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Zusammenfassung

Die seismischen Wellen, die sich vom Erdbebenherd durch die gesamte Erde aus-

breitet, werden durch ein Seismometer mit seinen drei orthogonalen Komponen-

ten (Z (vertikal), N (Nord-Süd) und E (Ost-West) gemessen. Jedoch besteht

eine komplette Beschreibung der durch Erdbeben verursachten Bodenbewegung

nicht nur aus den drei translatorischen Anteilen, sondern auch aus drei Kompo-

nenten der Drehbewegung (Rotationen) sowie sechs weiteren Komponenten der

Dehnung. Obwohl theoretische Seismologen auf den möglichen Nutzen der Mes-

sung der Drehbewegung schon lange hingewiesen haben, wurde diese erst von

Kurzem verwirklicht. Die Ursache dafür war hauptsächlich das Fehlen präziser

Instrumente zur Messung der Drehbewegung.

In der Seismologie ist die Messung dieser durch Erdbeben verursachte Rota-

tionen verhältnismäßig neu. Nach meinen besten Kenntnissen wurde das erste

Experiment zur Messung der Rotationsbodenbewegung durch einen Rotationssen-

sor von Nigbor (1994) durchgeführt. Er maß erfolgreich mit einem dreiachsigem

Beschleunigungsaufnehmer und einem Festkörperrotationssensor die Bodenver-

schiebung und Rotationsbewegung während eines unterirdischen chemischen Ex-

plosionexperimentes im Nevada Versuchsgelände. Die gleiche Art Sensor wurde

auch von Takeo (1998) für die Beobachtung eines Erdbebenschwarmes auf der

Izu Halbinsel in Japan benutzt. Jedoch war man aufgrund der Beschränkung der

Instrumentempfindlichkeit diese Sensoren nur in der Lage, Rotationsbewegung zu

messen, die nahe der Erdbebenherde oder anderer künstlicher Quellen auftreten.

Eine andere Art eines Rotationssensors wurde durch zwei entgegengesetz ori-

entierte Seismometer verwirklicht (z.B., Moriya & Marumo, 1998; Solarz et al.,

2004; Teisseyre et al., 2003). Diese Methode ist prinzipiell möglich, weil die Ro-

tationskomponente der Bodenbewegungen zu den horizontalen Gradienten Bo-

dengeschwindigkeit proportional ist. Dieser Sensortyp wurde intensiv von der
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Seismologiegruppe am Institut für Geophysik der polnischen Akademie der Wis-

senschaften erforscht und entwickelt. Jedoch berichteten die dortigen Forscher

über mehrere Probleme besonders wegen der kleinen ungewollten Unterschiede in

der Empfindlichkeit des Seismometers. Wie bei den Festkörperrotationssensoren

war diese Sensor darauf beschränk, Rotationsbewegungen nahe der seismischen

Quellen zu messen.

Die Ausnutzung des sogenannten Sagnac-Effektes für die Messung der Träg-

heitsumdrehung mittels optischer Vorrichtungen wurde seit der Erfindung des

Laser in den Sechzigern Jahren des 20. Jahrhunderts intensiv erforscht. Jedoch

wurde von der Anwendung eines Ringlasers als Drehbewegungssensor in der Seis-

mologie zum ersten Mal von Stedman u.a. (1995) berichtet.

Völlig konsistente Drehbewegungen wurden mit Hilfe eines Ringlasers an der

Fundamentalstation Wettzell, Deutschland aufgezeichnet (Igel u.a., 2005). Die

Autoren zeigen, dass die Rotationsbewegungen sowohl in Amplitude als auch in

Phase mit den Aufzeichnungen der Transversalbeschleunigung durch ein Standard-

seismometer übereinstimmen. Sie merken auch an, daß Standard-Rotationssensoren

mit ausreichender Auflösung in der nahen Zukunft verwirklichbar seien. Vergle-

ichbar mit anderen Arten von Rotationssensoren scheinen Ringlaser zuverlässiger

in der seismischen Anwendung zu sein, da sie in der Lage sind, die Bodenrotation

sowohl von lokalen als auch von teleseismischen Erdbeben aufzuzeichnen (Igel

u.a., 2006).

Für das Erdbebeningenieurwesen kann die Beobachtung der Rotationskom-

ponenten insofern von Interesse sein, da diese Art von Bewegung zur Gesamt-

bewegung eines Gebäudes beiträgt, welches letzteres durch ein Erdbeben er-

leidet. Ein Großteil der Bodenrotationsmessungen in der Ingenieursseismologie

werden bis jetzt hauptsächlich durch indirekte Messungen (d.h. mittels Array-

Techniken) ausgeführt. Dies ist mglich, da die Rotationskomponente der Bewe-

gung eine Linearkombination der Ableitungen des horizontalen Anteils der Trans-

lationsbewegungen ist. Dennoch ist nach unserer Kenntnis noch kein Vergleich

zwischen direkten (Rotationssensor) und indirekten Messungen (Array-Technik)

durchgeführt worden.

Die Hauptaufgabe dieser Doktorarbeit ist daher, die Effekte von seismischem

Rauschen und zahlreicher Unsicherheitsfaktoren bei der Bestimmung der Rota-
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tionsrate mittels Array-Techniken herauszuarbeiten und die Ergebnisse direkt mit

Ringlaserdaten zu vergleichen. In dieser Arbeit wird erstmals gezeigt, dass beide

Methoden (direkt und indirekt) ein beinahe gleiches Resultat (Korrelationsko-

effizient von 93 %) liefern. Allerdings ist zu beachten, dass mehr als nur drei

Seismometer wegen der Störeräuschempfindlichkeit verwendet werden müssen,

um ein besseres und zuverlässigeres Ergebnis zu erhalten. Da die Array-Technik

im Dauerbetrieb mit zu großen Wartungsarbeiten verbunden ist, bleibt der Rin-

glaser als präziser und handlicher Rotationssensor das Instrument der Wahl in

der Seismologie.

Dies Gesamtheit der Aspekte des Nutzen der Bestimmung der Rotationsbe-

wegung die Seismologie ist noch Gegenstand der Forschung. Die Rotationsbe-

wegungen stellen ausführliche Daten für die Ankunftszeiten der SH-Wellen zur

Verfügung; und möglicherweise in dem näherem Bereich des Erdbebenherdes

auch genauere Information der Bruchprozesse von Erdbeben. Außerdem kon-

nten die Drehbewegungen auch verwendet werden, um Schätzungen der statischen

Verschiebung von den seismischen Messungen zu verbessern, da die vollstndige

Beschreibung der Bodenbewegung auch eine Rotationskomponente beinhaltet.

Vor kurzem stellte Igel u.a. (2005) eine Methode für die Abschätzung der hor-

izontalen Phasengeschwindigkeit mittels Kombination von Ringlaserdaten sowie

Standard- (d.h. Translations-) Seismometer-Daten vor. Im Gegensatz dazu ver-

wendet das Standardverfahren für die Bestimmung der Phasengeschwindigkeit

(aufwändigere) Array-Messungen.

Der einfache Zusammenhang zwischen der Translationsbeschleunigung und der

Rotationsrate (um die vertikale Achse) zeigt, daß beide Signale in ihrem Verhält-

nis zur horizontalen Phasengeschwindigkeit proportional sind. Der Vergleich mit

simulierten Seismogramme (Rotationen und Verschiebungen) und den in der gle-

ichen Weise bestimmten Phasengeschwindigkeiten zeigte eine gute Übereinstim-

mung mit den Beobachtungen.

Ein weiteres Ziel dieser Doktorarbeit ist die Untersuchung der Genauigkeit der

Phasengeschwindigkeitsbestimmung mittels gemeinsamer Messungen der Rotations-

und Translationsbewegungen sowie die Ableitung von Dispersionskurven von Love-

Wellen mit Hilfe des spektralen Verhältnisses sowohl für simulierte als auch für
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real beobachtete Daten. Ob die Genauigkeit der so abgeleiteten Dispersionskur-

ven mit der in dieser Doktorarbeit vorgestellten Methode für die tomographischen

Zwecke ausreicht, bedarf noch weiteren speziellen Studien.

Nichtsdestotrotz ergibt sich aus den gezeigten Ergebnissen, dass durch zust-

zliche Messungen des genauen Rotationssignals Wellenfeldinformationen zu Tage

treten, die sonst nur durch Array-Messungen ermittelbar wären.

Allerdings, um diese Methodik für die Seismologie praktisch nutzbar zu machen,

ist die Entwicklung eines passenden hochauflösenden Sechskomponent-Breitband-

sensors nötig. Es gibt bereits Bemühungen, solche Entwicklungen auf inter-

nationaler Ebene zu koordinieren (Evans u.a., 2006)

Ein letzter Schwerpunkt dieser Arbeit liegt auf der Neigung (Tilt) des Bodens

durch Erdebeben wellen. Sie ist im Allgemeinen klein aber in der Seismologie

nicht unwesentlich, besonders bei starken Erdbeben. Es ist weithin bekannt,

daß das Neigungssignal besonders in den horizontalen Komponenten des Seis-

mometers zu beobachten ist. Ignoriert man den Neigungeffekt, so führt dies

zu unzuverlässigen Resultaten, besonders in der Berechnung der dauerhaften

Bodenverschiebungen und der langperiodischen Bewegungen. Ein weiteres in-

teressantes Ergebnis im Rahmen der Untersuchung der Bodenneigung ist die

Ableitungsmöglichkeit der Phasengeschwindigkeit sowie der Dispersionskurve von

Rayleighwellen mittels kombinierter Messungen der Neigungsrate und der trans-

latorischen Bodenbewegung. Eine Studie anhand von Simulationen zeigt, daß es

eine frequenzabhängige Phasengeschwindigkeit aus der Radialbeschleunigung und

der Querneigung an einem Ort berechnet werden kann. Die selbe theoretische

Studie zeigt aber, daß bei Verwendung der Neigungsdaten eines Tiltmeters zur

Korrektur der Ringlaserdaten im Vergleich zum wirklichen Neigungssignal etwa

100-fach zu hohe Korrekturen angewendet werden. Dies läßt sich damit erklären,

daß das Tiltmeter ein pendelartiger Sensor ist, der fur horizontale Beschleunigun-

gen anfällig ist.

Diese Arbeit umfasst vier Kapitel.

Im ersten Kapitel wird das Grundprinzip der Rotationsbewegungen dargestellt,

sowie auf zahlreiche heute verügbare Sensortypen sowie Anwendungen von Rota-

tionsmessungen eingegangen.
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Das nächste Kapitel widmet sich dem ersten Aspekt dieser Arbeit. In ihm wird

kurz auf Array-Experimente und den Einfluss verschiedener Unsicherheiten dieser

Experimente eingegangen. Dann wird erstmals ein direkter Vergleich zwischen

Rotationsbewegungen die mit Array-Messungen bestimmt wurden und solchen,

die mit der Ring-Laser Technik gemessen wurden, gezeigt.

Im dritten Kapitel wird der nächste Aspekt dieser Arbeit behandelt, nämlich

der Kombination von Rotationsdaten mit Translationsdaten zur Bestimmung der

Phasengeschwindigkeit und der Einfallsrichtung von Wellen. Dies war bisher nur

mit Array-Techniken möglich.

Im letzten Kapitel wird dann auf den Aspekt der Neigungsmessung mittels

Arrays eingegangen und mögliche Anwendungen von Neigungsdaten diskutiert.
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Summary

The seismic waves that spread out from the earthquake source to the entire Earth

are usually measured at the ground surface by a seismometer which consists

of three orthogonal components (Z (vertical), N (north-south), and E (east-

west) or R (radial), T (transversal), and Z (vertical)). However, a complete

representation of the ground motion induced by earthquakes consists not only

of those three components of translational motion, but also three components of

rotational motion plus six components of strain Altough theoretical seismologists

have pointed out the potential benefits of measurements of rotational ground

motion, they were not made until quite recently. This was mainly because precise

instruments to measure ground rotational motion were not available.

The measurement of rotational motion induced by earthquakes is relatively

new in the field of seismology. To the best of our knowledge, the first experiment

to measure ground rotational motion using rotational sensor was done by (Nig-

bor, 1994). He successfully measured translational and rotational ground motion

during an underground chemical explosion experiment at the Nevada Test Site

using a triaxial translational accelerometer and a solid-state rotational velocity

sensor. The same type of sensor was also used by Takeo (1998) for recording an

earthquake swarm on Izu peninsula, Japan. However, because of the limitation

of the instrument sensitivity, this kind of sensor was only able to sensing the

rotational ground motion near the earthquake sources of other artificial sources.

Another type of rotational sensor was assembled using two oppositely oriented

seismometers. This is possible since in principle the rotational component of the

ground motions is equal to half the curl of the ground velocity. This kind of

sensor was intensively researched and developed by the seismology group in In-

stitute of geophysics, Polish Academy of Sciences. However, they report several

problems especially due to the small differences in the seismometer’s response
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function. Like the solid state rotational sensors, this sensor was only able to

measure rotational motion near the seismic sources.

The application of the Sagnac effect for sensing the inertial rotation using

optical devices were intensively investigated, since the advent of lasers in the

sixties. However, the first application of a ring laser gyroscope as a rotational

sensor applied in the field of seismology was reported by Stedman et al. (1995).

Fully consistent rotational motions were recorded by a ring laser gyro installed at

the fundamental station Wettzell, Germany (Igel et al., 2005). They showed that

the rotational motions were compatible with collocated recordings of transverse

acceleration by a standard seismometer, both in amplitude and phase. They

mentioned that ”standard” rotational sensors with sufficient resolution may be

possible in the near future. Among the other type of rotational sensor, ring lasers

seem more reliable in seismic applications since it has been provenable to sensing

the ground rotational motion from near source as well as teleseismic earthquake

events with a broad magnitude range (Igel et al., 2007).

In earthquake engineering, observations of rotational components of seismic

strong motions may be of interest as this type of motion may contribute to

the response of structures to earthquake-induced ground shaking. Most of ro-

tational/torsional studies of ground motion in earthquake engineering are so far

still carried out by indirect measurements. It can be done since the rotational

component of motion is a linear combination of the space derivatives of the hor-

izontal component of the motion. However, to the best of our knowledge, there

are no comparison of array-derived rotation rate and direct measurement from

rotational sensors mentioned in the literature.

The first objective of my thesis is to study the effect of noise and various uncer-

tainties to the derivation of rotation rate and to compare directly the result with

the ring laser data. Here we present for the first time a comparison of rotational

ground motions derived from seismic array with those observed directly with ring

laser. Our study suggest that – given accurate measurements of translational mo-

tions in an array of appropriate size and number of stations – the array-derived

rotation rate may be very close to the ”true” rotational signal that would be mea-

sured at the center of the array (or the specific reference station). However, it is

important to note that it may be dangerous to use only the minimally required
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three stations as even relatively small noise levels may deteriorate the rotation

estimates. Furthermore, it is clear that the logistic effort to determine rotations

from array is considerably larger than direct measurements. In the light of this,

the necessity to develop field-deployable rotational sensors with the appropriate

resolution for use in local and regional seismology remains an outstanding issue.

More recently, Igel et al. (2005) introduced a method to estimate the hori-

zontal phase velocity by using collocated measurements from a ring laser and

seismometer. A simple relationship between transverse acceleration and rotation

rate (around a vertical axis) shows that both signals should be in phase and

their ratio proportional to horizontal phase velocity. Comparison with synthetic

traces (rotations and translations) and phase velocities determined in the same

way showed good agreement with the observations.

The second objective of my thesis is to study the accuracy of phase veloc-

ity determination using collocated measurement of rotational and translational

motion and derive the Love wave dispersion curve using spectral ratio for both

synthetic and real observed data. Whether the accuracy of the dispersion curves

derived with the approach presented in this thesis is enough for tomographic

purposes remains to be evaluated. Nevertheless, the results shown here indicate

that through additional measurements of accurate rotational signals, wavefield

information is accessible that otherwise requires seismic array data. However, to

make this methodology practically useful for seismology will require the develop-

ment of an appropriate high-resolution six-component broadband sensor. Efforts

are underway to coordinate such developments on an international scale (Evans

et al., 2006).

The ground tilt is generally small but not negligible in seismology, especially

in the strong-motion earthquake. It is well known that the tilt signal is most no-

ticeable in the horizontal components of the seismometer. Ignoring the tilt effects

leads to unreliable results, especially in calculation of permanent displacements

and long-period calculations.

The third objective of my thesis is to study the array-derived tilt, a further

application of measuring tilt. An interesting result concerning tilt study based on

a synthetic study is the possibility to derive the Rayleigh wave phase velocity as

well as Rayleigh wave dispersion curve from collocated measurement of tilt rate
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and translational motions. The synthetic study shows that there is a frequency

dependent phase velocity from collocated radial acceleration and transverse tilt.

There is a normal procedure to correct the orientation change of the ring laser

by using a tiltmeter during measurements. However, since a tiltmeter is mea-

suring not only the real tilt signal, but also the horizontal accelerations, it will

overestimate the correction value. Based on the synthetic study, it is found that

such correction will lead to values about 100 times higher that the correction with

true tilt signal.

This thesis contains four chapters. In the first chapter I disscuss the basic

principle of rotational motions, various rotational sensors available recently and

several applications of measuring rotational ground motions. The first objective

of my thesis is described in the second chapter. In this chapter, I briefly describe

the array experiment, the effect of several uncertainties and show the first ever

direct comparison of array-derived ground rotational motions with the ring laser

data. The second objective of my thesis is explained in the third chapter. We

discuss the application of rotational in addition with translational data to derive

the phase velocity and the direction of wave propagation previously only possible

using array techniques or additional strain measurements. In the fourth chapter

I discuss the array-derived tilt and possible application of tilt data. The last

chapter is a general conclusion.
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1. Introduction

”Perfectly general motion would

also involve rotations about three

perpendicular axes, and three

more instruments for these.

Theory indicates, and observation

confirms, that such rotations are

negligible.”

(Richter, 1958)

The effect of the rotational ground motion has attracted the consideration

of only very few seismologists in the last decades. Although several classical

textbooks (e.g., Davidson, 1927; Gutenberg, 1959; Hobbs, 1907; Imamura, 1937)

have mentioned that the effect of rotational motion induced by earthquakes can be

observed on the ground surface and some structures, the instrument for measuring

ground rotational motion has not yet met the accuracy needed in seismological

applications. In earthquake engineering, the rotational ground motion effect has

also been recognized for causing structural damage especially for long structures

such as bridges and pipelines or transmission systems (e.g., Hart et al., 1975;

Zerva & Zhang, 1997). In the beginning, those effects were supposed to be due

to the asymmetry of the structure or building. Yet, recent studies show that

even symmetrical buildings would also be excited into rotational modes about

a vertical axis (e.g., Awad & Humar, 1984; Li et al., 2001; Newmark, 1969).

