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1 Introduction 
 

1.1 The yeast Saccharomyces cerevisiae 
 

Saccharomyces cerevisiae is the most well known and commercially significant yeast 

species. As “brewer’s yeast”, it has long been utilized to ferment sugars of rice, 

wheat, barley, and corn to produce alcoholic beverages. The baking industry takes 

advantage of Saccharomyces cerevisiae’s ability to produce carbon dioxide, which is 

useful to expand dough. Moreover, yeast is often taken as a vitamin supplement 

because of its high content of proteins, B vitamins, niacin, and folic acids.  

In science, Saccharomyces cerevisiae is, along with E.coli, one of the most studied 

model organisms. Yeast has the advantage of being a eukaryotic organism, so the 

results of genetic studies with yeast are more easily applicable to human genetics. 

Thus, many proteins important in human biology were first discovered by studying 

their homologs in yeast. Important processes such as gene regulation, cell cycle 

regulation, recombination, mitosis, meiosis, nuclear import/export can be examined in 

this unicellular organism. Because of the short generation time, yeast can be easily 

cultivated. Importantly, many sophisticated genetic tools such as inducible 

expression systems, deletion- and epitope-tagging cassettes have been developed in 

the past decade, which makes yeast a convenient and powerful model system to 

study eukaryotic cellular processes.  

 

1.2 The yeast life cycle 
 

A yeast, by definition, is a unicellular fungus that reproduces primarily by budding, 

which is the production of a small outgrowth, the bud from the parent cell. Thus, 

budding is an asexual method of reproduction. Yeasts have both, budding haploid 

and diploid stages. In nature, and when nutrients are available, yeast reproduces 

asexually mainly in the diploid stage. Budding starts at late G1-phase. At the end of 

M-Phase, the emerged daughter bud has reached the size of the mother cell. The 

subsequent cell division results in two cells, termed “mother cell” and “daughter cell”. 

Upon nutritional starvation, diploid cells may undergo meiosis and revert to the 

haploid stage by sporulation. After meiosis, the formed tetrade consists of usually 

four ascospores, two of which with the mating type a and two with mating type α.  
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Figure 1: The yeast life cycle. A. The cell cycle of Saccharomyces cerevisiae (Source: Lodish, 

1999). Yeast cells multiply asexually by budding. At the end of G1, a bud emerges from the mother 

cell. Prior to cytokinesis, the daughter bud has reached size of the mother cell. After cell division, the 

resulting cells grow in G1 until reaching the appropriate size for bud formation. B. Morphology of S. 

cerevisiae cells (Source: Herskowitz, 1988). Upper panel shows an unbudded cell in G1 (a) and cells 

with different bud sizes (b, c). Mating of a- and α-haploids leads to formation of a diploid (a/α) zygote 

(d). The zygote is able to produce diploid (a/α) daughter cells by budding. Bud emerges often at the 

neck (e). 

 

When nutrients are available, the spores germinate and the resulting cells either may 

multiply asexually as haploids or may serve as a gamete. In yeast, this sexual 

process is termed “mating” and occurs when two haploid cells with different mating 

types fuse and form a diploid (a/α) zygote. Cells of each haploid type produce a 

secreted mating-factor. These mating type-specific pheromones, termed a- and α-

factor, act to synchronize the cell cycle of the mating partners and to prepare cells for 

mating (Herskowitz, 1988).  

 

1.3 Mating type switching 
 

One interesting feature, which occurs in budding yeast, is the phenomenon of mating 

type switching. After cytokinesis of a haploid cell, mating type switching occurs only 

in mother cells but not in daughter cells. This is due to the asymmetrically distributed 

activity of the HO-endonuclease. 
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Figure 2: Mating type switching. A diploid yeast cell can undergo meiosis and sporulation when 

nutrients are limited. This leads to the formation of a tetrade containing four ascospores. After 

breakdown of the ascus, the spores germinate when nutrients are available. Two haploid a- and α 

cells can mate to form a diploid zygote. The entry into the diploid phase is facilitated by a phenomenon 

called mating type switching. After division of a haploid cell, only the mother but not the daughter cell 

can switch the mating type. This asymmetric cell division is caused by the bud localization of the 

ASH1 mRNA. 

 

Mating type switching requires three gene loci on yeast chromosome III, the Mating 

Type (MAT) locus and two silent loci HML and HMR (Homothallic Mating Type Copy 

Left/Right). The mating type of a yeast cell is determined by the alleles of the mating 

type locus (Haber, 1998). In haploid cells, expression of one of the two alleles leads 

to cells with either mating type a or α, whereas diploid cells express both alleles 

(Mating type a/α).  
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MATα encodes for two proteins termed α1p and α2p. α1p and transcription factor 

Mcm1p are responsible for the activation of α-specific genes (Shore and Sharrocks, 

1995). In contrast, α2p and Mcm1p serve to repress a-specific genes (Wolberger, 

1998). The MATa-locus encodes for two proteins, of which only A1p is known to have 

a biological function. A1p and α2p form a heterodimer, which is required to repress 

haploid-specific genes (Li et al., 1995). Consequently, there is no expression of α-

specific genes in a-cells because α1p and α2p are missing, whereas through the 

activation by Mcm1p, a-specific genes are expressed (Bruhn and Sprague, 1994) 

There are two additional copies called HML and HMR, which are positioned 

upstream and downstream of the MAT-locus, respectively. These regions are under 

the control of silencer sequences, which by binding of Sir1p-Sir4p (silent information 

regulator) leads to hypoacetylated heterochromatin and consequently, to 

transcriptional inactivation (Grunstein, 1998). Mating type switching occurs when 

either HMLa or HMLα is recombined into the transcriptionally active MAT-locus by 

gene conversion (Hicks and Strathern, 1977; Strathern et al., 1982). Thus, the MAT-

locus is replaced by the genetic information of the opposite mating type. This 

recombination event is initiated by a double-strand break, catalyzed by the haploid-

specific HO endonuclease. Because expression of HO at the end of G1-phase 

occurs only in haploid mother cells, just a half of the cells of a colony can statistically 

undergo mating type switching (Nasmyth, 1993). In diploid cells, binding of the 

heterodimer A1p/α2p inhibits HO expression (Herskowitz, 1992). Yeast strains used 

for biological studies in laboratories have lost their ability to change mating types due 

to a point mutation in the HO gene. These strains are called heterothallic and are 

more accessible to genetic manipulations because of a stable haploid phase.  

 

1.4 Control of HO expression 
 

The transcription activation program of HO is cell cycle regulated. The expression 

occurs only transiently and starts during late mitosis, when Cdk1p is inactive and 

ends during late G1-phase, when Cdk1p is reactivated (Nasmyth, 1993). The HO 

promoter can be divided in two regions: a distant upstream region called URS1 

(“Upstream Regulatory Sequence“), which regulates mother cell expression 

specificity, and a proximal region called URS2 that controls HO cell-cycle regulation 

(Nasmyth, 1993). HO transcription depends on the ordered recruitment of several 
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cell-cycle dependent transcription factors to these promoter regions. The zinc-finger 

protein Swi5p is one of these factors, which is, except of G1-phase, expressed 

throughout the cell cycle. However, in S-phase, Swi5p starts to accumulate in the 

cytoplasm until Cdc14p dephosphorylates it in late anaphase. As a result, Swi5p 

enters nuclei of both, mother and daughter cell and binds to two sites of URS1 

regions within the HO promotor. This event triggers the recruitment of the SWI/SNF 

chromatin-remodelling complex to URS1 and URS2. Subsequently, SAGA complex 

is recruited to the promoter. The ATP-dependent acetylation of Histone H3 by SAGA 

and SWI/SNF leads to the remodelling of nucleosomes so that a second transcription 

factor SBF can bind to URS2 region of the HO promoter. In a subsequent step, SBF 

recruits the Mediator complex to URS2 and to the TATA box. Reactivation of Cdk1p 

in the end of G1 finally leads to recruitment of RNA polymerase lI and the general 

factors TFTTB/TFIIH for transcription initiation (Bhoite et al., 2001; Cosma et al., 

1999; Krebs et al., 1999). However, the highly concerted recruitment of all these 

transcription factors does not occur in daughter cell nuclei. Therefore, only a 

differential control of this HO promotor in mother and daughter cell nuclei can result 

in progeny with opposite mating types. 

In 1996, the isolation of mutants with daughter cells defective in HO repression 

identified the ASH1 gene (Asymmetric synthesis of HO). It encodes for Ash1p, a 66-

kDa zinc-finger transcriptional repressor. In ASH1 mutants, the daughter cells were 

able to switch mating type as well. Thus, Ash1p is the factor that inhibits HO 

transcription through its asymmetric accumulation in only daughter nuclei in late 

anaphase (Bobola et al., 1996; Sil and Herskowitz, 1996). It is also required for 

pseudohyphal growth (Chandarlapaty and Errede, 1998). Ash1p contains a region 

that is highly homologous to the zinc-finger domain of the erythroid cell nuclear 

protein GATA-1 (Bobola et al., 1996; Sil and Herskowitz, 1996). All GATA-like factors 

bind to GATA motifs, which leads to either activation or repression of transcription. 

The YTGAT consensus sequence was identified within the HO promoter, which 

mediates the binding of Ash1p. This motif is related to the canonical (A/T)GATA(A/G) 

sequence bound by most GATA factors and is present at least 20 times within the 

URS1 region of the HO promoter (Maxon and Herskowitz, 2001).  
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Figure 3: Transcriptional control of the HO promoter in S. cerevisiae is cell cycle regulated 
(Source: Cosma 2002, 1999). After inactivation of Cdk1p in late anaphase, transcription factor Swi5p 

enters the nuclei of mother and daughter cells. Swi5p binds to URS1 of the HO promoter. A 

subsequent binding of the transcriptional repressor Ash1p to URS2 blocks the recruitment of SWI/SNF 

complex, and leads to inhibition of HO transcription. In mother cell nuclei of haploids, because Ash1p 

is not present, SWI/SNF can bind to URS2 and recruits the SAGA complex to the promoter. Histone 

acetylation and subsequent nucleosome remodelling allow transcription factor SBF to access and bind 

URS2 region. In a following step, the Mediator complex associates with URS1 and TATA. Finally, 

when Cdk1p is reactivated, RNA Polymerase II and additional factors are recruited in order to initiate 

transcription. 

 

The C-terminal domain of Ash1p mediates DNA binding to the YTGAT consensus of 

the HO promoter, whereas the NH2-terminus serves to repress HO transcription 

(Maxon and Herskowitz, 2001). The asymmetric control of HO expression, which is 

caused by the sorting of Ash1p to daughter cells, explains why only haploid mother 

cells can undergo mating type switching. 
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1.5 Localization of ASH1 mRNA in S. cerevisiae 
 

1.5.1 SHE genes 
 

Mother cell-specific expression of HO-endonuclease is due to the asymmetric 

distribution of its transcriptional repressor Ash1p (Bobola et al., 1996). The 

asymmetric accumulation of this cell fate determinant in only daughter cell nuclei is 

mediated by the products of five genes, termed SHE1–SHE5 (Swi5p-dependent HO 

expression), each of which has a specific function (Jansen et al, 1996). They were 

identified in a genetic screen for factors that are required for asymmetric HO-

expression in yeast cells (Jansen et al., 1996). Interestingly, SHE genes have no 

influence on SWI regulation but rather are responsible for the sorting of Ash1p. 

Deletion of a SHE gene results in the loss of asymmetric distribution. As a result, the 

determinant Ash1p is present in both, mother and daughter cell nuclei.  

 

 
 

Figure 4: Asymmetric distribution of Ash1p is generated by RNA localization. Swi5p activates 

ASH1 expression in late anaphase. The ASH1 mRNA undergoes nuclear export and is subsequently 

transported to the tip of growing cells by a She-dependent machinery. At the target site, it is anchored 

and translated into the Ash1 protein, which subsequently enters the nucleus of only the daughter cell 

to act as a transcriptional repressor of HO expression. Because of this asymmetric sorting, HO 

expression and mating type switching is restricted to only mother cells. In situ stain of ASH1 mRNA 

with Cy3-labelled antisense oligonucleotides in a WT cell (upper right). Immunofluorescence of Ash1p-

myc9 in a WT cell (lower right). Nuclei are stained with DAPI (blue). 
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Because repression of HO occurs in both progeny resulting from cell division, none of 

the cells is able to switch the mating type. All She-proteins are themselves localized 

asymmetrically. Epitope-tagged She1-She4p all localize to a crescent at the cortex of 

the daughter bud, except of She5p, which localizes first to the tip of an emerging bud 

but then stays at the mother-bud neck. Because Ash1p appears in nuclei of daughter 

cells at much later stages of the cell cycle when the She-proteins are no longer 

localized, it is very unlikely that Ash1p is directly targeted by protein transport (Chang 

and Drubin, 1996). Thus, the asymmetric distribution of Ash1p is achieved by the 

localization of its corresponding ASH1 mRNA to the bud tip in late anaphase (Long et 

al., 1997). This derives from observations that in she-mutants, ASH1 mRNA is 

mislocalized. In contrast to wild type cells, she-mutants are not able to localize ASH1 

mRNA to the tip of daughter cells. Mutants of SHE1-SHE4 display a mislocalization 

of ASH1 mRNA throughout the cytoplasm, except in she5 mutant where ASH1 

mRNA was found accumulated at the mother-bud neck (Long et al., 1997; Takizawa 

et al., 1997). Thus, each of the SHE gene products is essential for targeting the 

ASH1 message to the bud tip. 

 

1.5.2 ASH1 mRNA – the cargo 
 

 
 
Figure 5: Localizations elements (LE) of the ASH1 mRNA. Three of the localization elements, 

namely E1, E2A and E2B, are located within the ASH1 coding sequence. The E3 element spans the 

stop codon and the first 100 nucleotides of the 3’ untranslated region (UTR).  

 

In order to identify cis-acting sequences responsible for the localization of the ASH1 

mRNA, fragments of ASH1 were inserted into a reporter mRNA and the cytoplasmic 

distribution of these chimeric mRNAs was determined by in situ hybridisation 

(Chartrand et al., 1999; Gonzalez et al., 1999). Four localization elements (LE) or 

zipcode elements required for bud tip localization of ASH1 mRNA have been 

identified. They are termed E1, E2a, E2b and E3 (Chartrand et al., 2002; Chartrand 
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et al., 1999) or according to a different nomenclature, U1, U2 and U3 (Gonzalez et 

al., 1999). Each of the LEs alone is sufficient to direct bud tip localization of a 

heterologous reporter RNA (Chartrand et al., 2002). E1, E2A and E2B are located 

within the coding sequence whereas E3 spans from the end of the open reading 

frame into the 3'-UTR. Interestingly, in most cases, LEs are located in the 3’ UTR of a 

localized RNA, whereas all the ASH1 LEs are located within or in part of the coding 

sequence. The artificial transposition of these elements to the 3’-UTR lead to an 

increased Ash1p synthesis suggesting that the cis-acting elements within the coding 

sequence may serve to slow down translation during transport. Thus, this molecular 

translation retardation mechanism may contribute to the establishment of Ash1p 

asymmetry in yeast (Chartrand et al., 2002). RNA secondary structure prediction 

suggests that all ASH1 LEs form extensive stem-loop structures (Chartrand et al., 

2002; Chartrand et al., 1999; Gonzalez et al., 1999). All cis-elements are recognized 

by several trans-acting factors. She2 is the major RNA binding protein because of its 

ability to recognize all four LEs of the ASH1 mRNA (see below). It can bind the LEs 

in a range of Kd~100-400 nM (Niessing et al., 2004). A recent study has identified 

three-dimensional conserved RNA motifs required for recognition by She2p. These 

motifs consist of two loops separated by a short stem of 4 base pairs, with a 

conserved cytosine in one loop and a conserved CGA triplet in the other loop, both 

on opposite strands of the RNA loop-stem-loop structure. Mutations within this three-

dimensional motif decreases the interaction with She2p, and results in loss of ASH1 

localization (Olivier et al., 2005). In an independent approach, Jambhekar and co-

workers used a high-throughput selection method to map localization elements in 

RNA targets. A predicted single-stranded core CG dinucleotide appears to be an 

important component of the RNA-protein interface although other nucleotides 

contribute in a context-dependent manner. Thus, the extensive sequence and 

structural plasticity suggest that the She-complex recognizes a precise 3D structure 

in its RNA target (Jambhekar et al., 2005) 

 

1.5.3 Other localized mRNAs 
 

In a study using DNA micro-array analysis, several other bud-localized RNAs have 

been identified. Among them is IST2, which encodes a putative ion channel with 

unknown function (Entian et al., 1999; Takizawa et al., 2000). IST2 mRNA 
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localization to the cortex of daughter cells created a higher concentration of Ist2 

protein in the bud compared with that of the mother cell, and this asymmetry was 

maintained by a septin-mediated membrane diffusion barrier at the mother-bud neck. 

In a recent study, a complex peptide-sorting signal located at the extreme C-terminus 

was identified suggesting that there is an additional sorting of Ist2p acting 

independent of the targeting achieved by IST2 mRNA. This novel sorting mechanism 

to the plasma membrane does not require She-mediated mRNA transport into 

daughter cells. Thus, such a redundant “backup” mechanism may help to sort the 

protein in addition to RNA localization. A microarray-based screen identified a set of 

22 additional mRNAs, all of which become localized to bud tip of in a She-dependent 

manner (Shepard et al., 2003). These messages encode a wide variety of proteins, 

including several involved in stress responses, cell wall maintenance and membrane 

proteins. However, the biological significance of localizing these RNAs remains to be 

elucidated because asymmetric distribution of several of these proteins also occurs 

in the absence of mRNA transport.  

 

1.5.4 She1/Myo4p – a yeast class V myosin motor 
 

She1p, also called Myo4p, is the motor protein that mediates the active transport of 

the ASH1 RNP along actin filaments to the tip of daughter cells (Bertrand et al., 1998; 

Haarer et al., 1994; Jansen et al., 1996; Münchow et al., 1999). In budding yeast, 

Myo4p and Myo2 belong to class V unconventional myosins (Titus, 1997). Both non-

processive motors localize to the bud tip during bud formation (Karpova et al., 2000; 

Lillie and Brown, 1994; Schott et al., 1999). Myo2p functions in the polarized 

transport of secretory vesicles (Govindan et al., 1995; Johnston et al., 1991; Lillie and 

Brown, 1994; Pruyne et al., 1998; Schott et al., 1999), inheritance of the vacuole and 

the Golgi apparatus ((Catlett et al., 2000; Catlett and Weisman, 1998; Rossanese et 

al., 2001), and is required to set up the orientation of the mitotic spindle (Yin et al., 

2000). Myo4p in contrast, is the only yeast motor protein with a specific role in RNA 

localization (Long et al., 1997; Reck-Peterson et al., 2000), but in addition is also 

involved in the inheritance of cortical ER (Estrada et al., 2003). There is now strong 

evidence suggesting that both Myo4p-dependent processes are tightly coordinated 

(Aronov et al., 2007; Schmid et al., 2006). 
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1.5.5 The adapter protein She3 
 

The association of Myo4 motor protein with ASH1 mRNA is dependent on additional 

factors She2p and She3p (Kruse et al., 2002; Münchow et al., 1999; Takizawa and 

Vale, 2000). She3p binds to the coiled-coil region of Myo4p’s tail domain and to the 

RNA binding protein She2p. Thus, She3p serves as an adapter that docks the 

myosin motor onto an ASH1–She2p ribonucleoprotein complex. In a two-hybrid (Böhl 

et al., 2000), and a three-hybrid approach (Long et al., 2000), Myo4p was shown to 

interact with the NH2-terminus of She3p. Moreover, sucrose density gradients 

demonstrated cosedimentation of Myo4p together with She3p, suggesting a tight and 

permanent association of both proteins (Böhl et al., 2000). The C-terminus of She3p 

provides the binding to She2. Interestingly, She3p might have an influence on ASH1- 

She2p interaction. In gel-shift assays, binding of She2p to ASH1 LEs was enhanced 

in the presence of She3p (Böhl et al., 2000). Takizawa and co-workers independently 

suggested a cooperative binding of She2/She3 in the cytoplasm. According to their 

data, they hypothesized that binding of She2p to ASH1 mRNA may induce changes 

in the RNA in a way that enables She3-Myo4 complex to associate (Takizawa and 

Vale, 2000). 

 

1.5.6 She2 – the RNA binding protein 
 

She2p is the key protein in the assembly of the ASH1 ribonucleoprotein complex. 

This small 28 kDa RNA-binding protein directly interacts with ASH1 cis-acting 

localization elements and associates with the adapter She3p. Although the primary 

sequence does not reveal any canonical RNA-binding motifs, She2 is able to bind to 

each of the localization elements in vivo and in vitro. This was clearly demonstrated 

with electrophoretic gel mobility shift assays (Böhl et al., 2000) and with filter binding 

experiments (Niessing et al., 2004) where purified recombinant She2p displayed 

specific binding to ASH1 cis-acting localization elements. A crystal structure of She2p 

was determined and revealed that it forms symmetric homodimers. Moreover, dimer 

formation is required for RNA binding activity (Niessing et al., 2004). Two 

independent studies have demonstrated the interaction of She2p with the C terminus 

of She3p (Böhl et al., 2000; Long et al., 2000) suggesting that She2p is required to 
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interface the Myo4p-She3p complex to ASH1 mRNA. Disruption of SHE2 abolishes 

Myo4p’s association with the mRNA (Jansen et al., 1996; Münchow et al., 1999). 

She2p is also required to mediate the association of She3p to ASH1 mRNA (Böhl et 

al., 2000). This suggests that She2 is the factor acting directly on ASH1 mRNA. 

Moreover, this association is independent of She3p and Myo4p. The site of RNA 

binding was initially determined to be located at the N-terminus of She2p. The 

deletion of the first 70 amino acids of She2p resulted in an accumulation of this 

mutant in the nucleus (Kruse et al., 2002). This was the first evidence indicating that 

She2p’s export is dependent on RNA binding. Seven amino acids within the N-

terminal region of SHE2 have been reported so far to be required for RNA binding 

activity. Mutations, resulting in amino acid substitutions N36S, R43A, R44A, R52A, 

R52K, R63A, and R63K lead to a loss of RNA binding and consequently, to defective 

mRNA localization (Gonsalvez et al., 2004; Niessing et al., 2004). Moreover, block of 

mRNA export caused the accumulation of She2 in the nucleus as well (Kruse et al., 

2002). This indicates that She2 can enter the nucleus for the binding of its RNA 

target and thus is able to shuttle between the nucleus and cytoplasm.  

 

1.5.7 She4 – a putative myosin chaperone 
 

She4p was initially characterized as a protein involved in receptor-mediated 

endocytosis, organization of the cortical actin cytoskeleton and growth at elevated 

temperatures (Wendland et al., 1996). Nevertheless, deletion of SHE4 leads to 

defects in ASH1 mRNA localization (Jansen et al., 1996). She4p belongs to the 

protein family containing UCS domains as it shares a 400 residue conserved region 

that is also present in Caenorhabditis elegans UNC45 (Epstein et al., 1974) and 

Podospora anserina CRO1 (Berteaux-Lecellier et al., 1998). UCS proteins appear to 

ensure proper folding of myosin heads so that they can perform their ATP-dependent 

actin-based motor functions. In yeast, She4p was shown to associate with yeast 

class I and class V myosins. She4p binds directly to motor domains of class V 

myosin Myo4p and class I myosin Myo5p through its UCS domain (Toi et al., 2003; 

Wesche et al., 2003). In vivo, She4p is essential for the function and localization of 

Myo3p, Myo4p, and Myo5p (but not of Myo2p) and for colocalization of class I 

myosins with cortical actin patches. This suggests that in yeast, She4p may be 
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required for the structural integrity and/or the regulation of the motor domain of 

unconventional myosins. 

 

1.5.8 She5/Bni1p and Bud6p 
 

RNA localization also requires the establishment of a polarized cytoskeleton. 

She5/Bni1p is a formin involved in the organization of actin cytoskeleton. She5p has 

been reported to promote nucleation of barbed-end actin polymerization (Evangelista 

et al., 1997; Pruyne et al., 2002). Cells of a she5/bni1∆ fail to localize ASH1 mRNA, 

which accumulate at the bud neck (Long et al., 1997). This observation is consistent 

with a defect in promoting polymerization of actin fibres at the bud tip. A second 

protein required for actin filament organization to the bud is Bud6p, which directly 

binds to She5/Bni1p (Evangelista et al., 1997; Tong et al., 2001). Because both bud-

specific proteins populate the cortex at the bud tip, mislocalization of ASH1 mRNA in 

she5/bni1 or bud6/aip3 cells is probably caused by the loss of specific mRNA 

anchorage at the bud tip. This suggests that the ASH1 RNP is able to migrate to the 

bud but finally fails to remain at the bud tip. Thus, it was hypothesized that 

Bud6p/Aip3p and Bni1p/She5p may be factors required to maintain the transcript at 

the cortical bud cap. (Beach and Bloom, 2001; Beach et al., 1999)  

 

1.6 Trans-acting factors of ASH1 mRNA 
 

The Myo4p/She3p/She2p heterotrimeric complex is essential for ASH1 mRNA 

trafficking to the bud tip. These proteins are thought to constitute the cytoplasmic 

core RNP, also termed ‘locasome’ (Beach and Bloom, 2001; Bertrand et al., 1998; 

Darzacq et al., 2003) since all of the She-proteins co-localize with each other and 

with the transported ASH1 mRNA (Böhl et al., 2000; Gonsalvez et al., 2004; 

Takizawa and Vale, 2000). Our understanding toward how RNA transport is 

mediated mechanistically in yeast is now becoming even more complex because 

there is a growing body of evidence suggesting that RNA localization is also linked to 

the process of ER inheritance (Aronov et al., 2007; Schmid et al., 2006). In addition, 

there are auxiliary factors, which associate with ASH1 only transiently or their 

association is required for functions other than the active cytoplasmic transport such 

as translational control. In the past years, a set of ASH1 trans-acting factors have 

17
 



been identified and characterized, giving rise to the evidence that it requires more 

than just a functional motor complex to target a transcript effectively. 

