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Summary 

 1. Summary 
 

The accurate control of dendritic development is a requirement for the 

creation of functional neuronal networks. Genetic screens allow to identify 

genes involved in the dendritic morphogenesis and to expand the fragmentary 

understanding of the genetic and cellular mechanisms that gover these 

developmental processes. Such a screen was performed in Drosophila, to 

produce mutants with recessive lethal mutations on the second chromosome 

and abnormal dendritic phenotypes in md-da neurons of the embryonic PNS 

(Gao et al., 1999). The aim of this project was to map the recessive lethal 

mutations in six of the mutant lines, in which dendrites of the embryonic md-

da neurons showed overbranching phenotypes. A successful identification of 

the mutations that are responsible for these abnormal dendritic structures 

would provide a chance to find new genes involved in the regulation of branch 

formation during dendritic development. In one of these lines, namely the 

mutant line 904, a recessive lethal mutation was mapped via deficiency 

mapping and subsequent SNP-mapping to the gene sticks and stones (sns). 

The molecule encoded by sns belongs to the Ig-superfamily and is localized 

to the cell membrane of a subpopulation of myoblasts during early embryonic 

stages (Bour et al., 2000). Its function is required for the formation of the body 

wall musculature, which consequently fails to form in sns mutants (Bour et al., 

2000). In the course of myoblast fusion, Sns has been hown to recruit the 

adaptor protein D-Crk and the Wasp/Arp2-3 complex to the contact site 

between myoblasts (Kim et al., 2007; Massarwa et al., 2007). Thus, actin 

polymerisation is forced specifically at the fusion site, which directs also the 

transport of exocytotic vesicles (Kim et al., 2007; Massarwa et al., 2007). 

 The expression of Sns in md-da neurons of the mutant line 904 recovered the 

dendritic overbranching to control levels, which suggested a cell-autonomous 

function for this molecule in the dendritic branch formation. In sns mutant 

embryos, the class I neuron vpda showed an increased number of high order 

branches, whereas other arbour characteristics were not altered. Since the 

loss of the body wall musculature in sns mutants might have an unspecific 

effect for the development of md-da neurons, the dendritic structure of the 
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vpda neuron was checked in blown fuse mutant embryos that also fail to form 

a somatic musculature. Interestingly, the dendrites of the vpda neurons were 

not altered in this mutant, which indicates that the musculature is not required 

for the development of this neuron. In contrast, the dendritic morphologies of 

the two other class I md-da neurons, namely ddaD and ddaE, were mildly 

affected but did not show any overbranching. No morphological changes were 

observed on the dendrites of class IV md-da neurons sns mutants. At later 

larval stages, expression of Sns was detected in md-da neurons.  

Taken together, this study suggests Sns as a new molecule involved in 

dendrite branch formation. 

 



Introduction 

 2. Introduction 
 

A characteristic feature of neurons is the formation of subcellular 

compartments with striking morphological and cellular specializations that are 

named axons and dendrites (Craig and Banker, 1994). Axons represent the 

major presynaptic component of neurons that connect them to often far-away 

targets, whereas dendrites mainly receive and process incoming information 

from other neurons or the environment (Yamamoto et al., 2002). The 

development of these polarized morphologies with extended axons and 

branched dendrites is a crucial requirement for the correct wiring and function 

of a neuron within a nervous system (Craig and Banker, 1994; Kaufmann and 

Moser, 2000; Parrish et al., 2007b; Yamamoto et al., 2002). 

 Neurons generate individual dendritic arbors with a stereotyped morphology 

from animal to animal, which suggests that the addition and elongation of 

branches in developing dendrites is a highly regulated process. In addition, 

dynamic retraction and elimination of branches during neuronal differentiation, 

also contributes to the final dendritic shape (Parrish et al., 2007b; Wong and 

Ghosh, 2002). Moreover, dendritic morphology is an important determinant of 

information processing in neurons (Hausser et al., 2000; London and 

Hausser, 2005). The interrelation between neuronal structure and function is 

well exemplified by the stereotyped organisation of neuronal networks that are 

responsible for direction-selective responses in visual systems (Borst and 

Haag, 2002; Taylor and Vaney, 2003) or odor representation in the olfactory 

systems of rodents and flies (Jefferis and Hummel, 2006; Lin et al., 2007; 

Wong and Ghosh, 2002). 

 Hence, different aspects of dendrite patterning need to be appropriately 

controlled in the context of a complex cellular environment to achieve 

functional neuronal networks. But despite the recent progress, it still can not 

be definitely answered, how neurons manage to build their individual dendritic 

arbors and how the astonishing variety of different dendritic architectures in a 

nervous system is generated (Parrish et al., 2007b). A short summary of the 

main mechanisms that are known to regulate dendrite morphogenesis is given 

below. 
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Introduction 

 2.1. Role of the cytoskeleton for dendrite morphogenesis 

 

During neuronal differentiation, axonal and dendritic growth requires a precise 

organisation of the cytoskeleton and the secretory trafficking machinery 

(Horton and Ehlers, 2004; Luo, 2002). The components of the neuronal 

cytoskeleton, actin, microtubules, myosin and neurofilaments, represent the 

intracellular scaffold that allows the establishment and maintenance but also 

dynamic rearrangements of axonal and dendritic morphologies (Luo, 2002). 

An adequate regulation of actin dynamics is required for the formation of 

filopodia and lamellipodia on growth cones, which represent specialised 

structures at the leading end of growing axons and dendrites, or during 

branch formation (Acebes and Ferrus, 2000; Faix and Rottner, 2006; Luo, 

2002). Moreover, the development, maintenance and motility of dendritic 

spines depends on a precise control of actin organisation and turnover 

(Johnson and Ouimet, 2006; Matus, 2005). Spines are actin-enriched 

protrusions that are formed along dendritic branches and represent the major 

site of excitatory input in mammalian brains (Calabrese et al., 2006; Matus, 

2005). 

 Organisation and stability of microtubules is interrelated with the action of 

different microtubule associated proteins (MAPs; (Matus, 1994)) that mainly 

stabilize but also crosslink them to actin (Pedrotti et al., 1994; Togel et al., 

1998). MAP1A is needed for the stabilisation and elongation of dendritic 

branches in a activity dependent manner (Szebenyi et al., 2005). The loss of 

the MAP1B-related protein in Drosophila causes alterations of the microtubule 

scaffold in neurons that lead to defects in axonal and dendritic development 

(Bettencourt da Cruz et al., 2005; Hummel et al., 2000). Furthermore, MAP1B 

is involved in growth cone stabilisation, which is required for correct axon 

steering in developing neurons, as well as for positioning of GABA receptors 

(Hanley et al., 1999; Mack et al., 2000). 

 Hence, the adequate manipulation of different cytoskeletal members, offers 

the possibility for a guided morphogenesis of dendrites. Monomeric GTPases 

of the different Rho/Rac subfamilies, especially RhoA, Rac1 and Cdc42, are 

key regulators of signal pathways that govern the organisation of the actin-
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cytoskeleton (Bustelo et al., 2007; Luo, 2002). These Rho GTPases influence 

many developmental processes, including the formation of dendritic 

morphology (Luo, 2002; Van Aelst and Cline, 2004; Van Aelst and D'Souza-

Schorey, 1997). Rac1 and to lesser extent Cdc42 promote the addition and 

stabilisation of dendritic branches as well as the formation and maintenance 

of spines (Calabrese et al., 2006; Van Aelst and Cline, 2004). In contrast, the 

GTPase RhoA affects more the growth of dendrites and elongation of 

branches. There is intensive crosstalk between the different Rho GTPases 

that influences the activity of these molecules and their downstream effectors 

(Van Aelst and Cline, 2004). 

 

 2.2. Activity-dependent regulation of dendrite development 
 

An important role of afferent innervations for dendritic development has been 

shown to be linked to the action of NMDA receptors and voltage gated 

calcium channels (VGCC) in different vertebrate model systems (Wong and 

Ghosh, 2002). Several studies could demonstrate that such effects of 

neuronal activity on dendrite morphogenesis are mediated through calcium 

depended signal pathways (Konur and Ghosh, 2005). Moreover, calcium 

signalling has also profound influence on spine motility and synaptic plasticity 

in mammalian neurons (Bonhoeffer and Yuste, 2002) as well as local branch 

dynamics (Lohmann et al., 2002). The major effectors of calcium influx seem 

to be calcium-dependent protein kinases (CaMKs) and mitogen-activated 

kinases (MAPKs; (Konur and Ghosh, 2005; Wong and Ghosh, 2002)). CaMKI 

and different isoforms of CaMKII are localized to the cytoplasm of neurons 

and control distinct morphological features of dendrites. In contrast, CaMKIV 

is a nuclear protein and a key player of a calcium-dependent pathway that 

controls gene expression and dendrite growth, via the transcription factors 

CREB, CREST and CBP (Konur and Ghosh, 2005; Redmond et al., 2002; 

Wong and Ghosh, 2002; Wu and Cline, 1998). In addition, there are also 

indications for a calcium mediated activation of Rho-GTPases through 

neuronal activity (Schubert and Dotti, 2007; Sin et al., 2002).  
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 2.3. External cues that control dendrite morphogenesis 
 

During the development of neurons within a nervous system, many extrinsic 

cues serve as dynamic regulators of a variety of important developmental 

events, including dendritic growth, branching and guidance (Van Aelst and 

Cline, 2004). The classical example for such extrinsic cues are the 

mammalian neurotrophins, like brain derived neurotrophic factor (BDNF) or 

nerve growth factor (NGF), that bind and activate one or more members of the 

tropomyosin related-kinase (TRK) family of receptor tyrosine kinases or the 

p75 receptor (Kaplan and Miller, 2000). Binding of neurotrophins to TRK 

receptors causes the activation of numerous intracellular signalling pathways, 

including Ras and RhoGTPase controlled cascades (Kaplan and Miller, 2000; 

Patapoutian and Reichardt, 2001). In the nervous system, neurotrophins are 

involved in the regulation of cell survival, synapse formation as well as axonal 

and dendritic growth (Huang and Reichardt, 2003; Van Aelst and Cline, 2004). 

The action of BDNF on dendritic growth depends on neuronal activity, which 

is mediated through NMDA receptors (McAllister et al., 1996). In addition, 

calcium signalling induces the expression of BDNF and neuronal activity 

enhances the TRK receptor trafficking to the cell surface (Meyer-Franke et al., 

1998; Van Aelst and Cline, 2004).  

 The Wnt/N-cadherin/β-catenin signal pathway is required for several 

developmental events in the nervous system and has been shown to enhance 

dendrite arborisation in dependence of neuronal activity (Yu and Malenka, 

2003). Furthermore, semaphorin3A, a classical axon guidance molecule 

(Dickson, 2002), controls some aspects of dendrite development, like 

attraction and branching as well as spine maturation. (Morita et al., 2006; 

Polleux et al., 2000). In addition, a recent publication shows a cell-

autonomous function of semaphorin in dendrite targeting in the olfactory 

system of Drosophila ((Komiyama et al., 2007)). Robo and Frazzled, which 

are cell-surface receptors for the well characterized axon guidance cues Slit 

and Netrin respectively (Dickson, 2002), are needed for guidance (Furrer et 

al., 2003) or branching (Whitford et al., 2002) of dendrites in the central 

nervous system (CNS). 
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 Interaction between dendrites of neighbouring neurons can regulate the 

dendritic growth and field organisation of sensory neurons to achieve an 

optimal coverage of receptive fields, as it is exemplified by heteroneuronal 

tiling of dendrites in neurons of the peripheral nervous system (PNS) of 

Manduca and Drosophila (see below, (Grueber et al., 2002; Parrish et al., 

2007b)). The cell-adhesion molecule N-cadherin is required for the precise 

formation of glomeruli in the antenna lobe of Drosophila through sub-class 

specific sorting of olfactory receptor neuron (ORN) axons and restriction of the 

dendritic targeting of projection neurons (PNs) via the mediation of dendro-

dendritic interactions between adjacent subclasses of these interneurons 

(Hummel and Zipursky, 2004; Zhu and Luo, 2004). In addition, the proto-

cadherin flamingo is needed for dendrite routing and growth control of sensory 

neurons in the Drosophila PNS (Gao et al., 1999; Gao et al., 2000). Dscam is 

another cell-adhesion molecule with important functions in neuronal wiring 

and dendrite morphogenesis, like the elaboration and patterning of PN 

dendrites in the Drosophila antenna lobe (Chen et al., 2006; Zhu et al., 2006) 

as well as organisation of dendritic branches of sensory neurons in the 

Drosophila PNS (Hughes et al., 2007; Matthews et al., 2007; Soba et al., 

2007). 

 

 2.4. Intrinsic transcriptional programs that control dendrite 
 morphogenesis 
 

The stereotyped morphologies of individual neurons, suggest that intrinsic 

transcriptional programs are involved in the regulation of dendrite 

development. This idea is supported by the identification and characterization 

of transcription factors that control distinct aspects of dendrite arborisation in 

the PNS of Drosophila (see below, (Komiyama et al., 2003; Parrish et al., 

2007b; Parrish et al., 2006)). Likewise, the transcription factor neurogenin2 is 

required for the migration and the formation of the subtype specific dendritic 

morphology in pyramidal neurons of the mouse cortex (Hand et al., 2005). 
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 2.5 Dendritic development of Drosophila md-da neurons 
 

A subpopulation of the sensory neurons in the PNS of Drosophila, the multiple 

dendritic-dendritic arborization neurons (md-da), was used as a model system 

in this PhD project. Therefore, a short summary of the development and 

function of these neurons is given below. 

 The embryonic and larval PNS of Drosophila is composed of sensory 

neurons, motorneurons and the larval photoreceptors, which constitute the 

Bolwig’s organs (Bodmer and Jan, 1987; Jan and Jan, 1993). All sensory 

neurons have a bipolar morphology and are grouped based on the number 

and morphology of their dendrites (Bodmer and Jan, 1987; Jan and Jan, 

1993; Sweeney et al., 2002). The type I sensory neurons develop only one 

unbranched dendrite and are associated with specialized support cells to form 

external sensory organs or chordotonal organs (Bodmer and Jan, 1987; Jan 

and Jan, 1993). All type II neurons have multiple dendrites (md-neurons) and 

are further subdivided into bipolar dendrite neurons (md-bd neurons), tracheal 

dendrite (md-td neurons) and dendritic arborisation neurons (md-da neurons; 

see Figure 1; (Bodmer and Jan, 1987)). At 6-9h after egg laying (AEL) all 

sensory neurons are generated through repeated divisions of sensory organ 

precursor (SOP’s) that originate from the epidermal layer (Brewster and 

Bodmer, 1995; Jan and Jan, 1993). The dendritic development of type II 

neurons starts not before 14h AEL, after they have already sent out their 

axons (Bodmer and Jan, 1987; Gao et al., 1999). 

 On the basis of their final dendritic morphology, which they achieve in later 

larval stages, md-da neurons are subdivided into four different classes (Figure 

1 b (Grueber et al., 2002)). Among all md-da neurons, the class I neurons 

develop dendritic arbors with the lowest complexity. Class II md-da neurons 

(see Figure 1 c) form longer and more sinuous primary dendrites with few 

more high order branches than class I md-da neurons. Dendritic complexity of 

class II md-da neurons is only slightly increased in comparison to class I md-

da neurons (Grueber et al., 2002). The main characterics of class III md-da 

neurons (see Figure 1 d) are many spike-like protrusions along their 
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secondary branches and at the end of their major trunks. Due to the presence 

of these small protrusions, dendrites of class III md-da neurons have a 

significantly higher complexity than dendrites of class I or class II md-da 

neurons (Grueber et al., 2002). The dendrites of class IV md-da neurons (see 

Figure 1 e) develop the most sophisticated dendritic arbours among all 

classes and cover the larval epidermis completely (Grueber et al., 2002). 

These class-specific differences in dendritic morphology are also reflected in 

distinct axonal projection of md-da neurons to the CNS (Grueber et al., 2007). 

 

 

Figure 1. Overview of the dendritic morphologies and positions of md-da neurons 
Panel a shows a schematic view on the arrangement of sensory neurons in a abdominal 

hemisegment of Drosophila embryos/larvae (image is taken from (Grueber et al., 2007). 

Diamonds=md-da neurons (color indicates the particular class), md-bd neurons 

=triangels, external sensory neurons=circles and chordotonal neurons=drop-like. Md-td 

neurons are not shown. The panels b-d show the dendritic morphology of each class of 

md-da neurons (image is taken from (Grueber et al., 2003b)); b=class I (ddaE), c=class II 

(ddaB), d=class III (ddaA) and e=class IV (ddaC). 
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Class I and class IV md-da neurons achieve their particular dendritic 

morphologies through different modes of branching (Sugimura et al., 2003). 

The primary dendrites of the class I md-da neurons ddaD and ddaE form 

lateral second order dendrites through interstitial branching, whereas class IV 

neurons mainly split dendritic growth cones to increase arbour complexity 

(Sugimura et al., 2003). Furthermore, class I md-da neurons attain their final 

dendritic morphology  much earlier (~50h AEL) than class IV neurons that 

dynamically increase arbour complexity throughout early larval development 

(Sugimura et al., 2003). 

 The dendrites of each md-da neuron coat a specific area of the embryonic or 

larval body wall. Among md-da neuron of the same class, these dendritic 

territories are separated from each other, whereas dendritic fields of different 

md-da classes overlap extensively (Grueber et al., 2002; Grueber et al., 

2003b). Two distinct mechanisms have been identified that regulate the 

organisation of dendritic branches, which cover the corresponding receptive 

field of a given md-da neuron. First, self-recognition between branches of the 

same neuron induces repulsive response that consequently prevent overlap 

between them (self-avoidance, (Hughes et al., 2007; Matthews et al., 2007; 

Soba et al., 2007)). The second mechanism employs like-repel-like and fill-in 

responses to organize the dendritic fields of class IV md-da neurons, to 

achieve a complete and non-redundant coverage of the larval body wall 

(heteroneuronal tiling, (Grueber et al., 2002; Grueber et al., 2003a; Sugimura 

et al., 2003)). Both mechanisms, self-avoidance and heteroneuronal tiling, are 

required to ensure efficient and unambiguous dendritic representations of 

receptive fields. 

 In recent years, many novel genes were shown to be crucial for the formation 

or maintenance of dendritic branch pattern and receptive fields of md-da 

neurons. These findings allow the characterisation of cellular mechanisms 

that neurons employ to develop their specific dendritic architectures (Parrish 

et al., 2007b; Van Aelst and Cline, 2004). The transcription factors Cut, Abrupt 

and Spineless, regulate independently of each other the establishment of 

class-specific dendritic complexity in a combinatorial fashion (Grueber et al., 

2003a; Li et al., 2004; Sugimura et al., 2004), whereas several products of 

10 



Introduction 

polycomb genes are crucial for the maintenance of dendrites of class IV md-

da neurons (Parrish et al., 2007a). Hence, different intrinsic programs are 

required to control distinct aspects of dendrite development in md-da neurons 

(Grueber et al., 2003a; Kim et al., 2006; Li et al., 2004; Moore et al., 2002; 

Parrish et al., 2007a; Parrish et al., 2006; Sugimura et al., 2004). 

 The sophisticated morphologies of dendrites are depended on a precise 

arrangement of the subcellular cytoskeleton. Dendritic shafts of md-da 

neurons are mainly filled with tubulin, whereas high order branches and 

especially spike-like protrusions of class III md-da neurons or filopodia are 

actin enriched (Andersen et al., 2005; Hummel et al., 2000; Li et al., 2005). 

Known organizer of the actin-cytoskeleton, like the small GTPases Rac1 and 

Cdc42 or the non-receptor tyrosine kinase Abl and its downstream target Ena, 

affect mainly the formation of branches in all md-da neurons (Emoto et al., 

2004; Gao et al., 1999; Lee et al., 2003; Li et al., 2005), whereas CaMKII has 

been shown to regulate formation and dynamics of actin enriched spike-like 

protrusions/filopodia in class III md-da neurons, through modulation of the 

actin turnover (Andersen et al., 2005). Additionally, the development of high 

order branches in class III and IV md-da neurons seems to depend on the 

specific transport and the local control of mRNA expression in dendrites of 

md-da neurons (Lee et al., 2003; Ye et al., 2004). Interestingly, the action of 

Rac1 appears to be partially regulated through the control of its mRNA 

expression in dendrites (Lee et al., 2003). 

