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Preface 
 

 

The complex processes of axogenesis, or axon generation, dendritogenesis, or dendrite 

generation, and the following establishment of proper neuronal networks are molecularly 

regulated events each of which are of great interest and the object of major investigation 

in the field of neuroscience. Understanding the mechanisms that control these complex 

steps of neuronal development would contribute enormously to decoding how nervous 

system development is achieved. The most fascinating part of such understanding would 

help us to comprehend our unique ability to think, remember, dream, speak, and react to 

the environment. 
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Summary 

 
Elaboration of a dendritic arbor and the extension of an axon define the neuronal shape 

and are the key morphological features defining neuronal maturation. How the process is 

molecularly regulated is only poorly understood.  

In this study we used the dorsal multidendritic arborization (md-da) neurons of the 

Drosophila embryonic Peripheral Nervous System (PNS) to address the question about 

the Roundabout (Robo) receptor protein function during dendrite field development. We 

identified Robo as one of the proteins involved in regulating the balance between 

dendritic branch elongation and new branch formation during dendritic arbor 

specification of the morphologically most complex, filling-in Class IV neuron of 

Drosophila PNS. 

To dissect the role of the Robo proteins during dendritogenesis, we performed detailed 

developmental analyses of dendrite field formation of md-da neurons and compared how 

dendrite morphogenesis differs in animals lacking Robo function or having too much of 

the protein in their sensory neurons. We observed that changing the function of Robo 

protein results in defects in the number and elongation of high order dendritic branches. 

With the help of cell-class specific genetic markers we also observed that Robo acts cell-

class specifically and is required during dendrite field development of the 

morphologically most complex class of md-da neurons, Class IV. Based on MARCM 

(mosaic analyses with a repressible cell marker) rescue and expression pattern 

experiments we suggest that this function of Robo is cell-autonomous. By doing time-

lapse analyses we assessed the mechanistic role of overexpressing Robo during dendrite 

field development. We could verify that this protein limits the elongation and new branch 

formation of fine dendritic processes of the Dorsophila Class IV neurons. We performed 

expression pattern analyses, ectopic expression experiments and MARCM experiments 

for slit and suggest that muscles and neurons themselves are possible sources for the 

ligand. There are few molecules known to mediate the activation of Robo via Slit in the 

growth cone of an axon. Among these are Dock, a SH2-SH3 adaptor protein and Ena, a 

member of the VASP family of proteins. Loss-of-function analyses for these two proteins 
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suggest that Ena is acting downstream of Robo during the regulation of dendrite field 

development of md-da neurons. Finally we propose a model in which Robo 

responsiveness to Slit is down regulated via Robo2 during axon patterning of dorsal md-

da neurons.  
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I n t r o d u c t i o n  

1. Introduction 
 

1.1 Molecular and cellular mechanisms underlying axongenesis. 

 

 
Neurons are one of the most complex cell types in animal organisms because of their 

abilities to form complex networks, select specific types of information and process this 

information. The outcome of this computation is the behavioral response of an animal to 

its environment. Each neuronal cell type is determined by its functional specificity. This 

is characteristic for the type of connections a neuron has formed or by its morphological 

complexity and this makes neurons so unique.  

Almost all neurons are composed of distinct compartments such as axons, synaptic 

terminals, dendrites and spines, with just a few exceptions: such as vertebrate dorsal root 

ganglion (DRG) sensory neurons that only possess axons, starburst amacrine cells or the 

recently identified cholinergic local neurons (LNs) in Drosophila which are composed 

only of dendrites (Masland, 2005; Shang et al., 2007). Furthermore, not all neurons 

possess spines. Dendrites are often highly branched and typically receive and process 

information. Axons on the other side relay this information to other neurons.  

 

Once specified as an axon, this neuronal compartment is able to grow over long distances 

in order to find its target. Both in vivo and in vitro analyses have identified several 

important molecules, classified as axon guidance cues, to be involved in the process of 

axon guidance and/or targeting (Dickson, 2002; Tessier-Lavigne and Goodman, 1996). 

Among those are Slit, Semaphorins, Netrins and Ephrins. Slit, Semaphorins and Netrins 

act as secreted molecules, whereas Ephrins and a few Semaphorins are anchored on the 

cell surface. Each of these molecules, often presented in spatiotemporal, sometimes 

overlapping patterns can specifically interact with a receptor molecule expressed on the 

growth cone of an axon and thus induce a repulsive or attractive response that guide the 

growth cone to its target. Although the identification of these major guidance cues has 

increased our understanding of how the nervous system develops, the number of 

 
 

17



I n t r o d u c t i o n  

molecules dictating the pathfinding events at the tip of an axon appears quite small in 

comparison to the immense complexity of nervous system wiring. In the search for other 

molecular components it was discovered that morphogenes such as Bone morphogenetic 

protein (BMP), Sonic Hedgehog (Shh), and Wnts and sugar molecules, such as heparane 

sulfate proteoglycans (HSPG), can navigate axons and act during synapse formation (Van 

Vactor et al., 2006; Zou and Lyuksyutova, 2007). How these molecules signal to the 

cytoskeleton to direct axon growth awaits further investigations. The major outcome of 

guidance receptor activation is the initiation of many intracellular signaling cascades 

which provide a growth cone with the ability to select the correct path towards its target. 

What exactly happens inside the growth cone to make it respond to these extracellular 

cues is an object of broad research interest. Mainly in vitro studies provide the findings 

that local protein turnover, transient bursts of calcium release, cyclic nucleotides, 

membrane macro domains of lipids and proteins and Rho family GTPases are some of the 

components mediating such specific responses (reviewed in Dickson, 2001; Song et al., 

1998; reviewed in Wen and Zheng, 2006). 

Upon reaching their targets, the morphology of growth cones changes dramatically with 

the formation of branches and synapses. The initiation, extension and navigation of axon 

collaterals can follow activity based competition mechanisms and requires the controlled 

and coordinated assembly and disassembly of the neuronal cytoskeleton (Hua et al., 

2005; Kornack and Giger, 2005; Ruthazer et al., 2003). The molecular players known to 

be involved in this dynamic process of axon arborization have only been poorly 

investigated. Several recent studies demonstrated that extracellualr guidance molecules 

such as Slit, Semaphorin and Netrin can also influence the branching behavior of an axon 

(reviewed in Dent et al., 2004; Ma and Tessier-Lavigne, 2007). Our current 

understanding of how such primary mediators of axon guidance specifically control 

axonal branching is quite fragmentary. Excessive axonal branch formation during early 

stages of nervous system development is refined or pruned during later stages a process 

that has been shown in worms, flies and mammals (Bagri et al., 2003; Kage et al., 2005; 

Kantor and Kolodkin, 2003). Some of the molecular and cellular events that underlie 

axon remodeling have been identified. The Semaphorin family of molecules trigger such 

events in the hippocampus, while glia cells can selectively eliminate branch processes in 
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the Drosophila olfactory system and mushroom body (Bagri et al., 2003; Marin et al., 

2005).   

 

 

 

1.2 Molecular and cellular mechanisms controlling dendrite formation  
 

 

Our understanding of the molecular mechanisms of axon guidance, branching, targeting 

and synaptogenesis, although only limited, are quite advanced in comparison to what we 

know about molecular and cellular mechanisms regulating dendrite development. The 

highly similar dendritic arbor that neurons of the same type develop supports the idea of a 

molecular and genetic control of dendrite morphogenesis. In the same neuron the axon 

differs from dendrites morphologically, functionally and molecularly; it is therefore not 

surprising that certain molecules are localized predominantly in dendrites but not in 

axons. In fact, this is of great advantage, because such molecular markers allow the 

separate visualization of dendrites or axons, enabling us to address specific questions 

aimed at understanding dendritogenesis versus axogenesis. 

 

Only in the last 10 years have neuroscientists started answering questions about the 

events that regulate the establishment of a neuron’s dendrite architecture and it was not 

surprising that the steps known to be involved in axogenesis turned out to be similarly 

used also during dendritogenesis; including initiation of outgrowth, elongation, 

patterning, branching, targeting, synapse formation, tiling and competition for space, 

refinement and maintenance (reviewed in Jan and Jan, 2003; Kim and Chiba, 2004; 

Miller and Kaplan, 2003; Parrish et al., 2007b) (Fig1). 
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I n t r o d u c t i o n  

FIGURE 1. Schematic representation of the development of a dendrite tree.  
The figure shows the steps of dendrite development, including the growth initiation of a 
primary dendrite, which elongates in a defined direction. Next, new branches rising from 
the primary dendrite are formed. These elongate and serve as a substrate for higher order 
dendrite branches. Dendrite trees are able to tile. Once formed, the dendrite tree has to be 
maintained. 
 

In vivo, most neurons initiate dendrite outgrowth once the axon has developed or even 

reached its target. The list of molecules known to be involved in regulating dendrite 

outgrowth is relatively small. A forward genetic screen in Drosophila identified 

Flamingo (Fmi), a seven-pass transmembrane Cadherin, as a molecular factor required to 

suppress precocious dendritic outgrowth of dorsal multidendritic neurons in Drosophila 

(Gao et al., 1999; Gao et al., 2000). The same molecule however, is required in vitro for 

maintenance of a well established dendrite tree of pyramidal and purkinje neurons (Shima 

et al., 2004).  

Different types of neurons, growing in different organisms or environments (such as 

cultures or slices) can differ in their developmental behavior. In a culture dish, each type 

of neuron can display a different capacity of dendrite and/or axonal growth compared to 
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in vivo situations. On one hand, such experiments have been demonstrative for the 

intrinsic capacity of a neuron to grow; on the other, there is a complex interplay between 

intrinsic and extrinsic cues that are crucial for the neuron to become mature and 

functional. 

Few molecules, all known previously for their role in axon patterning, are active and can 

direct the growth and elongation of dendrites as well. Semaphorins, Slit, Ephrins or 

Netrin, can work also as regulators of dendrite growth, guidance and branching (Furrer et 

al., 2003; Komiyama et al., 2007; Polleux et al., 2000; Whitford et al., 2002). For 

example, contrary to its repellent function for axons, Semaphorin-3A appears to serve as 

an attractant for the apical dendrites of pyramidal neurons in cortical slices (Polleux et al., 

2000). In addition, Slit and its receptor Robo, Netrin- and its Drosohila receptor 

Frazzled/DCC and the Semaphorin- Plexin ligand-receptor pair can dictate the 

directionality of dendrite growth (Kim and Chiba, 2004; Komiyama et al., 2007). Slit and 

Netrins can direct the growth of motor neuron dendrites at the ventral midline of the CNS 

of Drosophila, while Semaphorin-1a and its receptor Plexin control the dendrite growth 

and patterning of olfactory projection neurons (PN). Contrary to their primary in vivo 

function as dendrite guidance molecules, in vitro the Slit/Robo signaling system promotes 

the growth and branch formation of dendrites in cultured cortical neurons (Whitford et 

al., 2002).  

It is well established that dendrite branching, similar to axon branching, provides a single 

neuron with the ability to establish synaptic contacts with multiple targets and is therefore 

crucial for the formation of neuronal networks. Forward and reverse genetic screens in 

Drosophila have provided a list of molecules that can exert specific intrinsic control on 

dendrite branch formation and growth. Some of these, including the mRNA binding 

proteins Nanos (Nos) and Pumillio, and the transcription factors Abrupt and Cut, can act 

cell- class specifically, and appear to be neuronal type specific regulators of dendrite 

morphology (Grueber et al., 2003a; Li et al., 2004; Sugimura et al., 2004; Ye et al., 

2004). Identifying intrinsic cues that regulate mammalian dendrite development has been 

more difficult; there are only a few transcription factors known to be major targets of 

calcium- dependant regulation of dendrite morphogenesis, such as CREST, CREB and 
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Neuro D (Redmond and Ghosh, 2005Aizawa et al., 2004; Gaudilliere et al., 2004; 

Wayman et al., 2006). 

The initiation, extension and navigation of dendritic collaterals require the controlled and 

coordinated assembly and disassembly of the neuronal cytoskeleton. Inside the cell 

regulators of the two major cytoskeletal components, actin and microtubules can induce 

changes in their dynamics ultimately leading to impairment or promotion of dendrite 

branch formation. For example Cypin, a protein with guanine deaminase activity can 

regulate dendrite number in hippocampal neurons in vitro by binding directly to Tubulin 

and promoting microtubule assembly (Akum et al., 2004; Chen et al., 2005a). Among 

others, the Rho family of GTPases (Rho, Rac and Cdc42) has emerged as an important 

determinant of dendrite structure. Working as integrators of extracellular cues, these 

molecules can induce actin or microtubule dynamics in the dendritic cytoskeleton in a 

similar fashion as in axons (Li et al., 2000; Luo, 2000; Luo et al., 1996; Newey et al., 

2005; Van Aelst and Cline, 2004). 

Technical advances in imaging living neurons in real time have revealed that the 

morphological complexity of a dendrite tree of a developing neuron is dependent on a 

balanced process between extension and/or retraction, stabilization and elongation of 

filopodia-like processes. Some of these develop into mature dendrite branches, while 

others completely disappear (Wu and Cline, 2003; Wu et al., 1999). Stabilized branches 

extend and become the substrate for further branch addition; hence a dendrite arbor 

gradually becomes more complex during development (Gao et al., 1999; Wu and Cline, 

2003).  

A wealth of evidence suggests that the final size and shape of a dendrite arbor is more 

likely determined by signals from the environment. These signals can be either secreted 

molecular cues from the surrounding tissue or interactions from neighboring cells of the 

same kind or contacts with presynaptic partners (reviewed in Jan and Jan, 2001; 

McAllister, 2000).  

Dendrites of the same neuronal type can recognize each other; this recognition 

mechanism prevents dendrite branches of the same type from growing over each other. 

Such complete, but non redundant coverage of a receptive field is known as tiling and is 

observed in different types of sensory neurons in Drosophila, Manduca and in some 
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vertebrates (Amthor and Oyster, 1995; Grueber et al., 2001; Grueber et al., 2002; Grueber 

et al., 2003b; Lin et al., 2004) . In the vertebrate retina, tiling is the principle of 

organization used by direction- selective retinal ganglion dendrites of the same type 

(Amthor and Oyster, 1995; Lin et al., 2004). The molecular mechanisms that control 

these principles of dendrite field development are only now beginning to be defined. 

Furry (Fry) and Tricornered (Trc) are two evolutionarily conserved protein kinases 

essential for dendrite tiling of sensory neurons of Drosophila (Emoto et al., 2004). 

Furthermore, Gallegos and Bargamnn reported that the Sax-1 and Sax-2 homologues of 

Trc and Fry have similar function in C. elegans, although the definition of tiling of 

neurons which form only a single dendrite can be used only in the context of non-overlap 

(Gallegos and Bargmann, 2004).  

Analyses of the Down Syndrome Cell Adhesion Molecule (DSCAM) in sensory md-da 

neurons in Drosophila revealed an additional mechanism used to limit overlap of dendrite 

branches of the same neurons, namely self-avoidance. This mechanism ensures the 

proper spreading of dendrite branches and a more uniform coverage of the receptive field 

area innervated by the dendrites of the same neurons. Dorsal sensory neurons lacking 

DSCAM, fail to repel each other and form branches that tend strongly to fasciculate 

together (Hughes et al., 2007; Matthews et al., 2007; Soba et al., 2007)   

Once formed, the architecture of a dendrite tree needs to be maintained in order to form 

stable connections with axonal or dendritic partners. The molecules and mechanisms that 

control this process are not well understood. A few genes, all known to act during 

dendrite maintenance and tiling of multidendritic sensory neurons in Drosophila have 

been recently identified. The tumor suppressor Warts/Lats can act together with the 

tumor suppressor Hippo to regulate dendrite maintenance and tiling of the 

morphologically most complex class of Drosophila sensory neurons, Class IV. Members 

of the Polycomb repressor complex (PRCs) can act in the same pathway, and specifically 

control dendrite maintenance of dorsal sensory neurons (Emoto et al., 2006; Parrish et al., 

2007a). Although it has not yet been shown that these molecules might play a similar role 

in dendrite tree maintenance of vertebrate neurons, the highly conserved molecular 

structure of these proteins gives reason for this speculation. Dendrite stabilization and 

maintenance are also molecularly regulated processes in mammals. For example few 
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studies nicely demonstrate a role for BDNF (brain derived neurotrophic factor), Integrins 

and classical Cadherins in mediating a stable dendritic shape (Gorski et al., 2003; Marrs 

et al., 2006). 

 

A key future endeavor will be to identify and characterize the molecular players that 

promote a mature neuron to respond to environmental changes and thus undergo 

morphological remodeling processes. Little is known about the large-scale remodeling of 

mature dendrites, which in most cases has been observed to be concomitant with axonal 

remodeling (Lee et al., 2000; Marin et al., 2005; Truman and Reiss, 1995; Watts et al., 

2003). During insect metamorphosis the larval nervous system is extensively modified, 

presenting the opportunity to dissect the basis of neuronal remodeling events. Few studies 

have shown that the md-da neurons of the PNS of Drosophila, while undergoing 

metamorphosis, poses both cell- intrinsic and cell-extrinsic abilities to selectively 

remodel their dendrites. These molecular mechanisms involve matrix metalloproteases, 

the Ubiquitin-proteasome system (UPS) and Ecdysone receptor (EcR) signaling (Kuo et 

al., 2006; Williams et al., 2006; Williams and Truman, 2005). Contrary to the case in 

insects, dendrite remodeling processes in mammals have been reported as a phenomenon 

accompanied by activity-dependent mechanisms and mostly in neurons of the visual and 

olfactory systems (Cline, 2001; Lohmann and Wong, 2005). The molecular mechanisms 

underlying neuronal activity induced dendritic arbor rearrangements are only poorly 

understood and imply NMDA receptor activation and its two major signaling targets; 

Calcuim/calmodulin-dependant kinase and Mitogen-activated kinase (Chen et al., 2005b).  

  

Finally, the cellular machinery enabling neuronal dendritic and axonal formation and 

growth is one of the least understood and analyzed systems. During the construction of 

such a complex dendrite tree, the addition of plasma membrane is required. Only recently 

it has been demonstrated that components of the secretory pathway including ER and 

Golgi apparatus contribute significantly to the differentiation of dendrites and in 

establishing their complex arbor (Horton et al., 2005; Ye et al., 2006).    

 

 

 
 

24



I n t r o d u c t i o n  

1.3 Roundabout receptors and their ligand Slit 
 

 

 

 
 

FIGURE 2. Drosophila Robo receptors and Slit proteins and their domain 
organization. 
Robo proteins are highly conserved among different species. These are characterized by 
the presence of five Immunoglobulin (Ig) domains, three Fibronectin (FN) domains, a 
transmembrane domain and four conserved cytoplasmic motifes (CC) in Robo (but only 
two in Robo2 and Robo3) The extracellular domains of Robo2 and Robo3 are ~37% and 
~33% identical to Robo and 49% identical to each other (described in Rajagopalan et al., 
2000b; Simpson et al., 2000b). The N-terminal region of Slit contains four Leucine Rich 
repeats (LRR), followed by six Epidermal growth factor (EGF) repeats. The C-terminal 
region of Slit contains a Laminin-G domain, one EGF repeat and a cystein knot. 
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Roundabout (Robo) was first identified in a genetic screen for mutants showing 

commissural axon pathfinding defects at the ventral midline of Drosophila (Seeger et al., 

1993). In robo mutant fly embryos, axons including both ipsilateral and commissural 

axon cross and recross the ventral midline of the central nervous system (CNS) of 

Drosophila (Kidd et al., 1998; Seeger et al., 1993). Further analyses revealed that the 

protein is highly enriched at growth cones of CNS axons (Kidd et al., 1998). At the same 

time, two other robo genes have been identified and cloned – robo2 and robo3 (Fig.2) 

(Kidd et al., 1998; Rajagopalan et al., 2000b; Simpson et al., 2000a). The proteins of all 

three genes have been biochemically and genetically shown to bind to the same ligand 

Slit (Fig.2) (Brose et al., 1999; Kidd et al., 1999). Up to date three Robo proteins are 

known to exist in Drosophila (Fig 2) one in C.elegans (known as SAX-3), two in  zebra 

fish, two in humans and four in mice (Robo1, Robo2, Robo3 (Rig-1) and Robo4) (Challa 

et al., 2001; Huminiecki et al., 2002; Kidd et al., 1998; Long et al., 2004). Robo4, also 

known as magic Robo, has not yet been assigned a proven function during nervous 

system development but is required during angiogenesis and vasculature development 

(reviewed in Carmeliet and Tessier-Lavigne, 2005).  