 

1.6.1 Khd1p 
 

Khd1p is an RNA binding protein (KH-domain protein 1) with homology to hnRNPK, 

and it has been first reported to be required for efficient localization of ASH1 mRNA. 

The N-element, a cis-acting region spanning the first 800 nucleotides of the ASH1 

coding sequence, is responsible for the association with Khd1p in vivo (Gonzalez et 

al., 1999; Irie et al., 2002). In a more recent study, Khd1p was shown to interact with 

localization element E1 of ASH1 mRNA (Paquin et al., 2007). Deletion of KHD1 had 

only little effect on HO expression, and frequency of mating-type switching was the 

same as that in a wild type strain. Nevertheless, KHD1 genetically interacts with a 

weak mutation in MYO4, but a direct interaction with any of the She proteins remains 

to be shown. Interestingly, the level of Ash1p was decreased, when over-expressing 

Khd1p, and ASH1 mRNA was not efficiently localized compared to wild type, 

suggesting a role in anchoring and/or translational control (Irie et al., 2002). 

Consistent with its role as a translational regulator, Khd1p has recently been reported 

to interact with the C-terminal domain of translation-initiation factor eIF4G1. 

Interestingly, deletion of this interaction domain leads to increased translation of an 

ASH1 reporter mRNA in vivo suggesting that Khd1p may act to reduce translation 

initiation during transport. Moreover, Khd1p interacts with Yck1p (yeast casein 

kinase) when reaching the plasma membrane. The phosphorylation by this kinase 

may possibly mediate the release of Khd1p from ASH1 mRNA, which subsequently 

leads to local activation of translation at only the target site (Paquin et al., 2007). 

 

1.6.2 Puf6p 
 

Tandem affinity purification of ASH1 mRNP and mass spectrometry identified a novel 

75 kDa yeast protein (Gu et al., 2004). Puf6p is a member of the PUF-family with 

highly conserved RNA-binding proteins such as Pumilio in Drosophila. Puf proteins 

are defined by the presence of several repeats of the Pumilio homology domain 

(Pum-HD), which confers RNA binding activity (Wang et al., 2002). In general, Puf 
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proteins have been reported to bind to sequences in the 3’-UTR encompassing a so-

called UGUR tetranucleotide motif and thereby to repress gene expression by 

affecting mRNA translation or stability. Thus, all known Puf-proteins (Puf1-Puf6p) in 

yeast are all involved in the posttranscriptional regulation of mRNAs (Gerber et al., 

2004). Puf6p has been shown to interact with a PUF consensus sequence, a 

conserved UUGU element within the 3’-UTR of the ASH1 mRNA. Deletion of PUF6 

or mutations of UUGU elements of the mRNA increased the intracellular Ash1p 

concentration. Moreover, overexpression of Puf6p resulted in a reduced amount of 

synthesized Ash1p. Thus in a puf6∆ strain, asymmetric localization of both Ash1p 

and ASH1 mRNA were significantly reduced, suggesting a role for Puf6p in 

translational repression (Gu et al., 2004). Consistent with its role in translational 

regulation, Puf6p was reported to colocalize with the ASH1 mRNP in vivo although it 

is a predominantly nuclear protein. This suggests that this protein needs to shuttle 

between the two compartments in order to function in cytoplasmic translational 

control. 

 

1.6.3 Loc1p 
 

The RNA binding protein Loc1p is localized exclusively to the nucleolus but 

nevertheless, affects the asymmetric localization of both, ASH1 mRNA and Ash1p 

(Long et al., 2001). Loc1 was identified in a three-hybrid screen using the ASH1 E3 

element as a bait. Band mobility shift assays and immunoprecipitation followed by 

RT-PCR of myc-tagged Loc1p clearly demonstrated the binding to the E3 LE in vitro 

and in vivo. Nevertheless, Loc1p is also a constituent of the 66S pre-rRNA complex 

(Harnpicharnchai et al., 2001). Its function in assembly and export of 60S ribosomal 

subunit has been shown more recently (Urbinati et al., 2006). Thus, consistent with 

its important role in ribosome biogenesis, loc1∆ strains display a severe slow growth 

phenotype at 30°C and abnormal cell morphology (Stephan Jellbauer, personal 

communication). Nevertheless, deletion of LOC1 resembles the phenotype of a she-

mutant because it has also a significant influence on ASH1 mRNA localization and 

consequently, on the asymmetric sorting of Ash1p (Long et al., 2001). One reason 

why this protein was not identified in the SHE-screen might be due to its location 

near the centromer. Thus, cloning of a fragment containing a centromeric region is 

difficult since plasmids with two centromers are highly unstable when transformed 
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into yeast cells (Ralf-Peter Jansen, personal communication). It is still elusive 

whether both processes, RNA localization and ribosomal biogenesis, are really linked 

or whether they mutually affect each other. 

 

1.7 The biological functions of mRNA localization 
 

A special feature of the eukaryotic cell is the subdivision into compartments with 

specific cellular functions. Each of the cellular compartments requires a subset of 

proteins in order to maintain their full function. One way to direct specific proteins to 

their appropriate target sites within a subcellular region is the signal-peptide 

mediated sorting of proteins. However, many localized mRNAs encode proteins that 

lack such peptide sorting signals. Hence, the subcellular distribution of these proteins 

is therefore entirely determined by the localization of its corresponding transcript. 

There are several reasons why mRNAs rather than their protein products become 

targeted. In multiple rounds of translation, one mRNA molecule can give rise to 

several protein molecules. Thus, mRNA localization should be more cost efficient 

than protein transport (Du et al., 2007; St Johnston, 2005). Secondly, mRNA 

localization not only targets the protein to a specific site within the cell, but also 

spatially prevents its expression at another unwanted region. This becomes 

important during early development when the correct localization of cytoplasmic 

determinants is crucial in order to set up embryonic pattern. Therefore, localized 

mRNAs are often found in oocytes and early embryos where the pattern of 

morphogens regulates important developmental processes (Fig. 6B). In Drosophila 

melanogaster, several mRNAs localize to distinct regions of the oocyte. For instance, 

bicoid mRNA localizes to the anterior pole of the oocyte where it is translated after 

fertilization. Bicoid protein forms the highest concentration at the anterior. The 

specification of the anterior in the embryo requires the local on-switch of target genes 

mediated by localized Bicoid protein (Ephrussi and St Johnston, 2004). Localization 

of oskar mRNA to the opposite pole initiates formation of pole plasma at the posterior 

end of the Drosophila oocyte, which is important for the development of primordial 

germ cells at later stages (Mahowald, 2001). nanos is a second mRNA localized to 

the posterior pole where it is needed to setup posterior structures.  
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Figure 6: Biological functions of RNA localization. A. Asymmetric distribution of cell fate 

determinants. In S. cerevisiae, ASH1 mRNA is localized to the tip of daughter cells prior to cell 

division. B. Establishment of morphogen patterns in oocytes and early embryos. Several mRNAs are 

localized in the Drosophila oocyte: Localization of oskar, nanos mRNA and bicoid define the anterior-

posterior axis of the embryo. gurken mRNA is localized by a two-step mechanism to the anteriodorsal 

corner of the oocyte and establishes the dorsoventral axis. C. Protein isoform sorting and local 

assembly of complexes. In a chicken embryonic fibroblast, only ß-actin mRNA but not α-actin is 

targeted to the leading edge where it leads to local assembly of ß-actin filaments. D. Long distance 

RNA transport in plants helps to adjust to developmental and environmental stimuli. E. Facilitated 

protein targeting. Metallothionein (MT-1) mRNA localizes to the perinuclear cytoplasm, which results in 

a more efficient MT-1 protein import into the nucleus (Source: Du et al., 2007). 
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The dorsoventral axis of the Drosophila embryo is defined by the localization of 

gurken mRNA to anteriodorsal corner of the oocyte, where it encodes for a 

transforming growth factor α (TGFα) like signalling protein. 

RNA localization can also contribute to the asymmetric distribution of cell fate 

determinants. Asymmetric cell divisions are widespread in the eukaryotic kingdom. 

This is often achieved by the distribution of mRNAs upon cell division. The 

asymmetric sorting of yeast Ash1p to only daughter cells (Fig. 6A) is just one 

example. RNA localization also has a role in the asymmetric division of a neuroblast 

in Drosophila embryos. Neuroblasts usually divide into an apical ganglion mother cell 

(GMC) and a new neuroblast daughter at the basal. One important cell fate 

determinant is prospero mRNA, which is localized to cell cortex of the basal side of 

the GMC (Broadus et al., 1998). The RNA binding protein Staufen and the adapter 

Miranda mediate this transport process (Schuldt et al., 1998; Shen et al., 1998). 

Interestingly, Prospero protein and its mRNA are both transported by Miranda 

suggesting that RNA localization serves to facilitate but not accomplish the 

asymmetric sorting of a cell fate determinant. A second cell fate determinant in the 

GMC is insecutable, which is also redundantly targeted to the apical cortex in a 

dynein-dependent fashion (Hughes et al., 2004). Localization of this mRNA serves to 

regulate apicobasal polarity and spindle length. In Xenopus oocytes, the localization 

of VegT mRNA to the vegetal hemisphere serves as a germ layer determinant. VegT 

mRNA encodes a T-box transcription factor required for mesendodermal 

development.  

In order to create polarity in somatic cells, mRNAs often serve as a template for the 

local synthesis of proteins. This facilitates the spatial assembly of multifactor 

complexes. In motile cell types, β-actin mRNA is transported to the leading edge of 

lamellipodia (Condeelis and Singer, 2005). Local activation of translation and 

subsequent polymerization into actin filaments serve to create protrusive force and 

cell motility. The zipcode binding protein 1 (ZBP1) is required for the transport of β-

actin mRNA (Ross et al., 1997). The spatial regulation of β-actin translation during 

transport leads to synthesis of the protein only at the target site (Hüttelmaier et al., 

2005). Interestingly, only ß-actin but not α- or γ-actin mRNA become localized. Thus, 

this could be a sophisticated mechanism that allows the specific sorting of isoforms 

and consequently, prevents the formation of unwanted isoform heteromers 

(Condeelis and Singer, 2005). The mislocalization of ß-actin causes abnormal cell 
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morphology and other effects such as the increase of metastatic potential in tumor 

cells (Shestakova et al., 1999). In order to establish protrusive force, transcripts of all 

seven subunits of the actin-related protein 2/3 (ARP2/3) complex are localized to the 

leading edge of fibroblasts as well (Mingle et al., 2005). This complex provides the 

nucleation of actin filaments and consequently, is required in a spatial context to 

establish cell motility (Machesky and Gould, 1999). The synaptic plasticity of 

developing neurons is established in a similar fashion. For instance, transcript of 

Calcium/Calmodulin dependent Kinase II (CaMKII α) is localized to dendrites 

(Mayford et al., 1996). There, directed protein synthesis can lead to rearrangement of 

synapses, which is important for higher brain functions such as learning and memory. 

mRNA localization may also contribute to the sorting of proteins into various 

organelles. Usually, protein sorting is provided by peptide signals, which directs the 

translated protein to the target organelle. However, there is increasing evidence that 

some mRNAs are already localized to the vicinity of organelles to facilitate and 

maximize the import of the corresponding proteins. There are several reports on 

mRNAs, which display perinuclear localization (Fig. 6E). For instance, transcripts 

encoding for Metallothionein-1 (MT-1) and transcription factors c-FOS and c-MYC 

accumulate at the nuclear periphery. These transcripts have also been reported to 

associate with the perinuclear cytoskeleton in order to become effectively imported 

into the nucleus (Levadoux et al., 1999; Mahon et al., 1997; Veyrune et al., 1996). 

Sorting of a subset of nuclear-encoded proteins to mitochondria involves mRNA 

localization. In yeast, for instance, the 3’-UTR of ATM1 and ATP2 mRNAs direct 

these transcripts to the vicinity of mitochondria. The latter transcript encodes a 

subunit of the mitochondrial ATP synthase. Interestingly, impaired ATP2 mRNA 

sorting correlates with a severe respiratory deficiency indicating a link between 

mRNA localization and protein function (Corral-Debrinski, 2007; Corral-Debrinski et 

al., 2000; Margeot et al., 2002; Sylvestre et al., 2003). Local enrichment of transcripts 

at mitochondrial-bound polysomes may ensure an effective cotranslational import 

into these organelles. 

There is less known about RNA localization in the plant kingdom than in animal cells 

but a role for RNA as a long-distance information molecule is emerging in plant 

biology. Over the last decade, there is a growing body of evidence that the phloem 

high-pressure translocation stream, in addition to substrate delivery, can act as an 

information pipeline that allows the transport of small RNAs, such as siRNAs and 
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miRNAs, but also of mRNA transcripts. The intercellular and long distance transport 

of RNA molecules over makes it possible that developmental and physiological 

processes are coordinated at level of the whole plant (Fig 6D). Support for the 

concept of RNA-based long distance signalling was provided by the identification of a 

unique set of mRNAs isolated from phloem sap (Ruiz-Medrano et al., 1999; Ruiz-

Medrano et al., 2001). In situ RT-PCR analysis revealed that the phloem stream has 

the capacity to mediate transport of several messenger RNA transcripts, such as FT-

mRNA, PFP-LeT6 mRNA or CmNACP mRNA, over very long distances to the apical 

meristem (Kim et al., 2001; Ruiz-Medrano et al., 1999; Xoconostle-Cazares et al., 

1999). Some of these transcripts have a role in developmental processes such as 

flowering. But how long distance transport of mRNAs is linked to a specific process 

remains to be determined in more detail. 

 

1.8 Initiation of mRNA localization  
 

Cytoplasmic RNA localization is based on interactions between cis-acting sequences 

and multiple trans-acting factors. This dynamic process involves the formation of 

large RNP complexes that are continually modified through binding and release of 

protein partners (Arn et al., 2003; Mowry, 1996; Ross et al., 1997). Indeed, large 

RNP granules have been visualized during RNA transport (Barbarese et al., 1995; 

Bertrand et al., 1998; Krichevsky and Kosik, 2001; Rook et al., 2000; Wilkie and 

Davis, 2001). However, it is not yet clear how and when such protein factors 

associate with localized RNAs. Formation of a localized RNP is arguably an early 

event in the localization pathway and recent findings have suggested that the 

process could already initiate in the nucleus (Farina and Singer, 2002). A growing 

number of trans-acting localization factors have been identified as predominantly 

nuclear proteins or nucleo-cytoplasmic shuttling proteins. These proteins might 

interact with specific transcripts in the nucleus and could either mark them for 

localization and/or escort them to their ultimate destination in the cytoplasm. In 

Drosophila for example, Sqd, a member of the hnRNP (heterogeneous nuclear RNP) 

family, is required for gurken mRNA localization to the dorsal pole during oogenesis 

(Norvell et al., 1999). Sqd has been suggested to bind gurken mRNA in the 

embryonic nucleus. In mammals, recognition of MBP (myelin basic protein) mRNA by 

hnRNP A2 first occurs in the nucleus (Ainger et al., 1997; Hoek et al., 1998). The 
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formed MBP mRNP complex then exits the nucleus and localize to the myelin 

compartment of oligodendrocytes (Izaurralde et al., 1997; Munro et al., 1999). 

Similarly, the cytoplasmic RNA-binding protein ZBP (zipcode-binding protein), which 

is involved in β-actin mRNA localization in chicken fibroblasts and neurons, was 

shown to shuttle through the nucleus by means of specific nuclear import and export 

signals and to bind β-actin mRNA at its transcription site (Hüttelmaier et al., 2005; 

Oleynikov and Singer, 2003; Ross et al., 1997; Zhang et al., 2001). Finally, the 

strictly nuclear dsRNA-binding protein Loc1 is required for the efficient localization of 

ASH1 mRNA to the yeast bud tip (Long et al., 2001). She2p was proposed to shuttle 

between nucleus and cytoplasm (Kruse et al., 2002). In sum, this favours the idea 

that nuclear and cytoplasmic steps in the RNA transport pathway are linked. 

 

 
 
Figure 7: Model of RNA localization factors (RLFs) shuttling between 
nucleus and cytoplasm. RLFs associate with transcripts designated for 

cytoplasmic RNA localization shortly after transcription and form a localized 

RNP or “locasome” (1). The resulting nuclear RNP is exported through the 

Nuclear Pore Complexes (NPC). After recruitment of additional factors such 

as adapters and motor proteins, the resulting transport competent RNP 

complex travels along polarized cytoskeleton e.g. actin filaments (4) to the 

target site where it is anchored and locally translated (5). The released RLFs 

can enter the nucleus for a second round of RNA binding (6).  

25
 



1.9 Aim of this work 
 

There is an increasing line of evidence that the ‘nuclear history’ of an mRNA has an 

important role in the determination of its fate in the cytoplasm (Farina and Singer, 

2002; Giorgi and Moore, 2007; St Johnston, 2005). In yeast, little is known about 

when and how such localized RNP complexes are formed. Following the route of 

ASH1 mRNA and its subcellular localization upon various conditions should reveal 

where localized RNPs might be assembled. One aim of this work was the 

investigation of the subcellular distribution She2p and of all other trans-acting factors 

in order to understand their chronological recruitment to the RNA during RNP 

assembly. This also includes the biochemical purification of nuclear She2 bound to 

its target RNA. She2 was reported to be a nucleocytoplasmic shuttling protein (Kruse 

et al., 2002). In a second approach, cytoplasmic retention of She2 should reveal the 

biological significance of its shuttling nature. Moreover, following this strategy should 

give an explanation, which of the cytoplasmic processes in the context of RNA 

localization is affected when blocking She2’s import into the nucleus. 
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2 Results 
 

2.1 Purification of a specific antibody directed against She2p 
 

At the beginning of this thesis, no specific antibody directed against She2p was 

available commercially and therefore all biochemical and microscopic approaches 

had been performed with strains harbouring epitope tagged She2 protein. The 

disadvantage of an epitope tag becomes obvious if we consider that especially the 

binding properties of an RNA binding protein could be sterically constricted or 

inhibited, which in the end could lead to artificial results. In order to facilitate the 

biochemical characterization of She2p we decided to generate a rabbit polyclonal 

antibody against full length She2p. 

 

 
 

Figure 8: Expression and purification of recombinant She2p in E. coli.  Expression vector RJP20 

(pGEX-TEV-She2) contains a cleavage site for TEV-Protease. Expression of 55 kDa GST-She2p with 

1 mM IPTG (left panel). Soluble fraction of the cell extract was applied for binding to Glutathione 

beads (right panel). She2p was eluted by treatment with TEV-protease (marked by asterisks). Pure 

She2-antigen was obtained after removal of His-tagged TEV-protease with NiNTA. 
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To get rid of unspecifically cross-reacting antibodies in the serum it was necessary 

affinity purify the antibody. Therefore, purified She2-antigen was produced in high 

amounts. She2p was recombinantly expressed in E. coli from a pGEX-T expression 

vector and was then purified in two subsequent steps. Upon induction of the GST-

She2p fusion protein, only a small fraction was soluble, whereas most of the 

produced protein was in inclusion bodies. The correctly folded GST-She2 protein in 

the soluble fraction was applied for binding to glutathione beads. To avoid increased 

production of antibodies directed against GST the fusion protein contains a 

recognition site for the TEV protease to cleave off the desired She2 protein. To 

further increase purity of the antigenic material, the engaged His-tagged protease 

was removed by an additional step using Ni-NTA sepharose. Rabbits immunized with 

purified She2p produced specific antibodies already after the third bleeding (data not 

shown). Further purification of the yielded serum by affinity chromatography visibly 

increased specificity of the antibody.  

 

 
 
Figure 9: Specificity of purified She2-antibody. A. Western blot analysis using purified α-She2 

directed against 28 kDa She2p detects a single band in a wild type strain (WT), but not in a she2∆ 

strain. B. Representatives of WT cells in a simultaneous stain of She2p (green signal) using 

immunofluorescence (1st purified α-She2/2nd Alexa488 goat α rabbit)and ASH1 mRNA (red signal). In 

situ hybridisation (FISH) was performed using TexasRed labelled ASH1-oligonucleotides. Overlap of 

She2p and ASH1 mRNA signals (merge, yellow signal) at the tip of daughter cell (arrowhead) 

indicates colocalization. Nuclei were stained with DAPI (blue). 
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As displayed in figure 9A the purified antibody detects She2p as a single band with 

the expected size of 28 kDa in a western blot whereas in a she2∆ strain no bands 

show up. In both lanes, no cross-reaction by the antibody was detectable. The 

remarkable specificity makes this polyclonal antibody highly suitable for 

immunofluorescence (IF) microscopy. In figure 9B, functionality of the antibody was 

assayed in a dual stain of She2p and the transported ASH1 mRNA. The purified 

antibody detects She2 in emerging daughter cells (green signal). The merged picture 

clearly shows the colocalization of She2p with its target mRNA. 

 

2.2 She2 is a nucleo-cytoplasmic shuttling protein 
 

Although no well-known RNA binding motifs are present within the She2 protein, it 

can bind to all localization elements of the ASH1 mRNA (Böhl et al., 2000). In theory, 

the first binding of She2p to its target RNA may already occur shortly after 

transcription in the nucleus. This suggests that She2p is able to enter the nucleus. 

After binding, there are two possible scenarios in order to leave the nucleus, either 

dependent on the export of its mRNA or dependent on protein export. With a new 

antibody in hands, it is now possible to address this question without the use of 

epitope tagged She2p. Precedence for the scenario that She2p enters the nucleus at 

least temporarily and become exported in an RNA-dependent fashion was provided 

by a previous study using a thermosensitive mutant of the mRNA export factor 

Mex67 (Kruse et al., 2002). In a complex together with Mtr2p, Mex67 is essential for 

the export of bulk poly(A)+ mRNAs since it provides the passage of mRNPs through 

the nuclear pore complex. In the temperature sensitive mutant mex67-5ts, mRNA 

export is strongly impaired when shifted to its non-permissive temperature at 37°C 

(Segref et al., 1997). After 5 minutes at elevated temperatures, the mutant cells start 

to accumulate poly(A)+ mRNA in the nucleus. The nuclear accumulation of poly(A)+ 

mRNA can be monitored by in situ hybridisation with fluorescently labelled oligo-dT 

probes. Figure 8B shows that at permissive temperature (26°C) mRNA export 

proceeds as can be observed by the cytoplasmic staining of exported mRNA. 

However, cells show accumulated poly(A)+ mRNAs in nuclei after shift to elevated 

temperature (37°C). Since mRNA export is a highly essential process, a single 

deletion of MEX67 is not viable. The temperature sensitive mutant mex67-5 strain 
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was generated by ‘shuffling out’ the wild type MEX67 copy (URA selectable plasmid) 

with a plasmid containing the mutant mex67-5 mutant allele (TRP selectable plasmid) 

using 5’-FOA (5’-Fluorootic Acid) containing plates. 5’-FOA is converted to a toxic 

compound (5’-fluorouracil) by cells expressing a functional URA3 gene. Thus, on 5’-

FOA containing media, mutant strains can be selected that have lost the wild type 

copy (URA plasmid) but instead carrying the mutant plasmid (TRP plasmid).  

 

 
Figure 10: The thermosensitive mutant mex67-5. A. Cells of strain RJY612 (mex67-5) were fixed 

and stained by in situ hybridisation with Cy3-labelled oligo-dT probes directed against poly(A)+ mRNA. 

Cells display a cytoplasmic staining of poly(A)+ mRNA at 26°C (upper panel), after shift to non-

permissive temperature (37°C), poly(A)+ mRNA accumulate in nuclei (lower panel). Nuclei were 

stained with DAPI (left panels). B. Temperature sensitive growth of mutant strain RJY612 (mex67-5) 

and respective wild type control RJY646 (MEX67+) in drop test at different dilutions (OD 1-1:10000). 