Figure 1.1 shows various effects of rotational motions induced by earthquakes on

tombstones induced by South-central Illinois earthquake November 9, 1968 (Top

figures) and M7.0 Miyagi-Oki earthquake of May 26, 2003 (Bottom figures).

Bouchon & Aki (1982) simulated rotational ground motion near earthquake

faults buried in homogeneous layered media for strike-slip and dip-slip fault mod-

1



Figure 1.1: Various rotational effect on tombstone induced by earthquake. Top

figure: Overturned tombstone after South-central Illinois earthquake November

9, 1968 (Gordon et al., 1970). Top left: Clockwise rotated tombstone at Camp-

ground Cemetery. Top right: Counter-clockwise rotated tombstone at Rector

Cemetery. Bottom figures: Rotated tombstone after M7.0 Miyagi-Oki earth-

quake of May 26, 2003 (Photo Courtesy of The Disaster Control Research Center,

Graduate School of Engineering, Tohuku University).
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els. They showed that the maximum rotational velocity produced by a buried

30 km long strike-slip fault with slip of 1 m is 1.5×10−3 rad/s. This value is

indeed small compared with the amplitude of the translational motion, but in

the sense of rotational motions induced by earthquakes, it is not negligible. They

also conclude based on this simulation that rotation, strain and tilt are closely

related to ground velocity and the phase velocities associated with strong ground

motion are controlled by the rupture velocity and the basement rock shear wave

velocity.

Although rotational sensors were available in the last years (especially for navi-

gation purposes), such instruments with appropriate precision for geophysical ap-

plications were not available until quite recently (Nigbor, 1994). The application

of the Sagnac effect for sensing the inertial rotation using optical devices was in-

tensively investigated, since the advent of lasers in sixties (Post, 1967). There are

two approaches to apply the Sagnac effect for rotational measurements, namely

active techniques, as in ring laser gyroscopes, and passive techniques, as in fiber-

optic interferometers (Sanders et al., 1981). The first application of a ring laser

gyroscope as a rotational sensor in seismology was reported by Stedman et al.

(1995). Furthermore, McLeod et al. (1998) gave a detailed analysis of observa-

tions with the ring laser CI, installed in the Cashmere cavern, Christchurch, New

Zealand. They reported that the phase of rotation determined by CI is partly con-

sistent with that of a collocated standard seismometer record, during the ML5.3

Kaikoura event on 5 September 1996. Pancha et al. (2000) analyzed the hori-

zontal and vertical components of teleseismic surface and body waves recorded

by larger ring laser gyroscopes (CII and G0) caused by M7.0 and M7.3 events at

distances of 31◦ and 42.6◦, respectively. Apart from amplitudes of rotation rates

larger than expected, they showed that the sensors provided sufficient accuracy

to record seismic rotations. Fully consistent rotational motions were recorded by

a ring laser gyro installed at the fundamental station Wettzell, Germany (Igel

et al., 2005). They showed that the rotational motions induced by the teleseismic

event was compatible with collocated recordings of transverse acceleration by a

standard seismometer, both in amplitude and phase.

In earthquake engineering, observations of rotational components of seismic

strong motions may be of interest as this type of motion may contribute to the

3



response of structures to earthquake-induced ground shaking (Li et al., 2001).

Rotational motions can be derived from measuring translational motion in sev-

eral locations (array). Most of rotational/torsional studies of ground motion in

earthquake engineering are so far still carried out by indirect measurements. In-

direct measurements of rotational motions using a seismo(accelero)meter array

have been studied by several investigators (e.g., Bodin et al., 1997; Huang, 2003;

Li et al., 2001; Niazi, 1986; Oliveira & Bolt, 1989; Singh et al., 1997; Spudich

et al., 1995). However, a comparison of array-derived rotation rate and direct

measurement from rotational sensors has never been mentioned in the literature,

as no appropriate sensor was available.

The full benefits of the determination of rotational motion in seismology are

still under investigation. Recent result suggest that the horizontal phase velocity

can be estimated by analyzing a collocated recording of rotation and translation

ground motion data (Igel et al., 2005). The conventional procedure to estimate

the phase velocity is by using array measurements. Using this technique, it

would be more cost efficient since it only needs one three component seismometer

and a rotational sensor. With array measurements, other properties such as the

direction of wave propagation (back azimuth) and the dispersion curve can be

derived. If these properties can also be computed from collocated recordings of

rotation and translational ground motions, then it may have implication for sparse

networks or situations where extremely few or even single-station observations are

taken (e.g. in remote areas or planetary seismology).

In the past years, the contribution of rotational motion to the translational

ground motion recording has been recognized (e.g., Trifunac & Todorvska, 2001).

Especially the horizontal component of rotation (tilt) significantly affects the

horizontal component of the transverse recording. These effects can be neglected

in some far-field measurements, but must be included in the near-field studies. So

far, this effect is usually removed by filtering the seimogram, since it can remove

the long-period components partially introduced by tilting. However, by filtering

the seismogram, the tilt effect still can not be fully removed (Graizer, 2005).

Graizer (2005) suggests to measure three components of rotational motion in-

cluding tilt in order to fully remove the tilt effect in the translational recording.

Although there are several kinds of tiltmeters available for this application, such

4



1.1 Objectives

instruments may be sensitive to meteorological and local disturbances or to hor-

izontal accelerations.

1.1. Objectives

There are three main objectives of this thesis. First, we want to demonstrate that

rotational motion derived from several translational records (seismometer array)

or indirect method is possible and provide the first ever comparison with direct

measurements. We will further study the effect of noise and other ”unwanted”

signal contaminated in the data and their relevance to the derivation of rotation.

We will first present a synthetic study, in which we investigate the influence of

various effects on array derived rotation rate. These effects are (1) unwanted

signals (i.e., noise) in the horizontal components of translation, (2) uncertainty

in seismometer calibration, and (3) uncertainty in station coordinates. Finally, we

show the direct comparison of the vertical component of array-derived rotation

rate with the ring laser gyroscope as well as collocated transverse acceleration

record from broadband station. On the other hand, this comparison will also

provide information about the performance of the rotational sensor (ring laser)

itself.

The second objective is, to determine the phase velocity and direction of wave

propagation (back azimuth) as well as determining the Love wave dispersion

curve from collocated rotational and translational sensor and compare with array-

derived estimates. This is a novel approach since the standard way to derive the

phase velocity is by analysis from seismic arrays. This point measurement will

open in principle the possibilities for structural inversion.

The third objective in this thesis is to derive the horizontal rotation (tilt) from

array data. Possible application of tilt data for deriving Rayleigh wave dispersion

will be presented and the problem of tilt correction on ring laser data is revisited.

1.2. Structure of the Thesis

This thesis is structured as follows:
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1.2 Structure of the Thesis

Chapter 1, Introduction, is the overview of the thesis.

Chapter 2, Rotational ground motion, I summarize all general aspect of rota-

tional motion including basic theory, rotational motions instrumentation,

applications and some observations. In the beginning rotational ground

motion’s behavior due to a double couple point source is analyzed based

on the elastic theory. The behavior under investigation is the peak ground

rotation rate and the static rotation.

Chapter 3, Array experiment, deriving rotational rate from array data, I show the

comparison between array derived-rotation rate with rotation rate directly

measured by a ring laser. The goal of this study is to discuss the effect of

noise and uncertainties in the array observations and their relevance to the

derivation of rotation. We restrict ourselves on analyzing only the vertical

component of rotation rate.

Chapter 4, Displacement, rotation, tilt: comparing seismic array observation

with point measurements, I present the application of rotational data, in

addition with transverse component of the ground motion to derive the

phase velocity and a possibility to determine the Love wave dispersion curve.

The derivation of tilt data (horizontal component of rotation) are discussed

briefly in the last Chapter.

Chapter 5, Horizontal component of rotation or tilt, I review the tilt measure-

ments, instrumentations, and show the array-derived tilt.

Chapter 6, Discussion and conclusion, I give some concluding remarks and dis-

cuss further perspectives of rotational ground motion measurements.
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2. Rotational ground motion

”..., but as of this writing

seismology still awaits a suitable

instrument for making such

measurements.”

(Aki & Richards, 2002)

In this chapter I will review the theory of rotational ground motions including

the analytical study of rotation due to a double couple point source in infinite

media, instrumental and observational aspects of rotational motions 1.

2.1. Rotation due to a double couple point source:

analytical study

For a homogeneous medium, rotational motions can be modelled analytically. As

the Earth can be assumed to behave like an elastic material, especially under the

application of small transient forces, we derive the rotational expression in the

framework of classical elasticity theory. Assuming infinitesimal deformations, the

displacement of a point x related to a new point x + δx by (e.g. Aki & Richards

(2002)) is

u(x + δx) = u(x) + Gδx

= u(x) + εδx + Ωδx

= u(x) + εδx + ω × δx,

(2.1)

1This chapter is partly based on Cochard et al. (2006)
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2.1 Rotation due to a double couple point source: analytical study

where G, ε, Ω are the gradient, strain, and rotation second order tensor, respec-

tively, and the rigid body rotation is defined by

ω =
1

2
∇× u(x), (2.2)

with ∇× being the nabla operator. This shows that it is necessary to have three

components of translation, six components of strain, and three components of

rotation to fully characterize the change in the medium around point x.

x1

x2

x3

x

Area A
φ

φ

θ

r

θ

Figure 2.1: Cartesian and spherical polar coordinates for analysis of radial, and

transverse components of displacement as well as rotation caused by a shear

dislocation of area A and average slip 〈∆u(t)〉.

A point double-couple shear dislocation is the most successful model for earth-

quake sources. Assume a shear dislocation located in the center of a cartesian

coordinate system x1, x2, x3, so that the fault lies in the (x1,x2) plane (Figure 2.1).

In addition, we define polar coordinates r, θ, φ as specified in Figure 2.1. The slip

direction is along the x1 axis. Thus, the corresponding displacement field, u(x, t)

using the time dependent seismic moment M0(t) = µ〈∆u(t)〉A, associated with

a shear dislocation (Figure 2.1) parallel to a fault surface with area A, shear
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2.1 Rotation due to a double couple point source: analytical study

modulus µ, and average slip 〈∆u(t)〉 across the fault is (Aki & Richards (2002)):

~u(x, t) =
1

4πρ
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r4

∫ r
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Ṁ0(t −

r
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).

(2.3)

The functions A in each term represent the radiation pattern given by

AN = 9 sin 2θ cos φr̂ − 6(cos 2θ cos φθ̂ − cos θ sin φφ̂),

AIP = 4 sin 2θ cos φr̂ − 2(cos 2θ cos φθ̂ − cos θ sin φφ̂),

AIS = −3 sin 2θ cos φr̂ + 3(cos 2θ cos φθ̂ − cos θ sin φφ̂),

AFP = sin 2θ cos φr̂,

AFS = cos 2θ cos φθ̂ − cos θ sin φφ̂,

where r̂, θ̂, and φ̂ are unit direction vectors in a spherical polar coordinate system

for the source receiver geometry (Figure 2.1). Note that the superscripts N , I,

and F are related to near field, intermediate, and far field terms respectively, while

P and S denote P and S waves, respectively. In the far field, the radiation pattern

consists of a radial component, proportional to sin 2θ cos φr̂ (Figure 2.2), and a

transverse component, proportional to cos 2θ cos φθ̂ − cos θ sin φφ̂ (Figure 2.3).

The positive sign in the far field P-wave radiation pattern shown in Figure 2.2

means that the dipole is directed outwards from the source and results in a

compressional P-wave motion. The negative sign means the dipole is directed

towards the source, resulting in a dilatational P-wave motion. The compressional

and dilatational motions manifest themselves as upward and downward motion

in the seimograms respectively. The central pair of arrows shows the sense of the

shear dislocation. The strongest P-wave motion is expected in the middle of the

four quadrants, at 45o angles to the fault plane (x1, x2) (Figure 2.1).

The far field S-wave radiation pattern follows the geometry shown in Figure 2.3.

The central pair of arrows shows the sense of shear dislocation and the arrows

9



2.1 Rotation due to a double couple point source: analytical study

θ = 0

θ = 90

+

+ −

−

Figure 2.2: Far field P-wave radiation pattern in x1, x3 plane for radial component

of displacement due to a double couple in plane x1, x2.

on each lobe show the sense of direction of particle displacement associated with

the lobe. The far field P and S-wave radiation patterns are rotated by 45◦ with

respect to one another. The radiation pattern for intermediate and near field

displacement involve both radial and transverse components. From Equation 2.3,

θ = 90

θ = 0

Figure 2.3: Radiation pattern of the transverse component of displacement due

to a double couple. The blue arrow shows the sense of shear dislocation. The

arrow in each lobe represent the direction of particle displacement associated with

the lobe.

we can calculate the final static displacement field for a shear dislocation M0. This

can be calculated by taking the limit of Ṁ0(t−τ), M0(t−τ), and
∫

r

vp

r

vs

τM0(t−τ) dτ
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2.1 Rotation due to a double couple point source: analytical study

as t → ∞, assuming that the seismic moment has a final constant value, M0(∞).

The result is (Aki & Richards (2002), p. 82)

u(x,∞) =
M0(∞)

4πρr2

[

AN

(

1

2v2
s

− 1

2v2
p

)

+
AIP

v2
p

+
AIS

v2
s

]

(2.4)

The rigid body rotation, then can be calculated by applying Equation 2.3 to

Equation 2.2. We find

ω(x, t) =
1

2
∇× u(x, t)

=
−AR

8πρ

[

3

v2
sr

3
M0

(

t − r

vs

)

+
3

v3
sr

2
Ṁ0

(

t − r

vs

)

+
1

v4
sr

M̈0

(

t − r

vs

)]

,

(2.5)

where AR = cos θ sin φθ̂ + cos φ cos 2θφ̂ is the radiation pattern of the three

components of rotation (the radial component is zero). The radiation pattern

for transverse component of rotation is shown in Figure 2.4. The central pair of

θ = 90

θ = 0

Figure 2.4: Radiation pattern of the transverse component of rotation due to a

double couple point source. The arrow in each lobe represents the rotation of

grains adjacent to the internal slip planes.

arrows shows the sense of shear dislocation, and arrows on the each lobe show

the direction of particle rotation.

Based on Equation 2.3 and Equation 2.5 we can sketch the first motion on the

seismogram and rotational sensor for any different location from a dislocation

source (Figure 2.5). The first motion is the simplest way to study the geometry
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2.1 Rotation due to a double couple point source: analytical study

of faulting during an earthquake, since the pattern of radiated seismic waves

depends on the fault geometry. For this purpose we generate the seismogram

based on equation 2.3 and 2.5 using a source signal defined as:

M0(t) =
1

2
erf

(

t − T0

T0

)

MW (2.6)

Note that M0 is a function of time t and T0 is the rise time. The parameter MW

is a measure of the size of an earthquake caused by fault slip. This value has a

broad range from 1012 dyne-cm for microearthquakes to around 1030 dyne-cm for

big earthquakes (Aki & Richards (2002)). The density of the medium is ρ=2800

kg/m3, the S and P wave velocities are β=3000 m/s and α =
√

3β. The source

is located at 10 km depth in the center of the study area.

T0

M
0
(t)=1/2 erf((t−T0)/T0)

a’
b’

B B’E

b

Surface of Earth
A

Compression Dilatation

CompressionDilatation

a

r

A’

Rotation rateVelocityVelocity Rotation rate

θ
φ

θ
φ

θ

r

φ

θ

φ

r

r

Figure 2.5: Normalized translational (black) and rotational (red) motions at

seismometers located in various directions.

It should be noted that the upward motion of the P-wave is compressional and

downward motion is dilatational. The rotations are zero at the P-wave front,

and only start at the S-wave arrival and have no radial component. As in the

translational component, this sketch shows that the first motion of rotational

component can be used to determine the fault plane geometry.
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2.1 Rotation due to a double couple point source: analytical study

For strong motion study, it is worth to represent the amplitude of the ground

velocity in a peak ground motion map. It is used to derive the hazard map on

a seismically-active area. In the next paragraph we will show the peak ground

velocity as well as peak ground rotation rate calculated from Equation 2.3 and

Equation 2.5. Again, the dislocation is in the x1, x2 plane as shown in Figure 2.1,

and the source time function is in the form M0(t) = 1

2
erf

(

t−T0

T0

)

MW with a

moment MW = 3.2 × 1020dyne.cm (M ≈ 3.0) (Figure 2.6). The density of the

medium is ρ=2800 kg/m3, the S and P wave velocities are β=3000 m/s and

α =
√

3β respectively. The source is located at 10 km depth in the center of the

study area.

Figure 2.6: Simulation setup for showing the peak ground velocity and peak

ground rotation. The spherical coordinate was used as in Figure 2.1. x and y

represent the direction in x offset and y offset respectively.

In Figure 2.7, we show the contour plot of peak ground velocity (first row) and

peak ground rotation rate (second row). We observe that the maximum of peak

ground rotation rate is about 1.5 × 10−9 rad/s for the transverse component.

This value seems quite small compared with the transverse component of trans-

lational motion which is about 2x10−4 cm/s. However, as will be discussed in

Chapter 4, rotations are proportional to acceleration divided by the phase veloc-

ity, thus, when we have smaller velocities, rotations became larger. Therefore,

13
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2.1 Rotation due to a double couple point source: analytical study
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Figure 2.7: Contour plot of numerically computed peak ground velocity and peak

ground rotation rate for 10 km deep double-couple point source of 1024 dyne. cm

in an infinite homogeneous medium.
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2.1 Rotation due to a double couple point source: analytical study

in case of a soft or unconsolidated sedimentary or fluid-infiltrated porous media,

where the wave speed is low, the rotation may be large and could be responsible

or contribute to structural damages.

The peak ground velocity and peak ground rotation rate (which is basically

the cross section of Figure 2.7) are shown in Figure 2.8.
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Figure 2.8: Cross section plot of peak ground velocity and peak ground rotation

rate for an 10 km deep double-couple point source of 1020 dyne. cm in an infinite

homogeneous medium.

Another important parameter especially for strong motion and crustal defor-

mation study is static deformation and static rotation. From Equation 2.5, we

can also calculate the final static rotation for a shear dislocation M0. In analogy

with the static displacement case, it is calculated by taking the limit of Ṁ0(t−τ),

M0(t− τ), assuming that the seismic moment has a final constant value, M0(∞).