 The Ste20-like kinase Hippo and the two Drosophila NDR kinases, Warts and 

Tricornered, form a signalling pathway that is involved in dendritic 

maintenance (Emoto et al., 2006; Parrish et al., 2007a), branch formation and 

heteroneuronal tiling of class IV md-da neurons (Emoto et al., 2004). Warts 

interacts genetically with products of several Polycomb genes to ensure the 

maintenance of dendritic architecture of class IV md-da neurons in the later 

larval stages (Parrish et al., 2007a), whereas Tricornered controls branch 

formation, through regulation of Rac1 activity, and like-repel-like navigation 

between dendrites of class IV neurons (Emoto et al., 2004). Both NDR-

kinases are coordinated by the Ste20-like kinase Hippo (Emoto et al., 2006). 

The immunglobulin Dscam has been shown to be responsible for self-
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avoidance of isoneuronal branches (Hughes et al., 2007; Matthews et al., 

2007; Soba et al., 2007). 

 All md-da neurons are located in a layer between the epidermis and the 

somatic musculature at the body wall of Drosophila embryos and larvae (see 

Figure 2; (Bodmer and Jan, 1987)). In addition, the survival (Sepp and Auld, 

2003) and dendritic development of md-da neurons (Yamamoto et al., 2006) 

depends on their interaction with peripheral glia. Neuroglian, a member of the 

Ig-superfamily, has been shown to be required for the normal axonal 

ensheatment of the class I md-da neuron ddaE by its corresponding glia. 

During the embryonic development, Neuroglian restricts axonal sprouting and 

controls dendrite branching of the ddaE neuron (Yamamoto et al., 2006). A 

specific influence of the epidermis or musculature on the differentiation of md-

da neurons has not been shown. 

 

 2.6. Functions of md-da neurons 
 

All md-da neurons are sandwiched between the epidermis and the somatic 

musculature at the body wall of Drosophila embryos and larvae, which 

indicates a somatosensory function of these neurons (see Figure 2). Due to 

their class-specific dendritic morphologies, it is suggested that each md-da 

subpopulation has a specific sensory function, which is supported by class-

specific axonal projections to the CNS (Grueber et al., 2002; Grueber et al., 

2007). Therefore, sensory information from different classes of md-da 

neurons are separately processed within the CNS (Grueber et al., 2007). 

 Several studies could show that larval md-da neurons are sensitve to 

temperature and mechanical stimuli (Lee et al., 2005; Liu et al., 2003; Tracey 

et al., 2003). This feature of md-da neurons is connected to the action of two 

transient receptor potential (TRP) channels, pyrexia and painless, that are 

expressed in these neurons at larval stages (Lee et al., 2005; Tracey et al., 

2003). Pyrexia, encodes a TRP channel that opens upon heightening of the 

environmental temperature. It was identified in a screen for mutants with a 

changed preferred mean temperature (PMT) and endows stress tolerance 

against high temperatures in adult Drosophila (Lee et al., 2005). 
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 The TRP channel encoded by the painless gene is responsible for a specific 

avoidance behaviour of larvae against noxius temperature and strong 

mechanical stimuli. Both, the temperature-sensing function of pyrexia and the 

nociceptive function of painless have not been specified to individual md-da 

neurons. 

 

 

Figure 2. The cellular environment of md-da neurons at the embryonic and larval 
body wall (taken from (Yamamoto et al., 2006)). All md-da neurons are located at the 

body wall, where they develop their dendrites in a layer between the epidermis and 

musculature. Axons as well as parts of the soma and dendrites are ensheated by 

peripheral glia (Yamamoto et al., 2006)). 

 

Additionally, md-da neurons have an important proprioceptive function in the 

Drosophila larvae (Hughes and Thomas, 2007; Song et al., 2007). The 

precise course of peristaltic waves, which is required for larval locomotion, 

depends on the action of class I md-da neurons in collaboration with the 

dorsal md-bd neurons, which project both to the same dorsal area of the CNS 

(Grueber et al., 2007; Hughes and Thomas, 2007; Song et al., 2007). 

Furthermore, larval locomotion is modulated through the action of the 

DEG/EnaC channel Ppk1 that is expressed exclusively in class IV md-da 

neurons (Ainsley et al., 2003).  
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 2.7. Formation of somatic muscles in Drosophila 
 

Since, md-da neurons function as proprioceptors, they need to interact with 

the epidermis or the body wall musculature to sense muscle contractions 

during the peristaltic waves in larvae. Hence, the development of md-da 

neurons could be influenced by the underlying musculature to control 

appropriate dendrite differentiation. Particular molecules that are crucial for 

the formation of the musculature might also be involved in the dendritogenesis 

of the md-da neurons. Thus, a short summary of the development of the 

somatic body wall musculature is given below. 

 The multinucleated myotubes that constitute somatic muscles in Drosophila 

are generated by the fusion of two types of myoblasts: muscle founder cells 

and fusion competent myoblasts (FCMs; (Bate, 1990; Carmena et al., 1995; 

Rushton et al., 1995)). At early stage 12 (7.45h AEL), muscle founder cells 

and FCMs are derived via Notch-mediated lateral inhibition from clusters of 

lethal of scute expressing cells in the somatic mesoderm (Carmena et al., 

1995; Ruiz-Gomez, 1998; Ruiz Gomez and Bate, 1997; Rushton et al., 1995). 

Founder cells become specified through the expression of an individual set of 

transcription factors that determines the identity and final position of the future 

muscle (Bate, 1993; Baylies et al., 1998). 

 In contrast, FCMs seem to differentiate through the action of a more general 

transcriptional program and therefore represent a more homogeneous 

population (Duan et al., 2001; Dworak and Sink, 2002; Ruiz-Gomez et al., 

2002). Through the fusion of both types of myoblasts, FCMs adopt the identity 

of the founder cell with which they fuse, and enable the growth of the 

corresponding myotube to its final size and shape (Bate, 1990; Rushton et al., 

1995). Fusion of myoblasts occurs asyncronously, myoblasts in the ventral 

region fuse earlier than those more dorsal (Bate, 1990). Unfused myoblasts 

have a teardrop-like shape with a single pseudopod. These cells need to 

orient, recognize and adhere to appropriate fusion partners (Figure 3, 

(Doberstein et al., 1997; Dworak and Sink, 2002)). When contact between 

unfused myoblasts is established, electron-dense vesicles appear near the 

juxtaposed plasma membranes that form the prefusion complex (Doberstein 
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et al., 1997). Upon formation of the prefusion complex, myoblasts align with 

each other and start to break down the plasma membrans (Doberstein et al., 

1997). 

 

 

Figure 3. Model of intermediate steps in myoblast fusion (adapted from (Doberstein 

et al., 1997)). FCMs adhere to founder cells after they have recognized each other. 

Electron dense vesicles appear between the two opposed membranes that will form the 

prefusion complex. After cell alignment, plasma membrane starts to break down and both 

myoblasts fuse finally. 

 

Three transmembrane molecules of the immunglobulin (Ig) superfamily were 

found to play critical roles in the first steps of myoblast fusion (Bour et al., 

2000; Ruiz-Gomez et al., 2000; Strunkelnberg et al., 2001). In sticks and 

stones (sns) mutants, myoblast fusion is completely abolished and 

consequently no somatic musculature is formed (Bour et al., 2000). All 

myoblasts differentiate, but fail to cluster prior to muscle formation, which 

indicates an early abort of the myoblast fusion pathway in sns mutants (Bour 

et al., 2000). Sequence analysis revealed that sns encodes a transmembrane 

protein of the Ig superfamily with a predicted size of 162kDa and strong 
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homology to human Nephrin (Bour et al., 2000). Its N-terminus contains eight 

putative Ig domains, a single fibronectin type III domain and a putative 

transmembrane domain (Figure 4; (Artero et al., 2001; Bour et al., 2000)).  

 

 

Figure 4. Schematic overview of the structural domains of the Sticks and stones 
(Sns) protein (based on (Artero et al., 2001; Bour et al., 2000)). The entire protein 

consists of 1549 amino acids. Eight immunglobulin-like domains and one type3 

fibronectin domain were detected in the extracellular part of sns. The intracellular tail 

contains no conserved domains but a PKA and a CK2 phosphorylation site. 

 

Additionally, several SG doublets that serve as potential attachment sites for 

heparine sulfate can be found in the extracellular domain (Artero et al., 2001; 

Bour et al., 2000). The intracellular domain of Sns harbours two potential 

target sites for Protein-kinase A (PKA) and Casein-kinase II (CKII; (Artero et 

al., 2001)). During embryogenesis sns is expressed in the visceral mesoderm 

and in FCMs of the somatic mesoderm, where it becomes localised to 

discrete sites in the plasma membrane (Bour et al., 2000). After fusion of 

FCMs to muscle founders/precursors Sns protein becomes degraded rapidly 

(Bour et al., 2000). At embryonic stage 17, Sns expression is also seen in 

muscle attachment sites (Bour et al., 2000). 

 A similar myogenic phenotype as seen in sns mutants, occurs in embryos 

that are double mutants for dumbfounded/kirre (duf) and IrreC-roughest (rst) 

(Ruiz-Gomez et al., 2000; Strunkelnberg et al., 2001). The gene duf encodes 

a transmembrane Ig-protein of the DM-GRASP/BEN/SC1 subfamily, which is 
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expresses in all muscle founder cells (Ruiz-Gomez et al., 2000). Additional 

expression can be detected in the visceral mesoderm and few CNS-neurons 

during embryogenesis (Dworak and Sink, 2002; Ruiz-Gomez et al., 2000). 

The function of Duf seems to be the attraction of myoblasts to muscle founder 

cells, since its misexpression in epidermal cells causes myoblasts to migrate 

and aggregate to these ectopic sources of Duf (Ruiz-Gomez et al., 2000).  

 The roughest (rst) gene also encodes an Ig-protein of the DM-

GRASP/BEN/SC1 subfamily that is highly similar to the Ig-molecule encoded 

by the gene duf (Ramos et al., 1993; Strunkelnberg et al., 2001). Both 

proteins have five Ig domains in their extracellular fragment that are highly 

homologue to each other. The intracellular domains of Rst and Duf are less 

conserved, but harbour three highly conserved motifs: a consensus sequence 

for the type of autophosphorylation domain found in receptor tyrosine kinases, 

a candidate PDZ-domain and putative serine and tyrosine phosphorylation 

sites (Strunkelnberg et al., 2001). Thus, Rst represents a paralogue of Duf 

(Strunkelnberg et al., 2001). The expression pattern of rst and duf overlap to 

some extent during myogenesis. Both molecules are expressed by muscle 

founder cells, but expression of Rst is also seen in FCMs and muscle 

attachment sites (Strunkelnberg et al., 2001). As noted above, Rst and Duf 

have partially redundant function during myoblast fusion. The misexpression 

of Rst in epidermal cells causes migration and aggregation of myoblasts to 

these ectopic sites as it was shown for Duf before (Ruiz-Gomez et al., 2000; 

Strunkelnberg et al., 2001). Both molecules are potentially cleaved in the 

course of myogenesis (Chen and Olson, 2001). 

 Sns and Duf interact with each other in in-vivo and in-vitro (Galletta et al., 

2004). In the course of myoblast fusion strong colocalisation of both 

molecules was shown in embryos during contact and recognition steps 

(Dworak et al., 2001; Galletta et al., 2004). The adherence between Sns or 

Duf expressing cells depends on the extracellular domains of both molecules, 

whereas the migration of FCMs additionally requires the intracellular domain 

of Sns (Galletta et al., 2004). Therefore, migration of FCMs to muscle founder 

cells as well as recognition and subsequent adherence between both is 

regulated via the heterophilic interaction of Sns and Duf (Galletta et al., 2004; 
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Ruiz-Gomez et al., 2000). In contrast to Sns, Duf is capable of homophilic 

interaction as well (Dworak et al., 2001; Galletta et al., 2004). The binding 

ability of Rst to Sns or Duf is not unambiguously clarified, but appears to be 

similar to Duf (Dworak et al., 2001; Galletta et al., 2004). 

 Upon contact of FCMs to muscle founder or precursor cells, Duf and Sns 

form a ring-shaped structure at sites of adhesion between both cell types 

(Galletta et al., 2004; Kesper et al., 2007). This structure widens during fusion 

and seems to serve as a docking station for a variety of different molecules 

involed in the rearrangment of the actin cytoskeleton (see Figure 5). Through 

its interaction with Duf, the large cytoplasmic protein Ants (Rols7), which is 

exclusively expressed in muscle founder cells and precursors, becomes 

localised to these adhesion sites between different myoblasts (Chen and 

Olson, 2001; Kesper et al., 2007; Menon and Chia, 2001). Ants exhibits a 

putative lipolytic enzyme activity and several protein-protein interaction 

domains, like RING-finger motifs and ankyrin repeats, through which it recruits 

myoblast city (mbc) and D-Titin to the sites of adhesion between FCMs and 

muscle precursors (Chen and Olson, 2001; Kesper et al., 2007; Menon and 

Chia, 2001; Rau et al., 2001). Mbc is the Drosophila homologue of Dock180 

and contains SH3 domains, two Docker (DHR1/2) domains and binding sites 

for the small adaptor protein D-Crk (Balagopalan et al., 2006; Doberstein et 

al., 1997; Erickson et al., 1997; Galletta et al., 1999; Rushton et al., 1995). It 

is assumed that Mbc functions through the activation of the small GTPase 

Rac1 during muscle formation, which presumably involves a rearrangment of 

the cytoskeleton (Balagopalan et al., 2006; Nolan et al., 1998). This model is 

supported by the fact that Rac1 is a crucial regulator of myoblast fusion 

(Hakeda-Suzuki et al., 2002; Luo et al., 1994). 

 In addition, Duf recuits the Guanine nucleotide exchange factor (GEF) Loner 

to sites of adherence between FCMs and muscle founder/precursor cells, 

independent of its interaction with Ants (Chen et al., 2003). Interestingly, 

Loner activates specifically the small GTPase Arf6, which is required for the 

localisation of Rac1 to the plasma membrane. Hence, two parallel pathways 

in muscle founder cells act together to control the activation of Rac1 at sites of 

adherence between myoblasts (Chen et al., 2003). 
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 In FCMs, the SH2-SH3 adaptor D-Crk is recruited to the adhesion site 

between myoblasts through its interaction with Sns (Kim et al., 2007). D-Crk 

mediates a signal pathway from Sns to the cytoskeleton via direct interaction 

with Solitary/D-WIP (Wasp interacting protein) that in turn recruits Wasp (Kim 

et al., 2007; Massarwa et al., 2007). The complex of D-Crk, D-WIP and WASP 

forces the actin polymerisation at adhesion sites, which appears to be 

requirement for a correct membrane targeting of prefusion vesicles (Kim et al., 

2007). Additionally, Wasp seems to function through the Arp2/3 complex 

during myoblast fusion, which could implicate a more direct role of the actin 

cytoskeleton for the regulation of the membrane state (Massarwa et al., 

2007). The site of contact between FCMs and muscle founder 

cells/precursors attracts also the large cytoplasmic protein Blown fuse, which 

shows neither significant similarity to any known protein nor exhibits any 

conserved domains or motifs (Doberstein et al., 1997). Blown fuse is solely 

expressed in FCMs (Kesper et al., 2007) and appears in the center of the 

ring-shaped adhesion site between fusing myoblasts (Schroter et al., 2006). 

Its contribution to the organisation of myoblast fusion is apparently mediated 

through an interaction with the WASP-regulator kette, which finally modulates 

the actin-cytoskeleton (Schroter et al., 2004). Additionally, an interaction 

between Blown fuse and D-Crk has been suggested (Giot et al., 2003). Mbc 

and D-Crk are expressed in all myoblast and are in general capable of binding 

to each other (Balagopalan et al., 2006; Erickson et al., 1997; Galletta et al., 

1999). Interestingly, although both mutants show severe defects in myoblast 

fusion, Mbc without the D-Crk binding sites is still correctly localised and still 

able to rescue the developmental defect of the somatic musculature in the 

mbc mutants (Balagopalan et al., 2006). Thus, the mode of action of Mbc in 

FCMs and muscle founder cells is independent from D-Crk.  

 To conclude, the interaction of duf and sns provides a scaffold for signal 

pathways that direct actin polymerisation towards the site of contact between 

fusing myoblasts. The assembly of the body wall musculature is finished at 13 

AEL when growth cones of motorneuron axons start to explore the surface of 

the myotubes and prior to the dendritic development of md-da neurons (Bate, 

1993). 
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Figure 5. Signal transduction to the actin cytoskeleton during myoblast fusion
(taken from (Kim et al., 2007)). In muscle founder cells, the signal pathways Duf->Ants-

>Mbc and Duf->Loner->Arf6 act in parallel to activate Rac1 at sites of adherence 

between myoblasts. The action of Rac1 presumably leads to rearrangments of the actin 

cytoskeleton. In FCMs, a signal pathway from Sns to Wasp and Arp2/3, via D-Crk and 

Solitary, causes also a rearrangement of the actin cytoskeleton. 

Hbs is the paralogue of sns in Drosophila, which has only regulatory function during 

myoblast fusion (not mentioned in the text). Blown fuse is not shown here. 

 
 2.8. Scope of the project 
 

As described above, the exploration of cellular mechanisms that govern 

dendrite development and differentiation are not completely understood. 

Hence, genetic screens are performed to find new genes that are required for 

the formation of specific aspects of dendrite morphology. This PhD-project 

aimed at identifying and subsequently characterising mutations that cause 

abnormal dendritic overbranching phenotypes in a subset of embryonic and 

larval PNS neurons of Drosophila.  



Material and Methods 

 3. Material and Methods 
 

 3.1. General fly stocks 
 
Genotype Source 

w; 109(2)80 GAL4 Yuh Nung Jan; UCSF, USA 

w; 109(2)80 GAL4, UAS-GFP Yuh Nung Jan; UCSF, USA 

y w; 2-21 GAL4 Yuh Nung Jan; UCSF, USA 

y w; 2-21 GAL4 UAS-mCD8GFP Yuh Nung Jan; UCSF, USA 

ppk::GFP Yuh Nung Jan; UCSF, USA 

MHC::tauGFP; Adv/Cyoarm Eric Olson; University of Texas, USA 

UAS-sns [FL] Susan Abmayr; Stowers Institute Kansas, USA 

w; snszf1.4; cn[A]/Cyo Susan Abmayr; Stowers Institute Kansas, USA 

w; snsS660/Cyo Susan Abmayr; Stowers Institute Kansas, USA 

Dp(?,2)bw[D}, blow[1] bw[D]/Cyo Bloomington stock center; BL-4128 

y w; Pin/Cyo Yuh Nung Jan; UCSF, USA 

FRT42D Bloomington stock center; BL-1802 

elavGAL4 UAS-mCD8GFP hsFLP; 

FRT42D 

this study 

elavGAL4 UAS-mCD8GFP hsFLP; 

FRT42D tubGAL80/Cyo 

Bloomington stock center 

w; L Pin/CKG Yuh Nung Jan; Stanford University, USA 

y w hsFLP; Sp/Cyo; UAS>CD2>mCD8GFP Barry Dickson, IMP, Austria 

Elp/CKG; scrb e FRT80/TKG Yuh Nung Jan; UCSF, USA 

cmp44E[1]/CyO Bloomington stock center; BL-5494 

y w; P{EPgy2}cmp44E[EY09152]/CyO Bloomington stock center; BL-19884 

y w; Rya-r44F[16]/CyO Bloomington stock center; BL-6812 

y w; P{lacW}Rya-r44F[k04913]/CyO Bloomington stock center; BL-10559 

y w; P{lacW}Dmn[k16109]/CyO Bloomington stock center; BL-11159 

w; PBac{PB}sec31[c02461]/CyO Bloomington stock center; BL-10915 

y w; P{lacW}Ggamma1[k08017]/CyO Bloomington stock center; BL-10759 

cn P{PZ}l(2)03996[03996]/CyO; ry[506] Bloomington stock center; BL-11361 

Pgi[nNC1]/SM1 Bloomington stock center; BL-4007 

w; lin[G2]/CyO Bloomington stock center; BL-7087 

y w; Pin/Cyo; Dr Δ2-3/TM3 Ubx Yuh Nung Jan; UCSF, USA 
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 3.2. Antibodies 
 
Antibody/Antisera Source 

anti-sns (rabbit) Karl-Friedrich Fischbach, University of Freiburg, 

Germany 

6D4 DSHB, University of Iowa, USA 

anti-CD8 (rat) Calteg Laboratories, USA 

anti-rat Alexa 488 Invitrogen, Germany 

anti-rabbit Cy3 Jackson Laboratories, USA 

anti-rabbit Cy5 Jackson Laboratories, USA 

 

