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Introduction 

Dental research over the last century has advanced our understanding 

of the aetiology and pathogenesis of caries lesions (Aoba, 2004). Evidence 

that caries is an initially reversible chronic disease with a known multi-

factorial aetiology is being appreciated more widely (Pitts, 2004) in which 

numerous episodes of de- and remineralization rather than an unidirectional 

demineralization process (Kawasaki and Featherstone, 1997; Bjorndal and 

Mjör, 2001; Aoba, 2004) result in numerous minute pH fluctuations at the 

interface between the tooth surface and the microbial deposits (Baelum and 

Fejerskov, 2003). The presence of this microbial biofilm and the constant 

metabolic activity taking place within it, is believed to be the all-important 

driving force for caries to occur (Baelum and Fejerskov, 2003; Kidd 2004). 

Thus, better understanding the caries aetiology, pathogenesis and activity 

together with the development of a standard international system for caries 

detection and lesion assessment (Pitts, 2004) have to determine the quality 

and quantity of dentinal carious tissue to be removed before restoration to 

insure arrestment of carious process (Kidd, 2004), and to avoid bacterial 

reactivation and caries re-initiation (Foley and Blackwell, 2003). 
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Dentinal Lesions in Clinical Practice 

Chapter 1 

The aim of the following review is to discuss the scientific basis of 

preservative dentistry, and to relate these principles and basis to clinical 

practice. Both the caries process and caries lesions will be described. 

Clinical criteria for caries removal, various caries removal methods and the 

clinical studies which have been carried out in this area are reviewed, too. 

Composition of Sound Dentin 

70 wt% (50 vol%) of dentin is of an inorganic phase in which 

carbonated calcium phosphate micro-crystals form the major portion while 

part of this mineral phase may not be apatitic (Nikiforuk, 1985a). These 

crystals are of 50-60 nm long and 3-30 nm thick (ten Cate et al., 2003). The 

dentin crystallites are well known to be smaller (Nikiforuk, 1985a; ten 

Cate, 2001) and less systematically oriented (LeGeros, 1990) than enamel 

crystallites, resulting in an increased surface area and rapid dissolving rate 

under acid attacks (Ostrom, 1980). Dentin hydroxyapatites are located 

within an organic matrix that forms 20 wt% of dentin, the remainder 10 

wt% is water.  

Organic Dentin material contains 90% collagen and 10% non-

collagenous compounds (NCC) (Beeley et al., 2000; Heinrich-Weltzien and 

Kneist, 2001). Collagen type I is the predominant collagen in dentin (89%), 

type I trimer is 11% and 1% is of types III, V, VI (Heinrich-Weltzien and 

Kneist, 2001). Dentin collagen forms a fibrous three-dimensional network 

which remineralizes to provide the fundamental building blocks of dentin 

(Balooch et al., 2004). Collagen molecules are composed of the amino 

acids proline, glycine, hydroxylysine and hydroxyproline (Kuboki et al., 
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1977; Beeley et al., 2000) in which glycine has to be the third residue in the 

amino acid sequence (Butler and Richardson, 1980; Kleter, 1997), proline 

occupies almost 40% of the X positions and hydroxyproline occupies 30% 

of the Y positions of the repeating sequence in each chain (Butler and 

Richardson, 1980). These amino acids are bonded to each other through 

peptide bonds forming polypeptide α chains [α1(I)]2α2. Every three 

polypeptide α chains are twisted about each other in a supercoiled form 

into the tropocollagen triple helix (Habelitz et al., 2002). The triple helix 

contains 1011 residue per α chain and is flanked by short non-helical ends 

which compose of 6-25 residues per α chain (Kleter, 1997). Each 

tropocollagen triple helix together with its non-helical ends constitutes a 

collagen molecule which is rod-like in shape, 300 nm long and 1.5 nm in 

diameter (Butler and Richardson, 1980). The tropocollagen subunits 

orientate parallel to each other to form the fibrils (Habelitz et al., 2002). 

Direct and water mediated hydrogen bonds between carbonyl groups and 

amide, hydroxyproline or another carbonyl groups in the same α chain 

(intramolecular) and between different α chains (intermolecular) form the 

collagen covalent cross-links (Brodsky and Ramshaw, 1997). However, 

there are four intermolecular cross-links materials in collagen fibres of 

sound dentin; they are dihydroxynorleucine, hydroxynorleucine, 

dihydroxylysinorleucine and hydroxylysinorleucine in which the first two 

are precursors of cross-links (Kuboki et al., 1977). These cross-links 

connect the non-helical extension of one molecule with the adjacent helical 

part of another molecule (Kuboki et al., 1993). The distinctive arrangement 

of the adjacent collagen molecules combined with gap zones between the 

ends of the successive molecules lead to the formation of alternating 

specific bands or what is the so called D-distance that ranges between 60 

and 67nm depending at the hydration of the fibrils (Balooch et al., 2004). 

The fibrils’ mechanical stability, insolubility, and acid and thermal 
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resistance are due to these covalent bonds forming the intra- and inter-

molecular cross-links within the fibril (Beeley et al., 2000; Heinrich-

Weltzien and Kneist, 2001). When collagen is irreversibly degenerated, 

these cross-links are broken, the banding pattern is disappeared and 

collagen molecules are destructed; this will result in the so called 

denaturated collagen (Kuboki et al., 1977) which is irreversibly damaged 

and degenerated.  

Dentin cellular and extra-cellular proteins are synthesized, controlled 

and secreted by the odontoblasts (Goldberg and Smith, 2004). The 

unmineralized extra-cellular matrix (predentin) changes into dentin as the 

collagen mineralize (Butler, 1998). NCP mostly glycoproteins and 

proteoglycans cover the collagen fibrils (Habelitz et al., 2002). 

Phosphoproteins which are the most abundant NCP found to be critical for 

proper biomineralization of dentin in which they induce mineral nucleation 

(Fujsawa and Kuboki, 1998; Baolooch et al., 2004) but only when they are 

in low amounts (Lussi et al., 1988; Clarkson et al., 1998; Saito et al., 1998) 

and only when the negatively charged phosphate esters bound covalently to 

the positively charged collagen gap zones (Saito et al., 1997). This is 

followed by binding of calcium and phosphate to the resultant three 

dimensional protein conformations within these regions initiating plate-like 

apatite crystal formation (Butler, 1998; Ritchie et al., 1998; Saito et al., 

2000). Therefore, collagen has been considered the structural backbone of 

dentin (ten Cate et al., 2003), which holds together the apatite crystals in a 

proper orientation on (extrafibrillar) and in between (intrafibrillar) its fibers 

(Klont and ten Cate, 1991; Kinney et al., 2003; Balooch et al., 2004). 

Moreover, it provides stable support for the NCPs and the proteoglycans 

(Lussi and Lindi, 1993; Saito et al., 2000). The different organizational 

levels of collagen are shown in fig 1.1 (Butler and Richardson, 1980). 
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Fig 1.1. The different organizational levels of collagen (Butler and Richardson, 
1980). 

A. Amino acid sequence – the general form of the amino acid sequence found in a 
helical portion of an α chain is (Gly-X-Y)n. 

B. Minor helix – this diagram illustrates the fact that an individual α chain twists into 
a helix with three amino acid residues (represented by balls) per repeat. 

C. Major helix – three polypeptide α chains are coiled about each other to form the 
triple helix. Each end of all three chains is nonhelical. Single collagen molecules of this 
form are represented by elongated arrows about 300nm long.  

D. Collagen fibrils – a large number of collagen molecules aggregate in a staggered 
way to form a fibril large enough to be seen by electron microscopy. The staining 
procedure reveals that bands in the fibril repeat about every 68nm.  

E. Connective tissue – collagen fibrils are laid down into bundles to form networks of 
stable fibers in extracellular spaces. The fibers are large enough to be seen by light 
microscopy. The tissues also contain other interfibrillar materials such as proteoglycans.  
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The non-collagenous matrix consists of non-collagenous proteins 

(NCP) and non-proteinaceous components (NPC) (Heinrich-Weltzien and 

Kneist, 2001). Dentin phosphoprotein (DPP) and dentin sialoprotein (DSP) 

are thought to be unique dentin proteins (Butler, 1998), however, it seems 

that bone cells synthesize also these proteins but in a ratio of 1:400 to that 

of dentin (Quin et al., 2002; Goldberg and Smith, 2004). Phosphoproteins 

which are the dominant components of the NCC (Nikoforuk, 1985) are 

found in the dentin matrix in two forms; 90% are soluble (electrostatically 

bound to collagen) in a free form, and the other 10% are insoluble 

(bounded phosphophoryn) in inextricable form (Lussi et al., 1988; Saito et 

al., 2003). They are composed mainly of aspartic acid residues (40-50%) 

and serine and phosphoserine (35-40%) (Saito et al., 2003). They were 

found to be critical for proper biomineralization of dentin in which they 

induce mineral nucleation (Fujisawa and Kuboki, 1998; Baolooch et al., 

2004) but only when they are in low amounts (Lussi et al., 1988; Clarkson 

et al., 1998; Saito et al., 1998) and only when the negatively charged 

phosphate esters bound covalently to the positively charged collagen gap 

zones which traverse the negatively charged type I collagen fibrils forming 

phosphodiester bonds (Saito et al., 1997). This is followed by binding of 

calcium and phosphate to the resultant three dimensional protein 

conformations within these regions initiating plate-like apatite crystal 

formation (Butler, 1998; Ritchie et al., 1998; Saito et al., 2000). However, 

controlling the size and the orientation of crystals’ growth, which are 

positively charged due to high calcium concentrations, is influenced by the 

binding capacity of these phosphoproteins and their abundance in the 

matrix, mainly when collagen is degraded and they are extensively released 

in a soluble form (Lussi et al., 1988; Clarkson et al., 1991; Lussi and Linde, 

1993; Saito et al., 1997, 1998; Butler, 1998; Clarkson et al., 1998; Ritchie 

et al., 1998; Saito et al., 2003). Moreover, the reconstituted collagen fibrils 
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alone and the DPP adsorption to these fibrils do not induce mineral 

formation; thus irreversible binding of cross-linked phosphophoryn to the 

insoluble collagen is essential for mineral induction (Ritchie et al., 1998). 

For more details concerning DPP, the reader is advised to review the 

mentioned references. The organic and inorganic components of dentin are 

shown in tables 1.1 and 1.2. 
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Table 1.1. The organic and inorganic components of sound Human dentin 

(Adapted from Tissue Preservation in Caries Treatment, 2001) 

Inorganic Components                       Organic Components 

Ions Percentag 

(dry weight) 

Non Collagenous Matrix Collagen  

 

Calcium 

 

 

25.1% 

 

Non collagenous 
Proteins 

Non Proteinaceous Components Type I 

Phosphate  

13.9% Glucosaminog-lycn  Type I trimer 

  

Carbonate 

 

 

4.5% 

 

Chondroitin -4- 
sulphate  

 

Magnesium 

 

0.85% 

Type III 

 

 

 

Sodium 

 

 

0.54% 

 

Chondroitin -6- 
sulphate 

 

Potassium  

 

 

0.019% 

 

Type V 

 

 

 
Dermatan sulphate  

 

 

 

Chloride 

 

 

0.072% 

 

 

 

Fluoride 

It is higher than 
bulk enamel 
fluoride 
concentration 
and it increases 
with deeper 
layers 
(Fejerskov and 
Kidd, 2003). 

Components are 
in table 2. 

Hyaluranate 

Lipids 

Phospholipi-
ds 

Type VI 
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Table 1.2. The Non-Collagenous Proteins 

(Adapted from Tissue Preservation in Caries Treatment, 2001) 

Non Collagenous Proteins 

Specific 
Dentin Protein 

Mineral Tissue 
Associated 
Matrix 
Components 

Serum 
Derived 
Proteins 

Growth 
Factors 

(Goldberg  

and Smith, 
2004) 

Matrix 
Metalloproteina-
ses (MMPs) 

Enamel 
Proteins 

Dentin Matrix 
Protein 1 

 

Osteopoitin 

 

Phosphophor-
yn (50% wt) 

-It has an 
important role 
to play in 
remineralizati-
on through 
crystal 
nucleation 
initiation and 
growth 
inhibition.  

(Discussed in 
text) 

Osteocalcin 

Bone 
Sialoprotein 

 

Dentin 
Sialoprotein 

-(5-8%wt) 
(Ritchie et al., 
1998) 
- It is related to 
phosphoproteins 
and coded by the 
same gene 
(located on 
human 
chromosome 4), 
so it is believed 
that it has to have 
a role in 
remineralization 
(Butler, 1998).  

Biglycan 
Decorin 

Lumican 

Albumin - TGF-ß1 

-Insulin-
like 
Growth 
Factor-1 
(IGF-1) 

-Bone 
Morphog-
enic 
Protein-2 

(BMP-2) 

MMPs and other 
tissue inhibitors 

7K Da 
chondro-
genic 
protein 
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Dentinal Tubules and Fluid 

Dentinal Tubules contained in dentin matrix are important structural 

features which have to be mentioned when talking about dentin 

composition. These tubular structures act as diffusion channels, permitting 

the flow of ions, molecules and fluids such as acids (hydrogen ions), 

fluoride and dentinal fluid toward the pulp or/and outward. The direction of 

the flow of the tubules’ contents is influenced by the osmotic pressure 

exerted by tissue fluid within the pulp; so, hypotonicity at the dentin 

surface causes inward water flow while hypertonicity moves it out 

(Ostrom, 1980). Although no significant correlation was found between the 

flow rate of dentinal fluid and dentin demineralization, mineral contents of 

in vitro dentinal lesions were higher and the lesion’s depth was less when 

they were perfused with simulated dentinal fluid (SDF) than others perfuse 

with water (Özok et al., 2004). It is thought to be due to interaction 

between the demineralizing buffer and dentinal fluid which resulted in 

precipitation of minerals from the tubular fluid and/or dissolved peritubular 

dentin (Özok et al., 2004). The density and orientation of these tubules 

together with the hardness of the intertubular dentin and tissue mineral 

state play an important role in determination the hardness of sound dentin, 

in which softer dentin can be found at the Dentino-enamel Junction (DEJ) 

and at the pulpal surface due to these tubules (Banerjee et al., 1999). 

Moreover, dentin permeability also increases toward the pulp due to the 

high tubule number (which increases from 15.000 tubule/mm2 in the outer 

third of dentin up to 35.000-55.000 tubule/mm2 near the pulp) (Heinrich-

Weltzien and Kneist, 2001) and increased diameter from 3µm to 5µm in 

the same direction (Ostrom, 1980). This increase in number and diameter 

will decrease and even eliminate the protective effect of the dentinal flow 

against demineralization (Özok et al., 2004). However, with age (Ostrom, 

1980) or/and chronic irritation (trauma, caries) they become smaller in 
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diameter due to progressive deposition of peritubular dentin (Ostrom, 1980; 

Fejerskov and Kidd, 2003) which is absent near the pulp (Murray et al., 

2003; Hara et al., 2005). Moreover, dentinal tubules are occupied with 

odontoblastic processes, but they are limited to the inner dentin in humans 

and do not extend to the DEJ (Weber and Zaki, 1986). Although other 

studies reported that these processes are extended through the whole dentin 

up to DEJ (La Fleche et al., 1985). 

 

Caries Process 

The outlines of caries mechanism can be summarised as follows: 

Metabolically active cariogenic bacteria in a biofilm (in particular 

Streptococcus mutans and Lactobacilli) + carbohydrates (mostly succrose) 

→→ anaerobic fermentation →→ acids (such as lactic, acetic, propionic, 

butyric, formic and succinic acids) →→ enamel minerals dissolve →→ if 

the process progresses →→ acid penetration through the dentinal tubules 

→→ subsequent bacterial invasion →→ reduction in pH in the dentin 

environment →→ acidogenic aciduric bacteria lead to further acid attack 

→→ demineralization continues in dentin →→ degradation of collagen 

and other matrix components →→ bacterial proteases and hydrolases →→ 

digestion of the organic matrix →→ further demineralization and mineral 

dissolution →→ more organic matrix is degraded to be digested →→ if the 

process progresses, it will end with pathological  pulp involvement. 

However, it is now assumed that the caries process can be arrested at 

any stage if the bacterial biofilm can be disturbed and remineralization is 

allowed to take place. 
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Arrested and Active Lesions 

Sarnat and Massler (1965) showed that these two lesion types are 

closely related in respect to their layers, suggesting that as progression of 

the caries process slows or ceases, changes occur which modify its 

appearance (Sarnat and Massler, 1965). 

Schüpbach et al. (1992) concluded from previous studies that the main 

differences between active and arrested lesions are: 

1- The higher content of minerals in the surface layer of the arrested 

lesions. 

2- Viable bacteria are absent in dentinal tubules of the arrested 

lesions. 

3- The latter are impermeable to dyes and isotopes. 

4- The great resistance of these arrested lesions to acid dissolution 

and proteolytic enzymes activity. 

The first characteristic point for the arrested lesions has its implication 

in clinical practice since sometimes restoring an arrested lesion is required 

due to aesthetics reasons (Hara et al., 2004). Bonding to such lesions 

showed low tensile strength and lack of tag formation (Hara et al., 2004). 

Moreover, no hybrid layer was observed in the same mentioned paper. 

These results are not surprising since the bonding between this layer and 

the adhesive to be used through tag formation is prevented by intra-tubular 

occlusion (Franklin and Pashley, 2004; Hara et al., 2004; Nakajima et al., 

2004) and the micromechanical interlocking between the monomer and the 

intertubular dentin will be minimized by the heavily mineralized collagen 

and bacteria in these areas (Franklin and Pashley, 2004; Hara et al., 2004). 

Although increasing the acid etching time to the highly acid resistant layer 

will increase the depth of the demineralized dentin, it will -at the same 

time- decrease the tensile bond strength and create an extensive 
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demineralized layer which could not be totally enveloped with monomer, 

resulting in a weak point and microleakge (Piemjai et al., 2004). However, 

extending the bonding to include peripheral sound dentin was another 

suggestion (Franklin and Pashley, 2004). Other alternatives and suitable 

treatments to improve adhesion between such substrates and resins should 

be investigated. 

Clinically, an arrested lesion is diagnosed as dark-brown or even black 

discolored lesion (Schüpbach et al., 1992), with a smooth and shiny surface 

(Miller and Massler, 1962) that is hard on probing with moderate pressure 

(Fejerskov and Nyvad, 1986). 

The dark brown discoloration in such lesions is thought to be due to 

the melanin from amino acids and carbohydrates derivatives, and 

degenerated bacteria or/and their proteins and nucleic acids degradation 

products (Sarnat and Massler, 1965). Millard reaction (sugar-protein 

reaction) which modifies amino acids in collagen making them more 

resistant to enzymatic degradation and proteolytic attacks (Kleter et al., 

1998; Beeley et al., 2000) seems the most accountable possibility for lesion 

discoloration (Kleter, 1998). In the deep, acidic and anaerobic environment 

the Millard reaction occurs with small aldehydes (bacterial metabolism 

derivatives), at the outer surface oxidation can permit the melanin and 

lipofuscin participation and discoloration (Kleter, 1998). However, when 

the lesion is exposed to the oral environment external pigments can add to 

the biochemical reactions in collagenous dentin (Fejerskov and Kidd, 

2003). 

Histologically, an arrested dentinal lesion, whether it is a coronal or 

root dentin lesion, is sandwiched between two highly mineralized layers; 

the hypermineralized surface layer and the sclerosed white opaque sclerotic 

zone. The contents of the intertubular dentin in the hypermineralized 
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surface layer are calcified and heavily mineralized, while the lumina of the 

dentinal tubules in the sclerotic zone are filled with calcified contents 

(Sarnat and Massler, 1965; Schüpbach et al., 1992). Detailed description of 

such lesions is written in the mentioned references (Sarnat and Massler, 

1965; Schüpbach et al., 1992). 

Sclerotic Dentin 

This hypermineralized zone consists of increased mineral content at 

the active front of advancing carious lesion; its thickness varies with the 

intensity and chronicity of the carious attack (Ostrom, 1980). It can be as 

narrow as a small band walling off the lesion in acute caries or 

considerably wide extending from the lesion up to the root canal in chronic 

and more slowly progressing ones (Ostrom, 1980; Nikiforuk, 1985; 

Schüpbach et al., 1992). 

Tubular sclerosis is considered to be the most common defense 

reaction by the pulpo-dentinal organ, in which deposition of mineral along 

and within dentinal tubules results in their gradual occlusion (Schüpbach et 

al., 1992; Fejerskov and Kidd, 2003). These deposited minerals make the 

tissue more homogenous, reducing the scattering of light passing through 

the affected tissue under the transmitted light microscope, thus appears as 

an area of transparency; the transparent zone (Fejerskov and Kidd, 2003).  

This layer is suggested to form due to precipitation of mineral salts 

(dissolved apatite) in apatitic or crystallites and non-apatitic forms at the 

site during each reversal of the demineralization-remineralization 

equilibrium (Sarnat and Massler, 1965; Ostrom, 1980; Heinrich-Weltzien 

and Kneist, 2001). Therefore, the formation mechanism apparently depends 

on the microbial metabolism within the infected body of the lesion and 

parallels the remineralization of the surface layer (Ostrom, 1980; 

Schüpbach et al., 1992; Fejerskov and Kidd, 2003). Intra-tubular 
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calcification is an alternative explanation, in which obliteration of deep 

layers underneath the lesion due to minerals mediated by odontoblastic 

processes with the source of the minerals is the pulp blood supply (Sarnat 

and Massler, 1965). But whether this sclerosis is initiated as 

intracytoblasmic calcification followed by a secondary periodontoblastic 

mineralization or at the peritubular space followed by calcification of the 

odontoblastic process is not yet solved (Frank and Voegel, 1980; 

Schüpbach et al., 1992; Fejerskov and Kidd, 2003). Occasionally, if a 

lesion develops rapidly, odontoblasts will degenerate leaving (partially) 

empty tubules forming the so called dead tracts (Fejerskov and Kidd, 

2003). 

Dentinal Lesion 

It is now well documented that the dentinal carious lesion consists of 

two layers. These layers differ in their microscopic structure and 

biochemical and physiological characteristics (Shimizu et al., 1981): 

 

1.  The superficial layer, which is: 

1.1   Clinically soft, wet and yellow (Biological Basis, 1980).  

1.2   The infected layer, which comprises the body of the carious infection 

(Ostrom, 1980). 

1.3  Composed of outermost necrotic zone that consists of disintegrating 

dentinal tubules and structurless matrix degraded by the proteolytic 

bacterial enzymes of the mixed flora which penetrated the dentinal canals. 