The result is

ω(x,∞) =
−ARM0(∞)

8πρr3

(

3

v2
s

)

=
M0(∞)

8πρr3

[

− 3

v2
s

(

cos θ sin φθ̂ + cos φ cos 2θφ̂
)

]

,

(2.7)
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2.1 Rotation due to a double couple point source: analytical study

which attenuates along any given direction(θ, φ) as r−3. From Equation 2.4 and

2.7, we can plot the static displacemet and static rotation map as a function of

distance from the epicenter (Figure 2.9 and 2.10). In those figures, we plot

numerically computed static displacement and static rotation for 10 km deep

double-couple point source of 1024 dyne. cm in an infinite homogeneous medium.

The maximum static deformation (0.1 cm) occurs in the radial component. The

x−offset [km]

y−
of

fs
et

 [k
m

]

Static disp.
R

 [cm]

−10 0 10
−10

−5

0

5

10

−0.1

−0.05

0

0.05

0.1

x−offset [km]

y−
of

fs
et

 [k
m

]

Static disp.θ [cm]

−10 0 10
−10

−5

0

5

10

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x−offset [km]

y−
of

fs
et

 [k
m

]

Static disp.φ [cm]

−10 −5 0 5 10
−10

−5

0

5

10

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x−offset [km]

y−
of

fs
et

 [k
m

]

Static rot.
R

 [rad]

−10 0 10
−10

−5

0

5

10

0.2

0.4

0.6

0.8

x−offset [km]

y−
of

fs
et

 [k
m

]

Static rot.θ [rad]

−10 0 10
−10

−5

0

5

10

−4

−2

0

2

4
x 10−7

x−offset [km]

y−
of

fs
et

 [k
m

]

Static rot.φ [rad]

−10 −5 0 5 10
−10

−5

0

5

10

−4

−2

0

2

4
x 10−7

Figure 2.9: Contour plot of numerically computed static displacement and static

rotation for an 10 km deep double-couple point source of 1024 dyne.cm in an

infinite homogeneous medium.

static rotation is about 4 x 10−7 radians in both transverse and longitudinal

components. The cross section of static displacement and rotation as a function

of distance from the earthquake source is shown in Figure 2.10.

Further excercise for various magnitude and source depth including the strike

slip double-couple point source or arbitrary configuration can be done by utilizing

the analytical solution script (in matlab) that can be found in the DVD-ROM

attached with this thesis.
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Figure 2.10: Cross section plot of static displacement and static rotation for an 10

km deep double-couple point source of M5.5 in an infinite homogeneous medium.

When analyzing the stress strain relation at the free surface, using a x1, x2, x3

coordinate system, an important constraint is that the vertical component of the

traction is zero. It implies that σi3 = σ3i = 0 and direct application of Hooke’s

law in a homogeneous, isotropic medium leads to

∂ux

∂z
= −∂uz

∂x
;
∂uy

∂z
= −∂uz

∂y
;
∂uz

∂x
= − λ

λ + 2µ

(

∂ux

∂x
+

∂uy

∂y

)

, (2.8)

where λ and µ are the Lamé parameters.

Applying Equation 2.8 to Equation 2.2 we find that

ωx =
∂uz

∂y
; ωy = −∂uz

∂x
. (2.9)

Equation 2.9 shows that at the Earth’s surface, the horizontal components of

rotation correspond to tilt.

As a consequence, P waves generate horizontal rotation at the surface whereas

they are irrotational in the bulk. There is an additional contribution to horizontal

rotation due to P-to-SV converted waves at the surface (also due to the free

surface boundary condition). It is still an open question what technology is best

suitable for the various components of rotation. For the vertical component, the

results presented here and in other studies suggest that the optical devices are the
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2.2 Rotational sensors

way to go. Those optical devices could be advantageous compared to classical

tiltmeters for the horizontal components as well (regardless of meteorological

characteristics accuracy, sensitivity, etc. which remain to be assessed): indeed,

classical tiltmeters measure a change of angle with respect to the local vertical,

determined by gravity; thus they cannot discriminate between true rotation and

a pure change in the local gravity (e.g., due to mass redistribution).

2.2. Rotational sensors

In this section we briefly discuss various rotational sensors that have been used

especially for geophysical applications.

2.2.1. Parallel seismograph

This measuring system consists of two antiparallel pendulum seismometers (TAPS)

situated at a common vertical axis, one after the other with the distance L be-

tween the suspension axes (e.g., Moriya & Marumo, 1998; Solarz et al., 2004;

Teisseyre et al., 2003). Intensive studies about this kind of rotational sensor was

conducted by the Institute of Geophysics, Polish Academy of Science.

l lRL

ξ ξL R

α(τ)

w(t)

Figure 2.11: Two antiparallel seismographs developed in the Institute of Geo-

physics, Polish Academy of Science (Solarz et al., 2004)
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2.2 Rotational sensors

The schematic diagram of this system is shown in Figure 2.11. The symbol

w(t) and α(t) denote translation and rotation of the seismometer’s bodies. The

ẇ(t) and α̇(t) are obtained by convolving the recorded electromotive forces with

the response functions of the seismometer. The basic principle of this system

is explained below. Each single pendulum seismometer records the displacement

velocity u, the displacement velocity derivative multiplied by the pendulum length

(l∂̇u/∂y), and the proper rotation lω. Thus those two opposite seismometer

systems records simultaneously the two fields

uL = u + l

(

∂u

∂y
+ ω

)

, uR = u − l

(

∂u

∂y
+ ω

)

. (2.10)

Teisseyre et al. (2003) define a new quantity called micro-displacement velocity

tensor as a sum of the derivative of displacement velocity and the appropriate

component of the tensor of real rotation as

φik =
∂ui

∂xk

+ ωik. (2.11)

Therefore, the micro-displacement velocity tensor is related to the difference of

records between the two opposite sensors (Equation 2.10) divided by 2l

φik =
∆ui

2l
=

∂ui

∂xk

+ ωik. (2.12)

Thus, by knowing the displacement recorded by each seismograph the rotational

component could be deduced by applying Equation 2.2.

The last relation is only valid when those two seismometer are equivalent (con-

cerning the instrument response function). However, reliable rotation record can

be obtained when the following condition is valid (Teisseyre et al., 2003):

2lΩ ∗ R >> U̇ ∗ ∆R + n. (2.13)

Here R is the response function, the same for both seismometers, ∆R is the

difference of those response functions, U̇ is the translational component of the

ground motion, Ω is the rotation rate, l is the length of the pendulum and n is

the noise from wave propagation and measurement. More comprehensive expla-

nation about this system and further signal processing technique to improve the

performance of this system can be found in Solarz et al. (2004).
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2.2 Rotational sensors

This system has been tested by recording several seismic events Observed in

Ojcow Observatory, Poland and L’Aquila Observatory, Italy. For the Silesian

seismic event (11 July 2001, 18:50), recorded at a distance of about 60 km with

magnitude about M1.5 the maximum rotation rate amplitude is about 3.5 ×
10−8rad/s (Teisseyre et al., 2003).

However, this sensor still needs to be compared with the other type of rota-

tion sensors or with the transverse acceleration at collocated position to study

performance and limitation.

2.2.2. Solid state sensor

The second type of rotational sensor is a solid state rotation sensor which consists

of a microminiature double-ended quartz tuning fork and supporting structure

(GyroChip). This GyroChip was fabricated chemically from a single wafer of

monocrystalline piezoelectric quartz (similar to quartz watch crystals). It uses

vibrating quartz tuning forks to sense rate, and acting as a Coriolis sensor, coupled

to a similar tines as a pickup to produce the rotation rate output signal. The

concept of using a vibrating element to measure rotational velocity based on the

Coriolis2 principle has also been recognized a few decades ago. The GyroChip

along with their support flexure and frames are batch fabricated from thin wafers

of single-crystal piezoelectric quartz.

The piezoelectric drive tines are driven by an oscillator to vibrate at a precise

amplitude, causing the forks to move toward and away from one another at a high

frequency. This vibration causes the drive fork to become sensitive to angular

rate about an axis parallel to its tines, defining the true input axis of the sensor

(Figure 2.12). By using the Coriolis effect, a rotational motion about the sensor’s

longitudinal axis produces a DC voltage proportional to the rate of rotation.

The use of piezoelectric quartz material simplifies the active element, resulting in

exceptional stability over temperature and time. The drive tines, which constitute

the active portion of the sensor, are driven by an oscillator circuit at a precise

amplitude that causes the tines to move toward and away from one another at a

2The Coriolis effect is named for the French physicist and mathematician Gustave Gaspard

de Coriolis (1792-1843)
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A

A

filter
amplifier

amplitude
controller

demodulator

DC rate out

drive tines

Ω

pickup tines

Figure 2.12: Solid state GyroChip schematic diagram. It contains a vibrating

quartz tuning fork to sense rate, and acting as a Coriolis sensor, coupled to a

similar tines as a pickup to produce the rotation rate output signal.

high frequency (see Figure 2.12). Each tine will have a Coriolis force acting on it

of:

FCoriolis = 2m(vr × Ωi), (2.14)

where m is tine mass, vr is instantaneous radial velocity, Ωi is input rate. This

force is perpendicular to both the input rate and the instantaneous radial velocity.

The two drive tines move in opposite directions; the resultant forces are per-

pendicular to the plane of the fork assembly and in opposite directions as well.

This produces a torque that is proportional to the input rotational rate.

The pickup tines, being the sensing part of the sensor, respond to the oscillating

torque by moving into and out of plane, producing a signal at the pickup amplifier.

After amplification, those signals are demodulated into a DC signal proportional

to the sensor’s rotation.

This sensor is broadly used as stabilization and navigation system. It has been

used as instrument in cars, satellites, air planes and other land vehicles. However,

for a geophysical application, this sensor is limited to measuring large ground

rotational motion close to the earthquake source (e.g., Nigbor, 1994; Takeo, 1998).
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2.2 Rotational sensors

As an example, the Gyro Chip (QRS14-Type solid state Micromachined Angu-

lar Rate Sensor) has a resolution about 0.04 deg per second. It used as a platform

stabilisation, damping/control system, GPS augmentation, camera stabilisation,

robotics and autonomous vehicle control.

2.2.3. Ring laser gyroscope

The third type of rotation sensor is a ring laser gyroscope. A ring-laser gyro, in

the original design, contains a ring-shaped cavity. Other types of cavity shape

are triangular or square-shaped. The cavity is filled with a mixed gas, with

circulating light beams generated by a laser. It measures the Sagnac beat fre-

quency of two counter-propagating beams (Stedman, 1997) (See Figure 2.13).

This beat frequency δf is directly proportional to the rotation rate Ω around

the surface normal n̂ of the ring laser system as given by the Sagnac equation

Rotational
Rate Ω

Detector

Laser excitation

Mirror

Figure 2.13: Ring laser measure-

ment principle. Two counter-

rotating laser beam interfere to gen-

erate a beating when the system ro-

tates with respect to the normal.

The beating frequency is directly

proportional to rotation rate.

δf =
4A

λP
n̂.Ω, (2.15)

where Ω is the full rotation velocity, in-

cluding the Earth rotation rate and local

ground rotation, P is the perimeter of the

ring, A the area, and λ is the laser wave-

length. It is clear from Equation 2.15, that

the ring laser is not sensitive to transla-

tional motion, but sensitive to deforma-

tion, since A, P and λ are influenced by

the deformation. A ring is also sensitive

to the projection of Ω onto n̂. The sensi-

tivity of a ring laser is proportional to the

physical dimension (perimeter, area) and

also depend on mirror quality. For seis-

mological applications, this scaling factor

(4A/λL) must be made much larger than

for commercial ring lasers. For example, the 4 by 4 meters square ring laser ”G”

installed in Wettzell, Germany has a resolution for the measurement of rotation
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rates of δf = 9 × 10−11rad/s. This very high sensitivity is good enough for

detecting both small near-field and teleseismic earthquake events.

The ring laser gyroscope was developed in the 60s and 70s for commercial, space

and military navigation purposes. Commercial aircrafts are using this instrument

because it provides a higher accuracy and reliability than other mechanical and

fiber optic gyroscope technologies, and the fact that they do not need any moving

mechanical parts. Since a ring laser is an active interferometer in which the

sensitivity of this instrument arises from the dependency of the laser frequency

from the cavity length, the important requirement for this device is the mechanical

stability (Schreiber et al., 2005). In order to operate in the monomode lasing

regime, the variations of the cavity length must not exceed one wavelength (633

nm), which sets very high demands to the rigidity of the laser beam contour.

As the fluctuation of temperature and pressure must affect the cavity length,

therefore the environmental conditions at the location of the ring laser must

kept within tight limits (temperature variation less than 0.5 degree and pressure

change less than 10 hPa).

Several types of ring laser gyroscopes have been developed mainly for Earth

science applications in the past years. The first generation of ring laser (named

”CI”) was installed in the Department of Physics University of Canterbury, New

Zealand during 1988-1990. This ring laser system has a nearly square optical

cavity with an area of 0.7547 m2 and a perimeter of 3.477 m. It uses a Helium-

Neon gas mixture to fill the cavity and has two modes lasing at 633.0 nm with

frequency of 473.6 THz. The performance of this kind of ring laser is reported

by Stedman et al. (1995).

The ring laser ”C-II”, was the second generation of the ring laser gyro in-

stalled in the Cashmere Cavern in 1997 as part of a collaboration between The

Bundesamt für Kartographie und Geodäsie, Frankfurt and Forschungseinrich-

tung Satelliten Geodäsie Wettzell, Technische Universität München, University

of Canterbury, Christchurch, New Zealand and Marsden Fund of the Royal So-

ciety of New Zealand. It has a monolithic construction, as for an aircraft gyro,

within a solid piece of Zerodur 1.2 m × 1.2 m × 0.18 m. It has an optical cavity

with an area of 1.0 m2 with new engineering improvement including ultra-high

vacuum bonding between metal flanges and Zerodur (Stedman, 1997, Schreiber,
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1997,1998). Zerodur is a glass ceramic with an extremely low thermal expansion

coefficient (α ∼ 5× 10−9K−1). The cavity contains a He-Ne gas mixture and has

one mode in each direction lasing at 633.0 nm. It now routinely delivers Earth

rotation measurements at several parts per billion precision. The Ring laser ”G”,

was a very large and the most precise ring laser which was installed at Wettzell,

150 km north of Munich, Germany during September 1998 to July 2001. It has a

16 m2 area with 16 m perimeter and is stably engineered in Zerodur (Figure 2.14).

”G” has been installed inside a pressure vessel in a purpose-built laboratory 5

Figure 2.14: ”G” ring laser installed at Wettzell.

metres underground. The Ring laser ”UG-1” is the largest active ring laser gy-

roscope in the world installed in Cashmere Cavern, Christchurch New Zeeland.

The laser cavity has perimeter 77 m and area 367 m2. The He-Ne laser operates

with 633 nm wavelength. It is much more sensitive to detect the rotational effects

from earthquakes and from other sources.

Table 2.1 shows the range of sensitivity afforded by the most sensitive existing

large Ring laser gyros (RLGs). Ring laser gyros can be used as the stable elements
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2.2 Rotational sensors

Table 2.1: Sensitivity of various ring laser gyroscope.

Ring laser Area Sensitivity rel. error Drift

[m2] [ rad
s
√

Hz
] [ 1

day
] [

o

h
]

C-II 1 7.2x10−10 7.5x10−6 <4.5x10−5

G 16 9.1x10−11 5.6x10−8 <1.8x10−6

UG1 367 7.3x10−12 6.6x10−7 <1.5x10−3

(for one degree of freedom each) in an inertial reference system. The advantage

of using a RLG is that there are no moving parts. Compared to the conventional

spinning gyro, this means there is no friction, which in turn means there will be

no inherent drift terms. Additionally, the entire unit is compact, lightweight and

virtually indestructible, meaning it can be used in aircraft. Unlike a mechanical

gyroscope, the device does not resist changes to its orientation.

A special ring laser system named ”Geosensor” has been developed mainly for

seismological applications in Wettzell, Germany (Figure 2.16). Figure 2.15 shows

a block diagram of the principal structure of the GEOsensor.

GPS time reference

Ring Laser Gyro

Seismometer

Tiltmeter

Figure 2.15: Block diagram of the principal structure of the GEOsensor

It is equipped with additional major instruments, (1) three components of
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broadband seismometer for the measurement of linear displacements, (2) tiltmeter

for monitoring the changes in the ring laser orientation (3) GPS for the data

acquisition timing systems. It samples with 20 Hz sampling rate using a frequency

demodulation technique.

Several seismic events have been recorded by this sensor ranging from hundred

km of distance to several thousand of km distance (e.g., Igel et al., 2007; Schreiber

et al., 2005). The performance of this sensor for seismological application can be

tested by comparing them with array-derived rotation rate and the transverse

acceleration. In principle, based on Equation 2.2, the rotation rate could also

be derived from translational component recorded at several locations (seismic

array).

This will be discussed in more detail in Chapter 3. Moreover, the transverse

acceleration should be in phase with rotation rate for a certain earthquake event.

More explanation about the rotation vs transverse acceleration relationship can

be found in Chapter 4.

Among the other rotation sensors, ring laser is the state of the art in rotational

sensor. However, ring laser instruments have limitations, i.e. they are sensitive

to local disturbance (for example noise, temperature, pressure).

2.3. Applications

2.3.1. Geodesy, Earth rotation, polar motion

The measurement of the Earth’s rotation by using the very-long-baseline inter-

ferometry (VLBI) has been recognized as the most powerful geodetic technique

since last two decades. The VLBI measures the time differences in the arrival of

microwave signals from extragalactic radio sources received at two or more radio

observatories. The advantages of using VLBI technique, compared with other

techniques such as satellite-laser-ranging (SLR) or Global Positioning System

(GPS), is the unique strength of being able to observe the geometrical orienta-

tion of the rotating Earth relative to the inertial space. the VLBI data contain

the information of:
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1. The rotational speed, free from uncertainties suffered by satellite techniques

due to their orbit drifts. These data yield the length-of-day (LOD) variation

(used conveniently when the temporal sampling is longer than 1 day) or the

universal-time (UT) variation (for sub-daily sampling where LOD loses its

meaning.)

2. The rotational axis orientation, in both nutation and polar motion. In

conventional terminology, nutation (including precession) are variations of

the axis orientation relative to the inertial space, while polar motion is

that relative to the terrestrial frame. Satellite techniques are unable to see

nutation as can VLBI (because VLBI refers to the celestial frame), whereas

VLBI can see polar motion as can satellite techniques (as the VLBI antennas

are fixed on the terrestrial frame.)