As with many other protein families, Robo molecules have been classified as members of 

the same family due to amino acid sequence homology within their extra cellular 

domains (Kidd et al., 1998). Most Robo proteins contain an extracellular region 

composed of five Immunoglobulin domains (Ig) and three fibronectin type III (FN3) 

repeats, a single transmembrane segment and a cytoplasmic domain, which is poorly 

conserved among Robos (Fig2). Some elegant studies with chimeric receptors provide 

solid evidence for the importance of the extracellular region of Robo(s) in ligand 

recognition and interaction. However, the biological response to such interaction is 

encoded by each receptor’s cytoplasmic domain (Bashaw and Goodman, 1999). Robo’s 

intracellular region, in contrast to Robo2 and Robo3, contains four short conserved 

cytoplasmic sequence motives (CC), which are interaction sites for various signaling 

proteins (Fig3). Among these are Dreadlocks (Dock) /Nck, a SH2-SH3 adaptor protein 

that links receptor activation to cytoskeleton rearrangements and can specifically bind to 

the CC2 and CC3 motifes (Fan et al., 2003; Yang and Bashaw, 2006). Another well 

studied mediator of Slit/Robo signaling is a member of the actin polymerizing proteins 
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Ena/VASP (Bashaw et al., 2000). In light of the well known interaction between Ena and 

Abl tyrosine kinase, the observation that Abl protein can interact with Robo and thus 

contribute to its signaling, was highly anticipated. Although both Ena and Abl can 

directly bind the cytoplasmic domain of Robo, the first mediates Robo’s repulsive signal, 

while the second antagonizes Robo signaling (Bashaw et al., 2000) (Fig3). Genetic 

analyses of the Drosophila nervous system development and Xenopus growth cone 

motility provide some hints that the microtubule plus end trafficking protein 

Orbit/MAST/CLASP mediates Robo signaling downstream of Abl (Lee et al., 2004). In 

the same study the authors suggest that Abl, acting downstream of Robo can 

simultaneously regulate the dynamics of the two major cytoskeleton systems, namely 

actin and microtubules during growth cone response; via Orbit/MAST/CLASP mediates 

microtubule assembly, and, via the actin binding protein Capulet actin 

assembly/disassembly. In addition, binding of Slit to Robo can signal via pathways to the 

small GTP-ases Rac, Cdc42 and Rho promoting actin filament dynamics. The signaling 

components linking these molecular events are not well understood. More recently Son of 

sevenless (Sos), a Rac Guanine exchange factor (GEF) was shown to be implicated in the 

activation of Rac downstream of Slit/Robo signaling. The formation of a multiprotein 

complex composed of Slit-Robo-Dock-Sos and Rac is thought to be one pathway that 

mediates a repulsive response at the growth cone of an axon (Yang and Bashaw, 2006).  

 

In addition to their most well understood role during axon development and guidance in 

Drosophila and mammals (Erskine et al., 2000), several studies have shown that the 

Robo/Slit signaling system can also guide migrating muscles cells, orchestrate the 

assembly of the Drosophila heart tube, regulate neuronal cell migration and contribute to 

tracheal system development of the fly (Englund et al., 2002; Kramer et al., 2001; Kraut 

and Zinn, 2004; Piper et al., 2000; Qian et al., 2005). Surprisingly, it was found that 

during some of these developmental processes activation of Robo via Slit can also elicit a 

positive influence, such as an attractive response, on cell migration and/or guidance. 

Hence, given the highly pleiotropic and bifunctional roles of Robo it is tempting to 

speculate that intracellular events downstream of receptor activation are more complex, 

involving other molecular players that still need to be identified.  
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Slit, similarly to Robo, was also identified in a genetic screen, of factors that control 

embryonic patterning defects in Drosophila (Nusslein-Volhard C, 1984). The protein 

obtained its “historical” function as a “classical” axon guidance cue, once it was isolated 

in a genetic screen for molecules involved in commissural axon path finding (Hummel et 

al., 1999; Seeger et al., 1993). In slit null mutant embryos all axons collapse together at 

the midline of Drosophila CNS (Kidd et al., 1999; Li et al., 1999; Rothberg et al., 1990). 

The slit loss-of-function phenotype together with the functional analyses for all Robo 

proteins revealed that Slit, expressed by midline glial cells acts as both a short-range and 

long-range repellent signal through Robo(s) to prevent ipsilateral axons from crossing the 

midline and commissural axons from recrossing. Axons expressing different 

combinations of Robo proteins show distinct sensitivity to Slit and accordingly project 

away from it by following specific lateral pathways along the CNS midline (Rajagopalan 

et al., 2000a; Rajagopalan et al., 2000b; Simpson et al., 2000a; Simpson et al., 2000b). 

This function of Robo(s) and their ligand Slit is conserved among species, since similar 

phenotypes have been observed in nematodes, zebrafish or knock-out mice for Slits 

proteins. To date, there are three Slit proteins identified in mice (Slit-1,Slit-2 and Slit-

3)(Long et al., 2004) and only one in Drosophila, two in zebrafish and one in worms 

(Hao et al., 2001; Hutson et al., 2003). 

The molecular structure for all Slit proteins is well characterized and known to be 

composed of a series of four leucine-rich repeats (LRRs), seven to nine epidermal growth 

factor (EGF)–like domains, a laminin G-domain and a C- terminal cysteine rich domain 

(Fig 2) (Kidd et al., 1999). Most Slit proteins are cleaved within the EGF-like region, 

although it is not yet clear what the biological impact of this cleavage is. (Brose et al., 

1999; Wang et al., 1999)(Fig2). In vitro experiments suggest that the C-terminal fragment 

of Slit mediates repulsion at the growth cone, while the N-terminal fragment has an 

opposite, rather positive effect acting as a branch promoting factor for axons (Wang et 

al., 1999).    

Biochemical analyses have provided the structural basis for Slit recognition by Robo. 

Slit’s second LRR domain appears to be the binding site recognized by the extracellular 

Ig domains 1 and 2 in all three receptors, Robo, Robo2 and Robo3 (Fig3) (Howitt et al., 

2004; Liu et al., 2004).  
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FIGURE 3. Slit/Robo signaling cascade at the growth cone of an axon.  
Binding of Slit to Robo results in recruitment of Dock, a SH2-SH3 adaptor which can 
further activate SOS, a Rac GEF, followed by activation of Rac. Formation of this protein 
complex promotes cytoskeletal rearrangements leading to growth cone repulsion. Genetic 
and biochemical experiments provide some evidence that Dock, Rac and Pak function 
together to couple Robo receptor activation to the regulation of actin cytoskeleton. 
Another pathway that mediates repulsion independently of Dock is via Ena. Binding of 
Ena to Robo is thought to block actin assembly through Profilin (Chick). Phosphorylation 
of the CC3 motif of Robo via Abl has an antagonistic effect on Ena binding to Robo. 
Simultaneously, when bound to the CC3 motif of Robo, Abl can influence the dynamics 
of the two major cytoskeleton components; actin and microtubules. Capulet and 
Orbit/MAST/CLASPS molecules have been identified to be some of the players involved 
in these processes. 
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1.4. Drosophila melanogaster and its PNS as a model system to study 

denditogenesis. 
  

 

What makes Drosophila melanogaster such a successful model organism is the power of 

genetic screens to identify molecules involved in a biological process of interest 

(reviewed in Adams and Sekelsky, 2002; St Johnston, 2002).  

The entire genome of the fly has been sequenced (Myers et al., 2000) and already for the 

fifth time resequenced, providing us with quite reliable and detailed information about 

the genes and their organization on the four chromosomes that comprise the Drosophila 

genome. The Release 5.1 annotation of the heterochromatin region of the Drosophila 

genome has been published recently, filling many of the gaps of unsequenced regions of 

the genome and adding an additional ~250 protein coding genes to the ~15,000 identified 

to date (Smith et al., 2007). 

Another great advantage the fly offers as a model organism is low maintenance cost and 

simple genetics. It takes only around 10 days for one generation to mature, allowing the 

full developmental process to be followed in a very short period of time. Furthermore, 

there are many genetic tools and fly lines available, allowing the manipulation of almost 

any gene of interest. 
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FIGURE 4. The PNS of Drosophila; a model system used to analyze dendrite field 
development.  
Each abdominal segment, depicted here as A1 to A9 contains three clusters of PNS 
neurons, organized in a highly stereotyped manner. Due to the position of these clusters 
we distinguish dorsal, lateral and ventral clusters of sensory neurons. In addition the 
ventral cluster is separated into ventral prime and ventral. The dendrite arborization 
neurons are depicted as big gray circles. Smaller blue circles represent other types of 
sensory neurons, such as chordotonal, bipolar or tracheal.  
 

 

Using these advantages, the laboratory of Yuh Nung Jan at UCSF-USA generated a Gal4-

UAS-GFP enhancer trap fly line assigned as a 80G2 in which it was possible for the first 

time to visualize dendrite projections of the highly arborized multidendritic neurons of 

the Drosophila  Peripheral Nervous System (PNS) in detail. (Gao et al 1999). In this 

line, a Gal4 construct inserted in a tissue specific manner drives the expression of the 

GFP (green fluorescence protein) protein and allows the genetic visualization of dendrite 

projections of all multidendritic arborization neurons, the bipolar neurons, the tracheal 

 
 

31



I n t r o d u c t i o n  

innervating neurons and the chordotonal neurons (Gao et al 1999). These neurons, 

together with the remaining sensory neurons which are not visualized in the 80G2 line, 

form clusters within each abdominal segment of the Drosophila embryo. Thus, we 

distinguish a ventral, lateral and dorsal cluster of neurons within the PNS with a highly 

stereotyped organization (Bodmer et al., 1989) (Fig4).  

The advantages the 80G2 line offers are several; labeled with GFP genetically, the cell 

bodies, the axons and the whole dendrite tree are nicely and stably visualized throughout 

the whole development of Drosophila. Located directly under the transparent epidermis 

of the embryo, these neuronal processes can be directly observed in living intact animals. 

The dendrites of PNS neurons project their fields in a two-dimensional space, pressed 

between the muscles and the epidermis of embryo or larvae, allowing for easy 

observation of each single branch. 

In vivo time-lapse imaging and developmental analysis of the dendrite trees of md-da 

neurons revealed that the dendrite field morphology at embryonic stage 18-20h AEL 

(after egg lying) is highly stereotyped among animals, suggesting that this development is 

under a genetic control. Further analysis at a single cell level revealed that the dorsal 

cluster of md-da neurons is composed of six dendritic arborization neurons, which due to 

morphological differences, have been subdivided into four different classes, ranging from 

Class I with the simplest morphology to the Class IV with the most complex (Fig5) 

(Grueber et al., 2002; Grueber and Jan, 2004). Each of these neurons projects its dendritic 

tree in a preferentially dorsal direction and its axon along a ventral pathway (Fig5).  
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FIGURE 5. Multidendritic arborization neurons of the Drosophila PNS; schematic 
view of the four different Classes;  
Based on morphological characteristics the dendritic arborisation neurons have been 
subdivided into four different classes; Class I (depicted in blue), the morphologically 
simplest class of neurons develop only a few primary branches, laterally oriented 
secondary branches and few tertiary branches. Class II neurons (red) develop a simple 
dendrite tree, similar to Class I. Class III neurons (green) develop several primary, 
secondary and tertiary order branches, which are decorated with short filopodia-like 
protrusions called spikes. There are only three Class IV neurons per abdominal segment. 
These are morphologically the most complex type of neurons, whose dendrite tree covers 
the whole abdominal dorsal/lateral or ventral segment. Depicted are only the cell bodies 
with their dendrite projections. All four classes of neurons are organized in a cluster as 
represented in a living intact embryo (image on the left, scale bar 16µm) or schematically 
(image on the right).White arrow points to the axons. 
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This highly stereotyped pattern of dendrite field organization, and the mentioned above 

advantages that Drosophila melanogaster offers as a model organism led to the design of 

a genetic screen on the second chromosome, aiming to identify recessive lethal mutations 

that affect dendrite routing, patterning and outgrowth (Gao et al 1999).  

 

 

1.5 The Role of Robo during dendrite filed development 

 

 
Three studies have addressed the role of Robo(s) and their ligand Slit during dendrite 

differentiation; so far the only  in vivo work, as previously mentioned, has demonstrated a 

guidance role for Robo, but not Robo2 or Robo3 receptors during motor neuron dendrite 

growth at the CNS of Drosophila (Furrer et al., 2003). Given the model system used in 

this study it was difficult to asses whether further aspects of dendrite development such 

as growth and/or branching are also under the control of Robo protein. Such a role for the 

protein has indeed been demonstrated in a study from Ghosh and M. Tessier-Lavigne labs 

showing that Slit mediated receptor activation can induce more growth and branching for 

dendrites of rat cultured cortical neurons (Whitford et al., 2002). However, given the 

technical limitations and the complexity of a rat brain, this study could not further 

demonstrate that such function for Robo is present also in vivo. Studies on the giant fiber 

motor system of Drosophila suggest that this molecular system might indeed act to 

regulate the growth of dendrites, and furthermore be involved in synapse formation. 

Certainly, a weak point in their work is the lack of evidence demonstrating an 

endogenous role of Robo during these processes (Godenschwege et al., 2002).  

Taken all these evidence together, it is not yet clear what the role of the Robo receptor 

and its ligand Slit is during dendrite morphogenesis in vivo.   
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The aim of my PhD work; 
 

 

Given the advantages of the Drosophila PNS as a model system, and particularly the 

dorsal multiple dendritic arborisation neurons, I tried to elucidate what the 

physiological role of the Robo receptors and their ligand Slit is during dendrite field 

development. 

 

To dissect the function of the Robo proteins during dendritogenesis:  

1. I performed detailed developmental analyses of dendrite field formation of md-da 

neurons and compared how dendrite morphogenesis differs in animals completely 

lacking Robo function or overexpressing the protein in their md-da neurons.  

2. With the help of cell-class specific genetic markers, I observed that Robo acts 

cell-class specifically and is required during dendrite field development of the 

morphologically most complex classes of md-da neurons, Class IV.  

To assess whether this functions is cell-autonomous  

3. I performed expression pattern analyses, rescue analyses and generated single cell 

mutant clones with the MARCM (mosaic analyses with a repressible cell marker) 

technique.  

To assess how Robo might mechanistically regulate dendrite branch formation  

4. I performed time-lapse analyses of dendrite field development Class IV neurons 

overexpressing Robo protein. 

To assess how the ligand Slit specifically activates Robo during dendritogenesis; 

5. I performed expression pattern analyses, ectopic expression experiments and 

addressed possible cell-autonomous function for that protein by doing MARCM 

for Slit.  

Biochemical and genetic data have shown that Dock, an SH2-SH3 adaptor protein and 

Ena, a member of the VASP family of proteins, can act downstream of Robo at the 

growth cone of an axon.  
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 6. By doing loss-of-function analyses for ena and dock, I tried to elucidate whether 

these molecules are acting downstream of Robo during dendrite field development of 

md-da neurons.  

 

Finally, the presence of an axon guidance phenotype in robo2 but not robo and slit single 

mutants or robo, robo2 double mutants raised the question about the role of Robo2 

during axon guidance of md-da neurons; to address this question 

7. I performed phenotype analyses of the axonal projections of md-da neurons in 

different genetic combinations and compared their phenotypes to those of control 

animals. 

 

The initial idea for the project was based on the identification and characterization of a 

single mutant allele named “girandola” which was isolated in ethyl methane sulfonate 

(EMS) mutagenesis screen performed in Y.N. Jan’s lab at UCSF and classified as a line 

with dendrite overgrowth and routing phenotype. Mutation identification revealed that 

girandola is a new robo2 allele. This led me to the thorough analyses of the role of Robo 

receptors and their common ligand Slit in dendrite differentiation. 
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2. Results 

 

 
2.1. Identification and characterization of the girandola mutant 
2.1.1 Mapping the girandola mutation 

 

 

girandola is a single mutant allele isolated from the chemical (EMS) mutagenesis screen 

performed in Y.N.Jan’s lab at UCSF (Tavosanis G., Cox D., Grueber W. unpublished 

data). The goal of the screen was to isolate recessive lethal mutations, localized on the 

second chromosome of Drosophila affecting dendrite branching, routing and outgrowth. 

The EMS mutagenesis was performed on 80G2 flies in which Gal4 drives the expression 

of GFP in all 6 md-da neurons, together with a bipolar, and a tracheal neuron. This was 

an F3 screen (see crossing scheme) in which EMS induced recessive lethal mutations, 

causing gross dendrite defects, could be directly monitored. This was possible because of 

the nicely and stably genetically labeled dendrites of md-da neurons which elaborate their 

dendrites just underneath the transparent epidermis of a Drosophila otherwise 

homozygous mutant embryo. 

 

                            Crossing strategy used to isolate recessive lethal  
                            mutants on the second chromosome of 80G2 line; 
 

                            F0    ♂ 80G2 (+ EMS)   x   ♀ yw; Pin/CKG  

                                                                       ↓ 

                            F1    ♂ 80G2,* /CKG    x     ♀ yw;Pin/CKG       (*…stays for mutation)  

                                                                       ↓ 

                            F2    ♂♀ 80G2,* /CKG   - mutant stock              screen for lethality 

                                                                       ↓ 

                            F3   ♂♀80G2,*…………screen homozygous mutant embryos for  

               dendrite defects 
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The mutation in the girandola gene causes dendrite routing and overgrowth defects of 

md-da neurons. The penetrance of the phenotype is 100%, however the phenotype varied 

from animal to animal (Fig 6).  

 

 
FIGURE 6. Misprojection of neurite processes in girandola mutant embryos.  
Confocal images of dorsal cluster of md-da neurons in 80G2 (control) A) and girandola 
mutant embryos at embryonic stage ~18h AEL B) and C) Arrows show the abnormally 
projecting neuronal processes. Scale bars; A) 35µm B) and C) 25 µm. Dorsal is up, 
anterior is right.  
 

In wild type animals at 18h-19h AEL, the dendrite field of md-da neurons show highly 

stereotyped very characteristic features (Fig 6A). There are two dorsally projecting 

bundles of dendrite processes oriented parallel to each other. From these two main 

bundles of dendrites, laterally oriented, secondary and higher order branches grow 

anteriorly and posteriorly, towards the adjacent segment boundaries of an abdominal 

segment (Fig 6A). This quite stereotyped principle of dendrite field organization is lost in 

girandola mutants. Several neuronal processes (dendrites or axons) exhibited abnormal 

routing and growth towards the dorsal midline or the adjacent abdominal segment 

boundary. Often these processes are fasciculated and overshoot the dendrite field (Fig 6B 

and 6C, arrows). This pattern of dendrite arborization defects, appeared not in all but only 

in few dorsal abdominal segments of Drosophila embryo, corresponding to ~ 28% 

expressivity of the phenotype (n=27/96 segments of 14 embryos). In the most severe 

cases, these overgrowing processes formed a loop, a phenotype suggestive for the name 

girandola (girandola means “windmill” and was named by Dr. G. Tavosanis). These 

defects in neurite projections were initially classified as a dendrite specific phenotype and 
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suggested that the gene affected in girandola mutant is required during dendrite field 

development of dorsal abdominal md neurons.  

First, we started with mapping the girandola mutation; 

The localization of a recessive lethal mutation on a chromosome involves tree major 

steps; rough mapping, fine mapping and cloning the gene and identification of the 

mutation (Fig.7) 

 

 
FIGURE 7. Schematic outline of the principle of gene mapping. 