(Johansen and Parks, 1961; Sarnat and Massler, 1965; Nikiforuk, 1985). 

1.4   This layer is to be removed because it is the main body of the lesion 

that burries the cariogenic bacterial mass (Massler, 1967; Baelum and 

Fejerskov, 2003; Kidd, 2004). 
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1.5   Physiologically unremineralizable (Fusayama et al., 1966; Kuboki et 

al., 1977; Shimizu et al., 1981). This layer is irreversibly demineralized due 

to the following structural, biochemical and physiological characteristics: 

1.5.1   It has been appreciated that the structure of the collagen fibrils is 

an important determinant for the phosphophoryn binding sites as well as 

apatite induction controlled by this phosphophoryn-collagen complex (Saito 

et al., 2003). Consequently, the presence of the aforementioned denaturated 

collagen fibres is unremineralizable. It is a dead layer (Kato and Fusayama, 

1970) and the degradation of collagen had proceeded to an extent were the 

nucleating properties nearly completely diminished (Johansen and Parks, 

1961; Levine and Rowles, 1973; Klont and Ten Cate, 1991; Ten Cate, 2001), 

so neither remineralization as a vital reaction will take place (Kato and 

Fusayama, 1970) nor remineralization from an external origin can occur due 

to the above mentioned characteristics. 

1.5.2   The concentrations of calcium ions in this layer are very low and 

few minerals if any are available for crystal nucleation or/and growth (Kato 

and Fusayama, 1970).  

1.5.3   Odontoblastic processes which are important remineralizing 

contributors are dead (Kuboki et al., 1977). 

1.5.4   Other organic matrix components such as glucosaminoglycan 

GAG and proteoglycan PG, are thought to play a role in remineralization 

inhibition, because they were found only in the predentin and they were 

degraded during dentinogenesis and mineralization of dentin (Butler et al., 

1979). Thus, organic material removal from dentinal lesions is recommended 

if remineralization is to take place (Inaba et al., 1996). Moreover, Moreno and 

Zahradnik (1979) concluded that the alteration of the organic matrix of 

enamel may be the limitation for reversibility of the incipient lesion (Butler et 

al., 1979). It is logic that this is also true in the case of dentin were the organic 
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material contributes to 20% of the dentin weight and not just 0.5-2% as in 

enamel.  

 

Adhesion to the infected layer: 

On the other hand, subsequent bonding of the restorative material to 

such a layer is dramatically affected. The microtensile bond strength tests 

showed lowered bond strength between resins and demineralized dentin 

(Fuentes et al., 2004; Hara et al., 2004; Nakajima et al., 2005). The bonding 

quality was severely altered, due to lack of tag formation, loss of the 

mineral support resulted in low mechanical properties and collagen matrix 

collapsing and improper resin infiltration (Hara et al., 2004; Nakajima et 

al., 2005). Consequently, there was no hybrid layer formation which is the 

basic mechanism of resin-dentin bonding through the resin and collagen 

fibril network molecular interlocking (Prati et al., 1999). Despite the 

extensive and abnormal interdiffusion at the resin-dentin interface (Hara et 

al., 2004) the collapsed collagen fibers in the inter- and intra-demineralized 

dentin prevented the monomers from penetrating and complete infiltrating 

within the dentinal layer (Fuentes et al., 2004; Piemjai et al., 2004). This 

has its vital clinical implication, in which the sealing quality is impaired 

and microleakage can take place due to the microscopic voids between the 

collagen fibrils which were left by the incomplete diffusion of the adhesive 

monomers (Fuentes et al., 2004; Hara et al., 2004; Piemjai et al., 2004). 

This leads to the so called nanoleakage (Prati et al., 1999; Hashimoto et al., 

2004; Nakajima et al., 2005), which is exposed unprotected collagen 

beneath the resin-dentine zone which adds to the microleakage (Piemjai et 

al., 2004). This naked unsupported collagen is a weak link at the bonding 

interface because it is liable for hydrolytic or/and proteolytic degradation 

by bacterial enzymes or/and host-derived matrix metalloproteinase 

(Fuentes et al., 2004). On the other hand, this apatite depleted collagen 
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zone has a low modulus of elasticity; therefore, it undergoes more strain 

than the hybrid layer overlying it (Yang et al., 2005). This in return largely 

controls the strength, quality, durability and longevity of the bond (Prati et 

al., 1999; Fuentes et al., 2004; Hara et al., 2004; Piemjai et al., 2004; 

Nakajima et al., 2005; Yang et al., 2005). 

 

2.  The inner layer: 

Clinical practice increasingly encourages leaving this layer during 

excavation. Sarnat defined caries as an infectious disease, with the 

infection localized in the superficial layer. Therefore, removing just the 

superficial layer means eliminating the causative agent which results in 

arresting the carious process (Sarnat and Massler, 1965). Massler 

considered the inner layer as a partially demineralized but otherwise 

morphologically intact dentin (Ostrom, 1980). Moreover, Fusayama’s 

observations (1975) suggested similarity between the collagen fibers of this 

layer and sound dentin with characteristic cross-links and regularly 

arranged fibrils (Ohgushi and Fusayama, 1975). In addition, Kuboki et al.,  

(1977) analysis of the amino acids and collagen biochemistry of this layer 

concluded the retrogression of the cross-links from the mature to premature 

form. That was explained by normal shifting of the equilibrium state in 

collagen to precursor at acidic pH and to cross-link at neutral pH (Kuboki 

et al., 1977). Menaken (1980) described it as a partially demineralized 

dentin which retains much of its tubular structure although it is distorted 

(Ostrom, 1980). 

2.1   Clinically this layer is dry, leathery or hard and brown (light/dark) 

(Ostrom, 1980). 

2.2   It is further subdivided into zones, the discolored layer, the 

transparent zone and the subtransparent zone (Marshall et al., 2001). Two 
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points have to be mentioned in this area; the importance of discrimination 

between the transparent zone and the sclerotic layer which should not be used 

interchangeably except in very limited and atypical cases (fig. 1.2). The 

transparent layer is a part of the softened and demineralized carious lesion 

while the hardest layer of dentin is at the top of the normal dentin, beneath 

the transparent zone (Ogawa et al., 1983; Banerjee et al., 1999). This is very 

much different from the sclerotic dentin (discussed later) in chronic and 

arrested caries as a defensive mechanism of dentin through 

reactionary/secondary or reparative/tertiary dentin (Sarnat and Massler, 1965; 

Nikiforuk, 1985; Schüpbach et al., 1992; Kidd and Fejerskov, 2003; 

Goldberg and smith, 2004; Kidd, 2004). The Second point to be considered is 

the insignificance of the mineral deposits and loosely packed crystals within 

the tubules which do not contribute to the microhardness of dentin, where the 

overall mechanical properties of it are governed by the properties and 

mineralization state of the intertubular dentin (not the peritubular one), which 

is soft and partially demineralized in this transparent layer (Marshall et al., 

2001). 

2.3   The numbers of viable microbial cells in this affected layer are less 

than 0.1% of those in the infected one, in a gradual transition from the 

surface of the layer to the front of the lesion (Ostrom, 1980). Hence the 

challenge of the impossibility of exact discrimination between different 

layers with a definite border line, in which a residual remaining bacteria can 

be left in the cavity to be restored. 

2.4   This layer is physiologically recalcifyable (Fusayama et al., 1966; 

Kuboki et al., 1977; Shimizu et al., 1981). 

2.5   Again this layer is remineralizable due to the following structural, 

biochemical and physiological characteristics: 
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2.5.1  Collagen fibers in this layer are demineralized but not 

denaturated (Johansen and Parks, 1961; Kuboki et al., 1977), in which the 

exrafibrillar minerals that lie within the interstitial spaces separating the 

fibrils (Landis et al., 1996) were dissolved. These minerals are suggested to 

form the major portion of the mineral phase (Kinney et al., 2003). On the 

other hand the intrafibrillar minerals which are confined within or 

immediately adjacent to the gap junctions of the collagen (Klont and ten 

Cate, 1991; Landis et al., 1996) were not affected. Consequently, the internal 

structure of the fibers were not destructed or degenerated.  

2.5.2    Moreover, the phosphophoryns are in the phosphorylated 

insoluble bounded form and covalently cross-linked to the collagen, so they 

are able to bind calcium and initiate crystal nucleation and hydroxyapatite 

formation (Saito et al., 2000; Milan et al., 2006).  

2.5.3   Residual crystals and calcium ions are found in this layer (Kato 

and Fusayama, 1970). 

2.5.4   Odontoblastic processes which contribute to recalcification 

(Heinrich-Weltzien and Kneist, 2001) are living (Kuboki et al., 1977). 

Last point to be considered in this area is that the recalcification of 

this layer if not external due to saliva (Almqvist and Lagerlöf, 1993; ten 

Cate, 2001; Mukai et al., 2001) or remineralizing capping or/and 

restorative material (Dijkman et al., 1993), it occurs internally as a vital 

reaction by pulp function (Kato and Fusayama, 1970).  
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Fig 1.2. The different histological zones of dental caries. The transparent 

zone (zone 5) and the sclerotic dentin (zone 3) are two different zones.  
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The Current Criteria for caries removal 

Several studies were made to evaluate the clinical outcome of leaving 

the affected dentinal tissue behind after excavation before restoring the 

tooth (Bjorndal et al., 1997; Weerheijm et al., 1999; Maltz et al., 2002; 

Lager et al., 2003; Foley and Blackwell, 2003). These authors and others 

believe that when they eliminate the harmful microbial mass at the lesion 

surface, they permit the underlying layer to heal gradually through the 

biological properties of the tissue after sealing it with a restorative material. 

At the same time they preserve the remineralizable tissue, maintain pulp 

vitality by avoiding its exposure and arrest caries progression (Ostrom, 

1980; Nikiforuk, 1985; McComb, 2000; Heinrich-Weltzien and Kneist, 

2001; Fejerskov and Kidd, 2003). Accordingly step wise excavation 

described by Bodecker (1939) (Kidd, 2004) and indirect pulp capping 

adopted by Nygaard-Östby (1972) (Fisher, 1981) using different cements 

and dental materials, mainly Ca(OH)2 and ZOE (Fisher, 1981; Fejerskov 

and Kidd, 2003), were and are still up to date widely used. 

These methods showed high success rates, but the effect and 

interaction of the restorative material on and with the dental tissue is still 

questioned and undetermined (Fisher, 1981). Moreover, current clinical 

criteria for complete removal of the cariogenic flora are dependent on 

individual judgments and different schools, which make them more or less 

reliable criteria (Ostrom, 1980; Lager et al., 2003; Fejerskov and Kidd, 

2003). 

However, in the absence of safe clinical parameters guiding total 

caries removal, it is well accepted that excavation never attempts to 

sterilize a cavity. Today it is well recognized that the clinically judged 

caries-free cavity is never steril what ever approach is adopted (Kidd, 

1996) and micro-organisms will never be totally eliminated even if the soft 

dentin is completely removed (Lager et al., 2003). Even when dentin is 
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hard on probing without sticking or tug-back sensation, the cavity is never 

caries-free according to the investigations of Seltzer (1940), Shovelton 

(1968, 1970) and Lichtenberg-Crone (1968) due to the irregular and diffuse 

nature of the front of the lesion, which permit ingression of micro-

organisms through dentinal tubules and their retention beneath the hard 

surface (Fisher, 1981; Bjorndal et al., 1997).  

The typical dark brown discoloration together with hard (judged 

clinically by the probe) and dry texture are the conventional criteria we rely 

on in our clinical examination, although recent studies had claimed that 

there are no associations between bacterial growth quantities in a lesion 

and its coloration (Kidd et al., 1996; Maltz et al., 2002; Foley and 

Blackwell, 2003). Moreover, when both stained and stainless dentin 

harbors bacteria whether at the pulpal floor or at the Dentin Enamel 

Junction (DEJ), why stained dentin is to be excavated (Kidd et al., 1996)? 

Although wet soft caries is a heavily infected one (Kidd et al., 1993, 1994), 

dry old caries can be found under restorations (Kidd, 2004) and a universal 

definition of a reasonable hard firm floor is much dependent on the 

examiner (Fejerskov and Kidd, 2003) and it is not easy to find it in acute 

cases (Fusayama et al., 1966; Ostrom, 1980). However, it seems that these 

conventional clinical criteria, although blunt, they are sufficient and 

satisfactory assessments (McComb, 2000; Lager et al., 2003). 

Caries Detector (1.0% acid red in propylene glycol) developed by 

Fusayama (1979) claiming to discriminate between infected and affected 

layers (Fusayama, 1988) seems to fail in differentiation between infected 

and soften dentin (McComb, 2000) because it depends on the 

demineralized organic matrix not on the bacterial presence (McComb, 

2000). Thus, routine usage of this dye may lead to over preparing the 

cavity and unnecessarily sound dentin removal from the circumpulpal 



 - 29 -

dentin and at the DEJ since both are stained -due to lower mineral density- 

although they are sound (McComb, 2000). 

Dentin caries autofluorescence (AF) was subjected to different 

investigations to relate its signaling to a particular component or process in 

carious lesion. No direct correlation or exact matching was found between 

AF distribution and mineral content within the lesion using Confocal Laser 

Scanning Optical Microscope (CLSM) and Backscattered Electron 

Microscope (BSE-SEM) (Banerjee and Boyde, 1998). Nevertheless, 

Banerjee et al. (1999) reported a correlation between carious dentin AF and 

its microhardness and discoloration suggesting it as a reproducible, 

objective and histological marker for the excavatable carious dentin 

(Banerjee et al., 1999). Moreover the nature of carious dentin natural 

fluorescence is not known although it is suggested to be of organic origin 

(Banerjee and Boyde, 1998). Currently, the careful visual inspection 

combined with radiographs would appear to best fulfill the diagnostic 

requirements (McComb, 2000). 

Alternative Methods of Carious Dentine Excavation 

It is not surprising that many researchers, companies and studies are 

trying to find an objective parameter that can be specific, reliable and valid 

as a clinical caries detector. Therefore, alternatives to the mechanical 

excavation using a spoon excavator or a bur, aimed to be more selective in 

caries removal avoiding pulp irritation, cavity over preparation and pulp 

exposure by removing only the infected denaturated and cariogenic layer 

leaving behind the affected demineralized but remineralizable one (Ericson 

et al., 1999; Banerjee et al., 2000; Beeley et al., 2000; Fure et al., 2000; 

Nadanovsky et al., 2001; Lager et al., 2003; Rafique et al., 2003; Flückiger 

et al., 2005). Patient’s comfort beside his dental health sake was also 

considered and tested (Ericson et al., 1999; Banerjee et al., 2000; Beeley et 

al., 2000; Fure et al., 2000; Nadanovsky et al., 2001; Rafique et al., 2003). 
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Various caries removal methods together with their advantages and 

disadvantages are shown in table No. 1.3 and table No. 1.4 (adapted from 

Banerjee et al., 2000; Rafique et al., 2003). 

 

Table 1.3. Various caries removal methods  

                            Methods of excavation 

Mechanical Chemomechanical Non-Mechanical 

Rotary Non-Rotary - Chemical Photo-

Ablation 

Hand 

excavation 

Air polishing 

Air abrasion 

Ultra sonic 

Hand-pieces 

and Burs 

Sono-

abrasion 

Carisolv Enzymes Laser  
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Table 1.4. Comparison between various caries removal methods  

The Method Advantages Disadvantages 

Burs 1-Effective in caries 
removal 

2-Efficient (fastest 
method) 

3-Almost always needed 
for initial access and 
cavity outlining 

1-Anesthesia (time, anxiety, pain, 
numbness, bad taste) 

2-Discomfort (noise, water 
cooling system, vibrating) 

3-Pain (sensitivity) 

4-Pulp irritation (thermal, 
mechanical)  

5-Smear layer   

6-Overpreparation 

Hand Excavation 1-Effective 

2-More self-limiting than 
bur (sensitive tactile feed 
back) 

1-Time consuming 

2-Painful 

3-Smearing 

4-Overpreparation 

Carisolv 

 Carisolv 
System by 
Medi Team 
(1997-1998) 

Composition: 

2 Carboxymethyl-
cellulose (CMC) 
based gels : 

- 0.5% NaOCl 
(Clear liquid) 

- 0.1M amino acids, 
NaCl, NaOH (PH 
11), erythrosine 
dye, CMC 200-800 
cps, purified water. 

1- Effective (Ericson et al., 
1999; Beeley et al. 2000; Fure 
et al., 2000; Lager et al., 2003; 
Flükiger et al., 2005). 

2- Efficient (extra time is 
compensated with the time 
needed for anaesthesia). Fure et 
al., 2000). 

3- Eliminates over prepared 
cavities. 

4- Decreases the risk of pulp 
exposure. 

5- Antibacterial effects of 
chloramines (Lager et al., 
2003). 

6- Removes the smear layer 
improving bond strength and 
quality (Beeley et al., 2000). 

7- Less discomfort and pain: 

 a - Advantageous for the 
dental phobic, medically 
compromised patients, children 
and patients with high dental 
fear and anxiety. 

 b- Thermal insulator. 

 c- No vibrations, noise and 
pressure. 

 d- No need for anesthesia and 

1-Limited accessible lesions 
(Nadanovsky et al., 2001)  

2-Efficiency is questionable (Yip 
et al., 1999) 

3-Taste and Smell (Maragakis et 
al., 2001) 

4-Time consuming (Maragakis et 
al., 2001; Flückiger et al., 2005) 

5-Render dentin substrate weak 
(Fuentes et al., 2004) and effect 
the bonding quality (Parti et al., 
1999).  
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associated dislikes. 

 e- Eliminates the thermal and 
pressure effects on the pulp. 

 Enzymes (bacterial 
acromobacter 
collagenase, 
pronase enzyme) 

- Promising 

 Laser: 

U.V. Emission 
(Excimer Laser 
377nm) 

1-Decreased post 
operative sensitivity 
(sealed tubules) 

 

1-Thermal irritation to the pulp. 

2-Distruction or alteration in 
adjacent tissue. 

3-Expense and size of equipment. 

4-Control of procedure. 

Air Abrasion 

(Disadvantages are 
when abrasive 
material is only 
Aluminum oxide 
and advantages 
when it is mixture 
with 
hydroxyapatite)  

1-Effective 

2-Efficient  

3-Painless 

4-No pulpal irritation  

1-Non-Selective 

2-Loss of tactile sensation 

3-Overpreparation 

4- Inadequate carious dentin 
removal 

 Air Polishing - Non-Selective 

 Ultra sonic  - Overpreparation 

Sono Abrasion - 1-Underpreparation 

2-Smearing 
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The Role of the Restorative Dental Material 

The dental material to restore a tooth has a significant role in the 

success of the operative procedure and on the long term outcome. Thus, the 

practitioner’s work with a particular tooth will be ended by the end of the 

session, while the effect of the material on the surface it restores begins. 

Therefore, it is very much logic to focus at the requirements we need in a 

material to restore a deep dentinal lesion. It is obvious from the following 

figure (fig 1.3) that the restorative material interacts with the tooth tissue in 

many different ways. For example, sealing properties of a dental material 

are considered to be the most important properties in preventing caries 

progression or/and recurrent caries (Ostrom, 1980; Mertz-Fairhurst et al., 

1998; Heinrich-Weltzien and Kneist, 2001; Maltz et al., 2002; Fejerskov 

and Kidd, 2003; Kidd, 2004). At the same time, the bacteriostatic 

properties would be beneficial for eliminating or at least reducing the 

number of residual bacteria left in the cavity (Fisher, 1981; Mjör, 1996; 

Weerheijm et al., 1999; Foley and Blackwell, 2003; Splieth et al., 2003). 

However, it is claimed that reduction can be achieved by just sealing the 

cavity (Bjorndal et al., 1997; Mertz-Fairhurst et al., 1998; Maltz et al., 

2002; Foley and Blackwell, 2003; Lager et al., 2003). Another way of 

interaction is the remineralizing effect that the material can exert on the 

dentin surface (Saito et al., 2003; Deng et al., 2005). The figure illustrates 

clearly that there is no independent factor responsible for the success or 

failure of a restoration. Instead, it is the vital, sensitive, essential and 

precise interaction between the operator knowledge, skills, facilities and 

sense with an improved adhesive material that is qualified to the roles 

(sealing, antibacterial, remineralizing) it will play in the cavity. These 

together with the available tooth substrate bearing in mind the individual 

patient related factors will influence the end results of the dental operative 

procedure. 
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Fig 1.3. Illustration of the integration of the determinants of the “Perfect” 
restoration. 
   
 

Optimal Clinical Procedure Outcome 
 
  Dentin Substrate: 
     *Factors related to the Operator 
      (pre-restorative surface treatment, excavating method) 
     *Factors related to the patient → Global factors and Local factors 
                 ↨ 
   Remineralization:  
      Dentin surface ↔ Dental material 
      (remaining minerals, collagenous status, phosphophoryn)  
                 ↨ 
   Restorative Material: 
      *Bacteriostatic properties 
        -Agents or/and Ions 
        -Surface energy 
        -pH (alkalinity) 
                 ↨ 
   Adhesive Properties: within the restorative material  
                 ↨ 
   Good Seal: 
      Factors related to the operator (moisture control, polymerization…etc) 
                 ↨ 
  Conditions of the surface to be restored: 
      (smear layer, hybrid layer, collagen and mineral status) 
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The “Perfect” Restoration 

It is worthwhile to mention here that although secondary caries is the 

most common cause of restorative failure (Splieth et al., 2003), the 

imperfect seal is claimed to be the most important etiological factor behind 

recurrent caries (Bjorndal et al., 1997; Heinrich-Weltzien and Kneist, 2001; 

Fejerskov and Kidd, 2003; Kidd, 2004). 

Therefore, it is reasonable to double check the accusing of the 

remaining residual bacteria for caries re-initiation (Bjorndal et al., 1997; 

Foley and Blackwell, 2003; Kidd, 2004). Although these remained bacteria 

could stay alive up to two years (Ostrom, 1980; Bjorndal et al., 1997; Kidd, 

2004), receiving nutrients -most probably- from tissue fluid via the pulp 

or/and degradation products of remaining dead bacterial cells (Ostrom, 

1980) or possibly through the porous enamel, it is not determined until 

when these supplies are sufficient? And until when these bacteria can 

survive (Ostrom, 1980; Foley and Blackwell, 2003; Kidd. 2004)? 

In addition, the association of these residual bacteria with dentin 

demineralization, pulpal pathology and secondary caries is not yet proved 

(Ostrom, 1980; Bjorndal et al., 1997; Foley and Blackwell, 2003; Kidd, 

2004)!  

