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Abstract

This thesis deals with data structures that are mostly useful in the area of
string matching and string mining. Our main result is an O(n)-time prepro-
cessing scheme for an array of n numbers such that subsequent queries asking
for the position of a minimum element in a specified interval can be answered
in constant time (so-called RMQs for Range Minimum Queries). The space
for this data structure is 2n + o(n) bits, which is shown to be asymptotically
optimal in a general setting. This improves all previous results on this problem.
The main techniques for deriving this result rely on combinatorial properties
of arrays and so-called Cartesian Trees. For compressible input arrays we show
that further space can be saved, while not affecting the time bounds. For the
two-dimensional variant of the RMQ-problem we give a preprocessing scheme
with quasi-optimal time bounds, but with an asymptotic increase in space con-
sumption of a factor of logn.

It is well known that algorithms for answering RMQs in constant time are
useful for many different algorithmic tasks (e.g., the computation of lowest
common ancestors in trees); in the second part of this thesis we give several
new applications of the RMQ-problem. We show that our preprocessing scheme
for RMQ (and a variant thereof) leads to improvements in the space- and time-
consumption of the Enhanced Suffix Array, a collection of arrays that can be
used for many tasks in pattern matching. In particular, we will see that in
conjunction with the suffix- and LCP-array 2n + o(n) bits of additional space
(coming from our RMQ-scheme) are sufficient to find all occ occurrences of
a (usually short) pattern of length m in a (usually long) text of length n in
O(mσ + occ) time, where σ denotes the size of the alphabet. This is certainly
optimal if the size of the alphabet is constant; for non-constant alphabets we
can improve this to O(m log σ+occ) locating time, replacing our original scheme
with a data structure of size ≈ 2.54n bits. Again by using RMQs, we then show
how to solve frequency-related string mining tasks in optimal time. In a final
chapter we propose a space- and time-optimal algorithm for computing suffix
arrays on texts that are logically divided into words, if one is just interested in
finding all word-aligned occurrences of a pattern.

Apart from the theoretical improvements made in this thesis, most of our
algorithms are also of practical value; we underline this fact by empirical tests
and comparisons on real-word problem instances. In most cases our algorithms
outperform previous approaches by all means.





Zusammenfassung

Diese Arbeit beschäftigt sich mit Datenstrukturen, die insbesondere im String
Matching und String Mining Anwendung finden. Das Hauptresultat ist ein
O(n)-Konstruktionsalgorithmus für eine Datenstruktur der Größe 2n + o(n)
Bits, die es erlaubt, für ein Feld von n Zahlen die Position eines minimalen Ele-
ments in einem beliebigen Anfrageintervall in konstanter Zeit zu finden (sog.
RMQs für Range Minimum Queries). Dies verbessert alle vorherigen Resul-
tate zu diesem Problem. Die Haupttechniken, die zu diesem Ergebnis führen,
beruhen auf kombinatorischen Eigenschaften von Feldern und sog. Kartesi-
schen Bäumen. Wir zeigen zudem, dass dieses Schema zur Präprozessierung
eines Feldes für konstante RMQs im allgemeinen Fall asymptotisch optimal ist,
man jedoch für komprimierbare Eingabefelder weiteren Platz einsparen kann,
ohne dass die Zeitoptimalität leidet. Für die zweidimensionale Variante des-
selben Problems stellen wir einen quasi-zeitoptimalen Algorithmus vor, dessen
Platzbedarf jedoch etwas höher ist (asymptotisch um den Faktor log n).

Neben den bereits bekannten Algorithmen, die RMQs zur Lösung bestimmter
Probleme verwenden (z.B. die Berechnung niedrigster gemeinsamer Vorfahren
in Bäumen), betrachten wir im zweiten Teil dieser Dissertation neue Anwen-
dungen des RMQ-Problems. Wir zeigen, dass die oben genannte Datenstruk-
tur (und eine Variante hiervon) zu Verbesserungen im Zeit- und Platzbedarf
des Enhanced Suffix Array führt, einer Sammlung von Feldern zur Lösung
vieler String-Matching-Probleme. Insbesondere werden wir sehen, dass die
2n + o(n) Bits von unserer RMQ-Struktur an zusätzlichem Platz ausreichen,
um mit dem Suffix- und LCP-Array alle vk Vorkommen eines (normalerweise
kleinen) Suchtextes der Länge m in einem (normalerweise großen) Text der
Länge n in Zeit O(mσ + vk) zu finden, wobei σ die Größe des Alphabets
bezeichnet. Für konstante Alphabetgrößen ist dies sicherlich optimal; im Falle
nicht konstanter Alphabetgrößen können wir dieses Resultat jedoch verbessern:
ca. 2.54n + o(n) zusätzliche Bits reichen aus, um mit dem Suffix- und LCP-
Array alle vk Vorkommen eines Suchtextes in Zeit O(m log σ + vk) zu finden.
Wiederum durch Anwendung unseres Resultats über RMQs zeigen wir dann,
wie wir häufigkeitsbasierte String-Mining-Anfragen in Textdatenbanken in op-
timaler Zeit lösen können. In einem abschließenden Kapitel geben wir einen
zeit- und platzoptimalen Konstruktionsalgorithmus für Suffix Arrays auf Tex-
ten, die in logische Einheiten (z.B. natürlichsprachige Wörter) eingeteilt sind,
wenn man bei der Mustersuche nur an Treffern interessiert ist, die an Wort-
grenzen beginnen.

Die meisten der in dieser Dissertation vorgestellten Resultate haben neben
ihrer theoretischen Relevanz auch praktische Bedeutung; eine Tatsache, die
mittels empirischer Tests und Vergleichen auf realen Daten unterstrichen wird.
In den meisten Fällen verbessern unsere neuen Algorithmen die Laufzeiten und
den Platzbedarf früherer Ansätze deutlich.





CONTENTS

1 Introduction 1
1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Practicability of the Results . . . . . . . . . . . . . . . . . . . . . 5
1.3 Previous Publications . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 A Note on Citation Policy . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Concepts 7
2.1 Arrays and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Basic String Matching Problems . . . . . . . . . . . . . . . . . . 8
2.3 Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Suffix- and LCP-Arrays . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Text Compressibility and Empirical Entropy . . . . . . . . . . . . 11
2.6 Compact Data Structures for Rank and Select . . . . . . . . . . . 12
2.7 Succinct Representations of Suffix- and LCP-Arrays . . . . . . . 13
2.8 Balanced Parentheses Representation of Trees . . . . . . . . . . . 14

3 An Optimal Preprocessing Scheme for RMQ 17
3.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Applications of RMQ . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Computing Lowest Common Ancestors in Trees . . . . . . 19
3.3.2 Computing Longest Common Extensions of Suffixes . . . 20
3.3.3 (Re-)Construction of Suffix Links . . . . . . . . . . . . . . 21
3.3.4 Document Retrieval Queries . . . . . . . . . . . . . . . . . 22
3.3.5 Maximum-Sum Segment Queries . . . . . . . . . . . . . . 22
3.3.6 Lempel-Ziv-77 Data Compression . . . . . . . . . . . . . . 22

3.4 Previous Results on RMQs . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 The Berkman-Vishkin Algorithm . . . . . . . . . . . . . . 23

ix



x

3.4.2 Alstrup et al.’s Idea for Handling In-Block-Queries . . . . 25

3.4.3 Sadakane’s Succinct RMQ-Algorithm . . . . . . . . . . . . 26

3.5 An Improved Algorithm . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 A New Code for Binary Trees . . . . . . . . . . . . . . . . 30

3.5.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Applications of the New Algorithm . . . . . . . . . . . . . . . . . 42

3.7.1 LCAs in Trees with Small Average Degree . . . . . . . . . 42

3.7.2 An Improved Algorithm for Longest Common Extensions 43

3.8 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 How to Further Reduce Space . . . . . . . . . . . . . . . . . . . 51

3.9.1 Small “Alphabets” Don’t Help! . . . . . . . . . . . . . . . 51

3.9.2 Compression Techniques . . . . . . . . . . . . . . . . . . . 52

3.9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . 56

4 2-Dimensional RMQs 57

4.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 A General Trick for Query Precomputation . . . . . . . . 59

4.3.2 Linear Preprocessing of the First Level . . . . . . . . . . . 60

4.3.3 Recursive Partitioning . . . . . . . . . . . . . . . . . . . . 62

4.3.4 What’s Left: How to Find the Right Grid . . . . . . . . . 64

4.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Improvements in the Enhanced Suffix Array 67

5.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Enhanced Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 An RMQ-based Representation of the Child-Table . . . . . . . . 70

5.4 Pattern Matching in O(m|Σ|) Time . . . . . . . . . . . . . . . . . 71

5.5 Pattern Matching in O(m log |Σ|) Time . . . . . . . . . . . . . . 72

5.5.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.2 A Pseudo-Median Algorithm for RMQ on LCP . . . . . . 73

5.5.3 Summing Up . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 String Mining Problems 83

6.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . 84

6.3 The New Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.3 Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 Reducing the Size of the Output . . . . . . . . . . . . . . 93

6.4 Practical Performance . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xi

7 Suffix Arrays on Words 99
7.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Optimal Construction of the Word Suffix Array . . . . . . . . . . 102
7.5 Word-Based LCP-Arrays . . . . . . . . . . . . . . . . . . . . . . . 105
7.6 Searching in the Word Suffix Array . . . . . . . . . . . . . . . . . 107

7.6.1 Searching in O(m log k) Time . . . . . . . . . . . . . . . . 107
7.6.2 Searching in O(m+ log k) Time . . . . . . . . . . . . . . . 109
7.6.3 Searching in O(m|Σ|) and O(m log |Σ|) Time . . . . . . . 109

7.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Summary of Notation 117

Bibliography 119





CHAPTER

1

Introduction

The title of this thesis, “Data Structures for Efficient String Algorithms,” al-
ready suggests that this work is situated between two main areas of computer
science: data structures and string algorithmics, the latter being meant to in-
clude both string matching and string mining. However, although almost all
of our results on data structures do have applications in string matching, these
two terms should not exclusively be seen in conjunction, as more than half of
the present text is devoted to a problem whose applicability goes far beyond
the area of stringology.

The main problem tackled in the first part of this thesis (chapters 3 and
4), which also gives the link between the different chapters, is so basic that
it can easily be formulated already at this point: preprocess a one- or two-
dimensional array of numbers such that queries asking for a minimum element
between specified indices can be answered efficiently. Queries of this form are
commonly called Range Minimum Queries, and given the natural formulation
of this problem, it is not surprising that there is a wide range of algorithmic
problems which have solutions with such queries at their heart.

Nevertheless, although there are applications of range minimum queries from
many different fields, it must be said that all new results presented in the second
part of this thesis (chapters 5–7) do come from the field of string matching and
string mining. As range minimum queries or variants thereof form an essential
part in most of our new methods, this only confirms the fact that they play an
important role in state-of-the-art string algorithms.

This thesis follows a recent trend in data structures (and especially in text
indexing), which is the research on succinct data structures. Although there is
no clear mathematical definition of this term, we follow the common practice
to call a data structure succinct if its space consumption in bits is linear in
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the input size n, instead of the usual O(n) words occupied by its non-succinct
counterpart (which amounts to O(n log n) bits). The work on succinct data
structures was initiated by Jacobson’s succinct representation of unlabeled trees
and graphs (1989), and since then a flood of results has appeared, including
succinct encodings for ordered sets (Pagh, 2001), permutations (Munro et al.,
2003), functions (Munro and Rao, 2004), labeled trees (Ferragina et al., 2005),
text indexes (Ferragina and Manzini, 2005), range sums (Poon and Yiu, 2005),
and strings (Sadakane and Grossi, 2006). This list is far from being complete,
but already the examples given here and their recency of publication show that
succinct data structures are a very active field of research.

A primary focus of this thesis lies on the direct construction of data struc-
tures. The term direct is borrowed from the realm of suffix arrays and usually
reflects the fact that an array-based data structure can be computed without
the help of dynamic data structures such as dynamically changing graphs or
trees. This is an important concern, both in theory and practice. On the
practical side, the peak space consumption at construction time is usually the
bottleneck for the applicability of a method. But dynamic data structures tend
to have a larger overhead than arrays in the space they consume; e.g., storing
a sorted set of n numbers in an array just needs n words, whereas storing the
same information in a dynamic search tree needs at least twice as much space,
the n additional words accounting for the pointer information. It is exactly
this line of reasoning that drove several groups of computer scientists in 2003
to devise direct linear-time algorithms for constructing suffix arrays, although
it is easy to read off the suffix array from the suffix tree, whose linear-time
construction had been shown by Weiner 30 years before.

From a theoretical point of view, direct algorithms are especially important
in the case of succinct data structures: the use of dynamic data structures at
construction time would often result in a peak space consumption of O(n log n)
bits, whereas the final result occupies only O(n) bits — an unnecessary waste
of memory that one should certainly try to avoid!

1.1 Synopsis

We will now step through the main contributions of this thesis. This section is
primarily intended for people who are familiar with the field of string matching
and want to get an overview over the most important results.

Having defined in chapter 2 the necessary data structures and algorithmic
techniques that are needed throughout this thesis, chapters 3 and 4 provide a
deep investigation of the Range Minimum Query problem (RMQ-problem for
short), which is to preprocess an array of n numbers (or, more generally, objects
from a totally ordered set) such that subsequent queries asking for the position
of a minimum element between two specified indices can be answered efficiently.
Our main result is the following:
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Theorem 3.11. An array of n numbers can be preprocessed in O(n) time to a
data structure of size 2n+o(n) bits such that range minimum queries can be an-
swered in O(1) time. The space consumption at construction time is O(log3 n)
bits, apart from the 2n+ o(n) bits occupied by the final data structure.

Construction- and query-time are certainly optimal, and Thm. 3.12 shows
that the space consumption of 2n+ o(n) bits is also optimal under a reasonable
model of computation (based on the comparison model). We will subsequently
see that our new representation of RMQ-information leads to improvements in
computing lowest common ancestors in trees (Thm. 3.13) and longest common
extensions in strings (Thm. 3.14), two very important algorithmic problems.

For compressible input arrays we show that the RMQ-information can be
compressed as well:

Theorem 3.15. An array of n numbers from a set of size σ can be preprocessed

in O(n) time into a data structure of size nHk +O
(

n
log n(k log σ + log2 log n)

)

bits, simultaneously over all k ∈ o(log n), such that range minimum queries
can be answered in O(1) time. The space consumption at construction time is
2n+ o(n) bits.

Here, Hk denotes the k’th-order empirical entropy of the array, which ba-
sically measures the compressibility of the input (0 ≤ Hk ≤ log σ is “small”
for compressible sequences). The interesting point to note on the space bound
of Thm. 3.15 is that it matches the currently best known results for storing
the input array itself in compressed form, while still being able to access any
O(log n) contiguous bits in constant time under the RAM model.

Chapter 4 considers the two-dimensional generalization of the RMQ-problem,
leading to

Theorem 4.2. For any k > 1 which may be constant or not, an (m×n)-matrix
can be preprocessed in O(nm(k+log log . . . log(mn))) time (there are k+1 log’s)
such that the position of a minimum value in an axis-parallel query-rectangle
can be obtained in O(1) time, using O(kmn) words of additional space. This
converges towards an algorithm with O(mn log∗(mn)) preprocessing time and
space and O(1) query time.

Observe that k appears in preprocessing time and space of Thm. 4.2, but
not in the query time. This is the result of preprocessing the input matrix for
k levels (using O(mn) words each), while still answering all queries as if they
appear on the first level. In the special case of k = 2, this leads to an algorithm
with O(nm log log log(mn)) preprocessing time, O(mn) space and O(1) query
time — note that time is already quasi-optimal.

Chapter 5 shows that our preprocessing scheme for RMQ also reduces the
space consumption of the Enhanced Suffix Array (ESA). The ESA is a collection
of arrays that provide the same functionality as the well-known suffix trees,
but has a much better practical performance, both in primary and secondary
memory. Among other results, we show
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Theorem 5.5. For a text T of length n over an alphabet Σ there is a data
structure occupying 2n+ o(n) bits that, together with the suffix- and LCP-array
for T , allows the retrieval of all occ positions where pattern P ∈ Σ⋆ occurs in T
in O(|P | · |Σ|+ occ) time, for any alphabet size |Σ|. This data structure can be
constructed in O(n) time, and the additional space needed at construction time
is O(log3 n) bits.

Note that in the (at least theoretically) highly important case where the
alphabet size is constant this yields optimal string matching times, as O(|P |+
occ) is already the time to read the input pattern, plus the time to return all
occurrences. However, if the alphabet size is not a constant, we also show the
following improvement, based on a variant of our RMQ-precomputation:

Theorem 5.9. For a text T of length n over an alphabet Σ there is a data
structure with space-occupancy of ≈ 2.54311n+o(n) bits that, together with the
suffix array and the LCP-array for T , allows the retrieval of all occ occurrences
of a pattern P ∈ Σ⋆ in T in O(|P | log |Σ|+ occ) time, for any alphabet size |Σ|.
This data structure can be constructed in O(n) time, and the additional space
at construction time is o(n) bits.

Chapter 6 considers data mining problems over strings. In particular, we will
show how to extract from a database of strings all patterns (i.e., substrings)
whose frequency satisfies a given number of constraints, again using RMQs:

Theorem 6.2. For a constant number of databases of strings of total length
n, all strings that satisfy a frequency-based criterion (e.g., frequent or emerging
substrings) can be calculated in O(n+ s) time, solely by using array-based data
structures occupying O(n) words of additional space (apart from the output),
where s is the total size of the strings that satisfy the criterion.

In a final chapter we consider the problem of indexing texts that are logically
divided into words. We will show that if one is just interested in finding word-
aligned occurrences (e.g., the search pattern “other” does not give a hit in
“mother”), there is an analog to the suffix array which can be computed directly
in optimal time and space:

Theorem 7.1. Given a text T of length n consisting of k words (in the sense
of natural or artificial languages) over an integer-alphabet, the word suffix ar-
ray for T can be constructed directly in optimal O(n) time, using only 3 inte-
ger arrays of length k apart from the text. The word suffix array occupies k
(computer-)words of space.

With the help of the word suffix array one gets the following matching times
(in analogy to the full-text suffix array):
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Theorem 7.6. The number of word-aligned occurrences of a pattern P in a
text T consisting of k words can be found in alphabet-independent O(|P | log k)
time using the word suffix array, or in O(|P | + log k) time with the help of
an additional array of size k. Text-independent string matching can be done in
O(|P | log |Σ|) time, using another structure of size O(k/ log k) words in addition
to the two arrays from the O(|P |+ log k) algorithm.

1.2 Practicability of the Results

The previous section described the theoretical results of this thesis. Unfortu-
nately, theoretical improvements do not always go hand in hand with practical
improvements, but in our case they do: most of the results presented here im-
prove previous approaches also in practice, sometimes even very drastically by
several orders of magnitude. This will be confirmed through extensive tests of
our methods on biological and other real-world or artificial data sets. Sect. 3.8
shows that the RMQ-preprocessing from Thm. 3.11 is very effective in prac-
tice, both in terms of time and space. The practical relevance of our string
miner (Thm. 6.2) is given by the fact that it is the first method applicable to
realistically-sized instances, as all previous approaches are either too slow, or
consume too much memory to be useful in practice (see Sect. 6.4). Finally, the
results on word suffix arrays (Theorems 7.1 and 7.6) are shown to be practically
relevant as well in Sect. 7.7.

Two comments are in order at this place. The first is on the choice of meth-
ods that are used for practical comparisons. The author has decided to include
only methods that have implementations which are released by their respective
authors. This was ensured by either downloading the sources from their web-
sites, or by contacting the authors directly. The reason for not coding “foreign”
methods by oneself is simply to avoid the potential objection of having imple-
mented the methods in a particularly “bad” way in order to advertise one’s
own methods. The only exception from this rule we made was for Alstrup et
al.’s RMQ-method, as its description is already very low-level and can hence
be translated one-to-one into source code, without leaving much room for bad
choices of additional data structures and the like. The second comment is that
the practical evaluation of some methods (in particular, Theorems 3.15, 5.5,
and 5.9) has been given to students at Munich University as projects, and most
of this work is still in progress.

1.3 Previous Publications

Parts of this thesis have already been presented at the 17th Annual Symposium
on Combinatorial Pattern Matching in Barcelona, Spain (Fischer and Heun,
2006), the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases in Berlin, Germany (Fischer, Heun, and Kramer, 2006),
the 1st International Symposium on Combinatorics, Algorithms, Probabilis-
tic and Experimental Methodologies in Hangzhou, China (Fischer and Heun,
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2007), and the 18th Annual Symposium on Combinatorial Pattern Matching in
London, Ontario (Ferragina and Fischer, 2007; Amir, Fischer, and Lewenstein,
2007).

1.4 A Note on Citation Policy

The author has decided to give priority to journal versions over conference
contributions of cited results. There are several reasons for doing so; the main
of these being the fact that journal versions usually have a higher degree of
completeness in exposition. The disadvantage of this policy is that it seemingly
leads to chronological oddities, for example, when a conference version from
2004 (which has not yet appeared in a journal) improves a result from 2006
(which is the journal version of a paper presented at a conference in, say, 1999).
Having this in mind, the reader should not be led to any confusions.

Results by other authors that are presented in a theorem-like form are con-
sistently labeled “Proposition,” whether they are used as lemmata or theorems,
without any valuation of their significance.

A final remark is that for many results that belong to the standard repertoire
of a computer scientist we just cite text books instead of digging out their
original source, or do not even give any reference at all (for very common
concepts like big-Oh-notation, bucket sort, . . . ).
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2

Basic Concepts

The aim of this chapter is to define important notations and to present previous
results that will be needed throughout this thesis. It can be safely skipped by
readers who feel familiar in the field of combinatorial pattern matching. For
convenience, there is also a summary of non-standard notation at the end of
this thesis (page 117).

2.1 Arrays and Strings

As already seen in the introductory chapter, the basic objects we deal with are
arrays and strings, so it is worthwhile to spend some lines that put them on a
firm basis. An array A[1, n] is a contiguous memory area such that each of its
elements A[1], A[2], . . . , A[n] can be obtained in constant time, provided that
the binary representations of the numbers in A fit into a constant number of
computer words. It is a basic fact from information theory that if the numbers
stored in the array are in the range [0 : x− 1] := {0, 1, . . . , x− 2, x− 1}, exactly
n⌈log x⌉ bits are needed to store A in the Kolmogorov sense. Because we will
make heavy use of this fact in various chapters of this thesis, we introduce the
notation O(n · log x) for the number of bits needed to store such an array A.
For example, a normal integer array of size n which takes values up to n uses
O(n · log n) bits of space. Here and in the rest of this thesis, “log” denotes the
logarithm to base 2, whereas “ln” denotes the natural logarithm. A[i, j] denotes
A’s sub-array ranging from i to j for 1 ≤ i ≤ j ≤ n.

Now a string is nothing else but an array of integers from a certain range.
However, because it is almost always natural to distinguish between arrays of
integers and strings of characters from an alphabet, we stick to the convention

7
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to use a reserved notation for strings, as explained now. Let Σ be a totally
ordered (usually finite) set, called the alphabet. The elements in Σ are called
characters, and the order on the characters is usually denoted by “<.” W.l.o.g.
we can assume that Σ = [1 : |Σ|], where | ◦ | denotes normal set size. A string S
over Σ is then defined as a sequence of characters a ∈ Σ. |S| denotes the length
of S, i.e., the number of characters in S. The i’th character in S is denoted by
Si, starting at 1. For 1 ≤ i ≤ j ≤ n, we write Si..j to denote the substring of
S ranging from position i to j. Σk is the set of length-k strings over Σ, Σ⋆ the
set of all strings over Σ, and ǫ denotes the empty string (the string of length
0). For two strings S, T ∈ Σ⋆, ST denotes the concatenation of S and T .

We now extend the total order “<” on Σ to a lexicographic order on Σ⋆. Let
a, b ∈ Σ and S, T ∈ Σ⋆. Then aS < bT , in words “aS is lexicographic less than
bT ,” if a < b, or if a = b and S < T . The empty word ǫ is considered to be
smaller than any non-empty string. We also use the notation S ≤ T to denote
that either S < T or S = T . For S, T ∈ Σ⋆ we write S E T if S is a non-empty
substring of T , in symbols: S = Ti..j for some 1 ≤ i ≤ j ≤ |T |. S ⊑ T denotes
that S is a prefix of T , i.e., S = T1..x for some 1 ≤ x ≤ |T |. S ⊏ T denotes a
proper prefix. Finally, a suffix of a string S is any string of the form Si..|S| for
some 1 ≤ i ≤ |S|.

Example 2.1. Let Σ = {a, b, c}. Then a < bc ⊑ bcba and b E aba.

2.2 Basic String Matching Problems

Let us now introduce some important classical problems on strings that are
considered in this thesis.

Problem 2.1 (String Matching). For a given pattern P of length m and a (usu-
ally long) text T of length n, let OP ⊆ [1 : n] be the set of positions where P
occurs in T : i ∈ OP iff P ⊑ Ti..n. Then the tasks of string matching are (1) to
answer whether or not OP is empty (decision query), (2) to return the size of
OP (counting query), and (3) to enumerate the members of OP in some order
(enumeration query).

Given the many contexts in which problems of this kind naturally arise, it is not
surprising that there exists a wealth of literature devoted to these tasks. For a
good overview of the subject, see Gusfield (1997, Part I). The best solutions are
O(n+m)-algorithms for all of the tasks in Probl. 2.1, which is certainly optimal,
as this is already the time to read the input. However, in many situation the
text is static and known in advance, and there are many matching-queries to
be answered on-line. In this case it makes sense to spend some time on building
an index on T in order to answer future queries faster. This approach will be
considered in the next sections.
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Figure 2.1: The suffix tree for T = aababaa$.

2.3 Suffix Trees

Suffix trees are a well-known data structure for text indexing. Instead of defin-
ing them in a mathematical thorough way, we refer the reader to (Gusfield, 1997,
Part II), and just describe them informally as follows: given a text T = T1..n,
a suffix tree for T is a rooted tree S whose edges are labeled with strings from
Σ⋆, there is no node with out-degree 1, and no node has outgoing edges whose
labels start with the same character (i.e., S is a compacted trie). The further
condition is that each P E T can be “read” off the edges when walking down
a path starting at the root of S. The name “suffix tree” is derived from the
fact that if S is built for string T ′ := T$, where $ is a symbol not occurring
elsewhere in T , then there is a one-to-one correspondence with between T ’s
suffixes and the leaves in S (ignoring the single leaf representing “$”). In this
case we can also label the leaves with the position in T where the corresponding
suffix starts. Fig. 2.1 shows an example for T = aababaa$.

It is evident from the definition of suffix trees that decision-queries can be
solved in O(m) time by simply scanning the edges top-down and comparing
their labels with subsequent letters from P , until P has either been completely
matched, or the next symbol in P cannot be found. (Ignore for now the problem
that at internal nodes some time is needed to find the correctly labeled outgoing
edge.) Let v be the node where a successful matching procedure has brought us,
or the first node below the point if we have end up on an edge. Then counting-
and enumeration queries can be answered by a subsequent traversal of Sv, which
denotes the subtree of S rooted at v. This takes O(|OP |) additional time, in the
notation of Def. 2.1. This is optimal for enumeration queries, and a simple idea
also yields optimal time bounds for counting queries: label the internal nodes
with the size of their corresponding subtree; this lowers the time for counting
queries to optimal O(m) time.

There has been some confusion on the influence of the alphabet size, both
on space usage and on preprocessing- and matching times. Let us first consider
space occupation, which is directly connected to matching time. There are
3 basic implementation strategies for the outgoing edges of a node: (1) as
arrays of size |Σ|, (2) as linked lists, usually sorted alphabetically, and (3) as
balanced binary search trees. (1) has the advantage that matching time is truly
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O(m), without any influence of |Σ|, but the disadvantage is that space usage is
O(n|Σ|) words. For (2) and (3) it can be shown that the size of the suffix tree is
O(n) words, but matching times are O(m|Σ|) and O(m log |Σ|), respectively. A
good trade-off has been found by Munro et al. (2001), who enhance the O(n)-
word representation of the suffix tree with an additional data structure of size
O(n log |Σ|) bits, while supporting true O(m) matching time.

For constant-sized alphabets it has been first shown by Weiner (1973) that
suffix trees can be built it O(n) time, and it took almost 30 years to achieve the
same result for integer alphabets (Farach-Colton et al., 2000); i.e., an alphabet
consisting of numbers from a discrete range of size O(n).

2.4 Suffix- and LCP-Arrays

This section introduces two fundamental data structures that we will need at
various places in this thesis.

The suffix array (Gonnet et al., 1992; Manber and Myers, 1993) for a given
text T of length n is an array SA[1, n] of integers s.t. TSA[i]..n < TSA[i+1]..n

for all 1 ≤ i < n; i.e., SA describes the lexicographic order of T ’s suffixes
by “enumerating” them from the lexicographically smallest to the largest. It
follows from this definition that SA is a permutation of the numbers [1 : n].
For our example string T = aababaa$, SA = [8, 7, 6, 1, 4, 2, 5, 3]. Note that the
suffix array is actually a “left-to-right” (i.e., alphabetical) enumeration of the
leaves in the suffix tree for T$. As SA stores n integers from the range [1 : n],
it takes n words (or n log n bits) to store SA in uncompressed form.

There are two basic search strategies for searching a pattern of length m with
the help of a suffix array, both based on binary search (Manber and Myers,
1993). The first takes time O(m log n), and the second O(m+ log n) with the
help of another array occupying n words of space. In practice, these algorithms
have proved to be competitive with the search in suffix trees (Manber and Myers,
1993). Sometimes, we will also need the inverse suffix array SA−1, defined as
SA[SA−1[i]] = i for all 1 ≤ i ≤ n. In words, SA−1[i] tells us where the i’th
longest suffix can be found in SA.

As observed above, the suffix array can certainly be obtained from the suffix
tree during a depth-first traversal of the latter. But there is also a wealth
of literature on the direct construction of suffix arrays, starting with Manber
and Myers’s original O(n log n) method (1993) and culminating in three O(n)
algorithms needing just O(n log n) bits of additional working space (Kim et al.,
2005; Ko and Aluru, 2005; Kärkkäinen et al., 2006), all of these working also for
integer alphabets. There are also linear-time algorithms needing only o(n log n)
bits of working space in addition to the final suffix array: for constant-sized
alphabets, the algorithm due to Hon et al. (2003) uses O(n) bits of space,
and for general alphabets Na (2005) gave a linear-time method with a slightly
higher space consumption. However, it has been noted by several teams of
authors (e.g., Antonitio et al., 2004; Puglisi et al., 2005) that asymptotically
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slower algorithms perform better in practice. For constant-sized alphabets, the
methods due to Manzini and Ferragina (2004), Schürmann and Stoye (2007),
and most recently also Maniscalco and Puglisi (2007) have been shown to be
very efficient in practice. The first of these has the further advantage that it uses
only ǫ < 1 bytes of additional space per input character, which is, of course,
close to optimal. Here, ǫ is a tunable parameter that determines the speed
of the algorithm and can be made arbitrarily small. For integer alphabets,
the O(n log n)-method due to Larsson and Sadakane (1999) has a very good
practical performance. Suffix sorting is still a popular area of research, as the
appearance of two recent articles suggests (Franceschini and Muthukrishnan,
2007; Nong and Zhang, 2007). We refer the reader to Puglisi et al. (2007) who
give a good overview of the advances made until 2005.

In the same way as suffix arrays store the leaves of the corresponding suffix
tree S, the LCP-array captures information on the heights of the internal nodes
in S as follows. LCP[1, n] is defined such that LCP[i] holds the length of the
longest common prefix of the lexicographically (i − 1)’st and i’th smallest suf-
fixes. In symbols, LCP[i] = max{k : TSA[i−1]..SA[i−1]+k−1 = TSA[i]..SA[i]+k−1} for
all 1 < i ≤ n, and LCP[1] = 0.1 For T = aababaa$, LCP = [0, 0, 1, 2, 1, 3, 0, 2].
Kasai et al. (2001) gave an algorithm to compute LCP in O(n) time, and Manzini
(2004) adapted this algorithm to work in-place, i.e., by using only 4n bytes on
32-bit computers.2 It can be argued that most of the LCP-values are small com-
pared to the size of the text and can thus be stored using less than 4n bytes,
but we do not detail this approach here, as there is an even more space-efficient
representation of LCP to be presented in Sect. 2.7.