The grey bar represents a chromosome (mainly the second left one (2L)) that contains a 
mutation to be identified (depicted as a star). First, a rough mapping step allows 
determination of a region that can span up to Mega base (Mb). A fine mapping step leads 
to further narrowing down a mutant interval to less then 100 kb. The final step is the 
positional cloning of the gene and mutation identification.     
 

 

The Deficiency (Df) mapping assay can be used for a rough mapping test. A public 

center, the Bloomington stock center, provides scientists working with Drosophila, with a 

whole collection of fly lines, containing a deleted chromosomal region. Thus collections 

of Deficiency lines uncovering the second, the third or the first chromosome almost 

completely; (percentage of coverage; 93% for second right (2R) chromosomal arm and 

94,8% for second left (2L) chromosomal arm; http://flystocks.bio.indiana.edu/Browse/df-

dp/dfkit-info.htm) can be used to screen a whole chromosome of interest at once.  

 
 

39

http://flystocks.bio.indiana.edu/Browse/df-dp/dfkit-info.htm
http://flystocks.bio.indiana.edu/Browse/df-dp/dfkit-info.htm


R e s u l t s 

Each Df line contains a relatively large chromosomal deletion (more than 100kb, often 

Mb) defined as cytological positions on the Drosophila chromosome.  

To perform this assay girandola mutant males were crossed with virgins of each 

Deficiency lines for the second chromosome. By doing this, around 40 crosses are 

obtained (due to the number of lines that a Df kit for the second chromosome contains); 

as a first step, the progeny of each of that cross was screened for lethality. Three of the 

Deficiency lines, Df(2L)ast4, Df(2L)ast2 and Df(2L)S3 failed to complement the 

girandola mutant. This and the complementation result of Df(2L)BSC16 with girandola 

allowed localizing a recessive lethal hit on the second chromosome, determined by the 

cytological numbers 21C8 (given by the right breakpoint of Df(2L)BSC16) and 21E1, 

(given by the left breakpoint of Df(2L)ast5). The next step was to define whether the 

mutant interval containing the lethal mutation is responsible for the dendrite phenotype in 

girandola embryos. Animals carrying the girandola allele in trans to either 

Df(2L)ast5(n=11/11 embryos) or Df(2L)ast2(n=12/15embryos) showed the same dendrite 

field projection defects as observed in girandola homozygous mutant embryos. 

Surprisingly, embryos transheterozygous for the girandola allele and Df(2L)ast6 

(n=0/25) and Df(2L)ast4 (n=0/13 embryos), revealed normal dendrite architecture 

comparable to those of control animals (in this case embryos transheterozygous for 80G2 

chromosome and the appropriate Df line).The complementation and phenotype analysis 

allowed the definition of a new interval of the gene causing the girandola phenotype, 

namely between the cytological numbers 21E2-22A1 (determined by the two breakpoints 

given by Df(2L) ast5) (Fig.8). This is a relatively large region of ~370kb containing ~57 

genes. 
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FIGURE 8. Schematic view and summary of the informative results of the Df 
mapping test.  
The second chromosome is indicated as a dark gray bar. Depicted are the cytological 
numbers, the circle represents the centromere. The blue bar is a magnification of the 21st 
and 22nd cytological region of the second left arm of the chromosome where girandola 
mutant interval and a region of a recessive lethal mutation were determined. A 
magnification of the ~370kb “girandola” mutant interval (21E2-22A1) is depicted also as 
a blue bar.  
3 Excelixis Df lines having deletions within that region allowed the further narrowing 
down of the girandola mutant interval to a region determined by the left breaking point 
of Df(2L)Exel8004 and the right breaking point of Df(2L)ast5. This ~120kb interval 
contains only 13 genes, the largest is robo2 (lea). 
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Once a mutation has been localized on the chromosome, the next step is a fine mapping, 

which aims to further narrow down the region of interest to a low number of genes. The 

final step is the map based positional cloning of a gene and mutation detection (Fig7).  

For the fine mapping step we used newly generated Deficiency lines obtained via a P-

mediated excision. In these lines the deleted fragment of the chromosome is very small (a 

few hundred kb) and exactly determined to the level of a single nucleotide (Parks et al., 

2004). Three such “Excelixis” Df lines spanning the girandola mutant interval were 

chosen. Phenotype analyses of embryos carrying any one of the three Df chromosomes in 

trans to the girandola allele, allowed further narrowing down the girandola region to 

~120kb (Fig.8). This region contains only thirteen genes and the best candidate among 

those was robo2 (known also as lea), for the following reasons:  

First, the function of robo2 during nervous system development in both CNS and PNS of 

Drosophila has been previously demonstrated (Rajagopalan et al., 2000a; Rajagopalan et 

al., 2000b; Simpson et al., 2000a; Simpson et al., 2000b; Zlatic et al., 2003). 

Second, it is the largest gene in the region. EMS binds preferentially Guanine or 

Cytosine, and genes are CG rich, suggesting that larger genes are more accessible for 

mutagenesis. 

 Third at the time point of mapping, a study by the Whitington lab described a role for 

robo2 during axon guidance of PNS neurons of Drosophila The axonal phenotype of 

dorsal sensory neurons described in their work strongly resembled the one of girandlola 

mutants (Parsons et al., 2003). 

   

 

Proving the finding that girandola may indeed be a new robo2 allele. 

 

The first hint came from the phenotype analyses of embryos transheterozygous for 

girandola and a robo28 (null) allele. These showed the same defects of misprojected 

neurite as the one in girandola homozygous mutants (data not shown).  

Secondly, DNA from girandola homozygous embryos was isolated and the complete 

open reading frame of the gene was sequenced. We identified a nonsense mutation in the 

13th exon of the gene, coding partially for the cytoplasmic region of the protein. Such a 
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mutation leads to an amino acid alteration in the protein sequence from AAG (Lys1284) to 

TAG, creating a translation-termination (Fig9).  

 

 
FIGURE 9. Sequencing of robo2girandola and mutation identification. The nucleotide 
sequence region showing the nucleotide exchange causing a missense mutation in 
robo2girandola. At an A position (green peak) in 80G2(control) animals, corresponds a T 
(red peak) in girandola. This nucleotide exchange results in an alteration from Lysine to 
a Stop signal. 
 

 

Lack of Robo2 function results in defects of the third axon fascicles (second + third fused 

together), midline crossing defects and/or occasional breaks or fasciculation errors in the 

first and second fascicle (Rajagopalan et al., 2000a; Rajagopalan et al., 2000b; Simpson 

et al., 2000a; Simpson et al., 2000b). The phenotype can be visualized when axons of the 
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CNS are stained with antibody recognizing the cell-adhesion molecule Fasciclin II (Lin et 

al., 1994). Therefore, we performed anti-FASII staining in wild type, robo29 

(hypomorph) and girandola mutant filet embryos and compared how axons at the CNS 

midline of Drosophila project in all these tree different genotypes (Fig 10). The very 

similar axon guidance defects in both girandola and robo29 homozygous mutant embryos 

further support our finding that in the girandola mutants the affected gene is a new robo2 

allele. Quantification of the phenotype and its expressivity revealed that indeed the 

number of segments showing midline crossing defect or fusion of the second and third 

fascicles was comparably similar in both girandola and robo2 mutants (table 1). 

 

 girandola % robo29 % 

(2+3) 

fused fascicle 

38/165 

segments 

 

23% 

39/140 

segments 

 

28% 

Midline 

crossing defects 

18/165 

segments 

 

11% 

21/140 

segments 

 

15% 

             

             TABLE 1 Midline crossing defects in girandola and robo29 mutants  

 

Finally, we looked at how the axon of dorsal sensory neurons project. To label these 

neuronal processes, we used an antibody raised against the MAP-1b protein (the 

Drosophila futsch). This antibody allows nice visualization of the axons of all sensory 

neurons of the PNS and motor neuron axons of the CNS of Drosophila. (Hummel et al., 

2000). Both girandola mutants and robo29 mutants showed similar PNS axon guidance 

defects, with comparably similar expressivity of their phenotypes; 33% for girandola 

(n=32/98 segments) and 38% (n=35/91segments) in robo29 (Fig 10D, 10E and 10F 

arrows). 

In summary, sequence and phenotype analyses strongly indicate that girandola is a new 

robo2 allele. Based on genetic and molecular criteria, we think that this is a new 

hypomorph allele.  
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FIGURE 10 CNS and PNS axonal misprojections in girandola and robo29 
(hypomorph) embryos are similar.   
A), B) and C) confocal images of filet embryos in which the tree axonal fascicles 
projecting along the CNS midline of Drosophila were visualized via anti Fasiclin II 
staining. Similar axon guidance defects were observed in both girandola and robo29 
mutants (arrows in B and C). Scale bars; 27µm  
D), E) and F) confocal images of the dorsal cluster of neurons and their axonal 
projections visualized via immunolabeling against futsch (MAP1b). Similar axon 
guidance defects are produced in both girandola and robo29 mutant embryos (arrows in 
E and F). Scale bar; 35 µm  
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2.1.2 Characterization of the robo2girandola mutant 

 

 

While analyzing the axon guidance PNS phenotype of both robo29 and girandola it 

became clear that whole fascicle of dorsal sensory axons were often growing dorsally, 

within the dendrite field. Thus, the axonal phenotype cast the primary role of robo2 

during dendrite field formation into strong doubt. Therefore, we performed a set of 

experiments aimed at understanding whether robo2girandola has, if any, a role during 

dendrite field formation of md-da neurons. 

Taking advantage of the different time points of axogenesis and dendrtitogenesis of md-

da neurons (Gao et al., 1999), we next analyzed ~14h AEL old embryos and asked how 

dendrite outgrowth is initiated in dorsal cluster of neurons also showing axon patterning 

defects. In all of the analyzed embryos, neurons with misguided axons did show normal 

dendrite outgrowth or projection of their primary dendrite branches (Fig.11A and 11A1 

arrows point to misguided axons coming from a neighboring cluster of neurons, 

arrowhead points to a normally projecting newly formed primary dendrite branch).  

Looking at later time points, it became evident that by 18h-20h AEL, in robo2girandola 

mutants 30% of the dorsal cluster of md-da neurons showed axon guidance defects only, 

and the remaining 70% of dorsal cluster md-da neurons showed both, axonal plus 

dendrite phenotype (Fig.11C, 11D, arrows indicate misguided axons). We could not 

observe dorsal md-da cluster of neurons showing only a dendrite phenotype.  

Taken together, the observations described here suggest that the observed dendrite 

defects in robo2girandola mutants are due to misguided axons, suggesting that removing 

robo2 function severely affects axonal projections primarily, but not dendritogenesis.  
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FIGURE 11. Axons affect dendrite field projection in girandola mutants 
A) and A1) ~14h AEL old embryos, misprojecting axons from a dorsal cluster of neurons 
are innervating the future dendrite field of the neighboring dorsal cluster (arrows). The 
initiation of dendrite outgrowth in these affected clusters of neurons looks normal 
(arrowhead). B) An example of a ~17hAEL old embryos in which a dorsal cluster of 
neurons show an axon guidance defects but not dendrite field developmental defects. C) 
and D) two different examples of older embryos (~20h AEL) reminiscent of those shown 
in A) and B) and putting forward the idea that the dendrite field development in 
girandola mutants are caused by the misguided axon. Scale bars 25µm    
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2.3. Developmental analysis of dendrite arborization neurons of control animals 

during late embryonic/larval stages.  

 

 

We next looked at how dendrite field development of md-da neurons proceeds during late 

embryonic/larval stages. We performed detailed developmental analyses on dendrite 

formation of md-da neurons starting from 20h AEL until the entire receptive area of the 

Drosophila epidermis was fully covered with dendrites; this happens by the end of 

second instar larvae stage (data not shown; and see Fig 20) To investigate this, we used 

the 80G2 line which allows a clear and detailed visualization of the dendrites of all 6 md-

da neurons (Gao et al., 1999). 

In vivo time lapse imaging of embryos/larvae would require anesthetizing the animals. To 

avoid this and the possible artifacts such experimental conditions might cause  

(Grueber et al., 2002; Medina et al., 2006), we examined the dendrite development of 

md-da neurons by imaging 18-20 different animals per given time point (Fig.12). 
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FIGURE 12. Dendrite field development of dorsal abdominal clusters of neurons in 
80G2 animals. A1) a schematic view of all 6 md-da neurons. B-I) Confocal images 
representing an abdominal segment of a late embryo/larva (B1-I1 squares) at each of the 
time point analyzed. Starting from 20h AEL A) and analyzing 8 different time points it 
appears that the process of dendrite field development is stereotyped during late 
embryonic/larval stages. Innervation of the dorsal midline is a step-wise process, starting 
first at ~32h AEL (G). At 36h or even 40h AEL, dendrite-free areas can still be found 
dorsally (stars in H and I).  
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J) Percentage of abdominal segments for which dendrites meet at the dorsal midline 
supporting the observation that dorsal midline innervation happens continually during 1st 
instar larval stage. K) Schematic view representing the principle of the quantification 
depicted in the graph in L) Measuring the average longest dendrite projecting dorsally for 
each of the time points analyzed revealed that this process happens linearly with the time. 
Lb average dorsal cell body distance. La average dendrite length Scale bar A-I is 25µm. 
B1-I1 is 75 µm. Dorsal is up, anterior is right.  
 

 

 

 

Summary of observations of dendrite field development: 

Between 18h-20h AEL the dendrite field of da neurons was eventually stabilized and its 

size seemed to be determined by the morphologically simplest class of neurons, Class I 

(ddaE and ddaD) (Fig.12A1). At 21h AEL, the dendrite field of an abdominal dorsal 

cluster of da neurons did not differ visibly significantly from that at 20h AEL. There were 

only few fine processes/branches extending in the dorsal direction (Fig.12B arrows).  

Over the following eight hours, the dendrite field size increased slowly in size but did not 

show any significant changes in the overall branching complexity (Fig12C-12F). 

Moreover, the dorsal midline remained dendrite-free until 28h AEL (Fig.12G1). By 28h 

AEL in few larvae dorsal single dendrite processes reached and crossed the dorsal 

midline (Fig.12F and 12G arrows). This was observed in 17.1% (7/41 segments) of the 

abdominal segments of analyzed larvae for this time point. Over the next few hours the 

percentage of abdominal segments showing a covered dendrite dorsal midline increased 

significantly to ~92% (44/48 segments) (Fig.12J). Importantly, dendrite tips of contra 

lateral neurons showed dendritic exclusion, suggesting that at the dorsal midline, 

mechanisms including self-self recognition and hetero-neuronal tiling are initiated and 

functional at this point of development. We observed that each dendrite field had a 

centrally positioned “leading edge”. One or two dendrite branches were always faster 

than the others and extended toward the dorsal midline to meet their contralateral. This 

pattern of development seemed to occur in almost all animals. Between 31h and 40h 

AEL, Drosophila larvae displayed a pattern of dendrite field organization at the dorsal 

midline comparable to a zebra crossing (Fig.12G1, H1 arrows).  
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To estimate, how dendrite growth proceeds throughout larval development we measured 

the length of the longest dendrite extending in a dorsal direction from10 different animals 

(Fig.12K and 12L) As a reference for lateral body growth, the average distance between 

the most dorsally positioned contra-lateral neuronal cell bodies of an abdominal segment 

was measured (Fig.12K, La=distance between dorsally positioned cell bodies within a 

segment; Lb= longest dorsally projecting dendrite process). Although the quantification 

described here has some potential caveats and gives a rough estimate of the growth of 

dendrites only in dorsal direction, it suggests that the average dorsal elongation rate of the 

dendrites (~4.68µm/h) is almost 3.2-fold higher than the average lateral body growth rate 

of the animal (1.45 µm/h) (Fig.12L). 

In summary, the developmental profile of dorsal da neurons suggests that during 

embryogenesis and larval stage, the temporal increase of dendrite length is stereotyped, 

suggesting that dendrite branch elongation and innervation of receptive field area are 

under a molecular control.  

 

 

 

 

 

2.3 Dendrite field developmental analyses of robo, robo2 and slit single mutants and 

robo, robo2 double mutants. 

 

 

To determine whether the Robo2-Robo-Slit system regulates dendrite morphogenesis of 

md-da neurons during embryogenesis and later (during larval stages), we performed 

detailed developmental analysis of the dendrite field formation in slit2, roboGA285, and 

robo28 single null mutants and roboGA285,robo28 double null mutants (Fig.13).  

To visualize the dendrite in these mutants we recombined the Gal4 109(2)80 reporter line 

with each of the above mentioned mutants. Importantly, two independent studies on the 

PNS of Drosophila have previously shown that dorsal da neurons express both, Robo and 

Robo2 proteins, but not Robo3 (Parsons et al., 2003; Zlatic et al., 2003).  
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We began the phenotype analyses at a time point when axogenesis is completed and 

dendritogenesis is initiated between 13h and 14h AEL. One reason for this is that we 

wanted to make sure whether the loss-of-function of any of these proteins has a primary 

effect on dendrite development due to axon misprojections as described for robo28 

mutants. Neither roboGA285, slit2 nor roboGA285, robo28 double mutants exert axon 

guidance defects of dorsal da neurons (Fig.13A-A3, B-B3, C-C3, D-D3, E-E3 and 

Fig.22). Another reason for these early embryonic analyses was because we wanted to 

know whether dendrite outgrowth initiation takes place differently in any of the above 

mentioned mutants as compared to the control. The analyses revealed that embryos 

mutant for robo, slit, robo2 or both robo and robo2 genes did not initiate dendrite 

outgrowth precociously, suggesting that control of dendrite outgrowth is not under the 

Robo receptors (Fig.13 and Fig.22). 

We then looked how the dendrite field develops in mutant embryos, beginning from 18h 

AEL onwards. Between 18h and 20h AEL the dendrite fields of dorsal cluster da neurons 

are eventually stabilized. Dendrite fields in roboGA285, robo28 and slit2 null single mutants 

and roboGA285, robo28 double mutants resembled that of control animals and did not show 

any obvious abnormalities (Fig.13A-A2, B-B2, C-C2, D-D2, and E-E2) as also 

previously reported by Gao et al (Gao et al., 1999).. 
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FIGURE 13. Dendrite fields of robo, slit and robo2 single mutants and robo, robo2 
double mutants show abnormal dendrite projection at late embryonic stages.  
A-A4) confocal images of control (80G2) dorsal abdominal segment. B-B4) dendrite 
field development in robo mutants. Up to 21h AEL md-da dendrites project normally, the 
first defects in dendrite branch length appearing at 21h AEL and onwards. (arrows in B3 
and B4). C-C4 and D-D4) similar defects of dendrite branch elongation defects can be 
observed in slit single and robo,robo2 double mutants (arrows in C3, C4 and D4)  
E-E4) robo2 mutants develop normal dendrite fields at all of the analyzed time points. In 
these mutants, axons of some abdominal segments are misprojected (arrowheads in E, 
E1, and E3).     
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By 21h AEL, 35% of the abdominal segments in slit2 mutants (n=144), 50.9% in 

roboGA285 mutants (n=106) and 46.3% roboGA285, robo28 (n=123) developed few dendrite 

branches which were much longer compared to controls (Fig.13B3 and 13C3 arrows and 

Table2). In wild- type animals, dendrite growth proceeds equally for all abdominal dorsal 

cluster and in only 8.9% (n=17/190) of the abdominal segments, few branches exceeded 

the level of normal extension.  

At 22h AEL this overextension of certain dendrite processes became more pronounced 

and the expressivity in all three type of mutants (roboGA285 and slit2 single and roboGA285, 

robo28 double mutants) increased to ~60% (Table2) 

 

 
Table 2. Dendrite branch elongation defects in slit, robo and robo2 single mutants 
and robo, robo2 double mutants 
Quantitative representation of the phenotype for all genotypes analyzed at 2 different 
time points 21h and 22h AEL    
 
 

In all three mutant types including slit2, roboGA285 single mutants and roboGA285, robo28 

double mutants, dendrites invading the neighboring fields appear to respect their contra-

laterals and did not show an overlap, suggesting that Robo-Slit interaction is not involved 

in hetero-neuronal tiling. 