Plates incubated at 26°C (left panel) or 37°C (right panel) for 2 days. At 37°C, mex67-5 mutant is not 

viable. In contrast, growth of MEX67+ control strain is not affected. 
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In order to determine whether the resulting strains are temperature sensitive, growth 

of both, mex67-5 and MEX67+ control strain were analysed in a drop test under 

permissive and restrictive conditions (Figure 10B). The thermosensitive mex67-5 

strain is not able to grow at 37°C whereas in contrast, growth of the control strain 

(MEX67+) remains unaffected. To investigate nuclear/cytoplasmic distribution of 

She2p in a mex67-5 temperature sensitive mutant, cells of this strain were grown 

logarithmically at 26°C and fixed for immunofluorescence before and after a shift to 

the restrictive temperature at 37°C for one hour. Staining of She2p was then 

performed using the purified She2-antibody. Under permissive conditions, She2p 

localizes to the bud tip like in wild type. In contrast, cells of the same culture display 

an accumulation of She2p in nuclei after temperature shift to restrictive conditions 

(Figure 11). Hence, while following its target mRNAs She2p is trapped in nuclei upon 

inhibition of mRNA export. This suggests that She2 is able to enter the nucleus and 

under normal condition is exported in mRNA-dependent fashion. Taken together, 

these results confirm a nucleo-cytoplasmic shuttling for She2 as was proposed in 

previous studies performed with myc-tagged She2p (Kruse et al., 2002). 

 

 
 

Figure 11: She2p accumulates in nuclei upon inhibition of mRNA export. Cells of strain RJY612 

(mex67-5) in indirect immunofluorescence. She2 was stained with 1st purified α-She2 and 2nd 

Alexa488 goat α rabbit antibodies (green signal, middle panels). Nuclei were stained with DAPI (blue, 

left panels). Merged signals (right panels). Prior to a temperature shift at 26°C, cells display 

localization of She2p to the bud tip (upper panels). Temperature shift of the same culture to 37°C for 

one hour resulted in a nuclear staining of She2p (lower panels). 
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2.3 A subpopulation of She2p is nuclear 
 

The accumulation of She2p under conditions where mRNA export is blocked 

suggests a nuclear interaction of She2p with ASH1 mRNA. Indirect 

immunofluorescence of wild type cells displays an overall distribution of She2 with 

the majority of the protein in the cytoplasm. However, this indicates that at least a 

portion of She2p might be present in the nucleus. In order to gain biochemical 

evidence on nuclear She2p, intact yeast nuclei were isolated by subcellular 

fractionation using differential centrifugation (Hurt et al., 1988). After cell breakage, 

the nuclei containing cell fraction (crude nuclear pellet, CNP) was separated from 

cytoplasmic material and cell debris by two steps of differential centrifugations. The 

resulting CNP was loaded onto a Ficoll/sucrose density step gradient ranging from 

1.2 to 2M sucrose in order to purify the nuclear extract further (see Fig. 12). All 

fractions collected were analyzed in a western blot. As shown in figure 12A pure and 

intact nuclei accumulate into fraction IV through sedimentation, which corresponds to 

the interphase between 1.5 and 1.8M sucrose. The presence of nuclei in this fraction 

was verified with an antibody directed against a subunit of RNA polymerase I 

(Rpa49p). Because Rpa49p is a soluble nuclear marker, it is also detectable in lighter 

fractions due to broken nuclei. However, fraction IV is devoid of the soluble 

cytoplasmic marker Pgk1p (phosphoglycerate kinase). In contrast, also a 

subpopulation of She2p is cofractionating with intact nuclei. The presence of She2p 

in nuclear fractions has been shown independently with other biochemical 

fractionation methods. In 2-step and 5-step gradients, which were used for the 

floating of ER membranes, She2p has been observed to cosediment with intact 

nuclei as well (Schmid et al., 2006) supporting the evidence that She2p is at least 

partially nuclear. The nuclear interaction of She2p with ASH1 mRNA in nuclei was 

assessed by immunoprecipitation of She2p using only purified nuclear material. In a 

subsequent step, the immune pellet was probed for the presence of bound ASH1 

mRNA by RT-PCR (IP-RT). As a control, subcellular fractionation and the 

subsequent IP-RT reaction were in parallel performed also with a she2∆ strain in 

order to exclude that She2p or ASH1 mRNA was precipitated with beads only. 

Immunoprecipitation of She2p was performed with the purified She2-antibody 

coupled to magnetic Protein G-beads. Using wild type nuclear fractions, She2p was 

successfully precipitated with the antibody (Fig. 12B).  
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Figure 12: Nuclear RNA-protein interaction of She2p and ASH1 mRNA. A. Subcellular 

fractionation of WT (SHE2+, upper panel) and control strain RJY126 (she2∆, lower panel). Western 

blot analysis: In WT a subpopulation of She2 cofractionates with Rpa49p (Fraction IV, red box). Same 

fraction is devoid of cytoplasmic marker Pgk1p. B. Immunoprecipitation of She2p in a western blot. 

She2p was successfully immunoprecipitated (immune pellet, P) out of nuclear fraction IV (total, T, 

supernatant S). C. RT-PCR with primers against ASH1 E3 localization element. E3-signal was only 

detected in an elution with 100 mM Glycine-HCl (GE 1µl and dilution 0.1 µl) of WT (SHE2+, upper 

panel) but not in control (she2∆, lower panel). Elution with 10% SDS (SDS). Control without Reverse 

Transcriptase (-RT) 
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A portion of the immunoprecipitated material was subjected to RT-PCR reactions. In 

a mild elution step using 100 mM glycine-HCl at low pH, the She2 antigen could be 

specifically released from the antibody. This ensures that only She2-associated but 

not DNA or unspecific mRNA attached to magnetic beads is detected in the 

subsequent RT-PCR. This step is critical since nuclei are full of nucleic acids. In a 

second elution step using SDS, all unspecific bound material attached to the beads is 

washed off. In a wild type strain, RT-PCR reaction with primers amplifying the E3 

localization element reveals the presence of ASH1 mRNA in the glycine-elution. 

Hence, the detected ASH1 mRNA was bound to She2p precipitated from nuclear 

fractions. Under the same conditions, ASH1 PCR product was not detected in the 

glycine elution of the control (∆she2) suggesting that amplification of ASH1 E3 is 

dependent on the presence of She2p. Unspecific bound ASH1 mRNA/DNA 

contaminants were detected in the SDS elution of both, wild type and control strain. 

Taken together, these results suggest a nuclear interaction of She2p with ASH1 

mRNA. This let me hypothesize that She2p enters the nucleus in order to fulfil an 

early recognition and binding to ASH1 mRNA. 

 

2.4 Subnuclear accumulation of She2p upon inhibition of mRNA export 
 

A closer look at microscopic data of She2p revealed that the accumulation upon 

mRNA export block is not within the chromatin-rich regions of the nucleoplasm. She2 

signals did not overlap with corresponding signals of chromosomal DNA stained by 

DAPI (4',6-Diamidino-2-phenylindol) but shows a crescent-like structure next to this 

region. To address the question if accumulation of She2p might be located within 

other subnuclear regions such as the nucleolus, a costain of She2p with Nop1p was 

required (Aris and Blobel, 1988). Thus, cells of thermosensitive mex67-5 strain and 

the corresponding wild type control (MEX67+) were grown logarithmically at 26°C. 

ASH1, which was under the control of a GAL1 promoter was overexpressed for one 

hour and then shifted to non-permissive temperatures. In the wild type control, bud 

tip localization of She2p remains unaffected upon temperature shift. In contrast, 

mex67-5 temperature sensitive mutant displays increased accumulation of She2p in 

nuclei. Moreover, in an immunofluorescence double staining accumulated She2-

signals largely overlapped of with signals of the nucleolar antigen Nop1p (Fig. 13, 

merged panel, yellow signal). In summary, the inhibition of mRNA export does not 
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allow She2p to leave the nucleus but leads to its accumulation at sites of the 

nucleolus. This supports the idea that under normal conditions nuclear She2p may 

transit through the nucleolus. 

 
 

Figure 13: She2p accumulates in nucleoli upon block of mRNA export. Representative cells of 

thermosensitive strains RJY1149 (mex67-5ts, GAL1-ASH1) and corresponding WT control RJY2239 

(MEX67+, GAL1-ASH1) in an immunofluorescence double staining of She2p and Nop1p. 

Overexpression of ASH1 was induced by 4% Galactose, and cells shifted to restrictive temperatures 

for one hour. Fixed cells were stained for She2p (red signal) with 1st purified α-She2 and 2nd Alexa594 

goat α rabbit antibodies and Nop1p (green signal) with 1st α-Nop1p and 2nd Alexa488 goat α mouse 

antibodies. Nuclei were stained with DAPI (blue signal). Wild type control (top panels) displays normal 

localization of She2p at the bud tip. Overlap of She2p and Nop1p signals mex67-5ts (lower panels) 

indicate colocalization (merge, yellow signal).  

 

2.5 The export of She2p is dependent on the binding to its target mRNA 
 

Previous data suggested that She2p protein is exported in an mRNA-dependent 

manner. It is also known that a deletion mutant with an N-terminal truncation of 

She2p (She2p∆N70) leads to an increase in nuclear accumulation (Kruse et al., 

2002). Furthermore, a genetic screen identified certain arginine and asparagine 
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residues within the NH2-terminus of She2p, which are essential for RNA binding 

activity (Gonsalvez et al., 2003; Niessing et al., 2004). In order to assess if some of 

these specific mutations in She2p would alter the nuclear/cytoplasmic distribution, 

mutants having lost the ability to bind ASH1 mRNA were investigated by indirect 

immunofluorescence. Since it has been reported that single amino acid substitutions 

N36S or R63K are sufficient to cause the loss of ASH1 mRNA localization 

(Gonsalvez et al., 2003), we generated these RNA binding mutants by in vitro 

mutagenesis. To ensure a complete loss of RNA-binding activity, also a double 

substitution She2-N36S-R63K was generated also (Maria Schmid).  

 

 
 
Figure 14: RNA binding mutant of She2p accumulate in nucleoli. Representative cells of strain 

RPY2838 (she2∆, She2-N36S-R63K) in indirect immunofluorescence. Nucleocytoplasmic distribution 

was assessed in a dual stain of She2p and Nop1p. She2p (red signal) was stained with 1st purified α-

She2 and 2nd Alexa 594 goat α-rabbit antibodies. Nop1p (green signal) was stained with 1st α-Nop1p 

and 2nd Alexa 488 goat α-mouse antibodies. Nuclei were stained with DAPI (blue signal). Overlap of 

She2 and Nop1-signals in the merged panel (yellow signal) indicate colocalization.  
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When expressing She2-N36S, She2-R63K and She2-N36S-R63K mutants instead of 

She2p the ability to become localized at the tip of daughter cells was lost. Moreover, 

ASH1 mRNA was mislocalized in all She2-mutants analyzed. In contrast to a 

previous study, which was performed with myc-epitope tagged She2p (Gonsalvez et 

al., 2003), the single amino acid substitution in the She2-N36S mutant was sufficient 

to accumulate She2p in nuclei (Schmid et al., 2006). The She2-R63K mutant showed 

just a very weak nuclear accumulation, whereas the mutant phenotype was strongest 

in the double mutant She2-N36S-R63K. Interestingly, nuclear accumulation of this 

mutant displays the staining of a nucleolar crescent similar to that observed for She2-

accumulation upon block of mRNA export. A double stain of She2p with nucleolar 

marker Nop1p clearly shows that signals of both proteins largely overlap (Figure 11, 

yellow signal, merge). Importantly, nucleolar accumulation in this case was not 

caused by the inhibition of mRNA export. Instead, nuclear retention of this mutant 

may be due to the loss its specific RNA-binding activity. Indeed, when addressing the 

binding affinity of this mutant in filter binding experiments She2-N36-R63K mutant 

revealed a strong decrease compared to wild type She2p, which was able to bind 

ASH1 E3 RNA with a binding constant of Kd=147 nM (Marisa Müller, personal 

communication). The binding of this mutant to an unrelated RNA stem loop of the 

human immundeficieny virus (HIV-I TAR RNA) was also abolished excluding that 

RNA binding could be responsible for nucleolar accumulation. Therefore, She2’s 

association with the nucleolus is probably independent of RNA binding activity. 

However, the export of She2 requires the export of ASH1 mRNA. This suggests that 

RNA binding activity is a prerequisite for She2p to become exported into the 

cytoplasm together with its RNA target. 

 

2.6 Following She2p in vivo 
 

In order to rule out artefacts based on staining or fixation procedures, Green 

fluorescent protein (GFP) was used to study She2’s cellular distribution also in living 

cells. So far, tagging cassettes used for a C-terminal fusion with GFP on the genome 

have not resulted in a functional She2 protein (Andreas Jaedicke, personal 

communication). A large GFP-tag at the C-terminus may probably interfere with 

She2-function. Therefore, GFP was fused to the NH2-terminus of She2p. GFP-She2p 

fusion was provided on a plasmid using the endogenous promotor and the 3’ 
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untranslated region of the SHE2 gene. To avoid interference or inhibition of RNA-

protein or of other protein-protein interactions, an additional flexible linker that 

consists of the amino acid sequence PPGPP was placed in between the two 

proteins. Based on structural data, it has been reported that She2p forms dimers 

(Niessing et al., 2004). To investigate functionality of GFP-She2p, the constructed 

plasmid was transformed into she2∆ background to exclude hybrid dimerisation 

products between endogenous She2p and GFP-She2p. Cells transformed with a 

plasmid express GFP-She2p at a size of ~60 kDa as determined by western blot 

analysis with an antibody directed against either the She2 or the GFP portion. When 

GFP-She2p instead of She2p was expressed, green RNP particles were visible 

under the microscope. These green particles showed movement and finally 

localization at the tip of daughter cells under normal conditions suggesting that 

transport of GFP-She2 was functional (Figure 15A). In addition, functionality 

regarding RNA transport was verified by in situ hybridization showing bud tip-

localization of ASH1 mRNA in cells expressing GFP-She2p (data not shown). 

 

2.7 Binding of She2 to ASH1 mRNA occurs at early stages of mRNA 
maturation 

 

To test if GFP-She2p accumulates in nuclei of living cells upon inhibition of mRNA 

export the constructed plasmid was transformed into a mex67-5 mutant background. 

Consistent with previous results, GFP-She2p localizes to the tip of daughter cells 

under permissive conditions, whereas upon arrest of mRNA export, GFP signals 

visibly accumulated in nuclei. This suggests that the 60 kDa GFP-She2p, even 

though it is bigger in size is also able to enter the nucleus. In order to address the 

question if binding of She2 to ASH1 mRNA occurs at earlier stages of RNA 

processing, it would be necessary to test if temperature sensitive mutants of other 

mRNA export factors such as Yra1p and Sub2p are able to accumulate GFP-She2p 

in the nucleus. Yra1p is an essential and conserved mRNA export factor that directly 

interacts with the mRNA transport complex Mex67p/Mtr2p (Strasser and Hurt, 2000). 

Sub2p has been reported to be a splicing factor required for nuclear mRNA export 

through its interaction with Yra1p (Strasser and Hurt, 2001). In the process of RNA 

export, both proteins act upstream of the final mRNA exporter complex 

Mex67p/Mtr2p.  

38
 



 
 

Figure 15: Nuclear accumulation of GFP-She2p in living cells. A. Nuclear/cytoplasmic distribution 

of representative cells of thermosensitive strains RJY2198 (GFP-She2p, mex67-5, GAL1-ASH1), 

RJY2354 (GFP-She2p, sub2-85, GAL1-ASH1) and RJY2273 (GFP-She2p, yra1-1, GAL1-ASH1) 
expressing GFP-She2. At permissive temperature (26°C), all strain show bud tip localization of GFP-

She2p (left block). Nuclear accumulation was observed only after shifting temperature to restrictive 

conditions (37°C) for two hours (right block). Cells in DIC (right). B. The RNA binding double mutant 

GFP-She2-N36S-R63K was expressed instead of She2p in living cells (RJY2785). GFP-She2 

localizes to the bud tip (left). In contrast, the corresponding GFP-She2-N36S-R63K mutant displays 

sequestration of GFP signal in nuclei. Note that mRNA export was not inhibited in these cells.  
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To test whether She2 export depends on Sub2p or Yra1p, thermosensitive mutants 

sub2-85 and yra1-1 were generated by ‘shuffling out’ the wild type copy with 5’-FOA 

containing media as was previously described for the mex67-5ts strain. The resulting 

temperature sensitive strains expressed and localized GFP-She2 under permissive 

conditions (Figure 15A, left panels). However, after a shift to restrictive temperatures, 

accumulation of GFP-She2 was also detectable in nuclei of a sub2-85 and yra1-1 

thermosensitive cells (Figure 13, right panels). This can only be the case if She2-

binding occurs at very early stages prior to the recruitment of Yra1p. Because Yra1 

and Sub2p are recruited to nascent mRNAs already during transcription elongation 

(Aguilera 2005), binding of She2p to ASH1 mRNA may occur co-transcriptionally, 

probably at transcription sites. Indirect immunofluorescence has already shown that 

She2-N36S-R63K mutant is defective in RNA binding and thus leading to its 

accumulation in nuclei. In order to address if accumulation of this RNA binding 

mutant occurs in living cells as well, it was provided with a GFP-tag. In the wild type 

control, cells expressing GFP-She2 display bud tip localization of the GFP signal. 

However, GFP-She2-N36S-R63K RNA binding mutant visibly accumulates in nuclei 

of living cells (Fig. 15B).  

 

2.8 She2 dimerisation is necessary for localization 
 

Based on biochemical and structural data (Niessing et al., 2004) and on observations 

coming from two-hybrid interactions of She2p with itself (Böhl et al., 2000), it has 

been suggested that She2p forms a homodimer. Furthermore, a serine at position 

120 was reported to be essential for dimer formation. Thus, amino acid substitution 

S120Y results in only monomeric She2p, which is also defective in ASH1-

localization. To assess whether monomeric She2p has an altered 

nuclear/cytoplasmic distribution, the dimerisation mutant She2-S120Y was generated 

by site directed mutagenesis and expressed in she2∆ cells. Western blot analysis 

and IF microscopy revealed that monomeric She2 is expressed, and is ubiquitously 

distributed throughout the cell. In contrast to wild type She2p, the monomer does not 

show any localization at the tip of daughter cells suggesting that binding of She2p to 

She3p/Myo4p complex is impaired and dependent on dimerisation. Moreover, the 

dimerisation mutant does not accumulate within the nucleus as was observed 

previously in RNA binding mutants of She2p. It has been reported for monomeric 
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She2 that specific binding to each of the ASH1 localization elements is lost (Marisa 

Müller, personal communication). According to these data, one would assume that 

the dimerisation mutant would also show an altered distribution similar to that 

observed for the RNA binding mutant. Apparently, nuclear accumulation is not strictly 

linked to the loss of RNA binding activity. This could be the case if only dimerised 

She2p is actively imported into the nucleus. Alternatively, only the dimer but not the 

monomer of She2p is kept by an unknown nuclear factor when RNA binding is lost. 

 

 
 

Figure 16: Monomeric She2p is ubiquitously distributed throughout the cell. Cells of strain 

RJY358 (WT, left), RJY2783 (She2-N36S RNA-binding mutant, middle) and RJY2960 (She2-S120Y 

dimerisation mutant, right) stained by the She2 antibody in indirect immunofluorescence. Note that 

She2-S120Y mutant does not localize to the tip of daughter cells. Accumulation of monomeric She2 in 

nuclei like in the RNA binding mutant was never observed. 

 

2.9 Inhibition of mRNA export in a mex67-5ts/∆rrp6 mutant leads to 
accumulation of ASH1 mRNA in the nucleolus  

 

To understand why She2p is visibly associated with the nucleolus, it was necessary 

to investigate if ASH1 mRNA also has its transit through this region. It was previously 

reported that when the 3’-Untranslated Regions (3’-UTR) of various RNAs were 

fused to U1A-hairpins, only the ASH1-3’UTR was able to direct a U1A-GFP reporter 

into the nucleolus under conditions where mRNA export was blocked. The same 
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construct using PGK1-3’UTR resulted in a filling of the nucleoplasm (Brodsky and 

Silver, 2000). Most likely, the cis-element within the ASH1-3’UTR contains the 

required information to direct it into the nucleolus. This observation supports the idea 

that localized mRNAs such as ASH1 mRNA may assemble into a RNP complex in 

the nucleolus where many kinds of RNPs are formed. To test whether this hypothesis 

is valid, cells of mex67-5 mutant were subjected to inhibition of mRNA export. The 

cellular localization of ASH1 mRNA was investigated by a dual colour in situ 

hybridisation with labelled antisense oligonucleotides against ASH1 (red) and ITS2 

(green). ITS2 oligonucleotides directed against the internal transcribed spacer (ITS) 

region of ribosomal RNA precursors were used as to mark the position of the 

nucleolus. In addition, these cells expressed ASH1 under the control of an inducible 

GAL1 promotor. A short pulse of ASH1 expression was induced by the addition of 

4% galactose prior to a temperature shift. In cells of a wild type control (MEX67+), 

ASH1 mRNA is localized to the bud tip (Figure 15, upper panel).The bright red dots 

within the DAPI-stained region of chromosomal DNA are most likely sites of ASH1 

transcription as their presence is strictly correlated to the induction by galactose. 

Because ribosome processing predominantly occurs in nucleoli, they were clearly 

stained by ITS2 antisense oligonucleotides (green). The observed accumulation of 

ASH1 mRNA in mex67-5 cells was not nuclear nor nucleolar but only visible as red 

dots at transcription foci. A possible explanation for this was already given by 

previous observations made for heat shock RNAs. It has been suggested that block 

of nuclear mRNA export in mutants such as mex67-5 leads to hyperadenylated 

transcripts, which as a result accumulate at sites of transcription (Hilleren and Parker, 

2001; Libri et al., 2002). Retention of the transcripts requires components of the 

nuclear exosome. Thus, the additional deletion of the non-essential nuclear exosome 

component Rrp6p in combination with an export mutant would eliminate transcript 

retention within foci (Hilleren et al., 2001; Thomsen et al., 2003). In order to analyze 

subnuclear localization of released ASH1 transcripts, a mex67-5/∆rrp6 mutant was 

generated, and tested under conditions where mRNA export is blocked. After a shift 

to its restrictive temperature, cells of this mutant have lost transcript retention at 

genomic foci. Instead, the ASH1 mRNA accumulated visibly in an area of the nucleus 

largely devoid of DAPI stain but considerably overlapping with the ITS2 stain. 
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Figure 17: In the mex67-5/∆rrp6 mutant, ASH1 mRNA accumulates in nucleoli upon block of 
mRNA export. A. Schematic representation of 35S rRNA containing ITS (Internal Transcribed 

Spacer) and ETS (External Transcribed Spacer) regions with cleavage sites for rRNA processing. 

Fluorescently labelled antisense oligonucleotides directed against ITS2 was used as nucleolar marker, 

which marks the position of 35S, 33S, 32S and 27S rRNA intermediates in the 90S and 60S 

preribosome. B. Double in situ hybridisation performed for strains RJY2239 (MEX67+, top panels), 

RJY1149 (mex67-5, middle panels) and RJY2849 (mex67-5/∆rrp6, bottom panels). Cells were grown 

at 26°C; ASH1 expression was induced by addition of 4% galactose for half an hour prior to 

temperature shift to restrictive conditions at 37°C. WT control shows normal localization (top panels). 

Cells of mex67-5 only show stain of transcription foci (red dots) in chromatin-stained region. In cells of 

mex67-5/∆rrp6 double mutant ASH1 stain overlaps with ITS2 signal (yellow signal, merge). 
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This suggests that ASH1 mRNA is accumulating in the nucleolus when released from 

transcription sites. The same experiment was performed using a mex67-5/∆rrp6 

strain that was additionally deleted for SHE2. In this case, ASH1 mRNA was not 

accumulating in the nucleolus upon RNA export block. This indicates that the 

nucleolar accumulation of the ASH1 transcript requires the presence of She2p. In 

summary, the microscopic data on subnuclear localization of both, the ASH1 mRNA 

and its corresponding binding protein She2p provide the first evidence that 

components of a localized RNP have at least a transient passage through the 

nucleolus. 

