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Chapter 1 

Summary 
 

 

1.1 Nucleophilic Reactivities of Indoles 

 

The kinetics of the couplings of indole (1a), N-methylindole (1b), 5-methoxyindole (1c) and 

5-cyanoindole (1d) with a set of reference benzhydryl cations 2 (for structures see Table 1.1) 

have been investigated in dichloromethane (Scheme 1.1). 
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Scheme 1.1. Reactions of indoles 1 with benzhydrylium ions 2 (Ar2CH
+
) in CH2Cl2 and 

with 4,6-dinitrobenzofuroxan (4) in CH3CN at 20 °C. 

 

The second-order rate constants k2 for these reactions correlate linearly with the 

electrophilicity parameters E of the benzhydryl cations 2 (Figure 1.1). This allows the 

determination of the reactivity parameters N and s, characterizing the nucleophilicity of 

indoles 1a–d according to the linear free enthalpy relationship (1.1). 

 

)()20(lg ENsCk +=°  (1.1) 

 

The nucleophilicity parameters thus defined (Table 1.2) describe nicely the reactions of 1a–d 

with 4,6-dinitrobenzofuroxan (4, Scheme 1.1), a neutral superelectrophilic heteroaromatic 

whose electrophilicity has been determined earlier. On this ground, the kinetics of the 

couplings of 4 with a large variety of indoles have been studied in acetonitrile in collaboration 

with Terrier and co-workers, leading to a ranking of this family of π-excessive carbon 

nucleophiles over a large domain of the nucleophilicity scale (Table 1.2 on page 4). 



 2 

Table 1.1. List of carbocations 2 used as reference electrophiles. 

 

reference electrophile
[a] 

 E
[b] 

N N
 

2a –10.04 

N N
Me Me  

2b –8.76 

N N

 

2c –7.69 

N N
Me Me

MeMe  

2d –7.02 

N N
Ph Ph

MeMe  

2e –5.89 

N N
O O  

2f –5.53 

N N
Ph Ph

PhPh  

2g –4.72 

N N
MeMe

F3C CF3

 

2h –3.85 

N N
PhPh

F3C CF3

 

2i –3.14 

OO  

2j –1.36 

[a] All benzhydrylium ions were used as tetrafluoroborate salts, 

except (fur)2CH
+
 (2j) which was generated from the chloride 2j-

Cl with TMSOTf. [b] Electrophilicity parameters E. 
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Figure 1.1. Plotting of the second-order rate constants k2 of the reactions of indoles 1a–c 

with benzhydrylium ions 2 in CH2Cl2 at 20 °C against their electrophilicity 

parameters E (since complex kinetics were obtained when 1d was combined 

with the benzhydrylium ions 2, no correlation was made). 

 

 

Product analysis revealed that the reactions of the indoles 1 with the benzhydrylium ions 2 

and with 4,6-dinitrobenzofuroxan (4) proceed with exclusive 3-substitution as demonstrated 

for the combination of 5-methoxyindole (1c) with 2j-Cl (Scheme 1.2). 
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H
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+

O O

Cl
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CH2Cl2, 20 °C, 5 min N
H

MeO

O

O

1c 2j-Cl 3a

58%

 

 

Scheme 1.2. Reaction of 5-methoxyindole (1c) with benzhydrylium chloride 2j-Cl in 

CH2Cl2. 

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1

N
HN

Me

N
H

MeO

1a
1b

1c

2e

2g

2h

2i

2j

Electrophilicity E

lg k



 4 

Table 1.2. List of the indoles with their nucleophilicity parameters N and s, only indoles 

1a–d have been studied in this work. 

 

nucleophile  N s 

5-cyanoindole (1d)  2.83     1.10
[a] 

7-azaindole (1e)  3.87     1.10
[a]

 

5-carboxyindole (1f)  3.97     1.10
[a]

 

5-bromoindole (1g)  4.38     1.10
[a]

 

5-chloroindole (1h)  4.42     1.10
[a]

 

4-methoxyindole (1i)  5.41     1.10
[a]

 

indole (1a)  5.55 1.09 

1-methylindole (1b)  5.75 1.23 

5-methylindole (1j)  6.00     1.10
[a]

 

5-chloro-2-methylindole (1k)  6.08     1.10
[a]

 

5-methoxyindole (1c)  6.22 1.12 

5-hydroxyindole (1l)  6.44     1.10
[a]

 

2-methylindole (1m)  6.91     1.10
[a]

 

5-aminoindole (1n)  7.22     1.10
[a]

 

2,5-dimethylindole (1o)  7.22     1.10
[a]

 

5-methoxy-2-methylindole (1p)  7.26     1.10
[a]

 

[a] Assumed s parameters. 

 

 

Different correlations between the N values and the pKa(H2O) values are obtained for 5-X-

substituted indoles and 5-X-substituted 2-methylindoles (Figure 1.2). The N versus pKa(H2O) 

correlation for 5-X-substituted indoles is used for the determination of the C-3 basicity of 

indoles whose acidity constants cannot be measured through equilibrium studies in strongly 

acidic media. 
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Figure 1.2. Correlation of the nucleophilicity parameters N of indoles 1a,c–g (filled dots: 

N = 1.025pKa(H2O) + 9.025, r
2
 = 0.9669, n = 7) and of 2-methyl-indoles 1h–k 

(triangles: N = 0.770pKa(H2O) + 7.097, r
2
 = 0.9878, n = 4) with the 

corresponding pKa(H2O) values for C-3 protonation of these species in aqueous 

solution. Open circles: pKa(H2O) values of indoles calculated from N on the 

basis of these correlations. 

 

 

 

 

The kinetics of the reactions of 1,2-dimethylindole (1q) with the benzhydrylium salts 2c, 2d, 

2e and 2g have been investigated in acetonitrile and the nucleophilicity parameters were 

defined according to Equation (1.1) as N = 8.55 and s = 1.30 (Figure 1.3). This value differs 

from the previously estimated value of N = 6.54, which has been derived from the rate 

constant k2 = 5.47 × 10
3
 M

-1
s

-1
 for the reaction of 1q with the bis[4-phenyl-(2,2,2-

trifluoroethyl)amino]phenylmethylium ion (2i) assuming an s parameter of 1.10. 
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Figure 1.3. Correlation of the second-order rate constants k2 of the reactions of  

1,2-dimethylindole (1q) with benzhydrylium ions 2c, 2d, 2e and 2g in CH3CN 

at 20 °C. 
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1.2 Nucleophilic Reactivities of Pyrroles 

 

The kinetics of the couplings of 2,5-dimethylpyrrole (6a), 1,2,5-trimethylpyrrole (6b),  

2,4-dimethylpyrrole (6c) and kryptopyrrole (6d) with a set of reference benzhydryl cations 2 

have been investigated in acetonitrile (Scheme 1.3). 

Ar Ar

CH3CN, 20 °C

6a−d

2

7a−d

N
R

Alkyl
N
R

Alkyl Ar

Ar

 

 

Scheme 1.3. Reactions of pyrroles 6a–d with benzhydrylium ions 2 (Ar2CH
+
) in CH3CN at 

20 °C. 

 

The logarithms of the second-order rate constants k2 of these reactions correlate linearly with 

the corresponding electrophilicity parameters E of the benzhydrylium ions 2 (Figure 1.4) and 

the nucleophilicity parameters N and s were derived by Equation (1.1) as listed in Table 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Correlation of the second-order rate constants k2 of the reactions of the 

pyrroles 6a–f with benzhydrylium ions 2 in CH3CN at 20 °C. 
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Table 1.3. Resulting N and s parameters of pyrroles 6a–d in acetonitrile. 

 

pyrrole N s 

2,5-dimethylpyrrole (6a) 8.01 0.96 

1,2,5-trimethylpyrrole (6b) 8.69 1.07 

2,4-dimethylpyrrole (6c) 10.49 0.96 

3-ethyl-2,4-dimethylpyrrole (6d) 11.63 0.95 

 

 

Pyrroles 6a–d react with the benzhydrylium salt 2d-BF4 in acetonitrile at –15 °C to give the 

substituted pyrroles 7a – d, respectively (Scheme 1.4). 

 

6a, b

N
R

Me

Me

NMe2Me2N
+

BF4

CH3CN, −15 °C

N

Me

Me

R

NMe2

NMe2
2d-BF4 7a, b

 

 

H
NMe

Me
R

+
NMe2Me2N

BF4

2d-BF4

CH3CN, −15 °C

H
N

R

Me

Me

NMe2

NMe2
6c, d 7c, d

 

 

pyrrole time product yield / % 

6a (R = H) 30 min 7a 65 

6b (R = Me) 10 min 7b 68 

6c (R = H) 2 min 7c 93 

6d (R = Et)  < 1 min 7d 78 

 

Scheme 1.4. Reactions of pyrroles 6a–d with benzhydrylium tetrafluoroborate 2d-BF4 in 

CH3CN. 
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1.3 Allylations and Benzylations of Indoles in Aqueous Solution 

 

Indole (1a) and N-methylindole (1b) were allylated and benzylated in predominantely  

3-position in good to quantitative yield when they were stirred with allyl and benzyl halides in 

80% aqueous acetone in the presence of NH4HCO3 at room temperature (Scheme 1.5). The  

3-substitution product was usually accompanied by approximately 10% of the 2-substitution 

product. 

 

 

N
R'

+ R X

NH4HCO3

acetone/water (80/20 = v/v)

20 °C

N
R'

R

+
N
R'

R

1a, b R = allyl, benzyl
X = Cl, Br

 major
product  

 

Scheme 1.5. Reactions of indoles 1a and 1b with allyl or benzyl halides (R–X) in  

80% aq. acetone at room temperature. 

 

 

This Friedel-Crafts protocol in neutral or slightly basic aqueous media was applied for the 

synthesis of several 3-allyl- and 3-benzylindoles as shown in Scheme 1.6. 
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48 h, 50% 24 h, 71% 24 h, 56%  

 

Scheme 1.6. Isolated 3-substituted indoles by treatment of the corresponding allyl or benzyl 

halide with an excess of indole (5 equiv.) in 80% aq. acetone in the presence of 

(NH4)HCO3 at room temperature. 
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1.4 Ring Opening Reactions of Epoxides with Indoles and Pyrroles 

      in 2,2,2-Trifluoroethanol 

 

 

Indoles 1 and pyrroles 6 react with (R)-styrene oxide (8) in 2,2,2-trifluoroethanol at 80 °C 

without the use of any further additive to yield β-phenyl-β-heteroarylethanols 9 and 10 in 

good chemical and excellent optical yields (> 99% ee, Schemes 1.7 and 1.8). 

 

Ph
O

CF3CH2OH, 80 °C

N
H
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N
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FG OH

Ph

H
N

FG H
N
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OH

Ph

(R)-8

1a−c, g, m, q

6a−f

9a−f

10a−f  

 

Scheme 1.7. Regio- and stereoselective ring opening reactions of (R)-styrene oxide (8) with 

indoles 1 and pyrroles 6 in CF3CH2OH at 80 °C. 

 

 

 

 

N

OH

Ph

N

OH

Ph

MeH
N

OH

Ph

Me

Me

N

OH

Ph

H

Me
N

OH

Ph

H

MeO

N

OH

Ph

H

Br

4 h, 67% 3 h, 73% 3 h, 90%

3 h, 72% 3 h, 72% 72 h, 25%  



 12 

H
N

OH

Ph
N

OH

Ph

Me H
N

Me

Me

Ph

OH

H
NMe

Me
OH

Ph
H
N

Et
Me

Me

OH

Ph

N
Me

Me

Ph

OH

Me

1 h, 30% 1 h, 74%

1 h, 55% 1 h, 56%

2 h, 68% 1 h, 55%

 

 

Scheme 1.8. Products of the reactions of styrene oxide (8) with indoles 1 and pyrroles 6 in 

CF3CH2OH (80 °C). 

 

 

Indole (1a), N-methylindole (1b) and 1,2-dimethylindole (1q) react with rac-trans-stilbene 

oxide (trans-11) in CF3CH2OH at 80 °C stereospecifically to give 37–69% of rac-(12–14)a 

(Scheme 1.9, Table 1.4). The corresponding reactions with cis-11 give rac-(13–14)b in  

17–19% yield. 

 

N
+

Ph
O

CF3CH2OH, 80 °C N

OH

Ph

Ph
Ph

R'

R R

R'

1a, b, q trans- and cis-11 12−14

 

Scheme 1.9. Reactions of stilbene oxides (trans- and cis-11) with indoles 1a, 1b and 1q in 

CF3CH2OH (80 °C). 
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Table 1.4. Products of the reactions of stilbene oxides (11) with indoles 1a, 1b and 1q in 

CF3CH2OH at 80 °C. 

 

indole epoxide time / h product  yield / % 

1a rac-trans-11 42 

N
H

OH
Ph

Ph

 

rac-12a 37 

1a cis-11 42 – rac-12b 0 

1b rac-trans-11 29 

N

OH
Ph

Ph

Me  

rac-13a 69 

1b cis-11 29 

N

OH
Ph

Ph

Me  

rac-13b 19 

1q rac-trans-11 9 

N

OH
Ph

Ph

Me

Me

 

rac-14a 66 

1q rac-cis-11 24 

N

OH
Ph

Ph

Me

Me

 

rac-14b 17 

 

 

 

 

Other aromatic epoxides, such as 3-phenyloxirane-2-carboxylic acid ethyl ester (15), which 

was used as a 8:1-mixture of rac-trans- and cis-isomers, or rac-p-methoxyphenyloxirane  

(rac-16), reacted smoothly in CF3CH2OH at 80 °C with indoles 1g and 1q to give 47–76% of 

the corresponding substitution products rac-17–19 (Scheme 1.10). 
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N
Me

Me

MeO

O

CF3CH2OH, 80 °C

4 h, 69%

rac-16

N
Me

Me

OH

MeO

rac-19

CF3CH2OH, 80 °C

5 h, 76%

N
Me

Me

OH
Ph

CO2Et

rac-17

N
H

Br

Ph
CO2Et

O

15
1q

1g

CF3CH2OH, 80 °C

24 h, 47%

N
H

Br

OH
Ph

CO2Et

rac-18  

 

Scheme 1.10. Isolated products of the reactions of indoles 1g and 1q with 15 and rac-16. 

 

The reactions of 1,2-dimethylindole (1q) with the aliphatic epoxides rac-20 and rac-21 

proceed with exclusive attack at the sterically less hindered position of the epoxides to give 

tryptophol derivatives rac-22 and rac-23, respectively (Scheme 1.11). 

N
Me

Me

1q
R = nPr:

O
R +

CF3CH2OH, 80 °C N
Me

Me

OH

R

rac-20
      OMe:

R = nPr: rac-22
      OMe:rac-21 rac-23

10 h, 32%
48 h, 51%  

 

Scheme 1.11. Ring opening reactions of 1,2-dimethylindole (1q) with aliphatic epoxides  

rac-20 and rac-21. 

 

Cyclohexene oxide (24) was opened stereoselectively by 1,2-dimethylindole (1q) to give  

rac-25 in 31% yield (Scheme 1.12). The trans-configuration was determined through 

coupling constants. 

O +
N
Me

Me
CF3CH2OH, 80 °C N

Me

Me

OH

24 1q rac-25  

 

Scheme 1.12. Reaction of cyclohexene oxide (24) and 1,2-dimethylindole (1q). 
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1.5 Synthesis of Naturally Occurring Quinones 

 

The terphenylquinone polyporic acid (26) was synthesized via a 5-step sequence in 37% 

overall yield from 1,4-dimethoxybenzene (27, Scheme 1.13). The bromination of 27 with 

bromine in glacial acetic acid gave 2,5-dibromo-1,4-dimethoxybenzene (28) in 69% yield. 

Suzuki coupling of 28 with phenyl boronic acid furnished the terphenyl derivative 29 in 96% 

yield. Oxidative demethylation of 29 with (NH4)2Ce(NO3)6 in acetonitrile (77% yield of 30) 

and bromination (75% yield) gave compound 31, which furnished polyporic acid (26) in 96% 

yield by hydrolysis with 10% NaOH in refluxing methanol. 

 

OMe

OMe

Br2

HOAc, 25 °C

OMe

OMe

Br

Br

Ph
B(OH)2

OMe

OMe

Ph

Ph

CH3CN-H2O, 80 °C
5 min, 77%

O

O

Ph

Ph

Br2

HOAc, 120 °C

O

O

Ph

Ph Br

Br10% NaOH

CH3OH, 80 °C

O

O

Ph

Ph OH

HO

27 28 29

303126

2 h, 69%

K3PO4

Pd(OAc)2 [cat]

ligand [cat]

THF, 65 °C
2 h, 96%

2 h, 75%10 min, 96%

(NH4)2Ce(NO3)6
ligand:

OMe

PCy2
OMe

 

 

Scheme 1.13. Synthesis of polyporic acid (26). 

 

A smooth and easy reduction method was investigated for the model compound 2,3,5,6-

tetrahydroxy-1,4-benzoquinone and then applied for the reduction of polyporic acid (26) to 

give in 69% yield the tetrahydroxyterphenyl 32 (Scheme 1.14). 

Ph
O

O
Ph OH

HO H2, Pd−C

acetone

Ph

Ph

HO
OH

OH
OH

26 32

5 min, 69%

 

 

Scheme 1.14. Reduction of polyporic acid (26). 



 16 

Prenylations of 32 have been attempted under different conditions but did not give identified 

products. 

 

2,5-Dichloro-3-(1H-indol-3-yl)-1,4-benzoquinone (33) has been synthesized with 75% yield 

according to a modified literature synthesis when indole (1a) and 2,5-dichloro-1,4-benzo-

quinone (34) were stirred in water and treated with DDQ (Scheme 1.15). 

 

N
H

Cl

Cl

O

O
34

H2O

Cl

Cl

O

ON
H

331a

25 °C, 2 d;
DDQ, 1 d

 

 

Scheme 1.15. On water coupling of indole (1a) and 2,5-dichloro-1,4-benzo-quinone (34). 
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Chapter 2 

Introduction 
 

 

 

In 1994, Mayr and Patz introduced a new approach for a general reactivity scale based on two 

independent basis sets of nucleophiles and electrophiles.
[1]

 The reactions of carbocations with 

nucleophiles can be described by Equation (2.1). 

 

lg k (20 °C) = s (N + E) (2.1) 

 

 

Each electrophile is characterized by one parameter (electrophilicity parameter E) and 

nucleophiles are characterized by two parameters (nucleophilicity parameter N and 

nucleophile-specific slope parameter s). 

With Equation (2.1) at hand, it is possible to determine the reactivity parameters of almost 

any nucleophile or electrophile. To date, 431 nucleophiles and 96 electrophiles have been 

characterized, including a variety of different classes of organic compounds, such as 

enamines,
[2-4]

 diazo compounds,
[5]

 organometallic compounds,
[2, 6]

 hydride donors,
[6-10]

 

organo-phosphorous compounds,
[11]

 amines and alkoxides
[12, 13]

, carbanions,
[14-18]

 electron-

rich heteroarenes,
[2, 4, 6, 19]

 cationic metal π-complexes
[2, 6]

 or arylidene malononitriles.
[20, 21]

 

 

The goal of this thesis was the determination of the nucleophilic reactivities of indoles and 

pyrroles and the incorporation of these π-excessive, electron-rich heteroarenes into the 

comprehensive scale of nucleophilicity. The data should be employed for developing new 

synthetic methods as it will be shown for allylations and benzylations of indoles and the 

regio- and stereoselective ring opening reactions of epoxides with indoles and pyrroles. Since 

prenylations of indoles were found to proceed in good yields in aqueous solutions, reactions 

of naturally occurring quinones with the prenyl cation should be investigated. 

Since most of the chapters in this thesis have been published, more detailed introductions will 

be given at each chapter’s beginning. For more detailed reviews on the linear free energy 

relationship (2.1) and its applications see refs. 
[1, 6, 22, 23]

 and our database on the WWW under 

http://cicum92.cup.uni-muenchen.de/mayr/reaktionsdatenbank. 
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Chapter 3    Nucleophilic Reactivities of Indoles 
 

This chapter has been published by S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont,  

T. Boubaker, A. R. Ofial and H. Mayr in J. Org. Chem. 2006, 71, 9088–9095. The results in 

chapter 3.2.1 were obtained by Terrier et al. and are not listed in the Experimental Section.  

 

3.1 Introduction 

 

Like pyrroles, indoles are π-excessive heteroarenes which react much faster with electrophiles 

than most benzene derivatives. Terrier et al. have previously investigated the mechanism of 

the reactions of indoles 1 with electron deficient arenes and reported second-order rate 

constants for the C-C coupling of 4,6-dinitrobenzofuroxan (2) – a strongly electron-deficient 

heteroarene – with a number of differently substituted indoles 1a–k, to give the corresponding 

anionic σ-adducts 3a–k in different solvents (Scheme 3.1).
[1]

 We have now extended this 

work and combined it with kinetic data on the reactions of indoles 1 with benzhydrylium ions 

4 in order to include indoles into the comprehensive nucleophilicity scale based on 

benzhydrylium electrophiles,
[2-7]

 which is useful for designing reactions of indoles in 

organocatalytic reactions.
[8-12]

 

N
O

N

O

NO2

O2N

N
R

Y
X N

O
N

O

NO2

O2N
H

N
R

Y
H

X

N
O

N

O

NO2

O2N
H

N
R

Y
X

+

21a–q ZH

+  H

3a–q

5'

7'

2

34

5

6 7

k1

k–1

k2

±
 

 R Y X   R Y X 
1a H H H  1j H Me Me 
1b Me H H  1k H Me OMe 
1c H H OMe  1l Me Me H 
1d H H CN  1m H H NH2 
1e H H Br  1n H H OH 
1f H H Cl  1o H H CO2H 
1g H H Me  1p 4-methoxyindole 
1h H Me Cl  1q 7-azaindole 
1i H Me H      

 

Scheme 3.1. Reactions of indoles 1 with 4,6-dinitrofuroxan (2) in CH3CN. 
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Reactions of carbocations and of electron-deficient πCC bonds with π-, n- and σ-nucleophiles 

have been reported to follow Equation (3.1), 

 

lg k(20 °C) = s(N + E) (3.1) 

 

where electrophiles are characterized by one parameter (electrophilicity E) and nucleophiles 

are characterized by the nucleophilicity parameter N and the slope parameter s. 

Benzhydrylium ions 4 (for structures see Table 3.1) and structurally related quinone methides 

have been recommended as reference electrophiles for determining the N and s parameters of 

almost any nucleophile.
[2-7, 13, 14]

 

 

Table 3.1.  Benzhydrylium ions 4 used as reference electrophiles in this work. 

benzhydrylium ions  E
 [a] 

N N
Me Me

Ph Ph  

4a –5.89 

Ph2N NPh2  

4b –4.72 

N N
CH2CF3

Me

CH2CF3

Me

 

4c –3.85 

N N
CH2CF3

Ph

CH2CF3

Ph

 

4d –3.14 

OO  

4e –1.36 

NN

 

4f –7.69 

NN
Me

Me

Me

Me

 

4g –7.02 

[a] Electrophilicity parameters from ref. [6]. 
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Recently, it has been demonstrated that the N and s parameters defined by Equation (3.1) can 

also be employed for SN2 type reactions, if an additional, electrophile-specific sensitivity 

parameter sE is considered.
[14]

 

Approximate N parameters of indole (1a), N-methylindole (1b) and 1,2-dimethylindole (1l) 

have previously been derived from the rate constants of the reactions of these compounds 

with the bis-[4-phenyl(2,2,2-trifluoroethyl)amino]phenylmethylium ion (4d) assuming the 

same slope parameter (s = 0.80) as for enamines.
[15]

 We have now directly determined the N 

and s parameters of the indoles 1a–c from the kinetics of their reactions with a series of 

benzhydrylium ions 4 and found that these parameters fit also very well the electrophilic 

behaviour of 4,6-dinitrobenzofuroxan (2).
[1]

 Therefore, it was possible to link the two sets of 

data to derive the N parameters of an extended set of indoles. 
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3.2 Results 

 

3.2.1 Reactions of Indoles with 4,6-Dinitrobenzofuroxan 

 

Terrier et al. have shown that 4,6-dinitrobenzofuroxan (2) reacts readily with the indoles 1a–k 

to give stable anionic C-adducts 3a–k quantitatively which were structurally characterized 

either in their acid form 3a–k,H or as the corresponding potassium or sodium salts by 

exchanging the H
+
 counterion for a K

+
 or Na

+
 cation. No evidence for even a minor addition 

of 2 to C-2 of the indole moiety was found for indoles 1a–g devoid of a 2-methyl group.
[1]

 

Because of solubility problems in dichloromethane we have now investigated the kinetics of 

the overall σ-complexation process of Scheme 3.1 at 20 °C in acetonitrile, extending the series 

of reactions studied to 5-aminoindole (1m), 5-hydroxyindole (1n), 5-carboxyindole (1o),  

4-methoxyindole (1p) and 7-azaindole (1q). In general, the appearance of the resulting  

σ-adducts 3a-q was followed by conventional or stopped-flow spectrophotometry at their 

absorption maxima (470–480 nm), where neither 2 nor the indoles 1a–q have a notable 

absorption. All experiments were carried out under first-order conditions with a 3 × 10
–5 

mol 

L
–1 

concentration of 2 and a large excess of the indoles (1 × 10
–3

 to 2 × 10
–2

 mol L
–1

). For the 

reactions of Scheme 3.1, the general Equation (3.2) of the observed first-order rate constant, 

kobs, for the formation of the adducts 3a-q can be derived under the assumption that the 

zwitterions ZH
±
 are low concentration intermediates. 

 

 

21

21
obs

kk

kk
k

+
=

−

[1] = k [1] (3.2) 

 

 

In accordance with Equation (3.2), excellent linear correlations with zero intercepts were 

obtained in all systems when the kobs values were plotted versus the indole concentrations 

[1a–q]. Determination of the second-order rate constants k from the slopes of these lines was 

therefore straightforward. All measured kH/kD ratios were in the range 1.1–1.7, showing that 

proton removal from the zwitterionic intermediates ZH
±
 is rapid in acetonitrile, as previously 

observed in aqueous or methanolic solutions. Thus, electrophilic attack of 2 at C-3 of 1a–q is 

the rate limiting step of the overall process in Scheme 3.1
[16, 17]

 (As previously discussed for 

similar SEAr processes, it is possible, using the observed KIE values and making different 
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assumptions, to derive the actual rate constant k1 from the measured composite rate constant 

k.
[16, 17]

 For the highest kH/kD ratio of 1.7 observed here, the correction is rather modest (k1 = 

2.46 instead of 2.29 M
-1

s
-1

 so that a direct identification of k to k1 can be made without 

affecting the overall picture that emerges from our results). Accordingly, the rate constant k 

could be identified to the rate constant k1 for the C-C coupling step. This situation is 

reminiscent of that prevailing in the majority of aromatic or heteroaromatic electrophilic 

substitution reactions in which the formation of the Wheland-Meisenheimer type intermediate 

(ZH
±
) is rate-determining.

[1, 18]
 In line with this interpretation, Jackson and Lynch have 

reported that the initial attack of the electrophile is rate-limiting in the coupling of indole (1a), 

N-methylindole (1b), and 2-methylindole (1i) with the p-nitrobenzenediazonium cation.
[1, 19]

 

Table 3.2 summarizes the k1 values measured for the various 4,6-dinitrobenzofuroxan/indoles 

couplings carried out at 20 °C in acetonitrile. 
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Table 3.2.  Second-order rate constants k1 for the addition of 4,6-dinitrobenzofuroxan 

(2) to indoles 1a–q (CH3CN, 20 °C).
 

 

indole pKa(H2O)
[a] 

k1 / M
–1

 s
–1

 N
 [b] 

s
[c] 

1a –3.46 2.29 (1.4)
[d]

 5.55 1.09 

1b –2.32 13.40 5.75 1.23 

1c –2.90 20.84 (13.2)
[d]

 6.22 1.12 

1d –6.00 3.5 × 10
–3

 (2.38 × 10
–3

)
[d]

 2.83 (1.10) 

1e –4.30 0.18 4.38 (1.10) 

1f –4.53 0.20 4.42 (1.10) 

1g –3.30 10.71 6.00 (1.10) 

1h –1.30 13.40 6.08 (1.10) 

1i –0.28 108 (90)
[d]

 6.91 (1.10) 

1j +0.26 236 7.22 (1.10) 

1k +0.13 260 (245)
[d] 

7.26 (1.10) 

1l +0.30 – 6.54
 [e] 

(1.10) 

1m    –1.76
[f] 

235 7.22 (1.10) 

1n –2.19 33.1 (28.2)
[d]

 6.44 (1.10) 

1o    –4.93
[f] 

0.064 (0.058)
[d]

 3.97 (1.10) 

1p    –3.53
[f] 

2.45 5.41 (1.10) 

1q    –5.03
[f] 

0.049 3.87 (1.10) 

[a] pKa values for C-protonation at 25 °C from refs. [20, 21]; the 

slight temperature dependence can only have a minor effect on the 

derived N values. [b] For the determination of the N values see 

Chapter 3.3.1. [c] Estimated slope parameters are given in 

parentheses. [d] Second-order rate constants k1 for 3-deuteriated 

indoles. [e] Recalculated from the rate constant for the reaction of 

1l with 4d given in ref. [15] assuming s =1.10. [f] pKa values 

estimated through the Brønsted correlation of log k1 vs pKa(H2O) 

drawn for 5-X-substituted indoles 1a, c–g, n; i. e., log k1 = 

1.125pKa + 4.334. 
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3.2.2 Reactions of Indoles with Benzhydrylium Ions 

 

The benzhydrylium ions 4a–e,
[13]

 which were used as reference electrophiles, were either 

employed as tetrafluoroborates, (4a–d)-BF4, or generated in situ from the corresponding 

chloride 4e-Cl and trimethylsilyl triflate
[22, 23]

 (Table 3.1). The carbocations 4 reacted with the 

indoles 1 in dichloromethane to yield the 3-substituted indoles 5, as demonstrated for the 

combinations listed in Scheme 3.2. 

N
R

X
Y

Ar Ar N
R

X
Ar

Ar

Y+

1                          4                                      5

– H+

CH2Cl2

k2

 

1a R = X = Y = H 4d  5a (70%)[a] 

1b R = Me, X =Y = H 4d  5b (22%)[a] 

1c R = Y = H, X = OMe 4e  5c (58%) 

1l R = Y = Me, X = H 4d  5e (34%)[a] 

  4g  5f (61%)[b] 

[a] Taken from ref. [15]. [b] Reaction performed in CH3CN at –15 °C. 

 

Scheme 3.2. Product analysis of the reactions of indoles 1a–c with benzhydrylium ions 4 

in CH2Cl2 at room temperature. 

 

 

The kinetics of the reactions of the benzhydrylium ions 4 with the indoles 1a–d in 

dichloromethane were monitored by UV/Vis spectroscopy at 20 °C with the instruments 

described previously.
[2-7, 22-24]

 In some cases, one equivalent of the weakly nucleophilic base  

2,6-di-tert-butylpyridine was added to the solutions of the benzhydrylium ions 4 in order to 

neutralize the liberated HBF4. As described above for the reactions with 4,6-

dinitrobenzofuroxan (2), the indoles 1a–d were used in high excess (> 10 equivalents) to keep 

their concentration almost constant throughout the reactions. Exponential decays of the 

absorbances of the benzhydrylium ions were observed over more than two half-lives for all 

reactions with 5-methoxyindole (1c) and for most of the reactions with N-methylindole (1b) 

in dichloromethane. When the latter nucleophile was combined with 4a, the weakest 

electrophile of this series, exponential decay of 4a was only observed when a high excess of 

1b (70–80 equivalents) was employed. In this case, the second-order rate constant was 
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obtained by dividing the first-order rate constant kobs by the concentration of 1b. In all other 

cases, the second-order rate constants k2 were derived as the slopes of plots of kobs versus the 

concentrations of the nucleophiles. 

The reactions of the benzhydrylium ions 4a–e with the parent indole 1a (> 10 equivalents) in 

dichloromethane followed first-order kinetics only during the first 50–80% of conversion. 

Plots of kobs for the first half-life versus the concentrations of 1a gave the second-order rate 

constants listed in Table 3.3. When the reactions of 1a with 4a, 4b and 4d were investigated 

in acetonitrile solution, however, first-order kinetics with exponential decay of the 

benzhydrylium absorbances were observed over more than three half-lives. The increase in 

reactivity from dichloromethane to acetonitrile solution (factor 3–5) is in the same order of 

magnitude as for additions of benzhydrylium ions to olefins.
[2-7, 24]

 Because variation of the 

base (2,6-lutidine instead of 2,6-di-tert-butylpyridine) affects the reactivity of the least 

electrophilic benzhydrylium ion 4a towards 1a and 1c by less than a factor of two, rate-

determining C-C bond formation is assumed as in the reactions of the indoles 1 with 4,6-

dinitrobenzofuroxan 2. 

Complex kinetics were observed for the reactions of the benzhydrylium tetrafluoroborates  

4c–BF4 and 4d–BF4 and the benzhydrylium triflate 4e–OTf with 5-cyanoindole (1d) in 

dichloromethane. Second-order rate laws were observed in acetonitrile solution, however, and 

the resulting rate constants are listed in Table 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

Table 3.3. Second-order rate constants (20 °C) for the reactions of the benzhydrylium 

ions 4 with the indoles 1a–d and 1l and resulting nucleophilicity (N) and 

slope (s) parameters for 1a–c and 1l. 

 

indole N
 

s
 

Ar2CH
+
 solvent base k2 / M

–1
 s

–1
 

5.55
[a] 

1.09
[a] 

4a CH2Cl2
 

DTBP 4.17 × 10
–1

 

N
H  

  4a CH2Cl2 lutidine 9.96 × 10
–1 [b] 

1a   4b CH2Cl2 DTBP 1.63 × 10
1
 

   4c CH2Cl2 DTBP 6.14 × 10
1
 

   4d CH2Cl2 – 1.34 × 10
2 [c]

 

   4e CH2Cl2 – 6.23 × 10
4 [d]

 

   4a CH3CN – 2.08 × 10
0 

   4b CH3CN – 1.53 × 10
2
 

   4d CH3CN – 3.19 × 10
2
 

   4e    TFE
[e]

 – 2.31 × 10
5
 

       

5.75 1.23 4a CH2Cl2 DTBP 5.30 × 10
–1

 

  4b CH2Cl2 DTBP 4.82 × 10
1
 N

Me  
  4c CH2Cl2 DTBP 1.32 × 10

2
 

1b   4d CH2Cl2 – 1.09 × 10
3 [c]

 

   4e CH2Cl2 – 3.31 × 10
5 [d]

 

       

6.22 1.12 4a CH2Cl2 DTBP 1.81 × 10
0 

  4a CH2Cl2 lutidine 1.51 × 10
0 [b]

 N
H

MeO

 

  4b CH2Cl2 DTBP 7.67 × 10
1
 

1c   4c CH2Cl2 DTBP 4.00 × 10
2
 

   4e CH2Cl2 – 2.65 × 10
5 [d]

 

       

– – 4d CH3CN – 2.54 × 10
0 

N
H

NC

 
  4e CH3CN – 5.06 × 10

2
 

1d       
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8.55 1.30 4f CH3CN – 1.45 × 10
1
 

  4g CH3CN – 9.08 × 10
1
 

N

Me

Me

 

  4b CH3CN – 2.49 × 10
3
 

1l   4a CH3CN – 1.04 × 10
5
 

[a] N and s values were calculated from rate constants in CH2Cl2. [b] Not used for the 

calculation of N and s. [c] From ref. [15]. [d] Because a large part of the reaction occurred 

during mixing in the stopped-flow instrument, only the final part of the exponential decay was 

evaluated. [e] TFE = 2,2,2-trifluoroethanol, here with 9 % CH3CN. 
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3.3 Discussion 

 

3.3.1 Nucleophilicities of Indoles 

 

When the second-order rate constants obtained for the reactions of 1a–c with a series of 

benzhydrylium ions 4 were plotted against the electrophilicity parameters E of the 

benzhydrylium ions, linear correlations were obtained (Figure 3.1 and Figure 3.8 on page 42 

in the Experimental Section), which yield the nucleophilicity parameters N and s, as defined 

by Equation (3.1). Because only two rate constants were available for 5-cyanoindole (1d), 

which refer to different solvents, N and s parameters have not been calculated for this 

compound. Since the slopes of these correlations (s ≈ 1.10) are larger than those of typical 

enamines, the previously published N values for indoles,
[15]

 which were based on an estimated 

value of s = 0.80, have to be revised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Correlation of the rate constants lg k (20 °C, CH2Cl2) for the reactions of 1a 

and 1c with the benzhydrylium ions 4a–e with their electrophilicity 

parameters E (the corresponding correlation for the reactions of 1b with 4a–e 

is listed in the Experimental Section, Figure 3.8 on page 42). 
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We also determined the rate constants for the reactions of the parent indole (1a) with a set of 

benzhydrylium ions 4 in acetonitrile at 20 °C. The results (as listed in Table 3.3 and Table 

3.5) indicate a slightly higher nucleophilicity parameter (N = 5.98) with a slightly lower slope 

parameter (s = 1.02, Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Correlation of the rate constants lg k2 (20 °C, CH3CN) for the reaction of 1a 

with the benzhydrylium ions 4a–e against their electrophilicity parameters E. 

 

 

The correlation is moderate, but it indicates that the rates of the reactions of indole (1a) are 

not independent of the solvent. In acetonitrile solution the reactions proceed by a factor of 4 

to 20 faster than in dichloromethane (Table 3.5). Possibly, the weak basic property of 

acetonitrile, in contrast to dichloromethane, stabilizes the σ-adduct and accelerates the 

reaction. 
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Table 3.5. Comparison of the rates of the reactions of indole (1a) with benzhydrylium 

ions 4 in different solvents. 