Despite the loss-of-function mutation in robo or slit genes, these animals die between 23h 

-24h AEL. Because of this, later time point analyses of dendrite field development in 

these mutants were not possible. 

The developmental profile of dendrites in robo28 mutants 21h AEL and 22hAEL did not 

show any phenotype defects and was comparable to those of the control animals, 
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suggesting that this protein, unlike Robo, is not required during dendrite field formation 

of md-da neurons (Fig.13E-13E4).   

In addition to the dendrite overgrowth phenotype, we also observed for all mutants, 

subtle cell migration and clustering defects (data not shown).  

To asses any dose requirement for the robo or slit gene product in dendrites we analyzed 

animals heterozygous for slit2 or roboGA285,robo28  mutants. We could not detect any 

obvious defects and the dendrite field in these animals was normal as compared to 

controls, suggesting that one copy of robo or slit gene can provide a functionally normal 

developmental condition for the dendrites of da neurons.  

To confirm that the observed phenotype in roboGA285 mutants is specific, we expressed 

wild-type robo in the md-da neurons of robo mutant embryos using a UAS-robo 

transgene (Rajagoplan, 2000 Cell) and the 109(2)80 Gal4 driver (Gao 1999). With one 

copy of the UAS-robo transgene we could partially rescue the expressivity of the robo 

mutant overgrowth phenotype from 57.8% (n=77 affected segments out of 134 in total) to 

17.7 % (n=22 affected segments out of 124 in total) (Table 3 and Diagram).  

 

 
Table 3. Graphic representation of the rescue experiment.  
At 22h AEL introducing one copy of UAS-robo transgene results in the reduction of 
abdominal segments showing dendrite projection defects  
 

This partial cell-autonomous rescue, together with the highly similar phenotype obtained 

in robo and slit mutant embryos, suggests that the observed phenotype is due to the 
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mutation in the robo gene. Furthermore, it provides the first indication that the Robo 

protein acts cell-autonomously during dendrite field development of md-da neurons.  

The lack of dendrite overgrowth phenotype in robo2 mutants and the highly similar 

phenotypes in slit2and roboGA285 single mutants and roboGA285, robo28 double mutants 

indicates that Robo is the only receptor for Slit used by the dendrites of md-da neurons.  

 

In summary, the described late embryonic dendrite branch elongation phenotype, 

suggests that Slit acts via the Robo receptor preferentially during late embryonic/early 

larval stages to control elongation of dendrite branches of md-da neurons.  

 

 

 

 

 

2.4. Robo and Robo2 are differentially expressed in the PNS of Drosophila during 

late embryogenesis.  

 

 

Given the late embryonic phenotype in slit2 and roboGA285 mutants we aimed to determine 

the expression pattern of Slit and its receptors at 21h AEL and later.  

The Robo family of proteins has been extensively analyzed in Drosophila and several 

studies have shown detailed expression pattern analysis for all three receptors, Robo, 

Robo2 and Robo3 in the periphery of the embryo (Kidd et al., 1998; Kramer et al., 2001; 

Kraut and Zinn, 2004; Parsons et al., 2003; Qian et al., 2005; Rajagopalan et al., 2000b; 

Zlatic et al., 2003). However, little is known about the expression of Slit and Robo during 

larval stages.   

We used antibodies directed against the Slit, Robo and Robo2 proteins to assess the 

distribution of these proteins during late embryonic and larval stages (Rajagopalan et al., 

2000b). In embryos stained at 21h AEL, we could detect high levels of Robo in the PNS 

of Drosophila, notably in the dorsal cluster of sensory neurons (Fig.14B and B1 circled 

region in 14B1). Robo is enriched at muscle attachment sites (MASs) and in the 
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myocardial cells of the dorsal midline (Fig.14B1 arrows point to MASs). We observed 

striking overlap between the expression patterns of Robo and Slit in the myocardial cells 

of the dorsal midline (data not shown). This was consistent with recent work on 

Drosophila cardiac morphogenesis (Qian et al., 2005). The enrichment of Slit in a row of 

cells at the dorsal midline mirrors the pattern of expression at the ventral midline. This 

staining is completely absent in slit null mutants showing that the anti-Slit antiserum is 

specific (Fig.14A and 14A1, red arrow points to dorsal myocardial cells; and 14A3). Slit, 

similarly to Robo, is expressed in MASs and faint staining of the protein can be detected 

in the muscles. Prior to 3rd instar larval stages, this expression pattern becomes more 

prominent (Fig.14A, 14A2 arrows point to MASs; and 14A4 arrowhead shows high 

localization of Slit in muscle tissue). At late third instar larvae stage Slit and Robo were 

coexpressed by neurons as well. We could detect a positive signal for both proteins in the 

soma and the axons of da neurons and some primary dendritic branches (Fig.14A4 and 

14A5, darts point to Slit positive primary dendrite branches, 14B2 and 14B3 darts point 

to Robo positive dendrite branches).  

We could not detect any Robo3 expression in any type of tissue in the periphery or 

neurons at this or earlier (16h-18h AEL) embryonic stages. This was also consistent with 

previous results (Englund et al., 2002; Zlatic et al., 2003)   

Unlike Robo, Robo2 is expressed in dorsal da cluster of neurons only by stage 13-14th 

(9h-10h AEL). However, by stage 17th (16h-23h AEL), its expression is restricted to the 

chordotonal neurons, trachea and a layer of pericardial cells at the dorsal midline 

(Fig.14C and 14C1 red arrow shows pericardial, Robo2 positive cells, green arrows point 

to Robo2 positive tracheal tube). Interestingly, at early stages of embryogenesis, Robo2 is 

highly enriched in layers of dorsal epithelial cells. These cells form a corridor of Robo2-

free zones, within which are spaced the dorsal da neuronal cell bodies, at this stage also 

Robo2 positive (Fig.14C2 and 14C3 merge). Such a dynamic expression pattern of 

Robo2 is consistent with the requirement for the protein during axon path finding of md-

da neurons.   

In summary, the expression pattern analysis revealed a rather similar but not 

complementary expression patterns for Slit and Robo in the periphery of Drosophila 

throughout development. The presence of Robo in md-da neurons throughout embryonic 
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and larval stages supports the observation that Robo may act cell-autonomously during 

dendrite tree development (see also Results 2.9). Due to the broad expression pattern of 

Slit present in muscles, MASs and neurons, we were unable to conclude how it may 

mediate the specific activation of its receptor Robo, during dendrite field development. 

We anticipate a model in which Slit secreted from either muscles or/and neurons can act 

as a short-range cue during the process of dendrite branch elongation. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14. Expression pattern analyses of Slit, Robo and Robo2 performed on 
embryos and larvae. 
A, A1, A2) Confocal images of embryos (~16h and ~21hAEL) and 1st instar larvae 
stained for Slit. The expression pattern of Slit is quite specific for the ventral midline 
(dashed line along the midline in A and A1). During embryogenesis Slit is also expressed 
in dorsal myocardial cells (red arrow). and in the MASs (white arrows).  
A3) The signal is absent on slit (null) mutant embryos. A4, A5) Slit expression can be 
detected on the soma, axons and dendrites (dart) of dorsal clusters of neurons (green is a 
GFP positive signal due to genetically labeled md-da neurons).   
B, B1) Robo protein can be detected on the MASs (arrows) and dorsal cluster of PNS 
neurons (circled). The protein is highly enriched in the chordotonal neurons (curved 
arrows). B2, B3) Similarly to Slit, Robo protein is expressed in the soma, axons and 
dendrites of md-da neurons also during larval stages. C, C1) antibody staining against 
Robo2 revealed localization of the protein in pericardial cells (red arrow) and in tracheal 
cells (green arrowheads) C2, C3) during early stages of embryogenesis, Robo2 
expression is restricted to layers of epidermal cells that surround the PNS neurons 
(stained in red with anti-futsch AB). At this stage Robo2 is expressed also by PNS 
neurons (circled with white line). The expression of Robo2 in chordotonal cells is 
maintained throughout embryogenesis (curved arrows in C1 and C2).    
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2.5 Overexpression of Robo affects dendrite branch distribution. 

 

 

We wanted to investigate how md-da neurons forced to express additional levels of Robo 

protein would develop their dendrite fields. To test this, we overexpressed Robo in all 

md-da neurons using a UAS-robo transgene (Rajagopalan et al., 2000b) and 80G2, 

including the 109(2)80 Gal4 driver (Gao et al., 1999). Pan-neuronal overexpression of 

Robo in sensory md-da neurons had visible effects on dendrite high order branch 

distribution and length. In many cases we observed extensive short filopodia-like 

processes, formed at the tips of a basal dendrite branch, but only few lateral branches 

formed along its shafts. This effect appeared more typically at 21h and 22h AEL 

(Fig.15B1 and 15B2).   

The lack of any detectable phenotype before 21h AEL upon Robo over expression, just as 

for robo loss-of-function, indicates a role for Robo during late embryonic/early larval 

stages of dendritogenesis, but not at earlier stages of development.  

The conclusion one can draw from this experiment is that Robo protein has maybe 

limiting effect on high order dendrite branch elongation. Given its specific function 

during late embryogenesis/early larval stages suggests that protein function is dispensable 

during the establishment of the basic architecture of a dendrite tree, containing mainly of 

low (primary, secondary, tertiary) order basal branches. In addition, elevated protein 

levels of Robo can affect dendrite branch distribution. Further analyses are required to 

elucidate the mechanism regulating this (see time lapse analyses, Section 2.8).    
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FIGURE 15. Robo overexpression results in ectopic branch formation at the tip of a 
dendrite.  
A, A1, A2) 80G2 control animals at 20h, 21h and 22hAEL. 
B, B1, B2) 80G2 animals in which 2 additional copies of UAS-robo transgene have been 
introduced. The effect of the overexpression of Robo in md-da neurons first appears at 
late embryogenesis, ~21h AEL. In these embryos, dendrite fields show morphological 
alterations, appear less branched, and form ectopic branches at the tip (arrows in B1 and 
B2).   
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2.6. Robo acts cell-class specifically to mediate the dendrite field formation of Class 

IV but not Class I neurons 

 

 

The loss-of-function analyses on roboGA285 mutants in which all md-da dendrites are 

labeled together, limits the possibility to assess the dendrite phenotype at the level of a 

single neuronal cell type. Thus, we asked whether Robo protein function is required in all 

four different classes of neurons. 

Recent in vivo time lapse analysis, using cell-specific Gal4 reporter lines, have shown 

that the different classes of neurons (particularly Class I and Class IV for which there are 

existing genetic markers), within a dorsal cluster, use different strategies for dendritic 

branching, growth and development (Grueber et al., 2003b; Sugimura et al., 2003).  

Class I neurons, the morphologically simplest, achieve their overall complexity by the 

end of embryogenesis (18h-20h AEL). Unlike Class I, Class IV neurons (ddaC), which 

form the most expansive and highly branched arbor, accomplish their final morphological 

complexity by the beginning of third instar larvae (~70h AEL) and use mechanisms such 

as competition, self-self recognition and tiling (Sugimura et al., 2003).  

Thus, given the different strategies and temporal control of dendrite development in the 

distinct classes of md-da neurons we asked how mutations in robo or slit affect the 

dendrite field formation of any in these neurons. In order to analyze this question, we 

used two different reporter lines, each of which allows the selective visualization of Class 

I or Class IV neurons.  

A transgenic line, in which enhanced GFP (eGFP) was fused with the promoter of the 

pickpocket (ppk-eGFP) gene allows the specific labeling of Class IV neurons in the 

whole PNS of Drosophila (Grueber et al., 2003b). We assembled the ppk-eGFP 

chromosome with roboGA285 or slit2 to generate mutants in which only Class IV neurons 

were GFP labeled.  

We performed the phenotype analyses on 22h AEL old roboGA285 or slit2 mutant embryos 

and ppk-eGFP controls and compared how their Class IV dendrite trees develop. 

Analyzing 22h AEL old embryos but not younger ones was preferred also for technical 

reasons: eGFP expressions in the ppk-eGFP line starts at early stage 17th and by 20h 
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AEL GFP levels are not high enough to reliably visualize all branches and fine dendritic 

processes.  

When compared to control ddaC, roboGA285 and slit2 mutant ddaC showed dendritic 

architecture, visibly distinguishable from that of the controls. Neurons of mutant embryos 

displayed defects in both branching number and branch length (Fig.16A, 16B and 16C 

arrows).  

Quantitative analysis revealed that the total number of branches in roboGA285 and slit2 

mutants was highly reduced compared to the control (57.0 ± 15.6 roboGA285;ppk-eGFP 

and 56.3 ± 6.5 in slit2;ppk-eGFP and 84.8 ± 11.4 control, p<0.001 between control and 

robo and p<0.001 between control and slit; n=10 neurons for all 3 genotypes, Fig.16a1). 

Surprisingly, in both mutants the average total dendrite length of ddaC neurons was not 

modified (689.46µm ± 159.97 in roboGA285; ppk-eGFP, 668.04 µm ± 85.1 in slit2; ppk-

eGFP and 688.67µm ± 63.4 in ppk-eGFP; p=0.5 Fig.16a2). Given the lack of significant 

difference in total dendrite length, but significantly reduced total dendrite branch number, 

it would be expected that the ratio between the total dendrite length and total branch 

number was significantly higher in robo and slit mutants compared to those in controls 

(12.39µm/branch ± 1.64 in roboGA285; ppk-eGFP ; 11.88 µm/branch ± 1.00 in slit2;ppk-

eGFP and 8.19µm/branch ± 0.7 in ppk-eGFP; p<0.001 between control and robo and 

p>0.001 between control and slit Fig.16a3). Such quantitative representation suggests 

that the numbers of branches is reduced but branches are longer in both robo and slit 

mutants. 

The overall architecture of the dendrite fields in both mutants and control ddaC neurons 

looked visibly similar. This was mostly determined by number and length of lower order 

branches (such as primary and secondary) and high order branch distribution.   

 

Further, we asked how the morphology of Class I neurons (ddaE and ddaD) would differ 

in control and roboGA285 mutants. To visualize ddaE and ddaD neurons, we used a GAL4- 

GFP reporter line (Grueber et al., 2003b). After 20h AEL, a strong GFP expression under 

the control of a GAL4221-Class I-specific driver allowed detailed visualization of the 

morphology of these neurons. The dendrite morphology of Class I neurons in roboGA285 

mutants was the same as in the controls (data not shown). These analyses suggest that the 
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function of Robo is not required during dendrite field formation of the morphologically 

simplest Class I neurons  

In summary, the quantitative analysis on dendrite morphology of ddaC neurons during 

late embryonic stage of development (22h AEL) is consistent with the phenotype 

observed in roboGA285 and slit2mutant embryos in which a pan-da neuronal Gal4 driven 

marker allows the visualization of the entire arbor of all 6 md-da neurons. In addition, 

these single-cell analyses revealed a requirement for Robo in Class IV neurons which 

indicates a function the Slit/ Robo signaling system in dendrite high order branch 

elongation control. 

 

 

 

 

 

 

2.7. Robo overexpression results in less branched dendritic shafts of Class IV 

neurons.  

 

 

Loss of robo function determines a reduction in the number of branches and an increase 

in average dendrite branch elongation of the morphologically most complex class of 

neurons, ddaC: how would overexpression of Robo affect the dendrite field architecture 

of this neuron?   

Similarly to the previous experiment, we tested the effect of robo overexpression on 

Class IV dendrite morphology. To this aim we expressed UAS-robo in all md-da neurons 

using the 109(2)80 driver line (Gao et al., 1999), but in combination with the ppk-eGFP 

reporter (Grueber et al., 2003b) which allows visualization of only Class IV neurons.  

No significant effect can be detected upon overexpression of robo, using two copies of 

the transgene; in the total dendrite length of ddaC at 22h AEL (721.62µm ± 175.53 for 

G4109(2)80;UAS-robo,ppk-eGFP, n=9 animals and 688.67µm ± 64.41 for ppk-eGFP; 

p=0.6, Fig.16a2). However, overexpression of robo results in a significantly fewer total 
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number of dendrite branches when compared to control animals (84.8 ± 11.1 in control 

and 63.8 ± 9.89 in G4109(2)80;UAS-robo,ppk-eGFP; n=9 neurons; p<0.01; Fig.16D and 

16a1). Furthermore, as suggested by the previous set of experiments (Fig.15), ddaC 

dendrites bear many filopodia-like processes at their tips at 22h AEL but show rather low 

dendrite branch decoration along their shafts (Fig.16D arrowheads). Similarly, as in robo 

mutant Class IV neurons, the ratio between total dendrite length and total number of 

branches results in significantly increased average branch length (8.19µm/branch ± 0.7 in 

control and 11.35µm/branch ± 2.37 in G4109(2)80;UAS-robo,ppk-eGFP; p<0.01; Fig.16a3)  

Interestingly, looking at later time points of development (second instar larvae, ~ 48h 

AEL), when the target area is fully covered with dendrites and ddaC neurons have gained 

significantly in complexity, Class IV neurons overexpressing robo showed significantly 

reduced number of branches (76 ± 20.3 in G4108(2)80;UAS-robo,ppk-eGFP n=5 neurons, 

and 223.2 ± 25.6 in controls, n=5 neurons; Fig.16G and 16b1) and developed dendrite 

tree with a visibly simplified dendrite arbor (Fig.16G). Due to the decreased branch 

number, their total dendrite branch length was also significantly decreased (3355.9 ± 

675.1 in controls and 1253.9 ± 223.98 in G4108(2)80;UAS-robo,ppk-eGFP , p<0.001) 

(Fig.16b2). At this stage the average dendrite branch length, meaning the ratio between 

total dendrite length and number of branches, was comparable to controls (15.03 

µm/branch ±1.75 in control and 16.95µm/branch ±2.71 in G4108(2)80;UAS-robo,ppk-eGFP 

Fig.16b3). Furthermore, neurons overexpressing robo failed to fully cover the appropriate 

target area and in all analyzed larvae we observed dendrite-free zones (Fig.55G 

arrowheads). Interestingly, some of the branches appeared to loop back on themselves, 

this is never observed in the wild-type (Fig.16G, dart). Additionally, overexpression of 

Robo results in the formation of membrane ruffles and lamellipodia-like structures which 

appear to be formed at branching points or at the tip of a branch (Fig.16G1, arrows).  

Taken together, these observations support a model in which elevated levels of Robo 

might be working as a limiting factor for high order branch elongation. Furthermore the 

defects in dendrite branch elongation and their distribution at earlier time points due to 

Robo overexpression are followed by defects only in branch number at later time points 

resulting in a highly simplified dendrite tree.  
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FIGURE16. Dendrite field developmental analyses of Class IV neurons in robo, slit, 
ena mutants and UAS-robo animals. A) Control animals B, C, E) Loss-of-function 
analyses of robo, slit, and ena (see later, Results 2.12) Class IV neurons result in less 
branched dendrite tree (arrows) D) effect of Robo overexpression on Class IV neurons 
results in a less branched dendrite tree and ectopic formation of branches at the tip a basal 
branch (arrowheads) Scale bar for all images 25µm. a1) quantification of the dendrite 
morphology in each of the different genotypes revealed for all (robo, slit and ena) a 
decreased total number of branches. Similarly, overrexpression of Robo results in a 
significantly lower total number of branches. a2) The total dendrite length was similar as 
in control. a3) the ratio between the dendrite length and number of branches suggests that 
the average branch length in all genotypes analyzed is increased.  
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F) Confocal image of a control ppk-eGFP neuron at ~48h AEL. Scale bar 40µm in F) and 
G) and 12 µm in G1) 
G and G1) Overexpression of Robo at later time points ~48h AEL results in highly 
simplified dendrite morphology, branch number is significantly decreased and so is the 
total dendrite length. Some primary branches show a loopback (arrowheads)  
G1) the effect of high levels of Robo results in formation of lamellipoda-like structures 
(arrows). 
b1, b2, b3) Quantitative analyses of dendrite field morphology of Class IV neurons at 
48h AEL revealed that the total number of branches is significantly reduced compared to 
controls and so is the dendrite length. At this stage of development the average branch 
length is not altered.        
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2.8. Time lapse imaging of Class IV neurons overexpressing Robo  

 

Overexpression of Robo does not lead to an increased dendrite branch formation but, 

similar to robo loss-of-function, reduces the dendrite arbor complexity of Class IV 

neurons. Thus Robo alone is not sufficient to promote new branch formation. However, 

the loss- and gain-of-function phenotype analyses suggest a role for the protein in 

restricting dendrite branch elongation and as a result of this, probably in mediating new 

branch formation To explore further the mechanistic requirement for Robo during this 

process, we performed time-lapse recordings by collecting images at 10 min intervals for 

up to 60 minutes. We compared branch dynamics in second instar larvae of Class IV 

neurons of controls and those overexpressing Robo. We chose this developmental stage 

for technical reasons mainly; pressed between a specially designed microscopic sieve 

(thanks to Madhuri Shivalkar, a PhD student in our lab) and a cover slide and mounted 

in halocarbon oil, second instar larvae could be imaged without anesthetizing the animals.  

