

layer in the pore structure of the soil, for optimising the bridging of the loading 

centres.  
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Concentration 
For the modified alkyl, diammonium solution  0.66 molar solution concentration was 

chosen. For the complete loading of the loading centres of the original soil of Lintong 

at this concentration, you need a 0.19ml watery tenside solution per gram soil, 

around 20 mass-%. This value corresponds with the plasticity limit of the material 

(see Chapter 2.2.2). With the 0.66 molar solution it is possible to bring in the 

necessary complete amount of tenside solution into the soil, without exceeding the 

stability limit of the material. 

 

Anion 
As a substitute for the chloride-ions Oxalate-ions and sulphate, ions were chosen.  

For the production of the tenside solution, the alkyl diamines are dissolved in water. 

These basic solutions were mixed, for so long, with the oxalic acid (C2H2O4), or 

sulphuric acid (H2SO4), to reach a pH of 7. By separation of the protons from the 

acid, the alky diamin ions were protonised to double positive alky diammonium ions. 

The acid power of the sulphuric acid (pks1: -3; pKs2: 1.92) and oxalic acid (pks1: -1,4; 

pKs2: 4,4) are less than the dissociations constant of the hydrogen chloride (pKs: -7), 

that is used at the “Antihygro” for the protonising of the alkyl amine. However, both 

acids are stronger than the alkyl ammonium with pKs 9. 2. Therefore, at the chosen 

acids a complete protonising of the Tensides is warranted. 

In contrary to the “Antihygro” with the use of these cationic Tensides in the clay 

minerals in the soil, no chloride ions are released, but oxalate ions or sulphate ions. 

These anions precipitate out of the pore solution, together with the exchangeable 

cations as oxalates or sulphates. The tests for protonising with sulphuric acid were 

before long interrupted, because at the test application in pit II, after a few days, 

sulphuric effloresces appeared on the treated soil surfaces. The advantage of the 

protonising with oxalate acid is the stability of the oxalate salts that develop during 

the application. The calcium oxalates Whewellite (Ca (C2O4) * H2O) and Weddellite 

(Ca (C2O4) * 2H2O), that can be expected, are in water practically insoluble 

(Neumüller, 1979). In very small amounts, the development of (Mg(C2O4)*2H2O) or 

soluble alkaline oxalates are likely. No negative influence on the mineral structure or 

the hygric properties of the soil is to be expected from these salts. 

Furthermore, there already exists biogenic calcium oxalates in the pore space of the 

soil (see Chapter 2.3.3). 
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Length of the molecules 
The material examinations have shown that the stamped soil of Lintong contains only 

few swellable clay minerals. The swelling of the material can therefore be less traced 

back on the inter crystalline swelling of the three stratum clay minerals with swellable 

intermediate layers, than more on the inter crystalline, osmotic swelling at the diffuse 

double layers of the loaded clay particle surfaces. At the muscovite illite row and at 

the swellable smectite and montmorillonites, the distances of the Z-layers ranging 

from 3 Å (potassium fixation) up to  8 Å at maximal intra crystalline swelling (Heim, 

1990), (Klockmann, 1978). The intra crystalline distances of the loaded clay mineral 

surfaces can be extremely variable, especially because the tenside exchange takes 

place in a humid, therefore swollen pore space (see Image 32). 

With the different lengths of molecules of the alkyl diammonium ions, the test should 

be made to bridge optimally the distances between these loading centres. Starting 

from Diamines butane, that is best for the fixation of clayey sandstones, then 

continuing for the next preliminary trials the two next situated, alkyl chain were 

chosen (table 4). Over the protonising, with the oxalic acid out of these diamines, 

three bifunctional cationic Tensides with different length of molecules should be 

produced.  Their chain lengths are chosen so they can fit into the distances of closed, 

swollen Z-layers. 

 

 

  

Raw product with 
molecule length (Å) 

Protonising cationic Tenside structural form 

 

1,2-Diaminoethan 

 

C2H8N2 

 

3,75 Å 

 

 

 

 

C2H2O4 

 

Ethyl diammonium oxalate C2H10N2
2+ (C2O4

2-) 

H3N
NH3

 

2+
C2O4

2-

 

 

1,4-Diaminobutan 

 

C4H12N2 

 

 

 

C2H2O4 

 

Butyldiammoniumoxalate C4H14N2
2+ (C2O4

2-) 
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6,23 Å 

 

 

H3N
NH3

 

2+
C2O4

2-

 

 

1,6 Diaminohexan 

 

C6H16N2 

 

8,72 Å 

 

 

 

 

C2H2O4 

 

Hexyldiammoniumoxalate C6H18N2
2+ (C2O4

2-) 

H3N
NH3

 

2+
C2O4

2-

 
 

 

 Table 6:  Chain length of the bi functional Tensides due to the minimal, middle and   
       maximal swelling of the inter crystalline intermediate layers of clay mineral 
  

 
 
 
 
 
 
 
 
Image 32: 
Bridging of the 
intra crystalline 
and inter 
crystalline 
loading centres of 
the clay minerals 
with bi functional 
Tensides of 
different 
molecule length. 
The structure is 
swollen during 
the treatment 
(Müller, 2002)). 
 

 
 
 
 

 

Trocken Feucht

Sandkorn

Tonminerale Sandkorn

bifunktionale
Tenside
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4.1.3. Preliminary tests with modified, chemical swelling reducers 
(chapter deleted!) 

 

Results of the preliminary tests with modified, chemical swelling reducers 
(chapter deleted!) 
 
Summary and conclusion: 

The tests have shown that all used tensides, exchange cations from loaded stratum 

silicate surfaces. Obviously, they succeed in the coupling at the loading centres, 

because with all the Tenside treatments the swelling rate of the soil samples is 

reduced. The treatment with ethyl diammonium achieves the best results. Because of 

the treatment with some tensides, the hygroscopicity of the samples rises and an 

obvious darkening is to be seen. Thereby the influence of the alkyl chain length is 

apparent. The longer the alkyl chain, the more the water absorption rises. This effect 

can be partly connected with an overdose of the Tensides during this treatment. It 

can be assumed, that positive loaded ammonium ends of the tensides, that could not 

find a coupling space, due to the overdose, hydrate and so raise the hygroscopicity 

of the soil. The amplification of this effect with rising alkyl chains shows, that short 

molecules are better capable as swelling reducers, as it is easier for them to reach 
the loaded surfaces of the clay minerals. In table 7: are summarized results of the 

preliminary tests. In the overall evaluation, SE and SEBH have the best results. 

Additional, this examination has shown that pellets out of elutriated soil are so 

different on their pore space of the undisturbed sample material, that they cannot 

replace the original undisturbed soil in the further test series. 
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Treatment 
type 

Colour 
impression 

swelling 
-90% rel. 
humidity 

swelling 
-100% rel. 
humidity 

Swelling rate Adsorption Ion exchange 

SE 0 + +  + +   + + - + + + 

SB - + + 0 + + - - + + 

SH - -  - - - - + - - - + + 

SEBH -  + + + 0 + + + - - - + + + 

SH2O 0 0  0 0 0 

0            like untreated pellet 
+  good 
++ very good 
+++ exceptionally good 

 
-             bad 
- - very bad 
- - -  exceptionally bad 

Table 7:        Compilation of the assessment criterion for the treatment types with the different 
                      alkyl chain length. The evaluation refer always direct to the untreated pellet 
 

 

4.2      SE (silicate ester) stone consolidant  

There are various possibilities to consolidate building materials out of soil and 

improve their resistance against environmental influences. The various methods from 

the addition of animal protein, strengthening with fibres, to the impregnation with the 
juice of banana leaves are described in detail in HOUBEN and GUILLAUD (1994) and 

due the existing state of information evaluated. 

Thereby the aim is mostly to produce new building material similar to adobe or 

stamped soil, their product properties can be directly manipulated by the addition of 

cement, bitumen, straw, puzzolana and similar.  

However, for the consolidation of already existing earth structures the choice of 

methods is greatly reduced. Especially when the surface should not be damaged and 

their optical appearance should not be changed.  

The research in this matter is concentrating, similar to stone conservation, on the 

application of synthetic organic polymers like acrylates (Koob, 1990), (Zhou, 2000), 

Polyurethane und Polyisocyanates (Coffman, 1990) or silicate binders similar to 

sodium- und potassium-silicate (Li, 1990), fluoric silicates (Huang, 1990) and silicate 

ester (Chiari, 1990), (Chiari, 2000a), (Coffman, 1990). 
Often the aim of this consolidation was to make the historic clay brick wall 

“weatherproof”, resistant against rain, wind, frost, temperature fluctuations and 

variations of humidity. SELWITZ (1995) published this comprehensive securing 
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treatments with combinations out of structural consolidation, sealing of the surface, 

synthetically enhanced protection of the flanks and closing water repellent treatment  

(Selwitz, 1995). 

Overall, the opinion had established that chemical consolidation on existing soil 

structures are only necessary and make sense only in a few particular cases. Mostly 

roof constructions and drainage systems are sufficient to eliminate running water, the 

main damage cause at cultural heritage sites out of soil and adobe (Taylor, 2000).  

Furthermore the long-term effects of consolidations, is in the most case, not 

sufficiently calculable (Taylor, 2000). Even approaching, in stone conservation, every 

consolidation has to be adapted to the individual problems. CHIARI has summarized 
the main criteria for a sustainable chemical surface treatment of soil (Chiari, 1990): 

1.      Water permeability, fluid and vapour 

2. The porosity must to stay open. 

3. Rising of the mechanical strength and weathering resistance in dry and humid 

conditions. 

4. Deep penetration of the consolidant. 

5. No formation of a film or scales. 

6. The thermal dilatation of the consolidant must be similar to the material. 

7. No change of colour or gloss. 

8. Enhancement of the resistance against stress that occurs with salt crystallising, 

capillary water transport and frost dew change. 

9. Stability of the polymerised consolidant against water, oxidation and UV 

irradiation. 

10. Cost effective. Easy to apply also on wet material.   

11. Non-toxic  

12. Reversible 

   

The author points out, that none of the known products fulfils all of these 

requirements, and especially the reversibility is at the consolidation of soil, only in 
very few cases possible. During the previous years of the consolidation of soil, one 

had come to the opinion that the chemical consolidation of soil is equal to the 

production of a new material ,“consolidated soil”. To guarantee the long-term success 

of the consolidant, the complete knowledge of the hygric and physical data of the 

new building material is essential. The ideal should be, to stay as close as possible to 

the properties of the original (Taylor, 2000), (Chiari, 2000a). During the examination 

of the hygric and physical properties of the treated soil, the research for the 

conservation of soil is still far away from the standard of stone conservation. In many 
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cases, the consolidations had not been conducted by material analyses, as it is 

standard practise in stone conservation, for many years (Snethlage, 1997a). 

For the selection of a suitable consolidant, it is important to define the aims exactly. 

As explained earlier (see Chapter 1.2) the damaging of the soil surface in the 

excavation is mainly caused by external mechanical stress. The damaging potential 

of the fluctuation of the indoor climate is not yet resolved.  

 In this case, the securing of selected imprints in the excavation of the Terracotta 

Army in Lintong, the aim of the consolidation, is to improve the resistance against 

abrasion and compressive strength at the surface. Additional, the mechanical 

resistance of the surface shall be slightly raised to a depth of a few centimetres, 
without creating an over consolidated scaling. All the others material properties 

similar to vapour permeability, colour impression, water absorption, hygroscopicity, 

swelling attitude, etc. should stay, as much as possible, unchanged, because the 

surfaces  are still, after the consolidation, grown together with the “alive soil”. It has to 

accede all the interactions of the soil with its surroundings (water adsorption, water 

desorption, water diffusion and hygric swelling and hygric shrinkage). The 

consolidation must not give protection against rain and other direct water infiltration. 

 
With regard to this problematic, amongst the known consolidant, the use of silicate 

ester (SE) or respectively Tetra ethyl-ortho silicates (TEOS) lends itself as a solution. 

In contrary to most of the other systems, the use of TEOS in soil structures has been 

analysed several times (Coffman, 1990), (Chiari, 1990). Positive experiences with the 

long-term impact of the silica gel in the soil are well recognized (Chiari, 2000b). 

The advantages of the consolidation of soil with Tetra ethyl-ortho silicates (TEOS) 

are: 

• Moderate consolidation, deep penetration; In contrary to diisocyanides there is only a 

little risk of over consolidation and the formation of scales,(Coffman, 1990) 

• No optical change of the material 

• Chemical compatibility of the binding media silica gel with mineral components of the 

soil 

• No inserting of foreign ions, such as potassium silicate or fluoric silica  

• No formation of a film on the surface 

• Easy application and handling 

• Well known material from stone conservation 

• Non reversible, but possible to treat again 

 

 



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 62

Mode of operation of the silicate ester (SE) 
(Chapter deleted!) 
 

4.2.1 Preliminary examinations to the selection of the SE stone 
consolidates, at the stamped soil of Lintong (Chapter deleted!) 

 
Results and conclusions 

After the drying out of the samples, the soaked area of the cuboid samples cannot be 

distinguished optical from the untreated soil over the capillary seam of the soaking. 

The surface is neither darkened nor shiny. The abrasive strength and the stability of 

the edges are at all treated types, with the exception of F300E1/2 in the consolidates 

zone, clearly increased. Also for the treatment type, F300E1/2, a slight increase of 

the abrasive strength is noticeable. 

In the pore space of the cylindrical samples, on all types of treatment almost the 

same amount of silica gel is separated (see Gel separation Table 8). 

The highest concentration with eight mass percent was measured at the double 

treatment with 2xF300E½. The values of the gel separation of about 30 mass percent 

of the consolidant adsorption with F-OH and F300E correspond to the information 

given in the technical data sheet (see appendix 7.8). 

The surprisingly high adsorption and gel separation with the diluted treatment with 

F300E, 1/2 has to be traced back; probably to an excessively long soaking. After the 

saturation of the cylindrical sample, it remains over 30 min in capillary contact to the 

treatment solution. In this time, the Monomer concentration in the sample could be 
augment by the evaporation of the solvent. 

Through the comparison of the ultrasonic-transmission speed, after the consolidation 

(table 8), it seems, nevertheless, to be for the single treatment with a lower active 

substance concentration (F300E1 /2), a lesser consolidation effect. But this 

comparison should not be evaluated  too rigorously , because the natural variations, 

depending on the material, of the ultrasonic speed of the soil- with the equilibrium 

moisture at 40% and 20C° - is between 1.2 and 1.6 km/s (Fehler! Verweisquelle 
konnte nicht gefunden werden.). 
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Gel separation at the cylindrical samples F-OH F300E F300E 1/2 2 x F300E 1/2 

Agent adsorption (kg/m²)  9,17 9,05 6,06 11,77 

Gel separation (kg/m²)  3,17 2,68 1,83 2,58 

         

Agent adsorption (g/gram soil) 0,17 0,23 0,20 0,39 

Gel separation (g/ gram soil) 0,06 0,07 0,06 0,08 

Gel separation (M.- %  Treatment solution) 34,55 29,65 30,25 21,62 

Ultrasonic speed of the cylindrical samples (km/s) 1,85 1,95 1,5 1,8 

(average value per sample)      

         

Gel separation at samples (kg/m²) 3,65 5,10 4,32 8,65 

Table 8: Results of the mass balances before and after the soakings 

 

Better comparable results for the increase of the resistance are given by the 

ultrasonic measurements on the profiles of the cuboid sample. The absolute 

transmission speed is shown in image 33. Since the initial values for the ultrasonic 

speeds in the untreated material differ strongly (right-hand of the curves in fig33), for 

the evaluation of the strengthening effect of the different treatments also including the 

relative rise of the ultrasonic speeds from the non consolidated to the consolidated 

profile sections, are compared (fig 34) 
The visible penetration depths of the treatment (capillary edge during the soaking) 

are dependant on the treatment 1.5 – 3.5 cm. The effect of consolidation seems to 

continue even further than the visible soaking horizon in the ultrasonic profile. For 

F300E the acoustic velocities indicate a consolidation effect up to 4 cm profile depth 

(image 34). 

At all treatment types the ultrasonic-transmission velocities have a maximal value at 

the soaking range, that diminish with the sample height (see image 33). Speeds of 

1.8 to 2 km/s, as previously achieved with the treatment, with F-OH and 2x F300E½ 

are 20 to 25% over the average value of the untreated soil (1.5 km/s) and can be 

clearly traced back to the consolidant effect of the treatment. 

 

Comparing the decline of the ultrasonic velocities (image 34); it is obvious that the 

most augmentation was reached with F-OH. At this treatment, the ultrasonic 

velocities are at the base 45% over the initial value. After a penetration depth of 3 

cm, they decline quickly to the initial value. In addition, a rising of the curve can bee 

seen direct at the base at this treatment. This course of the curve and the large rise 

of the transmission speed refers, compared with the flatter curves of the other 
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treatments, to a higher potential for the over strengthening and scale formation. 

Especially dangerous is to valuate, the obvious “compaction” in the first centimetres 

of the profile. 

The double treatment with diluted F300E (2xF300E1/2) has, with a 25% increase of 

the ultrasonic velocity, the second highest effect of consolidation. The course of the 

curve of the consolidation profile is further balanced as at the F-OH. The depth of 

penetration is 2.5-3cm less than the one with F-OH (3.5-4cm). In contrast, the 

consolidation effect of the single treatment with F3001/2 is very small and with 1.5cm 

not sufficiently deep. 

The consolidant effects of the treatment with F300E penetrates furthest and diminish 
in the main, continuously and at the slowest. The maximal ultrasonic speed is 23% 

over the initial value. The danger of an “over consolidation” is, therefore, lower as at 

the F-OH and 2xF300E1/2. 

Regarding the comparison of the consolidation profiles in the stamped soil of Lintong, 

the single treatment with F300E has to be preferred to the other types of treatment. 

 

 
Image 33 Profile 
of the ultrasonic 
velocities in the 
soil cuboids, after 
the soaking with 
SE stone 
consolidant 
 
 

 

 

 

 

Image 34 Relative 
decline of the 
ultrasonic speed in 
the profiles of the 
cuboid samples 
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The investigation of the consolidating silica gel films in the scanning electron 

microscope (SEM), can show characteristic typologies of the creation of the film and 

the penetration depth of the consolidation (Alvarez de Buergo, 2000). The images of 
single, small details, of the pore structure can only give conditional conclusions; if a 

consolidation was successful or not. Furthermore, it is not possible, to document in 

single detailed, images the overall picture of longsome microscopic examinations.  

Nevertheless, the SEM examinations provide the direct proof for the separation of the 

silica gel in the pore space of the consolidated material. The main observations are 

shown in images 35 to image 40.  As a conclusion, the SEM investigations have 

given the following results: 

With all the treatment types, it was possible to detect the silica gel films in the pore 

space. The Gel film at F-Oh seems to be thicker, than at the different treatments with 
F300E.  In the Gel there are nearly everywhere shrinkage cracks. Large pores (10µm 

– area) seem to be partially entirely filled with the Gel. In other finer porous areas, 

there cannot often be detected, any film. F-OH appears not to penetrate in the finest 

gussets of the pore structure. 

