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die Herzdaten zur Verfügung gestellt haben, die in Kapitel 5 analysiert wurden.

Meinen Eltern Maria und Johann Seebauer danke ich für ihre immerwährende
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Zusammenfassung

Multivariate adaptive Regressions-Splines (MARS) sind eine geeignete Metho-

de zur Identifizierung von linearen und nichtlinearen Effekten und Interaktionen

zwischen Kovariablen.

In der vorliegenden Arbeit wird ein neuer Ansatz zur Modellierung von Über-

lebenszeitdaten mit Hilfe von MARS vorgestellt. Martingal- und Devianzresidu-

en eines Cox-PH-Modells werden als Response in einem herkömmlichen MARS-

Modell verwendet. Damit lassen sich sowohl funktionale Formen der Kovariablen-

einflüsse als auch mögliche Interaktionen datengesteuert modellieren.

Simulationsstudien zeigen, dass die neue Methode eine bessere Anpassung an die

Daten liefert als der traditionelle Cox-PH-Ansatz.

Die Analyse reeller Daten des Deutschen Herzzentrums bestätigt ebenfalls die

Güte des neuen Verfahrens.

Abstract

Multivariate adaptive regression splines (MARS) are a useful tool to identify

linear and nonlinear effects and interactions between two covariates.

In this dissertation a new proposal to model survival type data with MARS is

introduced. Martingale and deviance residuals of a Cox PH model are used as

response in a common MARS approach to model functional forms of covariate

effects as well as possible interactions in a data-driven way.

Simulation studies prove that the new method yields a better fit to the data

than the traditional Cox PH approach.

The analysis of real data of the German Heart Center on survivors of an acute

myocardial infarction also documents the good performance of the method.
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Introduction

The methodology of regression analysis presents a wide fund of pos-

sibilities to model the influence of some prognostic factors on a cer-

tain dependent covariate. One is usually interested in the strength

of the influence as well as on the form, whether linear, nonlinear,

threshold type or as interaction between two of the covariates.

Linear models are widespread but a very bounded approach of

describing the association between different variables and the re-

sponse. Enhancements of this model type are generalized linear

models [19] and generalized additive models [13].

The application of Fractional Polynomials [23], which offers a se-

lection of polymonials as possible type of functional form, shows

an improvement compared to linear models as well. However the

analysis of interactions is restricted to interactions between a binary

and a continuous covariate [24].

Especially the locating of interactions between certain covariates

always raises problems, for the user has to find existing interactions

himself by trying all possibilities manually.



In this thesis I would like to present another kind of modelling

approach - the multivariate adaptive regression splines (MARS).

Piecewise linear splines with alternating slope enable to model lin-

ear as well as nonlinear influences of the covariates and particularly

interactions, i.e. MARS is a type of segmented regression approach.

The combination of several so called basis functions, which are de-

termined by data-driven knots, yields a flexible and practicable set-

ting. The model building process runs successively, starting with a

null model and including the best basis function per iteration, con-

cerning a certain fitting criterion. All possible model expansions,

i.e. further basis functions, are calculated per iteration step and

the basis function, which minimizes the fitting criterion is included

in the enhanced model. These basis functions can imply single co-

variates, so-called hockeystick functions, i.e. functions including a

knot, and interactions between two different variables.

This approach, which has been implemented in the context of lin-

ear and logistic regressions, was extended for the use of survival

type data in this thesis, using martingale [3] and deviance residu-

als [26] of a Cox model [8] as response to MARS. These two types

of residuals were compared regarding their power within this new

approach.

In the first chapter the theory of survival time analysis and espe-

cially Cox regression is introduced in the framework of counting

Introduction x



process theory and martingale basics are brought in.

In chapter 2 multivariate adaptive regression splines (MARS) are

presented in detail.

In chapter 3 the new theory of MARS used in the context of survival

time data is presented. Martingale and deviance residuals of a Cox

model without any covariates are used as response variables in a

MARS model, respectively, to detect influential covariates together

with their functional form.

Chapter 4 introduces simulation studies about MARS and its abil-

ities. The aim of the studies is to check whether MARS actually is

able to identify the appropriate model, particularly in the situation

of an interaction. Furthermore simulation studies on the new ap-

proach with martingale and deviance residuals of a Cox model as

response in a MARS setting are described. For that purpose expo-

nential and Weibull distributed survival times were analysed.

In chapter 5 data on patients who suffered a myocardial infarction

are presented and evaluated by using the newly introduced approach

of survival MARS. A snapshot analysis (including all possible co-

variates simultaneously) and also a stepwise procedure are executed

for both martingale and deviance residual scenarios.

The last chapter summarizes the conclusions of this thesis and the

outlook on further work on the topic.
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Chapter 1

Survival time data and the

counting process theory

Many medical investigations are engaged with the incidence of a

certain event, e.g. relapse after healing or death after a chemother-

apy. Besides one is often interested in the length of time until this

event occurs. Consequently the investigator has to deal with two

dependent covariates, and the most common modelling approach

for that situation is survival time analysis, more precisely the Cox

proportional hazards model [8]. This approach is introduced in the

following chapter in the context of counting process theory, which

was introduced in the 1970’s by Odd O. Aalen [1].



1.1 Basics

1.1 Basics

The data

Let n individuals be observed in a study and let T ∗
i be the time from

beginning of observation until the occurence of the event for the ith

subject. Typically this value cannot be observed for all patients,

because of restrictions to the observation time. Some subjects may

still be under risk at the end of the study, so one has just observed

the censoring time Ci, which is defined as the time from the begin-

ning to the end of the study. The basic assumption in this context

is the independence of T ∗
i and Ci. Now let Ti = min(T ∗

i , Ci) be

the observed followup time and δi = I(T ∗
i ≤ Ci) the status, which

indicates, whether a subject had the event or not.

Suppose that the Ti’s are iid with distribution function F (t) =

Pr(T ≤ t) and density function f(t) = dF (t)
dt . The survivor function

S(t), i.e. the probability to survive at least until time t, is

S(t) = Pr(T > t).

The counting process notation of survival time data substitutes the

Survival time data and the counting process theory 2



1.1 Basics

pair (Ti, δi) by the pair of stochastic processes (Ni(t), Yi(t)) with

Ni(t) = the number of observed events in [0, t] for subject i and

Yi(t) =


 1 , if subject i is under risk at time t.

0 , else

This approach can handle multiple events and multiple time inter-

vals under observation. However, in this thesis only the case with

Ni(t) ∈ {0, 1} ought to be discussed.

For counting processes are a special type of stochastic processes, it

is reasonable to briefly introduce the theory and terminology of this

kind of modelling technique here.

Stochastic processes

Data and the occurence of events over a specific period of time

T = [0, t] or T = [0, t), 0 < t ≤ ∞, are often modelled with

stochastic processes.

A stochastic process X is a collection of random variables

(X(t) : t ∈ T )

i.e. every value is observed at a defined time-point.

Thus, at time t all data are available which were observed until t.

This information, which was generated by the process X on [0, t], is

Survival time data and the counting process theory 3



1.2 The hazard function and its estimation

represented by the filtration or history (Ft : t ∈ T ) and grows over

time, i.e. Fs ⊆ Ft for s ≤ t.

A counting process is a stochastic process (N(t) : t ∈ T ) with

N(0) = 0 and N(t) < ∞, whose paths are right-continuous with

probability 1, piecewise constant, and have jumps of height +1 [11].

The most frequent application of counting processes is the determi-

nation of the number of events of a certain type within a specific

time-interval: N(t) − N(s) would denote the number of observed

events in [s, t].

1.2 The hazard function and its estimation

The hazard function is defined as

λ(t) = limh↓0
Pr(t < T ≤ t+ h|T > t)

h
(1.1)

=
f(t)

S(t)
.

The estimator of the cumulative hazard function Λ(t) =
t∫
0
λ(s)ds

is based on the summed processes Y (t) =
∑

i Yi(t) and N(t) =∑
iNi(t). Y (t) depicts the number of subjects who are at risk at

time t and N(t) depicts the total number of events up to and in-

cluding t.

Survival time data and the counting process theory 4



1.2 The hazard function and its estimation

For a short period of time it holds that

Λ(s+ h)− Λ(s) ≈ λ(s)h (1.2)

= Pr(event in(s, s+ h)|at risk at s)

This expression can be estimated by N(s+h)−N(s)
Y (s) . We obtain the

Nelson-Aalen estimator by summing these quantities over subinter-

vals of (0, t], which are small enough to contain at most one event

time:

Λ̂(t) =

t∫
0

dN(s)

Y (s)
(1.3)

where dN(t) is the number of events occuring exactly at t.

The variance of the Nelson-Aalen estimator is assessed consistently

by

var
[
Λ̂(t)
]
=

t∫
0

dN(s)

[Y (s)]2
(1.4)

which is just the sum of the scaled increments ∆hN(s)
Y (s)

with ∆hN(t) =

N(t+ h)−N(t), the number of events in a small interval from t to

t+ h.

The Nelson-Aalen estimator has an interesting property:

n∑
i=1

Λ̂(Ti) =

n∑
i=1

Ni(Ti) (1.5)

Survival time data and the counting process theory 5



1.3 The Cox PH model

i.e. the total estimated hazard, summed over all subjects, equals

the total number of observed events. Since Λ̂(Ti) =
∞∫
0
Yi(s)dΛ̂(s)

and Ni(Ti) = Ni(∞) the latter property can be written as

∑
i


Ni(∞)−

∞∫
0

Yi(s)Λ̂(s)


 = 0, (1.6)

which is of high relevance and will be described in greater detail in

section 4.

To establish a model in terms of the history or filtration, let dNi(t)

be the increment in Ni in an arbitrary small time interval [t, t+ dt]

and consider the fact, that Ft− contains all information of [0, t).

Then it holds that

E(dNi(t)|Ft−) = Yi(t)λ(t)dt. (1.7)

1.3 The Cox PH model

Beside the analysis of time until event, one is often interested in the

influence of additional variables on the survival time and the out-

come of the study, i.e. does the subject experience the interesting

event or not under certain conditions determined by some covari-

ates, e.g. prognostic factors.

Since its introduction the classical Cox proportional hazards model

[8] is most often used to estimate the effect of one or more covariates

Survival time data and the counting process theory 6



1.3 The Cox PH model

on the survival of a certain subject. Let X = (X1, ..., Xp) denote

p measured covariates on a given subject. Then the corresponding

hazard function is defined as

λ(t) = λ0(t)e
f(X) (1.8)

with an unspecified nonnegative baseline hazard λ0(t) as a function

of time. The baseline hazard represents the hazard of an ”average”

subject of the data, thus the hazard of a particular subject is just

a multiple of the baseline hazard. In the Cox model the most

important assumption is the proportionality of the hazard rates:

λ(t|X)

λ(t|X = 0)
=
λ0(t)e

f(X)

λ0(t)
= ef(X)

This means, that the hazard rate of a particular subject remains

the same over the whole observation time, i.e. the influence of all

covariates is independent of time.

Inference

As the baseline hazard is not estimated by parametric methods,

likelihood inference cannot be performed for the Cox model. The

coefficients β can though be estimated by maximizing a ”partial

likelihood” function, even when λ0 is left completely unspecified.

Survival time data and the counting process theory 7



1.3 The Cox PH model

The partial likelihood for β [8] is defined as

L(β) =

n∏
i=1

∏
t≥0

{
Yi(t) exp(β

′Xi)∑
j∈Rk

Yj(t) exp(β ′Xj)

}dNi(t)

, (1.9)

with Rk being the set of subjects at risk at time t.

The log partial likelihood is accordingly given by

logL(β) =

n∑
i=1

∞∫
0


Yi(t)β ′Xi − log


∑

j∈Rk

Yj(t) exp(β
′Xj)




 dNi(t).

(1.10)

Maximum partial likelihood estimates β̂ are found by solving the

equation U(β) = ∂
∂β
logL(β) = 0 with

U(β) =
n∑

i=1

∞∫
0

[
Xi −

∑
j∈Rk

YjXj exp(β
′Xj)∑

j∈Rk
Yj exp(β ′Xj)

]
dNi(t). (1.11)

Breslow [6, 7] proposed an estimate for the cumulative baseline

hazard in the case with covariates. Let β̂ be partial likelihood

estimations of the coefficients. Then the ith subject in the sample

has an estimated event rate of Yi(s)exp{β̂ ′Xi(s)}λ0(s). A subject

in the risk set with rate exp{β̂ ′Xi(s)}λ(s) will have an event

with same probability as exp{β̂ ′Xi(s)} cases with rate λ0(s). A

heterogenous sample could be visualized like that:

Survival time data and the counting process theory 8



1.4 Martingale basics

∑n
i=1 Yi(s)exp{β̂ ′Xi(s)} cases under risk at time s all have an event

probability of λ0(s). Thus Λ0(t) can be estimated as follows:

Λ̂0(t) =

t∫
0

∑
i dNi(t)∑

i Yi(s) exp
{
β̂ ′Xi(s)

} (1.12)

1.4 Martingale basics

The expression introduced in (1.6),

Mi(t) = Ni(t)−
t∫

0

Yi(s)λ(s)ds, (1.13)

is a martingale process with respect to the history defined above.

A martingale concerning the filtration Ft is a stochastic process

with right-continuous paths and leftsided limits and has the key

property of any martingale: for every t > 0 it is

E(dM(t)|Ft−) = 0.

Thus E(M(t)|Fs) = M(s) for every 0 ≤ s < t, i.e.

E(M(t)|M(u); 0 ≤ u ≤ s) = M(s). That is, a martingale is

a process without drift, which means that the best prediction of

any future value is its actual value when it is conditioned on the

Survival time data and the counting process theory 9



1.4 Martingale basics

past.

Martingale increments are uncorrelated, but not necessarily inde-

pendent. For t, u, s > 0 holds:

Cov[M(t),M(t+ u)−M(t)] = 0

Cov[M(t)−M(t− s),M(t+ u)−M(t)] = 0

The most simple martingale is a symmetric random walk in discrete

time.

The Doob-Meyer decomposition theorem [10, 20] indicates, that any

counting process is uniquely decomposable into a sum of a mar-

tingale and a so-called compensator, which is a predictable right-

continuous process (0 at time 0). Since N(t) is a counting process

of the occured events in [0, t] and
t∫
0
Yi(s)λ(s)ds in (1.13) is a right-

continuous and predictable process,

Mi(t) = Ni(t)−
t∫

0

Yi(s)λ(s)ds

≡ Ni(t)− Λi(t)

is in fact a martingale with the above properties.

Survival time data and the counting process theory 10



Chapter 2

Multivariate adaptive Regression

Splines

The theory of multivariate adaptive regression splines (MARS) was

developed by Jerome Friedman [12] in 1991. Charles Kooperberg

[16] designed a comparable approach especially for categorical co-

variates with a short enhancement for continuous responses.

Both proposals are based on tree structures, i.e. display an ad-

vancement of CART (classification and regression trees).

As open source software on MARS is so far available only from

Kooperberg (function polymars in the library polspline on R

2.3.0), his approach was used in this thesis.

The intention of this dissertation was to establish a MARS approach

to deal with survival time data, thus censored observations.

The general approach of multivariate adaptive regression splines will



2.1 The approach

now be presented in this chapter. The extension on survival time

data is then introduced in chapter 3.