2.5 Text Compressibility and Empirical Entropy

Consider a text T1..n with symbols from an alphabet Σ. In the Kolmogorov
sense it takes O(n log |Σ|) bits to store T . However, it is obvious that texts
exhibiting some kind of regularity can be stored in less space. Colloquially, one
speaks of a good compressibility of T to reflect this fact. The empirical entropy
puts this on a firm mathematical ground (Manzini, 2001):

Definition 2.1. Let T1..n be a text with symbols from Σ. Then the zeroth order
empirical entropy of T is defined as

H0 := H0(T ) := −
∑

a∈Σ

na

n
log

na

n
,

where na is the number times a occurs in T . 0 log 0 is defined as 0.

It is well known that H0n is a lower bound on the size of the output of any
compressor that assigns a fixed codeword to each symbol in T (Witten et al.,

1We will sometimes find it more convenient to define LCP[1] = −1, but this should not lead
to any confusion.

2Mäkinen (2003, Fig. 3) gives another algorithm to compute LCP almost in-place.
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1999). If one takes into account a length-k context which precedes the symbol
to be encoded next, the above definition generalizes to

Definition 2.2. Let T1..n be a text with symbols from Σ. Then the k’th order
empirical entropy of T is defined as

Hk := Hk(T ) :=
1

n

∑

w∈Σk

|wT |H0(wT ) ,

where wT denotes the string of symbols following the occurrences of w in T ,
reading T from left to right.

Thus, Hkn is a lower bound for compressors who assign fixed code-words to
symbols based on the preceding length-k context. We have the “hierarchy”
Hk ≤ Hk−1 ≤ · · · ≤ H0 ≤ log |Σ|.

2.6 Compact Data Structures for Rank and Select

For many techniques referenced in this thesis it is important to know that there
exist compact data structures for a bit-vector B of length n supporting the
following operations for a fixed pattern p ∈ {0, 1}⋆ in constant time:

• rankp(B, i): return the number of occurrences of pattern p in B[1, i].

• selectp(B, i): return the position of the i’th occurrence of pattern p in B.

It is immediate from this definition that these operations are the inverse of
each other: rankp(B, selectp(B, i)) = i = selectp(B, rankp(B, i)). The following
theorem is a combination of the results from Jacobson (1989), Munro (1996),
and Clark (1996):

Proposition 2.3. For a bit-vector B of length n and a constant-
sized bit-pattern p, there exists a data structure for rankp(B, i) using
O(n log log n/ log n) = o(n) bits of space, and a data structure for selectp(B, i)
using O(n log3 log n/ log n) = o(n) bits of space. �

(The space for storing B itself in uncompressed form is n bits, of course.) We
do not give the details on how these results are achieved; for short, they are
a clever combination of multi-level storage schemes (Munro, 1996) and the so-
called Four-Russians-Trick (Arlazarov et al., 1970) for precomputing all answers
to sufficiently small sub-problems. We refer the reader to Navarro and Mäkinen
(2007, Sect. 6) for a good exposition of these techniques. We finally remark that
there are implementations for rank and select that work well in practice, though
not guaranteeing the O(1) lookup-times (González et al., 2005).
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2.7 Succinct Representations of Suffix- and LCP-Arrays

A major drawback of suffix trees and arrays as described so far is that, because
they employ pointers or store numbers up to the computer’s word size, their
space consumption is O(n log n) bits. As already mentioned in the introduction,
it has been noted that in many cases this is far from optimal, and a flood of
algorithms under the term succinct (meaning that their space complexity is (at
least close to) O(n) bits instead of words) has been developed, starting with
Jacobson’s succinct representation of unlabeled trees (1989). There are also
succinct representations of the suffix- and the LCP-array which we will briefly
survey here.3

There are several variants for representing the suffix array with less space,
offering different tradeoffs between space and time.4 The historical first of
these are due to Mäkinen (2003) and Grossi and Vitter (2005). Both exploit
regularities in the suffix array, in a similar way as Compact Directed Acyclic
Word Graphs (Blumer et al., 1987) can be seen as a way to reduce the size of
the suffix tree by merging isomorphic subtrees. The first of these is called the
Compact Suffix Array and uses 2nHk log n + O(n log log n) bits of space. The
time to access SA[i] is O(log2 n/ log2 log n), although other space-time trade-
offs are possible. The second, called the Compressed Suffix Array, uses either
(1 + ǫ−1)n log |Σ| + 2n + O(n/ log log n) or (1 + 1

2 log log|Σ| n)n log |Σ| + 5n +
O(n/ log log n) bits, and access to SA[i] costs O(logǫ

|Σ| n) or O(log log|Σ| n) time,
respectively, for any fixed value 0 < ǫ ≤ 1. There are two notable evolutions
of the Compressed Suffix Array, the first due Sadakane (2003) who shows that
the space of the first variant can actually bounded by ǫ−1H0n + 2n + o(n)
bits, and the second due to Grossi et al. (2003), bounding the space further to
Hkn + O(n log log n/ log n) bits, where looking up a value in the suffix array
takes now O(log2 n/ log log n) time. Another interesting compressed represen-
tation of the suffix array is the Succinct Suffix Array (Mäkinen and Navarro,
2005), using n(H0 + 1)(1 + o(1)) bits of space, while giving access to SA[i] in
O(H0) average time. Again, we refer the reader to Navarro and Mäkinen (2007)
for an excellent overview of this field.

Let us now come to the description of the succinct representation of the
LCP-array due to Sadakane (2007a). The key to his result is the fact that the
LCP-values cannot decrease too much if listed in the order of the inverse suffix
array, a fact first proved by Kasai et al. (2001, Thm. 1):

Proposition 2.4. For all i > 1, LCP[SA−1[i]] ≥ LCP[SA−1[i− 1]]− 1. �

Because LCP[SA−1[i]] ≤ n − i + 1 (the LCP-value cannot be longer than
the length of the suffix!), this implies that LCP[SA−1[1]] + 1,LCP[SA−1[2]] +
2, . . . ,LCP[SA−1[n]] +n is an increasing sequence of integers in the range [1, n].

3For lower bounds on the compressibility of suffix arrays, we refer the reader to the article
by Schürmann and Stoye (2005).

4This section only reviews the approaches that give direct access to SA[i], although other
indexes actually yield better string matching times (e.g., Ferragina and Manzini, 2005).
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LCP[SA [ ]]+i−1 i= 3 5 5 5 5 7 7 8
0001 001 11 1 0011 01

8 7 6 1 4 2 5 3
1 2 1 3 0 2

1 2 3 4 5 6 7 8

LCP= 00
SA=

i=

H=

Figure 2.2: Illustration to the succinct representation of the LCP-array.

Now this list can be encoded differentially : for all i = 1, 2, . . . , n, subsequently
write the difference δi := LCP[SA−1[i]] − LCP[SA−1[i − 1]] + 1 of subsequent
elements in unary code u(δi) := 0δi1 into a bit-vector H, where we assume
LCP[SA−1[−1]] = 0. Here, 0δi denotes the juxtaposition of δi zeros. Combin-
ing this with the fact that the LCP-values are all less than n, it is obvious
that there are at most n zeros and exactly n ones in H. Further, if we pre-
pare H for constant-time rank0- and select1-queries, we can retrieve LCP[i]
as rank0(H, select1(H,SA[i])) − SA[i]. This is because the select1-statement
gives the position where the encoding for LCP[SA[i]] ends in H, and the rank0-
statement counts the sum of the δj’s for 1 ≤ j ≤ SA[i]. So subtracting the value
SA[i], which has been “artificially” added to the LCP-array, yields the correct
value. See Fig. 2.2 for an example.

This leads to

Proposition 2.5 (Succinct representation of LCP-arrays). The LCP-array for
a text of length n can be stored in 2n + o(n) bits, while being able to access its
elements in time proportional to the time needed to retrieve an element from
the suffix array (i.e., in O(1) time for uncompressed suffix arrays). �

We note that the succinct implementation can be computed in-place and in
O(n) time with an adaption of Kasai et al.’s algorithm (2001) for computing
the LCP-array (see Hon and Sadakane, 2002).

2.8 Balanced Parentheses Representation of Trees

It is common folklore in computer science that the structure of a rooted tree
T can be encoded by a sequence of balanced parentheses as follows: perform a
depth-first traversal of T , writing an open parenthesis ’(’ if a node is visited for
the first time, and a closing parenthesis ’)’ if it is visited for the last time (i.e.,
when all its subtrees have been traversed). The resulting sequence S is called
balanced parentheses sequence or BPS for short. Because each node constitutes
two bits in the BPS, the size of S is 2n bits for an n-node tree. As an example,
the BPS of the suffix tree in Fig. 2.1 would be (()(()(()())(()()))(()())).

Munro and Raman (2001) show how most navigational operations in trees
(such as finding the parent node, the i’th child, . . . ) can be simulated with the
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BPS by preparing it for certain rank- and select-queries (see also Munro et al.,
2001). For this thesis it is sufficient to know that a node in T can be uniquely
identified by a pair of matching open and closing parentheses ’(. . . )’ in S. In
fact, as the position of the closing parenthesis can be computed in O(1) time
from the position of the open parenthesis using a succinct dictionary of size
o(n) bits (Munro and Raman, 2001), we can also represent a node merely by
the position of its corresponding ’(’.

We note that there is also an alternative succinct representation of trees
called the depth-first unary degree sequence (Benoit et al., 2005). It also uses
optimal 2n bits to represent a tree and offers a (partially complementary) set
of navigational operations that it can simulate. The interested reader should
consult a recent article (e.g., Jansson et al., 2007) for more details on this very
active field of research.





CHAPTER

3

An Optimal Preprocessing Scheme

for Range Minimum Queries

3.1 Chapter Introduction

This chapter deals with one of the most fundamental algorithmic problems in
computer science: the task of preprocessing an array such that the position of a
minimum value in a specified query interval can be obtained efficiently. Queries
of this form are commonly called Range Minimum Queries, or just RMQ for
short. Sect. 3.3 sketches a variety of problems that have RMQs at their heart, or
are even equivalent to the RMQ-problem, such as the problem of finding lowest
(or nearest) common ancestors of nodes in a tree. Sect. 3.4 then surveys the
most important previous results on RMQ that we are aware of. We will see that
the currently best solutions are either a direct algorithm due to Alstrup et al.
(2002) using O(n) words of space, or an indirect algorithm due to Sadakane
(2007b) that uses 4n+ o(n) bits of additional space for the final data structure,
but O(n) words at construction time. Recall from the introductory chapter that
in analogy to direct construction of suffix arrays we call an algorithm “direct”
if does not make use of dynamic data structures such as dynamic trees.

In Sect. 3.5 we give the first direct algorithm for RMQ that never uses more
than 2n+o(n) bits, and further does not rely on other succinct data structures.
In Sect. 3.6 we prove that our algorithm is asymptotically optimal, as there
is a lower bound of 2n − o(n) bits under a reasonable model of computation.
Sect. 3.7 sketches two important applications of our result, the problems of
computing lowest common ancestors in trees and longest common extensions of
suffixes. Sect. 3.8 shows that our new method and variants thereof are also of
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practical value. Finally, we show in Sect. 3.9 that for compressible input arrays
it is possible to reduce the space of our method further, namely to the same
space that is needed by the currently best methods for storing the input array
itself in compressed form, while still being able to access O(log n) contiguous
bits in constant time.

3.2 Preliminary Definitions

The Range Minimum Query (RMQ)1 problem is formally defined as follows:
given an array A[1, n] of elements from a totally ordered set (with order re-
lation “≤”), rmqA(l, r) returns the index of a smallest element in A[l, r], i.e.,
rmqA(l, r) = arg mini∈[l:r]{A[i]}. (The subscript A will be omitted if the con-
text is clear.) The most naive algorithm for this problem searches the array
from l to r each time a query is presented, resulting in O(n) query time. We
consider the variant where the array is static and known in advance, and there
are several queries to be answered on-line. In such cases it makes sense to
preprocess A in order to answer future queries faster. Extending the notation
from Bender et al. (2005), we say that an algorithm with preprocessing time
p(n) and query time q(n) has time-complexity 〈p(n), q(n)〉. Thus, the naive
method described above would be 〈O(1), O(n)〉, because it requires no prepro-
cessing. The space-consumption is denoted as Js(n), t(n)K, where s(n) is the
peak space consumption at construction time, and t(n) is space consumption of
the final data structure. In the rest of this chapter space is mostly analyzed in
bit-complexity. Recall that for the sake of clarity we write O(f(n) · log(g(n)))
for the number of bits needed by a table of n positive integers, where f(n)
denotes the number of entries in the table, and g(n) is their maximal size.

The following definition due to Vuillemin (1980) is central for the rest of this
chapter (throughout this chapter, “binary” refers to trees with nodes having at
most two children, and not exactly two).

Definition 3.1. A Cartesian Tree of an array A[l, r] is a binary tree C(A) whose
root is a minimum element of A, labeled with the position i of this minimum.
The left child of the root is the Cartesian Tree of A[l, i − 1] if i > l, otherwise
it has no left child. The right child is defined similarly for A[i+ 1, r].

Note that C(A) is not necessarily unique if A contains equal elements. To
overcome this problem, we impose a strong total order “≺” on A by defining
A[i] ≺ A[j] iff A[i] < A[j], or A[i] = A[j] and i < j. The effect of this definition
is just to consider the “first” occurrence of equal elements in A as being the
“smallest.” Defining a Cartesian Tree over A using the ≺-order gives a unique
tree Ccan(A), which we call the Canonical Cartesian Tree. Note also that this
order results in unique answers for the RMQ-problem, because the minimum is
unique.

1Sometimes also called Discrete Range Searching (DRS) (Alstrup et al., 2002) or, depending
on the context, Range Maximum Queries.
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Gabow et al. (1984) give an algorithm for constructing Ccan(A) which is sum-
marized as follows. Let Ccan

i (A) be the Canonical Cartesian Tree for A[1, i].
Then Ccan

i+1(A) is obtained by climbing up from the rightmost leaf of Ccan
i (A) to

the root, thereby finding the position where A[i+ 1] belongs. To be precise, let
v1, . . . , vk be the nodes on the rightmost path in Ccan

i (A) with labels l1, . . . , lk,
respectively, where v1 is the root and vk is the rightmost leaf. Let m be defined
such that A[lm] ≤ A[i + 1] and A[lm′ ] > A[i + 1] for all m < m′ ≤ k. To
build Ccan

i+1(A), create a new node w with label i + 1 which becomes the right
child of vm, and the subtree rooted at vm+1 becomes the left child of w. This
process inserts each element to the rightmost path exactly once, and each com-
parison removes one element from the rightmost path, resulting in a total O(n)
construction time to build Ccan(A).

3.3 Applications of RMQ

We briefly sketch the most important applications of RMQ. Unless stated differ-
ently, the query time is O(1). The preprocessing time is always O(n), where n is
the input size. Other applications of RMQ not mentioned here include finding
common intervals in two or more sequences (Schmidt and Stoye, 2004), finding
denominators in flow graphs (Georgiadis and Tarjan, 2004), and match-chaining
algorithms (Shibuya and Kurochkin, 2003).

3.3.1 Computing Lowest Common Ancestors in Trees

The problem of finding the Lowest Common Ancestor (LCA)2 of a pair of
nodes in a tree has attracted much attention in the past three decades, starting
with Aho et al. (1976). It is formally defined as follows: given a rooted tree
T with n nodes, and two vertices v and w, find the deepest node lcaT (v,w)
which is an ancestor of both v and w. Being one of the most fundamental
problems on trees one can think of, LCA is not only algorithmically beautiful,
but also has numerous applications in many fields of computer science, most
importantly in the area of string processing and computational biology, where
LCA is often used in conjunction with suffix trees. There are several variants
of the problem, the most prominent being the one where the tree is static and
known in advance, and there are several queries to be answered on-line (see
Harel and Tarjan, 1984, for an overview of other variants). As for RMQs, in
this case it makes sense to spend some time on preprocessing the tree in order
to answer future queries faster. In their seminal paper, Harel and Tarjan (1984)
showed that an intrinsic preprocessing in time linear in the size of the tree is
sufficient to answer LCA-queries in constant time. Their algorithm was later
simplified by Schieber and Vishkin (1988), but remained rather complicated.

A major breakthrough in practicable constant-time LCA-computation was
made by Berkman and Vishkin (1993), and again, in a simplified presentation,

2The term Nearest Common Ancestor (NCA) is also frequently used for LCA.
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by Bender et al. (2005). The key idea for this algorithm is the connection
between LCA-queries on a tree T and RMQs on an array H derived from the
Euler-Tour of T , first discovered by Gabow et al. (1984): let r be the root of
T with k children v1, . . . , vk. Then the Euler-Tour3 of T is recursively defined
as the array E(T ) = [v] if k = 0, and E(T ) = [v] ◦ E(Tv1) ◦ [v] ◦ E(Tv2) ◦
[v] . . . [v] ◦ E(Tvk) ◦ [v] otherwise, where “◦” denotes array concatenation. In
other words, E is an array of size 2n− 1, obtained by writing down the label of
(or a pointer to) a node each time it is visited during a depth-first traversal of
T . An additional array H[1, 2n− 1] holds the depths in T of the corresponding
nodes in E. Finally, an array R of length n stores for each node v in T the
position of a representative in E, i.e., E[R[v]] = v. We then have the following

Proposition 3.2 (Computing LCA via RMQ). Let T be a tree, E its Euler-
Tour, H the array of heights derived from the Euler-Tour and R the repre-
sentative array as defined above. Then lcaT (v,w) = E[rmqH(R[v], R[w])] for
arbitrary nodes v and w.

Proof. The elements in E between R[v] and R[w] are exactly the nodes encoun-
tered between v to w during a depth-first traversal of T , so the range minimum
query returns the position k in H of the deepest such nodes. As the LCA of v
and w must be encountered between v and w during the depth-first traversal,
lca(v,w) is given by E[k]. �

Gabow et al. (1984) also showed that the RMQ-problem can in turn be
reduced to the LCA-problem by the use of Cartesian Trees, thus making the two
problems linearly equivalent. However, as they could not directly solve RMQ-
instances (i.e., without transformation to an LCA-instance), they could not use
RMQ to improve on constant-time LCA-computation. As already mentioned
above, this step was made by Berkman and Vishkin (1993). They noted that
the reduction from LCA to RMQ via the Euler-Tour is in fact a reduction to a
restricted version of RMQ, where consecutive array elements differ by exactly
1. We denote this restricted version by ±1RMQ. Berkman and Vishkin (1993)
then presented a direct algorithm for this restricted version of RMQ, which can
then used to answer LCA-queries with the transformation described above. We
will review their algorithm for ±1RMQ in Sect. 3.4.1.

The drawback of the LCA-computation as presented in this section is the
input doubling when going from T to E and H. In Sect. 3.7.1 we show that for
binary trees and trees where the number of internal nodes is relatively close to
the number of leaves this input doubling is not necessary.

3.3.2 Computing Longest Common Extensions of Suffixes

The problem of computing Longest Common Extensions (LCE), sometimes
also denoted as the problem of Longest Common Prefixes (LCP), is defined

3The name “Euler-Tour” is derived from the Euler-Tour-technique by Tarjan and Vishkin
(1985), and is not to be confused with an Eulerian circuit.
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for a static string T of size n: given two indices i and j, lceT (i, j) returns
the length of the longest common prefix of T ’s suffixes starting at position i
and j; i.e., lceT (i, j) = max{k : Ti..i+k−1 = Tj..j+k−1}.4 This problem has
numerous applications in exact and approximate pattern matching, e.g., for
exact tandem repeats (Main and Lorentz, 1984; Gusfield and Stoye, 2004),
approximate tandem repeats (Landau et al., 2001), inexact pattern matching
(Myers, 1986; Landau and Vishkin, 1986), and direct construction of suffix trees
or suffix arrays for integer alphabets (Farach-Colton et al., 2000; Kim et al.,
2005).

It is well-known (e.g., see Gusfield, 1997) that lceT (i, j) is given by the string-
height of node lcaS(vi, vj) in the suffix tree S for T , where vi and vj are the
leaves corresponding to suffix i and j, respectively. As the LCA-queries are only
posed on the leaves of the suffix tree, it seems obvious that preparing the whole
suffix tree for constant-time LCA-retrieval is quite an overhead. Fortunately,
there exists a nice space-saving solution based on suffix arrays: Because of the
one-to-one correspondence between S’s leaves and the suffix array SA for T ,
and also between the heights of S’s internal nodes and the LCP-array LCP for
T , it is easy to see that lce(i, j) = LCP[rmqLCP(SA−1[i] + 1,SA−1[j])] (recall
the definitions of SA and LCP in Sect. 2.4).

Note that for the LCE-algorithm based on RMQs it is crucial to use a direct
algorithm for RMQ, for otherwise one could use a suffix tree in the first place and
prepare it for LCA. Our new direct preprocessing scheme for RMQ has thus the
consequence that most LCE-based algorithms cited above can be implemented
without trees. However, it must be said that it is not immediately obvious how
to do without trees in the Gusfield and Stoye’s algorithm (2004) for computing
tandem repeats, because it uses the tree structure also for representing the
tandem repeats.

3.3.3 (Re-)Construction of Suffix Links

If it is necessary to augment a suffix tree with suffix links (e.g., when the suffix
tree has been constructed from the suffix- and LCP-array), LCA-queries can
be used for this task (see, e.g., Sect. 5.7.2 in Aluru, 2006). As these are in fact
LCE-queries, with the algorithm from the previous paragraph this is another
application of RMQ. Similarly, RMQs can be used directly to yield a linear-
time algorithm to incorporate suffix links into the Enhanced Suffix Array (see
Abouelhoda et al., 2004, Sect. 7). As the RMQs are again executed on the LCP-
table, this is actually another special case of calculating the longest common
extension of suffixes.

4LCE is often defined for two strings T ′ and T ′′ s.th. i is an index in T ′ and j in T ′′. This
can be transformed to our definition by setting T = T ′#T ′′, where # is a new symbol.
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3.3.4 Document Retrieval Queries

The setting of document retrieval problems is as follows: For a static collection
of n text documents, on-line queries like “return all d documents containing
pattern P” are posed to the system. Muthukrishnan (2002) gave elegant al-
gorithms that solve this and related tasks in optimal O(|P | + d) time. The
idea behind these algorithms is to “chain” suffixes from the same document
and use RMQs to ensure that each document containing P is visited at most
twice. Sadakane (2007b) and Välimäki and Mäkinen (2007) continued this line
of research towards succinctness, again using RMQs.

3.3.5 Maximum-Sum Segment Queries

These queries are also known as maximal scoring subsequence-queries. Given a
static array A[1, n] of n real numbers, on-line queries of the form “return the
sub-interval of A[l, r] with the highest sum” are to be answered; i.e., MSSQ(l, r)
returns the index pair (x, y) such that (x, y) = arg maxl≤x≤y≤r

∑y
i=xA[i]. This

problem and extensions thereof have very elegant optimal solutions based on
RMQs due to Chen and Chao (2004). The fundamental connection between
RMQ and MSSQ can be seen as follows: compute an array C[0, n] of prefix
sums as C[i] :=

∑i
k=0A[k] for 1 ≤ i ≤ n and C[0] := 0, and prepare C for

range minimum and range maximum queries. Then if C[x] is the minimum and
C[y] the maximum of all C[i] in C[l − 1, r] and x < y, then (x + 1, y) is the
maximum-sum segment in A[l, r]. The more complicated case where x > y is
also broken down to RMQs.

3.3.6 Lempel-Ziv-77 Data Compression

Given a string T = T1..n, the LZ77-decomposition (Ziv and Lempel, 1977) of
T is a factorization T = w1w2 . . . wx such that for all j ∈ [1 : x], wj is either
a single letter not occurring in w1 . . . wj−1, or the longest substring occurring
at least twice in w1 . . . wj . This factorization can be encoded as a sequence
of x integer tuples (pj , lj), where wj = Tpj if lj = 0 (the “new letter”-case),
or wj = Tpj ..pj+lj−1 otherwise. The LZ77-decomposition can be computed in
O(n) time with with the help of a suffix tree (Rodeh et al., 1981), or using T ’s
suffix- and LCP-array (Abouelhoda et al., 2004). Very recently, Chen et al.
(2007) have shown how to compute LZ77 from the suffix array SA alone, with
the help of RMQ-information on SA. This works roughly as follows: suppose
that T has already been parsed up to position i− 1: T1..i−1 = w1 . . . wj−1. The
next step is to identify the longest prefix wj of Ti..n that occurs at least twice in
w1 . . . wj. To find this prefix, first determine the interval [l, r] of Ti in SA; i.e.,
TSA[l]..n, . . . , TSA[r]..n are exactly those suffixes of T that are prefixed by Ti. [l, r]
can be found with an arbitrary search-algorithm in suffix arrays. To determine
whether Ti occurs previously in w1 . . . wj−1, check if rmqSA(l, r) < i. If not,
Ti is a new letter, so output the tuple (i, 0). Otherwise, narrow the interval
[l, r] by finding all entries in SA that are prefixed by Ti..i+1 (again, with any
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search algorithm in suffix arrays). Continue this process x times such that [l, r]
is the last interval with m := rmqSA(l, r) < i; output the tuple (SA[m], x).
Although the theoretical running time of this algorithm is O(n log n) if one
uses the binary search algorithm in suffix arrays, the practical performance is
reported to be much better (especially if there are relatively few factors), while
being very space-conscious (Chen et al., 2007).

3.4 Previous Results on RMQs

This section describes previous approaches for preprocessing an array A[1, n]
such that it supports range minimum queries in O(1) time. While some of these
techniques will also be important for our new algorithm to be presented in Sect.
3.5, others are merely presented for completeness of exposition.

3.4.1 The Berkman-Vishkin Algorithm

This section describes the solution to the general RMQ-problem as a combina-
tion of the results obtained in Berkman and Vishkin (1993) and Gabow et al.
(1984). We follow the presentation from Bender et al. (2005) who rediscovered
and simplified the algorithm.

The basic building block is a method to answer RMQs in constant time using
O(n log n) words of space, called the sparse table algorithm. This algorithm will
be used to answer “long” RMQs, and is also a basic ingredient for all subsequent
RMQ-algorithms.5 The idea is to precompute all RMQs whose length is a
power of two. For every6 1 ≤ i ≤ n and every 1 ≤ j ≤ ⌊log n⌋ compute the
position of the minimum in the sub-array A[i, i + 2j − 1] and store the result
in M [i][j]. Table M occupies O(n log n) words and can be filled in optimal
time by using the formula M [i][j] = arg mink∈{M [i][j−1],M [i+2j−1][j−1]}{A[k]}.
To answer rmq(l, r), select two overlapping blocks whose length is a power of
two that exactly cover the sub-array A[l, r], and return the position where the
overall minimum occurs. Precisely, let h := ⌊log(r − l)⌋. Then rmq(l, r) =
arg mink∈{M [i][h],M [j−2h+1][h]}{A[k]}.

We now come to the description of the complete RMQ-algorithm (from now
on called Berkman-Vishkin algorithm), which starts with a reduction from the
general RMQ-problem to ±1RMQ. This is a special case of the RMQ-problem,
where consecutive array elements differ by exactly 1. We say that such ar-
rays exhibit the ±1-property. The reduction starts by building the Canonical
Cartesian Tree Ccan(A) as shown in Sect. 3.2, because of the following property:

5Berkman and Vishkin (1993) use a slightly more complicated algorithm, which is, however,
equivalent to the one presented here.

6For an array X[1, n] the expression X[i, j] should be understood as X[i, min{j, n}] through-
out this thesis.
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Proposition 3.3 (Computing RMQ via LCA). Let A be an array with elements
from a totally ordered set and Ccan(A) its Canonical Cartesian Tree. Then
rmqA(l, r) is given by the label of node lcaCcan(A)(v,w), where v and w are the
nodes corresponding to l and r, respectively.

Proof. Immediate from the inductive definition of the Cartesian Tree. �

Note that with Prop. 3.2, this actually implies that the RMQ-problem and
the LCA-problem are linearly equivalent, in the sense that an instance of one
problem can be transformed into an instance of the other in linear time. This
means that, in principle, one could use an arbitrary LCA-algorithm on Ccan(A)
to answer RMQs on A. But there is an important fact in the reduction from
Prop. 3.2 which we have not yet mentioned, and which will lead us to a much
more practical algorithm for RMQ: the elements in the height array H exhibit
the ±1-property. Combining this fact with Prop. 3.2, we see that Prop. 3.3
actually says that rmqA(l, r) = E[±1rmqH(R[l], R[r])], with H, E and R as
described in Sect. 3.3.1, for completeness repeated here: E[1, 2n − 1] is the
Euler-Tour and is obtained from a depth-first traversal of Ccan(A), storing the
label of a node in E each time it is visited (i.e., also between the children of a
node). H[1, 2n− 1] stores the heights of the respective nodes in E, and R[1, n]
is a representative array such that R[i] is the position of the first occurrence of
A[i] in E. As the Cartesian Tree is not needed anymore once the arrays E, H
and R are filled, it can then be deleted. Note in particular the doubling of the
input when going from A to H; i.e., H has size n′ := 2n− 1.

To solve ±1RMQ on H, partition H into blocks of size log n′

2 .7 Define two

arrays H ′ and B of size 2n′

log n′ , whereH ′[i] stores the minimum of the ith block in

H, and B[i] stores the position of this minimum in H.8 Now H ′ is preprocessed
using the sparse table algorithm, occupying O( 2n′

log n′ log 2n′

log n′ ) = O(n) words
of space. This preprocessing enables out-of-block queries (i.e., queries that
span over several blocks) to be answered in O(1). It remains to show how in-
block-queries are handled. This is done with the so-called Four-Russians-Trick
(Arlazarov et al., 1970) where one precomputes the answers to all possible
queries when the number of possible instances is sufficiently small. The authors
of Berkman and Vishkin (1993) noted that due to the ±1-property there are
only O(

√
n′) blocks to be precomputed: we can virtually subtract the initial

value of a block from each element without changing the answers to the RMQs;
this enables us to describe a block by a ±1-vector of length 1/2 log n′ − 1,
implying that there are only 21/2 log n′−1 = O(

√
n′) possible blocks. For each

such block precompute all 1
2

log n′

2 ( log n′

2 + 1) possible RMQs and store them in

a table P of total size O(
√
n′ log2 n′) = O(n) words. Because we will also need

table P for succinct solutions to the RMQ-problem (e.g., in Sect. 3.4.3), we
already note here that the space for P is actually O(

√
n′ log2 n′ · log n′) = o(n′)

bits. To index table P , precompute the type of each block and store it in array
T [1, 2n′

log n′ ]. The block type is simply the binary number obtained by comparing

7For a simpler presentation we often omit floors and ceilings from now on.
8Actually, array H ′ is just conceptual, as H ′[i] is given by H [B[i]].
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Figure 3.1: Decomposing rmqH′(l, r) into three sub-queries. Vertical bars pass-
ing through H ′ indicate block-boundaries.

subsequent elements in the block, writing a 0 at position i if H[i+1] = H[i]+1
and 1 otherwise.

Now, to answer rmq(l, r), if l and r occur in different blocks, compute (1) the
minimum from l to the end of l’s block using arrays T and P , (2) the minimum
of all blocks between l’s and r’s block using the precomputed queries on H ′

stored in table M , and (3) the minimum from the beginning of r’s block to r,
again using T and P . See also Fig. 3.1. Finally, return the position where the
overall minimum occurs, possibly employing B. If l and r occur in the same
block, just answer an in-block-query from l to r. In both cases, the time needed
for answering the query is constant.

Because the algorithm needs several tables of size O(n) storing numbers up to
n, the space consumption of the algorithm is JO(n · log n), O(n · log n)K. Time
complexity is clearly 〈O(n), O(1)〉.

3.4.2 Alstrup et al.’s Idea for Handling In-Block-Queries

Alstrup et al. (2002) took a different approach to handle queries in a single block
Bj := A[(j − 1)s + 1, js] of size s = O(log n), for j = 1, . . . , n/s. Instead of
precomputing the answers to all possible queries and storing them in array P [j]
(thus using a total space of O(s2 · log s) bits for each block), they showed that
O(s · s) bits are sufficient to allow a constant-time computation of all queries
inside Bj .