Are these retained hidden bacteria powerful in the term of causing 

recurrent caries after not known years (Ostrom, 1980; Foley and Blackwell, 

2003; Kidd, 2004)? How many can we leave behind? Although Kidd et al. 

(1993) suggested that mutans streptococci (recognized as initiators for 

carious process and their presence with lactobacilli that is associated with 

lesion development is indicative for lesion activity) numbers can reach 100 

CFU/sample (burful) without being clinically significant (Kidd et al., 

1993). Foley and Blackwell (2003) found arrested lesions under black 
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copper cement with even more than this number (Foley and Blackwell, 

2003).  

Maybe by the traditional cultivation methods there are other 

undetected bacteria associated with lesion progression, since dentin caries 

is a complicated environment which involves a complex multi-species flora 

(Lager et al., 2003). However, the new environment of these viable cells 

after sealing the cavity and cutting of the sufficient amounts of nutrient 

sources needed for surviving, multiplication and cariogenesis seems to 

influence not only the quantity of the existing flora, but also the quality of 

the dominant species (Ostrom, 1980; Mertz-Fairhurst et al., 1998; Love and 

Jenkinson, 2002; Splieth et al., 2003; Kidd, 2004), but the exact role of the 

new conditions (nutrients depletion, pH raising, anaerobic environment) in 

changing the cariogenicity and species of the dominant flora under 

restoration is not clarified yet.  

The answer may be so much dependent on the conditions left behind 

(Murray et al., 2002) such as the quality of the prepared cavity, the efficacy 

of the cavity sealing and the restorative material to be used together with its 

pH and remineralizing properties, antibacterial and adhesive 

characteristics. 

On the other hand, despite caries arrestment reported in many studies 

upon re-entering the cavity based on clinical criteria and dentin appearance, 

radiography and microbiological examination (Bjorndal et al., 1997; Mertz-

Fairhurst et al., 1998; Weerheijm et al., 1999; Maltz et al., 2002; Foley and 

Blackwell, 2003; Lager et al., 2003), slower destruction activities due to 

fewer nutrient supplies can not be precluded (Ostrom, 1980; Foley and 

Blackwell, 2003; Kidd, 2004) and long clinical trials are essential if these 

questions are to be definitely answered (Kidd, 2004). Moreover, systemic 

review with direct comparison between these studies can not be made due 

to the variable clinical conditions (Kidd, 2004). However, all of these 



 - 37 -

studies except for Weerheijm et al. (1992) reported dark, dry, firm and 

leathery dentin upon re-opening the cavity, with decreased radiolucency 

and marked reduction in viable cell counts (Fejerskov and Kidd, 2003; 

Kidd, 2004) which is indicative for an arrested lesion (Miller and Massler, 

1962).  

Nevertheless, the remaining question which was the main reason 

behind this review is not yet answered. Instead it evoked even more 

branching related questions. If G.V. Black was too radical in his operative 

approach (Fisher, 1981), and we accepted the more conservative attitudes 

which are facilitated by the daily improvement of the dental materials. 

What is the reliable guide to our excavation, if we have to excavate 

something? I mean if we stand in the middle of the way and removed just 

the outermost layer which contains the biofilm due to the previously 

explained reasons, and we intend to be so carefully conservative not to 

unnecessarily remove any healthy remineralizable dentin, what is our 

universal, standard, sharp criterion? 

Figure 1.3 (pp 34) is a trial to collect, understand and connect these 

elements in order to achieve an optimal clinical outcome. 

 

The aim of this study: 

(1) Based on the literature we know that in the presence of fluoride even 

dentinal caries lesions have the potential to remineralize. However, it is 

unknown, which fluoride concentration will be optimal. In addition it is 

not really clear whether the remineralization is a general increase of the 

hydroxyapatite concentration throughout the lesion or whether the depth 

of the lesion is reduced.  
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The first experiment studied the influence of various concentrations of 

fluoride on the remineralization of dentinal lesions. In addition the mineral 

distribution throughout the remineralized lesions was evaluated. 

 

(2) As we figured out throughout the literature review, only a part of the carious 

dentin has to be removed and another part has the potential to 

remineralize. Based on the reviewed studies the presence of 

hydroxyapatite is mandatory in order to remineralize collagen fibers after 

a carious attack. To evaluate new selective, self-limiting carious therapies 

we need a model which has both types of collagen fibers, those which 

should be removed because they are denatured and those which can be left 

because they are only demineralized but have an intact structure enabling 

their remineralization.  

The literature is not too detailed about these different types of collagen. 

Neither the way to produce a reliable model nor the proof of its validity is 

mentioned.  

In the second part of the thesis a model was developed to obtain a 

reproducible artificial dentin lesion which has denaturated and in addition 

demineralized dentin. 

 

(3) In the third part the artificial carious lesions were treated with different 

solutions of known working mechanism, because we wanted to learn how 

much materials can be removed with these different mechanisms. In 

addition the morphology of the remaining substrate was documented as a 

reference for future studies because this information is currently not 

available in the literature. 
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(4) Finally, it is necessary to know whether the principles of remineralization, as 

evaluated in part 1, can be applied to the dentinal tissue which is left after 

treating the lesion with the solutions that we used in part 3. This step was 

necessary to prove that it is possible  

a) to be less invasive than it is current practice with the bur which is what we 

call “self-limiting”,  

b) to leave softer, but not denatured collagen in a lesion and  

c) that this dentin quality has the potential to remineralize. 
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Influence of Fluoride Concentration on the 

Distribution of Minerals in Dentinal Lesion 

Chapter 2 

Introduction 

In the last few decades enamel remineralization has been a major 

subject (Silverstone et al., 1969, 1981; Moreno and Zahradnik, 1979; 

Strang et al., 1987; Featherstone et al., 1990; LeGeros, 1990; Heskströter et 

al., 1991; ten Cate et al., 2003). The role of different fluoride 

concentrations in calcium-phosphate containing remineralizing solutions 

(ten Cate and Duijsters, 1983a, 1983b), toothpastes, varnishes, gels and 

dentifrices (Schmit et al., 2002; Demito et al., 2004), glass ionomer 

cements (Thornton et al., 1986), bonding agents (Corry et al., 2003), 

composites (Arends et al., 1990; Dijkman et al., 1993), chewing gums 

(Lamb et al., 1993) and slow release devices (Greene et al., 1986) in 

remineralizing incipient and advanced natural as well as artificial enamel 

lesions (Silverstone et al., 1981; ten Cate and Duijsters, 1982; ten Cate, 

2001) is well-documented in the literature. 

The thermodynamic driving forces and kinetic factors involved in 

enamel lesion formation have been intensively investigated and analysed in 

situ and in vitro (Silverstone, 1968; Higuchi, 1974; Moreno and Zahradnik, 

1974, 1979; Featherstone et al., 1983, 1985; ten Cate and Duijsters, 1983a, 

1983b; Arends and Christoffersen, 1986; Robinson et al., 2000; Zhang et 

al., 2000). Moreover, remineralizing such lesions with various 

concentrations and forms of fluoride (sodium fluoride, stannous fluoride, 

monofluorophosphate sodium, acidulated phosphate fluoride, amine 

fluoride, silver fluoride and silicate fluoride) to enhance remineralization 
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has also been extensively studied (Mukai et al., 2001; ten Cate et al., 2003; 

Tanoue et al., 2004). 

Relatively few studies have tested the remineralization of dentin 

together with the effect of fluoride on remineralizing dentinal lesions. 

Although remineralizing dentin with fluoride containing remineralizing 

solutions follows the same general physicochemical principles of enamel 

biomineralization, such a process is more complicated in dentin than in 

enamel due to the compositional and ultrastructural differences between 

both tissues. Dentin is composed of 20 wt% organic matrix while in enamel 

it is about only 1 wt%. 90% of the organic phase in dentin is made up of 

collagen (mainly type I) while the remaining 10% are of non-collagenous 

components. In enamel proteins form the major portion of the small 

inorganic phase. Moreover, the presence of dentinal tubules, their 

orientation, numbers and diameters influence dentin permeability and 

affect the diffusion process. Not only the volume but also the composition 

of the inorganic phase is different in dentin and enamel; 70 wt% in dentin 

and 96 wt% in enamel. The small dimensions of dentin crystallites, the 

proportions of carbonate and magnesium ions incorporated in the 

hydroxyapatite lattice, their crystallinity and composition with dentin 

porosity complicate the remineralizing process even more. In addition to 

these differences, dentin which is of mesenchymal origin is a biologically 

active tissue that forms one complex with the pulp through their 

histological, structural and chemical interactions, unlike the ectodermal 

acellular enamel which is a biologically inert tissue. 

The role of fluoride in enamel remineralization is of a particular 

interest for preventive measures. In addition these preventive purposes 

were also the driving forces behind remineralizing dentinal lesions for the 

sake of arresting dentin root caries (Almqvist and Lagerlöf, 1993; 

Kawasaki et al., 1999; Mukai et al., 2001, 2002) while remineralizing 
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coronal dentinal lesions is of a curative importance and has its clinical 

implications in repairing deep dentinal carious lesions under dental fillings. 

Such deep dentinal lesions are prone to remineralization under certain 

conditions which favour crystal growth on partially demineralized dentin 

(Levine and Roweles, 1973; Kuboki et al., 1977; Lussi et al., 1988; Arends 

et al., 1989; Klont and ten Cate, 1991; Lussi and Linde, 1993; Inaba et al., 

1996; Saito et al., 1997, 2003; Clarkson et al., 1998; Ritchie et al., 1998; 

Butler, 1998; Damen et al., 1998; Kawasaki et al., 1999, 2000; ten Cate, 

2001). 

Dentin is capable of remineralization but the distribution of mineral 

ions in the presence of fluoride within the lesion body and the depth at 

which the lesion can still be remineralized are not well clarified at present. 

The purpose of this study was to determine the level of fluoride which 

could enhance the remineralization of a dentinal lesion. The role of fluoride 

in remineralizing the lesion surface, body and front is to be studied together 

with the possible influence of the dense surface mineralized layer on 

remineralizing the lesion body and/or front. In this part we aimed to test the 

hypothesis that fluoride is capable of remineralizing the dentinal lesion 

front and thus it is efficient in decreasing the lesion depth. 

Materials and Methods 

Sample Preparation: 

Seventy-five extracted human third molars were obtained from an oral 

surgeon’s private clinic and used within 5 months of extraction. After 

extraction teeth were immediately stored at room temperature in distilled 

water to which sodium-azide was added to prevent bacterial growth. All 

teeth were clinically sound and they were carefully observed for caries, 

abrasions or any mechanical traumas. Teeth were cleaned with a tooth 

brush and sometimes with a scalpel to remove the periodontal ligament and 
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intercrestal bone remnants and rinsed under running tap water. They were 

embedded individually in transparent cold-curing methylmethacrylate 

(Technovit 4004, Kulzer GmbH, Wehrheim, Germany).To expose deep-

coronal dentin the occlusal half of each tooth was cut using a slow speed 

water-cooled diamond saw (Isomet, Beuhler, Illinois, USA). Dentin 

exposed surfaces were then polished flat with water proof silicon carbide 

abrasive paper (P500-grit) with Leco VP 100 (GmbH, Neuss, Germany). 

Subsequently they were polished using wet polishing paper with a silicone 

paste of polycrystalline diamonds of size 9 µm (DAP-7, Struers, 

Copenhagen, Denmark). 

Lesion Formation: 

Dentin surfaces and the surrounding Technovit were coated with two 

coats of nail varnish (Keyte GmbH, Munich, Germany) to avoid the 

penetration of the solution into any marginal gaps that could exist between 

the tooth and the acrylate, whilst leaving two windows of exposed deep-

coronal dentin per tooth. Adhesive paper was cut into 2x5 mm² pieces and 

attached to the dentin surfaces before applying the nail varnish to 

standardize the windows’ sizes. The samples were then kept in air for about 

half an hour to dry the nail varnish and after the removal of the adhesive 

paper they were immersed in the demineralizing solution (40 ml per 

sample). The demineralization solution contained 50 mM acetic acid, 2.2 

mM CaCl2.2H2O, 2.2 mM KHPO4, 1 mM NaNa3, 2 M KOH. No fluoride 

was added to the demineralizing solution. The pH was adjusted to 5.0 with 

drops of KOH and was measured through out the demineralizing period 

(two weeks with gentle shaking (Müller Schüttler, Munich, Germany) at 

37°C). The demineralizing solution was refreshed weekly to avoid changes 

of the solution’s pH of more than half a pH unit. 

Remineralization: 
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After artificial lesion formation the samples were washed with 

distilled water and divided into six groups (n = 12 per group). Each group 

was transferred to a flask containing 1 l of remineralizing solution 

composed of 20 mM HEPES, 1.5 mM CaCl2.2H2O, 0.9 mM KHPO4, 130 

mM KCl, and 3.08 mM sodium-azide with the pH adjusted to 7 with KOH. 

Different fluoride concentrations were used for each group 0, 0.1, 0.5, 1.0, 

5.0 and 10.0 ppm as NaF. Again remineralization was performed with 

shaking at 37.0°C. After the first week the pH of the solutions was 

measured to be 7.2 for all groups, three samples were taken from each 

group and kept in Ringer solution until and during the processing period 

which always began on the same day, the solutions were refreshed, and the 

flasks were returned to the shaker once again. The same procedure was 

repeated every week for four weeks. The experimental groups are shown in 

table 2.1.  

Samples for Lesion Assessment: 

The teeth were cut perpendicularly to the two windows at the dentin 

surface with a thin diamond blade on a saw microtome (Leica SP 1600, 

GmbH, Nußloch, Germany) under tap water into thin (120 µm) and thick 

(280 µm) sections. Each section was then polished flat with wet silicon 

carbide abrasive paper (800-grit) to obtain a plano-parallel slice of 110 µm 

and 250 µm thickness. Thin slices from each tooth were kept in air for 10 

min to dry before imbibition in quinoline (Quinoline 22650, Fluka Chemie 

GmbH, Hamburg, Germany). They were then mounted for microscopic 

examination. Lesion depth was measured along a vertical line 

perpendicular to the tooth surface extending from a point at the lesion 

surface to a point at the non-demineralized surface through out the lesion 

body to the inner most border of the lesion. The thick samples were divided 

into two groups. The first was taken for microhardness testing and the 
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second was prepared for the morphological evaluation in a Field Emission 

Scanning Electron Microscope (FE-SEM). 

Analytical Tools: 

Microscopy: 

Quinoline with polarized light (Axioskope 2, MAT, Carl Zeiss Jena 

GmbH, Göttingen, Germany) was used for the visual qualitative analysis of 

the lesions before and after remineralization. Digital images were taken 

with the image analysis software Axiovision (Rel. 4.4, SP2, Carl Zeiss Jena 

GmbH, Göttingen, Germany). 

Microhardness: 

Testing the microhardness of the remineralized dentin was performed 

with a Vickers pyramid diamond indenter at 500 mN/mm² and an 

automatic microhardness tester Fischerscope H100C (Helmut Fischer 

GmbH, Sindelfingen, Germany). Two lines were made per lesion in which 

each line was composed of 4-6 points which were spaced by 50-70 µm. 

Each line extended vertically through the lesion from a point just beneath 

the lesion bottom up to the surface to determine cross surface 

microhardness (CSMH) through out the lesion. 

FE-SEM: 

To obtain information on the morphology of the mineral depositions a 

FE-SEM was used. Samples were immersed in 50% alcohol for 20 min, 

then in 70%, 80% and 90% alcohol each for 20 min. Finally they were kept 

overnight in 96% alcohol. Samples were immersed in 

Hexamethyldisilazane for 10 min and air dried at room temperature 

according to Perdigao et al. (1995). Then liquid nitrogen (-70°) was used 

for each sample for few seconds to facilitate the fracture before using a 

scalpel to initiate a crack from the pulpal side. Each sample was then fixed 

on the SEM sample holder with carbon paste. Gold sputtering was done for 
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1 min, with 1.0 Kv, 0.3 mbar and 40 mA (Edwards Sputter Coater S15OB, 

Sussex, UK). Pictures where then made with a Leo FE-SEM (Leo DSM 

982, Carl-Zeiss NTS GmbH, Oberkochen, Germany).  

Through out the whole experimental procedure care was taken to 

avoid sample drying and dentin desiccation particularly after lesion was 

formed with the exception of the SEM samples were drying was 

mandatory.    

Results 

Lesion depth before and after remineralization with various fluoride 

concentrations after 1, 2, 3 and 4 weeks was measured by polarized light 

microscope (PLM) and  is shown in table 2.2.  

Lesions which were remineralized without any fluoride additions to 

the remineralizing solution (group A) showed no decrease in lesion depth 

either microscopically determined or with the microhardness profiles. 

Moreover, no changes were observed in the dentin hardness throughout the 

lesion even after 4 weeks (A4) of remineralization except for the surface 

layer where the Vickers indentations showed higher values. The surface 

values were equal to and sometimes even exceeded the values of sound 

dentin in the third (A3) and fourth week (A4) (diagram 2.1). Table 2.3 

shows the mean values of the CSMH per group. 

FE-SEM pictures of the surface of the control group (A) showed well-

mineralized intertubular dentine with some mineral precipitates at the 

surface. Peritubular dentin was also seen with tubules’ diameters within the 

normal range (1.5-2.5 µm), decreased or even occluded. Intertubular dentin 

at the fracture surface was more mineralized in group A3 than in A2 (fig. 

2.1, 2.2). 

With the presence of fluoride ions in the remineralizing solution (0.1, 

0.5 and 1.0 ppm) the distribution of minerals and the pattern of 
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remineralization changed. After one week there were no differences 

between the groups B1, C1 and D1 and the control group A1 in any of the 

used analytical tools except that the lesion depth was decreased by 40µm in 

the first three groups although the decrease was not constant in all samples 

and was not affected by differences in the fluoride concentrations. 

However, the SEM pictures of groups B2, C2 and D2 showed much more 

surface mineralization with well-remineralized intertubular dentin and 

prominent thick peritubular dentin, and many of the dentinal tubules were 

occluded (fig. 2.3). Crystalline precipitates were also observed at the 

surface. The upper most surface layer of the fractured side appeared 

morphologically to be more mineralized than the remainder of the lesion 

body although the lesion body was also mineralized to the extent that 

borders of the dentinal tubules within the lesion were not very 

distinguishable (fig. 2.4). Although the hardness tests did not demonstrate 

an increased hardness of the surface of these lesions, they showed an 

improved hardness in the lesion body in comparison with the control group. 

After the fourth week the hardness values were also increased at the surface 

but did not exceed the normal values.  

PLM showed banding near the surface and within lesion body in 

groups B, C and D (fig. 2.5). The banding seen with the PLM and the 

improved hardness measured by the Vickers indenter were strongly related 

to the fluoride concentration (D > C > B). Increasing the remineralization 

time also enhanced these effects (3rd week > 2nd week). After the first week 

there was no further decrease in lesion depth throughout the experimental 

period for all groups. Groups E and F had better hardness values from the 

first week (E1 and F1). Moreover, an apparent surface layer appeared in the 

PLM, especially during the last two weeks (E3, E4, F3 and F4). Although 

the hardness measurement with the Vickers indenter did not show higher 

values at the surface in groups E and F, the SEM pictures were full of 



 - 48 -

precipitates that occluded the dentinal tubules which were clearly 

surrounded with peritubular dentin and hyper-mineralized areas (Fig. 2.6, 

2.7). The hyper-mineralized areas were not continuous in group E while 

they formed a dense hyper-mineralized layer in group F. Mineral 

precipitates were also found at the fracture side within the lesion body in 

both groups (Fig. 2.8). 

Discussion 

In the 90 s, caries researchers such as ten Cate and Arends had focused 

on the effects of fluoride on dentin de- and remineralization in addition to 

their known studies of its effects on both phenomena in enamel. Ten Cate 

demonstrated that dentin has a much higher uptake capacity for fluoride 

than enamel (ten Cate, 1999), while Arends showed the ability of both 

bovine and human dentin to ‘over-remineralize’ (Arends et al., 1989, 

1990). However, in our study the remineralizing solution without fluoride 

addition did not contribute at all in remineralizing the lesion body together 

with its front. Moreover, a well-remineralized surface layer can still be 

formed even without fluoride and without observing a significant 

remineralization within the lesion body or decrease in lesion depth. These 

results were partially in agreement with Kawasaki et al., (2000) who found 

that a surface layer was formed even without fluoride addition although 

this case showed a better overall remineralization than lesions which were 

remineralized in the presence of high fluoride levels (10 ppm). The 

difference in mineral distribution within the lesion in both studies can be 

due to the differences in the study’s design and materials and methods so 

that a direct comparison between both studies can not be made. First 

because his results were relative to other types of lesions in that study and 

second because the methods of evaluation used in the two experiments are 

not comparable because mineral deposition can occur within the lesion 

without contributing to its hardness (Marshall et al., 2001). In addition, 
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differences in the structure and behaviour between crown and root dentin 

due to differences in their development have been suggested by Goldberg 

(2004). Furthermore, the volume of the remineralizing solution per sample 

in the mentioned study was much smaller than ours which in return affects 

the remineralization rate.  

In our experiment increasing the volume of demineralizing solution, 

demineralization duration, solution stirring and refreshment probably 

resulted in an increased demineralization rate (Theuns et al., 1985), and 

increased lesion depth with increased baseline mineral loss (Arends et al., 

1997). 

The increase in mineral loss increases the concentration gradient after 

putting the sample into a remineralization solution which in turn increases 

the initial remineralization rate (Strang et al., 1987).  

According to Fick’s first and second laws the flux of a material across 

a membrane is a function of both the concentration gradient 

(thermodynamic factor) as well as the diffusion coefficient (kinetic 

parameter). The rate of transport is faster when the concentration gradient 

is steeper (Hopfenberg, 1974). The diffusion of mineral ions into and 

through the lesion is the rate limiting step for remineralization (Exterkate et 

al., 1993; Mukai et al., 2001). Rapid precipitation of ions at the first 

reactive mineral surfaces leads to fast removal of the ions from the solution 

which retards any mineral deposition deep in the lesion (Exterkate et al., 

1993). In this case fast precipitation at the surface of the lesion will prevent 

ions from reaching the innermost part of the lesion because of the sharp 

reduction of the thermodynamic force at the beginning and the blockage of 

pores at lesion surface later in the process (ten Cate, 2001). Therefore ion 

precipitation can be also considered to be a rate limiting factor in the 

remineralization process where faster diffusion means faster precipitation 
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at the surface which in return forms a dense mineralized surface layer 

which inhibits further diffusion. 