Figure 2.16: ”Geosensor” Ring

laser installed in Wettzell, Ger-

many

In the beginning, ring lasers were developed

for measuring the Earth’s rotation and tide. As

we can see from Equation 2.15, the beat fre-

quency between two counter circulating laser

beam is directly proportional to total rotational

velocity. Therefore, rotational motion due to

Earth’s rotation is always included in the mea-

surements. Comparing with the commonly used

method (VLBI), the use of ring lasers will be

more practical since it doesn’t need a global net-

work.

An Earth tide signal at the lunar tidal pe-

riod of 12 hours 25 min has been detected in the

Sagnac frequency record of the C-II ring laser 30

m underground at Christchurch, New Zealand

(Schreiber et al., 2003). Its amplitude, one part

per million of the Earth rotation signal, is much greater than the value of 40

parts per billion expected. Tiltmeter records show that a substantial part of this

amplification is geophysical, the lunar component of tilt having an amplitude of
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the order of 0.1 0.2 µrad, principally because of ocean loading of Banks Penin-

sula. The joint records also show effects on the Sagnac frequency associated with

cavern deformation under ambient pressure and temperature change and with

long-period waves in cavern tilt.

2.3.2. Geodynamics, static rotation

In the past years, the monitoring of Earth crust movement as well as fault creep

is carried out with Interferometric Synthetic Aperture Radar (InSAR), GPS net-

work measurement or broad band seismic network (e.g., Bennett et al., 1996;

Lyons & Sandwell, 2003; Trampert et al., 2003). However, as mentioned in the

previous section, to fully characterize the ground displacement, we need a six

degree of freedom ground motion, including rotational component. Although the

effect of rotational motion induced by earthquakes is small, for a long time du-

ration, or in a case of in the near the earthquake source, this value will give

significant contribution to overall ground deformations.

Hudnut et al. (2004) have combined the Global Positioning System (GPS)

and Inertial Measurement Unit (IMU) as an earthquake early warning system.

The IMU includes the rotational sensor for monitoring the rotation rate as well as

static rotation induced by earthquakes. The GPS/IMU system can provide direct

Damage Map and will be useful for autonomous, robust and real-time reliable

structural health monitoring for large buildings and other engineered structures.

2.3.3. Seismology and earthquake engineering

Rotational (or torsional) motions play an important role in earthquake engineer-

ing studies especially in connection with the building response. Spatially vary-

ing multiple ground excitations produce both lateral and rotational (torsional)

structure responses (Newmark, 1969). The lateral and torsional modes are un-

coupled for symmetric building and the torsional mode is excited only because of

the nonuniform ground motions (Hao & Duan, 1995). The lateral and torsional

modes are coupled if the structure is asymmetric, that is center of stiffness differ

from centers of floor mass. In addition, the local rotational motion may appear to

be due to wave propagation in heterogeneous soil layers at the site. By knowing
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the complete translational and rotational motion at such a site it can help to

better understand the effects of the complete ground motion on structures. The

effects of torsional response and or coupling of motions may remarkably change

the site amplification characteristics at the site. Therefore, it is an important

task to investigate the site amplification characteristics for both translation and

rotations. Furthermore, knowledge of directional dependence of site response

may aid in the design of critical facilities and predicting the dominant direction

of damage at the site.

Figure 2.17: Building damage after a strong earthquake, that may be caused by

rotational motion. Left photo is courtesy of the Geologycal Survey of Canada.

Right photo Edwards, 1999.

The rotational effect of earthquakes to structural damage is an interesting re-

search topic in earthquake enginering. In earthquake engineering, the rotational

component of the ground motion is derived by applying array measurement tech-

niques.

Rotational motion as well as horizontal ground motion coupling affects the cal-

culation of site effect response. Ghayamghamian & Matosaka (2003) studied the

effects of rotational motion to site effect response. They showed that rotational

motion was responsible for the splitting of peaks in their resonance frequencies

and low amplification values. However, the rotational motion is observed us-
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ing indirect method (array technique). Therefore, direct recording of rotational

motions using rotation sensors will help to estimate this effect more accurately.

Legrand (2003) showed that the representation of a finite source in the earth-

quake source modeling is more informative by including the rotational part that

may derived from rotational motions. He also mentioned that the description of

the finite source via seismic moment tensor is neglecting the rotational part that

actually must be taking into account.

2.4. Observations

During the last decades, ground rotational motions have been observed by ro-

tational sensors. Nigbor (1994) reported the successful recording of ground ro-

tational motion induced by a non-proliferation experiment at the Nevada Test

Site using a solid state rotation sensor. A maximum peak rotational velocity

was reported about 2.2◦/s (0.038 rad/s). The amplitude of ground rotational

motion (0.1◦/s was observed during M3.5 event centered about 8 km from the

site. With the same type of sensor, Takeo succeeded in measuring ground rota-

tional motion during an earthquake swarm at March 1997 in offshore Ito in Izu

Penizula, Japan. The maximum rotational velocity was reported to be about

2.6 ×10−2rad/s. Rotational ground motions induced by teleseismic event have

been reported by several investigators (e.g., Igel et al., 2005; McLeod et al., 1998;

Pancha et al., 2000; Stedman et al., 1995) using ring laser technology.

2.5. Conclusion

The rotational part of earthquake-induced ground motion has basically been ig-

nored in the past decades, compared to the substantial research in observing,

processing and inverting translational ground motions, even though there are

theoretical considerations that suggest that the observation of such motions may

indeed be useful and provide additional information.

As in the translational component, the rotational component of ground motion

can be modelled both analytically (for a simple case) or numerically. Numer-

ical calculations can be done by extending the translational code inserting the
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calculation of the curl of displacement or velocity that is usually done in the evo-

lution subroutine for finite difference methods. Furthermore, this modeling could

be used to explore rotational ground motion characteristics as well as study the

earthquake source process.

The solid state rotation sensor and parallel-type seismograph have been used

for recording ground rotation motion. However, they can only measure the ground

rotational motion near the earthquake source. Furthermore, those sensor should

be tested by comparing with other kind of rotation sensor or by comparing with

transverse acceleration to test their consistency. Therefore, sensor developments

in the past years focused on the development and refinement of optical instru-

ments, particular using laser technology. The ring laser has been proven to have

consistent rotation result and the capacity to measure the earthquake ranging

from several hundred of kilometers distance to some thousand kilometers with

a broad range of magnitude. Their consistency has been verified by comparing

with the transverse acceleration. Nowadays, the ring laser gyroscope is the state

of the art in rotational sensor. It provides several advantages and high resolution

compared with other rotational sensors.

Even though the full benefits of the determination of rotational motion in Earth

science are still under investigation, recent analysis suggest that it may increase

the understanding of earthquake source process and refine the understanding of

the Earth structure.
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3. Array experiment, deriving

rotational rate from array data

”A bigger problem has been the

difficulty of deciding whether an

instrument is making useful

measurements or not, and more

particularly how to compare the

results from one instrument to

those from another.”

(Agnew, 1986)

In this chapter I present for the first time a comparison of rotational ground

motions derived from array data with those observed directly with a ring laser3.

The goal of this study is to discuss the effect of noise and uncertainties in the

array observations and their relevance to the derivation of rotation. We restrict

ourselves on analyzing only the vertical component of rotation rate as this is the

only component we are currently measuring with ring laser technologies. Other

component (ie. horizontal) are discussed in Chapter 5.

3.1. Introduction

With the availability of rotational data from a ring laser instrument, the ques-

tion of direct vs. array-type of measurements becomes of interest in seismology,

earthquake physics and geodesy. Study about array-derived rotation rate have

been done by several investigators since several years ago (e.g., Bodin et al., 1997;

3This chapter based on Suryanto et al. (2006)
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Huang, 2003; Spudich et al., 1995). However, to the best of our knowledge, a spe-

cial study to compare directly the array-derived rotation rate with rotation rate

recorded by rotational sensor was never done before.

This study will have –at least– two important aspects. First, it will be the

first study that show directly the comparison of array-derived rotation rate with

direct measurement of rotation rate. Second, it also becomes the first ”perfor-

mance test” for the ring laser in order to see whether this instrument consistently

records seismogenic rotational ground motions in the required frequency band

(frequencies up to 1 Hz for teleseismic wave fields).

Further, we investigate the influence of various effects on array-derived rota-

tion rate using synthetic array data. We will first present a synthetic study, in

which we investigate the influence of various effects on array derived rotation rate.

These effects are (1) unwanted signals (i.e., noise) in the horizontal components

of translation, (2) uncertainty in seismometer calibration, and (3) uncertainty in

station coordinates. Finally, we show the direct comparison of the vertical com-

ponent of array-derived rotation rate with the ring laser gyroscope record for the

M 6.3 Al Hoceima, Morocco, earthquake of February 24, 2004.

3.2. The array experiment

Following the successful observation of fully consistent rotational motions (Igel

et al., 2005), a mobile seismic array experiment with eight stations (S1, S2, S3, S4,

S5, S6, S7, and S8) was installed around the geodetic station Wettzell, Southeast

Germany. A ninth station was located in the geodetic station itself (12◦52’44”E,

49◦08’39”N), where a broadband seismometer (station WET, part of the German

Regional Seismic Network, GRSN) is situated. The ring laser is located at a

distance of approximately 250 m from the broadband seismometer. The radius

of the seismic array is about 1.5 km, centered at station WET. The shallow

subsurface structure consists of metamorphic rock basement superimposed by

glacial till. The location of the array is shown in Figure 3.1.

Each seismic station consists of a three-component velocity sensor (Le3D-

5s) having a flat response in ground velocity between 0.2 and 40 Hz, and a
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0 0.5 1

km

WET

Figure 3.1: Location of the array experiment. The ring laser and GRSN (German

Regional Seismic Network) broadband station (WET) are located at the center of

the array marked by a triangles. The ring laser and the broadband seismometer

are separated by approximately 250 m.
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400V/m/s generator constant. A 24-bit three-channel digital recorder (Lennartz-

Marslite/HD complemented by 3.5” removable SCSI hard drives) was used to

record the data. The sampling rate was 62.5 Hz and GPS time synchronization

was achieved every 15 minutes. The experiment was running from December

2003 until early March 2004. The seismometers were buried in soft forest ground

(Figure 3.2) or they were deployed on outcropping large igneous rock boulders

(Figure 3.3).

Seismometer

Figure 3.2: Station S1 located near a farm with the sensor was buried with a

bottom depth about 50 cm.

The GRSN (WET) station is equipped with a STS-2 with a flat response of

the ground velocity from 8.33 mHz (120 s) to 50 Hz, and a generator constant of

2 × 750 V/m/
√

s. The data are recorded with a sampling rate of 80 Hz.

The ring laser instrument, called ”G”, consists of a He-Ne gas laser with a

ultrahigh vacuum quality cavity enclosing an area of 16 m2. The vertical com-

ponent of rotation rate is recorded by this instrument with a sampling rate of

4 Hz. The G ring laser has a resolution of 9x10−11 rad/s/Hz (Schreiber et al.,

2003). Further information on the ring laser instrument is given in Schreiber

et al. (2005).
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Seismometer

Figure 3.3: Station S4 is located on outcropping large igneous rock boulders.

Several teleseismic earthquake events were observed during this experiment.

The parameters of those events are given in Table 3.1. However, very few of

these events were recorded with high signal to noise ratio by both the ring laser

system and the seismic array. We focus here on the event with the highest signal-

to-noise ratio.

3.3. Data and data processing

The continuously recorded data was converted to GSE format, segmented in 1-

hour files, and archived on DVDs. The software package PITSA (Scherbaum &

Johnson, 1992) was used to process the digital recorded data. Note that not all

of those events are well recorded by the array’s seismometers (Table 3.1).

Unfortunately the ring laser was not performing properly during some parts of

the experiment, especially in December 2003.

Among those events, a specific one was selected for analysis, which happened

on 24/02/2004 at 02:27:46.2 (GMT). According to news reports, the earthquake

caused 628 causalities, and more than 2500 building collapsed. The epicenter
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Table 3.1: Parameters of the earthquakes recorded by the array during the experi-

ment. Unfortunately the ring laser was not performing properly during December

2003.

Date Time Mw Lat. Lon Ring Array

(UTC) laser

21.12.2003 07:40:45.8 6.6 00.769 S 20.601 W X noisy

22.12.2003 19:15:56.0 6.6 35.706 N 121.102 W X
√

25.12.2003 07:11:11.5 6.5 8.416 N 82.824 W X
√

26.12.2003 01:56:52.4 6.6 28.995 N 58.31 E noisy
√

26.12.2003 21:26:4.0 6.8 22.273 S 169.314 E X noisy

27.12.2003 16:01:0.0 7.3 22.015 S 169.766 E X
√

27.12.2003 22:38:1.8 6.7 21.672 S 169.835 E X noisy

05.02.2004 21:05:4.0 7.0 03.613 S 135.538 E
√

noisy

07.02.2004 2:42:35.0 7.3 04.003 S 135.023 E noisy
√

21.02.2004 2:34:42.7 6.6 58.425 S 14.963 W noisy noisy

24.02.2004 2:27:46.2 6.4 35.142 N 3.997 W
√ √
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was located about 10 km south of Al Hoceima near the village of A1̈t Kamra

(35.235◦ N, 3.963◦W), about 295 km North-East from Rabat, Morocco. This

earthquake occurred near the eastern end of the Rift mountain belt, which is part

of the diffuse boundary between the African and Eurasian plates. The distance

between the epicenter and the seismic network was about 2055 km (18.5 deg). The

estimated rupture dimension was about 10 × 10 km2 with a moment magnitude

of Mw=6.2 for the first event (Stich et al., 2005). This earthquake was recorded

simultaneously by the array stations S1-S8, the broadband station (WET) and

the ring laser. The array and broadband data are corrected for the instrument

response and deconvolved to a uniform seismometer with a corner frequency of

0.02 Hz. This is the most critical process during this experiment since we want to

have true ground displacement value. The instrument response correction process

significantly change the waveform of the recorded seismic signal especially from

the Le3D sensor (Figure 3.4).

Before restitution

After restitution

2 min

S1

Broadband

Figure 3.4: Comparison of normalized velocity seismograms for the M6.4 Al

Hoceima Morocco earthquake recorded by S1 and broadband station. Significant

change of wavefrom after corrected for the instrument response is clearly shown.

All the seismograms are bandpass filtered from 0.03 Hz to 0.3 Hz.

Figure 3.5 shows the horizontal components of velocity seismograms after cor-

rected for the instrument response, including broadband (WET) data for the Al
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Hoceima event. All the seismograms, including the broadband data are bandpass

filtered from 0.03 to 0.5 Hz.
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Figure 3.5: True amplitude velocity seismograms for the M6.4 Al Hoceima Mo-

rocco earthquake of February 24, 2004, recorded by the array. A superposition

of all seismograms in a 2-minute time window is shown in the lower part. All the

seismograms, including the broadband seismogram (WET, top), are corrected for

the instrument response and bandpass filtered from 0.03 Hz to 0.5 Hz.

Note that, for this study, only the horizontal components from the array data

were used. As expected, there is considerable match in amplitude and waveform

between the array seismograph and the broadband sensor. The maximum ampli-

tude of the velocity was about 0.8 × 10−4 and 1.2 × 10−4 m/s for East-West and

North-South components, respectively.
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3.4 Deriving rotation from seismic array data

3.4. Deriving rotation from seismic array data

The relation between rotational and translational motions is obtained trough the

application of the curl operator ∇× to the seismic wave field ~v(x, y, z) by:




ωx

ωy

ωz



 =
1

2
∇× ~v =

1

2





∂yvz − ∂zvy

∂zvx − ∂xvz

∂xvy − ∂yvx



 . (3.1)

This implies that - in principle - the rotational component can be estimated

if we are able to calculate the spatial derivative of ground velocity. As is well

known from numerical mathematics, partial derivatives can be approximated in-

troducing information from two or more points sampling the vector field and

solving an approximate system of linear equations. In what follows, we will re-

strict ourselves to the vertical component of rotation, as it is the component the

ring laser is measuring. The simplest method to approximate the derivatives of

the horizontal components of motion is to subtract two recordings of ground dis-

placement (velocities, acceleration) and divide by their distance (finite difference

approximation). This can be done especially when the points are distributed reg-

ularly in an ideal cross shaped array (e.g., Huang, 2003). In this thesis we apply a

standard geodetic method to estimate the static displacement for calculating the

space derivatives. This has been previously used by Spudich et al. (1995) to study

the dynamic deformation induced by the M7.4 Landers earthquake of June 28,

1992, derived from the UPSAR array in Parkfield, California. This method has

also been used by Bodin et al. (1997) to study dynamic deformations of shallow

sediments in the Mexico basin.

We briefly describe this method in the following. At the free surface boundary,

with the assumption of spatially uniform displacement gradient it can be shown

that the displacement gradient matrix G, at each time point, can be estimated

from ground displacement ui (i = 1..N) recorded at N stations by solving the set

of equations:

di = GRi

=





∂xux ∂yux ∂zux

∂xuy ∂yuy ∂zuy

∂zux −∂zuy −η(∂xux + ∂yuy)



 Ri, (3.2)
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where, η = λ (λ + 2µ), λ and µ are the Lamé parameters, di = ui−u0, Ri = ri−r0,

ui, ri, and u0, r0, are the displacements at the coordinates of the ith station and

the reference station (subscript o) respectively. At least three stations have to

be used to determine the displacement gradient using this method. Assuming

the array stations were located at the same elevation, the vertical component of

rotation rate can be obtained by solving the equation (3.2) using three stations

(Si,Sj,Sk):

ωz =
1

2A

([

biu
i
y + bju

j
y + bku

k
y

]

−
[

ciu
i
x + cju

j
x + cku

k
x

])

, (3.3)

where A is the area bounded by the station Si, Sj and Sk, bi = (yk − yj)/2,

ci = (xk −xj)/2, and bj, cj, etc., can be achieved by letting i → j → k → i. Here

(xi, yi),(xj, yj) and (xk, yk) are coordinates of stations Si, Sj and Sk, respectively.

When more than three stations are used, the equation (3.2) can be solved using

a least - squares procedure. More detailed explanations about this method can

be found in Spudich et al. (1995).

