
  

  

 

 

Aus dem Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie 

Lehrstuhl für Bakteriologie 

der Ludwig-Maximilians-Universität München 

Vorstand: Prof. Dr. Dr. Jürgen Heesemann 

 

 

 

 

 

 

Influence of oral boost immunizations with recombinant Salmonella 

vaccine strains on the antigen-specific CD8 T-cell induction 
 

 

 

 

 

 

Dissertation 

zum Erwerb des Doktorgrades der Humanbiologie 

aus der Medizinischen Fakultät der  

Ludwig-Maximilians-Universität zu München 

 

 

 

vorgelegt von  

Victòria Sevil Domènech 

aus Tarragona, Spanien 

 

 

2007 



  

  

 

 

 

 

Mit Genehmigung der Medizinischen Fakultät 

der Universität München 

 

 

 

 

 

 

 

 

 

Berichterstatter :   Prof. Dr. H. Rüssmann 

 

 

 

Mitbericherstatter:   Prof. Dr. R. von Kries 

     Prof. Dr. T. Löscher 

     Prof. Dr. D. Jüngst 

Mitbretreuung durch den 

Promovierten Mitarbeiter: 

 

Dekan:     Prof. Dr. med. D. Reinhardt 

 

Tag der mündlichen Prüfung :  13.07.2007 

 

 

 

 

 

 



  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst und keine anderen als die von 

mir angegebenen Quellen und Hilfsmittel benutzt habe. Alle Erkenntnisse aus dem 

Schrifttum, die ganz oder annähernd übernommen wurden, sind als solche gekennzeichnet 

und wurden nach ihrer Herkunft unter der Bezeichnung der Fundstelle einzeln 

nachgewiesen. Ferner erkläre ich, dass ich an keine Universität versucht habe, eine 

Dissertation einzureichen oder mich einer Promotionsprüfung zu unterziehen. 

 

 

München, den 6. Februar 2007 

 



                                                                                                                                   Contents 

 I 

CONTENTS 
 

A. INTRODUCTION         1 

1. Infectious diseases and vaccination       1 

2. Current vaccine situation: registered vaccines      3 

3. Live attenuated bacterial vaccines        5 

4. Pathogen-host interactions         5 

5. Antigen processing and presentation to T cells      7 

6. Salmonella spp.                   10 

  6.1. Pathogenesis of Salmonella mediated by T3SS                        12 

    6.1.1. Early stages of Salmonella spp. infection: intestinal invasion            14 

    6.1.2. Later stages of Salmonella spp. infection: survival and  

    replication inside phagocytes                            15 

  6.2. Live attenuated Salmonella spp. as oral vaccine carrier for 

   heterologous antigens                            16 

  6.3. The use of T3SS for heterologous antigen delivery                        17 

 

B. AIMS OF THIS STUDY                            19 

 

C. MATERIALS AND METHODS               20 

I. MATERIALS                  20 

1. Laboratory equipment and accessoires                          20 

2. Chemicals                              22 

3. Commercial kits                             22 

II. METHODS                  23 

1. Bacteria and plasmids                 23 

  1.1. Bacterial strains                  23 

  1.2. Plasmids                   24 

2. Bacterial cultivation and storage conditions              24 

  2.1. Media                              24 

  2.2. Antibiotics                  25 

  2.3. Cultivation and storage conditions                          26 

3. Molecular biological methods               26 



                                                                                                                                   Contents 

 II 

  3.1 Isolation of genomic DNA               26 

  3.2. Plasmid isolation                27 

  3.3. Determination of DNA concentration              28 

  3.4. Agarose gel electrophoresis               28 

  3.5. Preparation of competent cells                          29 

  3.6. Electroporation                 29 

4. Biochemical standard methods               30 

  4.1. Protein release                 30 

  4.2. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)                      30 

  4.3. Western-blot                 33 

5. Mice infection experiments               34 

  5.1. Mice                             34 

  5.2. Infection of mice                34 

    5.2.1. Oral prime immunization with Salmonella spp.            34 

    5.2.2. Boost immunization with Salmonella spp.             35 

    5.2.3. Immunization with L. monocytogenes             35 

    5.2.4. Challenge with L. monocytogenes              35 

  5.3. Collection of samples from mice              36 

    5.3.1. Intestinal contents                           36 

    5.3.2. Organs                 36 

6. Immunological methods                36 

  6.1. Enzyme-linked immunospot assay (ELISPOT-assay)                       36 

    6.1.1. Preparation of single cell suspension             37 

    6.1.2. Lysis of erytrhocytes                          37 

    6.1.3. Stimulation with peptides and development of spots           38 

7. Statistical analysis                 40 

 

D. RESULTS                  41 

1. Influence of boost immunizations on the antigen-specific CD8 T-cell  

induction                  41 

  1.1. Determination of colonization and persistence of S. typhimurium  

  SB824 (pHR241) in BALB/c mice after single oral application           42 

  1.2. Time course of colonization of recombinant Salmonella  



                                                                                                                                   Contents 

 III 

  strains after boost immunizations              43 

  1.3. CD8 T-cell responses after boost immunizations           46 

2. Influence of short-term colonization on CD8 T-cell priming          48 

  2.1. Time course of colonization of SB824 (pHR241) after  

  prime immunization with SB824              49 

  2.2. Impact of 6-days colonization on p60-specific CD8 T-cell induction         50 

  2.3. Efficacy of short-term versus long-term colonization on  

  vaccine-induced protection               51 

3. Use of different Salmonella serovars for prime-boost immunizations         53 

  3.1. In vitro expression and secretion of YopE/p60 by S. dublin BRD620        54 

  3.2. Determination of colonization and persistence of S. dublin 

  BRD620 (pHR241) in BALB/c mice after single oral application          55 

  3.3. CD8 T-cell response after a single oral immunization with  

  BRD620 (pHR241)                56 

  3.4. Time course of colonization of recombinant Salmonella strains  

  after heterologous boost immunization             57 

  3.5. CD8 T-cell response after heterologous boost immunization          59 

  3.6. Induction of LLO-specific CD8 T cells after heterologous  

  prime-boost immunization               61 

 

E. DISCUSSION                64 

 

F. SUMMARY                           72 

 

G. REFERENCE LIST                      75

                  

I. ACKNOWLEDGMENT                                                     92 

 

 

 



                                                                                                                      List of Abreviatons 

 IV 

LIST OF ABREVIATIONS 
 

A  Amper 

Abs  Antibodies 

AEC  3-Amino-9-ethylcarbazole 

Ag  Antigen 

Alpha Mem Alpha Modified Eagle Medium 

Amp  Ampicillin 

APC  Antigen presenting cell 

APS  Ammonium persulphate 

BHI  Brain Heart infusion 

BSA  Bovine Serum Albumine 

CDC  Center for disease control 

CFU  Colony forming unit 

ConA  Concanavalin A 

CTL  Cytotoxic T lymphocytes 

DCs  Dendritic cells 

dH2O  Distilled water 

DMF  N,N-dymethylformamide 

DNA  Deoxyribonucleic acid 

DMEM Dulbeccos modified Eagle Medium 

DMSO  Dimethylsulfoxid 

EDTA  Ethylendiamintetraacetic acid 

ER  Endoplasmic reticulum 

EtOH  Ethanol 

FCS  Fetal calf serum 

Fig.  Figure 

g  Gram 

HRP  Horseradish peroxidase 

i.d.  Intradermal 

i.m.  Intramuscular 

i.v.   Intravenous 

IL  Interleukine 



                                                                                                                      List of Abreviatons 

 V 

IFN-γ  Interferon gamma 

kB  Kilobase 

kDa  Kilodalton 

Kan  Kanamycin 

kV  Kilovolt 

l  Liter 

LB  Luria Bertani Medium 

LD  Lethal dose 

LD50  50% of lethal dose 

LLO  Listereolysin O 

LPS  Lipopolysaccharide 

M  Molar 

MALT  Mucosa-associated lymphatic tissues 

MHC  Major hiscompatibility complex 

Min  Minute 

mM  Milimolar 

mm  Milimeter 

mRNA  Messenger ribonucleic acid 

µl  microliter 

nm  nanometer 

OD600  Optical density at 600 nm wavelength 

o/n  overnight culture 

p60  Listeria protein  

PAI  Pathogenicity island 

PAMPs Pathogen-associated molecular patterns 

PAGE  Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline 

pH  Power of hydrogen 

PMN  Polymorphonuclear leukocyte 

rpm  revolutions per minute 



                                                                                                                      List of Abreviatons 

 VI 

RT  Room temperature 

s.c.  subcutaneous 

SCVs  Salmonella-containing vacuole 

SDS  Sodium dodecyl sulphate 

Sec  second 

SPI-1  Salmonella pathogenicity island 1 

SPI-2  Salmonella pathogenicity island 2 

Spp.   Species 

Sm  Streptomycin 

TAE  Tris-Acetat-EDTA Buffer 

TCA  Trichloracetic acid 

TEMED N,N,N’,N’-Tetramethylendiamine 

TH  T helper lymphocyte 

Tris  Tris-hydroxymethyl-aminomethane 

T3SS  Type Three Secretion System 

Tween 20 Polyoxyethylensorbitanmonolaureate  

Yop  Yersinia outer protein 

WHO  World Health Organisation 



Introduction 

 - 1 - 

 

A. INTRODUCTION 
 

1. Infectious diseases and vaccination 

 

According to the World Health Organization (WHO), infectious diseases are still the major 

cause of death worldwide, since a third of global deaths are due to microbial agents (see 

Fig. 1) (209). 

 

 
 Fig. 1. Global deaths due to selected infectious diseases. 

 

Combating infectious diseases involves prophylaxis and/or therapy. Treatments options for 

infectious diseases include administration of antibacterial, anti-viral and anti-parasitic 

drugs as well as symptomatic treatment for example, rehydration therapy in case of 

diarrhoea. Although drug therapy minimizes the percentages of mortality and morbidity by 

shortening the period that an infected individual remains infectious to others, there are still 

several infectious diseases without effective treatment and in addition, multiple drug 

resistances have emerged in the last decades. In conclusion, infectious diseases still remain 

a major threat to global health and for this reason, preventive measures are required to keep 

infectious diseases under control. Prophylactic strategies against infectious diseases 
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include improvement of public health and the use of vaccines. On one hand, the strength of 

sanitation conditions has dramatically reduced the toll of water- and food-borne diseases as 

well as the risk of vector-borne diseases (71). On the other hand, the implementation of 

extensive routine immunizations has led to eradicate infectious diseases and has prevented 

suffering, disability and death on a large scale (see Table 1). In fact, it has been the only 

method that accomplished the global eradication of smallpox in 1977 after a 10-year 

campaign carried out by the WHO (48). In addition, polio infections have been fallen by 

more than 99%, and some 5 million people have escaped paralysis. Measles has been also 

eliminated from the Americas and illness and mortality attributed to diphtheria, tetanus and 

pertussis have significantly decreased. 

 

Table 1. Baseline 20th century annual morbidity (case of disease) before the vaccine became available 

and 1998 morbidity from 8 diseases with vaccine recommended before 1990 for universal use in 

children (reprinted from MMWR 48:243-248, 1999 (25)). 

Disease 
Baseline 20th century 

annual morbidity 

1998 

morbidity 

% 

Decrease 

Smallpox 48164a 0 100 

Diphteria 175885b 1 100c 

Pertussis 147271d 6279 95.7 

Tetanus 1314e 34 97.4 

Poliomyelitis 

(paralytic) 

16316f 0g 100 

Measles 503282h 89 100 

Mumps 152209i 606 99.6 

Rubella 47745j 345 99.3 

Meningitis 20000k 54m 99.7 
a Average annual number of cases during 1900-1904. 
b Average annual number of reported cases during 1920-1922, 3 years before vaccine development. 
c Rounded to nearest tenth. 
d Average annual number of reported cases during 1922-1925, 4 years before vaccine development. 
e Estimated number of cases based on reported number of deaths during 1922-1926, assuming a case-fatality 

rate of 90%. 
f Average annual number of reported cases during 1951-1954, 4 years before vaccine licensure. 
g Excludes one case of vaccine-associated polio reported in 1998. 
hAverage annual number of reported cases during 1958-1962, 5 years before vaccine licensure. 
i Number of reported cases in 1968, the first year reporting began and the first year after vaccine licensure. 
j Average annual number of reported cases during 1966-1968, 3 years before vaccine licensure. 
k Estimated number of cases from population-based surveillance studies before vaccine licensure in 1985. 
m Excludes 71 cases of Haemophilus influenzae disease of unknown serovar. 
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2. Current vaccine situation: registered vaccines 

 

As vaccines have been shown to be the most successful and cost effective intervention to 

prevent infectious diseases (72), it has become very reasonable to develop effective 

vaccines for old, new and re-emerging pathogens for which vaccines are not yet available 

or the current vaccines are not satisfactory enough due to low efficacy (no life-long 

protection), poor biological stability (cold chain requirement) and/or high costs (the price 

per dose is more than 10 US dollar). 

Since 1796, when Edward Jenner (1749-1823) put variolation (inoculation of cowpox virus 

in humans to induce protection against smallpox) in practice, several new vaccines have 

been introduced against various pathogenic organisms (see Table 2). Ten of these vaccines 

have been recommended for use only in selected populations at high risk because of area 

of residence, age, medical conditions or risk behaviours and other 11 have been proposed 

for use on all US children (25). As a result, recommendation for routine vaccination 

against smallpox was rescinded in 1971 in the United States because of its low rate in 

population (23) and its practice ceased totally in 1983 (24, 210). 

Composition and route of application have an impact on the safety and effectiveness of 

present vaccines. Based on their composition, vaccines can be divided into two groups:      

a) those composed of inactivated (killed) organisms and purified products derived from 

them, and b) attenuated live vaccines. Killed vaccines, toxoid vaccines (inactivated toxins) 

and subunit vaccines are not able to replicate in the vaccinee and lead mainly to humoral 

immune responses. Attenuated live vaccines are capable of replicating in the host, thus 

mimicking a wild-type infection to a certain extent. Contrary to killed vaccines and their 

purified components, attenuated live vaccines induce a more complex immune response, 

involving both, the humoral and cellular arm of the immune system (1, 88).  

The route of vaccine administration (subcutaneous, intramuscular, intradermal or oral) is 

also very relevant for the type of immunity induced. Parenterally applied vaccines only 

induce a systemic immune response. They require high costs of production and delivery, 

and are associated with the potential risk of contamination through syringes and needles. In 

addition, potential vaccines need professional personnel for their administration and are 

painful for the vaccinee. In contrast, mucosally targeted vaccines simulate the natural 

infection route of the majority of wild-type pathogens, which enter into the host via the 

lungs, the intestinal or the genital tract. Oral immunization elicits a local mucosal response 
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(immunoglobulin A production) and therefore, a blockade of colonization in the early 

phases of infection and posterior systemic spread. Because oral vaccines are cheaper to 

produce and do not require a cold chain for the formulation’s safety and stability, their 

production, storage and distribution is easier and thus they are more accessible in both, 

developed and developing countries. Their simple and painless administration has been 

associated with a major acceptance by the public, making oral vaccines particularly 

suitable for mass immunization programs (41, 123, 124). 

 
Table 2. List of vaccine-preventable diseases by year of vaccine development or licensure, by type of 

vaccine and recommended administration route in the United States (remodelled from MMWR 

48:243-248, 1999(25)). 

Pathogen Disease Year Type of vaccine Route 

Smallpox virus Smallpox 1798 Attenuated vaccinia  virus Subcutan (s.c.) 

Rabies virus Rabies 1885 Inactivated virus 
Intramuscular (i.m.) 

or intradermal (i.d.) 

Salmonella typhi and 

paratyphi 
Typhoid 1896 

inactivated bacteria or 

(Ty21a oral) live bacteria 

s.c. or 

(Ty21a) oral 

Vibrio cholera Cholera 1896 Inactivated bacteria s.c. or i.d. 

Yersinia pestis Plague 1897 Inactivated bacteria i.m. 

Corynebacterium diphterae Diphteria 1923 Inactivated toxin (Toxoid) i.m. 

Bordetella pertussis Whooping cough 1926 Inactivated bacterial component and toxoid i.m. 

Clostridium tetani Tetanus 1927 Inactivated toxin (Toxoid) i.m. 

Mycobacterium tuberculosis Tuberculosis 1927 
Live attenuated bacteria (Bacillus of Calmette 

Guérin) 
oral 

Influenza virus Flu 1945 Inactivated virus or viral components i.m. 

Yellow fever virus Yellow fever 1953 Live virus s.c. 

Poliovirus Poliomyelitis 1955 
(IPV) Inactivated viruses of all 3 serovars 

(OPV) live viruses of all 3 serovars 

(IPV) s.c. 

(OPV) oral 

Measles virus Measles 1963 Live attenuated virus s.c. 

Mumps virus Mumps 1967 Live attenuated virus s.c. 

Rubella virus Rubella 1969 Live attenuated virus s.c. 

Bacillus anthracis Anthrax 1970 Inactivated bacteria s.c. 

Neisseria meningitidis Meningitis 1975 Bacterial polysaccharides of serovars A/C/Y/W-135 s.c. 

Streptococcus pneumoniae Pneumonia 1977 Bacterial polysaccharides of 23 pneumococcal types i.m. or s.c. 

