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1. INTRODUCTION 

 

 

1.1. INNATE AND ADAPTIVE IMMUNE SYSTEM 

 

We are constantly exposed to infectious organisms but our immune system enables us to resist 

infections. The immune system consists of the innate or nonspecific immune system and the adaptive 

or specific immune system (Table 1). The innate system is evolutionary older and it is a dominant 

part of immunity in plants, fungi or insects. It is the first line of defense against invading organisms. 

The adaptive immune system developed relatively late in vertebrates. It requires certain time to 

response to pathogens, whereas the innate immune system is constitutively ready to deal with 

infections. The innate system is not antigen specific and reacts equally well with different organisms 

and unlike the adaptive immune system it does not develop an immunological memory.  

 

 

Table 1. Differences between activation of immune and adaptive immune responses 

 

taken from HJ Anders et.al. J Am Soc Nephrol 15: 854–867, 2004 

 

The innate immune system is composed of the cells and mechanisms that defend the host in a non-

specific manner. One of the most important functions of this kind of immunity is recognition of 

pathogen-associated molecular patterns (PAMPs) and recruitment of immune cells to sites of 
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infection and inflammation, via the production of cytokines and chemokines. The nonspecific 

immunity affects also the activation of growth factors which control cell differentiation and 

proliferation as well as the complement system. Finally, it activates the adaptive immune system via 

antigen presentation. 

 

The components of the innate immune system include:  

 

1. Anatomical barriers to infections are mechanical factors (epithelial surfaces, skin, tract, tears and 

saliva), chemical factors (fatty acids in sweat, lysozyme and phospholipase in tears, saliva and nasal 

secretions, low pH of sweat and gastric secretions) and biological factors (competition of the normal 

flora of the skin and in the gastrointestinal tract with pathogenic bacteria). 

 2. Humoral barriers to infection are the complement prone, coagulation system, interferons and 

finally the interleukin 1 (IL-1) which induces fever and activates acute phase proteins and some 

antibacterial proteins like lactoferrin and transferrin (bind iron) or lysozyme (damage of bacterial cell 

wall). 

3. Soluble mediators of the innate system such as pentraxins, collectins, ficolins, defensins and 

opsonins can bind to structures on pathogens, leading to agglutination, interference with receptor 

binding, opsonization, neutralization, direct membrane damage and recruitment of additional soluble 

and cellular elements through inflammation.  

4. Cell-surface-associated pattern recognition receptors (PRR) such as the mannose receptor, 

scavenger receptors, complement receptors or Fc receptors which participate in the removal of 

foreign substances and waste materials but also activate cellular responses. Also Toll-like receptors 

(TLRs) belong to this group of molecules. 

5. Intracellular factors such endosomal TLRs, the nucleotide-binding oligomerization domain (NOD) 

family of cytosolic proteins (Chamaillard 2003; Girardin 2003) or new cytosolic defence mechanisms 

against the viral components such as retinoic acid-inducible gene I (RIG-I) and melanoma 

differentiation associated protein 5 (MDA5; Yoneyama 2004, Kang 2004). 
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6. Cellular factors are the cells of non-specific immune system, which have the ability to phagocytose 

the invading organisms and nonspecifically kill virus-infected and tumor cells.  

 

 

Figure 1. Recognition molecules of innate and adaptive immune system 
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1.2. TOLL-LIKE RECEPTOR/INTERLEUKIN-1 RECEPTOR (TLR/IL-1R) 

SUPERFAMILY SIGNALING 

 

Toll-like receptors (TLRs) are a family of innate immune receptors whose critical role involves the 

recognition of invading pathogens. They are evolutionarily conserved; their homologs were found in 

mammals, plants and insects. Microbial infections rapidly induce activation of the innate immune 

system via receptors that either recognize pathogen-associated molecules or amplify proinflammatory 

cytokine signals, e.g. interleukin-1 (IL-1), tumour necrosis factor (TNF) or IL-18 (Janeway 2002). 

The TLR/IL-1R superfamily triggers robust inflammation in response to both classes of potential 

stimuli, microbial molecules as well as cytokines (Takeda 2003). In contrast to common intracellular 

signaling pathways, the members of the TLR and the IL-1R families differ in the structure of their 

extracellular domains (Figure 2). The discovery of the TLRs identified a group of innate immune 

receptors provided explanations to many phenomena of innate immunity. The TLRs reveal 

homologies to the Drosophila melanogaster Toll molecule, an important component of an antifungal 

defense mechanism of the fruit fly (Gay 1991, Medzhitov 1997). TLRs recognize molecules that are 

broadly expressed by pathogens: pathogen-associated molecular patterns (PAMPs). The TLRs appear 

to be one of the most conserved components of the immune system. Observations and studies made 

in the 90s strongly suggested that each of the TLRs in mammals might recognize conserved 

molecules produced by microbes (Table 2). The conserved character of these molecules is due to the 

fact, that they are necessary for the pathogen’s survival and function.  The leucin-rich repeat-

containing extracellular domains of the TLRs bind defined PAMPs, e.g. diacyl- or triacyl-lipoproteins 

(heterodimers of TLR1/2 or TLR2/6), lipopolysaccharide (TLR4), flagellin (TLR5), double- or 

single-stranded viral RNA (TLR3 and -7/8) or CpG-DNA (TLR9) (Takeda 2003; Table 2). The 

multiple roles of TLRs in the initiation and regulation of innate and adaptive antimicrobial immune 

responses are increasingly recognized (Akira 2003, Schnare 2001). By contrast, the immunoglobulin 

domain-containing extracellular part of the IL-1 receptor family recruit a number of cytokine ligands 

including IL-1α, IL-1β and IL-18, which have important role in immunity. IL-1 subsequently 

activates the expression of MIP-2, KC and C-reactive protein whereas IL-18 plays a role in natural 
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killer cell activation and in Th1 cell polarization (Sims 2002, Nakanishi 2001). As for intracellular 

signaling, the members of this superfamily of type I transmembrane receptors share the intracellular 

Toll-IL-1R (TIR) domain at the C-terminus (Martin 2002). The TIR domain transmits ligand binding 

by the extracellular domain of TLR/IL-1Rs to intracellular signal transduction. 

 

 

 

Figure 2. The Toll / Interleukin-1 Receptor (TIR) Family:      Immunoglobulin domain;     TIR 
domain;     leucine rich repeats. 
 

 

The intracellular TIR domain is present in all transmembrane members of the TLR/IL-1R family 

except for the decoy receptor IL-1RII (Mantovani 2001). The TIR domain consists of 135-160 

residues that form a central five-stranded parallel beta-sheet that is surrounded by a total of five 

helices on both sides (Xu 2000). This domain is crucial for signal transduction of all the TLR/IL-1Rs 

that mediate outside-in signaling upon recognition of a specific ligand. Members of the TLR/IL-1R 

superfamily tend to homo- or heterodimerize via their TIR domain. The individual TIR domains are 

also required to form the signaling complex between the receptor and the adaptor molecules (Martin 

2002). Deletion of single, essential amino acids within the TIR domain results in loss of signal 

transduction (Xu 2000, Radons 2002).  

With the exception of TLR2, TLRs initiate signaling by homodimerization. TLR2 forms 

heterodimers with TLR1 or TLR6. Others form complexes with other co-receptors; TLR4 recognition 

of LPS requires MD-2, CD14 and LPS binding protein (LBP). 
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Activation of TLRs by pathogen associated molecular patterns induces the signaling cascades that 

lead to expression of genes required for effective pathogen-specific immune responses. The 

transcription factors such as NF-κB, interferon regulatory factor 3 (IRF3), IRF5 and IRF7, activated 

by TLRs enhance the expression of many immunoregulatory molecules, including type I interferons, 

chemokines and inflammatory cytokines. Five TIR domain– containing adaptor proteins have been 

identified, and so far four of those, MyD88, Mal, TRIF and TRAM are responsible for transcription 

factors activation, whereas fifth namely SARM is a specific negative regulator of TRIF signalling 

(Carty 2006). Further signaling molecules specific for the TLR/IL-1R superfamily include TNF 

receptor associated factors (TRAFs) and members of the interleukin-1 receptor associated kinase 

(IRAK) family (Beutler 2004, Akira 2004). While the members of the TLR and the IL-1R families 

share intracellular signaling pathways, they separate into two subfamilies by the structure of their 

extracellular domains. TLR-dependent activation leads to the translocation of NF-κB to the nucleus, 

which results in transcription of genes encoding for cytokines, chemokines, adhesion molecules, and 

antimicrobial peptides. 

IL-1 pathway leads to activation of the transcription factors NF-κB, ATF and AP-1 (Dinarello 2006). 

IL-1 signaling involves adaptor protein MyD88 (Wesche 1997), IRAK4 (Li 2002; Suzuki 2002), 

IRAK (Cao 1996; Li 1999), TRAF6 (Cao 1996) and many others. However, unlike the IL-1 

signalling pathway, TLRs can use MyD88 dependent or independent signalling. For TLR3 and TLR4 

was shown that both can use TRIF (the TIR domain-containing adapter inducing interferon-β).TRIF 

deficient mice lack the TLR3 signalling and the TLR4 signalling is almost completely abolished (part 

of the NF-κB activation pathway goes via MyD88; Yamamoto 2003). 
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Table 2. Toll-like Receptors and their ligands. 

Toll-like 
receptor 

Exogenous ligands Endogenous Ligand 
 

TLR1 & 2 Tri-acyl lipopeptides (bacteria and 
mycobacteria) 

   

TLR2 
  
  
  
  
  
  
  

Peptidoglycan (Gram-positive bacteria) 
Lipoteichoic acid (Gram-positive bacteria) 
Lipoarabinomannan (mycobacteria) 
Glycophospholipids (Trypanosomes) 
Glycolipids (Treponema) 
Porins (Neisseria) 
Zymogen (fungi) 
Phospholipomannan (Candida albicans) 
tGPI-mutin (Trypanosoma) 
hemagglutinin protein (Measles virus) 
ND  (HCMV,HSV1) 
Lipopeptides 

Heat shock proteins 
High mobility group box protein 1 
  
   
  
  
   

TLR3 Double-stranded RNA (virus) mRNA 

TLR4 
  
  
  
  
  
  
  

Lipopolysaccharides, lipid A (Gram-
negative bacteria) 
Taxol (plant) 
Protein F (respiratory syncytial virus) 
Hyphae (Aspergillus) 
HSP60 (Chlamydia) 
Envelope proteins (MMTV, RSV) 
Mannan (Candida albicans) 
  

Heat shock proteins 
High mobility group box protein 1 
Fibronectin extra domain A 
Fibrinogen  
Lung surfactant protein A  
Low density lipoprotein  
Heparan sulphate  
Hyaluronan fragments  

TLR5 Flagellin (bacteria)  

TLR6 & 2 Di-acyl lipopeptides (Mycoplasma) 
LTA (Group B Streptococcus) 

 

TLR7 U-rich single-stranded RNA (viral)  

TLR8 Single-stranded RNA (viral)  

TLR9 Unmethylated CpG DNA (bacteria & 
viruses) 

Unmethylated CpG DNA  

TLR11 Uropathogenic Escherichia coli,  
profilin (Toxoplasma gondii) 
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1.3. REGULATION OF TLR/IL-1R SUPERFAMILY SIGNALING 

 

Inapproapriate cytokine release can cause major organ failure or death, e.g. in septic shock or 

systemic inflammatory response syndromes. It is therefore of great importance, that TLR/IL-1R-

mediated immune activation is tightly regulated (Figure 3). Various superfamily members act as 

decoys for the receptors. IL-1RII and IL-18-binding protein are for example negative regulators of 

IL-1 and IL-18 signalling (Mantovani 2001, Colotta 1994, Novick 1999). Both released and 

intracellular form of IL-1ra (Arend 1993) and IL-1RII (Colotta 1993 and 1994; Mantovani 2001) are 

the negative regulators of IL-1 signaling. IL-1ra acts as an antagonist of IL-1R. IL-1RII interacts with 

IL-1 and forms the complex with IL-1RAcP, which is essential for IL-1R mediated signal 

transduction (Lang 1998, Malinowsky 1998). 

Some of the inhibitors are working intracellularly, like IRAK-M (Kobayashi 2002), IRAK2 (Hardy 

2004), MyD88s (Janssens 2002, Burns 2003), SOCS-1 (Kinjyo 2002) or Triad3A (Chuang 2004). 

IRAKM expression is induced upon TLR stimulation and inhibits TLR signaling. This molecule 

prevents IRAK and IRAK4 from dissociation from MyD88 and formation of IRAK-TRAF6 complex. 

Splicing variants of IRAK2; IRAK2 and IRAK2d have also inhibitory effect on Toll-IL-1R 

superfamily-mediated signaling (Hardy 2004), similar to splicing version of MyD88 (MyD88s), 

which prevents recruitment of IRAK4 (Janssens 2002, Burns 2003). Triad3A was reported to be a 

modulator of TLRs signaling by regulation of their ubiquitination and proteolytic degradation 

(Chuang 2004). Some soluble TLRs were identified to be negative regulators of TLR signalling (e.g. 

sTLR2, sTLR4). Activation of some TLRs may lead immediately to reduction of their surface 

expression or to reduction of expression of co-stimulatory molecules needed for the signalling. LPS 

stimulation results in reduced expression of LPS binding molecules TLR4 and MD-2 (Nomura 2000, 

Akashi 2000). SARM is a newly discovered TIR-containing adaptor protein, which puts a break on 

TRIF dependent pathway.  The new group of zinc finger proteins such as A20, an A20-like protein 

Cezanne, TRAF6-inhibitory zinc finger protein TIZ, FLN29 and ZCCHC11 were shown to bind 

TRAF6 and negatively regulate TLR-TRAF6-induced NF-κB activation (Heyninck 1999, Evans 

2001, Shin 2002, Mashima 2005, Minoda 2006). These proteins differs in the structure of zinc finger 
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repeats and in the cell expression profile, which suggest distinct modulation in different kind of cells. 

Some of the molecules like phosphoinositide 3-kinases (PI3Ks) represent an early phase of negative 

regulation of TLRs in innate immunity (Fukao 2002 and 2003; Guha 2002). Expression of IRAK-M 

and SOCS-1 (suppressor of cytokine signalling-1) is induced after the first activation of TLRs and 

these molecules act as negative regulators during the second stimulation by TLR agonists (Kobayashi 

2002, Kinjyo 2002, Nakagawa 2002). By contrast, PI3K is constitutively expressed in innate immune 

cells and activated immediately after detection of pathogens (Fukao 2002, Herrera-Velit 1997). This 

dual-phase negative regulation of innate immune responses mechanism may exist in order to inhibit 

rapidly reacting cells, whereas the other mechanisms may be more common in non immune cells. In 

case all these inhibitory mechanisms fail the cell can still activate the programmed cell death in order 

to escape the inflammation. 

 

 

Figure 3. Regulation of TLR signaling:       immunoglobulin domain;      TIR domain;     leucine 
rich repeat;        negative regulation.
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Also membrane-bound proteins containing the TIR domain, such as orphan receptor SIGIRR (single 

immunoglobulin IL-1 receptor-related molecule), T1/ST2 and toll-interacting protein, Tollip 

negatively regulate the TLR signalling (Brint 2004, Wald 2003, Zhang and Ghosh 2002). T1/ST2 and 

SIGIRR belong to Ig domain subgroup, which also includes IL-1R1 and IL-18R. They are negative 

regulators of Toll-IL-1R mediated signalling (Brint 2004, Garlanda 2004).  

 

1.4. STRUCTURE AND FUNCTION OF SIGIRR 

 

SIGIRR, also known as TIR8 (Toll interleukin-1 receptor 8) was identified by searching EST 

databases for TIR domain-containing sequences of yet unknown members of the TLR/IL-1R family 

(Thomassen 1999). Despite its genetic sequence homology to the other members of the IL-1R family 

located on chromosome 2, the Tir8 gene is located on chromosome 11 at 11p15 (Thomassen 1999, 

Sims 1995). Four different transcripts (4.4 kb, 2.4 kb, 1.5 kb, and 0.9  kb) were found in humans 

(Thomassen 1999), whereas in mice only one transcript was found (Polentarutti 2003, Garlanda 

2004). The protein length predicted from the open reading frame is 409 amino acids in mice and 410 

amino acids in humans (Figure 4). Similar to ST2, hSIGIRR contains four and mSIGIRR contains 

five putative glycosilation sites and molecular weight of the glycosylated protein is between 50-80 

kD (Thomassen 1999). In contrast to all other known members of the IL-1R family the extracellular 

domain of SIGIRR contains only one Ig domain of 118 amino acids (Figure 4). This extracellular part 

is too short to fold and therefore lacks a potential ligand binding site (Barclay 2003). Till now no 

soluble form of SIGIRR has been described. The transmembrane region links the single Ig-like 

domain to the 268 amino acids-long intracellular part which is 77 amino acids longer than that of the 

typical IL-1Rs (Thomassen 1999). Although, SIGIRR protein was found in the membrane fractions 

of COS cells transfected with SIGIRR but it is yet not clear, whether SIGIRR is expressed on the cell 

surface or in an intracellular, e.g. endosomal, compartment (Thomassen 1999). 
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Figure 4. The amino acid sequence and structure of SIGIRR 

 

 

SIGIRR mRNA is expressed in most fetal and adult human as well as murine organs with the highest 

levels were detected in kidney, liver, and the gastrointestinal tract (Thomassen 1999, Polentarutti 

2003, Wald 2003). In brain, heart, testis, muscle, endothelia or fibroblasts SIGIRR is virtually absent 

(Polentarutti 2003, Garlanda 2004, Wald 2003). SIGIRR expression in solid organs largely originates 

from epithelial cells. In the kidney for example SIGIRR is expressed at high levels in tubular and 

collecting duct epithelial cells of the renal cortex and medulla, but is undetectable in glomerular 

mesangial cells (Polentarutti 2004). By contrast, cells of the monocyte/macrophage lineage and 

neutrophils express SIGIRR mRNA at low levels, whereas T cells or B cells do not express SIGIRR 

at all (Polentarutti 2003).  

Injection of LPS downregulates SIGIRR mRNA levels in various tissues (Polentarutti 2003, Garlanda 

2004). The same occurs in cultured neutrophils or monocytes upon stimulation with LPS (Polentarutti 

2003). This appears to be a LPS-specific mechanism because stimulation with IL-1β, IFN-γ, TNF, 

IL-4 or CpG-DNA had no effect on SIGIRR mRNA levels in these cells (Polentarutti 2003).  

 

The observation, that the orphan receptors lack cytokine ligands or, in the case of SIGIRR, lack 

ligand binding sites, suggests a regulatory function on TLR/IL-1R signaling. The single extracellular 

Ig domain of SIGIRR may not have a function but modulatory effects could well mediated by the 

prominent intracellular domain. Indeed, SIGIRR was found to mediate negative regulatory effects on 

TLR/IL-1R signaling. 

SIGIRR molecules form homodimers which interact with TLR/IL-1Rs (Wald 2003). The intracellular 

TIR domain is crucial for this interaction, and therefore SIGIRR dimers also interact with TIR 
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domain-containing adapter proteins involved in TLR/IL-1R signaling, i.e. MyD88 and Mal/TIRAP 

(Figure 3), (Wald 2003, Leung 2004). However, TIR complexes involving SIGIRR do not activate 

NF-κB and JNK but rather suppress TLR/IL-1R signaling. This relates to the fact that SIGIRR lacks 

two essential amino acids (Ser447 and Tyr536) in its TIR domain highly conserved in other members 

(Thomassen 1999, Wald 2003). SIGIRR interacts also with the IL-1R but, interestingly, and in 

contrast to interaction with the TLRs, this process involves both the intracellular and the extracellular 

domains (Figure 3). The single extracellular Ig domain of SIGIRR suppresses IL-1 signaling by 

interfering with the heterodimerization of IL-1R and IL-1RAcP (Qin 2005). SIGIRR-deficient cells 

show enhanced inflammatory responses to LPS, CpG-DNA, and IL-1 but not to TNF (Wald 2003). 

Similar effects were observed in immature dendritic cells but not in bone marrow macrophages, 

which lack SIGIRR expression (Garlanda 2004). Additionally, overexpression of SIGIRR 

specifically inhibits IL-1R and IL18R signaling in Jurkat and HepG2 cells (Wald 2003). Consistent 

with an inhibitory effect on TLR/IL-1R signaling SIGIRR-deficient mice are more susceptible to 

lethal septic shock after LPS challenge (Wald 2003). In fact, cytokine and chemokine production was 

markedly enhanced and prolonged in SIGIRR-deficient mice after challenge with LPS and IL-1 but 

not with TNF (Wald 2003). Similarly, SIGIRR-deficient mice are more susceptible to dextran 

sulphate sodium-induced chronic colitis (Garlanda 2004). In this model of chronic inflammatory 

bowel disease, SIGIRR deficient mice showed increased loss of body weight and of intestinal blood 

compared to wild type mice. This was associated with more severe damage of intestinal mucosa and 

inflammatory cell recruitment (Garlanda 2004). Thus, despite lacking cytokine or microbial ligand 

interaction, SIGIRR modulates TLR and IL-1 signaling on selected cell subsets. Regulation of these 

signalling pathways has important implications for inflammatory diseases such as sepsis or 

inflammatory bowel disease. 

TLR/IL-1R superfamily members are involved in pathogenesis of autoimmune, inflammatory and 

infectious diseases (Cook 2004). TLRs and their signalling pathways might be partially responsible 

for development of diseases like: dilated cardiomyopathy, atherosclerosis, diabetes, experimental 

autoimmune encephalomyelitis or systemic lupus erythematosus. The important function of TLRs 

was confirmed in some chronic inflammatory disorders, such as: asthma, rheumatoid arthritis and 
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inflammatory joint disease. TLRs are also involved in the regulation of pro-inflammatory cytokines 

production. The malfunction may lead to tissue damage. The best example for this is sepsis, which is 

the result of uncontrolled TLR4 signaling. Sepsis and the sequential multiple organ 

failure/disfunction syndrome (MOF/MODS) followed by septic shock are the most common cases of 

death in the intensive care units (Stone 1994). Septic shock is comparable with the effect that is 

initiated with the LPS released by the microorganisms during the infection. The production of the 

inflammatory factors can even result in death. As SIGIRR can function as a negative regulatory 

factor, especially in the case of TLR4 it can be a step in providing the therapeutic approach against 

sepsis. The function of SIGIRR in controlling the other diseases in which the TLR/IL-1R family may 

contribute has not been shown yet. Targeting IL-1 and other cytokines with single cytokine- or 

cytokine receptor antagonists has already become part of therapeutic regimens of inflammatory 

diseases such as rheumatoid arthritis in humans (Dinarello 2005, Furst 2005). The concept of 

targeting signaling molecules of the TLR/IL-1R superfamily may provide a related but less restricted 

strategy (Ulevitch 2004).  