2.1 The approach

Let y be the dependent response, which can be continuous or binary,

and let X = (X1, ..., Xp) ∈ D ⊂ R
p be the set of potential predictive

covariates. Then we assume that the data are generated from an

unknown ”true” model. In case of a continuous response this would

be

y = f(X1, ..., Xp) + ε (2.1)

= f(X) + ε,

in case of a binary response, i.e. using a logistic regression, this

would be

logitPr(Y = 1) = f(X1, ..., Xp) + ε. (2.2)

The distribution of the error ε is member of the exponential family

[19]. MARS approximates f by applying functions, which include

interactions of at most second order. That means we use the model

f(X) = g0 +
∑
j1

gj1(Xj1) +
∑
j1<j2

gj1,j2(Xj1, Xj2) + ε . (2.3)

Multivariate adaptive Regression Splines 12



2.1 The approach

Linear splines and their tensor products are used to model the func-

tion g(·). A one-dimensional spline can be written as

g(x) = b−1 + b0x+
K∑
k=1

bk(x− tk)+, (2.4)

with the so-called hockeystick-function

(x− tk)+ =


 x− tk , if x ≥ tk,

0 , else,
(2.5)

and the knot tk in the range of the observed values of X. For this

reason the function g is situated in a linear space with the K + 2

basis functions

1, x and (x− tk)+, k = 1, ..., K.

The interaction gj1,j2 is modeled by means of tensor product splines

g12(x1, x2) = g1(x1)× g2(x2). (2.6)

Thus the following model results:

g0 = β0

gj1(Xj1) =
M∑
i=1

βji

i B
ji

i (Xji
),

gj1,j2(Xj1, Xj2) =
M∑
i=1

βj1 j2
i Bj1 j2

i (Xj1, Xj2),

Multivariate adaptive Regression Splines 13



2.1 The approach

with M being the number of basis functions in the model. The Bs

represent spline basis functions as described above and the βs are

coefficients. Now the MARS model can be written as

f(X) =

M∑
i=1

βiBi(X), (2.7)

with the following possible modes of basis functions B(X):

• 1

• xi

• (xi − tk)+

• xixj

• (xi − tk)+xj

• (xi − tk)+(xj − tl)+

In the MARS approach the coefficients are estimated using the Least

Squares method with the coefficient matrix written as

β̂ = (X∗TX∗)−1X∗TY. (2.8)

X∗ is the design matrix, i.e. the matrix of the selected basis func-

tions, and Y is the response vector.

Multivariate adaptive Regression Splines 14



2.2 Goodness-of-Fit criterion

2.2 Goodness-of-Fit criterion

As measure for the degree of fit or lack of accuracy of the model

the generalized cross-validation criterion is used:

GCV (M) =

1
N

∑N
i=1

[
yi − f̂M(xi)

]2
[
1− d·M

N

]2 (2.9)

with M being the number of basis functions in the model, whereas

f̂ denotes the fitted values of the current MARS model.

The numerator is the common residual sum of squares, which is

penalized by the denominator, which accounts for the increasing

variance in the case of increasing model complexity. The penaliz-

ing parameter d can be chosen by the user himself, a conventional

value is d = 4. A smaller d generates a larger model with more

basis functions, a larger d creates a smaller model with less basis

functions.

2.3 Candidates and Knots

MARS is a stepwise process. In the stepwise addition process basis

functions are added until the maximal allowed model size (which

can be assessed by the user) is reached. The largest model generally

overfits the data. Then in a second stage – the stepwise deletion

Multivariate adaptive Regression Splines 15



2.3 Candidates and Knots

process – all ”unnecessary” basis functions are removed again until

a final model is obtained which is best considering the GCV, i.e.

the one with the minimum GCV.

In the first step of the addition process a constant model is fitted.

Subsequently the number of candidate basis functions depends on

the number of possible knots per predictor variable. To keep the

procedure fast and the results robust the number of possible knots

per predictor and also the possible candidates per step are limited.

To determine the number of potential knots of a specific covariate

an order statistic is computed and a subset of it is then chosen as

potential knots. Commonly these are about 20 knots per predictor,

at most every third value is chosen yet. This prevents the design

matrix of the basis functions to become singular. However, the user

can adjust the number of candidate knots himself.

The following basis functions are possible candidates:

• xi , i = 1, ..., p

• (xi − tik)+, if xi is already in the model

• xixj, if xi and xj are already in the model

• xi(xj− tjk)+, if xixj and (xj− tjk)+ are already basis functions

• (xi − tik)+(xj − tjk)+, if xi(xj − tjk)+ and (xi − tik)+xj are in

the model yet

Multivariate adaptive Regression Splines 16
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These conditions force linear terms to be involved and result in a

better interpretability of the final model.

In the first iteration – after the fit of the constant model – a lin-

ear basis function on one of the predictor variables is fitted. The

second iteration accounts for both linear basis functions on another

covariate and basis functions with knots of the covariate already in

the model.

The model to choose in every step during the forward process is the

one out of all possible models which minimises the GCV.

In the backward process one basis function is deleted per step and

the GCV is computed for the reduced model. The model which

yields the smallest increase of GCV becomes the new one.

The maximum model size is arbitrary. The default proposed by

Kooperberg is min(6n1/3, n4 , 100) with n being the number of cases

in the data set. Unfortunately, Kooperberg did not describe, why

he decided for these values.

Forward and backward process yield a sequence of models with

different numbers of basis functions. The one out of this sequence

of varying sized models which offers the minimum GCV is chosen

as ”best” and defined as final fit.

Multivariate adaptive Regression Splines 17
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Example:

Let y = 3x3 + ε with x ∼ U [−1, 1] and ε ∼ N(0, σ2) with

σ2 ∈ {0.25, 4}. The application of MARS on these data resulted in

the following two models with 6 and 2 knots and GCVs of 0.0633

and 4.046405, respectively:

fσ2=0.25(x) = 6.66 + 9.69x− 4.67(x+ 0.90)+ − 2.45(x+ 0.64)+

− 2.38(x+ 0.37)+ + 1.88(x− 0.33)+ + 2.19(x− 0.60)+

+ 3.57(x− 0.81)+

fσ2=4(x) = 1.94 + 4.55x− 4.58(x+ 0.40)+ + 4.33(x− 0.44)+

The figures 2.1 and 2.2 show the scatterplots with the corresponding

MARS regression curves (red line) of this example. The green lines

display the true relationship y = 3x3. The figures show, that the

MARS approximation almost completely overlays the true function,

thus yields a very good fit to the data, even in the case of a rather

large error variance.

Multivariate adaptive Regression Splines 18
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Figure 2.1: MARS approximation of a cubic relationship, small error variance of

σ2 = 0.25.
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Figure 2.2: MARS approximation of a cubic relationship, large error variance of

σ2 = 4.
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Chapter 3

MARS in Survival time data

3.1 Basic assumptions

Multivariate adaptive regression splines are so far implemented and

used for continuous and binary responses. The intention of this

thesis was to expand this technique to survival time data. For that

purpose a new approach was developed, which uses martingale or

deviance residuals of a Cox model as response in a common MARS

approach [11, 14].

Remind that martingale residuals are based on the fact, that the

process



3.1 Basic assumptions

Mi(t) = Ni(t)−
t∫

0

Yi(s) exp{β ′Xi(s)}dΛ̂0(s) (3.1)

≡ Ni(t)−
t∫

0

Yi(s)λ(s)ds

≡ δi − Λ̂i(t)

is a martingale, when the proportional hazards assumption holds.

The process Ni(t) counts the number of occured events of individual

i at time t, thus is identical to δi, because only Ni(t) ∈ {0, 1} are

regarded in this thesis.

The used quantities in (3.1) are defined as follows:

Yi(t) is an indicator, if subject i is under risk immediately before t

Ni(t) is a counting process of the events

Xi(t) is the vector of covariates

Λ̂0(t) is the Breslow estimator of the cumulative baseline hazard

function

Assume that

λ(t|X,Z)dt = h(X) exp{β ′Z}dΛ0(t) (3.2)

≡ exp{f(X)} exp{β ′Z}dΛ0(t)
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i.e. the correct functional form is only known for the covariate

vector Z but not for the single non time-dependent covariate X.

According to Fleming & Harrington [11] it holds that

E(M̂(t)|X) ≈ 1− h̄(t0)

h(X)
E (N(t)|X) + (3.3)

+ E



t∫
0

Y (s) exp{β ′Z} [h̄(t0)− h̄(s, Z)
]
dΛ0(s)|X




with

h̄(s, Z) =
E{ef(X)Y (s)|Z}

E{Y (s)|Z} =
E{h(X)Y (s)|Z}

E{Y (s)|Z}

h̄(s) = E h̄(s, Z)

and t0 a fixed time point. The function h̄(s, Z) depicts the mean

value of h(X) over time as well as the expected distribution of the

risk set at a given time point.
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Inverting equation (3.3) yields

− log

{
1− E(M̂(t)|X)

E(N(t)|X)

}
≈ (3.4)

≈ [f(X)− log{h̄(t0)}
] −

− log

[
1− h(X)E{∫ t0 Y (s)eβ′Z [h̄(t0)− h̄(s, Z)]dΛ0(s)|X}

h̄(to)E{N(t)|X}

]

= f(X)− log

{
h̄(t0)E{

∫ t
0 Y (s)e

β′Zh(X)dΛ0(s)|X}
E{∫ t0 Y (s)eβ′Zh(X)dΛ0(s)|X} −

− h(X)E{∫ t

0 Y (s)e
β′Z[h̄(t0)− h̄(s, Z)]dΛ0(s)|X}

E{∫ t

0 Y (s)e
β′Zh(X)dΛ0(s)|X}

}

⇒ − log

{
1− E(M̂(t)|X)

E(N(t)|X)

}
≈ (3.5)

≈ f(X)− log

[
E{∫ t0 Y (s)eβ′Z h̄(s, Z)h(X)dΛ0(s)|X}

E{∫ t0 Y (s)eβ′Zh(X)dΛ0(s)|X}

]

= f(X)− logh̃

≡ f(X)− f̃
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whereas the function h̃ ...

”... depends in a complex way upon both the censoring

pattern and the true functional form and will in general

not be constant in X. When X is independent of Z,

however, h̄(s, Z)eβ
′Z will be independent of X, and

smoothing provided by the integral will cause f̃ to have

small variation compared to f .”

(Fleming & Harrington)

Taylor series approximation results in the following relationship:

E(M̂ |X) ≈
[
f(X)− f̃)

]
· c (3.6)

with c being the number of events divided by the sample size.

Thus, a smoothed plot of the M̂i against the particular covariate

X should reveal the correct functional form f(X).

As an example assume we have a model with p covariates already

included. Now we plot the martingale residuals of this model against

the next covariateX and perform a MARS fit. The form of the fit is

an indicator of the form of f(X) (linear, nonlinear, threshold etc.).

Klein & Moeschberger gave an example of bone marrow trans-
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plant data. They calculated the martingale residuals of a Cox

model without the interesting covariate wtime (waiting time until

transplantation in months). Figure 3.1 shows the plot of these

residuals versus the covariate wtime, the Lowess smooth, which is

the proposal of Klein & Moeschberger, and the MARS approach.

Apparently the functional form which was found by MARS ex-

ceedingly coincides with the proposed Lowess smooth. The found

MARS model has the following form:

f̂mart(wtime) = − 0.31 + 0.02 · wtime− 0.03 · (wtime− 34)+

− 0.04 · (wtime− 71)+ + 0.06 · (wtime− 98)+

Martingale residuals are defined on (−∞, 1] and thus highly skewed.

To determine whether this skewness does in any way affect the

outcome, the new method was also applied to a transformation

of the martingale residuals, namely deviance residuals, which are

symmetrically defined on (−∞,∞). If all covariates are time-fixed,

the deviance residual for subject i is defined as

di = sign(M̂i) ·
√√√√−M̂i −Nilog

(
Ni − M̂i

Ni

)
. (3.7)

MARS in Survival time data 25



3.1 Basic assumptions

0 50 100 150

-1
.0

-0
.5

0.
0

0.
5

1.
0

Waiting time to Transplant (months)

M
ar

tin
ga

le
 re

si
du

al
s MARS

Lowess

Figure 3.1: Example from Klein & Moeschberger with martingale residuals

The example from Klein & Moeschberger with deviance residuals

is shown in Figure 3.2. Note that the MARS approach found the

same knots for both martingale and deviance residuals as response.

The model with deviance residuals looks as follows:

f̂devi(wtime) = − 0.39 + 0.03 · wtime− 0.03 · (wtime− 34)+

− 0.06 · (wtime− 71)+ + 0.07 · (wtime− 98)+
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Figure 3.2: Example from Klein & Moeschberger with Deviance residuals

3.2 Enhancements

One intention of this thesis was to extend the proof of Fleming

& Harrington [11] to the situation of interactions, i.e. it shall be

shown that a smoothed plot of martingale residuals of a model

without the two covariates A and B against A and B (3D-plot) is

also able to reveal the correct relationship and influence of A and

B on survival time.

This would mean, that the method can detect influential covariates

and their correct functional form simultaneously at one step, thus
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the usage of residuals of a Cox model without any covariates as

dependent variable in a multivariate MARS setting is an adequate

approach.

Let f(A,B) be an arbitrary function of the two non time-dependent

covariates A and B, whereas f(A,B) can receive the following

forms:

• f(A,B) = f(A) + f(B)

• f(A,B) = f(A) · f(B)

Assume that

λ(t|A,B, Z) = ef(A,B)eβ
′ZdΛ0(t) (3.8)

≡ h(A,B)eβ
′ZdΛ0(t)

describes a model where the functional form of the covariate vector

Z is known, but the function h of the variables A and B is unknown.

M̂(t) again denotes the martingale residuals of a model which does

not include A and B.
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Thus it holds that the expected martingale residuals can be written

as follows:

E{M̂ |A,B} = E{N(t)|A,B}+ E{Λ(t)|A,B}

≡ E{N(t)|A,B}+ E

−

t∫
0

Y (s)eβ̂
′ZdΛ̂0(s)|A,B




This expression is then dilated by the term eβ
′Z h̄(s, Z)dΛ0(s),

whereas h̄ represents an average of the function h over the expected

event time of a subject with covariate matrix A and B as well as

over the expected risk set at time t:

E{M̂ |A,B} = E{N(t)|A,B}+ E

−

t∫
0

Y (s)eβ
′Z h̄(s, Z)dΛ0(s)|A,B


 +

+ E



t∫
0

Y (s)
[
eβ

′Z h̄(s, Z)dΛ0(s)− eβ̂
′ZdΛ̂0(s)

]
|A,B




= term1 + term2 + term3

with h̄(s, Z) = E{h(X)Y (s)|Z}
E{Y (s)|Z} and h̄(s) = E h̄(s, Z).

Term 2 and term 3 are now regarded seperately.
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Start with term 3:

term3 = E



t∫
0

Y (s)
[
eβ

′Z h̄(s, Z)dΛ0(s)− eβ̂
′ZdΛ̂0(s)

]
|A,B




= E



t∫
0

Y (s)

[
eβ

′Zh̄(s, Z)dΛ0(s)− eβ̂
′Z dN̄(s)∑n

j=1 Yj(s)e
β̂′Zj

]
|A,B




= − E



n∑
i=1

t∫
0

Y (s)eβ̂
′Z∑n

j=1 Yj(s)e
β̂′Zj

[dNj(s) −

− Yj(s)
eβ

′Z

eβ̂′Z
eβ̂

′Zih̄(s, Z)dΛ0(s)]|A,B
}

= − E {martingale} → 0

if eβ
′Z ≈ eβ̂

′Z

The latter assumption holds if the estimator β̂ is unbiased.