The Gel films of the treatment with F300E and 2x F300E1/2 are, in comparison, finer 

and covers the whole area. Nearly all the structures are covered with fine films. Their 

evidence is often not easy to prove, due to the low amount of shrinkage cracks. 

By the single treatment with F300E1/2, only on a few areas, it is possible to find an 

obvious gel film. Either it has not been formed everywhere or it is so thin that it is 

difficult to detect it in the SEM. 

The results of these preliminary examinations only regarding the described form of 

application on the stamped soil of the intermediate walls of Lintong. They cannot be 

transferred in anyway directly to other clay samples or adobe samples. Other 

consolidates could perhaps attain better results. The results of the preliminary 

examinations show, that for the stamped soil of Lintong, a moderate consolidation is 

possible with silica acid ester. It is possible to achieve penetration depths to a 

minimum of 4cm with a balanced consolidation profile. The silica gel is connecting 

well to the mineral surfaces of the pore structure and can build up mineral coatings, 

grain-to-grain bridge connections and fillings of the gussets. The resistance against 
the surface abrasion is augmented. The visual impression is not altered. From the 

examined selection, the single treatment with F300E has arrived at the best results. It 

is, therefore, chosen for the following examinations. 
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Image 35 The soil after the consolidation with F-
OH silica gel with sine shaped shrinking cracks 
Coating the loose grain bond 
SEM image, image bottom line correlate to 80µm 

Image 36 Image cut out of image 35. Large silica 
gel bridge is connecting silt components over a 
larger pore.  
SEM image; Image bottom line correlate to 35µm 
 

 

  
Image 37 Grain bond, after the consolidation with 
F300E. Two large quartz grains, covered with fine 
clay particles, are completely covered with silica 
gel. The covering enhances the bondage of the 
grains in the grain gussets area. Here two 
characteristic shrinking cracks that the grains are 
covered with gel.  
SEM image; Image bottom line correlate to 70µm 
 

Image 39 SEM Image; Grain bond after the 
consolidation with F300E. The structure out of 
fine silt grains is coated with clay minerals. The 
complete structure is coated with a fine Gel film. 
The Film binds the clay mineral to the grain 
surfaces. It gives the structure protection against 
water aggression and mechanical abrasion  
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Image 39 SEM-Image; Grain Bond after the 
consolidation with F300E. Pores with a diameter 
of about 10µm are lined with a silica gel. By 
the breaking of the sample, the Gel film is 
broken open. The film here is relatively thick 
and has been broken at arched drying cracks 
into small flakes. 

Image 40; cut out of image 39: Waste edge of the 
silica gel, this is in this area approx 0.5 – 1µm 
thick. The gel is strongly bonded with the 
substrate. Through the breakage of the sample, 
the gel is adhered with a thin substrate layer, 
loosened from the substratum.  

 
 
 

4.3  Laboratory tests to the effect of modified chemical swelling reducers 
and SE Stone consolidant (F300E) on the original stamped soil of 
Lintong 

 
4.3.1. Treatment material, objective target, sample taking 
 

For further examinations of the surface treatment of the soil structures, according to 

the results of the preliminary tests, the following treatment materials have been used: 

Swelling reducers: 

• 0.6 molar, watery solution of Ethyl diammonium oxalate, abbreviation: DE 

• 0.6 molar, watery solution of Ethyl-Butyl- and Hexyl diammonium oxalate in 

the mixture 1:1:1; abbreviation: DEBH 

SE- consolidation: 

• SE (silicate ester) consolidant Funcosil 300E –Fa. Remmers; abbreviation: 

F300E 

In addition, the effect of single treatments of swelling reducers and consolidation, 

as the combination of a swelling reduction treatment with subsequent silicate 

ester consolidation, has been compared in all tests with the untreated soil. 

 

The aim of this examination sequence is, to work out the changes of the most 

important material parameters caused by the treatment. Over the effect of ethyl silica 

esters onto soil, there is far less data (Taylor, 2000); the effect of chemical swelling 
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reducers on soil has never been analysed. Furthermore, the results of this 

examination give the necessary database for the problem, which of the introduced 

treatment is useful and justifiable due to conservation and restoration evaluation 

criteria; whereas the conservation evaluation of the material change, due to the 

treatment at soil structures is not jet clear. On the other hand, in stone conservation, 

because of long experience and systematic examinations it has been largely 

standardised (Snethlage, 1997a), (Sasse, 1996), (Snethlage, 1997b), (Snethlage, 

2002). The material examinations on the original soil and the preliminary test with 

artificially produced samples have shown, how difficult it is, to reproduce artificially 

the stamped soil from Lintong with its 2000 years of stratification, so that the new 
material is comparable in structure, pore space distribution, mechanical and hygric 

properties with the original. 

Therefore, the test row has been carried out, not with reproduced material, but with 

formatted samples out of undisturbed original material. The thus far analyses for the 

chemical modification of soil from archaeological excavations, mostly work with 

artificially produced clay samples (the samples were often made out of the powder of 

the original clay with the addition of water in standardised sample forms). The 

examination pieces for the following test series have been drilled and sawed out of 

the dry soil. It has been worked in the dry drilling and dry sawing method. Thereby 

unsiltted, diamond core drill and diamond saw plates were used. They are normally 

used for wet drilling and sawing of stone. 

The formatting of the samples requires, due to the fragile material, very diligent and 

careful working. While core drilling, it is very important to vacuum the drilling dust 

away.  

The original material out of China has been analysed in Germany. The source was 

limited. Therefore, smaller test body masses have been chosen, than they are 

usually for material analyses after DIN. Furthermore the soil is very often pervaded 

with shrinkage cracks, so that it was not possible to produce a connected 16cm 

length formatted sample.  
For the test series drilling cores with diameters of 3cm and 4.5cm, have been taken 

out of undisturbed soil block; from the north end of the stamped clay wall between 

G18 and G18 in sector T21 of the pit II (see: appendix 7.1). Out of this, discs (Sc), 

columns (S) and irregular small samples have been formatted. Altogether, the series 

comprises of 60 samples. The exact amount of samples, their formats and their 

treatments are listed in table 9. 

 



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 69

Identification 
code of the 
treatment  

A B C D E F 

treatment - F300E DE und 
F300E 

DEBH und 
F300E 

DE DEBH 

column ( S ) 
d:~ 3 cm   
h: ~5 cm 

 
4 

 
4 

 
4 

 
4 

 
4 

 
4 

disc ( Sc ) 
d:~ 4,5 cm   
h: ~0,6 – 0,8 cm 

 
4 

 
4 

 
4 

 
4 

 
4 

 
4 

small samples  
( Sa ) 
m: ~ 80 g 

 
2 

 
2 

 
2 

 
2 

 
2 

 
2 

F300E   (SE (silicate ester) stone consolidant Funcosil 300E – Fa. Remmers) 
DE  (swelling reducer: 0,6 molar, watery solution of Ethyl diammonium oxalate) 
DEBH (swelling reducer: 0,6 molar, watery solution of Ethyl-Butyl- and Hexyl di 

ammonium oxalate in the mixture 1:1:1) 
Table 9: List of the samples of the test series, for analysing the effect of chemical 

swelling reducers and SE stone consolidant on the original stamped soil of 
Lintong 

 

 

4.3.2 Treatment of the test pieces  
The double treated series, C and D, have been treated with swelling reducers, before 

the consolidation (F300E).  

 

Treatment with modified swelling reducers (DE and DEBH) 

The treatment of the sample series C, D, E and F, with modified swelling reducers, 

was carried out for all the samples in parallel. With sprayers, the respective treatment 

solution was sprayed singularly on the formatted samples, in three identical dosage 

steps. Between the applications steps, there was always a time delay of five hours. 
To enable the tenside solution to distribute evenly in the sample, the samples have 

been singular packed in sealable PE (polyethylene) bags, in an exsiccator at 100% 

relative humidity in the waiting time and for further 48h after the last treatment. 

Therefore, it was possible to control, for every sample, the absorbed amount of 

treatment medium, independent from the loss of solvent due to the application. 

Overall, it was attempted to achieve for every samples as close as possible to the 

ideal metering target value from 0.19ml solution per gram soil (see Chapter 4.1.2). 

The gravimetric measured medium absorption of the samples is shown in image 41.  

Although the measurement of the wet samples cannot be extremely exact (water 

films, small loss of material during the handling of the samples, etc.) the application 
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amount could be adjusted relatively accurately to the aimed region of 0.19g/g soil. In 

addition, the dry weight increase after the tenside treatment (image 41) is in the 

region of the theoretical mass increase. This is calculated out of the molar mass of 

the tensides for the soaking with 0.19g solution per gram soil. The theoretical values 

are 0.019 g/g soil for the DE solution (series C and E9 and 0,023g/g soil for the 

DEBH solution (series D and F). 

In contrary to the high dose treatments of the preliminary examinations (see Chapter 

4.1.3), the tenside treatment of the series C, D, E and F had no effect of the optical 

appearance of the sample items. 

 
 

    

 

  

 

 

 

 

Image 41 Absorption of the medium and increase of the dry weight at the treatment with 
modified swelling reducers 
Series C and E: 0.6  molar watery solution of Ethyl diammonium oxalate (DE) 
Series D and F: 0.6  molar, watery solution of Ethyl-Butyl- and Hexyl di ammonium 

oxalate in the mixture 1:1:1 (DEBH) 
 

Treatment with SE (silicate ester) stone consolidant (F300E)  

The samples of the series B, C and D have been capillary soaked, as described in 

chapter 4.2.1. However, the time of the soaking was not preset (1h in the preliminary 

test). After the sample was completely capillary soaked, then place up side down on 

the grid, it was dabbed off, weighed and put into a climatised box. After the 
treatment, the samples were stored for seven weeks in an acclimatised box of 75% 

relative humidity and 20°C. 

The Gel separation rate (%) and the separated gel (g) were determined by weighing 

before and after the treatment (image 42). With an average 4.8 to 5.1% by weight 

polymer content, the values correspond to the values of the mass adsorption of tests 

with silicate ester on clays and adobes in Fort Seldon, USA (Coffman, 1990), 

(Selwitz, 1990). The preliminary treatment with swelling reducers (series C and D9 

does not seem to have any effect on the separation of the silica gel. 
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Accordingly, referring to the results from the preliminary test the treatment with 

F300E has no influence on the optical appearance of the test items.  In addition, the 

series C and D with the double treatment does not differ optically from the untreated 

material. 

The scratch resistance and the edge stability are increased noticeable at all of the 

consolidated samples. 

 
image 42 Gel 
separation 
rates in mass- 
% of the 
adsorbed 
treatment 
medium and 
the 
percentage by 
weight of the 
incorporated 
silica gel for 
the samples 
of the series 
B,C and D; 
 

 

 

Average value of the series: 

 % g/g S. 

B: 25 0,048 

C: 26 0,048 

D: 27 0,051 

 

4.3.3 Analyses and results to the porosity  
The condition of the pore space is one of the basic parameter for the moisture 

transport and the storage capacity of porous mineral building material (Krus, 1995). 

The pore space is the place in the building material, where all the decay relevant 

chemical and physical processes such as water storage, salt crystallisation, solution 

processes, separation processes, etc. take place (Fitzner,1994). Also in the building 

material soil, the processes of the moisture transport and moisture storage are 

controlled by the porosity. In contrary to the digenetic hardened natural stone, the 

porosity of soil has, however, no constant value. Osmotic swelling, suffusion and 

collimation of clay and silt components can, within two to three water saturations, 

change the character of the porosity greatly. In the case of the soil mechanics and 

the classical hydrogeology, the description of the whole pore volume of classical 
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material is restricted and therefore limited to the determination of the complete pore 

volume plus the usable porosity (Hölting, 1996). In the soil science, however, one 

also deals with transport activities of the unsaturated zone. Akin to, building physics 

these transport mechanism happen in the three-phase system of, mineral phase, 

water phase and gas phase. 

The pedological methods for recording of the porosity in the unsaturated zone are 

therefore transferable to the system soil as a building material in many areas. For the 

qualitative and quantitative description of the porosity, here the microscopically 

analyse of impregnated thin section samples (Cousin, 1999), mercuric porosimetry 

and gas adsorption measurements is used (Richard, 2001), (Echeverria, 1999). 
The literature for the conservation of soil was limited until now, to the microscopic 

analyse (Shekede, 2000). At COFFMANN (1990) for the first time, the mercuric 

pressure porosimetry  for verifying of an adobe consolidation with Di isocyanides and 

stone consolidant OH was tested. In this case, the values of the consolidated 

samples do not differ from the values of the untreated one.  

 

For the roofed pits in Lintong, the soil can be seen as “dry”, porous mineral building 

material with stable pore space structure. It is not planned in the future to exposure 
the soil to free water entry, because this could certainly destroy (treated and 

untreated) the structures that have to be conserved. Under the assumption, that the 

soil structures are also kept in the future in the hygroscopic humidity and at water 

levels under the plasticity limit (water content < 18 mass. - %), the structure and 

porosity of the soil stays the same. In this “unsaturated” condition, there are the same 

principals for the behaviour of water in the pore space, as with clayey sandstone, 

water vapour adsorption, vapour diffusion, surface diffusion, capillary condensation 

and capillary transport. They are explained in detail in (Klopfer, 1974), (Kießl, 1980), 

(Krus, 1995) and (Snethlage, 1984). 

Just like natural stone, for the soil structures in Lintong, the effects of the 

conservation treatments on the porosity of the material, have to be tested (Sasse, 

1996). 

The tenside treatment with a maximal chain length of 9 angstrom should not have 

any effect, with the exception of the smallest pore radiuses, on the porosity of the 

soil. At the consolidation wit silicate ester, it is to be predicted that there is a 

decrease of the overall porosity. The examinations are related only to the so-called 

primary porosity of the soil (Scheffer, 1988), that depends on the granulation and the 

grain shapes of the structure. Secondary pores such as drying cracks, drilling holes, 

root channels, etc, that are only interesting for the seep flow, were not recorded. 
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Their amount could be minimised by the small format of the samples. For the 

classification of the pore sizes, different nomenclatures, exist depending upon the 

question (see. table 10 :). The following analyses evaluate the properties of the water 

in the complete primary pore spectra of the soil material, from the nanometre to the 

millimetre range. If there are no special notes, then this text is based on the building 

physics nomenclature. This classification comprises of the widest pore size spectra 

and is related to different water transport functions in its classification. 

 

Soil science (Scheffer, 1998) 

(availability for plants) 

Fine pores 

< 0,2 µm 

Middle pores  

0,2 – 10 µm 

Rough pores 

Building physical  
classification (Klopfer, 1985) 
(water transport mechanism)  

Mikro pores 
< 0,1 µm 

Kapillary pores 
0,1 – 1000 µm 

Makro pores 
> 1mm 

IUPAC-classification (Sing, 

1985), (Gregg, 1982) 

(adsorption mechanism) 

Mikro pores 

< 0,002 µm 

Meso pores 

0,002 – 0,05 

µm 

Makro pores 

> 0,05 µm 

Table 10: Classification of the pore diameter in the soil science, building physics and 
applied chemistry. 

 

 

Analyse methods (Chapter deleted!) 
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Image 43  Typical water vapour sorption isotherms for clay and other porous building 
materials. The vapour pressure of the surrounding air is related to the approximate pore 
radius, which should be filled. Accordant to the cylindrical capillary model. Illustration after 
(Kießl, 1983). 
 

 

Analyses results 

 

The graphics in image 44 show the influence of the treatment on the dry gross 
density and the complete porosity of the test pieces. The dry gross density of the 

untreated soil range between the extreme values 1.55 and 1.6g/cm3. Over 90% of 

the raw density values in the series E and F are also inside these marks. The values 

of the series B are at 50%, the series C and D are100% over the maximum value of 

the untreated series A. For the treatment with ethyl silicate ester, there can be 

registered a distinct increase of the raw density and a similar decline of the complete 

porosity. The single treatment with swelling reducers (series E and F) has in contrary, 

results in no measurable changes of the raw density and of the complete porosity. 

Comparing the average values of the porosities, the pore volume of treatment type B 

is reduced by 5.7%, for D by 7.8% and for C yet more by 10%, while the average 

porosities of the series E and F do not differ more than 1% from the initial value. 

                       For better comparison, for the general classification of these changes in the building 

material clay, it has to be added, that after the classification of the German clay 

building rules in the DIN standards for the building material, clay are summarized, 
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and the transition of straw clay to massive clay is at a gross density of 1.7 g /cm³. 

The upper limit of the massive clays that are used as stamped clays is given with 2.2 
g/cm³. Clay building materials with raw densities of 0.3 und 1.2 g/cm³ are classified 

as light clays. The clay bricks (Adobe) that are more often mentioned in the 

conservation literature, mostly have dry gross densities of 1.3 – 2.0 g/cm³ (Walker, 

2000); (Houben, 1994). The German classification in clay building material, out of 

light clay, straw clay and massive clay is international not used. 

 Inside this large bandwidth of the clay building material, the changes of the variables 

through the treatment can be classified as unimportant.  Nevertheless, a reduction of 

the porosity at 10Vol %, due to the treatment, as in the case of the series C has to be 

seen from conservation view as a clear intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 44 Statistical distribution of the raw densities (diagrams left) and the porosity 
(diagrams right) treated (row B-F) an untreated (row A) samples. Single values in the rows: 
A-29; B-6; C-7; E-6; F-6. 
 

Amazingly the dry gross density for the double treated series C and D is up by 2-4 % 
higher than at the single consolidation in series B, even though the separated gel 

mass is nearly identical at around 5 mass percentage (see image 42). The reason for 
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these differences in the dry gross density is probably in the relative widened pore 

structure in series B during the impregnation with F300E.  

Even before the impregnation, in equilibrium condition with the ambient air humidity 

(approx 40% relative humidity, 20°C),  the volume of the samples, that are treated 

with swelling reducers, is calculative to around 0.5% less than at the series B, due to 

the minor hygric swelling (see chapter 4.3.5). At the capillary impregnation with the 

consolidant and the subsequent storage at 75% relative humidity, the volume 

difference of the series would increase, so that in the case of series B, compared 

with the pre-treated series C and D, a relative widened (swollen) pore space would 

be consolidated. After the separation of the silica gel, the stabilised pore structure 

cannot shrink any more in adequate dimension, during the drying. Therefore, the 

measurements in the series C and D have a higher dry gross density and a lower 

complete porosity than the single consolidated samples of series B. 

The pore radius distribution from the mercury porosimetry is shown in image 45. 

For the untreated sample (A), the measurement limit has reached at 0.015 µm.  

With higher compression phases, the sample collapses, so that smaller pore 

entrances cannot be dissolved any longer. For the other samples, this measure limit 

is not reached until 0.007µm. 
The pore radius maximum is in an untreated sample in the capillary pore space is 

0.4µm. After a further two maxima between 1µm und 10µm the curve decline is 

steep. The amount of pores over 100µm is negligibly small. 