Thus, a better understanding of the factors that regulate immune activation, including orphan receptor 

SIGIRR, may eventually expand the armament of anti-inflammatory drugs that allow appropriate 

interventions where necessary. 
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1.5. AIM OF THE RESEARCH PROJECT 

 

This study was motivated by two observations: first, previous observation that TLR4 on intrinsic 

renal cells as well as bone marrow-derived cells contributes to innate immunity in infective 

pyelonephritis (Patole 2005), and second, SIGIRR, a negative regulator of TLR/IL-1R signaling, was 

reported to be expressed at high levels in the kidney (Polentarutti 2003, Wald 2003). We 

hypothesized that SIGIRR would control inappropriate TLR signaling in the kidney, and if so, that 

SIGIRR on renal myeloid cells and non-immune intrinsic renal cells would contribute to this 

phenomenon. To reveal the function of this protein in the kidney we characterized the SIGIRR 

expression pattern and performed structural and functional studies on the regulation and the 

expression of this molecule. As over-expression of SIGIRR in cell lines can lead to inhibition of 

immune responses, this work investigates the possibility of using SIGIRR as anti-inflammatory 

factor. However, the identification of a ligand or a soluble functional form of the protein would be in 

this case necessary. This study also questioned the effect of SIGIRR on the development of the 

autoimmune disease, systemic lupus erythematosus (SLE). The role of TLRs in autoimmunity is not 

yet well defined. Practically, the effects of SIGIRR on the development of autoimmune disease are to 

be analysed in an in-vivo model. 

To address these issues, several Sigirr-deficient murine cell populations were used. The phenotypic 

characterization of the mouse lines and functional characterisation of cell types were used to elucidate 

the role of SIGIRR in the kidney. 
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2. MATERIAL AND METHODS 

 

2.1 MOLECULAR BIOLOGY METHODS 

 

2.1.1. Cloning of human and murine SIGIRR 

The polymerase chain reaction (PCR) was used in order to amplify DNA from genomic DNA or 

cDNA. DNA encoding N-terminal FLAG tagged murine SIGIRR was amplified by PCR from 

C57BL/6 mice cDNA from kidney using the following primers:  

Fw.-5’GCCACCATGGACTACAAAGACGATGACGATAAAGGAGCAGGTGTCTGT3’  

Rv-3’CTCCTACTACACATCCTATAG5’ 

The PCR product was digested with Hind III and EcoRV and ligated into pCR3 vector (Invitrogen, 

Karlsruhe, Germany). 

 

The following reagents were added for a PCR reaction: 

1 µl cDNA 

2.5 µl 10x HotStar PCR buffer (Qiagen GmbH, Hilden, Germany) 

0.5 µl 25 mM dNTP mix 

0.25 µl Fw. primer (100 pM) 

0.25 µl Rv. primer (100 pM) 

0.25 µl HotStar polymerase (Qiagen GmbH, Hilden, Germany) 

5 µl Solution Q (Qiagen GmbH, Hilden, Germany) 

H2O to a total volume of 25 µl 

 

Samples were amplified in a thermocycler (Biometra Uno2) with the following conditions: The 

programs used had a 15-min incubation step at 94°C before starting the cycle. The next step was for 1 

min at 94°C, annealing was performed at 61°C, below the melting point of the primers for 75 sec. 

The next step in the cycle was incubation at 72°C for 2 min. The cycle was repeated 30 times and the 

program finished with 10 min incubation at 72°C. The samples were used directly for electrophoresis. 
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DNA encoding human SIGIRR was amplified by PCR from cDNA from human kidney using the 

following primers:  

Fw. - 5´GATCCGCCACCATGCCAGGTGTCTGT3´ 

Rv. - 3´TTCCTACTATACATCCTATAG5’  

The PCR product was digested with BamH1 and EcoRV and ligated into pCR3 vector (Invitrogen, 

Karlsruhe, Germany). Samples were amplified in a thermocycler (Biometra Uno2) with the following 

conditions: The programs used had a 15-min incubation step at 94°C before starting the cycle. The 

next step was for 1 min at 94°C, annealing was performed at 42°C below the melting point of the 

primers for 60 sec. The next step in the cycle was incubation at 72°C for 2 min. The cycle was 

repeated 30 times and the program finished with 10 min incubation at 72°C. The samples were used 

directly for electrophoresis. 

 

2.1.2. Electrophoresis of DNA 

The DNA sample to be analyzed was mixed with one tenth volume of DNA loading buffer (600 µl 

50% glycerine; 20 µl 50 x TAE; 380 µl water; a few crystals of bromophenol blue). The samples 

were separated in agarose gels in 1 x TAE buffer (40 mM Tris; 0.02 mM acetic acid; 1 mM EDTA; 

pH 8.0). The concentration of agarose varied depending on the samples to be run: 0.5% for digested 

genomic DNA to 2% for small fragments (250 bp or less). The agarose gel was prepared by boiling 

1g of agarose in 100 ml 1 x TBE, add 4 µl ethidium bromide (10 mg/ml, Sigma-Aldrich, Taufkirchen, 

Germany). The fragments are separated by electrophoresis according to size and can be visualized in 

UV light due to the presence of ethidium bromide between the DNA strands. Ladder Mix (Invitrogen, 

Karlsruhe, Germany) was used as size standard. After visualizing the DNA in an agarose gel, the 

band to be purified was excised from the gel and transferred into a 1.5 ml microcentrifuge tube. The 

amplified fragments of DNA were purified from agarose-gel with the QIAquick Gel Extraction Kit 

(Qiagen GmbH, Hilden, Germany).  
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2.1.3. Ligation of DNA fragments 

The cDNA fragments, which were amplified in PCR reaction were digested with desired restriction 

enzymes and ligated into pCR3 vector (digested with the same enzymes). T4 ligase (Invitrogen, 

Karlsruhe, Germany) was used for ligation. 6µl of PCR product and 2 µl of vector DNA were 

incubated with 1 µl ligase, 1 µl 10 x T4 ligase buffer (Invitrogen, Karlsruhe, Germany). Both 

ligations were incubated 48 hours at 16°C. After ligation the mixtures were used directly for 

electrotransformation of DH5a cells and streaked out on LB plates complimented with ampicillin 

(100 µg/ml). Single colonies were used for inoculation of liquid medium and after overnight 

incubation used for plasmid isolation.  

 

2.1.4. Generation of competent cells for electro-transformation 

A fresh E. coli (DH5α) culture was prepared by inoculating 10 ml LB medium (1% Bacto-Tryptone, 

0.5% Bacto-Yeast extract, 0.5% NaCl, pH 7.5) with a single colony and incubating overnight. 500 ml 

LB medium were inoculated with 5 ml (1/100) of the overnight culture and grown to a density of 

OD600 0.5. The cell suspension was chilled on ice for 30 min and centrifuged at 4000 g for 15 min at 

4°C. Cells were resuspended in 500 ml ice cold H2O and centrifuged again. The pellet was 

resuspended in 250 ml ice cold H2O, centrifuged and resuspended in 20 ml of ice cold 10 % glycerol. 

After another centrifugation the pellet was resuspended in 2 ml of ice cold 10 % glycerol and stored 

in 40 µl aliquots at – 70°C.  

 

2.1.5. Transformation of bacterial cells by electroporation 

50 µl of competent cells were thawed on ice, 0.5 µl of ligation mix was added and left on ice. The 

cell suspension was then placed in a chilled, dry and sterile electroporation cuvette (0.2 cm) in a Gene 

Pulser (Bio-Rad) and pulsed once at 25 µF, 2.5 kV (Pulse Controller, Bio-Rad: 200 Ω). Cells were 

then immediately resuspended in 1 ml SOC medium (2% Bacto-Tryptone; 0.5% Bacto-yeast extract; 

10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 10 mM MgSO4; 20 mM glucose). The cell suspension 

was incubated at 37°C for 1 h on a shaker in tube and then plated on LB-agar plates containing the 

selective antibiotics. Plates were incubated over night at 37°C. Each colony from a plate was slightly 
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touched with a sterile pipette tip and the bacterial cells on the tip were re-suspend in 2 ml LB medium 

containing antibiotic for selection (Ampicilin). Inoculated colonies were grown over night for the 

small scale plasmid preparation.  

 

2.1.6. Small scale plasmid preparation – mini prep 

This quick purification was used for testing which colony of bacteria express the right construct. A 

1.5 ml aliquot of an overnight culture of E. coli was centrifuged in 1.5 ml sterile microcentrifuge 

tubes for 30 sec. The supernatant was discarded. The bacterial pellet was resuspended in 100 µl lyse 

buffer (25 mM Tris HCl pH 7.5; 10 mM EDTA; 50 mM glucose; RNAse 0.1 mg/ml).  Then the 200 

µl of alkalizing buffer was added (0.2 M NaOH, 1% SDS) and the tubes were incubated for 5 min. on 

ice followed by adding 150 µl of 5 M KAc solution. After centrifugation step (14000 rpm, 3 min) the 

supernatant was transferred into a new microcentrifuge tube and extracted with 

phenol/chloroform/isoamylalcohol (25:24:1, v/v/v). After 5 min centrifugation at RT, the upper phase 

was transferred to a new microcentrifuge tube, mixed with 500 µl 100% ethanol, incubated 1 hour at -

20°C and centrifuged for 15 min. The pellet was then washed with 70% ethanol, dried and dissolved 

in 20 µl of water.  

 

2.1.7. Analysis of DNA with restriction enzymes 

2-4 U of the desired restriction enzymes (New England BioLabs, Frankfurt am Main, Germany) were 

added for 1 µg DNA in the appropriate restriction buffer. The restriction mix was incubated for 1 or 2 

h at appropriate temperatures. The following restriction enzymes or enzyme combinations were used 

to detect the presence of a vector with the desired insert after ligation and transformation: BamHI, 

EcoRV, SacI. 

 

2.1.8. RNA isolation from cultured cells 

Cell lines as well as primary cell cultures in stimulation experiments were harvested for RNA 

isolation using RNeasy Mini Kit (Qiagen GmbH, Hilden, Germany) according to the protocol 

provided. Firstly, adherent cells to be harvested from 6 well culture plates were washed with sterile 
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PBS to remove residual medium after collection and the wash-through was aspirated. The 350 µl 

RLT buffer containing 10µg/ml beta-mercaptoethanol was added directly over adherent cells on the 

plate surface and pipetted vigorously so as to lyse cells. This produced a viscous fluid which was 

collected and placed in microcentrifuge tubes and frozen at –80 °C until RNA isolation. At the time 

of RNA isolation the samples collected were thawed, 350 µl of 70 % ethanol made in 1% diethyl 

pyrocarbonate treated water (DEPC water) was added to it and mixed well.  This mixture was then 

loaded onto RNeasy mini columns held in 2 ml collection tubes and centrifuged at 8000 xg for 30 

seconds. The flow-through was discarded and the digestion with DNAse was performed on the 

columns (Qiagen GmbH, Hilden, Germany DNAse digestion kit). Then the columns were loaded 

with 700µl of buffer RW1 and centrifuged at 8000 xg for 30 seconds. The collection tubes were 

discarded together with the flow-through and the columns were transferred to fresh 2 ml collection 

tubes and 500 µl of Buffer RPE was pipetted onto the column, was centrifuged at 8000 xg for 30 

seconds and the flow-through was discarded. This step was repeated again and the column was 

rendered dry by centrifugation, placed in a 150 µl fresh collection tube, 40 µl of RNase free water 

was pipetted directly on the silica-gel membrane and was centrifuged to collect the RNA solution. No 

quality check was necessary in case of the kit isolation, as empirically the RNA obtained upon kit 

isolation was of good quality standards.  

 

2.1.9. Isolation of RNA from tissues 

The RNA isolation protocol was suitably modified from Chomczynski’s method (Chomczynski P 

1987). DNAse digestion was included. 3 ml of solution D containing 8 µl of beta-mercaptoethanol/ml 

was taken in a 15 ml falcon tube, to which a small piece of tissue from which RNA had to be isolated, 

was placed. The tissue was homogenised using ULTRA-TURRAX T25 (IKA GmbH, Staufen, 

Germany) at speed level 2 and placed on ice. To this 300 µl 2M sodium acetate solution was added 

and mixed gently, followed by addition of 3 ml Roti-Aqua-Phenol (Carl Roth GmbH, Karlsruhe, 

Germany) and gentle mixing. A 1.6 ml mixture of chloroform/isoamyl alcohol (49:1) was added to 

the contents of the falcon and vortexed for 20 seconds until a milky white suspension resulted. The 
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falcon tube was then placed on ice for 15 min and centrifuged at 4000 xg at 4 °C. The upper phase 

(approximately 3 ml) was collected carefully in a fresh falcon tube, to which 3 ml isopropanol was 

added, incubated for 30 minutes at –20° C and centrifuged for 15 minutes at 4000 xg at 4 °C. The 

supernatant was then discarded carefully to avoid loss of pellet and the falcon tube was inverted on a 

tissue paper to drain of the remaining isopropanol and 1 ml solution. The pellet was dissolved in 

buffer containing DNAse, RNAse inhibitor, 1mM DTT, 0.05 M TrisHCl and 5 mM MgCl2 and 

incubated for 30 min at 37°C. After the incubation 15 µl of 2 M sodium acetate was added and the 

phenol/chloroform/isoamyl alcohol extraction was performed. The water phase was transferred to a 

fresh DEPC-treated tubes and 0.8 ml Isopropanol was added to it, mixed and placed at –20 for 30 

minutes. This was followed by centrifugation for 15 minutes at 4000 xg at 4 °C, the supernatant was 

discarded carefully to retain the pellet. The pellet was then washed with 80 % ethanol made in DEPC 

water, and vortexed again for 15 minutes at 4000 xg at 4 °C. The supernatant was discarded and the 

tubes were inverted to drain of residual ethanol and the semi-dried pellet was dissolved in 100 µl 

DEPC water. A 10 µl aliquot was used for the quality check and remaining RNA solution was stored 

at -80 °C until cDNA synthesis. The RNA was quantified and quality was determined by taking 2 µl 

of the RNA solution diluted 50 times in DEPC water for calculating ratios 260/280 nm 

spectrophotometric OD measurement. The formula used was Extinction x dilution to obtain number 

of µg/ml of RNA per sample and a ratio value approximately close to 1.6 was considered to be of 

acceptable quality. Further quality check (if necessary) was performed using a denaturing RNA gel, 

ran at 70-100 V for 1 hour and the gel was then read on a gel documentation apparatus.  

 

2.1.10. cDNA synthesis and real-time PCR analysis 

The RNA samples isolated according to the procedure detailed above were diluted in DEPC water to 

a concentration of 1 µg / 20 µl. A master mix was prepared with reagents such as 9 µl of 5 x buffer 

(Invitrogen, Karlsruhe, Germany), 1µl of 25mM dNTP mixture (Amersham Pharmacia Biotech, 

Freiburg, Germany), 2 µl of 0.1 M DTT  (Invitrogen, Karlsruhe, Germany), 1 µl of 40 U/µl RNasin 

(Promega, Mannheim, Germany), 0.5 µl of 15 µg/ml linear acrylamide (Ambion Ltd, 



 

 

36

Cambridgeshire, UK), 0.5 µl of Hexanucleotide (Roche, Mannheim, Germany), 1 µl of Superscript 

(Invitrogen, Karlsruhe, Germany) or ddH2O in case of the controls. The master mix was made to a 

volume of 15 µl and added to 1 µg / 20 µl RNA samples were taken in separate DEPC treated 

microcentrifuge tubes, which were mixed and placed at 42 °C on a thermal shaker incubator for 1 

hour. After 1 hour the cDNA samples were collected at placed at -20 °C until use for real-time RT-

PCR analysis. 

The cDNA samples prepared as described above were diluted 1:10 a dilution for the real-time RT-

PCR. The real-time RT-PCR was performed on a TaqMan® ABI Prism 7000 or 7700 (Applied 

Biosystems, Darmstadt, Germany). The quantitative PCR for mRNA is based on the employment of 

sequence-specific primers and likewise sequence-specific probes. The latter is tagged at both ends 

with a fluorescent molecule. The quencher absorbs TAMRA (at the 3'-End) the fluorescence of the 

other reporter tagged material such as FAM or VIC at the 5'-End. The TaqMan® universal PCR 

master mix (Applied Biosystems, Darmstadt, Germany) contained Taq polymerase possessing a 5' � 

3' polymerase activity and a 5' � 3 ' exonuclease activity. During the elongation phase of the PCR, 

specifically bound probe was hydrolyzed by the exonuclease and the 5'-tag was set free. With every 

newly synthesized DNA strand fluorescent tag material was set free and the resulting fluorescence 

was measured at 488 nm. The resulting fluorescence signal is directly proportional to the quantity of 

DNA synthesized. The CT value (= "Cycle Threshold") was computed for each sample. This is the 

cycle number, with which the reporter fluorescence signal breaks through a user-defined threshold. 

The TaqMan® universal PCR master mix containing, the forward primers and reverse primers (final 

concentration of 300 nM) and the probe (final concentration of 100 nM) was placed on ice. In the 

TaqMan® universal PCR master mix contained are PCR buffers, dNTPs and the AmpliTaqGold® 

previously mentioned (Taq polymerase without 3' � 5' exonuclease activity). 18 µl of the mastermix 

was pipetted into each well of a 96-well plate and 2 µl of template (DNA dilution) was added to each 

of these wells. The plate was sealed and centrifuged at 280 xg and analyzed using TaqMan® ABI 

PRISM 7000 or 7700. For the TaqMan® RT-PCR the following temperature settings were used: The 

first incubation was carried out for 2 minutes at 50°C followed by 95°C for 10 minutes so as to 

activate the polymerase. Templates were amplified during 40 cycles each comprising 15 seconds 
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incubation at 95°C followed by 1 minute incubation at 60°C. The RT-PCR for the housekeepers (18S 

rRNA or GAPDH) was carried out under similar conditions. The CT values were recorded using the 

ABI PRISM Sequence Detection software (version 1.0) and the results were evaluated in relation the 

respective housekeepers. In all cases controls consisting of ddH2O were negative for target and 

housekeeper genes. Oligonucleotide primer (300 nM) and probes (100 nM) were from PE 

Biosystems, Weiterstadt, Germany. 

 

2.1.11. Northern blot 

Total kidney and spleen RNA was isolated and analyzed for the degradation and purity (analytical 

MOPS gel; OD by 260 and 280 nm). Every 5 µg RNA sample was dried, dissolved in NB-loading 

solution (15 µl formamide, 5 µl formaldehyde, 3 µl 10 x MOPS, 7 µl DEPC-treated water), incubated 

10 min in 65°C and separated by electrophoresis on a 1% formaldehyde/MOPS agarose gel (1% 

agarose, 20 mM MOPS, 5 mM sodium acetate, 1 mM EDTA, 6 % formaldehyde) in MOPS buffer 

(20 mM MOPS, 5 mM sodium acetate, 1 mM EDTA; pH 7.0). To see the progression of the 

separation dye (loading buffer containing 0.25 % bromophenol blue) was run next to the samples in a 

separate well. The separation was performed RNAse-free mini gel apparatus; first 10 min at 100 V 

followed by 2-3 hours at 200 V. The RNA was transferred on the GeneScreen membrane for 24 hours 

in 10 x SSC buffer (1.5 M NaCl, 0.15 M Na-citrate), baked (1 hour at 80°C between 2 sheets of 3 

MM paper) and cross-linked with UV light (50 mJoule in Bio-Rad Gene Linker UV Chamber).  

The DNA-probes syntheses were performed using the Prime-it Random Primer Labelling Kit 

(Stratagene, La Jolla, CA). P32-labeled DNA probes were complementary to 243bp N-terminus part 

(cut with HindIII and BstXI) or the full length SIGIRR (the plasmid preparation, enzymes restriction 

and DNA gel-extraction described above). Efficacy of probe synthesis was checked by PEI 

chromatography. For hybridisation the QuickHyb Hybridisation Solution was used (Stratagene, La 

Jolla, CA). For pre-hybridization, the membranes were incubated in a hybridization glass tube with 4 

ml of hybridization buffer (Stratagene, La Jolla, CA). After pre-hybridization, the radioactive probe 

was added to the buffer, gently mixed and incubated for 24 hours at 65°C. The membranes were then 

washed 5 times with 2 x SSC supplemented with 0.1 % SDS (low stringency buffer) at RT. The 
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membranes were sealed in plastic bags and exposed on a PhosphorScreen of the PhosphorImager 

after 24 hours. 

 

2.2 CELL CULTURE METHODS AND CYTOKINE DETECTION 

 

2.2.1. Cell lines 

Human epithelial kidney cells (HEK 293) was derived from embryonic kidney cells transformed by 

human adenovirus type 5 DNA. 293 cells grow plastic adherent. Cell line was maintained under 

standard culture conditions (in an incubator set at 37 °C supplied with 5.0 % CO2) in Dulbecco’s 

modified Eagle’s medium (DMEM, Biochrom KG, Berlin, Germany) supplemented with 5 % heat-

inactivated fetal calf serum (FCS) (Serum Supreme, BioWhittaker, Walkersville, MD, USA), 

penicillin 100 U/ml and streptomycin 100 µg/ml as described (Complete DMEM medium).  