 

2.10 Trans-acting factors Puf6 and Loc1 are nucleolar proteins 
 

The PUF family protein Puf6 is an RNA binding protein found in tandem affinity 

purification (TAP) with She2 as bait protein. It has been reported to bind PUF 

consensus sequences in the 3’ UTR of ASH1 mRNA and therefore suggested to act 

as a repressor of translation (Gu et al., 2004). The cellular distribution of myc-tagged 

Puf6p was assessed by indirect immunofluorescence. Cells expressing Puf6p-myc9 

show the typical crescent like staining of the yeast nucleolus (Figure 16A). In yeast, 

Nhp2p has been reported to be a component of box H/ACA small nucleolar 

ribonucleoprotein particles (snoRNPs), which have a key role in the synthesis of 

eukaryotic ribosomes (Henras et al., 2004). In a dual stain, Puf6p signals colocalize 

with the nucleolar marker Nhp2p (Fig. 18A). This is also consistent with a study on 

the global analysis of protein localization in yeast (Huh et al., 2003). Interestingly, this 

trans-acting factor with impact on cytoplasmic ASH1 transport is a predominantly 

nucleolar protein suggesting that the nucleolus might have a role in the assembly of 

localized RNPs. However, Puf6p has been suggested to shuttle as well. In a previous 

study, which used the MS2-system to follow RNA localization in vivo, Puf6p was 

found to colocalize with cytoplasmic ASH1 particles. Therefore, it has been proposed 

to travel with the localized RNP to prevent its translation during transport (Gu et al., 

2004). Nevertheless, bud tip localization of Puf6p was never observed with indirect 

immunofluorescence even when ASH1 was highly overexpressed. This could be due 

to the different experimental setups. However, this observation cannot exclude a 

putative shuttling behaviour of Puf6p. 
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A three-hybrid in vivo RNA binding assay identified Loc1p as an RNA binding protein 

that acts in ASH1 mRNA localization. IP-RT and band-shift assays have 

demonstrated the binding of Loc1p to the E3 element of ASH1 mRNA (Long et al., 

2001). Subcellular localization of myc-tagged Loc1p was analyzed using indirect 

immunofluorescence. Like Puf6p, Loc1p clearly shows a subnuclear crescent 

indicating that it could be also a nucleolar protein. Colocalization with the nucleolar 

marker protein Nhp2 (Henras et al., 2001, see above) was confirmed in a dual stain 

(Fig. 18B). Although Loc1p is essential for the efficient localization of ASH1 mRNA, it 

was recently published to be also required for the assembly and nuclear export of the 

60S ribosomal subunit (Urbinati et al., 2006). Consistent with this function, it has 

been shown to colocalize with the nucleolar marker Nop1. Loc1p has been previously 

suggested to be a stationary nucleolar protein because shuttling for this protein has 

not been observed (Long et al., 2001). However, it is not clear why nucleolar Loc1 

has such an impact on cytoplasmic ASH1 mRNA localization. But interestingly, three 

of four known RNA binding proteins involved in ASH1 mRNA localization reveal a 

connection to the nucleolus. One of them, She2p, is a nucleo-cytoplasmic shuttling 

protein whereas Puf6p and Loc1p are mainly nucleolar proteins. ASH1 mRNA 

transits the nucleolus as well supporting the evidence that nuclear formation of 

localized RNPs may occur within this subnuclear compartment. 
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Figure 18: Puf6 and Loc1 are nucleolar proteins. Subcellular distribution of Puf6 (A) and Loc1p (B) 

in IF staining of strains RJY2663 (Puf6p-myc9) and RJY915 (Loc1p-myc9). Myc-tagged proteins were 

stained with 9E10 α-myc (left panels), nuclei were stained DAPI (upper panels, middle), DIC (upper 

panels, right). Colocalization of Loc1p and Puf6 with the nucleolar marker protein Nhp2 was assessed 

in an immunofluorescence double stain (A, B, lower panels). Merged signals indicate colocalization 

with the nucleolar marker (lower panels, right).  
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2.11 Khd1p does not accumulate in the nucleolus upon block of mRNA export 
 

The presence of cis-acting localization elements within the coding sequence of ASH1 

mRNA reflects the putative role in the regulation of its translation (Chartrand et al., 

2002). Khd1p, a protein with three hnRNPK homology (KH) RNA-binding domains, is 

another trans-acting factor, which has been reported to bind only to the E1 

localization element and to participate in ASH1 mRNA translational control (Irie et al., 

2002; Paquin et al., 2007). To address the question if nucleo-cytoplasmic shuttling is 

also evident for Khd1p cellular distribution was analyzed in a mex67-5 mutant under 

conditions of mRNA export block. Prior to inhibition of mRNA export ASH1, 

expression was induced using a strong GAL1 promotor. Under permissive conditions, 

Khd1p was found distributed throughout the cell. Although ASH1 was strongly 

overexpressed, bud tip localization of Khd1p could not be observed. Regardless, in 

cells shifted to non-permissive temperature, a substantial fraction of Khd1p 

accumulated in the nucleus. 

 

 

 
 

Figure 19: Khd1p is a nucleo-cytoplasmic shuttling protein. Indirect immunofluorescence showing 

cellular distribution of HA-tagged Khd1p in thermosensitive strain RJY2645 (Khd1p-HA6, mex67-5, 

GAL1-ASH1, lower panel) and control strain RJY2646 (Khd1p-HA6, mex67-5, GAL1-ASH1, upper 

panel). Cells were grown logarithmically in raffinose- containing medium at 26°C. ASH1 was induced 

by addition of 4% Galactose for 1 hour prior to temperature shift to 37°C for 2 hours. Left panels show 

staining of Khd1p-HA6 with 1st 16B12 α HA and 2nd Alexa488 goat α mouse antibodies. DAPI staining 

(middle) and DIC (right panels). Khd1p staining is cytoplasmic under permissive conditions (upper left 

panels). In mex67-5 cells, Khd1p accumulate in nuclei at its restrictive temperature of 37°C. 
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Hence, a second trans-acting factor of the ASH1 mRNA shows characteristics of a 

nucleo-cytoplasmic shuttling protein. However, nuclear accumulation of Khd1p does 

not resemble that of She2p. While She2p accumulated opposite of DAPI-stained 

region, the nuclear signal of accumulated Khd1p clearly overlaps with DAPI-signal. 

Thus, not all shuttling RNA-binding proteins involved in ASH1 localization accumulate 

in the nucleolus upon block of mRNA export. Similar observation has also been 

reported for the La-motif containing RNA-binding protein Sro9. The accumulation of 

this shuttling protein results in a filling of the nucleoplasm (Susanne Röther, personal 

communication). Nevertheless, Khd1p’s ability to shuttle may reflect the requirement 

to bind ASH1 mRNA already in the nucleus. This early association may help to 

assemble into an mRNP, which is competent for cytoplasmic translational control.  

 

2.12 She2p does not physically interact with other RNA localization factors 
 

To determine if She2 is physically interacting with one of above-mentioned factors, 

cells expressing myc-tagged Loc1, Khd1 and Puf6 proteins were subjected to co-

immunoprecipitation with monoclonal 9E11 α-myc antibody coupled to magnetic 

Protein G-beads and checked for the presence of She2p. The immunoprecipitated 

myc-tagged proteins were eluted with 100 mM glycine and SDS, and collected 

fractions were analyzed in a Western blot. In all strains tested, She2p was only 

present in the input material (Total) and the corresponding supernatants but not in 

immune pellets (Fig. 20). Thus, She2 is not co-immunoprecipitating with myc-tagged 

Loc1p, Khd1p and Puf6. Co-immunoprecipitation performed vice versa and TAP-

purifications of each of the proteins (Stephan Jellbauer, personal communication) 

have not revealed any direct protein-protein interaction between She2 and all other 

trans-acting factors involved in RNA localization. Since the association of these 

auxiliary trans-factors with the She2-containing core RNP is probably only temporary, 

the precipitated complex might not be stable enough to endure the experimental 

procedure. Alternatively, association of these trans-factors may be not dependent on 

a direct interaction with She2. However, preservation of the RNP under these 

conditions is also unlikely, thus leading to the loss of indirectly associated factors. 
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Figure 20: Co-IP of myc-epitope tagged RNA localization factors. Strains RJY915 (Loc1-myc9, 

upper panel), RJY2662 (Khd1p-myc9, middle panel) and RJY2663 (Puf6p-myc9, lower panel) were 

immunoprecipitated with 9E11 α myc antibody coupled to magnetic Protein G-beads. Aliquots of total 

cell extract (Total), supernatant (Sup) and immune-pellets were eluted with 100 mM glycine (IP G E) 

and SDS (IP SDS E). Western blot probed with 9E10 α-myc and purified α-She2 antibody. She2p 

signal was visible in totals and in supernatants but not in immune pellets. 

 

2.13 Nuclear Export of ASH1 mRNA does not require She2p  
 

The previous results support the idea that the early recognition and binding of all 

RNA localization factors may occur already in the nucleus. Subsequently, the 

assembled nuclear RNP is exported to the cytoplasm in an RNA dependent fashion. 

To address the question whether the export of ASH1 mRNA requires the presence of 

She2p, ASH1-localization was assessed in a strain lacking She2p. ASH1 expression 

driven by the GAL1 promoter was induced by the addition of galactose for only half 

an hour. When following the distribution of ASH1 mRNA by in situ hybridisation, 

ASH1 signal was not found within the nucleus but instead was accumulating in a 

region surrounding the nucleus (Fig. 21). Apparently, ASH1 transcripts can undergo 

the mRNA export process independent of She2p. Because the recruitment of ASH1 

mRNA to the She3/Myo4-transport machinery requires She2p, the exported message 

is not transported to the bud tip. Consistent with a previous study, which followed 

movement of the ASH1-MS2 mRNP in vivo, the exported particle was also exported 
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but stayed in close proximity to the nuclear envelope, probably attached to 

perinuclear ER (Schmid et al., 2006). Moreover, in more than 50% of she2∆ cells 

imaged, only smaller and less bright particles were observed, possibly due to 

formation of less stable or smaller mRNPs in the absence of She2p (Bertrand et al., 

1998). Thus, integrity and bud tip transport, but not the export of the ASH1 mRNP, 

are dependent on the RNA binding protein She2. 

 

 
 
Figure 21: Perinuclear localization of ASH1 mRNA in she2∆ cells. Cells of strain RJY2239 (GAL1-

ASH1, SHE2+) and RJY2416 (GAL1-ASH1, she2∆) stained for ASH1 mRNA by in situ hybridisation 

with TexasRed labelled antisense ASH1 oligonucleotides (upper panels). A pulse of ASH1 

transcription was induced with 4% galactose prior to fixation of cells. Nuclei were stained with DAPI 

(lower panels). Wild type control shows normal localization to the bud tip (left panels). In absence of 

She2p, cells accumulate exported ASH1 mRNA at the nuclear periphery. 

 

2.14 Cytoplasmic retention of She2 protein 
 

Since export of ASH1 mRNA occurs also in the absence of She2, it should be 

sufficient when the RNA is recognized and recruited to the transport complex in the 

cytoplasm. Why should She2p then enter the nucleus at all? To address this 

question, one would have to exclude She2p from the nucleus and generate a 

situation that would only allow cytoplasmic binding to ASH1 mRNA. One way to 

achieve this would be the use of temperature sensitive mutants that are defective in 

protein import. Although the 28 kD She2 protein is theoretically small enough to enter 

the nucleus by passive diffusion, an association with yeast importin-α (Srp1) has 
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been reported, suggesting that She2 might actively imported into the nucleus (Ito et 

al., 2001; Kruse et al., 2002). However, a simple block of protein import would also 

affect other essential factors required for cell viability.  

 

 
 

Figure 22: She3-She2 fusion protein is able to bind ASH1 mRNA in vivo. The NH2-terminus of 

She3p was fused to full length She2p with a flexible linker in between. A. Western blot showing 

immunoprecipitation of She2p and She3N-She2p fusion using purified She2-antibody performed in 

strains RJY126 (∆she2, left panel), RJY358 (WT, middle panel) and RJY2414 (She3N-She2p, right 

panel). T (total input), S (supernatant). 28 kD She2p (white arrowhead) or 55 kD She3N-2p fusion 

protein (black arrowhead) detected by She2-antibody in the immune pellet (P). The asterisk marks the 

portion of IgG heavy chain of She2-antibody eluted together with precipitated material.  

B. RT-PCR of immunoprecipitated materials as templates. SDS E (elution with 10%SDS), G E (elution 

with 100 mM glycine-HCl), -RT (control without reverse transcriptase). A specific product was 

amplified in the elution (G E) of precipitated She2p (middle) and She3N-S2p, but not in the negative 

control (∆she2). 
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A more elegant method to achieve cytoplasmic retention is to tether She2p to the 

adapter protein She3 artificially. She3 is a protein with cytoplasmic distribution (Huh 

et al., 2003), which serves as an adapter to link She2p to the Myo4 motor protein. As 

has been shown by two-hybrid analysis, interaction of the adapter She3p to the 

motor protein requires the NH2-terminus of She3p (Böhl et al., 2000), which has a 

strong binding affinity toward the coiled-coil region of Myo4p (Kruse et al., 2002). 

Therefore, full-length She2 protein was fused to the first 197 amino acids of She3p’s 

N-terminus in order provide a direct link to the cytoplasmic motor complex. The 

She3N-She2p fusion was constructed on a plasmid using the promotor and 3’ 

untranslated regions (UTR) of the endogenous SHE2 gene. When transformed into a 

she2∆-background the resulting cells express a 55-kDa fusion protein. In order to 

determine whether binding of the fusion protein to cis-elements of the ASH1 mRNA is 

functional She3N-She2 fusion protein was precipitated and assessed for bound 

ASH1 mRNA in an IP-RT experiment. IP-RT was simultaneously performed in a 

strain expressing She2p (wild type control) and a she2∆ strain (negative control). 

Both, She2p and She3N-She2p were successfully precipitated using α-She2 

antibody coupled to magnetic beads (Figure 22A). The immunoprecipitated material 

was eluted specifically with glycine at low pH (G E), and then subjected to RT-PCR 

with primers for ASH1 E3 element. The detected PCR products in the elution 

fractions (G E) of precipitated She3N-She2p and She2p indicate the presence of 

bound ASH1 mRNA. In the control that was lacking She2p, the respective elution 

with glycine does not show any signal in RT-PCR, suggesting that She3N-She2 

fusion protein is able to bind ASH1 mRNA in vivo.  

 

2.15 She2 artificially tethered to cytoplasmic She3p leads to its nuclear 
exclusion 

 

In order to test if tethering of She2 to the myosin motor is functional and if the 

resulting complex leads to a full transport to the bud tip, She3N-She2p mediated 

localization was assessed by indirect immunofluorescence using the She2-antibody. 

The fusion protein itself localizes to the bud tip more frequently than was observed 

for endogenous She2p (data not shown). This could be due to the She3-portion of 

the fusion protein, which through the direct link results in a higher localization 

frequency of endogenous She3p.  
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To further address, whether cytoplasmic retention of She2p could be achieved with 

this approach She3N-She2p was expressed in a mex67-5 mutant background and 

assessed for nuclear accumulation upon arrest of mRNA export. Under restrictive 

conditions, these cells did not accumulate She3N-She2p in nuclei (Fig. 23). Instead, 

nuclear exclusion of She3N-She2p was visible by the lack of staining at the region of 

the nucleus. In contrast, cells of a positive control show accumulation of She2p in 

nuclei under same conditions. Thus, the high affinity of the She3N-She2 fusion 

protein toward the coiled-coil region of Myo4p leads to cytoplasmic retention, and 

unlike the wild type She2 protein cannot be trapped in the nucleus. 

 
 
Figure 23: Cytoplasmic retention of She3N-She2 fusion protein. Cellular distribution of She3N-

She2p assessed in indirect immunofluorescence. In strain RJY2422 (MEX67, she2∆, She3N-She2p), 

She3N-S2p is expressed and localized to the tip of daughter cells (upper panel). Cells of control strain 

RJY2421 (mex67-5, she2∆, She2p) accumulate She2p in nuclei upon inhibition of mRNA export for 

one hour (middle panel). In contrast, cells of strain RJY2420 (mex67-57, she2∆, She3N-She2p) could 

not accumulate She3N-She2p in nuclei (lower panels). Note that nuclei are visibly devoid of She2-

stain. Nuclei stained with DAPI (left), α-She2 (middle), DIC (right). 
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2.16 Cells expressing She3N-She2 fusion protein are able to localize ASH1 
mRNA  

 

With a new strain in hands that restricts She2 to the cytoplasmic compartment, it was 

now possible to address the question if She2’s nuclear history has an effect on later 

stages of RNA localization.  

 

 
 
Figure 24: She3N-She2p localizes ASH1 mRNA with the efficiency of a wild type. A. 

Representatives cells of strain RJY2997 (2µ ASH1, SHE2+, upper panel) and RJY2414 (2µ ASH1, 

SHE3N-SHE2, lower panel) stained by in situ hybridisation show functional ASH1 mRNA localization. 

B. Efficiency of ASH1 mRNA localization was statistically determined by cell counts. Cells of a WT 

(black) were compared to cells expressing She3N-She2p (grey). 150 postanaphase cells were 

counted and categorized as either bud tip (75%/65%), bud (3%/12%) or not localized (22/3%). 
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Although She3N-She2 fusion protein was shown to become localized effectively to 

the bud tip it remains to be determined if ASH1 mRNA after its nuclear export is 

recognized and transported by this artificial locasome. Thus, cells expressing the 

fusion proteins were examined for functional ASH1 mRNA localization by in situ 

hybridisation.  ASH1 provided on a high copy plasmid was over-expressed in these 

cells. Like the wild type She2p, also She3N-She2p fusion protein is fully capable of 

localizing ASH1 mRNA to the tip of daughter cells (Fig. 24A). To measure efficiency 

of the fusion protein mediated transport statistically, ASH1 mRNA localization was 

determined by in situ hybridisation. The observed localization patterns of late 

anaphase cells fall into three categories: bud tip localization, bud localization or no 

localization. Of 150 cells counted, 65% displayed bud tip localization, 12% bud 

localization and 23% no localization. In comparison, 75% of WT cells showed 

localization at the bud tip, 3% in the bud and 22% had no localization. Conclusively, 

ASH1 mRNA can be localized by She3N-She2p fusion protein and the efficiency of 

this RNA transport is comparable to that of a wild type. 
 

2.17 Localization mediated by She3N-She2p leads to ineffective sorting of 
Ash1p into daughter cells 

 

The previous results revealed that She2p does not necessarily have to enter the 

nucleus in order to fulfil ASH1-binding and subsequent localization to the bud tip. 

Since other mechanisms such as repression of translation during transport or proper 

anchoring at destination sites may also contribute to an effective sorting of Ash1p, it 

would be necessary to examine whether translation is affected when She2 is not 

allowed take its nuclear route. Thus, ASH1 was tagged with 9 myc-epitopes in order 

to monitor the cellular distribution of the translated protein (Bobola et al., 1996). 

Translation of a 95-kDa Ash1-myc9 protein could be confirmed in a Western blot. 

Cells expressing either She3N-S2p or She2p were analyzed for their ability to sort 

Ash1-myc9 protein into daughter cells using indirect immunofluorescence. In 

postanaphase cells, Ash1p-myc9 is clearly visible in daughter cell nuclei. Since 

Ash1p sorting is not effective in all cells, a portion show Ash1p-myc9 signal in both 

nuclei. To determine the exact sorting efficiency, the observed Ash1p distribution 

patterns have been classified as follows.  
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Figure 25: Asymmetric sorting of Ash1p mediated by She3N-She2 fusion protein is ineffective. 
A. 9 myc-epitopes were inserted between the ASH1-ORF and the stop codon. In immunofluorescence 

pattern of Ash1p distribution fall into three categories: Distribution is either asymmetric (left), partially 

asymmetric (middle) or symmetric (right). Ash1p staining (green, upper panel) is nuclear. Nuclei were 

stained with DAPI (blue, lower panel). B. Statistics of Ash1p distribution. 300 cells of strains RJY137 

(black bar, WT) and of RJY1462 transformed with plasmid RJP1100 (grey bar, She3N-She2) were 

counted. WT strain show 68% asymmetric, 24% partially asymmetric and 8% symmetric distribution. 

She3N-She2 mediated distribution was to 30% asymmetric, 46% partially asymmetric and 24% 

symmetric distribution. 

56
 



As depicted in figure 25A Ash1p is either only visible in daughter nuclei (asymmetric 

distribution) or in both nuclei (partially asymmetric and symmetric distribution). In a 

wild type background, 60% of counted postanaphase cells localized normally, but 

24% showed partially asymmetric and 8% symmetric distributed Ash1 protein. In 

contrast, Ash1p sorting mediated by She3N-S2p leads to only 30% asymmetric 

distribution of observed cells. Instead, the majority of cells were impaired in 

asymmetric Ash1p sorting as 45% showed partially asymmetric and 24% symmetric 

distribution. Strikingly, cells expressing She3N-S2p effectively localize ASH1 mRNA 

but this in the end does not account for an effective sorting of its protein product. This 

could be the case if the localization of ASH1 mRNA is ‘leaky’, meaning that 

translation occurs prematurely during its transport to the bud tip. Premature 

translation occurs when for example localized RNAs are not protected by the 

presence of translational repressors. Taken together, these observations suggest 

that She2’s ‘nuclear history’ may have a key role in the proper formation of the ASH1 

RNP. This might include either the recruitment of factors important for cytoplasmic 

translational regulation or to ensure the proper packaging of a localization competent 

RNP. 

 

2.18 The absence of a nucleolar RNA localization factor leads to an increased 
rate of Ash1p synthesis 

 

An effective sorting of a protein to its destination site also requires that during the 

transport process the localized RNA is prevented from the access of translating 

ribosomes. Premature translation occurs when repression of translation is inefficient, 

thus leading to an increased rate of translation and in this case, would result in a loss 

of Ash1p asymmetry. In order to show if nucleolar interactions with ASH1 mRNA 

have an influence on cytoplasmic translational control, it would be necessary to 

follow in vivo kinetics of Ash1p-translation in cells lacking either nuclear She2p or 

one of the nucleolar factors Loc1p and Puf6p. In cells used for the following 

experiment expression of Ash1p-myc9 was driven by an inducible GAL1-promotor. 

Cells were grown in non-inducible medium containing 2% raffinose and were then 

induced by the addition of 4% galactose. After induction, samples were taken at 

different time points in order to determine the overall amount of synthesized ASH1 

transcripts and translated Ash1 protein over time. In a northern blot of a WT strain, 
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ASH1 transcripts were already detectable 5 minutes after induction of expression. 

With a delay of about 5 minutes, translated Ash1-myc9 product shows up in a 

western blot (Fig. 26). To determine the relative intensities of synthesized Ash1 

protein at various time points, Ash1p-levels were normalized against the expression 

levels of actin.  

 

 

 
 
Figure 26: In vivo kinetics of ASH1 mRNA translation. Ash1p-myc9 expressed under the control of 

an inducible GAL1 promotor. Strains were grown in media containing 2% raffinose and induced by the 

addition of 4% galactose. (A) Northern blot showing expression levels of ASH1 RNA at various time 

points after galactose induction in a wild type strain (RJY280). (B) Samples of corresponding time 

points of a wild type strain in a Western blot. Intensities of synthesized Ash1p at various time points 

were normalized against levels of 40 kD Actin. (C) Relative intensities of Ash1-myc versus Actin were 

plotted over time: ∆-WT (RJY280), ●-She3N-She2 (RJY3269), ○-she2∆ (RJY3164) (D) Relative 

intensities of Ash1-myc versus Actin were plotted over time: ∆-WT (RJY280), ■-loc1∆ (RJY1362), ♦-

puf6∆ (RJY1363) 
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Cells where ASH1 transport is mediated by She3N-She2 fusion protein showed 

increased levels of Ash1p-translation at 15 min after induction. As shown in figure 

26C the rate of translation was increased to nearly 2-fold in comparison to wild type 

cells. This was not corresponding to levels of the ASH1 mRNA as they showed the 

same intensities in all strains (data not shown). This would explain why in these cells 

protein sorting remains inefficient although mRNA localization is fully functional. The 

rate of Ash1p synthesis in a she2∆ was also higher than was observed for wild type 

cells. Consistent with previous microscopic data, translational control during fusion 

protein-mediated transport seems to be impaired, which would result in a higher rate 

of premature translation. This could be the case if upload of a translational repressor 

did not occur because She2p in these strains was not allowed to traverse the 

nucle(ol)us. To investigate if nucleolar trans-acting factors have an influence on 

translational control, kinetics of ASH1 translation were also determined for loc1∆ and 

puf6∆ strains. When following relative Ash1p intensities over time, similar changes in 

kinetics can be observed in both strains analyzed (Fig. 24D). Similar to kinetics 

observed for She3N-She2 cells both strains show higher intensities of synthesized 

Ash1p after 15 minutes of induction compared to the wild type. This is consistent with 

a previous study showing increased levels of Ash1p in puf6∆ cells (Gu et al., 2004). 

This suggests that the loss of translational control is caused by the lack of the 

nucleolar factor Puf6. Interestingly, loc1∆ cells display a similar phenotype 

suggesting that it might act in translational control as well. This supports the idea that 

the nucleolus may serve as a kind of scaffold where localized RNAs together with all 

the trans-acting components are correctly assembled into a nuclear RNP. This 

process might account for efficient sorting of Ash1p in the cytoplasm.  

 

2.19 Loc1p binding to ASH1 mRNA is dependent on the delivery of She2p 
 

Previous results suggested that She2 is possibly the trans-acting factor that 

recognizes ASH1 transcript first. Secondly, nucleolar accumulation of ASH1 was not 

observed in cells of a mex67-5/∆rrp6 double mutant when additionally deleted for 

SHE2. This suggests that She2p might be the factor required to guide the ASH1 

message into the nucleolus. This argument is strengthened by the observation that 

She2’s association with the nucleolus occurs in absence of ASH1-binding. Thus, if 

the assembly of localized RNPs should occur in the nucleolus how can a stationary 
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RNA localization factor such as Loc1p face and bind to ASH1 mRNA? To test 

whether ASH1-binding of nucleolar Loc1p is dependent on the delivering action of 

She2p, IP-RT experiments were performed in a wild type (SHE2+) and in a she2∆ 

strain. Loc1p in these strains was tagged with 9-myc epitopes for a pull down with 

magnetic beads coupled to 9E11 α-myc antibody. Immunoprecipitated Loc1p-myc9 

was eluted with glycine and SDS, and eluates were subsequently analyzed for bound 

ASH1 mRNA by RT-PCR with primers amplifying the E3 element. In the wild type 

strain, RT-PCR shows a signal for E3 element in the specific elution with glycine (Fig. 

