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I. Introduction 

 

I.1 Tissue Factor – the principal initiator of coagulation 

 

The type I membrane protein tissue factor (TF) is the major cellular initiator of the clotting 

process and its primary role is to maintain hemostasis. In contrast to the TF initiated 

extrinsic pathway of coagulation the factor XII-mediated intrinsic pathway was not 

believed to play an important role for coagulation. However, factor XII-mediated fibrin 

formation was recently found to be essential for the formation and stabilization of platelet-

rich occlusive thrombi in vivo (Renne T, 2005).  

In TF initiated coagulation (extrinsic pathway of coagulation) the zymogen plasma factor 

VII (VII) binds to its cofactor TF, which is expressed on the cell surface. Factor VII 

subsequently undergoes proteolytic activation by VIIa, IXa, Xa and thrombin, which are 

present in trace amounts in the circulation. The TF/VIIa complex is formed. This initiator 

complex of coagulation cleaves and thereby activates the zymogens plasma factors X and 

IX (belonging to the intrinsic pathway of coagulation) by limited proteolysis. The serine 

proteases Xa and IXa participate in a series of membrane dependent proteolytic reactions 

leading to thrombin generation, fibrin deposition, and clot formation (Fig.1). IXa binds to 

its cofactor VIIIa on the negatively charged cell surface of the activated platelets and 

activates X. This membrane bound complex is called Xase complex. Xa assembles with its 

cofactor Va to form a complex together with negatively charged phospholipids, such as 

phosphatidylserine (PS) on the membrane of activated platelets that converts prothrombin 

to thrombin. Thrombin is the central serine protease of the coagulation network, which in 

turn cleaves soluble fibrinogen, forming an insoluble fibrin polymer or clot. It also impairs 

coagulation by activating factors V, VIII and XI, and moreover is a strong platelet agonist. 
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Fig.1: Schematic view of the coagulation network subdivided in an initiation phase, 

a propagation phase and a termination phase.  

The transaminase factor XIII, which is crucial for the stabilization of fibrin polymers, also 

undergoes proteolytical activation by thrombin. Although association of VIIa and TF is 

greatly enhanced in the presence of calcium ions and negatively charged phospholipids 

forming a complex with the γ-carboxyglutamic acid residues of the protease domain of 

VIIa, neither factor is absolutely essential for the interaction (Sabharwal AK, 1995; Ruf W, 

1991). Although the low amidolytic activity of VIIa is enhanced up to 100-fold in the 

presence of TF (Higashi S, 1992), membrane anchoring is not essential for this to occur 

(Ruf W and Kalnik MW, 1991). In contrast, the activation of X and IX is highly dependent 

on membrane anchoring (Neuenschwander PF, 1993), and is supported by negatively 

charged phospholipids (Edgington TS, 1991; Krishnaswamy S, 1992; Fiore MM, 1994). 
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I.2 Regulation of blood coagulation 

 

Blood coagulation is tightly regulated to generate a local fibrin clot at the site of vascular 

injury without compromising blood flow inside the vasculature. To achieve this, a complex 

network of positive and negative feedback reactions have evolved that result in controlled 

fibrin deposition and platelet activation only at the site of vascular injury (Gomez K, 2006). 

To fulfil this role TF is expressed constitutively in subendothelial tissues (vascular smooth 

muscle cells and fibroblasts), thereby protecting the vertebrate organism from infection and 

lethal blood loss in case of injury. During evolution several mechanisms have evolved 

regulating the initiation, propagation and termination phases of coagulation inside the 

vasculature and restricting coagulation to the site of injury. 

The initiation phase of coagulation is regulated by the trivalent Kunitz-type inhibitor Tissue 

Factor Pathway Inhibitor-1 (TFPI) (Fig.3). TFPI is forming a quarternary high affinity 

complex with TF, VII / VIIa and X / Xa (Dickinson CD, 1997). This inhibitory complex 

prevents the diffusion of Xa into the prothrombinase complex and at the same time inhibits 

VIIa. Thus thrombin, the central protease of the coagulation network, cannot be generated. 

The propagation phase of the coagulation cascade is controlled by serpins, such as 

antithrombin III, heparin cofactor II and by the anticoagulant protein C pathway. Serpins 

inhibit the activated plasmatic coagulation factors (such as Xa, IXa and thrombin) 

irreversibly by covalent binding to their active site serine. Activated Protein C cleaves and 

thereby inactivates the coagulation cofactors VIIIa and Va (cofactors in the activation of X 

and prothrombin) resulting in the down regulation of the activity of the coagulation system 

(Dahlbäck B, 2005).  

The termination phase is regulated by the plasmin-dependent fibrinolysis pathway and its 

inhibitors, the serpin antiplasmin and the thrombin activatable fibrinolysis inhibitor (TAFI), 

which protects the fibrin clot against lysis (Mosnier LO, 2006). 
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Fig.2: WebLab ViewerLite ribbon repre-

sentation of the x-ray structure of the 

extracellular part of TF in complex with 

VIIa (Banner DW, 1996). TF is shown in 

red. The VIIa Gla domain is dark blue, 

VIIa EGF 1 domain in green, VIIa EGF 2 

domain is light blue and the VIIa serine 

protease domain is yellow. The active site 

inhibitor is represented by ball and stick.    

I.3 The structural biology of TF 

 

The transmembrane protease receptor TF is 

a 47 kDa glycoprotein receptor and it is a 

member of the class 2 cytokine receptor 

family. TF is most closely related to the 

interferon-α, interferon-γ and IL-10 

receptors (Bazan, 1990). The extracellular 

part of TF is constituted by the tandem 

association of two fibronectin type III-like 

modules (residues 1-209) and a flexible 

peptidyl strand (residues 210-220) that 

tethers the domain to the transmembrane 

anchor. The transmembrane segment 

consists of 23 amino acids and is followed 

by a short cytoplasmatic tail of 21 amino 

acids (Edgington, 1991). Each fibronectin 

type III-domain of the extracellular part is 

formed by two antiparallel β-sheets with 

immunoglobulin superfamily (IgSF)-type 

C2 topology (Stuart, 1995) as found in other 

cell surface receptors, such as in both 

domains of the human growth hormone 

receptor, in domain 2 of the cell adhesion 

molecule CD2 and in domains 2 and 4 of 

TF 
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CD4. TF contains two disulfide bridges at positions 49-57 and 186-209 and one 

cytoplasmatic half-cysteine at position 245 that is acylated by palmitic acid or stearic acid 

(Bach RR, 1988). Human TF contains N-linked glycosylation sites at Asn 11, Asn 124 and 

Asn 137. In contrast to the four helix bundle ligands of the interferon and IL-10 receptor, 

TF binds the multidomain serine protease factor VII / VIIa with subnanomolar affinity and 

acts as a cofactor (Fig.2). Cell surface protease cascades are triggered by the regulation of 

protease receptors, such as the urokinase receptor of the fibrinolytic system (Ellis V, 1992)  

and TF (Ruf W, 1994). 

 

 

1.4 Tissue Factor Pathway Inhibitor-1 – the physiologic inhibitor of   

      the coagulation start 

 

The 45 kDa glycoprotein TFPI is an important coagulation inhibitor, since it prevents the 

initiation phase by forming a quarternary high affinity complex with TF / VIIa and Xa. 

TFPI consists of a negatively charged N-terminus followed by three modules of Kunitz 

domains and a positively charged C-terminus (Fig.3). Mechanistically, TFPI first binds 

trace amounts of Xa (Ki = 4.4 nM) (Hackeng TM, 2006) and TFPI / Xa subsequently binds 

to the initiator complex TF / VIIa. Xa is bound by Kunitz domain 2 of TFPI and VIIa binds 

to Kunitz domain 1. Kunitz domain 3 is essential for the binding to cell surface 

proteoglycans and to lipoproteins.  

TFPI was found to be expressed by endothelial cells of the microvasculature, 

megakaryocytes, platelets, monocytes and macrophages (Werling RW, 1993; Van der Logt, 

1994). Inside the vasculature there are three different pools of TFPI that differ significantly 

in their structure and in their inhibitory activity (Broze, 1994). About 85% of the total TFPI 

amount is tightly bound to heparan sulfate-containing proteoglycans at the surface of 
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Fig.3: Sequence and modular architecture of TFPI-1. Proteolytic cleavage sites of thrombin, 

plasmin, cathepsin G (Cat G), neutrophil elastase (HNE) and matrix-metalloproteinases 

(MMP) (Cunningham AC, 2002). 

endothelial cells. 10% of the total TFPI circulates in plasma and is bound to lipoproteins 

(Sanders NL, 1985; Broze G, 1987). This fraction is mostly truncated and therefore consists 

of peptide fragments of different molecular weight (34-45 kDa). It is functionally inactive 

(Hansen JB, 1997). The heterogeneity results from C-terminal truncated forms at Kunitz 

domain 3 and from the formation of disulfide complexes with apolipoprotein A II (apo A 

II) (Novotny WF, 1989; Broze GJ, 1994). About 8% of the total TFPI amount is stored in 

platelet α-granules and is released after platelet activation with platelet agonists, such as 

thrombin or collagen (Novotny WF, 1989; Muller I, 2003). This fraction has an apparent 

molecular weight of 45-47 kDa and shows maximal inhibitory activity. 
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I.5 Proteolytic cleavage of TFPI 

 

In inflammation, wound healing and during infection stimulated human polymorphonuclear 

neutrophils (PMN) and, to a lower extent also human peripheral blood monocytes, release 

cationic serine proteases (neutrophil elastase (NE), proteinase 3 and cathepsin G (Cat G)) 

and matrix-metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, 

MMP-11) from their azurophilic granules that are capable of binding to the cell membrane 

of neutrophils (Campbell EJ, 1989; Owen CA, 1995; 1997; 1999). It was found that cell 

surface-bound NE is catalytically active and is resistant to inhibition by naturally occurring 

protease inhibitors, such as the serpin α1-proteinase inhibitor (Owen CA, 1995). 

In vitro studies have shown that the connecting regions between the Kunitz domains as well 

as the acidic N-terminal and basic C-terminal regions of recombinant human TFPI are very 

susceptible to limited proteolytic decomposition by NE, Cat G (Petersen LC, 1992; Higuchi 

DA, 1992) and MMPs (Belaaouaj AA, 2000; Cunningham AC, 2002). The degradation of 

TFPI by Cat G was found to be significantly slower than cleavage by NE (Higuchi DA, 

1992). Serine proteases that are part of the coagulation cascade, such as thrombin (Ohkura 

N, 1997), factor Xa (Salemink I, 1998) and plasmin (Li A, 1998) also cause limited 

proteolysis of TFPI (cleavage sites Fig. 3). It was also found that the anticoagulant activity 

of TFPI was greatly reduced by limited proteolysis. Therefore, proteolytic inactivation of 

TFPI could be a mechanism capable of generating local procoagulant environments. These 

findings may represent a regulatory link between innate immunity and the coagulation start, 

since induction of coagulation accompanies the inflammatory response to a multitude of 

stimuli (Esmon CT, 2004; Opal SM, 2003). It is not yet established which proteases are 

responsible for TFPI decomposition in blood and if this degradation also occurs in the 

cellular context. It is also unclear whether this mechanism is relevant for the initiation of 

coagulation in vivo. 
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I.6 The procoagulant platelet-neutrophil microenvironment 

 

Under in vivo conditions, platelets are rapidly assembled with different types of leukocytes 

in the developing thrombus (McEver RP, 2001). The initial contact corresponding to the 

tethering of platelets on the surface of neutrophils and monocytes is mainly mediated by the 

interaction of platelet P-selectin with PSGL-1, which is constitutively expressed by 

leukocytes. Therefore, only platelets have to be activated to be able to adhere to neutrophils 

and monocytes. Collagen-stimulated platelets were shown to express functionally active TF 

on their surface within minutes (Zillmann A, 2001) and they are known to express high 

amounts of anticoagulant TFPI (Novotny WF, 1988; Muller I, 2003). Neutrophils and 

monocytes were found to be essential as stimulators of the functional activity of TF 

associated with activated platelets and microvesicles (Muller I, 2003). Adhesion of platelets 

to neutrophils and monocytes has been proposed to result in the formation of a restricted 

microenvironment (Evangelista V, 1991). Inside this microenvironment (Fig.4) the access 

of plasma components, such as protease inhibitors, is restricted and therefore leukocyte 

derived proteases might inactivate the anticoagulant platelet TFPI and initiate TF 

procoagulant activity on the platelet surface (Engelmann B, 2003). 

In addition, the formation of such platelet-neutrophil conjugates was found to be associated 

with various lethal disease states that are closely linked to inflammatory disorders. Among 

them are sepsis (Gawaz M, 1995), unstable angina (Ott I, 1997) and acute myocardial 

infarction (Michelson AD, 2001). 
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Fig.4: Cellular model for the intravascular tissue factor pathway modified according to 

Engelmann et al., 2003. Platelet activation leads to the exposure of TF on the cell 

surface, whereby the formation of the initiator complex of coagulation is enabled. 

Concomitantly, TFPI is released from the platelet α-granules and inhibits the initiator 

complex. Due to the concomitant presentation / activation of platelet adhesion molecules 

(P-selectin) platelets are enabled to interact with neutrophils via P-selectin / PSGL-1-

interactions. Circulating and acutely shedded microvesicles (MV) are recruited to the 

platelet-neutrophil conjugates. Secreted neutrophil proteases could inactivate TFPI. 

Thereby, the functional activity of the TF associated with platelets and microvesicles 

might be enhanced. 
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I.7 Cellular microparticles 

 

Microparticles (microvesicles) are small membrane vesicles (< 1μm in diameter) that are 

released from the plasma membrane of cells upon activation (Wiedmer T, 1991), during 

apoptosis (Aupeix K, 1997) and by shear stress (Reininger AJ, 2006). They constitute a 

heterogeneous population, differing in cellular origin, numbers, size, antigenic composition 

and functional properties. Microparticles are described to play a role in intercellular 

communication, immunity and coagulation (Hugel B, 2005). Microparticles support 

coagulation by the exposure of negatively charged phospholipids (PS) that are essential for 

thrombin generation and in the case of monocyte- and platelet-derived microparticles also 

by the exposure of TF (Muller I, 2003). Under physiologic conditions, about 80% of the 

plasma microparticles are derived from platelets (Berckmans RJ, 2001). The presence of 

microparticles has also been documented at sites of inflammation, such as the acellular lipid 

core of the atherosclerotic plaque (Mallat Z, 1999). Furthermore, increased numbers of 

circulating microparticles have been reported in patients with acute coronary syndromes 

(Mallat Z, 2000).    

 

 

I.8 Tissue specific expression pattern of TF 

 

TF is expressed in many tissues and it exhibits a distinct, nonuniform tissue specific pattern 

of expression. High levels of TF are detected in highly vascularized organs, such as the 

lung, brain and placenta (Fleck RA, 1990). Intermediate levels are found in the heart, 

kidney, intestine, testes and uterus. In contrast, low levels of TF are observed in the liver, 

spleen, skeletal muscle, and thymus. The cell types that express TF in these organs include 
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cardiomyocytes in the heart, bronchiolar and alveolar epithelial cells in the lung, astrocytes 

in the brain, and trophoblasts in the placenta (Eddleston M, 1993; Erlich J, 1999; Pawlinski 

R, 2002). The constitutive expression of TF in various tissues, such as the vasculature of 

the heart, may reflect a need for additional hemostatic protection in these tissues. In 

contrast, nonvital tissues that express low levels of TF, such as skeletal muscle, do not 

require additional hemostatic protection. These tissues appear to rely more on the intrinsic 

pathway of coagulation to maintain hemostasis. TF is constitutively expressed in the 

vascular wall, such as by fibroblasts of the adventitia and by smooth muscle cells of the 

media of arteries and veins. Endothelial cells probably do not express TF under physiologic 

conditions (Østerud B, 2006). This findings led Drake and coworkers to propose the 

popular concept of TF acting as a hemostatic “envelope” encapsulating the vascular bed. 