 3.3. Instruments 

 
Devices Manufacturer 

Leica confocal microscope SP2 Leica GmbH, Heidelberg, Germany 

Leica microscope stand DM-IRE2 Leica GmbH, Heidelberg, Germany 

Leica fluorescens microscope MZ-16 Leica GmbH, Heidelberg, Germany 

Zeiss fluorescens microscope Axioplan2 Zeiss GmbH, Oberkochen, Germany 

Zeiss microscope STEMI 2000C Zeiss GmbH, Oberkochen, Germany 

Schott light source KL 1500 LCD Schott AG, Mainz, Germany 

Bio-Rad PCR system PTC-0200 BioRad Laboratories, Hercules, USA 

Eppendorf Thermomixer 5436 Eppendorf AG, Hamburg, Germany 

Eppendorf Centrifuge 5415 D Eppendorf AG, Hamburg, Germany 

Sigma Centrifuge 4-15C Sigma-Aldrich, St.Louis, USA 

Amersham pharmacia biotech power 

supply EPS 301 

Amersham pharmacia biotech, Uppsala, Sweden 

Peqlab Perfect Blue Horizontal Mini 

Electrophoresis System 

Peqlab, Erlangen, Germany 

BioRad Transilluminator BioRad Laboratories, Hercules, USA 

Lauda E 200 Thermostat Lauda GmbH, Lauda-Koenigshofen, Germany 

Percival I-36NL climate chamber Percival Scientific Inc, Perry, USA 

Liebherr Comfort freezer Liebherr, Biberach an der Riss, Germany 

Liebherr Refridgerator Liebherr, Biberach an der Riss, Germany 

Pipettes Gilson, Middleton, USA 
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 3.4. Consumables 
 
Consumables Source 

Forceps DuMont Nr.5 FST, Germany 

Fly food bottles Greiner Bio One, Frickenhausen, Germany 

Plugs for Fly food bottles KTK, Retzstadt, Germany 

Microscope slides Menzel Glaeser, Braunschweig, Germany 

Petridishes Greiner Bio One, Frickenhausen, Germany 

PCR tubes Eppendorf AG, Hamburg, Germany 

Pipette tips Greiner Bio One, Frickenhausen, Germany 

Sieves and bucket MPI of Neurobiology, Martinsried, Germany 

Glass ware Schott, Mainz, Germany 

Gloves Sempermed, Clearwater, Florida, USA 

 

 3.5. Solutions/Chemicals 
 
Solution/Chemicals Composition 

PBS (10x) 100mM Na2HPO4, 20mM KH2PO4, 1.37mM NaCl, 

27mMKCl 

PBT 0.1%-1% Triton X-100 in 1x PBS 

PBT+N PBT + 0.05% normal donkey serum 

PBS-FA 9 parts PBS + 1 part 37% Formaldehyde 

Normal donkey serum Jackson Laboratories, USA 

Extraction buffer 10mM Tris-HCL; 1mM EDTA; 25mM NaCl 

TAE (10x) 0.4M Tris, 0.01M EDTA, 0.2M acetic acid 

NaOCl Merck, Darmstadt, Germany 

ddH2O Sigma-Aldrich, St.Louis, USA 

Ethanol Merck, Darmstadt, Germany 

Methanol Merck, Darmstadt, Germany 

Formaldehyde Polyscience, Warrington, USA  

Glycerol Merck, Darmstadt, Germany 

EDTA Merck, Darmstadt, Germany 

NaCl Merck, Darmstadt, Germany 

Tris Sigma-Aldrich, St.Louis, USA 
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 3.6. Fly maintenance 

 

For optimal propagation, Drosophila melanogaster flies were raised on a 

standard media (fly food) at 25C and 70% relative humidity. The used fly food 

had the following composition: 

 

1L media: 

  yeast   15 g 

  agar   11.7 g 

  molasse  80 g 

  corn flour  60 g 

  methylparaben 2.4 g 

  propionic acid 6.3 ml 

 

To enhance egg laying of Drosophila females, a paste of water-dissolved 

yeast granules was added to the standard media when appropriate. 

 

 3.7. Staging and collection of Drosophila embryos and larvae 
 

A correct staging of Drosophila embryos and larvae is crucial for the study of 

dendrite development. For the mass collection of embryos and larvae, flies of 

a given genotype were kept in population cages (transparent plastic 

cylinders). The one end of these population cages is closed by a plastic mesh 

to allow air exchange, while the other end serves as connector for replaceable 

apple agar plates. Depending on the requirements of a given experiment, flies 

within a population cage were allowed to lay eggs on the surface of the apple 

agar for a certain period of time. Subsequently, these apple agar plates were 

incubated at 25C and 70% relative humidity, to allow the embryos to develop 

to the required stage. 
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 3.8. Visualisation of md-da neurons 

 

Different GAL4 drivers were used to label all or subsets of md-da neurons 

with UAS-GFP or UAS-mCD8GFP reporters via the GAL4/UAS system 

(Brand and Perrimon, 1993; Yeh et al., 1995). The 109(2)80 GAL4 is active in 

almost all PNS neurons, including all md-da neurons and a few neurons in the 

CNS starting from embryonic stage 15 (Gao et al., 1999).  

 

 

Figure 6. Expression pattern of the 109(2)80 GAL4 driver in abdominal md-da 
neurons (b=dorsolateral view on embryo; c=dorsal cluster). In a, the arrangement of 

all PNS neurons in an abdominal hemisegment of Drosophila embryos and larvae is 

shown. Diamonds=md-da neurons (color indicates the particular class), md-bd 

neurons=triangels, external sensory neurons=circles and chordotonal neurons=drop-

like. Md-td neurons are not shown. The red square marks the six md-da neurons in 

the dorsal cluster. Anterior is to the left and dorsal up. The scale bar is 50 μm. 

 

It is mainly used to study the morphology of the dendritic field that is formed 

by six md-da neurons in the dorsal part of an embryonic or larval 

25 



Material and Methods 

hemisegment (ddaA-F), which are called the “dorsal cluster” (Figure 6; (Gao 

et al., 1999)). As a consequence of its expression pattern, the 109(2)80 GAL4 

driver does not allow to study dendritic arbours of single md-da neurons. This 

GAL4 driver was usually used with two UAS-GFP reporters recombined on 

the second chromosome. The corresponding fly line is called 80G2. 

 The 2-21 GAL4 driver is active at high levels in all class I md-da neurons and 

to much lower extend in class IV md-da neurons (Figure 7; (Grueber et al., 

2003)). 

 

 

Figure 7. Expression pattern of the 2-21 GAL4 driver in abdominal class I md-da 
neurons (b=ddaD and ddaE; c=vpda). In a, the arrangement of all PNS neurons in an 

abdominal hemisegment of Drosophila embryos and larvae is shown. The red and 

yellow arrows in a point to ddaD and ddaE in the dorsal cluster. The position of the 

vpda neuron is indicated by the blue arrow (a). Anterior is to the left and dorsal up. 

The scale bars in b and c are 10 μm. 

 

It enables to study and quantify dendritic arbours of class I md-da neurons 

without any overlap with dendrites of neighbouring neurons. A convincing 

26 



Material and Methods 

visualization of the class I md-da neurons ddaE and vpda with this GAL4 

driver is achieved the earliest at 20-21h AEL (late stage 17). In contrast, the 

expression of GAL4 in the third class I md-da neuron ddaD is unsteady at this 

stage. The 2-21 GAL4 driver was usually combined with a UAS-mCD8GFP 

reporter and the corresponding fly line was named 2-21. 

 The class IV md-da neurons were visualised via a transgene that expresses 

GFP under the control of the promoter of the pickpocket gene (Figure 8; 

(Adams et al., 1998; Grueber et al., 2003)). An appropriate expression of GFP 

from this transgene was achieved in 21-22h old embryos. 

 

 

Figure 8. Expression pattern of the ppk::GFP transgene in abdominal class IV 
md-da neurons (b=ddaC). In a, the arrangement of all PNS neurons in an abdominal 

hemisegment of Drosophila embryos and larvae is shown. The arrows in a point to the 

three class IV md-da neurons. Anterior is to the left and dorsal up. The scale bars in b 

is 10 μm. 

 

 For the FLP-out labelling of dorsal md-da neurons, the 109(2)80 GAL4 driver 

was crossed to y w hsFLP; Sp/Cyo; UAS>CD2>mCD8GFP to finally achieve 
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the genotype y w hsFLP; 109(2)80 GAL4; UAS>CD2>mCD8GFP. Eggs of 

these stocks were collected for 1h and incubated for 3 additional hours at 

25°C (70% humidity) prior a brief heatshock for 5min at 38°C. Afterwards, 

eggs were allowed to develop until late embryonic stage 17 and checked for 

individually labelled md-da neurons under the confocal microscope. 

 

 3.9. Preparation of Drosophila embryos and larvae for confocal 
 microscopy 
 

Drosophila eggs are enveloped by a transparent vitellin membrane and 

additionally encased by an opaque chorion shell. To remove the chorion shell, 

embryos were treated with 50% NaOCl for 3 min and subsequently rinsed 

with ddH2O and PBT, to remove remaining chemical. Dechorionated embryos 

were finally mounted in 90% glycerol on a standard microscope slide. Larvae 

were picked from the agar plate, briefly washed in PBS and mounted in 90% 

glycerol on a standard microscope slide. Cover slips on top of the larvae were 

attached to the slide by pieces of modelling clay, mainly to prevent the escape 

of the highly motile animals. 

 

 3.10. MARCM 
 

The mosaic analysis with a repressible cell marker (MARCM) technique 

allows to study the cell-autonomous function of a certain gene through 

generation of labelled cells that are homozygous mutant for this gene in an 

otherwise heterozygous animal (Lee and Luo, 1999). For MARCM analysis of 

sns, a recombinat chromosome was generated that bears the FRT42D 

sequence and the snsS660 loss of function (LOF) allele. A modified protocol 

form Grueber et al. 2002 was used, to induce MARCM clones among md-da 

neurons. Drosophila eggs where collected at 25°C for 3 h and kept for 

additional 3 h at 25°C prior a sequence of heat shocks (45 min 38°C, 30min 

RT, 30min 38°C). Pictures of all MARCM clones were taken in third instar 

larvae. 
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 3.11. Antibody staining in Drosphila embryos and third instar 
 larvae 
 

Antibody staining was performed on 13-15h AEL old embryos. Older embryos 

form a cuticle that prevents sufficient penetration of the antibody. Fixation of 

up to 15h old embryos was performed as follows: embryos were dechorinated 

in 50% NaOCl for 5min and rinsed well with ddH2O and 0,1% PBT to remove 

remainings of the chemical. All dechorinated embryos were placed in a glass 

scintillation vial containing heptane : PBS-FA in a ration of 1:1 (Vol) and gently 

rotated for 30min. Subsequently, the (lower) aqueous layer with the fixative, 

plus all embryos that have fallen into it, was removed with a pipette. The 

aqueous layer was replaced with the same volume of MeOH. Embryos were 

separated from their vitellin membrane through vortexing for about 1 min. All 

embryos that have fallen to the bottom of the MeOH phase, where transferred 

to a fresh 1.5ml tube with a pipette and washed three times with MeOH. It is 

possible to store fixed embryos in MeOH at -20°C for several weeks. Prior to 

antibody staining, the MeOH was removed and embryos were washed three 

times with 0,1% PBT for 5min, incubated on a rotator for 30min in 0,1% PBT 

and finally rotated in 0,1% PBT+N for 30min. The primary antibody was 

applied in 0,1% PBT+N in a concentration of 1:20 to 1:200 and embryos were 

then incubated over night at 4°C. To remove the primary antibody, embryos 

were rinsed with 0,1% PBT four times and subsequently washed four times 

for 15-20min with 0,1% PBT. Prior to application of the secondary antibody, 

embryos were incubated on a rotator for 30min in 0,1% PBT+N. The 

secondary antibody was applied in 0,11% PBT+N in concentration of 1:200 to 

1:500 for 90min on a rotator at RT. Finally, embryos were rinsed three times 

with 0,1% PBT for 5min and subsequently washed four times for 15-20 min 

with 0,1% PBT to remove secondary antibody. All embryos were mounted on 

slides in 90% glycerol. 

 Antibody stainings were also performed on third instar larvae. To provide 

optimal access for antibodies to PNS-neurons, third instar larvae were filleted 
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prior to fixation. Larvae were immobilised with insect pins and opened with 

scissors on a sylgard dish. Subsequently, fillets were fixed for 20min with 4% 

formaldehyd in PBS directly on the sylgard dishes. Remainings of the fixative 

were taken off through four washing steps with 1% PBT followed by additional 

2x 30min incubation of the filets in 1% PBT and 2x 30 min incubation in 0.5% 

PBT on a rotator. Next, fillets were rotated in 0.5% PBT+N for 1h at 4°C. After 

this blocking step, primary antibodies were applied in 0.5% PBT+N in a 

concentration of 1:20-1:100. Larvae fillets and antibody-solution were 

incubated on a rotator for 2d at 4°C. Secondary antibodies were applied at 

concentration of 1:300 in 0.5% PBT+N, after third instar larvae fillet were 

separated from the primary antibody through 4x 30min washing steps in 0.5% 

PBT and 1x 1h blocking in 0.5% PBT+N. After 90min incubation at RT, excess 

of a secondary antibody was removed from the larvae fillets through four 

30min washing steps in 0.5% PBT. Larvae fillets were mounted in 90% 

glycerol for microscopy. 

 

 3.12. Confocal microscopy and processing of images 
 

All pictures were taken with Leica 20x or 63x glycerol immersion objectives on 

a Leica DM-IRE2 inverted microscope stand. A Leica SP2 confocal 

microscope was used. Due to a different orientation of embryos or larvae, 

stack size and z-step of confocal series were individually adjusted to acquire 

optimal visualisation of md-da neurons. Maximum projections of confocal 

series were calculated to show the whole dendritic arbour of md-da neurons. 

Photoshop (Adobe Systems, San Jose, Californien, USA) was used to 

enhance the contrast of images and to convert images to inverted gray scale. 
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 3.13. Quantification of dendritic arbours of md-da neurons 
 

Maximum-projections of confocal stacks of md-da neurons were used for the 

quantification of dendritic arbours. All quantifications were performed with 

ImageJ (http://rsb.info.nih.gov/ij/). Semi-automatic tracings of dendrites were 

generated via the ImageJ plugin NeuronJ (http://rsb.info.nih.gov/ij/). 

 

 3.14. Deficiency-Mapping 
 

The Deficiency Kit (DfKit2; stand 10/2003, Bloominton stock center; 

http://flystocks.bio.indiana.edu/) was used to roughly localize recessive lethal 

mutations on the second chromosome in all six mutant-lines in a range of 

several cytological segments. Deficiency- and mutant chromosomes are 

homozygous lethal and therefore are kept heterozygous over balancer-

chromosomes, respectively. The corresponding Balancer-chromosomes carry 

usually a dominant visible and homozygous lethal marker, which allows 

tracing the segregation of the balancer. All deficiency lines of the DfKit2 were 

crossed to each of the six mutant lines, and complementation of the mutant 

lethality was scored by the number of flies without the dominant visible marker 

mutation (Cy, Gla) of the respective balancer-chromosomes in the F1 

progeny. In few cases, deficiency chromosomes carry a recessive cn allele, 

which produces a visible phenotype when heterozygous over the cn allele on 

Cyo-balancer chromosomes. Hence, animals without a cn or Cy phenotype 

were scored in this cases. 

 

 3.15. Local P-element hop 
 

A local P-element hop was conducted to generate independent mutant alleles 

of the recessive lethal mutation in the mutant line 904. This technique is 

based on the mobilisation of a viable P{white+} element insertion within the 

chromosomal area where a recessive lethal mutation is induced in an 

unrelated mutant line. All flies with transposed P{white+} element were 

individually screened for the presence of new recessive lethal mutations. The 
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ones that carry such a new mutation are used for complementation test with 

the original mutant line. Figure 9. outlines the crosses performed for a local P-

element hop. The used P-element donor chromosomes were isogenised 

before mobilisation. 

 

 

Figure 9. Crosses for a local P-element hop. From the F1 of the first cross, virgins that 

have one copy of the P-element donor chromosome and one copy of the chromosome 

that carries the Δ2-3 transposase were collected (black genotype in F1). In these virgins 

the Δ2-3 transposase was expressed and mobilizes the P-element. These virgins were

crossed en masse to Pin/Cyo males. From the progeny of the second cross, non-Pin

males with reddish eyes (due to white+ of the P-element marker) were selected and 

individually crossed with Pin/Cyo virgins to establish stocks (not shown). In these stocks, 

presence of recessive lethal mutations could be detected. Cyo=balancer 
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 3.16. SNP-Mapping 
 

Single nucleotide polymorphism (SNP) mapping (Berger et al., 2001; Hoskins 

et al., 2001) was performed to map the recessive lethal mutation in the mutant 

line 904. This approach was based on the creation of recombinants between 

the mutant chromosome and two reference chromosomes, respectively.  

 

 

Figure 10. SNP-mapping crosses. From the F1 of the first cross, virgins were collected 

that were heterozygous for the mutant and the reference chromosome (black genotype in 

F1). These virgins were crossed en masse to males with the chromosomal deficiency that 

uncovers the recessive lethal mutation on the mutant chromosome. From the progeny of 

the second cross, only flies that were heterozygous for the recombinant and deficiency 

chromosome were interesting for SNP-analysis (black genotype in the F1 progeny of the 

second cross). Among these flies, only those that lost the lethality and the P-element 

marker were used for SNP-analysis. Cyo=balancer chromosome. 
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Each reference chromosome contains a traceable P{yellow+ white+} marker 

transgene to the left or right of the chromosomal area where the recessive 

lethal mutation is supposed to map. Both, reference chromosomes and the 

mutant chromosome where isogenized before the SNP-mapping. 

Visibility of the P-element marker genes on the reference chromosomes was 

confirmed in heterozygous animals. The distance between the marker P-

element transgenes on the two reference chromosomes is approximatly 

300kbp (0.3 cM). Only recombinants that lost the corresponding P{yellow+ 

white+} marker transgene and the lethality were selected. The crosses for the 

SNP-mapping are presented in Figure 10. 

 The presence of the recessive lethal mutation in all recombinants was 

excluded by mating the selected virgins without balancer from the F1 of the 

first mapping cross to Df(2R)H3E1 males (see Figure 10). Because 

Df(2R)H3E1 uncovers the recessive lethal mutation, all non-balanced adults 

of the F1 from the second mapping cross do not contain this recessive lethal 

mutation anymore. For recombinations between mutant and reference 

chromosome with the marker P-element insertion to the right of 2R:44E3-

44F7, the loss of P{white+} was scored to detect the desired recombinants in 

the progeny of the second mapping cross. In contrast, all recombinations 

between the mutant chromosome and the reference chromosome with the 

marker P-element insertion to the left of 2R:44E3-44F7 still contain the P-

element transgenes of the GAL4/UAS system, which expresses already 

P{white+}. In this case, loss of P{yellow+} was scored to detect the correct 

recombinants. SNP-analysis with the selected recombinants was performed to 

map the position of the recessive lethal mutation in the mutant line 904. 

 For identification of sequence polymorphisms between the mutant and 

reference chromosomes, primer combinations where created to amplify ~1kb 

genomic DNA (gDNA) from intergenic regions and introns in between the two 

marker P-element insertions (see attached excel snp mapping.xls). All used 

primers were optimized for 62°C annealing temperature. PCR using these 

primers was performed on gDNA prepared from animals heterozygous for the 

mutant and a corresponding reference chromosome. Sequences of these 
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amplified gDNA stretches where screened for double peaks via the Seqman 

software (Lasergene, DNAStar, Madison USA). 

 

 3.17. Preparation of genomic DNA from adult Drosophila 

 

Genomic DNA of adult Drosophila was prepared in two different ways. For 

standard PCR applications and the inverse PCR (iPCR) method that is used 

to determine the insertion site of P-elements, the DNAeasy Tissue Kit 

(Quiagen, Hilden Germany) was used to obtain gDNA from adult flies. Ten 

anaesthetized adult flies were placed in a 1.5 μl microcentrifuge tube and 

squashed in 180 μl PBS via a disposable microtube pestle. All subsequent 

steps followed the manufacturer instructions, starting from step2 of the 

protocol “Purification of Total DNA from Cultured Animal Cells”, in the 

handbook of the DNAeasy Tissue Kit (page 24; Quiagen, Hilden Germany)). 

At step 7 of this protocol, eluation of DNA from the column was performed 

only once with 100 μl H2O. This procedure allowed large gDNA preparations 

with constant high quality. 