In the presence of fluoride the overall remineralization pattern showed 

by FE-SEM, PLM and through the microhardness measurements changed 

in terms of mineral distribution within the lesion. Low levels of fluoride 

(0.1, 0.5 and 1.0 ppm) resulted in significant remineralization although this 

was not apparent in the first week. Remineralization occurred at the lesion 

front as detected by decreased lesion depth under PLM. The higher 

hardness values which were evident throughout the lesion correlated well 

with the banding of the same lesions under PLM. No attempts were made 

to analyse the mineral bands shown in the microscope although some 

references suggest that fluoride is responsible for this lamination 

phenomenon in dentin (Wefel et al., 1995; Nyvad et al., 1997) and the total 

double refraction in water for enamel was correlated well with its mineral 

content (Featherstone et al., 1983). Mineralized inter- and peritubular 

dentin with the decreased in diameter or partially or totally occluded 

dentinal tubules were clearly visible in FE-SEM pictures. According to the 

SEM and PLM pictures the remineralization in the three groups (B, C and 

D) was enhanced with increasing the remineralization time (4th week > 3rd 

week > 2nd week). In the present study, no attempts were made to compare 

directly between the three used methodologies since the information 

obtained from each quantifies a different physical property related to the 

tissue (Featherstone et al., 1983). When fluoride was added to the 

remineralizing solution at higher concentrations (5.0 and 10.0 ppm) the 

SEM pictures revealed an obvious well-mineralized dentinal surface with 

dense precipitates accumulated in and on the inter- and intra-tubular dentin 

as well as partially or totally occluded dentinal tubules. We tried to 

measure the thickness of the hyper-mineralized surface layer depending on 

its morphology for both groups (E and F) from the fractured side. There 
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were always differences in the measurements so that we could not estimate 

its thickness but we concluded that the hyper-mineralized surface layer in 

groups E2 and E3 was not continuous because there were differences in its 

thickness within the same sample. Based on the SEM and PLM pictures 

and the microhardness values of groups E2, E3 and E4 we hypothesize that 

the non-continuous surface layer in these groups could not inhibit the 

diffusion process into the lesion or prevent lesion body remineralization. 

Our results are in agreement with Arends et al., (1990) who found that the 

lesion front could be remineralized even after the formation of a 

hypermineralized surface layer using 5.0 ppm fluoride. A mineralized 

surface layer does not always prevent the deposition of minerals elsewhere 

in the lesion (Damen et al., 1998). In comparison remineralization 

behaviour in groups F2, F3 and F4 were similar to the control groups in 

which a hyper-mineralized surface layer was formed without evident 

remineralization in the lesion body. This possible inhibitory effect of a 

hypermineralized fluoridated surface layer on the remineralization of the 

lesion front was stated by Kawasaki et al., (2000). 

No attempts were made to qualify the precipitated crystallites in and 

on the lesion surface. According to the literature, under conditions where 

fluoride levels are low and the pH is higher than 4.5, fluorohydroxyapatite 

(ten Cate et al., 2003) or even fluoroapatite (Iijima et al., 1993) have the 

highest probability to form.  

Our results were very much similar to those found in literature 

regarding remineralization of the lesion front. In the absence of fluoride, 

remineralization did not appear to take place at the lesion front and the 

lesion depth did not decrease (Inaba et al., 1996; Kawasaki et al., 1999, 

2000). Limited decrease in lesion depth after fluoride addition to the 

remineralizing solution was also previously documented (Arends et al., 

1989, 1990; Exterkate et al., 1993: Kawasaki et al., 1999; Mukai et al., 
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2001; ten Cate, 2001).Various levels of fluoride (0.1- 10.0 ppm) 

dramatically effected the surface mineralization. The surface 

remineralization was proportional to both fluoride concentration and 

duration of remineralization (Arends et al., 1989, 1990).  

We concluded from our results that incorporation of relatively small 

amounts of fluoride in the remineralizing process (0.5, 1.0 and 5.0 ppm) 

has the highest beneficial effect on dentinal lesion remineralization because 

such concentrations seem to be high enough to maintain a gradient at the 

lesion front, thus activating the thermodynamic driving force through out 

the whole lesion. On the other hand they are low enough to keep a constant 

diffusion rate to the innermost part of the lesion, thus controlling the 

kinetic of the precipitation process at least until the appearance of other 

inhibitory factors which spontaneously stop the process. 

 Such inhibitory factors could be: 

1- The concentration gradient is not strong enough to maintain effective 

thermodynamics. 

2- The rapid precipitation of ions at the first reactive surface areas of the 

dentinal crystallites which in turn blocks the lesion pores at the surface 

(Exterkate et al., 1993; Kawasaki et al., 2000; ten Cate, 2001). 

3- The limited capacity of the dentinal front to remineralize, which is -

most probably- due to the physical presence and chemical composition 

of the remaining organic phase where both properties can strongly 

restrict crystal growth ( Inaba et al., 1996; Saito et al., 1997;Fujisawa 

and Kuboki, 1998). Hence, remineralization in this deepest area of the 

lesion is always limited and independent of fluoride concentrations. 

Therefore, we suggest that neither number of available sites for 

remineralization alone (Mukai and ten Cate, 2002) nor diffusion of ions 



 - 53 -

solely (Mukai et al., 2001) is completely responsible for controlling the 

remineralization phenomenon at dentinal lesion front. 

In conclusion, the present study indicates:  

1- The influence of fluoride concentration in determining the rate as well as 

the pattern of mineral deposition in dentinal lesion. 

2- The independence of lesion front remineralization from fluoride 

concentration which could be due to its limited capacity for 

remineralization. 
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Table 2.1. After lesion formation samples were divided into groups to be 

remineralized with various fluoride concentrations for different periods of 

time. 

        Time        

Group 

Week 1 Week 2 Week 3 Week 4 

A(F=0.0ppm) A1 A2 A3 A4 

B(F=0.1ppm) B1 B2 B3 B4 

C(F=0.5ppm) C1 C2 C3 C4 

D(F=1.0ppm) D1 D2 D3 D4 

E(F=5.0ppm) E1 E2 E3 E4 

F(F=10ppm) F1 F2 F3 F4 

 

Table 2.2. Lesion depth before remineralization (BR) and after 

remineralization (AR) in each group (Mean ± SD) as observed with the 

polarized light microscope. 

         F level (ppm)                                          Time (days)                            Lesion depth (µm) 

BR  ≈0.0  14                                             210 ± 10 

0.0 7 

14  

               195 ± 10 

               200 ± 15 

0.1 7 

14 

               165 ± 20 

               168 ± 20 

0.5 7 

14 

               170 ± 10 

               165 ± 15 

1.0 7 

14 

               169 ± 15 

               167 ± 15 

AR 

5.0 7 

14 

               165 ± 10 

               163 ± 20 
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10.0 7 

14 

               170 ± 30 

               169 ± 20 

 

 

Table 2.3. The mean microhardness values measured with the Vickers 

indenter through out the lesion per group. The average of the surface layer 

at week 4 for each group is given.  

         Time        

 

Group 

Week 1 Week 2 Week 3 Week 4 CSMH values at 

the lesion 

surface at 

week4  

A 6.023 15.012 10.110 9.192 88.079 

B 5.533 16.091 19.073 18.212 16.714 

C 5.045 23.784 22.998 23.719 21.926 

D 7.013 29.109 28.534 28.113 27.152 

E 9.942 28.075 36.159 36.991 56.166 

F 10.554 10.962 15.382 11.987 79.688 
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Diagram 2.1. Microhardness representative profiles for groups A4 (0.0 ppm 

fluoride, week 4) and E4 (5.0 ppm fluoride, week 4). Note the low 

microhardness values measured within the lesion body without fluoride in 

comparison with the high values when fluoride is added to the remineralzing 

solution (5.0 ppm). 
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Fig. 2.1 Fractured side from the upper most surface of the lesion from the 

control group at the second week (A2) (x10000). Note the remineralized 

inter- and peri-tubular dentin. 

 

 

Fig. 2.2 Fractured side from the upper most surface of the lesion from the 

control group at the third week (A3) (x10000). Note the hyper-mineralized 

inter- and peri-tubular dentin. 
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Fig.2.3 The surface of a remineralized lesion from group B2 (0.1 ppm 

fluoride, 2 weeks). Note the well-remineralized inter- and peri-tubular 

dentin (x5000). 

 

 

Fig. 2.4 Fractured side of a lesion from group B3 shows clearly the 

remineralized intertubular and peritubular dentin as well as 

remineralization within the dentinal tubules (x3000). 
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Fig. 2.5 Remineralized dentinal lesion from group C3 (0.5 ppm fluoride, 3 

weeks) with Polarized light microscope (x10). Note the remineralization 

band within the lesion (arrows). The method of lesion depth measuring is 

shown.  

 

 

Fig. 2.6 The occluded tubules at the surface of a sample from group E3 (5.0 

ppm fluoride, 3 weeks) (x5000). 
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Fig. 2.7 Hyper-mineralized inter-tubular dentin and thick peri-tubular 

dentin at the surface of a sample from group F2 (10.0 ppm fluoride, 2 

weeks) (x10000). 

 

 

Fig. 2.8 Remineralized precipitates (arrows) within the dentinal tubules of 

the lesion body, the sample is from group E2 (5.0 ppm fluoride, 2 weeks) 

(x5000). 
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An Artificial Caries Model for Better Understanding 

Dentin Caries in vitro 

Chapter 3 

Introduction 

Although dental research has very much improved our understanding 

of the etiology and pathology of dental caries over the last century (Aoba, 

2004), caries research community is still in need for better scientific 

understanding of the caries process to enhance more effective methods of 

prevention, control and treatment (Fejerskov, 2004; Pitts, 2004). An 

appropriate knowledge of such a process can be facilitated by tracing and 

understanding all the associated key factors and their role in dental caries. 

Three basic facts which constitute the basics of dental caries: 

1- Dental caries is a dynamic process (Featherstone, 2004) which is 

initiated by the microbial deposits (biofilm) on a tooth surface (Fejerskov, 

2004; Kidd, 2004; Pitts, 2004). The metabolically active cariogenic 

bacteria in this biofilm cause numerous minute pH fluctuations at the 

interface between tooth surface and the microbial deposits (Baelum and 

Fejerskov, 2003). These fluctuations will cause loss or gain of minerals 

from the tooth depending on the pH drop or increase respectively, 

cumulatively resulting in a net loss of minerals, dissolution of dental hard 

tissues and the formation of a carious lesion (Kidd and Fejerskov, 2004). 

Thus, the all important driving force in the caries process is the metabolic 

activity in the biofilm in which demineralization of enamel or dentin 

beneath may be considered as a reflection of these dynamic events (Kidd, 

2004; Bjorndal and Mjör, 2001). 
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2- Carbohydrates and in particular the low molecular weight disaccharide 

succrose which is the most consumed dietary sugar and most related to 

caries is utilized by the cariogenic plaque bacteria where streptococcus 

mutans emerges as the predominant organism initially and lactobacilli 

growth is associated with lesion progression in deep dentinal lesions 

(Nikiforuk, 1985a). These acidogenic aciduric bacteria are able to 

hydrolyze succrose through the enzyme invertase to glucose and fructose 

which are in return converted to glucan (dextran and mutan) and fructan by 

glucosyltransferase and fructosyltransferase respectively (Loesche, 1996).  

Under these acidic conditions pH drops in the vicinity of 5.0-5.5 

(Loesche, 1996). The critical pH for enamel is 5.5 where the saliva or any 

other solution that surrounds enamel in vitro is just saturated with respect 

to hydroxyapatite (HAP) and any further fall leads to undersaturation, in 

which the ion activity product (IAPHA) with respect to HAP is decreased 

and is much less than the constant of solubility product of the HAP 

(KSPHA) and thus dissolving the HAP crystals is initiated (ten Cate et al., 

2003). 

 Whether or not a solution is saturated with respect to HAP can be 

determined from the solubility product theory which is derived from the 

law of mass action, which states that the velocity of a reaction is 

proportional to the product of the masses of the reacting substances, each 

raised to a power equal to the number of molecules taking part. 

For example, when 1 unit mass of solid HAP dissolves, 5 calcium 

ions, 3 trivalent phosphate ions and 1 hydroxyl ion are released into 

solution: 

Ca5(PO4)3OH ↔ 5Ca2+ + 3PO4
3- + OH- 

On the other hand, when a solution containing hydroxyapatite is 

saturated and the mineral is in equilibrium with the ions in solution, the 
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IAPHA equals the KSPHA, a constant which has a value of 7.41 x 1060 

mol9/L9 at 37°C. Thus, at equilibrium: (ten Cate et al., 2003) 

KSPHA  = IAPHA = (Ca2+)5 x (PO4
3-)3 x OH- = 7.41 x 1060 mol9/L9 

The rate of enamel dissolution and carious lesion formation is a 

function of both the degree and undersaturation of plaque fluid (Theuns et 

al., 1985; ten Cate et al., 2003) together with the rate of diffusion of ions 

into and out of enamel (Featherstone and Rodgers, 1981) in which the latter 

depends on the total demineralization time, acid strength, concentration and 

pH (Featherstone and Rodgers, 1981; Theuns et al., 1985; Herksröter et al., 

1991).The critical pH for dentin is higher than that of enamel 

(Hoppenbrouwers et al., 1986), hence even milder acidic attacks cause 

dissolution and lesion formation in dentin (Wefel, 1994) 

As we have mentioned before such a process is not a one-way 

demineralizing process (Bjorndal and Mjör, 2001). Saliva and plaque fluid 

have a high potency to neutralize the acidic environment within 30-60 min 

(Loesche, 1996). Their buffering effect is known as the Stephan curve 

(Nikiforuk, 1985b). The partially demineralized apatite crystals can be 

remineralized and equilibrium may be re-established by the dissolving and 

reforming effects (ten Cate et al., 2003). However, it is only when the pH 

value remains under 5.5 tooth mineral is solubilized  and plaque fluid tends 

then to loose its potential for counteracting the pH change and this is why 

frequency of sugar intake is considered to be more cariogenic and harmful 

than the total sugar ingested (Nikiforuk, 1985b; Loesche, 1996). 

3- Although the physicochemical rationale to explain de- and 

remineralization process applies to both enamel and dentin (Wefel, 1994; 

ten Cate et al., 2003), enamel caries and dentin caries are two independent 

entities due to the remarkable differences between both tissues (Arends et 

al., 1989; Fejerskov et al., 2003). Dentin which is of a mesenchymal origin 
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is a biologically active tissue while the ectodermal acellular enamel is a 

biologically inert tissue (Arends et al., 1989). Therefore, dentin possesses 

the potential to respond to different external stimuli through several 

reactions which vary according to the severity and rate of progression of 

the stimulus. 

Moreover, 20 wt% of dentin is composed of organic matrix while the 

organic matter in enamel is not more than about 1 wt% in which proteins 

form the major portion of it. The organic phase in dentin constitutes of 90% 

collagen (mainly type I) and 10% non-collagenous proteins (NCP) and 

non-protinacious components (NPC). Dentin porosity (Arends et al., 1992) 

together with the presence of dentinal tubules, their orientation, contents, 

numbers and diameters influence dentin permeability and affect the 

diffusion process (Murray et al., 2003; Hara et al., 2005). The inorganic 

phase differs between enamel and dentin in volume (96 wt% in enamel and 

70 wt% in dentin) and in composition. Dentin crystallites are randomly 

oriented in comparison with enamel crystals; they are with smaller 

dimensions and larger surface area per unit volume and with higher 

carbonate and magnesium ions incorporating in their HAP lattice (Ostrom, 

1980; LeGeros, 1990). 

It is quite clear from the aforementioned differences between the two 

tissues that the chemical events associated with the caries process limited 

to de- and remineralization phenomena can be applied to enamel but are 

deficient in the case of dentin. Strictly speaking, the presence of the organic 

matrix plays a significant role in lesion formation during the 

demineralizing phase in which it retards the acid dissolution rate and 

hampers lesion progression (Klont and ten Cate, 1990, 1991a; Kleter et al., 

1994; Kleter, 1997; Hara et al., 2005). Thus, dentinal caries involves both 

demineralization of the hard tissue followed by degradation of the organic 

material (Klont and ten Cate, 1991a). Therefore, the caries process in 
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dentin is an intermittent course of demineralization interspersed with 

remineralization (Bjorndal and Mjör, 2001) in which the demineralization 

phase is alternating with organic degradation. Detailed description of 

dentin collagen and other dentin organic matrix components is already 

mentioned in the introduction in chapter 1 (pp 7-12).  

However, although it is well established that lactic and acetic acids are 

the major bacterial anaerobic fermentation products causing 

demineralization in dental caries, the distinct role of each in the 

demineralization and degradation of the dentin substrate is not established. 

To gain more information and better understanding the effect of these acids 

on demineralizing and/or denaturating dentin collagen a model for artificial 

dentinal caries was developed to study the morphological appearance of 

coronal dentin surface after demineralizing with acetic or lactic acids. 

Chemical analysis of the demineralizing solutions was done to identify 

degraded collagen type I in order to differentiate between demineralized 

and denaturated collagen. 

The aim in this part of the study was to present this artificial dentinal 

caries model to clarify the possible variable effects of both acetic and lactic 

acids on collagen degradation and organic matrix breakdown.   

Materials and Methods 

Sample Preparation: 

Twelve extracted human third molars were obtained from an oral 

surgeons’ private clinic and used within 4 months of extraction. After 

extraction teeth were immediately stored at room temperature in Ringer 

solution to which sodium-azide was added to prevent bacterial growth. All 

teeth were clinically sound and they were carefully observed for caries, 

abrasions or any mechanical traumas. Teeth were cleaned with a tooth 

brush aided sometimes with a scalpel to remove the periodontal ligament 
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and intercrestal bone remnants and rinsed under running tap water. The 

roots were cut 1.5-2.0 mm below the cementoenamel junction. The teeth 

were then embedded individually in transparent cold-curing 

methylmethacrylate (Technovit 4004, Kulzer GmbH, Wehrheim, 

Germany). To expose mid-coronal dentin each tooth was sectioned parallel 

to its long axis into two halves using a slow speed water-cooled diamond 

saw (Isomet, Beuhler, Illinois, USA), the occlusal part of each half was 

then removed by a cut perpendicular to the long axis of the tooth and 1.5-

3.0 mm away from the pulp. Each half was divided into four slices parallel 

to the long axis of the tooth and extends from the middle of the tooth to the 

outer enamel with a thin saw microtome (Leica SP 1600, GmbH, Nußloch, 

Germany) under tap water. Dentin exposed surfaces were then polished flat 

with water proof silicon carbide abrasive paper (P500-grit) with a Leco VP 

100 (GmbH, Neuss, Germany) device. Subsequently they were polished 

using wet polishing paper with silicone paste of polycrystalline diamonds 

of size 9 µm (DAP-7, Struers, Copenhagen, Denmark). 

Dentin surfaces together with the surrounding Technovit were covered 

with two coats of nail varnish (Keyte, GmbH, Munich, Germany) to avoid 

the penetration of the solutions’ molecules in any marginal gaps that could 

exist between the tooth and the acrylate, leaving one window of exposed 

mid-coronal dentin per slice. Adhesive paper was cut into 1x1.5 mm² 

pieces and attached to the dentin surfaces before applying the nail varnish 

to standardize the window. Two of the four exposed surfaces were 

perpendicular to the dentinal tubules and the other two were parallel to the 

tubules. The samples were then kept in air for about fifteen minutes to 

allow the nail varnish to dry. After the removal of the adhesive strips each 

window was etched for 20 s with 37% phosphoric acid gel (Total etch, 

Ivoclar Vivadent GmbH, Schaan, FL) to remove the smear layer. The 
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successive steps of the slices preparation are schematically shown in figure 

3.1. 

Lesion Formation: 

Each four slices from each half were immersed in 80ml of 0.1 M lactic 

acid (pH 4), while the other four slices from the opposite half of the same 

tooth were immersed in 80 ml of 0.5 M acetic acid (pH 5) for 3, 7 and 14 

days. The demineralization process was always with agitation of the 

solution with 150 rpm at 37°C (Forma Orbital Shaker, Thermo Electron 

Corporation, Ohio, USA) with 20 ml per slice. KOH and stock lactic acid 

solution (90%) were used sometimes to adjust the acetic acid and lactic 

acid pH respectively. After the first week the demineralizing solutions were 

refreshed to avoid changes of the solution’s pH of more than half a pH unit. 

FE-SEM: 

To obtain information on the morphology of the demineralised dentin 

surfaces a high resolution FE-SEM was used. Samples were fixed in 0.25 

M Glutaraldehyde in 0.1 M Cacodylatebuffer pH 7.4 for 1 h, washed with 

0.1 M Cacodylateuffer pH 7.4, then immersed in 50% alcohol for 20 min, 

subsequently in 70%, 80% and 90% alcohol, each for 20 min, and they 

were kept finally overnight in 96% alcohol. According to Perdigao et al. 

(1995) samples were put in Hexamethyldisilazane for 10 min and air dried 

at room temperature. Each sample was then fixed with carbon paste on the 

SEM sample holder. Gold sputtering was done for 1 min, with 1.0 kV, 0.3 

mbar and 40 mA (Edwards Sputter Coater S15OB, Sussex, UK) and the 

pictures were then made with a Leo FE-SEM (Leo DSM 982, Carl-Zeiss 

NTS GmbH, Oberkochen, Germany).  

Through out the whole experimental procedure care was taken to 

avoid dentin desiccation particularly after the lesion was formed to avoid 

collapsing of the demineralised and denaturated collagen fibrils. Exposing 
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the demineralised fibrils to air drying before critical point drying would 

lead to collapsed collagen fibrils and protinacious precipitates which would 

mask the accurate morphological appearance of the surface. 

Spectrophotometer: 

After the removal of the samples from the demineralizing solutions, 

the solutions were kept in 4°C until they were used for the hydroxyproline 

analysis measured with a double beam spectrophotometer (UVIKON 933, 

Double beam UV\VIS, Kontron Instruments, Zurich, Switzerland). 

Lyophilizing and Hydrolyzes: 

Samples were taken from each demineralizing solution after 3, 7 and 

14 days and neutralized with Na(OH)2, frozen at -20°C , then they were left 

for 1 h in -80°C immediately before lyophilizing (Freeze Dryer ALPHA 2-

4 LSC, Christ GmbH, Osterode am Harz, Germany). Lyophilized samples 

were hydrolyzed with 6 M HCl (1 ml/1 mg) for 24 h in sealed borosilicate 

test tubes at 110°C in 78% glycerin bath. To remove HCl the samples were 

neutralized again with Na(OH)2 before lyophilizing once again.  