3.5. Test on synthetic data

One of the key questions in this study is to understand the effect of various sources

of uncertainties in the array observations on the array-derived rotational ground

motions. The method described above is therefore first tested against a synthetic

array data set. Complete theoretical seismograms for translations and rotations

were calculated for a recent 3-D global tomography model S20RTS (Ritsema &

Van Heijst, 2000), and a global crust model CRUST2.0 (Bassin et al., 2000)

for a point-source approximation of the Al Hoceima event. Seismograms were

calculated using the spectral-element method (Komatitsch & Tromp, 2002a,b)

that was extended to allow outputting the curl of the velocity-wave field (i.e.,

rotation rate). The large-scale numerical simulation was carried out with a spatial

and temporal resolution allowing an accurate wavefield down to periods of 20

seconds (Schuberth et al., 2004). The receivers were located at the same positions

as our array’s seismometers. To include the instrument effects, we filtered the

synthetic data with the instrument response of the Le3D-5s seismograph.
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Figure 3.6 shows the restituted time histories of the horizontal components

of the synthetic ground velocity and superposition of all traces in a short time

window. Due to the epicentral distance (∼ 2000 km) and the considered spatial
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Figure 3.6: Synthetic velocity seismograms for the M6.4 Al Hoceima Morocco

earthquake of February 24, 2004, for all the array’s station as well as the central

station (WET), calculated for a 3D mantle model (Ritsema & Van Heijst, 2000)

and a recent crustal model (Bassin et al., 2000). The seismograms, calculated

using the spectral element method (Komatitsch & Tromp, 2002a,b), have been

lowpass filtered (< 0.05 Hz).

and temporal wavelengths, the waveforms are almost identical across the array.

In the following we aim at investigating the effect of noise at some of the seismic

stations. As the minimum number of stations to determine the spatial gradients
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3.5 Test on synthetic data

is three, we choose to estimate rotations from (sub) triangular array section to

investigate (1) the uniformity of the derived rotation and (2) to identify array

sections with large uncertainties.

Figure 3.7 shows four pairs of the vertical component of array-derived rota-

tion rate calculated using combinations of three stations of the outermost array

stations (S5, S6, S7 and S8) with WET as the reference station (gray line) su-

perimposed with synthetic rotation rate (black line) at the center of the array

(WET). The normalized correlation coefficients (maxima) are given above the

WET

S1

S2
S3

S4

S5

S6

S7

S8
S5−WET−S8

xcorr=0.9924

2 min

4x10−8 rad/s

S8−WET−S7

xcorr=0.99272

S6−WET−S7

xcorr=0.99186

S5−WET−S6

xcorr=0.99027

Figure 3.7: Synthetic test of uniformity of rotation rate across the array. Four

pairs of the vertical component of rotation rate at the array center (black line) and

array-derived rotation rate (gray line) calculated using three stations. Top right:

stations WET, S5 and S8; bottom right: stations WET, S7 and S8; bottom left:

stations WET, S6 and S7; top left: stations WET, S6 and S5. The normalized

correlation coefficients are given for each trace pair.

trace pairs. The stations used to derive the vertical component of the array-

derived rotation rate are given in the bottom of each trace pair. As expected

with noise-free synthetics, the array-derived rotation rate matches almost exactly

the rotation rate calculated at the central station WET (corr. coeff. > 0.99).

We now perform the same exercise with the observations of the Al Hoceima

events. In Figure 3.8, the direct observations of rotation rate with the ring laser
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3.5 Test on synthetic data

(black line) at the center of the array is compared with the array-derived ro-

tation rate (gray line) using four different subtriangles. First, we observe that

WET

S1

S2
S3

S4

S5

S6

S7

S8

S5−WET−S8

xcorr=0.35993

2 min

2x10−8 rad/s

S8−WET−S7

xcorr=0.63108

S6−WET−S7

xcorr=0.86049

S5−WET−S6

xcorr=0.76372

Figure 3.8: Non uniformity of array-derived rotation rate across the array for

different triangles for real data. Top right: stations WET, S5 and S8; bottom

right: stations WET, S7 and S8; bottom left: stations WET, S6 and S7; top left:

stations WET, S6 and S5. The normalized correlation coefficients are given for

each trace pair.

the array-derived rotation rate (using three stations only) varies substantially for

the different triangles, suggesting considerable amount of noise, propagation, or

site effects across the array. Second, in one subtriangle (S6-WET-S7) the phase

match is quite good, but the amplitudes do not match well. In another one (S5-

WET-S8) the amplitudes are closer to the direct measurements, but the phase

match poorly in most parts of the seismogram. These observations suggest that

different sources of noise (amplitude, phase, etc.) seem to affect the various array

stations in our experiment.

Note that here we have deliberately decided to use only three (of nine possi-

ble) stations to determine rotations to highlight noise in the data. All stations

are used in the final comparison. Before investigating specific noise effects more

systematically, we demonstrate that - assuming random noise added to the syn-

thetic array seismograms- we reproduce a behavior similar to what is seen in the
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3.6 Various factors affecting the derivation of rotation rate

observations. To all seismograms we add 3% Gaussian white noise. Station 8,

however is additionally perturbed by phase uncertainty in the E-W component.

Phase uncertainty is introduced by perturbing each phase component randomly

by up to 2% (of 2φ). The subtriangle determination of rotation rate with the

phase-perturbed synthetics shown in Figure 3.9a now exhibits misfits similar to

those of the observation in Figure 3.8. The subtriangle containing the phase per-

turbed seismometer (S8) compares poorly with the (noise-free) rotational signal

at the center of the array. However, if we use all nine stations to determine the

rotational signal, most of the random noise cancels out and the final array-derived

rotation rate compares well with the (noise-free) rotational signal at the center

of the array (Figure 3.9b). This indicates that random errors and /or systematic

differences (randomly distributed) in parts of the array data may cancel out when

sufficiently large number of stations is used. On the other hand using only three

stations for array-derived rotations may considerably increase the uncertainties

with respect to final rotation estimates.

3.6. Various factors affecting the derivation of

rotation rate

In this section we will examine the effects of various levels of synthetic uncorre-

lated random noise, real background noise (extracted from observations), uncer-

tainties in the position determinations and uncertainties in the seismometer gain

on the array-derived rotation rate. The vertical component of rotation rate is

calculated using all the data from the nine stations, as will be done when finally

comparing with direct observations.

3.6.1. Synthetic noise

Clearly, intrinsic inhomogeneity of displacement gradient (e.g., due to topography,

structural heterogeneity, etc.) might occur, but we restrict ourselves here to the

study of random (nonsystematic) perturbations.

To study the effects of uncorrelated random noise in the array seismograms, we

generate a Gaussian random signal with maximum amplitudes of 1%, 5%, and
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3.6 Various factors affecting the derivation of rotation rate
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Figure 3.9: Non uniformity of array-derived rotation rate across the array for dif-

ferent triangles for synthetic data with a single phase-disturbed station (S8) and

3% of random noise added for all stations. a) Four pairs of the vertical compo-

nent of ring laser data (black line) superimposed with array-derived rotation rate

(gray line) calculated using three stations. Top right: stations WET, S5 and S8;

bottom right: stations WET, S7 and S8; bottom left: stations WET, S6 and S7;

top left: stations WET, S6 and S5. b) The vertical component of array-derived

rotation rate (gray) is calculated from all eight stations (S1-S8) with WET sta-

tion as reference. The normalized correlation coefficients are given for each trace

pair.

46

Chapter2/Chapter2Figs/outer_ring.ps


3.6 Various factors affecting the derivation of rotation rate

10%, of the maximum amplitude of the horizontal component of the synthetic

velocity seismograms. This random signal is added to the synthetic array data.

The array-derived rotation rate from 25 random signal realizations is depicted

in Figure 3.10 (gray) and compared with the noise-free exact rotation rate at

the center of the array. The average root-mean-square (rms) difference of the

array-derived rotation rate was 1.33%, 6.43%, and 12.87% for 1%, 5%, and 10%

noise, respectively. With 10% noise the waveforms are severely distorted but the

dominant phases are still well matched with peak amplitude errors similar to the

noise percentage. With 5% noise the waveforms are affected by the low-frequency

part of the random noise, while, with 1%, the differences between the curves is

barely more than the thickness of the line.
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Figure 3.10: Vertical component of array-derived rotation rate from synthetic

data with Gaussian random noise (with 25 noise realizations) (gray line), super-

imposed with the noise-free synthetic rotation rate (black line). The amount of

noise is 10%, 5% and 1%, from top to bottom.
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3.6 Various factors affecting the derivation of rotation rate

3.6.2. Real noise

The actual noise level in the observations can be estimated by taking signals prior

to the first arriving energy of the event under investigation. In the following, noise

signals are extracted from the observations some minutes before the first arriving

energy for each of the nine stations. These signals are added to the synthetic

array seismograms and the rotational signal is estimated and compared to the

noise-free rotational signal at the center of the array. The background noise is on

average about 3% of the peak amplitude of the velocity seismograms. The results

are shown in Figure 3.11 (top). The rms-difference of the array-derived rotation

rate with respect to the true signal is 3.58%. These results suggest that with the

observed noise level – in the absence of other errors (e.g., systematic errors such

as timing, filter problems, etc.) – it should be possible to derive the rotational

signal from the array observations with similar certainty (within a few percent).

3.6.3. Uncertainty in seismometers’ position

Array station coordinates are essential for the calculation of the array-derived

rotational signal. In our experiment we use a portable GPS receiver for syn-

chronizing the time and for the determination of the stations’ coordinates. The

problem with this kind of GPS is their low accuracy in position determination.

In our experiment, the coordinate precision was affected by the nearby presence

of buildings or trees. As a consequence, the uncertainty in seismometer’s position

in our experiment is several meters.

To estimate the effect of position uncertainties, we introduce random position

errors from -30 to +30 meters in the x and y coordinates and calculate the rotation

rate for 25 such realizations. The results are shown in Figure 3.11 (bottom). The

average rms-difference of the array-derived rotation rate is 0.38%. From this we

conclude that the uncertainties introduced through the GPS measurements are

unlikely to deteriorate the final array-derived estimates of the rotational signal.

48



3.6 Various factors affecting the derivation of rotation rate
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Figure 3.11: a) Vertical component of array-derived rotation rate from synthetic

data with real noise taken from the observed seismograms several minutes before

the event started; b) The effects of a ±30 m error in seismometer position on the

derivation of rotation rate for 25 realizations).
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3.6 Various factors affecting the derivation of rotation rate

3.6.4. The effect of local soil condition and phase

The effect of local soil condition is playing an important role in the ground mo-

tion study. Near surface heterogeneities may introduce attenuation as well as

amplification in the amplitude of the seismogram. To investigate the effects we

randomly modify the overall amplitude of the synthetic data by a factor of 1%,

5%, and 10%. The calculated rotation rate from 25 realizations in each case is

depicted in Figure 3.12. The rms-difference of the array-derived rotation rate is

1.14%, 3.67%, and 10.12%, for 1%, 5%, and 10% amplitude uncertainty in each of

the array components, respectively. Even though this test is somewhat simplified,

the results suggest that random (constant/static) amplitude errors are unlikely

to alter the final results – given our array configuration – significantly.
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Figure 3.12: Vertical component of array-derived rotation rate for synthetic data

with amplitude uncertainty of 10%, 5%, and 1% (top to bottom), from 25 real-

izations (gray lines) superimposed with synthetic rotation rate (black line).
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3.6 Various factors affecting the derivation of rotation rate

Array-derived rotation rate assumes that the seismometers used in the exper-

iment exhibit the same behavior (i.e. the same response function). The specific

response function of the seismometers used here and the low frequencies consid-

ered here may potentially introduce phase uncertainties. In order to investigate

this effect, we perturb the phase component of the all horizontal components of

seismogram in the frequency domain by 0.5%, 1%, or 2% (with a percentage of

2π) of the phase components. The calculated rotation rate from 25 realizations

in each case is depicted in Figure 3.13. The rms-difference of the array-derived

rotation rate is 65.4%, 38.6%, and 15.5%, for 2%, 1%, and 0.5% phase uncer-

tainty in each of the array components, respectively. Comparing with other noise

effects, this uncertainty gives the most pronounced effects on the final results.
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Figure 3.13: Vertical component of array-derived rotation rate for synthetic data

with phase uncertainty of 10%, 5%, and 1% (top to bottom), from 25 realizations

(gray lines) superimposed with synthetic rotation rate (black line).

51

Chapter2/Chapter2Figs/phase_new.eps


3.7 Real data

3.7. Real data

Finally, we derive the array-derived rotation rate for the Al Hoceima event from

the horizontal seismograms of all nine array stations (Figure 3.5). In Figure 3.14

we show the comparison between the array-derived rotation rate with ring-laser

based direct measurements of the same wave field quantity. We stress here that

the traces are compared with absolute amplitudes. The overall rms-difference is

3.72%. The maximum normalized correlation coefficients are given below each

seismogram. The best correlation coefficient is 0.97 in the Love wave time win-

dow. In the early part of the seismogram, the fit is worse. This is probably due

to the low amplitudes compared to the peak amplitudes of the Love wave train.

In addition, this time window contains the highest frequencies and we expect

the uncertainties to increase with frequency. The match between the direct and

array-derived rotation rate is almost perfect in the three-minute time window

containing the fundamental and higher mode Love waves with correlation coef-

ficients above 0.95. The overall fit is worsening towards the end of the signal

due to decreasing signal-to-noise ratio. The surprisingly good fit of those entirely

different approaches to measuring the rotational part of the wave field confirms

the quantitative results of the synthetic study, particularly the fact that the fi-

nal similarity is obtained thanks to the relatively large number of seismic array

stations given the observed noise levels.

3.8. Array-derived rotation rate versus transverse

acceleration

It has been shown from Table 3.1, that during this experiment, only the data Al

Hoceima event were available both from ring laser and from array. However, there

are other events that were recorded relatively good signal-to-noise ratio with the

array seismometer but not the ring laser instrument. Those events are the M6.6

Bam, Iran event at 26 December 2003 (Figure 3.15) and 7.3 Papua, Irian Jaya,

Indonesia event at 07 February 2004 (Figure 3.16).

Even though, not all station records those event with a good signal-to-noise

ratio, fortunately the station S2, S5, and S6 record those event quite well. With
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3.8 Array-derived rotation rate versus transverse acceleration
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Figure 3.14: Vertical component of array-derived rotation rate from real array

data set (gray line) superimposed with ring laser data (black line). Nine stations

including the broadband data are used to calculate the array-derived rotational

signal. Both traces are bandpass filtered from 0.03 Hz to 0.3 Hz
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3.8 Array-derived rotation rate versus transverse acceleration
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Figure 3.15: Horizontal component of the velocity recorded by the array seis-

mometer for the December 26, 2003, Bam, Iran earthquake. The data from sta-

tion S2, S5, S6 and broadband are used to derive the rotations. a)The East-West

components, b) The North-South components.
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3.8 Array-derived rotation rate versus transverse acceleration
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Figure 3.16: Horizontal component of the velocity recorded by the array seis-

mometer for the 7 February 2004 Papua, Irian Jaya Indonesia earthquake.The

data from station S2, S5, S6 and broadband are used to derive the rotations.

a)The East-West components, b) The North-South components.
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3.8 Array-derived rotation rate versus transverse acceleration

the data recorded by the broadband station, then we have four stations to derive

the rotation rate. Since the direct measurement of vertical rotation rate was not

available during this event (due to very low signal-to-noise ratio), we will compare

the array-derived rotation rate with the transverse acceleration from broadband

station.

In section 2.3.3 we have shown that assuming a plane wave propagation, trans-

verse acceleration and the vertical component of rotational rate should be in

phase and their ratio identical to twice to the horizontal phase velocity. The

transverse acceleration is scaled (i.e., converted to rotation rate) by dividing by

twice a constant phase velocity (5000 m/s as approximation for the local Love

wave phase velocity). Figure 3.17 and Figure 3.18 show the computed time histo-

ries of the scaled transverse acceleration(red lines) superimposed with the vertical

component of ground rotation rate (black lines) across the array for the Bam, Iran

and Papua, Indonesia earthquake respectively. Their array-derived rotation rate

match quite well with the transverse acceleration with cross correlation coefficient

above >0.90 and >0.82 respectively. Figure 3.17 and 3.18 shows that the com-
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Figure 3.17: Comparison of collocated transverse acceleration (red lines) observed

by GRSN broadband seismometer with array derived rotation rate (black lines)

for the Bam, Iran earthquake.

parison between the array-derived rotation rate and transverse acceleration have
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3.9 Discussion and conclusions
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Figure 3.18: Comparison of collocated transverse acceleration (red lines) observed

by GRSN broadband seismometer with array derived rotation rate (black lines)

for the Papua, Indonesia earthquake.

a good agreement especially for time windows containing the surface wave trains.

This suggest and further supports the conclusion that the array seismograms, the

broadband sensor and the ring laser consistently provide the same information

on the rotational part of the wave field.

3.9. Discussion and conclusions

As suggested by the theory, the vertical component of rotation rate can be derived

from the horizontal components of seismic records. The accuracy of array-derived

rotation rate is strongly dependent on the quality of the recorded translational

seismograms. The application of the ”seismo-geodetic” method (Spudich et al.

(1995), Bodin et al. (1997)) to the derivation of the rotational component of the

ground motion is flexible in that it can be used for arbitrary stations’ configuration

and number of stations (that is, more than three stations). The comparison

between array derived rotation rate and ring laser data shows that the method

is sufficient to model the rotational ground motion. It is shown in Figure 3.9b

that using nine stations the phase error is reduced as the correlation coefficient is
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3.9 Discussion and conclusions

greatly increased, compared to the two plots on the right hand side of Figure 3.9a.

Using ring-laser technology we present here the first comparison of seismic

array-derived rotations with direct measurements. The goal of this study was (1)

to quantify the accuracy with which rotations can be derived from seismic array

data; (2) to investigate the effects of noise; and (3) to discuss issues concerning

array versus direct measurements of rotations. The seismic array experiment

that was carried out between December 2003 and March 2004 with a radius of ≈
1.5 km around the ring laser instrument was to some extent sub-optimal because

(1) the seismic equipment we used (LE3D-5s) is not designed for teleseismic

studies and long-period signals, and (2) as far as the array geometry goes, the

emphasis was on having a shape as close to a regular “finite-difference stencil”

as possible resulting in heterogeneous site conditions (from muddy forest ground

to outcropping granite boulders). These conditions and the high noise levels on

the horizontal components resulted in a data set in which only very few large

teleseismic events were usable for the rotation estimates.