Thus, just term 2 is remaining. Choose t0 a fixed time point:
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term2 = − E



t∫
0

Y (s)eβ
′Z h̄(t0)

h(A,B)
h(A,B)dΛ0(s)|A,B


 +

+ E



t∫
0

Y (s)eβ
′Z [h̄(t0)− h̄(s, Z)

]
dΛ0(s)|A,B




= − E



t∫
0

Y (s)eβ
′Z h̄(t0)

h(A,B)
h(A,B)dΛ0(s)|A,B


+ R(t, A, B)

= − h̄(t0)

h(A,B)
E



t∫
0

Y (s)eβ
′Zh(A,B)dΛ0(s)|A,B


+ R(t, A, B)

R(t, A, B) just acts as a placeholder for the second term which is

needed later on in the proof.

Because

• eβ′Zh(A,B)dΛ0(s) ≡ λ(s|A,B, Z)

•
t∫
0
Y (s)λ(s|A,B, Z) ≡ Λ(t)

• E(M) = E(N)− E(Λ) = 0 ⇒ E(Λ) = E(N)

it holds that
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term2 = − h̄(t0)

h(A,B)
E{N(t)|A,B}+ R(t, A, B) (3.9)

Combining now these findings with the remaining term 2 we get

E{M̂(t)|A,B} ≈ E {N(t)|A,B} − h̄(t0)

h(A,B)
E {N(t)|A,B}+ R(t, A, B)

=

[
1− h̄(t0)

h(A,B)

]
E {N(t)|A,B}+ R(t, A, B)

This equation is now extended by the factor 1/ (E{N(t)|A,B}):

E{M̂(t)|A,B}
E{N(t)|A,B} ≈ 1− h̄(t0)

h(A,B)
+

R(t, A, B)

E{N(t)|A,B}

⇒ 1− E{M̂(t)|A,B}
E{N(t)|A,B} ≈ h̄(t0)

h(A,B)
+

R(t, A, B)

E{N(t)|A,B}

=
h̄(t0)

h(A,B)

[
1− h(A,B)R(t, A, B)

h̄(t0)E{N(t)|A,B}
]
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⇒ log

[
1− E{M̂(t)|A,B}

E{N(t)|A,B}

]

≈ log h̄(t0)− f(A,B) + log

[
1− h(A,B)R(t|A,B)

h̄(t0)E{N(t)|A,B}
]

≈ f(A,B)− log h̄(t0)− log

[
1− h(A,B)R(t, A, B)

h̄(t0)E{N(t)|A,B}
]

= f(A,B)− log

[
h̄(t0)

{
1− h(A,B)R(t, A, B)

h̄(t0)E{N(t)|A,B}
}]

= f(A,B)− log

[
h̄(t0)

{
h̄(t0)E{N(t)|A,B} − h(A,B)R(t, A, B)

h̄(t0)E{N(t)|A,B}
}]

= f(A,B)− log

[
h̄(t0)E{

∫ t
0 Y (s)e

β′Zh(A,B)dΛ0(s)|A,B}
E{∫ t0 Y (s)eβ′Zh(A,B)dΛ0(s)|A,B} −

− h(A,B)E{∫ t0 Y (s)eβ′Z [h̄(t0)− h̄(s, Z)]dΛ0(s)|A,B}
E{∫ t0 Y (s)eβ′Zh(A,B)dΛ0(s)|A,B}

]

= f(A,B)− log

[
E{∫ t0 Y (s)eβ′Z h̄(s, Z)h(A,B)dΛ0(s)|A,B}

E{∫ t0 Y (s)eβ′Zh(A,B)dΛ0(s)|A,B}

]
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⇒ − log

[
1− E{M̂(t)|A,B}

E{N(t)|A,B}

]
= f(A,B)− log h̃

= f(A,B)− f̃

Thus we have

− log

[
1− E{M̂(t)|A,B}

E{N(t)|A,B}

]
≈ f(A,B)− f̃ (3.10)

E(M̂(t)|A,B) and E(N(t)|A,B) can be approximated by a

smoothed estimation like LOWESS (Cleveland, 1979) or MARS,

perhaps obtained by a smoothed scatterplot of M̂i against A and

B. Hence,

f(A,B)− f̃ ≈ − log

{
1− smooth(M̂ , A,B)

smooth(N,A,B)

}
(3.11)

A first order Taylor series approximation of the form

f(a+ h) ≈ f(a) +
h

1!
f ′(a)

with a = 1 and h = −smooth(M̂,A,B)
smooth(N,A,B)
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yields the following:

f(A,B)− f̃ ≈ − log(1) +
smooth(M̂ , A,B)

smooth(N,A,B)
· 1
1

=
smooth(M̂ , A,B)

smooth(N,A,B)

⇒ E{M̂(t)|A,B} = smooth(M̂ , A,B) = [f(A,B)− f̃ ] · c

with c being the expected number of events per subject, i.e. the

total number of events divided by the sample size.

The proof shows that the method [11] even works in the context

of interactions and the simultaneous modelling of more than one

covariate is possible in the survival MARS framework.
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Chapter 4

Simulation studies

Simulation studies are an important statistical tool to analyse per-

formance, power and property of a new statistical method or ap-

proach. The user creates a set of data, whereas the response vari-

able y depends in a predefined way on the covariates. Thus, one

actually knows which results has to be obtained, because the func-

tional coherence between dependent variable and predictor variables

is self-defined.

Jerome Friedman [12] introduced some simulation studies for his

MARS approach. He showed that MARS is able to detect pure

noise data and recognize mere additive relationships, i.e. the

approach avoids to find ”structure when it is not present” [12].

As a matter of course, it was then also shown, that the method

reliably detects structure ”when it does exist”, albeit disturbed by

pure noise variables.



Jerome Friedmans approach differs from the one used in this thesis,

namely the approach of Kooperberg. Firstly, two basis functions

(not only one as suggested by Kooperberg) are entered into the

model per step in the forward selection procedure, namely the

sibling pair ±(x − t)+, secondly interactions of higher order than

p = 2 are allowed and thirdly the goodness-of-fit criterion GCV is

defined somewhat different:

GCVFriedman =
1

N

∑N
i=1[yi − f̂M(xi)]

2

[1− C(M)+d·M
N ]2

with

C(M) = trace[B(BTB)−1BT ] + 1

and B the M ×N matrix of the M basis functions.

On this account the results of Friedman may differ substantially

from the MARS approach of Kooperberg.

Charles Kooperberg [16] showed MARS based simulations solely for

classification problems, i.e. the dependent variable was categorical.

He compared several classification methods and arrived at the con-

clusion that MARS performs at least as well as other established

methods for binary response, but yields the enormous advantage of

being much faster in fitting huge datasets.
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Due to the differing approach of Friedman and the mere binary re-

sponse situation in Kooperbergs investigations further simulation

studies on the ability of MARS will be performed in this thesis,

especially for structures which are of high interest in the medical

context. Among these are nonlinear effects of the covariates and/or

interactions between them. Furthermore the power of MARS in the

setting of survival time data is of high interest.

The thesis only presents studies on continuous dependent variables,

for just these are interesting in the context of survival MARS. In-

deed, simulation studies on binary responses were done, but are not

shown in this paper.

Several simulation studies were done to investigate the power of mul-

tivariate adaptive regression splines in these special settings. First

of all the general performance of MARS was checked: functionality,

stability and reliability of this approach were analysed in several

scenarios. These studies are presented in the first section.

The second part deals with the ability of MARS to assess interac-

tions between a continuous and a binary covariate, e.g. age and

gender.

In the last section the simulations for survival data are introduced

with different distributions for the survival time, more precisely ex-

ponential and Weibull distribution.
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4.1 Monograph of the approach

4.1 Monograph of the approach

Three scenarios with diverse influences of the covariates and chang-

ing error variance were established to analyse the power of MARS.

Let x1, ..., x10 ∼ U [−1, 1] be some covariates and ε ∼ N(0, σ2) with

σ2 ∈ {0.1, 1, 2} the error. Now in the two scenarios A and B the

dependent variable y is defined as

A : y = 10x1x2 + 5x3 + 10 sin(4x4) + log |x5|+ ε

B : y = x1x2 + x3 + sin(4x4) + log |x5|+ ε

Thus, nonlinear effects of the covariates, interactions and the mere

nuisance parameters x6, ..., x10 are to be identified by the method.

Scenario B was performed to check on the ability of MARS to find

even small effects of the covariates. The differing variation ought

to show whether MARS can handle increasing noise in the data.

A third scenario was established with regard to the subsequent anal-

ysis of survival time data, i.e. here the same functional relationship

should be assumed as later on.

For that purpose additional variables x11 to x15 with different dis-

tributions were generated:
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4.1 Monograph of the approach

x11 ∼ U [30, 75]

x12 ∼ Bi(n, 0.5)

x13 ∼ N(0, 1)

x14 ∼ U [0, 10]

x15 ∼ Bi(n, 0.7)

with n being the sample size. The following relationship was then

performed:

C : y = 0.04
(x11
10

)2
− 6x12 + 0.1x11x12

Thus, x13 to x15 are again mere nuisance parameters and it ought

to be found a nonlinear structure and an interaction term between

a continuous and a binary variable.

1000 simulations with 500 and 1000 observations, respectively, were

computed for every scenario and differing values of the penalizing

parameter d. Remind that d is the tuning parameter in the de-

nominator of the generalized crossvalidation criterion. A common

value of d is 4, smaller values yield a larger model with more basis

functions, larger values of d result in smaller models with less basis

functions.
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4.1 Monograph of the approach

Results are documented as fraction of models with false basis

functions (%false) and fraction of models with interaction between

x1 and x2 (%x1x2) and x11 and x12 (%x11x12), respectively.

For scenario C additionally the fraction of models with nonlinear

x11 is documented (%knots(x11)).

A model with false basis functions is defined as follows:

1. a model with not all of the simulated coherences found, e.g.

interaction not found or linear influence of x3, x4, x5 (scenario

A and B) or x11 (scenario C)

2. a model with too many basis functions, e.g. basis functions of

the nuisance parameters or false interactions

Table 4.1 shows the results of this first simulation study for penal-

izing parameters d ∈ {3, 4, 5}.
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4.1 Monograph of the approach

Table 4.1: Results of the simulations: fraction of simulation cycles with spuriously

chosen basis functions, correct identified interaction terms and correct identified

nonlinear influence of x11 in scenario C

d = 3

sample A B C

σ2 size %false %x1x2 %false %x1x2 %false %x11x12 %knots(x11)

0.1 500 37.3 100 41.7 100 6.1 100 100

1000 40.6 100 37.3 100 7.0 100 100

1 500 17.9 100 18.1 99.9 4.9 100 100

1000 20.2 100 20.4 100 5.1 100 100

2 500 24.7 100 14.5 46.8 5.1 100 100

1000 19.9 100 19.7 90.1 6.2 100 100

d = 4

sample A B C

σ2 size %false %x1x2 %false %x1x2 %false %x11x12 %knots(x11)

0.1 500 21.7 100 22.1 100 1.2 100 100

1000 20.5 100 16.5 100 2.1 100 100

1 500 4.1 100 5.7 100 1.2 100 100

1000 6.4 100 5.3 100 1.5 100 100

2 500 26.3 100 5.8 22.7 0.6 100 100

1000 6.0 100 4.4 70.7 2.0 100 100

d = 5

sample A B C

σ2 size %false %x1x2 %false %x1x2 %false %x11x12 %knots(x11)

0.1 500 9.8 100 11.8 100 0.7 100 100

1000 11.9 100 11.6 100 0.8 100 100

1 500 2.2 100 2.0 92.9 0.5 100 100

1000 2.2 100 3.1 100 0.7 100 100

2 500 41.8 100 6.7 12.6 0.2 100 100

1000 3.16 100 2.8 49.8 0.5 100 100
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4.1 Monograph of the approach

The studies show the following results:

Scenarios A and B

1. amount of models with false basis functions:

In both scenarios the fraction of models with spuriously chosen

basis functions reduces with increasing penalizing parameter

d. An exception forms scenario A with σ2 = 2 and a sample

size of 500, here the fraction of models with spuriously chosen

basis functions is at least 25% (d = 3), which may be in fact

caused by the combination of small sample size and large error

variance.

2. fraction of models with interaction:

In scenario A 100% of the simulations result in models with an

interaction term between x1 and x2.

In scenario B the size of the error variance affects the frac-

tion of models with interaction term. An error variance of 0.1

produces 100% of models with interaction term and a σ2 = 1

yielded at least 92.9% models with interaction term. In the

case of σ2 = 2 the sample size strongly influences the findings.

A large sample size results in a higher proportion of models

with interaction term.

Besides, the size of d has an effect on this topic: the smaller

Simulation studies 43



4.1 Monograph of the approach

d, i.e. the more basis functions in the largest model of the

stepwise addition process, the larger the interaction fraction.

3. In the case of a small error variance (σ2 ≤ 1) the sample size

has no influence on the quality of the findings in scenario A.

The fraction of models with false basis functions remains ap-

proximately equal. However in the case of a larger error vari-

ance (σ2 = 2) the sample size do affect the outcome. A larger

sample size results in a smaller amount of spurious models and

vice versa.

In scenario B the connection between sample size and error

variance cannot be observed. One third of the cases shows a

higher fraction of false models for 1000 observations than for

500 observations, however in two thirds of the cases a larger

sample size results in a smaller amount of wrong models.

Figures 4.1 to 4.3 show the mean functional form of x3 to x10 for a

selection of simulated scenarios A and B. The interaction of x1 and

x2 was not plotted due to the lack of interpretability of the figure.

The plots for the variables x6 to x10 demonstrate a mean influence

of these variables of zero, i.e. even if some models have found the

mere nuisance parameters as influential, the overall result must be

that they have no influence on the response at all. The plots of the

results for the other parameter combinations look quite identical,

thus are not printed.

Simulation studies 44



4.1 Monograph of the approach

The high amount of models with false basis functions in the case of

σ2 = 2 results from the fact, that x5 is seldomly detected as influen-

tial on the response, which is due to the small simulated coefficient

of 1. The larger the simulated effect is, the more likely the according

variable is entered into the model. Considering a random sample of

the models with false basis functions more precisely showed, that

the false chosen basis functions had very small coefficients, thus the

effect of them remains small and hence can be neglected.

Scenario C

Scenario C yields in 100% of the cases models with found inter-

action and nonlinear x11 and at most 7% spuriously chosen basis

functions, which means the entering of other covariables than x11

and x12 into the model. Figure 4.4 shows the mean results for a

sample size of 1000 and the parameter combination d = 4, σ2 = 1.

All other combinations yielded comparable plots and thus are not

presented. The results are convincing: in all simulation cycles the

MARS approach finds the correct functional relationship between

dependent variable and covariates and only a few cycles detected

influences of the nuisance parameters, which is due to the value of

the penalizing parameter, as the fraction of false basis functions di-

minishes with increasing d and decreasing allowed model size in the

stepwise addition process.
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Figure 4.1: scenario A, 500 observations, σ2 = 0.1, d = 3
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Figure 4.2: scenario B, 1000 observations, σ2 = 1, d = 4
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Figure 4.3: scenario A, 1000 observations, σ2 = 2, d = 5
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Figure 4.4: scenario C, 1000 observations, σ2 = 1, d = 4

The results show, that MARS is able to find linear and nonlinear ef-

fects of covariates on the response. Even when the fraction of models

with false basis functions is large the mean functional form remains

more or less correct, only the log-transformation of x5 in scenario

B becomes more v-shaped in the mean result because of a higher
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4.2 Interaction studies

fraction of models, which do not include this relationship. Even the

handling of binary covariates is no challenge for the method.

The conclusion of these simulation studies must be, that multivari-

ate adaptive regression splines present a reasonable way to model

complicated types of connections between response and covariates,

including interactions and nonlinear effects.