The idea is to precompute for every position i ∈ [1 : s] a bit-vector Vj[i]
of size s, where the kth bit of Vj [i] is set to 1 iff k < i, Bj [k] ≤ Bj [i], but
Bj[k

′] > Bj[k] for all k < k′ < i. It is then easy to see that rmqBj (l, r) can
be computed by clearing all bits with an index strictly smaller than l in Vj [r]
and returning the position of the least significant bit if the result is not 0;
otherwise return r. Because the bit-vectors involved in these calculations are
of size s = O(log n), these operations can be executed in O(1) time under the
RAM-model of computation.

Algorithm 3.1 computes the bit-vectors Vj[1, s] for a block Bj in O(s) time.
The key insight is that for i > 0, Vj[i] is obtained by setting the k’th bit in
Vj [k], where k is the largest index smaller than i with Bj [k] ≤ Bj[i] (line 7). A
stack is used to allow an easy computation of this index k. After the while-loop
in lines 3–4 the index k on top of the stack satisfies B[k] ≤ B[i], and because
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Algorithm 3.1: Preprocessing for in-block-queries due to Alstrup et al.

Input: block Bj ranging from 1 to s
Output: array Vj[1, s]

let S be a stack, initially empty1

for i← 1, . . . , s do2

while notempty(S) ∧Bj[i] < Bj [top(S)] do3

pop(S)4

endw5

if empty(S) then Vj [i]← 06

else Vj[i]← Vj [top(S)] OR (1 << top(S))7

push(S, i)8

endfor9

return Vj [1, s]10

index i is pushed on the stack after the i’th iteration of the for-loop (line 8),
k is the largest such index. Further, it is easy to verify that Vj [1] = 0 is also
computed correctly.

One should note in particular that this preprocessing scheme also works for
blocks that do not exhibit the ±1-property and can thus be applied directly
to the input array. This means that it is not necessary to go through the
whole reduction chain via the Cartesian Tree in order to transform the original
array into an array with the ±1-property, as the Berkman-Vishkin algorithm
does. However, because we have to precompute the bit-vectors for all O(n/s)
blocks, the total space needed for the precomputation of the in-block-queries is
O((n/s)s·s) = O(n·log n) bits. Also, the sparse table algorithm from Sect. 3.4.1
is still necessary for the out-of-block queries, so the complete space consumption
is JO(n · log n), O(n · log n)K bits.

3.4.3 Sadakane’s Succinct RMQ-Algorithm

We now come to the description of a succinct data structure for RMQ due to
Sadakane (2007b) which, like the algorithm from Sect. 3.4.1, also takes advan-
tage of the interplay between LCA and RMQ, but with some subtle changes.
The result is actually obtained in two steps. The first step (Sadakane, 2007b) is
again a reduction from RMQs in an array A of size n to LCA-queries on leaves
in an extended Cartesian Tree Cext(A) with n′ := 2n nodes. The second step
(Sadakane, 2007a) is a succinct data structure for constant-time LCA-retrieval
in an arbitrary n′-node tree T using o(n′) extra bits — provided that T itself
is already encoded as a balanced parentheses sequence (BPS) using 2n′ bits.
We already note here that due to the intermediate construction of the extended
Cartesian Tree the peak space consumption of this algorithm is O(n log n), and
as the BPS-encoding of a tree with 2n nodes takes 4n bits, the total space
complexity is JO(n · log n), 4n + o(n)K bits. The details are as follows.
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Figure 3.2: Cext(A) for A = [0, 0, 1, 2, 1, 3, 0, 2] (top) and its BPS S (bottom),
where each ’(’ is labeled with its corresponding node. H contains
the heights of the Euler Tour of Cext(A). A query rmqH(l, r) is
shaded.

3.4.3.1 A Succinct Data Structure for LCA on BPS-encoded trees

Let us first describe Sadakane’s algorithm (2007a) for the LCA-retrieval using
o(n′) bits of additional space. Assume the tree T is encoded as a balanced
parentheses sequence S as described in Sect. 2.8, and a node is identified with
the position of its open parenthesis ’(’.

As in the case for the LCA-algorithm in Sect. 3.3.1, the overall aim is to be
able to answer ±1-RMQs on the height-array derived from the Euler-Tour of
T (i.e., the array H in Sect. 3.3.1 and Sect. 3.4.1). Sadakane shows different
ways how to compute the LCA of two nodes, somehow scattered over the arti-
cles (Sadakane, 2007a) and (Sadakane, 2007b); for our purposes, however, the
following generalization of Prop. 3.2 suffices:

Proposition 3.4 (LCA-computation of leaves in BPS-encoded trees). For a
tree T encoded by the balanced parentheses sequence S, let H be the height-
array derived from a depth-first traversal of T . Then if v 6= w are two leaves
represented by the positions l ≤ r of their corresponding open parenthesis in S,
±1rmqH(l, r) gives the position of the closing parenthesis of the first child-node
of lca(v,w) that is visited between v and w in a depth-first traversal of T .

Proof. From Prop. 3.2, rmqH(l, r) yields the position p such that H[p] equals
the height of u := lca(v,w). During the depth-first traversal of T , node u must
have been encountered when going “upwards” from a child c of u (note that
v 6= w); thus in S one has written the closing parenthesis of c at position p. As
RMQ always yields the leftmost minimum if this is not unique, c must be the
first child of u. �

As an example, look at the shaded query in Fig. 3.2. It asks for the LCA of
the leaves labeled 2 and 3, respectively, and indeed, H attains the minimum in
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the interval [l, r] at the position of the closing parenthesis of the internal node
labeled 4, the first child of the LCA of the two leaves.

Now here come the two crucial points which make linear bit-complexity pos-
sible: First, we have H[i] = rank((S, i − 1) − rank)(S, i − 1), so array H need
not be represented explicitly. This is simply because the number of ’(’s in S up
to position i−1 tells us how often we have traversed an edge in T “downwards”
when arriving at the node corresponding to position i in S, and likewise, the
number of ’)’s equals the number of edges that have been traversed “upwards;”
thus, the difference gives the height of the node. And second, for indexing
the table of the precomputed queries in blocks of size s (called “P” in Sect.
3.4.1), it is not necessary to store the types of the blocks! Recall that these
block types were the sequence of s − 1 bits obtained by writing a 0 into bit i
if H[i + 1] = H[i] + 1 and a 1 if H[i + 1] = H[i] − 1; but this is exactly the
part from the balanced parentheses sequence S corresponding to the block if
one reads ’(’ as a 0 and ’)’ as a 1, and drops the first parenthesis. So S can be
re-used for indexing table P of precomputed in-block-queries.

We are thus left with the task to show how ±1-RMQs can be precomputed
using only o(n′) extra space. Because table P occupies o(n′) bits of space, it
only remains to show how the out-of-block queries can be stored succinctly.
The idea is to introduce another preprocessing-layer with superblocks of size
s′ = log3 n′ and prepare both layers with the sparse-table algorithm from Sect.
3.4.1. We first wish to precompute the answers to all RMQs that span over at
least one superblock. To do so, define a table M ′[1, n′/s′][0, log(n′/s′)]. M ′[i][j]
stores the position of the minimum in the sub-array A[(i − 1)s′ + 1, (i + 2j −
1)s′]. As in Sect. 3.4.1, M ′[i][0] can be filled in a linear pass over the array,
and for j > 0 we use a dynamic programming approach by setting M ′[i][j] =
arg mink∈{M ′[i][j−1],M ′[i+2j−1][j−1]}{A[k]}. In the same manner we precompute
the answers to all RMQs that span over at least one block, but not over a
superblock. These answers are stored in a table M [1, n′/s][0, log(s′/s)], where
M [i][j] stores the minimum of A[(i − 1)s + 1, (i + 2j − 1)s]. Again, dynamic
programming can be used to fill table M in optimal time.

Table M ′ has dimensions n′/s′ × log(n′/s′) = n′/ log3 n′ × log(n′/ log3 n′)
and stores values up to n′; the total number of bits needed for M ′ is therefore
n′/ log3 n′ × log(n′/ log3 n′) · log n′ = o(n′). Table M has dimensions n′/s ×
log(s′/s) = 4n′/ log n′× log(log2 n′) (remember that s = log n/2, and the length
of H is 2n′). If we just store the offsets of the minima then the values do not
become greater than s′; the total number of bits needed for M is therefore
O(n′/ log n′ × log(log2 n′) · log(log3 n′)) = o(n′).

3.4.3.2 A Different Reduction from RMQ to LCA

We now show how the general RMQ-problem can be reduced to an LCA-
problem on leaves by incorporating the extended Cartesian Tree Cext(A). This
tree is obtained by taking the Canonical Cartesian Tree Ccan(A) and adding a
new leaf w as the middle child to each node v in Ccan(A). Leaf w is labeled with
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A[i] if its parent node v is labeled with i. (Recall that the nodes in Ccan(A) are
labeled with the position of the minimum they represent.) Cext(A) is then con-
verted to a BPS S and can be deleted afterwards. Because Cext(A) has n′ := 2n
nodes (n internal nodes and n leaves), the size of S is 4n bits. See Fig. 3.2 for
an example.

The reason for inserting the additional leaves in Cext(A) is given by the follow-
ing discussion: first observe that in a depth-first traversal of Cext(A), the label
of the ith visited leaf is A[i]; in other words, a depth-first traversal of Cext(A)
visits the leaves in the order of the original array A. Now Prop. 3.3 says that
rmqA(l, r) is given by the label of lcaCext(A)(v,w), where v and w are the leaves
in Cext(A) corresponding to A[l] and A[r], respectively. But because leaves are
represented by the sequence ’()’ in S, the index x in S of the open parenthesis
of the leaf corresponding to A[l] can be obtained by x := select()(S, l). Simi-
larly, the index corresponding to A[r] is y := select()(S, r). With Prop. 3.4, this
means that z := ±1rmqH(x, y) yields the position of the closing parenthesis
corresponding to the first child c of u := lcaCext(A)(v,w).

We are almost done. All that is left is to show how to obtain from z the index
in A of p := rmqA(l, r). The general idea is to first identify the position f in
S of the open parenthesis of u’s middle child, and then calculate this back to
the final position p in A. Suppose first that v is a descendant of u’s first child,
which is c. In other words, z points to the position of the closing parenthesis
of c. Then the next child must be the middle child represented by ’()’ in S, so
we just need to check if S[z + 1, z + 2] = ’()’ to see if we are in this case. If so,
f := z + 1 gives the position of the open parenthesis of u’s middle child. If, on
the other hand, v is not a descendant of u’s first child, c must already be u’s
middle child; in this case f = z − 1. Note that this can only happen if either
v or w is already the middle child of u. Finally, because leaves are represented
by ’()’ in S, the final index to be returned is obtained by p = rank()(S, f).

The advantage of this transformation is that because the parentheses se-
quence S captures both the height array and the block types, the original array
A is not needed anymore once S has been created. Thus in applications where
only the position of the minimum is of interest (and not the value itself) A can
be deleted after preprocessing. However, the only such situation which we are
aware of are document retrieval queries (Sect. 3.3.4).

3.5 An Improved Algorithm

We now come to the description of the main contribution of this chapter: a di-
rect, practicable and optimal succinct representation of RMQ-information. One
of the main building blocks of our solution is a new sequence for characterizing
binary trees which we are going to describe first.
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array A Ccan(A) path l1l2l3 number in enumeration

123 000 0

132 001 C03 = 1

231 002 C03 + C02 = 2

213 010 C13 = 3

321 011 C13 + C02 = 4

Table 3.1: Example-arrays of length 3, their Cartesian Trees, and their corre-
sponding paths in the graph in Fig. 3.3. The last column shows how
to calculate the index of Ccan(A) in an enumeration of all Cartesian
Trees.

3.5.1 A New Code for Binary Trees

This section introduces a new way to uniquely represent binary trees. Precisely,
we will define a list (or sequence) of s numbers satisfying a certain “prefix
property.” This property will be very closely connected to Cartesian Trees and
will thus be helpful for the improved RMQ-algorithm to be presented later.
There are many other combinatorial objects which describe binary trees. E.g.,
the BPS of a tree from Sect. 2.8 is one such description. The ideas from this
section can be seen as a new alternative for representing and enumerating binary
trees. We refer the reader to Knuth (2006, Table 1 in Sect. 7.2.1.6) for other
combinatorial objects describing binary trees. Throughout this section, the
reader should peek to Tbl. 3.1, where most of the concepts are illustrated.

Let l1l2 . . . ls be a sequence of s natural numbers satisfying

i
∑

k=1

lk < i for all 1 ≤ i ≤ s . (3.1)

For example, for s = 3, the five possible sequences are a1 = 000, a2 = 001,
a3 = 002, a4 = 010, a5 = 011. To derive all possible sequences for s = 4, one
has to add one of the digits 0, 1, 2 and 3 to the right end of a1, one of 0,1 and
2 to a2 and a4, and one of 0 or 1 to a3 and a5. This yields the 14 sequences

0000, 0001, 0002, 0003, 0010, 0011, 0012, 0020, 0021, 0100, 0101, 0102, 0110, 0111 .

How does such a sequence uniquely describe binary trees? First observe that
each binary tree is a Canonical Cartesian Tree for some array A with elements
from a totally ordered set of sufficient size; and by definition, each Canonical
Cartesian Tree is also a binary tree. This implies that a binary tree T can, in
principle, be represented by an array A: simply choose the numbers in A such
that A’s Canonical Cartesian Tree is equal to T .
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The crucial fact to observe now is that the actual numbers in A do not affect
the topology of the Cartesian Tree, as it is only determined by the positions
of the minima. Recall the algorithm for constructing the Canonical Cartesian
Tree in Sect. 3.2. In step i it traverses the rightmost path of Ccan

i−1(A) from the
rightmost leaf to the root and removes some elements from it. Now let l′i be the
number of nodes that are removed from the rightmost path when going from
Ccan

i−1(A) to Ccan
i (A). Because one cannot remove more elements from the right-

most path than one has inserted before, and because each element is removed
at most once, we have

∑i
k=1 l

′
k < i for all 1 ≤ i ≤ s. Thus, the sequence l′1 . . . l

′
s

satisfying (3.1) completely describes the output of the algorithm for construct-
ing the Canonical Cartesian Tree, and thus uniquely represents a binary tree
with s nodes.

On the other hand, given a binary tree with s nodes, we can easily find a
sequence of s numbers satisfying (3.1), by first constructing an array A whose
Cartesian Tree equals the given tree, and then running the construction algo-
rithm for Ccan(A). In total, we have a bijective mapping from binary trees to
sequences l1l2 . . . ls satisfying (3.1).

Let Ls be the set of sequences l1l2 . . . ls satisfying (3.1). Assume now we have
defined a way to enumerate Ls in some order. Then for a given l ∈ Ls we might
wish to compute the position (or index) of l in this enumeration. The most
naive way to calculate the position of l in the enumeration would be to actually
construct the Cartesian Tree related to l, and then use an inverse enumeration
of binary trees (see Knuth, 2006) to compute its index. This, however, would
counteract our aim to avoid dynamic data structures. We will show next how
to compute this index directly. To prepare for an algorithm which solves this
task, we first recall the definitions of some combinatorial numbers. It is well
known that the number of binary trees with s nodes is the s’th Catalan number
Cs, defined by Cs := 1

s+1

(2s
s

)

. By Stirling’s approximation formula, we have

Cs = 4s/(
√
πs3/2) (1 +O

(

s−1
)

) . (3.2)

Closely related are the so-called Ballot Numbers Cpq (Knuth, 2006), defined
by

C00 := 1, Cpq := Cp(q−1) + C(p−1)q, if 0 ≤ p ≤ q 6= 0 , (3.3)

and Cpq := 0 otherwise. It can be proved that a closed formula for Cpq is given
by q−p+1

q+1

(

p+q
p

)

(Knuth, 2006), which immediately implies that Css equals the
s’th Catalan number Cs. If we look at the infinite directed graph shown in Fig.

3.3 then Cpq is clearly the number of paths from
�




�

	p q to
�




�

	0 0 , because of

(3.3): if the current vertex is
�




�

	p q , one can either first go “up” and then take

any of the Cp(q−1) paths from
�




�

	p (q − 1) to
�




�

	0 0 ; or one first goes “left” to
�




�

	(p − 1) q and afterwards takes any of the C(p−1)q paths to
�




�

	0 0 . The first

few Ballot Numbers, laid out such that they correspond to the nodes in Fig.
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0 0

0 2

0 3 3 3

4 4

5 54 53 5

3 4

2 50 5

0 1

0 4

1 1

1 2

1 3

1 4

1 5

2 2

2 3

2 4

Figure 3.3: The infinite graph arising from the definition of the Ballot Numbers.

Its vertices are
�




�

	p q for all 0 ≤ p ≤ q. There is an edge from
�




�

	p q

to
�




�

	(p− 1) q if p > 0 and to
�




�

	p (q − 1) if q > p.

3.3, are
1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42 .

(3.4)

Now note that the sequence l1 . . . ls corresponds to a path from
�




�

	s s to
�




�

	0 0

in Fig. 3.3 (and vice versa). This is because the graph is constructed in a way
such that one cannot move more cells upwards than one has already gone to

the left if one starts at
�




�

	s s . So the path through the graph corresponding

to l1 . . . ls is obtained as follows: in step i, go li steps upwards and one step to

the left, and after step s go upwards until reaching
�




�

	0 0 . Because there are

Cs such paths, the task of computing the index of l1 . . . ls has thus become the
task of finding a bijection from Ls to {0, 1, . . . , Cs − 1}.

We now claim that the desired bijection is given by the function

f : Ls → {0, 1, . . . , Cs − 1} : l1l2 . . . ls 7→
s

∑

i=1

∑

0≤j<li

C(s−i)(s−j−
P

k<i lk) . (3.5)

This formula is actually not so hard to understand when viewed from an
algorithmic standpoint. The important thing to note is that it simulates a walk

from
�




�

	s s to
�




�

	0 0 in the graph in Fig. 3.3. In step i of the outer sum, the

current position in the graph is
�




�

	(s − i+ 1) (s− q) , with q =
∑

k<i lk being

the total number of upwards steps that have already been made before step i.
Now recall that li corresponds to moving li steps upwards, and then one step to
the left. So for each of the li upward steps, the inner sum increments the value of
the function by the number of paths that have been “skipped” by going upwards.
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This is exactly C(s−i)(s−q−j), the value of the cell to the left of the current one
if j runs through the upward steps. The effect of this incrementation is that
paths going from the current position to the left are assigned lower numbers
than paths going upwards. This implies that the sequence l = 00 . . . 0 will be
assigned the number f(l) = 0, l′ = 011 . . . 1 will get f(l′) = Cs − 1, and other
sequences will receive numbers between 0 and Cs−1. As an example, the index
of l = 0102 is f(l) = C35 + (C14 + C13), the summand outside the parenthesis
coming from l2 = 1, and the two summands inside coming from l4 = 2. See
also Tbl. 3.1.

Let us now prove that the function f defined by (3.5) is actually bijective.
From the discussion above we already know how we can bijectively map the

sequences in Ls to paths from
�




�

	s s to
�




�

	0 0 in the graph in Fig. 3.3. Calling

the set of such paths Ps, we thus have to show that f is a bijection from Ps to
{0, . . . , Cs−1}, with the intended meaning that the paths in Ps should actually
first be mapped bijectively to a sequence in Ls.

We need the following identities on the Ballot Numbers:

Cpq =
∑

p≤q′≤q

C(p−1)q′ for 1 ≤ p ≤ q (3.6)

C(p−1)p = 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) for p > 0 (3.7)

Eq. (3.6) follows easily by “unfolding” the definition of the Ballot Numbers,
but before proving it formally, let us first see how this formula can be interpreted

in terms of paths. (3.6) actually says that the number of paths from
�




�

	p q to
�




�

	0 0 can be obtained by summing over the number of paths to
�




�

	0 0 from
�




�

	(p − 1) q ,
�




�

	(p − 1) (q − 1) , . . . ,
�




�

	(p− 1) p , as all paths starting at
�




�

	p q

can be expressed as the disjoint union over those paths. The formal proof of
(3.6) is by induction on q: for q = 1, C11 = C10 + C01 = 0 + 1 = 1 by (3.3),
and (3.6) gives C11 =

∑

1≤q′≤1 C0q′ = C01 = 1. For the induction step, let the
induction hypothesis be Cp(q−1) =

∑

p≤q′≤q−1 C(p−1)q′ for all 1 ≤ p ≤ q − 1.
Then

Cpq
(3.3)
= Cp(q−1) + C(p−1)q

(IH)
=

∑

p≤q′≤q−1

C(p−1)q′ +C(p−1)q =
∑

p≤q′≤q

C(p−1)q′ .

Eq. (3.7) is only slightly more complicated and can be proved by induction
on p: for p = 1, C01 = C00 + C(−1)1 = 1 + 0 by (3.3), and (3.7) yields C01 =
1+

∑

0≤i<0C(−i−2)(−i) = 1, as the sum is empty. For the induction step, let the
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p2

p1

p

q

0

0
s

s

Figure 3.4: Smallest (p1) and largest
(p2) paths (under f) among
the paths that are equal up

to
�




�

	p q .

p3

p4

p

qq

0

0
s

s

Figure 3.5: p3 is the next-largest path
(under f) after p4 among
those paths that are equal

up to
�




�

	p q .

induction hypothesis be C(p−2)(p−1) = 1 +
∑

0≤i<p−2C(p−1−i−2)(p−1−i). Then

C(p−1)p = C(p−1)(p−1) + C(p−2)p (by (3.3))

= C(p−1)(p−2) + C(p−2)(p−1) + C(p−2)p (again by (3.3))

= C(p−2)(p−1) + C(p−2)p (because C(p−1)(p−2) = 0)

= 1 +
∑

0≤i<p−2

C(p−1−i−2)(p−1−i) + C(p−2)p (induction hypothesis)

= 1 +
∑

1≤i<p−1

C(p−i−2)(p−i) + C(p−2)p (shifting indices)

= 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) − C(p−2)p + C(p−2)p

= 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) .

We also need the following two lemmas for proving our claim.

Lemma 3.5. For 0 ≤ p ≤ q ≤ s and an arbitrary (but fixed) path pq from�




�

	s s to
�




�

	p q , let P ′
pq ⊆ Ps be the set of paths from

�




�

	s s to
�




�

	0 0 that move

along pq up to
�




�

	p q . Then f assigns the smallest number to the path p1 ∈ P ′
pq

that first goes horizontally from
�




�

	p q to
�




�

	0 q and then vertically to
�




�

	0 0 ,

and the largest value to the path p2 ∈ P ′
pq that first goes vertically from

�




�

	p q to
�




�

	p p , and then “crawls” along the main diagonal to
�




�

	0 0 (see also Fig. 3.4).

Proof. The claim for p1 is true because there are no more values added to sum
when going only leftwards to the first column. The claim for p2 follows from the
left-to-right monotonicity of the Ballot Numbers, as seen in (3.4): Cij < C(i+1)j

for all 0 ≤ i + 1 ≤ j − 1 (this follows directly from C(i+1)j = Cij + C(i+1)(j−1)

and the fact that for 0 ≤ i+1 ≤ j−1, C(i+1)(j−1) > 0). So taking the rightmost
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(i.e. highest) possible value from each row q′ ≤ q must yield the highest sum
(note that f can add at most one Ballot Number from each row q′ ≤ q). �

Lemma 3.6. Let p, q, and P ′
pq be as in Lemma 3.5. Let p3 ∈ P ′

pq be the

path that first moves one step upwards to
�




�

	p (q − 1) , then horizontally until

reaching
�




�

	0 (q − 1) , and then vertically to
�




�

	0 0 . Let p4 ∈ P ′
pq be the path

that first moves one step leftwards to
�




�

	(p− 1) q , then vertically until reaching
�




�

	(p − 1) (p− 1) , and then “crawls” along the main diagonal to
�




�

	0 0 (see also

Fig. 3.5). Then f(p3) = f(p4) + 1.

Proof. Let S be the sum of the Ballot Numbers that have already been added

to the sum of both p3 and p4 when reaching
�




�

	p q . Then f(p3) = S + C(p−1)q,

and

f(p4) = S +
∑

p≤q′≤q

C(p−2)q′ +
∑

0≤i<p−2

C(p−i−3)(p−i−1) ,

by simply summing over the Ballot Numbers that are added to S when making
upwards moves.

Now

f(p3) = S + C(p−1)q

= S +
∑

p−1≤q′≤q

C(p−2)q′ (by (3.6))

= S +
∑

p≤q′≤q

C(p−2)q′ + C(p−2)(p−1)

= S +
∑

p≤q′≤q

C(p−2)q′ + 1 +
∑

0≤i<p−2

C(p−i−3)(p−i−1) (by (3.7))

= f(p4) + 1 .

�

This gives us all the tools for

Lemma 3.7. Function f defined by (3.5) is a bijective mapping from L to
{0, . . . , Cs − 1}.

Proof. Injectivity can be seen as follows: different paths p3 and p4 must have

one point
�




�

	p q where one path (w.l.o.g. p3) continues with an upwards step,

and the other (p4) with a leftwards step. Combining Lemmas 3.5 and 3.6, f
assigns a larger value to p3 than to p4, regardless of how these paths continue
afterwards.

Surjectivity follows from the fact that the smallest path receives number
0, and the largest path (crawling along the main diagonal) receives number
∑

0≤i<s−1C(s−i−2)(s−i) = C(s−1)s − 1 (by (3.7)). But C(s−1)s = Css = Cs,
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1
2 3

54

(l,r)

l r

RMQ

block−queryblock−query

in−block−query in−block−query

superblock−query

Figure 3.6: How a range-minimum query rmq(l, r) can be decomposed into
at most five different sub-queries. Thick lines denote the bound-
aries between superblocks, thin lines denote the boundaries between
blocks.

and as there are exactly Cs paths from
�




�

	s s to
�




�

	0 0 , all being assigned

different numbers, there must be a path p ∈ P such that f(p) = x for every
x ∈ {0, . . . , Cs − 1}. �

We summarize this section in the following

Lemma 3.8 (Enumeration of binary trees). For a binary tree T with s nodes,
with (3.5) we can compute in O(s) time the index of T in an enumeration of
all binary trees with s nodes, with the help of a sequence of s numbers l1, . . . , ls
defined by (3.1). �

3.5.2 The Algorithm

This section describes our new algorithm for the RMQ-problem. The array A
to be preprocessed is (conceptually) divided into superblocks B′

1, . . . , B
′
n/s′ of

size s′ := log2+ε n, where B′
i spans from A[(i − 1)s′ + 1] to A[is′]. Here, ε is

an arbitrary constant greater than 0. Likewise, A is divided into (conceptual)
blocks B1, . . . , Bn/s of size s := log n/(2 + δ). Again, δ > 0 is a constant. For
the sake of simplicity we assume that s′ is a multiple of s. The general idea is
that a query from l to r can be divided into at most five sub-queries (see also
Fig. 3.6): one superblock-query that spans several superblocks, two block-queries
that span the blocks to the left and right of the superblock-query, and two in-
block-queries to the left and right of the block-queries. We will preprocess long
queries by a two-level step as presented in Sect. 3.4.3.1, and short queries will
be precomputed by a combination of the Four-Russians-Trick (Arlazarov et al.,
1970) with the method from Sect. 3.4.2. From now on, we assume that the
≺-relation is used for answering RMQs, such that the answers become unique.

3.5.2.1 A Succinct Data Structure for Handling Long Queries

We first wish to precompute the answers to all RMQs that span over at least one
superblock. In essence, we re-use Sadakane’s idea for the succinct computation
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of LCAs in BPS-encoded trees (see Sect. 3.4.3). This is actually a two-level
storage scheme due to Munro (1996). Define a table M ′[1, n/s′][0, log(n/s′)].
M ′[i][j] stores the position of the minimum in the sub-array A[(i−1)s′ +1, (i+
2j−1)s′]. As in Sect. 3.4.1, M ′[i][0] can be filled by a linear pass over the array,
and for j > 0 we use a dynamic programming approach by setting M ′[i][j] =
arg mink∈{M ′[i][j−1],M ′[i+2j−1][j−1]}{A[k]}.

In the same manner we precompute the answers to all RMQs that span over
at least one block, but not over a superblock. These answers are stored in a
table M [0, n/s − 1][0, log(s′/s)], where M [i][j] stores the minimum of A[(i −
1)s + 1, (i + 2j − 1)s]. Again, dynamic programming can be used to fill table
M in optimal time.

3.5.2.2 A Succinct Data Structure for Handling Short Queries

We now show how to store all necessary information for answering in-block-
queries using tables of size 2n + o(n) in total. The key to our solution is
the following lemma, which has implicitly been used already in the Berkman-
Vishkin algorithm. (Recall that the ≺-relation is used for answering RMQs,
such that the answers become unique.)

Lemma 3.9 (Relating RMQs and Cartesian Trees). Let A and B be two arrays,
both of size s. Then rmqA(i, j) = rmqB(i, j) for all 1 ≤ i ≤ j ≤ s if and only
if Ccan(A) = Ccan(B).

Proof. It is easy to see that rmqA(i, j) = rmqB(i, j) for all 1 ≤ i ≤ j ≤ s if
and only if the following three conditions are satisfied:

1. The minimum under “≺” occurs at the same position m, i.e., arg minA =
arg minB = m.

2. For all 1 ≤ i ≤ j < m, rmqA[1,m−1](i, j) = rmqB[1,m−1](i, j).

3. For all m < i ≤ j ≤ s, rmqA[m+1,s](i, j) = rmqB[m+1,s](i, j).

Due to the definition of the Canonical Cartesian Tree, points (1)–(3) are true if
and only if the root of Ccan(A) equals the root of Ccan(B), and Ccan(A[1,m−1]) =
Ccan(B[1,m − 1]), and Ccan(A[m + 1, s]) = Ccan(B[m + 1, s]). As this is the
definition of Cartesian Trees, this is true iff Ccan(A) = Ccan(B). �

This means that table P does not have to store the in-block-queries for all n/s
occurring blocks, but only for Cs = 4s/(

√
πs3/2)(1 + O(s−1)) possible blocks.

The total space occupied by P will be analyzed in Sect. 3.5.2.5.

3.5.2.3 Computing the Block Types

In order to index table P , it remains to show how to compute the types of the
n/s blocks Bj occurring in A in linear time; i.e., how to fill an array T [1, n/s]
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Algorithm 3.2: An algorithm to compute the type of a block Bj

Input: a block Bj of size s
Output: the type of Bj , as defined by Eq. (3.8)

let R be an array of size s+ 1 {R stores elements on the rightmost path}1

R[1]← −∞2

q ← s,N ← 03

for i← 1, . . . , s do4

while R[q + i− s] > Bj[i] do5

N ← N + C(s−i)q {add number of skipped paths}6

q ← q − 1 {remove node from rightmost path}7

endw8

R[q + i+ 1− s]← Bj [i] {Bj [i] is new rightmost leaf}9

endfor10

return N11

such that T [j] gives the type of block Bj . Lemma 3.9 implies that there are
only Cs different types of blocks, so we are looking for a surjection

t : As → {0, . . . , Cs − 1}, and t(Bi) = t(Bj) iff Ccan(Bi) = Ccan(Bj) , (3.8)

where As is the set of arrays of size s. The reason for requiring that Bi and
Bj have the same Canonical Cartesian Tree is that in such a case both blocks
share the same RMQs. Algorithm 3.2 shows how to compute the block type by
making use of the ideas from Sect. 3.5.1.

Lemma 3.10 (Correctness of Type-Computation). Algorithm 3.2 correctly
computes the type of a block Bj of size s in O(s) time, i.e., it computes a
function satisfying the conditions given in (3.8).

Proof. Intuitively, Alg. 3.2 simulates the algorithm for constructing Ccan(Bj)
given in Sect. 3.2 and “implements” a function defined by (3.5). First note that
array R[1, s + 1] simulates the stack containing the labels of the nodes on the
rightmost path of the partial Canonical Cartesian Tree Ccan

i (Bj), with q+ i− s
pointing to the top of the stack (i.e., the rightmost leaf), and R[1] acting as
a “stopper.” Now let li be the number of times the while-loop (lines 5–8) is
executed during the ith iteration of the outer for-loop. Note that li equals the
number of elements that are removed from the rightmost path when going from
Ccan

i−1(Bj) to Ccan
i (Bj). So the sequence l1l2 . . . ls satisfies (3.1), and therefore

uniquely characterizes Ccan(Bj). As the additions performed in line 6 of Alg.
3.2 are exactly those defined by (3.5), the value computed by the algorithm is
the index of Ccan(Bj) in an enumeration of all binary trees with s nodes. We
conclude that Alg. 3.2 computes a function defined by Eq. (3.8). �
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3.5.2.4 Answering Queries

Having precomputed all the necessary information as above, it is easy to see
that rmq(l, r) is one of the following five positions (precisely, the position where
A attains the minimum value):

• If the interval [l : r] spans the superblocks B′
l′ , . . . , B

′
r′ , compute the po-

sition of the minimum as arg mink∈{M ′[l′][x],M ′[r′−2x+1][x]}{A[k]}, where
x = ⌊log(r′ − l′)⌋.