The mercurial pore radius distribution of the sample with swelling reducer’s mostly 

follows the curve in the untreated sample. The position of the maxima and the 

flattening of the curve at the large capillary pores are identical. Apparently, the 

treatment with the swelling reducers has no influence on the pores with a pore radius 

more than 0.01 µm. The silica gel consolidation shifts the pore radius maximum from 

0.4µm auf 2.5 µm with the treatment type B and respectively to 4µm at the treatment 
type C. According to this, the gel has closed, in particular the pore radius in the lower 

capillary pore area between 0.1 und 1 µm. This matches the results of the SEM 

analyses that are verified for F300E gel layers between 0.1 und 1µm thick (see 

chapter 4.2.1). 

The upper range of the micro porosity between 0.01 and 0.1µm is not substantially 

changed. The mercury access to the micro porosity seems not be disturbed by the 

silica gel film in the capillary pores. So the less the consolidation film can screen the 

micro porosity against the access of water and water vapour. It seems that, the film 

gives, due to its own porosity, cracks and losses enough apertures that the micro 
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pores situated behind cannot be protected. The self-porosity of the SIO2-gel is 

approximately 50 volume-%. During the evacuation, before the mercury intrusion, this 

pore space is emptied and the remaining water in the gel is removed.  

 

 

 

 

 

 

 
 

 

 

 

 

 

Image 45 Pore radius distribution from the results of the mercury porosimetry   

 

The water vapour adsorption isotherm in image 46 shows clearly, that the access 

of the micro porosity, also under 0.01µm, is not affected by the silicate ester 

consolidation alone (series B).  

At the comparison of the adsorption of the treated and untreated series, an early 

separation of the graphics is registered in the humidity area of 0-40% relative 

humidity. This relates to the areas of the monolayer allocation (155 relative humidity) 

and the multilayer allocation (~ 50 % relative humidity) in the micro pore space after 

IUPAC-classification (see image 43). 

 

Image 46 Water vapour 
adsorption isotherm for the 
untreated (A) and treated soil 
sample (B-F) The treatment 
has an influence, especially on 
the water adsorption in the 
lower humidity area, of up to 
40% relative humidity. The 
vertical lines divide the 
abscissa in three hygroscopic 
areas that have been 
conducted for the three pore 
radius classes (see image 47 to 
image 50) 
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The single SE treatment, therefore, causes and increased water vapour adsorption in 

the pore space to 0.002 µm pore radius. The treatment with the swelling reducer 

reduces the water adsorption in this area. The different tenside mixtures (series E 

and F) are in their effect identical. In addition, for the extra-consolidated samples of 

the series C and D is the water vapour adsorption in the lower area reduced. The 

water vapour adsorption in the lower area of the isotherm reacts mostly proportional 

to the swelling potential of a porous material (Kocher, 2003). It is an important piece 

of evidence, for the effect of the treatment, on the swelling reaction of the soil (see 

Chapter 4.3.5) 

The progressive increase of the curves, in the area of the capillary condensation, 

proceeds in parallel. In the upper hydroscopic part, the curves seem to converge.  

In contrary to the results to the preliminary examinations, both variations of the 

treatment cause a reduction of the adsorption in the hygroscopic area. This 

adsorption reduction corresponds to the theory of the tenside coupling, to the 

footprint of the clay minerals. Therewith, the presumption is confirmed, that the 

increased hygroscopicity of the treated soil, with modified swelling reducers, in the 

preliminary tests can be traced back on the overdose of the treatment medium (see 

chapter 4.1.3).  
The directives for the evaluation of the compatibility and the durability of 

consolidations of natural stone in (Sasse, 1996) demand, that the area under the 

water vapour adsorption isotherm of the treated material, has to be smaller, or the 

same as the area in the untreated material. In contrary to the single consolidation in 

series B this default is kept in the treatments of the series C, D, E and F. 

The calculation of the proportion for the pore radius under 0.01µm from the water 
vapour sorption isotherm results from the accumulation of the water adsorption 

(Volume % of the sample volume) inside the hydroscopic area of the isotherm. The 

adsorbed water, inside defined pore radius categories, is calculated on the accordant 

part at the whole pore space of the sample (after image 44). The results are compiled 

in image 47 to image 50. For easier differentiation of the adsorption character of the 

series, the radii are divided into three pore categories. They are orientated at the 

adsorption kinetic after (Kießl, 1983): 

Category 1:  < 0,001 µm   -Monolayer und Multilayer allocation 

Category 2:  > 0,001 – 0,002 µm -Multilayer allocation, start of the 

capillary condensation 

Category 3:  > 0,002 – 0,01 µm   capillary condensation  
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Image 47 left above:  ad- and desorption 
isotherm of the untreated soil (A) with the 
corresponding pore radii. The amount of 
hygroscopic filled pores at the complete pore 
space is divided in three categories (layout after 
Kocher, 2003). 
Image 48 right above: Analogue to image 47, ad- 
and desorption isotherm of the soil with single 
F300E treatment (B). 
Image 49 left below: Analogue to image 47, ad- 
and desorption isotherm of the soil after the 
tenside treatment (DE) 
Image 50 right below: Comparison of all series 
due to their amount of pores in the hygroscopic 
area. Division of the Categories like in image 47-
image 49 
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In the images 47-49, show simultaneous the ad- and desorption isotherms of the 

series (A, B, and E). The hystereses between the ad- and desorption isotherms are 

minor.  The calculation of the pore radius distribution in the column diagrams under 

the isotherms is based on the adsorptions curves. The isotherms of the series C, D 

and F are because of their similarity to E, not separately shown. 

In image 50, are compared the hygroscopic pore radii categories off all series. 

The amount of pores in the category 1 (< 0.001µm) is for the untreated soil 5.8% 

of the complete pore volume. For the single treatment with swelling reducing tensides 

(E and F) this amount is reduced, at constant complete porosity (see image 44), to 

4.5%. Both tensides mixtures have the same effect. Through a single treatment with 
F300E, the pore radius proportion increases inside category 1 to 7%. Thereby, it has 

to be considered, that the increase in series B, to a lesser amount, also benefits 

calculative by the reduction of the complete pore volume. The additional pores during 

the consolidation are deriving probably from the own porosity of the silica gel. 

Possibly, also the shrinkage cracks in the gel as well as the hollow spaces between 

the gel film and the mineral structure below plays a role. These last phenomena are 

described in the results of the SEM-examinations (see Chapter 4.2.1). Similar pore 

space enlargements, in the micro pore area of consolidated sand stones, due to the 

consolidation, are described in (Sattler, 1992) and (Grasegger, 1992b). 

Through the coupling of the tensides at the mineral surfaces as well as the therewith-

connected decrease of the concentration of hydrate able cations and the osmosis 

potential, the water access of the pores in category 1 for the series E and F is 

reduced to 20%.  The changes due to the treatment of the pore volumes in category 

1, are for both methods approximately 20% in opposite direction. 

For the combination treatment of the series C and D, both effects seem to overlap in 

the category 1. However, the influence of the tenside treatment seems to be more 

obvious. The porosity of the treatment C, corresponds to the untreated samples. For 

the treatment type D, the water accessible pore volume seems to be reduced. 

Category 2 shows the same treatment effects as in category 1, but in reduced form. 
During category 3, the adsorption reducing effect of the tenside treatment (Series E 

and F) is lost. The amount of pore radii corresponds to the untreated sample. In the 

combination treatment, the additional pores of the gel film have still an effect. 

Through the abolition of the tenside influence in category 3, also C and D show 

higher porosities than A. 

Therewith, the limitation of the activity of the bi functional cationic tensides is proven 

for pore sizes less than 0.002 µm. This result correlates well with the dimension to 

the chain length of the tensides (see Chapter 4.1.2). 
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The acquired volume differences in the lower area of the micro porosity are indeed 

small, but nevertheless has an important relevance for the swelling properties of the 

soil (see chapter 4.3.5). These micro pores, as contacts between mineral particles 

are the initial zones of the hygric swelling. 

 

Summary of the results to the porosity 
For better comparison of the effects of the treatments on the entire pore space of the 

soil, the results of the adsorption isotherm and mercury porosimetry have been 

brought together in an integral graphic of the pore radii distribution in image 51. Out 

of this, the most important parameters for the evaluation of the moisture transport 

have been calculated with the pore radii distribution (Fitzner, 1988). The calculated 

values are compiled in table 11: The results for the specific surface from the nitrogen 

adsorption measurements are shown in image 52. 

 

 

 

 

 
 

 

 

 

 

 

 

Image 51  Amount of the pore sizes at the entire pore volume of the samples classified in 17 
pore radii classifications; combination of the results out of the water vapour sorption isotherm 
(fraction up to  0,01 µm) ; of the mercury porosimetry (fraction over 0,01µm) and the 
dry raw density (entire porosity of the samples). 
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Table 11: Characterisation of the pore space in relation to the entire pore radii  
               distribution, shown in image 51. 

 
 
Image 52:   Specific surface from the nitrogen adsorption 
measurement. The reduction of the inner surface of the 
samples, consolidated with SE (B and C) results from the 
diminishing of the pore volume in the lower area of the 
capillary porosity. The treatment with swelling reducers 
has no important influence of the inner surface of the 
soil. 
 

  
The untreated soil has no noteworthy amount of pores with more than 200µm pore 

radius. The volume proportion from micro porosity and capillary porosity is at 24:76; 

the pore radius maximum is between 0.25µm und 0.5µm. It is not changed by any of 

the analysed treatments. 

By the consolidation with F300E, the silica gel is, built into the pores, larger than 

approximately 0.1µm pore radius. With this, a greater amount of the pores in the 

lower capillary radii area between 0.1µm and 1µm are sealed. The pore radius 

maximum is shifted to the area from 0.25µm to 5µm. The built-in gel reduces the 
complete porosity up to 10%. This reduction is more distinctive at the combined 

treatment (series C and D), than at the single treatment with F300E (series B). It also 

reflects in the reduction of the specific inner surface. The silica acid consolidation 

does not reach the micro porosity of the soil. Despite the coating of the larger pores, 

it does not constrict the water access to the micro pores. The porosity of the silica gel 
even contributes to the micro porosity with pore radii lower than 0.0125µm. Thereby, 

the water vapour adsorption is noticeable increased in the hydroscopic range. At a 

single consolidation treatment, the volume proportion of the micro porosity and 

capillary porosity, shifts with 31:69 in the direction of the micro porosity, due to the 

coating of the larger capillary pores; it does not prevent the entry of water into the 

micro pores. Therewith, the consolidation with silicate ester causes a higher water 

storage capacity in the sorption humidity area and a reduction of the capillary 

moisture transport. 

Type of treatment Median of the 
pore volume 

(position  µm) 

Micro pores 
Proportion at 
the porosity 

(%) 

Capillary pores 
Proportion at the 

porosity 

Position of the pore 
radii maximum 

( µm) 

 A    (untreatedt) 0,5-1,25 24 76 0,25-0,5 
 B    (F300E) 0,5-1,25 31 69 2,5-5 
 C    (DE/F300E) 0,5-1,25 27 73 2,5-5 
 E    (DE) 0,5-1,25 26 74 0,25-0,5 
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The effect of the tenside treatment on the porosity of the soil is extremely small. 

Inside this small effect, it is not possible to see differences between the formulations 

of series E and F.  Through the treatment with swelling reducers, neither the entire 

porosity nor the inner surface of the soil has a detectable change. Nevertheless, the 

Tenside treatment causes a distinct reduction of the water access in pores smaller 

than 0.002 µm pore radius.  

The tenside treatments reduce the water storage capacity in the completely 

hygroscopic humidity area. This reduction is contrary to the observations of the 

preliminary examinations. The increased hygroscopicity in the preliminary 

examinations was, therefore, an effect of the overdose. For the combination 
treatments in the series C and D, the aforementioned changes due to the silica acid 

consolidation are dominant in the capillary pore space. However, in the range of the 

micro porosity, the effects of both treatments (swelling reducer and consolidation) 

can overlap; so that, especially for the lower sorption humidity area (up to 40% 

relative humidity) pore space parameters are adjusting, similar to the untreated soil. 

 

4.3.4 Examinations and results to the water transport 

The variables of the water transport have been established as important basis 
information for the evaluation of the durability of surface conservation treatments 

(Sasse, 1996). Like the outsides of the stone façades, the soil surfaces in the 

museum halls of the Terracotta army are permanently in contact with the high 

humidity deviations of the ambient air. On one hand, water is adsorbed from the 

surface, out of the air and transported into deeper zones; on the other hand, moisture 

is transported out of the soil to the surface and released into the atmosphere. The 

experiences in stone conservation have shown that changes of the water transport 

coefficient, due to treatments, can cause dangerous congestions of moisture near the 

surface at the boundary layer of the treated zones. Because the soil  reacts  with 

swelling and a deceased stability much quicker and stronger on rising humidity than 

natural stone, breaks in the moisture gradient, of surface near profiles, will probably 

lead to a much quicker formation of scales or similar damage symptoms to this 

material . Additional to this is the structure damaging effect, that salt concentrations 

and frost fractures can evocate in the accumulation zones (Poschlod, 1990), 

(Wendler, 1991). 

The most important parameters for the moisture transport function are, in the sorption 

humidity area, the water vapour sorption isotherm, the water vapour diffusion 

coefficient and respectively water vapour diffusion resistance number (µ-value). In 

the hyper hygroscopic area, the moisture transport is mainly affected by the water 
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absorption coefficient (w-value) and the free water saturation under atmospheric 

pressure (wa) (Kießl, 1983), (Künzel, 1994), (Krus, 1995). Furthermore, these four 

parameters are the basic values for the calculation of the moisture transport in the 

WUFI modelling software. The influence of the treatment on the water vapour 

sorption isotherm has been discussed in the previous chapter. According to the 

guidelines in (Sasse, 1996), the variables of the treated soil should, as much as 

possible, not deviate from the values of the untreated soil, that the explained 

discontinuities between the treated surfaces and the untreated substrate does not 

occur. In contrary to the mercury porosimetry and the nitrogen adsorption, the water 

transport coefficients are determined by so-called “direct methods”. The actual 

reaction of the water in the material is analysed. Therewith it is shown, that the 

expectations from the results and the interpretations of the pore space analyse 

corresponds with real interaction between water and treated soil. 

 

Analysing methods (Chapter deleted!) 

 

Results of the examinations 

The average values, from the results of the dry-cup and wet-cup trials, for the 

determination of the water vapour diffusion resistance are compiled in image 53. 
The untreated samples have, in the humidity range (wet-Cup) µ-values of 6. 4. This 

responds to the diffusion resistances from the examinations of the FEB (research 

laboratory for experimental building, Kassel). They measured, for comparable 

massive clays, diffusion resistances between 6 and 7 (Minke, 1995). The 

examinations in the ongoing project Terra, also show, that the wet-cup values for 

adobe-samples are in the same dimensions (Bourges, 2003). In this test series it is 
also shown, that the diffusion resistance is diminishing in humidity range with 

increasing amount of clay. This can be traced back to the increased activity of the 

surface diffusion by the increased micro porosity. 

As previously mentioned, the overlaying fluid transport of the surface diffusion drops 

out in the dry area method (up to 50% relative humidity). The water vapour-diffusion 

resistance of the untreated sample is three times higher in the dry cup test. 

Therefore, the amount of the water vapour diffusion in the gas phase is just a third of 

the complete liquid transport in the sorption humidity area. The consolidation with SE 

seals up to 10% of the capillary pores and reduces, therewith, the free passage area 

for the gas diffusion (series B, C and D). The diffusion resistance in the dry area 
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method increases up to 12% for the series B and 40% for series C (compared with 

the untreated soil). 

The single treatment with swelling reducers (series E and F) does not change the 

diffusion value in the dry area method. The free passage area for the water 

molecules in the gas phase is not changed by the treatment. This confirms the 

results of the mercury porosimetry that does not show any changes of the capillary 

space due to the treatment.  

Nevertheless, through the tenside treatment, the diffusion resistance is doubled in 

the moist area. This refers to an interference of the surface diffusion through the 

coupling of the bifunctional tensides. If the diminishing of the surface diffusion is 
caused only by the “blockage” of pore spaces under 0.002 µm (see summary of the 

results of the porosity), or if the tensides also disturb the liquid diffusion at the sorbat 

layers of the larger micro – and capillary pores, cannot be quantified.  

However, the high amount of the diffusion decline leads to the conclusion, that the 

tenside have coupled also at the pore septum/walls of the large pores and have 

reduced the thickness of the sorbat layers by the reduction of the hydrate able 

cations and increased their liquid diffusion resistance. 

The combination treatment of the series C and D have the highest diffusion 

resistances in the humidity range method, because here, the “slow down effects” of 

the consolidation (gas phase) and of the tenside treatment (liquid phase) are 

complementing to one another. For the surface consolidation on natural stone 

facades SASSE UND SNETHLAGE (1996), recommend, that the µ-value from the wet 

cup test should increase more than 

20%, by the treatment. The 

treatments of the test series 

exceed this threshold by far. The 

wet-cup values of the series E are 

the lowest. However, their average 

value outranged the diffusion 
resistance of the untreated sample 

up to 64% 

 

Image 53: Average values from the dry-cup and wet-cup 
        diffusion measurements, at the treated and untreated sample discs. 
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The changes due to the treatment of the capillarity and the free water saturation 

are not relevant for the specific problem in the museum halls of Lintong, because for 

the uncovered soil structures direct water contact is not foreseen. 

For a more complete evaluation of the treatment methods and their transferability to 

comparable conservation problems, the knowledge of their influence on the specific 

values of the capillary transport is necessary. Furthermore, an unwanted water entry 

can never be 100% eliminated even for the sheltered excavations of Lintong. 

From the tests of the capillary water adsorption, the water adsorption coefficient and 

capillary water capacity have been calculated. The average values of the series are 

shown in image 54. The single results for the water saturation are given in image 55. 
The water adsorption coefficient of the untreated soil is between 10 and 14 kg/m² 

h0,5. They are, therefore, much higher than the few comparable values from the 

literature; this gives for clay bricks an adobe water adsorption coefficient between 

one and six (Bourges, 2003); (Minke, 1995). In contrary to this, the capillary water 

capacity is with values between 20 and 30% comparable with the values in (Minke, 

1995). 

That means, that the capillary pore volume of the soil of Lintong is quite similar to the 

modern clay building material, analysed by Minke. Nevertheless, the capillary pores 

of the soil of Lintong are quickly accessible. The position of the pore radii maxima, in 

the capillary pore area, has a big influence of the soaking speed of the material. 

Consequently, pores with a larger capillary diameter, soak in the water faster than 

narrow capillary pores (Krus, 1995). In addition, the amount and quality of the clay 

minerals have a strong influence on the water adsorption coefficient. Gernot Minke 

writes “It is interesting, that strong silt containing clays show a much higher w-value 

than clayey adobes. It derives from the different pore-structure of the clays and that 

the clay containing adobe is swelling stronger and therefore its pore volume 

diminishes stronger” (Minke, 1995).  