 

benzhydrylium ion k (CH2Cl2) / M
-1

s
-1 

k (CH3CN) / M
-1

s
-1

 k (CH3CN) /  

k (CH2Cl2) 

(mpa)2CH
+
 4a 4.17 × 10

-1 
2.08 × 10

0
 5 

(dpa)2CH
+
 4b 1.63 × 10

1
 1.53 × 10

2
 9 

(pfa)2CH
+
 4d 1.34 × 10

1
 3.19 × 10

2
 20 

(fur)2CH
+
 4e 6.23 × 10

4
 2.31 × 10

5
 4 

 

 

When we determined the N and s value of 1,2-dimethylindole (1l) by plotting the second-

order rate constants k2 of its reactions with benzhydrylium ions 4 versus the electrophilicty 

parameters E of 4 a linear correlation was obtained (Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Plotting of the rate constants lg k2 (20 °C, CH3CN) for the reactions of 1l with 

the benzhydrylium ions 4a, 4b, 4g and 4f against their electrophilicity 

parameters E. 
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Thus, N = 8.55 and s = 1.30 is derived by using Equation (3.1). When we recalculated the N 

value from the rate constant for the reaction of 1l with 4d in dichloromethane
[15]

 assuming s = 

1.10, a significantly different N parameter is obtained (N = 6.54, see Table 3.2 on page 24). 

This means that 1,2-dimethylindole (2l) reacts about 13000 times faster in acetonitrile as 

derived previously. The higher s value (1.30) is in line with the finding that N substituted 

indoles have larger slopes than N unsubstituted indoles. 
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3.3.2 Reactions of Indoles with 4,6-Dinitrobenzofuroxan 

 

When the revised N and s values of the indoles 1a–c are used for the evaluation of the 

electrophilicity of 4,6-dinitrobenzofuroxan (2)
[25, 26]

 by minimizing ∆
2
 = Σ[log ki – si(Ni + E)]

2
 

the electrophilicity parameter E = –5.06 is obtained for 4,6-dinitrobenzofuroxan (2,  

Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Determination of the electrophilicity of 4,6-dinitrobenzofuroxan (2). 

 

 

With the assumption of s = 1.10 for N-unsubstituted indoles, we can now employ Equation 

(3.1) to calculate the N parameters for the indoles 1d–q from the rate constants of their 

reactions with 4,6-dinitrobenzofuroxan (2, Table 3.2). From these data, significant 

information emerges on the ranking of this family of π-excessive heteroarenes on the 

nucleophilicity scale. 

As can be seen in Table 3.2, the N parameters of indoles cover a domain of nucleophilic 

reactivity of 5 orders of magnitude from the weakest nucleophile, 5-cyanoindole (1d), to the 

strongest ones, i. e. 5-aminoindole (1m), 2,5-dimethylindole (1j) and 2-methyl-5-

methoxyindole (1k). With N values of ~ 7.2, these three latter compounds have in fact an 
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enaminic reactivity which lies midway between the domains of stongly enaminic structures, 

e.g. N = 10.04 for morpholinoisobutylene, and weak enaminic structures, e.g. N = 3.84 for 4-

(bis(trimethylsiloxy)amino)pent-4-enoic acid methyl ester.
[15]

 So far, it is the C-3 basicity of 

indoles, as measured by the pKa(H2O) values of their conjugated acids in aqueous solution, 

which was the parameter employed to correlate the nucleophilic reactivity of these 

compounds in carbon-carbon coupling processes.
[1, 18, 19, 27]

 In this regard, it is interesting that 

plotting the N values versus the pKa(H2O) values of indoles 1a–g and 1h–k gives rise to two 

separate linear correlations corresponding to a different behaviour of 5-X-substituted indoles 

and 5-X-substituted-2-methylindoles (Figure 3.5). This splitting corresponds to that 

previously observed in describing the reactivity of indoles through Brønsted relationships.
[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Correlation of the nucleophilicity parameters N of indoles 1a,c–g and n 

(filled dots: N = 1.025pKa(H2O) + 9.025, r
2
 = 0.9669, n = 7) and of 2-methyl-

indoles 1h–k (triangles: N = 0.770pKa(H2O) + 7.097, r
2
 = 0.9878, n = 4) with 

the pKa(H2O) values for C-3 protonation of these species in H2O. Open dots: 

pKa(H2O) values of indoles calculated from N on the basis of these 

correlations. 
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It thus appears that the 5-X-substituent exerts a similar electronic effect in the two series but 

that the presence of the methyl group in the position adjacent to the site of electrophilic attack 

reduces the rate of the 4,6-dinitrobenzofuroxan (2) addition to a notable extent (ca. 2 N units). 

This decrease can be reasonably attributed to steric hindrance of the approach of  

4,6-dinitrobenzofuroxan (2) from the C-3 position of 2-methylindoles. Support for this idea is 

provided by a unique linear Brønsted relationship for the entire indole family in a reaction 

system where steric effects are minimized, for example, in the protiodetritiation at C-3 of 

indoles in aqueous solution.
[1] 

Figure 3.4 can be employed as a tool for estimating the basicities of the 3-positions of indoles 

for which the pKa(H2O) values cannot be derived from equilibrium studies in strongly acidic 

media. 7-Azaindole (1q) is such an example, because in aqueous solution the nitrogen in 

position 7 is much more basic [pKa = 4.48] than C-3.
[28]

 Coupling of 1q with  

4,6-dinitrobenzofuroxan (2) occurs, however, at a very convenient rate in acetonitrile (see 

Table 3.2), allowing a straightforward derivation of the N parameter through Equation (3.1). 

Therefore, the desired pKa(H2O) of the 3-position of 1q can be derived from the upper line in 

Figure 3.4 [N = 3.87; pKa(H2O) = –5.03]. This large negative pKa value reflects the strong 

decrease of C-3 proton basicity caused by the electron-withdrawing effect of the 7-aza group 

in 1q. Another interesting system is 5-aminoindole 1m. Despite a rather high basicity in 

aqueous solution [pKa = 5.99],
[29]

 the aniline-like 5-NH2 group of this indole is less 

susceptible to 4,6-dinitrobenzofuroxan (2) addition than the 3-position so that, in contrast to 

the behavior of aniline,
[30, 31]

 only the formation of the stable C-adduct 3m is observed in 

acetonitrile. From the determined rate constant k for this reaction (see Table 3.2), N = 7.22 

and pKa(H2O) = –1.76 can be obtained. Analogously, the previously unknown basicities at the  

3-position of indole-5-carboxylic acid (1o) [pKa(H2O) = –4.93] and of 4-methoxyindole (1p) 

[pKa(H2O) = –3.53] could be derived from Figure 3.5. 

The N parameters for 5-X-substituted indoles also correlate well with the oxidation peak 

potentials Ep
ox

 (Figure 3.6), as measured by electrochemical oxidation in acetonitrile by 

Mount and coworkers,
[32]

 but it is found that the slope of this correlation is only one third of 

that observed for a large variety of different C-nucleophiles.
[33]
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Figure 3.6. Correlation of the nucleophilicity parameters N of 5-X-substituted indoles 1 

with the oxidation peak potentials Ep
ox

 of these species (from ref. [32]; the 

reported Ep
ox

 refer to a reference electrode (Ag/Ag
+
 in MeCN) with a 

potential of +0.437 V vs. SCE). 

 

 

 

Comparison of the rate data pertaining to the couplings of 5-X-substituted indoles with  

4,6-dinitrobenzofuroxan (2) in acetonitrile with those obtained (at 25 °C) for these reactions 

in methanol, 50-50 (v/v) H2O-Me2SO and 70-30 (v/v) H2O-Me2SO reveals that the solvent 

has an appreciable effect on the rates of the reactions of Scheme 3.1. In accord with the rate-

limiting formation of the zwitterionic Wheland-Meisenheimer intermediate ZH
±
 through a 

strongly dipolar transition state of type 6 (Scheme 3.4), the rates of the reactions decrease 

significantly with decreasing solvent polarity in the order 70-30 (v/v) H2O-Me2SO > 50-50 

(v/v) H2O-Me2SO > methanol > acetonitrile.
[1]
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Scheme 3.4. Transition state of the formation of the Wheland-Meisenheimer intermediate 

ZH
±
. 

 

Figure 3.7 shows the correlations obtained by plotting the logarithms of the rate constants k1 

determined in the four solvents versus the N values of the indoles 1a, c–g. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Effect of the solvent on the rates of the formation of σ-complexes of  

4,6-dinitrobenzofuroxan (2) and the indoles 1a, c–g (in CH3CN at 20 °C 

from this work, for all other solvents at 25 °C from ref. [1]; the slight 

temperature difference between CH3CN and the other solvents does not 

affect the comparison). 
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The four parallel correlation lines in Figure 3.7 indicate that the relative reactivities of the 

different indoles do not appreciably depend on the solvent. Because of the dipolar nature of 

the transition state, it is difficult at this stage to dissect the observed solvent effects in terms of 

individual contributions of the electrophilic and nucleophilic partners. Kinetic investigations 

of other C-C couplings involving two neutral reagents are needed for this purpose. 

 

 

 

3.3.3 Reactions of Indoles with Other Electrophiles 

 

As reported by Jackson and Lynch, the initial attack of the electrophile is rate-limiting in the 

coupling of indole (1a), N-methylindole (1b), and 2-methylindole (1i) with the p-

nitrobenzenediazonium cation.
[18, 19]

 The kinetics of the azo couplings between indoles 1a, 1b, 

and 1i and a variety of aryl diazonium ions have extensively been studied by Shawali and co-

workers.
[34]

 Because the electrophilicity parameters of several diazonium ions have been 

determined previously,
[35]

 we can use Equation (3.1) to calculate rate constants for the azo 

couplings of indoles. The comparison of experimental and calculated rate constants for azo 

couplings provides a test of the reliability of our approach, and Table 3.6 shows that Equation 

(3.1) predicts the rate constants of azo couplings within a factor of < 20 (for analogous 

comparison of calculated and experimental rate constants which was based on N parameters 

for indoles that were derived from σ
+

arene parameters, see ref. [22]).  

With similar precision, the rate constants of the electrophilic alkylations of indoles 1a, 1b, 

and 1i with the (2-methoxycyclohexadienylium)iron(tricarbonyl) ion, which were reported 

earlier by Kane-Maguire and Mansfield,
[2, 36, 37]

 can be reproduced within a factor of < 40 by 

Equation (3.1). 

Such deviations are typical for the predictive power of Equation (3.1), which covers a 

reactivity range of almost 30 orders of magnitude and usually predicts rate constants of polar 

organic reactions within a factor of 10–100.
[2-7]
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Table 3.6. Comparison between calculated [20 °C, Equation (3.1)] and experimentally 

determined second-order rate constants for the reactions of indole (1a), N-

methylindole (1b), and 2-methylindole (1i) with different electrophiles. 

 

 nucleophile (N/s) electrophile E
[a] 

kcalcd / M
–1

 s
–1

 kexp / M
–1

 s
–1

 
[b] 

1a indole  4-OMe-C6H4-N2
+
 –8.4 2.4 × 10

–3
 2.49 × 10

–4
 

 (5.55/1.09) 4-Me-C6H4-N2
+
 –7.7 1.1 × 10

–2
 5.62 × 10

–4
 

  C6H5-N2
+
 –7.2 3.1 × 10

–2
 2.24 × 10

–3
 

  4-Cl-C6H4-N2
+
 –6.7 8.8 × 10

–2
 1.44 × 10

–2
 

  4-CN-C6H4-N2
+
 –5.5 1.11 4.69 × 10

–1
 

  4-NO2-C6H4-N2
+
 –5.1 2.6 1.24 × 10 

0 

  (2-MeOC6H6)Fe(CO)3
+
      –8.94

[c] 
7.8 × 10

–4
     1.60 × 10

–2 [d] 
 

1b N-methylindole  4-OMe-C6H4-N2
+
 –8.4 7.0 × 10

–3
 2.46 × 10

–3
 

 (5.75/1.23) 4-Me-C6H4-N2
+
 –7.7 2.6 × 10

–2
 5.80 × 10

–3
 

  C6H5-N2
+
 –7.2 6.6 × 10

–2
 2.57 × 10

–2
 

  4-Cl-C6H4-N2
+
 –6.7 1.7 × 10

–1
 1.18 × 10

–1
 

  4-CN-C6H4-N2
+
 –5.5 1.6 3.72 × 10 

0 

  4-NO2-C6H4-N2
+
 –5.1 3.4 6.61 × 10 

0
 

  (2-MeOC6H6)Fe(CO)3
+
      –8.94

[c]
 2.5 × 10

–3
     9.70 × 10

–2 [d] 

1i 2-methylindole  4-OMe-C6H4-N2
+
 –8.4 4.4 × 10

–2
 2.50 × 10

–1
 

 (6.91/1.10) 4-Me-C6H4-N2
+
 –7.7 1.9 × 10

–1
 6.20 × 10

–1
 

  C6H5-N2
+
 –7.2 5.4 × 10

–1
 1.92 × 10 

0
 

  4-Cl-C6H4-N2
+
 –6.7 1.6 1.51 × 10

1
 

  4-CN-C6H4-N2
+
 –5.5 1.9 × 10

1
 1.78 × 10

2
 

  4-NO2-C6H4-N2
+
 –5.1 4.4 × 10

1
 4.27 × 10

2
 

  (2-MeOC6H6)Fe(CO)3
+
      –8.94

[c]
 1.4 × 10

–2
     1.20 × 10

–1 [d]
 

[a] From ref. [35]. [b] In CH3CN at 25 °C, from ref. [34]. [c] From ref. [2]. [d] In CH3NO2 at 

20 °C, from refs. [36, 37]. 
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3.4 Experimental Section 

 

 

3.4.1 General Comments 

 

The benzhydrylium cations 4 used in this work were prepared according to literature 

procedure.
[13]

 The various indoles 1a–q, 2,6-di-tert-butylpyridine (DTBP) and trimethylsilyl 

triflate were commercially available products which were purified, as appropriate, by 

recrystallization, sublimation or distillation prior to use. Deuteriation of 1a, 1c, 1d, 1i, 1k, 1n, 

1o was effected by acid-catalyzed exchange, according to a procedure which was previously 

reported in detail.
[18-21, 27, 38-43]

 Deuteriation at C-3 was in all cases found to be ≥98% on the 

basis of 
1
H-NMR spectra recorded in d6-DMSO. 4,6-Dinitrobenzofuroxan (2) was prepared 

according to the procedure by Drost
[44]

 with m. p. 172°C (lit.
[27, 45-52]

 m. p. 172–174°C). 

Adducts 3a–l have previously been isolated and fully characterized either in their acid form or 

as sodium salts.
[1]

 Following the same methodology, the synthetic work has been extended to 

the adducts 3m–q, which correspond to the σ-complexation of 2 by 5-aminoindole (1m), 5-

hydroxyindole (1n), 5-indolecarboxylic acid (1o), 4-methoxyindole (1p) and 7-azaindole 

(1q), respectively. These have been prepared in their acid form upon mixing acetonitrile 

solutions of 2 (1 equivalent) and of the relevant indole (1 equivalent) at room temperature. 

Subsequent addition of diethyl ether resulted in the precipitation of 3m–q as red-orange solids 

in 60–90% yields. As all σ-adducts of 4,6-dinitrobenzofuroxan (2) so far obtained, these solids 

did not melt prior to decomposition (explosion) and attempts to obtain satisfactory elemental 

analysis have been unsuccessful. However, dissolution of 3m–q in  

d6-DMSO gave NMR spectra identical to those recorded in the in situ generation of these 

adducts in this solvent. In accord with the proposed structures, the H-7' and C-7' resonances 

are typical for C-adducts of 2, being in the ranges of 5.64–5.83 and 30.4–32.4 ppm, 

respectively.
[1, 27, 47-53]

 Also noteworthy is that the σ-complexation process goes along with the 

loss of the resonance of the H-3 proton of the parent indoles 1m–q. Concomitantly, there is a 

significant low-field shift of the C-3 resonance, in agreement with the fact that a negatively 

charged dinitrobenzofuroxanyl moiety exerts a strong –I effect.
[48-51]

 Also the NMR data leave 

no doubt that the adducts 3m and 3q are characterized by the positioning of the proton at the 

5-amino group or at the 7-aza nitrogen, respectively, i.e., 3m and 3q can be regarded as real 

zwitterions. Among other evidence for structure 3m are the especially low-field resonances of 

the H-4 (δH-4 = 6.69 for 1m; δH-4 = 7.48 for 3m) and H-6 (δH-6 = 6.49 for 1m; δH-6 = 7.42 for 
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3m) as well as of the related C-4 (δC-4 = 103.2 for 1m; δC-4 = 111.9 for 3m) and C-6 (δC-6 = 

111.8 for 1m; δC-6 = 115.9 for 3m). Similarly, the H-4 (δH-4 = 7.92 for 1q; δH-4 = 8.39 for 3q) 

and C-4 (δC-4 = 128.0 for 1q; δC-4 = 133.7 for 3q) resonances of 3q are typical for the adjacent 

protonated aza functionality. Definitive evidence that the adducts 3m–q were isolated in their 

acid form comes from mass spectra experiments performed with the electrospray technique. 

Also, the UV-visible spectra of the adducts exhibit the strong absorption at λ = 470–480 nm 

typical of all σ-complexes of 4,6-dinitrobenzofuroxan (2) in acetonitrile.
[1, 25-27, 47-53]

 

Representative NMR (
1
H, 

13
C) and mass spectroscopy data for the 4,6-dinitrobenzofuroxan 

adducts 3m–q are available. 
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3.4.2 Kinetic Measurements 

 

3.4.2.1 General 

 

The kinetics of the reactions of indoles 1 with 4,6-dinitrobenzofuroxan (2) have been 

performed by Terrier et al. and are not listed here. The kinetic investigations of the reactions 

of benzhydrylium ions 4 with the indoles 1a–d in dichloromethane and acetonitrile were 

carried out as previously described in detail for similar interactions.
[2-7, 22-24]

 

 

3.4.2.2 Kinetics of the Reactions of Indoles with Benzhydrylium Ions 

 

The rate constants for the reactions of indole (1a), N-methylindole (1b) and 1,2-

dimethylindole (1l) with (pfa)2CH
+
BF4

-
 (4d) in dichloromethane have already been 

reported.
[15]  

Plotting of the logarithms of the second-order rate constants of the reactions of N-

methylindole (1b) with the benzhydrylium ions 4a–e against the electrophilicity parameters E 

of these electrophiles leads to a linear correlation (Figure 3.8). Using Equation (3.1) yields the 

N and s parameter of 1b in dichloromethane as listed in Table 3.3 (on page 27).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Correlation of the rate constants (lg k at 20 °C in CH2Cl2) for the reactions of 

1b with 4 in relation to E to yield N = 5.75 and s = 1.23 for 1b. 
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Table 3.7. Rate constants for the reactions of indole (1a) with (mpa)2CH
+
BF4

-
 (4a-BF4) 

in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 622 nm, 20 °C, in CH2Cl2). 

 

no. [1a]0 / M [4a]0 / M [DTBP]0 / M [1a]0 / [4a]0 Conv. / % kobs / s
-1 

1 4.98 × 10
-4

 2.49 × 10
-5

 2.49 × 10
-5

 20 80 9.58 × 10
-5 

2 9.15 × 10
-4

 2.28 × 10
-5

 2.28 × 10
-5

 40 51 3.69 × 10
-4

 

3 1.37 × 10
-3

 1.71 × 10
-5

 1.71 × 10
-5

 80 52 4.52 × 10
-4

 

4 2.07 × 10
-3

 2.15 × 10
-5

 2.15 × 10
-5

 96 61 7.03 × 10
-4

 

5 7.55 × 10
-3

 2.52 × 10
-5

 2.52 × 10
-5

 300 79 3.10 × 10
-3

 

 

y = 0.417x - 7E-05
R2 = 0.997

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

0.00300

0.00350

0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080

[1a]0 / M

k
o

b
s
 /

 s
-1

 

k2 = 4.17 × 10
-1

 M
-1

 s
-1

. 

 

 

Table 3.8.  Rate constants for the reactions of indole (1a) with (mpa)2CH
+
BF4

-
 (5a-BF4) 

in the presence of 2,6-lutidine. 

(J&M technique, λ = 622 nm, 20 °C, in CH2Cl2). 

 

no. [1a]0 / M [4a]0 / M [DTBP]0 / M [1a]0 / [4a]0 Conv. / % kobs / s
-1 

1 2.64 × 10
-4

 2.20 × 10
-5

 2.20 × 10
-5

 12 68 3.22 × 10
-4 

2 5.17 × 10
-4

 2.15 × 10
-5

 2.15 × 10
-5

 24 53 5.78 × 10
-4

 

3 1.24 × 10
-3

 2.07 × 10
-5

 2.07 × 10
-5

 60 65 1.12 × 10
-3

 

4 2.04 × 10
-3

 2.12 × 10
-5

 2.12 × 10
-5

 96 60 2.02 × 10
-3

 

5 2.66 × 10
-3

 2.46 × 10
-5

 2.46 × 10
-5

 108 55 2.73 × 10
-3
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y = 0.996x + 2E-05
R2 = 0.994
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-1

 M
-1

 s
-1

. 

 

 

 

Table 3.9. Rate constants for the reactions of indole (1a) with (dpa)2CH
+
BF4

-
 (4b-BF4) 

in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 672 nm, 20 °C, in CH2Cl2). 

 

no. [1a]0 / M [5b]0 / M [DTBP]0 / M [1a]0 / [5b]0 Conv. / % kobs / s
-1 

1 1.79 × 10
-4

 1.76 × 10
-5

 1.76 × 10
-5

 10 58 3.50 × 10
-3 

2 3.03 × 10
-4

 1.50 × 10
-5

 1.50 × 10
-5

 20 74 3.84 × 10
-3

 

3 1.35 × 10
-3

 1.33 × 10
-5

 1.33 × 10
-5

 101 75 2.27 × 10
-2

 

4 1.50 × 10
-3

 1.48 × 10
-5

 1.48 × 10
-5

 101 79 2.35 × 10
-2

 

 

 

y = 16.3x - 1E-04
R2 = 0.993

0.000

0.005
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k
ob

s
 / 

s
-1

 

k2 = 1.63 × 10
1
 M

-1
 s

-1
. 
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Table 3.10. Rate constants for the reactions of indole (1a) with (mfa)2CH
+
BF4

-
 (4c-BF4) 

in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 593 nm, 20 °C, in CH2Cl2). 

 

no. [1a]0 / M [4c]0 / M [DTBP]0 / M [1a]0 / [4c]0 Conv. / % kobs / s
-1 

1 2.72 × 10
-4

 2.33 × 10
-5

 2.33 × 10
-5

 12 51 1.72 × 10
-2 

2 6.91 × 10
-4

 2.96 × 10
-5

 2.96 × 10
-5

 23 75 4.88 × 10
-2

 

3 1.58 × 10
-3

 2.72 × 10
-5

 2.72 × 10
-5

 58 69 9.89 × 10
-2

 

4 1.98 × 10
-3

 2.13 × 10
-5

 2.13 × 10
-5

 93 68 1.22 × 10
-1

 

 

y = 61.4x + 4E-03
R2 = 0.997

0.000

0.020

0.040

0.060

0.080

0.100
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0.140
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[1a]0 / M

k
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s
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s
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k2 = 6.14 × 10
1
 M

-1
 s

-1
. 

 

 

 

Table 3.11. Rate constants for the reactions of indole (1a) with (fur)2CHCl (4e-Cl) and 

trimethylsilyltriflate (TMSOTf). 

(Stopped Flow technique, λ = 540 nm, 20 °C in CH2Cl2). 

 

no. [1a]0 / M [4e-Cl]0 / M [TMSOTf]0 / M [1a]0 / [4e]0 kobs / s
-1

 

1 6.37 × 10
-4

 1.62 × 10
-5

 1.62 × 10
-5

 39 4.32 × 10
1 

2 9.55 × 10
-4

 1.62 × 10
-5

 1.62 × 10
-5

 59 6.08 × 10
1
 

3 1.27 × 10
-3

 1.62 × 10
-5

 1.62 × 10
-5

 79 8.29 × 10
1
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y = 62343x + 2.75
R2 = 0.996

0

10

20

30

40

50

60

70

80

90

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

[1a]0 / M

k
ob

s
 / 

s
-1

 

k2 = 6.23 × 10
4
 M

-1
 s

-1
. 

 

Table 3.12. Rate constants for the reactions of N-methylindole (1b) with (mpa)2CH
+
BF4

-
 

(4a-BF4) in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 622 nm, 20 °C, in CH2Cl2). 

 

no. [1b]0 / M [4a]0 / M [DTBP]0 / M [1b]0 / [4a]0 Conv. / % kobs / s
-1 

1 2.71 × 10
-3

 3.35 × 10
-5

 3.35 × 10
-5

 81 49 1.48 × 10
-3

 

2 3.14 × 10
-3

 3.28 × 10
-5

 3.28 × 10
-5

 96 72 1.61 × 10
-3

 

 

 

 

                   <k2> = 5.30 × 10
-1

 M
-1

 s
-1

. 

 

 

Table 3.13. Rate constants for the reactions of N-methylindole (1b) with (dpa)2CH
+
BF4

-
 

(4b-BF4) in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 672 nm, 20 °C, in CH2Cl2). 

 

no. [1b]0 / M [4b]0 / M [DTBP]0 / M [1b]0 / [4b]0 Conv. / % kobs / s
-1 

1 6.52 × 10
-4

 3.04 × 10
-5

 3.04 × 10
-5

 22 73 3.61 × 10
-2 

2 1.00 × 10
-3

 2.45 × 10
-5

 2.45 × 10
-5

 41 83 4.71 × 10
-2

 

3 1.33 × 10
-3

 2.21 × 10
-5

 2.21 × 10
-5

 60 65 6.24 × 10
-2

 

4 2.14 × 10
-4

 2.70 × 10
-5

 2.70 × 10
-5

 79 65 1.06 × 10
-1

 

 

no. k2 / M
-1

 s
-1 

1 5.46 × 10
-1

 

2 5.13 × 10
-1
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y = 48.2x + 1E-03
R2 = 0.990
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. 

 

 

 

Table 3.14. Rate constants for the reactions of N-methylindole (1b) with (mfa)2CH
+
BF4

-
 

(4c-BF4) in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 593 nm, 20 °C, in CH2Cl2). 

 

no. [1b]0 / M [4c]0 / M [DTBP]0 / M [1b]0 / [4c]0 Conv. / % kobs / s
-1 

1 1.70 × 10
-4

 1.79 × 10
-5

 1.79 × 10
-5

 10 73 4.04 × 10
-2 

2 3.03 × 10
-4

 1.59 × 10
-5

 1.59 × 10
-5

 19 94 5.05 × 10
-2

 

3 8.39 × 10
-4

 2.21 × 10
-5

 2.21 × 10
-5

 38 82 1.24 × 10
-1

 

4 1.38 × 10
-3 

1.75 × 10
-5

 1.75 × 10
-5 

79 74 1.98 × 10
-1 

 

 

y = 132x + 1E-02
R2 = 0.998
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k2 = 1.32 × 10
2
 M

 -1
 s

-1
. 
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Table 3.15. Rate constants for the reactions of N-methylindole (1b) with (fur)2CHCl (4e-

Cl) and trimethylsilyltriflate (TMSOTf). 

(Stopped Flow technique, λ = 540 nm, 20 °C in CH2Cl2). 

 

no. [1b]0 / M [4e-Cl]0 / M [TMSOTf]0 / M [1b]0 / [4e]0 kobs / s
-1

 

1 1.15 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 10 3.56 × 10
2 

2 2.31 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 19 7.22 × 10
2
 

3 4.61 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 38 1.49 × 10
1
 

4 7.50 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 62 2.45 × 10
1
 

 

y = 330839x - 3.33
R2 = 1.00
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k2 = 3.31 × 10
5
 M

 -1
 s

-1
. 

 

 

Table 3.16. Rate constants for the reactions of 5-methoxyindole (1c) with 

(mpa)2CH
+
BF4

-
 (4a-BF4) in the presence of 2,6-di-tert-butylpyridine 

(DTBP). 

(J&M technique, λ = 622 nm, 20 °C, in CH2Cl2). 

 

no. [1c]0 / M [4a]0 / M [DTBP]0 / M [1c]0 / [4a]0 Conv. / % kobs / s
-1 

1 2.30 × 10
-4

 2.11 × 10
-5

 2.11 × 10
-5

 11 64 4.42 × 10
-4 

2 4.76 × 10
-4

 2.18 × 10
-5

 2.18 × 10
-5

 22 80 9.14 × 10
-4

 

3 1.00 × 10
-3

 2.44 × 10
-5

 2.44 × 10
-5

 41 62 1.81 × 10
-3

 

4 1.46 × 10
-3

 1.78 × 10
-5

 1.78 × 10
-5

 82 81 2.68 × 10
-3
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y = 1.81x + 3E-05
R2 = 0.999
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Table 3.17. Rate constants for the reactions of 5-methoxyindole (1c) with 

(mpa)2CH
+
BF4

-
 (4a-BF4) in the presence of 2,6-lutidine. 

(J&M technique, λ = 622 nm, 20 °C, in CH2Cl2). 

 

no. [1c]0 / M [4a]0 / M [DTBP]0 / M [1c]0 / [4a]0 Conv. / % kobs / s
-1 

1 2.31 × 10
-4

 2.12 × 10
-5

 2.12 × 10
-5

 11 81 4.56 × 10
-4 

2 5.76 × 10
-4

 2.64 × 10
-5

 2.64 × 10
-5

 22 85 9.34 × 10
-4

 

3 1.68 × 10
-3

 2.05 × 10
-5

 2.05 × 10
-5

 82 81 2.63 × 10
-3

 

 

 

y = 1.51x + 9E-05
R2 = 0.999
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. 

 

 



 50 

Table 3.18.  Rate constants for the reactions of 5-methoxyindole (1c) with (dpa)2CH
+
BF4

-
 

(4b-BF4) in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 672 nm, 20 °C, in CH2Cl2). 

 

no. [1c]0 / M [4b]0 / M [DTBP]0 / M [1c]0 / [4b]0 Conv. / % kobs / s
-1 

1 3.73 × 10
-4

 1.91 × 10
-5

 1.91 × 10
-5

 20 98 2.47 × 10
-2 

2 6.94 × 10
-4

 1.78 × 10
-5

 1.78 × 10
-5

 39 68 5.13 × 10
-2

 

3 7.49 × 10
-4

 1.28 × 10
-5

 1.28 × 10
-5

 59 84 4.99 × 10
-2

 

4 1.55 × 10
-3

 1.91 × 10
-5

 1.91 × 10
-5

 81 68 1.15 × 10
-1

 

 

 

y = 76.7x - 4E-03
R2 = 0.996
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. 

 

 

 

Table 3.19. Rate constants for the reactions of 5-methoxyindole (1c) with (mfa)2CH
+
BF4

-
 

(4c-BF4) in the presence of 2,6-di-tert-butylpyridine (DTBP). 

(J&M technique, λ = 593 nm, 20 °C, in CH2Cl2). 

 

no. [1c]0 / M [4c]0 / M [DTBP]0 / M [1c]0 / [4c]0 Conv. / % kobs / s
-1 

1 1.44 × 10
-4

 1.39 × 10
-5

 1.39 × 10
-5

 10 71 5.04 × 10
-2 

2 7.52 × 10
-4

 1.81 × 10
-5

 1.81 × 10
-5

 42 55 3.12 × 10
-1

 

3 8.68 × 10
-4

 1.48 × 10
-5

 1.48 × 10
-5

 59 57 3.52 × 10
-1

 

4 1.29 × 10
-3

 1.62 × 10
-5

 1.62 × 10
-5

 80 69 5.06 × 10
-1
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y = 400x + 7E-05
R2 = 0.997
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Table 3.20. Rate constants for the reactions of 5-methoxyindole (1c) with (fur)2CHCl 

(4e-Cl) and trimethylsilyltriflate (TMSOTf). 

(Stopped Flow technique, λ = 593 nm, 20 °C, in CH2Cl2). 

 

no. [1c]0 / M [4e-Cl]0 / M [TMSOTf]0 / M [1c]0 / [4e]0 kobs / s
-1

 

1 1.15 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 10 3.26 × 10
1 

2 2.30 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 19 6.04 × 10
1
 

3 4.61 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 38 1.20 × 10
2
 

4 5.76 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 48 1.58 × 10
2
 

5 7.49 × 10
-4

 1.20 × 10
-5

 1.20 × 10
-5

 62 1.98 × 10
2
 

 

 

y = 265363x + 7E-01
R2 = 0.998
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Table 3.21. Rate constants for the reaction of indole (1a) with (mpa)2CH
+
BF4

-
 (4a-BF4). 

(J&M technique, λ = 622 nm, 20 °C, in CH3CN). 

 

no. [1a]0 / M [4a]0 / M [1a]0 / [4a]0 Conv. / % kobs / s
-1 

1 4.75 × 10
-4

 9.46 × 10
-6

 50 99 9.19 × 10
-4 

2 8.30 × 10
-4

 9.92 × 10
-6

 80 99 1.76 × 10
-3

 

3 1.04 × 10
-3

 1.04 × 10
-5

 100 41 2.19 × 10
-3

 

4 1.26 × 10
-3

 9.79 × 10
-6

 130 84 2.69 × 10
-3

 

5 1.59 × 10
-3

 9.82 × 10
-6

 160 96 3.22 × 10
-3

 

 

 

y = 2.08x - 5E-06
R2 = 0.995
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k2 = 2.08 × 10
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 M
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. 

 

 

 

Table 3.22. Rate constants for the reaction of indole (1a) with (dpa)2CH
+
BF4

-
 (4b-BF4). 

(J&M technique, λ = 672 nm, 20 °C, in CH3CN). 

 

no. [1a]0 / M [4b]0 / M [1a]0 / [4b]0 Conv. / % kobs / s
-1 

1 1.63 × 10
-4

 1.50 × 10
-5

 11 62 2.36 × 10
-2 

2 5.59 × 10
-4

 1.40 × 10
-5

 40 99 8.20 × 10
-2

 

3 9.49 × 10
-3

 1.54 × 10
-5

 62 99 1.44 × 10
-2
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y = 153x - 2E-03
R2 = 0.999
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Table 3.23. Rate constants for the reactions of indole (1a) with (pfa)2CH
+
BF4

-
 (4d-BF4). 

(J&M technique, λ = 601 nm, 20 °C, in CH3CN). 

 

no. [1a]0 / M [4d]0 / M [1a]0 / [4d]0 Conv. / % kobs / s
-1 

1 1.17 × 10
-4

 1.27 × 10
-5

 9 98 3.82 × 10
-2 

2 2.29 × 10
-4

 1.25 × 10
-5

 18 99 7.17 × 10
-2

 

3 4.56 × 10
-4

 1.24 × 10
-5

 37 60 1.39 × 10
-1

 

4 7.55 × 10
-4

 1.26 × 10
-5

 60 53 2.43 × 10
-1

 

 

 

y = 319x - 2E-03
R2 = 0.998
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Table 3.24. Rate constants for the reaction of indole (1a) with (fur)2CHCl (4e-Cl). 

[Stopped Flow technique, λ = 535 nm, 20 °C, in CF3CH2OH/CH3CN (v/v = 

91/9)]. 

 

no. [1a]0 / M [4e-Cl]0 / M [1a]0 / [4e]0 kobs / s
-1 

1 2.89 × 10
-4

 2.15 × 10
-5

 13 9.94 × 10
1 

2 7.70 × 10
-4

 2.15 × 10
-5

 36 2.11 × 10
2
 

3 1.25 × 10
-3

 2.15 × 10
-5

 58 3.22 × 10
2
 

 

 

y = 231749x + 3E+01
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. 

 

 

 

Table 3.25. Rate constants for the reactions of 5-cyanoindole (1d) with (pfa)2CH
+
BF4

-
 

(4d-BF4). 

(J&M technique, λ = 601 nm, 20 °C, in CH3CN). 

 

no. [1d]0 / M [4d]0 / M [1d]0 / [4d]0 Conv. / % kobs / s
-1 

1 2.23 × 10
-4

 1.16 × 10
-5

 19 72 6.01 × 10
-2 

2 7.37 × 10
-4

 1.18 × 10
-5

 63 79 1.34 × 10
-1

 

3 9.39 × 10
-4

 1.15 × 10
-5

 82 99 2.84 × 10
-1

 

4 1.25 × 10
-3

 1.24 × 10
-5

 101 87 4.76 × 10
-1
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y = 2.54x + 4E-05
R2 = 1.00
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Table 3.26. Rate constants for the reaction of 5-cyanoindole (1d) with (fur)2CHCl (4e-

Cl) and trimethylsilyltriflate (TMSOTf). 

(J&M technique, λ = 535 nm, 20 °C, in CH3CN). 

 

no. [1d]0 / M [4e-Cl]0 / M [1d]0 / [4e]0 [TMSOTf]0 / M Conv./% kobs / s
-1 

1 1.37 × 10
-4

 2.81 × 10
-5

 5 5.62 × 10
-5

 91 6.01 × 10
-2 

2 2.79 × 10
-4

 2.85 × 10
-5

 10 5.70 × 10
-5

 68 1.34 × 10
-1

 

3 5.85 × 10
-4

 2.76 × 10
-5

 21 5.52 × 10
-5

 90 2.84 × 10
-1

 

4 9.55 × 10
-4

 3.26 × 10
-5

 29 6.52 × 10
-5

 78 4.76 × 10
-1

 

 

 

y = 506x - 9E-03
R2 = 0.999
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[1d]0 / M

k
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s
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s
-1

 

k2 = 5.06 × 10
2
 M

-1
 s

-1
. 
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Table 3.27. Rate constants for the reactions of 1,2-dimethylindole (1l) with 

(pyr)2CH
+
BF4

-
 (4f-BF4). 

(J&M technique, λ = 620 nm, 20 °C, in CH3CN). 