4.2 Interaction studies

The analysis of a special type of influence of covariates on the de-

pendent variable shall be deepened in this section, namely the in-

teraction between a continuous and a binary covariate, e.g. age

and gender, which was already outlined in the previous section.

Other methods often have problems to detect these coherences, so

it is of high interest, whether MARS is able to reveal such kind

of connection between covariates. 1000 simulations with 500 cases,

repectively, were performed with the following relationship:

y =
(z − 40)2 − 10z − 2x− 7x(z − 50)+ + ε

100
(4.1)

with x ∼ Bi(500, 0.5), z ∼ U [40, 75] and ε ∼ N(0, σ2), σ2 ∈
{1, 10, 25, 50}. The variable x can be seen as ”gender”, z can be
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4.2 Interaction studies

seen as ”age”. As measure of goodness of fit R2 = SSE
SST was cal-

culated and for all simulations reported as mean R2 and the range

of the mean R2. Table 4.2 shows the results of these simulation

studies.

Table 4.2: Results of the simulations with an interaction between a continuous

and a binary covariate

σ2 mean(R2) range(R2)

1 0.9991 0.9989 - 0.9993

10 0.9974 0.9962 - 0.9981

25 0.9880 0.9838 - 0.9905

50 0.9561 0.9397 - 0.9661

Figure 4.5 shows the mean results of the interaction studies for the

four different error variances.

Table and graphics yield a good overview of the performance of

MARS in this particular scenario. All grades of error rate result

in convincing outcomes with an R2 of at least 0.94. The graphs

clearly show the ability of the approach to distinct between the two

groups x = 0 and x = 1, even in the case of strong noise in the data.
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Figure 4.5: MARS results for an interaction between a binary and a continuous

covariate

Hence, the simulation study demonstrated that MARS is up to find

even this difficult kind of interaction between a continuous and a

binary variable.
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4.3 Simulations on survival time data

4.3 Simulations on survival time data

The actually interesting type of data to test the approach of mul-

tivariate adaptive regression splines is in fact survival time data.

In this situation, apart from a status variable, which indicates

whether the event of interest has occured or not, an observational

time was measured for every subject in the study.

The new approach in this thesis proposes the use of residuals of the

Cox null model, namely martingale or deviance residuals, as new

response variable in a common MARS setting.

In this section simulation studies on this topic shall be introduced.

But first of all, the method to generate survival time data used in

this thesis is presented.

The simulation of survival time data

A method to generate survival times to simulate Cox proportional

hazards models [5] is the following:

The survival function of the Cox PH model is defined as

S(t|x) = exp[−Λ0(t) exp (f(x))] (4.2)
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4.3 Simulations on survival time data

with

Λ0(t) =

t∫
0

λ0(u)du (4.3)

being the cumulative baseline hazard function. Consequential the

distribution function of the Cox model is given by

F (t|x) = 1− exp[−Λ0(t) exp(f(x))]. (4.4)

Set Y a random variable with distribution function F, then U =

F (Y ) is uniformly distributed on [0, 1]: U ∼ U [0, 1]. Furthermore,

if U ∼ U [0, 1], then it holds that (1− U) ∼ U [0, 1].

Now let T be a survival time of the Cox model, then it follows that

U = 1− F (t|x) = exp[−Λ0(t) exp(f(x))] ≈ U [0, 1] (4.5)

As λ0(t) > 0 for all t, Λ0(t) can be inverted and the survival time

T of the Cox model can be expressed as

T = Λ−1
0 (t)[−log(U) exp(f(x))] (4.6)

with U being a random variable with U ∼ U [0, 1].
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4.3 Simulations on survival time data

Table 4.3 shows the formulae for generating survival times and the

hazard function for exponential and Weibull distributed time vari-

ables.

Table 4.3: Formulae for generating survival times and the hazard function

distribution

exponential Weibull

survival time T = − log(U)
λ exp(f(x)) T =

(
− log(U)

λ exp(f(x))

) 1
v

hazard function λ(t|x) = λ exp(f(x)) λ(t|x) = λ exp(f(x))vtv−1

4.3.1 Simulation studies with exponential distribution

On the basis of the approach of generating survival times from above

the following data was generated for n = 1000 observations:

x1 ∼ U [30, 75] x4 ∼ U [0, 10]

x2 ∼ Bi(n, 0.5) x5 ∼ Bi(n, 0.7)

x3 ∼ N(0, 1) u ∼ U [0, 1]

λ = 0.5

and the exponential distributed survival time t is defined as

t =
− log(u)

0.5 · exp
(
0.04
(
x1

10

)2 − 6x2 + 0.1x1x2

) · 100. (4.7)
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4.3 Simulations on survival time data

Then a new variable ’censoring time’ is defined as ct ∼ U [0, tm%]

with tm% being the according quantile of t andm ∈ {0.89, 0.7, 0.26}.
These values of m yield censoring rates of 25%, 50% and 85%,

respectively.

Now the censoring indicator δi, i = 1, ..., n is generated as follows:

δi =


 1 , if ti ≤ cti

0 , else

At last for every censored subject, i.e. for every subject with δ = 0,

the value of its time variable t was substituted by its corresponding

censoring time ct. This resulting time variable was now used as

observational time for further analysis.

1000 simulation cycles were calculated for 4 different values

of the penalizing parameter d: d ∈ {2, 3, 4, 5}, with martin-

gale and deviance residuals from the Cox null model as response,

respectively. Table 4.4 shows the results of these simulation studies.

The findings are reported as fraction of models with

• a nonlinear x1, i.e. MARS found at least one knot for this

covariate (%knots(x1))

• found interaction between x1 and x2 (%x1x2) and
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4.3 Simulations on survival time data

• false basis functions (%false) all in all, whereas models with

false basis functions are meant to contain

– the covariate x1 in only linear form

– no interaction term between x1 and x2

– covariates x3, x4 or x5 or

– other interactions than between x1 and x2

Figures 4.6 to 4.9 again display the mean basis functions of the ex-

ecuted simulation cycles, exemplarily one type of residual for every

simulated penalizing parameter d and for varying censoring rates.

The interaction between x1 and x2 is clearly observable as well as

the nonlinear effect of x1. For the other mere nuisance parameters

little influence is identifiable, as the mean slope is sort of zero in

all scenarios. The fact that the slope marginally increases for the

nuisance parameters in the case of smaller d is easy to explain by

the higher number of allowed basis functions in these settings. Thus

it is more likely for basis functions of x3 to x5 to wrongly enter the

model.
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4.3 Simulations on survival time data

Table 4.4: Results of the simulation studies on exponential distributed survival

time data in percent

martingale residuals deviance residuals

d censoring rate %knots(x1) %x1x2 %false %knots(x1) %x1x2 false

25% 90.5 100 31.2 87.0 100 35.9

2 50% 99.6 100 24.0 100 99.9 25.8

85% 100 85 40.8 100 87.5 36.9

25% 60.7 100 43.3 71.1 100 32.7

3 50% 98.0 100 7.6 99.9 99.8 6.8

85% 99.9 84.4 23.1 100 85.4 20.7

25% 38.5 100 62.4 57.9 100 43.8

4 50% 96.4 100 5.2 99.7 99.9 20.5

85% 99.9 81.1 21.1 99.9 82.4 20.5

25% 25.7 100 74.7 44.2 100 56.4

5 50% 92.1 100 8.8 99.5 99.5 2.1

85% 99.3 74.8 26.8 99.7 76.6 25.4
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Figure 4.6: Martingale residuals, d = 2, 25% censoring rate
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Figure 4.7: Deviance residuals, d = 3, 50% censoring rate
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Figure 4.8: Martingale residuals, d = 4, 50% censoring rate
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Figure 4.9: Deviance residuals, d = 5, 85% censoring rate
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The following results could be observed:

• up to 100% of the models detected a nonlinear influence of x1

in the case of high censoring rates.

• in at least 99.5% of the simulation cycles with moderate to low

censoring rates the interaction term was found by the approach

• a censoring rate of 50% yields the lowest fraction of spuriously

chosen basis functions in all settings

• in the case of penalizing parameter d = 2 too many basis func-

tions were found, thus the fraction of false basis functions is

realtively high

• in the case of penalizing parameter d = 5 too less basis func-

tions could be found due to the size restriction, thus the frac-

tion of false basis functions is high here, too

• the approach with martingale residuals of the Cox null model

as response finds knots in variable x1 a little more frequently

as the approach with deviance residuals

• the two approaches are approximately equal considering the

fraction of models with found interaction term between x1 and

x2

• also the amount of spuriously chosen basis functions is nearly

equal in both settings
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4.3 Simulations on survival time data

As measure of the performance of the new method, martingale resid-

uals were used. On this account, in every simulation cycle the basis

functions found by the MARS approach were included as covariates

in a Cox model and the resulting martingale residuals and their

variance were calculated. Additionally, classical Cox models were

performed on the simulated data in every cycle and the correspond-

ing martingale residuals and their variance were calculated, too.

Exemplarily, two of the different scenarios are displayed here:

Figure 4.10 shows the scatterplot of the resulting variances together

with the bisecting line of the scenario with martingale residuals as

response in a MARS approach, a penalizing parameter d = 4 and

a censoring rate of 50%. In 77.1% of the simulations the MARS

approach yields a smaller variance than the classical Cox approach

(p(sign test) < 0.0001). The classical Cox model yields a mean

variance of 0.505, whereas the MARS approach shows a slightly

less mean variance of 0.490.

Figure 4.11 shows the scatterplot of variances of the scenario with

deviance residuals as response, a penalizing parameter d = 4 and a

censoring rate of 50%. Again, most of the items (84.9%) lie under

the bisecting line, thus MARS shows smaller variances of the mar-

tingale residuals as Cox, i.e. MARS yields a better fit to the data

(p(sign test) < 0.0001). In this scenario the classical Cox approach

yields a mean variance of 0.511, the MARS approach with deviance
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4.3 Simulations on survival time data

residuals as response yields a mean variance of 0.494.
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Figure 4.10: Comparison of the variances of MARS with martingale residuals

as response and the classical Cox approach with exponential distributed survival

times and a censoring rate of 50% (d = 4)

4.3.2 Simulation studies with Weibull distribution

The density function of the Weibull distribution is defined as

f(t) = λvtv−1 exp(−λtv) (4.8)

with shape parameter v and scale parameter λ. A shape parameter
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Figure 4.11: Comparison of the variances of MARS with deviance residuals as

response and the classical Cox approach with exponential distributed survival times

and a censoring rate of 50% (d = 4)

v of 1 results in the special case of an exponential distribution.

Figure 4.12 shows the density function of the Weibull distribution

for varying scale and shape parameters and figure 4.13 displays

martingale and deviance residuals of the Cox null models for

the data defined below for shape parameter v ∈ {2, 5} and scale

parameter λ ∈ {2, 5}.
The graphics show the following: the larger the shape parameter

v, the shorter the resulting observation times for each subject, i.e.
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4.3 Simulations on survival time data

the main part of the observed time values lays in a very narrow

area. Correspondingly the interquartile ranges of the martingale

and deviance residuals gets smaller for increasing values of v. This

means that for most of the subjects very similar survival times are

observed, and thus a statistical analysis gets more difficult.
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Figure 4.12: density functions of the Weibull distribution

For the simulation studies the same influence of the covariates on the

survival time is assumed as in the case of the exponential distributed

survival time. Thus the observational time t is defined according to

Augustin [5] as
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Figure 4.13: Martingale and deviance residuals for several parameters

Simulation studies 68



4.3 Simulations on survival time data

t =

(
− log(u)

λ exp(0.04(x1

10)
2 − 6x2 + 0.1x1x2)

) 1
v

(4.9)

with covariates

x1 ∼ U [30, 75] x4 ∼ U [0, 10]

x2 ∼ Bi(n, 0.5) x5 ∼ Bi(n, 0.7)

x3 ∼ N(0, 1) u ∼ U [0, 1]

and shape parameter v ∈ {2, 5} and scale parameter λ ∈ {2, 5},
considering the shrinking interquartile ranges for increasing param-

eter values.

Again the variable ’censoring time’ is generated as ct ∼ U [0, tm%]

with tm% being the according quantile of t andm ∈ {0.26, 0.7, 0.89},
which yields censoring rates of 25%, 50% and 85%, respectively.

The censoring indicator δi is defined as

δi =


 1 , if ti ≤ cti

0 , else

Lastly the survival times of all censored objects (δi = 0) are

substituted by the censoring time cti. This final observational time

variable was then used for further analysis.
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4.3 Simulations on survival time data

Again 1000 simulation cycles were executed for the different set-

tings, i.e. for varying shape and scale parameters and changing

censoring rate and penalizing parameter d. Tables 4.5 and 4.6 show

the results of the simulation studies with a Weibull distributed sur-

vival time with shape parameter v = 2 and v = 5, respectively.

The results can be resumed as follows:

• to find a nonlinear relationship moderate to high censoring

rates are beneficial, in that case in most of the scenarios more

than 90% of the cycles identified at least one knot for variable

x1

• for the identification of interactions between two covariates low

to moderate censoring rates are favorable, here the method

yielded up to 100% success rate for all scenarios

• the moderate penalizing parameter d = 3 gained best results

regarding the number of false basis functions, here the fraction

reduced to a minimum

• d = 2 yields a larger fraction of false basis functions, because

too much potential basis functions are allowed to be entered

into the model during the stepwise addition process, thus more

false basis functions may remain in the final model

• d = 5 yields a larger fraction of false basis functions, because
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4.3 Simulations on survival time data

the largest allowed model during the stepwise addition pro-

cess is forced to remain too small to find all correct functional

coherences

• as expected, a higher shape parameter v provided worse results

due to the smaller interquartile range of the residuals

• a censoring rate of approximately 50% again yielded best re-

sults, as it already has in the case of exponential distributed

survival times

0.30 0.35 0.40 0.45 0.50

0.
30

0.
35

0.
40

0.
45

0.
50

Weibull distributed survival times
 MARS (martingale): Variance of the martingale residuals

Cox models

M
A

R
S

 m
od

el
s

Figure 4.14: Comparison of the variances of MARS with martingale residuals as

response and the classical Cox approach with Weibull distributed survival times

(v = 2, λ = 5) and a censoring rate of 50% (d = 4)
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Figure 4.15: Comparison of the variances of MARS with deviance residuals as

response and the classical Cox approach with Weibull distributed survival times

(v = 2, λ = 5) and a censoring rate of 50% (d = 4)

Again, the variances of the corresponding martingale residuals were

compared and two of the numerous scenarios are displayed here:

Figure 4.14 shows the scatterplot of the variances for the scenario

with martingale residuals as response, Weibull distributed survival

times with shape parameter v = 2 and scale parameter λ = 5, a

penalizing parameter d = 4 and a censoring rate of 50%. 77.1%

of the MARS models yield smaller variances than the classical Cox

approach (p(sign test) < 0.0001). The simulations produced a mean
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4.3 Simulations on survival time data

variance for the classical Cox model of 0.368, whereas the MARS

approach yields a slightly smaller mean variance of 0.360.