Adenovirus virus Adenovirus 1980 Live virus oral 

Hepatitis B virus Hepatitis B 1981 Inactive viral antigen i.m. 

Haemophilus influenza type b Meningitis and epiglotitis 1985 Bacterial polysaccharide conjugated to protein i.m. 

Japanese encephalitis virus Japanese encephalitis 1992 Inactivated virus s.c. 

Hepatitis A virus Hepatitis A 1995 Inactivated virus i.m. 

Chickenpox virus Varicella 1995 Attenuated live virus s.c. 

FMSE Lyme disease 1998 Inactivated virus i.m. 

Rotavirus Diarrhea and dehydration 1998 Attenuated live virus oral 

Papilloma virus Cervix carcinom 2002 Inactivated virus i.m. 
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Future directions in the challenging task of improving old vaccines and designing new 

ones should firstly imply a better knowledge about each pathogen, in particular about its 

mode of transmission, mechanism of replication and pathogenesis and secondly, the need 

for a detailed understanding of humoral and cellular components of the host immune 

system to protect against the pathogen. 

 

3. Live attenuated bacterial vaccines 

 

As mentioned above, among all available vaccine types, oral vaccines are the most suitable 

for carrying out mass immunization programs. There are current strategies for developing 

oral vaccines based on either attenuated bacterial pathogens or non-pathogenic commensal 

microorganisms to express heterologous antigens (41, 114, 124). Until now, the most 

exploited bacterial strains for this aim have been Listeria monocytogenes (89, 146, 207), 

Salmonella spp. (21, 39, 103, 178), Vibrio cholera (47, 205), Shigella spp. (99), 

Mycobacterium bovis (BCG) (29, 77), Yersinia spp. (118, 140, 167, 185, 186, 197, 213) 

and Bacillus anthracis (16, 181, 182) as avirulent pathogens and Streptococcus gordonii 

(37, 122, 142, 143, 158), Lactobacillus spp. and Staphylococcus spp. (190) as commensal 

candidates. 

Live vaccines are able to induce a long-lasting humoral and cellular immune response 

against the infection and the disease caused by the vector itself. In addition, the microbial 

vaccine carrier can be used to express foreign (heterologous) antigens from other infectious 

agents or tumors. This vaccination strategy has been refined during the last two decades, 

especially due to a better understanding of pathogen-host interactions (113, 188). 

 

4. Pathogen-host interactions 

 

The immune system is composed of the innate immune system that recognizes pathogen-

associated molecular patterns (PAMPS) and the adaptive immune system that identifies 

specific antigens (126). Although both immune systems work synergically and 

coordinately, the innate immune system provides a first line of defence at the beginning of 

an infection. In contrast, the adaptive immune system requires nearly four days in order to 

become activated. The innate immune system responds to all pathogens in the same way, 
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whereas the adaptive immune system has the capacity of generating specific responses and 

immunological memory (88). 

The immune response elicited against infectious agents depends mainly on pathogen 

location in the host body during the microbial life cycle (see Fig. 2). Based on the site of 

replication, infectious organisms are divided into two groups: extracellular and 

intracellular microorganisms. Extracellular pathogens are found in spaces like the 

interstice, the blood, the lymph and on epithelial surfaces. For the control of extracellular 

organisms and their products, antibodies provide the most important adaptive mechanism 

of host defence. B cells recognize soluble antigens by their superficial immunoglobulins 

and present them to CD4 helper T cells, which can in turn stimulate the B cells to release 

specific antibodies. Specific antibodies directly neutralize antigens or recruit other cells 

and molecules that will destroy pathogens via phagocytosis and complement, respectively. 

Intracellular pathogens, in contrast, must invade host cells in order to replicate. Such 

pathogens are further subdivided into those that replicate freely in the cytosol of host cells, 

like viruses and certain bacteria (ricketsiae, listeriae, shigellae and chlamydiae) and those 

that replicate in vesicles (endosomes or phagosomes), like the majority of bacteria and 

parasites. Neutralizing antibodies, whose production relies on T helper 2 (TH2) cells, play 

the most important role in preventing intracellular pathogens from invading host cells. 

Once inside the cell, such pathogens are not accessible to antibodies anymore and for this 

reason, other mechanisms must be activated in order to delete and eliminate them. For 

intravesicular pathogens, the response is mediated by CD4 T helper 1 (TH1) lymphocytes, 

which secrete IFN-γ and TNF-α and activate macrophages that are able to kill intracellular 

organisms (119). Protection against cytosolic pathogens is achieved through cytotoxic T 

cells (CTL), namely CD8 T lymphocytes, which remove sites of pathogen replication by 

destroying infected cells (69, 97). 
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Fig. 2. Habitat of pathogens dictates the induction of different T cell populations. The two left panels 

correspond to bacteria, which are found in intracellular compartments. However, in the left panel, viruses and 

some bacteria replicate freely in the cytosol and because of this location, the antigens are presented by MHC 

class I molecules to CD8 T cells which kill target cells whereas in the center panel, other bacteria and some 

parasites survive and proliferate into endosomes, where antigens are degraded and presented to CD4 by MHC 

class II molecules. The right panel illustrates extracellular bacteria and their derived proteins, which may 

enter into the vesicular system of B cells or other cell types by endocytosis. Such cells are able to present 

antigens to CD4 helper T cells, which stimulate B cells to produce specific antibodies against a determined 

antigen (Figure reprinted from Immunobiology, C.A. Janeway, P. Travers, M. Walport, M. Shlomchick, 5th 

edition, Garland Publishing). 

 

5. Antigen processing and presentation to T cells 

 

Historically, most traditional vaccination programs have focused on inducing high titers of 

antibodies for protection against pathogens. Nevertheless, it has been demonstrated that T 

cells play a crucial role when controlling and protecting the host from various pathogenic 

organisms such as Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), 

Mycobacterium tuberculosis and Plasmodium falciparum among others (44, 96, 97). 

Antigens of pathogenic microorganisms can be detected by T cells because infected cells 

display peptide fragments derived from pathogenic proteins on their surfaces. Again, 
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depending on the intracellular location of the pathogen, two different pathways of protein 

degradation will take place and that will lead to presentation and activation of different 

sorts of T lymphocytes. Classically, CD8 T lymphocytes respond to cytoplasmatically-

derived protein antigens from viruses and cytoplasmatic bacteria and CD4 T lymphocytes 

respond to exogenous bacterial and parasitic proteins taken up by antigen-presenting cells 

(APC). Antigenic peptides are presented to CD8 or CD4 T cells by MHC class I and class 

II molecules, respectively. 

The processing of exogenous antigens and presentation to CD4 T cells by MHC class II 

molecules involves the internalization of extracellular pathogens and their products into the 

endosomal system (see Fig. 3). Professional APCs like dendritic cells, B lymphocytes and 

macrophages are efficient in taking up extracellular material by macropinocytosis, 

phagocytosis or endocytosis (79, 108, 164). In the endosome, antigenic proteins are 

hydrolyzed in small peptides of 10-30 amino acids. This degradation is a result of 

endosome maturation, which implies decrease in pH of the compartment leading to 

activation of proteolytic enzymes like Cathepsin S (116). The endosome containing the 

hydrolyzed antigens fuses with exocytic vesicles, which hold the MHC class II molecules. 

These exocytic vesicles are generated in the endoplasmic reticulum (ER), where self-

peptides and endogenous peptides are found. To avoid that those peptides attach in the 

groove of MHC class II molecules, a protein termed invariant chain binds MHC class II 

molecule, thereby occupying the peptide binding pocket. After fusion of the exocytic 

vesicle and endosome, the invariant chain is proteolytically cleaved, leaving a 24 residue 

peptide named class II-associated invariant chain peptide (CLIP). The removal of CLIP 

from the peptide binding pocket of the MHC class II molecule is facilitated by a non-

polymorphic MHC class II-like protein called HLA-DM. This allows the loading of 

antigenic peptides to MHC class II molecules. The complex of antigenic peptides and the 

MHC class II molecule moves in vesicles to the cell surface and is presented to CD4 T 

lymphocytes. After CD4 T-cell priming, CD4 T cells are activated and can differentiate 

into either T helper 1 (TH1) or T helper 2 (TH2) cells that secrete specific subsets of 

cytokines. In general, TH1 cells secrete the cytokines IFN-γ and TNF-α, which are able to 

activate macrophages. TH2 cells release the cytokines IL-4, IL-5, IL-13 and IL-10 and are 

responsible for B cell activation and antibody production (119). 
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Fig. 3. Presentation of exogenous antigens to CD4 T lymphocytes and endogenous antigens to CD8 T 

lymphocytes. Two different pathways are used in order to present non-self antigens. The peptides that bind 

MHC class II and are recognized by CD4 T cells are internalized from extracellular spaces by professional 

APCs. In contrast, endogenous peptides are produced in the cell’s cytoplasm and are loaded onto MHC class 

I molecules which are presented to CD8 T cells. 

 

A distinct pathway of proteolysis is implicated for endogenous antigens (see Fig. 3). Here, 

the proteins derived from pathogens present in the cell cytoplasm are digested by a 

multiprotein enzyme complex called proteasome. The proteasome recognizes ubiquitinated 

proteins from the cytoplasm and generates peptides of 6 to 30 residues, which need to 

come in contact with MHC class I molecules. MHC class I molecules are produced in the 

ER of almost all nucleated cells (220). In order to gain access to the MHC class I 

compartment, hydrophobic and basic cytoplasmic peptides are transferred from the 

cytoplasm to the ER by ATP-dependent peptide transporters TAP-1 and TAP-2. In the ER, 

the translocated peptides are trimmed by ER aminopeptidase associated with antigen 

processing (ERAAP). Now, the peptides are 8-12 amino acids in length and are suitable for 

binding MHC class I molecules (160, 189). For assembly and stabilization of the complex 

(peptide-MHC class I molecule), some chaperones like tapasin, calreticulin and calnexin 

are demanded. Once MHC class I molecules are loaded with optimised antigenic peptides, 
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the complex is transported within an exocytic vesicle to the cell surface (87), where they 

will be presented and recognized by the T cell receptor (TCR) of CD8 T cells (195, 220). 

After CD8 T-cell priming, clonal expansion of antigen-specific CD8 T cells occur, which 

trigger the elimination of infected cells by lysis or apoptosis. 

 

6. Salmonella spp. 

 

Salmonella spp., named after Daniel Elmer Salmon, are Gram-negative, peritrichous 

flagellated, facultative anaerobic and facultative intracellular rods belonging to the family 

of Enterobacteriaceae. Salmonella spp. are found in environmental sources including soil, 

water and food and are able to infect both humans and a broad spectrum of animals by the 

oro-faecal route.  

All members of the genus Salmonella share important traits that do not exist in other 

closely related species like Shigella spp. and E. coli (see Fig. 4). About 160-100 million of 

years ago, Salmonella spp. acquired the first Salmonella pathogenicity island (SPI-1) by 

horizontal gene transfer (62). Genes encoded by SPI-1 mediate invasion of host cells (e.g. 

intestinal epithelial cells). According to DNA relativeness, presence or absence of 

Salmonella pathogenicity islands (SPIs) and specificity to hosts, Salmonella spp. are 

classified into 2 species and 7 subspecies. The two species comprise S. bongori, which 

colonizes cold-blooded animals and S. enterica, which evolved further into 7 species and is 

able to colonize both, cold- and warm-blooded hosts. S. bongori and S. enterica diverged 

from each other 40-35 million years ago, when S. enterica adopted a second Salmonella 

pathogenicity island (SPI-2) necessary for growth and survival in macrophages (8, 9, 34). 

Salmonella spp. are also further divided in the Kauffmann-White scheme into over 2400 

different serovars, which classifies strains on the basis of serological identification of their 

H-(flagellar), O-(lipopolysaccharide) and Vi-(capsular) antigens (15). 
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Fig. 4. Dendogram showing phylogenetic relationships among Salmonella species and subspecies. 

Salmonella spp. diverged from Shigella and Escherichia spp, when Salmonella acquired the Salmonella 

pathogenicity island 1 (SPI-1) 160-100 million years ago. This pathogenicity island 1 mediates intestinal 

invasion, an ability shared by all species of Salmonella (S. bongori and S. enterica). About 40-35 million 

years ago, S. enterica adopted also a second Salmonella pathogenicity island (SPI-2) by horizontal gene 

transfer, which is responsible for systemic disease. Subspecies are further divided according to host 

adaptation. There is another classification based on the antigenic profile of the strains (Kauffmann-White 

scheme) that has identified more than 2400 different serovars. 

 

In humans, Salmonella spp. provoke two diseases called salmonellosis (64). Depending on 

the serovar, salmonellosis ranges from a localized gastroenteritis to a systemic infection. 

Gastroenteritis is a self-limiting disease caused mainly by two serovars, Enteritidis and 

Typhimurium (later referred as S. enteritidis and S. typhimurium, respectively). The typical 

symptoms include abdominal cramps, nausea, vomits, diarrhoea and fever. In a small 

fraction of infected people, the bacteria can enter the bloodstream and cause septic shock. 

This is most likely to happen in immunocompromised people and elderly. According to the 

WHO, S. typhimurium causes up to 1.3 billions cases per year worldwide, leading to 3 

millions deaths. In contrast, typhoid fever is a systemic infection elicited by either 

Salmonella enterica serovar Typhi or serovar Paratyphi A, B or C (later referred as S. typhi 

or S. paratyphi, respectively). The symptomatic comprises high fever, flushed appearance, 

anorexia, chills, convulsions and delirium. The WHO also estimates that the annual global 
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incidence of typhoid fever is around 16.6 million cases per year, and accounts for 600,000 

deaths (149, 150). 

Whether the infection results in a self-limited gastroenteritis or in typhoid fever is 

determined by genetic factors of the host species and the Salmonella serovar. For example, 

S. typhi causes a systemic disease in humans whereas S. typhimurium remains confined in 

the intestine. Moreover, it is noteworthy to mention that S. typhimurium produces a 

systemic typhoid-like disease in mice, and for this reason it serves as an experimental 

model of typhoid fever (174, 218).  

 

6.1.  Pathogenesis of Salmonella mediated by type III secretion systems 

 

Infectious agents cause disease in humans and animals by releasing adhesins, toxins, 

enzymes and mediators of motility, which interact with host cells and stimulate several 

cellular functions. These proteinaceous virulence determinants are produced in the 

bacterial cytoplasm and have to cross either the plasma membrane and the thick cell wall 

layer of Gram-positive bacteria or the double-membrane system of Gram-negative bacteria 

that sandwiches the peptidoglycan and the periplasmic space between them in order to gain 

access to the extracellular environment. For this purpose, bacteria have evolved different 

protein secretory mechanisms. To date, five different pathways have been identified and 

numbered from I to V. The prototypical example of a type I secretion system is the          

α-hemolysin (HlyA) export apparatus of E. coli (58). The type II secretion system is 

examplified with the secretion of the lipoprotein PulA of Klebsiella oxytoca (90, 159, 171, 

172, 192).  The type IV secretion system is ancestrally related to the bacterial conjugation 

machinery and it has been found in different species like Agrobacterium tumefaciens, 

Bordetella pertussis, Legionella pneumophila and Helicobacter pylori (27, 28). The type V 

or autotransporter system has been observed to secrete VacA by H. pylori, the SphB1 by B. 

pertussis and AspA/NalP of Neisseria meningitidis (67). Finally, the type III secretion 

system (T3SS) has been identified in several Gram-negative pathogens like Yersinia spp., 

Salmonella enterica, Shigella flexneri, E. coli, Ralstonia solancearum, Pseudomonas 

syringae, and Chlamydia trachomatis (83, 155). The type III secretion proceeds through a 

needle-complex composed of more than 20 different proteins which share several 

homologies with those involved in flagellar assembly (see Fig. 5) (104, 105, 134). Whereas 

the structural components of the T3SS are highly conserved among the different 

pathogenic species, the secreted effector proteins are divergent and perform various 
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biological functions (105). However, the most striking feature of the T3SS is the ability to 

target effector proteins directly into eukaryotic cells. This phenomenon is triggered when a 

bacterium comes in contact with an eukaryotic cell. Nevertheless, not all T3SS are contact 

dependent and some effector molecules secreted by T3SS are released into the external 

environment (33). Controversy exists about the mechanism of effector molecule 

recognition and targeting to the T3SS. One hypothesis suggests that the signal resides at 

the 5-terminal region of the mRNA, which may target the ribosome-RNA complex to the 

T3SS, thereby permitting temporal coupling of translation and secretion (4). A second 

proposal corroborates that the N-terminal 20 amino acids serve as a binding site for 

cytoplasmic chaperones which specifically target the effector molecules to the T3SS (117). 

Notwithstanding the differences in these hypotheses, it is apparent that the region encoding 

the first 20 amino acids (either the untranslated mRNA or the first 20 amino acids of the 

polypeptide) is essential for secretion and the process is highly regulated (83).  