Preparations of the reagents according to Jamall et al., (1981) and Kleter et 

al., (1998): 

-Chloramine T reagent: Acetate/citrate buffer was composed of 57 g 

sodium acetate trihydrate, 37.5 g trisodium citrate, 5.50 g citric acid 

monohydrate and 395 ml of isopropanol. They were brought to 1 l with 

distilled de-ionized water and the pH was adjusted to 6.0 by dropwise 

addition of 12 M hydrochloric acid. 5.6 mg of chloramine T reagent 

(Chloramine T puriss, Tolud-4-Sulforsäurechloramid Natriumsalz 

Trihydrat, Sigma-Aldrich GmbH, Seelze, Germany) was added to 1 ml of 

the acetate/citrate buffer.  

-Ehrlich’s reagent: 10 g of dimethylaminobenzaldehyde (4-

Dimethylamino benzaldehyde, Sigma-Aldrich Chemie GmbH, Steinheim, 
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Germany) was added to 11 ml of 60% perchloric acid. 3 ml of the mixture 

were mixed with 8 ml of 50% isopropanol to form the working Ehrlich 

reagent. 

Sample preparation: 

-Each dried sample was dissolved in 1.2 ml of 50% isopropanol for 1 

h before any further addition. 0.2 ml of chloramine T buffer was added to 

each sample for 25 min before the addition of 1.0 ml of Ehrlich reagent. 

The samples were then incubated for 20 min at 65°C to develop the red 

color chromophore. Each reagent solution was freshly prepared at the same 

day to be used. 

-Standard hydroxyproline solutions were prepared from 

hydroxyproline stock solution in which 1 mg of hydroxyproline (L-4-

Hydroxyproline, Fluka 56250, Sigma-Aldrich GmbH, Steinheim, 

Germany) was dissolved in 1 ml of 50% isopropanol. Dilutions 750, 500, 

250, 100, 75, 50, 25 µg were done with isopropanol. Chloramine T reagent 

and Ehrlish’s reagent were added to the hydroxyproline standard solutions 

and incubated just the same as with the dentin collagen samples. The 

absorbance at 555 nm was measured on a double beam UV/VIS 

spectrophotometer against 50% isopropanol as a refernce. The machine 

was found to be insensitive to concentrations less than 25 µg/ml 

hydroxyproline. Therefore dilutions starting from 1000 µg/ml down to 25 

µg/ml hydroxyproline were used to draw a working curve against 

absorbance. For calculation of collagen content, the hydroxyproline 

concentration (µg) was multiplied by a factor of 7.1, as calculated from the 

composition of human dentin collagen. 
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Results 

3 days demineralization: 

The surface of the demineralized human dentin samples after 3 

days of demineralization in acetic acid as shown in the SEM pictures 

were similar to those were demineralized for 3 days in lactic acid in 

which the peri-tubular dentin was dissolved and the inter-tubular 

collagen fibres were partially demineralized (fig 3.2). When acetic 

acid was the demineralizing regime surface precipitates were scattered 

and partially covering the demineralized surface. The 

demineralization with lactic acid led to large amounts of precipitates 

that covered large areas of the demineralized surface and occluded 

many of the dentinal tubules (fig 3.3). 

1 week demineralization: 

The surface precipitates were almost similar in quantity and 

morphological appearance for both acetic and lactic acids (fig 3.4a, 

3.4b). They were scattered at the surfaces in which they did not totally 

cover the inter-tubular dentin. Therefore the partially demineralized 

collagen fibres were clearly visible. However, with lactic acid there 

were always areas within the same surface that were covered with a 

thick layer of surface precipitates (fig 3.4c).  

2 weeks demineralization: 

The samples which were demineralized in acetic acid showed 

scattered patches of precipitates. With 2 weeks of demineralization in 

lactic acid the surface precipitates were much more than those at the 

acetic acid demineralized surfaces and they totally covered the 

underlying demineralized inter-tubular dentin surface and occluded 

mostly all the dentinal tubules (fig 3.5). 
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Although the precipitates covered the demineralized collagen fibres, 

partially demineralized fibres within the inter-tubular dentin and totally 

demineralized collagen fibres within the dentinal tubules were sometimes 

observed in the layer under the precipitates. However, they were always 

clearly visible at the margins of the artificial dentinal lesions where no 

precipitates covered them (fig 3.6). 

The demineralized collagen fibers at the surfaces of the artificial 

lesions under the precipitates observed in the SEM pictures were always 

decreased in thickness when they were demineralized with lactic acid (fig 

3.7). 

There was no difference in the morphological appearance of the 

lesions which were formed perpendicular to the dentinal tubules and those 

which were parallel to the dentinal tubules. However, the intermolecular 

cross-links banding with periodicity of 62 nm were clearly visible in the 

slices where windows were made parallel to the dentinal tubules and only 

when demineralization was with acetic acid solutions (fig 3.8) because the 

exposed deep inter-tubular collagen between the cut tubules lacked the 

heavy precipitates that covered the superficial inter-tubular collagen at the 

edge of the cut. 

Although no attempts were made to qualify these precipitates in the 

present study, fig. 3.9a, 3.9b, 3.9c, 3.9d demonstrate the differences of 

these precipitates in comparison to enamel hydroxyapatite at a higher 

magnification. 

The biochemical analysis revealed that no hydroxyproline could be 

detected in the acetic acid after 3 and 7 days of demineralization, which 

indicated that, during these incubation periods no solubilization of collagen 

occurred. However, after 2 weeks of demineralization amounts of 

solubilized collagen were detected through the hydroxyproline analysis. 
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Hydroxyproline was found in lactic acid after 3, 7 and 14 days. The amount 

of extracted collagen in the lactic acid was found to be increasing with time 

in a linear constant rate until two weeks (fig 3.10). 

Discussion  

The results of the present study indicated a different effect of acetic 

and lactic acid on the collagen degradation. While lactic acid could 

denaturate collagen within three days acetic acid did not show to solubilize 

collagen to any significant level for one week. 

In the course of our study, we needed to evaluate the effect of several 

proteolytic agents on the demineralized dentinal organic matrix. Natural 

caries is too variable for reproducible evaluations. Therefore, we developed 

an artificial dentinal caries model to be used for evaluating self-limited 

enzyme-based experiments. 

Lactic acid is the dominant organic acid among the glycolysis end 

products, but other organic acids such as acetic, propionic, butyric, formic 

and succinic acids are also produced in variable amounts (Featherstone and 

Rodgers, 1981; Nikiforuk, 1985a; Hojo et al., 1991; Loesche, 1996; 

Featherstone, 2004). Moreover, lactic acid has potency to denaturate the 

dentin collagen (Kuboki et al., 1983). On the other hand, acetic acid at pH 

5 lacks the potential to breakdown the collagen fibrils, destroy the cross-

links bands and release hydroxyproline as an indicator for collagen 

denaturation (Kuboki et al., 1983; Van Strijp et al., 1992). To gain more 

information and better understanding the effect of these acids on 

demineralizing and/or denaturating dentin collagen we studied the 

morphological appearance of the lactic and acetic acids demineralized 

coronal dentin surfaces. To identify the denaturated collagen and 

differentiate it from the demineralized collagen fibers, we analysed the 

demineralizing solutions to quantify the released hydroxyproline. 
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Although bacterial enzymes and endogenous collagenases are 

considered to be responsible for collagen and NCPs degradation (Dung et 

al., 1995; Larmas, 2001) we proved through our model the ability of lactic 

acid at pH 4 to denaturate dentin collagen within three days. On the other 

hand, only after 14 days of dentin demineralization with acetic acid at pH 

5, samples from the acetic acid solutions showed to contain 

hydroxyproline. 

The degraded organic matrix together with the partially demineralized 

hydroxyapatite formed a surface layer that increased in quantity with 

increasing the demineralizing time. By the next week these precipitates had 

almost covered the inter-tubular dentin and occluded the dentinal tubules. 

Denaturated dentin collagen did not appear as it was expected as loose 

three polypeptide chains, instead the tropocollagen strands separated into 

globular and random coils (Wikipedia, 2006). Dung et al., (1994) had 

reported that human dentin collagen was insoluble in weak organic acids 

such as lactic and acetic acids. However, these different documented results 

can be due to differences in the demineralization duration. A primary 

results in our lab indicated that 24 h of lactic acid demineralization is not 

enough to solubilize collagen fibrils. 

Although the partially demineralized collagen fibres were expected to 

be visible at the surface of the demineralized inter-tubular dentin, the 

degraded matrix masked their appearance partially in case of the acetic acid 

and totally with the lactic acid. Therefore our demineralized collagen SEM 

pictures were different than those which were documented in the literature 

after phosphoric acid, citric acid, nitric acid or other acidic conditioners 

etching (Willey and Steinberg, 1984; Gwinnett, 1994a, 1994b; Gwinnett et 

al., 1996; Breschi et al., 2002; Hara et al., 2005). However, we suggest as a 

hypothesis that the formation of this surface layer is due to both, first the 

nature of the demineralization process in which the acid diffuses in an un-
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uniform pathways leaving remnants of hydroxyapatite at the surface 

together with calcium and phosphate reprecipitations (Moreno and 

Zahradnik, 1974; Featherstone et al., 1983; Fejerskov et al., 2003) and 

second the degraded collagen fibres together with the released NCPs which 

remained in the demineralized tissue (Klont and ten Cate, 1990). Moreover, 

it was argued that mineral precipitates from the demineralizing solutions 

could participate in the formation of the surface layer.  

The acid diffusion process during artificial carious lesion formation is 

a three steps process in which the unionized form of the organic acid is the 

predominant diffusing molecules at the beginning followed by the 

dissolution of the hydroxyapatite crystals as a function of the dissociated 

hydrogen ion concentration and finally is the diffusion of the calcium and 

phosphate ions out of the lesion (Featherstone and Rodgers, 1981, 

Featherstone, 2004). Based on the mentioned hypothesis the lactic acid 

which is stronger than acetic acid has more potency to dissolve 

hydroxyapatite crystals under the same temperature. Moreover, the apatite 

solubility increases with factor 10 with each single drop of pH (ten Cate et 

al., 2003). Thus, lowering the pH of the demineralizing solution increases 

the dissolution rate, which in turn, increases the diffusion coefficient 

(Theuns et al., 1985). Our observations regarding the more demineralized 

(thinner) collagen fibres when they were demineralized with lactic acid 

than those which were demineralized with acetic acid can be explained 

accordingly.  

In spite of these nice and helpful results, common critics of all in vitro 

simulations of dentin caries are that utilizing chemical or bacterial systems 

to produce dentinal artificial caries in vitro is of limited abilities in 

simulating natural dentin caries in vivo mainly due to the differences 

between vital and extracted teeth. Sclerosis, reactionary dentine, tertiary 

dentine, polymorphous crystallites formation in dentinal tubules, dentinal 
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tubules diameter and the outward flow of the dentinal fluid are examples of 

biological vital dentino-pulpal reactions to caries (Johansen and Parks, 

1961; Sarnat and Massler, 1965; Fusayama et al., 1966; Frank and Voegel, 

1980; Frank et al., 1989; Schüpbach et al., 1990; Larmas, 2001; Smith, 

2002) that could reduce the rate of demineralization and lesion progression 

(Nyvad et al., 1997; ten Cate et al., 2003; Özok et al., 2004) which are 

absent in case of the extracted teeth. On the other hand comparing artificial 

dentinal caries produced in vitro with the partially saturated buffer systems 

acidified with 0.5 M acetic acid to natural dentinal caries using variable 

analytical tools demonstrated a great similarity between artificial and 

natural dentin caries in terms of lesion morphology, basic histological 

features and mineral distribution which concluded that experimentally 

induced caries-like lesions mimic natural lesions (Featherstone and 

Rodgers, 1981; Wefel et al., 1995; McIntyre and Featherstone, 2000). 

Our model minimizes the biological variations between the dentin 

samples (Almqvist et al., 1993) through the very close location between the 

compared treated slices and thus, enabled us to compare effectively 

between different variables. 

We concluded from the present study that our model is suitable for 

studying artificial dentinal caries in which only lactic acid is capable of 

producing both denaturated and demineralized dentin. Moreover, the ratio 

of denaturated/demineralized dentin is controlled through the type of acid 

used and the demineralization time. 

Future work can correlate these morphological results of the in vitro 

artificial dentin caries with SEM images of natural dentin caries. 
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Fig 3.1. A schematic drawing illustrating the slice preparation. (1) Caries free molar. (2) The root was 
abraded short below the cemento-enamel junction and the tooth was cut longitudinally from the middle. (3) 
The occlusal part of each half was removed to expose deep dentin. (4) a. longitudinal section of one half of 
the crown after the occlusal part was removed, b. cross section. (5) Each half was sliced into four slices (1, 2, 
3, 4) and (5, 6, 7, 8). (6) Each slice of dentin was prepared separately in which the close related slices had 
comparable windows. (7) One window per slice was prepared parallel to the dentinal tubules (slices 1, 2, 5 
and 6) and slices 3, 4, 7 and 8 were prepared with the windows perpendicular to the dentinal tubules. 
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Fig 3.2. At high magnification the SEM pictures of the demineralized 

dentin for both acetic and lactic acid has the same morphological 

appearance (x20000).  
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Fig 3.3. (a) The surface of the demineralized dentin was totally covered 

with surface precipitates after 3 days demineralization with lactic acid pH 4 

(x5000). (b) Less surface precipitates were observed at dentin surface after 

3 days when demineralization was with acetic acid pH 5 (x5000). 

(a)  

(b)  
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Fig 3.4. (a) The surface of lactic acid demineralized dentin after 1 week 

(x10000). (b) The surface of acetic acid demineralized dentin after 1 week 

(x10000). (c) In some samples after 1 week of lactic acid demineralization 

a surface layer was formed at the surface (x10000). 

(a)  

(b)  
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(c)  
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Fig 3.5. (a) The surface of lactic acid demineralized dentin after 2 weeks was 

totally covered with a thick surface layer (x5000). (b) While the surface of 

acetic acid demineralized dentin after 2 weeks lacked these surface 

precipitates (x5000). 

(a)  

(b)  
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Fig 3.6. (a) At the edge of the lesion and under the surface precipitate the 

demineralized collagen fibers were clearly visible (x5000). (b) A higher 

magnification of the demineralized peri- and inter-tubular dentin (x1000). 

(a)  

(b)  
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Fig 3.7. (a,b)The demineralized collagen fibers after demineralization with 

lactic acid were thinner than (c,d) those were demineralized with acetic 

acid (x10000) (x20000) (30000).  

(a)  

(b)  
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(c)  

(d)  
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Fig 3.8. The banding pattern was clearly visible at the collagen fibers when 

the surface layer was removed and when demineralization was with acetic 

acid (x50000).  
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Fig 3.9. (a) Demineralized enamel hydroxyapatite (x30000). (b) 

Precipitates at dentin surface after 1 week of lactic acid demineralization 

(x30000). (c) Demineralized enamel hydroxyapatite (x50000). (d) 

Precipitates at dentin surface after 1 week of acetic acid demineralization 

(x50000). 

(a)  

(b)  
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(c)   

(d)  
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Fig 3.10. The degradable collagen (µg/slice) released from coronal dentin 

slices during demineralization in 0.1 M lactic acid pH 4 (▪), 0.5 M acetic 

acid pH 5 (∆) after 3, 7 and 14 days. The amount of the extracted collagen 

was calculated from the hydroxyproline concentration (µg) that was 

detected in the demineralizing solutions (20ml/slice). There was no 

hydroxyproline/solubilized collagen found at days 3 and 7 in acetic acid. 
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Self-Limiting Caries Therapy 

 Chapter 4 

Introduction 

The traditional guidelines for cavity preparation were outlined by GV 

Black in 1893. They consist of complete removal of the carious lesion, 

extension for prevention, outline form, resistance and retention forms 

(Mertz-Faihurst et al., 1998). As a consequence to the development of the 

adhesive dental restorative materials, the minimally invasive dentistry 

concept was introduced and several excavation techniques had been 

developed (Banerjee et al., 2000; Lager et al., 2003). Therefore, current 

clinical practice nowadays considers Blacks’ principles too destructive for 

tooth structure (Banerjee et al., 2000). This disagreement with Black 

concerning the sufficient amount of tissue that needs to be excavated from 

the carious lesion is not new (Langeland and Langeland, 1968; Banerjee et 

al., 2000; Kidd, 2004). Authors such as Tomes (1859) (Fisher, 1981; Kidd, 

2004) and Andrieu (1889) and Preiswerk (1903) (Langeland and 

Langeland, 1968) already advocated a more conservative attitude giving 

the pulp protection priority rather than running the risk of sacrificing the 

tooth, while Black (1908) favoured a more radical approach, even if that 

meant pulp exposure (Langeland and Langeland, 1968; Fisher, 1981; Kidd, 

2004).  

Therefore, alternatives to the mechanical excavation aim to be more 

selective in caries removal by removing only the infected denaturated and 

cariogenic layer leaving behind the affected demineralized but 

remineralizable one (Ericson et al., 1999; Yip et al., 1999; Banerjee et al., 

2000; Beeley et al., 2000; Fure et al., 2000; Nadanovsky et al., 2001; Lager 

et al., 2003; Rafique et al., 2003; Flückiger et al., 2005).  
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Specific enzymes could be an alternative to the mechanical excavation 

and a minimally invasive method in which carious dentin can be selectively 

removed through their self limiting properties. The activity of collagenase 

(Kleter et al., 1994, 1997; Kawasaki and Featherstone, 1997), aqueous 

sodium hypochlorite (Hannig, 1999; Marshall et al., 2001; Tonami et al., 

2003), CarisolvTM (Hannig, 1999; Puppin-Rontani and Caldo-Teixeira, 

2001; Arvidsson et al., 2002), Trypsin (Dung et al., 1994, 1995; Kleter et 

al., 1997), Pronase (Willey and Steinberg, 1984; Belz et al., 1999) and 

Pepsin (Kleter et al., 1997; Tonami and Ericson, 2005) on dentin 

degradation have been previously studied for different purposes several 

times. 

The aim of this part of the study was to determine the extent to which 

artificial carious dentin can be solubilized by agents that do not seem to 

attack sound dentin such as pepsin, trypsin, collagenase and NaOCl, and to 

evaluate the effect of the enzyme pepsin as a self-limiting caries therapy in 

dentinal carious lesions using our model for artificial dentin caries. This 

part tested the hypothesis that pepsin is capable of removing just the 

denaturated dentin but leaving the demineralized tissue. 

Materials and Methods  

Sample Preparation: 

Fifty-four extracted human third molars were obtained from an oral 

surgeons’ private clinic and used within 8 months of extraction. After 

extraction teeth were immediately stored at room temperature in Ringer 

solution to which sodium-azide was added to prevent bacterial growth. All 

teeth were clinically sound without caries, abrasions or any mechanical 

traumas. Teeth were cleaned with a tooth brush aided sometimes with a 

scalpel to remove the periodontal ligament and intercrestal bone remnants 

and rinsed under running tap water. The roots were cut 2.0 mm below the 
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cementoenamel junction. The teeth were then embedded individually in 

transparent cold-curing methylmethacrylate (Technovit 4004, Kulzer 

GmbH, Wehrheim, Germany). To expose mid-coronal dentin each tooth 

was sectioned parallel to its long axis into two halves using a slow speed 

water-cooled diamond saw (Isomet, Beuhler, Illinois, USA), the occlusal 

part of each half was then removed by a cut perpendicular to the long axis 

of the tooth and 1.5-3.0 mm away from the pulp. Each half was divided 

into four slices parallel to the long axis of the tooth and extends from the 

middle of the tooth to the outer enamel with a thin saw microtome (Leica 

SP 1600, GmbH, Nußloch, Germany) under tap water. Dentin exposed 

surfaces were then polished flat with water proof silicon carbide abrasive 

paper (P500-grit) with a Leco VP 100 (GmbH, Neuss, Germany) device. 

Subsequently they were polished using wet polishing paper with silicone 

paste of polycrystalline diamonds of size 9 µm (DAP-7, Struers, 

Copenhagen, Denmark). 

Dentin surfaces together with the surrounding Technovit were covered 

with two coats of nail varnish (Keyte, GmbH, Munich, Germany) to avoid 

the penetration of the solutions’ molecules in any marginal gaps that could 

exist between the tooth and the acrylate, leaving one window of exposed 

mid-coronal dentin per slice. Adhesive paper was cut into 1x1.5 mm² 

pieces and attached to the dentin surfaces before applying the nail varnish 

to standardize the window. Two of the four exposed surfaces were 

perpendicular to the dentinal tubules and the other two were parallel to the 

tubules. The samples were then kept in air for about fifteen minutes to 

allow the nail varnish to dry. After the removal of the adhesive strips each 

window was etched for 20 s with 37% phosphoric acid gel (Total etch, 

Ivoclar Vivadent GmbH, Schaan, FL) to remove the smear layer.  

Lesion Formation: 
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Twenty-seven teeth (216 slices) were demineralized in 0.1 M lactic 

acid (pH 4), while the other twenty-four teeth (192 slices) were immersed 

in 0.5 M acetic acid (pH 5) for 3, 7 and 14 days. The demineralization 

process was always with agitation of the solution with 150 rpm at 37°C 

(Forma Orbital Shaker, Thermo Electron Corporation, Ohio, USA) with 20 

ml per slice. After the first week the demineralizing solutions were 

refreshed to avoid changes of the solution’s pH of more than half a pH unit. 

Enzymatic Treatment: 

Each of the four slices from one tooth was treated either with pepsin, 

trypsin, collagenase or sodium hypochlorite while the other four slices 

from the opposite half of the same tooth served as controls. The 

experimental procedure is schematically illustrated in fig. 4.1. 

- Pepsin: 1 mg of the enzyme pepsin (pepsin from hog stomach, 77152, 

Fluka, Biochemika, Sigma-Aldrich, Steinheim, Germany) was dissolved in 

either 1 ml of 0.5 M acetic acid pH 1.5 or pH 2.5 or 1 ml of 0.01 M HCl 

acid pH 2. Each slice was incubated individually in 1.5 ml of the enzymatic 

buffer for 10 min at 37°C with agitation 150 rpm. The slices were then 

washed with 0.2 M HCl tris buffer pH 8.6 at 4°C to stop the reaction and 

then washed with distilled water at 4°C.  