Figure 4.15 shows the corresponding variances for the scenario with

deviance residuals as response, Weibull distributed survival times

with shape parameter v = 2 and scale parameter λ = 5, a penaliz-

ing parameter d = 4 and a censoring rate of 50%. Again, most of

the items (77.1%) lie under the bisecting line, thus the MARS ap-

proach yields smaller variances than Cox, i.e. MARS shows a better

performance than Cox (p(sign test) < 0.0001). The classical Cox

approach adds up to a mean variance of 0.372, the MARS approach

results in a smaller mean variance of 0.363.
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Table 4.5: Results of the simulation studies on Weibull distributed survival time

data (v = 2) in percent

censoring martingale residuals deviance residuals

d λ rate %knots(x1) %x1x2 %false %knots(x1) %x1x2 %false

25% 69.9 100.0 49.1 96.3 100.0 31.7

2 50% 99.6 99.6 27.2 100.0 92.8 30.0

2 85% 99.7 80.0 45.6 99.9 84.4 43.7

25% 72.6 100.0 49.5 96.6 100.0 27.9

5 50% 99.4 99.4 24.6 99.8 94.8 28.7

85% 99.8 80.9 45.4 99.5 82.1 43.4

25% 48.3 100.0 56.5 88.7 100.0 18.3

2 50% 97.5 99.4 9.3 99.8 94.9 11.7

3 85% 99.6 74.1 32.9 99.0 76.5 30.8

25% 48.2 100.0 54.7 88.2 100.0 17.8

5 50% 97.6 99.7 9.8 100.0 95.7 9.1

85% 98.6 73.9 34.5 99.2 75.9 31.5

25% 31.8 100.0 69.1 79.6 100.0 23.2

2 50% 93.8 99.3 9.1 99.5 94.9 9.5

4 85% 97.6 62.6 41.4 97.6 69.4 34.1

25% 29.3 100.0 71.6 78.1 100.0 23.8

5 50% 95.1 99.3 7.7 98.4 95.0 9.3

85% 97.9 65.0 38.1 98.5 66.4 36.7

25% 17.2 100.0 82.8 63.9 100.0 36.4

2 50% 88.3 99.7 12.8 97.5 95.7 8.1

5 85% 94.6 52.7 50.6 97.6 55.3 46.5

25% 19.3 100.0 81.2 63.4 100.0 37.2

5 50% 89.8 99.7 11.0 97.7 94.7 8.2

85% 92.5 55.5 47.4 97.7 57.4 44.7
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Table 4.6: Results of the simulation studies on Weibull distributed survival time

data (v = 5) in percent

censoring martingale residuals deviance residuals

d λ rate %knots(x1) %x1x2 %false %knots(x1) %x1x2 %false

25% 66.7 100.0 53.0 94.2 99.7 33.4

2 50% 95.0 92.8 34.4 97.7 79.2 45.3

2 85% 95.7 61.4 62.3 95.3 62.4 60.7

25% 66.2 100.0 52.3 93.5 99.3 33.1

5 50% 95.3 91.3 38.0 99.0 80.2 43.0

85% 97.0 60.9 59.4 94.2 61.4 61.9

25% 47.7 100.0 56.0 84.9 100.0 21.3

2 50% 88.6 85.9 29.7 91.6 77.4 34.2

3 85% 87.9 42.7 65.6 89.5 46.1 62.0

25% 46.1 100.0 57.7 86.2 99.4 20.3

5 50% 89.4 87.1 28.4 95.0 75.5 33.4

85% 90.7 41.3 66.9 89.3 43.6 64.0

25% 31.7 100.0 69.5 75.4 99.2 26.8

2 50% 77.4 81.0 37.6 89.8 69.1 40.6

4 85% 77.9 30.2 74.9 84.1 27.2 77.1

25% 29.9 100.0 71.0 69.4 99.1 32.6

5 50% 77.2 82.9 38.9 90.8 70.9 37.8

85% 83.4 29.7 74.3 84.5 29.4 75.4

25% 19.6 100.0 80.8 58.0 99.4 43.0

2 50% 64.3 73.6 53.8 84.8 59.1 51.5

5 85% 74.6 16.4 86.2 73.0 19.8 84.0

25% 19.2 100.0 81.2 58.5 99.5 42.3

5 50% 63.8 71.3 56.4 77.7 58.2 56.4

85% 69.8 17.3 87.0 76.9 18.1 84.6
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Chapter 5

Application on real data:

prediction of mortality after

myocardial infarction

The new method of survival MARS was applied to a cohort of pa-

tients who survived an acute myocardial infarction [4]. The data of

2376 patients were collected at the German Heart Center, Munich,

and the Klinikum rechts der Isar, Munich.

Results from clinical studies indicate that mortality of survivors of

a myocardial infarction can be reduced by implanting a defibrillator

[22, 18]. The left ventricular ejection fraction is a common predictor

for risk of mortality, more precisely patients with a LVEF ≤ 30%

are regarded as high-risk patients and get implanted a defibrillator.

However, particularly patients with higher ejection fraction may



have the same risk, i.e. there exist groups of patients with higher

risk than expected. Therefore, Bauer et al. [4] established a more

precise method to predict mortality in survivors of a myocardial

infarction.

This approach determines heart-rate variability, a marker for au-

tonomous responsiveness of the heart. Heart-rate variability is in-

fluenced by vagal as well as sympathetic modulation of the sinus

node. There is evidence that a decrease of vagal activity increases

mortality. Though, conventional measures of heart-rate variability

like standard deviation of all normal-to-normal intervals (SDNN)

do not distinguish between vagal and sympathetic effects.

Bauer et al. [4] approximately determined vagal and sympa-

thetic effects by seperate assessment of deceleration-related and

acceleration-related heart-rate variability using 24-h Holter record-

ings. These recordings were then modified by a signal processing

technique of phase-rectified signal averaging, which yields the seper-

ate presentation of deceleration and acceleration capacity.

Apart from deceleration (DC) and acceleration capacity (AC), fur-

ther predictors were investigated, from which the following were

used for the analysis with MARS: left ventricular ejection fraction

(LVEF), presence of pathological heart-rate turbulence (HRT), pres-

ence of diabetes mellitus, SDNN, age and presence of arrythmias.
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Heart-rate turbulence describes the response of the sinus node to

a premature ventricular contraction. This quantity is characterised

by two numerical parameters, the turbulence onset (TO) and the

turbulence slope (TS) [25]. Turbulence onset compares the RR in-

tervals (time duration between two consecutive R waves of the ECG)

immediately after with immediately before a premature ventricular

contraction, i.e. describes the immediate initial acceleration, mea-

sured in percent. The turbulence slope is the maximum slope of a

regression line assessed over any sequence of five subsequent sinus-

rhythm RR intervals within the first 20 sinus-rhythm RR intervals

after a premature ventricular contraction, i.e. the speed of subse-

quent deceleration, measured in ms per RR interval. A TS of less

than 2.5 is reckoned pathological, as well as a TO greater than 0.

Are both parameters pathological, the heart-rate turbulence is also

defined as abnormal.

Arrhythmia is present, if a patient suffers at least 10 premature

ventricular contractions per hour or at least one non-sustained ven-

tricular tachycardia in 24 hours [25].

Bauer et al. [4] figured out deceleration capacity to be the covariate

with the highest predictive power among all examined variables.

Thus, the analysis in this thesis shall pay special attention to that

quantity.
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5.1 Data preparation

5.1 Data preparation

Only patients with no missing data were included into the analysis.

Furthermore, just patients with a left ventricular ejection fraction

of more than 30% were to be investigated.

Another cutback of the data resulted from omitting 2.5% of the data

with the smallest and largest values of the deceleration capacity,

respectively. This was done to factor out extreme values, which are

easy to recognize in the left panel of figure 5.1. The right panel

shows the histogram of deceleration capacity after trimming the

data.

patients with LVEF > 30% 
 n = 2233

deceleration capacity

F
re

qu
en

cy

-50 -40 -30 -20 -10 0 10 20

0
50

10
0

15
0

20
0

25
0

30
0

35
0

trimmed data (LVEF > 30%) 
 n = 2123

deceleration capacity

F
re

qu
en

cy

-2 0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Figure 5.1: Histogram of deceleration capacity for all data and trimmed by ex-

treme values of DC
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5.2 The classical Cox PH method

The basic characteristics of the remaining 2123 patients are sum-

marized in table 5.1.

Table 5.1: Main characteristics of the patients after myocardial infarction

Variable Mean (SD) Number (%)

GENDER (male) 1699 (80.0)

DC 5.92 (2.27)

AC -7.15 (2.62)

LVEF 54.78 (10.71)

HRT (yes) 144 (6.8)

DIABETES (yes) 371 (17.5)

SDNN 98.75 (34.14)

AGE 58.14 (10.28)

ARRHYTHMIA (yes) 338 (15.9)

The simulation studies did not exactly clarify whether the usage

of martingale or deviance residuals of a Cox model yields better re-

sults. Hence, the whole analysis of the infarction data was done with

both types of residuals as response in a common MARS approach.

5.2 The classical Cox PH method

Before starting with the new approach a conventional analysis with

a Cox regression shall be performed. For these purposes the co-

variates DC, AC, LVEF, HRT, DIABETES, SDNN, AGE and AR-

RHYTHMIA were included in a Cox PH model. Table 5.2 shows
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5.2 The classical Cox PH method

the resulting model for these eight covariates.

Table 5.2: Cox PH model of the infarction data

Covariate Coefficient SE(coeff) p-value

DC -0.104 0.044 0.017

AC -0.017 0.030 0.570

LVEF -0.025 0.008 < 0.001

HRT 0.787 0.190 < 0.001

DIABETES 0.508 0.163 0.002

SDNN -0.004 0.003 0.160

AGE 0.048 0.010 < 0.001

ARRHYTHMIA 0.123 0.181 0.49

log-likelihood = -1244.183

Three of the covariates (AC, SDNN and ARRHYTHMIA) do not

show significant effects concerning the Wald statistic, thus a reduced

model with only five prognostic factors was performed. Table 5.3

summarizes this final Cox model of the infarction data.

Table 5.3: The final Cox PH model of the infarction data

Covariate Coefficient SE(coeff) p-value

DC -0.131 0.040 < 0.001

LVEF -0.027 0.017 < 0.001

HRT 0.800 0.188 < 0.001

DIABETES 0.524 0.162 < 0.001

AGE 0.047 0.009 < 0.001

log-likelihood = -1245.525
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5.3 A ”snapshot”

So, the five covariates deceleration capacity, left ventricular ejection

fraction, heart rate turbulence, diabetes and age were identified as

influential on survival time and the risk of death by the conven-

tional Cox PH approach.

Higher values of deceleration capacity and LVEF result in a reduced

mortality rate, whereas risk of death increases with the presence of

a heart rate turbulence and diabetes. Older patients also show a

higher risk.

Now survival analysis using MARS is to be checked with the present

data on myocardial infarction.

5.3 A ”snapshot”

A first usage of the new approach with martingale and deviance

residuals of the Cox null model as response in a conventional MARS

model was done by simultaneously including all eight above men-

tioned covariates DC, AC, AGE, LVEF, HRT, SDNN, DIABETES

and ARRHYTHMIA in a multivariate model. The resulting MARS

models with 10 and 11 included basis functions, respectively, are

shown in tables 5.4 and 5.5. As a measure for goodness-of-fit, the

generalized cross validation criterion is specified at the bottom of

the tables. Yet, the GCVs of martingale and deviance model are
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not directly comparable, due to the differing ranges of the residuals.

Deviance residuals range from −∞ to ∞, martingale residuals from

−∞ to 1, thus the deviance model’s residual sum of squares yields

larger values than the one from martingale residuals.

Table 5.4: Multivariate MARS model with martingale residuals of the Cox null

model as response

Predictor Coefficient SE

AGE 0.009 0.002

LVEF -0.002 0.001

DIABETES 0.033 0.017

SDNN -0.007 0.001

HRT 0.010 0.030

DC 0.054 0.017

(SDNN− 63)+ 0.007 0.001

(AGE− 69.8)+ 0.024 0.007

AGE·DC -0.001 0.0003

DIABETES·HRT 0.161 0.054

GCV = 0.08166

The two models show broad accordance in the choice of predictors:

• Both models detect AGE, LVEF, DIABETES, SDNN and HRT

as influential on survival. The coefficients show identical signs

in the two models, i.e. the direction of influence is clear-cut.

• Both models found AGE being nonlinear with the same knot

tAGE = 69.8 and identical signs of the coefficients.
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Table 5.5: Multivariate MARS model with deviance residuals of the Cox null

model as response

Predictor Coefficient SE

AGE 0.005 0.002

LVEF -0.006 0.001

DIABETES 0.084 0.043

SDNN -0.025 0.006

HRT 0.308 0.072

AC -0.024 0.008

(AGE− 69.8)+ 0.076 0.017

DIABETES·HRT 0.455 0.133

(AC+ 3.41)+ -0.529 0.145

(AC+ 5.43)+ 0.165 0.038

(SDNN− 54)+ 0.025 0.006

GCV = 0.49242

• SDNN is also detected nonlinear in both models, whereas the

knots differ (tSDNN = 63 in the martingale model, tSDNN = 54

in the deviance model). Though, the direction of influence is

equal.

• The interaction between DIABETES and HRT was found in

both models, too, again with identical signs of the coefficients.
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However, some discrepancies do exist:

• In the martingale model DC is detected as influential, whereas

in the deviance model this covariate does not appear, while

here AC was included into the model as a nonlinear effect on

survival.

• The martingale model included a further interaction, namely

between AGE and DC.

Recapulatory the martingale model yields an increase in risk of

death with increasing age and DC and presence of diabetes as well

as heart rate turbulence. The risk decreases with increasing LVEF.

Figure 5.2 shows the basis functions of the two nonlinear covari-

ates AGE and SDNN in the martingale model. The risk of death

moderately increases until the age of 70, for older patients the risk

increases even more. On the contrary, an increase of SDNN until

63 heavily decreases risk of death, with higher values of SDNN the

risk slowly increases again.

The deviance model also yields an increasing risk of death with in-

creasing age and the presence of diabetes and heart rate turbulence,

whereas the risk again decreases with increasing LVEF.

Figure 5.3 and 5.4 show the nonlinear basis functions of AGE, SDNN

and AC. Risk increases with increasing age and increases even more
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Figure 5.2: Basis functions of SDNN and AGE in the martingale model

for patients at the age of 69.8 or older. An increase of SDNN de-

creases risk rapidly until a value of 54, for higher values of SDNN

the risk still moderately decreases. The acceleration capacity shows

a rather strange functional form. Firstly the risk decreases slightly

until a value of -5.4, for values between -5.4 and -3.4 the risk heavily

spurts and afterwards it decreases again.

By reason of the differing results between deviance and martingale

model, the fact that the deceleration capacity was not included

into the deviance model and the peculiar functional form of the

acceleration capacity in the deviance model a stepwise analysis was

performed.
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Figure 5.3: Basis functions of SDNN and AGE in the deviance model
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Figure 5.4: Basis function of AC in the deviance model
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5.4 Stepwise analysis

The stepwise computation began with all possible univariate MARS

models, i.e. eight MARS models with martingale and deviance

residuals of the Cox model without any covariates as response, re-

spectively, were calculated, using AC, DC, AGE, LVEF, HRT, DI-

ABETES, SDNN or ARRHYTHMIA as single covariate.

The model with the smallest generalized cross validation criterion,

the goodness-of-fit criterion within the MARS approach, was se-

lected. Subsequently, a Cox model with just this covariate was

calculated to assess the according residuals. These residuals were

then used in seven new univariate MARS models to search for the

next most influential covariate.

This procedure was done until no further MARS model was found

or all covariates were incorporated.

Tables 5.6 and 5.7 illustrate the sequence of found basis functions

in the order of inclusion.

These two sequences show almost absolute accordance, except for

the variable SDNN, which has one more knot in the martingale

model (besides the knots differ in value), and DIABETES, which is

only included in the deviance model.