Nevertheless, in the light of the experimental circumstances the fit between

array-derived rotations and direct ring laser measurements (Figure 3.14) is stun-

ning, given the observation of a wave field property (rotation around a vertical

axis) with entirely different physical methodologies. We expected that errors

in individual station observations play a stronger role particular when calculat-

ing spatial derivatives. The estimated noise level in the array seismograms was

around 3% and it is interesting to note that a quantitatively similar misfit be-

tween array-derived rotation and direct measurements is observed for the most

dominant signals (Love waves). These results indicate that – given accurate mea-

surements of translational motions in an array of appropriate size and number of

stations – the array-derived rotation rate may be very close to the “true” rota-

tional signal that would be measured at the center of the array (or the specific

reference station). However, it is important to note that – given the observations

described in Figure 3.8 – it may be dangerous to use only the minimally required

three stations as even relatively small noise levels may deteriorate the rotation

estimates.

The influence of a random signal in the translational data gives more pro-

nounced effects to the array derived rotation rate. Figure 3.10 shows that if the
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3.9 Discussion and conclusions

noise level in the horizontal components of the seismograms is equal or superior

to five percent, then the array-derived rotation rate is very inaccurate. One at-

tempt to minimize this noise is to optimize the installation of the seismometers

(adequate coupling and proper choice of site). As we can see from the random

noise experiment (Figure 3.10), the effect of real noise of about 3% of the maxi-

mum amplitude of the velocity provided a RMS difference of about 3.6%. This

is consistent with the data presented in Figure 3.10 since that RMS lies between

the RMS difference of the one percent and five percent cases of synthetic noise.

This suggests that the accuracy of the array-derived rotation rate from real data

is adequate and should be comparable with the ring laser data.

Unfortunately this was the only earthquake event recorded by the ring laser

instrument during the array experiment (Table 3.1). Nevertheless, when the ring

laser data or other rotational sensor data are not available, it is still possible

to compare the array-derived rotation rate with the collocated transverse accel-

eration (Figure 3.17 and 3.18) from broadband sensor assumes that the local

horizontal phase velocity is known.

While the results suggest that the observation of array-derived rotations is

feasible, it is important to note that we considered a fairly long-period signal

in this study. Errors will certainly be more pronounced for earthquakes with

shorter epicentral distances and higher-frequency wave fields. In the light of this,

the necessity to develop field-deployable rotational sensors with the appropriate

resolution for use in local and regional seismology remains an outstanding issue.
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4. Love-wave dispersion from

collocated measurements of

rotation and translations

”This twisting displacement, at

first appears to indicate a

vorticose movement beneath each

point thus affected; but this is

highly improbable.”

Darwin, 1845

In this chapter I present a specific application of rotational data to derive

the local horizontal phase velocity and to determine the Love-wave dispersion

curve.The Love-wave dispersion curve are then compared with the theoretical

Love-wave dispersion curve calculated using the AK135 Earth model (Kennett

et al., 1995) based on the eigenvalue problem described by Friederich (1999).

4.1. Introduction

One of the key questions concerning rotational motion is, what information we

can infer from rotational ground motions excited by earthquakes? Since rotation

component around the vertical axis is sensitive to SH waves and not to P − SV

waves we will have more accurate data for arrival times of SH waves Takeo & Ito

(1997). Furthermore, they have shown (based on a theoretical study) that the

strain tensor and the spatial variation of slip velocity in the area of earthquake

will be large at the edge of a fault plane due to spatially rapid changes of slip
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4.1 Introduction

on the fault and/or a formation of tensile fractures. It is also expected that the

measure of rotations will allow to better constrain earthquake rupture histories

(e.g. Takeo (1998)).

A representation of rotational data recorded by ring laser gyroscope have been

reported by several investigators (e.g., McLeod et al., 1998; Pancha et al., 2000;

Stedman et al., 1995). Some important results that should be noticed here are

the sensitivity of the ring laser being adequate to sensing rotational signals from

earthquakes and the consistency of the ground rotation signal recorded by ring

laser compared with transverse acceleration both in phase and amplitude. This

consistency is based on the theoretical relation between transverse acceleration

and rotation rate. They should - assuming plane wave propagation and transverse

polarization - be in phase and their amplitude ratio proportional to horizontal

phase velocity. In turn, this implies that estimates of horizontal phase velocities

- particularly of Love-waves - should be possible with collocated point measure-

ments of rotation and translations. Otherwise, this would only be possible with

seismic array or additional strain measurements. Such point-measurements with

additional rotational sensors may proof to be useful for very sparse or single-

station networks (e.g. in planetary seismology).

The determination of frequency-dependent surface-wave phase velocities has for

a long time been one of the most important tools to determine 3-D seismic velocity

structure on regional and global scales (e.g., Nataf et al., 1984; Snieder, 1988a,b).

On small scales, near-surface low-velocity structures crucial for the estimation of

hazard-relevant site effects can be determined using ambient noise measurements

(e.g., Kind et al., 2005; Milana et al., 1996). Recently, it was shown that Rayleigh-

wave dispersion curves can be derived by correlating long time series of ambient

noise (micro-seismicity) and that the velocity structure thus derived can be used

to image 3-D structures (e.g., Campillo & Paul, 2003; Shapiro & Campillo, 2004;

Shapiro et al., 2005). The aforementioned techniques require observations from

seismic arrays to recover frequency-dependent propagation times (and thus phase

velocities) across the array in the direction of propagation. Standard seismic ob-

servations are restricted to three components of translations, despite the fact that

the recovery of the complete motion requires the observation of three additional

components of rotations and six components of strain (e.g., Aki & Richards, 2002;

61



4.1 Introduction

Trifunac & Todorvska, 2001). In the past years, rotation sensor technology has

been improving in a way that may allow the development of routine sensors for

three additional rotational motion components useful for seismological purposes

(e.g., Schreiber et al., 2005, 2006). Recent observations of local, regional and

global wavefields using ring laser technology showed that the rotational mea-

surements are fully consistent with collocated observations of translations (e.g.,

Cochard et al., 2006; Igel et al., 2005, 2007) following earlier observations of

earthquake-induced rotational motions (e.g., McLeod et al., 1998; Pancha et al.,

2000). Further confirmation of accurate measurements of the new observational

component using ring laser technology came through comparison with rotational

motions derived from seismic array data (Suryanto et al., 2006) using a classical

approach (e.g., Spudich et al., 1995). A temporary array was installed around

the ring laser instrument and direct and array-derived rotations compared for

an event with high signal-to-noise ratio. The high correlation-coefficient (0.93)

and almost identical amplitudes for the two independent rotation measurements

observed with entirely different physical principles further indicate that the ring

laser indeed measures the rotational motions accurately in a wide frequency range.

A simple relationship between transverse acceleration and rotation rate (around

a vertical axis) shows that both signals should be in phase and their ratio propor-

tional to horizontal phase velocity. Igel et al. (2005) and Cochard et al. (2006)

exploited this relationship to estimate horizontal phase velocities in sliding time

windows along the observed time series. Comparison with synthetic traces (rota-

tions and translations) and phase velocities determined in the same way showed

good agreement with the observations. These initial results suggested that the

determination of Love-wave dispersion curves (and thus information on local 1-D

shear velocity structure) may be possible. It is worth noting that a similar rela-

tionship between strain and displacements can be used to determine horizontal

phase velocities (e.g., Gomberg & Agnew, 1996; Mikumo & Aki, 1964). In this

study we present a novel method for the determination of Love-wave phase ve-

locities based on collocated measurements of translations (standard broadband

seismometer) and rotations around a vertical axis (observed by a ring laser). In-

stead of determining phase velocities in the time domain (e.g., Cochard et al.,

2006; Igel et al., 2005, 2007), we average spectral ratios of several earthquakes
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4.2 Surface-wave Phase velocity determination

which allows us to directly determine frequency dependent Love-wave phase ve-

locities and compare them with theoretical predictions for spherically symmetric

Earth models. The results are supported by applying the same processing steps

to complete 3-D synthetic seismograms for some of the observed events.

4.2. Surface-wave Phase velocity determination

The two types of surface waves that propagate along the surface of the Earth are

Rayleigh waves and Love-waves. Rayleigh wave are resulting from an interaction

of P (compressional waves) and vertically polarized S (shear waves) waves (SV )

with the free surface, generating an elliptical retrograde (or prograde) ground

displacement in a vertical plane. Love-waves are generated by interaction of

horizontally polarized S waves with the free surface, producing a horizontally

transverse motion. Love-waves propagate faster than Rayleigh waves as clearly

shown in a seismogram.

Rotation sensor

Rayleigh wave

SH Love wave

Figure 4.1: Rotational motion induced by Love and Rayleigh waves. Love-wave

will trigger a vertical component of rotation, while a Rayleigh wave will induced

a horizontal component of rotation on a rotation sensor.

Both Love and Rayleigh waves have a non-zero rotational component that will

be recorded by rotation sensors of appropriate orientation (Figure 4.1). Surface
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4.2 Surface-wave Phase velocity determination

waves are usually the dominant feature on the seismograms in the period range

between 10-200 s and much of the reliable information on the long period part of

seismic source spectra is obtained from surface waves (Aki & Richards, 2002).

Surface waves can be used to investigate the geological structure inside the

Earth. For this purpose, based on the source that generate the observed signals,

there are two types of surface wave experiments that can be done, namely active

and passive methods. The active method is usually conducted for geotechnical

applications, such as bedrock determination, seismic hazard assessment, and ge-

ological mapping. It uses an artificial high frequency vibration source. Hence,

the depth of penetration is only several tens of meters. The passive method uses

more a broad frequency band by recording ambient vibrations or microseismic

data. Hence, it could be used for more regional scale application (Aki, 1965).

The surface-wave data further provide important constraints on anisotropy in

the uppermost mantle (Friederich & Huang, 1996).

The main attribute of the surface wave which is under investigation is their

phase velocity. The phase velocity, cp is defined by

cp =
ω

κ
, (4.1)

where ω is the angular frequency and κ is the wavenumber.

Following Aki & Richards (2002), conventionally the phase velocity can be

derived by assuming that the wave group consists purely of a single surface-wave

mode, possessing a propagation velocity determined only by frequency. Suppose

that the wave group propagates along the x-axis and is expressed as

f(x, t) =
1

2π

∫ ∞

−∞

|f(x, ω)|exp

[

−iω

(

t − x

cp(ω)

)

+ iφ(ω)

]

dω (4.2)

where |f(x, ω)| is the amplitude spectral density, φ(ω) is the phase term due

to factors others than propagation, and cp(ω) is the phase velocity. The phase

delay ωx/c(ω) due to propagation can be obtained by Fourier analysis of the

seimogram. The Fourier transform of the above equation can be written as

∫ ∞

−∞

f(x, t)exp(iωt)dt = |f(x, ω)|exp

[

iφ(ω) + i
ωx

cp(ω)

]

dω (4.3)
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4.2 Surface-wave Phase velocity determination

The phase-velocity cp(ω) can be obtained by taking the difference in phase spectra

between two stations at distance x1 and x2, which is [ω/c(ω)](x1−x2)±2nπ. The

unknown integer value n can be determined by an approximate a priori knowledge

of c(ω), by measurement at more than two stations. The main property of surface

waves is their dispersive behavior i.e. the velocity along the surface depends on

the frequency.

The dispersion provides the information about the nature of the velocity as

a function of depth. Stronger velocity gradient will produce more pronounced

dispersion (Figure 4.2).

v

h

v

h

Direction of Propagation

Figure 4.2: The dependence of the dispersion of surface waves on the velocity

gradient in the vertical direction. A stronger vertical velocity gradient causes

greater dispersion (Modified from Lay & Wallace (1995)).

Dispersion studies are carried out by analyzing the seismic data from a set of

observation (seismic array).

4.2.1. Rotation rate and transverse acceleration

From Equation 2.2 it is clear that we can determine rotation from array mea-

surements of displacement by taking derivatives. Based on this relation, further

information can be obtained from collocated recordings of transverse and rota-

tional components of the ground motion. Assuming a plane wave passing through

the array along the x direction (1 Dimensional case), the y-component of the ve-

locity can be written as

v = vy sin(kx − ωt). (4.4)

The transversal component of the acceleration is

a = −vyω cos(kx − ωt). (4.5)
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4.3 Phase velocity determination in the time domain

With the use of equation (3.1), the z-component of rotation rate is defined as

Ωz = −1

2
vyk cos(kx − ωt). (4.6)

Dividing Eq. 4.6 by Eq. 4.5 we will have

Ωz

a
=

1

2

k

ω
=

1

2cp

. (4.7)

From Equation 4.7 it clear that the rotation rate should be in phase with the

transverse acceleration and the amplitude differs with a factor of 1

2

k
ω

or half of

the phase-velocity, cp below the measurement point.

Thus, providing a horizontal recording (E-W) and (N-S) of a seismometer plus a

vertical component of rotation rate, a phase velocity below the measurement point

can be estimated. This technique have been introduced by Igel et al. (2005) to es-

timate the phase velocity from a teleseismic event (Tokachi Oki, Japan) recorded

by collocated broadband sensor and ring laser in Wetzell Germany. The quantity

to measure the quality of the waveform matching of the transverse acceleration

and rotation rate is the normalized cross-correlation coefficient (Igel et al., 2005).

In order to have the transverse component of the ground motion, the horizontal

component must be rotated along the great circle path toward the Earthquake

source epicenter that should be known previously. We can turn the argument

around and the back azimuth can be estimated searching the correct angle which

give the maximum value of correlation coefficient between the transverse acceler-

ation and rotation rate in a sliding time window.

4.3. Phase velocity determination in the time

domain

The complete procedure to determine the phase velocity and back azimuth (BAZ)

as a function of time from collocated measurements of rotation and translation

is shown in the following procedure.

To estimate the horizontal phase velocity, I used the following step

• Read E − W , N − S and R
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4.3 Phase velocity determination in the time domain

• Resample E − W , N − S and R

• Band pass filter E − W , N − S and R

• FOR i=1:slidinglength:N-windowlength

– FOR BAZ=0:360

– Calculate Transverse (T ) component from E − W and N − S

– Calculate the correlation coefficient of T and R

– IF xcorr >= 0.9

∗ save xcorr

∗ save cp = T
2R

∗ save BAZ

– END IF

– END FOR BAZ

• END FOR i

Here the E − W , N − S and R are the east-west, north-south and rotational

component of the ground respectively.

We first illustrate the possibility of deriving phase velocities using the time-

domain approach pursued by Igel et al. (2005, 2007). Figure 4.3, 4.4 and 4.5 show

the estimated back azimuth and horizontal phase velocity for Hoceima, Papua

and Hokkaido synthetic event. The synthetic data are low pass filtered up to 0.05

Hz according to their numerical simulation accuracy. Horizontal phase velocities

are estimated by sliding a 10 s time window along the time series of rotation

rate and transverse acceleration containing the Love-wave signal. As expected,

the estimated back azimuth has a maxima (black shaded) along the time window

containing the Love-wave arrivals. The maximum correlation coefficient of the

back azimuth are in a good agreement with theoretical value, which is plotted in

red line.

The estimated phase velocities are in general also in a good agreement with

expected phase velocity for Love-wave. For a spherically symmetric earth model

love phase velocities would be in the range of 3800 m/s (at period of 10 s) to 4500

m/s (at period of 50 s).
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4.3 Phase velocity determination in the time domain

Figure 4.3: Point measurement analysis for synthetic data for Al Hoceima events

(Figure 3.6). The transverse acceleration and rotation rate about a vertical axis in

the reference station is plotted in the first upper figure, following by the estimated

back azimuth and the phase velocity estimates. The actual back azimuth is

represented by red line.
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4.3 Phase velocity determination in the time domain

Figure 4.4: Phase velocity estimation of synthetic data for Papua, Irian Jaya

events. The transverse acceleration and rotation rate about a vertical axis in the

reference station is plotted in the first upper figure, following by the estimated

back azimuth and the phase velocity estimates. The actual back azimuth is

represented by red line.
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4.3 Phase velocity determination in the time domain

Figure 4.5: Phase velocity estimation of synthetic data for Hokkaido events. The

transverse acceleration and rotation rate about a vertical axis in the reference

station is plotted in the first upper figure, following by the estimated back azimuth

and the phase velocity estimates. The actual back azimuth is represented by red

line.
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4.3 Phase velocity determination in the time domain

4.3.1. Observations and data analysis

We use translation data from station Wettzell (WET) of the German Regional

Seismic Network (GRSN) located in Southern Germany (12◦52’44”E, 49◦08’39”N).

The station is equipped with an STS-2 broadband instrument with a flat response

to ground velocity from 8.33 mHz (120 s) to 50 Hz. The data with a sampling

rate of 80 Hz are corrected for instrument response, rotated into a local radial-

transverse system, and differentiated to obtain transverse acceleration. The ro-

tational data are measured by a ring laser instrument, called G, consisting of a

He-Ne gas laser with an ultrahigh vacuum quality cavity enclosing an area of 16

m2. The vertical component of rotation rate is recorded by this instrument with

a sampling rate of 4 Hz. The instrumental sensitivity of ring lasers is limited

by the scale factor and quantum noise processes. For the G ring laser rotation

rates as small as 10-10 rad/s/Hz can be observed (Schreiber et al., 2003). Further

information on the ring laser instrument is given in Schreiber et al. (2005). The

ring laser is mounted horizontally in the Geodetic Fundamentalstation Wettzell

(about 250 m from the STS-2 seismometer). Given the frequency range (i.e., spa-

tial wavelengths) considered below, we treat the two observations (rotations and

translations) as collocated. From a growing event database with translations and

rotations (see Igel et al. (2007)) we use several regional and global earthquakes

in 2003 and 2004 with M > 5.7, listed in Table 4.1.

In Figure 4.6 and 4.7, time series of transverse acceleration (gray) and rotation

rate (black) are shown for two events, the M6.3, Greece, 14 August, 2003, and the

M6.7, Siberia, 1 October, 2003, respectively. The almost identical waveform fit

between rotations and translations in both cases illustrate that the assumption

of plane wave propagation is appropriate and that information on the horizontal

phase velocity should be contained in the ratio between transverse acceleration

and rotation rate. An appropriate measure of the fit between two presumably

synchronous signals is the zero-lag normalized cross-correlation coefficient. We

quantify the time-dependent similarity between rotation rate and transverse ac-

celeration by sliding a time-window (10 s) along the time series and calculate

the cross-correlation coefficient that is defined between 0 (no similarity) and 1

(perfect match). If the quality of the waveform fit in a given time window is
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4.3 Phase velocity determination in the time domain

Table 4.1: Parameters of the observed earthquakes used for phase-velocity study.

Date Time Lat. Lon. Mw Location

(UTC) (deg.) (deg.)