The pore volume does not diminish at the swelling, but the swelling in clayey adobes 

can diminish the access to the capillary porosity and the capillary porosity itself.  This 
“sealing” of the capillary pores lead to the reduction of the quotient of the water 

adsorption and the square root of time. This effect could be the reason for the 

“bending” of the original linear dependence, which can be observed at some samples 

in the graphical evaluation, of the trials to the capillary water adsorption (see 

appendix 7.6). 
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Image 54 Results from the measurements from the capillary water adsorption. Left:  Average 
values and standard deviations of the water adsorbent coefficient. Right:   Average values and 
standard deviations of the capillary water capacity. 

 
 
Image 55: Water adsorption at single soil 
samples in 24 hours under water storage 
(wa). The values of the series A, E and F 
are due to the trial afflicted with grave 
measurement errors (+/- 15%). 
 

 

 

 

The comparison of the samples in the test series shows, that the consolidation with 

F300E, nearly cut in half the water adsorbent coefficient (sequence B, C, D), while 

the swelling reducers have not had a visible effect on the capillary behaviour of the 

soil (image 54). The reduction of the water capacity from 26 to 19 volume % proves 

the observation from the mercury porosity, that the consolidation with silica acid 

silicate ester reduces the capillary pore volume. The reduction of the capillary water 

adsorption is, from the viewpoint of conservation, in principle critical. The guidelines 

in (Sasse, 1996) say that the w value should be after the treatment smaller or equal 

to the original. 

The free water storage gives in comparison of the treatment methods, for the 

treated samples, a related picture similar to the complete porosity (see image 44). 

The consolidated samples have less porosity, accessible for water, than the 
untreated samples or the samples with tenside treatment. It is interesting, that the 

water accessible parts of the entire volume at the double treated samples (series C 

and D) with 68% turn out to be minor, than at the single F300 consolidation (series B) 

with about 77% water accessible of the entire porosity. It seems, also the treatment 
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with swelling reducers diminish the volume of the free water adsorption. While the 

untreated samples in the trials fill about 89% of the complete pore volume with water, 

the soil with the swelling reducers just fill it with approximately 80%. 

Without the described “packaging” the untreated soil would be completely filled with 

water and would elutriate- not so the treated soil (see chapter 4.3.5) 

 

Summary of the results of the water transport  

In the sorption range between 50 and 100% humidity, the moisture in the soil of 
Lintong is transported more or less in equal parts by the surface diffusion and the 

water vapour diffusion. The examinations have shown that the consolidation 

treatment slows down the water transport, through the reduction of the open pore 

diameter in the capillary pore area. The tenside treatment again slows down the 

water transport through an interference of the surface diffusion at the pore walls. Out 

of the combination of both effects, results for the combination treatment (series C and 

D) the largest measured vapour diffusion resistance. Although the diffusion 

resistance of the soil is increasing through the treatment, the soil still stays very 

porous. Neither the tenside treatment nor the consolidation with SE reacts as a 

“vapour break” in the usual meaning. To ease the evaluation of the µ-values and the 

w values from the series, they are confronted in table 13 with reference values from 

the literature. 

The soil of Lintong has a strong capillary exhaustion rate. The water adsorption 

coefficient and the capillary water capacity are approximately halved by the 

consolidation with silicate ester. The treatment with swelling reducers has no effect 

on the capillary properties of the soil. 

The interaction of the capillary water adsorption and the water vapour resistance was 

compiled by H.Künzel for the example of the sprinkling and drying of façade 

surfaces, in the so-called “Künzel number” (Künzel, 1969). On the base of the µ- 

value and the w- value, the drying attitude of a porous building material is described. 

In stone conservation, this “Künzel number” is used as a guideline for the evaluation 

of consolidation and hydro repellent treatment due to their effect on the moisture 

balance in the outside walls (Meinhardt-Degen, 2002). At open façade areas in 

Western Europe the Künzel number should be smaller than 0.1 kg/mh 0,5 , to avoid 

the risk of a constant humidity concentration in the walls. Compared with the 

guideline value, the data in table 11 shows as expected, that the soil of Lintong is not 

suitable as a façade material in West Europe. However, the numbers make clear the 
negative influence of the treatments to the drying behaviour of the soil- in the case of 
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direct water wetting. The simple treatment with swelling reducers results badly here, 

because it slows down the vapour diffusion that is necessary for the drying out. At the 

same time, it also does not reduce the high capillary water adsorption of the soil. In 

the case of an open façade, there is the rule, that the doubling of the diffusion 

resistance is not dangerous, as long the w-value is small (Snethlage, 2002). 

Therefore, the treatment of the series B, C and D has the better water transport 

properties in the case of a direct wetting with water. 

In the given example of the museum hall in Lintong, without water wetting from 

outside, but with the evaporation from lower layered soil depth, that are still moist 

(ground water, etc), there is the danger that by the vaporous rising water, moisture 
concentrates at the surface. In the case of the soil structures, in the museum halls, is 

the w-value irrelevant, but the permeability for water vapour is the main parameter. 

The variables for the water transport are describing the direct reaction of the water to  

the changes of the soil, due to the treatment. Their correlation with  the interpretation 

out of the previous pore space analyse shows, that it is possible for the soil of 

Lintong to transfer the approach of the cylindrical model from the building material 

science and the analytical methods used in stone conservation, to the building 

material soil. For adobes with higher amounts of clay and smectite montmorillonites 

clay minerals, this transfer will be more difficult. 

A B C D E F 

60 84 75 63 121 144 

Table 12:  The “Künzel-numbers (kg/m h0,5) for the test series. The number is 
calculated out of the water vapour equivalent to the air film thickness (sd (m)) and the 
w-number. Thereby applies:  sd = µ * s,, whereas s(m) is the thickness of the sample. 
The calculation formula is: Künzel number = sd * w-value. 

Table 13:  Water vapour diffusion resistance values (wet-cup) and water adsorption 
coefficient of clay (data out of: (Minke, 1995) and from building materials (data out of 
material bank in (Künzel, 2002). 

material: µ - value 
(wet-cup) 

w- value 
(kg/m²h0,5) 

material: µ -  value 
(wet-cup) 

w- value 
(kg/m²h0,5) 

soil Lintong 
untreated 

5 - 8 10 - 15 limeplaster 7 3 

soil  Lintong 
treated 

9 - 18 3 - 7 
(F300E) 

Solid brick 10 - 17 18 – 24 

Straw light clay 2 - 3 3 - 4 „Ummendorfer“ 
sand stone 

14 16 

Massive clay 6 - 8 1.5 - 4 „Zeitzer“  
sand stone 

70 0.2 

Adobe plaster 
with lime  

8 - 15 - „Krensheimer“ 
shell limestone 

140 0.5 

Adobe plaster  
with water 
repellence and 
consolidation 

10 - 18 - concrete 100 - 200 0.5 - 1 



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 90

 
4.3.5 Examinations and results of the swelling effect of the water on the 

treated samples  
 

 Humidity changes close to surface has been for a long time seen as the cause for 

weathering damages on building blocks, because the swellings and shrinkage due to 

the change of moisture, stress the mineral structure (Riederer, 1973), (Toracca, 

1997). In particular, on building blocks containing clay, this process, cannot only be 

induced by the capillary water adsorption, but also often by atmospheric moisture, 

can lead to dissolution effects in the structure. 

In the clay construction, capillary water adsorption leads to a decline in the stability 

and often causes an immediate loss of material. Therefore, it is undoubted, that 
water infiltration enhances the decay of clay building material. The water is the 

known enemy of the clay architecture and any water infiltration has to be avoided on 

this material, whatever happens (Houben, 1994), (Minke, 1994). 

If regular and strong changes of atmospheric humidity are also a catalyst of surface 

decay at clay building material, as often suggested, but until now not proven. For 

example, recently in the “Terra project” no changes in the structure of adobe bricks 

could be detected after 15 humidity cycles between 30 and 92% relative humidity 

(Bourges, 2003). In addition, the dust traps in the museum halls of Lintong have 

shown, that in 3 years no loss of material occurs, due to atmospheric humidity 

changes. It is possible, that the soil despite their high adsorption – and desorption 

turn over, and the therewith connected high swelling rates, due to the high porosity 

and the flexible structure, can resist the atmospheric humidity changes better than 

some other mineral building material.  

In any case, it is very important to record the effects of the treatments on the hygric 

swelling in the range of the changes of the atmospheric humidity, because of the 

reduction of the swellings (as expected from the swelling reducers) could certainly 

reduce the mechanical stress in the mineral structure and therefore prevent against 

decay. In contrary to this, treatments that lead to an increase of the hygric dilatation 

in this area can be proven to be damaging for the structure in the long term. The 
untreated soil of Lintong dissolves immediately in water. Most of the previous 

conservation approaches tried to void the elutriation of the soil in water. Despite 

direct water attack with the connected high swelling rates, up to the elutriation, is not 

crucial for the special problem of the museum halls of Lintong, because for the 

uncovered soil structures no direct water contact is envisaged. The “elutriation test” is 
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necessary for the complete evaluation of the treatment methods and their general 

transferability to similar conservation problems. 

 

 

Examination methods (chapter deleted!) 

 

Image 56 Climatised box with measurement racks, moisture sensors and ventilation tubes, for  
the measurement of the hygric dilatation in the hygroscopic atmospheric  humidity. 

 

Examination results 
The results of the three basic types of treatment (consolidation, treatment with 

tensides and the combined treatment) from the test to the hygric swelling are 

confronted in image 58 to the swelling of the untreated series A. In the direct 

comparison of the average values of all series (see chapter 57) it is obvious, that the 

used types of tensides (DE and DEBH) do not differ in their effect. The series C and 

D and the series E and F have identical swelling curves.  

The curve for the single consolidated samples of the series B ascends steeper than 

the untreated series A. The consolidation causes with an end value of 3.75%,  an 

increase to 75% in the maximal atmospheric humidity (see table 14). 
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Image 57    The 
average values of 
the swelling in 
every series, 
measured in seven 
successive, 
incremental steps 
inside the 
hygroscopic water 
adsorption. 
 

 

 

 

 

 

 
series: A B C D E F 

swelling (mm/m)        

26% to 98% rel. h.: (possible) 1,92 3,38 1,72 1,66 1,14 1,27 
30% to 85% rel. h.:  (often) 1,2 2,2 1,15 1,05 0,7 0,75 

40% to 70% rel. h.:   (normal) 0,6 0,8 0,5 0,45 0,25 0,25 

45% to 65% rel. h :  (aim) 0,25 0,4 0,25 0,25 0,1 0,1 
Swelling in contrary to the 
untreated sample series (%)  

      

26% to 98% rel. h.: (possible) 100 176 90 87 59 65 
30% to 85% rel. h.:   (often) 100 183 96 88 58 63 

40% to 70% rel. h.:   (normal) 100 133 83 75 41 41 

45% to 65% rel. H.:   (aim) 100 160 100 100 40 40 

Table 14: Hygric swelling (mm/m) of the analysed soil samples in the different 
atmospheric humidity areas (above) with the related comparison values to the untreated series 
A, in percent (below). The humidity areas (possible, often,) are orientated at the museums 
halls in Lintong. 
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Image 58 Hygric swelling of the single samples of series A, B, E and D compiled in box & 
whisker diagrams for each wetting step. Examples of the single consolidation (B), the tenside 
treatment (E) and the combination treatment (D) on the right side are directly confronted with 
the untreated series (A) on the left side. The small column height of the box & and whisker 
graphic shows, that the measurement values of the single samples inside the series are very 
close. The summary in image 57 seems therefore justified. The graduation of the x-axis is not 
linear. 
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The single tenside treatment reduces the swelling depending to the humidity at 35 to 

60%. At the combination treatment, the swelling stays in the area of the untreated 

sample (see table 14, image 57 and image 58). 

 

Looking at the swelling curves (image 57), fundamental agreements are obvious 

between the comparison of the series and the course of the curve with the results of 

the water vapour –adsorption isotherm (see image 46). After a steep incline in the dry 

range, the swelling curves level between 40 and 65% humidity, then once again 

steeply incline in the humid atmosphere, parallel to the strong water adsorption. 

Theoretically, the swelling curve should be convex between 0 and 15% relative 
humidity analogue to the water adsorption isotherm, but this area is difficult to 

measure at the swelling measurements and should not be incorporated. In general, 

the swelling of the series reacts in the hygric area analogue to the water adsorption. 

With a precise comparison of the water vapour adsorption isotherms with the swelling 

curves, it becomes clear, that in the treated series not only the volume water 

adsorption but also the swelling reaction of the material changed. (See image 46 and 

image 57).  Therefore, the adsorptions isotherms are approaching again to the limit 

of the over hygroscopic range, while the differences in the swelling values are 

increasing in the same range. Further evidence is the curves of the combination 

treatment (series C and D). Their adsorbat volume is very similar to the single 

tenside treatment (series E and F). However, the swelling values are much higher 

than at the single tenside treatment. The dependence of the swelling from the 

adsorbed amount of water is shown in image 59. At the same water adsorption, the 

samples of the consolidated series B are swelling much more than the untreated 

samples. The tenside treatment once again achieves at the same water adsorption a 

swelling reaction. In the combination treatment, these effects adjust themselves. 

The increased swelling due to the gel adsorption is traced back probably to the effect 

of the “limited swelling space”, as described at WENDLER (1996) (Wendler, 1996a). 

Accordingly to the results above, at the consolidated soil (see image 59), Wendler 
observes that clayey sandstones with a silica gel consolidation increased swelling 

rates at the same water adsorption.  

He explains this effect with additional compression stress between the clayey mineral 

structure and the gel that lines in the pore spaces. Without a gel film, the clay mineral 

packages can grow without any resistance at the pore barriers in the free pore space 

during the hygric swelling.  

In this space, blocked by gel film, additional swelling pressure builds up, that 

discharges itself in additional material swelling (see chapter 3.4) 
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Image 59 water content- swelling- curves 
from all series for the humidity range 
between 26% and 98% relative humidity. 
The changes in the swelling property of the 
treated samples cannot be explained only 
with the hygroscopicity. 
 

 

 

 

 

 

The tenside treatment, however, can reduce the hygric swelling at the same water 

adsorption. Obviously the aimed reduction of the osmotic swelling inside the micro 

porosity reacts in this way, that less water can infiltrate in the pores and therefore the 

swelling pressure is limited (see chapter 4.3.3). If this effect is based on the reduction 

of the hydrate able cations or in the bridging of the mineral surface with the alkyl 

chains of the tenside, then it cannot be differentiated here.    

The requirements for the changes of the material properties at consolidated natural 

stone say that the hygric swelling should not increase due to the treatment in the 

hygroscopic and super hygroscopic area (Sasse, 1996). The single consolidation 

with silicate ester (series B) does not comply with this requirement. This type of 

treatment leads because of the higher swelling rates, to additional mechanical stress 

in the atmospheric humidity change. If therefore, despite the increased stability, the 

liability for decay increases in comparison to the untreated soil, it could be clarified by 

wetting/drying cycles in the hygroscopic humidity changes. A negative influence is 

also possible at a single consolidation as the positive influence by the treatment 

types C,D,E, and F, which reduces the hygric swelling in the atmospheric humidity. 

However, the real effect of the changed swelling values can only be evaluated with 

the implication of the resistance and the elasticity of the treated material (see chapter 
4.3.6). 

 

From the elutriation tests gathered observations are demonstrated at selected 

images in image 60 and image 61. The high osmotic pressure in the micro pore 

space of the samples, combined with the low structural stability of the soil, leads to 

water deionised at once to an elutriation of the untreated soil from Lintong (A). The 

treated soil stays stable. After DIN 18952 side 2 the untreated soil is classified as 

“easy elutriate able” and therefore non-viable for clay building. 
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In the case of a tenside treatment, the osmotic pressure is reduced so far, that the 

sample does not elutriate in water. The samples adsorb a lot of water and get soft but 

keep their shape. Pulling the disc sample E (image 60) out of the water, the samples 

break due to its high own-weight because it is soaking. Other tests have shown that 

the cylindrical samples of the series E and F also keep their shape under water. 

Exposed to the air, the water-saturated cylinders cannot stand their own weight and 

collapse. Exposed to air, the water-saturated cylinders cannot withstand their own 

weight and collapse inwards. Due to their stability, there was no obvious difference 

between the treatment type E and F. The structural strengthening effect of the 

tensides in water storage is significant evidence, that the clay mineral surfaces are 
really connected over the alkyl chains of tensides. 

The lack of structural stability in the tenside treated samples is achieved in series B, 

C and D with the consolidation treatment. The samples stay completely stable under 

water. Knocking at the sample with a pencil, after several days of water storage, the 

samples can resist at least the same pressure as the untreated dry soil sample (see 

image 61). If you take this sample out of the water, they keep their form and dry off 

apparently without any damage. Between the single consolidations (B) and the both 

combined treatments (C and D), there are no qualitative differences.  

At least at single water storage, the stabilising gel film can adsorb the strong inner 

tensions, which can be expected in the single treated series B, due to the osmotic 

pressure.  

Previous experiences with the consolidation of adobe wall in Fort Selden, New 

Mexico with Di isocyanides and silicate ester have shown, that the consolidated soil 

cannot resist  the tensions from the hygric dilatation in a larger scale (decimetre) and 

breaks (Agnew,2002). Even small, consolidated samples cannot resist multiple water 

storage and break (Chiari, 2003). 

For the combination treatment (series C and D) there could not be found any 

advantage in this elutriation tests in comparison to a single consolidation. But 

because the osmotic pressure at the treatment with the bi-functional tensides is 
clearly reduced, corresponding to the single tenside treatment, it is to assume, that 

inside the consolidated structure of the combination treatment, there is much less 

tension during the water storage, than in the single consolidation. Therefore, it is 

possible to prognose a much better stability and durability for the combination 

treatments in wetting and drying cycles. 

With the elutriation tests it was shown, that it is even possible without a consolidant, 

just with a tenside treatment, to avoid the solution of the soil in water, or at least to 

increase clearly the resistance against fluid water. The combination treatment seems 
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to be  much more promising for a long term stability for soil in the hyper hygroscopic 

humidity, than single consolidations. 

 

Image 60: Elutriation test at hanging disc 
samples. Above left/ right: The samples are 
slowly dipped into the water, following the 
capillary seam. During the dipping (approx 
5minuets), the untreated soil (A) is dissociated 
continuously up to 5mmm under the capillary 
edge. Left: Situation after one hour hanging in 
deionised water. The consolidated sample (B) 
and the tenside treated sample stay stable. 
 

 

 
Image 61 storage of disc segment samples 
under water. Above left: the dried samples 
(diameter of the samples 2,5cm); Above right: 
after 126h storage underwater. The untreated 
sample (A) dissolves in the first 60 seconds 
completely. After one hour, the dissolving 
process was finished. The small detachments 
in the sample E also happened in the first hour 
of the storage underwater. Left: The samples 
with a single tenside treatment (Series E and 
F) collapse under mechanical stress into rough 
chunks. 
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4.3.6 Examinations and results of the mechanical stability 
The loss of the sensitive surfaces in the excavations of the terracotta army is mostly 

traced back on the mechanical stress during the cleaning (brushing, hovering, 

etc.)(See chapter 1.2). With the examinations to the stability, the success of the 

resistance is now quantified. This is used for the evaluation, if the changed 

mechanical properties of the treated surfaces correspond to the stress requirements 

and if they are still compatible with the untreated substrate. 