 

 
Fig. 5. The needle complex of S. typhimurium type III secretion system (T3SS). The T3SS is a 

multiprotein apparatus capable of injecting bacterial proteins into the cytoplasma of host cells. For this aim, 

the injectisome spans both the inner and the outer membranes of the bacterial envelope and also the 

eukaryotic membrane. This system resembles the flagellar basal body (Figure from Galán, J.E. and Collmer, 

A., 1999).  
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Salmonella spp. employ T3SS for pathogenesis (51-54). Two T3SS are encoded in two 

different Salmonella pathogenicity islands, which operate in an independent, but 

coordinate fashion. The Salmonella pathogenicity island 1 (SPI-1) is required for the initial 

step of invasion (51) whilst the Salmonella pathogenicity island 2 (SPI-2) acts at later 

stages and is responsible for systemic infection (68). 

 

6.1.1. Early stages of Salmonella spp. infection: intestinal invasion 

 

Salmonella spp. enter humans and animals by contaminated water or food (see Fig. 6). 

Following ingestion, bacteria pass through the stomach, where they have to resist the low 

pH, and reach the distal ileum and the caecum (22). Once in the intestinal lumen, 

Salmonella attach actively to the host cell surface through adhesion molecules like 

fimbriae (10). Due to cell contact and environmental factors like low oxygen concentration 

and high osmolarity (6), the Salmonella pathogenicity island 1 (SPI-1) becomes activated 

and using the needle complex, Salmonella injects several effector proteins into the cytosol 

of host cells (52). The SPI-1 encoded effector proteins promote in first place massive 

cytoskeletal rearrangements and the formation of pseudopods or so-called membrane 

ruffles. These structures enclose the bacterium actively leading to their internalization by 

macropinocytosis (49). Invasion occurs mainly in M cells that cover the Peyer’s patches 

(91), but also in enterocytes and secretory cells (173). The active engulfment results either 

from direct interaction of the effector proteins SipC and SipA with components of the 

cytoskeleton of the host cell (66) or from interference of the effector proteins SopE, SopE2 

and SopB with host cell signalling pathways that induce actin rearrangements. This latter 

mechanism involves the activation of Cdc42 and Rac1 directly by the potent guanine 

nucleotide exchange factors (GEFs) SopE and SopE2, and indirectly by the SopB effector 

protein (52, 219). In addition, SPI-1 proteins procure an accumulation of host cell 

membrane cholesterol at the site of Salmonella entry for an efficient invasion (57). The 

actin cytoskeleton changes induced by Salmonella are reversible. In fact, after bacterial 

invasion, the infected cells return to their normal architecture of the cytoskeleton. This 

reversion is mediated by a GTPase-activating protein (GAP) called SptP that acts towards 

Cdc42 and Rac1 (50). Apart from this active invasion of non-phagocytic cells, there is an 

alternative route of Salmonella uptake that involves bacterial transport and dissemination 

in spleen, liver and bone marrow by CD18+ cells like dendritic cells and macrophages 
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(201). In second term, SPI-1 proteins induce more cellular signal cascades which mediate 

other cellular responses. For example, SopA and SopD trigger localized inflammation and 

fluid secretion, responsible for diarrhoeal symptoms (92, 206). SipA also mediates local 

inflammation by the production of IL-8. Simultaneously, IL-8 and other chemoattractants 

are implicated in PMNs (polymorphonuclear leukocytes) transmigration in the gut lumen 

(60, 110). The pro-inflammatory response and the subsequent recruitment of phagocytic 

cells to the site of infection may facilitate systemic spread of the bacteria (68). Finally, the 

SPI-1 system induces apoptosis in macrophages at the early stages of infection, since SipB 

binds and activates caspase-1 (70, 137). 

 

6.1.2. Later stages of Salmonella spp. infection: survival and replication inside 

phagocytes 

 

After bacterial internalization, Salmonella spp. remain localized in a membrane-bound 

vacuole, referred to as Salmonella-containing vacuole (SCV) (see Fig. 6). Salmonella spp. 

are capable of adapting their new environment in order to proliferate and survive inside 

host cells (56, 133). SPI-2 is precisely assigned for this task and for this reason, it is 

induced intracellularly in response to vacuolar acidification and, magnesium, calcium and 

phosphate starvation (36). Up to now, many genes belonging to SPI-2 have been identified, 

but no specific effector protein has been elucidated for the main functions (75). The normal 

maturation process of phagosomes containing pathogens involves interaction with the 

endosomal system (75, 100). The effector protein SpiC modifies the normal endocytic 

trafficking by blocking fusion between lysosomes and SCVs (196). However, fusion with 

lysosome and late endosomes has also been observed (145). SifA is required for the 

formation of Sifs (Salmonella-induced filaments) which maintain the integrity of the SCV 

membrane and establish an optimal environment for Salmonella replication (12, 166). 

Similar to SPI-1, SPI-2 initiates actin polymerisation that leads to the formation of an actin 

meshwork around the SCV, that also contributes to the integrity of the SCV membrane 

(128, 129). In order to survive, SPI-2 effector proteins have to evade both the innate 

immune system by avoiding respiratory burst (reactive oxygen and nitrogen intermediates) 

and acidification (55, 200), and the adaptive immune system by inhibiting antigen 

presentation through MHC class I and II to T cells (193). Another function of the SPI-2 is 

to induce delayed macrophage death by apoptosis. The effector proteins responsible for 
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this activity have not yet been identified, but they facilitate bacterial colonization of the 

spleen and the liver, either by releasing bacteria upon lysis or apoptotic cells by 

neighbouring macrophages (198). 

 

 
Fig. 6. Schematic representation of host-pathogen interactions during pathogenesis of Salmonella spp. 

infections. SPI-1 function is required for the initial stages of salmonellosis, i.e. entry of Salmonella into non-

phagocytic cells by active penetration into the gut epithelium. SPI-1 also mediates fluid and electrolyte 

accumulation, and inflammation in the intestinal lumen that lead to diarrhoea and consecutive shedding of 

bacteria. Finally, SPI-1 is responsible for secretion of pro-inflammatory cytokines that recruit and attract 

PMNs to the site of infection. In contrast, SPI-2 acts at later stages of infection and is necessary for both 

growth and survival in host phagocytes and for systemic spread into different host organs (Figure remodelled 

from Hansen-Wester et al., 2001). 

 

6.2. Live attenuated Salmonella spp. as oral vaccine carrier for heterologous 

antigens 

 

Avirulent Salmonella spp. have been extensively studied for their capacity to serve as 

vaccine carriers for foreign antigens (19, 21, 46, 63, 112, 124, 177, 187). In this approach, 

Salmonella spp. express and carry recombinant DNA from viral (45, 169), bacterial (86, 
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101, 168), parasitic (26) and even tumoral origin (125, 139). Since Salmonella-based 

vectors are capable of mimicking the infection in a mitigated way, involving colonization 

of the gut wall, restricted replication and blood-spreading, they are able to trigger an 

intense mucosal and systemic immune response that provides both cellular and humoral 

immunity against a wide range of pathogens (38, 76, 79, 144). A prerequisite of attenuated 

vaccines is to ensure safety and prevent unwanted side effects. One of the main problems 

of employing attenuated live Salmonella spp. as an antigen delivery system, is the potential 

risk of reversion to virulence which could compromise its use in people suffering from any 

immunodeficiency. In order to find the optimal balance between attenuation and 

immunogenicity, construction of several safe, genetically stable, defined and non-reverting 

mutants have been performed. This was made possible by the improvement in molecular 

manipulation and knowledge of Salmonella genetics (20). Up to now, many vaccine 

candidates have been engineered by inactivating genes involved in biochemical pathways 

(59, 74, 78, 191), global regulatory systems (35, 154) or virulence (85, 98, 132). Besides, it 

has been shown that two independent and distantly located mutations in a vaccine strain 

may significantly reduce the possibility of reversion to the virulence state (98). An 

additional and controversial problem regarding the use of Salmonella spp. as a vaccine 

carrier could be the potential restriction for repeated administrations with the same 

Salmonella serovar. Some researchers have reported that the immune response to 

heterologous antigens could be compromised when previous exposition to the vaccine 

carrier has existed (5, 102, 162, 203). In contrast, other investigators have shown that pre-

existing anti-vector immunity is able to enhance the specific immune response to 

homologous and heterologous antigens (7, 11, 208).  

 

6.3. The use of T3SS for heterologous antigen delivery 

 

After invasion, Salmonella spp. reside within SCVs. This confinement leads mainly to 

MHC class II-restricted antigen presentation and therefore to peptide-specific CD4 T-cell 

priming (212). In contrast, the ability to generate MHC class I-restricted antigen 

presentation and subsequently a CD8 T-cell stimulation remains limited. In attempt to 

circumvent this problem, Rüssmann et al. have used the T3SS to target heterologous 

antigens into the cytosol of APCs, resulting in an efficient CD8 T-cell induction (169). The 

first type III effector protein used as a carrier molecule to induce an antigen-specific CD8 

T-cell response was the Salmonella protein tyrosine phosphatase (SptP), which was fused 
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to the immunodominant CD8 epitope of the nucleoprotein from the murine lymphocytic 

choriomeningitis virus (LCMVNP118-126) or the influenza virus (IVNP366-374), respectively 

(169). However, the use of SptP to deliver foreign antigenic peptides to the MHC class I 

presentation pathway was restricted to small protein fragments of 45-55 amino acids (169). 

Because a versatile antigen delivery system should be capable of targeting large protein 

fragments derived from diverse pathogens, our laboratory has focused its research on 

identifying other type III effector proteins that could be used in Salmonella for this 

purpose.  

The best characterized T3SS-protein from Yersinia is the Yersinia outer protein E (YopE), 

a GTPase-activating protein that disrupts eukaryotic cytoskeleton dynamics and inhibits 

phagocytosis by macrophages (13, 153, 165). The 25-kDa YopE molecule contains an N-

terminal secretion sequence of 11-15 amino acids and a translocation domain of at least 50 

residues that can be delivered by the type III secretion machinery of attenuated Salmonella 

(168). 

Our laboratory showed that mice orally vaccinated with a single dose of attenuated              

S. typhimurium expressing the translocated YopE1-138 fused to immunodominant CD8 

epitopes of L. monocytogenes p60217-225 (murein hydrolase) or LLO91-99 (listeriolysin) 

revealed high numbers of IFN-γ-producing cells reactive with p60217-225 and LLO91-99. This 

CD8 T-cell response was sufficient to protect mice against a challenge infection with wild-

type L. monocytogenes (86, 168). 
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B. THE AIMS OF THIS STUDY 
 

There are conflicting reports concerning the impact of the pre-existing anti-Salmonella 

immunity on the efficacy of Salmonella-based vaccines. For this reason, the goal of this 

work was to: 

 

a) determine whether oral boost immunizations with recombinant S. typhimurium 

expressing translocated YopE/p60 via its T3SS could enhance the p60-specific 

CD8 T-cell response. 

 

b) examine whether anti-listerial immunity induced by prime immunization with 

recombinant Salmonella expressing YopE/p60 contributes to a more rapid 

clearance of the vaccine carrier after subsequent immunizations of mice.  

 

c) analyze whether a short-term colonization of the Salmonella vaccine carrier due to 

anti-vector immunity could prevent an efficient p60-specific CD8 T-cell response. 

 

d) evaluate whether the use of two different Salmonella serovars for prime and boost 

immunizations would circumvent the anti-vector immunity, therefore augmenting 

the frequencies of antigen-specific T cells.  
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C. MATERIALS AND METHODS 

I. MATERIALS 

1. Laboratory equipment and accessoires 

 

All the equipment used for performing this work is mentioned below. 

 
Table 3. Equipment used in this work. 

Equipment Type Company 

Analyticscale Kern 440-33 Sartorius, Gottinga, Germany 

Cell strainer 70 µm Nylon 
Becton Dickinson, Heidelberg, 

Germany 

Eppendorf 5810R Eppendorf, Hamburg, Germany 

Sorvall super T-21 Sorvall, Langenselbold , Germany 
Centrifuge 

 
Eppendorf 5417C Eppendorf, Hamburg, Germany 

Centrifugal filter devices Amicon ultra 14 ml cut off Millipore, Schwalbach, Germany 

Falcon 50 ml, polypropylene 

conical tube 

Becton Dickinson, Heidelberg, 

Germany 

Falcon 15 ml, polypropylene 

conical tube 

Becton Dickinson, Heidelberg, 

Germany 
Culture tube 

Falcon 14 ml, polypropylene 

round-bottom tube 

Becton Dickinson, Heidelberg, 

Germany 

CO2-Incubator Cytoperm 2 Heraus, Hanau, Germany 

Electrode  Assembly 
Mini-PROTEAN II 

Power-Pac 200 
Bio-rad, Munich, Germany 

Electroblot apparatus Trans-Blot Bio-rad, Munich, Germany 

Electrophoresis chamber  Peqlab, Erlangen, Germany 

Electroporation 

apparatus 
Gene pulser II Bio-rad, Munich, Germany 

Electroporation cuvette  Bio-rad, Munich, Germany 

Freezer Profi line Liebherr, Bulle, Switzerland 
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Equipment Type Company 

Fridge Profi line Liebherr,Bulle , Switzerland 

Heat block TR-L 288 Liebisch, Bielefeld, Germany 

Homogenisators 10 ml and 30 ml Wheaton, Millville, USA 

Homogenisator machine MM 2000 Retsch, Wuppertal, Germany 

Incubator Function line Heraus Instruments, Hanau, Germany 

Incubator with shaker Certomat BS-1 
B.Braun Biotech International, 

Melsungen, Germany 

Laminar flow UVF 6.18.S 
BDK, Sonnenbühl-Genkingen, 

Germany 

Microscope Axiovert 25 Zeiss, Jena, Germany 

Microscope Light microscope (slides) Zeiss, Jena, Germany 

Microwave  
LG Electronics Deutschland GmbH, 

Willich, Germany 

Magnetic stirrer RCT basic Ika Labortechnik, Staufen, Germany 

pH-meter Accumet basic Fisher Scientific, Schwerte, Germany 

PCR cycler Gene Amp System 9700 
Perkin Elmer Applied Biosystems, 

Darmstadt, Germany 

Pipette 
10 µl, 100 µl and 1000 µl 

Research 
Eppendorf, Hamburg, Germany 

Pipette 20 µl and 200 µl Gilson, Bad Camberg, Germany 

SDS-PAGE apparat PROTEAN II Bio-rad, Munich, Germany 

Silent screen plate 
96 well clear w/o membrane lid 

byodime B 
Nalgen Nunc, Wiesbaden, Germany 

Spectrophotometer Spectronic 20 
Spectronic instruments, Rochester, 

USA 

Speedvac DNA120 
Savant Thermo Electron, 

Langenselbold, Germany 

Laminar Flow  
BDK, Sonnenbühl-Genkingen, 

Germany 

Syringe 10 ml B.Braun, Melsungen, Germany 

Syringe filters Acrodisc 25 mm PALL, Ann Arbor, U.S.A 

Thermomixer Comfort Eppendorf, Hamburg, Germany 

Transiluminator  Bio-Rad, Munich, Germany 

Vortex apparatus Vortex-2 Genie G-560E 
Scientific industries si, Bohemia, 

N.Y., USA 
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Equipment Type Company 

Water bath WB/OB7-45 Memmert, Schwabach, Germany 

Orbital shaker OMV ROM 
Fröbel Labortechnik, Lindau, 

Germany 

 

2. Chemicals  

 

Reagents were purchased from the following companies: 

Becton Dickinson (Heidelberg, Germany), Biozym (Hameln, Germany), Boehringer 

(Mannheim, Germany), Difco (Detroit, USA), Gibco (Gaitersburg, USA), Merck 

(Darmstadt, Germany), Sigma-Chemie (Steinheim, Germany), Seromed-biochrom (Berlin, 

Germany), Serva (Heidelberg, Germany), Fluka (Steinheim, Germany), Roth (Karlsruhe, 

Germany), PAN Biotech (Aidenbach, Germany), ICN Biomedicals (Aurora, Ohio, USA). 

 

3. Commercial kits 

 

The Commercial kits, termed below, were used for DNA purification. 
 

Table 2. Commercial Kits for DNA purification. 

Kit Company 

DNAsy Tissue Kit Qiagen, Hilden, Germany 

Qiagen Spin Miniprep Qiagen, Hilden, Germany 
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II. METHODS 

1. Bacteria and plasmids 

 

1.1. Bacterial strains 

 

The genotype and the source of the bacterial strains and plasmids used in this work are put 

down on a list in the following tables. 

 

Table 4. Strains used in this study. 

Organism Strain Description Resistance Source/Reference 

Salmonella enterica 

serovar 

Typhimurium 

SB824 ∆aroΑ sptP::KanR Kanamycin 
Rüssmann et al., 

1998 

Salmonella enterica 

serovar Dublin 
BRD620 ∆aroA ∆aroD 

 
Roberts et al., 1999 

Sv1/2a 

EGD 
Wild type 

 
Hess et al., 1996 

Listeria 

monocytogenes 
10403s Wild type 

 Laboratory Busch, 

TU, Munich, 

Germany  

Κ6060 

araD139 ∆ (ara-leu)7697 ∆lacX74 

∆phoA20 galK galE recA1 rpsE 

argE (Am) rpoB thi 

 
Stratagene, La Jolla, 

USA 

TOP10 

F-,mcrA, ∆(mrr-hsdRMS-

mcrBC), 

Φ80lacZ∆M15, ∆lacX74, recA1, 

araD139, ∆(ara-leu)7697, galU, 

galK, rpsL, (StrR), endA1, nupG 

Streptomycin 

Invitrogen, 

Karlsruhe, Germany 

 
Escherichia coli 

SCS110 

rpsL (Strr) thr leu endA thi-1 lacY 

galK gal Tara tonA tsx dam dcm 

supE44 ∆(lac-proAB) [F’ traD36 

proAB laclq Z∆M15] 

Streptomycin 
Stratagene, La Jolla, 

USA 
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1.2. Plasmids 
 

Table 5. Plasmids used in this study. 