 A different protocol, adapted from Berger et al. 2001 was used to prepare 

gDNA from single recombinant flies for SNP-mapping in the mutant line 904 

(Berger et al., 2001). All recombinants were individually placed in a 96 well 

plate and stored at -80°C. For preparation of gDNA, single flies were 

squashed in 20 μl extraction buffer within the 96 well plate by using pipet tips 

on an Eppendorf Multipipette. Squashed flies were incubated for 5 min at 

95°C in a PCR cycler and subsequently cooled down on ice. For protein 

digestion, 3 μl Proteinase K (20 mg/μl; NEB, USA) was added to each sample 

and incubated in a PCR cycler with the following program: 40 min at 37°C, 10 

min at 50°C, 7 min 95°C. Afterwards, 40 μl extractionbuffer were added to 

each sample and the whole 96 well plate was centrifuged for 5 min at 6000 

rpm. Finally the supernatant (50-60μl) was transferred to a fresh 96 well plate 

and stored at -20°C. 
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 3.18. PCR 

 

A standard 25μl PCR reaction had the following composition: 

  

 10x Reaction Buffer*  2.5μl 

  dNTP mix (25mM each)   2.5μl 

  Primer mix (10mM each)   1μl 

  gDNA      1μl 

  DNA-Polymerase**    0.5μl 

  H2O      17.5μl 

 

*10x ThermoPol buffer (NEB, USA) for Taq-Polymerase (NEB, USA) and Pfu 

10x reaction buffer (Promega, Madison USA) for Pfu-Polymerase (Promega, 

Madison US) 

**Taq-Polymerase or Pfu-Polymerase 

 

All samples were set up on ice and carefully mixed before running the 

reaction in a PCR cycler. All standard reactions, including PCRs for SNP-

mapping in the line 904, were performed with the following program for the 

PCR cycler: 

 

95°C 2 min, 24(95°C 30 sec, 62°C 45 sec, 72°C 45 sec)72°C 5 min, 10°C  

 

For all reactions that used Pfu-Polymerase, the extension time was extended, 

according to the expected product size. All PCR Primers were generated with 

the program PrimerSelect (Lasergene, DNAStar, Madison USA), according to 

the conditions described above. 
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 3.19. Mapping of P-element insertions 

 

The inverse PCR (iPCR) protocol (http://www.fruitfly.org/) was used to 

determine the position of P-element insertions. To map a P-element, the 

gDNA needs to be prepared from the corresponding fly line and separately 

digested with the restriction enzymes SalI, MspI, Sau3A I or HinP1 I (all NEB, 

USA). To prepare the gDNA from P-element containing fly lines, the DNAeasy 

Tissue Kit (Quiagen, Hilden Germany) was used. In case of recessive lethal 

P-element insertions, the gDNA was isolated from heterozygous adults. The 

used restriction enzymes cut within the P-element and additionally in the 

surrounding genomic sequences with high frequency, so that pieces of gDNA 

were generated that contain either the 3’ or the 5’ end of the P-element and a 

stretch of the corresponding flanking gDNA. These gDNA pieces were 

circularizised through ligations at 4°C over night. Afterwards, PCRs with pairs 

of primers in inverted orientation were performed that used these ligated 

gDNA stretches as templates (see http://www.fruitfly.org/). The resulting PCR 

products were sequenced (see below) and analysed for genomic sequences 

that were used to determine the position of the P-element via the BLAST tool 

at FLYBASE (http://flybase.bio.indiana.edu/). 

 

 3.20. Agarose gel-electrophoresis 
 

The standard gels, used to check the success of PCR reactions or restriction 

digests, had a concentration of 0.8-1 % agarose in 1xTAE-buffer. For the 

visualisation of DNA on the gel, ethidium bromide was added to a final 

concentration of 0.5 μg/ml. Gel-electrophoresis was performed in 1x TAE 

buffer. The ethidium bromide bound to DNA in the gel was visualised under 

UV-light in a BioRad Transilluminator. All gels were disposed in the according 

waste bins. 
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 3.21. Sequencing of PCR products 

 

PCR products were sequenced at the DNA-Sequencing facilities of the Max-

Planck Institute of Neurobiology or the Max-Planck Institute of Biochemistry. 

All PCR probes were treated with EXOSAP-IT (USB, Cleveland USA), 

according to the manufactures protocol, to remove unused primers and 

nucleotides from each reaction. Prior to sequencing, the sample concentration 

was adjusted according to the instructions of both sequencing facilities. 

Sequence data was aligned to the published genome of Drosophila via the 

BLAST tool at FLYBASE (http://flybase.bio.indiana.edu/). 



Results 

 4. Results 
 

The md-da neurons of the embryonic PNS of Drosophila are a suitable model 

system to study development and differentiation of dendrites. Several 

GAL4/UAS-lines, including 80G2 (see Material and Methods page 25, (Gao et 

al., 1999)) are available to visualize these neurons at the body wall of 

Drosophila embryos and larvae. The 80G2 flyline was used in a genetic 

screen that aimed at the generation of mutants on the second chromosome of 

Drosophila where dorsal cluster md-da neurons display alterations in various 

aspects of their dendritic morphology at embryonic stage 17 (Gao et al., 

1999). Ethyl methanosulfonate (EMS) was used to induce recessive lethal 

mutations on the second chromosome of the 80G2 fly line in a standard 

Drosophila F3 screen. This EMS-mutagenesis produced 70%-80% lethal 

lines, which correspond to 1-2 lethal mutations per chromosome (Gao et al., 

1999). Subsequently, the recessive lethal lines were screened for an 

abnormal dendritic phenotype of md-da neurons in the dorsal cluster at 

embryonic stage 17 (Gao et al., 1999). In these lines, the recessive lethal 

mutations were mapped to identify the genes that are responsible for the 

dendritic phenotypes. Several genes that affect different aspects of dendritic 

development, like outgrowth, routing or branching, were already identified by 

this screen (Gao et al., 1999). 

 This PhD project aims at the localization and characterisation of the 

recessive lethal mutations on the second chromosome of the mutant lines 

562, 566, 774, 797, 904 and 969 that were obtained in a similar genetic 

screen as the one of (Gao et al., 1999). The dorsal cluster md-da neurons in 

these six mutant lines display overbranching phenotypes at embryonic stage 

17. Each of these six mutant lines represents a separate complementation 

group, and thus affects a distinct gene. Figure 11 shows the dendritic field 

formed by the md-da neurons of the dorsal cluster in 20-21h AEL old 

homozygous embryos of the control (Figure 11, a1 and a2) or the mutant line 

969, 904  and 797 (Figure 11, b1-d2).  

 

39 



Results 

 

Figure 11. Dendritic phenotypes of the dorsal cluster md-da neurons in the lines 
969, 904 and 797. Control=a, mutant line 969=b, mutant line 904=c and mutant line

797=d. The arrows in the blow up a2-d2 point to excessive branches in the dorsal cluster 

dendrites. Anterior is to the left and dorsal is up. The scale bars are 10 μm. 

 

The dendritic phenotypes of the dorsal cluster md-da neurons in homozygous 

embryos of the mutant lines 774, 566 and 562 are shown in Figure 12. To 

distinguish between homozygous and heterozygous embryos under the 

microscope, a GFP-labelled balancer chromosome was used in all six mutant 

lines (Casso et al., 2000). In all six mutant lines, an increased number of 

dendritic termini can be detected in the periphery of the dendritic field that is 

formed by the six different md-da neurons in the dorsal cluster (arrows in 

Figure 11 and 12). Other morphological characteristics of md-da neurons are 

not affected. Based on the background fluorescence, gut and epidermis are 

normally developed in homozygous embryos (20-21h AEL) of each mutant 

line. 

 The Results part is divided into two parts. In the the first section the 

approaches to map the recessive lethal mutations in the six mutant lines are 

summarized. First, the deficiency mapping that was performed to roughly 

localize recessive mutations on the second chromosome in all mutant lines. 

Secondly, the positioning of the recessive lethal mutation in the mutant line 

904 to the gene sticks and stones (sns). The second section shows the initial 
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attempts to characterise the function of sns in dendrite morphogenesis of md-

da neurons. 

 

 

Figure 12. Dendritic phenotypes of the dorsal cluster md-da neurons in the lines 
774, 566 and 562. Control=a, mutant line 774=b, mutant line 566=c and mutant line 

562=d. The arrows in the blow up a2-d2 point to excessive branches in the dorsal cluster 

dendrites. Anterior is to the left and dorsal is up. The scale bars are 10 μm. 

 

 4.1. Deficiency Mapping 
 

Via deficiency mapping it is possible to roughly localize recessive lethal 

mutations on a given chromosome in the range of several cytological 

intervals. This method utilizes chromosomal deletions (deficiencies) with 

known chromosomal breakpoints for complementation analysis of mutants 

that contain recessive lethal mutations of unknown position. If in 

complementation analysis, a distinct chromosomal deficiency fails to 

complement the lethality of a mutant, this deficiency chromosome misses the 

homologue WT-allele of the recessive lethal mutation on the mutant 

chromosome. Thus, the recessive lethal mutations in the mutant has to be 

localized between the two breakpoints of that deficiency.  

 The Bloomington stock center (http://flybase.bio.indiana.edu/) offers a 

collection of deficiency stocks for the second chromsome (DfKit2) that can be 
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used to roughly map recessive lethal mutations on this chromosome. All 89 

chromosomal deficiencies included in the DfKit2 (stand 10/2003) uncover 

approximately 85% of the entire second chromosome and their breakpoints 

are cytologically mapped. 

A summary of the deficiency mapping is available in the attached file 

results_dk2.xls. Each score in results_dk2.xls represents the sum of two 

independent crosses. Non-complementation of mutant lethality between any 

deficiency- and mutant chromosome was assumed, when no (or less than 

10%) heteroallelic (transheterozygous) flies are seen in the F1. The 

deficiencies that failed to complement lethality in one of the six mutant lines 

are shown in Table 1. No recessive lethal mutation could be detected via 

deficiency mapping in the line 562. Therefore, the recessive lethal mutation in 

the line 562 is located outside of the area that is uncovered by the DfKit2. 

 

Table 1. Results of the deficiency mapping. Deficiencies that uncover recessive lethal 

mutations on the second chromosome of the corresponding mutant lines. The stock 

number and the breakpoint positions of each deficiency are taken from Flybase 

(http://flybase.bio.indiana.edu/). 

mutant line deficiency 
stock # 
(BL-) 

breakpoints 
(cytological pos.) 

904 Df(2R)H3E1 BL-201 44D1-44F12 

Df(2R)w45-30n BL-4966 45A6-45E3 

Df(2R)Np5 BL-3591 44F11-45E1 969 

Df(2L)XE-3801 BL-4956 27E2-28D1 

Df(2L)net-PMF BL-3638 21A1-21B8 

Df(2R)BSC11 BL-6455 50E6-51E4 797 

Df(2L)BSC30 BL-6999 34A3-34B9 

Df(2L)TW161 BL-167 38A6-40B1 

Df(2L)JS17 BL-1567 23C1-23E2 774 

Df(2L)BSC28 BL-6875 23C5-23E2 

566 Df(2L)FCK-20 BL-5869 32D1-32F3 

 

One to three recessive lethal mutations were localized on the second 

chromosome of the lines 904, 969, 774, 797 and 566 by deficiency mapping, 
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respectively. Thus, the number of induced recessive lethal mutations in these 

mutant lines corresponds to the number expected from the set up of the EMS-

mutagenesis. 

 In the lines 969 and 774 two of the three identified deficiencies (Df(2R)w45-

30n and Df(2R)Np5 for the line 969; Df(2L)JS17 and Df(2L)BSC28 for mutant 

line 774) were largely overlapping as shown in Table 2 and uncover putatively 

the same recessive lethal mutation. 

 

Table 2. Overlapping deficiencies in mutant lines 969 and 774. In both cases the 

deficiencies are largely overlapping in size and number of genes. This data was mainly 

gained with the CytoSearch tool at Flybase (http://flybase.bio.indiana.edu/). 

mutant 
line 

deficiency 
breakpoints 
(cytological 
position) 

size overlap 
in % 

gene overlap 
in % 

Df(2R)w45-30n 45A6-45E3 
969 

Df(2R)Np5 44F11-45E1 
70 66 

Df(2L)JS17 23C1-23E2 
774 

Df(2L)BSC28 23C5-23E2 
64 59 

 

In complementation tests between balanced deficiency and mutant 

chromosomes, one expects a ration of 2:1 balanced to non-balanced flies in 

the corresponding F1. In practice, the number of balanced and non-balanced 

flies diverged occasionally from this theoretically expected value (see 

attached excel file results_dk2.xls). 

 Crosses between the deficiency Df(2R)X58-12 of the stock BL-282 and any 

mutant line caused a general poor viability of transheterozygous animals in 

the F1. Consequently, no unambiguous results can be gained for the 

complementation analysis using this DfKit2 stock. Additionally, crosses 

between the DfKit2 lines BL-2471, BL-1682, BL-3133 and BL-3813 and 

different mutant lines were repeatedly unsuccessful (results_dk2 for details). 

 All deficiencies in the DfKit2 uncover large areas of the second chromosome 

with varying sizes. The sizes and the number of genes uncovered by the 

deficiencies listed in Table 1 where calculated using the Flybase CytoSearch 
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Tool at Flybase (http://flybase.bio.indiana.edu/). These results are 

summarized in Table 3. 

 

Table 3. Size and gene number of the identified deficiencies. All values were 

acquired with the CytoSearch Tool at Flybase (http://flybase.bio.indiana.edu/). The shown 

values are estimates, because the breakpoints of all these deficiencies are only 

cytologically mapped. 

mutant line deficiency estimated size in kb number of genes 

904 Df(2R)H3E1 548 90 

Df(2R)w45-30n 421 60 

Df(2R)Np5 554 88 

969 

Df(2L)XE-3801 733 83 

Df(2L)net-PMF 316 50 

Df(2R)BSC11 906 125 

797 

Df(2L)BSC30 450 76 

Df(2L)TW161 ? ? 

Df(2L)JS17 423 56 

774 

Df(2L)BSC28 268 33 

566 Df(2L)FCK-20 587 50 

 

By deficiency mapping, recessive lethal mutation were roughly localised on 

the second chromosomes of the mutant lines 566, 774, 797, 904 and 969 

(see Table 1). To identify which of the roughly mapped recessive lethal 

mutations causes the dendritic overbranching phenotype in each line, the 

dendrites of the dorsal cluster md-da neuron were checked in each of these 

lines trans-heterozygous over the corresponding deficiencies. In 

transheterozygous embryos, only one copy of 80G2 is present, which is not 

enough to visualise dendrites of md-da neurons at embryonic stage 17. 

Therefore, a copy of elavGAL4 and UAS-mCD8GFP on the X-chromosome 

was added to enhance the GFP expression in md-da neurons at the late 

embryonic stage 17. A GFP-labelled balancer chromosome (Casso et al., 

2000) was used to unequivocally identify the genotype of the analysed 

embryos under the microscope. 
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 In the line 969, a verification of the dendritic phenotype for each of the two 

roughly mapped recessive lethal mutations was not possible due to the early 

lethality or severe developmental defects in the corresponding hemizygous 

embryos. The dendritic phenotype of the dorsal md-da neurons in embryos 

hemizygous for each of the identified recessive lethal hits in the lines 904, 

797, 774 and 566 is illustrated in Figure 13. As control, the dendritic 

phenotype of dorsal md-da neurons was checked in embryos that are 

transheterozygous for 80G2 and each deficiency, respectively. An 

overbranching phenotype could be verified for only two recessive lethal 

mutations, in the line 904 and 797, which are uncovered by the deficiencies 

Df(2R)H3E1 and Df(2L)BSC30 respectively (see arrows in Figure 13a and 

13g). 

 

 4.2. Approaches to map the recessive lethal mutation in the line 
 797 
 

Altogether three recessive lethal mutations were identified on the second 

chromosome of the line 797 via deficiency mapping (see Table 1). An 

abnormal dendritic overbranching on md-da neurons could be only detected in 

embryos that are hemizygous for the mutant chromosome and the deficiency 

Df(2L)BSC30 (see Table 1). This deficiency uncovers the cytological interval 

2L:34A2-34B9. Only three deficiencies that overlap with this chromosomal 

segment can be used to refine the position of the recessive lethal mutation 

therein (see Table 4). 
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Table 4. Refined deficiency mapping of the recessive lethal hit in the line 797. 

Chromosomal deficiencies used to position the recessive lethal mutation in 2L:34A3-34B9 

in the line 797. Breakpoint positions are given as cytological bands and sequence region 

(deleted segment). The values for sequence regions are based on different releases of the 

Drosophila genome and can therefore vary. 

deficiency 
stock # 
(BL-) 

breakpoints 
(deleted segments) 

size in kb 

Df(2L)ED784 7421 
34A4-34B6 

(2L:13004448..13332060) 
328 

Df(2L)Exel7055 7823 
34A2-34A7 

(2L:12912530..13176783) 
264 

Df(2L)Exel8028 7822 
34A1-34A2 

(2L:12818930..12822787) 
110 

 

The result of the complementation analysis with the deficiencies in Table 4 is 

shown in Figure 14. Based on these data, the recessive lethal mutation is 

localised in the chromosomal interval 2L:34A7-34B8, which includes 58 

genes. 

 

 

Figure 14. Overview of the complementation analysis in 2L:34A3-34B9 of the line 
797. The black scale represents 2L:34A1-34B12 and its corresponding cytological 

subdivisions. All drawings below the black scale, represent the deficiency chromosomes 

that are shown in Table 4. The dotted part of each chromosome indicates the deficiency. 

Results of complementation tests with each deficiency chromosome are shown by the 

different color of the chromosome (magenta=lethal (no complementation); cyan=viable 

(complementation)). 

 

47 



Results 

Since additional chromosomal deficiencies or recessive lethal P-element 

insertions were not available, the mapping of the recessive lethal mutation in 

this target area could not be proceeded. 

 

 4.3. Mapping of the recessive lethal mutation in the line 904 
 

The Deficiency Mapping on the second chromosome of the line 904 identified 

a recessive lethal mutation within the cytological interval 2R:44D1-44F12. To 

refine this mapping, complementation analysis with additional overlapping 

deficiencies was performed. Table 5 introduces the deficiencies that were 

used for this approach. 

 

Table 5. Refinded deficiency mapping of the recessive lethal mutation in the line 904. 

Chromosomal deficiencies used to narrow down the recessive lethal mutation on the 

second chromosome of the mutant line 904. Breakpoint positions are given as cytological 

bands and sequence region (deleted segment). The values for sequence regions are based 

on different releases of the Drosophila genome and can therefore vary. 

deficiency stock # 
(BL-) 

breakpoints 
(deleted segments) 

size in kb 

Df(2R)ED1770 9157 44D5-45B4 

(2R:4167442..4719354) 

552 

Df(2R)ED1791 9063 44F7-45F1 

(2R:4434543..5065065) 

631 

Df(2R)ED1742 9276 44B9-44E3 

(2R:3685981..4235942) 

550 

Df(2R)Exel7098 7864 44D5-44E3 80 

 

Figure 15 summarizes schematically the complementation analysis performed 

with the deficiencies shown in Table 5. Based on these data, a recessive 

lethal mutation is localized between 2R:44E3-44F7, which is indicated by a 

dashed rectangular in Figure 15 panel a. The deficiency Df(2R)Exel7098 in 

BL-7864 uncovers the genes CG30356, gcl, CG14767 and CG30357 in 

2R:44E3 (http://flybase.bio.indiana.edu/). 
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 The area that was defined by complementation analysis with overlapping 

deficiencies (see Table 5, Figure 15) is approx. 195kbp large and contains 22 

genes, which are grouped inside the dashed rectangular in Figure 15 (panel 

b). An obvious candidate with a known and well described function in the 

nervous system is not present among these 22 genes. For the genes 

cmp44E, Rya-r44F, Dmn, sec31, Ggamma1, CG8258, Pgi and lin, recessive 

lethal mutations are available at the Bloomington stock center (stand 

04/2007).  

 

 

Figure 15. Overview of the complementation analysis in 2R:44D1-44F12 of line 
904. The black scale in Panel a represents 2R:44D1-44F12 and its corresponding 

cytological subdivisions. All drawings below the black scale represent the deficiency 

chromosomes that are shown in Table 5. The dotted part of each chromosome indicates 

the deleted segment. Results of complementation tests with each deficiency 

chromosome are shown by the different color of the chromosome (magenta=lethal (no 

complementation); cyan=viable (complementation)). This complementation analysis 

positioned a recessive lethal mutation to 2R:44E3-44F7 (dashed rectangular). Panel b 

shows the genes that are located within 2R:44E3-44F7 (dashed rectangular; source: 

Gbrowse tool at Flybase (http://flybase.bio.indiana.edu/). 
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All tested mutant alleles for these eight genes were able to complement the 

lethality of the mutant line 904, which indicates that none of these genes is 

affected in this mutant line. 

