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1 Introduction 

The processing and degradation of cellular RNA is one of the most important 

processes in all living cells. Additional to the amount of RNA that is synthezised by 

a cell per minute (up to 2000 molecules of ribosomal (r)RNA as well as thousands 

of messenger (m)RNAs, transfer (t)RNAs, small nuclear (sn)RNAs and small 

nucleolar (sno)RNAs (Warner, 1999)), almost every RNA species undergoes 

several posttranscriptional processing reactions to produce functional RNA 

molecules. Furthermore, defective (pre-) mRNAs and nuclear RNA precursors 

rarely undergo repair processes as known for DNA, but are filtered out by quality 

control mechanisms and targeted for rapid degradation similar to proteins. In 

addition, posttrancriptionally regulated mRNA degradation modulate the celluar 

level of RNA, thereby influencing translation and gene expression. Thus, RNA 

processing and degradation events have to be constantely monitored by 

surveillance systems, which are able to distinguish between defective and non-

defective RNA as well as between mature and precursor RNA. 

In eukaryotes several enzymes which participate in the 3´  5´ RNA surveillance 

machinery are organized into a ~ 400 kDA multisubunit complex, called the 

exosome (Mitchell et al., 1997). In the last years, this multiprotein complex has 

been shown to directly participate in the processing and degradation of almost 

every cellular RNA species (Allmang et al., 1999; Allmang et al., 2000; van Hoof et 

al., 2000; Hilleren et al., 2001; Suzuki et al., 2001; Andrulis et al., 2002; Torchet et 

al., 2002; Orban and Izaurralde 2005). Thus, the exosome emerges as key 

component in the cellular 3´  5´ RNA surveillance system in eukaryotes. 

1.1 The exosome is conserved in eukaryotes and archaea 

The human exosome was originally discovered in 1977 as an autoantigen in sera 

of patients suffering from polymyositis (PM) and scleroderma (Scl) overlap 

syndromes and was termed the “PM/Scl antigen” (Wolfe et al., 1977; Reichlin et 

al., 1984; Treadwell et al., 1984). The PM/Scl antigen was shown to be a nuclear 

complex consisting of around 11 to 16 different proteins (Targoff and Reichlin 

1985; Reimer et al., 1986). The yeast exosome was discovered 20 years later by 

its role in the processing of 7S rRNA to mature 5.8S rRNA, an essential 

component of the ribosome (Mitchell et al., 1997), and further analysis showed 
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that the PM/Scl complex is the human equivalent of this complex (Allmang et al., 

1999). The yeast complex, consisting of around ten different protein subunits, was 

designated “exosome” because of its exclusive 3´  5´ exoribonuclease activity. 

The core of human and yeast exosomes is assembled out of nine proteins, of 

which six have a molecular architecture similar to that of the eubacterial 

phosphodependent 3´  5´ exoribonucleases RNase PH and PNPase, (in yeast: 

Ribosomal RNA processing factor (Rrp)41p, Rrp42p, Rrp43p, Rrp45p, Rrp46p, 

mRNA transport regulator (Mtr)3p) (Symmons et al., 2000; Koonin et al., 2001; 

Harlow et al., 2004) (Table 1). The remaining three subunits contain a putative S1 

and KH RNA binding domain (Rrp4p, Rrp40p, cep1 synthetic lethality (Csl)4p) 

(Mitchell et al., 1997; Allmang et al., 1999; Mitchell and Tollervey 2000; Estevez et 

al., 2001; Chekanova et al., 2002). The tenth subunit in both human and yeast is 

the RNase R-like hydrolytic 3´  5´ exoribonuclease Dis3 (Rrp44 in human), which 

was shown to be responsible for RNase activity of the yeast exosome (Mitchell et 

al., 1997; Dziembowski et al., 2007). The eukaryotic exosome core is found in both 

the cytoplasm and the nucleus (Mitchell et al., 1997; Allmang et al., 1999; Mitchell 

and Tollervey 2000). The nuclear exosome interacts with an additional RNase D-

like 3´  5´ exoribonuclease, Rrp6, that has a non-essential role in final 5.8S rRNA 

processing (Zhou and Deutscher 1997; Briggs et al., 1998; Mitchell and Tollervey 

2000) and Rrp47, which cooperates with Rrp6 (Mitchell and Tollervey 2003). 

 

Table 1: Components of the yeast and archaeal exosome 
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Homologs of yeast and human exosomal proteins were found in as diverse 

organisms as plants, flies and trypanosomes (Estevez et al., 2001; Andrulis et al., 

2002; Chekanova et al., 2002). Furthermore, homologs of four out of ten subunits 

of the complete eukaryotic complex were found in archaebacteria (Koonin et al., 

2001; Evguenieva-Hackenberg et al., 2003) (Table 1). Archaeal exosomes exhibit 

a more simplified assembly. The core complex consists of only two Rnase PH-like 

proteins (Rrp41 and Rrp42) and only two putative RNA binding proteins with either 

S1 and KH (Rrp4) or S1 and Zn-Ribbon domains (Csl4) (Koonin et al., 2001; 

Evguenieva-Hackenberg et al., 2003).  

However, the outstanding conservation of the exosomal subunits throughout 

different species suggests a conserved and fundamental role of the exosome in 

RNA maintenance in both eukaryotes and archaebacteria (Figure 1). In addition, 

the high similarity to the eubacterial 3´  5´ exoribonucleases RNase PH and 

PNPase implicate the presence of an evolutionary conserved RNA degradation 

mechanism (Koonin et al., 2001).  
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Figure 1: Structure-based sequence alignment of Archaeoglobus fulgidus (af) exosome 

subunits Rrp4 (A), Csl4 (B), Rrp41 (C) and Rrp42 (D) with the respective proteins from 

Sulfolobus solfataricus (so), human (h) and yeast (y). Conserved regions and residues are 

shaded light grey (low conservation), dark grey (moderate conservation) or black (high 

conservation). The annotated secondary structure of A. fulgidus proteins is shown on top of 

the alignments (arrows: β-strands, boxes: α-helices). Black triangle/Ski4-1 in B: relevant 

position of Csl4 point mutation (described in the text.). 

 

 

1.2 Functions of the exosome and coactivator complexes 

1.2.1 Cytosolic RNA decay and quality control 

In Saccharomyces cerevisiae and human, mRNA is degraded via two possible 

pathways. Both pathways are initiated by shortening of the 3´-poly(A) tail by a 

deadenylase complex (Pan2-Pan3 and/or Ccr4-Caf1 in yeast). The major pathway 

in yeast (and the minor pathway in human cells) then follows subsequent 

decapping by Dcp1/Dcp2 and degradation by the 5´  3´ exonuclease Xrn1p 
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(Muhlrad et al., 1994). All of the involved proteins are localized in cytoplasmic P-

bodies, which are believed to be the active centres for 5´  3´ RNA decay (Sheth 

and Parker 2003). The major pathway in human cells (and the minor pathway in 

yeast) includes 3´  5´ exonucleolytic digestion by the exosome (Mitchell et al., 

1997; Decker 1998; Mitchell and Tollervey 2001), followed by degradation of the 

remaining cap structure by a “scavenger” decapping enzyme (Wang and Kiledjian 

2001). However, it is not clear yet, which molecular factors target the mRNA for 

degradation and decide which of the two pathways is initialized. 

The recruitment of the exosome to a different subset of cytosolic RNA species is 

mediated by sequence-and/or structure-specific RNA binding proteins, and the 

cytoplasmic activity of the yeast exosome has been shown to entirely depend on 

the presence of coactivators, like the SKI complex (Ski7p and Ski2p/Ski3p/Ski8p) 

(Anderson and Parker 1998; Brown et al., 2000; van Hoof et al., 2000; Araki et al., 

2001) (Figure 2). The interaction between the SKI complex and the exosome is 

thereby likely mediated via Ski7p, a GTP-binding protein (van Hoof et al., 2000; 

Araki et al., 2001), and the importance of the SKI complex is supported by the 

finding that mutations in SKI2, SKI3 and SKI8 inhibit 3´  5´ decay of mRNA in 

vivo (Anderson and Parker 1998; Brown et al., 2000; van Hoof et al., 2000). 

Furthermore, Ski2p is a member of the helicase superfamily 2 (SF2) and could be 

involved in the unwinding of RNA secondary structures prior to degradation.  

The presence of the SKI complex is important for the activity of the exosome in 

normal mRNA turnover (Mitchell et al., 1997). Furthermore, it has been shown that 

exosome and SKI complex function together with several other proteins like Upf1-

Upf3 in the quality control and in the degradation of eukaryotic mRNAs containing 

a premature termination codon in a process termed nonsense-mediated decay 

(NMD) (Takahashi et al., 2003) as well as in non-stop decay of mRNAs lacking a 

termination codon (Takahashi et al., 2003).  
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Figure 2: Functions and activation of the cytoplasmic exosome. M7G: 7-methylguanosine. 

The yellow flash marks quality control pathways. Adapted from (Houseley et al., 2006) 
 

The detailed molecular mechanism of substrate specificity and exosome 

recruitment is still unclear. However, a subset of unstable mammalian mRNAs as 

well as some mRNAs in Trypanosoma brucei possesses AU-rich elements (AREs) 

in their 3´-untranslated region (UTR). By interacting with sequence-specific ARE-

binding proteins, like Tristetraprolin (TTP), KH-type-splicing-regulatory-protein 

(KSRP), and RNA-helicase-associated-with-AU-rich-element (RHAU), the 

exosome is specifically recruited to the substrate RNA (Chen et al., 2001; Wang 

and Kiledjian 2001; Mukherjee et al., 2002; Haile et al., 2003). This is in contrast to 

the sequence unspecific mRNA turnover and quality control pathways. 

1.2.2 Nuclear RNA processing and degradation 

Whereas the eukaryotic cytoplasmic exosome functions mainly in the normal 

turnover and quality control of (pre-) mRNA, the nuclear exosome takes part in the 

processing and degradation of several nuclear RNA species (Mitchell et al., 1997; 

Allmang et al., 1999) (Figure 3). According to the cytoplasmic SKI complex, the 

nuclear Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex targets defective 

precursors of rRNAs, tRNAs, snRNAs, snoRNAs, and other transcripts for 

degradation by polyadenylation (de la Cruz et al., 1998; Allmang et al., 2000; 

Suzuki et al., 2001; LaCava et al., 2005; Wyers et al., 2005), and thus functions 
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together with the exosome in sequence-independent RNA surveillance. Many 

snoRNAs function in rRNA processing and rRNA nucleotide modification like 

methylation and pseudouridinylation, whereas snRNAs are involved in pre-mRNA 

splicing as components of the splicesosome (Allmang et al., 1999; van Hoof et al., 

2000).  

Furthermore, the processing and maturation of pre-rRNAs like 7S rRNA to 5.8S 

rRNA, and the 3´ trimming of snoRNAs and snRNAs is performed by the nuclear 

exosome and involves participation of the nuclear cofactors Rrp6 and Rrp47 as 

well as Mtr4 (Allmang et al., 1999; van Hoof et al., 2000; Mitchell et al., 2003). 

 

 

Figure 3: Functions and cofactors of the nuclear exosome. M7G: 7-methylguanosine. The 

yellow flash marks quality control pathways. ETS: external transcribed spacer, TMG: 

trimethylguanosine. Adapted from (Houseley et al., 2006) 

 

The exosome has also been shown to degrade spacer elements that have been 

excised from rRNA precursors and during 3´ trimming of pre-rRNAs and snoRNAs, 

and there is emerging evidence that the exosome also degrades cryptic RNA PolII 

transcripts as well as RNA fragments arising at RNA interference processes 

(Orban and Izaurralde 2005; Wyers et al., 2005). Sequence-dependent 

recruitment of the exosome to specific pre-mRNAs, snoRNAs and probably other 

RNAs that contain defined sequence motifs is likely mediated via interaction with 

sequence-specific RNA binding proteins like Nrd1 and Nab3 (Arigo et al., 2006; 

Houalla et al., 2006; Vasiljeva and Buratowski 2006).  
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1.3 Structure determination by X-Ray crystallography 

The knowledge of the structure of a protein is one important step towards the 

knowledge of its detailed enzymatic function. Nowadays, there are well 

established techniques to determine the primary, secondary, and tertiary as well 

as the quaternary structure of a protein or protein complexes.  

While the primary structure can be obtained via sequencing of the amino acid or 

the corresponding nucleic acid sequence, the determination of the secondary and 

tertiary structure requires detailed information about the arrangement of atoms 

within a protein. High resolution three dimensional structures of proteins are 

determined by nuclear magnetic resonance (NMR) or X-ray crystallography. While 

NMR is only applicable to smaller proteins with a maximum molecular weight of 

around 35 kDa, X-ray crystallography has no size limitation, but requires well-

ordered protein crystals.  

Low resolution quaternary structures of large protein complexes (MW > 250 kDa), 

organelles and cells can be obtained by (cryo-) electron microscopy (EM).  

The following part briefly describes the theoretical background for structure 

determination by X-ray crystallography. For more detailed information, please see 

textbooks (Drenth 1999; McPherson 2001; Blow 2002; Massa 2002). 

1.3.1 Crystallization 

The prerequisite for X-ray crystallography is to grow protein crystals that diffract X-

rays. Crystals, in where a protein molecule is packed in a repetitive and regular 

arrangement, form, when proteins are precipitated very slowly from supersaturated 

solutions. This thermodynamically driven process includes nucleation, growth of 

the crystal and growth termination, and is dependent on a variety of parameters, 

like pH, temperature, protein concentration, and nature of the precipitant. Many 

crystallization conditions have to be screened during a crystallization experiment 

to find the most useful crystallization condition. The most frequently used 

procedure for obtaining protein crystals is the vapour (sitting drop or hanging drop) 

diffusion method (McPherson, 1982).  

In this thesis, the sitting drop vapour diffusion method was used. In this case, a 

buffered protein solution is mixed with precipitant solution. A reservoir contains a 

more concentrated precipitant solution. The reaction chamber is sealed and 

equilibrium between the drop and the container is slowly reached through vapour 
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diffusion. The precipitant concentration in the drop is increased by loss of water to 

the reservoir. Once the saturation point is reached, and other conditions such as 

pH and temperature are chosen correctly, protein crystals will occur in the drop, 

which may be suitable for X-ray diffraction experiments. 

1.3.2 Theory of X-ray diffraction 

X-rays are electromagnetic waves with a wavelength in the range of atomic 

distances (10-10 m = 1 Å). For X-ray diffraction experiments of protein crystals, 

usually X-rays between 0.8-1.6 Å are used. X-rays interact with electrons in the 

electron sheath of atoms in the protein crystal and cause dipole oscillation of the 

electrons at the X-ray frequency. The oscillating electrons emit X-rays with the 

same wavelength in every direction (coherent or elastic scattering).  

As a crystal is composed of molecules located in a unit cell, which is periodically 

repeated in three dimensions, the emitted waves scattered from different atoms 

interfere, and normally cancel each other out. Only if the light path of waves differ 

by nλ (n=integer), constructive interference is observed. The difference in the light 

path is thereby dependent on the distance between the scattering atoms. Thus, 

scattering can be described as reflection at imaginary lattice planes. The lattice 

planes pervade the crystal lattice and its lattice points. Intersections with the unit 

cell axes of the crystal lattice are termed Miller Indices (h,k,l), which describe the 

orientation of and the spacing between a set of parallel lattice planes. The 

conditions for constructive interference are given by Bragg´s Law (Bragg and 

Bragg. 1913): 

θdλn sin2 ⋅⋅=⋅  

Only if the distance d between parallel lattice planes and the angle θ between the 

lattice planes and the incident beam follow Bragg´s Law, a reflection (h,k,l) is 

observed. The intensity of each reflection (h,k,l) represents the overall scattering 

from a particular set of parallel lattice planes (h,k,l). According to Friedel´s Law, 

reflections (h,k,l) and (-h,-k,-l) have the same magnitude, but opposite signs for 

phase angles (Friedel mates).  

1.3.3 The Phase problem 

X-rays are scattered at the electron sheath of atoms. The electrons are 

delocalized and their positions are described as a three dimensional distribution, 
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the so called electron density distribution ρ. As crystals are periodic assemblies of 

molecules, the electron density of a crystal resembles a periodic function. Thus, a 

Fourier Transformation (Fourier-Summation) can be applied to calculate the 

electron density for each point (x, y, z) in a crystal:  

[ ]∑ ++⋅−⋅=
hkl

lz)kyi(hxπF(h,k,l)
V

ρ(x,y,z) 2exp1  

This formula represents the summation over all structure factors F(h,k,l) for each 

position (x,y,z) in a normalized unit cell (1/V). 

The structure factor F(h,k,l) (the Fourier coefficient) is the sum of scattering 

contribution of all atoms j in a unit cell, with (x,y,z) as fractional coordinates, to a 

reflection (h,k,l), and can be derived from the following equation.  

[ ] [ ]22

1
/sinexp2exp λθ⋅−⋅++⋅⋅= ∑

=
i

N

j
jjjj B)lzkyi(hxπfF(h,k,l)  

The atomic scattering factor (or form factor) ƒj describes the scattering power of an 

atom j, which is dependent on the atom type and the diffraction angle (resolution) 

of the corresponding reflection. The Debye-Waller- or B-Factor, the last term in 

this equation, represents the contribution of thermal disorder or “vibration” 

(isotrop/anisotrop).  

The electron density ρ is related to F(h,k,l) by a direct Fourier Transformation 

(Fourier-Integral): 

[ ] dx dy dzlz)ky(hxπρ(x,y,z)VF(h,k,l)
zyx

++⋅⋅⋅= ∫∫∫
===

2exp
1

0

1

0

1

0

 

Thus, the structure factor F(h,k,l) can be easily calculated from a known structure. 

But de novo structure determination deals with the inverse problem. 

F(h,k,l) is a complex number, which is formed by the amplitude IF(h,k,l)I and the 

phase αhkl of a scattered wave: 

[ ]),,(exp),,( lkhilkhFF(h,k,l) α⋅⋅=  

Thus, the already mentioned inverse Fourier Transformation can be written as 

[ ]∑ −++⋅−⋅=
hkl

lkh )lzkyi(hxπF(h,k,l)
V

ρ(x,y,z) ),,(2exp1 α , 

where the phase term αhkl becomes evident. Whereas the amplitude IF(h,k,l)I of a 

scattered wave is proportional to the square root of the measured intensity (I = 

|F|2) for each reflection (h,k,l), and directly available from the diffraction pattern, 

the phase information is lost during measurement and thus accounts for the 



 Introduction  11 

unknown component of the complex number F(h,k,l). This is the so called “Phase 

problem” in crystallography. 

1.3.4 Solving the phase problem 

To overcome the phase problem in de novo structure determination, several 

approaches are applied including isomorphous replacement (MIR/SIR) and 

anomalous scattering techniques (MAD/SAD), or a combination of both methods 

(MIRAS/SIRAS), which require the attachment of a heavy atom and/or the 

presence of anomalous scattering atoms, respectively, to the protein in the crystal. 

If parts of the structure or the structure of a close homologue are known, phases 

can be obtained by molecular replacement. 

In this thesis, single- and multiple anomalous scattering as well as molecular 

replacement techniques were used to obtain phases. Thus, these two methods will 

be described briefly in the following part.  

1.3.4.1 Patterson Function 

The Patterson function is an important tool to obtain phase angles in de novo 

structure determination. It is a Fourier Transformation of the measured intensities 

(its squared reflection amplitudes |F|2), which do not depend on phases (phase 

angle = 0°): 

( ) [ ]∑ ++=
hkl

hkl lwkvhuFVwvuP )(2cos/1,, 2 π  

The Patterson unit cell is given in (u,v,x), and has identical dimensions to the real 

unit cell (x,y,z). The Patterson function results in a map (Patterson map) of 

interatomic distance vectors. The endpoints of the vectors represent the multiplied 

electron density, and thus their height depends on the electron number of the 

respective atoms, which makes it usefull to determine the relative position of 

heavy atoms in a unit cell.  

1.3.4.2 Single- and multiple anomalous dispersion (SAD/MAD) 

Diffraction is usually described as diffraction on “free” electrons, where the emitted  

beam undergoes neither changes in the intensity nor a phase delay. Near the 

absorption edge of an atom, if the energy of the incident beam is close to its 

eigenfrequency, resonance effects are observed. While some photons are 

absorbed and re-emitted at lower energy (fluorescence), some are emitted at the 
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same energy but with a phase shift. This phenomenon is described as anomalous 

dispersion. In case of anomalous dispersion, the atomic scattering factor, which is 

normally given for wavelengths far from the absorption edge of an atom, gains an 

anomalous contribution, which is composed of a real and an imaginary part 

(Figure 4).  

'if'f'if''Δfff ano +=++=  

 

 

Figure 4: The anomalous contribution of the anomalous scattering factor ƒano is composed 

of a real part Δƒ and an imaginary part iƒ”. The phase of the imaginary part is always 

shifted by 90°.  

 

As normally occurring atoms like carbon, nitrogen and hydrogen do not scatter 

anomalously at wavelengths used in X-ray diffraction experiments, heavy atoms 

like selenium, platin or mercury, which show detectable anomalous scattering, are 

introduced into the protein. 

The scattering is now a sum FPH of the normal scattering from light atoms FP and 

scattering from heavy atoms FH with a normal (FHN) and an anomalous (FHA) 

contribution: 

HPHAHNPPH FFFFFF +=++=  

While in normal scattering, the structure factors FP(h,k,l) and FP(-h,-k,-l) have the 

same amplitudes and opposite phases (Friedel Mates) according to Friedel´s Law, 

anomalous scattering causes violation of Friedel´s Law, and FPH(h,k,l) and FPH(-h,-

k,-l) (now called Bijvoet pair) do not have the same magnitudes.  

f''
f'l)kh(Fl)k(hF(F PHPHano 2

,,,, ⋅−−−−=Δ  

A Patterson map calculated with the Bijvoet differences (Δ|F|ano)2 results in a map 

showing only interatomic distance vectors between the anomalous scatterers, and 

allows localization of the heavy atom substructure in the unit cell. This allows the 

determination of the structure factor FHA (amplitude and phase angle) of the heavy 

atoms and the calculation of its contribution to the structure factor FH in SAD 
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experiments. The following equation allows calculation of FP and the estimation of 

protein phase angles: 

HHPPPH FFF αα ⋅+⋅= ||||  

As anomalous scattering depends on the wavelength, usually three wavelengths 

(peak, inflection and remote) are recorded in an MAD experiment. At the peak 

wavelength, ƒ” is maximal. ƒ´ is minimal at the inflection point and close to normal 

at the remote wavelength. The differences in the anomalous contribution 

(dispersive difference) between the three wavelengths can be used to define FP 

more exactly from three different FHA values. As the resonance wavelength of 

certain atoms are not only dependent on the atom itself but also on the chemical 

environment, the required wavelengths are usually determined experimentally by a 

fluorescence scan prior to data collection. Thereby ƒ” can be derived and ƒ´can be 

calculated by the Kramer-Kronig equation for each given wavelength.  

1.3.4.3 Molecular replacement 

Molecular replacement is possible when parts of a protein structure or the 

structure of a close structural homologue of a protein are already known. The 

phase angles of the unknown structure are thereby obtained from the known 

structure. For this, the known model has to be rotated and translated into the 

electron density of the unknown structure. The replacement is a 6-dimensional 

search problem (or two 3 dimensional searches), which can be solved with the 

Patterson function. During translation and rotation search, the Patterson maps of 

the model structure and of the crystal diffraction data are compared. The 

intramolecular vectors depend only on the orientation of the molecule and are 

used for the rotation search. The radius of the unit cell thereby limits the length of 

the included vectors. The translation search uses intermolecular cross vectors, 

which depend on both the orientation and the position of the molecule. The 

derived coordinates of the molecules in the unit cell then allow the calculation of 

new structure factor amplitudes |Fcalc| and an estimation of the respective phase 

angles  αcalc. The following equation than allows the calculation of an electron 

density for the new crystal structure (|Fobs| = experimentally derived structure 

factor amplitudes): 

[ ])(exp|))(||(|)( hihFFF calccalcobsh α⋅−=  
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The calculated Fo-Fc density is useful for finding corrections between the new and 

the the known model. But it has always a bias towards the model structure, from 

which the phase angles were derived. To minimize model bias, usually the 

following equation is used: 

[ ])(exp|))(|||2()( hihFFF calccalcobsh α⋅−=  

This 2Fo-Fc electron density is used to build in the new structure or to change 

variations, to find a closer agreement between the calculated and observed 

structure factors. In the refinement procedure a reliability factor, the so called R-

factor, is used to monitor the quality of the model.  

1.4 Objectives 

The exosome is a conserved multisubunit exoribonuclease complex, which was 

originally discovered as essential component in the 3´ maturation of ribosomal 

5.8S rRNA in Saccharomyces cerevisiae. Since then, exosomes have been 

identified in humans, plants and flies as well as in archaebacteria. Functional 

studies showed that the exosome is not only essential for viability in yeast, but 

also involed in nearly all cellular RNA processing and degradation pathways. 

Thus, the exosome emerges as key component in the 3´  5´ RNA surveillance 

and quality control machinery. However, the detailed structural and molecular 

basis of regulated 3´ RNA degradation, substrate specificity and requirement of 

coactivators remain poorly understood.  

The aim of this PhD thesis was to determine the structure of the nine subunit 

exosome from the archaeon Archaeoglobus fulgidus using X-ray crystallography. 

Crystal soaking experiments with the phosphate-mimic tungstate should locate 

phosphorolytic active centres and possible RNA binding sites. Furthermore, 

functional analysis of RNase and RNA binding activity of wild-type and structure-

guided mutant exosomes should help to provide a model, which explains the 

underlying mechanism of the dual role of exosomes in processive 3´  5´ RNA 

degradation and precisely defined RNA processing, and provide a structural basis 

for its dependence on coactivator complexes. Due to the high conservation of 

exosome subunits in archaea and eukaryotes, the results may provide important 

insights, which can be extrapolated to the more complex eukaryotic exosome. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals  

All common chemicals were obtained from Merck (Darmstadt, Germany), Roth 

(Karlsruhe, Germany) and Sigma (Deisenhofen, Germany), unless otherwise 

stated. Enzymes and nucleotides for molecular biology were ordered by MBI 

Fermentas (St. Leon-Rot, Germany). Chromatographic material and columns as 

well as radioactive material (γ32-P-ATP) were purchased from GE Healthcare 

(Freiburg, Germany). Crystallization screens, crystallization grade reagents and 

crystallization tools were obtained from Hampton Research (Aliso Viejo, USA), 

Nextal (Montreal, Canada; now Qiagen, Hilden, Germany) and Jena Bioscience 

(Jena, Germany). RP-HPLC purified DNA and RNA for cloning, crystallization and 

activity assays were ordered by Thermo Electron Corporation (Ulm, Germany) and 

Biomers (Ulm, Germany), respectively. 

 

 

 

2.1.2 Bacterial strains 

Table 2: E. coli strains 

Strain Description Source of reference 

XL-1 blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44relA1 

lac[F´proAB lacIqZΔdM15Tn10(Tetr)] 

Stratagene, La Jolla, USA 

 

Rosetta (DE3) F- ompT hsdSB (rB
- mB

-) gal dcm lacY1 (DE3) 

pRARE (CmR) 

Novagen; Schwalbach/Ts., 

Germany 

B834 transformed with pRARE (CmR) isolated from 

Rosetta (DE3) cells 

Novagen; Schwalbach/Ts., 

Germany 
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2.1.3 Media and supplements 

Table 3: Growth media 

Media Description Source of reference 

LB 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) 

NaCl (+ 1,5% (w/v) agar for selective media plates) 

Miller, 1972 

 
LeMaster´s    LeMaster, 1985 

Autoclavable portion A (g/2000 ml)     

 Alanine 1.0 Serine 4.166 

 Arginine hydrochloride 1.16 Threonine 0.46 

 Aspartic acid 0.8 Tyrosine 0.34 

 Cystine 0.066 Valine 0.46 

 Glutamic acid 1.5 Adenine 1.0 

 Glutamine 0.666 Guanosine 1.34 

 Glycine 1.08 Thymine 0.34 

 Histidine 0.12 Uracil 1.0 

 Isoleucine 0.46 Sodium acetate 3.0 

 Leucine 0.46 Succinic acid 3.0 

 Lysine hydrochloride 0.84 Ammonium chloride 1.5 

 Phenylalanine 0.266 Sodium hydroxide 1.7 

 Proline 0.2 Dibasic potassium phosphate 21.0 

Non-autoclavable portion B (200 ml)     

 Glucose 20.0 g   

 Magnesium sulphatex7H2O 0.5 g   

 Iron sulphate 8.4 g   

 conc. Sulfuric acid  16.0 µl   

 Thiamine 10.0 mg   

 

All amino acids were reagent-grade L-enantiomers purchased from Sigma 

(Deisenhofen, Germany). Solution A was autoclaved, cooled to 37°C and 

supplemented with filter-sterilized Solution B (200 ml B/2000 ml A) and 
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selenomethionine (dissolved in H2O/HCl; 125 mg/2200 ml Solution A/B), 

Calbiochem, Schwalbach/Ts., Germany). 

2.1.4 Buffers and solutions 

The following table contains buffers and solutions which were used in this work. 

Buffers for specific protein purifications and biochemical assays are given 

separately in the corresponding part. 

 
Table 4: Buffers, dyes and solutions 

SDS-PAGE  

4x stacking gel buffer 0.5 M Tris, 0.4% (w/v) SDS, pH 6.8 (25°C) 

4x separation gel buffer 3 M Tris, 0,4 % (w/v) SDS, pH 8.9 (25°C) 

Electrophoresis buffer, 1x TGS 190 mM glycine, 50 mM Tris, 0.1 % (w/v) SDS 

5x Loading Dye 50% glycerol, 250 mM Tris/HCl pH 6.8 (25°C), 7.5% 

SDS, 5 mM EDTA, 10 mM DTT, 0.5% bromphenolblue 

Coomassie staining  

Staining solution 50% (v/v) ethanol, 7% (v/v) acetic acid, 0.2% Coomassie 

Brilliant blue R-250 

Gel electrophoresis of nucleic acids  

Electrophoresis buffer, 1x TAE 40 mM Tris, 20 mM Acetic Acid, 1 mM Na2EDTA 

6x Loading Dye 1.5 g/L bromphenol blue, 1.5 g/L xylene cyanol, 50% 

(v/v) glycerol 

Buffers for preparation of chemically competent cells  

TFB-1 30 mM KOAc, 50 mM MnCl2, 100 mM KCl, 10 mM CaCl2, 

15% (v/v) glycerol, pH 5.8 (25°C) 

TFB-2 10 mM MOPS, 10 mM KCl, 75 mM CaCl2, 15% glycerol, 

pH 7.0 (25°C) 
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2.2 Methods 

2.2.1 Bioinformatic Methods 

2.2.1.1 Homology searches and alignments 

DNA and protein sequences of archaeal proteins were found using the NCBI 

database (http://www.ncbi.nlm.nih.gov). Homology searches were performed using 

the NCBI Basic Local Alignment Search Tool (BLAST) server 

(http://www.ncbi.nlm.nih.gov/BLAST). Multiple sequence alignments were 

performed with ClustalW (http://align.genome.jp/) and edited manually using 

GeneDoc (Nicholas and Nicholas 1997). 