Plasmid Promoter Resistance Plasmid-encoded protein Source/Reference 

pHR241 lac Ampicillin SycE,YopE1-138/p60130-477/M45 
Rüssmann et al., 

2001 

pHR231 lac Ampicillin SycE,YopE1-138/LLO51-363/M45 
Rüssmann et al., 

2001 

 

2. Bacterial cultivation and storage conditions 

 

2.1. Media 

 

The following broths and agars were used for bacterial cultivation and storage.  

After their preparation, they were immediately sterilized by autoclave (121ºC and 1 bar for 

20 minutes). 
 

Table 6. Broth composition used in this work. 

Broth Components Source 

Luria-Bertani (LB) medium  

10 g          Bacto tryptone 

5 g            Yeast extract 

5 g            NaCl 

Adjust to 1 l H2Odest. and to pH 7.4-7.6  

with NaOH 

Miller, 1972  

0.3M NaCl LB medium 

10 g          Bacto tryptone 

5 g            Yeast extract 

17.5 g       NaCl 

Adjust to 1 l H2Odest. and to pH 7.4-7.6 

with NaOH 

Leclerc et al., 1998 

BHI medium 

52 g         Brain-Heart-Infusion (BHI) 

Adjust to 1 l H2Odest. and to pH 7.4-7.6  

with NaOH 

Fluka, Steinheim, 

Germany 

Peptone broth 

20 g/l      Peptone   

50 ml      Glycerol  

Adjust to 1 l LB medium 
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Table 7. Agars used in this work. 

Agar Composition Source 

Luria-Bertani agar 

10 g        Bacto tryptone 

5 g          Yeast extract 

5 g          NaCl 

15 g        Agar 

Adjust to 1 l H2Odest. and to pH 7.4-7.6  

with NaOH 

Miller, 1972 

MacConkey agar CM7 

20 g/l      Peptone 

10 g/l      Lactose 

5 g/l        Bile salts 

5 g/l        NaCl 

0,075 g/l Neutral red 

12 g/l      Agar 

Adjust to pH 7.4-7.6 with NaOH 

Oxoid, Wesel, 

Germany 

 

 

2.2. Antibiotics 

 

Antibiotics were added to broths and agars to select the different bacterial strains. The 

addition of antibiotic in broths was applied just before preparation of the culture and in the 

case of agars was added before the agar solidified. The concentrations and solvents used 

for antibiotics are defined in Table 8. All antibiotics were prepared under the flow and 

were sterilised through syringe filters (0.45 µm) (Pall corporation, Ann Arbor, USA).  
 

Table 8. Antibiotics used in this work. 

Antibiotic Abbreviation Solvent 
Stock solution 

mg/ml 

Final concentration 

µg/ml 

Ampicillin Amp H20dest. 100 100 

Kanamycin Kan H20dest. 50 50 

Streptomycin Sm H20dest. 100 100 
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2.3. Cultivation and storage conditions 

 

S. typhimurium, S. dublin, L. monocytogenes and E. coli were cultured aerobically in LB 

broth for 12-16 hours at 37ºC and 200 rpm. Overnight cultures were always fresh prepared 

and when required, antibiotics were included in their appropriate concentrations. 

For bacterial storage, a single colony was picked and transferred into 10 ml liquid media. 

Cultures were grown overnight with the aforementioned conditions and on next day, they 

were centrifuged at 4000 rpm (3220 rcf) and 4ºC for 10 minutes. Bacterial pellets were 

resuspended with 2 ml peptone broth under the sterile bank. The bacteria were stored at         

-80ºC. 

 

3. Molecular biological methods 

 

3.1. Isolation of genomic DNA 

 

The isolation of genomic DNA from Gram-positive bacteria was performed according to 

DNeasy Tissue Kit, Quiagen (Hilden, Germany). 

A single colony of L. monocytogene EGD was cultured in 3 ml LB medium overnight at 

37ºC and 200 rpm. On next day, 1 ml of the overnight culture was centrifuged in a table 

centrifuge at 7500 rpm (6000 rcf) for 10 minutes and by 4°C. Afterwards, the supernatant 

was discarded and the bacterial sediment was resuspended in 180 µl enzymatic lysis buffer. 

The lysis took place at 37ºC for 30 min. 25 µl of 20 mg/ml proteinase K and 200 µl Buffer 

AL were added into the suspension and was mixed by vortexing and incubated at 70ºC for 

30 min. Then, 200 µl EtOH (96-100%) were added to the sample and the sample was 

mixed thoroughly by vortexing. The whole sample was applied into the DNeasy spin 

column and this was placed in a 2 ml collection tube already provided. The sample was 

centrifuged for 1 min at 8000 rpm (6800 rcf) and the flow-through and collection tube was 

discarded. The DNeasy spin column was placed this time in a new provided 2 ml collection 

tube and 500 µl Buffer AW2 were added to the sample. Afterwards, it was centrifuged for 

3 min at full speed to dry the DNeasy membrane. The flow-through and collection tube 

were removed and the DNeasy spin column was placed in a clean 1.5 ml microcentrifuge 

tube. 200 µl Buffer AE were directly pippeted onto the DNeasy membrane and was left for 
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2 min. Finally, the DNeasy membrane was centrifugated for 1 min at 8000 rpm (6800 rcf). 

This step was repeated twice and the elution was stored at -20°C. 

 

3.2. Plasmid isolation 

 

Plasmids were isolated from bacteria using FastPlasmid Mini Kit, Eppendorf (Hamburg, 

Germany) for screening of clones and Qiagen Spin Miniprep Kit, Qiagen (Hilden, 

Germany) for cloning and sequencing. 

According to FastPlasmid Mini Kits, 2 ml of fresh bacterial culture were centrifuged at 

14000 rpm (20800 rcf) for 1 min. The supernatant was removed and the pellet was 

resuspended with 400 µl ICE-COLD Complete Lysis Solution and mixed by constant 

vortexing at the highest setting for a full 30 seconds. Then, the lysate was incubated at 

room temperature for 3 min and transferred to a Spin Column Assembly which was 

centrifugated for 1 min at maximum speed (14000 rpm or 20800 rcf). Subsequently, 400 µl 

of Diluted Wash Buffer were added to the Spin Column Assembly and the Spin Column 

Assembly was centrifugated for 1 min at maximum speed. All the flow-through was 

decanted and it was again centrifugated for 1 min at 14000 rpm (20800 rcf) to dry the Spin 

Column Assembly. Finally, the Spin Column Assembly was placed into a collection tube 

and 50 µl of Elution Buffer were directly added to the center of the Spin Column 

membrane. The Spin Column was centrifuged for 60 seconds at maximum speed and the 

eluted DNA, which was in the collection tube, was stored at -20°C. 

In case we wanted to work with a plasmid for cloning aims, we used Qiaprep Spin 

Miniprep Kit of Qiagen (Hilden, Germany). 1-5 ml overnight cultures were prepared for 

plasmid purification. On next day, the bacterial cultures were centrifugated at 4000 rpm 

(3220 rcf) for 10 min. The supernatant was thrown and the pellet was resuspended with 

250 µl Buffer P1 and transferred to a microcentrifuge tube. 250 µl of Lysis Buffer P2 were 

added and the tube was gently mixed by inverting 4-6 times. The lysis reaction was 

proceeded during 5 min. 350 µl Buffer N3 were added to neutralize the lysis. The tube was 

gently inverted and centrifuged for 10 min at 13000 rpm (17900 rcf). After this step, the 

supernatant was applied into the Qiaprep spin column by pipetting and it was centrifuged 

for 1 min at maximal speed. The flow-through was discarded. Then, the Column was 

washed with 500 µl Buffer PB and centrifuged again for 1 min. The flow-through was 

thrown off. The Column was washed once more by adding 750 µl Buffer PE and was 

centrifugated for 60 seconds. The flow-through was dropped and the Column was 
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centrifugated for 1 min to remove residual wash buffer. Finally, the Spin Column was 

replaced in a clean 1.5 ml microcentrifuge tube. 50 µl H2Odest. were added into the Spin 

Column and were standing for 1 min and afterwards were centrifugated for 1 min. The 

eluted DNA was ready for use or stored at -20ºC. 

 

3.3. Determination of DNA concentration 

 

The quality and concentration of genomic DNA was determined by measuring the 

absorbance at 260/280 nm wavelength in quartz crystal cuvette and by agarose gel  

electrophoresis. 

 

3.4. Agarose gel electrophoresis 

 

DNA molecules were separated by agarose gel electrophoresis according to their molecular 

sizes and conformations. In addition, DNA molecules migrate to the positive pole since 

DNA is negative-loaded. The final concentrations of agarose used for the gels were 

comprised between 0.8% and 1.2% (w/v) depending on the expected fragment size. 

 
Table 9.  50x TAE buffer composition. 

 

 

 

 

 

 

40 ml 50% TAE (see Table 9) in 2 l H2Odest. were required to obtain 1% TAE, which was 

used for the preparation of agarose gel and running electrophoresis buffer. The agarose 

mixture was cooked in the microwave until the solution was transparent and homogeneous. 

Afterwards, 2 µl ethidiumbromid (10 mg/ml) were added to the solution and this mixture 

was applied into the chamber. When the gel solidified, the samples were mixed with ¼vol. 

loading buffer (see Table 10) and were put into the gel slots. As size standard marker was 

used 1Kb Plus Ladder from Invitrogen (Karlsruhe, Germany). 

 

 

Components Quantity 

Tris Base 242 g 

Glacial acetic acid 57.1 g 

0.5 EDTA  100 ml 

H2Odest. Adjust to 1 l and pH 8 
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  Table 10.  4x Loading buffer composition. 

Components Quantity 

Sucrose 40% 

Xylene cyanol 0.25% 

Bromophenol blue 0.25% 

 

The samples migrated at 90V for 1 hour. Afterwards, the agarose gel was displayed in the 

Transiluminator. 

 

3.5. Preparation of competent cells 

 

Competent cells were prepared as described by Hanahan (65). One single colony of E. coli 

or Salmonella spp. was picked up in 5 ml LB broth with its appropriate antibiotic and was 

incubated overnight at 37ºC and 200 rpm. On next day, a 200-500 ml LB broth culture 

from the overnight culture (1:50) was prepared and incubated until OD600nm of 0.6. Culture 

was centrifugated at 4ºC and 4000 rpm (3220 rcf) for 15 min. The following steps were 

performed on ice. All supernatants were discarded and all the sediments were resuspended 

with 20 ml LB medium. Cells were washed twice with 20 ml H2Odest. and twice with 20 ml 

10% glyclerol in H2Odest.. After the washing, the sediment was resuspended with 2-3 ml 

10% glycerol and 70 µl aliquots of the bacterial suspension was put into 1.5 ml Eppendorf 

tubes. All the aliquots were stored at -80ºC. 

 

3.6. Electroporation 

 

Following the standard protocols of Sambrook (170), competent bacterial cells (see chap. 

3.5) were put on ice and mixed with 1-3 µl plasmid DNA. The mixture was transferred into 

an electroporation cuvette and transformed with a BIO-RAD gene pulser II at 1.8 kV, 25 

µF and 200 Ohms. After the electroporation, the mixture was added to 1 ml LB medium 

and incubated for 1 hour at 37ºC and 200 rpm. 100 µl and pellet of transformed bacteria 

were plated on selective agar plates and incubated at 37°C for 12-16 hours. 
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4. Biochemical standard methods 

 

4.1. Protein release 

 

A single colony was picked in 3 ml LB broth with its appropriate antibiotic and the culture 

was grown overnight at 37ºC and 200 rpm. On next day, 10 ml 0.3M NaCl LB medium 

(see Table 6) were inoculated with 500 µl of the overnight culture and incubated until 

OD600nm = 0.6-0.8. Afterwards, the culture was centrifugated at 4000 rpm (3220 rcf) and 

4ºC for 15 min. Two fractions were obtained: the supernatant, which contained the secreted 

proteins and the sediment, which corresponded to the bacterial cells. The supernatant 

fraction was filtrated through a 0.45 µm filter (Pall corporation, Ann Arbor, USA) and 

placed into a new 14 ml polypropylene tube. 1 ml TCA (99.5%) was added to the 

supernatant, mixed by vortexing and left on ice at least for 2 hours. Thereinafter, the 

solution was centrifugated for 30 min at 10000 rpm (11920 rcf) and 4ºC. The supernatant 

was discarded and the sediment was resuspended in 1 ml PBS by a cell scraper. After this,   

4 ml aceton were added. The solution was vortexed and was incubated for 1 hour on ice. 

Then, it was centrifugated again for 30 min at 10000 rpm (11920 rcf) and 4ºC. The 

sediment was resuspended with 1 ml acetone and transferred to a new 1.5 ml eppendorf 

tube. Later on, it was centrifugated at 14000 rpm (20800 rcf) and 4ºC for 3 min. The 

supernatant was carefully removed by aspirating with a narrow pipet tip and the pellet was 

dried for 2 min in a Speedvac and disrupted by pipeting up and down with 50 µl 50 mM 

Tris pH8. 

The sediment fraction of the 10 ml 0.3M NaOH LB medium was resuspended with 1 ml 

PBS and centrifugated for 3 min at 14000 rpm (20800 rcf) and 4ºC. The supernatant was 

removed and the sediment was resuspended with 500 µl 1x Laemmli (see Table 16), which 

lyses bacteria. Both, supernatant and whole cell lysate fraction, were either directly used 

for Western blot analysis or stored at -20ºC. 

 

4.2. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Like DNA molecules, proteins can be as well separated in an electric field through 

electrophoresis (107). The polypeptide molecules are negative-loaded and migrate to the 

positive pole (anode) proportionally to their size and molecular weight. 
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Proteins were treated with Sodiumdodecylsulfate (SDS) and β-mercaptoethanol at 95ºC for 

5 min. β-mercaptoethanol was used to reduce the disulfide bond between cysteine and 

SDS, a negative charged detergent, was necessary to break the secondary-, tertiary- and 

quaternary-structures of the proteins and to impart a negative charge to all proteins in order 

that proteins migrate through the gel based only on the protein size and not on the charge. 

Both substances were components of the protein Loading buffer (see Table 11). 

 
 

Table 11. Components of 5% Loading buffer (SDS reducing buffer). 

Components Quantity 

250 mM TrisCl pH6.8 2.5 ml 

500 mM Dithiothreitol (DTT) 0.8 g 

10% Sodium-dodecyl-sulfate (SDS) 1 g 

50% Glycerol 5 ml 

0.5% Bromphenol blue 0.05 g 

H2Odest. Fill up to 10 ml 

 

 

The preparation of polyacrylamide gels was carried out in Mini protean gel electrophoresis 

chamber. Two glass slides were put one in front of the other at the same height and were 

clamped in the chamber. Afterwards, the chamber was poured with separating gel (see 

Table 13) up to 2 cm under the border of the glasses. 1 ml of 2-butanol was added to 

accelerate the polymerisation. After 1 hour the 2-butanol was removed and the stacking gel 

(see Table 13) was added. The comb was put to form the slots for the samples and was left 

for 30 min. When it was compact, the slots were loaded with the samples and the protein 

marker. 

 

 

Table 12. Quantity of samples and protein marker that was required for the SDS-PAGE. 

 Quantity Loading buffer’s quantity 

Sample 25 µl 6 µl 

Protein marker 5 µl 3 µl 
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     Table 13. Composition of separating gel and stacking gel. 

Components 5% Stacking gel 10% Separating gel 

H2Odest. 2.2 ml 3 ml 

30 % Acrylamide, 0.8% Bisacrilamyde 630 µl 2.5 ml 

4x TrisCl/SDS 940 µl pH6.8 1.9 ml pH8.8 

30% APS 25 µl 50 µl 

TEMED 10 µl 10 µl 

 

 
Table 14. Compositon of 4x TrisHCl/SDS for stacking and separating gel. 

Components 1.5M TrisCl/ 0.4% SDS pH8.8 0.5M TrisCl/ 0.4% SDS pH6.8 

Trisbase 18.2 g 6.05 g 

SDSa) 0.4 g 0.4 g 

H2Odest. Add to 100 ml 
 

Both solutions were adjusted to its correspondent pH with 1N HCl.  
a) SDS was added after having autoclaved the solution.  

 

Finally, the chamber was filled up with 1x Laemmli buffer (see Table 16). Voltage of 50V 

was applied for 30 min at the beginning and was increased to 120V.  

 
Table 15. 10x Laemmli. 

Components Quantity 

Glycine 720.5 g 

Tris base 154.5 g 

SDS 50 g 

H2Odest. 1 l 

 

 
Table 16. 1x Laemmli buffer. 