Rupture of the integrity of the envelope would trigger the clotting process instantly (Drake 

TA, 1989).  

 

 

1.9 Intravascular TF 

 

In recent years the envelope paradigm of TF expression and function has been challenged 

by the demonstration of intravascular TF (blood-borne or circulating TF) (Giesen PLA, 

1999; Zillmann A, 2001; Muller I, 2003; Engelmann B, 2003). Induced expression of TF in 

cells within the vasculature is implicated in the pathogenesis of thrombosis in 

atherosclerosis, disseminated intravascular coagulation, malignancy and hyperacute 

rejection of xenografts (Wilcox JN, 1989; Levi M, 1999; Rickles FR, 2001; Robson SC, 

1999) and it has been proposed that intravascular TF contributes to the propagation of the 

growing thrombus (Giesen PLA, 1999).  
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TF de novo-synthesis in monocytes was first reported in 1975 by Rivers and coworkers 

observing procoagulant activity in endotoxin-stimulated leukocyte suspensions (Rivers RP, 

1975). TF expression on monocytes can be achieved by specific inflammatory stimuli, such 

as endotoxin (e.g. lipopolysaccharide (LPS)) (Gregory SA, 1989), phorbol esters (Lyberg 

T, 1981), C-reactive protein (Cermak J, 1993) and  proinflammatory mediators, like tumor 

necrosis factor-α (TNF-α) (Conkling PR, 1988) and interleukin 1-β (IL-1β) (Herbert JM, 

1992). Interestingly, platelets were found to regulate monocyte TF activity. In 1974, 

Niemetz and Marcus (Niemetz J, 1974) proposed that platelets enhance the procoagulant 

activity of white blood cells. This was also confirmed in monocyte cell cultures, in which 

isolated platelets added to monocytes enhanced LPS-induced TF activity (Lorenzet 

R,1986). Increased expression levels of monocyte TF might play a role in sepsis (Drake 

TA, 1993; Lupu C, 2005) and it was found that patients with unstable and stable coronary 

syndromes exhibit elevated levels of TF expression on circulating monocytes (Leatham 

EW, 1995). 

In rapidly processed blood (to avoid the activation of TF gene transcription), TF was barely 

noticeable in neutrophils by TF-specific ELISA measurements and no TF procoagulant 

activity could be detected (Muller I, 2003). This observation is in accordance with the 

findings of Østerud and coworkers, who failed to detect TF antigen on neutrophils in 

stimulated whole blood (Østerud B, 2000). However, there is emerging evidence that 

neutrophils might be able to express TF under certain inflammatory conditions (Maugeri N, 

2006; Ritis K, 2006). 

Blood eosinophils were found to store TF, which is mainly embodied in their specific 

granules and exposed on their cell membrane after cell activation (Moosbauer C, 2006). 

Eosinophils are the cells with the highest TF content in blood under resting conditions. 

They contain approximately one forth of the TF molecules compared to fully activated 
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monocytes. The observations indicate TF as one of the critical mediators of the initial 

eosinophil migration across the activated endothelium (Moosbauer C, 2006).  

There is strong evidence that platelets contain preformed TF, which is released within 5 

minutes after collagen type I stimulation. Platelet TF contributes to the collagen-triggered 

activation of blood coagulation (Zillmann A, 2001). Immunoelectron microscopy showed 

TF antigen localized in the α-granules and the open canalicular system of resting platelets. 

The ability of activated platelets to trigger the initiation of coagulation was low. This 

suggests that platelet TF is cryptic (Maynard JR, 1975). One reason for the low TF 

procoagulant activity on activated platelets could be the concomitant release of TFPI, the 

physiologic inhibitor of the initiator complex of coagulation (Novotny WF, 1988). The 

presence of TF in platelets was confirmed by several authors (Camera M, 2003; Engelmann 

B, 2006). It is still a matter of debate whether TF is transported to platelets by leukocyte-

derived microparticles (Del Conde I, 2005) and / or if the spliceosome of proplatelets that 

extend from megakaryocytes might potentially be capable of translating TF from pre-

mRNAs (Denis MM, 2005; Schwertz H, 2006). 

Microparticles support coagulation by exposure of negatively charged phospholipids that 

are essential for thrombin generation. In the case of monocyte- and platelet-derived 

microparticles their main, and probably central procoagulant function is the exposure of TF 

(Muller I, 2003). Under physiologic conditions, 80% of the plasma microparticles are 

derived from platelets (Berckmans RJ, 2001). TF was detected on platelet-derived 

microparticles and in vitro generated platelet microparticles (Muller I, 2003). Apparently, 

the filopodia of activated platelets are the preferential sites for the formation of TF-positive 

microparticles (Leon C, 2004). In vitro generated monocyte-derived microparticles (Satta 

N, 1994) and circulating monocyte-derived microparticles (Falati S, 2003) were shown to 

expose TF on their membrane. Circulating monocyte microparticles are able to adhere to 

activated endothelial cells and to activated platelets by P-selectin / PSGL-1 interactions and 
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interestingly they were found to play a significant role in fibrin stabilization of the nascent 

thrombus by the delivery of procoagulant TF.  

A substantial part of total soluble TF in plasma has been suggested to be constituted by an 

alternatively spliced human TF (Bogdanov VY, 2003). However, the procoagulant activity 

of soluble TF is rather low compared to full-length TF. 

 

 

I.10 The encrypted or latent state of TF 

 

TF encryption has been suggested as the post-translational suppression of TF procoagulant 

activity on the cell surface (Bach RR, 2006). The discrepancy between TF antigen and the 

expression of TF procoagulant activity has previously been observed in a variety of cell 

types (Maynard JR, 1977; Walsh JD, 1991; Drake TA, 1989). A stimulus is required to 

uncover the latent proteolytic activity of the encrypted TF-VIIa complex (Bach RR, 1990). 

Until now several mechanisms were proposed to activate the encrypted TF: freezing and 

thawing, sonication, protease treatment, phospholipase treatment, non-ionic detergents, 

apoptosis, complement, and Ca2+-ionophores (Bach RR, 1996; 2006). There is a significant 

variation among these methods with respect to the level of TF procoagulant activity evoked 

as well as to secondary effects on cell structure.  

The nature of TF de-encryption is unclear. One mechanism leading to de-encryption of 

latent TF is the treatment of cells with Ca2+-ionophores. This leads to an increase in 

cytosolic Ca2+ which in turn causes a disruption of PS asymmetry. PS is no longer 

sequestered on the inner leaflet of the plasma membrane. This does not necessarily mean 

that TF de-encryption is coupled to PS exposure, but it has been known for a long time that 

PS accelerates coagulation reactions on membrane surfaces (Lentz BR, 2003). However, 

Wolberg and coworkers discovered that Ca2+-ionophore treatment of cells induces changes 
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in TF procoagulant activity that could not fully be reduced to the basal level by saturating 

concentrations of the PS-binding protein annexin V. This indicates that the increase in TF 

activity after ionophore treatment does not solely result from increased PS exposure 

(Wolberg AS, 1999). 

It has been reported that after treatment of human pericytes with Ca2+-ionophore the TF 

procoagulant activity increased but the prothrombinase complex assembly and function 

were not affected. Therefore it is reasonable to assume that Ca2+-ionophore treatment does 

not only result in membrane alterations, but may actuate intracellular processes that lead to 

covalent modifications, dimerization, and/or conformational changes in the TF molecule to 

increase its cofactor activity (Bouchard BA, 1997). Bach and Moldow suggested a 

mechanism for the Ca2+-ionophore-induced TF de-encryption resulting in a change in TF 

quarternary structure (Bach RR and Moldow CF, 1997). They propose that during de-

encryption of TF by Ca2+-ionophore inactive TF dimers are converted to procoagulant TF 

monomers. This model runs counter to a well established dogma. Self-association usually 

results in the activation of cell surface receptors. It also was demonstrated that TF 

dimerization does not inhibit TF procoagulant activity, which contradicts the model 

proposed by Bach and Moldow (Donate F, 2000). 

Another model of TF de-encryption is based on the association of TF with distinct lateral 

membrane domains. It was recently demonstrated that palmitoylation of cytoplasmic 

cysteines can target integral membrane proteins to lipid rafts (Zacharias DA, 2002). TF is 

such a palmitoylated integral membrane protein. Disruption of lipid rafts by methyl-β-

cyclodextrin extraction results in an increase in the basal expression of TF procoagulant 

activity (Dietzen DJ, 2004). However, the meaning of this finding is unclear because there 

is increasing evidence that cholesterol extraction impairs a cells’ ability to expose PS 

(Kunzelmann-Marche C, 2002). 
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CSD in mammalian cell surface receptors (e.g. TF, thrombomodulin, growth hormone 

receptor, erythropoietin receptor, interferon-γ receptor and interleukin receptors). These 

authors propose that the function of some of these proteins might be controlled by cleavage 

of their cross-strand disulfide bond. They suggest that CSD can be reduced or oxidized 

reversibly by cellular oxidoreductases (e.g. protein disulfide isomerase, thioredoxin, 

glutaredoxin). Mechanistically the action of these enzymes is characterized by a thiol-

disulfide exchange reaction. This was successfully established for the CD4 receptor on 

CEM-T4 cells (a thymocyte-derived cell line) (Matthias LJ, 2003). However, regulation of 

the TF procoagulant activity by a reversible, oxidoreductase-mediated cleavage of the CSD 

at position 186-209 has not yet been thoroughly investigated. Regulation of TF by such a 

disulfide switch might be of major interest in nearly all branches of clinical medicine, since 

many pathologies are related to coagulation disorders and venous and arterial thrombosis 

are the leading causes of mortality in industrialized countries. 

 

 

I.12 Aims of the investigation 

 

Increasing evidence indicates an important role of intravascular TF in the pathogenesis of 

lethal diseases, such as disseminated intravascular coagulation (DIC), arterial and venous 

thrombosis, acute myocardial infarction (AMI) and stroke. Blood-borne TF was detected on 

stimulated monocytes, activated platelets and their microparticles. Most of the TF 

molecules present on blood cells however, are not functionally active (encrypted or latent 

state of TF). Therefore it is of major interest to characterize on a molecular level why TF is 

cryptic and to reveal the underlying mechanisms that activate TF. 
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In the present study the following central questions were addressed: 

 

1. Do isolated platelets exhibit TF procoagulant activity after activation?  

 

2. Is the initiation of intravascular coagulation triggered by the proteolytic 

decomposition of platelet TFPI by neutrophil surface proteases? 

 

3. Is there an intramolecular disulfide switch in the TF molecule triggering its 

procoagulant activity? 

 

4. Which oxidoreductases are capable of regulating this thiol-disulfide exchange?
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II. Materials and Methods 

 

II.1  Materials 
 
 
II.1.1  Instruments                                                                                                                                           
 

 Items 
 
Bacterial Incubator 
Bacterial shaker 
Cell culture incubator 
Cell culture microscope 
Culture Hood 
Developing machine 
Electrophoresis power supply EPS600 
Electrophoresis unit, small 
ELISA Reader Dynatech MR 7000 
Horizontal electrophoresis gel 
Mega centrifuge 
Midi-MACS LS column  
Mini-MACS column 
Mini MACS cell separator 
Miniprotean 3 gel cast 
Multiphor II blotting device 
pH meter 
Photometer 
Rotina 35 R 
Shakers 
Scale 
Thermocycler 
Thrombelastograph RoTEG 
Table centrifuge mikro 22 R 
Ultra centrifuge 
Vortex 
Water bath 

Companies, Type 
 
Heraeus B 6200 
New Brunswick Scientific innova 4330 
Köttermann 
Carl Zeiss 
Heraeus, LaminAir, HLB 2472 
AGFA 
Pharmacia 
Bio-Rad Mini-Protean II 
Dynatech Laboratories 
MWG Biotech 
Heraeus, Omnifuge 2.0 RS 
Miltenyi Biotec 
Miltenyi Biotec 
Miltenyi Biotec 
Bio-Rad 
Amersham Pharmacia Biotech 
HANNA instruments HI 221 
Tecan RainBow 
Hettich 
Heidolph, Unimax 2010, Edmund Bühler 
BP2100S, BP310S, Sartorius 
Biozyme, MiniCyclerTM, MJ Research 
Dynabyte 
Hettich 
Beckman, L8-60M 
Scientificc Industries Genie-2 
GFL 1083, Amersham-Buchler 
 

 
 
 
II.1.2  Reagents, pharmaceuticals and general material 
 

Items 
 
1kb DNA ladder, ready load 
100 bp DNA ladder 
Acetic acid 
Acrylamide (30%) / Bisacrylamide 
(0.8 %) 

Companies 
 
Invitrogen 
New England Biolabs 
Roth 
Roth 
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Agarose, ultra pure 
Ammonium peroxydisulfate (APS) 
Beriplex P/N 500 
Bovine serum albumin (BSA) 
Bradford Reagent 
Bromphenolblue 
n-Buthanol 
Calciumchloride, CaCl2·2H2O 
Dextran solution, 25% 
Dimethylsulfoxide (DMSO) 
Disodiumhydrogenphosphate, Na2HPO4 
Dithiothreitol (DTT) 
dNTP mix 
ECL Western blotting detection reagents 
Elastase Inhibitor III,  
MeOSuc-Ala-Ala-Pro-Val-CMK 
Ethanol 
Ethanolamine 
Ethylenediaminetetraacetic acid 
Ethylenediaminetetraacetic acid Na-salt  
(Na-EDTA) 
Ethanol 
Ethidiumbromide 
EZ-Link Sulfo-NHS-Biotin Reagents 
Ficoll-PaqueTM Plus  
fMLP 
D-Glucose 
Glutathione (red.) (GSH) 
Glycerol 
Glycine 
Heparin-Natrium 
HEPES 
Hirudine, Revasc 
Iloprost 
Ionomycin (A23187) 
Isopropanol 
Isopropylthiogalactopyranoside (IPTG) 
Lipopolysaccharide from E. coli 
Magnesiumchloride-hexahydrate, 
MgCl2·6H2O 
Magnesiumsulfate, MgSO4 
Manganchloride, MnCl2·4H2O 
2-Mercaptoethanol 
Nα-(3-maleimidylpropionyl)biocytin 
(MPB) 
MOPS 
Nitrocellulose membrane 
Phosphatase-inhibitor cocktail 
Potassiumacetate 
Potassiumchloride, KCl  
Potassiumdihydrogenphosphate, KH2PO4 

Life Technologies, Inc. 
Sigma 
Aventis Behring 
Sigma 
Bio-Rad 
Sigma 
Roth 
Sigma 
Sigma 
Sigma 
Merck 
Sigma 
Roche 
Amersham Biosciences 
Calbiochem 
 
Roth 
Sigma 
Sigma 
Sigma 
 
Roth 
Life Technologies, Inc. 
Pierce 
Amersham Biotech 
Sigma 
Merck 
Calbiochem 
Sigma 
Roth 
Ratiopharm 
Roth 
Aventis Pharma, Novartis 
Schering 
Sigma 
Roth 
Roth 
Sigma 
Sigma 
 
Fluka 
Fluka 
Sigma 
Molecular Probes 
 
Sigma 
Amersham Biosciences 
Roche 
Merck 
Sigma 
Merck 
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Protease-inhibitor cocktail  
Protein marker, Page Ruler 
Rubidiumchloride 
Sodiumacetate hexahydrate 
Tri-Sodiumcitrate 
SDS ultra pure 
S2222, chromogenic substrate 
Sodiumhydrogencarbonate, NaHCO3 
Sodiumdihydrogenphosphate, NaH2PO4 
Sodiumhydroxide, NaOH 
Streptavidin-agarose beads 
TEG caps 
TEMED 
Thromborel S 
Tris-(hydroxymethyl)-aminomethane 
(Tris-base) 
Triton-X100 
Tween 20 
Whatman 3MM Papier 
X-ray film 
Zeba Desalt Spin Columns 

Roche 
Fermentas 
Fluka 
Merck 
Roth 
Roth 
Haemochrom Diagnostica 
Sigma 
Merck 
Sigma 
Sigma 
ROTEM 
Roth 
Dade Behring 
Roth 
 
Sigma 
Sigma 
Schleicher & Schuell  
Fuji 
Pierce 

 
 
 
II.1.3  Cell culture materials 
 

Items 
 
Ampicillin 
Bacto-Agar 
Culture flasks 
FuGene 6 Transfection Reagent 
Fetal bovine serum 
Kanamycin 
MEM-alpha medium 
Pemicillin/Streptomycin (100x) 
Trypanblue 
Trypsin/EDTA 
Yeast extract 

Companies 
 
Sigma 
Roth 
Falcon 
Roche 
Invitrogen-Gibco 
Sigma 
Invitrogen-Gibco 
Invitrogen-Gibco 
Sigma 
Invitrogen-Gibco 
Life Technologies Inc. 