 

2.2.2. Calcium Phosphate transfection 

In this method plasmid DNA was introduced into monolayers of eukaryotic cells culture via 

precipitate that adheres to the cell surface. HEK 293 cells were seeded on six-well plates at a density 

of 3 x 105 cells/well and grown over night to sub-confluence. Cells in every well were transfected 

with following transfection mix: 225 µl H2O, 25 µl 2.5M CaCl2 mixed with 5 µg plasmid DNA. After 

incubation for 10 min. at 37 oC the DNA mix was vortexed with 250 µl HeBs (0.28 M NaCl; 0.05 M 

HEPES; 1.5 mM Na2HPO4; pH 7.05). A precipitate containing calcium phosphate and DNA is 

formed by slowly mixing HEPES containing solution (HeBs) and solution that contains calcium 

chloride and DNA. After incubation for at 37 oC 500 µl of mix was added to the cells. The medium 

(containing 5 % FCS and 25 mM HEPES) was changed 6 hours later. Thirty hours after transfection, 

the cells were detached, washed (1x) with PBS and used for protein extraction. 

 

2.2.3. Reporter gene analysis 

Reporter studies were performed by using lipofectamine (Invitrogen, Karlsruhe, Germany) 

transfection of primary murine tubular epithelial cell line with an NF-κB responsive luciferase 
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reporter gene (Promega, Mannhein, Germany). Tubular cells were transfected with constructs (pCR3-

mSIGIRR and NFκB) with amount of 2.5 µg of each plasmid (5 µg total).  For transfection cells were 

seeded at the density of 1,5 x 105 into 3.5 cm dishes and grown overnight in 37 oC. Then cells were 

transfected with expression plasmids coding molecules of interest by the lipfectamine method (1 µg 

DNA + 1 µl lipofectamine; 30 min RT incubation). 24 hours after transfection cells were stimulated 

with TLR ligands for 24 another hours. Cells were lysed, and luciferase activity was assessed using 

Reporter lysis buffer and Luciferase Reporter reagent (Promega, Mannhein, Germany). 

 

2.2.4. Primary cell culture – tubular epithelial cells 

Kidney cell suspensions were prepared by mashing the kidney from one mouse in 250 µl of cold 

HBSS medium supplemented with 10 mM HEPES, 10% FCS and 1% PS. The suspension was 

applied onto 30 µm pre-separation filters (Miltenyi Biotec GmbH; Bergisch Gladbach, Germany), 

centrifuged (300 x g for 10 min), re-suspended in complete DMEM medium (10 % FCS) and 

incubated at 37 °C for 1 bis 2 hours on the Petri dish so that the monocytes in the cell suspension 

adhere. The non-adherent cells from the suspensions were than collected, centrifuged and re-

suspended in K1 medium (DMEM supplemented with 10 % FCS, 1 % PS, 10 mM HEPES, 1 % ITS 

(insulin, transferrine, selenium) and hormones/growth factors mix: EGF, PGE-1, T3, ITSS, 

hydrocortisone). Cells were plated on 12 or 24 well collagen type IV- treated plates. Plates were 

coated with 6µg/ml collagen IV (Sigma-Aldrich, Taufkirchen, Germany) in PBS overnight in 4 °C. 

The cells were grown till they were 70-80 % confluent. K1 medium was changed every 3-4 days. 

 

2.2.5. Primary cell culture – mesangial cells 

Kidney cell suspensions were prepared from the cortex (medulla was removed) by mashing it in 250 

µl of cold complete RPMI medium. The suspension was applied onto 150, 103, 63, 50 and 45 µm 

sieves, rinsed with cold PBS, centrifuged (4000 rpm for 7 min), re-suspended in complete RPMI 

medium and applied onto 30 µm Pre-separation Filters (Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany). Glomeruli remained on the filter. The filter was swapped upside down and rinsed with 

PBS containing 1 mg/ml collagenase IV. Glomeruli were incubated in this solution for 15-20 min at 
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37 °C. The cells were then centrifuged and re-suspended and plated in RPMI medium complemented 

with 20 % FCS, 1 % PS, 1 % ITS (insulin, transferrine, selenium). Medium was changed every 4-6 

days; the first passage was made after 16-20 days. 

 

2.2.6. Primary cell culture - splenocyte or adherent spleen monocytes 

Spleens were isolated from the mice, placed in a petri-dish containing complete RPMI medium and 

mashed with the help of forceps, this coarse suspension was then passed through a 30 micron steel 

wire mesh and collected in a sterile petri-dish. This suspension was then centrifuged at 1600 RCF for 

4 min at 4 °C to obtain a pellet. The pellet thus obtained was washed with sterile PBS and the 

obtained pellet was resuspended in 0.83 % ammonium chloride solution so as to haemolyse the red 

blood cells. This was followed by a washing steps (2X) as mentioned above, passed through a pre-

separation filter to obtain single cell suspension (Miltenyi Biotec GmbH; Bergisch Gladbach, 

Germany). Finally the cells were centrifuged, supernatant was discarded and the pellet was 

resuspened in complete RPMI medium and cell counts were done. A 10 x 106 or 5 x 106 of cells was 

plated in 6 or 12 well plates and incubated at 37 °C for 24 hrs under standard culture conditions. The 

culture medium was replaced with fresh complete RPMI medium so as to obtain the adherent spleen 

monocytes, ready to be used for stimulation experiments. 

 

2.2.7. Primary cell culture - bone marrow-derived dendritic cells 

Bone marrow was isolated from the tibia and femurs from the fore and the hind limbs of the mice. 

Muscle tissue and the bone caps were removed. A 0.45 x 13 mm needle fitted to a 1 ml syringe, filled 

with complete RPMI medium, was inserted to one end of the bone so as to flush the bone marrow 

from the other end and collected in a sterile petri-dish. In this manner, all bones were carefully 

flushed to obtain bone marrow which was then centrifuged at 1600 RCF for 4 min at 4 °C to obtain a 

pellet. The pellet thus was washed with sterile PBS and processed for hemolysis and washes as 

described above. Finally, the cells were centrifuged, resuspened in complete RPMI medium with 50 

ng/ml human recombinant Flt3 ligand (Immunotools, Friesoyth, Germany) or 1 ng/ml rmGM-CSF 

(Immunotools, Friesoyth, Germany) and cell counts were done. Bone marrow isolates were cultured 
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for 8 -10 days in complete RPMI with 50 ng/ml human recombinant Flt3 ligand or 1 ng/ml rmGM-

CSF. Medium was changes every 3 days. 

 

2.2.8. Primary cell culture – renal APC 

Antigen presenting cells were prepared from kidneys as follows. Kidney cell suspensions were 

prepared by mashing the kidney from one mouse in 250 µl of cold 10 % FCS-1 % PS-RPMI medium. 

The suspension was applied onto 30 µm Pre-separation Filters (Miltenyi Biotec GmbH; Bergisch 

Gladbach, Germany), centrifuged (300 x g for 10 min) and re-suspended in wash buffer (PBS 

containing 0.5 % BSA and 2 mM EDTA). CD11b+ cells isolation was performed using CD11b 

magnetic beads and LD MACS separation columns (both Miltenyi Biotec GmbH; Bergisch 

Gladbach, Germany). 1 x 107 cells were re-suspended in 90 µl wash buffer and 10 µl of magnetic 

beads were added. The cells were incubated with beads for 20 min in the cold room. The cells were 

then centrifuged, washed and re-suspended in cold wash buffer (1x108 cells in 2 ml buffer). The 

suspension was applied onto LS MACS Separation column, which was previously placed in magnetic 

field and adjusted with 3 ml wash buffer. The flow through was collected as a CD11b-depleted cell 

fraction, plated and grown in a condition identical to these of primary tubular epithelial cells. After 

washing (3 x 3 ml of wash buffer) column was removed from magnetic field and cells were eluted 

with 5 ml wash buffer, centrifuged and plated (3 x 105 cells/ml) in 10%FCS-1%PS-RPMI medium 

supplemented with 1 ng/ml rmGM-CSF (ImmunoTools, Friesoyth, Germany) and grow till they were 

70-80 % confluent. Medium was changed every 3-4 days. 

 

2.2.9. Stimulation experiments 

Primary cells (tubular epithelial cells, spleen monocytes, BMDCs, renal APCs or mesangial cells) for 

the stimulations were prepared from organs of 6 week old mice in the C57BL/6 background and 

grown in culture according to standard protocols mentioned above. Cells were treated with medium 

control or IFN-γ 100 U/ml (PeproTech, Rocky Hill, NJ) + TNF-α, 500 U/ml (ImmunoTools, 

Firesoythe, Germany) or TLR ligands as follows: TLR1/2: Pam3Cys 1µg/ml (Alexis Biochemicals, 

Grünberg, Germany), TLR3: pI:C 50 µg/ml (Sigma-Aldrich, Taufkirchen, Germany), TLR4: ultra 



 

 

42

pure LPS 1 µg/ml (Invivogen, San Diego, CA), TLR9: CpG-DNA 1668 1 µM (TibMolbiol, Berlin, 

Germany). Other ligands used for the stimulation were: IL-1beta (10ng/ml; ImmunoTools, Friesoyth, 

Germany) or IL-18 (10ng/ml ImmunoTools, Friesoyth, Germany). Ligands were preincubated with 

polymyxin B sulphate (Sigma-Aldrich, Taufkirchen, Germany) (50 µg/ml) to neutralize possible LPS 

contaminations. After various time intervals 6, 12, 18 or 24 hours (indicated in figures) culture 

supernatants were collected and cytokine levels were determined using a commercial ELISA kits. 

RNA from cells was prepared for mRNA analysis using the Qiagen RNasy Mini Kit (Qiagen GmbH, 

Hilden, Germany). For additional experiments 50 mg slices were cut with the scalpel from kidneys of 

SIGIRR-deficient or wild type C57BL/6 mice, placed in DMEM 10% FCS medium. The kidney 

slices were stimulated for 24 hours with either medium or 1 µg/ml ultra pure LPS. For the stress-

conditions experiments NaCl (600 mM), albumin (10 mg/ml) or the 42°C were used. Supernatants 

were collected for ELISA. In all stimulation experiments all cell types were unstarved (unless 

mentioned otherwise).  

U1snRNP (which is conserved between species) was purified from HeLa cell nuclear extracts 

(Bochnig P Eur J Biochem. 1987). The anti-Sm (B/D) antibody clone Y12, mouse IgG3 isotype28 

was purified from Y12 hybridoma supernatant, CpG 2216 oligonucleotides were comertialy avalable 

(MWG Biotech, Munich, Germany). Poly-I:C RNA, poly-U RNA (Amersham Biosciences, Freiburg, 

Germany), and oligoribonucleotides (Curevac, Tübingen, Germany) were used as indicated.  

Bone marrow cells from wild-type and knockout mice were cultured with 20 ng/mL human 

recombinant Flt3L (R&D Systems, Wiesbaden, Germany) in complete medium for 7 days to generate 

greater than 90 % CD11c+ DCs with 40 % to 50 % CD11blow/CD86low/B220high PDCs and 40 % 

to 50 % CD11bhigh/B220low DCs. On day 7, cells were harvested, resuspended in fresh medium, 

and seeded at 4 x 105 cells/well; 100 µL/well in 96-well plates. RNAs and the isolated U1snRNP 

were preincubated with DOTAP cationic liposomes (Carl Roth, Karlsruhe, Germany) for 30 min RT. 

Y12 antibody was incubated with U1snRNP in PBS for 15 minutes on ice plus 5 minutes at 37°C. 

Stimuli were added in 100 µL volume per well (concentrations indicated) for 24 hours.  
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2.2.10. Cytokine measurements 

Cytokine levels in sera or cell culture supernatants were determined using commercial ELISA kits: 

IL-6, IL-12p40, CCL2 or CXCL2 (OptEiA, BD Pharmingen, San Diego CA or R&D Systems, 

Wiesbaden, Germany) following the protocol provided by the respective manufacturers. The 96-well 

plate was first coated with 100µl/ well capture antibody (anti-mouse cytokine) at recommended 

dilution in 0.2 M Sodium phosphate buffer of specified pH and placed overnight at 4 °C. The wells 

were then aspirated, washed with >200 µl wash buffer (PBS pH 7 with 0.05 % Tween-20) and the 

plate was blocked with >200 µl/well assay diluent (PBS pH 7 with 10 % FCS) and incubated at room 

temperature for 1 hour. This was followed by aspiration, 2 washes as described above, and 100 µl of 

standard or sample (cell supernatant or the mice serum) was pipette to appropriate well and the plate 

was incubated for 2 hours at room temperature. The plate was then aspirated, washed five times and 

100 µl working detector (biotinylated anti mouse cytokine or detection antibody with avidin-horse 

raddish peroxidase conjugate) was added to each well and incubated at room temperature for 1 hour. 

This was followed by an aspiration and wash step (>5 washes). The TMB substrate solution (BD 

Biosciences, Hamburg, Germany) was then added to each well at a volume of 100 µl and incubated 

for 30 minutes. The stop solution (1 M phosphoric or 2N sulphuric acid) was then added to each well, 

and absorbance was measured at prescribed wave length (nm), using an automatic plate reader.  

 

2.2.11. Proliferation assay 

Proliferation of cells was assessed using CellTiter 96 Proliferation Assay (Promega, Mannheim, 

Germany). The CellTiter 96 Aqueous One Solution contains a novel tetrazolium salt compound 

(MTS) and phenazine ethosulfate that serves as an electron coupling reagent. The solution remains 

stable normally, while the MTS is bioreduced by the NADPH or NADH produced by dehydrogenase 

enzymes in metabolically active cells (such as proliferating cells). The cells isolated according to the 

procedure described above (1 x 105) were incubated in 96-well plates in 100 µl complete RPMI 

medium and treated with 5 µg/ml CpG-ODN 1668 or 1 µg/ml LPS for a period of 72 hours under 

standard culture conditions. To each well with different treatments, 20 µl CellTiter 96 Aqueous One 
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Solution was added and incubated at 37 °C for 4 hours and the optical density (OD) was measured at 

492 nm for comparing the cell proliferation. 

 

2.2.12. Phagocytosis assay 

Isolated intrarenal myeloid cells were cultured till they were 70% confluent in RPMI complete + 

GM-CSF medium. The cells were incubated with 1 mg/ml FITC-labeled dextran (70000 kD; Sigma-

Aldrich, Taufkirchen, Germany) for 90 min. As a control for non-specific dextran attachment, 0.02 % 

azide was added or cells were cultured at 4°C to stop energy-dependent cellular functions. To 

determine phagocythic activity, the take up of fluorescence beads was detected by flow cytometry.  

 

 

2.3. PROTEIN ANALYSIS 

 

2.3.1. Protein extraction from tissues 

Organs from mice were manually dissected, mashed to powder in the liquid nitrogen and 

homogenized in 1ml lysis buffer (50 mM Tris HCl, pH 7.5; 150 mM NaCl; 100 µM sodium 

orthovanadate, 0.5 % sodium deoxycholat, 4 % NP-40, 2 % Triton-X-100; 5 mM EDTA; 300 mM 

sucrose; proteases inhibitor tablets COMPLETE (Roche, Mannhein, Germany). The solution was 

homogenised with hand homogenizer, left for 30 min in 4oC on over-head shaker and centrifuged for 

45 min at 30000 x g. The supernatant was tested for the protein concentration (Bradford test, BioRad, 

München, Germany). 

 

2.3.2. Western blot 

Extracted proteins were incubated in 2 x Laemmli buffer (Tris 30 mM; Glycerol 5 %; 1% SDS; 

0.0025 % bromophenol blue) with beta-mercaptoethanol for 30 minutes at 65°C, resolved by 12 % 

SDS-PAGE, and transferred to an methanol-activated PVDV Immobilon-P membrane (Millipore, 

Eschborn, Germany) using the BioRad Semi-Dry Blotting System (BioRad, München, Germany). 

Electrotransfer was performed for 1 h at 25 V. To verify successful transfer of protein and note the 
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position of the marker (peqGOLD protein marker; PeqLab, Erlangen, Germany), the membrane was 

stained for 10 min in Ponceau solution (0.5 % PonceauS in 1 % acetic acid) and destained with H2O. 

After blocking with 1 % western blocking solution (Roche, Mannhein, Germany) the filter was 

incubated with a goat polyclonal anti-SIGIRR antibody (1:1000; R&D Systems, Wiesbaden, 

Germany) over night in 0.5 % Western blocking solution (Roche, Mannhein, Germany). Immune 

complexes were visualized using a peroxidase-conjugated donkey anti-goat IgG antibody (1:10000, 

Dianova, Hamburg Germany) for 1 hour in 0.5 % Western blocking solution and processed for 

detection by enhanced chemiluminescence (ECL; Amersham Pharmacia Biotech Europe, Freiburg, 

Germany). After every antibodie addition, the membrane was washed 5 times with TBS or TBS-

Tween. 

Before digestion with PNGaseF (New England BioLabs, Frankfurt am Main, Germany) protein 

isolates were denaturised at 95°C for 10 min in buffer containing 0.5 % SDS and 0.04 % DTT. 

Digestion was performed for 1h at 37°C in buffer containing 0.05 M sodium phosphate pH 7.5 and 1 

% NP-40. Benzyl-N-Acetygalactosamine (Sigma-Aldrich, Taufkirchen, Germany) was used as an 

inhibitor for O-glycosylation at 4 mM final concentration. The cells with or without inhibitors were 

grown on 90 mm dish for 48 h. Media containing fresh inhibitor (4 mM) were changed two times 

during this period. 

 

2.3.3. Tissue immunostaining 

From kidneys collected as mentioned above, two-micrometer-thick paraffin-embedded sections were 

cut and processed for immunohistochemical staining performed on paraffin-embedded sections. Upon 

isolation the tissue pieces were placed in plastic histocassettes and dipped in formalin. The formalin 

solution was prepared using 500 ml of 40 % formaldehyde in PBS (32.5 g Na2HPO4 and 20 g 

NaH2PO4 in 4.5 L ddH2O water, pH 7.4). The blocks were then infiltrated and embedded with 

paraffin and sections were cut in ribbons and mounted on slides. Deparaffinisation followed by 

dehydration was carried out by incubating the sections in xylene, 100 % absolute ethanol, 95 %, 80 % 

and 50 % ethanol followed by rinsing with PBS (2 changes, 3 minutes each).  

Staining for SIGIRR was performed on acetone-fixed frozen section using the polyclonal anti-
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SIGIRR antibody (1:50). A PE-labeled donkey anti-goat IgG antibody was used for detection 

(1:10000, Dianova, Hamburg, Germany). FITC-phalloidin (Invitrogen, Karlsruhe, Germany) was 

used for staining tubular brush border (F actin). Negative controls included incubation with a 

respective isotype antibody.  

 

2.3.4. Immunostaining of cultured cells for SIGIRR 

Staining for SIGIRR and F-actin in tubular epithelial cells was performed on 3.7 % formaldehyde-

fixed cell monolayer, permeabilized with 0.5 % Triton-X-100. Polyclonal anti-SIGIRR antibody 

(1:200) and a PE-labelled donkey anti-goat IgG (1:500) were used for detection. Negative controls 

included incubation with a respective isotype antibody. In the next step, a suitably labelled secondary 

antibody was used with respective detection system.  

 

2.3.5. Immunostaining for nuclear p50 

Staining for nuclear p50 in tubular epithelial cells and spleen monocytes was performed on 3.7 % 

formaldehyde-fixed cell monolayer, permeabilized with 0.5 % Triton-X-100. The cells were pre-

stimulated with the TLRs ligands for 1 hour just befor fixation to activate the p50 translocation to the 

nucleus. A p50 (NLS) antibody (1:100, Santa Cruz, Heidelberg, Germany) was used in order to detect 

nuclear translocation of NF-κB (Fagerlund 2005). Negative controls included incubation with a 

respective isotype antibody. In the next step, a suitably labelled secondary antibody was used with 

respective detection system.  

 

2.3.6. Flow cytometry 

Flow cytometry of primary spleen monocytes and tubular epithelial cells was performed using the 

goat polyclonal anti-SIGIRR antibody. For intracellular staining, cells were fixed with 1% 

paraformaldehyde and permeabilized with permeabilization buffer (PBS, 0,5 % BSA, 0,5 % saponin) 

at room temperature for 20 min. Primary cells were harvested using methods described above, 

involving hemolysis, passage through preseparation filter to obtain single cell suspension and wash 

steps, under cold conditions on ice. All cell types, after appropriate stimulation procedures were 
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harvested, resuspended in 50-100 µl PBS, and incubated with the respective primary or secondary 

antibodies (wherever applicable) or isotype controls at prescribed dilutions for 60 minutes each, 

followed by a washing step, resuspended in PBS for FACS analysis. A polyclonal PE-labelled 

donkey anti-goat antibody was used for detection (1:1000, Dianova, Hamburg, Germany). A goat IgG 

(BD Pharmingen) was used as isotype control. FACS analysis was conducted using a FACScalibur 

machine and CellQuest software (BD Pharmingen). The renal APCs surface staining was performed 

using PE-labeled mouse anti-CD11c (BD Pharmingen, Hamburg, Germany). 

 

2.4. IN VIVO EXPERIMENTS AND STATISTIC 

 

2.4.1. Animal studies 

SIGIRR-deficient mice were generated by homologous recombination of the SIGIRR gene by the 

group of prof. A. Mantovani as previously described (Garlanda 2003), genotyped, and backcrossed to 

the C57BL/6 strain (Charles River Laboratories, Sulzfeld Germany) to the generation F6. C57BL/6 

lpr/lpr  or MRL lpr/lpr  mice were purchased from Charles River Laboratories (Sulzfeld, Germany) 

and Jackson Laboratories (Manheim Germany) respectively and backcrossed together with SIGIRR-/- 

strain to generate the C57BL/6 lpr/lpr SIGIRR-/- or MRL lpr/lpr  SIGIRR-/- mice. Genotyping was 

performed by PCR with appropriate primers. Mice were housed in groups of 5 mice in filter top cages 

with a 12 hour dark/light cycle and unlimited access to food and water. Cages, nest lets, food and 

water were sterilized by autoclaving before use. All experimental procedures were performed 

according to the German animal care and ethics legislation and had been approved by the local 

government authorities.  