 Because, it was impossible to map the recessive lethal mutation in the line 

904 by the means of overlapping deficiencies or available mutant alleles of 

candidate genes, two approaches were chosen to finally map the mutation 

within the 195kbp large cytological intervall 2R:44E3-44F7. First, a local P-

element hop was conducted to create an independent allele of the recessive 

lethal mutation in the mutant line 904, which would be easily localizable via 

iPCR. Secondly, a modified SNP-mapping was performed, which enables 

precise mapping of recessive lethal mutations with the highest resolution. 

Both attempts would provide the possibility to gain an allele of the recessive 

lethal mutation in the mutant line 904 without 80G2 on the same chromosome 

(see below). 

 

 4.4. Local P-element hop in the line 904 
 

This technique is based on the bias of the Drosophila P-element transposons 

to integrate into the 5’UTR or the first exons of target genes that are located in 

the proximity of their original place of insertion (Liao et al., 2000; Spradling et 

al., 1995; Tower et al., 1993). Due to the P-element integration, target genes 

are frequently disrupted (Spradling et al., 1995). Therefore, the mobilisation of 

a known P-element is likely to generate random recessive lethal mutations 

nearby its original insertion site. Hence, recessive lethal insertions obtained 

through the mobilisation of a P-element that is originally localised within the 

cytological interval to which the lethal hit in the line 904 was mapped, could be 

used for complementation analysis with this line. 

 The aim of this approach was to generate independent P-element allele of 

the recessive lethal mutation in the line 904, which can be easily mapped via 

the well established iPCR protocol. Consequently, through identification of the 

P-element position, the EMS-mutation is mapped as well. 

 However, a major drawback of a local P-element hop are the unknown 

background mutations that might originate from imprecise excisions or 
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multiple insertions on the donor chromosome. The frequency of P-element 

transposition depends on the used source of P-element transposase, which 

catalyses the excision and integration of P-elements. Moreover, different type 

of P-elements transpose with varying efficiency (Bellen et al., 2004).  

  

Table 6. P-elements that were used as donors for the local hop in 2R:44E3-44F7 

stock # 
(BL-) 

P-element position 

15867 y w; P{EPgy2}EY02398 2R:44F1  (2R:4371494..4371494) 

14021 y w; P{SUPor-P}KG06087 2R:44F3  (2R:4403252..4403252) 

 

Two different P-element lines were selected for the local P-element hop, 

which are introduced in Table 6. Since P{EPgy} and P{SUPor-P} elements 

transpose with higher efficiency, insertions of these two kinds of P-elements 

were preferred (Bellen et al., 2004).  

 

 

Figure 16. Positions of the P-elements P{EPgy2}EY02398 (a) and P{SUPor-
P}KG06087 (b) in 2R:44F. P{EPgy2}EY02398 is inserted upstream of the gene Rya-

r44F . P{SUPor-P}KG06087 is inserted between the genes CG8272 and Dmn. Source: 

Gbrowse tool at Flybase (http://flybase.bio.indiana.edu/). 
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 Since, the local P-element hop aimed at generating recessive lethal 

mutations, viable P-element insertions were selected to distinguish between 

successful and unsuccessful mobilization. Figure 16 shows the positions of 

the P-element insertions in BL-15687 and BL-14021, respectively. 

P{EPgy2}EY02398 is inserted approx. 750bp from the transcription start of the 

gene Rya-r44F and P{SUPor-P}KG06087 is inserted in a approx. 500bp gap 

between CG8272 and Dmn. Both P-elements carry white+ alleles as 

insertional markers. The lethality of the mutant line 904 was complemented by 

both P-element lines. 

 For the description of the local P-element hop see Material and Methods 

(page 31). Among the progeny of the second cross (Figure 9), males were 

chosen that show expression from the P{white+} marker. Each P{white+} 

positive male was crossed to y w; Pin/Cyo virgins to establish a balanced 

stock that was checked for the presence of a recessive lethal mutation on its 

second chromosome. Finally, all generated recessive lethal mutations, were 

checked for their ability to complement the lethality of the mutant line 904. The 

results of the local P-element hop are summarized in Table 7. 

 

Table 7. Summary of the local P-element hop 

P-element # of hops # of viable 
insertions 

# of lethal 
insertion 

# of insertions 
lethal to 904 

P{EPgy2}EY02398 54 50 4 1 

P{SUPorP}KG06087 67 67 0 0 

 

The mobilization of the P{SUPorP}KG06087 element did not produce any 

recessive lethal mutation. Among the P{EPgy2}EY02398 hops four recessive 

lethal mutations could be detected.  

 

52 



Results 

 

Figure 17. Phenotype of the class I md-da neuron vpda in the line P66. The vpda 

neuron in all shown genotypes was visualized in the 2-21 GAL4 UAS-mCD8GFP

background. Panel a1 and a2 display vpda neurons in control animals. In contrast, vpda 

neurons in the line P66 (panel b1, b2) form more high order branches. Panel c1 and c2
show vpda neurons in line 904(3)* that display a similar overbranching phenotype than

the vpda neurons in the line P66. 

* The line 904(3) was generated at a later time point; during SNP-mapping in the line 904 

(see section bla). Scale bar are 10 μm. Dorsal is up and anterior to the left. 

 

One of these four recessive lethal insertions failed to complement the lethality 

of the mutant line 904. This insertion was named P66. The dendritic 

morphology of the class I md-da neuron vpda in this P66 line was analyzed in 

2-21 (see Figure 17). 

 At the same developmental stage, the vpda neurons in the mutant line P66 

produced significantly more third order branches compared to the controls 

(control=7.83 n=27(18), P66=11.34 n=40(23) p=5,3x10-5, 904(3)=13.04 

n=26(14) p=3,4x10-5), whereas the number of second order branches was not 

altered (Figure 18). 

 

53 



Results 

 

Figure 18. Quantification of the dendritic morphology of the class I md-da neuron 
vpda in line P66. Panel a shows the average branch number for vpda neurons in the 

three tested genotypes. In both mutants, vpda neurons have a significantly higher 

number of third order branches (control=7.83 n=27(18), P66; 2-21=11.34 n=40(23), 

904(3); 2-21=13.04 n=26(14)). Branch length is not altered in all three genotypes (see 

Panel b). 

* Mutant line 904(3) contains the recessive lethal mutation of the line 904 but without 

80G2. This line is a side product of the SNP-Mapping in the mutant line 904 that was 

performed at a later time point. 

 

 The iPCR (see Material and Methods page 37) from MspI and SalI digests of 

total P66 gDNA resulted in the amplification of one band from the 3’end of the 

P-element insertion (see Figure 19). The sequence of this band aligned to the 

5’UTR of the gene cmp44E in 2R:44E. Surprisingly, two independent cmp44E 

LOF alleles, cmp44E[1] and cmp44EEY09152 (BL-5454 and BL-19885, 

respectively), did not complement the lethality of the mutant line P66. 
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Figure 19. Gel picture of the iPCR in the mutant line P66. Panel a shows the gel 

picture of the iPCR from the 3’end of the P66 insertion. SalI (lanes 1-4) and MspI (5-8) 

digest of P66 gDNA were used as templates. The 550bp bands in lane 2 and 4 as well as 

the 1kb bands in lane 6 and 7 represent the same reactions from two independent gDNA 

preparations/digests. M labels the 100bp DNA ladder. Panel b shows the gel picture of 

the iPCR from the  5’end of the P66 insertion. HinPI (lane 1), Sau3A (lane 2) and MspI 

(lane 3) digests of P66 gDNA were used as a template. M labels the 1kbp DNA ladder. 

 

Additionally, no nucleotide exchange could be detected in the genomic 

sequence (+1kb upstream or downstream) of cmp44E. Both cmp44E (LOF) 

alleles complemented the lethality of the mutant line 904, which means that 

the line 904 does not possess a LOF mutation in cmp44E (see page 49). The 

iPCR from the 5’end of the P-element insertion in P66, revealed a flanking 

sequence that anneals to a genomic sequence approx. 750bp upstream of the 

gene Rya-r44F. This position represents the place of the original insertion of 

the P{EPgy2}EY02398 in BL-15867. Assuming a recessive lethal mutation in 

the gene Rya-r44F, complementation tests were performed between P66, 904 

and the two LOF alleles Rya-r44Fk04913 and Rya-r44F[16]. Both LOF alleles of 

Rya-r44F complemented the lethality of the line 904 (see page 49) and P66. 

Therefore, no recessive lethal mutation in the gene Rya-r44F is present in the 

lines 904 and P66. 

 The P-element position in mutant line 904 could thus not be conclusively 

determined by iPCR. Thus, in-situ hybridization of P{EP}-elements was 

performed, to localize the recessive lethal P-element insertion on the second 

chromosome of the mutant line P66 (Anna Cyrklaff; EMBL-Heidelberg 

Germany). In the stock BL-15867 that provided the donor P-element, two 
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P{EP}-insertion could be localized in 2L:30A1-A5 and 2R:44F1-3. Hence, 

beside the one in 2R:44F1-3, BL-15867 contains another P-element on the 

left arm of the second chromosome, which was not declared in the genotype 

of that stock. In contrast, one P{EP}-element could be localised in 2R:44F1-3 

on the second chromosome of the line P66. Apparently, the P-element 

insertion in 2R:44F1-3 in BL-15867 was not moved or moved within 44F1-3 

during the P-element local hop. The second, unknown insertion in 2L:30A1-5 

became probably excised without subsequent reintegration. 

 To summarize, this approach generated a recessive lethal P-element 

insertion that failed to complement the lethality in the mutant line 904. 

Additionally, vpda neurons in this mutant produced an overbranching 

phenotype similar to the one observed on the vpda neurons in the mutant line 

904. Unfortunately, this P-element insertion could not be unambiguously 

localized via the iPCR technique. This is most likely due to a second unknown 

P-element insertion in the donor stock. Flanking sequences from both ends of 

a P-element in P66 do not align to the same position on the second 

chromosome. The two associated genes, cmp44E and Rya-r44F, are not 

mutated in the lines P66 or 904. 

 

 4.5. SNP-Mapping in the line 904 
 

Sequence polymorphisms such as single-nucleotide polymorphisms (SNP) or 

nucleotide insertions and deletions are used as genetic markers for mapping 

mutations via meiotic recombination in S.cerevisae (Winzeler et al., 1998), 

A.thaliana (Cho et al., 1999), C.elegans (Koch et al., 2000) and Drosophila 

(Hoskins et al., 2001). As genetic markers, sequence polymorphisms link 

directly the genetic and physical map of a chromosome. They are highly 

abundant and genetically inert in most cases, which allows precise mapping 

of mutations with highest resolution. Dense maps of sequence polymorphisms 

are already generated for the second and third chromosomes of common 

Drosophila laboratory strains (Berger et al., 2001; Hoskins et al., 2001; Martin 

et al., 2001; Nairz et al., 2002). Also, strategies to use these maps for 

positioning of mutations already exist (Berger et al., 2001; Hoskins et al., 
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2001; Martin et al., 2001; Nairz et al., 2002). Berger et al. 2001 created the so 

far most comprehensive maps of sequence polymorphisms for the second 

and third chromosomes of unrelated Drosophila FRT and EP strains. Based 

on this work, the average frequency of sequence polymorphisms between any 

pair of strains is at least one polymorphism per kb (Berger et al., 2001). This 

data supported the idea that it is feasible to find enough SNPs in 2R:44E3-

44F7 between reference and mutant chromosomes, to perform SNP-mapping 

of the recessive lethal mutation in the line 904 in a reasonable amount of time. 

 The SNP-mapping approach in line 904 was based on a recombination 

between the mutant and reference chromosomes, which carry traceable 

P{yellow+ white+} transgenes either to the left or right of 2R:44E3-44F7. 

Among all generated recombinants, only those that lost both lethality and the 

P{yellow+ white+} marker transgenes were chosen. This procedure ensures 

that for the subsequent SNP-analysis only those recombinant chromosomes 

are used, where the chromosomal exchange has occurred between the 

unknown position of the recessive lethal mutation and the respective 

P{yellow+ white+} marker transgenes to the left or right of it. 

 To find appropriate reference chromosomes, nine Bloomington stocks that 

carry P{yellow+ white+} transgenes on the left or right side of 2R:44E3-44F7 

were selected, which could potentially serve as recombination marker. All nine 

selected P{yellow+ white+} stocks are introduced in Table 8. Five published 

SNP-markers in 2R:44 that distinguish between FRT and EP chromosomes 

were used to assess the presence and frequency of SNPs between mutant 

and P{yellow+ white+} chromosomes (Berger et al., 2001). The attached Excel 

file snp mapping.xls shows all the features of the chosen SNP-marker and the 

results of the performed analysis. 

 Based on these data, BL-19704 and BL-15750 were selected as a source for 

a reference chromosome for SNP-mapping of the recessive lethal mutation 

from the left side and right side of 2R:44E3-44F7, respectively. The outline of 

all mapping crosses is given in Material & Methods page 33 (Figure 10). 
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Table 8. Potential reference chromosomes for SNP-mapping in 2R:44E3-44F7 of 
mutant line 904. 

stock # 
(BL-) 

P-element P-element position 
(associated gene) 

13212 P{y[+mDint2] w[BR.E.BR]=SUPor-P} 44B3 (Pabp2) 

21364 P{w[+mC] y[+mDint2]=EPgy2} 44B7 (CG8707, CG30373) 

14354 P{y[+mDint2] w[BR.E.BR]=SUPor-P} 44C2 (pnut) 

14992 P{y[+mDint2] w[BR.E.BR]=SUPor-P} 44C4 (intergenic region) 

17553 P{w[+mC] y[+mDint2]=EPgy2} 44D1 (Cyp4e2) 

19704 P{w[+mC] y[+mDint2]=EPgy2} 44D4 (rgr) 

15750 P{w[+mC] y[+mDint2]=EPgy2} 45A2 (CG13741) 

13166 P{y[+mDint2] w[BR.E.BR]=SUPor-P} 45A8 (Phax) 

15992 P{w[+mC] y[+mDint2]=EPgy2} 45A9 (CG11784) 

 

For identification of sequence polymorphisms between mutant and reference 

chromosomes, 20 1kbp stretches within 2R:44E3-44F7 were screened for 

sequence polymorphisms. Nine of these PCR products contained useful 

sequence alteration. These results are summarized in the attached excel file 

snp mapping.xls. 

 Altogether 720 bottles with approximatly 200 flies per bottle were screened 

for recombinants between the mutant and reference chromosomes. Out of 

these flies, 58 and 72 recombinants, respectively to the left and right side of 

the recessive lethal mutation, were isolated for SNP-analysis. This finding 

corresponds to a frequency of recombination between the recessive lethal 

mutation and the respective marker P-element transgenes of 0.08% for the 

left side and 0.1% for the right side. 

 Figure 20 illustrates the results of SNP-analysis from the right side of the 

recessive lethal mutation in 2R:44E3-44F7. The presence of recombinants 

with mutant identity for a given marker indicates that the recessive lethal 

mutation is localized to the left of this marker. Among the first 32 

recombinants, seven were found with mutant and nine with reference identity 

for the right most marker 2R13. Next, all 72 recombinants were gradually 

tested for the dmn marker, which is located about 66kbp to the left of 2R13. 
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Only 12 of them were still mutant for that position. Hence, the 66kbp between 

2R13 and dmn do not contain the recessive lethal mutation.  

 

 

Figure 20. SNP-analysis in the line 904 from the right side of 2R:44E3-44F7. The 

figure shows all genes in 2R:44E3-44F7 (source Gbrowse tool at

http://flybase.bio.indiana.edu/) and indicates the position of the used SNP-marker (from 

right to the left: 2R13; dmn; rya2; sns1). Rectangulars in the columns below the gene 

map represent single recombinants. The color of each rectangular displays the identiy of 

the corresponding SNP-marker in this recombinant (magenta=mutant; cyan=reference; 

white=bad sequence). For the analysis of the marker dmn, rya2 and sns1 recombinants 

with mutant identity were used for the analysis of the next SNP-marker to the left. 

 

The 12 remaining recombinants with mutant identity for the marker dmn, were 

testet for the marker rya2 in between the genes sticks and stones (sns) and 

Ryanodine receptor 44F (Rya-r44F). Since eight of these 12 recombinants 

were mutant for the marker rya2, the recessive lethal mutation did not affect 

Rya-r44F or CG8272. All eight remaining recombinants had reference identity 

for the marker sns1 to the left of Rya-r44F. Consequently, the recessive lethal 
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mutation in the mutant line 904 must be inserted to the left (upstream) of the 

marker rya2. 

 The results of the SNP-analysis from the left side of the recessive lethal 

mutation in 2R:44E3-44F7 are shown in Figure 21. In this case, the presence 

of recombinants with mutant identity at a given marker position indicates that 

the recessive lethal mutation is positioned to the right of this marker. 

Gradually, all 58 recombinants, generated from the left side of the recessive 

lethal mutation, were tested to finally identify one recombinant with mutant 

identity for the most left marker cmp in 2R:44E3-44F7. Hence, the gene 

cmp44E does not contain the recessive lethal mutation in the line 904, which 

confirms the results of the complementation test with known recessive lethal 

alleles of this gene (see page 49). The remaining recombinant, which was 

mutant for the marker cmp, had a reference identity for the marker sns2. 

 Concluding, the SNP-mapping approach in 2R:44E3-44F7 of the line 904 

positioned the recessive lethal mutation among the genes CG8740, CG8746, 

sns, CG30352 and CG30350, which confirms the complementation data that 

was gained with chromosomal deficiencies or known recessive lethal alleles 

of candidate genes so far. Finally, this approach could show that it is feasible 

to perform SNP-mapping with reasonable resolution within a small 

chromosomal area, provided that appropriate reference chromosomes are 

available. 

 By recombination between the mutant chromosome and the reference 

chromosome with the P{yellow+ white+} transgene to the right of the recessive 

lethal mutation, special recombinants were created that still carry the lethality 

but lost 80G2. In these recombinants, the whole left arm of the second 

chromosome and parts in proximity to the right side of the centromere were 

exchanged from the mutagenized second chromosome of the mutant line 904. 

Thus, these recombinant chromosomes were partially cleaned and could be 

combined with different GAL4/UAS lines to visualize md-da neurons. 

Altogether, two of these recombinants, 904(2) and 904(3), were selected for 

the future experiments. The presence of the recessive lethal mutation in these 

two recombinants was verified by complementation analysis with the mutant 

line 904 and Df(2R)H3E1. 

60 



Results 

 

 

Figure 21. SNP-analysis in the line 904 from the left side of 2R:44E3-44F7. The 

figure shows all genes in 2R:44E3-44F7 (source Gbrowse tool at

http://flybase.bio.indiana.edu/) and indicates the position of the used SNP-marker (from 

left to the right: cmp and sns2). Rectangulars in the columns below the gene map 

represent single recombinants. The color of each rectangular displays the identiy of the 

corresponding SNP-marker in this recombinant (magenta=mutant; cyan=reference; 

white=bad sequence). For the analysis of the two marker cmp and sns2, recombinants 

with mutant identity were used for the analysis of the next SNP-marker to the right. 

 

 4.6. Sequencing of the remaining candidate genes 

 

To detect a nucleotide exchange the complete coding sequence of the genes 

CG8746, CG30352 and CG30350 was sequenced. Due to dimensions of the 

gene sns, only its 5’UTR, all exons, 3’UTR as well as 1kb up and downstream 

of the open reading were sequenced. While no modification was detected in 

the other genes, in sns a reproducible nucleotide exchange from guanin to 

adenin was found at the position 2R:4713580. This transition affects the splice 
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donor consensus sequence between the 7th and the 8th exons of sns (see 

Figure 22).  

 

 

Figure 22. Sequence analysis of the genes sns. Panel a shows the predicted genes 

and the corresponding mRNAs between 2R:4677910..4742797. The black arrow in Panel 

a marks the position of the detected mutation in sns. Panel b and c show the nucleotide 

exchange that was found at position 2R:4713580. Original sequence data are displayed in 

Panel b. This mutation affects the consensus sequence of the splice donor site between 

the 7th and 8th exons of sns as depicted in Panel c (exon sequence=blue letters; intron 

sequence=black letters; consensus sequences of splice sites are underlined in red). The 

red letter in Panel c is mutated in the line 904. 

 

As a consequence of a splice failure at this site, all subsequent open reading 

frames (ORFs) are expected to be by STOP codons within a few hundred bp. 

The sns protein in the line 904 would be disrupted between the fourth and fifth 

immunglobulin-like domains in the extracellular part of the molecule (see 

arrow in Figure 23). 
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Figure 23. Schematic overview of the structural domains of the Sns protein (based 

on (Artero et al., 2001; Bour et al., 2000)). The entire protein consists of 1549 amino 

acids. Eight immunglobulin-like domains and one type3 fibronectin domain were detected 

in the extracellular part of sns. The intracellular tail contains no conserved domains but a 

PKA and a CK2 phosphorylation site. The arrow points to the site were the Sns protein 

should be disrupted in the line 904. 