- Trypsin: 1 mg of the enzyme trypsin (trypsin from hog pancreas, 93614, 

Fluka, Biochemika, Sigma-Aldrich, Steinheim, Germany) was dissolved in 

1 ml of HEPES buffer (50 mM HEPES, 5 mM CaCl2.H2O, 0.15 M KCl, 5 

mM sodium azide), pH 7.4. Each slice was incubated individually in 1.5 ml 

of the enzymatic buffer for 10 min or 24 h at 37°C with agitation 150 rpm. 

The slices were then washed with distilled water at 4°C. 

-  Collagenase: 1 mg of the enzyme collagenase (collagenase, 

Clostridiopeptidase A from Clostridium Histolyticum Type I, Sigma-

Aldrich Chemie, GmbH, Steinheim, Germany) was dissolved in 1 ml of 
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HEPES buffer (50 mM HEPES, 5 mM CaCl2.H2O, 0.2 M NaCl, 5 mM 

sodium azide), pH 7.8. Each slice was incubated individually in 1.5 ml of 

the enzymatic buffer for 10 min or 24 h at 37°C with agitation 150 rpm. 

The slices were then washed with 0.001 M phosphate buffer pH 7 at 4°C to 

stop the reaction and then with distilled water at 4°C. 

- Aqueous sodium hypochlorite: Each slice was incubated in 1.5 ml of 

2.5% of sodium hypochlorite for 10 min at 37°C with agitation 150 rpm. 

The slices were then washed with distilled water at 4°C. Additional slices 

(32 slices) were etched with 37% phosphoric acid gel (Total etch, Ivoclar 

Vivadent GmbH, Schaan, FL) for 100 min and treated with 1.5 ml of 2.5% 

of sodium hypochlorite for 5 min. The experiment design is shown in table 

4.1. 

The 10 min period was chosen as being clinically relevant and the 24 

h duration was chosen for both trypsin and collagenase according to the 

references. All the enzymatic buffer solutions were prepared at the same 

day they were used.  

FE-SEM: 

To obtain information on the morphology of the demineralized dentin 

surfaces a high resolution FE-SEM was used. Samples were fixed in 0.25 

M Glutaraldehyde in 0.1 M Cacodylatebuffer pH 7.4 for 1 h, washed with 

0.1 M Cacodylateuffer pH 7.4, then immersed in 50% alcohol for 20 min, 

subsequently in 70%, 80% and 90% alcohol, each for 20 min, and they 

were kept finally overnight in 96% alcohol. According to Perdigao et al. 

(1995) samples were put in Hexamethyldisilazane for 10 min and air dried 

at room temperature. Each sample was then fixed with carbon paste on the 

SEM sample holder. Gold sputtering was done for 1 min, with 1.0 kV, 0.3 

mbar and 40 mA (Edwards Sputter Coater S15OB, Sussex, UK) and the 
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pictures were then made with a Leo FE-SEM (Leo DSM 982, Carl-Zeiss 

NTS GmbH, Oberkochen, Germany).  

Through out the whole experimental procedure care was taken to 

avoid dentin desiccation particularly after the lesion was formed to avoid 

collapsing of the demineralized and denaturated collagen fibrils. Exposing 

the demineralized fibrils to air drying before critical point drying would 

lead to collapsed collagen fibrils and protinacious precipitates which would 

mask the morphological appearance of the surface. 

Results 

The surface of the demineralized human dentin samples after 3 days of 

demineralization, as shown in the SEM pictures, were similar for both 

acetic and lactic acids. The peri-tubular dentin was dissolved, the inter-

tubular collagen fibres were partially demineralized and surface 

precipitates were formed. When acetic acid was the demineralizing regime, 

the surface precipitates were scattered and partially covering the 

demineralized surface. While demineralization with lactic acid led to large 

amounts of precipitates that covered large areas of the demineralized 

surface and occluded many of the dentinal tubules. 

After 1 week of demineralization the surface precipitates were almost 

similar in quantity and morphological appearance for both acetic and lactic 

acids. They were scattered over the surfaces but they did not totally cover 

the inter-tubular dentin. Therefore the partially demineralized collagen 

fibres were clearly visible. However, with lactic acid there were always 

areas within the same surface that were covered with a thick layer of 

surface precipitates.  

After two weeks the samples which were demineralized in acetic acid 

showed scattered patches of precipitates. With 2 weeks of demineralization 

in lactic acid the surface precipitates were much more than those at the 



 - 95 -

acetic acid demineralized surfaces and they totally covered the underlying 

demineralized inter-tubular dentin surface and occluded mostly all the 

dentinal tubules (fig. 4.2). 

Although the precipitates covered the demineralized collagen fibres, 

partially demineralized collagen fibres within the inter-tubular dentin and 

totally demineralized collagen fibres within the dentinal tubules were 

sometimes observed under the precipitates.  

There was no difference in the morphological appearance of the 

lesions which were formed perpendicular to the dentinal tubules and those 

which were parallel to the dentinal tubules.   

Treating the acetic acid demineralized surfaces after 3 and 7 days with 

pepsin for 10 min did not show any significant difference in comparison to 

the control samples (fig. 4.3a). However, after 14 days of acetic acid 

demineralization small amounts of the surface precipitates were digested 

by the enzyme. Treating the lactic acid demineralized surfaces with pepsin 

for 10 min removed many of the surface precipitates (fig. 4.3b). Where the 

precipitates were digested the completely demineralized collagen fibres 

were clearly visible (table 4.2). With these samples we observed that the 

capability of the enzyme pepsin to remove the precipitates was decreased 

when the demineralization period was longer. Moreover, the capability of 

the enzyme in digesting the precipitates was significantly higher when the 

diluting buffer was 0.01 M HCl Tris buffer.  

The samples which were treated with either trypsin or collagenase for 

10 min showed no significant difference in the appearance of the treated 

surfaces in comparison to the controls. These observations were similar for 

both lactic and acetic acids. Although small amounts of precipitates were 

digested at the surfaces which were demineralized with lactic acid (fig. 

4.4).  
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24 h of trypsin incubation of the samples, which were demineralized 

for 1 week in acetic acid, could not remove any of the surface precipitates 

(fig. 4.5a, 4.5b). While after 24 h of trypsin incubation of the samples, 

which were demineralized for 1 week in lactic acid, large amounts of the 

surface precipitates were removed. Again completely demineralized 

collagen fibres were observed after the precipitates were removed (fig. 

4.5c). After 2 weeks of demineralization the enzyme trypsin did not 

remove as much as it removed after the first week in case of the lactic acid. 

In contrast to this it removed more than it did in the first week in case of 

acetic acid demineralization. 

Treating the demineralized dentin surfaces with collagenase for 24 h 

resulted in complete removal for the surface layer exposing the underlying 

partially demineralized dentin. No totally demineralized fibres were seen 

but single mineralized fibres were always observed for both acetic and 

lactic acid demineralization (fig. 4.6). 

Sodium hypochlorite (NaOCl) treatment for 10 min resulted in 

complete digestion of the surface layer exposing the underlying structures. 

After NaOCl treatment the acetic acid demineralized samples showed 

partially demineralized inter-tubular dentin while the lactic acid 

demineralized samples showed, that all fibres were totally demineralized 

(fig. 4.7). 

5 min of NaOCl treatment after 100 min of phosphoric acid etching 

resulted in total removal of the surface and exposing deep partially 

demineralized dentin (fig. 4.8). 

There was no difference in the morphological appearance of the 

treated surfaces which were formed perpendicular to the dentinal tubules 

and those which were parallel to the dentinal tubules.  
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Discussion 

Results from the present study indicated that short term application of 

the enzyme pepsin is capable of removing just the denaturated collagen. 

Pepsin proved to be more efficient than trypsin and collagenase and less 

aggressive than NaOCl at removing denaturated dentin collagen fibers. 

Acetic acid is a weak organic acid that is incapable of solubilyzing 

dentin collagen (Van Strijp et al., 1992). Lactic acid is a stronger organic 

acid (Featherstone and Rodgers, 1981), although it did not show capability 

of denaturating human dentin collagen after short incubation periods (Dung 

et al., 1994). However, it is suggested that dentin collagen is likely to 

denaturate during long-term acid exposure (Klont and ten Cate, 1991a; 

Kleter et al., 1998). Both acids are well known to be produced in major 

proportions by dental plaque and play an important role in carious dentin 

(Featherstone and Rodgers, 1981; Hojo et al., 1991). 

The dentin caries process is initiated by demineralization of the 

mineral phase followed by the break down of the organic matrix. The 

organic material in dentin is protected by the hydroxyapatites so that 

neither the bacterial nor the endogenous proteolytic enzymes (Dung et al., 

1995) have access to the organic matrix without dissolving the extra-

fibrillar or intra-fibrillar, or both, apatite crystals first. The organic matrix 

of dentin is composed of collagen and noncollagenous compounds (NCCs).  

Phosphoproteins and proteoglycans are the major NCCs. Collagen type I is 

the dominant dentin collagen and it constitutes 90 wt% of dentin organic 

matrix. The triple-helix of collagen fibrils is resistant to most proteases and 

its degradation is initiated by cleavage of the three forming polypeptide 

chains (Brodsky and Ramshaw, 1997) as a result of proteolytic enzyme 

activity. The triple-helix of the undenaturated collagen is considered to be 

resistant to degradation by enzymes other than collagenases (Klont et al., 

1991). Therefore pepsin, which is a carboxylic protease, is expected to act 
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only on the non-helical and denaturated collagen segments (Kleter et al., 

1997; Tonami and Ericson, 2005). Pepsin was used to investigate its 

potential to remove the denaturated collagen fibrils of the demineralized 

matrix. Our results, as shown in the SEM pictures, indicated the capability 

of pepsin to remove a lot of the surface precipitates. Large proportions of 

these precipitates are thought to be denaturated collagen fibres. Our 

hypothesis is supported by our observations that the same enzyme 

preparation was incapable of removing these surface precipitates when the 

demineralizing pre-treatment was acetic acid and not lactic acid. It is 

known that acetic acid lacks the potential to solubilize either dentin 

collagen (Van Strijp et al., 1992) or dentin phosphorylated phosphoprotein 

(Klont and ten Cate, 1989). Consequently, we suggest that the surface layer 

precipitates at the lactic acid demineralized dentin surfaces is formed due 

to two steps. First the acid diffuses in an un-uniform pathway leaving 

remnants of hydroxyapatite at the surface together with calcium and 

phosphate reprecipitations (Moreno and Zahradnik, 1974; Featherstone et 

al., 1983; Fejerskov et al., 2003). Second the degraded denaturated 

collagen fibres together with the released NCCs remain in the 

demineralized tissue (Klont and ten Cate, 1990). It was argued that mineral 

precipitates from the demineralizing solutions could also form some of 

these surface precipitates  

10 min of pepsin incubation at 37°C with agitation was enough to 

remove large amounts of surface precipitates and denaturated collagen after 

3 days and 1 week at the lactic acid demineralized surfaces. This potential, 

however, was decreased with increasing the demineralizing period to two 

weeks, most probably because the amount of the demineralized matrix 

increased, aggregated, and partially blocked the enzyme diffusion and/or 

action (Kleter et al., 1994). In all lactic acid samples the ten minutes 

incubation was not enough to remove all the surface precipitates. So far it 
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was not determined wither this was a matter of quantity in which the 

degraded matrix needed more than ten minutes to be completely digested 

by the enzyme, or was it a matter of quality in which the remaining 

precipitates were other than denaturated collagen such as hydroxyapatites 

and NCCs. On the other hand a slight increase in the pepsin capacity in 

removing small amounts of the surface precipitates from the two weeks 

acetic acid demineralized surfaces was observed. In the present study the 

enzyme potential was optimum at pH 2 in 0.01 M HCl Tris buffer in 

comparison to pH 1.5 and pH 2.5 in 0.5 M acetic acid. Preliminary tests in 

our laboratory indicated that the acidic medium of the enzyme has a limited 

capacity to remove these precipitates in such a short duration.  

Trypsin was used in comparison to pepsin, it is a serine protease that is 

also able to digest denaturated collagen, but at a neutral pH 7.4 (Kleter et 

al., 1997). After 24 h incubation trypsin was superior to pepsin in removing 

the surface layer at the lactic acid demineralized surfaces. The ten minutes 

treatment did not show any significant effect in decreasing the amount of 

the surface precipitates compared to the control samples. These results are 

in agreement with Kleter et al., (1997) who stated that collagen degradation 

during trypsin incubation was fastest during the first 24 h. Neither of the 

two trypsin incubations periods acted at the surface precipitates of the 3 

days and 1 week acetic acid demineralized surfaces. The 24 h trypsin 

treatment of the two weeks acetic acid demineralized surfaces showed a 

very limited capacity in affecting the degraded dentin. Moreover, we 

observed that while pepsin had a very light effect on removing the 

degraded matrix from the 1 week acetic acid demineralized surfaces; 

trypsin could not cause any morphological differences comparable to the 

control group. We hypothesize that although both enzymes behaved very 

similarly in digesting the non helical and denaturated segments of collagen 
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(Kleter et al., 1997) the acidic environment of the pepsin with pH 2 was 

responsible for the surface etching observed with pepsin. 

Collagenase is a specific metalloproteinase that is capable of 

hydrolyzing collagen at multiple cleavage sites (Van Strijp et al., 1992; Ho 

et al., 2005). In the present study the enzyme collagenase at a neutral pH 

7.8 did not act effectively within 10 min at both acetic and lactic acid 

demineralized surfaces but it digested the entire degraded matrix and 

demineralized collagen fibrils during 24 h of incubation in both groups, 

which is in accordance with the literature. Interestingly, all the collagenase 

treated surfaces showed single mineralized collagen fibres which resisted 

its proteolytic action. We expected after 24 h of collagenase treatment to 

see mineralized or partially demineralized dentin surfaces into which 

collagen fibres are embedded, similar to the SEM pictures of Gwinnett et 

al., (1996) for example. However, although the mode of the collagenase-

collagen interaction that determines cleavage specificity is yet to be 

elucidated (Brodsky and Ramshaw, 1997) it was stated that the collagenase 

binding and cleavage sites along the collagen triple-helices has to be 

accessible to the enzyme in order to bind and cleave the fibres. This means 

that the hydroxyapatite crystals covering the single mineralized fibres 

inhibited the cleaving action of the collagenase (Klont and ten Cate, 

1991b). Our findings based on the collagenase action suggest that the 

intrafibrillar mineralization does not inhibit the collagenase proteolytic 

action while the extrafibrillar mineralization blocks the collagenase binding 

sites and prevent collagen break down by the enzyme.  

Preliminary tests in our laboratory led to SEM pictures similar to those 

of Willey and Steinberg (1984), in which five minutes of collagenase 

treatment after three minutes of citric acid application provided -in the 

mentioned study- visually apparent matrix clearing, exposing more 

collagen fibres with a smaller mean diameter. Such results could be 
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provided with short incubations of either collagenase or NaOCl after short 

demineralizing periods in which increasing the treatment incubation time 

led to gradual digestion of the exposed demineralized collagen. On the 

other hand increasing the amount of the collagenase to 5 mg and 10 mg did 

not enhance the digestion strength.  

In the present study all the tested agents’ efficiency in removing the 

surface precipitates and digesting the degraded matrix was decreased with 

both, increasing the demineralizing period and/or decreasing the treatment 

duration.  

NaOCl is a non specific proteolytic agent which is used widely in 

various dental procedures (Marschall et al., 2001). It was introduced as a 

chemomechanical method to remove carious dentin after mixing it with 

three amino acids in the CarisolvTM system. It was reported that these 

amino acids are responsible for the selective carious dentin tissue removal 

observed with the Carisolv system in comparison to the pure NaOCl 

(Hanning, 1999; Tonami et al., 2003). In our study 2.5% of pure NaOCl 

was chosen to study the extent of its effect at both demineralized and 

denaturated dentin. Our results were in agreement with Hannig (1999). 

NaOCl effectively removed both the denaturated and demineralized dentin 

layers for acetic acid and lactic acid demineralized surfaces. In addition, 

when phosphoric acid gel etching was used instead of acetic and lactic 

acids the NaOCl effect was enhanced due to the decreased amount of 

degraded organic matrix that is needed to be removed. The pure NaOCl in 

our study was the most aggressive agent comparable to the other agents 

used to remove denaturated and demineralized dentin. There were no single 

mineralized collagen fibres at the surface after NaOCl treatment. These 

results suggest that extra-fibrillar mineralization could not resist the NaOCl 

action. 

 



 - 102 -

In conclusion: 

1-  Our model produced both denaturated and demineralized dentin only 

when lactic acid was used. Therefore lactic acid should be used to evaluate 

self-limited enzyme-based experiments. 

2-  The type of acid and the demineralization time affect the ratio of 

denaturated/demineralized dentin. 

3-  The pre-treatment and treatment type and time influenced the quality 

and quantity of the digested substrate. 

4-  The aggressiveness of the enzymes and agents used in the present study 

can be ranked (from least effective to most effective) Trypsin < Pepsin < 

Collagenase < NaOCl. The enzyme pepsin, with its acidic pH optimum, 

was more aggressive in removing the disintegrated dentinal organic matrix 

than the neutral enzyme trypsin. We hypothesize that although both 

enzymes behaved very similarly in digesting the denaturated collagen, the 

acidic environment of the pepsin with pH 2 was responsible for the surface 

etching observed with pepsin. We believe that the pepsin acidic medium is 

advantageous, in which the enzyme can be inactivated by washing it and 

thus neutralizing its pH. 

5- Based on the working principle of the treating solutions we suggest that 

artificial dentinal caries in the presence of lactic acid exhibits four 

successive layers with respect to the collagen fibres: denaturated collagen 

fibres, all fibres totally demineralized, single mineralized fibres and 

partially demineralized fibres (fig. 4.9). Table 4.2 clarify the definitions we 

used for the mentioned layers. The criteria were selected according to our 

observations from the SEM pictures.  
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Fig 4.1. A schematic drawing illustrating the experimental procedure. (1) 

Caries free molar. (2) The root was abraded short below the cemento-

enamel junction and the tooth was cut longitudinally from the middle. (3) 

The occlusal part of each half was removed to expose deep dentin. (4) a. 

Longitudinal section of one half of the crown after the occlusal part was 

removed, b. cross section. (5) Each half was sliced into four slices (1, 2, 3, 

4) and (5, 6, 7, 8). (6) Every two opposable slices (1,5), (2,6), (3,7) and 

(4,8) were demineralized separately either in lactic or acetic acid. One of 

every two slices (5,6,7 and 8) serves as a control and the other (1,2,3 and 4) 

was treated with one of the treating regimes. 

 

 

(2) (1) (3) (4) 

a. b.

(5) 

1 5 

3 
4 

6 
7 
8 

2 

(6)

 5-control/pepsin          1-pepsin 

 

         2-trypsin 6-control/trypsin 

    3-collagenase 7-control/collagenase 

    4-NaOCl 8-control/NaOCl 
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Table 4.1. The experiment design (N is the number of slices). 
 

Acetic acid, pH 5 

N= 192  

Lactic acid, pH 4 

N= 216  

Phosphoric 

acid 

N= 32  

            Demineralising 

                       regime 

 

Treatment type 

    and time  

3days 

n= 48 

7days 

n= 72 

14days 

n= 72 

3days 

n=48 

7days 

N=96 

14days 

n=72 

100 minutes 

n=32 

Pepsin in acetic acid 

buffer, pH 1.5or 2.5, 10 

min 

N= 34 

n= 4 n= 6 n= 6 n= 4 N= 8 n= 6 - 

Pepsin in HCl acid pH 

2.0, 10min 

N= 27 

n= 3 n= 5 n= 5 n= 3 N= 6 n= 5 - 

Trypsin, 10 min 

N= 24 

n= 3 n= 4  n= 4 n= 3 N= 6 n= 4 - 

Trypsin, 24hrs 

N= 34 

n= 4 n= 6 n= 6 n= 4 N= 8 n= 6 - 

Collagenase,10min 

N= 24 

n= 3 n= 4 n= 4 n= 3 N= 6 n= 4 - 

Collagenase, 24hrs N= 34 n= 4 n= 6 n= 6 n= 4 N= 8 n= 6 - 

NaOCl, 10 min 

N= 27 

n= 3 n= 5 n= 5 n= 3 N= 6 n= 5 - 

NaOCl, 5 min 

N= 32  

- - - - - - n= 32 
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Collagen status Definition (according to the observations) 

Denaturated collagen - The extrafibrillar and intrafibrillar minerals are 
dissolved. 

- The internal structure of the fibres is destructed. 

- The cross-links are broken. 

- Globular and random coils are formed. 

All fibres totally demineralized 
(completely demineralized 
fibres) 

- The extrafibrillar minerals are dissolved; there are no 
hydroxyapatites between the fibres or alongside the 
single fibre. 

- The intrafibrillar minerals are not affected. 

- The internal structure of the fibres is not destructed. 
Therefore, the tropocollagen triple helix composed 
of the three polypeptide α chains is preserved. 

- The cross-links are not broken. 

- They are rod-like in shape, 300 nm long and 1.5 nm 
in diameter. 

single mineralized fibres - They are the same as the completely demineralized 
fibres but the extrafibrillar minerals which lie in the 
interstitial spaces between the fibres were dissolved 
while each single fibre was still covered with 
hydroxyapatites. 

Partially demineralized fibres - These are the same as the single mineralized fibres 
but the extrafibrillar minerals which lie in the 
interstitial spaces between the fibres were not totally 
dissolved. The hydroxyapatites covered the single 
fibre and partially remained between the fibres. 

 

Table 4.2. The terms which were used in this article were based on our 

SEM observations and the definitions we made were according to the 

mentioned criteria.  
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Fig 4.2. (a) Human coronal dentin after two weeks demineralization with 

acetic acid. The peri-tubular dentin is dissolved and the inter-tubular dentin 

is partially demineralized (x10000). (b) Human coronal dentin after two 

weeks demineralization with lactic acid. A thick surface layer covered the 

demineralized surface and occluded the dentinal tubules(x10000). 

(a)  

(b)  
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Fig 4.3. (a) Pepsin-treated surface after 1 week demineralization with acetic 

acid (x10000). (b) Pepsin-treated surface after 1 week demineralization 

with lactic acid (x10000). 1.5 mg pepsin in 1.5 ml of 0.01 M HCl Tris 

buffer, pH 2, at 37°C, with 150 rpm, for 10 min.  

(a)  

(b)  
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Fig 4.4. (a) Collagenase-treated surface after 1 week demineralization with 

acetic acid (x10000). (b) Collagenase-treated surface after 1 week 

demineralization with lactic acid (x10000). 1.5 mg collagenase in 1.5 ml of 

50 mM HEPES buffer, pH 7.8, at 37°C, with 150 rpm, for 10 min.  