 

 

 

 

Components Quantity 

10x Laemmli 100ml 

H2Odest. 900ml 
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4.3. Western-blot 

 

According to Towbin (194), when the electrophoresis finished, the polyacrylamide gels 

were taken out of the glass slides and were transferred onto a Whatman filter paper which 

was previously soaked in transfer buffer (see Table 17). The uncovered side of each gel 

was overlaid with a sheet of pre-wetted nitrocellulose membrane and was ensured that air 

bubbles between the gel and the membrane were excluded. Another Whatman filter paper 

was laid over the membrane. Afterwards, pre-wetted sponges were added at both sides 

forming a sandwich. The sandwich was placed in a plastic support, which was inserted into 

a MiniTrans-blot Electrophoretic Transfer Cell containing Transfer buffer (see Table 17). 

The transfer took place for 90 min at a constant current of 0.3A. 

 
        Table 17. Transfer buffer. 

Components Quantity 

Trisbase 9.09 g 

Glycine 43.2 g 

Methanol 600 ml 

H2Odest. Fill up to 3 l 

 

After the transfer, the nitrocellulose membrane was blocked by incubating with 30 ml 

Blocking buffer (see Table 18) for 30 min at room temperature. Then, the Blocking buffer 

was removed and the primary antibody (anti-M45) (see Table 19) was added for 1 hour. 

The membrane was washed three times for 10 min with Wash buffer (see Table 18) and 

then was incubated for 1 hour at room temperature with the secondary antibody (Goat anti-

mouse IgG (H+L) horseradish peroxidase) (see Table 19). The membrane was washed 

three times as described above and was developed using a chemiluminescence kit (Super 

Signal® West Pico, Pierce, Illinois, USA). The signals were detected using Kodak films. 

 
       Table 18. Blocking/Wash buffer. 

Components Quantity 

PBS 500 ml 

Tween 20 1 ml 

Dry milk powder 15 g 
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Table 19. Antibodies used for Immunoblot. 

Antibody Type Origin Concentration Source 

Anti-M45 Monoclonal Mouse 1:1000 
Genovac, Freiburg, 

Germany 

Goat anti-mouse IgG 

(H+L) Horseradish 

peroxidase 

Monoclonal Mouse 1:5000 Pierce, Illinois, USA 

 

5. Mice infection experiments 

 

5.1. Mice 

 

Specific-pathogen-free female BALB/c mice, 6-8 weeks old, were purchased from Harlan-

Winkelmann (Borchem, Germany). For the experiments, mice were housed in groups of 

five under standard barrier conditions in individually ventilated cages (Tecniplast, 

Buguggiate, Italy) and equipped with steel grid floors and autoclaved filter paper or with 

mulch. All mice were kept under specific-pathogen-free conditions (positive-pressure 

cabinet) and were provided with food and water ad libitum. 

Animal experiments were approved by German authorities and performed according to the 

legal requirements. 

 

5.2. Infection of mice 

 

5.2.1. Oral prime immunization with Salmonella spp. 

 

The day before immunization, a single colony of different strains of S. typhimurium or         

S. dublin was picked in 3 ml LB medium with its adequate antibiotic and was incubated 

overnight at 37ºC and 200 rpm. On next day, 1 ml of the o/n culture was inoculated in 50 

ml 0.3M NaCl LB medium (1:50) and incubated until OD600 of 0.6-0.8. In previous 

experiments the correlation between OD600nm and CFU was determined. According to this 

correlation, a defined volume of culture was taken and centrifugated at 4000 rpm (3220 

rcf) and 4ºC for 15 min. The bacterial sediment was resuspended with PBS, pH 7.4. Each 
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mouse was orally prime-immunized with 5x108 Salmonella spp. in 50 µl PBS. Inoculum 

was determined by plating serial dilutions of bacterial suspension on LB plates with 

selective antibiotic. The plates were incubated overnight at 37ºC and the CFU was 

determined on next day. 

 

5.2.2. Boost immunization with Salmonella spp. 

 

Boost immunizations were carried out orally at day 30 and 60 after prime immunization. 

The mice dose and procedures were the same as in prime immunization (see chap. 5.2.1). 

 

5.2.3.  Immunization with L. monocytogenes 

 

On the immunization day, 5 ml BHI Medium were infected with 20µl of L. monocytogenes 

10403s. The culture was incubated at 37ºC and 200 rpm until OD600 = 0.5-1. Previous 

experiments had determined the CFU by OD600 = 0.1. Serial dilutions were performed to 

obtain the end concentration of 5x103 for Listeria infection and 1x104 for lethal dose. The 

number of bacteria inoculated to mice was determined by plating the inoculum and its 

dilutions on BHI agar. The plates were incubated at 37ºC overnight and the CFU was 

determined on next day. 

 

5.2.4.  Challenge with L. monocytogenes 

 

Challenge infection was carried out with L. monocytogenes 10403s 6 weeks after prime 

immunization with recombinant Salmonella. Immunized mice were challenged intravenous 

with a lethal dose of 1x104/ 200µl. Three days after the challenge, mice were sacrificed and 

the bacterial load was determined in spleens by plating the organs on BHI plates. The 

plates were incubated 16 hours at 37ºC.  
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5.3. Collection of samples from mice 

 

At determined time points post immunization, mice were sacrificed by CO2 asphyxiation 

and samples from the intestinal tract, mesenteric lymph nodes, Peyer’s patches and spleens 

were collected in cold PBS for analysis. 

 

5.3.1. Intestinal contents 

 

Intestinal contents from the cecum of mice immunized with Salmonella spp. were weighed 

before resuspending them in 500 µl of 4ºC PBS, pH 7.4. The numbers of CFU per 1 g from 

intestinal content were determined by plating serial dilutions on MacConkey agar plates 

containing selective antibiotic. 

 

5.3.2. Organs 

 

Mesenterial lymph nodes, Peyer's patches and spleens were aseptically removed from mice 

infected with Salmonella spp. Each organ was put into 2 ml Eppendorf tube with 500 µl 

sterile PBS containing 0.5% Tergitol and 0.5% BSA. Sterile steel balls were added in the 

tubes and were placed in the homogenisator machine. The organs were homogenized for 3 

minutes at 80% intensity and serial dilutions were plated on MacConkey agar and LB agar 

with its appropriated antibiotic. The plates were incubated at 37ºC for 16 hours. The 

number of bacteria was determined as colony forming units (CFU). 

 

6. Immunological methods 

 

6.1. Enzyme-linked immunospot assay (ELISPOT-assay) 

 

The frequency of activated T lymphocytes in mice with attenuated Salmonella spp. was 

determined by IFN-γ-specific Elispot assay. 
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A day before the experiment started, a nitrocellulose-backed 96-well microtiter plate of 

Nalgen Nunc international (Wiesbaden, Germany) was coated with 50 µl Coating buffer 

(see Table 20) and was incubated o/n at 4ºC. 

 
Table 20. Composition of Coating buffer. 

Components Quantity Source 

H2Odest. 4 ml  

2.93 g NaHCO3 / 100 ml H2Odest. 500 µl Merck Kga, Darmstadt, Germany 

1.59 g Na2CO3/ 100 ml H2Odest. 500 µl Merck Kga, Darmstadt, Germany 

Rat anti-mouse IFN-γ-monoclonall 

antibody 

10 µl Clone RMMG-1, Biosource, Camarillo, 

USA 

 

6.1.1. Preparation of single cell suspension 

 

Spleens were aseptically removed from mice and were placed in a falcon tube with 5 ml 

DMEM medium (PAN Biotech, Aidenbach, Germany) with 10% FCS and 1% 

Penicillin/Streptomycin. Spleens were homogenized and filtered with cell strainer (70µm 

nylon) from Becton Dickinson (Heidelberg, Germany). Afterwards, the cell suspension 

was applied into a new 50 ml Falcon tube and centrifugated at 20ºC and 1200 rpm (290 

rcf) for 10 min. The supernatant was discarded and the sediment was resuspended in the 

bench. 

 

6.1.2. Lysis of erythrocytes 

 

2 ml of 0.15M NH4Cl solution, pH 7.4 (see Table 21) were applied to the sediment and 

were left for 5 min. After the lysis of erytrocytes, 5 ml DMEM medium were added and 

were centrifugated for 10 min at 1200 rpm (290 rcf) and 20ºC. The supernatant was 

removed and the sediment was resuspended. 5 ml T-cell medium (see Table 22) were 

added and the number of cells was determined. 
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     Table 21. Composition of the  0.15M NH4Cl solution for lysis erythrocytes. 

Components Quantity 

NH4Cl 8 g 

H2Odest. 1 l and adjust to pH 7.4 

 

 
Table 22. Composition of T-cell medium. 

Components Quantity Source 

1M HEPES 5 ml Sigma-Aldrich Chemie, GmbH. Steinheim, 

Germany 

Penicillin/Streptomycin 5 ml Seromed Biochrom, Berlin, 

Germany 

Non-essential aminoacids 5 ml Seromed Biochrom, Berlin, 

Germany 

Fetal calf serum 50 ml PAN Biothech, Aidenbach, Germany 

β-mercaptoethanol 500 µl GIBCO, Praisley, Scottland 

Alpha MEM Eagle medium 500 ml PAN Biothech, Aidenbach, Germany 

 

For determining the numbers of cells, 10 µl of cell suspension were added to 90 µl Trypan 

blue solution (0.5%) (Sigma-Aldrich, Irvine, UK). 10µl aliquot of the mixture was put into 

a Neubauer counting chamber and viable cells were counted under a light microscope. 

 

6.1.3. Stimulation with peptides and development of spots 

 

1.5x105 splenocytes in 100 µl per well were stimulated for 6 hours in round-bottomed 

microtiter plates in the presence of a 10-4M concentration of the CD8 T-cell epitope p60217-

225 or LLO91-99  (see Table 23). As positive control, cells were incubated with Concanavalin 

A, a lecithin that stimulates unspecifically T cells. As negative control, cells were only 

incubated with T-cell medium. After 6 hours incubation, 100 µl of each probe were 

transferred to Elispot (Nitrocellulose) plates and were incubated for 12-18 hours. On next 

day, the wells were washed ten times with Wash buffer (see Table 25) and were incubated 

with Biotin-labeled rat anti-mouse IFN-γ mAb (clone XMG1.2; Pharmingen, San Diego, 
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USA) (see Table 24) for 2 hours at room temperature. Then, the plate was washed five 

times with Wash buffer and incubated with Horseradish peroxidase-streptavidin conjugate 

(Dianova, Hamburg, Germany) for 2 hours at RT. Thereafter, the wells were washed again 

5 times and were developed with a Dye solution (see Table 26) for 30 min at RT. The 

reaction was stopped with tap water. The wells were dried and the spots were counted. 

 
Table 23.  p60 and LLO T-cell epitopes. 

Peptide Type Sequence Source 

p60217-225 CD8 KYGVSVQDI Jerini Biotools, Berlin, Germany 

LLO91-99 CD8 GYKDGNEYI Jerini Biotools, Berlin, Germany 

 

 
Table 24. Antibodies used for ELISPOT. 

Antibody Clone Origin Concentration Source 

Anti-IFN-γ RMMG-1 Mouse 1:500 
Biosource, Sollingen, 

Germany 

Biotin-coupled-

anti-IFN-γ 
XMG1.2 Mouse 1:500 

Pharmingen, Hamburg, 

Germany 

 

 
        Table 25. Composition of Wash buffer. 

Composition Quantity 

PBS 500 ml 

Tween 20 1.25 ml 

 

 
Table 26. Composition of Elispot Dye solution. 

Composition Quantity Source 

DMF 2.5 l Merck, Darmstadt, Germany 

AEC 1 tablet Sigma-Aldrich Chemie, Steinheim, Germany 

50 mM Natriumacetate 47.5 ml Roth, Karlsruhe, Germany 

30% H2O2 25 µl Merck, Darmstadt, Germany 
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7. Statistical analysis 

 

The statistical significance of the results was checked with the non-parametric Tukey 

multiple comparison test at the 0.05 significance level. All tests were performed using 

WINKS statistical analysis software (Texasoft, Cedar Hill, USA). 
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D. RESULTS 
 

Our laboratory has reported that the single oral immunization of mice with recombinant               

S. typhimurium expressing translocated Yersinia outer protein (YopE) fused to the 

immunodominant antigen p60 or LLO from L. monocytogenes results in a strong induction 

of p60- or LLO-specific CD8 T cells and confers protection against a lethal wild-type 

Listeria challenge infection (86, 168). 

There are conflicting reports concerning the impact of prior vector priming on the 

immunogenicity of recombinant Salmonella-based vaccines. Some data indicated that prior 

exposure to Salmonella enhanced antibody responses to a foreign antigen delivered orally 

by Salmonella (7, 208). These findings were contradicted by studies reporting that prior 

exposure to Salmonella can dramatically reduce serum antibody responses to a foreign 

antigen (5, 102, 162, 203). However, the first goal of the present study was to determine 

whether (i) oral boost immunizations result in an enhanced p60-specific CD8 T-cell 

response and whether (ii) anti-listerial immunity induced by the first immunization with 

recombinant Salmonella expressing YopE/p60 contributes to a more rapid clearance of the 

vaccine carrier after subsequent immunizations of mice.  

 

1. Influence of boost immunizations on the antigen-specific CD8 T-cell induction 

 

For this study, the pWSK29 derivative plasmid pHR241 was employed. Plasmid pHR241 

is a low-copy-number expression vector that encodes SycE, the specific chaperone of 

YopE, the N-terminal translocation domain of YopE (YopE1-138) and the p60 murein 

hydrolase of L. monocytogenes. The p60130-477 fragment bears an amino acid exchange in 

the cystein 396 for alanine to avoid any bacterial cell-lysing activity (216). The chimeric 

protein was tagged at the C-terminus with 18 amino acids of M45 

(MDRSRDRLPPFETETRIL), which is derived from the E4-6/7 protein of adenovirus. 

The transcription of the hybrid yopE gene fusion is controlled under the lac promoter, 

which is constitutively active in Salmonella. 
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Fig. 7. Scheme of plasmid pHR241. Plasmid pHR241 bears the genetic information for SycE, the specific 

chaperone of YopE, the translocated chimeric YopE1-138 fused to p60130-477(cys→ala) and the epitope-tag 

M45. Transcription of the gene fusion is achieved under the control of the lac promoter, which is 

constitutively active in Salmonella. 

 

Plasmid pHR241 was transformed into S. typhimurium SB824 and S. dublin BRD620 by 

electroporation. Strain SB824 (169) was engineered by introducing the sptP::Kan mutant 

allele from strain SB237 (95) into the aroA mutant strain SL3261 (74) by P22HTint 

transduction. Strain BRD620, an aroA aroD mutant, was kindly provided by Mark Roberts 

(162).  

 

1.1. Determination of colonization and persistence of S. typhimurium SB824 

(pHR241) in BALB/c mice after single oral application 

 

We evaluated the ability of the attenuated strain SB824 (pHR241) to colonize and persist 

in murine organs after oral administration. Strains with mutations in the prechorismate 

pathway (aro mutants) are defective in the production of aromatic compounds including 

(aromatic) amino acids, which are essential for bacterial growth. Aromatic Salmonellae 

mutants have been found to be highly attenuated in mice (74). For this investigation, 

BALB/c mice were orally immunized with 5x108 CFU of SB824 (pHR241). On days 7, 14, 

and 21 mice were sacrificed and the number of bacteria present in Peyer's patches and 

spleens was determined by viable count (see Fig. 8). Seven days after the orogastric 

inoculation, bacteria were recovered from Peyer's patches and spleens (6x102 and 4x102 

CFU, respectively). By day 14 post administration, bacteria were still present in both 

organs. However, the amounts of SB824 (pHR241) were significantly decreased as 

compared to day 7 after inoculation (4x101 CFU in spleens and 1x101 CFU in Peyer’s 

patches). By day 21 post immunization, the mutant strain was almost undetectable in 

spleens and totally cleared from Peyer's patches. Bacteria could not be reisolated anymore 

from these organs on day 28 after oral administration (data not shown).  
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Fig. 8. Time course of colonization and persistence of S. typhimurium SB824 (pHR241) in mice organs. 

BALB/c mice were orally immunized with 5x108 CFU of SB824 (pHR241). On days 7, 14, and 21 post 

infection mice were killed and viable bacteria were determined as CFU in spleens and Peyer's patches. The 

results and standard deviations from 15 individual mice are indicated. 

 

1.2. Time course of colonization of recombinant Salmonella strains after boost 

immunizations 

 

BALB/c mice were orally immunized one, two, or three times with the attenuated                   

aroA mutant strains SB824 or SB824 (pHR241) expressing chimeric YopE1-138/p60130-

477/M45 (168), and the kinetics of colonization and persistence of the bacteria in vivo were 

investigated. The immunization and sampling schedule is shown in Fig. 9. The time course 

of colonization was determined by counting the numbers of viable bacteria, as CFU, in the 

cecum, mesenteric lymph nodes, and spleens on days 2, 4, and 7 after the respective oral 

immunization. 
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Fig. 9. Immunization, sampling and Elispot schedule. BALB/c mice were orally immunized at the days 

indicated (0, 30, and 60). Samples of the cecum, mesenteric lymph nodes, and spleens were collected and 

analyzed for the presence of Salmonella 2, 4, and 7 days after the respective immunizations. Elispot assays 

were performed on days 30, 60, and 90.  