 
 
II.1.4  Enzymes and Proteins 
 

Items 
 
Annexin V, recombinant 
Apyrase grade VII (from potato) 
Cathepsin G from human leukocytes 
Chondroitinase ABC, Proteus vulgaris 
Collagen, Type I 
Corn Trypsin Inhibitor 
DNase I 

Companies 
 
BD Biosciences Pharmingen 
Sigma 
Sigma 
Calbiochem 
Horm, Nycomed 
Calbiochem 
Sigma 
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Factor X, human 
Glutaredoxin, recombinant, E. coli 
Human Neutrophil Elastase 
Pfu Taq Polymerase 
Protein-Disulfide Isomerase (PDI) 
Ribonuclease I, E. coli 
Sal I restriction endonuclease 
Soluble Tissue Factor 1-219 
 
 
Streptavidin, horseradish peroxidase 
conjutated 
Streptavidin-Agarose, Streptomyces 
avidinii 
T4 DNA Ligase 
Thioredoxin, recombinant, E. coli 
α-Thrombin 
Xba I restriction endonuclease 

Haemochrom Diagnostica 
Calbiochem 
Calbiochem 
Stratagene 
Sigma 
Fermentas 
New England Biolabs 
Kindly provided by PD Dr. Victor 
Magdolen, Klinikum rechts der Isar, 
Technische Universität München 
Pierce 
 
Sigma 
 
New England Biolabs 
Calbiochem 
Sigma 
Fermentas 

 
 
II.1.5  Antibodies 
 
Items 
 
Anti-human CD14 magnetic 
MicroBeads 
 
Anti-human CD15 magnetic 
MicroBeads 
 
Goat anti-human TFPI  
(C-20) polyclonal antibody 
 
Goat anti-mouse IgG, 
horseradish peroxidase 
conjugated 
 
Mouse Anti-Glutathione 
monoclonal antibody 
 
Mouse anti-goat IgG, 
horseradish peroxidase 
conjugated 
 
Mouse anti-human Tissue 
Factor-VIC7 monoclonal 
antibody 
 
 
 
 

Antigen 
 
CD14 
 
 
CD15 
 
 
TFPI  
 
 
Mouse IgG, carboxyterm. 
 
 
 
Glutathione 
 
 
Goat IgG, carboxyterm. 
 
 
 
TF 
 
 
 
 
 
 

References 
 
Miltenyi Biotec 
 
 
Miltenyi Biotec 
 
 
Santa Cruz (sc-18713) 
 
 
Calbiochem (#401253) 
 
 
 
Virogen (101-A) 
 
 
Santa Cruz (sc-2354) 
 
 
 
Dr. rer. nat. Sybille Albrecht, 
Pathologisches Institut, 
Technische Universität Dresden 
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Mouse anti-human Tissue 
Factor-VD8 monoclonal 
antibody 
 
Mouse anti-human Tissue 
Factor-VIC12 monoclonal 
antibody  
 
Mouse anti-human Tissue 
Factor 5G9 monoclonal 
antibody 
 
Mouse anti-rat PDI 
monoclonal antibody 
(IgG2a), (clone RL90), 
(cross reacts with human, 
mouse and hamster PDI) 
 
Mouse anti-rat IgG2a 
monoclonal antibody, 
(clone R2A-2) 

TF 
 
 
 
TF 
 
 
 
TF 
 
 
 
PDI 
 
 
 
 
 
Isotype control 
 

Dr. rer. nat. Sybille Albrecht, 
Pathologisches Institut, 
Technische Universität Dresden 
 
Dr. rer. nat. Sybille Albrecht, 
Pathologisches Institut, 
Technische Universität Dresden 
 
Kindly provided by Dr. Robert 
F. Kelley, Genentech, CA, US 
 
 
Affinity BioReagents  
(MA3-019) 
 
 
 
 
Sigma (R 0761) 
 

 
 
 
II.1.6  Kits 
 

Items 
 
Gene TailorTM Site-directed mutagenesis 
kit 
 
Qiagen gel extraction kit 
 
Qiagen plasmid kit (midi, maxi) 
 
QiaQuick PCR purification kit 

Companies 
 
Invitrogen 
 
 
Qiagen 
 
Qiagen 
 
Qiagen 

 
 
II.1.7  Phagmid  
 

Items 
 
pBK-CMV 

Companies 
 
Stratagene 

 
 
 
II.1.8  PCR-primers 
 
All primers were synthesized by the MWG-Biotech AG. 
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II.1.8.1  Cloning primers 
 
Primer 
 
outer TF5’  
(5’-primer) 
 
out TF3’ch  
(3’-primer) 
 
Sal5’TFclone 
(5’primer) 
 
XbaITFrevcloning 
(3’primer) 

Restriction Site
 
- 
 
 
- 
 
 
Sal 1 
 
 
Xba I 

Sequence 
 
CCAACTGGTAGACATGGAGAC 
 
 
CAGTAGCTCCAACAGTGCTCC 
 
 
CGACGCGTCGACATGGAGACCCCTGCCTG 
 
 
GCTCTAGATTATGAAACATTCAGTGGGGAG

 
 
II.1.8.2  Site-directed mutagenesis primers 
 
Primer 
 
C49S forward 
 
C49S reward 
 
C57S forward 
 
C57S reward 
 
C186S forward 
 
C186S reward 
 
C209S forward 
 
C209S reward 

Mutation 
 
C49S 
 
 
 
C57S 
 
 
 
C186S 
 
 
 
C209S 

Sequence 
 
CAGGAGATTGGAAAAGCAAAAGCTTTTACACAAC 
 
TTTGCTTTTCCAATCTCCTGACTTAGTGCT 
 
TTACACAACAGACACAGAGAGTGACCTCACC  
 
CTCTGTG-TCTGTTGTGTAAAAGCATTTGCT  
 
GGATAAAGGAGAAAACTACAGTTTCAGTGTTC  
 
GTAGTTTTCTCCTTTATCCACATCAATCAA  
 
GTACAGACAGCCC-GGTAGAGAGTATGGGCCAGG 
 
CTCTACCGGGCTGTCTGTACTCTTCCGGTTAAC  

 
 
II.1.9  Bacterial strains and cell lines 
 
Strain / Cell line 
 
DH5α 
 
Chinese Hamster Ovary Cells 
(CHO) 
 
Pulmonary Artery Vascular 
Smooth Muscel Cells 
(PAVSMC) 

Species 
 
E. coli 
 
Hamster 
 
 
Human 

Classification 
 
Bacteria 
 
Mammals 
 
 
Mammals 

Reference 
 
Invitrogene 
 
LGC Promochem 
 
 
Cambrex 
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II.1.10  Bacterial and cell culture media 
 
Freeze Medium for CHO cells 
40% MEM-α 
50% FBS 
10% DMSO 
 
Luria-Bertani (LB) Medium 
10 g/l Trypton 
  5 g/l Yeast extract 
10 g/l NaCl 
pH 7.5 
For LB-Agar plates add 1.5% (w/v) of Bacto-Agar. 
 
Minimum Essential Medium (MEM) alpha (for CHO cells) 
For formulation see Gibco-Invitrogen 
 
Psi broth medium 
20 g/l Trypton 
  5 g/l Yeast extract 
  5 g/l Magnesiumsulfate 
pH 7.5 
 
RPMI-1640 Medium (for monocytes and monocytic cell lines) 
See Gibco-Invitrogen 
 
 
II.1.11  Buffers and solutions 
 
Antibody buffer 
0.13% Na-EDTA 
0.15% BSA 
Dissolved in PBS 
 
Blocking buffer 
5% BSA in TBS/T 
 
Blotting buffer 
150 mM Glycine 
  20 mM Tris 
0.1% SDS 
20% Methanol 
 
Buffer P1 
50 mM Tris-HCl, pH 8.0 
10 mM EDTA 
10 mg/ml RNase A 
 
Buffer P2 
10% SDS 
200 mM NaOH 
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Buffer P3 
3 M Potassium acetate, pH 5.5 
 
Buffer QBT 
15% Ethanol 
0.15% Triton X-100 
 
Buffer QC 
2.0 M NaCl 
50 mM MOPS, pH 7.0 
15% Ethanol 
 
Buffer QF 
1.25 mM NaCl 
50 mM Tris-HCl, pH 8.5 
15 % Ethanol 
 
Ca2+/Hepes 
  10 mM Hepes, pH = 7.4 
100 mM CaCl2 
 
Cell lysis buffer  
  50 mM Tris, pH 8.0  
150 mM NaCl  
    5 mM EDTA 
1% Triton X-100 
 
10 x DNA-Gel Loading Buffer 
40% (w/v) saccharose 
0.25% bromphenolblue 
0.25% xylencyanol, use as 1x solution 
 
EDTA buffer 
50 mM Tris-HCl 
20 mM EDTA 
1 mg/ml BSA 
 
Gel buffer (500 ml) 
3 M Tris-HCl, pH 8.45 
0.3 % SDS 
(dissolve in 300 ml and adjust to pH 8.45 with HCl) 
 
Hank’s Balanced Salt Solution (HBSS) 
0.4 mM KH2PO4 
0.6 mM MgSO4 
5.4 mM KCl 
1.3 mM CaCl2·2H2O 
0.5 mM MgCl2·6H2O 
5.6 mM α-D-Glucose 
0.3 mM Na2HPO4 
137 mM NaCl 
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4.2 mM NaHCO3 
pH 7.4 
 
Phosphate-Buffered Saline (PBS) 
136 mM NaCl 
 2,6 mM KCl 
  10 mM NaH2PO4 
 1.5 mM KH2PO4, pH 7.4 
 
PBS / EDTA 
100 ml PBS (10x), pH 7.4 
    1 ml Na-EDTA (0.5 M stock, pH 8.0) 
900 ml ddH2O 
 
Resuspension buffer 
138 mM NaCl 
 2.7 mM KCl 
  12 mM NaHCO3 
 0.4 mM NaH2PO4 
 1 mM MgCl2·6H2O 
 5 mM D-Glucose 
 5 mM Hepes, pH 7.35 
 
Running buffer (for SDS-PAGE) 
  25 mM Tris 
250 mM Glycine 
0.1% SDS 
 
4x SDS-loading buffer (for SDS-PAGE) (Laemmli buffer) 
10 ml    1M  Tris-HCl, pH 6.8 
23 ml      10%   Glycerol (87%) 
10 ml    10% (w/v)  SDS 
  2 ml       2-Mercaptoethanol 
  4 ml    0.5 %      Bromphenolblue  
 
Separating buffer (4x) 
75.0 ml 2 M  Tris-HCl, pH 8.8 
  4.0 ml 10 % (w/v) SDS 
21.0 ml   ddH2O 
 
Transformation buffer I (Tfb I) 
0.588 g 30 mM  Potassiumacetate, pH 5.8, adjusted with acetic acid 
  2.42 g         100 mM  Rubidiumchloride 
0.294 g 10 mM  Calciumchloride 
    2.0 g 50 mM  MnCl2·4H2O 
   30 ml 15% (v/v) Glycerol 
200 ml total volume 
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Transformation buffer II (Tfb II) 
  0.21 g  10 mM  MOPS, pH 6.5, adjusted with NaOH 
    1.1 g 75 mM  Calciumchloride 
0.121 g 10 mM  Rubidiumchloride  
   15 ml 15% (v/v) Glycerol 
100 ml total volume 
 
1x Tris-Acetate-EDTA (TAE) 
40 mM Tris-HCl 
40 mM Acetic acid 
2 mM EDTA, pH 7.8 
 
10x Tris-Buffered Saline (TBS) 
400 mM Tris-HCl 
1.37 M NaCl  
 
TBS/T 
1x TBS + 0.1% Tween 20 
 
 
 
 
II.2  Methods 

 

II.2.1  Cell isolation techniques 

 

II.2.1.1  Blood recovery 

Venous blood was obtained from healthy donors (age 18-35 years), who did not take drugs 

acting on the coagulation system for at least 14 days. The blood was anticoagulated with 

tri-sodiumcitrate, hirudine or heparine-sodium, respectively. All experiments performed 

with human blood were approved by the local ethic commission. 

 

II.2.1.2  Isolation of platelets 

Blood obtained from healthy donors (anticoagulated by tri-sodiumcitrate, 12.5 mM) was 

centrifuged in 10 ml centrifuge tubes at 1300 rpm for 15 minutes at 24°C. 2 ml platelet-rich 

plasma (PRP) were aspirated from each centrifuge tube and filled into a separate centrifuge 

tube. Apyrase grade VII (0.475 U/ml) and iloprost (10 ng/ml) were added to each 2 ml 
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sample of PRP and the tubes containing PRP were centrifuged at 1300 rpm for 10 minutes 

at 24°C. The supernatant was discarded and the platelet pellet was resuspended in 

resuspension buffer. 

 

II.2.1.3  Preparation of platelet supernatant  

1 x 1010 isolated platelets per ml resuspension buffer were stimulated with 0.1 U/ml 

thrombin and 8 µg/ml type I collagen for 30 minutes at 37°C. The stimulated platelets were 

centrifuged at 12600 rpm for 30 min at 24°C and the pellet was separated from the 

supernatant. 