From the main factors for the mechanical stability in porous mineral materials, as 

they are described in (Schuh, 1987) ; (Sattler, 1992); (Alfes, 1989), the SE and 

swelling reduction treatment could influence especially the porosity, the number and 

stability of the grain contacts and the filling of the empty space with liquid phases. 

For the Identification of the stability of mineral building material, serve in general the 

test of the pressure, bending strength and adhesive tensile strength. At most of the 

stones the proportion between maximal tear strength and maximal pressure strength 

is 1/15 and 1/30 (Alfes, 1989). Surface near failure of these materials are based 

mostly on exceeding the shear stress and tensile stress. Therefore, in the 

conservation of natural stone the tear strength and the bending strength are used as 

a criteria for the progress of decay and the resistance against weathering (Schuh, 
1987), (Snethlage, 1991a).The relation of tensile strength and pressure strength in 

the soil of Lintong is in the air-dry condition approx.. 1/3 (see: image.70). HOUBEN 

(1994) gives, in the connection of  investigations on 28 days  old, un consolidated 

stamped soil with a Proctor compression, a relationship of 1/4.Regarding this 

balanced relationship with unconsolidated soils, it is to be considered however that 

the results originate from a one-axial compression test at prisms without lateral 

extension restriction. 

With this kind of pressure tests on prisms, in the end even exceed of the tensile 

strength in the transverse strain can lead to a failure of the test sample. 

At the open surface areas of the soil structures, especially at the convex surfaces, 

edges and angles, there are also few transverse strain resistances. Even at the 

single axis pressure strength of the soil surface, it exceeds the shear stress and 

tensile strength transverse to the stress direction, will cause failure of the material. At 

the open-lying surfaces of the soil structures, particularly at convex surfaces, corners 

and edges, likewise very small lateral extension restrictions are present. In addition, 

during one-axial pressure load at the soil surfaces the excess of the shear strength 

and tensile strength will cause the failure of the material transverse to the load 

direction. 
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 To record the changes, that are relevant for the direct damages, the changes of the 

tensile strength are the main interest of the examinations. 

Since clay has in contrary to most of the natural stone, only few phase contact and 

the bonding force of the coagulation, contacts are dissolved very quickly underwater, 

the fluctuations of the material humidity in the sorption humidity has a strong 

influence on the material strength. These changes of the strength, due to humidity 

have to be considered also for the evaluation of the consolidation success. 

 

Analyses methods (chapter deleted)  

 

 
Image 62, sketch and image for the experiment set-up of the 
scratch test on conditioned column samples. The soil columns 
are approximately 5cm longer. The scratch nail made out of steel 
has a 2.5mm diameter and is abraded to a round cone with a 53° 
degree acute angle. It is upright to the sample flanks and is 
pressed with 1.7N +/- 0.05N weight on the sample. With the pull 
string, the wooden beam with the scratch nail is moved with 
constant speed of about 0.025 m/s across the sample. 
 

 

Analysing results  
The bending strength tests have been carried out for each disc, of every series after 

the conditioning, up to a weight absolute term of 40% relative humidity and 21°C. 

That correlates, depending on the treatment type on water content of 1.3 and 1.9 

weight %. Some samples could not be tested successfully, because they were 

already cracked before the measurement, or they burst during the mounting into the 

measuring fixture. In image, 63 the load curve and strain curve of the successfully 

tested discs are shown. In the lower area of the curve increase, the material is in the 

miner elasticity area. The expansion is due to the Hookesches elasticity law, directly 
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proportional to the inserted strength. In the lower third of this linear range, the 

increase, for the calculation of the e-module is read off.  If the pressure increased, 

the soil sample starts to yield back irreversibly with plastic flowing. In the vertex of the 

curve, the sample breaks. Here the power Fmaxis read off for the calculation of the  

bending strength σBz . Although the height of the vertex cannot be equated with the 

bending strength of the sample, because the different thicknesses of the samples are 

not considered, it is obvious from this measurement protocol, that the consolidated 

samples have higher and steeper load curved and strain curves than the non treated 

series. Therefore, the consolidation leads to a significant rise of the breaking load 

and the elasticity of the sample. 
Neither between the consolidated series nor between the untreated series a 

significant difference could be seen in the bending strength properties of the single 

discs. 

 

Therefore, the six series have been summarized in the groups non consolidated 

(A/E/F) and consolidated (B/C/D) (see image 64). 

 

 

Image 63 deformation 
curves from the 
measurements of the 
biaxial bending strength 
at the treated and 
untreated samples. The 
affiliation of series is 
marked in the vertex of 
the curve. At this point  
the tensile strength Fmax 
is also read off for the 
calculation of the 
bending strength. The E 
module is calculated 
from the lower linear 
increase of the curve 
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Image 64 above: Statistical evaluation of the biaxial bending strength. (Left: average value 
with standard deviations; Right: Gauss’s allocation curve in the Box&Whisker diagram) 
Below: statistical deviations of the statistical E module (Left: average value with standard 
deviations; Right: Gauss’s allocation curve in the Box&Whisker diagram) 
 

The initial value of the middle biaxial  bending strength of the untreated samples is 

with 0.43 N/mm² very low (image 64) However it is very close to the values, that 
Micoulitsch (1996) has determined with the uniaxial bending strength test on the  

stamped soil prisms from Lintong (see image 70). There are not a lot of values for the 

bending strength of adobe to compare out of the literature; because the dry bending 

strength has no important specific value for building clays, for these the 

comprehensive strength is important. The few comparable measurements of silty and 

clayey adobe mortars have also bending strengths between 0.4 and 0.8 N/mm2 

(Böttger, 1999); (Minke, 1995). The dry bending strength of clays depends strongly 

on the amount of clay minerals. HOFMANN (1967) proved, for the dry bending strength 

of clays, a direct correlation between the strength and the cation exchange capacity 

of the clay minerals. The consolidation with SE leads to an increase of the average 

dry bending strength up to the factor of 3.8 up to 1.64 N/mm². In consideration of 

keeping the mechanical compatibility between the unconsolidated and consolidated 

material, SASSE & SNETHLAGE (1996) and SNETHLAGE (2002) recommend for stone 

consolidation, with the increase of the pressure, tensile strength and the  bending 

strength from the non consolidated to the consolidated material in relation to 

consolidated material does not exceed the factor 1.5. Therefore, in principal the rule 

applies: 

(β(treated) – β(untreated)) / β(untreated) < 0.5 

Respectively, the increase of the strength the treatment of the soil with F300E is 
significant over consolidated.  However, in the case of the soil it has to be 

considered, that the differences in the strength due to moisture, are in the untreated 
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material, has the same amount. The increase of the strength in the hygroscopic area 

(0-6 mass % water content) in image 70 shows an increase for the comprehensive 

strength of a factor of 0.75 up to 1.2. The bending strength is changing in this area  

by a factor of 2.3 up to 3.3.  In contrary to this, on schilfsandstone the bi axial 

bending strength changes in the sorption humidity only to a factor of 0.4. (Sattler, 

1992). The question arises, if it is possible to transfer these requirements from the 

stone conservation. The static E module of the untreated sample is at the values of 

1.2 kN/mm².  Reference values for the static E module on dry clay samples are 

between 1 and 6 kN/mm² (Böttger, 1999). The static E module from the bending 

strength measuring increases by the SE consolidation from 1.2 to 2.2 kN/mm² (image 
64). That is a increase of the factor 1.8. The mentioned requirements for the natural 

stone conservation are E(treated) ≤ 1,5 E(un treated).. The increase of the elasticity index is 

therefore less than the increase of the breaking strength. According to the day 

mechanism, the change of the elasticity is the more important factor for the 

mechanical compatibility to the untreated material. 

The relation from changes of the breaking strength and the changes of the elasticity 

is also postulated as important evaluation criteria for the durability of natural stone 

consolidations. In SASSE & SNETHLAGE (1996), the following evaluation criteria is 

postulated: 

E(treated) / E(untreated) ≤ β(treated) / β(untreated). 

For the results, above, there is a relation of 1.8 ≤ 3.8. Therefore, the relation between 

stability and elasticity is improved. 

 

The specific expansion ε (∆x/x) is calculated, due to the Hooks law, from the 

proportion of the breaking strength and E Module of the disc samples: ε = ßbz  / Ebz. 

They represent the upper limit of the elastic, reversible expansion. By exceeding  the 

specific expansion, this leads to a long term to irreversible deformation, that can be 

seen in general as the start and reason for material detachments and decay 

(Snethlage, 2002). The correlation between breaking stress and breaking expansion, 
E- module and the specific expansion is shown in image 65. 
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The correlation between the breaking strength and the elasticity of the disc samples 

is shown in image 66 and image 67. The average specific expansion is for the 

treated  samples increased from, 0.33% to 9.77%. In average, the consolidated 

samples can buffer elastically more than the double amount of the expansion. That 

this correlation is also valuable for the breaking expansion this can be seen in the 

values in image 67. Thereby, it is to regard, that the breaking expansion is in 

percentage. It exceeds the elastic specific expansion more than one cubing. 

 

 

 

 

 

 

 

 

 
 

Image 66 Relation between the static 
elasticity module and the bending strength in 
the consolidated (B, C, D) and 
unconsolidated (A, E, F) samples. The 
average specific bending strength expansion ε 
– the upper limit of the elastic expansion- 
increases from 0,33 ‰ +/- 0,1‰ to 0,77 ‰ 
+/- 0,1‰. 

Image 67 Relation between the bending 
strength (ß and/or expansion at the break 
of the bending strength samples. The 
consolidated samples can resist despite 
the increased E module, on average 
approximately the double deformation. 
 
 

Image 65 relation between the breaking expansion, specific expansion, 
breaking stress and E module at the example of a tension –expansion 
curve.  
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For the liability to decay of the soil of the excavations of the terracotta army, the 

material tensions are especially important, that occurs during the hygric expansion 

deviations of the atmospheric humidity. If these hygric material expansions regularly 

exceed the specified expansion, this can lead to destabilization of the mineral 

structure. Image 68 shows the tension-expansion diagram of the specific swelling of 

the consolidated and the non-consolidated series including their variation limit 

(Layout of the graphic after SNETHLAGE, 2002). Regarding the marked out E-modules 

(A/E/F: 1.2kN/mm²; B/C/D: 2.2kN/mm²) at the y- axis there is for the untreated series 

a specific tension area up to 0.5N/mm² marked and for the treated series a specific 
tension area up to 1.9N/mm². Inside these areas, due to the theory of the specific 

expansion- there is no danger of destabilization of the mineral structure (Snethlage, 

2002). In the corresponding table, there are, for every series, material expansions 

listed, that occurs at the hygric expansion during different relevant atmospheric 

humidity (image 68). The specific material tensions are calculated from the product of 

hygric expansion (‰) (see table 14) and the E-module values. Values, that exceed 

over this area of the specific material tension and that can therefore lead to the 

destabilization of the structure, are marked in red. 
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Image 68. The absolute values and variation limits of the specific expansion, results in the 
treated and untreated samples in separate areas of stress in the graphic. In the table are 
calculated the maximal stress, out of the formula: σ = ε hygric. *E, that occurs inside material in 
the reset areas during the fluctuation of the humidity. The marking corresponds to the colours 
of the graphic. Stress that leads to the damage of the structure, which is calculated out of 
expansion values, higher than the fluctuations of the specific expansion, are marked in red. 
 

In the table in image 68, the stability properties and the hygroscopic swelling values 

of the series, with the climate stress in the excavations of Lintong are correlated. At 

first it is obvious, that the non consolidated soil keeps the allowable tension stress 

only in the aimed climate fluctuation area between 45 and 65% relative humidity.  

Due to this calculation base, the climatic stress in the museum halls of Lintong leads 

to a destabilisation of the surface. However, because the observations in situ leads to 

another result (see chapter 1.2), it shows how low the allowed stress is determined 

for the calculation of the specific expansion.  

For a differentiated evaluation of the specific stress, due to the treatment in table 15, 
the quotient out of the calculated stress of the changes of the atmospheric humidity 

and the allowed specific expansion is inscribed. 

All treatments improve the tension situation in the atmospheric humidity between 

40% and 70% relative humidity, nearly every day exceeded in the museum halls (see 

appendix 7.4).  

Dramatic changes in the atmospheric humidity, how they are “often and possible” in 

the museum halls, result in all series to an excess of the specific tension. While the 

tension in the single consolidated material of the series B stays at the level of the 

untreated sample, for the combination treatment, the inner hygroscopic tension is cut 

in half. In addition, the single treatment with tenside shows similar reductions of the 

inner tension. Compared with the untreated soil, with the combination treatment and 

the tenside treatment it is possible to cut in half the risk of destabilisation by 

hygroscopic swelling in the climate change. At the single consolidation (B), the 

calculated risk complies approximately with the untreated condition (A). However, 

one should not forget, that the level of tension in the single consolidated series B has 

trebled in relation to series A (see image 68-table).   

 
 



Stabilisation of loess clay surfaces at the example of the Terracotta army in Lintong  

 106

change of 
atmospheric humidity  

rel.humdity
(%) 

A B C D E F 

possible 26 – 98 4,3 3,9 1,9 1,9 2,5 2,8 

often 30 – 85 2,7 2,5 1,3 1,2 1,6 1,7 

normal 40 – 70 1,4 0,9 0,6 0,5 0,6 0,6 

aim 45 – 65 0,6 0,5 0,3 0,3 0,2 0,2 

Table 15:  Quotient out of the calculated hygroscopic expansion stress (see image 68) and 
the allowed specific tension (0.53 N/mm² - non-consolidated; 1.9N/mm² - 
consolidated). 

 

 

Along with the hygric stress within the treated surfaces of the hygric tensions, that 

occurs during the change of the climate between the treated surface and the 

untreated subsurface, are an important criteria for the evaluation of the resistance 

against decay of surface treatments. The tensions between the treated and the 

untreated zone results out of the differences in the amount of the hygric expansion 

and the difference of the E-module of the materials next to each other, after the 

formula σ = ∆εhygr. * ∆E. If the tensions in the transition zone succeed a preset value, 

that is calculated after the formula ∆σ = ∆εspez.* ∆E, the formation of scales cannot be 

excluded (Snethlage, 2002). The allowed tensions between consolidated and non-

consolidated zones are inscribed in the zero of the tension-expansion diagram. The 

tension differences, calculated out of the expansion differences of the series, for the 

different atmospheric humidity are shown in the associated table.    
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. 

 
Image 69 
The stress areas, that are allowed at the inter connection from the non-consolidated (AEF E-
module = 1.2) to the consolidated (BCD E-module = 2.2) material, result out of the difference 
of the specific expansion and the difference of the E-module. In the difference of the specific 
expansion there are included in the variation limits of +/-0.1‰. Additional to the average 
expansion difference with ∆ε = 0.44‰, (yellow) there are also the expansion widths for  ∆ε = 
0.33‰ (green) und ∆ε = 0.55‰ (Rosa). Out of the table, the tensions are obvious, which 
result from the expansion differences in the transition zones. 
 

The strong hygric swelling of the single consolidated soil (series B) leads to the 

excess of the allowed tension difference at the boundary layer between the non-

consolidated and consolidated zone (see table in image 69). With the application of a 

single consolidation, there is therefore the danger of the formation of scales. 

In contrary, the combination treatments are very similar to the untreated soil in the 

hygric expansion properties (see table 14). Therefore at the transition of the 

treatment type A and C or A and D no dangerous tensions are expected.  

The columns both marked; in the table in image 69, show by the example of the 

combination treatment C the possible tensions on the additional transitions, in the 

case of an irregular penetration of the swelling reducers and the consolidant. If the 

swelling reducer penetrates deeper as the silica acid consolidation in the surface 
treatment, then at the interaction zone occurs, as the case C-E. In this case, the 

0,55 N/mm²
0,44 N/mm²

0,33 N/mm²
1,2

2,2
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difference in tension of the hygric swelling is innocuous. However, if the consolidant 

penetrates deeper than the swelling reducing tenside then at interaction zone the 

tensions of column C-B is possible. 

In this instance, there is the danger of the formation of scales. During the application 

of a combination treatment, it is necessary to take care, that the penetration of the 

swelling reducer penetrates as deep, or deeper than the consolidation. Looking at the 

curve progression of the hygric expansion in the hygroscopic area (see image 57) 

then it  becomes clear, that at the transition zones the biggest tensions occur during 

the drying out under 50% relative humidity, because in the dry area, there are the 

biggest differences in the swelling values of the treatment types. The problem of the 
formation of scales has to be owed more to the dry area than the humid area. 

In contrast, within the single treatments, the strongest swelling amounts and 

therefore the biggest inner tensions has to be expected in humidity between 65% and 

98%. 

Comparable calculations of the development of the tension in combination material 

have been done for the risk of shrinking cracks in plaster on natural stone (Knöfel, 

1992). They are used for the calculation of the risk, but cannot show the real situation 

at the object. The real situation of the tension at the object should be much lower 

then the calculated stress limits based on the E-modules, that have been measured 

at stress rates, that would not occur at this rate at the hygroscopic change of climate. 

The E- modules and the tensions resulting from them are very highly set. 

Furthermore, the creeping ability (Relaxation) of the material has not considered. 

 

The influence of the water content on the mechanical properties of adobe building 

materials is very high. The load ability of the material to tensile strength is reduced in 

the hygroscopic area between 30% and 98% relative humidity at marginal 70% from 

about 0.8 to 0.25N/mm² (see image 70). 

The longitudinal wave speed at the column samples, allows further differentiation of 

the differences of the stability due to the treatment an also the observation of the 
effect of the hygroscopic water inclusion on the stability of treated and untreated test 

items (see image 71 and image 72). 
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Image 70 Relation of the stability 
from the water content of the soil. 
The tests have been carried out on 
the undisturbed prism of the stamped 
soil of Lintong. Diagram: After the 
results in MICOULITSCH, 1996.  
Notable, is the strong decline tensile 
strength in the area of the 
hygroscopic humidity, up to 6 
weight percentage water content. 
The tensile loading of the phase 
contacts is widely dissolved by the 
water inclusion from the capillary 
condensation  of over 60% relative 
humidity (≈ 3 weight -% water 
content). 
 
 

Image 71: Average values of the 
longitudinal wave speed in the 
treated and untreated column 
samples. 
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Image 72:   Gaussian distribution curve of the longitudinal speed in the Box&Whisker 
diagram for the humidity areas of 5%, 60% and 98% atmospheric humidity. 
 

 

The consolidated series (B, C, D) reach, at 5% humidity, longitudinal wave speeds 

between 1.7 and 2.0 km/s, while the speeds of the non consolidates series (A,E F)  

reach only 1.5-1.6 km/s. That corresponds to an increase of the factor of 1.06 -1.33. 

In contrary to the bending strength measurement, the single series can be 

differentiated with the differences in the US (ultra sonic) speed accurately.  While the 

single consolidation, (series B), at a constant weight in 5% relative humidity, has little 

influence on the sonic speed, it significantly increases at the combination treatment 

(C and D). The longitudinal wave speed of the dry soil column samples correlate 

therefore, very well with the dry raw density of the samples (see image73). 