Figure 5.5 shows the basis functions found by the stepwise proce-

dures for both scenarios. The left panels illustrate the basis func-
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Table 5.6: Stepwise analysis with martingale residuals as response

step basis function cefficient GCV

1 DC -0.062 0.084

(DC− 5.43)+ 0.059

2 HRT 0.164 0.089

3 AGE 0.001 0.091

(AGE− 69.8)+ 0.031

4 SDNN 0.016 0.090

(SDNN− 36)+ -0.034

(SDNN− 54)+ 0.018

5 LVEF -0.002 0.088

no further models found

Table 5.7: Stepwise analysis with deviance residuals as response

step basis function cefficient GCV

1 DC -0.515 0.510

(DC− 5.43)+ 0.145

2 HRT 0.411 0.495

3 AGE 0.003 0.489

(AGE− 69.8)+ 0.074

4 SDNN -0.018 0.479

(SDNN− 63)+ 0.018

5 LVEF -0.006 0.474

6 DIABETES 0.113 0.472

no further models found

Application on real data: prediction of mortality after myocardial infarction 89



5.4 Stepwise analysis

tions of the martingale approach, the right panels show the basis

functions of the deviance approach.
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Basis Functions of the Stepwise Procedures

Figure 5.5: Basis functions of the stepwise procedures for the martingale and

deviance scenario
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The stepwise proceeding does of course refuse the consideration of

interactions between the covariates, hence the above detected influ-

ential covariates are finally all at once built in a multivariate MARS

model. This proceeding represents the counterpart to a classical re-

gression procedure with an initial stepwise modelling, followed by

the multivariate analysis, in which only the significant covariates

of the stepwise model are included. This multivariate procedure

was again done with martingale and deviance residuals of the Cox

null model as response, respectively. Tables 5.8 and 5.9 show the

findings.

Table 5.8: Multivariate MARS model with the covariates found in the stepwise

procedure with martingale residuals of the Cox null model as response

Predictor Coefficient SE

HRT 0.147 0.026

DC -0.033 0.007

(DC− 5.43)+ 0.041 0.010

AGE 0.002 0.001

(AGE− 69.8)+ 0.032 0.007

LVEF -0.002 0.001

SDNN -0.010 0.002

(SDNN− 54)+ 0.010 0.002

GCV = 0.08172

The multivariate deviance model has included an interaction be-

tween HRT and DIABETES which was already found in the snap-
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Table 5.9: Multivariate MARS model with the covariates found in the stepwise

procedure with deviance residuals of the Cox null model as response

Predictor Coefficient SE

HRT 0.267 0.074

DC -0.091 0.016

(DC− 5.43)+ 0.111 0.024

AGE 0.004 0.002

(AGE− 69.8)+ 0.070 0.017

LVEF -0.006 0.002

DIABETES 0.086 0.043

HRT·DIABETES 0.461 0.133

(LVEF− 78)+ 0.171 0.059

GCV = 0.49137

shot analysis, and detected the influence of LVEF as nonlinear. In-

stead SDNN does not appear in the deviance model. Knots for DC

and AGE are again identical, which suggests that these functional

forms are quite certain. Also the variables HRT and LVEF can be

supposed to be influential on mortality.

Figure 5.6 shows the different basis functions of the nonlinear co-

variates of the two multivariate models arising from the stepwise

procedure. The left panels again illustrate the basis functions of

the martingale approach, the left panels show the basis functions of

the deviance approach.
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Basis Functions of the Multivariate Models after Stepwise Procedure

Figure 5.6: Basis functions of the nonlinear covariates of the multivariate models

after the stepwise procedures (the two scenarios differ in the bottom panels: the

martingale model included SDNN, the deviance model included LVEF)
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5.5 Final Results

Comparing now the findings of the snapshot and stepwise analyses,

the following conclusions can be made about the nature of coherence

between mortality and the observed covariates:

• Age presents a nonlinear functional form, whereas increasing

age results in a higher risk of death. The risk increases enor-

mously for AGE > 69.8.

• The presence of a pathological heart rate turbulence increases

risk of mortality.

• The left ventricular ejection fraction has an effect on mortality,

too. The higher the value of LVEF the lower mortality.

• The standard deviation of all normal-to-normal-intervals

(SDNN) can also be regarded as influential on risk of death.

Risk decreases until a value between 54 and 63, for higher val-

ues risk seems to settle down at a constant level.

• The presence of diabetes mellitus increases the mortality rate.

• Deceleration capacity seems to be a predictor for mortality

after myocardial infarction. The higher DC the lower the risk

of death. For values greater than 5.43 the risk approximately

levels off.
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• There is also evidence for an interaction between diabetes mel-

litus and heart rate turbulence. A positive sign indicates in-

creasing risk for patients who feature at least one of the symp-

toms.

The four final models - snapshot and multivariate after step-

wise with martingale and deviance residuals, respectively - differ

marginally in the included covariates and the found knots.

However, the goodness-of-fit criterion GCV indicates no tremen-

dous differences between snapshot and multivariate after stepwise

models for both scenarios.

Finally, all the identified basis functions (linear, with knot and inter-

action) were included as covariates into Cox models. Some covari-

ates were not significant and therefore excluded in a second cycle.

Interestingly no interaction found during the MARS modeling was

significant in the following Cox analysis. Table 5.10 summarizes the

significant coefficients along with the corresponding standard errors

of the five final Cox models: conventional Cox from section 5.2,

snapshot with martingale and deviance residuals and multivariate

after stepwise with martingale and deviance residuals.

The log-likelihoods of these Cox models are presented in table 5.11.

One degree of freedom was assessed for every coefficient as well

as for every knot. The likelihood-ratio tests yield no significant
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differences between the five models, i.e. the MARS models do not

offer a higher goodness-of-fit as the classical Cox approach.

Table 5.10: Coefficients and standard error of the 5 Cox models (conventional

Cox and Cox after MARS models)

snapshot multivariate after stepwise

Variable Cox martingale deviance martingale deviance

DC -0.131 (0.04) - - -0.219 (0.06) -0.249 (0.05)

AC - - -0.091 (0.03) - -

AGE 0.047 (0.01) 0.041 (0.01) 0.040 (0.01) 0.039 (0.01) 0.049 (0.01)

LVEF -0.027 (0.02) -0.030 (0.01) -0.028 (0.01) -0.026 (0.01) -0.028 (0.01)

HRT 0.800 (0.19) 0.863 (0.18) 0.760 (0.19) 0.756 (0.19) 0.756 (0.19)

DIABETES 0.524 (0.16) 0.479 (0.16) 0.554 (0.16) - 0.538 (0.16)

SDNN - -0.040 (0.01) -0.033 (0.01) -0.040 (0.01) -

(DC − 5.43)+ - - - 0.287 (0.11) 0.306 (0.10)

(AC+ 5.43)+ - - 0.529 (0.15) - -

(AC+ 3.41)+ - - -1.274 (0.58) - -

(AGE − 69.8)+ - 0.168 (0.06) 0.155 (0.06) 0.148 (0.06) -

(LVEF − 78)+ - - - - 0.406 (0.13)

(SDNN− 54)+ - - 0.030 (0.01) 0.037 (0.01) -

(SDNN− 63)+ - 0.039 (0.01) - - -

Figure 5.7 shows the Kaplan-Meier curves of all five final models

with 95% confidence bands. The curves are estimated by centering

the covariates by their means. Especially at the beginning of

the observational time the five models proceed concordantly and

feature high concordance even later on.
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Table 5.11: Log-likelihoods of the four final models and the conventional Cox

approach

martingale (df) deviance (df)

snapshot -1238.868 (9) -1236.921 (14)

multivariate after stepwise -1238.102 (11) -1238.790 (9)

Cox -1245.525 (5)
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Figure 5.7: Kaplan-Meier curves of all five final models with 95% confidence

bands
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Comparison of the four final MARS models 
 with the classical Cox approach

Figure 5.8: Comparison of the snapshot and stepwise models with the classical

Cox model via martingale residuals

Figure 5.8 displays a comparison of the four final MARS models with

the classical Cox model. For that purpose the martingale residuals

of the corresponding Cox models were plotted against each other,

labeled by the survival status. The top panels show the snapshot

models, the bottom panels show the multivariate after stepwise

models. The left panels present the martingale models, the right
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panels present the deviance models. All MARS models show high

concordance with the classical Cox model, except for some extreme

deviations.

Table 5.12 summarizes the variances of the martingale residuals

of the five models. A decrease in variance of the MARS models

compared to the classical Cox model would suggest a better perfor-

mance of the new method. However, all approaches exhibit compa-

rable variances. Thus, a difference in performance and fit cannot

be detected between the several approaches.

Table 5.12: Variances of the martingale residuals of the five final models

Approach Variance

classical Cox 0.0898

snapshot martingale 0.0902

snapshot deviance 0.0902

stepwise martingale 0.0913

stepwise deviance 0.0921

The arrows in figure 5.8 mark one special patient (censored), who

features enormous departion from the bisecting line in three of the

four models (snapshot martingale, snapshot deviance and stepwise

martingale). The classical Cox model estimates the low risk of that

person quite well (martingale residual of -0.34), but the three MARS

models predicted him a quite large risk of death. The data of this

person was now investigated in detail. In doing so it turned out that

this man exhibits an SDNN value of 10, the smallest SDNN value
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of the whole sample. In fact this value lies more than 1.5 times the

interquartile range apart from the median of the sample, and thus

can be regarded as outlier.

SDNN is not a predictor in the classical Cox model, but is included

in the three MARS models snapshot martingale, snapshot deviance

and multivariate after stepwise martingale with a negative coeffi-

cient, respectively. Thus, the MARS models predict him very high

risk, although he did not die. For SDNN was not included as covari-

ate in the multivariate after stepwise model with deviance residuals,

its prediction for that special person is much better.

The multivariate after stepwise model with deviance residuals as re-

sponse seems to coincide best with the classical Cox approach. The

reason for that lies in the high concordance of their included covari-

ates. Both models included DC, AGE, LVEF, HRT and DIABETES

as predictors. The MARS approach just additionally includes a knot

for DC and LVEF, respectively.

As a result of the observances about SDNN the three corresond-

ing MARS models were again calculated on the data set without

this particular patient with the smallest value of SDNN, to investi-

gate whether the MARS approach is affected by outliers. However,

the analyses on the restricted data generated the same models as

on the whole data set, only the knot of the variable SDNN shifted

to the value of 55, which lies between the former knots. In the re-
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Table 5.13: Coefficients and standard error of the 3 MARS models on the re-

stricted data

snapshot stepwise

Variable martingale deviance martingale

DC - - -0.102 (0.04)

AC - -0.088 (0.03) -

AGE 0.043 (0.01) 0.042 (0.01) 0.037 (0.01)

LVEF -0.031 (0.01) -0.028 (0.01) -0.028 (0.01)

HRT 0.864 (0.18) 0.857 (0.18) 0.771 (0.19)

DIABETES 0.441 (0.17) 0.508 (0.17) -

SDNN -0.059 (0.01) -0.049 (0.01) -0.058 (0.01)

(AC+ 5.43)+ - 0.506 (0.15) -

(AC+ 3.41)+ - -1.452 (0.60) -

(AGE− 69.8)+ 0.161 (0.06) 0.156 (0.06) 0.168 (0.06)

(SDNN− 55)+ 0.058 (0.01) 0.047 (0.02) 0.058 (0.01)

stricted snapshot deviance model the deceleration capacity is merely

included as linear predictor.

Again Cox models with the found basis functions as covariates were

calculated and the corresponding coefficients and their standard er-

rors are summarized in table 5.13.

All coefficients keep the same size as in the former models and the

signs remain equal.

Thus, the MARS approach do not seem to be notably susceptible

to outliers, the method appears rather stable.
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Recapulatory, there is no evidence that the new developed MARS

approach yield better results than the classical Cox proceeding. The

additional inclusion of nonlinear effects yields no protruding im-

provement of the outcome. The reason for that can be, that there

are in fact no nonlinear relationships and interactions between dif-

ferent covariates in these data.

The four different MARS approaches - snapshot and multivariate

after stepwise each with martingale and deviance residuals, respec-

tively - can be assumed equal, the differences are marginal and

obviously just express in negligible effects.

Three main predictors were identified by all five approaches: heart

rate turbulence, age and left ventricular ejection fraction. These co-

variates seem to have an influence on the mortality rate for granted.

Deceleration capacity, diabetes and SDNN were identified as predic-

tors by at least three models, thus some influence can be assumed

for them, too.

As snapshot and stepwise procedure do not distinctively differ for

these data, it can be noticed that the multivariate approach is

rather robust and hardly susceptible for noise in the data.
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The whole analyses in this thesis could not reveal essential differ-

ences between the two considered approaches with martingale and

deviance residuals. The application on the infarction data shows

that the proposal with deviance residuals is as applicable as the one

with martingale residuals.
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Chapter 6

Conclusions

6.1 Summary

The main focus of medical research often lies on the identification

of new prognostic factors. To find the correct form of influence, i.e.

the right functional relationship between response and predictor,

is a challenge for statisticians. Especially in the environment of

survival time data the bandwidth of available procedures is quite

small. Typically the modelling of nonlinear effects and interactions

is rather difficult with the established methods.

The new approach using residuals of a Cox null model as response

in a MARS setting provides a useful tool to deal with the aforemen-

tioned problems. Linear as well as nonlinear effects of the covari-

ates and even interactions are dependably identified adapted to the

available data.



6.1 Summary

The thesis gives an overview of the underlying techniques and works

out the details of the new approach. Simulation studies yield cir-

cumstantial evidence of the power of this method. High percentages

of the simulated relationships were identified by MARS.

Simulation studies on the general performance of the method yield

convincing results. Nonlinear effects of covariates were found at a

high percentage, the stronger, i.e. the larger, the simulated effect

the more dependably the approach works. Interactions between two

continuous covariates were found almost ever, except for a small ef-

fect paired with a large error variance. The penalizing parameter d

in the generalized cross validation criterion also effects the perfor-

mance of the approach. The larger the value, i.e. the smaller the

model is allowed to grow, the more effects are not identified, thus

the poorer the final model.

By means of interaction studies it was checked whether MARS is

able to detect an interaction between a continuous and a binary

covariate. As measure of the goodness-of-fit the statistics R2 = SSE
SST

was calculated and summarized as mean R2. All simulation studies

in case of interactions yielded at least a mean R2 of 0.94 (range(R2):

0.940 - 0.999), i.e. simulated interactions between a continuous and

a binary covariate are steadily detected by the MARS approach,

even for a very large error variance of 50.

At last, the simulation studies on survival type data yield compara-
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ble results for exponential and Weibull distributed survival times,

respectively. Nonlinear effects on the response were particularly

found for rather large censoring rates, whereas the recognition of

interactions benefits from rather low censoring rates. A moderate

censoring rate of 50% results in the smallest percentage of false ba-

sis functions. Besides, a larger penalizing parameter d again yields

worse models in terms of the number of spuriously chosen basis func-

tions. This is obvious because a larger parameter causes a stronger

penalization which in turn leads to models with less basis functions,

i.e. the probability of not detected but existing functional coher-

ences increases with increasing values of d.

The comparison of martingale and deviance residuals of a Cox model

without any covariates as response in a common MARS approach

does not yield protruding differences in power and performance, so

the conclusion of this thesis must be, that the user himself has to

choose among these two possibilities.

The calculation of a Cox PH model with the basis functions of

MARS as covariates was done to investigate the goodness-of-fit of

the new approach. The resulting martingale residuals were com-

pared with the residuals from the common Cox model of the original

covariates. This comparison reveals a significantly smaller variation

of the residuals in the case of the survival MARS approach. Sur-

vival MARS can therefore be regarded as superior to the established
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method of Cox, when nonlinear effects and interactions do exist in

the data.