2.2.1.2 Structural homology searches 

Structural homology searches were performed with the DALI server (Holm and 

Sander 1995), http://www.ebi.ac.uk/dali). The submitted coordinates of a query 

protein are compared against protein coordinates deposited in the Protein Data 

Bank (www.rcsb.org). The comparison of 3D structures may reveal biologically 

interesting similarities that are not detectable by comparing protein sequences. 

2.2.1.3 Calculation of protein parameters 

Physical and chemical parameters of the recombinant proteins like molecular 

weight, (theoretical) isoelectric point (pI) and extinction coefficients were 

calculated with ProtParam (Gasteiger et al., 2003) 

www.expasy.org/tools/protparam.html) from the ExPASy Proteomics Server.  

2.2.1.4 Structure visualization and analyzation 

Calculations of buried surface areas and molecule:molecule interactions were 

performed with CNS (Brunger et al., 1998). Calculation of the electrostatic surface 

was done with PyMol (Baker et al., 2001). Images of the crystal structures were 

prepared with PyMol (DeLano 2002). Superposition of two homologous structures 

was performed with COOT (Collaborative Computational Project 1994). 
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2.2.2 Molecular methods 

2.2.2.1 Oligonucleotide design and Polymerase Chain Reaction (PCR) 

PCR Primers for cloning of the genes of interest were designed using 

GeneRunner (see Table 5 for olignonucleotides). In general, oligonucleotides have 

a complementary part with a melting temperature (Tm) between 68°-72°C, an 

attached endonuclease restriction site and a 7-9 poly(A) overhang to assure 

efficiency of restriction endonuclease cleavage. Archaeoglobus fulgidus cell 

cultures were obtained from the DSMZ (Braunschweig, Germany), and genomic 

DNA was prepared with DNAzol® reagent (Molecular Research Center, Cincinnati, 

USA) according to the manufacturer's instructions. Genes of interest were 

amplified by PCR from A. fulgidus genomic DNA using Accuzyme® (Bioline, 

Luckenwalde, Germany) or Pfx Polymerase (Invitrogen, Karlsruhe, Germany). In 

general, a 50 µl PCR reaction contained 600 µM of each of the four dNTPs, 2.5 

mM MgCl2, 0.5 pM forward and reverse primer, and approximately 1 ng of 

template DNA. Each thermocycling program contained 25-30 cycles, whereas 

times and temperatures of denaturation, annealing and elongation were varied 

dependent on special requirements of the polymerase and primer-template pairs 

used in different amplifications. PCR products were purified from agarose gels with 

NucleoSpin® Extract II (Macherey and Nagel, Dueren, Germany).  

2.2.2.2 Site-directed mutagenesis 

Point mutations were introduced by PCR-based site-directed mutagenesis (Ho et 

al., 1989). Here, two specially designed complementary oligonucleotides encoding 

the desired mutation are used to generate two DNA fragments with overlapping 

ends in the first amplification reaction (see Table 5 for oligonucleotides). In a 

second amplification reaction, these two DNA fragments serve as template to 

amplify the full-length gene with the incorporated nucleotide exchange. Primers for 

site-directed mutagenesis were designed with primerX 

(http://bioinformatics.org/primerx).  

2.2.2.3 Restriction cleavage and ligation 

DNA was digested using the corresponding restriction endonucleases and buffers 

(Fermentas, St. Leon-Rot, Germany) as recommended by the manufacturer. 
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Digested products were purified with NucleoSpin® Extract II (Macherey and Nagel, 

Dueren, Germany). Cleaved vector DNA (pET-21, pET-29, Novagen, 

Schwalbach/Ts., Germany) was additionally treated with calf intestine alkaline 

phosphatase (CIAP, Fermentas, St. Leon-Rot, Germany) to avoid religation. For 

ligation, a five- to tenfold excess of the digested DNA fragment was incubated with 

linearized vector and T4 ligase (Fermentas, St. Leon-Rot, Germany) in a 20 µl 

reaction following instructions of the manufacturer. 

2.2.2.4 Transformation of E. coli and isolation of plasmid DNA 

Transformation of plasmid DNA into competent E. coli cells was performed by 

mixing 50-100 µl of competent cells with 10-15 µl of the ligaton reaction or 1-2 µl of 

purified plasmid DNA (40 ng/µl) for 15 minutes on ice (Sambrook 1989). Cells 

were incubated at 42°C for 45 seconds and chilled on ice. 500 µl of fresh LB 

medium was added, followed by incubation at 37°C for 45 minutes in a thermo 

shaker. Cells were plated on LB agar plates containing the respective antibiotics 

and incubated at 37°C overnight. Plasmid DNA was isolated from a 5 ml overnight 

culture using the NucleoSpin®-Plasmid Quick Pure Kit (Macherey-Nagel, Dueren, 

Germany). DNA-sequencing of wild-type and mutant clones was performed by 

Medigenomix (Martinsried, Germany). 

2.2.2.5 Preparation of competent cells 

Preparation of transformation competent bacteria cells was performed according 

to (Hanahan 1983). 200 ml LB media was incubated with 2 ml of an overnight 

culture of the desired bacterial strain. The cells were grown for 2.5 – 3 hours at 

37°C to an OD600 of 0.4-0.55, cooled down to 4°C on ice and centrifuged for 10 

minutes at 3000 rpm and 4°C. The following steps were performed at 4°C. The 

pellet was washed with 30 ml of TFB-1 (Table 4), incubated for 10 minutes and 

centrifuged again. The washed pellet was resuspended in 4 ml of TFB-2 (Table 4), 

aliquoted and flash frozen in liquid nitrogen. Competent cells were stored at -80°C.  

2.2.3 Electrophoretic methods 

2.2.3.1 Electrophoretic separation of DNA 

DNA was separated in horizontally poured 1 % Agarose/1x TAE gels containing 

0.7 µg/ml ethidium bromide. Before loading, samples were mixed with 6X Loading 
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dye (Table 4). DNA was visualized using standard ultraviolet transilluminator (λ = 

254 nm, Eagle Eye, Stratagene, LaJolla, USA).  

2.2.3.2 Protein separation by SDS-PAGE 

Protein samples were analyzed by SDS-PAGE with 15% polyacrylamide gels 

(acrylamide-bisacrylamide (37.5:1) (Laemmli 1970) using the vertical Mini-

PROTEAN 3 System (Bio-Rad, Munich, Germany). Before loading, samples were 

mixed with 4x Loading Dye (Table 4) and boiled at 95°C for 2 minutes. Gels were 

routinely stained with Coomassie staining solution (Table 4) and destained with 

water. 

2.2.4 Proteinchemical methods 

2.2.4.1 Protein expression 

For the over expression of recombinant proteins, competent E. coli Rosetta (DE3) 

cells (Novagen, Schwalbach/Ts., Germany) were transformed with plasmid DNA 

carrying the gene of interest. Cells were grown at 37°C in LB medium in the 

presence of the appropriate antibiotics to an OD600 of 0.6-0.8. Protein expression 

was induced with 0.2 mM IPTG (Roth, Karlsruhe, Germany). After further growth 

overnight at 18°C cells were harvested by centrifugation at 4°C. Cell pellets were 

flash frozen in liquid nitrogen and  stored at -80°C. 

2.2.4.2 Selenomethionine labelling 

Selenomethionine incorporation was performed by co-transformation of the 

methionine auxotroph E. coli strain B834 (Novagen, Schwalbach/Ts., Germany) 

with plasmid DNA containing the gene of interest and the pRARE (Cmr) plasmid 

isolated from Rosetta (DE3) cells. Cells were grown in 2000 ml LB medium 

supplemented with the appropriate antibiotics at 37°C to an OD600=0.6. Cells were 

harvested and the pellet was resuspended in the same volume of LeMaster´s 

medium (Table 3) supplemented with selenomethionine (125 mg/2000 ml) and 

antibiotics. To deplete the medium of any residual methionine, cells were grown to 

an OD600 of 0.8 at 37°C. Protein expression was induced with 0.2 mM IPTG and 

cells were grown overnight at 18°C. Cells were harvested by centrifugation at 4°C. 

Cell pellets were flash frozen in liquid nitrogen and stored at -80°C. 
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2.2.4.3 Gelfiltration experiments and determination of molecular weight 

The molecular weight of protein complexes was estimated by analytical gelfiltration 

chromatography using a Superose-6 10/300 HR gelfiltration column (GE 

Healthcare, Freiburg, Germany), equilibrated with the corresponding protein 

buffer. Prior to the experiment, the column was calibrated with Gel Filtration 

Standard (Bio-Rad, Munich, Germany). The stoichiometry of the complexes was 

additionally analyzed by SDS-PAGE. 

2.2.5 Structure determination of the archaeal exosome 

2.2.5.1 Cloning and expression of the exosome complexes from 
Archaeoglobus fulgidus 

The coding sequences of the archaeal exosome subunits Rrp41, Rrp42, Rrp4 and 

Csl4 were amplified from Archaeoglobus fulgidus (af) genomic DNA by PCR using 

the corresponding PCR primers (Table 5). The purified PCR products of the two 

core subunits Rrp41 and Rrp42 were cloned into a modified bicistronic pET-21 

vector (Novagen, Schwalbach/Ts., Germany; Lammens et al., 2004) using the 

corresponding restriction sites. The gene products of Rrp4-6xHis and Csl4 were 

cloned into a modified bicistronic pET-29 (Novagen, Schwalbach/Ts., Germany; 

Table 6). To obtain stoichiometric complexes of two exosome isoforms, the 

resulting expression plasmids containing Rrp41/Rrp42 and Rrp4 (denoted Rrp4-

Exosome) or Rrp41/Rrp42 and Rrp4/Csl4 (denoted Csl4-exosome), were co-

transformed into competent E. coli Rosetta (DE3). Proteins were co-expressed 

overnight at 18°C to allow association of the individual complexes and harvested 

by centrifugation. Point mutations in the core subunit Rrp41 were generated by 

site-directed mutagenesis (Table 5), and the mutated gene product was cloned 

with Rrp42 into the bicistronic pET-21. Mutant complexes of the Rrp4-exosome 

were expressed according to the wild-type protein. For SAD phasing protein was 

derivatizised with selenomethionine as described in 2.2.4.2.  

2.2.5.2 Purification of the two exosome isoforms 

Cells were resuspended in Lysis buffer (Table 7) supplemented with 200 µM 

PMSF (Roth, Karlsruhe, Germany), and disrupted by sonication. Cell debris was 

removed by centrifugation. E. coli proteins were heat denaturised for 25 minutes at 
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80°C and removed by centrifugation. To purify the Rrp4-exosome, the respective 

supernatant was loaded onto a Ni2+-NTA column (5 ml, Qiagen, Hilden, Germany), 

equilibrated with the corresponding Equilibration buffer (Table 7). After washing 

with Wash buffer I and II (Table 7), the Rrp4-Exosome was step-eluted with 

Elution buffer (Table 7). Fractions were analyzed using Bradford protein assay 

(Bio-Rad, Munich, Germany). Protein containing fractions were pooled, diluted 1:4 

with Dilution buffer (Table 7), and further purified by cation exchange 

chromatography (Resource™ S, GE healthcare, Freiburg, Germany) using the 

Äkta System (GE Healthcare, Freiburg, Germany). The heat-stable supernatant of 

the Csl4-exosome was filtered using a 0.45 µm sterile-filter before loading onto an 

anion exchange chromatography column (MonoQ HiTrap, GE Healthcare, 

Freiburg, Germany). Prior to the experiments, the ion exchange columns were 

equilibrated with the respective Buffer A (Table 7) and protein was eluted with a 

gradient of 20 column volumes from 50 mM NaCl (Buffer A) to 1 M NaCl (Buffer B, 

Table 7). The pooled peak fractions were concentrated and loaded onto a 

Superdex S200 16/60 size exclusion chromatography column equilibrated with the 

corresponding buffer (Table 7). Peak fractions were concentrated to 15 mg/ml for 

crystallization using centrifugal filter devices (Amicon® Ultra, Millipore, Billerica, 

MA, USA) with a 10 kDa nominal molecular weight cutt-off. Mutant Rrp4-exosome 

was purified in the same way. Selenomethionine-containing Rrp4- and Csl4-

exosome were purified according to the wild-type proteins, whereas all buffers 

were degassed before use and contained 10 mM β-mercaptoethanol (Roth, 

Karlsruhe, Germany) or 2 mM DTT (Roth, Karlsruhe, Germany) 
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Table 5: Oligonucleotides 

Oligo name Sequence 

afRrp41 for NdeI aaaaaacatatgtcggaattcaatgaaaaaccagaa 

afRrp41 rev Hind III aaaaaaaagctttcaggcatcttcaccaccctctg 

afRrp42 for Nco I aaaaaaaccatgggccctgaagacatccttgtggacatt 

afRrp42 rev Not I aaaagcggccgc ttaaatttccttaaatttctccctcag 

afRrp4 for Nco I aaaaaaaccatgggcaggaagatagtactgccaggagat 

afRrp4_cHis rev Not I aaaaaaagcggccgcttgaattccgacatctgccttcct 

afCsl4 for Nde I aaaaaacatatgagattcgtaatgccgggagat 

afCsl4 rev Hind III aaaaaaaagcttctaccactctcccttgccgtaat 

Desired mutation Sequences 

afRrp41 R65E for gaagtgcatccagaacaccttcaggat 

afRrp41 R65E rev atcctgaaggtgttctggatgcacttc 

afRrp41 D180A for atgaaagaggagggcaattttggtgag 

afRrp41 D180A rev ctcaccaaaattgccctcctctttcat 

Underlined regions mark recognition sites for restriction endonucleases. 

Bold letters correspond to the mutated codons. All sequences are given in 5´- 3´ direction. 

 

 

 

 

Table 6: Expression plasmids 

# Insert Vector Restriction sites Tag Remarks 

1 afRrp41-afRrp42 pET-21 Nde I, Not I - Bicistronic 

2 afRrp4 pET-29 Nco I, Not I c-6xHis - 

3 afRrp4-afCsl4 pET-21 Nde I, Not I - Bicistronic 

4 afRrp41 (R65E)-

afRrp42 

pET-21 Nde I, Not I - Bicistronic 

5 afRrp41 (D180A)-

afRrp42 

pET-21 Nde I, Not I - bicistronic 
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Table 7: Buffers for the purification of the exosome complexes 

Buffer Description 

Ni-NTA  

Lysis buffer/Equilibration buffer 20 mM NaH2PO4 pH 7.5 (25°C), 200 mM NaCl, 10 mM β-

mercaptoethanol 

Wash buffer I 20 mM NaH2PO4 pH 7.5 (25°C), 1.5 M NaCl, 10 mM 

Imidazol, 10 mM β-mercaptoethanol 

Wash buffer II 20 mM NaH2PO4 pH 7.5 (25°C), 200 mM NaCl, 10 mM 

Imidazol, 10 mM β-mercaptoethanol 

Elution buffer 20 mM NaH2PO4 pH 6.8 (25°C), 200 mM NaCl, 250 mM 

Imidazol, 10 mM β-mercaptoethanol 

Dilution buffer 20 mM NaH2PO4 pH 6.8 (25°C), 10 mM β-mercaptoethanol 

Resource S (Rrp4-exosome/Mono Q (Csl4-exosome)  

Buffer A 20 mM NaH2PO4  pH 6.8 (25°C), 50 mM NaCl, 2 mM DTT 

Buffer B 20 mM NaH2PO4  pH 6.8 (25°C), 1 M NaCl, 2 mM DTT 

Gelfitration (Rrp4-exosome) 20 mM Tris/HCl pH 7.8 (25°C), 200 mM NaCl, 2 mM DTT 

Gelfiltration (Csl4-exosome) 20 mM Tris/HCl pH 7.8 (25°C), 200 mM NaCl, 10 % 

glycerol, 2 mM DTT 

 

2.2.5.3 Crystallization and structure determination of the exosome 
complexes 

Native Rrp4-exosome was crystallized by sitting drop vapour diffusion technique 

by mixing 1 µl protein (15 mg/ml in gelfiltration buffer, Table 7) and 1 µl of reservoir 

solution (0.1 M HEPES pH 6.2, 35% MPD, 10 mM CaCl2 and 15% glycerol) at 

20°C. Crystals of native Csl4-exosome (15 mg/ml in gelfiltration buffer, Table 7) 

were obtained accordingly by mixing 1 µl of protein with 1 µl of 0.1 M sodium 

acetate pH 5.6, 32% MPD and 10 mM NaCl as precipitant solution at 20°C. Prior 

to data collection, crystals were mounted in nylon loops and flash frozen in liquid 

nitrogen. Redundant single wavelength anomalous dispersion (SAD) experiments 

were recorded at ID29 (ESRF, Grenoble, France) with selenomethionine-

containing crystals of both Rrp4- and Csl4-exosome at the K absorption edge to 

3.0 Å and 3.2 Å, respectively. Data from 360 images (Rrp4-exosome, 1° rotation) 
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and 500 images (Csl4-exosome, 0.5° rotation) were integrated and scaled with 

XDS and XSCALE (Kabsch 1993). For the Rrp4-exosome, atomic positions for 57 

Selenium atoms were located with SHELXD (Schneider and Sheldrick 2002). 

Phases to 3.0 Å were obtained with SHARP software (Global phasing), and used 

as input for automated and manual model building with RESOLVE/REFMAC 

(Terwilliger 2002) and MAIN (Turk 1992). Automated model building allowed 

partial tracing of poly-alanine chains into the electron density to simplify manual 

model building. Refinement to 3.0 Å was performed with CNS (Brunger et al., 

1998). For the Csl4-exosome, the atomic postions of 54 Seleniums were found 

accordingly, and phases to 3.2 Å were obtained. As to this time point the initial 3.0 

Å model of the Rrp4-exosome already existed, the core domain (Rrp41-Rrp42) 

was used as search model for molecular replacement. The additional Csl4 subunit 

was afterwards build manually using MAIN (Turk 1992). Refinement of the 

complete Csl4-exosome at 3.2 Å followed iterative cycles of manual model 

completion with MAIN (Turk 1992) and refinement with CNS (Brunger et al., 1998). 

The initial models were used to phase 2.7 Å native data sets recorded at ID14-1 

(ESRF, Grenoble. France) and PX beamline (SLS, Villigen, Switzerland) using 

PHASER (Collaborative Computational Project 1994). Refinement of the native 

data were performed with CNS (Brunger et al., 1998), and included overall 

anisotropic B-factor and bulk solvent corrections, individual B-factor refinement, 

simulated annealing, and positional refinement. Initial three-fold 

noncrystallographic symmetry (NCS) within the exosome complexes was gradually 

removed at later refinement steps to account for subunit flexibility. Stereochemistry 

of the final models was analyzed using PROCHECK (Laskowski et al., 1993) 

2.2.5.4 Tungstate soaking experiments 

Crystals of the Rrp4-exosome were soaked with 50 mM Na2WO4x2H2O to locate 

potential phosphate or RNA binding sites (Lima et al., 1997). For soaking 

experiments, tungstate was diluted into reservoir solution to keep crystallization 

conditions constant. The crystallization buffer was slowly exchanged with the 

tungstate solution and damage of crystals was monitored. After 10 minutes, 30 

minutes and 1 hour, undamaged crystals were mounted in nylon loops and flash 

frozen in liquid nitrogen, respectively. Data were recorded at the tungstate peak 

wavelength to a resolution of 2.9 Å at PX beamline (SLS, Villigen, Switzerland). 
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Data from 180 images (1° oscillation) were integrated and scaled with XDS and 

XSCALE (Kabsch 1993). The data set was phased by molecular replacement 

using the refined Rrp4-exosome as search molecule for PHASER (Collaborative 

Computational Project 1994). Anomalous signals were visualized by calculation of 

an anomalous difference density (|F(+)|-|F(-)|). 

2.2.6 Biochemical Methods 

2.2.6.1 Radioactive Labelling of RNA 

The radioactive labelling of RNA was carried out by mixing 30 pmol of a 30mer 

poly(rA)-RNA oligoribonucleotide with 60 µCi γ-32P-ATP and 4.5 U T4 

Polynucleotide Kinase (Fermentas, St. Leon-Rot, Germany) in a 30 µl reaction for 

1 hour at 37°C following the provided instructions. The reaction contained 

additionally 0.8 U/µl RNasin (Promega, Mannheim, Germany), and was perfomed 

in DEPC-treated water. Tips and reaction tubes were RNase-free. The RNA was 

purified using MicroSpin G-25 columns (GE Healthcare, Freiburg, Germany).  

2.2.6.2 RNA degradation and polyadenylation assays 

RNA degradation and polyadenylation activity of the archaeal exosome isoforms 

were analyzed by mixing 5 or 50 pmol of protein with 50 fmol of RNA substrate in 

a 20 µl reaction containing the corresponding buffer (Table 8) for 10 minutes at 

60°C. The reaction contained additionally 0.8 U/µl RNasin (Promega, Mannheim, 

Germany). Reactions were stopped by adding 0.5 volumes 4x loading dye (Table 

8), and transferred onto a 20 % polyacrylamide/7 M Urea gel. Gels were run in 0.5 

x TB-Buffer for 2 hours at 600 V. The resolved reaction products were analyzed by 

phosphorimaging (GE Healthcare, Freiburg, Germany) using a StormScanner (GE 

Healthcare, Freiburg, Germany). To analyze relative RNase activities of exosome 

isoforms, 5 pmol (250 nM) protein ws incubated with 50 fmol (2.5 nM) of the 30mer 

oligo(rA) substrate at 60°C for 5 minutes. Degradation products were resolved as 

described and quantified with ImageQuant® software (GE Healthcare, Freiburg, 

Germany). Calculated standard deviations represent means of three individual 

degradation experiments.  
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2.2.6.3 RNA binding assays 

To test RNA binding abilities of wild-type and mutant exosome complexes, RNA 

binding assays were performed with radioactive labelled 30mer poly(rA)-

oligoribonucleotide as substrate. For each reaction, 5, 2.5, or 0.25 µM protein was 

incubated with 50 fmol RNA substrate in the corresponding buffer (Table 8) in a 20 

µl reaction for 5 minutes at room temperature. Reactions contained additionally 0.8 

U/µl RNasin (Promega, Mannheim, Germany). The samples were mixed with 6x 

Loading Dye (Table 4), and RNA:protein complexes were resolved on a native 5% 

polyacrylamid gel. Gels were run in 0.5 x TB-Buffer for 2 hours at 80 V. The 

reactions products were analyzed by phosphorimaging (GE Healthcare, Freiburg, 

Germany). 

 

 

Table 8: Buffers and solution for biochemical assays 

Buffer Description 

RNA degradation assay  

5x Reaction buffer 120 mM Tris/HCl pH 7.8, 300 mM KCl, 50 mM MgCl2, 50 % 

glycerol, 10 mM DTT, 0.5 mM EDTA, 500 µg/ml BSA, 50 mM 

NaH2PO4 (pH 7.8) 

RNA polyadenylation assay  

5x Reaction buffer 120 mM Tris/HCl pH 7.8, 300 mM KCl, 50 mM MgCl2, 50 % 

glycerol, 10 mM DTT, 0.5 mM EDTA, 500 µg/ml BSA, 100 mM 

ADP 

4x Loading Dye 25% glycerol, 125 mM Tris/HCl pH 6.8 (25°C), 3.5% SDS, 2.5 

mM EDTA, 5 mM DTT, 0.5% Bromphenolblue, 3 M Urea 

10 x TB Buffer 0.89 M Tris, 0.89 M Boric acid 

RNA binding assay  

5x Reaction buffer 120 mM Tris/HCl pH 7.8, 300 mM KCl, 50 mM MgCl2, 50 % 

glycerol, 10 mM DTT, 0.5 mM EDTA 

6x Loading Dye 1.5 g/L bromphenol blue, 1.5 g/L xylene blue, 50% (v/v) glycerol 
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3 Results 

3.1 Purification, crystallization and structure determination of the 
archaeal exosomes 

Exosomes emerge as central 3´  5´ RNA processing and degradation 

machineries in eukaryotes and archaea. The structural mechanism of exosomes in 

fundamental processes like quality control and normal turnover of cytosolic (pre-) 

mRNA (Hilleren et al., 2001) as well as in the processing and degradation of 

nuclear RNA species (Butler 2002; Vasudevan and Peltz 2003; Raijmakers et al., 

2004) is still poorly understood. To provide a framework for the architecture and 

mechanism of exosomes, I determined structures of two archaeal exosome 

isoforms.  

The genes encoding the four archaeal exosome subunits from Archaeaglobus 

fulgidus were amplified by PCR from genomic DNA. Although individually 

expressed recombinant exosome subunits are all soluble, the whole complex was 

co-expressed and not reconstituted after expression. This co-expression strategy 

was already successfully used in the case of subunits of the Mediator complex 

(Baumli et al., 2005; Hoeppner et al., 2005). For co-expression, individual genes 

were cloned into mono- and bicistronic vectors. The resulting expression plasmids 

(Table 6) were co-transformed into E. coli Rosetta (DE3) cells, and complexes of 

the Rrp4-exosome and Csl4-exosome were co-expressed. The 250 kDa Rrp4-

exosome contains the two core subunits Rrp41 and Rrp42 as well as the Rrp4 

subunit with a C-terminal 6xHis-Tag. The 235 kDa Csl4-exosome contains the two 

core subunits Rrp41 and Rrp42, and both Rrp4 and Csl4 subunits (Figure 5).  
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Figure 5: Schematic overview about subunit compostion of Rrp4-exosome (A) and Csl4-

exosome (B) with indicated domain denotation. 
 

 

3.1.1 Purification of the Rrp4-exosome 

The Rrp4-exosome was purified to near homogeinity by an initial heat denaturation 

of E. coli proteins, immobilized Ni2+-NTA affinity chromatography (utilizing the 

6xHis-Tag on Rrp4), Resource™ S cation exchange chromatography, and HiLoad 

16/60 Superdex S200 size exclusion chromatography as described in 2.2.5.2. 

Rrp4-exosome eluted in one distinct peak with an approximately molecular weight 

of 200-250 kDa (theoretical molecular mass: 250 kDa), and a 1:1:1 stoichiometry 

of all three subunits (Figure 6). Protein containing fractions were concentrated to a 

final concentration of 15 mg/ml and used for crystallization trials. From a 6 l 

expression culture, 15-20 mg of pure protein could be obtained in total (Figure 6). 

Selenomethionine-containing protein and mutant protein were purified accordingly.  
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Figure 6: Elution profile of the Rrp4-

exosome from HiLoad 16/60 S200 

size exclusion column. (absorption 

at 280 nm, blue; absorption at 260 

nm, magenta). Second peak may 

represent monomeric exosome 

subunits. Insert shows SDS-PAGE 

analysis of a representative peak 

fraction. 

 

3.1.2 Purification of the Csl4-exosome 

The Csl4-exosome was purified by heat denaturisation of E. coli proteins, Mono Q 

anion exchange chromatography and HiLoad 16/60 Superdex S200 size exclusion 

chromatography as described in 2.2.5.2. The Csl4-exosome complex eluted in one 

distinct peak with an appr. molecular weight of 200-250 kDa (theoretical MW 235 

kDA) (Figure 7). The co-expression strategy resulted in a heterogeneous mixture 

of complexes that contain Rrp41 and Rrp42 in almost stoichiometric amounts, and 

Csl4 and Rrp4 in substoichiometric amounts (Figure 7). Protein containing 

fractions were pooled and concentrated to a final concentration of 15 mg/ml, and 

purified protein was used for crystallization set ups. In general, around 20-25 mg 

of protein could be obtained from 6 l expression culture. 

 

 

 

 

 

Figure 7: Elution profile of the Csl4-

exosome from HiLoad 16/60 S200 

size exclusion column. (absorption 

at 280 nm, blue; absorption at 260 

nm, magenta). Insert shows SDS-

PAGE analysis of a representative 

peak fraction. 
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3.1.3 Purification of mixture complexes 

Given the defined stoichiometry of eukaryotic exosome complexes 

(Rrp4:Rrp40:Csl4 in 1:1:1 stoichiometry), the ability of archaeal exosomes to form 

different isoforms in vitro was surprising. As described, co-expression of all four 

Rrp41, Rrp42, Rrp4 and Csl4 subunits in E. coli resulted in a heterogeneous 

mixture of complexes that contain Rrp41 and Rrp42 in almost stoichiometric 

amounts, and Csl4 and Rrp4 in substoichiometric amounts (Figure 7).  

As seen in Figure 8, the stoichiometry of Rrp4:Csl4 depends on the affinity 

purification strategy and can result in 2:1 or 1:2 stoichiometries (Figure 8B,D). Co-

expression of Rrp41, Rrp42 and Csl4 resulted in 1:1:1 stoichiometry, consistent 

with the 1:1:1 stoichiometry of the Rrp4-exosome (Figure 8A,C).  

 

 

 

Figure 8: A) Co-expression and co-purification of Rrp4-exosomes (Rrp4-6xHis, Rrp41 and 

Rrp42) shows 1:1:1 stoichiometry. B) Co-expression and co-purification of Rrp41, Rrp42 

and Rrp4 and Csl4 resulted in a mixture of complexes with Rrp4 and Csl4 subunits in 

varying substoichiometric amounts (depending on mutual expression levels). C) Co-

expression and co-purification of Csl4-exosomes (6xHis-Csl4, Rrp41 and Rrp42) reveales 

1:1:1 stoichiometry. D) Co-expression of Rrp4-6xHis, Rrp41, Rrp42 and Csl4 and 

purification by Ni2+-NTA (utilizing the HisTag), Mono Q and size exclusion resulted in 

exosome isoforms containing both Rrp4 and Csl4 in different stoichiometric amounts 

(Rrp43:Csl40, Rrp42:Csl41, Rrp41:Csl42). Molecular weight markers are indicated left (in 

kDa). Figure shows Coomassie stained polyacrylamid gel electrophoresis from four 

individual co-purification experiments. 