27). However, the signal for E3 element was significantly decreased in the respective 

elution of a she2∆ strain. 

 
 

 

Figure 27: Binding of Loc1p to ASH1 mRNA is dependent on She2p. IP-RT experiments of strains 

RJY915 (SHE2+, Loc1p-myc9) and RJY3130 (she2∆, Loc1p-myc9). Immunoprecipitation of myc-

tagged Loc1p was performed with 9E11 α-myc antibody coupled to magnetic Protein G beads. A. 

Western blot analysis show successful immunoprecipitation of 55 kD Loc1p-myc9 in both stains (Total, 

Sup=Supernatant, IP G E=Elution with 100 mM glycine-HCl, IP SDS E=Elution with SDS). B. RT-PCR 

with primer for E3 localization element. SDS E (elution with 10%SDS), G E (elution with 100mM 

glycine-HCl), -RT (control without reverse transcriptase). E3 element was amplified in the specific 

elution (G E) of precipitated Loc1p in a SHE2+ (top) but not in the ∆she2 strain (bottom). 
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This observation suggests that binding of the nucleolar trans-acting factor Loc1p to 

the ASH1 mRNA might dependent on the presence of She2. Interestingly, ASH1-

binding of the nucleo-cytoplasmic shuttling protein Khd1p is not dependent on She2p 

as was also confirmed in independent experiments (Gonçalo Rebelo de Andrade, 

personal communication). This could be explained by the fact that unlike Loc1p, 

Khd1p’s association with ASH1 mRNA is not dependent on She2 because 

localization of this protein is not restricted to the nucleolus. 

 

2.20 A direct binding of She3p to ASH1 may be involved in cytoplasmic 
tethering to the motor complex 

 

The She2p-ASH1 RNP complex, once exported to the cytoplasm, is recruited to the 

myosin motor Myo4p by the adapter She3p in order to provide active transport to the 

bud tip (Böhl et al., 2000; Gonsalvez et al., 2004). Since the She3N-She2 fusion 

protein already provides a direct artificial link to Myo4p, it would be interesting to see 

if endogenous She3p in these cells is dispensable. Therefore, the fusion protein was 

tested for its ability to localize ASH1 in a background devoid of endogenous She3p. 

Cells of a strain expressing She3N-She2p in a she3∆/she2∆-background were 

investigated in indirect immunofluorescence and in situ hybridisation. In a dual 

staining, signals of She3N-She2p and Myo4-myc largely overlap at the bud tip (Fig. 

26A) indicating that the fusion protein was functionally tethered to the myosin motor 

complex. Interestingly, this machinery completely fails to localize ASH1 mRNA when 

endogenous full length She3p is absent. Apparently, binding of ASH1 by the She2-

portion alone is not sufficient to provide localization of ASH1 mRNA. This suggest 

that a portion of She3 protein that is missing is these mutants is required in order to 

effectively tether RNA to the myosin motor complex or to ER membranes (Schmid et 

al., 2006), which in the end would allow a functional transport to the bud tip. In order 

to test if the missing half of She3p contributes to ASH1 mRNA binding in vivo, one 

would have to be able to express the C-terminus of She3p alone and test its ability to 

restore localization in this mutant. Thus, She3-C-terminus was cloned into a p413-

GAL1 vector that allows the induction of expression in a galactose-containing 

medium. In order to monitor expression and localization of this protein, it was 

provided with 6 HA-epitopes at the NH2-terminus.  
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Figure 28: The C terminus of She3 contributes to cytoplasmic binding of ASH1 mRNA. A. The 

fusion protein is successfully tethered to the myosin motor. Cells of strain RJY3270 (She3N-She2p, 

she2∆, she3∆) in indirect immunofluorescence. In dual stain of She3N-She2p and myc-tagged Myo4p, 

signals colocalize at the bud tip (merge). B. Table showing ASH1-localization analyzed by in situ 

hybridisation of strains expressing She3N-She2p in a background with either endogenous She3p (left 

lane, She3p-FL, RJY2414), no endogenous She3p (middle lane, RJY3270) or with an overexpressed 

C-terminal portion of She3p (right lane, HA6-She3Cp, RJY3271). ASH1 localization was only 

observed when full length She3p was present. Note that She3N-She2 is localized to the bud tip in all 

strains. C. Cells of strain RJY3271 (She3N-She2p, GAL1-HA6-She3C, She3N-She2p, she2∆, she3∆) 

showing overexpression of HA6-She3Cp in indirect immunofluorescence. HA6-She3Cp is strongly 

expressed by the GAL1 promotor and is ubiquitously distributed throughout the cell (left panel). 

Although fusion protein is localized to the bud tip (middle panels) ASH1 localization in these cells 

could not be rescued.  
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A strain expressing She3N-She2 fusion protein in a she3∆/she2∆-background was 

additionally transformed with the constructed plasmid. Cells were grown in galactose 

containing medium to provide induction of expression. Western blot analysis 

identified the expression of a 30-kDa HA6-She3Cp protein. As depicted in figure 26C 

indirect immunofluorescence shows that overexpressed HA6-She3Cp was 

ubiquitously distributed throughout in the cells. A concentration of signals at the bud 

tip or along actin fibres could not be observed, may be due to the strong over-

expression or due to a missing association. Bud tip localization of She3N-She2p in 

these cells instead remains unaffected. However, these cells were not able to restore 

ASH1-localization by the overexpression of the C-terminal She3p. Thus in the 

absence of endogenous She3p, the She3N-She2 fusion protein itself is localized to 

the bud tip. However, the RNA cargo is was mislocalized in this case. The fusion 

protein alone can apparently not account for a functional ASH1 transport indicating 

that parts of She3p are indispensable for additional ASH1-binding or for the formation 

and remodelling of a functional cytoplasmic transport complex. This provides the 

evidence that She3p, or at least parts of it, may participate in a cooperative ASH1 

binding and/or is needed to ensure the integrity of the transported ASH1-mRNP. 
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3 Discussion 
 

3.1 Nuclear factors involved in cytoplasmic RNA localization  
 

A large number of trans-acting factors involved in RNA localization have been 

characterized in the past years. Interestingly, many of them are either predominantly 

nuclear proteins or nucleo-cytoplasmic shuttling proteins. This suggests that nuclear 

and cytoplasmic steps in the RNA transport pathway are often highly interconnected. 

This model becomes more and more evident as connections between steps in RNA 

biogenesis are described (Farina and Singer, 2002; Giorgi and Moore, 2007; Reed, 

2003). For example, analyses on oskar mRNA localization in Drosophila have 

revealed a requirement for components of the exon junction complex (EJC) such as 

Mago nashi (Mago) and Y14 (Hachet and Ephrussi, 2001; Mohr et al., 2001). The 

EJC has been shown to mark the location on a spliced transcript where introns have 

been removed. In general, components of the EJC are required for nonsense-

mediated decay (NMD). Mago-Y14 and the translation initiation factor eIF4IIIA, an 

RNA DEAD box helicase, are predominantly nuclear proteins and assemble on oskar 

mRNA during nuclear RNP formation (Palacios et al., 2004). In general, many factors 

involved in the localization of a transcript either have an additional nuclear function 

such as splicing or are recruited already in the nucleus. 

In yeast, we find the situation that two out of four ASH1 mRNA binding proteins, Loc1 

and Puf6, are predominantly nuclear. Loc1p is therefore often regarded as the 

nuclear component of the localization machinery that is likely needed to mark the 

ASH1 mRNA for cytoplasmic RNA transport (Long et al., 2001; Urbinati et al., 2006). 

Immunofluorescence of Loc1p reveals a strictly nucleolar localization (Fig. 18B). It is 

essential for the efficient localization the ASH1 mRNA (Stephan Jellbauer, personal 

communication). Loc1p is also a constituent of pre-60S ribosomes and required for 

the assembly and export of the 60S ribosomal subunit (Urbinati et al., 2006). Indirect 

immunofluorescence have revealed that Puf6p is also a mainly nucleolar protein (Fig. 

18A). Puf6p is a member of the PUF family, and has been proposed to function in 

translational control of ASH1 mRNA. The recruitment of this RNA binding protein has 

to occur in the nucleus. To date, there is no evidence showing that Puf6p has a 

nuclear function other than RNA localization. At the beginning of this work, it also 

remained controversial whether the RNA-binding proteins, She2 and Khd1 can 
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shuttle between the nucleus and the cytoplasm. She2 was previously suggested to 

enter the nucleus and to be exported into the cytoplasm in an RNA dependent 

manner (Kruse et al., 2002). In a mex67–5ts mutant, She2 accumulated in the 

nucleus when mRNA export is blocked. Moreover, the truncated mutant she2∆N70 

failed to bind ASH1 mRNA and therefore accumulated in the nucleus as well. 

However, all these results remained controversial, as Gonsalvez and colleagues 

reported that nuclear export of She2 was independent of both mRNA transport and 

the ability of She2 to bind mRNA (Gonsalvez et al., 2003). This thesis followed the 

same experimental approach by using a generated and highly specific antibody 

against the She2 protein. At elevated temperatures, several export mutants 

investigated displayed an accumulation of She2 due to inhibition of mRNA export 

(Fig. 15). This suggests that She2’s export occurs in an mRNA dependent fashion. 

This argument is strengthened by the observation that an RNA binding mutant of 

She2 is not able to leave the nucleus (Fig. 14). The binding affinity of She2 and of the 

She2-N36S-R63K mutant toward the ASH1 E3 element was determined by filter 

binding experiments (Marisa Müller and Dierk Niessing, personal communication). 

She2p binds to the E3 RNA with a binding constant of Kd=147 nM, whereas the 

binding affinity of the mutant was depleted. However, accumulation of this mutant in 

the nucleus especially within the nucleolus could be a result of its unspecific binding 

to any other RNA. This argument has to be considered as the nucleolus is full of 

various RNA species such as rRNA and snoRNAs. Thus, in order to address 

unspecific binding affinity of She2p towards an unrelated RNA of the human 

immunodeficiency virus was determined (HIV-I TAR RNA). Wild type She2p could 

bind HIV-I TAR RNA with a low constant of Kd=912 nm. However, it was abolished in 

the She2-RNA binding mutant. This suggests that the observed nuclear accumulation 

of this mutant is caused by the loss RNA binding. Thus, RNA binding is a prerequisite 

for She2 in order to become exported together with its RNA target. Nevertheless, the 

results are in contrast to observations made by Gonzalvez and colleagues, as they 

cannot see any nuclear accumulation of different myc-tagged versions of She2 RNA-

binding mutants (Gonsalvez et al., 2003). In order to rule out artefacts due to staining 

procedures it was necessary to show that RNA-binding mutants of She2 accumulate 

in nuclei in vivo. Indeed, GFP-She2-N36S-R63K mutant was sequestered in nuclei of 

living yeast cells as well (Fig. 15B). Moreover, accumulation of GFP-She2 in nuclei 

upon inhibition of RNA export further approves the RNA dependent export of She2p 
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also in living cells (Fig. 15A). In addition, biochemical purification of yeast nuclei (Hurt 

et al., 1988) by steps of differential centrifugations has revealed that a portion of 

She2p is nuclear. Cosedimentation of She2 with intact nuclei was also observed in 

another method used for subcellular fractionation (Schmid et al., 2006). In a second 

approach, She2 was immunoprecipitated out of fractions containing purified nuclei. 

The subsequent RT-PCR reaction suggests that in these fractions 

immunoprecipitated She2 was bound to the E3 element of ASH1 mRNA (Fig. 12C). 

This indicates a nuclear association of She2p with ASH1 mRNA. However, the 

biochemical purification provided by this fractionation method cannot completely 

exclude the contamination with ER from the nuclear periphery since there is now 

evidence suggesting a direct or indirect association of the She2p with ER (Schmid et 

al., 2006). Thus, the RT-PCR signal emanating from this purification might not be 

exclusively nuclear. She2p is the major player among all known trans-acting factor as 

it can bind to all localization elements of ASH1 mRNA. The model of this work 

suggests that She2p, due to its shuttling nature, enters the nucleus in order to 

recognize and bind to ASH1 mRNA co- or posttranscriptionally, probably at 

transcription sites. Subsequently, it may initiate the assembly of ASH1 mRNA and its 

corresponding RNA binding proteins into a nuclear RNP. Once exported from the 

nucleus, the ASH1 RNP possibly undergoes a remodelling step in order to recruit the 

She3/Myo4 motor complex (Böhl et al., 2000; Takizawa et al., 2000). Nuclear 

recruitment may represent a mechanism by which yeast cells ensure that exported 

RNPs designated for localization are already loaded with She2p. This would certainly 

increase the chance for She2-containing RNPs to be recognized and recruited by the 

cytoplasmic transport machinery. The adapter She3 could have an active role in the 

cooperative binding of ASH1 mRNA in the cytoplasm (Böhl et al., 2000; Shepard et 

al., 2003; Takizawa et al., 2000). However, direct binding of She3p to ASH1 in vitro 

has never been demonstrated because a stable expression of recombinant She3p is 

to date not possible (Alexander Houck, personal communication). It has been known 

that the C-terminus of She3p is required in order to tether She2 to the myosin motor 

complex (Böhl et al., 2000; Long et al., 2000). Preliminary data shown in this thesis 

suggest that the She3 C-terminus might be involved in the cooperative association of 

She2p, She3p and ASH1 mRNA, which is required in order to link the ASH1 RNP to 

the myosin motor complex (Fig. 28). In a she2∆/she3∆ strain, RNA transport could 

not be rescued by an artificial She3N-She2 fusion protein, which lacks the C-terminal 
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domain of She3p. Thus, this domain of She3 is indispensable in order to provide full 

transport even when ASH1 was already linked to the She2 portion of the fusion 

protein. This indicates that a simple ASH1-She2-She3N-Myo4 link is not sufficient to 

provide functional RNA localization. Probably the assembly of a functional transport-

competent locasome is more complex and requires a remodelling step after nuclear 

export, which involves the C-terminal domain of She3p. Interestingly, Candida 

albicans does not encode any She2p, but orthologs of She3p and Myo4p. Instead, C. 

albicans She3 probably has to fulfil both jobs, RNA binding and subsequent tethering 

to the myosin motor.  

Nuclear binding of trans-acting factors and subsequent remodelling of localizing 

RNPs occurs also in Xenopus oocytes (Kress et al., 2004). Here, association of the 

RNA binding proteins hnRNP I and Vg1RBP/vera with localized Vg1 and VegT RNAs 

occurs already in the nucleus. After export from the nucleus, the core RNP complex 

was shown to undergo remodelling and additional factors, including Prrp and XStau, 

are recruited to provide transport to the target site. This suggests that there are 

distinct nuclear and cytoplasmic steps in the RNA localization pathway, which 

initiates in the nucleus rather than in the cytoplasm.  

Hence, the finding that trans-factors are nucleo-cytoplasmic shuttling proteins gives 

rise to the evidence that binding of specific RNA-binding proteins in the nucleus may 

help to target RNAs to their appropriate destinations in the cytoplasm. This comes 

even more into focus as Khd1p, a second yeast trans-acting factor of ASH1 mRNA, 

can also shuttle between nucleus and cytoplasm. In a mex67–5ts mutant, myc-tagged 

Khd1p accumulates in nuclei upon inhibition of RNA export as well (Fig. 19). Thus, 

the export of both proteins, She2p and Khd1p is dependent on the export of its RNA 

target. The early nuclear association of Khd1p with the ASH1 transcript may serve to 

form an RNP competent for cytoplasmic localization. Thus, nuclear RNP assembly 

might have a crucial impact on the translational control in the cytoplasm. One of the 

best examples for nuclear assembly of a transport-competent mRNP involves the 

association of the zipcode binding proteins 1 and 2 (ZBP1/2) with β-actin mRNA. 

ZBP1 interacts with β-actin mRNA already in the nucleus and mediates its 

localization neuronal growth cones. Similar to Khd1p, ZBP1 represses translation of 

β-actin mRNA until it has reached the target site where it is phosphorylated by the 

Src kinase (Hüttelmaier et al., 2005). A second reason for Khd1p to enter the nucleus 

might be its putative role in telomere maintenance (Denisenko and Bomsztyk, 2002). 
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This work provides the first detailed investigations on the subcellular localization of all 

yeast RNA binding proteins involved in ASH1 mRNA localization. Each of the factors 

can bind to motifs in the ASH1 mRNA, and have at least a transient localization in the 

nucleus. This supports the idea that RNP assembly initiates early in the nucleus 

rather than in the cytoplasm. The nuclear formation of a localized RNP may influence 

the cytoplasmic fate, which includes additional steps of remodelling, transport or 

translational regulation. 

 

3.2 The Nucleolus, a multifunctional compartment 
 

3.2.1 Ribosome Biogenesis 
 

The subcellular localization of the ASH1 transcript and of its trans-acting factors 

revealed a surprising connection to a subnuclear compartment, the nucleolus. The 

nucleolus is primarily the site of ribosome biogenesis in eukaryotic cells. However, 

several lines of evidence show that it has additional functions, such as regulation of 

mitosis, cell-cycle progression and proliferation, many forms of stress response and 

biogenesis of multiple RNPs (Boisvert et al., 2007; Carmo-Fonseca et al., 2000). 

Nucleoli form around the tandemly repeated clusters of ribosomal DNA (rDNA) 

genes: The result is a subnuclear compartment that locally concentrates the 

transcription and processing machineries required for generating ribosome subunits. 

In yeast, two independent studies have demonstrated that Loc1p is a component of 

the processing and export apparatus of the 60S ribosome subunit. loc1∆ cells display 

a defect in the synthesis of 60S ribosomal subunits, resulting in “halfmer” 

polyribosomes (Stephan Jellbauer, personal communication) (Urbinati et al., 2006). 

The involvement in the process of ribosome biogenesis may reflect why Loc1p is a 

stationary nucleolar component. Nevertheless, it still not clear which function it has in 

RNA localization. Loc1p was identified in a three-hybrid screen and deletion leads to 

a significant decrease of bud tip localized ASH1 transcripts. Interestingly Loc1p is 

able to bind the ASH1 transcript but is not able to shuttle between nucleus and 

cytoplasm (Long et al., 2001). Consequently, it is not a component of the locasome 

suggesting that ASH1-Loc1p interaction is temporary (Urbinati et al., 2006). 

Nevertheless, Loc1p is arguably an interesting link between RNA localization and 

ribosome biogenesis. As was proposed by the lab of Pamela Silver, Loc1p could for 
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example be required to load ASH1 mRNA onto ribosomal subunits. These non-

canonical ribosomes become then localized themselves in a repressed state, and are 

translationally activated once reaching the target site. Certainly, this would explain 

why the ASH1 message has its transit through the nucleolus. But until now, there is 

no clear evidence for such a mechanism. Nevertheless, in order to show if this is the 

case, one would have to block ribosome export alone and determine if cellular 

distribution of ASH1 is altered. This can be achieved in crm1 (xpo1) mutants 

rendered sensitive to leptomycine B (LMB), which allow the inhibition of NES-Crm1 

mediated export (Neville and Rosbash, 1999). However, with a delay of 15 min also 

poly(A)+ RNA accumulates in nuclei, which makes it difficult to determine if RNA 

localization is impaired in this mutant. More recently, Mex67-Mtr2 complex was 

described to function in the export of pre-60S ribosomes. Mutations in the Mex67 

loop lead to an accumulation of 60S subunits, but not mRNA, in the nucleus (Yao et 

al., 2007). Thus, this would be an ideal candidate to differentiate between ribosome 

and RNA export. Another aspect that remains to be elucidated is whether these two 

processes mutually influence each other. It remains possible that in loc1∆ cells, the 

observed defect in RNA localization is just a secondary effect caused by defective 

ribosomes. To address this one would have to determine, which of the two processes 

is affected first when Loc1p is ‘turned off’ by a depletion system in vivo. Another 

nucleolar factor involved in RNA localization is Puf6p. Until now, there is no evidence 

indicating that Puf6p is required for ribosome biogenesis. Nevertheless, it copurifies 

with pre-60S particles as well (Nissan et al., 2002). Moreover, it provides the link 

between translation and ASH1 mRNA localization. Consistent with a previous study 

(Gu et al., 2004), the deletion of PUF6 leads to an increase of Ash1p synthesis 

suggesting a role in translation control (Figure 26). 

 

3.2.2 Assembly of non-ribosomal RNPs  
 

There is increasing evidence that the nucleolus may represent a region where many 

RNPs other than ribosomal subunits are assembled. Several RNP complexes have 

been reported to be formed in the nucleolus, such as small nuclear RNPs, RNaseP 

RNP, telomerase containing particles and signal-recognition particles (Boisvert et al., 

2007). This gives rise to the idea that there is also a “non-ribosomal landscape” 

within the nucleolus. This is best documented for signal-recognition particles (SRPs) 
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(Alavian et al., 2004; Ciufo and Brown, 2000; Grosshans et al., 2001; Jacobson and 

Pederson, 1998; Politz et al., 2002; Politz et al., 2000; Sommerville et al., 2005). The 

SRP complex consists of six proteins and an RNA of ~300 nucleotides. Recent 

studies have shown that both the RNA and the proteins from the SRP transit through 

the nucleolus of mammalian cells before SRP export to the cytoplasm. These results 

indicate a possible function for the nucleolus in the assembly and processing of the 

SRP complex and a potential association with newly formed ribosomes before their 

cytoplasmic export. Yeast SRP resembles its mammalian counterpart as it also 

consists of six proteins (Srp72p, Srp68p, Srp54p, Sec65p, Srp21, and Srp14p) and a 

single RNA molecule called scR1 (Brown et al., 1994; Hann and Walter, 1991; 

Mason et al., 2000). There is evidence that assembly of the SRP requires import of 

all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with 

scR1. The formed particle is subsequently targeted to the nuclear pores and 

exported in an Xpo1p dependent fashion (Grosshans et al., 2001). It is likely that the 

core SRP act as kind of RNA chaperone that facilitate correct folding and stabilization 

of scR1-RNA. Similar to SRP formation, assembly of non-ribosomal RNPs in general, 

may also require the import of the RNA and additional trans-acting factors. The 

assembly might occur in the nucleolus. Alternatively, the nucleolus may also function 

as a checkpoint to control the integrity of RNP complexes. Once the RNPs have 

matured and passed this quality control, they can leave the nucleolus.  

In plants, a number of viruses interact with nucleolar proteins. It has been suggested 

that many viruses target the nucleolus and its components to favour viral 

transcription, translation or to alter cell growth and the cell cycle to promote virus 

replication (Hiscox, 2002). One interesting observation has been reported for the 

ORF3 protein encoded by the Groundnut rosette virus (GRV), which reflects a 

functional link between nucleolar activities and development of systemic viral 

infections. ORF3 is a multifunctional RNA-binding protein that protects viral RNA and 

is involved phloem-associated long distance RNA movement. ORF3 together with 

viral RNA assemble into cytoplasmic granules. Interestingly, the nucleo-cytoplasmic 

shuttling protein ORF3 was found associated with the nucleolus. The nucleolar 

localization of ORF3 correlates with the ability to transport viral RNA over long 

distance over the phloem. This supports the idea that in infected cell, viral RNAs and 

proteins take the route through the plant nucleolus because of its ability to form 

stable RNP complexes (Kim et al., 2004). 
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3.2.3 Post-transcriptional modifications  
 

The nucleolus has a pivotal role in covalent RNA modifications. Various RNAs, 

especially transcripts made by RNA Pol III, such as 5S rRNA, some tRNAs, RNase P 

RNA, the signal recognition particle (SRP) RNA and now also microRNAs (miRNAs) 

undergo maturation in the nucleolus (Gerbi et al., 2003). The most common covalent 

modifications found in rRNA are 2′-O-ribose methylation and pseudouridylation. Both 

modifications are catalyzed by snoRNPs that target the pre-rRNA substrate with 

conserved motifs called “C/D-box”, which contains a UGAUGA sequence (box C) and 

a CUGA sequence (box D). The pseudouridylation of rRNA is also catalyzed by a 

distinct class of nucleolar snoRNPs and involves a ‘guide RNA’ targeting mechanism 

with two short conserved sequences called boxes H and ACA. Until now, there is no 

evidence that mRNA is post-transcriptionally modified as well. Nevertheless, there 

are box C sequences within the cis-elements of ASH1 mRNA. It remains to be 

determined in the future whether there is any modification in the ASH1 message. 

Such modifications could be tools to mark RNAs for localization or to render them 

into a translational repressed state.  