We observed formation of new branches for both control and robo-overexpressing 

neurons; however the branch formation rate was much higher in controls than in the 

robo-overexpressing Class IV dendrites (Fig.17 and Fig.18). 

 
 
 
 
 
 
 
 
 
FIGURE 17. Time lapse imaging of a fragment of Class IV neuron in both control 
and Robo overexpressing second instar larvae.  
Stable branches are traced in black, newly formed are in red, partially retracting in blue 
and branches that become longer are depicted in green. Blue arrows point to branches 
that have retracted completely. The red arrow points to the formation of a ruffle-like 
structure as a consequence of retracted branches.        
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FIGURE 18. Tracing of the start and end point of time-lapse imaging in control 
(ppk-eGFP) and UAS-robo examples.  
Different colors depict different type of branches; red - newly formed, blue - partially 
retracted, orange – transient, green –elongated. Blue arrows point to branches that have 
been fully retracted. Red arrow depicts the formation of a lamelipodia like/bulb like 
structure upon branch retraction. Quantification of the branch number per 10µm basal 
dendrite branch and minute (y axis) suggests that the number of newly formed branches 
is significantly lower in UAS-robo neurons than in controls. Branches that have 
elongated over time are also significantly less.  
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This observation was supported by counting the number of newly formed branches at the 

end of recordings and normalizing these to a basal dendrite branch length of 10µm and 

per minute (Fig.18). In all the analyzed control examples, the dendrite branch 

morphology became more elaborate at the end of the time-lapse recordings (n=6/6). In 

contrast, the new branch formation rate in Class IV neurons overexpressing robo was 

significantly decreased, additionally, existing dendrite branches showed tendency to 

retract in comparison to controls. These events led to a more simplified dendrite segment 

at the end of the imaging (n=4/6) (Fig.18). We observed the formation of membrane 

lamellipodia-like structure or bulb-like structures at a tip of a branch as a result of full 

retraction of an existing branch(es) (n=4/6) (Fig.17 and Fig.18 red arrow). In another 

example, from an already existing membrane ruffle, a short branch formed but then 

retracted over a period of ~20 min. We observed also some cases (n=2/6) where a 

lamellipodia like structure formed as a consequence of branch tip dilation. Importantly, in 

both control and Class IV neurons overexpressing robo number of transient branches 

(newly formed and retracted) was comparably similar, suggesting that branch dynamic 

stability is not affected upon robo overexpression. The number of fully or partially 

retracting branches was also similar for both genotypes (Fig.18 graph).  

Taken together, the similar dynamics of branch retraction but the significantly lower 

number of newly formed branches in Class IV neurons overexpressing robo suggest that 

elevated Robo levels reverts the process of dendrite elaboration to dendrite arbor 

simplification, due to increased repulsion events. In support of this is the observation that 

in Class IV neurons overexpressing robo there is a significantly lower number of 

branches undergoing elongation; however this process was not completely obstructed and 

while some branches did retract,  at the same time others elongated (n=3/6 and Fig 17). 

.  
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2.9. Robo regulation of dendrite fields of Class IV neurons is cell-autonomous 

 

 

Certainly, an important question is whether the proposed function of Robo during 

dendrite field formation is cell–autonomous. To address this question, we performed 

MARCM (mosaic analysis with a repressible cell marker) (Lee and Luo, 2001). This 

method allows the specific removal of Robo from a single neuron and the analyses of its 

loss-of-function effect in an otherwise heterozygous background. In this assay, abnormal 

dendrite development reflects cell-autonomous function of the protein of interest. 

We recombined roboGA285 and robo28 into the MARCM configuration required for the 

second left and second right chromosomes. Due to the low level of GFP expression at 

earlier time points, with this approach we could visualize the clone neurons with a high 

level of resolution only at the stage of third instar larvae (70h-72h AEL) when the 

development of the neuron is completed and has acquired its final dendrite morphology.  

We mainly focused on the analysis of Class I and Class IV neurons for which the 

functional analysis on roboGA285 mutant embryos revealed a cell-specific role for Robo in 

dendrite morphogenesis. Moreover, the embryonic phenotype of ddaC neurons in 

roboGA285 loss-of-function mutants suggests a requirement for Robo in preventing 

overextension of fine dendrite branches and helping to mediate high order branch 

formation of Class IV but not Class I neurons.  

We obtained clones of each of the two dorsal Class I neurons ddaE and ddaD, and 

roboGA285 or robo28 mutant clones showed normal dendrite morphologies (n=10; 

Fig.19D, 19E and 19F). Quantification of the average total dendrite length and number of 

branches revealed no significant differences from control clones (Fig.19J and 19K).These 

results are consistent with the loss-of function analysis of Class I dorsal da neurons in 

roboGA285 mutant embryos.     

We found that in roboGA285 clones, ddaC developed a dendrite tree with highly decreased 

number of fine branches (n =5; Fig. 19A and 19B). The almost two-fold reduction of high 

order dendrite number (113.6 ± 25.8 in roboGA285 and 255.3 ± 75.5 in controls p<0.005) 

resulted in a two-fold reduction of the overall total length of high order branches 

(3179.14µm ± 396.1 in roboGA285 and 8622µm ± 2170 in controls p<0.001) (Fig.19G and 
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19H). Surprisingly, the overall size of the dendrite field in roboGA285mutant ddaC was 

visibly reduced (Fig.19L). This apparently contradictory finding might be due to the 

significantly reduced number of high order branches, which made the dendrite field 

appear smaller (Fig.19G).  

Compared to controls, dendrites in Class I and Class IV robo2 mutant clones showed 

normal dendrite morphologies (Fig 19C, Fig19F). Quantification of the average total 

length and number of branches revealed no significant differences from control clones 

(Fig.19G, 19H, 19I, 19J and 19K; n=4 for Class IV and n=10 for Class I.). These results 

are consistent with the lack of dendrite phenotype in late embryonic robo28 mutants as 

well as the lack of detectable Robo2 immunoreactivity in these neurons at this stage.  

We found that in robo28 ddaC clones axons showed guidance defects with variable 

severity of the phenotype. Confocal imaging revealed that the misguided axons were 

lying in a different plane from that of the dendrites (Fig.19C arrow). We could not be 

certain of a cell-autonomous requirement for Robo2 in the axons of class I neurons.   

 

In agreement with the partial rescue experiment, and expression pattern analyses, the 

MARCM results suggest that the Robo protein acts cell- autonomously during dendrite 

field development of Class IV neurons. Taken together, the data suggest that Class IV 

neurons, the only neuron able to fill in the receptive field area with dendrites, seems to 

require Robo as a receptor that mediates the regulation of high order dendrite branch 

elongation and new branch formation to efficiently cover a whole abdominal segment. As 

observed in robo gain-of- function experiments, this suggests that defects in high order 

dendrite branch length at earlier stages leads to the generation of highly simplified 

dendrite architecture of the field at the final stage of development.     
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FIGURE 19. Robo acts cell-autonomously in Class IV neurons.  
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A, B, C) Control, robo and robo2 mutant Class IV clones  
robo mutant Class IV neurons develop less high order branches and show highly 
simplified dendrite arbor. robo2 mutant Class IV neuron develops a normal dendrite tree 
but their axons are misprojected (arrow in C).  
G, H and I) Quantitative analyses of dendrite tree morphology of Class IV neurons 
revealed a significant reduction of high order branches in robo mutant Class IV neurons 
and significantly reduced dendrite branch length (H). The ratio between dendrite branch 
length and dendrite numbers revealed similar values (I). 
D, E and F) robo and robo2 Class I clones appear with normal dendrite architecture, 
similar to the Class I controls. 
J and K) Quantitative analyses showed that neither Robo nor Robo2 is required during 
dendrite field development of Class I neurons. 
L) Measurements of dendrite field area of robo and control Class IV clones.  
Scale bars in A, B and C 150µm and D, E and F 75 µm  
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2.10. Differentiation of Class IV neurons 

 

 

We wanted to address how Class IV neurons obtain their complexity and what might the 

developmental requirement of Robo be in dendrite field development of Class IV 

neurons.    

To determine in more detail how Class IV neurons sculpt their denritic arbors we 

performed static-time point analyses by collecting images at 10 different time points. 

This imaging protocol allowed us to assess further whether the pattern of development of 

Class IV neurons at different stages is also a stereotyped process. 

We started our analyses by looking at ~19h AEL old embryos, the earliest time at which 

dendrite processes of Class IV neurons were visible in the ppk-eGFP line. The last time 

point of our imaging was ~80h AEL corresponding to 3rd instar larvae stage and the final 

stage of ddaC dendrite field development (Fig.20).  

During the late embryonic stages, by 19h-20h AEL, ddaC sends out one or two primary 

branches which are oriented dorsally and enriched in filopodia-like processes (Fig.20A). 

Between 20h and 21h AEL few processes initiate their extension and send branches also 

ventrally (Fig.20B and 20C, arrowheads). Between 22h and 24h AEL the neuron visibly 

increased in branching complexity (Fig.20D and 20E), and by later time points also in 

dendrite field size (Fig.20F and 20G). By 40h AEL we could still observe small dendrite-

free zones (Fig.20G, star). The full coverage with dendrites of a dorsal abdominal 

segment was achieved by 48h AEL (Fig.20H), consistently with what we observed when 

all md-da neurons were visualized (Fig.12). Thus appears that during larval stages, the 

dendrite field size of the dorsal cluster of md-da neurons is determined at least in part by 

the dendrite field size of Class IV neurons. In second instar larvae, by 48h AEL, Class IV 

neurons dendrites are almost fully developed (Fig.20H). Between 48h and 66h AEL the 

number of high order branches and the field size increase, accompanied by an increase in 

the total dendrite length (Fig.20K, 20H and 20I). The plot of number of average total 

dendrite branch shows a gradual linear increase over the period of time between 22h AEL 

and ~60h AEL. Such an increase in branch number reflects an increase in total branch 
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length (Fig.20K and 20L). To gain a more quantitative understanding of Class IV 

dendrite growth pattern, we analyzed the number of branches falling within a certain 

length category for each developmental stage (Fig.20M). Interestingly, the number of the 

shortest branches, possibly the newly formed and/or retracting ones, reached its peak by 

the second instar larva, at ~48h AEL. Furthermore, the normalization of the number of 

branches of each length category to the average total number of branches for each 

developmental time point, shows that all the distribution curves fused (Fig.20N), 

suggesting that between 22h and 48h AEL the fraction of branches that falls into a certain 

length category is kept constant. Furthermore, for each time point of development we 

analyzed, the dendrite architecture of Class IV neurons was highly comparable among 

different animals (n=10 animals/time point), suggesting that the morphological dendrite 

development of ddaC neurons employs highly stereotyped mechanisms.  

Taken together, the detailed quantitative and qualitative analyses of Class IV neurons 

presented here, combined with the studies of Sugimura and colleagues, (Sugimura et al., 

2003), suggest that the neuron gains on dendritic complexity by using highly stereotyped 

mechanisms including the iterative addition of new branches which then elongate and 

stabilize to become a substrate for others.  

 

 

 

 

 

 

FIGURE 20. Analyses of dendrite field developmental of Class IV neuron.  
A to J) Confocal images of the different time points analyzed. At late embryonic stages 
~20h-21h AEL dendrite branch growth predominantly follows a dorsal direction 
(arrowheads). Later on (~22h, 24h AEL) the morphological complexity increases as well 
as the dendrite field size  
G). By 40h AEL the receptive field area is not yet fully covered with dendrites (star), this 
is accomplished by 48h (H). 
K) and L) show quantification of the total dendrite length and total dendrite branch 
number for the different time points.  
M) number of branches (depicted on the y axis) falling within a dendrite branch lengths 
(depicted as x axis). 
N) branch curve distribution normalized to the total branch number.       
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2.11. How is mediated the specific activation of Robo via Slit during dendrite field 

development of Class IV neurons? 

 

 

We also wanted to look at how Slit and Robo specifically interact with each other to 

regulate the complex developmental processes of dendrite arborization of Class IV 

neurons. 

slit mutant Class IV neurons, show dendrite morphological defects that quantitatively and 

qualitatively resemble those observed in robo mutant Class IV neurons. Furthermore, 

analogous phenotypes of the two different genotypes were observed in two different 

genetic backgrounds. Importantly, in none of the analyzed animals, including robo loss-

and gain- of function and slit loss-of-function mutants the dendrite phenotype show 

direction-specific defects. In addition both proteins show a quite similar pattern of 

expression during larval stages in neurons and MASs. Only muscles seem to express Slit 

but not Robo. Taken together, this data suggest that Robo receptor is activated via its 

ligand Slit to mediate dendrite field development of Class IV neurons. These 

observations are followed by the question about the source of Slit. 

To address this question experimentally we performed a set of experiments, however 

none of these allowed us to gain a better knowledge about the ligand source and 

distribution. 

 

First, we performed ectopic over expression experiments.  

We generated a fly line in which a UAS-slit (Kidd et al., 1999) construct (a gift f 

G.Bashaw) is recombined together with the ppk-eGFP construct, allowing the separate 

visualization of Class IV neurons when Slit is ectopically overexpressed. We then used 

several Gal4 driver lines to force stronger expression of Slit in either the muscles 

(Gal424B)(Greig and Akam, 1993), or epidermis (Gal469B) (Brand and Perrimon, 1993) or 

md-da neurons (Gal4 109 (2)80). For all of the performed experiments we observed no 

alterations of the dendrite architecture of md-da neurons. Due to some experimental 

limitation, (e.g. only one copy of the Gal4 driver and one of the UAS-slit construct are 

present), perhaps the level of Slit expression was not high enough to induce any visible 
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effect on the dendritic architecture of Class IV neurons. Alternative speculations 

providing some explanations for the lack of effect on dendrite field development upon 

Slit overexpression are discussed in the ”Discussion” chapter. 

 

Expression pattern analyses of Slit revealed a positive signal for the protein in the md-da 

neurons. This suggests a possible short-range signal of Slit, acting either cell- or non-cell-

autonomously in neurons. Additionally, there is also the possibility that the highly 

specific anti-Slit-antibody used in the experiment may also detect Robo-bound Slit 

protein on the neurons.  

To test a possible cell-autonomous requirement for Slit in the md-da neurons we 

performed MARCM experiments. We recombined a null allele slit2 on a FRT42D 

chromosome in order to generate fly stock; FRT42D, slit2/CyO.  

We obtained Class I, Class III and Class IV mutant slit clones, all showing normal 

dendrite morphology comparable to that of control clones. To gain a better view we 

quantified the morphology of Class IV neurons (n=4 neurons). These quantifications 

confirmed the lack of a phenotype in slit mutant clones, arguing against a cell-

autonomous function of the protein in the neurons (Fig.21D and 21E).  

Alternatively, Slit, expressed in the neurons, may acts non-cell-autonomously, secreted 

from one class of neuron, to influence the dendrite growth of the neighboring ones.   

To explore such a possibility the best approach would be a reverse MARCM in which the 

neuron of interest is a wild type while the non-labeled, surrounding tissue is a slit 

homozygous mutant. Unfortunately, a “reverse” MARCM experiment in slit mutant 

animals is not possible because of the lethal embryonic phenotype of the mutation.  

Thus, we took an alternative approach and asked how overexpression of Robo in a single 

type of md-da neuron would influence dendrite field development. We performed a 

conventional MARCM experiment using an elav-Gal4 driver, and UAS-robo transgene 

assembled with the FRT42D chromosome. Class IV overexpressing robo clones showed, 

as similarly observed in the previous experiment, dendrite tree with highly simplified 

dendrite architecture. Differently from what was observed in the previous gain-of-

function experiment, two of the clones (n=2/4) showed a preferential growth of the 
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dendrite arbor in only one direction (Fig.21C). Such results may be indicative, of the 

presence of a Slit signal from neighboring neurons.  

Taken together, it is not yet conclusive how a specific activation of Robo via Slit can 

regulate the process of dendrite field development. Expression pattern analyses together 

with the data obtained from MARCM robo-overexpression experiment suggest that the 

neurons themselves may be one of the potential sources for the ligand Slit in mediating 

the activation of Robo. 

 

 
FIGURE 21. Mosaic overexpression of Robo results in simplified dendrite field 
morphology 
A) control Class IV clone 
B) UAS-robo clone which developed a severely simplified morphology with a side 
directed orientation of the dendrite field (arrows). Overexpression of Robo also causes 
axon guidance defects as shown in b1) of B). 
C and D) Quantification of the dendrite morphology of UAS-robo and slit clones  
Scale bar in A) and B) 150µm 
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2.12. The role of Ena and Dock during dendrite field development.  

 

 

The next question was to determine the signaling events downstream of Slit that mediate 

Robo activation during dendrite field formation.   

Interestingly, in ena mutant embryos, the dendrite field of md-da neurons look relatively 

simplified in their structure (Gao et al., 1999). Further mosaic analyses for the same 

mutant allele of ena revealed that the protein acts cell-autonomously to promote fine 

dendritic process formation of Class IV neurons. Without the proper function for Ena, 

ddaC dendrite tree appeared highly simplified in its arbor, a phenotype resembling those 

of robo mutant ddaC clones (Li et al., 2005).  

To further address a possible role of Ena acting downstream of Robo during dendrite 

field formation of Class IV neurons, we undertook a phenotype analysis and compared 

the difference of dendrite field projection in ena46;ppk-eGFP, robo;ppk-eGFP and 

(control) ppk-eGFP animals in 22h AEL old embryos. We found ena46;ppk-eGFP mutant 

Class IV dendritic arborization defects resembled those of robo ddaC mutant neurons 

(Fig.16E). Quantifications of the morphology of ena mutant Class IV neurons revealed a 

significantly reduced total number of branches (45.8 ± 14.14 ena;ppk-eGFP compared to 

84.8 ± 11.41 for controls; p<0.001, n=10 neurons Fig.16a1). However, similarly to robo 

and slit mutants, the total dendrite length was the same as in the control (599.84µm ± 

168.85 for ena;ppk-eGFP and 688.67µm ± 63.41 for control, Fig.16a2). As a 

consequence, the ratio between the total dendrite length and number of branches is 

significantly increased in ena mutants (14.08 µm/branch ± 5.26 and 8.19 µm/branch ± 

0.74 in control p<0.003, Fig16a3). As reported by Li et al, (Li et al., 2005) at their final 

stage of development ena mutant Class IV clones show defects in dendrite branch 

number only. The striking similarity of dendrite phenotypes between ena and robo 

mutants and the well proven, biochemical and genetic interaction between the two 

proteins suggests that Ena may be acting downstream of Robo during dendrite field 

development.  
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We also addressed the role of the Dock protein during Class IV dendrite field formation. 