Tubular epithelial kidney cells, mesangial renal cells, spleen monocytes, bone marrow derived 

dendritic cells (BMDCs) or renal dendritic cells were isolated from the C57BL/6, SIGIRR-/- or the 

lpr/lpr-SIGIRR knock out mice.  All mice were sacrificed by cervical dislocation. The whole spleen 

tissue was removed and processed for splenocytes isolation and culture as described below. For 

obtaining the BMDCs, whole bones from the femur from the fore and hind limbs were separated and 

processed as described below. Kidneys were removed for the preparation of tubular epithelial and 
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mesangial cells.  

 

2.4.2. Serum IgGs and urine protein measurement 

Blood and urine samples were collected from each animal every 30 days. The urine protein ratio was 

determined by the albumin ELISA (Bethyl Labs, Montgomery, TX, USA). Anti-dsDNA antibodies 

levels in serum samples were determined by ELISA: NUNC maxisorp ELISA plates were coated 

with poly-L-lysine (Trevigen, Gaithersburg, MD, USA) and mouse embryonic stem cell dsDNA. 

After incubation with mouse serum dsDNA-specific IgG, IgG1, IgG2a, IgG2b, IgG3 were detected 

by ELISA (Bethyl Labs, Montgomery, TX, USA). All experimental procedures were performed 

according to the German animal care and ethics legislation and had been approved by the local 

government authorities. 

 

2.4.3. Statistical analysis 

Data were expressed as mean ± standard error of the mean (SEM). Comparison between groups was 

performed using Student’s t-test. A value of p < 0.05 indicated statistical significance. Error bars 

represent standard error of the mean (SEM). 
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3. RESULTS 

 

 

3.1. EXPRESSION OF SIGIRR 

 

3.1.1. Sigirr expression is strain- and gender- dependent 

Genetic variation between mouse strains has recently been characterized in detail using single 

nucleotide polymorphisms (Wade 2002). Differences in genetic background between mouse strains 

affect gene expression, which explains phenotypic differences. Genomic variability could be 

correlated with high levels of single nucleotide polymorphisms (SNPs) occurring between mouse 

strains. Before we chose the right background for backcrossing the Sigirr-deficient mice we 

investigated the level of Sigirr expression in different mouse strains. Sigirr expression levels in renal 

tissue from three different inbred mouse strains (C57BL/6, BALB/c and C3H/HeNCrl) were 

determined. Total RNA from three to six individuals per strain was isolated, 1 µg total RNA was 

reversed transcribed and investigated for Sigirr expression by the quantitative real time PCR. 

Significantly lower expression for Sigirr was shown in BALB/c and C3H/HeNCrl compared to 

C57BL/6 strain. Moreover Sigirr might be a gene which is sex-dependently regulated because male 

express significantly more SIGIRR than the female of the same strain and age, but interestingly only 

in C57BL/6 mice (Figure 5).  

 

 

Figure 5. Sigirr expression in C57BL/6, BALB/c and C3H/HeNCrl mice: mRNA was extracted 
from kidneys of 6 weeks old mice with different genetic backgrounds (C57BL/6, BALB/c and 
C3HHeNCrl) and different gender as indicated (n=3-6). Sigirr mRNA expression levels were 
determined by real-time RT-PCR and expressed as mean of the ratio SIGIRR /18s-rRNA ± SEM.  
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For further experiments we chose 6 weeks old males with the C57BL/6 background hoping to see the 

most striking differences in phenotype of SIGIRR-deficient and wild type mice.  

 

 

3.1.2. Sigirr expression in solid organs 

Sigirr mRNA level was analysed by real-time RT-PCR in solid organs of 6 week old C57BL/6 mice. 

RT-PCR screening with mouse Sigirr -specific primers on a variety of solid organs revealed its wide 

expression. High levels of Sigirr mRNA were found in kidneys, i.e. 3-fold compared to respective 

Sigirr levels in spleen (Figure 6, left). By contrast, brain, heart, lung, liver, small intestine, colon, 

skin, and muscle expressed Sigirr mRNA at lower levels as in spleen. The prominent expression of 

SIGIRR in kidneys of 6 week old mice was confirmed on the protein level by Western blot (Figure 6, 

right). 

 

 

Figure 6. Sigirr expression in C57BL/6 mice: (left): mRNA was extracted from organs of C57BL/6 
mice of 6 weeks age (n=6). Sigirr mRNA expression levels were determined by real-time RT-PCR 
and expressed as mean of the ratio Sigirr /18s-rRNA ± SEM; (right): SIGIRR protein expression was 
determined by Western blot analysis. Proteins were prepared from kidneys of 6 week old C57BL/6 
wild-type mice or Sigirr -deficient mice as indicated.  
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Because TLR expression has been reported to be age-dependent (Renshaw 2002), Sigirr mRNA 

levels were analysed in C57BL/6 mice of 10 days, 6 weeks or 1 year of age. In most organs Sigirr 

mRNA levels declined from young to old age (Figure 7). Interestingly, Sigirr mRNA levels in 6 week 

old C57BL/6 mice were 7-8-fold higher as compared to 10 day or 1 year old mice. These data show 

that Sigirr is expressed at high levels in kidneys of adolescent C57BL/6 mice.  

 

 

Figure 7. Sigirr expression in C57BL/6 mice: mRNA was extracted from organs of C57BL/6 mice 
of different age (1,5 weeks; 6 weeks; 52 weeks) as indicated (n=3-6). Sigirr mRNA expression levels 
were determined by real-time RT-PCR and expressed as mean of the ratio SIGIRR /18s-rRNA ± 
SEM.  
 

 

3.1.3. Sigirr is expressed at high levels in intrarenal myeloid cells and renal tubular epithelial 

cells 

Next the source of renal Sigirr expression was determined. Kidneys of 6 week old C57BL/6 mice 

were carefully dissected into cortex and medulla and real-time RT-PCR was performed for Sigirr 

mRNA. Cortex and medulla from kidneys of 6 week old C57BL/6 mice expressed equal levels of 

Sigirr mRNA, suggesting a tubular or vascular origin rather than glomerular cells, which locate to the 

renal cortex (Figure 8, left).  

In order to determine the cellular origin of renal Sigirr expression, tubular epithelial cells, mesangial 

cells and intrarenal myeloid cells were isolated from 6 week old C57BL/6 mice.  
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Figure 8. Sigirr expression in renal cells: (left): Renal cortex and medulla were dissected from 6 
week old C57BL/6 mice (n = 5) and RNA was extracted. Sigirr mRNA levels were determined by 
real-time RT-PCR and expressed as mean of the ratio Sigirr /18s-rRNA ± SEM (right): Primary cells 
were isolated from of 6 week old C57BL/6 mice as described in methods. Sigirr mRNA levels were 
determined as before by real-time RT-PCR and expressed as mean of the ratio Tir8/Sigirr/18s-rRNA 
± SEM. N.d. = not detected. 
 

 

In fact, unlike primary mesangial cells tubular epithelial cells and resident CD11b/F4/80-positive 

renal myeloid cells both expressed SIGIRR mRNA (Figure 8, right). The latter cells localize to the 

interstitium of the renal cortex and medulla of mice (Figure 9). These data indicate that the profound 

renal SIGIRR expression originates from tubular epithelial cells and intrarenal immune cells, i.e. 

resident antigen-presenting cells.  

 

 

 
Figure 9. Immunohistochemistry of F4/80-positive antigen presenting cells (APC) in the kidney: 
Kidney slides were obtained from 6 weeks old C57BL/6 wild type mice. The slides were stained with 
anti-F4/80 antibodies for intrarenal antigen-presenting cells (black) in kidney cortex (left) and 
medulla (right); original magnification x200.  
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The transmembrane molecule SIGIRR has been reported to suppress LPS or IL-1 signaling in Jurkat 

cells by interacting with the intracellular domain of TLR4 and both extracellular Ig domain and the 

intracellular TIR domain of IL-1R (Qin 2005). Thus, SIGIRR should localize to outer membranes of 

these cells.  

 

Flow cytometry using a polyclonal anti-mSIGIRR antibody revealed surface expression of SIGIRR 

protein on primary tubular epithelial cells prepared from wild-type mice (Figure 10, left), but not 

from SIGIRR-deficient mice (Figure 10, right).  

 

 

Figure 10. SIGIRR expression in tubular epithelial cells: left and right: Flow cytometry for 
SIGIRR was performed using primary tubular epithelial cells prepared from wild-type mice (left) and 
Sigirr -deficient mice (right) as indicated. Surface expression of SIGIRR (black line) is indicated by a 
fluorescence shift compared to the isotype control antibody (red line). Grey area represents the 
secondary antibodies control. 
 

 

The cellular distribution of SIGIRR protein was confirmed by SIGIRR immunostaining on cultured 

primary tubular epithelial cells (Figures 11A and 11B) and kidney sections prepared from 6 week old 

C57BL/6 mice (Figure 11C and 11D). Positive staining signals were detected at basolateral and 

luminal membranes of proximal and distal tubular epithelial cells. In proximal tubular epithelial cells 

the colocalisation with the luminal brush border (costainined with FITC-phalloidin) was particularly 

apparent (Figure 11C). Glomeruli stained negative for SIGIRR (not shown). Negative controls 

included staining cells or renal sections from Sigirr-deficient mice (Figures 11B and 11D), omitting 

the primary antibody (not shown) or preabsorbing the primary antibody with murine SIGIRR-

overexpressing HEK293 cells (not shown). Thus, SIGIRR is expressed on basolateral and luminal 
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membranes of proximal and distal tubular epithelial cells in the mouse kidney. In order to assess the 

subcellular expression of SIGIRR protein the Sigirr-deficient mice were used as a control for the 

specificity of the detection methods applied. The lack of SIGIRR protein in kidneys of Sigirr-

deficient mice was confirmed by Western blot using a polyclonal anti-mSIGIRR antibody (Figure 6, 

right).  

 

 

Figure 11. SIGIRR  expression in tubular epithelial cells: A and B: SIGIRR immunostaining with 
PE-labelled secondary antibody confirms SIGIRR expression on the cellular surface in confluent 
growing primary tubular epithelial cells prepared from wild-type mice (A). Tubular epithelial cells 
from SIGIRR-deficient mice lack respective positive signal (B). DAPI staining of cell nuclei is seen 
in blue (original magnification x 400). C and D: Renal sections were prepared from 6 week old 
C57BL/6 wild-type mice and SIGIRR-deficient mice and stained for SIGIRR with a PE-labeled 
secondary antibody. FITC-phalloidin stains brush border in proximal tubular epithelial cells and cell-
cell contacts in green. A yellow signal is obtained at basolateral membranes and brush border as a 
result of colocalization of red SIGIRR staining and green phalloidin staining (C). The SIGIRR signal 
is absent when renal sections taken from SIGIRR-deficient mice were stained accordingly (D), 
original magnification x 400.  
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3.2. REGULATORY FUNCTION OF SIGIRR 

 

3.2.1. Cloning of SIGIRR 

Accession numbers NM_021805 (homo sapiens Sigirr) and NM_023059 (mus musculus Sigirr) from 

the CoreNucleotide PubMed library were used to design the primers in order to isolate full-length 

Sigirr cDNA from mouse kidney cDNA and human kidney cDNA (for primer sequences see material 

and methods). The sequences of the human clones contained an open reading frame of 1233 bp which 

predicted a protein of 410 aa. The mouse clones contained an open reading frame of 1230 bp coding a 

409aa protein. The full length SIGIRR contains a short extracellular region (118aa) that corresponds 

to a single Ig domain. The C-terminal region of SIGIRR, intracellular TIR domain is longer than the 

typical TIR domain of TLR/IL-1R family members. Also conserved amino acids in the TIR domain, 

which were shown to be essential for the signaling are changed in SIGIRR compared with others 

TLR/IL-1R family members.  

In order to obtain a full length Sigirr cDNA, the PCR amplified products were cut with the restriction 

enzymes, directly ligated into pCR3 vector (Figure 12) and placed into competent bacteria by the 

transformation. The quality of the constructs was verified by the restriction enzymes and sequencing. 

Generated mouse construct contained additionally the FLAG-tag on the N-terminus. The constructs 

were used later in the transfection experiments, northern blot analysis as well as some other not 

mentioned in this work side experiments. 

 

 

Figure 12. Schematic presentation of the Sigirr constructs used in experiments: Both murine and 
human Sigirr were cloned into pCR3 vector. Murine Sigirr was additionally enriched in the FLAG 
sequence.  
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3.2.2. SIGIRR inhibits TLR-ligands mediated NF-κκκκB activation 

In order to examine the potential function of SIGIRR protein in the signalling pathway starting from 

toll like receptors, the construct containing the open reading frame of murine SIGIRR was 

overexpressed in murine tubular epithelial cell line. TLR ligands, i.e. Pam3Cys (TLR1/2), poly I:C 

RNA (TLR3), LPS (TLR4), and CpG-DNA (TLR9) caused 24 h after stimulation increase in NF-κB 

activation in tubular epithelial cell line. This effect was decreased by transfection with the plasmid 

encoding SIGIRR (Figure 13). Thus, overexpression of SIGIRR reduced TLR mediated NF-κB 

reporter activity, indicating an inhibitory function of SIGIRR in TLRs dependent NF-κB actibation. 

The same experiment was performed in 293HEK cell line. However only very weak inhibition was 

observed in the 293HEK cells (using the human Sigirr construct), which express TLRs only on the 

basal level suggesting that the effect was TLRs dependent (data not shown).  

 

 

Figure 13. Expression of SIGIRR inhibits the activation of NF-κκκκB: tubular epithelial murine cell 
line was co-tranfected with 1µg expression plasmid encoding for murine SIGIRR along with the 
NFκB reporter plasmid driving luciferase expression. Luciferase activity was messured as described 
in materials and methods. TPA was used as a positive control. Bars represent mean values from two 
independent experiments ± SEM.   

 

 

3.2.3. SIGIRR is a negative regulator of TLR/IL-1R signaling in immune but not in tubular 

epithelial cells 

The strong expression of SIGIRR in tubular epithelial cells suggests an inhibitory effect on LPS-

induced gene expression, as reported for SIGIRR in splenocytes (Wald 2003). In order to address this 
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question, primary tubular epithelial cells and spleen monocytes were isolated either from 6 week old 

wild-type mice or from age-matched mice with various deletions of genes involved in TLR signaling. 

CXCL2 mRNA expression was determined by real-time RT-PCR as a readout for LPS-induced 

chemokine expression. 24 h of stimulation with 1 µg/ml LPS increased CXCL2 mRNA expression in 

monocytes and tubular epithelial cells (Figure 14). This effect was mediated through TLR4 as tubular 

epithelial cells prepared from Tlr4-deficient mice did not induce CXCL2 mRNA in response to LPS. 

MyD88-deficient monocytes showed a reduced response consistent with a contribution of MyD88 on 

TLR4 signaling which involves additional adaptor molecules. In TLR3- or Tlr9-deficient monocytes 

and tubular epithelial cells LPS-induced CXCL2 expression was not affected. By contrast, Sigirr-

deficient monocytes mice showed an enhanced induction of LPS-induced CXCL2 mRNA as 

compared to wild-type monocytes. Interestingly, in tubular epithelial cells lack of SIGIRR had no 

effect of LPS-induced CXCL2 mRNA levels, suggesting that SIGIRR does not inhibit LPS-induced 

CXCL2 expression in tubular epithelial cells.  

 

 

Figure 14. SIGIRR and cell type-specific responses to LPS. Monocytes (A) and tubular epithelial 
cells (B) were prepared from 6 week old mice of different strains with C57BL/6 background as 
indicated (wild type, MyD88-/-, Tlr3-/-, Tlr4-/-, Tlr9-/- and Sigirr-/-). Cells were stimulated either 
with medium or E.coli LPS (1 µg/ml) for 24 h. CXCL2 production was determined by real-time RT-
PCR and expressed as mean of the ratio CXCL2/18s-rRNA ± SEM. Data represent means ± SEM 
from 3 independent experiments.  
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Next it was examined whether the lack of SIGIRR-mediated TLR inhibition in tubular epithelial cells 

is restricted to TLR4 signaling. Thus, monocytes and tubular epithelial cells were prepared from 

Sigirr-deficient and wild-type mice as above and incubated for 24 h with ligands for respective TLRs: 

Pam3Cys (ligand for TLR1/2), poly I:C RNA (ligand for TLR3), LPS (ligand for TLR4), and CpG-

DNA (ligand for TLR9). CCL2 production was measured by ELISA as another marker for TLR-

induced chemokine secretion. Compared to wild-type monocytes Sigirr-deficient monocytes 

produced increased amounts of CCL2 when exposed to TLR ligands (Figure 15). This suggests the 

inhibitory function of SIGIRR in these cells. Surprisingly this effect was not restricted only to the 

LPS signalling but to the all used TLR ligands. This effect was not observed in tubular epithelial cells 

(Figure 15). No response to CpG-DNA was observed in tubular epithelial cells due absence of TLR9 

on these cells. These data show that signaling through TLR1/2, -3, and -4 is independent of SIGIRR 

in tubular epithelial cells, but not in monocytes.  

 

 

Figure 15. SIGIRR and TLR signaling: Monocytes and tubular epithelial cells were prepared from 
6 week old Sigirr-deficient or wild-type mice as indicated. Cells were stimulated either with medium, 
Pam3Cys, pI:C RNA, LPS or CpG-DNA for 24 h. CCCL2 production was determined in 
supernatants by ELISA. Data represent means ± SEM from 3 independent experiments.    
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LPS-induced chemokine expression is mediated through NF-κB. Because transfection of primary 

spleen monocytes and tubular cells with a NF-κB reporter gene contruct was limited by low cell 

survival we used a p50 (NLS) antibody to determine nuclear translocation of NF-κB as a marker of 

NF-κB activation. CD11b positive monocytes and tubular epithelial cells were stained after 1 h of 

stimulation with either medium or LPS (Figure 16). The data obtained were consistent with that of 

LPS-induced CCL2 production, which excludes a role for SIGIRR on LPS-induced NF-κB activation 

in tubular epithelial cells. These data indicate that SIGIRR has cell-type specific functions, i.e. an 

inhibitory effect on LPS-induced TLR4 signaling in monocytes, which is absent in tubular epithelial 

cells. LPS-induced TLR signaling is independent of SIGIRR in tubular epithelial cells. 

 

 

 

 
Figure 16. SIGIRR and cell type-specific responses to LPS. Monocytes and tubular epithelial cells 
were prepared from 6 week old Sigirr-deficient or wild-type mice as indicated. A: After 1 h of 
stimulation with LPS (1 µg/ml) the cells were stained with a p50 antibody for detection of NFκB 
activation as described in methods. Data represent means ± SEM of positive nuclei per high power 
field (hpf).    
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The same cell type-specific function of SIGIRR was found for signaling via receptors of the IL-1R 

subfamily, e.g. the IL-18 receptor (Qin 2005). Lack of SIGIRR did not affect IL-18-induced CCL2 

production in tubular epithelial cells, while CCL2 production was enhanced in Sigirr-deficient 

monocytes (Figure 17, right and left respectively). These data show that SIGIRR does not affect 

signaling through TLR/IL-1Rs in tubular epithelial cells.  

 

 

 

Figure 17. SIGIRR  and IL-receptors signaling: Monocytes (left) and tubular epithelial cells (right) 
were prepared from 6 week old Sigirr-deficient or wild-type mice as indicated. Cells were stimulated 
either with medium or IL-18 for 24 h. CCL2 production was determined in supernatants by ELISA. 
Data represent means ± SEM from 3 independent experiments.    
 

 

In the kidney the renal tubules are surrounded by a dense network of dendritic cells (Soos 2006). 

Resident intrarenal myloid cells and tubular epithelial cells, contribute to renal TLR4 signaling in 

infective pyelonephritis with uropathogenic E. coli UPEC (Patole 2006). Hence, it was hypothesized 

that lack of SIGIRR would enhance LPS-induced renal chemokine release as a result of uncoupling 

TLR4 signaling in both cell types. In fact, kidney slices from Sigirr-deficient mice produced much 

more CCL2 and CXCL2 upon exposure to 1 µg/ml UPEC LPS for 24 h (Figure 18, upper panel). 

However, when primary tubular epithelial cells or CD11b positive renal myeloid cells were exposed 

to LPS, lack of SIGIRR was found to enhance LPS-induced CCL2 and CXCL2 production only in 

the myeloid cells but not in the tubular epithelial cells (Figure 18, middle and lower panel). These 

data suggest that the suppressive effect of SIGIRR on renal TLR4 signaling relates to SIGIRR in 

intrarenal myeloid cells and is independent of SIGIRR in tubular epithelial cells.  
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Figure 18. SIGIRR and LPS-induced CCL2 and CXCL2 production in mouse kidneys:  (upper 
panel): Kidney slices, freshly prepared from wild-type and Sigirr-deficient mice, were placed in 
medium and exposed to 1 µg/ml ultrapure LPS. After 24 h supernatants were harvested and CCL2 
(left) and CXCL2 production (right) were measured by ELISA. Data represent means ± SEM from 3 
independent experiments. Intrarenal myeloid cells (middle) were prepared from 6 week old wild-type 
and Sigirr-deficient mice by CD11b-magnetic bead isolation and cultured with GM-CSF as 
mentioned in methods. Tubular epithelial cells (lower panel) were prepared as before. The cells were 
incubated with either 1 µg/ml ultrapure LPS in medium or medium alone for 24 h. Data represent 
means ± SEM from 3 independent experiments.   
 

 

3.2.4. SIGIRR is a suppressor of TLR mRNA expression in monocytes but not in tubular 

epithelial cells 

Next it was examined whether the cell type specific effects of SIGIRR on TLR signaling relate to a 

modulatory effect on Tlr expression. Primary spleen monocytes and tubular epithelial cells were kept 

under normal culture conditions and Tlr1-9, and -11 mRNA expression levels were determined by 

real-time RT-PCR. Wild-type monocytes expressed nearly all TLRs (Figure 19). Sigirr-deficient 

monocytes expressed much higher levels of Tlr1 (13-fold), Tlr5 (23-fold), Tlr6 (7-fold), Tlr7 (8-fold), 

Tlr9 (12-fold), and Tlr11 (23-fold) as compared to spleen monocytes isolated from wild-type mice. 