 

3.2.4 Transit of ASH1 mRNA through the nucleolus 
 

The first evidence showing a connection of the nucleolus with ASH1 mRNA comes 

from a study about mRNA export. In an in vivo imaging system, the 3’ Untranslated 

Regions (3’-UTR) of various RNAs were fused to U1A-hairpins and their cellular 

distributions has been observed with an U1A-GFP reporter under conditions when 

mRNA export was blocked. Interestingly, only the ASH1-3’-UTR directed the GFP 

reporter into the nucleolus (Brodsky and Silver, 2000). In an independent approach, 

our lab examined the accumulation of ASH1 mRNA with labelled oligonucleotides 

directed against ASH1 RNA (Fig. 17). However, upon block of mRNA export in the 

mex67-5 mutant only the site of transcription was visible by in situ staining, even 

when ASH1 was overexpressed. It has been reported previously that defects in RNA 

export factors such as Rat7p, Gle1p, Mex67p and Rat8p can cause the 

hyperadenylation during 3’ end formation of nascent transcripts (Hilleren et al., 2001; 

Jensen et al., 2001; Libri et al., 2002), which as consequence are sequestered at 

transcription foci. Transcript retention has been shown to require components of the 
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nuclear exosome (Thomsen et al., 2003). Thus, the additional deletion of RRP6 in an 

export mutant has been shown to release transcripts from these foci. Indeed, in an 

rrp6∆/mex67-5 mutant, the ASH1 signal was no longer detected at transcription site. 

Instead, the released transcript was found accumulated within nucleoli during 

inhibition of RNA export (Fig. 15). Controversially, hyperadenylation and transcript 

retention of U1A-ASH1-3’UTR did not occur (Brodsky and Silver, 2000). May be 

there is a significant difference in Poly(A)-tail length. Another reason could be the 

high affinity of the U1A-GFP reporter toward the U1A-hairpins, which may force the 

release from transcription sites. Nevertheless, as one can examine the subnuclear 

distribution of RNAs, this would be an excellent alternative method to visualize the 

nuclear route of localized RNAs in vivo. The accumulation of transcripts in nucleoli 

during block of mRNA export could be certainly a general phenomenon. In a previous 

study, it has been reported that a mutant of the nucleolar protein Mtr3, which is a 

component of the yeast exosome can cause the accumulation of poly(A)+ mRNA in 

the nucleolus (Kadowaki et al., 1994; Kadowaki et al., 1995). The authors suggested 

that all mRNAs may encounter nucleolar components before export, thus supporting 

the idea that nucleolus may have a role in mRNA export (Schneiter et al., 1995). 

However, the link to the nuclear exosome may give raise to the possibility that 

polyadenylated transcripts are subjected to 3’-5’ degradation when mRNA export or 

processing is defective. Thus, the nucleolus may act as a kind of ‘trash bin’ for 

mRNAs as well. The nucleolar accumulation was stained with oligo(dT)-probes by in 

situ hybridisation directed against Poly(A)+ RNA. Whether these polyadenylated 

transcripts correspond to mRNA or snoRNA, or both is not clear (van Hoof et al., 

2000; van Hoof and Parker, 1999).  

Thomsen and co-workers reported that the block of mRNA export in rat7-1/rrp6∆ 

mutants leads to the accumulation of heat-shock RNAs HSP104 and SSA4 in the 

nucleolus (Thomsen et al., 2003). In contrast, poly(A)+ mRNA has previously been 

clearly shown not to accumulate in the nucleolus but to localize to the nuclear 

periphery in a rat7-1/rrp6∆ (Hilleren et al., 2001). Thus, not all mRNAs have their 

transit through the nucleolus. It remains elusive which of the factors might determine 

nuclear trafficking and how many RNAs might undergo the transit through the 

nucleolus. It also remains to be determined in the future whether also other localized 

RNAs such as IST2 mRNA follow this nuclear pathway. 
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3.2.5 Assembly of localized RNPs 
 

This work provides the first evidence on subnuclear localization of the RNA binding 

protein She2. Upon block of mRNA export, this shuttling protein sequestered at sites 

of the nucleolus (Fig. 13). To address the question whether this observed effect was 

due to the RNA binding affinity toward the highest amount of RNA, which is in the 

nucleolus, it was reasonable to render She2 defective for RNA binding by 

mutagenesis. Interestingly, mutant She2 cannot leave the nucleus and consequently 

accumulates in nucleoli without any inhibition of export (Fig. 14). The accumulation in 

the nucleolus is possibly not a net result of its RNA binding affinity (see above). Thus, 

the accumulation of She2p in the nucleolus is independent of RNA binding 

suggesting that She2p may be the factor that brings ASH1 mRNA into the nucleolus. 

This is strengthened by the observation that in the absence of She2p, accumulation 

of ASH1 mRNA in the nucleolus does not occur. Hence, She2p together with its RNA 

target can at least transiently enter the nucleolus. Moreover, two additional factors 

Loc1 and Puf6 are both nucleolar proteins (Fig. 18). This supports the idea that the 

stationary factor Loc1 is only able to face the ASH1 transcript when delivered by 

She2p. Indeed, preliminary IP-RT experiments show that immunoprecipitated Loc1 

was bound to ASH1 E3 RNA (Fig. 27). In an additional deletion of She2p, binding of 

Loc1 to ASH1 was significantly reduced. Future experiments would have to address 

whether also Puf6-ASH1 binding is dependent on nuclear She2p. Puf6p is the only 

nucleolar factor so far that has been reported to be also a transient component of the 

cytoplasmic ASH1 locasome (Gu et al., 2004). Therefore, Puf6p must have the ability 

to shuttle even when it is predominantly located in the nucleolus. In yeast, Puf 

proteins have been proposed as integral factors of several RNPs in order to maintain 

their integrity and stability (Gerber et al., 2004). This is consistent with its role in 

translational control during transport. Thus, the proper formation of a localized RNP 

might also include the recruitment of Puf6p onto ASH1 mRNA. This would explain the 

requirement of the ASH1 message to transit through the nucleolus. The stationary 

trans-acting factor Loc1p may provide a framework for such a temporal and spatial 

assembly of the ASH1 RNP in the nucleolus. This narrow time-window could be 

sufficient to allow the association of Puf6p and other factors required for RNA export 

with the ASH1 message. Not all shuttling RNA binding proteins accumulate in the 

nucleolus upon block of mRNA export. For instance, the La motif-containing protein 
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Sro9p is known to associate with polyribosomes in the cytoplasm (Sobel and Wolin, 

1999). The RNA binding protein Sro9 is cytoplasmic, which is consistent with its 

putative role in translational regulation. However, upon inhibition of mRNA export in 

the mex67-5 mutant, Sro9p accumulates in the chromatin-rich nucleoplasm but not in 

the nucleolus (Susanne Röther, unpublished data). Moreover, nucleo-cytoplasmic 

shuttling Khd1p is involved cytoplasmic control but displays a similar subnuclear 

localization like Sro9p when mRNA export is blocked (Fig. 17). Hence, not all RNA 

binding proteins are attracted to nucleolar sites when not allowing their nuclear 

export. However, it is not clear, which of the factors is required for She2’s association 

with the nucleolus. Puf6p would be an ideal candidate because it was initially 

identified in a TAP-purification of She2p (Gu et al., 2004). Controversially, 

Immunoprecipitation of myc-tagged Puf6 did not reveal any direct interaction with 

She2 (Fig. 18). A possible approach to identify direct interacting partners would be 

the TAP purification with the RNA-binding mutant of She2 because of its nucleolar 

accumulation. This work favours the idea that the correct assembly of factors into a 

nuclear ASH1 RNP may occur in the nucleolus. Alternatively, the nucleolus may also 

represent a checkpoint to verify the integrity of RNP before export into the cytoplasm. 

According to the data provided by this thesis, the resulting model suggests that She2 

enters the nucleus to bind ASH1 mRNA already co- or posttranscriptionally and 

guides the bound message into the nucleolus where formation or further maturation 

of ASH1 RNP may occur. 
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Figure 29: Working model. She2p enters the nucleus either due its small size or by active import (1). 

She2 binds ASH1 mRNA at sites of transcription and guides the message into the nucleolus (2). 

Binding of two additional trans-acting factors and subsequent RNP formation and/or maturation might 

occur in the nucleolus (3). Export of a localization competent RNP into the cytoplasm occurs through 

the nucleopores (NPC) (4).  

 

Interestingly, a similar phenomenon has recently been observed in mammalians. 

Two independent studies have provided evidence that in mammalian neurons, 

Staufen2, a brain-specific RNA-binding protein involved in the localization of 

CaMKIIα-RNA, can enter the nucleus and behave like a nucleocytoplasmic shuttling 

protein (Kiebler et al., 2005; Macchi et al., 2004; Miki and Yoneda, 2004). In a 

mutagenesis approach, Stau2 was rendered incompetent for RNA-binding. Strikingly, 

mutant Stau2 proteins accumulated in the nucleus and, in particular, in nucleoli. This 

strongly suggests that Staufen2 can transiently enter the nucleolus. There, the 
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assembly of Staufen2 into transport-competent RNPs might occur before exported 

into the cytoplasm. Conclusively, these observations give rise to the evidence that 

the nucleolus has a role in the assembly or maturation not only of ribosomal subunits 

but also of localized RNPs. In the cytoplasm, additional cytosolic factors, such as 

additional RNA-binding proteins and molecular motor complexes, are recruited to 

these RNPs and transport to the final destinations inside the cell occur 

 

3.3 She2p’s ‘nuclear history’ is required for efficient asymmetric sorting of 
Ash1p 

 

In order to understand why She2p has to enter the nucleus, we followed a strategy 

that restricted She2 to take its nuclear route. A mere block of protein import would 

cause an unwanted amount of secondary effects, as this is a highly essential 

process. Therefore, a fusion of the proteins She2 and its cytoplasmic adapter She3 

should provide a milder way to restrict She2 from entering the nucleus. Indeed, 

She3-She2 fusion protein was functionally tethered to the myosin motor without 

disturbing its ability to bind ASH1 mRNA in vivo (Fig. 22). Due to its high affinity 

toward the Myo4p motor She3-She2 fusion was not able enter the nucleus (Fig. 23). 

In contrast to wild type She2, nuclear accumulation of this fusion protein was never 

observed upon the inhibition of mRNA export. Surprisingly, cytoplasmic retention of 

She2 does not influence its ability to localize ASH1 mRNA. When keeping She2 in 

the cytoplasm, it is still able to bind and localize ASH1 mRNA with the same 

efficiency as a wild type (Fig. 25). Thus, the nuclear history of She2 is not important 

for the process of RNA localization itself. But controversially, there was a significant 

difference when looking at the efficiency of Ash1p sorting. In a strain expressing 

She3N-She2 fusion protein, the amount of cells, which show symmetric or improper 

distribution of Ash1p, was significantly higher. There are two possible scenarios 

leading to this phenotype. The fusion protein due to its artificial nature could not allow 

proper anchoring of the ASH1 transcript when reaching the target site. Anchoring of 

ASH1 mRNA at the bud cortex has been reported to require remodelling of the 

trimeric She2-She3-Myo4 complex (Gonsalvez et al., 2004). This was observed in 

cells where lacZ-MS2 mRNA was artificially tethered to She2-MS2. In contrast, lacZ-

ASH1, which displays bud tip localization at all cell-cycle stages in 80% of observed 

cells, anchoring of lacZ-MS2 mRNA was inefficient leading to delocalization in post-
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anaphase cells because remodelling of She2-MS2/lacZ-MS2 complex could not 

occur. Therefore, this study proposed that anchoring might require the transfer of 

localized ASH1 mRNA to an unknown anchoring factor, which probably associates 

with She3-Myo4 complex at the bud cortex. In case of the She3N-She2p mediated 

transport, efficiency of ASH1 localization resembles that of the wild type. Importantly, 

localization efficiencies in this case were determined by in situ hybridisation 

exclusively in post-anaphase cells, thus ruling out a defect in anchoring. Another 

reason explaining why sorting of Ash1p but not ASH1 mRNA is inefficient in the 

fusion protein mediated transport may be premature translation. RNA localization 

only restricts a protein to a particular region of a cell if the mRNA is not translated 

until it reaches its destination (St Johnston, 2005). Therefore, many localized mRNAs 

are subjected to translational control. This involves the integrity of a localized RNP 

such that it blocks the initiation of translation during their transport. In yeast, two 

components have been reported so far to control translation of the ASH1 message, 

namely Khd1p and Puf6p, both binding directly to the cis-elements of the RNA (Gu et 

al., 2004; Irie et al., 2002; Paquin et al., 2007). The deletion of each of the factors 

causes prematurely translated Ash1p protein and as a result leads to symmetric 

distribution. Interestingly, She3-She2 fusion protein mediated transport has led to a 

similar effect. Premature translation should result in a higher rate of synthesis 

because regulation of translation is missing. Indeed, when comparing in vivo kinetics 

of Ash1p synthesis in cells expressing She3N-She2 versus the wild type cells, the 

relative amount of synthesized Ash1 protein was much higher (Fig. 26). This could be 

due to the artificial nature of the locasome. The link between She2 and She3 could 

alter the stoichiometric composition of the locasome in such a way that trans-factors 

required for translational control are no longer able to associate with ASH1 mRNA. 

But alternatively, these factors should have the potential to bind to the ASH1 

transcript already in the nucleus unless this is not the case because nuclear She2 is 

absent.  
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Figure 30: Model of premature translation. A. In wild type cells, She2’s nuclear history is important 

for formation of a transport-competent mRNP. During transport of the ASH1 mRNP to the bud tip, 

translation of the transcript is repressed. B. Loss of asymmetric Ash1p sorting is caused by premature 

translation. Cytoplasmic retention of She2 leads to loss of translational control. Therefore, ASH1 

mRNA is translated prematurely before reaching the target site. As a result, synthesized Ash1p can 

enter also mother cell nuclei and leads to a symmetric Ash1p distribution. 
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Hence, She2’s nuclear history might have an important role in determining 

translational control in the cytoplasm (Fig. 30). It remains to be shown how the 

stepwise assembly of factors occurs mechanistically. The passage of She2 through 

the nucleolus might have a pivotal role in this process. This could trigger the spatial 

association of proteins such as Puf6p and Loc1p with the mRNA, and the 

subsequent formation of an export competent nuclear RNP. Alternatively, She2p may 

serve as a kind of RNA chaperone that by binding to all cis-acting elements of the 

RNA facilitates the recruitment of other trans-factors. The involvement of two 

nucleolar factors in cytoplasmic translational regulation of a localized RNA is quite a 

surprise. It has been known that Puf6p acts as such a regulator (Gu et al., 2004). 

Consistent with its function, puf6∆ cells have an increased rate of Ash1p synthesis. 

But even surprising is the fact that translational control is affected when deleting 

LOC1. The increased rate of Ash1p synthesis was similar to that observed in puf6∆ 

cells. How Loc1p can mechanistically contribute to translation repression is not clear. 

Loc1p and Puf6p are both nucleolar proteins and copurify with pre-60S particles, and 

there is evidence that they interact physically (Stephan Jellbauer, personal 

communication). Loc1p could help to recruit Puf6p to the ASH1 mRNA. 

Nevertheless, the mutual influence of these trans-acting factors regarding ASH1-

binding is still elusive and needs to be determined in the future in order to understand 

the mechanistic detail of nuclear RNP assembly. 

Translational control has a similar role in oskar mRNA localization. The translation of 

oskar during transport is repressed by the binding of the Bruno protein and HRP48 to 

three sites in its 3’-UTR (Gunkel et al., 1998; Yano et al., 2004). HRP48 binds to 

oskar mRNA very early, probably co-transcriptionally. Binding of HRP48 is required 

to recruit other factors to the 3’ UTR such as Bruno. More recently, Bruno has been 

reported to bind CUP protein, which by its interaction with eIF4E inhibits translation. 

Mutants in cup therefore cause the premature translation of oskar mRNA, which 

disrupts also its localization because the passage of ribosome along the mRNA 

displaces the EJC (Nakamura et al., 2004; Wilhelm et al., 2003). 
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4 Materials 

4.1 Consumables 
 
Akku-Jet  Neolab (Heidelberg) 
Analytical balance  Sartorius Universal 
Autodiagraphy cassettes Sigma, Deisenhofen 
Fluorescence Microscope BX60  Olympus 

Freezer -20°C  Liebherr 
Freezer -80°C  New Brunswick 
Fridge  Liebherr 
Gel documentations system Mitsubishi 
Gel electrophoresis chamber ZMBH (Heidelberg) 
Light microscope ICS/KF 2 Zeiss 
Magnetic Stirrer MR3000 Heidolph 

Microwave oven  Bosch 

PCR cycler Primus 96 plus MWG-Biotech 

PCR cycler PTC-200  MJ Research 

Pipetman Gilson P10, P20, P200, P1000  Abimed 

Rotor SLC6000 Kendro Sorvall 

Rotors SS-34, GS-3, GSA  DuPont 

Shaking incubator New Brunswick 

Sonifier 200 Branson 

Stratalinker UV Crosslinker Stratagene 

Tabletop centrifuge Micro 2000  Hettich 

Typhoon 9400 PhosporImager Amersham Pharmacia 

Ultracentrifuge  Beckmann 

Vortexer Genie 2 Scientific Industries 

Waterbath Shaker SW 2 Julabo 

  

4.2 Commercially available kits 
 
Access RT-PCR System  Promega 

Nucleospin Miniprep Kit Machery&Nagel 

Nucleobond AX 100 Midiprep Kit  Machery&Nagel 
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QIAquick Gel Extraction Kit  Qiagen 

QIAquick PCR Purification Kit  Qiagen 

Quick Ligation Kit  New England Biolabs (NEB) 

QuikChange® Site-directed Mutagenesis  Stratagene 

Prime-It®II Random Primer Labeling Kit  Stratagene 

T7-Mega-Shortscript-Kit  Ambion 

Topo TA Cloning®  Invitrogen 

 

4.3 Enzymes 
 

Alkaline Phosphatase  Roche, Mannheim 

CIP (Calf intestinal phosphatase) Roche, Mannheim 

DNaseI (RNase-free) Promega 

Lysozyme  Biomol 

Platinum-Pfx-Proofreading Polymerase Invitrogen 

Restriction enzymes New England BioLabs (NEB) 

RNase A  Roche, Mannheim 

Quick-T4-DNA-Ligase NEB 

Taq-DNA-Polymerase Axon 

Vent-DNA-Polymerase New England Biolabs (NEB) 

Zymolyase 100T ICN 

 

4.4 Antibodies 
 
3F10; rat-anti-HA  Roche 

16B12; mouse anti-HA  Convance  

9E10; mouse anti-Myc  (Evan et al., 1985) 

anti-mouse-IgG-Horseradish Peroxidase  Dianova 

anti-rabbit-IgG-Horseradish Peroxidase Dianova 

anti-rat-IgG-Horseradish Peroxidase  Dianova 

Alexa®488 rabbit anti-mouse-IgG  MoBiTec 

Alexa®488 goat anti-rabbit-IgG MoBiTec 

Alexa®594 goat anti-rabbit-IgG MoBiTec 

Alexa®488 goat anti-mouse-IgG MoBiTec 
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Alexa®594 goat anti-mouse-IgG MoBiTec 

Alexa®594 rabbit anti-mouse-IgG MoBiTec 

Rabbit anti-She2 (323/4-E12) This work, (Schmid et al., 2006) 

MCA-38F3 mouse anti-Nop1 Encor BioTechnology 

Rabbit anti-Nhp2  (Henras et al., 2004) 

Rabbit anti-Rpa49 Gift from H. Tschochner 

MAB1501 mouse anti-actin Chemicon 

  

4.5 Oligonucleotides 
 

4.5.1 Primer for she2::KANMX4 gene deletion  
 

Name_____ Sequence (5’-3’)__________________________ 

RJO 1813 CTTATAGAATGGTTCTTCGTGCATGCC 

RJO 1964 CCTAAATTGGGGTCCCTCCCACATCAGAGG 

 

4.5.2 Primer for she2::HISMX6 gene deletion  
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 2070 GAATTTGATGTTGTCGCTACTAAATGGCATGACAAATTTGGTA

AATTGAAAAACcgtacgctgcaggtcgac 

RJO 2071 CTATTAACTAGTGGTACTTATTTGCTCTTTTTGAGCTAAAAACT

GAAGGCCatcgatgaattcgagctcg 

 

4.5.3 Primer for rrp6::natNT2 gene deletion  
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 2390 ATAGGAACAACAAACAGCTTATAAGCACCCAATAAGTGCGTTA

TGcgtacgctgcaggtcgac 

RJO 2391 TACCATAATTTATAAATAAAAAAATACGCTTGTTTTACATAATCA 

atcgatgaattcgagctcg 
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4.5.4 Primer for Puf6p epitope tagging  
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 2037 GATGAAAGTAACAAAGGCTCTCAGCTTTTGGCTAAATTGTTAA

AACGTACGCTGCAGGTCGAC 

RJO 2038 GTACAGATGCTTATATACCAAATATTGTGACTTTATCGTAGAAA

ATATCGATGAATTCGAGCTCG 

 

4.5.5 Primer for Khd1p epitope tagging 
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 2115 AAGAAGAACCTCAAGAGAATCATGATAACAAAGAGGAGCAGTC

GCGTACGCTGCAGGTCGAC 

RJO 2116 TTTGTTTTGTCTGTGTGGGACGTGCGCACGCACACGTATATAA 

TCGATGAATTCGAGCTC 

 

4.5.6 Primer for Loc1p epitope tagging  
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 2039 GCTAGTGAAAGTAAAACTGAAGGAAGGAAGGTAAAAAAAGTCT

CATTTGCTCAACGTACGCTGCAGGTCGAC 

RJO 2040 GGATGTTATATATTATACAACAGACTTATCCGTATTTAGTTTAG 

TCAATCAAACTAATCGATGAATTCGAGCTCG 

 

4.5.7 Primer for cloning of YCplac111-She2 
 

Name_____ Sequence (5’-3’)________________________________________ 

RJO 1720 GGGCCAACCAAAGGATCCGAAATTCGAAGC 

RJO 1721 TTTTGAATTCGGCAATTTTTCTTAGCGAAGTATACG 

RJO 1722 TTTTGGTACCAGCAAAGACAAAGATATCAAAGTCACTCC 

RJO 1723 TTTTGGTACCTTTTTCAATTTACCAAATTTGTCATGCC 
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4.5.8 Primer for cloning of YCplac111-GFP-She2 
 

Name_____ Sequence (5’-3’)_______________________________________ 

RJO 1728 TTTTGGTACCCCCCCCGGGCCCCCCTCAGCATGCAGTAAAGG

AGAAGAACTTTTCACTGG 

RJO 1729 TTTTGGTACCGCTTGGCTGCAGTTTGTATAGTTCATCCATGCC 

 

4.5.9 Primer for cloning of YCplac111- She3N-She2 
 

Name_____ Sequence (5’-3’)_______________________________________ 

RJO 1932 TTTTTTGGTACCTCGGACCAGGATAATACCC 

RJO 1933 TTTTTTGGTACCGGGGGGCCCGGGGGGATCTGAACCATAATT

TAAATTTTG 

 

4.5.10 Primer for cloning of p413-HA6-She3C 
 

Name______ Sequence (5’-3’)________________________________ 

RJO 2677 TTTTTGGATCCATGACTAGTTCAAATTCAGATATAG 

RJO 2678 TTTTTGAATTCCTAGGATTGGGCCCCGTGAACAACC 

RJO 2694 TTTTTACTAGTATGGTCGACTCCGGTTCTGCTGCTAG 

RJO 2699 TTTTTACTAGTGCGGCCGCATAGGCCACTAGTGCT 

 

4.5.11 Primer for ASH1 RT-PCR 
 

Name______ Sequence (5’-3’)_____________ 

RJO 73 TACATGGATAACTGAATCTC 

RJO 74 CAGGATGACCAATCTATTGC 

 

4.5.12 Primer for ASH1 probe (Northern blot) 
 
Name______ Sequence (5’-3’)_____________ 

RJO 176 CCAATAGAACCATGGAGCGC 

RJO 217 GAAGATGCCGCGGCGTG 
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4.5.13 She2-N36S mutagenesis primer 
 

Name______ Sequence (5’-3’)_______________________________________

RJO 1999 CTCATCTTATATTCACGTGCTGAgCAAGTTCATCAGTCATTTG

CG 

RJO 2000 CGCAAATGACTGATGAACTTGCTCAGcACGTGAATATAAGAT

GAGAGATACC 

4.5.14 She2-R63K mutagenesis primer 
 

Name______ Sequence (5’-3’)_______________________________________

RJO 2001 GATTAAATTTGTTAAGAAATTGAaATTTTACAACGATTGTG 

TGTTAAGC 

RJO 2002 GCTTAACACACAATCGTTGTAAAATtTCAATTTCTTAACAAATT

TAATC 

4.5.15 She2-S120Y mutagenesis primer 
 

Name______ Sequence (5’-3’)_______________________________________

RJO 2003 CTGAACTATTATCTAACGCAGTacTTACAAAAGGAAATTTTAT

CTAAAACTTTGAACG 

RJO 2004 CGTTCAAAGTTTTAGATAAAATTTCCTTTTGTAAgtACTGCGTT

AGATAATAGTTCAG 

 

4.5.16 Sequencing primer 
 

Name______ Sequence (5’-3’)___________________________ 

RJO 813 CTTATAGAATGGTTCTTCGTGCATGCC 

RJO 1814 GCCATTAAATGCGCAGATGAGG 

RJO 1816 CGCAAATGACTGATGAACTTGTTCAGC 

RJO 1817 CCGTATGTTGCATCGCCTTCACCC 

RJO 1818 GCCCTTTCGAAAGATCCCAACG 

RJO 1964 CCTAAATTGGGGTCCCTCCCACATCAGAGG 

RJO 2775 CCCAGGTGGAAAGCAACAACGC 
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4.6 Vectors and Plasmids 
 