 

II.2.1.4  Isolation of peripheral blood monocytes (PBM)  

Buffy coats obtained from the blood of healthy donors (anticoagulated by tri-sodiumcitrate 

(12.5 mM) and hirudine (1 µg/ml)) were diluted with 2 volumes of calcium-free PBS, and 

the suspension was underlayered with low-endotoxin Ficoll-PaqueTM Plus. After 

centrifugation for 25 minutes at 420g, the interphase was collected and washed with 

antibody buffer. The pellet of white blood cells was taken up in 2 ml of antibody buffer and 

200 µl of CD14 microbeads were added to the suspension and incubated for 15 minutes at 

4°C. A Midi-MACS LS column was placed into a magnetic field and equilibrated with 

antibody buffer. The CD 14 microbeads treated white blood cell suspension was applied to 

the column and the column was washed three times with 3 ml antibody buffer. The 

monocytes were eluted from the MACS column with 8 ml of antibody buffer and 

centrifuged at 1300 rpm (15 minutes, 24°C). The supernatant was discarded and the 

monocyte pellet was taken up in RPMI-1640 medium to a final cell density of 3 x 106 

monocytes per ml. 
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II.2.1.5  Isolation of polymorphonuclear neutrophils (PMN)  

Blood was anticoagulated with Na-heparin (10 µl/ml) or tri-sodiumcitrate (12.5 mM) and 

inverted twice. Whole blood was added to 3% dextrane (in HBSS) in a ratio of 2 to 1. The 

cups were inverted twice and the separation of red blood cells and serum, containing other 

blood cells occurred in about 30 minutes at room temperature (RT). After separation the 

supernatant was removed with a sterile plastic Pasteur pipette and it was layered on top of 7 

ml low-endotoxin Ficoll-PaqueTM Plus in a 15 ml Falcon. The Falcons were spun for 30 

minutes at 1200 rpm and RT. The supernatant was removed and the pellet was resuspended 

in 1 ml of RPMI-1640 medium. All suspensions were pooled into a new 15 ml Falcon, 

which was filled up to 10 ml RPMI-1640 medium. Then it was centrifuged for 10 minutes 

at 1000 rpm and RT. The supernatant was removed and the pellet was resuspended in 1 ml 

pyrogen-free water for hypertonic lysis of residual red blood cells. After 20 to 40 s of gentle 

resuspension, 10 ml HBSS were added and subsequently the cells were centrifuged for 10 

minutes at 1000 rpm at RT. If residual red blood cells were present, the same step was 

repeated several times. 

Alternatively another PMN isolation method was applied. Blood was anticoagulated with 

tri-sodiumcitrate (12.5 mM) and centrifuged for 15 minutes at 1300 rpm and RT. The PRP 

was removed and the buffy coat (interphase of white blood cells) was transferred to a new 

centrifuge tube. After centrifugation at 1300 rpm for 10 minutes at RT the layer of white 

blood cells was transferred to a Falcon tube and filled up with antibody buffer to 2 ml of 

total volume. Per 2 ml of white blood cells 200 µl of anti-human CD15 magnetic 

MicroBeads were added and incubated for 15 min at 4°C. The Mini-MACS columns were 

equilibrated with at least 2 ml of antibody buffer and the samples of white blood cells were 

diluted by adding 600 µl of antibody buffer. After applying the samples onto the columns 

the columns were washed fourfold with 500 µl of antibody buffer to remove all other blood 

cells. Subsequently the columns were removed from the magnetic field and the PMN were 
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eluted by applying 3 x 2 ml of antibody buffer. The PMN were pelleted by spinning the 

Falcon tube at 1000 rpm for 10 minutes at RT and resuspended in 1 ml of resuspension 

buffer. 

 

II.2.1.6  Stimulation of isolated blood cells  

For inducing TF expression of isolated monocytes 3 x 106 monocytes per ml RPMI-1640 

medium were stimulated with 10 ng/ml LPS for 5 hours at 37°C. For monocyte 

microparticle formation 3 x 106 isolated monocytes per ml resuspension buffer were 

stimulated with 10 µg/ml LPS for 16 hours at 37°C. 

For the formation of neutrophil microparticles 3 x 106 PMN per ml resuspension buffer 

were stimulated with 100 nM fMLP for 2 hours at 37°C. 

For immunoblots 3 x 108 platelets were stimulated with 0.1 units/ml thrombin and 12 µg/ml 

collagen type 1. For functional assays platelets were stimulated with 12 µg/ml collagen or 3 

µM A23187 Ca2+-ionophore in 2 mM Ca2+-containing resuspension buffer. 

TF expression in PAVSMC was induced by treatment of the cells with 1 unit/ml thrombin 

for 4 hours at 37°C. 

 

II.2.1.7  Isolation of microparticles derived from stimulated blood cells 

After stimulation of isolated blood cells (platelets, neutrophils, monocytes), the samples 

were centrifuged for 15 minutes at 4500 rpm and RT. 250 µl of the obtained supernatant 

was filled in each Eppendorf-tube and it was centrifuged for 30 min at 12600 rpm and 

24°C. Afterwards, 225 µl of the supernatant were removed and 25 µl were left on the 

bottom of the tubes. Subsequently, the microparticles of each tube were washed with 225 µl 

PBS, vortexed and again centrifuged for 30 min at 12600 rpm and 24°C. After the 

centrifugation, all the supernatant was removed and the microparticle pellet of each tube 

was resuspended in 25 µl resuspension buffer.   
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II.2.2  Cell culture techniques 

 

II.2.2.1  Bacterial cell cultures 

Transformed DH5α-bacteria were selected on LB plates with ampicillin (100 µg/ml) or 

kanamycin (50 µg/ml) for 24 hours. For the preparation of overnight mini-cultures one 

colony was picked and inoculated in LB medium with the appropriate antibiotic and shaken 

overnight at 37°C. The overnight mini-culture was then used to prepare glycerol stocks or 

to isolate and purify plasmid DNA for the transfection of eukaryotic cells. For the storage 

of transformed bacteria a glycerol stock was prepared by growing the bacteria to an OD of 

0.8 at 600 nm. Then 500 µl of the bacterial culture was added to 500 µl of 80% glycerol 

and mixed thoroughly. The stocks were immediately frozen at -80°C. 

 

II.2.2.2  Preparation of competent DH5α-cells 

A 20 ml pre-culture was grown in LB medium overnight at 37°C and 180 rpm. The next 

day 1 ml from the pre-culture was inoculated in 100 ml of psi broth medium and cultivated 

at 37°C and 180 rpm to an OD of 0.5 at 600 nm. The culture was put on ice for 15 minutes. 

The cells were pellet at 5000 x g for 5 minutes and the supernatant was removed. The pellet 

was resuspended in 40 ml of Tfb I per 100 ml of bacterial cell culture and again kept on ice 

for 15 minutes, followed by centrifugation at 5000 g for 5 minutes. The supernatant was 

removed  the bacterial cell pellet was resuspended in 4 ml Tfb II per 100 ml of culture and 

put on ice for 15 minutes. Subsequently 50 µl aliquots were prepared in 1.5 ml tubes and 

immediately frozen in liquid nitrogen and kept in –80°C. 

 

II.2.2.3  Transformation of competent bacteria 

The competent bacteria were thawed on ice. About 40 ng of ligated DNA or purified 

phagmid DNA were added to 50 µl of competent cells, mixed carefully and kept on ice for 
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additional 20 minutes. The bacteria were heat shocked at 42°C for 90 seconds, then 1 ml of 

LB medium was added and the transformation samples were shaken at 37°C for 30 

minutes. A selection of transformed bacteria was achieved by plating the bacterial 

suspensions onto antibiotic containing agar plates. Only these bacteria which had taken up 

the plasmid, containing an antibiotic resistance cassette, were able to grow on the plate. 

 

II.2.2.4  Cultivation of Chinese Hamster Ovary cells 

The Chinese Hamster Ovary (CHO) cells were cultured in 75 cm2 cell culture flasks 

containing MEM-α medium supplemented with 100 µl penicillin/streptomycin (100x) 

mingled with 10% fetal bovine serum (FBS) at 5% CO2 (37°C). The cells were cultured 

until a confluence of approximately 90% was achieved. The cells were washed with 5 ml of 

PBS and released from their culture flask by adding 2 ml of PBS/EDTA and subsequent 

incubation for 20 minutes at 37°C. Freezing cultures were prepared by spinning the cells at 

1000 rpm for 15 minutes and resuspending them in 1 ml of freeze medium for CHO cells 

per flask of confluent cells. Aliquots were set into an ethanol-filled container and frozen 

gradually at –80°C. 

 

II.2.2.5  Transfection of Chinese Hamster Ovary cells  

One day before transfection, the cells were treated with trypsin/EDTA and split into a new 

culture flask to become 80% confluent. For each culture flask to be transfected, 36 µl of 

FuGene 6 transfection reagent was diluted into serum free MEM-α medium. Subsequently 

15 µg of DNA were added. The transfection mixture was prepared in such a way that the 

total volume was 800 µl and it was incubated for 45 minutes. Then the transfection mixture 

was added dropwise into each of the cell cultures and they were mixed thoroughly. Finally 

the transfected cell cultures were incubated for 16 hours at 37°C. During that time the 

protein expression from the transfected plasmid should proceed. 
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II.2.3  DNA techniques 

 

II.2.3.1  Electrophoresis of DNA on agarose gels 

Double stranded DNA fragments can be separated according to their length on agarose gels. 

Agarose was added to 1 x TAE to a final concentration of 0.7-2.0%. The mixture was 

boiled in the microwave until the agarose was completely molten. The agarose was cooled 

down to about 50°C before ethidium bromide was added to a concentration of 5 µg/ml and 

poured into the gel tray. DNA gel loading buffer was added to the samples and they were 

applied to the gel. Electrophoresis was performed in 1 x TAE at 3-8 V/cm. The DNA 

fragments were visualized in the gel by UV-light. 

 

II.2.3.2  Isolation of DNA from agarose gels (Qiagen gel extraction kit) 

This protocol was designed for the extraction of DNA fragments from 0.7-2.0% standard 

agarose gels in TAE or TBE buffer. DNA molecules were adsorbed to Qiagen silica 

columns. All non-nucleic acid impurities, such as agarose, proteins, salts and ethidium 

bromide were removed during the washing steps. The desired DNA band was excised from 

the gel under the UV-light. The gel slice was weighed and 5 volumes of buffer QG were 

added to one volume of gel for DNA fragments from 100 bp to 4 kb, for DNA fragments > 

4 kb, 2 volumes of buffer QG plus 2 volumes of ddH2O were added, and then incubated for 

10 minutes at 50 °C to solubilize the agarose. The solubilized agarose was resuspended by 

vortexing and the sample was applied to the Qiagen silica columns to bind DNA. The 

sample was centrifuged for 30 seconds, then the column was washed with 500 µl of buffer 

QG and subsequently twice with buffer PE. Thereafter it was centrifuged for additional 30 

seconds to remove residual alcohol from the column. The column was span for 1 min to 

elute the DNA in 30-50 µl of Tris-HCl or ddH2O. 
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II.2.3.3  Purification of plasmid DNA (QIAquick PCR purification kit) 

This protocol was designed to purify single- or double-stranded PCR products or DNA 

plasmids ranging from 100 bp to 10 kb. DNA adsorbs to the silica matrix in the presence of 

high salt concentrations while contaminants pass through the coloumn. The impurities were 

removed by washing steps and the DNA was eluted with Tris-HCl or ddH2O. Five volumes 

of buffer PB was added to one volume of the contaminants and mixed. A QIAquick spin 

column was placed in a collection tube, the mixed sample was added to the column and 

centrifuged for 30-60 seconds. The flow-through was discarded and the column was placed 

back into the same collection tube. 0.75 ml buffer PE was added to the column and it was 

centrifuged for 30-60 seconds. The flow-through was discarded and the column was placed 

back into the same collection tube. The column was spun for one additional minute at 

maximum speed and placed in a clean 1.5 ml microfuge tube. 30-50 µl of elution buffer 

(EB) or ddH2O were added to the centre of the column and it was centrifuged for one 

minute. The purified DNA was stored at –20°C. 

 

II.2.3.4  Maxi-preparation of plasmid DNA (Qiagen plasmid maxi kit) 

Bacterial cultures containing plasmids or recombinant plasmids were grown in 50 ml LB 

medium overnight in a 37°C-incubator shaking at 180 rpm. The bacteria were harvested 

and the DNA plasmids were isolated by using the Qiagen plasmid maxi kit. The extraction 

method applied is based on Birnboim’s alkali lysis principle. The bacterial pellet was 

resuspended in 10 ml of buffer P1. 10 ml of buffer P2 were added and mixed gently. Then 

the lysate was incubated at RT for 5 minutes, 10 ml of chilled buffer P3 were added, mixed 

immediately and incubated on ice for further 20 minutes. The suspension was centrifuged 

for 30 min at 4000 rpm and 4°C and the supernatant was filtered over a folded filter. The 

supernatant was applied to an equilibrated QIAGEN-tip 500 and it was allowed to enter the 

resin by gravity flow. The QIAGEN-tip was washed twice with buffer QC. The DNA was 
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eluted with 15 ml of buffer QF. This procedure resulted in the isolation of a DNA-salt 

pellet, which was precipitated by 0.7 volumes of isopropanol (10.5 ml), and centrifuged at 

4000 rpm for 30 minutes. The obtained pellet was washed twice with 70% ethanol and air-

dried at RT. The pellet was then carefully solved in ddH2O and quantified. 

 

II.2.3.5  Measurement of DNA concentration 

DNA concentrations were determined with a UV spectrophotometer measuring the 

absorbance (A) at a wavelength of 260 nm. The absorption of 1.0 at a wavelength of 260 

nm corresponds to a double stranded DNA concentration of 50 µg/ml. The ratio of A260 nm / 

A280 nm, which is a measure of the DNA purity, was over 1.8. This means, that the DNA 

preparations were pure from proteins. 

 

II.2.3.6  DNA sequencing 

All sequencing reactions were performed by SeqLab (Göttingen, Germany). The evaluation 

of all sequencing results were done with the program Chromas. 

 

II.2.3.7  Polymerase Chain Reaction (PCR) 

All oligonucleotid primers used in the PCRs were synthesized by MWG Biotech 

(Germany) and delivered in lyophilized form. The oligonucleotides were dissolved in 

sterile water to obtain a 100 pM solution. From the primer solutions the experimental 

mixtures for conventional PCR, sequencing and site directed mutagenesis were prepared. 

The coding regions of full length human TF were amplified from a HL-60 cDNA. For the 

amplification of the TF cDNA with outer primers the reaction was performed in the 

presence of 5 pM oligonucleotide primers (5’-primer: CCAACTGGTAGACATGGAGAC; 

3’-primer: CAGTAGCTCCAACAGTGCTCC), 20 mM of each of the four deoxy-

nucleoside triphosphates (dNTPs), and 2.8 units of Pfu Turbo DNA polymerase in 20 µl 
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buffer supplied by the manufacturer at an annealing temperature of 59.5°C. For the 

amplification of TF cDNA containing a Sal I / Xba I-restriction site (bold sequence) inner 

primers (5’-primer: CGACGCGTCGACATGGAGACCCCTGCCTG; 3’-primer: GC-

TCTAGATTATGAAACATTCAGTGGGGAG) were used with the outer primers’ 

amplification product as a template and an annealing temperature of 65.0°C. All other 

reaction conditions were the same as in the previous reaction. The PCRs were performed 

according to the following protocol: 

 

Step 1:  initial denaturation   94.0°C for 2 min 

Step 2:  denaturation   94.0°C for 20 seconds 

Step 3:  annealing   appropriate annealing temperature for 1 min 

Step 4:  elongation   72.0°C for 1 min 

Step 5:  closing the cycle and back to step 2 

Step 6:  final elongation  72.0°C for 5 minutes 

Step 7:  End        keep at 4°C 

 

II.2.3.8  Restriction digests of DNA fragments 

Digestion of DNA with restriction endonuclases was performed according to the 

manufacturer’s instructions using recommended buffer systems and the appropriate reaction 

temperatures. Generally, 1 unit of enzyme was used to digest 1 µg of DNA. Plasmid DNA 

was usually digested for 1-2 hours. Completion of the reactions was monitored by agarose 

gel electrophoresis.  
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II.2.3.9  Ligation of DNA fragments 

The plasmid DNA and the DNA fragments were prepared by cutting with suitable restrict-

ion enzymes and subsequent purification. A 1:3 molar ratio of vector to insert DNA 

fragments were incubated with 1 unit of T4 DNA-ligase in 1x ligation buffer in a total 

volume of 20 µl overnight at 16°C. The next day the mixture was heated for 10 minutes to 

inactivate the T4 DNA-ligase.  