Lack of SIGIRR did not affect mRNA expression of Tlr2, -3, -4, and -8 in spleen monocytes. By 

contrast, wild-type tubular epithelial cells, which expressed Tlr1-4 and -11, revealed mRNA 
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expression levels similar to Sigirr-deficient tubular epithelial cells (Figure 19). Apparently, SIGIRR 

is a suppressor of Tlr1, -5, - 6, -7, -9, and -11 mRNA expression in spleen monocytes, but has no 

effect on the TLRs expressed by tubular epithelial cells.  

 

 

Figure 19. SIGIRR  modulates Tlr mRNA expression : Monocytes and tubular epithelial cells were 
prepared from 6 week old Sigirr-deficient or wild-type mice as indicated. Tlr1-9 and -11 mRNA 
expression levels were determined by real-time RT-PCR and expressed as mean of the ratio 
TLR/18s-rRNA ± SEM.   
 

 

3.2.5. SIGIRR is a suppressor of Tlr mRNA expression in dendritic cells 

Most renal DCs positive for the CD11c marker posses also CD11b and F4/80 markers indicating that 

the latter are not only specific for the macrophages in the kidney (Kruger 2004, Soos 2006). Others 

express macrophage markers (e.g., F4/80 and CD11b) instead the typical for DCs CD11c, and were 

despite of this fact classified as dendritic cells because of the CX3CR1 expression on the surface 

(Soos 2006). By contrast the DCs residing in lymphoid tissues such as the spleen show the minor 

expression of F4/80 macrophage marker (Kruger 2004). CD8a and B220 markers which are typical 

for lymphoid and plasmacytoid DCs, respectively are not expressed on renal DCs. Like others tissue-

resident immature DCs at steady state, also renal DCs show high level of major histocompatibility 

complex (MHC) class II expression, but low CD80, CD86, and CD40 expression (Soos 2006). Thus, 
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renal dendritic cells are not a homogeneous cell population and they differ from the DCs found in the 

lymphoid tissues, but also differs from the DCs found in mucosal tissues.   

Because the expression of SIGIRR in renal CD11b positive cells is significant and there are striking 

differences in SIGIRR glycosylation in these cell types we decided to characterise better the myeloid 

cells in the kidney. The number of tubular cells exceeds the number of myeloid cells in the healthy 

kidney and many reports support a functional role of the intrarenal network of myeloid cells in the 

healthy kidney (Kruger 2004; Soos 2006). We isolated the intrarenal CD11b positive cells from both 

wild type and Sigirr-deficient mice. We have performed flow cytometry for CD11c on the prepared 

this intrarenal resident cell population and found that 45 % of the CD11b positive cells were also 

positive for CD11c (data not shown). We decided to investigate this mixed cell population of 

intrarenal myeloid cells. 

Next it was examined whether the SIGIRR has an effect on TLR expression in antigen presenting 

cells. Primary bone marrow derived dendritic cells or intrarenal myeloid cells were cultured with 

FLT3 or GM-CSF and Tlr1-9, and -11 mRNA expression levels were determined by real-time RT-

PCR (Figure 20). Wild-type dendritic/myeloid cells expressed nearly all Tlrs. Sigirr-deficient bone 

marrow dendritic cells cultured with GM-CSF expressed higher levels of Tlr1 (8-fold), Tlr2 (13-

fold), Tlr3 (7-fold), Tlr4 (4-fold), Tlr5 (21-fold), Tlr6 (3-fold), Tlr7 (5-fold), Tlr8 (5-fold), Tlr9 (10-

fold) and Tlr11 (20-fold) as compared to bone marrow dendritic cells cultured with GM-CSF, which 

were isolated from wild-type mice. Similar folds increase were observed by the bone marrow derived 

dendritic cells cultured with FLT3L (Figure 20, middle), however the Tlr expression was 

significantly lower than in the case of the cells cultured with GM-CSF. 

Lack of SIGIRR did not affect that strongly the Tlr mRNA expression in the myeloid cells isolated 

from the kidneys. The intrarenal myeloid cells expressed even strongly the tested Tlrs. However the 

differences between Sigirr-deficient and wild type cells are not that visible like by the bone marrow 

derived cells. Sigirr-deficient intrarenal myeloid cells expressed only slightly higher levels of Tlr1 (3-

fold), Tlr2 (2-fold), Tlr3 (1,5-fold), Tlr4 (2-fold), Tlr5 (4-fold), Tlr6 (4-fold), Tlr7 (3-fold), Tlr8 (2-

fold), Tlr9 (3-fold) and Tlr11 (2-fold) as compared to intrarenal myeloid cells, which were isolated 

from wild-type mice. Apparently, SIGIRR is a suppressor of Tlrs mRNA expression in antigen 
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presenting cells, but it is dependent on the stage of the development of these cells and also from the 

local environment.  

 

 

 

Figure 20. SIGIRR  modulates Tlr mRNA expression. Bone marrow dendritic cells stimulated with 
Flt3L (upper panel) bone marrow dendritic cells stimulated with GM-CSF (middle) or intrarenal 
myeloid cells (lower panel) were prepared from 6 week old Sigirr-deficient or wild-type mice as 
indicated. Tlr 1-9 and -11 mRNA expression levels were determined by real-time RT-PCR and 
expressed as mean of the ratio TLR/18s-rRNA ± SEM.   
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3.2.6. SIGIRR is a suppressor of TLR signaling in dendritic cells 

Next, we questioned whether cells respond to TLR ligands as predicted from their respective TLR 

expression profile. It was examined whether the lack of SIGIRR-mediated TLR inhibition in antigen 

presenting cells affecting the TLRs signaling. Thus, bone marrow derived or intrarenal antigen 

presenting cells were prepared from Sigirr-deficient and wild-type mice as above and incubated with 

ligands for respective TLRs: Pam3Cys (TLR1/2), poly I:C RNA (TLR3), LPS (TLR4), imiquimod 

(TLR7) and CpG-DNA (TLR9). Bone marrow dendritic cells (cultured with GM-CSF or Flt3L) or 

the intrarenal myeloid cells from wild-type mice produced IL-6 and IL-12 in response to TLR ligands 

(Figure 21). However, the ability of Sigirr-/- cells to produce these inflammatory cytokines in 

response to the same ligands was signicantly increased in case of all three tested cell types.  

Moreover, the production of IL-6 and IL12 was higher in case of bone marrow dendritic cells 

cultured with GM-CSF and the intrarenal myeloid cells than in case of bone marrow dendritic cells 

cultured with Flt3L. These differences may be due to the different expression levels of the TLRs.  

 

 

Figure 21. SIGIRR  modulates TLR-induced IL12 and IL-6 production. Bone marrow dendritic 
cells stimulated with GM-CSF (upper panel) bone marrow dendritic cells stimulated with Flt3L 
(middle) or intrarenal myeloid cells (lower panel) were prepared from 6 week old Sigirr-deficient or 
wild-type mice as indicated. Cells were stimulated either with medium, Pam3Cys, pI:C RNA, LPS, 
imiquimod or CpG-DNA for 24 h. IL-12 (left) or IL-6 (right) production was determined in 
supernatants by ELISA. Data represent means ± SEM from 3 independent experiments.    
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Also CCL2 (MCP-1) production was measured by ELISA as another marker for TLR-induced 

chemokine secretion (here the tubular epithelial cells included). Compared to wild-type bone marrow 

dendritic cells cultured with GM-CSF and intrarenal myeloid cells Sigirr-deficient suitable cell 

populations produced increased amounts of CCL2/MCP1 when exposed to additional TLR ligands, 

i.e. Pam3Cys (TLR1/2), poly I:C RNA (TLR3), LPS (TLR4), imiquimod (TLR7) and CpG-DNA 

(TLR9). Only very small differences were observed in the production of CCL2 between wild-type 

and Sigirr-/- bone marrow derived dendritic cells cultured with Flt3L in response to all tested TLR 

ligands, indicating that development stage of the dendritic cells plays an important role in the 

signalling of these cells. No effect was observed in tubular epithelial cells, indicating that signaling 

through TLRs is independent of SIGIRR in tubular epithelial cells, but not in antigen presenting cells.  

However the presented data proved that SIGIRR is a strong negative regulator of TLR mediated 

signalling in DCs (cultured with GM-CSF) and the intrarenal myeloid cells (Figure 22). 

 

 

 

Figure 22. SIGIRR  modulates TLR-induced MCP1/CCL2 production. Bone marrow dendritic 
cells stimulated with GM-CSF, intrarenal myeloid cells, bone marrow dendritic cells stimulated with 
Flt3L or tubular epithelial cells were prepared from 6 week old Sigirr-deficient or wild-type mice as 
indicated. Cells were stimulated either with medium, Pam3Cys, pI:C RNA, LPS, imiquimod or CpG-
DNA for 24 h. CCL2/MCP-1 production was determined in supernatants by ELISA. Data represent 
means ± SEM from 3 independent experiments.    
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3.3. REGULATION OF SIGIRR EXPRESSION 

 

3.3.1. The regulation of Sigirr expression is cell type-specific 

It was determined whether Sigirr expression is regulated by the presence of TLRs by assessing Sigirr 

mRNA levels in monocytes and tubular epithelial cells isolated from 6 week old mice deficient for 

either MyD88 or Tlrs that are expressed by both cell types, i.e. TLR2, -3, and -4. In Tlr4-deficient 

monocytes Sigirr mRNA levels were found to be increased 5-fold as compared to monocytes 

prepared from wild-type mice (Figure 23). By contrast, lack of TLR2, -3, or MyD88 had no major 

effect on Sigirr mRNA expression in monocytes. In tubular epithelial cells, lack of TLR4 had a 

similar effect on Sigirr mRNA levels (Figure 23). However, Sigirr mRNA expression was reduced in 

tubular epithelial cells prepared from mice lacking TLR2 or -3.  As in monocytes lack of MyD88 did 

not affect Sigirr mRNA expression. While TLR2 and -3 seem to have slightly different impact on 

Sigirr mRNA expression in monocytes and tubular cells, the presence of TLR4 downmodulates 

Sigirr mRNA in both cell types.  

 

 

Figure 23. Regulation of Sigirr by TLR: Spleen monocytes and tubular epithelial cells were 
prepared from 6 week old mice of different strains as indicated. Sigirr mRNA expression levels were 
determined by real-time RT-PCR and expressed as mean of the ratio TLR/18s-rRNA ± SEM.  
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As Tlr4 deficiency was associated with increased Sigirr mRNA expression in monocytes and tubular 

epithelial cells, LPS stimulation should suppress Sigirr mRNA levels. To test this hypothesis the 

monocytes and tubular epithelial cells were stimulated with LPS or a combination of IFNγ and 

TNFα. In fact, both LPS and IFNγ/TNFα reduced Sigirr mRNA levels in tubular epithelial cells 

(Figure 24). By contrast, LPS and IFNγ/TNFα both increased Sigirr expression in monocytes in a 

dose dependent manner with highest mRNA levels after 18 h (Figure 24). These data show that Sigirr 

is regulated differently in tubular epithelial cells and monocytes by LPS as well as by IFNγ and TNF. 

 

 

Figure 24. Regulation of Sigirr by IFNγ and TNFαααα: Monocytes (left) and tubular epithelial cells 
(right) were prepared from 6 week old C57BL/6 mice; (upper panel): cells were stimulated with 
either medium, LPS or IFNγ + TNF (different concentrations as indicated). Sigirr mRNA expression 
levels were determined after 18 h by real-time RT-PCR and expressed as mean of the ratio 
SIGIRR/18s-rRNA ± SEM. (lower panel): cells were stimulated with either medium, LPS (1 µg/ml) 
or IFNγ (100 U/ml) + TNF (500 U/ml) Sigirr mRNA expression levels were determined after 1, 6, 
12, 18 or 24 h by real-time RT-PCR and expressed as mean of the ratio SIGIRR/18s-rRNA ± SEM. 
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3.3.2. Immune cells and renal tubular epithelial cells both express full length Sigirr 

Alternative splicing is common in members of the TLR/IL-1R family (Wells 2006). To test whether 

kidney and spleen cells express different splice variants of the Sigirr gene, the real-time RT-PCR 

using primers specific for the intracellular or extracellular domain of Sigirr was performed (Figure 

25). Spleen monocytes and tubular epithelial cells expressed comparable levels of both the 

intracellular and extracellular domain of Sigirr (Figure 25).  

 

 

Figure 25. Sigirr transcripts: Tubular epithelial cells and spleen monocytes were prepared from 6 
weeks old Sigirr-deficient or wild-type mice. An expression level of Sigirr mRNA was determined 
by using primers specific for either the extracellular (primer 1) or the intracellular domain (primer 2) 
of Sigirr. The respective mRNA expression levels using primer 1 and primer 2 were determined by 
real-time RT-PCR using cDNA prepared from monocytes (black) and tubular epithelial cells (white) 
and expressed as mean of the ratio to 18s-rRNA ± SEM. 

 

 

Only one splice variant of murine Sigirr mRNA was characterized using the Genomatix library.  This 

was confirmed by Northern Blot analysis. Northern blot analysis of mouse Sigirr showed that it is 

expressed in both kidney and spleen. We found hybridization to RNA from kidney and spleen. Total 

RNA was extracted from kidneys and spleens from wild type and Sigirr-deficient mice. The RNA 

was hybridized with a P32 –labeled full length (data not shown) or extracellular part of Sigirr (Figure 

26) DNA probe. A single Sigirr mRNA transcript of 3.5 kB was detected in both kidney and spleen 

and no splice variants were detected (Figure 26).  
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Figure 26. Sigirr transcripts: Northern blot analysis was performed on RNA isolates (10 µg per 
lane) from spleens and kidneys of wild-type (WT) and Sigirr-deficient mice (KO) as described in 
methods. Note a single Sigirr transcript of 3.5 kB in spleen and kidney of wild-type mice. The quality 
of RNA used in the experiment was investigated by the agarose RNA gel (28S and 18S) and by the 
RNA concentration measurements (OD 260/280). 

 

 

3.4. POSTTRANSLATIONAL MODIFICATION OF SIGIRR 

 

3.4.1. SIGIRR glycosylation is cell type specific  

When tubular epithelial cells and monocytes both express full length SIGIRR the cell type-specific 

effects on TLR signaling may relate to posttranslational modifications. Like the other IL-1R family 

members, SIGIRR is highly glycosylated. There are five putative sites for N-glycosylation (N–X–

S/T, where X is any amino acid except proline) within the extracellular region mouse SIGIRR. The 

more complexed O-linked glycosilation is not easy to predict in this case but SIGIRR have several 

threonine and several serines which might be O-glycosilated. The molecular weight of the native 

mouse SIGIRR differs from the amino acids sequence-calculated form of SIGIRR suggesting 

extensive glycosylation , which is consistent with the previous speculations (own data, Thomassen 

1999).  

Thus, we tested whether SIGIRR is differentially glycosylated in the intrarenal immune cells and 

tubular epithelial cells. PNGaseF was used as a tool which can digest N-linked sugar components, but 

not N-glycans with fucose linked α-1.3 to the Asn-bound N-acetylglucosamine, O-linked 

oligosaccharides or glycosylphosphatidylinositol (GPI) lipid anchors from glycoproteins, and hence, 
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allows the detection of glycosylation variants.  

In fact, Western blot of total kidney protein isolates revealed two SIGIRR–specific bands of 75 and 

90 kDa (Figure 27, middle). Next we prepared renal cell suspensions from isolated CD11b positive 

myeloid cells and CD11b negative renal cells of non-myeloid origin. The renal myeloid cells 

expressed the larger 90 kDa form of SIGIRR while the non-myeloid renal cells predominantely 

expressed the smaller form of 75 kDa (Figure 27, middle). Protein size depends on protein 

glycosylation. We tested the glycosylation of SIGIRR in the two types of renal cells by digesting 

protein isolates from renal myeloid and non-myeloid cells with PNGaseF. This glycosidase reduced 

the molecular mass of SIGIRR in both CD11b positive and negative renal cells exactly in the same 

pattern like in case of kidney and spleen (Figure 27, left). CD11b positive and negative renal cells 

both carry SIGIRR glycosylated at identical sites, digested by PNGaseF to a 60 kDa protein. The 

CD11b negative (non-immune) renal cells, however, contained additional SIGIRR glycosylation 

variants that are digested by PNGaseF to two other variants with a size of approximately 45kDa and 

50 kDa.  

When the protein exctracts were digested with endo-O-glycanase, which removes the distal Gal-beta-

(1,3)-GalNAc no significant differences in non-digested and digested SIGIRR size were detected in 

both renal tubular epithelial and renal CD11b+ cells. Since the digestion with this enzyme results 

often in only very small shifts on a gel we concluded that SIGIRR size is too big and the detected 

signal surface is too wide to observe significant shift on a gel after digestion of the protein. It might 

be that SIGIRR lack the Gal-beta-(1.3)GalNAc links in both cell types (data not shown).  

Although protein O-glycosylation is a major posttranslational modification, it is poorly understood 

compared with N-glycosylation. Jacalin (lectin from the jackfruit Artocarpus integrifolia) is an 

important tool in functional analysis of mucin-type glycoproteins and glycopeptides. Mucin-type O-

glycosyaltion starts with the attachment of alpha N-acetylgalactosamine (α-GalNAc) to a Ser/Thr 

residue and then proceeds through the transfer of various sugars. To test if the SIGIRR in both 

tubular epithelial and renal CD11b+ cells is O-glycosylated the immunostaining with HRP-

conjugated jacalin was performed. Jacalin bound rather unspecific to the membrane. It was 
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impossible to distinguish the SIGIRR specific bands, even when the protein-extracts from SIGIRR-

deficient mice were separated on the same gel (data not shown). Jacalin-based specification of 

SIGIRR glycosylation may not be readily feasilble with whole-organ/cell protein-extracts. 

Immunostaining with the monoclonal O-linked N-acetyloglucosamine antibody CTD110.6 gave 

really weak signal, and there were several proteins having similar size like SIGIRR (which appear on 

the gels of SIGIRR-deficient cells and which are heavily glycosylated; data not shown). 

 

 

Figure 27. SIGIRR  glycosylation: Western blot was performed on protein isolates derived from 
total kidney or from renal cell suspensions seperated by magnetic beads isolation for CD11b positive 
and negative cells, i.e. renal myeloid cells and mostly tubular epithelial cells. Note that the smaller 
but predominant of the two SIGIRR -specific bands seen in total kidney isolates derives exclusively 
from CD11b negative renal cells. The specificity of the bands is indicated by their absence in isolates 
from Sigirr-deficient mice. PNGase digests the SIGIRR glycoforms from bot cell types to smaller but 
still different proteins indicative of cell-type specific N-glycosylation of SIGIRR (middle). Inhibiting 
O-glycosylation with benzyl-GalNAc reduces the size of the smaller glycoform of SIGIRR in renal 
CD11b- cells but not the larger form of SIGIRR present in both cell types (right).  
 

 

To further investigate the O-glycosylation of SIGIRR in renal immune and non-immune cells, 

benzyl-N-acetylgalactosamine (benzyl-GalNAc), an inhibitor of O-glycosylation, was used during 

cells culturing. Benzyl-GalNAc treatment did not change the size of the larger glycoform of SIGIRR 

in renal myeloid and non-myeloid cells (Figure 27, right); hence, the larger SIGIRR glycoform is not 
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O-glycosylated. By contrast, exposing renal non-immune cells to benzyl-GalNAc reduced the size of 

the smaller predominant SIGIRR glycoform to about 60 kDa, suggestive of O-glycosylation of this 

protein (Figure 27, right). These data show that the cell type-specific functions of SIGIRR in the 

kidney do not relate to different splicing but are associated with different glycosylation variants. 

The inhibition of O-glycosylation by benzyl-N-acetylgalactosamine we noted a significant reduction 

of the SIGIRR size in protein extracts from renal tubular epithelial cells but not from myeloid renal 

cells, like already mentioned above. This would indicate significant differences in SIGIRR O-

glycosylation in these cell types.  

 

 

3.5. OTHER FUNCTIONS OF SIGIRR 

 

3.5.1. SIGIRR influences the maturation of the intrarenal myeloid cells 

Since we observed such striking differences in the signalling of the Sigirr deficient and wild type 

antigen presenting cells as well as the differences between these cells and tubular epithelial cells we 

decided to investigate the other features of both cell populations. Mature DCs unlike the macrophages 

are efficient T cell activators and posses little phagocytic and bactericidal activity. However the 

maturity of renal DC is rather low (Kruger 2004) compared with DCs from lymphoid organs (Merad 

2002). Higher phagocytic activity and less efficient T cell activation of renal DCs may be an evidence 

for some macrophage functionality (Kruger 2004), and that under infectious circumstances renal 

CD11c+ cells may take over the macrophage effector functions (Serbina 2003).  

Intrarenal myeloid cells from Sigirr+/+  and Sigirr-/- mice were compared for their ability to take up 

FITC–dextran. LC, immature DC and macrophages all showed high levels of endocytoxic activity as 

compared to negative control cells by which the take up experiment was performed at 4oC in the 

presence of natriumacid (data not shown). The FITC–dextran take up by wild type myeloid cells 

showed the one clear peak. In contrast, Sigirr-deficient cells showed the two populations of the cells 

which were able to internalise the dextran (Figure 28).  
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Figure 28. Comparison of FITC-dextran take up by the intrarenal myeloid cells: SIGIRR 
deficient and wild type intrarenal CD11b+ myeloid cells were prepared like described in material and 
methods and compared in their ability to take up the FITC-labeled dextran. After 90 min. incubation 
with the FITC labelled dextran the cells were collected, washed and analysed by the flow cytometry. 
 

 

The immature dendritic cells found under surface epithelia and in the solid organs (including kidney) 

are not very potent stimulators of the T cells (Guermonprez 2002, Steinman 1995). The immature 

phenotype is characterised by the low level of costimulatory molecules and a high ability to take up 

the antigens (Cella 1997, Mellman 2001). Mature, already active dendritic cells rapidly loose the 

ability to take up the antigens. In the case of Sigirr-deficient cells we observe two populations of 

cells. We conclude that the first peak represent the mature dendritic cells which shows lower take up 

of the antigen but are able to produce more proinflammatory cytokines and may activate better the T 

cells. The second peak observed also by the wild type cells represents the immature dendritic cells 

where antigen take up is really potent. 