(a)  

(b)  
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Fig 4.5. (a) 1 week of demineralization with acetic acid (pH 5), the window 

is parallel to the dentinal tubules (x10000). (b) Trypsin-treated surface after 

1 week demineralization with acetic acid (x10000). (c) Trypsin-treated 

surface after 1 week demineralization with lactic acid (x10000). 1.5 mg 

trypsin in 1.5 ml of 50 mM HEPES buffer, pH 7.4, at 37°C, with 150 rpm, 

for 24 h.  

(a)  

(b)  
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(c)  

 

Fig 4.6. Collagenase-treated surface after 1 week demineralization with 

acetic acid (x10000). 1.5 mg collagenase in 1.5 ml of 50 mM HEPES 

buffer, pH 7.8, at 37°C, with 150 rpm, for 24 h. 

 



 - 111 -

Fig 4.7. (a) NaOCl-treated surface after 1 week demineralization with 

acetic acid. Note the thick partially demineralized collagen fibres (x10000). 

(b) NaOCl-treated surface after 1 week demineralization with lactic acid. 

Note the thin totally demineralized collagen fibres (x10000). 1.5 ml of 

2.5% NaOCl, at 37°C, with 150 rpm, for 10 min.  

(a)  

(b)  
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Fig 4.8. NaOCl-treated surface after 100 min of 37% phosphoric acid gel 

etching (x5000). 1.5 ml of 2.5% of sodium hypochlorite for 5 min. 
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(triple helix intact) 

Single fully mineralized fibers 

Partially demineralized dentin. 
(Fibers fully covered, partial 
inter-fibrillar HAP connections) 

Sound dentin  

NaOCl 

NaOCl 

 

 

 

 

 

 

 

 

 

 



 - 114 -

Fig 4.9. The effect of various enzymes and agents on the four successive 

layers of the artificial dentinal lesions produced with lactic acid pH 4. Both 

trypsin and pepsin are capable of digesting just the denaturated collagen 

fibres. Collagenase action is stronger in which denaturated and 

demineralized dentin is digested but it is resisted by single mineralized 

fibres. NaOCl is able to remove these mineralized fibres and even the 

partially demineralized dentin.   
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Dentin Remineralization Enhancement under Dental 

Restoration 

Chapter 5 

Introduction 

As a consequence to the development of the adhesive dental 

restorative materials, the minimally invasive dentistry concept was 

introduced and several excavation techniques had been advocated 

(Banerjee et al., 2000; Lager et al., 2003). Several studies tried to evaluate 

the clinical outcome of leaving the affected dentinal tissue behind after 

excavation before restoring the tooth (Bjorndal et al., 1997; Weerheijm et 

al., 1999; Maltz et al., 2002; Lager et al., 2003; Foley and Blackwell, 

2003). They assume that elimination of the harmful microbial mass at the 

lesion surface would permit the underlying layer to heal gradually through 

the biological properties of the tissue after sealing it with a restorative 

material, at the same time they preserve the remineralizable tissue, 

maintain the pulp vitality by avoiding its exposure and arrest caries 

progression (Ostrom, 1980; Nikiforuk, 1985; McComb, 2000; Heinrich-

Weltzien and Kneist, 2001; Fejerskov et al., 2003).  

However, deep dentinal lesions can remineralize under certain 

conditions which favour crystal growth on partially demineralized dentin 

(Levine and Roweles, 1973; Kuboki et al., 1977; Arends et al., 1989; Lussi 

and Linde, 1993; Inaba et al., 1996; Saito et al., 1997, 2003; Ritchie et al., 

1998; Butler, 1998; Damen et al., 1998; Kawasaki et al., 1999, 2000; 

Mukai and ten cate, 2002). According to the mentioned references these 

conditions can be summarized as following; the internal structure of the 

collagen fibres has to be intact, they are unable to be remineralized if they 
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are destructed or denaturated (Fusayama et al., 1966), the non-collagenous 

proteins such as phosphophoryns have to be in low amounts and in 

phosphorylated insoluble bounded form which covalently cross-linked to 

the collagen, so they would be able to bind calcium and initiate crystal 

nucleation and hydroxyapatite formation (Lussi et al., 1988; Saito et al., 

1997, 1998, 2000; Clarkson et al., 1998; Milan et al., 2006). Moreover, 

ultrastructural studies on dentinal lesions have shown that remineralization 

neither occurred by spontaneous precipitation nor by nucleation of mineral 

on the organic matrix but by growth of residual crystals in the lesions 

(Klont and ten Cate, 1991b). 

Therefore, alternatives to the mechanical excavation aim to be more 

selective in caries removal by removing only the infected denaturated and 

cariogenic layer leaving behind the affected demineralized but 

remineralizable one (Ericson et al., 1999; Yip et al., 1999; Banerjee et al., 

2000; Beeley et al., 2000; Fure et al., 2000; Rafique et al., 2003; Flückiger 

et al., 2005).  

The caries removal method using specific proteolytic enzymes (Beltz 

et al., 1999; Bussadori et al., 2005; Tonami and Ericson, 2005; Kappler et 

al., 2006) could be an alternative to the conventional methods, effective 

and more conservative. 

After we applied different enzymes and preolytics to the artificially 

demineralized dentin, we studied the capability of the remaining 

demineralized dentin to be remineralized, because the remineralization of 

this remaining layer would be valuable for clinical purposes. The 

superficial infected layer that is composed mainly of denaturated collagen 

is enzymatically digested, and the affected layer which contains 

demineralized dentin can be preserved to avoid pulpal exposure and to 

protect the pulp from further mechanical, chemical and thermal injuries.  
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The purpose of this part of the study was to investigate whether the 

proteolytic treatment would interfere with the in vitro remineralization of 

advanced human coronal dentinal lesions. Based on our findings in chapter 

2, 5.0 ppm fluoride was optimal for dentin lesion remineralization. The 

hypothesis to be tested was that the topical application of proteases during 

dentin caries excavation followed by fluoride application could be of a 

clinical significance in dentin remineralization.  

Materials and Methods 

Sample Preparation: 

Thirty-six extracted human third molars were obtained from an oral 

surgeons’ private clinic and used within 9 months of extraction. After 

extraction teeth were immediately stored at room temperature in Ringer 

solution to which sodium-azide was added to prevent bacterial growth. All 

teeth were clinically sound. Teeth were cleaned with a tooth brush aided 

sometimes with a scalpel to remove the periodontal ligament and 

intercrestal bone remnants and rinsed under running tap water. The roots 

were cut 2.0 mm below the cementoenamel junction. The teeth were then 

embedded individually in transparent cold-curing methylmethacrylate 

(Technovit 4004, Kulzer GmbH, Wehrheim, Germany). To expose mid-

coronal dentin each tooth was sectioned parallel to its long axis into two 

halves using a slow speed water-cooled diamond saw (Isomet, Beuhler, 

Illinois, USA), the occlusal part of each half was then removed by a cut 

perpendicular to the long axis of the tooth and 1.5-2.0 mm away from the 

pulp. Each half was divided into four slices parallel to the long axis of the 

tooth and extends from the middle of the tooth to the outer enamel with a 

thin saw microtome (Leica SP 1600, GmbH, Nußloch, Germany) under tap 

water. Dentin exposed surfaces were then polished flat with water proof 

silicon carbide abrasive paper (P500-grit) with a Leco VP 100 (GmbH, 

Neuss, Germany) device. Subsequently they were polished using wet 
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polishing paper with silicone paste of polycrystalline diamonds of size 9 

µm (DAP-7, Struers, Copenhagen, Denmark). 

Dentin surfaces together with the surrounding Technovit were covered 

with two coats of nail varnish (Keyte, GmbH, Munich, Germany) to avoid 

the penetration of the solutions’ molecules in any marginal gaps that could 

exist between the tooth and the acrylate, leaving one window of exposed 

mid-coronal dentin per slice. Adhesive paper was cut into 1x1.5 mm² 

pieces and attached to the dentin surfaces before applying the nail varnish 

to standardize the window. The samples were then kept in air for about 

fifteen minutes to allow the nail varnish to dry. After the removal of the 

adhesive strips each window was etched for 20 s with 37% phosphoric acid 

gel (Total etch, Ivoclar Vivadent GmbH, Schaan, FL) to remove the smear 

layer.  

Lesion Formation: 

Based on the protocol derived in chapters 3 and 4, 288 slices were 

demineralized in 0.1 M lactic acid (pH 4) for 14 days, at room temperature, 

without agitation, with 10 ml per slice. Every two slices were 

demineralized together. 

After demineralization the 216 slices were treated as follows; 108 

slices were treated with either pepsin, trypsin, collagenase or sodium 

hypochlorite (see below) and then transferred to a flask containing 10 ml of 

remineralizing solution composed of 20 mM HEPES, 1.5 mM CaCl2.2H2O, 

0.9 mM KHPO4, 130 mM KCl, and 3.08 mM sodium-azide and 5.0 ppm 

fluoride as NaF with the pH adjusted with KOH to 7. The other 108 slices 

were remineralized immediately without an intermediate treatment. 

Samples for Lesion Assessment: 

The remaining 72 slices were analysed immediately without 

enzymatic treatment or remineralization and used for lesion assessment. 
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They were polished flat with wet silicon carbide abrasive paper (800-grit) 

to obtain a plano-parallel slice of 120-150 µm before imbibition in 

quinoline (Quinoline 22650, Fluka chemie GmbH, Hamburg, Germany) for 

at least 4 h. They were then mounted for microscopic examination. Lesion 

depth was measured along a vertical line perpendicular to the tooth surface 

extending from a point at the lesion surface to a point at the non-

demineralized surface through out the lesion body to the inner most border 

of the lesion. 

Enzymatic Treatment: 

Each of the four slices from one tooth was treated with either pepsin, 

trypsin, collagenase or sodium hypochlorite while the other four slices 

from the opposite half of the same tooth served as controls. 

- Pepsin: 1 mg of the enzyme pepsin (pepsin from hog stomach, 77152, 

Fluka, Biochemika, Sigma-Aldrich, Steinheim, Germany) was dissolved in 

1 ml of 0.01 M HCl acid pH 2. Each slice was incubated individually in 1.5 

ml of the enzymatic buffer for 10 min at 37°C with agitation 150 rpm. The 

slices were then washed with 0.2 M HCl tris buffer pH 8.6 at 4°C to stop 

the reaction and then washed with distilled water at 4°C.  

- Trypsin: 1 mg of the enzyme trypsin (trypsin from hog pancreas, 93614, 

Fluka, Biochemika, Sigma-Aldrich, Steinheim, Germany) was dissolved in 

1 ml of HEPES buffer (50 mM HEPES, 5 mM CaCl2.H2O, 0.15 M KCl, 5 

mM sodium azide, pH 7.4). Each slice was incubated individually in 1.5 ml 

of the enzymatic buffer for 10 min or 24 h at 37°C with agitation 150 rpm. 

The slices were then washed with distilled water at 4°C. 

-  Collagenase: 1 mg of the enzyme collagenase (collagenase, 

Clostridiopeptidase A from Clostridium Histolyticum Type I, Sigma-

Aldrich Chemie, GmbH, Steinheim, Germany) was dissolved in 1ml of 

HEPES buffer (50 mM HEPES, 5 mM CaCl2.H2O, 0.2 M NaCl, 5 mM 
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sodium azide, pH 7.8). Each slice was incubated individually in 1.5 ml of 

the enzymatic buffer for 10 min or 24 h at 37°C with agitation 150 rpm. 

The slices were then washed with 0.001 M phosphate buffer pH 7 at 4°C to 

stop the reaction and then with distilled water at 4°C. 

- Aqueous sodium hypochlorite: Each slice was incubated in 1.5 ml of 

2.5% of sodium hypochlorite for 10 min at 37°C with agitation 150 rpm. 

The slices were then washed with distilled water at 4°C. Additional slices 

were etched with 37% phosphoric acid gel (Total etch, Ivoclar Vivadent 

GmbH, Schaan, FL) for 100 min and treated with 1.5 ml of 2.5% of sodium 

hypochlorite for 5 min. 

The 10 min period was chosen as being clinically relevant and the 24 

h duration was chosen for both trypsin and collagenase according to the 

references. All the enzymatic buffer solutions were prepared at the same 

day they were used.  

Analytical Tools: 

Microscopy: 

Quinoline with polarized light (Axioskope 2, MAT, Carl Zeiss Jena 

GmbH, Göttngen, Germany) was used for the visual qualitative analysis of 

the lesions before and after remineralization. Digital images were taken 

with the image analysis software Axiovision (Rel. 4.4, SP2, Carl Zeiss Jena 

GmbH, Göttngen, Germany).  

Microhardness: 

Testing the microhardness of the remineralized dentin was done with a 

Vickers pyramid diamond indenter under 30 mN/mm² with the automatic 

microhardness tester Fischerscope H100C (Helmut Fischer GmbH, 

Sindelfingen, Germany). Three lines per lesion were made in which each 

line composed of 12-22 points which were spaced by 25-30 µm. Each line 

extended vertically through the lesion from a point just beneath the lesion 
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bottom up to the surface to determine cross surface microhardness (CSMH) 

through out the lesion. 

FE-SEM: 

To obtain information on the morphology of the demineralized dentin 

surfaces a high resolution FE-SEM was used. Samples were fixed in 0.25 

M Glutaraldehyde in 0.1 M Cacodylatebuffer pH 7.4 for 1 h, washed with 

0.1 M Cacodylatebuffer pH 7.4, then immersed in 50% alcohol for 20 min, 

subsequently in 70%, 80% and 90% alcohol, each for 20 min, and they 

were kept finally overnight in 96% alcohol. According to Perdigao et al. 

(1995) samples were put in Hexamethyldisilazane for 10 min and air dried 

at room temperature. Each sample was then fixed with carbon paste on the 

SEM sample holder. Gold sputtering was done for 1 min, with 1.0 kV, 0.3 

mbar and 40 mA (Edwards Sputter Coater S15OB, Sussex, UK) and the 

pictures were then made with a Leo FE-SEM (Leo DSM 982, Carl-Zeiss 

NTS GmbH, Oberkochen, Germany).  

Through out the whole experimental procedure care was taken to 

avoid dentin desiccation particularly after the lesion was formed to avoid 

collapsing of the demineralized and denaturated collagen fibrils. Exposing 

the demineralized fibrils to air drying before critical point drying would 

lead to collapsed collagen fibrils and protinacious precipitates which would 

mask the accurate morphological appearance of the surface. 

Results 

Lesion depth before and after remineralization with and without 

protease treatment was measured by polarized light microscope (PLM) and 

is shown in table 5.1.  

According to the PLM observations, there was no decrease in lesion 

depth after 1 week of remineralization with 5.0 ppm of fluoride. 
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Remineralization did not show to take place at the lesion depth with and 

without topical application of the protealytic agents.  

Surface erosion after 2 weeks of demineralization with lactic acid was 

observed in all the samples. The erosion at the demineralized surfaces in all 

of the groups increased after 1 week of remineralization. The samples 

which were treated with trypsin for 10 min were the only group that 

showed decrease in surface erosion after 1 week of remineralization in 

comparable to its control group (fig. 5.2). On the other hand, surface 

erosion was prominent in samples which were treated with collagenase for 

24 h and those treated with NaOCl for 10 min. The other experimental 

groups showed no difference in surface erosion in comparison to the 

control groups. 

PLM showed remineralizing bands at the surfaces which were treated 

with trypsin for 24 h. No banding was observed within the lesion body for 

other control and experimental groups. 

The Vickers indentations resulted in two patterns of values for the 

dentinal lesions in the control groups. These patterns were similar before 

and after remineralization. Diagram 5.1 represents the results of the 

microhardness tests for the control groups before and after 

remineralization. The first pattern of measurements showed low values of 

hardness throughout the lesion body and at the lesion surface. The second 

pattern demonstrated low values throughout the lesion body and high 

values at the surface of the lesion. The surface values were equal to and 

sometimes even exceeded the values of sound dentin. The sound dentin 

values were taken from the literature (Müller-Stahl, 2006). No changes 

were observed in the dentin hardness throughout the lesion even after 1 

week of remineralization with 5.0 ppm fluoride in comparison to the 

controls.  
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The mean values of the CSMH for the experimental groups are shown 

in table 5.2. The pepsin, NaOCl, trypsin (10 min) and collagenase (24 h) 

treated samples demonstrated high values throughout the lesion body and at 

the lesion surface in comparison to their control groups. Slight increase in 

the values throughout the lesion body was observed in the samples which 

were treated with trypsin for 1 day. No significant difference in the 

measured values between the samples which were treated with collagenase 

for 10 min and their control group. 

The surfaces of the demineralized human dentin samples after 2 weeks 

of demineralization, as shown in the SEM pictures, were covered with 

surface precipitates that totally covered the underlying demineralized inter-

tubular dentin and occluded most of the dentinal tubules. At the fractured 

surface of the demineralized samples, the peri-tubular dentin was 

completely dissolved and the collagen fibres in the inter-tubular dentin 

were totally demineralized (fig. 5.3).  

After 1 week of remineralization, the SEM pictures of the surfaces of 

the control samples showed remineralization which increased the number 

of the occluded dentinal tubules (fig. 5.4). On the other hand, the 

appearance of the fractured surfaces did not changed in comparison to the 

fractured surfaces of the demineralized samples. The demineralized inter-

tubular collagen fibres did not show remineralization throughout the lesion 

body. These demineralized fibres, as shown in the SEM pictures, were 

completely deprived from any extra-fibrillar hydroxyapatites. 

After 1 week of remineralization, surface remineralization was 

observed at all the dentinal surfaces which were pre-treated with various 

proteolytic agents. The inter-tubular dentin in pepsin treated surfaces was 

remineralized slightly more than its control counterpart. More dentinal 

tubules were occluded in the experimental samples (fig. 5.5). NaOCl 

treated samples showed two patterns of results; where most of the lesion 
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was removed with the NaOCl application, the remainder of the lesion at the 

lesion front was remineralized (fig. 5.6,a.). The lesions, where NaOCl did 

not remove the demineralized collagen fibres, did not show surface 

remineralization (fig. 5.6,b.). Collagenase and trypsin 10 min treated 

samples showed surface remineralization comparable to their control 

groups’ remineralization (fig. 5.7). Surface remineralization was dominant 

at the surfaces which were treated with trypsin for 24 h. Most of the 

dentinal tubules were occluded, and the inter-tubular dentin appearance 

was masked with the heavy remineralization (fig. 5.8). The lesion body of 

the samples, which were treated with collagenase for 24 h, was destroyed 

in almost all the samples during preparation. 

Discussion 

The results of this study clearly indicated that treating demineralized 

dentinal surface with proteases before remineralization would facilitate the 

remineralization process only to the extent they could remove the degraded 

organic matrix. Moreover, our results support previous studies that 

remineralization occurred by regrowth of residual crystals in the lesions, 

rather than by spontaneous precipitation or nucleation of mineral on the 

organic matrix.  

Dentin caries involves demineralization as well as the proteolytic 

breakdown of organic matrix. Therefore, remineralization of dentine will 

be influenced by the remaining mineral, the remaining organic matrix and 

the dentinal ultrastructure (Arends et al., 1989). 

Immersion samples which were demineralized with lactic acid (pH 4) 

in a remineralizing solution containing 5.0 ppm fluoride for one week did 

not show to affect the dentinal lesion depth nor the lesion body as shown 

by the PLM and FE-SEM pictures and as measured with the Vickers’ 

indentor. In the present study no remineralization was observed on the 
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dentinal demineralized collagen fibres at the lesion front or in the lesion 

body even with high fluoride concentrations. These results were in contrast 

to our previous laboratory experiments which were performed with acetic 

acid (pH 5) to demineralize the samples. With acetic acid lesion depth 

decreased and lesion body remineralization occured after one week of 

remineralization with 5.0 ppm fluoride. Accordingly, the 5.0 ppm fluoride 

was chosen as an optimal fluoride concentration for effective 

remineralization of dentinal lesions to the innermost part. Those previous 

results were in agreement with other studies that concluded that the 

remineralization of the lesion front, body and surface of deep dentinal 

lesions can be possible even with very low mineral contents in their body 

(Mukai and ten Cate, 2002). It was suggested that the presence of high 

concentration of fluoride in the remineralizing solution could induce 

spontaneous mineral deposition on the exposed collagen matrix (Kawasaki 

et al., 2000) and could act as a nucleating agent at the lesion front to induce 

remineralization and decrease the lesion depth (Kawasaki et al., 1999). 

Accordingly, we speculated that the demineralizing regime and the original 

lesion mineral profile had influenced and controlled the mineral deposition 

within the lesion. 

 Based on the mentioned hypothesis the lactic acid which is stronger 

than acetic acid has more potential to dissolve hydroxyapatite crystals 

under the same temperature. The completely demineralized collagen fibres 

which were demineralized with lactic acid could not initiate 

remineralization while the acetic acid partially demineralized fibres 

demonstrated lesion remineralization. Our observations indicate and 

confirm the possibly different effect of acetic and lactic acids on collagen 

degradation and organic matrix breakdown (mentioned in chapter 3). These 

observations are in good agreement with previous studies stated that 

remineralization neither occurred by spontaneous precipitation nor by novo 
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nucleation of mineral on the organic matrix but by growth of residual 

crystals in the lesions (Levine and Roweles, 1973; Klont and ten Cate, 

1991b; Kawasaki et al., 1999). Moreover, the demineralization process, the 

exposed collagen fibres, the release of the non-collagenous proteins and/or 

the activation of latent proteases during lesion formation may alter the 

dentin collagen in several ways (Klont and ten Cate, 1991a; Dung et al., 

1994; Kleter et al., 1997, 1998), and mutilate the organic matrix so as it 

would not act as an effective template for crystal growth (Klont and ten 

Cate, 1991b). 

We treated the demineralized dentin surfaces with either collagenase 

or NaOCl. Both agents were able to increase surface erosion depth due to 

their capabilities to digest the degraded organic matrix. Moreover, the 

microhardness tests and the SEM pictures demonstrated high values and 

lesion remineralization after both treatments, respectively. These results 

were expected due to the known potential of collagenase (Kleter et al., 

1994, 1997; Kawasaki and Featherstone, 1997) and NaOCl (Hannig, 1999; 

Marshall et al., 2001; Tonami et al., 2003) to digest the demineralized 

collagen fibres. However, some of the NaOCl-treated surfaces 

demonstrated completely demineralized collagen fibres which were clearly 

exposed and did not show any changes after the remineralization period. 

These observations again support the proposed hypothesis that 

remineralization is formed due to regrowth of existing crystallites rather 

than de novo formation of crystallites. Therefore, we hypothesize that, the 

effect of the topically applied proteases on the remineralization process is 

related to their ability to remove the dentinal degraded organic matrix.  