 

II.2.3.10  Construction of the protein expression phagmid pBK-CMV-TF 

cDNA obtained from HL-60 cells was amplified by polymerase chain reaction (PCR) as 

described before. A DNA fragment of 0.9 kb was obtained as PCR product by 31 cycles of 

40 seconds at 94°C, 60 seconds at 65°C, and 60 seconds at 72°C with a thermal cycler. 

After the fragment was purified using the QIAquick PCR purification kit and the Qiagen 

gel extraction kit, it was ligated to the Sal I / Xba I-digested pBK-CMV phagmid with T4 

DNA-ligase and transformed into calcium-competent E. coli DH5-α cells. A white 

transformed colony formed on LB medium containing 50 μg/mL ampicillin (LBamp) and 

IPTG was inoculated and grown overnight in LBamp (3 mL). The picked clone was 

sequenced to verify, that no random mutation had occurred during the PCR reactions. The 

cloned construct, named pBK-CMV-TF, was subsequently transformed into calcium-

competent E. coli DH5-α-cells and selected by its ampicillin resistance on LBamp agar 

plates and a 1 l culture was grown in LBamp to amplify and isolate the cloned product with 

the Plasmid Maxi Kit. 

 

II.2.3.11  Site-directed mutagenesis of TF C49S, TF C57S, TF C186S, TF C209S, TF  

                C49S/C57S and TF C186S/C209S in pBK-CMV-TF 

Site-directed mutagenesis was performed using the Gene TailorTM Site-Directed 

Mutagenesis Kit. The method is used to exchange one single amino acid within a 
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polypeptide chain or to remove or insert up to five amino acids in one single reaction. The 

pBK-CMV-TF phagmid was methylated to insure that the parental plasmid that is not 

containing the desired mutation will be degraded by the transformed bacterial strain. This 

will greatly increase the efficiency of the mutagenesis reaction. The primers were designed 

as described in the manufacturer’s booklet containing the desired mutations (see material 

section). Thereby it is important the primers to be overlapping and containing protruding 

ends to achieve a recircularization of the vector. For the mutagenesis PCR of the 

methylated template, Platinum® Pfx polymerase was used, which has a very reliable proof 

reading activity for long elongation reactions. After mutating and amplifying the construct, 

the transformation was carried out according to the protocol supplied by the manufacturer. 

Subsequently the mutated constructs were sequenced and correctness of the inserted 

mutations was verified. 

  

II.2.4  Protein analyses 

 

II.2.4.1  Determination of protein concentrations 

All protein concentrations were determined employing the Bio-Rad Assay, which is based 

on the Lowry method. 5µl of the protein sample was pipetted into a 96 well microtiter plate 

then 25 µl of reagent A and 200 µl of reagent B were added. It was incubated for 12 min to 

allow the colour reaction to reach its end point. Afterwards, the absorbance of the samples 

at 700 nm was measured with a photometer. The obtained absorbance values were 

transformed into protein concentrations by a BSA standard curve, recorded with BSA 

solutions of known protein concentration.  
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II.2.4.2  UV-Spectroscopy 

Protein concentrations can be determined by UV-Spectroscopy, since proteins show a 

maximum of absorbance at about 280 nm due to their aromatic constituents (F, Y, W). If 

the sequence of a certain protein is known, its extinction coefficient at 280 nm (ε280) can be 

calculated by applying the software protparam that is available at www.expasy.ch. 

Therefore, the protein concentration c can be calculated using the Lambert-Beer equation  

A = ε c d, d representing the path length of the cuvette and A the measured absorption of 

the protein solution. For all measurements a cuvette with a path length of 1 cm and a Perkin 

Elmer UV-Spectrophotometer was used. The recorded UV spectra gives information on the 

purity of a protein solution and the possible occurrence of protein aggregates.   

 

II.2.4.3 Circular Dichroism-Spectroscopy 

Circular Dichroism-Spectroscopy (CD) is a biophysical method that measures the angle of 

which the plane of polarized light is changed after such light is passed through a solution 

containing a chiral substance. Amino acids are containing chiral centers and therefore CD-

Spectroscopy can be applied to proteins. The CD-Spectra of proteins are solely composed 

of the CD-Spectra of their single amino acid constituents and of their secondary structure 

elements. Therefore it is possible to calculate the composition of a proteins’ secondary 

structure by spectra deconvolution. The deconvolution of protein spectra is achieved by the 

comparison of characterized protein spectra with a well known secondary structure 

compsition to the CD-spectrum of a sample protein solution. This can be calculated with 

the commercially available software CDN. CD-Spectra were recorded with a JasCo 

photometer at 25 °C and the cuvette that was used for all measurements had a path length 

of 0.1 cm.     
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II.2.4.4  Sodiumdodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

30 µl of cell lysates of a defined total protein concentration were mixed with 10 µl of 4 x 

Laemmli buffer (optionally containing 2-mercaptoethanol as a reductant) and boiled for at 

least 3 min to denature all proteins. The SDS complexes were electrophoretically separated 

on a polyacrylamid gel of appropriate acrylamid percentage. Vertical gels were set in 

between two glass plates with a thickness of 1.5 mm. Gels (7.5%, 12%) were commercially 

available as ready gels from Bio-Rad or Pierce or they were poured in the appropriate 

percentage according to the following pipet scheme in between the fixed glass plates and 

polymerized for at least 30 min at RT:  

 

compounds 7.5% 12% 16.5% stacking gel 

ddH2O 

Separating buffer (4x) 

Gel buffer 

Acryl-Bis 

10% APS 

TEMED 

32% (v/v) Glycerol 

2.43 ml 

1.25 ml 

- 

1.25 ml 

   25 µl 

     3 µl 

- 

3.45 ml 

  2.5 ml 

- 

  4.0 ml 

   50 µl 

     5 µl 

- 

- 

- 

3.5 ml 

3.5 ml 

32,5 µl 

  3.25µl 

3.5 ml 

3.05 ml 

1.25 ml 

- 

0.66 ml 

   25 µl 

     5 µl 

- 

     

The gels are composed of a low percentage stacking gel, which is focussing all the proteins 

of the sample to enter the separating gel simultaneously and a separating gel that separates 

the proteins of the applied sample according to their apparent molecular weight. First the 

separating gel was poured in between the glass plates and n-buthanol was stacked on it 

during the polymerization. After half an hour the n-butanol was poured from the 

polymerized gel and the stacking gel was added to polymerize. A comb was inserted in 

between the glass plates to form the slots in which the samples were applied. After the gel 

was ready it was fixed in the gel chamber and the running buffer was filled into the 
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chamber. The protein samples were applied into the slots and the gel was run at about 100 

V. The negatively charged SDS-protein complexes run into the direction of the anode at the 

bottom of the vertical gel. The proteins were separated according to their electrophoretic 

mobility (µ = v/E), which largely depends on their molecular weight. 

 

II.2.4.5  Immunoblot 

Proteins separated by SDS-PAGE were transferred to a nitrocellulose membrane using a 

wet transfer system. All components were soaked beforehand in transfer buffer and the 

nitrocellulose membrane was activated by incubation in the methanol containing transfer 

buffer for several minutes. The gel was placed on top of a sponge and a 3 mm Whatman 

filter paper, subsequently the nitrocellulose membrane was pressed onto the gel. The 

blotting sandwich was completed after the addition of a second filter paper and a sponge. 

Transfer in the cassette assembly was carried out at 270 mA for 90 minutes. The remaining 

protein binding capacity of the membrane was neutralized by incubation in blocking buffer 

for > 1 hour on a shaker. After the blocking procedure, the membrane was incubated for 90 

minutes with a primary antibody which was diluted to a final concentration of 2.5 - 10 

µg/ml in blocking buffer. The membrane was washed three times with washing buffer 

removing excess primary antibody unspecifically bound to the membrane. A peroxidase-

conjugated, secondary antibody was used, binding to the Fc region of the primary antibody, 

which was diluted 1:1000 – 1:10000. Excess antibody was removed by washing three times 

with washing buffer. Protein-antibody complexes were detected on a x-ray film using the 

chemoluminescence reaction catalysed by the antibody-conjugated peroxidase. ECL 

solutions were used as a substrate for this reaction according to the manufacturer’s 

protocol.  
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II.2.4.6  Nα-(3-maleimidylpropionyl)biocytin-labelling of the reduced cysteine residues  

               in recombinant sTF1-219 and the extracellular protein domains of monocytes 

40 ng recombinant sTF1-219 (TF extracellular domain) or 3 x 106 monocytes were 

resuspended in 170 µl PBS and incubated in 125 µM MPB for 30 minutes at room 

temperature. MPB is not able to pass the plasma membrane of intact cells. It binds to the 

free thiol groups of cysteines in the cells’ extracellular protein domains, resulting in a 

covalently linked MBP-label. On one occasion, sTF1-219 was preincubated with thioredoxin, 

dithiothreitol, glutaredoxin or protein disulfide isomerase for 30 minutes at 37°C before 

labelling with MPB. Excess MPB was quenched with GSH (200 µM) for 30 minutes at RT, 

to exclude further MPB labelling of proteins after the cells were lysed. The labeled cells 

were washed three times with PBS and sonicated in 200 µl of ice-cold cell lysis buffer. 

Before the cells were sonicated, 25 µl protease-inhibitor cocktail and 25 µl phosphatase-

inhibitor cocktail were added to each sample. Streptavidin-agarose beads were incubated 

with the cell lysates overnight on a rotating wheel to isolate the biotin-labelled proteins. 

The streptavidin-agarose beads were washed three times with cell lysis buffer, and the 

biotin-labelled proteins were released from the beads by boiling them in 30 µl of SDS-

Laemmli buffer for 3 minutes under non-reducing conditions. Samples were resolved on 

SDS-PAGE under non-reducing conditions and transferred to a nitrocellulose membrane.  

The TF antigen was detected by immunoblot with primary antibody concentrations of 3 

µg/ml mouse-anti-human VIC12-TF-antibody and a 1:2000 dilution of horseradish 

peroxidase conjugated goat-anti-mouse IgG. Alternatively, the MPB-labelled, reduced form 

of recombinant sTF1-219 could be detected with streptavidin peroxidase, which binds 

specifically to the biotin label. 
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II.2.4.7  Biochemical detection of protein S-glutathionylation in membrane proteins 

Reduced glutathione (GSH) was labelled with biotin by the reaction of the primary amine 

of GSH with N-hydroxysulfosuccinimide-biotin (NHS-biotin). The reaction was performed 

by adding stoichiometric amounts (10 mM) of NHS-biotin and GSH to PBS for 1 hour at 

RT. Unreacted NHS-biotin was quenched by the addition of 50 mM ethanolamine for 1 

hour. The glutathionylation of extracellular domains of membrane proteins was performed 

by incubating the cells with 100 µM diamide and 125 µM biotin-GSH for 10 min at RT. 

Subsequently, the cells were centrifuged for 5 min at 1300 rpm, the supernatant was 

removed and 25 µl protease inhibitor cocktail and 212.8 µl cell lysis buffer were added to 

each sample. Then protein S-glutathionylation in sTF, in the TF of TF-overexpressing CHO 

cells  and in stimulated VSMCs was detected (II.2.4.4).  

 

II.2.4.8  Ellman’s assay 

Ellman’s assay is used to determine the concentration of reduced thiol groups in a pure 

protein solution. First, a 3 mg/ml DTNB solution was prepared (pH > 7). The appropriate 

protein concentration should be at least 10 μM. 970 μl of the thiol-containing protein in 

Phosphate buffered solution (pH = 7-7.5) was mixed with 30 μl DTNB and incubated for 

10 min at RT. The absorbance of the protein solution at 412 nm was measured and the 

absorbance of the blank (buffer plus DTNB) was subtracted. The extinction coefficient ε 

for the measurement is 13700 M-1 cm-1 (in Guanidinium, pH 7.4) or 14150 M-1 cm-1 (in 

H2O, pH 7.4). Concentrations could be determined according to the Lambert-Beer equation. 
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II.2.5  Functional assays 

 

II.2.5.1  Factor Xa formation assay 

The formation of factor Xa is a measure for the functional activity of TF, since factor Xa is 

formed in the ternary initiator complex of blood coagulation, consisting of TF, factor VIIa 

and factor X. Factor VIIa either cleaves the zymogen factor X directly, thereby 

transforming it to the active protease factor Xa, or it cleaves the zymogen factor IX 

resulting in the formation of the active factor IXa, which in turn activates factor X by 

proteolytic cleavage. The formed factor Xa cleaves the chromogenic substrate S2222 (N-

Benzyl-L-Ile-L-Glu-L-Gly-L-Arg-pNA·HCl) and thereby the cleavage product para-

nitroaniline (pNA) is formed, which can be quantified by its absorption at 405 nm. The 

amount of pNA formed is directly proportional to the concentration of factor Xa. Therefore, 

the concentration of factor Xa can be determined photometrical. The coagulation factors 

that are necessary for the formation of Xa were added in form of the commercially 

available Beriplex, which besides the factors VII, X, IX and II also contains the 

anticoagulant zymogen protein C and the serpin inhibitor antithrombin. Thus, similar to the 

conditions in whole blood, not only procoagulant, but also anticoagulant components are 

included in this photometric assay. For the measurement of TF-derived procoagulant 

activity, isolated blood cells (platelets, neutrophils, monocytes) were incubated for 15 

minutes together with their activators (collagen type I, A23187) at 37°C. During the 

incubation time a 96 well plate was prepared by adding 50 µl of an 8 mM CaCl2 solution to 

each well. In each measurement a standard curve was prepared from recombinant TF. The 

chromogenic substrate together with the coagulation factors was prepared as a stock 

solution, mixing 3370 ml resuspension buffer, 400 µl of S2222 and 225 µl of Beriplex. 100 

µl of the stock solution was added to each cell sample in every well and the absorption 
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values were measured photometrically during 30 minutes in 6 intervals in an ELISA reader 

and expressed as a concentration of factor Xa in units/ml. 