A previous study has shown high expression level of the protein in md-da neurons, 

making it a good candidate acting downstream of Robo during dendrite field formation of 

Class IV neurons (Desai et al., 1999). To test this, we performed loss-of-function and 

MARCM analyses.  

dockP13421, 80G2 mutant embryos did not show any defects in their dendrite architecture 

(data not shown). In these mutants however, only zygotic Dock protein is absent, the high 

amount of maternally supplied dock mRNA might be sufficient to define the basic 

architecture of md-da dendrite trees during embryogenesis. We also performed MARCM 

analyses for dockP13421. Presumably, due to the maternal supplement of Dock during 

embryogenesis, subtle defects in arbor complexity at final stages of ddaC development 

would reflect a possible, late requirement for the protein in dendrite patterning. We 

obtained dock mutant clones for Class I and Class IV neurons. Class I neurons mutant for 

dock did develop normal dendrite tree similar to those of the control (data not shown). 

Unlike Class I, Class IV dock mutant clones formed more high order dendrite branches 

with some self-recognition and tiling defects (Fig.22). Such phenotype in dock mutant 

clones, although interesting could not provide further insights about a possible 

downstream interaction between Robo and Dock during dendrite field formation of Class 

IV neurons.  

In summary, the highly similar loss-of-function phenotypes in robo, slit and ena suggest 

a model for the Slit/Robo/Ena signaling system acting to regulate dendrite branch 

elongation. Furthermore, these observations propose that in both the growth cone of an 

axon and the tip of a dendrite branch Robo activation via Slit recruits Ena.  
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FIGURE 22. dock Class IV neurons show more high order branches and subtle 
defects tiling and self –self recognition defects. 
A) control Class IV clone  
B) dock Class IV clone. Scale bar 150µm.  
B-a) magnification of the region squared with red line in B), red arrowheads point to 
branches that cross each other. 
B-b) Colored tracing of the B-a) image. In blue are traced all dendritic processes coming 
from a dorsally positioned Class IV neuron and in red are traced the dendritic processes 
coming from a ventrally positioned Class IV neuron. Processes show an overlap a 
phenomenon that is not observed in the control situation.      
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2.13. Robo2 functions during axon guidance of md-da neurons to specifically down 

regulate Slit-Robo activation.                

 

The presence of an axon guidance phenotype in robo2 but not in robo, slit or robo,robo2 

double mutants of the dorsal da cluster neurons has been reported previously by Parson 

L. et al (Parsons et al., 2003). Their results have suggested a novel, non-cell-autonomous 

mechanism for Robo2 during axon guidance of dorsal sensory neurons. Moreover, they 

proposed that Robo2, expressed in the trachea acts as an attractant for these neurons.  

These conclusions were in partial contradiction with our results, because mosaic analyses 

of robo28 mutant clones, at least for Class IV neurons suggest a cell-autonomous role for 

Robo2 in the axons. Furthermore, overexpression of Robo in dorsal Class IV (and Class 

III) neurons result in similar axon patterning defects to those observed in robo2 mutant 

clones (Fig.21).Taken together all these data suggest that Robo2 function may be 

required to downregulate Slit/Robo activation during the directed axonal growth of dorsal 

multidendritic neurons.  

To test whether Robo2 could have a regulatory role during Slit-mediated Robo activation 

we reduced slit gene dosage in robo2 homozygous mutants. Similarly, axons of md-da 

neurons misprojected as robo28 single null mutants, however the frequency of these path 

finding errors was reduced almost by half (5.29% dorsally misguided and 3.17% 

ventrally misprojecting axons, n=189 segments scored) (Fig.23F and 23I).  
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FIGURE 23. robo2 mutants show severe axon guidance defects.  
A) 80G2 control dorsal cluster of neurons. 
B, C and D) robo, or slit single mutants and robo, robo2 double mutants show normal 
axon projections. Only a few axons are shortly misguided, however these patterning 
defects appear to later be corrected. 
E and F) in robo2 homozygous mutants or robo2-/-,slit-/+ double mutants, axons are 
misprojected. However the expressivity of the phenotype in robo2-/-,slit-/+ mutants is 
lower. 
G) at the time point of dendritogenesis axons misprojected in a straight line dorsally, 
towards the dendrite field.  
H) axon guidance defects often intermingle with the dendrite field projections. 
I) quantification of the expressivity of axon guidance phenotype of all analyzed 
genotypes.  
J) Schematic view representing the types of axonal misprojections. For simplicity the 
phenotypes are grouped into two groups ventrally misprojecting and dorsally 
misprojecting axons.        
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robo28 null mutants axons are misprojected in a variety of directions in some but not all 

abdominal segments of an embryo: quite often dorsally, towards the dorsal midline, but 

also anteriorly and/or posteriorly towards the segmental borders (Fig.22J). Thus, we 

classified the phenotype in robo28 null mutants and robo2-/-,slit-/+ mutants into two 

groups – dorsally misguided axons, which include all axons misprojecting over the level 

of the cell bodies and ventrally misprojecting axons, including those which showed 

abnormal projection under the level of the dorsal cluster of cell bodies (Fig.23J). For both 

phenotypic classes we observed a similar frequency of errors (8.57% dorsally misguided 

and 12.86% ventrally misprojecting axons, n=140 segments scored) (Fig.23I). We 

observed only subtle axon guidance errors in slit2 (n=6 out of 147 segments scored) or 

roboGA285,robo28 (n=5 out of 140 segment scored) double mutants as shown in (Fig.23C 

and 23D) which seemed to be corrected over a short distance.    

We also looked at when the axon guidance defects appear and observed that this happens 

at the time point of axon outgrowth initiation. In the representative example, axons, in 

9h-10h AEL old robo2 mutants (the time point of axon outgrowth) instead of growing 

ventrally, grew directly dorsally (Fig.23G).  

Together, the expression pattern of Robo2 (Fig.14) and MARCM analysis of robo2 

clones and robo-overexpressing clones (Fig.19 and Fig 21) strongly suggest that Robo2 

exerts both cell- and non-cell-autonomous function during axon guidance of dorsal 

cluster da neurons to down regulate activation of Robo via Slit. Without Robo2, dendrite 

field development is often disorganized, as a result of dorsally disoriented axons, which 

tend to innervate the dendrite field (Fig.23H and see Results 2.1).  

The lack of axon guidance errors in either roboGA285 or slit2 mutants suggests that the 

Robo/Slit system does not work as a guidance system for the axons of dorsal md neurons 

but is most probably required for targeting. 

This is the first functional data providing a model in which Robo2 works to down 

regulate Robo activation via Slit. Such a role for Robo2 has been speculated but not yet 

demonstrated  
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3. Discussion 

 

 

 

In this study we investigated the physiological function of Roundabout receptor during 

dendrite field development of Drosophila sensory neurons. Gain-of-function and loss-of-

function analyses of robo strongly suggest a role for Robo working as a sensor and 

allowing a neuron to efficiently innervate a receptive area with dendrites. Robo is 

required for proper dendrite field formation of Class IV neurons during late 

embryogenesis and beyond. The developmental analyses of dendrite tree formation 

suggest that removing completely or adding too much of such sensor Robo, affects the 

homeostatic regulation of dendrite branch extension and new branch formation at earlier 

stages so that at a neuron’s final developmental stage the dendritic architecture emerges 

as highly simplified. Thus, we postulate a permissive, repulsive role for Robo in limiting 

branching elongation of fine, high order processes without affecting the basic dendritic 

skeleton of a neuron. The function for the Robo receptor during dendrite development 

demonstrated here solves some outstanding questions as to how a combination of cell-

intrinsic and –extrinsic factors regulates dendrite field complexity and provides neurons 

with the ability to innervate territories to form functional maps.  

Finally, these data provide a model in which Slit responsiveness of md-da axons via 

Robo might be down regulated by Robo2. That the data demonstrated different rather 

than redundant functions for Robo and Robo2 suggests that Robo2, similarly as Robo3 

(Rig-1) in vertebrates has a regulatory role for Robo responsiveness to Slit (Marillat et 

al., 2004). The data provide also some new hypotheses of how a neuron can actively use 

the same cell-surface ligand-receptor pairs during axonal and dendrite development.   
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Summary of the results 
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n.a…not analysed, LOF…loss-of-function, GOF…gain-of-function, 

LOF (MARCM)…clonal loss-of-function, GOF (MARCM)… clonal gain of-function 
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Dendrite field development proceeds in a stereotyped manner also during larval 

stages.  

 

The descriptive and quantitative analyses of dorsal da dendrite field development 

demonstrate that this is a stereotyped but not a temporally distinct process during larval 

stages. The stereotyped nature of dendrite field formation suggests that growth, 

organization, body wall innervations and termination are all regulated processes. We 

could not ascertain the presence of temporally distinct growth phases of development as 

it has been previously hypothesized by others (Gao et al., 1999Gao et al., 2000; Sugimura 

et al., 2003). This conclusion is based on the quantitative observation of the growth curve 

of dorsal dendrite extension during the different time points we analyzed (Fig.12). 

However, dendrite field development might involve functionally different growth phases 

due to the developmental differences that distinct classes of md-da neurons have. This 

has indeed been demonstrated in the example of Class I and Class IV neuron 

development. While the first acquires its overall morphology by the end of 

embryogenesis the second, Class IV, does so by the beginning of the second instar larvae 

stage (Sugimura et al., 2003) (Fig.20). The assumption that differences in morphology 

reflects possibly distinct biological functions of these neurons raising the question of the 

reason for such a delay of dendrite maturation of one neuron over the other (Grueber et 

al., 2002; Grueber et al., 2007). Several studies have shown that temporal sequence of 

axon development plays an important role during visual and olfactory nervous system 

development (Clandinin and Zipursky, 2000; Lin et al., 1995; Sweeney et al., 2007). For 

example, in Drosophila olfactory antennal receptor neuron (ORN), axons reach first their 

targets and act as a pioneer to guide maxillary pulp axons by using the Sema 1a/Plexin 

ligand/receptor system. In this temporal target restriction model, antennal ORNs, 

although expressing both Sema1a and PlexinA, do not necessarily use these proteins 

during their own path finding but rather to instruct the maxillary pulp ORN axonal 

pathway. Comparing these findings with the observations made in the current study, we 

envision a similar temporal model for dendrite field development of md-da neurons. At 

the time point in which Class IV neurons have just initiated their primary dendritic 

branch growth, Class I neurons have already acquired their overall complexity (Sugimura 
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et al., 2003). Interestingly, secondary and tertiary dendritic branches of Class IV neurons 

converge with second order dendritic branches of Class I neurons (my observation). 

Additionally, selective overexpression of Robo protein in Class IV neurons resulted in a 

side-directional dendritic arbor growth, a phenotype inconsistent with when Robo was 

simultaneously overexpressed in all six md-da neurons (compare Fig.15 and Fig.21). 

Finally, both Slit and Robo are expressed in all six md-da neurons (Fig.14). However as 

similarly described for ORN neurons, their function seems to be cell-autonomously 

required in Class IV but not in Class I neurons (Fig.19). These observations provide few 

indications that temporal control of dendrite field development could similarly, as for 

axon, play an important role during nervous system development. Exploring such 

hierarchical interactions could prove to be an important and critical step of dendrite field 

development. 

  

Several hours after hatching, although possessing innate behavioral properties, such as 

crawling towards a food source, possessing rhythmic movements and breathing, the 

Drosophila larval body wall is not yet fully covered with dendrites (Fig.12 and Fig.20) 

(Song et al., 2007; Suster et al., 2004). In fact, the epidermal body wall of Drosophila 

larvae is fully covered with dendrites only by the beginning of the second instar larval 

stage and this is mediated via the morphologically most complex, field filling neuron, 

Class IV (Fig.20). Few studies have shown that multidendritic arborization neurons are a 

part of the sensory system which provides the animal with information about 

temperature, odors, touch, sounds, light, or electrical field and thus can be of significant 

importance for survival (Lee et al., 2005; Liu et al., 2003; Tracey et al., 2003). Peripheral 

sensory input is required during the Drosophila larvae locomotion and lack of sensory 

inputs, including those of md-da neurons leads to a cessation of larval crawling (Song et 

al., 2007). Why such an important system shows such a delay in its development remains 

an unanswered question.   

 

We observed a highly stereotyped pattern of development for Class IV neuron, the 

observation is supported by quantitative analyses on the morphology of Class IV dendrite 

trees at different time points analyzed (Fig.20). Importantly, fractions of dendrite 
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branches within a length category are kept constant during a neuron’s development. 

Although new branch formation is gradually increasing, consistent with the idea for the 

presence of a well coordinated mechanism of dendrite field establishment that involves 

the balance of new branch formation, their precise elongation/retraction and stabilization.       

 

 

Robo acts cell-class specifically and cell-autonomously to establish the dendrite 

arbor complexity of Class IV but not Class I neurons.      

 

We observed that Robo protein is required to shape the dendritic arbor of the field-filling 

Class IV neurons and does not play a role in the establishment of Class I dendritic 

architecture; by using cell-class specific genetic markers we could ascertain that both 

Robo and Slit act during dendrite field formation of Class IV but not Class I neurons. 

Consistent with this idea are the mosaic analyses of robo Class I and Class IV neurons - 

while the first type of neurons were able to develop a normal dendrite tree despite the 

lack of functional Robo, in the second, Class IV neurons, the dendritic architecture 

appeared highly simplified, with significantly reduced high order dendritic branches 

(Fig.19).  

Given the temporally distinct modes and strategies of development these two types of 

md-da neurons have, this provides a plausible explanation for the preferential 

requirement of Robo and its ligand Slit during late embryonic/early larval stage to 

promote dendrite arborization of the much later developing Class IV neurons (Fig.12 and 

Fig.16) (Grueber et al., 2003b; Sugimura et al., 2003). While Class I neurons, the 

morphologically simplest, have established their overall complexity by late 

embryogenesis (20h-22h AEL), by this stage, Class IV neuron has developed only low 

order branches and possess a visibly simple dendritic arbor (Sugimura et al., 2003). Both 

loss-of-function and gain-of-function analyses at two different time points of Class IV 

dendrite field development revealed two different phenotypes which share certain 

similarities, including reduced number of high order branches and simplified dendrite 

morphology. While at earlier stages of Class IV dendrite field development the removal 

or addition of Robo resulted in defects of dendrite branch length and number, at later 
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stages such alteration of Robo function only affected branch number. Hence, it is possible 

that Robo protein can act at during different time points of dendrite field development to 

control diverse steps of the dendrite architecture via separate pathways. Alternatively, the 

defects observed at the final stage of development of Class IV dendrite arbor may be a 

consequence of the early embryonic defects caused by removal or addition of too much 

of the protein.  

Recent in vivo time lapse analysis with cell-specific Gal4 lines has provided information 

about the development of Class IV neurons for only 3 time points, namely ~24h, ~40h 

and ~65h AEL; and leaves the question as to how this neuron accomplish its arbor 

complexity still unanswered (Grueber et al., 2003b; Sugimura et al., 2003). It could first 

send several dendrite processes which increase in length and thus occupy certain 

territories, which are later filled with branches. Alternatively, the neuron may gradually 

increase in arbor complexity by iterative branch addition, stabilization and elongation. 

We performed detail developmental analyses of the Class IV neuron in order to provide 

some further insights into the function of Robo. Static time-point analysis on Class IV 

neuron for 10 different time points supports the hypothesis that the dendrite complexity 

of those neurons is achieved gradually, through well regulated steps of new branch 

formation and dendrite branch elongation (Fig.20). Such mechanisms of development led 

us to suggest that alterations in Robo function at early stages of dendrite field 

development would reflect defects in dendritogenes also at later stages.  

Furthermore, we observed that the Robo/Slit signaling system is not necessary for the 

establishment of the basic architecture of Class IV neurons but is required to regulate 

dendrite branch elongation and formation of high order processes (Fig.19). In addition, 

detailed phenotype analysis, beginning from the time point when dendritogenesis is 

initiated, suggests that Slit and Robo are not required during dendrite growth initiation 

(Fig.13 and Fig.23). Such a function has been observed for the Drosophila protocadherin 

Flamigo (Fmi) and the transcription factor sequoia (Brenman et al., 2001; Gao et al., 

2000).   

 

Several lines of evidence strongly suggest that dendrite innervation defects in robo 

mutants (Fig.16 and Fig.19) are a primary cause of loss of Robo function and are not due 
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to some other developmental defects such as cell clustering, cell migration or mild 

muscle patterning defects resulting upon robo loss-of-function (Kramer et al., 2001). If 

muscle patterning defects are the primary cause, such a dendrite phenotype would appear 

earlier during embryogenesis and would not be restricted to only a specific class of 

neurons (Gao et al., 1999). Furthermore, robo2 mutants, similar to robo mutants, show 

similar cell-clustering and cell-migration defects; however in these mutants dendrite field 

development is not affected.  

Certainly, a primary function of Robo in regulating fine branch formation during dendrite 

field development of Class IV neurons is firmly established by three key findings; 

MARCM and rescue experiment together with the expression of Robo in md-da neurons 

provide strong support that dendrite field developmental defects caused by robo are upon 

its direct and specific role in regulating high order branch elongation and their formation. 

In addition, transgenic expression of Robo in md-da neurons only partially restored the 

normal projection of dendrite fields; however one caution is needed in interpreting these 

results. Transgenic rescue experiments, by their nature do not necessarily tell us how the 

endogenous Robo protein operates and often have some crucial caveats. For example, the 

level and timing of transgenic Robo protein could conceivably be influenced by the Gal4 

amplification system.  

 

 

Robo is required for the filling in response during dendrite development of the 

neuron  

 

We propose a model for which the function of the Robo/Slit signaling system is a part of 

the molecular mechanism required to promote a stop or inhibitory signal in high order 

dendrite branch elongation. While at later stages of dendrite field development, dendro-

dendritic contact-mediated inhibitory mechanisms (such as tiling and self-self recognition 

mechanisms) may act to limit the size and the shape of the dendrite field of Class IV 

neurons (Grueber et al., 2002; Grueber et al., 2003b), it is highly anticipated that during 

early larval stages such control is molecularly mediated (Emoto et al., 2006; Gao et al., 

2000).  
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We suggest a molecularly mediated homeostatic regulation of dendrite branch number 

and length of a dendrite field during early stages. In support of this is the observation that 

a loss-of-function mutation in robo, slit or ena genes did not alter the total dendrite length 

of Class IV neurons at ~ 22h AEL (Fig.16). Presumably, loss-of-function of any of these 

proteins, including Slit, Robo and Ena does not affect the ability of a neuron to compete 

for a territorial space. We speculate that an inhibitory signal for high order dendrite 

branch elongation during dendrite development is what ensures the uniform and efficient 

innervation with fine dendrite processes of an area of the Drosophila epidermal body 

wall and that regulatory mechanisms, such as the filling-in response and competition are 

linked together, however are molecularly separable. Lack of Robo or Slit function did not 

change the ability of homologous dendritic branches to recognize each other and tile 

properly. Defects in territory size due to lack of dendritic avoidance have been reported 

for other molecules such as Flamingo, Furry (Fry) and Tricornered (Trc) (Emoto et al., 

2004; Gao et al., 2000). Interestingly, alterations of the function of any of these proteins, 

as similarly observed for Robo or Slit proteins, do not affect the dendritic branching 

pattern in a global way; instead Flamingo is required to limit the extension of dorsally 

extending dendrite processes and thus regulates tiling, while Fry and Trc mediate tiling 

by controlling terminal branch numbers. These studies together with the data obtained in 

our analyses suggest that the onset of competition, dendrite territory size specification, 

filling-in responses, tiling and cell-cell avoidance mechanisms can be differentially 

modulated due to distinct molecular systems used by the neuron to control this processes.  

 

In our current model, we propose a function for Robo in mediating the filling-in response 

of Class IV neurons. There are a few reasons why we think this might be the case- the 

overall dendrite architecture of robo mutant Class IV neurons is not affected and primary 

and secondary branches show the same number and length supporting the observation 

that Robo has no effect on establishing the overall dendrite architecture. Furthermore, the 

regulation of dendrite outgrowth, involving the formation of low (primary, secondary, 

tertiary) branch order seems to be under a molecular control distinct to that of the 

Robo/Slit receptor–ligand system (Fig.12 and Fig.23)   
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An indirect but supportive observation is the lack of a role for Robo in dendrite field 

development of Class I neurons, although this neuron expresses the protein (Fig.14). 