 

 

3.5.2. SIGIRR does not influence the proliferation of tubular epithelial and antigen-presenting 

cells 

Since cell growth is a result of interplay between a variety of cellular processes involving 

rearrangements of the cytoskeleton, growth rate of Sigirr knock-out cells was determined and 

compared with that of wild-type tubular epithelial cells. The cell proliferation was investigated by 

CellTiter 96 proliferation assay in complete medium at 37°C after the stimulation with the TLR 
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ligands. Incubation of the tubular epithelial renal cells with TLR ligands, i.e. Pam3Cys (TLR1/2), 

poly I:C RNA (TLR3), LPS (TLR4), and CpG-DNA (TLR9) resulted in dose dependent decrease of 

cell proliferation. Under all conditions, no significant differences between Sigirr-/- and Sigirr+/+  

cells were observed (Figure 29). Thus, SIGIRR has no influence on proliferation of renal tubular 

epithelial cells. 

 

 

Figure 29. Renal tubular epithelial cells proliferation: (curves): Renal tubular epithelial cells were 
isolated from wild type or Sigirr-deficient mice and were cultured with different TLR ligands: 
Pam3Cys, polyIC, LPS, CpG or complete medium for 72 h. (Bars): Bone marrow dendritic cells 
(APCs) were isolated from wild type or Sigirr-deficient mice and incubated with LPS or with 
medium for 72 h. Cells proliferation was assessed by CellTiter 96 assay.  
 

The proliferation of antigen presenting cells was also not affected by the SIGIRR. By contrast the 

antigen presenting cells multiply better then the tubular cells after the stimulation (was shown only 

for LPS). 

 

 

3.5.3. The function of SIGIRR during stress conditions 

Some proteins that are not essential under optimal culturing conditions might play a role under stress 

conditions. Since SIGIRR is expressed in the renal tubular epithelial cells it is possible that it is 

responsible for the survival in the osmotic stress conditions. Synthesis of stress proteins and 

accumulation of compatible osmolytes are responsible for recovery of cells in response to exposure 

of cells to high osmolarities (Kwon and Handler, 1995). Kidney cells should be able to quickly 

respond to changes in cell volume and survive the osmotic stress. For this reason, growth of Sigirr-

deficient cells was determined under different osmotic conditions and compared with that of the wild-

type cells. The production of the inflammatory cytokines by the wild type and Sigirr knock-out cells 
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in the presence of increased osmolarity was determined. Growth complete medium was supplemented 

with NaCl and cultures were grown in this medium under optimal conditions. In the presence of NaCl 

the cells increased the production of cytokines. There were no significant differences in the CXCL2 

expression between wild type and Sigirr knock-out tubular epithelial cells (Figure 30, upper panel). 

These results suggest that the SIGIRR does not affect the cell metabolism under conditions of 

increased osmolarity. Similar results were obtained after incubating the cells with different 

concentration of glucose, urea or raffinose (data not shown).  

 

 

Figure 30. The function of SIGIRR during stress conditions: Tubular epithelial cells were 
prepared from 6 week old Sigirr-deficient or wild-type mice as indicated. Cells were cultured under 
osmotic stress conditions for 24 h (upper panel); stimulated with albumin or medium for 24 h 
(middle); cultured under temperature stress conditions for 24 h (lower panel). CXCL2 mRNA 
expression levels were determined by real-time RT-PCR and expressed as mean of the ratio 
CXCL2/18s-rRNA ± SEM.  
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Albumin, a major blood protein, is retained in the blood because it does not cross the glomerular filter 

into the kidney. The fraction that is filtered is reabsorbed by proximal tubule cells, which efficiently 

removes albumin from the filtrate. In many renal diseases, injury to the glomerulus breaks down the 

barrier function of the glomerulus, leading to excess filtration of albumin, which is a well known 

marker for renal disease with a direct correlation between albuminuria and the progression of chronic 

kidney disease to end-stage renal disease. Exposure to high concentrations of albumin leads to tubular 

interstitial disease, possibly by inducing apoptosis. The renal tubular epithelial cells were cultured in 

the presence of the albumin and CXCL2 was again used as a read out of inflammatory responses. The 

level of CXCL2 expression was equal in both wild type and Sigirr-deficient tubular epithelial cells 

exposed to albumin (Figure 30, middle).  

Wild-type cells and Sigirr knock-out renal tubular epithelial cells were also grown under conditions 

of high-temperature stress. During the first hour of exposing the cells to heat stress, the cells usually 

produce heat shock proteins. However, longer heat shock conditions leads to the shift to the normal 

pattern of protein synthesis. To test if the SIGIRR is responsible for the stabilization of the cells 

exposed to the temperature stress the tubular epithelial cells which normally grow at 37ºC, were 

maintained at a temperature of 42ºC (constantly or for the short 1-hour-long period of time). The 

effect of continuous heat stress on cell growth was analyzed as were the modifications occurring with 

protein synthesis, cell growth and cell apoptosis during both long- and short-term heat stresses 

(Figure 30; data not shown). 

The reaction on all tested stress conditions seems to be SIGIRR independent. Investigation of the 

tubular epithelial cells apoptosis and necrosis during same stress conditions revealed similar results 

(data not shown).  
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3.5.4. SIGIRR is not a cell-cell contact molecule: 

Next we investigated a possible role of SIGIRR as a cell adhesion or contact molecule. Cell Adhesion 

Molecules (CAMs) are proteins located on the cell surface responsible for the binding with other cells 

or with the extracellular matrix (ECM) during cell adhesion. These proteins are like SIGIRR, 

transmembrane receptors. Many of the cell adhesions molecules are highly glycosylated. Some of 

them, like immunoglobulin-superfamily CAMs (NCAMs Neural Cell Adhesion Molecules, 

Intercellular adhesion molecules - ICAMs, VCAM-1 Vascular Cell Adhesion Molecule, PECAM-1 

Platelet-endothelial Cell Adhesion Molecule, L1 and CHL1) contain also the immunoglobulin 

domains.  

 

Figure 31. Staining of microfilaments in tubular epithelial cells. Tubular epithelial cells were 
prepared from 6 week-old Sigirr-deficient or wild-type mice as indicated. Cells were cultured under 
normal conditions on the glass plates coated with collagen IV. Staining of microfilaments was 
performed with FITC-phalloidin. Every result consists of three photos representing the typical forms 
of tubular epithelial cells found in the culture. 
 

 

Cell adhesion proteins hold together the components of solid tissues and are important for the 

function of migratory cells like white blood cells. Regulation of cell adhesion proteins is important 

during embryonic development for the process of morphogenesis. Cell adhesion proteins are also 

important for interactions that allow viruses and bacteria to enter or damage the cells. The cellular 

structures such as the cell cytoskeleton are together with the cell membrane responsible for the 

structural integrity of the cell. Since no differences between Sigirr-/- and Sigirr+/+  renal tubular 
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epithelial cells were observed as it comes to cell proliferation and cell survival, the structure of the 

cytoskeleton and the cell shape were analyzed. The cells were grown on the collagen or on matrigel 

in the complete medium. After 10 days the cells with the 70% of confluence were stained with 

phalloidin to stain the cytoskeleton. It is often impossible to distinguish any interior detail with 

conventional microscopy so the stained cells were also carefully studied under the fluorescent or the 

confocal microscope. No differences in the structure between Sigirr+/+  and Sigirr-/- tubular 

epithelial cells were observed (Figure 31). Both cell populations formed identical cell formation and 

the contacts between the cells were not affected.  

 

 

3.6. THE ROLE OF SIGIRR IN SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) 

 

3.6.1. Characterization of C57BL/6 lpr/lpr mice 

Although TLRs are crucial in the activation of the antimicrobial immune response they can also 

recognize self-antigens released from stressed or damaged host cells, and such self-recognition may 

lead to development of autoimmune disease (Anders 2007, Viorritto 2007). Because SIGIRR seems 

to be a negative regulator for many TLRs it may have a function also in development of 

autoimmunity (Wald 2004, Garlanda 2003). SLE is a chronic autoimmune condition with a wide 

spectrum of clinical manifestations, characterized by the production of auto-antibodies to components 

of the cell nucleus. Lupus nephritis, a form of immune-complex glomerulonephritis is one of the 

disease manifestations of SLE.  

To investigate the role of SIGIRR in SLE we used a C57BL/6 lpr/lpr mouse model. It has been 

demonstrated that the lpr gene codes for a mutant Fas/CD95/Apo-1, that leads to abnormal 

transcription and greatly reduced expression of the Fas/CD95/Apo-1 receptor, which is expressed on 

variety of hematopoietic cells (T cells, B cells, monocytes, and granulocytes). It is responsible for 

regulation of apoptosis of these cells during the immune response. The lpr mice suffer from 

anomalies of the B-cell compartment, concerning both early and late differentiation stages. C57BL/6 

lpr/lpr  mice are a model for human lupus nephritis because renal disease in these mice develops 
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secondary to dsDNA autoantibody production and renal immune complex deposition. However, these 

changes appear relatively late, not like in case of other mice disease model MRL lpr/lpr  mice where, 

in female the serum levels of double-stranded DNA (dsDNA) antibodies progressively increased 

from 8 weeks of age. Increasing levels of serum dsDNA autoantibodies are associated with immune 

complex deposits in glomeruli. In C57BL/6 lpr/lpr  mice abnormalities of immune system develop 

around 24th week of age. Homozygotes mice for the lpr gene develop an age-dependent lupus-like 

autoimmune disease and a severe lymphadenopathy and splenomegaly.  

 

Mice were breed under sterile conditions (see material and methods) and the visible symptoms of the 

disease were carefully investigated. The first notes about the increased lymph nodes in C57BL/6 

lpr/lpr  mice were made after 16 weeks of their life, however these first changes appeared so early 

only in around 20 % of C57BL/6 lpr/lpr  mice. Also the typical visual features like the butterfly 

rashes were observed first after 32 weeks (Figure 32). After 32 and later after 48 weeks the lymph 

nodes (weight 1.1 g ± 0.3) of the C57BL/6 lpr/lpr  mice were significantly increased. Also the spleens 

were around 2-3 times increased as compared to the 16 weeks old C57BL/6 lpr/lpr  mice. The average 

weight of spleens from the 48 weeks old female C57BL/6 lpr/lpr  mice was approximately 0.23 g ± 

0.4, whereas weight of spleens from the 16 weeks old female from the same background was 0.11 g ± 

0.2. At the 48th week of life mice lost around 30% of the hair (mostly the front side, figure 32), 

however despite of all these symptoms they were still active.  
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Figure 32. C57BL/6 lpr/lpr mice morphology: mice were kept under the sterile conditions. The 
documentation was made every month. First visible syndromes of the SLE were detectable after 16 
weeks (only small changes in around 20% of the mice). Later (32, 48 weeks) mice develop 
lymphadenopaty and severe skin lesions.  
 

 

The antibodies and levels of proinflammatory cytokine in serum as well as the albumin level in the 

urine were monitored every 30 days.   

Serum levels of IL-12 in C57BL/6 lpr/lpr  mice were determined by ELISA. We observed that 

C57BL/6 lpr/lpr  mice did not increase dsDNA-specific antibodies production over a period of 360 

days. By contrast, the age-dependent increase in the proinflammatory cytokine IL-12 level was 

observed (Figure 33). Also the level of IgG in the serum did not increase (data not shown). 

Importantly, in spite of lack of increased level of autoantibodies these mice developed clinical 

features of systemic inflammatory disease. 
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Figure 33. Serum and proinflammatory cytokines analysis from C57BL/6 lpr/lpr mice: Mice 
were bled every month and the serum samples were analysed for IL-12 or anti dsDNA IgGs. . Data 
represent means ± SEM from 6 independent mouse sera.   
 

 

To determine whether in the C57BL/6 background the lpr/lpr mutation influences the progression of 

renal disease, we quantified protein excretion in the urine that was collected over one year, every 30 

days. At 1 to 4 months of age, the protein levels in C57BL/6 lpr/lpr  mice were low, but as the mice 

aged, proteinuria, as measured by albumin ELISA in the urine, began to increase. By 5 month of age 

all animals had slightly increased urinary protein concentrations of 5 to 7 µg/ml (Figure 34). The 

albumin values measured by ELISA are however too low to speculate about kidney damage. This fact 

can support the already published observation that lupus nephritis is a very complex disease and it 

does not develop in every genetic background in mice. 

 

 

Figure 34. Proteinuria in C57BL/6 lpr/lpr mice: Urine was collected every month from C57BL/6 
lpr/lpr  mice (n = 6). Urinary protein, albumin levels were measured by ELISA. Data represent means 
± SEM from 6 independent mouse urine samples.   
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3.6.2. SIGIRR affects immune complex-dependent DCs activation 

Infections are known to induce disease flares in individuals with autoimmune pre-disposition. Hence 

a role for SIGIRR, leading to aggravation of lupus nephrits was hypothesized.  

Viral dsRNA, bacterial DNA and components of bacterial cell wall are known to activate DCs to 

secrete cytokines which are associated with the disease activity in SLE.  Because SIGIRR is 

expressed by murine plasmacytoid and myeloid DCs, we hypothesized that the lack of this receptor 

could influence the function of DC subsets in autoimmune disease.  In order to determine the 

pathogenic role of SIGIRR in lupus, C57BL/6 lpr/lpr  mice were crossed with C57BL/6 SIGIRR-/- 

mice. The mice in the C57BL/6 genetic background were used for these experiments. Because a 

major functional consequence of pDC activation by TLRs is the secretion of proinflammatory 

cytokines, we determined their concentration in vitro as well as in vivo, in serum of C57BL/6 lpr/lpr  

or C57BL/6 lpr/lpr  SIGIRR-/- mice.  

DNA-containing immune complexes (ICs) have been shown to activate TLR9, the receptor for 

bacterial CpG DNA, in B lymphocytes and DCs (Leadbetter 2002, Boule 2004, Means 2005). Also 

ICs containing small nuclear ribonucleoproteins snRNP, a second major autoantigen in SLE, 

stimulate dendritic cells, leading to the production of proinflammatory cytokines. U1snRNP 

complexes (U1snRNA within U1snRNP) recognition is dependent mostly but not exclusively on 

TLR7 but independent of TLR3 (Savarese 2006).  

We used snRNPs (specifically U1snRNPs) complex to investigate the role of SIGIRR in the DCs 

activation during SLE. SnRNP are the major SLE autoantigens in addition to dsDNA. Bone marrow 

dendritic cells were isolated from C57BL/6 lpr/lpr  or C57BL/6 lpr/lpr Sigirr-/-  mice; incubated with 

different TLR ligands or medium for 24 h. DCs were incubated with purified U1snRNP complexed 

with cationic liposomes or with control stimuli poly-U ssRNA/DOTAP (as TLR7 ligand), poly-I:C 

dsRNA/DOTAP (as ligand for TLR3 and other dsRNA recognition receptors), LPS (as TLR4 ligand) 

and CpG 2216 oligonucleotide (as TLR9 ligand). Bone marrow dendritic cells showed an increase in 

IL-12p40 and IL-6 release after exposure to all tested stimuli, namely LPS, CpG, pI:C RNA, polyU 

RNA, imiquimod, Y12-U1snRNP and U1snRNP complex. These data indicate that all stimuli used 
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induce the production of proinflammatory mediators, suggesting that infections that can lead to 

immune activation and cytokine release may associate with disease flares during ongoing lupus. 

Surprisingly, in case of stimulation with LPS, CpG, pI:C RNA, polyU RNA and imiquimod no 

differences in cytokines production between dendritic cells from C57BL/6 lpr/lpr Sigirr+/+  and 

C57BL/6 lpr/lpr Sigirr-/-   mice were observed (Figure 35 and 36). SIGIRR seems to have no effect 

on the IL-6 and IL-12 production after stimulation with mentioned ligands in the C57BL/6 lpr/lpr  

mice. In dendritic cells from mice of this background the function of SIGIRR as a negative regulator 

of TLR signaling is questionable from our observations. The lpr mutation seems to have an effect 

similar to SIGIRR in DCs. The production of proinflammatory cytokines is increased (compare with 

the Figure 21, Flt3L-DCs). However SIGIRR does not have the expected, additive effect on cytokine 

production (Figure 35 and 36). 

It is known that CpG DNA can aggravate autoimmune tissue injury locally by activation of tissue 

macrophages (Tsunoda 1999); that genomic DNA released by dying cells can induce APC maturation 

(Ishii 2004) and inhibitors of DNA methylation can induce SLE in humans (Richardson 2003). 

Similar reports were delivered about the viral RNA. SIGIRR does not affect production of cytokines 

in lpr/lpr  mice after stimulation with CpG, polyU, polyIC or imiquimod. Sigirr-deficient BMDC cells 

responded to the polyIC/polyU, LPS, imiquimod and CpG, the ligands for TLR3, TLR4, TLR7 and 

TLR9 respectively to the same extent as Sigirr-sufficient cells. 
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Figure 35. Influence of Sigirr deficiency on DC activation of by TLR4 and TLR9 ligands: DCs 
generated from C57BL/6 lpr/lpr , C57BL/6 lpr/lpr Sigirr+/–  and C57BL/6 lpr/lpr Sigirr–/– mice were 
incubated with the indicated stimuli (ultra pure LPS 1 µg/ml; CpG 2216 0.1 µM or medium alone) for 
24 h. (upper panel) IL-12 and (lower panel) IL-6 were measured in the supernatants by ELISA. Mean 
values and standard deviations are shown (n = 3).  
 

 

 

 

Figure 36. Influence of Sigirr deficiency on DC activation of by TLR3 and TLR7 ligands: DCs 
generated from C57BL/6 lpr/lpr , C57BL/6 lpr/lpr Sigirr+/–  and C57BL/6 lpr/lpr Sigirr–/– mice were 
incubated with the indicated stimuli (10 µg/mL poly-U with 12.5 µg/mL DOTAP; 20 µg/mL poly IC 
with 12.5 µg/mL DOTAP; 10 µg/mL imiquimod with 12.5 µg/mL DOTAP or DOTAP alone) for 24 
h. (upper panel) IL-12 and (lower panel) IL-6 were measured in the supernatants by ELISA. Mean 
values and standard deviations are shown (n = 3).  
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BMDCs produced cytokines in response to ICs namely Y12-antibody-U1snRNP or U1snRNP, 

whereas the Y12 antibodies or U1 alone consistently elicited a weak but detectable response, similar 

to the medium control. This response depended most likely on IC formation, as Y12-U1snRNP and 

U1snRNP show some differences in the ability to stimulate the cytokines release. As one can see on 

both figures, also the single allele deletion (Sigirr+/-) is able to affect the IL-6 and IL-12 production.  

The role of SIGIRR for recognition of U1snRNP was investigated by comparing cytokine production 

of DCs derived from bone marrow cells of C57BL/6 lpr/lpr,  C57BL/6 lpr/lpr Sigirr+/–  or C57BL/6 

lpr/lpr Sigirr–/– mice in response to U1snRNP/DOTAP and U1snRNP/Y12 antibody IC. 

 

 

 

Figure 37. Influence of Sigirr-deficiency on DC activation of by U1snRNP: DCs generated from 
C57BL/6 lpr/lpr , C57BL/6 lpr/lpr Sigirr+/–  and C57BL/6 lpr/lpr Sigirr–/– mice were incubated with 
the indicated stimuli (10 µg/mL U1snRNP with 12.5 µg/mL DOTAP or 20 µg/mL U1snRNP with 50 
µg/mL Y12-antibody) for 24 h. Columns 2 and 4 represent the negative controls (U1, Y12 or dotap). 
(left) IL-12 (right) IL-6 cytokine levels were measured in the supernatants by ELISA. Mean values 
and standard deviations are shown (n = 3).  
 

 

These data suggest that TLR2, 3, 4, 7 and 9 agonists induce the production of IL-12p40 and IL-6 in 

both dendritic cells isolated from C57BL/6 lpr/lpr  or C57BL/6 lpr/lpr Sigirr-deficient mice and that 

SIGIRR affect only signalling initiated by Y12-U1snRNP and U1snRNP. 

We showed that U1snRNP complexed with cationic lipid or anti-Sm autoantibody induced 

inflammatory cytokine responses in murine bone marrow derived DCs. IL-12 and IL-6 induction by 

U1snRNP required an intracellular delivery because U1snRNP alone had very low 
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immunostimulatory activity (data not shown). The complexation with cationic liposomes could be 

replaced by the formation of ICs with purified anti-Sm monoclonal antibody Y12, which are 

internalized by DCs through Fc receptors. Cytokine responses were observed after stimulation with 

Y12-U1snRNP complex but not with Y12 antibody alone (Figure 37). U1snRNP was only active 

when it was internalized into the endosomal compartment, as has been shown for human SLE ICs 

containing DNA (Bave 2003, Means 2005). The lpr/lpr  dendritic cells which were deficient for Sigirr 

showed an enhanced induction of IC-induced proinflammatory cytokines levels compared to lpr/lpr  

dendritic cells. The cells heterogeneous for Sigirr showed only minor but still significant effect 

(Figure 37). Thus, SIGIRR has a negative effect on the IC-induced cytokine production in murine 

dendritic cells.   

 

 

3.6.3. SIGIRR negatively regulates serum cytokines and serum anti dsDNA IgGs in C57BL/6 

lpr/lpr mice 

Thus, having demonstrated the effect of SIGIRR on IL-6 and IL-12p40 secretion in antigen-

presenting cell subsets that were isolated from C57BL/6 lpr/lpr  or C57BL/6 lpr/lpr Sigirr-/-  mice in 

vitro, we next studied anti dsDNA IgGs serum level changes in C57BL/6 lpr/lpr  Sigirr+/+  or 

C57BL/6 lpr/lpr  Sigirr-/- mice. Serum was collected from both autoimmune C57BL/6 lpr/lpr  mice 

and C57BL/6 lpr/lpr mice deficient in the expression of Sigirr and the IgG level was determined by 

ELISA. Sera from all the C57BL/6 lpr/lpr or C57BL/6 lpr/lpr Sigirr-defficient offspring contained 

anti-dsDNA antibodies and IL-12. However the C57BL/6 lpr/lpr Sigirr-/-  mice had significantly 

increased serum levels of both IL-12p40 and antibodies as compared with C57BL/6 lpr/lpr Sigirr 

+/+  mice (Figure 38). It is therefore likely that SIGIRR is involved in both the in vivo production of 

auto-antibodies, as well as the subsequent IC-stimulation of B cells. 
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Figure 38. IL-12 and IgG serum levels of C57BL/6 lpr/lpr Sigirr -/- mice: Serum IL-12p40 and 
dsDNA IgG autoantibody levels in C57BL/6 lpr/lpr  (n=6) and C57BL/6 lpr/lpr Sigirr-/- (n=6) mice 
were determined by ELISA. Serum was obtained every 30 days. Data represents means ± SEM. 
 