• If the interval [l : r] spans the blocks Bl1 , . . . , Br1 to the left of su-
perblock B′

l′ , compute the position of the minimum in this interval as
arg mink∈{M [l1][x],M [r1−2x+1][x]}{A[k]}, where x = ⌊log(r1 − l1)⌋.

• Same as the previous point, but for the blocks Bl2, . . . , Br2 to the right of
B′

r′ .

• Compute the positions of the minimum in the blocks to the left of Bl1

and to the right of Br2 .

3.5.2.5 Space Analysis

Table M ′ has dimensions n/s′ × log(n/s′) = n/ log2+ε n× log(n/ log2+ε n) and
stores values up to n; the total number of bits needed for M ′ is therefore

|M ′| =
n

log2+ε n
log

(

n

log2+ε n

)

· log n

=
n

log1+ε n
(log n− log log2+ε n)

=
n

logε n
(1− o(1))

= o(n) .

Table M has dimensions n/s× log(s′/s) = (2+δ)n/ log n× log((2+δ) log1+ε n).
If we just store the offsets of the minima then the values do not become greater
than s′; the total number of bits needed for M is therefore

|M | = O

(

n

log n
log(log1+ε n) · log(log2+ε n)

)

= O

(

n log2 log n

log n

)

= o(n) .

To store the type of each block, array T has length n/s = (2 + δ)n/ log n, and
because of Lemma 3.9, the numbers do not get bigger than O(4s/s3/2). This



40 Chapter 3. An Optimal Preprocessing Scheme for RMQ

means that the number of bits to encode T is

|T | =
n

s
· log

(

O

(

4s

s3/2

))

=
n

s
· (2s −O(log s))

= 2n−O
(

n log log n

log n

)

= 2n− o(n) .

Finally, it is possible to store table P with o(n) bits: Lemma 3.9 implies that
P has only O( 4s

s3/2 ) rows, one for each possible block-type. For each type we
need to precompute rmq(i, j) for all 1 ≤ i ≤ j ≤ s, so the number of columns
in P is O(s2). If we use the method described in Sect. 3.4.2 to represent the
answers to all RMQs inside one block, this takes O(s · s) bits of space for each
possible block.9 The total space is thus

|P | = O

(

4s

s3/2
s · s

)

= O
(

n2/(2+δ)
√

log n
)

= O
(

n
1− 1

2/δ+1
√

log n
)

= o(n/ log n)

bits.

Because the space consumption of table M is asymptotically higher than
the second order term that is subtracted from the space of table T , the total
space needed is 2n + o(n) bits. And because the peak space consumption at
construction time is the same as that of the final data structure (apart from
the negligible O(log n log log n) bits needed for array R, and the O(log3 n) bits
for the Ballot-Numbers in Alg. 3.2), we can now state the main result of this
section:

Theorem 3.11 (Succinct representation of RMQ-information). For an ar-
ray with n elements from a totally ordered set, there exists an algorithm for
the RMQ-problem with time complexity 〈O(n), O(1)〉 and bit-space complexity
J2n+ o(n), 2n + o(n)K. �

We finally note that our algorithm is also easy to implement on PRAMs (or
real-world shared-memory machines), where with n/t processors the prepro-
cessing runs in time Θ(t) if t = Ω(log n), which is work-optimal. This is simply
because the minimum-operation is associative and can hence be parallelized
after a Θ(t) sequential initialization (Schwartz, 1980).

9We remark that the usage of Alstrup et al.’s method for the precomputation of the in-block
queries would not be necessary to achieve the o(n) space bound, but it certainly saves
some space.
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3.6 A Lower Bound

It is interesting that the leading term (2n bits) in Thm. 3.11 comes from table
T , i.e., from remembering the type of all blocks occurring in A. One can wonder
if this is really necessary. This section proves that, asymptotically, one cannot
do better than this. But we first have to think about a reasonable model of
computation. To see why this is necessary, take, for example, an array A whose
entries are only 0’s and 1’s. Then very little space is needed to answer RMQs
on A in O(1) time, as the array itself can be used for indexing the table of
precomputed in-block-queries. Thus, table T from the previous section is not
needed, so the additional space is o(n) bits.

For proving the lower bound on space we assume that the array is only used
for minimum evaluations. To model this situation, in analogy to the cell-probe
model by Yao (1981), we introduce the so-called min-probe model, where we
only count evaluations of arg min{A[i], A[j]}, and all other computations and
accesses to additional data structures (but not to the input array A) are free.
This model is actually quite similar to the comparison model which is used,
e.g., for showing the Ω(n log n) lower bound for sorting n objects. However, in
the comparison model the decisions of the algorithm are only based on previous
comparisons, whereas in our case we have a “background” data structure which
can be queried a lot of times. Therefore, the introduction of a new model is
necessary.

Theorem 3.12 (Lower bound for RMQ). For an array A of size n one needs at
least 2n−o(n) additional bits to answer rmqA(l, r) in O(1) for all 1 ≤ l ≤ r ≤ n
in the min-probe model.

Proof. Let DA be the additional data structure for an arbitrary array A. To
evaluate an arbitrary rmqA(l, r) in O(1), the algorithm can make k argmin-
evaluations (constant k). The algorithm’s decision on which i ∈ [l : r] is
returned as the minimum is based on the outcome of the K := 2k possible
outcomes of these argmin-evaluations, and possibly on other computations in
DA.

Now suppose there are less than Cn/(K+1) different such DA’s. Then by the
pigeonhole-principle there exists a set {A0, . . . , AK} of K + 1 arrays of length
n with DAi = DAj for all i, j, but with pairwise different Cartesian Trees. As
the RMQ-algorithm cannot differentiate between those arrays based on their
additional data structure (because they are the same), it can return different
answers to RMQs for at most K of these arrays. So for at least two of them
(say Ax and Ay) it gives the same answer to rmq(l, r) for all l, r. But Ax and
Ay have different Cartesian Trees, so there must be at least one pair of indices
l′, r′ for which rmqAx(l

′, r′) 6= rmqAy(l
′, r′). Contradiction.

So there must be at least Cn/(K+1) different choices for DA; thus the space
needed to represent DA is at least log(Cn/(K + 1)) = log(Cn)− log(K + 1) =
2n− o(n)−O(1) bits in the Kolmogorov-sense. �
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This theorem implies that the algorithm from Sect. 3.5 is asymptotically
optimal, as the ratio (2n + o(n))/(2n − o(n)) converges to 1.

3.7 Applications of the New Algorithm

Theorem 3.11 naturally improves the space consumption of all algorithms based
on RMQs. This section details the improvement on two of the most important
applications of RMQ. Apart from yielding simpler and less space-consuming
methods, we will see in Sect. 3.8 that one can also expect improvements in
running times.

3.7.1 LCAs in Trees with Small Average Degree

Recall the LCA-problem from Sect. 3.3.1. There, we showed that an LCA-
query on T basically corresponds to a ±1RMQ on the heights of the nodes
visited during an Euler-Tour in T . Because the size of an Euler-Tour is exactly
2n − 1, this leads to an input doubling. We show in this section that using
the algorithm presented in Sect. 3.5 overcomes this problem for binary trees
and trees with small average degree. The basic idea is that because our RMQ-
preprocessing can be applied directly to any array (and not only to arrays with
the ±1-property as the Berkman-Vishkin algorithm), we do not have to store
the complete Euler-Tour of the tree.

Let T be a rooted tree with n nodes. Instead of storing the Euler-Tour of
T , store an inorder tree walk (Cormen et al., 2001) of T which is defined as
follows: Let r be the root of T which has k children v1, . . . , vk. Then the inorder
tree walk I of T is recursively defined as the array I(T ) = [v] if k = 0, and
I(T ) = I(Tv1) ◦ [v] ◦ I(Tv2) ◦ [v] . . . [v] ◦ I(Tvk) otherwise, where “◦” denotes
array concatenation. The size m of array I is clearly in the range [n : 2n − 1],
attaining the minimum n for binary trees. We further, store the heights of each
node in H[1,m], i.e., H[i] is the height of node I[i] in T . Finally, let R[1, n]
be the representative array of I, i.e., R[v] stores the position of an arbitrary
occurrence of node v in I (for convenience, the first occurrence). The only
difference between the Euler-Tour and the inorder tree walk is that the latter
only stores references to the nodes between its children, whereas the former also
inserts references to a node before its first and after its last child. Because the
proof of Prop. 3.2 does not make use of these first and last references to a node,
we see that we also have the connection lcaT (v,w) = I[rmqH(R[v], R[w])].
Thus, preparingH directly for RMQ with the algorithm from Sect. 3.5 is enough
for constant time LCA-computation in T .

The first improvement of this algorithm comes from the use of the inorder
tree walk instead of the Euler Tour. If T is binary, the extra space needed is
3n words for the arrays I,H and R. Compare this with the LCA-algorithm
based on the Euler-Tour which uses 5n words for the arrays E, H and R. For
trees other than binary, the space for these three arrays is never more than 5n
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words; the reduction, however, is only relevant if the number of internal nodes
is relatively close to the number of leaves (i.e., trees with small average degree).

The second improvement comes from using the new RMQ-algorithm pre-
sented in Sect. 3.5 which occupies only O(n/ log n) extra words (Thm. 3.11).
The only other two RMQ-algorithms which could also be applied directly to
the inorder tree walk are those of Alstrup et al. and Sadakane. However, the
former would result in at least n extra words (for the precomputation of the
in-block-queries), and although the latter also needs O(n/ log n) extra words,
it has a much higher space consumption at construction time.

Theorem 3.13 (Improved constant-time LCA-computation). For a tree T with
s nodes having at most 1 child, and l nodes v1, . . . , vl of out-degree d(vi) > 1,
there is a preprocessing scheme using 3(s− l+∑

i∈[1:l] d(vi))+O(n/ log n) words
which can be computed in-place in O(n) time such that subsequent LCA-queries
can be answered in constant time. �

3.7.2 An Improved Algorithm for Longest Common Extensions

Recall the LCE-problem from Sect. 3.3.2. There, we saw that lce(i, j) can
be obtained by LCP[rmqLCP(SA−1[i] + 1,SA−1[j])]. We also discussed that it
is crucial to use an RMQ-algorithm which does not make use of any dynamic
data structures such as trees — for otherwise one could use a suffix tree in the
first place and prepare it for constant time LCA-retrieval. Thus, the Sadakane-
RMQ from Sect. 3.4.3 is not suitable for this task, because it constructs an
intermediate extended Cartesian Tree and therefore needs O(n log n) bits of
intermediate dynamic space. So our RMQ-algorithm is the best choice for this
problem, if one wants to be more space-economical than Alstrup et al.’s solution
2002, which is the only other RMQ-algorithm which can be directly applied to
LCP.

Nevertheless, it must be said that there exists a different solution to the
LCE-problem which does not need dynamic data structures (Sadakane, 2007a,
Thm. 2). This algorithm, however, makes use of the balanced parentheses
representation S of the suffix tree, and some heavy algorithmic machinery is
needed to construct S directly without first constructing the actual suffix tree.
We briefly mention the two ideas for constructing S directly which we are aware
of: The first (Hon and Sadakane, 2002) builds on the algorithm for simulating
bottom-up traversals of suffix trees by means of the LCP-array (Kasai et al.,
2001, Sect. 5). The second (Välimäki et al., 2007, Sect. 5) is an extension
of the suffix-insertion algorithm due to Farach-Colton et al. (2000, Sect. 3);
see also Crochemore and Rytter (2002, Thm. 7.5). As mentioned before, both
algorithms are non-trivial, and as the BPS S of the suffix tree has size 4n bits,
the space consumption of the resulting data structure for LCE is also twice as
high as that of our algorithm. In any case, we get the following result:10

10Note that the statement of Thm. 3.14 does not immediately solve the LCE-problem as
defined in Sect. 3.3.2, as there we need to have access to the inverse suffix array. However,
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Theorem 3.14 (Space-efficient computation of LCE). After a linear-time pre-
processing of a text T1..n resulting in a data structure of size |SA| + 4n + o(n)
bits, the length of the longest common extension of the suffixes TSA[i]..n and
TSA[j]..n can be computed in O(tSA) time, for any two indices i and j. Here,
|SA| denotes the space of the suffix array, and tSA denotes the time to access
an element from SA. For the various space-time-tradeoffs between |SA| and tSA,
see Sect. 2.7.

Proof. Follows directly from the fact that our preprocessing scheme for RMQ
can also be applied to the succinct representation of the LCP-array (as described
in Sect. 2.7). �

This improves Thm. 2 of Sadakane (2007a) who achieves |SA| + 6n + o(n)
bits of space within the same time bounds.

3.8 Practical Considerations

We implemented the preprocessing scheme from Sect. 3.5 in C++ (available
at www.bio.ifi.lmu.de/˜fischer ) in the following three variants (opti-
mized for 32-bit computing):

1. A non-succinct version using 4n+O(
√
n log n) words of additional space.

It is a straightforward combination of the Berkman-Vishkin algorithm
(Sect. 3.4.1) with our new preprocessing scheme for short queries (Sect.
3.5.2.2 and 3.5.2.3). The block-size was set to s = log n/4. In-block-
queries were precomputed with Berkman and Vishkin’s method (not with
Alstrup et al.’s method). The advantage over the Berkman-Vishkin al-
gorithm is that there is no need for an intermediate construction of the
Canonical Cartesian Tree, thereby also avoiding the input doubling. Fur-
ther, arrays E, H and R from Sect. 3.4.1 are not needed at all. This
implementation corresponds to the paper presented at CPM 2006 (see
Fischer and Heun, 2006). It was just included to show that our succinct
version below is better in terms of preprocessing time and space.

2. A succinct version as described in Sect. 3.5.2. A good trade-off between
time and space is to fix the block-size s to 23 (implying that table P
stores single bytes using Alstrup et al.’s method), and the superblock-size
s′ to 28 (implying that table M also stores single bytes). Additionally,
we introduced an “intermediate” block-division of size s′′ = 24. Then
these intermediate blocks consist of two blocks of size s = s′′/2; their
RMQs can thus be answered with two look-ups to table P . This means
that we do not have to store any information at all for the intermediate
block-division. The advantage of this intermediate layer is that it reduces

as most compressed representations of the suffix array give access to its inverse within the
same time bounds, the theorem can usually be seen as a solution to the LCE-problem.

www.bio.ifi.lmu.de/~fischer
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method space usage (bytes) theor. query time

Berkman-Vishkin (BV) ≤ 35n11 O(1)
Alstrup et al. ≤ 7n O(1)
non-succinct ≤ 14n O(1)

succinct ≤ 7
8n O(1)

engineered ≤ 1
4n O(log n)

naive 0 O(n)

Table 3.2: Different preprocessing schemes for RMQ used in our tests.

the space of table M ′. In total, our implementation uses ≤ 7
8n bytes if

n ≤ 232.

3. An engineered version where the superblock-size was set to s′ = 28, and
the block-size to s = 26. These two layers were preprocessed with the
method from Sect. 3.5.2.1. Queries lying inside the blocks of size s were
answered naively, i.e., by a simple linear scan for the minimum. This
implementation uses ≤ 1

4n bytes if n ≤ 232. The choices for s and s′ were
made such that this method has a query time that is comparable to the
succinct version above, while consuming less space.

We compared these implementations to the following three preprocessing
schemes:

1. The Berkman-Vishkin algorithm (BV ) as described in Sect. 3.4.1. This
algorithm transforms the input array to a ±1rmq-instance by first build-
ing the Canonical Cartesian Tree. The block size was set to s = log n/2.

2. Alstrup et al.’s algorithm as described in Sect. 3.4.2. The preprocessing
for long queries is similar to BV, but short queries are handled differently.
The block size was set to s = 25, as then the bit-vectors fit into a single
computer word and can hence be manipulated quickly.

3. The naive algorithm which scans the query interval linearly each time an
RMQ is posed. This method was just included to see for which query
lengths the preprocessing for the other methods pays off.

See Tbl. 3.2 for an overview of the implementations used. Unfortunately,
we could not compare to Sadakane’s solution (Sect. 3.4.3). The reason for
this is that there is no publicly available reference implementation. As the
performance of Sadakane’s method is heavily influenced by the implementation
of the rank- and select-structures, and choosing the wrong such implementation
would make our comparison very vulnerable, we opted for not implementing his
method on our own.

11The intermediate space for constructing the Cartesian Tree is not included in the 35n bytes.



46 Chapter 3. An Optimal Preprocessing Scheme for RMQ

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0  2e+07  4e+07  6e+07  8e+07  1e+08  1.2e+08  1.4e+08

ad
di

tio
na

l s
pa

ce
 (

by
te

s)

length of array

BV
Alstrup et al.
non-succinct

succinct
engineered

Figure 3.7: Final space consumption of different RMQ-schemes for varying ar-
ray lengths. The space for constructing the Cartesian Tree (method
BV) is not included in this graph.

All tests were performed on an Athlon XP 3300 with 2GB of RAM under
Linux. All programs were compiled with g++, using the options “-O3 -fomit-
frame-pointer -funroll-loops.”

The implementations were tested on random input arrays of varying lengths.
We emphasize the fact that both time and space of all implementations are
largely independent of the input data, so there is no need to test the methods on
different inputs. This fact was confirmed by conducting the same experiments
on LCP-arrays derived from several test files from the the Pizza & Chili-site
(Ferragina and Navarro, 2005), covering English texts and biological sequence
data (DNA and proteins). But as the results for these files are similar to the
ones presented below, we do not display them here.

We first evaluated the preprocessing time and space for varying array lengths
from n = 220 ≈ 106 to n = 227 ≈ 1.34 × 108. (So already the input array uses
up to 4× 227 = 512MB of space.) First look at the space measurements in Fig.
3.7. This graph confirms the figures from Tbl. 3.2 and illustrates graphically
the huge difference in space of the different methods. Note that for method BV
the intermediate space for constructing the Cartesian Tree is not even included
in the graph; doing so would certainly result in a more dramatic gap. This
intermediate space is also the reason why we could test BV just on arrays up
to length 225. Alstrup et al.’s method is the most space-conscious among the
non-succinct schemes, but is beaten by orders of magnitude by our succinct
implementation. As expected, the engineered version uses even less space than
this.
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Figure 3.8: Preprocessing times for varying array lengths. For BV, time for
constructing the Cartesian Tree is included in the graph.

Fig. 3.8 shows the time spent on preprocessing by the different methods.
The ranking of the methods is the same as in Fig. 3.7, which confirms the fact
that preprocessing is largely dominated by filling certain tables by relatively
straight-forward computations. But still, there are two important deviations
from the space consumptions. The first is that our non-succinct scheme has
preprocessing time very close to that of Alstrup et al. As they both have the
same preprocessing for long queries, this shows that computing the block types
and performing a “naive” precomputation of the in-block-queries amounts to
approximately the same time as computing the bit-vectors from Sect. 3.4.2 for
each block. The second deviation from Fig. 3.7 is that for our succinct and
engineered implementation, the difference in preprocessing time is much higher
than that in space. This and the fact that the table of precomputed in-block
tables is marginally small for s = 23 shows that most of the time which is not
spent on filling tables comes from the computation of the block-types.

The next test was to evaluate the influence of the query length on the query
time. For this we took a random array of length n = 4 × 107 and measured
the time for random queries of increasing length l = 31, 32, . . . , ⌊log3 n⌋. The
results can be seen in Fig. 3.9. As expected, the naive method behaves linearly
in the query length (note the logarithmic x-axis) and is only competitive for
relatively small query lengths, say l ≤ 35. Concerning the other methods, the
Berkman-Vishkin scheme is always the slowest. The remaining four methods
form basically two groups. The non-succinct version of our scheme together with
Alstrup et al.’s scheme, which are both about twice as fast as BV. For short
queries, methods succinct and engineered are about as fast as non-succinct and
Alstrup et al., and approximately as fast as BV for long queries (but never
slower). A final interesting point to note in Fig. 3.9 is that all curves except
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Figure 3.9: Influence of different query lengths on query time (logarithmic x-
axis; averaged over 106 queries each; without preprocessing times).

the one for the naive method have their peak at an intermediate query length,
and then slightly level off. We can only speculate that this is due to caching
phenomena.

In a final test we checked up on the influence of the array length on the
query time. We differentiated between constant query lengths (Fig. 3.10) and
query lengths that grow with the size of the array (Fig. 3.11). Both tests
were further subdivided into short queries (sub-figures (a)) of length 100 or
log(n)/2, respectively, and long queries (sub-figures (b)) of length 10,000 or
n/100, respectively. We do not comment on all graphs separately, but just try
to summarize the results in a few points as follows.

• The length of the array has more or less the same influence on all curves.

• The Berkman-Vishkin algorithm is always slowest, compared with any of
the other methods.

• The naive method is good for short queries, but we have seen before
that it is not competitive for long queries, and therefore excluded it from
sub-figures (b).

• For short queries (sub-figures (a)), the differences in query time for the
remaining four methods are not as high as for long queries (b).

• For short queries, our non-succinct version is slightly slower than the
other three methods, and the engineered version is (marginally) the best
for long arrays (apart from the naive method).
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Figure 3.10: Influence of different array lengths on query time (constant query
lengths).
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Figure 3.11: Influence of different array lengths on query time (growing query
lengths).
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• For long queries, one can see the same grouping as in Fig. 3.9: succinct and
engineered are slower by a factor of ≈ 2 than non-succinct and Alstrup et
al.

3.9 How to Further Reduce Space

We thought about further reducing the space of our RMQ-representation. First
note that although we have proved the asymptotic optimality of our data struc-
ture (Thm. 3.12), this does not mean that a given instance of the problem
cannot be represented in less than 2n − o(n) bits of space. For example, take
the suffix array SA of a string of length n. A lower bound for representing
SA can be obtained easily by noting that SA is a permutation of [1 : n], and
as all permutations of [1 : n] are indeed a suffix array for some text, we need
log(n!) = Θ(n log n) bits in general to represent SA. However, if the size of
the alphabet can be upper-bounded by some constant less than n, it has been
proved by Schürmann and Stoye (2005) that less bits are sufficient to represent
SA. Further, if one takes into account the compressibility of the underlying
text, usually measured in the order-k empirical entropy, much better bounds
can be shown (cf. Sect. 2.7).

In this section we will explore to which extent some of these ideas can be
applied to our problem. The general approach is to try to reduce the space of
the type-table T (Sect. 3.5.2.3), as this is where the 2n bits come from. All other
structures are already of size o(n) bits. We will first give a negative result on
the case of small alphabets, but in Sect. 3.9.2 we will see that for compressible
input arrays the RMQ-information can be compressed as well.

3.9.1 Small “Alphabets” Don’t Help!

The first idea is to see how big table T becomes if the input array consists of
numbers from a restricted range R := [x : y]. In analogy to the literature on
suffix arrays, we call R the alphabet of the input array, although we do not
usually preprocess texts for RMQ. We show in this section that already for very
small values of |R|, representing T needs asymptotically the same space as for
an unrestricted input alphabet.

Recall from Sect. 3.5.2.2 that the number T (s) of blocks of size s that have
different RMQs is given by the recurrence

T (0) := 1, T (s) :=

s
∑

i=1

T (i− 1)T (s− i) if s > 0 . (3.9)

This was derived from the fact that two blocks have the same RMQs iff the
minimum occurs at the same position, and the sub-arrays to the left and right of
the minimum have the same RMQs. Thus, summing over all possible positions
of the minimum as in (3.9) yields the number of different blocks.
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Now assume the input array consists of only two different numbers, w.l.o.g.
R = {0, 1}. Then the number of blocks that have different RMQs is given by
the recursive formula

T2(0) := 1, T2(s) :=

s
∑

i=1

T2(s− i) if s > 0 , (3.10)

as two blocks have the same RMQs iff the first 0 is at the same position i
(so all array entries to the left of i are 1’s), and the sub-arrays to the right
of i have the same RMQs. Unfortunately, the solution to recurrence (3.10)
is T2(s) = 2s−1, which can be easily proved by induction. So already for an
alphabet of size 2, one needs log(2s−1) = s − 1 bits to describe the type of a
block, which is asymptotically only half of the log(Cs) = 2s− O(log s) bits for
general alphabets.12

For general alphabets of size σ, the number of blocks that have different
RMQs is given by

Tσ(0) := 1, Tσ(s) :=

s
∑

i=1

Tσ−1(i− 1)Tσ(s− i) if s > 0 , (3.11)

as two blocks have the same RMQs iff the minimum occurs at position i, and
the sub-arrays to the left and right of i have the same RMQs. As the sub-array
to the left of the minimum does not contain the minimal element, it must have
an alphabet of size at most σ − 1, so its number of different blocks is given by
Tσ−1(i − 1). Recurrence (3.11) has some very surprising solutions for various
values of σ; e.g., we have T3(s) = F2s−1 with Fn being the n’th Fibonacci
number, and

T4(s) =
3s−1 + 1

2
for s > 0 . (3.12)

(Again, both formulas can be proved by induction on s, using some basic identi-
ties on the Fibonacci numbers.) We present these formulas only to give an idea
of how rapidly Tσ(s) converges (with growing σ) to the general 2s − O(log s)
bits: already for σ = 4 we need log2

(

(3s−1 + 1)/2
)

≈ s−1
log3 2 −1 ≈ 1.58(s−1)−1

bits, which is already very close to 2s − O(log s). We conclude from this that
small alphabets do not help directly for the encoding of T .

3.9.2 Compression Techniques

Let us now consider input arrays A of length n that are compressible. As we saw
in Sect. 2.5, compressibility is usually measured in the order-k entropy Hk(A),
as nHk(A) provides a lower bound on the number of bits needed to encode A by
any compressor that considers a context of length k when it encodes a symbol in
A. We now show that the encoding given by Ferragina and Venturini (2007) is

12Ignore for now that for very small values of |R|, say |R| ≤ 4, array T need not be stored
at all, as the input array itself can be used for indexing the table of precomputed queries.
The aim of this section is solely to explore if bounding the alphabet size helps in general
for storing T in less space.
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also effective for our type-array T . As usual, let σ denote the size of Σ; i.e., σ is
equal to the number of different numbers in A. For completeness of exposition,
the encoding (Ferragina and Venturini, 2007) is given as follows (remember that
s = log n/(2 + δ) denotes the block size, s′ = log2+ε n the superblock size, and
Bj the j’th block in A):

• Let S be the set of occurring block types inA: S := {T [i] : i = 1, . . . , n/s}.

• Sort the elements from S by decreasing frequency of occurrence in T and
let r(Bj) be the rank of block Bj in this ordering.

• Assign to each block Bj a codeword c(Bj) which is the binary string that
has rank r(Bj) in B, which is the canonical enumeration of all binary
strings: B := {ǫ, 0, 1, 00, 01, 10, 11, 000, . . . }. See Fig. 3.12 for an example
(ignore for now the rows labeled V ′ and V ′′). The codeword c(Bj) will
be used as the type of block Bj ; there is no need to recover the original
block types.

• Build a sequence V = c(B1)c(B2) . . . c(Bn/s). In other words, V is ob-
tained by concatenating the codewords for each block.

• In order to find the beginning and ending of Bj ’s codeword in V , we
use again a two-level storage scheme (see Munro, 1996) for storing the
starting position of Bj ’s encoding in V : a table D′ stores the beginning of
the encoding of the superblocks, and table D does the same for the blocks,
but storing the position relative to the beginning of the superblock. As
the block types are in the range {0, . . . , Cs−1}, the number of bits needed
to encode a block is |c(Bj)| = log(Cs) = O(log n), so the bit-length of V
is at most |V | = O(n

s log n) = O(n) bits.13 Consequently, the size of table

D′ is |D′| = n/s′ · log |V | = O
(

n
log1+ε n

)

= o(n), and the size of table D is

|D| = O (n/s · log(s′/s · log n)) = O
(

n log log n
log n

)

= o(n) bits. These tables

can be filled “on the fly” when writing the compressed string V .

It is obvious how tables D and D′ can be used to reconstruct the codeword (and
hence the type) of block Bj: simply extract the beginning of block j and that
of j + 1 (if existent); therefore, the above structures substitute the type-array
T . It goes without saying that table P now needs to be constructed according
to the above ranking. The main result of this section can now be stated as
follows:

13This is just a simple upper bound on |V | that suffices for the moment. Thm. 3.15 gives the
real size of V .
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=V’
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=V’’

Figure 3.12: Illustration to the compressed representation of RMQ-information.
On top of each block of size s = 3 one can see the its Canonical
Cartesian Tree. The final encoding can be found in the row labeled
V ; the rows labeled V ′ and V ′′ are solely for the proof of Thm. 3.15.

Theorem 3.15 (Entropy-bounds for RMQ). For an array A with n elements
from a totally ordered set of size σ, there exists an algorithm for the RMQ-
problem with time complexity 〈O(n), O(1)〉 and bit-space complexity

s
2n+ o(n), nHk(A) +O

(

n

log n
(k log σ + log2 log n)

){
,

simultaneously over all k ∈ o(log n).

Proof. Assume first that instead of compressing the block types (i.e., array
T ), we run the above compression algorithm directly on the contents of A, with
the same block size. In other words, we assign to two size-s-blocks the same
codeword if they are equal, and these codewords are derived from the frequencies
of the blocks in A. See also Fig. 3.12, where the compressed sequence is called
V ′, and c′(102) = ǫ, c′(111) = 0, c′(112) = 1, and c′(023) = 00.

It has been shown (Ferragina and Venturini, 2007, Thm. 3) that the resulting
codeword c′(Bj) produced for block Bj is always smaller than if one were to
compress the contents of that block with a k-th order Arithmetic Encoder.
González and Navarro (2006) have shown that the total output of such an

Arithmetic Encoder is bounded by nHk(A)+O
(

nk log σ
b

)

, where b is the block-

size (in our case b = O(log n)).

Now observe that if two blocks in the original array A are equal, then they
also have the same Cartesian Tree and thus the same block type; so if we encode
each block-type with the shortest codeword c′(Bj) among all the codewords for
blocks that have the same Cartesian Tree, the resulting sequence V ′′ will always
be shorter than V ′. See Fig. 3.12 for an example. Now our encoding V cannot
be longer than V ′′, as it assigns even shorter codewords to more frequent types,
and therefore obeys the “golden rule of data compression.”

Finally, because table M from Sect. 3.5.2.5 is still needed and all other
structures are asymptotically smaller, the leading second order term remains
O(n log2 log n/ log n). The claim follows. �



3.9. How to Further Reduce Space 55

Note that this analysis is quite coarse and certainly “wastes” some space;
However, it matches the currently best known results for storing the array A
itself in compressed form while still being able to access any O(log n) contigu-
ous bits in constant time under the RAM model (Sadakane and Grossi, 2006;
González and Navarro, 2006; Ferragina and Venturini, 2007). Therefore, even if
we proved a better bound on the space of our compressed T , the space needed
for storing A itself would be asymptotically larger.

3.9.3 Outlook

There is certainly room for further improvement, especially on the practical side
of compression. For example, the fixed and therefore inflexible block division
of the algorithm from the previous section is very likely to “destroy” a lot of
natural regularity in the input array. A more flexible block division could be
obtained by parsing the input array in a Lempel-Ziv manner, thereby dividing
it into blocks of varying size whose Cartesian Trees are always “extensions”
of Cartesian Trees that have been seen before. Certainly, one would have to
make sure that the blocks are never of size ω(log n), because otherwise table
P would become too large. Also, one should make additional arrangements
that blocks with infrequent Cartesian Trees do not become too small, e.g.,
by merging adjacent small blocks into one block of size Θ(log n). With this
flexible block-decomposition approach, in order to find the block number of a
given index, one would have to introduce another bit array of length n, where
a ’1’ marks the beginning of a block. Then the block-number of a given index
could be obtained by a single rank1-operation. Fortunately, if there are at
most O(n/ log n) ones (i.e., blocks), there are solutions for storing the bit-array
in O(n log log n/ log n) = o(n) bits, while supporting constant-time rank- and
select-operations (Raman et al., 2002).

