Logo
DeutschClear Cookie - decide language by browser settings
Gerdes, Lars (2007): Die Bedeutung von Alb4 in der Biogenese der Chloroplasten. Dissertation, LMU München: Faculty of Biology
[img]
Preview
PDF
Gerdes_Lars.pdf

4Mb

Abstract

Mitglieder der evolutionär konservierten Oxa-Proteinfamilie wirken an der korrekten Insertion von integralen Membranproteinen in Bakterien, Mitochondrien und Chloroplasten mit. In den sehr proteinreichen Thylakoidmembranen der Chloroplasten höherer Pflanzen spielt das Oxa-Homolog Alb3 eine essentielle Rolle bei der Integration von LHC-Proteinen und weiteren Komponenten des Photosynthese-Apparates. Im Rahmen dieser Arbeit wurde ein weiteres Protein aus Arabidopsis identifiziert und als neues Mitglied der Oxa-Proteinfamilie beschrieben. Die experimentell gestützte Annotation zeigt, dass das Alb4-Protein eine zentrale 60KD_IMP-Domäne besitzt, welche für die Oxa-Proteine charakteristisch ist. Die Zugehörigkeit zur Oxa-Proteinfamilie konnte funktionell durch die Komplementation einer Hefe-oxa1-Mutante bestätigt werden. Immunologische und fluoreszenzmikroskopische Untersuchungen konnten weiterhin zeigen, dass es sich bei Alb4 um ein chloroplastidäres Protein handelt, welches als integrales Membranprotein in den Thylakoiden lokalisiert ist. Durch die Analyse von T-DNA-Insertions- und RNAi-Linien konnte gezeigt werden, dass eine Reduktion des Alb4-Gehaltes zu vergrößerten und nicht länger linsenförmigen Chloroplasten führt, in denen die Thylakoidmembranen aufgelockerter erscheinen. Ein Verlust der Lebensfähigkeit konnte jedoch nicht beobachtet werden, selbst wenn der Alb4-Gehalt in den Chloroplasten der Pflanzen um mehr als 90% reduziert war. Im Vergleich zu Cyanobakterien besitzt die Thylakoidmembran von Arabidopsis mit Alb4 und Alb3 gleich zwei Oxa-Homologe. Möglicherweise ist nach der Umwandlung des cyanobakteriellen Endosymbionten zu einem eukaryotischen Organell diese Duplizierung nötig geworden, um sowohl die Ausbildung als auch den Erhalt der Thylakoidstruktur zu gewährleisten. Zusätzlich zur Identifizierung von Alb4 konnte durch Transkript-Analysen desweiteren gezeigt werden, dass auch der N-Terminale Teil des ehemaligen Genmodells F21J9.13 (Artemis, nun Alb4 und RWK1) für ein eigenständiges Gen kodiert. Das abgeleitete Protein aus dem N-terminalen Teil, RWK1, ähnelt dem Rezeptor-Teil von pflanzlichen Rezeptor-Kinasen, eine entsprechende Kinase-Domäne fehlt jedoch vollständig. RWK1 kommt in zwei Spleißvarianten vor, der für die meisten eukaryotischen mRNAs typische polyA-Schwanz fehlt jedoch beiden Varianten. RWK1 könnte als neuartiger Rezeptor ein weiteres Glied in der internen Kommunikationskette der Zelle bilden.