 

II.2.5.2  Two-stage factor Xa formation assay 

To further characterize TF procoagulant activity, this assay was used to show that factor Xa 

formation proceeded via the extrinsic pathway. Therefore, 20 µl CaCl2 (50 mM) were 

added into each well of a microtiterplate and incubated for 3 minutes at 37°C. The standard 

of recombinant TF (Recombiplastin®) was prepared as follows: 20 µl of recombinant TF 

were diluted in 180 µl of resuspension buffer. 100 µl from this stock were diluted in 100 µl 

of resuspension buffer and vortexed. Then 100 µl were taken from the previous dilution and 

again it was diluted in 100 µl of resuspension buffer. Thus, seven 1:2 dilutions were 

prepared, the last dilution being the first point in a standard curve of six points. After 

incubation, 20 µl of recombinant TF standard solution and of the samples were pipetted 

into the appropriate wells. Subsequently, 2.8 µl of recombinant human factor VIIa (1µM) 

was added in each well. The microtiterplate was shaken for 15 minutes on a shaker. 

Afterwards, 15.84 µl human factor X was added to each well and it was shaken for 30 

minutes at 37°C. 10 µl of the chromogenic substrate S2222 was added to each well and the 

colour reaction was incubated for 30 minutes at 37°C. After 30 minutes the reaction was 

stopped by the addition of 20 µl of EDTA buffer to each well. The absorption values of the 

samples were determined as described above. 

 

II.2.5.3  Thrombelastography (TEG) 

Thrombelastography (TEG) is a state of the art method to measure the fibrin formation rate 

in whole blood and therefore allows functional examination of the blood coagulation 

system under conditions that are close to the in vivo situation. The principle of TEG 

depends on a stamp, which is turning slowly 4.75° forwards and backwards in a small tube 
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containing blood. If a stimulus induces the formation of fibrin polymers the blood 

resistance increases, which restricts movement of the stamp. This increasing resistance is 

time dependent and is recorded by a detection system and visualized in graphic form. The 

method measures the rate of fibrin formation (coagulation time; CT) and the rate of 

thrombus growth (clot formation time; CFT). For TEG experiments blood was collected in 

a syringe containing tri-sodiumcitrate (12.5 mM) as anticoagulant and corn trypsin inhibitor 

(32 µg/ml) to exclude the initiation of blood coagulation via the intrinsic pathway. 269.1 µl 

whole blood pre-stimulated for 5 minutes at 37°C with collagen (10 µg/ml) were pipetted 

into a TEG cap, 5.2 µl anti-PDI antibody (400 µg/ml), 30 µl microparticles and 60 µl 

Ca2+/Hepes were added. 

 

II.2.5.4   Statistics 

Statistical significance (marked with *) was tested by applying the Mann-Whitney-rank-

sum-test comparing the mean values of n independent experiments. p values that were < 

0.05 were considered to be significant. Values were expressed as mean +/- standard 

deviation. 
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III. Results 

 

III.A   The procoagulant activity of platelet TF 

 

III.A.1   Collagen-stimulated platelets expose TF procoagulant activity 

 

TF is known to be stored in platelet α-granules and is rapidly exposed by platelet activation 

(Muller I, 2003). It is largely unknown whether the platelet TF is functionally active. 

Therefore, we investigated the procoagulant activity of rapidly isolated platelets after 

stimulation. Stimulation with type I collagen caused a significant increase of the TF 

procoagulant activity of isolated platelets. This was found in both the colorimetric Xa 

formation assay carried out with a coagulation factor concentrate (containing factors X, IX, 

VII, protein C and protein S) (Fig.6) and in the colorimetric two-stage Xa formation assay 

(only depending on recombinant factor VIIa and isolated factor X) that excludes activation 

of factor X via the intrinsic pathway (not shown). To further corroborate that the 

procoagulant activity detected on activated platelets was TF-dependent, we added a 

functionally inhibitory anti-TF antibody (VIC7) and the chloromethylketone-inactivated TF 

ligand factor VIIai (Fig.6). Both the anti-TF antibody and VIIai caused a five fold decrease 

of procoagulant activity. These findings indicate that platelet activation results in a 

moderate increase in surface TF activity. 
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III.A.2   The TF procoagulant activity in collagen-activated platelets is largely  

               encrypted 

 

From our experiments on the functional activity of TF we hypothesize that TF procoagulant 

activity in platelets is largely encrypted. Indeed the total procoagulant activity of resting 

and collagen-activated platelets is lower than the procoagulant activity of Ca2+-ionophore-

treated (A23187) platelets (Fig.10). Ca2+-ionophore (Kauffman RF, 1980) is known to de-

encrypt TF procoagulant activity in various cell types (monocytes, HL-60 cells, fibroblasts) 

Fig.9: Time dependence of the procoagulant activity on the surface of collagen-stimulated (12 

μg/ml) isolated platelets (6x108/ml) (coagulation factor assay). Representative experiment for 

a total of 8 experiments. 
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(Bach RR, 1990; Drake TA, 1989). De-encryption of TF procoagulant activity in isolated 

platelets, however, is novel. After platelet activation with A23187 most of the TF 

procoagulant activity was found in the supernatant (Fig.10), whereas after collagen 

stimulation most of the TF procoagulant activity could be detected in the platelet pellet 

(Fig.10). Most likely A23187 strongly induces microparticle formation and therefore TF 

procoagulant activity is mostly recovered in the platelet supernatant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After activation with A23187 platelet procoagulant activity was rapidly released (Fig.11). 

In the supernatant, a high activity was already observed after 15 seconds, which strongly 

increased thereafter. In the pellet, the highest activity was already detected after 15 seconds. 

Fig.10: Activation of TF procoagulant activity in isolated platelets (6x108/ml). Xa 

formation was measured 120 seconds after platelet activation with Ca2+-ionophore 

A23187 (10 μM) or collagen (12 μg/ml) with the coagulation factor assay (n = 4). 
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III.B.2   NE is surface associated on myeloid blood cells and their microparticles 

 

To investigate whether NE is present on microparticles released from activated 

polymorphonuclear neutrophils, flow cytometry experiments were performed in 

collaboration with Olivier Gasser (Immunonephrology Laboratory, University Hospital 

Basel / Switzerland). NE was found to be bound to the surface of PMA-activated 

neutrophils (Fig.13), confirming previous findings (Campbell EJ, 1989; Owen CA, 1995; 

1997; 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interestingly both microparticles derived from activated polymorphonuclear neutrophils 

and from activated peripheral blood monocytes were found to expose significant amounts 

of NE on the surface, while microparticles derived from activated platelets were devoid of 

NE (Fig.14).  

isotype ---

-- anti-CD11b 

--anti-NE 
anti-CD11a -- 

Activated polymorphonuclear neutrophils 

Fig.13: FACS analysis of PMA-activated isolated polymorphonuclear neutrophils. The bold 

line indicates an isotype control. The thin line indicates the activation marker CD11b and 

the thin, dashed line indicates CD11a. The bold, dashed line indicates the NE specific 

fluorescence signal. 
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III.B.3   Cell surface association of serine proteases results from polar interactions  

              with glycosaminoglycans and with nucleic acids 

 
The surface association of NE may result from polar interactions of positively charged 

patches on the enzyme surface with the negatively charged glycosaminoglycans (GAGs) on 

the neutrophil cell membrane (Kostoulas G, 1997). To test this, isolated neutrophils were 

pre-treated with chondroitin-4,5-sulfate which is a major component of neutrophil GAGs  

and with chondroitinase ABC, an enzyme degrading GAGs. Additionally, they could also 

result from the negatively charged backbone of nucleic acids (DNA, RNA), that are 

released by activated neutrophils within neutrophil extracellular traps (NETs) (Brinkmann 

V, 2004).  Therefore, activated neutrophils were also pre-treated with nucleases (DNase I, 

RNase A) to degrade the NETs. Subsequently, platelet-neutrophil conjugates were 

investigated for their procoagulant activity to test whether surface association of NE is 

required for proteolytic inactivation of platelet TFPI. Procoagulant activity was found to be 

 isotype antibody 
 anti-NE 

Platelet-derived microparticles Monocyte-derived microparticles Neutrophil-derived microparticles 

Fig.14: FACS analysis of microparticles derived from activated platelets, neutrophils and 

monocytes. The thin line indicates the fluorescence signal of the biotinylated isotype 

control antibody (detection with streptavidin-Cy5) and the bold line indicates the 

fluorescence signal of the NE-specific antibody. 
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III.B.4   Platelet TFPI is degraded by NE in platelet-neutrophil conjugates 

 

To further establish the role of neutrophil surface proteases in the initiation of intravascular 

coagulation we analysed the presence of TFPI in supernatants of platelet-neutrophil 

conjugates. In immunoblots of the supernatants efficient degradation of platelet TFPI was 

detected (Fig.17). To identify the neutrophil proteases responsible for this decomposition, 

isolated polymorphonuclear neutrophils were pretreated with specific protease inhibitors. 

TIMP-2 is a specific inhibitor of all MMP, whereas the applied chloromethylketone (CMK) 

is specific for human NE. α1-antichymotrypsin (α1-ACT) specifically blocks cathepsin G 
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Fig.16: Control or DNase I (1U/ml) and RNase A (1U/ml) pre-treated isolated neutrophils 

(1x106) were incubated with activated platelets (1x107 ) and their procoagulant activity was 

measured  (n = 5, p < 0.05, coagulation factor assay).  
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(CG). TIMP-2 did not show any effect on the degradation of platelet TFPI in the platelet-

neutrophil conjugates. The NE-specific CMK however blocked the degradation of platelet 

TFPI almost completely and pre-treatment of isolated neutrophils with α1-ACT partially 

inhibited TFPI degradation (Fig.17). This indicates that NE and, to a lower extent CG, 

degrade TFPI and thereby might initiate intravascular coagulation on the surface of 

activated platelets. 

 

 

 

 

 

 

 

 

 

 

 

 

The TFPI degradation products detected in immunoblots from suspensions of activated 

platelets and neutrophils and the degradation products achieved by limited proteolysis of 

the supernatant of stimulated platelets with isolated NE were of the same size and intensity, 

indicating that NE is the major protease that degrades TFPI in the cellular system (Fig.18). 

 

 

 

 

P P / NN

TFPI

P / N TIMP-2 CMK α1-ACT 

TFPI

47 kD

47 kD 

Fig.17: Degradation of platelet secreted TFPI in platelet-neutrophil conjugates (P/N) 

detected by Western blot analysis. Isolated neutrophils (N) were pretreated with 1 mM 

TIMP-2, a NE-specific CMK or the CG-specific protease inhibitor α1-ACT. 



Results 
____________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, isolated microparticles derived from fMLP-activated polymorphonuclear 

neutrophils (N-MP) were also capable of degrading platelet TFPI in a NE-specific manner 

when added to stimulated platelets. Degradation of platelet TFPI by N-MP could be 

prevented by pre-treatment of the N-MP with an NE-specific inhibitor (not shown). 

 

 

 

 

 

TFPI 

P / N P 
+ NE  

 

47 kD 

36 kD 

33 kD 

P 

Fig.18: Degradation products obtained in platelet-neutrophil conjugates and those obtained 

by limited proteolysis of platelet supernatants with isolated human NE (15 μg/ml) detected 

by Western blot analysis. 
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III.C   A disulfide switch in the TF molecule regulates its procoagulant  

            activity 

 

III.C.1   TF contains a labile disulfide that is essential for its procoagulant function 

 

To assess the contribution of extracellular cysteines for TF activity, we substituted the 

cysteines C49/C57 and C186/C209 by serine. In C186S/C209S TF procoagulant activity 

was completely lost (Fig.19). Substitutions of C49 and C57 by serine had no effect on the 

procoagulant activity (Fig.19). Treatment of the C49S/C57S mutant with thioredoxin 

(TRX) or dithiotreitol (DTT) decreased the procoagulant activity. Phenylarsine oxide 

(PAO), a compound that binds to vicinal thiols thereby mimicking a disulfide, increased the 

procoagulant activity of the C49S/C57S mutant (Fig.19). This suggests that the oxidized 

state of the C186/C209 disulfide pair represents the active state of TF (in accordance with 

Ahamed, 2006). 

To register the thiol states of TF we performed MPB-immunoblot experiments. MPB 

selectively recognizes free thiol groups. The oxidoreductase TRX reduced the labile 

disulfide bond in the extracellular TF domain (sTF), whereas addition of  PAO oxidized the 

disulfide (Fig.20). This finding implies a physiological role for TRX in the inactivation 

(encryption) of TF procoagulant activity. 
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III.C.2   Protein Disulfide Isomerase oxidizes the C186/C209 pair 

 

Activated platelets, which are known to decrypt TF, secrete protein disulfide isomerase 

(PDI). PDI is located to the external surface of the platelet plasma membrane (Chen K, 

1995; Essex DW, 1995). This oxidoreductase could be involved in the regulation of the 

thiol state of TF. PDI was indeed found to oxidize the dithiol species of the C186/C209 pair 

of the sTF to its functionally active disulfide state (Fig.21). About 70 % of the active site 

cysteines of PDI were determined to be in the oxidized state (quantification of free PDI 

thiols by the colorimetric Ellman’s assay). The supernatant of collagen-activated platelets 

(P-SN) is also capable of oxidizing sTF free dithiols (Fig.21). The oxidation of TF free 

dithiols to the disulfide could also be demonstrated on LPS-stimulated isolated monocytes, 

which are known to express encrypted TF on their cell surface (data not shown), indicating 

that also cell TF is present in the reduced state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

kDa 

Fig.21: MPB-immunoblot characterizing the dithiol oxidation state in the sTF after 

treatment with the supernatant of activated platelets (P-SN) and recombinant PDI. 

Treatment with P-SN or PDI did not influence binding of VIC12 (control Western blot). 
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After incubation of LPS-stimulated monocytes with increasing concentrations of 

recombinant PDI an increase in TF procoagulant activity was observed (Fig.22). This 

increase was even stronger, when isolated LPS-stimulated monocytes were first incubated 

with recombinant human glutaredoxin (GRX) and subsequently with PDI. This suggests 

that protein S-glutathionylation potentially encrypts monocyte TF. The PDI-induced 

procoagulant activity was blocked by addition of the thiol alkylating agent 

dithionitrobenzoate (DTNB) or by pre-incubation of the stimulated monocytes with a 

neutralizing anti-TF antibody. Control experiments proved that the PDI-induced increase in 

procoagulant activity was both dependent on the TF vicinal thiols (alkylating free thiol 

groups on monocytes with DTNB blocked TF procoagulant function) and on the TF 

function (binding of a functional inhibitory antibody with an epitope close to C186/C209 

prevents binding of VIIa). These findings imply a major role for PDI in the activation of 

encrypted TF and suggest the presence of a protein S-glutathionylated mixed disulfide TF 

species on LPS-stimulated monocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22: Increase in TF procoagulant activity of LPS-stimulated monocytes after incubation 

with increasing concentrations of recombinant PDI and of recombinant human GRX 

followed by PDI incubation (n = 4, coagulation factor assay). 
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In whole blood TEG experiments the clotting time of collagen-activated blood was delayed 

by an anti-PDI antibody when compared to the appropriate buffer control and the IgG2a 

isotype control (Fig.23). This indicates a significant role for the PDI-triggered activation 

mechanism of TF in the whole blood system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment of sTF with GRX increased the reduced fraction of the labile disulfide pair, 

whereas pre-incubation with GRX and subsequent treatment with PDI increased the 

formation of disulfides (Fig.24). This suggests the presence of constitutive protein S-

glutathionylation of sTF. 