Another open research topic is as follows. We have shown above that RMQ-
information can be stored in space which is proportional to the entropy of the
array which is preprocessed. However, in usual applications this array does
not appear from nowhere, as there is usually some underlying structure (e.g., a
text) from which the array is generated. Thus the real aim should be to show
that it is possible to store RMQ in space bounded by the entropy of the true
input. Of course, this would require proprietary solutions for each application.
As a concrete example, we have seen that for the highly important problem of
finding longest common extensions (Sect. 3.7.2) the RMQs are performed on the
LCP-array. Thus it would be desirable to relate the entropy of the underlying
text to that of the LCP-array. It is conceivable that this works: self-repetitions
(see Navarro and Mäkinen, 2007, Def. 9) in the suffix array imply a similar
repetition in the LCP-array. The number of self-repetition in the suffix array
equals the number of runs in the last column of the Burrows-Wheeler matrix
(Burrows and Wheeler, 1994), the latter number being bounded by the text
entropy (Navarro and Mäkinen, 2007, Thm. 5). This hints at a possible way
for proving a deep connection between text entropy and regularity in LCP-
arrays. Such a result would have far-reaching consequences in the whole field
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of compressed text indexing; e.g., it would turn Sadakane’s compressed suffix
tree (2007a) into a fully compressed index, in the sense of Navarro and Mäkinen
(2007).

3.10 Summary and Discussion

We have presented a direct and easy-to-implement data structure for constant-
time RMQ-retrieval that uses 2n+o(n) bits of additional space, which is asymp-
totically optimal and surpasses all previous results on RMQ, both in theory and
in practice. The key to our algorithm was the strong connection between Carte-
sian Trees and RMQs, reflected in the employment of the Catalan- and Ballot
numbers. We have also seen how our method leads to space reductions in the
computation of lowest common ancestors in binary trees, and to an improved
algorithm for the computation of longest common extensions in strings. We
further showed that our preprocessing scheme can be compressed by means of
a standard entropy-bounded storage scheme.

On the practical side, we have seen that our new scheme has a drastically
reduced space consumption, compared to previous approaches. This confirms
that our method is not only interesting in theory, but also in practice. However,
we have also seen that it is sometimes wiser to spend a little bit less effort
in preprocessing, because even for large problem sizes asymptotically slower
variants of our algorithm may perform equally fast in practice, while using less
space.
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4

Two-Dimensional Range Minimum

Queries

4.1 Chapter Introduction

The problem of finding the minimum number in a given range is by no means
restricted to one dimension. In this chapter, we investigate the two-dimensional
case. Consider an (m× n)-matrix of N := mn numbers. Then one may be in-
terested in preprocessing it so that queries seeking the minimum in a given
rectangle can be answered efficiently. This generalization to higher dimensions
is quite common in computational geometry, where such “rectangular” queries
are typically called orthogonal range queries (Agarwal, 2004). An important
special case is that of dominance queries, where the query rectangle always
starts in the origin. The first result on the general 2-dimensional RMQ-problem
is due to Gabow et al. (1984), who solve the problem in O(N logN) preprocess-
ing time and space and O(logN) query time. Chazelle and Rosenberg (1989)
show that with O(CN) preprocessing time and space one can answer queries
in O(α2(CN,N)) time for an arbitray C (α being the inverse Ackermann func-
tion), and Mäkinen (2003) gives a preprocessing scheme using O(N logm) pre-
processing time and space and O(1) query time. An interesting variant of the
dominance query problem, called RMQ with activation, has been considered by
Abouelhoda and Ohlebusch (2005), who give efficient algorithms for this task.

In this chapter we present a class of algorithms which can solve the 2-
dimensional RMQ-problem with O(kN) additional space, O(1) query time, and
O(N(k + log log . . . logN)) preprocessing time, where there are k + 1 log’s, for
any k > 1. The solution converges towards an algorithm with O(N log∗N)

57
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preprocessing time and space and O(1) query time. Note that k need not nec-
essarily be constant; but if it is, say k = 2, then we have an algorithm with
O(N) space, O(N log log logN) preprocessing time and O(1) query time. Un-
like in the previous chapter, space in this chapter is again measured in words,
and not in bits.

While the results presented in this chapter are currently more an academic
curiosity, we believe that our solution will turn out to have interesting (the-
oretical!) applications in the future. One conceivable application comes from
computational biology, where one often wishes to identify minimal (or maximal)
numbers in a given region of an alignment tableau (Gusfield, 1997). For exam-
ple, the well-known algorithms from the BLAST-family (Altschul et al., 1990)
need to identify high scoring segments to speed-up the search for good align-
ments. A different application where two-dimensional RMQs seem natural are
so-called match chaining problems (Abouelhoda and Ohlebusch, 2005), where
the aim is to chain local optima in order to identify a globally high-scoring chain.
Note the similarity of this task to that of finding maximal scoring subsequences
in one dimension, which, interestingly enough, also has solutions employing
(one-dimensional) RMQs, as sketched in Sect. 3.3.5.

4.2 Preliminaries

Let us first give some general definitions. As usual, by logn we mean the
binary logarithm of n, and log[k] n denotes the k-th iterated logarithm of n, i.e.,
log[k] n = log log . . . log n, where there are k log’s. Further, log∗ n is the usual
iterated logarithm of n, i.e., log∗ n = min{k : log[k] ≤ 1}.

Now let us formally define the problem which is the issue of this chapter.
We are given a 2-dimensional array (which we will often simply call matrix )
A[0 : m − 1][0 : n − 1] of size m × n. We wish to preprocess A such that
queries asking for the position of the minimal element in an axis-parallel rect-
angle [y1, y2] × [x1, x2], denoted by rmq(y1, x1, y2, x2), can be answered effi-
ciently. More formally, rmq(y1, x1, y2, x2) = arg min(y,x)∈[y1:y2]×[x1:x2]{A[y][x]}.
Throughout this chapter, let N = mn denote the size of the input. As in the
previous chapter, there are, of course, trade-offs between preprocessing space
and query time; e.g., simply precomputing all possible n2m2 queries in the
input matrix yields O(N) space and constant query time, and doing no pre-
computations at all and searching the query rectangle naively leads to O(1)
space and O(N) query time in the worst case.

4.3 Methods

For a simpler presentation, we assume that the input array is a square, i.e., we
have m = n and N = n2. The reader can verify that this assumption is not
necessary for the validity of the algorithm. Further, because the query time
will be constant throughout this chapter, we do not always explicitly mention
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s3
s2

s1

q1

q3

q2

Figure 4.1: Covering the input array with grids of different width. q1, q2, q3
denote queries.

this fact.

We first give a high-level overview of the algorithm (see also Fig. 4.1). The
idea is to cover the input array with grids of decreasing widths s1, s2, . . . , thus
dividing the array into blocks of decreasing size. For each such grid, we prepro-
cess the array such that queries which cross the grid of a certain width sk, but
no grid of width sk′ for k′ < k, can be answered in constant time. Each such
preprocessing will use O(N) space and O(N) time to construct. E.g., query q1
in Fig. 4.1 will be answered on level 1 because it crosses the grid with width s1,
whereas q2 will be answered on level 3. If the query rectangle does not cross
any of the grids (e.g., q3 in Fig. 4.1), we solve it by having precomputed all
queries inside such small blocks which we call microblocks. If the size of these
microblocks is constant, this constitutes no extra (asymptotic) time for prepro-
cessing (leading to the log∗-solution); otherwise we have to employ sorting of the
blocks for a constant time preprocessing, leading to the O(N(k + log[k+1]N))
preprocessing time. The details are as follows.

4.3.1 A General Trick for Query Precomputation

Assume we want to answer in O(1) time all queries rmq(y1, x1, y1 + ly −
1, x1 + lx − 1) for y1 taken from a certain subset of indices Y ⊆ [0 : n − 1]
(and likewise x1), and certain query lengths ly ∈ Ly = [1 : |Ly|] (lx ∈ Lx).
Then instead of precomputing all queries inside the input matrix, it suffices to
precompute the answers for query rectangles whose side lengths are a power
of 2; i.e., precompute rmq(y1, x1, y1 + ly, x1 + lx) for all y1 ∈ Y, x1 ∈ X,
ly ∈ {21, 22, 23, . . . , 2⌊log |Ly|⌋}, and lx ∈ {21, 22, 23, . . . , 2⌊log |Lx|⌋} and store the
results in a table. These precomputations can be done in optimal time using dy-
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y2

4

1

1y
x1

2
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Figure 4.2: Decomposing a query rectangle [y1 : y2] × [x1 : x2] into four equal-
sized overlapping rectangles whose side lengths are a power of two.
Taking the position of where the overall minimum occurs is the
answer to the query.

namic programming. The reason why precomputing these queries is enough is
given by the simple fact that all queries can be answered by decomposing them
into 4 different rectangles whose side lengths is a power of 2; see Fig. 4.2. Note
the similarity to the sparse table algorithm for the 1-dimensional solution (Sect.
3.4.1). We denote by g(|Y |, |X|, |Ly |, |Lx|) := |Y | × |X| × ⌊log |Ly|⌋ × ⌊log |Lx|⌋
the space occupied by the resulting table for this kind of preprocessing.

Note how this idea already yields an RMQ-algorithm with O(N log2 n) pre-
processing time and space and O(1) query time: simply perform the above
preprocessing for X,Y = [0 : n − 1], Lx, Ly = [1 : n]; the space needed is then
g(n, n, n, n) = N log2 n.

4.3.2 Linear Preprocessing of the First Level

We now present a preprocessing to answer all queries which cross the grid for
width s := s1 := log n. The input array is partitioned into blocks of size s× s.
Then a query can be decomposed into at most 9 different sub-queries, as seen in
Fig. 4.3. Query number 1 exactly spans over at least one block in both x- and
y-direction. Queries 2–4 span over at least one block in one direction, but not
in the other direction. Queries 6–9 lie completely inside one block (but meet at
least one of the four “boundaries” of the block ).

Next, we show how to preprocess A such that all queries 1–9 can be answered
in constant time. Taking the position where the overall minimum occurs is the
final result.

Queries of type 1. We apply the idea from Sect. 4.3.1 on the set Y = X =
Ly = Lx = {0, s, 2s, . . . , (n− 1)/s}; i.e., we precompute rmq(ys, xs, (y+2k)s−
1, (x+ 2l)s− 1) for all x, y ∈ {0, s, . . . , (n− 1)/s} and all k, l ∈ [0 : ⌊log(n/s)⌋].
The results are stored in a table of size g(n/s, n/s, n/s, n/s) = O(n/s × n/s×
log n × log n) = O(N). As usual, queries of this type are then answered by
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Figure 4.3: Decomposing a query rectangle [y1 : y2] × [x1 : x2] into at most 9
sub-queries.

selecting the minimum of at most 4 overlapping precomputed queries.

Queries of type 2–5. We just show how handle queries 2 and 4; the
ideas for 3 and 5 are similar. Note that unlike Fig. 4.3 suggests, such queries
are not guaranteed to share an upper or lower edge with the grid; the gen-
eral appearance of these queries can be seen in Fig. 4.4. So the task is to
answer all queries rmq(y1, x1s, y1 + ly, x1s + lx − 1) for all y1 ∈ [0 : n − 1],
x1 ∈ [0 : ⌊n/s⌋], ly ∈ [1 : s − 1] and lx ∈ {s, 2s, . . . , ⌊n/s⌋}. It is easy to
verify that simply applying the trick from Sect. 4.3.1 would result in super-
linear space; we therefore have to introduce another “preprocessing layer” by
bundling s′ := s2 cells into one superblock. Then divide the type 2- or 4-
query into one query that spans over several superblocks, and at most two
queries that span over several blocks, but not over a superblock. All three
such queries are handled with the usual idea; this means that the space needed
for the superblock-queries is g(n, n/s′, s, n/s′) = O(n × n/ log2 n × log log n ×
log(n/ log2 n)) = O(n2 log log n/ log n) = O(N). The space for the block-queries
is g(n, n/s, s, s′/s) = O(n× n/ log n× log log n× log log n) = O(N).

Queries of type 6–9. Again, unlike Fig. 4.3 suggests, it is not sufficient to
precompute queries that have a common border with two edges of a block; we
also have to precompute queries that share an edge with just one block-edge.
(E.g., imagine the query in Fig. 4.4 were shifted slightly to the left. Then there
would be a part of the query in the block to the very left which only touches
the right border of the block.) We just show how to solve queries that share a
border with the upper edge of a block (see Fig. 4.5); these structures have to
be duplicated for the other three edges. This means that we want to answer
rmq(y1s, x1, y1s+ ly, x1 + lx) for all y1 ∈ {0, . . . , (n−1)/s}, x1 ∈ {0, . . . , n−1},
and ly, lx ∈ {0, . . . , s− 1}. In this case, the idea from Sect. 4.3.1 can be applied
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Figure 4.4: Queries spanning over more than one block in x-direction, but not
in the y-direction. Sub-queries 2 and 4 from Fig. 4.3 are special
cases of these.
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Figure 4.5: Queries lying completely within a block, but sharing the upper edge
with it. Sub-queries 8 and 9 from Fig. 4.3 are special cases of these.

directly, leading to a space consumption of g(n/s, n, s, s) = O(n/ log n × n ×
log log n× log log n) = O(N).

4.3.3 Recursive Partitioning

We are left with the task to answer RMQs which lie completely inside one of
the blocks with side length s = log n. We now offer two recursion strategies
which yield the log[k+1]- and log∗-algorithms that have been promised before.

The first idea is to recurse at least one more time into the blocks, and there-
after precomputing all queries which lie completely in one of the microblocks.
To be precise, we take each of the (n/s)2 resulting blocks from Sect. 4.3.2 and
prepare them with the same method. Then the resulting blocks have side length
s2 := log[2] n. This process can be continued until the resulting blocks have side
length sk = log[k] n for some k > 1. Note that k need not necessarily be con-
stant; all we require is that it be at least 2. As each level needs O(N) space,
the resulting space is O(Nk). We now show that already for k = 2 we can pre-
compute all queries inside the microblocks in O(N) space and O(N log[k+1]N)
time. We denote by S := s2k the size of the microblocks (i.e., the number of
elements one microblock contains).

The idea is to precompute all RMQs for all permutations of [1 : S] and look
up the result for a certain query block in the right place in this precomputed
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table. To do so, assign a type to each microblock [y : y+sk−1]× [x : x+sk−1]
in A as follows: (conceptually) write the elements from the microblock row-wise
into an array By,x; i.e.,

By,x[1, S] = A[y][x : x+ sk − 1] . . . A[y + sk − 1][x : x+ sk − 1] .

Then stably-sort By,x to obtain a permutation π of {1, . . . , S} s.th. By,x[π1] ≤
By,x[π2] ≤ · · · ≤ By,x[πS]. The index of π in an enumeration of all permutations
of [1 : S] is the microblock-type. As there are N/S blocks of size S = s2k to be

sorted, this takes a total of O(N/S × S logS) = O(N log[k+1] n) time.1

The reason for assigning the same type to microblocks whose elements are in
the same order can be seen by the following (obvious) lemma:

Lemma 4.1. Let B1 and B2 be two blocks that have the same relative order
π as defined above. Then rmqB1

(y1, x1, x2, y2) = rmqB2
(y1, x1, x2, y2) for all

values of y1, x1, y2, x2. �

This implies that the following is enough to answer RMQs inside of mi-
croblocks: For all permutations π of {1, . . . , S}, precompute all possible RMQs
inside the block











π1 . . . πsk

πsk+1 . . . π2sk
...

. . .
...

π(sk−1)sk+1 . . . πS











and store them in a table P (for “precomputed”). As there are s4k possible
queries in each of the S! possible microblocks, the size of P is

s4k(S!) = s4k

√

2πs2k ·
(

s2k
e

)s2
k

· (1 +O(s−2
k )) (by Stirling)

≤ log5 log n ·
(

log2 log n
)log2 log n · (1 +O(s−2

k )) (because k > 1)

= (log log n)2 log2 log n+5 · (1 +O(s−2
k ))

= O(N) .

The last equation is true because b2 = O(2b), so (2b2 + 5)/ logb 2 ≤ 2b+1 for

large enough b; exponentiating with 2 yields b2b2+5 ≤ 2(2
b+1) =

(

2(2
b)

)2
, which

yields the result with b = log log n. Now to answer a query, simply look up the
result in this table.

The second idea is to recurse further into the blocks until the resulting mi-
croblocks have constant size; this happens after O(log∗ n) recursive steps. If the
resulting micro-blocks have constant size they be sorted in O(1) time each; and
because there are (n/ log∗ n)2 microblocks this takes a total of O(N) time. The
space consumed by this kind of preprocessing is clearly bounded by O(N log∗N)
due to the number of recursive steps performed.

1In the special case where the elements from the original array are in the range from 1 to N ,
we can bucket-sort all block simultaneously in O(N) time.
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Figure 4.6: How to determine the level on which a specific query has been pre-
computed.

If we now applied the same recursive steps also for answering queries, this
would result in O(k) and O(log∗N) query time, respectively. This is suffi-
cient if k is constant, e.g., with k fixed to 2, this yields an algorithm with
O(N log log logN) preprocessing time, O(N) space and O(1) query time. How-
ever, if k depends on the input size, and for the log∗-algorithm, this would not
yield constant query time. The next section shows how in such cases query time
can be reduced to O(1), too.

4.3.4 What’s Left: How to Find the Right Grid

For both the log[k]- and the log∗-algorithm it remains to show how to determine
in O(1) time the grid with the largest width si = log[i] n such that the query
block crosses this grid. In other words, we wish to find the smallest 1 ≤ i ≤ k
such that the query crosses the grid with width si, because at this level the
answers have been precomputed and can hence be looked up. We will just show
how to do this for the x-direction; the ideas for the y-direction are similar. For
simplicity, assume that sj is a multiple of sj+1 for all 1 ≤ j < k.

Let rmq(y1, x1, y2, x2) be the given query, and let lx := x2 − x1 + 1 denote
the side length of the query rectangle in x-direction. Let i be defined such that
si−1 > lx ≥ si. This i can be found in O(1) time by precomputing an array
I[1 : n−1] with I[l] = min{k : l ≥ sk}; then i = I[lx]. Then the query crosses at
least one column from the si-grid, and at most one column from the si−1-grid.
As an example, consider query q1 in Fig. 4.6. We have s2 > lx ≥ s3, and indeed,
q3 crosses a column from the s3-grid, and, in this example, no column from the
s2-grid. Likewise, for query q2 we have s1 > lx ≥ s2, and it crosses an s1- and
an s2-column. Let x′ := ⌊ x2

si−1
⌋ · si−1 be the x-coordinate of where this crossing

with a column from the si−1-grid can occur.

Assume first that x′ 6∈ [x1 : x2] (as x′q1
for q1 in Fig. 4.6). This means that

the si−1-grid does not cross the query rectangle in x-direction; and the same
must be true for all i′ < i, as si′ > si. So we know for sure that i is the smallest



4.4. Summary and Outlook 65

value such that the si-grid passes through the query rectangle in x-direction.
In this case we are done.

Now assume that x′ ∈ [x1 : x2] (as x′q2
for q2 in Fig. 4.6). In other words, the

si−1-grid crosses the query rectangle in x-direction at position x′. In this case
we are not yet done, because it could still be that an si′-column with i′ < i− 1
also passes through x′. To find the smallest such i′, define an array I ′[0 : n− 1]
such that I ′[x] = j iff j is the smallest value such that there is a column from
the sj-grid passing through x. This array can certainly be precomputed during
the k rounds of the preprocessing algorithm from the previous sections. As an
example, in Fig. 4.6 it could still be that a column from a different grid (say
from a hypothetical s0-grid) passes through the query rectangle. But as this
must happen at x′q2

, we find this value at I ′[x′q2
].

In total, we do the above for both the x- and y-direction, and look up the
query result at the minimum level i from both steps. If, on the other hand, we
find that the query rectangle does not cross a grid in any direction, the result
can be looked up in table P .

4.4 Summary and Outlook

We have seen a class of algorithms which solve the two-dimensional RMQ-
problem, summarized in the following theorem:

Theorem 4.2 (2-dimensional RMQs). For any k > 1 which may be constant
or not, an (m×n)-matrix can be preprocessed in O(nm(k+log[k+1](mn))) time
such that the position of a minimum value in an axis-parallel query-rectangle
can be obtained in constant time, using O(kmn) words of additional space. This
converges towards an algorithm with O(mn log∗(mn)) preprocessing time and
space and O(1) query time. �

While some ideas of our algorithm were similar to the one-dimensional coun-
terpart of the problem, others were completely new, e.g., the idea of iterating
the algorithm for k levels, while still handling all queries as if they were on the
first level, and the idea of sorting the miniblocks in order to derive their block
types. Note that preprocessing time of our algorithm is not yet linear in the
size of the input, as it is the case for the 1D-RMQ (though being very close to
linear!). We conjecture that achieving linear time is impossible. In particular,
we believe that it should be possible to show that there is no such nice relation
as the one between the number of different RMQs and the number of different
Cartesian Trees in the one-dimensional case (Lemma 3.9). This could mean
that ideas such as sorting or recursing become un-avoidable, thereby hinting at
a super-linear lower bound.

A final remark is that our method can be generalized to higher dimensions
d using the same techniques as presented in this chapter. However, as with
increasing dimension the hyper-rectangular query has to be decomposed into
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more and more sub-queries, d will probably appear in both query-time and
space.



CHAPTER

5

Improvements in the Enhanced Suffix

Array

5.1 Chapter Introduction

Suffix trees (Gusfield, 1997) are a very powerful tool for many tasks in pattern
matching (see Apostolico, 1985, for a multitude of their applications). Because
of their large space consumption (according to Abouelhoda et al. (2004), up
to 20 bytes per input character even with very careful implementations such
as the one from Kurtz (1999)), a recent trend in text indexing tries to replace
them by adequate array-based data structures. Kasai et al. (2001) showed how
algorithms based on a bottom-up traversal of a suffix tree can be simulated by
a parallel scan of the suffix- and LCP-array. The Enhanced Suffix Array (ESA)
(Abouelhoda et al., 2004) takes this approach one step further by also being
capable of simulating top-down traversals of the suffix tree. This, however,
requires the addition of another array to the suffix- and LCP-array, the so-
called child-table. Essentially, the child-table captures the information on how
to move from an internal node to its children. This table requires O(n) words
(or O(n · log n) bits). We show in this chapter that the RMQ-information on
the LCP-array can be used as an alternative representation of the child-table,
thus reducing the space requirement to O(n/ log n) words under the RAM-
model (precisely, to 2n+ o(n) bits). Our representation is not only less space-
consuming than that of Abouelhoda et al. (2004), but also much simpler.

One important application of the ESA is that it allows searching an occur-
rence of a length-m-pattern in the suffix array in O(m|Σ|) time. Observe that
this is independent of the length n of the indexed text, which stands in high

67



68 Chapter 5. Improvements in the Enhanced Suffix Array

contrast to the usual search-algorithms in suffix arrays which take O(m log n)
and O(m+ log n) time, respectively (Manber and Myers, 1993). However, this
is only appealing if the size of the alphabet is relatively small. We therefore
show in Sect. 5.5 how to achieve O(m log |Σ|) searching time by using a variant
of the RMQ-preprocessing from Sect. 3.5 that uses only about 2.5n+ o(n) bits.
This variant builds on some nice generalizations of the concepts that we used
for deriving the 2n + o(n)-bit-solution for RMQ. Among other things, we will
define a modified Cartesian Tree, which, in turn, involves generalizations of the
Catalan and Ballot Numbers.

Some bibliographic remarks are in order. It is well known that with suffix
trees one can achieve O(m log |Σ|) deterministic searching time if the outgoing
edges of each node are implemented as a height-balanced binary tree, e.g., an
AVL-tree (Adelson-Velskii and Landis, 1962). On the other hand, if one does not
want to store rebalancing-information at each node, randomized binary search
trees (Mart́ınez and Roura, 1998) yield the same time bounds in the expected
case, while being simpler to implement. Concerning the suffix array, Kim et al.
(2004) have shown how to achieve O(m log |Σ|) deterministic searching time
in the ESA by using a different version of the child-table. This method needs
O(n log n) bits of additional space, but Kim and Park (2005) also gave a succinct
version of this child-table using 5n+o(n) bits of space. As mentioned above, we
reduce this to ≈ 2.5n+o(n) bits of space. An additional advantage is that as in
the case of the RMQ-based representation of the child-table, our preprocessing
scheme for the O(m log |Σ|)-search is also much simpler those from Kim et al.
(2004) and Kim and Park (2005).

5.2 Enhanced Suffix Arrays

Let T be a text of length n. In its simplest form, the ESA consists of the
suffix- and LCP-array for T . The basic idea of the ESA is that internal nodes
of the suffix tree correspond to certain intervals (so-called ℓ-intervals) in the
LCP-array (recall the definition of SA and LCP in Sect. 2.4):

Proposition 5.1 (Abouelhoda et al., 2004). Let S, SA, LCP be T ’s suffix tree,
suffix- and LCP-array, respectively. Then the following is equivalent:

1. There is an internal node in S representing a sub-word φ of T .

2. There exist 1 ≤ l < r ≤ n such that

a) LCP[l] < |φ| and LCP[r + 1] < |φ| ,
b) LCP[i] ≥ |φ| and φ = TSA[i]..SA[i]+|φ|−1 for all l < i ≤ r ,

c) ∃ q ∈ {l + 1, . . . , r} with LCP[q] = |φ| . �

Parts (a) and (b) say that [l : r] is a maximal interval in SA where all suffixes
have a common prefix (namely φ), and (c) says that at least two of the suffixes
in this interval differ after position |φ|. The pair of indices satisfying point 2
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Figure 5.1: The suffix tree (top) and the suffix- and LCP-array (bottom) for
string T = aababaa$. The interval [2 : 6] in LCP is underlined;
it corresponds to node v in the suffix tree. Its child-intervals are
also underlined; they correspond to the leaf labeled ’7’ and to the
internal nodes labeled x and y, respectively.

of the above theorem are said to form a |φ|-interval [l : r] (also denoted as
|φ|-[l : r]), and each position q satisfying (c) is called a |φ|-index. For example,
in the tree in Fig. 5.1, node v corresponds to the 1-interval [2 : 6] in LCP and
has 1-indices 3 and 5.

We often say that strings corresponding to an internal node in the suffix tree
(or, equivalently, to an LCP-interval) are maximally repeated1, because they
occur more than once in T , say x times, but all extensions of φ (i.e., strings of
which φ is a proper prefix) occur less than x times.

Let ℓ-[l : r] be any such interval, corresponding to node v in the suffix tree
S. Then if there exists an ℓ′ > ℓ such that there is an ℓ′-interval [l′ : r′]
contained in [l : r], and no super-interval of [l′ : r′] has this property, then
ℓ′-[l′ : r′] corresponds to an internal child of v in S. E.g., in Fig. 5.1, the two
child-intervals of 1-[2 : 6] representing internal nodes in S are 2-[3 : 4] and 3-
[5 : 6], corresponding to nodes x and y. The connection between ℓ-indices and
child-intervals is as follows (Abouelhoda et al., 2004, Lemma 6.1):

Proposition 5.2. Let [l : r] be an ℓ-interval. If i1 < i2 < · · · < ik are the
ℓ-indices in ascending order, then the child intervals of [l : r] are [l : i1−1], [i1 :
i2], . . . , [ik : r]. (Singleton intervals are leaves!) �

With the help of this proposition it is possible to simulate top-down traversals
of the suffix tree: start with the interval 0-[1 : n] (representing the root), and
for each interval recursively calculate its child-intervals by enumerating their
ℓ-indices. The child-intervals can then be visited in either a depth-first or a
breadth-first manner. To find the ℓ-indices in constant time, Abouelhoda et al.

1Kasai et al. (2001) use the term “branching.”
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(2004) introduce a new array C[1, n], the so-called child-table. As the definition
of C and the techniques for retrieving the ℓ-indices are relatively technical, we
just give an informal description of how this works: first use some special entries
in C (called “up” and “down”) to locate the leftmost ℓ-index. All following ℓ-
indexes are obtained from the other entries in C (called “next”). The next
section shows a simpler and more space efficient alternative to the child-table.

5.3 An RMQ-based Representation of the Child-Table

We now show that the child-table is not needed if the LCP-array is preprocessed
for constant-time range minimum queries. The following lemma is the key to
our new technique:

Lemma 5.3 (Retrieving ℓ-indices via RMQ). Let [l : r] be an ℓ-interval. Then
its ℓ-indices can be obtained in ascending order by i1 = rmqLCP(l + 1, r), i2 =
rmqLCP(i1 + 1, r), . . . , as long as LCP[rmqLCP(ik + 1, r)] = ℓ.

Proof. Because of point 2(b) in Prop. 5.1, the LCP-values in [l+ 1 : r] cannot
be less than ℓ. Thus any position in this interval with a minimal LCP-value
must be an ℓ-index of [l : r]. On the other hand, if LCP[rmqLCP(ik + 1, r)] > ℓ
for some k, then there cannot be another ℓ-index in [ik + 1 : r]. Because RMQ
always yields the position of the leftmost minimum if this is not unique, we get
the ℓ-indices in ascending order. �

With Prop. 5.2 this allows us to compute the child-intervals by preprocessing
the LCP-array for RMQ. As an example, we can retrieve the 1-indices of 1-
[2 : 6] as i1 = rmqLCP(3, 6) = 3 giving interval [2 : 2] (corresponding to leaf
7 in Fig. 5.1), i2 = rmqLCP(4, 6) = 5 giving [3 : 4] (corresponding to node x).
Because LCP[rmqLCP(6, 6)] = LCP[6] = 3 > 1, there are no more 1-indices to
be found, so the last child-interval is [5 : 6] (corresponding to y).

We summarize the new result in the following theorem:

Theorem 5.4 (Simulating top-down-traversals of suffix trees with suffix ar-
rays). Any algorithm based on a top-down traversal of a suffix tree can be re-
placed by a data structure using |SA|+ 4n+ o(n) bits, without affecting its time
bounds. Here, |SA| denotes the space consumed by a data structure which gives
constant-time access to each element of SA (usually n log n bits).

Proof. As Prop. 5.2 and Lemma 5.3 show, preparing the LCP-array for RMQ
is enough for retrieving the child-intervals of a node. Because of Thm. 3.11, this
requires 2n + o(n) bits. In Sect. 2.7 we have seen that storing the LCP-array
takes 2n+ o(n) bits of space. With Prop. 5.1, the claim follows. �

Alg. 5.1 shows how to retrieve the child-interval of a given interval by spec-
ifying the next character to be read. To be precise, if [l : r] is the ℓ-interval
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Algorithm 5.1: How to find the child-interval of [l : r] that represents all
suffixes having a ∈ Σ as their next character.

Input: interval [l : r] with l < r and a character a
Output: child-interval of [l : r] for a or ∅ if nonexistent

function getChild (l, r, a)1

i← rmqLCP(l + 1, r), ℓ← LCP[i]2

repeat3

if TSA[l]+ℓ = a then return [l : i− 1]4

l← i, i← rmqLCP(l + 1, r)5

until l = r ∨ LCP[i] > ℓ6

if TSA[l]+ℓ = a then return [l : r] else return ∅7

representing string φ and a ∈ Σ, then getChild(l, r, a) returns the child-interval
[l′ : r′] that represents φa ∈ Σ⋆, or ∅ if φa does not occur in T . We do this by
stepping through the ℓ-indices in ascending order (lines 3–6), for each ℓ-index
checking if the corresponding character is equal to a (line 4). The correctness of
the algorithm follows directly from the above discussion, and the time bound is
clearly O(|Σ|). Observe that this procedure corresponds to finding the correctly
labeled outgoing edge of a node in a suffix tree.

5.4 Pattern Matching in O(m|Σ|) Time

For a given pattern P of length m, the most common task in pattern matching is
to check whether P is a substring of T , and to enumerate all occ occurrences of P
in additional O(occ) time. As already mentioned, Abouelhoda et al. (2004) have
shown how this can be done in time O(m|Σ|) and O(m|Σ|+occ), respectively, by
incorporating the child-table. In the highly important case where the alphabet
size is constant this yields optimal time bounds. Note again that with a plain
suffix array these time bounds cannot be achieved, as they are O(m log n) and
O(m log n+ occ), respectively.