4.6.1 Vectors 
 

pGEX4T-2 (Pharmacia) 

p41x-GAL1 series (Mumberg et al., 1995) 

YCplac series (Gietz and Sugino, 1988) 

YEplac series (Gietz and Sugino, 1988) 

pYM series (Knop et al., 1999) 

 

4.6.2 Plasmids 
 

RJP 88 YEplac181-ASH1 (C3319 in Long et al., 1997) 

RJP 132 YEplac195-ASH1 

RJP 309 pRS426-pGAL1-ASH1 

RJP 392 YIplac211-pGAL1-10-ASH1 

RJP 630 pGEX-TEV-SHE2 

RJP 916 YCplac111-SHE2 for N-terminal cloning 

RJP 919 YCplac111-GFP-SHE2 

RJP 920 YCplac111-GFP-SHE2 

RJP 922 YCplac22-GFP-SHE2 

RJP 932 pRS314-yra1-1 

RJP 1081 pRS314-sub2-85 

RJP 1082 pRS314-SUB2 

RJP 1098 YCplac111-SHE3N-SHE2 

RJP 1100 YCplac22-SHE3N-SHE2 

RJP 1101 YCplac22-SHE2 

RJP 1146 YCplac111-she2-N36S 

RJP 1150 pRS313-she2-N36S-R63K 

RJP 1292 YCplac111-GFP-she2-N36S-R63K 

RJP 1461 pGal413-HA6-SHE3C 
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4.7 Bacterial strains 
 

E.coli BL21 (Stratagene) 

E.coli TOP10 

 

RJB 20 pGEX-TEV-SHE2 in BL21 

 

4.8 Yeast strains 
 
W303  MAT a; ade2-1; trp1-1; can1-100; leu2-3; 112 his3-11; 15 ura3; GAL psi+ 

 

Name Genotype 

  

RJY 126 MAT α, HO-ADE2, HO-CAN1, she2::URA3 

RJY 280 MAT α, ash1::URA3, TRP1::GAL1-ASH1-myc9 (2 copies ) 

RJY 358 MAT a 

RJY 612 MAT a, mex67:HIS3 (pUN100-mex67-5), Segref et al. (1997) 

RJY 646 MAT a, mex67:HIS3 (pUN100-MEX67) 

RJY 915 MAT α, LOC1-myc9::K.l.TRP1 

RJY 1121 MAT a, HO-ADE2, she3::URA3, MYO4-myc3, she2::TRP 

RJY 1149 MAT a, mex67:HIS3 (pUN100-mex67-5), pGAL1-ASH1::URA3 

RJY 2182 MAT α, HO-ADE2, HO-CAN1, she2::URA3, 

p413-GAL1-ASH1, YCplac111-GFP-SHE2 

RJY 2198 MAT a, mex67:HIS3 (pUN100-mex67-5),  

pGAL1-ASH1::URA3, YCplac22-GFP-SHE2 

RJY 2239 MAT a, mex67:HIS3 (pUN100-MEX67), pGAL1-ASH1::URA3 

RJY 2264 FY, MAT α, ura3-52, his3∆200, leu2∆1, trp1∆63,  

sub2::kanMX4, pRS314-sub2-85, pGAL1-ASH1::URA  

RJY 2273 RS453, MAT a, ura3, ade2, his3, leu2, trp1, yra1::HIS3 

pRS314-yra1-1, YCplac111-GFP-SHE2, pRS426-pGAL1-ASH1 

RJY 2354 FY, MAT α, ura3-52, his3∆200, leu2∆1, trp1∆63, sub2::kanMX4 

pGAL-ASH1::URA, YCplac111-GFP-SHE2 

RJY 2414 BY4742; Mat α; his3∆1; leu2∆0; lys2∆0; ura3∆0; she2::kanMX4, 

YCplac111-SHE3N-SHE2, YEplac195-ASH1 
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RJY 2415 MAT a, mex67:HIS3 (pUN100-mex67-5), pGAL1-ASH1::URA3, 

she2::KANMX4 

RJY 2416 MAT a, mex67:HIS3 (pUN100-MEX67), pGAL1-ASH1::URA3, 

she2::KANMX4 

RJY 2420 MAT a, mex67:HIS3 (pUN100-mex67-5), pGAL1-ASH1::URA3, 

she2::KANMX4, YCplac22-SHE3N-SHE2 

RJY 2421 MAT a, mex67:HIS3 (pUN100-mex67-5), pGAL1-ASH1::URA3, 

she2::KANMX4, YCplac22-SHE2 

RJY 2422 MAT a, mex67:HIS3 (pUN100- MEX67), pGAL1-ASH1::URA3, 

she2::KANMX4, YCplac22-SHE3N-SHE2 

RJY 2645 MAT a, mex67:HIS3 (pUN100-mex67-5), pGAL1-ASH1::URA, 

KHD1-HA6::K.l.TRP 

RJY 2646 MAT a, mex67:HIS3 (pUN100-MEX67), pGAL1-ASH1::URA, 

KHD1-HA6::K.l.TRP 

RJY 2663 MAT a, PUF6-myc9::K.l.TRP 

RJY 2785 MAT α, HO-ADE2, HO-CAN1, she2::URA3,  

YCplac111-GFP-she2-N36S-R63K 

RJY 2960 MAT α, HO-ADE2, HO-CAN1, she2::URA3,  

YCplac111-she2-S120Y 

RJY 2997 BY4742; Mat α; his3∆1; leu2∆0; lys2∆0; ura3∆0;  

YEplac195-ASH1 

RJY 3162 MAT α, ash1::URA3, TRP1::GAL1-ASH1-myc9 (2 copies ), 

loc1::HIS3MX6 

RJY 3163 MAT α, ash1::URA3, TRP1::GAL1-ASH1-myc9 (2 copies ), 

puf6::HIS3MX6 

RJY 3164 MAT α, ash1::URA3, TRP1::GAL1-ASH1-myc9 (2 copies ), 

she2::HIS3MX6 

RJY 3269 MAT α, ash1::URA3, TRP1::GAL1-ASH1-myc9 (2 copies ), 

she2::HIS3MX6, YCplac111-SHE3N-SHE2 

RJY 3270 MAT a, she3::URA3, MYO4-myc6 she2::TRP,  

YCplac111-SHE3N-SHE2 

RJY 3271 MAT a, she3::URA3, MYO4-myc6, she2::TRP,  

YCplac111-SHE3N-SHE2, pGal413-HA6-SHE3C 
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5 Methods 
 

5.1 Cell density of a yeast culture 
 

The cell density of a yeast culture was determined in a spectrophotometer at a 

wavelength of 600 nm. One OD at 600 nm (1 OD600) corresponds to 2.5 x 107 cells. 

 

5.2 Transformation of yeast cells 
 

‘One-step’ transformation with plasmid DNA was performed according to Chen et al. 

(Chen et al., 1992). High-efficiency yeast transformations with linear DNA fragments 

and PCR products were performed as was described in Gietz et al. (Gietz and 

Schiestl, 1991). 

 

5.3 Epitope-tagging of proteins 
 

In yeast, tagging of genes by chromosomal integration of PCR-amplified cassettes is 

a standard method to label proteins in vivo. This ‘one-step tagging’ strategy directs 

the amplified tags to the desired chromosomal loci due to flanking homologous 

sequences provided by the PCR-primers (Wach et al., 1994). These tags are 

combined with different selectable marker genes, resulting in PCR amplificable 

modules (Janke et al., 2004; Knop et al., 1999). In this thesis, several proteins were 

tagged at the C-terminus using 9xmyc or 6xHA epitope modules. Primers used for 

amplification of these modules contain 50 bp 5’-overhangs, which are required to 

target the resulting PCR product directly to the 3’-end of a gene by homologous 

recombination. After transformation into yeast cells, the PCR-product is integrated 

into the genome. Cells, which have successfully integrated the epitope module, can 

be also selected for the marker gene using appropriate selective media plates. 

Candidate colonies were tested for a positive integration by PCR. Alternatively, the 

expression of the myc- or HA-tagged proteins can be checked in a western blot or 

also using indirect immunofluorescence. 
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5.4 Gene deletions 
 

Genes were deleted with a similar PCR-based strategy using deletion cassettes 

(Knop et al., 1999). The primers amplify only a selectable marker gene and contain 

overhangs of 50 bp, which direct the PCR-product to homologous sequences in 5’- 

and 3’-UTR of the target gene, respectively. After transformation into yeast cells, the 

endogenous target gene is replaced by the marker gene by homologous 

recombination. Transformed yeast cells were then selected for the marker gene 

using appropriate media plates, and the putative candidates were tested for the 

deleted gene using Colony-PCR.  

 

5.5 Yeast Colony PCR 
 

After transformation, colonies growing on selective media were directly subjected to 

colony PCR in order to test whether they have integrated the desired epitope-tag or a 

gene deletion. Colonies were resuspended in 100 µl 0.02 M NaOH. The same 

volume of glass beads was added and shaken for 5 min in a thermo mixer at 100°C 

in order to break the cells. After pelleting the beads and cell debris, the supernatant 

was transferred to a new tube. 5 µl was used as template for PCR. 

 

5.6 Rapid Isolation of Yeast Chromosomal DNA (Ausubel et al., 1998) 
 

Cells of a 10 ml overnight culture were harvested (3 min, 3000x g), and the pellet 

was resuspended in 200 µl of breaking buffer. 200µl of glass beads together with 

200µl Phenol/Chloroform (50:50) were added. Cells were broken by heavily vortexing 

this mixture for 3 min at full speed, and 200µl TE buffer was added. After a spin at 

13.000 rpm for 5 min, only the aqueous layer was transferred to a new tube. DNA 

was precipitated by the addition of 1 ml 100% ethanol and pelleted at 13.000 rpm for 

3 min. The pellet was resuspended in 400µl TE buffer, and 30 µg of DNase-free 

RNaseA was added. Digestion of RNA occurred for 20 min at 37°C, and DNA was 

finally precipitated by the addition of 10 µl of 4 M ammonium acetate and 1 ml of 

100% ethanol. After washing the pelleted DNA with 70% ethanol, it was spun again 

at full speed and resuspended in 100 µl TE buffer. 
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Breaking buffer:  

2 % Triton X-100, 1 % SDS, 100 mM NaCl, 10 mM Tris-HCl pH 8, 1 mM EDTA 

 

TE buffer:  

50 mM Tris-HCl pH 8, 1 mM EDTA pH 8 

 

5.7 Isolation of RNA from yeast (Cross and Tinkelenberg, 1991) 
 

In order to determine expression levels of ASH1 mRNA, total RNA was extracted and 

analyzed in a Northern blot. Therefore, 15-20 ml of a logarithmically growing culture 

was harvested (3 min/3000x g). The pellet was resuspended in ice-cold TE buffer 

and transferred to a 2 ml eppendorf tube. After a short spin at 4°C, the supernatant 

was discarded, and 350 µl of Phenol/Chloroform/Isoamylalcohol (50:49:1, Roth), 

450µl Cross-RNA 1 buffer and 200µl glass beads were added to the remaining pellet. 

This mixture was vortexed at 4°C for 10 min in order to break the cells and spun for 5 

min at 13.000 rpm in a cooling centrifuge. 1 ml of pre-cooled (-20°C) ethanol was 

added to the supernatant, and after carefully mixing, RNA was precipitated for 10 min 

at -20°C. After centrifugation for 5 min at 4°C, the resulting pellet was resuspended in 

200 µl Cross-RNA 2 buffer. RNA dissolved better when was incubated at 65°C for 10 

min. RNA concentrations were measured in a UV spectrophotometer at 260 nm. 

 

Cross RNA 1 buffer:  

0,3 M NaCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.2 % SDS 

Cross RNA 2 buffer:  

1x TE, 0.2 % SDS 

 

5.8 Northern blot analysis 
 

Total RNA was separated in a gel and transferred to a membrane. Expression level 

of a specific mRNA was detected by autoradiography using 32P-labelled probes. 

These DNA probes were previously amplified by PCR from genomic DNA, purified 

and labelled with ‘Prime-It II Random Primer Labelling Kit’ (Stratagene). 25 ng of 

each probe was subjected to the labelling reaction, which was performed according 

to the manufacturer’s manual. The radioactive probe was further purified using RNA 
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columns (BioRad). For the separation of RNA in a gel, 20-40 µg of total RNA was 

dissolved in 15 µl of DEPC-treated water and mixed with 5µl 10x MOPS, 9 µl 

formaldehyde (37%), 21 µl formamide and 10 µl of RNA loading buffer. The mixture 

was incubated for 15 min at 65°C. 20µl was loaded onto a 1.5% formaldehyde-

agarose gel, and RNA was separated at a constant current of 6 V/cm. Before transfer 

of the RNA to the Hybond+ Nylon Membrane (Amersham Pharmacia), the gel was 

washed several times with DEPC water and equilibrated in 10x SSC. Transfer 

occurred overnight in 10x SSC taking advantage of capillary forces generated by 

several layers of Whatman®-paper and tissue paper above the gel and the 

membrane. After the transfer, the membrane was washed with 2x SSC, dried, and 

the RNA was UV cross-linked using the “UV Stratalinker” (Stratagene). To estimate 

the loaded amounts of RNA, the membrane was subjected to methylene blue 

staining (0.04% methylene blue in 0.5 M Na-acetate, pH 5.5). The membrane was 

pre-incubated in hybridization solution (11.5 ml H2O, 115 µl Salmon-sperm DNA (10 

mg/ml), 13.5 ml Scp/Sarc/DS) at 65°C for one hour. The 32P-labelled probe was then 

added to the membrane for overnight hybridization at 65°C. The membrane was 

washed two times with 2x SSC/1% SDS and once with warm (55°C) 2x SSC/0.1% 

SDS. After a wash in 3 mM Tris-HCl the membrane was finally subjected to 

autoradiography at the phosphor-imager (Amersham Pharmacia)  

 

RNA loading buffer:  

1 mM EDTA, pH 8.0; 0.25% Bromophenol blue; 0.25% Xylene cyanol, 50% glycerol 

 

10x MOPS:  

48.1 g MOPS + 800 ml H2O; adjust pH 7.0 with NaOH.  

16.6 ml 3 M sodium acetate and 20 ml 0.5 M EDTA pH 8.0 was added and filled up 

to 1l with H2O. 

 

Hybridization solution:  

11.5 ml H2O, 115 µl Salmon-sperm DNA (10 mg/ml), 13.5 ml Scp/Sarc/DS 

 

20x Scp: 

2M NaCl; 0,6M Na2HPO4; 0,02M EDTA; pH 6.2 
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Scp/Sarc/Ds-Mix:  

20 g Dextransulfate dissolved in 60 ml 20x Scp, ad 101 ml H2O. 

Addition of 7 ml 30% N-Lauroylsarcosine (SLS). 

 

20xSSC:  

3M NaCl; 0,3M Na3-citrat 

 

5.9 Yeast Whole Cell Extract 
 

20 ml of an exponentially growing culture was harvested (3 min/3000x g), and the 

pellet resuspended in 400µl breaking buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 

20 mM DTT, 1 mM PMSF, 1x Protease inhibitor mix). After addition of 400µl glass 

beads, yeast cells were broken using the IKA vibrax at 4°C. Cells were vortexed two 

times for 3 min with a pause of 3 min on ice in between. The supernatant was spun 

for 10 min at 13.000 rpm in a cooling centrifuge to get rid of remaining cell debris. 

Protein concentrations were estimated by measuring OD at 280 nm in the UV 

spectral photometer. 50µl of 4x Laemmli buffer was added to 150 µl of clear protein 

extract. The sample was cooked for 5 min at 95°C, and after a spin at 13.000 rpm for 

5 min, 1 OD280-unit was loaded on a SDS-polyacrylamide gel.  

 

5.10 SDS-Polyacrylamide Gel electrophoresis (Laemmli, 1970) 
 

Sodium dodecylsulfate (SDS) is an amphipathic detergent. In the presence of SDS, 

the intrinsic charge of a protein is masked. During SDS-PAGE, all proteins migrate 

toward the anode and the rate of migration of SDS-treated proteins is effectively 

determined by molecular weight. The samples were mixed with the same volume of 

2x Laemmli buffer and incubated for 95°C to denature the proteins before loading on 

the SDS gel. Separation of proteins occurred at 25 mA for mini gel (Hoeffer) and 40 

mA for a big SDS gel (ZMBH format). After electrophoresis, proteins either were 

transferred to a membrane (Western blot) or were directly stained with Coomassie. 

 

2x Laemmli-buffer:  

100 mM Tris-HCl pH 6.8, 4% SDS, 2% 2-Mercaptoethanol, 20% glycerol, 0,002% 

Bromophenol blue 
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10x SDS buffer (1 l):  

30.2 g Tris, 144g glycine, 100 ml 10% SDS 

 

12% separating gel (40 ml):  

16 ml Acrylamide/Bisacrylamide (29:1), 8 ml 1,5M Tris-HCl, pH 8.8, 15.2 ml H2O, 400 

µl 10% SDS, 200 µl 10%APS, 18 µl TEMED 

 

stacking gel (20 ml):  

3.4 ml Acrylamide/Bisacrylamide (29:1), 4 ml 0,5M Tris-HCl, pH 6.8, 12.7 ml H2O, 

200 µl 10% SDS, 100 µl 10% APS, 15 µl TEMED 

 

5.11 Western Blot 
 

In order to detect a specific protein in a given sample of an extract, proteins were 

separated by SDS-PAGE and then transferred to a PVDF membrane Hybond P 

(Amersham Pharmacia), and probed using antibodies specific to the target protein. 

Protein transfer was performed using a semi-dry blotting apparatus (PeqLab) 

according to the manufacturer’s manual. The PVDF membrane was previously 

activated and washed with 1x semi-dry buffer. A ‘sandwich’ consisting of 3 layers of 

wetted Whatman®-paper, PVDF membrane, polyacrylamide gel and another 3 

Whatman®-papers on top was piled up for protein transfer, which occurred at 8 

mA/cm2 for 2h. To monitor effectiveness of transfer, blotted proteins were reversibly 

stained with Ponceau-S® dye. Blocking of non-specific binding is achieved by placing 

the membrane 3 times in 1x TBS, 0.1% Tween, 5% non-fat dry milk (each 15 min). 

After blocking, a dilute solution of primary antibody is incubated with the membrane 

under gentle agitation. Depending on the specificity of the antibody, incubation 

occurred either for 2 hours at room temperature or overnight at 4°C. After three 

rounds of washes with 1x TBS (15 mM NaCl, 0.1% Tween (10 min each) to remove 

unbound primary antibodies, a dilute solution of the secondary antibody linked to 

horseradish peroxidase (Dianova) was incubated with the membrane for one hour. 

After two additional washes with 1x TBS, 0.1% Tween, the membrane can be stored 

in 1x TBS. Detection of the secondary antibody was performed using the enhanced 

chemoluminescent kit (ECL, Pierce) according to the manufacturer’s manual.  
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Signals were detected using ECL film (Amersham Pharmacia) or the LAS-3000 

Image Reader (Fuji). Signal intensities were measured using Multigauge 3.0 software 

(Fuji). 

 

1x TBS: 10 mM Tris/HCl pH 7.5, 150 mM NaCl.  

 

10x Semi-dry-buffer:  

30.3g Tris, 144.1g Glycine, 10 ml 20% SDS, ad 1l H2O 

 

5.12 Isolation of nuclei (Hurt et al., 1988) 
 

Isolation of yeast nuclei was performed according to Hurt et al. (1988). 500 ml of an 

exponentially growing culture (OD600~1) was harvested in a SLC6000 rotor at (3000 

rpm/5 min). After a wash with 500 ml H2O, cells were resuspended in 25 ml 0.1 M 

Tris-HCl pH 9.4, 10 mM DTT and incubated at 25°C for 5 min while shaking. After 

washing cells with 25 ml spheroplasting buffer (1.2 M sorbitol, 20 mM potassium 

phosphate pH 7.4, the pellet was resuspended in spheroplasting buffer containing 5 

mg Zymolyase 20T (ICN) per g of net wet weight. Cells were spheroplasted in a 50 

ml falcon tube for 20 min at 25°C while gently shaking. Spheroplasted cells were then 

pelleted carefully for 5 min at 3500 rpm in SS34 rotor. After washing with 10 ml 

spheroplasting buffer, cells were resuspended in 50 ml osmotic lysis buffer and 

transferred into a 60 ml douncer with a loose pistil (Neolab). Cells were lysed by 3-4 

strokes with the pistil. Cell debris and intact cells were pelleted at 5000 rpm in the 

SS34 rotor. The whole cell extract (WCE) was then further separated by a second 

centrifugation (15000 rpm/25 min in SS34 rotor) into an upper layer containing lipids 

and vacuoles, the post nuclear supernatant (PNS) and the crude nuclear pellet 

(CNP), which was enriched with nuclei and mitochondria. A 100µl aliquot of PNS and 

CNP was removed for Western blot analysis. The supernatant was removed, and the 

remaining CNP was resuspended in 2 ml nuclear resuspension buffer. The CNP was 

loaded onto a 5-step Ficoll/sucrose density gradient (2M, 1.8M, 1.5M, 1.3M, 1.2M 

sucrose), and centrifuged for 1 hour at 25000 rpm in a SW40 rotor (Beckmann). 200 

µl of cellular material, which accumulated in interphase I-V were collected with a 1 ml 

syringe using a 21G needle. The collected fractions were finally analyzed in Western 

blot.  
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Osmotic lysis buffer:  

18% Ficoll DL-400 (w/v); 0.5 mM MgCl2; 20 mM K-phosphate pH 6.45 

 

Nuclear pellet resuspension buffer:  

0.3 M sucrose, 16.6% Ficoll; 0.5 mM MgCl2; 20 mM K-phosphate pH 6.45 

 

5-step Ficoll/sucrose gradient: 

The 5 steps of the gradient contain 2, 1.8, 1.5, 1.3 und 1.2 M sucrose in 9 % Ficoll 

buffer (2 ml for each step), and are mixed by the combination of two buffers: 

 

Buffer A: 9% Ficoll (w/v); 0.5 mM MgCl2, 20 mM K-phosphate pH 6.45 

Buffer B: 2 M sucrose, 9% Ficoll, 0.5 mM MgCl2, 20 mM K-phosphate pH 6.45 

 

 Mixing ratio A : B (v/v) 

1.8 M step    1 : 9  

1.5 M step 2.5 : 7.5  

1.3 M step 3.5 : 6.5  

1.2 M step    4 : 6  

 

5.13 Purification of the She2-antigen  
 

5.13.1 Recombinant expression in E. coli 
 

GST-She2 was recombinantly expressed in E. coli BL21 strain RJB20 using a pGEX-

GST-TEV-She2 plasmid (RJP630). 800 ml of LB medium containing ampicillin and 

chloramphenicol was inoculated with an overnight culture to an OD of 0.2 and grown 

at 37°C until the culture reaches OD of 0.8. 200 ml cold LB (4°C) medium was 

added, and expression was induced by the addition of 1 mM IPTG and incubation for 

5-6 hours at 25°C. Cells were harvested in a SLC6000 rotor at 7800x g for 10 min. 

After washing with 200 ml water, cells were pelleted in a GSA rotor for 10 min at 

7800x g, and pellet was frozen and stored at -20°C.  
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5.13.2 Lysis of cells 
 

For the lysis, cells were resuspended in 15 ml lysis-buffer containing 100 mg/l 

Lysozyme and rotated in a 50 ml Falcon tube for 30 min at 30°C. After 3 rounds of 

freezing (liquid nitrogen) and thawing (37°C water bath), cells were subjected to 

sonification in a 50 ml steal beaker. Cells were broken 4 times for 5 min with a pause 

of 5 min on ice in the Sonifier® (70% output, 40% duty cycle). NP40 was added to 

the lysate in a final concentration of 0.1% and rotated for 30 min. Cell debris was 

pelleted in a SS34 rotor at 4°C at 15.000 rpm for 30 min. Samples of 100µl of pellet 

and supernatant were taken and analyzed in SDS-PAGE.  

 

5.13.3 Affinity purification 
 

The GST-She2 fusion protein was purified using 500 µl of Glutathione Fast Flow 

Slurry (Amersham Pharmacia). Beads were pre-washed with 10 ml lysis buffer and 

added to the lysate for binding in a 50 ml Falcon tube while rotating at 4°C for one 

hour. After binding, beads were washed with 10 ml wash buffer I and II, and 

equilibrated in 10 ml TEV-buffer using a Poly-Prep Chromatography Column 

(BioRad). The remaining slurry was then transferred to a mobil-col column (MobiTec). 