 

As stoichiometry fluctuations of Csl4 and Rrp4 subunits are also observed in the 

analysis of exosomes from archaeal cells (Evguenieva-Hackenberg et al., 2003; 

Farhoud et al., 2005), these data indicate that heterogenic Rrp4-Csl4 caps exist in 

vitro and thus are likely to exist also in vivo. 
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3.1.4 Crystallization of the Rrp4-exosome 

For initial crystallization, trials were set by hand using commercial crystallization 

screens in 96-well sitting drop plates (Corning, Schiphol-Rijk, Netherlands). In 

general, the total reservoir volume was between 50 and 80 µl and 1 µl of protein 

was mixed with 1 µl of reservoir solution. Plates were incubated at 20°C. Small 

cubic crystals grew after 1-2 days in Hampton Screen I and II conditions as well as 

in conditions of the Jena Biosciences Screen 7 (Figure 9A,B). For first diffraction 

experiments, crystals were mounted directly and flash frozen in liquid nitrogen. 

These cubic crystals from different conditions diffracted to ~ 7 Å at PX beamline 

(SLS, Viligen, Switzerland). Nevertheless, no intense ice rings could be detected.  

For structure determination, crystal size and quality had to be improved. Several 

conditions from the Hampton and Jena Biosciences Screens were chosen for 

extensive refinement and included variation of pH and MPD/glycerol concentration 

as well as addition of different salts (NaCl, LiCl, MgCl2, CaCl2). During the 

refinement procedure, a pH dependent change in the crystal morphology could be 

detected. By raising the pH, the crystals lost their cubic form and grew in a more 

cuboid like shape. Finally, the best crystal conditions could be achieved on the 

basis of Jena Biosciences Screen 7 #D4 by varying the pH and MPD/CaCl2 

concentration (Figure 9C) by which crystals with a maximum size of 100 µm x 100 

µm x 200 µm could be obtained. These crystals belonged to space group P21 with 

unit cell constants a=101.6 Å, b=129.6 Å, c=102.3 Å, β=101.6° and exhibit one 

molecule (=one nine subunit exosome complex) per asymmetric unit. This results 

in a Matthews coefficient of 2.86 Å3/dalton of protein (Matthews 1968; Kantardjieff 

and Rupp 2003) and a solvent content of 57 %. The crystals diffracted X-rays to 

2.7 Å resolution at ID14-1 beamline (ESRF, Grenoble, France) and were used to 

record a native data set. Selenomethionine-containing crystals grew in the same 

refinement conditions. 
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Figure 9: Initial cubic crystals from Rrp4-exosome grown in two representative conditions. 

A) Hampton Screen I #40: 20% iso-Propanol, 0.1 M NaCitrate pH 5.6, 20% PEG4000. B) 

Jena Bioscience Screen 7 #D4: 44% MPD, 0.1 M NaHepes pH 7.5. C) Refined 

selenomethionine-containing cuboid crystal of the Rrp4-exosome in a refinement condition 

containing 30% MPD, 0.1 M NaHEPES pH 6.2 and 10 mM CaCl2. 

  

 

3.1.5 Crystallization of the Csl4-exosome 

The Csl4-exosome was crystallized analogous to the Rrp4-exosome by initial 

screening with commercially available crystallization conditions. Crystal trials were 

set in 96-well sitting drop plates and 1 µl of protein was mixed with 1 µl of reservoir 

solution. Plates were incubated at 20°C. Interestingly, only the major species, the 

“Csl4-exosome” isoform crystallized with 1:1:1 (Rrp41:Rrp42:Csl4) stoichiometry. 

Similar looking crystals appeared after 2-4 days in only two different conditions 

(Figure 10A,B). However, these crystals were directly mounted and flash frozen in 

liquid nitrogen. Diffraction experiments on PX beamline (SLS, Villigen, 

Switzerland) already resulted in diffraction up to 4 Å. Refinement of Hampton 

Screen II #10 resulted in crystals with an particulate unusual shape (Figure 

10C,D), which diffracted X-rays up to 2.7 Å. Crystals belonged to space group 

P4322 with unit cell constants a=b=137.5 Å, c=261.0 Å and contained one 

molecule (=one nine subunit exosome complex) in the asymmetric unit. This 

results in a solvent content of 54 %, and a Matthews coefficient of 2.66 Å3/dalton 

of protein (Matthews 1968; Kantardjieff and Rupp 2003). Selenomethionine-

containing protein could be crystallized in the same refinement conditions and 

exhibited the same knobby outgrowths.  



 Results  35 

  

  

Figure 10: Crystals grown in initial screening conditions Hampton Screen II #10 (A, 30% 

MPD, 0.1 M NaAcetate pH 4.6, 0.2 M NaCl) and Nextal Classic Screen I (B, 0.2 M MgCl2, 

0.1 M NaHEPES pH 7.5, 30% iso-propanol). Refined crystals of selenomethionine-

containing crystals (C, 35% MPD, 0.1 M NaAcetate pH 5.6, 20 mM NaCl) and native 

crystals of Csl4-exosome (D, 32% MPD, 0.1 M NaAcetate pH 5.6, 10 mM NaCl). Crystals 

grew to an averaged maximum size of 70 µm x 70 µm x 70 µm.  

 

 

3.1.6 Data collection 

Diffraction data of the selenomethionine containing crystals of both Rrp4- and 

Csl4-exosome were collected at ID29 (ESRF, Grenoble, France) with an ADSC 

Q315R CCD detector. Diffraction data of the native Rrp4-exosome were collected 

at ID14-1 with an ADSC Q210 CCD detector. Diffraction data of native Csl4-

exosome were measured at PX beamline (SLS, Villigen, Switzerland) with a 

mar225 mosaic CCD detector. 360 frames (1° oscillation) were collected for each 

data set of the Rrp4-, whereas 500 frames (0.5° oscillation) were recorded for 

each Csl4-exosome data set. 

Phase determination was carried out by a single wavelength anomalous 

dispersion (SAD) experiment at the selenium K edge for both Rrp4- and Csl4-

exosome, using one selenomethionine containing crystal each. As measurements 

of SAD datasets depend on accurate measurement of the data set at the accurate 

wavelength, the optimal peak wavelength was determined experimentally by a 
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fluorescence scan for each selenomethionine containing crystal prior to data 

collection. Data for the peak wavelength at 0.9795 Å (12.66123 KeV, f´-8.60, f´´ 

6.00) were collected for the Rrp4-exosome to 3.0 Å. A native data set of the Rrp4-

exosome was collected at 1.003 A to 2.7 Å resolution. Data of selenomethionine 

containing crystals of the Csl4-exosome were measured at 0.9795 Å (12.661 KeV, 

f´-8.5, f´´ 5.6) to 3.2 Å. Data of native Csl4-exosome crystals were recorded at 

1.01 Å to 2.7 Å. 

3.1.7 Structure determination and refinement of the Rrp4-exosome 

All data were processed with XDS and XSCALE (Kabsch 1993). Data were 

indexed and scaled in P21, and later analysis of systematic absences revealed the 

presence of the screw axis (Figure 11).  

 

Figure 11: Image of the peak data set with hklview (CCP4, 1994) on section hk0 (left), and 

a zoomed section on the k-axis (h=0, l=0) (right). Only every second reflexion is present, 

which corresponds to a P21 screw axis. 

 

The Rrp4-exosome contains 58 methionines (plus 9 N-terminal methionines) in 

total. Thus, it belongs to one of the biggest macromolecular protein complexes 

solved by selenomethionine SAD. In the case of the yeast RNA Polymerase II, in 

vivo selenomethionine incorporation was used to facilitate model building of a 3.1 

Å resolution structure, whereby 94 out of 103 possible selenomethionine peaks 

were detected (Cramer et al., 2001). However, 57 selenomethionine positions 

were located using SHELXD (Collaborative Computational Project 1994). Phases 

were obtained to 3.0 Å with SHARP. Phase improvement by solvent flattening with 

SOLOMON (Collaborative Computational Project 1994) resulted in an 

interpretable electron density (Figure 12).  
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Figure 12. A) Anomalous difference fourier map (yellow mesh) contoured at 3σ obtained 

from Selenomethionine phasing. B) 1σ contoured single anomalous dispersion (SAD) map of 

the Rrp4-exosome at 3.0 Å resolution (blue mesh) with superimposed anomalous difference 

fourier map (yellow mesh) contoured at 3σ. 

 

Phases to 3.0 Å allowed partial automated model building with 

RESOLVE/REFMAC (Terwilliger 2002), and most of the experimental electron 

density was traced as a poly-alanine model, which facilitates manual model 

building with MAIN (Turk 1992). The presence of at least five selenomethionies 

per single subunit, which could be used as sequence markers, additionally 

simplified the manual building process. One of each subunit was built manually. To 

obtain three copies of each subunit, the Rrp41-Rrp42-Rrp4 model was manifolded, 

followed by manual rotation into the two uninterpreted electron density regions of 

the exosome complex. The model was additionally fitted by rigid body refinement 

using CNS (Brunger et al., 1998). The first refinement steps included rigid body 

refinement, bulk solvent correction and overall anisotropic B-factor correction as 

well as three-fold non-crystallographic symmetry (NCS) within the exosome. The 

refined model was later on used to phase the 2.7 Å resolution native data set by 

molecular replacement using PHASER (Collaborative Computational Project 

1994). One single solution was refined at 2.7 Å by iterative cycles of bulk solvent 

correction, simulated annealing, positional minimization and individual B-factor 

refinement with CNS (Brunger et al., 1998), and additional manual completion of 

the model with MAIN (Turk 1992). The initial three-fold NCS was gradually loosend 

during refinement to account for subunit flexibility. Solvent molecules were 

introduced using CNS (Brunger et al., 1998) and verified manually. The final model 

of the Rrp4-exosome contains 2157 out of 2220 possible amino acids and 102 

solvent molecules. Refinement resulted in an R-factor of 21.6 (Rfree=26.4) and 
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good stereochemistry (Figure 13). Ramachandran plot shows 87 % of the residues 

in the most favored region. Refinement statistics are listed in Table 9.  

 

Figure 13: Representative portion of single 

anomalous dispersion (SAD) and composite 

omit maps (Omit, calculated after 500K-0K 

simulated annealing to remove model bias), 

shown at the Rrp4 KH domain. The maps 

are contoured at 1σ. The final model is 

overlaid and shown as color coded stick 

representation.  

 

3.1.8 Structure determination and refinement of the Csl4-exosome 

All data were initially indexed and scaled with XDS and XSCALE (Kabsch 1993) in 

space group P422. The presence of a screw axis was verified by analysis of 

systematic absences and could be limited to the two enantiomorphs P4122 and 

P4322 (International Tables Crystallography, Volume A: Space-group symmetry, 

2002) (Figure 14). In this case, systematic absences alone allow no discrimination, 

and the correct space group can only be revealed after map calculation. Thus, 

both space groups had to be used for initial phase determination.  

  

Figure 14: Image of the peak data set with hklview (CCP4, 1994) on section 0kl (left). A 

zoomed view on the l-axis (h=0, k=0) shows the presence of only every forth reflection, 

which corresponds to a 41 or 43 screw axis (right). 

 

Comparable to the Rrp4-exosome, the Csl4-exosome contains 54 

selenomethionines (plus 9 N-terminal selenomethionines) in total. With SHELXD 
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(Collaborative Computational Project 1994) atomic positions of 54 

selenomethionines could be located. Phases to 3.2 Å could be obtained with 

SHARP (Global phasing), and an interpretable electron density was calculated in 

space group P4322 after phase improvement by solvent flattening with SOLOMON 

(Collaborative Computational Project 1994). For initial model building, the already 

build core domain of the Rrp4-exosome (Rrp41-Rrp42 subunits) was used as 

search molecule for molecular replacement with PHASER (Collaborative 

Computational Project 1994). One single search solution was fitted to the data by 

rigid body refinement using CNS (Brunger et al., 1998). The additional Csl4 

subunit and additional arising parts were afterwards build manually into the 

emerged difference fourier density. According to the Rrp4-exosome, the intrinsic 

three-fold NCS was used for ensuing refinement steps. After rigid body refinement, 

bulk solvent and overall anisotropic B-factor correction using CNS (Brunger et al., 

1998), the model was used to phase the 2.7 Å native data set by molecular 

replacement using PHASER (Collaborative Computational Project 1994). The final 

model was refined to 2.7 Å resolution by repeated rounds of bulk solvent 

correction, simulated annealing, positional minimization and restrained individual 

B-factor correction using CNS (Brunger et al., 1998) and manual building with 

MAIN (Turk 1992). The internal three-fold NCS was gradually removed at later 

refinement steps as performed for the Rrp4-exosome. Water molecules were 

integrated with CNS (Brunger et al., 1998) and verified manually. A zinc ion was 

modelled in each of the three zinc-binding domains of Csl4. The final model of the 

Csl4-exosome comprises 2019 out of 2088 possible amino acids, 91 solvent 

molecules, and three zinc ions. The model was refined to an R-factor of 22.4 

(Rfree=27.5) and exhibits good stereochemistry in Ramachandran plot with 84 % of 

the residues in the most favored region. Refinement statistics are listed in Table 9.  

 

 

 

 

 

 

 

 



 Results  40 

Table 9: Data collection and refinement statistics 

Data collection      

 Rrp4 Exosome1   Csl4 Exosome2  

Data set Native SeMet K Peak WO4 Native SeMet K Peak 

X-ray source ID14 

(ESRF) 

ID29 (ESRF) ID29 

(ESRF) 

PX (SLS) ID29 (ESRF) 

Wavelength (Å) 0.933 0.9795 1.2143 1.01 0.9795 

Data range (Å) 20-2.7 20-3.0 20-2.9 20-2.7 20-3.2 

Observations 

(unique) 

344114 

(69958) 

224914 

(100738d) 

218821 

(113308d) 

934134 

(69124) 

686258 

(81959d) 

I/σI (last shell) 13.2 (3.7) 9.7 (3.0) 9.3 (2.4) 22.9 (7.0) 14.2 (6.3) 

Completeness 

(last shell) 

98.1 (84.4) 98.9 (95.7) 98.2 (92.5) 99.5 (99.9) 99.9 (99.8) 

Rsymm
a 0.10 (0.59) 0.084 (0.45) 0.054 

(0.39) 

0.08 (0.39) 0.148 (0.49) 

Refinement      

 Rrp4 Exosome    Csl4 Exosome 

Data set Native    Native 

Data range (Å) 20-2.7    20-2.7 

Reflections F>0 (cross 

validation) 

69955 (3589)    69041 (1929) 

Rwork
b(Rfree

c) 0.216 (0.264)    0.224 (0.275) 

RMS bond length (Å) 

(angles) 

0.008 (1.38)    0.007 (1.4) 

1 Rrp4-exosome (P21) cell constants (Å): a=101.6, b=129.6, c=102.3, β=101.6° 
2 Csl4-exosome (P4322) cell constants (Å): a=b=137.5, c=261.0 

aRsym is the unweighted R-value on I between symmetry mates. 
bRwork = ∑hkl II Fobs(hkl)I -IFcalc (hkl) II / ∑hkl I Fobs (hkl)I for reflections in the working data set. 
cRfree = cross validation R-actor for 5% of reflections against which the model was not refined. 
dUnique anomalous. 
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3.2 Crystal structure of the archaeal exosome 

3.2.1 Structural overview of the exosome isoforms 

The Rrp4- and Csl4-exosome isoforms of Archaeoglobus fulgidus form large 

globular molecules with overall dimension of 90 Å x 95 Å x 95 Å (Figure 15). Each 

exosome assembly consists of three copies of the RNase PH-type sununits Rrp41 

and Rrp42. In addition, each complex contains three subunits of either Rrp4 (Rrp4-

exosome) or Csl4 (Csl4-exosome).  

 

 

Figure 15: Ribbon models of the nine subunit archaeal Rrp4- (A: top view, B: side view) 

and Csl4-exosomes (C: top view). Both exosomes contain a ring of alternating Rrp41 

(blue) and Rrp42 (green) subunits. Three tungstate moieties (magenta/red cpk model) 

indicate three active sites in the Rrp41:Rrp42 ring (see text). Three Rrp4 subunits (orange, 

with annotated NT, S1 and KH domains) or Csl4 subunits (red, with annotated N-terminal 

(NT), S1 and zinc ribbon (ZN) domains plus yellow zinc ions) bind to the top face of the 

Rrp41-Rrp42 ring in both exosome complexes, respectively. D) A slice view through the 

molecular surface of the Cls4-exosome reveals the channel that proceeds from S1 

domains (S1 pore) via the central processing chamber to a pore at the RNase-PH 

domains (PH pore). A 10 Å narrow neck restricts the channel diameter between the S1 

pore and the processing chamber. 
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3.2.1.1 The Rrp41 and Rrp42 subunits form the RNase PH-like core 

Three tightly engaged Rrp41:Rrp42 subunits assemble the hexameric core particle 

of the exosome, which contain the phoshporolytic chamber (Figure 15). Both 

Rrp41 and Rrp42 subunits exhibit an RNase PH-like fold, with the canonical β-α-β-

α layers (Figure 16).  

  

Figure 16: Topology Plot of Rrp41 (blue) and Rrp42 (green) with secondary structure 

annotation. 
 

Rrp41 and Rrp42 superimpose with eubacterial RNase PH with an overall r.m.s. 

devation of 1.3 Å and 1.9 Å, respectively, and around 72% of the residues have a 

similar α-carbon position. Comparison and superimposing of the two archaeal 

proteins reveal that they are as similar to each other as they are to other RNase 

PH domains (Figure 15). Rrp41 and Rrp42 exhibit around 21% sequence identity, 

and their structures superpose with an overall r.m.s. deviation of 1.7 Å for around 

74% of the α-carbon positions. The structural differences are limited to the length 

of individual helices at the N- and C-terminus and to the length of loop regions 

(Figure 17). 

   

Figure 17: Structural similarity of the A. fulgidus Rrp41 (blue) and Rrp42 (green) exosome 

components with Bacillus subtilis RNase PH (wheat, PDB code 1OYS, Harlow et al., 2004). 
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As seen in Figure 18A, there are two different kinds of interactions between 

adjacent Rrp41 and Rrp42 subunits. Thus, the hexameric ring is better described 

as a trimer of heterodimers. In the heterodimers, the two RNase PH domains of 

Rrp41 and Rrp42 are antiparallel to each other, and the dimerization interface 

buries a surface area of around 3000 Å2 (Figure 18B). This kind of up-down 

dimerization results in an extended β-sheet formed by the adjacent C-terminal β-

sheets of the two subunits. In contrast, the trimerization interface is 

predominantely formed by interactions between the two N-terminal β-sheets and 

bury a surface area of only 2490 Å2 (Figure 18B). 

 

 

  

Figure 18: A) Ribbon presentation of A. fulgidus exosome RNase PH-domain 

heterodimers depicting intersubunit contacts to the adjacent Rrp41-domain. B) and C) 

Surface and ribbon presentation of Rrp41, Rrp42, Rrp4 (B) and Rrp41, Rrp42 and Csl4 (C) 

subunits “blown up” to visualize the dimerization and trimerization surface. Total buried 

surface areas between respective subunits indicated numerically and by lines. Color code 

as indicated in Figure 16. 

 

As a consequence of the up-down dimerization the three Rrp41 subunits are 

parallel to each other and the three Rrp42 subunits have opposite orientations. A 

similar overall architecture has been observed in the homohexameric crystal 

structure of Bacillus subtilits RNase PH (Harlow et al., 2004), in the crystal 

structure of the Sulfolobus solfataricus exosome (Lorentzen et al., 2005; Liu et al., 
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2006), and in bacterial PNPase, which is a trimer of two distinct RNase PH 

domains (Symmons et al., 2000).  

3.2.1.2 The Rrp4 and Csl4 subunits form multimeric caps 

Rrp4 or Csl4 subunits are located on one side of the (Rrp41:Rrp42)3 ring and form 

flat trimeric cap-like assemblies (Figure 15). Both Rrp4 and Csl4 subunits are 

composed of three domains (Figure 19). Both Rrp4 and Csl4 bind to the Rrp41 

subunit with their N-terminal domain and to the adjacent Rrp42 subunit with their 

S1/KH or S1/zinc-ribbon domains, thereby stabilizing the exosome assembly 

(Figure 15 and 18B,C). An extended linker connects the N-terminal and the S1 

domains and reaches across two adjacent Rrp41:Rrp42 subunits. While the KH 

domain of the Rrp4 subunit does not interact with the adjacent Rrp41 subunit, the 

Zn-ribbon domain of Csl4 makes a view interaction with the Rrp41 subunit of the 

adjacent heterodimer (Figure 18B,C). However, there is no significant interaction 

among the Rrp4 and Csl4 molecules itself, indicating that all Rrp4 and Csl4 

subunits bind to the (Rrp41:Rrp42)3 assembly independently. This is consistent 

with the heterogeneity of exosomes in in vitro reconstituted complexes (see 3.1.3) 

and previous analysis of exosomes from archaeal cells (Evguenieva-Hackenberg 

et al., 2003; Farhoud et al., 2005).  

  

Figure 19: A) Domain organization of Rrp4, with highlighted and annotated secondary 

structure. Rrp4 possesses an N-terminal all-β domain (red), a middle S1 domain (orange) 

and a C-terminal KH-domain (yellow). The KH domain contains the conserved GXXG motif 

that is implicated in nucleic acid recognition. B) Cls4 possesses an N-terminal all-β domain 

(red), a middle S1 domain (orange) and a C-terminal zinc ribbon domain (yellow, with 

magenta zinc ion). The location of the Ski4-1 mutation in the interface of S1 and Zn-ribbon 

domains is indicated by a black triangle. 

 

Both Rrp4 and Csl4 subunits contain an N-terminal six-stranded all-β domain, 

which binds into the “armpit” formed by the protruding C-terminal helix of Rrp41 
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(Figure 20). The structural data and the comparable high buried surface area 

between the N-terminal domains and the respective Rrp41 subunits indicate that 

this domain is the major anchor for the caps to the phosphorolytic ring (Figure 

18B,C). The core of the interface is formed by a Pro-Gly loop that is conserved 

among archaeal and eukaryotic Rrp4, Rrp40 and Csl4 sununits, suggesting that 

archaeal and eukaryotic Csl4- and Rrp4-type subunits interact with the RNase PH 

domain ring in a similar manner (Figure 20 and below). 

  

Figure 20: A) Detailed view on the interface of the N-terminal domain of Rrp4 (red) and the 

C-terminal helix of Rrp41 (blue). The backbone is shown as ribbon, interface side chains 

are displayed as color coded sticks and annotaded. B) Detailed view on the interface of the 

N-terminal domain of Cls4 (red) and the C-terminal helix of Rrp41 (blue), similar to panel B. 

 

Apart from some additional conserved sidechain interactions, the remainder of the 

Csl4:Rrp41 and Rrp4:Rrp41 interface is surprisingly different. Rrp41 responds to 

the different N-terminal domains by conformational plasticity (e.g., Tyr241Rrp41 in 

Figure 23). In addition, the C-terminal helix of Rrp41 is substantially kinked in the 

Rrp4-exosome as compared to the Csl4-exosome due to the presence of the 

additional KH domain (Figure 15A,C and 20).  

The S1 domains belong to the oligonucleotide and/or oligosaccharide binding (OB) 

fold proteins and possess the typical kidney-shaped, five-stranded β-barrel 

structure (Figure 19). In both Rrp4 and Csl4, the S1 domain is situated at the 

center of the caps and interact with a radial helix on top of Rrp42. Thereby, the 

concave sides of the S1 domains of Rrp4 and Csl4 form an app. 15 Å and 18 Å 

wide pore (denoted “S1 pore”), respectively. The S1 domains as well as the N-

terminal domain of both Rrp4 and Csl4 share not only the fold, but also the overall 

position.  

The Rrp4 KH domain is situated on the outside of the cap (Figure 15 A). The KH 

domain possesses the “eukaryotic” KH fold and packs to the convex side of the S1 

domain (Figure 19). The KH domain also interacts with the C-terminal helix of 
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Rrp41 and the radial helix on top of Rrp42 (Figure 18B). All these interfaces exhibit 

a substantial hydrophobic nature, suggesting that the overall domain arrangement 

of S1 and KH domains is fixed, apart from local mobility of the S1 domains (Figure 

21).  

 

Figure 21: Local mobility of the S1 domain 

revealed by superposition of the three 

Rrp41:Rrp42:Rrp4 trimers in the structurally 

asymmetric Rrp4-exosome. The three Rrp4 

subunits are shown in red, orange and yellow, 

while Rrp41 and Rrp42 are shown blue and 

green, respectively. The S1 domains can at least 

move by 5-6 Å (double headed arrow), a 

distance that could allow threading of RNA one 

base at a time (see text) 

Cls4 contains a zinc-ribbon domain instead of a KH domain, in which four cysteine 

residues coordinate a central zinc ion (Figure 19B). The zinc-ribbon domain 

occupies the space between S1 and N-terminal domains of Csl4 and neither 

shares fold, nor position with the Rrp4 KH domain. Like the KH domain, the zinc-

ribbon domain shares a considerable hydrophobic interface with the S1 domain. A 

mutation in a conserved glycine in this interface gives rise to the Ski4-1 phenotype 

in yeast (Figure 1 and 19B). Ski4-1 strains have normal rRNA maturation activity 

but are defective in mRNA degradation (van Hoof et al., 2000). The interface 

location of the mutation suggests that the mutual arrangement of S1 and the zinc-

ribbon domain is important for mRNA degradation. In support of this, the zinc-

ribbon domain is positioned between two adjacent S1 domains, toward the outside 

of the cap, and additionally interacts with the adjacent Rrp41 molecule (Figure 15C 

and 18C). This orientation is ideally suited to provide additional macromolecular 

interaction sites for recognition of RNA or protein cofactors.  

3.2.1.3 Entry into and Exit from the inner processing chamber 

The “S1 pore” in both complexes represents the entrance opening to a central 

channel formed by the (Rrp41:Rrp42)3 ring. Directly beneath the “S1 pore”, an 

Rrp41 loop (residues 57 to 74) protrudes into the central channel. Stacking 

interactions between the three Rrp41 loops are mediated via Pro64Rrp41 and 

His66Rrp41 and result in narrowing of this “neck” to app. 10 Å diameter (Figure 22).  
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Figure 22: Close up view on the “neck” 

loop of the three Rrp41 molecules. Stacking 

interaction between Residue 64 (Proline) 

and 66 (Histidine) stabilize the loops in a 

conformation that closes most of the central 

channel beneath the S1 pore, leaving a 

central hole of app. 10 Å. 

Beneath the neck, the central widens to form the central chamber of the archaeal 

exosome. This processing chamber contains the phosphorolytic active sites and is 

additionally connected to the solvent by a second ~ 18 Å wide opening, denoted 

“PH pore”. The “PH pore” is located opposite to the “S1 pore” and represents the 

exit (Figure 15D).  

3.2.2 Active sites and the processing chamber of the exosome core 

RNase PH family RNases degrade RNA by adding inorganic phosphate across the 

5´  3´ phosphodiester bond between the ultimate and penultimate nucleotides 

(Figure 23) (Symmons et al., 2000). This reaction releases a nucleotide 

diphosphate from the 3´-end of the RNA substrate ([pN]n + Pi  [pN]n-1 + NDP). In 

the presence of ADP and low amounts of phosphate, RNase PH family enzymes 

are capable of catalyzing the reverse reaction and polyadenylate the 3´ end.  
 

Figure 23: Schematic drawing 

of the mechanism in 

phosphorolytic cleavage 

reactions. The attacking 

inorganic phosphate is shown in 

magenta (adapted from 

(Lorentzen and Conti 2005)).  

In order to identify the phosphorolytic active sites in the archaeal exosome, 

crystals were soaked with tungstate. Tungstate mimics phosphate and is useful to 

locate phosphorolytic sites and possible nucleic acid binding domains of RNase 

PH-type enzymes (Symmons et al., 2000; Harlow et al., 2004). Crystals of the 

Rrp4-exosome were incubated in a solution containing 50 mM tungstate. 

Anomalous dispersion data at the tungsten LIII absorption edge were recorded. 

Strong anomalous difference electron density could be observed in all three active 

site pockets in the Rrp41 subunit in the central chamber (Figure 24). In contrast, 
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no anomalous density in the equivalent positions of the Rrp42 subunits could be 

observed. These data indicate that the archaeal exosome contains three 

phosphorolytic active sites at the interface of Rrp41 and Rrp42, which is consistent 

with mutagenesis results derived in this thesis (see below) and from others 

(Lorentzen et al., 2005). In these Rrp41 pockets, N-termini from two Rrp41 helices 

form two suitable phosphate binding moieties on which strong tungstate 

anomalous difference density can be observed (Figure 24A, 1, 1a). The highest 

tungstate occupancy (>8σ) is found near the end of each pocket (Figure 27A, 1, 2 

and 3). To obtain a detailed insight into the residues involved in binding of the 

tungstate, a tungstate/phosphate was modelled into one of the active site pockets 

(Figure 24C, pocket 1, 1a). The tungstate/phosphate is coordinated by G135Rrp41, 

S136Rrp41 and R97Rrp41. Two acidic residues, D180Rrp41 and D186Rrp41, are suitably 

positioned to participate in the phosphorolytic attack. The functional relevance of 

these sites was later on refirmed by a D180Rrp41A mutation, which resulted in 

complete loss of RNase activity (see below). Additional, a less occupied tungstate 

density in form of an elongated stretch between the pocket and the central channel 

can be observed in the shown active site (Figure 24A,C, 1a). Here, three 

arginines, R91Rrp41, R96Rrp41 and R107Rrp41, form a positively charged rim beneath 

the density and are suitably positioned to bind the backbone of RNA in a 

sequence-independent manner (Figure 24C). Thus, the second observed density 

could mark a path for RNA that enters the phosphorolytic active sites.  
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Figure 24: A) Ribbon model of the Rrp4-exosome (bottom view), superimposed with 

anomalous difference density (magenta) derived from tungstate binding experiments. B) 

Ribbon model of the Rrp4-exosome (top view, without Rrp4 subunits), similar to A). C) 

Stereo plot of a close-up view of the active site pocket in the interface of Rrp41 (blue) and 

Rrp42 (green). The Rrp4-exosome is shown as ribbon model, using the color code of Fig. 1. 