 

The results are summarized in Fig. 10. Two days after the first oral immunization, both 

strains colonized the intestine but were not detectable in mesenteric lymph nodes and 

spleens (see Fig. 10A). The time course of colonization of both strains, SB824 and SB824 

(pHR241) was progressive, with dissemination of the bacteria into mesenteric lymph nodes 

on day 4 post immunization, and into spleens on day 7 post immunization, respectively 

(see Fig. 10A). Surprisingly, the colonization profiles of both strains did not differ 

significantly, indicating that the plasmid-mediated expression of hybrid YopE/p60/M45 

did not diminish Salmonella´s ability to persist in the host. It is noteworthy that pHR241 

was remarkably stable in vivo, with >97% of the bacterial population retaining the 

recombinant plasmid 7 days after immunization (data not shown).  

Two days after the second oral immunization (day 32), both strains colonized the cecum 

and were already detectable in mesenteric lymph nodes and spleens at comparable levels 

(see Fig. 10B). Salmonella disseminated faster into the latter two organs as compared to 

the time course of dissemination after the first immunization (see Fig. 10A). SB824 and 

SB824 (pHR241) were also present in intestines, mesenteric lymph nodes, and spleens four 

days after the second immunization (day 34) (see Fig. 10B). However, by day 37, all mice 

had cleared both recombinant strains indicating an efficient Salmonella-specific immune 

response. 
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Fig. 10. Time course of colonization and persistence in mice organs. Mice were orally immunized with 

either S. typhimurium SB824 (pHR241) expressing YopE/p60 (filled bars) or SB824 (open bars). A) Mice 

received a single immunization on day 0. Two, 4, and 7 days later mice were killed and the numbers of 

bacteria present in cecum, mesenteric lymph nodes and spleens were determined as CFU. B) Mice received a 

prime immunization on day 0 and a boost immunization on day 30. On days 32, 34, and 37 mice were killed 

and the numbers of bacteria present in the respective organs were determined as CFU. C) Mice received a 

prime immunization on day 0 and two boost immunizations on days 30 and 60. On days 62, 64, and 67 mice 

were killed and the numbers of bacteria present in the respective organs were determined as CFU. The results 

and standard deviations of 15 individual mice per group are indicated. Comparing same time points, values 

for SB824 and SB824 (pHR241) do not differ significantly (P > 0.05). 
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Two days after the third oral immunization (day 62), both strains colonized the intestine 

but were not detectable in mesenteric lymph nodes and spleens (see Fig. 10C). Salmonella 

was rapidly cleared on the following days by all mice, thus preventing further 

dissemination. By day 64 and day 67, SB824 and SB824 (pHR241) could not be recovered 

from any organ investigated in this study. 

Taken together, at a given time point post inoculation, no significant differences in the 

ability of both Salmonella strains to colonize, disseminate and persist in various mouse 

organs were observed. Particularly after the third immunization, mice revealed a rapid 

clearance of the vaccine carrier strains within 4 days.  

 

1.3. CD8 T-cell responses after boost immunizations 

 

Recently, we have used the p60 protein of L. monocytogenes as a model antigen for the 

construction of hybrid YopE proteins to be delivered by the Salmonella-T3SS because the 

p60 protein is remarkable conserved among all Listeria species (17, 86, 168). After 

invasion of host cells and the escape from the phagosome, Listeria constitutively secretes 

the murein hydrolase p60 (157). Subsequently, p60 is directed to the MHC class I antigen 

processing pathway, leading to presentation of antigen-derived peptides to CD8 T cells 

(148). Analysis of T cells from Listeria-infected BALB/c mice revealed that the 

immunodominant listerial nonamer peptide p60217-225 is presented to cytotoxic CD8 T 

lymphocytes in the context of the H2-Kd MHC class I molecule (147, 148). The previously 

described low-copy-number plasmid pHR241 (see Fig. 1) bears the genetic information for 

a YopE/p60 hybrid protein (168). The N-terminal 138 amino acids of YopE containing the 

secretion and translocation domains (175, 184) were fused to p60130-477 and the resulting 

chimeric protein was tagged at its C-terminus with an adenoviral M45 epitope (141). 

Constitutive expression of the respective gene fusion led to the production of a hybrid 

protein that was shown to be translocated into the cytosol of macrophages by                      

S. typhimurium (168). Furthermore, it was demonstrated that a single oral immunization 

with an attenuated Salmonella aroA mutant strain expressing translocated YopE/p60 

resulted in the induction of a p60-specific CD8 T-cell response and animal protection 

against a virulent L. monocytogenes challenge (168, 202).  
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Fig. 11. Frequency of p60-specific CD8 T cells in spleens of mice orally immunized with                         

S. typhimurium strain SB824 (pHR241) expressing translocated YopE/p60. Mice received either a single 

(prime) immunization (filled bars) on day 0, a prime immunization and a boost immunization on day 30 

(hatched bar), or a prime immunization and two boost immunizations on days 30 and 60 (open bar). T cell 

frequencies were determined by Elispot assay. The frequencies of cells reactive with p60217-225 are shown as 

the number of reactive cells per 105 splenocytes. The standard deviations of three cultures from 10 individual 

mice per group are indicated. Asterisks indicate values that differ significantly (P < 0.05) from that of mice 

sacrificed on day 30 (filled left bar). 
 

The question was asked whether boost immunizations on day 30 and day 60 after prime 

immunization could augment the frequency of antigen-specific CD8 T cells. The frequency 

of p60217-225-specific CD8 T cells was calculated as the number of IFN-γ spots generated 

per 1x105 spleen cells in the presence of the corresponding synthetic peptide. Mice 

immunized with a single dose of SB824 (pHR241) translocating YopE/p60 revealed high 

numbers of IFN-γ-producing cells reactive with p60217-225 30 days after inoculation (see 

Fig. 11, filled left bar). In comparison, the frequency of p60217-225-specific CD8 T cells was 

significantly lower in the same group of mice 60 days after immunization (see Fig. 11, 

filled middle bar). Mice that had received a second immunization on day 30 did not show 

significant higher numbers of antigen-specific CD8 T lymphocytes by day 60 (see Fig. 11, 

hatched bar) as compared to mice that were immunized with a single dose (see Fig. 11, 

filled middle bar). A further but not significant decline of p60217-225-specific CD8 T cell 
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frequencies was found in all mice 90 days after prime immunization. Thus, even a third 

immunization (see Fig. 11, open bar) on day 60 could not enhance the p60-specific CD8 T-

cell response as compared to mice that had obtained only the prime immunization (see Fig. 

5, filled right bar). 

Taken together, mice orally immunized with a single dose of SB824 (pHR241) reached the 

highest numbers of IFN-γ−producing cells reactive with p60217-225 on day 30 post 

immunization. After this time point, the frequencies of p60217-225-specific CD8 T cells were 

declining despite mice received one and two boost immunizations. 

 

2. Influence of short-term colonization on CD8 T-cell priming 

 

As demonstrated above, we found that the ability of recombinant Salmonella to colonize 

the intestine, mesenteric lymph nodes, and spleen were markedly impaired after boost 

immunizations probably due to anti-vector immunity. 

 

 
Fig. 12. Immunization, sampling and Elispot schedule. Two groups of BALB/c mice were orally 

immunized on day 0 with either SB824 (immunization group A) or with SB824 (pHR241) (immunization 

group B). On day 30, both groups of mice were boost-immunized with SB824 (pHR241) and by day 60, 

Elispot assays were carried out for the purpose of determining the frequency of p60217-225-specific CD8 T 

cells. Samples of cecum, Peyer’s patches, mesenteric lymph nodes and spleens were collected and analyzed 

in group A for the presence of viable Salmonella 1, 4, 6, and 7 days after the second immunization.   
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In a next set of experiments, we were interested to identify, whether a short-term 

colonization is able to induce a p60217-225-specific CD8 T-cell response. Therefore, two 

groups (A and B) of BALB/c mice were prime immunized with 5x108 CFU of either 

SB824 or SB824 (pHR241), respectively (see Fig. 12). 

By day 30, mice of both groups were boost-immunized with SB824 (pHR241) and 30 days 

later, the frequency of p60217-225-specific CD8 T cells was determined by Elispot assay. In 

immunization group A, the colonization and persistence of SB824 (pHR241) was 

investigated on days 31, 34, 36, and 37 (1, 4, 6, and 7 days after the second immunization) 

(see Fig. 13). Results from the respective experiments with mice of immunization group B 

are demonstrated in Fig. 10B. 

 

2.1. Time course of colonization of SB824 (pHR241) after prime immunization 

with SB824 

 

Fig. 13 summarizes the kinetics of colonization and persistence of bacteria in mice of 

immunization group A. Bacteria were able to colonize cecum, Peyer’s patches, mesenteric 

lymph nodes and spleens from mice on day 1 post boost immunization. The bacterial load 

in cecum was 1.5x104 CFU. In contrast, few numbers of bacteria were found in the Peyer’s 

patches, mesenteric lymph nodes and spleens. Four days after the second immunization 

(day 34), SB824 (pHR241) was present in all organs investigated. The amount of bacteria 

in Peyer’s patches, mesenteric lymph nodes and spleens was comparable to the numbers of 

bacteria on day 1 post boost immunization. However, the bacterial load in cecum was 

significantly reduced (3 log10 lower). As expected, the colonization and persistence profiles 

of bacteria in these organs were comparable with the amount of bacteria collected in the 

former study after the second immunization with either SB824 or SB824 (pHR241) (see 

Fig. 10B). This confirms that expression of hybrid YopE/p60 by pHR241 does not alter the 

course of colonization and persistence of bacteria in the organs of mice. 

In the experiments described in chapter 1.2, viable SB824 and SB824 (pHR241) were 

analyzed on days 32, 34 and 37 and it was evident that bacteria disappeared from all 

organs between days 34 and 37. To find out the exact time point of bacterial clearance, day 

36 was added to the investigation. By day 6 after boost immunization (day 36), bacteria 

were still detectable in all organs and no significant differences in bacterial loads were 

observed in comparison to day 34. As previously shown in Fig. 10B, on day 37 bacteria 

could not be isolated from the organs investigated.  
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Fig. 13. Kinetics of colonization and persistence in mice organs 1, 4, 6, and 7 days after boost 

immunization. BALB/c mice were prime immunized with the aroA S. typhimurium mutant strain SB824 on 

day 0 and boost-immunized with SB824 (pHR241) expressing YopE/p60 on day 30 (Fig. 12, immunization 

group A). Mice were sacrificed on day 31, 34, 36 and 37. Cecum, Peyer’s patches, mesenteric lymph nodes 

and spleens were removed from mice, homogenized and plated on MacConkey agar with selective antibiotic. 

The viable bacteria were determined as CFU. Columns represent the standard deviation of 15 individual 

mice. 

 

2.2. Impact of 6-days colonization on p60-specific CD8 T-cell induction 

 

It has been shown above that SB824 (pHR241) was only able to colonize and persist in 

mice organs for 6 days after prior exposure to SB824. We asked whether a 6-days 

colonization is sufficient to induce a p60217-225-specific CD8T-cell response. To answer this 

question, two groups of BALB/c mice were immunized on day 0 with either                       

S. typhimurium SB824 (see group A, Fig. 12) or SB824 (pHR241) (group B, Fig. 12). Four 

weeks later, both groups received a second immunization with SB824 (pHR241), 

expressing the hybrid YopE/p60 protein. By day 60, mice were sacrificed and an Elispot 

assay was carried out to determine the frequency of p60217-225-specific CD8 T cells in vivo. 

Mice immunized twice with SB824 (pHR241) translocating YopE/p60 revealed high 

numbers of IFN-γ-producing cells reactive with p60217-225 (see Fig. 14, open bar). In 

contrast, mice that were prime immunized with SB824 and subsequently boosted with 
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SB824 (pHR241) showed significantly lower numbers of p60217-225-reactive CD8 T cells 

(see Fig. 14, filled bar). 

 

 
Fig. 14. Frequency of p60-specific CD8 T cells in spleens of mice after 6-days and 21-days colonization. 

Two groups of mice were prime immunized with either S. typhimurium SB824 (group A, filled black bar) or 

SB824 (pHR241) expressing the hybrid protein YopE/p60 (group B, open bar). On day 30, both groups 

received a second immunization with SB824 (pHR241). By day 60, an Elispot assay was performed. The 

standard deviations from 15 individual mice are indicated. Asterisks show values that differ highly 

significantly (P < 0.001) from that of mice immunized twice with SB824 (pHR241). 

 

In conclusion, this demonstrates that a long-term colonization of the vaccine strain and 

therefore a prolonged display of the heterologous protein leads to a superior induction of 

antigen-specific CD8 T cells. 

 

2.3. Efficacy of short-term versus long-term colonization on vaccine-induced 

protection 

 

To compare the contribution of translocated p60 displayed for 6 days (see Fig. 12, group 

A) versus 21 days (see Fig. 12, group B) on vaccine-induced protection, mice were 

intravenously (i.v.) challenged with 1x104 CFU of L. monocytogenes 10403s 6 weeks after 
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boost immunization with S. typhimurium expressing hybrid YopE/p60 proteins. CFU were 

determined in spleens 3 days after the challenge. Spleens of uninfected mice (negative 

control) and mice of group A (6-days colonization) were colonized with 5.2x106 and 

5.2x105 CFU of Listeria, respectively (see Fig. 15, hatched bar and filled black bar, 

respectively). In contrast, mice of group B (21-days colonization) showed a pronounced 

decrease of the bacterial load in spleens (2.5 x101 CFU) as compared to non-immunized 

mice or mice of group A (see Fig. 15, open bar). The display of translocated p60 for 21 

days led to a similar level of protection as in Listeria-immune mice (positive control) (see 

Fig. 15, open bar and filled grey bar, respectively). 

 

 
Fig. 15. Efficacy of 6-days colonization versus 21-days colonization to induce protective immunity 

against listeriosis in mice orally prime immunized with either S. typhimurium SB824 (group A) or 

SB824 (pHR241) (group B) and boost immunized with SB824 (pHR241).  Positive control mice recieved 

a sublethal intravenous dose of 1x103 CFU of Listeria 6 weeks before the challenge infection (grey filled 

bar). Negative control mice were uninfected (hatched bar). Mice were i.v. challenged with 1x104                  

L. monocytogenes 10403s 6 weeks after immunization. The bacterial load of spleens with L. monocytogenes 

was determined 72 hours post-infection. The standard deviations from 15 individual mice are indicated. 

Asterisks differ significantly form that of negative groups (P < 0.05). 
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In conclusion, mice colonized for 21 days with SB824 (pHR241) were totally protected 

against the lethal  challenge with Listeria in comparison to mice colonized only for 6 days 

with the recombinant Salmonella vaccine strain. In the latter group of mice, the low 

frequency of p60-specific CD8 T cells was not able to confer protection against the 

Listeria challenge infection (see Fig. 14). 

 

3. Use of different Salmonella serovars for prime-boost immunizations 

 

Above it was demonstrated that prior exposure to a S. typhimurium vaccine strain resulted 

in a more rapid clearance of bacteria after the second immunization, thus shortening the 

time of antigen display to 6 days.  

Vindurampulle et al. showed that the oral application of attenuated S. dublin and S. stanley 

strains, harboring mutations in the aroA gene, induced anti-lipopolysaccharide (LPS) 

serum IgG and intestinal IgA antibody titers (203). Structurally, LPS consists of two 

components: a variable, antigenically active polysaccharide (O-antigen) and a highly-

conserved lipid (lipid A). Antibodies directed against the LPS O-antigen confer protection 

to Salmonella infection (81).  

The ambition of our Salmonella-based vaccination strategy is to use recombinant 

Salmonella strains for boost immunizations against the same or a different antigen. In order 

to circumvent the problem of pre-existing immunity to Salmonella, we decided to employ 

two different Salmonella serovars for prime and boost immunizations. According to the 

Kauffmann-White scheme, there are more than 2400 different serovars of S. enterica (80-

82, 115, 179). 

In addition to S. typhimurium strain SB824, we have chosen the S. dublin aroA aroD strain 

BRD620 for our studies (162). S. dublin belongs to serogroup D and expresses the O-

antigens O1, O9 and O12. In contrast, S. typhimurium belongs to serogroup B and bears 

the O-antigens O1, O4, O5 and O12 (109). Despite two common O-antigens, we selected 

these serovars because of the fact that several studies have been published demonstrating 

the effectiveness of S. dublin and S. typhimurium as vaccine carriers in the mouse model 

(30, 74, 121, 156, 163, 183). 
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3.1. In vitro expression and secretion of YopE/p60 by S. dublin BRD620  

 

In a first set of experiments, the ability to express and secrete the hybrid YopE/p60 protein 

was directly compared in S. typhimurium SB824 and S. dublin BRD620. For this purpose, 

bacteria were cultivated in 0.3M NaCl LB medium in order to activate the T3SS of 

Salmonella and to induce protein secretion. Two different fractions were examined by 

immunoblotting for the presence of YopE/p60: (i) the bacterial whole-cell-lysate fraction 

(fraction 1) and (ii) the supernatant fraction containing secreted proteins (fraction 2). The 

chimeric protein was detected by using a monoclonal antibody directed against M45. 

As shown in Fig. 16, S. typhimurium SB824 carrying the low-copy-number vector pHR241 

revealed a detectable amount of YopE/p60 in both, the bacterial lysate and the surrounding 

medium. 