Considering the results of the whole simulation analysis, one can

conclude that the new developed MARS approach with residuals of

a Cox model as response is a reasonable method to discover effects

in a survival time setting, for linear as well as nonlinear effects and

also interactions are certainly detected in the data.

The analysis of the data on survivors of a myocardial infarction

does not reveal any advantages of the survival MARS approach.

All possible proceedings - classical Cox, multivariate and stepwise

MARS - result in comparable models concerning the log-likelihoods

of the corresponding Cox PH models, thus can be treated as equal.

The main predictors for mortality are clearly detected, these basis

functions (i.e. variables) wherein the models do disagree can be re-

garded as marginal. The variances of the corresponding Cox model

residuals are comparable as well, the proceeding with the new ap-

proach does not increase the goodness-of-fit. Possibly there do in

fact not exist any nonlinear effects and interactions in the data and

if so, MARS can not perform better than the classical approach.

Recapitulatory, survival MARS presents a feasible and powerful al-

ternative to the common method Cox PH and is even superior to

Cox in the case of nonlinear effects and interactions, as MARS pro-
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vides simple data-driven and hands-off modelling of these types of

functional forms.

6.2 Outlook

The new MARS approach is a powerful way to detect prognostic

factors. Yet, the simulation studies show uncertainties in the choice

of basis functions. Thus, a mode to stabilize the procedure may be

the involvement of bootstrapping, i.e. selection of the final model

among a range of models calculated on bootstrap samples of the

original data. By this means the final model may be freed from

nuisance effects and unimportant covariates.

The whole thesis dealt with situations with predictors which do

not depend on observational time. Hence, another extension of the

approach ought to be the application on time-dependent covariates,

i.e. on situations where the assumption of proportional hazards is

not fulfilled. The exploration of the behaviour of MARS in this

scenario could be a further step into the direction of more flexible

modelling.

So far, the available software used in this thesis only allows for

interactions of at most second order. A further possibility of con-

tinuation of the work with MARS may also be to expand the syntax
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so that interactions of higher order are possible.

Conclusions 109



Appendix A

Notation

A partial listing of symbols and other notation used frequently in

this thesis:

T, t time variable

C censoring time

I(x ≤ k) indicator function, = 1 if x ≤ k

δi status variable, = 1 if individual i had an event

Pr(X) probability of X

Ni(t) counting process: number of events in the time

interval [0, t] for subject i

(Ni(t) ∈ {0, 1} in this thesis)

Yi(t) = 1 if subject i is under risk at time t

Ft filtration or history



S(t) survivor function

F (t) distribution function

λ(t) hazard function

Λ(t) cumulative hazard function

Λ̂0(t) Breslow estimator of the cumulative baseline

hazard

Λ̂(t) Nelson-Aalen estimator for the cumulative

hazard function

¯dN(t) number of events occuring exactly at time t

dNi(t) increment in Ni in an arbitrary small time interval

[t, t+ dt]

E(X|Y ) expectation of X conditional on Y

L(β) partial likelihood of the Cox PH model

(x− tk)+ hockeystick function in MARS, = (x− tk) if x ≥ tk

tk knot, in the range of the observed values of X

B spline basis function in MARS

d penalizing parameter in the generalized

crossvalidation criterion

Mi(t) martingale residuals of subject i at time t

v shape parameter of the Weibull distribution

λ scale parameter of the Weibull distribution
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Appendix B

R functions

B.1 Simulations on a continuous response

This function was used to perform the simulation studies described

in section 4.1.

"marssim" <- function(simsize=10,noobs=500,sigma=0.1,scenario=1,gcv=4)

{

predicted1 <- 0

predicted2 <- 0

predicted3 <- 0

predicted4 <- 0

predicted5 <- 0

predicted6 <- 0

predicted7 <- 0

predicted8 <- 0

predicted9 <- 0

predicted10 <- 0



B.1 Simulations on a continuous response

inter <- 0

false <- 0

notlin <- 0

for (i in 1:simsize)

{

# x1 - x10 uniformly distributed over [-1,1]

x1 <- runif(noobs,-1,1)

x2 <- runif(noobs,-1,1)

x3 <- runif(noobs,-1,1)

x4 <- runif(noobs,-1,1)

x5 <- runif(noobs,-1,1)

x6 <- runif(noobs,-1,1)

x7 <- runif(noobs,-1,1)

x8 <- runif(noobs,-1,1)

x9 <- runif(noobs,-1,1)

x10 <- runif(noobs,-1,1)

x1.1 <- runif(noobs,30,75)

x12 <- rbinom(noobs,1,0.5)

x13 <- rnorm(noobs,0,1)

x14 <- runif(noobs,0,10)

x15 <- rbinom(noobs,1,0.7)

# error eps normally distributed with mu=0 and sigma=1

eps <- rnorm(noobs,0,sigma)

# Definition of the Response

if(scenario == 1) # scenario A: large coefficients

{

y <- 10*x1*x2+5*x3+10*sin(4*x4)+log(abs(x5))+sigma*eps
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marsdata <- cbind(y,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

marsdata <- as.data.frame(marsdata)

}

else if(scenario == 2) # scenario B: small coefficients

{

y <- x1*x2+x3+sin(4*x4)+log(abs(x5))+eps

marsdata <- cbind(y,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

marsdata <- as.data.frame(marsdata)

}

else if(scenario == 3) # same relationship as survival data

{

y <- 0.04*(x1.1/10)^2 - 6*x12 + 0.1*x1.1*x12

marsdata <- cbind(y,x1.1,x12,x13,x14,x15)

marsdata <- as.data.frame(marsdata)

}

attach(marsdata)

# call of polymars

library(polspline,T)

if(scenario == 1 || scenario == 2)

{

poly <- polymars(y,cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),startmodel=

matrix(c(1,NA,NA,NA,2,NA,NA,NA,3,NA,NA,NA,4,NA,NA,NA,5,NA,

NA,NA,6,NA,NA,NA,7,NA,NA,NA,8,NA,NA,NA,9,NA,NA,NA,10,NA,NA,NA),

nrow=10,byrow=T),knot.space=20,gcv=gcv)

}

else if(scenario == 3)

{

poly <- polymars(y,cbind(x1.1,x12,x13,x14,x15),startmodel=
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matrix(c(1,NA,NA,NA,2,NA,NA,NA,3,NA,NA,NA,4,NA,NA,NA,5,NA,

NA,NA),

nrow=5,byrow=T),knot.space=20,gcv=gcv)

}

# predicted values

xmod <- poly$ranges.and.medians[3,]

x1lim <- c(poly$ranges.and.medians[1,1],poly$ranges.and.medians[2,1])

x2lim <- c(poly$ranges.and.medians[1,2],poly$ranges.and.medians[2,2])

x3lim <- c(poly$ranges.and.medians[1,3],poly$ranges.and.medians[2,3])

x4lim <- c(poly$ranges.and.medians[1,4],poly$ranges.and.medians[2,4])

x5lim <- c(poly$ranges.and.medians[1,5],poly$ranges.and.medians[2,5])

pred.values1 <- pred.values2 <- pred.values3 <- pred.values4 <-

pred.values5 <- matrix(nrow=noobs, ncol=ncol(poly$ranges.and.medians),

data=xmod,byrow=T)

mesh1 <- seq(x1lim[1],x1lim[2],(x1lim[2]-x1lim[1])/(noobs-1))

mesh2 <- seq(x2lim[1],x2lim[2],(x2lim[2]-x2lim[1])/(noobs-1))

mesh3 <- seq(x3lim[1],x3lim[2],(x3lim[2]-x3lim[1])/(noobs-1))

mesh4 <- seq(x4lim[1],x4lim[2],(x4lim[2]-x4lim[1])/(noobs-1))

mesh5 <- seq(x5lim[1],x5lim[2],(x5lim[2]-x5lim[1])/(noobs-1))

pred.values1[,1] <- mesh1

pred.values2[,2] <- mesh2

pred.values3[,3] <- mesh3

pred.values4[,4] <- mesh4

pred.values5[,5] <- mesh5
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Y1 <- predict.polymars(poly,pred.values1)

Y2 <- predict.polymars(poly,pred.values2)

Y3 <- predict.polymars(poly,pred.values3)

Y4 <- predict.polymars(poly,pred.values4)

Y5 <- predict.polymars(poly,pred.values5)

predicted1 <- predicted1 + Y1

predicted2 <- predicted2 + Y2

predicted3 <- predicted3 + Y3

predicted4 <- predicted4 + Y4

predicted5 <- predicted5 + Y5

if(scenario == 1 || scenario == 2)

{

x6lim <- c(poly$ranges.and.medians[1,6],poly$ranges.and.medians[2,6])

x7lim <- c(poly$ranges.and.medians[1,7],poly$ranges.and.medians[2,7])

x8lim <- c(poly$ranges.and.medians[1,8],poly$ranges.and.medians[2,8])

x9lim <- c(poly$ranges.and.medians[1,9],poly$ranges.and.medians[2,9])

x10lim <- c(poly$ranges.and.medians[1,10],poly$ranges.and.medians[2,10])

pred.values6 <- pred.values7 <- pred.values8 <- pred.values9 <-

pred.values10 <- matrix(nrow=noobs, ncol=ncol(poly$ranges.and.medians),

data=xmod,byrow=T)

mesh6 <- seq(x6lim[1],x6lim[2],(x6lim[2]-x6lim[1])/(noobs-1))

mesh7 <- seq(x7lim[1],x7lim[2],(x7lim[2]-x7lim[1])/(noobs-1))

mesh8 <- seq(x8lim[1],x8lim[2],(x8lim[2]-x8lim[1])/(noobs-1))

mesh9 <- seq(x9lim[1],x9lim[2],(x9lim[2]-x9lim[1])/(noobs-1))

mesh10 <- seq(x10lim[1],x10lim[2],(x10lim[2]-x10lim[1])/(noobs-1))
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pred.values6[,6] <- mesh6

pred.values7[,7] <- mesh7

pred.values8[,8] <- mesh8

pred.values9[,9] <- mesh9

pred.values10[,10] <- mesh10

Y6 <- predict.polymars(poly,pred.values6)

Y7 <- predict.polymars(poly,pred.values7)

Y8 <- predict.polymars(poly,pred.values8)

Y9 <- predict.polymars(poly,pred.values9)

Y10 <- predict.polymars(poly,pred.values10)

predicted6 <- predicted6 + Y6

predicted7 <- predicted7 + Y7

predicted8 <- predicted8 + Y8

predicted9 <- predicted9 + Y9

predicted10 <- predicted10 + Y10

}

# requests especially the simulations with interaction of x1, x2 and

# x1.1, x12, respectively

if(length(poly[[1]][,1])>1)

{

for(k in 1:length(poly[[1]][,1]))

{

if(poly[[1]][k,1] == 1 && poly[[1]][k,3] == 2 &&

is.na(poly[[1]][k,2]) && is.na(poly[[1]][k,4]) ||

poly[[1]][k,1] == 2 && poly[[1]][k,3] == 1 &&
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is.na(poly[[1]][k,2]) && is.na(poly[[1]][k,4]))

{inter <- inter + 1}

}

}

if(scenario == 1 || scenario == 2)

{

# requests false results

falsch <- 0

if(sum(poly[[1]][,1] == 4) < 2) {falsch <- falsch + 1} # linear x2

if(sum(poly[[1]][,1] == 5) < 2) {falsch <- falsch + 1} # linear x5

if(length(poly[[1]][,1])==1) {falsch <- falsch + 1} # null model

if(any(poly[[1]][,1]>5)) {falsch <- falsch + 1} # nuisance pars found

# other interactions

if(any(poly[[1]][,1]==1 && poly[[1]][,3]!=0 && poly[[1]][,3]!=2))

{falsch <- falsch + 1}

if(any(poly[[1]][,1]==2 && poly[[1]][,3]!=0 && poly[[1]][,3]!=1))

{falsch <- falsch + 1}

if(any(poly[[1]][,3]!=0 && poly[[1]][,3]!=1 && poly[[1]][,3]!=2))

{falsch <- falsch + 1}

if(any(poly[[1]][,1]==3 && !is.na(poly[[1]][,2])))

{falsch <- falsch + 1} # nonlinear x3

if(any(poly[[1]][,1]==1 && !is.na(poly[[1]][,2])))

{falsch <- falsch + 1} # nonlinear x1

if(any(poly[[1]][,1]==2 && !is.na(poly[[1]][,2])))

{falsch <- falsch + 1} # nonlinear x2

if(falsch > 0) false <- false + 1

}
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model <- poly[[1]]

#print(model)

if(scenario == 3)

{

# linear x1.1

nolin <- F

for(j in 1:length(model[,1]))

{

if(model[j,1] == 1 && !is.na(model[j,2])) nolin <- T

}

if(nolin == T) notlin <- notlin + 1

# false basis functions

falsch <- 0

if(sum(model[,1] == 1) < 3) {falsch <- falsch + 1}

# linear x1.1 or no interaction

if(sum(model[,3] == 2) == 0) {falsch <- falsch + 1}

# no interaction

if(sum(model[,1] == 2) == 0) {falsch <- falsch + 1} # no x12

if(length(model[,1]) == 1) {falsch <- falsch + 1} # null model

if(sum(model[,1] > 2) > 0) {falsch <- falsch + 1} # nuisance parameters

if(any(model[,3] != 0 && model[,3] != 1 && model[,3] != 2))

{falsch <- falsch + 1} # other interaction

if(length(model[,1]) > 1)

{

for(k in 1:length(model[,1]))

{

if((model[,1] == 1 && model[,3] != 2) ||

(model[,1] == 2 && model[,3] != 1)) {falsch <- falsch + 1}

# false interaction
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}

}

if(falsch > 0) false <- false + 1

}

detach(marsdata)

}

false <- false/simsize*100

inter <- inter/simsize*100

if(scenario == 3) {notlin <- notlin/simsize*100}

# number of simulations with false basis functions

listefalsch <- list(paste("simulations with false basis functions:",

false,"%"),

paste("Simulations with interaction of x1 and x2:",

inter,"%"))

if(scenario == 3)

{

listefalsch <- list(paste("simulations with false basis functions:",

false,"%"),

paste("Simulations with nonlinear x11:",notlin,"%"),

paste("Simulations with interaction of x1 and x2:",

inter,"%"))

}

# plot of the mean model

predicted1 <- predicted1/simsize

predicted2 <- predicted2/simsize

predicted3 <- predicted3/simsize
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predicted4 <- predicted4/simsize

predicted5 <- predicted5/simsize

if(scenario == 1 || scenario == 2)

{

predicted6 <- predicted6/simsize

predicted7 <- predicted7/simsize

predicted8 <- predicted8/simsize

predicted9 <- predicted9/simsize

predicted10 <- predicted10/simsize

par(mfrow=c(4,2))

plot(mesh3,predicted3,type="l",xlab="x3", ylab="y",main="Variable x3")

plot(mesh4,predicted4,type="l",xlab="x4", ylab="y",main="Variable x4")

plot(mesh5,predicted5,type="l",xlab="x5", ylab="y",main="Variable x5")

plot(mesh6,predicted6,type="l",xlab="x6", ylab="y",ylim=c(-6,4),

main="Variable x6")

plot(mesh7,predicted7,type="l",xlab="x7", ylab="y",ylim=c(-6,4),

main="Variable x7")

plot(mesh8,predicted8,type="l",xlab="x8", ylab="y",ylim=c(-6,4),

main="Variable x8")

plot(mesh9,predicted9,type="l",xlab="x9", ylab="y",ylim=c(-6,4),

main="Variable x9")

plot(mesh10,predicted10,type="l",xlab="x10", ylab="y",ylim=c(-6,4),

main="Variable x10")