The water incorporation in the hygroscopic range leads, in all series, to a reduction of 

the transmission speed. 

In accordance with the measurements of MICOULITSCH, 1996 (see image 70) this 

effect is very significant in the range between 60 and 98% relative humidity (see 

image 71 and 72). 
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Image 73: The correlation between the 
average dry raw density and the 
average longitudinal speed (vL) of the 
dry series (5% relative humidity) are 
approximately linear. 
 

 

 

 

 

 

 

In marble, limestone and most of the sandstones, the ultra sonic transmission speed 

rises with increasing water content, up to 35% (Esbert, 1989). The bridging of the 

pores, with water, increases the integral impulse speed, because the sonic speed 

(vL) is in water (1.48 km/s), four and a half times higher than in the air (0.33 km/s). 

For clayey sandstones, declining sonic speed at increasing humidity content, are 

known (Simon, 2001). In the clay bound sandstones, similar to the stamped soil of 

Lintong, water inclusion in the clayey grain bridges and contact areas leads, in the 

hygroscopic humidity range, to the softening of the structure. The starting 

“plastification” of the grain contact, directly reduces the E-module of the complete 

grain structure. With the E module, the ultrasonic speed is reduced according to the 

previously explained correlation between vL and
...*

ρ
E

 (see chapter 4.3.6.  

Examination methods). The decline of the longitudinal wave speed between 55 and 

98% relative humidity, is in the series A 41% (see table 16). All treated series register 

a smaller decrease of the sonic speed. Particularly balanced are the consolidated 

samples of the series B, C and D. In addition, the single treatment with swelling 

reducers decreases the humidity-conditioned reduction of the longitudinal wave 

speed to 25%. Both treatments affect balancing the humidity-conditioned fluctuations 

of the sound impulse speed. The small fluctuations in the combination-treated series 

C and D refers to a phase addition of the effects. 
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A B C D E F 

41 % 14 % 10 % 9 % 25 % 25 % 

Table 16: Reduction of the longitudinal wave speed between 5% and 98% relative humidity  
 in % of the speed with 5 % relative humidity. 

Because the water content, at 5 % and 98% relative humidity in all series, are very 

similar (see image 46), it is possible to trace back the effects of the treatments on the 

humidity-conditioned impulse speed decrease. This probably derives directly from 

improvement of the "water resistance" on the grain contacts. 

 The values for the dynamic elastic module from the elongation wave measurement 

are shown in image.74. The range of the measured values falls between 0.75 and 5 

kN/mm². However, it is to be noted that all results for sample C1 falls entirely out of 

the range of the other values, and all other measurements do not exceed 3 kN/mm². 

Therefore, the results of the dynamic E- module measurement falls in the same 

range as those of the static E-modules from the bending measurement, namely 

between 0.5 - 3 kN/mm² (see imgae.64). The results of the measurement, with 

comparable sample conditioning (40% relative atmospheric humidity), are in 

accordance with the bending measurement of between 1 and 2.5 kN/mm² (sample 

C1 excluded). 

 

 

Image.74      
Measurement values  
to the dynamic E- 
module at the 
individual column 
samples of all series. 
The measurements 
have been carried 
out in order with 
weight constant in 5, 
40 and 80% relative 
humidity. 

Independently of the amount, heights of the individual e-modules, which seem to 

depend much on the individual condition of the single sample, and due to the limited 

sample numbers, it does not show a clear trend in comparison of the treatments 

(results in image.74). The average decreasing in the E- module, derived from it, in 
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Table 17 clearly point out the strong influence of the humidity on the elastic module in 

the series A, B and C.  For the series D, E and F however the E- module is far less 

affected by the hygroscopic water content. The series D, E and F have smaller E-

modules in the "dry measurement" (5% relative humidity, image.74). This indicates  a 

fundamental improved flexibility of the grain contacts flexibility by the tenside 

coupling. The special development of this flexibility effect for the series D and F, 

which have distinctively longer alkyl chains than C and E, seems to confirm this 

observation. 

A B C D E F 

49 % 62 % 43 % 26% 27 % 20 % 

Table 17: Average decreasing of the dynamic E-modules from the dilatation wave    
measurement between 5% and 80% relative humidity in % of the E-modules at 5 % 
relative humidity.  

 

 

 

 

 

 

The tenside treatment stabilizes the elasticity of the grain bondages within the 

hygroscopic range. That applies also to the combination treatment in series of D. 

Comparing the changes for the dynamic E- module within the range between 5% and 

80%, relative humidity with the adsorptive water inclusion in volume percentage, it 

results a linear dependence between the adsorbed quantity of water and the 

reduction of the dynamic E-module (image 75). The dynamic E-module of the soil 

reacts much stronger to the water adsorption in the micropores of the grain contacts 

than the longitudinal wave speed, which depends, like the pressure strength, on the 

elasticity and above all on the gross density of the material. Consolidation with silica 

acid silicate ester does not seem to cause qualitative stabilization of the grain bonds 

in the hygroscopic range against the softening of adsorbed water. For the E-module 
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of the single consolidated series, due to the increased water adsorption of this 

sample series (see chapter 4.3.3), even higher fluctuations in the elastic module 

occurs than at the untreated samples.  

The scratching resistance measurement did not give a clear differentiation for the 

humidity steps (see image 76). In comparison of the treatments however, very clear 

differences resulted in the scratching resistance. While the spike penetrates at the 

untreated samples, (A), deeply into the surface and causes a deep scratch, in the 

consolidated series (B, C, D) only light superficial scratches can be seen. Also at the 

samples, which are treated only with the swelling reducers (E, F) the penetration of 

the spike is clearly reduced. Independent from the water content, the tenside 
treatment seems to cause a small improvement of the mechanical stability of the 

treated surfaces. 
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Image 76     Scratching images on the surfaces of the column samples. The scratching 
was accomplished successively in three wetting stages. Red: 5% relative humidity, 
Green: 40% relative humidity, Blue: 80% relative humidity. 
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The scratching resistance test shows the low abrasion resistance of the untreated 

soil. It shows also that silicate ester consolidation (B, C, D) can offer by far sufficient 

protection against the mentioned mechanical surface stress in the museum of the 

Terracotta army (see chapter 1.2). Additional the scratching tests proved, that also 

the tenside treatment could improve the resistance of the soil surfaces against tensile 

stress, shear stress and compression strength.  Perhaps the tenside treatment 

actually causes a molecular coupling of the mineral surfaces in the range of the grain 

contacts. The coupling over the alkyl chains would cause a "rubber band effect"; on 

the one hand the softening in the "dry condition" (see: image 74), described above, 

on the other hand in addition, an increased tensile strength at the grain contacts 
(see: image 77). A small decrease of the E module and a small increase of the 

tensile strength at the grain contacts, could be conceived as the catalyst for the 

increased abrasion resistance of the tenside treated samples 

 

 
Image 77:  “elastic band effect": The bi functional tensides create a flexible connection 
between the mineral surfaces. The expansion and the linkage of the clay mineral 
structure with flexible tensides soften the "dry" grain contacts. The E- module sinks. 
Low shear stress does not lead to the breakage so easily with treated soil. The longer 
the alkyl chains, the more the "elastic band effect" is. The dynamic E- module in 
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series C and E (only short ethyl chains) is higher than in the series D and F, which 
contain also longer Butyl and Hexyl chains. 

Summary of the results of the mechanical stability 

The results of the biaxial bending measurement, the ultrasonic measurement and the 

scratch hardness test show, that the consolidation with silicate ester clearly increases 
the breaking stress and the elasticity of the soil. The correlation of stability and 

elasticity is thereby improved. With a single treatment with bifunctional tensides, the 

changing of the bending strength of the material cannot be proved. The ultrasonic 

results point out, however, that the tenside treatment makes the grain connections 

more flexible and consequently improves the mechanical stress capacity. The 

specific expansion, as a limit for the elastic ductility of the material, increases for the 

consolidated samples from 0.33 to 0.77‰. This means an improvement of the 

structural stability on internal tensions, as they occur in the case of the excavations of 

Lintong at hygric expansions in the atmospheric humidity change. The climatic 

fluctuations in the museum halls, causes continuous excess of the specific expansion 

on the untreated material. Thereby internal stress develops, which are outside of the 

secured flexible range. The destabilization risk, which exists, is halved by the 

combination treatment and by the single treatment with tenside. A single 

consolidation (series B) improves the resistance of the soil. However, the values of 

the hygroscopic expansion and thus the internal stress increases with this type of 

treatment so strong, that the destabilization risk in the atmospheric humidity change, 

corresponds to that of the untreated soil.  

Additionally, for this treatment type, exists the danger of the climatically caused 

destabilization at the transition zone between the consolidated surface and the non-
consolidated subsoil, due to the high hygroscopic expansion difference to A. Such 

destabilization phenomena can lead scale formations on the surface. The 

hygroscopic expansion of the combination treatments is so similar to the untreated 

soil, that this type of treatment will not tend to form scales. However, the swelling 

reducer must penetrate deeper than the consolidant, in the case of a surface 

application. In the opposite case, the material transition "combination treatment > 

single consolidation" and "single consolidation > untreated earth" would occur, which 

would lead to the formation of scales, due to their mechanical properties in the 

humidity change.                   
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In contrast to the bending measurement, it is better possible to differentiate the small 

differences in stability of the individual series with the ultrasonic transmission 

measurement. The longitudinal wave speed at 5% relative humidity correlates very 

well with the dry gross density of the samples. With the ultrasonic measurements it 

could be also proven that the water storage already softens the mineral structure in 

the hygroscopic humidity range and that it reduces the E-module of the entire grain 

structure in all series. With the comparison of the change in the dynamic E- module 

within the range between 5% and 80% relative humidity,  a linear correlation between 

the adsorbed quantity of water and the reduction of the E-module can be determined. 

Thus derives the following differentiations:  

The tenside treatment can reduce distinctly the range of the E- module within the 

hygroscopic humidity range. That applies also to the combination treatments with the 

following consolidation (series of C and D). In contrast to the single consolidation with 

silicate ester, within the hygroscopic range, it does not cause qualitative stabilisation 

of the grain connections against the softening by adsorbed water. For the E-module 

of the single consolidated series B result even stronger fluctuations, than at the 

untreated samples, due to the increased water adsorption of this sample series. In 

the case of the tenside treatment, lower e-modules in the "dry measurement" at 5% 

relative humidity and the increased scratching resistance, indicate a basic increase of 

the ductility of the grain contacts by the tenside coupling. 

4.4 Modelling of the heat and moisture transport for building elements made 
out of stamped soil, with and without surface treatment. 

The influence of the treated surfaces on the moisture equilibrium with the untreated 

soil underneath, was examined with help of the computer program WUFI-2D for 

modelling of inter stationary heat and moisture transport functions. The calculation 

functions of this computer simulation, are based on fundamental material properties 

data, as they were compiled in chapter 4.3. The simulation allows a very 

differentiated estimation of possible moisture stress in the depth profile for the soil, 

depending   to the given climatic benchmark data.   The PC program WUFI 2D was 

developed to simulate two-dimensional heat and moisture transport functions in 

building elements, such as roof constructions, walls or foundations. The theoretical 

bases of the program are explained in KUENZEL (1995A). The program is based on 

the Finite elements method. For the modelling of the inter stationary heat and 

moisture transport processes, fundamental material parameters are combined with 
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"climatic transition coefficients" and climate data. For the display of the result 

parameters, temperature, relative humidity and water content in the building element, 

the program offers various forms of illustrations (Künzel, 2000). Thereto belong 

profiles for temperature, water content, relative humidity and also the behaviour 

curves of the result parameters at monitor positions, which can be set freely at 

particularly interesting places. 

4.4.1 Input parameters for the modelling, with Wufi-2D- building element 
layout, material data and climate data 

To ease the comparison of the results in the display format and also exclude 

accidentally deviations in the input masks, the simulation for three surface treatment 

types and an untreated surface was calculated simultaneous in one building element 

(see: image78). This combination consists of four stamped clay cuboids laying on top 

of each other, each of 10cm height and 38cm width. The cuboids are marked 

according to the type of their surface treatment with A - untreated, B - consolidated, 

C/D - combination treatment and E/F – swelling reduction treatment. They are 

shielded from each other with heat- and humidity-insolating interfaces. The building 
elements are divided from right to left, in treatment zones (3cm), close range behind 

the treatment (5cm) and deep range (30cm). These three elements of each building 

part can be allocated independently with variable material properties. The allocation 

for the simulation of the surface treatments is marked with coloured grids in 

image:78. The division of the finite computing elements can be designed for each 

layer of the building element individually (sum of the elements in a vertical or 

horizontal element level). It opens from the external surface of the building element 

(right) to the deep range (left). This reduction of the space dissolution from the 

surface into the depth of the building element reduces the effort of the computation. 

It is justified, because short term and small-scale climatic fluctuations affect the 

surface near parts of the building elements. The width of the finite elements is within 

the treatment area between 2.5 and 4.5 mm, at close range between 2.5 mm and 

12mm and in the deep range between 2.5mm and 10cm. For the display of the 

climatic fluctuation during this time, four monitors were positioned in each of the four 

building elements. 

This combination building element is surrounded by three sides with a "modulation 

system border" in each construction unit. At this border the actual values 

(temperature and humidity) of the adjacent elements "are reflected" computationally. 
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The program simulates here the unlimited expansion of the material with the 

condition of the border element, so therefore, from these boundary surfaces, no 

influence on the climatic situation in the building element proceeds. At the right side 

of the building element, the soil surface with the treatments is simulated. Since there 

does not exist a continuous climate file with hourly values for the situation in the 

museum halls, and the climatic stress should be assumed as high as possible, for the 

basic file for the simulation of an external climate, the outside climate data from 

“Holzkirchen” South Bavaria was used. From this climatic file, with the help of the PC 

software "Wufi Climate generator", the precipitation data was eliminated and the 

radiant heat of the sun for a laying surface with 0° inclination was computed. In the 
simulation the hourly values of the outside temperature, the relative outside humidity 

and the radiant heat of the sun are added. For the transition coefficients, the defaults 

for the interior were selected. The climate, creating the base of the simulation, is, 

apart from the base values, adapted to the situation in museum-hall 1; Roofing, no 

wind, no rain, but also no climatic insulation and direct sun exposure over the 

window. The general monthly average values of the climate in Xi’an and Holzkirchen 

are added in appendix 7.7. The material data for the Wufi 2D modelling are 

determined from the investigations in chapter 4.3. Due to the correlation of the 

characteristic values at the swelling reducing treatments (series E and series F) and 

of the combination treatments (series C and series D), for the building elements C/D 

and E/F, the average values of the series types were used. The modelling with Wufi-

2D, is based on the following material specific values: Gross density, porosity, 

thermal capacity dry, thermal conductivity dry, diffusion resistance number, thermal 

conductivity addition, moisture storage capacity (adsorption isotherm). The data for 

the thermal conductivity and the thermal capacity are taken from the data, from 

comparable clay materials in MINKE (1995). The factor for the increase of the 

thermal conductivity, due to moisture, is adapted to the results of the conductivity 

tests in (Hiraiwa, 2000). The used materials data are listed in appendix 7.7.  
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Image 78:  Configuration of the building element, for the calculation of the moisture transport 
in Wufi 2D; Four building elements with and without surface treatment (A, B, C/D, E/F) are 
separate over insulation layers and are modelled at the same time. Twenty computing 
elements, horizontal from right to the left: Treatment zone (3cm) - 9 elements, close range 
behind the treatment zone (5cm) 7 - elements, deep range (30cm) - 4 elements. Computing 
elements vertically: Three computing elements per building element > altogether 21 
computing elements. 

4.4.2 Modelling results in the behaviour of the untreated soil in atmospheric 
humidity change. 

The three-year modelling of the humidity fluctuations on the monitor positions, results 

in an even development without long-term humidification or dehumidifying tendencies 

(image:79) for the untreated soil (A) (The years in the model calculation are fictitious 

and have a no significance). The humidity in the soil rises rapidly, starting from 

September, and drops continuously from the end of January to the end of the 

summer. The fluctuations of the relative humidity are recorded in Image: 79. for four 

monitor positions. The ranges of outside air (32 - 100% relative humidity) are strongly 

buffered in the depth profile. They values are: in 2 millimetres of depth between 43 

and 98 % relative humidity.; in 1.5 centimetres depth between 66 and 92 % relative 

humidity; in 3.2 centimetres depth between 72 and 86 % relative humidity and in 7.5 
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cm depth only between 76 and 85 % relative humidity. With the example of the 

14.06.1992, the design principles of the humidity profile in addition to the depth 

dispersion in short, middle and long-term climatic developments, should be 

examined. In addition, one compares several snapshots of the moisture distributions 

(image: 81) during one day. For the interpretation of these humidity profiles from the 

14.06.1992, the development of the relative humidity at the monitor positions from 

the beginning of June until the middle of June (image:80), has to be considered. 

Turning points in the external climate, "are stored" as turning points in the humidity 

profile. At the time, which has passed since a climatic change, and at the position, in 

which the associated turning points in the humidity profile appear, it is possible to 
read off one depth effect in short, middle and long-term climatic developments. At the 

beginning of June, the soil is in the middle of the summer drying off period (see: 

image: 79). In the preceding first days of June, the external climate was particularly 

dry for a period of ten days; subsequently the earth on the 14th June, despite the 

long-term summer drying, is in a medium-term phase of moistening. On the 14th 

June, between 9:00 and 18:00, the humidity of the outside air decreased (see: 

image: 81). This drying reacts, up to 1cm depth, as an actual drying out                    

(> scope 9 h).  

At the same time, the relative humidity in the range of between 1 and 3 centimetre of 

depth increases. It follows thereby a trend, that has already started the evening 

before (monitor A - 0.2 cm in image.80) and spread during the night to a 1.5 cm 

depth (monitor A - 1.5 cm image.80) (> scope 24 h).  At the 14.06 in the range of 

between 3 - 5 cm depth, the humidity is still decreasing. This trend, again comes 

from the 10th June (> scope 4 days), in which a four to five day long phase, of the 

increasing humidity, which in the meantime penetrated to a 7 cm depth (> scope 10 

days), was replaced by dry outside air. The linear decline of the humidity between 16 

cm and 7 cm is part of the long-term summer drying out, that already dries the soil in 

the depth profile from the beginning of April, in the long term, under the annual 

average value of 80% relative humidity. (See: image.79: Monitor A - 3.2 cm and 
monitor A - 7.5 cm) (> scope 2 month).The summer drying spreads further to the 

centre of the soil until September and the beginning of November. Image 82 is shows 

the situation at the end of the dry period. The drying front is penetrated in the model 

calculation, up to 28cm under the surface. The difference between outside air and 

the soil moisture in the depth is in this moment at 24 % relative humidity. (56% 

outside - 80% inside). However, 98% of the drying gradients are, in the first 16 

centimetres, under the surface. 
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Image79     Behaviour curves of the relative humidity for the untreated soil (A) at monitor 
positions 1 – 4, over three years, with identical air conditioning. The model calculation starts 
from the 01.04.1991 at midnight. The monitor positions are in the profile of the soil within the 
distances of 0.2 cm, 1.5 cm, 3.2 cm, and 7.5 cm to the air-conditioned surface. The initial 
moisture of the soil is with 80% relative humidity adapted to the average annual external 
climate. The process curves are, therefore, balanced and do not follow any long-term drying 
or humidification trend. 