Alg. 5.2 shows how to locate a pattern P in O(m|Σ|) time. It is a straightfor-
ward adaption of the pattern matching algorithm given by Abouelhoda et al.
(2004, Alg. 6.8). The invariant of the algorithm is that found is true if P1..c

occurs in T and has the interval [l : r] in SA. In each step of the loop, method
getChild(l, r, a) is used to find the sub-interval of [l : r] that stores the suffixes
having P1..c+1 as a prefix. This is done by invoking method getChild from
the previous section, which takes O(|Σ|) time. The if-statement in lines 5–6
distinguishes between internal nodes (l > r) and leaves (l = r). The actual
pattern matching is done in line 7 of the algorithm. Because c is increased by
at least 1 in each step of the loop, the running time of the whole algorithm is
O(m|Σ|). Note that for large |Σ| ∈ ω(log n) one would actually drop back to
normal binary search, so even for large alphabets matching takes no more than
O(m log n) time.



72 Chapter 5. Improvements in the Enhanced Suffix Array

Algorithm 5.2: How to locate a pattern in a text in O(m|Σ|) time.

Input: pattern P = P1..m to be found in T
Output: interval of P in SA or negative answer

c← 0, found ← true, l← 1, r ← n1

repeat2

[l : r]← getChild (l, r, Pc+1)3

if [l : r] = ∅ then return “not found”4

if l = r then min ← m5

else min ← min{LCP[rmqLCP(l + 1, r)],m}6

found ← (Pc+1..min−1 = TSA[l]+c..SA[l]+min−1)7

c← min8

until l = r ∨ c = m ∨ found = false9

if found = true then return [l : r] else return “not found”10

To retrieve all occ occurrences of P , get P ’s interval [l : r] in SA with Alg.
5.2, and then return the set of positions {SA[l],SA[l+1], . . . ,SA[r]}. This takes
O(occ) additional time.

Theorem 5.5 (Pattern matching in O(|P | · |Σ|) time). For a text T of length
n over an alphabet Σ there is a data structure occupying 2n + o(n) bits that,
together with the suffix- and LCP-array for T , allows the retrieval of all occ
occurrences of a pattern P in T in O(|P | · |Σ|+ occ) time, for any alphabet size
|Σ|. This data structure can be constructed in-place in O(n) time. �

5.5 Pattern Matching in O(m log |Σ|) Time

5.5.1 Basic Idea

Look again at the string matching algorithm from the previous section (Alg.
5.2). It is obvious that the crucial part of its running time is the call of function
getChild in line 3, as without this call the complete loop (lines 2–9) takes O(m)
time, and this is already the time to read pattern P . So improving the running
time of function getChild (Alg. 5.1) would result in an immediate improvement
of the string matching algorithm.

The search for the correct child-interval in Alg. 5.1 is done by a linear scan
of the ℓ-indices in ascending order. Recall that the ℓ-indices are the minima in
the corresponding ℓ-interval. Thus the fact that we perform a linear search is
a consequence of our preprocessing scheme for RMQ, as we have defined RMQ
to return the leftmost position of a minimum value if this is not unique. Now
imagine that we have preprocessed the LCP-array for RMQs such that an RMQ
always returns the median of all positions where LCP attains the minimum in
the query-interval. This would allow us to perform a binary search on the
ℓ-indices for the correct character, as shown in Alg. 5.3 (assume for now that
rmqmed returns the perfect median). Thus, with such a preprocessing for RMQ,
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Algorithm 5.3: Locating a child-interval with a “binary” search. The
“normal” RMQ in line 5 which returns the leftmost minimum is still neces-
sary to find the right end of the final child-interval.

Input: interval [l : r] with l < r and a character a
Output: child-interval of [l : r] for a or ∅ if nonexistent

function getChildBinary (l, r, a)1

i← rmqmed
LCP(l + 1, r) {get (pseudo-)median of ℓ-indices}2

ℓ← LCP[i]3

repeat4

if TSA[i]+ℓ = a then return [i : rmqLCP(i+ 1, r)− 1]5

if TSA[i]+ℓ < a then l← i else r ← i− 1 {narrow search interval}6

i← rmqmed
LCP(l + 1, r) {get next (pseudo-)median}7

until l = r ∨ LCP[i] > ℓ8

if TSA[l]+ℓ = a then return [l : r] else return ∅9

the running time could be reduced to O(log |Σ|), thereby improving the overall
string matching algorithm to O(m log |Σ|). Throughout this section, assume
w.l.o.g. that |Σ| = o(n), for otherwise a normal binary search (of the complete
interval!) already yields an O(m log n) = O(m log |Σ|) time solution.

The drawback is that the “range median of minima”-problem is anything but
trivial to solve. For this reason, we pursue a slightly less ambitious strategy
in this section, namely that of finding a pseudo-median. A pseudo-median of
minima is a minimum with rank between 1

C y and (1− 1
C )y among the y minima

in the query-interval (for some constant C).2 In our case, it will turn out that
C = 1/16. We already state here that this leads to the following

Lemma 5.6. If rmqmed returns the position of a minimum in a query interval
with rank between 1

16 and 15
16 among all minima in that interval, the number

of character comparisons made by Alg. 5.3 is log 16
15
|Σ| ≈ 10.7401 log |Σ| in the

worst case. �

5.5.2 A Pseudo-Median Algorithm for RMQ on LCP

We will now show how to preprocess the LCP-array in linear time such that
for a given query-interval [l : r] containing y minima, the returned position
has rank between 1

16y and 15
16y among all positions that attain the minimum

value. Such queries are called rmqmed(l, r). Our general idea is similar to the
RMQ-algorithm in Sect. 3.5: we divide the query interval into at most five sub-
intervals, one covering super-blocks, two covering blocks to the left and right

2Sadakane (2007a) pursues a similar strategy but does not give any details on how to change
the RMQ-precomputation such that it returns a pseudo-median. Thus our description in
Sect. 5.5.2.1 also closes the gaps in the above mentioned article. However, our ideas from
Sect. 5.5.2.2 are not necessary for the compressed suffix tree, for reasons that will become
clear in that section. We further mention that the constant 1/12 in (Sadakane, 2007a,
Lemma 5) should rather be 1/16, as will become evident from our description.
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q6

q7

q8
q5

RMQ (l,r)

q2

q3

q4

q1

....

Figure 5.2: The internal decomposition of rmq(l, r) into 8 sub-queries. Thin
lines denote block-boundaries, thick lines superblock-boundaries.

of the super-blocks, and two in-block queries. There are two major deviations
from our previous approach. First, instead of storing the leftmost minimum,
each precomputed query stores the perfect median among all its minima. And
second, in addition to returning the position of the minimum, each sub-query
must also return the number of minima in the query-interval.

Recall that the superblock- and block-queries are only precomputed for lengths
being a power of two, as every query can be decomposed into two overlapping
sub-queries of length 2l for some l. Thus, a general range minimum query is
internally answered by decomposing it in fact into 8 (usually overlapping) sub-
queries (see also Fig. 5.2): 2 in-block-queries q1 and q8 at the very ends of the
query-interval, 4 block queries q2, q3, q6, q7, and 2 superblock-queries q4 and q5.
Assume now that for each of these sub-queries qi we know that at position pi

there is the median among the yi minima in the respective query interval. Let k
be the minimum value in the complete query-interval (k := mini∈[1:8]{LCP[pi]}),
and I ⊆ [1 : 8] be the set indicating which sub-query-intervals contain the mini-
mum (I := {i ∈ [1 : 8] : LCP[pi] = k}. Further, let j be an interval that contains
most of these minima, i.e., j := arg maxi∈I yi. If we then return the value pj

as the final answer to our RMQ, this guarantees that pj has rank between 1
16y

and 15
16y among all y :=

∑

i∈I yi positions that attain the minimum value. To
see why this is so, observe that the worst-case scenario is when all 8 sub-query-
intervals contain the same number of k’s (I = [1 : 8] and yi = y/8 =: y′ for all

i), and the leftmost median p1 is returned. Then p1 has rank y′/2
8y′ y = 1

16y among
all minima. The case where the rightmost median p8 is returned is symmetric.

We thus conclude that if a query interval contains y minima, we have an
algorithm which returns a pseudo-median with rank between 1

16y and 15
16y, pro-

vided that the precomputed queries return the true median of minima. We now
explain how to change the preprocessing from Sect. 3.5 such that this goal is
met. We already note here that the block-size is now s := log n/(2 log ρ), where
ρ := 3 + 2

√
2, while the superblock-size remains s′ := log2+ǫ n. The choice of s

will become evident in Sect. 5.5.2.2.

5.5.2.1 Preprocessing for Long Queries

Let us first consider the out-of-superblock-queries. We want to temporary pre-
process each superblock such that the position of the i’th minimum can be found
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in constant time, for all 1 ≤ i ≤ |Σ|. (Remember that there can be at most
|Σ| minima in an arbitrary interval in LCP.) We offer two different solution
strategies for this tasks, depending on the size of Σ. First, assume the alphabet
is relatively small, namely |Σ| = o(log2+ǫ n/ log log n). Then for each of the n/s′

superblocks, define a temporary array D′
j [1, |Σ|] that stores the positions of the

minima in superblock B′
j. The D′

j ’s can certainly be filled in O(n) overall time
and need O(n/s′×|Σ| · log s′) = o(n) bits of total space. The i’th minimum can
then be obtained by Dj [i]. If, on the other hand, |Σ| 6= o(log2+ǫ n/ log log n),
define D′

j as a bit-vector of length s′, where 1s mark the positions of the minima
in B′

j . These bit-vectors take a total of n/s′ · s′ = n bits. Prepare each D′
j for

constant time select1-operations; this takes additional o(n) bits using standard
structures for rank/select (see Sect. 2.6). In this case the i’th minimum in B′

j

can be obtained by select1(D
′
j , i).

In addition, we store the actual number of minima in each superblock in the
0th row of a two-dimensional array Y ′[1, n/s′][0, ⌊log(n/s′)⌋]; i.e., Y ′[i][0] equals
the number of minima in B′

i. We now show how with the help of these arrays
one can compute the two-dimensional table M ′[1, n/s′][0, log(n/s′)] that stores
the perfect median for out-of-superblock-queries; i.e., M [i][j] stores the median
position of all minima in LCP[(i− 1)s′ + 1, (i + 2j − 1)s′].

With the D′
j ’s at hand we can initialize the 0th row of M ′ with the position of

the true median in the superblocks: M ′[i][0] = D′
i[⌊Y ′[i][0]/2⌋]. Now suppose we

want to fill entry i of table M ′ on level j > 0, i.e., we wish to compute the value
M ′[i][j] as the median-position of all minima in LCP[(i−1)s′+1, (i+2j−1)s′] by
splitting the interval into two smaller intervals of size 2j−1s′. By the induction
hypothesis, we know that there are yl := Y ′[i][j − 1] minima in the left half
LCP[(i − 1)s′ + 1, (i + 2j−1 − 1)s′], and yr := Y ′[i + 2j−1][j − 1] minima in the
right half LCP[(i+2j−1− 1)s′ +1, (i+2j − 1)s′]. If the overall minimum occurs
only in one half, say the left one, we can safely set M [i][j] to M [i][j − 1], and
Y ′[i][j] to Y ′[i][j − 1].

On the other hand, suppose that the minimum occurs in both halves. Note
that it is all but clear how to find the new median. Fortunately, we have more
than O(1) time to calculate it. The true median has rank r := ⌊(yl + yr)/2⌋
among all minima in the interval. If yl ≥ yr − 1, we know that this median
must be in the left half, and that it must have rank r in there. If, on the other
hand, yl + 1 < yr, the median must be in the right half, and must have rank
r′ := r− yl in there. In either case, we recurse in this manner upwards until we
reach level 0, where we can select the appropriate minimum from our D′

j-arrays.
Due to the “height” of table M ′, the number of recursive steps is bounded by
O(log(n/s′)). In total, filling M ′ takes O(n/s′ log(n/s′) log(n/s′)) = O(n) time.
The value Y ′[i][j] is simply set to yl + yr. The size of M ′ is o(n) bits (see Sect.
3.5.2.5), and table Y ′ needs o(n) bits, as it stores numbers not bigger than the
ones in M ′.

The temporary D′
j ’s (and possibly their additional select-structures) can be

deleted once table M ′ has been filled.

We perform the same preprocessing for the out-of-block queries; i.e., we pre-
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1 1 13 2 1 53 4 4=B1 =B2

Figure 5.3: Two blocks B1 and B2 having the same Canonical Cartesian Tree
(top), but a different layout of minima. The Super-Cartesian Trees
(bottom) reflect the positions of minima by horizontal edges.

compute a table M [1, n/s][0, ⌊log(s′/s)⌋] that stores the perfect median of min-
ima for queries that span over blocks, but not over a superblock. In this case, if
we fill table M superblock-wise, we can always use the first idea from the begin-
ning of this section for finding the i’th minimum in a block: Table Dj[1, s] (stor-
ing the absolute positions of minima in block Bj) is only kept in memory for the
blocks inside one superblock; when M has been filled for this superblock and we
move to the next one, theDj ’s can be overwritten. Thus, the intermediate space
for the Dj ’s is bounded by O(s′/s×s·log s) = o(n), and of course, the total time
for computing theDj’s is O(n). The time for fillingM with the method from the
previous paragraph is O(n/s log(s′/s) log(s′/s)) = O(n log2 log n/ log n) = o(n),
and the size ofM is again o(n) bits (see again Sect. 3.5.2.5). Finally, a new table
Y (similar to Y ′ from the previous paragraph) stores the number of minima in-
side a precomputed out-of-block query. It needs O(n/s× log(s′/s) · log s) = o(n)
bits.

5.5.2.2 Preprocessing for Short Queries

We are still left with the task to precompute the perfect median of the minima
inside the blocks of size s. The problem is that we cannot blindly adopt the
solution from Sect. 3.5.2.2, because there we regarded blocks with the same
Canonical Cartesian Tree as equal, totally ignoring their distribution of minima.
As an example, look at the two blocks B1 and B2 in Fig. 5.3, where Ccan(B1) =
Ccan(B2). But for B1 we want rmqmed(1, 5) to return position 4 (the median
position of the 3 minima), whereas for B2 the same RMQ should return position
2, because this is the unique position of the minimum.

We overcome this problem by introducing a new kind of Cartesian Tree which
is tailored to meet our special needs for this task:
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Ck+1C1 C2 kC

i2 ik
kv2v1v

1i

Figure 5.4: Illustration to the definition of Super-Cartesian Trees. The horizon-
tal edges can be considered as right edges with a different “label;”
in this sense, the Super-Cartesian Tree is in fact a Schröder Tree.

Definition 5.7. Let A[l, r] be an array that attains its minima at positions
i1, i2, . . . , ik for some k ≥ 1. Then the Super-Cartesian Tree Csup(A) of A is a
binary tree recursively constructed as follows:

• If l > r, Csup(A) is the empty tree.

• Otherwise, create k nodes v1, . . . , vk, where vj is labeled with ij . v1 is the
root of Csup(A), and vi−1 is connected to vi with a horizontal edge for i >
1. Recursively construct C1 := Csup(A[l, i1−1]), C2 := Csup(A[i1+1, i2−1]),
. . . , Ck+1 := Csup(A[ik + 1, r]). For 1 ≤ i < k, the left child of vi is the
root of Ci. Finally, the left and right children of vk are the roots of Ck and
Ck+1, respectively. See also Fig. 5.4.

Note that Csup is in fact a binary tree, where right edges may either be
“horizontal” or “vertical.” Fig. 5.3 shows Csup for our two example arrays. The
reason for calling this tree the Super-Cartesian Tree will become clear when we
analyze the number of such trees. But let us first give an algorithm to construct
Csup. This is a straight-forward extension of the algorithm for constructing the
Canonical Cartesian Tree, treating the “equal”-case in a special manner. So
let Csup

i (A) be the Super-Cartesian Tree for A[1, i]. Then Csup
i+1(A) is obtained

by first climbing up from the rightmost leaf of Csup
i (A) towards the root until

one finds the first node vm with label lm such that A[lm] ≤ A[i + 1], and then
inserting a new node w with label i + 1 at the correct position. Precisely, let
v1, . . . , vk be the nodes on the rightmost path in Csup

i (A) with labels l1, . . . , lk,
respectively, where v1 is the root and vk is the rightmost leaf. Let m be defined
such that A[lm] ≤ A[i + 1] and A[lm′ ] > A[i + 1] for all m < m′ ≤ k. Now,
if A[lm] = A[i + 1], connect the new node w (labeled i + 1) with a horizontal
edge to vm, remove vm’s right child vm+1 and append it as the left child of w.
Otherwise (i.e., A[lm] < A[i + 1]), w becomes the right child of vm, and vm+1

becomes the left child of w. With the same reasoning as in Sect. 3.2 it can be
seen that the amortized costs for each step are constant, resulting in an overall
linear construction time.

The reason for our definition of the Super-Cartesian Tree is the following
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Figure 5.5: An infinite graph whose vertices are
�




�

	p q for all 0 ≤ p ≤ q. There

is an edge from
�




�

	p q to
�




�

	(p− 1) q if p > 0, and to
�




�

	p (q − 1)

and
�




�

	(p− 1) (q − 1) if q > p.

Lemma 5.8 (Relating RMQs and Super-Cartesian Trees). Let A and B be two
arrays, both of size s. Then rmqA(i, j) = rmqB(i, j) for all 1 ≤ i ≤ j ≤ s, and
the set of positions attaining this minimum is the same in A[i, j] and B[i, j], if
and only if Csup(A) = Csup(B).

Proof. Similar to the proof of Lemma 3.9, incorporating the changes from Def.
5.7 compared to the Canonical Cartesian Tree. �

As before, there is a one-to-one correspondence between Super-Cartesian
Trees and paths in a certain graph. In this case, the graph is shown in Fig. 5.5.

It is an extension of the graph in Fig. 3.3, adding diagonal edges from
�




�

	p q

to
�




�

	(p− 1) (q − 1) if 0 ≤ p < q. The bijection is obtained from the above

construction algorithm for Csup, where we first map each step to some number
l′, which can in turn be mapped to a path in the graph, explained as follows.
Let l′i denote the height of the part of the rightmost path that we traverse when
constructing Csup

i (A) from Csup
i−1(A). In other words, l′i counts the number of

nodes on the rightmost path that are traversed bottom-up in step i, with the
exception that nodes corresponding to equal elements in the array are counted
only once, because moving along a horizontal edge in the tree does not change
the current height. In the graph in Fig. 5.5, we translate this into a sequence of
l′i upwards moves, and then either a leftwards move if the last comparison was
“<,” or a diagonal move if it was “=.” This gives a one-to-one correspondence

between Super-Cartesian Trees and paths from
�




�

	s s to
�




�

	0 0 , because in step

i we constrain the number of upwards moves in Fig. 5.5 by the number of strict
leftwards moves that have already been made. See the first three columns of
Tbl. 5.1 for examples of the correspondence between Super-Cartesian Trees and
such paths.

It is well known (Stanley, 1999) that the number of such paths is given by
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array A Csup(A) path number in enumeration

123 0

122 Ĉ03 = 1

132 Ĉ03 + Ĉ02 = 2

121 Ĉ03 + Ĉ02 + Ĉ02 = 3

231 Ĉ03 + Ĉ02 + Ĉ02 + Ĉ01 = 4

112 Ĉ13 = 5

111 Ĉ13 + Ĉ02 = 6

221 Ĉ13 + Ĉ02 + Ĉ01 = 7

212 Ĉ13 + Ĉ12 = 8

211 Ĉ13 + Ĉ12 + Ĉ02 = 9

321 Ĉ13 + Ĉ12 + Ĉ02 + Ĉ01 = 10

Table 5.1: Example-arrays of length 3, their Super-Cartesian Trees, and their
corresponding paths in the graph in Fig. 5.5. The last column shows
how Alg. 5.4 calculates the index of Csup(A) in an enumeration of all
Super-Cartesian Trees (i.e., Schröder Trees).

the s’th Super Catalan Number Ĉs (also known under the name Little Schröder
Numbers due to their connection with Schröder Trees). These numbers are quite
well understood, for our purpose it suffices to know that (see, e.g., Merlini et al.,
2004, Thm. 3.6; or Knuth, 1997, exercise 2.2.1–12, where Ĉs = bs+1/2)

Ĉs =
ρs

√
πs(2s − 1)

(1 +O(s−1)) , (5.1)

with ρ := 3 + 2
√

2 ≈ 5.8284. As before, this means that we do not have to
precompute the in-block-queries for all n/s occurring blocks, but only for O(ρs)
possible blocks. (Now our choice for the block-size s = log n/(2 log ρ) becomes
clear.) The precomputation of the in-block-queries must now be done for all Ĉs

possible types; we simply do a naive precomputation of all possible s2 queries.
This table (call it P ′) needs O(Ĉs × s2 · log s) = O(

√
n log2 n log log n) = o(n)

bits of space. The time to compute it is O(Ĉs × s3) = O(n). (The additional
factor s accounts for finding the median of the minima in each step.) As for
the long queries, we also have to store the number of minima for each possible
query. This table can be filled along with the median-precomputation and can
be stored using o(n) bits of space.
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5.5.2.3 Computing the Block Types

All that is left now is to assign a type to each block that can be used for indexing
into table P ′, i.e., we wish to find a surjection

t′ : As → {0, . . . , Ĉs − 1}, and t′(Bi) = t′(Bj) iff Csup(Bi) = Csup(Bj) , (5.2)

where As is the set of arrays of size s. The reason for requiring that arrays with
the same Super-Cartesian Tree are mapped to the same type is again given by
Lemma 5.8. The easiest way to compute such a bijection would be to actually
construct the Super-Cartesian Tree and compute its index in an enumeration
of all Schröder Trees. But there is a simpler way, which we will explain in
the remainder of this section. Our strategy is to simulate the construction
algorithm for Super-Cartesian Trees given before, thereby simulating a walk
along the corresponding path in the graph from Fig. 5.5. These paths can be
enumerated as follows. First observe that the number of paths from an arbitrary

node
�




�

	p q to
�




�

	0 0 in the graph of Fig. 5.5 is given by the recurrence

Ĉ00 = 1, Ĉpq =

{

Ĉp(q−1) + Ĉ(p−1)q + Ĉ(p−1)(q−1), if 0 ≤ p < q 6= 0

Ĉp(q−1) if p = q 6= 0 ,
(5.3)

and Ĉpq = 0 otherwise. This follows from the fact that the number of paths

from a given node to
�




�

	0 0 is given by summing over the number of paths from

each cell that can be reached with a single step. The first few such numbers,
laid out such that they correspond to the nodes in Fig. 5.5, are

1
1 1
1 3 3
1 5 11 11
1 7 23 45 45
1 9 39 107 197 197 .

(5.4)

Due to this construction the Super Catalan Numbers appear on the rightmost
diagonal of (5.4); in symbols, Ĉs = Ĉss. Because the numbers Ĉpq generalize
the Ballot Numbers in the same way as the Super-Catalan Numbers generalize
the Catalan Numbers, we christen them Super-Ballot Numbers.3 Although we
do not have a closed formula for our Super-Ballot Numbers, we can construct
the s× s-array at start-up, by means of (5.3).

We are now ready to describe Alg. 5.4 which computes a function satisfying
(5.2). It simulates the construction algorithm for the Super-Cartesian Tree,
without actually constructing it ! The general idea behind the algorithm is to

virtually walk along the path from
�




�

	s s to
�




�

	0 0 in Fig. 5.5, and counting

the number of paths that have been skipped by making an upwards (line 6) or
diagonal move (line 11). At the beginning of step i of the outer for-loop, the

3There is another generalization of Ballot Numbers due to Gessel (1992) that goes under the
name Super-Ballot Numbers, which should not be confused with our numbers.
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Algorithm 5.4: A modified algorithm to compute the type of a block Bj

Input: a block Bj of size s
Output: the type of Bj , as defined by Eq. (5.2)

let R be an array of size s+ 1 {simulates rightmost path}1

R[1]← −∞ {stopper element}2

q ← s,N ← 0, h← 0 {h = #horizontal edges in Csup
i−1(Bj)}3

for i← 1, . . . , s do4

while R[q + i+ h− s] > Bj [i] do5

N ← N + Ĉ(s−i)q + Ĉ(s−i)(q−1) {upwards move}6

while R[q + i+ h− s− 1] = R[q + i+ h− s] do h−−7

q−−8

endw9

if R[q + i+ h− s] = Bj [i] then10

N ← N + Ĉ(s−i)q {accounts for diagonal move}11

h++, q−−12

endif13

R[q + i+ h− s+ 1]← Bj[i] {push Bj [i] on R}14

endfor15

return N16

position in the graph is
�




�

	(s− i+ 1) q , and h keeps the number of horizontal

edges on the rightmost path in Csup
i−1(Bj). Array R simulates a stack keeping

the elements on the rightmost path of Csup
i−1(Bj), with q + i+ h− s pointing to

the top of the stack. The loop in line 7 simulates the traversal of horizontal
edges in Csup

i−1(Bj) on the rightmost path by removing all elements equal to the
top element on the stack. The if-statement in line 10 accounts for adding a new
horizontal edge to Csup

i−1(Bj), which is translated into a diagonal move in Fig.
5.5. In total, if we denote by l′i the number iterations of the while-loop from
line 5 to 9 in step i of the outer for-loop, l′i is exactly the height of the part that
is removed from the rightmost path. It follows from the previous discussion
that Alg. 5.4 correctly computes a function satisfying (5.2) in O(s) time. See
the last column of Tbl. 5.1 for examples of the type-calculation.

We store the type of each block in an array T ′[1, n/s]. Its size is

|T ′| = n

s
⌈log Ĉs⌉ ≤

n

s
log ρs = n log ρ ≈ 2.54311n

bits. We remark that although getChildBinary still needs the “normal” RMQs
that return the leftmost minimum, T ′ can also be used for indexing into the
table of precomputed normal RMQs — there is not need to store the type array
from Sect. 3.5.2.3 (which would result in another 2n+ o(n) bits of space)!

5.5.3 Summing Up

The main result of this section is the following



82 Chapter 5. Improvements in the Enhanced Suffix Array

Theorem 5.9 (Pattern matching in O(|P | + log |Σ|) time). For a text T of
length n over an alphabet Σ there is a data structure with space-occupancy
of ≈ 2.54311n + o(n) bits that, together with the suffix array and the LCP-
array for T , allows the retrieval of all occ occurrences of a pattern P in T in
O(|P | log |Σ|+ occ) time, for any alphabet size |Σ|. This data structure can be
constructed in O(n) time, and the additional space at construction time is o(n)
bits.

Proof. All that remains to show is the statement on the additional space con-
sumption at construction time. It is clearly o(n) if |Σ| = o(log2+ǫ n/ log log n).
On the other hand, if |Σ| is larger, one simply has to precompute the long
queries before the short queries. Then the n bits needed for the bit-vectors D′

j

can be re-used for the 2.54 bits needed for the type-table T ′. �

The key to this result was a pseudo-median algorithm for RMQ, which led us
to a natural generalization of Cartesian Trees, involving generalizations of the
Catalan and Ballot Numbers.

We wish to emphasize the fact that our ideas are also compatible with
Sadakane’s compressed suffix trees (2007a). In this case, our type-table T ′

from Sect. 5.5.2.2 is not necessary, as the balanced parentheses sequence of the
suffix tree already respects the layout of the minima inside the blocks. However,
the ideas from Sect. 5.5.2.2 can be transferred one-to-one, and thus close the
aforementioned gap in the compressed suffix tree.

A further advantage of our O(m log |Σ|)-search is that it is perfectly compat-
ible with compressed representations of suffix arrays (Sect. 2.7). For example,
combining the Compressed Suffix Array due to Grossi and Vitter with our
search strategy, locating all occ occurrences takes O((m log |Σ| + occ) logα

|Σ| n)

time (0 < α ≤ 1), for any alphabet size |Σ|, while needing only α−1H0n+O(n)
bits in total (H0 being the empirical order-0 entropy of the input text). If occ
is not too small, this is a significant improvement over the currently fastest lo-
cating time in compressed indexes (Ferragina et al., 2007), which takes O(m+
(m+ occ log1+β n) log |Σ|/ log log n) time to locate occ occurrences (0 < β < 1),
and even this only for |Σ| = o(n/ log log n).



CHAPTER

6

String Mining Problems

6.1 Chapter Introduction

Mining in databases of graphs, trees, and sequences has attracted a lot of in-
terest in recent years, starting with the famous Apriori algorithm for mining
frequent itemsets (Agrawal et al., 1993; Agrawal and Srikant, 1994). The typi-
cal characteristics of data mining problems is that the patterns to be searched
are a priori unknown. This means that the user can impose certain conditions
on patterns that must be fulfilled to make a pattern be part of the solution. In
a certain sense, this is the complete opposite of usual search algorithms such as
exact string matching algorithms (cf. Sect. 2.2), where the input is usually the
pattern to be found, and the output is the number (and possibly positions) of
all matches. In the setting of data mining, the input would be the number of
matches, and the output could be all patterns that occur at least that often in
the data.

In this chapter, we focus on string mining under frequency constraints, i.e.,
predicates over patterns depending solely on the frequency of their occurrence
in the data. This category encompasses combined minimum/maximum support
constraints (De Raedt et al., 2002), constraints concerning emerging substrings
(Chan et al., 2003), and possibly other constraints concerning statistically sig-
nificant substrings. We briefly describe the two most common problems in more
detail:

• Frequent String Mining: the usual setting here is that we are given two
databases, one containing positive, the other negative patterns. Then one
might be interested in extracting all patterns that pass a certain minimum
frequency threshold in the positive database, but do not occur too often

83
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in the negative database. The biological relevance of this task can be
seen in the following example: suppose a genetic disease is conjectured
to be caused by a defect on the X-chromosome, but it is unknown where
and how this failure occurs. One can then collect the genetic sequences
of the X-chromosome of 1000 ill patients in the positive database, and
likewise the genetic sequences of 1000 healthy persons in the negative
database. Then all patterns that occur frequently (or always) in the
positive database and not too often (or never) in the negative database
are potential indicators of the genetic defect under consideration.

• Emerging Substring Mining: this is an extension of the frequent string
mining problem and considers patterns as relevant if they have a certain
growth-rate, defined as the ratio of the relative frequency in the positive
database to the relative frequency in the negative database. In this set-
ting, constraints are often easier to formulate, as only one quantity needs
to be specified. However, because one is mostly interested in patterns
that have a certain statistical significance, one usually specifies an ad-
ditional constraint which guarantees that the solution patterns have a
certain minimal frequency in the positive database.

Further potential application areas of both methods are, among others, find-
ing discriminative features for sequence classification (Birzele and Kramer,
2006), discovering new binding motifs of transcription factors, identifying gene-
coding regions in DNA, and microarray design. In the latter example the goal
is to find probes (short stretches of sequence spotted on a microarray) differ-
entiating well between groups of sequences. Additionally, the probes have to
possess certain physico-chemical properties to qualify them for inclusion on the
microarray. Outside the field of computational biology, we mention automatic
language classification of texts, spam-recognition of e-mails, and distinction
between melodic and non-melodic patterns in MIDI data.

In this chapter, we present an algorithm that is able to answer frequency-
based queries optimally, that is, in time linear in the size of the input databases,
plus the time to output the solution patterns. The only two assumptions we
make is that the number of given databases is constant, and that the frequency-
based predicates can be evaluated in constant time. Both assumptions are
highly realistic; all of the above mentioned applications can be modeled with
just a handful of databases, and in most cases there are only two sets (positive
and negative). It is interesting to note that no optimal algorithms are known
for other pattern domains such as itemsets or graphs, or there are even hardness
results (Wang et al., 2005).

6.2 Formal Problem Definition

We consider patterns from the domain of strings. Extending the notation from
Sect. 3.3.2, we will write lce(φ,ψ) denotes the longest common extension of
φ and ψ, for φ,ψ ∈ Σ⋆. For example, lce(aab, abab) = a. Given a set (or
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database) D ⊆ Σ⋆ with strings over Σ, we write |D| to denote the number of
strings in D, and ‖D‖ to denote their total length, i.e., ‖D‖ =

∑

φ∈D |φ|. We
define the frequency and the support of a pattern φ ∈ Σ⋆ in D as follows:

freq(φ,D) := |{d ∈ D : φ E d}|, supp(φ,D) :=
freq(φ,D)

|D|

Note that this is not the same as counting all occurrences of a φ in D, because
one string in the database could contain multiple occurrences of φ.1 The main
contribution of this chapter is to show how one can compute the frequencies
(or support) of all strings occurring at least once in one of the databases in
optimal time, i.e., in time linear in the size of the input databases (assuming
the number of databases is constant). This allows us to solve frequency-related
mining queries in optimal time, i.e., in time linear in the sum of the input- and
the output-size. Naturally, the query must be computable from the frequency
(or support) in constant time.