The side chains of notable conserved active side residues are shown as annotated color 

coded sticks. Tungsten anomalous difference density is shown with 4σ (yellow) and 8σ 

(magenta) contour. A tungstate moiety (WO4) is modeled into the 8σ contour. 

 

Additional tungsten anomalous difference density could be observed in the 

opening between the three neck loops (Figure 24B and 15D). This remarkably 

broad and strong density may represent binding of a tungstate cluster and 

supports the idea that the neck region interact with the phosphate backbone of 

RNA. Furthermore, the location of the tungsten difference densities may represent 

the possible pathway of substrate RNA (see below). However, the presented 
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results are consistent with recent results on the exosome from S. solfataricus in 

which the neck loops directly interacts with the backbone of a trapped RNA 

oligonucleotide (Lorentzen et al., 2007).  

3.3 The archaeal exosome shows RNA dependent activities 

3.3.1 RNA degradation and polyadenylation 

To directly assess the RNA degradation activity of the Archaeoglobus fulgidus 

exosome, RNase experiments with wild-type and mutant protein were carried out 

as described. As seen in Figure 25A, both Rrp4- and Csl4-exosomes possess 

processive RNase activity and degrade a single-stranded poly(A) RNA-substrate 

in vitro. Under the given conditions the Csl4-exosome (CEx, Rrp41, Rrp42, Csl4) 

and the Csl4+Rrp4 containing exosome complexes (CREx, Rrp41, Rrp42, Rrp4, 

Csl4) show the highest degradation activity, whereas the Rrp4 exosome (REx, 

Rrp41, Rrp42, Rrp4) exhibits lowest RNase activity (Figure 25B), suggesting that 

the cap proteins might function differently in RNA recognition and binding. Both 

complexes are also capable to catalyze the reverse reaction in which a single-

stranded RNA substrate is polyadenylated in the presence of ADP (Figure 25A). 

This polyadenylation activity has also been shown for eubacterial PNPase, which 

catalyzes the addition of poly(A) tails to RNAs (Mohanty and Kushner 2000), and 

for the S. solfataricus exosome (Lorentzen et al., 2005). As expected, mutation of 

the conserved D180 to an uncharged alanine resulted in complete loss of both 

RNase and polyadenylation activity.  
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Figure 25: A) RNase activity and polyadenylation assays. Protein, phosphate or ADP was 

added as indicated and substrate oligo(rA) 30mer (S) and polyadenylated (PA) or 

phosphorolytically degraded (P) nucleotide products were resolved by denaturing 

polyacrylamide gel electrophoresis. The Rrp4-exosome (REx) shows processive 

degradation (lanes 2, 3) and processive polyadenylation (lane 7) of a 30mer oligo(rA), 

dependend on phosphate (lane 4) or ADP. Both activities are abolished or severely inhibited 

by the D180A mutation in the active site (lane 6, 9) or the R65E mutation in the neck loop 

(lane 5, 8). Controls show that Csl4-exosome (CEx, lane 12) and the Rrp41:Rrp42 complex 

(41:42, lane 10, 11) possess a similar activity, while Csl4 (lane 13) and Rrp4 (lane 14) 

subunits alone do not possess RNase activity in vitro. B) Relative RNase activities of 

exosome isoforms.  

 

To more directly assess the functional relevance of the “neck”, RNase and 

polyadenylation activity of a R65Rrp41E mutant protein was analyzed. As seen in 

Figure 25A, no residual RNase activity can be observed. In addition, the R65Rrp41E 

mutant enzymes do not possess any polyadenylation activity.  

3.3.2 RNA binding 

As the loss of RNase activity in the R65Rrp41E mutant indicates that RNA 

substrates enter the exosome via  S1 pore and neck, the role of the “neck” was 

further addressed by analyzing RNA binding abilities of wild-type and mutant 

R65ERrp41 Rrp4-exosome and Rrp41:Rrp42 core complex as described. As shown 

in Figure 26, both Rrp4-exosome and its R65E mutation bind RNA with 
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comparable affinities. However, the obvious differences in the band-shift patterns 

may indicate a somehow altered RNA binding mode due to the presence of the 

neck mutation. This data is not unexpected, as S1 and KH domain may bind RNA 

independently from the central chamber and the neck.  
 

Figure 26: Gel shift assays of the 

wild-type and R65E containing Rrp4-

exosome (REx) and Rrp41:Rrp42 ring 

(41:42). R65E changes the shift 

pattern of the Rrp4-exosome (lanes 2-

4 and 5-7), but abolishes RNA binding 

by the Rrp41:Rrp42 ring (lanes 8-10 

and 11-13).  

Furthermore, binding of RNA to the Rrp41:Rrp42 ring and its R65E mutation was 

analyzed. As seen in Figure 26, the R65E mutation completely abolishes RNA 

binding by the Rrp41:Rrp42 ring. The most plausible explanation for these results 

is that RNA initially binds to S1 and/or KH domains and then enters the processing 

chamber via the narrow neck region.  

All in all, these functional data support the idea that the conserved arginine 65 and 

the neck motif are important elements in processive RNA degradation, although 

they are more than 50 Å away from the phosphorolytic active sites. Furthermore, 

these functional observations strongly support a model, in which RNA passes 

through the neck into the central chamber to the active sites. Consistently, 

bacterial PNPase that carries a mutation in an equivalent neck (FFRR-loop) shows 

decreased phosphorylase activity in vivo (Jarrige et al., 2002).  
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4 Discussion 

4.1 The Cap proteins form a macromolecular recognition surface 

4.1.1 Both Rrp4 and Csl4 domains share structural homology to 
ribosomal proteins 

The exosome of Archaeoglobus fulgidus is a globular, double-donut like structure 

with a central hole (Figure 15). One ring of this donut is assembled by three 

heterodimers of the RNase PH-like Rrp41:Rrp42 proteins. The second ring is 

formed by three copies of Rrp4 or Csl4 and is located on one side of the RNase 

PH ring. As both Rrp4 and Csl4 subunits possess well-known protein-nucleic acid 

recognition motifs (KH and/or S1 domain) the structural data suggest that the caps 

form a large RNA recruitment surface.  

Structural and functional data for a number of S1 and/or OB fold domains indicate 

an involvement in the recognition and binding of both RNA and DNA substrates. 

The S1 and KH domains of Arabidopsis thaliana (At) Rrp4 were already shown to 

bind RNA in vitro, and the KH domains of both AtRrp4 and A. fulgidus Rrp4 also 

possess the typical nucleic-acid recognizing helix-turn-helix motif with the central 

GXXG sequence (Figure 19A) (Chekanova et al., 2002). In addition, both S1 and 

KH domains of eubacterial PNPase are required for efficient RNA degradation 

(Stickney et al., 2005), and the S1 domain of PNPase contains a high affinity 

poly(A) binding site (Yehudai-Resheff et al., 2003).  

Comparison of the Rrp4/Csl4 S1 domain with DNA oligonucleotide bound S1 

domains reveals that the archaeal S1 domains probably bind the nucleic acid at 

the side, which frames the S1 pore in the crystal structure of the archaeal 

exosome (Figure 15A,C and 27) (Cavarelli et al., 1994; Shuman and Lima 2004). 

The KH domain of Rrp4 is located at the periphery of the ring. However, 

comparison with nucleic acid bound KH domains show that the proposed RNA 

binding region is fully accessible to substrate RNA (Figure 15A and 27).  



 Discussion  54 

   

Figure 27: Tube representation of the S1 and KH domains of Rrp4 (orange), 

superimposed with nucleic acid complexes of OB (PDB code 1ASZ, (Cavarelli et al., 

1994)), KH (PDB code 1J5K, (Braddock et al., 2002) and N-terminal (NT, PDB code 1V8Q, 

(Wang et al., 2004); without nucleic acid) domains (blue with brown nucleic acids). 

  

In contrast, the Csl4 subunit contains a zinc-ribbon instead of a KH domain. Zn-

ribbon domains are structurally divers, but typically form protein-protein or protein-

nucleic acid recognition modules (Bernstein et al., 2003; Naryshkina et al., 2003). 

In addition, both Rrp4 and Csl4 subunits share a similar N-terminal domain, which 

seems to be conserved also in the human exsome Rrp4, Rrp40 and Csl4 

counterparts (Figure 1) (Liu et al., 2006). 

To look for structural neighbors of the zinc-ribbon and N-terminal domains, a DALI 

search was performed. Surprisingly, the only significant structural neighbors of 

zinc-ribbon and N-terminal domains turned out to be ribosomal proteins. The N-

terminal domain possesses a fold similar to ribosomal protein L27 (PDB entry 

1V8Q, Figure 27), whereas the zinc-ribbon domain most closely matches 

ribosomal protein L37ae (PDB entry 1FFK chain W). Both ribosomal proteins are 

implicated in binding to ribosomal RNA (Ban et al., 2000; Wang et al., 2004). From 

an evolutionary point of view, it is interesting that ribosome architecture (L27 and 

L37ae and S1 domain proteins) and ribosome maturation (exosome cap domains) 

share structural features.  

4.1.2 Electrostatic conservation reveals possible RNA binding sites 

Because all nine domains of the Csl4 and Rrp4 caps belong to domain families 

that are typically involved in macromolecular interactions, the caps could form a 

large platform that recruits macromolecular substrates and cofactors. To further 

characterize the molecular surface, the electrostatic potential was mapped onto 

the Rrp4- and Csl4-exosome complexes. Consistent with the possibility that the 

caps form a major RNA binding site, Rrp4 and Csl4 caps contain a positive 
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surface potential, whereas the remaining surface is highly negatively charged 

(Figure 28). The strongest positive potential is found in the S1 pores. Significantly, 

the locations of these positive patches superimpose well with characterized 

nucleic acid binding sites of numerous S1 and/or OB fold domains. Evidently, the 

typical location of RNA binding sites on S1 domains and the matching surface 

charge suggest that the S1 pore is a major RNA binding site on the caps. The 

proposed RNA binding site on the KH domain, which also exhibits positive surface 

potential, is quite remote from the S1 domains and suggests that RNA binding to 

these two sites, if any, occurs independently. This structural implication is 

supported by independent RNA binding of S1 and KH domains of A. thaliana Rrp4 

in vitro (Chekanova et al., 2002). However, a possible interplay between both KH 

and S1 domain in RNA substrate recognition and distinction can not be ruled out. 

This idea is supported by recent small angle X-ray scattering (SAXS) studies of 

the Pyrococcus furiosus exosome, which suggest that the S1 and KH domains are 

quite dynamic in solution (Ramos et al., 2006) and is consistent with the high 

flexibility observed for S1 and KH domains in the crystal structure of PNPase 

(Symmons et al., 2000). 
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Figure 28: Molecular surfaces of Rrp4- and Csl4 exosomes in different views, colored 

according to electrostatic potential (red -7kt/e- to blue +7kT/e-). Rrp4- (panel A, top view) 

and Csl4-exosome (panel B, top view) contain strong positive patches at S1 and KH 

domains. In contrast, the exterior of the RNase-PH domain ring is highly negatively charged 

(panel C, bottom view of the Csl4 exosome). The strongest positive potential reaches from 

“S1 pore” via the neck loops into the processing chamber (panel D: slice view of the Rrp4 

exosome), indicating a likely path for RNA. The location of the functionally important neck 

residue R65rrp41 is indicated by (*). The positive patches on S1 and KH domains match RNA 

binding sites of related OB fold and KH domains. RNA derived from a superposition of 

exosome S1 and KH domains with nucleic acid complexes of OB fold or KH domains are 

shown as yellow tube. 

 

Taken together, the orientation of S1, KH, and zinc-ribbon domains suggests that 

the caps form a macromolecular interaction surface with two zones. The inner 

zone, formed by the S1 domain, would be ideally suited to regulate RNA entry 

through the S1 pore and neck (see below). The function of the peripheral zone 

(KH and zinc-ribbon domains) is less clear, its peripheral location might indicate 

that these domains are more involved in the specific recognition of RNA targets 

such as rRNA, mRNA, and poly(A) tails, but could also be involved in the 

recognition of cofactors. A role in substrate and/or cofactor selection would be 

consistent with the Ski4-1 phenotype, where a separation-of-function mutation in 

the S1-zinc-ribbon interface of yeast Csl4 specifically abolishes mRNA 

degradation, but does not affect rRNA maturation (van Hoof et al., 2000). In 

support of different substrate specificities of S1 and KH domains, the functional 
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results reported here showed that the tested oligo(rA) 30-mer is more efficiently 

degraded by the Csl4-exosome and Csl4/Rrp4-hybrid complexes than by the 

Rrp4-exosome or the Rrp41:Rrp42 ring alone (Figure 25B). Thus, the Rrp4/Csl4 

subunits are probably involed in specificity and regulation of RNA processing. 

4.2 Central channel and proposed RNA path 

How does substrate RNA now reach the active sites inside the phosphorolytic 

chamber? As seen in the crystal structure of the archaeal exosome, the 

processing chamber contains two suitable openings, denoted S1 and PH pores. 

The PH pore at the bottom of the phosphorolytic ring is closer to the active sites 

and slightly wider than the S1 pore. However, it does not contain recognizable 

RNA binding elements, it carries a strong negative surface potential, and it is far 

away from the putative RNA binding S1/KH domain layer (Figure 28D). It is 

therefore unlikely that RNA enters through the PH pore. A more intriguing 

possibility for RNA entry is the S1 pore at the Rrp4/Csl4 cap structures. Because 

of the highly postitve electrostatic potential and the favorable location of the RNA 

binding S1 and KH/Zn-ribbon domains, this pore is well suited to interact with RNA 

(Figure 31). Consistently, the path from the putative RNA binding S1/KH domains 

to the active sites through the neck carries the strongest positive electrostatic 

potential in the archaeal exosome. In addition, strong tungsten anomalous 

difference density was observed in the opening between the three neck loops, 

which supports the idea that the neck loop directly interacts with the phosphate 

backbone of RNA (Figure 24B and 29).  

 

Figure 29: Functional analysis of the 

neck. Shown is a slice through the 

Rrp4-exosome (in color coded ribbon 

representation) with highlighted neck 

side chains and tungstate difference 

density (yellow mesh). Tungstate 

density and the R65 Rrp41E mutation 

(annotated) indicate that the neck 

region is important for RNA 

processing and presumably relays 

RNA from the S1 domains to the 

active sites (AS). 
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The functional importance of the neck could be further assessed by analyzing the 

capability of the R65ERrp41 mutant to bind and to degrade a 30mer poly(A) RNA 

substrate. As mentioned, this R65 is located in a loop in Rrp41 which directly lines 

the neck. Furthermore, the positive charge at this position is highly conserved 

throughout archaeal and eukaryotic Rrp41-like subunits (Lorentzen et al., 2005; 

Liu et al., 2006), and a mutation in an equivalent neck in bacterial PNPase (FFRR-

loop) results in a protein with decreased acitivty in vivo (Jarrige et al., 2002). The 

mutation itself did not influence the assembly of the nine subunit exosome and 

appears to have no evident architectural function (data not shown). The fact, that 

exosomes carrying the R65ERrp41 mutation are defect in degrading and binding as 

well as polyadenylating the RNA substrate indicates that the RNA is no longer able 

to access the active sites. All in all, the structural and functional observations 

strongly support a model in which RNA passes through the neck into the central 

chamber, and the “neck” directly interacts with RNA (Figure 28D and 29). In 

addition, this model is supported by recent structural results on the S. solfataricus 

exosome, which could be co-crystallized in the presence of an RNA molecule 

containing a stable stem-loop structure at the 5´-end and a 3´-poly(A) tail 

(Lorentzen et al., 2007). Although no well-ordered density was observed for the 5´ 

stem-loop structure, Lorentzen et al. could detect well-ordered electron density for 

one nucleotide. This nucleotide is bound in the central channel at the narrow 

constriction formed by the “neck” loop, which clearly shows, that the “neck” 

interacts with RNA. 

4.3 Implication for exosome degradation mechanism 

The crystal structure of the Archaeoglobus fulgidus exosome revealed that the 

archaeal exosome possesses three active sites buried in a cage-like structure, 

which are connected to the putative RNA binding domains by a central channel 

and pore. The architecture of the archaeal exosome now provides a first basis for 

understanding controlled RNA degradation and suggests a likely mechanism for 

processive RNA degradation which may be also applicable, at least to some 

extent, to the eukaryotic and eubacterial counterparts (Figure 30A). The putative 

RNA binding subunits Rrp4 and Csl4 form a suitable multidomain surface which is 

probably involved in substrate and/or cofactor recruitment and regulation. A direct 

role for these subunits in both RNA substrate recognition and distinction is 
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supported by a separation-of-function mutation in yeast Csl4 (Ski4-1), which 

affected mRNA decay but not rRNA processing (van Hoof et al., 2000) and by the 

observation that both KH and S1 domains of eubacterial PNPase are required for 

efficient RNA degradation in vivo (Stickney et al., 2005). Thus, binding of substrate 

and/or cofactors may be mediated by the peripheral KH and Zn-ribbon domains, 

whereas the central S1 domains are ideally suited to guide RNA via the S1 pore to 

the “neck” and into the central chamber. As the S1 domains exhibit intrinsic 

flexibility, they appear sufficiently mobile to promote RNA translocation of one 

base at a time (Figure 24). In archaeal exosomes, the 3´-tail of single-stranded 

RNA that enters the central chamber has a choice of three active sites (Lorentzen 

and Conti 2005). This high concentration of active sites in the archaeal exosome, 

in combination with tight RNA binding at the neck (Lorentzen et al., 2007) and S1 

domains, may explain the high processivity of these enzymes on unstructured 

RNA. At present, it is still not clear whether RNA is processively degraded only in 

one active site, or alternates between all three. However, structural and functional 

data from the archaeal exosome are in stark contrast to the eukaryotic exosome. 

The human exosome has obviously retained only one phosphorolytically active 

site (Rrp41), whereas the yeast exosome appears to have lost all 

phosphorolytically activity in the RNase PH core or at least depend entirely on the 

aid of coactivator complexes (Liu et al., 2006; Dziembowski et al., 2007). 
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Figure 30: A) Proposed model for RNA degradation and trimming by exosomes. For 

simplicity, only two out of three active sites (AS) and S1 domains are shown. Secondary 

structures can stall at the S1 pore (S1) and neck (P) and abort processive degradation. 

Accessory factors with helicase activity could stimulate processive degradation. Sufficiently 

stable secondary structures of protein:RNA complexes are only trimmed. B) Figure: Model of 

a RNA dinucleotide (magenta) in the neck (blue Rrp41, green Rrp42) suggests that only 

unfolded RNA can pass the narrow 10 Å restriction below the S1 pore. The RNA was taken 

from PDB 1ASZ and manually fitted into the neck. 

 

Both S1 pore and “neck” are only 8-12 Å wide, a feature that suggests that only 

single-stranded RNA without any secondary structures can enter the processing 

chamber. This idea is supported by molecular modelling (Figure 30B) and recent 

data on the S. solfataricus exosome in complex with an RNA stem-loop (Lorentzen 

et al., 2007). In addition, the positively charged “neck” is also a conserved feature 

in eukaryotic exosomes (Liu et al., 2006), supporting that the model presented 

here is also applicable to the eukaryotic RNA processing machinery. However, 

RNA molecules in a cellular environment are typically bound to proteins or form 

stable secondary structures, and as that are protected to degradation. Thus, the 

relative width of the entry pore could be important to prevent uncontrolled decay of 

cellular RNA. In support of this, the eukaryotic exosome is more or less inactive on 

long RNA substrates in vitro and requires the presence of coactivators like the 

yeast SKI and TRAMP complexes (Brown et al., 2000; van Hoof et al., 2000; Araki 

et al., 2001; LaCava et al., 2005; Wyers et al., 2005). In vivo, these coactivator 

complexes are probably involved in the efficient unfolding of RNA secondary 

structures and/or in the removal of bound proteins. Both yeast SKI and TRAMP 

complexes contain subunits that possess or are predicted to possess RNA 

helicase activity. Thus, the coactivator complexes may target and unfold substrate 
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RNA, thereby providing sufficiently unstructured RNA for degradation by the 

exosome. In addition, the model predicts that processive degradation stalls at 

stable secondary structures or protein roadblocks that are not unwound or 

removed by additional factors (Figure 30A). This idea is consistent with recent 

data on the S. solfataricus exosome and eubacterial PNPase, which were both 

shown to stop processive degradation eight to nine nucleotides before an 

engineered double-stranded RNA stem-loops (Carpousis et al., 1999; Lorentzen 

and Conti 2005). Furthermore, the structures presented here suggest that initial 

threading of RNA substrates into the central channel should be facilitated by a 

highly unstructured 3´ tail of several nucleotides in length. Although the role and 

the source of polyadenylation in archaeal cells remains to be elucidated (Portnoy 

et al., 2005; Portnoy and Schuster 2006), the poly(rA) tails of eukaryotic mRNA 

and the 3´ poly(rA) tails added by the TRAMP complex on nuclear RNA targets of 

the exosome are ideally suited for such an initial threading. All in all, the structural 

data of the archaeal exosome explain how sequence-unspecific RNA degradation 

is coupled to simple but tight regulatory strategies like limitation of access to the 

active sites by narrow constrictions, and interaction with coactivator complexes. 

Furthermore, these strategies, which prevent uncontrolled decay of cellular RNA, 

can be extrapolated to both eukaryotic and eubacterial RNA degradation 

machineries.  

4.4 Common features in 3´  5´ RNA degrading enzymes 

4.4.1 The structure of the exosome is highly conserved in both 
archaea and eukaryotes 

The archaeal exosome consists of a hexameric core of three phosphorolytically 

active RNase PH subuntis (Rrp41) and three inactive RNase PH subunits (Rrp42). 

A trimeric ring of subunits with putative RNA-binding domains (Rrp4 and Csl4) is 

positioned on top of the hexamer opposite to the RNA degrading sites. According 

to its simpler archaeal counterpart, the eukaryotic core exosome consists of three 

Rrp41- (Rrp41, Rrp46, Mtr3) and three Rrp42- (Rrp42, Rrp45, Rrp43) like subunits 

as well as Rrp4, Rrp40 and Csl4 subunits (Mitchell et al., 1997). Electron 

microscopy as well as yeast two hybrid data already suggested the association of 

the six eukaryotic RNase PH-type subunits into a hexameric, PNPase-like 

structure (Aloy et al., 2002; Raijmakers et al., 2004). Now, the recently solved 
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crystal structure of the human exosome allows detailed atomic insights into the 

complex structure of the eukaryotic exosome (Liu et al., 2006) and comparison of 

the structure with its archaeal counterpart.  

The overall structure of the human exosome is quite similar to that of the 

Archaeoglobus fulgidus exosome (Liu et al., 2006), with a hexameric core of three 

RNase PH-like heterodimers, capped by a trimer of S1-domain-containing proteins 

(Figure 31).  

 

 

 

Figure 31: Crystal structure of the human 

exosome core complex reveals a similar overall 

architecture compared to the archaeal exosome 

(PDB code 2NN6, (Liu et al., 2006)). As shown, 

the C-terminal extension of the human Rrp45 

subunit (red) wraps around the Rrp46 and Rrp43 

subunit. 

The highest similarity between both exosome structures is found for the subunits 

of the RNase PH ring. Each Rrp41-and Rrp42-like subunit of the human exosome 

can be superimposed with an r.m.s.d. between 1.3 Å to 2.0 Å for over 70 % of all 

cα-positions to the corresponding A. fulgidus subunits (Figure 32A,B). Differences 

are limited to the length of single loop regions or helices, as in the case of the 

human Rrp45 subunit, which possesses a 180 aa long C-terminal extension that 

wraps around the adjacent Rrp46 and Rrp43 subunit and appears to be conserved 

in higher eukaryotes (Figure 31 and 32B) (Liu et al., 2006).  

The human S1-domain containing cap proteins Rrp4 and Rrp40 superimpose with 

an r.m.s.d. of 2.4 Å and 2.6 Å, respectively, and the human Csl4 subunit with an 

r.m.s.d. of 2.3 Å for below 70 % of all cα-positions to the archaeal Rrp4 and Csl4 

proteins (Figure 32C,D,E).  
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Figure 32: Structural overlays of the RNase PH like and S1-containing subunits of 

archaeal and human exosome (PDB code 2NN6; (Liu et al., 2006)). A) archaeal Rrp41 

(orange) and human Rrp41 (blue), Rrp46 (lightblue) and Mtr3 (purple). B) archaeal Rrp42 

(orange) and human Rrp42 (blue), Rrp45 (lightblue) and Rrp43 (purple). C) archaeal 

(orange) and human (blue) Rrp4. D) archaeal Rrp4 (orange) and human (blue) Rrp40. E) 

archaeal (orange) and human (blue) Csl4. 

  

The overall fold topology of human Rrp4 and Rrp40 N-terminal and S1 domain is 

remarkably similar to archaeal Rrp4. However, while the KH domain of human 

Rrp40 matches well with archaeal Rrp4, human Rrp4 exhibits some differences in 

the orientation of the KH domain, and possesses an additional C-terminal helix 

(Figure 32C,D) (Liu et al., 2006). Human Csl4 exhibits a similar topology to 

archaeal Csl4 in the S1 and C-terminal domain. Differences in the N-terminal 

domain are visible in the orientation, but not in the overall fold (Liu et al., 2006). 

Although eukaryotic Csl4 lost the C-terminal Zn-ribbon domain, it still adopts the 

same conformation as the C-terminal domain of archaeal Csl4 (Figure 32E). Thus, 

the zinc ion probably has only a structural role, for instance to maintain the fold of 

this small domain in the harsh growth einvironment of archaea. However, the 

subunit diversification of the RNase PH-like domains and S1/KH-like domains in 

eukaryotic exosomes may result in different substrate preferences or binding of 

specific protein partners. 
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The presence of heterotrimeric caps in the human exosome, which are necessary 

to form a stable assembly (Liu et al., 2006 143), now raises the question if there 

are also heterotrimeric caps in archaeabacteria in vivo. To see if archaeal 

homotrimeric Rrp4 and Csl4 caps are compatible with heterotrimeric caps, one 

Rrp4 subunit was substituted by its corresponding Csl4 subunit in silico, after 

structurally superimposing the two Rrp41-Rrp42 rings of the Csl4- and Rrp4-

exosomes (Figure 33). The Csl4 subunit fits well into the space between the two 

remaining Rrp4 subunits without evident steric clashes and the necessity of 

structural changes. Comparison with the heterotrimeric cap structure of the human 

exosome indeed reveals striking similarities. In conjunction with the presented 

biochemical findings (see 3.1.3) these data support the idea that heterotrimeric 

caps form also in vivo in archaeabacteria.  

 

  

Figure 33: A) Model for a heterotrimeric Csl4-Rrp4-Rrp4 cap on the molecular surface of 

the RNase-PH domain (grey). Placement of a Csl4 subunit (red ribbon model) into an Rrp4 

cap (orange ribbon models, one of the subunits is substituted by Csl4). The placement was 

guided by superimposing the RNase PH domains of Rrp4- and Csl4-exosomes in silico. B) 

Structure of the human heterotrimeric cap on the surface of the RNase PH ring (grey). 

Colors as indicated in A). (Rrp40: bottom; Rrp4: up). 

 

Besides the S1 pore, an additional highly conserved feature of both archaeal and 

eukaryotic exosome is the presence of the positively charged “neck” loop 

(residues 60-70 in archaeal Rrp41 and residues 56-64 in human Rrp41). In the 

human exosome, only the Rrp41 “neck” loop is well ordered, but clearly adopts a 

conformation similar to that in archaeal Rrp41 (Liu et al., 2006).  

Although RNA processing by eukaryotic exosomes is probably more complex due 

to additional RNase activities and cofactors, the conservation of S1 pore and 

“neck” loop, and the structural and functional results presented here support a 
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unifying mechanistic framework for the RNA degradation mechanism in both 

archaeal and eukaryotic exosomes.  

4.4.2 The structure of the archael exosome reveals similarities to 
eubacterial 3´  5´ RNA degrading enzymes 

The identification of the exosome 30 years ago already showed that its subunits 

share high sequence similarity with eubacterial RNases (Wolfe et al., 1977). From 

an evolutionary point of view the exosome appears to have evolved from homo-

oligomeric bacterial proteins like RNase PH (Wolfe et al., 1977; Mitchell et al., 

1997; Koonin et al., 2001). RNase PH from E. coli consists of a hexameric ring of 

three identical RNase PH-homodimers with up-down orientations (Harlow et al., 

2004). The assembly into a ring like structure is important for activity in the 

maturation of tRNA precursors (Deutscher et al., 1988; Zhou and Deutscher 1997; 

Harlow et al., 2004). RNase PH-like domains are also present in eubacterial 

polynucleotide phosphorylase (PNPase). PNPase is a central factor in the 3´  5´ 

degradation of unstructured RNA substrates in bacterial cells and in eukaryotic 

organelles such as chloroplasts and mitochondria (Crofton and Dennis 1983; Haag 

and Lewis 1994; Zhou and Deutscher 1997; Yehudai-Resheff et al., 2003; 

Bollenbach et al., 2004). Bacterial PNPase consists of a tandem repeat of RNase 

PH-like domains, followed by a KH and a S1 domain on a single polypeptide 

(Figure 34A) (Symmons et al., 2000). Three PNPase molecules assemble in a 

hexameric ring which has a similar architecture not only to the one described for 

eubacterial RNase PH, but also to the RNase PH ring of the archaeal and 

eukaryotic exosome (Figure 34B) (Symmons et al., 2000; Symmons et al., 2002; 

Harlow et al., 2004; Lorentzen et al., 2005; Liu et al., 2006). The RNase PH-type 

ring of PNPase is topped on one side by three KH and S1 domains (Figure 34C). 

The location of S1 and KH domains in PNPase is remarkably similar (although not 

identical) to the location of S1 and KH domains of the Rrp4 subunits bound to the 

exosome core particle in respect to the active sites (Figure 34A), suggesting a 

common mechanistic basis for RNA recognition in both processing machineries. 

Only one of the RNase PH-like domains of PNPase, denoted RNase PH domain 2, 

is catalytically active (Symmons et al., 2000). According to that, only one of the 

archaeal RNase PH-like proteins possesses a functional characterized active site. 

In addition, the experimentally defined tungstate binding sites of the A. fulgidus 
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Rrp4-exosome closely matches those derived for PNPase (Figure 34A) (Symmons 

et al., 2000).  