 

 

 

 

Fig.23: TEG experiment of collagen-activated whole blood (collagen activates intravascular 

TF) incubated with equal volumes of resuspension buffer, IgG2a isotype antibody or 

functional inhibitory anti-PDI antibody (n = 3). The clotting time of one representative 

experiment is indicated in seconds. 
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III.C.3   Glutathionylation of C186/C209 vicinal thiols of TF 

 

Cysteine residues in proteins can be glutathionylated if they are surface exposed and if the 

binding of gluthathione is facilitated by an appropriate electrostatic protein surface. We 

tested, whether TF might undergo this common cysteine modification. In a CHO cell 

system transfected with full-length TF we found that wild type TF (wt) could be 

glutathionylated by reaction with biotin-labeled glutathione (biotin-GSH), whereas the 

C186S/C209S mutant could not (Fig.25). The C186/C209 disulfide pair is solvent 

accessible and has all the structural requirements to undergo protein S-glutathionylation. 

However, the C49/C57 disulfide pair does not undergo a reaction with biotin-GSH, since 

no signal was detected in the C186S/C209S TF mutant (Fig.25, right panel). 

 

 

kDa 

Fig.24: MPB-immunoblot characterizing the dithiol oxidation state of sTF. sTF was pre-

treated with GRX, PDI or GRX plus PDI. The addition of GRX or PDI did not affect 

MPB incorporation of TF (control Western blot). 
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In Pulmonary Artery Vascular Smooth Muscle Cells (PAVSMC), which are known to 

express high levels of TF antigen, the labile cysteine pair of the TF molecule was also 

found to be susceptible to in vitro protein S-glutathionylation (Fig.26). This protein S-

glutathionylation could be reversed by subsequent treatment of the cells with low 

concentrations of GRX or DTT, indicating that biotin-GSH is covalently bound to TF via a 

disulfide linkage. 

 

 

 

 

 

 

 

wt C186S / C209SkDa 

kDa 

Fig.25: GSH-immunoblot detecting in vitro protein S-glutathionylated TF on transfected 

CHO cells. Cells were incubated with 125 µM biotin-GSH and 100 µM diamide that is 

acting as an oxidant. After cell lysis a biotin-selective pull-down with streptavidin-agarose 

was performed. TF antigen was detected with the VIC12 anti-TF antibody. According to the 

control Western blot, binding of VIC12 was not affected by treatment of sTF with biotin-

GSH or the serine mutation. 

Fig.26: GSH-immunoblot detecting in vitro protein S-glutathionylated TF on PAVSMC. A 

biotin-selective pull-down with streptavidin-agarose was performed and TF was detected 

with the anti-TF antibody (VIC12). 
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III.C.4   In vitro protein S-glutathionylation of TF is reversible 

 

To test whether cell lysate containing the oxidoreductases GRX and PDI might regulate the 

protein S-glutathionylation of TF we examined its incorporation of biotin-GSH. Thereby, 

we could distinguish whether GRX and PDI act as a reductant or as an oxidant. We 

observed that pre-treatment of sTF with CHO cell lysate prevented the incorporation of 

biotin-GSH into TF (Fig.27). In addition, the reductants DTT and GRX also prevented 

biotin-GSH incorporation. Moreover, protein S-glutathionylation of sTF was slightly 

reversed by PDI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig.27: GSH-immunoblot detecting in vitro protein S-glutathionylation of TF. A biotin-

selective pull-down with streptavidin-agarose was performed and TF was detected with the 

VIC12 anti-TF antibody. According to the control Western blot, binding of VIC12 was not 

affected by treatment of sTF with biotin-GSH, CHO cell lysate, DTT, GRX and PDI. 
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IV.   Discussion 

 

IV.1   TF procoagulant activity of activated platelets 

 

Recent studies indicate that there is a pool of TF in the blood circulation, so-called 

intravascular or blood borne or circulating TF (Giesen PL, 1999; Engelmann et al., 2003). 

Giesen and co-workers reported blood borne TF in thrombi formed on collagen-coated 

glass slides that were exposed to flowing human blood. The collagen-coated glass slides 

were devoid of TF, implying that TF procoagulant activity is derived from human blood. 

TF in the formed thrombi was found to be active, since abundant fibrin was detected. 

Independently, our research group identified TF in peripheral human blood from healthy 

donors. TF antigen appeared on the surface of collagen-activated platelets adhering to 

leukocytes (Zillmann A, 2001). This is a rapid process, since TF antigen was already 

detectable after 5 minutes of stimulation. Therefore, de novo synthesis of TF is not 

possible. It is still a matter of debate how platelets acquire TF. According to one hypothesis 

TF is transported to platelets by leukocyte-derived microparticles (Del Conde I, 2005). 

Alternatively, the spliceosome of proplatelets that extend from megakaryocytes is capable 

of translating TF from pre-mRNAs (Denis MM, 2005; Schwertz H, 2006). It was shown 

that intravascular TF was competent to start coagulation and TF antigen was detected in 

isolated platelets, whereas no TF antigen was detectable in isolated resting neutrophils and 

rapidly isolated monocytes (Zillmann A, 2001). However, this study did not contain direct 

evidence for the presence of TF procoagulant activity on the surface of activated platelets.  

We detected a rapid increase in TF procoagulant activity of isolated human platelets after a 

10 minute stimulation with collagen type I (in agreement with Camera, 2003). When the 

isolated platelets were pre-incubated with a functional inhibitory anti-TF antibody, the 

procoagulant activity was completely blocked. This shows that the formation of factor Xa 
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by activated platelets is TF dependent. TF procoagulant activity was also substantially 

blocked by pre-incubation of isolated platelets with a functional inhibitory anti-GPVI 

antibody, but only slightly blocked by pre-incubation with an antibody directed against 

α2β1-integrin. This implicates a pivotal role for GPVI-dependent kinase signalling in the 

surface exposure of  TF on the platelet membrane. 

 

 

IV.2   Encryption of platelet Tissue Factor activity 

 

TF encryption indicates the post-translational suppression of TF procoagulant activity on 

the cell surface (Bach RR, 2006). A discrepancy between TF antigen and the expression of 

TF procoagulant activity has previously been observed in a variety of cell types (Maynard 

JR, 1977; Walsh JD, 1991; Drake TA, 1989). Treatment of cells with the Ca2+-ionophore 

A23187 is known to de-encrypt TF procoagulant activity (Bach RR, 1996; 2006).  

Treatment of platelets with Ca2+-ionophore resulted in a three times higher procoagulant 

activity compared to collagen-treated platelets, indicating that about two thirds of the total 

platelet TF procoagulant activity might be encrypted in collagen activated platelets. While 

most of the procoagulant activity was found in the pellet after collagen treatment, nearly no 

activity was observed in the supernatant. However in Ca2+-ionophore treated samples most 

of the TF activity was found in the supernatant, which might be due to the formation of 

procoagulant platelet microparticles (Henriksson CE, 2006).  

The underlying mechanism leading to the increase of TF activity after treatment with Ca2+-

ionophore is not understood (Bach RR, 2006). It was suggested that the exposure of the 

cofactor phosphatidylserine (PS) contributes only partially to the increase of TF 

procoagulant activity in LPS-stimulated monocytes and non-transformed human dermal 

fibroblasts (Wolberg AS, 1999). In our experiments, the increase in platelet procoagulant 



Discussion 
____________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

72

activity evoked by the treatment with Ca2+-ionophore could not be fully suppressed in the 

presence of saturating concentrations of the PS binding protein annexin V (Fig.8), 

indicating that the increase in TF procoagulant activity did not result solely from increased 

exposure of PS. Therefore, other yet unknown posttranslational mechanisms have to be 

involved in encrypting TF procoagulant activity on the cell surface of platelets. 

 

 

IV.3   Neutrophil surface proteases trigger the TF procoagulant activity in platelet- 

          neutrophil conjugates 

 

TFPI is the physiologic inhibitor of the initiator complex of coagulation. Recently, a 

glycosyl phosphatidylinositol (GPI) anchored variant of TFPI was characterized on the 

surface of cultured endothelial cells (Zhang J, 2003). A GPI anchor was predicted and 

identified for the TFPI splice variant β lacking Kunitz domain 3 but not for the TFPI splice 

variant α. TFPI-α was found to be the most abundant form expressed by endothelial cells. 

It was described recently that TFPI-β is responsible for the bulk of the cellular VIIa/TF 

inhibitory activity (Piro O, 2005). However, in our study we focussed on TFPI-α. This 

variant was found to be by far the predominant splice form in platelets (Bidzhekov K, TFPI 

mRNA analysis, personal communication).  

Recombinant human TFPI-α is known to be highly susceptible to limited proteolysis by 

neutrophil serine proteases, such as NE and CG (Petersen LC, 1992; Higuchi DA, 1992) 

and further to coagulation proteases like thrombin (Ohkura N, 1997) and plasmin 

(Salemink I et al, 1998) as well as to MMP (Belaaouaj AA, 2000; Cunningham AC, 2002). 

In previous studies performed in our laboratory an increased TF procoagulant activity was 

detected in platelet-neutrophil conjugates compared to isolated neutrophils or collagen-

activated platelets (Müller I, 2003). Based on these data a model for the initiation of 
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intravascular coagulation was suggested (Engelmann B, 2003). In this model, neutrophil 

proteases were proposed to inactivate platelet TFPI in a microenvironment formed by 

platelet-neutrophil conjugates (Fig.4). The platelet-neutrophil microenvironment is mainly 

dependent on P-selectin / PSGL-1 interactions formed between activated platelets and 

polymorphonuclear neutrophils (Müller I, PhD thesis; McEver RP, 1997; Palabrica T, 

1992). Platelet-neutrophil adhesion (firm adhesion) is further stabilized by fibrinogen 

bridges formed by the activated platelet receptor GPIIb/IIIa and the leukocyte receptor 

Mac-1 (CD11b/CD18) (Spangenberg P, 1993). 

To experimentally address this hypothesis, collagen activated platelets were treated with 

increasing concentrations of isolated human NE. A concentration dependent increase in 

platelet TF procoagulant activity was noted. This finding implies that NE is able to trigger 

the release of TF procoagulant activity on activated platelets. Since NE is the major serine 

protease stored in the azurophilic granules of neutrophils it appears likely that this enzyme 

is also responsible for the increased TF procoagulant activity in platelet-neutrophil 

conjugates. In immunoblot experiments of the supernatants obtained from platelet-

neutrophil conjugates, rapid degradation of platelet TFPI was noted (Fig.17). This was 

markedly reduced by pre-treatment of neutrophils with a NE-specific CMK inhibitor. This 

suggests that in platelet-neutrophil conjugates TFPI is most efficiently degraded by NE. In 

confirmation of this conclusion, the degradation products obtained in platelet-neutrophil 

conjugates migrated at the same size as those obtained by treatment of activated platelets 

with isolated human NE (Fig.18).  

In addition, we observed degradation of platelet TFPI by neutrophil-derived microparticles 

in the supernatant of collagen-activated platelets (data not shown). This finding could 

suggest a novel role for these plasma components in the initiation of intravascular 

coagulation.  
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Since TF and its physiologic inhibitor TFPI are both stored in the platelet α-granules and 

are exposed on the membrane after platelet activation, it appears likely that TF in activated 

platelets is rapidly inactivated by the formation of a quarternary complex consisting of 

TF/VIIa and Xa/TFPI. If the concentrations of functionally active TFPI are substantially 

lowered by NE, the whole coagulation cascade may in principle proceed on the membrane 

surface of activated platelets. This would enable coagulation to take place exactly at the site 

of the growing thrombus. Hence the thrombus could be efficiently stabilized by the fibrin 

polymers.  

 

 

IV.4   Characterization of the procoagulant microenvironment formed between  

          activated platelets and polymorphonuclear neutrophils   

 

Since a procoagulant microenvironment was found to be formed mainly by P-selectin / 

PSGL-1-interactions between activated platelets and polymorphonuclear neutrophils 

(Müller I, PhD thesis) we decided to further investigate the conditions leading to a local 

intravascular coagulation start.  

In this context, it was of major interest to test whether NE is bound to the surface of 

activated neutrophils and their microparticles or if it is simply secreted into the surrounding 

media. We detected NE on the surface of activated neutrophils and on the surface of 

microparticles derived from activated neutrophils and monocytes by FACS analysis. NE is 

able to bind negatively charged cell surface structures once released from the azurophilic 

granules of myeloid cells. Proteoglycans, glycosaminoglycans and neutrophil extracellular 

traps (NETs) are negatively charged structures present on the surface of activated 

neutrophils. Proteoglycans and glycosaminoglycans contain negatively charged sulfate 

groups (Hornebeck W, 1994) and the backbones of nucleic acids, which are contained in 
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the NETs of activated neutrophils (Brinkmann V, 2004) consist of negatively charged 

phosphate esters. NE possesses a highly asymmetric distribution of positively charged 

residues that are solvent exposed (Navia MA, 1989), which enables them to bind to 

polyanionic surfaces. Cell surface bound NE could be removed by pre-treatment of 

neutrophils with chondroitinase ABC and by chondroitin-4,5-sulfate. NE could also be 

removed from the surface of PMA-activated neutrophils by treatment with RNase A, but 

not with DNase I. As a consequence of the NE removal, the proteolytic activity of the 

neutrophils that maintains TF activity was decreased. These findings suggest a major role 

for different polyanionic cell surface molecules for the inactivation of TFPI. 

TFPI decomposition may play a significant role in pathologies associated with acute and 

chronic inflammation. In atherosclerosis chronic inflammation of the vessel wall is induced 

by transmigration of monocytes into the vascular wall and their differentiation to 

macrophages and foam cells. An atherosclerotic plaque is formed. Rupture of a specific 

type of plaque leads to arterial thrombus formation, acute myocardial infarction and stroke 

(Fuster V, 2005). Sepsis is another inflammatory disorder resulting in activation of 

coagulation. It is associated with widespread blood clotting in various organs (disseminated 

intravascular coagulation) (Creasey AA, 1993). Both, arterial thrombosis and septic shock 

are leading causes of mortality in many countries.  

Disseminated intravascular coagulation is a frequent complication that can finally lead to 

multiple organ failure. It is becoming increasingly clear that coagulation and innate 

immunity have coevolved early in eukaryotic development, and that these systems continue 

to function as a highly integrated unit following tissue injury (Opal SM, 2003). In 

disseminated intravascular coagulation during sepsis leukocytes are activated (Grisham 

MB, 1988) and the surface expression of platelet adhesion molecules is increased (Gawaz 

M, 1995). The occurrence of platelet-leukocyte aggregates was also found to be increased 

in this study. We therefore assume that the neutrophil-dependent proteolytic mechanism of 
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coagulation activation might play a role in the development of disseminated intravascular 

coagulation and multiple organ failure. 

 

 

IV.5   Disulfide switch of TF regulates initiation of  intravascular coagulation on  

          monocytes – potential role for TF encryption 

 

Thiol-disulfide exchange is an emerging mechanism of cell surface protein regulation 

(Hogg PJ, 2003). From its x-ray structure (Harlos K, 1994) TF was found to contain a labile 

disulfide bond that could potentially be subject to rapid disulfide switching (Hogg PJ, 2003; 

Schmidt B, 2006). TF is a member of the class 2 cytokine receptor family (Bazan JF, 1990) 

and its x-ray structure revealed an unusual disulfide bridging cysteine 186 with cysteine 

209 inside an antiparallel β-sheet. This disulfide bridge is characteristic of the cytokine type 

2 receptor family. It lies at the very end of domain 2 and links adjacent strands F and G. 