We now introduce three example problems that can be solved optimally with
our approach. The first one is as follows.

Problem 6.1. Given m databases D1, . . . ,Dm of strings over Σ (constant m) and
m pairs of frequency thresholds (min1,max 1), . . . , (minm,maxm), the Frequent
Pattern Mining Problem is to return all strings φ ∈ Σ⋆ that satisfy mini ≤
freq(φ,Di) ≤ max i for all 1 ≤ i ≤ m. In accordance with the data mining
literature (e.g., see Mannila and Toivonen, 1997), this set of solution is often
denoted by Th (for “theory”).

This problem has been addressed by many authors using different solution
strategies and data structures (De Raedt et al., 2002; Fischer and De Raedt,
2004; Lee and De Raedt, 2005; Fischer et al., 2005), but none of these are
optimal.

Example 6.1. Let Σ = {a, b, c}, D1 = {bbabab, abacac, bbaaa},D2 = {aba,
babbc, cba}, min1 = 2, max 1 = ∞, min2 = −∞, and max2 = 2. Then
Th = {ab, aba, bb, bba}. Note in particular that because ba is a substring of
all 3 strings in D1 it satisfies the minimum frequency constraint, but is not part
of Th, because its frequency in D2 is also 3, which is too high.

The size of the solution space Th can be quite big; as a worst case example,
assume that we are only given one database D1, and the thresholds are min1 =
1, max 1 = ∞. If D1 consists of a single string s which is composed of n
different letters, then all Θ(n2) substrings of s are in the solution space, so
‖Th‖ = Θ(n3). This space can be reduced if, instead of enumerating all patterns
in Th, one considers a different representation of Th, similar to the idea of

1Our algorithm can also be used to solve the simpler problem of counting all occurrences
of a pattern in the database; for this one only has to calculate the S-counters defined by
(6.5) and (6.6), and not the C-counters from Sect. 6.3.2.



86 Chapter 6. String Mining Problems

Gusfield and Stoye (2004) for computing all tandem repeats in a string by
returning a suffix tree where all such repeats are marked. In our case, we will
see that it is possible to return a “labeled” suffix array from which all solution
patterns can be extracted, thereby bounding the size of the output by O(n).

Next, we consider a 2-class problem for a (usually positive) database D1 and
a (usually negative) database D2. We define the growth-rate from D2 to D1 of
a string φ as

growthD2→D1
(φ) :=

supp(φ,D1)

supp(φ,D2)
, if supp(φ,D2) 6= 0 ,

and growthD2→D1
(φ) = ∞ otherwise. The following definition is motivated by

the problem of mining Emerging Patterns (Dong and Li, 1999):

Problem 6.2. Given two databases D1 and D2 of strings over Σ, a support
threshold ρs (1/|D1| ≤ ρs ≤ 1), and a minimum growth rate ρg > 1, the
Emerging Substrings Mining Problem is to find all strings φ ∈ Σ⋆ such that
supp(φ,D1) ≥ ρs and growthD2→D1

(φ) ≥ ρg.

The patterns satisfying both the support- and the growth-rate condition are
called Emerging Substrings (ESs). ESs with an infinite growth-rate are called
Jumping Emerging Substrings (JESs), because they are highly discriminative
for the two databases. The only known solution for finding ESs (Chan et al.,
2003) is quadratic in the input size. The following example will be continued
throughout this chapter.

Example 6.2. Let D1 = {aaba, abaaab}, D2 = {bbabb, abba}, ρs = 1, and
ρg = 2. Then the emerging substrings from D2 to D1 are aa, aab and aba. In
this case, these are also the JESs.

As a last example problem that can be solved optimally with our method we
mention the χ2-test.

Problem 6.3. Given m databases D1, . . . ,Dm of strings over Σ and a threshold ρ.
Let n =

∑m
j=1 |Dj | be the total number of strings, f =

∑m
i=1 freq(φ,Di) the total

frequency of φ, and Ej = f ·|Dj |/n be the expected value of φ’s frequency. Then

φ is significant if it passes the χ2-test, i.e., if χ2 =
∑m

j=1
(freq(φ,Dj)−Ej)2

Ej
≥ ρ.

6.3 The New Algorithm

In this section we present our linear-time algorithm for answering frequency-
related mining queries (e.g., emerging substrings). Logically, the algorithm can
be divided into three main phases: (1) Preprocessing, (2) Labeling, and (3)
Extraction. The preprocessing step constructs all necessary data structures:
the suffix- and LCP-array, and the preprocessing for RMQ. The labeling step
performs one scan over the LCP-array and does the principal work for a fast
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calculation of the string-frequencies. Finally, the extraction step scans the LCP-
array again, this time simulating a depth-first traversal of the suffix tree, and
returns all strings passing the frequency-based criterion.

The main idea for computing the frequencies is due to Hui (1992) and works
as follows. Let Dj = {sj,1, . . . , sj,|Dj|} be the given databases (1 ≤ j ≤ m). For
the strings φ occurring in any of the databases, we compute the total number
of occurrences in Dj and store the respective numbers in SDj(φ).

SDj(φ) = |{(i, k) : sj,k
i..i+|φ|−1 = φ}| (6.1)

We further compute so-called correction terms CDj(φ) that count how often
string φ has a repetition in the same string of Dj :

CDj(φ) =
∑

sj,k∈Dj

φEsj,k

(|{i : sj,k
i..i+|φ|−1 = φ}| − 1) (6.2)

Then freq(φ,Dj) clearly equals SDj(φ)− CDj(φ). In our example, SD1(ab) = 3
(there are 3 occurrences of ab in D1) and CD1(ab) = 1 (ab is repeated once
in the second string s1,2 = abaaab of D1). We will see in Sect. 6.3.3 that it is
not very hard to compute the S-numbers in linear time; the real difficulty lies
in the computation of the C-numbers. The following lemma suggests how the
LCP-array can be used to calculate these correction terms:

Lemma 6.1 (Computation of correction terms). For any string φ occurring in
Dj , CDj(φ) is given by the number of times that φ is a prefix of the longest com-
mon extension of two lexicographically adjacent suffixes from the same string
sj,k in Dj :

CDj(φ) =

|Dj |
∑

k=1

∣

∣

∣

{

1 ≤ i < l : φ ⊑ lce
(

sj,k
SA[i]..l, s

j,k
SA[i+1]..l

)}∣

∣

∣ ,

where l denotes the length of sj,k, and SA[1, l] the suffix array for sj,k.

Proof. We just prove the claim for a fixed string sj,k; the fact that the sum
over these numbers equals CDj(φ) follows directly from the sum in (6.2). Let

l := |sj,k|, and I := {i1, i2, . . . , ix} be the set of all positions in sj,k such that

the suffix of sj,k starting at i ∈ I is prefixed by φ, i.e., φ ⊑ sj,k
i..l for all i ∈ I.

Because of (6.2), we need to prove that if φ occurs in sj,k, then |I| − 1 equals

the number of times that φ is a prefix of lce(sj,k
SA[i]..l, s

j,k
SA[i+1]..l). But this is not

hard: Due to the lexicographic order of the suffix array, I forms an interval in
SA, say [x, y]. And because the suffixes tSA[x]..l, . . . , tSA[y]..l are all prefixed by
φ, the longest common extension of lexicographically adjacent suffixes in I also
starts with φ, and these are the only such LCEs. The claim follows. �

As an example, the suffixes of s1,2 = abaaab are (in lexicographic order) aaab,
aab, ab, abaaab, b, and baaab. The third and the fourth have ab as their
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Figure 6.1: (a) The suffix array for w and its LCP-table. Below position i we
draw the string tSA[i]..n until reaching the first end-of-string marker.
The solid line going through these strings indicates the LCP-values.
(b) Computation of the C ′-numbers. The intervals are those for
which range minimum queries on LCP are executed; the position of
the minimum is depicted by a solid circle. Empty fields in the two
arrays denote 0.

longest common extension. Because no suffixes from s1,1 = aaba have ab as
their longest common extension, the value of CD1(ab) is 1.

The calculation of the correction terms is done in phase (2) and (3) of our
algorithm. In phase (2), we create auxiliary arrays that allow an easy compu-
tation of the actual correction terms. The computation of the C-terms is then
done along with the computation of the S-numbers in phase (3). The following
sections describe the three phases in greater detail.

6.3.1 Preprocessing

We form a (conceptual) string s1,1#1
1 . . . s

1,|D1|#1
|D1|

. . . sm,1#m
1 . . . sm,|Dm|#m

|Dm|

which we denote by t. The #k
i ’s are new symbols that do not occur in any of the

databases and serve to mark the end of a string from the respective database.2

Note that the length of t is n :=
∑m

j=1(‖Dj‖ + |Dj|). The preprocessing then
consists of constructing the following data structures for t (in this order): the
suffix array SA, the LCP-array LCP, and the information to answer rmqLCP(i, j)
in O(1). All steps take time O(n). See Fig. 6.1(a) for an example.

A short definition is necessary at this point: We say that entry SA[i] points to
string sj,k in database Dj iff the first end-of-string marker in tSA[i]..n is #j

k. For
example, in Fig. 6.1(a), SA[8] = 9 points to s1,2, because t9..23 = aab#1

2
bb....

2The algorithm can actually be implemented such that it uses only m different end-of-string
markers, one for each database.
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Algorithm 6.1: Labeling of the LCP-array.

Input: suffix array SA and LCP-array LCP of size n for m databases
D1, . . . ,Dm

Output: m arrays C ′
D1
, . . . , C ′

Dm
of size n

Let lastDi be an array of size |Di|, initialized with all 0 (i = 1, . . . ,m)1

Let C ′
Di

be an array of size n, initialized with all 0 (i = 1, . . . ,m)2

for i = 1, . . . , n do3

Let j and k be defined such that SA[i] points to sj,k
4

if lastDj [k] 6= 0 then5

l← rmqLCP(lastDj [k] + 1, i)6

increase C ′
Dj

[l] by 17

endif8

lastDj [k]← i9

endfor10

6.3.2 Labeling

Alg. 6.1 augments the LCP-array LCP with arrays C ′
D1
, . . . , C ′

Dm
which facilitate

the computation of the correction terms in phase 3. Although the C ′
Dj

’s are
represented by new arrays of size n, we call this step “labeling” because it is
derived from the tree labeling technique due to Hui (1992). We want C ′

Dj
[i] to be

equal to the number of lexicographically adjacent suffixes (in t) from the same
string in Dj that share a longest common prefix of length exactly LCP[i]. More
formally, C ′

Dj
[i] equals the number of triples (a, b, k) that fulfill the following

constraints:

1. 1 ≤ a < i ≤ b ≤ n, and SA[a] and SA[b] point to the same string sj,k.

2. No entry strictly between a and b points to sj,k.

3. i is the first position such that lce(a, b) = LCP[i].

The C ′-numbers are computed as follows: the for-loop (lines 3–10) scans the
suffix array from left to right. Array entry lastDj [k] holds the rightmost position

in SA to the left of i that points to sj,k. Thus, if SA[i] points to sj,k, setting
a = lastDj [k] and b = i fulfills constraints 1 and 2 above. As we saw in Sect.
3.3.2, lce(a, b) is given by rmqLCP(lastDj [k] + 1, i) (line 6). See Fig. 6.1(b) for
an example.

We now sketch how the C ′-numbers help to compute the actual correction
terms. We compute C(φ) for the strings φ that are maximally repeated. These
are strings φ that occur x times in t for some value x, but all its proper exten-
sions occur less than x times in t, i.e., φa occurs less than x times in t for all
a ∈ Σ. From the definition of suffix trees, it is obvious that maximally repeated
substrings correspond to internal nodes in the suffix tree. And as we saw in
Chapter 5, internal nodes in the suffix tree can be identified by an LCP-interval
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[l : r], so in order to visit all maximally repeated substrings, our task is to visit
all LCP-intervals and calculate the frequency of the respective substrings. It is
clear that the frequency of all other strings can be derived from the frequency
of the maximally repeated strings.

Now, if [l : r] is the LCP-interval that represents φ, with Lemma 6.1 we see
that

CDj(φ) =
∑

l<i≤r

C ′
Dj [i] . (6.3)

The validity of this equation can be seen by comparing the definition of the
C ′-terms at the beginning of this section with Lemma 6.1: C ′

Dj
[i] counts how

often two lexicographically adjacent strings from the same database Dj share
a longest common prefix of length exactly LCP[i]. As the strings in the LCP-
interval [l : r] are exactly the strings that are prefixed by φ, summing over the
C ′-values in the interval gives the number of times that φ is a prefix of the LCE
of two lexicographically adjacent suffixes, the statement of Lemma 6.1.

Eq. (6.3) can be rewritten as

CDj (φ) =
∑

l<i≤r
LCP[i]=|φ|

C ′
Dj [i] +

∑

[l′:r′] child-interval of [l:r]

[l′:r′] represents ψ 6=φ

CDj(ψ) ; (6.4)

this is due to the fact that an LCP-interval can be split up into the positions of
its ℓ-indices and its child-intervals. Thus, (6.4) enables a recursive calculation
of the C-terms.

Example 6.3. In Fig. 6.1, the interval (8, 9) (representing aa) gives CD1(aa) =
∑

8≤i≤9 C
′
D1

[i] = 1 + 0 = 1, and the interval (11, 14) (representing ab) gives
CD1(ab) = 1 + 0 + 0 + 0 + 0 = 1. Having this, we can compute CD1(a) as
C ′
D1

[6] + C ′
D1

[7] + CD1(aa) + C ′
D1

[10] + CD1(ab) = 1 + 0 + 1 + 2 + 1 = 5.

Kasai et al. (2001) gave an algorithm that simulates a bottom-up-traversal of the
suffix tree by scanning the LCP-array from left to right. We could thus calculate
the C-numbers by a modification of their algorithm, applying (6.4) to all LCP-
intervals in a bottom-up manner. However, this step can be incorporated into
the extraction step (which we explain next), thereby avoiding the need to store
the C-numbers in separate arrays.

6.3.3 Extraction

We now describe how to output all strings that pass the frequency-based crite-
rion. As mentioned above, this step is accomplished by a simulated bottom-up-
traversal of the suffix tree due to Kasai et al. (2001)3, calculating for each LCP-
interval representing string φ the values SDj(φ) and CDj (φ) for j = 1, . . . ,m,

3Observe that one could also simulate this DFS by means of the Enhanced Suffix Array (cf.
Chapter 5). However, as we are doing a bottom-up-traversal here, it is simpler to use
Kasai et al.’s method.
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Algorithm 6.2: Extraction of all substrings satisfying p.

Input: suffix array SA, LCP-array LCP, C ′
Dj

as computed by Alg. 6.1 (all

of size n), frequency-based predicate p(suppD1
, . . . , suppDm)

Output: All substrings satisfying p

S is a stack holding tuples (v.h, v.SDj , . . . , v.SDm , v.SD2 , v.CD1 , . . . , v.CDm)1

Let v be a stopper element with v.h = −∞, push v on S2

for i = 1, . . . , n+ 1 do3

v ← top(S) {v represents the string to be examined next}4

SDj ← 0, CDj ← 0 for all j = 1, . . . ,m5

while v.h > LCP[i] do6

v ← pop(S), w ← top(S) {w always points to top of stack}7

if w.h ≥ LCP[i] then8

{Otherwise w is not parent node of current node v.}9

w.SDj += v.SDj , w.CDj += v.CDj for all j {accumulate}10

endif11

freqDj ← v.SDj − v.CDj for all j = 1, . . . ,m12

if p(freqD1
, . . . , freqDm) then13

{Now v represents a maximally repeated substring satisfying p.}14

for h = max{w.h,LCP[i]}+ 1, . . . , v.h do print tSA[i]..SA[i]+h−115

endif16

SDj ← v.SDj , CDj ← v.CDj for all j = 1, . . . ,m17

v ← w18

endw19

if v.h < LCP[i] then push (LCP[i], SD1 , . . . , SDm, CD1 , . . . , CDm) on S20

top(S).CDj += C ′
Dj

[i] for all j = 1, . . . ,m {gather correction factors}21

if i ≤ n then22

Let SA[i] point to Dj ; set SDj ← 1 and all other SDj′ ’s to 023

push (n− SA[i] + 1, SD1 , . . . , SDm, 0, . . . , 0) on S24

endif25

endfor26
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thereby yielding the frequency of φ in Dj as SDj(φ)−CDj(φ). The formula for
the C-numbers is given by (6.4), and for the S-numbers we have

SDj(φ) =
∑

l≤i≤r
SA[i] points to Dj

1 (6.5)

(again, [l : r] is φ’s LCP-interval). This is simply because the interval [l, r] in
SA represents all suffixes of t that are prefixed by φ. As for the C-numbers,
(6.5) can be rewritten to allow a recursive calculation:

SDj(φ) =















0 if l = r and SA[l] points to j′ 6= j

1 if l = r and SA[l] points to j
∑

[l′:r′] child-interval of [l:r]

[l′:r′] represents ψ 6=φ

SDj(ψ) otherwise

(6.6)

Alg. 6.2 is used for the extraction phase. If one deletes lines 5, 21 and
23 from Alg. 6.2 and substitutes lines 8–17 by the single command “print
tSA[i]..SA[i]+v.h−1,” this yields exactly the algorithm in Fig. 7 of Kasai et al.
(2001) which solves the substring traversal problem, i.e., the enumeration of all
maximally repeated substrings. The idea behind this algorithm is to visit all
suffixes of t in lexicographic order and to keep all maximally repeated prefixes
of the current suffix on a stack S, ordered by their length, with the longest such
prefix being on top of S. A more formal description is as follows. Each element
on S is represented by a tuple (h, SD1 , . . . , SDm, CD1 , . . . , CDm), where h is the
length of the prefix (i.e., the corresponding prefix is tSA[i]..v.h−1), and the other
variables are the counters as defined by (6.1) and (6.2). At the beginning of
step i of the for-loop (lines 3–26), we have that the (i − 1)’st suffix and all
maximally repeated prefixes of tSA[i−1]..n are on S. Then the (i− 1)’th suffix is
visited (line 4) and the following steps are performed:

1. The while-loop (lines 6–19) removes from S all tuples representing strings
with length greater than lce(i − 1, i) = LCP[i]. These are exactly the
prefixes of tSA[i−1]..n which are not a prefix of tSA[i]..n. All strings passing
the statistical criterion are returned (line 15).

2. The counter-values SDj(φ) and CDj(φ) of the current string v are added
to the respective counters of the string on top of the stack (line 10). This
step takes care of the last sums in Eq. (6.4) and (6.6), respectively, as v
represents a child of the string which is on top of S.

3. When pushing the longest common prefix of two lexicographically adja-
cent suffixes on S (line 20), the counter-values are initialized correctly.

4. The C ′-numbers are added to the correct string (line 21) which is again
on top of the stack. This step takes care of the first sum in (6.4).

5. The suffix tSA[i]..n is pushed on S with the correct counter-values (lines
22–25). Line 23 accounts for the initialization of the SDj -values, i.e., the
first two cases in (6.6).
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It is shown by Kasai et al. (2001) that this algorithm visits all maximally
repeated substrings of t, and its running time is O(n) (apart from the for-loop
that outputs the solutions, line 11). The discussion from Sect. 6.3.2 shows that
the S- and C-values are calculated correctly, and thus in line 9 we have that
the frequency of the string φ that is represented by v is calculated correctly.
We thus have the following

Theorem 6.2 (Frequency-based string mining). For a constant number of
databases of strings of total length n, all strings that satisfy a frequency-based
criterion (e.g., emerging substrings) can be calculated in O(n + s) time, solely
by using array-based data structures occupying O(n) words of additional space
(apart from the output), where s is the total size of the strings that satisfy the
criterion. �

6.3.4 Reducing the Size of the Output

We have already mentioned that the size of the output can be Θ(n3), which
may be too big even for realistic problem sizes. In addition, it is often not
desirable to have an explicit, humanly readable representation of all strings in
the solution space Th. Take, for example, the situation where the emerging
substrings are to be further processed according to another criterion. In this
case it would be much better to have a smaller representation of the emerging
substrings, as possibly many of them will not appear in the final output.

It is quite common in such situations to return a labeled data structure instead
of a complete enumeration of the output, where the labels allow for an easy
re-calculation of all patterns in Th. For example, Gusfield and Stoye (2004)
return a labeled suffix tree which contains enough information to reconstruct
all tandem repeats in a string, whose number may already be Θ(n2). It is
not difficult to come up with a similar approach for our problem setting. As
the frequencies of each string φ is the same as the frequency of the shortest
maximally repeated substring that is prefixed by φ, all we have to do is to
attach a label to each maximally repeated substring that passes the frequency-
based predicate, instead of executing the for-loop in line 15 of Alg. 6.2. A
space-efficient choice for this label is to mark the first ℓ-index of a pattern in
Th with a single bit (for example, the sign bit in LCP). It has been shown by
Abouelhoda et al. (2004) that the ℓ-intervals can be computed as a by-product
of the simulated suffix-tree traversal, and we have seen in Sect. 5.3 that the
first ℓ-index can be found by a single range minimum query. Thus, we get the
following variant of Thm. 6.2:

Theorem 6.3. For a constant number of databases of strings of total length
n, a representation of all strings that satisfy a frequency-based criterion can be
calculated in O(n) time, solely by using array-based data structures occupying
O(n) words of additional space. �
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Table 6.1: Datasets used for evaluating the practical performance of the differ-
ent methods for mining frequent substrings.
subset # species size in kB comment

all 25,734 43,515 complete ARB
prok 14,000 23,011 subset of all
bact 13,657 22,281 subset of prok
proteo 6062 9,867 subset of bact
β-γ 3878 6,343 subset of proteo
β 1151 1,860 subset of β-γ
β59 59 88 subset of β
xanthogr 143 235 subset of proteo
xanthom 59 91 subset of xanthogr
random 60 100 subset of all

6.4 Practical Performance

The aim of this section is to show that our new method also works fast in
practice, even on large datasets. We implemented the algorithm from Sect. 6.3
in C++ (available at www.bio.ifi.lmu.de/˜fischer/ ) so that it finds
frequent substrings (Problem 1) and emerging substrings (Problem 2), respec-
tively. For the construction of the suffix array we used the method due to
Manzini and Ferragina (2004), and for the RMQ-preprocessing we used the
“engineered”-implementation from Sect. 3.8, because space is a primary issue
in large-scale data mining.

Unfortunately, because an implementation of the emerging substring miner
(Chan et al., 2003) is not publicly available, we could only run comparative tests
for mining frequent substrings. We compared our method to the algorithms
called VST (De Raedt et al., 2002) and FAVST (Lee and De Raedt, 2005).4

The “VST” in both names is an abbreviation of Version Space Tree, which
are simply suffix tries with some additional satellite information. All tests
were performed on an Athlon XP 3300 with 2GB of RAM under Linux. All
programs were compiled with g++, using the options “-O3 -fomit-frame-pointer
-funroll-loops.” Further, instead of writing the output to disk, all programs were
adapted to redirect their output to a virtual “null”-device called /dev/null
under Linux, in order to eliminate the influence of the access time to secondary
storage units.

We used the Jan’03 release of the nucleotide database from the ARB project
(Ludwig et al., 2004), containing rRNA of about 25,000 species. Because rRNA
is highly preserved in evolution, the data bears a high sequential similarity, and
the running time of all programs should thus be highly influenced by the cho-
sen input parameters. A phylogenetic tree partitions the species into different

4We wish to thank Sau Dan Lee for providing the source codes of his methods FAVST and
VST.

www.bio.ifi.lmu.de/~fischer/
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Figure 6.2: Comparison of the three methods for a single minimum frequency
query. Note the logarithmic y-scale.

groups, of which we selected some for evaluation. The subsets used are shown
in Tbl. 6.1.

For the comparison with FAVST and VST, we were forced to pick a very
small subset of the ARB-database. This is because algorithm FAVST builds a
non-compacted suffix trie on the whole database, which has size O(n2) in the
worst case. As this is extremely space consuming, we could only use FAVST

for subsets of size less than 100kB. Already for datasets of this size the space
consumption of FAVST is more than 1.5GB. The reason why VST cannot be
applied to larger datasets is that it is incredibly slow — we will see presently
that for instances where our method takes only about 2 minutes, VST already
needs more than one hour!

The first test was a single minimum frequency query on 60 random entries of
the database. The results, for varying values of min, can be seen in Fig. 6.2. It
is striking that our method is faster than both FAVST and VST, sometimes by
several orders of magnitude. Further, it is interesting to see that the running
time of FAVST does not drop as much as the other methods with increasing
values of min , as it is the case for VST and our method. This is because
constructing the suffix trie for the whole database is the most time consuming
part of the algorithm and is independent of min . Further tests with other
random subsets of the complete ARB-database revealed similar results.

In a second test we wanted to test the performance of a combined minimum-
and maximum frequency query. For this, we selected two disjoint subsets with
a higher biological relevance. The dataset chosen for the minimum frequency
criterion was xanthom, and for maximum frequency criterion we chose a subset
of the β-dataset, called β59 (again, the space consumption of FAVST forced
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Figure 6.3: Comparison of the three methods for a combined minimum- and
maximum-frequency query. Note the logarithmic y-scales.



6.4. Practical Performance 97

size (MB) number of proteins time (min)

25 96,939 1:10
50 186,913 2:58
75 269,590 5:03
100 359,504 7:17
125 458,088 9:20
150 529,585 11:32

Table 6.2: Results for a minimum frequency query on files containing amino
acid sequences from the Swissprot database.

us to pick such small datasets). The results for varying values of min can be
seen in Fig. 6.3(a), where the maximum frequency threshold was held fixed at
50%. They resemble those from the previous experiments, except that for small
values of min our method and FAVST perform about equally well (but still with
a factor-2-advantage for our method). Profiling showed that the sheer amount
of frequent patterns to be written on disk was the most time consuming part
in these cases, which cannot be avoided by any method.

Figure 6.3(b) shows the results for the same test, but now for different values
of max . The value for the minimum frequency query was held fixed at 3%, in
order not to filter out too many patterns already by the minimum frequency
constraint. However, even with this very lax choice of min the running times do
not depend as much on max for all three methods as in the case of Fig. 6.3(a).
Still, our method is always the fastest, with a factor of about 4 compared to
FAVST, and a factor of more than 25 compared to VST.

In a last test we wanted to evaluate the scalability of our method. We created
several files containing the first 25, 50, . . . , 150MB of the file “proteins” from
the Pizza & Chili-site (Ferragina and Navarro, 2005), which contains amino
acid sequences of various species obtained from the Swissprot database. Our
implementation of the pure minimum frequency miner uses 3 integer arrays of
size n, one for the suffix- and LCP-array, and one for the C ′-counters. This is the
reason why 150MB was the largest file we could process on a 2GB (150MB·4·3 =
1, 800MB).

We then performed a simple minimum frequency query, with a minimum
frequency threshold of 1% of the number of sequences in the database. The
results of this test can be seen in Tbl. 6.2. It can be seen that despite the very
low minimum frequency threshold of 1% the running times are quite fast. This
is because proteins do not exhibit such a high sequential similarity as rRNA
does, so there are less patterns in the solution space. Hence, the running time
of our algorithm is not that much dominated by the time needed to write the
output (as in the previous experiments).
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6.5 Conclusions

We presented a theoretically optimal solution to string mining under frequency
constraints. We mostly built upon results on index structures for strings. One
of the building blocks is the fast computation of range minimum queries. Given
this algorithmic framework, it is possible to compute solutions, e.g., for emerg-
ing substrings and patterns statistically associated with classes of sequences,
very efficiently. We have seen in the experiments that our method surpasses
previous approaches by all means, and also that it is scalable to biological
databases of realistic size.



CHAPTER

7

Suffix Arrays on Words

7.1 Chapter Introduction

As we have already seen in Chapter 2, one of the most important tasks in
classical string matching is to construct an index on the input text in order
to answer future queries faster. Well-known examples of such indexes include
suffix-trees, word graphs, and suffix arrays (see, e.g., Gusfield, 1997). Despite
the extensive research that has been done in the last three or four decades, this
topic has recently re-gained popularity with the rise of compressed indexes (see
Navarro and Mäkinen, 2007) and new applications such as data compression,
text mining, and computational linguistics.

However, all of the indexes mentioned above are full-text indexes, in the
sense that they index any position in the text and thus allow to search for
occurrences of patterns starting at arbitrary text positions. In many situations,
deploying the full-text feature might be like using a “cannon to shoot a fly,”
with undesired negative impacts on both query time and space usage. For
example, in European languages, words are separated by special symbols such
as spaces or punctuation signs; in a dictionary of URLs, “words” are separated
by dots and slashes. In both cases, the results found by a word-based search
with a full-text index would have to be filtered out by discarding those that
do not occur at word-boundaries. Possibly a time-costly step! Additionally,
indexing every text position would affect the overall space occupancy of the
index, with an increase in the space complexity which could be estimated in
practice as a factor 5–6, given the average word length of linguistic texts. Of
course, the use of word-based indexes is not limited to pattern searches, as
they have been successfully used in many other contexts, like data compression
(Isal and Moffat, 2001) and computational linguistics (Yamamoto and Church,

99
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2001), just to cite a few.

Surprisingly enough, word-based indexes have been introduced only recently
in the string-matching literature (Andersson et al., 1999), although they were
very famous in Information Retrieval many years before (cf. Witten et al., 1999).
The basic idea underlying their design consists of storing just a subset of the text
positions, namely the ones that correspond to word beginnings. It is actually
easy to construct such indexes ifO(n) additional space is allowed at construction
time (n being the text size): Simply build the normal index for every position
in the text and then discard those positions which do not correspond to word
beginnings. Unfortunately, such a simple (and common, among practitioners!)
approach is not space optimal. In fact, O(n) construction time cannot be
improved, because this is the time needed to scan the input text. But O(n)
additional working space (other than the indexed text) seems too much because
the final index will need O(k) space, where k is the number of words in the
indexed text. This is an interesting issue, not only theoretically, because “. . . we
have seen many papers in which the index simply ‘is,’ without discussion of how
it was created. But for an indexing scheme to be useful it must be possible for
the index to be constructed in a reasonable amount of time” (Zobel et al., 1996).
And in fact, the working-space occupancy of construction algorithms for full-
text indexes is yet a primary concern and an active field of research (Hon et al.,
2003).

The first result addressing this issue in the word-based indexing realm is due
to Andersson et al. (1999), who showed that the so-called word suffix tree can
be constructed in O(n) expected time and deterministic O(k) working space.
In 2006, Inenaga and Takeda (2006a) improved this result by providing an
on-line algorithm which runs in O(n) time in the worst case and O(k) space in
addition to the indexed text. They also gave two alternative indexing structures
(Inenaga and Takeda, 2006b,c) which are generalizations of Directed Acyclic
Word Graphs (DAWGs) or compact DAWGs, respectively. The compact version
has the same worst case guarantees as the suffix tree, though being smaller in
practice. All of Inenaga and Takeda’s construction methods are variations of
the construction algorithms for (usual) suffix trees (Ukkonen, 1995), DAWGs
(Blumer et al., 1985) and CDAWGs (Inenaga et al., 2005), respectively.

The only missing item in this quartet is a word-based analog of the suffix
array, a gap which we close in this chapter. We emphasize the fact that, as it is
the case with full-text suffix arrays (see, e.g., Kärkkäinen et al., 2006), we get
a class-note solution which is simple and practically effective, thus surpassing
the previous ones by all means.

A comment is in order at this place. A more general problem than word-
based string matching is that of sparse string matching, where the set of points
to be indexed is given as an arbitrary set, not necessarily coinciding with the
word boundaries. Although Inenaga and Takeda (2006a,b,c) claim that their
indexes can solve this task as well, they did not take into account that search
time becomes exponential in the pattern length in this case.1 To the best of

1This fact has been acknowledged by Shunsuke Inenaga (personal communication, Dec. 2006).
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our knowledge, this problem is still open. The only step in this direction has
been made by Kärkkäinen and Ukkonen (1996) who considered the special case
where the indexed positions are evenly spaced.

7.2 Chapter Outline

We define a new data structure called the word(-based) suffix array and show
how it can be constructed directly in optimal time and space; i.e., without first
constructing the sparse suffix tree. The size of the structure is k RAM words,
and at no point during its construction more than O(k) space (in addition to
the text) is needed. This is also interesting in theory because we could compress
the text with Ferragina and Venturini’s method (2007) and then build the word-
based index in space O(k log n)+nHh +o(n) bits (including the text) and O(n)
time, simultaneously over all h = o(log n), where Hh is the h’th order empirical
entropy of the indexed text (alphabet is assumed to have constant size). If the
number k of indexed “words” is relatively “small,” namely k = o(n/ log n), this
index would take the same space as the best compressed indexes (see again
Navarro and Mäkinen, 2007), namely nHh + o(n) bits, but it would need less
space to be constructed.