 

  

  

 

Figure 34: A) Ribbon representations of the Rrp4 exosome complex (only three out of nine 

subunits are shown) and bacterial poly-nucleotide phosphorylase (PNPase, only one out of 

three subunits is shown, PDB code 1E3H, (Symmons et al., 2000)). Active sites shown with 

magenta tungstate moieties. PNPase FFRR-loop is shown in magenta. Color code of Figure 

16, S1 domain: orange, KH domain: yellow. B) and C) Surface representation of the nine 

subunit A. fulgidus exosome (left) and the structurally related bacterial PNPase trimer (right). 

Color code of Figure 16. Green PNPase RNase PH domain 1: inactive, blue PNPase RNase 

PH domain 2: active. 

  

Another remarkable similarity is the presence of a postivitely charged loop in both 

exosome (“neck”-loop, residues 60-70 in Rrp41) and PNPase (“FFRR”-loop, 

residues 78-92 in RNase PH domain 1). Although both loops are conserved 

neither in sequence nor in structure, they both occupy an ideal position to constrict 

access to the central channel and to interact with RNA substrates passing through 

the channel (Symmons et al., 2000). Consistent with that, degradation activity of 

the archaeal exosome is abolished by the “neck” mutation R65ERrp41 (Figure 25A), 

whereas a mutation in the “FFRR-loop” of PNPase significantly diminishes RNA 

binding and degradation abilities in vivo (Jarrige et al., 2002). The structural and 

functional data on the archaeal exosome and eubacterial PNPase, together with 
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data from RNA protection assays on PNPase (Spickler and Mackie 2000), indicate 

that both RNA degradation machineries recruit substrates through the central 

channel, although the details of the substrate recognition are likely to differ. 

However, the remarkable overall equivalence suggests a common evolutionary 

basis of RNA degradation by archaeal/eukaryotic exosomes and 

bacterial/organelle PNPases. In addition, it raises the possibility that the 

mechanism of 3´ RNA decay by phosphorolytic degradation complexes is more or 

less conserved across the kingdoms of life. 

4.5 Similar principle in protein degradation by the proteasome 

The proposed structural mechanism for RNA degradation by the exosome reveals 

a remarkably similar principle to the degradation of proteins, a feature that has 

long been suspected (van Hoof and Parker 1999). In eukaryotes and archaea, 

proteins are degraded by the proteasome, or in eubacteria by the related HslU and 

ClpP proteases. They all share a similar cage-like structure in which unfolded 

substrate biopolymers are fed through narrow entrance pores to reach the active 

sites (Figure 35). The active sites are located in a central chamber, which shields 

the reaction from the outside. Once the reaction has started, the substrate is 

trapped in the processing chamber to prevent release between consecutive 

rounds of cleavage. An additional high local concentration of active sites as in the 

case of the archaeal exosome or archaeal proteasome could thereby be important 

for processivity. 
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Figure 35: Comparison of the archaeal exosome (RNA degradation) with the proteasome 

(Protein degradation). Both degradation multiprotein complexes are assembled into a 

chamber like structure. Substrate molecules enter the processing chambers through narrow 

entrance pores. This allows degradation of only unfolded protein (Proteasome) or single-

stranded RNA (exosome) molecules. Accessory factors are needed to unfold protein or RNA 

secondary and tertiary structure, respectively. AS: active sites; S1: S1 domains 

 

In addition, targeting and unfolding of the substrates is facilitated by the presence 

of coactivators. In the case of the eukaryotic proteasome, regulatory complexes 

bind to the outside of the entry pores and thus are ideally positioned to specifically 

recognize ubiquitinylated proteins marked for degradation. The regulatory subunits 

unfold the substrate proteins in an ATP-dependent manner and promote threading 

of the poylpeptides into the processing chamber (Voges et al., 1999). Although the 

regulatory mechanisms of the exosome are less understood, recent results could 

identify several coactivator complexes of the eukaryotic exosome. The cytoplasmic 

activity of the yeast exosome depends on the presence of the SKI complex 

(Anderson and Parker 1998; Brown et al., 2000; Araki et al., 2001), whereas the 

degradation of several nuclear RNAs requires the Trf4p-Air1/2p-Mtr4p and/or 

Trf5p-Air1p-Mtr4p (TRAMP) complexes (Haracska et al., 2005; LaCava et al., 

2005; Vanacova et al., 2005; Wyers et al., 2005; Houseley et al., 2006). Both 

coactivator complexes contain a SF2 helicase (Ski2p or Mtr4p), which could be 

involved in the unwinding of RNA secondary structures prior to degradation by the 

core exosome. Thus, the structural mechanism and the molecular regulation of 

protein and RNA degradation exert at least three striking similarities: the first is 

based on a simple size exclusion strategy, which limits access to only unfolded 
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substrate molecules. The second is based on the presence of multiple active sites 

located in a protected environment, which allows processive degradation, and 

which prevents dissociation of the substrate. The third similarity is based on the 

interaction with several coactivator complexes, which are involved in substrate 

targeting, and which provide unfolded substrate molecules. And although the 

subunits of the exosome and the proteasome share no structural homology, the 

similar principle in the controlled degradation of RNA and polypeptides is quite 

fascinating.  

4.6 Future persepectives and outlook 

The structural data on the archaeal exosome presented here not only suggest a 

likely mechanism of how RNA is bound and degraded by the exosome, but also 

reveals an interesting analogy between controlled RNA and protein degradation by 

nano-compartmentalized enzymes.  

However, there are still many unanswered questions regarding substrate 

specificity and activation of the exosome in both eukaryotes and archaea. One of 

the most outstanding questions in understanding RNA surveillance and quality-

control pathways affects the ability of the exosome to distinguish on the one hand 

between RNA that needs to be fully degraded and RNA that needs to be 

processed, and on the other hand between defective RNA and normal RNA 

processing intermediates. Although we can not answer this question at the 

moment due to the lack of detailed structural and functional information, it is 

possible that the S1, KH and zinc-ribbon domains of archaeal Rrp4 and Csl4 have 

an important role in substrate recognition. The presence of three different putative 

RNA binding subunits in the eukaryotic exosome may indicate that their functional 

and biochemical difference is responsible for the recognition of different types of 

RNA molecules (e.g. mRNA vs. rRNA). In addition, as the gene for archaeal Csl4 

is not located in the same operon as Rrp41, Rrp42 and Rrp4 (Koonin et al., 2001), 

an cell-cycle dependent regulated expression of Csl4 may allow the archaeal 

exosome to degrade or process other RNA substrates as in the presence of Rrp4 

alone. Furthermore, the presence of exoribonucleolytic subunits associated with 

the eukaryotic core exosome may suggest an additional possibility to specifically 

target substrate RNA, although it remains unclear by which mechanism specific 

substrates are directed to specific exnonuclease active sites. 
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Another important thing that has to be investigated in future work is the 

mechanistic interplay between the exosome and its coactivator complexes like the 

cytoplasmatic SKI and the nuclear TRAMP complex. The biochemical basis for the 

activation of the exosome is still unclear, but it is possible that these complexes 

target and provide unfolded RNA and/or modulate the activity of the core exosome 

by specifically binding to it. In archaea, the possible presence of coactivator 

complexes needs to be investigated. Although archaeal exosome complexes were 

shown to co-purify with a protein that exhibits sequence homology to eubacterial 

DNA primase DnaG, the function of this interaction and the possible role of this 

primase homologue remains unclear (Evguenieva-Hackenberg et al., 2003; 

Farhoud et al., 2005). 

Finally, it is unclear if RNA substrates are marked for degradation equivalent to the 

poly-ubiquitylation of proteins and thus facilitate recognition by the exosome. A 

general “degradation signal” could be e.g. a 3´-polyadenylated tail, as observed for 

many exosome substrates. This idea is supported by the polyadenylation of 

nuclear exosome RNA substrates by the TRAMP complex prior to degradation 

(LaCava et al., 2005), and the high processivity of the archaeal exosome on 

oligo(rA) RNA substrate. Interestingly, archaea do not possess homologues of 

known polyadenylation factors, but the S. solfataricus exosome itself catalyses the 

polyadenylation of RNA in vivo (Portnoy et al., 2005; Portnoy and Schuster 2006), 

consistent with its polyadenylation activity in vitro. Polyadenylation activity has also 

been shown for eubacterial PNPase (Grunberg-Manago et al., 1955). In contrast 

to eukaryotes, 3´-polyadenylation of mRNA in eubacteria was shown to serve as 

signal for degradation (Dreyfus and Regnier 2002). Although structural and 

functional data on both exosome and PNPase suggest that polyadenylated single-

stranded RNA 3´-tails facilitate entry in the respective processing chamber 

(Symmons et al., 2000), the direct biochemical role of the polyadenylated 3´-tails 

in RNA degradation by the exosome in eukaryotes and archaea needs to be 

elucidated.  

These and many other questions will have to be answered in future work on the 

archaeal and eukaryotic exosome using a combination of structural and molecular 

biology. 
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5 Summary 

The exosome is a conserved 3´  5´ exoribonuclease complex involved in cellular 

RNA metabolic processes in eukaryotes and archaea. Its involvement in the 

accurate processing of nuclear RNA precursors and in the degradation of RNA in 

both nucleus and cytoplasm implies a central function in the eukaryotic RNA 

surveillance machinery. This widespread function implies the ability of the 

exosome to distinguish between RNA substrates that should be matured by the 

removal of nucleotides to a precisely defined end point, and defective RNAs that 

undergo rapid and complete degradation. However, the structural and molecular 

mechanisms of processive 3´  5´ RNA degradation and substrate specificity 

remain unclear.  

To obtain insights into the structural and functional organization of the exosome, I 

determined crystal structures of two 230 kDa nine subunit exosome isoforms from 

Archaeoglobus fulgidus. Both exosome isoforms contain a hexameric ring of 

RNase PH-like domain subunits Rrp41 and Rrp42 with a central chamber. A trimer 

of Rrp4 or Csl4 subunits is situated on one side of the RNase PH domain ring and 

forms a multidomain macromolecular interaction surface with central S1 domains 

and peripheral KH and zinc-ribbon domains. Tungstate soaks identified three 

phosphorolytic active sites inside the central processing chamber. Additional 

structural and functional results suggest that the S1 domains of Rrp4 or Csl4 

subunits and a subsequent neck in the RNase PH domain ring form an RNA entry 

pore that only allows access of unstructured RNA to the active sites. The structural 

results presented here can not only mechanistically unify observed features of 

exosomes, including processive 3´ RNA degradation of unstructured RNA, the 

requirement for regulatory factors and coactivators to degrade structured RNA, 

and the precision in processing RNA species to a defined length. But the high 

conservation of the archaeal exosome to the eukaryotic exosome and its 

additional high structural similarity to bacterial mRNA-degrading PNPase suggest 

a common basis for 3´ RNA-degradation in all kingdoms of life. Furthermore, the 

structure of the archaeal exosome reveals remarkable architectural and functional 

similarities to the protein degrading proteasome. 
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1 Introduction 

1.1 Helicases – Classification and nucleic acid unwinding 
mechanisms 

1.1.1 Classification of helicases into Superfamilies 

Helicases are ubiquitous enzymes which use the free energy of adenosine 

triphosphate (ATP) hydrolysis to catalyze the thermodynamically unfavourable 

separation of nucleic acid duplexes (DNA:DNA, DNA:RNA, RNA:RNA) into the 

corresponding single strands (Bjornson et al., 1996; Hall and Matson 1999). Since 

the discovery of the first helicase more than 30 years ago (Abdel-Monem and 

Hoffmann-Berling 1976), dozens of these essential proteins have been identified 

and characterized in all kingdoms of life. DNA-acting helicases are found to play 

essential roles in nearly all DNA metabolizing processes, including DNA 

replication, recombination, repair and transcription. RNA helicases are found to 

have essential functions in translation and RNA processing/degradation pathways 

(Staley and Guthrie 1999; Venema and Tollervey 1999; Linder and Stutz 2001; 

Tuteja and Tuteja 2004) as well as in the mammalian innate immune response 

(Meylan et al., 2006).  

Helicases are classified according to amino acid sequence homology, oligomeric 

state and unwinding polarity (3´  5´ or 5´  3´), and are grouped into five 

Superfamilies (SF1-SF5) (Gorbalenya et al., 1989; Singleton and Wigley 2002) 

(Table 1). SF1 and SF2 are the two largest groups. They are closely related and 

typically characterized by a set of conserved sequence motifs called Q, I, Ia, and 

II-VI (Figure 1). Regarding differences in length, spacing between motifs and the 

presence of unique motifs, SF1 and SF2 helicases are divided into different 

subfamilies, like DEAD- and DEXH-box helicases (Gorbalenya et al., 1989; Linder 

and Daugeron 2000; Caruthers and McKay 2002). 
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Table 1: Characteristics of the five Helicase Superfamilies 
Superfamily Conserved 

Motifs 
Examples Source Oligomeric 

state 
Unwinding 

polarity 

SF1 I, Ia, Ib, II, III, 

IV, V, VI 

PcrA, Rep, 

UvrD 

all kingdoms monomer, 

dimer 

3´  5´, 5´  3´  

SF2 Q, I, Ia, Ib, II, 

III, IV, V, VI 

HCV NS3, 

RecG, RecQ 

all kingdoms monomer, 

oligomer 

3´  5´, 5´  3´ 

SF3 A, B, C SV40-LTag RNA and DNA 

viruses 

hexamer 5´  3´ 

SF4 1, 1a, 2, 3, 4 DnaB eubacteria, 

bacteriophages 

hexamer 5´  3´ 

SF5 n.d. Rho eubacteria hexamer 5´  3´ 

 

Members of SF3-SF5 also share conserved motifs (Table 1), but are structurally 

and functionally less characterized (Gorbalenya et al., 1989; Hall and Matson 

1999). In contrast to members of SF1 and SF2, which function as monomers (e.g. 

PcrA, HCV NS3, RecG), dimers (e.g. Rep), and/or higher oligomers (e.g. HCV 

NS3) (Cheng et al., 2001; Dillingham et al., 2003; Maluf et al., 2003; Levin et al., 

2004; Tackett et al., 2005), members of SF3-SF5 are usually hexamers (Picha et 

al., 2000). However, the three-dimensional fold of the ATP binding domains (RecA 

fold) is similar in helicases of different families, whereas additional amino (N)- 

and/or carboxy (C)-terminal domains function in substrate recognition and 

specificity, or interaction with other proteins (Subramanya et al., 1996; Singleton et 

al., 2000). 

1.1.2 Role of the seven helicase motifs in SF1 and SF2 helicases  

High resolution X-ray crystallographic studies have revealed that the conserved 

helicase signature motifs of SF1 and SF2 helicases (Q, I, Ia, II-VI) form a large 

functional domain whereby they act together in ATP- and/or nucleic acid binding 

(Hall and Matson 1999) (Figure 1). Extensive structure-function analyses of the 

motfs have been used to discover their roles in helicase mechanism.  
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Figure 1: Diagram of the seven classical conserved helicase motifs defined by Gorbalenya 

and Koonin (annotated I to VI). The consensus sequence is adapted to DEXX box related 

enzymes. 

Motif I (Walker A motif) and motif II (Walker B motif) are directly involved in the 

binding of the nucleotide, and are generally found in nucleotide trisphosphate 

hydrolysing enzymes (Gorbalenya et al., 1989). While the invariant lysine (GKT) of 

motif I has been shown to bind to the β- and γ-phosphate of the ATP molecule and 

to stabilize the transition state during catalysis, the aspartate of the DE-motif has 

been shown to interact with the ATP-associated Mg2+-ion and to activate the 

attacking water molecule required for ATP hydrolysis (Story and Steitz 1992). 

Mutation of either lysine or aspartate to uncharged amino acids abolishes ATP 

binding and ATP dependent nucleic acid unwinding (Pause and Sonenberg 1992; 

Hall and Matson 1999). The Q motif as well as motif IV have also an implicated 

function in ATP recognition/binding and hydrolysis (Tanner 2003; Tanner et al., 

2003)(Korolev et al., 1997; Velankar et al., 1999). 

Motifs Ia and V have been shown to interact with the nucleic acid substrate as 

mutations in these motifs diminish ssDNA-stimulated ATPase activity (Marintcheva 

and Weller 2003). Motif VI is suggested to be involved in the binding of the nucleic 

acid. By binding of the invariant arginies to the β- and γ-phosphates of ATP after a 

nucleotide binding-induced conformational closure of domains 1 and 2, the 

enzyme additionally may mediate conformational changes and couple ATP 

hydrolysis to DNA unwinding (Pause and Sonenberg 1992; Kim et al., 1998).  

Motif III and Ib as well as motif IV have also been shown to play essential roles in 

coupling ATP hydrolysis to DNA unwinding activity as they are implicated in 

binding to the nucleotide and to the nucleic acid substrate (Pause and Sonenberg 

1992; Graves-Woodward et al., 1997).  

However, not every protein which possesses the mentioned conserved helicase 

motifs exhibits helicase acitivty. The seven motifs are also present in E. coli MfD 

protein (Selby and Sancar 1993; Assenmacher et al., 2006; Deaconescu et al., 



 Introduction  4 

2006) and the chromatin remodelling factor SWI2/SNF (Richmond and Peterson 

1996; Swagemakers et al., 1998; Durr et al., 2005). Both do not contain helicase 

activity, but displace stalled RNA Polymerase II from a site of DNA damage and 

dissociate/replace nucleosomes during chromatin remodelling events, 

respectively. Many other helicases have been found to additionally function as 

molecular motors that displace proteins from the nucleic acid substrate instead of 

unwinding duplex regions (Jankowsky et al., 2001; Flores et al., 2005; Macris and 

Sung 2005).  

1.1.3 Helicase unwinding mechanism 

The basic activity of helicases is to couple ATP binding and hydrolysis to 

conformational changes that result in base pair separation and/or translocation 

along a nucleic acid substrate. By this, each helicase goes through defined ATP 

ligation states (empty, ATP, ADP*Pi and ADP). One or more ATP ligation states 

can cause a modulation of the binding affinity to the nucleic acid substrate and a 

conformational change. Changes in the ATPase cycle that are associated with an 

observable energy change are likely to force a so called power stroke that leads to 

processive or non-processive translocation and/or duplex separation.  

The detailed structural and molecular mechanism of nucleic acid duplex 

separation by helicases still remains unclear. However, there are some features 

that seem to be common to all helicases studied to date. Resulting from these 

similarities, three models became popular.  

1.1.3.1 Inchworm and modified inchworm mechanism 

The inchworm mechanism is proposed for monomeric helicases, which possess 

two nucleic acid binding sites located on the same polypeptide. Both binding sites 

function independently in binding and release of the nucleic acid substrate in 

response to the signals received from a single ATPase site (Yarranton et al., 1979; 

Wong and Lohman 1992; Velankar et al., 1999). A cycle of nucleic acid binding, 

release and translocation starts with one binding site bound tightly (tight site), and 

the second binding site bound weakly (weak site) to the nucleic acid substrate 

(Figure 2). Changes in the ATP ligation state causes the weak site to dissociate 

from the nucleic acid. An ensuing power stroke leads to a movement away from 

the tight site and to rebinding of the weak site at a position ahead. The tight site is 
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then proposed to become weak and to dissociate from the nucleic acid. A second 

power stroke leads to a directed movement of the original tight site to the site 

ahead.  

Figure 2: Schematic drawing of the stepping inchworm mechanism. A helicase monomer 

with a tight (quader) and a weak (circle) nucleic acid binding site undergoes translocation 

(power stroke) and nucleic acid affinity changes (tight to weak binding) (adapted from (Patel 

and Donmez 2006)). The red module can be seen as “leading” site, the blue module as 

“trailing” site. Changes in the NTP ligation state and the resulting modulations in the 

substrate affinity causes the helicase to undergo up to six conformational changes in one 

stepping cycle. 

This typical inchworm model is proposed for translocation of PcrA helicase along 

ssDNA, whereas domains 1A and 2A of PcrA alternate in weak and tight binding of 

the single-stranded substrate (Velankar et al., 1999) (Figure 3A).  

A modified inchworm model has been proposed for a monomeric UvrD mutant 

(UvrDd40C), which failed to dimerize but showed unaltered ATPase and DNA 

unwinding acitivty (Mechanic et al., 1999). Here, the leading nucleic acid binding 

site exhibits double-stranded and single-stranded DNA binding ability, whereas the 

trailing site shows only single strand binding affinity (Figure 3B). The modified 

inchworm mechanism is also applicable to hetero- and homodimeric helicases. 

Here, each subunit would represent an individual nucleic acid binding site that is 

controlled by the NTP binding site of the respective molecule. This type of model is 

proposed for heterodimeric RecBC DNA helicase (Bianco and Kowalczykowski 

2000; Bianco et al., 2001). RecB, the leading domain, anchors the enzyme to one 

strand of the duplex DNA and translocates along it. RecC, the trailing domain, is 

responsible for ATP hydrolysis dependent unwinding. The leading domain can 

bind up to 23 nt ahead of the trailing domain and thereby translocate over DNA 

gaps. 

1.1.3.2 Active rolling mechanism 

The active rolling model has been proposed for dimeric helicases like the Rep 

protein (Wong and Lohman 1992; Delagoutte and von Hippel 2003). In this model, 
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the NTP ligation state of each subunit influences and alternate the binding to 

single-stranded and duplex DNA. Thereby both subunits leave their relative 

postion on the nucleic acid substrate depending on the NTP ligation state, 

resulting in being the trailing or the leading subunit (Figure 3C).  

 

 

 

Figure 3: A) In the Inchworm model for monomeric helicases the enzyme is bound to 

single-stranded nucleic acid and translocates along the single-strand to the fork region, 

possibly upon binding of ATP. Destabilization of the duplex region takes place upon ATP 

hydrolysis (Yarranton et al., 1979). B) In the modified inchworm model for monomeric 

helicases the enzyme contains two individual nucleic acid binding sites. The leading site 

(red) exhibits affinity for both double-stranded and single-stranded nucleic acids, whereas 

the trailing site (blue) shows affinity for sinlge-stranded nucleic acid. Starting from an 

extended conformation, the enzyme undergoes a conformational change upon ATP 

binding. This results in movement of the trailing site towards the leading site. On ATP 

hydrolysis, the leading site moves forward in the duplex region and unwinds the double-

strand (Mechanic et al., 1999). To apply this model to dimeric helicases, one of the 

molecules would represent the leading subunit, while the second molecule would 

represent the trailing subunit. C) In the active rolling model both subunits of the dimer are 

initially bound to single-stranded nucleic acid. On binding of ATP, the respective subunit 

releases the nucleic acid and binds to the duplex region at the fork. This results in helix 

destabilization, accompanied by ATP hydrolysis (Bjornson et al., 1996).  

 

1.1.3.3 Brownian Motor mechanism 

The Brownian motor model was recently proposed for HCV NS3 helicase and T7 

g4 helicase and includes Brownian motion and a power stroke (Betterton and 

Julicher 2005; Levin et al., 2005; Stano et al., 2005). In contrast to the inchworm 
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mechanism, it does not require two binding sites for nucleic acid within the active 

site of the enzyme. Here, the different ATP ligation states result in two distinct 

conformational states and nucleic acid binding modes (weak (+ATP) and tight (-

ATP)). Changes are associated with alternations in the energy profile, which allow 

or disallow movement of the helicase on the nucleic acid substrate. Whereas tight 

binding traps the enzyme on the nucleic acid, the weak state is associated with 

thermal fluctuations, which allow the helicase to dissociate from the substrate and 

to translocate in either direction (Brownian motion). The transition from the weak to 

the tight state (probably upon ATP hydrolysis) results in a power stroke and 

translocation of the molecule. The Brownian motion model lets the helicase 

translocate in either direction. Those molecules that have fluctuated in the forward 

direction move ahead. Those that have fluctuated in the opposite direction return 

to the original position. Only the repetition of these steps leads to net forward 

movement along the nucleic acid substrate. 

1.2 Helicases and the thread of stalled replication forks 

Helicases have crucial roles in nearly all nucleic acid metabolic processes. One of 

the most important processes in all living cells is the accurate and processive DNA 

replication. During normal cell growth, exogenous (chemicals, radiation) and 

endogenous (oxygen radicals, replication errors) sources of damage can inactivate 

a large portion of replication forks (Heller and Marians 2005; Patel and Donmez 

2006). Apparently, the interplay between DNA replication and repair of stalled 

replication forks is a basic phenomenon in all living cells, and is associated with 

the conversion of DNA strands into a variety of different structures (McGlynn and 

Lloyd 2002; Kreuzer 2005). A multitude of DNA helicases has been found to be  

involved in the processing and breakdown of these structures in both prokaryotes 

(UvrD, Rep, RecQ) and eukaryotes (BLM, WRN, Mus308, PolΘ), allowing restart 

of replication and DNA repair in an origin-independent manner (Michel et al., 

2004).  

1.2.1 RecQ and its role in the repair of stalled replication forks in 
prokaryotes 

In prokaryotes, stalled or collapsed replication forks are primary repaired via 

recombinational processes (Cox 2002). The repair pathways are varied and 
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redundant, reflecting the multitude of DNA structures that might be found at a 

stalled replication fork (Michel et al., 2004).  

Whereas collapsed forks at a site of a DNA strand break are mainly repaired via 

the RecBCD pathway, a stalled replication fork caused by a DNA lesion is repaired 

via the RecF pathway (Michel et al., 2004). The RecF pathway includes proteins 

like RecA, RecF, RecG, RecJ, RecO, RecR and RuvABC as well as the DNA 

helicase RecQ (Chow and Courcelle 2004; Michel et al., 2004). 

The prototype of the RecQ DNA helicase family is the Escherichia coli RecQ 

protein (Figure 4) (Nakayama et al., 1985), which is a member of the DEAH 

subgroup of 3´  5´ SF2 helicases (Gorbalenya et al., 1989; Harmon and 

Kowalczykowski 2001). Homologs of E. coli RecQ are found in yeast (Rqh1, Sgs1) 

and metazoans (BLM, WRN, RecQ4, RecQ5, RecQ1), and have implicated roles 

in the maintenance of genome stability (Ellis 1997). Archaea typically lack 

orthologues of RecQ.  

 

 

Figure 4: Crystal structure of the catalytic core of E. coli RecQ (PDB code 1OYW) 

(Bernstein et al., 2003). The ribbon model shows two RecA-like domains 1 (yellow) and 2 

(green), and the C-terminal Zn2+-binding (slate) and winged-helix domains (lightblue). A 

bound Zn2+ is shown as a red sphere. The C-terminal HRDC domain is not present in the 

crystal structure. The C-terminal domains of RecQ have implicated functions in substrate 

specificity, substrate binding and helicase activity (Liu et al., 1999; Gajiwala and Burley 

2000; Killoran and Keck 2006; Killoran and Keck 2006). 

 

RecQ proteins are suggested to play different roles in maintaining genome 

stability. As shown in Figure 5, prokaryotic RecQ catalyzes the unwinding of DNA 

at gaps or double strand breaks, consistent with its in vitro ability to unwind 

double-stranded blunt-ended DNA substrates as well as duplexes with a 3´-tail 

overhang (Umezu et al., 1990; Bennett et al., 1999; Harmon and Kowalczykowski 

2001; Mohaghegh et al., 2001; Cui et al., 2003; Sharma et al., 2005). The interplay 
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with the 5´-exonuclease RecJ allows generation of 3´ ssDNA. The assembly of 

RecA filaments on the ssDNA then initiates strand exchange and D-Loop 

formation (Harmon and Kowalczykowski 1998).  

 

 

Figure 5: Roles of RecQ DNA helicase in genomic maintenance. A) RecQ was found to 

initiate recombination by unwinding DNA at gaps or double strand breaks (only in recBC- 

cells). B) RecQ has been shown to disrupt D-Loop structures, resulting in an anti-

recombinational function. C) RecQ SOS signaling model (Hishida et al., 2004). DNA 

strands: red: leading strand, blue: lagging strand, green arrow: 3´  5´unwinding polarity 

of RecQ. (adapted from (Heyer, 2004)) 

RecQ was also found to disrupt synthetic D-Loop structures and Holliday junction 

intermediates (Hanada et al., 1997; Harmon and Kowalczykowski 1998; Bennett et 

al., 1999; Wu and Hickson 2003). This anti-recombination function may be 

relevant for the suppression of illegitimate recombination, which may result in DNA 

rearrangements such as deletions, translocations, duplications or inversions in 

vivo (Gangloff et al., 1994). In the past years, an additional role of RecQ in the 

induction of the prokaryotic SOS response has been revealed. In the SOS-model 

proposed by Hishida et al., RecQ binds a gap on the leading strand of a stalled 

replication fork. After unwinding the duplex template ahead of the fork in 3´  5´ 

direction, RecQ switches to the lagging strand template. Displacement of the 

nascent lagging strand by RecQ and the concerted action of the exonuclease 

RecJ generates a ssDNA gap on the lagging strand on which RecA can be 

assembled. RecA filament formation subsequently leads to the induction of the 

SOS response and repair of the DNA lesion, trans-lesion synthesis and/or 

recombinational restart (Hishida et al., 2004).  
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The molecular mechanism of RecQ in DNA repair is not fully clear and seems to 

depend mainly on the regulated interaction between RecQ helicases and other 

replication/repair proteins in both prokaryotes and eukaryotes (Hickson 2003). 

However, the capability of prokaryotic and eukaryotic RecQ helicases to resolve 

such a variety of DNA structures is consistent with a role in suppressing 

illegitimate recombination by disrupting aberrant intermediates at sites of stalled 

replication forks and during homologous recombination. 

1.2.2 The Mus308 family of DNA helicases and their role in 
sensitivity to DNA cross-linking agents in higher eukaryotes 

A special DNA damage, which can cause the stall of a replication fork is a DNA 

interstrand cross-link. DNA interstrand cross-links (ICLs) are highly cytotoxic to 

dividing cells as they covalently connect the two complementary strands of the 

DNA double helix (Magana-Schwencke et al., 1982; Lawley and Phillips 1996). 

DNA cross-linking agents like cisplatin and mytocmycin C are commonly used in 

cancer therapy as chemotherapeutics in order to inhibit DNA replication and to 

stop cell division (Jamieson et al., 1999; Kow et al., 2005). 

ICLs cause damages to both DNA strands at the same or very close nucleotide 

position, and repair of an ICL itself and the repair of ICL induced stalled replication 

forks is a combination of nucleotide excision repair (NER), homologous 

recombination and/or translesion DNA synthesis, as studied in E. coli and S. 

cerevisiae (Yoakum and Cole 1978; Sladek et al., 1989; Dronkert and Kanaar 

2001; McHugh and Sarkar 2006).  