 

no. [1l]0 / M [4f]0 / M [1l]0 / [4f]0 Conv. / % kobs / s
-1 

1 1.20 × 10
-4

 1.12 × 10
-5

 11 92 2.49 × 10
-3 

2 2.35 × 10
-4

 1.09 × 10
-5

 22 83 4.13 × 10
-3

 

3 5.56 × 10
-4

 1.11 × 10
-5

 50 82 8.70 × 10
-3

 

4 8.96 × 10
-4

 1.09 × 10
-5

 83 74 1.25 × 10
-2

 

5 1.13 × 10
-3

 1.13 × 10
-5

 101 71 1.79 × 10
-2

 

 

y = 14.5x + 6E-04
R2 = 0.988

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

[1l] / M

k
o

b
s

 / 
s

-1

 

k2 = 1.45 × 10
1
 M

-1
s

-1
. 

 

 

Table 3.28. Rate constants for the reactions of 1,2-dimethylindole (1l) with 

(dma)2CH
+
BF4

-
 (4g-BF4). 

(J&M technique, λ = 613 nm, 20 °C, in CH3CN). 

 

no. [1l]0 / M [4g]0 / M [1l]0 / [4g]0 Conv. / % kobs / s
-1 

1 1.59 × 10
-4

 1.46 × 10
-5

 11 98 1.30 × 10
-2 

2 3.13 × 10
-4

 1.44 × 10
-5

 22 93 2.64 × 10
-2

 

3 7.55 × 10
-4

 1.46 × 10
-5

 52 88 5.64 × 10
-2

 

4 1.18 × 10
-3

 1.44 × 10
-5

 82 62 4.56 × 10
-2

 

5 1.50 × 10
-3

 1.50 × 10
-5

 101 95 1.36 × 10
-1
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y = 90.8x - 4E-03
R2 = 0.991

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

[1l] / M

k
o

b
s
 
/ s

-1

k2 = 9.08 × 10
1
 M

-1
s

-1
. 

 

 

 

Table 3.29. Rate constants for the reactions of 1,2-dimethylindole (1l) with 

(mpa)2CH
+
BF4

-
 (4a-BF4). 

(Stopped flow technique, λ = 622 nm, 20 °C, in CH3CN). 

 

no. [1l]0 / M [4a]0 / M [1l]0 / [4a]0 kobs / s
-1

 

1 3.96 × 10
-4

 2.51 × 10
-5

 16   8.28 × 10
-1 

2 7.93 × 10
-4

 2.51 × 10
-5

 32 1.75 × 10
0
 

3 1.17 × 10
-3

 2.51 × 10
-5

 47 2.73 × 10
0
 

4 1.59 × 10
-3

 2.51 × 10
-5

 63 3.86 × 10
0
 

5 1.98 × 10
-3

 2.51 × 10
-5

 79 4.70 × 10
0
 

 

y = 2486x - 2E-01
R2 = 0.999
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k2 = 2.49 × 10
3
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-1
s

-1
. 
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Table 3.30. Rate constants for the reactions of 1,2-dimethylindole (1l) with 

(dpa)2CH
+
BF4

-
 (4b-BF4). 

(Stopped flow technique, λ = 672 nm, 20 °C, in CH3CN). 

 

no. [1l]0 / M [4b]0 / M [1l]0 / [4b]0 kobs / s
-1

 

1 8.60 × 10
-5

 4.95 × 10
-6

 17 1.67 × 10
1 

2 1.89 × 10
-4

 4.95 × 10
-6

 38 3.05 × 10
1
 

3 2.92 × 10
-4

 4.95 × 10
-6

 59 3.67 × 10
1
 

4 4.12 × 10
-4

 4.95 × 10
-6

 83 4.38 × 10
1
 

5 5.15 × 10
-4

 4.95 × 10
-6

 104 6.69 × 10
1
 

 

 

y = 104115x + 8.07
R2 = 0.934
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3.4.3 Synthetic Experiments 

 

3-[Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl]-1H-indole (5a), 1-methyl-3-

[bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl]-1H-indole (5b) and 1,2-dimethyl-3-

[bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl]-1H-indole (5d) are known and 

characterized compounds.
[15]

 

 

3-[Bis(2,3-dihydrobenzofuran-5-yl)methyl]-5-methoxy-1H-indole (5c) 

 

N
H

MeO

O

O

1

2
3

4
5

6
7 7a

3a

1'
1''

2''

3''
4''

5''

6''
7''

3a''

7a''

5c 

 

A solution of (fur)2CHCl (4e–Cl, 85.3 mg, 0.297 mmol) and trimethylsilyl triflate (108 µL, 

0.594 mmol) in dichloromethane (100 mL) was added dropwise to a stirred solution of  

5-methoxyindole (1c, 437 mg, 2.97 mmol) in dichloromethane (200 mL). After the complete 

addition the solvent was removed in vacuo to give a yellow oil that was purified by column 

chromatography (SiO2, n-hexane/ethyl acetate = 5:1) to yield 5c as a colorless solid (69.1 mg, 

0.174 mmol, 58 % yield). 

 

Rf = 0.09. 
1
H-NMR (400 MHz, CD3CN): δ = 3.08 (t, J = 8.6 Hz, 4 H, H-3’’), 3.64 (s, 3 H, 

OMe), 4.47 (t, J = 8.6 Hz, 4 H, H-2’’), 5.48 (s, 1 H, H-1’), 6.63 (d, J = 8.0 Hz, 2 H, H-7’’), 

6.66 (m, 2 H, H-2, H-4), 6.76 (dd, J = 8.8 Hz, 2.4 Hz, 1 H, H-6), 6.95 (dd, J = 8.0 Hz, 2.0 Hz, 

2 H, H-6’’), 7.08 (s, 2 H, H-4’’), 7.27 (d, J = 8.8 Hz, 1 H, H-7), 8.93 (br. s, 1 H, NH).  

13
C-NMR (CD3CN, 100 MHz): δ = 29.1 (2 t, C-3’’), 47.2 (d, C-1’), 54.9 (q, OMe), 70.8 (2 t, 

C-2’’), 101.4 (d, C-2), 108.0 (2 d, C-7’’), 110.9 (d, C-6), 111.7 (d, C-7), 117.0 (s, C-3a), 

120.0 (s, C-3), 124.4 (d, C-4), 124.9 (2 d, C-4’’), 127.0 (2 s, C-3a’’), 127.7 (2 d, C-6’’), 131.8 

(s, C-3a), 136.7 (2 s, C-5’’), 153.2 (s, C-5), 158.1 (2 s, 2 C-7a’’). Peak assignment is based on 

gHMBC, gHSQC, COSY and NOESY experiments. 
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3-[Bis-(4-dimethylaminophenyl)methyl]-1,2-dimethyl-1H-indole (5e) 

 

N
Me

Me

Me2N

NMe2

5e 

 

To a cooled solution of (dma)2CH
+
BF4

-
 (4g-BF4, 70.0 mg, 0.276 mmol) in CH3CN (20 mL,  

–15 °C) a solution of 1,2-dimethylindole (1l, 42.5 mg, 0.293 mmol) in CH3CN (50 mL) is 

droped until the blue color of the solution faded completely. The clear reaction mixture is 

poured onto ice-water (50 mL) and saturated NaCl solution (1 mL) is added. The acetonitrile 

layer was separated at low temperature, dried (MgSO4) and the solvent removed in vacuo. 

After purification by column chromatography (SiO2, hexanes/ethyl acetate = 3:1) 5e  

(66.9 mg, 0.168 mmol, 61 %) was obtained as a slight brown oil which decomposed within a 

few days to a pink residue. 

 

Rf = 0.24. 
1
H-NMR (300 MHz, CDCl3): δ = 2.24 (s, 3 H, 2-Me), 2.92 (s, 12 H, 2 × NMe2), 

3.62 (s, 3 H, NMe), 5.62 (s, 1 H, H-8), 6.79 (d, J = 8.8 Hz, 4 H, Ph), 7.02–7.25 (m, 7 H, ArH), 

7.50 (d, J = 7.6 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 8.9 (q), 27.7 (q), 40.1 (q), 

44.5 (d), 106.9 (d), 112.2 (d), 116.8 (d), 117.9 (d), 118.4 (d), 126.1 (s), 128.0 (d), 131.8 (s), 

133.6 (s), 135.0 (s), 135.5 (s), 145.5 (s). 
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Chapter 4 

Nucleophilic Reactivities of Pyrroles 
 

 

This chapter will be published as soon as possible by M. Westermaier, T. A. Nigst and  

H. Mayr in Eur. J. Org. Chem. 

 

4.1 Introduction 

 

Pyrrole and its derivatives are biochemically important compounds and can be found as 

substructures in many natural products, e. g. heme, chlorophyll and the pyrrole alkaloids.
[1-4]

 

Electrophilic substitutions of pyrroles, which incorporate electron-rich π-systems, have been 

investigated intensively.
[5-12]

 In 1957, Treibs and Fritz derived a qualitative reactivity scale for 

alkyl substituted pyrroles from their reactions with diazonium salts of variable 

electrophilicity.
[13]

 The most comprehensive quantitative comparison of the reactivities of 

arenes and heteroarenes has been based on the σ
+

arene constants, which are defined by the 

Hammett-Brown relationship (4.1)
[14-20]

 

 

+⋅= arenekk σρ0/lg  (4.1) 

 

The σ
+

arene constants (equivalent to σ
+

p or σm in the case of monosubstituted benzenes) are a 

measure for the relative reactivities of one position of an arene in relation to one position of 

benzene. They were typically derived by competition experiments, where an electrophile was 

allowed to select between a pair of arenes, or from the rates of SN1 reactions of the side chain 

of the corresponding arenes. 

However, σ
+

arene parameters have only been determined for few pyrroles, e. g. the parent 

compound and N-methylpyrrole. As knowledge of the nucleophilic reactivities of pyrroles is 

crucial for their well directed use in synthesis, particularly as nucleophiles in organocatalysis 

cycles (iminium catalysis),
[21-30]

 we decided to obtain quantitative information on the 

nucleophilicities of alkyl substituted pyrroles (Scheme 4.1). 
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Scheme 4.1. Alkyl substituted pyrroles.
 

 

 

We have previously reported that the reactions of carbocations with π-systems follow 

Equation (4.2), 

 

)()20(lg ENsCk +=°  (4.2) 

 

where electrophiles are characterized by one parameter (electrophilicity E) and nucleophiles 

are characterized by two parameters (nucleophilicity N and slope s).
[31-35]

 Recently, it has been 

demonstrated that Equation (4.2) can also be employed for SN2 reactions, if an additional, 

electrophile-specific parameter sE is considered.
[36]

 

N and s parameters of N-methylpyrrole (2)
[33]

 and N-(triisopropylsilyl)pyrrole (7)
[37]

 have 

already been determined in dichloromethane and the N parameter of the parent compound (1) 

has been estimated.
[37]

 We have now studied the reactions of four alkyl substituted pyrroles  

3–6 with a series of benzhydrylium ions 8 (for structures see Table 4.1) in acetonitrile 

(Scheme 4.2) and used the kinetic data to determine the N and s parameters of these pyrroles. 

 

H
N

Alkyl Ar Ar+
CH3CN, 20 °C

H
N

Alkyl
Ar

Ar

3−6 8

BF4

9−12

- HBF4

 

 

Scheme 4.2. Reactions of pyrroles 3–6 with benzhydrylium ions 8 in CH3CN at 20 °C. 
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Table 4.1. List of carbocations 8 used in this study as reference electrophiles. 

 

reference electrophile
[a] 

 E
[b] 

N N
 

8a –10.04 

N N
Me Me  

8b –8.76 

N N

 

8c –7.69 

N N
Me Me

MeMe  

8d –7.02 

N N
Ph Ph

MeMe  

8e –5.89 

N N
O O  

8f –5.53 

N N
Ph Ph

PhPh  

8g –4.72 

N N
MeMe

F3C CF3

 

8h –3.85 

N N
PhPh

F3C CF3

 

8i –3.14 

[a] All benzhydrylium ions were used as tetrafluoroborate salts.  

[b] Electrophilicity parameters E taken from ref. [33]. 
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4.2 Results and Discussion 

 

4.2.1 Reaction Products 

 

Product studies have been performed with the 4,4’-bis(dimethylamino)benzhydrylium ion 

[(dma)2CH
+
, 8d, E = –7.02] because it is easy accessible and gives fast reactions with most of 

the pyrroles 3–6. When the corresponding tetrafluoroborate, (dma)2CH
+
BF4

-
 (8d-BF4), was 

combined with the pyrroles 3–6 in acetonitrile at room temperature, complex product 

mixtures were obtained as shown by their NMR spectra. The adducts 9–11 were synthesized 

by dropping a solution of benzhydrylium tetrafluoroborate 8d-BF4 in acetonitrile to a 

vigorously stirred solution of the corresponding pyrrole (two equivalents) in acetonitrile at  

–15 °C. 12 was synthesized by dropping a solution of kryptopyrrole (6) to a cooled solution of 

8d-BF4 until the color faded (Table 4.2).  

 

 

Table 4.2. Products 9–12 of the reactions of pyrroles 3–6 with the 4,4’-bis(dimethyl-

amino)benzhydrylium tetrafluoroborate (8d-BF4
-
) in CH3CN at –15 °C. 

 

pyrrole  product
[a] 

yield / % 

H
N

Me

Me

 

3 

H
N

Me

Me

CHAr2  

9 65
 

N
Me

Me
Me

 

4 
N

Me

Me
Me

CHAr2  

10 68
 

H
N

Me

Me  

5 

H
N

Me

Me

Ar2HC

 

11 93
 

H
N

Me

Me
Et  

6 

H
N

Me

Me
Et

Ar2HC

 

12 78
 

[a] Ar = p-Me2N-C6H4. 
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The reaction products are highly sensitive against oxidation, light and heating and usually 

could not be stored for longer than several minutes before turning into pink oils. The NMR 

spectra of these oils, however, only show very little impurities and indicate convincingly the 

structures of 9–12 (Figure 4.1, for detailed information see also pages 79–82 in the 

Experimental Section). The products of the reactions of pyrroles 1, 2, and 7 with benz-

hydrylium ions 8 have been characterized previously.
[33, 37, 38]
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Figure 4.1. Products 9–12 of the reactions of pyrroles 3–6 with benzhydrylium ion 8d in 

CH3CN at –15 °C. 

 

 

 

While pyrroles 3, 4 and 6 have only one site for the attack, pyrrole 5 may in principle be 

attacked at C-3 and C-5. From the NMR spectra we can derive that regioselective substitution 

of 5-H took place. 

Evidence for the formation of the adducts 9–12 is given by 
1
H- and 

13
C-NMR experiments. 

The proton H-6 absorbs as singlet at δ 5.13–5.16 ppm, if the pyrrole skeleton is substituted at 

the 3-position (in compounds 9 and 10) and at δ 5.33–5.36 ppm, if the pyrrole ring is 

substituted at the 2-position (in compounds 11 and 12). In the 
13

C-NMR spectra of 9, 10 and 

12 C-6 absorbs at δ 45.1–45.2 ppm and in compound 11 at δ 46.5 ppm  

(Table 4.3). 
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Table 4.3. Chemical shifts δ (in ppm) of 6-H (singlet) and C-6 atom of 9–12 (in CDCl3). 

 

compound  δ6-H / ppm δ6-C / ppm 

9  5.13 45.1 

10  5.16 45.3 

11  5.33 46.5 

12  5.36 45.2 
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4.2.2 Reactions of Pyrroles with Benzhydrylium Ions 

 

The kinetics of the reactions of pyrroles 3–6 with benzhydrylium ions 8 were monitored by 

UV/Vis spectroscopy at 20 °C with the previously described instruments.
[32-34]

 The pyrroles 

3–6 were used in high excess (usually more than 10 equivalents) to keep their concentrations 

almost constant throughout the reactions. Exponential decay of the absorbances of the 

benzhydrylium ions 8 was observed for all reactions and linear correlations of the observed 

rate constants and the pyrrole concentrations have been obtained (as demonstrated in  

Figure 4.2 for the combination of 4 with 8b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Exponential decay of the absorbance at 625 nm during the reaction of 4 with 8b. 

Correlation of the first-order rate constants kobs with the concentrations of 4 (in 

the insert) is linear with a slope corresponding to the second-order rate constant 

k2. 

 

 

The resulting second-order rate constants are listed in Table 4.4. 
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Table 4.4. Second-order rate constants k2 for the reactions of the pyrroles 3–6 with the 

benzhydrylium ions 8 in CH3CN at 20 °C and resulting N- and s-parameters. 

 

pyrrole N / s benzhydrylium ion k2 / M
-1

s
-1

 

(pyr)2CH
+
 (8c) 1.39 × 10

0
 

(mpa)2CH
+
 (8e) 2.19 × 10

2
 

(mor)2CH
+
 (8f) 2.53 × 10

2
 

(dpa)2CH
+
 (8g)    3.88 × 10

4 [a]
 

H
N

Me

Me

 

3 

8.01 / 0.97 

(mfa)2CH
+
 (8h) 7.32 × 10

3
 

(ind)2CH
+
 (8b) 1.06 × 10

0
 

(pyr)2CH
+
 (8c) 7.72 × 10

0
 

(mpa)2CH
+
 (8e) 1.59 × 10

3
 

(mor)2CH
+
 (8f) 1.72 × 10

3
 

N
Me

Me
Me

 

4 

8.69 / 1.07 

(dpa)2CH
+
 (8g)    1.15 × 10

5 [a]
 

(lil)2CH
+
 (8a) 3.78 × 10

0
 

(ind)2CH
+
 (8b) 4.41 × 10

1
 

(pyr)2CH
+
 (8c) 3.18 × 10

2
 

(mpa)2CH
+
 (8e) 4.50 × 10

4
 

(mor)2CH
+
 (8f) 4.66 × 10

4
 

H
N

Me

Me  

5 

10.49 / 0.96 

(dpa)2CH
+
 (8g)    2.28 × 10

6
 
[a]

 

(lil)2CH
+
 (8a) 4.00 × 10

1
 

(ind)2CH
+
 (8b) 4.53 × 10

2
 

(pyr)2CH
+
 (8c) 3.83 × 10

3
 

(mpa)2CH
+
 (8e) 6.53 × 10

5
 

H
N

Me

Me
Et  

6 

11.63 / 0.95 

(mor)2CH
+
 (8f) 4.48 × 10

5
 

[a] The k2 values for the reactions of 3–5 with (dpa)2CH
+
 (8g) deviate 

significantly from the linear correlation and have not been used for the 

determination of N and s. 
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For the reactions of 2,5-dimethylpyrrole (3) with (dpa)2CH
+
 (8g) pseudo-first order rate laws 

were only obeyed during the first three to four half-lives when the nucleophile was employed 

in higher excess ([3]/[8g] > 80). Possibly, the rate determining step is changing and 

deprotonation of the σ-complex becomes rate limiting in this case. Similar observations have 

been made when less than 20 equivalents of 1,2,5-trimethylpyrrole (5) were combined with 

(mpa)2CH
+
 (8e). 

When 1,2,5-trimethylpyrrole (4) reacted with (mpa)2CH
+
BF4

-
 (8e) in dichloromethane we 

obtained complex kinetics and even addition of an equimolar amount of the non-nucleophilic 

base N-methylmorpholine
[39, 40]

 resulted in complex kinetics that deviated from a first order 

behavior. The evaluation of the first three half-lives of these reactions resulted in k2 = 1.59 × 

10
3
 M

-1
s

-1
. When the same reactions were performed in acetonitrile solution, perfect first-order 

kinetics were obtained and the resulting k2 value is the same than the one in dichloromethane. 

A reactivity increase from dichloromethane to acetonitrile, as observed for the reactions of 

benzhydrylium ions with indoles (factor 2 to 3),
[41]

 therefore, does not occur in the analogoues 

reactions of pyrroles. 

The kinetics of the reactions of 5 with benzhydrylium ions 8 should be handled with care and 

are considered preliminary, as problems occurred when we wanted to reproduce these data. 

 

When we plotted the second-order rate constants k2 (as listed in Table 4.4) and the previously 

reported rate constants for the analogous reactions of N-methylpyrrole (2) against the 

electrophilicity parameters E of the benzhydrylium ions 8, linear correlations were obtained 

(Figure 4.3) that allowed the evaluation of the N and s parameters according to Equation (4.2). 

All correlation lines have slopes close to 1, i. e. the relative reactivities of the pyrroles are 

almost independent of the reaction partner. If a slope of 1.0 is also assumed for the parent 

pyrrole (1), one can calculate N = 4.63 for the unsubstituted pyrrole (1) from the previously 

published rate constant for its reaction with (pfa)2CH
+
 (8i), k2 = 31.2 M

-1
s

1
 in 

dichloromethane. For a slope of 1.0, the range from N = 4.63 (1) to N = 11.63 (6) corresponds 

to an increase of reactivity by a factor of 10 million by the three alkyl groups in 6. 
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Figure 4.3. Correlation of the rate constants lg k2 (20 °C, in CH3CN) for the reactions of 2–6 

with benzhydrylium ions 8 in relation to their electrophilicity parameters E; the 

values for N-methylpyrrole (2) are taken from ref. [33]. 

 

 

 

When we plotted the N values of the pyrroles 1–7 against the corresponding pKaH values 

(Table 4.5), a linear correlation is observed (N = 0.885pKaH + 8.506, r
2
 = 0.973, Figure 4.4).  

 

 

Table 4.5.  pKaH(H2O) of the pyrroles 1–6 from refs. 
[42, 43]

. 

 

 1 2 3 4 5 6 

pKaH –3.80 –2.90 –1.07
[a] 

–0.49
[a] 

2.55 3.75 

[a] pKaH values for β protonation in acidic aqueous solution; the values differ from the values 

reported by Butler et al. (pKaH(3) = –0.71 and pKaH(4) = –0.10, taken from ref. [11, 12]). 
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Figure 4.4. Correlation of the nucleophilicity parameters N of pyrroles 1–7 with the 

corresponding pKaH values (taken from refs. [42, 43], for 7 the line was extra-

polated). 

 

 

The slope of the line in Figure 4.4 corresponds directly to the Brønsted parameter for pyrroles 

as the average s parameter of the pyrroles equals 1. We can thus conclude that 88% of the 

changes of basicities of pyrroles are found as changes of nucleophilicity. 

Figure 4.4 can be used for indirect determination of the basicity of pyrroles whose pKaH 

values cannot be determined from equilibrium studies in strong acidic media, where pyrroles 

tend to oligomerize rapidly. The pKaH value of N-(triisopropylsilyl)pyrrole (7) derived from 

Figure 4.4 is –6.09. This value reflects the strong electron-withdrawing effect of the 

triisopropylsilyl group at the nitrogen atom. 
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4.2.3 Reactions of Pyrroles with Other Electrophiles 

 

 

In 1977 Butler et al. reported on the rate constants of the reactions of pyrroles 1–6 with 

various p-substituted arenediazonium ions 13 in acidic solution (Scheme 4.3).
[12]

  

 

H
N

Alkyl +
X

N2
H
N

Alkyl
N N

X

BF4

131−7  

 

Scheme 4.3. Reactions of pyrroles 1–6 with differently substituted aryldiazonium salts 13. 

 

Previously, we determined the rates of the reactions of various nucleophiles with 

arenediazonium salts in dichloromethane and determined the electrophilicity parameters E 

according to Equation (4.2).
[44]

 From these data we can now calculate rate constants which are 

directly comparable to those reported by Butler (Table 4.6). 

 

Table 4.6. Comparison of the rate constants for the reactions of pyrroles 1–6 with 

aryldiazonium salts 13 obtained by Butler
[12]

 and calculated by Equation (4.2). 

 

pyrrole X = OMe (13a) 

(E = –8.4)
[a] 

X = H (13b) 

(E = –7.2)
[a] 

X = NO2 (13c) 

(E = –5.1)
[a]

 

 k / M
-1

s
-1 [b] 

kcalc / M
-1

s
-1 [c] 

k / M
-1

s
-1 [b]

 kcalc / M
-1

s
-1 [c]

 k / M
-1

s
-1 [b]

 kcalc / M
-1

s
-1 [c]

 

1 2.8 0.0002 6.8 0.003 220 0.33 

2 10.9 0.003 25.2 0.05 1000 5.35 

3 9.8 0.39 32.5 6.98    –
[d] 

622 

4 11.8 1.87 24.4 24.7 1600 2265 

5 6800 154 13400 2738    –
[d] 

152757 

6 30500 2336 177000 42813    –
[d] 

1496236 

[a] Electrophilicity parameters E taken from ref. [45]. [b] Rate constants taken from ref. [12].  

[c] Calculated rate constants using Equation (4.2). [d] Not determined. 
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While calculated and experimental data for the azo-couplings with pyrroles 3–6 agree 

remarkably well within a factor of 2 to 20, the reported rate constants for the reactions with 

pyrrole (1) and N-methylpyrrole (2) are 190 to 14000 times larger than the calculated values. 

In view of the approximate nature of Equation (4.2) we do not want to claim that there is 

something wrong with the experimental data. However, it is at least surprising that the 

decrease of basicitiy from 3 and 4 to 1 and 2 is not accompanied by a reduced reactivity 

towards diazonium salts. 

Mitsumura et al. reported on rate constants for the reactions of pyrrole (1) and N-

methylpyrrole (2) in buffered aqueous solutions (pH = 6.3) at 20 °C
[46]

 and obtained even 

higher values for the reactions with 13a and 13b than Butler. The reaction of 1 and 2 with 13a 

is 5 times faster and the reaction with 13b about 50 times faster. The rates of the reactions of 

pyrroles in aqueous solution with arenediazonium salts are therefore strongly depending on 

the pH value. 

 

 

4.3 Conclusion 

 

The second-order rate constants of the reactions of four alkyl substituted pyrroles 3–6 with a 

series of benzhydrylium ions 8 have been determined in acetonitrile solution. The linear 

correlation of the logarithms of these k2 values with the electrophilicity parameters E allowed 

the determination of the N and s values of 3–6 according to Equation (4.2). With these 

findings a direct comparison of the nucleophilic reactivities of these π-excessive heterocycles 

with other nucleophiles became possible and the pyrroles were integrated into the 

comprehensive scale of nucleophilicity, covering a range of almost 9 orders of magnitude 

(Scheme 4.4). 

Thus, highly reactive alkyl-substituted pyrroles, such as kryptopyrrole (6, N = 11.63), show 

similar nucleophilic reactivity as enamines or silylketenacetals. The less reactive pyrroles 

show reactivities as other heterocycles (indoles) or silyl enol ethers. 

Since the nucleophilicity of the parent pyrrole (1) was only estimated and pyrroles bearing 

electron-withdrawing groups have not been investigated so far, future research in this field is 

desireable. Another interesting aspect for future research would be the examination of the 

reactions of pyrroles 3–5 with (dpa)2CH
+
 (8g) to find out why the rate constants of their 

combinations deviate from the linear correlation. 
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Scheme 4.4. N ranking of pyrroles (bold) in comparison to other nucleophiles. 
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4.4 Experimental Section 

 

 

4.4.1 General 

 

Acetonitrile was bought from Prolabo, kept dry over 3Å molecular sieve, packed under Argon 

and used as received. Pyrrole (1), N-methylpyrrole (2), 2,5-dimethylpyrrole (3), 1,2,5-

trimethylpyrrole (4), 2,4-dimethylpyrrole (5), 3-ethyl-2,4-dimethylpyrrole (6), N-(triiso-

propylsilyl)pyrrole (7) and 2,6-di-tert-butylpyridine were bought from Acros and distilled 

prior to use. The tetrafluoroborates of the benzhydrylium ions 8 have been synthesized by 

literature procedures.
[33]

 

1
H-NMR spectra have been recorded on Varian Mercury 200 (200 MHz), Bruker ARX 300 

(300 MHz) and Varian VXR 400 (400 MHz). Chemical shifts δ are reported in ppm in 

relation to the internal standard of the solvent (CD3CN: 1.94 ppm, CDCl3: 7.24 ppm) or TMS 

(0.00 ppm) as internal standard. Coupling constants are given in Hz, multiplicities are given 

as s (singulet), d (dublet), t (triplet), q (quartet) and m (multiplet). Broad signals are 

symbolized with “br”. 
13

C-NMR spectra were recorded on Bruker ARX 300 (75.5 MHz). 

Chemical shifts δ are reported in ppm in relation to the solvent signals as internal standard 

(CD3CN: 1.3 and 118.4 ppm, CDCl3: 77.0 ppm). Spin multiplicities were assigned according 

to DEPT135 spectra. Mass spectra have been recorded on MAT 95 Q by direct insertion of 

the samples. TLC was performed on silica gel 60 F254 alumina foils (neutral). The detection 

was done by UV light (254 or 366 nm).  

Slow reactions (τ1/2 > 5 s) were monitored with a J&M TIDAS DAD 2062 diode array 

spectrophotometer that was controlled by Labcontrol Spectacle software. A Hellma 661.502-

QX quartz Suprasil immersion probe (5 mm light path) via fiber optic cables and standard 

SMA connectors has been used. The kinetic experiments were carried out by dissolving the 

coloured electrophile and fast injection of the nucleophile solution via a Hamilton syringe. 

Fast reactions (τ1/2 < 5 s) were performed on a Hi-Tech SF-61DX2 stopped flow 

spectrophotometer. The kinetic experiments were initiated by rapidly mixing equal volumes 

of solutions of the nucleophiles and electrophiles. The observed rate constants kobs have been 

obtained from at least five runs at each nucleophile concentration. 

The temperature of all solutions was kept constant during all experiments (± 0.1 °C) by using 

a circulating bath thermostat and monitored by a thermocouple probe. 
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For the evaluation of the rate constants, absorption-time curves (which were taken up at 

wavelengths near to the absorption maxima of the electrophiles) were fitted to the single 

exponential function A = A0 · exp (-kobst) + C. 

 

 

4.4.2 Synthetic Experiments 

 

The products of the reactions of pyrrole (1), N-methylpyrrole (2) and N-(triisopropylsilyl)-

pyrrole (7) with benzhydrylium ions 8 have been characterized previously.
[33,37,38]

 

 

 

2,5-Dimethyl-3-[bis-(4-dimethylaminophenyl)methyl]-1H-pyrrole (9) 

H
N

Me

Me

N

N
Me

Me

Me

Me

1

2
3

4

5

6

7

7

7

7

 

9 

 

2,5-Dimethylpyrrole (3, 83 µL, 0.82 mmol) was dissolved in CH3CN (20 mL) and cooled to 

–15 °C (ice water/NaCl bath). The benzhydrylium tetrafluoroborate 8d-BF4 (136 mg,  

0.400 mmol) dissolved in CH3CN (100 mL) was dropped to the vigorously stirred solution 

over a period of 3 h, allowing the reaction mixture to decolorize after each drop. The 

brownish solution was then washed with ice water containing saturated NaCl solution (1 mL) 

and the phases were separated at low temperature (homogenization upon warm-up). The 

acetonitril solution was dried over Na2SO4 and evaporated (60 °C bath temperature and  

1 mbar for 1 h) to yield 9 as a light brown solid (90 mg, 0.26 mmol, 65%) which turned 

within minutes into a pink oil. 

 

1
H-NMR (300 MHz, CDCl3) δ = 2.02 (s, 3 H, 2-Me), 2.14 (s, 3 H, 5-Me), 2.93 (s,  

12 H, 7-H), 5.13 (s, 1 H, 6-H), 5.45 (s, 1 H, 4-H), 6.84 (d, 
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J = 8 Hz, 4 H, Ph), 7.09 (d, J = 8 Hz, 4 H, Ph), 7.58 (br. s, 

1 H, NH). 

13
C-NMR (75.5 MHz, CDCl3) δ = 9.5 (q), 11.2 (q), 40.2 (q), 45.1 (d), 105.2 (d), 112.4 

(d), 120.0 (s), 120.1 (s), 122.8 (s), 127.9 (d), 135.3 (s), 

145.2 (s). 

EI-MS (70 eV) m/z (%) = 348 (21), 347 (100) [M
+
], 346 (39). 333 (17), 

332 (52), 253 (17), 228 (16), 227 (71), 225 (43), 211 

(15); HR-EI-MS: calcd. for C23H29N3: 347.2361, found 

347.2352. 

 

 

1,2,5-Trimethyl-3-[bis-(4-dimethylaminophenyl)methyl]-1H-pyrrole (10) 

1
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Me
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Me

Me
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10 

 

1,2,5-Trimethylpyrrole (4, 95 µL, 0.80 mmol) was dissolved in CH3CN (20 mL) and cooled 

to –15 °C (ice water/NaCl bath). The benzhydrylium tetrafluoroborate 8d-BF4 (136 mg, 

0.400 mmol) dissolved in CH3CN (100 mL) was dropped to the vigorously stirred solution 

over a period of 1 h, allowing the reaction mixture to decolorize after each drop. The solution 

was then washed with ice-water (50 mL) containing saturated NaCl solution (1 mL) and the 

phases were separated at low temperature. The acetonitrile solution was dried over Na2SO4 

and evaporated (60 °C bath temperature and 1 mbar for 1 h) to yield 10 as a light ochre solid 

(98 mg, 0.27 mmol, 68%) which turned within minutes into a pink oil. 

 

1
H-NMR (300 MHz, CDCl3) δ = 2.03 (s, 3 H, 2-Me), 2.13 (s, 3 H, 5-Me), 2.95 (s,  

12 H, 7-H), 3.34 (s, 3 H, 1-Me), 5.16 (s, 1 H, 6-H), 5.44 

(s, 1 H, 4-H), 6.79 (d, J = 7 Hz, 4 H, Ph), 7.08 (d,  

J = 7 Hz, 4 H, Ph). 
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13
C-NMR (75.5 MHz, CDCl3) δ = 8.5 (q), 10.7 (q), 28.3 (q), 40.2 (q), 45.3 (d), 104.3 

(d), 112.1 (d), 119.2 (s), 121.9 (s), 124.4 (s), 127.9 (d), 

135.2 (s), 145.3 (s). 

EI-MS (70 eV) m/z (%) = 361 (42) [M
+
], 360 (15), 346 (39), 255 (20), 

254 (100), 253 (85), 241 (48), 240 (19), 239 (33), 237 

(22), 210 (34), 134 (56), 127 (20), 126 (32), 118 (22), 

109 (34), 108 (50); HR-EI-MS: calcd. for C24H31N3: 

361.2518, found 361.2516. 

 

 

3,5-Dimethyl-2-[bis-(4-dimethylaminophenyl)methyl]-1H-pyrrole (11) 
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11 

 

2,4-Dimethylpyrrole (5, 82 µL, 0.80 mmol) was dissolved in CH3CN (20 mL) and cooled to 

–15 °C (ice water/NaCl bath). The benzhydrylium tetrafluoroborate 8d-BF4  

(136 mg, 0.40 mmol) dissolved in CH3CN (100 mL) was added in small portions to the 

vigorously stirred solution within 15 min, allowing the reaction mixture to decolorize after 

each addition. The solution was then washed with ice-water (50 mL) containing saturated 

NaCl solution (1 mL) and the phases were separated at low temperature. The acetonitrile 

solution was dried over Na2SO4 and evaporated (60 °C bath temperature and 1 mbar for 1 h) 

to yield 11 as an almost colorless residue (104 mg, 0.370 mmol, 93%) which turned within 

minutes into a pink oil. 

 

1
H-NMR (300 MHz, CDCl3) δ = 1.85 (s, 3 H, 5-Me), 2.13 (s, 3 H, 3-Me), 2.94 (s,  

12 H, 7-H), 5.33 (s, 1 H, 6-H), 5.70 (s, 1 H, 4-H), 6.73 (d, 
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J = 8 Hz, 4 H, Ph), 7.00 (d, J = 8 Hz, 4 H, Ph), 7.11 (br. s, 

1 H, NH). 

13
C-NMR (75.5 MHz, CDCl3) δ = 11.1 (q), 13.0 (q), 41.2 (q), 46.5 (d), 108.2 (d), 113.2 

(d), 114.5 (s), 124.9 (s), 128.1 (s), 129.5 (d), 132.9 (s), 

148.4 (s). 

EI-MS (70 eV) m/z (%) = 347 (9) [M
+
], 255 (20), 254 (100), 253 (92), 

240 (17), 239 (19), 237 (24), 211 (13), 210 (39), 134 

(38), 126 (16), 120 (18), 118 (23); HR-EI-MS: calcd. for 

C23H29N3: 347.2361, found 347.2347. 

 

 

2,5-Dimethyl-3-[bis-(4-dimethylaminophenyl)methyl]-4-ethyl-1H-pyrrole (12) 
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The benzhydrylium tetrafluoroborate 8d-BF4 (136 mg, 0.400 mmol) was dissolved in 

CH3CN (50 mL), cooled down to –15 °C and a solution of 3-ethyl-2,4-dimethylpyrrole (6, 

100 µL, 0.740 mmol) in CH3CN (20 mL) was allowed to drop to the blue reaction mixture. 

After the addition of 11.4 mL, the blue color faded and a slightly brown clear solution was 

obtained (0.42 mmol of 6 have been used). The solution was then washed with ice water (50 

mL) containing saturated NaCl solution (1 mL) and the phases were separated at low 

temperature. The acetonitrile solution was dried over Na2SO4 and evaporated to yield 12 as a 

colorless oil (116 mg, 0.310 mmol, 78%) which turned within minutes into a pink oil. 

 

1
H-NMR (300 MHz, CDCl3) δ = 1.05 (t, J = 9 Hz, 3 H, CH2CH3), 1.79 (s, 3 H, 5-Me), 

2.07 (s, 3 H, 3-Me), 2.36 (q, J = 9 Hz, 2 H, CH2CH3), 

2.99 (s, 12 H, 7-H), 5.20 (br. s, 1 H, NH), 5.36 (s, 1 H,  
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6-H), 6.93 (d, J = 8 Hz, 4 H, Ph), 7.04 (d, J = 8 Hz, 4 H, 

Ph). 

13
C-NMR (75.5 MHz, CDCl3) δ = 7.5 (q), 9.3 (q), 13.9 (q), 15.9 (t), 40.5 (q), 45.2 (d), 

111.8 (s), 113.1 (d), 119.0 (s), 119.2 (s), 124.1 (s), 128.0 

(d), 133.8 (s), 144.9 (s). 

EI-MS (70 eV) m/z (%) = 375 (26) [M
+
], 360 (20), 256 (16), 255 (42), 

253 (100), 252 (93), 241 (27), 240 (21), 239 (30), 237 

(21), 212 (18), 210 (34), 164 (25), 150 (17), 136 (17), 

134 (33), 126 (17), 120 (17), 118 (16), 108 (27); HR-EI-

MS: calcd. for C25H33N3: 375.2674, found 375.2669. 