 

 

 

 

 

 

 

 

Image.80 Cut out from image.79 from June 1992. The soil is still in the summer drying phase. 
After eleven days of a strong drying process with external humidity under 45 %, the internal 
air humidity rises again. According to their deep positioning the process curves of the 
monitors, react to short -, middle and long-term trends of the internal climate development 
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Image 81    The distribution of the relative humidity in the profile of the soil, for four times a 
day on the 14.06.1992. The air-conditioned surface is on the right. The entire depth of profile 
is 38 cm. For some turning points of the curves, the distance to the surface is indicated above. 
The black arrows refer to drying or humidification tendencies in different layers of depth. 
Between 9:00 and 18:00 hours, the surface dries off. However, the climatic development 
under the surface follows; depending on the depth, medium-term or long-term climatic 
developments. The direct influence of the drying between 9:00 and 18:00 reaches 10mm 
under the surface. Altogether, in this period, solving changes of humidity take place at a 4 cm 
depth, whose process is also affected by the daily fluctuation. 
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Image.82    Profile curve for the moisture distribution in the untreated soil on the 14.09.1992 
approximately 18:00. At the beginning of September the summer drying off, is replaced by a 
continuous increase of the atmospheric humidity (see: Image.79). Mid September, the long 
summer drying period, reaches, with the falling below of the annual average value of 80% 
relative humidity, 28cm under the surface, their maximum effective depth. 

The speed of the depth propagation of climatic fluctuations on the surface, depends 

naturally also on the balance between the material moisture and the external 

humidity values. In this modelling, it was calculated with the climatic data of a 

freestanding measuring point. Even when the climatic situation in the museum halls 

of Lintong are far away from the museum standard, smaller fluctuations of the weeks 

and daily averages can be expected in the interior. The actual depth effect of the 

climatic fluctuations into the museum will be therefore slightly weaker, than it was 

modelled here. The penetration speeds in tab. 18: can be therefore be regarded as 

the upper limit. Nevertheless, modelling with real climate data is always closer to the 
real conditions, than simple computations of stationary drying or moistening 

situations. Since short-term climate change; such as the daily cycles or brief drying 

and moistening situations; substantially affect the propagation conditions of long-term 

changes (Kuenzel, 1995). 

Penetration depth 28cm 16cm 7cm 5cm 3cm 1cm 

Time after the start of 

the trend 

5 month 2 month 10 days 4 days 24 hours 9 hours 

Table. 18:  Depth effect of natural climate fluctuations on the stamped soil of Lintong. 
Results from the modelling on untreated soil with Wufi 2D. 
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Compared with other building materials, the climatic fluctuations penetrate quickly 

into the material. That applies to all periodic groups of different duration (yearly, 

monthly, daily fluctuations). For clarification in an additional model, calculation at one 

of the four building element positions (see: image.78), a solid brick with the material 

data of the IBP data base was used (Kuenzel, 2002). The profile in the brick shows, 

that the summer drying on the 14.06.1992 penetrated only up to 8 cm under the 

surface (image.83). In the depth of the building element can still be seen the rest of 

the humidity infiltration from the last winter (moisture contents over 80% relative 

humidity). The high adsorption capacity of the soil and the fast distribution of 

adsorbed moisture, into deep areas under the surface, are the physical cause for the 
good breathability of the building material clay, as described in MINKE (1994). Clay 

building elements are considered as a excellent buffer against humidity fluctuations 

 

Image.83  Profile curve for the moisture distribution in a solid brick on the 14.06.1992 
at 18:00. Apart from of the material characteristic data, all modelling parameters correspond 
to the computation in image 82. 

The results of the modelling at the non-consolidated stamped soil of Lintong, leads to 

following conclusions: 
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• Zones, with more than 3 cm distance to the surface are exposed to only small 
humidity changes. The amounts of the moisture fluctuations are, in the whole 

year cycle below 15% relative humidity. The penetration of a drying front into 

this depth takes at least 24h. The most serious climatic changes within this 

range, remain under an amount of 10% relative humidity over a period of at 

least 10 days (see: image.79 and image.80). Therefore, the maximum stress 

amounts from the hygroscopic dilatation are in this depth so small that 

according to the computations in chapter 4.3.6, including the untreated  and 

treated soil, together with the transition areas between the treated and 

untreated zone structure, damaging tensions can be excluded. 

• In the zones with more than 1.5 cm distance to the surface, the annual 
humidity fluctuations are at a maximum of 25% relative humidity. During the 

year, there are repeatedly short term drying and moistening events with 

changing amounts of up to 20% relative humidity, that can build-up in five to 

ten days (see: image 79 and image.80). In addition, here there are still no 

structure-damaging tensions to be expected for the single materials and for 

the material transitions. 

• The first 1.5 cm, under the surface are exposed - from the outside to the 
weaker inside - to the daily fluctuations of the air humidity changes. Humidity 

change of 50% relative humidity within 24 hours are possible, fluctuations 

with amounts of over 30% happen approximately every days. According to 

the calculations in chapter 4.3.6 structural damages are expected, at least for 

the untreated soil (series A) and the single consolidated soil (series B), for 

these climate fluctuations. Even at sufficient penetration of the consolidant, 

the material transition border exceeds at least at the outcrop line of the 

treatment, the required depth.  

• The treatments with the shown methods should penetrate at least 2 to 3cm. 
For treatments with less than 1.5 cm penetration, depth scale formations 

cannot be excluded with climatic fluctuations, as they were set in the model 

calculation. 

4.4.3 Effect of the treatment methods on the moisture transport in the 
surface-treated soil 

The influence on the surface treatment, on the climatically influenced development of 
the humidity resources in the soil, precipitates in the model calculation are very small. 

In image 84 and image 85, there are shown, the humidity profiles for the untreated 

building elements and the three treated building elements, in the evening of the 
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above mentioned, 14th June 1992. The profiles of the relative humidity in the building 

elements, with consolidation and swelling reduction treatment, at this time does not 

differ from the profile of the untreated soil. The drying in summer, is in the profile with 

the combination treatment on the surface, is practically unchanged, even when the 

relative humidity in the depth profile compares to the other construction units is 

computationally over 2% relative humidity higher (Abb.84). The profiles of the water 

contents, in the soil behind the treatment zones, are almost identical (image 85). 

Analogue to the respective run of the adsorption isotherm, the water contents in the 

treatment zones are different. 

The gradient curves of the relative humidity in the treatment zone (see:image.86) and 
behind the treatment zone (see: image.87) confirm the observations from the profiles. 

The annual fluctuation of the relative humidity in treated building elements with 3cm 

depth of treatment and in the untreated soil deviates only slightly from each other. In 

addition, with the surface-treated soil, no long-term moistening or dehumidifying trend 

develops. There are no humidity maxima behind the treatment zone. The depth effect 

of short-term climatic vertex is fastest in the untreated building element. According to 

the changed vapour diffusion resistances (see: chapter 4.3.4) the desorption of the 

summer humidity is at the combination treatment slightly halted (see: image 87).With 

the treatment of the swelling reducers, the summer drying is, even slightly faster than 

in the untreated soil. Through the swelling reducer treatment, with high moisture 

contents of around 88%, the moisture transport into the depth of profile is slightly 

held back (image 86). Compared with the normal daily and monthly fluctuations in the 

profile depths of 1.5 and 3.2 cm, the shown moisture differences in image 86 and 

image 87, due to the treatment, are insignificant. Although the µ-value in the humid 

range lays more than 60% with all treatment types over the untreated soil (in the 

case of the combination treatments even up to 400%),(in SASSE & SNETHLAGE 

(1996) it is recommended that this value should not rise any more than 20%) the 

permeability of the soil is still too high, that a single climatic change, without rain 

entry, rain nodes can appear behind the treatment zones. These small affects of the 
treatments on the adsorption and transmission of the humidity are certainly 

intensified in the case of larger treatment depths. If the treatments penetration depth 

is less, the effects are probably weaker. Altogether, none of the presented treatments 

has a noticeably negative reaction, in the modelling on the transport of material 

humidity in the hygroscopic range.  
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Image.84   Humidity profiles (relative humidity) in building elements with and without 
surface treatment. The treatment depth is 3cm, it is marked with arrows (see also: Structure of 
the building elements of the modelling in image.78). The changes of the moisture distribution 
in the profile are even one year of climatisation very small. 

 

 

 

 

 

 

 

 

 

 

Image 85Feuchtigkeitsprofile (water content) in construction units with and without surface 
treatment. The treatment depth amounts to 3cm, it is marked with arrows (see also: Structure of 
construction unit of the modelling in Abb.78). The treatment-conditioned changes of the water 
contents in the depth profile behind the treated zone are marginal. The water contents within the 
treated zone result from the differences in the dampness memory function, with more or less same 
water vapour partial pressure 
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Image 86  Profile curve of the relative humidity in the treatment zone (1,5cm distance to the 
surface), in model year 1992. The humidity differences of the treated and untreated building 
elements remain under 3% relative humidity. In relation to the annual range in this depth 
(25% relative humidity), the changes caused by the treatment are small. 

 
Image 87: Profile curve of the relative humidity directly behind the treatment zone (3.2cm 
distance to the surface), in the model year 1992. 
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5. Summary  and fundamental evaluation of the results on treatment 
methods – referring  to the situation in the pits of the Terracotta 
army 

 
The investigation in chapter 4.3 shows that it is possible, also with soil, to work with 

small formatted undisturbed original samples. Additional it becomes clear, that for the 

stamped soil of Lintong, or comparable soils, the method catalogue, apart from 

methods with direct water contact and the pore space model from the field of stone 

conservation of stone, can be applied in principle.  

The following results and conclusions apply primarily to the application of the 

presented treatment methods on the stamped soil of Lintong. In principle, they should 

be also transferable to other soils with comparable mineral composition, gross 

density and pore space structure. 

5.1 Swelling reduction treatment 

The treatment of the stamped soil of Lintong, with the modified swelling reducers DE 

and DEBH, have no influence on the visual appearance of the soil. In contrary to the 

results of the preliminary tests with Antihygro and overdosed, modified swelling 

reducers, the treatment with DE and DEBH decreases, if it is adapted to the cation 

exchange capacity of the substrate, the hygroscopicity of the soil.                              

This treatment has no verifiable influence on the dry gross density, the complete 

porosity and the internal surface of the soil, attainable with nitrogen. With the water 

vapour adsorption isotherm up to 60% relative humidity, for the treated soil a 

reduction of water infiltration in pore radii under 0.002µm could be proved. Also with 

this effect, there is no measurable difference between the formulations DEBH and 

DE. 

On untreated soil samples the water vapour diffusion is in the humid range (50 - 
100% relative humidity), because of the high amount of surface diffusion, three times 

as higher as in the dry range (0 - 50% relative humidity. The swelling reducer 

treatment does not affect the vapour diffusion in the dry range. By disturbing the 

surface diffusion, it reduces however, the diffusion flow in the humid range by around 

50%. This leads in the modelling of the moisture transport to slight congestions, if the 

moisture stress in the profile exceeds 88% relative humidity.                              

The fast capillary absorbency of the soil of Lintong (w-value10 - 16 kg/m²h0,5) 

promotes a good penetration property of the treatment material. On clay materials 

with a higher proportion of clay and a smaller amount of capillary pores, treatment 
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depths of at least 2-3 cm are, as it has to be recommended due to the results of the 

Wufi-2D modelling, not always to be realized. 
The swelling reducer treatment has no influence on the w-value of the soil. Because 

with this treatment the water adsorption coefficient remains high, the vapour diffusion 

in the humid area is halved, the drying characteristics in the case of capillary water 

absorption worsens. The Künzel number of this treatment type is with, 121 – 144, 

twice as high as at the untreated or consolidated soil. The treatment reduces the 

swelling within the hygroscopic humidity range by 35 to 60%. By this, the internal 

tensions reduced clearly with the changes of climate. For the two-tenside mixtures 

(DE and DEBH), there are significant differences at this point. 

Through the exchange of the hydrateable cations and bridging of the loaded clay 

mineral surfaces the bifunctional Tenside limits the accessibility of the mineral 

contacts for water, so that no "unlimited” osmotic pressure can develop there. In 

water storage, the grain contacts are  not being “blown up" anymore. The samples 

remain stable underwater. However, they are so softened by the water saturation, 

that in the case of external mechanical stress or at large sized samples, they 

collapse under their own weight. In the bending test, no increase of the stability could 

be proven for the treatment with swelling reducers. Due to the smaller amounts of 

extension in the change of climate, the risk of destabilization, caused by the hygric 

expansion, halves for surfaces treated with swelling reducers.  

Variances, due to the moisture, of the mechanical properties within the hygroscopic 

humidity range are clearly reduced by the treatment. Thus, the reduction of the 

ultrasonic speed in the hygroscopic range between 5 and 98% relative humidity is 

reduced from 40% to 25%. The range of the dynamic elastic module is also 

substantially reduced. It can be expected, that additionally, the climatically initiated 

tensions in the treated material become weaker; an effect, which again increases the 

climatic stress load. In the scratching resistance test, a clear improvement of the 

abrasion resistance could be observed. It can probably be traced back on the 

reduction of the elastic module, due to the treatment, which can be explained with the 
"rubber band effect" of the tenside coupling. The treatment with swelling reducers is 

also able to reduce the mechanical abrasion of the surfaces in the excavation of 

Lintong. 

In contrary to the treatments with consolidant, by the treatment with swelling 

reducers, the soil is not changed irreversibly. The characteristics of the material 
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change, in particular in the way that the soil has a by far smaller risk of destabilization 

in the change of climate after the treatment, the abrasion resistance increases 

slightly and the destruction potential of water contact is limited. By external 

exposition, without rain protection, no improvement of the stability is to be expected. 

In this case, the treatment could even cause damages, because it affects the drying 

behaviour (Künzel factor) of the soil negatively. 

5.2 Consolidation Treatment 

The visual appearance of the samples is not changed by the treatment with F300E. 

Because of the gel reposition into the pore system of the soil, the dry gross density 

increases clearly, and the true porosity of the soil is reduced by 5 - 10%. Compared 

with the range of variation of the dry gross density on clay building materials, these 

treatment-conditioned differences are small. From the view of conservation, the 

constriction of the porosity is a clear change of the material properties. The effect of 

the constriction of the pore space due to the gel reposition during the consolidation 

with silicate ester is an inherent part of this method. However, this effect can differ 

quantitatively and qualitatively with every consolidation. Apart from the formulation of 

the silicate ester, also the existing pore structure, the mineral composition of the 

substrate and the application conditions have a large influence on the intensification 
or weakening of this effect. As in stone conservation, it is recommended for the 

consolidation of soil, to carry out an investigation of the pore space reduction, due to 

the consolidation, before the application on the object. 

In the test series on the original soil of Lintong, the silica gel inclusion took place in 

the pores with pore radii over 0.1 micrometers. The mercury porosimetry resulted, 

that the gel closes many pores in the lower capillary pore space with pore radii 

between 0.1 and 1µm. Larger pore spaces are only lined with gel at the walls. Due to 

self-porosity and the shrinkage cracks in the gel film, the inflow of water into the 

micro porosity is not shielded. The silica gel reduces the capillary pores, but brings 

along with its self-porosity an additional portion of micro porosity. The proportion 

between micro porosity and capillary porosity shifts toward micro porosity. Therefore, 

the consolidation with silicate ester causes, on one side, an increase of the water 

vapour adsorption and, on the other side, a reduction of the capillary water transport. 

In comparison to the untreated soil, the capillary water absorption coefficient is 

halved. 
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The consolidation reduces the water vapour diffusion in the humid area, only slightly. 

At the Wufi-2D modelling (that takes place predominantly within the humid range) the 

humidity fluctuations in the depth profile correlate well with the untreated soil. From 

the view of conservation, the consolidation has an effect that questions the 

sustainability of this treatment.  Due to the consolidation, the swelling within the 

hygroscopic humidity range increases by 30 to 80%. Additional to the increased 

water adsorption, here the effect of the "reduced swelling space" is of importance. 

From the rigid sealing of the pore membranes at a constant or increasing water 

adsorption, an additional swelling pressure forms behind the gel film and therefore an 

additional swelling. This effect will occur at all consolidations with SE systems, or 
other systems, which line the pore space with an “inflexible” gel film. 

Regarding the consolidation effect, the SE- film is very successful. Despite the 

additional swelling pressure, the structural stabilization of the pore space is strong 

enough, to ensure fully the inherent stability of small sized column samples, also in 

water storage of several days. The silicate ester consolidation offers sufficient 

protection against the mechanical surface stress in the museum halls of Lintong. The 

consolidation increases the average bending strength from 0.4 to 1.6 N/mm² by the 

factor 3.8.  The average E module increases through the consolidation from 1.2 to 

2.2 kN/mm². With the consolidation, the correlation of stability and elasticity 

improves. The specific extension increases from 0.33‰ in the non consolidated 

material to 0.77‰ after the treatment with silicate ester. 

Because of the increased hygric expansion, the internal tensions increase up to the 

quadruple value, depending on the change of climate. The improvement of the 

specific expansion can adsorb the increase in tension, due to the treatment. The 

destabilization risk caused by the hygric expansion corresponds thereby 

computationally to that of the untreated soil. Due to the higher extension rates of the 

consolidation, the danger of scaling formation occurs at the boundary to the 

untreated soil. This damage progress has to be expected to at least on the outcrop 

edges of the treatment, where the outside climate can attack unhindered. The 
modelling shows, that the humidity fluctuations are sufficiently levelled at a 

consolidation depth of 2 cm that from this depth of the profile for the treatment border 

no more irreversible tensions arise. 

While the resistance of the samples within the hygroscopic range stabilized (for this 

speaks for itself, the humidity-conditioned reduction of the ultrasonic speed, which 
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reduces itself at the consolidated samples, in the humidity between 5 and 98% 

relative humidity, from 40% to approximately 14%), the variance in the E-module, 

due to the humidity, seems to increase (the relative reduction of the elastic module 

between 5 and 80% relative humidity rises from 49% to 62%). This intensified 

variance in the elastic module will additionally strengthen the climatically initiated 

tensions in the treated material. 

 In total, the treatment of the soil with SE consolidant produces a new material with 

clearly increased mechanical stability. In addition, at the same time, the internal 

tension potential rises so strong in the humidity, that the long-term climatic stress 

capacity of the consolidated soil is probably lower than at the untreated soil .The 
ageing process of the gel was, at the time of the investigation, not yet completed. It 

would be important to examine the material parameters, worked on in chapter 4.3, 

after further condensation of the silica gel. In addition, the observation of the affects 

of an artificial ageing in the hygroscopic climate change, or in moistening drying 

cycles, would be necessary, to verify the long-term damage potential of this 

treatment as it derives from the material data. 