 

 4.7. Verification of the mapping result 
 

To confirm that the line 904 contains a recessive lethal mutation in the gene 

sns, complementation analysis was performed with two independent 

recessive lethal null alleles of sns, snsS660 and snszf1.4 (kindly provided by Prof 

S. Abmayr). Both, snsS660 and snszf1.4, failed to complement the lethality of the 

line 904, which proves that the line 904 harbours a new recessive lethal allele 

of the gene sns. 

 It is shown that sns null mutants fail to form somatic body wall musculature 

during embryogenesis, which finally causes lethality of these animals (Bour et 

al., 2000). Therefore, the status of the body wall musculature in the mutant 

lines 904 and snsS660 was examined through visualization of all muscles via 

immunostaining or through a MHC::tauGFP transgene (kindly provided by 

Prof Eric Olson; ((Chen and Olson, 2001), Figure 24). 
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 As shown in Figure 24 c and g-k, the formation of the body wall musculature 

in the line 904 and snsS660 embryos is severely impaired. The Hybridoma 

antisera 6D4 staining resulted in a punctuated staining in the homozygous 

904 mutants, which most likely marks unfused myoblasts, and fails to detect 

any muscle fiber as seen in the heterozygous siblings. 

 A qualitatively better view of the muscle phenotype was provided by the 

MHC::tauGFP transgene (see Figure 24 f-k). Similar to the immunostaining, 

no multinucleated muscle fiber could be detected in both mutant line 904 and 

snsS660. Instead, small and apparently mononucleoted muscle fibers are 

detectable that are reminiscent to mini muscles as described in different 

mutants with comparable phenotypes of the body wall musculature, like rolling 

pebbles or blown fuse ((Chen and Olson, 2001; Schroter et al., 2004); arrows 

in Figure 24 g-k). Unfused myoblasts seem to be visualized by the 

MHC::tauGFP transgene as well as indicated by dotty GFP stainings in both 

mutant line 904 and snsS660 (arrowheads in Figure 24 g-k). Muscle attachment 

sites or the dorsal vessel seem not to be affected in both mutants. 

 To summarize, in both the lines 904 and snsS660, multinucleated muscle 

fibers are almost completely missing as it is already described for sns null 

mutants (Bour et al., 2000). No difference in the severity of the musculature 

phenotype is visible between the line 904 and snsS660.  

 Hence, based on the complementation data and the mutant phenotype of the 

body wall musculature, the recessive lethal mutation in the mutant line 904 

represents a LOF allele of sns, which is called sns904 from now on. 

 

4.8. Expression of sns in md-da neurons of the line 904 rescues 
the dendritic phenotype 

 

Is the mutation of sns responsible for the dendritic phenotype in md-da 

neurons of mutant line sns904 at late embryonic stage 17 (20-21 AEL)? To 

answer this question, full-length sns (FL-sns) was expressed under the control 

of the 109(2)80GAL4 driver from a UAS-transgene (kindly provided by Prof 

Susan Abmayr) in parallel to GFP in the line sns904. Under the control of the 

mesoderm-specific GAL4-driver 24B, this UAS-sns transgene is able to 
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rescue the loss of the body wall musculature in the sns mutants (Bour et al., 

2000). To assess the dendritic phenotypes in these genotypes, the number of 

dendritic termini in the dorsal cluster was ascertained for each tested 

genotype. 

 As shown in Figure 25, the UAS-sns transgene is able to convert the 

overbanching phenotype of dorsal cluster dendrites in the line 904 back to the 

control level (80G2 (control)=97.38 n=15, sns904 (mutant)=115.14 n=17 

p=2,6x10-4, sns904 UAS-sns (rescue)=99.24 n=13, 80G2 UAS-sns 

(GOF)=99.14 n=14). Thus, this experiment indicates, that a mutation of sns in 

the line 904 is responsible for the abnormal dendritic phenotype. Furthermore, 

it supports that sns controls branch formation of dorsal cluster md-da neurons 

cell-autonomously. No change in the number of dendritic termini could be 

observed in the flies of the genotype 80G2; UAS-sns, which would represent 

a gain-of-function (GOF) of sns in the dorsal cluster neurons. 

 
 4.9. Expression analysis of sns in Drosophila embryos and larvae 
 

A prerequisite for a putative cell-autonomous function of Sns in dendrite 

morphogenesis of md-da neurons is its presence in these cells. During 

embryogenesis, the expression of sns starts in the visceral and somatic 

mesoderm prior onset of myoblast fusion at embryonic stage 11, reaches its 

peak at stage 14 and declines until stage 17 (Bour et al., 2000). In the somatic 

mesoderm, Sns is exclusively expressed in the fusion-competent-myoblasts 

(FCMs; (Bour et al., 2000)). In addition, a weak expression of sns is also 

detectable in the muscle attachment sites at early stage 17 (Bour et al., 2000). 

An expression in the PNS up to early embryonic stage 17 could not be 

detected (Bour et al., 2000), but at the final embryonic stages and all larval 

stages, when the dendritic morphology of md-da neurons is usually studied, 

the expression pattern of sns is not known. 
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Figure 25. Rescue of the dendritic phenotype in the mutant line 904. Dorsal cluster 

in 80G2 (control) (a); sns904 (mutant) (b); sns904; UAS-sns (c) and 80G2 UAS-sns (d) 

embryos (20-21h old). In contrast to the control, dorsal cluster dendrites in the line 904 

show an overbranching phenotype (arrows in b). Parallele expression of FL-sns in dorsal 

cluster neurons from a UAS-sns transgene in sns904, possibly prevents overbranching of 

dendrites (c). Expression of FL-sns in 80G2 control, does not induce any change in the 

number of branch termini. Scale bars are 10 μm. Dorsal is up and anterior to the left. 

Panel e shows the quantification of the terminal branch number of dorsal cluster 

dendrites in all four genotypes. Dorsal cluster dendrites in the mutant line 904 have 

significantly higher number of terminal branches than all other genotypes (80G2 

control=97.38 n=15, sns904 mutant=115.14 n=17 p=2.6x10-4, sns904; UAS-sns=99.24 

n=13, 80G2; UAS-sns=99.14 n=14). 

 

 Therefore, a staining with a monoclonal antibody against the sns protein 

(kindly provided by Prof Karl-Friedrich Fischbach) was performed in the 

embryos (15-16h AEL) and third instar larvae fillet. As shown in Figure 26, sns 
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expression in the 15-16h AEL old embryos is detected at the muscle 

attachment sites, but not in the md-da neurons of the PNS (Figure 26 a-c), 

which agrees with previous findings (Bour et al., 2000). 

 

 

Figure 26. Anti-sns staining in the 15-16h old embryos (a-c) and third instar larvae 
filet (d-f). In embryos, anti-sns stains muscle attachment sites but not md-da neurons 

(a=109(2)80 GAL4 UAS-GFP; b=anti-Sns; c=overlay of a and b). In the third instar larvae, 

sns expression was detected in the epidermis, the body wall musculature and in soma, 

axons and proximal dendrites of all md-da neurons (d=109(2)80 GAL4; UAS-mCD8GFP; 

e=anti-sns; f=overlay). Anterior is to the left and dorsal is up. The scale bars are 50 μm. 
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In the third instar larvae, sns is expressed in the epidermal cells, the body wall 

musculature and all md-da neurons of the PNS (Figure 26 d-i). The anti-sns 

staining appeared in the soma, axons and most proximal dendrites of md-da 

neurons. Sns could not be detected in more distal dendrites. Thus, sns is 

expressed in md-da neurons at the late larval stages. 

 

 

Figure 27. Dendritic morphology of the class I md-da neuron vpda in sns mutant 
embryos (20-21h old). 2-21 was used to visualize the vpda neurons. Vpda neurons in 

embryos of the mutant lines sns904(3) (b) and snsS660 (c) produce more third order 

branches than controls (a). The arrows in b and c mark excessive branches. 

Additionally, a long second order dendrite can be seen frequently in sns mutants 

(arrowheads in b and c), which did not significantly differ in length from the longest 

second order dendrite in the controls. Scale bars are 10 μm. Dorsal is up and anterior to 

the left. 

 

 4.10. Analysis of dendrite morphology of class I and class IV md-
 da neurons in sns mutants 
 

Mutant line sns904 was isolated based on the presence of the overbranching 

phenotype in the dorsal cluster dendrites that are formed by six different md-
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da neurons. Which md-da neurons are responsible for this alteration of 

dendritic morphology? The presence of the 109(2)80 GAL4 driver and the 

UAS-GFP reporter on the second chromosome of the line 904 do not allow to 

study dendrite morphology in the individual md-da neurons. Therefore, mutant 

line sns904(3) and snsS660, which do not bear 80G2, were combined with the 2-

21 GAL4 and a UAS-mCD8GFP or the ppk::GFP transgene to check the 

dendritic phenotypes of class I or class IV md-da neurons, respectively. 

Figure 27 shows the results of the analysis of the ventrally located class I md-

da neuron (vpda) in both sns mutants. The quantifications of the dendritic 

phenotypes are shown in Figure 28. 

 

 

Figure 28. Quantifications of the dendritic phenotype of vpda neurons in sns 
mutant embryos. Panel a shows a significant difference in the number of third order 

branches between control and sns mutants (2-21 (control)=7.83 n=18; sns904(3) 

(mutant)=13.04 n=14 p=3.4x10-5; snsS660 (mutant)=13.65 n=14 p=2.3x10-6). Panel b 

shows the average branch length of vpda neurons in all three genotypes. No difference 

in branch length could be observed. 

 

The vpda neurons in embryos (20-21h AEL) of the three tested genotypes 

have one primary dendrite, which grows in the dorsal direction. It produces 
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the same number of second order dendrites that grow in anterior or posterior 

direction (Figure 27). In comparison to the control, the vpda neurons of sns 

mutant embryos show a significantly higher number of the third order 

branches (arrows in Figure 27 and quantifications in Figure 28; 2-21 

(control)=7.83 n=18; sns904(3) (mutant)=13.04 n=14 p=3,4x10-5; snsS660 

(mutant)=13.65 n=14 p=2,3x10-6). 

 No difference in the average length of first, second or third order dendrites 

could be detected between control and both mutants (Figure 28), which also 

indicates that the developmental time frame of vpda neurons is not obviously 

altered in the embryos without body wall musculature. Surprisingly, one 

seemingly longer second order branch could be occasionally detected at the 

distal end of the primary dendrites in both sns mutants. Sometimes it gives 

the impression that the growth cone of the primary dendrites split to produce 

two new branches (arrowhead in Figure 27 b and c). To confirm this 

observation, the average length of the longest second order dendrite was 

calculated for all three genotypes, but no significant difference could be 

detected between them (2-21 control=13.31 n=18; sns904(3)=14.75 n=14; 

snsS660=14.71 n=14). Therefore, a specific overbranching phenotype could be 

consistently observed in vpda neurons in the mutant lines sns904(3) and 

snsS660. 

 In addition, the dendritic phenotypes of the dorsal cluster class I neurons, 

ddaD and ddaE, in the lines sns904(3) and snsS660 was examined in the 2-21 

background. Figure 29 presents examples of these two neurons in the 

embryos of both the control and the two mutants in late stage 17 (20-21h 

AEL). The GFP expression in the ddaD neurons appears often weaker than in 

the ddaE neurons. In about one third of all tested embryos, the dendrites of 

the ddaD neuron were undetectable. Therefore, only the arbour 

characteristics of the ddaE neuron could be quantified to assess differences 

among the three tested genotypes. 
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Figure 29. Dendritic morphology of the class I ddaE md-da neuron in sns mutant 
embryos (20-21h AEL). 2-21 was used to visualize the vpda neurons (a). A variety of 

abnormal dendritic phenotypes appear in ddaE (the right neuron) neurons in sns904(3) (b)

and snsS660 (c) mutants that are never present in the controls. Often, ddaE neurons have 

reduced dendritic arbours due to shorter primary dendrites and less secondary dendrites 

(b1 and c1) in both sns mutants. Finally, ddaE neurons change slightly their position 

relative to the control (a, b2 and c2). The scale bars are 10 μm. Dorsal is up and anterior 

to the left. 

 

Surprisingly, ddaE neurons in both sns mutants display a variety of different 

phenotypes. As shown in Figure 29, ddaE neurons in the control animals have 

one dorsally oriented first order dendrite with a stereotyped length that 

produces repeatedly second order branches. The majority of these second 

order branches grows towards the posterior end of the respective 

hemisegment, and only a low number also to the anterior end. In both 

mutants, the dendrites of ddaE neurons show qualitatively similar mutant 

phenotypes. Often, dendrites of the ddaE neurons have shorter primary 

dendrites and less second order dendrites (arrows in Figure 29 b1 and c1). 

Thus, the complexity of the ddaE arbours appears to be reduced. Also, a 

slight change of the soma position is sporadically observed in both mutants 
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(arrows in Figure 29 b2 and c2). These phenotypes or the combination of 

both, are more frequent in the snsS660 mutant (28/30; 93%) than in the mutant 

line sns904(3) (20/28; 71%). Figure 30 shows quantifications of the arbour 

characteristics of ddaE neurons, averaged from all animals per genotype 

regardless of their ddaE phenotypes. 

 

 

Figure 30. Quantifiactions of the dendritic features of ddaE md-da neurons in sns 
mutant embryos (20-21h AEL). Panel a shows average branch number of each 

genotype. Compared to  the control and sns904(3), the number of the second order 

branches is significantly reduced in ddaE neurons of snsS660 mutants (2-21 

(control)=10,3 n=14(27); sns904(3) (mutant)=9,74 n=16(26); snsS660=7,54 n=14(20) 

p=8,5x10-4). Panel b shows the averge branch length of ddaE neurons in all three 

genotypes. The primary dendrites of ddaE neurons in snsS660 mutants are significantly 

shorter than in ddaE neurons in control and 904(3) embryos (2-21=39,1 μm n=14(27); 

sns904(3)=40,95 μm n=16(26); snsS660=33,61 μm n=14(20) p=1.9x10-3). 

 

No difference in terms of dendritic branch number or length could be detected 

between the ddaE neurons of line sns904(3) and control. Unexpectedly, ddaE 

neurons of the mutant line snsS660 have significantly less second order 

branches (Figure 30a; 2-21 (control)=10.43 n=27(14); sns904(3)=9.74 n=26(16); 
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snsS660=7.54 n=20(14) p=8,5x10-4) than the control or the line sns904(3). 

Additionally, primary dendrites of ddaE neurons in snsS660 are significantly 

shorter (Figure 30b; 2-21 (control)=39.11 n=27(14); sns904(3)=40.95 n=26(16); 

snsS660=33.61 n=20(14) p=1,9x10-3) than in control and the mutant line 

sns904(3). An overbranching phenotype could not be observed in ddaE neurons 

in neither of the two mutants.  

 

 

Figure 31. The dendritic phenotype of the class IV md-da neuron ddaC in control 
and snsS660 embryos (21-22h AEL). In both cases, ddaC neurons are visualised by a 

ppk::GFP transgene. No obvious difference is detectable between both genotypes. Scale 

bars are 10 μm. Dorsal is up and anterior to the left. 
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Hence, ddaE neurons do not contribute to the higher number of dendritic 

termini in the dorsal cluster of the mutant line snsS660. The qualitatively similar 

phenotypes of ddaE neurons in both mutants could not be quantitatively 

confirmed. 

 The dorsal cluster contains the class IV md-da neuron ddaC. To gain an 

insight into the dendritic phenotype of ddaC neurons in snsS660 mutants, the 

ppk::GFP transgene, which expresses GFP exclusively in class IV neurons, 

was combined with this line. Due to the weaker activity of the ppk::GFP 

transgene during embryogenesis, the dendritic phenotype of ddaC neurons 

was investigated in 21-22h old embryos. The dendritic morphology of ddaC 

neurons in the mutant line snsS660 and control embryos is shown in Figure 31. 

 Neither differences in the dendritic morphology nor differences in the number 

of dendritic termini could be detected between ddaC neurons in the control 

and mutant embryos (see Figure 32). Consequently, loss of function of sns 

does not affect dendritic morphology of ddaC neurons in 21-22h old embryos. 

 

 

Figure 32. Quantifictions of dendritic termini in the class IV md-da neuron ddaC in 
control and snsS660 embryos (21-22h AEL). At this developmental stage, no difference 

could be observed in the number of dendritic termini in control and mutant. 
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 4.11. An approach to analyse dendritic morphology of the 
 remaining md-da neurons 

 

The dendrites of class I and class IV md-da neurons in the dorsal cluster of 

the mutant line sns904(3) or snsS660 mutants do not show any obvious 

overbranching phenotype. Therefore, the dorsally located class II and/or class 

III md-da neurons are potentially responsible for the dendritic phenotype of 

the dorsal cluster md-da neurons in the line 904.  

 

 

Figure 33. FLP-out technique to visualize individual md-da neurons in 20-21h AEL 
old embryos: a=ddaD (class I), b=ddaE (class I); c=ddaB (class II); d=ddaF (class III); 

e=ddaA (class III); f=ddaC (class IV).The genotype is yw hsFLP; 109(2)80 GAL4; 

UAS>CD2>mCD8GFP. Anterior is to the left and dorsal up. The scale bars are 10 μm. 

 

Unfortunately, there are no available GAL4 lines with specific expression 

pattern exclusively in class II or class III md-da neurons in Drosophila 

embryos. Thus, a FLP-out approach was tested to label individual dorsal md-

da neuron (see Material and Methods page 27). Figure 33 shows the 

dendrites of each single md-da neuron of the dorsal cluster. The best 
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frequency of singly labelled cells was achieved with a brief heat shock of 

5min. So, it is possible to mark individual md-da neurons in 20-21h AEL old 

embryos via the FLP-out technique. In the future, this method can be used 

also in a sns mutant background. 

 

 4.12. MARCM of sns in md-da neurons of the dorsal cluster 
 

The data obtained up to this point, indicate that mutations in the sns gene 

cause dendritic alterations. These phenotypes can be cell-autonomously 

rescued in the md-da neurons (see Figure 25). MARCM can provide an 

additional lines of evidence that the phenotype is due to a cell-autonomous 

requirement of sns in the md-da neurons. As described in Material and 

Methods page 28, MARCM enables the generation of GFP-labelled and 

homozygous mutant md-da neurons in an otherwise heterozygous and 

unlabeled background. Hence, this genetic technique allows to study 

individual snsS660 mutant md-da neurons and to verify a possible cell-

autonomous function of sns in dendrite morphogenesis.  

 For MARCM analysis of sns in md-da neurons, a recombinant chromosome 

was created that bears the FRT42D transgene and the snsS660 LOF mutation. 

The original FRT42D chromosome was used for the generation of control 

MARCM clones. Unfortunately, the frequency of MARCM clones was very low 

with both, the FRT42D snsS660 and the original FRT42D chromosome, due to 

an unspecified problem with the used FRT42D tubGal80 chromosome. 
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Figure 34. Examples of ddaD MARCM clones. Panel a shows FRT42D control clone 

and panel b a FRT42D snsS660 mutant clone. Only two clones could be obtained per 

genotype. Both FRT42D snsS660 mutant clones have less dendritic termini (arrows) than 

the control clones. Axons are indicated by arrowheads. Anterior is to the left and dorsal 

up. The scale bars are 50 μm. 

 

Similarily, only few clones of the dorsal md-da neurons were generated. Low 

numbers of clones exclude a quantitative MARCM analysis. Therefore, only 

ddaD and ddaC MARCM clones can be presented here. Figure 34 shows 

examples of the obtained ddaD MARCM clones. 

 Two ddaD MARCM control clones and two snsS660 mutant clones could be 

induced. In both mutant clones the number of the dendritic termini was 

reduced compared to the controls (FRT42D: 25 n=2; FRT42D snsS660: 16 

n=2), which suggests a cell-autonomous function of sns in branch formation in 

these neurons. Examples of the produced ddaC control and snsS660 mutant 

MARCM clones are shown in Figure 35. 
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Figure 35. Examples of ddaC MARCM clones. Panel a shows a FRT42D control clone 

and panel b a FRT42D snsS660 mutant clone. Only three control clones and seven snsS660

mutant clones could be induced. No difference of the dendrite morphology control or 

mutant ddaC clones could be detected. Axons are indicated by arrowheads. Anterior is to 

the left and dorsal up. The scale bars are 50 μm. 

 

The dendritic morphology of the control and mutant ddaC MARCM clones did 

not show major differences. Hence, sns seems not to affect cell-autonomously 

the dendritic differentiation of class IV md-da neurons. 