Whereas the repair of ICL in bacteria and yeast is well studied, the removal of 

ICLs and the restart of ICL-induced stalled replication forks in mammalian cells is 

not well understood, and several mechanisms for repair of or tolerance to DNA 

cross-links have been proposed (Dronkert and Kanaar, 2001; Grossmann et al., 

2001; De Silva et al., 2000). However, genetic data and recent studies with mutant 

cell lines sensitive to DNA cross-linking agents suggest that proteins of both 

excision repair and homologous recombination pathways are involved in the repair 

of ICLs (Hoy et al., 1985; Brookman et al., 1996; Busch et al., 1997; Dronkert and 

Kanaar 2001; Medhurst et al., 2006). 

One of the identified proteins, whose in vivo role could be directly linked to the 

repair of ICLs and/or the repair of ICL-induced stalled replication forks is the 
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Drosophila menlanogaster Mus308 and its orthologs from Homo sapiens. The 

Mus308 family of helicases and putative helicases is implicated in supporting 

genome stability in metazoans (Boyd et al., 1990; Shima et al., 2003; Laurencon et 

al., 2004). In contrast to RecQ-like helicases, no sequence homologs of Mus308-

like helicases are found in bacteria and yeast. Recently, the archaeal Mus308 

homolog could be identified (Fujikane et al., 2005; Guy and Bolt 2005). 

1.2.2.1 Drosophila melanogaster Mus308 

The prototype of the Mus308 family of helicases is the Drosophila melanogaster 

Mus308, which was identified more than 30 years ago and was found to be 

required for resistance to DNA cross-linking agents. A direct role of Mus308 in the 

repair of interstrand cross-links could be further verified in a variety of genetic 

studies (Boyd et al., 1990).  

Mus308 exhibits a unique domain architecture. It contains a C-terminal region, 

which shows homology to bacterial A-family DNA polymerases like E. coli DNA 

Polymerase I. In addition, the N-terminal region shows homology to SF2 helicases 

(Boyd et al., 1990; Harris et al., 1996). The detailed cellular function of Mus308 is 

not known, due to a lack of functional information about polymerase and helicase 

activity. According to the nucleotide excision repair (NER) model in prokaryotes, 

Mus308 may play a role analogous to bacterial Pol I in gap fill-in during 

recombinational repair of DNA cross-links in which the helicase domain could 

function similarly to UvrD (Harris et al., 1996; Marini and Wood 2002).  

1.2.2.2 Human PolΘ 

The human Mus308 ortholog PolΘ comprises a similar overall architecture as 

Drosophila Mus308 (Seki et al., 2004). The polymerase activity of purified PolΘ 

has been shown to be highly efficient at bypassing abasic sites in DNA templates, 

preferentially inserting adenine opposite an AP-site (Seki et al., 2004). PolΘ 

additionally exhibits an unexpected tendency to misincorporate bases and to 

extend from mispaired termini, a feature that is untypical for an A-family 

polymerase (Seki et al., 2003). It may have a function in maintaining normal 

genomic integrity by allowing bypass of lesions, when a DNA replication fork 

encounters an unrepaired lesion. Lack of PolΘ bypass activity therefore could 

cause replication fork collapse or breakage, leading to genomic instability.  
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As PolΘ is preferentially expressed in lymphoid tissues, an additional function 

during somatic hypermutation of antibody genes, by which AP sites are generated 

as a mutagenic intermediate, may be possible (Kawamura et al., 2004). However, 

similar to Drosophila Mus308, nothing is known of its DNA helicase activity, 

although ATPase activity of PolΘ has been shown to be dependent on ssDNA 

(Seki et al., 2003).  

1.2.2.3 Human Hel308 

The human Hel308 protein (hHel308) exhibits significant sequence homology to 

the N-terminal helicase domain of Drosophila Mus308 (Marini and Wood 2002). 

Although hHel308 is lacking the C-terminal polymerase domain it has been found 

that mutations in the Drosophila Hel308 ortholog cause increased sensitivity to 

nitrogen mustard and other DNA cross-linking agents (Laurencon et al., 2004) as 

shown for Drosophila Mus308. hHel308 has been shown to exhibit single-stranded 

DNA-dependent ATPase and RPA (replication protein A) stimulated 3´  5´ DNA 

unwinding acitivty (Marini and Wood 2002).  

1.2.2.4 Human PolN (Polν) 

Human polymerase ν (Polν) shows homology to the Mus308 polymerase domain 

(Marini et al., 2003). Polν shows a low fidelity and incorporates T opposite 

template G with half the yield of incorporating the correct base and has a 

processivity similar to exonuclease-deficient Klenow fragment of E. coli Pol I 

(Takata et al., 2006). Polν can also perform error-free translesion synthesis past 

thymine glycol (Tg), a common endogenous and radiation-induced product of 

reactive oxygen species DNA damage, and efficiently extends from the lesion. 

Error-free bypass results in low mutation frequency and the possibility to repair the 

Tg by base excision repair (BER). As hHel308 and Polν were shown to be 

expressed in the same tissues, a coupling between helicase and polymerase 

activity of these two enzymes could be possible (Marini et al., 2003). Thus, 

different expression patterns of hHel308/Polν and PolΘ could be indicative for 

similar functions in different tissues (Marini et al., 2003; Seki et al., 2003).  
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1.3 Archaeal Hel308 belongs to Mus308 family of DNA helicases 
and exhibit RecQ like functions 

1.3.1 Classification of archaeal Hel308 into the Mus308 helicase 
family 

The presence of an archaeal Mus308 homolog was recently discovered by two 

independent research groups. Fujikane et al. discovered archaeal Hel308 

(pfuHel308) in the hyperthermophilic archaeon Pyrococcus furiosus in an in vitro 

experiment to identify proteins responsible for Holliday junction (HJ) branch 

migration in archaea (Fujikane et al., 2005). The gene, denoted Hjm (holliday 

junction migration), encodes the Hjm protein, which exhibits ATP-dependent 

unwinding activity of synthetic HJs.  

At the same time, Guy and Bolt identified the homolog from Methanothermobacter 

thermautotrophicus (mthHel308) in an in vivo screen to investigate potential 

analogous activities to bacterial RecQ using putative archaeal helicases with 

unknown function (Guy and Bolt 2005). Thereby, they specifically looked for 

archaeal helicases which, similar to bacterial RecQ, act upon DNA structures 

formed at sites of stalled DNA replication using a standard heterologous genetic 

system (Wechsler and Gross 1971; Vandewiele et al., 2002; Fujikane et al., 2005; 

Guy and Bolt 2005).  

Both groups found a significant conservation of the protein in both major branches 

of archaea, and additionally a significant sequence similarity to the N-terminal 

region of Mus308 helicase family members. No significant overall sequence 

homology to eukaryotic or bacterial RecQ helicases could be detected. Based on 

the amino acid sequence, both pfuHel308 and mthHel308 can be grouped into the 

helicase superfamily 2 of DNA and RNA helicases. In addition to the seven 

conserved helicase motifs they exhibit residues which are unique to the Mus308 

family of helicases, and which are lacking or altered in RecQ-like proteins (Table 

2). In the Mus308 helicase family, the threonine within motif V is usually a 

hydrophobic residue in other members of SF2, whereas the methionine in motif VI 

is usually a charged residue (Marini and Wood 2002; Guy and Bolt 2005).  

 

 

 



 Introduction  14 

Table 2: Sequence details in helicase motifs IVa, V and VI 
 IVa V VI 

afuHel308 GAAFHHAGL ATPTL MAGRAG 

pfuHel308 GVAFHHAGL ATPTL MLGRAG 

mthHel308 GIAFHHAGL ATPSL MSGRAG 

hsHel308 GVAYHHSGL CTSTL MIGRAG 

hsPolΘ GVAFHHAGL ATSTL MVGRAG 

hsBLM ALAY-HAGL ATIAF ESGRAG 

Bold letters: invariant residues in Hel308/Mus308 

afuHel308: Archaeoglobus fulgidus; pfuHel308: Pyrococcus furiosus; mthHel308: 

Methanothermobacter thermautotrophicus; hsHel308: Homo sapiens Hel308; hsPolΘ: 

Homo sapiens PolΘ, hsBLM: Homo sapiens BLM. (adapted from Guy and Bolt, 2005). 

   

 

However, the Mus308 helicase familiy seems to combine motifs from various 

subfamilies. For example, motif II, the so called Walker B motif, is similar to the 

DEXH family of helicases (Figure 6). This family includes many 

“repair/recombination” helicases such as RecQ-like proteins as well as the 

chromatin remodelling factor Rad54, although no overall sequence conservation 

can be detected (Durr et al., 2005; Guy and Bolt 2005). Based on recent analysis, 

the helicase domain of members of the Mus308 family is most closely related to 

the Ski2 family of RNA helicases as they all contain a conserved glutamine 

residue in the so called Q-Loop about 20 amino acids upstream of motif I (Figure 

6) (Tanner 2003; Tanner et al., 2003). Also motif IVa shows characteristics of the 

yeast RNA processing helicases Ski2p/Mtr4p (Marini and Wood 2002; Tanner et 

al., 2003), and additional similarity to motif IVa of RecQ like helicases (Harris et 

al., 1996; Bernstein et al., 2003) (Table 2 and Figure 6). 
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Figure 6: Sequence alignment of Archaeoglobus fulgidus Hel308 with selected SF2/Ski2 

family helicases. Conserved regions and residues are shaded light grey (low 

conservation), dark grey (moderate conservation) or black (high conservation). The 

annotated secondary structure of Archaeoglobus fulgidus Hel308 is shown on top of the 

alignment (arrows: ß-strands, boxes: α-helices). Residues implicated in DNA binding are 

highlighted with triangles: dark red: 3´- 5´ single strand, magenta: interactions with ss-ds 

junction on ß-hairpin loop, yellow: double strand. The positions of sequence motifs are 

indicated. Abbreviations: AfHel308: Archaeoglobus fulgidus Hel308; Pa0592: Pyrococcus 

abyssii Hel308; DmMus308: Drosophila melanogaster Mus308; HsPolQ: Homo sapiens 

PolΘ; HsHel308: Homo sapiens Hel308; yMtr4: Saccharomyces cerevisiae Mtr4; hMtr4: 

Homo sapiens Mtr4; ySki2: Saccharomyces cerevisiae Ski2; hSki2: Homo sapiens Ski2 

 

1.3.2 Functional characteristics of the archaeal Hel308 family 
members 

The in vitro properties observed for archaeal Hel308 are all remarkably similar to 

the in vitro properties of eubacterial RecQ helicase (Fujikane et al., 2005; Guy and 

Bolt 2005). Besides single-stranded DNA dependent ATPase activity, archaeal 

Hel308 binds and unwinds a variety of different branched nucleic acid substrates 

in 3´  5´ direction, with a significant preference for binding to and unwinding of a 

fork with lagging strand only (Table 3). In addition, pfuHel308 and mthHel308 have 

been shown to unwind synthetic Holliday junctions and D-Loop structures (only 

shown for mthHel308) (Guy and Bolt 2005). 

 

Table 3: Prefered DNA structures of archaeal Hel308  

  
 

 

Y-Fork Lagging strand only 

fork (FD) 

Leading strand 

only fork 

Fork with leading 

and lagging strand 

Holliday 

junction (HJ) 

 

The functional complementarity between archaeal Hel308 and eubacterial RecQ 

was also shown in genetic complementation experiments using E. coli cells 

(Fujikane et al., 2005; Guy and Bolt 2005), and the results implicate that archaeal 

Hel308 targets DNA structures, which form at stalled replication forks (Figure 5). 

Analogous to RecQ, archaeal Hel308 may clear the lagging strand, thereby 
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allowing the generation of an Okazaki fragment initiation zone, and the loading of 

archaeal primosome components or translesion polymerases to allow replication 

over damage (Guy and Bolt 2005). Interaction with components of the primosome, 

replisome or with polymerases could be mediated by the C-terminal domain of 

archaeal Hel308, which have been shown to be important for the interaction with 

archaeal PCNA (Fujikane et al., 2005).  

The ability of archaeal Hel308 to dissolve synthetic HJ and to dissociate RecA-

mediated recombination intermediates produced by a plasmid DNA (Fujikane et 

al., 2005) could be important for an anti-recombination function (similar to RecQ) 

or in the late stage of homologous recombination (similar to RuvABC). Many 

proteins involved in the onset of homologous recombination like the recombinase 

Rad51, the single-stranded binding protein RPA, and the DNA repair proteins 

Rad50/Mre11 are highly conserved between archaea and eukarya (Uemori et al., 

1995; Ishino et al., 1998; Hopfner et al., 2000), which is consistent with the general 

finding that archaea share many similarities with eukarya in their genetic 

information processing pathways, in terms of sequences of the involved protein 

factors (Olsen and Woese 1997). This similarity makes it likely that they use 

similar mechanisms to repair and restart replication forks in response to damage 

signalling mechanisms at sites remote from replication origins.  

1.4 Objectives 

Helicases play essential roles in nearly all nucleic acid metabolic pathways in 

which they use the free energy of ATP hydrolysis to catalyze the 

thermodynamically unfavourable separation of nucleic acid duplex separation. 

However, the detailed structural and molecular mechanism of nucleic acid duplex 

separation by SF2 helicases still remains unclear, but is critical for understanding 

the molecular mechanisms of nucleic acid metabolic pathways in living cells.  

The aim of this PhD thesis was to reveal the structure of the Superfamily 2 (SF2) 

Mus308 helicase homolog from the archaeon Archaeoglobus fulgidus (afHel308) 

by X-ray crystallography. The eukaryotic and archaeal Mus308 family of helicases 

has an implicated function in DNA repair and was shown to preferentially unwind 

lagging strands at stalled replication forks. Comparison of the structures of 

afHel308 in the absence and presence of a DNA oligonucleotide should reveal 

important insights into the structural interplay between the enzyme and its DNA 
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substrate during processive 3´  5´ DNA duplex separation, and may provide an 

DNA unwinding model which is also applicable to other SF2 family members. 

Biochemical analysis of structure-guided mutant afHel308 should support the 

model obtained from the structures and may provide an explanation of how ATP 

binding and hydrolysis is coupled to DNA translocation and DNA base pair 

separation. In addition, the interaction between the enzyme and its DNA substrate 

may allow extrapolation of how afHel308 is targeted to possible in vivo substrates 

and interacts with components of the DNA repair machinery. 
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2 Materials and Methods 

2.1 Materials 

See Part I 

2.2 Methods 

General methods are described in Part I. The specific purification procedures and 

crystallization of the Archaeoglobus fulgidus Hel308 protein as well as the 

biochemical assays are listed in the following chapter. 

2.2.1 Structure determination of the archaeal SF2 Helicase 

2.2.1.1 Cloning, expression and purification of Archaeoglobus fulgidus 

Hel308 

The coding sequence of archaeal Hel308 was amplified by PCR from 

Archaeoglobus fulgidus (af) genomic DNA (see Table 4 for oligonucleotides). The 

PCR product was cloned into a pET-29 vector (Novagen, Schwalbach/Ts., 

Germany) using the corresponding restriction sites (Table 5), and transformed into 

competent E. coli Rosetta (DE3) cells. The protein was expressed for 15 h at 

18°C. Cells were harvested by centrifugation, resuspended in Lysis buffer (Table 

6) supplemented with 200 µM PMSF, and disrupted by sonication. Cell debris was 

removed by centrifugation. E. coli proteins were denatured by a heat step for 10 

minutes at 80°C and removed by centrifugation. The supernatant was loaded onto 

an equilibrated Ni2+-NTA column (5 ml, Qiagen, Hilden, Germany; Table 6). After 

washing with Wash buffer I and II, the protein was step-eluted with Elution buffer 

(Table 6). Protein containing fractions were determined using Bradford Protein 

Assay (Bio-Rad, Munich, Germany), pooled and diluted 1:4 with Dilution buffer 

(Table 6). afHel308 was further purified by anion exchange chromatography 

(Resource Q, GE Healthcare, Freiburg, Germany). The column was equilibrated 

with Buffer A (Table 6) prior to the experiment. The protein was eluted with a 

gradient of 20 columns volumes from 50 mM NaCl (Buffer A) to 1 M NaCl (Buffer 

B, Table 6). Peak fractions were concentrated and loaded onto a Sephadex S200 

16/60 size exclusion column (GE Healthcare, Freiburg, Germany) equilibrated with 

the corresponding buffer (Table 6). Pooled peak fractions were concentrated for 
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crystallization to 10-12 mg/ml using centrifugal filter devices (Amicon® Ultra, 

Millipore, Billerica, MA, USA). For MAD phasing selenomethionine was 

incorporated as described (Part I, 2.2.2.4). Derivatized protein was purified 

according to wild-type protein, whereas all buffers were degassed before use and 

contained 10 mM β-mercaptoethanol or 2 mM DTT (Roth, Karlsruhe, Germany). 

Mutations were introduced by overlap PCR (Part I, 2.2.2.2) and cloned into pET-29 

vector (Novagen, Schwalbach/Ts., Germany). Expression and purification of the 

mutant protein were carried out as described for the wild-type protein. The C-

terminal truncated proteins (Δ626 and Δ400) were obtained by PCR amplification 

and cloned into pET-29 vector (Novagen, Schwalbach/Ts., Germany). Expression 

of the truncated constructs was performed according to the full-length protein. The 

truncated protein Δ626 was purified according to the full-length protein. Δ400 was 

purified by Ni2+-NTA affinity chromatography, HighTrap SP cation exchange 

chromatography and Sephadex S200 16/60 size exclusion chromatography using 

the same buffers as for the wild-type protein (Table 6). 

 

 

 

Table 4: Oligonucleotides 

Oligo name Sequence 

afHel308 for Nde I aaaaaaacatatgaaggtggaggagcttgctg 

afHEL308_c rev Not I aaaaaaaagcggccgctgactccgggtttaaagacttaa 

Desired deletion Sequences 

afHEL308_Δ400_c rev Not I aaaagcggccgctccaaaaatataccttttcacagcaat 

afHEL308_Δ626_c rev Not I aaaagcggccgcatgctttatcctctccgtaagccc 

afHEL308_E146Q_for gccttgtcgttgaccaaatacacctactc 

afHEL308_E146Q_rev cgagtaggtgtatttggtcaacgacaaggc 

Underlined regions mark the recognition sites for restriction endonucleases and mutated 
codons. 

All sequences are given in 5´- 3´ direction. 

 

 

 

 

 



 Materials and Methods 21 

Table 5: Expression plasmids 

# Insert Vector Restriction sites Tag 

1 afHEL308  pET-29 Nde I, Not I c-6xHis 

2 afHEL308 Δ400 pET-29 Nde I, Not I c-6xHis 

3 afHEL308 Δ626 pET-29 Nde I, Not I c-6xHis 

4 afHEL308 E146Q pET-29 Nde I, Not I c-6xHis 

 

Table 6: Buffers for the purification of archaeal Hel308 

Buffer Description 

Ni-NTA  

Lysis buffer/Equilibration buffer 20 mM NaH2PO4 pH 7.5 (25°C), 200 mM NaCl, 10 mM β-

mercaptoethanol 

Wash buffer I 20 mM NaH2PO4 pH 7.5 (25°C), 1.5 M NaCl, 10 mM 

Imidazol, 10 mM β-mercaptoethanol 

Wash buffer II 20 mM NaH2PO4 pH 7.5 (25°C), 200 mM NaCl, 10 mM 

Imidazol, 10 mM β-mercaptoethanol 

Elution buffer 20 mM NaH2PO4 pH 6.8 (25°C), 200 mM NaCl, 250 mM 

Imidazol, 10 mM β-mercaptoethanol 

Dilution buffer 20 mM NaH2PO4 pH 6.8 (25°C), 10 mM β-mercaptoethanol 

Resource Q (full length/mutant Hel308)/HiTrap SP (Δ400)  

Buffer A 20 mM NaH2PO4  pH 7.5 (25°C), 50 mM NaCl, 2 mM DTT 

Buffer B 20 mM NaH2PO4  pH 7.5 (25°C), 1 M NaCl, 2 mM DTT 

Gelfiltration  20 mM Tris/HCl pH 7.8 (25°C), 200 mM NaCl, 10 % 

glycerol, 2 mM DTT 

 

2.2.1.2 Crystallization and structure determination of apo-afHel308 

Crystals of apo afHEL308 in space group P6122 with one molecule per asymmetric 

unit were obtained by sitting drop vapor diffusion by mixing 1 µl protein (10 mg/ml 

in 20 mM Tris pH 7.8, 200 mM NaCl, 10 % glycerol) and 1 µl of reservoir solution 

(0.1 M NaCitrate pH 5.6, 1.0 M (NH4)2PO4, 15 % glycerol) at 20°C. Prior to data 

collection, crystals were mounted in nylon loops and flash frozen in liquid nitrogen. 

To determine the structure of apo afHEL308, a multiple-wavelength anomalous 
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diffraction (MAD) experiment was recorded at the K absorption edge to 3.7 Å at 

beamline ID29 (ESRF, Grenoble, France). The optimal wavelengths were 

determined experimentally with a fluorescence scan. Synchrotron data from 90 

images (1° rotation per image) were processed and scaled with XDS and XSCALE 

(Kabsch 1993). Atomic positions of 13 Selenium atoms were located with SHELXD 

(Sheldrick and Schneider 1997). Phases were obtained with SHARP software 

(Global phasing) and improved with SOLOMON (Collaborative Computational 

Project 1994), resulting in an interpretable electron density. The model was build 

manually with MAIN (Turck 1992). Refinement was performed with CNS (Brunger 

et al., 1998), and included overall anisotropic B-factor and bulk solvent corrections, 

individual B-factor refinement, simulated annealing, and positional refinement. The 

3.7 Å resolution structure was used as a search model to obtain phases for a 

native data set at 3.1 Å resolution (recorded at PX (SLS, Villigen, Switzerland)) by 

molecular replacement using PHASER (Collaborative Computational Project 

1994). The stereochemistry of the final model of apo afHel308 was analyzed with 

PROCHECK (Laskowski et al., 1993). 

2.2.1.3 Crystallization and structure determination of DNA:afHel308 
complex 

To obtain crystals of afHel308 in complex with DNA, the protein was incubated 

with a 15mer double-stranded DNA with a 10mer 3´-overhang (5´-

CTAGCAAGCCAGAATTCGGCAGCGT-3´, 5´-ACGCTGCCGAATTCT-3´) in size 

exclusion buffer (Table 6), and a protein:DNA ratio of 1:1.2 for 20 minutes on ice. 

Crystals of the DNA:afHEL308 complex were obtained according to apo afHEL308 

in space group P6122 with one molecule per asymmetric unit, using 0.1 M HEPES 

pH 6.4, 20 % MPD, 0.1 M MgAcetate, 15 % glycerol as precipitant solution. Data 

from 90 images (1° rotation per image) diffracting to 3.0 Å resolution were 

collected at PX beamline (SLS, Villigen, Switzerland) and processed with XDS 

(Kabsch 1993). The structure of the DNA:afHEL308 complex was solved by 

molecular replacement with PHASER (Collaborative Computational Project 1994), 

using the refined model of apo afHEL308 as search molecule. A single molecular 

replacement solution was refined at 3.0 Å by using the procedure described 

above. The stereochemistry of the final model of the DNA:afHel308 complex was 

analyzed with PROCHECK (Laskowski et al., 1993). 
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HPLC purified and lyophilized oligonucleotides used for crystallization were 

obtained from Thermo Electron Corporation (Ulm, Germany) and dissolved in 10 

mM Tris/HCl [pH 8.5]) at a concentration of 3 nm/µl. Adjustment of the pH of the 

DNA solution to 7-8 was performed to avoid protein denaturation after DNA 

addition due to acidification. Double-stranded DNA substrate was generated by 

mixing equimolar amounts of the two complementary oligonucleotides, heating to 

95°C for 5 minutes, followed by slow cooling to room temperature. The 

protein:DNA complex was directly used for crystallization without further 

purification procedures.  

2.2.2 Biochemical methods 

2.2.2.1 Radioactive labelling of DNA substrates 

DNA strands were end-labeled using T4 polynucleotide kinase (PNK) (New 

England Biolabs, Frankfurt, Germany) and γ-32P-ATP (GE Healthcare, Freiburg, 

Germany) for 60 minutes at 37°C in a 20 µl reaction following the supplied 

instructions. DNA was separated from unincorporated γ-32P-ATP using the 

Nucleotide Removal Kit (Qiagen, Hilden, Germany). For generating double-

stranded DNA the 32P-labeled strand was mixed with an appropriate amount of 

unlabeled complementary DNA strands. Annealing was performed in buffer 

containing 40 mM Tris/HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2 and 1 mM DTT 

for 6–18 h by reducing the reaction temperature from 95 to 20°C in a heating 

block. Success of annealing was controlled by 12% TAE-PAGE, and annealed 

holliday junction (HJ) substrate were used to assay helicase acitivty. DNA 

substrate used for ATPase activity assays was prepared in the same way without 

radioactive labeling. Here, success of annealing was monitored by UV-shadowing. 

The sequence of the oligonucleotides used for biochemical assays are listed in 

Table 7. 
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Table 7: Oligonucleotides for biochemical assays 
Name Sequence 

HJ1 atcgatagtctctagacagcatgtcctagcaagccagaattcggcagcgt 

HJ2 gacgctgccgaattctggcttgctaggacattctttgcccacgttgaccc 

HJ3 gggtcaacgtggcaaagaatgtcctacgtccgatacggataatcgccat 

HJ4 atggcgattatccgtatcggacgtcggacatgctgtctagagactatcga 

FD1 atcgatagtctctagacagcatgtcctagcaagccagaattcggcagcgt 

FD2 gacgctgccgaattctggcttgctatgtaactctttgcccacgttgaccc 

FD3 ggacatgctgtctagagactatcgat 

ssDNA ttttttttttttttt 

All sequences are given in 5´- 3´ direction. HJ: Holliday junction, FD: Lagging strand only fork 

(see also Table 3) 

 

 

2.2.2.2 ATPase assays 

For assaying ATPase activity of wild-type and mutant afHel308, 100 nM of each 

afHel308, Hel308aE146Q, afHel308Δ400, and afHel308Δ626 were incubated with and 

without 4 nM DNA substrate in 20 mM Tris/HCl pH 7.5, 50 mM KCl, 1mM MgCl2, 

10% glycerol, 2 mM DTT, 1 mM cold ATP, 90 µg/ml bovine serum albumin (BSA), 

0.1% PEG 8000 and 20 nM γ-32P-ATP in a 20 µl reaction mixture at 37°C for 30 

minutes. Released phosphate was analyzed by thin layer chromatography on 

polyethyleneimine cellulose using 1 M Formic Acid/0.5 M LiCl as running buffer 

and phosphorimaging (GE Healthcare; Freiburg, Germany). The amount of 

hydrolyzed ATP was quantified with ImageQuant® (GE Healthcare; Freiburg, 

Germany), and is given in mol ATP hydrolyzed/mol protein per second. Standard 

deviations represent calculated means ± standard error of three independent 

experiments. 

2.2.2.3 DNA unwinding assays 

Helicase activity was assayed with 100 nM of each protein in a 20 µl reaction 

containing 20 mM Tris/HCl pH 7.5, 50 mM KCl, 1mM MgCl2, 10% glycerol, 2 mM 

DTT, 90 µg/ml bovine serum albumin (BSA), 0.1% PEG 8000 and 1 mM ATP in 

the absence or presence of 4 nM DNA substrate at 37°C for 15 min. The reaction 
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was terminated by the addition of 0.3% SDS, 10 mM EDTA, 5% glycerol and 0.1% 

bromphenol blue. The products of the reaction were fractionated by 12% non-

denaturing PAGE in TAE buffer. Gels were dried and DNA unwinding was 

quantified by phosphorimaging (GE Healthcare; Freiburg, Germany). Values and 

error bars represent means ± standard error of three independent experiments, 

and are given in percent DNA unwound. 

2.2.3 Limited proteolysis 

Limited proteolysis was performed in order to reveal conformational changes in the 

protein upon binding of ATP and/or DNA. The reaction was carried out in size 

exclusion buffer (Table 6) in a total volume of 20 µl. For each reaction, 14 µg of 

afHel308 wild-type protein were incubated with different amounts of proteinase K, 

trypsin or chymotrypsin (Sigma, Deisenhofen, Germany) (0.1, 1, 10 µg) in the 

absence and presence of 500 µM AMP-PNP (Sigma, Deisenhofen, Germany), 1 

mM MgCl2 and 20 µM DNA (15mer duplex with 10mer 3´ tail overhang) for 25 

minutes at room temperature. The reaction was stopped by addition of 2 µl PMSF 

(saturated solution in 2-propanol). The reaction products were analyzed by SDS-

PAGE and protein bands were stained with Coomassie Brilliant Blue R250 (Roth, 

Karlsruhe, Germany).  
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3 Results 

3.1 Purification, crystallization and structure determination of the 
archaeal helicase Hel308 from Archaeoglobus fulgidus 

The archaeal helicase afHel308 is grouped into the Superfamily 2 (SF2) of DNA 

and RNA helicases and shares high sequence similarity to human PolΘ (Marini et 

al., 2003; Seki et al., 2003; Yoshimura et al., 2006) and Hel308 (Marini and Wood 

2002) as well as to Drosophila Mus308 (Oshige et al., 1999) and the yeast RNA 

decay factors Ski2p and Mtr4p (Koonin et al., 2001). Whereas the ATP-dependent 

DNA unwinding mechanism of SF1 helicases like PcrA (Velankar et al., 1999), 

Rep (Korolev et al., 1997) and UvrD (Lee and Yang 2006) is structurally well 

characterized, processive nucleic acid unwinding by SF2 helicases is much less 

understood. To provide a structural framework of how processive SF2 3´  5´ 

helicases actually separate the two strands of a nucleic acid, and to obtain insights 

into substrate recognition mechanisms by Mus308 family members, archaeal 

Hel308 was crystallized in the absence and presence of DNA. 

The gene from the archaeal helicase Hel308 was amplified from Archaeoglobus 

fulgidus (af) genomic DNA by PCR as described in 2.2.1.1. The PCR product was 

cloned into a pET-29 vector with a C-terminal 6xHis-Tag. The resulting expression 

plasmid was transformed into E. coli Rosetta (DE3) cells and the protein was 

expressed overnight at 18°C.  

3.1.1 Purification of afHel308 

afHel308 was purified by an initial heat denaturization of E. coli proteins, 

immobilized Ni2+-NTA affinity chromatography (utilizing the C-terminal 6xHis-Tag), 

Resource™ Q anion exchange chromatography, and HiLoad 16/60 Sephadex 

S200 size exclusion chromatography, following the procedure described in 2.2.1.1. 