Until now, all of the effort aimed to identifying factors that regulate dendrite patterning 

of Class I neurons have found molecules involved in cytoskeleton regulation or 

transcription factors (Grueber and Jan, 2004; Li et al., 2004; Parrish et al., 2006; 

Sugimura et al., 2003). This, the relatively simple dendrite morphology of Class I 

neurons, and the fact that they are able to cover only a small fragment of the dorsal 

abdominal segment favors the idea that removing a sensor for filling-in response such as 

Robo would not change the dendrite architecture of Class I neurons.  

It appears that at late embryonic stages of Class IV dendrite field development, removing 

Robo function results in a disturbance of the balance between branch elongation and new 

branch formation. At this point it is difficult to determine whether restricting branch 

elongation is instructive for new branch formation, but it is an attractive speculation. 

Further support for this idea comes from the time-lapse imaging gain-of-function 

analyses (Fig.17 and Fig.18). It is the repulsive activity of Robo which seems to affect 

dendrite branch elongation and block new branch formation, resulting in more simplified 

dendrite morphology. In support of this is also our observation that at ~22h AEL, 

overexpression of Robo results in ectopically formed filopodia-like structures at the tip of 

a dendrite shaft, also later, at ~48h AEL, we observed formation of membrane ruffle-like 

structures, which have been proposed to be the precursor of a filopodia (Fig.16). Thus, 

Class IV neurons overexpressing Robo have not lost their capacity to form branches.  

An anticipated model is that Robo, in its classical function as a transducer of repulsion, 

limits the elongation of high order dendritic branches and thus enables the formation of 

new ones. Once the receptive field area is covered with dendrites and each cell has 

invaded and specified its territories, in addition to the molecular mechanisms that restrict 

the growth and determine the field size, cellular mechanism also come into play (Grueber 

et al., 2003b). 

 

 

 

Robo plays a permissive role in dendrite branch formation and elongation.  
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Neurons need to be able to determine when and where to make branches. A single 

extrinsic factor can help sculpt different branch morphologies via distinct actions. For 

example, in an instructive model, Robo may mediate signals that directly target new 

branch formation; in a permissive model, Robo activation would result in activation of 

other signals that allow the dendrite tree to shape its architecture. The gain-of-function 

analyses support a model in which Robo plays a permissive role during dendrite field 

development. Elevated levels of Robo did not result in increased dendrite branch 

formation, reflecting a scenario in which Robo protein levels are a crucial factor for 

activating signaling events directly involved in dendrite growth and branching (Fig.15, 

Fig.16 and Fig.21). Importantly, a recent study from the laboratory of J. Brenman with 

the example of CaMKII and its role in dendrite plasticity provides convincing data 

elucidating the distinction between cytoskeleton regulation and morphological regulation 

(Andersen et al., 2005). Their work suggests that morphological stability and cytoskeletal 

stability are differentially regulated processes and explains how a neuron can adapt its 

function to environmental changes. Such mechanisms that distinctly regulate 

morphological plasticity and cytoskeletal dynamics can be crucially important during 

synapse formation and neurite outgrowth. What is the biological significance of Robo 

during dendrite field development? It is attractive to think that Robo may play a role in 

regulating morphological plasticity but not cytoskeletal stability during dendrite field 

development to affect synapse formation. Previous studies have shown that the processes 

of arborization and synaptogenesis are ultimately connected (Niell et al., 2004; Sanchez 

et al., 2006). And a recent in vivo time lapse imaging study on zebrafish RGC arbor 

formation provides compelling evidence that the Slit-Robo ligand–receptor system can, 

in contrast to its positive role on DRGs axon arborization, inhibit axon arborization and 

regulate synaptogenesis (Campbell et al., 2007). The lack of presynaptic partners for 

dorsal da neurons is a drawback of the system, but does not exclusively preclude similar 

requirements for Robo. Changing the anatomy of the neuron by affecting its fine branch 

formation could in principle reflect an indirect but important role for Robo in 

synaptogenesis. Thus, the cell-class specific effect of Robo on fine dendrite branch 

formation indirectly, but importantly, affects the functional specificity of this neuron. 
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Robo acts in its classical role as a receptor for the repulsive cue Slit to limit dendrite 

branch elongation  

 

New branch formation, stabilization, elongation and/or retraction are all processes 

involving the activation of regulators of actin and microtubule dynamics. Dendrite shafts 

are composed of microtubules, while dendrite fine processes are built of extremely 

dynamic actin networks. During dendrite outgrowth and arborization the actin and 

microtubule composed cytoskeleton must be continuously regulated. Fine dendritic 

branches arise as filopodia like structures which subsequently have to extend and/or 

retract, and/or stabilize. Loss-of-function analyses of robo or slit mutant Class IV neurons 

revealed that these proteins affect the elongation of fine processes. Given the classical, 

most well understood function for Slit in mediating axon repulsion at the midline of 

invertebrates and vertebrates, it is likely that such dendrite elongation defects are due to 

the lack of a repulsive function for Slit mediated via its receptor Robo. Similarly, in vivo 

time-lapse imaging of robo mutant Drosophila motor neuronal growth cones form longer 

filopodia due to the lack of a repulsive mechanism mediated via Robo (Murray and 

Whitington, 1999).    

 

Genetic analyses of factors involved in axon guidance identified Ena and Abl as key 

signaling components of Robo mediated repulsion in the CNS of  Drosophila (Bashaw et 

al., 2000). Abl can interact with Ena, the cyclase-associated protein (Capulet), and the 

microtubule plus-end tracking protein Orbit/MAST/CLASP und thus induce some effects 

on actin and microtubule assembly thought to lead in both cases to repulsion at the 

growth cone of an axon (Bashaw et al., 2000; Wills et al., 2002Lee et al., 2004). Genetic 

loss-of-function and gain-of-function experiments for Robo result in a similar effect on 

the dendrite field architecture of Class IV neurons, causing a highly simplified dendritic 

arbor of the neuron (Fig.16, Fig.21). Such an unexpected, corresponding outcome of 

increasing or decreasing Robo function suggests that activation of downstream signaling 

 
 

102



D i s c u s s i o n 

pathways leads to similar rather than opposite cytoskeleton rearrangements. Indeed, as 

we observed in this study for Robo, it has previously been shown that increasing or 

decreasing Abl function during axon guidance at the Drosophila midline leads to the 

same phenotypic defects (Bashaw et al., 2000).  

Interestingly, both Ena and Abl have been analyzed and the loss-of-function of any of 

these proteins affects md-da dendrite field development (Gao et al., 1999; Li et al., 2005). 

ena mutant Class IV neurons show a strikingly similar phenotype to those of robo at both 

embryonic and final stages of dendrite arborization (Fig.16) (Li et al., 2005). However, 

unlike Robo, Ena is required in all four types of md-da neurons. Such a general 

requirement for a protein known to act downstream of many other receptor proteins and 

induce remodeling of the actin cytoskeleton is not surprising (Dwivedy et al., 2007; Gitai 

et al., 2003). Ena/VASP proteins are a conserved family of actin regulatory proteins 

known to localize at the distal tip of a growth cone filopodia and have been implicated in 

regulating actin dynamics (Korey and Van Vactor, 2000; Rottner et al., 1999). Known to 

act as a factor promoting filopdia formation, the reduced branch number in both ena and 

robo mutants favors a model in which the ability of neurons to form new filopodia is 

indeed partially intact. Filopodia are considered to serve as sensory or exploratory 

structures dictating the response of a growth cone to its environment (Faix and Rottner, 

2006). Given the postulated role for Robo as a sensor that enables the ddaC neurons with 

the ability to fill-in a receptive field area with dendrites, it is a tempting scenario that 

filopodia-like structures, formed as precursors for dendrite branches, are able to code a 

signal mediated through Robo and thus decide whether or not to extend and/or stabilize. 

Similarly, overexpression of Robo might strongly impair the Ena mediated effect because 

bound to Robo, Ena cannot mediate its proposed function on filopodia growth and 

elongation (Bashaw et al., 2000). Consistent with this idea are also previous observations 

made in studies using growth cones with impaired Ena/VASP protein function. These 

failed to form filopodia but frequently developed large lamellipodia like structures, 

thought to be the precursors for filopodia (Faix and Rottner, 2006; Lebrand et al., 2004). 

Although it is not yet clear whether lamellipodia-like membrane ruffles are the structures 

from which filopodia arise or if they form independently, it is an appealing hypothesis 

that membrane ruffle formation, induced upon robo overexpression might be the outcome 
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of an impairment of filopodia formation due to reduced activity of Ena when bound to 

Robo.  

 

In addition, a study by Fan et al has shown that Dock the Drosophila homologue of Nck, 

together with Pak and Rac are essential components of Robo-mediated signaling 

pathways (Fan et al., 2003). Whether this protein complex acts downstream of Robo 

during dendrite maturation remains an open question and requires further investigations. 

Few lines of evidence suggest that in dendrites, the Slit-Robo-Dock-Pak protein complex 

may be another active but limiting pathway for dendrite branch formation. 

Overexpression of Robo in Class IV neurons results in lamellipodia-like structures, 

known to be a hallmark of Rac activation. A study by Yong and Bashaw has recently 

reported the formation of membrane ruffles-like structures in cells transfected with 

human Robo receptor and stimulated with Slit (Yang and Bashaw, 2006). Thus, the high 

expression pattern of Dock protein in md-da neurons and the cell-autonomous and cell-

class specific but opposite effect to robo of dock loss-of-function on high order dendrite 

branch formation of Class IV neurons (Fig.22) suggest a model in which the activation of 

this molecular pathway, namely Sli-Robo-Dock and the resulting cytoskeleton 

rearrangement events might be acting as a limiting process during new dendrite branch 

formation. In support of this hypothesis comes the recent report by Hughes et al. showing 

that the dominant active form of Pak in Class I neurons is strongly increased in tertiary 

branches (Hughes et al., 2007).   

 

 

 

 

 

How the specific activation of Robo via Slit might regulate dendrite field 

development.  

  

Loss-of-function analyses of slit and robo single and robo, robo2 double mutant embryos 

in two different genetic backgrounds (80G2 and ppk-eGFP; Fig.12 and Fig.16) suggest 
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that Robo activation is mediated via Slit. In addition to this, MARCM of robo2 mutant 

clones preclude a possible function for Robo2 receptor in dendritogenesis.  

The expression pattern analyses, ectopic expression analyses, as well as MARCM 

analyses for slit did not provide any conclusive indications about the specific activation 

of Robo via Slit during dendrite field development. 

Interestingly Slit protein is localized, as with Robo receptor, to the neurons themselves. 

In addition to this during larval stages, Slit appears to be localized to all muscles, 

suggesting that dendrite growth proceeds on a Slit positive terrain (Fig.14).  

The lack of any effect on dendrite field formation upon ectopic overexpression of slit 

could alternatively be explained by the fact that the UAS-slit construct lacks regulatory 

sequences, such as 3’ and 5’ ends which seem to be crucial for mRNA stability, and/or 

translational efficacy (Mendell and Dietz, 2001). Finally, little is known about Slit 

protein regulation. Increasing gene dosage is the easiest but not always most promising 

way to generate a gain-of–function scenario for the protein. Thus, introducing another 

copy of the slit gene did not allow us to conclude how Slit may mediate its specific 

activation during dendrite field development of Class IV neurons.  

Biochemical experiments have shown that Slit exists in a least three isoforms; a full 

length, a N-terminal and a C-terminal fragments produced by proteolytic cleavage of the 

full length version (Brose et al., 1999). Vertebrate Slit proteins were shown to be capable 

of repelling axonal explants (Brose et al., 1999). This function is mediated via the C-

terminal portion of the protein. Interestingly, Wang et al. demonstrated, using cultures of 

DRG neurons, that the N-terminal portion of the protein can have an opposite effect and 

promote branching (Wang et al., 1999). Such an effect of Slit is antagonistically silenced 

by the full length Slit protein. Thus, it is thought that the processing of Slit into C- and N-

terminal fragments is what accounts for its diverse biological function. In fact, similar 

observations have been made in the Eph/ephrin receptor–ligand system. Their 

bifunctionality in mediating both positive (i.e. attractive) or negative (i.e. repulsive) 

effects on cell-cell interactions can be mediated by receptor mediated endocytosis and or 

a cleavage (reviewed in Egea and Klein, 2007). Whether Slit undergoes cleavage and 

thus exerts its specific effect on dendrite branch length and number via Robo, remains an 

open but quite interesting matter for investigation. Cleavage mediated activation of Slit 
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provides an acceptable explanation why the ectopic expression of an additional slit gene 

copy does not exert any effect on dendrite branch morphology. Overexpressing a UAS-

slit construct might require the co-overexpression of its protease in order to generate a 

real gain-of-function scenario.  

One interesting, and at present speculative, possibility is that the regulation of Robo 

protein levels is a crucial factor for specificity during dendrite field development. 

Although one of the most extensively studied systems during nervous system 

development, little is known about Robo protein level regulation (Dickson and Gilestro, 

2006). In the Drosophila CNS, the Commissureless (Comm) protein appears to 

specifically downregulate Robo during midline crossing of commisureless axons. 

However, there is no functional data demonstrating a similar role for Comm protein in 

the PNS of Drosophila, and it seems that the protein is even not express in this area 

(Keleman et al., 2005; Tear et al., 1996). Thus, Robo protein level regulation and specific 

activation during dendrite field development favors a model in which Slit itself might 

provide some regulatory role for Robo levels. Surprisingly, this model seems to gain on 

preference also during commissural axon pathfinding (Dickson and Gilestro, 2006). How 

can such model provide an explanation for the observed effect of Robo on dendrite field 

development? A plausible explanation is that the differential sensitivity of dendrite 

elongation and/or retraction, new branch formation, and stabilization of high order 

branches would require different Robo protein levels. One possible scenario is that newly 

formed branches have low levels of Robo or none at all and thus can grow on a Slit 

positive terrain. An increase in Robo protein levels would result in an increased 

sensitivity, slow down the growth and thus promote stabilization of the dendrite branch. 

Such a scenario is supported by the gain-of-function experiment and the time-lapse 

analyses (Fig.15 and Fig.17 and Fig.18). The increased sensitivity of a dendrite branch 

having high levels of Robo, fails to extend or even form. Thus the highly repulsive 

environment generated by introducing additional robo copies works as an obstruction for 

elongation and new branch formation and assists the hypothesis that Robo protein levels 

might be the key to Slit mediated specific regulation during dendrite field formation.     
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A final possibility is based on the speculation that Robo and Slit, may similarly, as 

recently shown for Eph A3 and ephrin A5, undergo possible interactions in cis and in 

trans to respectively inactivate or activate each other during dendrite field formation 

(Carvalho et al., 2006; Egea and Klein, 2007).  

 

 

Robo and Robo2 function differently in axons and dendrites  

 

A crucial question that arises from our analyses is how a protein, which plays a 

fundamental role during axon guidance and patterning, could distinguish its function on 

dendrite growth and branching. The answer to this question may come from our 

phenotype analyses on axon projection of dorsal da neurons.  

robo2 mutants, but not robo, slit or robo,robo2 double mutants show severe axon 

pathfinding defects, suggesting a role for Robo2 in negatively regulating Slit-Robo 

activation during axon guidance (Fig.12 and Fig.23). Axons expressing Robo can, in the 

absence of Robo2 but presence of Slit, change their growth directions dramatically and 

even often intermingle with the future dendrite field (Fig.23). To ascertain the regulatory 

role for Robo2 during axon guidance we generated and tested double mutants 

homozygous for robo2 and heterozygous for slit. As expected, removing Robo2 

completely and reducing Slit levels generated a condition in which Robo activation is still 

possible, supporting the idea that Robo2 acts to downregulate Slit mediated activation of 

Robo and allows axons to reach their targets (Fig.23). In addition, overexpression of 

Robo with a pan neuronal marker, such as elav–Gal4, results in axon guidance patterning 

defects. In such a scenario, increased levels of Robo protein generated conditions, similar 

to those when Slit protein, was reduced on a robo2 null background. Taken together, 

expression pattern and phenotype analyses suggest a requirement for Robo2 during 

axogenesis but not dendritogenesis. These observations provide us with an indirect but 

helpful explanation of how a neuron uses one and the same protein to regulate the 

development of its functionally and morphologically distinct processes - axons and 

dendrites. Furthermore, it suggests that although axons and dendrites develop in a 

different chronological order, a molecular control is required to keep these processes 
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growing away from each other. Otherwise, axons would show a high tendency of 

growing within their own dendrite field or a neighboring one. In this scenario the 

establishment of a neuronal network within an organism is highly disrupted. It would be 

interesting to follow how such a disrupted pattern of connectivity affects the behavioral 

response of the Drosophila larvae. Since in robo2 mutants often only some md-da 

neurons from only a few abdominal segments show severe axon guidance defects of md-

da neurons, these mutants offer a great model to explore and address questions about the 

circuits that underlie such control.            

The lack of an axon guidance phenotype in robo mutants, suggests that in dorsal da 

neurons this protein is required for targeting only (Parsons et al., 2003; Zlatic et al., 

2003). Interestingly, analyses on bipolar neurons, a type of dorsal da neuron, in slit 

mutants have shown that axons of this neuron fail to branch and continue to grow across 

the midline. These observations suggest that Robo protein involved in neuronal branching 

appears to function similarly in axons and dendrites of dorsal da neurons. Thus, the 

requirement of Robo(s) proteins in both dendrites and axons might be an economical 

strategy of the neuron to keep available a protein whenever and wherever it is needed.  

 

 

 

 

 

 

Our results are consistent with a model for Robo/Slit signaling in which these proteins are 

a part of the molecular mechanism involved in keeping the balance between new dendrite 

branch formation, elongation, and stabilization; thus sculpting the dendritic architecture 

of Class IV neurons (Fig.24).   
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FIGURE 24 A model for dendrite branch formation with a possible requirement for 
the Robo/Slit/Ena signaling system 
 
Formation of branches involves the well coordinated balance between new branch 
formation in the form of filopodia that either elongate or retract. Growing filopodia need 
to stabilize and become a substrate for new branch formation. Lack or overexpression of 
Robo disturbs the balanced mechanisms of branch elongation, new branch formation and 
stabilization. A complete Robo loss-of-function results in the formation of longer and 
fewer high order branches, due to the lack of an inhibitory signal that mediates the levels 
of extension, while adding too much of the receptor induces more repulsion. The model 
suggests that the precise balance between dendrite branch elongation, stabilization and 
new branch formation is under a complex molecular control a part of which is the 
Robo/Slit receptor- ligand system.   
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FIGURE 25. Schematic representation of the Robo2-Robo-Slit functions during 
axon and dendrite field development  
Robo2-expressed in sensory neurons and in a layer of epithelial cells (depicted as blue 
pentamers), at the time of axogenesis, is probably required to downregulate the activation 
of Robo via Slit. Loss-of Robo2 function results in severe guidance defects.  
During late embryonic/early larval stages Class IV neurons gain in complexity by highly 
stereotyped mechanisms that promote the regulation of high order dendrite branch 
number and their level of elongation. This homeostatic regulation of branch length and 
new branch formation seems to require the activation of Robo via Slit. Robo is not 
required during the establishment of the basic dendrite architecture of Class IV neuron, 
but mediates the formation of high order branches by acting as a growth inhibitory signal 
for the fine dendritic processes and enabling the neuron to fully cover its receptive field 
with branches. Removing Robo function (LOF) or adding too much of the protein (GOF) 
disturbs the pattern of dendritic branch elongation and new branch formation at late 
embryonic/early larval stages (~22h AEL). At the final stage (~80h AEL) of dendritic 
arborization, the ddaC neuron looks highly simplified in its dendritic architecture.  
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Concluding remarks  

 

The Robo family is a highly conserved group of proteins across species and is essential 

and required during nervous system development. However its specific function during 

dendritogenesis is poorly understood, but as it is obvious from our analyses, is important 

for establishing a functional nervous system because of its role during axon path finding. 