}

if(scenario == 3)

{

par(mfrow=c(2,2))

plot(mesh1,predicted1,type="l",xlab="x11", ylab="y",main="Variable x11")

plot(mesh3,predicted3,type="l",xlab="x13", ylab="y",ylim=c(-6,4),

main="Variable x13")
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plot(mesh4,predicted4,type="l",xlab="x14", ylab="y",ylim=c(-6,4),

main="Variable x14")

plot(mesh5,predicted5,type="l",xlab="x15", ylab="y",ylim=c(-6,4),

main="Variable x15")

}

return(listefalsch)

}

B.2 Interaction of a binary and a continuous co-

variate

This function was used to execute the simulations on the interaction

of a continuous and a binary covariate (section 4.2).

interact <- function(nobs,simsize,vari=50)

{

library(foreign,T)

library(polspline,T)

rsqohne <- rep(0,simsize) # Rsquare without interaction

rsqmit <- rep(0,simsize) # Rsquare with interaction

for(i in 1:simsize)

{

age <- trunc(runif(nobs,40,75)) # continuous covariate

eps <- rnorm(nobs,0,vari) # error
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geschl <- rbinom(nobs,1,0.5) # binary covariate

ageknot <- age-50 # knot for cont. cov

for(j in 1:max(nobs))

{

if(ageknot[j]<=0) ageknot[j] <- 0

}

# defintion of the response

y <- ((age-40)^2 - 10*age - 7*ageknot*geschl - 2*geschl

+ eps)/100

simdat <- as.data.frame(cbind(age,geschl,eps,y))

write.dta(simdat, file = sprintf("simdat_%i.dta", i))

attach(simdat)

# polymars with and without interaction

polohne <- polymars(y,cbind(age,geschl),additive=T)

polmit <- polymars(y,cbind(age,geschl))

# predicted values

pred <- predict.polymars(polohne,cbind(age,geschl))

pred1ohne <- pred[geschl==1]

pred0ohne <- pred[geschl==0]

age1 <- age[geschl==1]

age0 <- age[geschl==0]

# plot

basis <- polmit$model[!is.na(polmit$model[,2]),]

basisohne <- polohne$model[!is.na(polohne$model[,2]),]

basis <- basis[basis[,1]==1,2]
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basisohne <- basisohne[basisohne[,1]==1,2]

mesh <- sort(c(basis,min(age),max(age)))

meshohne <- sort(c(basisohne,min(age),max(age)))

geschlvec1 <- rep(1,length(mesh))

geschlohne1 <- rep(1,length(meshohne))

geschlvec0 <- rep(0,length(mesh))

geschlohne0 <- rep(0,length(meshohne))

pred1 <- cbind(mesh,geschlvec1)

predohne1 <- cbind(meshohne,geschlohne1)

pred0 <- cbind(mesh,geschlvec0)

predohne0 <- cbind(meshohne,geschlohne0)

pred.values1 <- predict.polymars(polmit,pred1)

pred.ohne1 <- predict.polymars(polohne,predohne1)

pred.values0 <- predict.polymars(polmit,pred0)

pred.ohne0 <- predict.polymars(polohne,predohne0)

plot(age,y, xlab="z", main="variance = 50")

lines(mesh,pred.values1,col=2)

lines(mesh,pred.values0,col=4)

lines(meshohne,pred.ohne1,col=1)

lines(meshohne,pred.ohne0,col=1)

legend(65,-2,c("w/o inter","x = 0","x = 1"),merge=T,

fill=c(1,4,2), bty="n")

# goodness of fit

predohne <- predict.polymars(polohne,cbind(age,geschl))

predmit <- predict.polymars(polmit,cbind(age,geschl))

sseohne <- sum((y-predohne)^2)

ssemit <- sum((y-predmit)^2)

sst <- sum((y-mean(y))^2)

rsquareohne <- 1-sseohne/sst
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rsquaremit <- 1-ssemit/sst

rsqohne[i] <- rsquareohne

rsqmit[i] <- rsquaremit

detach(simdat)

}

meanrsqohne <- mean(rsqohne)

meanrsqmit <- mean(rsqmit)

minrsqohne <- min(rsqohne)

minrsqmit <- min(rsqmit)

maxrsqohne <- max(rsqohne)

maxrsqmit <- max(rsqmit)

return(list(paste("Mean Rsquare without interaction =",

meanrsqohne),

paste("Min Rsquare without interation =",

minrsqohne),

paste("Max Rsquare without interaction =",

maxrsqohne),

paste("Mean Rsquare with interation =",

meanrsqmit),

paste("Min Rsquare with interation =",

minrsqmit),

paste("Max Rsquare with interation =",

maxrsqmit)))

}
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B.3 Survival MARS simulations

These functions were used to run simulations on the new approach

with martingale and deviance residuals from a Cox null model as

response in a common MARS setting.

simsurv <- function(nobs = 500, simsize = 10, resi = "mart",gcv=4,distr="expo",

shapep=2,scalep=1,probs=0.7)

{

# probs controls the censoring rate of the data:

# probs = 0.7 => ca. 50% censoring rate

# probs = 0.89 => ca. 25% censoring rate

# probs = 0.26 => ca. 85% censoring rate

library(survival,T)

library(polspline,T)

library(foreign,T)

# generation of the results list

models <- list("Models")

correct <- 0

notlin <- 0

false <- 0

# binary covariate

x2 <- rbinom(nobs,1,0.5)

predicted10 <- rep(0,length(x2[x2==0]))
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predicted11 <- rep(0,length(x2[x2==1]))

predicted1 <- rep(0,nobs)

predicted2 <- rep(0,nobs)

predicted3 <- rep(0,nobs)

predicted4 <- rep(0,nobs)

predicted5 <- rep(0,nobs)

difftest <- rep(0,simsize)

# loops

for(i in 1:simsize)

{

# other covariate

x1 <- runif(nobs,30,75)

# nuisance parameters

x3 <- rnorm(nobs,0,1)

x4 <- runif(nobs,0,10)

x5 <- rbinom(nobs,1,0.7)

# error

eps <- rnorm(nobs,0,1)

u <- runif(nobs,0,1)

# survival time

if(distr=="expo")

{

time <- -log(u)/(0.5*exp(0.04*(x1/10)^2-6*x2+0.1*x1*x2))*100

}

if(distr=="weibull")
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{

time <- (-log(u)/(scalep*exp(0.04*(x1/10)^2-

6*x2+0.1*x1*x2)))^(1/shapep)*100

}

# censoring time

cens.zeit <- runif(nobs,0,quantile(time,probs=probs))

# status variable

status <- rep(0,nobs)

# time variable

for(j in 1:nobs)

{

if(time[j] <= cens.zeit[j]) status[j] <- 1

}

for(j in 1:nobs)

{

if(status[j]==0) time[j] <- cens.zeit[j]

}

data <- as.data.frame(cbind(x1,x2,time,status,u))

# Cox null model

coxnull <- coxph.moni(Surv(time,status)~1)

# Deviance and Martingale residuals of the null model

devinull <- residuals(coxnull,type="deviance")

martnull <- residuals(coxnull,type="martingale")
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# proceeding of the MARS model for Martingale and Deviance residuals

if(resi == "mart")

{

marsmod <- polymars(martnull, cbind(x1,x2,x3,x4,x5),gcv=gcv)

}

else if(resi == "devi")

{

marsmod <- polymars(devinull, cbind(x1,x2,x3,x4,x5),gcv=gcv)

}

model <- marsmod[[1]]

# predicted values

xmod <- marsmod$ranges.and.medians[3,]

x1lim <- c(marsmod$ranges.and.medians[1,1],

marsmod$ranges.and.medians[2,1])

x2lim <- c(marsmod$ranges.and.medians[1,2],

marsmod$ranges.and.medians[2,2])

x3lim <- c(marsmod$ranges.and.medians[1,3],

marsmod$ranges.and.medians[2,3])

x4lim <- c(marsmod$ranges.and.medians[1,4],

marsmod$ranges.and.medians[2,4])

x5lim <- c(marsmod$ranges.and.medians[1,5],

marsmod$ranges.and.medians[2,5])

pred.values1 <- pred.values2 <- pred.values3 <- pred.values4 <-

pred.values5 <- matrix(nrow = nobs, ncol =

ncol(marsmod$ranges.and.medians),data=xmod, byrow=T)

mesh1 <- seq(x1lim[1],x1lim[2],(x1lim[2]-x1lim[1])/(nobs-1))
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mesh2 <- seq(x2lim[1],x2lim[2],(x2lim[2]-x2lim[1])/(nobs-1))

mesh3 <- seq(x3lim[1],x3lim[2],(x3lim[2]-x3lim[1])/(nobs-1))

mesh4 <- seq(x4lim[1],x4lim[2],(x4lim[2]-x4lim[1])/(nobs-1))

mesh5 <- seq(x5lim[1],x5lim[2],(x5lim[2]-x5lim[1])/(nobs-1))

pred.values1[,1] <- mesh1

pred.values2[,1] <- mesh2

pred.values3[,1] <- mesh3

pred.values4[,1] <- mesh4

pred.values5[,1] <- mesh5

pred.values10 <- pred.values1[x2==0,]

pred.values11 <- pred.values1[x2==1,]

pred.values10[,2] <- rep(0,length(pred.values10[,1]))

pred.values11[,2] <- rep(1,length(pred.values11[,1]))

Y10 <- predict.polymars(marsmod,pred.values10)

Y11 <- predict.polymars(marsmod,pred.values11)

Y1 <- predict.polymars(marsmod,pred.values1)

Y2 <- predict.polymars(marsmod,pred.values2)

Y3 <- predict.polymars(marsmod,pred.values3)

Y4 <- predict.polymars(marsmod,pred.values4)

Y5 <- predict.polymars(marsmod,pred.values5)

mesh11 <- mesh1[x2==1]

mesh10 <- mesh1[x2==0]

predicted10 <- predicted10 + Y10

predicted11 <- predicted11 + Y11

predicted1 <- predicted1 + Y1
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predicted2 <- predicted2 + Y2

predicted3 <- predicted3 + Y3

predicted4 <- predicted4 + Y4

predicted5 <- predicted5 + Y5

# was the interaction observed?

richtig <- F

for(k in 1:length(model[,1]))

{

if(model[k,1] == 1 && model[k,3] == 2) richtig <- T

}

if(richtig == T) correct <- correct + 1

# was the non-linearity of x1 observed?

nolin <- F

for(j in 1:length(model[,1]))

{

if(model[j,1] == 1 && !is.na(model[j,2])) nolin <- T

}

if(nolin == T) notlin <- notlin + 1

rsquare <- rsquare + marsmod[[9]]

# are there any false basis functions?

falsch <- 0

if(sum(model[,1] == 1) < 3) {falsch <- falsch + 1}

# linear x1 or no interaction x1x2

if(sum(model[,3] == 2) == 0) {falsch <- falsch + 1}
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# no interaction x1x2

if(sum(model[,1] == 2) == 0) {falsch <- falsch + 1}

# no x2

if(length(model[,1]) == 1) {falsch <- falsch + 1}

# null model

if(sum(model[,1] > 2) > 0) {falsch <- falsch + 1}

# nuisance parameters

if(any(model[,3] != 0 && model[,3] != 1 && model[,3] != 2))

{falsch <- falsch + 1}

# other interaction

if(length(model[,1]) > 1)

{

for(k in 1:length(model[,1]))

{

if((model[,1] == 1 && model[,3] != 2) ||

(model[,1] == 2 && model[,3] != 1)) # false interaction

{falsch <- falsch + 1}

}

}

if(falsch > 0) false <- false + 1

}

# plot of the mean models

predicted10 <- predicted10/simsize

predicted11 <- predicted11/simsize

predicted1 <- predicted1/simsize

predicted2 <- predicted2/simsize

predicted3 <- predicted3/simsize
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predicted4 <- predicted4/simsize

predicted5 <- predicted5/simsize

par(mfrow=c(3,2))

if(resi == "mart")

{

residu <- "Martingale residuals"

}

else if(resi == "devi")

{

residu <- "Deviance residuals"

}

plot(mesh10,predicted10,type="l",col=4,main="Interaction between x1 and x2",

ylim=c(-1.5,1.5),ylab=residu,lwd=2,xlab="x1")

lines(mesh11,predicted11,col=2,lwd=2)

legend(60,-0.55,c("x2 = 0","x2 = 1"),col=c(4,2),lty=c(1,1),lwd=c(2,2),

cex=0.8)

plot(mesh1,predicted1,type="l",main="Variable x1",ylab=residu,col=2,lwd=2,

xlab="x1")

plot(mesh2,predicted2,type="l",main="Variable x2",ylim=c(-3,3),ylab=residu,

col=2,lwd=2,xlab="x2")

plot(mesh3,predicted3,type="l",main="Variable x3",ylim=c(-3,3),ylab=residu,

col=2,lwd=2,xlab="x3")

plot(mesh4,predicted4,type="l",main="Variable x4",ylim=c(-3,3),ylab=residu,

col=2,lwd=2,xlab="x4")

plot(mesh5,predicted5,type="l",main="Variable x5",ylim=c(-3,3),ylab=residu,

col=2,lwd=2,xlab="x5")

# fraction of models with false basis functions
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false <- false/simsize

# fraction of models with nonlinear x1

notlin <- notlin/simsize

# fraction of models with interaction

correct <- correct/simsize

if(resi == "mart")

{

ergebnis <- list("Model with martingale residuals:",

paste("fraction of models with nonlinear x1:",notlin),

paste("fraction of models with interaction x1*x2:",

correct),

paste("fraction of models with false basis functions:",

false))

}

if(resi == "devi")

{

ergebnis <- list("Model with deviance residuals:",

paste("fraction of models with nonlinear x1:",notlin),

paste("fraction of models with interaction x1*x2:",

correct),

paste("fraction of models with false basis functions:",

false))

}

return(ergebnis)

}
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B.4 Function for Survival MARS

This function can be used to execute the MARS approach in the

survival setting.

##############################################################################

# #

# MARS approach for survival type data with martingale and deviance #

# residuals of a Cox model as response #

# #

##############################################################################

survmars <- function(data, resi="mart", startmodel=T, gcv=4, maxsize,

additive=F, knot.space=3)

{

# data in the order time variable, status variable, coefficients

# no missing values allowed

# type of residual may be "mart" (martingale, default) or "devi" (deviance)

library(survival,T)

library(polspline,T)

ncases <- nrow(data)

if(missing(maxsize)) maxsize <- ceiling(min(6 * (ncases^(1/3)), ncases/4,

100))

coxnull <- coxph(Surv(data[,1],data[,2])~1)
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# martingale residuals

if(resi == "mart")

{

resinull <- residuals(coxnull,type="martingale")

}

# deviance residuals

if(resi == "devi")

{

resinull <- residuals(coxnull,type="deviance")

}

# MARS model

pred <- data[,-c(1,2)]

if(startmodel == T)

{

n <- ncol(pred)

sequenc <- seq(1,n,1)

nas <- rep(NA,n)

startmodel <- as.matrix(cbind(sequenc,nas,nas,nas))

marsmod <- polymars(resinull,pred,startmodel=startmodel,gcv=gcv,

maxsize=maxsize,additive=additive,knot.space=knot.space)

}

else if(startmodel == F) marsmod <- polymars(resinull,pred,gcv=gcv,

maxsize=maxsize,additive=additive,

knot.space=knot.space)

if(resi == "mart")

results <- list("Survival MARS with martingale residuals",marsmod)
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if(resi == "devi")

results <- list("Survival MARS with deviance residuals",marsmod)

return(results)

}
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