The protein eluted in one distinct peak (Figure 7), which corresponded to a 

molecular weight of around 78 kDa (theoretical MW: 78.7 kDa). Protein containing 

fractions were pooled and concentrated to a final concentration of 10-12 mg/ml. 

The purified protein was used for crystallization trials and biochemical 

characterization. From 6 l of expression culture, around 10-15 mg of purified 

protein could be obtained. (Figure 7) The selenomethionine-containing protein as 
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well as the mutant constructs were purified according to the wild-type protein. 

Mutant proteins showed expression levels similar to the wild-type protein and were 

used for biochemical studies.  

 

 

 

 

Figure 7: Elution profile of 

afHel308 from HiLoad 16/60 S200 

size exclusion column. 

(absorption at 280 nm, blue; 

absorption at 260 nm, magenta). 

Insert shows SDS-PAGE analysis 

of a representative peak fraction. 

3.1.2 Crystallization of apo afHel308 

The afHel308 protein was crystallized by initial screening using commercial 

crystallization screens in 96-well sitting drop plates by mixing 1 µl of protein with 1 

µl of reservoir solution. Small hexagonal shaped crystals appeared within 2-3 days 

in a variety of different conditions of the Nextal Classic Screen I. For first diffraction 

experiments, some hexagonal shaped crystals were incubated in mother liquor 

supplemented with 10-15 % glycerol, 2,3-Butandiol or PEG400. Crystals were 

mounted in nylon loops and flash frozen in liquid nitrogen. Crystals diffracted to 

around 6 Å at PX beamline (SLS, Viligen, Switzerland). Diffraction power seemed 

to depend mainly on the crystal size. No ice rings were formed in crystals 

incubated in glycerol, whereas 2,3-Butandiol and PEG400 did not seem to avoid 

ice formation, and therefore were not recommended as cryo-protectants in this 

case. For structure determination, the initial crystals had to be improved and 

bigger crystals had to be obtained. First refinement trials of Nextal Classic Screen 

I #26 resulted in bigger crystals, but only slight improvement of X-ray diffraction 

capacity. Therefore, an excessive additive screen was performed. The initial 

crystallization condition Nextal Classic I #26 was mixed in different ratios with 

other Nextal Screens (Cryo´s, PEG´s, Classic II). By this, big crystals could be 

obtained in many cryo compatible conditions from which crystals could be directly 

mounted and flash frozen (Figure 8). Thereby, native diffraction data to 3.1 Å could 
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be measured. Crystals belonged to space group P6122 with unit cell constants of 

a=b= 136.15 Å, c=230.82 Å, α=β= 90°, γ=120° and one molecule per asymmetric 

unit. The overall weak scattering power may be due to a high solvent content of 

almost 68 %, and a Matthews volume of 3.84 Å3/dalton of protein (Matthews, 

1968; Kantadjieff and Rupp, 2003). Almost isomorphous selenomethionine-

containing crystals in space group P6122 (unit cell constants: a=b=135.69 Å, 

c=227.56 Å) could be obtained with the same procedure and exhibited also a 

hexagonal shape with maximum dimensions of 60 µm x 60 µm x 300 µm. 

 

 

 Figure 8: Crystals of apo afHel308 A) First small hexagonal crystals were obtained in 

Nextal Classic Screen I #26 (0.1 M NaCitrate pH 5.6, 1 M (NH4)2PO4). B) Crystal size could 

be increased by variation of pH and addition of glycerol (0.1 M NaCitrate pH 5.4, 1 M 

(NH4)2PO4, 5% glycerol). C) representative crystal of the refinement procedure using 

different ratios of Nextal Classic I #26 and Nextal PEG´s or Nextal Cryo´s, respectively 

(here: 80% Nextal Classic I #26 and 20% Nextal PEG´s #14). 

 

3.1.3 Crystallization of the binary afHel308:DNA complex 

In order to obtain structural information about how afHel308 interacts with DNA, 

and how ATP hydrolysis is coupled to DNA translocation und unwinding, afHel308 

was crystallized with its DNA substrate. The apo afHel308 protein crystallized in 

conditions with high salt concentrations. These conditions are unlikely optimal for 

crystallization of protein:DNA complexes. A high salt concentration may be usefull 

for keeping DNA binding apo proteins in solution, as high ionic strength weakens 

charge-charge interactions between protein molecules. But it would also 

negatively influence charge dependent interactions between protein and nucleic 

acids. Therefore, new crystallization conditions had to be found. Initial screenings 

also included the use of different DNA substrates, like single-stranded DNA as well 

as double-stranded DNA with 3´-tail overhangs of different lengths (Table 8).  
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Table 8: DNA substrate for co-crystallization trials 

# Name Sequence Remarks 

1 25mer ds with 3´ 10mer 

overhang for 

ATCGATAGTCTCTAGACAGCATG

TC 

diffracting binary 

crystals 

 25mer ds with 3´ 10mer 

overhang rev 

CTAGAGACTATCGAT  

2 20mer ds with 3´ T and 5´ A 5mer 

overhang for 

AAAAAATCGATAGTCTCTAGACA

GC 

protein 

aggregation 

 20mer ds with 3´ T and 5´ A 5mer 

overhang rev 

GCTGTCTAGAGACTATCGATTTT

TT 

 

3 Fork 20mer for GCAGTGCTCGCATGGAGCTG no crystals 

 Fork 12mer rev CAGCTCCATGAT  

 Fork 9mer rev GAGCACTGC  

4 15mer ds with 3´ 10mer 

overhang for 

GCAGTGCTCGTTTTT no binary crystals 

 15mer ds with 3´ 10mer 

overhang rev 

CGAGCACTGC  

5 25mer ss ACGCTGCCGAATTCTGGCTTGC

TAG 

non diffracting 

crystals 

All Sequences are given in 5´- 3´ direction. ds = double strand; ss = single strand    

As binding of afHel308 to DNA is not sequence specific, the use of double-

stranded DNA with 3´-tail overhangs and the resulting presence of a double-

strand:single-strand DNA junction was thought to provide an optimal binding 

platform for the enzyme to the DNA. This strategy was also successfully used to 

capture a DNA polymerase:DNA substrate binary complex (Li et al., 1998) as well 

as to crystallize the SF1 helicase UvrD in complex with its DNA substrate (Lee and 

Yang 2006), and is consistent with the finding that most helicases need a single-

stranded nucleic acid region to bind and to initiate their action of strand separation. 

Double-stranded DNA was generated as described in 2.2.1.3. Prior to 

crystallization, protein was mixed with DNA in a 1:1.2 molar ratio and incubated on 

ice for 20 minutes. The behaviour of the protein after DNA addition was monitored 

carefully. Some of the DNA substrates were completely useless, as addition 

resulted in precipitation of the protein, which may be caused by pH changes or 
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DNA dependent aggregation. The protein:DNA crystallization trials were set up by 

mixing 1 µl of protein:DNA mixture with 1 µl of reservoir solution in 96-well sitting 

drop plates (Corning, Schiphol-Rijk, Netherlands). Plates were incubated at 20°C. 

After 2-3 days, hexagonal crystals appeared in a variety of different conditions. 

Condition #A3 of the Hampton Natrix Screen (Figure 9, with DNA substrate #3) 

resulted in small hexagonal crystals. The crystallization condition was further 

refined by variation of MPD and glycerol concentration, and yielded in crystals with 

maximum dimensions of 50 µm x 50 µm x 250 µm (Figure 9). Crystals could be 

directly mounted in nylon loops and flash frozen in liquid nitrogen for data 

collection. Crystals belonged to space group P6122 and exhibited unit cell 

constants of a=b=138.38 Å, c=252.97 Å. Like in the apo protein crystals, one 

molecule per asymmetric unit is found. This results in a Matthews volume of 3.78 

Å3/Dalton (Matthews 1968; Kantardjieff and Rupp 2003), and a high solvent 

content of 67.5 %. 

  

Figure 9: A) Initial crystals of afHel308 in complex with a 15 bp double-stranded DNA with 

an additional 10 base 3´-tail in Hampton Natrix Screen #A3 (0.05 M MES pH 5.6, 20% 

MPD, 0.1 M MgAcetate). Crystals exhibited maximum dimension of around 10 µm x 10 µm 

x 50 µm. B) refined crystal of afHel308:DNA complex in 0.1 M MES pH 6.0, 22% MPD, 0.1 

M MgAcetate, 10% glycerol. 

 

3.1.4 Data collection 

Diffraction data of the selenomethionine-containing crystals were collected at ID29 

(ESRF, Grenoble, France) with an ADSC Q315R CCD detector. Diffraction data of 

native crystals as well as data of the binary DNA:protein crystals were recorded at 

PX beamline (SLS, Villigen,Switzerland) with a mar225 mosaic CCD detector. For 

each data set 90 images (1° oscillation each) were collected.  

For phase determination, a two wavelength anomalous dispersion experiment was 

carried out at the selenium K edge using one selenomethionine containing crystal. 
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The optimal wavelengths were determined experimentally with a fluorescence 

scan prior to data collection. Data for the peak wavelength at 0.9795 Å (12.65766 

kEv, f´ -8.30, f´´ 5.90) and the inflection point at 0.9797 Å (12.65541 kEv, f´-11, f´´ 

3.00) were collected to 3.7 Å, respectively. A remote data set was additionally 

recorded, but was not included for phase determination due to extensive radiation 

damage and decrease in scattering capacity of the crystal to 4.5 Å.  

A native data set was recorded at 1.0 Å to 3.1 Å. Data of the DNA:afHel308 

complex were collected at 0.920 Å to 3.0 Å (Figure 10). Due to the extreme 

radiation sensitivity of the crystals, MOSFLM (Powell 1999) was used to calculate 

an optimal collection strategy prior to data collection to obtain a reasonable 

redundancy and overall completeness with a minimum number of images. 

 

Figure 10: Diffraction image of afHel308 in complex with DNA recorded at PX beamline 

(SLS, Villigen, Switzerland) to 3.0 Å.  

 

3.1.5 Structure determination and refinement of apo afHel308 

All data were processed with XDS and XSCALE (Kabsch 1993). Data were first 

indexed and scaled in P622 as preliminary analysis allowed no adjugdement of a 

present screw axis. After scaling, it was possible to identify a screw axis by looking 

at systematic absences and reflexion conditions, respectively (Figure 11), and to 

limit potential space groups to P6122 and P6522 (International Tables 

Crystallography, Volume A: Space-group symmetry, 2002). As systematic 

absences alone allow no discrimination between these two enantiomorphs, both 

space groups were used for initial phase determination.  
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Figure 11: Image of the peak data set with hklview (CCP4, 1994) on section 0kl (left). A 

zoomed view on the l-axis (h=0, k=0) shows the presence of only every sixth reflection, 

which corresponds to a 61 or 65 screw axis (right).  

 

All 13 selenomethionine sites could be located using SHELXD (Collaborative 

Computational Project 1994). Phases were calculated to 3.7 Å with SHARP 

(Global phasing), followed by solvent improvement with SOLOMON (Collaborative 

Computational Project 1994). An interpretable electron density could be calculated 

with data scaled in P6122 (Figure 12). 

 

 

Figure 12: 1σ contoured multiple anomalous dispersion (MAD) map of afHel308 at 3.7 Å 

resolution (blue mesh) with superimposed selenomethionines (red balls). Note that 

secondary structures are interpretable, but sidechains are difficult to identify.  

 

However, as already mentioned, phases could only be obtained to 3.7 Å. This 

resolution allowed no automated model building with programs like ARP/wARP 
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(Morris et al., 2003) or REFMAC/RESOLVE (Terwilliger 2002), and even manual 

model building was far from easy. However, the presence of 13 selenomethionines 

as sequence markers allowed manual building of 665 out of 691 possible amino 

acids in the asymmetric unit with MAIN (Turck 1992). After bulk solvent correction 

and overall anisotropic B-factor correction, the refined model could be used to 

phase a 3.1 Å native data set by rigid body refinement with CNS (Brunger et al., 

1998). As the protein consists of five more or less individual domains (see below), 

it was helpful to define individual “rigid groups”, with each group containing only 

residues of one of the five domains. The ensuing refinement of the native data set 

included repeated cycles of simulated annealing, positional minimization, and 

restrained individual B-factor refinement with CNS (Brunger et al., 1998), and 

additional manual completion of the model with MAIN (Turck 1992).  

The final model of apo afHel308 contains 672 out of 691 possible amino acids. 

Although the resolution did not allow the detection of water molecules, ten 

inorganic phosphates could be built into the model. Refinement resulted in an R-

factor of 22.9 (Rfree=27.5) with reasonable stereochemistry (Figure 13). In 

Ramachandran plot 82.7% of the residues are in allowed regions. Refinement 

statistics are listed in Table 9 

 

 

MAD 

 

2Fo-Fc 

 

Figure 13: Representative portion of 1σ 

contoured multiple anomalous dispersion 

(MAD) and 2Fo-Fc electron density maps of 

afHel308. 
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3.1.6 Structure determination and refinement of afHel308 in complex 
with a DNA substrate 

The 3.0 Å data from the DNA:afHel308 crystal were indexed and scaled with XDS 

and XSCALE (Kabsch 1993). Data were scaled in P6122. Although the space 

group did not change, the length of the c-axis of the unit cell increased around 20 

Å. The structure of the afHel308:DNA complex was determined by molecular 

replacement with PHASER (Collaborative Computational Project 1994), using the 

whole uncomplexed structure as search molecule. An almost clearly defined 

electron difference density of the bound nucleic acid was obtained from a single 

MR solution. As most of the DNA is in direct contact with the protein or involved in 

crystal lattice formation and thus stabilized, the complete DNA could be modelled 

into the electron density. Only the three terminal base pairs at the duplex end are 

not visible in the electron density. They are not stabilized by protein or crystal 

lattice contacts and may exhibit an increased flexibility. Refinement at 3.0 Å 

followed the procedure described above and included iterative rounds of manual 

model completion with MAIN (Turck 1992), and refinement with CNS (Brunger et 

al., 1998). The definition of individual “rigid groups”, as in the case of the apo 

enzyme, helped fitting the model into the electron density. The refinement resulted 

in an R-factor of 23.1 (Rfree 27.4) and good stereochemistry (Table 9). The 

Ramachandran plot shows 85.7% of the residues in allowed regions The final 

model comprises 682 out of 691 possible amino acids and one 15 base pair 

duplex with an additional 10mer 3´-tail overhang. 
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Table 9: Data collection and refinement statistics 

Data collection     

 apo afHel3081   DNA:afHel308a2 

Data set SeMet K Peak SeMet K Inf Native DNA complex 

x-ray source ID29 (ESRF) ID29 (ESRF) PX (SLS) PX (SLS) 

Wavelength 

(Å) 

0.9797 0.9795 1:00 0.920 

Data range (Å) 20-3.7 20-3.7 20-3.1 20-3.0 

Observations 

(unique) 

78956 

(24771d) 

97600 

(14094) 

102897 (22283) 315440 (54172) 

I/σI  (last shell) 10.37 (3.53) 15.19 (6.20) 15.57 (1.96) 16.93 (8.97) 

Completeness 

%/(last shell) 

98.7 (94.8) 99.0 (99.9) 94.0 (46.5) 99.9 (100) 

Rsymm
a  11.4 (44.0) 11.1 (39.1) 7.2 (49.7) 9.0 (19.4) 

Refinement     

 apo afHel308   DNA:afHel308a 

Data set Native   DNA complex 

Data range (Å) 20-3.1   20-3.0 

Reflections 

F/σF>2.0 

(cross 

validation) 

21877 (1062)   28659 (2883) 

Rwork
b (Rfree

c) 22.9 (27.5)   23.1 (27.4) 

RMS bond 

length (Å) 

(angles) 

0.007 (1.62)   0.008 (1.25) 

 

1 apo afHel308 (P6122), cell constants (Å): a=b=136.15, c=230.82 
2 afHel308:DNA complex (P6122) cell constants (Å): a=b=138.38, c=252.97 

a to d: see Part I, Table 9. 

Model contents: apo Hel308: 1 Hel308 (1-17, 24-331, 335-350, 356-686), 10 inorganic 

phosphates; DNA:Hel308: 1 Hel308 (1-21, 25-686), 1 Hel308 (1-21, 25-686). 
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3.2 Structure of archaeal afHel308 

The archaeal helicase afHel308 consists of five structural domains (domain 1 to 

domain 5) that are arranged to form a rectangular molecule of approximately 70 Å 

x 55 Å x 65 Å (Figure 14A). Domain 1 and domain 2 exhibit a characteristic RecA-

type α/β fold (Figure 14B). Both domains comprise the seven conserved helicase 

motifs in their interface cleft, which are implicated in ATP-Hydrolysis (I, II, III, IV, 

VI) and/or DNA binding (Ia, Ib, IV, V, VI) (Gorbalenya and Koonin, 1993, Velankar 

et al., 1999). Both, the RecA-fold domains and the conserved motifs are lined in an 

arrangement similar to that observed in other members of the SF2 of helicases like 

RecQ (Bernstein et al., 2003) and Hepatitis C virus NS3 (Kim et al., 1998), which 

implicate a related ATP-hydrolyis mechanism (Caruthers and McKay 2002).  

 

 

Figure 14: A) Ribbon presentation of the crystal structure of afHel308 in the absence of 

DNA. afHel308 consists of two RecA-fold domains (1, yellow, and 2, green) that harbor the 

ATPase active site in the interface, a winged-helix domain (3, orange), a ratchet domain (4, 

deep red) and a helix-loop-helilx domain (5, red). B) Topology diagram of afHel308 with 

secondary structure annotation and depicted conserved helicase motifs.C) Scheme of the 

five domains of afHel308. Domain boundaries are indicated on top, sequence motifs 

beneath the scheme. Roman numbers: SF2 helicase motifs; β-hairpin loop; R: ratchet helix; 

RAR: the Arg-Ala-Arg motif.  

 

Domain 3 possesses a winged-helix (WH) motif. It is connected via a long flexible 

linker to domain 2, which allows tight packing against domain 1. The WH fold of 

afHel308 comprises five α-helices and two β-strands in the canonical order α17-
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α18-α19-α20-βx16-β17-α21 (Figure 14B). Residues in α17-α18-α20 thereby form 

the tightly packed hydrophobic core of the winged-helix domain. WH domains 

have been found to act as DNA binding motifs in many proteins (Gajiwala and 

Burley 2000), and are frequently found in general transcription factors like 

TFE/TFIIEα (Brennan 1993; Meinhart et al., 2003) and TFIIF (Groft et al., 1998; 

Kamada et al., 2001). Interestingly, a WH domain is also found in the SF2 helicase 

RecQ (Bernstein et al., 1998). Most DNA binding WH domains interact with DNA 

via the “recognition” helix and via wing 1, and generally show a continous 

positively charged surface on the DNA binding site (Gajiwala and Burley 2000). In 

aHEl308, both “recognition” helix and wing 1 are exposed on the surface. In 

contrast to other known WH domains, the side of the afHel308 domain that 

corresponds to the DNA binding face of typical WH domains shows a dominant 

distribution of negatively charged amino acids. This makes it unlikely that the 

afHel308 WH domain binds nucleic acids like other typical DNA binding winged-

helix proteins (Figure 15). A comparable distribution of negatively charged amino 

acids along the WH domain is also found in archaeal TFE, consistent with the 

finding that archaeal TFE does not bind DNA in vitro (Meinhart et al., 2003). Due 

to the location of domain 3, and the amount of surface exposed hydrophobic 

amino acids, a more relevant function in protein-protein interaction may be 

possible.  

 

afHel308 WH  RecQ WH  E2F-4 WH  TFE/TFIIEα 
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Figure 15: Comparison of winged-helix domains. At the top, a ribbon representation is 

shown. At the bottom, the molecular surface potential is shown (blue: +10kT/e-, red: -10kT/e-

). E2F-4 is shown with bound DNA (yellow sticks). From left to right: afHel308 (this study), 

RecQ WH domain (PDB code 1OYW (Bernstein et al., 2003), E2F-4 (PDB code 1CF7 

(Zheng et al., 1999), TFE/TFIIEα (PDB code 1Q1H (Meinhart et al., 2003).  

 

Domain 4 consists of a seven-helix bundle. A DALI search with the whole domain 

4 and individual parts of domain 4 revealed no significant structural neighbors. 

Domain 4 is packed between domain 2 and domain 3 mainly via polar contacts 

and hydrophobic interactions. Together with domain 1, the three domains form a 

ring like structure, which gives the molecule its peculiar shape (Figure 15A). 

Because of the polar nature of contacts between domain 2 and domain 4 the 

interaction may be only transient. However, data from limited proteolysis 

experiments performed with three different proteases show similar digestion 

patterns of DNA-free and DNA-bound afHel308, indicating a comparable 

conformation in solution (see below). Domain 5 of afHel308 possesses a helix-

loop-helix (HLH) motif and is situated at the periphery of the ring (Figure 14A). The 

HLH motif is a DNA binding domain, which is frequently found in DNA interacting 

proteins. It is also found in the archaeal XPF/Rad1 homolog Hef in which the HLH 

motif has been shown to be important for specific recognition of branched DNA 

structures (Nishino et al., 2005; Nishino et al., 2005). An additional DALI search 

revealed relevant structural similiarity to the thumb domain of eukaryotic 

polymerases of the Y-family like Pol κ (Uljon et al., 2004), Pol ι (Nair et al., 2006) 

and Rev1 (Nair et al., 2005), and to the thumb domain of archaeal error-prone 

DNA polymerases of the DinB family (Silvian et al., 2001) (Figure 16).  

 

Figure 16: Stereo view of the superposition of “thumb” domain 5 (red, this study) of 

afHel308 with equivalent regions of Pol ι (lightgreen, PDB code 2ALZ, (Nair et al., 2006)), 

Rev1 (wheat, PDB code 2AQ4, (Nair et al., 2005)) and archaeal DinB (grey, PDB code 

1K1Q, (Silvian et al., 2001) 
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These polymerases are involved in translesion DNA synthesis (TLS) and are 

thought to act transiently at stalled replication forks (Friedberg and Gerlach 1999). 

The thumb domain is hereby involved in DNA binding and contributes to 

processivity (Zhou et al., 2001). Although the sequence of the thumb domain 

between these different polymerases is conserved to a certain degree, there is no 

significant sequence conservation to the afHel308 thumb domain (Silvian et al., 

2001). However, the thumb domain seems to be conserved between afHel308 and 

Drosophila melanogaster Mus308 and human PolΘ (Figure 6) and may therefore 

be a unique feature of these helicases/polymerases.  

3.3 Structure of the archaeal afHel308:DNA complex 

3.3.1 Overall architecture  

The overall structure of afHel308 in complex with DNA as well as the orientation of 

the five domains is very similar to that described for the DNA unbound afHel308 

structure (Figure 17A). The exceptions are some slight movements of domain 5 

and the ordering of some DNA and ATP binding motifs in the presence of DNA 

(Figure 17B). The single-stranded portion of the DNA substrate is threaded into 

the ring, which is formed by domains 1, 2, 3 and 4, whereas domain 5 binds the 

remote end of the 3´-tail. The single strand:double strand junction as well as some 

regions of the DNA duplex interact mainly with domain 2, whereas some contacts 

are contributed by domain 4. The surface of domain 2 contains a prominent β-

hairpin loop that separates the strands of the substrate duplex. Remarkably, this β-

hairpin loop already promoted melting of two base pairs in the absence of ATP. All 

five domains bind to the DNA substrate at various positions, whereby most of the 

nucleotides become visible in the electron density (Figure 17C). Additional 

contacts between the DNA duplex and a symmetry related molecule stabilize the 

double-stranded portion of the nucleic acid substrate (Figure 17D). 
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Figure 17: Ribbon model afHel308a in complex with the 15mer DNA duplex containing a 

10mer single-strand 3’ tail. Domains are colored according to Figure 15 and indicated. DNA 

is shown as brown stick model. Locations of sequence motifs are indicated. B) Comparison 

of apo and DNA bound afHel308. Overlay of apo (yellow) and DNA bound (green, with 

brown DNA) afHel308a, shown as ribbon models. R.m.s.d values between both structures 

were 0.88 Å for 684 Cα atoms. Domain numbers are indicated. DNA binding results in slight 

structural changes, including ordering of residues 331-335 (A: motif IVb), ordering of 

residues 350-356 (B: β-hairpin loop) and slight movement of domain 5. C) Composite 

simulated annealed omit electron density (0.8σ contour) shows how strands of the DNA 

duplex (green) are separated by afHel308 (blue). The final model is superimposed as color 

codes sticks. D) Two asymmetric units of afHel308:DNA complex. The double-stranded 

region of the DNA substrate interacts additionally with a symmetry related molecule. 

Interactions between DNA duplex of one afHel308 (left side) and a symmetry related Hel308 

molecule are promoted mainly by Lys277 of domain 2 (green) and Arg672 of domain 5 (red) 

to the phosphate backbone of the product strand of the DNA duplex. 

 

 

3.3.2 Interactions between afHel308 and its DNA substrate 

All five domains of afHel308 bind to the DNA substrate at various positions (Figure 

18A). The contacts with the substrate duplex and the single strand:double strand 
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junction are thereby predominantely mediated by interactions between domain 2 

and the phosphate backbone. Additional contacts to the double-stranded region 

are contributed by domain 4. An important feature of domain 2 is the so called β-

hairpin loop, which is located between motif V and VI of afHel308. Residues of this 

β-hairpin loop (R350, F351, Y354 and R357) intercalate between the last paired 

bases (-1) and the first unpaired bases (+1) on both strands of the duplex (Figure 

18B). These interactions result in loss of base stacking and force separation of the 

two DNA strands in opposite directions, which prevents reannealing of the duplex. 

Two other residues of the β-hairpin loop, D352 and G353 bind the base at position 

+1 or facilitate formation of the hairpin turn, respectively. The structural results 

already argue that the energy required for duplex separation is provided by the 

free energy released by binding of the nucleic acid substrate to the enzyme and 

not by binding of ATP. This is consistent with thermodynamic data on the HCV 

NS3 helicase (Levin et al., 2005). ATP independent strand separation of several 

base pairs has also been observed for RecBCD, albeit at a structurally distinct 

region, and could be a more widespread feature of helicases (Singleton et al., 

2004).  
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Figure 18: A) Scheme showing key interactions of afHel308 with the partially unwound DNA 

substrate. Residues are colored according to domain affiliation (magenta: β-hairpin motif). 

Interactions are shown by dashed lines. Key stacking interactions of side chains with bases 

are shown by stripes. B) The β-hairpin motif (magenta stick model with blue nitrogens and 

red oxygens) stabilizes the unwound duplex. DNA strands (brown stick model) are 

separated by disruption of base stacking in both strands. Key residues and interactions are 

annotated and highlighted. C) 3’ tail binding by the translocation module. Domain 4 (dark 

red) stacks with bases at position +3 (R592) and +5 (R599). Two residues of the β-hairpin 

motif (magenta) and motif IV (green) are indicated. D) The helix-loop-helix domain 5 binds 

the backbone of the base positions +10, +11, +12 by a cluster of positively charged 

residues, including the Hel308/PolΘ/Mus308 conserved RAR motif.  

 

The backbone of the unwound 3’-tail is bound at motifs IV (+1), IVa and IVb (+2) 

on domain 2 and motifs Ia (+4) and Ib (+5) on domain 1 (Figure 18C), consistent 

with an inchworm like transport of DNA by ATP-dependent conformational 

changes between domains 1 and 2. In this model, both domain 1 and domain 2 

would function in the role of two independently acting nucleic acid binding regions, 

allowing translocation on DNA like an inchworm (Figure 3A). The binding of the 

single-stranded tail to the mentioned motifs is additionally stabilized by opposing 

base interactions with domain 4. The position of domain 4 and the obvious 

interactions with the single-stranded region indicate an involvement in the 

directional transport of the product tail across domains 1 and 2 (Figure 18C). A 

central helix in domain 4 possesses two residues, R592 and W599, which stack 

with base moieties at positions +3 (R592) and +5 (W599), opposing to motifs Ia 

and Ib on domain 1. The N-terminal end of this helix additionally interacts with 

motif IVa on domain 2. Thus, the central helix of domain 4 provides an ideal 

ratchet, which position is structurally linked to ATP dependent conformational 

changes in domain 2, and may directly influence the geometry of the single strand 
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binding between domains 1 and 4. In addition, the base stacking interactions could 

prevent backslipping of the enzyme on the DNA substrate. After emerging from the 

tunnel formed by domains 1, 3 and 4, the 3’-tail bends around domain 4 (bases +6 

to +9) with apparently nonspecific contacts, and binds to the HLH domain 5 via the 

phosphate-sugar backbone of base positions +10, +11 and +12 (Figure 18D). A 

RAR (Arg-Ala-Arg) motif in domain 5 is conserved among several related 

helicases (POLΘ, Mus308, hHEL308), implicating that similar types of interactions 

are relevant for the functions of the eukaryotic enzymes (Figure 6). Altogether, the 

encircling of DNA between domain 1, 3 and 4 is likely important for translocation 

processivity, because the non-translocating DEAD box SF2 lack equivalents of 

domains 3 and 4 helicases (Andersen et al., 2006; Bono et al., 2006; Sengoku et 

al., 2006). Consistent with the presented structural data, removal of domains 3 to 5 

results in uncoupling of ATPase and helicase activities (see below). 

3.3.3 Truncation of the C-terminal part results in loss of DNA 
unwinding activity but does not affect DNA dependent ATPase 
activity  

To investigate a possible role of the C-terminal domains in coupling ATP 

hydrolysis to translocation and in substrate recognition, wild-type and mutant 

afHel308 were tested for ATPase and helicase activity.  

ATPase activity of afHel308 is greatly stimulated by single-stranded (ss) DNA and 

to a much lesser extent by double-stranded (ds) DNA. All branched DNA 

substrates tested stimulate ATPase activity of wild-type afHel308 to a similar 

extent (Figure 19A). No significant activity is observed without DNA. This is 

consistent with observations made for pfuHel308 and mthHel308, hHel308 and 

also RecQ, assuming that ATP hydrolysis is in general stimulated by ssDNA and 

ss:ds transition occurring in branched DNA substrates (Bernstein et al., 2003; 

Hishida et al., 2004; Fujikane et al., 2005; Guy and Bolt 2005). The ATPase 

activity of purified afHel308 Walker B variant E146Q is reduced to below 5 % of 

wild-type activity under the given conditions (Figure 19B,C,D). The truncated 

protein Δ626 exhibits ATPase activity comparable to the wild-type protein on all 

tested branched DNA substrates. In contrast, the truncated construct Δ400 is 

significantly more stimulated by the branched substrates (Figure 19C,D). On the 

other side, the stimulation of ATPase activity by ssDNA alone is reduced to around 
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40% of wild-type activity in the Δ626 mutant (Figure 20B), while the activity of 

truncated Δ400 is affected even worse. The reduction of activity in the truncated 

Δ400 and Δ626 proteins in the presence of ssDNA compared to the wild-type can 

be explained by the lack of additional ssDNA binding regions. This finding is 

consistent with the structural data, in which the C-terminal domains are mainly 

involved in the binding of the ssDNA portion, while the ds region is bound 

predominantely by domain 2 (Figure 18A). 