 

 4.13. Analysis of dendritic morphology of md-da neurons in a  
 blown-fuse mutant 
 

All md-da neurons develop their dendrites in a layer between the epidermis 

and the body wall musculature (Gao et al., 1999). An interaction between the 

musculature and md-da neurons is conceivable, because of the tight proximity 

of these cells. Therefore, it is possible that the dendritic phenotype of md-da 

neurons in sns mutants could be caused by the loss of the body wall 

musculature. This would mean that the dendritic phenotype is sns mutant is 

not due to a direct action of this gene in md-da neurons. For example, the loss 

of body wall musculature in the sns mutants might delay the embryonic 
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development and consequently affect dendritic development of md-da 

neurons indirectly. 

 

 

Figure 36. The body wall musculature in blown fuse1 mutant embryos (20-21h AEL).
Control is shown in a and b, sns904 in c and d and blown fuse1 in e and f. Panels a,c and 

e show dorsolateral view, whereas panels b, d and f show ventrolateral view, 

respectively. In sns904 and blown fuse1 mutants, the somatic musculature is not normally 

formed. Instead, small and often mononucleated muscles (arrows in c, d, e and f) are 

seen in both mutants. Also, unfused myoblasts can be observed in both mutants 

(arrowheads in c,d,e and f). Scale bars are 50 μm. Dorsal is up and anterior to the left. 

 

If this holds true, the dendritic morphology of md-da neurons should be 

affected in a similar way in all mutants, where formation of the body wall 

musculature is prevented during embryogenesis. In blown fuse1 mutant 

embryos, fusion of myoblasts is inhibited and the body wall musculature 

consequently fails to form (Figure 36, (Doberstein et al., 1997; Paululat et al., 

1999)). Only mononucleated reminiscents of muscles (mini-muscles) and few 

unfused myoblasts can be observed in both genotypes. 
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Figure 37. Dendritic phenotypes of the class I md-da neuron vpda in blown fuse1

mutant embryos (20-21h AEL). 2-21 system was used to visualize the vpda neurons.

Control is shown in a, sns904 in b and blown fuse1 in c. The vpda neurons in blown fuse1

mutant embryos do not show any difference to the controls. Scale bars are 10 μm. Dorsal 

is up and anterior to the left. 

 

Hence, the musculature phenotypes in blown fuse and sns mutants appear 

very similar. In both mutants, the dendritic phenotype of class I md-da 

neurons was examined in the 2-21 background (see Figure 37). The vpda 

neurons in blown fuse1 mutants do not show any obvious alterations of their 

dendritic arbours in comparison to the controls. No significant changes in the 

number of branches or length of branches could be observed in the vpda 

neurons in the blown fuse1 mutant embryos (see Figure 38). 

 The dendrites of the class I md-da neuron vpda in the blown fuse1 mutant do 

not show an overbranching phenotype as in the sns904 mutants. Moreover, in 

both mutants, number and length of primary and secondary branches of vpda 

neurons are not altered in comparison to the control neurons. 
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Figure 38. Quantifications of the dendritic phenotype of the class I md-da neuron 
vpda in blown fuse1 mutant embryos (20-21h AEL). Panel a shows quantifications of 

vpda dendrites in control, sns904 and blown fuse1 mutant embryos (20-21h old). The 

number of third order dendrites is not altered in the blown fuse1 mutants (control=7.83

n=18(27), sns904=13,04 n=14(26), blown fuse1=8,88 n=16(28)). There is no difference in

the branch length among the three tested genotypes (panel b). 

 

Thus, it seems that the loss of the body wall musculature has no significant 

impact on the development of the vpda neuron. This excludes also a delay of 

neuronal development due to a possible restriction of the embryonic 

development in the sns or blown fuse mutants, since overall dendritic features 

of vpda neurons are not altered in these mutants. This observation suggests 

that sns has a direct effect on the dendrite development in Drosophila 

embryos, independent of the dramatic muscle phenotype. Taken together with 

the cell-autonomous rescue of the dendritic phenotype (Figure 25 on page 

67), and with the presence of Sns in the md-da neurons at the larval stages 

(Figure 26 on page 68), these data suggest that sns acts within the md-da 

neurons to modulate dendritic morphology. 
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5. Discussion 
 

5.1. Summary of the results 
 

This project used the md-da neurons of the embryonic and larval PNS of 

Drosophila to identify and characterise genes that are involved in the 

regulation of branch formation in dendrites. Thus, the aim of this project was 

to map recessive lethal mutations on the second chromosome of six mutant 

lines that showed an abnormal dendritic overbranching in the dorsal group of 

md-da neurons at embryonic stage 17. In one of these mutant lines, namely 

the mutant line 904, a recessive lethal mutation was mapped to the gene 

sticks and stones (sns) that encodes a transmembrane molecule of the Ig-

superfamily, which is required for myoblast fusion during the formation of the 

body wall musculature in Drosophila. A rescue of the overbranching 

phenotype in the dendrites of dorsal md-da neurons of the line 904, through 

expression of sns exclusively in these neurons, proved that the dendritic 

phenotype is due to a mutation in sns and suggests that this molecule acts 

cell-autonomously to control the formation of dendritc branches in md-da 

neurons. Moreover, sns expression could be detected in md-da neurons at 

larval stages, which further supports a cell-autonomous function of this 

molecule. 

 The dendrites of class I md-da neurons show opposite dendritic phenotypes 

in sns mutants. In contrast to the vpda neuron that showed a mild 

overbranching phenotype, the dendritic complexity of the dorsal class I md-da 

neuron ddaE was somewhat reduced. Furthermore, no dendritic phenotype 

could be seen in the dorsal class IV neuron ddaC. Interestingly, the increased 

number of high order branches of the vpda neuron in sns mutants was not 

seen in a blown fuse mutant, which also lacks a somatic body wall 

musculature. 
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 5.2. A genetic screen to identify new genes involved in dendrite 
 morphogenesis of md-da neurons 

 

All sensory neurons of the embryonic and larval PNS of Drosophila are 

located at the body wall, between the epidermis and the somatic musculature 

(reference Bodmer and Jan (Gao et al., 1999)). The md-da neurons develop 

their complex dendritic arbours directly underneath the epidermis in an almost 

two-dimensional fashion (Gao et al., 1999). Several GAL4 driver lines are 

available that allow to label these neurons in living animals, via the cell-

specific expression of fluorophores. The embryonic development of md-da 

neurons has been studied by using a GAL4 driver, which is active in all md-da 

neurons (Gao et al., 1999). At the late embryonic stage 17, the md-da 

neurons of the dorsal cluster generate a dendritic field with a reproducible 

morphology ((Gao et al., 1999), Figure 6 on page 25). Thus, this system 

allows screening for recessive lethal mutations that affect the differentiation of 

these dorsal cluster dendrites. Such an attempt was performed by the group 

of Prof Y.-N. Jan, via EMS-mutagenesis of a fly line that harbours the pan md-

da GAL4 driver 109(2)80 (Gao et al., 1999). Several new genes that influence 

diverse aspects of dendrite differentiation, like: outgrowth, branching and 

routing, were already identified in that screen (Gao et al., 1999). The success 

of this attempt was also based upon the availability of genetic tools in 

Drosophila that allow to map and characterize recessive lethal mutations in a 

reasonable amount of time. 

 

 5.3. Limitations of the screen 
 

 A drawback of this model system is the relative insensitivity of the readout. 

The expression pattern of the used GAL4 driver line makes it difficult to 

analyse dendritic arbours of individual md-da neurons. A complete structural 

stereotypy of the dorsal cluster dendrites is not achieved at the late embryonic 

stage 17, as all md-da neurons continue to differentiate their dendritic arbours 

until early larval stages (Sugimura et al., 2003). Therefore, mutants with more 
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subtly altered dendritic morphologies need to be carefully analysed to exclude 

false-positive phenotypes. 

 EMS mutagenesis produces many non-lethal mutations beside the few 

recessive lethal ones. Since the dendritic phenotype might be due to such a 

non-lethal mutation, the mapping of recessive lethal mutations was started 

with all six mutant lines that share a common overbranching phenotype, to 

increase the chance that at least one of these mutations is responsible for the 

dendritic phenotype. 

 The production of false-positive phenotypes in the dendrites of md-da 

neurons may occur changing the normal developmental time frame of the 

embryos. Examination of epidermal structures or gut characteristics, which is 

possible through the autofluorescence of these tissues, as well as the onset of 

muscle contractions in late embryonic stages can help to determine the 

developmental stage of the embryo. Moreover, the generated mutants might 

have defects in non-neuronal tissues that affect indirectly the dendritic 

architecture of md-da neurons. This possibility can only be ruled out through 

appropriate analysis, after localisation of the mutations that causes the 

dendritic phenotype in md-da neurons of such mutants. 

 

 5.4. The dendritic phenotype of md-da neurons in the six mutant 
 lines  
 

The dendrites of the dorsal cluster md-da neurons in all six mutant lines 

generate a higher number of termini than in the controls, whereas other 

arbours characteristics are not changed. Differences of the dendritic 

phenotype between individual mutants are not reproducible, due to variations 

in the degree of the dendrite overbranching among individuals of the same 

genotype. To analyse and quantify the phenotype of single md-da neurons in 

a mutant line, the mutation that produces the phenotype needs to be 

separated from the 80G2, which is only possible after its mapping. 
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 5.5. Approaches to map recessive lethal mutations in Drosophila 
 

In general, recessive lethal mutations are mapped in a two-step process. 

First, the mutation is roughly localised to approximately 100-200kbp large 

interval on the mutant chromosome via deficiency mapping (see Material and 

Methods page 31; Results page 41). Subsequently, the mutation becomes 

positioned to a single gene within this defined chromosomal area. Several 

techniques are available for this second mapping step. A technically easy 

possibility is to use additional deficiencies that overlap in the chromosomal 

intervals that contain recessive lethal mutations. Through complementation 

analysis with these deficiencies it is feasible to narrow down successively to 

the area where a recessive lethal mutation is induced. The combination of 

these deficiencies with recessive lethal transposon insertions can provide the 

chance to enhance the resolution of such a mapping attempt to single genes 

(Bellen et al., 2004). 

 The specificity of such an approach depends on the availability of sufficient 

chromosomal deficiencies and recessive lethal transposon insertions in the 

chromosomal interval of interest. Furthermore, the breakpoints of 

chromosomal deficiencies should be molecularly mapped, which allows 

precise and reliable analysis of the complementation data. Collections of 

recessive lethal transposon insertions and deficiencies with molecularly 

mapped breakpoints are being constantly expanded, but are often still not 

sufficient to provide an adequate resolution (Parks et al., 2004; Ryder et al., 

2004). 

 The huge number of available P-element insertions provides several 

additional possibilities to map recessive lethal mutations (Chen et al., 1998; 

Zhai et al., 2003). First, the feature of the P-element transposase to induce 

site-specific recombination between sister chromosomes, instead of a P-

element transposition, can be used to map recessive lethal mutations, despite 

the low frequency of this recombination event (Chen et al., 1998). Secondly, 

the large number of available P-element insertions can be utilized as 

molecular markers for classical meiotic recombination mapping (Zhai et al., 

2003). Due to the presence of the GAL4 and UAS insertions on the 
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mutagenized chromosomes, the first technique was not applicable for the 

mapping of recessive lethal mutations in the six mutant lines. The 80G2 line 

includes three P-element transgenes per chromosome (1xGAL4 driver and 

2xUAS-GFP), which would interfere with the procedure of the site-specific 

recombination. Similarly, the presence of three P-element insertions on the 

mutant chromosomes limits also the practicability of the second technique, 

because the transposon marker white+ is already present in the six mutant 

lines. The usage of a different P-element marker, like yellow+, is conceivable 

but more demanding, since P-element insertions with other markers than 

white+ are rarer. 

 A powerful but also tedious and technically challenging approach is SNP-

mapping. Nevertheless, several groups have proven the applicability of this 

technique, where SNPs are used as molecular markers for meiotic 

recombination mapping (Berger et al., 2001; Hoskins et al., 2001). High 

resolution maps of SNPs were already generated for distinct pairs of 

chromosomes, which showed an abundant availability of these molecular 

markers along the major chromosomes. A comparable SNP map does not 

exist between the mutagenized chromosomes of the six mutant lines and 

corresponding reference chromosomes. Therefore, a first step is to find 

appropriate reference chromosomes that can be used to create sufficient local 

SNP markers for mapping of recessive lethal mutations on the second 

chromosome of the six mutant lines in a high resolution. Moreover, alternative 

markers for the P-elements, rather than white+, would be also required for 

SNP-mapping as well, to limit the area, where the meiotic recombination 

between a mutant and a reference chromosome would take place. 

 The number of applicable methods to localise recessive lethal mutations in 

the six mutant lines is therefore rather limited. Hence, successful mapping 

depends on the availability of deficiencies and P-element insertions in the 

chromosomal area of interest. The resolution of this approach needs to be 

high enough, to identify the recessive lethal mutation via direct sequencing of 

the remaining candidate genes. 
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 5.6. Deficiency mapping of recessive lethal mutations 
 

Via deficiency mapping, recessive lethal mutations could be localised on the 

second chromosome in five of the six mutant lines (see Table 1 page 42). In 

the mutant lines 969, 797 and 774 more than one recessive lethal mutation 

was mapped (see Table 1 page 42). The mutation that causes lethality of 

homozygous animals in the mutant line 562 is most likely not uncovered by 

the used collection of chromosomal deficiencies and could therefore not be 

identified. Since the second chromosome of these mutant lines contain a 

variety of different mutations, the complementation analysis with 

chromosomal deficiencies might produce a decreased viability of 

transheterozygous animals, although recessive lethal mutations are not 

uncovered. Such effects could cause ambiguous results of complementation 

tests and could undermine the efforts to map recessive lethal mutations, as it 

is the case for Df(2R)X58-12 (BL-282), which caused a general poor viability 

in almost all transheterozygous animals (see Results page 43). For this 

reasons, it is recommendable to verify the complementation data with 

independent and smaller deficiencies that overlap within the identified area. 

 An EMS mutagenesis is usually set to produce a small number of recessive 

lethal mutations. Thereby, many other, non-lethal mutations are induced on 

the same chromosome that could be also responsible for the dendritic 

phenotype. Also synergetic effects of different mutations on the mutant 

chromosomes might cause the overbranching of the md-da neurons. To 

prevent such a possibility, the dendritic phenotype of md-da neurons was re-

examined in transheterozygous animals for each identified deficiency that 

uncovers a recessive lethal mutation in the lines 904, 797, 774 and 566 (see 

Figure 13). An overbranching phenotype in the md-da neurons was confirmed 

for the recessive lethal mutation in the line 904 (uncovered by Df(2R)H3E1) 

and for one of the three recessive lethal mutations in the line 797 (uncovered 

by Df(2L)BSC30). These results suggest that these two recessive lethal 

mutations produce the dendritic phenotype in the lines 904 and 797, 

respectively. 
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 Frequently, the viability of transheterozygous embryos was impaired. Many 

embryos showed unspecific defects of neuronal morphology or were 

obviously delayed in their development. Due to such limitations, the recessive 

lethal mutations in the mutant line 969 could not be reliably examined. The 

corresponding control embryos did not show these problems in a comparable 

frequency. Hence, the presence of two recessive lethal mutations could cause 

the poor viability of transheterozygous embryos. A solution for this situation 

could be the separation of the two recessive lethal mutations by meiotic 

recombination. In such recombinants, each mutation could be examined 

individually. Otherwise, different and smaller deficiencies could be tested for 

their compatibility with the mutant chromosome of the mutant line 969. 

 

 5.7. Mapping of the recessive lethal mutation in the line 797 
 

Three deficiencies with molecularly mapped breakpoints were used to 

minimize the number of candidate genes from 76 to 58 in the chromosomal 

interval that is uncovered by Df(2L)BSC30 (see Results Table 4 and Figure 

14). Thus, the resolution of the deficiency mapping is not high enough to start 

the sequencing of candidate genes. To complete the mapping, a set of small 

chromosomal deficiencies within the target area could be created for 

complementation analysis with line 797 (Huet et al., 2002; Parks et al., 2004; 

Ryder et al., 2004). In addition, the set of available UAS-RNAi lines could be 

used to successively knock down candidate genes in the 80G2 fly line (Dietzl 

et al., 2007). 

 

 5.8. Mapping of the recessive lethal mutation in the line 904 
 

In the mutant line 904, a recessive lethal mutation was localised to the 

chromosomal interval 2R:44D1-44F12 via deficiency mapping. Four additional 

deficiencies that overlap in this area were used for further complementation 

analysis (see Results Table 5 and Figure 15). Since the breakpoints of these 

four deficiencies are molecularly mapped, it was possible to determine the 

number of remaining candidate genes for the recessive lethal mutation in the 
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mutant line 904. Eight of these 22 remaining genes were excluded by 

complementation analysis with available recessive lethal P-element 

insertions.  

 Two approaches were started to map the recessive lethal mutation in the 

remaining 200kbp. First, a local P-element hop was conducted to generate 

recessive lethal mutations in an in depended fly line that could be used for a 

complementation analysis with the mutant line 904 (see Results page 50). 

Thus, in the best case, this technique would create independent alleles of the 

recessive lethal mutation in a comparatively clean background. This allele 

could be immediately combined with different GAL4 drivers to examine the 

dendritic phenotype specifically in class I or class IV md-da neurons. 

Furthermore, the possibility to precisely excise this P-element again, would 

allow to control that the insertion is responsible for the phenotype. 

 Secondly, despite the technical concerns, a SNP-mapping approach was 

conducted to position the recessive lethal mutation within 2R:44D1-44F12, 

because of the following reasons. Due to the position of the recessive lethal 

mutation to the right side of the P-elements present in 80G2, it was possible 

to use the easily scoreable white+ as P-element marker to the right side of the 

recessive lethal mutation. For the SNP-mapping from the left side of the 

recessive lethal mutation, yellow+ was chosen as a P-element marker. More 

important, it turned out to be unexpectedly easy to identify adequate reference 

chromosomes with a sufficient number of SNPs that distinguish them from the 

mutant chromosomes. 

 

 5.9. Local P-element hop 
 

Two different types of P-elements were used for this approach in the mutant 

line 904 (see Results Table 6). The mobilisation of the P{SUPor-P} element 

from BL-14021 generated no recessive lethal insertion among the 67 selected 

lines (see Results Table 7). After mobilisation of the P{EPgy2} element in BL-

15867, 54 individual lines were isolated (see Results Table 7). Among all 

these lines, four carried recessive lethal insertions and one of them did not 

complement the lethality of the mutant line 904. This insertion line was named 
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P66. Interestingly, the analysis of the vpda neuron in P66 revealed an 

overbranching phenotype that was similar to the one seen in vpda neurons of 

mutant 904(3) at a later time point of this project (see Results Figure 17 and 

18). The iPCR protocol, which was performed to determine the new position 

of the P-element in P66, returned two different flanking genomic sequences 

from the 5’ and 3’ ends of this P-element insertion, respectively. The 

sequence from the 5’ end of the insertion anneals to the original position close 

to the gene Rya-r44F, whereas the sequence from the 3’end anneals to the 

5’UTR of the gene cmp44E, which is several kbp upstream of Rya-r44F. 

Independent recessive lethal alleles of Rya-r44F and cmp44E complemented 

the lethality of the lines P66 and 904. Hence, these two genes are not 

affected in both mutants. An in-situ hybridisation of the P{EPgy2} element on 

polytene chromosomes of the original BL-15867 line and of the P66 mutant 

confirmed the presence of the P-element upstream of the gene Rya-r44F in 

both lines. Moreover, another P-element insertion was detected in BL-15867 

on the left arm of the second chromosome in 2L:30A1-A5, which was absent 

in P66. This second P-element insertion in BL-15867 was not declared in the 

genotype of this stock. 

 The complementation data and the similar dendritic phenotype of the vpda 

neuron in the mutant line P66 and 904 suggests that P66 contains a recessive 

lethal allele of sns. But at the time point when this local P-element hop was 

performed, this conclusion was not possible, due to the confusing data from 

the iPCR and the in-situ hybridisations of P{EPgy2} elements in P66 and BL-

15867. How is it possible that the iPCR reveals flanking sequences in Rya-

r44F and cmp44E, although both genes are quite far away from each other 

and additionally are not affected in the mutant line P66? The explanation that 

the P-element upstream of Rya-r44F moves several times and fakes the iPCR 

results through the transportation of gDNA stretches from imprecise excisions 

is not likely, because these excised gDNA pieces should cause severe 

deletion mutations in cmp44E or Rya-r44F. How did sns become mutated in 

the P66 line? It is conceivable that the second and undeclared P-element 

insertion in BL-15867 produced this mutation through its insertion in sns. How 

could this fit to the data of the in-situ hybridisation? Either the two P-element 
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insertions in sns and Rya-r44F are too close to each other so that they could 

not be distinguished anymore by this technique, or this P-element became 

again imprecisely excised and left a deletion in sns, but did not reinsert. 