 

From the above results, one would predict that lack of SIGIRR would be associated with more severe 

autoimmune tissue injury in C57BL/6 lpr/lpr  mice. In vivo, C57BL/6 lpr/lpr Sigirr-/-  mice have 

increased serum IL-12p40 as well as anti DNA IgGs levels. Lack of SIGIRR aggravates SLE in 

C57BL/6 lpr/lpr  mice. C57BL/6 lpr/lpr Sigirr-/-  sera had increased concentrations of every IgG 

isotype, but the most prominent increases were in IgG1, IgG2b and IgG3 (Figure 39). The isotypes 

affected by the absence of SIGIRR are the immunoglobulin isotypes often associated with 

inflammation and autoimmunity (Nimmerjahn and Ravetch, 2005). IgG3 has been reported to play a 

central role in the development of nephritis in MRL/Mp lpr/lpr  mice (Takahashi et al., 1991). Taken 

together, these data indicate that the genetic absence of SIGIRR led to increased disease activity and 

global immune activation in C57BL/6 lpr/lpr Sigirr-/-  mice. 

 

 



 

 

90

 

Figure 39. IgGs isotypes analysis of C57BL/6 lpr/lpr Sigirr-/- mice: Serum anti dsDNA 
autoantibody isotypes IgG1, IgG2a, IgG2b, IgG3 levels in C57BL/6 lpr/lpr  (n=6) and C57BL/6 
lpr/lpr  Sigirr-/- (n=6) mice were determined by ELISA. Serum was obtained every 30 days. Data 
represents means ± SEM. 
 
 

 

3.6.4. Further abnormalities in C57BL/6 lpr/lpr Sigirr-/- mice 

Aggravation of renal disease is usually demonstrated by an increase in proteinuria. We did not 

observed increased urine albumin concentration in C57BL/6 lpr/lpr Sigirr-deficient mice as 

compared with the C57BL/6 lpr/lpr  mice up to the age of 18 weeks. By 18 wk of age in the control 

mice as well as in the lpr/lpr Sigirr-/-  mice, all investigated animals had urinary protein 

concentrations of around 4 µg/ml (Figure 40). These results were confirmed by ELISA analysis of 

urinary albumin. Thus, both tested group of mice did not developed proteinuria at age of 120 days. It 

is however not clear if this trend is going to be stable or if the C57BL/6 lpr/lpr Sigirr-deficient mice 

do develop the proteinurie later. Further experiments are necessary to answer this question. 
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Figure 40. Proteinuria in C57BL/6 lpr/lpr Sigirr-/- mice: Urine from C57BL/6 lpr/lpr  (n = 6) and 
C57BL/6 lpr/lpr Sigirr-/-  mice (n = 6) was collected every month. Urinary protein levels were 
measured by albumin ELISA. Data represent means ± SEM from 6 independent mouse urine 
samples.   
 

 

C57BL/6 lpr/lpr Sigirr-/-  mice had normal appearance, growth, size and fertility. However they 

showed increased and progressive skin lesions, lymphadenopathy and mortality. 

Having observed the clear effects of Sigirr deficiency on autoantibody production and DC activation, 

we then determined whether the absence of this receptor had a significant impact on the manifestation 

of clinical autoimmune disease. We found that C57BL/6 lpr/lpr Sigirr-deficient mice had a 

significant increase in the incidence and severity of autoimmune skin disease compared to wild-type 

littermates. Concordant with this were increased lymphadenopathy and splenomegaly in C57BL/6 

lpr/lpr Sigirr-deficient mice (Figure 41). Increased spleen and lymph node weight in C57BL/6 lpr/lpr 

Sigirr-deficient mice is due to accumulation of lymphocytes in these organs. However, we do not 

have enough data to perform good statistical analysis of these phenomena yet. The investigation of 

the new cohort is needed to answer precisely all the interesting problems. 
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Figure 41. C57BL/6 lpr/lpr Sigirr-/- mice morphology: mice were kept under the sterile conditions. 
The documentation was made every month. First visible syndromes of the SLE were detectable after 
12 weeks. In the age of 16 weeks mice have already severe lymphadenopathy and they start loosing 
the hair.  
 

 

The typical visible abnormalities associated with the disease appear first after 16 - 24 weeks in 

C57BL/6 lpr/lpr  mice, whereas C57BL/6 lpr/lpr Sigirr-deficient mice develop the skin lesions and 

lymphomegaly after 12 weeks of life (Figure 41). In addition, there was very little skin disease in 

C57BL/6 lpr/lpr  mice at 16 weeks of age, whereas skin disease was evident in C57BL/6 lpr/lpr 

Sigirr-deficient mice (observed however only in around 20% of investigated mice). The development 

of these changes seems to be much faster in the C57BL/6 lpr/lpr Sigirr-deficient mice. 

 

Although we observed an increase in nearly every marker of disease severity in autoimmune 

C57BL/6 lpr/lpr Sigirr-deficient mice, it remained unclear whether these disease markers truly 

affected mortality. We therefore allowed C57BL/6 lpr/lpr  and C57BL/6 lpr/lpr Sigirr-deficient mice 

littermates to develop spontaneous disease, and we monitored them without intervention until the 

time of death. We found that C57BL/6 lpr/ Sigirr-deficient mice had accelerated mortality relative to 

lpr/lpr  controls (Figure 42). All 20 mice in C57BL/6 lpr/lpr  group survived up to 12 weeks of age 
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and only 15 mice in C57BL/6 lpr/lpr Sigirr-deficient group survived to 12 weeks of age; a formal 

analysis in a new cohort is ongoing.  

 

 

 

Figure 42. Kaplan-Meier curves: Survival of C57BL/6 lpr/lpr  and C57BL/6 lpr/lpr Sigirr-/-  mice 
was compared. All studied mice were kept sterile. Lpr/lpr Sigirr-deficient mice showed diminished 
survival than the control mice group. 
 

 

We showed that C57BL/6 lpr/lpr  mice lacking SIGIRR developed more severe clinical disease and 

show that it leads to early mortality.  

Our experiments with C57BL/6 lpr/lpr  mice followed the observation which we made with the Sigirr 

deficiency in the MRL lpr/lpr  background. We were able to generate only the MRL lpr/lpr Sigirr+/-  

mice. They initially appeared healthy, and daily observation did not reveal any behavioral 

abnormalities. However, after reaching 10 weeks of age, there was a marked increase in the mortality 

rate of MRL lpr/lpr Sigirr+/-  mice. We were not able to generate the SIGIRR-deficient lpr/lpr  mice 

in the MRL background. Thus, the heterozygote of Sigirr was sufficient for the 100 % mortality in 

the MRL lpr/lpr  background. This fact is clear evidence for the function of SIGIRR in the 

development of the autoimmune disease. 





 

 

95

4. DISCUSSION 

 

4.1. FUNCTION OF SIGIRR IN THE KIDNEY 

 

SIGIRR is an orphan receptor of the IL-1R/Toll-like receptor family with regulatory functions on 

TLR signalling and is expressed at high levels in the human and murine kidney. The TLR/IL-1R 

superfamily has a central role for initiating innate antimicrobial immunity and, hence, may contribute 

to renal pathology in infective pyelonephritis (Akira 2006, Anders 2004). Under normal conditions, 

the kidney maintains a sterile environment, but renal tubular epithelial cells express TLR1-4 and -11 

and can produce proinflammatory cytokines and chemokines in response to respective TLR ligands 

(Tsuboi 2002, Zhang 2004, Hung 2006, Yang 2006). Moreover, TLR4 and TLR11 mediate renal 

chemokine production and subsequent neutrophil recruitment during ascending urinary tract infection 

with uropathogenic Escherichia coli (Zhang 2004, Patole 2005). Furthermore, renal dendritic cells 

contribute to innate immunity in the kidney as they are activated via TLRs either by pathogens 

directly or by endogenous molecules such as Tamm-Horsfall protein (Saemann 2005). We 

hypothesized that SIGIRR may control inappropriate TLR signaling in the kidney, and if so, that 

SIGIRR on renal myeloid cells and non-immune intrinsic renal cells would contribute to this 

phenomenon. This study confirmed only the first part of this hypothesis, but data presented here do 

not support the latter. SIGIRR has cell type-specific functions and is regulated differently in tubular 

epithelial cells.  

 

SIGIRR mRNA was previously shown to be expressed in most murine and human organs with a 

preference to epithelial tissues, i.e. kidney, lung, gut, and cornea (Polentarutti 2003, Wald 2003, 

Garlanda 2004, and Huang 2006). The data presented here show that SIGIRR mRNA and protein are 

expressed at high levels in kidneys of 6 week old mice. Interestingly, renal SIGIRR mRNA levels 

were much lower in newborn mice and also decline with aging. This represents a new finding, as high 

renal SIGIRR levels reported in previous studies referred to the analysis of 8-10 week old mice 
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(Polentarutti 2003). An age-dependent expression of SIGIRR was also found for other solid organs, i. 

e. spleen, liver, lung, and skin. The reason for age dependent SIGIRR expression remains elusive, but 

a decline in TLR expression and function with aging has also been reported (Renshaw 2002). 

Reduced expression and function of TLRs with aging thus impacts both the quality and magnitude of 

host innate and adaptive immune responses to bacterial and fungal infections by the altered 

inflammatory and priming environment. It is possible that SIGIRR as a putative regulator of TLRs 

signaling is being down regulated together with the TLR receptors. 

In these studies we showed that Sigirr expression is also strain dependent and sex dependent. 

C57BL/6 male mice expressed SIGIRR most. The differences in Sigirr expression in C3H/HeNCrl, 

BALB/c and C57BL/6 mice may be also due to the differences in the TLR expression profile (data 

not shown; Liu 2002). It is not surprising that we observed striking differences in the Sigirr 

expression level between different mouse strains and different gender. Difference in gene expression 

may involve many factors. Gender differences clearly affect the immune system, and female are more 

likely than male (also by humans) to develop autoimmune diseases like diabetes, lupus, and 

rheumatoid arthritis. 

SIGIRR protein localized to tubular epithelial cells on immunostaining which is consistent with the 

recent description of Sigirr mRNA in these cells evidenced by in situ hybridization (Polentarutti 

2003), by quantitative real-time RT-PCR, and flow cytometry from tubular epithelial cells prepared 

from mouse kidneys. Both flow cytometry and cellular SIGIRR staining localized SIGIRR protein to 

the outer cell membrane, but not in the cytoplasm of tubular epithelial cells. Immunostaining of the 

renal slices did not reveal significant SIGIRR expression in other intrinsic renal cell types, including 

vascular endothelial cells, mesangial cells or glomerular visceral epithelial cells, i.e. podocytes. Thus, 

renal SIGIRR expression originates from tubular epithelial cells. Futhermore SIGIRR staining was 

found in all segments of the nephron which harbour tubular epithelial cells of different phenotypes 

and functions. In fact, comparable Sigirr mRNA expression levels were found in renal cortex and 

medulla. We conclude that adult mice express high levels of SIGIRR in the kidney and that the 

SIGIRR expression originates from tubular epithelial cells. However, our later observations revealed 

that SIGIRR is also strongly expressed in the intrarenal myeloid cells, which form a kind of network 
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in the kidney.  The results presented here show that SIGIRR has a unique pattern of expression that 

includes tubular epithelial cells, monocytes and intrarenal myeloid cells but not mesangial cells. The 

finding that intrarenal myeloid cells have such high Sigirr transcript level was unexpected. The 

expression of SIGIRR in antigen presenting cells is consistent with the view that this molecule has a 

regulatory role in kidney. SIGIRR was shown in these studies as a negative regulator of LPS 

signalling in the heterogeneous kidney cell suspension/kidney slices. 

 

This study clearly demonstrates that SIGIRR suppresses renal CCL2 production upon exposure to 

LPS. This is consistent with the exacerbation of various other inflammatory disease models that have 

been induced in Sigirr-deficient mice, e.g. endotoxic shock (Wald 2003), dextran-induced colitis 

(Garlanda 2004), and Pseusomonas aeruginosa keratitis (Huang 2006). Recognition of LPS in the 

kidney may involve various cell types which can broadly be classified into renal immune cells and 

non-immune cells. Intrarenal immune cells are mainly resident antigen-presenting cells which 

originate from the bone marrow and that form a dense network in the interstitial space that grid the 

tubular compartment in the healthy kidney (Kruger 2004, Soos 2006). Consistent with the previous 

description of SIGIRR`s function in dendritic cells and monocytes (Polentarutti 2003; Wald 2003) we 

found that SIGIRR suppresses TLR 2, -3, -4, -7 and -9 signaling in intrarenal antigen presenting cells 

as shown by production of proinflammatory cytokines. The inhibitory effect of SIGIRR on TLR 

signaling is mediated by its intracellular TIR domain, which does not retain two amino acids (Ser447 

and Tyr536) in the highly conserved TIR domain (Thomassen 1999, Qin 2005).  

 

We tested different immune cells and their response to TLR ligands. We conclude that SIGIRR is 

able to inhibit the TLR -2, -3, -4 and -9 signaling in monocytes (CCL2 production; CXCL2 data not 

shown). Similar results we obtained during testing the different kind of bone marrow dendritic cells 

(cultured with GM-CSF or FLT3L) and their responses to LPS and other TLR ligands.  

Data presented here confirm the inhibitory effect of SIGIRR on TLR signaling in immune/antigen 

presenting cells because ligands for TLR1/2, -3, -4, -7 and -9 induced much higher levels of 
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proinflammatory cytokines production (IL-6, IL-12 or CCL2) by Sigirr-deficient antigen presenting 

cells as compared to cells prepared from wild-type mice. However, the response of FLT3L-DCs was 

weaker than in the case of GM-CSF-DCs or intrarenal myeloid cells. Furthermore in case of FLT3L-

DCs we did not observed much difference between Sigirr deficient and wild type cells in CCL2 

production. Moreover, the CCL2 production of GM-CSF-DCs and intrarenal myeloid cells showed 

striking differences between Sigirr-/- and Sigirr+/+  genotypes so that the stimulation with the ligands 

did not really affected the level of produced CCL2. Thus SIGIRR down-regulate the IL-6 and IL-12 

production after stimulation with TLR ligands in immune cells. Moreover, the lack of SIGIRR results 

in the constant inflammatory state caused by the CCL2 production.  It was already reported that a 

balance of IL-12 and MCP-1/CCL2 produced by DC is crucial in determining the fate of immune 

responses. MCP1 tends to develope Th2 responses, whereas IL-12 tends to induce Th1 responses. 

Whether the Sigirr-deficient mice have constantly elevated Th2 responses remains to be elucidated. 

This modulatory effect on TLR signaling was not observed in primary tubular epithelial cells. In fact, 

the ligands for TLR1/2, -3, and -4 induced similar amounts of CCL2 in Sigirr-deficient or wild-type 

tubular epithelial cells. As tubular epithelial cells do not express TLR9, CpG-DNA did not induce 

CCL2 production (Tsuboi 2002). 

In addition, TLR signaling may be regulated through TLR expression (Liew 2005), which is likely to 

be SIGIRR-dependent. We demonstrated that the expression levels of mRNAs for almost all TLRs 

were higher in bone marrow derived DC, spleen monocytes and renal myeloid cells from Sigirr-/- 

mice than in those from C57BL/6 wild type mice. However, the differences between Tlr 2, 3 and 4 

mRNA levels were not significant in case of monocytes, which expressed low level of these 

receptors. In fact, Sigirr-deficient spleen monocytes expressed increased levels of Tlr1, -5, -6, -7, -9, 

and -11 which may contribute to the enhanced TLR signaling observed in these cells. However, 

ligation of TLR2, -3, and -4 did also show increased CCL2 production in Sigirr-deficient monocytes 

despite identical Tlr expression levels as compared to wild-type monocytes. The bone marrow 

derived DCs cultured with FLT3L expressed lower Tlrs mRNA levels than the same cells cultured 

with GM-CSF or the intrarenal myeloid cells. This can be explained by the lower maturation stage of 

these cells. Intrarenal myeloid cells expressed very high mRNA levels of all Tlrs (except Tlr5 and 
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Tlr11). Like already mentioned above, we observed even more elevated Tlrs mRNA levels in the 

Sigirr knock-out mice. Thus SIGIRR is a negative regulator of TLRs expression in the immune cells. 

SIGIRR suppresses expression of a subset of TLRs in immune cells and this suppression is cell type-

specific because it was not found in renal tubular epithelial cells. Thus, in the kidney the regulatory 

role of SIGIRR on TLR signaling should be restricted to immune/antigen presenting cells. Thus 

SIGIRR regulates negatively the TLR signalling exclusively in immune/antigen presenting cells but 

not in renal tubular epithelial cells (non-immune cells).    

 

In previous studies Wald, et al. reported a similar role for SIGIRR in renal cell suspensions but in 

their study kidney cell suspensions were prepared from Sigirr-deficient mice in a mixed genetic 

background (Wald 2003). Exposure to LPS or CpG-DNA increased NF-κB activation as compared to 

cells prepared from wild-type mice (Wald 2003). Also in vivo systemic endotoxin challenge was 

carried out in both recently reported strains of Sigirr-deficient mice (Wald 2003, Garlanda 2004). 

While Wald et al. observed a reduced threshold to lethal endotoxin challenge, Garlanda, et al could 

not detect a difference in LPS-induced mortality between Sigirr-deficient and wild-type mice 

(Garlanda 2004). However, both studies used Sigirr-deficient mice in a mixed genetic background 

and littermates as wild-type controls. In the present study we applied more stringent preparation 

techniques for primary tubular cells, as we found that kidney cell suspensions prepared following the 

protocol reported by Wald, et al. are commonly contaminated by myeloid cells, compromising 

conclusions on the role of SIGIRR in tubular epithelial cells. By using the protocol reported by 

Tsuboi, et al. the primary tubular epithelial cell population was >95% (Tsuboi 2002). Furthermore, 

we have now backcrossed Sigirr mutants for 6 generations into the C57BL/6 background and 

prepared cells used in the experiments above from these mice with a predicted >95% identical 

background as compared to wild-type controls (Sigmund 2000). In fact, by using a pure tubular 

epithelial cell population no impact of SIGIRR on TLR signaling could be detected. SIGIRR do not 

influence the TLRs expression level as well as signalling of the TLRs, which suggest no TLR 

regulatory function in tubular epithelial cell populations. Obviously, intrarenal antigen-presenting 

cells and tubular epithelial cells contribute to renal TLR4 signaling. Although SIGIRR is expressed 
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by both cell types, SIGIRR suppresses TLR signaling only in intrarenal antigen-presenting cells and 

not in tubular epithelial cells. While reducing TLR signaling in renal antigen-presenting cells may 

avoid inappropriate immunity-related tissue injury, an unrestricted activation of tubular cells may 

support the induction of necessary epithelial stress response elements to cope with microbial 

infection.  

 

During differentiation, DC up-regulate the expression of MHC class I and class II and costimulatory 

molecules and thus increase their efficiency as APC (Banchereau 2000, Langenkamp 2000, Liu 2001, 

Mellman 2001, Reis e Sousa 2001). We found that DCs from Sigirr-/- show weaker take up of 

antigen, which suggests that the Sigirr-/- DCs maturate faster and are rather better at cytokine 

production as at the antigen take up. This would explain the increased cytokine production of Sigirr-

/- DCs after stimulation with TLRs ligands. TLR signalling is important for DC maturation, 

characterized by cytokine production, up-regulation of costimulatory molecules, and an increased 

ability to activate T cells (Kaisho 2001). Thus DCs from Sigirr-/- C57BL/6 mice are more mature 

than those from wild type C57BL/6 mice. Taken together, these results suggest that differences in Tlr 

gene expression levels in DC may reflect differences in the composition of DC subsets at different 

maturation stages in Sigirr-deficient and wild type C57BL/6 mice. However the expression levels of 

TLRs are not known at the protein level. On the other hand reactivities of DC to microbial molecules 

in Sigirr knock-out and wild type C57BL/6 mice may not be explained by differences in TLR 

expression levels alone.  

 

Interestingly, SIGIRR is differentially regulated in antigen presenting and renal tubular epithelial 

cells. LPS challenge suppressed Sigirr mRNA production up to 24 hours in tubular epithelial cells 

which is consistent with downmodulation of renal Sigirr mRNA after intravenous injection of 1 µg 

LPS in mice (Polentarutti 2003, Wald 2003). By contrast, both LPS and TNF/IFN-γ have opposite 

effects on Sigirr mRNA expression in spleen monocytes, a finding consistent with the recent 

observation of Tir8/Sigirr expression in monocytes of patients with sepsis (Adib-Conquy 2006).  The 
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same cell type-specific response was observed when monocytes and tubular epithelial cells were 

stimulated with TNF/IFN-γ in a dose dependent manner. Thus, proinflammatory stimuli, i.e. LPS and 

TNF/IFN-γ, have opposite effects on Sigirr mRNA expression in spleen monocytes and tubular 

epithelial cells. Based on our finding that SIGIRR regulates TLR expression in monocytes we 

questioned whether TLRs regulate SIGIRR expression. In fact, Sigirr mRNA levels were elevated in 

spleen monocytes and tubular epithelial cells prepared from Tlr4-deficient mice of the same genetic 

background. This indicates that TLR4 signaling suppresses SIGIRR expression in both antigen 

presenting and tubular epithelial cell types. Lack of Tlr2 and Tlr3 suppressed Sigirr mRNA in tubular 

epithelial cells but not in spleen monocytes. Obviously, TLRs selectively regulate Sigirr expression 

in a cell type-specific manner. Appearantly, SIGIRR expression is regulated by multiple factors, i.e. 

proinflammatory factors, TLR signaling, and age.   