  

 

Figure 19: ATPase activity of wild-type and mutant 

afHel308. A) wild-type afHel308 ATPase activity was 

significantely stimulated by ssDNA compared to 

branched DNA substrates B) ssDNA (ssT) C) Lagging 

strand only fork (FD), E) holliday junction (HJ). The 

denotation of the DNA substrates and DNA sequences 

are given in Table 3 and Table 7, respectively. -: no 

DNA. 

 

Helicase activity of afHel308 wild-type and mutant proteins was analyzed using a 

synthetic Holliday junction (Figure 20). As expected, the E146Q mutant exhibits no 

helicase activity, consisting with ATP-binding and -hydrolysis dependent 

unwinding activity. The Δ626 protein possesses helicase activity, although the 

activity is reduced compared to wild-type activity. HLH domains are generally 

implicated in the binding of dsDNA and in the recognition of branched molecules 

(Nishino et al., 2005). Thus, deletion might influence specificity to as well as 

unwinding processivity of specific branched DNA substrates. As shown, the Δ400 

protein exhibits no helicase activity (Figure 20). The truncated protein is still able 

to interact with DNA, which stimulates ATPase activity. Because of the lacking 

domains (especially domain 4), which are implicated in coupling the ATP 

hydrolysis to translocation and thereby promoting strand separation, no unwinding 

is observed. The ATPase activity of Δ400 is therefore uncoupled from possibly 

occurring unwinding reactions, which could result in enhanced ATPase activity. 
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Figure 20: Comparison of unwinding activities of holliday 

junction between wild-type and mutant enzymes. 

3.3.4 Limited proteolysis experiments reveal only small 
conformational changes during ATP- and DNA-binding 

DNA unwinding and translocation activity of helicases require binding of ATP, 

which is accompanied by a closure of domains 1 and 2. This closure implies 

rotation of one domain towards the other, and a conformational change that in 

addition drives translocation. Based on the presented crystal structure of afHel308, 

the rotation of domain 2 towards domain 1 upon ATP binding would lead to only 

minor conformational changes in the protein on the whole. In order to support this 

idea without the presence of an ATP-bound structure, limited proteolysis 

experiments of afHel308 were performed in the presence and absence of the non-

hydrolyzable ATP-analogue AMP-PNP and the DNA used for crystallization. 

Proteolysis was carried out with different amounts of three different proteases as 

described in 2.2.3. As seen in Figure 21, no significant changes in the proteolysis 

pattern could be observed in the presence of DNA as a function of AMP-PNP. 

However, small changes in the relative strength of single bands in the pattern of 

the proteinase K digestion could be observed in the presence of DNA (Figure 

21A). Here, the binding of DNA may lead to protection, ordering or 

rearrangements of protein loops. These slight alterations in the relative strength of 

bands can also be observed in the presence of AMP-PNP. All in all, these results 

support at model in which only slight conformational and structural changes occur 

between domains 1 and 2 upon ATP-binding.  
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Figure 21: Limited Proteolysis Experiments 

with A) proteinase K, B) trypsin and C) 

chymotrypsin. afHel308 was digested in the 

presence and absence of the non-

hydrolyzable ATP-Analogue AMP-PNP and 

DNA (15mer double-strand with 10mer 3´-

overhang). 

At the same time, it supports the similarity of apo and DNA-bound structure. Any 

flexibility in the C-terminal domain in solution would be altered upon DNA binding, 

as seen in the crystal structure. This would result in dramatic changes in the 

digestion pattern as more amino acids are accessible to the proteases. As this is 

not the case, the apo crystal structure seems to exhibit a conformation also 

adapted in solution in the absence of DNA. 
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4 Discussion 

4.1 The crystal structure of archaeal afHel308 gives insights into 
the unwinding mechanism of SF2 helicases 

The crystal structure of oligonucleotide bound archaeal afHel308 is the first crystal 

structure of a SF2 helicase in complex with a duplex DNA containing an additional 

single-stranded 3´-overhang. It reveals distinct interactions between the enzyme 

and the nucleic acid, which are contributed by the conserved helicase motifs found 

also in other helicases of the SF2 family. Thus, the structure provides a model for 

DNA duplex separation, which is applicable to a broader range of SF2 helicases, 

like the related Mus308 and Ski2 family. In addition, the structural data reveal how 

afHel308 specifically might interact with the lagging strand on a stalled replication 

fork. 

4.1.1 Comparison of afHel308 with ATP-bound structures of SF2 
helicases implicates translocation of the DNA substrate by 
ATP-dependent closure of the two RecA domains 

afHel308 was crystallized in the absence of a bound nucleotide in both DNA 

bound and apo protein. Although melting of two base pairs without binding of ATP 

was observed, processive unwinding by 3´  5´ translocation requires ATP binding 

and hydrolysis. According to an inchworm like base pair separation mechanism, 

the binding of ATP is believed to induce a closure of the two RecA-like domains, 

resulting in conformational changes in the nucleic acid binding domains and base 

separation at the ss:ds junction (Figure 3A). ATP hydrolysis and release of the 

products drive the enzyme back into the previous conformation, a process which is 

also associated with changes in the affinity to the nucleic acid substrate and 

translocation.  

The ATP bound form of a helicase is generally designated as “closed” form. Thus, 

our DNA bound structure should reflect the ATP-free state during processive 

translocation, which can be regarded as “open” conformation. As no ATP-bound 

structure of archaeal Hel308 is available, afHel308 was compared with HCV NS3 

helicase (Kim et al., 1998) and other recently determined ATP-bound structures of 

SF2 DEAD box RNA helicases (Andersen et al., 2006; Bono et al., 2006; Sengoku 
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et al., 2006) to learn more about ATP-dependent translocation. In the structure 

presented in this work, the 3´-tail of the nucleic acid is embedded between domain 

1 and domain 2 on one side, and domain 4 on the other side. The phosphates of 

the backbone bound at motif Ia (position +4) on domain 1 and motif IV on domain 

2 (position +1) are separated by two intermediary bases (Figure 22). This two-

base-separation is also observed in the ATP-free structure of NS3 helicase bound 

to a RNA single-strand (Kim et al., 1998).  

 

 

Figure 22: Comparison of afHel308 with the ATP bound structure of the DEAD box RNA 

helicase VASA. Superposition of domains 1 (afHel308: yellow with orange motif 1a helix; 

VASA: grey with magenta 1a helix) shows that domains 2 (afHel308: green with dark green 

motif IV helix; NS3: grey with magenta motif IV helix) rotate app. 20° (arrows) between apo 

and ATP bound SF2 enzymes. A candidate for this ATP induced structural change is an 

invariant arginine in motif VI (shown as green (afHel308) and magenta (VASA) sticks) that 

binds to the γ-phosphate of ATP (γ) in VASA and is located close to the expected ATP 

binding site in afHel308. In the afHel308 structure, motif IV binds phosphate position +1, 

while motif Ia binds phosphate position +4. In the ATP bound structure of VASA, motifs IV 

and Ia bind phosphates at corresponding position +1 and +3, respectively. This difference 

argues that ATP induced conformational change slips the 3’ tail across motif Ia and in 

conjunction with ATP hydrolysis translocates the enzymes by one base. 

The comparison between the described ATP-free structure with three independent 

structures of SF2 DEAD box enzymes in complex with ATP analogs and single-

strand nucleic acids reveals that domain 2 is shifted appr. 20° towards domain 1 

(Figure 22). This movement implicates an ATP-binding induced closure of 

domains 1 and 2. A closer look at the interactions with the nucleic acid further 

reveals, that the phosphates bound at motifs Ia and IV are now separated by only 
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one intermediary base (Andersen et al., 2006; Bono et al., 2006; Sengoku et al., 

2006).  

Because of the similarity of the three dimensional fold of the compared structures 

in either ATP-free or ATP-bound state, and due to the conservation of the helicase 

motifs in SF2 members, it is expected that the observed movement of domain 2 

and the pairwise match of phosphate distances is not coincidental. Thus, the 

difference of one base between ATP-bound and ATP-free states could be due to 

an ATP-binding induced conformational change that causes slippage of a single 

nucleotide across domain 1. As seen in the AMP-PNP bound structure of VASA, 

an invariant arginine in motif VI is involved in the binding of the γ-phosphate of the 

nucleotide (Sengoku et al., 2006). Interestingly, mutation of the equivalent arginine 

in eIF4A and NS3 helicase strongly decreases ATPase activity (Pause and 

Sonenberg 1992; Sampath et al., 2006). This arginine is supposed to contribute to 

ATP hydrolysis in a manner similar to that of the “arginine finger” of several 

GTPase activation proteins (Rittinger et al., 1997; Scheffzek et al., 1997) by 

stabilizing the transition state of the reaction and by triggering conformational 

changes after NTP hydrolysis. In the structure of afHel308, this arginine (R369) is 

located close to the expected ATP binding site in domain 2. Thus, the ATP driven 

conformational closure of domains 1 and 2 could be triggered by binding of the 

conserved arginine to the γ-phosphate of ATP (Figure 22). Based on the crystal 

structure of apo and DNA bound afHel308, the closing of domain 1 and 2 upon 

ATP binding should result in only small conformational changes. This is supported 

by the proteolysis experiments in the presence and absence of the non-

hydrolyzable ATP-analogue AMP-PNP and DNA (Figure 22). 

4.1.2 The suggested interplay between domain 1 and domain 2 and 
the C-terminal part upon binding and hydrolysis of ATP is 
consistent with the Brownian ratchet model proposed for HCV 
NS3 helicase 

How does an ATP-induced conformational change lead to directed nucleic acid 

translocation and processive unwinding? Based on the described structural data a 

simple model for unwinding by SF2 helicase afHel308 can be predicted, which is 

applicable to other SF2 enzymes as well. As shown in Figure 23, DNA 

translocation is initiated when the protein binds to ssDNA via interactions in both 
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domain 1 and 2. ATP binding at the interface cleft of domain 1 and domain 2 may 

result in a structural change and closing of the cleft. Domain 2 thereby pushes the 

DNA via motif IV towards domain 1. This movement is promoted by a push of 

domain 2 via direct contacts with the ratchet helix. Since the ratchet helix in 

domain 4 base stacks with bases of the 3’-tail strand (+3 and +5), the combined 

movement of domains 2 and 4 may loosen the nucleic acid binding at domains 1, 

likely facilitating slippage of the 3’ tail backbone across motif Ia. The modulation of 

stacking interactions between the ratchet helix and the nucleic acid upon changes 

in the nucleotide ligation state is consistent with biophysical data showing that 

single-strand binding of the related HCV NS3 helicase is weakend upon ATP 

binding (Levin et al., 2003). ATP hydrolysis and product release reset the 

orientation of domain 2, thereby enabling the corresponding β-hairpin loop to melt 

another base pair of the duplex. In the ATP-free state domain 1 and domain 4 can 

form new tight interactions with the 3´-tail. 

Figure 23: Schematic two step model for processive unwinding by Hel308a. Left and right 

are simplified schemes of the crystallographically observed conformations of Hel308. The 

middle scheme is modeled analog to ATP-bound SF2 enzymes (see Fig. 3a). Domains 3 

and 5 are omitted for simplicity. Motifs Ia (yellow), IV (green), β-hairpin (magenta triangle) 

and the ratchet helix (red) are highlighted.  

Since domain 2 is capable to melt at least two base pairs without ATP binding or 

hydrolysis, an additional ATP binding/hydrolysis cycle may in principle lead to 

rebinding of domain 2 farther upstream and therefore to larger step sizes. This 

idea may explain why 2-3 base step sizes are observed in single molecule 

experiments to probe helicase activity of NS3 helicase (Levin et al., 2005). 

However, these structural observations are also in excellent agreement with 

thermodynamic data on HCV NS3, which suggest the transport of nucleic acids via 

a Brownian ratchet (Kim et al., 1998; Levin et al., 2005). HCV NS3 helicase also 

contains two conserved residues, V432 and W501, which are base stacking with 

the last and intermediary base of the bound DNA oligonucleotide. These residues 
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are also proposed to function as a ratchet and to modulate translocation upon ATP 

binding induced closure of domains 1 and 2, whereby W501 exhibit additional 

function in substrate specificity (Kim et al., 2003).  

The model predicts that removal of domains 3 to 5 might still allow DNA 

dependent stimulation of ATP-hydrolysis (via interactions with motifs on domain 1 

and 2), but should lead to a loss of processive 3’  5’ translocation and therefore 

processive unwinding. Consistently, truncated afHel308 Δ400 (deletion of domains 

3 to 5) still possesses DNA stimulated ATPase activity, but lacks helicase activity 

(see 3.3.3).  

4.1.3 The β-hairpin loop is a widespread feature among SF2 

helicases and implicates a conserved unwinding mechanism 

The DNA bound structure of afHel308 suggests that separation of the DNA duplex 

is promoted by the prominent β-hairpin loop between motifs V and VI, which was 

not ordered in the crystal structure of apo afHel308 (Figure 19B) Two aromatic 

residues, F351 and Y354, of this β-hairpin loop wedge between the first base pairs 

at the ss-ds junction and promote melting of two base pairs in the absence of ATP 

(Figure 18C). The position and the obvious interaction with the unwound DNA 

strand thereby implicate a direct role in DNA unwinding. As this newly identified β-

hairpin loop would be an elegant tool for the enzyme to destabilize the duplex DNA 

by stabilizing the nascent single strand during processive translocation, it could be 

a more widespread feature among SF2 helicases. A comparison of the primary 

sequences of archaeal afHel308 and other relevant SF2 helicases with focus on 

the presence of similar insertions between motifs V and VI is shown in Table 10. 

DEAD box helicases like VASA, SWI2/SNF2 enyzmes and RecG evidently lack 

such a β-hairpin loop. This is not only seen in the three dimensional structures of 

these enzymes, which do not reveal such insertion at this position (Singleton et al., 

2001; Caruthers and McKay 2002; Durr et al., 2005), but is also consistent with the 

idea that latter enzymes either locally bend RNA duplexes, or translocate on DNA 

duplexes without strand separation. RecQ helicases also do not possess an 

equivalent β-hairpin loop and since no DNA-bound structure available, the 

unwinding mechanism of the SF2 RecQ like helicases remains unclear. 
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Table 10: Comparison of the sequence between motif V and Vi in a subset of SF2 

helicases 

 Motif V  β-hairpin motif  Motif VI 

afHel308 GVNLPARRV 6 RFDGYSKE 7 QMAGRAGRR 

yMtr4 GLNMPAKTV 6 KWDGQQFR 8 QMSGRAGRR 

ySki2 GLNLPTRTVI 5 KHDGNGLR 8 QMAGRAGRR 

HCV NS3 GFTGDFDSVI 3 TXVTQTVDFSLDPTFTIETTTLP 7 QRRGRTGRG 

yeIF4A GIDVQQVSLVI 5  6 HRIGRGGRFG 

dmVASA GLDIKNIKHVI 5  7 HRIGRTGRVGN 

EcRecG ELHLLVATTVI 12  14 QLRGRVGRG 

SsoRad54 GINLTSANRVI 6-  6 QATDRVYR 

 

As mentioned previously, afHel308 shares sequence similarity not only with the 

Mus308 family of helicases, but also with the RNA decay factors Ski2p and Mtr4p 

(Koonin et al., 2001; Houseley et al., 2006). Comparison of the region between 

motifs V and VI revealed that members of the Ski2 helicase family could possess 

an equivalent β-hairpin loop (Figure 6 and Table 10). This conservation argues 

that this peculiar appendix could separate RNA secondary structures or 

RNA:protein complexes in RNA decay processes in a way similar to that observed 

for archaeal afHel308. In addition, the HCV NS3 helicase and its homolog from 

yellow fever virus contains an equivalent β-hairpin loop between motifs V and VI 

(Kim et al., 1998; Wu et al., 2005) (Table 10 and Figure 24B).  

Although HCV NS3 is one of the most intensely studied SF2 helicases, the 

mechanism of strand separation by NS3 is still unresolved. As no structure of NS3 

bound to a ss:ds junction DNA is available, it is still not fully clear which motifs are 

involved in the separation of the two strands of the duplex. However, mutations in 

the NS3 β-hairpin loop (also denoted “Phe-loop”) either deprive NS3 from all 

activities or specifically abolish duplex unwinding but not nucleic acid stimulated 

ATPase activity (Lam et al., 2003). Furthermore, recent biochemical data showed 

that HCV NS3 also melts several base pairs of the duplex in the absence of ATP 

(Levin et al., 2005). Thus, the evident structural and biochemical similarity of NS3 

and afHel308 suggest that the β-hairpin is the sought after strand separation 

element of NS3. The data presented here now suggest that the afHel308 derived 
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mechanism for duplex destabilization is applicable to a broader range of SF2 

helicases.  

4.1.4 The proposed unwinding mechanism of archaeal afHel308 
differs from unwinding by SF1 helicases and RecG 

Interestingly, the presence of a “separation pin”, albeit at different positions, is also 

seen in SF1 helicases like PcrA, UvrD and the RecBCD helicase (Velankar et al., 

1999; Singleton et al., 2004; Lee and Yang 2006). The function of this “separation 

pin” is to some extent comparable to the function of the “wedge” domain found in 

RecG (Singleton et al., 2001). However, the unwinding mechanism in these 

enzymes is different from the one proposed for archaeal afHel308.  

As shown in Figure 24D, in the structure of the UvrD:DNA complex, the product 3´-

tail and the substrate duplex region are bound at a right angle (Lee and Yang 

2006). As proposed for the wrench-and-inchworm model for UvrD (Lee and Yang 

2006) (Figure 3), ATP binding induces closure of the cleft between domains 1A 

and 2A and a conformational change in domains 1B and 2B, which is associated 

with an alteration in the relative DNA binding affinities. Rotation of the bound DNA 

helix is promoted by domains 1B and 2B and results in unwinding of one base pair 

at the ss:ds junction, forced by the presence of a separation pin after motif VI. This 

β-hairpin buttresses the end of the DNA duplex, thereby preventing reannealing. 

ATP hydrolysis results in resetting of the domains and unidirectional translocation 

along DNA. By this, the 3´-tail bound to UvrD appears to be peeled off the duplex 

(Velankar et al., 1999; Lee and Yang 2006; Xie 2006).  

Compared to other SF1 and SF2 helicases, the fork reversal enzyme RecG 

exhibits a unique domain orientation. Additional to the two RecA-like folds it 

possesses a large N-terminal domain (Figure 24C). This domain is denoted as 

“wedge” domain, and participates in the separation of the nascent DNA strands on 

both lagging and leading strand template at a stalled replication fork (Singleton et 

al., 2001). The ATPase acitivity of RecG has been shown to depend mainly on 

dsDNA, promoting the idea that RecG is a ds translocase (Whitby and Lloyd 

1998). Upon ATP binding and hydrolysis, the two RecA-like domains 1 and 2 are 

closing and opening, thereby changing their affinity to dsDNA. This allows 

translocation of the enzyme on the template duplex. The N-terminal wedge domain 

functions as steric hindrance on which the duplex strands on both leading and 
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lagging strand are separated. The unwound complementary nascent DNA strands 

subsequently anneal because of their proximity to each other, and form the 

“chicken foot” structure, which is a characteristic feature of fork reversal (Singleton 

et al., 2001).  

 

  

 

  

 

Figure 24: Comparison of SF2 helicase A) afHel308 (in complex with an unwound tailed 

duplex) to the SF2 helicase B) NS3 of the hepatitis C virus (Kim et al., 1998) (in complex 

with a single strand) and C) RecG (Singleton et al., 2001) (in complex with a three-way 

junction) and to the SF1 helicases D) UvrD (Lee and Yang 2006) (in complex with a tailed 

duplex). afHel308 and NS3 share related domains 3 (orange) and 4 (dark red) as well as a 

β-hairpin motif between motifs V and IV. In contrast, the double strand translocase RecG 

exhibit an N-terminal “wedge” domain, which functions in the unwinding of the leading and 

lagging strand duplex at stalled replication forks. The SF1 helicases UvrD possesses a 

different domain structure with 1B and 2B insertions, and lack the β-hairpin motif between 

motif V and VI (Singleton et al., 2004; Lee and Yang 2006).  

  

 

In contrast to the DNA bound structure of UvrD, the crystal structure of DNA bound 

afHel308 shows that the duplex portion of the DNA and the 3´- 5´ substrate single-

strand are almost collinear (Figure 24A). The rotation of domain 2 relative to 

domain 1 upon ATP binding seems to be the driving force of translocation along 

the single strand. The β-hairpin thereby appears to be rather pushed through the 

duplex to displace the 5´- 3´ strand, resulting from a conformational change and 
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cleft opening during ATP hydrolysis and product release. Due to striking structural 

and biochemical similarity, the proposed mechanism may be also applicable to 

HCV NS3 helicase (Figure 24B). Furthermore, this mechanism is very versatile 

and could also be used to strip proteins from single-strands (Jankowsky et al., 

2001). 

4.2 The interaction of the DNA substrate with afHel308 shows 
how the enzyme might interact with branched nucleic acids 

Archaeal Hel308 is proposed to act on stalled replication forks in a manner similar 

to RecQ (Fujikane et al., 2005; Guy and Bolt 2005). Consistent with that, archaeal 

Hel308 was shown to unwind a variety of different branched DNA structures in 

3´  5´ direction. Based on the DNA bound crystal structure presented here in 

which the 3´-tail of the DNA is unexpectedly bound to domain 5, one can propose 

a simple model of how afHel308 recognizes branched nucleic acids, in particular 

its preferred in vitro substrates in form of replication forks or other branched DNA 

structures (Figure 25). In this model, domain 5 may bind the single strand in front 

of the leading strand duplex, positioning afHel308 to unwind the lagging strand. 

After loading and translocation along the lagging strand template in 3´  5´ 

direction, the nascent unwound lagging strand may replace the leading strand, 

resulting in the crystallographically observed structure in complex with DNA. The 

displacement of the nascent lagging strand would allow the loading of proteins 

required to restart DNA replication like primase, replicative helicase or replication 

polymerases and in an alternative pathway the induction of an archaeal SOS 

response due to the exposed ssDNA. 

 

 

Figure 25: Model for the interaction 

of afHel308 with a replication fork. 

Left panel: schematic drawing of 

DNA bound afHel308 (color code of 

Fig. 16; domain 3 is omitted for 

simplicity). Right panel: model for 

the interaction of afHel308 with a 

replication fork. 

In this model, domain 5 could have an important function in substrate recognition 

and binding. This is consistent with biochemical results showing that the helicase 
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activity of the truncated Δ626 protein is reduced on HJ substrate (see 3.3.3). The 

idea is supported to some extent by the unexpected interaction between the HLH 

domain of one afHel308 molecule and the dsDNA portion of a symmetry related 

afHel308 molecule as observed in the crystal packing (Figure 19D). To further 

analyze the possible interaction between the HLH domain of afHel308 with 

dsDNA, domain 5 was superimposed to the thumb domain of the translesion 

polymerase Rev1 (Nair et al., 2005) (Figure 26C). As seen in the crystal structure 

of Rev1, the dsDNA is bound mainly via interactions with the helices 

corresponding to helix α30, α31 and α33 in afHel308 (Figure 26A,B). These 

helices interact with the ssDNA in afHel308, supporting the finding that the 

interaction is mainly backbone mediated and unspecific. However, comparison of 

the two DNA bound HLH domains with DNA derived from a symmetry related 

molecule in the crystal packing of afHel308 show that it would be possible, that the 

HLH domain additionally interacts with dsDNA of a branched DNA substrate like a 

Holliday junction intermediate (Figure 26C). 

 

 

 

Figure 26: Comparison of the HLH domain of afHel308 (A) and Polymerase Rev1 ((B) PDB 

code 2AQ4, without residues 600-620). Overlay of the two HLH domains (B) red: afHel308; 

magenta: 2AQ4, (Nair et al., 2005)) and the respective oligonucleotide raise the possibility 

that the afHel308 HLH domain is also involved in the recognition and binding of double-

stranded or branched DNA structures (C). 

  

All in all, the structural and biochemical data presented here exhibit high 

consistency with the biochemical properties observed for the archaeal homologs 

from Pyrococcus furiosus and Methanothermobacter thermoautotrophicus, which 

were found to partially complement RecQ in E. coli (Fujikane et al., 2005; Guy and 

Bolt 2005). The DNA:bound structure of afHel308 can explain the interaction with 

branched DNA substrates, confirming the RecQ-like role of Mus308 family 
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helicases in the repair of stalled replication forks. The position of the HLH domain 

5 thereby would be ideal to allow interaction with PCNA and/or 

translesion/replicative polymerases. Of course, the interaction with other important 

proteins found to be involved in these processes like endo- and exonucleases, 

primase and polymerase has to be elucidated.  

Due to the overall homology between the helicase domain of eukaryotic and 

archaeal Hel308 members it is possible, that they recognize similar DNA 

structures in vivo, consistent with their proposed role in DNA repair and/or 

recombination.  
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5 Summary 

Adenosine triphosphate (ATP) dependent nucleic acid unwinding by superfamily 2 

(SF2) helicases is required for numerous biological processes, including DNA 

recombination, RNA decay and viral replication. The structural and molecular 

mechanism for processive duplex unwinding of SF2 helicases is still unclear, in 

part due to a lack of structural insights into the actual strand separation reaction.  

Archaeal SF2 helicase Hel308 preferentially unwinds lagging strands at replication 

forks and is closely sequence related to human PolΘ and Hel308 as well as 

Drosophila Mus308. Furthermore, the RecA ATPase-core of archaeal Hel308 

shares high sequence conservation to the SF2 RNA decay factors Ski2p and 

Mtr4p. Thus, archaeal Hel308 appears as representative model to understand 

processive 3´  5´ DNA unwinding by SF2 helicases. 

During this PhD thesis crystal structures of Archaeogloubs fulgidus Hel308 

(afHel308) in the absence and presence of a 15mer duplex DNA containing a 

10mer 3´-overhang were determinded using X-ray crystallography. afHel308 

exhibits two typical SF2 RecA-like domains at the N-terminus. The C-terminus 

comprises a winged-helix (WH) domain, followed by a unique seven-helix-bundle 

domain and a helix-loop-helix (HLH) domain. The DNA bound structure captures 

the initial duplex separation and argues that initial strand separation does not 

require ATP binding. Comparison with ATP bound SF2 enzymes suggests that 

ATP binding and hydrolysis promotes processive unwinding of one base pair by a 

ratchet like transport of the 3’ product strand. In addition, the structure suggests 

that unwinding is promoted by a prominent β-hairpin loop. The identification of 

similar β-hairpin loops in Hepatitis C virus (HCV) NS3 helicase and RNA decay 

factors Ski2p and Mtr4p, and consistency of the results with biochemical data on 

HCV NS3 helicase argue that the observed duplex unwinding mechanism is 

applicable to a broader subset of processive SF2 helicases. Furthermore, the 

interaction between afHel308 and its DNA substrate also may explain how 

afHel308 is targeted to branched nucleic acid substrates.The presented results 

provide a first structural framework for duplex unwinding by processive SF2 

helicases and reveal important mechanistic differences to SF1 helicases and the 

SF2 helicase RecG. 
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7 Supplementary material 

7.1 Abbreviations 

Å   Ångström (=10-10 m) 
AA   amino acid or residue 
ATP   adenosine triphosphate 
AMP-PNP   5´- adenylyl-imido-triphosphate 
bp    base pair(s) 
BSA   bovine serum albumin 
ca.   circa 
CCD   charge coupled device 
CSL   Cep1 synthetic lethality 
DALI   distance matrix alignment 
DEPC   Diethylpyrocarbonate 
DNA   deoxyribonucleic acid 
dsDNA  double stranded DNA 
ds   double-stranded 
DSB   double strand break 
E.coli   Escherichia coli 
e.g.   exempli gratia (for example) 
HPLC   high performance liquid chromatography 
HR   homologous recombination 
kb   kilobase pair(s); 
LB   Luria-Bertani 
M   molar 
MAD  multiple-wavelength anomalous dispersion 
Mfd   mutation frequency decline 
MPD    
MR   molecular replacement 
MTR   mRNA transport regulator 
MW   Molecular weight 
NCBI   National Center for Biotechnology Information 
n.d.   not determined 
NER   nucleotide excision repair 
NHEJ   non-homologous end-joining 
NMR  nuclear magnetic resonance spectroscopy 
PAGE   polyacrylamide gel electrophoresis 
PCR   polymerase chain reaction 
PDB   Protein Data Bank 
PEG   polyethylene glycol 
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PEI   polyethyleneimine 
pI   isoelectric point 
PMSF  phenyl methyl sulfonyl fluorid 
PNK   polynucleotide kinase 
PVDF   polyvinyliden fluorid 
RMSD   root mean square deviation 
RNA   ribonucleic acid 
RP-HPLC  reversed phase HPLC 
RRP   ribosomal RNA processing factor 
SAD  single-wavelength anomalous diffraction 
SDS   sodium dodecyl sulphate 
SLS   swiss light source 
ssDNA  single stranded DNA 
ss   single-stranded 
TAE   tris-acetate-EDTA 
TB   tris-borate 
TF   transcription factor 
TLC   thin layer chromatography 
TLS   translesion synthesis 
v   volume 
w   weight 
wt   wild-type 
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7.2 Amino acids and nucleotides 

One letter code Three letter code Amino acid 

A Ala alanine 

B Asx asparagine or aspartic acid 

C Cys cystein 

D Asp aspartic acid 

E Glu glutamic acid 

F Phe phenylalanine 

G Gly glycine 

H His histidine 

I Ile isoleucine 

L Leu leucine 

K Lys lysine 

M Met methionine 

N Asn asparagine 

P Pro proline 

Q Gln glutamine 

R Arg arginine 

S Ser serine 

T Thr threonine 

V Val valine 

W Trp tryptophan 

X Xaa unknown or other 

Y Tyr tyrosine 

Z Glx glutamine or glutamic acid 
 

 

One-letter code Nucleobase 

A adenine 

C cytosine 

G guanine 

T thymine 
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