1.3 Combination treatment 

During the combination treatments, the influences of the swelling reducers and the 
influences of the consolidation treatment have an effect. In the resulting effect of the 

combination treatment, both additions are possible, but also the coverage and the 

balancing of these influences. For the complete evaluation, it is necessary to 

consider all characteristic data.  The treatment with DE or DEBH and the following 

consolidation with F300E do not create any visual changes at the stamped soil of 

Lintong. The abrasion resistance is clearly improved, as with the single consolidation. 

It fulfils the requirements very well for the museum hall of Lintong. 

Due to the consolidation treatment, the dry gross density rises strongly, while the 

porosity is reduced by up to 10%.  The preliminary treatment with swelling reducers 

decreases the swelling of the soil before and during the silica gel consolidation. The 

soil is consolidated in a "more compact condition". Therefore, the increase of the dry 

gross density and the reduction of porosity are higher by the combination treatments 

than by the single consolidation.  
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Pore radius distribution and isotherm:                                                       

Concerning the pore radii distribution, in the capillary pore space, dominates the 

constriction due to the consolidation with silicate ester. The shielding of the 

micropores because of the treatment with swelling reducers affects the isotherm 

more, than the increase of micro porosity due to the self-porosity of the gel. The 

adsorption in the hygroscopic range is reduced by the combination treatment. The 

isotherm curves lay between the untreated soil and the treatment with swelling 

reducers. 

 

At the diffusion transport both effects are effective, the reduction of open porosity 
through the consolidation and the reduction of the surface diffusion by the swelling 

reduction treatment. Consequently, the water vapour diffusion within the entire 

hygroscopic range is strongly reduced. Therefore, the soil with the combination 

treatment reacts in the modelling slowest to the change of climate on the surface. 

Without additional infiltration of running water, there is no significant difference in the 

depth profile (> 3cm) to the untreated soil. There is no danger of the formation of 

moist nodes behind the treatment layer 

Similar to the single consolidation, the water absorption coefficient is halved, 

according to the elimination of large parts of the capillary pore volume. During the 

hygroscopic swelling, the effects of the increased extension rates, from the 

consolidation treatment and the reduced swelling, due to the tenside treatment are 

balanced. The resulting swelling in the hygroscopic range corresponds to the 

swelling of the untreated soil or lays slightly below. In the case of the combination 

treatment with the DEBH tenside mixture, the effect of the swelling reducers is 

stronger. 

The samples with the combination treatment remain just as stable under water as the 

single consolidated. However, the reduced swelling pressure one can expect smaller 

internal tensions and increased stability in the moistening- drying cycle. Similar to the 

single consolidation, the average bending strength increases from 0.4 to 1.6 N/mm² 
by the factor 3.8. The average E- module increases during the consolidation, by 40% 

relative humidity, from 1.2 to 2.2 kN/mm², the relationship from stability to elasticity 

improves. As a result of the reduced amount of extension in the hygroscopic climate 

change and the rise of the ultimate elongation, the destabilization risk, halves at the 

combination treatment by the hygroscopic elongation. 
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The hygric expansion is so similar to the untreated material, that at the material 

transitions, theoretically, no shear stress arises. However, it must be guaranteed with 

unequal depth of penetration during the treatment steps, that the swelling reducer 

penetrates deeper than the consolidant. Even more than at the single consolidation, 

the strength of the samples within the hygroscopic range stabilises (the reduction of 

the ultrasonic speed, due to humidity between 5 and 98% relative humidity 

decreases to 10%). Differently, as with the single consolidation, due to the reduced 

water absorption, the reaction of the E- module is reduced in humidity changes. 

Similar to the swelling reduction treatment, due to this effect, less material stress is 

built-up in the climate change.  

For the combination treatment D (DEBH-F300E), the influence of the swelling 

reducer is always stronger than at the combination treatment C (DE-F300E), and the 

influence of the consolidation is less. Whether this has to do with a larger potential of 

the tenside mixture DEBH (the stronger affect of DEBH does not show up clearly, in 

the direct comparison of the series E and F, but rudimentary) or with differences in 

the compatibility of consolidant and swelling reducer, is not visible. This should 

however be the subject of further investigations. 

In general, the combination treatment creates a new material with clearly increased 

mechanical stability. The soil is stable under water and has the highest long-term life 

expectation in the change of climate, due to a low-tension potential, in comparison to 

the untreated soil and the other treatments. This type of treatment seems to be 

suitable for the requirements in the pits of the Terracotta army. 
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7. Appendix 
 

7.1 Plans 

 

 
burial area of the emperor grave (Bökemeier, 2001) 

 

 

Cross section of pit 1 with the excavation (above) and reconstruction of the original 

condition (below); Illustration out of (Ledderose, 1998) 
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Plan true to scale of pit 1 with the position of the drilling soundings 
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Plan true to scale of pit 1 with the position of the drilling soundings in the well and at 

a soil partition wall in T21 
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7.2 History of the excavation 
Compilation of the excavation history of the Terracotta army (after Catharina 

Blänsdorf 

 
Pit 1   (12 600 m2 or 14 260 m2) 

March 1974  Discovery of the Terracotta army at the digging of a well by farmers  

July 1974- March 1975 excavation in the open air; uncovering of the eastern side of the pit with 

over 500 terracotta soldiers, 24 horses and some bronze weapons  

October. 1975-Jan. 1976 Restoration of the excavated figures; determination of the ground plan by 

soundings; filling of the test excavation.  

Sept.1976-1978-791 Building of the shelter halls 

 May 1978-April 1979 remove of the filling 

 April 1979-Sept. 1981 Excavation of the eastern sectors T 1, 2, 10, 19 and 20 (each 20x20m)  

1986   Excavations in the middle and rear range (today again filled) 

1989-90   Strong cracks in the soil bridges; First stabilisation tests eastern  

1998 twelve easterly sectors completely excavated soil bridges between them 

teared off. In T 1, 2, 10, 19, 20 the figures had been restored and re situated. 

The soil had been removed up to height of the ceiling beams (except of T 8, 

9, 17, 18, 27). In the middle sectors the corridors are covered with plastic 

foils 

 

Pit 2 (6,000 m2) 

May 1976  Discovery of the pit                                                                                                   

May -August 1976 Probes ; Determination of the ground plan; 17 test excavations in the size of                                         

   3x5 up to 15x20m,  filling of the test diggings 

1989-1992 (1994) building of the shelter hall 

Since 1994 remove of the fillings, expansion of the test diggings (out of this the 

fragments 1991, 1992, 1995, 1998, 1999) 

Since October 1994 open for the public 

Until end of 1997 complete uncovering of the beam layer 

Since February 1998 excavation of the sectors T18 and 21 (fragments 2001) 
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July –August 1999 excavation of the sectors T21 G18 and K4, conservation of 6 polychrome 

kneeing soldiers in the pit 

Since 2000 stop of the excavations 

Since 2001 again excavations in T21 G18,19 and 20, three kneeing bow mans 

conserved 

Pit 3  (520 m2) 

June 1976 Discovery 

March-December 1977 First part of the excavation 

September 1978-79 building of the shelter hall 

Since October 1988 open for the public 

December uncovering of the north  corridor (figures are left in situ of the excavation) 

Pit  type of troop formation size of the pit number of 

no.    warriors chariots horses 

1 infantry and chariots (mixed) 62 x 230 m 12600 m2 6 000 50 200 

 

2 archers (unit 1)  

war chariots (unit 2) 

infantry, war chariots, cavalry (u. 3) 

cavalry (unit 4) 

26,6 x 38 m 

52 x 48 m 

68 x 16 m 

50 x 20 m 

5988 m2 800 to 1000 80 470 

3 guard of honour or head quarter  520 m2 66 or 68 1 4 

 

Overview of the sizes of the pits and the number and kind of the Terracotta figures 
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7.3 Soil-moisture profiles 

 

 

 

Interpolated moisture distribution in a soil bridge of pit 2 (left) and a soil bridge of pit 1 
(right). The drilling soundings were accomplished in May 1999 (above) and in 
October 2000 (down). The water content of the taken samples is gravimetrically 
determined.                                                                                                           
Sampling position in pit 2: T21, bridge between G17 and G18; Excavation: 
February.1998,                                                                                                 
Sampling position in pit 1: T20, bridge between G9 and; Excavation: 1979 - 1982 
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Sampling plan, true to scale, of the drilling soundings in the well of pit 2.             
Position in pit 2: T6; G6. Excavation up to the position of the ceiling beams:          
1994 - 1997. 
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Interpolation of the moisture distribution in the soil of pit 2, based on the data of the 
drilling soundings in May 1999 and October 2000 
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Wufi 2D modelling for the drying of the soil, in the positions of the soil soundings 

in pit 1 and 2
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7.4    Climate Data 
 

Weekly measurements in pit 1 

Measurement points: B37- on the floor of the corridors; C48- height of the beam 

layer; A12- Visitor level; out- outside climate 

 

 

Wochenmessungen in Grube 1: 
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Weekly measurements in pit 2 

 

Measurement points: A5- on the floor of the corridors; C33- height of the beam layer; 

E68- Visitor level; out- outside climate 

 

 

 

Wochenmessung in Grube 2 
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7.5 Dust analyses 
Microscopic images of the meteoric dust in the pit (above) and of a dust sample of 

the stamped soil (below). Soot particles stain the dust grey. 

 

 
Baseline: approx. 0.5mm 

 

SEM- image of the meteoric dust on the Terracotta soldiers. The amount of gypsum 

lays between 5 and 10% 
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7.6 Selected  measurement values of the laboratory tests  

   

Dilatation and water adsorption of the single samples (preliminary tests with modified 

swelling reducers): 

 
 

 
 
 
 
 
 
 
 
 
 

90% rel.F. 90% rel.F. 100% rel. F. 100% rel. F.
Dilatation Wasseraufnahme Dilatation Wasseraufnahme

Probe (%) (%) (Gew.-%) (Gew.-%)
SH2O_1 0,12 3,50 0,17 6,16
SH2O_1 0,11 3,48 0,13 6,73
SH2O_2 0,07 5,28 0,08 8,67
SH2O_2 0,15 3,28 0,17 5,53

SE_1 0,06 4,54 0,10 6,89
SE_2 0,01 4,56 0,01 6,60
SE_2 0,04 4,50 0,09 10,54

SB_1 0,04 5,09 0,09 9,64
SB_2 0,06 6,64 0,24 11,32
SB_2 0,03 5,81 0,04 11,79

SH_1 0,21 8,42 1,14 13,88
SH_2 0,14 7,41 0,73 13,39
SH_1 0,07 6,93 0,45 13,73

SEBH_1 0,02 8,14 0,12 12,72
SEBH_2 0,04 6,35 0,08 10,97
SEBH_1 0,03 6,79 0,24 13,90

P1 0,24 4,36 0,32 6,45

Probe m(g)(trocken) d(90%)-d1(mm) d90(mm/m) Dilatation %
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Measurement to the Sorption isotherm: 
 
 
Adsorption: 
 
 

 
 
 
 
Desorption: 
 

 
 
 
 
 
 
 

träger prbe u. träger prbe u. träger ADSORBTION
A m (g) m (g) m (g)

unbehandelt 26.07_13:00 29.07. 13:00 30.07. 14:00 31.07.02 01.08.02 06.08.02 07.08.02 09.08.02 10.08.02 19.08.02 02.09.02
dry 17% r.F.25C° 17%r.F.25°C 41%r.F. 25°C 41%r.F. 25°C 60%r.F. 23°C 74.3%r.F. 24. 76% 25°C 84% 25°C 93% 25°C 97,7% 26°C

Sa 1 3,454 18,276 18,449 18,454 18,535 18,556 18,585 18,675 18,688 18,758 18,872 19,077
2 3,441 25,354 25,602 25,604 25,718 25,753 25,797 25,932 25,954 26,056 26,223 26,52

B
F300E

Sa 1 3,392 25,556 25,8 25,803 25,92 25,956 26,001 26,128 26,151 26,234 26,358 26,566
2 3,452 35,008 35,369 35,374 35,539 35,612 35,693 35,926 35,96 36,092 36,283 36,633

C
DE/F300E

Sa 1 3,47 33,161 33,443 33,447 33,557 33,6 33,651 33,824 33,852 33,996 34,228 34,59
2 3,536 14,092 14,191 14,193 14,231 14,242 14,259 14,309 14,315 14,355 14,419 14,536

D
DEBH/F300E

Sa 1 3,398 30,034 30,284 30,288 30,383 30,42 30,47 30,628 30,655 30,772 30,969 31,284
2 3,401 14,525 14,623 14,626 14,66 14,67 14,686 14,739 14,75 14,793 14,877 15,024

E
DE

Sa 1 3,511 24,599 24,801 24,804 24,889 24,912 24,951 25,079 25,1 25,199 25,36 25,603
2 3,791 22,605 22,778 22,778 22,846 22,861 22,892 22,985 22,998 23,071 23,193 23,387

F
DEBH

Sa 1 3,558 33,988 34,282 34,284 34,4 34,435 34,493 34,677 34,71 34,861 35,098 35,471
2 3,527 16,606 16,724 16,726 16,77 16,778 16,798 16,865 16,876 16,933 17,027 17,185

A Desorption
unbehandelt 12.12.02 20.12.02 23.12.02 10.01.03 13.01.02 15.01.03 20.01. 22.01. 30.01.

96% 26°C 85,30% 77% 65,80% 48% /25°C 45,70% 34,90% 23,80% 14,4% 52°C 4%
Sa 1 18,95 18,77 18,724 18,665 18,589 18,581 18,528 18,478 18,44 18,366

2 26,336 26,071 26,009 25,919 25,809 25,798 25,721 25,643 25,591 25,478

B
F300E

Sa 1 26,414 26,207 26,145 26,068 25,977 25,969 25,904 25,827 25,774 25,671
2 36,377 36,032 35,942 35,794 35,643 35,624 35,515 35,401 35,319 35,168

C
DE/F300E

Sa 1 34,311 33,92 33,838 33,716 33,607 33,596 33,523 33,452 33,401 33,303
2 14,434 14,332 14,31 14,277 14,243 14,237 14,216 14,194 14,175 14,141

D
DEBH/F300E

Sa 1 31,042 30,707 30,635 30,524 30,427 30,415 30,351 30,292 30,52 30,168
2 14,909 14,757 14,728 14,695 14,662 14,656 14,642 14,625 14,609 14,581

E
DE

Sa 1 25,457 25,21 25,147 25,064 24,964 24,953 24,885 24,827 24,789 24,71
2 23,258 23,07 23,021 22,963 22,89 22,881 22,832 22,787 22,755 22,695

F
DEBH

Sa 1 35,255 34,893 34,808 34,681 34,534 34,519 34,419 34,336 34,282 34,176
2 17,067 16,925 16,891 16,85 16,798 16,793 16,758 16,735 16,715 16,681
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Adsorption and Desorption isotherms of all treatment types: 
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Calculation of the vapour diffusion resistance (µ-value) 
 
 

 

 
 
 
 
 
 
 
Measurement values and calculation of the w-value: (deleted!) 
 
 

Zur Anwendung im Labor wird folgende Formel benutzt:

m = dL ps Da A t / s Dm

dL (kg / Pa m s) = Wasserdampf-Diffusionsleitkoeffizient
ps (Pa) = Partialdruck der gesättigten Luft
Da (-) = Differenz der relativen Luftfeuchte
s (m) = Schichtdicke der Probe
A (m2) = Fläche der Probe
t (s) = Zeit
Dm (kg) = Gewichtsänderung

Bei einer Temperatur von 21°C haben
dL und ps folgenden Wert:

dL = 1,96 10-10 kg / Pa m s
ps = 2,49 103 Pa

Probenscheibe Luftfeuchte Zeit Wasserdampf-
Probe Dicke Durchmesser außen [%] im Glas Anfangs- End- Diffusions-

s [cm] d [cm] außen [%] aGlas [%] t [h] m vor [g] m nach [g] widerstandszahl m(dry) / m(wet)
B1 0,612 4,4 50 0 48 71,441 71,866 µ (dry) = 24,7 1,8 :1
B1 0,612 4,4 50 100 138,5 76,377 74,199 µ (wet) = 13,9
F2 0,65 4,43 50 0 48 73,080 73,535 µ (dry) = 22,0 1,6 :1
F2 0,65 4,43 50 100 118 78,295 76,489 µ (wet) = 13,6
D1 0,64 4,42 50 0 48 74,604 75,002 µ (dry) = 25,4 1,7 :1
D1 0,64 4,42 50 100 161,5 74,696 72,421 µ (wet) = 15,0
C1 0,61 4,4 50 0 48 74,407 74,728 µ (dry) = 32,7 1,7 :1
C1 0,61 4,43 50 100 118 75,506 74,107 µ (wet) = 18,7
D3 0,897 4,44 50 0 118 81,452 82,375 µ (dry) = 19,4 1,5 :1
D3 0,897 4,44 50 100 116 81,433 80,103 µ (wet) = 13,2
F3 0,82 4,36 50 0 118 75,737 76,929 µ (dry) = 15,8 1,6 :1
F3 0,82 4,36 50 100 116 76,162 74,317 µ (wet) = 10,1
B4 0,71 4,35 50 0 161,5 75,689 77,169 µ (dry) = 20,1 1,9 :1
B4 0,71 4,35 50 100 170 76,543 73,561 µ (wet) = 10,5
B2 0,78 4,4 50 0 118 79,987 81,153 µ (dry) = 17,3 1,2 :1
B1 0,612 4,42 50 100 161,5 76,682 74,199 µ (wet) = 14,3
A3 0,8 4,4 50 0 161,5 78,042 79,723 µ (dry) = 16,0 2,0 :1
A3 0,8 4,4 50 100 170 79,507 76,036 µ (wet) = 8,2
E4 0,67 4,49 50 0 161,5 76,034 77,737 µ (dry) = 19,7 2,1 :1
E4 0,67 4,49 50 100 170 76,535 72,734 µ (wet) = 9,3
A4 0,71 4,34 50 0 48 76,757 77,138 µ (dry) = 23,1 2,8 :1
A4 0,71 4,34 50 100 118 76,480 73,882 µ (wet) = 8,3
F1 0,65 4,5 50 0 118 66,773 68,148 µ (dry) = 18,4 1,6 :1
E3 0,62 4,5 50 100 118 76,804 74,531 µ (wet) = 11,7
E1 0,69 4,5 50 0 118 75,499 76,847 µ (dry) = 17,7 1,4 :1
C4 0,72 4,36 50 100 118 73,388 71,654 µ (wet) = 12,4
E2 0,96 4,4 50 0 118 81,625 82,764 µ (dry) = 14,4 1,2 :1
B3 0,75 4,4 50 100 118 77,165 75,377 µ (wet) = 11,8
C3 0,94 4,46 50 0 118 75,212 76,156 µ (dry) = 18,3 1,5 :1
D4 0,76 4,36 50 100 118 78,159 76,500 µ (wet) = 12,3
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7.7 Input parameter for the Wufi-2D-modellings (deleted!) 
 
Monthly average values for the atmospheric humidity and temperature 
in Xi’an und Peissenberg 
(source: Database METEONORM VERSION 4.0) 
 
XI’AN:  

 

 
PEISSENBERG:  
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7.8 Technical Data sheet (deleted!) 