 

 

4.4.3 Kinetic Measurements 

 

Rate constants for the reactions of pyrrole (1) with (pfa)2CH
+
BF4

-
 (8i-BF4),

[37]
 of N-methyl- 

pyrrole (2) with (dma)2CH
+
BF4

-
 (8d-BF4),

[38]
 (mor)2CH

+
BF4

-
 (8f-BF4),

[33]
 Mn(CO)3(η·C7H8)

+ 

[38]
 and fc(Ph)CHOAc

[38]
 and of N-(triisopropylsilyl)pyrrole (7) with (dpa)2CH

+
BF4

-
 (8h-

BF4),
[37]

 (mfa)2CH
+
BF4

-
 (8h-BF4)

[37]
 and (pfa)2CH

+
BF4

-
 (8i-BF4)

 [37]
 have already been 

reported. 

 

Unfilled dots in kobs vs [nucleophile] plots were not used for the determination of k2. 

 

 

Table 4.7. Rate constants for the reactions of 2,5-dimethylpyrrole (3) with (pyr)2CH
+
BF4

-
 

(8c-BF4) in CH3CN (J&M, 20 °C, λ = 622 nm). 

 

no. [8c]0 / M [3]0 / M [3]0 / [8c]0 conv. / % kobs /s
-1 

1 1.09 × 10
-5 

2.28 × 10
-4 

21 96 3.19 × 10
-4

 

2 1.04 × 10
-5

 4.37 × 10
-4

 42 99 6.46 × 10
-4

 

3 1.04 × 10
-5

 6.23 × 10
-4

 60 99 1.01 × 10
-3

 

4 1.06 × 10
-5

 8.31 × 10
-4

 78 99 1.19 × 10
-3

 

5 1.05 × 10
-5

 1.07 × 10
-3

 102 97 1.50 × 10
-3
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Table 4.8. Rate constants for the reactions of 2,5-dimethylpyrrole (3) with (mpa)2CH
+
BF4

-
 

(8e-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 622 nm). 

 

no. [8e]0 / M [3]0 / M [3]0 / [8e]0 kobs /s
-1 

1 1.32 × 10
-5 

2.13 × 10
-4 

16 5.33 × 10
-2

 

2 1.32 × 10
-5

 4.27 × 10
-4

 32 1.03 × 10
-1

 

3 1.32 × 10
-5

 6.40 × 10
-4

 49 1.58 × 10
-1

 

4 1.32 × 10
-5

 8.54 × 10
-4

 65 1.92 × 10
-1

 

5 1.32 × 10
-5

 1.03 × 10
-3

 78 2.35 × 10
-1
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Table 4.9. Rate constants for the reactions of 2,5-dimethylpyrrole (3) with (mor)2CH
+
BF4

-
 

(8f-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 620 nm). 

 

no. [8f]0 / M [3]0 / M [3]0 / [8f]0 kobs /s
-1 

1 1.51 × 10
-5 

2.13 × 10
-4 

14 5.69 × 10
-2

 

2 1.51 × 10
-5

 4.27 × 10
-4

 28 1.14 × 10
-1

 

3 1.51 × 10
-5

 6.40 × 10
-4

 42 1.80 × 10
-1

 

4 1.51 × 10
-5

 8.54 × 10
-4

 56 2.18 × 10
-1

 

5 1.51 × 10
-5

 1.03 × 10
-3

 68 2.65 × 10
-1
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R2 = 0.994
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. 

 

 

Table 4.10. Rate constants for the reactions of 2,5-dimethylpyrrole (3) with (dpa)2CH
+
BF4

-
 

(8g-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 672 nm). 

 

no. [8g]0 / M [3]0 / M [3]0 / [8g]0 kobs /s
-1 

1 3.54 × 10
-5 

7.12 × 10
-4 

20 2.30 × 10
1
 

2 3.54 × 10
-5

 1.43 × 10
-3

 40 4.87 × 10
1
 

3 3.54 × 10
-5

 2.14 × 10
-3

 60 7.60 × 10
1
 

4 3.54 × 10
-5

 2.85 × 10
-3

 81 1.06 × 10
2
 

5 3.54 × 10
-5

 3.56 × 10
-3

 101 1.32 × 10
2
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y = 43140x + 6E-01
R2 = 0.961
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Table 4.11. Rate constants for the reactions of 2,5-dimethylpyrrole (3) with (mfa)2CH
+
BF4

-
 

(8h-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 593 nm). 

 

no. [8h]0 / M [3]0 / M [3]0 / [8h]0 kobs /s
-1 

1 1.25 × 10
-5 

1.32 × 10
-4 

11 9.05 × 10
-1

 

2 1.25 × 10
-5

 2.48 × 10
-4

 20 1.76 × 10
0
 

3 1.25 × 10
-5

 4.97 × 10
-4

 40 3.59 × 10
0
 

4 1.25 × 10
-5

 7.45 × 10
-4

 60 5.50 × 10
0
 

5 1.25 × 10
-5

 9.93 × 10
-4

 80 7.16 × 10
0
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Table 4.12. Rate constants for the reactions of 1,2,5-trimethylpyrrole (4) with (ind)2CH
+
BF4

-
 

(8b-BF4) in CH3CN (J&M, 20 °C, λ = 639 nm). 

 

no. [8b]0 / M [4]0 / M [4]0 / [8b]0 conv. / % kobs /s
-1 

1 1.08 × 10
-5 

2.23 × 10
-4 

21 84 2.35 × 10
-4

 

2 1.10 × 10
-5

 4.51 × 10
-4

 41 99 4.92 × 10
-4

 

3 1.05 × 10
-5

 6.48 × 10
-4

 62 98 6.51 × 10
-4

 

4 1.11 × 10
-5

 8.79 × 10
-4

 79 99 9.29 × 10
-4

 

5 1.15 × 10
-5

 1.18 × 10
-3

 103 95 1.25 × 10
-3

 

 

y = 1.06x - 2E-06
R2 = 0.998
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Table 4.13. Rate constants for the reactions of 1,2,5-trimethylpyrrole (4) with (pyr)2CH
+
BF4

-
 

(8c-BF4) in CH3CN (J&M, 20 °C, λ = 639 nm). 

 

no. [8c]0 / M [4]0 / M [4]0 / [8c]0 conv. / % kobs /s
-1 

1 1.14 × 10
-5 

1.22 × 10
-4 

11 66 5.89 × 10
-4

 

2 1.17 × 10
-5

 2.48 × 10
-4

 21 81 1.65 × 10
-3

 

3 1.08 × 10
-5

 6.44 × 10
-4

 60 93 4.94 × 10
-3

 

4 1.13 × 10
-5

 9.14 × 10
-4

 81 92 6.82 × 10
-3

 

5 1.05 × 10
-5

 1.07 × 10
-3

 102 83 7.86 × 10
-3
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y = 7.72x - 3E-04
R2 = 0.998
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Table 4.14. Rate constants for the reactions of 1,2,5-trimethylpyrrole (4) with 

(mpa)2CH
+
BF4

-
 (8e-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 622 nm). 

 

no. [8e]0 / M [4]0 / M [4]0 / [8e]0 kobs /s
-1 

1 1.39 × 10
-5 

2.78 × 10
-4 

20 3.77 × 10
-1

 

2 1.39 × 10
-5

 5.56 × 10
-4

 40 7.98 × 10
-1

 

3 1.39 × 10
-5

 8.52 × 10
-4

 61 1.20 × 10
0
 

4 1.39 × 10
-5

 1.11 × 10
-3

 80 1.73 × 10
0
 

5 1.39 × 10
-5

 1.41 × 10
-3

 101 1.58 × 10
0
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Table 4.15. Rate constants for the reactions of 1,2,5-trimethylpyrrole (4) with 

(mor)2CH
+
BF4

-
 (8f-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 620 nm). 

 

no. [8f]0 / M [4]0 / M [4]0 / [8f]0 kobs /s
-1 

1 1.41 × 10
-5 

2.78 × 10
-4 

20 4.97 × 10
-1

 

2 1.41 × 10
-5

 5.56 × 10
-4

 39 1.02 × 10
0
 

3 1.41 × 10
-5

 8.52 × 10
-4

 60 1.51 × 10
0
 

4 1.41 × 10
-5

 1.11 × 10
-3

 79 2.01 × 10
0
 

5 1.41 × 10
-5

 1.41 × 10
-3

 100 2.43 × 10
0
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Table 4.16. Rate constants for the reactions of 1,2,5-trimethylpyrrole (4) with (dpa)2CH
+
BF4

-
 

(8g-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 672 nm). 

 

no. [8g]0 / M [4]0 / M [4]0 / [8g]0 kobs /s
-1 

1 2.69 × 10
-5 

2.55 × 10
-4 

9 2.73 × 10
1
 

2 2.69 × 10
-5

 5.64 × 10
-4

 21 6.37 × 10
1
 

3 2.69 × 10
-5

 8.15 × 10
-4

 30 1.02 × 10
2
 

4 2.69 × 10
-5

 1.07 × 10
-3

 40 1.18 × 10
2
 

5 2.69 × 10
-5

 1.38 × 10
-3

 51 1.59 × 10
2
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y = 115300x + 2E-02
R2 = 0.991

0

20

40

60

80

100

120

140

160

180

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

[4] / M

k
ob

s
 / 

s
-1

 

k2 = 1.15 × 10
5
 M

-1
 s

-1
. 

 

 

Table 4.17. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (lil)2CH
+
BF4

-
 

(8a-BF4) in CH3CN (J&M, 20 °C, λ = 639 nm). 

 

no. [8a]0 / M [5]0 / M [5]0 / [8a]0 conv. / % kobs /s
-1 

1 1.11 × 10
-5 

1.93 × 10
-4 

18 56 1.17 × 10
-3

 

2 9.82 × 10
-4

 4.00 × 10
-4

 41 68 1.24 × 10
-3

 

3 1.09 × 10
-5

 6.35 × 10
-4

 58 73 2.79 × 10
-3

 

4 1.06 × 10
-5

 8.64 × 10
-4

 82 85 3.16 × 10
-3

 

5 1.04 × 10
-5

 1.03 × 10
-3

 99 80 4.34 × 10
-3

 

 

 

y = 3.78x + 4E-04
R2 = 0.999
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Table 4.18. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (ind)2CH
+
BF4

-
 

(8b-BF4) in CH3CN (J&M, 20 °C, λ = 625 nm). 

 

no. [8b]0 / M [5]0 / M [5]0 / [8b]0 conv. / % kobs /s
-1 

1 1.28 × 10
-5

 1.20 × 10
-4

 9 99 5.04 × 10
-3

 

2 1.36 × 10
-5

 4.42 × 10
-4

 33 98 1.93 × 10
-2

 

3 1.28 × 10
-5

 6.55 × 10
-4

 51 99 2.85 × 10
-2

 

4 1.30 × 10
-5

 9.06 × 10
-4

 70 99 3.98 × 10
-2

 

5 1.22 × 10
-5

 1.14 × 10
-3

 93 99 5.55 × 10
-2
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Table 4.19. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (pyr)2CH
+
BF4

-
 

(8c-BF4) in CH3CN (J&M, 20 °C, λ = 620 nm). 

 

no. [8c]0 / M [5]0 / M [5]0 / [8c]0 conv. / % kobs /s
-1 

1 1.40 × 10
-5

 1.65 × 10
-4

 12 95 4.69 × 10
-2

 

2 1.44 × 10
-5

 3.39 × 10
-4

 24 82 8.43 × 10
-2

 

3 1.31 × 10
-5

 5.53 × 10
-4

 42 96 1.71 × 10
-1

 

4 1.37 × 10
-5

 1.09 × 10
-3

 80 97 3.82 × 10
-1

 

5 1.41 × 10
-5

 1.46 × 10
-3

 104 97 4.53 × 10
-1
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y = 318x - 1E-02
R2 = 0.998
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Table 4.20. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (mpa)2CH
+
BF4

-
 

(8e-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 622 nm). 

 

no. [8e]0 / M [5]0 / M [5]0 / [8e]0 kobs /s
-1 

1 6.33 × 10
-6 

1.29 × 10
-4 

20 5.96 × 10
0
 

2 6.33 × 10
-6

 2.58 × 10
-4

 41 1.26 × 10
1
 

3 6.33 × 10
-6

 3.87 × 10
-4

 61 2.47 × 10
1
 

4 6.33 × 10
-6

 5.16 × 10
-4

 82 2.60 × 10
1
 

5 6.33 × 10
-6

 6.45 × 10
-4

 102 2.83 × 10
1
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Table 4.21. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (mor)2CH
+
BF4

-
 

(8f-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 620 nm). 

 

no. [8f]0 / M [5]0 / M [5]0 / [8f]0 kobs /s
-1 

1 1.41 × 10
-5 

2.94 × 10
-4 

21 1.42 × 10
1
 

2 1.41 × 10
-5

 5.89 × 10
-4

 42 2.74 × 10
1
 

3 1.41 × 10
-5

 8.41 × 10
-4

 59 3.95 × 10
1
 

4 1.41 × 10
-5

 1.14 × 10
-3

 80 5.26 × 10
1
 

5 1.41 × 10
-5

 1.43 × 10
-3

 101 6.72 × 10
1
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Table 4.22. Rate constants for the reactions of 2,4-dimethylpyrrole (5) with (dpa)2CH
+
BF4

-
 

(8g-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 672 nm). 

 

no. [8g]0 / M [5]0 / M [5]0 / [8g]0 kobs /s
-1 

1 6.33 × 10
-6 

1.29 × 10
-4 

20 2.33 × 10
2
 

2 6.33 × 10
-6

 2.58 × 10
-4

 41 5.12 × 10
2
 

3 6.33 × 10
-6

 3.87 × 10
-4

 61 1.29 × 10
3
 

4 6.33 × 10
-6

 5.16 × 10
-4

 82 1.10 × 10
3
 

5 6.33 × 10
-6

 6.45 × 10
-4

 102 1.41 × 10
3
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y = 2277246x - 7E+01
R2 = 1.00
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Table 4.23. Rate constants for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

(lil)2CH
+
BF4

-
 (8a-BF4) in CH3CN (J&M, 20 °C, λ = 639 nm). 

 

no. [8a]0 / M [6]0 / M [6]0 / [8a]0 conv. / % kobs /s
-1 

1 9.29 × 10
-6

 8.03 × 10
-5

 9 78 3.64 × 10
-3

 

2 9.18 × 10
-6

 1.98 × 10
-4

 22 88 8.90 × 10
-3

 

3 8.98 × 10
-6

 5.42 × 10
-4

 61 87 2.38 × 10
-2

 

4 9.04 × 10
-6

 7.03 × 10
-4

 78 92 2.88 × 10
-2

 

5 8.84 × 10
-6

 8.79 × 10
-4

 96 94 3.56 × 10
-2

 

 

 

y = 40.0x + 9E-04
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Table 4.24. Rate constants for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

(ind)2CH
+
BF4

-
 (8b-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 625 nm). 

 

no. [8b]0 / M [6]0 / M [6]0 / [8b]0 kobs /s
-1 

1 1.62 × 10
-5 

3.32 × 10
-4 

20 1.48 × 10
-1

 

2 1.62 × 10
-5

 6.47 × 10
-4

 40 2.85 × 10
-1

 

3 1.62 × 10
-5

 9.79 × 10
-4

 60 4.35 × 10
-1

 

4 1.62 × 10
-5

 1.30 × 10
-3

 80 5.81 × 10
-1

 

5 1.62 × 10
-5

 1.58 × 10
-3

 97 7.11 × 10
-1

 

 

y = 453x - 5E-03
R2 = 0.999
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. 

 

 

Table 4.25. Rate constants for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

(pyr)2CH
+
BF4

-
 (8c-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 620 nm). 

 

no. [8c]0 / M [6]0 / M [6]0 / [8c]0 kobs /s
-1 

1 1.51 × 10
-5 

2.71 × 10
-4 

18 1.05 × 10
0
 

2 1.51 × 10
-5

 5.64 × 10
-4

 37 2.15 × 10
0
 

3 1.51 × 10
-5

 8.32 × 10
-4

 55 3.21 × 10
0
 

4 1.51 × 10
-5

 1.13 × 10
-3

 75 4.34 × 10
0
 

5 1.51 × 10
-5

 1.40 × 10
-3

 92 5.36 × 10
0
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y = 3832x + 5E-03
R2 = 1.000
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Table 4.26. Rate constants for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

(mpa)2CH
+
BF4

-
 (8e-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 622 nm). 

 

no. [8e]0 / M [6]0 / M [6]0 / [8e]0 kobs /s
-1 

1 1.63 × 10
-5 

1.58 × 10
-4 

10 6.70 × 10
1
 

2 1.63 × 10
-5

 3.32 × 10
-4

 20 1.50 × 10
2
 

3 1.63 × 10
-5

 6.47 × 10
-4

 40 2.99 × 10
2
 

4 1.63 × 10
-5

 9.79 × 10
-4

 60 5.51 × 10
2
 

5 1.63 × 10
-5

 1.30 × 10
-3

 80 8.13 × 10
2
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Table 4.27. Rate constants for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

(mor)2CH
+
BF4

-
 (8f-BF4) in CH3CN (Stopped-flow, 20 °C, λ = 620 nm). 

 

no. [8f]0 / M [6]0 / M [6]0 / [8f]0 kobs /s
-1 

1 1.34 × 10
-5 

1.35 × 10
-4 

10 5.38 × 10
1
 

2 1.34 × 10
-5

 2.71 × 10
-4

 20 1.19 × 10
2
 

3 1.34 × 10
-5

 5.64 × 10
-4

 42 2.47 × 10
2
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Correlations of the second-order rate constants k2 (20 °C) of the reactions of the pyrroles 3–6 

with the benzhydrylium ions 8a–c, 8e, 8f, 8h and 8i in CH3CN at 20 °C versus the 

corresponding E parameters of these benzhydrylium ions and resulting N- and s-parameters 

for 3–6 (Figures 4.5 to 4.8). 
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Figure 4.5. Plot of lg k2 versus E for the reactions of 2,5-dimethylpyrrole (3) with 8c and  

8e–h to yield N = 8.01 and s = 0.97. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Plot of lg k2 vs E for the reactions of 1,2,5-trimethylpyrrole (4) with 8b, 8c, 

8e–g, to yield N = 8.69 and s = 1.07. 
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Figure 4.7. Plot of log k2 versus E for the reactions of 2,4-dimethylpyrrole (5) with 8a–c,  

 8e, 8f and 8g to yield N = 10.49 and s = 0.96. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Plot of log k2 versus E for the reactions of 3-ethyl-2,4-dimethylpyrrole (6) with 

8a–c, 8e and 8f to yield N = 11.63 and s = 0.95. 
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4.5 Appendix: NMR Spectra of Compounds 9–12 
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Chapter 5 

Electrophilic Allylations and Benzylations in Neutral 
Aqueous and Alcoholic Solutions 
 

This chapter was published by M. Westermaier and H. Mayr in Org. Lett. 2006, 8, 4791–

4794. 

 

5.1 Introduction 

 

Among the numerous methods to synthesize substituted indoles, substitution reactions play an 

important role, among which Friedel-Crafts type reactions are relatively rare. While the 

BF3·OEt2 induced prenylation of indole with prenyl pyrophosphate gave only 26% of 3-

prenylated indoles (Scheme 5.1),
[1]

 electrophilic allylations of indoles with allyl bromides in 

the presence of 1.2 equivalents of zinc triflate, tetrabutylammonium iodide (1 equiv.) and 

Hünig’s base (2.2 equiv.) in toluene have been reported to give 30–60% of 3-allylated 

products (Scheme 5.2).
[2] 

 

N
H

N
H

N
H

O P O
O

O

BF3·OEt2

·

DMF, 25 °C, 13 h

+

(21%) (5%)  

 

Scheme 5.1. BF3·OEt2 catalyzed prenylation of indole with prenyl diisopropyl phosphate to 

yield a mixture of 3-prenylated product and the inverse prenylated product.
[1] 

 

 

Transition metal catalyzed allylations at the 3-position have been performed with Mo(II),
[3]

 

Ni(II),
[4]

 and Pd(0) or Pd(II) complexes,
[5, 6]

 and Pd-catalyzed allylations of 3-substituted 

indoles have also been used for the enantioselective synthesis of 3,3-disubstituted-3H-

indoles.
[7]
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H

RZn(OTf)2   [1.2 eq],
Bu4NI   [1.0 eq]

abs. toluene, 25 °C

N [2.2 eq]

R Br

 

 

Scheme 5.2. Allylation of indole with allyl bromides in the presence of Zn(OTf)2, Bu4NI 

and Hünig’s base to yield exclusively 3-substituted indoles.
[2] 

 

 

An alternative approach employs zinc- or gallium-mediated Barbier reactions,
[8, 9]

 where the 

initially formed allylmetal compounds deprotonate indoles to yield N-metalated indoles, 

which act as nucleophiles in the succeeding SN2 reactions to give good yields of the 3-

allylated indoles (Scheme 5.3).
[10]

 

 

N
H

N
H

·

Br R
R

Zn, THF

or

Ga, Bu4NBr
  H2O/DMF  

 

Scheme 5.3. Barbier reactions of indoles with allyl halides in the presence of Zn or Ga.
[8, 9]

 

 

 

In contrast, Li and Na salts of indoles are predominantly alkylated and allylated at the 

nitrogen atom.
[11, 12]

 

The 3-allylation of N-substituted indoles has also been achieved via 3-halogenation followed 

by halogen-metal exchange and consecutive treatment with allyl halides (Scheme 5.4).
[13, 14]
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Scheme 5.4. Indole prenylation by halogenation and halogen-metal exchange.
[14]

 

 

 

The isolation of up to 30% 3-prenylindole from indole and prenyl bromide in buffered 

aqueous solutions by Casnati and co-workers
[15]

 is of particular interest for this investigation 

because this observation indicates that indole can successively compete with the buffer 

system in the trapping of the intermediate prenyl cation (Scheme 5.5). 

 

N
H

Br

NaOAc/HOAc/H2O N
H

5 h, 30%  

 

Scheme 5.5. Reaction of prenylbromide with indole in buffered aqueous solutions.
[15]
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5.2 Results and Discussion 

 

We now report a novel approach to 3-substituted indoles which compares well with the best 

yields obtained previously but considerably exceeds previous methods with respect to its 

simplicity. 

Previously, we have shown that the rates of the reactions of carbocations with n-, π- and σ-

nucleophiles can be described by Equation (5.1).
[16-18]

 

 

lg k = s(N + E) (5.1) 

 

In Equation (5.1), k is a second order rate constant at 20 °C (M
–1

s
–1

), s is a nucleophile-

specific slope parameter, N a nucleophile-specific parameter, and E is an electrophile-specific 

parameter. 

Since Equation (5.1) also holds for the reactions of carbocations with solvents,
[19]

 it can be 

employed to predict the relative reactivities of π-nucleophiles and solvents towards 

carbocations which are generated as intermediates of SN1 processes. Stimulated by our 

reactivity scales which revealed many electron-rich π-systems being more nucleophilic than 

aqueous acetone or aqueous acetonitrile,
[19, 20]

 we have recently introduced a novel protocol 

for Friedel-Crafts alkylations under neutral or slightly basic conditions by trapping the 

intermediates of SN1 reactions in aqueous solutions with electron-rich π-systems.
[21, 22]

 

We now report that this method can be employed for the mild and efficient allylation and 

benzylation of indoles by dissolving indoles and SN1 active allyl and benzyl halides in 

aqueous acetone or acetonitrile in the presence of a base (Scheme 5.6). 

 

R X

aq. acetone

R+

R OH

N
R'

R

N
R'

H2O

1a (R' = H)
1b (R' = Me)  

 

Scheme 5.6. Trapping of SN1 intermediates by indoles 1. 
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5.2.1 Optimization of the Reaction Conditions 

 

In order to optimize the reaction conditions we examined the reaction of indole (1a) with  

(E)-4-chloropent-2-ene (2) under various conditions (Scheme 5.7). Acid catalysis by the 

liberated HCl was excluded by performing the reactions in the presence of a base; 

bisallylation was avoided by employing five equivalents of 1a.  

 

N
H

+
Cl base

solvent
1 h, 20 °C

N
H

+
N
H

1a 2 3a 3b  

 

Scheme 5.7. Reactions of indole (1a) with (E)-4-chloro-pent-2-ene (2) under various 

conditions. 

 

 

 

Table 5.1 shows that comparable yields of allylation products were obtained when the 

reactions were performed in 90% aqueous acetonitrile (N1 = 4.56, s = 0.94)
[19]

 or 80% 

aqueous acetone (N1 = 5.77, s = 0.87)
[20]

 using Na2CO3, NaHCO3 or NH4HCO3 as base.  

The yields were less satisfactory when 2,2,2-trifluoroethanol was used as solvent. Possibly, 

the acidity of this solvent (pKa = 12.3)
[23]

 is responsible for the formation of some oligomers 

of indole.
[24]
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Table 5.1. Product ratios and yields of the reactions of indole (1a) with (E)-4-chloro-pent-

2-ene (2) isolated after 1 h at ambient temperature. 

 

no. solvent N
[a] 

base
[b] 

 ratio 3a:3b
[c] 

yield 3a + 3b
[d] 

1 90% aq. acetonitrile 4.56 Na2CO3  (2.0) 80:20 99 

2   NH4HCO3 (2.0) 83:17 96 

3   2,6-lutidine (1.2) 67:33 97 

4 80% aq. acetone 5.77 Na2CO3 (2.0) 78:22 96 

5   NaHCO3 (2.0) 80:20 95 

6   NH4HCO3 (1.0) 81:19 95 

7   NH4HCO3 (2.0) 80:20 99 

8 2,2,2-trifluoroethanol 1.23 NH4HCO3 (2.0) 77:23 73 

[a] Nucleophilicity parameters of the solvents used from refs. [19, 20]. [b] Equivalents of the 

auxiliary base relative to the electrophile are given in parentheses. [c] Peak areas (determined 

by GC-MS of the crude products). [d] Based on the isolated yield of pure 3a which was 

obtained after column chromatography (in %). 
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5.2.2 Scope of the Method 

 

The conditions of experiment no. 7 (Table 5.1), i.e. dissolving the reactants in 80% aqueous 

acetone in the presence of NH4HCO3, were then employed for the reactions of various SN1-

reactive allyl and benzyl halides 4–10 with the indoles 1a and 1b (Scheme 5.8). The reactions 

were monitored by GC-MS and interrupted after complete consumption of 4–10 or after three 

days. 

N
R'

+ R X

acetone/water
 (v/v = 80/20)

NH4HCO3, 20 °C N
R'

R

N
R'

R+

1a (R' = H)
1b (R' = Me)

4−10 (11−−−−17)a (11−−−−17)b
(18−−−−23)a (18−−−−23)b

R' = H:
R' = Me:  

 

Scheme 5.8. Reactions of indoles 1 with allyl and benzyl halides 4–10. 

 

 

The reactions with indole (1a) gave mixtures of 3- and 2-allylated indoles in moderate to very 

good yields, when disubstitution was suppressed by employing 5 equivalents of 1a  

(Table 5.2).  

When indole (1a, 10 mmol), prenyl bromide (4b, 8.3 mmol), and NH4HCO3 (10 mmol) were 

stirred in 80% aqueous acetone (25 mL) for 1 h at room temperature, a significant amount of 

2,3-diprenylindole [2,3-bis(2-methylpropenyl)-1H-indole, 11c] was formed, and only 54% of 

11a could be isolated. Under the same conditions, disubstitution was favored when 4b was 

used in excess, and compound 11c was obtained as the major product (83% by GC-MS) from 

a 1:4-mixture of 1a and 4b. Because of the longer retention times of the 2-substituted isomers 

(11-13)b, the predominantly formed 3-substitution products (11-13)a could be obtained as 

pure isomers by chromatography on silica gel. Generally, the allyl bromides reacted faster and 

gave better yields than the corresponding chlorides. Exclusive 3-attack was observed when 

indole (1a) was treated with 3-bromocyclohexene (8) in 90% aqueous acetonitrile (Table 5.2, 

Entry 9). Surprisingly, the corresponding reaction in 80% aqueous acetone gave only 27% of 

15a along with cyclohex-2-enol as the major product. In the case of 14a/b, 16a/b and 17a/b, 

the trace amounts of the 2-isomers were not removed by chromatography, and pure 17a was 

obtained by crystallization. While the 1,1-dialkyl-substituted allyl cations derived from the 

allyl halides 4 and 5 were selectively attacked at the terminal position of the allyl cation, 
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Table 5.2. Reactions of indole (1a) with allyl and benzyl halides 4–10 in 80% aqueous 

acetone. 

 

no. electrophile time / h product ratio
[a] 

yield / %
[b] 

1 
Cl 

4a 8 11a:11b (91:  9) 87 (79) 

2 
Br 

4b 2 11a:11b (91:  9) 99 (91) 

3 
Cl

 
5a 24 12a:12b (92:  8) 34 (31) 

4 
Br

 
5b 1 12a:12b (92:  8) 60 (56) 

5 Ph Cl 6a 72 13a:13c (62:10)
[c] 

22 
[d] 

6 Ph Br 6b 24 13a:13c (61:13)
[e] 

71 
[d] 

7 
Ph Ph

Cl

 
7a 72 –  –  

8 
Ph Ph

Br

 
7b 48 14a.14b (93:  7) 60 (56) 

9 Br
 

8 0.5 15a:15b (99:  1) 70 (70)
[f] 

10 
Cl 

9 24 16a:16b (94:  6) 51 
[g] 

11 
O

O

Cl

 
10 24 17a:17b (92:  8) 86 (79)

[h] 

[a] Peak areas (determined by GC-MS of the crude products). [b] Isolated yields of 

the mixtures of the 3-substituted indoles (a isomers) and 2-substituted products  

(b isomers); the number in parentheses is the isolated yield of the pure a isomers. 

[c] Besides 13a and 3-(1-phenylallyl)-1H-indole (13c), a third isomer was detected 

by GC-MS (28%, possibly 13b). [d] 8:1-mixture of 13a and 13c. [e] A third isomer 

was detected by GC-MS (26%, possibly 13b). [f] Reaction performed in 90% 

aqueous acetonitrile. [g] 10:1-mixture of 16a and 16b. [h] 15:1-mixture of 17a and 

17b. 
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the 1-phenylallyl cation arising from 6a/b was attacked at both allylic termini, with attack at 

the nonsubstituted allylic position predominating. As previously reported for Lewis acid 

catalyzed allylations of π-nucleophiles,
[25, 26]

 the regioselectivity of attack is predominantly 

controlled by steric effects, and not by LUMO coefficients or charge distribution in the allyl 

cations.
[27]

 Entries 10 and 11 of Table 5.2 show that this novel type of electrophilic 

substitutions of indoles is not restricted to allyl halides, but can also be employed for other 

types of SN1 active substrates like benzyl halides. 

Similar reactions were observed with N-methylindole (1b, Table 5.3). Preferential 3-attack is 

generally accompanied by some 2-attack, but 3-bromocyclohexene (8) again attacks the  

3-position of 1b selectively. As before, the reaction with 8 has to be carried out in 90% 

aqueous acetonitrile because cyclohex-2-enol is the major product in 80% aqueous acetone. 

 

 

Table 5.3. Reactions of N-methylindole (1b) with allyl and benzyl halides 2–10 in 80% 

aqueous acetone at room temperature. 

 

no. electrophile time / h product ratio
[a] 

yield / %
[b] 

1 
Cl

 
2 1 18a:18b (80:20) 99 

[c] 

2 
Br 

4b 1 19a:19b (92:  8) 85  

3 
Br

 
5b 1 20a:20b (95:  5) 71 (67) 

4 
Ph Ph

Br

 
7b 48 21a:21b (98:  2) 50  

5 Br
 

8 24 22a:22b (99:  1) 71  

6 
O

O

Cl

 
10 24 23a:23b (94:  6) 56 (53) 

[a] Peak areas (determined by GC-MS of the crude product). [b] Isolated 

yields of the mixtures of the 3-substituted indoles (18a–23a) and the  

2-substituted indoles (18b–23b); isolated yields of the a isomers are given in 

parentheses. [c] 10:1-mixture of 18a and 18b. [d] 10:1-mixture of 19a and 

19b. [e] Product contains traces of 21b. [f] Reaction performed in 90% 

aqueous acetonitrile. 
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5.3 Conclusion 

 

Our previously published concept of Friedel-Crafts reactions under acid-free conditions has 

thus been demonstrated to be applicable for an important class of compounds. Since indoles 

are generally more nucleophilic than water in acetone,
[19, 20]

 the competing trapping of the 

intermediate carbocation by water is usually not a problem. The method is rather limited by 

the rates of ionization of the corresponding allyl and benzyl halides. 

Since nucleofugality parameters of Nf = 2 and 3 have been reported for chloride and bromide, 

respectively, in 80% aqueous acetone,
[28]

 one can expect that ionization half-lives will exceed 

1 d as the electrofugality of the carbocation gets smaller than –7 in the case of R-Cl and 

smaller than –8 in the case of R-Br. In line with the published electrofugality parameter of the 

cinnamyl cation (Ef = –8)
[29]

 cinnamyl bromides but not chlorides have successfully been 

employed in this study. Reactions via less stabilized carbocations will require more harsh 

conditions. 
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5.4 Experimental Section 

 

5.4.1 General 

 

Acetone was distilled (b. p. 56 °C),
 
acetonitrile was bought from Fischer Scientific and used 

as received, 2,2,2-trifluoroethanol was bought from Acros and distilled over drierite (b. p.  

72 °C). Water was purified with Millipore MilliQplus. All starting materials were obtained 

from Aldrich, Acros, Lancaster and Merck and used without further purification. All allylic 

substrates were prepared by procedures following literature from the corresponding alcohols 

as follows: 4-chloropent-2-ene (2),
[25]

 geranyl chloride (5a),
[30]

 geranyl bromide (5b),
[31]

 3-

chloro-1,3-diphenylpropene (7a),
[32]

 3-bromo-1,3-diphenylpropene (7b),
[31]

 1-chloroindane 

(9)
[33]

 and 5-chloromethyl-benzo[1,3]-dioxole (10).
[34]

 1-methylindole (1b) was prepared 

according to literature.
[12] 

1
H-NMR spectra were recorded on Varian MERCURY 200 (200 MHz) or Bruker ARX 300 

(300 MHz) spectrometers. Chemical shifts are reported from TMS with the solvent resonance 

as the internal standard (CDCl3: δ = 7.26 ppm). Data are reported as follows: chemical shift 

(multiplicity, coupling constants, integration intensity) with s = singlet, d = doublet, t = triplet, 

q = quartet, br = broad and m = multiplet. 
13

C-NMR spectra were recorded on a Bruker ARX 

300 (75.5 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported 

in ppm from TMS with the solvent as internal standard (CDCl3: δ = 77.0 ppm). Spin 

multiplicities are derived from DEPT135 spectra. The assignment of the peak signals to the 

compounds is based on 2D-NMR experiments or made by alignment with simulated spectra 

by the program ACD. GC-mass spectra were recorded on Agilent 5973 MSD [HP-5MS-

capillar column with length 30 m, diameter 0.25 mm, flow rate 1.0 mL/min, injector, split 

(23.9 mL/min), carrier gas helium, quadrupol mass spectrometer]. Data are reported as 

follows: retention time and heating programm [Method A: 70 °C (2 min) – 25 °C / min – 150 

°C – 50 °C / min – 250 °C (12 min); method B: 70 °C (2 min) – 25 °C / min – 150 °C –  

50 °C / min – 250 °C (18 min); method C: 110 °C (2 min) – 50 °C / min – 270 °C (5 min)]. 

Elemental analyses were carried out by using an Elementar Vario EL in the 

“Mikroanalytisches Labor” of the Department of Chemistry and Biochemistry of the Ludwig 

Maximilians University of Munich. Chromatographic purification was done with Merck silica 

gel 60 (mesh 40–63 µm). Detection was done with UV-light (λ = 254 or 366 nm). Rf-values 

are given for the major isomer. 
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5.4.2 General Reaction Procedure 

 

10 mmol (2.0 eq) of ammonium hydrogencarbonate was suspended in a 1 M solution of indole 

(1a, 25 mmol, 5.0 eq) in aqueous acetone or aqueous acetonitrile (25 mL), and 5.0 mmol  

(1.0 eq) of the allyl or benzyl halide was added. After the solution was stirred at room 

temperature for the time specified in tables 2 and 3, water was added (30 mL) and the organic 

phase was separated. The aqueous phase was extracted with diethyl ether (3 × 30 mL). The 

combined organic phases were dried (MgSO4) and the solvents removed in vacuo. Indole (1a,  

b. p. 103–107 °C, 3 × 10
-3

 mbar) or N-methylindole (1b, b. p. 95–98 °C, 3 × 10
-3

 mbar) was 

removed from the crude product by Kugelrohr distillation. The residue was purified by flash 

column chromatography. The 2-substituted isomer was eluted earlier than the 3-substituted 

isomer. 

 

 

 

5.4.3 Friedel-Crafts Reactions with Indole 

 

 

3-[(E)-1-Methylbut-2-enyl]-1H-indole (3a)
[5] 

4-Chloropent-2-ene (2, 209 mg, 2.00 mmol) and indole (1a, 1.17 g, 10.0 mmol) were stirred  

in acetone/water (80/20 = v/v, 10 mL) with NH4HCO3 (316 mg, 4.00 mmol) for 1 h to give  

365 mg (99 %) of a mixture of 3a and 3b as a brown oil, which was separated by column 

chromatography (n-hexane/EtOAc = 7:1) to give 297 mg (80 %) of 3a. 