After addition of 500 µl TEV-buffer and 10 µl of TEV-protease, the column was 

rotated for 1 ½ hour at 16°C for TEV-cleavage. She2 was eluted by centrifugation of 

the mobil-col column at 2000 rpm for 2 min. An aliquot (10 µl) of the eluate (~500 µl) 

was removed for analysis in SDS-PAGE. The His6-tagged TEV-protease was 

removed using NiNTA sepharose (Quiagen). Beads were washed 3 times with 10 ml 

TEV–buffer in a mobil-col column. The TEV-eluate was added to the beads and 

rotated for 2 hours at 4°C. Pure She2 antigen was eluted into a fresh eppendorf tube 

by a short spin for 1 min at 2000 rpm in a cooling centrifuge. Concentration of She2 

antigen was further increased using vivaspin® concentrators. The concentration was 

determined using Bradford (Roth) according to the manufacturer’s manual. 150 mM 

NaCl was added to concentrated She2 solution and stored at -20°C. 

 

Lysis buffer:  

25 mM Hepes-KOH pH 7.5, 0.1 mM EDTA pH 8, 1 M NaCl, 2 mM DTT, 1x protease 

inhibitors 

97
 



Wash buffer I:  

25 mM Hepes-KOH pH 7.,5, 0.1 mM EDTA pH 8, 12.5 mM MgCl2, 1 M NaCl, 0.1% 

NP40, 2 mM DTT, 1x protease inhibitors,  

 

Wash buffer II:  

25 mM Hepes-KOH pH 7.5, 0.1 mM EDTA pH 8, 12.5 mM MgCl2, 0.7 M NaCl, 0.1% 

NP40, 1 mM DTT 

 

TEV buffer: 

50 mM HEPES-KOH pH 7.5, 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM DTT (1M), 

0.15% NP40, 1 mM PMSF (freshly added before use) 

 

5.14 Generation of a polyclonal antibody  
 

For the generation of a specific polyclonal antibody against She2p, purified antigenic 

material was injected into rabbits. For the first boost, 200 µg of the antigen (volume 

400µl) was mixed with 400 µl TitermaxTM (Sigma) and subcutaneously inoculated at 

the dorsal area. The rabbits were injected every four weeks with 150 µg antigen (300 

µl) mixed with 300 µl Freund’s AdjuvansTM incomplete (Sigma). 10-12 days after 

each injection 20-30 ml blood was removed from the ear vein. After coagulation, the 

blood was centrifuged 5 min at 3000x g and 15 min at 40000x g. The complement 

system of the serum was deactivated by incubation at 56 °C for 30 min. The yielded 

serum was stored at -20°C. 

 

5.15 Affinity purification of polyclonal antibodies 
 

In order to reduce unspecific cross reactivity in Western blot detection, the serum 

was further purified in an affinity step. Therefore, antigenic protein was coupled to 

sepharose column material. 
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5.15.1 Preparation of affinity chromatography columns 
 

0.24 g of CNBr-activated sepharose (Amersham Pharmacia) was resuspended in 10 

ml 1 mM HCl and rotated for 10 min at room temperature. After three rounds of 

washing with 10 ml 1 mM HCl, 1.5 mg of antigenic protein was dissolved in 3 ml 0.1 

M NaHCO3, 0.5 M NaCl, 1 mM PMSF, 1 mM EDTA pH 8.3 and added to the 

sepharose material. 10 µl was removed previously for analysis in SDS-PAGE. The 

suspension was rotated in Polyprep-chromatography columns (BioRad) for 1 ½ hours 

at room temperature. After binding, 10 µl of the eluate was analyzed in SDS-PAGE to 

determine coupling efficiency. The column was washed three times with 0.1 M 

NaHCO3, 0.5 M NaCl pH 8.3. After another washing step with 5 ml 0.1 mM Tris-HCl 

pH 8.0, the column material was rotated in 10 ml 0.1 mM Tris-HCl pH 8.0 for 2 hours 

at room temperature (or overnight at 4°C) in order to block unspecific binding sites. 

After three rounds of washes with 5 ml 0.1 M Na-acetate, 0.5 M NaCl pH 4.0, the 

column was equilibrated with 5 ml 0.5 M NaCl pH 8.0 and stored in 0.1 M Tris-HCl 

pH 8.0, 10 mM NaN3 at 4°C. 

 

5.15.2 Affinity purification  
 

Before antibody binding, the column was equilibrated by the flow-through of 10 ml 10 

mM Tris-HCl pH 7.5, 10 ml 100 mM Glycine-HCl pH 2.5, 10 ml Tris-HCl pH 8.8, 10 ml 

100 mM Na-phosphate pH 11.5 and 10 ml 10 mM Tris-HCl pH 7.5.  

4 ml of serum was mixed with 16 ml 10 mM Tris-HCl pH 7.5, 100 µl 200 mM PMSF, 

40 µl 0.5 M EDTA, 80 µl 0.5 M EGTA and loaded onto the affinity column to allow 

binding of the antibody by gravity flow. After four rounds of binding, the column 

material was washed with 20 ml Tris-HCl pH 7.5 and 20 ml Tris-HCl pH 7.5, 500 mM 

NaCl. The bound antibody was eluted using three different pH conditions:  

 

1) 10 ml 100 mM Na3-citrate pH 4.0  

2) 10 ml 100 mM Glycine-HCl pH 2.5 

3) 10 ml 100 mM Na-phosphate pH 11.5 

 

Eluates were collected in fractions of 1 ml. In order to allow quick neutralization tubes 

for the citrate-eluates should already contain 160 µl 1 M Tris base. Glycine-fractions 
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were neutralized with 70 µl 1 M Tris Base, and phosphate-fractions with 300 µl 1 M 

Glycine-HCl pH 2.5. After washing with 30 ml 10 mM Tris-HCl pH 7.5, the affinity 

column was stored in 10 ml 10 mM Tris/HCl pH 7.5, 0.05% (w/v) NaN3 at 4°C. One 

column can be used for up to 4 rounds of affinity purification. The elution fractions 

were tested for the antibody titer using Bradford (BioRad). In a microtiter plate, 200 µl 

of Bradford (dilution 1:5) was mixed with 20 µl of a fraction. Unspecific proteins and 

antibodies were washed off in the citrate-fraction. The highest titer of eluted antibody 

was indicated by a blue staining, usually in the first three Glycine-fractions. The 

antibody-containing fractions were stored in 100 µl aliquots at -20°C. Quality of the 

purified antibody was assayed in Western blot analysis or in indirect 

immunofluorescence. 

 

5.16 Immunoprecipitation followed by RT-PCR (IP-RT) 
 

5.16.1 Immunoprecipitation 
 

Immunoprecipitation of She2 and of myc-tagged proteins was done using antibodies 

coupled to magnetic Protein G beads (Dynal). Coupling of the antibody was 

performed according to the manufacturer’s guide. 25 µl of coupled beads were used 

for immunoprecipitation of a 50 OD culture. Beads were washed 2 times in breaking 

buffer and rotated overnight at 4°C in beads buffer to block unspecific binding sites. 

50 OD units of an exponentially growing yeast culture were harvested (3 min /3.000x 

g). The pellet was transferred to a 2 ml eppendorf tube, and 500 µl breaking buffer, 

500 µl glass beads, 10 µl RNasin (final conc. 0.8 u/µl, Promega) was added to the 

pellet. The cells were broken by heavily vortexing 4 times for 3 min with 3 min pause 

on ice using IKA vibrax at 4°C. Cell debris and beads were pelleted at 8.000 rpm in a 

cold centrifuge. 400 µl of the supernatant was incubated with 25 µl pre-washed (2x 

breaking buffer) uncoupled or non-specific magnetic beads for a pre-clear of the 

lysate. An aliquot 30µl (+10µl 4x Laemmli buffer) was removed as ‘total input’ (T) for 

Western blot analysis. An aliquot of 50µl (+50 µl breaking buffer) was taken when 

performing a subsequent RT-PCR reaction (‘total’ for RT-PCR). After incubation for 

30 min at 4°C, the pre-clearing beads were pelleted in a cold centrifuge and the 

remaining supernatant was added to 25 µl of previously blocked beads and rotated 

for two hours at 4°C to allow binding. After binding, a 30 µl aliquot of the supernatant 
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(+10µl 4x Laemmli buffer) was removed for Western analysis (S). Beads were 

washed two times with wash buffer and resuspended in 300µl 1x PBS.  

5.16.2 Elution of the immune pellet for Western blot analysis 
 

100µl of the final bead suspension was pelleted with the MPC magnet and 

resuspended in 75 µl 100 mM Glycine-HCl pH 2.5. After incubation for 7 min at room 

temperature, beads were pelleted in the magnet, and the supernatant (Glycine 

elution, G E) was removed and mixed with 25 µl 4x Laemmli buffer. Beads were 

finally resuspended in 1x Laemmli buffer. All collected samples (T, S, G E, SDS E) 

were incubated at 95°C and analyzed in a Western blot.  

 

5.16.3 Elution of the immune pellet for RT-PCR 
 

After immunoprecipitation, 200 µl of the final bead suspension was subjected to RT-

PC. For the elution, beads were pelleted in the magnet, resuspended in 100 µl 100 

mM Glycine-HCl pH 2.5, and incubated for 7 min at room temperature. Beads were 

pelleted, and the supernatant was withdrawn (Glycine elution, G E). Finally, beads 

were resuspended in 100 µl TE buffer pH 8 (SDS E).  

 

5.16.4 RNA extraction 
 

For RT-PCR, all samples collected (T, G E, SDS E) were subjected to RNA 

extraction with phenol/chloroform (Rotiphenol, Roth). 5 µl 20% SDS, 10 µl 3 M Na-

acetate pH 5.2 and 100 µl Rotiphenol was added to each sample and vortexed for 1 

min. After centrifugation (5 min, 13000 rpm, 4°C), only the aqueous layer was taken, 

and the containing RNA was precipitated overnight with 180 µl ice-cold ethanol and 1 

µl glycogen (Roche).  

 

5.16.5 Treatment with DNaseI 
 

Prior to RT-PCR, samples were treated with DNaseI to avoid unspecific signals 

caused by DNA. Samples were pelleted in a cold centrifuge at 13.000 rpm, washed 

with ice-cold 70% ethanol, and spun again for 15 min at 13.000 rpm. The pellet was 
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resuspended in 33 µl H20. For DNA digestion 2 µl RNasin, 10 µl RQ1-DNaseI 

(Promega), 2 µl RNasin (Promega) and 5 µl 10x DNaseI buffer was added, and 

mixture was incubated for 25 min at 37°C. After DNaseI treatment, 50 µl Rotiphenol 

was added and centrifuged for 5 min at 13.000 rpm. The aqueous layer was removed 

and added to 100 µl ice-cold 100% ethanol, 5 µl 5 M Na-acetate pH 5.2 and 1 ml 

glycogen for RNA precipitation (2 hours at -20°C). Samples were pelleted for 30 min 

at 13000 rpm in a cold centrifuge. After a wash with 70% ice-cold ethanol, the pellet 

was finally resuspended in 15 µl RNase-free water.  

 

5.16.6 RT-PCR 
 

Extracted RNA of all samples (T, G E and SDS E) was analyzed for ASH1 E3 

element using primers RJO73/RJO74 and the Access RT-PCR System (Promega) 

according to the provided manual. 1 µl of each sample or of the corresponding 

dilution was used as template. For the control reaction without Reverse Transcriptase 

(-RT), 1 µl of the glycine elution (G E) was used.  

 

5.17 Temperature-shift of mex67-5ts cells 
 

The shift of mex67-5ts cells to non-permissive temperatures was performed as was 

previously described in Kruse et al., 2002. Cells of mex67-5, which express ASH1 

under the control of the GAL1 promoter (RJY1149, RJY2239, RJY2415, RJY2849 

and RJY3002) were grown in Raffinose-containing media at 26°C. After two cell 

divisions (OD~0.8), 3% Galactose was added to induce ASH1 expression for 1 hour. 

Cells were then shifted to restrictive temperature by placing the flasks into a 37°C 

shaking water bath for 30-120 min. After temperature shift, cells were fixed at 37°C 

for indirect immunofluorescence or in situ hybridisation using a final concentration 

3.7% formaldehyde.  

 

5.18 Indirect Immunofluorescence (Adams, 1997) 
 

Cellular distribution of a protein was detected in the microscope by indirect 

immunofluorescence (IF) using specific antibodies.  
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5.18.1 Preparation of cells 
 

Cells of a logarithmically growing culture (10 ml) were fixed with formaldehyde in a 

final concentration of 3.7%. Fixation of cells was performed in a shaking incubator for 

one hour either at 30°C or at 37°C in order to maintain non-permissive conditions. 

Cells were centrifuged and washed three times with spheroplasting buffer (1.2 M 

Sorbitol, 0.1 M Potassium phosphate (pH 7.4), 0.5 M MgCl2). Cells were 

spheroplasted in 500µl spheroplasting buffer containing 100 µg/ml of Zymolyase 

100T (ICN) and 0.2% 2-Mercaptoethanol for 45 minutes at 30°C. Spheroplasted cells 

were pelleted at low speed (3000 rpm/1000x g) in a tabletop centrifuge for one 

minute. Cells were washed and finally resuspended in 200 µl spheroplasting buffer. 

The cell suspension can be stored in aliquots at -80°C or directly used for 

immunofluorescence. 

 

5.18.2 Immunofluorescence 
 

Multi-well slides (Neolab) used for immunofluorescence microscopy were coated with 

drops of 0.02% Poly-L-Lysine for 3 min and washed with distilled water. A drop of the 

cell suspension (~10 µl) was applied to binding onto each well for 5 min. Cells were 

blocked for 5 min with blocking solution (1x PBS, 1% BSA, 0.05% Na-azide). A dilute 

solution of the primary antibody was put onto each well and incubated for 2 hours in 

a wet chamber. After three rounds of washing (1x PBS, 1% BSA, 0.1% triton X-100, 

0.05% Na-azide), cells were incubated with diluted Alexa®-coupled secondary 

antibodies (Molecular Probes) in a darkened wet chamber for one hour. After another 

three rounds of washing, nuclei were stained with Hoechst Stain Solution (SIGMA) 

and cells were mounted in mounting solution (1x PBS, 80% glycerol). Cells were 

inspected with an Olympus BX60 fluorescence microscope (Olympus) and a 100x 

NA 1.3 DIC oil objective. Images were acquired using an ORCA ER CCD camera 

(Hamamatsu Photonics) controlled by Openlab 4.01 software (Improvision).  
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Primary antibodies 

 

Name Dilution in blocking solution 

Mouse α-HA (16b12) 1:1000 

Mouse α-myc (9E10) 1:1000 

Mouse α-Nop1 (Aris & Blobel, 1988) 1:250 

Rabbit α-Nhp2 (Henras et al., 2001) 1:100 

Rabbit α-She2 (this work, Schmid et al. 2006) 1:2000 

Rat α-HA (3F10) 1:100 

 

Secondary antibodies (Molecular Probes) 

 

Name Dilution in blocking solution 

Alexa®488 goat anti rabbit 1:300 

Alexa®488 goat anti mouse  1:300 

Alexa®488 goat anti rat 1:100 

Alexa®594 goat anti rabbit 1:300 

Alexa®594 goat anti mouse 1:250 

 

5.19 Fluorescent in situ hybridisation using oligonucleotides (FISH) 
 

Cellular localization of ASH1 mRNA and the ITS2 of rRNA was determined in the 

microscope using fluorescently labelled anti-sense oligonucleotides.   

 

5.19.1 Preparation of the probes 
 

A stock solution containing 100 ng/µl of each oligonucleotide was diluted with DEPC 

treated water to yield aliquots sufficient for 6 wells. Aliquots of 10µl were dried in a 

speed-vac and stored at -80°C. 

 

ASH1 probe (1 ng/µl oligonucleotides, 1 mg/ml E.coli tRNA and 1 mg/ml salmon 

sperm DNA in DEPC water)  
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ITS2 probe (5 ng/µl oligonucleotides, 1 mg/ml E.coli tRNA and 1 mg/ml salmon 

sperm DNA in DEPC water) 

 

5.19.2 Preparation of cells 
 

Cells of a logarithmically growing culture (10 ml) were fixed with formaldehyde (3.7 % 

final concentration). Fixation of cells was performed in a shaking incubator for one 

hour either at 30°C or at 37°C in order to maintain non-permissive conditions. Cells 

were pelleted and washed three times with Buffer B (1.2 M sorbitol, 100 mM 

potassium phosphate pH 7.4). Cells were spheroplasted in 200µl spheroplasting 

buffer containing 100 µg/ml Oxalyticase (Enzogenetics) at 30°C. After 

spheroplasting, cells were pelleted carefully for one minute at low speed (3000 

rpm/1000x g) and washed with buffer B. Cells finally were resuspended in 100 µl 

buffer B. Multi-well slides were coated with 0.02% Poly-L-Lysine and washed with 

DEPC water for 5 min. 5µl of the cell suspension was applied onto each well for 30 

min at 4°C. After washing with Buffer B, the slide was fixed and stored in 70% 

ethanol at -20°C. 

 

Spheroplasting buffer (1 ml) 

720 µl 1.4 x Buffer B (1.7 M sorbitol, 140 mM K-phosphate pH 7.4) 

3.5 µl AEBSF (4-(2-Aminoethyl)-benzensulfofluorid, Applichem) 

100 µl RVC (Ribonucleoside-Vanadyl-Complex, Sigma) 

3 µl RNasin (Promega) 

2 µl 2-Mercaptoethanol 

171.,5 µl DEPC-water 

 

5.19.3 Hybridisation  
 

Multi-well slides were rehydrated in a jar with 2x SSC and 2x SSC/40% formamide 

for 5 min. A frozen aliquot of the ASH1 or ITS2 probe was resuspended in 15 µl of 

Solution 1 and incubated at 80°C for 3 min. Probes were mixed carefully with 15 µl of 

ice-cold Solution 2 and centrifuged at full speed for 5 min. Each well was wetted with 

5µl of the probe solution, covered with a large cover slip and hybridised over night at 
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37°C in a darkened wet chamber. After hybridisation, the slide was washed in a jar 

two times with warm solution (37°C) of 2x SSC/40% formamide for 15 min, two times 

with 2x SSC/0.1% Triton for 15 min at RT and finally with 1x SSC for 15 min at RT. 

Nuclei were stained with Hoechst Stain Solution (SIGMA) for 15 min and cells were 

mounted in mounting solution (1x PBS, 80% glycerol). 

 

20x SSC: 3 M NaCl; 0,3 M Na3-citrate 

 

Solution1:  

49,3 µl Formamide 

0.63 µl 1M Na-phosphate pH 7 

11.7 ul DEPC-water 

 

Solution2:  

12,3 µl BSA (20 mg/ml; Boeringer)  

12,3 ul 20 x SSC  

0,75 µl Rnasin (Promega)  

36.2 µl DEPC-water 

 

5.20 High efficiency transformation of DNA into Bacteria (Pope and Kent, 1996) 
 

5.20.1 Generation of competent E. coli cells 
 

TOP10 E. coli cells were grown at 37°C in 100 ml of LB medium (16 g bacto tryptone, 

10 g yeast extract, 5 g NaCl pH 7.4). At an OD600~0.7–0.8 cells were chilled on ice. 

After pelleting, cells were resuspended in half a volume of 0.1 M CaCl2 and cooled on 

ice for 30 min. Cells were then pelleted and resuspended in 5 ml 0.1 M CaCl2. 

Competent cells were stored in 10% glycerol at -80°C as aliquots of 100 µl. 

 

5.20.2 Transformation 
 

1-10 ng of Plasmid DNA or 5-10µl of a ligation mix was pre-cooled and incubated 

with 50 µl of thawed cell for 5 min on ice. Cells were directly streaked out on selective 
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LB plates, and incubated overnight at 37°C. Candidate colonies were picked to 

inoculate a 3 ml LB Medium containing 50 µg/ml ampicillin for plasmid preparation 

(Miniprep), and incubated in a 37°C-shaker over night.  

5.21 Preparation of Plasmid-DNA 
 

Isolation of pure plasmid DNA for restriction analysis and sequencing was performed 

with the Nucleospin Miniprep Kit (Machery&Nagel). Plasmid preparations in a larger 

scale were performed with the Nucleobond AX 100 Midiprep Kit (Machery&Nagel). 
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6 Summary 
 

Messenger RNA localization occurs in the cytoplasm and allows temporal and spatial 

regulation of gene expression. In yeast, the localization of ASH1 mRNA to the tip of 

budding cells allows the asymmetric sorting of Ash1 protein, which has a key function 

in the regulation of mating-type switching. After cell division, asymmetric distribution 

of Ash1p restricts mating type switching to only the mother cell. The cytoplasmic 

transport of ASH1 mRNA to the bud tip depends on the myosin Myo4p, its adaptor 

She3p, and the specific RNA binding protein She2p. Three additional trans-acting 

factors Khd1p, Puf6p and Loc1p are involved in this process. All known RNA-binding 

proteins of ASH1 mRNA have revealed a nuclear connection, when following their 

cellular distribution by indirect immunofluorescence. Thus, an early step in the 

localization pathway might be the early recruitment of specific trans-acting factors to 

the mRNA already in the nucleus. The aim of this thesis was to investigate how 

nuclear key events such as early binding to localized transcripts and the subsequent 

assembly into a nuclear RNP can account for effective RNA localization. Following 

the route of She2p, it was possible to show nucleo-cytoplasmic shuttling of this RNA 

binding protein. Moreover, ASH1 mRNA and She2p were found accumulated within 

the nucleolus upon arrest of mRNA export. Interestingly, two additional trans-acting 

factors, Loc1 and Puf6p, both involved in ASH1 mRNA localization are also nucleolar 

proteins. Moreover, She2’s nuclear history seems to be important for an effective 

sorting of Ash1p. When restricting ASH1-She2p association to the cytoplasmic 

compartment artificially, the ASH1 mRNA was still localized but was prematurely 

translated during its transport. This suggests that nuclear RNP assembly has an 

influence on the later stages of cytoplasmic translational control. The nucleolus might 

represent the appropriate cellular compartment to provide the spatial framework for 

the assembly of localization competent RNPs since many RNPs are assembled in 

this region. 
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8 Abbreviations  
 
aa Amino acid 

ab antibody  

α anti  

Amp Ampicillin 

ASH asymmetric synthesis of HO 

ATP Adenosine triphosphate  

BSA  Bovine serum albumin 

C. elegans  Caenorhabditis elegans 

°C Grade Celsius 

CEN  Centromer 

CIP  Calf intestine phospatase 

C-terminal Carboxy terminal 

Da  Dalton 

DAPI  diamidino-2-phenylindol dihydrochloride 

DEPC Diethylpyrocarbonate  

DIC Differential interference contrast 

DIG  digoxigenin 

DNA  deoxyribonucleic acid 

DNase  Desoxyribonuclease 

dNTPs  Dideoxynucleotides 

DTT Dithiotreitol 

E. coli  Escherichia coli 

E1-3 ASH1 mRNA localization element 

ECL  Enhanced chemoluminiscence 

EDTA  Ethylenediaminotetraaceticacid 

eIF  Eukaryotic (translation-) initiation factor 

ER  endoplasmatic reticulum 

et al.  et alii (from Latin, “and others”) 

Fig. Figure 

FISH  Fluorescence in situ hybridization 

x g Gravitational acceleration 

g Grams 
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GDP  Guanosine diphosphate 

GFP  Green fluorescent protein 

GTP  Guanosine triphosphate 

h  hour 

HA Hemagglutinin  

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

hnRNP Heterogeneous nuclear ribonucleoprotein 

HO endonuclease Homothallic switching endonuclease  

Hsp  Heat shock protein 

Ig  Immunoglobulin 

kb  Kilo bases 

l  Litre 

LB-Medium  Liquid-Broth-Medium 

LE Localization element 

M  Molar 

mA  Milliampere 

MDa  Megadalton 

mg  Milligramm 

µg  Microgramm 

µl  Mikroliter 

min  Minute 

ml  Millilitre 

mM Millimolar 

MOPS  3-(N-Morpholino)-propanesulfonic acid 

mRNA Messenger ribonucleic acid 

NaCl  Sodium chloride 

NaOH  Sodium hydroxide 

NMD Nonsense-mediated decay  

NP-40  Nonidet P-40 (Igepal-CA-630) 

nt Nucleotide 

OD Optical density 

oligo Oligonucleotide  

ORF Open reading frame  

PAGE  Polyacrylamide gel electrophoresis 
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PBS  Phosphate-buffered saline 

PCR  Polymerase chain reaction 

PEG  Polyethylene glycol 

pH  Potential of Hydrogen 

poly(A)+ Polyadenylic acid  

pre-mRNA p  Precursor messenger ribonucleic acid 

RNA  Ribonucleic acid 

RNP Ribonucleoprotein  

rpm Rounds per minute  

rRNA  Ribosomal ribonucleic acid 

s Second  

S Svedberg unit 

S. cerevisiae Saccharomyces cerevisiae 

SDS  Sodium dodecyl sulfate 

SHE Swi5p-dependent HO expression  

snoRNA Small nucleolar ribonucleic acid 

TAE Tris-acetate-EDTA buffer 

TAP Tandem affinity purification  

TBS  Tris-buffered saline 

TEMED  N, N, N’, N’-Tetramethylethylenediamine 

Tris  Trishydroxymethylaminomethane 

tRNA Transfer ribonucleic acid 

UTR Untranslated region 

UV  "beyond violet" (from Latin ultra, "beyond") 

V  Volt 

wt  Wild type 

YEP  Yeast Extract Peptone 

YNB Yeast Nitrogen Base 
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