21 May 2003 18:44:19 36.90◦N 3.71◦E 6.8 Northern Algeria

26 May 2003 09:24:32 38.90◦N 141.45◦E 7.0 Honshu, Japan

06 Jul. 2003 19:10:33 40.34◦N 26.07◦E 5.7 Turkey

14 Aug. 2003 05:14:55 39.19◦N 20.74◦E 6.3 Greece

25 Sep. 2003 19:50:06 41.77◦N 143.90◦E 8.3 Hokkaido, Japan

27 Sep. 2003 18:52:53 50.06◦N 87.69◦E 6.6 Southern Siberia

01 Oct. 2003 01:03:25 50.22◦N 87.68◦E 6.7 Southern Siberia

05 Feb. 2004 21:05:24 3.58◦S 135.49◦E 7.0 Irian Jaya, Indonesia

24 Feb. 2004 02:27:46 35.23◦N 3.96◦W 6.3 Gibraltar

above a threshold (0.95) we estimate a horizontal phase velocity for this time

window by finding the best-fitting velocity in a least-squares sense, as well as the

associated variance. These phase velocities and the associated uncertainties are

shown for two particular earthquakes in the bottom plots of Figures 4.6 and 4.7

for time windows containing the fundamental Love-waves mode. In both cases,

the estimated phase velocities are within the expected range of fundamental mode

Love-wave phase velocities for spherically symmetric Earth models (3-5 km/s).

However, the time-domain representation makes it difficult to extract the fre-

quency dependent behavior of Love-waves. Therefore, we introduce an approach

in which the phase velocities are directly estimated in the frequency domain.

4.3.2. Point measurements

The results above and those reported by Igel et al. (2007) and Cochard et al.

(2006) indeed suggest that it should be possible to determine the phase velocities

as a function of frequency (dispersion) by calculating the spectral ratios of trans-

verse acceleration and rotation rate for time windows containing the Love-wave

trains. For this purpose, the rotation rate is interpolated to the same sampling

points as the transverse acceleration and the Love-wave train time window iso-
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4.3 Phase velocity determination in the time domain

Figure 4.6: Upper trace: Transverse acceleration (gray, left axis) and rotation

rate about the vertical axis (black, right axis) for the Greece event, M6.3, 14

August 2003. Bottom trace: Best-fitting horizontal phase velocities as a function

of time in a 10 s sliding window.
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4.3 Phase velocity determination in the time domain

Figure 4.7: Upper trace: Transverse acceleration (gray, left axis) and rotation rate

about the vertical axis (black, right axis) for the Siberia event, M6.7, 1 October

2003. Bottom trace: Best-fitting horizontal phase velocities as a function of time

in a 10 s sliding window.
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4.3 Phase velocity determination in the time domain

lated and attenuated at the edges with a Gaussian function. Both time series

are transformed into the Fourier domain and the ratio of the spectra of rotations

Ω(ω) and transverse acceleration aT (ω) leads to the frequency dependent phase

velocities c(ω)
aT (ω)

Ω(ω)
= −cp(ω). (4.8)

Because of the oscillatory nature of the individual spectra and spectral ratios

we average the ratios from several events assuming that the resulting phase ve-

locities are representative of the same subsurface volume. In addition, we smooth

the ratios along the frequency axis using a Savitzky-Golay filter, a low pass filter

also known as least square smoothing filter or DISPO (digital smoothing polyno-

mial). The filter is defined as a weighted moving average with weights given as a

polynomial of a certain degree; in this case we use degree two (Press et al. (2002)).

We first test the methodology presented above on complete synthetic seismograms

(rotations and translations) calculated for one regional (Gibraltar) and two global

(Hokkaido and Papua) events using the spectralelement method (Komatitsch &

Tromp (2002b), Komatitsch & Tromp (2002a)) employing a recent 3D tomo-

graphic model (Ritsema & Van Heijst (2000)) and the crust model by Bassin

et al. (2000). The sources are modeled as point shear dislocations with source

properties from the Harvard Catalogue [www.seismology.harvard.edu]. The re-

sulting spectral ratios were averaged and processed as described above. The

frequency-dependent phase velocities are shown in Figure 4.8 as Gaussians with

mean value and variance for each period.

We superimpose theoretical predictions of Love-wave dispersion curves for the

spherically symmetric AK135 Earth model (Kennett et al., 1995) for the funda-

mental and the first three higher-order modes. Despite the small number of events

the estimated Love-wave phase velocities seem to capture well those predicted for

the fundamental modes in a spherically symmetric Earth model. The uncertain-

ties decrease with increasing period. In the frequency (period) window consid-

ered, the largest deviation from the predicted values are 6.1% (at period 20s). We

calculate stacked spectral ratios for the regional (Greece, Turkey, Gibraltar, Al-

geria) and global (all other) events listed in Table 4.1. The results are presented

in Figure 4.9 in the same way as the synthetic data shown in Figure 4.8.
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4.3 Phase velocity determination in the time domain

Figure 4.8: Frequency-dependent Love wave phase velocities from spectral ratios

of synthetic seismograms calculated for the Gibraltar, Papua and Hokkaido events

(see text for details) shown as mean values with variances as Gaussian uncertain-

ties. The dashed lines indicate the theoretical fundamental- (lowest dashed line)

and higher-mode Love-waves phase velocities (upper dashed lines) obtained for

the ak135 Earth model.
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4.3 Phase velocity determination in the time domain

Figure 4.9: Love waves phase velocities derived from observed data shown as

mean values (black) and associated uncertainties using grey shading (see text for

details) for all event listed in Table 1. The dashed lines indicate fundamental- and

higher-mode Love-waves phase velocities obtained for the ak135 Earth model.
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4.4 Conclusion

Except in the period range around 10 s, the Love-wave phase velocities de-

termined by the spectral ratios are close to the predicted values. The increase

in phase velocities towards longer periods is well captured by the stacked global

events, with almost constant uncertainty with period. The maximum deviations

of the mean values are about 5.8 % (at period 100 s). The reasons for any discrep-

ancies may be 3D heterogeneity, anisotropy, non-planar wavefronts, deviations

from the great circle paths, or uncertainties in the observations of translations

and rotations (e.g., site effects). To fully understand these potential sources of

discrepancies will require a larger database, comparison with array-derived Love-

wave dispersion curves and systematic synthetic studies.

4.4. Conclusion

In this chapter we present a novel methodology to derive Love-wave dispersion

curves with point measurements of rotations (around a vertical axis) and trans-

lations. Frequency-dependent phase velocities are estimated by calculating the

ratio between the spectra of transverse acceleration and rotation rate by stacking

the ratios of several events. This approach was applied to 3-D synthetic data

sets and several regional and global events observed by the collocated ring laser

instrument measuring the rotation rate around a vertical axis and a standard

broadband sensor located at Wettzell, SE-Germany.

Both synthetic and observed dispersion curves match well those predicted for

the fundamental mode Love-waves. This indicates that plane-wave theory is ap-

propriate and that the assumption of fundamental mode Love-wave propagation

is approximately fulfilled, or that the energy of higher-mode Love-waves in the

time-windows considered is low. The purpose of this study was primarily to il-

lustrate the concept and show a first application to real observations. Love-wave

dispersion curves can be used to derive local 1-D velocity structure and are there-

fore an important intermediate result for tomographic inversions. Whether the

accuracy of the dispersion curves derived with the approach presented here is

enough for tomographic purposes remains to be evaluated.

We intend to investigate these issues by systematic synthetic studies and anal-

ysis of a larger event database. Nevertheless, the results shown here indicate that
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4.4 Conclusion

through additional measurements of accurate rotational signals, wavefield infor-

mation is accessible that otherwise requires seismic array data. This may be of

use when arrays are very sparse or consist of only one station (e.g., oceanography

or planetary seismology). However, to make this methodology practically use-

ful for seismology will require the development of an appropriate high-resolution

six-component broadband sensor. Efforts are underway to coordinate such devel-

opments on an international scale (Evans et al., 2006).
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5. Horizontal components of

rotation or tilt

”.., but typically seismologist have

been content with the rather

arbitrary assumption that either

acceleration or tilt dominates a

particlar signal.”

Aki & Richards (2002)

In the previous section, we have shown the application of rotation rate about

the vertical axis recorded by a rotation sensor (ring laser). In this section, I will

focus on the rotation about the horizontal axis, i.e. the possibility to derive the

rotation about the horizontal axis from an array of seismometers. In aeronautics,

this term is known as Pitch and Roll (Figure 5.1). It should be noted that the

rotation about a horizontal axis at the earth surface is known in geophysics as

tilt. For the ring laser, it is standard to correct the ring laser’s orientation change

using tilt data. Therefore it is important to have an accurate tilt rate data in

order to get the appropriate correction for the ring laser. For strong motion study

it is also important to have an accurate tilt rate for correcting the seismometer’s

orientation. Ignoring tilt effects will introduce long period error, especially for

calculation of permanent displacements.

5.1. Introduction

Observation of tilt on the earth surface was done since more than a century

ago. In 1887 G. H. Darwin measured tilt that was caused by the earthquake that
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5.1 Introduction

happened in Ecuador. However, at that time, it was reported that the observation

of tilt has no consistent pattern, and it was unclear how much they were caused

by instrumental defects, how much by imperfect attachment to the ground, and

how much by real tilting of the earth.

Figure 5.1: Three components of

torsional motions in aeronautics are

known as Pitch, Roll and Yaw.

In the ensuing century, the develop-

ment of tilt measurements was not as

fast as the development of seismic wave

measurement (Agnew, 1986). Tiltmeter

and strainmeter are very appropriate

for observing long-period seismic sig-

nals, seismic slip events on fault and

for volcano monitoring. It may also be

used to complement geodetic networks

by providing continuous record (Goulty,

1976).

In recent years, varieties of optical

and electronic tiltmeters became avail-

able, each with different resolutions and

ranges. Based on the goal of the tiltmeter design, Agnew (1986) summarized the

instrument property and the area of inquiry for which it is especially important

(Table 5.1).

The effect of tilt is generally small but not negligible in seismology, especially

in strong-motion earthquakes. It is well known that the tilt signal is most notice-

able in the horizontal sensor. Ignoring the tilt effects leads to unreliable results,

especially in the calculation of permanent displacements and long-period calcu-

lations (Graizer, 2005). It appears that full measurement of six components of

the motion (three translations and three rotations) is necessary in the near-field

study.

It is still an open question what technology is best suitable for measuring

various components of rotation. For rotation along the vertical axis, as discussed

previously in Chapter 2, results suggest that the optical devices are the way to go.

Those optical devices could be advantageous compared to classical tiltmeters for

the rotational motion about a horizontal axis as well (regardless of meteorological
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5.1 Introduction

Table 5.1: Tiltmeter design properties and the area of interests (Agnew, 1986).

Property Applicable Field

Low Noise

High freq. (T < 1 hr.) Seismic waves, coseismic offsets

Low freq. (1 hr.<T< 1 week) Earth tides, tectonic deformation

Very low freq. (> 1 week) Tectonic motion

Instrument

response

Accurate and stable calibration Earth tides

High dynamic range Seismic waves

Immunity to high acceleration Coseismic offsets

Linear response Seismic waves, earth tides

No hysteresis Coseismic offsets

Broadband response Seismic waves

Economic

Low operational cost All

Ease of installation All

Low capital cost Volcano monitoring
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5.2 The tiltmeter

characteristics - accuracy, sensitivity, etc - which remain to be assessed). Indeed,

classical tiltmeters measure a change of angle with respect to the local vertical,

determined by gravity; thus, they cannot discriminate between true rotation and

pure change in the local gravity (e.g. due to mass redistribution).

It has been reported by several investigators that tilt signals can be used

as earthquake precursors (Mortensen & Iwatsubo, 1986). They observed a tilt

anomaly 40 hours before a pair of earthquakes (ML=4.2 and ML=3.9 29 August

1978, in near San Jose, California) a gradual down-to-the-east tilting followed by

rapid tilting down-to-the-north-northeast at a rate of 1

2
µ rad/hr. Although this

phenomenon still needs further investigation it highlights the potential use of tilt

measurements.

As discussed in the previous chapter, from collocated measurement of rotation

rate about a vertical axis and transverse component of translations, we can extract

the horizontal love wave phase velocity below the measurement point. This opens

up a similar question: can we extract the Rayleigh wave phase velocity via collo-

cated recordings of tilt and translational motions?

Figure 5.2: Bubble-tube tilt-

meter in horizontal state.

Another interesting subject we want to study

in this thesis is the effectiveness of using tilt-

meter for correcting the ring laser data. It is

almost routine to correct the plane orienta-

tion of the ring laser basement with the help

of tiltmeter data. However, as the tiltmeter

is influenced by horizontal acceleration (not

pure tilt effects), the tilt correction for the

ring laser data may be faulty.

5.2. The tiltmeter

In practice, tilt motions are usually observed

at a single point with short baseline type

instruments, in which the inclination of the

plane is measured by a vertical or horizontal pendulum or bubble tiltmeter. The

pendulum tiltmeters have been used extensively for measuring solid Earth tides
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5.3 Tilt and horizontal accelerations

(Melchior, 1983). For vertical pendulums, the boom holding the mass is sus-

pended vertically, and the relative variation of boom inclination with respect to

a reference axis fixed to the ground that was mounted along the surface normal,

is measured (Zadro & Braitenberg, 1999).

A bubble tiltmeter is a compact instrument that does not necessitate particu-

larly sheltered housing. It consists of an electrolysis fluid and an air bubble held

in glassware. Three electrodes A, B and C are set in the glassware as shown

in Figure 5.2. When the ground is inclined as shown in Figure 5.3, the bub-

ble in the glassware moves so that the electrode A becomes more covered by

the electrolysis fluid, and the electrode B becomes more covered by the bubble.

Figure 5.3: Bubble-tube tilt-

meter in inclined state.

This results in the reduction and the increase

of the electric conductivity between the elec-

trodes B and C and between the electrodes A

and C, respectively. We can detect the change

in the ground tilt in this way. However, short

base tiltmeters are inherently susceptible to

local site effects, which are very difficult to

quantify (Aki & Richards, 2002) and become

unstable for long term use because of large

drift related to the liquid content.

Another instrument that may be useful for

tilt monitoring is a ring laser gyroscope. As

mentioned in chapter 2 a ring laser is not suc-

ceptible to translational motions. Then, this instrument can be used for discrim-

inating the tilt effects from ground acceleration (e.g., Farrell, 1969). The ring

laser G0 installed on a wall of the underground cavern at Cashmere, Christchurch

New Zeeland measures the horizontal component of rotations (Dunn et al., 2002).

However these observations have not yet been analyzed in a systematic way.

5.3. Tilt and horizontal accelerations

Seismometers mostly use a pivot-pendulum or linear-pendulum type and there-

fore will be sensitive to tilt, especially for horizontal components. For small
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5.3 Tilt and horizontal accelerations

angles, tilt and horizontal acceleration are directly proportional with a factor of

g (gravitational forces). An attempt to separate the effects of tilt and horizontal

acceleration was made by Farrell (1969) by using a gyroscope.

Below, I plot the observed three components of rotations for Al Hoceima event,

both synthetic (left side) and observed (right side) in radians (Figure 5.4).
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Figure 5.4: Three components of rotation from Al Hoceima earthquake event.

Left side is for synthetic data and Right side is observed. See text for more

details

The observed rotations along the horizontal axis are obtained by tiltmeter and

the rotation about the vertical axis with a ring laser, respectively. The two-axis

tiltmeter is a LGM Lippmann instrument with a very high angular resolution

of 0.5 nrad. It measures the two components (N-S and E-W) with a sampling
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5.3 Tilt and horizontal accelerations

rate of 5 Hz. From Figure 5.4 it can be seen that the observed tilt values are

larger (by a factor of about 250 times) than the rotation about the vertical axis.

Theoretically, as seen on the simulation result, the tilt is expected to be of the

same order of magnitude than the rotation about the vertical axis.
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Figure 5.5: Superimposed plot between tilt and acceleration divided by a factor

of g in x and y component.

It clearly shown from Figure 5.5 that tilt data measured by the tiltmeter in the

surface wave frequency range is dominated by the horizontal acceleration divided

by g. Note that Figure 5.5 is a superimposed plot from two different kind of

instruments, i.e. the Lippmann tiltmeter (red line) and the STS-2 seismometer

(black line), in the frequency range below 1 Hz.

Figure 5.6 and 5.7 clearly shows that at a period longer than 20 s, the tilt
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Figure 5.6: Superimposed plot between tilt and acceleration in x and y component

low pass filtered at various cut off frequencies. The first upper figure is unfiltered,

followed by cut off period of 1 s, 10 s, 20 s, 30 s, and 40 s.
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Figure 5.7: Similar than Figure 5.6 but with cut off frequencies of 50 s, 60 s, 70

s, 80 s, 90 s, and 100 s.
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5.4 Array-derived horizontal components of rotations

signal from the tiltmeter is more pronounced (the amplitude is higher) than the

horizontal acceleration (from seismometer) signal. For periods lower than 20 s,

the tiltmeter will behave like an accelerometer. With this kind of tiltmeter, it is

recommended to use in analyze long period signal such as earth tides or tectonic

deformation studies. However, since seismologist need a more broad band tilt

signal (especially in the higher frequency), a tilt sensor that can measure only

the pure tilt signal is desirable.

Another question that will arise based on the results above is whether it is worth

to use tiltmeters for correcting the ring laser data, since the real data needed for

correction is tilting rate and not acceleration. Further discussion about this issue

will be carried out in the last Section in this Chapter.

5.4. Array-derived horizontal components of

rotations

In this section, I present a study about derivation of tilt from an array of transla-

tional data. The theoretical basis for deriving tilt from arrays has been presented

before in Chapter 3. Both synthetic and real data will be analyzed.

5.4.1. Synthetic study of array derived tilt rate

For synthetic data, I use three events from Gibraltar, Hokkaido and Irian Jaya.