 

N
H

1

2

3
4

5

6

7

8 9

10 113a

7a

12

3a 

 

Rf = 0.36. 
1
H-NMR (CDCl3, 300 MHz): δ = 1.42 (d, J = 7.0 Hz, 3 H, 12-H), 1.66 (dd, J =  

1.2 Hz, 6.0 Hz, 3 H, 11-H), 3.69 (dqd, J = 7.0 Hz, 6.6 Hz, 0.9 Hz, 1 H, 8-H), 5.54 (dqd, J = 

15.0 Hz, 6.0 Hz, J = 0.9 Hz, 1 H, 10-H), 5.67 (ddq, J = 6.6 Hz, 15.0 Hz, 1.2 Hz, 1 H, 9-H), 

6.88 (dd, J = 0.8 Hz, 2.4 Hz, 1 H, 2-H), 7.08 (ddd, J = 1.2 Hz, 7.0 Hz, 8.0 Hz, 1 H, 6-H), 7.16 

(ddd, J = 8.0 Hz, 7.0 Hz, 1.2 Hz, 1 H, 5-H), 7.28 (dd, J = 1.2 Hz, 8.0 Hz, 1 H, 7-H), 7.64 (dd,  
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J = 1.2 Hz, 8.0 Hz, 1 H, 4-H), 7.78 (br. s, 1 H, NH). 
13

C-NMR (CDCl3, 75.5 MHz): δ =  

17.8 (q, C-11), 20.9 (q, C-12), 33.9 (d, C-8), 111.1 (d, C-7), 119.0 (d, C-4), 119.7 (d, C-5), 

120.1 (d, C-6), 121.2 (s, C-3), 121.8 (d, C-2), 123.2 (d, C-10), 126.8 (s, C-3a), 136.2 (d, C-9), 

136.6 (s, C-7a); peak assignment is based on gHMBC and gHSQC experiments. GC-MS (A): 

t = 8.2 min; m/z (%) = 185 (51) [M
+
], 170 (100), 168 (13), 155 (23), 154 (20), 144 (18), 128 

(11), 115 (12). 

 

 

3-(3-Methylbut-2-enyl)-1H-indole (11a)
[2] 

Prenyl bromide (4b, 231 µL, 2.00 mmol) and indole (1a, 1.17 g, 10.0 mmol) were stirred in 

acetone/water (80/20 = v/v), 10 mL) with NH4HCO3 (316 mg, 4.00 mmol) for 2 h to give  

370 mg (99 %) of a mixture of 11a and other substituted indoles as a yellow oil, which was 

separated by column chromatography (n-hexane/EtOAc = 7:1) to give 338 mg  

(91 %) of 11a as a pale yellow oil. 

 

N
H

1

2

3
4

5

6

7

8 9

10

11

3a

7a

12

11a 

 

Rf = 0.28. 
1
H-NMR (CDCl3, 300 MHz): δ = 1.75, 1.76 (2 × d, J = 1.2 Hz, 2 × 3 H, 11-H,  

12-H), 3.45 (d, J = 7.0 Hz, 2 H, 8-H), 5.43 (tsept, J = 7.0 Hz, 1.2 Hz, 1 H, 9-H), 6.90 (d, J = 

2.1 Hz, 1 H, 2-H), 7.07–7.21 (m, 2 H, 5-H, 6-H), 7.30 (d, J = 7.8 Hz, 1 H, 7-H), 7.59 (d, J = 

7.8 Hz, 1 H, 4-H), 7.79 (br. s, 1 H, NH). 
13

C-NMR (CDCl3, 75.5 MHz): δ = 17.8, 25.7 (2 × q), 

24.1 (t), 111.0 (d), 116.2 (s), 119.0 (d), 119.1 (d), 121.1 (d), 121.9 (d), 123.1 (d), 127.5 (s), 

131.9 (s), 136.5 (s). GC-MS (A): t = 8.4 min; m/z (%) = 185 (97) [M
+
], 170 (100), 155 (20), 

143 (14), 130 (39), 117 (42), 77 (13). 

 

 

3-[(2E)-3,7-Dimethylocta-2,6-dienyl]-1H-indole (12a)
[2] 

Geranyl bromide (5b, 726 µL, 5.00 mmol) and indole (1a, 2.93 g, 25.0 mmol) were stirred in 

acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) for 1 h to give  

760 mg (60 %) of a mixture of 12a and 12b as a yellow oil, which was separated by column 

chromatography (n-hexane/EtOAc = 5:1) to give 713 mg (56 %) of 12a as a yellow oil. 
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N
H

1

2

3
4

5

6

7

8 9

10

11

3a

7a

12

13

14

15

16

17

12a 

 

Rf = 0.53. 
1
H-NMR (CDCl3, 300 MHz): δ = 1.60, 1.68 (2 × s, 2 × 3 H, 15-H, 16-H), 1.75 (s,  

3 H, 17-H), 2.04–2.14 (m, 2 × 2 H, 11-H, 12-H), 3.46 (d, J = 6.8 Hz, 2 H, 8-H), 5.10–5.14 (m, 

1 H, 13-H), 5.43–5.48 (m, 1 H, 9-H), 6.92 (d, J = 2.0 Hz, 1 H, 2-H), 7.07–7.23 (m, 2 × 1 H,  

5-H, 6-H), 7.32 (dd, J = 7.9 Hz, 1.0 Hz, 1 H, 7-H), 7.59 (dd, J = 7.8 Hz, 1.0 Hz, 1 H, 4-H), 

7.84 (br. s, 1 H, NH). 
13

C-NMR (CDCl3, 75.5 MHz): δ = 16.1 (q), 17.7 (q), 24.0 (t), 25.7 (q), 

26.7 (t), 39.7 (t), 111.0 (d), 116.2 (s), 119,0 (d), 119.1 (d), 121.2 (d), 121.9 (d), 122.9 (d), 

124.4 (d), 127.5 (s), 131.4 (s), 135.6 (s), 136.5 (s). GC-MS (A): t = 11.1 min; m/z (%) = 253 

(68) [M
+
], 184 (100), 182 (48), 170 (54), 168 (47), 155 (15), 154 (15), 143 (18), 131 (22), 130 

(77), 117 (35). 

 

 

3-(3-Phenylallyl)-1H-indole (13a)
[13]

 und 3-(1-Phenylallyl)-1H-indole (13c)
 

Cinnamyl bromide (6b, 763 mg, 5.00 mmol) and indole (1a, 2.93 g, 25.0 mmol) were stirred 

in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) for 24 h to give 

828 mg (71 %) of a mixture of 13a and 13c as a light brown oil. 

 

N
H

1

2

3
4

5

6

7

8 9

10

3a

7a

Ph

13a  
N
H

1

2

3
4

5

6

7

8
9

10

3a

7a

Ph

13c 

 

13a: 
1
H-NMR (200 MHz, CDCl3): δ = 3.66 (d, J = 5.5 Hz, 2 H, 8-H), 6.58–6.42 (m, 2 × 1 H, 

9-H, 10-H), 6.93 (s, 1 H, 2-H), 7.02–7.39 (m, 8 H, 5-H, 6-H, 7-H, Ar-H), 7.63 (d, J = 7.6 Hz, 

1 H, 4-H), 7.83 (br. s, 1 H, NH). GC-MS (A): t = 12.7; m/z (%) = 233 (100) [M
+
], 232 (56), 

206 (17), 156 (24), 130 (42), 115 (24). 

 

13c: 
1
H-NMR (200 MHz, CDCl3): δ = 3.64 (d, J = 7.6 Hz, 1 H, 8-H), 4.88 (dd, J = 12 Hz,  

7.6 Hz, 1 H, 9-H), 6.28–6.60 (m, 2 × 1 H, 2 × 10-H), 6.98 (s, 1 H, 2-H), 7.13–7.38 (m, 8 H,  
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5-H, 6-H, 7-H, Ar-H), 7.65 (d, J = 8.0 Hz, 1 H, 4-H), 7.82 (br. s, 1 H, NH). GC-MS (A): t = 

10.5 min; m/z (%) = 233 (100) [M
+
], 232 (67), 206 (39), 156 (29). 

 

 

3-(1,3-Diphenylallyl)-1H-indole (14a)
[5] 

3-Bromo-1,3-diphenylpropene (7b, 1.37 g, 5.00 mmol) and indole (1a, 2.93 g, 25.0 mmol) 

were stirred in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) for 

48 h to give 928 mg (60 %) of a mixture of 14a and 14b, which was separated by column 

chromatography (n-hexane/EtOAc = 7:1) to give 866 mg (56 %) of 14a as a colorless oil. 

 

N
H

1

2

3
4

5

6

7

8
9

10

3a

7a

Ph
Ph

14a 

 

Rf = 0.65. 
1
H-NMR (200 MHz, CDCl3): δ = 5.06 (d, J = 7.5 Hz, 1 H, 8-H), 6.34–6.42 (m, 1 H, 

10-H), 6.63–6.67 (m, 1 H, 9-H), 6.80–7.01 (m, 3 H, Ar-H), 7.01–7.21 (m, 12 H, Ar-H), 7.91 

(br. s, 1 H, NH). GC-MS (C): t = 9.5 min; m/z (%) = 232 (100) [M
+
 – Ph], 219 (14), 117 (58), 

90 (17). 

 

 

3-Cyclohex-2-enyl-1H-indole (15a)
[5] 

3-Bromocyclohexene (8, 805 mg, 5.00 mmol) and indole (1a, 2.93 g, 25.0 mmol) were stirred 

in acetonitrile/water (90/10 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) for 30 min to 

give 690 mg (70 %) of 15a as a yellow oil. 

 

N
H

1

2

3
4

5

6

7

8
9

10

11

3a

7a

12

13

15a 

 

1
H-NMR (300 MHz, CDCl3): δ = 1.56–2.12 (m, 3 × 2 H, 11-H, 12-H, 13-H), 3.70–3.75 (m,  

1 H, 8-H), 5.84–5.86 (m, 2 × 1 H, 9-H, 10-H), 6.90 (d, J = 2.0 Hz, 2-H), 7.07 (dt, J = 7.5 Hz, 
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1.5 Hz, 1 H, 6-H), 7.18 (dt, J = 7.5 Hz, 1.5 Hz, 1 H, 5-H), 7.31 (dd, J = 8.0 Hz, 0.9 Hz, 1 H, 

7-H), 7.65 (dd, J = 8.1 Hz, 1.0 Hz, 1 H, 4-H), 7.87 (br. s, 1 H, NH). 
13

C-NMR (75.5 MHz, 

CDCl3): δ = 20.8, 25.3, 30.2 (3 × t), 32.7 (d), 111.2 (d), 119.1 (d), 119.2 (d), 120.9 (s), 121.4 

(d), 121.8 (d), 126.7 (s), 127.6 (d), 130.4 (d), 136.6 (s). GC-MS (A): t = 9.3 min; m/z (%) = 

197 (92) [M
+
], 182 (11), 168 (100), 154 (11), 130 (12), 117 (28).  

 

 

3-(Indan-1-yl)-1H-indole (16a) and 2-(Indan-1-yl)-1H-indole (16b) 

1-Chloroindane (9, 763 mg, 5.00 mmol) and indole (1a, 2.93 g, 25.0 mmol) were stirred 24 h 

in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) to give 595 mg 

(51 %) of a mixture of 16a and 16b as a colorless viscous oil. 

 

N
H

1

2

3
4

5

6

7

8
9

10

3a

7a
16a  

N
H

1

2
3

4

5

6

7

8

9
10

3a

7a
16b 

 

1
H-NMR (300 MHz, CDCl3): δ = 2.15–2.28 (m, 1 H), 2.52–2.63 (m, 1 H), 2.91–3.06 (m,  

2 H), 4.64 (t, J = 8.1 Hz, 1 H), 6.85 (d, J = 2.1 Hz, 1 H), 7.02–7.21 (m, 4 H), 7.31 (t, J =  

8.1 Hz, 2 H), 7.46 (dd, J = 8.1 Hz, 0.9 Hz, 1 H), 7.83 (br. s, 1 H, NH). 
13

C-NMR (75.5 MHz, 

CDCl3): δ = 31.7 (t), 34.8 (t), 42.4 (d), 111.2 (d), 119.2 (d), 119.5 (d), 119.7 (s), 121.4 (d), 

121.9 (d), 124.4 (d) 124.7 (d), 126.2 (d), 126.4 (d), 126.9 (s), 136.7 (s), 144.0 (s), 146.6 (s). 

GC-MS (A): t = 11.8 min; m/z (%) = 233 (83) [M
+
], 232 (100), 217 (25), 116 (26). HR-EI-

MS: calcd. for C17H14N: 233.3158; found 233.1181. 

 

 

3-Benzo[1,3]dioxol-5-ylmethyl-1H-indole (17a) 

5-Chloromethyl-benzo[1,3]-dioxole (10, 676 mg, 5.00 mmol) and indole (1a, 2.93 g,  

25.0 mmol) were stirred in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg,  

10.0 mmol) for 24 h to give 1.08 g (86 %) of a mixture of 17a and 17b, which was purified by 

recrystallization (n-hexane/Et2O = 3:2) to give a white solid with m. p. = 197 °C. 



 124 

N
H

1

2

3
4

5

6

7

8 9

10
11

3a

7a

12

13 O

O

17a 

 

1
H-NMR (CDCl3, 300 MHz): δ = 4.03 (s, 2 H, 8-H), 5.89 (s, 2 H, 12-H), 6.69–6.76 (m, 3 ×  

1 H, 10-H, 11-H, 13-H), 6.93 (s, 1 H, 2-H), 7.07 (t, J = 7.5 Hz, 3.6 Hz, 1 H, 6-H), 7.18 (t, J = 

7.2 Hz, 3.6 Hz, 1 H, 5-H), 7.35 (d, J = 3.9 Hz, 1 H, 7-H), 7.50 (d, J = 4.2 Hz, 1 H, 4-H), 7.94 

(br. s, 1 H, NH). 
13

C-NMR (CDCl3, 75.5 MHz): δ = 31.3 (t), 100.7 (t), 108.0 (d), 109.2 (d), 

111.1 (d), 116.0 (s), 119.1 (d), 119.4 (d), 121.4 (d), 122.1 (d), 122.2 (d), 127.4 (s), 135.1 (s), 

136.5 (s), 145.7 (s), 147.6 (s). GC-MS (A): t = 13.8 min; m/z (%) = 251 (100) [M
+
], 250 (81), 

220 (10), 191 (12), 130 (55). Anal. calcd. for (C16H13NO2): C 76.47, H 5.23, N 5.58; found: C 

76.20, H 5.42, N 5.52. 
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5.4.4 Friedel-Crafts Reactions with N-Methylindole 

 

 

1-Methyl-3-(1-methylbut-2-enyl)-1H-indole (18a) and 1-Methyl-2-(1-methylbut-2-enyl)-

1H-indol (18b) 

4-Chloropent-2-ene (2, 580 µL, 5.00 mmol) and N-methylindole (1b, 3.20 mL, 25.0 mmol) 

were stirred in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg, 10.0 mmol) for  

1 h to give 986 mg (99 %) of a mixture of 18a and 18b as a yellow oil. 

 

N 1

2

3
4

5

6

7

8 9

10 11

3a

7a

12

Me 18a  

N 1

2
3

4

5

6

7

8

9
10

3a

7a
11

12

Me 18b 

 

18a: 
1
H-NMR (300 MHz, CDCl3): δ 1.42 (d, J = 6.9 Hz, 3 H), 1.67 (dt, J = 6.0 Hz, J =  

1.2 Hz, 3 H), 3.73 (s, 3 H), 5.48–5.73 (m, 2 H), 6.80 (s, 1 H), 7.05–7.28 (m, 3 H), 7.62 (d, J = 

7.8 Hz, 1 H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 17.8 (q), 21.1 (q), 32.6 (d), 33.9 (q), 109.1 

(d), 118.5 (d), 119.7 (d), 119.8 (s), 121.4 (d), 123.0 (d), 125.0 (d), 127.2 (s), 136.4 (d), 137.3 

(s). GC-MS (A): t = 8.1 min; m/z (%) = 199 (47) [M
+
], 184 (100), 168 (25). 

18b: 
1
H-NMR (300 MHz, CDCl3): δ 1.37–1.42 (m, 3 H), 1.64–1.68 (m, 3 H), 3.65 (s, 3 H), 

5.34–5.59 (m, 1 H), 6.28 (s, 1 H), 6.98–7.28 (m, 3 H), 7.55 (d, J = 7.5 Hz, 1 H). GC-MS (A):  

t = 8.2 min; m/z (%) = 199 (75) [M
+
], 184 (100), 168 (29). Anal. calcd. for (C14H17N):  

C 84.13, H 8.58, N 7.05; found: C 84.37, H 8.60, N 7.03. 

 

 

1-Methyl-3-(3-methylbut-2-enyl)-1H-indole (19a)
[2]

 und 1-Methyl-2-(3-methylbut-2-

enyl)-1H-indole (19b)
[2] 

Prenyl bromide (4b, 231 µL, 2.00 mmol) and N-methylindole (1b, 1.28 mL, 10.0 mmol) were 

stirred in acetone/water (80/20 = v/v, 10 mL) with NH4HCO3 (316 mg, 4.00 mmol) for 1 h to 

give 339 mg (85 %) of a mixture of 19a and 19b as a yellow liquid. 
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N 1

2

3
4

5

6

7

8 9

10 11

3a

7a

12

Me 19a  

N 1

2
3

4

5

6

7

8

9
10

3a

7a

11

12

Me
19b 

 

19a: 
1
H-NMR (300 MHz, CDCl3): δ = 1.75, 1.76 (2 × s, 2 × 3 H, 11-H, 12-H), 3.43 (d, J =  

6.9 Hz, 2 H, 8-H), 3.70 (s, 3 H, NMe), 5.42 (tpshept, J = 7.2 Hz, 1.2 Hz, 1 H, 9-H), 6.78 (s,  

1 H, 2-H), 7.05–7.27 (m, 3 H, 5-H, 6-H, 7-H), 7.58 (dd, J = 8.1 Hz, 1.2 Hz, 1 H, 4-H).  

13
C-NMR (75.5 MHz, CDCl3): δ = 17.8 (q), 24.0 (t), 25.7 (q), 32.5 (q), 109.1 (d), 114.6 (s), 

118.5 (d), 119.1 (d), 121.5 (d), 123.3 (d), 126.0 (d), 127.8 (s), 131.7 (s), 137.2 (s). GC-MS 

(B): t = 8.3 min; m/z (%) = 199 (98) [M
+
], 184 (100), 168 (25), 144 (44), 131 (55), 115 (12), 

77 (9). 

19b: 
1
H-NMR (300 MHz, CDCl3): δ = 1.73, 1.75 (2 × s, 2 × 3 H, 11-H, 12-H), 3.43 (d, J = 

6.9 Hz, 1 H, 8-H), 3.63 (s, 3 H, NMe), 5.31–5.37 (m, 1 H, 9-H), 6.23 (s, 1 H, 3-H),  

7.02–7.27 (m, 3 H, 5-H, 6-H, 7-H), 7.51 (d, J = 8.1 Hz, 1 H, 4-H). GC-MS (B): t = 8.5 min; 

m/z (%) = 199 (100) [M
+
], 184 (42), 168 (17), 158 (11), 144 (50), 131 (74), 115 (12), 77 (7). 

 

 

1-Methyl-3-(3,7-dimethylocta-2,6-dienyl)-1H-indole (20a) 

Geranyl bromide (5b, 434 mg, 2.00 mmol) and N-methylindole (1b, 1.28 mL, 10.0 mmol) 

were stirred in acetone/water (80/20 = v/v, 10 mL) with NH4HCO3 (316 mg, 4.00 mmol) for  

1 h to give 365 mg (71 %) of a mixture of 20a and 20b as a yellow oil, which was separated 

by column chromatography (n-hexane/EtOAc = 7:1) to give 343 mg (67 %) of 20a. 

 

N 1

2

3
4

5

6

7

8 9

10 11

3a

7a

12

13

14
15

16

17

Me 20a 

 

Rf = 0.65
1
H-NMR (300 MHz, CDCl3): δ = 1.61, 1.68, 1.75 (3 × s, 3 × 3 H, 15-H, 16-H,  

17-H), 1.97–2.17 (m, 2 × 2 H, 11-H, 12-H), 3.45 (d, J = 6.9 Hz, 8-H), 3.72 (s, 3 H, NMe), 

5.10–5.15 (m, 1 H, 13-H), 5.42–5.47 (m, 1 H, 9-H), 6.78 (s, 1 H, 2-H), 7.08 (dt, J = 7.5 Hz, 
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1.5 Hz, 1 H, 6-H), 7.16–7.28 (m, 2 × 1 H, 5-H, 7-H), 7.57 (dd, J = 8.0 Hz, 1.2 Hz, 1 H, 4-H). 

13
C-NMR (75.5 MHz, CDCl3): δ = 16.0 (q), 17.7 (q), 23.9 (t), 25.7 (q), 26.6 (t), 32.5 (q), 39.7 

(t), 109.0 (d), 114.5 (s), 118.5 (d), 119.1 (d), 121.4 (d), 123.1 (d), 124.4 (d), 126.0 (d), 127.8 

(s), 131.3 (s), 135.4 (s), 137.2 (s). GC-MS (A): t = 10.8 min; m/z (%) = 267 (100) [M
+
], 198 

(94), 184 (57), 168 (16), 144 (71), 131 (56). HR-EI-MS: calcd. for C19H25N: 267.4178; found 

267.1997. 

 

 

1-Methyl-3-(1,3-diphenylallyl)-1H-indole (21a)
[5] 

3-Bromo-1,3-diphenylpropene (7b, 1.37 g, 5.00 mmol) and N-methylindole (1b, 3.20 mL, 

25.0 mmol) were stirred in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3 (791 mg,  

10.0 mmol) for 48 h to give 835 mg (50 %) of 21a as a yellow oil containing traces of 21b. 

 

N 1

2

3
4

5

6

7

8
9

10

3a

7a

Ph

Me

Ph

21a 

 

1
H-NMR (200 MHz, CDCl3): δ = 3.73 (s, 3 H, NMe), 5.11 (d, J = 7.6 Hz, 1 H, 8-H), 6.41–

6.47 (m, 1 H, 8-H), 6.69–6.77 (m, 1 H, 9-H), 6.99–7.18 (m, 1 H, Ar-H), 7.18–7.49 (m, 14 H,  

Ar-H). GC-MS (C): t = 10.1 min; m/z (%) = 246 (100) [M
+
–Ph], 231 (51), 117 (64). 

 

 

3-Cyclohex-2-enyl-1-methyl-1H-indole (22a)
[13] 

3-Bromocyclohexene (8, 585 µL, 5.00 mmol) and N-methylindole (1b, 3.20 mL, 25.0 mmol) 

were stirred in acetonitrile/water (90/10 = v/v, 25 mL) with NH4HCO3 (791 mg,  

10.0 mmol) for 24 h to give 750 mg (71 %) of 22a as a pale yellow oil. 

 

N 1

2

3
4

5

6

7

8
9

10

11

3a

7a

12

13

Me 22a 
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1
H-NMR (200 MHz, CDCl3): δ = 1.48–1.99 (m, 6 H, 11-H, 12-H, 13-H), 3.55 (s, 3 H, NMe), 

3.56–3.64 (m, 1 H, 8-H), 5.71–5.82 (m, 2 × 1 H, 9-H, 10-H), 6.67 (s, 1 H, 2-H), 6.94–7.17 (m, 

3 H, Ar-H), 7.53 (d, J = 7.8 Hz, 1 H, Ar-H). GC-MS (A): t = 9.09 min; m/z (%) = 211 (95) 

[M
+
], 182 (100), 167 (29), 131 (29). 

 

 

3-Benzo[1,3]dioxol-5-ylmethyl-1-methyl-1H-indole (23a) 

5-Chloromethyl-benzo[1,3]-dioxole (10, 676 mg, 5.00 mmol) and N-methylindole (1b,  

3.20 mL, 25.0 mmol) were stirred in acetone/water (80/20 = v/v, 25 mL) with NH4HCO3  

(791 mg, 10.0 mmol) for 24 h to give 744 mg (56 %) of a mixture of 23a and 23b, which was 

separated by column chromatography (n-hexane/EtOAc = 7:1) to give 702 mg  

(53 %) of 23a. 

 

N 1

2

3
4

5

6

7

8 9

10 113a

7a

12
13

Me

O

O

23a 

 

Rf = 0.46. 
1
H-NMR (300 MHz, CDCl3): δ = 3.72 (s, 3 H, NMe), 4.00 (s, 2 H, 8-H), 5.88 (s,  

2 H, 12-H), 6.69–6.76 (m, 4 H, Ar-H), 7.03–7.29 (m, 3 H, Ar-H), 7.49 (d, J = 7.8 Hz, 1 H,  

Ar-H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 31.6 (t), 32.9 (q), 101.1 (t), 108.3 (d), 109.4 (d), 

109.6 (d), 114.7 (s), 119.1 (d), 119.5 (d), 121.6 (d), 121.9 (d), 127.3 (d), 128.1 (s), 135.7 (s), 

137.5 (s), 146.0 (s), 147.9 (s). GC-MS (A): t = 13.1 min; m/z (%) = 265 (100) [M
+
], 264 (74), 

144 (83). HR-EI-MS: calcd. for C19H25N: 265.3146; found 265.1112. 
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5.4.5 Overview of 13C-NMR Shifts of 3-Allylated Indoles 

 

 

Table 5.4. Chemical shifts δ (ppm) in 
13

C-NMR spectra (recorded at 75.5 MHz in CDCl3) 

of 3-allylated indoles. 
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Chapter 6 

Regio- and Stereoselective Ring Opening Reactions of 
Epoxides with Indoles and Pyrroles in 2,2,2-
Trifluoroethanol 
 

This chapter is in print in Chem. Eur. J. by M. Westermaier and H. Mayr. 

 

6.1 Introduction 

 

Epoxides are valuable building blocks in organic synthesis, as they are easily available in 

optically pure form
[1-5]

 and give access to 1,2-difunctional ring opened products with two new 

stereocenters. Many methods for the stereoselective ring opening of epoxides with N-, O- and 

S-nucleophiles have been developed
[6, 7]

, including enzymatic processes,
[8-10]

 but regio- and 

stereoselective reactions with carbon nucleophiles have become the focus of recent 

research.
[11-24]

 Apart from reactions with trimethylsilyl cyanide
[11-15]

 and strong nucleophiles 

such as phenyllithium,
[16]

 dialkyl zinc compounds,
[17-20]

 or enolates,
[21]

 reactions with 

electron-rich arenes, e. g. indoles and pyrroles, have been reported.
[22-36]

 

As the nucleophilicities of indoles and pyrroles are not sufficient for a direct attack at 

ordinary epoxides, activation of the C-O bond is generally needed. The use of strong Lewis 

acids is problematic, because they may trigger isomerizations of the epoxides with formation 

of carbonyl compounds. Thus, Ranu and Jana reported a selective synthesis of benzylic 

aldehydes and ketones by treatment of the corresponding epoxides with 0.5 to 0.6 equivalents 

indium(III) chloride (Scheme 6.1).
[25]

  

O
InCl3 [cat.]

THF, 25 °C

O
InCl3 H O InCl3

H
H

hydride
  shift

O

15 min

 

 

Scheme 6.1. Isomerization of styrene oxide in the presence of InCl3 to form a carbonyl 

compound via cleavage of the C-O bond.
[25]
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On the other hand, the InBr3-catalyzed reactions of indoles with optically pure styrene oxide 

gave 2-(1H-indol-3-yl)-2-phenylethanols in good yields with 99% ee (Scheme 6.2)
[26]

 and 

InCl3 has been successfully employed as catalyst for the reactions of indoles with racemic 

styrene oxide in dichloromethane. Under these conditions aliphatic epoxides gave mixtures of 

regioisomeric products with favored attack at the less substituted oxirane position.
[27]

 

 

N
H

O

InBr3 [1 mol%]

CH2Cl2, 0 °C, 16 h N
H

OH

 

 

Scheme 6.2. Regio- and stereoselective ring opening reaction of indole with aromatic 

optically active epoxides in the presence of catalytic amounts of InBr3.
[26]

 

 

 

High enantioselectivities but lower yields (up to 64%) were obtained when the reaction of  

N-methylindole with enantiopure styrene oxide was catalyzed by a polymer-supported indium 

Lewis acid (Amberlyst-In, Scheme 6.3).
[28]

  

 

 

N

O

Amberlyst 15-In

Et2O, 25 °C, 24 h N

OH

Me Me  

 

SO3

SO3

SO3

In
3

Amberlyst 15-In:

 

 

Scheme 6.3. Regio- and stereoselective ring opening of optically pure (R)-styrene oxide 

with N-methylindole catalyzed by the heterogeneous Amberlyst 15-indium 

complex.
[28]
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In order to avoid undesired isomerizations, most investigations of the reactions of indoles 

with epoxides employed mild Lewis acids. Thus, LiClO4 has been reported to catalyze the 

reactions of aliphatic and aromatic epoxides with indoles to give high yields of 3-substituted 

indoles (Scheme 6.4); the stereochemistry of these reactions was not investigated.
[29, 30]

  

 

N
H

LiClO4 [2.5 mol%]

N
H

OH

Ph

N
H

OH

Ph
O

Alkyl
O

60 °C, 1-3 h

LiClO4 [2.5 mol%]

60 °C, 1-3 h

Alkyl

 

 

Scheme 6.4. Reactions of indole with aliphatic and aromatic epoxides catalyzed by 

LiClO4.
[29]

 

 

 

Somewhat lower yields of these substitution products were obtained when the reactions of 

indoles with styrene oxide were catalyzed by nanocrystalline titanium(IV) oxide.
[31]

  

Aliphatic and aromatic epoxides were reported to react with indole, pyrrole, furan and 

thiophene in the presence of 10 mol% Cp2ZrCl2 to give good yields of substitution products 

(Scheme 6.5).
[32]

 The NMR spectra which were claimed to indicate the regioselective 3-attack 

at these heteroarenes have not been published, however. Because enantiopure epoxides were 

not used in this study, the stereochemical course of these reactions could not be derived.
 

 

 

Ar
O

X

Cp2ZrCl2 [10 mol%]

CH2Cl2, 25 °C

X

Ar

OH

N
H

N
H

Ar

OH

X = NH, O, S

 

 

Scheme 6.5. Ring opening reactions of aromatic epoxides with heteraromatics catalyzed by 

bis(cyclopentadienyl)zirconium to yield regioselectively 3-substituted pyrroles, 

indoles, furans and thiophenes.
[32]
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Ytterbium(III) triflate was found to be the most efficient Lewis acid to catalyze the regio- and 

stereoselective reaction of indole with glycidyl phenyl ether at 10 kbar (Scheme 6.6).
[33]

  

 

N
H

OPh
O

Yb(OTf)3 [10 mol%]

10 kbar
CH2Cl2/H2O, 60 °C, 24 h

N
H

OH

OPh

 

 

Scheme 6.6. Yb(OTf3)-catalyzed ring opening reactions of glycidyl phenyl ether with 

indole under high pressure.
[33]

  

 

 

At elevated pressure (10 kbar) indole reacts with aromatic epoxides in acetonitrile even 

without a catalyst to give moderate yields of 2-(1H-indol-3-yl)-2-phenylethanols.
[34]

 Later 

studies on the stereochemistry of the reaction of (R)-styrene oxide with indole in acetonitrile 

at 10 kbar and 42 °C showed that the substitution product was formed in 56% yield and  

92% ee (Scheme 6.7). Addition of SiO2 increased the yield but resulted in a slight drop of 

stereoselectivity.
[35]  

 

N
H

N
H

OH

+
Ph

O

10 kbar, 42 °C, 24 h:

Ph

SiO2, 25 °C, 7d:
56% (92% ee)
88% (88% ee)  

 

Scheme 6.7. High pressure and silica gel assisted ring opening reaction of indole with 

optically pure (R)-styrene oxide.
[34, 35]

  

 

 

Also the HBF4-silica gel supported reactions of styrene oxide with indoles and pyrroles in 

dichloromethane were reported to give substitution products in good yields but the 

stereochemistry was not investigated; aliphatic epoxides did not react.
[36]
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Enantioselective addition of 2-methylindole to aromatic epoxides catalyzed by [Cr(salen)] 

complexes resulted in kinetic resolution and formation of 3-substituted indoles in good yields 

with high enantioselectivities (Scheme 6.8).
[37]

 

 

N
H

Me

Ph
R

O

[Cr(salen)]SbF6   [3.5 mol%]

tBuOH, 4Å MS
  TBME, 0 °C

N
H

Me

OH

R

Ph

82−99%  (80−91% ee)  

 

Scheme 6.8. Kinetic resolution of trans-epoxides with 2-methylindole.
[37]

 

 

 

The well-known ionizing power of fluorinated alcohols
[38]

 was previously employed by 

Bégué
[39] 

to assist the ring opening of epoxides in their reactions with aromatic amines 

(Scheme 6.9).  

 

O
Ar NHR

F3C CF3

OH

reflux

OH

N
Ar

R

84−92%
 

 

Scheme 6.9. Direct aminolysis of cyclohexene oxide with secondary amines in hexafluoro-

isopropanol to yield racemates of β-aminoalcohols.
[39]

 

 

 

 

 

We report now that 2,2,2-trifluoroethanol is also a suitable solvent for the non-catalyzed 

reaction of epoxides with indoles and pyrroles. 
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6.2 Results and Discussion 

 

6.2.1 Screening of the Reaction Conditions 

 

Winstein’s investigations on the rates of nucleophilic substitutions have shown that the 

heterolyses of C-X bonds are assisted by protic solvents with high ionizing power Y.
[40]

 In 

order to examine whether electrophilic assistance by protic solvents can also enable the attack 

of electron-rich arenes at epoxides, we studied the reactions of (R)-(+)-styrene oxide [(R)-1] 

with the parent indole (2a) and 1,2-dimethylindole (2b) in various solvents (Scheme 6.10). 

 

N N

OH

+
Ph

O

Ph

R

R R

R
SolvOH

+
Ph

OH
OSolv

(R)-1 R = H:
Me:

2a
2b

R = H:
Me:

3a
3b

Solv = H:
Me:
Et:
CH2CF3:

4a
4b
4c
4d  

 

Scheme 6.10. Optimization reactions of (R)-styrene oxide [(R)-1] with indole (2a) and 1,2-

di-methylindole (2b) in different solvents. 

 

 

Table 6.1 shows that indole (2a) did not react with racemic styrene oxide (rac-1) in methanol, 

ethanol, or 90% aqueous acetonitrile at 70–90 °C. In the latter case no conversion of 1 took 

place, while methanol and ethanol yielded small amounts of the corresponding 2-alkoxy-2-

phenylethanols 4b and 4c (< 3% via GC-MS). Previously, we discovered that indoles are 

allylated and benzylated in 80% aqueous acetone in good yields when allyl and benzyl halides 

were stirred with indoles in this solvent.
[41]

 Under these conditions no conversion of indole 

(2a) was observed at room temperature (Entry 4), but at 60 °C the reaction of 2a with (R)-1 

gave 9% of (R)-3a in high optical yield (> 99% ee, Entry 5). Better yields of 3a have been 

obtained in 40% aqueous ethanol (16% at room temperature and 45% at 80 °C, Entries 6 and 

7). Best chemical yields (up to 79%, Entries 8 and 9) with high optical purity (> 99% ee) were 

observed when the reactions were performed in 2,2,2-trifluoroethanol. 
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Table 6.1. Reactions of (R)-styrene oxide [(R)-1] with indole (2a) and 1,2-dimethylindole 

(2b) in different solvents (1 M solutions) to yield compounds (R)-3a or (R)-3b. 

 

no. solvent
[a] 

Y
[b] 

N
[c] 

time / h temp / °C yield 3
[d]

 / % ee
[e]

 / % 

Reactions with indole (2a) 

1 EtOH –2.40 7.44 72 80    –
[f] 

– 

2 MeOH –1.12 7.54 72 70    –
[g] 

– 

3 MeCN-H2O (90/10)    – 4.56 72 90    –
[h] 

– 

4 acetone-H2O (80/20) –0.70 5.77 72 25    –
[h] 

– 

5 acetone-H2O (80/20) –0.70 5.77 72 60 9 > 99 

6 EtOH-H2O (40/60) 2.62 5.81 72 25 16 > 99 

7 EtOH-H2O (40/60) 2.62 5.81 72 80 45 > 99 

8 CF3CH2OH 2.53 1.23 48 25   65
[i] 

> 99 

9 CF3CH2OH 2.53 1.23 10 80 79 > 99 

Reactions with 1,2-dimethylindole (2b) 

10 EtOH –2.40 7.44 72 80    –
[f] 

– 

11 MeOH –1.12 7.54 72 70    –
[g] 

– 

12 MeCN-H2O (90/10)    – 4.56 72 90    –
[h] 

– 

13 acetone-H2O (80/20) –0.70 5.77 72 25 7 > 99 

14 acetone-H2O (80/20) –0.70 5.77 14 60 17 > 99 

15 EtOH-H2O (40/60) 2.62 5.81 72 25 29 > 99 

16 EtOH-H2O (40/60) 2.62 5.81 12 80 54 > 99 

17 CF3CH2OH 2.53 1.23 24 25 77 > 99 

18 CF3CH2OH 2.53 1.23 3 80 90 > 99 

[a] Solvent mixtures are given as v/v. [b] Ionizing powers Y taken from ref.[38]. [c] Solvent 

nucleophilicities N taken from ref.[42]. [d] Isolated yields of 3a (Entries 1–9) and 3b (Entries  

10–18) after column chromatography. [e] The enantiomeric excess was determined by chiral 

HPLC with probes taken from the crude reaction mixtures and from the isolated compounds, by 

comparing their retention times to those reported in literature (see also Experimental Section).  

[f] Trace amounts of 4c have been detected in GC-MS. [g] Trace amounts of 4b have been 

detected in GC-MS. [h] No conversion. [i] Trace amounts of 4d have been detected in GC-MS. 
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1,2-Dimethylindole (2b) reacted similarly, but gave somewhat better yields. Again, 

nucleophilic attack of 2b at rac-1 was not observable in methanol, ethanol and 

acetonitrile/water (v/v = 90/10, Entries 10–12). When 80% aqueous acetone was used as the 

solvent 7% of (R)-3b have been isolated after 72 h at room temperature (Entry 13) and at  

60 °C the yield increased to 17% after 14 h (> 99% ee in both cases, Entry 14). 