The same amount of hybrid protein was observed in fraction 1 and 2 of S. dublin BRD620 

(pHR241), indicating that both mutant strains express and secrete comparable levels of 

YopE/p60. 

 

 
Fig. 16. Western Blot showing the expression and secretion of hybrid YopE1-138/p60130-477/M45 proteins 

by either S. dublin or S. typhimurium. Both strains were able to express and secrete comparable levels of 

hybrid YopE/p60/M45. Lane 1 represents S. typhimurium SB824 (pHR241) and lane 2 represents S. dublin 

BRD620 (pHR241). Fraction 1 contains the bacterial whole-cell-lysate and fraction 2 contains the proteins 

secreted into the culture supernatant. 
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3.2. Determination of colonization and persistence of S. dublin BRD620 (pHR241) 

in BALB/c mice after single oral application 

 

We were interested in studying the kinetics of colonization and persistence of S. dublin 

BRD620 (pHR241) in mice organs in order to compare them with the colonization and 

persistence profiles of S. typhimurium SB824 (pHR241). Vindurampulle et al. reported that 

a S. dublin aroA mutant was able to colonize and persist in the gut-associated lymphoid 

tissue (GALT) of BALB/c mice for 8 days. From this time point on, bacteria were slowly 

cleared and disappeared from GALT at day 21 (204).  

 

 
Fig. 17. Time course of colonization and persistence of S. dublin BRD620 (pHR241) in intestinal organs 

and spleens. Mice were orally immunized with S. dublin BRD620 (pHR241). Two, 7, 14, and 21 days post 

immunization, mice were killed and cecum, Peyer’s patches, mesenteric lymph nodes and spleens were 

aseptically removed and homogenized. Afterwards, the numbers of bacteria present in respective organs were 

determined as CFU. The standard deviations from 10 individual mice are indicated. 

 

For our study, we orogastrically administered 5x108 CFU of S. dublin BRD620 (pHR241) 

to BALB/c mice. Mice were killed and the abilitiy of colonization was analyzed in cecum, 

mesenteric lymph nodes, Peyer’s patches and spleens on day 2, 7, 14, and 21 post 

immunizations. As demonstrated in Fig. 17, two days after oral immunization, bacteria 

were detected in cecum (3.7x103 CFU), Peyer’s patches (6.5x102 CFU), mesenteric lymph 

nodes (3.6x102 CFU) and spleens (2.2x103 CFU). Five days later (day 7), S. dublin was 
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still present in all organs investigated. However, the recovery rate of BRD620 (pHR241) in 

cecum was two fold lower whereas the colonization in Peyer’s patches, mesenteric lymph 

nodes and spleens showed no differences as compared to day 2. By day 14 after oral 

immunization, bacteria were not detectable in cecum anymore. Nevertheless, bacteria were 

still found in Peyer’s patches, mesenteric lymph nodes and spleens, but in extremely low 

amounts. S. dublin was still present in Peyer’s patches, mesenteric lymph nodes and 

spleens on day 21. The numbers of viable bacteria in these organs were equivalent to the 

numbers on day 14.  

Taken together, these results revealed that the colonization and persistence profiles of            

S. dublin aroA aroD BRD620 (pHR241) are comparable with the profiles of                       

S. typhimurium aroA SB824 (pHR241) (see Fig. 8). 

 

3.3. CD8 T-cell response after a single oral immunization with BRD620 (pHR241)  

 

To investigate whether BRD620 (pHR241) is capable of inducing a p60-specific CD8 T-

cell response, BALB/c mice were orally immunized with a single dose of either S. dublin 

BRD620 (pHR241) or S. typhimurium SB824 (pHR241). The latter strain was used as 

positive control. Thirty days later, the frequency of p60-specific CD8 T cells was 

determined by Elispot assay. As shown in Fig. 18, S. dublin BRD620 (pHR241) was able 

to induce a p60217-225-specific CD8 T-cell response (see Fig. 18, hatched bar). However, 

this response was significantly lower when compared with the response triggered by 

SB824 (pHR241) (see Fig. 18, filled bar). 
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Fig. 18. Frequency of p60-specific CD8 T cells in spleens of mice orally immunized with either                     

S. typhimurium SB824 (pHR241) or S. dublin BRD620 (pHR241). Mice received a single dose of either           

S. typhimurium SB824 (pHR241) (filled bar) or S. dublin BRD620 (pHR241) (hatched bar). On day 30, mice 

were sacrificed and the frequency of cells reactive with p60217-225 was determined by Elispot asssay. The 

standard deviations of 10 individual mice per group are indicated. Asterisks show values that differ highly 

significantly (P < 0.001) from that of mice immunized with S. typhimurium SB824 (pHR241). 

 

3.4. Time course of colonization of recombinant Salmonella strains after 

heterologous boost immunization  

 

For this study, two groups of BALB/c mice were prime immunized with either S. dublin 

BRD620 (pHR241) (see Fig. 19, group A) or with S. typhimurium SB824 (pHR241) (see 

Fig. 19, group B) on day 0. Thirty days later, both groups were boost-immunized with        

S. typhimurium SB824 (pHR241). Mice from immunization group A were sacrificed 2, 4, 

7, and 14 days after this boost immunization (days 32, 34, 37 and 44) for collecting cecum, 

Peyer’s patches, mesenteric lymph nodes and spleens of mice and for analyzing the 

bacterial loads of SB824 (pHR241) in these organs. By day 60, an Elispot assay was 

performed in both groups to determine the frequency of p60-specific CD8 T cells.  
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Fig. 19. Immunization, sampling and Elispot schedule. Mice of immunization group A were prime 

immunized with BRD620 (pHR241), a S. dublin aroA aroD mutant strain, and then boost-immunized with  

S. typhimurium SB824 (pHR241) on day 30. Mice of immunization group B were immunized twice with       

S. typhimurium SB824 (pHR241) and were used as a positive control of the study. On days 32, 34, 37, and 

44, mice of immunization group A were sacrificed to analyze the bacterial loads in cecum, Peyer’s patches, 

mesenteric lymph nodes and spleens. By day 60, an Elispot assay was performed with spleens from mice of 

both groups.  

 

As shown in Fig. 20, two days after the second immunization (day 32), in mice of 

immunization group A, SB824 (pHR241) was present in cecum, Peyer’s patches, 

mesenteric lymph nodes and spleens. The colonization profile at this time was 

indistinguishable from mice of immunization group B (see Fig. 10B). By day 4 post second 

immunization (day 34), all organs investigated revealed bacterial growth of the 

recombinant Salmonella strain. Three days later (day 37), bacteria were cleared from 

cecum, but were still detectable in Peyer’s patches, mesenteric lymph nodes and spleens, 

where they reached a maximum peak. By day 44, bacteria were recovered from Peyer’s 

patches in similar quantities as on days 34 and 37. In contrast, the bacterial load in spleens 

of mice was very low and in cecum and mesenteric lymph nodes the vaccine strain was not 

detectable anymore. 
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Fig. 20. Kinetics of colonization and persistence of S. typhimurium after prime immunization with             

S. dublin BRD620 (pHR241) in murine organs. Mice were orally immunized with S. dublin BRD620 

(pHR241). On day 30, mice were boost-immunized with S. typhimurium SB824 (pHR241). On day 2, 4, 7, 

and 14 post second immunization, mice were sacrificed and cecum, Peyer’s patches, mesenteric lymph nodes 

and spleens were aseptically removed and homogenized. The numbers of SB824 (pHR241) present in 

respective organs were determined as CFU. The results and standard deviations from 10 individual mice are 

indicated. 

 

In conclusion, the application of a heterologous prime-boost protocol (immunization group 

A; priming with S. dublin and boosting with S. typhimurium) resulted in persistence of 

SB824 (pHR241) for at least 14 days after boost immunization. This is a significant 

difference to the results obtained from immunization group B (priming and boosting with 

S. typhimurium) where SB824 (pHR241) was cleared from all organs 6 days after the boost 

immunization. 

 

3.5. CD8 T-cell response after heterologous prime-boost immunization 

 

In further experiments, the question was asked whether a heterologous boost immunization 

could augment the frequency of p60-specific CD8 T cells. For this purpose, two groups of 

BALB/c mice were orally prime immunized on day 0 with either S. typhimurium SB824 

(pHR241) (see Fig. 19, group B) or S. dublin BRD620 (pHR241) (see Fig. 19, group A). 

On day 30, a second dose of S. typhimurium SB824 (pHR241) was orally applied to mice 

of both groups. Mice from group A revealed high numbers of p60217-225-specific CD8 T 
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lymphocytes by day 60 (see Fig. 21, hatched bar). The frequency of p60-specific CD8 T 

cells detected in spleens of mice from group B showed no significant difference (see Fig. 

21, filled bar). It is important to mention that the frequency of p60217-225-specific CD8 T 

lymphocytes in mice of group A was significantly increased as compared to mice that have 

received a single immunization of BRD620 (pHR241) (see Fig. 18).  

 

 
Fig. 21. CD8 T-cell responses after heterologous boost immunization. Mice received a prime 

immunization on day 0 with either S. dublin BRD620 (pHR241) (group A, hatched bar) or S. typhimurium 

SB824 (pHR241) (group B, filled bar). By day 30, both groups of mice were boost-immunized with             

S. typhimurium SB824 (pHR241). On day 60, T cell frequencies were determined by Elispot. The standard 

deviations from 15 individual mice per group are indicated. The P value from mice of group A and group B 

indicates no difference (P > 0.1). 

 

Thus, the application of a heterologous prime-boost immunization protocol using different 

Salmonella serovars augments antigen-specific T-cell induction. This phenomenon is 

probably due to longer colonization and persistence of the heterologous Salmonella 

vaccine strain used for boost immunizations. 
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3.6. Induction of LLO-specific CD8 T cells after heterologous prime-boost 

immunization  

 

As shown above, serovar-specific immunity against a Salmonella vaccine carrier could be 

partially overcome by employing different Salmonella serovars for prime and boost 

immunizations.  

To further assess the reuse of Salmonella-based vaccines in a prime-boost strategy, we 

investigated, whether a heterologous boost immunization could lead to antigen-specific 

CD8 T-cell response against a heterologous antigen different from the one expressed 

during the first immunization. 

For this experiment, plasmid pHR231 was employed. This plasmid encodes the genetic 

information for the YopE-specific chaperone, SycE, the translocated Yersinia outer protein 

(YopE1-138), the listeriolysin O of L. monocytogenes (LLO), and the M45-epitope-tag. The 

N-terminal 50 and the C-terminal 165 amino acids of LLO were deleted to prevent pore-

forming activity in the phagosome (217). LLO51-363 bears residues 91-99, which are 

presented by H2-Kd MHC class I molecules. The transcription of the hybrid yopE gene 

fusion is controlled under the lac promoter which is constitutively active in Salmonella. 

 

 
Fig. 22. Scheme of plasmid pHR231. Plasmid pHR231 bears the genetic information for the specific 

chaperone of YopE, SycE, the translocated chimeric YopE1-138 fused to LLO51-363 and the epitope-tag M45. 

Transcription of gene fusion is achieved under the control of the lac promoter, which is constitutively active 

in Salmonella. 

 

Two groups of BALB/c mice were orally immunized on day 0 with either S. dublin 

BRD620 (pHR241) (see Fig. 23, group A) or with S. typhimurium SB824 (pHR241) (see 

Fig. 23, group B), expressing translocated YopE/p60 (see Fig. 7). Thirty days later, both 

groups of mice received a second dose of S. typhimurium SB824 (pHR231), expressing 

translocated YopE/LLO (see Fig. 22). By day 60, an Elispot assay was performed in order 

to determine the magnitude of LLO91-99-specific CD8 T cells. 
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Fig. 23. Immunization, sampling and Elispot schedule. Two groups of BALB/c mice were orally 

immunized on day 0 with either BRD620 (pHR241) (group A) or with SB824 (pHR241) (group B). On day 

30, both groups of mice were boost-immunized with SB824 (pHR231). On day 60, the frequencies of LLO91-

99-specific CD8 T cells were determined by Elispot assay in both groups. 

 

Our results clearly showed that mice of immunization group A (14-days colonization) were 

able to elicit a prominent LLO-specific CD8 T-cell response (Fig. 24, hatched bar). In 

contrast, mice immunized twice with SB824 (pHR241) (immunization group B) revealed 

significantly lower numbers of IFN-γ-producing cells reactive with LLO91-99 (Fig. 24, 

hatched bar).   

In conclusion, these results confirm that a short-term colonization (6-days colonization) 

results in a weak antigen-specific CD8 T-cell response. Efficient induction of antigen-

specific CD8 T cells against a second heterologous antigen administered during boost 

immunization was only possible when using a heterologous prime-boost immunization 

strategy. 
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Fig. 24. CD8 T-cell responses after heterologous and homologous immunizations with Salmonella 

expressing translocated YopE/LLO. Two groups of BALB/c mice were prime immunized on day 0 with 

either S .dublin BRD620 (pHR241) (hatched bar) and S. typhimurium SB824 (pHR241) (filled bar). On day 

30, both groups were boost-immunized with  S. typhimurium SB824 (pHR231). By day 60, an Elispot assay 

was performed to determine the frequency of LLO91-99-specific CD8 T cells. The standard deviations from 15 

mice per group are indicated. Asterisks indicate values that differ significantly (P < 0.05) from that of mice 

prime immunized with S. dublin and boost-immunized with S. typhimurium. 
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E. DISCUSSION 
  

In recent years, several attenuated pathogens and non-pathogenic commensal 

microorganisms have constituted a solid platform for the design of new live vaccines 

against both homologous and heterologous antigens (41, 114, 124). Bacteria-based 

vaccines seem especially attractive because they confer an effective and long-lasting 

immunity that involve not only the typical humoral response elicited by almost all licensed 

vaccines but also a cellular-mediated immunity (31, 123). Salmonella spp. have received 

particular interest for their potential as homologous and heterologous antigen delivery 

systems for oral immunizations (21, 39, 79, 103). 

 

 
Fig. 25. Scheme of T3SS-mediated secretion and translocation of heterologous antigens by Salmonella. 

Cytosolic delivery of hybrid proteins from the macropinosome or Salmonella-containing vacuole (SCV) 

results in MHC class-I restricted antigen presentation and antigen-specific cytotoxic CD8 T-cell priming. In 

contrast, secretion of heterologous antigens into the macropinosome or SCVs leads to MHC class II-

restricted antigen pathway and antigen-specific CD4 T-cell priming. 

 

It is well known that Salmonella resides within the Salmonella-containing vacuole (SCV) 

after gaining access into eukaryotic host cells. This confinement allows Salmonella to 
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secrete proteins into the macropinosomal compartment, therefore resulting in MHC class 

II-restricted antigen presentation and peptide-specific CD4 T-cell priming (211). In 

contrast, delivery of foreign antigens into the cytosol remains limited, thus avoiding a 

MHC class I-restricted antigen presentation and consequently, complicating the antigen-

specific CD8 T-cell priming. The CD8 T-cell response is of relevant importance against a 

wide range of intracellular pathogens, because it provides resistance and effective 

protection against the infection. In this context, our laboratory has focused its research on 

the development of a new vaccination strategy by using the type III secretion system 

(T3SS) of S. typhimurium as a delivery system for targeting antigens of viral (169) and 

bacterial origin (86, 151, 168) into the cytosol of antigen-presenting cells (APC) (see Fig. 

25). This results in an efficient CD8 T-cell response (169). 

 

It has been demonstrated by our laboratory that the single oral application of a                   

S. typhimurium aroA mutant strain translocating either the chimeric protein YopE/p60 or 

YopE/LLO in a T3SS-mediated fashion triggered an efficient p60- or LLO-specific CD8 

T-cell induction, respectively (86,168). However, the reuse of the same Salmonella serovar 

for boost immunizations may lead to reduced immunogenicity due to the induction of 

specific immune responses directed against the carrier itself. Furthermore, it has been 

shown that oral application of attenuated Salmonella strains harboring mutations in the 

prechorismate pathway induces anti-lipopolysaccharide serum IgG and intestinal IgA 

antibody titers (203). This finding contradicted the original work of Bao and Clements, 

who reported that prior priming with an aroA S. dublin strain potentiates the subsequent 

antibody response against the E. coli LT-B toxin subunit delivered by the same vector (7). 

Likewise, Whittle and Verma found that responses to a MVE (Murray-Valley-encephalitis 

virus) B cell epitope located in the flagellar subunits of an aroA S. dublin strain were 

enhanced in mice previously exposed to the bacterial carrier, although in this case the 

intraperitoneal route of immunization was used (208). In contrast, several other studies 

reported reductions in serum responses in orally immunized mice as a consequence of 

previous exposure to the Salmonella carrier (5, 102, 162, 203). For instance, Roberts et al. 

found that prior exposure to strains of homologous and heterologous serovar reduced the 

immunogenicity and protective efficacy of recombinant Salmonella expressing the 

fragment C of tetanus toxin (162). Consistent with this result is the finding of Kohler et al. 

who reported reduced serum IgG and salivary IgA responses to the hemagglutinin of 

Porphyromonas gingivalis presented by Salmonella in vector-primed mice (102).  
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In addition to these controversial publications, which focused their work on the antibody 

response, no information about the influence of the repeated use of Salmonella vaccine 

carriers on CD8 T-cell responses was available in the literature. A favored approach for 

generating protective CD8 T-cell responses against a number of diseases including AIDS, 

malaria and cancer involves primary vaccination with a DNA vaccine followed by 

boosting with, for example, a recombinant poxvirus (modified vaccinia Ankara (MVA)) or 

adenovirus vector encoding the same immunogen (3, 152, 161, 176). Similar to Salmonella 

as a vaccine carrier, antivirus neutralizing antibody responses generated by priming 

immunizations were able to inhibit effective boosting by the same viral vector (180). 