As far as pattern-queries are concerned, it is easy to adapt to our word-
based suffix array the classical pattern searches over full-text suffix arrays. For
patterns of length m, we can easily show that counting queries take O(m log k)
time, or O(m + log k) if an additional array of size k is used. Note that this
reduces the number of costly binary search step by O(log(n/k)) compared with
full-text suffix arrays. We further show that it is possible to adapt the ideas from
Chapter 5, thereby lowering the time bounds for counting queries to O(m|Σ|)
and O(m log |Σ|), respectively. Reporting queries take O(occ) additional time,
independent of the search method being used, where occ is the number of word
occurrences reported.

In order to highlight the simplicity, and hence practicability, of our approach,
we extensively test our different searching methods over various data sets, which
cover some typical applications of word-based indexes: natural and artificial
language, structured data and prefix-search on hosts/domains in URLs. The
experimental results are reported in Section 7.7, there we show that word-based
suffix arrays are better than (filtered) full-text suffix arrays in terms of both
time and space of the construction and the search phases: Construction time is
twice as fast as state-of-the-art algorithms applied on full-text suffix arrays, and
the working space is lower than 20%; query time is faster by up to a factor of
three without post-filtering the word-aligned occurrences. As can be expected,
including the post-filtering makes it slower by 1–5 orders of magnitude (!),
depending on the number of pattern occurrences; so this idea is excluded from
further discussion already at this point.

Our result smoothes the way for the deep investigation of word-based Burrows-
Wheeler compressors (Isal and Moffat, 2001) and indexes (the latter being not
much investigated yet!), and for the engineering of computational linguistics and
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text mining tools based on n-grams statistics of very large document collections
(Yamamoto and Church, 2001).

7.3 Definitions

Throughout this chapter let T be a text of length n over a an alphabet Σ.
We further assume that certain characters from a constant-sized subset W of
the alphabet act as word boundaries, thus dividing T in a natural sense into
k tokens, hereafter called words. In Western languages one could think of
spaces and punctuation as being part of W ; in URL dictionaries one set W =
{., /}. Now let I be the set of positions where new words start: 1 ∈ I and
i ∈ I \ {1} ⇐⇒ Ti−1 ∈ W . (The first position of the text is always taken to
be the beginning of a new word.) Similar to Inenaga and Takeda (2006a) we
define the set of all suffixes of T starting at word boundaries as Suffix I(T ) =
{Ti..n : i ∈ I}. Then the word suffix array A[1..k] is a permutation of I such
that TA[i−1]..n < TA[i]..n for all 1 < i ≤ k; i.e., A represents the lexicographic
order of all suffixes in Suffix I(T ). We are now ready to state what we mean by
searching in a word suffix array (note the analogy to Def. 2.1):

Problem 7.1 (Word Aligned String Matching). For a given pattern P of length
m let OP ⊆ I be the set of word-aligned positions where P occurs in T : i ∈ OP

iff Ti..n is prefixed by P and i ∈ I. Then the tasks of word aligned string
matching are (1) to answer whether or not OP is empty (decision query), (2)
to return the size of OP (counting query), and (3) to enumerate the members
of OP in some order (enumeration query).

7.4 Optimal Construction of the Word Suffix Array

This section describes the optimal O(n) time and O(k) space algorithm to
construct the word suffix array. For simplicity, we describe the algorithm with
only one word separator (namely #). The reader should note that all steps
are valid and can be computed in the same time bounds if we have more than
one (but constantly many) word separators. We also assume that the set I of
positions to be indexed is implemented as an increasingly sorted array. I will
certainly be in this form if built when scanning the input string once from left
to right.

The algorithm can be summarized in the following four steps:

1. Sort the suffixes from Suffix I(T ) up to the next # (i.e., based on their
first word).

2. Build a new text T ′ from the bucket-numbers obtained in step 1.

3. Sort all suffixes from T ′ with a linear-time algorithm (Kim et al., 2005;
Ko and Aluru, 2005; Kärkkäinen et al., 2006).
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Figure 7.1: The initial radix-sorting from step 1.

4. From the suffix array of T ′, derive the word suffix array of T .

We now describe these four steps in more detail. As a running example we
use T = ab#a#aa#a#ab#baa#aab#a#aa#baa#, so I = [1, 4, 6, 9, 11, 14, 18,
22, 24, 27].

1. The task of this step is to establish a “coarse” sorting of the suffixes from
Suffix I(T ). In particular, we want to sort these suffixes using their first
word as the sort key. To do so, initialize the array A[1..k] = I. Then radix-
sort the elements in A: at each level l ≥ 0, bucket-sort the array A using
TA[i]+l as the sort key for A[i]. Stop the recursion when a bucket contains
only one element, or when a bucket consists only of suffixes starting with
w# for some w ∈ (Σ \ {#})⋆. Since each character from T is involved in
at most one comparison, this step takes O(n) time. See Fig. 7.1 for an
example, where (for illustrative purposes) we show below each position i
an initial portion of the corresponding suffix TA[i]..n, which is of course
not explicitly represented in the actual algorithm.

2. We wish to refine the initial sorting of step 1 by using known linear-
time algorithms for (full-text) suffix arrays. To prepare for this step,
we construct a new text T ′ = b(I[1])b(I[2]) . . . b(I[k]), where b(I[i]) is
the bucket-number (after step 1) of suffix TI[i]..n ∈ Suffix I(T ). In our
example, T ′ = 4121453125. (We use boldface letters to emphasize the
fact that we are using a new alphabet here.) This step can clearly be
implemented in O(k) time.

3. We now build the (full-text) suffix array SA for T ′. Because all linear-time
construction algorithms for suffix arrays (Kim et al., 2005; Ko and Aluru,
2005; Kärkkäinen et al., 2006) work for integer alphabets, we can employ
any of them to take O(k) time. See Fig. 7.2 for an example. In this figure,
we have attached to each position in the new text T ′ the corresponding
position in T as a superscript (i.e., the array I), which will be useful in
the next step.

4. This step derives the word suffix array A from SA. Scan SA from left to
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Figure 7.2: The new text T ′ and its (full-text) suffix array SA.
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Figure 7.3: The final word suffix array for our example text.

right and write the corresponding suffix to A: A[i] = I[SA[i]]. This step
clearly takes O(k) time. See Figure 7.3 for an example.

We summarize the overall result in the following theorem.

Theorem 7.1 (Optimal construction of the word suffix array). Given a text T
of length n consisting of k words, the word suffix array for T can be constructed
directly in optimal O(n) time and O(k) extra space, using only 3 integer arrays
of length k apart from the text.

Proof. Time and space bounds have already been discussed in the description
of the algorithm; it only remains to prove the correctness. This means that we
have to prove TA[i−1]..n ≤ TA[i]..n for all 1 < i ≤ k after step 4. Note that after
step 1 we have TA[i−1]..x ≤ TA[i]..y, where x and y are defined s.th. Tx and Ty

is the first # after TA[i−1] and TA[i], respectively. We now show that steps 2–4
refine this ordering for buckets of size greater than one. In other words, we wish
to show that in step 4, buckets [l : r] sharing a common prefix TA[i]..x, with Tx

being the first # for all l ≤ i ≤ r, are sorted using the lexicographic order of
Tx+1..n as a sort key. But this is simple: because the newly constructed text
T ′ from step 2 respects the order of TA[i]..x, and because step 3 establishes the
correct lexicographic order of T ′, the I[SA[i]]’s are the correct sort keys for step
4. �
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We mention that establishing T ′ (steps 1 and 2 above) could also be accom-
plished by building a trie over the input words, then assigning integer ranks to
the words by traversing it in lexicographic order, and finally substituting the
words by these ranks (cf. Andersson et al., 1999); however, we opted for the idea
based on radix-sort because the algorithm can then be implemented using only
3 integer arrays of size k in addition to T (which takes n bytes). Additionally,
this approach would counteract our aim to avoid dynamic data structures.

To further reduce the required space, we can think of compressing T before
applying the above construction algorithm by adopting an entropy-bounded
storage scheme for strings (Sadakane and Grossi, 2006; González and Navarro,
2006; Ferragina and Venturini, 2007) which allows constant-time access to any
of its O(log n) contiguous bits. This implies the following:

Corollary 7.2. The word suffix array can be built in 3k log n+nHh(T ) + o(n)
bits and O(n) time. For any k = o(n/ log n), the space needed to store this data
structure is nHh + o(n) bits, simultaneously over all h = o(log n). �

This result is interesting because it says that in the case of a tokenized text
with long words on average (e.g., a dictionary of URLs), the word-based suf-
fix array takes the same space as the best compressed (full-text) indexes (see
Navarro and Mäkinen, 2007), but it would need less space to be constructed.

7.5 Word-Based LCP-Arrays

This section defines the word-based LCP-array and shows that it can be com-
puted in O(n) time and O(k) extra space. Apart from improving the pat-
tern matching algorithms in the following section, enhancing the word suffix
array with the word-based LCP-array yields all the functionalities of the (full-
text) enhanced suffix array. E.g., with the LCP-array it is possible to simulate
bottom-up traversals of the corresponding word suffix tree (Kasai et al., 2001),
and augmenting this further with RMQ-information allows us also to simulate
top-down traversals (Thm. 5.4). Additionally, in the vein of Aluru (2006, Sec-
tion 5.3.2), we can derive the word suffix tree from LCP and A. This yields a
simple, space-efficient and memory-friendly (in the sense that nodes tend to be
stored in the vicinity of their predecessor/children) alternative to the algorithm
from Inenaga and Takeda (2006a), stated in the following

Corollary 7.3 (Constructing word suffix trees via word suffix arrays). Given
a text T of length n consisting of k words, the word suffix tree for T can be
constructed in optimal O(n) time and O(k) extra space if one first constructs
the word suffix array and the word-based LCP-array. �

Let us first formally define the LCP-array LCP[1, k] as follows: LCP[1] =
0 and for i > 1, LCP[i] is the length of the longest common prefix of the
suffixes TA[i−1]..n and TA[i]..n. For our example string, the LCP-array is LCP =
[0, 5, 3, 1, 3, 2, 1, 3, 0, 4]. We will now show that this LCP-table can be computed
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Algorithm 7.1: Word-based O(n)-time longest common prefix computa-
tion using O(k) space (adapted from Kasai et al., 2001).

LCP[1]← −1, h← 01

for i← 1, . . . , k do2

p← A−1[i], h← max{0, h −A[p]}3

if p > 1 then4

while TA[p]+h = TA[p−1]+h do5

h← h+ 16

endw7

LCP[p]← h8

endif9

h← h+A[p]10

endfor11

in O(n) time in the order of inverse word suffix array A−1 which is defined as
A[A−1[i]] = I[i]; i.e., A−1[i] tells us where the i’th-longest suffix among all
indexed suffixes from T can be found in A. A−1 can be computed in O(k) time
as a by-product of the construction algorithm (Section 7.4). In our example,
A−1 = [7, 1, 4, 3, 8, 10, 6, 2, 5, 9].

Alg. 7.1 shows how to compute the LCP-array in O(n) time. It is actually a
generalization of the O(n)-algorithm for LCP-computation in (full-text) suffix
arrays (Kasai et al., 2001). The difference from that algorithm is that the
original algorithm assumes that when going from position p (here A[p] = I[i])
to position p′ = A−1[i + 1] (hence A[p′] = I[i + 1]), the difference in length
between TA[p]..n and TA[p′]..n is exactly one (cf. Prop. 2.4), whereas in our case
this difference may be larger, namely A[p′]−A[p]. This means that when going
from position p to p′ the lcp can decrease by at most A[p′]−A[p] (instead of 1);
we account for this fact by adding A[p] to h (line 10) and subtracting p′ (i.e., the
new p) in the next iteration of the loop (line 3). At any iteration, when entering
line 4, variable h holds the length of the prefix that TA[p]..n and TA[p−1]..n are
guaranteed to have in common. Since each text character is involved in at most
2 comparisons, the O(n) time bound easily follows.

Theorem 7.4 (Optimal construction of the word-based LCP-array). The word-
based LCP-array LCP[1, k] for a text T of length n consisting of k words can be
constructed in-place in optimal O(n) time.

Proof. Follows directly from the discussion above and the fact that the trick
for in-place LCP-array-construction (i.e., linking the suffixes from Suffix I(T ) in
order of their appearance in A and overwriting these links while constructing
LCP) can also be applied to our algorithm (Manzini, 2004). �

As LCP[A−1[1]] + I[1],LCP[A−1[2]] + I[2], . . . ,LCP[A−1[k]] + I[k] is again an
increasing sequence of k integers in the range [1, n], we can also apply the
compression trick from Prop. 2.5, yielding the following
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method space usage (words) time bounds

bin-naive k O(m log k + occ)
bin-improved (1 + c)k, c ≤ 1 O((m− log(ck)) log k + occ)

bin-lcp 2k O(m+ log k + occ)
esa-search 2k +O(k/ log k) O(m|Σ|+ occ)

esa-log 2k +O(k/ log k) O(m log |Σ|+ occ)

Table 7.1: Different methods for retrieving all occ occurrences of a pattern at
word-boundaries. The full-text suffix array would have the same
time- and space-bounds, with k substituted by n >> k, and occ by
occ′ >> occ, where occ′ is the number of not necessarily word-aligned
occurrences of the pattern (i.e., before the post-filtering stage).

Corollary 7.5 (Succinct encoding of the word-based LCP-array). The word-
based LCP-array for a text of length n consisting of k words can be stored in
n+ k + o(n) bits.

Proof. Similar to Prop. 2.5, but now the bit vector H consists of k ones and
≤ n zeros. Preparing H for constant-time rank and select needs another o(n)
bits. �

7.6 Searching in the Word Suffix Array

We now consider how to search for the occ word-aligned occurrences of a pattern
P [1,m] in the text T [1, n]. Due to the lexicographic order of the word suffix
array A, suffixes from Suffix I(T ) sharing a common prefix form an interval in
A. This means that in order to solve tasks 1–3 from Probl. 7.1 it suffices to
find an interval [l : r] in A such that, for l ≤ i ≤ r, TA[i]..n are exactly those
suffixes from Suffix I(T ) that are prefixed by P : For the decision and counting
tasks we check the size of the interval, and for the the enumeration task we
return the set {A[l], . . . , A[r]} of all occ occurrences in additional O(occ) time.
As searching the word suffix array can be done with the same methods as in
the full-text suffix array we keep the discussion short (see also Table 7.1); the
purpose of this section is the completeness of exposition, and to prepare for the
experiments in the following section.

7.6.1 Searching in O(m log k) Time

Because A is sorted lexicographically, it can be binary-searched in a similar
manner to the original search-algorithm from Manber and Myers (1993). Be-
cause this algorithm is the basis for the remainder of this section, we sketch it
in Alg. 7.2. This algorithm needs actually be called twice: once for searching
the left border l as it is shown in the figure, and a second time when search-
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Algorithm 7.2: How to locate the leftmost index of P in A in O(m log k)
time. As a by-product, the algorithm also calculates the initial search in-
terval [l1 : r1] for the rightmost index (lines 7–9).

Input: pattern P of length m
Output: P ’s leftmost index l in A

if P ≤ TA[1]..m then return 11

else if P > TA[k]..m then return k + 12

else3

(l, r)← (1, k), found ← false4

while r − l > 1 do5

M ← (l + r)/26

if P = TA[M ]..m ∧ found = false then7

l1 ←M, r1 ← r, found ← true {start-interval for next call}8

endif9

if P ≤ TA[M ]..m then r ←M10

else l←M11

endw12

endif13

return r {this is the left boundary!}14

ing for the right border r. In the latter case, the search interval is initialized
with [l1, r1] instead of [1, k] (line 4); these values have been computed as a by-
product during the search for l (lines 7–9). The resulting search algorithm is
called bin-naive from now on.

We can also apply the two heuristics proposed by Manber and Myers (1993)
to speed up the search in practice, though not in theory (the resulting search
algorithm is called bin-improved). The first of these heuristics is used to narrow
down the initial search interval in A. It builds an additional array B of size
|Σ|ℓ (ℓ to be defined presently), where B[a] points to the first entry i in A
s.th. TA[i]..n is prefixed by a ∈ Σℓ. Then the search for P can certainly be
limited to the interval [B[P1..ℓ] : B[P1..ℓ + 1]] in A, where P1..ℓ + 1 denotes
the lexicographically next string of P1..ℓ. In practice it is advisable to choose
ℓ = log|Σ|(ck) for a constant c ≤ 1; then the additional space needed is bounded
by k.

The second heuristic reduces the number of character comparisons by remem-
bering the number of matching characters from T and P that have been seen
so far. Imagine the current search interval in A is [l : r], so we want to com-
pare P to TA[(l+r)/2]..n. Instead of starting the comparison at each step from
scratch, suppose we know that l′ initial characters of P match with TA[l]..n,
and r′ characters with TA[r]..n. Because of the lexicographic ordering of A we
then know that the first min{l′, r′} characters of P match with TA[(l+r)/2]..n,
so these comparisons can be saved. As the values l′ and r′ are obtained as a
by-product of the string-matching (lines 7/10) during the binary search, this
second heuristic constitutes no extra work.
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7.6.2 Searching in O(m + log k) Time

Like in the original article by Manber and Myers (1993) the idea is to precom-
pute the longest common prefixes of TA[(l+r)/2]..n with both TA[l]..n and TA[r]..n

for all possible search intervals [l : r]. The key insight for this technique is that
there are only k possible such search intervals (imagine a perfect binary tree on
top of A!), so these precomputations only use linear time and space. Footnote 6
in their article actually shows that only one of these values needs to be stored,
so the additional space needed is one array of size k. We refer the reader to
the original article for a complete description of the algorithm (which we call
bin-lcp from now on).

With the word-based LCP-array we also have a succinct version of the O(m+
log k)-time pattern search: compute LCP and rmqLCP, using a total of n+3k+
o(n) bits (Cor. 7.5 and Thm. 3.11). These two tables give access to the longest
common prefixes needed in the binary search (because they give access to all
longest common prefixes).

7.6.3 Searching in O(m|Σ|) and O(m log |Σ|) Time

While the previous two searching algorithms have a searching time that is inde-
pendent of the alphabet size, we show in this section how to locate the interval
of P in A in O(m|Σ|) time. We note that in the special but (at least theo-
retically) highly relevant case where the alphabet size is constant this actually
yields optimal O(m) counting time and optimal O(m+ occ) enumeration time.

The techniques for searching are similar to the ones presented in Chapter 5:
in order to achieve O(m|Σ|) matching time, we use the LCP-array from the
previous section, plus the RMQ-information on the LCP-array. In total, this
information uses k + o(k) words (using the non-succinct representation of the
word-based LCP-array) or n+3k+o(n) bits (using the succinct representation)
of space, and can be computed in O(k) time. Call the resulting method esa-
search (for Enhanced Suffix Array). We have also seen in Chapter 5 that with
a slightly different RMQ-precomputation it is possible to achieve O(m log |Σ|)
matching time (Sect. 5.5). Call the resulting method esa-log.

We summarize the different search algorithms in the following theorem (see
also Tbl. 7.1).

Theorem 7.6 (Pattern Matching in the Word Suffix Array). The number of
word-aligned occurrences of a pattern P of length m in a text T consisting of
k words can be found in alphabet-independent O(m log k) time using the word
suffix array, or in O(m+log k) time with the help of the word-based LCP-array.
Text-independent string matching can be done in O(m|Σ|) or O(m log |Σ|) time,
using another structure of size O(k/ log k) words in addition to the suffix- and
LCP-array. �
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data set size (MB) |Σ| word separators used

English 333 239 LF, SPC, -
XML 282 97 SPC, /, <, >, ”

sources 201 230 LF, SPC, TAB, ., ,, *, [, (, :, +, -
URLs 70 67 LF, /

random 250 2 SPC

data set number of words different words avg. word length

English 67,868,085 1,220,481 5.27
XML 53,167,421 2,257,660 5.60

sources 53,021,263 2,056,864 3.98
URLs 5,563,810 533,809 13.04

random 10,000,001 9,339,339 26.0

Table 7.2: Test-files used for experimental evaluation and their characteristics.
In the word separator column, LF stands for “line feed,” SPC for
“space,” and TAB for “tabulator.”

7.7 Experimental Results

The aim is to show the practicability of our method. We implemented the
word suffix array in C++ (available at www.bio.ifi.lmu.de/˜fischer ).
Instead of using a linear time algorithm for the construction of full-text suffix
arrays, we opted for the method from Larsson and Sadakane (1999) because
it is known to be fastest in practice among those algorithms that work with
integer alphabets (Puglisi et al., 2005).2 We implemented the search strategies
bin-naive, bin-improved, bin-lcp and esa-search from Table 7.1.3 Unfortunately,
we could not compare to the other word-based indexes (Inenaga and Takeda,
2006a,b,c) because there are no publicly available implementations.

For bin-improved we chose c = 1/4, so the index occupies 1.25k memory
words (apart from T , which takes n bytes). For the RMQ-preprocessing of
the esa-search we used the method from Alstrup et al. (2002) which is fast
in practice, while still being relatively space-conscious (about 1.5k words; see
Sect. 3.8). With the LCP-array and the suffix array this makes a total of
≈ 3.5k words. We also performed tests with the “engineered” representation
of RMQ-information from Sect. 3.8, thereby lowering the space consumption of
esa-search, while leading to an increase in query times by a factor of roughly
2. But as we will see presently that even with Alstrup et al.’s RMQ-method
the query time of esa-search is hardly competitive with the other methods, we
opted for showing the results based on the fastest RMQ-algorithm.

2Apart from the input array, the algorithm from Larsson and Sadakane (1999) needs just
one additional array of size k. As this space can be re-used for the final word-based suffix
array, this constitutes no extra space.

3We did not include the strategy esa-log, as we expect its overhead to pay off only for very
large alphabets.

www.bio.ifi.lmu.de/~fischer
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data set bin-naive bin-improved bin-lcp esa-search peak 1–3

English 600.2 664.2 859.1 1,296.0 1,118.0
XML 485.2 485.5 688.1 1,024.3 890.9

sources 403.4 403.6 605.6 940.6 807.9
URLs 90.4 90.7 111.6 145.1 132.9

random 286.1 286.3 324.2 385.0 362.4

Table 7.3: Final space consumption (including the text) for the four different
search algorithms. The column labeled “peak 1–3” gives the peak
space consumption at constructing time for methods bin-naive, bin-
improved and bin-lcp. The peak space consumption for esa-search is
that of the final index.

We tested our algorithms on the files “English,” “XML,” and “sources” from
the Pizza & Chili-site (Ferragina and Navarro, 2005), some of them truncated,
plus one file of URLs from the .eu domain.4 These files cover some typical
applications of word-based indexes: natural language, structured data, and
prefix- or path-search on hosts/domains in URLs. To test the search algorithms
on a small alphabet, we also generated an artificial data set by taking words of
random length (uniformly from 20 to 30) and letters uniformly from Σ = {a, b}.
See Table 7.2 for the characteristics of the evaluated data sets. All tests were
performed on an Athlon XP 3300 with 2GB of RAM under Linux. All programs
were compiled with g++, using the options “-O3 -fomit-frame-pointer -funroll-
loops.”

Table 7.3 shows the space consumption for the four different search methods.
The first four columns show the space (in MB) of the final index (including the
text) for the different search algorithms it can subsequently support. Column
labeled “peak 1–3” gives the peak memory usage at construction time for the
methods in the first three columns; the peak usage for method esa-search is
the same as that of the final index. Concerning the construction time, Tbl. 7.4
shows that most part of the preprocessing time is needed for the construction
of the pure word suffix array (method bin-naive); the preprocessing times for
the other methods are only slightly longer than that for bin-naive, with bin-
improved being the fastest and esa-search being the slowest.

To see the advantage of our method over the naive algorithm which prunes
the full-text suffix array to obtain the word suffix array, Table 7.5 shows the
construction times and peak space consumption of two state-of-the-art algo-
rithms for constructing (full-text) suffix arrays: MSufSort in its latest version
3.0 (Maniscalco and Puglisi, 2007), and deep-shallow (Manzini and Ferragina,
2004). Note that the figures given in Table 7.5 are pure construction times for
the full-text suffix array; pruning this is neither included in time nor space.
First look at the peak space consumption in Table 7.5. MSufSort needs about
7n bytes if the input text cannot be overwritten (it therefore failed for the

4Available at http://law.dsi.unimi.it/index.php . Last access in January 2007.

http://law.dsi.unimi.it/index.php
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data set bin-naive bin-improved bin-lcp esa-search

English 533.64 558.89 631.57 639.95
XML 328.38 341.95 370.88 377.54

sources 281.12 295.95 323.04 329.74
URLs 45.75 46.60 47.14 47.97

random 224.75 228.17 239.89 241.33

Table 7.4: Preprocessing times for the four different search algorithms.

peak space consumption (MB) construction time
data set MSufSort-3.0 deep-shallow MSufSort-3.0 deep-shallow

English — 1,365.3 — 755.8
XML 1,976.9 1,129.7 363.9 410.8

sources 1,407.7 804.4 193.4 260.6
URLs 484.3 276.7 75.2 71.0

random 1,735.6 991.8 452.7 332.2

Table 7.5: Space consumption (including the text) and construction times for
two different state-of-the-art methods to construct (full-text) suffix
arrays.

largest data set), and deep-shallow needs about 5n bytes. These two columns
should be compared with the column labeled “peak 1–3” in Table 7.3, because
this column gives the space needed to construct the pure word suffix array (i.e.,
12k + n bytes in our implementation). For all but one data set our method
uses significantly less space than both MSufSort (20.9–57.4%) and deep-shallow
(36.5–81.9%). Only for file “sources” space consumption is more or less that of
deep-shallow, because it consists of relatively short words compared to the other
files; cf. Table 7.2. For the construction time, compare the last two columns
in Table 7.5 with the preprocessing time for bin-naive in Table 7.4. Again, our
method is almost always fastest (49.6–90.1% and 64.4–80.2% advantage over
deep-shallow and MSufSort, respectively); the difference would be even larger
if we did include the time needed for pruning the full-text suffix array in order
to get the word-based one.

We finally tested the different search strategies themselves. In particular,
we posed 300,000 counting queries to each index (i.e., determining the inter-
val of pattern P in A) for patterns of length 5, 50, 500, 5,000, and 50,000.
The results can be seen in Fig. 7.4–7.6.5 We differentiated between random
patterns (sub-figures (a)) and occurring patterns (b). In the former case we
searched for arbitrary sub-strings from the input text, and in the latter case
we only searched for sub-strings starting at word boundaries. There are several
interesting points to note. First, the improved binary search is almost always

5We omit the results for the sources- and URLs-data sets as they strongly resemble those
for the XML-data set.
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Figure 7.4: Practical performance of the algorithms from Section 7.6 on the
English data set (average over 300,000 counting queries; time for
index construction not included). All axes have a logarithmic scale.
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Figure 7.5: Practical performance of the algorithms from Section 7.6 on the
XML data set (average over 300,000 counting queries; time for index
construction not included). All axes have a logarithmic scale.
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Figure 7.6: Practical performance of the algorithms from Section 7.6 on the
random data set (average over 300,000 counting queries; time for
index construction not included). All axes have a logarithmic scale.
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the fastest; the difference to the other methods is even more significant for the
randomly generated patterns. Second, the esa-search is not competitive with
the other methods, apart from very long occurring patterns on a very small
alphabet (Fig. 7.6 (b)). And third, the query time for the methods based on
binary search can actually be higher for short patterns than for long patterns
(Fig. 7.4). This is the effect of narrowing down the search for the right border
when searching for the left one (cf. Alg. 7.2). Because short patterns tend to
occur very often (especially in English texts), searching for the right border
starts with a relatively large initial search interval when the patterns are short
and thus takes more time.

Finally, to see the impact of the reduced number of binary search steps, we
also posed the same queries to a full-text suffix array (without post-processing
the results). As matching times increased by a factor of 2–3 for both bin-naive
and bin-improved, these curves are not included in the graphs.

7.8 Conclusions

We have seen a space- and time-optimal algorithm to construct suffix arrays on
words. The most striking property is the simplicity of our approach, reflected in
the good practical performance. This supersedes all the other known approaches
based on suffix trees, DAWG and compact DAWG.

As future research issues we point out the following two. In a similar man-
ner as we compressed T (Corollary 7.2), one could compress the word-based
suffix array A by probably resorting the ideas on word-based Burrows-Wheeler
Transform (Isal and Moffat, 2001) and alphabet-friendly compressed indexes
(Ferragina et al., 2007). This would have an impact not only in terms of space
occupancy (i.e., better modeling of T , and thus better compression), but also
on the search performance of those indexes because they execute O(1) random
memory-accesses per searched/scanned character. With a word-based index
this could be turned to O(1) random memory-accesses per searched/scanned
word, with a significant practical speed-up in the case of very large texts pos-
sibly residing on disk.

The second research issue regards the sparse string-matching problem in
which the set of points to be indexed is given as an arbitrary set, not nec-
essarily coinciding with word boundaries. As pointed out in the introduction,
this problem is still open, though being relevant for texts such as biological
sequences where natural word boundaries do not occur.



Summary of Notation

notation meaning

A[1, n] array of n numbers indexed from 1 to n
A[i, j] subarray of A[1, n] containing A[i], A[i + 1], . . . , A[r]
A ◦B concatenation of arrays A and B
[l : r] set of integers {l, l + 1, . . . , r}
log n binary logarithm of n
lnn natural logarithm of n

log[k] n log log . . . log n (there are k log’s)

log∗ n iterated logarithm: min{k : log[k] ≤ 1}
Σ = {a, b, . . . } alphabet containing letters a, b, . . .

Σk (Σ⋆) set of length-k (or all) strings over Σ
T1..n ∈ Σ⋆ (ǫ ∈ Σ⋆) string with symbols T1, . . . , Tn ∈ Σ (or empty string)

Ti..j substring of T ranging from symbol i to j (or ǫ if j < i)
|S| (a) set size, (b) string length if S ∈ Σ⋆

S < T S ∈ Σ lexicographically less than T ∈ Σ
S E T (S ⊑ T ) S is a substring (or prefix) of T

SA suffix array for T , defined by TSA[i−1]..n < TSA[i]..n

SA−1 inverse suffix array, defined by SA[SA−1[i]] = i
lceT (i, j) length of longest common prefix of Ti..n and Tj..n

LCP LCP-array, defined by LCP[i] = lceT (SA[i],SA[i− 1])
Hk(T ) k’th order empirical entropy of T ∈ Σ⋆

rankp(B, i) number of occurrences of p in B[1, i]
selectp(B, i) position of i’th occurrence of p in B

Tv subtree of T rooted at v if T is a rooted tree
rmqA(l, r) range minimum query: arg mini∈[l:r]{A[i]}
〈p(n), q(n)〉 preprocessing scheme for RMQ with construction time

p(n) & query time q(n)
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118 Summary of Notation

notation meaning

Js(n), t(n)K preprocessing scheme for RMQ with peak space con-
sumption s(n) & final space t(n)

Ccan(A) (Ccan
i (A)) Canonical Cartesian Tree of array A (or A[1, i])

Cext(A) (Csup(A)) Extended (or Super) Cartesian Tree of array A

Cs (Ĉs) s’th Catalan (or Super Catalan) Number

Cpq (Ĉpq) Ballot (or Super Ballot) Numbers
lcaT (v,w) lowest common ancestor of nodes v and w in tree T

x << k x shifted left k bits: ⌊2kx⌋
OR bitwise logical “or”

ℓ− [l : r] ℓ-interval in LCP from l to r
rmqmed range-pseudo-median-of-minima-query
D ⊆ Σ⋆ (multi-)set of strings over Σ
|D| number of strings in D
‖D‖ total length of strings in D:

∑

φ∈D |φ|
freq(φ,D) number of strings in D containing φ ∈ Σ⋆

supp(φ,D) support of φ, defined as freq(φ,D)/|D|
growthD2→D1

(φ) growth-rate of φ, defined as supp(φ,D1)/supp(φ,D2)
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K.-B. Schürmann and J. Stoye. Counting suffix arrays and strings. In Proc.
SPIRE, volume 3772 of LNCS, pages 55–66. Springer, 2005.
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