As with 2a, higher yields of (R)-3b were obtained in ethanol/water (v/v = 40/60, Entries 15 

and 16) and even 90% of optically pure (R)-3b have been obtained when 2,2,2-

trifluoroethanol was used as the solvent (Entries 17 and 18). 

These observations correlate with Winstein’s ionizing power Y for the solvents used.
[38]

 No 

reactions took place in poorly ionizing solvents such as ethanol (Y = –2.40) or methanol  

(Y = –1.12) while slow ring opening was observed in 80% aqueous acetone (Y = 0.70). The 

increased yields obtained in 40% aqueous ethanol reflect the higher ionizing power Y of this 

solvent (Y = 2.62). The excellent yields obtained in 2,2,2-trifluoroethanol are due to its high 

ionizing power (Y = 2.53) and low solvent nucleophilicity (N = 1.23), which explains the 

absence of side products which were observed in ethanol or methanol. 
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6.2.2 Variation of the Nucleophiles 

 

 

6.2.2.1 Reactions of Styrene Oxide with Indoles 

 

The conditions of experiments 9 and 18 (Table 6.1), i. e. heating equimolar amounts of 

heteroarenes and styrene oxide (1) in CF3CH2OH at 80 °C, were then employed for screening 

the scope of nucleophiles for this reaction (Scheme 6.11).  

 

N
H

N
H

OH

+
Ph

O

Ph

(R)-1 2a-g 3a-g

FG FG

CF3CH2OH, 80 °C

 

 

Scheme 6.11. Reactions of (R)-styrene oxide [(R)-1] with indoles 2a–g. 

 

 

The reactions of the indoles 2a–e with N > 5
[43]

 gave exclusively the (R)-2-(1H-indol-3-yl)-2-

phenylethanols 3a–e in good chemical and excellent optical yields (Table 6.2). Exclusive 

substitution at the 3-position of the indole skeleton was observed. When indoles bearing 

electron-withdrawing groups have been used, the yields of the substitution products 3 

decreased. 5-Bromoindole (2f) with N = 4.38
[43]

 gave only 45% of 3f accompanied by 19% of 

the trifluoroethyl ether 4d, which is formed by nucleophilic attack of 2,2,2-trifluoroethanol at 

the benzylic position of 1. The nucleophilicity of 5-cyanoindole (2g) is so low (N = 2.83)
[43]

 

that it does not act as a nucleophile at all and, again, the only reaction product detectable in 

GC-MS after 72 h at 80 °C was the ether 4d in 17% yield. In line with these findings the even 

weaker nucleophile anisole (N = –1.18)
[44, 45]

 did not react with styrene oxide (1) under these 

conditions. 
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Table 6.2. Reactions of optically pure (R)-styrene oxide [(R)-1] with indoles 2a–g in 

CF3CH2OH (80 °C). 

 

indole N
[a] 

time / 

h 
product yield

[b]
 / % ee

[c]
 / % 

N
H       

2a 

5.75 4 
N
H

OH

Ph

 

3a 79 > 99 

N
Me

Me

 

2b 

8.55 3 
N
Me

OH

Ph

Me

 

3b 90 > 99 

N
Me      

2c 

5.75 4 

N
Me

OH

Ph

 

3c 73 > 99 

N
H

Me

 

2d 

6.91 3 

N
H

OH

Ph

Me

 

3d 72 > 99 

N
H

MeO

2e 

6.22 3 

N
H

OH

Ph

MeO

 

3e 72 > 99 

N
H

Br

 

2f 

4.38 72 

N
H

OH

Ph

Br

 

3f    45
[d] 

> 99 

N
H

NC

 

2g 

2.83 72 – 3g   –
[e] 

– 

[a] Nucleophilicity parameters N taken from ref. [43]. [b] Isolated yields of 3c–g after 

column chromatography. [c] The enantiomeric excess was determined by chiral HPLC with 

probes taken from the crude reaction mixtures and from the isolated compounds, by 

comparing their retention times to those reported in literature (see also Experimental 

Section). [d] 19% of ether 4d have been detected in GC-MS and conversion was not 

complete. [e] 17% of ether 4d have been detected in GC-MS and no other conversion has 

been observed. 
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When CF3CH2OH acted as a nucleophile, styrene oxide (1) was also regioselectively attacked 

at the benzylic position to yield ether 4d. Evidence for the constitution of 4d comes from  

13
C-NMR and GC-MS. A 2:1-mixture of 4d and 4e is formed by heating styrene oxide (1) in 

CF3CH2OH/CF3CH2ONa for 11 h at 80 °C (Scheme 6.12).  

 

Ph
O

NaH

CF3CH2OH, 80 °C, 11 h
Ph

OH
O

CF3

+
Ph

O
OH

CF3

1 4d 4e  

 

Scheme 6.12. Synthesis of a 2:1-mixture of the trifluoroethyl ethers 4d and 4e. 

 

 

Both ethers show only very small M
+
-peaks, m/z = 220, but PhCHOCH2CF3 

┐+•
 (m/z = 189) 

appears only in the spectrum of 4d, whereas PhCHOH 
┐+•

 (m/z = 107) was only found in the 

spectrum of 4e. Both fragments are typical for each compound. According to the longer 

retention time of 4d (t = 6.5 min) it is possible to differentiate both compounds in GC-MS. 

Another argument for the differentiation of 4d and 4e is given by the chemical shifts in the 

13
C-NMR. While the benzylic carbon of 4d absorbs at δ 84.6 ppm and the methylene group at 

δ 67.1 ppm, 4e shows the corresponding peaks at δ 72.9 and δ 78.0 ppm. This is in line with 

the chemical shifts of the corresponding carbon atoms in 1-phenylethane-1,2-diol (4a) where 

the benzylic proton absorbs at δ 74.7 ppm and the CH2 group at δ 67.9 ppm.
[46]

 The ratio of 

2:1 (4d:4e) was derived from the peak areas in GC-MS and 
1
H-NMR integrals. 

 

 

6.2.2.2 Reactions of Styrene Oxide with Pyrroles 

 

As the pyrroles 5a–f are somewhat more nucleophilic than the analogously substituted 

indoles, their reactions with styrene oxide (1) in CF3CH2OH at 80 °C were faster  

(Scheme 6.13, Table 6.3). 
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N
H

N
H

+
Ph

O

(R)-1 5a-f 6-11

CF3CH2OH, 80 °C, 1 h

FG
FG

OH
Ph

 

 

Scheme 6.13. Reactions of (R)-styrene oxide [(R)-1] with pyrroles 5a–f. 

 

 

The parent pyrrole (5a) gave a 2:1-mixture of the two regioisomers 6a and 6b in 68% yield 

within 1 h (Table 3, Entry 1). Monitoring the reaction via GC-MS revealed a change of the 

6a/6b ratio during the reaction. After 15 min only the 2-isomer 6a was detectable in the GC. 

The ratio 6a/6b decreased to 5.5 : 1 after 30 min, to 2.7 : 1 after 45 min and, finally, to 2.0 : 1 

after 1 h. Attempts to elucidate the mechanism of the rearrangement of 6a into 6b have not 

been made. The bisalkylated pyrrole, 2-[5-(2-hydroxy-1-phenylethyl)-2-pyrrolyl]-2-phenyl-

ethanol,
[35]

 was obtained in 17% yield as a side product. Bisalkylation was suppressed when 

styrene oxide (1) was combined with 5 equivalents of pyrrole (5a). 

N-Methylpyrrole (5b) reacted with (R)-1 within 1 h to give a 1:1-mixture of 7a and 7b, which 

did not change during the reaction (Entry 2). Pyrroles 5c and 5d, where the 2- and 5-positions 

of the pyrrole ring are blocked by methyl groups, gave the 3-substitution products rac-8 and 

(R)-9 in 30% and 74% (> 99% ee) yield respectively. 2,4-Dimethylpyrrole (5e) and 3-ethyl-

1,2-dimethylpyrrole (5f), the strongest nucleophiles in the series of alkyl substituted pyrroles, 

reacted with rac-1 within 1 h to give rac-10 and rac-11 in 55% and 56% yield, respectively. 

The fact that in all reactions with pyrroles only moderate yields of substitution products are 

observed is probably due to their high tendency to oligomerize or polymerize leading to high 

boiling distillation residues.
[47, 48]

 The isolated products showed high optical purity (> 99% ee 

in all examined cases). 

All reactions in Tables 6.1 and 6.2, which were investigated stereochemically, were 

performed with racemic and optically pure styrene oxide (1). Because the two enantiomers 

obtained with racemic styrene oxide (rac-1) were separable by chiral HPLC, we can conclude 

that the substitution products obtained with enantiopure styrene oxide [(R)-1] had an optical 

purity of more than 99% ee. 
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Table 6.3. Reactions of (R)-styrene oxide [(R)-1] with pyrroles 5a–f in CF3CH2OH  

(80 °C, 1 h). 

 

no. pyrrole product(s) yield
[a]

 / % ee
[b]

 / % 

1 

N
H

 

5a 

NH

Ph
OH

N
H

OH
Ph

+

 

6a/b    68
[c] 

> 99 

2 

N
Me

 

5b 

N

Ph
OH

N

OH
Ph

+Me

Me  

7a/b    55
[d] 

> 99 

3 

N
H

Me

Me

 

5c 
N
H

OH
Ph

Me

Me  

8 30 n. d.
[e] 

4 

N
Me

Me

Me

 

5d 
N

OH
Ph

Me

Me

Me
 

9 74 > 99 

5 

N
H

Me

Me  

5e 

NH

Ph OH

Me

Me

 

10 55 n. d.
[e] 

6 

N
H

Me

Me
Et  

5f 

NH

Ph
OH

Me

Me

Et
 

11 56 n. d.
[e] 

[a] Isolated yields of 6–11 after column chromatography. [b] The enantiomeric excess was 

determined by chiral HPLC with probes taken from the crude reaction mixtures and from the 

isolated compounds, by comparing their retention times to those reported in literature (see 

also Experimental Section). [c] 2:1-mixture of 6a/b; 17% of 2,5-bis-(1-phenyl-2-

hydroxyethyl)-1H-pyrrol have been obtained as a side product. [d] 1:1-mixture of 7a/b, 

which was separated by column chromatography to yield 26% of (R)-7a and 21% of (R)-7b. 

[e] Not determined. 
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6.2.3 Variation of the Epoxides 

 

6.2.3.1 Reactions of Indoles with Stilbene Oxides 

 

Analogous reactions with cis- and rac-trans-stilbene oxide (12) were studied with the indoles 

2a–c (Scheme 6.14).  

 

Ph
Ph

O
+

N
R

R'
CF3CH2OH, 80 °C N

R

R'

Ph

OH

Ph

12 2a-c 13aa-13cb  

 

Scheme 6.14. Reactions of indoles 2a–c with rac-trans- and cis-stilbene oxide (12). 

 

 

In all cases the reactions with rac-trans-12 gave considerably better yields than with cis-12; 

indole (2a) did not react with cis-12 and the starting materials have been recovered (Table 4, 

Entry 2). Both diastereomers of stilbene oxide (12) reacted stereospecifically with 2b and 2c, 

and the NMR spectra of the resulting triarylethanols 13 showed that the diastereomers 

obtained from trans-12 differed from those obtained from cis-12. In diastereomer 13ba, 

obtained from trans-12 and 1,2-dimethylindole (2b), the two benzylic protons absorb as 

doublets (J = 9.9 Hz) at δ 4.49 and δ 5.76 ppm while the corresponding resonances of the 

diastereomer 13bb are at δ 4.55 (d, J = 8.9 Hz) and δ 5.76 ppm (dd, J = 8.9 and 3.6 Hz). The 

additional 3.6 Hz splitting of the δ 5.76 ppm resonance is due to coupling with the OH proton 

in CD3CN (δ 3.05 ppm, d, J = 3.6 Hz). Analogous spectra were observed for the products 

13ca and 13cb from the reactions of the stilbene oxides 12 with N-methylindole (2c). 
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Table 6.4. Reactions of rac-trans- and cis-stilbene oxide (12) with indoles 2a–c in 

CF3CH2OH (80 °C). 

 

no. indole stilbene oxide time / h product
 

yield
[a]

 / % 

1 2a rac-trans-12
 

42 

N
H

OH
Ph

Ph

 

rac-13aa 37 

2 2a cis-12 42    – rac-13ab    –
[b] 

3 2b rac-trans-12 9 

N

OH
Ph

Ph

Me

Me  

rac-13ba 66 

4 2b cis-12 24 

N

OH
Ph

Ph

Me

Me

 

rac-13bb 17 

5 2c rac-trans-12 29 

N

OH
Ph

Ph

Me  

rac-13ca 69 

6 2c cis-12 29 

N

OH
Ph

Ph

Me  

rac-13cb 19 

[a] Isolated yields after column chromatography. [b] No conversion. 
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6.2.3.2 Reactions of Indoles with Other Aromatic Epoxides 

 

Racemic p-methoxyphenyloxirane (rac-14) reacted with 1,2-dimethylindole (2b) in 2,2,2-

trifluoroethanol within 4 h to give alcohol rac-15 in 69% yield (Scheme 6.15).  

 

+
N
Me

Me
CF3CH2OH, 80 °C N

Me

Me

OH

rac-14 rac-152b

MeO

O

MeO

4 h, 69%

 

 

Scheme 6.15. Reaction of 1,2-dimethylindole (2b) with rac-p-methoxyphenyloxirane  

(rac-14). 

 

3-Phenyloxirane-2-carboxylic acid ethyl ester (16), which was used as a 8:1 mixture of rac-

trans- and cis-isomers, turned out to be particularly reactive because this epoxide gave better 

yields with 5-bromoindole (2f) than styrene oxide (1, Scheme 6.16).  

 

N
Me

Me

N
Me

Me

16

2b

O
Ph

CO2Et
CF3CH2OH, 80 °C

N
H

Br

2f

5 h, 76%

24 h, 47%

OHPh

CO2Et

N
H

OHPh

CO2EtBr

rac-17

rac-18  

 

Scheme 6.16. Reactions of 1,2-dimethylindole (2b) and 5-bromoindole (2f) with 3-phenyl-

oxirane-2-carboxylic acid ethyl ester (16) to yield α-hydroxy esters  

rac-17 and rac-18. 
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NMR and GC-MS analysis of the products revealed that only one of the potential 

diastereomers (rac-17, rac-18) is formed. With the assumption that, again, back side attack of 

the nucleophile at the epoxide takes place, we can conclude that an exclusive reaction with 

trans-16 took place while the cis-isomer was not attacked. 

 

 

6.2.3.3 Reactions of 1,2-Dimethylindole with Aliphatic Epoxides 

 

1,2-Dimethylindole (2b) was used as a probe to examine the reactions with aliphatic 

epoxides. Cyclohexene oxide (19) gave only 21% of 20 after 72 h whereas 2-(2,2,2-trifluoro-

ethoxy)cyclohexanol (21) was obtained as the major product (Scheme 6.17). The yield of 20 

increased to 31%, when the reaction mixture was heated for 1 week at 80 °C and additional 

1.5 equivalents of 19 were added after 3 d and after 5d.  

 

+
N
Me

Me
CF3CH2OH, 80 °C N

Me

Me

19 rac-202b

O

OH

+
OCH2CF3

OH

21  

 

Scheme 6.17. Reaction of 1,2-dimethylindole (2b) with cyclohexene oxide (19) to yield 

secondary alcohol rac-20. 

 

 

Again, back side attack at the epoxide is observed and 20 is formed as the only diastereomer. 

The trans configuration of 20 can be determined by analysis of the coupling constants of the 

CHOH group (H-1 in Scheme 6.18). It shows two axial-axial couplings of 10.4 Hz and one 

axial-equatorial coupling of 4.1 Hz, indicating that both OH group and indolyl group occupy 

equatorial positions of the cyclohexane ring. 
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Ha

Ha

Ar

OH

Ha

He 1

2

6

 

 

Scheme 6.18. Chair conformation of 20 and vicinal coupling of 1-H (bold) with two axial 

protons (2-H, 6-H) and one equatorial proton (6-H). 

 

 

The monosubstituted aliphatic epoxides rac-22 and rac-23 were selectively attacked at the 

less substituted oxirane position (Scheme 6.19). 

 

R
O

+
N
Me

Me
CF3CH2OH, 80 °C N

Me

Me

OH

R

rac-22R = nPr:
OMe: rac-23

2b rac-24R = nPr:
OMe: rac-25  

 

Scheme 6.19. Reactions of 1,2-dimethylindole (2b) with 1,2-epoxyhexane (rac-22) and 

glycidyl methyl ether (rac-23). 

 

 

1,2-Epoxyhexane (rac-22) gave 32% of alcohol rac-24 after 10 h besides 28% of 1-(2,2,2-

trifluoroethoxy)-2-hexanol (determined by GC-MS). The constitution of compound 24 is 

derived from its 
1
H-NMR spectrum with a multiplet for CHOH at δ 3.84 ppm and two dd at δ 

2.79 and 2.97 ppm for the diastereotopic protons at C-1 and from the 
13

C-NMR spectrum 

where all CH2 groups resonate at δ < 38 ppm. The regioisomeric primary alcohol arising from 

nucleophilic attack at the higher substituted position of 22 should show the 
1
H- and 

13
C-NMR 

resonances of the CH2OH group at lower field. Analogous NMR arguments allowed to 

identify rac-25 as a secondary alcohol, which was formed in 51% yield when glycidyl methyl 

ether (rac-23) was heated with 1,2-dimethylindole (2b) for 48 h at 80 °C in 2,2,2-

trifluoroethanol. 
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6.3 Conclusion 

 

 

Aromatic and aliphatic epoxides can be attacked nucleophilically by electron-rich arenes 

when the ring opening reaction is electrophilically assisted by 2,2,2-trifluoroethanol. The high 

stereoselectivities of the reactions (> 99% ee) indicate the operation of SN2 type processes 

also in case of styrene oxide, where nucleophilic attack occurs regioselectively at the benzylic 

position, i. e. at the position which is usually favored in SN1 type reactions. The principle of 

electrophilic solvent assistance of SN2 type reactions demonstrated in this work should 

systematically be explored also for other types of SN2 reactions. 
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6.4 Experimental Section 

 

6.4.1 General 

 

All solvents were distilled prior to use. Water was purified with Millipore MilliQplus. All 

starting materials were commercially available and used as received, N-methylindole (2c), 

2,5-dimethylpyrrole (5c), 2,4-dimethylpyrrole (5e) were distilled, 1,2-dimethylindole (2b) 

was recrystallized from methanol prior to use. 2-(4-Methoxyphenyl)oxirane (14) was 

synthesized according to the literature procedure.
[49]

 
1
H-NMR spectra were recorded on 

Bruker ARX 300 and Varian Inova 400. Chemical shifts refer to TMS or the solvent 

resonance as the internal standard (CDCl3: δ = 7.26 ppm, CD3CN: δ = 1.94 ppm). 

Multiplicities are given as s = singlet, d = doublet, t = triplet, q = quartet, br = broad and m = 

multiplet. 
13

C-NMR spectra were recorded on Bruker ARX 300 or Varian VXR 400 with 

broadband proton decoupling. Chemical shifts refer to TMS or the solvent as internal standard 

(CDCl3: δ = 77.0 ppm, CD3CN: δ = 1.32 and 118.3 ppm). Spin multiplicities are derived from 

DEPT135 spectra. GC-MS spectra were recorded on Agilent 5973 MSD (HP-5MS capillar 

column with 30 m length, 0.25 mm diameter, 1.0 mL/min flow rate, injector, split, He carrier 

gas, quadrupol mass spectrometer). The following temperature programs have been used: A: 

40 °C (3 min) – 25 °C/min – 150 °C – 50 °C/min – 250 (8 min); B: 70 °C (2 min) – 25 °C/min 

– 150 °C – 50 °C/min – 250 °C (12 min); C: 70 °C (2 min) – 50 °C/min – 250 °C (8 min); D: 

70 °C (2 min) – 25 °C/min – 150 °C – 50 °C/min – 250 °C (28 min). Chromatographic 

purification was done with Merck silica gel 60 (mesh 40-63 µm) by common or flash column 

chromatography. MPLC separation was done on a Büchi Sepacore System (pump manager C-

615, C-605 pumps, C-660 fraction collector and C-635 photometer). HPLC analysis was 

performed on a Waters HPLC system (550 pumps, degasser, PDA, single injector). Chiralpak 

IB
®

 was used as stationary phase (0.46 cm ID × 25 cm length) at 20 °C and calibrated with 

flavanone prior to use. Eluents, flow rate, detection and retention times are listed. In some 

cases Chiracel OD-H
®

 (0.46 cm ID × 25 cm length) was used as chiral column. In some cases 

a basic additive (diethylamine = DEA) was added to the mobile phase. Kugelrohr distillations 

were performed on Büchi GKR-50 Kugelrohr oven. The boiling points refer to the oven 

temperature. Optical rotations were measured using a Perkin-Elmer polarimeter 343 over a 

path length of 10 cm with the sample temperature maintained at 20 °C in the solvent 

indicated. Melting points were measured on Büchi B-540 and are not corrected.  
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General reaction procedure:  

To a solution of the nucleophile (3.0 mmol) in the corresponding solvent (3 mL), the epoxide 

(3.0 mmol) was added at once and stirred for the specified time at room temperature or under 

reflux.  

 

Three different work-up techniques were employed:  

A: When the reaction was finished the solvent was removed in vacuo and the crude product 

was purified by Kugelrohr distillation and/or column chromatography;  

B: When the product precipitated from the reaction mixture it was filtered off, washed with 

cold EtOH (3 × 5 mL) and recrystallized from EtOH;  

C: When aqueous solvent mixtures were used, Et2O (10 mL) and then H2O (10 mL) were 

added and the aqueous phase was extracted with Et2O (3 × 10 mL). The combined organic 

phases were dried (MgSO4), and after evaporation of the solvent in vacuo the crude product 

was purified by Kugelrohr distillation and/or column chromatography.  

 

 

6.4.2 Screening Reactions of Indoles with Styrene Oxide 

 

The reactions of rac-styrene oxide (rac-1) with indole (2a) and 1,2-dimethylindole (2b) in 

methanol, ethanol and 90% aqueous acetonitrile have been performed according to the general 

reaction procedure (vide infra). After 72 h the reaction mixture was allowed to come to room 

temperature and worked up according to method A and C respectively. After column 

chromatography or distillation the starting materials have been recovered. 

The experiments of the reactions of rac-styrene oxide (rac-1) with indole (2a) and 1,2-

dimethylindole (2b) in 80% aqueous acetone and 40% aqueous ethanol, which were repeated 

analogously with enantiopure (R)-styrene oxide [(R)-1], are summarized in Table 6.5 and 

have been performed according to the general reaction procedure (vide infra), followed by 

work-up C. 
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Table 6.5. Experiments for the reactions of styrene oxide (1) with indole (2a) and 1,2-

dimethylindole (2b) in 80% aq. acetone and 40% aq. ethanol. 

 

Solvent
[a] 

indole 1 time 

/ h 

temp 

/ °C 

product yield / %
[b] 

acetone-

H2O 

(80/20) 

2a: 5.0 mmol, 586 mg 

2a: 5.0 mmol, 586 mg 

2b: 2.5 mmol, 363 mg 

2b: 2.0 mmol, 291 mg 

5.0 mmol, 572 µL 

5.0 mmol, 572 µL 

2.5 mmol, 286 µL 

2.0 mmol, 229 µL 

72 

72 

72 

14 

25 

60 

25 

60 

3a 

3a 

3b 

3b 

–
[c] 

 107 mg (  9%) 

46.1 mg (  7%) 

90.3 mg (17%) 

EtOH-H2O 

(40/60) 

2a: 5.0 mmol, 586 mg 

2a. 3.0 mmol, 351 mg 

2b: 5.0 mmol, 726 mg 

2b: 2.0 mmol, 291 mg 

5.0 mmol, 572 µL 

3.0 mmol, 343 µL 

5.0 mmol, 572 µL 

2.0 mmol, 229 µL 

72 

72 

72 

12 

25 

80 

25 

80 

3a 

3a 

3b 

3b 

190 mg (16%) 

171 mg (24%) 

388 mg (29%) 

287 mg (54%) 

[a] Solvent mixtures given as v/v. [b] Isolated yields after column chromatography.  

[c] Starting materials have been recovered. 

 

 

 

2-Methoxy-2-phenylethanol (4b):
[50]

 

Detected in GC-MS as a side product of the reaction of indole (2a) and 1,2-dimethylindole 

(2b) with styrene oxide (1) in methanol. 

OH
OMe

4b

 

 

GC-MS (B): t = 7.1 min; m/z (%) = 152 (5) [M
+
], 135 (7) [M

+
–H2O], 121 (100)  

[M
+
–CH2OH], 91 (8). 

 

 

2-Ethoxy-2-phenylethanol (4c):
[51]

 

Detected in GC-MS as a side product of the reaction of indole (2a) and 1,2-dimethylindole 

(2b) with styrene oxide (1) in ethanol. 
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OH
OEt

4c

 

 

GC-MS (B): t = 7.9 min; m/z (%) = 165 (5) [M
+
], 135 (100) [M

+
–CH2OH], 91 (6). 

 

 

 

2-Phenyl-2-(2,2,2-trifluoroethoxy)ethanol (4d) and 1-Phenyl-2-(2,2,2-trifluoroethoxy)-

ethanol (4e): 

A solution of rac-styrene oxide (rac-1, 571 µL, 5.00 mmol) in CF3CH2OH (5 mL) was cooled 

to 0 °C and sodium hydride (204 mg, 5.10 mmol) was added in portions. The reaction mixture 

was allowed to warm up to room temperature and then heated to 80 °C for 10 h. The mixture 

was poured onto saturated NaCl-solution (20 mL) and the aqueous phase was extracted with 

Et2O (3 × 30 mL). The combined organic layers were washed with H2O (30 mL) and dried 

(MgSO4). After removal of the solvent in vacuo the crude product was purified by kugelrohr 

distillation (5 × 10
-2

 mbar, b. p. 131–140 °C) to yield a 2:1-mixture of 4d and 4e as a colorless 

liquid (561 mg, 51%). 

 

OH
O

4e

CF3

O
OH

CF3

4e

+

 

 

1
H-NMR (300 MHz, CDCl3): δ = 2.55 (br. s, OH of 4d and 4e), 3.59–3.99 (m, 4 H, two CH2 

of 4d and 4e), 4.54 (dd, J = 3.6 Hz, 8.3 Hz, 0.66 H, CH of 4d), 4.89 (dd, J = 3.2 Hz, 8.6 Hz, 

0.34 H, CH of 4e), 7.27–7.40 (m, 5 H, ArH of 4d and 4e); 
13

C-NMR (75.5 MHz, CDCl3): δ = 

66.2 (q, JCF = 34 Hz), 67.1 (t), 68.8 (q, JCF = 34 Hz), 72.9 (d), 78.0 (t), 84.6 (d), 123.9 (q, JCF 

= 288 Hz), 126.2 (d), 126.9 (d), 128.1 (d), 128.2 (d), 128.6 (d), 128.9 (d), 136.7 (s), 139.7 (s); 

19
F-NMR (282 MHz, CDCl3): δ = –74.59 (t, J = 8.8 Hz, 3 F), –74.57 (t, J = 8.8 Hz, 3 F);  

GC-MS (B): 4e: t = 6.2 min; m/z (%) = 189 (100); 4d: t = 6.5 min; m/z (%) = 107 (100), 79 

(59), 77 (37). 
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6.4.3 Reactions of Indoles with Styrene Oxide 

 

(R)-2-(1H-Indol-3-yl)-2-phenylethanol (3a):
[27, 30, 31, 34, 35] 

Indole (2a, 351 mg, 3.00 mmol) and (R)-styrene oxide [(R)-1, 343 µL, 3.00 mmol] were 

stirred in CF3CH2OH (3 mL) at 80 °C (10 h) to yield (R)-3a after column chromatography 

(SiO2, hexanes/ethyl acetate = 2:1) as a colorless solid (477 mg, 67%). 

N
H

OH (R)-3a

1

2

1'

2'

3'4'

5'

6'

7'

3a'

7a'
 

 

Rf = 0.21. M. p. 121–122 °C (Lit: 120–122 °C).
[27]

 [αD
20] = + 12.8 ° (c 1.60, CHCl3). 

1
H-

NMR (400 MHz, CDCl3): δ = 1.64 (br. s, 1 H, OH), 4.16 (dd, J = 7.1 Hz, 11 Hz, 1 H, 1-H), 

4.23 (dd, J = 6.7 Hz, 11 Hz, 1 H, 1-H), 4.47 (t, J = 6.9 Hz, 1 H, 2-H), 7.04 (ddd, J = 0.9 Hz,  

7.1 Hz, 7.9 Hz, 1 H, ArH), 7.07 (d, J = 2.2 Hz, 1 H, ArH), 7.15–7.24 (m, 2 H, ArH),  

7.28–7.34 (m, 5 H, ArH), 7.44 (d, J = 7.9 Hz, 1 H, ArH), 8.09 (br. s, 1 H, NH).  

13
C-NMR (100 MHz, CDCl3): δ = 45.6 (d, 2-C), 66.4 (t, 1-C), 111.1 (d, 7’-C), 116.0 (s, 3’-C), 

119.4 (d, 4’-C), 119.5 (d, 5’-C), 121.9 (d, 6’-C), 122.3 (d, Ph), 125.8 (d, 2’-C), 128.3  

(s, 3a’-C), 128.6 (d, Ph), 128.7 (d, Ph), 136.5 (s, 7a’-C), 141.6 (s, Ph); peak assignment was 

done by 2D-NMR experiments. GC-MS (B): t = 12.6 min; m/z (%) = 237 (13) [M
+
], 207 (18), 

206 (100), 204 (17), 178 (13); Chiral HPLC: OD-H
®

 (isocratic, n-heptane/i-propanol = 85:15,  

0.5 mL/min, UV at 215 nm, t(S) = 28.7 min, t(R) = 37.8 min); IB
®

 (isocratic, n-heptane/ 

i-propanol = 95:5 containing 0.01% DEA, 1.0 mL/min, UV at 275 nm, t(S) = 40.5 min, t(R) = 

47.9 min), > 99% ee. 

 

 

(R)-2-(1,2-Dimethyl-1H-indol-3-yl)-2-phenylethanol (3b):
[28]

 

1,2-Dimethylindole (2b, 726 mg, 5.00 mmol) and (R)-styrene oxide [(R)-1, 572 µL,  

5.00 mmol] were stirred in CF3CH2OH (5 mL) at 80 °C (3 h) to yield (R)-3b after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (1.19 g, 90%).  
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N
Me

Me

OH

(R)-3b

 

 

Rf = 0.57. [αD
20] = – 77.0 ° (c 1.45, CHCl3). 

1
H-NMR (300 MHz, CDCl3): δ = 1.53 (br. s,  

1 H, OH), 2.29 (s, 3 H, 2’-Me), 3.59 (s, 3 H, NMe), 4.26 (d, J = 7.6 Hz, 2 H, 1-H), 4.43 (t,  

J = 7.6 Hz, 1 H, 2-H), 6.93 (ddd, J = 1.1 Hz, 7.0 Hz, 8.0 Hz, 1 H, ArH), 7.05–7.12 (m, 2 H, 

ArH), 7.15–7.27 (m, 5 H), 7.39 (d, J = 8.0 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 

10.7 (q), 29.6 (q), 45.4 (d), 65.1 (t), 108.9 (d), 109.3 (s), 119.1 (d), 119.2 (d), 120.7 (d), 126.2 

(d), 127.9 (s), 128.4 (d), 135.2 (s), 136.9 (s), 141.9 (s). GC-MS (B): t = 13.5 min; m/z (%) = 

265 (18) [M
+
], 235 (20), 234 (100), 218 (10). Chiral HPLC: OD-H

®
 (isocratic,  

n-heptane/i-propanol = 85:15, 0.5 mL/min, UV at 215 nm, t(S) = 24.3 min, t(R) = 29.0 min); 

IB
®

 (isocratic, n-heptane/i-propanol = 95:5 containing 0.01% DEA, 1.0 mL/min, UV at  

275 nm, t(S) = 11.7 min, t(R) = 26.3 min), > 99% ee. 

 

 

(R)-2-(1-Methyl-1H-indol-3-yl)-2-phenylethanol (3c):
[31, 34, 35]

 

N-Methylindole (2c, 384 µL, 3.00 mmol) and (R)-styrene oxide [(R)-1, 343 µL, 3.00 mmol] 

were stirred in CF3CH2OH (3 mL) at 80 °C (4 h) to yield (R)-3c after column chromatography 

(SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (550 mg, 73%).  

 

N
Me

OH

(R)-3c

 

 

Rf = 0.66. [αD
20] = + 3.9 ° (c 1.66, CHCl3). 

1
H-NMR (300 MHz, CDCl3): δ = 1.82 (br. s,  

1 H, OH), 3.73 (s, 3 H, NMe), 4.14 (dd, J = 7.1 Hz, 11 Hz, 1 H, 1-H), 4.21 (dd, J = 6.7 Hz,  

11 Hz, 1 H, 1-H), 4.46 (t, J = 6.9 Hz, 1 H, 2-H), 6.93 (s, 1 H, ArH), 7.03 (ddd, J = 1.2 Hz,  

6.9 Hz, 8.0 Hz, 1 H, ArH), 7.17–7.35 (m, 7 H, ArH), 7.45 (td, J = 0.9 Hz, 8.0 Hz, 1 H, ArH). 

13
C-NMR (75.5 MHz, CDCl3): δ = 32.7 (q), 45.6 (d), 66.4 (t), 109.2 (d), 114.4 (s), 119.0 (d), 
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119.4 (d), 121.8 (d), 126.6 (d), 126.7 (d), 127.4 (d), 128.2 (s), 128.6 (d), 137.2 (s), 141.8 (s); 

GC-MS (B): t = 12.0 min; m/z (%) = 251 (13), [M
+
], 221 (18), 220 (100), 204 (11); Chiral 

HPLC: OD-H
®

 (isocratic, n-heptane/i-propanol = 85:15, 0.5 mL/min, UV at 215 nm, t(S) =  

22.7 min, t(R) = 45.3 min), IB
®

 (isocratic, n-heptane/i-propanol = 90:10 containing 0.01% 

DEA, 1.0 mL/min, UV at 275 nm, t(S) = 13.6 min, t(R) = 23.3 min), > 99% ee. 

 

 

(R)-2-(2-Methyl-1H-indol-3-yl)-2-phenylethanol (3d):
[27, 30, 31, 34, 35]

 

2-Methylindole (2d, 394 mg, 3.00 mmol) and (R)-styrene oxide [(R)-1, 343 µL, 3.00 mmol] 

were stirred in CF3CH2OH (3 mL) at 80 °C (4 h) to yield (R)-3d after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (536 mg, 72%). 

 

N
H

OH

(R)-3dMe

 

 

Rf = 0.48. 
1
H-NMR (300 MHz, CDCl3): δ = 2.03 (s, 3 H, Me), 2.56 (s, 1 H, OH), 4.16 (d, J = 

7.6 Hz, 2 H, 1-H), 4.31 (t, J = 7.6 Hz, 1 H, 2-H), 6.90–7.14 (m, 7 H, ArH), 7.20–7.22 (m, 2 H, 

ArH), 7.37 (d, J = 7.8 Hz, 1 H, ArH), 7.99 (s, 1 H, NH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 

11.6 (q), 30.4 (d), 64.6 (t), 109.6 (d), 110.4 (d), 117.2 (d), 119.0 (d), 120.5 (d), 125.9 (d), 

127.7 (d), 128.1 (d), 128.9 (s), 133.0 (s), 135.2 (s), 141.6 (s). GC-MS (B): t = 13.3 min;  

m/z (%) = 251 (15) [M
+
], 221 (19), 220 (100), 204 (8), 178 (7). Chiral HPLC: IB

®
 (isocratic, 

n-heptane/i-propanol = 90:10 containing 0.01% DEA, 1.0 mL/min, UV at 275 nm, t(S) =  

18.4 min, t(R) = 21.1 min), > 99% ee. 

 

 

(R)-2-(5-Methoxy-1H-indol-3-yl)-2-phenylethanol (3e):
[31, 35]

 

5-Methoxyindole (2e, 442 mg, 3.00 mmol) and (R)-styrene oxide [(R)-1, 343 µL, 3.00 mmol] 

were stirred in CF3CH2OH (3 mL) at 80 °C (3 h) to yield (R)-3e after column chromatography 

(hexanes/ethyl acetate = 1:1) as a beige solid (577 mg, 72%).  
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N
H

OH

(R)-3e

MeO

 

 

Rf = 0.42. M. p. 89–90 °C (Lit: 89–90 °C).
[35]

 
1
H-NMR (300 MHz, CDCl3): δ = 2.51 (br. s, 1 

H, OH), 3.61 (s, 3 H, OMe), 4.00 (dd, J = 7.2 Hz, 11 Hz, 1 H, 1-H), 4.07 (dd, J = 6.8 Hz, 11 

H,  

1 H, 1-H), 4.30 (t, J = 6.9 Hz, 1 H, 2-H), 6.73–6.82 (m, 3 H, ArH), 7.00–7.24 (m, 6 H, ArH), 

8.37 (br. s, 1 H, NH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 45.3 (d), 55.5 (q), 66.0 (t), 101.0 (d), 

111.7 (d), 111.8 (d), 115.0 (s), 122.7 (d), 126.3 (d), 127.2 (s), 128.1 (d), 128.2 (d), 131.5 (s), 

141.7 (s), 153.4 (s). GC-MS (B): t = 17.2 min; m/z (%) = 267 (16) [M
+
], 237 (18), 236 (100), 

204 (13); Chiral HPLC: IB
®

 (isocratic, n-heptane/i-propanol = 90:10 containing 0.01% DEA,  

1.0 mL/min, UV at 275 nm, t(S) = 31.5 min, t(R) = 33.4 min), > 99% ee. 