The sulphur atoms of this S-S bond point away from the surface of the β-sheet towards the 

solvent (Harlos K, 1994). It has been established by site directed mutagenesis experiments 

that the integrity of this energetically unfavourable disulfide in TF is required for the 

binding of factor VII (Rehemtulla A, 1991), which defines its role as the cofactor 

responsible for the coagulation start (Ruf W, 1998). Residues close to the allosteric 

disulfide have been identified to interact with factors IX and X (Kirchhofer D, 2000). 

To assess the role of extracellular cysteines for TF function, we generated different mutants 

with cysteine to serine substitutions. Experiments performed with the C49S/C57S and 

C186S/C209S mutants showed that the C186S/C209S double mutant was devoid of TF 

procoagulant activity. The C49S/C57S double mutant of TF, in contrast, was functionally 

active. The procoagulant activity of the C49S/C57S mutant could be partially decreased by 

treatment with the oxidoreductase TRX, which is known to reduce disulfide bonds to 
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vicinal thiols. Indeed TRX has been shown to reduce factor VIII and other coagulation 

factors (Savidge G, 1979). The TF procoagulant activity of C49S/C57S was profoundly 

decreased by the chemical disulfide reductant DTT. Treatment of the C49S/C57S double 

mutant with PAO that is known to coordinate with vicinal thiols increased TF activity. 

Coordination of vicinal thiols with PAO mimics a disulfide linkage, which is likely 

functional, suggesting that oxidation of the C186/C209 pair de-encrypts TF.  

These functional data could be confirmed in thiol-selective immunoblot experiments in 

which the amount of reduced dithiols in sTF was analysed in a semiquantitative manner. 

sTF exhibited proper folding (Andersson D, 2001). Indeed nearly the same content of 

secondary structures was observed as to be deduced from the protein’s x-ray structure. The 

fold of sTF was tested by recording a circular dichroism (CD) spectrum and the content of 

secondary structure was calculated by deconvolution of the spectrum. With this method it 

could be excluded that sTF is denaturated by reduction of the C186/C209 disulfide with 1 

mM DTT (Appendix A2).  

In contrast to TRX, the addition of PDI turned out to increase the TF procoagulant activity 

of isolated LPS-stimulated monocytes. Inhibition by the anti-TF antibody and by treatment 

of the cells with DTNB unambiguously demonstrated activation of TF by thiol-disulfide 

exchange. Moreover, thiol-selective immunoblots analysing the amount of free thiol groups 

of PDI-treated sTF and cell TF are in agreement with the conclusion that PDI oxidizes TF. 

Recently, TF was found to co-immunoprecipitate PDI, which confirms that TF is a 

substrate for PDI (Ahamed J, 2006). Our findings thus imply a major role for PDI in the de-

encryption of latent TF procoagulant activity on the cell surface of monocytes and other 

cell types that express TF constitutively (Fig.22, 23, 24). Collagen-activated platelets were 

also found to have an oxidative effect on the allosteric C186/C209 dithiol of sTF. Activated 

platelets are known to release thiol isomerases that are capable of regulating disulfide 

modifications (Essex DW, 2001). In addition, activated platelets are known to de-encrypt 
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the TF procoagulant activity of monocytes (Østerud B, 2001). According to our results this 

finding can now be explained by the release of platelet PDI that catalyses thiol-disulfide 

interchange of monocyte TF. 

 

 

IV.6   Protein S-glutathionylation of TF – a potential safety device 

 

Protein S-glutathionylation is currently emerging as a common posttranslational cysteine 

modification of various proteins and it is a main form of protein S-thiolation (Ghezzi P, 

2005). The term protein S-glutathionylation indicates the formation of mixed disulfides 

between proteins and glutathione (GSH). The thiol oxidoreductase glutaredoxin (GRX) 

reverses protein S-glutathionylation by a thiol / disulfide exchange mechanism (Ghezzi P 

and Bonetto V, 2005). Proteins of the plasma membrane of cells exposed to blood, such as 

TF are at the interface between an oxidizing (plasma) and a reducing environment 

(cytoplasm) (Fahey RC, 1977). In particular, protein S-glutathionylation is associated with 

the stabilization of extracellular proteins and the protection of proteins against irreversible 

oxidation of critical cysteine residues (Biswas S, 2005).  

After incubation with GRX and subsequent PDI addition, the TF activity of monocytes was 

significantly higher than after treatment with PDI alone. Based on these results, we 

hypothesize that monocyte TF might be protein S-glutathionylated and that 

glutathionylation could be involved in TF encryption. We were able to confirm S-

glutathionylation of TF by different methods (thiol-selective immunoblots of sTF, in vitro 

glutathionylation of vascular smooth muscle cells and of TF cysteine mutants in a CHO cell 

system). 

Cell lysis is known to de-encrypt the TF activity in various cell types (Drake TA, 1989). 

Hence we were interested if CHO cell lysates that are completely devoid of TF are able to 
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reverse the protein S-glutathionylation of glutathionylated sTF. In fact, the lysate of CHO 

cells strongly diminished protein S-glutathionylation of sTF. This suggests that the release 

of thiol oxidoreductases during cell rupture, such as GRX and PDI, could activate latent 

TF. In the case of vascular injury cell lysis of several vascular wall cells occurs, such as 

fibroblasts, vascular smooth muscle cells and endothelial cells. Thereby, thiol 

oxidoreductases could act as a response to injury preventing lethal blood loss of the 

organism by activation of encrypted TF. Damage of vascular wall cells also occurs during 

atherogenesis (Schecter AD, 1997). This could indicate a significant role for thiol 

oxidoreductases in the initiation of intravascular coagulation during the rupture of 

atherosclerotic plaques. 

Recently, platelet deposition, TF accumulation and fibrin generation were observed in a 

mouse cremaster muscle arteriole after laser-induced endothelial injury (Falati S, 2002). 

The observed fibrin formation could result from activation of intravascular TF and / or of 

vascular wall TF. Falati and co-workers favour a major proportion of TF carried by 

microparticles. The observed increase of TF antigen at the site of injury could result from 

TF-bearing platelet microparticles (Muller I, 2003) and from monocyte microparticles 

(Falati S, 2003) that are recruited to the site of injury via GPVI-mediated adhesion to 

collagen (Penz S, 2005; Suzuki H, 2003) or by P-selectin / PSGL-1 interactions. The TF-

bearing microparticles subsequently adhere to the activated platelets in the growing 

thrombus that expose P-selectin on their surface. Thereby the integrity of the growing 

thrombus could be additionally stabilized by fibrin polymerisation (Falati S, 2003). The 

procoagulant activity of TF-bearing microparticles, when present alone, was found to be 

limited (Müller I, 2003; Engelmann B, 2006). In the murine thrombosis model the latent TF 

of platelet and monocyte microparticles might be rapidly activated by the thiol 

oxidoreductases locally released by damaged cells from the injured vessel wall and by 

activated platelets, which are the major component of the growing thrombus. 
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PDI and GRX are not the only proteins that are known to reside in the ER and may regulate 

the procoagulant activity of TF. Recently the ER chaperone 78-kDa glucose regulated 

protein (Grp78) was found to inhibit TF procoagulant activity by physically interacting 

with the extracellular domain of TF (Watson LM, 2003; Bhattacharjee G, 2005). Both, VIIa 

generation and Xa formation were blocked in Grp78 overexpressing cells. It was shown 

that Grp78 is present on the surface of endothelial cells and monocyte / macrophage-like 

cells in atherosclerotic lesions. Moreover, the secretion of factor VII and a mutant form of 

tissue plasminogen activator is increased in response to Grp78 overexpression, whereas von 

Willebrand factor and factor VIII secretion is decreased (Dorner AJ, 1988; 1990;1992). 

These findings might suggest that both PDI and Grp78 are secreted from the ER after cell 

activation (Chen K, 1995; Bhattacharjee, 2005) and could play a significant role in the 

regulation of intravascular TF procoagulant activity.  

 

 

IV.6   Model for the redox regulation of intravascular TF activity  

   

Based on our findings on the regulation of TF activity by a disulfide switch of cysteines 

186 and 209 we suggest a model (Fig.28) how TF procoagulant activity might be de-

encrypted on the surface of microparticles and activated platelets inside the growing 

thrombus. Our mechanistic model would give an explanation for the observed rapid fibrin 

formation in the murine laser-injury thrombosis model (Falati S, 2002, 2003).  

We hypothesize that both damaged cells and activated platelets release intracellular 

oxidoreductases (GRX, PDI) leading to a change of the redox state in the nascent thrombus. 

Subsequently mixed TF disulfides, such as glutathionylated TF are reduced by GRX 

leading to a reactive TF intermediate which contains a reduced C186/C209 disulfide pair. 

The conformation of this reduced TF state is well ordered (CD spectra, Appendix A2) and 
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therefore the dithiol in position C186/C209 is readily oxidized by PDI to the appropriate 

disulfide. From our experiments it appears that the oxidized disulfide species of TF 

represents the only TF species capable of initiating coagulation. 
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Fig.28: Model of redox regulation of TF. The oxidized C186/C209 disulfide pair (S-S) is 

suggested to represent the functionally active state of TF, whereas all other TF species are 

unable of initiating coagulation. 
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V.1 Summary 

 

Both activated platelets and circulating microparticles were described to express tissue 

factor (TF), the principal initiator of coagulation, on their cell surface (intravascular TF). It 

is still not clear whether TF is functionally active on activated platelets. TF expressed on 

activated monocytes and various other cell types has been described to be functionally 

inactive (encrypted or latent TF). In the present study, cellular mechanisms are analyzed 

that could release the TF procoagulant activity of blood components.  

Tissue factor pathway inhibitor-1 (TFPI) represents the main physiologic inhibitor of the 

coagulation start. It inhibits the ternary initiator complex of the extrinsic coagulation 

pathway by first binding the circulating factors X / Xa and subsequently interacting with 

VII / VIIa. We found that after stimulation with thrombin and collagen type I, TFPI was 

recovered in the platelet releasate and it was degraded by neutrophil elastase (NE) released 

from activated neutrophils. TFPI degradation was also induced by NE on neutrophil 

microparticles. We found that NE is bound to negatively charged macromolecules 

(proteoglycans, RNA) on the surface of activated neutrophils by polar interactions. Overall, 

we could provide substantial experimental evidence that upon interaction of activated 

platelets with PMN a microenvironment is formed, which allows the efficient degradation 

of TFPI by the PMN-associated serine protease NE. This cross talk between the innate 

immune system and the coagulation system might be of general importance in pathologies, 

such as sepsis, arterial and venous thrombosis and myocardial infarction. 

TF-encryption has represented an unsolved problem for several decades. We reveal that 

thiol-disulfide exchange in the extracellular C186/C209 disulfide pair of TF triggers the TF 

procoagulant activity. Formation of the intramolecular C186/C209 disulfide activates TF 

procoagulant function, whereas reduction of the disulfide to the appropriate sulfhydryls and 

the formation of mixed disulfides (protein S-glutathionylation of TF) were found to 
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suppress its procoagulant function. TF activation is supported by the thiol isomerase protein 

disulfide isomerase (PDI) and it is facilitated by the reactive oxygen species (ROS) 

detoxifying enzyme glutaredoxin (GRX). Protein S-glutathionylation of TF was uncovered 

as one reversible mechanism preventing the intravascular coagulation start.  

We suggest that thiol isomerases are injury-responsive signals driving coagulation through 

posttranslational cysteine modifications of TF. This mechanism could help to explain the 

augmented occurrence of vasoocclusive pathologies during ageing, where increasing 

concentrations of ROS might favour TF oxidation. 

 

 

V.2 Zusammenfassung 

 

Das Membranprotein Tissue Factor (TF) ist das zentrale Startermolekül der Blutgerinnung 

und wird schnell auf aktivierten Thrombozyten und auf Monozyten exponiert (intravasaler 

TF). Es ist noch unklar, ob TF auf aktivierten Plättchen funktionell aktiv ist. Der von 

stimulierten Monozyten und von verschiedenen anderen Zellen exprimierte TF wurde als 

funktionell inaktiv (encrypted oder latent) beschrieben. In der vorliegenden Studie wurden 

molekulare Mechanismen der TF-Aktivierung untersucht.  

Tissue Factor Pathway Inhibitor-1 (TFPI) ist der wichtigste physiologische Inhibitor des 

Gerinnungsstarts. Er inhibiert den ternären Starterkomplex des extrinsischen Blutgerin-

nungssystems, indem er zunächst an den Faktor X / Xa und anschliessend an den TF 

gebundenen Faktor VII / VIIa bindet. Der im Überstand aktivierter Plättchen vorhandene 

TFPI wurde nachweisbar durch die neutrophile Serinprotease Neutrophile Elastase (NE) 

abgebaut. Auch mit Mikropartikeln aus Neutrophilen wurde ein Abbau beobachtet. 

Unsere Ergebnisse bestätigen die Hypothese, dass durch die Interaktion von aktivierten 

Plättchen mit Neutrophilen ein Mikroenvironment gebildet wird, das den effektiven Abbau 



Zusammenfassung 
____________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

84

von TFPI durch Neutrophilen-assoziierte NE ermöglicht und auf diese Weise den 

intravasalen Gerinnungsstart steuert.  

Auf der Zelloberfläche exprimierter TF ist kryptisch (inaktiv). Die Ursachen für die TF 

Enkryption sind seit mehreren Jahrzehnten Gegenstand der Forschung und sind bislang 

ungeklärt. Wir fanden, dass ein Oxidoreductase-abhängiger Thiol-Disulfid-Austausch des 

extrazellulären C186/C209-Disulfidpaars von TF den Gerinnungsstart durch Monozyten 

induziert. Die Bildung der C186/C209 Disulfidbrücke aktiviert die prokoagulatorische 

Funktion im TF-Molekül, während Reduktion zu den entsprechenden Sulfhydrylen und die 

Bildung gemischter Disulfide (Protein S-Glutathionylierung von TF) dessen prokoagul-

atorische Funktion unterdrücken. Die Aktivierung von TF wird durch die Thiolisomerase 

Protein Disulfid Isomerase (PDI) gefördert, ein Prozess, der durch die Wirkung des reaktive 

Sauerstoffspezies (ROS) entgiftenden Enzyms Glutaredoxin (GRX) erleichtert wird. Die 

Protein S-Glutathionylierung von TF wurde als einer der reversiblen Mechanismen 

identifiziert, der den intravasalen Gerinnungsstart verhindert und dadurch zur Enkryption 

beiträgt. Unsere Ergebnisse lassen vermuten, dass Thiolisomerasen bei Gefässverletzungen 

als Signale wirken, welche die Gerinnung mittels posttranslationaler Cystein-Modifikat-

ionen des TF-Moleküls propagieren. Dieser Mechanismus ist möglicherweise am 

verstärkten Auftreten vasookklusiver Pathologien im Alter beteiligt, bei denen ROS die 

Oxidation von TF fördern könnte.           
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VII Appendix 
 
 
VII.A   UV-spectrum and Circular Dichroism-spectra of the recombinant TF 

  extracellular domain 
 
A1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A2 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

A1: UV-spectrum of sTF in PBS recorded with a Perkin-Elmer 
spectrophotometer. 

A2: CD-spectrum of sTF in PBS recorded with a JasCo Circular 
Dichroism spectrophotometer. Both the native (blue) and the 1.5 mM 
DTT- treated (green) sTF spectrum contain ordered structural 
elements that are similar to that determined in the x-ray structure.    

Abs. 

Wavelength [nm] 
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