 

Why is SIGIRR expressed in the tubular epithelial cells? Is there a mechanism that is able to switch 

off SIGIRR function in these cells? What are the factors that control the cell type-specific functions 

of SIGIRR? Alternative splicing is common for the members of the IL-1R/TLR superfamily and their 

signaling molecules (Schnare 2001, Wells 2006, Bergers 1994, Rossler 1995). For example, the 

T1/ST2 gene encodes two splice variants (Lohning 1998). The transmembrane ST2L that has 

inhibitory effects on TLR signaling similar to SIGIRR and the soluble ST2, a truncated ST2 protein 

lacking the intracellular TIR domain is required for signaling (Lohning 1998). Because ST2L is 

selectively expressed by immune cells and soluble ST2 selectively by non-immune cells (Rossler 

1993), we hypothesized that the same could be true for SIGIRR. Therefore, we intended to test 

whether tubular cells express a splice variant of Sigirr that lacks the intracellular TIR domain. By 

using PCR primers for the extracellular and intracellular domain as well as Northern blotting we 

essentially excluded alternative splicing of Sigirr. By amino acid alignment and data base search, 

Sigirr was not found to encode any of potential functional domains, such as EGF-like repeats and a 

MAM domain, as well as an RGD integrin binding motif. These structures are commonly found in 

secreted proteins. By Western blotting and immunocytostaining, we found that the SIGIRR protein 

was localized on the cell surface, but not in the culture medium. Thus SIGIRR has no soluble form.  
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Posttranslational modifications such as glycosylation can also alter the function of immune mediators 

(Daniels 2002). Furthermore, N-glycans have been shown to play a general role in protein folding 

and protein sorting in biosynthetic traffic of polarized renal tubular epithelial cells (Scheiffele 1995). 

SIGIRR`s five putative glycosylation sites and its predicted and actual molecular weight indicate 

extensive glycosylation (Thomassen 1999).  We confirmed glycosylation of SIGIRR by PNGaseF 

digestion or inhibition of O-glycosylation and Western blotting. Interestingly, digestion with 

PNGaseF leads to production of 2 additional glycoforms of SIGIRR in the kidney. These results 

suggest that this additional SIGIRR glycoform which is expressed in some renal cells contains N-

glycans (not all N-glycans can be cleaved by the PNGaseF) or O-glycans which cannot be cleaved by 

PNGaseF. The smaller form of SIGIRR found in renal CD11b negative (i.e. mostly tubular epithelial) 

cells is O-glycosylated as shown by benzyl-GalNAc inhibition, but myeloid cell SIGIRR is not. By 

contrast, both the myeloid and non-myeloid cell SIGIRR forms were markedly reduced in size after 

digestion with PNGaseF, which is suggestive of extensive N-glycosylation. Thus, SIGIRR in renal 

tubular epithelial cells is N- and O- glycosylated, whereas SIGIRR in intrarenal CD11b positive 

myeloid cells lacks O-glycosylation which can be inhibited by benzyl-GalNAc. The oligosaccharide 

structures of many glycoproteins play an important role in the folding of proteins and biological 

activities (Rademacher 1988). Since the targeting and activity of many glycoproteins can be affected 

by their glycosylation it would be of great interest to investigate the glycosylation of SIGIRR more 

detailed. Maybe changes in particular sugar residues would affect the function of the SIGIRR in 

tubular epithelial cells and immune cells and help understand the differences in signalling in these 

both cell types. Additional work is needed to address this question. 

In this report we demonstrate that SIGIRR is not only an extensively N glycosylated, but also O-

glycosylated membrane glycoprotein. SIGIRR has not been described before to carry O-glycans. 

There is also number of studies that suggest a link between O-glycosylation and apoptosis (Yin 2003, 

Ren 2004, Zachara 2004). But we did not observe any correlation between the presence of SIGIRR 

and susceptibility to apoptosis or to stress. 
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SIGIRR is characterized by the presence of an Ig-like domain, and this fact may suggest that it 

mediates interactions with other Ig-like adhesion molecules. Because of the fact that SIGIRR is 

highly glycosylated (like many others adhesions molecules) SIGIRR may play a role in establishing 

the contacts between the cells and stabilizing the integrity of tubular epithelial cell populations in the 

in vitro culture. From microscopy and proliferation observations we conclude that SIGIRR does not 

play a role in these processes, but to answer this question precisely additional work on this field 

would be needed.  

 

In the present study, analysis of the response of Sigirr-deficient cells to a variety of stresses 

demonstrated that heat shock, hyperosmotic shock, and increased albumin concentrations are not the 

factors which are affected by the presence/absence of SIGIRR. All three stress sorts are 

physiologically important stress factors in mammalian kidney and they can affect cellular protein 

functions and alter biosynthetic processes.  

 

Both kidney epithelial cells and kidney myeloid cells play an important role in the immunity of the 

urinary tract and both are using pattern recognition receptors (PRR) to initiate the response to 

microbial organisms or injury. Renal tubular cells are also capable to present the antigens, which 

make them perfect initiators and regulators of immune system in the kidney (Kelley 1993). They 

respond to local infection by the release of variety of cytokines and chemokines that affect the 

cellular component of the innate immune response. The maturation and recruitment of renal APCs, 

therefore might depend on the tubular cells.  
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4.2. FUNCTION OF SIGIRR IN SYSTEMIC AUTOIMMUNITY 

 

SLE is an autoimmune disease characterized by spontaneous lymphoproliferation, expansion of 

autoreactive B and T cells, and production of polyclonal autoantibodies against numerous nuclear 

antigens (Kotzin 1996, Lipsky 2001). Disease-related autoantibodies in SLE focus on dsDNA and 

chromatin and RNA-containing Ags such as Smith Ag and RNP or ribosomal components (Egner, 

2000; Muro, 2005). Anti-dsDNA antibodies are thought to play a crucial role in the pathogenesis of 

lupus nephritis and are responsible for the tissue damage (Hahn 1998, Winfield 1977). They are 

found in 70 % of patients with SLE. In many patients with SLE, increased renal disease activity is 

associated with rising titres of anti-DNA antibodies (Bootsma 1995). RNA and RNA/protein 

macromolecules, such as Sm/RNP, constitute a second major category of autoantigen frequently 

targeted in systemic autoimmune diseases such as SLE. Around 30 % of SLE patients have 

circulating anti–Smith (Sm) antibodies recognizing the 7 Sm proteins (B, D1, D2, D3, E, F, G), 

which are common to all small nuclear ribonucleoproteins (snRNPs) and which associate with U 

snRNA (U1, 2, 4, 5). In addition, 40 % of SLE patients have anti-RNP antibodies, which specifically 

bind to the proteins within U1snRNPs (Migliorini 2005). The role for TLRs in stimulating dendritic 

cells (DCs) in autoimmune disease was suggested by the finding that DCs secrete inflammatory 

cytokines via a TLR9- or TLR7-dependent mechanism upon stimulation with nucleic acid-containing 

immune complexes (Boule 2004; Means 2005; Savarese 2006).  

Defects in apoptosis, clearance of immune complexes (ICs), or regulatory cells function may lead to 

uncontrolled activity of self-reactive T- and B-lymphocytes and to the production of tissue-damaging 

autoantibodies and ICs. Autoantibody production, immune complex deposition and local 

inflammatory cytokine and chemokine production by infiltrating immune cells as well as intrinsic 

renal cells cause renal tissue injury in SLE. It has been demonstrated that ICs containing nucleic acids 

can directly activate murine B lymphocytes and DCs, which is contributing to the development of 

SLE (Bave 2000, Lovgren 2004, Leadbetter 2002). 
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In these studies we show that in C57BL/6 lpr/lpr  mice, lymphoproliferation and dsDNA autoantibody 

production progress with age, but the development of the SLE in the C57BL/6 background is very 

slow. We showed that C57BL/6 lpr/lpr mice do not develop proteinuria and kidney damage, which is 

consistent with previous studies (Nagata 1995). An intact FasL/Fas system is required to limit certain 

inflammatory responses, and systemic inflammation, including renal inflammation in C57BL/6 

lpr/lpr  mice (Fleck 1998). The best-studied strains of mice that spontaneously develop a lupus-like 

pathology are the New Zealand Black/New Zealand White hybrid strain (NZB/WF1); the MRL/Mp 

lpr/lpr  strain, which carries the lpr mutation of the FAS receptor gene; and the BXSB strain, which 

carries the Y chromosome autoimmune accelerator (Yaa) gene (Theofilopoulos and Dixon 1985). 

Extensive genetic mapping studies in all three strains have identified multiple strain specific intervals 

associated with disease susceptibility. It is interesting that the progression of SLE in C57BL/6 lpr/lpr  

mice, showed in this study is independent of DNA autoantibody production and proteinuria which 

may relate to the specific genetic background.  

In our studies we used the C57BL/6 background to introduce the additional Sigirr mutation to the 

already preexisting lpr/lpr  mutation. We were forced to use this genetic background because we were 

not able to generate double lpr/lpr Sigirr-/- mutation in MRL mice, which according to our previous 

data, would be more suitable for the lupus nephritis investigation. However, backcrossing to MRL 

background appeared to be very problematic because of the high mortality rate of these mice. We 

concluded that SIGIRR plays an important role in the development of SLE, but were unable to show 

this by histology and serum analysis. The lpr/lpr Sigirr-/-  phenotype was investigated in C57BL/6 

background, which appeared to be less severe in development of autoimmunity.   

 

It is known that viral or bacterial infections can aggravate disease activity in pre-existing SLE, but the 

role of SIGIRR in this context is hypothetical. Nucleic acids have immunomodulatory functions as 

they are recognized by TLRs. TLR3 recognizes double-stranded RNA, TLR7 and TLR8 recognize 

single-stranded RNA, CpG-DNA is a ligand for TLR9, and all of these TLRs are expressed in the 

nephritic kidney. These nucleic acid-specific TLRs are localized within an intracellular compartment 

(Barton 2006). Chloroquine and other inhibitors of endosomal acidification prevent signaling through 
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TLR3, TLR7/8, and TLR9, which argues for endosomal maturation as a critical step in this process 

(Diebold 2004). TLR3 or TLR7 as well as TLR9 signaling can trigger the exacerbation of established 

immune complex disease in MRL lpr mice (Patole 2007, Anders 2004, Pawar 2006). Viral dsRNA 

can aggravate lupus nephritis locally through TLR3 on renal macrophages, dendritic cells, and 

glomerular mesangial cells (Patole 2005). Small nuclear RNA does activate B cells and dendritic 

cells via TLR7 (Savarese 2006). Bacterial CpG-DNA increases production of dsDNA autoantibodies 

and glomerular IgG deposits (Anders 2003).  However all mentioned TLRs use different signalling 

pathways. For example, dsRNA-induced disease activity is independent of B cell activation and 

humoral anti-chromatin immunity in experimental SLE and therefore differs from effects of 

circulating TLR7 ligands and bacterial CpG-DNA (Patole 2007). Moreover, only CpG-DNA, but not 

polyI:C or imiquimod induce lupus nephritis in young MRL lpr/lpr  mice, most likely due to its 

potential to activate B cells to produce autoantibodies and to secrete much higher levels of 

proinflammatory cytokines in immune cells as seen with TLR3 or TLR7 ligands (Pawar 2006). 

Interfering with nucleic acid-specific TLRs may offer a new understanding of the pathogenesis of a 

number of kidney diseases and potentially new targets for therapeutic intervention (Lenert 2005).  

Here we hypothetized that SIGIRR, which is involved in processes of negative regulation of nucleic 

acid-specific TLRs may play a role in regulation of autoimmune tissue injury. In this study we used 

the model of spontaneous lupus-like immune disease in C57BL/6 lpr/lpr  mice to study the effects of 

SIGIRR on SLE development. For the first time, this study provides evidence for SIGIRR, a negative 

regulator of TLRs to regulate proinflammatory cytokine and chemokine production in response to 

immune complexes. 

 

Recently, independent research groups provide evidence that blocking of some TLRs may be a 

crucial approach in developing the therapeutic strategy against SLE. TLR7 overexpression is 

associated with antinuclear autoantibody production and lupus-like disease in mice (Pisitkun 2006, 

Subramanian 2006). Contrarily, Tlr7-deficient MRL lpr/lpr  mice show less lymphoproliferation, less 

activation of plasmacytoid dendritic cells, and less autoimmune lung and kidney injury (Christensen 

2006). Moreover, TLR7 blockade with synthetic oligodeoxynucleotides with immunoregulatory 
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sequences (IRS 661) substantially reduce autoimmune tissue lung and kidney injury (Pawar 2007), 

which is consistent with the phenotype of Tlr7-deficient MRL lpr/lpr  mice (Christensen 2006). IRS 

661 significantly reduced the number of CD4/CD8 double negative T cells in spleen (Pawar 2007), a 

population which continuously expands in MRL lpr/lpr , because of the inability to delete 

autoreactive T cells via the interaction of Fas with the Fas-ligand in these mice (Cohen 1991). TLR7 

is required to generate anti-Sm RNP IgG (Christensen 2006) and serum levels of anti-Sm RNP IgG 

were also reduced with injection of IRS 661 (Pawar 2007). Furthermore, IRS 661 reduces the serum 

levels of anti-dsDNA IgG2a and IgG2b as well as glomerular deposits of IgG2a and complement 

factor C3c. The IRS 661 reduces also the production of CCL2 and CCL5 in kidney and macrophage 

and lymphocyte infiltrates in kidney MRL lpr/lpr  mice (Pawar 2007). The contribution of TLR9 to 

the pathogenesis of lupus must involve different mechanisms; lack of TLR9 is associated with less 

chromatin-specific autoantibodies and with a higher activation state of plasmacytoid dendritic cells 

(Christensen 2006). However, injections with TLR7 plus TLR-9-antagonistic oligodeoxynucleotides 

had similar protective effects on kidney and lung disease in MRL lpr/lpr  mice (Pawar 2007), that is 

comparable to what has been observed with oligonucleotide antagonists specific for TLR9 only in the 

same lupus model (Patole 2005) or in NZB/NZW mice (Dong 2005).  

 

In our studies we observed that the lack of negative regulator of TLRs, SIGIRR is able to increase the 

anti-dsDNA antibody production as well as the production of proinflammatory cytokines such as IL-6 

and IL-12. C57BL/6 lpr/lpr Sigirr-/-  mice have elevated anti-dsDNA IgGs levels compared to lpr/lpr  

controls. SIGIRR seems to have mostly an influence on IgG1, IgG2b and IgG3 levels. We did not 

observe striking differences in case of IgG2a subtype. This suggests that SIGIRR has a protective 

role in autoimmunity. However, the mechanism of SIGIRR function may differ from this observed in 

case of TLR7 or TLR9 blockade with the antagonists. SIGIRR is most probably blocking the 

signaling of TLRs by the interaction with their TIR domain, not by affecting the ligand binding. 

Moreover, SIGIRR is probably able to inhibit at the same time more than only one signaling pathway 

by interacting with different TLRs at the same time as well as with the adaptor molecules. The 
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function of SIGIRR in blocking the development of SLE may be more complex and may involve a 

larger part of the innate immunity.  

 

Aggravation of SLE in C57BL/6 lpr/lpr  mice is supported by the activation of immune cells and 

production of proinflammatory cytokines. There is much evidence supporting the theory that DCs 

play a central role in infection-associated development of autoimmunity. For example, these cells 

constitutively express most TLRs in mice and humans (Hornung 2002, Muzio 2000). Ex vivo 

activation of DCs and transfer of such cells into mice that are prone to autoimmune myocarditis was 

sufficient to initiate overt myocarditis (Eriksson 2003); and aggravation of lupus nephritis can be 

triggered by injections of recombinant IL-12 in MRL lpr/lpr  mice (Huang 1996). Moreover, the 

stimulation of TLR4 and TLR9 on DCs blocks the suppressor activity of CD4+CD25+ regulatory T 

cells via the secretion of IL-6 (Pasare 2003). The role of regulatory T cells in SLE remains to be 

elucidated. However, it is already known that their number is reduced in peripheral blood of SLE 

patients with active disease (Crispin 2003, Liu 2004). SIGIRR inhibitory function therefore may 

modulate adaptive immunity in SLE as well.  

Bone marrow–derived dendritic cells produce proinflammatory cytokines, chemokines, and type I 

interferons upon stimulation with the TLR ligands or immune complexes. However, only stimulation 

with the immune complexes increases the proinflammatory cytokine production in C57BL/6 lpr/lpr 

Sigirr-/- mice. When exposed to LPS, CpG, imiquimod, pI:C RNA or polyU RNA, dendritic cells 

cells expressed large amounts of IL-6 and IL-12, proinflammatory mediators that are known to be 

involved in progression of SLE. However, no significant differences between Sigirr+/+  and Sigirr-/- 

cells were detected in the investigated C57BL/6 lpr/lpr  background. Moreover, in this genetic 

background Sigirr deficiency does not seem to affect the production of cytokines by dendritic cells. 

We did not expect this rather surprising phenomenon. The lpr mutation however, is abele to change 

phenotype of Sigirr-/- cells that we observed in in vitro experiments with immune cells. The 

production of cytokines by the dendritic cells isolated from Sigirr+/+ lpr/lpr  or Sigirr-/- lpr/lpr mice 

was comparable.  
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Recently, many studies focused on TLR7 and proposed this receptor as a novel and potential 

therapeutic target in systemic lupus erythematosus. Tlr7-deficient and wild-type mice revealed that 

TLR7 contributes to the production of antibodies against the Smith antigen of Sm-RNP RNA 

(Christensen 2006). This is interesting, because the lupus autoantigen U1snRNP RNA was identified 

as an endogenous ligand for TLR7 (Savarese 2006, Vollmer 2005). Furthermore, 564 

immunoglobulin transgenic mice produce large amounts of anti-RNA, -DNA, and -nucleosome 

antibodies of the IgG2a and IgG2b isotype that cause nephritis, a phenomenon which was abrogated 

in Tlr7-deficient mice (Berland 2006) 

Based on the present evidence of a proinflammatory role of TLR7 for lupus we hypothesized that 

inhibition of TLR7 would have beneficial effects on experimental lupus. This study shows that 

SIGIRR plays a role in regulation of proinflammatory cytokine production by murine dendritic cells 

in response to immune complexes like U1snRNP autoantigen. U1snRNP immune complexes can 

stimulate pDC for type I IFN and IL-6 production via a TLR7-dependent pathway (Savarese 2006). 

U1snRNP can directly stimulate pDC for IFN-α production in a TLR7-dependent manner and 

stimulate monocytes for TNF-α production via a TLR8-dependent pathway (Vollmer 2005). SIGIRR 

is able to inhibit the production of cytokines after stimulation with the U1snRNP immune complex. 

SIGIRR exclusively regulates the mechanism of immunostimulation by nuclear self-antigens, shown 

here using the U1snRNP autoantigen. The mechanisms and the exact TLRs involved in this process 

are however not known. Immune complexes require to be delivered to the cytoplasm and this 

suggests that the endosomal TLRs (TLR3, -7 and -9) are involved in the inflammation process. One 

may assume that immune complex–induced maturation of DCs would enhance humoral immunity 

against chromatin, an important autoantigen in SLE. In fact, the data from this study clearly show that 

in C57BL/6 lpr/lpr  mice, the deficiency of SIGIRR provides a signal for B cell activation, consistent 

with the finding that serum DNA autoantibody levels were elevated in Sigirr-deficient C57BL/6 

lpr/lpr  mice. Thus, lack of SIGIRR may affect global B cell activation by increased production of 

cytokines as a response to endogenous stimuli. Thus, the autoantibody production in vivo may well 

reflect direct effects of the IC on B cells, as well as indirect effects mediated by IC activation of DCs 

and subsequent induction of cytokine production or priming of helper T cells. Additional studies will 
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be necessary to evaluate the relative importance of DC and B cell intrinsic events. Overall, the 

presented data establish a role for SIGIRR in SLE. Our data suggest that TLR regulation plays an 

important role in the pathogenesis of lupus. The findings from this study may help to identify novel 

targets for the treatment of lupus. Pharmacologic agents interfering with the internalization of IC-

containing nuclear autoantigens, endosomal maturation, and binding of endogenous ligands to the 

endosomally localized TLRs or targeting the regulatory molecules such as SIGIRR may help to 

forward immunotherapies for the treatment of SLE. We conclude that SIGIRR is one of the 

mechanisms that may protect the host from the exacerbation of pre-existing SLE. Thus, the roles of 

TLRs and their regulators for the evolution of specific autoantibodies may even be more complex and 

requires a detailed analysis of immune cell subsets. 

In summary our data suggest that SIGIRR is involved in inhibition of TLR7 which, together with 

previous data, may lead to reduction of autoantibody production and prevents autoimmune tissue 

injury in experimental lupus. These data support the concept that TLRs signalling contributes to the 

pathogenesis of autoantibody production and autoimmune tissue injury in SLE and propose TLR 

negative regulation of TLRs as a novel therapeutic concept for lupus. 
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In summary, resident renal antigen-presenting cells contribute to TLR-mediated antimicrobial 

immunity in the kidney and this function is controlled by SIGIRR, an orphan receptor of the Il-1R 

family. Thereby, SIGIRR inhibits an inappropriate innate immune response in the kidney. However, 

SIGIRR does neither inhibit TLR signaling nor reduce TLR expression in tubular epithelial cells 

supporting their role as sensors of microbial infection in the kidney. Furthermore, SIGIRR is 

differentially regulated in immune/antigen presenting cells and tubular epithelial cells. Our data 

further support the idea that posttranslational modifications rather than alternative splicing account 

for the cell type-specific functions of SIGIRR. Ligands for SIGIRR remain unknown, but it has been 

shown that SIGIRR cannot bind to any known ligand of the Toll/IL-1R (TIR) superfamily such as 

LPS or IL-1, subsequently activating NF-κB signaling (Thomassen 1999). 

Our data support the hypothesis that SIGIRR deficiency hyper-activates immune cells, and thus 

contributes to the pathogenesis of lupus. Physilogically, SIGIRR supresses the activity of SLE 

disease. Vice  versa , lack of function (LOF) mutation of SIGIRR may predispose to SLE. 
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