 

(R)-2-(5-Bromo-1H-indol-3-yl)-2-phenylethanol (3f): 

5-Bromoindole (2f, 588 mg, 3.00 mmol) and (R)-styrene oxide [(R)-1, 343 µL, 3.00 mmol] 

were stirred in CF3CH2OH (3 mL) at 80 °C (72 h) to yield 3f as a colorless solid (427 mg, 

45%). 

 

N
H

OH

(R)-3f

Br

 

 

M. p. 127–128 °C (Lit: 129–130 °C). 
1
H-NMR (300 MHz, CDCl3): δ = 1.80 (br. s, 1 H, OH), 

4.09 (dd, J = 7.1 Hz, 11 Hz, 1 H, 1-H), 4.16 (dd, J = 6.6 Hz, 11 Hz, 1 H, 1-H), 4.41 (t,  

J = 6.7 Hz, 1 H, 2-H), 7.11 (s, 1 H, ArH), 7.20–7.43 (m, 7 H, ArH), 7.58 (s, 1 H, ArH), 8.28 

(br. s, 1 H, NH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 45.4 (d), 66.4 (t), 112.6 (d), 112.8 (s), 

115.8 (s), 121.8 (d), 123.1 (d), 125.1 (d), 126.9 (d), 128.2 (d), 128.7 (d), 128.8 (s), 135.0 (s), 

141.2 (s). GC-MS (B): t = 21.1 min; m/z (%) = 317 (12), 315 (12), 287 (15), 286 (99), 285 

(17), 284 (100), 204 (39), 176 (10). Chiral HPLC: IB
®

 (isocratic, n-heptane/i-propanol = 98:2 
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containing 0.01% DEA, 1.0 mL/min, UV at 275 nm, t(S) = 45.3 min, t(R) = 53.8 min),  

> 99% ee. 

6.4.4 Reactions of Pyrroles with Styrene Oxide 

 

(R)-2-Phenyl-2-(1H-pyrrol-2-yl)ethanol (6a) and (R)-2-phenyl-2-(1H-pyrrol-3-yl)-ethanol 

(6b):
[35]

 

Pyrrole (5a, 119 µL, 1.00 mmol) and (R)-styrene oxide [(R)-1, 114 µL, 1.00 mmol] were 

stirred in CF3CH2OH (1 mL) at 80 °C (1 h) to yield a 2:1-mixture of 6a and 6b after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:2) as a yellow oil (127 mg, 68%). 

 

(R)-6a

HN
OH

HN

OH+

(R)-6b  

 

6a: Rf =  0.31. GC-MS (A): t = 10.8 min; m/z (%) = 187 (100) [M
+
], 156 (100), 128 (12). 

Chiral HPLC: OD-H
®

 (isocratic, n-heptane/i-propanol = 85:15, 0.5 mL/min, UV at 215 nm,  

t(S) = 38.7 min, t(R) = 41.1 min), > 99% ee. 

6b: Rf = . 0.37. GC-MS (A): t = 10.4 min; m/z (%) = 187 (8) [M
+
], 156 (100), 128 (17). Chiral 

HPLC: OD-H
®

 (isocratic, n-heptane/i-propanol = 85:15, 0.5 mL/min, UV at 215 nm,  

t(S) = 25.9 min, t(R) = 31.0 min), > 99% ee. 

6a + 6b: 
1
H-NMR (200 MHz, CDCl3): δ = 2.73 (br. s, 1 H, OH of 6b), 3.02 (br. s, 2 H, OH of 

6a), 3.87–4.17 (m, 3 H, 1-H and 2-H of 6b and 6 H, 1-H and 2-H of 6a), 5.90–5.93 (m, 2 H of 

6a), 6.02–6.09 (m, 2 H of 6a d 1 H of 6b), 6.57–6.61 (m, 1 H of 6b), 6.62–6.71 (m, 2 H of 6a 

and 1 H of 6b), 7.18–7.40 (m, 10 H of 6a and 5 H of 6b), 9.08 (br. s, 1 H of 6b and 2 H of 

6a). 

 

 

(R)-2-Phenyl-2-(1-methyl-1H-pyrrol-2-yl)ethanol (7a) and (R)-2-phenyl-2-(1-methyl-1H-

pyrrol-3-yl)ethanol (7b):
[35]

 

1-Methylpyrrole (5b, 119 µL, 1.00 mmol) and (R)-styrene oxide [(R)-1, 114 µL, 1.00 mmol] 

were stirred in CF3CH2OH (1 mL) at 80 °C (1 h) to yield a 1:1-mixture of 7a and 7b after 
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column chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (111 mg, 55%) 

which was separated again by column chromatography. 

(R)-7a

N
OHMe

 

 

7a: Rf = 0.42. 
1
H-NMR (300 MHz, CDCl3): δ = 1.78 (br. s, 1 H, OH), 3.33 (s, 3 H, NMe), 

3.89–4.20 (m, 3 H, 1-H, 2-H), 6.14–6.18 (m, 2 H, ArH), 6.59 (t, J = 2.4 Hz, 1 H, ArH), 7.14–

7.32 (m, 5 H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 33.7 (q), 46.5 (d), 66.4 (t), 105.5 (d), 106.8 

(d), 122.4 (d), 126.9 (d), 128.2 (d), 128.7 (d), 131.6 (s), 140.2 (s). GC-MS (A): t = 10.7 min;  

m/z (%) = 201 (9) [M
+
], 170 (100). Chiral HPLC: OD-H

®
 (isocratic, n-heptane/i-propanol = 

85:15, 0.5 mL/min, UV at 215 nm, t(S) = 17.2 min, t(R) = 10.5 min, > 99% ee. 

 

N

OH (R)-7b

Me  

 

7b: Rf = 0.39. 
1
H-NMR (300 MHz, CDCl3): δ = 1.78 (br. s, 1 H, OH), 3.60 (s, 3 H; NMe), 

3.94–4.10 (m, 3 H, 1-H, 2-H), 6.03 (t, J = 2.1 Hz, 1 H, ArH), 6.43 (s, 1 H, ArH), 6.56 (t, J = 

2.1 Hz, 1 H, ArH), 7.20–7.31 (m, 5 H, ArH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 41.8 (q), 47.2 

(d), 67.3 (t), 107.8 (d), 120.1 (s), 122.3 (d), 123.8 (d), 126.7 (d), 128.3 (d), 128.7 (d), 142.8 

(s). GC-MS (A): t = 10.4 min; m/z (%) = 201 (11) [M
+
], 170 (100). Chiral HPLC: OD-H

®
 

(isocratic, n-heptane/i-propanol = 85:15, 0.5 mL/min, UV at 215 nm, t(S) = 9.2 min,  

t(R) = 12.6 min), > 99% ee. 

 

 

rac-2-(2,5-Dimethyl-1H-pyrrol-3-yl)-2-phenylethanol (rac-8):
[35]

 

2,5-Dimethylpyrrole (5c, 119 µL, 1.00 mmol) and rac-styrene oxide (rac-1, 114 µL,  

1.00 mmol) were stirred in CF3CH2OH (1 mL) at 80 °C (1 h) to yield rac-8 after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:1) as orange oil (65 mg, 30%). 
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HN

OH rac-8

Me

Me

 

 

Rf = 0.31. 
1
H-NMR (400 MHz, CD3CN): δ = 2.07 (s, 3 H, 2’-Me), 2.12 (s, 3 H, 5’-Me), 2.44 

(br. s, 1 H, OH), 3.88–3.97 (m, 3 H, 1-H, 2-H), 5.64 (s, 1 H, 4’-H), 7.12–7.27 (m, 5 H, ArH), 

8.43 (br. s, 1 H, NH). 
13

C-NMR (100 MHz, CD3CN): δ = 11.0 (q), 12.7 (q), 46.6 (d), 66.9 (t), 

105.2 (d), 127.4 (d), 128.5 (d), 128.9 (d), 129.2 (s), 130.6 (s), 138.3 (s), 145.4 (s). GC-MS 

(B): t = 9.0 min; m/z (%) = 215 (12) [M
+
], 185 (15), 184 (100). 

 

 

(R)-2-Phenyl-2-(1,2,5-trimethyl-1H-pyrrol-3-yl)ethanol (9): 

1,2,5-Trimethylpyrrole (5d, 238 µL, 2.00 mmol) and (R)-styrene oxide [(R)-1, 228 µL,  

2.00 mmol] were stirred in CF3CH2OH (2 mL) at 80 °C (1 h) to yield 9 after column 

chromatography (SiO2, hexanes/ethyl acetate = 3:1) as a yellow oil (339 mg, 74%). 

 

N

OH (R)-9

Me

Me

Me
 

 

Rf = 0.31. 
1
H-NMR (400 MHz, CD3CN): δ = 2.09 (s, 3 H), 2.14 (s, 3 H), 2.49 (br. s, 1 H, 

OH), 3.31 (s, 3 H, NMe), 3.82–3.97 (m, 3 H, 1-H, 2-H), 5.71 (s, 1 H, 4’-H), 7.13–7.17 (m,  

1 H, ArH), 7.22–7.29 (m, 4 H, ArH). 
13

C-NMR (100 MHz, CD3CN): δ = 10.1 (q), 12.4 (q), 

30.4 (q), 46.8 (d), 66.9 (t), 104.6 (d), 119.3 (s), 124.9 (s), 126.6 (d), 127.7 (s), 128.9 (d), 129.0 

(d), 145.5 (s); GC-MS (B): t = 9.4 min; m/z (%) = 229 (14) [M
+
], 198 (100), 196 (7), 182 (7), 

181 (6). Chiral HPLC: IB
®

 (isocratic, n-heptane/i-propanol = 90:10 containing 0.01% DEA,  

1.0 mL/min, UV at 275 nm, t(S) = 31.5 min, t(R) =36.6 min), > 99% ee. HR-EI-MS: C15H19NO 

calcd. 229.1467, found 229.1473. 
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rac-2-(3,5-Dimethyl-1H-pyrrol-2-yl)-2-phenylethanol (10): 

2,4-Dimethylpyrrole (5e, 119 µL, 1.00 mmol) and rac-styrene oxide (rac-1, 114 µL,  

1.00 mmol) were stirred in CF3CH2OH (1 mL) at 80 °C (1 h) to yield rac-10 after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (118 mg, 55%). 

 

rac-10

HN
OH

Me

Me

 

 

Rf = 0.30. 
1
H-NMR (400 MHz, CD3CN): δ = 1.90 (s, 3 H, 3’-Me), 2.13 (s, 3 H, 5’-Me), 2.80 

(br. s, 1 H, OH), 3.93–4.01 (m, 2 H, 1-H), 4.11–4.14 (m, 1 H, 2-H), 5.52 (s, 1 H, 4’-H), 7.16–

7.31 (m, 5 H, ArH), 8.59 (br. s, 1 H, NH). 
13

C-NMR (100 MHz, CD3CN): δ = 11.2 (q), 12.8 

(q), 45.9 (d), 65.7 (t), 108.5 (d), 115.2 (s), 126.4 (s), 127.0 (d), 127.1 (s), 128.9 (d), 129.3 (d), 

143.6 (s). GC-MS (B): t = 8.5 min; m/z (%) = 215 (12) [M
+
], 185 (15), 184 (100). 

 

rac-2-(4-Ethyl-3,5-dimethyl-1H-pyrrol-2-yl)-2-phenylethanol (11): 

3-Ethyl-2,4-dimethylpyrrole (5f, 246 mg, 2.00 mmol) and rac-styrene oxide (rac-1, 229 µL, 

2.00 mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (1 h) to yield rac-11 after column 

chromatography (SiO2, hexanes/ethyl acetate = 2:1) as a yellow oil (272 mg, 56%). 

 

rac-11
HN

OH

Me

Me

Et  

 

Rf = 0.33. 
1
H-NMR (400 MHz, CD3CN): δ = 0.98–1.03 (m, 3 H, CH2CH3), 1.88 (s, 3 H,  

3’-Me), 2.09 (s, 3 H, 5’-Me), 2.29–2.35 (m, 2 H, CH2CH3), 3.79 (s, 1 H, OH), 3.94 (dd, J = 

6.8 Hz, 11 Hz, 1 H, 1-H), 3.99 (dd, J = 6.6 Hz, 11 Hz, 1 H, 1-H), 4.13 (dd, J = 6.7 Hz, 6.7 Hz, 

1 H, 2-H), 7.24–7.32 (m, 5 H, ArH), 8.40 (br. s, 1 H, NH). 
13

C-NMR (100 MHz, CD3CN): δ = 

9.26 (q), 10.8 (q), 16.1 (q), 18.1 (t), 45.9 (d), 65.6 (t), 113.9 (s), 126.7 (s), 127.0 (d), 128.9 (d), 

129.2 (s), 129.3 (d), 143.7 (s). GC-MS (B): t = 9.2 min; m/z (%) = 243 (15) [M
+
], 213 (21), 

212 (100), 196 (8), 181 (9). 
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6.4.5 Reactions of Indoles with Stilbene Oxides 

 

rac-2-(1H-Indol-3-yl)-1,2-diphenylethanol (13aa):
[27, 31, 34]

 

Indole (2a, 234 mg, 2.00 mmol) and rac-trans-stilbene oxide (rac-trans-12, 397 mg, 2.00 

mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (42 h) to yield rac-13aa after column 

chromatography (SiO2, hexanes/ethyl acetate = 2:1) as a pale yellow oil (231 mg, 37%). 

 

N
H

Ph
OH

Ph
rac-13aa

 

 

Rf = 0.52. 
1
H-NMR (400 MHz, CD3CN): δ = 3.24 (d, J = 4.3 Hz, 1 H, OH), 4.63 (d, J =  

8.7 Hz, 1 H, 2-H), 5.46 (dd, J = 4.3 Hz, 8.7 Hz, 1 H, 1-H), 6.94–7.50 (m, 15 H, ArH), 9.06 

(br. s, 1 H, NH). 
13

C-NMR (100 MHz, CD3CN): δ = 50.9 (d), 76.6 (d), 110.9 (d), 116.8 (s), 

119.2 (d), 119.3 (d), 122.0 (d), 122.5 (d), 126.6 (d), 126.8 (d), 127.0 (s), 127.4 (d), 128.0 (d), 

128.3 (d), 129.4 (d), 135.9 (s), 140.2 (s), 142.8 (s). GC-MS (D): t = 26.0 min; m/z (%) = 313 

(1) [M
+
], 207 (28), 206 (100), 204 (13), 178 (10), 77 (4). 

 

 

rac-2-(1,2-Dimethyl-1H-indol-3-yl)-1,2-diphenylethanol (13ba): 

1,2-Dimethylindole (2b, 291 mg, 2.00 mmol) and rac-trans-stilbene oxide (rac-trans-12,  

397 mg, 2.00 mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (9 h) to yield rac-13ba as 

colorless crystals (450 mg, 66%). 

 

N

Ph
OH

Ph
rac-13ba

Me

Me  

 

M. p. 158–159 °C. 
1
H-NMR (300 MHz, CDCl3): δ = 2.02 (s, 3 H, 2’-Me), 2.26 (s, 1 H, OH), 

3.42 (s, 3 H, NMe), 4.49 (d, J = 9.9 Hz, 1 H, 2-H), 5.76 (d, J = 9.9 Hz, 1 H, 1-H), 6.99–7.33 

(m, 11 H, ArH), 7.58–7.60 (m, 2 H, ArH), 7.69–7.71 (m, 1 H, ArH). 
13

C-NMR (75.5 MHz, 

CDCl3): δ = 10.2 (q), 29.4 (q), 52.1 (d), 74.9 (d), 108.6 (d), 111.2 (s), 118.7 (d), 119.6 (d), 
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120.1 (d), 126.3 (d), 126.4 (d), 126.6 (s), 127.2 (d), 127.7 (d), 128.5 (d), 128.8 (d), 133.6 (s), 

136.7 (s), 142.0 (s), 143.1 (s). GC-MS (D): t = 25.2 min; m/z (%) = 341 (1) [M
+
], 235 (20), 

234 (100), 218 (8). 

 

 

rac-2-(1-Methyl-1H-indol-3-yl)-1,2-diphenylethanol (13ca): 

N-Methylindole (2c, 260 µL, 2.00 mmol) and rac-trans-stilbene oxide (rac-trans-12, 397 mg,  

2.00 mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (29 h) to yield rac-13ca after column 

chromatography (SiO2, hexanes/ethyl acetate = 3:1) as an orange oil (452 mg, 69%). 

 

N

Ph
OH

Ph
rac-13ca

Me  

 

Rf = 0.44. 
1
H-NMR (300 MHz, CDCl3): δ = 2.33 (br. s, 1 H, OH), 3.36 (s, 3 H, NMe), 4.52 (d, 

J = 6.3 Hz, 1 H, 2-H), 5.33 (d, J = 6.3 Hz, 1 H, 1-H), 6.87–6.92 (m, 2 H, ArH), 7.03–7.15 (m, 

10 H, ArH), 7.18–7.22 (m, 2 H, ArH), 7.27 (ddd, J = 0.7 Hz, 1.8 Hz, 7.8 Hz, 1 H, ArH).  

13
C-NMR (75.5 MHz, CDCl3): δ = 32.3 (q), 50.8 (d), 76.3 (d), 108.9 (d), 115.2 (s), 118.6 (d), 

119.1 (d), 121.3 (d), 126.4 (d), 126.5 (d), 127.1 (d), 127.2 (d), 127.3 (s), 127.8 (d), 128.0 (d), 

129.3 (d), 136.6 (s), 140.4 (s), 142.9 (s). GC-MS (D): t = 22.6 min; m/z (%) = 327 (1) [M
+
], 

221 (20), 220 (100), 204 (8), 178 (5). 

 

 

rac-2-(1,2-Dimethyl-1H-indol-3-yl)-1,2-diphenylethanol (13bb):
[28]

 

1,2-Dimethylindole (2b, 294 mg, 2.00 mmol) and cis-stilbene oxide (cis-12, 397 mg,  

2.00 mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (24 h) to yield rac-13bb after column 

chromatography (SiO2, hexanes/ethyl acetate = 2:1) as colorless crystals (116 mg, 17%). 

 

N

Ph
OH

Ph
rac-13bb

Me

Me
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Rf = 0.48. M. p. 147–148 °C (Lit: 147–150 °C). 
1
H-NMR (400 MHz, CD3CN): δ = 2.34 (s,  

3 H, 2’-Me), 3.05 (d, J = 3.6 Hz, 1 H, OH), 3.63 (s, 3 H, NMe), 4.55 (d, J = 8.9 Hz, 1 H, 2-H), 

5.76 (dd, J = 3.6 Hz, 8.9 Hz, 1 H, 1-H), 6.98–7.05 (m, 2 H, ArH), 7.09–7.14 (m, 3 H, ArH), 

7.17–7.26 (m, 3 H, ArH), 7.30–7.36 (m, 5 H, ArH), 7.81 (d, J = 8.0 Hz, 1 H, ArH). 
13

C-NMR 

(100 MHz, CD3CN): δ = 10.8 (q), 30.0 (q), 52.7 (d), 75.8 (d), 109.8 (d), 111.3 (s), 119.5 (d), 

120.6 (d), 121.1 (d), 126.6 (d), 127.8 (s), 128.0 (d), 128.2 (d), 128.7 (d), 128.8 (d), 129.5 (d), 

136.3 (s), 137.9 (s), 144.2 (s), 145.2 (s). GC-MS (D): t = 26.8 min; m/z (%) = 341 (1) [M
+
], 

235 (20), 234 (100), 218 (8). 

 

 

rac-2-(1-Methyl-1H-indol-3-yl)-1,2-diphenylethanol (13cb):
[37]

 

N-Methylindole (2c, 260 µL, 2.00 mmol) and cis-stilbene oxide (cis-12, 397 mg, 2.00 mmol) 

were stirred in CF3CH2OH (2 mL) at 80 °C (29 h) to yield rac-13cb after column 

chromatography (SiO2, hexanes/ethyl acetate = 2:1) as colorless crystals (124 mg, 19%). 

 

N

Ph
OH

Ph
rac-13cb

Me  

 

Rf = 0.54. M. p. 36–38 °C (Lit: 36–39 °C). 
1
H-NMR (300 MHz, CD3CN): δ = 2.53 (br. s,  

1 H, OH), 3.77 (s, 3 H, NMe), 4.56 (d, J = 8.1 Hz, 1 H, 2-H), 5.31 (d, J = 8.1 Hz, 1 H, 1-H), 

7.00–7.28 (m, 14 H, ArH), 7.44 (br. d, J = 7.8 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, CD3CN): 

δ = 32.8 (q), 52.2 (d), 77.7 (d), 109.2 (d), 113.7 (s), 119.1 (d), 119.5 (d), 121.9 (d), 126.2 (d), 

126.8 (d), 127.2 (d), 127.3 (d), 127.9 (d), 128.0 (s), 128.1 (d), 128.6 (d), 137.1 (s), 141.9 (s), 

142.5 (s). GC-MS (D): t = 22.6 min; m/z (%) = 327 (1) [M
+
], 221 (20), 220 (100), 204 (8), 

178 (5). 
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6.4.6 Reactions of Indoles with Other Aromatic Epoxides 

 

rac-2-(1,2-Dimethyl-1H-indol-3-yl)-2-(4-methoxyphenyl)ethanol (15): 

1,2-Dimethylindole (2b, 436 mg, 3.00 mmol) and 2-(4-methoxyphenyl)oxirane (rac-14,  

451 mg, 3.00 mmol) were stirred in CF3CH2OH (3 mL) at 80 °C (4 h) to yield rac-15 after 

column chromatography (SiO2, hexanes/ethyl acetate = 2:1) as a yellow oil (611 mg, 69%). 

 

N

rac-15

Me

OH

MeO

Me

 

 

Rf = 0.42. 
1
H-NMR (300 MHz, CDCl3): δ = 1.61 (br. s, 1 H, OH), 2.36 (s, 3 H, 2’-Me), 3.66 

(s, 3 H, NMe), 3.75 (s, 3 H, OMe), 4.29 (d, J = 8.4 Hz, 2 H, 1-H), 4.45 (t, J = 7.8 Hz, 1 H,  

2-H), 6.80 (d, J = 6.3 Hz, 2 H, ArH), 7.00 (dd, J = 8.1 Hz, 8.1 Hz, 1 H, ArH), 7.14 (dd, J = 

8.1 Hz, 8.1 Hz, 1 H, ArH), 7.22–7.28 (m, 3 H, ArH), 7.46 (d, J = 8.1 Hz, 1 H, ArH). 

 
13

C-NMR (75.5 MHz, CDCl3): δ = 10.6 (q), 29.6 (q), 44.6 (d), 55.2 (q), 65.3 (t), 108.8 (d), 

109.5 (s), 113.8 (d), 119.1 (d), 119.3 (d), 120.6 (d), 126.6 (s), 128.8 (d), 133.9 (s), 135.0 (s), 

136.9 (s), 157.9 (s). GC-MS (B): t = 19.7 min; m/z (%) = 295 (11) [M
+
], 277 (11), 265 (21), 

264 (100), 262 (8), 220 (9). 

 

 

rac-Ethyl 3-(1,2-dimethyl-1H-indol-3-yl)-2-hydroxy-3-phenylpropanoate (17): 

1,2-Dimethylindole (2b, 290 mg, 2.00 mmol) and 3-phenyloxirane-2-carboxylic acid ethyl 

ester (16, 343 µL, 2.00 mmol) were stirred in CF3CH2OH (2 mL) at 80 °C (5 h) to yield rac-

17 after column chromatography (SiO2, hexanes/ethyl acetate = 2:1) as colorless crystals  

(513 mg, 76%). 

 

N

rac-17

Me

Me

OH

CO2Et
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Rf = 0.35. M. p. 113–114 °C. 
1
H-NMR (300 MHz, CDCl3): δ = 0.87 (t, J = 7.1 Hz, 3 H, 

OCH2CH3), 2.32 (s, 3 H, 2’-Me), 2.78 (d, J = 7.3 Hz, 1 H, OH), 3.62 (s, 3 H, NMe), 3.93, 

3.95 (2 × q, J = 7.1 Hz, 2 H, diastereotopic OCH2CH3), 4.70 (d, J = 6.6 Hz, 1 H, 3-H), 5.01 

(dd, J = 6.6 Hz, 7.3 Hz, 1 H, 2-H), 6.98–7.04 (m, 1 H, ArH), 7.09–7.27 (m, 5 H, ArH), 7.42 

(d, J = 7.7 Hz, 2 H, ArH), 7.59 (d, J = 7.7 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 

10.8 (q), 13.6 (q), 29.5 (q), 47.1 (d), 61.2 (t), 73.5 (d), 108.5 (d), 110.5 (s), 119.0 (d), 119.5 

(d), 120.6 (d), 126.3 (d), 127.0 (s), 128.2 (d), 128.6 (d), 134.1 (s), 136.6 (s), 140.6 (s), 174.1 

(s). GC-MS (B): t = 17.4 min; m/z (%) = 337 (3) [M
+
], 235 (19), 234 (100), 218 (7). 

 

 

rac-Ethyl 3-(5-bromo-1H-indol-3-yl)-2-hydroxy-3-phenylpropanoate (18): 

5-Bromoindole (2f, 980 my, 5.00 mmol) and 3-phenyloxirane-2-carboxylic acid ethyl ester 

(16, 858 µL, 5.00 mmol) were stirred in CF3CH2OH (5 mL) at 80 °C (24 h) to yield rac-18 

after column chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a yellow oil (912 mg, 

47%). 

 

N
H

rac-18

OH

CO2EtBr

 

 

Rf = 0.61. 
1
H-NMR (600 MHz, CDCl3): δ = 1.27 (t, J = 7.2 Hz, 3 H, OCH2CH3), 2.90 (d, J = 

6.6 Hz, 1 H, OH), 4.20 (q, J = 7.2 Hz, 2 H, OCH2CH3), 4.69–4.71 (m, 1 H, 3-H), 4.86–4.89 

(m, 1 H, 2-H), 7.17–7.29 (m, 7 H, ArH), 7.47 (s, 1 H, ArH), 7.49 (s, 1 H, ArH), 8.20 (br. s, 1 

H, NH). 
13

C-NMR (150 MHz, CDCl3): δ = 14.2 (q), 46.0 (d), 61.9 (t), 73.8 (d), 112.5 (d), 

112.7 (s), 115.9 (s), 121.5 (d), 124.2 (d), 124.9 (d), 127.3 (d), 128.3 (d), 128.7 (s), 129.1 (d), 

134.6 (s), 138.1 (s), 173.4 (s). GC-MS (C): t = 7.8 min; m/z (%) = 212 (34), 211 (12), 210 

(100), 175 (51), 165 (49), 147 (80), 137 (31), 129 (29), 102 (90), 77 (15), 75 (17), 51 (17).  

HR-EI-MS: C19H18
35

BrNO3, calcd 388.0538, found 388.0531. 
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6.4.7 Reactions of 1,2-Dimethylindole with Aliphatic Epoxides 

 

rac-2-(1,2-Dimethyl-1H-indol-3-yl)cyclohexanol (20):
[52]

  

1,2-Dimethylindole (2b, 436 mg, 3.00 mmol) and cyclohexene oxide (19, 303 µL, 3.00 mmol) 

were stirred in CF3CH2OH (3 mL) at 80 °C (72 h) to yield rac-20 after column 

chromatography (SiO2, hexanes/ethyl acetate = 4:1) as white crystals (153 mg, 21%). When 

this reaction was repeated, and another 3.00 mmol (304 µL) of 19 were added after 72 h and 

1.50 mmol (152 µL) of 19 after 160 h 20 was obtained in 31% yield. 

 

N

rac-20

Me

Me

OH

 

 

Rf = 0.29. M. p. 187–188 °C (Lit: 190–193 °C).
[52]

 
1
H-NMR (300 MHz, CDCl3): δ = 1.15–

2.21 (m, 9 H), 2.40 (s, 3 H, 2’-Me), 2.61–2.75 (m, 1 H, 2-H), 3.66 (s, 3 H, NMe), 4.06 (td, J =  

4.1 Hz, 10 Hz, 1 H, 1-H), 7.00–7.28 (m, 3 H, ArH), 7.68 (d, J = 8.0 Hz, 1 H, ArH). 
13

C-NMR 

(75.5 MHz, CDCl3): δ = 11.0 (q), 24.6 (t), 27.2 (t), 29.2 (q), 31.7 (t), 32.1 (d), 37.3 (t),  

75.3 (d), 108.5 (d), 109.2 (s), 119.2 (d), 119.4 (d), 120.1 (d), 132.9 (s), 136.6 (s), 136.7 (s). 

GC-MS (B): t = 10.9 min; m/z (%) = 243 (86) [M
+
], 184 (78), 171 (19), 158 (100), 144 (12), 

115 (7). 

 

 

2-(2,2,2-Trifluoroethoxy)cyclohexanol (21): 

Detected in GC-MS as a side product of the reaction of 1,2-dimethylindole (2b) with 

cyclohexene oxide (19). 

 

O

OH

CF3

21

 

 

GC-MS (B): t = 7.9 min; m/z (%) = 198 (5) [M
+
], 180 (17), 152 (32), 139 (10), 98 (68), 81 

(100), 70 (17), 55 (12), 41 (20). 
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rac-1-(1,2-Dimethyl-1H-indol-3-yl)hexan-2-ol (24):  

1,2-Dimethylindole (2b, 436 mg, 3.00 mmol) and 1,2-epoxyhexane (rac-22, 361 µL, 3.00 

mmol) were stirred in CF3CH2OH (3 mL) at 80 °C (48 h) to yield rac-24 after column 

chromatography (SiO2, hexanes/ethyl acetate = 3:1) as a pale yellow oil (236 mg, 32%). 

 

N

rac-24

Me

Me

OH

 

 

Rf = 0.61. 
1
H-NMR (300 MHz, CDCl3): δ = 0.92 (t, J = 6.9 Hz, 3 H, 6-H), 1.32–1.62 (m,  

6 H, 3-H, 4-H, 5-H), 2.37 (s, 3 H, 2’-Me), 2.74 (dd, J = 8.7 Hz, 14 Hz, 1 H, 1-H), 2.94 (dd,  

J = 4.2 Hz, 14 Hz, 1 H, 1-H), 3.65 (s, 3 H, NMe), 3.79–3.89 (m, 1 H, 2-H), 7.04–7.26 (m,  

3 H, ArH), 7.51 (d, J = 7.8 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, CDCl3): δ = 10.5 (q), 14.1 

(q), 22.8 (t), 28.2 (t), 29.5 (q), 32.9 (t), 36.6 (t), 71.1 (d), 107.1 (s), 108.5 (d), 118.1 (d), 118.9 

(d), 120.7 (d), 127.9 (s), 134.4 (s), 136.7 (s); GC-MS (B): t = 10.2 min; m/z (%) = 245 (15) 

[M
+
], 159 (13), 158 (100), 143 (5). 

 

rac-1-(1,2-Dimethyl-1H-indol-3-yl)-3-methoxypropan-2-ol (25):  

1,2-Dimethylindole (2b, 436 mg, 3.00 mmol) and glycidylmethyl ether (rac-23, 265 mg,  

3.00 mmol) were stirred in CF3CH2OH (3 mL) at 80 °C (48 h) to yield rac-25 after column 

chromatography (SiO2, hexanes/ethyl acetate = 1:1) as a colorless oil (357 mg, 51%). 

 

N

rac-25

Me

Me

OH

OMe

 

 

Rf = 0.40. 
1
H-NMR (300 MHz, CDCl3): δ = 2.29 (s, 3 H, 2’-Me), 2.62 (br. s, 1 H, OH), 2.88 

(d, J = 6.9 Hz, 2 H, 1-H), 3.23–3.36 (m, 5 H, 3-H, NMe), 3.52 (s, 3 H, OMe), 3.95–4.03 (m,  

1 H, 2-H), 7.01–7.18 (m, 3 H, ArH), 7.49 (d, J = 7.8 Hz, 1 H, ArH). 
13

C-NMR (75.5 MHz, 

CDCl3): δ = 10.2 (q), 28.6 (t), 29.4 (q), 58.9 (q), 70.8 (d), 75.9 (t), 106.4 (s), 108.5 (d), 117.9 

(d), 118.8 (d), 120.6 (d), 127.9 (s), 134.2 (s), 136.5 (s). GC-MS (B): t = 9.6 min; m/z (%) = 

233 (21) [M
+
], 159 (11), 158 (100). 
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Chapter 7 

Synthesis of Naturally Occurring Quinones 
 

7.1 Introduction 

 

Filamentous fungi have many characteristics that make them highly interesting for research. 

Mainly, the biosynthesis of natural products (i. e. secondary metabolites) displays new 

compounds that show useful activities for pharmaceutical and agricultural purposes ranging 

from antibiotic to antifungal properties.
[1-4]

 On the other hand, also not desired attributes, such 

as phyto- and mycotoxic activities, arise from the studies of the secondary metabolites of 

these fungi.
[5,6] 

The quinone skeleton is a widespread structure in nature and thousands of quinones have been 

discovered, most of which show biological activity of some kind. Usually, this large class of 

natural products is differentiated by the substituents on the quinone core; besides naphtho-

quinones, anthraquinones, phenanthraquinones and polycyclic quinones, simple 1,4-benzo-

quinones exhibit a large class of natural products, mainly found in fungi. 

In order to synthesize the secondary metabolites produced by fungi, biomimetic pathways 

have been favored. The investigation of the genes of these fungi is inevitable to gain 

knowledge about these pathways. The main characteristic of the genes of secondary 

metabolites – in contrast to the genes of primary metabolites – is that they are clustered in 

fungal genomes and knowledge about the biosynthetic loci opens the door for the biosynthesis 

of these compounds. 

 

 

 

7.1.1 Biochemical Background 

 

Terrequinone A (1) is a member of a family of bisindolylbenzoquinones commonly known as 

asterriquinones (Figure 7.1). They all consist of a benzoquinone core with a different number 

of hydroxy or methoxy groups and vary in the pattern of prenylation on the indole or quinone 

structure. They show cytotoxic activities that intercalate genomic DNA, thus predisposing 

tumor cells to apoptosis.
[7] 
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Figure 7.1. Structures of representative members of the asterriquinone family: 

terrequinone A (1), asterriquinone A4 (2) and cochliodinol (3). 

 

 

Terrequinone A (1) was isolated besides many other asterriquinonenes from Aspergillus 

terreus (Ascomycota) and exhibits moderate activity in cancer cell lines.
[8]

 Bok and co-

workers discovered that A. nidulans exhibits a gene cluster that is regulated by LaeA, a 

nuclear methyltransferase that acts as a global regulator of natural product gene expression in 

Aspergillus species, which turned out to be the terrequinone A (1) biosynthetic locus.
[9]

 A. 

nidulans is one of many species of filamentous fungi in the phylum Ascomycota and has been 

studied intensively in the past years.
[10-12]

 The genome with its 30 million base pairs in size 

contains about 9500 protein-coding genes on 8 chromosomes and was sequenced by Galagan 

and co-workers in 2005.
[13]

 Since terrequinone A (1) is unknown to be produced by 

Aspergillus nidulans, almost all genes that express the enzymes of the terrequinone A (1) 

biosynthesis pathway have been decrypted by Walsh and co-workers and a biosynthetic 

pathway has been proposed.
[14] 

The involved genes code a peptide synthetase (tdiA), an indole prenyltransferase (tdiB), an 

oxidoreductase (tdiC), a pyridoxal-5’-phosphate-dependent aminotransferase (tdiD) and a 

gene of unknown function (tdiE), and the overall biosynthetic pathway to terrequinone A (1) 

was proposed as shown in Scheme 7.1. 
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Scheme 7.1. Biosynthetic pathway to terrequinone A (1).
[14] 

 

 

 

The first step in the biosynthesis of terrequinone A (1) is the conversion of L-tryptophan (4) 

into indolyl pyruvic acid (5) catalyzed by the aminotransferase TdiD containing a covalent 

PLP cofactor. Transformation of 5 with ATP-PPi exchange catalyzed by TdiA, a three-domain 

apoprotein, gives demethylasterriquinone D (DAQ-D, 6). The final step is likely to be 

catalyzed by the TdiB/TdiC/TdiE enzyme system in the presence of DMAPP and NADH 

(Scheme 7.2).  
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Scheme 7.2. Proposed formation of terrequinone A (1) from DAQ-D (6). 
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As an intermediate of this reaction ochrindole A (7, Schem 7.2) was indentified, which was 

turned into terrequinone A (1) by the action of TdiB. Ochrindole A (7) naturally occurs in A. 

ochraceus. Further side reactions have been reported to yield irreversibly O-iso-

pentenyldemethylasterriquinone (8) which is a dead end of the biosynthetic pathway. 

In order to gain knowledge about the final steps in the biosynthesis we wanted to perform the 

reduction and prenylation reactions of DAQ-D (6) by chemical methods. Several methods for 

the preparation of members of the asterriquinone family have been reported to date, but no 

data have been found for the synthesis of DAQ-D (6). For that purpose and due to the fact that 

the decisive step in the biosynthesis should be independent from the aryl substituents at the 

quinone core, we decided to use polyporic acid (9) as a model compound and find an easy and 

convenient method for the synthesis of DAQ-D (6). 

 

 

7.1.2 Synthesis of Polyporic Acid 

 

Polyporic acid (9), which can be found in nature in wood rotting fungi and lichens, was 

mentioned and isolated from Hapalopilus rutilans in 1877 by Stahlschmidt
[15]

 and shows 

antileukaemic activities.
[16]

 Polyporic acid (9) bears phenyl groups in the 3- and 6-positions 

on the quinone core instead of indole units and, therefore, should not be sensitive towards 

basic reactions conditions or oxidations. Numerous methods for the synthesis of polyporic 

acid (9) have been developed. 

Fichter described the formation of 9 as a side product of the condensation of ethyl 

phenylacetate with ethyl oxalate in the presence of sodium in dry ether (Scheme 7.3).
[17]

 The 

revised mechanism
[18]

 for this reaction states that two units of ethyl phenylacetate react to an 

enediolate which is converted to a 1,2-diketone through autoxidation. This intermediate 

condenses with ethyl oxalate to yield polyporic acid (9) in very small yield (~ 1%). 