 Hence, the stocks that are used as P-element donors should be accurately 

analysed before their usage in a local P-element hop. Multiple transposon 

insertion in a jumpstarter stock are likely to cause ambiguous results as 

presented here. Furthermore, the dimensions of this approach were much too 

small. It would be advantageous to use four or five independent donor P-

elements. To increase the number of new recessive lethal P-element 

mutations, many more individual transpositions should have been screened. 

The work on the P66 line was stopped due to the confusing mapping data. 

 

 5.10. SNP-Mapping 
 

The performed SNP-mapping positioned the recessive lethal mutation in the 

mutant line 904 among five genes in 2R:44E3-44F7 (see Results Figure 20 

and 21). This result confirmed the data of the complementation analysis with 

overlapping deficiencies and recessive lethal P-element insertions (see 

Results Figure 15) and could exclude ten more candidate genes. It could be 

shown that yellow+ can be used as a P-element marker for SNP-mapping 

instead of white+, although it is comparatively more tedious. Moreover, only 

six single SNP markers were enough to exclude the majority of the remaining 

candidate genes in 2R:44E3-44F7. Therefore, SNP-mapping is a powerful 

approach, which is even applicable without an already established map of 

SNP-markers. The only limiting factor appears to be the time consuming 

generation of a sufficient number of recombinants to perform SNP-mapping 

with highest resolution. 

 

 5.11. Mapping of the recessive lethal mutation to the gene sns 
 

The SNP-mapping localised the recessive lethal mutation to five genes in 

2R:44E3-44F7. Among these genes, a reproducible nucleotide exchange was 

identified in sns at the position 2R:4713580. This mutation alters the 
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consensus sequence of the splice donor site between the seventh and eighth 

exon in sns (see Results Figure 22). Hence, it is likely that splicing is not 

initiated at this site. In this case all subsequent ORFs are shifted and 

terminated by irregular STOP codons. Two independent null alleles of sns did 

not complement the lethality of the mutant line 904. Thus, the line 904 

contains a sns LOF allele. 

 In sns mutant embryos, myoblast fusion is prevented and the body wall 

musculature consequently fails to form (Bour et al., 2000). For this reason, the 

state of the body wall musculature in the mutant line 904 was examined by 

antibody stainings and a MHC::tauGFP transgene (see Results Figure 24). As 

in the snsS660 mutant embryos, a normal somatic musculature is not present in 

embryos of the mutant line 904. Instead of large and precisely arranged 

myotubes, only small and elongated fibers that resemble differentiated but 

unfused muscle precursors are visible (“mini-muscles”; (Chen and Olson, 

2001; Schroter et al., 2004)). Also, unfused an undifferentiated myoblasts 

were detected. The phenotypes of the somatic musculature in the mutant line 

904 and snsS660 are virtually the same. Thus, the sequence analysis, the 

complementation data and the phenotype of the musculature show that the 

line 904 contains a LOF mutation in the gene sns, which was therefore named 

sns904. 

 

 5.12. Does sns affect the dendrite differentiation of md-da neurons 
 directly? 
 

Mutant line sns904 contains a recessive lethal mutation in the gene sns that 

inhibits the development of the larval body wall musculature (Bour et al., 

2000). In addition, sns is not known to be expressed in the neuronal tissue 

during the first phase of the embryonic development, when the somatic 

musculature is formed (Bour et al., 2000). This raises the question, how is the 

dendritic phenotype of the dorsal md-da neurons produced in the line sns904? 

Could it be due to a specific function of sns or a secondary effect that is 

caused by the loss of the body wall musculature? 
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 Taking into account the function and the published expression pattern of sns 

(see Introduction page 16; (Bour et al., 2000)) it is likely that the dendritic 

phenotype of md-da neurons in the mutant line 904 is an indirect effect due to 

the loss of the body wall musculature. Nevertheless, a direct function of sns 

can not be completely excluded. The expression pattern of sns during late 

embryonic or larval stages is not known, but dendrites of md-da neurons show 

massive growth and differentiation, especially in the late embryonic stage 16 

and 17 (Gao et al., 1999). In addition, there are no indications for a correlation 

between specific defects of the musculature or epidermis and specific 

changes of dendritic morphology of md-da neurons (Parrish et al., 2006). 

 Hence, a UAS-transgene that allows expressing full-length (FL) sns under 

GAL4 control was used to rescue the dendritic phenotype in the dorsal md-da 

neurons in the mutant line 904 at embryonic stage 17. To obtain a quantifiable 

readout, the number of termini of the dendritic field that is formed by the 

dorsal md-da neurons was counted. In line sns904, a significantly higher 

number of dendritic termini was detected in comparison to the control (see 

Results Figure 25). Moreover, the expression of FL-sns under the control of 

the 109(2)80 GAL4 driver reduced the number of dendritic termini in line 

sns904 to control levels. This indicates that the dendritic phenotype in md-da 

neurons of line sns904 is due to the loss of sns specifically in md-da neurons at 

late embryonic stage 17. The expression pattern of the 109(2)80 GAL4 driver 

is very restricted to the nervous system so that a leakage of sns expression in 

the musculature or epidermis can be excluded (Gao et al., 1999). 

Furthermore, the lethality of line sns904 was not rescued by the expression of 

sns under the control of the 109(2)80 GAL4. The blockage of the somatic 

musculature was still present in this genotype, which further supports the 

specificity of this experiment. 

 The rescue experiment implies that sns might be expressed in the md-da 

neurons at the late embryonic or larval stages. Unfortunately, it is technically 

difficult to perform an antibody staining in embryos that are older than 16h 

AEL (see Material and Methods page 29). But in the third instar larvae fillets, 

expression of Sns was detected in the musculature, epidermis and all md-da 

neurons. This indicates that sns expression is not completely abolished after 
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formation of the somatic body wall musculature during embryonic and larval 

development. 

 In sns mutants, the class I md-da neuron vpda showed an overbranching 

phenotype in 20-21h old embryos (see Results Figure 27 and 28). This 

reproducible readout offers the possibility to examine the dendritic phenotype 

of the vpda in different muscle mutants, like blown fuse1 (Doberstein et al., 

1997), in which sns is normally expressed. The loss of blown fuse prevents 

the formation of the body wall musculature in a comparable way as in sns 

mutants (see Figure 36; (Doberstein et al., 1997)). Interestingly, the vpda 

neuron in blown fuse1 mutants did not show any alteration in the branch 

number or length in 20-21h old embryos (see Results Figure 37 and 38). 

Thus, a loss of the somatic musculature does not affect the dendritic 

differentiation of vpda, which consequently means that the body wall 

musculature has no impact on dendrite development of this class I md-da 

neuron at the late embryonic stage 17. In addition, the loss of the body wall 

musculature does not seem to delay the general development of the vpda 

neuron, which could indirectly cause such an overbranching phenotype as the 

one observed for the vpda neurons in sns mutants. 

 According to the rescue experiment, the dendritic phenotype in the dorsal 

cluster md-da neurons of the line sns904 is a consequence of the loss of sns in 

these neurons. Furthermore, the phenotype of the vpda neuron in blown fuse1 

mutants suggests that the body wall musculature does not contribute to the 

dendritic differentiation of this neuron at the embryonic stage 17. 

 

 5.13. Does sns have a cell-autonomous function in the dendrite 
 morphogenesis of md-da neurons? 
 

The rescue of the dendritic overbranching phenotype of the dorsal cluster md-

da neurons through specific expression of a UAS-sns transgene in these 

neurons implies that sns has an cell-autonomous function. This is supported 

by the finding that sns is expressed in md-da neurons at least at later larval 

stages. To obtain a confirmation for these findings, a MARCM was initiated, 

which could not be finished in time, due to technical problems. Otherwise, a 
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class-specific knock down of sns expression through UAS-RNAi could be 

performed to prove a cell-autonomous function of sns. With MARCM the 

dendritic phenotype of individual sns mutant md-da could be studied in an 

otherwise heterozygous background. Thus, it would provide useful information 

that could help to understand the role of Sns during dendrite morphogenesis 

of md-da neurons. 

 

 5.14. What is the role of sns in the dendritic development of md-da 
 neurons? 
 

In the line sns904, a LOF mutation of the gene sns produced a dendritic 

overbranching phenotype of the dorsal md-da neurons. Due to the expression 

pattern of the 109(2)80 GAL4 driver, it was not possible to study the dendritic 

phenotype of individual md-da neurons in the line sns904. Thus, the mutant 

lines sns904(3) and snsS660 were combined with the 2-21 or the ppk::GFP 

transgene to label specifically class I or class IV md-da neurons (see Material 

and Methods page 25). 

 As already mentioned above, the vpda neurons in both sns mutants showed 

a significantly increased number of the third order dendrites in comparison to 

the control (see Results Figure 27 and 28), whereas other features of the 

dendritic arbours were not changed. The normal length of the primary and 

secondary dendrites of the vpda neuron in both sns mutants indicates that the 

increased number of third order branches was not due to a developmental 

delay. In contrast, the dendritic arbours of the dorsal class I md-da neuron 

ddaE looked somewhat reduced or were slightly shifted in their positions in 

the line sns904(3) and snsS660. This phenotype was more penetrant in the 

snsS660 mutant. The quantifications of the dendritic arbour characteristics of 

the ddaE in the snsS660 mutant revealed a significantly reduced length of the 

primary dendrite and a reduced number of secondary dendrites in comparison 

with the control. No quantitative alterations of the ddaE dendrites could be 

detected in the line sns904(3). What might be the reason for the variations of 

the dendritic phenotype in the ddaE neuron between line sns904(3) and 

snsS660? The loss of Sns could be compensated by a partially redundant 
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signal pathway during the development of the ddaE md-da neuron. Hence, in 

20-21h AEL old embryos, the loss of sns expression would not produce the 

LOF phenotype of the dendrites with a constant high penetrance. 

 

 However, the dendritic phenotypes in the class I md-da neurons vpda and 

ddaE were opposite. The dendrites of the vpda neurons were mildly 

overbranched in both sns mutants, whereas the dendritic arbours complexity 

of the ddaE neuron was subtly reduced in the snsS660 mutant. Thus, a general 

definition of the role of the gene sns for the dendrite development of class I 

md-da neurons can not be formulated at the moment. What could be an 

explanation for this finding? Assuming that sns has a cell-autonomous 

function in class I md-da neurons, it could potentially affect different 

intracellular signal pathways in vpda and ddaE neurons, which are 

responsible for the distinct functions of sns in both neurons. This would 

require the assumption that the ddaE and the vpda neurons vary in their 

expression profiles, which is supported by the different proneuronal origin of 

both cells (Jarman et al., 1993). 

 Although, it could be shown in this study that the loss of the body wall 

musculature in blown fuse1 mutants did not change the dendritic morphology 

of the vpda neuron, it does not consequently mean that the same is true for 

the ddaE neuron. Despite the low chance for such a case, it is conceivable 

that the development of the ddaE neurons is indirectly modified by the loss of 

the musculature. How could this fit to the rescue experiment in the dorsal 

cluster of the line sns904, were the overbranching phenotype of the md-da 

neurons was converted to control level by the expression FL-sns specifically 

in this neurons? The dendrites of the ddaE neurons were not overbranched in 

sns mutants, which means that this neuron did not contribute to the 

phenotype of the dorsal cluster dendrites in the line sns904. Furthermore, a 

rescue of the ddaE neuron would not be detectable in this experimental setup, 

since the expression pattern of the 109(2)80 GAL4 driver impedes the study 

of the dendritic morphology of individual md-da neurons. 

 As already mentioned above, the dendrites of the dorsal class I md-da 

neuron ddaE did not show an overbranching phenotype. In addition, the 
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dendrites of the dorsal class IV md-da neurons were not altered in both sns 

mutants. Thus, the dorsal class I and class IV md-da neurons are not 

responsible for the increased number of termini in the dendritic field of the 

dorsal cluster md-da neurons in the line sns904. Consequently, the 

overbranching phenotype in this line must be due to an abnormal branch 

formation in the dendrites of the dorsal class II or class III md-da neurons. Up 

to date, there are no GAL4 driver that allow to label specifically these md-da 

neurons during embryonic stages. For this reason, a FLP-out technique was 

successfully tested for its ability to label individual md-da neurons in the 

dorsal cluster. By using this approach, it is possible to examine the dendritic 

phenotype of single md-da neurons in a sns mutant at the embryonic stage 

17. 

 In a complementary approach, MARCM analysis would be helpful to find the 

md-da neurons that are responsible for the overbranching of the dorsal cluster 

dendrites in the line sns904 and to clarify the discrepancy between the 

dendritic phenotypes of the ddaE and vpda neurons. Both techniques should 

allow to define the mode of action of Sns during dendrite morphogenesis of 

the md-da neurons. 

 

 5.15. The role of Sns during the formation of dendrites 
 

Based on its mutant phenotype, Sns is required for the first steps of myoblast 

fusion in Drosophila (Bour et al., 2000). Through its interaction with Duf or 

Rst, Sns mediates the initial attraction (Ruiz-Gomez et al., 2000; 

Strunkelnberg et al., 2001) and adherence (Galletta et al., 2004) between the 

two different myoblast types at the onset of muscle formation during the 

embryonic development. The interaction between Sns and Duf (Galletta et al., 

2004; Kesper et al., 2007) recruits molecules to the site of the myoblast fusion 

in FCMs (Kim et al., 2007; Massarwa et al., 2007) and muscle founder cells 

(Chen et al., 2006; Chen and Olson, 2001; Menon and Chia, 2001) that are 

involved in the modulation of the actin-cytoskeleton. In FCMs, Sns binds to 

the SH2-SH3 adaptor protein D-Crk that in turn recruits Solitary, a Wasp 

interaction protein, and the Wasp/Arp2-3 complex (Kim et al., 2007; 

98 



Discussion 

Massarwa et al., 2007). Solitary and Wasp are needed for the localised 

induction of actin polymerisation at the sites of myoblast fusion (Kim et al., 

2007). Moreover, this actin-polymerisation is essential for the directed 

transport of exocytotic vesicles towards the area between aligned myoblasts 

that is defined by the interaction of Sns and Duf (Kim et al., 2007). Hence, 

Sns provides a positional cue for actin polymerisation and consequently the 

transport of secretory vesicles. Similarly, the vertebrate homologue of Sns, 

named Nephrin (Bour et al., 2000; Putaala et al., 2001), binds the SH2-SH3 

adaptor protein Nck that is known to modulate the actin cytoskeleton through 

its association with Wasp (Buday et al., 2002; Jones et al., 2006). Nephrin is 

expressed in kidney, pancreas and the brain, where it is localised in the 

cerebellum and the mesencephalon (Putaala et al., 2001). The polymerisation 

of the actin cytoskeleton upon interaction of Nephrin and Nck is crucial for the 

maintenance of the podocyte cellular junction, and has been shown to induce 

process formation in HEK-293T cells (Jones et al., 2006; Li et al., 2006). 

 Furthermore, the binding of Nck to Nephrin and the resulting actin 

polymerisation depends on a Tyrosin phosphorylation of the cytoplasmatic tail 

of Nephrin through the Scr-family kinase Fyn (Jones et al., 2006; Li et al., 

2006). Interestingly, Fyn is required for different aspects of neuronal 

development, like the semaphorin dependent formation of dendritic branches 

and spine maturation in hippocampal cells (Morita et al., 2006) or axon 

guidance through phosphorylation of the Netrin receptor DCC (Meriane et al., 

2004). Although an interaction of Sns with a member of the Src kinase family 

has not been shown so far, the presence of two putative kinase recognition 

sites (Artero et al., 2001) suggest that the Sns function might be also 

controlled by phosphorylation of its cytoplasmatic tail, which could be provided 

by Src kinases. 

 During myoblast fusion in Drosophila, the function of Sns depends on its 

interaction with two other transmembrane molecules of the Ig-superfamily, 

which are called Duf and Rst (Galletta et al., 2004; Ruiz-Gomez et al., 2000; 

Strunkelnberg et al., 2001). A broad functional diversity has been reported for 

Rst in Drosophila, where it is essential for axon guidance in the visual system 

(Ramos et al., 1993; Schneider et al., 1995) and formation of the complex eye 
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(Reiter et al., 1996). Could the function of Sns during dendrite morphogenesis 

be also affected by these two molecules? In vertebrates, Nephrin interacts 

with Neph1 and Neph2, which represent homologues of roughest (Gerke et 

al., 2003). Both Neph proteins are expressed in kidney and the brain, 

specifically in dendrites and synapses of Purkinje cells (Gerke et al., 2006). A 

direct interaction between Nephrin and Nephs has not been shown so far, but 

appears very likely due to a similar expression pattern. What could be the 

function of an interaction between Sns and Rst? As mentioned above, Rst is 

involved in the guidance of axons in the visual system of Drosophila 

(Schneider et al., 1995). Moreover, the homologue of Rst in C.elegans, SYG-

1, is expressed in specific motorneurons and controls the positioning of 

synapses through its interaction with an unknown ligand expressed by 

epidermal guidepost cells (Shen and Bargmann, 2003). Hence, Rst seems to 

be involved in targeting events within the nervous system and could serve as 

an extrinsic cue for Sns that might control the spatiotemporal formation of 

dendritic branches. 

 It seems that the members of the Nephrin subfamily of transmembrane 

adhesion molecules organise the actin polymerisation machinery to specific 

sites, through interaction with SH2-SH3 adaptor proteins that in turn activate 

asp A possible function of Sns in the nervous system is supported by the 

expression pattern of vertebrate Nephrins. The ability of the Nephrin-Nck 

complex to induce “spikey” protrusion in HEK-293T cells shows that the 

rearrangement of the actin cytoskeleton through Nephrin can cause 

morphological changes of cells (Li et al., 2006). Thus, Sns might regulate the 

branching of dendrites through a targeted polymerisation of the actin 

cytoskeleton. It could serve as a positional cue that determines where new 

branches would be added and guide the delivery of exocytotic vesicles to the 

new branch. In addition, the activity of Sns might be regulated through 

phosphorylation of its intracellular tail or interaction with other adhesion 

molecules from the extracellular environment. 

 Accordingly, this idea would imply that the action of Sns promotes the 

formation of new branches on the dendritic arbour of md-da neurons. How 

does this fit to the phenotypes seen in the vpda and ddaE neurons? If Sns 
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promotes the branch formation in dendrites, the dendrites of md-da neurons in 

sns mutants should consequently create less branches. This is partially seen 

in ddaE neurons of mutant line snsS660. In contrast, the vpda neuron produced 

a reliable overbranching phenotype in sns mutants, which means that Sns 

limits the formation of high order branches in this neuron. This could indicate 

that Sns is also involved in a different signal event that limits the activity of an 

independed cellular machinery that is responsible for the creation of high 

order branches. 

 

 5.16. Outlook 
 

For several reasons, the nature of the Sns function in dendrite morphogenesis 

can not be yet conclusively described here. First, the individual dendritic 

phenotypes of each md-da neuron in sns mutants could not be demonstrated 

so far. Due to this limitation, the overbranching phenotype of the dorsal cluster 

neurons in the line sns904 can not be ultimately resolved. Furthermore, a cell-

autonomous function of sns in dendrite differentiation of md-da neurons, as 

suggested by the cell-specific rescue, needs to be confirmed. Useful insights, 

to clarify these issues, could be provided by completed MARCM and the FLP-

out labeling of md-da neurons. In the case that a cell-autonomous function of 

sns in md-da neurons is verified by MARCM, it would be necessary to explore 

the cellular function of Sns during the dendritic development of these neurons. 

Genetic analysis of putative intracellular interactors, known from the studies of 

myoblast fusion or Sns homologues in other model systems, could provide a 

starting point to understand how this molecule acts to control branch 

formation of md-da neurons. In addition to classical mutant analysis in the 

embryos, the usage of UAS-RNAi lines to knock down candidate genes 

specifically in md-da neuron could be an interesting tool to conduct such an 

analysis. Moreover, mutations of the putative phosphorylation sites in the 

intracellular tail of Sns, could reveal whether kinase activity is involved in the 

regulation of Sns. Possible extracellular ligands of Sns required for dendrite 

development are not known, but could be useful for the understanding of the 
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biological role of Sns. Likely candidates are Duf and especially Rst that are 

known interactors of Sns during myoblast fusion. 

 Finally, the analysis of Sns in other neuronal model systems of Drosophila 

could offer the chance to prove whether Sns is a more general regulator of 

dendrite development and allow studying its function from a different point of 

view. 
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