However, in other studies it was found that co-induction of anti-vector responses during 

priming did not appear to significantly influence the generation of epitope-specific CD8 T-

cell responses following priming or after prime-boost immunizations (61, 215). 

 

The first goal of our study was to investigate whether antigen-specific cytotoxic T 

lymphocytes induced by the Salmonella prime immunization contribute to a more rapid 

clearance of the vaccine carrier after subsequent boost immunizations and whether oral 

boost immunizations lead to an augmented p60-specific CD8 T-cell response. 

First we showed that the aroA S. typhimurium SB824 (pHR241) strain expressing 

translocated YopE/p60 was able to colonize and persist in BALB/c mice at least for 21 

days after the oral prime immunization (see Fig. 8). This result is in line with observations 

published by Dunstan et al. (43) who demonstrated that an aroA S. typhimurium mutant 

was also detectable in Peyer’s patches and spleens for 21 days. In this report, bacteria 

reached a maximum burden of approximately 103 CFU in spleens on day 14 post 

immunization. Furthermore, on day 21 after inoculation the bacterial load in spleens 

declined to approximately 102 CFU. These results showed that the number of viable 

bacteria recovered in these organs were 10-fold higher as compared with our findings. This 

difference in bacterial load might be attributed to the administration doses employed 

(3x1010 CFU versus 5x108 CFU). 

 

Recently, consideration has been given to the possibility that prior exposure to a 

heterologous antigen might compromise the immunogenicity of a multi-valent Salmonella-

based vaccine. It is known that Salmonella invades both major types of APC, macrophages 

and dendritic cells (84, 211). After boost immunizations, existing p60-specific cytotoxic T 
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cells could potentially recognize and subsequently eliminate these cell types infected with 

recombinant Salmonella expressing YopE/p60. Indeed, we could observe a rapid 

elimination of the aroA mutant strain within 7 days after the second and within 4 days after 

the third oral application (see Fig. 10B and 10C). However, this was not attributed to the 

presence of Listeria antigen-specific CD8 T cells because SB824 was cleared as fast as 

SB824 (pHR241). 

 

The observed rapid clearance of the Salmonella carrier after the first and second boost 

immunization could be due to the already preformed immune response against the carrier 

itself. Salmonella infection induces the generation of specific CD4 and CD8 T cells. Both 

T cell populations are important for the control of the primary infection and for the 

protection against secondary infections (18, 136). Infection of mice with S. typhimurium 

also results in a profound antibody response (73, 135). Antibodies, particularly IgM and 

IgA, can block penetration of Salmonella into deeper tissues. Indeed, the injection of a B 

cell hybridoma producing Salmonella-specific IgA has been shown to prevent oral 

infection of mice (130). Further analysis indicated that this protection was probably 

mediated by the inhibition of bacterial adhesion and infection of epithelial cells and M 

cells (131). Our results suggest the presence of a strong antibody-mediated immunity 

induced by two immunizations, because after the third oral administration, bacteria were 

only able to colonize the intestinal lumen. Our data indicate no penetration and systemic 

spreading of bacteria in mice at this time point (see Fig. 10C). 

 

In addition, Fig. 10A and 10B clearly show that the Salmonella vaccine strain revealed a 

more rapid invasion and systemic dissemination after the first boost immunization. A 

possible explanation for this phenomenon might be the recruitment of chemokine receptor 

CX3CR1-positive lamina propria dendritic cells after the first oral application. This cell 

type has been shown to sample luminal antigens as well as entero-invasive pathogens like 

Salmonella via a mechanism distinct from the uptake by M cells, thus contributing not only 

to a faster dissemination but also to a more rapid elimination of bacteria (138). Another 

hypothesis for the rapid bacterial spread from intestine to systemic sites might lie in the 

employment of CD18+ macrophages and dendritic cells by Salmonella. These cells have 

been reported to act as Trojan horses of the host defence (111) 

To date, the possibility to induce enhanced levels of antigen-specific CD8 T cells by oral 

boost immunizations with recombinant Salmonella expressing a chimeric type III protein 
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has not been explored. Our data demonstrate that the frequencies of p60-specific CD8 T 

cells could not be increased after the second or the third oral application (see Fig. 11). 

Most likely, the rapid clearance of the vaccine carrier prevented a significant elevation of T 

lymphocytes. A second possible explanation, as shown by Kursar et al., could be that the 

host immune system controls the magnitude of the antigen-specific immune response 

through regulatory or suppressor CD4+CD25+ T cells (106).  

 

In a next set of experiments, we took advantage of the fact that the anti-vector immunity 

induced after prime immunization led to the elimination of the Salmonella vaccine strain 6 

days after the second immunization (see Fig. 13). We wanted to answer the question 

whether this short-term colonization is sufficient to induce a protective antigen-specific 

CD8 T-cell response. Therefore, mice were exposed to SB824 and subsequently boosted 

with SB824 (pHR241) expressing translocated hybrid YopE/p60. This brief p60 display 

resulted in significantly lower numbers of IFN-γ-producing cells reactive with p60217-225 in 

comparison to mice colonized by the same strain for 21 days (see Fig. 14). Moreover, the 

amounts of antigen-specific CD8 T cells induced after short-term colonization was not able 

to confer protection against a lethal challenge with L. monocytogenes. 

 

In many acute infection systems, the onset of the T-cell contraction phase correlates with 

pathogen clearance (2,14), suggesting that the duration of infection determines when 

antigen-specific CD8 T-cell transition between the expansion and contraction phases of the 

immune response occurs. However, the assumption that the magnitude of T-cell responses 

is determined by the amount of antigen and the duration of its presentation was questioned 

when studies with L. monocytogenes demonstrated that a brief exposure of the bacteria 

resulted in a normal expansion of effector CD8 T cells (214) and has a minimal impact on 

the expansion of CD4 T cells (32). Indeed, it was shown that the antigen-specific T-cell 

responses were triggered during the first 24-48 hours of Listeria infection (127). This brief 

exposure diminished the development of effector memory CD8 T cells but such cells were 

still capable of generating a protective recall response (120, 214). According to this model, 

antigen-presentation occurs within, but not after, the first days of infection (93, 127, 199), 

resulting in the generation of a potent CD8 T-cell response, which peaks at approximately 

7 days post infection. This is followed by an equally rapid and massive attrition of the 

primed cells (>90%) which is complete by 2-3 weeks (94). In contrast, this paradigm is not 
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followed during Salmonella infection. In this case, CD8 T cells undergo delayed 

expansion, which peaks around day 21, and ensues by a protracted contraction (120). 

An explanation for the priming delay of Salmonella could rely on the intracellular habitat. 

The Salmonella phagosomal lifestyle may allow escape from host CD8 T-cell recognition, 

conferring a survival advantage. In agreement with this theory, it was reported that 

Mycobacterium bovis (bacillus Calmette-Guerin), which also resides within phagosomes, 

induces delayed CD8 T-cell priming (42). However, with BCG the delay in CD8 T-cell 

priming may be attributed to the very low replication rate of the bacterium (doubling time 

> 24h) in contrast to Salmonella (doubling time 26 min). As S. typhimurium replicates 

faster than L. monocytogenes, the delay in CD8 T-cell priming could not be due to the 

replication rate of the bacterium. It might be governed by pathogen-specific interactions 

with the host, e.g. particular virulence mechanisms or the nature of inflammation. 

 

Pre-exisiting anti-vector immunity has been proven to be an obstacle for the use of 

Salmonella-based vaccines by leading to a curtailment of bacterial colonization and 

therefore reducing immune responses against heterologous antigens. The LPS O-antigens 

are generally highly immunogenic and immune responses targeted against these 

determinants might be largely responsible for any hypo-responsiveness subsequently 

observed upon administration with the same Salmonella strain. Salmonella spp. are divided 

into more than 2400 different serovars on basis of O-, H and Vi-antigens (15). As 

immunity to Salmonella is serovar-specific (80-82, 115, 179) might be possible to 

circumvent the anti-vector immunity problem by delivering the heterologous antigen of 

interest using a Salmonella carrier whose serovar differs from that used for prime 

immunization (5,40). 

As demonstrated above, two vaccine strains from different serological groups were 

employed for analyzing a heterologous boost immunization. One attenuated strain 

belonged to serogroup B, S. typhimurium SB824 (pHR241) and the other belonged to 

serogroup D, S. dublin BRD620 (pHR241). 

 

Mice organs were colonized for 21 days after a single oral immunization with S. dublin 

BRD620 (pHR241). Thus, this strain exhibited a similar colonization profile as previously 

described for SB824 (pHR241) (see Fig. 17). Further studies revealed that BRD620 

expressing the YopE/p60 hybrid protein elicited a p60-specific CD8 T-cell response. 

However, the frequency of p60-specific CD8 T cells induced by the S. dublin mutant strain 
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was significantly lower as compared to the number of T cells elicited by S. typhimurium 

(see Fig. 18). 

 

When S. dublin BRD620 (pHR241) was used for prime immunization and S. typhimurium 

SB824 (pHR241) for boost immunization, the latter strain was able to colonize and persist 

for 14 days in mice (see Fig. 20). Thus, the change of the vaccine carrier serovar resulted 

in an extended colonization of mice organs, therefore prolonging antigenic display. As a 

consequence, we hypothesized this would lead to a boost-effect. Indeed, after the 

heterologous prime-boost immunization, we observed an enhanced response of p60-

specific CD8 T cells (see Fig. 21) as compared to the single immunization with BRD620 

(pHR241) (see Fig. 18). However, this immunization scheme did not lead to higher 

numbers of p60-specific T cells as compared to mice which received a single  dose of 

SB824 (pHR241). An explanation for this phenomenon could be that the p60-specific CD8 

T cells had reached the maximum magnitude after the single immunization with SB824 

(pHR241) (see Fig. 11). No higher frequencies of p60217-225-specific CD8 T cells could be 

observed after either homologous or heterologous boost immunizations.  

 

Delivery of more than one antigen (e.g. from different infectious agents) by Salmonella is a 

very desirable feature of a live attenuated vaccine carrier. It has been demonstrated by our 

group that Salmonella can target two different listerial antigens (LLO and p60) into the 

cytosol of APC at the same time. This resulted in a superior protection against a Listeria 

infection (86). In the current study, we were able to demonstrate that only a heterologous 

prime-boost immunization strategy (priming with S. dublin expressing YopE/p60; boosting 

with S. typhimurium expressing YopE/LLO) led to the induction of high frequencies of 

LLO-specific CD8 T cells (see Fig. 24). Thus, changing of Salmonella serovars for 

consecutive immunizations is a prerequisite for efficient CD8 T-cell responses against a 

second heterologous antigen. An attractive alternative to the use of a different Salmonella 

serovar for boost immunization is the employment of attenuated Yersinia strains. Our 

laboratory has demonstrated that Y. pseudotuberculosis can be used to target heterologous 

antigens into the cytosol of APC via the Yersinia-T3SS (167). As for Salmonella, single 

oral immunization of mice with an attenuated Y. pseudotuberculosis strain expressing 

translocated YopE/LLO resulted in efficient LLO-specific CD8 T-cell priming. Thus, a 

prime-boost immunization strategy using Salmonella and Yersinia as carrier vaccines 

would definitely overcome anti-vector immunity.  
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Taken together, this is the first report demonstrating that antigen-specific CD8 T-cell 

responses induced by recombinant Salmonella expressing translocated heterologous 

proteins cannot be augmented by homologous boost immunizations. Furthermore, it was 

shown that a short-term colonization over 6 days of the vaccine strain is not sufficient to 

mount a protective CD8 T-cell response against listeriosis. However, the use of different 

Salmonella serovars in a heterologous prime-boost setting can circumvent anti-vector 

immunity leading to prolonged colonization and augmented CD8 T-cell responses. 
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F. SUMMARY 
 

The type III secretion system of Salmonella can be used to target heterologous antigens 

directly into the cytosol of antigen-presenting cells. The single oral immunization of mice 

with an attenuated recombinant Salmonella typhimurium strain expressing the translocated 

Yersinia outer protein E (YopE) fused to the immunodominant antigen p60 or LLO from 

Listeria monocytogenes results in efficient induction of p60- or LLO-specific CD8 T cells 

and confers protection against a Listeria challenge infection. 

There are conflicting reports concerning the impact of prior vector priming on the 

immunogenicity of recombinant Salmonella-based vaccines. In this context, we 

investigated whether p60-specific cytotoxic T lymphocytes induced by the prime 

immunization contribute to a more rapid clearance of the vaccine carrier after subsequent 

boost immunizations and whether oral boost immunizations lead to an augmented p60-

specific CD8 T-cell response. We found that the ability of recombinant Salmonella 

typhimurium strains to colonize the intestine, mesenteric lymph nodes, and spleens was 

markedly impaired after homologous boost immunizations, but that this effect was 

independent of existing CD8 T cells reactive with p60217-225. A significant elevation of 

antigen-specific CD8 T cells could not be detected after the second or the third oral 

immunization, possibly due to the rapid clearance of the bacterial vaccine carrier from 

lymphatic organs.  

In further experiments, we demonstrated that, in contrast to a long-term colonization over 

21 days, a short-term colonization of orally vaccinated mice over 6 days with recombinant 

Salmonella typhimurium is not sufficient to elicit a protective CD8 T-cell response against 

listeriosis. In order to overcome pre-existing anti-vector immunity resulting in a 

curtailment of colonization after homologous boost immunization, two different 

Salmonella serovars (S. dublin and S. typhimurium) were used for a heterologous prime-

boost protocol. This strategy led to prolonged colonization over 14 days after boost 

immunization and augmented antigen-specific CD8 T-cell responses. 
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ZUSAMMENFASSUNG 
 

Salmonellen verfügen über ein sogenanntes Typ III-Sekretionssystem (T3SS), mit dessen 

Hilfe Effektormoleküle mit zellmodulatorischer Funktion durch die Wirtszellmembran 

direkt in das Zytosol von Makrophagen, dendritischen Zellen oder Epithelzellen 

transloziert werden. Das Salmonella-T3SS kann verwendet werden, um heterologe 

Proteine in den endogenen MHC Klasse I-Antigenpräsentationsweg von eukaryontischen 

Zellen einzuschleusen. Als T3SS-Trägerprotein hat sich das „Yersinia outer protein E“ 

(YopE) bewährt. Als Modellantigene dienten die immundominanten Proteine Listeriolysin 

O (LLO) und p60 des intrazellulären Bakteriums Listeria monocytogenes. Am Beispiel der 

murinen Listeriose konnte im Tiermodell demonstriert werden, dass die einmalige orale 

Immunisierung mit einem rekombinanten S. typhimurium-Impfstamm, der entweder 

chimäres YopE/LLO oder YopE/p60 exprimiert und transloziert, zu einer effektiven und 

protektiven CD8 T-Zellantwort führt.  

In der vorliegenden Arbeit wurde erstmals der Einfluss von Booster-Immunisierungen auf 

die Induktion antigenspezifischer CD8 T-Zellantworten im oralen Mausmodell untersucht. 

Es konnte zunächst gezeigt werden, dass der rekombinante S. typhimurium-Impfstamm 

nach homologen Booster-Immunisierungen zeitlich in seiner Fähigkeit beeinträchtigt war, 

Darm, mesenteriale Lymphknoten und die Milz geimpfter Mäuse zu kolonisieren. Die 

schnelle Eliminierung der Salmonellen nach wiederholter oraler Gabe beruhte dabei nicht 

auf p60217-225-spezifischen zytotoxischen CD8 T-Zellen, die durch die primäre 

Immunisierung induziert worden waren, sondern auf einer gegen den Impfstamm 

gerichteten Immunantwort, der sogenannten anti-Vektor-Immunität. Die herabgesetzte 

Kolonisierungsdauer nach Boost-Immunisierungen verhinderte dabei auch eine verstärkte 

antigenspezifische CD8 T-Zellantwort. 

In weiteren Experimenten konnte gezeigt werden, dass im Gegensatz zu einer Langzeit-

Kolonisierung über einen Zeitraum von 21 Tagen, eine Kurzzeit-Kolonisierung oral 

immunisierter Mäuse über 6 Tage nicht ausreicht, um eine schützende p60-spezifische 

CD8 T-Zellantwort gegen Listeriose zu induzieren. Durch die Verwendung von zwei 

verschiedenen Salmonella-Serovaren (S. dublin und S. typhimurium) im Rahmen einer 

heterologen „prime-boost“-Immunisierung konnte die Salmonella-spezifische anti-Vektor-

Immunität umgangen werden. Diese Strategie führte zu einer verlängerten 
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Kolonisierungsdauer von über 14 Tagen und zu einer verstärkten antigenspezifischen CD8 

T-Zellantwort nach Booster-Immunisierungen. 
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