 

Ph CO2Et + EtO2C
CO2Et

Na
O

O

Ph

Ph

HO

OH

9
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Scheme 7.3. Fichter’s condensation of ethyl phenylacetate with ethyl oxalate to give 

polyporic acid (10) with very low yield.
[17] 
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Kögl prepared 2,5-diaryl-1,4-benzoquinones by a variation of the method of Pummerer 

(Scheme 7.4).
[18]

 Reaction of 1,4-benzoquinone (10) with benzene in the presence of AlCl3 

yielded 2,5-diphenyl-1,4-benzoquinone (11).
[19]

 Further treatment of 11 with ZnCl2 in 

refluxing methanol and demethylation of 12 with soda yielded polyporic acid (9) in moderate 

yields, but intricate oxidation and reduction steps diminish the synthetic relevance of this 

method. 
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Scheme 7.4. Formation of 2,5-diphenyl-1,4-benzoquinone (11) by Pummerer
[19]

 and 

conversion to polyporic acid (9).
[18] 

 

 

Shildneck and Adams reported on a synthesis for polyporic acid (9) starting from 2,5-

diphenyl-1,4-benzoquinone (11, Scheme 7.5).
[20]

 Treatment of 11 with Zn in glacial acetic 

acid followed by bromination in chloroform yielded 3,6-dibromo-2,5-diphenyl-1,4-

dihydroxybenzene (13) which hydrolyses after oxidation by 1,4-benzoquinone (10) to give 

polyporic acid (9) in moderate yield. 
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Scheme 7.5. Preparation of polyporic acid (9) from 2,5-diphenyl-1,4-benzoquinone (11).
[20] 

 

 

The reaction of two equivalents of benzenediazonium salt (14)
[21]

 – or N-nitrosoacetanilide
[22]

 

– with 2,5-dichloro-1,4-benzoquinone (15) in the presence of NaOAc was reported to give 

3,6-dichloro-2,5-diphenyl-1,4-benzoquinone (16). Polyporic acid (9) was formed upon 

hydrolysis with NaOH in refluxing methanol (Scheme 7.6). 
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Scheme 7.6. Free radical arylation of 2,5-dichloro-1,4-benzoquinone (15).
[21] 

 

 

A convenient approach to polyporic acid (9) was described by Steglich
[23,24]

 and, later, by 

Pattenden
[25]

 using grevillines 17 as intermediates, which are also fungal pigments and 

sometimes co-occur with terphenylquinones in fungi (Schemes 7.7 and 7.8). Key step in the 

preparation is the methoxide-catalyzed rearrangement of grevillins 17 to give 2,5-diaryl-3,6-

dihydroxy-1,4-benzoquinones 18 in good yields. Both approaches permit the formation of 

unsymmetrically substituted terphenylquinones as the substituents at the quinone ring 

originate from different reactants in the synthesis and are not attached to the quinone ring in 

one single step. 
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Scheme 7.7. Steglich’s approach to 2,5-diarylsubstituted quinones 18 via grevillines 17 (for 

Ar1 = Ar2 = Ph, polyporic acid (9) is accessible).
[23,24] 
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Scheme 7.8. Pattenden’s synthesis of grevillines 17.
[25] 

 

 

Organometallic routes to polyporic acid (9) have become very popular in recent times. 

Besides the work of Dallacker
[26]

 and Moore,
[27]

 who used lithiation reactions, Pd-catalyzed 

reactions (Negishi coupling) of 19 and consecutive oxidative demethylation of 20 with 

(NH4)2Ce(NO3)6 provided 2,5-diphenyl-1,4-benzoquinone (11) in good yields from 

commercially available precursors (Scheme 7.9).
[28]

 Halogenation and hydrolysis of 11 was 

reported to give easy access to polyporic acid (9).
[29] 
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Scheme 7.9. Negishi cross coupling of 19 with a transmetallated zinc species and oxidative 

demethylation of 20.
[28] 
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7.1.3 Synthesis of Bisindolylquinones 

 

Several methods have been developed for the synthesis of members of the asterriquinone 

family. Mainly, these compounds and their derivatives have been isolated from the natural 

product. 

Cochliodinol (3), which was isolated from Chaetomium globosum and Chaetomium 

cochliodes,
[30]

 is one of few symmetrically substituted bisindolylquinones. The total synthesis 

was performed by Hörcher and co-workers (Scheme 7.10).
[31]

 p-Bromanil (21) reacted with 5-

bromoindole (22) in a solid phase Michael addition to yield the bisindolylquinone 23. 

Reaction of 23 with NaOH and benzyl alcohol furnished 24 which was transformed by 

reduction with H2, Pd/C and acetylation with Ac2O in pyridine into leuco acetate 25. 

Introduction of the prenyl groups with a complex of isopentenyl bromide and Ni(CO)4 gave 

access to 26. Consecutive deprotection and oxidation gave cochliodinol (3) in 0.001% overall 

yield. 
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Scheme 7.10. Total synthesis of cochliodinol (3).
[31] 

An approach to bisindolylquinones by reaction of indoles to p-bromanil (21) using catalytic 

amounts of Cs2CO3 was reported by Pirrung and co-workers (Scheme 7.11) as demonstrated 

for the synthesis demethylasterriquinone B1 (27).
[32]

 This method was also applied by Harris 

Jr. et al. when they prepared tetrahydroasterriquinone E (28) in a one pot synthesis (Scheme 

7.12).
[33] 
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Scheme 7.11. Pirrung’s total synthesis of demethylasterriquinone B1 (27).
[32] 
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Scheme 7.12. Total synthesis of tetrahydroasterriquinone E (28).
[33] 

Simple oxidative coupling of 2-substituted indoles 29 to 2,5-dichloro-1,4-benzoquinone (15) 

in water was reported to give good yields of monoindolylquinones 30 and addition of another 

indole unit resulted in bisindolylquinones 31 (Scheme 7.13).
[34]

 The reaction of 30 with the 

parent indole was not examined. 
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Scheme 7.13. “On water”-promoted direct coupling of indoles with 1,4-benzoquinone 15.
[34] 

 

 

Pirrung and co-workers described an alternative route to bisindolylquinones by lithiation of 

the indoles in 3-position and nucleophilic addition to 2-bromo-3,6-dichloro-1,4-benzoquinone 

(32).
[32]

 After oxidation with DDQ the Stille coupling with another indole unit and 

consecutive hydrolysis furnished asterriquinones as demonstrated for DAQ-B1 (27, Scheme 

7.14). 
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Scheme 7.14. Total synthesis of demethylasterriquinone B1 (27) with Stille coupling as key 

step.
[32] 

The Pd-catalyzed reaction of the mercurated indole 33 with 2,5-dichloro-1,4-benzoquinone 

(15) was reported to yield the monoindolylquinone 34, which formed the bisindolylquinone 

35 upon treatment with a second equivalent of 33 in the presence of a stoichiometric amount 

of CuCl2 catalyzed by Pd(OAc)2 in acetonitrile.
[35]

 This method was applied for the synthesis 

of demethylasterriquinone B4 (35) as shown in Scheme 7.15. 
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Scheme 7.15. Total synthesis of demethylasterriquinone B4 (29) from mercurated indole 

species 33.
[35] 

 

Acid-catalyzed condensation of indoles with 2,5-dichlorobenzoquinone (15) followed by 

DDQ oxidation was reported by Pirrung to give good yields of 3-indolylquinones.
[36]

 

Moderate yields of bisindolylquinones were obtained when these monoindolylquinones 

reacted with indoles in the presence of Zn(OTf)2 under various conditions.
[37] 

 

In summary, there are several methods that give access to bisarylquinones. Total syntheses for 

polyporic acid (9) have been described, but no route to demethylasterriquinone D (6) has been 

reported. In order to gain knowledge about the final steps in the biosynthesis of terrequinone 

A (1) we used polyporic acid (9) as a model compound to find a way for the reduction and 

prenylation of the quinone core. Synthesis of 9 and DAQ-D (6), the precursor of 1 in its 

biosynthesis, should be developed. 
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7.2 Results and Discussion 

 

7.2.1 Synthesis of Polyporic Acid 

 

7.2.1.1 Retrosynthetic Approach 

 

Since the published complex, low-yielding syntheses for polyporic acid (9) were inadequate 

for our purposes, we put effort on the development of a new and more efficient access for 

synthesizing polyporic acid (9) and its derivatives. Besides the route via grevillines 17 (see 

pages 179-180), coupling of two phenyl units with a dibromoaryl unit and consecutive 

oxidation (way A in Scheme 7.16) or Michael addition of arenes to quinones (way B) are 

considered as best routes to 9. 
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Scheme 7.16. Retrosynthetic analysis of polyporic acid (9). 
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7.2.1.2 Total Synthesis of Polyporic Acid 

 

As pointed out before, most literature procedures used the retrosynthetic approach B. When 

we carried out the synthesis of 9 as reported by Kögl
[18]

 and Shildneck,
[20]

 we didn’t obtain 

satisfying results. We therefore decided to develop a new approach to 9 using retrosynthetic 

way A with a cross-coupling reaction as key step for the formation of the terphenyl structure. 

When we carried out the Pd-catalyzed Negishi coupling of 2,5-dibromo-1,4-

dimethoxybenzene (19) with phenylzinc chloride (generated in situ from phenyllithium and 

ZnCl2 in dry THF) as reported for the synthesis of bisindolylquinones
[28]

 we did not obtain the 

coupling product 20. 

We then examined the Suzuki cross coupling reaction of 19 with phenyl boronic acid (37) 

catalyzed by Pd(II) and SPhos (Buchwald ligand)
[38]

 in the presence of K3PO4 in dry THF 

(Scheme 7.18). After column chromatography the desired product 20 was isolated in 96% 

yield as a colorless solid. The dibromoaryl compound 19 is readily accessible by bromination 

of 1,4-dimethoxybenzene (36) in glacial acetic acid. 
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Scheme 7.18. Suzuki coupling of 19 with phenyl boronic acid (37). 

 

 

Polyporic acid (9) is furnished in 3 steps by commonly known transformations (Scheme 

7.19). Oxidative demethylation of 20 with (NH4)2Ce(NO3)6 in acetonitrile-water solution 

yielded 2,5-diphenyl-1,4-benzoquinone (11) in 77% yield. Bromination in refluxing glacial 

acetic acid (to give 75% of 38) and hydrolyis with NaOH in refluxing methanol (96%) gave 9 

in 37% overall yield. 
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Scheme 7.19. Final steps in the total synthesis of polyporic acid (9). 

 

 

 

7.2.2 Reduction of Polyporic Acid 

 

As a model compound for the reductions of quinoid structures we chose commercially 

available 2,3,5,6-tetrahydroxy-1,4-benzoquinone (39). When we performed the reduction with 

SnCl2 in half-concentrated HCl
[39,40]

 we obtained a brown residue, whose color intensified 

during the work-up and the resulting mixture was not purified any further. Reduction of 39 

was also not achieved when 39 was treated with three equivalents of zinc in triflic acid, by 

treatment with LiAlH4 in dry THF at 0°C
[41]

 or with Na2S2O4 in water
[42]

 (Scheme 7.20). 
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Scheme 7.20. Reduction attempts of 39 with not satisfying results (i: SnCl2, HCl, ∆;  ii: Zn, 

TFA, 25 °C;  iii: LiAlH4, THF, 0 °C;  iv: Na2S2O4, H2O). 
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Hörcher described the reduction of a quinone structure, which was substituted in the 3- and 6-

positions by two indolyl groups, with H2 over palladium on charcoal in dry acetone.
[31]

 This 

method was found to be convenient for 39 (Scheme 7.21). The purple color of 39 vanished 

after stirring the reactants for 5 min at room temperature, and a colorless solid was obtained 

upon evaporation of the solvent which was characterized by NMR and mass spectroscopy as 

hexahydroxybenzene (40). 
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Scheme 7.21. Reduction of the model compound 34 with H2, Pd/C at room temperature. 

 

Analogous treatment of polyporic acid (9) with H2/Pd-C, filtration of the colorless precipitate 

under argon and evaporation of the solvent gave tetrahydroxyterphenyl 41 in 69% yield, 

which was characterized by NMR and mass spectroscopy (Scheme 7.22). 
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Scheme 7.22. Reduction of polyporic acid (9) with H2, Pd/C at room temperature. 
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7.2.3 Prenylation Attempts of the Leuco Form of Polyporic Acid 

 

With the reduced form of polyporic acid 41 at hand and based on the biosynthesis proposal 

for terrequinone A (1)
[14]

 we screened the reaction conditions for the prenylation of the 

1,2,4,5-tetrahydroxy-3,6-diphenylbenzene (41, Scheme 7.23). 
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Scheme 7.23. Prenylation attempts on 3,6-diphenyl-1,2,4,5-benzenetetrol (41). 

 

Successful prenylation should lead to a coloration of the former colorless hydroquinone 41 

solution as rearrangement to the quinone structure should follow the electrophilic attack of the 

prenyl cation. The reaction of 41 with prenyl alcohol 43 in TFA (Scheme 7.24) was not 

successful as no change in color was observed. We assumed that 43 ionizes readily under 

these conditions. Possibly, due to the poor solubility of the reactants in TFA, no conversion 

was observed as indicated by TLC control of the reaction. 

 

OH
TFA

43

41 Ph

Ph
O

O
HO

44  

 

Scheme 7.24. Prenylation attempt using 43 in TFA as electrophile. 

 

 

Previous results in our group have shown that various aqueous solvent mixtures and 2,2,2-

trifluoroethanol are reaction media with high ionizing power and low solvent nucleophilicity 

which can be used for Friedel-Crafts alkylations under neutral conditions.
[43,44]

 Formation of 

the 1,1-dimethylallyl cation has been achieved by dissolving the corresponding halide in these 

solvents. We combined 1,2,4,5-tetrahydroxy-3,6-diphenylbenzene (41) with 1-bromo-3-

methylbut-2-ene (45) in 80% aq. acetone at room temperature but no conversion was 
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observed when the reaction mixture was stirred in this solvent for 24 h. When we treated 41 

with 45 in 2,2,2-trifluoroethanol at room temperature (Scheme 7.25), the color of the reaction 

mixture changed after 5 min. We continued stirring for 1 h and TLC showed two new spots 

besides the spot for 41. One spot was identified to be polyporic acid (9) which was formed by 

reoxidation of 41. The second spot eluting earlier than 9 turned yellow when the TLC plate 

was held over ammonia fumes and turned green-blue when the TLC plate was held over 

fuming HCl. The mass spectrum of this new spot, however, indicated that 44 was not formed. 

Further attempts to elucidate the structure of this unknown compound have not been made. 
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Scheme 7.25. Attempted reaction of 41 with 45 in CF3CH2OH. 
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7.2.4 Synthetic Approach to Demethylasterriquinone D 

 

In order to find a straightforward access to DAQ-D (6) some literature methods described for 

the synthesis of other members of the asterriquinone family were examined. 

Since organic reactions in water have caught more and more interest, we followed the 

procedure reported by Wang and Li,
[34]

 stirring a heterogenous mixture of indole (46) and 

readily accessible 2,5-dichloro-1,4-benzoquinone (15) in water (Scheme 7.26). After 

purification of the crude reaction mixture we obtained 45% of the monoarylated quinone 47. 

Since one major side product of the reaction is the reduced form 47, treatment of the reaction 

mixture with one equivalent of DDQ after 7 d almost doubled the yield of 47. 
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Scheme 7.26. “On water” coupling of indole (46) with quinone 15. 

 

 

Treatment of indole (46) with two equivalents of 47 for 7 d resulted in the formation a new, 

red compound, presumably the bisindolylquinone 48. Several side products, as indicated by 

TLC, and the very slow conversion rate diminish the value of this method. This method – and 

the later described methods too – bear the disadvantage that quinone 15 has to be employed in 

excess as one equivalent is needed for the oxidation of the intermediate 2,5-dichloro-3-(1H-

indol-3-yl)-1,4-hydroquinone to 47. An excess (two equivalents) of quinone 47 is also needed 

when it is coupled with another indole unit to give bisindolylquinone 48. This addition is – 

depending on the electronic nature of the indole – usually very slow for the parent indole (46) 

and the formation of some side products is observed. The low yields of the reaction of indole 

(46) might also be caused by an alternative non-covalent mechanism via indole radical 

cations.
[45-48] 

Bi(OTf)3 or Zn(OTf)2 catalyzed reactions of indole (46) with 15 in dichloromethane gave low 

yields (15–21%). 
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The reaction of indole (46) with p-bromanil (21) in acetonitrile and an excess of Cs2CO3 gave 

a complex product mixture, from which only 17% of 49 was isolated (Scheme 7.27). 

 

N
H

Br

Br

O

O

21

CH3CN

Br

Br

O

ON
H

4946

25 °C, 2 d

+

(1 eq)(2 eq)

Br

Br

BrCs2CO3

 

 

Scheme 7.27. Reaction of p-bromanil (21) with indole (46) in the presence of Cs2CO3 in 

CH3CN. 

 

 

In summary, an easy and convenient synthesis of DAQ-D (6) was not achieved, but valuable 

precursors have been synthesized. 

 

 

 

7.3 Conclusion and Outlook 

 

 

A convenient and efficient synthesis of polyporic acid (9) with a Suzuki cross-coupling 

reaction as key building step for the terphenyl structure was achieved. The reduction of 9 with 

H2, Pd/C gives access to the corresponding hydroquinone derivative 41 which can be used as 

a model compound for the studies of the possible biomimetic prenylation. The easy approach 

to the starting materials at hand and the significance of the prenylation for the biosynthetic 

pathway show that future research on this project is worthwile. 

2,5-Dichloro-3-(1H-indol-3-yl)-1,4-benzoquinone (47) was synthesized from indole (46) and 

readily available 2,5-dichloro-1,4-benzoquinone (15) by a modified method of Wang and Li. 

The synthesis of DAQ-D (6) might thus be achieved when a suitable protocol for the addition 

of another indole unit to the quinone core is found. Hydrolysis of this product should give 

access to demethylasterriquinone D (6). 
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7.4 Experimental Section 

 

7.4.1 General 

 

All reactions were carried out with magnetic stirring and, if moisture or air sensitive, in 

flame-dried glassware under argon or nitrogen atmosphere. Syringes which were used to 

transfer reagents or solvents were purged with argon prior use. Solvents were dried according 

to standard methods by distillation. All reagents were purchased from Acros, Fluka or 

Lancaster and used without further purification. 
1
H-NMR spectra were recorded on Bruker 

ARX 300 and Varian Inova 400. Chemical shifts refer to trimethylsilane or the solvent 

resonance as the internal standard (CDCl3: δ = 7.26 ppm, d6-DMSO: δ = 2.50 ppm, d6-

acetone: δ = 2.05 ppm). Multiplicities are given as s = singlet, d = doublet, t = triplet, q = 

quartet, br = broad and m = multiplet. 
13

C-NMR spectra were recorded on Bruker ARX 300 or 

Varian VXR 400 with broadband proton decoupling. Chemical shifts refer to TMS or the 

solvent as internal standard (CDCl3: δ = 77.0 ppm, d6-DMSO: δ = 39.4, d6-acetone: δ = 29.8, 

206.3 ppm). Spin multiplicities are derived from DEPT135 spectra. GC-MS spectra were 

recorded on Agilent 5973 MSD (HP-5MS capillar column with 30 m length, 0.25 mm 

diameter, 1.0 mL/min flow rate, injector, split, He carrier gas, quadrupol mass spectrometer). 

Chromatographic purification was done with Merck silica gel 60 (mesh 40-63 µm) by 

common or flash column chromatography. MPLC separation was done on a Büchi Sepacore 

System (pump manager C-615, C-605 pumps, C-660 fraction collector and C-635 

photometer). Melting points were measured on Büchi B-540 and are not corrected. High 

resolution (HR-MS) and MS spectra were recorded on a Finnigan Mat 95 instrument. Electron 

impact ionization was conducted with an energy of 70 eV. 
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7.4.2 Total Synthesis of Polyporic Acid 

 

1,4-Dibromo-2,5-dimethoxybenzene (19)
[28] 

To a solution of 1,4-dimethoxybenzene (36, 13.82 g, 100.0 mmol) in glacial acetic acid  

(28 mL) a solution of Br2 (10.25 mL, 200.0 mmol) in glacial acetic acid (10 mL) was added 

dropwise at room temperature. After stirring the reaction mixture for 2 h, the solution was 

cooled to 0 °C, saturated Na2S2O3 solution (200 mL) was added and extracted with EtOAc 

(300 mL). The combined organic layers were washed with saturated NaCl solution (100 mL) 

and dried (MgSO4). After evaporation of the solvent, the crude reaction product was 

recrystallized (acetone) to yield (19) as a colorless solid (19.93 g, 69%). 

 

OMe

OMe

Br

Br

19

 

 

M. p. 149–150 °C (Lit: 144–149 °C).
[28]

 
1
H-NMR (300 MHz, CDCl3): δ = 3.85 (s, 6 H), 7.10 

(s, 2 H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 57.0 (q), 110.5 (s), 117.2 (d), 150.6 (s). MS (EI,  

70 eV): m/z (%) = 297.9 (44) [M
+
, 

81
Br], 295.9 (100) [M

+
, 

79
Br, 

81
Br], 293.9 (46) [M

+
, 

79
Br], 

286.1 (49), 283.9 (23), 282.9 (22). HR-MS: C8H8Br2O2, calcd. 293.8891, found 293.8900. 

 

1,4-Dimethoxy-2,5-diphenylbenzene (20)
[28] 

To a suspension of phenyl boronic acid (37, 366 mg, 3.00 mmol), Pd(OAc)2 (3.3 mg, 0.50 

mol%), SPhos (12.3 mg, 1.00 mol%) and K3PO4 (1.59 g, 7.50 mmol) in dry THF (15 mL) 

1,4-dibromo-2,5-dimethoxybenzene (19, 296 mg, 1.00 mmol) was added under argon 

atmosphere and the reaction mixture was stirred for 1.5 h (65 °C). Completion of the reaction 

was checked by GC-MS of reaction aliquots which were poured on saturated NH4Cl solution 

and extracted with EtOAc. When conversion was complete, saturated NH4Cl solution (5 mL) 

was added to the reaction mixture and after extraction with EtOAc (3 × 50 mL) the combined 

organic layers were washed with saturated NaCl solution (50 mL), dried (MgSO4) and the 

solvent was evaporated in vacuo. After purification by column chromatography (SiO2, n-

pentane/EtOAc = 9:1) 20 was obtained as a colorless solid (278 mg, 96%). 

When the reaction was carried out using 1.48 g (5.00 mmol) of 19, 1.83 g (15.0 mmol) of 37, 

16.5 mg (1.50 mol%) Pd(OAc)2 and 7.59 g (37.5 mmol) K3PO4 the yield of 20 decreased 

dramatically (682 mg, 47%). 
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OMe

OMe

Ph

Ph

20

 

 

 

M. p. 145–146 °C (Lit: 149 °C).
[28]

 
1
H-NMR (300 MHz, CDCl3): δ = 3.82 (s, 6 H), 7.02 (s, 2 

H), 7.36–7.65 (m, 10 H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 56.5 (q), 114.8 (d), 127.1 (d), 

128.1 (d), 129.5 (d), 130.4 (s), 138.3 (s), 150.7 (s). MS (EI, 70 eV): m/z (%) = 291.1 (18) 

[M
+
+H], 290.1 (100) [M

+
], 275.1 (13), 260 (20). HR-MS: C20H18O2, calcd. 290.1307, found 

290.1287. 

 

2,5-Diphenyl-1,4-benzoquinone (11)
[49] 

To a hot solution of 1,4-dimethoxy-2,5-diphenylbenzene (20, 870 mg, 3.00 mmol) in CH3CN 

(2 mL) a solution of (NH4)2Ce(NO3)6 (4.40 g, 8.10 mmol) in water (6 mL) was added slowly. 

The reaction mixture was stirred for 5 min, water (5 mL) was added and the yellow 

precipitate was collected and dried in vacuo to yield 11 as yellow crystals (600 mg, 77%). 

 

O

O

Ph

Ph

11

 

 

M. p. 218–220 °C (Lit: 218 °C).
[49]

 
1
H-NMR (600 MHz, CDCl3): δ = 6.97 (s, 2 H), 7.45–7.49 

(m, 6 H), 7.54–7.56 (m, 4 H). 
13

C-NMR (150 MHz, CDCl3): δ = 128.6 (d), 129.3 (d), 130.1 

(d), 132.5 (s), 133.2 (s), 145.6 (s), 187.0 (s). MS (EI, 70 eV): m/z (%) = 262.1 (56) [M
+
+2H], 

261.1 (24) [M
+
+H], 260.1 (100) [M

+
], 259.1 (25), 232.0 (10), 231.0 (14), 202.0 (10), 130.0 

(11), 102.1 (15). HR-MS: C18H12O2, calcd. 260.0837, found 260.0833. 

 

2,5-Dibromo-3,6-diphenyl-1,4-benzoquinone (38)
[50] 

To a stirred solution of 2,5-diphenyl-1,4-benzoquinone (11, 195 mg, 0.750 mmol) in glacial 

acetic acid (5 mL) Br2 (0.12 mL, 2.25 mmol) was added dropwise. The mixture was stirred 

for 2 h (110 °C). Water (15 mL) was added, the yellow precipitate was collected and washed 

with cold water (3 × 5 mL). The filtrate was extracted with EtOAc (50 mL), washed with 

saturated NaCl solution (20 mL) and dried (MgSO4). The crude product was recrystallized 

(toluene) to yield 38 as a yellow solid (234 mg, 75%). 
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O

O

Ph

Ph

38
Br

Br

 

 

M. p. 227–229 °C (Lit: 227–229 °C).
[50]

 
1
H-NMR (300 MHz, CDCl3): δ = 7.31–7.35 (m, 4 H), 

7.47–7.51 (m, 6 H). 
13

C-NMR (75.5 MHz, CDCl3): δ = 128.2 (d), 1292.2 (d), 129.7 (d), 133.2 

(s), 136.2 (s), 147.1 (s), 176.9 (s). MS (EI, 70 eV): m/z (%) = 419.9 (26) [M
+
, 

81
Br], 417.9 

(42) [M
+
, 

81
Br, 

79
Br], 415.9 [M

+
, 

79
Br], 338.0 (25), 336.0 (23), 259.1 (15), 258.1 (81), 202.1 

(28), 200.1 (10), 129.0 (100), 101.0 (19), 75.0 (14). HR-MS: C18H10Br2O2, calcd. 415.9048, 

found 415.9050. 

 

 

2,5-Dihydroxy-3,6-diphenyl-1,4-benzoquinone (polyporic acid, 9)
[20] 

To a refluxing solution of 2,5-dibromo-3,6-diphenyl-1,4-benzoquinone (38, 109 mg, 0.260 

mmol) in CH3OH (10 mL) a solution of NaOH (500 mg, 12.5 mmol) in water (5 mL) was 

added dropwise. The solution was refluxed for further 30 min, poured onto cold water (20 

mL) and acidified with conc. HCl (5 drops). The precipitate was collected, washed with cold 

water (2 × 5 mL) and recrystallized (acetone) to yield 9 as a brown solid (74 mg, 96%). 

 

O

O

Ph

Ph

9
HO

OH

 

 

M. p. 300–303 °C (Lit: 305 °C).
[20]

 
1
H-NMR (400 MHz, d6-DMSO): δ = 3.37 (br. s, OH), 

7.31–7.43 (m, 10 H). 
13

C-NMR (100 MHz, d6-DMSO): δ = 115.5 (s), 127.3 (d), 127.5 (d), 

130.3 (d), 130.7 (s). MS (EI, 70 eV): m/z (%) = 294.1 (15) [M
+
 + 2H], 292.1 (41) [M

+
], 278.1 

(10). HR-MS: C18H12O4, calcd. 292.0736, found 292.0730. 
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7.4.3 Reductions and Prenylations 

 

7.4.3.1 Synthesis of Hexahydroxybenzene (40) 

 

Attempted Reduction of 39 with SnCl2·H2O 

To a solution of 2,3,5,6-tetrahydroxy-1,4-benzoquinone (39, 416 mg, 2.00 mmol) in 2N HCl 

(10 mL) SnCl2·H2O (4.15 g, 15.2 mmol) was added and the reaction mixture was stirred for  

8 h at 100 °C. When we carried out the work-up as described
[40]

 we didn’t obtain the desired 

colorless solid. 

 

Attempted Reduction of 39 with LiAlH4 

LiAlH4 (152 mg, 4.00 mmol) was suspended in dry THF (10 mL). 2,3,5,6-tetrahydroxy-1,4-

benzoquinone (39, 416 mg, 2.00 mmol) in dry THF (5 mL) was added to the solution 

dropwise maintaining a temperature of 0 °C. The solution was allowed to warm up to room 

temperature and was stirred for 12 h. Since the color of the solution did not change during the 

reaction and TLC indicated no conversion of 39 the mixture was not worked up. 

 

Attempted Reduction of 39 with Na2S2O4 

2,3,5,6-tetrahydroxy-1,4-benzoquinone (39, 104 mg, 0.500 mmol) and Na2S2O4 (174 mg,  

1.00 mmol) were exhibited in a flask and hot water (10 mL) was added. The reaction mixture 

was stirred for 12 h. As indicated by TLC, no conversion was of 39 observed. 

 

Attempted Reduction of 39 with Zn/TFA 

2,3,5,6-tetrahydroxy-1,4-benzoquinone (39, 21 mg, 0.100 mmol) was dissolved in TFA  

(3 mL). Zn powder (195 mg, 0.3 mmol) was added and the reaction mixture was stirred for  

24 h. As indicated by TLC, no conversion was of 39 observed. 

 

Reduction of 39 with H2, Pd/C 

In a dry and argon flushed flask 2,3,5,6-tetrahydroxy-1,4-benzoquinone (39, 25 mg,  

0.15 mmol) was dissolved in dry and degassed acetone (5 mL). Palladium (10% on charcoal, 

16 mg, 10 mol%) was added and hydrogen was conducted through the suspension. After  

5 min decolorization was observed. The catalyst was removed by filtration under argon and 

the solvent was evaporated in vacuo to yield 40 as a colorless solid (20 mg, 80%). 
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OH

OH

OH

HO

40
HO

OH

 

 

1
H-NMR (400 MHz, d6-acetone): δ = 2.84 (br. s, OH). 

13
C-NMR (100 MHz, d6-acetone): δ = 

no signal was detected. MS (EI, 70 eV): m/z (%) = 174.1 (100) [M
+
], 172.0 (80), 156.0 (32), 

144.0 (83), 128.0 (36), 114.0 (22), 100.0 (27), 97.1 (22), 87.0 (24), 83.1 (27), 71.1 (22), 71.0 

(22), 70.0 (78), 69.1 (41), 58.1 (35), 57.2 (36), 55.2 (32), 54.1 (33), 42.3 (79), 40.9 (32), 40.8 

(39), 39.1 (26). HR-MS: C6H6O6, calcd. 174.0164, found 174.0152. 

 

 

7.4.3.2 Synthesis of 1,2,4,6-Tetrahydroxy-3,6-diphenylbenzene (41) 

 

In a dry and argon flushed flask polyporic acid (9, 100 mg, 0.340 mmol) was dissolved in dry 

and degassed acetone (5 mL). Palladium (10% on charcoal, 55 mg, 10 mol%) was added and 

hydrogen was conducted through the suspension. After 5 min decolorization was observed. 

The catalyst was removed by filtration under argon and the solvent evaporated in vacuo to 

yield 41 as a colorless solid (67 mg, 68%). 

 

OH

OH

Ph

Ph

41
HO

OH

 

 

1
H-NMR (400 MHz, d6-acetone): δ = 6.73 (br. s, 4 H, OH), 7.28–7.32 (m, 2 H), 7.28–7.40 (m, 

4 H), 7.42–7.5.0 (m, 4 H). 
13

C-NMR (100 MHz, d6-acetone): δ = 128.7 (d), 129.8 (d), 130.2 

(s), 132.0 (s), 132.9 (d), 136.2 (s), 137.6 (s). MS (EI, 70 eV): m/z (%) = 294.1 (71) [M
+
], 

293.1 (23), 292.1 (100), 191.1 (13), 189.1 (12), 129.0 (18), 118.0 (18), 105.0 (15), 91.1 (13), 

89.0 (19), 77.0 (11), 69.1 (12), 57.1 (11), 43.5 (12), 42.4 (23). HR-MS: C18H14O4, calcd. 

294.0892, found 294.0893. 
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7.4.3.3 Attempted Prenylations of 41 

 

1,2,4,5-Tetrahydroxy-3,6-diphenylbenzene (41, 9 mg, 0.03 mmol) was dissolved in TFA  

(3 mL) and 3-methylbut-2-en-1-ol (43, 17 mg, 0.20 mmol) was added. The reaction mixture 

was stirred for 24 h. No conversion was detectable by TLC. 

 

1,2,4,5-Tetrahydroxy-3,6-diphenylbenzene (41, 88 mg, 0.30 mmol) was dissolved in 80% aq. 

acetone (5 mL) and 1-bromo-3-methylbut-2-ene (45, 49 mg, 0.33 mmol) was added. The 

reaction mixture was stirred for 24 h. No conversion was detectable by TLC. 

 

1,2,4,5-Tetrahydroxy-3,6-diphenylbenzene (41, 135 mg, 0.466 mmol) was dissolved in 

CF3CH2OH (3 mL) and 1-bromo-3-methylbut-2-ene (45, 76.5 mg, 0.513 mmol) was added. 

After 5 min the color of the reaction mixture became dark brown. After stirring for additional 

60 min the TLC showed two new spots. One was identified as polyporic acid (9) as it turned 

purple upon placing the TLC plate over ammonia fumes. The earlier eluting spot turned 

yellow. When the TLC plate was placed over fuming HCl, the spot of 9 turned brown and the 

new spot turned into greenish-blue indicating that this compound is not the corresponding 

ether which results from O-prenylation. When we tried to separate the compounds via 

preparative TLC and MPLC we obtained a compound that caused a blue acetone solution. 

HR-MS of this compound, however, showed that it is not the C-prenylated polyporic acid. 

Further attempts to elucidate the constitution of this product have not been made. 
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7.4.4 Synthesis of 2,5-Dichloro-3-(1H-indol-3-yl)-1,4-benzoquinone 

 

2,5-Dichloro-1,4-benzoquinone (15) was synthesized from 1,4-dimethoxybenzene (36) in two 

steps according to literature procedure.
[51]

 p-Bromanil (21) was synthesized according to 

Datta and Chatterjee.
[52] 

 

 

Reaction of Indole (46) with 2,5-Dichloro-1,4-benzoquinone (15) in Water 

Indole (46, 682 mg, 5.82 mmol) and 2,5-dichloro-1,4-benzoquinone (15, 2.06 g, 11.6 mmol) 

were stirred in water (10 mL) for 7 d. The color of the suspension changed from yellow to 

purple and a dark precipitate formed, which was filtrated off and washed with cold water (3 × 

30 mL). After column chromatography (SiO2, hexanes/EtOAc = 1:1) 47 was obtained as a 

purple solid (765 mg, 45%). 

The reaction was repeated analogously, DDQ (1.32 g, 5.82 mmol) was added after 7 d and 

stirred for 2 d. Water (20 mL) was added and the phases separated and dried (MgSO4). After 

evaporation of the solvent in vacuo and purification by column chromatography (SiO2, 

hexanes/EtOAc = 1:1) 47 was obtained as purple solid (1.28 g, 75%). 

 

 

Reaction of Indole (46) with p-Bromanil (21) and Cs2CO3 in Acetonitrile 

Indole (46, 223 mg, 1.90 mmol) and bromanil (21, 815 mg, 1.90 mmol) were dissolved in 

CH3CN and Cs2CO3 (1.25 g, 3.85 mmol) was added. The reaction mixture was stirred for 12 

h, bromanil (21, 815 mg, 1.90 mmol) and Cs2CO3 (1.25 g, 3.85 mmol) were added and the 

mixture was stirred for another 8 h. The red-purple solution containing 8 different compounds 

as indicated by TLC was evaporated and after column chromatography (SiO2, hexanes/EtOAc 

= 1:1) 47 was obtained as purple solid (94.3 mg, 17%). 

 

 

Reaction of Indole (46) with 2,5-Dichloro-1,4-benzoquinone (15) in Dichloromethane 

Catalyzed by Bi(OTf)3 

Indole (46, 586 mg, 5.00 mmol) and 2,5-dichloro-1,4-benzoquinone (15, 1.77 g, 10.0 mmol) 

were dissolved in CH2Cl2 (20 mL) and Bi(OTf)3 (164 mg, 0.250 mmol) was added. The 

reaction mixture was stirred for 24 h under argon. DDQ (1.14 g, 5.00 mmol) was added and 

the mixture was stirred for another 8 h. Water (50 mL) was added and the organic layer was 
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washed with 2N HCl (20 mL), saturated NaCl solution (2 × 20 mL) and water (20 mL). The 

combined organic phases were dried (MgSO4) and the solvent evaporated in vacuo. After 

purification by column chromatography (SiO2, hexanes/EtOAc = 1:1) 47 was obtained as a 

purple solid (219 mg, 15%). 

When the reaction was carried out analogously with Zn(OTf)2 instead of Bi(OTf)3 21% of 47 

was obtained. 

 

O

O

Cl

Cl

N
H

47

 

 

1
H-NMR (300 MHz, CDCl3): δ = 5.53 (s, 1 H), 7.17–7.32 (m, 5 H), 8.60 (br. s, 1 H, OH). 

13
C-

NMR (75.5 MHz, CDCl3): δ = 111.8 (d), 116.1 (d), 119.8 (s), 120.7 (s), 121.1 (d), 121.8 (d), 

123.1 (d), 129.5 (s), 133.0 (d), 133.2 (s), 144.7 (s), 145.5 (s), 177.2 (s), 177.9 (s). MS (EI, 70 

eV): m/z (%) = 293.1 (76), 292.1 (14), 291.1 (75), 277.1 (20), 256.1 (22), 180.0 (50), 178.0 

(100), 176.0 (60), 114.0 (25), 113.0 (38), 87.9 (47), 60.0 (31), 53.0 (32). 
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