Remineralization of the 10 min trypsin-treated surfaces was 

comparable to the remineralization of the pepsin-treated surfaces for all the 

analytical methods. Remineralization after treating the demineralized 

surfaces with trypsin for 24 h resulted in the appearance of surface 
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remineralizing bands in the PLM. It was suggested that fluoride is 

responsible for the microscopic lamination phenomenon in dentin (Wefel et 

al., 1995; Nyvad et al., 1997). The appearance of these surface bandings in 

the microscope in the trypsin treated samples correlated well with a surface 

layer that occluded the dentinal tubules in the FE-SEM pictures. Therefore, 

we suggest that this surface layer could be a surface remineralization. The 

microhardness values of the remineralized trypsin-treated surfaces were 

high too. Therefore, according to these results related to the tryspin-treated 

surfaces, we can say that these surfaces probably showed surface 

remineralization, which could be, according to our interpretations, a 

reflection of the potential of the enzyme to digest the degraded organic 

matrix and thus expose the partially demineralized collagen fibres under 

the precipitates at the lesion surface to be remineralized.  

Our observations regarding the increase of the surface erosion depth 

even after the removal of the samples from the demineralizing solution can 

be explained either by the possibility of the erosion progression even after 

the removal of the acidic attack (Kawasaki and Featherstone, 1997) or it 

could be due to shedding of the weak organic surface layer with time and 

manipulation. According to Kawasaki and Featherstone (1997), the surface 

erosion of a dentinal lesion does not occur by mineral dissolution but by 

the proteolytic attack on the organic matrix. Another suggestion is that the 

dentin collagenenous material is likely to denaturate during long-term acid 

exposure (Kuboki et al., 1983; Klont and ten Cate, 1991a; Kleter et al., 

1998). 

The high values measured with the Vickers’ indentations near and at 

the lesion surface could be due to surface precipitations. These values 

correlated well with the surface remineralization which was observed in the 

SEM pictures of the control group. They can be explained by the presence 

of the partially demineralized hydroxyapatite crystals, which in turn, can 
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function as an initiator of mineralization. This explanation is based on the 

results of previous studies, in which we suggested that the surface layer 

precipitates at the lactic acid demineralized dentin surfaces is formed due 

to two steps. First the acid diffuses in an un-uniform pathway leaving 

remnants of hydroxyapatite at the surface together with calcium and 

phosphate reprecipitations (Moreno and Zahradnik, 1974; Featherstone et 

al., 1983; Fejerskov et al., 2003). Second the degraded denaturated 

collagen fibres together with the released NCCs remain in the 

demineralised tissue (Klont and ten Cate, 1990).  

From a comparison of the hardness and the SEM results of the pepsin, 

and trypsin treated-groups, contradictory point emerged. The hardness data 

revealed high values throughout the lesion body while the SEM pictures 

showed the exposed collagen fibres to be highly demineralized. To 

understand and explain these results more studies need to be undertaken, 

but it could be argued that the mineral deposition within a lesion and its 

hardness measurements are not always well correlated with each other ( ten 

Cate and Duijsters, 1982; Marshall et al., 2001). Moreover, the 

microhardness values are very proune to artefacts and errors depending on 

the sample preparation, the precision of the indenter loading and the 

precision of the determination of the points to be measured within the 

lesions. 

In conclusion, within the limits of our in vitro studies, we suggest that 

enzymatic treatment during cavity preparation together with the application 

of fluoride, which was in our experiments optimum at 5.0 ppm, before the 

replacement of dental restoration might be of a significance benefit for 

remineralization in dentinal lesions. However, the proteolytic treatment 

would enhance remineralization of advanced dentinal lesions to the extent 

they could remove the degraded organic matrix from the demineralized 

surface. Nevertheless, the remineralizing property of a restorative material 
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is just a factor of many other vital factors such as the antibacterial, 

adhesive, sealing, mechanical and aesthetic properties that would determine 

the long term success of a restorative procedure. Therefore, more 

laboratory and clinical research is warranted before such a procedure can 

be introduced into the clinic. Moreover, the mode of application of fluoride 

in chapter 2 was fluoride ions in solutions and not fluoride incorporated in 

varnish, base or restorative material. Therefore, such results should be 

considered carefully when explored in clinical practice  
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Table 5.1. Lesion depth before and after remineralization with and 

without various proteolytic treatments (Mean ± SD) as observed with the 

polarized light microscope. The lesion depth with and without the eroded 

surface together with the erosion depth were calculated for each sample as 

a mean of 3 measurements.  

Treatment type and time. Lesion depth 
with the 
eroded 
surface (µm) 

Lesion depth 
without the 
eroded surface 
(µm) 

The 
eroded 
surface 
(µm) 

Lesion depth after 2 
weeks of 
demineralization with 
lactic acid, pH 4  

496.67   ± 80 451.15    ± 80 87.28       

± 30 

Lesion depth after 1 week 
of remineralization 
without intermediate 
proteolytic treatment 
(controls)  

502.81   ± 50 373. 67   ± 40 158.64    

 ± 30 

Lesion depth after 10 min 
of pepsin treatment and 1 
week of remineralization 
with 5.0 ppm of fluoride 

527.19   ± 50 326.2      ± 40 177.89 

 ±20 

Lesion depth after 10 min 
of trypsin treatment and 1 
week of remineralization 
with 5.0 ppm of fluoride 

515.1     ± 80 369.82     ± 30 135.28   

 ± 20 

Lesion depth after 10 min 
of NaOCl  treatment and 
1 week of 
remineralization with 5.0 
ppm of fluoride 

499.88   ± 80 251.9      ± 50 239.98  

 ± 10 

Lesion depth after 10 min 
of collagenase treatment 
and 1 week of 
remineralization with 5.0 
ppm of fluoride 

529.98   ± 80 381.13    ± 10 161.35     

 ± 25  
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Lesion depth after 24 h of 
trypsin treatment and 1 
week of remineralization 
with 5.0 ppm of fluoride 

535.57   ± 80 365.34     ± 20 188.49 
±30 

Lesion depth after 24 h of 
collagenase treatment and 
1 week of 
remineralization with 5.0 
ppm of fluoride 

501.46   ± 80 237.97     ± 30 248.67 
±10 
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Fig 5.2. (a) Demineralized human coronal dentin after 2 weeks 

demineralization with lactic acid (pH 4) in the polarized light microscope 

(x10). (b) Sample from the control group after 1 week remineralization 

(x10). The method of lesion depth and surface erosion measuring is shown. 

(c) Sample from the trypsin treated group (24 hrs) after 1 week of 

remineralization with 5.0 ppm fluoride (x5). Note the remineralization 

band at the lesion surface (arrows).  

 

(a)  

(b)  
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(c)  
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Diagram 5.1. (a) and (b) Microhardness representative profiles for the 

demineralized group before remineralization. Note the two different patterns 

of values, in which (a) represents high values within the lesion body and (b) 

represents the high values near the lesion surface only. (c) and (d) represent 

the values measured with the Vickers indentations after 1 week 

remineralization. There was no significant difference between the measured 

values before and after remineralization.  

(a)   

(b)   
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(c)   

(d)   
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Table 5.2. The mean microhardness values measured with the Vickers 

indenter through out the lesion per group. 

   Treatment 

type and time 

Values were measured from the lesion front to the lesion surface from the left to the 

right. Each value represents a mean of two consecutive values (points). 

Pepsin  

10 min 

55.53 33.49 46.82 29.03 59.88 35.04 89.81 61.48 55.30 58.44 45.67

Trypsin  

10 min 

80.74 55.49 32.89 79.82 37.05 62.91 24.37 64.59 87.36 85.30 93.35

NaOCl  

10 min 

62.21 36.95 82.83 45.76 48.49 28.01 26.37 71.36 50.63 83.09 58.22

Collagenase 

10 min 

51.10 35.00 11.77 42.72 30.55 48.64 23.90 13.19 11.21 7.59 22.43

Trypsin 

24 hours 

75.36 41.54 29.64 48.13 39.04 36.99 27.55 48.61 47.12 56.96 38.35

Collagenase 

24 hours 

74.42 52.21 41.41 55.7 42.48 35.11 51.27 42.60 55.00 42.67 72.53
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Fig 5.3. (a) Human coronal dentin after two weeks demineralization with 

lactic acid. The peri-tubular dentin is dissolved and the inter-tubular dentin 

is totally demineralized (x5000). (b) The fractured surface of the 

demineralized samples (x10000). (c) All collagen fibres are totally 

demineralized (x30000).   

(a)  

(b)  
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(c)  

 

 

Fig 5.4. The surface of a remineralized lesion from the control group. The 

inter-tubular dentin is remineralized and most of the dentinal tubules are 

occluded (x10000). 
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Fig 5.5. (a) and (b) Human coronal dentin was demineralized with lactic 

acid (pH 4) for 2 weeks. The surface was treated then with 1.5 mg pepsin 

in 1.5 ml of 0.01 M HCl Tris buffer, pH 2, at 37°C, with 150 rpm, for 10 

min. Finally the sample was remineralized with 5.0ppm fluoride containing 

remineralizing solution for 1 week (x5000). 

(a)  

(b)  
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Fig 5.6. Human coronal dentin was demineralized with lactic acid (pH 4) for 

2 weeks. The surface was treated then with 1.5 ml of 2.5% NaOCl, at 37°C, 

with 150 rpm, for 10 min. Finally the sample was remineralized with 5.0ppm 

fluoride containing remineralizing solution for 1 week. (a) Inter-tubular 

dentin at the bottom of the lesion (lesion front) was remineralized (x5000). (b) 

The demineralized collagen fibres after 1 week of remineralization (x3000).  

(a)  

(b)  
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Fig 5.7. Human coronal dentin was demineralized with lactic acid (pH 4) 

for 2 weeks. The surface was treated then with 1.5 mg collagenase in 1.5 

ml of 50 mM HEPES buffer, pH 7.8, at 37°C, with 150 rpm, for 10 min. 

Finally the sample was remineralized with 5.0ppm fluoride containing 

remineralizing solution for 1 week. The surface precipitates were removed 

and the inter-tubular dentin was partially remineralized (x10000). 
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Fig 5.8. (a) Human coronal dentin was demineralized with lactic acid (pH 

4) for 2 weeks. The surface was treated then with 1.5 mg trypsin in 1.5 ml 

of 50 mM HEPES buffer, pH 7.4, at 37°C, with 150 rpm, for 24 h. Finally 

the sample was remineralized with 5.0ppm fluoride containing 

remineralizing solution for 1 week. The inter-tubular dentin was covered 

with a remineralized layer which occluded most of the dentinal tubules 

(x5000). Higher magnification of the partially remineralized inter-tubular 

dentin (x20000). 

(a)  

(b)  



 - 143 -

 

Summary and Conclusions 

Chapter 6 

Summary 

The series of studies described in this thesis were primarily designed 

to expose the complex environment of deep dentinal lesions. The 

therapeutic end point dilemma during deep dentinal lesions excavation, the 

high rate of restorative regimes failure, the technological advancement in 

dental materials and the need for more scientific information that could 

guide the clinician to optimize his restorative therapies outcomes when 

operating in carious dentin were the main ideas behind this work. 

Chapter 1 reviews the multi factorial integration which contributes to 

the likelihood of dental restoration success from a biological prospective. 

Available in vivo, in situ and in vitro experiments and data were gathered 

in an attempt to investigate and understand reasons and differences 

between schools of opposing hypothesis in the area of dentinal caries 

excavation. 

Chapter 2 describes in vitro experiments performed on artificial 

dentinal lesions to gain more information on the pattern of remineralization 

of demineralized dentin, the distribution of mineral ions in the presence of 

fluoride within the lesion body, the depth at which the lesion can still be 

remineralized and the influence of a surface mineralized layer on 

remineralizing the lesion body and/or front because such data are lacking in 

the literature. Various fluoride concentrations were used to clarify the 

optimal fluoride concentration which could be integrated in a restorative 

material, dentin bonding agent, liner or base to be used to restore such 

cavities. 
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In the course of our study, we needed to evaluate the effect of several 

proteolytic agents on the demineralized dentinal organic matrix. Natural 

caries is too variable for reproducible evalautions. Therefore, we developed 

an in vitro artificial dentinal caries model to be used for evaluating self-

limited enzyme-based experiments. Chemically induced dentinal caries was 

produced with both acetic and lactic acid demineralizing solutions. We 

wanted to clarify the possible variable effects of both acids on organic 

matrix degradation and collagen denaturation.Thus, in chapter 3 we studied 

the morphological appearance of the lactic and acetic acids demineralized 

coronal dentin surfaces to gain more information and better understanding 

the effect of these acids on demineralizing and/or denaturating dentin 

collagen. 

The concept of self-limiting caries therapy aims to keep the 

demineralized and to remove the denaturated dentin tissue. Therefore, the 

research in chapter 4 is targeted to investigate the individual capabilities of 

enzymes and proteases in removal of denaturated and/or demineralized 

dentin prior to restoration placement. Pepsin, which is a carboxylic 

protease, that acts only on denaturated collagen and trypsin, which is a 

serine protease, that is also able to digest denaturated collagen, but at a 

neutral pH 7.4, were used to digest the degraded organic material that was 

disintegrated during artificial dentinal lesion formation. Collagenase, which 

is a specific metalloproteinase, that is capable of hydrolyzing collagen at 

multiple cleavage sites and sodium hypochlorite, which is a non-specific 

proteolytic agent that was introduced as a chemomechanical method to 

remove carious dentin, were used as control groups. However, although the 

enzymes seem to be an exciting alternative method to mechanical 

excavation, mechanical removal of the superficial infected layer of dentin 

has to proceed or to be adjunct to the chemical digestion if time is to be 

considered in clinical practice.  
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In chapter 5 experiments were performed to study the capabilities of 

dentinal lesions to remineralize after the removal of the organic portion. 

The main purpose is to evaluate the post-operative effect of the treating 

proteases on the remaining dentin. Dentin remineralization after enzymatic 

treatment is investigated to evaluate this new minimally invasive caries 

removal method in which the superficial infected layer that is composed 

mainly of denaturated collagen is enzymatically digested, and the affected 

layer which contains demineralized dentin can be preserved to avoid pulpal 

exposure and to protect the pulp from further mechanical, chemical and 

thermal injuries. The interaction between this remaining layer of 

demineralized dentin and the restorative material that is placed to restore 

the tooth has an essential role in the long term restoration success. 

Remineralizing, antibacterial, adhesive and marginal adaptation properties 

of the restorative material are important factors in determining the 

longevity of the restoration and the healing potential of the pulp. 

From the perspective of minimally invasive dentistry, treating deep 

carious lesion with a suitable enzyme preparation may represent an 

interesting alternative method for mechanical caries excavation. The bulk 

of the infected superficial layer can be removed with a hand excavator 

which is more self-limiting than a bur due to the sensitive tactile feedback. 

The lesion is treated then with an enzymatic solution or gel for couple of 

minutes. A soft brush or a plastic tip instrument can be used to insure the 

removal of any incomplete digested organic material. 

On the other hand, more laboratory and clinical research is needed 

before such a procedure can be introduced into the clinic.  
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Limitations and Future Perspectives 

Although our results concerning treatment of dentinal lesion with the 

enzyme pepsin as a self-limiting caries therapy are promising, these results 

have to be considered carefully when explored in clinical practice.  

- The oral environment, the nature of the disease whether it is acute or 

chronic, active or arrested, the oral hygiene, dietary habits, general physical 

and mental health and other patient related factors have to be assessed 

individually for each patient.  

- Our experiments were conducted in vitro on extracted teeth, and we 

already mentioned in chapter 3 the limitations of such non-vital teeth and 

described the differences between in vivo vital and in vitro non-vital teeth. 

-  Although the chemical systems we used in these studies were able to 

produce artificial carious lesions which are very similar to natural caries, 

the role of the physical bacterial presence, bacterial byproducts and 

proteases, carbohydrates and the associated interaction between the dietary 

sugars and dentin proteins (Millard reaction) could not be elucidated within 

the limitations of our study. 

Further research is needed to answer some critical questions such as 

the strength of a bond between the remaining demineralized layer and a 

bonding agent or a restorative material, the quality of the hybrid layer 

formed and the efficiency of the infiltration in the remaining dentin layer. 

Remineralizing property of a restorative material is just a factor of many 

other vital factors such as the antibacterial, adhesive, sealing, mechanical 

and aesthetic properties that would determine the long term success of a 

restorative procedure. 
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Conclusions 

In this study we evaluated the effeciency of the self-limiting caries 

therapy, and we investigated it together with the remineralization 

phenomenon, and we concluded the following: 

1. There is a proportional relationship between fluoride concentration and 

dentinal lesion remineralization from 0.1-10.0 ppm. 

2.  Fluoride concentration determines the rate as well as the pattern of 

mineral deposition in dentinal lesion. 

3.  The formation of a well-remineralized surface layer inhibited 

remineralization at the lesion front. On the other hand the lesion front 

remineralization was found to be independent from fluoride concentration, 

most probably due to its limited remineralization capacity. 

4.  For effective remineralization of dentinal lesions to the innermost part, 

fluoride levels from 1.0-5.0 ppm have the highest efficiency. 

5.  Our model minimizes the biological variations between the dentin 

samples through the very close location between the compared treated 

slices and thus, enabled us to compare effectively between different 

variables. 

6.  Our model produced both denaturated and demineralized dentin only 

when lactic acid was used. Therefore lactic acid is to be used for evaluating 

self-limited enzyme-based experiments. 

7.  The type of acid and the demineralization time affect the ratio of 

denaturated/demineralized dentin and the pre-treatment and treatment type 

and time influenced the quality and quantity of the digested substrate. 

8.  The effectiveness of the enzymes and agents used in the present study 

were in the following order Trypsin < Pepsin < Collagenase <NaOCl. The 

enzyme pepsin, with its acidic pH optimum, was more aggressive in 
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removing the disintegrated dentinal organic matrix than the neutral enzyme 

trypsin. We hypothesize that although both enzymes behaved very 

similarly in digesting the denaturated collagen, the acidic environment of 

the pepsin with pH 2 was responsible for the surface etching observed with 

pepsin. We believe that the pepsin acidic medium is advantageous, in 

which the enzyme can be inactivated by washing it and thus neutralizing its 

pH. 

9.  Based on the working principle of the treating solutions we observed 

that artificial dentinal caries in the presence of lactic acid is of four 

successive layers in respect to collagen fibres; denaturated collagen fibres, 

all fibers totally demineralized, individually mineralized fibres and 

partially demineralized fibres. 

10.  Short application of the enzyme pepsin is capable of removing just the 

denaturated collagen. Pepsin proved to be more efficient than trypsin and 

collagenase and less aggressive than NaOCl at digesting denaturated dentin 

collagen fibers. 

11.  Remineralization would not occur by nucleation of mineral on the 

organic matrix but rather by growth of residual crystals in the partially 

demineralized collagen fibres.  

12.  When proteases are applied topically at the surface of demineralized 

dentin they affect the remineralization process only to the extent they can 

remove the dentinal demineralized and denaturated organic matrix.  

13.  We suggest that enzymatic treatment during cavity preparation and 

application of fluoride before the replacement of dental restoration might 

be of significance benefit for remineralization in dentinal lesions. In our 

study a concentration of 5.0 ppm was successfully used to validate this 

hypothesis. 
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14. This was the first time to obtain morphological images that show clearly 

the artificial dentinal caries with the demineralized/denaturated collagen 

fibres. From our SEM pictures we gained a closer view to the dentin caries 

process. This morphological information could be utilized as a reference 

for future work. 
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Appendix 

 

 

Image 1. 

Transparent cold-curing methylmethacrylate (Technovit 4004, Kulzer 

GmbH, Wehrheim, Germany). 

 

 

Image 2a 
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Image 2b. 

 

Image 2c. 

Images 2 (a, b, c): Sample preparation: 

Caries-free human molar teeth were embeded individually in 

methylmethacrylate.  
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Image 3. 

Each tooth was divided parallel to its long axis into two halves. 

 

 

Image 4a. 

 

Image 4b. 
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Images 4c.  

Images 4 (a, b, c): To expose mid-coronal dentin occlusal part was 

removed. 
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Image 5a. 

 

 

Image 5b. 

Images 5 (a, b): One slice out of every two slices was treated with a 

specific enzyme and the other served as a control. 
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Image 6a. 

 

 

Image 6b. 

Images 6 (a, b): Dentin surface together with the surounding Technovit 

were coated with nail varnish. Windows were made either perrpendicular at 

the dentinal tubules or parallel to the tubules. 
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Image 7a. 

 

 

Image 7b. 

Images 7 (a, b): Teeth were kept wet throughout the experimental 

procedures. 
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Image 8. 

Slow speed water-cooled diamond saw (Isomet, Beuhler, Illinois, USA). 

To expose mid-coronal dentin each tooth was sectioned parallel to its long 

axis into two halves, the occlusal part of each half was then removed by a 

cut perpendicular to the long axis of the tooth and 1.5-2.0 mm away from 

the pulp. 
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Image 9. 

Saw microtome (Leica SP 1600, GmbH, Nußloch, Germany). Each tooth 

half was divided into four slices parallel to the long axis of the tooth, 

extending from the middle of the tooth to the outer enamel.  

 

 

Image 10. 

Polishing machine (Leco VP 100, GmbH, Neuss, Germany). The dentin 

exposed surfaces were polished flat with water proof silicon carbide 

abrasive paper (P500-grit). 
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Image 11. 

Light Microscope (Axioskope 2, MAT, Carl Zeiss Jena GmbH, Göttingen 

Germany). Digital images were taken with the image analysis software 

Axiovision (Rel. 4.4, SP2, Carl Zeiss Jena GmbH, Göttngen, Germany), for 

the visual qualitative analysis of the lesions before and after 

remineralization (chapters 2 and 5).  

 

Image 12. 

Automatic microhardness tester Fischerscope H100C (Helmut Fischer 

GmbH, Sindelfingen, Germany). It was used to test the cross surface 

microhardness (CSMH) of the artificial demineralized dentin before and 

after remineralization (chapters 2 and 5). 
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Image 13a. 

 

 

Image 13b. 

Images 13 (a, b): pH meter for caries risk assessment (Checkbuf, Horiba, 

Tokyo, Japan). It was used to measure the pH of the demineralizing 

solutions throughout the demineralizing period. 
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Image 14. 

Standard hydroxyproline solutions starting from 1000µg/ml down to 

25µg/ml were used to draw a working curve against absorbance on a 

spectrophotometer. 
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