Those event parameters were listed previously in Table 4.1. The station con-

figuration is represented by Figure 5.8, which consists of eight stations and one

reference station at the center of the array. Equation 3.2 was used to derive the

horizontal components of rotations. The theoretical seismograms for translations

and rotations were calculated by using the 3-D mantle model S20RTS (Ritsema

& Van Heijst, 2000) combined with the global crust model CRUST2.0 (Bassin

et al., 2000), and a point-source approximation for the Gibraltar event and a

finite-source (Ji, 2004) for Hokkaido and Irian Jaya event. Figure 5.9 shows

the three components of rotation from theory superimposed with array-derived

rotation from the Gibraltar event. Although they have a similar waveform, the
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Figure 5.8: The array station setup. WET is the reference station located at the

center of the array.
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Figure 5.9: Three components of rotation from Gibraltar synthetic data. The red

line is synthetic rotation calculated in the array center (WET) using nine stations

including the reference station and the black line is array-derived rotation.
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5.4 Array-derived horizontal components of rotations

array-derived rotation about the horizontal axis (in x component and y compo-

nent) have a lower amplitude compared with theoretical data. The same char-

acteristics are found also for Hokkaido (Figure 5.10) and for Irian Jaya event

(Figure 5.11). Even though they have smaller discrepancies, one can still rec-

ognize that the amplitude from theoretical calculation does not match well the

array-derived tilt. The source of this discrepancy is currently is currently not

understood. Particularly given the fact that the vertical component of rotation

matches perfectly well.
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Figure 5.10: Three components of rotation from Synthetic Hokkaido data. The

red line is synthetic rotation calculated in the array center (WET) using nine

stations including the reference station and black line is array-derived rotation.

5.4.2. Array-derived tilt rate from observed data

The same exercise is then applied to real data, in this case the M6.6 Bam, Iran

event and the M7.0 Irian Jaya event. Figure 5.12 shows the array derived tilt

(left) and observed tilt (right) from Bam, Iran event, 26 December 2003. As

mentioned in Section 5.3, the observed tilt has higher values compared with the

array-derived tilt due to the influence of the horizontal acceleration. Moreover,
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5.4 Array-derived horizontal components of rotations

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−1.5

−1

−0.5

0

0.5

1

1.5

x 10−8

Ti
lt 

E
W

 [r
ad

]

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−3

−2

−1

0

1

2

3
x 10−8

Ti
lt 

N
S

 [r
ad

]

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−3

−2

−1

0

1

2

x 10−8

Time [s]

Ti
lt Z [r

ad
]

 

 
theory
adt

theory
adt

theory
adt

Figure 5.11: Three components of rotation from Synthetic Papua Irian Jaya data.

The red line is synthetic rotation calculated in the array center (WET) using nine

stations including the reference station and black line is array-derived rotation.

we can not directly compare those two observations as in the case of rotation

about the vertical axis which is recorded by the ring laser data.

However, as will be discussed in more detail in the next Section that - assuming

plane wave propagation - the radial component of acceleration should be in phase

with the transverse component of tilt, we may compare the array-derived tilt with

radial acceleration recorded by the broadband sensor. The superimposed plot of

the radial component of acceleration and transverse array derived tilt for the

observed Bam, Iran event is shown in Figure 5.13. Those events are filtered with

a narrow band filter having a central period of 20 s. While some waveform match

seems to occur in part of the seismograms, this match is much less pronounced

than the one described for rotation around a vertical axis in Chapter 4.

The same exercise is applied to the Irian Jaya event (Figure 5.14). Again, the

array derived tilt is smaller than the observed tilt. Figure 5.15 shows the array-

derived tilt (green line) in the transverse component superimposed with radial

acceleration (red line) bandpass filtered using a narrow band with a central period

of 30 s. Here we find again some similarity in the waveform especially for the
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500 1000 1500 2000
−10

−5

0

5

x 10−9

ω
x [r

ad
]

Array−derived tilt

500 1000 1500 2000
−4

−2

0

2

4
x 10−9

Time [s]

ω
y [r

ad
]

500 1000 1500 2000
−1

−0.5

0

0.5

1
x 10−6 Measured tilt

500 1000 1500 2000
−1

−0.5

0

0.5

1
x 10−6

Time [s]

Figure 5.12: The horizontal components of rotation from Bam, Iran event. Left:

The array-derived rotation (black). Right: Observed tilt recorded by the tiltmeter

(red).
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5.5 Rayleigh-Wave Phase velocity from collocated measurements
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Figure 5.13: Superimposed plot of radial component of acceleration (blue line)

versus transverse array-derived tilt (green line) for Bam, Iran event.

Rayleigh wave time window.

As mentioned earlier the amplitude of array-derived tilt and the excact tilt

are not the same, at least we find a similarity in the waveform between those

two signals. These waveform similarities are supported by the fact that they

match with the radial acceleration in the Rayleigh wave time window for a certain

frequency band as suggested by the theory. Further analysis especially on the

period dependencies are discussed in the next chapter.

5.5. Rayleigh-Wave Phase velocity from collocated

measurements

In Chapter 4, it has been shown based on the plane wave assumption that the

transverse acceleration and rotation rate are proportional to two times the Love-

wave phase velocity. With the same assumption we can do the same exercise for

a Rayleigh wave case.

For a simple half-space Poisson solid, the Rayleigh wave displacements are

94

Chapter4/Chapter4Figs/iran_racc_trant.eps


5.5 Rayleigh-Wave Phase velocity from collocated measurements
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Figure 5.14: Three components of rotation from Irian Jaya event. Left: The

array-derived rotation (black). Right: Observed tilt recorded by the tiltmeter

(red).
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Figure 5.15: Superimposed plot of radial component of acceleration (blue line)

versus transverse array-derived tilt (green line) for Papua, Irian Jaya earthquake.
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5.5 Rayleigh-Wave Phase velocity from collocated measurements

given by (e.g., Lay & Wallace, 1995):

ux = −0.42Ak sin(kx − ωt), uz = 0.62Ak cos(kx − ωt), (5.1)

where k is the Rayleigh wavenumber. The acceleration along x is then

ax = 0.42Akω2 sin(kx − ωt). (5.2)

With the use of equation (3.1), the y-component of rotation is defined by

Ωy = −0.31Ak2 sin(kx − ωt). (5.3)

Dividing Eq. 5.3 by Eq. 5.2 we then have

ax

Ωy

= −1.35484
ω2

k
= −1.35484cP ω. (5.4)

From Equation 5.4 it is clear that the transverse rotation should be in phase

with the radial acceleration and the amplitude differs by a factor of cP ω plus

the effects of the medium below the oservation point. For a layered or vertically

inhomogeneous structure, the Rayleigh wave is dispersive. To study the behavior

of the phase velocity (cP ) of the Rayleigh wave as a function of frequency, we can

superimpose the radial acceleration and transverse tilt (rotation) for a certain

narrow frequency band and calculate the ratio that corresponds to the phase

velocity (Equation 5.4). Unfortunately we have no information about tilt rate

data, as we have shown that our tiltmeter mainly records horizontal acceleration.

Nevertheless, we can do the exercise with synthetic data. Here we will show three

synthetic events from Gibraltar, Irian Jaya and Hokkaido.

The experiment result are shown in Figure 5.16, 5.17 and 5.18. In those

figures the transverse rotation and radial acceleration are superimposed after

filtering with a narrow bandpass (zero-phase Butterworth with corner frequencies

0.85*1/T Hz and 1.15*1/T Hz, where T is the dominant period in seconds). The

appropriate phase velocity (given at the top of each trace pair) is obtained by

dividing the peak amplitudes with a scaling of about1.35484 times the dominant

frequency.

A good fit is observed especially in the range above period of 40 s. We also

observe that the estimated phase velocities have tendencies toward higher values

96



5.5 Rayleigh-Wave Phase velocity from collocated measurements

400 500 600 700 800 900 1000 1100 1200
0

10

20

30

40

50

60

70

80

90

100

110

c
p
=3695.4234

c
p
=5686.4732

c
p
=2820.829

c
p
=4100.294

c
p
=3298.9574

c
p
=2707.2886

c
p
=2758.5552

c
p
=2807.0343

c
p
=2823.5531

c
p
=2815.8178

Time [s]

C
ut

 o
ff 

P
er

io
d 

[s
]

Figure 5.16: Superposition of radial acceleration (black) and transverse tilt (red)

and determination of rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). The phase velocities given

for each trace pair were determined by dividing the peak radial acceleration by

the peak tilt rate (and corrected for the factor of the cut off period). Synthetic

event in Gibraltar, M6.3, 24 February, 2004.
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5.5 Rayleigh-Wave Phase velocity from collocated measurements
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Figure 5.17: Superposition of radial acceleration (black) and transverse tilt (red)

and determination of rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). The phase velocities given

for each trace pair were determined by dividing the peak radial acceleration by

the peak tilt rate (and corrected for the factor of the cut off period). Synthetic

event in Irian Jaya, M7.1, 07 February, 2004.
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5.6 Tilt-corrected ring laser data

as the period gets larger. From those figures, we observe a strong evidence of a

potential application of measuring the rotation about the horizontal axis (tiltI)

to study the dispersive behavior of Rayleigh wave using single station analysis.

For realdata, we may do the same exercise with the array-derived tilt since we

have no observed exact tilt data. As discussed in Chapter 3, during the array

experiment we captured at least three events which are simultanty recorded by

the seismometers and ring laser (Table 3.1). Here we will use those three events to

estimate the phase velocity using collocated measurements of radial acceleration.

Note that we use the signal after corection with the broadband’s instrument

sensor. Therefore we may only possible to analyze the signal with the frequency

greater than 0.03 Hz, since we highpass filtered the signal during the processing

with a cut off frequency of 0.03 Hz.

The experiment results are shown in Figure 5.19, 5.20, 5.21. We use the same

narrow bandpass filter as used in the synthetic studies. The waveform match

especially in the Rayleigh wave time window and at the cut off period of around

20 s - 30 s. For higher periods, although the waveform seems to be similar, they

are out of phase. The estimated phase velocity are found around 5000 m/s. This

result suggest the importance of having an acceleration-free-type of tiltmeter with

a broadband dynamic range.

5.6. Tilt-corrected ring laser data

In Section 2.3.3 we have shown that based on Equation 2.15, the variation in the

orientation of the ring laser basement will generate a signature in the ring laser

data. Therefore, tilt data are needed for correction of the rotational data be-

cause this orientation changes. Those changes can be converted to the equivalent

rotation according to the expression (e.g., Schreiber et al., 2005)

ΩTILT = (Ω � sin(ϕ) cos(TNS) − Ω � cos(ϕ) sin(TNS)) � cos(TEW ), (5.5)

where ΩTILT is the tilt equivalent rotation rate, Ω is the rotation rate biased

by the Earth rotation, ϕ is the ring laser location latitude, TNS and TEW are

instrument tilt in North-South and East-West directions respectively. Since the

East-West tilt components is part of the cosine function, which is usually very
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Figure 5.18: Superposition of radial acceleration (black) and transverse tilt (red)

and determination of rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). The phase velocities given

for each trace pair were determined by dividing the peak radial acceleration by

the peak tilt rate (and corrected for the factor of the cut off period). Synthetic

event in Hokkaido, M8.3, 25 September, 2003.
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Figure 5.19: Superposition of radial acceleration (black) and transverse tilt(red)

and determination of Rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). Al Hoceima event, M6.3,

24 February 2004.
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5.6 Tilt-corrected ring laser data

Figure 5.20: Superposition of radial acceleration (black) and transverse tilt(red)

and determination of Rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). Papua, Irian Jaya event,

M7.3, 7 February 2004.
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5.6 Tilt-corrected ring laser data

Figure 5.21: Superposition of radial acceleration (black) and transverse tilt(red)

and determination of Rayleigh wave phase velocities as a function of dominant

period after narrow-band filtering (see text for details). Bam, Iran event, M6.3,

26 December 2003.
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small, it can be ignored for all practical purpose, therefore the previous expression

reduces to

ΩTILT = Ω sin(ϕ − TNS) (5.6)

As was shown in a previous Section, that tiltmeter data recorded in Wettzell are

dominated by the horizontal accelerations, the tilt correction will be substantially

overestimated. A simple experiment will show those assumptions and quantify the

effects of horizontal acceleration to the tilt correction. I will use two synthetic data

from Hokkaido and Papua events to doing those exercises. From Equation 5.6,

we may calculate the tilt correction using real exact tilt and tilt as is recorded

by a tiltmeter (i.e. horizontal acceleration divided by gravity). The two plots of

tilt correction for the Hokkaido event is shown in Figure 5.22. The upper part

of Figure 5.22 shows the tilt corrections if we use tiltmeter data and the lower

part is if we use the exact tilt rate data. The same procedure was applied to
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Figure 5.22: Tilt correction for Hokkaido synthetic event. Upper plot: tilt cor-

rection assumed tilt rate was obtained with tiltmeter, lower part: tilt correction

using pure tilting rate.

the Irian Jaya synthetic event (Figure 5.23). As in the previous case, the upper

part of Figure 5.23 shows the tilt corrections if we use tiltmeter data and the
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lower part is if we use the exact tilt rate data. From those two examples it is
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Figure 5.23: Tilt correction for Irian Jaya synthetic event. Upper plot: tilt cor-

rection assumed tilt rate was obtained with tiltmeter, lower part: tilt correction

using pure tilting rate.

clear that the tilt correction calculated using tilt rate recorded by tiltmeter will

causes an overestimated calculation by a factor of about 100 times larger. Many

reports or papers on ring laser mentioned that the effects of tilt on the ring laser

data is about 5% (e.g., Schreiber et al., 2005, 2006). As demonstrated here the

actual effects may be more than 100 times smaller. Since the tilt correction is

very small, it may be unnecessary to apply a tilt correction except for very large

events or in strong motion studies. However, from an instrumental point of view,

it will open up a new discussion about how to remove the tilt effect on the ring

laser instruments.

5.7. Conclusion

The effect of tilt is generally small but not negligible in seismology, especially in

strong-motion earthquakes. It is well known that the tilt signal is most noticeable
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in the horizontal components of the seismometer. Ignoring the tilt effects leads

to unreliable results, especially in the calculation of permanent displacements

and long-period motions. It appears that full measurement of six components of

the motion (three translations and three rotations) is necessary in the near-field

study.

It is still an open question what technology is best suitable for measuring vari-

ous components of rotation. The optical devices could be advantageous compared

to classical tiltmeters for the rotation about a horizontal axis as well (regardless

of meteorological characteristics- accuracy, sensitivity, etc-which remain to be as-

sessed). Indeed, classical tiltmeters measure a change of angle with respect to the

local vertical, determined by gravity; thus, they cannot discriminate between true

rotation and pure change in the local gravity (e.g. due to mass redistribution).

A study of deriving tilt data from array data show that there may be a funda-

mental relation we do not really know yet, that must be included in the array-

derived tilt calculation. Although in the overall time series, the array-derived tilt

and the theoretical tilt waveform match quite well, an amplitude discrepancy is

shown especially for the regional event (in this case Gibraltar event).

An interesting result concerning tilt study is the possibility to derive the

Rayleigh wave phase velocity and potentially Rayleigh wave dispersion curve

from collocated measurement of tilt rate and translational motions. Synthetic

studies show that there is a frequency dependent phase velocity determined from

collocated radial acceleration and transverse tilt. Further analysis including real

data with many earthquake events and comparison with another technique such

as array study will be necessary.

Tilt correction for ring laser data leads to an effect about 100 times larger when

using tilt records from the tiltmeter. This is because the tiltmeter, which is a

pendulum type sensor, is susceptible to horizontal accelerations. Since there is

a very small value of tilt effects on the ring laser data especially for teleseismic

event, the tilt correction procedure seems not necessary to be applied.
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”Three different types of sensor

are needed in seismology: the

inertial sensor, which is sensitive

to acceleration; the strainmeter,

which measures strain in the

Earth beneath it; and various

sensor for measuring rotation.”

Aki & Richards (2002)

6.1. Conclusions

This thesis intents to study the relevance of rotational ground motion in seismol-

ogy. The rotational part of earthquake-induced ground motion has basically been

ignored in the past decades, compared to the substantial research in translational

ground motion. Even though there are theoretical considerations that suggest

that the observation of rotational motions may indeed be useful and provide

additional information.

In this thesis we successfully show that rotational motions can be derived

from array of seismometers by comparing directly the array-derived rotation rate

(about a vertical axis) with ring laser data.. We also noted that deriving rotation

rate using minimally required three stations might give a wrong result due to the

noise effects. In this case, a direct rotation sensor are needed to record the ground

rotation rate induced by earthquake. Compared to other types of rotational sen-

sors, the optical device (i.e. ring laser) is the way to go. For the near future,

it is important to continue improving the rotational sensors, especially reducing

the instrument size but keeping the appropriate resolution for use in local and

regional seismology.
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6.2 Outlook

The potential applications of rotational data are also studied during this thesis.

The most important contribution is the possibility to derive the phase velocity

dispersion curve below the observation point using spectral ratio from collocated

measurements of translations and rotations. From collocated measurements it

is also possible to determine the direction of wave propagation and the phase

velocity in the time domain that usually only accessible trough array data. Fur-

ther research to invert the dispersion curve to obtain the structure below the

observation point will be carried out in the future.

For tilt data, we show that in the frequency range of earthquake, the pendulum

based tiltmeter was recording mainly the horizontal accelerations. Therefore, we

will get bigger tilt signal than the actual tilt signal. For consequences, if we use

this tilt data to correct the ring laser data, it will make the correction is about 100

times larger than the actual correction. This is a strong statement since several

papers on ring laser observations so far mentioned that the effect of tilt on the

ring laser data is about 5%. Although in theory there is a possibility to derive

the tilt rate using array data, we have difficulties to obtain the array-derived tilt

with exactly the same amplitude with the theoretical tilt.

6.2. Outlook

Based on this study there are many open questions remaining. The ring laser

has provided a fully consistent data for seismological application. However, it is

still not possible to be used as a mobile instrument especially because its size.

A fiber optic gyro may become an alternative choice to reduce the size of the

instrument. The array-derived rotation rate, at least for the component about

the vertical axis can be used for calibrating any of new rotational sensors. With a

more proper array setup, the accuracy of the rotational motion may be increased.

It has been shown in this thesis that from collocated measurement of rotations

and translations we can determine the dispersion curve below the observational

point. Nevertheless, further verification in a more systematic way is needed. It

is also interesting to study the possibility to analyze higher frequency signals
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6.2 Outlook

to mapping the more shallow velocity structure. This may be useful for the

earthquake engineering field.

Our study will give an impact to other research fields such as strong motion

seismology, earthquake source studies or earthquake engineering studies. They

should also include rotational motion in their observations. This will be possible

especially when a more compact three components rotational sensor is available.
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A. Contents of the Attached DVDs

/

CODE....................Script used for processing the data

mathematica .........Analytical solutions

matlab...............useful scripts for processing

DATA....................Tarballs of the data

OBS ..................Tarballs of observed data:

• Hokkaido event

• Gibraltar event

• Papua, Irian Jaya event

SH-AXI...............SH AXI Symmetry synthetic data

SYN .................. SPECFEM-3D data
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