Of significant importance for our understanding as to how dendrite architecture is finely 

shaped, would be to find out how Slit and Robo interact in space and time to orchestrate 

such a dynamic process as dendrite field development. Recent advances in dendrite 

development have revealed that Golgi outposts possess crucial role for dendritic arbor 

patterning (Ye et al., 2006). Robo is postranslationally regulated, and surface labeling 

experiments have shown that in commissural axons, Comm brings Robo to endosomes 

directly from the Golgi (Keleman et al., 2005). The lack of Comm in PNS neurons needs 

to be further investigated and leaves the question about Robo protein regulation 

unanswered. Given the cell-class specific effect of Robo on dendrite field development of 

Class IV neurons, it would be interesting to investigate whether these mutants show some 

behavioral defect, such as alteration in touch and/or temperature sensation.  
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4. Materials and methods 
 

4.1 Fly Stocks 

 

NAME / GENOTYPE SOURCE / DONOR 

Deficiency Kit for the second left Chromosome Bloomington Stock Center 
http://flystocks.bio.indiana.edu/Browse/df-
dp/dfkit.htm 

y1,w67c23, dockP13421 / CyO 
 

Bloomington Stock Center  

cn1,sli2,bw1,sp1/ CyO 
 

Bloomington Stock Center (BL#3266) 

y1,w1;FRT40A

 
Bloomington Stock Center  

w1,elav-Gal4,hs-FLP, UAS-mCD8-GFP; 
FRT40A, tubGal80 / CyO  

Yuh Nung Jan – UCSF - USA  

y1,w1;P(GaWB)109(2)80, P(UAS-GFP)–80G2 
 

Yuh Nung Jan – UCSF - USA 

y1,w1;P(GaWB)109(2)80, P(UAS-GFP), 
girandola / CKG 

Yuh Nung Jan – UCSF - USA 

y1,w1;P(ppk-eGFP) Yuh Nung Jan – UCSF - USA 

y1,w1;P(UAS-roboT187) / TM3,Sb,Ubx,lacZ 
 

Barry Dickson – IMP Vienna -Austria 

y1,w1;robo28 / CyO,wg-lacZ) 
 

Barry Dickson – IMP Vienna -Austria 

y1,w1;robo29 / CyO,wg-lacZ) Barry Dickson – IMP Vienna -Austria 

y1,w1;P(UAS-roboT186) / TM3,y+ 

 
Barry Dickson – IMP Vienna -Austria 

w1,elav-Gal4,hs-FLP, UAS-mCD8-GFP; 
FRT42D,tubGal80 / CyO 

Takashi Suzuki- MPI Munich -Germany 

y1,w1;FRT42D

 
Takashi Suzuki- MPI Munich -Germany 

y1;FRT42D, ena46 / CyO 
 

Fen-Biao Gao-UCSF - USA 

roboGA285/ CyO 
 

Guy Tear–UC- London- UK 
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Fly Stocks generated during the work 
 

y1,w1;robo28,80G2 / CKG 
 

y1,w1;robo28,80G2, roboGA285 / CKG 
 

y1,w1;robo2880G2,slit2, / CKG 
 

y1,w1,80G2, roboGA285 / CKG 
 

80G2,slit2, / CKG 
 

y1,w1;Gal4(109(2)80);ppk-eGFP,P(UAS-roboT186) / TKG 
 

y1,w1;80G2;P(UAS-roboT186) / TKG 
 

y1,w1;FRT42D, dockP13421 / CyO 
 

y1,w1;FRT40A robo28 / CyO 
 

y1,w1;FRT42D, roboGA285 / CyO 
 

 

 

4.2 Immunohistochemistry  

 

4.2.1 General Antibody Staining for Drosophila mounts 

 

Fixation 

 

Embryos were collected for 1h in population cages with yeast-apple agar plates, and 

allowed to develop at 25°C until they reached the time point of interest (either 9h -10h 

AEL or ~20h - 21h AEL) These were then decorinated in 50% bleach (NaCLO) for 3 

minutes and rinsed well with PBT (0.1%Triton in 1%PBS). The decorinated embryos 

were then fixed. By placing them into a scintillation vial containing heptane:PBS-FA (4% 

formaldehyde in PBS) in a 1:1 ration (vol:vol) and shacked gently for 20 to 45 minutes. 

The lower, aqueous layer was then removed and replaced with methanol (CH3OH). In 

this solution, fixed embryos were stored at -20°C  
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Staining 

 

For staining embryos were washed for~1h-2h in PBT and incubated for 60 min in 

blocking solution containing 5% normal goat serum or fetal goat serum and 0.1% Triton 

or Tween in PBS. Monoclonal antibody raised against MAP1b-Futsch (Hummel et al., 

2000) was diluted (1:100) in Phosphate-buffered saline (PBS) containing 0.1% Triton 

(PBT). Slit (6D.4 from DSHB), Robo (13c9) monoclonal antibody (DSHB) and Robo2 

(kindly provided by B.J.Dickson) were diluted (1:50) in PBS containing 0.1% Tween-20 

(Sigma). Embryos were then incubated with a fluorescent secondary antibody, diluted 

1:100 (Alexa 488, Jacksons Laboratories ). Whole embryos were mounted in 90% 

glycerol and visualized by confocal microscopy (Leica TCS SP2).  

 

Embryo Filet 

 

Fixed and stained embryos were placed onto a glass slide in order to make the embryo 

stick to the cover glass and not move for reorientation. A tungsten needle was used for 

dissections. First, a piece of the anterior and posterior part of the body was cut. By 

rubbing the needle up and down along the ventral or dorsal midline a thin cut onto the 

epidermal body wall was made. Once a cut is made the epidermal body wall of the 

embryo is gently pressed down onto the glass. Next, the gut was to be removed, leaving 

only a filet of an epidermis and muscle tissue mounted on the glass ready for imaging.  

 

General Antibody staining on third Instar Larvae Filet 

3rd instar larvae were immersed in PBS and opened along the ventral midline. Filleted 

and pinned larvae were fixed with 4% formaldehyde for 30min at room temperature, 

rinsed several times in PBS with 0.5% Tween-20 (Sigma) and blocked in 5% normal goat 

serum (NGS; Jackson Laboratories). Primary antibodies were used at a concentration of 

1:10 for mouse anti-Robo or mouse anti-Slit (Hybridoma Bank) and incubated overnight 

at 4°C. Secondary antibodies used were Rhodamine-Rx-conjugated donkey anti-mouse 

(diluted 1:50; Jackson Laboratories) and CyTM2-Conjugated AffiniPure Goat Anti-
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Rabbit (diluted1:50 Jackson Immuno Research). After overnight incubation in secondary 

antibodies, the tissue was washed for several hours in PBS-Tween, mounted in 90% 

glycerol and immediately imaged. 

 

Antibody-Name 

 

Source/Donor 

mouse anti Slit  (C555.6D) 

 

Hybridoma  Bank USA 

mouse anti Robo((13C9) 

 

Hybridoma  Bank USA 

mouse anti Futsch/22C10  

 

Hybridoma  Bank USA 

mouse anti-Fasciclin II(1D4) 

 

Hybridoma  Bank USA 

rabbit anti Robo2  

 

Barry Dickson-IMP Vienna  

Alexa Fluor 488 goat anti mouse IgG Molecular probes - Germany 

CyTM2-conjugated AffiniPure Goat Anti- 

Rabbit IgG 

Jackson ImmunoResearch- USA 

Rhodamine RedTM-X-conjugated AffiniPure  

Fragment Donkey Anti-Mouse 

 

Jackson ImmunoResearch- USA 

 

 

4.3 Instruments 

 

Leica SP2 Confocal Microscope, Leica GmbH Heidelberg Germany 

Leica MZ16 Fluorescent Dissect scope Leica GmbH, Heidelberg Germany 

DNA engine, (Thermocycler), BIORAD, Munich, Germany 
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4.4 Consumables 

 

Fly food vials, Greiner Bioone, Germany 

Fly food plugs, Kunststoffteile Klühspies, Germany 

Microscope slides 76mm x 26mm, Menzel Gläser, Germany 

Microscope cover glasses 24mm x 40mm, Menzel Gläser, Germany 

Small petri dishes, Mat Tek Corporation, USA 

Staining Cups, Lymphbecken, Germany 

Reaction Strip 0.2ml, Biozym, Germany 

Immersion Oil Leica GmbH, Heidelberg (Germany) 

Halocarbon Oil-S3, Germany 

Granulated Yeast, Fermipan, Holland 

Dissection Sessiors F.S.T, Heidelberg, Germany 

 

 

4.5 Solutions and Media 

 

Phosphate Buffer Saline (1x), MPI for Neurobiology, Martinsreid, Germany  

PBT (1x) 0.01% Triton X-100 in 1x PBS 

Triton, Carl Roth , Karlsruhe, Germany 

PFA (4%), 4% Paraformaldehyde in 1x PBS, pH 7.4 

Glycerol, MERCK, Darmstadt, Germany 

Methanol, MERCK, Darmstadt, Germany 

Sodium Hypochlorite Solution, MERCK, Darmstadt, Germany 

Tween 20, Sigma, Germany 

Ethanol, MERCK, Darmstadt, Germany 

Glacial Acetic Acid, MERCK, Darmstadt, Germany 

Tris (2-Amino, 2-(hydroxymethyl), 1.3- Propanediol) Hydrochloride (0.1M), Sigma 

Germany  

EDTA (Ethylene diamine tetracetic acid) (0,1M), Sigma, Germany 

SDS Sodium Dodacyl Sulfate (1.1%vol), Sigma, Germany 
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DEPC (1%) Diethyl Pyrocabornate, Sigma, Germany 

KAc (Potassium Acetate) 8M, MERCK, Darmstadt, Germany 

 

4.6 Fly maintenance 

 

Drosophila melanogaster flies were kept on a standard fly media at 25° C and ~80% 

relative humidity (RH)  

 

Fly food  

 

(1L) Yeast 15.0g 

Agar 11.7g 

Molasses 80.0g 

Corn flour 60.0g 

Methylparaben 2.4g 

Propionic Acid 6.3ml 

Yeast paste (yeast granules and fly water) was added to the bottles in order to enhance 

egg lying. 

Fly water 0.8% CH3 COOH in dd H2O 

 
Apple agar for Embryo Collection 

 

500 ml 100%Apple juice 

480ml ddH2O) 

40mg Agar  

10.5 ml 95% Ethanol 

10ml Glacial Acetic Acid 

 

4.7 Molecular biology  

 

DNA Isolation  
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20-30 Flies were smashed in Solution containing 0.1M Tris HCL, 0.1M EDTA, 1.1 % vol 

SDS and 1% DEPC. The smashed flies were incubated for 30 min at 90°C and then for 

30 min on ice. 14µl per 100 µl 8M KAc was add to the solution in order to precipitate all 

tissue compartments and cellular proteins. After 15min centrifugation the supernatant 

was extracted in Chlorophorm/Benzol (1:1) elute. The dissolved DNA was precipitated 

with isopropanol, the pellet washed in 70% ethanol, aired dried and resuspended in 100µl 

water. 

 

Polymerase Chain Reaction 

 

PCR amplification with genomic DNA , 

Primers (0.4µm)  

MgCl2 (1.5 mM) 

dNTPs (0.2mM) 

TaqPolymerase (5000U/ml) 

Cycle conditions were as follows: Denaturation at 94°C for 5min, followed by 36cycles 

at 94°C for 30sec, annealing at 59° C for 30sec and elongation at 72° C for 90sec and 

final extension at 72° C for 10 min. We carried out PCR in a Thermocycler BIORAD, 

Germany. The PCR products were loaded on a 0,8% Agarose Gel and analyzed using a 

UV Transilluminator Herolab, Germany. Amplification reactions which resulted in a 

single band were further treated with ExoSAP-IT (US Biochemicals) to remove primers 

and excess nucleotides. For sequence analyses, two separate reactions were prepared, 

each using one of the PCR primers as a sequencing primer. 

 

Mutation identification 

 

We searched for sequence polymorphism in an aligned DNA fragment from 80G2 versus 

80G2,girnadola homozygous DNA; Pair-wise computational alignment of the 

corresponding DNA fragments using a SeqMan Programm(DNA STAR) were prepared. 
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Primer Sequences  

 
Robo2 
 
GT78 LEFT PRIMER Tm 57.3°C, GC 50.0%  GCGCGTATCGAGAAATGAGT 
GT79 RIGHT PRIMER Tm 58.8°C, GC 57.9%   AGTGCAGCGACATGAGGAG 
PRODUCT SIZE 508bp  
 
GT80 LEFT PRIMER Tm 57.3°C, GC 50.0%   ACATCCAACACGCACTCAAG 
GT81 RIGHT PRIMER Tm 59.4°C, GC 55.0%  GTCGTCTAACCCCAACGAGA 
PRODUCT SIZE 617bp  
 
GT82 LEFT PRIMER Tm 55.9°C, GC 42.9%  GCTCGTGTGTCTAATAATCTC 
GT83 RIGHT PRIMER Tm 55.3°C, CG 45.0%  AGTCGCATTTGTGTCGCTTT 
PRODUCT SIZE 372bp 
 
GT84 LEFT PRIMER Tm 60.5°C, GC 55.0%   AAGCCGTAAACCCTGAGTCC 
GT85 RIGHT PRIMER Tm60.2°C, GC 55.0%   CCCCAGTAAGAGAGCCAACA 
PRODUCT SIZE 940bp  
 
GT86 LEFT PRIMER Tm 57.3°C, GC 50.0% CCATTCCACACATCCTCACA 
GT87 RIGHT PRIMER Tm 59.4°C, GC 55.0% ACATCTCCGGACAGCAGACT 
PRODUCT SIZE 1438bp 
 
GT88 LEFT PRIMER Tm 55.3°C, GC 45.0%  CAACGGAAAATCCTCTTGGA 
GT89 RIGHT PRIMER Tm 56.7°C GC 55.0%  CTTCAATCGTCATCCACCG 
PRODUCT SIZE 1188bp  
 
GT90 LEFT PRIMER Tm 60.2°C, GC 55.0%  TCCTCAATCTCAGCCGTACC 
GT91 RIGHT PRIMER Tm 60.2°C, CG 40.0%  AAAGCGATTTTGGCAACAAG 
PRODUCT SIZE 843bp 
 
GT92 LEFT PRIMER Tm 59.2°C, CG 45.0%  GGCGGCTCTTTTGTATGTTT 
GT93 RIGHT PRIMER Tm58.1°C, GC 38.1%  TTTTATTGTCGTCGCTTTGAG 
PRODUCT SIZE 778bp  
 
GT94 LEFT PRIMER Tm 60.0°C, CG 50,0%  GCCAGTGGGTCAGAGGAATA 
GT95 RIGHT PRIMER Tm 59.9°C GC 55.0%   TGCAGATCACTCTGGGACTG 
PRODUCT SIZE 1192bp 
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4.8 MARCM Analyses 

For MARCM experiments, robo28 was recombined with FRT40A (obtained from 

Bloomington Stock center) and roboGA285 or slit2 with FRT42D kindly provided by T. 

Suzuki (MPI of Neurobiology, Germany). MARCM analyses were performed as 

described previously with some modifications (Grueber et al., 2002). In brief, to generate 

mosaic mutant clones robo28, FRT40A/ CyO, or  w; FRT40A, or FRT42D, roboGA285/ CyO or 

w; FRT42D flies were mated with w; elav-Gal4, hsFLP; FRT40A, tub-Gal80/ CyO or w; 

elav-Gal4, hsFLP; FRT42D, tub-Gal80/ CyO, respectively. Embryos were collected for 2h 

and allowed to develop for 3h–5h at 25°C before being heat-shocked at 37°C for 45 min, 

followed by room temperature recovery for 30 min, and an additional exposure to 37°C 

for 30 min. The eggs were kept at 25°C and third instar larvae were directly examined for 

mutant clones. Fluorescence images were obtained by confocal microscopy (Leica TCS 

SP2).  

MARCM method; 

MARCM (mosaic analyses with a repressible cell marker) is a widely used technique in 

Drosophila which enables the establishment of a labeled (mostly with GFP) homozygous 

mosaic clone in otherwise unlabeled heterozygous animal.  
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FIGURE 26.The MARCM strategy. A transgene encoding the repressor (tubGAL80, 
depicted in blue) of a marker gene expression (in this case UAS-GFP, UAS represented 
as yellow ellipsoids and gfp as a green bar) is placed distal to the FRT (gray bars) site of 
a homologous chromosome arm from the mutant gene (depicted as a black star). Upon 
heat shock induced mitotic recombination (activation of a Flipase enzyme introduced on 
any other chromosome can induce a FRT side-directed mitotic recombination). Only the 
homozygous mutant cell can express the marker gene (in the example gfp) because of the 
lost of the repressor protein expression (loss of tubGal80). Thus, the green daughter cell 
is labeled and homozygous mutant. 

 

4.9 The GAL4-UAS System 

 

 
 

FIGURE 26.The GAL4-UAS genetic system.  
This system was introduced to fly genetics by Brand and Perrimon (Brand and Perrimon, 
1993). Flies transgenic for a Gal4 transgene (blue circles) inserted into a tissue specific 
genomic enhancer or downstream of a tissue specific promoter (dark blue bar) are 
crossed to transgenic flies carrying a gene of interest (i.e. a GFP sequence-green box) 
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fused downstream of a UAS element (yellow ellipsoids). In the progeny, of this cross 
Gal4 can bind to the UAS and thus induce a tissue specific expression of the gene"x”. 
 

 

4.10 Imaging and image processing 

Staged embryos were collected on apple- agar plates, dechorionated in 50% bleach and 

mounted in 90% Glycerol (MERK). The dendritic morphology of GFP-labeled dorsal 

md-da neurons was imaged by confocal microscopy (Leica TCS SP2). Images were 

further processed with Photoshop to remove tracheal branches visualized due to their auto 

fluorescence. Some images were further processed to reduce the background noise and 

enhance the signal- to noise ratios or to optimize color intensity.      

 

4.11 Time-lapse analyses  

For time lapse imaging second instar larvae (~48h AEL) of control and 

Gal4109(2)80;UAS-robo,ppk were mounted in a halocarbon oil (S3) and fixed with a 

specially designed cover sieve (designed by a PhD student in our laboratory, Madhuri 

Shivalkar and generated by the Workshop of MPI of Neurobiology). Pressing between 

the cover sieve and a microscopic slide prevents the larvae from any movements allowing 

the imaging of a dendrite segment for up to 60minutes.  

 

4.12 Quantitative analysis of md-da neuron dendrites 

The dendrite length and branching number was quantified manually by using Image J 

(National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-

2006.) Quantitative analyses of all neurons have been performed by using similar criteria 

as described in (Grueber et al., 2002). At least 4-5 MARCM Class- specific clones per 
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genotype were used for quantification. All statistical analyses were done with Student’s t 

tests. We used the “reverse” Strahler method; dendrites growing from the cell bodies 

were signet as first order. Interstitially growing branches from the primary order of 

branch were assigned as second order. Where two second order branches met an order of 

third is created and so on. Terminal branches were assigned as with the highest order of 

branches. 

Dendrite length in 109(2)80,UAS-GFP line (n=10 animals per time point) was measured 

from the most dorsally positioned neuronal cell body to the tip of the longest dendrite 

within an abdominal cluster of neurons, this length is denoted as Lb.  In the same 

abdominal cluster we measured also the distance between the most dorsally positioned 

cell bodies of the contra lateral cluster of neurons and this was and denoted as La. 

 

Each single time-lapse image was separately analyzed. We measured the dendrite length 

of a basal dendrite branch (corresponding to a third or second order of branch) within the 

imaged segment. To determine the newly formed, elongated and fully retracted branches 

we compared the image at time point “start” to the image at time point ‘end”. The 

number of branches assigned as newly formed, elongated and fully retracted was then 

normalized to 10µm basal dendrite length and a minute. The number of transient 

branches was determined per 10µm basal dendrite length and minute by comparing single 

images and counting the branches which have formed and disappeared within the whole 

period of imaging.      
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